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The traditional view from particle physics is that quantum-gravity effects should become detectable
only at extremely high energies and small length scales. Owing to the significant technological
challenges involved, there has been limited progress in identifying experimentally detectable effects
that can be accessed in the foreseeable future. However, in recent decades the size and mass of
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quantum systems that can be controlled in the laboratory have reached unprecedented scales, enabled
by advances in ground-state cooling and quantum-control techniques. Preparations of massive systems
in quantum states pave the way for the explorations of a low-energy regime in which gravity can be both
sourced and probed by quantum systems. Such approaches constitute an increasingly viable alternative
to accelerator-based, laser-interferometric, torsion-balance, and cosmological tests of gravity. In this
review an overview of proposals where massive quantum systems act as interfaces between quantum
mechanics and gravity is provided. Conceptual difficulties in the theoretical description of quantum
systems in the presence of gravity are discussed, tools for modeling massive quantum systems in the
laboratory are reviewed, and an overview of the current state-of-the-art experimental landscape is
provided. Proposals covered in this review include precision tests of gravity, tests of gravitationally
induced wave-function collapse and decoherence, and gravity-mediated entanglement. The review
concludes with an outlook and summary of the key questions raised.
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(Rovelli, 1998; Ashtekar and Bianchi, 2021), and causal
dynamical triangulation (Loll, 2020), to mention just a few,
therefore remain outstanding.

At lower energies, however, quantum systems with masses
several orders of magnitude higher than the atomic mass
scale are starting to become accessible in the laboratory. At
these scales current theories predict that gravity should start
affecting the dynamics of quantum states. A number of
proposals and ideas have therefore been put forward. They
encompass questions about superpositions of gravitational
fields, gravity-induced wave-function collapse via self-gravity
or decoherence due to external gravitational fields, as well as
the quantum nature of the gravitational field itself. The most
encouraging aspect of these proposals is that many of them
appear to be experimentally and technologically accessible in
the near future.

Historically, the first tests of gravity (beyond drop tests
performed by Galileo) were carried out by Cavendish in the
1790s. Here a torsion balance was used to measure the
gravitational constant G (Newton, Bouguer, and Cavendish,
1900). Since then, torsion balance experiments have been a
cornerstone of gravitational research, and the most accurate
estimates of Newton’s constant, namely, G = (6.67430 &+
0.00015) x 107" m*kg='s™? is based on a number of
torsion balance experiments (Tiesinga et al., 2021). Yet, G
remains one of the least precisely known fundamental con-
stants, and experiments actually disagree on the value of G
more than they should based on the reported uncertainties
(Rothleitner and Schlamminger, 2017). The smallest detected
gravitational coupling measured to date was observed between
2-mm-radius gold spheres (Westphal et al., 2021), and the
smallest separation at which the gravitational potential has
been measured is 52 pm (Lee et al., 2020).

More focused searches for quantum gravity have been
considered in the context of particle accelerators and tests of
the standard model. The current energy scale of the Large
Hadron Collider is 6.8 TeV per beam and 13.6 TeV during
collisions, which is 16 orders of magnitude from the energies of
the Planck scale (10 GeV). Nevertheless, several proposals
predict that gravity might interact more strongly at energies
below the Planck scale because of the existence of additional
dimensions (Arkani-Hamed, Dimopoulos, and Dvali, 1998;
Dimopoulos and Landsberg, 2001). Concretely, any signs of
gravity should appear mainly as missing energy signatures due
to direct graviton production. No such evidence has yet been
conclusively found, and the technological challenges involved
in reaching higher energy with particle accelerator scales are
substantial.

Another way to test gravity is to turn to cosmological
observations. Indications of quantum gravity could potentially
be found in the signatures of y-ray bursts (Amelino-Camelia
et al., 1998). Another key question is how quantum-gravity
effects influenced the early formation of the Universe. While
many other effects have likely been washed out during the latter
stages of the Universe’s expansion, the detection of primordial
gravitational waves could shed light on quantum-gravity effects
present shortly after the big bang (Kamionkowski and Kovetz,
2016). In addition, non-Gaussian signatures in the cosmic
microwave background might provide additional insights into
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this period (Komatsu, 2010). Other astrophysical tests of
quantum gravity have also been proposed, such as signatures
in the light of distant quasars (Lieu and Hillman, 2003;
Ragazzoni, Turatto, and Gaessler, 2003). However, no such
signals have yet been found.

The detection of gravitational waves by the Laser
Interferometer ~Gravitational-Wave Observatory (LIGO)
Collaboration (Abbott et al., 2016a) has opened yet another
avenue for tests of quantum gravity. Many theories of
quantum gravity [such as loop quantum gravity (Rovelli,
1998; Ashtekar and Bianchi, 2021) and string theory (Dienes,
1997)] require modification to the classical Einstein-Hilbert
action, which in turn affects the propagation of gravitational
waves (Alexander, Finn, and Yunes, 2008). The detection of
primordial gravitational waves could potentially also shed
light on which effective theories of gravity are valid at lower
scales, which is otherwise known as the so-called swampland
problem of string theory (Dias et al., 2019). In addition, the
development of Laser Interferometer Space Antenna (LISA)
provides prospects for tests of the equivalence principle and
Lorentz invariance (Barausse et al., 2020).

In this review we provide an alternative viewpoint to the
paradigm of accelerator-based, cosmological, and laser-inter-
ferometric tests of gravity. The core question that this review
thus addresses is: What aspects of gravity can be tested with
massive quantum systems, and what can we learn from the
outcome of these tests? Here we define massive quantum
systems as systems with masses far beyond the single-atom
mass scale, such as micromechanical resonators, levitated
nanobeads, and Bose-Einstein condensates (BECs). We are
primarily concerned with the nonrelativistic regime, where
velocities are lower than the speed of light. Our goal is to
gather the tools and ideas necessary for testing gravity at low
energies with massive quantum systems. Some of these
notions are sketched in Fig. 1. We also hope that this review
will serve as a useful introduction and overview of the field for
those who are setting out to explore these questions. For a
summary of tests that can be performed with tabletop experi-
ments, see Carney, Stamp, and Taylor (2019); for a summary
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SN 2z AT Fjetectolf gravity
(@) probinyg gravity' with (b‘)

quantum systems

self-gravity

gravity‘ :
S 5 — ‘ decol efer{ce L 1223
(c) gravitational (d) gravitational
decoherence entanglement
FIG. 1. Intersection of quantum mechanics and gravity. The

possible tests of gravity that can be performed with quantum
systems are shown. (a) Quantum-enhanced measurements of
gravitational effects. (b) Quantum superpositions are unstable
owing to gravitational self-energy. (c) An external gravitational
field that acts as the environment causes the quantum system to
decohere. (d) Two quantum systems in spatial superpositions
become entangled through gravity.
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of those that can be performed with superconductors, see
Gallerati, Modanese, and Ummarino (2022).

The review is structured as follows. In Sec. II we provide an
overview of tensions between quantum mechanics and grav-
ity, as well as a conceptual overview of how gravity can be
incorporated into quantum mechanics at low energies. In
Sec. III we provide an overview of theory tools for modeling
massive quantum systems in the laboratory. Many of these
tools are directly applicable to the proposed tests that follow in
the next section. In Sec. IV we review proposals for tests of
gravity with massive quantum systems. These include pre-
cision tests of gravity, searches for gravitational decoherence
and wave-function collapse, schemes for entangling massive
quantum systems through gravity, etc. In Sec. V we provide an
overview of state-of-the-art gravity tests and experimental
platforms that appear to be promising for tests of gravity. The
review concludes with some final remarks in Sec. VI.

Before proceeding, we note that it would be impossible to
give a completely balanced overview of such a broad and
diverse field. We hope that this review provides a snapshot of
the field today and that it ultimately helps focus efforts toward
realizing some of the proposals that have been put forward for
testing the interplay between quantum mechanics and gravity.

II. CONSOLIDATING QUANTUM MECHANICS
AND GRAVITY

A limitation in developing a theory of quantum gravity has
been the inability to resolve the persisting tensions between
the fundamental principles of quantum physics and general
relativity. Current theories are good approximations in certain
regimes. The relations between current theories can be found
in the cube of theories in Fig. 2; see Bronstein (1933). A
“theory of everything” that combines quantum physics and
general relativity is expected to be a theory in which the speed
of light ¢, Planck’s constant 7, and the gravitational constant
G all play significant roles. Scientists disagree on the need to
quantize gravity. In this section we discuss how gravity is
different from other forces, and why it has been so difficult to
construct a unified theory.

We start by exploring different attempts to incorporate
gravity into quantum mechanics at low energies. We cover
modifications of quantum dynamics that include gravity as a
phase term or driving term. We then move to quantum field
theory in curved spacetime and perturbative quantum gravity
(Sec. II.A). Then we summarize the challenges that arise when
general relativity (GR) is incorporated into the way that we
generally perform nonrelativistic quantum mechanics in first
quantization (Sec. II.B). Many of these challenges have been
discussed throughout the literature. While we provide an
outline of the main ideas and research directions here, this is
by no means a complete account of the history or challenges
that arise in the context of developing a fully fledged theory of
quantum gravity.

A. Incorporating gravitational effects into quantum mechanics
at low energies

The goal of this section is to provide a high-level outline of
the main theoretical ideas that enable a limited consolidation
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FIG. 2. Cube of theories. Current theories are placed in a cube
where the axes are small expansion parameters: the speed of light
1/c, Plank’s constant 7, and the gravitational constant G. The
axes are the speed of light ¢, Plank’s constant 4, and the
gravitational constant G. While some physicists aim at building
a theory of everything that includes quantum physics (depending
on 7) and general relativity (depending on both ¢ and G), others
suggest that gravity should not be quantized. This review focuses
mainly on the regime of the lower, light-red triangle and the upper
diagonal (quantum field theory). The asterisk indicates the
interplay of quantum mechanics and gravity at low energies
(this could include Schrodinger-Newton-like equations, collapse
models, gravitational phase shifts, etc.; see Secs. IILA and IV).
Adapted from Bronstein, 1933.

of quantum mechanics and gravity. For each case we detail the
underlying assumptions that enable the treatment and discuss
the validity and limits of the theory. Every time we introduce a
new tool (such as quantum field theory), we discuss the leap
beyond the current framework. However, we note that current
tools are often not sufficient and that theory must ultimately be
guided by experiments.

1. Newtonian potential in the Schrodinger equation

The second postulate of quantum mechanics dictates that
the evolution of a single or composite quantum wave function
¥(r,x) in time is described by the Schrodinger equation. A
natural starting point when one attempts to incorporate gravity
into the dynamics of a quantum system is to include it as a
potential term in the Schrédinger equation. However, time in
the Schrodinger equation is absolute, in contrast to general
relativity, where time is an observer-dependent quantity. To
use the Schrodinger equation, we must therefore make the
following assumptions: we consider a single inertial frame
where (i) time is well defined, (ii) the gravitational field is
weak, and (iii) the quantum particles do not travel at
relativistic speeds. With these assumptions it is possible to
include the Newtonian potential from a source mass into the
Schrodinger equation for a quantum particle with mass m as
follows:

2

ih%‘I‘(t,x) - B;ﬁ VN(X):|‘P(X), (1)
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where W(x) is the wave function in the position basis, for
which we have denoted the position vector x, and the
momentum operator p; = —ihd/dx; for the direction x;.
The gravitational constant G explicitly appears in the
Newtonian potential Vy(x) = —Gmmg/|x — xg|, where mg
is the source mass and X is the position of the source mass.
For small radial displacements 6x > R away from the source
located at distance R, such as for a particle moving in Earth’s
gravitational field, we may approximate the Newtonian
potential as Gmmyg/|x — xg| & mgéx, where we have intro-
duced the gravitational acceleration g = mgG/R* (omitting
the constant part of the potential and higher-order corrections).
For such a linear potential, the solutions to Eq. (1) are given by
Airy functions (Griffiths and Schroeter, 2018), and the
Feynman path-integral propagator is given by (Sakurai and
Commins, 1995)

<Xnv tn|xn—lv tn—l>

m Lo mx*/2 — mgdx
= ] dt——————|, 2
\ 2zinas =P [’ /, . n @)

where At = t, —t,_; denotes the time increment.

Indeed, the fact that gravity can be included in the
Schrodinger equation as in Eq. (1) has been experimentally
verified. In their pioneering experiment Colella, Overhauser,
and Werner (COW) demonstrated that neutrons passing
through Earth’s gravitational field acquire a phase shift that
can be observed through interference (Colella, Overhauser,
and Werner, 1975), with the initial theoretical proposal out-
lined by Overhauser and Colella (1974). This effect is
sometimes referred to as gravity-induced quantum interfer-
ence (Rauch and Werner, 2015).

For the description of the COW experiment, we follow
Abele and Leeb (2012). The neutrons are placed in a super-
position of two spatial locations. Each branch then traverses a
path at two different heights above Earth. The two paths
enclose a parallelogram; see the original sketch of the
experiment in Fig. 3. One branch of the superposition takes
the upper path A — C — D, and the lower branch takes the
path A - B — D. The momentum of each neutron is deter-
mined through energy conservation, which dictates that the
sum of the kinetic and potential energy must remain the same,

R R
Ey _2_m,1_2_m,1+m"gH(¢)’ (3)

where m,, is the neutron mass, g is the gravitational accel-
eration, and H(¢) = H, sin(¢) is the height, which depends
on the orientation of the setup ¢ (i.e., ¢ = /2 corresponds to
the maximum height difference H ), in other words, the height
difference between the segments AB and CD for vertical
orientation). The difference in height between the two paths
means that the momentum p = Ak on the higher path CD
must be less than the momentum p, = fik, on the lower path
AB. The corresponding accumulated phase difference A®@cqw
between the two different paths is given by

ADcoy = AkS & —qcow sin(¢). (4)
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FIG. 3. Superpositions of neutrons along different paths in a
gravitational field. From Colella, Overhauser, and Werner, 1975.

where Ak = k — ky and S is the path length of the segments
AB and CD. It is instructive to write the final phase using the
geometric factor geow = Am2gAy/h?, where Ay = H,S is the
area of the parallelogram (i.e., the interferometric area) and 4
is the neutron wavelength. Depending on the value of the
phase difference A®cqy, we then observe either destructive
or constructive interference of each individual neutron with
itself as it is recombined at the end of the interferomet-
ric paths.

Gravitational phase shifts, such as the one in Eq. (4), have
sparked numerous investigations, not only with neutrons but
also with cold atoms, where experiments span from tests of the
equivalence principle to searches of dark matter (Tino, 2021).
However, subtleties arise when additional corrections from
general relativity are similarly included as phase shifts. We
return to this question in Sec. I1.A.3.

2. Gravity and the quantum harmonic oscillator

Before moving beyond Newtonian gravity, we mention
another route for including gravity as a perturbation in the
dynamics of a quantum system. One of the few known
analytic solutions to the Schrodinger equation apart from
the hydrogen atom is the quantum harmonic oscillator (QHO).
The potential V(x) in Eq. (1) is quadratic in x, such that in a
single spatial dimension x, V(x) « x2. The resulting solutions
describe a harmonic oscillator with quantized energy levels.
The QHO is important in the context of tests of gravity
because gravitational effects can be described as effective
interaction terms as modifications to the quadratic trap-
ping term.

In the language of second quantization, the Hamiltonian of
the QHO reads

|
P2 (5)

I:I HO :lma)zﬁz—F—
Q " 2m

2
where m is the mass of the system, w,, is the angular
frequency, and X and p are the position and momentum
operators. In second quantization X and p are given in terms of
the annihilation and creation operators & and &' as
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=
I

2m,,m

where [a,a'] = 1.

Gravitational effects can be included in the description of
the center-of-mass dynamics of these quantum systems. We
consider a pointlike gravitational source of mass mg situated at
a distance r, away from the quantum systems (Scala et al.,
2013; Qvarfort et al., 2018; Ritzel et al., 2018). The
Newtonian potential is given by Gmmg/r,. Assuming that
the quantum system that probes the gravitational field is
perturbed by a small distance dx, we expand the Newtonian
potential in terms of 6x as

(6x)*
+—+—==
o 2r;

5
V(r—éx)z%(l ol

+O[<5x>21>. 7)

7o
Inserting this potential in the Hamiltonian of the QHO and

replacing the perturbation éx with the quantum operator x, we
obtained a modified Hamiltonian of the QHO,

N 1 . 1 . . .
Hano = Emw%xz + %Pz + G+ G+ 0(F), (8)

where we have defined

Gmmyg Gmmyg
- b - 9 9
gl }"% g2 2r(3) ( )

and where higher orders of the perturbation can be similarly
defined, although the resulting nonlinear equations of motion
are generally challenging to solve. We provide an overview of
quantum sensing of gravitational fields with quantum opto-
mechanical systems and with Bose-Einstein condensates,
where the force enters as described here in Sec. IV.A.

3. Gravity beyond the Schrodinger equation

Thus far in our presentation, incorporating gravity into
quantum mechanics has been straightforward since both the
Newtonian potential and the Schrédinger equation are non-
relativistic and share a joint notion of absolute time. However,
problems start to arise as we go further and include additional
effects from general relativity such as time dilation.

Consider a quantum particle in a spatial superposition
where each branch of the superposition follows a different
spacetime trajectory, not unlike the COW experiments dis-
cussed in Sec. II.A.1. In that case, we assumed that a weak
gravitational effect introduces a potential difference. However,
if the gravitational effect is strong, such that the background
spacetime can no longer be considered flat across the relevant
length scale, the two branches of the superposition experience
different proper times throughout their trajectories and should
therefore evolve at different rates. There is no prescription for
how to perform calculations in this scenario in the absence of
an external observer. However, some studies have considered
using the Schrddinger equation to describe the system only in
the reference frame in which the system is measured. That is,
any evolution of the quantum states, as seen in the laboratory
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frame, can be described as a result of some effective dynamics
that arise from gravity. For example, Zych et al. (2011)
proposed that internal degrees of freedom of particles can act
as clocks that record the elapsed proper time. The addition of
internal clock states solves the challenge of interpreting a
phase shift as either a potential shift or a redshift due to
differences in proper time. Similarly, Pikovski et al. (2015)
showed that the effects of time dilation, as seen by an external
observer, result in decoherence in composite particles. That is,
by defining a Hamiltonian for the center-of-mass and internal
degrees of freedom, general relativistic corrections are incor-
porated into the full dynamics of the particle. When the
superposition branches are brought back together, the effect
manifests as decoherence. Several other mechanisms that
cause decoherence have been derived using similar semi-
classical arguments. We cover these arguments in Sec. [V.B. It
has been pointed out in the literature that there are incon-
sistencies that arise when proper times are introduced in
quantum superpositions (Marzlin, 1995; Sonnleitner and
Barnett, 2018; Schwartz and Giulini, 2019b). The argument
is that classical systems couple to gravity via the minimum
coupling principle, which is diffeomorphism invariant, and
that the coupling is not consistent with Galilean-invariant
equations such as the Schrodinger equation (Schwartz and
Giulini, 2019a). However, the argument of Pikovski er al.
(2015) in response is that there is no inconsistency if no
nonrelativistic physics is imposed and the correct Schrédinger
equation can in fact be derived with relativistic extensions.

Work on describing post-Newtonian phases in atom inter-
ferometry considers the free propagation of the atoms along
spacetime geodesics. The atom-light interaction is described
in a covariant manner to calculate the leading-order general
relativistic effects (Dimopoulos et al., 2008; Werner et al.,
2024). In addition, these considerations offer a possible
reinterpretation of the COW experiment; see Sec. ILA.1.
The question becomes: Can the phase shift that is detected
by an atom interferometer be interpreted as a gravitational
redshift? This interpretation was first suggested by Miiller,
Peters, and Chu (2010) and was followed by a vigorous debate
in the community; see Tino (2021) and references therein. The
ambiguity arises because the phase shift in the atom inter-
ferometer can be interpreted either as an effective potential
shift or as due to redshift that has resulted from the differences
in proper times.

Many of the aforementioned works consider interferometry
of quantum states in the presence of gravity. Recombining the
two states at the end of the interferometry process naturally
involves taking a notion of an appropriate inner product. Note
that the inner product between quantum states in nonrelativ-
istic quantum mechanics, where there is an absolute time, is
not Lorentz invariant. In the position representation, the inner
product is given by

dx (1, x)y (1, x) = 8, ¢, (10)
R3

where y;(1, x) are wave functions and §; , is the Kronecker
delta function. A consequence is that two quantum states in
different inertial frames or different spacetime locations
cannot be consistently compared. Since the description of
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measurements and averages requires the inner product, the
experimental observations cannot be described appropriately
with this inner product. This poses a problem that is often
overlooked when quantum interferometry is described in
curved spacetime. However, as long as a single laboratory
frame is considered, the inner product is well defined. In
Sec. II.LA.4 we introduce the Klein-Gordon inner product,
which is appropriate for scalar relativistic quantum fields.
If we want to describe quantum systems in a manner that is
consistent with general relativity, we must use a covariant
formalism where the equations and the inner products are
Lorentz invariant. Quantum field theory in curved spacetime
enables such a description in the low-energy regime.

4. Quantum field theory in curved spacetime

Thus far, we have discussed approaches for describing the
effects of weak gravitational effects using the Schrédinger
equation. Such schemes consider a single inertial frame or
study the differences between two inertial frames as an
effective Hamiltonian. That is, relativistic corrections are
treated as dynamical perturbations in the Schrédinger equa-
tion, where time remains absolute. However, in relativity
measurements of well-defined quantities must coincide in
different frames, and a consistent description in noninertial
frames is also required. This is possible only through a
covariant formalism. The question becomes: Can quantum
systems be described using equations that are Lorentz
invariant?

The answer is affirmative within some restrictions. It is
possible to describe some aspects of the interplay of quantum
physics and general relativity using quantum field theory
(QFT) in curved spacetime (CS). QFT in CS is a semiclassical
approach that considers the behavior of quantum fields on a
classical spacetime background. Spacetime is not quantum,
rather, it is a solution of Einstein field equations. The
formalism describes multiparticle effects, and it turns out that
considering single particles such as single atoms is nontrivial.
Quantum field theory in curved spacetime has enabled the
study of some effects in quantum physics and quantum
information in relativistic settings, including entanglement
and its applications in noninertial frames and curved space-
time. Section II.A.6 includes a discussion on the degradation
of entanglement as seen by observers in uniform acceleration.

Here we provide an overview of QFT in CS. More
comprehensive accounts of this research field were given
by Birrell and Davies (1982), Fulling (1989), Schweber
(2005), and Parker and Toms (2009). We limit our discussion
to a scalar field, which is the simplest case. See Hollands and
Wald (2015) for a full review of QFT in CS (including other
cases such as the Dirac equation) that describes fermionic
fields. In the case of a single scalar field, the Schrodinger
equation is replaced by the Klein-Gordon equation, which
reads (having set A =c = 1)

(d,-m*)¢ =0, (11)

where [, = ¢V, V, is the d’Alembertian operator associ-
ated with the metric g and ¢ is the scalar field with mass m.
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Under superficial inspection the Klein-Gordon equation in
flat spacetime looks similar to the Schrodinger equation. The
main difference is that it has a second derivative in both the
spatial and temporal coordinates, making it invariant under
Lorentz transformations as required by relativity. Historically,
the Klein-Gordon equation has been derived from a relativistic
(classical) Hamiltonian of a particle and then interpreting the
momentum and position as operators (Schweber, 2005)

H = \/(pc)® + (mc?)?, (12)
with the momentum vector p. To avoid the problem of
the square root, which would appear if we inserted H, into
the Schrodinger equation, the formalism instead considers the
squared operator equation

2
‘W%W@ﬁzw&+m&ﬂﬂw) (13)

In contrast to the Schrodinger equation, the resulting wave
equation is Lorentz invariant,

Ké;—;—w) n (%)145(“) —0. (14)

However, interpreting ¢(z,r) as a wave function is generally
problematic. This is because the probability density p =
(in/2mc?)(¢*[0,¢) — [0,¢*]¢p) and the probability current
Je = (h/2mi)(¢p*[0,¢] — [0,¢*]¢p) defined such that they
satisfy the continuity equation V-j+d,p =0 can take
negative values due to the second derivative in time in
Eq. (14) (Schweber, 2005). Specifically, the Klein-Gordon
inner product for ¢(#,r) is derived from the continuity
equation and is given by

((t.0).p(1.1) = —i /Z[w*aﬂd) ~ (0" )plazr.

where X is a spacelike hypersurface. While the inner product
is Lorentz invariant by construction, it yields negative prob-
abilities in some cases. Therefore, interpreting ¢(z,r) as the
wave function of a single particle is inconsistent with quantum
mechanics.

The problem can be solved in special cases when the
spacetime has specific symmetries. In these cases one can
construct an operator-valued function by associating creation
and annihilation operators 4, and d}z for a mode k to the
positive and negative mode solutions of the Klein-Gordon
equation u; and uj,

@@ﬂ:/&mm+@@. (15)

This operator-valued function obeys the Klein-Gordon equa-
tion, and particle states with positive norms are defined by the
action of creation operators on the vacuum state. The vacuum
state is defined by a;|0) = 0. The operators act on the Fock
space P H®", where |0)€C, H is the single-particle
Hilbert space, H®" is the n-particle sector, and @, ® are
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the direct sum and the tensor product, respectively. This
construction is possible only when the solutions of the Klein-
Gordon equation can be classified in positive and negative
frequency mode solutions. This classification is possible only
when the spacetime admits a timelike Killing vector field. A
Killing vector field is the tangent vector space of trans-
formations that leave the metric invariant. Spacetimes that
admit a global timelike Killing vector field, such as
Minkowski or the Schwarzschild spacetime, are stationary.
A consistent theory can be constructed for spacetimes with
these symmetries having a well-defined probability distribu-
tion. Well-known examples are quantum fields in noninertial
frames and eternal black holes (Birrell and Davies, 1982;
Schweber, 2005).

A key problem in QFT in CS is that particles are not well
defined. Only observers flowing along timelike Killing vector
fields can describe particle states in a meaningful way. In
general, curved spacetimes do not admit timelike Killing
vector fields globally. Moreover, in the case in which the
spacetime does have a global timelike Killing vector field, the
vector field is not necessarily unique. A consequence of this is
that the field can be equivalently quantized in several different
bases corresponding to different Killing observers. Using the
Klein-Gordon inner product, it is possible to find a unitary
transformation, called a Bogoliubov transformation, that
relates the solutions to the equation in the different basis.
This induces a transformation between the creation and
annihilation operators in the old basis a; and &JI and new
operators @k and 131 associated with the solutions in a different
basis. In the new frame the operators are given by

where a;; and fj are called Bogoliubov coefficients. A
consequence is that the vacua are not equivalent, and the
particle content of the field is observer dependent. The
vacuum that was annihilated by the mode operator @;|0) in
the first frame no longer appears to be empty in the second
frame, since

O15ibJ0) = [ dklpi 2o (17)

This has important consequences for the study of entangle-
ment in relativistic quantum fields since the notion of
subsystems is indispensable for storing information; see
Sec. IL.A.6.

Some spacetimes do not admit global timelike Killing
vector fields but do have spacetime regions where particles
can be well defined. An example is the metric that describes a
toy model for the expansion of the Universe, which is known
as the Friedmann-Lemaitre-Robertson-Walker metric. The
spacetime is not stationary, and timelike Killing vector fields
are defined only in the past and future infinity regions; see
Birrell and Davies (1982) and references therein. It is possible
to show, using Bogoliubov transformations, that the vacuum
state at past infinity has entangled particles in the future
infinity region (Ball, Fuentes-Schuller, and Schuller, 2006).
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Some particularly interesting consequences of QFT in
noninertial frames and CS are the Unruh-Davies-Fulling effect
(Fulling, 1973; Davies, 1975; Unruh, 1976) and the closely
related Hawking radiation effect (Hawking, 1975). The
inertial vacuum appears to be populated by particles in a
thermal state for uniformly accelerated observers. A region of
spacetime becomes inaccessible to noninertial observers due
to their acceleration. Tracing over the field modes in the
casually discounted region leads to mixed states. In the case of
uniformly accelerated observers in flat spacetime, the
Minkowski vacuum corresponds to a thermal state with
Unruh temperature

ha

Tynun = 2ncky > (18)
where kp is the Boltzmann constant. A similar situation occurs
in black-hole spacetimes, where observers hovering outside
the horizon lose access to the region inside the black hole. The
inertial vacuum state corresponds to a thermal state for
observers at a fixed distance from an eternal black hole.
This spacetime is stationary and the black-hole mass is
constant. In the case of a collapsing star, the spacetime is
not stationary and there is energy flux known as Hawking
radiation, where

hc’
THawking = 827G Mk, (19)
is the Hawking temperature for a black hole with mass M.

These results further emphasize the notion that the vacuum
in a curved spacetime is not unique, which has implications
for the coherence and entanglement of quantum systems. We
explore the consequences for entanglement in curved space-
time in Sec. IL.A.6.

A main lesson that we learn from the development of QFT
in CS is that fields, not particles, are fundamental. Particles are
derived notions that do not always have a viable interpretation.
QFT is a multiparticle theory, and single particles can be
described using this formalism only when energies are not
sufficient to create new particles. In this low-energy case, it is
possible to restrict the system to the single-particle sector
because the energies present are not high enough to create new
particles. In Sec. II.A.5 we discuss attempts to construct a
covariant description of the quantum harmonic oscillator in
the presence of curved spacetime using the Klein-Gordon
equation and the restriction to the aforementioned single-
particle sector.

A full reconciliation between quantum mechanics and
special relativity requires QFT (in flat spacetime), which
has been demonstrated numerous times in particle acceler-
ators. However, QFT in curved space still awaits experimental
corroboration. In Sec. IV.D.4 we discuss proposals to test its
key predictions using Bose-Einstein condensates. Although
QFT in curved spacetime enables the study of some effects at
the interface of quantum physics and GR, including entan-
glement and decoherence (see Sec. IV.B), a full reconciliation
between the theories must include the effects of quantum
matter on the background metric itself. These effects, known
as backreaction, are beyond the scope of QFT in CS. That is,
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QFT in CS is limited by a semiclassical description where the
spacetime is assumed to be a classical background given by
Einstein’s equations, and only fields are quantized. Ultimately,
the difficulty with including backreaction in a covariant theory
of quantum fields is the main difficulty with developing a
theory of quantum gravity.

