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The case of magnetically mediated quantum critical pairing
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In the BCS theory of superconductivity, an instability towards pairing develops at arbitrarily weak dimen-
sionless coupling A due to a divergence of logarithmic perturbative series for the pairing susceptibility (Cooper

logarithms) at T, ~ wye~/*

, where o is an energy cutoff. On the contrary, in many models of superconductivity

out of a non-Fermi-liquid, the Cooper logarithm is absent, and superconductivity emerges only when A exceeds
a certain threshold. We argue that there are situations when there is no threshold, and at weak coupling the
formula for 7. is BCS-like, yet the origin of the pairing instability is fundamentally different from that in the
BCS scenario. As an example, we revisit superconductivity in a metal at the onset of (7, 7) spin-density-wave
order. Earlier studies of this problem found no threshold and a BCS-like expression for 7, at weak coupling.
We argue that, despite this, the pairing is not caused by the Cooper logarithm, and in many respects it is

qualitatively similar to that in non-Fermi-liquids.

DOI: 10.1103/ckyl-flxm

I. INTRODUCTION

Non-BCS pairing of fermions from a non-Fermi-liquid
normal state has attracted substantial interest in recent years
in both condensed-matter and high-energy communities. In
a nutshell, pairing out of a non-Fermi-liquid is mediated by
a massless boson, the same one that destroys Fermi-liquid
behavior. This leads to a nontrivial competition between two
opposite tendencies, one towards pairing and the other to-
wards a non-Fermi-liquid. In some cases, this competition
leads to superconductivity with enhanced critical temperature
T. [1-7], while in others it leads to a complete suppression
of pairing such that the system remains metallic down to zero
temperature [2,8,9]. In both cases, strong pairing fluctuations
above T, give rise to a pseudogap behavior [6,10].

In a Fermi liquid with a weak attractive interaction,
pairing instability develops via the well-known BCS mech-
anism. Namely, the pairing susceptibility x,, is expressed
within perturbation theory via a power series of a Cooper
logarithm—the term A log(w/T ), where A is a dimensionless
coupling, wy is an energy cutoff, and 7 is the temperature. The
series is geometrical and yields y,p, oc 1/[1 — Alog(wo/T)],
which diverges at T = T, ~ wpe~'/*, signaling the onset of
superconductivity.

By contrast, in non-Fermi-liquids, such as quantum-
critical metals [2,3,6,8,11-13] and Yukawa-SYK models
[9,14-23] of dispersionless fermions with random interac-
tions, perturbation series for y,, are rather peculiar: they
are logarithmic, as in BCS theory, but the argument of the
logarithm depends on the running frequency of a fermion, w,
and the combinatorial factor for the nth term in the series is
1/n! rather than 1. The series A"|log (wo/|w|)|"/n! sum up
into xpp(w)  (wo/ |w|)*, which does not diverge at any finite
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frequency, i.e., any finite 7.! To search for a potential pairing
instability, one has to go beyond the expansion in powers of
the logarithms and compute the pairing susceptibility exactly.
The outcome of the exact analysis is that the pairing instability
develops, but only if A exceeds a certain threshold A., when
nonlogarithmic corrections change the exponent for yup(w)
to the extent that it becomes complex and xp,(w) develops
oscillations. Such behavior cannot be captured within order-
by-order expansion and indicates a breakdown of perturbation
theory in the particle-particle channel. Solving the nonlinear
gap equation for the gap function A(w), one then finds that
this breakdown implies an instability towards superconductiv-
ity. This is often referred to as the complex exponent scenario
of the pairing rather than the one based on the summation of
the Cooper logarithms.?

There is one additional aspect in which this pairing differs
from BCS. Namely, the nonlinear gap equation has an infinite
number of topologically distinct solutions, which differ in the
number of oscillations of A,(w). Each solution has its own
T..n. The largest T; ¢ is for nonoscillating A,(w), which is a
global minimum of the condensation energy. Other solutions
are saddle points. In BCS theory, there exists a single solution
for a superconducting order parameter at 7 < 7, (the same

'"Within the renormalization-group (RG) framework, the coupling
constant g in the Cooper channel flows to a fixed point instead of
running to infinity.

’In the RG language, the fixed points for g formally move to the
complex plane and become inaccessible [8,9,24,25], and instead g
flows all the way to infinity. A similar scenario has been proposed to
describe the pseudocritical behavior at putative deconfined quantum
phase transitions [26,27].
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holds in the Eliashberg theory for pairing out of a Fermi
liquid [28]).

In a recent paper [29], Ojajarvi et al. analyzed unconven-
tional superconductivity in a 2D system with Hubbard-like
repulsion U, near a single van Hove point. They found that
p-wave superconductivity develops already for an arbitrarily
small U, and that 7. o ¢~'/*, where A & U. On the surface,
this looks like BCS pairing. The authors of Ref. [29], however,
argued that there is no Cooper logarithm for this problem, and
the exponential dependence of 7, on A is due to logarithmic
singularity in the density of states at the van Hove point.
They argued that the pairing mechanism is very similar to
the one for non-BCS pairing mediated by a massless boson.
In particular, the pairing instability is a consequence of os-
cillations in g(E), and there exists an infinite number of T ,
with a topologically distinct gap function, of which T is
the largest.

In this paper, we argue that the same holds for d-wave
pairing in a metal near the onset of a spin-density-wave order
with momentum (77, ). This pairing has been extensively
analyzed in the context of cuprate and pnictide supercon-
ductors and other materials. At and above optimal doping,
the cuprates display metallic behavior and the Fermi sur-
face area matches the Luttinger count, and magnetic-mediated
pairing is often thought to be confined to the area near hot
spots—k points for which kr + (7, ) is also on the Fermi
surface. The fermionic self-energy X(w) right at a hot spot
is singular, scaling as w'/2. Such pairing of hot fermions
then falls into the “pairing out of non-Fermi-liquid” category,
in which superconductivity only develops when the pairing
interaction is above the threshold. However, for lukewarm
fermions away from hot spots, the self-energy X(w,, k)
w/|ky| [30], where k| is the momentum deviation from a hot
spot along the Fermi surface. Intuitively, as these fermions
retain Fermi liquid behavior at any kj, they can pair at arbi-
trarily weak d-wave interaction A and, by proximity, impose
pairing of hot fermions. Indeed, explicit calculations show [3]
that 7, < e~'/*, i.e., that it has the same functional form as
in BCS theory. Although the result looks like BCS pairing
of lukewarm fermions, we argue that this is not the case,
and, despite the similarity with the BCS formula for T, the
pairing mechanism is fundamentally non-BCS and is rather
similar to the previous case for fermions near a single van
Hove point.

