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This paper presents a simple model for such processes as chaos spreading or turbulence spillover into stable
regions. In this simple model the essential transport occurs via inelastic resonant interactions of waves on a
lattice. The process is shown to result universally in a subdiffusive spreading of the wave field. The dispersion of
this spreading process is found to depend exclusively on the type of the interaction process (three- or four-wave),
but not on a particular underlying instability. The asymptotic transport equations for field spreading are derived
with the aid of a specific geometric construction in the form of a comb. The results can be summarized by stating
that the asymptotic spreading proceeds as a continuous-time random walk (CTRW) and corresponds to a kinetic
description in terms of fractional-derivative equations. The fractional indexes pertaining to these equations are
obtained exactly using the comb model. A special case of the above theory is a situation in which two waves
with oppositely directed wave vectors couple together to form a bound state with zero momentum. This situation
is considered separately and associated with the self-organization of wave-like turbulence into banded flows
or staircases. Overall, we find that turbulence spreading and staircasing could be described based on the same
mathematical formalism, using the Hamiltonian of inelastic wave-wave interactions and a mapping procedure
into the comb space. Theoretically, the comb approach is regarded as a substitute for a more common description
based on quasilinear theory. Some implications of the present theory for the fusion plasma studies are discussed

and a comparison with the available observational and numerical evidence is given.
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I. INTRODUCTION

Turbulence spreading [1] is the spillover into surrounding
stable areas of turbulent motions excited at some location. The
phenomenon characterizes both fluid and plasma turbulence
and has been reported experimentally and/or numerically for
a variety of systems and physical conditions, with a wealth of
data spanning solar and astrophysics [2,3], geophysics [4,5]
and magnetic confinement fusion [6-9]. In fusion-grade plas-
mas, turbulence occurring in the linearly active (unstable)
regions of a plasma can penetrate into the linearly inactive
(stable) regions of the same plasma, where it can modify
transport scalings [1,6] and eventually deteriorate confine-
ment [7-15]. More recently, it has been discussed [16—18] that
turbulence spreading can mediate the global self-organization
of L-mode tokamak plasma into a marginally stable state
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and that it underlies such phenomena as the rise and de-
cay of transport barriers [18-21], scrape-off layer (SOL)-core
and SOL-edge coupling [16,22], avalanche transport [23-26],
and the staircase self-organization [27-36]. Indirect evidence
of turbulence spreading may be obtained from, e.g., the
breakdown of gyro-Bohm transport scaling [16,37], the break-
down of Fick’s law [16,38], the broadening of SOL [39,40],
and the transport shortfall problem [17,18,22]. Further ev-
idence comes along with cold-pulse phenomenology [41]
and the observation of internal rotation reversal [41,42]
and pulse-polarity reversal [42-44], yet among other
observations [8,16,17].

On the theory side, a brief account of the existing
literature suggests the absence of a unifying theory of
turbulence spreading that would apply in all cases. A paradig-
matic approach to turbulence spreading (e.g., Refs. [1,6—
14,16,18,26]) relies on a conjecture that the transport of
turbulence intensity can be described using a nonlinear
diffusion-reaction equation with sources and sinks—akin to
the Fisher-Kolmogorov-Petrovsky-Piskunov (F-KPP) equa-
tion [45-47]. By mastering a suitable nonlinearity in the
diffusion coefficient and in respective driving and damping
terms one succeeds based on this equation to reproduce a
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number of complex situations of interest to fusion tasks (e.g.,
Refs. [8,12,14,18,26]) under certain rather weak conditions. A
criticism raised against this approach, however, is that it relies
on a phenomenological characterization of turbulence spread-
ing and uses a Gaussian propagator of turbulence intensity,
which is not at all obvious in nonequilibrium systems. Other
approaches [48-51] advocate an idea that turbulence spread-
ing can be understood as a transport problem for fluctuation
pulses, suggesting a theoretical description in terms of Burg-
ers’ equation with noise. In the context of tokamak plasma, the
Burgers’ model can be formulated [16,51] so that it includes
both inward spreading from SOL into edge and outward
spreading from edge into SOL. In the latter case, it mimics the
turbulence overshoot by coherent structures, vortices and blob
filaments [52-55]. In the outer core—inner edge region, the
observed phenomenology [7,42,56] of turbulence spreading is
captured by the Hasegawa-Wakatani model [57-59] of plasma
edge turbulence, revealing a spatially anisotropic transport
with bursts [60-64].

In the realm of wave turbulence [65,66]—composed of
a large number of interacting waves with a distribution of
frequencies and wave vectors—the problem of turbulence
spreading can be reconciled [67] with the fundamental prob-
lem of quantum localization of dynamical chaos [68]. The
latter problem has been the subject of very extensive theoreti-
cal treatments (e.g., Refs. [69—81]), in terms of the nonlinear
Schrodinger equation with random potential and the Hubbard
model. The results from those investigations can be summa-
rized by a critical value of the nonlinearity parameter, above
which the nonlinear field spreads indefinitely along the lat-
tice, and below which it is spatially localized similarly to
the linear field. Authors of Refs. [74,76,79] suggested that
the dynamics of this spreading process could be character-
ized using continuous-time random walks (CTRWs)—Ileading
to a theoretical description in terms of fractional-derivative
equations [82-84].

By CTRW—introduced in physics by Montroll and
Weiss [85,86]—one means a random-walk process with a
distribution of either step-sizes (Gaussian or Lévy [87]) or
waiting times between steps (Poisson or fat-tailed [82,83])
or both. As such, CTRWs underpin nondiffusive general-
izations [82,88-90] of the Brownian random walk [88,91],
enabling outstanding applications in such areas as disordered
media [92-95], dielectric relaxation [93,96,97], and magnetic
confinement fusion [98-101].

In this study, we build upon these ideas and devise a
theory of turbulence spreading based on the Hamiltonian
of inelastic wave—wave interactions on a lattice. By ap-
plying Fermi’s golden rule [102], we relate the transport
problem for turbulence intensity to a first-principal de-
scription of the nonlinear field. Following the analysis of
Ref. [67], we show that the asymptotic spreading law is de-
termined exclusively by whether the interactions are three- or
four-wave-like, regardless of the specific instability behind.
Finally, we obtain asymptotic kinetic equations for turbu-
lence spreading by setting the transport problem on a Dirac
comb.

FIG. 1. The Dirac comb. The central horizontal line is the back-
bone, the vertical lines are the side branches—the so-called fingers
or teeth of the comb. The bright-red circle on the left is the origin. A
is the spacing between neighboring teeth, x is the coordinate along
the backbone, and y is the coordinate in fingers.

In mathematics, a Dirac comb [95] is a geometric represen-
tation of the pulse function

+00

Ca(x) := Z §(x — mA), 1)

m=—00

where A is the period of the comb (period between consec-
utive pulses), m = 0, £1,£2,... is an integer counter, and
8(x) denotes the Dirac delta-function.

A Dirac comb (see Fig. 1) consists of a central backbone
along the x axis and infinite side branches (fingers or teeth) in
the y direction. Note that the number of side branches is count-
able (because the set of all integer numbers is countable).

From a dynamical perspective, combs and their generaliza-
tions provide a convenient approximation to CTRWs (because
side branches operate as dynamical traps with a distribu-
tion of exit times). On the other hand, because combs are
loopless structures (similarly to Bethe lattices [95]), their
transport properties can in many situations be determined
exactly [103-105].

The appreciation of combs in physics began with the work
of Ziman [106], who introduced them as a simplification of
the percolation model of de Gennes [107]. In Ziman’s de-
scription, a percolation cluster is thought of as composed of a
conducting path, which corresponds to the backbone, and side
branches, which represent the dead ends of the cluster. Then at
some level of idealization one draws a connected graph with
infinite teeth that resembles a comb. Such comb-like graphs
as in Fig. 1 have been applied in a basic theory of CTRWs as
an alternative to fractal lattices (Refs. [95,105,108]).

A remarkable feature of combs is that they capture much
of the actually observed signatures of anomalous transport
in disordered systems (e.g., Refs. [95,109,110]). In fusion-
grade plasmas, the use of combs is less noted, with only few
exceptions, among which we specifically mention a model
of the plasma staircase [111] and a demonstration, sup-
ported by numerical evidence, of weak localization of plasma
avalanches [112].
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The paper is organized as follows. The asymptotic scaling
laws for turbulence spreading are derived first (Secs. II A and
II B), followed by a derivation of the exit-time distributions
in Sec. II C. These derivations suggest a special case of the
zero-frequency resonance, which is considered separately in
Sec. III. The comb model is formulated in Sec. IV. Section V
introduces the basic transport model and its 1D reduction, par-
tial cases of which are analyzed in Sec. VI. Next, the fractional
relaxation equation is discussed (Sec. VII). We summarize our
findings in Sec. VIII. Some auxiliary results pertaining to the
comb model are presented in Appendix.

II. GENERAL CASE

We envisage turbulence as a superposition of a large num-
ber of interacting waves with the dispersion relation wyg, =
wi(k;), where wy, is the frequency of the ith wave, and k; is
the wave vector. The conservation of energy and momentum
through the interaction process implies that the interaction
cross section has sharp peak whenever there is a resonance
among the waves involved and vanishes otherwise. Respec-
tively for three- and four-wave interactions the conditions for
a resonance read [65]

wx = wk, + ok, KkK=Kk;+kj, )

and
Wk, + ok, =g, +og,, ki+ke=ks+ks, (3)
wg, =k, + ok, ok, kK=K +ki+ki (4

The triad equations (2) [and likewise the quartic Egs. (3)
and (4)] can be thought of as the defining equations for wave
vectors Kk;. These equations may or may not have a solution
as the dispersion relation wk, = w;(K;) imposes a nontrivial
constraint on the admissible frequencies and wave vectors. If a
solution exists, it may be of three types. One type is associated
with parametric decay instability, i.e., a process in which
strong falling wave decays into two or more lower-frequency
waves such as in Figs. 2 and 3, top. This process is thresholded
in that the falling wave’s amplitude must exceed a certain criti-
cal value for the actual breakup to occur. Another type is exact
opposite process of the above when two or more waves merge
into one stronger wave. Finally, and this is specific to four-
wave interactions, two falling waves may participate in an
inelastic scattering process such as in Fig. 3, bottom, in which
process the energy and momentum are merely redistributed
among the participating waves, while the number of waves is
preserved. These decay, merger, and scattering processes are
all important in far-from-equilibrium plasma systems, partic-
ularly in regimes underlying the expansion of turbulence into
surrounding stable areas (e.g., Refs. [11,12,67]).