5. Harmonic oscillator in the presence of gravity using
the Klein-Gordon equation

An alternative approach to describe a harmonic oscillator in
the presence of a gravitational field beyond the Newtonian
approximation is to use a Klein-Gordon equation and the
Klein-Gordon inner product, which, as introduced in
Sec. II.A.4, are compatible with both general relativity and
quantum physics. The Klein-Gordon equation describes a
scalar field in curved spacetime. However, a single particle
(such as an atom) in the presence of the gravitational field of a
spherical mass can be described by restricting the solutions to
the single-particle sector and using the Schwarzschild metric
(Marzlin, 1995; Sonnleitner and Barnett, 2018; Schwartz and
Giulini, 2019b; Huimann, 2020). The problem with this
approach is that the Klein-Gordon equation does not have
a trapping potential term.

A solution to this was proposed by Huimann (2020), who
designed an effective spacetime metric that not only included
the external gravitational field but also mimicked the relevant
features of an oscillating trapping potential. The effective
metric reduces to the Newtonian potential in the nonrelativ-
istic approximation, and the equation reduces to the
Schrédinger equation of a harmonic oscillator in the presence
of Newtonian gravity. However, solving the equation beyond
this approximation is challenging, and only certain solutions
are possible in special cases.

An alternative approach that also uses a restriction of the
dynamics to the single-particle sector considers a classical
system coupling to gravity via minimum coupling and then
quantizes the system via canonical quantization (Schwartz and
Giulini, 2019a). This approach was inspired by work comput-
ing relativistic corrections of an atom interacting with the
electromagnetic field (Sonnleitner and Barnett, 2018) and on
studies of the dipole coupling between a system of N particles
with a total charge zero and the electromagnetic field in the
presence of a weak gravitational field (Marzlin, 1995). More
recently, a full first-order post-Newtonian expansion was
performed by Schwartz and Giulini (2019b).

6. Entanglement and decoherence in noninertial frames
and black holes

Entanglement is a key notion in quantum mechanics and is
often regarded as the true herald of quantumness. In a single
inertial frame, the Schrodinger equation readily describes how
two subsystems interacting via a potential gradually become
entangled. However, describing entanglement in relativistic
settings is more complicated. Entanglement strongly depends
on the notion of subsystem and bipartition. In the quantum
theory subsystems can always be defined independently of the
observer. As a consequence, entanglement is conserved for
moving observers.
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In the relativistic case entanglement is invariant only in flat
spacetime and only if observers move with a constant velocity.
It was shown that the Minkowski vacuum contains spatial
correlations that can produce entanglement between initially
uncorrelated atoms interacting with the vacuum state
(Valentini, 1991; Reznik, 2003; Wang and Blencowe, 2021).

Consider two inertial observers in flat spacetime who are
performing an experiment to determine the degree of entan-
glement between two particles, such as two photons or two
fermions. We assume that they find that the systems are
maximally entangled. If two uniformly accelerated observers
try to determine the degree of entanglement in the same
system, they find that there are many particles instead of just
two. The notion of the system’s bipartition is lost due to the
Fulling-Davies-Unruh effect, which was introduced in
Sec. II.A.4. The inertial vacuum state corresponds to a thermal
state for uniformly accelerated observers. In QFT a well-
defined notion of the subsystem is possible only when global
bosonic or fermionic modes with sharp frequency are con-
sidered. This is because the frequency is invariant, although
the number of particles in the mode varies with acceleration.
For uniformly accelerated observers a region of spacetime
becomes inaccessible and global states become more mixed at
higher accelerations, decreasing entanglement. Nonuniform
motion and thus gravity produce decoherence (Fuentes-
Schuller and Mann, 2005). For localized systems, such as
moving cavities (Bruschi, Fuentes, and Louko, 2012) and
propagating wave packets in curved spacetime (Bruschi,
Ralph et al., 2014), motion and gravity can either degrade
states or create entanglement (Friis et al., 2013).

In curved spacetime the situation is even more complex
because inertial observers disagree with the particle content of
the field. As a consequence, there is no well-defined notion of
entanglement in curved spacetime. Entanglement between
global modes can be studied only in asymptotically flat
spacetimes such as black holes (Adesso and Fuentes, 2009;
Jing and Jing, 2023; Wu, Liu et al., 2023) and cosmological
toy models (Ball, Fuentes-Schuller, and Schuller, 2006).

The study of the observer-dependent nature of entangle-
ment (Alsing and Fuentes, 2012) in relativistic settings has
been a topic of interest in the field of relativistic quantum
information. For an overview of the field, see Mann and Ralph
(2012). The field is concerned with studying relativistic effects
on quantum technologies, including quantum communica-
tions (Bruschi, Ralph er al, 2014), and on addressing
fundamental questions in quantum field theory (Lopp and
Martin-Martinez, 2018; Barman et al., 2023; Wu, Zeng, and
Wu, 2023), black holes (Ng et al, 2022), cosmology
(Bubuianu, Vacaru, and Veliev, 2021), and high-energy
physics (Bertlmann and Hiesmayr, 2001; Naikoo et al.,
2020) with an information-theoretic perspective.

A good example where notions of quantum information are
applicable to fundamental questions is the well-known infor-
mation loss paradox in black holes. Information stored in pure
states in the spacetime of a black hole is lost due to states
becoming completely mixed after the black hole evaporates
via Hawking radiation. Here the interplay of quantum field
theory and general relativity leads to a paradox, the resolution
of which seems to require giving up fundamental principles
such as unitarity, locality, and the equivalence principle.
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Quantum fields in black-hole spacetimes give rise to one of
the starkest indications of the incompatibility of quantum
theory and general relativity. A large amount of work has
focused on addressing this problem using quantum informa-
tion; see the recent papers by Yoshida (2019) and Penington
(2020). The question becomes: Could entanglement carry the
lost information out of the black hole? The distribution of
entanglement, via the monogamy of entanglement, between
modes inside and outside of the black hole (Adesso and
Fuentes, 2009) could play a role in the potential resolution to
the paradox (Merali, 2013). However, this resolution requires
entanglement to be somehow broken at the horizon. It was
conjectured that observers falling into a black hole encounter a
fire wall made of high-energy quanta at (or near) the event
horizon, which breaks the entanglement (Almheiri et al.,
2021). However, there is an ongoing discussion in the
community on whether or not this resolves the matter.

7. Perturbative quantum gravity

In the preceding sections we assumed that gravity is a
background gravitational field obtained by solving Einstein’s
equations with classical sources (for example, the background
gravitational field created by Earth). Such analysis does,
however, not take into account that the quantum matter
(i.e., the quantum system in the laboratory) can also be a
source of gravity. This effect is known as gravitational
backreaction and is one of the many challenging problems
that a fully fledged quantum theory of gravity should address.
The backreaction from a quantum system could be naively
included in Einstein field equations with both the spacetime
metric and the stress-energy tensors promoted to quantum
operators. However, when we try to perturbatively quantize
gravity, we are faced with the problem of an infinite number of
free parameters coming from the high-energy regime that need
to be fixed using experimental data; i.e., we get a theory that is
nonrenormalizable and thus does not have predictive power.
The full quantization of gravity is an open problem (Weinberg,
1980; Niedermaier, 2007; Shomer, 2007; Reuter and
Saueressig, 2010).

Instead, we limit the discussion of the gravitational back-
reaction here to the perturbative regime of gravity at low
energies. In this regime general relativity can be quantized by
following analogous steps, as with any other field theory. This
was done in the seminal paper by Gupta (1952b), who used
the Gupta-Bleuler formalism (Bleuler, 1950; Gupta, 1950)
applied to the approximate linear form of Einstein’s gravita-
tional field and later generalized beyond the linear case
(Gupta, 1952a). Quantum general relativity can be treated
as an effective field theory (EFT) at low energies using the
covariant Feynman path-integral approach, which allows one
to make predictions without full knowledge of the theory at
high energies (Donoghue, 1994). Within this framework we
first expand the metric g, as

g/w = My + i/\l/w’ (20)

where 7, is the Minkowski spacetime metric (or in general
some other background gravitational field g, ) and fzw
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contains the fluctuations of the metric that we quantize.
Specifically, we can then obtain the graviton propagator,

iP,uI/.aﬁ
k* +ie’ (1)

where k* is the four-momenta (k> = k, k") and the projection
operator is given (in the harmonic gauge) by

P;w,a/i = %(’7}4(1’71//} =+ Nuptlva — n;tunaﬂ)- (22)

The interaction Lagrangian is given by

Eim = Eh”yTuw (23)
where T”,, is now the stress-energy tensor produced by
quantum systems. Starting with Eq. (23), we can obtain
matter-graviton vertices. In addition, we have graviton-
graviton vertices as the graviton couples to all energetic
particles, including to itself. Once the Feynman rules are
obtained, we can then perform calculations as in other
quantum field theories; see Scadron (2006).

Suppose that we have two nonrelativistic massive quantum
systems. We can write the corresponding stress-energy tensor
as

T, =T + T3 (24)

where YA“;(,T) (YA“,(ZL”) is the contribution from a system of mass m
(M). Using perturbation theory in the EFT context discussed
in Egs. (20)-(23), we can then find the corrections to the
Newtonian potential,

41 Gnh
10z #2c3|°

V=-— 1+3ﬂ%jm) (25)
7 e
where 7 denotes the distance between the two systems. The
first term in Eq. (25) is the tree-level contribution, while the
second and third terms come from one loop Feynman
diagrams. The second and third terms were calculated with
three techniques: Feynman diagrams (Kirilin and Khriplovich,
2002; Bjerrum-Bohr, Donoghue, and Holstein, 2003), unitar-
ity-based methods (Bjerrum-Bohr, Donoghue, and Vanhove,
2014; Holstein, 2017), and dispersion relations (Bjerrum-
Bohr, Donoghue, and Holstein, 2003). In addition, the result
in Eq. (25) applies to particles of any spin and thus is universal
(Holstein and Ross, 2008).

To conclude this section we note that there are many ways
in which gravitational effects can be incorporated into the
dynamics of quantum systems. To establish which ones are
accurate, we must ultimately be guided by experiments.

B. Summary of challenges

We have outlined ways in which gravity can be consoli-
dated with quantum mechanics in a limited way, although
many conceptual and mathematical challenges remain. Here
we summarize the challenges by examining the postulates of
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quantum mechanics one by one. For each challenge, we
mention the resolution when one exists (for example, quantum
field theory successfully combines quantum mechanics with
special relativity). The remaining challenges must ultimately
be determined by experiments.

1. Quantum states and the superposition principle

The first postulate states that nonrelativistic quantum
mechanics (NRQM) in first quantization associates a
Hilbert space with every quantum system by representing
the states of a system with vectors in a Hilbert space. To
preserve probabilities, physical states |y;(7)) must be nor-
malized with respect to the inner product (y;(t))y,(t) = 6,
which is shown in Eq. (10). Physical quantities are given in
terms of expectation values, which are evaluated using this
inner product. A quantum superposition corresponds to a state
|¥(#)) that is a linear combination of basis states [y;(¢)) and
amplitudes ¢ i

@) = 3 el () (26)

in which )~ |c;|* = 1 ensures that the superposition state is
normalized, hence allowing for a probabilistic interpretation
of the theory. Any such superposition remains a valid
quantum state.

Several conflicts between this postulate and relativity can

be identified:
(i) To satisfy Lorentz invariance, space and time must
enter on an equal footing. As mentioned in
Sec. II.A.3, the inner product in Eq. (10) is not
Lorentz invariant (Birrell and Davies, 1982), which
implies that physical quantities in NRQM are not
compatible with physical quantities in relativity.

(ii) The wave functions |y (1)), [w,(t)) in Egs. (10)
and (26) are evaluated at equal times . Time enters
as a global parameter, while in special and general
relativity it is a relative concept that depends on the
given world line. Furthermore, whereas quantum
states can be in a superposition of several spatial
locations, in curved spacetime time can pass at
different rates in different locations.

(iii) In both special and general relativity, the times at
which events occur are observer dependent. For
spacelike events the order in which they occur may
change. Such explicit notions of causality are not
part of the framework of NRQM but must instead be
added by hand.

(iv) It has been argued that the superposition principle is
in conflict with the principle of covariance (Penrose,
1986, 1996) and with the equivalence principle
(Howl, Penrose, and Fuentes, 2019). An argument
challenging this view was recently put forward
(Giacomini and Brukner, 2022).

As we saw in Sec. I.LA.4, some of these points can be
addressed by moving to quantum field theory and considering
fields rather than particles.
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2. Quantum state evolution

The time evolution of quantum states in NRQM is given by
the Schrodinger equation in Eq. (1). There are a number of
conflicts with general relativity:

(i) As we saw in Sec. I.LA.4, Lorentz invariance
requires derivatives with respect to time and space
to be of the same order, which is not the case for the
Schrodinger equation in Eq. (1). However, relativ-
istically invariant versions of the Schordinger equa-
tion, such as the Klein-Gordon equation [Eq. (14)]
and the Dirac equation, in conjunction with relin-
quishing the notion of single-particle states are
needed to overcome this inconsistency, as illustrated
by quantum field theory.

(i1) In quantum mechanics energies are quantized; while
they are not in general relativity, they are closely
related to mass and the metric through Einstein’s
field equations. Two possible approaches to this
apparent conflict are to either (i) “quantize gravity,”
i.e., develop a theory of quantum gravity in which
the gravitational field is quantized, or (ii) “gravitize
quantum mechanics,” i.e., preserve the principles of
general relativity, such as the equivalence principle,
to modify quantum mechanics. The question of how
to resolve these issues remains open.

(iii) As detailed in Sec. II.A.6, the black-hole informa-
tion paradox [see Raju (2022) for a review] poses
another challenge, as it seems to require one to give
up unitarity. This question similarly remains open.

3. Quantum measurements

The process of performing measurements in general rela-
tivity is straightforward and, up to limitations due to the
measurement apparatus, we assume that we can measure with
arbitrary precision. However, in quantum mechanics projec-
tive measurements are performed according to the Born rule:
possible measurement outcomes are the eigenvalues 4; of
Hermitian operators A (observables), and the associated
probability to observe this measurement result is the projec-
tion of the system’s state |y) onto the associated eigenstate
|A;) of the observable, |(4;)y|*. The fact that we measure
observables that do not necessarily commute imposes limits to
the precision with which we can measure different observables
at the same time, most notably captured in the Heisenberg
uncertainty for position and momentum,

2

var (R () var(p(1) 2 (27)
Several conflicts with general relativity arise from this
statement:

(1) In the context of relativity, we do not encounter
the same limitations on measurement precision.
Classical variables can be measured to arbitrary
precision without state update resulting from the
measurement.

(i) Without the measurement postulate (that is, exter-
nal observers), there are no events in quantum
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mechanics. However, both special and general rel-
ativity are fundamentally based on the notion of
events. Quantum superpositions are not compatible
with the notion of a single event, such as a
measurement, in spacetime. There have, however,
been proposals for an event-based formulation of
quantum mechanics, which fundamentally modifies
the Born rule (Giovannetti, Lloyd, and Maccone,
2023).

(iii) Problems also arise in QFT in CS. On the one hand,
the theory inherits the measurement problem from
quantum theory and, on the other hand, new prob-
lems arise due to causality. Here it has been shown
that projective measurements on quantum fields lead
to faster-than-light signaling (Sorkin, 1993). Finding
ways to give a resolution to this problem is an active
research field; see Fewster and Verch (2020).

Finally, the measurement problem in quantum mechanics,

which states that there is no consistent dynamic description of
the measurement process, also applies in the context of
gravity. The issue is partially addressed by collapse theories,
which, while they have not yet been experimentally verified,
propose a dynamical mechanism; see Sec. IV.B.3.

4. Composite quantum systems and entanglement

In quantum mechanics we use the tensor product to
compose a system out of multiple subsystems, for example,
lw) = |w)s ® |w)g. We saw in Sec. ILA.4 that in quantum
field theory in curved spacetime, the definition of subsystems
is problematic since the notion of particle number is observer
dependent (Fuentes-Schuller and Mann, 2005; Alsing and
Fuentes, 2012). We have already identified the following
crucial issues:

(1) A consequence of the tensor product structure for
composite systems in quantum theory is that multi-
partite systems can be entangled, which means that
entanglement becomes an observer-dependent quan-
tity. In the well-known Einstein-Podolsky-Rosen
(EPR) paradox, this leads to a violation of causality
of locality, i.e., we need to allow for faster-than-light
effects if the theory is to remain local.

(i1) Thenotion of entanglement requires the Hilbert space
partition to be well defined. This is commonly done in
terms of particles or modes. However, in curved
spacetime, the notion of particles is ill defined.
Generally, different inertial observers in curved space
see different particle content in the field. Particles can
only be well defined in rare spacetimes in which the
metric is globally invariant under spatial translations
or in which spacetime has regions where the metric
has this symmetry. In most cases it is not possible to
define a Hilbert space partition and study entangle-
ment in composite systems.

The challenges listed here are all difficult to address, and in
many cases their resolution should ultimately be determined
through experiments. To enable these experiments, we now
review the tools and methods used to model such systems in
the laboratory.
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III. THEORETICAL FRAMEWORKS FOR MODELING
MASSIVE QUANTUM SYSTEMS IN THE LABORATORY

To test the effects of gravity, which are often extremely
small, with massive quantum systems, it is crucial to model
the proposed experiment accurately. Here we account for
common theoretical tools used to describe mechanical reso-
nators in the laboratory. To begin, we discuss ways in which a
probe can interact with the massive system (Sec. III.A). We
then cover models of open-system dynamics (Sec. III.B),
which are needed to model the experiments. We cover
measurements and control schemes necessary for readout
(Sec. III.C), as well as quantum metrology tools (Sec. IIL.D).
Snapshots of experiments with massive quantum systems are
given in Sec. V.A for testing gravity and in Sec. V.B for
generating quantum states.

A. Coupling a mechanical mode to a probe

A key challenge in controlling massive systems in the
laboratory is the fact that they often cannot be measured
directly. To manipulate and control these massive systems, we
must first couple them to a probe. We review two such
models here.

1. Optomechanical interaction

We first consider the case where a mechanical mode
couples to a cavity mode (which can be optical, microwave,
electrical, or magnetic). This exposition largely follows the
review of Aspelmeyer, Kippenberg, and Marquardt (2014).
See also Barzanjeh et al. (2022) for further reading. In many
systems the frequency of the cavity mode depends on the
center-of-mass position of the mechanical resonator. When
considering the frequency shift to first order in the position of
the mechanical oscillator, we acquire a coupling between the
occupation number of the cavity mode and the position of the
oscillator. The derivation often depends on platform-specific
details. For example, in a Fabry-Pérot moving-end mirror
cavity, the cavity deforms due to photon pressure (Law, 1995).
For levitated nanoparticles the light-matter interaction can
instead be derived by assuming the trapped sphere to be
smaller than the laser waist of the beam (Romero-Isart et al.,
2011). Similarly, in some electromechanical systems, the
motion of the resonator couples to capacitance, which in turn
induces a frequency shift (Regal and Lehnert, 2011).

In all of the aforementioned cases, we arrive at the
following cavity-optomechanical Hamiltonian (we denote it
in this way even though the cavity field might not be an optical
mode):

H = hw.a'a + hw,b'b — hgpa'a(b’ +b),  (28)

where @ and a' are the annihilation and creation operators for
the radiation mode with free angular frequency w, and b and
b" are the annihilation and creation operators for the mechani-
cal mode with free angular frequency ,,. The operators obey
the canonical commutator relation [a,a'] = [b, b'] = 1. The
optomechanical coupling g, has units of angular frequency
and encodes the strength of the interaction between the cavity
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and mechanical modes. In most experimental realizations, the
coupling is defined as the optical frequency shift per dis-
placement gy = —xyppdw,./0x, where xzpr = \/h/2mw,, is
the zero-point fluctuation. The probe fields act as the means
for both readout and control. The interaction between the
bosonic mode and the mechanical resonator enables the
detection of extremely small displacements, for example,
due to gravitational effects. The nonlinear quantum dynamics
generated by the Hamiltonian in Eq. (28) was first solved by
Bose, Jacobs, and Knight (1997) and Mancini, Man’ko, and
Tombesi (1997), where it was shown that both the cavity mode
and the mechanical mode evolve into highly nonclassical
superpositions of coherent states. This is a classic way to
generate Schrodinger cat states of the macroscopic mechanical
mode (Bose, Jacobs, and Knight, 1999; Marshall et al., 2003;
Qvarfort er al., 2018). The solutions were later generalized to
time-dependent couplings (Qvarfort ef al., 2019). As detailed
in Sec. IV.B.1, the system dynamics of this Hamiltonian has
been used for a number of proposals related to the detection of
gravitational decoherence.

The Hamiltonian in Eq. (28) describes an idealized system
isolated from its environment. In a realistic setting, both the
bosonic and mechanical modes undergo dissipation, thermal-
ization, and decoherence; see Sec. III.LB for details. To
replenish the lost quanta from the radiation mode, an external
source is used to pump the system. Such a pump is modeled
with a bosonic pump term H, = a(f)a + a*(1)a’, where a(t)
is a complex drive amplitude. However, with the inclusion of
such a term, the dynamics induced by the Hamiltonian in
Eq. (28) can no longer be solved exactly (Qvarfort and
Pikovski, 2022). A common method to proceed is to solve
the system dynamics perturbatively, or by examining the
steady state for weak driving; see Nunnenkamp, Bgrkje, and
Girvin (2011) and Rabl (2011).

For a strong enough pump, the system dynamics can be
approximated as linear. Here the term linear refers to the fact
that the resulting Heisenberg equations of motion contain only
linear operator terms. The inclusion of a pump term strongly
driving mode a lets us separate a into the classical amplitude
of the drive a and the fluctuations 5a such that & = a + 5a."
The interaction term in Eq. (28) becomes

H; = —hgy(a+ a) (a+ sa)(b' + b). (29)

When |a| > (5a), the cubic term —hgyda’éa can be removed
because it is smaller by a factor of |a| than the other terms. The
remaining linear Hamiltonian is

H, ~ —hgy(a*sa + asa®)(b' + b). (30)

Equation (30) is a common starting point for a number of
investigations and accurately describes a range of experi-
ments; see Aspelmeyer, Kippenberg, and Marquardt (2014)
and references therein. For example, within the resolved
sideband regime where ®,, > k, it is possible to engineer

either a beam-splitter interaction a'h + H.c. or a two-mode

'Depending on the application, we may also consider a =
(a) 4+ 6a and (6a) = 0. This leads to a Hamiltonian of a similar
form; see Aspelmeyer, Kippenberg, and Marquardt (2014).
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squeezing term &'h’ 4 H.c. by optically pumping on either
the red (w.—w,,) or blue (w.+ w,,) sideband. The red-
sideband interaction is necessary for implementing, for
example, sideband cooling (Liu ef al., 2013). Another way
to couple an optical and mechanical mode is through a
dissipative coupling rather than a dispersive one, where the
displacement of the mechanical resonator directly modulates
the decay rate of the cavity (Elste, Girvin, and Clerk, 2009).

The dynamics of the nonlinear Hamiltonian in Eq. (28)
cannot be solved exactly in the presence of a pump term and
optical dissipation. However, by engineering the system such
that the optical mode dissipates from the cavity on a timescale
much faster than that of the mechanical element, the inter-
action between the optical and mechanical modes can instead
be described as an instantaneous interaction. This is also
known as the unresolved sideband regime, where w,, < k.
The framework, often referred to as pulsed optomechanics,
was developed by Vanner ef al. (2011). By considering the
Langevin equations in the unresolved sideband regime, one
can model the light-matter interaction as an instantaneous
unitary operator of the form U = eihiXn (Pikovski et al.,
2012), where u is a dimensionless coupling which depends on
the pulse shape, 71; is the number of photons in the pulse
entering or leaving the cavity, and X,, = (13'* + 13) /\/2 is the
mechanical quadrature. For an adiabatic cavity with k > 77!,
where 7;, is the characteristic timescale of the input pulse, the
value of u becomes u = v/8¢gy/k, where g, is the optome-
chanical coupling and « is the optical dissipation rate (Clarke
et al., 2023). It is also possible to start from the linearized
optomechanical Hamiltonian in Eq. (30) and derive a pulsed
interaction that couples the position quadratures of the
mechanical mode and the probe field (Khosla e al., 2013;
Bennett er al., 2016). The resulting unitary operator is
Uin = e"XXn | where x again depends on the pulse shape
and X, is the amplitude quadrature of the input pulse (as
opposed to the cavity quadrature). In the adiabatic regime and
for an input coherent pulse, y = 4gyv/N/k, where N is the
average number of photons in the input pulse (Vanner et al.,
2011). A closely related idea to pulsed optomechanics is that
of stroboscopic optomechanics (Brunelli et al., 2020), where a
train of short pulses of light is injected into the cavity.
Proposals using nonlinear pulsed optomechanics include
the generation of cat states (Clarke and Vanner, 2018;
Ringbauer et al., 2018), entangled states (Clarke et al.,
2020; Neveu et al., 2021), and entangled cat states
(Kanari-Naish et al., 2022). State preparation using linearized
pulsed optomechanics to generate catlike states has also been
put forward using the addition and subtraction of phonons
from the mechanical state (Milburn, Kim, and Vanner, 2016)
and by swapping the mechanical state with a photon-sub-
tracted state of light (Hoff et al., 2016). Pulsed optomechanics
has given rise to a number of protocols intended to test
fundamental physics, such as the tests of modified commu-
tator relations that are detailed in Sec. IV.D.1.

2. Coupling to a two-level system

Instead of a probe field, it is also possible to couple the
mechanical resonator to a two-level system. The advantage of
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such a coupling is that the high level of control that has been
achieved for two-level systems can now be indirectly applied
to the mechanical resonator. Collectively, these systems are
sometimes known as hybrid optomechanical systems since
they couple bosonic continuous degrees of freedom to a two-
level qubit system. Examples include nitrogen-vacancy (NV)
centers embedded in a nanodiamond (Neukirch er al., 2015;
Hoang et al., 2016) and superconducting resonator qubits
coupled to mechanical modes (O’Connell et al., 2010; Chu
et al., 2018; Satzinger et al., 2018; Arrangoiz-Arriola et al.,
2019). See Rogers et al. (2014) and Chu and Groblacher
(2020) for dedicated reviews.

In the case of a spin coupled to mechanical motion, the
same notions apply to the coupling between the spin of an ion
and its center-of-mass position (Cirac and Zoller, 1995).
Applying a magnetic field gradient to a trapped ion couples
the internal and motional states of the system through the
Zeeman effect. The spin-mechanical Hamiltonian reads, to
first order in the position operator,

R SR hA s
H = ho,,b'b + 5 heood; +7(bT +b)s., (31

where @ is the angular frequency of the qubit system, o, is
the Pauli operator denoting the free energy, b and b" denote
the annihilation and creation operators of the mechanical
mode, and A is a coupling constant that depends on the
platform in question.

Superconducting qubits coupled to a mechanical mode are
more commonly modeled using the Jaynes-Cummings
Hamiltonian,

Hyc = haw,b'b + m% + % (bo, +b's_), (32)
where Q is the oscillation frequency of the superconducting
qubit, o, is the Puali matrix, and 6_ =0, — io, and o, =
o, + io, are the raising and lowering operators in terms of the
Pauli matrices. In Eq. (32) 4 again denotes the strength of the
coupling between the mechanical mode and the qubit. For
example, a number of theoretical proposals have utilized the
two-level system coupling for enhancing the optomechanical
coupling strength (Heikkild er al., 2014; Pirkkalainen, Cho
et al., 2015), state preparation (Yin et al., 2013; Kounalakis,
Blanter, and Steele, 2020), and cooling (Martin ef al., 2004;
Hauss et al., 2008; Jachne, Hammerer, and Wallquist, 2008;
Nongthombam, Sahoo, and Sarma, 2021).

B. Open-system dynamics for massive quantum systems

To detect the extremely weak effects of gravity, we must be
able to distinguish them against any underlying noise floor.
Additionally, proposals such as gravitational decoherence and
gravity-induced state reduction stipulate that gravity itself
manifests as a noise signature; see Sec. [V.B.1. Both of these
considerations necessitate the use of accurate noise models
for massive quantum systems. Here we review the main
tools for modeling decoherence in massive quantum systems.
For a dedicated review on noise models for mechanical
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resonators in the quantum regime, see Bachtold, Moser,
and Dykman (2022).

1. Quantum master equations

Quantum master equations describe the quantum state
evolution in a situation in which a system, such as a
mechanical oscillator or another probe, is coupled to a larger
environment that we cannot control or measure, such as a
thermal bath. Apart from modeling the interaction of a probe
with its environment, this description is relevant for describing
gravitational decoherence, gravitational collapse (see
Sec. IV.B), and gravitational entanglement (see Sec. IV.C).

The dynamics of a quantum system coupled to the environ-
ment, or bath, can be described with the Hamiltonian H , which
contains a term for the system dynamics A (e.g.for example, a
quantum system in the laboratory, such as a cavity, a mechanical
oscillator, or atoms), the environment or bath H » (for example, a
thermal bath), and a term describing the coupling between
system and bath A . The full Hamiltonian is

H=H,+ H,+ Hy, (33)

The fully evolved state of the system given an initial state |¥y) is
(1)) = U(1)|W,), where U(t) = e=1/" In principle, any
type of system-bath coupling H, is possible, but they might not
always lead to analytically solvable dynamics (Gardiner and
Zoller, 2000).

In the laboratory we often do not have access to the bath
degrees of freedom, which are therefore traced out from the
quantum state. The result is a mixed state where the degree of
mixedness is captured by the purity tr(p?) < 1, saturating the
bound tr(p?) = 1 only when the state is pure.

We now consider a dynamical equation for the evolution of
the reduced system density matrix p, (Breuer ez al., 2002). This
equation is known as a master equation. To derive the simplest
possible master equation, we assume (i) that the system and
bath are initially in a product state py, = ps ® py,, (i) that the
coupling between the system and the bath (also known as the
Born approximation) is weak, (iii) that the environment does
not retain a memory of the interactions (the Markov approxi-
mation), and (iv) that fast-rotating terms (the secular approxi-
mation) can be discarded. By tracing out the bath modes lA)f, we
obtain the Gorini-Kossakowski-Sudarshan-Lindblad master
equation for the evolution of p(f) (commonly referred to
simply as the Lindblad equation) (Gorini, Kossakowski, and
Sudarshan, 1976; Lindblad, 1976),

+ X (L0l =500 LA ). (4

In Eq. (34) H, is the system Hamiltonian and L, denote the
Lindblad jump operators. The Lindblad equation can also be
written in shorthand as p, = —i[H, ps|/h + 3., DL,)ps (1),
where DIL,1p(1) = Lop()L} = LLL:p(1)/2 = p(1)LLL,/2 s
called the standard dissipator.
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For mechanical resonators coupled to probe fields or two-
level systems, there are commonly two types of noise that
affect the system: dissipation and scattering processes in the
probe field and thermalization processes in the phononic
modes (Aspelmeyer, Kippenberg, and Marquardt, 2014).
Mechanical dissipation and thermalization arise due to proc-
esses specific to the system. In clamped systems, for example,
unwanted thermal excitations are transferred via the physical
point of attachment. Both optical and mechanical noise can be
modeled with the Langevin equation in the linear optome-
chanical regime; see Sec. III.B.2. A common way to model
Markovian dissipation and thermalization is to assume
Lindblad operators of the form L; = /(1 + ng)Th and
L, = \/Tngb", where I' is the mechanical linewidth and ny, =
lexp(hw/kzT) — 1]~ is the thermal occupation number of the
bath, for which @ is the bath frequency, kp is Boltzmann’s
constant, and 7 is the temperature of the bath.