To prove our point, we note that although a lukewarm
fermion has a frequency dependence that is Fermi-liquid-
like and linear in w, the prefactor critically depends on the
distance from a hot spot, so some non-Fermi-liquid physics
can be expected. We analyze the linearized gap equation for
the pairing vertex @, and we show that the pairing at weak
coupling falls into the “complex exponent” scenario. In fact,
a perturbative analysis of the pairing susceptibility yields a
power series of log?(A/T), but their sum does not diverge
[3]. As a consequence of the complex exponents (oscillation
of @), there is an infinite set of 7,,. We first convert the
original integral equation into a differential form, and we
begin with an analysis of a simplified toy model, which can
be straightforwardly solved. Then we analyze the full dif-
ferential equation, find its exact solution, and show that the
pairing mechanism remains the same as in the toy model.

Finally, we show that this differential equation can be di-
rectly mapped to the renormalization-group (RG) equation for
the coupling constant in the Cooper channel. The RG for-
mulation of our pairing problem makes it clear that the
pairing mechanism is fundamentally different from the BCS
mechanism.

The structure of the paper is the following. In Sec. II
we provide some background information about the model
and present the gap equation for pairing between lukewarm
fermions, which will be the point of departure for our analysis.
Here we also show that the BCS-type iteration procedure
based on the summation of the leading powers of logarithms
yields no pairing instability. In Sec. III we convert the integral
gap equation into a differential one and analyze it. We start in
Sec. III A with the simplified differential equation, with which
we show that the pairing mechanism is the same as that for
the pairing out of a non-Fermi-liquid, but 7, is nonzero for
arbitrarily weak A and has BCS-like form 7, « e~ /* where
¢ = /4. In Secs. III B and III C we analyze the full differ-
ential equation, and we show that the mechanism of pairing
remains the same as in the toy model, and 7 has the same
form at the smallest €. In Sec. III D we discuss a more accu-
rate mapping of the integral equation into a differential one,
which extends beyond previous conversions and also borrows
some results from [3]. We argue that this gives an accurate
result 7. o< e~ '/* (i.e., ¢ = 1). In Sec. IV we reformulate our
pairing problem in the RG framework, which makes clear
its fundamental difference with BCS. We show that the RG
equation is fully equivalent to the differential equation for the
pairing vertex [31]. We present our conclusions in Sec. V. For
completeness, in Appendix A we follow Ref. [31] and analyze
the interplay between the differential gap equation, extracted
from the Eliashberg theory, and the RG equation for the flow
of the running coupling for two intensively studied dynamical
models: the one with a logarithmic (color superconductivity)
and power-law (the y-model) dynamical interaction. In Ap-
pendix B we compare this work with our 2013 paper on the
same subject, Ref. [3].

II. BACKGROUND: MODEL AND INTEGRAL
GAP EQUATION

We follow earlier works [2,30,32-35] and analyze the
pairing near an antiferromagnetic QCP within the semiphe-
nomenological spin-fermion model. The model assumes that
antiferromagnetic correlations develop already at high ener-
gies, of order bandwidth, and mediate interactions between
low-energy fermions. The static part of the spin-fluctuation
propagator is treated as a phenomenological input from high-
energy physics, but the dynamical Landau damping part is
self-consistently obtained within the model as it comes en-
tirely from low-energy fermions [2,30,34]. We assume, as in
those earlier works, that the Eliashberg approximation (no
corrections to the spin-fermion vertex and the self-consistent
one-loop approximation for the self-energy) is valid in a wide
range of frequencies, which extends below the ones relevant
for the pairing. For a detailed analysis of the validity of
the Eliashberg theory for a spin-fermion model, see, e.g.,
Refs. [30,34,36,37].
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FIG. 1. The Fermi surface near a quantum-critical point of an-
tiferromagnetic order. The hot spots are labeled as black dots,
connected by the wave vector Q of the order parameter.

The action of the spin-fermion model is given by
[30,34,38]

1
S=-— /Ggl(k)llf,f,allfk.a + Efxal(q) Sq -S4
k q

+/k w/j-+q,ao-"‘ﬂ¢kvﬁ 'quﬁ (D
q

where [, . stands for the integral over k and the sum
over Matsubara frequencies, Go(k) = Go(w,, k) = 1/[iw,; —
vry - (k — k)] is the bare fermion propagator, xo(q) = A/q>
is the static propagator of collective bosons at quantum criti-
cality, and ¢ is measured with respect to Q.

A. Hot and lukewarm fermions

Antiferromagnetic fluctuations are peaked at Q = (m, ),
and mostly affect fermions located near hot spots—Fermi
surface points kr, for which kr + Q is also at the FS; see
Fig. 1. The Fermi velocities at hot spots separated by Q can be
expressed as vg | = (vVx, vy) and Vg = (—vy, v,), wWhere the
x axis is along Q.

Without loss of generality, we set v, = v, in this work.

