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Thermally driven turbulent flows are omnipresent in nature and technology. A good understanding
of the physical principles governing such flows is key for numerous problems in oceanography,
climatology, geophysics, and astrophysics for problems involving energy conversion, heating and
cooling of buildings and rooms, and process technology. In the physics community, the most
popular system to study wall-bounded thermally driven turbulence has been Rayleigh-Bénard
flow, i.e., the flow in a box heated from below and cooled from above. The dimensionless control
parameters are the Rayleigh number Ra (the dimensionless heating strength), the Prandtl number
Pr (the ratio of kinematic viscosity to thermal diffusivity), and the aspect ratio Γ of the container.
The key response parameters are the Nusselt number Nu (the dimensionless heat flux from the
bottom to the top) and the Reynolds number Re (the dimensionless strength of the turbulent flow).
While there is good agreement and understanding of the dependences NuðRa;Pr;ΓÞ up to
Ra ∼ 1011 (the “classical regime”), for even larger Ra in the so-called ultimate regime of Rayleigh-
Bénard convection the experimental results and their interpretations are more diverse. The
transition of the flow to this ultimate regime, which is characterized by strongly enhanced heat
transfer, is due to the transition of laminar-type flow in the boundary layers to turbulent-type flow.
Understanding this transition is of the utmost importance for extrapolating the heat transfer to
large or strongly thermally driven systems. Here the theoretical results on this transition to the
ultimate regime are reviewed and an attempt is made to reconcile the various experimental and
numerical results. The transition toward the ultimate regime is interpreted as a non-normal–
nonlinear and thus subcritical transition. Experimental and numerical strategies are suggested that
can help to further illuminate the transition to the ultimate regime and the ultimate regime itself,
for which a modified model for the scaling laws in its various subregimes is proposed. Similar
transitions in related wall-bounded turbulent flows such as turbulent convection with centrifugal
buoyancy and Taylor-Couette turbulence are also discussed.
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I. INTRODUCTION

In 1904, a new era in modern fluid dynamics began with
Prandtl’s seminal insight that viscous boundary layers are key
for the drag of any object in a flow, which overcame the
deadlock of the potential flow theory of the 19th century. The

example that Prandtl (1905) used was the flow along a flat
plate. By coupling the viscous flow within the boundary layer
at the plate with the potential flow outside, he was able to
calculate the drag coefficient of the plate as a function of the
Reynolds number. In so doing he developed what is now
known as Prandtl-Blasius boundary-layer theory (Schlichting,
1979). It is applicable to laminar boundary layers. As Prandtl
realized and explained in his seminal work, physically the
coupling to the outer potential flow is through detachment
of vortical structures from the boundary layers, implying
momentum exchange and thus friction. Prandtl (1905) also
gave the scaling of the thickness λu of the kinetic boundary
layer, namely, λu=L ∼ Re−1=2, where L is the typical length
scale of the problem and Re is the Reynolds number. Prandtl’s
doctoral student Blasius (1908) was able to calculate the
full velocity profile at the plate. Later the Prandtl-Blasius
boundary-layer (BL) theory was extended to include thermal
effects (Pohlhausen, 1921); this extension often goes by the
name Prandtl-Blasius-Pohlhausen theory (Schlichting, 1979).
It also gives the temperature profile over a hot plate with
laminar flow along it (assuming that the temperature is a
passive scalar) and, in particular, the thermal boundary-layer
thickness λθ and its dependence on Re and the Prandtl
number Pr, namely, λθ=L ∼ Re−1=2Pr−1=2 for small Pr < 1

when the kinetic BL is nested in the thermal one, and λθ=L ∼
Re−1=2Pr−1=3 for a large Pr > 1when the thermal BL is nested
in the kinetic one.
It was also Prandtl (1925) and, independently, von Kármán

(1923) who realized that for strong enough driving (i.e., a
large enough Re) at some point the laminar boundary layer
becomes unstable and turbulent. This turbulent BL with its
typical logarithmic profile for the mean velocity is now known
as the turbulent Prandtl–von Kármán boundary layer; a
logarithmic profile then also applies to the mean temperature
profile, again with a Pr dependence (Schlichting, 1979).
But when (i.e., at what Reynolds number and under what

conditions?) does the transition from a laminar BL to a
turbulent one occur? Almost the same time as Prandtl started
the boundary-layer research, Orr (1907) and, independently,
Sommerfeld (1909) derived an equation that describes the
linear evolution of a normal mode flow disturbance in a wall-
parallel viscous flow. This equation can be applied to different
wall-bounded flows. It was also studied in Prandtl’s group
with the hope of finding a critical Reynolds number for the
transition from a laminar to a turbulent boundary layer.
Tollmien (1929), another of Prandtl’s doctoral students, took
the boundary-layer velocity profile [which had been calcu-
lated by Blasius (1908)] as an unperturbed flow, solved the
Orr-Sommerfeld equation as an eigenvalue problem, and
evaluated the neutral linear stability curve that separates the
regions of linear stability and instability of a perturbation
mode. Based on these calculations, Tollmien (1929) found
that the Prandtl-Blasius laminar boundary layer can become
linearly unstable with a single normal mode perturbation at a
shear Reynolds number (based on the displacement thickness
of the laminar boundary layer) of about Res ≈ 420

(Res ∼ Re1=2 as λu=L ∼ Re−1=2). The value of Res ≈ 420 as
a typical estimate for the instability in shear flows was
popularized by Landau and Lifshitz (1987).
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Attempts to find critical Reynolds numbers for the onset of
the instability in different shear flows by applying the same
method, however, fail in the sense that the theoretical results
usually do not match the measurements that normally find
transition to turbulence at significantly smaller Reynolds
numbers than predicted by the eigenvalue analysis. Some
flows, like Poiseuille flow, are linearly stable at any Re, yet
become turbulent for large enough driving. The reasons for the
early transition to turbulence were unclear for a long time.
The nature of this transition was understood only much

later, at the end of the 20th century (Boberg and Brosa, 1988;
Farrell, 1988; Farrell and Ioannou, 1993; Reddy and
Henningson, 1993; Reddy, Schmid, and Henningson, 1993;
Trefethen et al., 1993). For shear flows, the Orr-Sommerfeld
operator of the linearized system is non-normal, implying that
its eigenvectors are nonorthogonal. The consequence thereof
is that, even if all eigenvalues are negative, distortions of the
linearized system can transiently grow. In the linearized and
linearly stable case such distortions ultimately exponentially
decay, but, in the nonlinear case and when the transient growth
is strong enough, nonlinearity can set in and prevent the
decay of the distortions. It is thus the interplay between non-
normality and the nonlinearity that leads to the subcritical
instability of the shear flow (Boberg and Brosa, 1988; Farrell,
1988; Farrell and Ioannou, 1993; Reddy, Schmid, and
Henningson, 1993; Trefethen et al., 1993). The eigenvalues
of the Orr-Sommerfeld operator are highly sensitive to
perturbations, and their sensitivity increases dramatically
with the Reynolds number; for a high Re the eigenfunctions
become almost colinear (Boberg and Brosa, 1988; Reddy,
Schmid, and Henningson, 1993; Gebhardt and Grossmann,
1994; Grossmann, 2000). Correspondingly, this type of
transition is now called a non-normal–nonlinear transition
to turbulence. It is characterized by the so-called double-
threshold behavior: Both the strength of the initial distortion
and the Reynolds number must be large enough for this
transition to happen: Small initial distortions require a larger
Reynolds number for this instability to set in than large initial
distortions. The most famous example of this type of transition
may be the study of the transition of Reynolds (1883) from
laminar to turbulent flow in a pipe. Though pipe flow is
linearly stable at any Reynolds number, Reynolds (1883)
found the transition at a Reynolds number of around 1300. In
contrast, 100 years later, in 1983, Johannesen and Lowe, in the
same lab in Manchester and with the same setup, already
found an onset of turbulence at Reynolds numbers between
700 and 800. The reason for this difference lies in the double-
threshold behavior: In the 100 years from 1883 to 1983, the
noise to which the pipe flow was subjected had considerably
increased, with the appearance of cars, trucks, and trains
passing by the lab building, so that in 1983 much smaller
Reynolds numbers were sufficient to trigger the transition to
turbulence. The physics and mathematics of the non-normal–
nonlinear transition in pipe flow was reviewed by Eckhardt
et al. (2007), Barkley (2016), and Manneville (2016) and,
most recently, by Avila, Barkley, and Hof (2023). Further
excellent reviews on the non-normal–nonlinear transition in
various shear flows were given by Grossmann (2000), Schmid
and Henningson (2001), Kerswell (2002), Schmid (2007), and

Wu (2019). The characteristics of this transition are its
subcritical and hysteretic nature and that it has a double-
threshold behavior with no sharp onset, sensitivity to noise,
poor reproducibility in experiments, and dependence on the
initial conditions.
Why do we start this review on turbulent Rayleigh-Bénard

convection with the Prandtl-Blasius and Prandtl–von Kármán
boundary-layer theories and the non-normal–nonlinear tran-
sition to turbulence in shear flow? The answer is that they are
key to understanding ultimate Rayleigh-Bénard turbulence,
the subject of this review.
Rayleigh-Bénard convection is the flow in a closed box that

is homogeneously heated from below and cooled from above;
see Fig. 1. It is driven by the density differences between the
lighter (usually) hot fluid, which wants to rise, and the heavier
(usually) cold fluid, which wants to sink. The strength of the
thermal driving is characterized by Ra, which is the non-
dimensionalized temperature difference between the warm
bottom and the cold top plate. The most relevant question in
Rayleigh-Bénard convection is: How does the heat transport
(in dimensionless form, Nu) depend on the control parameters,
particularly the thermal driving strength Ra, but also on Pr (the
ratio of kinematic viscosity and thermal diffusivity) and the
aspect ratio Γ (width divided by height) of the container? And
how does the strength of the flow inside the container, as
expressed by Re of the developing large-scale wind, depend
on Ra and Pr?
We note that the Rayleigh-Bénard model applies not only to

heat transfer but also to mass transfer provided that it is driven

FIG. 1. The most standard geometry of a Rayleigh-Bénard
convection setup: a cylindrical container, heated from below with
a temperature Tþ and cooled from above with a temperature T−,
with a temperature difference Δ ¼ Tþ − T−. The height of the
cylinder is L and its diameter D. Buoyancy is upward against the
gravitational acceleration g, and hot fluid (red, rising) moves
upward and cold fluid (blue, descending) downward. Also shown
is the developing large-scale “wind of turbulence” with a typical
velocity U, which nondimensionally is expressed as Re ¼ UL=ν.
The visualization is for Ra ¼ 109, Pr ¼ 1, and Γ ¼ D=L ¼ 1.
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by density differences, for example, in a system with
(heavy) salty water at the top and (lighter) fresh water at
the bottom, as can occur in the ocean or the processing
industry. For that case the corresponding Prandtl number
(then called the Schmidt number Sc ¼ ν=D, where D is the
mass diffusivity) is much larger than for thermal transport in
gas or water, namely, Sc ≈ 700, rather than Pr ≈ 0.7 for gas
under standard conditions or 4 ≲ Pr ≲ 10 for water, depend-
ing on the temperature.
Rayleigh-Bénard (RB) convection has always been the

most popular area for the development of new concepts in the
physics of fluids, be it linear instabilities (Rayleigh, 1916;
Jeffreys, 1928; Chandrasekhar, 1961; Busse, 1967; Drazin and
Reid, 1981), nonlinear dynamics and chaos (Lorenz, 1963;
Ahlers, 1974; Behringer, 1985; Strogatz, 1994), the emer-
gence of spatiotemporal chaos and patterns (Cross and
Hohenberg, 1993; Bodenschatz, Pesch, and Ahlers, 2000),
where the systems has only a few degrees of freedom,
or, when with increasing driving strength the system has
gained many more degrees of freedom, classical Rayleigh-
Bénard turbulence (Siggia, 1994; Kadanoff, 2001; Ahlers,
Grossmann, and Lohse, 2009; Lohse and Xia, 2010; Chillà
and Schumacher, 2012; Xia, 2013; Shishkina, 2021; Lohse
and Shishkina, 2023), which is more precisely defined later. In
this review, we employ the relatively new concept of the non-
normal–nonlinear transition to turbulence to reconcile various
experimental observations and theoretical concepts and mod-
els on the so-called ultimate Rayleigh-Bénard turbulence, for
which the driving of the system is even stronger than for
classical RB turbulence, i.e., Ra is even larger.
The ultimate RB regime is of particular interest for many

geophysical and astrophysical applications, such as for ther-
mally driven flow in the ocean, the atmosphere (Vallis, 2017),
or the outer core of Earth, other planets, or stars, where
naturally large Rayleigh numbers are achieved and where one
wants to know the corresponding transport of heat (or mass). It
is impossible to solve the governing equations analytically,
and for this regime it is extremely difficult to study the flow in
experiments and simulations. Therefore, to get an estimate for
the transport at large Ra, one has to rely on extrapolations
from lab experiments at a much smaller Ra (typically in the
classical regime). Typically these extrapolations are scaling
laws, but this makes sense only once there is no transition
toward a different state of turbulence. If there is such a
transition, the extrapolation with a simple scaling law
becomes meaningless. But then, how can one upscale the
RB system and understand and predict the heat and mass flux
for a large Ra, as it occurs in geophysical and astrophysical
applications? In this review we examine the present under-
standing of how to answer these questions.
Before we do so, we summarize the situation for Rayleigh

numbers up to Ra ∼ 1011, which now is called the classical
regime of RB turbulence (Sec. III); Sec. II contains the
underlying dynamical equations and the control and response
parameters. Meanwhile, in this classical regime there is good
agreement between various experiments and numerical sim-
ulations and a good understanding of the flow physics
[Grossmann-Lohse (GL) theory; see Grossmann and Lohse
(2000, 2001, 2002), Ahlers, Grossmann, and Lohse (2009),

Stevens et al. (2013), and Lohse and Shishkina (2023)]. In a
nutshell, GL theory makes use of two exact balance equations
for the global energy dissipation rate and the global thermal
dissipation rate, which follow from the underlying Boussinesq
equations. As the local dissipation rates in the BLs and in the
bulk reflect much different flow physics, the total dissipation
rates are split into a BL part and a bulk part. In the BLs, for not
too strong driving their scaling behavior directly follows
from Prandtl-Blasius BL theory, whereas in the bulk with
its fully developed turbulence the behavior follows from
the Kolmogorov-Obukhov theory (Monin and Yaglom, 1975,
Pope, 2000). With this, the GL theory gives the dependences
NuðRa; PrÞ and ReðRa; PrÞ (see Sec. III.A), thus describing
the experimental and numerical data over at least 8 orders of
magnitude in Ra and at least 6 orders of magnitude in Pr. In a
sense, just as Prandtl (1905) coupled the laminar-type Prandtl-
Blasius BLs to the outer potential Bernoulli flow in order to
obtain the drag coefficient, for turbulent RB flow (or more
generally for any wall-bounded turbulent flow) GL theory
couples the Prandtl-Blasius BL to the turbulent, Kolmogorov-
Obuhkov-type bulk flow in order to obtain the Nusselt and
Reynolds numbers.
But as explained, for large enough driving (i.e., a large

enough Ra) the laminar-type Prandtl-Blasius BL must
undergo a transition toward the turbulent-type Prandtl–von
Kármán BL through the non-normal–nonlinear mechanism.
GL theory even predicts in which Ra range this will happen,
namely, when the shear Reynolds number Res becomes large
enough, and as an indicative value it uses the Tollmien value
Res ≈ 420. This key idea of interpreting the transition to
ultimate turbulence as a subcritical transition of non-normal–
nonlinear type is discussed in Sec. III.C.
From the 1960s up to the 1980s, the fluid dynamics

community was far from able to achieve the ultimate regime
in any controlled experiments, not to mention any direct
numerical simulations, which did not exist at the time.
Therefore, one had to rely on theoretical models for the
ultimate regime. The models must also obey the mathemati-
cally strict upper bounds for the heat transport, which follow
from the underlying equations. We give these upper bounds in
Sec. IV. In Sec. V we review the theoretical models with their
strong points and shortcomings. In particular, we discuss the
model assumptions, which often have not been spelled out
explicitly. Section Valso includes a comparison of the various
models and a proposed modified model for the scaling laws in
the various subregimes of the ultimate regime.
The modern era of highly turbulent RB convection research

started in Chicago in the late 1980s and early 1990s. Albert
Libchaber had the vision to employ cryogenic helium as a
fluid since it has extremely low kinematic viscosity and
thermal conductivity. With this, Ra ∼ 1014 could be achieved;
see the influential paper by Castaing et al. (1989) and later
work from the Chicago group for these high Ra results (Wu
and Libchaber, 1991, 1992; Procaccia et al., 1991). This line
of research was continued in Grenoble, France, by Chavanne
et al. (1997), who were the first to find a transition toward
some type of steep effective scaling of Nu versus Ra, which
was later confirmed and further analyzed by the Grenoble
group (Chavanne et al., 2001; Roche, Castaing, Chabaud, and
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Hébral, 2001; Gauthier and Roche, 2008; Roche et al., 2010;
Roche, 2020). Roche (2020) also realized the subcritical
nature of the transition to the ultimate regime; see Fig. 2 of
his paper, in which he explicitly compared the transition
toward the ultimate regime to the transition toward fully
developed turbulence in pipe flow.
Russ Donnelly in Oregon took up Libchaber’s idea of

employing cryogenic helium as a fluid but further enlarged the
height of the RB container, achieving an even larger Ra of up
to ∼1017 (Niemela, Skrbek, and Donnelly, 2000; Niemela,
Skrbek, Sreenivasan, and Donnelly, 2000; Niemela, Skrbek,
Swanson et al., 2000; Niemela et al., 2001; Niemela and
Sreenivasan, 2003a). However, no transition to an ultimate
regime with an enhanced effective Nu versus Ra scaling
was identified in those experiments, nor was any transition
identified in follow-up experiments partially carried out in
Trieste, Italy, by members of that group (Niemela and
Sreenivasan, 2006a, 2006b, 2008; Niemela, Babuin, and
Sreenivasan, 2010), and partially in Brno, Czechia (Urban,
Musilová, and Skrbek, 2011; Urban et al., 2012, 2014, 2019;
Skrbek and Urban, 2015). The increase in the Nu versus Ra
relation observed in some of these experiments was inter-
preted as a non-Oberbeck-Boussinesq effect (i.e., as an effect
of a strong variation of the fluid properties on temperature or
pressure that is not represented within the standard Oberbeck-
Boussinesq approximation).
Experiments with cryogenic helium have a complication

in that, when Ra is increased over several orders of
magnitude, in general Pr also increases, though in their
helium experiments Roche et al. (2010) and Roche (2020)
succeeded in keeping Pr constant for nearly 2 orders of

magnitude. In experiments with pressurized gas SF6,
the density ρ is large and, since Ra ∝ L3=ðκνÞ ∝ L3ρ2, in
large-scale containers it is possible to achieve a high Ra
under almost Boussinesq conditions. Ahlers, Funfschilling,
and Bodenschatz (2009), Ahlers et al. (2009), Ahlers,
Bodenschatz et al. (2012), Ahlers, He et al. (2012), He,
Funfschilling, Bodenschatz, and Ahlers (2012), He,
Funfschilling, Nobach et al. (2012), Ahlers, Bodenschatz,
and He (2014), He et al. (2014, 2015), and He, Bodenschatz,
and Ahlers (2016, 2020) made use of this property and
performed large Ra RB experiments with pressurized SF6.
They observed a transition to an ultimate RB regime,
namely, at around Ra ∼ 1014 (with a slight dependence on
the container aspect ratio), with a steeper NuðRaÞ depend-
ence than in the classical regime, which can be described
with an effective scaling law Nu ∼ Ra0.38.
The discrepancy between a typical Grenoble dataset, a

typical Oregon dataset, and a typical Göttingen, Germany,
dataset in the large Ra regime is illustrated in Fig. 2. More
detailed data showing the differences between the various
datasets are given in Fig. 3. Up to Ra ∼ 1011 the various
datasets roughly agree, but they show the onset of the ultimate
regime at different Ra.
What could be the origin of the differences in the various

experiments? Any experiment has imperfections compared
to the ideal case described in Sec. II: The underlying
dynamical equations are not exactly of the Oberbeck-
Boussinesq type, and the boundary conditions are not perfect.
Indeed, as the results are discrepant, possible differences
in the setups and in the material properties could be the origin
and must be analyzed in detail. Thus, in Sec. VI we discuss

FIG. 2. Dependencies of (a) Nu and (b) compensated Nusselt number NuRa−1=3 on Ra as measured in different Rayleigh-Bénard
experiments in cylindrical containers with aspect ratios Γ close to 1 and 1=2. The blue curve shows the Grossmann-Lohse predictions for
the classical regime: Pr ¼ 1 and Γ ¼ 1. The inset of (a) presents all available data, while (a) and (b) contain only those data that satisfy
αΔ < 15% (one of the Oberbeck-Boussinesq requirements; see Sec. VI.B). Prandtl numbers are almost constant in the Grenoble
and Göttingen experiments; in these experiments the transition to the ultimate regime (given as Nu ∼ Ra0.4, indicated with the inclined
straight brown and magenta lines, respectively) was precisely identified at the highest Rayleigh numbers achieved in these
experiments.The following datasets are considered here: Grenoble (Roche et al., 2010; Roche, 2020), Oregon (Niemela, Skrbek,
and Donnelly, 2000; Niemela, Skrbek, Sreenivasan, and Donnelly, 2000; Niemela, Skrbek, Swanson et al., 2000; Niemela and
Sreenivasan, 2003a), Göttingen (He, Funfschilling, Bodenschatz, and Ahlers, 2012; He, Funfschilling, Nobach et al., 2012), and Brno
(Urban et al., 2014, 2019).
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FIG. 3. Experimental and numerical data from various groups (see the legend) for the dependence of the heat transport (Nu) on the
control parameters of the system, which are Ra and Pr. Shown is NuðRa; PrÞ compensated by Ra1=3vs Ra. The Pr dependence is
visualized through the color code given on a logarithmic scale (see the legend); note that for some datasets Pr varies. The aspect ratio Γ
ranges from 1=2 to 1 (see the legend); in this aspect ratio range, the Γ dependence of Nu is weak. The solid lines are from GL theory for
various Pr [from bottom to top: Pr ¼ 0.01 (red line), 0.03 (orange line), 0.1 (yellow line), and 1000 (blue line) and 0.8 ≤ Pr ≤ 10 (green,
almost indistinguishable line)]. Adapted from Lohse and Shishkina, 2023.
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dependences of the skin friction coefficient Cf on Re, which are shown in (f) as blue and red lines, respectively. There is a similar
analogy between Rayleigh-Bénard flow and Taylor-Couette flow [cf. Figs. 21(d)–21(f)], and also between RB flow and pipe and
channel flows, which we discuss in Sec. IX. A comparison with the transition to turbulence in pipe flow was worked out by Roche
(2020); see Fig. 2 of that paper. Adapted from Lohse and Shishkina, 2023.
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large Ra RB convection under realistic conditions, namely,
the lateral confinement of the flow, possible non-Oberbeck-
Boussinesq effects and effects originating from nonideal
plates and sidewalls, which are not described by the ideal
boundary conditions in Sec. II. The large Ra experiments
of Chicago, Grenoble, Oregon (and later Trieste and Brno),
Göttingen, Lyon, and Tokyo (the last two for liquid mercury:
Pr ≈ 0.02) are described in Sec. VII, with focuses on possible
differences and the dependences NuðRa; Pr;ΓÞ. At the end of
Sec. VII we return to the ideas formulated in Sec. III.C and try
to reconcile the various observations, realizing that they can
simply be interpreted as a consequence of the non-normal–
nonlinear nature of the transition to the ultimate regime
(Roche, 2020; Lohse and Shishkina, 2023), as this transition
is simply the transition between a laminar-type Prandtl-
Blasius BL to a turbulent-type Prandtl–von Kármán BL.
In Sec. VIII, we discuss large Ra direct numerical simu-

lations in both two and three dimensions. These simulations
have the advantage that both the underlying equations and the
boundary conditions are exactly known, but the disadvantage
that the computational effort to reach the ultimate regime is
enormous. In fact, in 3D simulations of RB convection, the
ultimate regime has not yet been reached.
Sections VII and VIII both end with suggestions for future

experiments and numerical simulations to confirm (or falsify)
the hypothesis that the seemingly contradicting observations
on the ultimate regime simply reflect the non-normal–
nonlinear nature of the transition from a sheared laminar-type
Prandtl-Blasius BL to a turbulent Prandtl–von Kármán BL.
Section IX discusses analogous transitions toward analo-

gous ultimate regimes in various related systems, such as the
Taylor-Couette system (Grossmann, Lohse, and Sun, 2016),
where due to the much more efficient mechanical driving the
transition toward the ultimate regime is much easier to
achieve, a system with centrifugal buoyancy (Jiang et al.,
2020, 2022; Rouhi et al., 2021; Wang et al., 2022, 2023;
Zhong, Wang, and Sun, 2023), and homogeneous RB con-
vection. The review ends in Sec. X with conclusions and an
outlook on the interesting and ever-changing times that lie
ahead in the research on wall-bounded turbulence.