In levitated systems environmental noise arises in part due
to collisions between the system and the surrounding gas
particles. A number of these processes correspond to position
localization, which can be described with the following master
equation (Romero-Isart, 2011):

(xlp(r)]x) = %(leﬁ(t), H]l¥)
= D =) (x[p (1) ). (35)

In Eq. (35) the form of I'(x — x") depends on the nature of the
noise. In the limit where the decoherence decay depends
quadratically on |x — x'|, Eq. (35) simplifies to

p(1) :%[ﬁ(t)ff] — A%, [%,p(1)]], (36)

where A is the dissipation rate. The dynamics was solved for a
coupling of a probe field by Bassi, Ippoliti, and Adler (2005),
who used a stochastic unraveling method; see Adler, Bassi,
and Ippoliti (2005) for details.

We now discuss generalizations to the strong coupling and
the nonlinear regime and to non-Markovian dynamics.
Commonly, dissipation of the probe field and mechanical
mode are treated separately. However, such a treatment is not
always valid when the probe field and mechanics are strongly
coupled. Instead, we must consider a dressed Lindblad
equation (Hu er al, 2015) that was solved by Torres,
Betzholz, and Bienert (2019), who took a damping basis
approach (Briegel and Englert, 1993). In the nonlinear regime
a solution to the Lindblad master equation was found for weak
dissipation (Mancini, Man’ko, and Tombesi, 1997) and was
later generalized to arbitrary x (Qvarfort, Vanner et al., 2021),
although a closed-form expression for the evolved state cannot
be obtained. The Lindblad equation for an optomechanical
system in the nonlinear regime was solved for dissipation of
the mechanical mode (Bose, Jacobs, and Knight, 1997;
Mancini, Man’ko, and Tombesi, 1997), with Lindblad oper-
ators [ = \/}713%, where y is the mechanical dissipation rate.

Models assuming a Markovian environment are often suffi-
cient to capture the open dynamics of the system accurately.
However, there are certain cases where a non-Markovian
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description is necessary. Non-Markovianity arises when the
bath retains a memory of the interaction with the system and
information can flow back into the system (Breuer ez al., 2002).
Generally, to model such non-Markovian noise, we must either
consider the Caldeira-Leggett master equation for Brownian
motion (Caldeira and Leggett, 1983a) or solve a general non-
Markovian master equation (Hu, Paz, and Zhang, 1992),
although care must be taken since the dynamics predicted by
these approaches do not automatically guarantee physical states
as a solution (Kohen, Marston, and Tannor, 1997). Non-
Markovian dynamics can also be modeled using Lindblad-type
equations with time-dependent noise rates (Zhang et al., 2012).
Some studies of mechanical resonators indicate the requirement
for non-Markovian dynamics. For example, it was shown that in
clamped systems the resulting noise spectrum was consistent
with a non-Markovian spectrum (Groblacher, Hammerer ef al.,
2009). In addition, theoretical works indicate that modeling the
effects of damped tunneling two-level systems on a nano-
mechanical flexing beam resonator gives rise to non-Markovian
noise (Remus, Blencowe, and Tanaka, 2009). Optomechanical
systems in non-Markovian environments have been modeled,
although generally without the use of a master equation. A
Feynman-Vernon influence functional method was used to
study sideband cooling in non-Markovian environments
(Triana, Estrada, and Pachoén, 2016), and the influence of
non-Markovian noise on the optomechanical nonlinearity
was considered by Qvarfort (2023).

Beyond analytic solutions master equations are often solved
numerically. Useful tools include the QuTiP Python pack-
age (Johansson, Nation, and Nori, 2012). See Campaioli,
Cole, and Hapuarachchi (2023) for a tutorial.

2. Langevin equations and input-output formalism

The quantum Langevin equations model the nonunitary
evolution of the quantum modes in the Heisenberg picture.
The interaction between an input mode and the system is
imprinted on output fields, which are detected in experiments.
The Langevin equations are also a useful tool for modeling
quantum metrology (see Sec. III.D) and, in particular, exper-
imental tests of gravity such as weak-force detection (see
Sec. IV.A).

The Langevin equations for the bosonic field a; read [see
Caldeira and Leggett (1983b) and Gardiner and Zoller (2000)

for a derivation]

A y'+}/','nA 1
Ao Vit Vin, 1

J 2 J [f{sa &/] Y }'j.in&j,in- (37)

)

Note that, following standard convention, &;;, has units of
s~'/2_ This input field could be noise from a heat bath or a
coherent probe field. In a concrete setting y;;, could be the
coupling rate between the system and a waveguide used to
couple the probe field to the system. If the system also
experiences loss into other channels at rate Yo this rate is
added to the overall decay rate.

The input fields are connected to the output fields via input-
output boundary conditions (Caves, 1982; Gardiner and
Collett, 1985; Clerk et al., 2010)
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Qjout = Ujin + \/VjinGj- (38)
By solving the internal system dynamics as a function of the
input fields, one can model the output fields purely as a
function of the input fields.

The Langevin equations for a cavity-optomechanical sys-
tem with a Hamiltonian given by Eq. (28) are (Bowen and
Milburn, 2015)

A= _ga +iNa + igoa(bT + b) — /e,

SES
I

T. N ~
~5b—iw,b+ igoata — /T by, (39)

in which A = @ — w,. is the detuning of the light frequency w;
from the cavity frequency w. [Eq. (28)], « is the optical
linewidth, k;, is the rate by which the probe field dissipates
away from the cavity, I" is the mechanical linewidth, and I}, is
the coupling rate for thermal heating. Equations (39) are
challenging to solve in the nonlinear regime but can be
linearized by considering a strong optical pump field; see
Sec. III.A.1. Such a treatment lies at the basis of many models
of optomechanical systems (Aspelmeyer, Kippenberg, and
Marquardt, 2014).

In a typical experimental setting, we are interested in the
frequency-dependent response to an input a;;,, which we
obtain by means of the Fourier transform from Eq. (37),
a(w) = (1/v2x) [®, dt e a(t). Experimentally, the Fourier
transform is calculated over a finite time window [—z, 7] that
converges to the Fourier integral in the limit 7 — co. The
Fourier transform is also the main analytic method by which
the Langevin equations can be solved, provided that they are
linear in terms of the operators they contain. In that case we
can apply the Fourier transform to Eq. (37) to derive a
scattering matrix

S(@) =14 /rin(iol + M)~ \/7in, (40)

where y;, = diag(yy . ....7nn) contains the input noise
terms and where the elements of M are defined via the
Langevin equations in Eq. 37)as &, = >, M, ;4 — VT4 in-
The scattering matrix allows us to relate the input and output
fields as

aj,out(w) = Zsj.f<w)af,in(w>’ (41)
3

where §; , are the matrix elements of S. The transmission
between the jth input and the Zth output port is given by
Ty (w) = |Ss;(w)|*. Interactions such as single- or two-
mode squeezing can give rise to |S, ;(w)[* > 1, which is
referred to as the gain G = |, ;(w)|>. These quantities are
relevant for characterizing sensors; devices such as isolators,
circulators, and directional amplifiers; and other scattering
experiments such as optomechanically induced transparency
experiments (Xiong and Wu, 2018).

We now turn our attention to quantum noise in the context
of the Langevin equations. For a general treatment of noise,
see the designated review by Clerk er al. (2010); for a
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treatment specifically in the context of cavity optomechanics,
see Aspelmeyer, Kippenberg, and Marquardt (2014).
Quantum systems are typically hard to isolate and are
susceptible to noise and dissipation. For instance, the real-time
motion of a mechanical oscillator subjected to fluctuating
thermal Langevin force was measured by Hadjar et al. (1999).
These forces can be straightforwardly included in the
Langevin equations via the input fields a;;, [Eq. (37)].
Instead of recording real-time trajectories, it is typically more
convenient to record the noise power spectral density S, ¢ (@)
defined for some system operator O. The spectral density
describes the intensity of the noise at a given frequency. In
practice, we obtain Sp (@) by averaging over many exper-
imental runs. According to the Wiener-Khinchine theorem
(Wiener, 1930; Khintchine, 1934), this is equivalent to
calculating the Fourier transform of the autocorrelation,

Spip(w) = /_oo dt e (07 (1) 0(0)). (42)

oo

We obtain the noise spectral density from the Langevin
equations in Eq. (37) by calculating correlators of, for
example, the fields (a;(w)&j(a))) or position (%;(w)%;()),
taking into account the input fluctuations &;;,(w). The
assumption that we made of Markovian noise translates to
the fact that @;, are uncorrelated in time. This is also known
as Gaussian white noise, and the vacuum fluctuations are
given by

(ain(1)a3, (1) = (ngy + 1)8(1 = 1), (43)

(@l (Naw (1)) = nwd(t = 1), (44)

with the number of thermal bosonic excitations. Note that, for
the case of an optical probe field, the environment corresponds
to the vacuum, meaning that ny, = 0.

As an example, we consider the position noise of a single
harmonic oscillator with a frequency w,, and a damping rate I'.
The spectral density is given by (Clerk et al., 2010)

r
(0, + w)* + (T/2)?

T
(@n =P+ <r/2>2>’ (45)

S = 275 (nlh(hwm)

+ [ (he,,) + 1]

where ngy,(hw,,) is the expected number of particles according
to the Bose-Einstein statistic and x,,r = /%/(2w,,m) is the
zero-point fluctuation, for which m is the mass of the
oscillator. The area under the spectral density S; (@), with
% the position operator, is proportional to (%?). In thermal
equilibrium at large temperatures kzT > hQ, (%) is propor-
tional to the temperature according to the fluctuation-
dissipation theorem.

In general, we note that the spectral density in Eq. (45) is
not symmetric in @, due to spontaneous emission—which,
classically, it would be. As important application to opto-
mechanics, the asymmetry of the noise spectral density of the
radiation pressure when driving on the red-detuned sideband
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allows the mechanical oscillator to be cooled. The optical
noise spectral density then enters in the net optical cooling rate
of the mechanical oscillator (Marquardt et al., 2007). If, in
addition, the light used to drive the mechanical oscillator is
squeezed, sideband cooling allows the cooling of the mechani-
cal mode to the ground state (Clark et al., 2017). The spectral
density is also relevant to sensing applications as it determines
the signal-to-noise ratio (Clerk ef al., 2010; Lau and Clerk,
2018); see Sec. IIL.D.

C. Measurement and control of massive quantum systems

To control the massive quantum systems in the laboratory,
we need to be able to manipulate their motion and perform
accurate measurements. This is particularly important when
measuring weak gravitational effects. Here we summarize
the key ideas behind different measurement and control
schemes that are used in the various proposals covered in
Sec. IV. For in-depth discussions of control and measurement
of the quantum systems, see the designated reviews by
Jacobs and Steck (2006) and Clerk et al. (2010), as well
as the textbooks by Wiseman and Milburn (2009) and
Jacobs (2014).

1. Quantum measurements

To extract information about how gravity affects quantum
systems, we must perform a measurement. There are a number
of different measurement types and schemes. Here we review
the most common ones.

Projective measurements, also known as von Neumann
measurements, model the measurement apparatus as a macro-
scopic pointer that can be read out classically. Strong
correlations between the system and the pointer let us
determine the state of the system unambiguously by meas-
uring the pointer. However, the measurement destroys the
coherence of the wave function, subsequently destroying
information about the conjugate observable and leading to
backaction quantum noise (Jacobs and Steck, 2006; Clerk
et al., 2010).

Quantum nondemolition measurements (Braginsky,
Vorontsov, and Thorne, 1980; Peres, 1993; Braginsky and
Khalili, 1995, 1996), however, present a special case in which
the eigenstates of the observable that we are measuring are
also eigenstates of the system or, equivalently, the measured
observable A commutes with the Hamiltonian A, [H, A] = 0,
and thus A and A are simultaneously diagonalizable.
Measuring multiple times yields the same result and allows
for improved measurement accuracy, which is crucial for
certain force-sensing schemes. We discuss these backaction
evasion schemes in more detail in Sec. IV.A.1.

Weak measurements extract only partial information about
an observable and thus do not fully destroy the information
about the conjugate observable. For a detailed discussion see
the pedagogical review by Jacobs and Steck (2006). The main
idea is to construct operators P,, such that >, Pi P, = 1.
The state after the measurement expressed in terms of the
projectors P, and the state p before the measurement is then
given by
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: (46)

with the probability tr(P}pP,), to obtain this outcome.” Note
that we recover a von Neumann measurement when measur-
ing in the eigenbasis, i.e., setting P, = |n)(n|. Rather than
measuring in the eigenbasis, we define P, as a weighted sum
over different eigenstates that peaks at a specific eigenstate but
has a certain width (Jacobs and Steck, 2006). A small width
corresponds to a strong measurement, with the limit of zero
width corresponding to a von Neumann measurement. A large
width performs a weak measurement. The measurement
strength k is typically defined as the inverse of this width.
It was suggested that weak measurements can lead to more
accurate measurements of gravitational forces (Kawana and
Ueda, 2019).

Rather than measuring a system once, it can be interesting
to continuously extract information from the system. Together
with feedback, such measurement strategies can, for instance,
be employed to squeeze or cool levitated mechanical systems
(Genoni et al., 2015) that can be used for gravity tests; see
Sec. V.A.4. A theory for such continuous measurements can
be constructed from a sequence of time intervals At during
which weak measurements are performed with a measurement
strength proportional to A¢. In the limit of infinitesimally short
time intervals, we obtain a stochastic equation of motion due
to the random nature of the measurements; see Jacobs and
Steck (2006) for a derivation. The measurement current of the
continuously watched observable A with a weak measurement
is then given by

dI(t) = Vk(A(2))dr 4+ dW (1), (47)

in which & is the measurement strength, dW(¢) is the standard
Wiener increment describing the white imprecision noise in
the measurement current and fulfills’ (dW) =0 and
{dW?) = dt (Clerk et al., 2010). The density matrix p,
determining the expectation value (A(z)) is now conditional
on the measurement current and evolves according to the
stochastic master equation

[N k A
dﬁc =~z [Hsubc]dt + Z’D[A]ﬁcdt

n
k A N A
+ § Ape +peA—20A)pJaw,  (48)

with D[], as defined following Eq. (34). The evolution of
this conditioned quantum state is referred to as quantum
trajectory. Equation (48) can be solved analytically only in a
special case (Wiseman, 1996; Jacobs and Steck, 2006); in
most cases it has to be solved numerically.

’An operator of the form M = Zﬁ:aﬁﬁ)n is a positive operator
and tr(/ p) gives the probability that n € [a, b]. Therefore, this
operator defines a positive operator-valued measure (POVM).

3 . .

The average over all possible measurement outcomes is denoted
by (-). For a pedagogic introduction to stochastic calculus, see
Jacobs and Steck (2006).
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When we average over all possible measurement results
(i.e., the observer does not retain the measurement current),
Eq. (48) simplifies to

d{pe)) = - [Hs,<<pc>>]dt+ D[ [(pchde (49)

since {(p.dW)) = 0, as p. and dW are statistically independent
(Jacobs and Steck, 2006).

Continuous measurements can also be described with
Langevin equations. Here the recorded measurement current
is then determined by the output fields. This is particularly
convenient for describing homodyne and heterodyne detec-
tion. For a homodyne detection the output at frequency @ is
combined with a signal of a local oscillator at the same
frequency w, in an interferometer. The detected current (in a
rotating frame with frequency @) is then given by* (Barchielli
and Vacchini, 2015)

?<t> = [e_id)i’out(t) + ei¢32ut(t)]/\/§. (50)

In Eq. (50) ¢ is a phase difference depending on the optical
path that determines the observed quadrature. For ¢ = 0 we
obtain 1(1) = [Bou(1) + Bl (1)]/V2 = Guu(r), while p = 7/2
yields I() = —i[bou (1) — oul( D1/V2 = poul(t).

In a heterodyne detection scheme, the output at frequency
@, is combined with a signal of a local oscillator at a different
frequency ®; detuned from the output frequency by
A = w; — w,, thereby giving rise to the heterodyne current

1(t) = [e7 =20 by (1) + € O=20b, (1)]/ V2. (51)

As a result, the measured quadrature oscillates in time,
providing information about both amplitude and phase.
However, this comes at the cost of an added half quantum
of noise (Bowen and Milburn, 2015). Homodyne and hetero-
dyne noise spectra were discussed in detail by Barchielli and
Vacchini (2015) and Bowen and Milburn (2015).

2. Feedback and feedforward

Along with continuous measurements, we can continuously
apply operations on the system to steer it toward a desired
state. Creating or stabilizing certain quantum states can be
advantageous in the context of metrology. In particular,
superposition states can be used to test theories about quantum
mechanics and gravity. Furthermore, it has been shown that
certain entangled states can improve the sensitivity and signal-
to-noise ratio (Leibfried et al., 2004; Roos et al., 20006).
Feedback is also employed for squeezing or cooling in many
of the experimental tests of gravity in Sec. V.A and, in general,
for the control of quantum systems; see Sec. V.B. The
feedback can either explicitly depend on the measurement
current (z) obtained in Eq. (47) (closed-loop feedback) or not
(open-loop feedback). In addition to applying feedback, we

*Note that we encounter different conventions for the definition of
I(t), which is sometimes defined as I = (e~®b,, + ¢#b},)/2, or
simply I = e" b, + b} .
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can also use the continuously measured quantum system to
control a second quantum system that is then referred to as
feedforward.

The optimal control of quantum systems has been inves-
tigated for a long time (Peirce, Dahleh, and Rabitz, 1988;
Dahleh, Peirce, and Rabitz, 1990; Judson and Rabitz, 1992;
Warren, Rabitz, and Dahleh, 1993; Wiseman and Milburn,
1993; Wiseman, 1994; Magrini et al., 2021). Feedback can be
applied either semiclassically—here the measurement current
that is used to provide feedback is obtained with a classical
sensor—or fully quantum—here the detectors and sensors are
all quantum systems. The main idea behind classical, con-
tinuous feedback is to apply a semiclassical potential that
steers the system coherently toward the desired quantum state
(Caves and Milburn, 1987; Wiseman, 1994; Doherty et al.,
2000; Lloyd, 2000). For instance, we can measure the position
of a mechanical oscillator and then perform a displacement
operation to shift its position.

In general, the quantum state evolution now explicitly
depends on the stochastic measurement current /(¢), which
will be different in each experimental run, resulting in
conditional dynamics described by a stochastic master equa-
tion. We obtain the stochastic measurement current [Eq. (47)]
by measuring an observable A, which is determined according
to the stochastic master equation for continuous feedback
[Eq. (48)]. This current [Eq. (47)] is then fed back to drive the
system via the Hamiltonian

f{ﬂ) == \/Kﬂjl(t - T)B, (52)

with «p, the feedback strength and 7 some time delay and in
which B encodes the operation that is chosen to be applied
based on the measurement outcome. Note that the feedback
operation B may also involve the measured observable A.
Furthermore, the choice of B explicitly depends on the
measurement current in the case of closed-loop feedback,
while it does not for open-loop feedback.

Instead, we can look at the unconditional dynamics by
averaging over all measurement outcomes

~

d . -
DIAlp + xpD[B]p

dr ﬁ[

P+

B~

D>>
‘b)

+pA. (53)

In Eq. (53) —i(v/kkg/2)[B. A p +p A] encodes a linear restor-
ing term and dissipation, for example, in an optomechanical
system, this could be a restoring force. The term kg D[B]p
describes additional fluctuations as a consequence of the
feedback.

Analogous to the previously described scenario, the meas-
urement current of system A can force a second system B in a
feedforward scheme. The main difference is that B now
denotes an operator of the other system B. For instance,
reservoir-engineered nonreciprocity can be thought of as an
autonomous feedforward scheme (Metelmann and Clerk,
2017) in which the measurement results of one system are
used to drive another system, but not vice versa.
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Rather than controlling the quantum system based on the
classical measurement record, it is also possible to replace the
sensors and controllers with quantum systems that coherently
interact with the system to be controlled (Lloyd, 2000; Nelson
et al., 2000; Nurdin, James, and Petersen, 2009). Coherent
feedback protocols can outperform measurement-based
schemes (Hamerly and Mabuchi, 2012, 2013) because they
can exploit a geodesic path in Hilbert space that is forbidden to
measurement-based schemes (Jacobs, Wang, and Wiseman,
2014). A convenient way to describe coherent feedback is
with a Langevin equation formalism [Eq. (37)] (Gardiner and
Zoller, 2000). Here the output field a,, is fed to the input
field b;, of the mode that is to be controlled with some time
delay ,

Z;in(t) = \/@&out(t - T)- (54)

A number of schemes have been proposed and implemented to
control mechanical oscillators via feedback, such as feedback
cooling (Chang et al., 2010; Li, Kheifets, and Raizen, 2011;
Hamerly and Mabuchi, 2012, 2013; Genoni ef al., 2015;
Jain et al., 2016; Vovrosh et al., 2017; Setter et al., 2018;
Harwood, Brunelli, and Serafini, 2021; Guo and Groblacher,
2022; Mansouri et al., 2022; Rademacher, Konopik et al.,
2022), schemes to control squeezing, entanglement, and state
transfer (Harwood, Brunelli, and Serafini, 2021), or to control
the motional state of the mechanical oscillator, its resonance
frequency, and its damping rate (Ernzer et al, 2023).
Feedback cooling allowed the cooling of a 10 kg mass in
the LIGO detector close to its ground state (Abbott et al.,
2009; Whittle et al., 2021), and a millimeter-sized membrane
resonator was cooled to the ground state with measurement-
based feedback (Rossi et al., 2018). Measurement-based
feedback cooling has also been demonstrated in electro-
mechanical systems (Wang et al., 2023), where it has also
been demonstrated that feedback can lead to dynamically
stability in situations that would be unstable without feedback.
In addition, feedback schemes are employed to equalize
mechanical loss rates in experiments with multiple mechanical
oscillators (Poggio et al., 2007; del Pino, Slim, and Verhagen,
2022; Wanjura et al., 2023).

D. Quantum metrology with massive quantum systems

Since gravity is extremely weak, we may sometimes want
to quantify the sensitivity of a quantum sensor to ensure that it
is powerful enough. The main tool used for this is quantum
estimation theory, also referred to as quantum metrology. We
outline here the key concepts and refer to the reviews by Paris
(2009), Clerk et al. (2010), and Téth and Apellaniz (2014) for
further details. Detection methods for optomechanical systems
were reviewed by Poot and van der Zant (2012). Many of
these tools are used for precision tests of gravity; see
Sec. IV.A.

1. Langevin description of a quantum sensor

This exposition of a sensing scheme follows (Clerk et al.,
2010; Lau and Clerk, 2018). In a typical metrology setting, we
attempt to infer an infinitesimal change in a small parameter e
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that the Hamiltonian A (e) depends on. Expanding H(e) to
first order in €, we have

H=Hy+ eV + 0(e2), (55)

where Hj, is the free Hamiltonian and V is the operator that
encodes €. To extract changes in €, we probe the system
governed by A with a probe field &;, and currents with the
response d,,, which then depends on e. For small € we can
write dgy, & fz(()(l)l + Ae, where 1 is a linear response coefficient.

To characterize the resolving power of a quantum sensor,
we can calculate the signal-to-noise ratio (SNR) by comparing
the integrated signal power to the noise power. For instance,
the measurement current can be obtained via homodyne
detection; see Sec. III.C.1. The power associated with the
signal is then given by the expectation value of the time-
integrated measurement current 7i1(t) = [dz 1(¢), where 1(¢)
is defined in Eq. (50). The measurement current should be
compared to the power without the perturbation €, so we
define the power difference P of the signal with and without
the perturbation € as

P = [(i(6)) = (1)) ] ol (56)
The associated noise power is then given by
N = (5im(t)dm(t)) = tS;;(0), (57)

where  &mi(t) = m(r) — (m(r)). Inm Eq. (57) Sy(0) =
(1/2) [dte'({51(1).61(0)}) is the noise spectral density
defined in Eq. (42) of the measurement current at @ = 0.
Note that Eq. (57) is linear at time ¢ because we consider the
integrated measurement current. The SNR is then given by the
ratio of P and N, pgng = P/N. For applications such as
gravitational-wave detection (Caves, 1979), force sensing
(Caves et al., 1980), and force gradient sensing (Rudolph
etal.,2022), it is vital to ensure that the signal is stronger than
the noise such that pgng > 1. Since the noise increases with #,
we require the measurement current to also accumulate
information about ¢ at the same rate. Therefore, it is crucial
to retain long coherence times in the system so that a strong
signal can be retained throughout.

Quantum mechanics puts a limit (Caves et al., 2012) on the
added noise A of an amplifier when we are referring to
the amplification gain G. In particular, we find for the vari-
ance (Adoy) = (@ubiou) = | (Gou)|? the expression (Adqy) =
G({A&;,) + A) in which quantum mechanics restricts A > 1/2.

Nonreciprocity and non-Hermitian topology have been
proposed as promising resources for quantum sensors; the
former allows fundamental constraints on the signal-to-noise
ratio of conventional sensors to be overcome (Lau and Clerk,
2018; Kononchuk et al., 2022; Slim et al., 2024); in addition,
the latter can lead to an exponentially enhanced sensitivity
(McDonald and Clerk, 2020; Koch and Budich, 2022). Both
nonreciprocity (Metelmann and Clerk, 2015) and non-
Hermitian topological chains (McDonald, Pereg-Barnea,
and Clerk, 2018; Wanjura, Brunelli, and Nunnenkamp,
2020) can be engineered in driven-dissipative quantum
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systems, for instance, based on optomechanics (de Lépinay
et al., 2020; Youssefi, Kono, Bancora et al., 2022; del Pino,
Slim, and Verhagen, 2022).

2. Standard quantum limit

To perform tests of fundamental physics (see Sec. V.A), itis
often crucial to measure the oscillator position accurately.
However, Heisenberg’s uncertainty principle states that it is
impossible to simultaneously know the position and momen-
tum of a single quantum system with high accuracy. A
measurement of the mass’s position necessarily introduces
backaction on its momentum. In this context we often speak of
a standard quantum limit (SQL) that limits the accuracy of
position measurements as the system evolves in time.

The SQL is straightforward to derive for an effective free
mass m.g that is harmonically trapped with frequency w,,,. Its
position quadrature X,,(¢) evolves in time as

R . P
R,0(1) = £,,(0) cos(apt) + -~

sin(w,,t), (58)

Megr @y,

where X,,(0) and P,,(0) are the position and momentum
operators at ¢ = 0, which remain unchanged during intervals
smaller than the damping time. Then, considering the
Heisenberg uncertainty principle, we find that

AX, (DAY (1) 2 3([X,0(0). ¥, O] = a5, (59)

where we have introduced the quadrature ¥,,(7) =

P, (1)/myw,, and Xyt = \/1/2meg@,, is the zero-point
fluctuation [X,,(¢) and ¥,,(7) are both expressed in units of
length for easier comparison]. Thus, any measurement that
tries to measure both quadratures with equal precision is
limited to AX,, (1) = AY,,(f) = x,. See Caves et al. (1980)
for a derivation of the SQL for a single quantum oscillator.

When the system is coupled to an external probe field, we
consider an optomechanical SQL where the position of a
mechanical resonator is detected through phase measurements
(Bowen and Milburn, 2015). There are small fluctuations in
the probe field itself that are known as shot noise. Shot noise
can be decreased by increasing the number of quanta in the
probe field, which improves the signal-to-noise ratio and
makes detection easier. The increase in the field quanta does,
however, lead to stronger recoil in the mechanical system
known as quantum backaction noise or radiation-pressure
noise. The result is a fluctuation force on the mechanical
resonator. By balancing these two sources of noise, we arrive
at the optomechanical SQL, which sets the limit on the
achievable accuracy of position measurements. The SQL
can be calculated by deriving the output spectrum of the
measured probe field and balancing the resulting shot noise
and radiation-pressure noise. See Clerk ef al. (2010) and
Bowen and Milburn (2015) for the full derivation. With the
Langevin equations in Eq. (39) to model the dynamics, as well
as the input-output relations shown in Eq. (38), we find that
the measured quadrature of the mechanical mode in Fourier
space results in the following symmetrized power spectral
density (Bowen and Milburn, 2015):
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Sger(@) + 200y (0) | Cegr

1
=— , 60
8’7F| Ceff| ( )

where C.; is the effective optomechanical cooperativity,
defined as Cer = C/(1 —2iw/x)?, where C = 4¢3/« is
the optomechanical cooperativity, for which g, is the opto-
mechanical coupling and « and I' are the optical and
mechanical linewidths, respectively. # is the detection effi-
ciency. The expression y(w) in Eq. (60) is the mechanical
susceptibility, which is given by

= —m . 61
(@) w? — w* — iol (61)

To balance the two terms in Eq. (60), we require the optimal
effective cooperativity to be

1
!PTl (0)]

The symmetrized spectrum at the SQL is then given by

= ()], (63)

where we have assumed an optimal detection efficiency with
n = 1. That is, in the optimum case the spectrum is given by
the susceptibility of the resonator y(w).

In practice, there are a number of additional noise sources
that can be included in the measured noise spectrum, such as
measurement imprecision and amplifier noise; see
Sec. III.D.1. For example, Magrini et al. (2021) provided a
detailed analysis of noise budgeting in an optomechanical
experiment for the purpose of quantum-limited measurements,
and Martynov et al. (2016) listed and characterized a number
of relevant noise sources, such as thermal noise, laser noise,
and electronic noise, in the LIGO detector that are also
relevant to many other experiments. See also Danilishin
and Khalili (2012) for a review on how quantum noise can
be calculated in a gravitational-wave detector.

Note that the SQL is by no means a fundamental limit, as
opposed to the Heisenberg limit; see Sec. III.D.3. It can be
evaded using squeezed states, which reduce the noise in the
measured quadrature (Bowen and Milburn, 2015).

|Cer| = (62)

3. Classical and quantum Fisher information

Previously, we focused on how well a detector can probe a
signal against a noisy environment. However, we can also ask
how much information a quantum system can fundamentally
accumulate about a specific effect. This notion is captured by
the Fisher information, which is a valuable metrology tool
relevant for many of the weak-force detection schemes
described in Sec. IV.A. See Paris (2009) and Giovannetti,
Lloyd, and Maccone (2011) for comprehensive introductions.

