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The quantum geometry, comprising Berry curvature and quantum metric, plays a fundamental role in
governing electron transport phenomena in solids. Recent studies show that the quantum metric dipole
drives scattering-free nonlinear Hall effect in topological antiferromagnets, prompting the questions of
whether this effect can occur in nonmagnetic systems and be externally tuned by a magnetic field. Our work
addresses these frontiers by demonstrating that the quantum metric dipole is actively tuned by an external
magnetic field to generate a time-reversal-odd nonlinear Hall response in a nonmagnetic topological Dirac
semimetal Cd3As2. Alongside the well-known chiral-anomaly-induced negative longitudinal magneto-
resistance, an exotic nonlinear planar Hall effect emerges with increasing magnetic field. Careful scaling
analysis indicates that this nonlinear planar Hall effect is controlled by the magnetic-field-modulated
quantum metric dipole. Constructing a k · p effective model of the Dirac bands under Zeeman and orbital
coupling, we derive the evolution of the quantum metric dipole as a function of the magnetic field,
providing a comprehensive explanation of the experimental results. Our results establish a band-structure-
based strategy for engineering nonlinear magnetotransport in nonmagnetic materials via the quantum
metric dipole, opening a pathway toward magnetic-field–tunable nonlinear quantum devices.
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The quantum geometric tensor, which encapsulates
both the Berry curvature and quantum metric, has been
instrumental in advancing the understanding of diverse
electronic phenomena in condensed matter systems [1,2].
The Berry curvature can induce transversal charge trans-
port, governing phenomena such as the anomalous Hall
effect [3–10], orbital magnetization [11–14], and valley
Hall effect [15,16]. On the other hand, the quantum metric,
a measure of the distance between quantum states in Hilbert
space [17,18], plays an essential role in the physics of
fractional Chern insulators, flat-band systems, and other
emergent states of matter [17,19–23]. Recently, the quan-
tum metric dipole (QMD), a k-space dipole moment of
the quantum metric, has been identified as a driving
mechanism behind the scattering-independent nonlinear
Hall effect. This effect has been observed in pristine
MnBi2Te4 [24] and MnBi2Te4/black phosphorus hetero-
structures [25], as well as in antiferromagnetic Mn3Sn=Pt
systems where the nonlinear Hall signal persists at room
temperature [26]. However, because it requires broken
time-reversal symmetry for QMD to emerge, its manifes-
tation has so far been confined to materials with simulta-
neous magnetism [27,28], severely limiting its applicability
to nonmagnetic materials. A pivotal question arises: Can

QMD-induced nonlinear transport emerge in nonmagnetic
systems and be externally controlled?
To address this, we propose engineering QMD in non-

magnetic Dirac semimetals via external magnetic fields.
The Dirac semimetal Cd3As2—a prototypical system with
hidden quantum geometry structure—provides an ideal
platform. Pristine Cd3As2 features symmetry protected
Dirac cones [29–37] and exhibits pronounced quantum
geometric effects, manifested in a nontrivial Berry phase
via quantum oscillations [29–32] and quantum Hall effect
[33,34]. Crucially, applying a magnetic field splits its Dirac
nodes into Weyl pairs, augmenting the QMD via k-space
separation of Weyl points [38]. This tunable character
coincides with chiral anomaly effects [39–42], enabling
unprecedented control over QMD-driven nonlinear trans-
port. Furthermore, recent theoretical studies predict that
an external magnetic field parallel to the bias current can
lead to a nonlinear Hall response, known as the nonlinear
planar Hall effect (NPHE) [43–47], which includes a QMD
mechanism from the magnetic-field-perturbed band struc-
ture [43,44,47]. Experimental demonstration of this exotic
transport phenomenon remains highly desirable.
In this work, we show that an external magnetic field

alone can induce and modulate the QMD in Cd3As2, giving
rise to a robust, intrinsic NPHE that persists up to room
temperature. The aforementioned scenario of magnetic-
field-induced Dirac band splitting is responsible for the
QMD generation, and the linear magnetic-field dependence*Contact author: liaozm@pku.edu.cn
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of nonlinear Hall signals is crucially determined by the
k-space separation of Weyl nodes likewise. Our results not
only extend QMD-driven nonlinear magnetotransport
to nonmagnetic materials but also suggest that magnetic-
field–tunable quantum geometry may underlie a broad
array of exotic transport phenomena in quantum materials.
We carried out magnetotransport measurements in