II. GOVERNING EQUATIONS AND CONTROL AND
RESPONSE PARAMETERS

In this section we give the governing equations with their
boundary conditions. They hold within the RB container,
which for the cylindrical case is sketched in Fig. 1, where we
also define the geometrical dimensional control parameters.
In this section we also give the dimensionless control
parameters of the system and its main response parameters
and show how they are related by exact analytical relations
that follow from the governing equations and their boundary
conditions.

A. Oberbeck-Boussinesq approximation and dimensionless
control parameters

The simplest approximation to describe thermally
driven flows, with buoyancy taken into account, is the
Oberbeck-Boussinesq (OB) approximation (Oberbeck, 1879;

Boussinesq, 1903). It assumes that the flow is incompressible
and, moreover, that (i) all fluid properties are constant except
the density in the buoyancy force term in the momentum
equation, which is taken as linearly dependent on the temper-
ature, and that (ii) the pressure work and the viscous
dissipation terms in the heat equation are negligible. The
governing equations for the velocity field uðx; tÞ (with uj the
velocity components in spatial directions xj), the temperature
field Tðx; tÞ, and the hydrodynamic pressure pðx; tÞ in this OB
approximation are then the continuity equation

∇ · u ¼ 0 ð1Þ

following from mass conservation for incompressible fluid,
the momentum equation

∂tuþ ðu · ∇Þuþ ∇p=ρ ¼ ν∇2uþ αðT − T0Þgez ð2Þ
following from momentum conservation, and the heat equation

∂tT þ ðu · ∇ÞT ¼ κ∇2T ð3Þ

following from energy conservation (Landau and Lifshitz,
1987). In Eqs. (2) and (3) g is the acceleration due to gravity,
ρ is the density at a reference temperature T0 and pressure P0,
ν≡ μ=ρ is the kinematic viscosity, and κ ≡ k=ðρcpÞ is the
thermal diffusivity, with μ the dynamic viscosity, k the thermal
conductivity, and cp the specific heat at constant pressure.
Further notations here are ∂t the partial derivative with respect
to time t, and ez the unit vector pointing upward.
The system of the partial differential equations (1)–(3)

needs to be supplemented by the boundary conditions for the
velocity and temperature fields. These boundary conditions
are no slip for the velocity (u ¼ 0) at all boundaries of the
domain (i.e., at all walls of the container), adiabatic for
the temperature at the sidewalls (∂T=∂n ¼ 0, where n is
the surface normal), and isothermal at the bottom (T ¼ Tþ)
and top (T ¼ T−) plates, with the temperature difference
Δ≡ Tþ − T− between the hot bottom plate and the cold top
plate, which are separated by a distance L; see Fig. 1.
Equations (1)–(3) can be made dimensionless in different

ways. For example, taking as the reference quantities Δ for the
temperature, L for the length, uff ≡ ffiffiffiffiffiffiffiffiffiffiffiffi

αgLΔ
p

for the velocity
(the so-called free-fall velocity), L=uff for the time, and ρu2ff
for the pressure, one obtains dimensionless governing equa-
tions that look similar to Eqs. (1)–(3) but with the following
substitutions for the viscosity ν →

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr =Ra

p
, the thermal

diffusivity κ → 1=
ffiffiffiffiffiffiffiffiffiffi
PrRa

p
, the pressure term ∇p=ρ → ∇p,

and the gravitational buoyancy term αðT − T0Þg → T.
Thus, we obtain the dimensionless equations with two control
parameters, which are the Rayleigh number

Ra≡ αgΔL3

νκ
ð4Þ

and the Prandtl number

Pr≡ν=κ: ð5Þ
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Regardless of the choice of reference quantity, these control
parameters or their combinations always appear in the
resulting dimensionless equations.
The aspect ratio Γ of the typical horizontal-to-vertical

extensions of the domain is the third independent control
parameter. For a cylinder, one lateral length scale suffices, i.e.,
the diameter D of the cylinder, thus implying an aspect ratio

Γ≡D=L: ð6Þ

If the two horizontal extensions of the domain differ,
then one must consider the aspect ratios for each lateral
direction. For a rectangular box, one then has two relevant
aspect ratios Γx ≡Dx=L and Γy ≡Dy=L, one for each
lateral direction.

B. Exact analytical relations for the total heat transport
and viscous and thermal dissipation rates

In the theories of heat transfer discussed later in the review,
two exact analytical relations are key, namely, one for the
mean kinetic energy dissipation rate ϵu following from the
momentum equation, and one for the mean thermal dissipation
rate ϵθ following from the heat transfer equation. We recall
them here and also derive an exact relation for the total
heat flux.
We now consider the OB governing equations for the

velocity u and the reduced temperature θ≡ T − T0, which is
defined with the mean temperature T0 ≡ ðTþ þ T−Þ=2,

∂tuþ ðu · ∇Þuþ ∇p=ρ ¼ ν∇2uþ αθgez; ð7Þ

∂tθ þ ðu · ∇Þθ ¼ κ∇2θ: ð8Þ

The boundary conditions are no slip for the velocity (u ¼ 0) at
all boundaries, adiabatic for the temperature at the sidewalls
(∂θ=∂n ¼ 0), and isothermal at the bottom (θ ¼ Δ=2) and top
(θ ¼ −Δ=2). Averaging the heat equation (8) in time h·it and
using the continuity equation ∇ · u ¼ 0, one obtains that the
local heat flux vector (nondimensionalized with κΔ=L)

Fðx; tÞ≡ θuðx; tÞ − κ∇θðx; tÞ
κΔ=L

ð9Þ

is divergence free if time averaged, that is,

∇ · hFit ¼ 0: ð10Þ

Integrating Eq. (10) over the lower part of the container from
the bottom to any height z (z∈ ½0; L�) and taking into account
the adiabatic sidewall boundary conditions, one concludes
that the vertical component of the heat flux Fz is constant if it
is averaged in time and over any horizontal cross section Sz.
This constant is the Nusselt number

Nu≡ hFzit;Sz ; ð11Þ

i.e., the dimensionless heat transfer, which is the first main
response parameter of the system. Integration of Eq. (10) over
all z∈ ½0; L� with the respective top- and bottom-temperature

boundary conditions gives the following formula for the time-
and volume-averaged convective heat flux huzθi:

Nu − 1 ¼ L
κΔ

huzθi: ð12Þ

With this, the mean (i.e., time- and volume-averaged) scalar
product of the velocity field and the momentum equation hu·i
[Eq. (7)] leads to the following relation for the mean
kinetic energy dissipation rate (i.e., the mean viscous dis-
sipation rate) ϵu:

ϵu ≡ νhð∇uÞ2i ¼ αghuzθi ¼
ν3

L4
RaPr−2ðNu − 1Þ: ð13Þ

Equation (13) is the first desired relation.
Next the product of the temperature with the heat equation

hθi [Eq. (8)] yields the relation for the mean thermal
dissipation rate ϵθ,

ϵθ ≡ κhð∇θÞ2i ¼ κΔ2

L2
Nu: ð14Þ

Equations (13) and (14) have been well known since at least
the works of Malkus (1954) and Sorokin (1954); see also
Spiegel (1971), Shraiman and Siggia (1990), and Siggia
(1994). These integral relations are important since they
are used as main constraints considered in the variational
analysis to obtain the upper bounds to the heat transport in the
turbulent regime (Howard, 1963, 1972; Busse, 1969; Doering
and Constantin, 1996), and they serve as a starting point in GL
theory (Grossmann and Lohse, 2000, 2001) for the classical
regime in RB convection as well as in the models for the
ultimate regime in turbulent RB convection (Kraichnan, 1962;
Chavanne et al., 1997; Grossmann and Lohse, 2011).

C. Wind of turbulence and the Reynolds number

Next to Nu, the second main response parameter of the
system is Re, which is the nondimensionalized velocity U of
the large-scale wind of turbulence Re≡UL=ν. This is also
called the wind Reynolds number. The central role of this
wind of turbulence for the flow organization was first realized
by Castaing et al. (1989) and later illustrated by Kadanoff
(2001). We sketch this wind of turbulence in Fig. 1.
The key objective in the research on RB turbulence can thus

be summarized as follows: Given the control parameters
Ra; Pr, and Γ, how large are the response parameters

NuðRa; Pr;ΓÞ; ReðRa; Pr;ΓÞ? ð15Þ

We note that there are various ways how to exactly define
the Reynolds number or typical velocity in RB flow, for
example, with the mean modulus of the velocity, with the
mean upward velocity, or with the mean velocity at a fixed
position in the flow, which usually scale in the same way. One
can also define additional Reynolds numbers with the velocity
fluctuations at various positions or averaged over the entire
domain. These fluctuational velocities can scale differently
than the wind velocities. These differences were discussed by
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Grossmann and Lohse (2004) and later reviewed by Ahlers,
Grossmann, and Lohse (2009) and thus are not the subject of
this review.

III. CLASSICAL REGIME

In this section we discuss the classical regime of a
Rayleigh-Bénard system with a Rayleigh number up to
Ra ∼ 1011 (for Pr∼1 and smaller or larger Ra for smaller
or larger Pr, respectively), where there is a good understanding
of the flow physics.

A. The unifying theory of Grossmann and Lohse
for the classical regime

The first key idea of the unifying theory for thermal
convection proposed by Grossmann and Lohse (2000,
2001, 2002, 2004) was that for wall-bounded thermally driven
turbulent flows there are always BLs and a bulk, and that the
physics in the BLs and the bulk is different; cf. Fig. 5. In this
sense the spirit of GL theory is the same as that of Prandtl’s
seminal paper (Prandtl, 1905) in which Prandtl realized the
existence of a BL around an object in a flow and the
implications thereof. Though Grossmann and Lohse originally
suggested this theory for Rayleigh-Bénard convection, the
idea of the theory could later be extended to various other
wall-bounded thermally driven flows, such as horizontal
convection, vertical convection, centrifugal buoyancy-driven

thermal convection and double-diffusive convection, and even
mechanically driven wall-bounded turbulent flow like Taylor-
Couette flow, pipe flow, or channel flow.
For the kinetic BL and later also for the thermal BL, Prandtl

(1905), Blasius (1908), and Pohlhausen (1921) developed
what is now called the Prandtl-Blasius-Pohlhausen BL theory,
or Prandtl-Blasius BL theory (Schlichting, 1979; Landau and
Lifshitz, 1987; Pope, 2000), which couples the BL flow to the
potential flow around the object outside the BL. GL followed
this idea but realized that, for turbulent flow outside the BL,
potential flow is inappropriate and must be replaced by the
Kolmogorov-Obukhov picture (Kolmogorov, 1941; Obukhov,
1959; Monin and Yaglom, 1975) of a turbulent cascade in the
bulk of the flow. The key idea of GL theory is that the total
kinetic energy dissipation rate ϵu (averaged over time and
space) inside the confined flow is the sum of the kinetic energy
dissipation rate in the BL (weighed with the relative BL
thickness 2λu=L) and in the bulk [weighed with the relative
thickness of the bulk ðL − 2λuÞ=L],

ϵu ¼ ϵu;BL þ ϵu;bulk; ð16Þ

and a similar approach is taken for the thermal dissipation rate
ϵθ (averaged over time and space),

ϵθ ¼ ϵθ;BL þ ϵθ;bulk: ð17Þ

The flow geometry in general terms is sketched in Figs. 5(a)
and 5(b), with a typical kinetic BL thickness λu and a typical
thermal BL thickness λθ, which can be either smaller (for
large Pr) or larger (for small Pr) than λu, and with a large-scale
velocity U characterizing the flow intensity of the bulk and an
outer temperature scale Δ characterizing the strength of the
thermal driving set by the temperature difference between
the plates. Note again that the flow physics in the BL and in
the bulk is different, which must be reflected by different
scaling relations in these two domains. The kinetic BL exists
both at the plates and at the sidewalls due to the no-slip
boundary conditions, whereas the thermal BL exists only at
the upper and lower plates.
For the BL thicknesses, GL assumed the Prandtl-Blasius

scaling

λu=L ∼ Re−1=2 ð18Þ

and

λθ=L ∼ Re−1=2Pr−1=2 or ∼ Re−1=2Pr−1=3 ð19Þ

for small Pr or large Pr, respectively, depending on whether
the kinetic BL is nested in the thermal one (small Pr), or vice
versa (large Pr). This picture also includes that for small
Reynolds numbers λu does not diverge but must be cut off by a
length scale of the order of the height L of the container. The
Prandtl-Blasius picture implies that

ϵu;BL ∼ ν
U2

λ2u

λu
L

ð20Þ

FIG. 5. Sketch of the first idea of GL theory for thermal
convection: boundary-layer nesting for (a) small Pr where
λu < λθ and the kinetic BL is nested in the thermal one and
(b) large Pr where λθ < λu and the thermal BL is nested in the
kinetic one. (a),(b) Adapted from Grossmann and Lohse, 2000.
(c) GL theory, which consists of four steps: (i) The total energy
dissipation rate and the total thermal dissipation rate are split into
a BL part and a bulk part. (ii) The exact relations for the total
energy dissipation rate and the total thermal dissipation rate,
which directly follow from the underlying Boussinesq equations,
are used. (iii) The Prandtl-Blasius BL theory is used to estimate
the dissipation rates in the BLs. The Pr scaling of the thermal BL
thickness depends on whether the thermal BL is nested in the
kinetic one (for large Pr), or vice versa (for small Pr). For
simplicity, we included the exponents only of the small Pr case,
i.e., for λu < λθ. (iv) The Kolmogorov-Obukhov theory is used to
estimate the dissipation rates in the bulk.
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and

ϵθ;BL ∼ κ
Δ2

λ2θ

λθ
L
: ð21Þ

Note that for weak thermal driving of the flow (which will turn
out to be over a considerable range) the Prandtl-Blasius-type
scaling is unavoidable. For strong driving this type of scaling
may break down because the BLs become turbulent, but the
theory itself gives information on when this will happen, as it
predicts the shear Reynolds number of the BL. Note also that
GL theory does not claim Prandtl-Blasius profiles: it refers
only to the scaling of the BL thicknesses.
For the bulk, GL assumed the Kolmogovov-Obukov picture

of fully developed turbulence, implying that

ϵu;bulk ∼ U3=L ð22Þ
and

ϵθ;bulk ∼ UΔ2=L: ð23Þ
The second key ingredient of GL theory is to employ

the previously derived exact global balance relations for
the time- and space-averaged energy and thermal dissipation
rates, Eqs. (13) and (14), respectively. Inserting Eqs. (16)
and (17) with the four scaling relations (20)–(23) into the
exact Eqs. (13) and (14) results in two implicit equations for
Nu and Re as functions of Ra and Pr. Solving these implicit
equations gives the desired relations NuðRa; PrÞ and
ReðRa; PrÞ. The key ideas of GL theory are visually summa-
rized in Fig. 5(c).
For completeness and self-containedness, we reproduce

here the full GL equations from Stevens et al. (2013) or,
identically, from the earlier papers by Grossmann and Lohse
(2001) and Ahlers, Grossmann, and Lohse (2009), namely,

ðNu − 1ÞRaPr−2 ¼ c1
Re2

gð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReL=Re

p Þ þ c2Re3; ð24Þ

Nu − 1 ¼ c3Re1=2Pr1=2
�
f

�
Nu g

� ffiffiffiffiffiffiffiffi
ReL
Re

r ���1=2

þ c4 Pr Ref

�
Nu g

� ffiffiffiffiffiffiffiffi
ReL
Re

r ��
: ð25Þ

The crossover functions f and g model the crossover from the
thermal BL nested in the kinetic one toward the inverse
situation and that for which λu ∼ L=Re1=2 extends to container
half height ∼L=2 and cannot increase further with decreasing
Re but must be replaced by λu ∼ L when Re reaches a smaller
enough Reynolds number ReL; for further details, including
the definitions of the crossover functions f and g, see
Grossmann and Lohse (2001).

B. Description of experimental and numerical data
by the Grossmann-Lohse theory in the classical regime

As described by Grossmann and Lohse (2000, 2001, 2002),
Ahlers, Grossmann, and Lohse (2009), and Stevens et al.
(2013), the four prefactors ci, where i ¼ 1; 2; 3; 4, and ReL of

Eqs. (24) and (25) have to be determined from reliable
experimental or numerical data, namely, from four values
NuiðRai; PriÞ, where i ¼ 1; 2; 3; 4, for the Nusselt number
and one value for the Reynolds number at one data point
Re5ðRa5; Pr5Þ. Note that the four prefactors ci, where
i ¼ 1; 2; 3; 4, correspond to the unknown prefactors in the
four scaling relations (20)–(23). Stevens et al. (2013) picked
five appropriate experimental data points NuiðRai; PriÞ, where
i ¼ 1; 2; 3; 4, and Re5ðRa5; Pr5Þ for experiments with an aspect
ratio Γ ¼ 1 and obtained the following five GL parameters:
c1 ¼ 8.05, c2 ¼ 1.38, c3 ¼ 0.487, c4 ¼ 0.0252, and
a ¼ 0.922. For Γ ¼ 1=2 they proceeded correspondingly. In
principle, these prefactors depend on the aspect ratio Γ, as
discussed by Stevens et al. (2013), reflecting that the geometric
volume ratio between sidewall BLs, plate BLs, and bulk also
depends on Γ. Whereas this dependence seems to be weak for
Γ≳ 1=2, for small Γ this will be no longer the case, as for small
Γ the sidewalls stabilize the flow and the kinetic BL at the
sidewall become more and more prominent with decreasing Γ.
We discuss the dependence on Γ in more detail in Sec. VI.
The resulting full two-dimensional dependences NuðRa;PrÞ

and ReðRa; PrÞ are reproduced in Figs. 6(a) and 6(b), respec-
tively (for Γ ¼ 1). Both Nu and Re axes have been rescaled to
allow for a proper visualization. NuðRa; PrÞ does not follow
one pure scaling lawonly,whichwould correspond to a straight
plane in this visualization, but the dependences are more
complicated since in different regions of the parameter space
different terms dominated, as previously explained. The same
holds for ReðRa; PrÞ. We note that the shown region covers 8
orders of magnitude in Ra and 7 orders of magnitude in Pr.
We also note that the theory has strong predictive power;
the experimental input were only the five data points.
Indeed, GL theory has facilitated various predictions of certain
dependences NuðRa; PrÞ and ReðRa; PrÞ in certain regimes of

FIG. 6. Compensated 3D visualization of (a) NuðRa;PrÞ and
(b) ReðRa; PrÞ for Γ ¼ 1. The four NuðRa;PrÞ points and the
ReðRa; PrÞ point, which are used to fit the parameters ci, where
i ¼ 1; 2; 3; 4, and ReL in GL theory for Rayleigh-Bénard
convection, are indicated as black dots. The references in the
legend refer to Castaing et al. (1989), Chavanne et al. (1997),
Cioni, Ciliberto, and Sommeria (1997), Glazier et al. (1999),
Niemela, Skrbek, Sreenivasan, and Donnelly (2000), Ahlers
and Xu et al. (2001), Chaumat, Castaing, and Chillà (2002),
Fleischer and Goldstein (2002), Xia, Lam, and Zhou (2002),
Niemela and Sreenivasan (2003a), Funfschilling et al. (2005),
Sun and Zia (2005), Sun et al. (2005), Ahlers, Grossmann, and
Lohse (2009), Burnishev, Segre, and Steinberg (2010), Roche
et al. (2010), Stevens, Clercx, and Lohse (2010b), Stevens,
Verzicco, and Lohse (2010), Urban, Musilová, Skrbek (2011),
Emran and Schumacher (2012), and He, Funfschilling, Nobach
et al., 2012. Adapted from Stevens et al., 2013.
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parameter space, which are later confirmed by experiments or
numerical simulations. Examples were given by Ahlers,
Grossmann, and Lohse (2009) and Stevens et al. (2013),
who also presented various cross sections of parameter space,
including experimental and numerical data, namely, NuðRaÞ
for fixed Pr numbers, NuðPrÞ for fixed Ra numbers, ReðRaÞ
for fixed Pr numbers, andReðPrÞ for fixed Ra numbers, which
are all reasonably well described by the theory.
A complementary way to represent the results of GL

theory is to display the phase diagram in Ra-Pr parameter
space; see Fig. 7, which was adapted from Stevens et al.
(2013). The lines are explained in the caption. The names of
the regimes refer to the names used in the original papers
(Grossmann and Lohse, 2000, 2001, 2002), i.e., IVu means
dominance of the bulk contributions in Eqs. (16) and (17)
and λθ < λu, etc. Figure 7 also contains various experimental
and numerical data that were available to Stevens et al.
(2013). Many more exist. To the left of the dash-dotted thick
line (as explained in Sec. III.C), i.e., in the classical regime,
all data are reasonably well described via the GL theory.
One may wonder why the GL theory is so successful and

robust, although for RB turbulence in real containers the
velocity and temperature profiles deviate from the Prandtl-
Blasius predictions (van Reeuwijk, Jonker, andHanjalić, 2008;
Shishkina andThess, 2009; Scheel, Kim, andWhite, 2012; Shi,
Emran, and Schumacher, 2012), even when a local rescaling
procedure is applied (Zhou and Xia, 2010; Zhou et al., 2010,
2011; Stevens et al., 2012) or the pressure gradient along the
plate is taken into account (Shishkina,Horn, andWagner, 2013;
Shishkina, Wagner, and Horn, 2014). The answer is that GL

theory requires only that the scaling of the thicknesses of the
boundary layers follows the Prandtl-Blasius-type scaling
[Eqs. (18) and (19)], as previously stated. Indeed, from a
closed set of BL equations for turbulent Rayleigh-Bénard
convection (Shishkina et al., 2015; Shishkina, Horn et al.,
2017; Ching et al., 2019) that also takes the turbulent fluctua-
tionswithin theBL equations into account, one can analytically
derive the dependence of the heat flux (Nu) on the Reynolds
and Prandtl numbers and two parameters that measure fluctua-
tions. These theoretical results show that Nu ∝ Re1=2Pr1=3 in
the high-Pr limit and Nu ∝ Re1=2Pr1=2 in the low-Pr limit, all
subject to a weak dependence on the eddy viscosity (Tai et al.,
2021). This reveals a close resemblance of the scaling depend-
encies of the heat transport in steady forced convection (with
Prandtl-Blasius-Pohlhausen BLs) and classical Rayleigh-
Bénard convection. The BL theory for RB convection
(Shishkina et al., 2015; Ching et al., 2019) can also predict
the temperature profiles for large Pr (Shishkina et al., 2015) and
small Pr (Shishkina, Horn et al., 2017) and can potentially also
predict the velocity profiles provided that the full system of the
fluctuating BL equations is considered (Ching, Dung, and
Shishkina, 2017; Tai et al., 2021).