In this paper’s work, we are interested in the expansion of a
small puff of turbulence excited locally from the exterior (for
instance, by injecting a strong pump wave into a plasma [66]).
The injected power is assumed to be sufficient to trigger a
cascade of secondary decay events, if three- or four-wave, or
both, thus populating the system with a certain initial number
of unstable modes. Once locally excited, the instability can
propagate to large spatial scales when nonlinearity, such as
a spatial pressure inhomogeneity [59,60], couples different

3-wave process
(decay)

_1
5=

4-wave process
(decay)

s=1

FIG. 2. Resonant decay processes. (Top) A three-wave decay
process in which a falling wave breaks into two offspring waves.
(Bottom) The analogous four-wave process in which a falling wave
breaks into three offspring waves. o, and other sigmas alike denote
complex amplitudes of the various processes involved and are ex-
plained in the main text [see the paragraph after Eq. (6)]. The s index
pertains to Eqs. (23) and (35). The oval, with the dashed line inside,
indicates that the interaction processes above refer to waves, not
particles, meaning these processes might not be spatially localized.

waves, and energy and momentum conservation conditions
are met at each step of the nonlinear interaction process.

In fusion applications, one encounters a situation in which
noninteracting waves can propagate freely in the preferred di-
rection (in the case of drift waves it is the poloidal direction in
a tokamak), while being linearly localized in the perpendicular
(radial) direction. In tokamak geometry, a running wave must
meet the known constraints [59,113] imposed by poloidal
and toroidal periodicities, through which periodicities the
noninteracting waves are attracted to rational magnetic flux

4-wave process
(decay)

4-wave process
(scattering)

Oy

3

FIG. 3. A four-wave decay (top) versus scattering (bottom) pro-
cess: a schematic illustration. Same notation as in Fig. 2 above.
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surfaces. When nonlinear interactions are allowed, the main
effect these interactions have on the wave field is to induce
instability on neighboring flux surfaces, which is equivalent
to an expansion of the wave field in the direction of radial
localization. It is this process of instability expansion driven
by nonlinear interactions that we associate with the phe-
nomenon of turbulence spreading. The implication is that the
spreading process (in its wave formulation) is fundamentally
anisotropic—it occurs in the direction perpendicular to the
wave vectors k;, while the interactions propagate along the
k;’s. The situation is somewhat different from an (apparently
similar) nonlinear Anderson problem [69,70,76], where non-
linearity squeezes the wave field in the direction of the k
vector.

In this study, we approximate the phenomena of turbulence
spreading with a simple dynamical model as follows. It is
assumed that all interactions occur on an infinite 1D lattice,
which is aligned in the direction of wave propagation. The
spreading is in the perpendicular (radial) direction and comes
about as a result of nonlinear interaction among the different
unstable modes, provided the necessary conditions of energy
and momentum conservation [Eqgs. (2)—(4)] are satisfied. We
argue it is the fundamental structure of these interactions that
determines the resulting asymptotic transport scalings.

With these implications in mind, we abandon the vector no-
tation in Eqgs. (2)—(4), and continue with a scalar description
instead. In particular, we use k in place of k, and we define
this as the scalar product k = k - &, where € is a unit vector
along the lattice. Note that £ may have both signs depend-
ing on whether k looks along or against the & vector. Yet,
we refer to k as “wave vector” for simplicity. The reflection
symmetry k <— —Kk is assumed, i.e., the 1D lattice on which
the interactions occur is isotropic. With this last condition,
the dispersion relation is simplified to wy, = w;(|k;|), implying
Wi, = W_;-

A. Three-wave interactions

The Hamiltonian of three-wave interactions on a 1D dis-
crete lattice reads (see, e.g., Refs. [65,114])

1
H =Hy+ Hi. Ho=7 Xk:wkﬁk*o'k, (&)
1
Hip = 3 Z V_ke O Oy Ok Sty +h5 05 (6)
ko ko

where Hj is the Hamiltonian of noninteracting waves, Hiy
is the interaction Hamiltonian, oy = o0} (¢) are complex am-
plitudes that represent a wave process with frequency wy
and wave vector k and which may depend on time ¢ in
general, w_; = wy thanks to w; = w(|k|), o_; = o by way
of temporal translation symmetry [65], the asterisk denotes
complex conjugate, the set of all k’s is countable (in a discrete
model), V_ x, x, are complex coefficients which characterize
the cross section of an interaction process with triad couplings
k = ki + ky, and 8_gik 44,0 18 the Kronecker delta, which
accounts for resonant character of these interactions. Remem-
bering that the lattice is isotropic, i.e., wy = w(]k|) for all
k, the summation in Eq. (5) is performed over both positive
and negative values of k allowed by the dispersion relation.

For the same reason, the summation in Eq. (6) goes over all
positive and negative values of k, ki, k, allowed jointly by the
dispersion relation wy, = w;(|k;|) and the conservation laws.
This, together with the sign-reversal conditions, o_; = o;* for
all k and V_y 4, 1, = Vk’f_k]’_kz for all , k|, and k,, guarantees
that the Hamiltonian in Eqgs. (5) and (6) is real and well
defined. The cubic terms o} oy, 0%, in Eq. (6) incorporate all
admissible three-wave interaction processes, of both the decay
type and the merger type, in which processes o} represents
the falling wave, and oy, and oy, represent the offspring waves
(see Fig. 2, top).

Given the Hamiltonian in Egs. (5) and (6), one applies the
canonical equations

oH ) 0H

of = —i— )

Or = i—,
do; 00y

to obtain the equations of motion for the complex amplitudes
Of, i.e.,

O = lwgoy + iV*O'kl(TkZ. (8)

The equations for oy, and oy, are obtained either directly from
the Hamiltonian H = Hy + Hj,; by applying the canonical
equations, or by switching indexes in the equations of mo-
tion (8) on account of the resonance condition k = ky + k»
and the general rule o_; = o;". The end result is

O

. . "
| = oy, 0r, — iVorop, ©)]

O, = iwy, 0k, — IV ooy . (10)

In the above, V = Vi _, —, for simplicity, and the upper dot
denotes time differentiation.

If the field is spread over An >> 1 states (in radial direc-
tion), then the conservation of the total probability

An An
Z)%F:/‘|wWM=1 (11)
n=0 0

implies that the density of the probability is small and is
inversely proportional to An, i.e., |o,|> >~ 1/An.

It is understood that the evolution of the wave field in time
is caused by nonlinear coupling among the resonant modes.
The rate of excitation of a newly involved mode is obtained as
intensity of this coupling process, i.e., R > p|V*|?|0,,0,, %,
where p is a coefficient. Using dynamical Egs. (8)—(10), one
gets

R~ p|Vou|* =~ plV[*/(An)?, (12)

where the scaling |0,,|> >~ 1/An has been considered. In writ-
ing Eq. (12) we have tacitly assumed that the number of modes
in Eqgs. (8)—(10) is large enough to render An >> 1. The latter
condition guarantees R < wy for the majority of modes, i.e.,
the radial expansion is slow compared to a typical frequency
of the running wave. On the other hand, the resonant character
of interactions dictates

R =dAn/dt (13)

consistently with Fermi’s golden rule [102] for transitions
between states. Combining Eqs. (12) and (13), one obtains

dAn/dt = p|V|*/(An). (14)
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Integrating over time in Eq. (14), one is led to (An)® =
3p|V|?t, yielding

(An)* = Bp) P V|23, (15)

One sees that the asymptotic spreading is subdiffusive: (An)?
grows slower-than-linear with time as ¢t — 4-00.

In the context of fusion plasma, one usually looks into a
spatial spread Ax instead of the number of states An. How-
ever, if the linear field is spatially localized in radial direction,
and if the localization mechanism is such as that described
by Garbet et al. [1] (i.e., stickiness to rational flux surfaces),
then An will be proportional to radial spread, i.e., An o Ax.
From Eq. (15) one infers Ax o< t'/3. This is remarkable, as the
latter scaling coincides with the scaling [6,10] deduced from
the F-KPP equation.

B. Four-wave interactions

In the case of four-wave interactions (see Fig. 3), the inter-
action Hamiltonian becomes

1
*
Hipe = — E V_k k1.ko ks O Oky Oty Oy Oy +hy K30 (16)

k. ki, ky k3

and represents a next-order correction to the three-wave in-
teraction Hamiltonian introduced in Sec. II A. As usual [65],
temporal translation symmetry dictates o_; = o}’ for all k and
Voot = Vk —y—ky ks for all k, ki, kp, and k3. It is as-
sumed that the dlspersmn relatlon is symmetric with respect to
the inversion k; — —k;, i.e., o, = w;(|k;]), where k; = k; -

on a 1D lattice. The summation in Eq. (16) is performed over
all admissible values of k, ki, k>, k3 allowed by the dispersion
relation and the conservation laws, that is any k; is included
on an equal footing with —k;, where k; = k, ki, k>, k3. This
guarantees that H;, is real and well defined. Replacing k —
ki,, ki = —ki,, ko — ki;, and k3 — k;,, and making use of
Ok, = o,:‘_z , one can rewrite Hj,, in an equivalent “symmetric”

form as

Hin = ‘1_‘ Z Vok,.

k,‘l +k,‘2 =k,‘3 +k,‘4

* %
iy kiy ki, Ok Ok, Ok Ok, - (17)

In the above, the quartic terms 01:1 Oy, Ok, Ok, Tepresent
the complex amplitudes of individual four-wave interaction
events (scatterings, decays and mergers all count), the asterisk
marks the falling waves, and we have omitted the Kronecker
delta 8_;@.1 —kiy iy iy 0 for simplicity.

The fact that Hy,, collects both scatterings and decays via
oy, = w;(]k;|) has important physics implications. Indeed, it is
shown, theoretically [115] and confirmed numerically [116],
that a certain amount of decays taking place is actually nec-
essary for inelastic scatterings to occur. When the scatterings
couple an increased number of waves (meaning nonlinearity
exceeds a certain critical level), the system of interacting
waves obeying Eqs. (3) and (4) naturally (without tuning
of parameters) transits into a stochastic state, in which it
develops statistical, rather than deterministic, properties. It
is this transition into a stochastic state that underlies the
occurrence of “turbulence” in large systems of interacting
modes. In what follows, it is tacitly assumed that the necessary
conditions [116] for the stochastic instability to come into

play have been satisfied, thus paving the way for random
dynamics [65,117], and a theoretical description in terms of
the probability density function (Secs. V and VI).