Consider a specific measurement with outcomes {x}
performed on the quantum state p(8), where 0 is the parameter
that we want to estimate. The distribution of the measurement
outcomes is given by p(x|0) = tr(I1,p,), where IT, is a
POVM element that models the measurements. The classical
Fisher information (CFI) corresponds to the amount of
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information about # gained from this measurement series. It is
given by

oln p(x|0)\2

(o) = [ apolo) (E1) o

The CFI can be generalized in the quantum case by optimizing
over all possible measurements of the quantum state. This is
known as the quantum Fisher information (QFI). The QFI can
also be viewed as a distance measure that quantifies the
change of the state due to the parameter 6. That is, given
the two quantum states py and p, the most general form of the
QFI is

16(0) = 4(@ 0), (65)

where dj is the Bures distance (Helstrom, 1967; Bures, 1969),
dy(propo) = \J20 = VFGrop)l. (66)

for which F is the fidelity F(py.p,) = (tr[/vPipav/i])
For pure states |¥(0)) that encode the parameter 6, the QFI
becomes

Ix(0) = 4((0,'¥(0)) — [(¥(0)|9,P(0))[*).  (67)

where 0y denotes the partial derivative with respect to 6. The
QFI can also be computed for initially mixed states p that
evolve unitarily, such that p(8) = U,p(0)U ;. When the initial
state can be decomposed in terms of an orthonormal basis
P2(0) = >, 4,14,) (4|, the QFI can be written as (Liu et al.,
2014; Pang and Brun, 2014)

Ip(0) = 4 2n (| HG140) = (2l Lg|2,)?)

j’nﬂm » 2
- SZm |(An[H|Am) ] (68)

n#m

where the second sum is over all terms with 4, + 1,, # 0, 4, is
the eigenvalue of the eigenstate |1,), and the Hermitian
operator 7:15 is defined as 7:{6 = —iﬁ;agﬁg. Equation (68)
can also be extended to the multiparameter case (Liu et al.,
2020), where it sometimes is possible to extract more
information than in the single-parameter case (Paris, 2009).

When the quantum system interacts with an environment,
the QFI can be challenging to compute since Eq. (68) no
longer holds. In addition to the general expression in Eq. (65),
the QFI can be defined in terms of the symmetric logarithmic
derivative L, (Helstrom, 1969; Holevo, 2011), I = tr(pL2),
where L, is given by

d9p = 3(PLo + Lop). (69)

If an expression for L, is found, the QFI can be immediately
calculated. One way to solve Eq. (69) for L, by treating it as a
Lyapunov matrix equation, which has a general solution
(Paris, 2009)
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Lo=2 [ " dr expl-patlospoenslpotl. (70

When the channel that encodes the parameter 6 can be
represented with Kraus operators, a general upper bound to
the QFI can be derived (Escher, de Matos Filho, and
Davidovich, 2011).

A key feature of the QFI and the CFI is that they funda-
mentally relate to the variance of the parameter 6 through the
Cramér-Rao bound (Helstrom, 1969; Braunstein and Caves,
1994)

1
MIg(0)

var(0) > (71)

where M is the number of measurements performed and the
inequality is saturated for the QFI. Since M is always finite, it
is generally desirable to maximize the Fisher information to
reduce the variance of the estimated parameter. The Cramér-
Rao bound is applicable to any quantum system and provides a
generalized uncertainty relation (Braunstein, Caves, and
Milburn, 1996), even when no Hermitian operator can be
associated with the parameter of interest, such as in the case of
phase estimation (Helstrom, 1969; Braunstein and Caves,
1994; Braunstein, Caves, and Milburn, 1996). The Cramér-
Rao bound also relates to the so-called Heisenberg limit, which
is defined as the scaling of the variance var(0) of a parameter 6.
For classical systems, the scaling of var(6) is at most 1/N,
where N is the number of probes used, in accordance with the
central limit theorem (Giovannetti, Lloyd, and Maccone,
2011). As opposed to the standard quantum limit (see
Sec. II1.D.2), the Heisenberg limit is a hard limit that depends
on the number of resources in the system (Zwierz, Pérez-
Delgado, and Kok, 2010). These resources can refer either to a
number of subsystems or to the translational power of the
Hamiltonian, which is higher for nonlinear dynamics (that is,
Hamiltonian terms with products of more than quadratic
operators). For example, a self-Kerr Hamiltonian with a term
proportional to (a7a)? has more translational power than that
with just a'a. The Heisenberg scaling does, however, go
beyond 1/N for certain initial quantum states. For example,
the QFI for phase estimation with NOON states scales as 1/N?
(Bollinger et al., 1996; Dowling, 1998). The QFI has also been
used to investigate certain relativistic settings (Pinel er al.,
2013; Ahmadi, Bruschi, and Fuentes, 2014; Tian et al., 2015;
Hao and Wu, 2016) and has been proposed as a probe of
spacetime structure (Du and Mann, 2021).

IV. PROPOSED TESTS OF GRAVITY WITH MASSIVE
QUANTUM SYSTEMS

Equipped with tools to model massive systems in the
laboratory, we now ask the questions: What are the possible
ways in which gravity influences quantum systems, and how
can these effects be detected? A number of diverse and
creative proposals have been put forward that probe the
properties of gravity, quantum mechanics, and their interfaces.
The goal of this section is to outline the main directions of
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research and key proposals that allow tests to be performed
with massive quantum systems. We begin by considering
gravity from a classical source, such as Earth’s gravitational
fields, and its detection by quantum systems (Sec. IV.A).
Specifically, we focus on proposals for how quantum proper-
ties can enhance the sensitivity of the probe. We proceed to
consider proposals where gravity causes decoherence of a
quantum probe (Sec. IV.B), including different types of
decoherence proposals as well as nonlinear modifications
of quantum theory. We then review recent proposals for
detecting gravitationally induced entanglement (Sec. IV.C).
Finally, Sec. IV.D outlines additional proposals that do not
strictly fit into the other sections but are still relevant to the
topic of this review.

A. Precision tests of gravity

One approach for precision tests of gravity relies on the use
of sensitive mechanical resonators. This section provides a
review of weak-force sensing with massive systems in the
quantum regime. We restrict ourselves here to proposals
where the sensor is in the quantum regime, but where gravity
originates from a classical source. This should be contrasted
with the tests discussed in Sec. IV.C, where the quantum
system itself is considered as a source of the gravitational
field. Many precision tests of gravity have already been
performed with classical mechanical resonators and atom
interferometers. See Sec. V.A for an overview of these
experiments and Fig. 7 for a summary of force sensitivities
that have been achieved to date.

1. Weak-force detection with backaction evading measurements

The large mass of massive quantum systems (compared
with the mass scale of single atoms) means that they couple
more strongly to gravity. A common goal of precision
gravimetry with massive quantum systems is to resolve the
force that affects the center of mass of the mechanical
resonator. Usually, a probe field or two-level system is used
for the control and readout of the sensor. For a probe field
backaction noise and the inherent uncertainty of field fluctua-
tions give rise to the SQL, which we reviewed in Sec. II1.D.2,
beyond which displacements cannot be resolved. The limits
for a moving-end mirror were first discussed by Arcizet et al.
(2006), and the first experimental observation of radiation
pressure due to shot noise was performed by Purdy, Peterson,
and Regal (2013).

Backaction evading (BAE) schemes constitute a key re-
source for weak-force sensing since they allow for an increase
in measurement precision without adding additional noise
during readout. The effect of measurement backaction can be
circumvented if, rather than attempting to measure both of the
mechanical quadratures, one merely couples the light field to
one of the quadratures such that it becomes a conserved
quantity (Thorne et al., 1978; Braginsky, Vorontsov, and
Thorne, 1980). Concretely, this means that if we couple only
the X,, = (b" + b)//2 quadrature of the mechanical oscil-
lator to the radiation pressure of the photon field « 7, the
interaction Hamiltonian is H,, « 71X,,, which implies that
[H;,.X,,] =0. An observable that commutes with the

Rev. Mod. Phys., Vol. 97, No. 1, January—March 2025

Hamiltonian is also referred to as a quantum nondemolition
(QND) variable since it can be measured repeatedly without
destroying the quantum state.

Coupling only one quadrature to the light field is exper-
imentally challenging since it would require a time-dependent
coupling between the quadratures and the detected field.
This can be achieved in a scheme for a cavity-optomechanical
system driven on both the red and the blue sideband (Clerk,
Marquardt, and Jacobs, 2008) or by modulating the opto-
mechanical coupling strength (Clerk, Marquardt, and Jacobs,
2008). As discussed in Sec. III.A, the coupling between the
cavity mode a and the mechanical oscillator b in the
frame rotating with the cavity frequency w,. is given by
H; ~ —hgy(a*sa + asa’) (b + b). A drive can be modeled
by Ay = a(t)a + o' (1)at, with a(t) the complex drive ampli-
tude. For a drive on the red sideband at . — ,,, with @,, the
mechanical frequency, we have a(1) « e!(®<=“n)" giving rise to
the interaction Hamiltonian H, « a'h +H.c. in the frame
rotating with w, for the photons and w,, for the mechanical
modes and in which we neglected counterrotating terms.
Similarly, a drive on the blue sideband at w.— w,, and
a(t) « e'@+en)! gives rise to the interaction Hamiltonian
H, < a'h’ +H.c. Combining the drives on the red and blue
sidebands, we obtain

H xX.X,. (72)

That is, the interaction Hamiltonian couples the quadrature
X, = (a* + &)/+/2 of the cavity to the quadrature X,, of the
mechanical mode such that both X,, and X, are constants of
the motion since [H;,X,,] = [H,.X,] = 0. Since the mechani-
cal oscillator couples only to the X,, quadrature of the cavity,
information on its motion propagates only into the conjugate
cavity quadrature P, = i(a’ —a)/+/2. This allows us to
repeatedly (or continuously) measure P, and infer X,, to
arbitrary precision. For a more detailed theoretical discussion
of this scheme, see Clerk (2020) and the reviews by Braginsky
and Khalili (1996) and Clerk et al. (2010). The exact condi-
tional dynamics of an optomechanical system driven on both
sidebands were analyzed in detail by Brunelli, Malz, and
Nunnenkamp (2019).

The previously described scheme was experimentally
implemented in a superconducting electromechanical device
by Suh et al (2014), which allowed the detection and
reduction of backaction and the detection of a single quad-
rature below the zero-point fluctuations in the optical domain
by Shomroni ez al. (2019). BAE was also realized in hybrid
optomechanical systems of a macroscopic mechanical oscil-
lator and a spin oscillator (Mgller et al., 2017). A more
elaborate BAE scheme relies on constructing an effective
oscillator out of two and measuring a collective variable
(Woolley and Clerk, 2013), which was experimentally real-
ized in a microwave circuit with two mechanical oscillators
(Ockeloen-Korppi et al., 2016), thereby achieving a meas-
urement precision below the zero-point fluctuations.
Backaction noise can also be canceled through the addition
of an ensemble of cold atoms that act as a negative-mass
oscillator and allow for sensing beyond the SQL
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(Motazedifard et al., 2016). Furthermore, in a scheme with
four drives (de Lépinay et al., 2021), backaction was evaded
and the entanglement between the two oscillators was
demonstrated.

Apart from improving the measurement precision, BAE
schemes result in the squeezing of the mechanical modes. In a
generic, parametrically driven mechanical oscillator, the
attainable amount of squeezing is limited due to the onset
of parametric instability. However, continuous BAE measure-
ments allow us to overcome this 3 dB limit for squeezing (Lei
et al., 2016). Beyond the previously discussed schemes that
rely on measuring a single quadrature, an alternative approach
to cancel quantum noise and overcome the SQL of force
sensing using coherent feedforward quantum control was
proposed by Tsang and Caves (2010). Another proposal
showed that mechanically driving the oscillator within the
BAE scheme leads to a monotonic response of the cavity,
which can be beneficial for sensing force gradients (Arvidsson
et al., 2024).

Yet another direction for resolving the energy levels of a
mechanical oscillator in an electromechanical experiment
(Dellantonio et al., 2018) is to use QND measurements to
bring us a step closer to understanding how quantum jumps
between phonon states work, which is challenging since the
coupling to an environment makes it difficult to detect
mechanical mode occupation. The notion of QND variables
was generalized to a quantum-mechanics-free subsystem
(Tsang and Caves, 2012), i.e., subsystems in which all
observables commute and their expectation values are gov-
erned by classical equations of motion.

2. Additional weak-force detection schemes

Theoretical proposals for force sensing with massive
quantum systems generally take one of two approaches: either
they show that the SQL can be circumvented through novel
protocols, such as backaction evading measurements (see
Sec. IV.A.1) and the addition of quantum resources, or they
consider the fundamental sensitivity that the systems can
achieve, often quantified by the classical and quantum Fisher
information (see Sec. III.D.3). Both approaches limit the
precision of the measurement. Generally, the Fisher informa-
tion quantifies the precision that can be achieved beyond
the SQL.

Apart from backaction evasion, quantum resources such as
squeezing and entanglement are required for beating the SQL
(Zhang and Zhuang, 2021). In optomechanical systems
squeezing of both optical and mechanical motion can be
implemented in a number of ways; see Sec. V.B.1 for an
overview of experiments. For example, in a mirror-in-the-
middle optomechanical setup that results in two coupled
cavity modes (Xu and Taylor, 2014), the SQL is surpassed
due to the resulting squeezing of the light. The inclusion of a
single- or two-mode parametric amplifier (PA) (Mollow and
Glauber, 1967) with either &'+ a> (single mode) or
ab+a'hb' (two modes) results in sensing precision beyond
the SQL (Motazedifard et al., 2019; Zhao et al., 2020).
Further, in dissipative optomechanical systems, a PA can
counteract the negative effects of mechanical damping, which
allows us to go beyond the SQL (Huang and Agarwal, 2017).
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Advantages through squeezing can also be achieved by adding
a nonlinear medium in the cavity (Peano et al, 2015).
Squeezing has also been shown to improve the precision of
LIGO (Aasi et al., 2013; Buikema et al., 2020).

Beyond squeezing, entanglement plays a crucial role in
sensing and is a key ingredient for achieving a sensitivity that
scales with the Heisenberg limit (Zhuang, Zhang, and Shapiro,
2018). Most importantly, by performing measurements with N

entangled sensors, we may go beyond the 1/v/N scaling
achieved with independent probes and possibly obtain a
scaling with 1/N. For example, EPR-entangled states have
been proposed for use in LIGO (Ma et al., 2017). Brady et al.
(2022) proposed the use of an array of mechanical sensors
connected by entangled light, with applications for dark-
matter searches; see Sec. IV.A.5. However, it has been shown
that sensors with multicarrier optical modes do not outperform
their single-mode counterparts (Branford, Miao, and Datta,
2018). It has been experimentally demonstrated that using two
optically entangled mechanical membranes leads to a 40%
improvement in the shot-noise-dominant regime (Xia et al.,
2023) and allows a scaling better than 1/+/N.

Another method for improving the precision of quantum
sensors involves noise mitigation and engineering of the
surrounding noise bath. A structured non-Markovian envi-
ronment was found to amplify the susceptibility for weak-
force sensing with an optomechanical sensor (Zhang et al.,
2017). More broadly, the use of quantum error correction
techniques has been proposed for quantum metrology (Diir
et al., 2014; Kessler et al., 2014), even to the extent that the
Heisenberg limit can be achieved (Zhou et al., 2018).

Yet another proposal for high-precision sensing, albeit
challenging, is through the use of macroscopic superpositions
in the sense of a large mass being in a quantum superposition
of two distinct spatial locations. A method for generating such
superpositions that is particularly effective for large masses is
to couple a spin with a mass through a magnetic field gradient
(a Stern-Gerlach mechanism, as described in Sec. IV.C) (Scala
et al., 2013; Bose, 2016; Wan et al., 2016; Bose et al., 2017;
Marshman et al., 2020, 2021; Margalit et al., 2021; Zhou
et al., 2022, 2023), which followed from general ideas to
couple ancillary systems such as a quantized electromagnetic
mode in a cavity with a mechanical object (Bose, Jacobs, and
Knight, 1997, 1999; Mancini, Man’ko, and Tombesi, 1997;
Marshall et al., 2003; Armata et al., 2017; Qvarfort et al.,
2018) and other ancillary quantum systems (superconducting
qubits, etc.) (Bose, 2006; Bose and Agarwal, 2006; Johnsson,
Brennen, and Twamley, 2016). Such quantum superpositions
can be used to detect weak forces to a precision linear in time
(essentially Heisenberg scaling), as the accumulated relative
phase between the superposed components grows linearly in
time. Moreover, at the end of such quantum ancilla-induced
interferometry, the phase can be sensed by simply measuring
the ancilla. Example applications in the gravitational context
involve detection of accelerations to high sensitivity
(Johnsson, Brennen, and Twamley, 2016; Qvarfort et al.,
2018; Marshman et al., 2020), gravity gradient noise (Toro§
et al., 2021), space debris (Wu, Toro$ et al., 2023), and the
possibility to detect gravitational waves with a meter-sized
compact interferometer for nano-objects (Marshman et al.,
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2020) [applications also exist outside the gravitational
domain, for example, to detect neutrinos (Kilian ez al., 2023)].

The QFI (see Sec. I11.D.3) allows us to consider sensitivities
beyond the SQL. In the linearized optomechanical regime, the
QFI has been considered for squeezed state inputs (Lee ef al.,
2022). In the nonlinear regime of optomechanics (see
Sec. III.A), the QFI was computed for detecting a constant
(Armata et al., 2017; Qvarfort et al., 2018), as well as time-
dependent gravitational potentials including gravitational
waves (Qvarfort, Plato et al, 2021). The QFI was also
computed for an opto-magnon-mechanical setup, where
the optomechanical system senses small changes in the
separation between two magnets (lakovleva, Sarma, and
Twamley, 2023).

For further reading on sensing with mechanical resonators,
see the following dedicated reviews on sensing, which cover
levitated systems (Rademacher, Millen, and Li, 2020), hybrid
optomechanical-BEC systems (Motazedifard, Dalafi, and
Naderi, 2021), and cavity optomechanics (Li et al, 2021,
Liu, Liu, Ren et al., 2021).

3. Weak-force detection with BECs

The mass of a BEC is generally lower than that of a
composite quantum resonator, which means that it generally
couples more weakly to gravity; see Sec. V.A for a comparison
of experimental parameters. However, the fact that all atoms in
a BEC are identical makes it possible to control it extremely
well in the laboratory. As such, BECs have been explored for
force sensing. Gravity sensing with BECs can be done using
trapped atoms, or atoms in free fall. In the free-fall case, the
precision depends on the time of flight. The time of flight in
atom interferometry can be increased using Bragg diffraction
and Bloch oscillations of a BEC to slow down the particles
(Abend et al., 2016). In such schemes interactions are
undesirable because they reduce the coherence time of the
interferometer (Pereira dos Santos et al., 2017). However,
interactions can be used to prepare initial states that have
higher sensitivities (Szigeti et al., 2020). Nevertheless, spatial
interferometers cannot be reduced in size without losing
precision. An alternative that could resolve this limitation is
trapped BECs. Interactions in a trapped BEC give rise to
phonons. Phonon modes are sharp in frequency, while the
atoms are completely delocalized within the trapped potential.
Recent work shows that interferometry in the frequency
domain using phonon modes can be used to miniaturize
detectors while still retaining high precision (Howl and
Fuentes, 2023). In frequency interferometry the precision is
limited by the lifetime of the states, not by the size of the
system. Squeezed states of phonon modes can be used to
measure the gravitational field and its gradient with high
precision (Fuentes et al., 2019; Bravo, Ritzel, and Fuentes,
2020) since the frequency of the modes is affected by the
gravitational field. Phonon modes can also be used to measure
oscillating gravitational fields, such as the acceleration and
gradient of an oscillating mass close to the BEC (Riitzel ez al.,
2018). Single phonon measurement precisions have been
reached in BEC analog experiments (Steinhauer, 2022).
The most relevant limiting factor is particle loss due to
three-body recombination. The resonance of phonons modes
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to external gravitational fields has been proposed to detect
high-frequency gravitational waves and searches for dark
matter (Sabin er al., 2014; Howl and Fuentes, 2023). A
BEC trapped in a double well has been proposed in searches
of dark energy (Hartley ef al., 2024b), and a proposal to show
that gravity degrades entanglement between two BEC in a
space-based experiment was presented by Bruschi, Sabin et al.
(2014). While there are only theoretical proposals, the center-
of-mass oscillations of a BEC was used to measure Casimir-
Polder forces in the lab by Harber et al. (2005). Their work
shows that BEC technology is useful in measuring small
forces.

4. Deviations from the Newtonian potential

An open problem in modern physics is the discrepancy
between the observation of a small cosmological constant and
the predicted value from particle physics theory (Padilla,
2015). Modified gravity theories (MGTSs) provide a solution to
this dilemma in that some of them predict deviations from
general relativity while simultaneously addressing the dis-
crepancy with particle physics. For a review of MGTs, see
Clifton et al. (2012). To address the fact that no deviations
from general relativity have been observed thus far, mecha-
nisms are introduced to explain the absence of large deviations
in tests that have been performed thus far. One such proposal,
known as a chameleon mechanism (Brax et al., 2004; Khoury
and Weltman, 2004a, 2004b), resolves the discrepancy via
the introduction of a screening mechanism that depends on the
local mass density. Note, however, that it does not solve the
cosmological constant problem. According to the proposal,
deviations in regions with high density, such as the Solar
System, are suppressed. Instead, high vacuum and extremely
sensitive laboratory tests are needed. For current bounds on
chameleon theories, see the figures given by Burrage and
Sakstein (2018).

Most MGTs can be parametrized into the following
Yukawa-like modification to Newton’s potential:

GMSmp
r

V(r) = (14 ae™"/%), (73)
where M is the source mass, m,, is the probe mass (not to be
confused with the Planck mass Mp), a is a dimensionless
modification to the strength of the potential, and 4 is a length
scale beyond which the modification is exponentially sup-
pressed. Current Solar System tests of Newton’s laws have
considerably constrained the free parameters of such modified
theories; see Fig. 8 of Murata and Tanaka (2015). The
parameter regimes that remain to be excluded include small
|a| and A, which correspond to the detection of extremely
weak forces at short range.

The main avenue for searches for MGTs with massive
quantum systems is via precision tests of gravity, which we
covered in Secs. IV.A.1-IV.A.3. Several experiments have
already been performed with mechanical resonators in the
classical regime to bound deviations from the Newtonian
potential, including with cantilevers (Chiaverini et al., 2003).
A key advantage for mechanical resonators such as levitated
systems is that they are relatively confined in space and
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therefore can be used to test extremely short length scales. See
Moore and Geraci (2021) for a review of searches for new
physics with optically levitated sensors. Additional proposals
have been put forward for tests with levitated optomechanical
devices (Blakemore et al., 2021; Chen, Liu, and Zhu, 2022),
as well as specific tests of the chameleon mechanism (Betz
et al., 2022). However, while the larger mass of mechanical
resonators increases the strength of the Newtonian potential
and thus the deviations, their larger volume brings with it
additional challenges. For example, in the context of the
chameleon mechanism, the large radius of a levitated nano-
mechanical resonator was found to additionally screen the
interaction (Qvarfort, Ritzel, and Stopyra, 2022). Another
major challenge is the presence of Casimir forces, which
increase at small distances. See Onofrio (2006) for a review of
measurements of Casimir forces in the context of searching for
deviations from the Newtonian potential.

5. Tests of the equivalence principle and dark-matter searches

The equivalence principle (EP) states that all forms of
matter couple to gravity in the same way. An additional
formulation known as the weak equivalence principle (WEP)
states that gravitational mass and inertial mass are the same.
Violation of the EP can be indicative of modified theories of
gravity (Hui, Nicolis, and Stubbs, 2009) or physics beyond the
standard model (Damour, 2012).

As pointed out in Sec. II.B, there is a conflict between the
EP and quantum mechanics. Nevertheless, several ideas have
been put forward for testing the EP with quantum systems.
Perhaps the simplest is a classical test of the Eotvos ratio,
which defines the correlation between inertial mass and
gravitational mass and which serves as a test of the WEP.
The Eotvos ratio is defined as

|(mi/mg)A - (mi/mg)Bl
‘(mi/mg)A + (mi/mg)B‘

lay — aB| _
las + agl

Na—p = . (714)

where a, and ap are the accelerations of bodies A and B and
m; and m are the inertial and gravitational mass, respectively.
The advantage of using quantum systems pertains mainly to
the increased precision that they offer as sensors. Most of the
measurements of the E6tvos ratio with quantum systems have
been carried out through atom interferometry (Schlippert
et al., 2014; Duan et al., 2016; Overstreet et al., 2018;
Albers et al., 2020; Asenbaum et al., 2020). The best Eotvos
ratio achieved to date is that of the MICROSCOPE mission, at
[1.5 £ 2.3(stat) & 1.5(syst)] x 10~!> (Touboul et al., 2022).
See also Sec. V.A.l for an overview of state-of-the-art tests
with cold atoms.

In general, there appears to be no clear consensus in the
community on how the EP should be formulated for quantum
systems, since there are often additional aspects that need to
be taken into account. One of the earliest works on this topic
showed that, for the simple case of a particle in an external
gravitational field, the WEP does not apply to a quantum-
mechanical description of the problem (Greenberger, 1968).
While the classical equations of motion can be made inde-
pendent of mass, the same is not true for quantum mechanics,
since mass enters into the quantization rules. However, the
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opposite point of view has also been argued. Starting with
linearized gravity perturbations as a massless, spin-2 gauge
field coupled to itself and to matter, the equivalence principle
must hold for quantum systems for the theory to be consistent
(Davies and Falkowski, 1982). It has also been argued that, for
quantum particles in free fall, their expectation values for
position and momentum are consistent with the WEP (Viola
and Onofrio, 1997).

The influence of internal degrees of freedom of quantum
systems on the formulation of the EP has been raised in
several works. Since the EP stipulates equivalence between
mass and energy, it must take into account the internal
(potentially superposed) energy states of a quantum system.
Based on this, a quantum formulation of the EP has been
proposed that requires equivalence between the rest, inertial,
and gravitational internal energy operators (Zych and Brukner,
2018). An experimental test based on this proposal was put
forth by Orlando er al. (2016), who used trapped spin-1/2
atoms, and Rosi et al. (2017), who later performed the test
using a Bragg atom interferometer. The test provided con-
straints on the off-diagonal elements of the mass operators and
additional constraints of the Etvos ratio for the WEP.
Similarly, the WEP can be explicitly considered for internal
degrees of freedom. Two distinct formulations of the WEP
were proposed by Anastopoulos and Hu (2018). The first
formulation states that the probability distribution of position
for a free-falling particle is the same as the probability
distribution of a free particle (up to a mass-independent shift
of its mean). The second states that any two particles with the
same velocity wave function behave identically in free fall,
regardless of their masses. It has also been stipulated that a
quantum version of the EP should be linked to a notion of
causality (Hardy, 2018) since it is always possible to transform
to a quantum reference frame in which we have a definite
causal structure in the local vicinity of any point. Here the
notion of a quantum reference frame refers to frameworks
developed by Guérin and Brukner (2018) and Giacomini,
Castro-Ruiz, and Brukner (2019) and related work by de la
Hamette et al. (2022).

Tests of the EP can also aid in the search for dark matter
since some dark-matter models [such as light scalar dark
matter (Hees et al., 2018)] predict deviations from the EP. See
Carney et al. (2021) and Kilian ez al. (2024) for overviews of
quantum sensing with mechanical resonators for the detection
of dark matter. It has been proposed that mechanical oscil-
lators with masses below or around 1 kg operating near the
standard quantum limit could be used to detect ultralight dark-
matter candidates (Carney, Hook et al., 2021). In addition, an
optical cavity with mirrors made of different materials could
facilitate coupling channels for vector dark matter (Manley
et al., 2021). Heavier dark-matter candidates can also be
detected by scattering off a mechanical resonator. A large
array of femtogram masses could potentially detect dark-
matter candidates at around 10 keV, with the advantage that
they also provide directional sensing (Afek, Carney, and
Moore, 2022). A recent white paper by Brodeur er al.
(2023) focused on detecting deviations in momentum kicks
resulting from exotic decay processes. They carefully moni-
tored the position of levitated spheres using displacement
sensing.
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B. Gravitational decoherence, semiclassical models, self-energy,
and gravitationally induced wave-function collapse

Gravity can impart a coherent signal on the quantum state,
which can be detected using quantum metrology tools; see
Sec. IV.A. However, there are a number of theoretical
proposals where the quantum state no longer follows a unitary
evolution when interacting with gravity. Here we cover
proposals ranging from decoherence arising from quantum
and stochastic gravity to modifications to the Schrédinger
equation. We also refer the interested reader to the compre-
hensive reviews dedicated to these topics by Bassi, GroBardt,
and Ulbricht (2017) and Anastopoulos and Hu (2022).

1. Gravitational decoherence

Decoherence is the process by which off-diagonal elements
in the density matrix of a quantum system are gradually
reduced to zero. There are many proposals for how an external
gravitational field interacts with the quantum system to cause
decoherence, as well as dissipation and thermalization, in the
regime of gravity at low energies. Unlike other sources of
decoherence, such as those from fluctuating electromagnetic
fields, gravitational decoherence is universal, and its influence
cannot be shielded.

The common starting point for most gravitational
decoherence proposals is the linearized metric
9w = M + h;tw (75)

where 7, is the Minkowski background spacetime and /4,
denotes the fluctuations. Fluctuations can emerge within the
perturbative quantum theory of gravity [see Eq. (20)], can be
postulated in a fundamentally classical theory of gravity [see
the discussion near Eq. (89)] or could emerge as a consequence
of a minimum length scale of the spacetime fabric
(Hossenfelder, 2013). Regardless of its physical origin, the
fluctuations of the gravitational field are expected to decohere a
quantum system as in any other fluctuating field; see Sec. II.B.