C. From laminar Prandtl-Blasius to turbulent Prandtl–von
Kármán boundary layers: The transition from the classical
to the ultimate regime

As stated in the Introduction, for increasing driving strength
the laminar-type Prandtl-Blasius BL at some point must break
down and give rise to a turbulent-type Prandtl–von Kármán

FIG. 7. Phase diagrams along the Ra-Pr plane for RB convection according to GL theory (Grossmann and Lohse, 2000, 2001, 2002,
2004) in (a) a Γ ¼ 0.5 container and (b) a Γ ¼ 1 container with no-slip boundary conditions. The upper solid line indicates that
Re ¼ ReL, the lower, nearly parallel solid line corresponds to ϵu;BL ¼ ϵu;bulk, the partially vertical dashed line corresponds to
ϵθ;BL ¼ ϵθ;bulk, and along the partially horizontal dashed line it is λu ¼ λθ. The light red region indicates where the laminar kinetic BL is
expected to become turbulent (at the onset of the ultimate regime) based on a critical shear Reynolds number Res of the kinetic BL
between Re�s ¼ 300 (the left edge of the light red region) and Re�s ¼ 800 (the right edge of the light red region). The Tollmien value
Res ¼ 420 is given as the dash-dotted line. In the darker red region Res > 800 one is even further into the ultimate regime. The four
large red open squares indicate the locations of the four NuðRa;PrÞ points and the large red open circle represents the ReðRa;PrÞ points
that were used for the GL fit. Adapted from Stevens et al., 2013.
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BL. As an indication of when this would happen, Grossmann
and Lohse (2000, 2001) assumed a transition shear Reynolds
number of Res ≈ 420 that was based on the value given by
Tollmien (1929) and Landau and Lifshitz (1987). As the shear
Reynolds number in the Prandtl-Blasius BL is related to the
Reynolds number as Res ¼ aRe1=2 and GL theory predicts
ReðRa; PrÞ, it thus also predicts when the laminar-type
Prandtl-Blasius BL gives rise to a turbulent Prandtl–von
Kármán BL, i.e., when the classical regime comes to an
end and gives rise to the ultimate regime with enhanced heat
transport. The line Res ¼ 420 is shown as the dash-dotted line
in the Ra-Pr parameter space in Fig. 7. To visualize that the
transition is of subcritical, non-normal–nonlinear nature and
can happen in a certain range and not at a fixed shear Reynolds
number, we have shaded the entire range between Res ¼ 300

and 800 in light red, whereas the range with Res > 800 is
shaded in darker red.
It was Roche (2020) who first discussed the implications

of the subcritical, non-normal–nonlinear nature of the transition
from the classical regime to the ultimate regime of RB
turbulence, and we recently elaborated on this (Lohse and
Shishkina, 2023). As discussed in the Introduction, the charac-
teristics of such a non-normal–nonlinear transition are that there
is no sharp onset, that it is hysteretic, that multiple states are
possible for the same control parameters, that it is sensitive to
small distortions, and, connected to this, that it displays the so-
called double-threshold behavior (Trefethen et al., 1993), mean-
ing that both the shear Reynolds number and the initial noise
must be large enough for the transition to happen. It is typical for
shear flows and cannot be predicted from the linear instability of
single modes but emerges from the non-normal nature of the
operator in the linearized Navier-Stokes equation. The non-
normal operators have nonorthogonal eigenvectors allowing
for transient growth of initial distortions; in fact, the stronger
the distortions, the stronger the shear is (Boberg and Brosa,
1988; Gebhardt and Grossmann, 1994; Grossmann, 2000). For
the linearized case the distortions would eventually decay in the
linearly stable region, but for the full nonlinear equations for
large enough transient growth nonlinearity will eventually take
over and lead to an instability, in spite of the linear stability of
the equations (Farrell, 1988, Farrell and Ioannou, 1993; Reddy
and Henningson, 1993; Trefethen et al., 1993; Schmid and
Henningson, 2001; Kerswell, 2002; Eckhardt, Grossmann, and
Lohse, 2007c; Schmid, 2007; Barkley, 2016; Manneville, 2016;
Wu, 2019; Avila, Barkley, and Hof, 2023).
We emphasize that such a transition scenario is applicable

for the transition from the classical regime to the ultimate
regime in RB flow, as this is a transition of the laminar-type
Prandtl-Blasius BL, which is a typical shear flow, at least
locally at the plate or at the sidewalls. In contrast, the
transition from the purely conductive state of RB flow to a
convective state at Ra ≈ 1708 (for a large aspect ratio Γ ≫ 1

and for all Pr) is a linear instability.
As we see in Sec. VII.E, the features of the subcritical non-

normal–nonlinear transition can reconcile the various exper-
imental observations on the transition to the ultimate regime
made in the past three decades. Further evidence to confirm
(or falsify) the hypothesis that the transition from the classical
regime to the ultimate regime is of a non-normal–nonlinear

nature will be welcome. At the end of Secs. VII and VIII we
suggest experiments and numerical simulations that could
provide clarity.

IV. UPPER BOUNDS FOR THE HEAT TRANSPORT
IN THE RAYLEIGH-BéNARD SYSTEM

When dealing with the ultimate regime, it is relevant to be
aware of mathematically rigorous upper bounds for Nu in the
large Ra limit. In this section we first give simple proofs that Nu
in Rayleigh-Bénard convection asymptotically cannot grow
faster than Ra1=2, Pr Rez, or Pr1=2Reτ (without focusing on the
optimal prefactors). Here Rez is the Reynolds number based on
the mean vertical velocity hu2zi1=2 and Reτ ≡ uτL=ν is the shear
Reynolds number, which is based on the friction velocity

uτ ≡
ffiffiffiffiffiffiffiffiffiffi
τw=ρ

p
; ð26Þ

where τw is the mean wall shear stress. It is given by the
vertical derivatives of the horizontal components of the velocity
(ux and uy) at the plate (z ¼ 0),

u2τ ¼ νhð∂zuxÞ2 þ ð∂zuyÞ2i1=2t;Szjz¼0
: ð27Þ

Later in this section we review the best-known asymptotic
upper bounds for the Nusselt number in Rayleigh-Bénard
convection, sought as a power law of the Rayleigh number,
when Ra → ∞.

A. Analytical upper bounds for the general case
of finite Prandtl number and no-slip boundary conditions

1. The relation Nu ≤ PrRez

Define the Reynolds number Rez based on the mean vertical
velocity as

Rez ≡ hu2zi1=2L=ν: ð28Þ
The relation Nu ≲ Pr Rez then follows immediately from the
Cauchy-Schwarz inequality (12) and the standard assumption
that the maximum principle on the temperature always holds,

jθj ≤ Δ: ð29Þ
Indeed,

Nu − 1 ≤
L
κΔ

hu2zi1=2hθ2i1=2 ≤ Pr Rez: ð30Þ

Obviously, Rez does not exceed Re,

Re≡ hu · ui1=2L=ν; ð31Þ
which is based on the total velocity, and therefore

Nu − 1 ≤ Pr Re: ð32Þ
When combining Eqs. (13) and (30), we find that

ϵu ≤
ν3

L4
RezRe2ff ¼ αΔghu2zi1=2 ¼

ν3

L4

RaRez
Pr

; ð33Þ

Detlef Lohse and Olga Shishkina: Ultimate Rayleigh-Bénard Turbulence

Rev. Mod. Phys., Vol. 96, No. 3, July–September 2024 035001-12



where the free-fall Reynolds number

Reff ≡ uffL=ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra= Pr

p
ð34Þ

is based on the free-fall velocity uff ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
αΔgL

p
.

2. The relation Nu ≲ Pr1=2Reτ

To derive this relation we need the following two direct
consequences from the continuity equation (1): First,

ð∇uÞ2 ≡X
i

ð∇uiÞ2 ≥
X
i

ð∂iuiÞ2

≥ ð∂zuzÞ2 þ 1
2
ð∂xux þ ∂yuyÞ2 ¼ 3

2
ð∂zuzÞ2; ð35Þ

which holds in the entire domain. Second,

ð∇uÞ2jz¼0 ¼
X
i

ð∂zuiÞ2jz¼0

¼ ð∂zuxÞ2jz¼0 þ ð∂zuyÞ2jz¼0
ð36Þ

(since ∂zuzjz¼0 ¼ −∂xuxjz¼0 − ∂yuyjz¼0
¼ 0), which holds at

the plate z ¼ 0. In addition, we use the Poincaré inequality

Z
δ

0

u2zdz ≤
4δ2

π2

Z
δ

0

ð∂zuzÞ2dz; ð37Þ

which holds for any uz that vanishes at the plate z ¼ 0 and
for any small distance δ from the plate; see Appendix A of
Seis (2015).
We now consider the convective heat flux uzθ in a small

layer of width δ next to the boundary at z ¼ 0. Applying the
Cauchy-Schwarz inequality, the maximum principle (29), the
Poincaré inequality (37), and inequality (35), we obtain

�Z
δ

0

uzθdz

�
2

≤
Z

δ

0

u2zdz
Z

δ

0

θ2dz

≤ Δ2δ

Z
δ

0

u2zdz

≤
4Δ2δ3

π2

Z
δ

0

ð∂zuzÞ2dz

≤ c4Δ2δ3
Z

δ

0

ð∇uÞ2dz; ð38Þ

with

c ¼ ð8=3Þ1=4π−1=2: ð39Þ

Integrating the local vertical heat flux

Fz ≡ uzθ − κ∂zθ

κΔ=L
ð40Þ

in z∈ ½0; δ� and using relation (38), we obtain

δ−1
Z

δ

0

Fzdz ≤
c2

ffiffiffi
δ

p
L

κ

�Z
δ

0

ð∇uÞ2dz
�

1=2
þ L

δ
: ð41Þ

Assuming that the time- and area-averaged kinetic
energy dissipation rate at any distance from the plate cannot
be larger than at the plate1 and applying Eqs. (36) and (27),
we obtain

	�Z
δ

0

ð∇uÞ2dz
�

1=2



t;Sz

≤
	Z

δ

0

ð∇uÞ2dz



1=2

t;Sz

ð42Þ

≤ δ1=2hð∇uÞ2i1=2t;Sz

���
z¼0

¼ δ1=2hð∂zuxÞ2 þ ð∂zuyÞ2i1=2t;Sz

���
z¼0

¼ δ1=2u2τ=ν: ð43Þ

Averaging inequality (41) in the horizontal directions and in
time, making use of the fact that the Nusselt number is
constant at any distance from the plate [see Eq. (11)], and
applying inequality (43), we obtain

Nu ≤
c2δLu2τ

νκ
þ L

δ
¼ c2 Pr Re2τ

δ

L
þ L

δ
: ð44Þ

The minimal value of the right-hand side of Eq. (44) is
achieved at

δ=L ¼ c−1Pr−1=2Re−1τ ; ð45Þ

which leads to the following upper bound:

Nu ≤ 2cPr1=2Reτ: ð46Þ

Note that physically the layer thickness δ is smaller than the
container height L, i.e., δ=L < 1 in Eq. (45). This implies that
the estimate (46) is relevant only for a not too small Pr that
satisfies Pr ≥ c−2Re−2τ ; cf. Eq. (45). When Pr is extremely
small (Pr<c−2Re−2τ ), inequality (44) is reduced to
Nu≤ δ=LþL=δ, meaning that in this small Pr limit the upper
bound (46) is reduced to Nu ≤ 2, reflecting that the heat
transport is driven mainly by conduction in that limit.

3. The relation Nu ≲ Ra1=2

To see that the upper bound for the scaling exponent γ does
not exceed 1=2 for highly turbulent Rayleigh-Bénard flows
(i.e., large Ra, the ultimate regime), we again use the fact that
the vertical heat flux is constant at any distance from the plate
[see Eq. (11)] and proceed similarly to Seis (2015). Averaging
relation (41) in the horizontal plane and, in time, applying the
top-bottom symmetry of the mean kinetic energy dissipation
rate and the integral balance (13) together with inequality (42)

1This assumption is justified because the time- and area-averaged
kinetic energy dissipation rate at the plates is equal to u4τ=ν, which in
a turbulent flow is ≳ðν3=L4ÞRe3, while for the time- and volume-
averaged ϵu it holds that ϵu ≲ ðν3=L4ÞRe3. Note also that the time-
and area-averaged thermal dissipation rate at the plates is at least
Nu times larger than the time- and volume-averaged thermal
dissipation rate for all Prandtl and Rayleigh numbers (Shishkina
and Wagner, 2006).
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and

	Z
δ

0

ð∇uÞ2dz



t;Sz

≤
L
2

ϵu
ν

ð47Þ

for δ ≤ L=2, we obtain

Nu ≤
c2ffiffiffi
2

p Ra1=2ðNu − 1Þ1=2
�
δ

L

�
1=2

þ L
δ
: ð48Þ

Minimizing the right-hand side of the upper bound (48) by
taking

δ

L
¼ 2

c4=3Ra1=3ðNu − 1Þ1=3 ð49Þ

(a thin layer δ), from relations (48) and (39) we finally derive

Nu − 1 ≤ ARa1=2 ð50Þ

with a prefactor

A ¼ 3=π ≈ 0.955:

This prefactor A here is relatively large compared to what is
possible to derive, and in the following we discuss how it
can be reduced. However, the general result (50), i.e., that
Nu ≲ Ra1=2, is fundamental.
Variational methods, which lead to more accurate estimates

of A in the upper bound (50), always use the energy integral
equations (13) and (14). To simplify further explanations, we
decompose the temperature field θ into a linear function θlðzÞ
that satisfies the boundary conditions at the plates and the
residual function θ0 that vanishes at the plates,

θ≡ θl þ θ0; ð51Þ

θlðzÞ≡ Δð1=2 − z=LÞ: ð52Þ

From continuity it follows that the vertical velocity, when
averaged in time and over any horizontal cross section at a
distance z from the bottom plate, vanishes, i.e., huzit;Sz ¼ 0 for
any z. From this and with Eqs. (12) and (52), we obtain

Nu − 1 ¼ L
κΔ

huzðθl þ θ0Þi ¼ L
κΔ

huzθ0i: ð53Þ

As θ0 vanishes at the plates, it also holds that hð∇θÞ2i ¼
hð∇θ0Þ2i þ Δ2=L2. Combining this with Eq. (14), we derive
hð∇θ0Þ2i ¼ ðΔ2=L2ÞðNu − 1Þ, which together with Eqs. (13)
and (53) yields

L
κΔ

huzθ0i ¼
L2

Δ2
hð∇θ0Þ2i ¼ L4

κ2Ra
hð∇uÞ2i: ð54Þ

Equation (54) is simply a reformulation of the energy integral
equations (13) and (14).
To obtain an upper bound for Nu − 1 in terms of the control

parameters, one can look for an upper bound of the right-hand

side of Eq. (53) among all smooth functions uz and θ0 that
vanish at z ¼ 0 and L and satisfy the energy equalities (54).
With a free choice of the functions uz and θ0 under only
these constraints, the maximum value of the right-hand
side of Eq. (53) grows no slower than

ffiffiffiffiffiffi
Ra

p
=2 as Ra tends

to infinity. For example, for Ra growing as Ra ¼ ðπk=2Þ4,
with an integer k, k → ∞, and the functions θ0 and u
defined as θ0 ¼ Δ sinðRa1=4z=LÞ and u ¼ uzez, uz ¼
ðκ=LÞ ffiffiffiffiffiffi

Ra
p

sinðRa1=4z=LÞ, respectively, the restrictions (54)
are fully satisfied and each term in Eq. (54) equals

ffiffiffiffiffiffi
Ra

p
=2,

leading to Nu − 1 ¼ ffiffiffiffiffiffi
Ra

p
=2 as Ra → ∞; cf. Eq. (53). This

means that the consideration of the constraints from Eq. (54)
alone would lead to an upper bound for Nu − 1 not smaller
than

ffiffiffiffiffiffi
Ra

p
=2. However, the just considered functions u and θ0

satisfy neither the continuity equation ∇ · u ¼ 0 nor the
governing equations (7) and (8) nor even huzit;Sz ¼ 0. It is
rightfully expected that imposing additional constraints apart
from Eq. (54) would reduce the upper bound for Nu − 1

sought in the form of ARaγ .
Historically the first rigorous result on the upper bound for

heat transport was proved by Howard (1963), who was also
the first who formulated the challenge of finding upper bounds
for Nu as a variational problem. In derivations of the upper
bounds, he assumed that the flows are statistically steady in
time and statistically homogeneous in the horizontal cross
sections for any distance from the bottom plate z. This means,
respectively, that the horizontal averages of the various flow
components and of their products are time independent and
that the horizontal averages of the horizontal components of
the velocity vanish (meaning that the horizontal average of the
vertical velocity component vanishes as well, huzit;Sz ¼ 0, due
to the continuity equation). Under the assumptions of such
homogeneity in space and time, maximal heat transport is
sought among all flow functions that satisfy the boundary
conditions and some integral relations that are consequences
of the governing Navier-Stokes and energy equations.
However, this maximal heat transport can be realized with
flow functions that do not necessarily satisfy the governing
Navier-Stokes and energy equations themselves. Therefore,
this approach leads to estimates of the maximal heat transport
that may or may not be feasible in real flows but still provide
mathematically rigorous upper bounds for the heat transport in
Rayleigh-Bénard systems.
By maximizing the heat flux [Eq. (12)] for statistically

steady (in time) and statistically homogeneous (in the hori-
zontal plane) flows subject to the two energy integral con-
straints [Eqs. (13) and (14)], Howard (1963) derived that the
Nusselt number cannot exceed a certain value, which for large
Ra scales according to the upper bound (50), with a prefactor

A ¼
ffiffiffi
3

p
=8 ≈ 0.217:

In his derivations, Howard (1963) considered a decom-
position of the temperature field into a background function
that depends on z only and satisfies the boundary conditions
and the rest (fluctuations). The temperature background
function in Howard’s case was the mean horizontal average
profile of the temperature. Later, using a more complicated
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z-dependent background temperature profile, Doering and
Constantin (1996) derived an asymptotic bound (i.e., one valid
for Ra → ∞), which is similar to the estimate (50) but with a
smaller value of A, namely,

A ¼ 1=6 ≈ 0.167:

For a review on the background method, see Fantuzzi, Arslan,
and Wynn (2022).
What upper bounds can be obtained if the continuity

equation ∇ · u ¼ 0 is also included in the list of the con-
straints? In a previously discussed paper, Howard (1963)
derived that with the continuity equation included as an
additional constraint and under an additional assumption that
there is only a single horizontal wave number that determines
the temperature and velocity field, the upper bound is
significantly smaller,

Nu − 1 ≤ ðRa=248Þ3=8; ð55Þ

with an upper-bound scaling exponent γ ¼ 3=8 ¼ 0.375. This
result was important at the time of its publication and is still
sometimes mentioned as a possible alternative to the upper
bound (γ ¼ 1=2) for heat transport in a general case of high-
Ra Rayleigh-Bénard convection. However, since the seminal
work by Busse (1969) it has been known that for sufficiently
large Ra the assumption that the maximal heat transport can be
realized by a single-horizontal-wave-number flow is incorrect,
and Busse’s result was also appreciated by Howard (1972)
himself. Turbulence cannot be described via a single mode,
and, by introducing the so-called multiple-boundary-layer
structure of the flow and using further physical arguments,
Busse (1969) showed that the asymptotic upper-bound expo-
nent γ grows with the inclusion of more and more wave
numbers (n) as

γ ¼ ð1 − 4−nÞ=2;

leading to an overall upper bound (50) with

A ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
1035

p
≈ 0.031: ð56Þ

Much later, Plasting and Kerswell (2003) proved that
Busse’s estimate is an accurate upper bound for the heat
transport [Eq. (12)] in statistically steady Rayleigh-Bénard
flows, subject to the continuity equation and the two energy
integral constraints [Eqs. (13) and (14)]. Under these con-
straints, they numerically calculated the minimal value of A in
the upper bound (50), which was found to be

A ≈ 0.026 34 ð57Þ

as Ra → ∞, i.e., very close to the estimate (56) by Busse
(1969). This numerical value of A cannot be further improved
using only a one-dimensional (z-dependent) background
temperature field and without including additional constraints
in the problem.
The upper bound (50) with the constant A from Eq. (57)

remains the best-known estimate of the Nusselt number

upper bound for a general case of no-slip walls for all
Prandtl numbers.
Note that all existing experimentally measured or numeri-

cally obtained heat transport data are far below the upper
bounds for the Nusselt number scaling relations discussed
in the review. Nonetheless, the exact mathematical result that
the scaling exponent γ in the scaling relation Nu − 1 ∼ Raγ

cannot exceed 1=2 is important. It holds for three-dimensional
Oberbeck-Boussinesq Rayleigh-Bénard convection in con-
tainers with no-slip plates for a fluid with a finite Prandtl
number.

B. Analytical upper bounds for infinite
or very large Prandtl numbers

In this section we report results for large Prandtl numbers
where the upper-bound scaling exponent can be smaller
than 1=2.