If one wants to single out the effect of four-wave inter-
actions on the dynamics of field spreading (or if three-wave
interactions are forbidden by the dispersion relation), then
the procedure is to substitute (16) into Eq. (5) (in place of
the three-wave Hj,:) and apply the canonical equations (7),
from which the following equations of motion for the complex
amplitudes o} may be deduced:

Ox = oy + iV*Gk]O’kZO'k3, (18)

where we have denoted V =V _y _4,.—r, and V*=
V_k ki kn.ks- SWitching the indexes in Eq. (18) and remember-
ing that o_; = o}/, one gets the dynamical equations for oy,
i.e.,

Ok, = iy, 0y, — iV oroy oy, (19)

and similarly for oy, and oy,. The rate of field spreading is
obtained as R >~ p|V*|?|0,, 0,01, leading to [cf. Eq. (12)]

R~ p|V[*|o,|® =~ p|V*/(An)®, (20)

where p is a coefficient, |0,,|> ~ 1/An in conformity with the
conservation law in Eq. (11), and we have assumed that An
is as large as to guarantee R < wy for the majority of k’s.
Combining Eq. (20) with Fermi’s golden rule R = d An/dt,
one gets

dAn/dt = p|V|*/(An)?, 1)

from which (An)* =4p|V|*t. The latter equation corre-
sponds to a subdiffusive spreading for r — 400, i.e.,

(An)* = (4p)' 2|V |t'/2. (22)

The subdiffusive scaling law in Eq. (22) is a familiar one.
It is found in quantum chaotic dynamics, where it char-
acterizes asymptotic spreading of a quantum wave packet
in the nonlinear Schrédinger lattices with disorder (e.g.,
Refs. [77,79,80,118-120]). This correspondence with quan-
tum chaos is no surprise as we have based our model on
Fermi’s golden rule [Eq. (13)], with that justification that the
interactions are resonant. If, instead of the golden rule, one ap-
plies the random-phase approximation as of Refs. [69,76,78],
then a different scaling law is predicted for t — +o0, i.e.,
(An)? o t3/5. We discount this scaling law here.

C. Exit-time distribution

The subdiffusive scaling laws in Egs. (15) and (22) corre-
spond to a non-Markovian spreading process with exit-time
statistics. The demonstration uses the idea of clustering of
unstable modes in phase space (Refs. [74,118]). Mathemati-
cally, it is convenient to unify the spreading laws in Eqs. (14)
and (21) by defining

dAn/dt = AJ(An)>T, (23)

where the switcher s takes the value s =1 for four-wave
interactions and the value s = 1/2 for three-wave interactions,
and we have denoted A = p|V|? for simplicity. Integrating
over time in Eq. (23), one gets (An)>*2 = (25 + 2)At, from
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which
(An)? = [(2s 4 2)A]V/ D/ 6+D), (24)

Differentiating both sides of Eq. (23) with respect to time and
eliminating the resulting d An/dt on the right-hand side with
the aid of the same Eq. (23), one obtains

d? (25 + 1)A?

—An=——F . 25

dr? n (An)4s+3 (25)
Finally, by rewriting the power-law function on the right-hand
side of Eq. (25) such that it takes the form of a gradient against
An, one gets

&? d
A= —— 26
ar " dAn[ (26)

A2)2

Equation (26) is equivalent to the Newton equation of motion
of a point particle of unit mass in the potential field

A2

27
where An has the sense of position coordinate and character-
izes the actual span of the field distribution.

If s = 1, then the potential function in Eq. (27) becomes

A2
C(An)t

The latter potential is known from molecular physics, where
it quantifies the attractive interactions between atoms inside
molecules (as a constituent of the Lennard-Jones poten-
tial [121]). Given this insight and the fact that the potential
function in Eq. (27) has an attractive character for any s > 0,
one might arguably propose that the newly excited modes
form clusters, or “molecules” in phase space [74,118], where
they will be effectively trapped [119] owing to their nonlinear
coupling.

Multiplying both sides of Eq. (26) by the velocity d An/dt
and integrating the ensuing differential equation with respect
to time, after a simple algebra one obtains

W(An) = (28)

o [N A AE (29)
p— — n _— fr—
2| dt (Anys+2 ’

where the first term on the left-hand side has the sense of
kinetic energy of a particle, and the second term is its potential
energy.

More so, it is shown using Eq. (23) that the ki-
netic energy in Eq. (29) compensates for the potential
energy exactly, that is the total energy in Eq. (29) is
zero, i.e., AE = (. Furthermore, both the negative potential
energy W (An) = —A?/2(An)**? and the positive kinetic en-
ergy 3(dAn/dt)* = A?/2(An)*®*+D vanish while spreading.
These both decay as the (4s + 2)th power of the number of
states and the ratio between them does not depend on the
width of the field distribution.

The total energy being equal to zero implies that a particle
with the equation of motion (26) is sitting on the separatrix
AE = 0. That means that the motion process of this particle
could be particularly sensitive to perturbations [117,122,123].
Such perturbations may have different physics origins—from

thermal noise to imprecision in the initial conditions [117]—
though the main cause is arguably the neglect of higher-order
interaction terms in an idealized three- or four-wave picture of
interactions [124]. Here, we assume, following Refs. [67,118],
that the role of random factors can be accounted for using the
energy parameter 7, and we interpret this as the “temperature”
of thermal bath enveloping the separatrix.

Adding thermal fluctuations to the Lennard-Jones model in
Eq. (27) leads directly to a non-Poissonian distribution of exit
times with the divergent mean, as we now proceed to show.

In fact, the probability for a selected mode to quit the
cluster after it has traveled An sites on it is given by the
Boltzmann factor

p(An) = exp[W(An)/T], (30)

where W (An) is the negative potential energy stemming
from the equation of motion (26). Substituting W (An) from
Eq. (27), one writes

p(An) = exp[—A?/2T (An)**2]. (31)

Taylor expanding the exponential function for An >> 1, one
gets

p(An) ~ 1 — A?/2T (An)*+2. (32)

The probability to remain (survive) on the cluster after An
space steps is p'(An) = 1 — p(An), yielding

P/ (An) ~ A /2T (An)*+2. (33)

Eliminating An with the aid of Eq. (24), one obtains the
probability to survive on the cluster after Ar time steps

p/(At) o (At)—(2S+l)/(S+l)’ (34)
which is equivalent to the exit-time distribution
Xa (A1) o¢ (A)~1F) (35)

with o = s/(s + 1) < 1. Specifically, one finds o« = 1/3 for
three-wave interactions (s = 1/2) and o = 1/2 for four-wave
interactions (s = 1). One sees that the integral

/ At xo (At)d At ~/ (A1) dAt ~ 1'% = 400 (36)
~1 ~1

diverges for t — 400, implying that the mean exit time is
infinite for all ¢ < 1.

II1. SPECIAL CASE

A special case of the above theory is a situation in which
two waves with oppositely directed wave vectors k; and —k;
couple together to form a bound state with zero momentum.
The process is similar to the generation of Cooper pairs in
superconductors [125]. An interesting regime occurs when
such bound states can participate in triad interactions with
high k running waves via the zero-frequency resonance (see a
schematic illustration in Fig. 4, top)

wy, = Wy + Wg—o, 37

where k; and k; — 0 are wave vectors of the running wave
just before and after an interaction event involving a bound
state, and wy — 0 is the vanishing frequency of this state.
A situation of the kind is found in tokamaks, where the
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FIG. 4. The zero-frequency resonance. The oval structure (dotted
line) represents a bound state between two counterpropagating waves
with complex amplitudes o_; and oy;. (Top) A running wave trans-
ferring energy to a bound state via the zero-frequency resonance.
(Bottom) The opposite process of a bound state transferring energy
to a running wave.

three-wave resonance in Eq. (37) is held responsible for the
generation of zonal flows [16,21,126,127]. By zonal flows one
means azimuthally symmetric band-like shear flows, which
are ubiquitous phenomena in planetary atmospheres, oceans,
and the laboratory [4,16,21,128]. In the context of tokamak
plasma, zonal flows are zero-frequency electrostatic potential
fluctuations with finite radial wave number. These zonal flows
are driven exclusively by nonlinear interactions, which trans-
fer energy from electrostatic micro-turbulence into large-scale
drift-like motion of plasma particles with electrostatic E x B
drift. Usually, such nonlinear interactions are three-wave triad
couplings between two high k drift waves and one low k
zonal flow excitation [21]. The importance of zonal flows in
magnetic confinement fusion is that these flows help reduce
the levels of turbulence and turbulent transport by absorbing
the free energy from the high k turbulent background.

The coupling process in Eq. (37) corresponds to the inter-
action Hamiltonian

4 *
it = E V_k.0.6-00F.000k 08—k +0+k—-0,0,  (38)

ki>0

where oy is the amplitude of a bound state with frequency
wp — 0, the summation goes over all positive values of k;
allowed by the dispersion relation, and we have kept the
Kronecker delta for consistency with previous equations.

The Hamiltonian in Eq. (38) is joined by the Hamiltonian
of exact opposite process

" k *
Hy = E Vot ~0.k+00%, 00 Ok;+08 —ki—0-+k;+0.05 (39
ki>0

which characterizes the decay of a bound state with frequency
wp — 0 via the zero-frequency resonance wy, = —wp + Wk,+o
(see Fig. 4, bottom).

There is a subtlety here, however, and this refers specifi-
cally to the fine structure of the bound states. Indeed, if the
frequency of the bound states is about zero, i.e., wy — 0, and

if these states are formed by two counterpropagating waves
having vanishing frequency each, then the resonance condi-
tion in Eq. (37) can be satisfied [129] if only for a bound state
as a whole as well as for each partial wave process involved
composing such a state. This is because the resonance in
Eq. (37) has finite width, which allows for a margin on admis-
sible resonant frequencies. This finite spread over frequencies
gives rise to instability of the bound states—akin to stochastic
instability of coupled nonlinear oscillators [117,122]—which
occurs along the separatrix wy = 0. The latter is a hypersphere
in wave-number space, with the center at zero wave number
vector k = 0 and of radius |k;| (see Sec. 7 of Ref. [130]).