In most proposals the structure of the dynamics of a massive
quantum system moving along one axis is captured with the
following master equation:

oh==5 AL (76)

where we have omitted the Hamiltonian terms for brevity and
C (A) is a constant prefactor (an operator) specific to the
model [see Eq. (34) with only the jump operator L; = v/CA].
It is then easy to obtain the decoherence rate y in the
eigenbasis of the operators A. Suppose that a; and a, are

two real-valued eigenvalues of the operator A. By applying
(ar| (Jag)) from the left-hand side (right-hand side) of
Eq. (76) and multiplying by 2, we readily find that

y = CAa?, (77)

where we have defined Aa = a; — ag (which can be inter-
preted as the superposition size). When A is not Hermitian, the
analysis in Egs. (76) and (77) requires generalizations; see the
references cited later in the review for further details.
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Anastopoulos and Hu (2013) and Blencowe (2013) con-
sidered gravitational waves (forming an environmental bath)
as a source for the fluctuations £, . It was found that a free
particle should decohere with the operators in Eq. (76) given
by kinetic energy A = p?/2m, where p is the momentum
operator and m is the particle mass. The characteristic
decoherence rate is given by

9 Tp <AE> (78)
327rrp O \Ep

where 7p (Tp) is the Planck time (Planck temperature), AE
(Ep) is the difference in kinetic energy of a zero momentum
and a finite momentum state (Planck energy), and O is a free
parameter of the model. In earlier works a general non-
Markovian master equation for the interaction between N
gravitating quantum particles was derived by Anastopoulos
(1996), a complementary analysis was given by Oniga and
Wang (2016), and a generalization for photons was discussed
by Lagouvardos and Anastopoulos (2021).

Decoherence due to the emission of gravitational waves
was studied by Suzuki and Queisser (2015). A relation
between decoherence and the classical limits in terms of
the quadrupole radiation formula and backreaction dissipation
was discussed by Oniga and Wang (2017). The analysis from
Toros, Mazumdar, and Bose (2024) recovered the classical
results for a linear quadrupole and showed that only systems
with quadrupoles would decohere, while a free particle would
not decohere. For the simplest case of a harmonically trapped
particle (which has a linear quadrupole), it was found that the
decoherence operator is A = b* (with b the mode operator of
the harmonic oscillator). The associated decoherence rate for
number states |n) is given by

r=5 (%) @ -a. (19)

where w is the frequency of the harmonic trap, E = Aw (Ep) is
the difference between the energy levels (Planck energy), and
7 denotes the number operator. Starting with Einstein’s
equivalence principle, it was found that the emission of
quantized gravitational waves can happen only via the
transition n — n — 2, which is prohibited for the states |1)
and |0). The number states |0) and |1), or any superposition of
these states, are thus protected from decoherence via quan-
tized gravitational waves, resulting in a vanishing decoherence
rate in Eq. (79). For a discussion about the bremsstrahlung
effects, see Weinberg (1965).

The decoherence effect induced by gravitons in the context
of gravitational-wave detectors was discussed by Parikh,
Wilczek, and Zahariade (2020) and Parikh, Wilczek, and
Zahariade (2021a), while Kanno, Soda, and Tokuda (2021)
also considered matter-wave interferometry. The approximate
decoherence rate obtained for an interferometer consisting of
two paths (i.e., left and right paths) is given by

12
y = 10Q,, <m”) , (80)

mpc
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where m (mp) is the mass of the system (the Planck mass), 2v
is the relative speed between the states following the left and
right paths of the interferometer, and €2, is a high-frequency
cutoff (which is inversely proportional to the superposition
size Ax, i.e., Q, ~ c/Ax).

A class of stochastic models can be obtained by considering
the nonrelativistic limit of classical field equations and
assuming stochastic fluctuations of the metric. Starting with
the Klein-Gordon equation, it was found that the decoherence
operator is A = p?/2m, where p is the momentum operator
and m is the particle mass (Breuer, Goklii, and Limmerzahl,
2009). The decoherence rate is given by

TC
"
where 7, is a free parameter characterizing the correlation time
of the stochastic bath and AFE is the difference in kinetic
energy. A generalized analysis using the Foldy-Wouthuysen
method capturing higher-order corrections was performed by
Asprea et al. (2021).

Another proposal for decoherence is related to composite
quantum particles such that individual parts of the systems
follow different geodesics. Pikovski et al. (2015) showed that
gravity entangles the internal and center-of-mass degrees of
freedom, which in term decoheres the center-of-mass degrees
of freedom of a system, for example, of a crystal. An equation
of the form in Eq. (76) was obtained with the decoherence
operator A= X, where X is the center-of-mass position
operator. The decoherence rate was given as

y =-SAE?, (81)

7\/]ng,,TAx
N V2he? ’

where N is the number of degrees of freedom in the crystal, g
is Earth’s gravitational acceleration, k; is the Boltzmann
constant, 7 is the temperature, and Ax is the spatial super-
position size. The proposal has been the source of much
discussion in the community; see Bassi, GroBardt, and
Ulbricht (2017) and Pikovski et al. (2017) for a summary
of these discussions.

Experimental signatures on matter-wave interferometers
were analyzed by Lamine ef al. (2006), Wang, Bingham,
and Mendonca (2006), and Asprea et al. (2021). While many
of these proposals suggest different mechanisms behind the
gravitationally induced decoherence, a large number result in
similar reductions of the density matrix elements. As a result,
there are tests that search for gravitational decoherence,
regardless of its origin. Some of the first proposals for testing
gravitational collapse and decoherence with optomechanical
systems were given by Bose, Jacobs, and Knight (1999) and
Marshall ez al. (2003). In this protocol a single optical mode is
passed through a beam splitter and into an interferometer,
wherein one of the arms interacts with a mechanical resonator
according to the optomechanical Hamiltonian in Eq. (28).
The protocol has been analyzed with the addition of mechani-
cal position-damping noise (Adler, Bassi, and Ippoliti,
2005; Bassi, Ippoliti, and Adler, 2005); see Sec. IIL.B.I.
Additionally, the protocol has been examined in the high-
temperature limit (Bernad, Di6si, and Geszti, 2006). It was
further developed by Kleckner et al. (2008), where a number

(82)
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of practical aspects were taken into account. Such an experi-
ment has not yet been performed. It has been pointed out that
the phases picked up through the optomechanical interaction
can be partially reproduced through classical dynamics
(Armata et al., 2016).

Should gravity cause decoherence, it is possible that the
mechanism itself relies on a modification of quantum mechan-
ics. If the experiments are still modeled using standard
quantum mechanics, it can become difficult to distinguish
the decoherence effects accurately. This scenario was consid-
ered by Pfister et al. (2016), who proposed a general
information-theoretic measure of decoherence. While many
approaches consider continuous variable systems, there are
also results for qubit states (Kok and Yurtsever, 2003).

2. Nonlinear modifications

A key cornerstone of quantum mechanics is that the
Schrodinger equation is a linear equation for the state of
the system |y) and that the expectation value of an observable
O is a bilinear function of the state, for example, (i|O|y). We
can, however, devise a modification of quantum mechanics
where the dynamics becomes nonlinear in the state |y) or
construct expectation values with a nonbilinear dependency
on the state (Weinberg, 1989a, 1989b). Such modifications are
motivated by the measurement problem (see Sec. I.B) and
emerge from elementary considerations about semiclassical
gravity. Semiclassical gravity is viewed by some as an
effective theory, i.e., an approximation to a fundamental
quantum theory of gravity. Within this approximation one
can investigate the backreaction of matter on the gravitational
field, generalizing the results of quantum field theory in
curved spacetime (see Sec. II.A.4), and can model classical
stochastic fluctuations of the gravitational field (Hu and
Verdaguer, 2008). An alternative viewpoint is that semi-
classical gravity is not a mere approximation but rather the
fundamental theory where gravity remains classical while
matter is quantized (Kibble, 1981).

A conceptual start for such a nonlinear modification of
quantum mechanics is given in the semiclassical Einstein
equation (Mgller et al., 1962; Rosenfeld, 1963; Ruffini and
Bonazzola, 1969)

872G .
Gm/ = 7 <Tm/>’ (83)
where on the left-hand side we have the classical Einstein

tensor G, and on the right-hand side we have the expectation

value of the quantum stress-energy tensor T;w taken with
respect to the state of the quantum matter. The coupling in
Eq. (83) is arguably the simplest way to couple a classical
gravitational field to quantized matter, but more importantly it
is the expected theory when the matter is in well-localized
states. In such a case matter can still be approximately
described using a classical stress-energy tensor 7', such that

T, = (YA"”D), but beyond this regime, such as when we have
spatial superpositions, there is no consensus about its validity,
as we later discuss.

In the nonrelativistic regime the gravitational field acted on

by a particle in the state |y) thus depends on the value of

015003-27



Sougato Bose et al.: Massive quantum systems as interfaces of quantum ...

(y|T,,|lw). Hence, we expect the associated nonlinear
Schrédinger equation to have a cubic dependency on the
state of the matter system, i.e.,

in ) & Gl (34)

This equation, which was proposed by Didsi (1984) and
Penrose (1996, 1998), has become known as the Schrodinger-
Newton equation. A derivation from first principles of Eq. (84)
is, however, still a subject of debate (Christian, 1997; Adler,
2007; Giulini and GroBardt, 2012; Anastopoulos and Hu,
2014a, 2014b).

Such a hybrid quantum matter-classical gravity model has
its appeal in the conceptual simplicity of Eq. (83), with
testable predictions differing from those arising from the
framework of perturbative quantum gravity; see Sec. IL.A.7.
However, unlike the latter, which is a fully consistent
relativistic theory, deterministic nonlinear modifications of
the Schrodinger equation, such as the Schrodinger-Newton
equation, are at odds with the requirement of no-faster-than-
light signaling to make them, at least conceptually, unsatis-
factory (Gisin, 1989; Polchinski, 1991).

Nonetheless, to date, no laboratory experiments have been
able to rule out the Schrodinger-Newton equation.
Furthermore, it has been suggested that it might be possible
to resolve the issue of superluminal signaling if one takes into
consideration the measurement problem with a suitable
prescription of the wave-function collapse (Bahrami et al.,
2014; Bera, Mohan, and Singh, 2015), and hence the
predictions of the Schrodinger-Newton equation might still
remain valid in specific domains; see Sec. IV.B.3 for a
discussion of possible modifications. For a discussion within
the context of generalized probabilistic theories and its
relation to classical state space, see Mielnik (1974, 1980)
and Galley, Giacomini, and Selby (2022). We provide a
summary of the current experimental endeavors to test the
Schrodinger-Newton equation here.

Starting with the semiclassical Einstein equations in
Eq. (83), we obtain in the nonrelativistic limit the one-particle
Schrodinger-Newton equation (Didsi, 1984)

d 22
v = L) - [l )
where m is the mass of the particle, 7 (p) is the position
(momentum) operator, and we have introduced the wave
function y(z,s) = (s|y,). The generalization to the N-particle
case can be obtained from Eq. (85) by replacing the source of
the gravitational field with |y (z,sy,...,sy)[%,

hd - _G B ds tSl,..., N)|2
! Elllft>—_ m; H l

r - Skl
where we have omitted the kinetic terms for brevity and
Jok=1,...,N.

Equations (85) and (86) form the starting point for a number
of experimental proposals. While some analytical results can
be obtained (Tod and Moroz, 1999) in most situations, one has
to resort to numerical simulations to make quantitative

ly), (86)
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predictions using the nonlinear Schrodinger-Newton equation,
as in the case of the formally similar Gross-Pitaevskii equation
(Gross, 1961; Pitaevskii, 1961). The key prediction of the
Schrodinger-Newton equation is the modification of the free
spreading of the wave function as the last term in Eq. (85),
with its Newtonian-like 1/r dependency, can be viewed as a
self-gravity term that tends to localize the system in space. A
number of papers have investigated the free spreading in space
with the required parameter regime for experimental tests
(Moroz, Penrose, and Tod, 1998; Carlip, 2008; Giulini and
GroBardt, 2011; Bahrami et al., 2014; Colin, Durt, and Willox,
2016), and there have been proposals to test secondary effects
in harmonic traps such as squeezing (Yang et al., 2013) and
energy shifts (GroBardt et al., 2016).

Additional dependencies on the state of the system |y) can
be introduced to other parts of the quantum formalism (Sorkin,
1994). Motivated by considerations about general covariance,
some have argued that all quantities in physical theories must
be dynamical (Norton, 1993), suggesting corrections to the
Born rule (Berglund et al., 2022). Cubic corrections to the
Born rule O(|y)?), i.e., triple interference phenomena, have
been theoretically discussed in the context of the Talbot
interferometer (Berglund et al., 2023). The class of nonlinear
modifications introduced by Weinberg (1989a, 1989b) have
also recently been analyzed in the context of gravitationally
induced entanglement (Spaventa, Lami, and Plenio, 2023).

3. Nonlinear and stochastic modifications

The quest of unifying quantum mechanics and gravity into
a single theory and the measurement problem from quantum
foundations at first appear to be two distinct problems; see
Sec. IL.LB. However, using an elementary analysis, Penrose
(1986) showed that there appears to be a deep conflict between
the superposition principle in quantum mechanics and the
equivalence principle of general relativity. This result could be
viewed as another hint of the necessity to modify gravity, i.e.,
to construct a quantum theory of gravity. However, any theory
where the superposition principle remains valid would not
resolve the tension between quantum and classical physics,
thereby leaving the measurement problem unanswered.
Another option is that the conflict instead signifies the need
to also modify quantum mechanics to accommodate notions
of gravity, i.e., gravitization of quantum mechanics (Penrose,
1986, 1996, 1998, 2014). Such a theoretical program, while
still in its tentative state, suggests that it might be possible to
consistently couple classical and quantum systems (in this
context gravity and matter, respectively) and to solve the
measurement problem simultaneously. We remark, however,
that other programs for the emergence of classicality, fully
compatible with unmodified quantum mechanics, are also
considered in the literature (Giulini, 2000).

The measurement problem of quantum mechanics, which is
still a subject of controversy, has its roots in the two
prescriptions for the evolution of quantum systems: on the
one hand, the Schrodinger equation is deterministic and linear,
while, on the other hand, the wave-function collapse postulate
induces a stochastic and nonlinear evolution of the state. It
was shown that it is possible to combine the two types of
prescriptions into a single dynamical law, thus avoiding the
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dichotomy, with quantum dynamics the limit for microscopic
systems and classical dynamics the limit for macroscopic
systems (Ghirardi, Rimini, and Weber, 1986).

The structure of such modifications forms the basis for the
family of spontaneous wave-function collapse models (Bassi
and Ghirardi, 2003; Bassi et al., 2013), with the basic form
given by the following stochastic differential equation
(Ghirardi, Pearle, and Rimini, 1990):

dw
dt

A

i) =5 A= (A)lw), (87)

d n n
S v = VA - ()

where |y,) is the state vector, A is the operator, (y,|A|y,) is the
expectation value, dW, is the Wiener increment, and 4 is the
coupling rate. The models based on Eq. (87) make a series of
predictions that are expected to be tested with the next
generation of experiments, for example, loss of interferometric
visibility, anomalous heating of free systems, and x-ray
emission (Bassi ef al., 2013; Carlesso et al., 2022). In contrast
to the case of deterministic nonlinear modifications (see
Sec. IV.B.2), the stochastic nature of the evolution in
Eq. (87) conspires with the nonlinear terms to avoid the
possibility of superluminal signaling, making such models
conceptually more appealing, albeit a relativistic extension of
such models is an open problem (Bedingham et al., 2014).
Collapse models have already been tested experimentally,
including via mechanical systems in a noninterferometric way
(Vinante et al., 2016, 2020; Helou et al., 2017; Forstner et al.,
2020), which provide the strongest experimental bound to
date; see Carlesso et al. (2022) for a review on collapse model
testing.

As such, the connection between dynamical collapse
models of the form in Eq. (87) and gravity remains tentative,
with a derivation from first principles an open question
(Bahrami, Smirne, and Bassi, 2014). Nonetheless, using an
elementary analysis considering a spatial superposition, it has
been argued that the system should decohere within a time
given by 7 = h/E,, where E is the gravitational self-energy
of the difference between the mass distributions of the two
states in superposition (Penrose, 1986, 1996, 1998, 2014). For
example, for a spherical mass distribution, we have the
following formula (Penrose, 2014):

(88)

g

{GT’"Z(M2 3R+, A<,

G E-3) <4
where m is the total mass, R is the particle radius,
A= Ax/(2R), and Ax is the superposition size.

Although self-gravity has been extensively investigated in
general relativity (Lynden-Bell, 1961), writing a fully con-
sistent relativistic spontaneous collapse model is an open
problem. In the nonrelativistic limit, one can nonetheless
construct a wave-function collapse model inspired by
Newtonian gravity (Diési, 1987, 1989), which recovers the
prediction for Penrose’s decoherence time 7 (Didsi, 2005,
2007). A drawback of the proposed model is, however, that it
requires a short-distance cutoff to avoid the divergence for
pointlike microscopically mass distributions (Ghirardi, Grassi,
and Rimini, 1990). We discuss experimental bounds on the
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short-distance cutoff, usually labeled as R, at the end of this
section.

There have been a series of investigations aiming to derive
the collapse of the wave function from an underlying
mechanism related to random fluctuations of spacetime,

9 = g/lb =+ 59;41/7 (89)

where g, is the spacetime metric, g, denotes a fixed
background, and &g, denotes the stochastic fluctuations.
One of the earliest such attempts posited that the wave-
function collapse could be induced by real-valued fluctuations
of the spacetime metric related to the Planck scale
(Karolyhazy, 1966). However, the obtained model is still
compatible with the superposition principle, and it seems to be
at odds with the predicted x-ray emission from charged
particles (Didsi and Lukécs, 1993). An alternative idea with
complex-valued fluctuations of the spacetime metric was also
proposed (Adler, 2004), with a possible model of the basic
form of Eq. (87) constructed by Gasbarri er al. (2017).

A collapselike dynamics of the form in Eq. (87) also
appears in the context of quantum measurement and control
(Wiseman and Milburn, 2009) and has been exploited to
construct models of semiclassical gravity. Specifically, by
continuously measuring the system, one has access to the
signal I(z) given by Eq. (47). The signal I(¢) is used in
experiments to gather information about the state of the
system as well as to control the evolution of the system at
future times, i.e., by creating a feedback loop. However, in this
context the system is not measured by an actual experimen-
talist or physical measurement apparatus, but it is instead
postulated that this dynamics, resembling continuous mea-
surements, is a fundamental law of nature (Didsi, 2018). Such
an approach was used in the Kafri-Taylor-Milburn model
(Kafri, Taylor, and Milburn, 2014) to construct a semiclassical
(linearized) Newtonian interaction. We recall that the quantum
interaction arising in standard quantum mechanics is given by

Gmll’l’lz
(d+31) =% &

2G
I X%, (90)

where d is the mean distance between the two masses m; and
m, and X, and X, are the position operators, respectively; see
Eq. (7). Kafri, Taylor, and Milburn (2014) used a formalism
reminiscent of the previously outlined quantum measurement
and control. In place of Eq. (90), one finds a modified
potential

Gmm,
d3

(X1 (F2) + (%1)%2)- (91)

A related approach was considered by Tilloy and Didsi
(2016), who continuously monitored the matter density of
the system p, producing the signal given by

pr = (p1) + dpy, (92)

where (p,) is the expectation value taken with respect to the
state of the system. Tilloy and Di6si (2016) showed that when
p; is the source of Newtonian potential ¢ in the Poisson
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equation, i.e., V>¢ =4xGp,, one is able to recover the
standard quantum Newtonian interaction among particles in
Eq. (90), as well as the terms appearing in the previously
discussed Didsi model (Didsi, 1987, 1989).

Another approach that is related to the Diési model is given
by hybrid quantum-classical models (Oppenheim, 2023). In
such models working in the Arnowitt-Deser-Misner formal-
ism (Arnowitt, Deser, and Misner, 1959) [see Poisson (2004)
for an introduction], one describes the gravitational field using
a probability density in classical phase space p(z), where we
attach to each point z in phase space a distinct density matrix
6(z). As a result, the total state of the system (comprising
gravity and matter) is described by the classical-quantum state
given by

o= [ dp(2)Io)El © o). (93)

We can construct a master equation for such a dynamics: by
tracing away the state of gravitational field p(z), we obtain a
master equation for the matter state (while tracing away the
matter system, one obtains a Fokker-Planck-like equation for
the gravitational field that provides a correction to general
relativity). In the former case, we can, by suitably restricting
the general form of the initial equation, recover a master
equation arising from Eq. (87) such as the one given by the
Di6si model (Oppenheim et al., 2022).

Testing of spontaneous collapse models falls into two broad
categories: interferometric and noninterferometric tests. In the
former the signature is a loss of interferometric visibility
(Toro$ and Bassi, 2018) where the current record is provided
by experiments with macromolecules (Fein et al, 2019),
while the latter is a broad class of all other experiments
(Carlesso et al., 2022). To test the idea put forward by
Penrose, one must resort to direct tests of the superposition
principle in interferometric tests (as a mathematical model has
not yet been constructed). One way to test this idea is to use
Bose-Einstein condensates (Fuentes and Penrose, 2018;
Howl, Penrose, and Fuentes, 2019). However, the model
put forward by Didsi, precisely formulated as discussed, can
also be tested with indirect noninterferometric tests. The
model depends on a single free parameter R, which can
be interpreted as the localization length scale, which has been
constrained using x-ray emission to values Ry < 5 x 1071 m
(Donadi et al., 2021; Arnquist et al., 2022).

C. Entanglement mediated by gravity

It is not yet known whether gravity is fundamentally a
quantum force. In this section we present arguments support-
ing the view that detecting entanglement induced by gravi-
tational interaction between two masses could finally help to
settle this issue. We also review proposals of how to generate
such entanglement. The realistic possibility of such an experi-
ment has captured attention only recently. One reason for this
raised interest was a proposal that showed that masses as small
as micron-sized crystals, which can be isolated by levitation,
can be fruitfully combined with spin qubit and quantum gate
technologies developed for quantum computation to generate
and witness gravitational entanglement (Bose, 2016; Bose
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et al., 2017). Simultaneously, a rationale based on a known
result from quantum information theory, along with some
basic assumptions, was also presented and justified why such
entanglement would evidence the quantum nature of gravity
(Bose, 2016; Bose et al., 2017; Marshman, Mazumdar, and
Bose, 2020); see also Marletto and Vedral (2017) for an
alternative rationale. An important fact, noted for the first time
by the aforementioned researchers, is that one has to prepare
and coherently maintain quantum superpositions having large
spatial spreads for the entanglement growth to be realistically
measurable. This makes the experiments challenging. We
review this class of schemes here, as well as the recent rapid
growth of literature that has been triggered by the aforemen-
tioned works. These schemes dwell on the need to identify all
the necessities needed for a practical realization, alternative
proposals, and other ways to justify the conclusions about the
quantum features of gravity from such experiments.

In a historic verbal debate with other researchers on whether
gravity is quantum, Feynman (2011) advocated a thought
experiment involving one mass in a spatial quantum super-
position displacing a second mass due to its gravity; see
Fig. 11 in Sec. V.B. Although he stressed using quantum
amplitudes to describe the setup, he did not explain why such
an experiment will demonstrate the quantum character of
gravity, nor did he clarify what to measure in order to draw
such conclusions. In addition, he did not realize that the
second mass also has to be in a highly delocalized state (a
spatial quantum superposition of delocalization comparable to
the first mass) for the experiment to have a realistic duration.
Subsequently, a version of Feynman’s setup was suggested by
supposing that the large mass in a spatial superposition was a
Bose-Einstein condensate (Lindner and Peres, 2005). Such a
superposition demands all atoms in one well or another; it is
not an easy state to generate. It was then suggested that the
interference pattern of a mesoscopic mass in a momentum
state be measured (again, this is not easy to prepare),
scattering gravitationally from this superposition. However,
a single-particle measurement does not suffice to reveal
entanglement without extra assumptions or procedures.
Moreover, it is not justified exactly why such an interference
pattern would constitute a test for quantum-natured gravity.
After presenting measurements of gravity for the smallest
masses (milligram scale) to date, Schmole er al. (2016)
remarked that reaching a quantum coherent regime for such
masses can generate entanglement gravitationally. However,
an estimate of the required regime and states was not the
subject of that work. On the side of logic, Kafri and Taylor
(2013) defined a classical force as one that cannot generate
entanglement and found that this classical force leads to
excess noise. They then suggested a design using tethered
torsional oscillators to detect this excess noise, which is
challenging and requires 10 s per run; if that noise is not
found, then one can conclude a quantum coherent coupling.
Thus, the emphasis in the experimental proposal was to rule
out a specific classical interaction rather than verify gravita-
tionally generated entanglement. Similarly, Krisnanda et al.
(2017) showed that if an inaccessible system entangled two
quantum probes, then it would display nonclassical correla-
tions with the probes in the form of quantum discord. They
then suggested that this could potentially detect the
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nonclassicality of gravity without going into the formulations
of any scheme. Thus, an explicit scheme with calculated
numbers, which was proposed to exploit contemporary
developments in levitation and quantum technologies, along
with a simple rationale from quantum information theory was
necessary (Bose, 2016; Bose e al., 2017) to inspire con-
fidence in the testability of the quantum character of gravity in
the laboratory.

1. Gravitationally interacting interferometer-based protocol

We outline here the protocol presented by Bose (2016) and
Bose et al. (2017). Published the same year was a paper by
Marletto and Vedral (2017), although, as they dealt only
schematically with the same idea without outlining explicit
schemes, we present the following in accordance with Bose
et al. (2017). We consider two masses, labeled as j = 1 and 2,
each with a spin embedded in it. A particularly relevant
experimental example for these masses would be a diamond
nanocrystal hosting an NV center, which is a highly coherent
spin-1 system used in the area of quantum computation (Bar-
Gill et al., 2013; Hensen et al., 2015; Wood et al., 2022;
March et al., 2023). However, any other crystal with an
embedded spin with a long coherence time would suffice and,
generically, we require only two spin states, which we label as
|1) and || ). The two masses, labeled as j = 1 and 2, are each
created in a quantum superposition of well-separated
Gaussian states |[L1); and [R]); by means of the Stern-
Gerlach effect. Thus, we imagine that, ideally, a spin
embedded in each mass j would be placed in a quantum
superposition of spin states (|1); +[]);)/ /2, where a spin-
dependent force (as in the Stern-Gerlach effect) is applied to
the masses so that they move from their initial central
positions given by Gaussians |C); to evolve to

1
lw),; = ﬁ(|l“l’>j +[R1))). (94)

This is shown in the upper half of Fig. 4 as the point at which
the trajectories achieve their maximal splitting Ax. After
achieving a certain maximal splitting Ax, the Stern-Gerlach
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Spin Correlation Functions Certifying Entanglement

FIG. 4. Mechanism of gravitationally generated entanglement.
The mechanism of entanglement of two masses through the
phase evolution due to gravitational interaction is displayed. The
phase evolution due only to the most prominent interaction,
between |R|), and |L?),, is explicitly shown. Adapted from
Bose et al., 2017.

Rev. Mod. Phys., Vol. 97, No. 1, January—March 2025

force (a spin-dependent splitting process) is stopped, for
example, by either switching off the magnetic field or
mapping the electronic spins to nuclear spins (this is shown
as shoulders in the interferometers of Fig. 4), and the masses
are allowed to translate in parallel next to each other. We are
going to assume (for simplicity of presentation, although this
assumption may be difficult to fulfill) that the superposition is
created so fast that the phase accumulation due to gravitational
interaction during this time is negligible. During the parallel
motion after the creation of the superposition, the four
configurations LL, LR, RL, and RR (where L refers to mass
1 and R refers to mass 2) have different energies due to their
Newtonian interaction. Thus, their quantum phase evolutions
happen at different frequencies,

Gm1m2
h(d— Ax)

Gmlmz
Wi~
R h(d + Ax)
Gmlm2

hd

WRL ~

W = WRR ~ (95)
For simplicity as well as for appreciating the maximal
efficiency of the process, we consider the situation when
the superposition splitting is much larger than the distance of
the closest approach of the masses, i.e., Ax > d — Ax. In that
case we can simplify to a situation where only wp; is
prominent, while the other frequencies are negligible (taken
to be zero with respect to wg; ). Then the evolution of the state
at a time 7 is

W( = 2))pp = L)), %(\sz + IR,

oy \%(w‘wwwz +IRM).  (96)

By inspection of the state, we conclude that for any value of
wg T # 2kr, where k is an integer, the state is entangled, as it
cannot be factorized into a product state of the two qubits as
(ILL)y+R 1)) #(e7m7[L L), +|R*),). In fact, for wpy 7~
the state is a maximally entangled state of two qubits (the
qubit states defined by two orthogonal states |[L|) and |[R1).

To compute the highest possible value of the frequency
wgr., one needs to identify the minimum value of d — Ax. This
in turn depends on the range within which you can bring the
two masses without electromagnetic interactions swamping
gravity. It is possible in principle to make masses neutral (by
shining UV radiation on the masses or the enclosure). We
assume that it is possible to make the masses free of internal
charge multipoles (how to achieve this has not yet been fully
solved for realistic nanocrystals and microcrystals). Suppose
that the electrostatic interactions between the masses are fully
eliminated; there is still the Casimir interaction. The ratio of
the Casimir to the gravitational interaction is given by

Ucasimr 23 (3 2e—1\? m%’ (97)
Uiy 47 \4r) \e+2) p*(d—Ax)%’
where mp is the Planck mass and p is the density of the

masses. As we have to use some material to get the dielectric
constant and density properties, we choose a diamond, which
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is a good candidate for the experiment since it can host an
embedded spin as an NV center defect, as stated. If we want
gravity to dominate by a factor of 10 over the Casimir
interaction, we get the minimum d — Ax~ 157 pm (van
de Kamp et al., 2020; Schut, Geraci et al., 2023). Putting
this value into Eq. (95), we get for micron-sized objects
(radius ~1 pm, mass ~107'* kg)

Gl’l’lﬂ’)’l2

A=A 0.4 Hz. (98)

WRL ~

Now, how are we going to detect the previously generated
entanglement? It is here that the rest of the interferometer
shown in Fig. 4 is important. The paths are now recombined
once again using Stern-Gerlach forces such that [L]); —
|IC|); and |R?T); = |C?1);. Then the state of the two

embedded spins becomes

) +11)2 ety + (1),
b2 V2 '

The entanglement of these spins can be verified by measuring
spin-spin correlation functions and combining them to con-
struct an entanglement witness. A good entanglement witness
in this context [which works for smaller time evolution
durations compared to the witness discussed by Bose et al.
(2017)] is (Chevalier, Paige, and Kim, 2020; Guff, Boulle, and
Pikovski, 2022)

)

+11th

(99)

— 12 _ 1.2 _ 12
W =1 -o6,0; — 06,067 — 06.05.

(100)
If after measuring the correlations the expectation value
(W) <0, then the state of the two spins is entangled. As
the only interaction was gravitational, verifying the entangle-
ment of these spins is equivalent to verifying the gravitation-
ally generated entanglement.