Cd3As2 nanoplates grown by chemical vapor deposition
technique (see Supplemental Material, note 1 [48] for
details). The nanoplates possess (112) surface plane and
½11̄0� edge direction of body-centered tetragonal structure
with space group I41=acd, as confirmed by previous
transmission electron microscope results [67]. Although
an ideal crystal lattice preserves inversion symmetry,
strain—inevitably introduced via thermal-expansion mis-
match or microfabrication processes—breaks that symmetry.
We first establish the signatures of chiral anomaly and

second-order nonlinear Hall effect in our samples at
T ¼ 2 K, under an in-plane magnetic field applied parallel
to the nanoplate edge [Fig. 1(a)]. An ac bias Iac at a fixed
frequency of 17.777 Hz is applied to the sample, with both
longitudinal and transversal responses at fundamental and
second harmonics recorded. The first-order longitudinal
signal exhibits clear signatures of chiral anomaly-induced
negative magnetoresistance (NMR) [Fig. 1(b); see also
Supplemental Material, note 3] [39,41,42,48], along with a
weak antilocalization (WAL) effect (Fig. S1 [48]). The
NMR is most pronounced at a gate voltage of Vg ≈ −10 V,
where the Fermi level approaches the Dirac point, as

indicated by the resistance peak in the transfer curve
[Fig. 1(c)]. In this regime, the nonlinear Hall response
shows only a weak dependence on Vg (Supplemental
Material, note 4 [48]).
Figure 1(d) plots together the second-order longitudinal

(V2ω
xx ) and Hall (V2ω

xy ) responses measured at Vg ¼ −10 V
and B ¼ 1 T. The prominent V2ω

xy clearly demonstrate the
domination of Hall response. Figure 1(e) shows the non-
linear Hall signal V2ω

xy versus the quadratic of longitudinal
voltage Vxx, across various magnetic fields, at the Dirac
point Vg ¼ −10 V. The V2ω

xy − ðVxxÞ2 curves exhibit clear
linearity. After symmetrizing Vxx (Supplemental Material,
note 1 [48]), we define the nonlinear Hall generation ratio
as V2ω

xy =ðVxxÞ2, and summarize its dependence on magnetic
field B in Fig. 1(f).
Our primary focus is on the time-reversal-odd nonlinear

Hall signal. Nevertheless, the nonlinear Hall ratio in
Fig. 1(f) shows a deviation from perfect antisymmetry
with respect to magnetic field, i.e., V2ω

xy =ðVxxÞ2jþB ≠
−V2ω

xy =ðVxxÞ2j−B. The B-symmetric and antisymmetric
components of V2ω

xy =ðVxxÞ2 are presented by blue and
red circles in Fig. 1(f), respectively. Under relatively low
magnetic field B, both components show roughly linear
dependence on B, reaching their respective maxima at
B ¼ 3 T. Beyond such a turning point, both signals saturate
and then slightly decrease with increasing B (see contin-
uously measured V2ω

xy =ðVxxÞ2 − B relation in Supplemental
Material, note 5 [48] for better illustration of these
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FIG. 1. Chiral anomaly and nonlinearHall effect inCd3As2 atT ¼ 2 K. (a)Optical image of theCd3As2 nanoplate device.Arrows indicate
the applied parallel current and magnetic field. (b) Longitudinal magnetoresistance (MR), defined as ½RxxðBÞ − Rxxð0Þ�=Rxxð0Þ × 100%,
under various gate voltages. The curves, which should originate atMR ¼ 0, are vertically shifted for clearer visualization. (c) Transfer curve
of theCd3As2 nanoplate device. (d) Second-order longitudinal (V2ω