The fermion-boson coupling gives rise to fermionic and
bosonic self-energies. In the normal state, bosonic self-energy
accounts for Landau damping of spin excitations, while
fermionic self-energy accounts for mass renormalization and
a finite lifetime of a fermion. At the one-loop level [30,34],

( k) 3 2w, @)
Wps K1) = s
ATVE fy || + K2+ 1Ky
A
K@) = 3)
7+ 1Quly

where w,, = 7T (2m + 1) is the fermionic Matsubara fre-
quency, y = 41/(wv}), and kj is the deviation from a hot spot
along the FS. The fermionic self-energy right at a hot spot has
a non-FL form:

V @o |wm |Sgn(a)m)v (4’)

X(wp, O) =

where wy = 91/167. For fermions away from the hot spot,
known as the “lukewarm fermions,” X(wy,, k) retains a FL
form at the smallest w,, and scales as

O
Xy, ky) = Jywy ——,

k2 > Y wp. (5)
2k

B. Integral gap equation

These normal-state results are inputs for the analysis of the
pairing. The linear gap equation for pairing between fermions
near two hot spots has been obtained within the Eliashberg
approximation in [3], and is

dk|
Z/ 27 |w), + B(w),. k)| +E(w kI

CID(kH,a)m)
X .
ki + k> + v lon — o),|

(D(kH , wm) =

(6)

The parameter € is the relative strength of the spin-
mediated interactions in the d-wave particle-particle chan-
nel and the s-wave particle-hole channel. We follow
Refs. [2,3,11,30] and treat € as a small parameter.3 For sim-
plicity, below we will refer to (6) as the gap equation.

1. Pairing out of non-Fermi-liquid

In the pioneering study of the pairing in the spin-fermion
model [2], Abanov et al. assumed that the pairing predom-
inantly comes from hot fermions, for which the self-energy
is given by (4). Upon substituting this self-energy into (6),
setting k; = 0, and integrating over kH’ the gap equation takes
the universal form*

Z D (wm) )

lom) = jon + 2(wm ) lom — w72

The temperature at which this equation has a nonzero so-
lution is the onset of pairing. In the absence of strong phase
fluctuations, this is superconducting 7.

The solution of the gap equation is the following [2,39,40].
First, there is a threshold for the pairing, i.e., T is finite only
at € > ¢, = 0.22. Near the threshold, 7. ~ wyexp[—b/(e —
€.)'?], b~ 3.41 (for similar results in other systems, see
[24,25]). Second, the pairing instability does not come from
the summation of Cooper logarithms and is revealed only by
going beyond the logarithmic approximation. Third, there is
a tower of critical temperatures, 7 ,, which all emerge once
€ exceeds €. and scale as wyexp[—b,/(€ —€.)"/?]. The T.
given above is the largest 7, . Each T, , signals an instability
towards a state with topologically distinct ®(w,,).

3This can be justified by, e.g., formally extending the model to a
matrix large-N theory [8], in which case ¢ = 1/N [39,40].

“Equation (7) is a specific realization of the pairing in the y-
model—a generic model of pairing out of a non-Fermi-liquid by an
effective V(R,,) o< 1/|,,|”; the corresponding = (w,,)  |w,|' 7.
Equation (7) corresponds to y = 1/2.
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2. Pairing of lukewarm fermions

Subsequent studies [3,30], however, have found that the
threshold at €. is actually a crossover rather than a sharp
boundary, i.e., T; is finite even when € is small. The argu-
ment is that lukewarm fermions in Eq. (5) also contribute to
pairing. Because these fermions display a Fermi-liquid behav-
ior, it seems natural to expect that the pairing of lukewarm
fermions falls into the BCS framework. Indeed, 7, obtained in
Ref. [3], remains finite even at the smallest € and has a familiar
BCS form

T, ~ woe V. 8)

We show below that the analogy with BCS is deceptive.
Namely, while there is no threshold, the pairing mechanism is
still qualitatively different from BCS. In particular, we show
that there is a tower of T, , of which the one in Eq. (8) is the
largest.

The gap equation for lukewarm fermions is obtained from
(6) by using the self-energy from (5) and neglecting the
dynamical Landau damping term in the bosonic propagator,
which is smaller than the static term for frequencies and mo-
menta, relevant to pairing, as one can verify a posteriori. To
see this, we focus on the lukewarm regime (y ), < kl’lz) in the
integral of Eq. (6) and drop the w], dependence in the bosonic
propagator. From the remaining terms in the bosonic propa-
gator, we obtain that the pairing vertex in different regimes of
(kyj, wm) is described by a single-variable function:

_|eGi/y)  if k> yo,

Plugging this into the right-hand side of Eq. (6), we obtain
veo  dk?

€ /.
Ok /y) =~ /yr ﬁ log(k /y T)®(K[*/v)

®

ear [« d“);n /«/len dkl’l
0

— D (w,,),
TVfr Jr kﬁ + ]/(,z);n

7 m

"0

wow

where o = O(1). For small €, the contribution from the first
line is the largest one. Keeping only this term and introducing
x=ki/yT and y = k{?/yT in the top line of Eq. (10), we
obtain

€ wo/T y
Q(x) = —/ log(y) ®(y). (1D
T Ji x+y

The 1/(x +y) on the right-hand side of this equation is
the static part of the spin-mediated interaction in rescaled
variables, and the log(y) term is the Cooper logarithm from
lukewarm fermions, which, we remind the reader, display a
Fermi liquid behavior.

II1. DIFFERENTIAL GAP EQUATION

A convenient way to analyze this equation, applied before
to dynamical pairing out of a non-Fermi-liquid and to pairing
near a van Hove point in a metal [29,31,40], is to convert the
integral equation into a differential one, which is easier to an-
alyze. For our case, the conversion is done by approximating
1/(x+y) in Eq. (11) by 1/x when x > y and by 1/y when

y > x. This is known as the local approximation [31,40]. It is
quantitatively exact if the interaction V (/) is a slow function
of the variable /. In our case, the interaction V(I) o« 1/1 is
not particularly slow, yet we shall see that the differential gap
equation (DGE) remains qualitatively valid.

Applying this, we obtain from (11)

1 (¥ 7 dyl
®x) = 5[; fl dylog(y) D) + f %g(y)cb(y)].