1. Case of Pr =∞

For infinite Prandtl numbers the rate of change of the
velocity (its material derivative) can be assumed to vanish and
therefore put to zero [∂tuþ ðu · ∇Þu≡ 0]. Thus, in this case
the governing equations are simplified and (in contrast to the
full Oberbeck-Boussinesq set of equations) it is possible to
show the global existence and uniqueness of their smooth
solutions. This makes it possible to estimate, in particular, the
bounds for higher derivatives of the temperature and vertical
velocity. With these maximal regularity estimates, Constantin
and Doering (1999) proved the following upper bound for the
heat transport in the case of no-slip walls:

Nu − 1 ≲ Ra1=3ðlogRaÞ2=3; Pr ¼ ∞: ð58Þ

Using a logarithmic background temperature profile, Doering,
Otto, and Reznikoff (2006) improved this estimate to

Nu − 1 ≤ 0.644Ra1=3ðlogRaÞ1=3; Pr ¼ ∞. ð59Þ

Later Otto and Seis (2011), using an advanced background
field method, further improved the estimate (59), namely, to

Nu − 1 ≲ Ra1=3ðlogRaÞ1=15; Pr ¼ ∞: ð60Þ

Moreover, combining the maximal regularity and the back-
ground field methods, Otto and Seis (2011) derived

Nu − 1 ≲ Ra1=3ðlog log RaÞ1=3; Pr ¼ ∞; ð61Þ

which has only a double logarithm correction to ≲ Ra1=3. It
basically indicates that, for infinite Pr, the scaling exponent in
the ultimate regime is similar to that in the classical large Pr
regime with γ ¼ 1=3. For the infinite Prandtl number case,
estimate (61) by Otto and Seis (2011) is the best available
upper bound for the Nusselt number.
However, the case of Pr ¼ ∞ treated in this section is

unrealistic from a physics point of view. What upper bounds
can be derived for large but finite Prandtl numbers?
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2. Case of Pr≳Raξ, ξ ≥ 1=3

Wang (2004, 2007) made the next important contribution in
the derivations of the upper bounds by showing that the global
attractors of the infinite Prandtl number case and the large
Prandtl number case remain close, which allowed the full
Oberbeck-Boussinesq system of the governing equations to be
considered for large but finite Prandtl numbers as a small
perturbation of the simplified system for infinite Prandtl
number. With this knowledge, Wang (2008) extended the
result of Constantin and Doering (1999) for infinite Prandtl
numbers to a more general case of finite but extremely large
Prandtl numbers as follows:

Nu − 1 ≲ Ra1=3ðlogRaÞ2=3; Pr≳Ra: ð62Þ

The estimate (62) by Wang (2008) was further improved by
Choffrut, Nobili, and Otto (2016), who showed that the
following holds for large Pr:

Nu − 1 ≲ ðRa logRaÞ1=3 þ Pr−1=2ðRa logRaÞ1=2:

This implies that for finite but large Prandtl numbers that grow
faster than Ra1=3, the Nusselt number is bounded by

Nu−1≲ ðRa logRaÞ1=3; Pr ≳ ðRa logRaÞ1=3; ð63Þ

while below the borderline Pr∼ðRa ln RaÞ1=3 the valid upper
bound is

Nu−1≲
�
Ra
Pr

logRa

�
1=2

; Pr≲ ðRa logRaÞ1=3: ð64Þ

For finite but large Prandtl numbers that grow with Ra, the
estimates (63) and (64) by Choffrut, Nobili, and Otto (2016)
are the best available upper bounds for the Nusselt number.
We now summarize the best-known upper bounds for the

heat transport in three-dimensional as well as two-dimensional
Oberbeck-Boussinesq Rayleigh-Bénard convection for no-
slip boundary conditions (Plasting and Kerswell, 2003;
Choffrut, Nobili, and Otto, 2016),

Nu≲

8>>><
>>>:

ðRa logRaÞ1=3 for Pr≳ðRa logRaÞ1=3 ;�
Ra
Pr logRa



1=2

for Pr≲ ðRa logRaÞ1=3 ;
0.02634Ra1=2 for all Pr :

ð65Þ

C. Analytical upper bounds for other cases

For completeness, we mention here some further math-
ematical results on the upper bounds on the heat transport in
the limit Ra → ∞ for specific instances. For a case of free-slip
boundary conditions (BCs) at the heated or cooled surfaces,
the upper-bound scaling exponent was proven to be only
γ ¼ 5=12 (Whitehead and Doering, 2011) if the flow is two
dimensional or the Prandtl number is infinite (Pr ¼ ∞). In
those cases the Nusselt number for large Ra is bounded
according to

Nu − 1 ≤ 0.2295Ra5=12 for free-slip BCs;

if Pr ¼ ∞ or 2D flow:
ð66Þ

Wittenberg (2010) studied upper bounds for the heat
transport, taking into account imperfectly conducting plates
in Rayleigh-Bénard convection. The derived upper-bound
scaling exponent is γ ¼ 1=2, but the prefactor A in the
Nu ≤ ARaγ relation was found to increase for not perfectly
conducting plates.
Another result with respect to convection between no-slip

rough plates was obtained by Goluskin and Doering (2016),
who applied a modified background field method. For a
roughness of the no-slip heated and cooled plates in a
Rayleigh-Bénard container, which is described by continuous
and piecewise differentiable (with square-integrable gradients)
functions of the horizontal coordinates, the upper-bound
scaling exponent is γ ¼ 1=2; i.e., it is the same as in the
case of smooth plates.

D. Optimal wall-to-wall steady-state heat transport

Finally, we discuss the optimal wall-to-wall heat transport
method (Hassanzadeh, Chini, and Doering, 2014; Tobasco
and Doering, 2017; Motoki, Kawahara, and Shimizu, 2018;
Doering and Tobasco, 2019; Souza, Tobasco, and Doering,
2020), which can also be formulated as a variational problem
and which is another way to estimate the maximal possible
heat transport in turbulent Rayleigh-Bénard convection
through the maximal possible heat transport of a steady-state
flow between heated lower and cooled upper surfaces of a
fluid layer. We explicitly note that a steady-state flow (on
which it is assumed that the flow has reached equilibrium for
given control parameters of the system that remain unchanged
as time goes on) generally differs from a turbulent Rayleigh-
Bénard flow.
In the optimal wall-to-wall method, one traditionally

considers a constraint of a constant total enstrophy in the
system (that is, the averaged squared vorticity) and seeks a
divergence-free, time-independent velocity field that max-
imizes the heat transport; these velocity flow fields are then
called optimal states. More precisely one considers a constant
Péclet number

Pe≡ hð∇uÞ2i1=2L2=κ ð67Þ

and looks for a stationary velocity field u that maximizes
the total convective heat transport Nu − 1 ¼ huzθi=ðκΔ=LÞ.
Thus, one obtains a dependence Nu − 1 ≲ Peη for a certain η.
In Rayleigh-Bénard convection, according to the integral
balance (13) we have

Pe2 ¼ RaðNu − 1Þ; ð68Þ

and therefore an estimate Nu − 1 ≲ Peη is equivalent to
Nu − 1 ≲ Raγ , with γ ¼ η=ð2 − ηÞ.
Hassanzadeh, Chini, and Doering (2014) formulated and

studied such a variational problem in a two-dimensional
domain for free-slip boundary conditions at the plates.
They found that the heat transport in the optimal states scales
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as Nu ∼ Ra5=12, which was in full agreement with the rigid
upper bound previously derived by Whitehead and Doering
(2011) for this case.
Tobasco and Doering (2017) considered a two-dimensional

case with no-slip boundary conditions. For a given enstrophy
(or given Pe2) they constructed a set of steady flows that
provide

Nu ∼ Pe2=3=ðlog PeÞ4=3 ð69Þ

when Pe → ∞. In combination with Eq. (68), this implies

Nu ∼ Ra1=2=ðlog RaÞ2; ð70Þ

which resembles the scaling relation for the Nusselt number
in the ultimate regime according to the model by Grossmann
and Lohse (2011) and according to an extension of this
model to a general Prandtl number case, which we discuss
in Sec. V.
Motoki, Kawahara, and Shimizu (2018) applied the method

to three-dimensional flows between no-slip boundaries. They
numerically found the scaling relation for the Nusselt number

Nu − 1 ≈ 0.082Pe2=3 ð71Þ

for large Pe or, in other words, Nu − 1 ≈ 0.023Ra1=2, which is
close to the upper bound found by Plasting and Kerswell

(2003); see Fig. 8. The obtained optimal three-dimensional
states have a much more complicated structure than simple
rolls. In the inset of Fig. 8 one can see an example of
temperature isosurfaces for a specific value of Pe. Motoki,
Kawahara, and Shimizu (2018) showed that at large Pe the
optimal velocity field exhibits hierarchical self-similarity,
and near the walls the self-similar vortical structures locally
enhance the heat transport and build logarithmic mean
temperature profiles. We note that such hierarchical structures
at the wall resemble the attached eddy hypothesis for wall-
bounded shear flows (Marusic and Monty, 2019).
To summarize, the optimal wall-to-wall heat transport

method is capable of delivering the structures of the optimal
steady flows that transport maximal heat for a given ens-
trophy value. The corresponding heat transport estimates are
similar to the upper bounds for the heat transport in the
previously discussed general case of Rayleigh-Bénard con-
vection. However, these steady-state flows differ from real
Rayleigh-Bénard flows.

V. THEORETICAL MODELS FOR THE HEAT
TRANSPORT AT LARGE RAYLEIGH NUMBERS:
A HISTORICAL PERSPECTIVE

To date no general analytical solutions of the system of
Eqs. (1)–(3) could be derived; i.e., it hitherto has not been
possible to solve (or even to prove or refute the existence
and uniqueness of the solution of) the Navier-Stokes
equation. The extreme difficulty of the problem was rec-
ognized by The Clay Mathematics Institute, which identi-
fied the problem as one of the seven unsolved Millennium
Prize Problems (Fefferman, 2006). Asymptotic solutions of
the governing equations (1)–(3) for Ra → ∞ could not be
derived either, nor even could asymptotic expressions for
integral quantities like Re or Nu as functions of the control
parameters Ra and Pr. All of these tasks still seem to be
infeasible. Therefore, any scaling theory for the heat and
momentum transport has to use heuristic arguments with
different levels of rigor.
In this section we take a digression into the history of

theoretical investigations and models of the heat transport
scaling relations in turbulent Rayleigh-Bénard convection at
extremely large Rayleigh numbers, i.e., in the ultimate regime,
so that current developments can be put into context. In
particular, we extract and contrast the assumptions, which are
made to derive each considered model for the ultimate regime
in Rayleigh-Bénard convection, and discuss the outcomes
of the models that follow from the chosen assumptions. The
overview starts with the most heuristic models, which are
based on more speculative and less rigorous argumentation.
We now make two remarks: First, while describing the

assumptions made to derive this or that particular model, we
do not always follow the descriptions given in the original
articles step by step. The reason for this is that sometimes in
those articles a chain of separate assumptions are made that
are neither used separately anywhere nor verified, and, de
facto, only a consequence of this chain of assumptions is used
to derive the model, which instead can be formulated as one
key assumption. In such a case, in our discussion we replace
the entire chain of the assumptions made in the original article

FIG. 8. Estimates for steady-state flows: Dimensionless con-
vective heat flux Nu − 1 as a function of Pe in the optimal wall-
to-wall heat transport steady states, calculated by Motoki,
Kawahara, and Shimizu (2018). The blue symbols (smaller
Pe) and red symbols (larger Pe) correspond to two-dimensional
and three-dimensional optimal states for these stationary flows,
respectively. The dashed line shows the fit Nu − 1 ¼ 0.0821Pe2=3

of the data for large Pe. The solid line shows the scaling
Nu − 1 ¼ 0.0885Pe2=3, which corresponds to the rigorous upper
bound Nu − 1 ¼ 0.026 34Ra1=2 given by Plasting and Kerswell
(2003) if the exact relation Pe2 ¼ RaðNu − 1Þ is applied. Lower
inset: the compensated Nusselt number. Upper inset: isosurfaces
of the temperature (dark orange) and of the second invariant of
the velocity gradient tensor ∂jui∂iuj (light gray) in the optimal
three-dimensional steady state for Pe ¼ 1.6 × 108 (only the lower
half of the domain is shown). Adapted from Motoki, Kawahara,
and Shimizu, 2018.
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simply with this single key assumption. Second, we discuss
here only the leading terms in the scaling relations and ignore
the lower-order terms in order to make the description of the
models for the ultimate regime more focused. We also do not
discuss the values of the appearing constants and prefactors.

A. Priestley (1954) model

Priestley (1954) put forward a purely heuristic argument:
He proposed that at high Ra, the efficient convective heat
transport in the bulk of the fluid layer should not be affected
by the separation of the plates, and that the total heat transport
should be fully controlled by the thermal boundary layers
adjacent to the top and bottom plates (“thermal shortcut” in the
bulk). Thus, the total heat flux q can depend on any flow
system parameter but not on the depth of the fluid layer L.
Assuming that the Nusselt number Nu≡ q=ðκΔ=LÞ scales as
the Rayleigh number Ra≡ αgΔL3=κν taken to a certain
power γ, Nu ∼ Raγ , one has

q≡ κΔ
L

Nu ∼
κΔ
L

Raγ ∝ L3γ−1: ð72Þ

With Priestley’s assumption that q is independent of L, one
immediately obtains that the scaling exponent equals γ ¼ 1=3
(these two statements are equivalent).2 The outcome of the
Priestley model (γ ¼ 1=3) is similar to that of the model of
Malkus (1954), which we later discuss. The scaling (72)
coincides with the scaling of regime IVu of GL theory
(Grossmann and Lohse, 2000, 2001), but Eq. (72) does not
generally hold, as we elaborated in Sec. III, though Priestley
had originally suggested it for a much larger range in
parameter space.
In the remainder of this section we also mention some other

assumptions that are equivalent to that suggested by Priestley.
These assumptions were put forward in other publications long
after Priestley (1954), with the claim that they would be new
models that would propose the universality of the γ ¼ 1=3
scaling. However, those “new” models are nothing more than a
paraphrase of Priestley’s model. In particular, we note that the
following four assumptions are completely equivalent:
(a) The exponent γ in the relation Nu ∼ Raγ is equal

to γ ¼ 1=3.
(b) The global heat flux q≡ ðκΔ=LÞNu is independent of

the depth of the fluid layer L.
(c) The thickness of the thermal boundary layer λθ ≡

L=2Nu is independent of L.
(d) The thickness of the thermal boundary layer λθ scales

asymptotically as the Batchelor scale

ηB ≡ ðνκ2=ϵuÞ1=4: ð73Þ
The equivalence of (a) and (b) follows from relation (72), and
the equivalence of (b) and (c) follows from λθ ¼ κΔ=2q. The
equivalence of (d) and (a) [and hence to the other assumptions

(b) and (c)] follows from the definition of the Batchelor
scale (73), the integral relation (13) for the kinetic energy
dissipation rate ϵu, and Nu ≈ Nu − 1 for large Ra. In other
words, once any of the assumptions (b)–(d) is taken,3 one thus
unavoidably and immediately has (a): Nu ∼ Ra1=3.
The kinetic energy dissipation rate ϵu varies scalingwise

between ϵu∼ðν3=L4ÞRe2 (laminar flow) and ϵu ∼ ðν3=L4ÞRe3
(fully developed turbulent flow). When Nu ∼ Ra1=3 and
ϵu ∼ ðν3=L4ÞRe2, from Eq. (13) one derives Re ∼ Pr−1Ra2=3
(regime III∞ in GL theory), and when ϵu ∼ ðν3=L4ÞRe3 one
derives Re ∼ Pr−2=3Ra4=9 (regime IVu in GL theory). This
means that Priestley’s model (and models equivalent to it)
cannot offer explanations of the heat and momentum transport
outside the classical regime.

B. Spiegel (1971) model

Another heuristic argument was proposed by Spiegel
(1971), who assumed that in large astrophysical and geo-
physical systems with extremely large Ra, the total heat flux q
should be diffusion free; that is, it should be independent of
the viscosity ν and the thermal diffusivity κ. Assuming that
Nu ∼ PrζRaγ for certain values of ζ and γ, one obtains

q≡ κΔ
L

Nu ∼
κΔ
L

PrζRaγ ∝ κ1−ζ−γνζ−γ: ð74Þ

The independence of q from κ and ν implies that γ ¼ 1=2 and
ζ ¼ 1=2. Thus, under Spiegel’s assumption one obtains that
the nondimensional heat transport should scale as

Nu ∼ Pr1=2Ra1=2: ð75Þ

This idealized relation cannot be realized other than asymp-
totically, since the Rayleigh-Bénard system, where all of the
heat comes into the system and leaves it through the rigid
top and bottom plates, cannot be completely free from the
processes within the thermal boundary layers, where the
viscosity and thermal diffusivity always play a role.

C. Herring, Stewartson, and Roberts (1966) model

At the beginning of the computational fluid mechanics era,
when computers were far less powerful than they are today,
it was impossible to numerically solve the full set of the
governing equations for thermal convection, even for rela-
tively small values of Ra. Therefore, one of the first ideas
(Herring, 1963) was to numerically solve reduced equations
for the steady state, where almost all nonlinear terms are
neglected, apart from those that originate from the interactions
of the velocity or temperature fluctuations with the horizon-
tally averaged temperature field. To further simplify the
problem, Herring (1963, 1964) considered these equations
for the case when the horizontal temperature and velocity
fluctuations are described by a single horizontal wave number.
Later, his simulations for Ra ≤ 106 were found to be in

2The heat flux is often also defined as ρcpq, i.e., as the heat flux q
as defined here, multiplied by the density ρ and the specific heat at
constant pressure cp; however, this does not affect the derivations.

3For example, Lindborg (2023) assumed (d), which immediately
gives (a).
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agreement with the asymptotic relation Nu ∼ ðRa3=2 ln RaÞ1=5
derived by Roberts (1966) and Stewartson (1966) from
Herring’s reduced equation and under the additional
assumption that only one considered wave number (∼Ra1=4)
maximizes the Nusselt number as Ra → ∞. However, this
Stewartson-Roberts formula cannot describe the heat transport
in real Rayleigh-Bénard systems, due to the single-wave-
number constraint in their theoretical consideration. Indeed,
already in 1971 Chan (1971) had derived for the infinite
Prandtl number limit that the maximum Nusselt number is
realized only asymptotically on the solutions that involve an
infinite number of horizontal wave numbers, and that a steeper
scaling relation than in the aforementioned Stewartson-
Roberts formula then holds, namely, Nu ∼ Ra1=3. For a finite
Prandtl number, the broad horizontal wave number spectrum
plays an even more crucial role. This is also connected to the
previously discussed result by Busse (1969), who showed that
for a finite Prandtl number the upper bound for the Nusselt
number is realized only asymptotically on the solutions that
involve an infinite number of horizontal wave numbers, and
that the bounding scaling exponent in this case is 1=2, i.e.,
Nu ≲ Ra1=2. Based on the previously discussed results, we
emphasize that any approach to exploring the ultimate regime
in turbulent thermal convection that ignores (though partly)
the nonlinear terms in the governing equations or assumes that
the highly turbulent flow can be well represented by a single-
wave-number mode does not hold much promise.

D. Malkus (1954) model

Almost simultaneously with Priestley, Malkus (1954)
published his famous article. (Priestley’s paper was received
by the journal on October 29, 1953, and Malkus’s paper was
received on November 26, 1953.) The linear stability analysis
of Pellew and Southwell (1940), which originally was used to
derive the onset of convection, was extended by Malkus to the
turbulent case, for which he considered turbulent fluctuation
on top of the mean flow. With this Malkus showed that if the
velocity, the temperature (with a subtracted mean vertical
profile), and their time-averaged product can be described by
only n0 first Fourier modes, then the upper limit for the mean
convective heat flux (Nu − 1) scales as ∼n0. Malkus further
showed that the Rayleigh number (called λn0 in his paper) for
the onset of the instability of the next mode (i.e., the mode
number n0 þ 1) scales as ∼n30. Combining Nu − 1 ∼ n0 with
Ra≡ λn0 ∼ n30, one obtains the Malkus scaling relation

Nu − 1 ∼ Ra1=3: ð76Þ

Note that in Malkus’s analysis, the contributions of the
nonlinear terms in the equations were ignored.
Malkus’s name is firmly connected with the “1/3” rela-

tion (76). However, in his paper (Malkus, 1954), Malkus
further wrote: “Unfortunately, a large second-order term due
to u · u is also present. If the approximate spectrum for u · u…
is used, this term dominates all others and determines that, for
large n0, λn0 will vary as ðν=κÞn20.” This implies then that in the
strongly nonlinear case the expected scaling relation should be
Nu ∼ Ra1=2. However, note that Malkus did not predict this

1=2 regime, motivated by the fact that in his experiment
“neither the appearance of the Prandtl number, ν=κ, nor n20
agrees with the data.”

E. Kraichnan (1962) model

The seminal work of Kraichnan (1962) was the first to
propose that for extremely large Ra and moderate Pr the
Nusselt number can scale as steeply as ∼Ra1=2, subject to
logarithmic corrections. Kraichnan acknowledged that the
increasing shear in turbulent Rayleigh-Bénard convection,
along with the formation of turbulent boundary layers, leads to
a fundamental transition in the scaling laws that govern the
heat and momentum transport. Because of the relevance of
the paper and as it is somewhat difficult to comprehend, we
discuss it further here.
For different Pr regimes, Kraichnan considered different

assumptions and obtained different scaling relations for Nu
and Re, which we later discuss. For all cases, however, it is
assumed that, in the core part of a turbulent Rayleigh-Bénard
container (at z ≈ L=2), there is a balance between the non-
linear convective term and the buoyancy term in the momen-
tum Navier-Stokes equation,

u2rms

z
∼ αgθrms at z ≈ L=2; ð77Þ

and that the dimensionless heat flux scales as

Nu ∼
urmsθrms

κΔ=L
at z ≈ L=2; ð78Þ

where urms and θrms are the rms values of the vertical velocity
and the temperature, respectively. As the mean flow at
z ≈ L=2 vanishes, the velocity of the wind of turbulence is
assumed to be well represented by urms, i.e., U ∼ urms.
Combining this with relations (77) and (78), one obtains
Re ∼ urmsL=ν at z ≈ L=2 and

Re3 ∼ RaPr−2Nu: ð79Þ

Kraichnan used the scaling relation (79) as one of his key
assumptions to derive his scaling relations for the different
Pr cases, which we consider in Secs. V.E.1–V.E.3.

1. Large Prandtl number case

For large Pr≳1, like the previous researchers Kraichnan
(1962) concluded that the heat transport should scale as
Nu ∼ Ra1=3. More precisely, for large Pr, in addition to
Eq. (79), Kraichnan (1962) assumed that close to the plate
there would be a balance between the diffusive term and the
buoyancy term in the Navier-Stokes equation,

νurms=z2 ∼ αgθrms; ð80Þ

which he used to estimate

νurms=λ2θ ∼ αgΔ at z ∼ λθ ≡ L=ð2NuÞ: ð81Þ
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Kraichnan’s third, empirically motivated assumption for
large Pr is that the Peclet number Perms,

Perms ≡ urmsz=κ ¼ const at z ∼ λθ ≡ L=ð2NuÞ; ð82Þ

is constant at z ∼ λθ (independent of Ra and Pr). Combining
the assumptions (81) and (82), one obtains the proposed
scaling relation

Nu ∼ Pr0Ra1=3; ð83Þ

which if combined with the assumption (79) gives
Re ∼ Pr−2=3Ra4=9 (as in the GL regime IVu).
However, for extremely large Ra and not large Pr,

Kraichnan proposed a qualitative change in the boundary-
layer structure, which should affect the global heat and
momentum transport in the system.

2. Small Prandtl numbers and large Rayleigh numbers

Kraichnan realized that when Ra tends to infinity and Pr is
not too large the boundary layers must become turbulent,
with a typical logarithmic profile of the mean horizontal
velocity huðzÞit,

huit
uτ

∼ log
uτz
ν

; ð84Þ

where z is the distance from the isothermally heated or
cooled plate. [For simplicity, in Eq. (84) and in the following
relations we skip all prefactors and additive constants and
keep only the leading terms.] In other words, for extremely
large Ra in this case, Kraichnan’s second assumption [in
addition to Eq. (79)] is

Re ∼ Reτ logðReτÞ; ð85Þ

where Re and Reτ ≡ uτL=ν are the Reynolds numbers based
on the wind velocity in the core part of the domain and the
friction velocity uτ, respectively.
The third, heuristic assumption in Kraichnan’s model for

small Pr and large Ra is similar to Eq. (82) but with uτ taken
instead of urms. That is, that the following Peτ is independent
of Ra and Pr,

Peτ≡uτz=κ¼ const at z∼λθ≡L=ð2NuÞ; ð86Þ

or, in other words, that

Nu ∼ Pr Reτ: ð87Þ

Combining the three assumptions (79), (85), and (87), one
derives the following Kraichnan relations:

Nu ∼
Pr1=2Ra1=2

ðlog RaÞ3=2 ; ð88Þ

Re ∼
Pr−1=2Ra1=2

ðlog RaÞ1=2 ; ð89Þ

which he proposed to hold for large Rayleigh numbers and
small Prandtl numbers (Pr ≤ 0.15, where the estimate of the
transitional Pr was indicated to be of low confidence.)