xx , black) andHall (V2ω
xy , red) signalswith respect to ac bias atVg ¼ −10 V

and B ¼ 1 T. (e) V2ω
xy versus the square of longitudinal voltage ðVxxÞ2, under Vg ¼ −10 V and various magnetic fields. (f) Nonlinear Hall

ratio V2ω
xy =ðVxxÞ2: raw data, symmetric, and antisymmetric components plotted as a function of magnetic field B.
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features). Notably, such turning point in nonlinear Hall
ratio aligns with the turning point of NMR in the
linear longitudinal response [Fig. 1(b)]. Apart from the
B-antisymmetric signal of our interest, the B-symmetric
signal can also provide complementary evidence towards the
incorporated quantum geometry features. We employ scaling
analysis to the B-antisymmetric and symmetric parts indi-
vidually for a more comprehensive illustration of the under-
lying physical scenario (see Supplemental Material, note 6
[48] for analysis of the B-symmetric signal).
Figure 2(a) shows the B-odd nonlinear Hall ratio

½E2ω
xy;odd=ðExxÞ2� under various magnetic fields and temper-

atures, with the Fermi level tuned close to the Dirac point
(see data under extra temperature points within 10–70 K
in Supplemental Material, note 7 [48]). Here E2ω

xy;odd ¼
V2ω
xy;odd=W and Exx ¼ Vxx=L are the corresponding electric

fields, with V2ω
xy;odd ≡ ½V2ω

xy ðBÞ − V2ω
xy ð−BÞ�=2 the B-odd

part of nonlinear Hall signal; W and L are the width
and length of the conduction channel, respectively.
Remarkably, the nonlinear Hall signal persists up to
270 K (limited by the temperature stability of our meas-
urement system), with an unprecedent strength of 133.6 μV
under 1 mA bias and moderate 1 T magnetic field.
Figure 2(b) plots together the nonlinear Hall ratio
½E2ω

xy;odd=ðExxÞ2� and the longitudinal conductivity σxx with

respect to temperature, grouped by magnetic field strength.
For scaling analysis, we perform parabolic fitting
(Supplemental Material, note 8 [48]) to the nonlinear

Hall conductivity σðoÞyxx ≡ ðj2ωy =E2
xxÞ ≈ ðσxxE2ω

xy;odd=E
2
xxÞ as

a function of ðσxx=σ0Þ, where σ0 is the reference longi-
tudinal conductivity at T ¼ 2 K and the superscript ðoÞ
denotes time-reversal-odd. All experimental data can be
well-fitted by the parabolic dependence (see Supplemental
Material, note 8.2 [48] for detailed discussion about the
determination of the proper scaling formula)

σðoÞyxx ¼ A0 þ A1

�
σxx
σ0

�
þ A2

�
σxx
σ0

�
2

: ð1Þ

Regarding the physical implications of these fitting
parameters, recent experimental studies suggest the direct
association between the τ-independent zeroth-order term
(A0) and the band-intrinsic contribution [24–26,44,68].
The remaining τ-dependent terms all correspond to time-
reversal-odd extrinsic mechanisms. Figures 2(c) and 2(d)
show the time-reversal-odd scaling results under B ¼ 1 T
and B ¼ 9 T, respectively. Under moderate magnetic field
(B ¼ 1 T), the intercept of parabolic fitting curve as
ðσxx=σ0Þ → 0 is comparable to the overall amplitude of

σðoÞyxx, indicating the dominance of A0 term. In contrast, at a
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FIG. 2. Scaling analysis of the time-reversal-odd nonlinear Hall signal. (a) The ½E2ω
xy−odd=ðExxÞ2� − B relation measured at various

temperatures, with Fermi level close to the Dirac point. (b) Nonlinear Hall ratio ½E2ω
xy−odd=ðExxÞ2� and longitudinal conductivity σxx as

functions of temperature. (c), (d) Nonlinear Hall conductivity σðoÞyxx plotted against ðσxx=σ0Þ under (c) B ¼ 1 and (d) B ¼ 9 T as nonlinear
Hall scaling relations. The solid curves are parabolic fittings to corresponding data.
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strong magnetic field (B ¼ 9 T), the intercept constitutes

only a small fraction of the maximum value of σðoÞyxx,
suggesting that extrinsic scattering becomes the primary
contributor.
Recent research on B-free intrinsic nonlinear Hall effect