More explicitly, if the interaction frequency wy — 0, then
the distance between resonances in vicinity of the separatrix
behaves as w ~ wg, while the nonlinear resonance width [65]
approaches zero as Awni & /wp [67] and for wy — 0 will
be much larger than dw, i.e., Awn. X /@y > dw ~ wy. The
implication is that the zero-frequency resonance in Eq. (37) is
broad enough to cover the constituent wave processes over the
entire bound state as wy — 0. This zero-frequency instability,
which is generic to isotropic systems with separatrix dynam-
ics [65,123], has been simulated numerically in Ref. [130] in
the context of surface waves in a fluid.

Writing the amplitude of the bound states as oy = O_k;0%;
where o, and oy, are complex amplitudes of the constituent
wave processes, and substituting into Eq. (38), one may
represent the interaction Hamiltonian H,, in an equivalent
four-wave form

H; = Z Vki,—k; k; ki Ok, O%, Ok Ok S—k—kj+ky+:,05 - (40)
ki>0,k;>0

where use has been made of o, = a,jj . The Hamiltonian (40)
is a partial case of the “symmetric” Hamiltonian (17), with
that particularity that the summation in Eq. (40) goes over
positive values of k; and k;.

One sees that the zero-frequency resonance is special in
that it can be associated with either a three-wave process of
the type given by Egs. (38) and (39) or a four-wave pro-
cess of the type given by Eq. (40)—depending on whether
the zero-frequency state oy = o0y, is accounted for as a
single wave with zero momentum or as two coupled waves
with oppositely directed momenta. This duality has important
statistical implications with regard to the dynamics of field
spreading.

In fact, if one wants to assess the asymptotic (¢t — +00)
dispersion of the wave field, then one needs to consider that
the actual spreading rate R = d An/dt is limited to the gen-
eration of new bound states by way of the zero-frequency
resonance in Eq. (37). In that regard, the zero-frequency state
oy behaves as a single wave, suggesting the interaction Hamil-
tonian in Eq. (38) applies. The spreading law is therefore
obtained from Eq. (24), where one demands s = 1/2, leading
to

(An)?> o t*3. 41)

On the other hand, focusing on exit-time statistics, one turns
back on three-wave interactions and starts looking into four-
wave processes instead, with the justification that it is this type
of interaction process that limits the lifetime of the bound

064217-7



MILOVANOYV, IOMIN, AND RASMUSSEN

PHYSICAL REVIEW E 111, 064217 (2025)

states (and therefore is most relevant for the exit-time dis-
tribution). It is at this point where the four-wave interaction
Hamiltonian in Eq. (40) comes into play. In this approxima-
tion, the fact that oy has internal structure is key, meaning the
zero-frequency wave oy = oy, 0y; is worth two interacting
waves. It is understood that four-wave interactions result in
a steeper distribution of exit times [see Eq. (35)] and as such
will have an upper hand in determining the decay instability
of the bound states. With this implication in mind, the distri-
bution of exit times is inferred from Eq. (35) by letting s = 1
ina =s/(s+ 1), yielding

Xo (A1) o (A1) /2, (42)

Summarizing the above reasoning, it is noted that the pres-
ence of zero-frequency states results in mixed statistics, when
the asymptotic spreading law is three-wave-like, while the
distribution of exit times is four-wave-like.

In the context of tokamak plasmas, the spreading law
in Eq. (41) can describe the radial expansion of drift-
wave turbulence by way of coupling to zonal flows. The
subdiffusive character of Eq. (41) suggests zonal flows
may effectively suppress radial transport. Indeed, the fusion
experiments demonstrate and direct computer simulations
confirm that zonal flows can limit considerably the losses
of hot thermonuclear plasma into the edge region (e.g.,
Refs. [9,15,126,127,131]; Refs. [21,132] for reviews). This
positive view should, however, be balanced by the fact that
zonal flows simultaneously regenerate turbulence through the
decay process in Eq. (39).

An exciting result in the study of zonal flows in recent
years has arguably been the discovery of quasiregular patterns
of E x B flows dubbed the E x B staircase (or plasma stair-
case) [27-30]. Staircases are ubiquitous mesoscale dynamical
structures characterized by narrow regions of localized gradi-
ent sharpening and of strong and lasting jets interspersed with
broader regions of turbulent (typically, avalanching) transport
(see Fig. 1 of Ref. [112]). Experimentally, E x B staircases
are identified in a large variety of plasma parameters in
ion drift-wave turbulence using correlation analysis of high-
resolution fast-sweeping reflectometry (e.g., Ref. [28]).

The plasma staircase exemplifies how a systematic orga-
nization of turbulent fluctuations may lead to the onset of
strongly correlated flows on magnetic flux surfaces. Theoreti-
cally, the plasma staircase represents a synergistic cooperation
between the transport by avalanches at the mesoscales and
the spontaneously occurring zonal flows [16,17]. The lat-
ter constitute a semipermeable localized barrier to avalanche
propagation [133,134].

Focusing on the interaction Hamiltonian in Eq. (40), one
may associate the zero-frequency states op = 0,0y, with
the different staircase jet zonal flows, where each such flow
is labeled by a proper value of k;. As each k; is excited
on its own resonant magnetic flux surface, the interaction
Hamiltonian (40) with the sum over k; predicts a qusiregular
(grid-like) pattern, as observed [28-30]. Developing these
viewpoints, one might reasonably propose that zonal flows
naturally (under the overlap condition Awnr > () organize
themselves into quasiregular spatiotemporal patterns that are
seen in the experiment as the E x B staircase. In that regard,
the subdiffusive scaling law in Eq. (41) represents the radial

y
FBM l

—9-

L

FIG. 5. The comb model. Side branches are shown as vertical
lines and are assumed to be everywhere dense in the backbone (the
horizontal line). The red circles represent the initial (left) and final
(right) positions of the random walker performing a jump of the
length Ax along the backbone (marked by the coordinate x). Vertical
arrows in the y direction represent the fractional Brownian motion
(FBM) in side branches.

dispersion of electrostatic drift waves that would result if the
staircase structure contained an infinite number of jets.

IV. THE COMB MODEL

Perhaps the most important observation from the above
analysis is the absence of a characteristic temporal scale for
the spreading process. The unstable modes are trapped within
disconnected clusters of states by the action of the Lennard-
Jones potential in Eq. (27), and whether they do or do not
quit the clusters is statistical, with a broad distribution of
exit times. In this paradigm, meaningful spreading occurs
when new modes are excited outside the existing clusters.
Self-similarity implies that new excitations happen on a prob-
abilistic basis and that the statistical distribution of waiting
times associated with these excitations is effectively the same
as the exit-time distribution in Eq. (35).

In this section, we analyze the expansion of the nonlinear
field as a transport problem in comb geometry. The main
idea here is that one can map the subdiffusive scaling laws
in Egs. (15) and (22) onto a Dirac comb, and by doing so un-
veil the microscopic organization of the asymptotic spreading
process. Technically, it is convenient to generalize the Dirac
comb first, and to introduce a comb space by building side
branches everywhere densely along the backbone—instead of
rising them at a fixed space step A (see a schematic illustration
in Fig. 5). For instance, the side branches could be placed
at all rational numbers along the x axis (because the rational
numbers are dense in the set of real numbers). Because, on the
other hand, the rational numbers can be made in one-to-one
correspondence with the set of natural numbers [135], a comb
space with dense side branches is equivalent—as a mathe-
matical set of points [136]—to the discrete comb in Eq. (1).
That means that a comb space with dense side branches has
the same cardinality [136] (contains the same infinite num-
ber of dynamical traps) as the analogous discrete comb. It
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is understood that the asymptotic (t — +00) dispersion law
is determined by the statistical distribution of waiting times
spent within each such trap, and that all these traps are just
identical copies of each other, suggesting one might rely on
either model to assess the asymptotic dispersion. That said, a
comb structure with dense side branches can be preferable to a
discrete one as it simplifies the analysis used in the derivation
of continuum equations (Sec. V). From a fusion perspective,
the notion of a comb space with dense side branches is directly
relevant to characterize the common properties of propagation
of drift wave type waves in a tokamak as such waves get
attracted by rational magnetic flux surfaces [1,59]. At the
same time, the equivalence between the two formulations
(discrete versus dense) facilitates the association of combs
with zonal flows and staircases (Sec. VI D). The comb model
is formulated as follows.

Consider a comb space with side branches that are every-
where dense in the backbone, as in Fig. 5. At time t =0, a
motion process is initiated along an arbitrarily chosen side
branch starting from an initial position at the backbone. This
starting position, marked as (x = 0, y = 0), is then used to set
up a coordinate system in the entire comb space. In particular,
we define x and y to be the position coordinates along the
backbone and along the side branches, respectively. The initial
velocity is along y, whether upward or downward, irrelevant.

Further concerning the motion process, we take it to be
fractional Brownian motion, or FBM. By FBM—dating back
to Mandelbrot and van Ness [137]—one means a Gaussian
motion process such that the density of the probability to find
a particle (random walker) at time ¢ at the distance y away
from the starting position is given by

fO.1) = @ KptP) 2 expl—y* /(4KptP)],  (43)

where 0 < B < 2 is the exponent of FBM. FBM is distin-
guished by the fact that it is the only self-similar Gaussian
process with stationary increments (Ref. [137]; Ref. [90] for
a more recent discussion). The behavior of FBM is antiper-
sistent for 0 < B < 1 and persistent for 1 < g < 2 [138]. If
B =1, then FBM reduces to normal diffusion, which is nei-
ther persistent nor antipersistent. Often, the exponent of FBM
is written as 8 = 2H, where H is the Hurst exponent known
from time-series analyses [138,139]. Using H, one writes the
mean-squared displacement along y as

(A1) oc 12 (44)

which is obtained straightforwardly as the second moment of
the probability density function in Eq. (43).

Focusing on tokamak applications, we associate the actual
H value with a competition between regular convection by
the E x B drift and the trapping effect owing to electrostatic
micro-turbulence within the E x B flow. In this respect, the
regular (convective) part favors long-time persistent behavior,
with 1/2 < H < 1, while the microscopic turbulence part
imposes antipersistent dynamics, characterized by 0 < H <
1/2. The results, presented below, indicate H < 1/2 (i.e., the
turbulent part dominates).

Setting y = 0 in Eq. (43), one obtains the probability to
return to the starting position after Az time steps, i.e.,

Py=o(AL) o (A1), (45)

where the relation H = /2 has been used. In particular, if
H = 1/2, then py_o(At) o (At)~1/2.