3. Moderate Prandtl numbers and large Rayleigh numbers

For intermediate values of Prandtl numbers (0.15 < Pr ≲ 1),
instead of Eq. (87) Kraichnan took another heuristic
assumption

Nu ∼ Pr1=2Reτ; ð90Þ
which can be interpreted as a modification of assumption (86),
where the velocity uτ (at the edge of the viscous sublayer
zτ ≡ ν=uτ) is linearly extrapolated to the edge of the thermalBL
as ðλθ=zτÞuτ.
From the three assumptions (79), (85), and (90), Kraichnan

then obtained scaling relations that are slightly different from
Eqs. (88) and (89) with respect to the Pr dependences, namely,

Nu ∼
Pr−1=4Ra1=2

ðlog RaÞ3=2 ; ð91Þ

Re ∼
Pr−3=4Ra1=2

ðlog RaÞ1=2 : ð92Þ

Note that Kraichnan’s first assumption (79) for large Nu
(where Nu − 1 ∼ Nu) is equivalent to the proposition that the
mean kinetic energy dissipation rate scales as in homogeneous
isotropic turbulent flows,

ϵu ∼
ν3

L4
Re3 ð93Þ

[compare Eq. (93) to Eq. (13)], which seems to be too
optimistic for any wall-bounded flow, including Rayleigh-
Bénard convection. The assumptions (87) and (90) do not
seem to hold for all large Ra, as they are based on an empirical
knowledge for a restricted parameter range outside the
ultimate regime.
Comparing the scaling relations for the three Kraichnan’s

regimes (83), (88), and (91), one concludes that the transition
between the moderate Pr regime and small Pr regime goes
along a constant Pr (Pr ≈ 0.15), while the transition to the large
Pr regime should scale as Pr∼Ra2=3 (with a logarithmic
correction). The shortcoming of the chosen assumptions and,
therefore, the obtained outcomes of the model becomes
apparent as a contradiction to the upper bound for the
Nusselt number at large Pr (Choffrut, Nobili, and Otto, 2016).
More precisely, when Pr grows faster than Ra1=3 but slower
than Ra2=3, that is, as Pr∼Raa, 1=3 < a < 2=3, the heat
transport, according to the scaling relation (91), should go as
Nu ∼ Raγ , with γ ¼ −a=4þ 1=2 > 1=3, which contradicts the
upper bound for the Nusselt number ≲ Ra1=3, which holds for
Pr≳Ra1=3 (all subject to logarithmic corrections); see Eq. (65).

F. Castaing et al. (1989) model and Shraiman
and Siggia (1990) model

The models proposed by Castaing et al. (1989) and
Shraiman and Siggia (1990) were based mainly on the

Detlef Lohse and Olga Shishkina: Ultimate Rayleigh-Bénard Turbulence

Rev. Mod. Phys., Vol. 96, No. 3, July–September 2024 035001-20



experimental results of Castaing et al. (1989) for Rayleigh-
Bénard convection in cryogenic helium gas for Ra up to
6 × 1012. In that experiment, they observed that the scaling
exponent γ in the Nu ∼ Raγ relation was close to 2=7 and
offered a certain theoretical explanation of these observations.
They assumed that the dimensionless heat flux scales as

Nu ∼
ucθc
κΔ=L

; ð94Þ

where the typical velocity uc and the temperature θc are
assumed to be related as

uc ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αgθcL

p
∼
αgΔλθ
ν=λθ

; ð95Þ

with λθ ≡ L=ð2NuÞ the thickness of the thermal boundary
layer, where again a thermal shortcut in the bulk is assumed.
The heuristic assumptions (95) used by Castaing et al. (1989)
are equivalent to

θc
Δ

∼
�
uc
uff

�
2

ð96Þ

and

uc
uff

∼
1

Nu2

ffiffiffiffiffiffi
Ra
Pr

r
; ð97Þ

which in combination with the scaling (94) gives the results of
Castaing et al. (1989),

Nu ∼ Pr−1=7Ra2=7; ð98Þ

Re ∼ Pr−5=7Ra3=7; ð99Þ

where the Reynolds number is based on uc.
The model by Shraiman and Siggia (1990) offers

scaling relations similar to those of relations (98) and (99)
with some logarithmic corrections, and analysis of the
assumptions made in that model can explain the meaning
of the heuristic relations (94) and (95).
As an alternative to Kraichnan’s first assumption [Eqs. (79)

and (93)], Shraiman and Siggia (1990) proposed to simply
take

ϵu ∼
ν3

L4
Re3τ ; ð100Þ

by virtue of the fact that Reτ < Re and that in the
experiments by Castaing et al. (1989) and Sano, Wu, and
Libchaber (1989) the scaling (93) was not observed. Instead,
the quantity ðL4=ν3Þϵu=Re3 showed a monotonic decrease
with increasing Ra.
The second assumption of Shraiman and Siggia (1990), as

in Kraichnan’s model, is the scaling relation (85), which
reflects that the velocity boundary layers are turbulent with
logarithmic profiles. The crucial third assumption in the
Shraiman and Siggia (1990) model is that a considered large

Pr thermal boundary layer should always scale as in the
laminar Prandtl-Blasius thermal BL case for Pr ≫ 1. More
precisely the horizontal velocity within the thermal BL was
approximated as a linear function of the distance from the
plate u ¼ ðu2τ=νÞz, meaning that, with a similarity variable
y≡ z=ðx1=3L2=3Þ and the nondimensional temperature
θðyÞ ¼ ðTþ − TÞ=Δ, the thermal BL equation should take
the form

θ00 þ Pr Re2τy2θ0 ¼ 0; ð101Þ

θjy¼0 ¼ 0; ð102Þ

θjy→∞ ¼ 1=2: ð103Þ

The prime denotes the derivative with respect to the similarity
variable y. The solution of the thermal BL equation (101) with
the boundary conditions (102) and (103) then is

θðyÞ ¼ Pr1=3Re2=3τ

2 × 31=3Γð4=3Þ
Z

y

0

exp

�
−
Pr Re2τ

3
η3
�
dη; ð104Þ

with Γ the gamma function. This implies that the Nusselt
number should scale as

Nu ∼ θ0jz¼0 ∼ Pr1=3Re2=3τ : ð105Þ

The scaling relation (105) can also be written in terms of

the friction coefficient Cf ≡ Re2τ=Re2 as Nu∼C1=3
f Pr1=3Re2=3

(Lévêque, 1928). Relation (105) is the third assumption in the
model of Shraiman and Siggia (1990), which together with the
other assumptions (85) and (100) lead to the following scaling
relations in the model of Shraiman and Siggia (1990):

Nu ∼ Pr−1=7Ra2=7; ð106Þ

Re ∼ Pr−5=7Ra3=7 log Ra: ð107Þ

In this model, the kinetic energy dissipation rate seems to
be underestimated; cf. the scaling (100). More critical here,
however, is the assumption that for large Ra the thermal
boundary layer remains scalingwise laminar, of the Prandtl-
Blasius type for large Pr. For Ra → ∞ this assumption seems
to be unrealistic.

G. Chavanne et al. (1997) model

A modification of Kraichnan’s model was proposed by
Chavanne et al. (1997), who also reported an experimentally
obtained transition to the ultimate regime for Rayleigh-Bénard
convection in cryogenic helium in the Ra range
1011 ≲ Ra ≲ 1014; see Sec. VII.B. As in Kraichnan’s model,
Chavanne et al. assumed a logarithmic velocity profile
[relation (85)] and the scaling (79) of the mean kinetic energy
dissipation rate as in the isotropic turbulence case. However,
instead of taking the empirical relation (87) or (90), Chavanne
et al. (1997) proposed that in the highly turbulent regime
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logarithmic profiles should also be expected for the temper-
ature (Landau, 1944; Landau and Lifshitz, 1987),

hθit
Δ

∼
Nu

Pr Reτ
log

uτz
κ

; ð108Þ

which leads to the following third assumption in their model:

Nu ∼
Pr Reτ
logðReτÞ

: ð109Þ

Combining the three assumptions (79), (85), and (109) of the
model of Chavanne et al. (1997) leads to the following scaling
relations:

Nu ∼
Pr1=2Ra1=2

ðlog RaÞ3 ; ð110Þ

Re ∼
Pr−1=2Ra1=2

log Ra
; ð111Þ

which were proposed for the large Ra regime. In this model,
as in Kraichnan’s model, the assumption (79) or, equiv-
alently, the assumption (93) seems to be unfeasible for wall-
bounded Rayleigh-Bénard flows. And for truly large Prandtl
numbers that grow as a power law of Ra, the effective
scaling exponent in the Nu versus Ra scaling relation would
be larger than 1=2, which means that the scaling rela-
tion (110) cannot hold for Prandtl numbers larger than a
certain threshold: Pr ∼ 1.

H. Grossmann and Lohse (2011) model

In the model of Grossmann and Lohse (2011, 2012),
turbulent velocity and temperature boundary layers in the
ultimate regime were proposed, with logarithmic profiles of
both the velocity and the temperature, and therefore rela-
tions (85) and (109) are the first two assumptions in their
model. However, the proposed scaling relation for the
mean kinetic energy dissipation rate ϵu differs from the
relation (79) considered in the models of Kraichnan (1962)
and Chavanne et al. (1997). Instead, Grossmann and Lohse
(2011) assumed that the scaling of ϵu in turbulent Rayleigh-
Bénard convection should be as in sheared, wall-bounded
turbulent flows, i.e., as

ϵu ¼
ν3

L4
CfRe3; ð112Þ

with a friction coefficient Cf,

Cf ≡ Re2τ
Re2

: ð113Þ

Taking into account the analytical result (13), from Eqs. (85),
(112), and (113) one obtains

RaPr−2ðNu − 1Þ ∼ Re3τ logðReτÞ. ð114Þ

Combining relations (85), (109), and (114), one derives
the following scaling relations, which were proposed by
Grossmann and Lohse (2011):

Nu ∼
Pr1=2Ra1=2

ðlog RaÞ2 ; ð115Þ

Re ∼ Pr−1=2Ra1=2: ð116Þ

The model has consistent assumptions that are usually
considered for sheared, wall-bounded turbulent flows, includ-
ing the turbulent thermal and viscous boundary layers with
their logarithmic profiles. However, as in the previous models,
the proposed scaling relation (115) cannot hold for all Prandtl
numbers, since with any growth of Pr as a power law of Ra the
proposed heat flux would exceed the upper bound that has the
scaling exponent 1=2.

I. Proposed model for the ultimate regime

In this section, we analyze the Prandtl number dependences
in the various subregimes of the ultimate regime and propose a
model that includes these dependences. We start the derivation
with a discussion on the boundary-layer equations for turbu-
lent Rayleigh-Bénard convection.

1. Turbulent flow along a plate

We now consider the equations for the horizontal velocity
ux (along the turbulent wind when it exists and along any
horizontal direction otherwise) and for the temperature θ for a
turbulent flow next to a rigid horizontal wall,

∂tux þ u · ∇ux þ ∂xp=ρ ¼ ν∇2ux; ð117Þ

∂tθ þ u · ∇θ ¼ κ∇2θ; ð118Þ

and conduct the Reynolds decomposition of the flow compo-
nents into their time averages and fluctuations, i.e., u ¼
huit þ u0 and θ ¼ hθit þ θ0. We further assume that the
convective contributions from the mean, time-averaged
flow are much smaller than the contributions from the
Reynolds stresses, i.e., jhuit · h∇uxitj ≪ jhu0i · h∇ux0itj and
jhuit · h∇θitj ≪ jhu0it · h∇θ0itj, and that the horizontal aver-
ages of the horizontal derivatives vanish, h∂x�it;sz ¼ 0. Under
the aforementioned assumptions, the time and area averaging
of Eqs. (117) and (118) leads to the following reduced
equations:

∂zhu0zu0xit;sz ¼ ν∂2zhuxit;sz ; ð119Þ

∂zhu0zθ0it;sz ¼ κ∂2zhθit;sz : ð120Þ

Integrating Eqs. (119) and (120) from 0 to z, introducing the
eddy viscosity ντ and the eddy thermal diffusivity κτ,

hu0zu0xit;sz ≡ −ντ∂zhuxit;sz ; ð121Þ

hu0zθ0it;sz ≡ −κτ∂zhθit;sz ; ð122Þ
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and taking into account the vanishing fluctuations at the plate
and that ðκΔ=LÞNu≡−κ∂zhθit;sz jz¼0

and u2τ ≡ν∂zhuxit;sz jz¼0
,

we obtain the following useful relations:

u2τ ¼ ðνþ ντÞ∂zhuxit;sz ; ð123Þ

ðκΔ=LÞNu ¼ −ðκ þ κτÞ∂zhθit;sz : ð124Þ

2. Prandtl number dependence of the ultimate regime

To close the system (123) and (124), we need to know the
functional dependences of the eddy viscosity ντðzÞ and
the eddy thermal diffusivity κτðzÞ. Near the plate, within
the viscous sublayer of the thickness zτ ≡ ν=uτ, both the eddy
viscosity ντðzÞ and the eddy thermal diffusivity κτðzÞ behave
as cubic functions of the distance from the plate ∝ z3, and
therefore the contribution of the eddy viscosity and eddy
thermal diffusivity within the viscous sublayer is negligible.
The somewhat counterintuitive fact that ντðzÞ and κτðzÞ
behave as cubic functions of z follows from the continuity
equations for the mean flow and for the fluctuations that lead
to the vanishing of the first terms in the Taylor expansions
(considered at z ¼ 0) of ντðzÞ and of κτðzÞ; see Antonia
(1980), Antonia and Kim (1991), Shishkina et al. (2015), and
Shishkina, Horn et al. (2017).
To estimate the mean vertical profiles of ντðzÞ, κτðzÞ, and

ϵuðzÞ outside the viscous sublayer, we follow Landau and
make the following assumptions (Landau and Lifshitz, 1987):

• The turbulent Prandtl number Prτ,

Prτ ≡ ντ=κτ; ð125Þ

is independent of (or only weakly dependent on) the
molecular Pr.

• The mean vertical profiles of ντðzÞ, κτðzÞ, and ϵuðzÞ are
determined exclusively by the momentum transferred by
the fluid to a solid wall, i.e., the friction velocity uτ, and
by the distance to the plate, subject to a certain Prandtl
number dependence zPrζ.

By dimensional analysis, these assumptions imply that outside
the viscous sublayer ντðzÞ, κτðzÞ, and ϵuðzÞ should scale as

ντðzÞ ¼ ϰuτzPrζ; ð126Þ

κτðzÞ ¼ ϰθuτzPrζ; ð127Þ

ϵuðzÞ ¼
ϰϵu3τ
zPrζ

; ð128Þ

with the positive constants ϰ, ϰθ, and ϰϵ.
We further propose that the turbulent diffusivities ντ and κτ

are controlled by the smallest of the two fluid characteristics
of diffusion, i.e., by either ν or κ. In other words, both ντ and κτ
should be proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν∂zhuxit;sz jz¼0

q
for small Pr ≲ 1,

and to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ∂zhuxit;sz jz¼0

q
for large Pr≳1, which implies that

ζ ¼ 0 for Pr ≲ 1 and ζ ¼ −1=2 for Pr≳1.

Now, from Eqs. (13), (123), (124), and (126)–(128) we can
derive the scaling relations that we propose for the ultimate
regime for both small and large Pr.
Dividing both sides of Eq. (123) by νþ ντ, substituting

Eq. (126), and integrating the resulting equation in z from
the edge of the viscous sublayer zτ ≡ ν=uτ to the location
L0 ∼ L=2 of the maximal wind velocity huxðL0Þit;sz ¼ νRe=L,
we obtain

Re ∼
Reτ
ϰPrζ

log

�
ϰ

2
ReτPrζ þ 1

�

∼ ReτPr−ζ logReτ. ð129Þ

Analogously, dividing both sides of Eq. (124) by κ þ κτ,
substituting Eq. (127) and integrating the resulting equation in
z from zτ to L=2, we obtain

Nu ∼
ðϰθ=2ÞReτPrζþ1

log ½ðϰθ=2ÞReτPrζþ1 þ 1� ∼
ReτPrζþ1

log Reτ
: ð130Þ

In the scaling relations (129) and (130) we have neglected the
Pr dependences in the logarithmic corrections following the
second tilde.
Finally, we consider ϵuðzÞ. As ϵuð0Þ ∼ νð∂zhuxit;sz jz¼0

Þ2 ∼
u4τ=ν, the contribution to the mean kinetic energy dissipation
rate from the viscous sublayer is smaller than ϵuð0Þzτ ∼
ðu4τ=νÞν=uτ ¼ u3τ . In contrast, the contribution from the core
part of the domain is scalingwise larger, as one can see when
integrating Eq. (128),

Z
L=2

zτ

ϵuðzÞdz ∼
ϰϵu3τ
Prζ

log ðReτ=2Þ≳ u3τ logReτ: ð131Þ

In the estimate (131) we used the fact that Pr−ζ ≥ 1 for all
Prandtl numbers. Since the main contribution to the total
kinetic energy dissipation rate ϵu comes from the bulk, using
Eq. (13) we obtain

2

L

Z
L=2

zτ

ϵuðzÞdz ≈ ϵu ¼
ν3

L4
RaPr−2ðNu − 1Þ: ð132Þ

From the relations (131) and (132) and Nu ∼ Nu − 1 it follows
that

RaNuPr−2 ∼ Re3τPr−ζ logðReτÞ. ð133Þ

Combining relations (129), (130), and (133), we obtain

Re ∼ Pr−1=2Ra1=2 for all Pr ð134Þ

and

Nu ∼
Pr2ζþ1=2Ra1=2

ðlog RaÞ2 ; ð135Þ

with ζ ¼ 0 for Pr ≲ 1 and ζ ¼ −1=2 for Pr≳1. Note that in
the scaling relations (134) and (135) we again neglected the Pr
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dependences in the logarithmic corrections. Thus, we finally
obtain the following scaling relations for the heat transport:

Nu ∼
Pr−1=2Ra1=2

ðlogRaÞ2 for Pr≳1 ðregime IV0
uÞ; ð136Þ

Nu ∼
Pr1=2Ra1=2

ðlog RaÞ2 for Pr ≲ 1 ðregime IV0
lÞ: ð137Þ

The derived regime IV0
l [the scalings (134) and (137)] is the

same as in the model of Grossmann and Lohse (2011). The
scaling relations (134) and (136) extend that model toward
large Prandtl numbers. The derived regimes are sketched
in Fig. 9.
The relation Nu ≲ Pr Re is fulfilled for both regimes IV0

u
and IV0

l; cf. relations (30), (134), (136), and (137). The
transition between the scaling regimes IV0

u and IV0
l takes place

at a constant Pr, where Nu ∼ Ra1=2=ðlog RaÞ2 grows slightly
slower than ∼Ra1=2 as Ra → ∞; see the horizontal line for
ξ ¼ 0 in the Ra-Pr plane in Fig. 9, which indicates the
transition Pr∼Raξ between the neighboring regimes IV0

u
and IV0

l. Another boundary for the regime IV0
l is for

ξ ¼ −1 (marked with a blue line in Fig. 9). While moving
along this line for an increasing Ra and Pr∼Ra−1, the Nusselt
number remains constant, and any steeper transition slope
from regime IV0

l would imply an unphysical limit Nu → 0

along that line. The blue line in Fig. 9 indicates the slope of
the transition to the regime II0l, which has the same scaling
exponents for Nu and Re as the GL regime IIl.
Analogously, one can conclude that the slope of the upper

boundary of the regime IV0
u should not be steeper than Pr∼Ra

so that along this line the Nusselt number remains constant for
increasing Ra. However, as we later explain, the transition from
the regime IV0

u has a significantly more gentle slope, namely,
Pr∼Raξ, with ξ ¼ 1=3 (marked with a pink line in Fig. 9).
Indeed, for the no-slip boundary conditions each compo-

nent u of the velocity field vanishes at the (Lipschitz)
boundary of the domain, and therefore the Friedrichs inequal-
ity holds,

λ1hu2i ≤ hð∇uÞ2i; ð138Þ
where λ1 is the lowest positive eigenvalue of the Laplace
operator in the considered domain with the corresponding
boundary conditions that depends only on the geometrical
characteristics and has the dimension of inverse squared
length (Shishkina, 2021). Therefore, for any Rayleigh-
Bénard flow the following relation should hold:

Re2 ≲ ðL4=ν3Þϵu ¼ RaPr−2ðNu − 1Þ; ð139Þ

where Re2 is based on the kinetic energy hu2i. In the regime
IV0

l (for small Pr), the relation (139) is always fulfilled within
the discussed boundaries since it then means that Pr ≲ Ra.
However, in the regime IV0

u, the requirement (139) means that
Pr ≲ Ra1=3 since it follows from the combination of the
relations (134), (136), and (139). Therefore, the regime IV0

u

can exist only for Pr ≲ Ra1=3. This is consistent with the
results of Choffrut, Nobili, and Otto (2016), who derived that
the upper bounds for the heat transport for large Prandtl
numbers Pr≳Ra1=3 cannot exceed ∼Ra1=3 (all up to loga-
rithmic corrections); see Sec. IV.B.2 and Eq. (65) for details.
While moving along the line Pr∼Ra1=3 with increasing Ra

(the red line in Fig. 9), the Nusselt number effectively scales
as Nu ∼ Pr−1=2Ra1=2 ∼ Ra1=3. We assume that this transition
line Pr∼Ra1=3 connects the regimes IV0

u and III0∞, where the
scaling exponents in the regime III0∞ are exactly the same as in
the classical regime III∞, namely, Nu ∼ Pr0Ra1=3. This result
is again consistent with the findings of Choffrut, Nobili, and
Otto (2016).
In summary, Fig. 9 shows the four subregimes of the

ultimate regime, namely, III0∞, IV0
u, IV0

l, and II
0
l, which can all

be interpreted as ultimate in the sense that one can approach
infinite Ra within these regimes. All these subregimes lie to
the right of the pink dotted line that indicates a constant Res
associated with the onset of a turbulent boundary layer. In the
regimes III0∞ and II0l the scaling exponent γ in the relation
Nu ∼ Raγ is, however, smaller than 1=2. The regimes IV0

u and
IV0

l can be considered the “true” ultimate regimes in the sense
that only there is γ ¼ 1=2.
The proposed model thus indeed suggests that the scaling

exponent γ ¼ 1=2 in the scaling relation Nu ∼ Raγ can be
asymptotically achieved within the regimes IV0

u and IV0
l,

but only for almost constant Prandtl numbers and logarithmic
reductions. As soon as Pr changes as a power law of Raξ

FIG. 9. Sketch of the proposed scaling relations in the ultimate
regime of Rayleigh-Bénard convection in the Pr-Ra parameter
space, where the ultimate regime is split into the subregimes IV0

u,
IV0

l, III
0
∞, and II0l. The numbers in colored boxes show the scaling

exponents in the relations Nu ∼ Prγ1Raγ2 and Re ∼ Prγ3Raγ4
(subject to logarithmic corrections). The straight lines indicate
the slopes of the transitions between the neighboring regimes
Pr∼Raξ, where the values of ξ are written next to the lines. The
dotted line indicates where the laminar kinetic boundary layer is
expected to become turbulent (when the shear Reynolds number
achieves a critical value Res ¼ const).
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(with some small jξj; here it does not matter whether ξ is
positive or negative), one should expect an asymptotic
reduction of the effective scaling exponent as γ ¼ 1=2 − jξj=2.