12)

For x well above the lower limit, the second term scales as
log? x and the first as log x. It is then tempting to only keep the
second term and drop the first one. Imposing this, we obtain
from (12)

e [T dylog(y)
() == / P o). (13)
Differentiation over x then yields a local differential equation
1
o) = 108 g (14)
T X
The boundary condition is set by (13)
@(@) =0 (15)
) =0
Solving (14), we obtain
2
®(x) = Dy exp [——E 1og2x:|. (16)
b4

Indeed, this is the result of summing the perturbative series
in terms of the logzx term [3]. However, this function does
not satisfy the boundary condition (15) at any 7. This im-
plies that the summation of the leading logarithms does not
lead to an instability. This already shows that the pairing of
lukewarm fermions is different from BCS. In Appendix A we
further contrast this with color superconductivity, where the
gap equation has a similar form, yet the summation of the
leading logarithms gives rise to a finite 7.

We now return to the full Eq. (12) and keep both terms on
the right-hand side. One can easily verify that to obtain a local
differential equation, one has to differentiate twice. Indeed,
differentiating once, we obtain

) = —— /1 dylogy) @) =0.  (17)

Differentiating again, we obtain

€ log(x)

2

O"(x) + —-D'(x) + — — () =0. (18)
X T X

The two boundary conditions can be extracted from the origi-

nal equation (12) and from Eq. (17). They are

@'(1) = 0,
W@ To®) =0

A. Approximate differential equation

As a first step in the analysis, let us consider an approxi-
mate (toy-model) version of Eq. (18) in which we assume that
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relevant x are of order the upper limit x ~ wy/T, at least to
logarithmic accuracy, and we replace log(x) on the right-hand
side of (18) by log(wo/T). The differential equation then
becomes

2 D
(x) + Z@'(x) + 5 P(x) =0, (20)
X X
where
_ € (@0
D_nlog(T> Q1)

is the T -dependent parameter. At large T < wy, D is small, of
order €. At the smallest 7', D becomes large.

The solution of (20) is a simple power-law function, which
we choose as ®(x) o« x#~1/2. Substituting into (20), we obtain
the equation on 8:

1
,32+D—Z=O, (22)
whose solution is f; » = +4/1/4 — D. AtD < 1/4 (larger T),
B is real. The generic solution of (20) is then

o= 20 (L 4w 23
(x) = ﬁ o + Cx" ). (23)
Substituting into the boundary condition (19) at x =1, we
fix Ctobe C = —(1/2 — B)/(1/2 + B). However, the second
boundary condition is not satisfied for any positive 8. This im-
plies that there is no nonzero solution of (20) yvhen D < 1~/ 4.

At D > 1/4, B becomes imaginary ifi, where B =
/D — 1/4. A generic solution of (20) now becomes

D
Jx
where ¢ is a free parameter. Substituting this ®(x) into the

two boundary conditions~ in (19), we find from the condition
atx = I, tan¢ = —1/(28), and from the one at x = wy/T,

d(x) = cos(B log(x) + ¢), 24)

w( 1

tan [B log <T) n ¢] -55=" (25)

Using B = /D — 1/4, Eq. (21) for D, and the first boundary
condition, we reexpress Eq. (25) as

D\ AD—=1
tan (V4D — 12— ) = X2~ . (26)
2¢ 2D—1

The graphical solution of (26) is shown in Fig. 2. We see
that there are an infinite number of solutions 7; ,. At small €,
the solutions are closely packed. The largest 7, corresponds to
D ~ 1/4, and is given by

T
Too=T. ~wexp(—2)- 27)

This 7 is almost the same as in (8) except for the factor 7 /4
in the exponent.

We see from this analysis that while there is no threshold
for T, and T;. depends exponentially on €, like in BCS theory,
other features are qualitatively different from BCS. Namely,

3D = 1/4 is formally also a solution of Eq. (26), but it corresponds
to a trivial pairing vertex ®(x) = 0.

20+

10+

"MW

left hand side of Eq. (26)

FIG. 2. Solutions for D in Eq. (26) for € = 0.05, represented by
the zeros of the curve. For € « 1, the first solution is at D ~ 1/4.

the pairing instability does not emerge from the summation
of the leading logarithms, but rather falls into the “complex
exponent” category. In addition, there is a tower of T, , for
different pairing states.

B. Full differential equation

We now show that very similar results hold in the orig-
inal differential equation (18) without approximating logx
by log(wy/T). To this end, it is instructive to reexpress the
derivative over x into the one over L = log(x). Doing this, we
obtain from (18)

d’® dd €L
— +— 4+ Z=d=0. 28
dL? + dL + T (28)

The first-order derivative above can be removed by defining
@(L) = e>®(L). The equation for the new function ¢(L)
takes the form of the Airy equation,

1
0" (L) + (; L- Z)w(L) =0. (29)

The solution for ¢(x) can then be straightforwardly
expressed as

@(L) = C1 Ai(z) + C; Bi(2),
1 2/3 1/3
where z = —(z) - (E) L, (30)
4\¢ b4
and Ai and Bi are Airy functions of the first and second kind.
Then
(L) = e “?[C) Aiz) + G Bi(2)]. 31

The boundary conditions for ®(L) are
o wo
'(0) = 0, c1>’(1 —) - —q>(1 —), 32
(0) og g — (32)

where the derivatives are over L. In the limit € < 1, us-
ing the asymptotic behavior [41] of the Airy functions that
Ai'(z)/ Ai(z) ~ —4/z for z>> 1, we find that the boundary
condition ®'(0) =0 is satisfied by choosing C, = 0. The
other boundary condition in Eq. (32) yields

e\IBAIGzp) 1
(E) Ai(zp) 2 % (33)
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—-
T

L L L L L L L L L L L L L L 1 D

y 0.4 0.6 8 0

-

N

left hand side of Eq. (33)

FIG. 3. Solutions of Eq. (33) for € = 0.05 in terms of D. For
small € < 1, the leading T corresponds to D = 1/4.

where

=307 (0 g =@ (-3
(34)