Next, turning to the backbone transport, our assumptions
are as follows. Whenever the FBM walker returns to the
backbone at y = 0, it either jumps to another side branch
located Ax spatial steps away (with probability ¢), or re-
mains at the current side branch (with probability 1 — g). If
the walker does change the branch on which it is currently
sitting, then it restarts from the same position y = 0 on the
new side branch, and the process repeats itself. These settings
are illustrated schematically in Fig. 5. We shall assume for
simplicity, without losing generality, that the probabilities to
jump and to remain are both equaltog = 1 — g = 1/2, so the
choice is random. Also we assume equal probabilities to jump
along or against the x axis, meaning there is no bias along
the backbone. Finally, we define that the probability density
to choose a new side branch as far away as Ax spatial steps
decreases with the number of steps as

Pu(Ax) ~ A, | Ax|~ 10, (46)

That is, p,(Ax) is a decaying power-law function of |Ax].
In the above, p is the exponent of the power law, A, is a
normalization parameter, and we have tacitly assumed that
the jump lengths may span a broad range of spatial scales.
The implication is that the jumps need not occur between the
neighboring side branches only (in the discrete formulation),
but there is a wide choice instead, although with a decaying
probability density to jump to a more distant side branch.
Concerning the p value, we restrict ourselves to the inter-
val 1 < u < 2. With this setting, the power-law distribution
in Eq. (46) is Lévy-stable for |Ax| > 1 [87,88]. The case
0 < u < 1, though mathematically similar, is not considered
here. Yet, we include the limiting case p = 2, which is un-
derstood as the normal (Gaussian) distribution of the jump
lengths (because the normal distribution is the upper bound on
Lévy-stable distributions for & — 2). Denoting the variance
of the normal distribution as A2, we define

lim py, (Ax) = exp(—|Ax|*/2A%). 47)
n—

Note that the normal distribution in Eq. (47) imposes a
characteristic jump length Ax ~ A in the x direction. This
contrasts with the Lévy statistical case, with 1 < u < 2, in
which the distribution of the jump lengths is scale free. As
is well known [82,88,140], the Lévy-stable distribution with
1 < pu < 2 generates Lévy flights.

The comb model described above is a generalization to
Lévy statistics of the random-walk model considered previ-
ously by Weiss and Havlin [105]. In their model, the motion
process in side branches is taken to be normal diffusion, not
FBM. Also Weiss and Havlin assume a characteristic jump
length along the backbone, which is set to be the period
of a Dirac comb. In our notation, the model of Ref. [105]
is reproduced for H = 1/2, B =1, and u = 2, leading to a
waiting-time distribution x,(At) o< (At)~%/2. The analysis,
presented below, suggests the model of Weiss and Havlin can
characterize the spreading dynamics driven by four-wave in-
teractions. Even so, it appears that a simple comb model with
the characteristic jump length fails to include triad interactions
in Eq. (6) as well as the zero-frequency resonance in Eq. (37),
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in which cases one needs to introduce a comb space with side
branches that are everywhere dense along the backbone, and
a Lévy-stable distribution of the jump lengths for |Ax| > 1.

V. TRANSPORT EQUATIONS

A transport model for the random walk in comb geom-
etry is obtained by joining together the Gaussian diffusion
equation [137,138] for FBM in side branches and the space-
fractional kinetic equation [82,84,140] for Lévy flights along
the backbone. Because, by the assumptions made, a Lévy
flight in the x direction may only occur when FBM crosses
the backbone at y = 0, we may write

m

0
+4 X,y t 48
5y WK |M}f( y1). (48)
Here, f = f(x, y,t) is the probability density to find the ran-
dom walker at time ¢ at point (x, y) in the comb space, 5(y)
is the Dirac delta-function, Kg and K,, are coefficients of the
transport process,

d 92
— e,y 1) = | KetP ' —
atf(xy) [ﬂ

1 92
F82

O,y 1)
oo X — x|t

f( )= — dx’' (49)

3I |*
is the Riesz fractional derivative [141,142] of order u, 1 <
u <2 is the Lévy index, and T'), = —2cos(mu/2)I'(2 —
) is a normalization parameter. The latter parameter en-
sures smooth crossover to 9%/dx* of the fractional operator
A" /alx|* as pu — 2, ie., lim,_, 3" /d|x|* = 8%/0x*. Note
that I, — +o0 for u — 2 from below. Note, also, that the
Riesz fractional derivative 9" /d|x|* is an integrodifferential
operator for all 0 < u < 2 (in contrast to a conventional
derivative of integer order). As such, it incorporates some
nonlocality of spreading dynamics (because the probability
densities at points x and x’ appear to be long-range corre-
lated through the slowly decaying kernel oc1/|x — x'|“~1). For
u — 2, the nonlocal features vanish by way of 9*/d|x|* —
d2/0x2, giving rise to a local (in the sense of the central limit
theorem [87]) asymptotic transport process. If u — 1, then
the Riesz fractional derivative (49) reduces to [143]
©w +00
a Floyt) > 1 a f, y,t)

d|x|# T ax x—x

dx', (50)

where the spatial derivative d/9dx acts on the Hilbert transform
operator. The latter is defined by [84]

3 1 too f ()C/, y ) t ) /
H[f(x,y,1)] = ; —/dx . ShH

o X —X

For u — 2, the Lévy fractional Eq. (48) becomes

) ooy 92
af(xmy?t): Kﬂt + (y)KZ f(x )’J) (52)

dy 912
where K, characterizes diffusivity along the backbone. Letting
B =1, one obtains the Fokker-Planck equation in the comb
space

2

82
oy2 TOKgs }f(x y.1),  (53)

ad
gf(xv Y, t) - |:Kl

which does not contain the scaling factor ~t#~! in front of the
9%/dy? term.

We note in passing that the transport model in Eq. (53)
with normal diffusion in side branches was considered by
Arkhincheev and Baskin [144] as a model of subdiffusive
transport along Weiss and Havlin’s comb [105].

Also, note that we write continuum equations for the
probability density function f = f(x,y,t), where x is a real
number. This is licit because we raise the side branches every-
where densely along the backbone, meaning any real position
x on the backbone can be approximated, as accurately as one
likes, by a proper rational value [136].

A common feature among Eqgs. (48), (52) and (53)
is the presence of a singularity in the backbone term
S(K, 0" f(x,y, t)/9|x|*. This singularity is represented by
the Dirac delta function 4(y), and accounts for coupling be-
tween the transport processes along the backbone and in side
branches. If y # 0, i.e., the random walker is outside the
backbone, then the backbone term is canceled out to zero,
leaving back the familiar diffusion equation for FBM in the
y direction, i.e.,

2 o = Kty (54)
o D TR Gl
Based on this equation, one recovers the probability density in
Eq. (43), from which the asymptotic dispersion law [138,139]
for FBM can be inferred, i.e.,
+o00

(AYP(0)) = / (MY f(Ay D)dAy o i, (55

[o.¢]
where 8 = 2H is the exponent of FBM, and t — +-00.

If y = 0, then, instead of cancellation to zero, one encoun-
ters a divergent behavior in the backbone term because of
the Dirac delta-pulse. Technically, this is a problem, since the
pulse function is nonanalytical. To circumvent this difficulty,
one may consider that the probability (45) to return to the
starting position is equivalent to a waiting-time distribution
between consecutive steps of the random walk along the back-
bone, i.e.,

xu(At) ~ dp,—o(At)/d At oc (Ar)~HTD, (56)

On account of this last distribution one may write, instead of
Eq. (48), the effective 1D equation

3 =82 a*
8tf(x’ 1)=0oD; " Kp 3|x|#f(x, 1), (57)
where
gz [ SO,
oI I‘(,3/2) at Jo ¢ —t)- ﬂ/zdt (58)

is the Riemann-Liouville fractional derivative [141,142] of
the order 1 — 8/2 = 1 — H. Indeed, it is shown [82,83] in a
basic theory of CTRWs that the non-Poissonian distribution
of waiting times in Eq. (56) leads directly to a time-fractional
equation (57) with the Riemann-Liouville derivative (58) on
the right-hand side. This fractional derivative of the order
1 — H is a consequence of the fact that the mean waiting time
resulting from (56) is infinite, i.e.,

/ Atxg(AHdAt o« 77 — 400, (59)
~1

where T — +o00,and 0 < H < 1.
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We should stress that the model (57) is not an equivalent of
the original 2D model in Eq. (48), but an effective 1D reduc-
tion thereof [145], making it possible to avoid dealing with
the singularity in the backbone term. This is achieved at the
expense of introducing a special form of time differentiation
using the Riemann-Liouville fractional operator (58). Mathe-
matically, the Riemann-Liouville derivative (58) is analogous
to the Riesz derivative in Eq. (49), although it uses a proper
range of integration, with the lower limit set to + = 0. This
lower limit is dictated by the condition that the walk process
starts at + = 0. In this way, the Riemann-Liouville opera-
tor incorporates the initial-value problem into the transport
model. Note that the transport equation (57) can be rewritten
in an equivalent form using the Caputo fractional deriva-
tive [82,141]—in that case the fractional differentiation over
time goes to the left-hand side of the corresponding transport
equation (where it replaces the d/0¢ derivative), and has the
order of fractional differentiation equal to H = /2. Because
of this integrodifferential character of fractional differentia-
tion, the ensuing transport model proves to be non-Markovian,
i.e., the current state of the transport process depends on the
past states, with a long-time memory kernel.

Using kinetic equation (57), one obtains the fractional mo-
ments

(|AX]Y (1)) oc t7P/2 (60)

of the f = f(x,t) distribution, from which the scaling of the
pseudo-mean-squared displacement ((Ax)%(t)) versus time
can be deduced fort — +o0, i.e.,

((AX)* (1)) = [{|Ax]Y ¢ oc tP/m, (61)

where 0 < y < u < 2. In the above (. ..) denotes the ensem-
ble average, i.e., ([...]) = fjoooo[ .. ]dx, where the integration
is performed in infinite limits along the backbone. Note that
we obtain the pseudo-mean-squared displacement in Eq. (61)
by rescaling the fractional moment (|Ax|?(¢)) as the direct
calculation of the second moment of f(x, ¢) yields a divergent
result owing to the nonlocal character of Lévy flights [82,140].

Combining Egs. (55) and (61), one obtains a relationship
between the respective dispersions in the x and y directions,
ie.,

((AX)* (1)) o< [{(Ay)* ()™

This last equation shows that the diffusion on combs is in-
herently anisotropic, with a faster component along the side
branches, and a slower component along the backbone (for
1 <u<?2).