In a real experiment it is possible that Ax is achieved slowly
so that a significant contribution to gravitational entanglement
happens even during the growth of the superposition. Thus,
according to the protocol of entanglement generation, z should
be an effective time that correctly captures the total entangle-
ment growth rate during the evolution of the size of the
superposition. Moreover, it is also possible that the ideal case
of Ax > d — Ax is not easily achievable. In fact, it is perhaps
more likely, at least in the earliest experiments, that Ax = yd,
where fraction 0 < y < 1. In this general case the entangle-
ment developed, as well as the entanglement witness,
depends only on a total phase, the “entangling phase,” which
is defined as ¢pop = (wp g — wp )7 + (W — 0y )7. For the
configuration of interferometers given in Fig. 4, we have, for
small enough values of the entangling phase (W) ~ —gy
(Chevalier, Paige, and Kim, 2020),

From Eq. (101) it becomes clear that the fraction y should be
chosen to be as close as possible to unity for a higher
magnitude of the entanglement witness, enabling a lower
number of measurements to determine it. However, in the
regime of y <« 1, from Eq. (102) one observes that we can in
principle choose either a light mass m and a large super-
position size Ax (the case discussed in Sec. IV.C) or,
alternatively, a heavy mass and a small superposition size
without affecting the accumulated entangling phase. For
example, with a mass of m = 1 kg, a superposition size of
Ax = 107" m, an interparticle separation d =7 cm (com-
mensurate with the dimensions of such an object taking a
standard density for a nanocrystal, say, that of diamond, of
3.5 x 10° kg/m™3), and atime 7 = 1 s, ey ~ 0.2 is obtained.
However, such masses are usually tethered, which offers extra
decoherence channels rather than being levitated. How to
achieve, by squeezing and free expansion, a spinless meas-
urement of a two-qubit entanglement witness (in terms of
spatial qubits) has also been shown (Yi et al., 2021, 2022).

2. Alternative protocols

Instead of an interferometric scheme, we can consider
nearby harmonic oscillators with mechanical frequency @
that are interacting gravitationally (Krisnanda et al., 2020;
Qvarfort, Bose, and Serafini, 2020). We can obtain a figure of
merit for the generated entanglement from Eq. (102) by setting

the delocalization to be the zero-point motion Ax =

h/(2mw) [see Eq. (6)] and the interaction time to be
t=1/w,

2Gm

S oE (103)

n

where we have defined 1 = ¢, following the notation from
Krisnanda et al. (2020). Choosing the separation d of the
masses to be about 1.5 times their radius, Eq. (103) becomes
solely dependent on their densities and @ (Krisnanda et al.,
2020). To achieve considerable entanglement, we again
require n ~ 1. For that, for example, even with the densest
material (osmium), one has to accomplish the entire protocol
with each mass in a @ ~ mHz trap over an interaction time of
103 s, over which it will be difficult to retain quantum
coherence. Thus, to achieve considerable entanglement, one
has to use quantum states that are far more spatially spread
(essentially similar in spread to the superpositions mentioned
earlier) (Krisnanda et al., 2020; Cosco, Pedernales, and
Plenio, 2021; Weiss et al., 2021) or non-Gaussian resources
(i.e., we need to prepare non-Gaussian initial states) or with
non-negligible nonlinear couplings [i.e., cubic or higher-order
terms in the position operators beyond the expansion in
Eq. (90)], as discussed by Qvarfort, Bose, and Serafini
(2020). The generated entanglement can be read out using

Gmymyt 2y° two optomechanical setups separately monitoring each of the
Pem = hd 1=y (101) two masses. That is, each mass is a mirror that is coupled to an
optical field that can then be measured; see Secs. IIL.A.1
which for y <1 becomes and III.C. Specific optomechanical configurations to measure
the gravitationally induced entanglement have been consid-
- 2Gmymy(Ax)*t (102) ered using the single-photon nonlinear regime in a quantum
ent hd’ Cavendish experiment (Al Balushi, Cong, and Mann, 2018;
Rev. Mod. Phys., Vol. 97, No. 1, January—March 2025 015003-32
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Matsumura and Yamamoto, 2020) and in the linear regime
with the cavity driven by a coherent laser field (Miao et al.,
2020). Furthermore, Datta and Miao (2021) gave an opto-
mechanical scheme for measuring the differential motion of
the two mirrors. They argued that detecting gravitationally
induced squeezing of the differential motion should be
experimentally more accessible than detecting quantum entan-
glement between the two masses and, consequently, the
conclusions that can be drawn would be different.

We can also consider the experimental situation with
unequal masses (Bose er al., 2017). In place of (Ax)? in
Egq. (102), we have Ax;Ax,, where Ax; is the superposition
size of the mass m; (j =1 and 2). To generate substantial
entanglement, we again require ¢, ~ 1. One scheme in this
direction uses extremely different masses, an atom (in an atom
interferometer) and a massive oscillator coupled to it gravi-
tationally (Carney, Miiller, and Taylor, 2021). Here treating
the atom as a spatial qubit gives a cyclic decoherence-
recoherence dynamics of the two-mass system, which is
robust to the thermal state of the oscillator, an interesting
property that also underpins some previous optomechanical
(Bose, Jacobs, and Knight, 1997, 1999; Mancini, Man’ko, and
Tombesi, 1997; Marshall et al., 2003; Armata et al., 2017,
Qvarfort et al., 2018) and qubit-oscillator schemes (Bose,
2006; Scala et al., 2013). The decoherence recoherence of the
spatial qubit is then suggested as evidence of entanglement,
although this is reliant on the assumption of the high purity of
the joint qubit-oscillator state. Another variant of this is a case
with two qubits (Pedernales, Streltsov, and Plenio, 2022): a
nanoscale mass as a spatial qubit that is gravitationally
coupled to a massive mediating oscillator that is in turn
coupled electromagnetically to another qubit. By measuring
entanglement between the two qubits, one can test the
quantumness of the gravitational interaction. While in a
similar manner robustness to the thermal state of the inter-
mediary is present [also reminiscent of geometric phase gates
in ion traps (Mglmer and Sgrensen, 1999; Solano, de Matos
Filho, and Zagury, 1999; Milburn, Schneider, and James,
2000)], one still has the challenge of preparing a sufficiently
spread spatial quantum superposition state of a nanoscale
mass. Other works have also considered experimental con-
figurations with modified geometries and multidimensional
systems (Tilly et al., 2021). Specific schemes with three or
four particles (Schut et al., 2022), as well as an array (Miki,
Matsumura, and Yamamoto, 2021; Ghosal, Ghosal, and
Bandyopadhyay, 2023), have been analyzed.

It has also been noted that the relativistic regime is required
to probe the spin nature of the gravitational interaction
(Scadron, 2006; Bjerrum-Bohr et al., 2015; Carney, 2022;
Biswas et al., 2023). Bose et al. (2022) considered the
leading-order post-Newtonian terms in an experimental sit-
uation with harmonic oscillators, and Aimet, Chevalier, and
Kim (2022) let photons from two separate interferometers
entangle.

Notably, a hybrid optomechanical scheme testing the
quantum counterpart of the light bending by gravity was
given by Biswas er al. (2023). The scheme consists of a
harmonic oscillator of mass m placed at the origin and of
a circular path of radius r for an optical field confined to
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a half-ring cavity (i.e., the mechanical oscillator and the cavity
photons are conceptually replacing the two massive interfer-
ometers shown in Fig. 4). The interaction between the trapped
mass and the photons is purely gravitational, and it reduces to
the form of the cavity-optomechanical interaction in Eq. (28)
with the coupling g, in this case arising from the quantum
light-bending interaction.

A figure of merit similar to the ones in Egs. (102) and (103)
can also be constructed for the latter cases, albeit the details
can depend on the specific experimental configuration and on
the interaction. To get a tentative idea about the order of
magnitude of the entanglement phase with photons, we can
use the relation m = Aw/c?. For example, replacing one of the
masses in Eq. (102) with m = hnw/c? (where o is the
frequency of the optical field), we find a figure of merit for
entanglement between a photon and a massive particle,

2GmwAx*t
AP

¢em ~ (104)

which can be used to gauge the order of magnitude of the
entanglement phase. Taking the ratio of Eqgs. (104) and (102),
we thus see that the effects are suppressed by fw/(mc?) and,
as such, achieving an entanglement phase of order unity
requires a large photon number to enhance the effect.

There are also proposals for testing gravitationally induced
self-interactions of matter (Anastopoulos and Hu, 2013,
2014a, 2020). While in the previous scheme one was
interested in the interaction between two distinct systems

o<T,<;2>T§4‘§> one can also consider self-interaction terms

an,,é) Tg}) and « T,(f,f) Tg;), where T,%) and T,(f) denote the
stress-energy tensors corresponding to systems A and B. We
can readily see how such terms emerge in the Newtonian limit.

The interaction with quantum matter from Eq. (23) reduces to

=1 [ drppe), (105)
where H;y = — [ L (r)dr is the interaction Hamiltonian, p is
the matter density, and 43 is the Newtonian potential. The

matter density p is also a source for ¢, with the solution given
by the familiar Newtonian potential. From Eq. (105) we thus

find that
G PP
Ein;:—z/dr/drlm.

Equation (106) is suggestive for a figure of merit based on the
entanglement phase from Eq. (102). Since we have only one
system, we set Ax ~ d to find that

(106)

Gm*t

¢ent"’ nd (107)

where d is interpreted as a characteristic length scale of the
problem (for example, the wave-function spread). A scheme
with BECs was investigated, where p o« a'a (with & the mode
of a BEC). We thus find from Eq. (105) a Kerr nonlinearity
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that induces non-Gaussianity (Haine, 2021; Howl et al.,
2021). Recently, a scheme also considered using the self-
interaction of photons (Mehdi, Hope, and Haine, 2023). In
place of Eq. (107) we can use m = nhw/c? (where w is the
frequency of the optical field) to find the figure of merit
Gent ~ 2Gha’t/(c*d), which can again be enhanced by
considering a large number of photons. Note that gravita-
tionally mediated entanglement experiments will also be able
to test various variants of gravitational theories (Marshman,
Mazumdar, and Bose, 2020; Beckering Vinckers, de la Cruz-
Dombriz, and Mazumdar, 2023; Chakraborty, Mazumdar, and
Pradhan, 2023; Elahi and Mazumdar, 2023). Several founda-
tional questions involving the nonclassical behavior of gravity
can be probed with similar setups (Kent and Pitalda-Garcfa,
2021; Etezad-Razavi and Hardy, 2023), including the non-
classical behavior of gravity under a measurement (Hanif
et al., 2023).

3. Major challenges

Proposals for the testing of gravitationally induced quantum
phenomena discussed in this section face a series of exper-
imental challenges specific to the experimental implementa-
tion. One major difficulty is the achievement of a large
superposition for the interferometry-based schemes [for
schemes using Gaussian wave packets, this translates to
obtaining a large delocalization of the wave packet (Cosco,
Pedernales, and Plenio, 2021; Weiss et al., 2021), which is a
problem of a similar nature]. A large mass requires a strong
force to create a quantum superposition of components
separated by Ax. Some of the early protocols of the Stern-
Gerlach-based creation of superpositions (Scala et al., 2013;
Wan et al., 2016) have been found to have limitations in the
achievable growth rate of Ax (Pedernales, Morley, and Plenio,
2020; Marshman et al., 2021). Some solutions have been
investigated (Zhou et al., 2022, 2023), and this splitting rate is
a work in progress.

If the electromagnetic interactions between the masses can
be screened (Schmdle et al., 2016; Schut, Geraci et al., 2023;
Schut, Grinin et al., 2023), then the masses can be brought
closer (with d decreased); consequently, the requirement
of Ax can be alleviated. For example, the most optimistic
results known to us in this context resulted from using both
screening and trapping (Schut, Geraci et al., 2023). For a
screening material of 1 um thickness, d ~ 11 pm, masses
my ~ my ~ 10-14 kg, then, for Ax ~0.65 pm and 7~ 1 s,
Gen ~ 0.01 is obtained, which requires ~10* repetitions of
the experiment.

The other important obstacle is maintaining coherence. In
short, in the presence of decoherence, at a rate I" the witness
becomes (W) ~T't — ¢y (Chevalier, Paige, and Kim, 2020;
Guff, Boulle, and Pikovski, 2022; Schut, Geraci et al., 2023).
Thus, to have a negative expectation value of the witness, one
has to keep the growth rate of the entangling phase above the
decoherence rate. Here we provide for concreteness some
general considerations about noise and decoherence for the
figure of merit given in Eq. (102). The requirements on the
force noise spectra Spr can be estimated from the decoherence
rate I" as
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2 (108)

where @ey, = 1/7 is the characteristic frequency of the
experiment. We require 7 < I'"! to have sufficiently long
coherence times (Bose et al., 2017). Specific noise and
decoherence sources have been considered, as have methods
for its mitigation (Pedernales, Morley, and Plenio, 2020; van
de Kamp et al., 2020; Rijavec et al., 2021; Toros et al., 2021;
Weiss et al., 2021; Gunnink et al., 2022; Yi et al., 2022;
Fragolino et al., 2023; Wu, Zeng, and Wu, 2023). It is perhaps
important to emphasize that primary sources are the collisions
with background gas, and blackbody radiation emission
(Romero-Isart, 2011; van de Kamp et al., 2020). There could
also be electromagnetic noise of various forms (Fragolino
et al., 2023). Gravitational and inertial noise also plays an
important role in the decoherence of large quantum super-
positions, and some types of mitigation have been worked out
(Toros et al., 2021). Various systematic noises affect Stern-
Gerlach interferometry when it is the mechanism of creating
large spatial superpositions, such as those due to phonons
(Henkel and Folman, 2022, 2023) and rotations (Japha and
Folman, 2022). In this context the coherence of spins is also
important, and achieving dynamical decoupling has also been
considered (Wood, Bose, and Morley, 2022).

4. Implications

Considering that one observes the entanglement between
two masses due to their gravitational interaction, what can we
conclude from that? Essentially, it verifies one prediction of a
fully quantum counterpart of Einstein’s equations,

(109)

In this sense it verifies a prediction common to all approaches
in which gravity is treated as a quantum field (Donoghue,
1994; Dienes, 1997; Rovelli, 1998). Alternatively, it falsifies
all hybrid theories of quantum sources in a state |¥)qurce
leading to classical gravity G,, [while Eq. (83) is a special
case of this, there could be much more general stochastic
theories of the aforementioned hybrid nature (Didsi and
Halliwell, 1998; Kafri, Taylor, and Milburn, 2014; Galley,
Giacomini, and Selby, 2023; Oppenheim, 2023)]. We present
the following arguments in favor of the view that observation
of entanglement is inconsistent with gravity being a classical
field or curvature even when defined in the aforementioned,
highly general sense. We should at once state that such a
conclusion is possible if one makes (i) an appropriate
(standard) definition of a classical field and (ii) a minimal
assumption.

We first define what a classical field is. It is an entity with a
probability distribution over fixed values (numbers) at every
point in spacetime. Thus, retaining the symbol usually used
for the gravitational metric, we would define a classical
gravitational field as an entity defined by probabilities P\/)

and corresponding metrics g,(,ﬁ,) ,
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{PU), ) (r.1)}, (110)
where uv =0,...,4 and r,t are spacetime points. This
definition is broader than just having a unique metric
9y (r. 1) defined everywhere in spacetime, as we are allowing
for probabilities. The allowance for probabilities makes it
possible for gravity to be a statistical field while still being
classical. Quantum is more stringent, as it necessitates
quantum superpositions of different configurations g,, (r, 7).
As long as we disallow superpositions, then even with
fluctuations (probabilities) a field is classical. Now comes
the assumption. This is the assumption that two masses
outside each other’s support (by support, we mean their
positions or, if quantum, their wave functions or, if a second
quantized matter field, then the localized mode that they
occupy) can interact only with their local field and not directly
with each other. This makes the field a mediator. Within the
domain of nonrelativistic experiments that will be feasible in
the foreseeable future, we cannot prove the necessity of the
mediator, and we appeal to what is known from the rest of
physics, namely, that there is no action at a distance in our
known domain of physics.

Under assumptions (i) and (ii), the operations that can
happen between the masses due to their interactions with their
local gravitational field are local operations and classical
communications (LOCC), which cannot create entanglement.
Thus, it follows simply that if entanglement is observed
between the masses due to their gravitational interaction,
then either gravity is not a classical field as per definition (i)
(i.e., it is nonclassical) or the assumption of a mediator (ii) is
violated. This was the justification presented by Bose et al.
2017). Within this setting of exchange of a mediator between
the masses, only a highly quantum mediator, namely, a virtual
off-shell particle (a quantum superposition of all energies) is
necessary for the continuously coherent generation of entan-
glement, as was shown through a fully relativistic treatment by
Marshman, Mazumdar, and Bose (2020); for a treatment that
also shows the retardation in the growth of entanglement, see
Christodoulou et al. (2023). Alternatively, it has been shown
that the presence of entanglement also necessitates an oper-
ator-valued interaction between masses, which is not possible
with a classical mediator (Bose et al., 2022).

Another way to interpret the results of the experiment is that
it evidences a quantum superposition of geometries that one of
the masses produces on which the other mass evolves
(Christodoulou and Rovelli, 2019). If the quantum super-
position of geometries (i.e., quantum-natured gravity) is
disallowed, then no superposition develops. The conditions
for justification of a nonclassical nature of gravity within the
framework of generalized probability theories have been
presented (Galley, Giacomini, and Selby, 2022). Within the
effective quantum field theory description of gravity, it has
been argued that once the Newtonian interaction enables
entanglement, the other degrees of freedom have to be
quantized for consistency (Belenchia er al., 2018; Carney,
2022; Danielson, Satishchandran, and Wald, 2022), along
with an expression for a quantum state of gravity associated
with a mass in a quantum superposition (Chen, Giacomini,
and Rovelli, 2023). Indeed, if the condition of mediator,
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providing the local part of the LOCC, is not imposed, one can
still draw conclusions from the generation of entanglement, as
discussed by Fragkos, Kopp, and Pikovski (2022), while the
modifications needed to draw conclusions about quantum-
natured gravity even without assumptions were stated, after a
relativistic treatment, by Martin-Martinez and Rick Perche
(2023). We note here that LOCC is more restrictive than just
disallowing entanglement generation (Lami, Pedernales, and
Plenio, 2023).

D. Other tests of gravity

There are a number of ways in which gravity can affect
quantum systems beyond the areas of precision gravimetry,
decoherence, and entanglement. Here we detail additional
tests of gravity and related effects.

1. Tests of the generalized uncertainty principle

Many quantum-gravity theories predict the existence of a
finite and minimum length scale at least as small as the

Planck length [, = /AG/c? ~ 1.6 x 1073 m (Garay, 1995;
Hossenfelder, 2013). The emergence of a finite length implies
a generalized uncertainty principle (GUP) because the funda-
mental position uncertainty can no longer be reduced to zero.
The widely considered GUP reads

2
AxAp = ih[l + b (1P2p> ]

where Ax and A p denote the uncertainties in the operators and
p is a dimensionless constant that indicates the strength of the
modification. The minimal length arises because the uncer-
tainty in Ax can no longer be made infinitesimally small. Also
associated with the GUP is the modified commutator relation

%, p] = m[l +Bo (l’;lpﬂ

Bounding the parameter  in Eq. (111) through experiments
also bounds new physics below the length scale +/Blp (Das
and Vagenas, 2008).

The existence of a finite length scale and GUP was first put
forward in string theory (Veneziano, 1986; Amati, Ciafaloni,
and Veneziano, 1989) but were later also derived using general
mode-independent properties of quantum-gravity theories.
For example, a generalized gedanken experiment for the
measurement of the area of the apparent horizon of a black
hole in quantum gravity leads to the emergence of a GUP
(Maggiore, 1993a). There is also an algebra that gives rise to
the modified commutator relation in Eq. (111), just as the
operators % and p satisfy [%, p] =i (Maggiore, 1993b).
Model-independent arguments for the measurement of
micro—black holes allow us to arrive at a GUP (Scardigli,
1999). The influence of minimal length scales on quantum
states has been widely considered. There are quantum-
mechanical implications of a GUP and finite length, which
were analyzed by Kempf, Mangano, and Mann (1995),
including the localization of wave functions in space and
the effects on harmonic oscillators. Harmonic oscillators with

(111)

(112)
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minimal length scales were considered by Chang et al. (2002),
who also considered the effects on electrons trapped in
magnetic fields, as well as by Lewis and Takeuchi (2011).
In addition, an equivalent formulation of the GUP but with a
maximum observable uncertainty in the momentum, rather
than a minimum uncertainty in the position, has been
formulated (Petruzziello, 2021).

A number of proposals for laboratory experiments to test
GUPs with massive quantum systems have been put forward.
Using pulsed optomechanics (see Sec. III.A.1), Pikovski et al.
(2012) showed that the effects of a GUP should create changes
in the trajectories in phase space traced out by a massive
system. The scheme was later extended by Kumar and Plenio
(2018). Along similar lines, mechanical oscillators near the
Planck mass (mp ~ 22 ng) were analyzed where the modified
dynamics was directly compared to the unmodified dynamics
(Bawaj et al., 2015). A further proposal considered a
pendulum where continuous rf measurements of the frequency
of an electromechanical oscillator can help to further bound f,
(Bushev et al., 2019). The radiation-pressure noise can also
contain information about the GUP, as proposed by Girdhar
and Doherty (2020). The sensitivity to the modified commu-
tator relation was shown to improve in the vicinity of excep-
tional points (Cui et al., 2021), and quadratic corrections were
shown to affect the noise spectrum of an optomechanical
system (Sen, Bhattacharyya, and Gangopadhyay, 2022). A
recent result is the evaluation of improved constraints on
minimum length models using a low-loss phonon cavity
(Campbell et al., 2023).

Note that additional considerations suggest that the
observed effects from a GUP scale with N7¢, where N is
the number of particles of the composite system and a is a
parameter to be determined (Kumar and Plenio, 2020). The
strength of this scaling is unclear but should be taken into
account in experiments. It has therefore been proposed that
bounds on GUPs can also be obtained through the use of
atoms (Chatterjee, Gangopadhyay, and Majumdar, 2021). In
another work it was pointed out that different modifications of
the canonical commutator yield the same commutator relation
in Eq. (112) (Bishop, Lee, and Singleton, 2020), which
necessitates the need for caution when interpreting exper-
imental results.

The current leading bound for S, appearing in Eq. (111) is
Bo < 5.2 x 10, which was calculated using pendulum mea-
surements (Bushev et al., 2019). Including the dependency on
the number of constituent particles as discussed would,
however, change the bound for j, as well as its physical
interpretation within the considered GUP model (Kumar and
Plenio, 2018). Other bounds on f, have been derived from
astronomy (Scardigli and Casadio, 2015) as well as from
gravitational waves (Das et al, 2021). See Scardigli and
Casadio (2015) for a comparison between bounds obtained
from different experiments available at the time.

2. Tests of the gravitational Aharonov-Bohm effect

The Aharonov-Bohm effect was originally introduced for
electrons in a constant magnetic field, which picks up a phase
depending on the spatially dependent vector potential that can
be measured in an interferometer. Fundamentally, the phase
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difference stems from an action difference between the
interferometer arms that would not be accessible classically.
Similarly, a gravitational field can induce such action
differences (even in the absence of forces), giving rise to a
scalar gravitational Aharonov-Bohm effect (Audretsch and
Lammerzahl, 1983). Ultracold atoms were proposed as an
experimental platform to detect this effect (Hohensee er al.,
2012) due to their long coherence times. The gravitational
Aharonov-Bohm effect was successfully detected with a light-
pulse 3Rb atom interferometer and a kilogram-scale source
mass (Overstreet et al., 2022) that allowed spacetime curva-
ture to be directly probed (Roura, 2022). Further proposals
include tests using quantum systems in free fall (Chiao er al.,
2023), as well as tests of the vector gravitational Aharonov-
Bohm effect (Chiao et al., 2014).

3. Tests of gravity through resonances and phonon excitations

The first attempts to detect gravitational waves involved
resonant mass antennas (Misner, Thorne, and Wheeler, 1973).
Weber searched for gravitational waves using resonances with
phononic modes of aluminum bars now known as Weber bars
(Weber, 1969; Ferrari et al., 1982). In the experiments Weber’s
bars reached temperatures of a few kelvins, which is not
cold enough to suppress noise sufficiently or to reach the
quantum regime. Proposals to use a kilogram-scale superfluid
“He resonator promise better sensitivities by reaching milli-
kelvin temperatures (De Lorenzo and Schwab, 2014; Singh
et al., 2017).

A quantum version of a resonant antenna has been proposed
using resonances of phonon modes in BECs that can reach
nanokelvin or picokelvin temperatures (Sabin et al., 2014;
Kohlrus et al., 2017). At these temperatures it is possible to
prepare highly sensitive quantum states that could be used
to detect long-lived high-frequency gravitational waves
(between 10 and 107 Hz). The quantum thermodynamical
properties of resonances in relativistic quantum fields were
studied by Bruschi, Morris, and Fuentes (2020), showing that
the BEC phonon resonance antenna is a quantum thermal
machine capable of extracting energy from the gravitational
wave. Resonant effects with BEC phonons can be used to
detect gravitational accelerations and gradients in the
Newtonian approximation (Ritzel er al., 2018), including
the search for modifications of Newtonian dynamics (MOND)
(Fernandez-Melendez et al., 2024) and also to measure
relativistic corrections (Ahmadi et al., 2014; Lock and
Fuentes, 2017; Howl and Fuentes, 2023).

Recent proposals consider searching for signatures of
quantum gravity using multiatomic states of cold atoms
(see also Sec. IV.C) (Haine, 2021), BEC phonons (Howl
et al., 2021), and massive quantum acoustic resonators
(Tobar et al., 2023; Tobar, Pikovski, and Tobar, 2024).
These proposals aim at detecting single gravitons through
their direct interaction with matter, rather than through
decoherence. A proposal to detect quantum gravity using
Weber bars cooled down to sub-mK temperatures (Aguiar,
2011) suggested searching for quantum-gravity signatures by
testing modifications of the energy moment uncertainty
principle (Bhattacharyya, Gangopadhyay, and Saha, 2020).
Signals detected using these new detector concepts could be
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correlated with independent classical detections of gravita-
tional waves by laser interferometry to ascertain their origin.
There are also new proposals to use laser interferometers to
search for signatures of the quantum nature of gravitational
waves (Parikh, Wilczek, and Zahariade, 2020, 2021a, 2021b)
and looking for geontropic vacuum fluctuations from quantum
gravity (Verlinde and Zurek, 2021; Bub er al, 2023).
Detecting gravitational waves and gravitons using tabletop
experiments that make use of the high sensitivity of quantum
technologies promise to open a new area in the study of
fundamental physics.

4. Tests of quantum field theory in curved spacetime and analog
gravity

Quantum field theory in curved spacetime predicts that
spacetime dynamics produces entangled excitations in quan-
tum fields (Ball, Fuentes-Schuller, and Schuller, 2006;
Fuentes ef al., 2010) and that the presence of horizons gives
rise to decoherence (Fuentes-Schuller and Mann, 2005;
Adesso and Fuentes, 2009; Alsing and Fuentes, 2012); see
Sec. IV.D.4. Underpinning these effects is parametric ampli-
fication, where particles are created out of the quantum
vacuum by moving boundary conditions or horizons. In this
sense there is a deep connection between the dynamical
Casimir effect where, by changing the length of a cavity,
the vacuum state of the electromagnetic field changes, thereby
producing entangled particles (Moore, 1970; Fulling and
Davies, 1976; Bruschi, Fuentes, and Louko, 2012); parametric
down-conversion where a medium change produces entangled
photons (Kwiat et al., 1995); and effects of quantum field
theory such as Hawking radiation (Hawking, 1974) and the
creation of particles by the expansion of the Universe (Birrell
and Davies, 1982; Polarski and Starobinsky, 1996), among
other effects. This connection is made evident through the
mathematical formalism of both quantum optics and quantum
field theory in curved spacetime, where Bogoliubov trans-
formations produce mode mixing and two- and single-mode
squeezing of modes. Friis et al. (2013) applied the formalism
of continuous variable quantum information to quantum field
theory in curved spacetime to compute entanglement in
relativistic settings. Quantum field theory has been demon-
strated numerous times in the flat case; however, key
predictions of the theory in the presence of gravity are
currently out of experimental reach. Systems such as black
holes are not accessible to experimentation, and most pre-
dicted effects are too small. Consider the dynamical Casimir
effect, where producing excitations via oscillating mirrors
requires velocities close to the speed of light. Oscillating a
microwave mirror at a frequency of 2 GHz with a displace-
ment of 1 nm produces velocities of only v &~ 1077 c. At these
velocities, approximately one photon is produced per day.
However, moving the mirror at these speeds requires an input
of mechanical power of 100 MW, and at the same time a
temperature of ~20 mK is needed to ensure that the field is in
the vacuum state. For this reason it has become fashionable to
simulate effects in the lab. Photon creation by a moving
boundary condition was demonstrated using a superconduct-
ing circuit where the electromagnetic flux going through a
superconducting quantum interference device produced a
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boundary condition moving at a third of the speed of light
(Wilson et al., 2011).

Analog experiments help test consistencies within a given
mathematical model. An alternative that involves using a
massive system in a small-scale lab is to test the key
predictions of the theory using BECs. Atomic interactions
in a BEC produce phonons, which are a massless quantum
field that obey a Klein-Gordon equation in an effective curved
metric (Fagnocchi et al., 2010; Visser and Molina-Paris, 2010;
Sabin et al., 2014; Hartley et al., 2019a),

1
Oy = —=—=0,(V~=GG"d,y),
v mﬂ( w)

where G := det(G) is the determinant of the effective metric

given by
=P 9w ) .
o [ ) Juy|lu, |

In Eq. (114) g, is the spacetime metric, p is the density of the
condensate, c is the speed of light, and c; is defined by

(113)

(114)

2.2
2. S
¢t = PR (115)
a 0

where ¢} = Aph?/2m?* and the four-vector u, is the flow
associated with the phase of the wave function of the BEC
bulk. The speed of sound in the BEC is ¢, and the density p
of the BEC may depend on space and time coordinates. By
choosing or changing the density, the speed of sound, or the
velocity field, itis possible to simulate certain spacetime metrics.