We find the solution of (33) graphically in Fig. 3. As can
be seen, this boundary condition is satisfied at various values
of D > 1/4, corresponding to a tower of 7. ,’s. Indeed, from
the property of the Airy function [41], the left-hand side of
(33) is oscillatory for D > 1/4 and monotonically negative for
D < 1/4.For € < 1, the largest T; o corresponds to D ~ 1/4,
and thus

T.o = T. ~ wyexp (—%) (35)

We see that the functional form is the same as in (27). How-
ever, the subleading terms in the expansion in € are different.
In the original variable x, the exact solution for ®(x) is

o (x) (O Aj 1(71)2/3 (e )1/31 (36)
x)=—Ai|-(— —|— ogx|.
Jx oo [4\e b4 g
We remind the reader that this solution exists only when D >
1/4. Observe that Eq. (36) is similar to Eq. (24).
For subsequent analysis, it is convenient to introduce the
new function

AL L -
ogx
The DGE for Q(L) has the form

QL) = 0*(L) — O(L) + EL’ (38)

and the boundary conditions are
o
0(0) = 0, Q(log 7) —1. (39)

Equation (38) is known as a Riccati equation. Using (31), we
obtain its solution,

€ )1/3 Ai'(z)

Ai(z)
The boundary conditions Eq. (39) yield the same tower of 7.
as Eq. (33).

L—1 40
ow =3 +( (40)

T

Q(L)
12¢
T | SRR N S S N o 1
081 Eq.(40)
L — Eq.(47)
04
02}
L //J/‘ 1 1 L L
0 50 100 150 200 250

FIG. 4. Solutions for Q(L) using DGE and an algebraic equa-
tion with and without improvements beyond the local approximation.
The boundary condition in Eq. (39) is shown as a dashed line.

C. Computing 7, via an algebraic equation for Q

We now show that for small €, the formulas for 7; ¢ and
®(x), consistent with (35) and (36), can be obtained from
(38) in a purely algebraic way, without solving the differ-
ential equation. For this we note that at € <« 1, Q' remains
small compared to Q and Q7 in nearly the whole range of
L < 7 /(4€), except very close to the boundary of this range.
Within this range, the DGE (38) can be approximated by a
quadratic algebraic equation

0*(L) — O(L) + gL =0, 41)
whose solution is
1 —J/1—4eL
o) = % (42)

which we plot in Fig. 4. We see that the approximation of
(40) by (42) is quite good for L < 1 /(4€). The other quadratic
root does not satisfy the boundary condition Q(0) = 0. This
solution is valid up to 4eL/m < 1. To leading order of € at a
given L, this gives

el
OL) ~ —. 43)
T

The corresponding
2,
D(x) = Ppexp | —— log” x (44)
T

is the same as in (16), i.e., the approximation to linear order
in € for Q(L) is equivalent to solving for ®(x) within the
leading logarithmic approximation. The function Q(L) from
(43) increases with L, but reaches Q = 1/4 at the maximal
L = /(4¢) and then does not satisfy the second boundary
condition Q(L = log (wo/T)) = 1. This is a different way to
state that the summation of the leading logarithms in the gap
equation does not lead to the pairing susceptibility.

The full algebraic solution for Q(L) also does not
satisfy the boundary condition Q(L = log(wo/T)) =1 as its
maximum value is 1/2. However, there is an important differ-
ence with Q(L) from (43). Namely, Q(L) from (42) nearly
coincides with the exact solution of the DGE for all L <
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7 /(4€) except the ones very close to m/(4€) (see Fig. 3),
and, moreover, its derivative diverges at L — 7 /(4¢). Judging
from this alone, one can conclude that the full solution of
the DGE for Q'(L) should cross Q(L) = 1 at L only slightly
above L = mr /(4¢). To find out how this happens, one indeed
should keep Q’(L) in the DGE, as Fig. 3 shows. However, this
reasoning already implies that to leading order in €, T, = T,
can be extracted from the condition log (wo/T.) = 7 /(4¢€).
This yields the same 7. as in (35). We note, however, that
within this reasoning, one cannot obtain the tower of 7 ,.

D. Improved equation for Q

We now stay within the regime of L where Q' <
0, 0%, and we address another issue—how accurate is the

T X

€ — (_1)n—l x n—1—Q(log x) € n—tn—1 [T —n—Q(logx)
=y = y logydy + — 3 (=1)"'x y logydy,
1 X

X
n=1

where in the second line we expanded the kernel in y and
x, respectively. Only keeping the n = 1 contribution in both
terms amounts to taking the local approximation, which, after
performing the integrals, reproduces Eq. (41). We go beyond
the local approximation by retaining all terms in the sums.
Evaluating the integrals and performing the resummation, we
obtain a more accurate equation for Q(L) in the form

(_)n+1 I el (
“on—0W) [ sin[zQL)]

We plot the solution of this equation in Fig. 4. We see that
the solution gets modified from Eq. (42) at larger L’s, but
still only exists in a limited range of L, and does not reach
Q(L) =1 at the boundary of this range. Yet, the solution of
(47) rapidly increases at the edge of its applicability range,
much like the solution of (42). By analogy, it is reasonable to
expect that the largest L, where the solution of (47) holds, is
close to log wy/T,. We see that, in distinction to the solution
of (42), the largest L up to which the solution of (47) holds is
L = 1/€¢. We then obtain an improved estimate for 7 as

1
T, ~ wo exp (——).
€

This is the result that we cited in the Introduction. The formula
for T, looks like the BCS formula, yet, as we demonstrated,
the pairing mechanism is not BCS—it falls into the “complex
exponent” rather than the “Cooper logarithm” category, and
there is a tower of 7., with topologically distinct ®,(x),
similar to pairing out of a non-Fermi-liquid. The only dis-
tinction from the latter is the absence of the threshold for
the coupling, which results from the coherent Fermi-liquid
behavior of lukewarm fermions.