(62)

VI. TRANSPORT EQUATIONS CONTINUED

The fractional transport model in Eq. (57) characterizes the
expansion of wave turbulence by inelastic wave—wave interac-
tions for + — +oo. The asymptotic dispersion law in physical
space is obtained by identifying the backbone coordinate x
with the radial spread Ax. The latter is proportional to the
number of states An for the reasons explained in the end of
Sec. I A, i.e., Ax o« An. We have, with the aid of Eq. (61),

((An)* (1)) oc P/, (63)

where we have kept angle brackets to emphasize that the
scaling in Eq. (63) derives statistically by taking moments of
the probability density function.

In what follows, we consider, separately, the three- and
four-wave interaction cases, as well as the special case of the
zero-frequency resonance.

A. Three-wave interactions

In a three-wave process, the turbulence expansion law is
given by the subdiffusive transport scaling in Eq. (15). Match-
ing (15) to (63) yields 8/u = 2/3. The B value is obtained
by comparing the waiting-time distributions in Egs. (35)
and (56), leading to o = H, from which g = 2«. Letting
s=1/2ina=s/(s+ 1), one gets « = 1/3, H =1/3, and
B = 2/3. Returning to Eq. (63), one infers = 1. The latter
exponent renders the limiting form (50) to the Riesz frac-
tional operator in Eq. (49). Equation (50) tells us that the
transport along the backbone is dominated by Cauchy-Lévy
flights [84,140], with the jump length distribution

Xu(Ax) ~ Aj(Ax)? (64)

consistently with the probability density in Eq. (46). The
asymptotic transport equation in the x direction is deduced
from the general Eq. (57), where one employs 8 = 2/3 and
u — 1. Using (50), one is led to a nonlocal (in the sense of
the generalized central limit theorem [87,88]) transport model

T fW e

/) dx/i|. (65)

3f(x 1) = _L opnlk i/
gt T g By ) x—x
The nonlocal character of Eq. (65) is clear from the convo-
lution operator on the right-hand side, which integrates the
slowly decaying kernel «c1/(x — x’) in infinite limits.

In fusion literature, there exists an impressive evidence
that the spillover of turbulence into stable regions could
be nonlocal, with a wealth of data encompassing edge tur-
bulence [7,42,56,60,62], energetic particles [8,113,146,147],
and edge-SOL coupling [16-18,22]. Our results indicate that
nonlocal behavior is produced naturally through inelastic triad
interactions in a multiwave Hamiltonian system with the in-
teraction Hamiltonian (6)—consistently with the fractional
transport equation (65) and the Hilbert transform opera-
tor (51).

B. Four-wave interactions

Mathematically, the four-wave interaction case is similar
to triad interactions considered previously, yet it leads to a
somewhat different kinetic description, as we now proceed to
show.

Combining the scaling laws in Egs. (22) and (63), one is led
to B/ = 1/2. The distribution of waiting times is deduced
from Eq. (35), where the « value is obtained by letting s = 1
ina = s/(s + 1), from which ¢ = 1/2. Comparing with (56),
one finds H = 1/2 and 8 = 2H = 1. With the aid of Eq. (61)
one gets 1/u =1/2, ie., u =2. The transport model in
Eq. (57) becomes

32

D ) = DKy a 2 Fx 1) (66)
8t‘ 5 oy 1,28x2 5 9
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which contains the fractional derivative over time, but not over
the space variable.

Note that the condition pu =2 imposes a characteristic
jump length in the x direction via a crossover to Gaussian
statistics in the limit u — 2 [see Eq. (47)]. That means
that the transport model in Eq. (66) satisfies the defining
conditions of the central limit theorem [87,91] and in this
sense is local, in contrast to the nonlocal model in Eq. (65).
This absence of nonlocal behavior is a distinct feature of
four-wave interactions [67]. Yet, the model in Eq. (66) is
non-Markovian (includes long-time correlations) owing to the
Riemann-Liouville derivative OD,1 /2 on the right-hand side.

The fundamental solution or Green’s function of the time-
fractional equation (66) can be expressed in terms of the Fox
H function (Appendix B of Ref. [82]) as

fx, ) =

! Hz,o[ | (3/41/2) ]
ka2 2 3K 72| 0, 1), (1/2.1) ]
(67)
from which the subdiffusive scaling ((Ax)?(t)) o ¢!/% can be
inferred.

It is understood that the subdiffusive transport scaling
((Ax)*(2)) o t'/? occurs as a result of delta coupling between
the degrees of freedom in the original 2D Fokker-Planck
model in Eq. (53). The effect this coupling has on asymptotic
dynamics is that there is a waiting-time distribution between
consecutive steps of the random walk along the backbone,
which is mathematically equivalent to the fractional trans-
port model in Eq. (66). It is instructive to demonstrate how
the original 2D model with coupling—which does not con-
tain fractional derivatives—produces the same subdiffusive
transport scaling ((Ax)(t)) o t'/? as the fractional model in
Eq. (66). We have collected this demonstration in Appendix.

C. Special case

Turning to the zero-frequency resonance (i.e., the special
case discussed in Sec. III), one combines the dispersion of a
three-way interaction process, i.e., ((An)?(t)) oc t2/3, with the
distribution of waiting times dictated by four-wave interac-
tions, i.e., xo(Af) o (At)™3/2.

More explicitly, by matching the general dispersion law
in Eq. (63) to the three-wave transport scaling in Eq. (41)
one gets B/u = 2/3. On the other hand, by comparing the
waiting-time distributions in Egs. (42) and (56) one obtains
H=1/2,a =1/2, and B8 = 1, from which 1/u =2/3 and
u = 3/2. The distribution of the jump lengths in Eq. (46)
becomes

Xu(AX) ~ Aspp] Ax| 72, (68)

where A3, is a normalization parameter. The resulting
asymptotic transport equation is inferred from bifractional
equation (57) by letting 8 = 1 and u = 3/2, leading to

_3 fx, 1) = 2 —9 i fx, 1) (69)
X, D, “K X, 1). 69
P oy 1,3/2 |)C|3/2

This equation is different from Eq. (66) in that it contains the
fractional derivatives with regard to both time ¢ and the space
variable x [similar to Eq. (65) with Cauchy-Lévy flights].

D. The E x B staircase as a Dirac comb

The mapping of the E x B staircase (Sec. III) onto a Dirac
comb is built in slab geometry as in Fig. 6. For symmetry
reasons, the slab is drawn in proximity to the neutral line
in the poloidal cross section. The backbone coordinate x is
in the radial direction. The jet zonal flows are represented
by the teeth of the comb. The side coordinate y mimics the
poloidal coordinate. We adopt a level of idealization according
to which y is a Pythagorean coordinate, not a cyclic one.
The cyclic case is mathematically similar, although is not
considered here. Following Ref. [111], the period scale A
between neighboring teeth is evaluated as the electrostatic
Rhines length [148],i.e., A >~ Agy. Similarly to its celebrated
fluid analog [128], the electrostatic Rhines length Ay des-
ignates the spatial scale separating vortex motion from drift
wave-like motion. As such, it scales as the square root of
the fluid (drift) velocity, i.e., Ary = +/|E x B|, where E is
the radial electric field, and B is the toroidal magnetic field.
Note that we employ a discrete comb as in Eq. (1), which
is more suitable to represent the E x B staircase, owing to a
well-defined spacing between the jets, i.e., A >~ Agp.

A dynamical model is obtained by assuming that the ran-
dom walker may occasionally jump (with probability 1/2, as it
comes across the backbone) from the side branch on which it
is currently sitting to another side branch: to either a neighbor-
ing one (a situation depicted in Fig. 6) or a more distant one,
with a Lévy distribution of the jump lengths as in Eq. (46).
These model assumptions find support in direct experimen-
tal observation of plasma avalanches [28,133] and the fact
that the staircase jets operate as semipermeable [29,30,134]
transport barriers to radial transport, i.e., whether or not an
avalanche is absorbed by a given jet is probabilistic.

More so, the waiting-time distribution between consec-
utive jumps (consecutive emission-reabsorption events) is
borrowed from Eq. (42) on account of the zero-frequency
resonance (37), i.e., xo(At) o (At)~3/2. This last distribution,
together with the distribution of the jump lengths in Eq. (68),
leads directly to a bifractional transport equation (69), where
the fractional derivatives over time ¢ and the spatial coordinate
x incorporate the signatures of non-Markovianity and nonlo-
cality, respectively.

One sees that the staircase dynamics is both long-time
correlated (o« = 1/2) and nonlocal (u = 3/2).

It is understood that the Lévy distribution of the jump
lengths in Eq. (46) implies a power-law distribution of plasma
avalanches over their sizes [111,112], i.e.,

Xu(0) ~ A=, (70)

where by “size” £ one means the radial distance traveled by an
avalanche since its emission at one radial location and up to
an eventual absorption at another location some £ radial steps
away.

In fusion studies, the size distribution of plasma avalanches
across the E x B staircase has been measured numerically in
computer simulations [29,30] of the Tore Supra plasma [28]
using the GYSELA code [149]. The results from those simula-
tions can be summarized by a Fréchet distribution, which is a
special case of Weibull (or generalized extreme value) distri-
bution with lower bound [150]. For large (covering at least one
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FIG. 6. The E x B staircase as a Dirac comb. (Left) A poloidal cross section of magnetic flux surfaces in a tokamak. The flux surfaces
are shown as alternating solid and dashed lines (red color). The plasma staircase occurs at a crossroads between the outer core and inner edge
plasma and is enlarged at the top-right of the figure. The same structure is reproduced at the bottom-right. Following Ref. [111], one associates
the jet poloidal flows with side branches of the Dirac comb. The backbone direction, marked by the coordinate x, represents the radial direction
in a tokamak. A tracer particle (random walker, red circle) can jump from the side branch on which it is currently sitting to either a neighboring
side branch (a situation depicted above) or bypass the neighboring branch to land at a more distant side branch, such that there is a distribution
of the jump lengths in accordance with the Lévy distribution in Eq. (46). Vertical arrows (both directions) represent the fractional Brownian

motion (FBM) in side branches.

staircase period or more) avalanches, having size ¢ 2 Arp,
a behavior compatible with the Pareto-Lévy distribution has
been observed [29,112], i.e.,

X (€) ~ A=) (71)

where « is the fitting shape parameter, with the best fit found at
k >~ 0.67 (in the notation of Ref. [112], £ = Anand x, = F;).
Comparing to Eq. (70), one identifies the exponent 1/x with
the Lévy index u, i.e., k = 1/u. Using u = 3/2, one infers
k = 2/3, which almost precisely reproduces the numerical
result « >~ 0.67 [112].