J. Comparison of the models

We now summarize the assumptions and outcomes of all of
the previously discussed models for the ultimate regime. All
models use the analytical integral relation (13) between the
mean kinetic energy dissipation rate ϵu and Ra, Pr, and Nu.
Each model is based on three assumptions that allow one to
derive the scaling relations for the three unknown quantities:
Nu, Re, and Reτ versus the control parameters Ra and Pr. All
discussed models assume that the velocity boundary layers are
turbulent, with logarithmic velocity profiles. The other two
assumptions, which are needed to close the system of the
relations, include the proposed description of the thermal
boundary-layer structure and scaling relation for the mean
kinetic energy dissipation rate ϵu as a function of Re; these
two assumptions are different in different models. In Table I,
we summarize the assumptions and outcomes for each
discussed model, i.e., the proposed scaling relations for the
heat and momentum transport.
The assumptions of turbulent thermal and velocity boun-

dary layers seem to be reasonable for the ultimate regime in
Rayleigh-Bénard convection, as well as the scaling of the
mean kinetic energy dissipation rate, as it should be in sheared
wall-bounded turbulent flows. The models by Chavanne et al.
(1997) and Grossmann and Lohse (2011), which proposed
that the Nusselt number in the ultimate regime should scale
as ∼Pr1=2Ra1=2 subject to different logarithmic corrections,
cannot hold for all Pr as Ra → ∞. This reasoning is dictated
by the mathematically strict upper bound Nu ≲ Ra1=2, with a
prefactor that is independent of Pr. Indeed, for Prandtl
numbers that grow with the Rayleigh number as Pr∼Raξ

with any ξ > 0, the relation Nu ∼ Pr1=2Ra1=2 ∼ Ra1=2þξ=2 >
Ra1=2 would imply the violation of the rigorous upper bound
Nu ≲ Ra1=2. Therefore, the scaling relation Nu ∼ Pr1=2Ra1=2

for Ra → ∞ might hold only if the Prandtl number is smaller
than a certain constant value.
The new model and Kraichnan’s model offer scaling

relations for moderate Pr as well. However, in Kraichnan’s
model the transition to the regime of high Rayleigh numbers
where Nu ∼ Ra1=3 scales as Pr∼Ra2=3, which contradicts the
result of Choffrut, Nobili, and Otto (2016) on the bound for
the heat transport in large Prandtl number convection. In
contrast, the new model suggests the scaling of that transition
would be Pr∼Ra1=3, which is consistent with the upper-bound
results. This new model can be understood as an extension
of the model of Grossmann and Lohse (2011) to the case
with large Prandtl numbers. In Sec. VII we reconsider
different measurements of the Nusselt number at high
Rayleigh numbers in light of the proposed model.

VI. RAYLEIGH-BéNARD CONVECTION UNDER
REALISTIC CONDITIONS

Most of the theoretical approaches, from those for the onset
of convection (Chandrasekhar, 1961) or for weakly nonlinear TA
B
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or oscillatory regimes (Schlueter, Lortz, and Busse, 1965;
Busse, 1967) to the models for the ultimate regime, that we
discussed in Secs. IVand V consider the convective system as
infinitely extended in the lateral directions, i.e., with an aspect
ratio of Γ ¼ ∞. Moreover, they assume perfect Oberbeck-
Boussinesq conditions according to the equations given in
Sec. II and perfect thermal boundary conditions, meaning
infinite thermal conductivity of the upper and lower plates,
which are assumed to be perfectly smooth. Sidewalls are
absent in such idealized systems.
In laboratory Rayleigh-Bénard experiments, all of these

idealized conditions cannot be realized: Unavoidably, real
systems have a finite aspect ratio and thus also sidewalls, which
do affect the flow. Moreover, the plates have thermal and
mechanical imperfections that affect the flow boundary con-
ditions, and the conditions and fluid properties are not perfectly
Oberbeck-Boussinesq conditions, i.e., they are non-Oberbeck-
Boussinesq (NOB) conditions, which does affect the heat trans-
fer. In this section we discuss all of these imperfections and their
possible effect on the heat transfer and flow organization.

A. The influence of the container’s aspect ratio

In any laboratory RB experiment, the container is confined
and its aspect ratio Γ can play an important role (Wu and
Libchaber, 1992; Roche et al., 2010; Roche, 2020; Shishkina,
2021; Ahlers et al., 2022), particularly for small Γ. As
discussed in Sec. III, in GL theory this is reflected in a Γ
dependence of the four prefactors ci and the prefactor a, which
becomes relevant for small Γ.
The stabilizing effect of small Γ on the flow can already

be seen in the Γ dependence of the critical Rayleigh number
Rac;Γ for the onset of convection, which can be estimated as
(Shishkina, 2021)

Rac;Γ ∼ Rac;∞ð1þ cuΓ−2Þð1þ cθΓ−2Þ; ð140Þ

with positive constants cu and cθ that depend on the container
shape and the sidewall boundary conditions for the velocity
and temperature, respectively. In relation (140) Rac;∞ ≈ 1708

is the well-known onset of convection rolls for Γ ¼ ∞
following from linear stability analysis (Chandrasekhar,
1961). In scaling (140) one can see that Rac;Γ ∼ Γ−4 for small
Γ ≪ 1. For a given diameter of the plates D ≪ L and a given
temperature difference between them, the Rayleigh number
will grow as ∼Γ−3 with increasing height of the container (or,
in other words, with decreasing Γ), while the Rayleigh number
for the onset of convection will grow much faster, as
Rac;Γ ∼ Γ−4, which implies that at a certain sufficiently small
Γ the convective fluid motion will be fully suppressed.
Therefore, a large value of Ra does not mean in itself
turbulence and does not even guarantee fluid motion inside
the container if Γ is too small (Shishkina, 2021). Zhang and
Xia (2023) and Ren et al. (2024) experimentally confirmed
that the theoretical result Rac;Γ ∼ Γ−4 holds as expected for
Γ → 0 and found that the Ra range between the onset of
convection and the onset of turbulence shrinks.
Given that for small Γ even the onset of convection is

strongly shifted toward larger Rayleigh numbers, the onset

Ra� of the transition to the ultimate regime also increases for
finite Γ; i.e., the turbulent flow is stabilized from the sidewalls.
How does one quantitatively estimate the stabilizing effect of
the sidewalls on the onset of the ultimate regime? From an
analysis of the transition from the small-Γ regime to the large
Γ regime, Shishkina (2021) and Ahlers et al. (2022) derived

l ¼ D=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 þ cu

q
¼ L=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cu=Γ2

q
ð141Þ

as the relevant length scale for the transition, with cu ≈ 1.49
for a cylindrical container. lðΓÞ shows a crossover from
l ¼ L for large Γ to l ¼ D for small Γ. For this reason, they
suggested that the Γ dependence at the onset of the ultimate
regimes is

Ra� ≈ Ra�∞ð1þ cu=Γ2Þ3=2. ð142Þ

Compare Eq. (142) to Fig. 10, where the theoretical curve is
compared with the experimental observations. In Eq. (142)
Ra�∞ is the Rayleigh number associated with the onset of the
ultimate regime in an infinite fluid layer (Γ ¼ ∞).
For small Γ ≪ 1, Eq. (142) simplifies to Ra� ∼ Γ−3, a

relation suggested by Roche et al. (2010) based on an analysis
of the Grenoble data, and by Roche (2020) based on different
experimental data (Chavanne et al., 1997, 2001; Niemela,
Skrbek, Sreenivasan, and Donnelly, 2000; Niemela and
Sreenivasan, 2003a, 2006b; Roche et al., 2010; Ahlers,
He et al., 2012; He, Funfschilling, Nobach et al., 2012; He,
Funfschilling, Bodenschatz, and Ahlers, 2012; He et al., 2013).
The scaling of the transition of about Γ−3 in the Göttingen
data was first reported by Bodenschatz et al. (2015). For large
Γ ≫ 1 the onset Ra� of the ultimate regime becomes inde-
pendent of Γ, as then only the height L of the container is the
relevant length scale, as reflected in Eq. (142). Indeed, this is
what was obtained in the analysis by Roche (2020) of various
datasets for different Γ. Roche (2020) also proposed a crossover
from a Γ−3 scaling of the transition to the ultimate regime for
Γ ≲ 2 to Γ independence for Γ≳ 3; cf. Fig. 10.
The suggested Γ dependence of the onset of the ultimate

regime (142) can be tested more generally by correspondingly
replotting the experimental NuðRaÞ data for various Γ: Indeed,
a collapse of the onset value for a given dataset with various Γ is
achieved this way; see Fig. 11. More concretely, when plotted
that way all Göttingen data for various Γ collapse, as do all
Grenoble data for various Γ (however, with different Ra�∞).
The collapse of the curves for different aspect ratios Γ in

Fig. 11(b) implies that upon knowing NuðRa; PrÞ for one
particular aspect ratio Γ1 the dependences for all other aspect
ratios Γ follow. In particular, within the framework of GL
theory this implies that from the four prefactors ci, i ¼
1; 2; 3; 4 for one particular aspect ratio (say, Γ1 ¼ 1), one
can calculate the prefactors for all other aspect ratios Γ.
We note that not only the aspect ratio of the container but

also its shape affect the heat transfer and the overall flow
organization (Shishkina, 2021). Daya and Ecke (2001) com-
pared RB convection in a cylindrical container and in a cubic
container, finding major differences, but as their experiments
were done in the classical regime, far away from the ultimate
regime, we do not discuss them here. But, clearly, the shape of
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the container will affect when the turbulent flow undergoes the
transition to the ultimate regime.

B. From the idealized fluid to real fluids:
Non-Oberbeck-Boussinesq effects

Material properties of any real fluid depend on the temper-
ature and pressure. These dependences are not taken into
account within the Oberbeck-Boussinesq approximation.
They can cause the so-called non-Oberbeck-Boussinesq effects
(NOB effects), which can imply significant deviations in the
heat and momentum transport and/or global flow structures
from what is predicted by the Oberbeck-Boussinesq equations.
The validity of the OB approximation in thermal convection

was investigated in several theoretical studies, also in terms
of orders of magnitude of particular terms in the governing
equations; see Spiegel and Veronis (1960) and Veronis (1962).
A mathematically rigorous variational approach in which
expansions of the fluid properties as power series were
considered was first applied by Mihaljan (1962), who,

however, considered only a temperature variation of the
density. Later the method was extended to take the temper-
ature dependences of other fluid parameters into account.
When going beyond the OB approximation, at first order

one can consider a linear dependence of the five material
properties of the fluid φ ¼ ρ, μ, cp, α, and k (i.e., the density,
absolute viscosity, specific heat at constant pressure, thermal
expansion coefficient, and thermal conductivity, respectively)
on the temperature and pressure,

φ

φ0

¼ 1þ εφ;T
T − T0

Δ
þ εφ;P

P − P0

ρ0gL
: ð143Þ

This implies that there are ten different sources for the
NOB effects (non-Oberbeck-Boussinesq-ness, or NOB-ness),
expressed in the ten dimensionless factors εφ;T and εφ;p, with
φ ¼ ρ, μ, cp, α, and k; see Gray and Giorgini (1976). For a
certain fluid and a certain reference temperature T0 and
pressure P0 of operation, it is a priori not clear which of
these ten dimensionless parameters εφ;T and εφ;P are the most
relevant ones to cause the NOB-ness of the experiment. Thus,
every experiment requires an a priori characterization and
estimate of its NOB-ness that can manifest in ten different
ways, and often in several different ways simultaneously. To
disentangle the various NOB effects, direct numerical simu-
lations in which one can employ artificial fluids that display
only one type of NOB-ness can be helpful. An example for
such an analysis for ethane was provided by Ahlers et al.
(2008). There have been further investigations of the
NOB effects in Rayleigh-Bénard convection in helium and
pressurized SF6 (Roche et al., 2010; Shishkina, Weiss,
and Bodenschatz, 2016; Weiss et al., 2018; Yik, Valori,
and Weiss, 2020) and in water and glycerol (Manga and
Weeraratne, 1999; Ahlers et al., 2006; Sugiyama et al., 2009;
Horn, Shishkina, and Wagner, 2013; Horn and Shishkina,
2014). In several studies only the temperature variation of the
density (αΔ) is considered as a measure of NOB-ness
(Niemela and Sreenivasan, 2003a); however, this is only
one (ερ;T) of the many parameters (εφ;T) to be monitored as
a possible source of NOB-ness. Usually the pressure variation
has only a negligible effect on NOB-ness; the temperature
variation plays a much more important role. Here we restrict
ourselves to the lowest order and consider only a linear term in
the temperature expansion [as in Eq. (143)] to capture the
NOB effects. This is sufficient, as shown in a recent study by
Macek et al. (2023) for the case of cryogenic helium.
Gray and Giorgini (1976) first went beyond the OB

approximation in a comprehensive way, and we now recall
their results; for a further discussion of the NOB effects, see
Appendix A2 of Roche et al. (2010). The starting point is the
set of the governing equations for a Newtonian fluid of variable
properties with zero second viscosity (Batchelor, 1967),

Dtρþ ρ∇ · u ¼ 0; ð144Þ

ρDtuþ ∇P ¼ ∇ · ðμSijÞ − ρgez; ð145Þ

ρcpDtT ¼ ∇ · ðk∇TÞ þ αTDtPþ μΦ; ð146Þ

FIG. 10. Relative increase ð1þ 1.49=Γ2Þ3=2 of the critical
Rayleigh number Ra� for the transition to the ultimate regime
in a cylindrical container compared to the Γ → ∞ case, according
to the theory of Shishkina (2021) and Ahlers et al. (2022);
cf. Eq. (142) (solid red line). The transitional Rayleigh number
Ra� should scale as ∝ Γ−3 for small Γ and as ∝ Γ0 for large Γ.
Roche (2020) proposed a crossover from the ∼Γ−3 dependence
for Γ ≲ 2 to Γ independence for Γ≳ 3. The shaded red region
symbolizes the range in which the transition to the ultimate
regime could occur according to the non-normal–nonlinear
picture. Symbols: The onset Rayleigh number Ra� for the in-
crease of the effective scaling exponent γ in the relation Nu ∼ Raγ

as a function of the cylindrical container aspect ratio Γ, as found in
various experimental data. The vertical offset Ra�∞ represents
the Rayleigh number for the onset of the ultimate regime in an
infinite fluid layer (Γ ¼ ∞); it is different for the three datasets. For
the Grenoble and Göttingen datasets the right-end values of the
determined transition (i.e., Ra�2 from Table II in Sec. VII) are
plotted. For the Oregon dataset the transitional Rayleigh number
was not claimed by Niemela, Skrbek, Sreenivasan, and Donnelly
(2000) but was proposed by Roche (2020).
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where P ¼ p − ρ0gzez is the full pressure, Sij ≡ ∂jui þ ∂iuj −
ð2δij=3Þ∂kuk is the deformation rate tensor, Φ≡
ðSij=2Þð∂jui þ ∂iujÞ is the viscous dissipation function,
Dt ≡ ∂t þ u · ∇ denotes the full material derivative, and δij
represents the Kronecker symbol. The reference temperature
and pressure for the system are denoted as T0 and P0,
respectively, and the corresponding fluid properties at the
reference T0 and P0 in the following are also marked with a
subscript 0.
It is further assumed that any fluid property φ that is

involved in Eqs. (144)–(146) can be represented as a linear
function of T and P according to Eq. (143). Substituting the

representations (143) of the fluid properties φ ¼ ρ, μ, cp, α,
and k into Eqs. (144)–(146), one requires that the residuals,
i.e., the terms that distinguish the resulting equations
from their Oberbeck-Boussinesq approximation, to be
negligibly small. The OB requirements are fulfilled if not
only all εφ;T and εφ;P but also the magnitudes of the pressure
work term (αTDtP) and the dissipation term (μΦ) in
Eq. (146) are negligibly small compared to the magnitudes
of the other terms in Eq. (146). Comparing ρcpDtT with
αTDtP in Eq. (146), one concludes that the pressure work
term is negligible if the following relation is fulfilled:
ρ0cp;0Δ ≫ α0T0ρ0gL (here we estimate the pressure

FIG. 11. (a) Nusselt number, compensated with Ra1=3 vs Ra, for Prandtl numbers as appropriate for air and water at room temperature
(0.7 ≤ Pr ≤ 6) for various aspect ratios Γ. Vertical lines correspond to the locations where the plots have a visible minimum (start of
growth of the effective scaling exponent γ above 1=3 in the scaling relation Nu ∼ Raγ) in Göttingen measurements (short lines) and
Grenoble measurements (long lines) for different aspect ratios. (b) Same as (a), but for Rayleigh numbers based on the relevant length
scale [Eq. (142)]. All vertical lines are different in (a), while the Göttingen lines and the Grenoble lines collapse in (b). The inclined
straight lines show the slope y ∼ x0.38, while the upper (lower) curves correspond to the predictions of Grossmann and Lohse (2000) for
Γ ¼ 1 and Pr ¼ 4.4 (Pr ¼ 0.7). The references in the legend refer to Funfschilling et al. (2005), Nikolaenko et al. (2005), Shishkina and
Wagner (2006, 2007), Shishkana and Thess (2009), Bailon-Cuba, Emran, and Schumacher (2010), Roche et al. (2010), Stevens, Clercx,
and Lohse (2010a, 2010b), Zhong and Ahlers (2010), Weiss and Ahlers (2011), Ahlers, He et al. (2012), He, Funfschilling,
Bodenschatz, and Ahlers (2012), He, Funfschilling, Nobach et al. (2012), Lakkaraju et al. (2012), Stevens et al. (2012), Wagner,
Shishkina, and Wagner (2012), Horn and Shishkina (2014), Weiss, Wei, and Ahlers (2016), Scheel and Schumacher (2017), Shishkina,
Emran et al. (2017), Kooij et al. (2018), Stevens et al. (2018), Zwirner and Shishkina (2018), Emran and Shishkina (2020), Stevens,
Lohse, and Verzicco (2020), Zhang et al. (2020), Hartmann et al. (2021), Wedi et al. (2021), Zhang, Ecke, and Shishkina (2021), and
He, Bodenschatz, and Ahlers (2022). Adapted from Shishkina, 2021, and Ahlers et al., 2022.
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magnitude as P ∼ ρ0gL, the magnitude of the temperature
variation as Δ, and the magnitude of the absolute value of
the temperature as T0). Comparing ∇ · ðk∇TÞ with μΦ, one
concludes that the dissipation term is negligible if k0Δ ≫
μ0α0gΔL (here we estimate the velocity magnitude as
the free-fall velocity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0gLΔ

p
). The last two inequalities

can be reformulated as bT0=Δ ≪ 1 and bPr0 ≪ 1, respec-
tively, where Pr0 ≡ ν0=κ0 is the reference Prandtl number,
κ0 ≡ k0=ðρ0cp;0Þ is the reference thermal diffusivity,
and b≡ α0gL=cp;0.
We introduce a certain small threshold σ̂, 0 < σ̂ ≪ 1, and

define the OB approximation as valid with the accuracy σ̂ if
the following requirements are fulfilled (Weiss, Emran, and
Shishkina, 2024):

εφ;T ≪ σ̂; εφ;P ≪ σ̂ for φ ¼ ρ; μ; cp; k; ð147Þ

bT0=Δ ≪ σ̂; bPr0 ≪ σ̂: ð148Þ

The parameter σ̂ can be interpreted as a measure of the
NOB-ness. Note that the requirements (147) and (148) can be
derived by substituting Eq. (143) for all fluid properties
into Eqs. (144)–(146) and requiring the terms that are not
present in the OB approximation to become negligibly small
as σ̂ → 0.
Thus, for any given fluid and any given small threshold σ̂

for the residuals, from the OB assumptions [(i) and (ii) in
Sec. II.A] one can derive the region of the OB validity in terms
of the upper bounds for the maximal possible temperature
difference Δ of the system and the maximal possible size L of
the container. The OB-validity region for any common fluid
is sketched in Fig. 12. For any reasonable threshold, the
OB-validity region (in terms of Δ and L) is bounded from
above and below: this gives restrictions to the Rayleigh
numbers, which can be achieved in almost-OB experiments
(Gray and Giorgini, 1976; Horn and Shishkina, 2014; Weiss
et al., 2018). In particular, this means that for any chosen

fluid and any chosen threshold on the degree of NOB-ness
(parameter σ̂), Ra larger than a certain maximum value Ramax;σ̂

can in principle not be realized.
In Fig. 13 the regions where the OB approximation is valid

are presented for some fluids and operational conditions that
are typically employed in thermal convection experiments,
namely, water, air, ethane, helium, pressurized gas sulfur
hexafluoride (SF6) at near room temperature, and cryogenic
helium. For any considered fluid and given reference temper-
ature T0 and reference pressure P0, these regions are
calculated in terms of the maximum temperature difference
Δ and the container height L. These regions depend on the
threshold σ̂; the choices σ̂ ¼ 5%, 10%, and 20% give the
embedded domains of the OB approximation validity; they
are displayed in green, blue, and red, respectively, in Fig. 13.
The values that correspond to the upper right corners of
each domain determine the maximum achievable Rayleigh
numbers Ramax;σ̂ , which are indicated in Fig. 13 with the
corresponding colors.

FIG. 12. Region of the validity of the Oberbeck-Boussinesq
approximation in thermal convection for a given fluid sketched in
terms of the maximal possible temperature difference Δ of the
system and the maximal possible container height L; see Gray
and Giorgini (1976) and Ecke and Shishkina (2023).

FIG. 13. Regions of the validity of the Oberbeck-Boussinesq
approximation in terms of the maximum temperature difference
Δ and the container height L according to Eqs. (147) and (148)
for different fluids: (a) water at T0 ¼ 40 °C and P0 ¼ 1 bar,
(b) air at T0 ¼ 40 °C and P0 ¼ 1 bar, (c) ethane at T0 ¼ 40 °C
and P0 ¼ 1 bar, (d) helium at T0 ¼ 40 °C and P0 ¼ 1 bar,
(e) helium at T0 ¼ −268.15 °C ¼ 5 K and P0 ¼ 1 bar, and
(f) SF6 at T0 ¼ 30 °C and P0 ¼ 20 bar. The nested green
(smallest), blue, and red (largest) OB-validity regions correspond
to the thresholds on the degree of NOB-ness σ̂ ¼ 0.05, 0.1, and
0.2, respectively. The corresponding maximum achievable Ray-
leigh numbers Ramax;σ̂ are given in the respective colors (from
bottom to top). Calculations are made using data from the
National Institute of Standards and Technology (2013). Adapted
from Weiss, Emran, and Shishkina, 2024.
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From the comparison of the values of Ramax;σ̂ for the
considered fluids, one might conclude that water is the
optimal fluid to study RB convections under OB conditions
at extreme Ra since it has the largest Ramax;σ̂ . However, be
aware that these extremely large Ra can be obtained only
when the depth of the water layer is at least hundreds of
meters. In this regard, the use of cryogenic helium and
pressurized gas SF6 is preferable for experimental studies of
the transition to the ultimate regime.

C. From the idealized container to real containers:
Small roughness and finite conductivity of the plates
and sidewalls of the container

Further sources of possible differences between the heat
and momentum characteristics of real convective flows and
the corresponding characteristics obtained as solutions of the
Oberbeck-Boussinesq equations (1)–(3) for the same control
parameters are imperfections of the container in the sense that
no real-experiment container can perfectly satisfy the ideal-
ized boundary conditions at the sidewalls and the plates. In
addition, the surfaces of the containers are never perfectly
smooth: they are always more or less rough. These container
imperfections can be formally interpreted as a slight change of
the boundary conditions at the horizontal or vertical surface in
the convective system or as a slight change of the container
shape due to the wall roughness. All of this can influence the
response characteristics of the system like Re and Nu and, in
particular, the onset of the transition to ultimate turbulence. In
fact, dedicated containers have been built to study the effect of
the plate roughness; then the roughness is controlled and
considerable. These experiments are discussed in Sec. IX.C;
see also Kaiser, Salort, and Roche (2011).
In addition, the imposed thermal boundary conditions at

the sidewalls can substantially affect the heat transport in the
system (Ahlers, 2000; Roche, Castaing, Chabaud, Hébral, and
Sommeria, 2001; Stevens, Lohse, and Verzicco, 2014; Roche,
2020; Reiter, Zhang, and Shishkina, 2022) and the emergence
of different flow states. Ideal sidewalls have adiabatic con-
ditions. In reality, sidewalls can never be perfectly adiabatic
but will be partially conducting, which is known to delay the
onset of convection as compared to the adiabatic case (Buell
and Catton, 1983; Puigjaner et al., 2004, 2008; Hebert et al.,
2010). Sidewalls are also known to influence pattern for-
mation (Cross and Hohenberg, 1993; de Bruyn et al., 1996;
Bodenschatz, Pesch, and Ahlers, 2000), so different sidewall
boundary conditions can lead to different observed patterns
even if the aspect ratio of the employed container is large (Hu,
Ecke, and Ahlers, 1993).
But what about the effect of sidewalls in the turbulent case?