[59,68] and B-dependent NPHE [44] emphasize the role of
QMD-induced correction to transport behaviors. In these
scenarios, the QMD enters the charge transport by gen-
erating an anomalous transversal velocity in carriers
(Supplemental Material, note 2 [48]), similar to the Berry
curvature and leads to macroscopic Hall effect under
broken inversion and time-reversal symmetry. By suppos-
ing broken inversion symmetry due to strain during sample
growth and fabrication, and with magnetic field further
breaking the time-reversal symmetry, the QMD nonlinear
Hall response naturally becomes feasible. Furthermore, the
high magnetic-sensitivity of DSM band structure [37,38]
renders strong tunability of emergent QMD (Fig. 3),
providing a consistent explanation to our results as we
demonstrate in the following.
Figures 3(a)–3(c) depict the schematic evolution of one

Dirac cone under external magnetic field applied along a
low-symmetry direction. The inversion-symmetry-broken
DSM is considered, manifested by different group

velocities for Weyl cones with opposite chirality [60].
In the absence of magnetic field [Fig. 3(a)], the two Weyl
cones overlap in the momentum space without a band gap.
Although quantum metric components are expected to
show divergent behavior in gapless band, following
gαβðkÞ ∝ ðΔEÞ−2 with gαβðkÞ the quantum metric compo-
nent (Supplemental Material, note 2 [48], band index n is
omitted) and ΔE the energy gap, the time reversal sym-
metry guarantees a symmetric distribution as
gαβðkÞ ¼ gαβð−kÞ. Consequently, the net QMD vanishes,
as illustrated in the lower panel of Fig. 3(a).
When magnetic field is applied, Weyl cones with

opposite chirality become separated along the magnetic
field direction, and finite gaps emerge due to the reduction
of C4 lattice symmetry concurrently [Figs. 3(b) and 3(c)].
The broken time-reversal symmetry permits a finite QMD,
yet its magnitude depends on two opposing trends: the
separated Weyl cones form a more extended dipole
structure, while formation of bandgap suppresses the
quantum metric globally. When magnetic field remains
small, the induced band gap is negligible, qualitatively
preserving the Weyl cone dispersion, which aligns with
the chiral anomaly scenario [39] [Fig. 3(b)]. The nearly
gapless band structure continues to have quantum metric
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FIG. 3. Quantum geometry evolution under magnetic field. (a)–(c) Schematic band structure of DSM with broken inversion
symmetry, under (a) zero magnetic field, (b) weak field, and (c) strong field. Blue and red colors refer to Weyl cones with opposite
chirality, and thickness of the colors indicates the magnitude of associated Berry curvature. Lower panels in (a)–(c): schematic
distribution of quantum metric component gxx along the field direction kx. (d) Numerically calculated k-space distribution of
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(g) Berry curvature dipole Dx near the Dirac point.
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concentrated near the band edges, leading to an overall
enhancing trend in QMD, answering for the observed
increase in the nonlinear Hall signal under low magnetic
fields. When magnetic field further increases towards the
breakdown of Weyl cone dispersion with a notable gap
[Fig. 3(c)], the overall reduction of quantum metric value
constrains the QMD from further enhanced, so QMD
eventually saturates at high magnetic fields, consistent
with our experimental observations in such regime.
The above illustration of QMD evolution captures the

essential physics of generating and manipulating QMD
structure in non-magnetic DSM system. For further quan-
titative confirmation of our proposed scenario, we carry out
numerical calculations of quantum geometry basing on an
effective model of Cd3As2 (see Supplemental Material,
note 11 [48]). Following conclusion from previous study
[25], the intrinsic nonlinear Hall conductivity in a multi-
band system can be decomposed into two fractions: one
arising from QMD [DQM ≡ R