Here, for the reader’s convenience we incorporate a plot
from Ref. [112], which reports the computed probability
distribution F(An) versus the Tore Supra data and the ap-
proximations made. The plot, which is shown in Fig. 7,
demonstrates on its right the optimal fitting shape parameter «,
with the extremum of fitting quality at k ~ 0.67. We envisage
this close agreement with numerical simulations [29,30,112]
as an important milestone towards the validation of the comb
model and the associated bifractional transport equation (69).

In the analysis of Ref. [112], a somewhat different estimate
on the shape parameter ¥ was obtained theoretically, namely
k = (+/17 + 1)/8 >~ 0.64. This estimate is numerically close
to, yet is analytically dissimilar from, the result « = 2/3 sug-
gested by the comb model. In particular, the value k = 2/3

is a rational number, while ¥k = (\/ﬁ + 1)/8 is an irrational
one.

The discrepancy between the two values is not really
surprising. In fact, the analysis of Ref. [112] was built on
a mean-field approximation [151] and uses as a basis the
nonlinear Schrodinger equation with subquadratic nonlinear-
ity [119,120]. In contrast, the transport model in Eq. (69)
assumes no reduction to mean-field properties and refers di-
rectly to the three-wave interaction Hamiltonian in Eq. (6). As
a consequence, the comb model offers a more precise estimate
on « (or, at least, a better fit to simulations) by connecting
the turbulence spreading dynamics to backbone transport on a
Dirac comb. The end resultis « = 1/u = 2/3.

VII. FRACTIONAL RELAXATION EQUATION

Performing the Fourier transform of the bifractional equa-
tion (57) one obtains the fractional relaxation equation [82,83]

d . _ _ o
k=7 PI2oD P2 fk, 1), (72)

where f (k, t) denote the Fourier components of f(x,?) and
we have introduced

TP = |k|"Kp . (73)
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FIG. 7. The GYSELA computed probability density (red color)
versus the Fréchet distribution with ¥ >~ 0.67 for which the optimum
fit was obtained. The coarse experimental distribution is plotted in
gray. The right panel summarizes the normalized root-mean-square
error in a percentile to the maximum error at ¥ 2~ 0.85, showing
that the normalized error is minimized for ¥ >~ 0.67. Adapted from
Ref. [112].

In writing Eq. (72), we took into account that the Fourier
transform of the Riesz fractional derivative 0% /d|x|* is —|k|*,
where one suppresses the imaginary unit i* following a con-
vention used in fractional calculus (Ref. [82], p. 26).

The solution of the fractional relaxation equation (72) sat-
isfying the initial condition f (k,t =0) =1 is given by the
Mittag-Leffler function [82,142,152]

o0

Eppl—t/n)*?1="

m=0

—(t B/2ym
[—(@/T)" ] ’ (74)
T+ Bm/2)
where I" denotes the Euler gamma function. For 7 > i, the
Mittag-Leffler function Eg/»[—(r/7)?/?] is approximated by
a power law

Egpl—(t/t)P?] ~ - t/w)P? (5

1
(1= B/2)
showing that f(k, B~ [(t/T)P’T1 - /217! for t —
+00. Assuming three-wave interactions (8 = 2/3) one has
fk, 1) o (t/7)~'/3, while for four-wave interactions (8 = 1)
one obtains f(k, ) o (t/7)""/2.

These theoretical findings can be supported by experimen-
tal results from the CASTOR tokamak [153], according to
which the relaxation function has a power-law shape ¢, (7) =~
(t/79)™%, with the o value ranging between 0.3 and 0.5 de-
pending on parameters of the plasma discharge and the time
interval that is analyzed. We interpret this conformity to the
CASTOR measurements as a confirmation that the relaxation
dynamics is non-Markovian and involves a long-time power-
law tail consistently with the Mittag-Leffler relaxation pattern
in Eq. (75).

Another point of interest here is that the distribution of
waiting times in Eq. (35) can be translated into a power-law
frequency distribution in accordance with

d
Xa(w) = Xa(At)d—At x0Tt~ T (76)
w

More explicitly, we have x,(w) « w3 for « = 1/3 and
Xa(®) o @™/? for « = 1/2. Such frequency spectra have
been observed in the edge region of different toka-
maks [154-158] and discussed in terms of self-organized
criticality [159-161].

VIII. SUMMARY AND FINAL REMARKS

In summary, we have proposed a model of turbulence
spreading driven by inelastic resonant interactions of waves
on a lattice. The theoretical model, which we discuss, was
inspired by the studies of quantum localization of dynamical
chaos [68-70,76,79,118]. Even so, it presents a few particu-
larities, in both the basic configuration, which we consider,
and the mathematical formalism, which we apply.

In terms of configuration, we implement a setting in which
the noninteracting waves can propagate freely in a preferred
direction, while being linearly localized in the transverse di-
rection. A situation of this kind is encountered in tokamak
plasmas where, e.g., drift wave type waves propagate mainly
in the poloidal direction perpendicular to the magnetic field
and are excited by localized pressure gradients in the radial
direction.

In terms of mathematical formalism, we deliberately
avoided the introduction of the nonlinear Schrédinger equa-
tion used in Refs. [112,119,120]. Instead, we based our
analysis on the Hamiltonian of inelastic wave—wave interac-
tion and the conservation laws. This way, we could highlight
the similarities and differences between three- and four-wave
interaction patterns, while accounting for these patterns on
essentially an equal footing.

In terms of asymptotic transport scalings, we have seen
that the asymptotic spreading is always subdiffusive, being
appreciably faster in the case of three-wave interactions, and
somewhat slower in the case of four-wave interactions. The
main difference is that three-wave interactions produce nonlo-
cal dynamics with Lévy flights, while four-wave interactions
do not do so. In the latter case, the dynamics is found to be
local, i.e., satisfies the defining conditions of the central limit
theorem.

More explicitly, if the interactions are three-wave-like, then
the asymptotic spreading is characterized universally by a sub-
diffusive transport scaling An oc t'/3. If four-wave-like, then
by the scaling An o< t'/4. Scaling relationships of this form
hold for the number of states (in our notation, An). Yet, one
can translate these scalings into spatial (radial) spread with the
aid of An o Ax, and by doing so pave the way for comparison
against known scalings from numerical simulations. In the
case of three-wave interactions, our model predicts Ax o t1/3
in remarkable agreement with the F-KPP result [21].

From an energy-budget perspective, three-wave triad in-
teractions constitute a preferred transport channel as such
interactions correspond to a lower-order correction to Hy,
whereas four-wave interactions correspond to a higher-order
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TABLE I. A summary of results and comparison between three- and four-wave interaction patterns. By examining the corresponding
transport exponents one sees that spreading is faster in the case of three-wave interactions, in which case the asymptotic dynamics is nonlocal
(involves Lévy flights). The special case of mixed statistics (i.e., the zero-frequency resonance) is reported separately under the heading
Staircase. We associate this special case with the self-organization of L-mode tokamak plasma into banded flows or staircases. N/A means the

quantity is not well defined in the case of four-wave interactions.

Exponent Three-wave Four-wave Staircase
s 1/2 1 Mixed*
o 1/3 1/2 1/2

H 1/3 1/2 1/2

B 2/3 1 1

m 1 2 3/2

K 1 N/A 2/3
Property Three-wave Four-wave Staircase
((An)2(1)) ot ot !/? ot
Xo(AL) oc(AL)~43 ox(At)3/? oc(AL)3?
xu (A7) oc(Ar)~43 o(A)~3/2 (A2
Xu(|Ax]) | Ax|? Gaussian oc| Ax|~3/?
AN o2 N/A ot ™3?
Xe (@) xw™/? xw™1/? w2
fle 1) o(t/n)~"? o(t /)~ ot /)"
Transport equation Eq. (65) Eq. (66) Eq. (69)
Non-Markov Yes, o = 1 Yes, o0 = 1 Yes, o = é
Nonlocal Yes, u =1 No, u=2 Yes, u =2
Lévy flights Yesd, u = No¢, =2 Yes, = 3

#The dispersion of asymptotic transport by plasma avalanches corresponds to three-wave interactions, with s = 1/2, while the distribution of

waiting times is such as if the interactions are four-wave, with s = 1.

°If radial transport occurs in the form of avalanches.
“The general conditions of the central limit theorem apply [87,88].
dSpecial value corresponding to Cauchy-Lévy flights [84,140].

¢Corresponds to the local limit of the Riesz fractional derivative and Gaussian distribution of the jump lengths [84,140].

correction. If both three- and four-wave interactions are al-
lowed by the dispersion relation, then the actual spreading rate
is determined by the three-wave nonlinear dynamics.

A special case of the above theory is a situation in
which the interaction process involves the zero-frequency
resonance between two high k running waves and one low-
frequency standing wave. We have seen that this type of
interaction process corresponds to a very peculiar dynamical
pattern, in which the asymptotic dispersion is three-wave-like,
while the distribution of waiting times is four-wave-like. We
associated this special case of mixed statistics with the self-
organization of L-mode tokamak plasma into banded flows or
staircases [27-30].

The various transport regimes studied in this paper (three-
wave, four-wave, mixed) are collected for comparison in
Table 1, where one also finds a summary of the exponents
characterizing the corresponding 1D reduced transport mod-
els.

By examining Table 1 one sees that a common feature
among all regimes is non-Markovianity, i.e., the nonlinear
wave dynamics is long-time correlated in all cases. This
is indeed characteristic and finds explanation [69,120] in
the simultaneous presence of domains of chaotic and reg-
ular motion, leading to some nonergodicity of asymptotic
spreading [67]. In contrast, the nonlocal signatures are more
restrictive in that they occur specifically by way of three-wave
interactions or the zero-frequency resonance, but not through
four-wave interactions.

Further inspection of Table 1 suggests a set of unique sig-
natures or fingerprints of three-wave interactions: a relatively
fast asymptotic spreading complying with Ax o ¢!/3 scaling;
an explicitly nonlocal behavior with Cauchy-Lévy flights; and
an algebraic, rather than exponential, tunneling pattern. The
fingerprints of four-wave interactions are, on the contrary,
a slower spreading conforming to Ax o t'/4 behavior; the
absence of flights; and an exponentially decaying density of
the probability to spill over a barrier. Both spreading patterns
appear to be non-Markovian, with a distribution of trapping
times.