In that case, nonperfectly adiabatic sidewalls imply unwanted
outward or inward sidewall heat flux that can significantly
bias global heat transport measurements and also the mea-
sured effective scaling exponent γ in the effective scaling
relation Nu ∼ Raγ (Ahlers, 2000; Roche, Castaing, Chabaud,
and Hébral, 2001; Roche et al., 2010; Reiter, Zhang, and
Shishkina, 2022).
As stated, in laboratory experiments the boundary con-

ditions at the sidewalls are always a mixture of adiabatic and
conducting sidewalls. To explore the influence of a finite

thermal conductivity of the sidewalls, Verzicco (2002),
Stevens, Lohse, and Verzicco (2014), and Reiter, Zhang,
and Shishkina (2022) conducted numerical simulations where
thermal conduction of the solid sidewalls was incorporated.
Wan et al. (2019) simulated the full sidewalls with all their
imperfections, such as finite heat conductivity, insulation
by foam, and thermal shields; see Fig. 14. The numerical
simulations showed that different thermal properties of the
sidewall can alter the mean flow structure, leading to signifi-
cant differences in the global heat transport if the considered
Rayleigh numbers are relatively low. With increasing Ra, this
effect is gradually reduced and becomes negligible, but only if
the averaged sidewall temperature is kept constant and
maintained at the arithmetic mean of the top and bottom
plate temperatures.
If the mean sidewall temperature deviates from this arith-

metic mean, the differences in the heat transport can persist
even for large Rayleigh numbers (Stevens, Lohse, and
Verzicco, 2014). Therefore, it is important to keep the mean
temperature of the sidewalls at the arithmetic mean of the top
and bottom temperatures. Probably the most reliable and
easiest way to achieve this is to maintain the entire environ-
ment of the experimental facility at that temperature.
We now come to the plate effects. For the ideal case

discussed in Sec. II, the thermal conductivity of the plate is
infinite. In real experiments, however, the top and bottom
plates have finite conductivity. The thermal plumes that detach
from the heated or cooled plate alter the instantaneous
temperature distributions at the plates, taking heat out of
the plates, which for finite heat conductivity cannot instanta-
neously replenish (Ahlers and Xu, 2001; Chaumat, Castaing,
and Chillà, 2002; Chillà et al., 2004b). Therefore, the
isothermal boundary conditions at the plates (T ¼ T− at the
top and T ¼ Tþ at the bottom) are fulfilled in the best case
only for the time- and area-averaged temperatures. The finite
conductivity of the top and bottom plates can influence the

FIG. 14. Sketch of a numerical setup with sidewall, insulation
layer, and thermal side shields, for which Wan et al. (2019)
performed DNS, including all sidewalls, foam, and thermal
shields. The aspect ratio of the fluid domain Γ ¼ 1. The
Plexiglass sidewall has a thickness Rw − Rf ¼ L=30. The in-
sulation layer has a thickness LF ¼ 0.2L. For the inner thermal
side shields Lsc ¼ 0.015L with a square cross section. The outer
thermal shield has a thickness of 0.02L and a height Ls ¼ 0.96L,
and its inner edge is located at 0.6L from the cylinder axis. The
outer surface of the insulation layer is assumed to be isothermal at
the arithmetic mean of the top (Tc) and bottom (Th) temperatures
θ ¼ TM ≡ ðTc þ ThÞ=2. Adapted from Wan et al., 2019.
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flow structure and may cause deviations of the measured heat
transport in laboratory experiments from the heat transport in
the perfect OB RB system for the same control parameters.
The effect becomes worse for increasing Nusselt numbers and
thus increasing Ra, as more heat is then taken out of the plates.
Verzicco (2004) analyzed this effect and introduced a correc-
tion scheme that has been widely used, sometimes in modified
forms. In this review we refer to various experimental papers
that explained exactly how this is done.

D. Instrumentation in the container

Further deviations from the ideal conditions described in
Sec. II are caused by instrumentation within the container,
such as thermal probes in the thermal BLs at the plates or the
kinetic BLs at the plates or sidewalls. In various experiments
these probes were used to monitor the flow and to identify the
dynamics of the large-scale convection roll; see Chavanne
et al. (1997, 2001) and Roche et al. (2010). However, such
probes can also trigger non-normal–nonlinear instabilities in
the shear flow, as disturbances do in pipe flow (Avila, Barkley,
and Hof, 2023). The consequences of the disturbance signifi-
cantly depend on the exact position of the probe, its size, etc.
In general, one would expect the absence of probes and any
other instrumentation in the container to delay the transition to
the ultimate regime. Indeed, He, Funfschilling, Bodenschatz,
and Ahlers (2012) and He, Funfschilling, Nobach et al.
(2012), who did not put any instrumentation in the container
itself, found the transition to the ultimate regime later than
Chavanne et al. (1997, 2001), who had thermal probes in the
container. In fact, Chavanne et al. (2001) used these probes to
show the transition from a laminar BL to a turbulent one.
The only way to use thermal probes and not affect the flow

itself is to fully immerse them in the plates or in the sidewalls,
and to make sure that on the inside side the plate or the wall at
the position of the probe is perfectly smooth. This route was
followed by the Göttingen group (Ahlers, He et al., 2012;
Ahlers, Bodenschatz, and He, 2014). Note that this usage of
thermal probes works only under nonideal thermal boundary
conditions; under ideal conditions the thermal fluctuations
inside the container should not be reflected inside the side-
walls or the plates; see Sec. VI.C.

VII. LARGE RAYLEIGH NUMBER EXPERIMENTS

From the definition of the Rayleigh number [Eq. (4)], it is
clear that in controlled convection experiments in principle
there are three ways to increase Ra: to perform experiments in
containers (i) with a large height L, (ii) with a large temper-
ature difference Δ, and (iii) with appropriate material param-
eters of the fluid, i.e., a small kinematic viscosity ν, a thermal
diffusivity κ, and a large thermal expansion coeffcient α.
Option (iii) can be realized by approaching the critical point of
the fluid. However, in Sec. VI.B we saw that there are serious
and unavoidable limitations with all three ways, in practice
and in principle, if the Oberbeck-Boussinesq character of the
flow is to be preserved. In addition, there are cost consid-
erations and limitations. For example, even with an L ¼ 7 m
high cylinder (with Γ ¼ 1.23) and air as a fluid (Pr ¼ 0.7),
du Puits, Resagk, and Thess (2007) and du Puits et al. (2007)

achieved “only” Ra ≈ 1012. In addition, for these large-scale
experiments the thermal insulation of the sidewalls and
constant temperature boundary conditions at the plates are
major challenges, to a degree, in fact, that no meaningful
global heat flux measurements were possible in these experi-
ments. Owing to all of these limitations, all three ways must be
combined to achieve the largest possible Ra, which is required
for experimentally exploring the ultimate regime.

A. Chicago group

The first group to seriously explore large Ra RB convection
by working with gases in the vicinity of their critical points
where ν and κ are small was Albert Libchaber’s group at the
University of Chicago (Heslot, Castaing, and Libchaber,
1987; Castaing et al., 1989; Sano, Wu, and Libchaber,
1989; Wu et al., 1990; Procaccia et al., 1991; Wu and
Libchaber, 1992), whose work was based on a prior idea
and previous experiments conducted by Threlfall (1975).
While Threlfall with his L ≈ 2 cm high container and helium
gas achieved only Ra ¼ 2 × 109, Heslot, Castaing, and
Libchaber (1987) achieved Ra ¼ 1011 with their L¼8.7 cm
high container, Sano, Wu, and Libchaber (1989) attained
Ra ¼ 1012 with the same container, Castaing et al. (1989)
achieved Ra ¼ 6 × 1012, again with the same container, and
Wu et al. (1990) and Procaccia et al. (1991) attained Ra ¼
4 × 1014 with their L ¼ 40 cm high container. They reported
an effective scaling law Nu ∼ Raγ with γ ≈ 0.29� 0.005
(Heslot, Castaing, and Libchaber, 1987, Castaing et al.,
1989) or, similiarly, γ ¼ 0.286� 0.003 (Wu and Libchaber,
1992) up to their largest Ra. Libchaber’s group did not find
hints of any transitions in the Nusselt number toward larger
scaling exponents, even at their largest Ra. Note that the high-
frequency transition reported in the temperature spectra in
these experiments and derivatives of these temperature spectra
(Procaccia et al., 1991) could consistently be accounted for
as an effect of the thermal probe that, at high frequencies
and large Ra, cannot follow the local thermal fluctuations
(Grossmann and Lohse, 1993); this transition has nothing to
do with a flow transition to the ultimate regime.
Though the Chicago experiments by Libchaber’s group did

not find any evidence for the ultimate regime, their papers had
a huge impact in defining the problem. At the end of their
paper, Castaing et al. (1989) recollected, “Kraichnan (1962)
predicts a new behavior appearing between Ra ¼ 1018 and
Ra ¼ 1024” and wrote, “We do not know. Perhaps the hard
turbulence (this is how they called their large-Ra regime)
extends to infinitely large value of Ra, perhaps not.” Castaing
et al. (1989) then encouraged future work on the subject.

B. Grenoble group

Indeed, the Chicago work on RB convection in cryogenic
helium was followed up, namely, in Grenoble (and also in
Lyon) by Bernard Castaing and colleagues. In their seminal
paper, Chavanne et al. (1997) reported the observation of the
ultimate regime for Ra > Ra� ≈ 1011, with a pronouncedly
steeper effective scaling exponent γ ≈ 0.38 in the Nu versus
Ra scaling relation; see Fig. 2. In these experiments, Γ ¼ 1=2,
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while Pr varies, generally increasing with increasing Ra; see
Fig. 7(a). Chavanne et al. (1997) also measured the local
velocity at various places, namely, with anemometry with a
couple of 200 μm cubic thermometers. The transition toward
a steeper effective scaling exponent was confirmed by
Chavanne et al. (2001) by experiments in the same container,
who in addition, again by direct measurements of the velocity,
could connect this change in the Nu versus Ra scaling with a
laminar to turbulent transition of the velocity boundary layers
induced by the large-scale flow near the wall of the container.
The velocity measurements also revealed an effective scaling
relation Re ∼ Ra0.49, which is consistent with the GL model
and various other models; cf. Secs. III and V. Chavanne et al.
(2001) found their data to be consistent with the model of
Kraichnan (1962) for moderate Pr, including the nesting of the
thermal boundary layer in the kinetic one, as expected for
these Pr.
In the following two decades, the Grenoble and Lyon

results on the transition to the ultimate regime and its various
features got consolidated and extended (Chillà et al., 2004a;
Gauthier and Roche, 2008; Roche et al., 2010; Salort et al.,
2014; Rusaouën et al., 2018; Roche, 2020; Méthivier et al.,
2022), including to other aspect ratios and different Pr ranges.
Gauthier and Roche (2008) and Gauthier et al. (2009)
confirmed that the transition, there given at Ra� ≈ 1012, is
connected with a boundary-layer instability reflecting differ-
ent temperature fluctuation statistics and skewness in the
boundary layer below and above the transition. Chillà et al.
(2004a) proposed that different thermal properties of the plates
may explain the differences between the various experiments;
however, this hypothesis could not be validated by Roche
et al. (2005). Salort et al. (2014) demonstrated multistability
for the flow geometry for RB containers with rough plates.
Roche et al. (2010) showed that the transition has little or no
effect on the large-scale convection roll, again giving evidence
that it is a BL effect. Roche et al. (2010) also realized that
the ultimate state may be triggered by some distortion of the
flow (cf. Sec. VII.F) and explored the dependences of the heat
flux and the transition on the aspect ratio Γ and Pr, covering
the considerable parameter range of 0.23 ≤ Γ ≤ 1.14 and
0.7 ≤ Pr ≤ 7, even with different types of sidewalls; see
Fig. 2. They found that the onset Ra� of the transition to
the ultimate regime with an effective slope of the Nu versus Ra
scaling larger than 1=3 depends on the type of sidewalls and
the aspect ratio Γ, with smaller aspect ratios having a later
onset; see Fig. 15(a). As mentioned in Sec. VI, based on their
data they suggested a dependence of the onset Rayleigh
number Ra� as ∼Γ−2.5 for aspect ratios Γ < 1.5 (and consistent
with ∼Γ−3 for Γ → 0).
Roche (2020) demonstrated the robustness of the transition

for various Γ and various types of thermal sidewall conditions,
namely, by plotting the local slopes ∂ logNu=∂ log Ra versus
Ra of the various Nu versus Ra plots [cf. Fig. 4 of Roche
(2020)], but the standard compensated plots Nu=Ra1=3 versus
Ra shown in that paper are also convincing.
Apart from plotting Nu versus Ra (or, more appropriately,

modifications thereof, like the extremely useful compensated
plots Nu=Ra1=3 versus Ra or local slopes ∂ logNu=∂ logRa
versus Ra), the Grenoble-Lyon group (Chavanne et al., 2001;

Méthivier et al., 2022) went on to plot the Nu versus Re data,
for example, as NuRaPr−2=Re3 versus Re; see Fig. 15(b). The
rationale behind this is the exact relation (13) for the kinetic
energy dissipation rate and the decomposition (24) of GL
theory or, equivalently, the assumption of Kraichnan (1962)
and Chavanne et al. (1997) that ϵu ∼ ν3L−4Re3 in the ultimate
regime, which corresponds to the horizontal line in Fig. 15(b).
Indeed, in Fig. 15(b), for large enough Ra and therefore large
enough Re, the data asymptotically approach a horizontal line,
which is consistent with the assumptions of an ultimate regime
with a dominant energy dissipation rate of ϵu ∼ ν3L−4Re3.
Finally, Roche et al. (2010) also analyzed the role of

possible NOB effects (cf. Sec. VI.B) in the observed increase
of the local Nu versus Ra scaling exponent to a value larger
than 1=3 and found that such NOB effects cannot account for
the transition. In fact, various NOB effects would lower Nu
rather than increase it.

FIG. 15. (a) Local slopes ∂ logNu=∂ log Ra as a function of Ra
for various container types and aspect ratios Γ. The position of the
onset of the ultimate regime depends on Γ and the type of the
container, which differ in their sidewall properties. Adapted from
Roche et al., 2010. (b) NuRa=ðPr2Re3Þ vs Re for various RB
measurements, with and without regular roughness of the plates.
Adapted from Brichet et al., 2024. The references in the legend
refer to Chavanne et al. (2001), Niemela et al. (2001), He et al.
(2015), Méthivier et al. (2022), and Brichet et al. (2024).
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C. Oregon, Trieste, and Brno groups

Russ Donnelly and his Oregon group took inspiration from
Threlfall (1975) and Libchaber’s Chicago group (Heslot,
Castaing, and Libchaber, 1987; Castaing et al., 1989; Wu
and Libchaber, 1992) and performed RB experiments with
cryogenic helium, but now in a much larger container with
L ¼ 1 m and Γ ¼ 1=2 reaching Ra ≈ 1017 (Niemela, Skrbek,
and Donnelly, 2000; Niemela, Skrbek, Sreenivasan, and
Donnelly, 2000; Niemela, Skrbek, Swanson et al., 2000).
They provided an overall single power-law fit of the Nu versus
Ra dependence in the range 106 ≤ Ra ≤ 1017, obtaining
Nu ¼ 0.124Ra0.309�0.0043 [cf. Fig. 2(a)] without identifying
any transition to an enhanced heat transport and to a steeper
scaling exponent at larger Ra. The problem with plotting
Nu versus Ra as in Fig. 2(a) and such an overall single
power-law fit is that trends in the local slope are nearly
invisible. As mentioned, these become visible in compensated
plots Nu=Ra1=3 versus Ra as in Figs. 2(b), 3, and 11 or
when plotting the local slope ∂ logNu=∂ log Ra versus Ra
as in Fig. 15(a).
Niemela and Sreenivasan (2003a) extended these measure-

ments to a Γ¼1 container (L¼0.5m) reaching Ra¼2×1015.
They found an enhanced heat transfer from Ra� ≈ 1012

onward, which was larger than in their Γ ¼ 1=2 container
but not as large as in the experiments by Chavanne et al.
(1997); cf. Figs. 2(b), 3, and 11 here and, in particular, Fig. 4
of Niemela and Sreenivasan (2003a), where only those
three data sets are shown. Niemela and Sreenivasan
(2003a) concluded that “consistent with the thinking of
Grossmann and Lohse (2000), it is clear that a single power
law is inadequate to describe the heat transfer scaling in the
(Γ ¼ 1) data over the entire range of Ra.” As seen in Fig. 2(b),
beyond Ra� ≈ 1012 the Oregon Nu versus Ra data for Γ ¼ 1
(Niemela and Sreenivasan, 2003a) even scale more steeply
than the Priestly-Malkus scaling Nu ∼ Ra1=3, though not as
steeply as the Grenoble data given by Chavanne et al. (1997,
2001), which were well described by Nu ∼ Ra0.38. That the
Oregon Γ ¼ 1 data show a transition to a local Nu versus Ra
scaling exponent larger than 1=3 can also be seen in Fig. 9(a)
of Roche (2020). Niemela and Sreenivasan (2003a) inter-
preted this steeper-than-one-third scaling exponent as a non-
Oberbeck-Boussinesq effect (cf. Sec. VI.B) and concluded
that, when restricting themselves to stricter Oberbeck-
Boussinesq conditions, their large Ra data simply follow
“the prediction of Grossmann and Lohse (2001) for their
region IVu, within which … both data sets lie.”
By employing the same thermal probe technique as in

Chavanne et al. (1997), Niemela et al. (2001) could also
measure the scaling of the Reynolds number, resulting in
Re ∼ Ra1=2=Pr1=2 for Γ ¼ 1 and in that experiment accessible
Ra (up to 1013).
The Oregon large Ra heat transfer RB experiments with

cryogenic helium were continued in Trieste, where moreover
older Oregon data were further analyzed. Niemela and
Sreenivasan (2006a) provided data for Ra up to 2 × 1013 in
a Γ ¼ 4 container with a height of L ¼ 12.5 cm. They found
that for Ra > Ra� ¼ 3 × 1012 the slope of the Nu versus Ra
curve increases significantly beyond 1=3 but cautioned that

this may be due to non-Oberbeck-Boussinesq corrections.
Niemela and Sreenivasan (2010) provided further data for a
Γ ¼ 1 container. They found an increase by about 20% in the
compensated plot Nu=Ra1=3 versus Ra at Ra� ≈ 2 × 1014

[cf. Fig. 1 of Niemela and Sreenivasan (2010)] but interpreted
this increase as the transition from one state with γ ¼ 1=3 slope
in Nu versus Ra toward another state with the same γ ¼ 1=3,
but with a 20% larger prefactor. Niemela and Sreenivasan
(2010) also provided further data for Γ ¼ 4, confirming the
transition of Niemela and Sreenivasan (2006a) to enhanced heat
transport around Ra� ¼ 3 × 1012 [cf. Fig. 2 of Niemela and
Sreenivasan (2010)], i.e., at a lower value of Ra as for the Γ ¼ 1
container. This is consistent with the fact that in larger aspect
ratio containers the transition should be expected at smaller
Rayleigh numbers than in smaller aspect ratio containers.
We note, however, that Niemela and Sreenivasan (2010)

interpreted their transitions in their Γ ¼ 1 and 4 containers
differently, namely, as a non-Oberbeck-Boussinesq effect. As
“main empirical evidence against the Kraichnan argument”
Niemela and Sreenivasan (2010) took “that the transition does
not coincide with unique values of the similarity parameters
Ra and Pr.” That argument, however, ignored the third
similarity variable of the RB system, namely, the aspect ratio
Γ, and the experimental and theoretical work of Roche et al.
(2010), Shishkina (2021), Roche (2020), and Ahlers et al.
(2022) has meanwhile firmly established the dependence of
the transition to the ultimate regime on Γ. Moreover, owing to
the non-normal–nonlinear behavior of the transition to the
ultimate regime, even for the same Γ and the same convection
container, one should not expect the onset of the heat transport
increase to occur at the same Rayleigh numbers.
The Oregon large Ra RB experiments with cryogenic

helium also found continuation in Brno (Urban et al.,
2010). Urban, Musilová, and Skrbek (2011), in a Γ ¼ 1
container (L ¼ 30 cm, no instrumentation inside the fluid,
and 0.67 ≤ Pr ≤ 2.4) and achieving Ra up to 4.6 × 1013 [thus
smaller than the value Ra ¼ 2 × 1014, where Niemela and
Sreenivasan (2006a) found the transition in the Γ ¼ 1 con-
tainer], did not find any evidence for a transition to an ultimate
state. Urban et al. (2012, 2013, 2014, 2019) and Skrbek and
Urban (2015) extended the results to larger Ra up to 1015,
finding enhanced Nu versus Ra scaling with a local exponent
γ > 1=3 of around Ra ¼ 1014, but argued that this would be a
“spurious crossover” due to sidewall and non-Oberbeck-
Boussinesq effects, breaking the top-bottom symmetry of
the flow and, in particular, the deviation of the center
temperature of the flow from the mean of the top and bottom
plate temperature. This interpretation was challenged by He
et al. (2013) and later by He, Bodenschatz, and Ahlers (2016),
who showed that the observed transition to the regime of
enhanced scaling with γ > 1=3 was robust and that there were
no significant NOB effects near this transition.
Musilová et al. (2017) reported the scaling of the Reynolds

number in the Brno Γ ¼ 1 experiments in the range 108 <
Ra < 1014 based on local temperature measurements with
thermal sensors placed at roughly midheight of the containers.
The observed transition around Ra ∼ 1010 to 1011 from a
scaling of the energy dissipation rate ϵu (derived from the
Nusselt number) from ϵu ∼ ν3L−4Re5=2 to ϵu ∼ ν3L−4Re3 and
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toward a less steep Re ∼ Ra4=9Pr−2=3 scaling of Re seems to be
consistent with a transition to regime IVu of GL theory
(Grossmann and Lohse, 2000, 2001) but is not connected with
the ultimate regime.