kðvygxx − vxgyxÞδðε − εFÞ]
representing contribution from the nearest band in energy,
and the other known as additional intraband contributions
(AIC) that accounts all the other bands. Our calculations
show that the quantity ðvygxx − vxgyxÞ becomes highlighted
at band edges and crossings, and its evolution driven by
magnetic field is essentially determined by the underlying
band structure (Fig. S9) [48]. Figure 3(d) shows the
structure of ðvygxx − vxgyxÞ in the transport plane under
various magnetic fields applied along kx. The evolution of
such quantity aligns with our expectation from the sim-
plified model: the magnetic field leads to a more delocal-
ized and asymmetric distribution of quantum metric, while
also suppressing its overall magnitude.
Figure 3(e) shows the calculated intrinsic nonlinear Hall

conductivity σINTyxx as a function of chemical potential μ,
exhibiting its strong band-edge-concentrating feature.
Figure 3(f) compares the numerical and experimental
results (Fig. 2) for σINTyxx , the latter of which are taken as
the τ-independent contribution from the overall experimen-
tally obtained nonlinear Hall conductivity. The calculation
quantitatively matches the experiments and reproduces the
anticipated nonmonotonic dependence on B. However,
under large magnetic field (B ¼ 9 T), a clear deviation
between theory and experiment emerges. This discrepancy
can likely be attributed to the theoretically proposed zeroth-

order extrinsic (ZOE) contributions in τ0 term of σðoÞyxx,
arising from side jump, skew scattering, or collaboration of
these scatterings [57,58], coexisting with QMD contribu-
tion. At B ¼ 9 T, it is plausible that the majority of τ0 term
arises from these ZOE contributions, whereas intrinsic
contribution is indeed much smaller than A0 term (see
Supplemental Material, note 8 [48] for further discussions).
Nevertheless, in the low-field regime, our study provides
strong evidence for the dominance of the QMD-driven
intrinsic nonlinear Hall transport, manifesting accessibility

of QMD-related physics in nonmagnetic topological sys-
tems. For time-reversal-even nonlinear Hall response, we
perform similar theoretical analysis and comparison with
experiments [Fig. 3(g), see also Supplemental Material,
notes 6 and 11 [48]). The coherent results further indicate
the magnetic tunability of quantum geometry realized by
band evolution in DSM.
While the self-consistent theoretical and experimental

analysis above properly identify the quantum geometric
effects, it is important to remain cautious about trivial
interferers including thermal effects, circuit capacitive
coupling, contact diode effect, and electrode misalignment,
which could influence the nonlinear signal measurements
and complicate data interpretation. To address this, we
perform additional transport measurements and analysis to
evaluate these side contributions. Our results indicate that
these factors have a negligible impact on the nonlinear Hall
signal driven by the band-intrinsic quantum geometry (see
Supplemental Material, note 12 [48]).
In conclusion, our study unveils the magnetic field-

induced and tunable QMD structure in the nonmagnetic
DSM Cd3As2, probed through time-reversal-odd nonlinear
Hall signals. The strong nonlinear response and its tuna-
bility can be attributed to the magnetic field-driven Weyl
cone separation, which is a band-structure effect that can be
easily generalized in broader context of quantum materials.
The robustness of the signal against thermal fluctuation
suggests potential applicability in functional devices. This
highlights the significance of exploiting quantum metric
physics in a broader range of nonmagnetic topological
materials, with the methods developed in this study being
directly applicable to future investigations. For instance,
topological semimetals such as WTe2 and TaIrTe4, as well
as moiré systems with flat bands, are poised to leverage
remarkable quantum metric effects under external field
modulation. Furthermore, we recognize that tuning QMD
with a magnetic field offers an effective approach to
probing topological phase transitions. The QMD-driven
nonlinear Hall response can reveal the closing and opening
of topological gaps, as well as band degeneracy lifting,
providing a clearer view of quantum criticality in systems
with rich phase diagrams [69–71].
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