Equation (48) was first obtained by us in Ref. [3] and
was found to match numerics quite well. In that paper, how-
ever, we did not explore the fact that one needs to keep

47)

(48)

computational procedure leading to the algebraic equa-
tion (41)? We remind the reader that in the derivation of
this equation, we used the local approximation and replaced
1/(x +y) in the kernel in Eq. (11) by 1/ max(x, y). We now
argue that the local approximation can be improved, at least
in the regime where Q' is smaller than 0? and Q and can be
neglected. To this end, note that from the definition of Q, ®(y)
at a given y can be expressed via ®(x) as some x as

®(y) = ®(x)exp[—Q(logx)(logy —logx)],  (45)
where higher-order derivative terms, such as Q'(logy)|y=y.
have been dropped. Inserting this relation into the original
integral equation (11), we get

€ [* y~QUogx) € [T y-Quogx)
x~9loen) — —/ Y logydy+ —/ S
1 +y T Jx

logyd
Y t+x gyay

~

(46)

n=1

(

Q' in the DGE in order to satisfy the boundary condition
O(log(wy/T)) = 1, and we did not emphasize the non-BCS
nature of the pairing of lukewarm fermions. It is tempting
to further improve the DGE by incorporating Q' terms into
Eq. (47). This, however, requires rather sophisticated calcula-
tions outside of the local approximation. We leave this issue
for future work.

IV. RG FORMULATION OF THE PAIRING PROBLEM
AND ITS RELATION TO DGE

In this section, we reformulate the pairing problem using
the technique of momentum-shell RG, and we show that it is
fully equivalent with the differential equation.

Within the BCS pairing mechanism, under the RG flow
toward the FS, the tangential component of momentum k;
does not rescale [42,43]. However, in our problem, since the
self-energy for lukewarm fermions explicitly depends on kj,
it is crucial that kj also rescales under RG. Given the form of
the self-energy, we employ an RG scheme with the following
scaling dimensions:

kl=5. [kil=3 [o]l=1. (49)

As the instability arises from integrating over kj, we im-
plement a momentum-shell RG process during which at each
step, (i) modes in a momentum shell kﬁ € (A(1 = D¢L), A)
are integrated out, and then (ii) the upper cutoff is formally
rescaled back to A.

As an immediate consequence of [k;] # 0, the engineering
dimension of the pairing coupling g is altered. Unlike the BCS
pairing mechanism in which g is marginal [42,43], here g
is irrelevant, and by a similar analysis to that in Ref. [43],
we get

gl = —1. (50
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At each RG step, the scaling dimension of g leads to
818 = —gsL. (51)

There are two additional fundamental differences with
the BCS pairing mechanism. First, the coupling “constant”
g is not a constant, but rather by itself is a function of
ky, i.e., explicitly scale-dependent. As a common feature in
all quantum-critical pairing models, the standard treatment
within the RG [1,8] is to identify g with the pairing inter-
action at a given running scale A. This is equivalent to the
local approximation, and it is strictly speaking accurate (to
log accuracy) if the pairing interaction is slowly varying at
log scale. This is satisfied by the y-model at small y and
color superconductivity in 3 + 1D. In our case, the pairing
interaction D (k) ~ € /(nkﬁ), and such treatment is not quan-
titatively accurate. Still, as we shall see, it correctly captures
the qualitative feature of the pairing mechanism. The local
approximation leads to an inherent running of g aside from
regular contributions from the RG procedure. This leads to,
during an RG step A — A(1 — §¢),

5 € &t 5
=4 (52)

Second, the one-loop contribution to the running of g is
also different from BCS. In BCS, the one-loop contribution to
the RG flow comes from a shell of (k; , w) with k integrated
over. Here, kj is the running scale. In a momentum shell
kﬁ € (A(1 — §¢), A), the contribution to one-loop pairing sus-

ceptibility is
A kﬁ dw
& / dk; / —. (53)
A(1-80) Te! @

Note that the lower cutoff of the frequency integral is rescaled
to Te’ instead of T, due to the substeps (ii) during the RG flow
(€ = [ 8¢). This leads to a change in g given by

838 = ng(log % — e)ae. (54)

Combining Eqgs. (51), (52), and (54), we get the following

B-function for the RG flow of g:

dg € A

= — Allog——1¢). 55

TR TR AR (OgT > (55)
The RG flow begins at the UV scale A = wy and stops at £ =
log(wy/T ). For the pairing instability at T = T;, we have the
boundary conditions

€ wo
(=0)= (z ~1 —) . (56
8 ) A 8 0g—) = o (56)
Remarkably, if one identifies L in (38) with the “reverse
RG time,” and Q with the “inverse coupling” [31], i.e.,

A €A
L < log e £, Q)<+ ——, 57
b4

8(0)
the RG equation (55) becomes exactly the same as the DGE,
Moreover, the boundary conditions for g in Eq. (56) precisely
map to those for Q in Eq. (39).
For a number of pairing problems, it is known that the
approaches of the Eliashberg equation and the RG are equiv-
alent [1,31]. In particular, for pairing mediated by dynamic

interactions, Ref. [31] showed explicitly that the differential
equation converted from the Eliashberg integral equation can
be directly mapped to an RG equation. For the present prob-
lem, the pairing interaction is predominantly static, but the
relation between ®(k) and g(£) still holds. For complete-
ness, in Appendix A we explicitly demonstrate that for color
superconductivity mediated by massless gluons and for the
y-model, the RG equations and the differential equations from
Eliashberg equations are exactly the same.

The derivation of the RG equation makes clear the funda-
mental difference between our pairing mechanism and BCS.
For the BCS mechanism, the RG equation is simply

dg 2
— =g, 58
dl § (58)

in which the fermionic self-energy and the form of the pairing
interaction do not play an important role.

The last term in Eq. (55) is quite similar to the RG equa-
tion for pairing in graphene at van Hove doping [44], whose
one-loop pairing susceptibility contains log® just like our
problem. Had we only kept this term, solving the RG equa-
tion would yield T, = wq exp(—+/2/€), quite like that for van
Hove doped graphene [44] and for color superconductivity
[1,45] (see Appendix A 1). However, the additional terms in
the RG equation lead to a different, BCS-like formula for T,
in spite of a fundamentally different pairing mechanism.