An important conclusion to be drawn from the above
analysis is that both spreading and staircasing can be de-
scribed based on the same mathematical formalism, using the
Hamiltonian of inelastic wave-wave interaction and a map-
ping procedure onto the comb space. From this perspective,
one dares say the plasma staircase is a very special case of tur-
bulence spreading, which is mediated by the zero-frequency
resonance in Eq. (37). This observation explains the supposed
involvement [16,17,22] of turbulence spreading in the forma-
tion of staircase dynamical patterns and coupling to transport
barriers.

From a kinetic perspective, we have seen that reso-
nant wave-wave interactions, if three- or four-wave-like,
induce a transport process of the CTRW type [85,86,88]
and therefore lead to a theoretical description in terms of
fractional-derivative equations [82—84]. In that regard, the
comb approach is fundamental as it paves the way to obtaining
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the fractional exponents of these equations exactly by map-
ping the lattice dynamics onto the Dirac comb.

Focusing on time-fractional diffusion equation (66), we
have seen that the Riemann-Liouville derivative on the right-
hand side of this equation stems from a reduction to 1D of a
more general 2D Fokker-Planck equation with delta-coupling
between the degrees of freedom. The observed connection be-
tween a 1D equation with fractional differentiation over time
and a 2D Fokker-Planck equation with coupling sheds light
on the theoretical foundations of fractional kinetics [82,83],
an important topic in statistical physics of complex sys-
tems [84,90,145].

By applying combs to the staircase transport prob-
lem [27,28], we inferred an estimate of the shape parameter
&, which characterizes the observed distributions [29,30,112]
of plasma avalanches over their sizes (in terms of the Fréchet
distribution [150]). Our results indicate that the x value per-
taining to these distributions is given by the inverse Lévy
index w,i.e.,x = 1/u. Since, by definition [82,88], u < 2, we
have k > 1/2, provided the distribution of the jump lengths in
Eq. (46) is Lévy stable, as it should [87].

Furthermore, we have discussed that staircasing—i.e., the
emergence of quasiregular banded flows [21,27,28,128] from
a micro-turbulence background—is driven universally by the
zero-frequency resonance in Eq. (37). In that regard, the
interaction Hamiltonian (38) with intermediate bound states
predicts that the asymptotic spreading dynamics is nonlocal,
with Lévy flights, and is characterized by the very specific
value of the Lévy index p = 3/2. Using the general [111]
relation k = 1/u one gets k = 2/3. This theoretical result
granted by the comb approximation meets gracefully the nu-
merical estimate x >~ 0.67 [112] obtained from flux-driven
gyrokinetics.

Overall, we have seen that the subdiffusive transport scal-
ing ((AX)* (1)) x t*/3 is an important lower bound on radial
transport across the plasma staircase [112]. We associate this
lower bound with the confining effect of coupled transport
barriers in vicinity of marginality.

Finally, we remark that the comb model—by its very
construction—proves to be an efficient and simple way
to characterize anisotropic transport processes in electro-
static drift-wave turbulence. Indirectly, it also characterizes
anisotropic particle dispersion in beta-plane turbulence owing
to the similarity between drift waves in plasmas and Rossby
waves on the beta-plane [162]. In that respect, we note that
such anisotropic transport has been studied numerically for
electrostatic drift waves in Refs. [60-63] and for fluid turbu-
lence in Refs. [163,164].
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APPENDIX: THE FOKKER-PLANCK MODEL WITH
SINGULAR BACKBONE TERM

Let us rewrite the Fokker-Planck equation (53) first in a
more suitable for our analysis form

2 2

a a d
af()“ y7t) = |:Q_ + 8(y)@:|f(xv Y, t)a

0 (AD)

where ¢ « K;/K; is the normalized coefficient of the trans-
port process, and ¢ is the dimensionless time. Focusing on the
backbone transport, because the Fokker-Planck equation in
Eq. (A1) is symmetric with respect to the inversion x — —ux,
it is convenient to set the coordinate x on the semi-axis
0 < x < 4-o00. This setting is technical and does not influence
results. Concerning the coordinate y, we do not assume any
restriction, thus letting —oo < y < +400. As the random walk
starts at the origin (x = 0, y = 0), we may also impose

Jx=+00,y,1) = d:f(x = +00,y,1) =0, (A2)

fry=00,1) =0,f(x,y=400) =0, (A3)

where 9, and 0, denote the partial derivatives along x and
v, respectively. Concerning the boundary condition at x =
0, it is assumed that f(x =0,y =0,1) = Cy, where Cy =
const for all # > 0. The initial condition for t = 0 is defined
as fo(x,y) = f(x,y,t =0)=C(x)§(y), where C(x) = 0 for
x> 0.

The transport problem is solved straightforwardly by ap-
plying the Laplace transform with respect to time to both sides
of the Fokker-Planck equation (A1), yielding

2 2

N ad d N
Sf(.x, Vs S) = |:Qa_yz + 5(Y)@i|f(x7 s S)v (A4)

where f(x, v, 8) = ﬁ[f(x,y,t)](s) is the Laplace image of
f(x,y,t). Equation (A4) is supplied with the Laplace image
of the boundary condition at x = 0, i.e.,

+o0
f(x:O,y:O,s):/ e f(x=0,y=0,1)dt, (A5)
0

from which f(x =0,y=0,s5) =Cy/s. The solution to
Eq. (A4) is obtained using the Ansatz

fx,y,5) = e PVeg(x, s), (A6)

where ¢(x,s) has the sense of a probability distribution
along the backbone in the Laplace space. Setting y = 0 in
Eq. (A6), one infers ¢ (x, s) = f(x,y =0, s), where f(x,y =
0,s) = ﬁ[f(x, y = 0,1)](s) is the Laplace image of f(x,y =
0, t). Mathematically, it is convenient to introduce fi(x,1) =
fj;o f(x,y,t)dy, which integrates the probability density
f(x,y,t)in side branches. In the Laplace domain, the function
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fi(x, t) becomes

+00
Fies) = fxy = 0.5) / gy, (AT)

leading to

fitx, s) = 2[o/s1"*¢(x, ),

where Eq. (A6) has been considered. Integrating both sides
of Eq. (A4) over y in infinite limits from —oo to 400, and
applying the boundary conditions in Eqgs. (A2) and (A3), one
gets

(A8)

. 3 4
sfl(xv s): ﬁf(xa)’:oa S), (A9)
from which, on account of Eq. (A6),
N 92
sfilx,s) = ——o(x,s) (A10)
ox
and
o Co
$p(x=0,9)=f(x=0,y=0,5) = —. (A1)
s

Combining Eqgs. (A10) and (A8), and solving the ensuing
differential equation for ¢(x, s), one gets, with the aid of
Eq. (A11),

Go

od(x,s) = — exp[—(4sg)1/4x].
s

(A12)

The mean-squared displacement along the backbone is ob-
tained by taking the second moment of the probability density
function ¢ (x, 1), i.e.,

+00
(Ax)* (1)) = %/ x2p(x, t)dx, (A13)
0

where ¢(x, 1) = L7 '¢(x, s), ¢(x,s) is given by Eq. (A12),
and we have introduced

+00 +00

N(t) =
0

o (x, t)dx = ﬁl[ o(x, s)dxi| (A14)

0

to normalize ¢(x, ¢). A simple calculation leads to

A 1
N(@t) = CoL™! [WN“] (A15)
From Eq. (A13) one also gets
+00
(Ax)* (1)) = ]%/3*1 f X2 (x, s)dx. (A16)
0

Substituting ¢(x, s) from Eq. (A12), and performing the im-
proper integration over x, one obtains

(AX)* (1)) = 2C0L£—1[ ! (A17)

~7/4
NO© L@y’ }

Calculating the inverse Laplace transform in Egs. (AlS5)
and (A17), one finds

N(1) = (Co/v2)(t/0)"*, (A18)
2 ~ Co/ﬁ 3/4
((Ax)* (1)) ~ NGO /o)y, (A19)

from which, by combining Egs. (A18) and (A19),
(A0 (1)) = Ag(t/0)'",

where A, is a numerical coefficient of the order of 1.

To reconstruct the full (two-dimensional) probability den-
sity in the comb space, i.e., the f = f(x,y, t) function, one
needs to tame

(A20)

1

X, 1) =CL™ | —e” e .

( Y= Col 1 ylv/s7e ,—x(4s0)"/ (A21)
s

with the new normalization

+00 +00
N'(t) = Coﬁ_l I:l / e—x(4sg)”4dx/ e—l)’«/%dy:|.
s Jo —00

(A22)
Straightforward integration yields
N'(t) = V2Co L™ o457 /4. (A23)
Upon Laplace inversion to the time domain,
N'(t) = v/2Co0(t/0)**, (A24)

where we omitted for simplicity a numerical coefficient
caused by the Euler gamma function. The mean-squared dis-
placement in the x direction is written as the double integral

+00 +00
((Ax)z(t)) = Iﬁﬁl[/‘ / xzf(x,y, s)dxdyi|.
0 —00

(A25)
The expression in square brackets is expanded as

CO +00 14 +00
|:. ) ] = —/ xle 0 dx/ ef‘yl‘/%dy, (A26)
s Jo —00

where Eqgs. (A6) and (A12) have been considered. Integrating
over x and y in infinite limits, after a simple algebra one
obtains

1

(AxP @) = V260 L7l ™. a2
Calculating the inverse Laplace transform, one gets
1
(A2 (1)) ~ V2Co0 N/(t)(r/g)s/“. (A28)

Now substituting N’(¢) from Eq. (A24), one recovers the
asymptotic scaling law

((AX)* (1)) = Ao(t/0)'?

consistently with Eq. (A20). A, is obtained by keeping every-
where the coefficients dictated by Euler’s integral and is left
as an exercise to the reader.

One sees that the Fokker-Planck equation (A1) leads to
the same subdiffusive transport scaling ((AX)2(1)) o t'/? as
the fractional kinetic Eq. (66) does. To this end, the use of
fractional-derivative equations becomes a matter of mathe-
matical taste: The reduction to 1D of the original 2D transport
model (53) comes at a cost of introducing the Riemann-
Liouville derivative (58) and recognizing the elegance of the
Fox H function in Eq. (67).

(A29)
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