One metric that can be simulated this way is that of a black
hole, which makes it possible to test Hawking’s prediction for
black-hole radiation (Hawking, 1974, 1975). By starting with
the expression for an irrotational fluid V x v = 0, where v is
the velocity of the fluid and the analog to the Schwarzschild
metric is (Unruh, 1981)

1

dSz = p<(62 - Uz)drz _Tz/cz

d? — r2d92>, (116)

where p is the density of the fluid, v (as before) is the velocity
of the fluid, and c is the speed of the particles, also referred to
as the speed of sound. The Hawking temperature is then
given by

h {d (117)

— 2 _ 2

B dnkye a(c - )}
The Ty of a BEC should be about 1 nK (Unruh, 1981). A BEC
black hole emitting Hawking radiation has been both theo-
retically simulated (Carusotto et al., 2008) and experimen-
tally realized (Lahav er al., 2010; Steinhauer, 2014, 2022;
Steinhauer et al., 2022). Beyond BECs, an analog of Hawking
radiation can also be observed in quantum optics (Philbin
et al., 2008) using the nonlinear Kerr effect that arises in
certain dielectric media.

We note that computer and analog simulations on their own
can neither falsify nor verify theories. As a result, current
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analog gravity experiments cannot be said to test general
relativity directly. However, experimental settings are reaching
scales where the key predictions of quantum fields in curved
spacetime are becoming testable in the laboratory. Theoretical
studies have shown that actual changes of the spacetime metric
g canin principle produce observable effects on phonon states
(Sabin et al.,2014). This effect is at the heart of the proposals to
detect persistent high-frequency gravitational waves (Sabin
etal.,2014) and search for dark matter and dark energy (Howl
and Fuentes, 2023), opening the possibility of testing the
predictions of quantum field theory in curved spacetime in the
lab. Some aspects of the interplay of quantum fields and general
relativity could be tested in space-based experiments where
photon entanglement has been distributed across thousands of
kilometers; for a reviewsee Sidhu ez al. (2021). At these scales
relativity commences since the proper time on Earth is different
from the proper time on a satellite. Theoretical studies have
shown that spacetime curvature affects the propagation of light
wave packets on Earth, in the process affecting quantum
communications (Bruschi, Ralph et al., 2014). This effect
goes beyond the gravitational phase shift predicted by special
relativity. The curvature of the spacetime around Earth can
flatten traveling wave packets and decohere quantum states,
and these effects can be used to measure spacetime parameters
(Bruschi, Datta et al., 2014; Kohlrus et al., 2017; Kohlrus,
Bruschi, and Fuentes, 2019).

V. EXPERIMENTAL PATHWAYS TOWARD TESTS
OF GRAVITY

In Sec. IV we reviewed proposals for testing the overlap
between quantum mechanics and gravity with massive

Source voltage I Measure current

2D clamped system

) Controlgate
for (AC+DC
signal

FIG. 5.

quantum systems. Here we review experimental advances
toward the regime where the dynamics of quantum systems
are affected by gravity.

To showcase the diversity of systems available, we provide
a graphical overview of different platforms in Fig. 5. To
further demonstrate advances that have been made in terms of
controlling massive systems in the laboratory, we plot the
masses versus the phonon numbers achieved for a mechanical
oscillator in Fig. 6. The symbols there represent the type of
system, and the colors indicate the date of publication. For
comparison, the largest Bose-Einstein condensates (which
are not included in the plot) that have been created thus far
contain around 10'0 atoms (van der Stam et al, 2007),
which have a total mass of 4 x 107'° kg in the case of
sodium. We start by reviewing the state-of-the-art experimen-
tal tests of gravity today (Sec. V.A). Then we provide an
overview of key methods for controlling massive quantum
systems in the laboratory, including the preparation of
squeezed states, spatial superpositions, and entangled states
(Sec. V.B).

A. State of the art of experimental tests of gravitation
with massive systems

Here we review experiments that have made headway
toward testing aspects of gravity, such as precision force
sensing. In Fig. 7 we plot the force sensitivities that have been
achieved to date against the masses of the probe systems. We
note that it is not always clear whether the values reported can
be compared directly, as we do here. In some cases, such as
that of Hofer er al. (2023), the values plotted are based on
predictions for the ideal experiment. Consult the works in

Optical levitation

Hybrid-optical Paul trap Magnetic levitation

Tlustration of state-of-the-art mechanical systems. Encapsulated is an array of resonators utilized in experimental efforts aimed

at detecting the interplay between quantum mechanics and gravity. The leftmost column showcases mechanical resonators: a 2D
clamped resonator (graphene), a 1D clamped resonator (a suspended carbon nanotube), and a 1D singly clamped beam resonator, which
together illustrate the diversity in mechanical systems. The central column depicts optical levitation systems: a stand-alone optical
levitation and a hybrid Paul-optical levitation system that demonstrate the integration of optical techniques. The rightmost column,
which presents an electrical resonator and a magnetic levitation system, represents the incorporation of electromagnetic methodologies.
Together these systems exemplify the wide range of experimental apparatuses employed in the quest to uncover the interplay between

quantum mechanics and gravity.
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FIG. 6. Masses and phonons of massive quantum systems. The masses of systems controlled in the laboratory are plotted against the
mechanical occupation number (phonons). Colors indicate the year of publication, while symbols indicate the type of system. Where
phonon occupancy numbers were not explicitly stated in the original publication, we have estimated them using N = kzT/(hw,,),
where N is the number of thermal phonons, kp is Boltzmann’s constant, 7 is the temperature, and w,, is the reported mechanical
frequency. We classify systems as hybrid whenever a qubit or a similar system is used to interface with the mechanical element. The data
points correspond to the following parenthetical references: JILA "08 (Teufel et al., 2008), Vienna *09 (Groblacher, Hertzberg et al.,
2009), MPQ ’09 (Schliesser et al., 2009), UCSB *10 (O’Connell et al., 2010), EPFL 11 (Riviere et al., 2011), NIST "11 (Teufel et al.,
2011), Caltech ’11 (Chan et al., 2011), NBI *18 (Rossi et al., 2018), Delft *19 (Guo, Norte, and Groblacher, 2019), Néel "21 (Cattiaux
et al., 2021), NBI "22 (Seis et al., 2022), EPFL °23 (Youssefi et al., 2023), ICFO *18 (De Bonis et al., 2018), ICFO *14 (Moser et al.,
2014), MIT 11 (Schleier-Smith ez al., 2011), Soton *17 (Vovrosh et al., 2017), ETH 19 (Windey et al., 2019), ETH *20 (Tebbenjohanns
et al., 2020), Vienna *20 (Deli¢ et al., 2020), Tokyo 21 (Kamba et al., 2021), ETH °21 (Tebbenjohanns et al., 2021), Vienna 21
(Magrini et al., 2021), Tokyo ’22 (Kamba, Shimizu, and Aikawa, 2022), Florence 22 (Ranfagni et al., 2022), ETH ’23 (Piotrowski
et al., 2023), UCL °23 (Pontin et al., 2023), and LIGO °21 (Whittle et al., 2021).

question, which are cited in the caption of Fig. 7, for further
information.

1. Tests with atoms and molecules

Since its early demonstrations and pioneering work of
Kasevich and Chu (1991), atom interferometry employing
laser-cooled cold atoms (Cronin, Schmiedmayer, and
Pritchard, 2009) has been established as a precision technique
for sensing (Peters, Chung, and Chu, 1999, 2001; Tino, 2021),
with the realization of sensitive gravimeters, gravity gradi-
ometers, and gyroscopes. In addition to measuring the
gravitational acceleration due to Earth g with parts-per-billion
precision, atom interferometers have been used to measure the
Newton constant G, (Lamporesi er al., 2007; Sorrentino
et al., 2010; Rosi et al., 2014) at the 150 parts-per-million
level and are promising for improving tests of the gravitational
inverse square law at laboratory scales (Tino, 2021). Several
theories, as described in Sec. IV.A.4, predict modifications of
the Newtonian inverse square law with a Yukawa-type
deviation below the millimeter length scale, such as that
described in Eq. (73). As one particularly well-suited class of
modified gravity theories, interferometry with cold atoms is
ideal to study Chameleon forces (Jaffe et al., 2017; Sabulsky
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et al., 2019) due to the screening effect present in larger-scale
test masses. Atom interferometry has also been used to test the
Einstein equivalence principle (Schlippert er al., 2014) at the
parts-per-trillion level (Asenbaum et al., 2020) and has been
proposed as a technique for precision tests of general relativity
(Dimopoulos et al., 2007). In addition, atom interferometry
has been identified as a promising method to search for
gravitational waves in the midband (~1 Hz) (Canuel et al.,
2018; Badurina et al., 2020; Abe et al., 2021) between the
sensitivity bands of the ground-based interferometer detectors
(Abbott et al., 2016a) and LISA (Seoane et al., 2013; Bellei
et al., 2017). Recent work has enabled the detection of the
gravitational analog of the Aharonov-Bohm effect in precision
atom interferometry (Overstreet et al., 2022, 2023).

The sensitivity of atom interferometers as gravimeters are
limited by the interrogation time 7, which for free-fall
interferometers scales as 6, = kerrgT?, limiting Earth-based
experiments to times of the order of 1 s for a 10 m drop path.
Here g is Earth’s gravitational acceleration and k. is the
effective wave vector of the momentum transfer in the beam-
splitter pulse of a light-pulse atom interferometer. Large
momentum transfer beam splitters (Rudolph et al., 2020;
Kirsten-SiemB er al., 2023) are a pathway for improved
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FIG.7. Force sensitivities achieved with massive probe systems.
BECs, blue; hybrid systems, pink; torsion balances, green;
levitated systems, purple; and clamped systems, orange. Plus
signs indicate that the system contains less than one thermal
phonon. We classify systems as hybrid whenever a qubit or
similar system is used to interface with the mechanical element.
The data points correspond to the following parenthetical
references: Canberra 16 (Hardman er al., 2016), Boulder *03
(Long et al., 2003), Stanford 03 (Chiaverini er al., 2003),
Stanford *08 (Geraci et al., 2008), ICL *18 (Pike er al., 2018),
ICFO 18 (De Bonis et al., 2018), ICFO *14 (Moser et al., 2014),
ICFO ’18 (Tavernarakis et al., 2018), UC *99 (Goodkind, 1999),
Maryland ’02 (Moody, Paik, and Canavan, 2002), Reno ’16
(Ranjit et al., 2016), Soton °17 (Hempston et al., 2017), Yale *17
(Monteiro et al., 2017), Yale *20 (Monteiro et al., 2020), UCL 20
(Pontin et al., 2020), Montana *21 (Lewandowski et al., 2021),
Vienna ’21 (Magrini et al., 2021), Stanford *21 (Blakemore et al.,
2021), Tokyo ’22 (Kamba, Shimizu, and Aikawa, 2022), Leiden
’23 (Fuchs et al., 2024), Vienna *23 (Hofer et al., 2023), ESA’16
(Armano et al.,2016), MICROSCOPE *17 (Touboul et al., 2017),
Seattle "12 (Wagner et al., 2012), Seattle 15 (Terrano et al.,
2015), Vienna ’21 (Westphal et al., 2021), Seattle 22 (Shaw
et al., 2022), and ISTA 24 (Agafonova et al., 2024).

sensitivity when they are limited by interrogation time
constraints. Recent work has demonstrated momentum trans-
fers of 102#k in 8Rb (Chiow et al., 2011), 112Ak in '*Yb
(Plotkin-Swing et al., 2018), and 1414k in 88Sr (Rudolph
et al., 2020). Space-based approaches may permit signifi-
cantly longer interrogation times and, alternatively, atom
interferometry with atoms trapped in a lattice can extend
interrogation times up to 20 s (Xu et al., 2019), with recent
work surpassing a minute (Panda et al., 2023).

Atom interferometry has also been performed with ultra-
cold atoms cooled to quantum degeneracy, with both bosonic
(van Zoest et al., 2010; Miintinga et al., 2013; Kovachy et al.,
2015) and fermionic atomic species (Roati ef al., 2004). BECs
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of ultracold atoms are a versatile platform that can be used for
a variety of precision quantum sensing applications, where
their slow wave packet expansion and coherence play an
important role. Interferometry with Bose-Einstein condensed
atoms has been proposed as a method to search for short-range
deviations from Newtonian gravity (Dimopoulos and Geraci,
2003). Bloch oscillations of bosonic Sr atoms have been
considered as a method to test short-range gravitational forces
(Ferrari et al., 2006). The largest condensates of ultracold
atoms have realized atom numbers as large as (2-12) x 10’
(Streed et al., 2006; van der Stam et al., 2007), with reports of
atom-interferometry with 5 x 10° atoms (Hardman e al.,
2016). Atom chip-based atomic interferometry experiments
with Bose-Einstein condensates have been performed using as
many as 4 x 10° atoms (Jo et al., 2007). Key advantages when
compared with mechanical oscillators are the environmental
decoupling and quantum coherence as well as a mature
toolbox for quantum state preparation and measurement.
BECs and atom interferometers can in principle achieve atom
shot-noise-limited sensitivity, with a phase resolution scaling
as o5~ 1/ V/N. Interferometry with phase resolution at the
Heisenberg limit 6, ~ 1/N is also possible with the aid of
squeezed and highly entangled states (Szigeti, Hosten, and
Haine, 2021). A challenge has to do with the fragility of such
highly entangled states due to environmental perturbations
such as background gas collisions.

Another modality of sensing with BECs involves observing
their center-of-mass oscillations or collective modes. For
example, the center-of-mass oscillation of BECs has been
used to measure Casimir-Polder surfaces between the con-
densate and a nearby surface (Harber et al., 2005). The
dynamical response of the phonons of BECs has been predicted
to be highly sensitive to acceleration due to the gravitational
attraction of nearby masses, with sensitivities to oscillating
masses at the 100 mg scale at millimeter separations (Réitzel
et al., 2018). Experiments employing a BEC in a double well
are useful for a variety of fundamental physics tests and could
have some advantages when compared to methods using solids
(Howl, Penrose, and Fuentes, 2019). BECs can be cooled down
to the picokelvin regime, lowering some sources of noise.
Another advantage is that atoms are free to tunnel between
wells, and states such as two-mode squeezed states involving
atom superpositions between the two wells can be prepared
(Esteve et al., 2008). However, particularly challenging is to
prepare Schrodinger cat or NOON states. These states are
highly sensitive to decoherence. The most limiting source of
noise is three-body recombination (Tolra et al., 2004).

In addition, atom interferometry with atoms trapped in an
optical lattice has been suggested as a possible route toward
observing quantum entanglement induced from the gravita-
tional interaction with a mechanical oscillator (Carney,
Miiller, and Taylor, 2021), albeit with additional assumptions
(Hosten, 2022; Ma et al., 2022; Streltsov, Pedernales, and
Plenio, 2022).

Finally, matter-wave interferometers for complex molecules
formed of many atoms are also promising for tests of
gravity, as they benefit from the increase in mass in super-
position (Fein et al, 2019). One example is shown in
Figs. 8(a) and 8(b), where interferometry measurements assess
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FIG. 8. Experimental setup and interferometry measurement. (a) Setup for measuring cesium atoms’ acceleration toward a 0.19 kg
tungsten cylinder in ultrahigh vacuum. The cylinder is 2.54 cm in height and diameter, with a 0.5 cm axial through-hole and slot width.
Differential measurements are used to study the interactions with the mass. (b) A Mach-Zehnder interferometer using Raman transitions
in an optical cavity. Three laser pulses manipulate cesium atoms, splitting, reflecting, and recombining them to measure phase
differences, providing an ensemble-averaged acceleration over 110 ms across approximately 100 000 atoms. Adapted from Jaffe ez al.,
2017. (c) Schematic of a Cavendish torsion balance with dumbbell masses (M), external forces (F), and resulting rotation angle (0).
(d) Torsion pendulum as a gravitational acceleration transducer, containing two gold spheres (1 mm radius, 40 mm apart) on a glass
capillary. One sphere serves as a test mass (90.7 mg) and the other serves as a counterbalance (91.5 mg). A silica fiber with a diameter of
4 pm supports the pendulum with a 3.6 mHz torsional resonance. The torsion angle is detected optically. The source mass (92.1 mg) is
harmonically moved 3 mm at 12.7 mHz to enhance the gravitational signal. Electrostatic interference is reduced using Faraday shield
and discharging techniques. Adapted from Westphal et al., 2021.
the acceleration of cesium atoms toward a tungsten cylindrical =~ 2. Tests with neutrons
mass in an ultrahigh vacuum environment. This setup, which
was adapted from Jaffe er al. (2017), employs a Mach-
Zehnder interferometer with Raman transitions to measure
phase differences and determine acceleration. Additionally,

Neutrons have proven to be a powerful probe for testing our
understanding of gravity. The equivalence principle, which
states that all objects fall at the same rate in a gravitational
field regardless of their composition or structure, can be

the duration of free fall in Earth’s gravity ultimately limits the
mass of molecules in interferometry, while it is more difficult
to pick up a COW-like phase in the typically near-field regime
of operation of these large-mass interferometers; see
Sec. II.A.1 for a discussion of COW phases on matter waves.
Figure 9 illustrates the optical COW experiment conducted in
space and demonstrates how a single-photon split by an
unbalanced Mach-Zehnder interferometer and transmitted to a
satellite reveals gravity-induced phase shifts through observed
interference (Mohageg et al., 2022). More details about
molecule interferometry experiments are given in Sec. V.B.2.

Single
photon
-
beam
> Splitter time-bin encoding |
1

/

scrutinized using neutron matter-wave interferometry
(Colella, Overhauser, and Werner, 1975; Rauch et al.,
1975; Greenberger, 1983); see also Sec. ILLA.1. In these
experiments a neutron beam is split into two paths. These
two paths then interfere upon recombination, a process that
allows for precise determination of the relative gravitational
potential experienced by the neutrons in the two pathTs. The
equivalence principle is tested by measuring the phase shift in
the interference pattern. This approach has made it possible to
verify the equivalence principle to a high degree of precision
(Lammerzahl, 1996, 1998). One of the main advantages of

single photon
detectors

g P

FIG.9. Simplified diagram of the optical COW experiment in space. A single photon is split into two paths using an unbalanced Mach-
Zehnder interferometer (MZI). This photon is then transmitted to a satellite with an identical MZI. The interference observed at the
satellite shows the phase shift caused by gravity. Adapted from Mohageg et al., 2022.
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neutrons in these experiments over atoms is that neutrons are
uncharged, meaning that they are free from the electromag-
netic forces that can influence the movement of atoms. This
allows the gravitational interactions to be studied with less
interference from other forces, leading to a higher degree of
precision in the results.

With the advancement in the field, ultracold neutrons
(UCNis) later emerged as a robust tool for testing gravitational
theories. The UCNSs originated from the insights of Enrico
Fermi (Fermi et al., 1936), who recognized the potential of
slow neutrons to interact coherently while scattering, thereby
creating an effective interaction potential for neutrons passing
through matter. This led to the concept of storing neutrons
with low kinetic energies, which was initially predicted by
Zeldovich (1959) and first realized experimentally by
groups in Dubna, Russia (Lushikov et al, 1969), and
Munich, Germany (Steyerl, 1969). A significant breakthrough
was made by Nesvizhevsky er al. (2002), who observed
quantized states of matter under the influence of gravity using
UCNSs. Their work has further opened up possibilities for
probing fundamental physics, such as the equivalence prin-
ciple (Nesvizhevsky et al., 2002). More generally, advance-
ments in this field have led to UCNs becoming a robust tool
for testing gravitational theories (Steyerl ef al., 2012; Ivanov,
Wellenzohn, and Abele, 2021). UCNs cooled to nearly
absolute zero can be stored for extended periods, enabling
precise measurements of the gravitational behavior of neu-
trons. In recent years there have been advances in the
production of UCNSs, with Zimmer, Piegsa, and Ivanov
(2011) having reported a world-best UCN density available
for users, achieved with a new source based on the conversion
of cold neutrons in superfluid helium. Experiments with
UCNs aim to measure the gravitational free fall of neutrons
with high accuracy, offering a platform to test general
relativity and other theories like MOND (Famaey and
McGaugh, 2012). UCN spectroscopy has been instrumental
in constraining various theories and phenomena, including
dark energy, chameleon fields (Jenke et al., 2014), and new
short-range forces (Kamiya et al., 2015). In an experiment
Haddock et al. (2018) deployed a pulsed neutron beam
to probe Newton’s law of universal gravitation on subnan-
ometer scales. The results set a stringent upper bound on the
magnitude of potential unaccounted-for forces, enhancing the
foundation upon which we apprehend gravity. Moreover,
promising theoretical outlooks are unveiling new paths of
exploration, including measurements of the gravitational
redshift of neutrons. This involves observing the change in
energy of a neutron due to a change in gravitational potential,
which establishes a promising technique for testing general
relativity (Roura, 2022). Advancements are also foreseen in
the precision of measuring the electric dipole moment of
neutrons, with potential assistance from quantum sensors
based on weak-value amplification (Altarev et al, 1992;
Knee et al., 2013; Pendlebury et al., 2015). Other projects,
such as those of the gBOUNCE and GRANIT Collaborations,
aim to expand the understanding of gravity at short distances
by examining gravitationally bound quantum states of ultra-
cold neutrons (Jenke et al., 2009, 2019; Kreuz et al., 2009).
Studies such as these could impose stringent constraints
on hypothetical fields and forces, further refining our
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understanding of gravity and providing insights that might
push beyond the boundaries of currently accepted theories.
For a more detailed review of gravity measurements by
neutrons, see Pokotilovski (2018).

3. Tests with torsion balances and clamped mechanical systems

Sensitive torsion balances are a powerful and proven
method for studying exotic short-range gravity (Kapner
et al., 2007; Lee et al., 2020), equivalence-principle violation
involving ordinary and dark matter (Wagner et al., 2012; Shaw
et al., 2022), and novel spin-dependent interactions (Terrano
et al., 2015), as well as measuring the Newton constant
(Gundlach and Merkowitz, 2000). Torsion balances remain
one of the most promising paths forward for these studies as
their sensitivity continues to increase and the understanding of
background noise and systematic errors from patch charges
and other surface forces improves.

Current tests are often limited by environmental vibrations
that can “kick” the pendulum, exciting its fundamental and
spurious (swing, bounce, and wobble) modes (Wagner et al.,
2012). This is particularly true in short-range tests where patch
charges couple to the spurious modes producing noise that
dominates at small separations and limits the minimum
attainable separation (Lee er al., 2020). Time-varying envi-
ronmental gravity gradients limit equivalence-principle tests.
Both of these technical limiting factors could be addressed by
the development of a suitable low-vibration underground
facility.

Torsion-balance experiments [shown in Figs. 8(c) and 8(d)]
have typically employed relatively large source masses, well
beyond the scale envisioned for achieving a quantum super-
position. Work toward employing sub-mm-scale source
masses and similarly miniaturized torsion pendula is under-
way (Westphal ef al., 2021). In this work thus far the smallest
source mass that has been used for a gravitational measure-
ment is approximately on the millimeter scale. While far from
the scale where macroscopic quantum superpositions have
been imagined in interference experiments, this work repre-
sents a step in this direction to bridge the gap. These
experiments also tend to operate at low frequencies and are
limited by the same environmental perturbations and thus
could benefit from similar future low-noise facilities.

At even smaller length scales, microcantilevers (Chiaverini
et al., 2003; Geraci et al., 2008) and microfabricated torsion
oscillators (Long et al., 2003) have been used to obtain bounds
on Yukawa-type deviations of the Newton inverse square law
at distances ranging from a few microns to tens of microns.
Cutting-edge nanofabrication technology is making it possible
to routinely design advanced 2D and 1D clamped resonators
with massive quality factors, for instance, suspended silicon
nitride membranes and carbon nanotube resonators.

Clamped mechanical systems interfaced with supercon-
ducting qubits have emerged as a fertile ground for probing
the interplay between quantum mechanics and macroscopic
objects. Early groundbreaking experiments demonstrated the
feasibility of reaching the quantum ground state of mechanical
resonators using superconducting circuits (O’Connell ef al.,
2010; Teufel et al., 2011). Furthermore, laser cooling tech-
niques have been adapted to cool nanomechanical oscillators
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into their quantum ground state (Chan et al., 2011). Qiu et al.
(2020) recently reported laser cooling a clamped oscillator to
an average occupation number as low as (n) = 0.09 phonons.

Building upon this lineage of research, Youssefi, Kono,
Chegnizadeh, and Kippenberg (2022) introduced a hybrid
quantum system consisting of a superconducting circuit
seamlessly integrated with a micromechanical oscillator.
Achieving a thermal decoherence rate of 20.5 Hz and a
dephasing rate of 0.09 Hz, they enabled the free evolution of a
squeezed mechanical state over milliseconds. We anticipate
that such advances will enable exploration of elusive phe-
nomena that arise from the interplay between quantum
mechanics and general relativity.

Furthermore, LIGO-style experiments have also contrib-
uted significantly to the field. LIGO (Abbott et al., 2016b), as
shown in Fig. 10, has provided direct evidence for the
existence of black holes and opened up a new avenue for
exploring the nature of gravity.

In conclusion, tests with clamped systems, including
torsion balances, have proven effective in studying gravity
and fundamental physics. Challenges such as environmental
vibrations and technical limitations have led to the develop-
ment of low-vibration facilities and miniaturization efforts.
Nanofabrication techniques have enabled advanced resona-
tors, while hybrid quantum systems offer new avenues for
investigating quantum physics and dark matter. Additionally,
LIGO-style experiments have made groundbreaking contri-
butions to our understanding of gravitational waves. Overall,
these advances hold substantial potential to advance our
understanding of gravitational phenomena.

4. Tests with levitated mechanical systems

Levitated mechanical systems offer a platform to investigate
the interplay between quantum mechanics and gravity in the
low-energy nonrelativistic regime. Since levitated systems are
highly isolated from their environment the center-of-mass
motion can be close to an ideal harmonic oscillator persisting
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at large Q factors (Geraci, Papp, and Kitching, 2010). This
isolation, together with the (in principle) quantum-limited
detection of the position and therefore motion of the mechani-
cal system by light (or direct electrical or magnetic inter-
actions), makes them exceptional for testing quantum effects
in gravity (Caves et al., 1980; Aspelmeyer, Kippenberg, and
Marquardt, 2014).

Recently, the study of levitated mechanical systems has
gone beyond the usual limits set by the gravitational law that
governs how objects attract each other (Arndt and Hornberger,
2014). Moore and Geraci (2021) and Priel et al. (2022)
explored the finer points of gravity-related phenomena by
probing two-particle interactions with levitated particles
beyond established force laws based on precise force and
acceleration measurements.

In further detail, levitated systems provide a platform to
generate and coherently control quantum effects in their motion
via ground-state cooling, measurement-based schemes, etc.
(Aspelmeyer, Kippenberg, and Marquardt, 2014), and at the
same time come with sufficient mass for directly testing gravity
effects on experimentally accessible time and magnitude scales.
Quantum experiments with gravitating particles of the Planck
mass (mp = \/hc/G) become feasible (Ulbricht, 2021;
Aspelmeyer, 2022). In addition, the levitated system has a full
set of only six mechanical modes of translation (x, y, and z)
and rotation (a, f, and y) that are developed to be used as
quantum probes of gravity in the linear and nonlinear regimes
(Bateman et al., 2014; Gosling et al., 2024; Kilian et al., 2024).
Recent experiments achieved the simultaneous cooling of
all those modes (Kamba, Shimizu, and Aikawa, 2023; Pontin
et al., 2023), which opens the door for quantum state
preparation (Deli¢ et al., 2020). Rotational states provide a
unique setting with their intrinsic nonlinearities for quantum
experiments (Stickler et al., 2018; Schrinski, Stickler, and
Homberger, 2022).

Besides the prospect of using levitated mechanical systems
for force (Winstone et al., 2018) and inertial sensing (Teufel
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etal., 2011), direct gravity probes are emerging. Gravity
affects levitation directly but is negligible in small-mass
particle optical levitation (Ashkin and Dziedzic, 1971;
Rademacher, Gosling et al., 2022), while it is relevant in
larger-mass Paul ions (Paul, 1990), In Meissner-supercon-
ducting and diamagnetic traps, g influences the trapping
position and has a clear effect (Cano et al., 2008). Static
gravity was measured with levitated optomechanics by turning
off the trap (Frimmer et al., 2017). In addition, a Meissner
levitated magnet has been used in a two-mass gravity
detection experiment and has measured gravity at the level
of attonewton gravity (Fuchs er al., 2024).

In optical levitation nanoparticles and microparticles
trapped in an ultrahigh vacuum can be cooled down to their
ground state of center-of-mass motion through radiation-
pressure forces exerted by optical cavities (Libbrecht and
Black, 2004; Barker and Shneider, 2010; Chang et al., 2010;
Romero-Isart ef al., 2010). This technique has been explored
for over a decade to test short-range gravity forces (Geraci,
Papp, and Kitching, 2010). By employing optically levitated
systems where microspheres are trapped and cooled in a
vacuum, it has been possible to probe and measure gravita-
tional effects with unprecedented precision at the micrometer
scale (Ranjit et al., 2016). Nanoparticles with a cooled center-
of-mass temperature can also serve as a source for matter-
wave interferometry experiments (Bateman er al, 2014),
which could be used for measuring gravitational acceleration
and probing gravity at the micron length scale (Geraci and
Goldman, 2015).

Recent experiments (Timberlake er al., 2021) employed
levitation via the Meissner effect, where two magnets sus-
pended in a levitated state perturb each other’s motion to
measure the gravitational attraction between them. These
experiments demonstrated the practicality of measuring
gravitational acceleration for small masses, showcasing the
potential for future improvements in experimental setups.
Additionally, the gravitational constant (G) can be estimated
from such measurements. Coupling to superconducting induc-
tor-capacitor (L C) resonators in cryogenic environments. Paul
ion trapping provides a stable trap for tunable e¢/m ratios
(Paul, 1990). The close technological heritage from atomic
Paul trapping makes available a set of the center-of-mass
motion state-preparation protocols and tools for the manipu-
lation, cooling, and control of charged nanoparticles and
microparticles motion via electrodynamical ion levitation
(Leibfried et al., 2003; Schneider et al., 2010).

The LISA Pathfinder (LPF) mission, which was designed to
detect gravitational waves in space, utilized electrostatic
detection of freely falling masses on the level of kilograms
(Armano et al., 2016). LPF data, as well as those from Earth-
bound gravitational-wave detectors, were employed to estab-
lish strong upper bounds on continuous spontaneous locali-
zation and Didsi-Penrose models and are space-based
derivatives of ground-based optomechanical precision experi-
ments, including gravitational-wave detectors such as LIGO,
VIRGO, and GEO600, but also AURIGA (Carlesso et al.,
2016). LPF is similar to other space missions such as Gravity
Probe B to test Lense-Thirring GR frame-dragging effects
(Everitt et al., 2011), and the satellite gradiometry missions
GRACE and GOCE (Drinkwater et al., 2003; Tapley et al.,
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2004). The MICROSCOPE mission (Touboul et al., 2017)
aimed to test the weak version of the equivalence principle,
the basic principle of Einstein’s theory of general relativity.
Test masses made of different materials but with equal inertial
masses were used in this experiment. By monitoring the
motion of these masses over an extended period,
MICROSCOPE sought to detect any deviations from the
principle. The results of MICROSCOPE provided strong
evidence in support of the principle, thereby consolidating
the predictions of general relativity.