Compared with the RG equation for the y-model [8] (see
Appendix A 2), the first two terms in Eq. (55) are similar. The
only difference is the additional L factor in the last term. As
a direct consequence, there is no fixed point at { — oo for an
arbitrarily small €, i.e., our pairing problem does not have a
threshold for pairing strength.

V. CONCLUSIONS

In this work, we argued that the very appearance of
the BCS-looking formula for superconducting 7, does not
necessarily imply a BCS pairing mechanism, rooted in the
geometric series of Cooper logarithms. We considered as an
example the pairing of lukewarm fermions in the critical spin-
fermion model. These fermions are located near hot spots, but
still at some distance from them, and their self-energy has a
Fermi-liquid form, but d ¥(w, k)/dw o< 1/]ky|, where kj is the
distance of a lukewarm fermion from a hot spot. We showed
using several computational procedures, with varying degrees
of accuracy, that lukewarm fermions pair already for arbitrar-
ily weak attraction €, and the corresponding 7 is exponential
in 1/€, as in BCS theory. At first glance, this looks like BCS
pairing. However, we demonstrated that the pairing mecha-
nism is qualitatively different from BCS in three aspects: (i)
the summation of the leading logarithms does not lead to pair-
ing, (ii) pairing occurs in subleading terms and develops when
the exponent for the pairing susceptibility becomes complex,
and (iii) there is an infinite set of critical temperatures for
topologically distinct gap functions. All three properties are
characteristics of fundamentally non-BCS pairing. From a
field-theoretic perspective, the distinction between the present
pairing mechanism and BCS is rooted in their qualitatively
different pairing coupling constant behaviors under RG flow.
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APPENDIX A: EQUIVALENCE BETWEEN DGE AND RG
EQUATION FOR THE RUNNING COUPLING

In this Appendix, we analyze the connection between the
differential equation for the pairing vertex and the RG equa-
tion for the running coupling. A differential equation for the
pairing vertex is obtained from the original integral Eliashberg
equation for the pairing vertex by taking the local approxima-
tion, which simplifies the pairing interaction V (a — b), where
a and b are external and internal variables (momentum or
frequency), to V(a) for a > b and V (b) for b > a, and the RG
equation for the coupling is obtained by using a Wilsonian
coarse-graining procedure with the convention that the RG
coupling has to diverge at the energy scale set by T...

A generic analysis of the interplay has been performed in
Ref. [31], where the authors demonstrated that for a generic
dynamical interaction V (a — b), T, extracted from the differ-
ential equation and from RG are equivalent.

We focus on two specific examples: color supercon-
ductivity (pairing by a logarithmically singular dynamical
interaction) and the pairing by the effective dynamical in-
teraction V(£2,,) o 1/|2,,|7 (the y model). For both cases,
we present the explicit expressions for the differential equa-
tion and its solution, and we convert the equation for the
pairing vertex & into the one for the RG coupling g.

1. Color superconductivity

Color superconductivity occurs in quark matter due to con-
densation of quark pairs (diquarks) driven by logarithmically
singular attractive interactions mediated by gluon exchange
[1]. Despite its exotic nature, the same pairing mechanism
can also be realized in electronic pairing, as long as the
pairing interaction is logarithmically singular (e.g., interaction
mediated by nematic fluctuations in three dimensions). The
instability temperature for color superconductivity was found
by Son within the RG framework [1] (see also Ref. [24,26]).
Chubukov and Schmalian [45] reproduced Son’s result for 7,
by constructing the Eliashberg equation for the pairing vertex
with a source term (an integral equation in frequency) and
analyzing the pairing susceptibility.

The point of departure for our analysis is the integral
Eliashberg equation in Matsubara frequencies, without the

source term. For logarithmic interaction, it has the form

Udy 1
d(x) = k/ — log <—)<I>(y),
Ty lx — ¥l

where x, y > 0 are rescaled frequencies x = w,,/A, where A
is the upper cutoff for logarithmical behavior of the interac-
tion, T = T /A, and A is a dimensional coupling, which we
assume to be small.

The differential equation corresponding to (A1) is obtained
using the same procedure as in the main text. It is

d'(x) O(x)

(AD)

®'(x) + —— +A—5> =0, (A2)
X X
and the boundary conditions are
d(x=1)=0, ®(x=T)=0. (A3)

The solution of (A2) is a power law, ®(x) o x?. Substituting
into (A2), one finds that 8 = +iv/A is imaginary for any
nonzero A. Accordingly,

® = ®cos [ﬁlog<1> +¢:|,

X

(A4)

where ¢ is a free parameter. Substituting into (A3), we find
¢ =m/2and

1 T
Vi log <7> = 5 (1 +2m). (A5)
Hence
(1l 4+ 2n)
Tow~ A A A6
’ eXp[ 2/ } (A0)

Analyzing the solution, we find that the case of color super-
conductivity is an intermediate between BCS and non-BCS
pairing and has features of both. As in the BCS case, the
pairing comes from the summation of the leading logarithms
(series of log® terms), and 7, is exponential in 1/+/A. As in
the non-BCS case, the pairing instability is associated with
the complex exponent in the power-law solution for ®(x), and
there is a tower of T, , for topologically distinct ®,(x) with n
zeros on a positive Matsubara semiaxis.

We now demonstrate how to convert Egs. (A2) and (A3)
into the equation for the running coupling g that departs from
a constant at x = 1 and diverges at x = T. For this we follow
the analysis in Sec. IV of the main text and introduce p =
log1/x and Q = —d(log ®(x))/d log(x) = d(log ®(p))/dp.
Reexpressing (A2) as the equation on Q(p), we find

0'(p)+ Q*(p) +1 =0,

where the derivative is with respect to p, and p is running
between puin = 0 and pmax = log(wp/T). The boundary con-
ditions are

(AT)

O(Pmin) =00, Q(Pmax) = 0. (A8)
Introducing then g(p) = 1/Q(p), we finally obtain
g(p)=1+xg’ (A9)
with the boundary conditions
8(Pmin) = 0, g(Pmax) = 0. (A10)
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This coincides with the equation for RG coupling, obtained
by Son [1]. Solving (A9) and using (A10), one obtains
1
(p) = —=tan (/Ap) (A11)
8\p N p

subject to cos (v/Apmax) = 0. This leads to the same tower of
T..n as in (A6).

2. y-model

We now apply the same reasoning to the pairing in the
y-model [2,11,13], which describes a set of quantum-critical
models with the effective interaction V (2,,) o 1/|€2,,|” and
normal state self-energy ¥(w,,) = |a)m|1_”a)g sgn(w,, ), where
wp is a function of the coupling between fermions and a
critical boson.

As before, we use the integral gap equation in frequency
as the point of departure of our analysis. It has been presented
and discussed in Refs. [28,40], where the authors also ana-
lyzed the full corresponding differential equation.

For our purpose of comparing with RG, it is sufficient to
set the lower limit of frequency integration at 7' and the upper
one at wy and neglect bare w compared to the self-energy. We
also restrict to y < 1. The truncated Eliashberg equation is

1
@@):A/ dy QOX
rolx—ypr oy

where, as before, x, y > 0 are frequencies in units of wy, T =
T /wyp, and X is a dimensional coupling related to the ratio of
fully dressed interactions in the particle-particle and particle-
hole channels [in the extended matrix SU(N ) model with N >
1, A o< 1/N [5,12]]. Converting Eq. (A12) into the differential
equation in the same way as in the main text and introducing
z = x¥, we obtain

(A12)

7 2 / A (I)(Z)
() + -P () +—-—F =0 (A13)
Z Y Z
with the boundary conditions being
')+ ®(1)=0, D'(z=T")=0. (Al14)

The derivatives are with respect to z. The solution is again a
power-law ®(z) o< z#~1/2 (=1/2 is added to simplify formu-
las below). Substituting into (A13), one obtains

sl @
2 y

For small A, 8 are real. A simple experimentation shows that
one cannot satisfy the two boundary conditions in (A14). (For
a more detailed discussion on this issue, see Refs. [40,46].)
This implies that there is no pairing instability at weak cou-
pling.
At larger A > A.=y/4, B=iB is imaginary (B =
OSV%—I)MM
1 -
D(2) 7 cos (Blog(z) + ¢),

where ¢ is arbitrarily. Substituting into (A14), we obtain

(A15)

(A16)

ang = -, t (1-L __2 (A17
an¢>_—2‘B, an ,BogTy>_ = )

28 — 1

-4
-6

FIG. 5. The plot of g(p) for a = 2. There is an infinite set of p ~
log (wo/T)?, at which g(p) diverges.

Solving (A17) for A > A., we obtain a tower of critical tem-
peratures [40],

2r(l+n) | A
Tc,n ~ g €Xp )
14 A= )"c

where n =10, 1,2, ... . Like before, each T, is the onset
temperature for a topologically distinct ®,,(z) with n zeros on
a positive Matsubara semiaxis.

To convert (A13) into the equation for the running coupling
g that departs from a constant at z = 1 and diverges atz = T7,
we again follow the analysis in Sec. IV of the main text
and introduce p = log 1/zand Q = —d(log ®(z))/d log(z) =
d(log ®(p))/dp. Reexpressing (Al3) as the equation on
0(p), we find

(A18)

, A
Q'(p)+ Q*(p) — Q(p) + v 0, (A19)
where the derivative is with respect to p, and p is running
between ppin = 0 and pmax = log (w/T)Y. The boundary
conditions are

O(Pmin) =1,  Q(pmax) = 0. (A20)
Introducing as before g(p) = 1/Q(p), we finally obtain
/ A 2
gp)=1-g+ 8 (A21)
with the boundary conditions
g(pmin) =0, g(pmax) = oC. (A22)

One can verify that (A10) coincides with the equation for
RG coupling, derived in Ref. [8]. Solving (A21) and using
(A22), one obtains

g@)z%{y+¢a—1

1 a—2
tan |:§ («/a — Ip + 2 arctan ﬁ)} } (A23)

where a = A/A. > 1. This g(p) is subject to g(p = wy/T") =
oo. We plot g(p) in Fig. 5. We see that there is an infinite set
of points where g(p) = oo, hence a tower of T, ,. A simple
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analytical analysis shows that for A > A, these temperatures
coincide with T , in (A18), as they should.

APPENDIX B: THE RELATION BETWEEN
THE PRESENT WORK AND REF. [3]

As we said in the main text, we analyzed the pairing of
lukewarm fermions back in 2013. We found a BCS-looking
formula for 7, and indirectly suggested that this implies that
the whole pairing problem is BCS-like. Our argument was
that lukewarm fermions retain Fermi-liquid behavior even at
a QCP.

In this paper, we corrected ourselves and demonstrated
that the pairing problem is in fact qualitatively different from
BCS. The present argument is that the self-energy of these
fermions has a singular dependence on the momentum dis-
tance from a hot spot. Because of this singular dependence,

the gap equation after frequency integration becomes an inte-
gral equation over momentum with a singular kernel. This,
we argued, makes the pairing problem non-BCS like and
similar to other problems of pairing out of a non-Fermi-liquid.
However, because the singularity of the kernel is only loga-
rithmic, the coupling, which we labeled as D [see Eq. (20)],
contains the product of € and log (wy/T). As a signature of
non-BCS pairing, the solution of the linearized gap equa-
tion exists at a nonzero threshold value D, of order 1 (there
is a tower of solutions, but let us focus here on the smallest
D,., which is still of order 1). The condition on 7, is then
€log (wo/T) = O(1). This yields a BCS-like formula for 7,
the same as what we obtained in Ref. [3]. However, the pairing
mechanism is not BCS. We have also confirmed this by a RG
analysis. We reiterate that this is a consequence of the singular
momentum dependence of the self-energy for a lukewarm
fermion.
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