In conclusion, levitated systems have emerged as a prom-
ising platform for investigating the interface between quantum
mechanics and gravity. Recent advancements, such as
Meissner-effect-based levitation and space-based experiments
like LISA Pathfinder and MICROSCOPE, have expanded our
capabilities to study fundamental physics principles. The
precise measurements achievable in levitated systems,
coupled with the microgravity environment of space, con-
tribute to our understanding of gravity, general relativity, and
the fundamental laws of physics. To this end the recent
MAQRO proposal aims to explore levitated particle dynamics
in space, which would open a pathway for matter-wave
interference experiments with long interaction times by not
falling under Earth’s gravity (Belenchia et al, 2022;
Kaltenbaek er al., 2022). Future advancements in levitated
systems and their applications hold interesting prospects for
furthering our knowledge of the quantum-gravity interface
(Rademacher, Millen, and Li, 2020).

5. Approaches with hybrid systems

Last, there are hybrid mechanical systems (Kolkowitz et al.,
2012; Rogers et al., 2014; Treutlein et al., 2014) where
systems other than optical fields or photons are coupled to
mechanical motion. Hybrid mechanical systems are indeed
powerful experiments building on the well-studied Jayens-
Cummings Hamiltonian physics of a two-level system
coupled to a continuous variable—quantum harmonic oscillator
system, as discussed in Sec. III.A.2. Hybrid systems have
been at the forefront of demonstration of quantum states of
massive systems, while for relevance for probing gravity
effects, many of the hybrid systems involve non-center-of-
mass motional modes, such as vibration modes of membrane
states (O’Connell et al., 2010) or acoustic modes in super-
conducting qubits (Chu et al., 2017). Hybrid systems are
arguably the most established mechanical quantum systems,
and the quantum aspects of hybrid systems are discussed more
in Sec. V.B.2 as they are used for the generation of massive
superpositions as well as for demonstration of quantum
entanglement between two large-mass systems. Typically,
in hybrid systems the mechanical modes are at high frequency
(100 MHz to 10 GHz) which allows for cooling to the
quantum ground state by cryogenics, usually in dilution-type
refrigerators. Such ground-state cooling gives direct access to
the quantum regime and for quantum state preparation and
coherent control schemes. Siddiqi (2021)provided an example
where this was done using feedback techniques based upon
continuous weak measurement (for theory on measurement-
based control, see Sec. III.C). These techniques were built on a
record-high detection efficiency of a measurement of more
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than 80%. A more detailed account of the physics of hybrid
systems was given by Aspelmeyer, Kippenberg, and
Marquardt (2014).

However, there are approaches for testing aspects of gravity
by hybrid systems, including for gravitational-wave detection
encompassing coupling atoms to an optomechanical cavity
that influences the atom-cavity interaction (Camerer et al.,
2011), cooling the system by linking a superconducting qubit
to a mechanical resonator for improved detection sensitivity
(O’Connell et al., 2010), and integrating quantum dots with
mechanical resonators or optical cavities for enhanced detec-
tion (Bennett et al., 2010; Yeo et al., 2014). In addition, the
use of solid-state systems with mechanical resonators, coupled
with optical cavities, proves promising for gravitational-wave
detection (Arcizet et al., 2011; Kolkowitz et al., 2012). These
approaches leverage the unique properties of different com-
ponents for higher sensitivity and precision in gravitational-
wave detection. An example is the use of optomechanical
systems that offer enhanced cooling by constructive quantum
interference and suppressed heating by destructive interfer-
ence, which is essential for precision control and quantum
information processing (Chen er al., 2015). Furthermore,
modern hybrid systems allow for the exploration of the
quantum-classical mechanics interface and demonstrate the
potential for a paradigm shift from cryogenic to room temper-
ature quantum experiments using hybrid nanoelectromechan-
ical system resonators (Tavernarakis et al., 2018). Such
advancements reflect the rapidly evolving potential of hybrid
systems in examining quantum physics at a macroscopic scale
and as an avenue for quantum state generation in massive
mechanical systems (Akram, Ghafoor, and Saif, 2015; Liu,
Liu, Wang et al., 2021).

In conclusion, hybrid systems are expected to facilitate
new ways to inject quantum features into large-mass mechani-
cal systems by coupling to qubit systems, and the first
concrete steps have already been taken. Hybrid mechanical
systems will play a key role when probing into gravity effects
within the domain discussed in this review because of
the maturity of quantum-controlling large-mass mechanical
states.

B. Controlling massive mechanical quantum systems in the
laboratory

Here we review experimental achievements and theoretical
proposals for large-mass mechanical systems in the quantum
domain by sectioning them into three classics of exemplary
quantum states: squeezing, superposition, and entanglement.

1. Squeezing and swapping of mechanics

As we are interested in creating quantum states of mechan-
ics, we now discuss the squeezing of mechanical degrees of
freedom. We do not, however, discuss the application of
squeezed light to mechanical oscillators as it was, for instance,
used to advance the gravitational-wave detectors VIRGO
(Schnabel, 2017) and, eventually, LIGO (LIGO Scientific
Collaboration, 2011; Aasi et al., 2013).

Squeezing in clamped optomechanics. An early demonstra-
tion of directly squeezing the mechanical mode was given by
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Rugar and Griitter (1991). In the demonstration control over
the spring constant enabled parametric drive and thus amplified
the mechanical motion of the oscillator. This approach allowed
for noise suppression of —4.9 dB in one quadrature; see
Sec. II.D.2. Improvement in noise suppression has been
theoretically proposed using both detuned parametric driving
and continuous weak measurement of the mechanical oscillator
(Szorkovszky et al., 2011). Experimentally, noise suppression
was demonstrated by weak measurement and achieved
—6.2 dB in one quadrature (Szorkovszky et al, 2011).
Pontin er al. (2014) used parametric feedback to stabilize
one quadrature without affecting the other and achieved
squeezing of —7.9 dB. The realization of quantum squeezing
of a quadrature below the zero-point fluctuations was achieved
by Lecocq et al. (2015), Pirkkalainen, Damskigg et al. (2015),
and Wollman et al. (2015).

Further quantum state protocols such as state transfer and
swapping were also shown as multimode optomechanics
systems began to be explored. These have a strong indication
as quantum information protocols but demonstrate powerful
state control capabilities with a myriad of techniques. For
example, Weaver et al. (2017) demonstrated coherent state
swapping between modes of two separate mechanical
frequencies in the same cavity.

Squeezing in levitated optomechanics. Analogously, the
novel capability to control the potential and thus the mechani-
cal frequencies enabled squeezing via nonadiabatic pulses
(Rashid er al., 2016). A study by Militaru er al. (2022)
revealed the signatures of squeezing on the scattered light
generated by mechanics oscillators. Recently, squeezed states
have been discussed for testing small effects such as those
predicted by some form of quantum gravity (Belenchia ez al.,
2016). Squeezing is an operation to affect the mechanical
state: it is one crucial operation in the universal toolbox of
Gaussian state preparation but is also discussed as a state-
preparation step for achieving non-Gaussian states such as
quantum superposition in a levitated mechanical system
(Riera-Campeny et al., 2023), as well as for generating
quantum entanglement between two mechanical systems
(Cosco, Pedernales, and Plenio, 2021).

In conclusion, squeezing is one option for generating out-
of-equilibrium states of a continuously variable system.
Squeezing of large-mass mechanical systems has been exper-
imentally demonstrated. Squeezing generates highly sensitive
states exhibiting a peculiar quantum signature (Chowdhury
et al., 2020) and is used to control the effect of dynamical
nonlinearities.

2. Spatial superpositions of mechanical systems

The goal of this section is to review the state-of-the-art
mechanical quantum systems and how they approach the
regime for testing the overlap between quantum mechanics
and gravity. One key aspect of this endeavor is the generation
of the prototypical quantum state: the spatial superposition
state of sufficiently massive or macroscopic systems. An
illustrative example is Feynman’s thought experiment, shown
in Fig. 11, where a gravitational field source in a quantum
superposition interacts with a test mass, leading to different
scenarios depending on whether the field remains in a

015003-45



Sougato Bose et al.: Massive quantum systems as interfaces of quantum ...

(a)
O
¢

Test mass

Source mass

. ~

Classical
z

( w.ﬁmrrv> + 'l?[".f:nnr(->) ® ‘wu-:%)

FIG. 11.

Quantum ’
= F‘,‘,Hl\' ‘:
‘ - Test mass
~~

(b)

WYtest (T)

L 1";:1‘:|\' !

s'mn'('o(z)

(2

Source mass

‘wb‘[glll'('(‘> ® ‘7‘[;{§SL> + "d)illl‘('(‘> ® ‘ILY%;JS'.>

(c)
—
5
—
S 2
— -
5
0 Test mass
Source mass

|1‘/)5mn-v> ® |1/"Lcst>

Feynman’s thought experiment. (a) A gravitational field source (the blue balls) is placed in a quantum superposition and

interacts with a test mass (the green ball). The system can develop into either of two scenarios: (b) If the field is in a quantum
superposition, the test mass senses two different gravitational forces and also enters a superposition state. (c) If the field stays classical,
the test mass senses a single gravitational force and moves accordingly. Adapted from Pedernales and Plenio, 2023.

superposition or collapses to a classical state (Pedernales and
Plenio, 2023). Theoretical proposals for achieving this or
similar goals, such as those given by Bose ef al. (2017) and
Hanif er al. (2023) were described in Sec. IV.C.

There are competing definitions of what macroscopic
actually means; the definition strongly depends on what
aspects of physics are to be tested. A single photon in a
superposition or a pair of photons entangled over 1000 km is
arguably a large quantum system, while there are various
measures of what quantum coherence at macroscopic scales
actually means (Leggett, 1980; Diir, Simon, and Cirac, 2002;
Bjork and Mana, 2004; Cavalcanti and Reid, 2006;
Marquardt, Abel, and von Delft, 2008; Lee and Jeong,
2011). However, for the purpose of testing the overlap
between quantum mechanics and gravity, it seems advisable
here to choose a macroscopicity measure that includes a set of
three parameters about the quantum system and is able to
compare a manifold of different physical systems in an
objective way, such as the macromeasure based on matter-
wave superposition put forward by Nimmrichter and
Hornberger (2013). The measure yu is a function of the mass
of the system in a spatial superposition, the spatial size of the
superposition, and the time for the spatial superposition to
exist. Using p, it becomes evident how wide beam-splitting
low-mass atomic fountains (Kovachy et al., 2015), large-mass
small zero-point motional optomechanical setups (LIGO) in
continuously monitored low-phonon states (Whittle et al.,
2021), and levitated mechanical systems compare and why
levitated mechanics with mesoscopic masses look most
promising for delivering the most macroscopic of super-
positions. See Table I for a summary of the values com-
puted for the measure thus far. The current mass record in
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matter-wave interferometry was reported by Fein et al. (2019)
for complex molecules at 28 kDa, which achieves y > 14.

Different ways to generate spatial superpositions have been
proposed for mechanical systems, both clamped and levitated,
and some have already been experimentally demonstrated.
The technical challenge, if formulated in matter-wave lan-
guage, is to split the matter wave front coherently for a
minuscule de Broglie wavelength. This typically requires
preparing, by cooling, some sort of coherent initial state,
and a subsequent application of a coherence beam-splitter
operation. For spatial superpositions the prepared coherence
length determines both the spatial resolution of the beam
splitter and the extent of the final superposition.

Methods to realize beam splitters inspired by established
technology from matter-wave interferometry with electrons,
neutrons, atoms, and complex molecules (Cronin,
Schmiedmayer, and Pritchard, 2009; Hornberger et al.,
2012; Juffmann, Ulbricht, and Arndt, 2013; Arndt and
Hornberger, 2014; Millen and Stickler, 2020), the use of
optical gratings (Bateman et al., 2014; Geraci and Goldman,
2015), nonlinear interaction in a cavity (Bose, Jacobs, and
Knight, 1997, 1999; Mancini, Man’ko, and Tombesi, 1997;
Romero-Isart ef al., 2011), and levitated magnetomechanical
oscillators coupled to magnetic fields (Romero-Isart er al.,
2012) are among the proposals, which include magnetic beam
splitters using ferromagnetic particles (Rahman, 2019). For
mechanical systems ideas also include measurement-based
multiple-pulsed schemes addressing the position- and momen-
tum-dependent continuous variables (Vanner et al., 2011), as
well as continuous weak measurement protocols (Rossi ef al.,
2018) or advanced protocols from quantum metrology using
dynamical model selection and classical and quantum

015003-46



Sougato Bose et al.: Massive quantum systems as interfaces of quantum ...

TABLE 1. Macroscopicity measure summarized by Schrinski et al. (2023).

Experiment Year u

Mechanical resonators Bulk acoustic waves (Bild et al., 2023; Schrinski et al., 2023) 2022 11.3
Phononic-crystal resonator (Wollack ez al., 2022) 2022 ~9.0"
Surface acoustic waves (Satzinger et al., 2018) 2018 ~8.6"

Matter-wave interference Molecule inteferometry (Fein ef al., 2019) 2019 14.0
Atom interferometry (Xu er al., 2019) 2019 11.8
BEC interferometry (Asenbaum et al., 2017) 2017 124

*Estimated by Schrinski et al. (2023).

hypothesis testing (McMillen ez al., 2017; Ralph et al., 2018;
Schrinski et al., 2019), schemes that even go conceptually
much beyond the classic scenario for generation of super-
position states, as well as in evidencing the appearance of
nonclassicalities. However, the same measure has to be
consistently applied to rank macroscopicity.

While all of the these methods address external (x and p)
degrees of freedom for generating superpositions, there are
also promising ideas for addressing internal states such as
isolated electron and nuclear spin states. If the coherence of
such states can be extended to long enough times and coupled
to x and p in a coherent fashion, then elegant protocols for
state preparation can be transferred from the rich toolbox of
atomic two- and few-level physics. Such ideas have been put
forward for harmonically bound systems (Scala et al., 2013)
as well as for free motion (Wan et al., 2016). Again, the
massive and freely evolving quantum state keeps its promise
to become the most macroscopic quantum one.

Superpositions of different energy states of the harmonic
oscillator using strong coupling in cavity-QED-like (Jaynes-
Cummings Hamiltonian; see Sec. III.A.2) systems are a
further option and have historically been the first demon-
stration for a quantum superposition of a massive microwave-
driven quantum system (Teufel et al., 2011), for surface
acoustic-wave phonons (Satzinger et al., 2018), and when
using coupling to a superconducting qubit (Wollack et al.,
2022), while the spatial extent of the superposition is on the
size of the amplitude of the zero-point motion in those
systems, and advanced techniques have to be applied to reach
the defined macroscopic. The energy state superposition is
mapped onto a motional or vibrational state (O’Connell ef al.,
2010; Bild et al., 2023; Schrinski et al., 2023). While large-
mass hybrid mechanical systems can be prepared in quantum
states (Sletten er al, 2019), the macroscopicity of hybrid
quantum superposition states has to be analyzed by a
generalized measure such as the one shown in Table I
(Bild et al., 2023) produced the largest spatial superposition
state to date among hybrid systems for Planck mass acoustic
modes. Hybrid mechanical systems are supreme quantum
systems; their relevance for gravity measurements is discussed
in Sec. V.AS.

While the previous discussion is about linear motion,
macroscopic superpositions can also be achieved by utiliz-
ing rotational mechanical degrees of freedom (Carlesso
et al., 2017; Stickler, Hornberger, and Kim, 2021). These
approaches are promising since the generated quantum state is
potentially more protected from noise and decoherence.
In addition, the technology for implementing angular
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superpositions is different from those needed for linear
superpositions and could be easier to realize.

For the realization of superposition experiments, aspects of
decoherence such as those resulting from gas collisions and
effects of blackbody photons have to be considered and
understood (Hornberger er al., 2003; Hackermiiller et al.,
2004; Romero-Isart, 2011). Decoherence puts severe con-
straints on any attempt to realize macroscopic quantum states,
and each experiment has to focus on those aspects. Theoretical
studies of decoherence effects have been carried out using an
open quantum system dynamical model on the level of master
equations; see Sec. IIL.B.1 for a more detailed summary.

Another interesting area of research focuses on the super-
position of massive electromechanical resonators, which
carries significant implications for exploring the effects of
general relativity (Gely and Steele, 2021). To investigate these
effects effectively, it is crucial to ensure that the coherence
time of the superposition state exceeds the timescale asso-
ciated with general relativity. In pursuit of this goal, one
approach involves integrating clamped mechanical oscillators,
such as silicon nitride membranes, with superconducting
circuits. This integration allows for the preparation of these
resonators in small cat or Fock states, which enables experi-
ments to probe the interplay between quantum mechanics and
general relativity (Albrecht, Retzker, and Plenio, 2014; Liu,
Mummery et al., 2021).

Furthermore, the coherent coupling of mechanical vibra-
tions in carbon nanotube resonators, controlled by the elec-
tronic spin of a nitrogen vacancy, has emerged as an
interesting avenue of research (Qin ez al., 2019). When these
resonators are cooled to their quantum ground state, it
becomes possible for the mechanical phonons within them
to exhibit both wavelike and particlelike behavior, effectively
manifesting the essence of quantum superposition. This line of
inquiry not only pushes the boundaries of quantum mechanics
but also highlights the potential applications of electro-
mechanical resonators in quantum information processing
and quantum metrology.

Additionally, electromechanical systems offer opportunities
for experiments involving Paul traps, which can shed light on
the interplay between quantum mechanics and general rela-
tivity. Martinetz et al. (2020) proposed a Paul trap to trap and
cool a single charged nanoparticle to its quantum ground state.
Through the controlled application of laser beams and the
analysis of the nanoparticle’s evolution, they were able to
demonstrate the sensitivity of the nanoparticle to gravity and
place constraints on non-Newtonian gravitational interactions.
Moreover, electrically levitated nanorotors, when coupled to a
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superconducting qubit, enable ultrashort timescale interfer-
ence experiments by achieving a quantum superposition state
through controlled rotational and translational motion. These
developments represent strong prospects for furthering our
understanding of macroscopic quantum phenomena and their
implications for our understanding of both quantum mechan-
ics and gravity.

Based on considerations of thermal decoherence effects, a
proposal for a superconducting and magnetic version of a
superposition experiment has been made. The low-temper-
ature and extreme-high-vacuum setting appear to be the most
promising (Pino et al., 2018). The extreme settings where the
quantum system is—as much as possible—decoupled from its
environments can be analyzed in terms of the duration of free
evolution (spreading) of the wave function and demands
extremely small amplitudes (typically smaller than the spatial
size of the de Broglie wavelength) of all guiding fields and
vibrations. This adds another serious technical demand to any
experimental realization.

As dictated by Schrodinger dynamics, the free evolution
time grows proportionally to the mass of the quantum system
and is pushing realistic attempts to surpass the existing mass
record well beyond some 100 ms superposition lifetime. All
decoherence effects and noises have to be controlled to be
smaller than the evolution amplitudes during that same time.
Ideally, the wave function is left alone for some seconds, as is
at the core of proposals for macroscopic quantum super-
position on a dedicated satellite in space (Kaltenbaek
et al., 2022).

However, an alternative solution may come from boost or
inflation operations, which accelerate the spread of the
wave function significantly (Romero-Isart, 2017). The boost
has to be coherent, so it does not spatially resolve the position
of the particle during the boost. Boosts have been demon-
strated by Stern-Gerlach beam splitters for atoms on a chip
(Margalit et al., 2021), and it seems possible to translate
the same beam-splitting technique to the much more massive
NV-defect center diamond nanoparticles and other spin
systems.

Another severe experimental challenge is that mechanical
experiments, which are usually single-particle experiments,
have to be repeated many times to achieve particle number
statistics to show unique quantum features (Neumeier et al.,
2022). All known measures of quantumness are statistical
ensemble measures on the level of the density matrix rather
than the wave function directly, as every run of a quantum
experiment or operation has a completely random outcome
and cannot be predicted by quantum mechanics. As there is no
coherent ensemble of massive particles equivalent to, for
instance, an atomic BEC, each large-mass single-particle
experiment has to be repeated many times (say, at least
1000 times) under the exact same conditions. Nevertheless,
many researchers have faced the challenge of working toward
the first generation of a truly macroscopic quantum super-
position, which will question our understanding of quantum
mechanics as well as gravity and will hint at how the two
important theories are connected fundamentally.

Romero-Sanchez et al. (2018) explored the realm of
ultrastrong coupling between a mechanical oscillator and
an LC resonator, which was achieved through magnetically
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induced electromotive force. This interesting approach to
coupling magnetomechanical oscillators in the ultrastrong
regime has opened up a wealth of possibilities ranging from
sensitive weak-force detection to advanced electromechanical
state manipulation.

Furthermore, the use of levitated superconducting micror-
ings offers a unique advantage over traditional microspheres
by capitalizing on flux conservation within the ring structure
(Navau et al., 2021). This innovative approach provides a
versatile platform for the design and optimization of magneto-
mechanical ring oscillators. Notably, when it comes to
generating quantum superpositions through ground-state cool-
ing, the separation between the peaks of the wave function
must exceed the physical dimensions of the object. In this
regard ring geometries outperform traditional spherical coun-
terparts, making magnetomechanica ring resonators particu-
larly suitable for experiments investigating gravitational
interactions. Recent breakthroughs have demonstrated precise
control and levitation of high-Q superconducting micro-
spheres (Gutierrez Latorre et al., 2023; Hofer et al., 2023).
Appealing aspects of these systems include the mechanical
frequencies on the order of 100 Hz, the access to trap
anharmonicities, and the scalability of mass of the levitated
particle, which is of particular relevance for testing macro-
scopic quantum states and the role of gravity affecting
quantum states. One viable approach involves utilizing a
static magnetic trap formed by two coils configured in an anti-
Helmholtz arrangement to achieve stable levitation, which
was first numerically analyzed in detail for an on-chip
configuration (Latorre et al., 2020).

In addition, nanomechanical oscillators can be effectively
cooled to their ground state when levitated under an inho-
mogeneous field, a phenomenon facilitated by the Meissner
effect (Cirio, Brennen, and Twamley, 2012). When these
oscillators are inductively coupled to a flux qubit, a consid-
erable opportunity to create macroscopic entangled states
within these sizable objects arises. This breakthrough holds
significant promise for practical applications, especially in the
precise measurement of force gradients, such as those
encountered in the study of gravity (Johnsson, Brennen,
and Twamley, 2016).

In conclusion, while quantum superpositions have been
achieved in clamped and hybrid mechanical systems, we are
still awaiting their experimental demonstration for levitated
mechanics. There are plentiful ideas and approaches under
active research, and we expect the first levitated superposition
within approximately the next five years.

3. Entanglement in mechanical systems

The quantum entanglement of massive objects has been a
focal point in the intersection of quantum mechanics and
gravity research. An understanding of entanglement in macro-
scopic systems offers insights into the quantum-to-classical
transition and theories related to wave-function collapse, as
discussed in Sec. IV.B which delves into gravitational
decoherence, semiclassical models, self-energy, and gravita-
tionally-induced wave-function collapse. The intricacies of
entanglement mediated by gravity are elaborated upon in
Sec. IV.C. Various approaches have been explored to create
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and manipulate entanglement in massive quantum systems
and aim at unraveling the mysteries of quantum mechanics
and its connection to gravity. Several approaches have been
proposed for entangling massive quantum systems, and some
have recently been experimentally demonstrated in clamped
optomechanical systems. Quantum entanglement has not yet
been demonstrated in levitated mechanical systems but is an
active research objective.

In a clamped system Eichler ef al. (2014) used a Bose-
Hubbard dimer consisting of two bosonic modes with an on-
site interaction strength to experimentally demonstrate quan-
tum-limited amplification and entanglement. They studied
how this system responds in different parameter regimes, and
by applying a coherent drive field, they were able to generate
entangled photon pairs from vacuum input fields demon-
strated through the measurement of cumulants. Their work
could prove useful for experimental studies related to non-
equilibrium many-particle physics in photonic systems and
could be applied toward massive resonators, which would be
used for exploring wave-function collapse theories at macro-
scopic scales due to gravitational interactions between them.
Riedinger er al. (2018) demonstrated the generation of
distributed entanglement between two nanomechanical pho-
nonic-crystal resonators using a three-step protocol that
consists of cryogenically cooling the two mechanical reso-
nators, sending a weak pump pulse into a phase-stabilized
interferometer, and creating a phonon. The joint state of the
two mechanical systems was then entangled and the entan-
glement was verified by mapping the mechanical state onto an
optical field in this measurement-based entanglement scheme.
The simultaneous coupling of two nanomechanical resonators
to a superconducting qubit in the strong dispersive regime was
used to entangle the two nanomechanical devices (Wollack
et al., 2022).

Cavity-optomechanical setups have also been demonstrated
experimentally for generating entanglement between two
massive mechanical oscillators (Ockeloen-Korppi et al.,
2018) via a two-mode backaction evading measurement to
verify entanglement in the cavity mode. Thomas et al. (2021)
experimentally achieved entanglement between a macro-
scopic mechanical oscillator and an atomic spin oscillator.
This achievement was accomplished using a millimeter-sized
dielectric membrane and an ensemble of roughly 10° atoms
within a magnetic field. The entanglement was confirmed by
achieving an Einstein-Podolsky-Rosen variance below the
separability limit. The process involved manipulating the light
that passed through the two spatially separated systems, with
the collective atomic spin serving as an effective negative-
mass reference, thereby suppressing quantum backaction.

Further theoretical proposals for entanglement schemes
making use of access to a discrete variable qubit quantum
system and/or cavity modes include concepts like a coherent
feedback loop (Li er al., 2017) applied to two macroscopic
mechanical resonators that were strongly coupled to a
common optical mode. Asadian and Abdi (2016) proposed
using a sequence of pulses to periodically flip a qubit
synchronized with the resonator frequency. A conditional
photon emission is then applied to the qubit to produce a
single photon, depending on the state of the qubit prior to the
pulse, to create a mechanically entangled coherent state,
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namely, a Schrodinger cat state. Yi et al. (2021) discussed
the use of large-scale spatial qubits to explore macro-
scopic nonclassicality and entanglement generated through
the Casimir effect. As mentioned in Sec. V.B.1, Cosco,
Pedernales, and Plenio (2021) proposed a protocol for gen-
erating entanglement between two weakly interacting massive
resonators, such as nanoparticles levitated by optical means or
massive pendula tethered to a base. The protocol involves
applying a continuously squeezed protocol to the two reso-
nators and removing the squeezing quickly after generating
the desired entanglement. They also proposed the reverse
protocol to dramatically reduce the decay rate of the
entanglement.

Another promising and especially interesting approach for
low-frequency mechanical oscillators, as proposed by Li and
Groblacher (2020), involves the preparation of entangled
states between a massive membrane and a low-frequency
LC resonator, and Li and Groblacher (2021) proposed using
cavity magnomechanics for entangling vibrational modes of
two massive ferromagnetic spheres. Xu and Blencowe (2022)
focused on the entanglement dynamics of spatially separated
local LC oscillators coupled to a long, partially metalized
elastic strip through the optomechanical interaction, which is
proposed to be usable to observe quantum-gravity-induced
entanglement at low energies. Electromechanical systems
have been considered as well: Khosla ef al. (2018) introduced
a novel approach involving the coupling of multiple electro-
mechanical resonators to a common qubit. Such electro-
mechanical systems also allow one to verify entanglement
of mechanical oscillators via qubits (Bose and Agarwal,
2006). This coupling scheme results in the entanglement of
these massive oscillators. This entanglement manifests itself
in the form of quantum interference patterns observed in the
displacement of the resonators.

In conclusion, various protocols have been proposed and
some have already been demonstrated, with each offering
unique insights into the interplay between quantum mechanics
and gravity. These advancements not only contribute to our
understanding of fundamental quantum principles but also
have the potential to validate or challenge extensions of the
Schroédinger equation, furthering our grasp of the complex
realm of quantum mechanics in gravitational contexts, includ-
ing some interesting questions, such as one considering
whether gravity can be used to quantum entangle two
particles; see Sec. IV.C. We emphasize that large-mass
mechanical systems are considered the predominant sys-
tem for experimental exploration at the quantum-gravity
interface.

VI. OUTLOOK

In this review we have outlined ideas and proposals for
probing the interface between quantum mechanics and gravity
with massive quantum systems. We emphasize that many
unknowns still persist and that numerous questions remain
completely open in the field. Gravity appears to behave
differently than other forces in that it can be formulated as
curvature and allows for an equivalence principle. A fully
fledged theory that consistently combines quantum mechanics
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and gravity might ultimately manifest in a completely unex-
pected manner.

To conclude, we offer a few remarks on some of the
outstanding questions raised throughout this review. To begin,
we have seen that even classical gravity is one of the least
precisely tested forces, especially at small length scales. New
and better precision tests are needed to further constrain
modified gravity theories and verify our current description of
gravity. Quantum-enhanced sensors play an important role
here. Equally interesting are questions regarding the nature of
gravity itself, and whether its interaction with quantum
systems results in a decohering or an entangling process.
Here tests with masses prepared in quantum superpositions
could provide a key step toward establishing the correct
theoretical description. Beyond nonrelativistic quantum
mechanics, the mathematical formalism of quantum field
theory in curved spacetime enables the interplay of quantum
and relativistic effects to be studied at low energies. It has,
however, not yet been demonstrated in the laboratory, and the
formalism itself gives rise to additional tensions, such as the
black-hole information paradox.

All of the aforementioned questions warrant further study.
Ultimately, to develop a theory that incorporates quantum
and general relativistic effects in a consistent way, it is
necessary to understand what principles are truly fundamental.
Experiments and the development of quantum technologies
play a key role here. In particular, increasing the masses and
coherence times of quantum systems may allow for some of
the proposals outlined in this review to be realized in the
laboratory. The results could help guide future research, which
thus far has relied mainly on mathematical and theoretical
arguments.

In summary, the prospect of using massive quantum
systems to explore the interplay between quantum mechanics
and gravity opens up a number of novel questions and exciting
challenges. The field is ripe for exploration and potentially
groundbreaking discoveries. We hope that this review will
inspire many future discussions around these topics and look
forward to learning about and partaking in potential discov-
eries in the future.
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