D. Göttingen: Large Ra experiments with pressurized SF6

In RB experiments with cryogenic helium as the working
fluid, achieving larger Ra generally coincides with larger Pr;
see Figs. 7(a) and 7(b). When performing large-scale RB
experiments with pressurized SF6, it is possible to achieve
high Ra while keeping Pr small and almost constant (Pr < 1);
again see Fig. 7.
Employing a large L ¼ 2.24 m container with Γ ¼ 1=2

(the High-Pressure Convection Facility, which is placed
inside a pressurized vessel, the so-called Göttingen U-Boot),
Funfschilling, Bodenschatz, and Ahlers (2009) compared the
heat flux in turbulent RB convection with SF6, helium gas,
and nitrogen at different pressures up to 15 bars, achieving
Ra up to 3 × 1014, but did not find a transition to an ultimate
state with enhanced heat flux. Ahlers, Funfschilling, and
Bodenschatz (2009) extended these measurements up to
19 bars and achieved Ra ¼ 1015. In these measurements they
did not at first find a transition to a state with enhanced heat
transfer either, but then did so in later experiments with the
same setup, as reported in a note added in proof to the paper
and, more extensively, in an addendum to the paper (Ahlers,
Funfschilling, and Lohse, 2011), where beyond Ra� ≈ 1013

they found an effective scaling of Nu ∼ Raγ with γ ¼ 0.36,
i.e., larger than γ ¼ 1=3. Ahlers, Funfschilling, and Lohse
(2011) and Ahlers, Bodenschatz et al. (2012) ascribed the
smaller heat transfer measured by Ahlers, Funfschilling, and
Bodenschatz (2009) to a small upward current of gas and thus
spurious heat fluxes in a small gap outside the sidewalls,
which in the new measurements were suppressed. Ahlers,
Funfschilling, and Lohse (2011) wrote that “the heat transport
in this system and at these Ra is extremely sensitive to details
of the external conditions.”
Ahlers, He et al. (2012) and He, Funfschilling, Nobach

et al. (2012) further refined and extended these measurements
in the Γ ¼ 1=2 container (achieving Ra ¼ 1015) and could
then identify the transition to the ultimate state around
Ra ≈ 1014. More precisely they found γ ≈ 0.31 below
Ra�1 ≤ 1013 and γ ≈ 0.38 above Ra�2 ≈ 5 × 1014; multistability
was observed in between. In all of these experiments, the
Prandtl number was nearly constant (Pr ≈ 0.8). The transition
in the Nu versus Ra scaling coincided with a transition in
the Re versus Ra scaling, with an effective scaling exponent
ζ ≈ 0.43 below Ra�1 ≤ 1013, which was consistent with the
classical GL regime of RB convection, and ζ ≈ 0.50 above
Ra�2 ≈ 5 × 1014, which was consistent with the ultimate
regime IV0

l of GL theory. The determination of Re was done
with thermal probes inside the container close to the sidewalls
with which local temperature fluctuations could be measured.
He, Funfschilling, Nobach et al. (2012) emphasized the
discontinuous nature of the transition at Ra�2 ≈ 5 × 1014,
which became visible both in Re associated with the mean
flow and a Reynolds number associated with the velocity
fluctuations, and interpreted the transition as a shear instability

of the BLs, which was in line with GL theory and the model of
Grossmann and Lohse (2011), i.e., as the transition from the
classical regime to the ultimate regime. For these experiments,
Ahlers, Bodenschatz et al. (2012) and Ahlers, Bodenschatz,
and He (2014) found a logarithmic mean temperature profile
in the ultimate regime in line with the predictions of
Grossmann and Lohse (2012), but logarithmic profiles can
also be fitted in the classical regime, albeit in a small region
(Ahlers, Bodenschatz et al., 2012). He et al. (2014) worked
out the analogies between temperature spectra and autocorre-
lation functions in the BLs for the ultimate regime and those
for velocity spectra and autocorrelation functions in turbulent
shear flow at large Reynolds numbers.
He, Funfschilling, Bodenschatz, and Ahlers (2012)

extended the RB experiments with SF6 from the Γ ¼ 1=2
container to a Γ ¼ 1 container [of half height as in the
original container of He, Funfschilling, Nobach et al.
(2012)], achieving up to Ra ¼ 2 × 1014, again for Pr ≈ 0.8.
For Ra ≤ Ra�1 ¼ 2 × 1013 they found an effective scaling
exponent γ ≈ 0.32, which was again consistent with the
classical GL regime, and γ ≈ 0.37 for larger Ra, which was
consistent with the ultimate regime (He, Bodenschatz, and
Ahlers, 2016). He et al. (2015) provided the corresponding
Reynolds number measurements for that Γ ¼ 1 container,
both for the mean flow velocity (Re) and for the root-mean-
square velocity fluctuations (Refluct). As with the Γ ¼ 1=2
container, they found an effective Re versus Ra scaling
exponent of ζ ≈ 0.44 below the transition at Ra�1 ¼ 2 × 1013

FIG. 16. Compensated (a) Nusselt number and (b) Reynolds
number as a function of Ra as obtained in the Göttingen
measurements in a Γ ¼ 1=2 container using pressurized SF6.
The various symbols correspond to different operating mean
pressures and temperatures. The solid purple lines correspond to
Nu ∼ Ra0.38 in (a) and Re ∼ Ra1=2 in (b). The dashed red lines
represent Nu ∼ Ra0.312 in (a) and Re ∼ Ra0.423 in (b). The vertical
dotted black lines indicate the range of the transition, i.e., Ra�1 and
Ra�2. The thin dashed lines in (b) are guides for the eye to indicate
the paths followed by the data. Adapted from He, Funfschilling,
Nobach et al., 2012.
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and ζ ≈ 0.5 above Ra�2 ≈ 8 × 1013, which was again consis-
tent with the GL interpretation of a transition from the
classical to the ultimate regime. The transition was also
observed in the evolution of ReðRaÞ: for Ra�1 < Ra < Ra�2
the ReðRaÞ dependency is nonmonotonic, with ups and
downs, for all studied combinations of the mean temperature
and pressure. However, when Ra exceeds the value of Ra�2,
one sees Re ∼ Ra1=2; see Fig. 16. Later He, Bodenschatz, and
Ahlers (2016) also found the transition in the Reynolds
number associated with the azimuthal motion of the large-
scale convection roll. Ahlers, Bodenschatz, and He (2017)
used the experimental finding of the transition to the ultimate
regime at Ra�1 ¼ 2 × 1013 for Pr ≈ 0.8 in the Γ ¼ 1 container
to extrapolate to the case for Pr ¼ 0.021 (liquid metal)
based on GL theory (Grossmann and Lohse, 2000, 2001),
which predicted Ra� ∼ Pr3=2. They found Ra� ≈ 1011 for the
Pr ¼ 0.021 case, which was consistent with the extrapolation
of Schumacher et al. (2016) from their numerical results at
smaller Ra.
He, Bodenschatz, and Ahlers (2022) further extended the

RB experiments with pressurized SF6 to a slender container
with Γ ¼ 1=3, achieving Ra up to 5 × 1015. In this slender
container, the transition moved up to Ra�2 ≈ 2 × 1015, above
which the steep effective scaling γ ¼ 0.38 of the ultimate
regime can be seen in the Nu versus Ra scaling relation.
The same held for the typical change in the temperature
variance that is associated with the transition from the classical
regime to the ultimate regime. Based on these experimental
results, He, Bodenschatz, and Ahlers (2020, 2022) gave the Γ
dependence of the transition toward the ultimate regime
as Ra�2 ∼ Γ−3.04, Which was consistent with the results of
Roche (2020), Shishkina (2021), and Ahlers et al. (2022);
cf. Eq. (142).
We finally note that among the first to perform high-Ra

RB experiments using SF6 in the vicinity of its critical point
were Ashkenazi and Steinberg (1999), who measured up to
Ra ¼ 5 × 1014, with L ¼ 10.5 cm and Γ ¼ 0.72, but found
no transition to an enhanced Nu versus Ra scaling for
large Ra. They varied Pr over a large range 1 ≤ Pr ≤ 93

and, for the accessible range 109 ≤ Ra ≤ 1014, gave Nu ∼
Ra0.3�0.03Pr−0.2�0.04 and Re ∼ Ra0.43�0.02Pr0.75�0.02. These
scaling relations are closer to those of the GL regime IVu
than to the ultimate scalings.

E. Lyon and Tokyo groups: Large Ra experiments
with liquid mercury

According to GL theory, Ra� ∼ Pr3=2 at the onset of
the ultimate regime (Grossmann and Lohse, 2000, 2001).
Thus, for low Pr liquids such as liquid metals the onset
should occur at much lower Ra. However, there are not
many RB experiments with liquid metals at large Ra, for
cost and security reasons but also for principal reasons, as in
ideal RB experiments the heat conductivity of the plates
should be perfect compared to that of the liquid so that they
can be kept at constant temperature. With liquid metals
as fluid, however, this is difficult or even impossible to
achieve, and one has to rely on corrections or deviate from
the ideal RB conditions.

The first controlled high-Ra RB experiments with liquid
metal involved the pioneering work4 of Cioni, Ciliberto, and
Sommeria (1997) with liquid mercury, which has Pr ≈ 0.025,
in a container with Γ ¼ 1. Cioni, Ciliberto, and Sommeria
(1997) achieved Ra ¼ 5 × 109, finding a sharp transition
to a much steeper Nu versus Ra dependence beyond
Ra� ¼ 2.1 × 109. The steeper regime was too short to extract
a meaningful scaling exponent, but the data of Cioni,
Ciliberto, and Sommeria (1997) showed bistability in this
regime beyond Ra ¼ 2.1 × 109 [cf. Fig. 2(a) of their paper],
with an upper branch with steeper Nu versus Ra scaling and a
lower branch with the same scaling as in the classical regime,
as at the onset to the ultimate regime in SF6 measured by
He, Funfschilling, Nobach et al. (2012). Cioni, Ciliberto, and
Sommeria (1997) wrote that “the transition is possibly related
to the onset of some instability occurring in the viscous
boundary layer… . Such boundary layer instabilities are
known to be sensitive to the state of the surface of the wall,
which could explain the lack of reproducibility (due to aging
of the wall in contact with mercury).” They went on to write,
“The Reynolds number (at the transition) corresponds to the
threshold for instability in a boundary layer on a flat plane,
leading to sudden enhancement of turbulence, sensitive to the
presence of small perturbations, consistent with our observa-
tions of a sudden and non-reproducible transition.” This view,
which was indeed pioneering and visionary, is consistent with
today’s view (Roche, 2020; Lohse and Shishkina, 2023) that
the transition to the ultimate regime is of a non-normal–
nonlinear nature; see Fig. 3.
Prior RB experiments with mercury by Takeshita et al.

(1996) achieved only Ra ¼ 108 (also in a Γ ¼ 1 container)
and thus did not recognize the transition to the ultimate
regime. Glazier et al. (1999) repeated these experiments in a
Γ ¼ 1=2 container in which they achieved Ra ¼ 8 × 1010 and
a Γ ¼ 2 container in which they achieved Ra ¼ 107. However,
they did not see the transition to the ultimate regime either.

F. Reconciling the experimental findings:
Non-normal–nonlinear transition

How does one reconcile the various experimental findings
on high-Ra experiments reported in this section? In the
conclusions of their Review of Modern Physics article on
RB convection some 15 years ago, Ahlers, Grossmann, and
Lohse (2009) wrote the following on the transition to the
ultimate regime: “Though the Grenoble experiments suggest
such a transition near Ra ¼ 1011, neither the Oregon-Trieste
experiments nor numerical simulations do so. The reason for
the discrepancy is presently unresolved.”
As reported in this section, there have been various new

experiments in the past 15 years and new direct numerical
simulations, as reported in Sec. VIII. The transitions to the
ultimate regime found in these experiments (if any) and the

4D. L. notes that it was his visit with Sergio Ciliberto in Lyon at the
end of October 1997 and the discussions of their mercury-RB
experiment with the Pr dependence found there that triggered the
development of what is now known as GL theory (Grossmann and
Lohse, 2000).
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earlier ones are summarized in Table II and in Fig. 10 for the
aspect ratios Γ ¼ 4 or 2, Γ ≈ 1, Γ ¼ 1=2, and Γ ¼ 0.23 or 1=3.
There are two distinct reasons for the different transition

Rayleigh numbers Ra� in these experiments, namely, the
difference in the control parameters Prandtl number Pr and

aspect ratio Γ. First, regarding the Prandtl number depend-
ence: As stated, for mercury (Pr ≈ 0.02) the found Ra� scaling
is in line with the GL prediction Ra� ∼ Pr3=2 (Grossmann and
Lohse, 2000, 2001) when one extrapolates the onset Ra� from
Pr ¼ 0.8 (and the same Γ ¼ 1) down to Pr ¼ 0.02. For the

TABLE II. Summary of Rayleigh numbers Ra� for the onset of enhanced Nu vs Ra scaling with a local scaling exponent γ > 1=3. Note that in
some cases in which no transition was observed the maximally achieved Ra was too small to expect such a transition.

Location 0.23 ≤ Γ ≤ 0.33 Γ ¼ 0.5 1 ≤ Γ ≤ 1.14 2 ≤ Γ ≤ 4

Grenoble
(cryogenic He)

ðΓ ¼ 0.23Þ ðΓ ¼ 0.5Þ ðΓ ¼ 1.14Þ

References Roche et al. (2010) Chavanne et al. (1997) Roche et al. (2010)
Roche (2020) Chavanne et al. (2001) Roche (2020)

Pr 0.66 < Pr ≤ 6.9 0.66 < Pr ≤ 37 0.75 < Pr ≤ 6.7
Ramax Ramax ≈ 5.9 × 1014 Ramax ≈ 2 × 1014 Ramax ≈ 6.5 × 1012

Ra� 3 × 1012 ≤ Ra� ≤ 1014 Ra� ∼ 1011 5 × 1010 ≤ Ra� ≤ 3 × 1012

References Gauthier et al. (2009) � � �
Roche (2020) and
Roche et al. (2010)

Pr 0.67 ≤ Pr ≤ 6.9
Ramax, Ra� Ramax ≈ 7 × 1013 (“ThickWall”)

4 × 1011 ≤ Ra� ≤ 2 × 1013

Ramax ≈ 7 × 1013 (“Flange”)
6 × 1011 ≤ Ra� ≤ 2 × 1013

Ramax ≈ 7 × 1013 (“Vintage”)
2 × 1011 ≤ Ra� ≤ 2 × 1013

Ramax ≈ 8 × 1013 (“Paper”)
2 × 1012 ≤ Ra� ≤ 6 × 1013

Lyon and Tokyo
(mercury)

(Tokyo, Γ ¼ 1=2) (Lyon, Γ ¼ 1) (Tokyo, Γ ¼ 2)

References Glazier et al. (1999) Cioni, Ciliberto,
and Sommeria (1997)

Glazier et al.
(1999)

Pr � � � 0.024 ≤ Pr ≤ 0.027 0.021 ≤ Pr ≤ 0.026 0.018 ≤ Pr ≤ 0.027
Ramax Ramax ≈ 8 × 1010 Ramax ≈ 5 × 109 Ramax ≈ 107

Ra� None 2.1 × 109 None

Oregon and Trieste
(cryogenic He)

ðΓ ¼ 0.5Þ ðΓ ¼ 1Þ ðΓ ¼ 4Þ

References Niemela, Skrbek, and
Donnelly (2000) and Niemela, Skrbek,

Sreenivasan, and Donnelly (2000)

Niemela and Sreenivasan
(2003a, 2003b)

Niemela and
Sreenivasan
(2006a)

Pr � � � 0.68 ≤ Pr ≤ 28.7 0.68 ≤ Pr ≤ 13.4 0.69 ≤ Pr ≤ 14.7
Ramax Ramax ∼ 1017 Ramax ≈ 2 × 1015 Ramax ≈ 3 × 1013

Ra� none or Ra� ∼ 1012

(Roche, 2020)
Ra� ∼ 1011

a Ra� ∼ 2 × 1010
a

Brno (cryogenic He) (Γ ¼ 1)
References Urban et al. (2012, 2014,

2019)
Pr � � � � � � 0.68 ≤ Pr < 11.5 � � �
Ramax Ramax ∼ 1015

Ra� none or Ra� ∼ 1014
a

Göttingen
(pressurized SF6)

(Γ ¼ 1=3) (Γ ¼ 1=2) (Γ ¼ 1)

References He, Bodenschatz,
and Ahlers (2022)

He, Funfschilling, Nobach
et al. (2012)

He, Funfschilling,
Bodenschatz, and
Ahlers (2012) and
He et al. (2015)

Ahlers, He et al. (2012)
Pr 0.78 ≤ Pr ≤ 0.86 0.78 ≤ Pr ≤ 0.86 0.78 ≤ Pr ≤ 0.86 � � �
Ramax Ramax ≈ 4.1 × 1015 Ramax ≈ 1.0 × 1015 Ramax ≈ 1.4 × 1014

Ra�1 Ra�1 ≈ 1.3 × 1013 Ra�1 ≈ 1.5 × 1013 Ra�1 ≈ 2 × 1013

Ra�2 Ra�2 ≈ 2.3 × 1015 Ra�2 ≈ 7 × 1014 Ra�2 ≈ 8 × 1013

aThe enhanced scaling was interpreted as a non-Oberbeck-Boussinesq effect.
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onset Ra� at Pr ¼ 0.8 Roche et al. (2010) gave 1011, Niemela,
Babuin, and Sreenivasan (2010) gave 1012 (though they
interpreted the results differently), and He et al. (2015)
gave 2 × 1013. If we take the rough geometric mean 1012,
then the expectation at Pr ¼ 0.02 would be Ra� ¼ 1012×
ð0.02=0.8Þ3=2 ≈ 4 × 109 rather than the measured Ra� ≈
2 × 109, and thus order of magnitude–wise in line. Further
Pr dependences of the onset in the range 0.8 ≤ Pr ≤ 7 for
cryogenic helium were discussed by Roche et al. (2010), but
more data are necessary to further understand this issue.
Second, regarding the aspect ratio Γ dependence: This

dependence is visible in Table II and Fig. 10, in which we also
plotted the theoretical expectation equation (142) of Ahlers
et al. (2022), which is in line with the data. The theory
explaining this dependence was discussed in Sec. VI.A.
But beyond the obvious reasons for the variations in Ra�

(the dependence on the control parameters Pr and Γ) there
must be another reason; otherwise, the wide spread of Ra�

even for roughly the same control parameters Pr and Γ cannot
be accounted for. The crucial idea of how to understand this
variation of Ra� for the onset of the ultimate transition even for
roughly the same control parameters was put forward first by
Roche (2020) and later by Lohse and Shishkina (2023). The
idea was to interpret it as a subcritical transition of a non-
normal–nonlinear nature similar to the transition from laminar
to turbulence in pipe flow or channel flow; cf. Fig. 2 of Roche
(2020) and Fig. 4 here. Previously many (Chavanne et al.,
1997; Cioni, Ciliberto, and Sommeria, 1997; Grossmann and
Lohse, 2000, 2001, 2004, 2011; Chillà et al., 2004a; Gauthier
and Roche, 2008; Gauthier et al., 2009; Roche et al., 2010;
Ahlers, He et al., 2012; He, Funfschilling, Bodenschatz, and
Ahlers, 2012; He, Funfschilling, Nobach et al., 2012; He,
Bodenschatz, and Ahlers, 2020) did realize that the onset of
the ultimate regime is a shear instability of the laminar-
(Prandtl-Blasius-) type BL, including taking the Tollmien
value Re�s ¼ 420 as a typical value for the onset (Grossmann
and Lohse, 2000, 2001), but in contrast to Roche (2020)
they did not fully appreciate the consequences of this
insight, namely, that all characteristics of the non-normal–
nonlinear transition carry over to the transition toward
ultimate RB. As explained in the Introduction and in
Sec. III.C, these characteristics are the subcritical nature
of the onset, the possibility of multiple states in the range of
the onset, and the double-threshold condition for the onset,
with both Res and the distortions large enough for the onset
to happen and, as a result, the pronounced sensitivity of the
onset to distortions.
Indeed, all of these features of the non-normal–nonlinear

transition did occur in the experiments described in
Secs. VII.B–VII.E. For example, Ahlers (2000), Roche,
Castaing, Chabaud, Hébral, and Sommeria (2001), Verzicco
(2002), Chillà et al. (2004a), and Brown et al. (2005) showed
that the thermal properties of the sidewalls and the top and
bottom plates, respectively, have a significant influence on
whether and when the transition occurs and on how smooth it
is. Niemela and Sreenivasan (2003a) mentioned the important
role of the thermal conditions of the sidewalls. In addition,
the multistability of the convective system at large Rayleigh
numbers has been reported (Cioni, Ciliberto, and Sommeria,

1997; Roche et al., 2002; Chillà et al., 2004a; Weiss and
Ahlers, 2011; Salort et al., 2014).
In these experiments the flow can show a seemingly

statistically stable equilibrium for a long time (of the order
of the diffusion times L2=ν or L2=κ) but can then nevertheless
undergo a transition to another state with different transport
properties. This is usually associated with changes related to
the large-scale circulation, e.g., with its reversals or cessations
(Villermaux, 1995; Cioni, Ciliberto, and Sommeria, 1997;
Brown, Nikolaenko, and Ahlers, 2005; Brown and Ahlers,
2006; Xi, Zhou, and Xia, 2006; Xi and Xia, 2007) or with
changes in the global flow structure, for example, among one,
two, or more rolls (Weiss and Ahlers, 2011). However, Salort
et al. (2014), who conducted measurements in a convection
container with small regular roughness using water as the
operating fluid, observed a flow multistability that was not
associated with any changes (reversals) in the large-scale
circulation. A small tilt of the convection container (Chillà
et al., 2004a; Weiss and Ahlers, 2013) can also have a visible
effect on the heat transport and lifetime of the different states.
When analyzing the transitions between different global flow
states in a large Ra experiment (5 × 1011 < Ra < 4 × 1012) in
a Γ ¼ 1=2 container filled with water and slightly inclined
(a tilt less than 0.03 rad), Chillà et al. (2004a) observed
multistability and concluded that “the Nusselt number
observed in most high Ra experiments should significantly
depend on initial conditions.”We note that all additional kinds
of “noises” (vibration, instrumentation, or any other factors
that can be understood as small additional body forces) can
influence the transition to the ultimate regime.
What about the shear Reynolds number Res of the transition

range? As discussed in Secs. I and III.C, a non-normal–
nonlinear transition can occur in a considerable range of Res,
and the earlier the transition occurs, the larger the distortion is
(double-threshold behavior). As a guideline, Grossmann and
Lohse (2000, 2001) took Re�s ¼ 420 as a typical value for
the onset, motivated by Tollmien (1929) and Landau and
Lifshitz (1987). We assume that the transition given by He,
Funfschilling, Nobach et al. (2012) (for Γ ¼ 1=2 and
Pr ¼ 0.8) at Ra� ≈ 1014 (disregarding the differences between
Ra�1 and Ra

�
2) corresponds to Res ¼ 420. What shear Reynolds

number then would the transition at Ra ≈ 1011 or 1012

[observed by Chavanne et al. (1997, 2001) and Gauthier
et al. (2009) for the same Γ ¼ 1=2 and a slightly larger Pr]
correspond to? As Res ∼ Ra1=4, this would be a shear
Reynolds number of 75 or 133, which indeed is in a range
where with some larger distortion of the boundary layer such a
transition could happen, in particular, considering that a
thermal probe had been placed in the BL of the RB experi-
ments of Chavanne et al. (1997, 2001), which could trigger an
instability of the BL.
We also interpret the existence of two distinct transitional

Rayleigh numbers Ra�1 and Ra�2 in the Göttingen experiments
in light of the non-normal–nonlinear nature of the onset, with
Ra�1 the Rayleigh number (and the corresponding shear
Reynolds number Re�s;1) from which a jump to the turbulent
BL state is possible for large enough distortions, and Ra�2 the
Rayleigh number (and corresponding shear Reynolds number
Re�s;2) above which the laminar-type BL cannot recover.
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We now discuss possible NOB effects (see Sec. VI.B) that
were put forward by the Oregon, Trieste, and Brno groups to
account for their observed transitions; see Sec. VII.C and
Table II. Though NOB effects exist (see our discussion in
Sec. VI.B), from our point of view the following arguments
hold against this interpretation: (i) NOB effects generally set
in gradually, whereas the observed transitions in the Oregon,
Trieste, and Brno data are sudden, as expected for the onset of
the non-normal–nonlinear instability. (ii) Direct numerical
simulations5 (however, in the classical regime at lower Ra)
show that in SF6 and cryogenic helium the NOB effects on the
heat transport are negligible and lead to a reduction of the
Nusselt number, as in water or glycerol (Horn, Shishkina, and
Wagner, 2013; Horn and Shishkina, 2014). In contrast, the
increase in the experimentally measured Nu at the transition is
large, far beyond a few percent. (iii) The observed transitions
in the Oregon, Trieste, and Brno data are basically in the Ra
range, where one would expect the non-normal–nonlinear
instability of the laminar-type BL toward a turbulent-type BL
for the given aspect ratio Γ and Pr; i.e., the shear Reynolds
number Res is in the appropriate range for such a transition.
We speculate that the NOB effects, like any other distortion,
can trigger the non-normal–nonlinear instability of the boun-
dary layers, which at the end leads to a qualitative change in
heat transport and a dramatic growth of Nu.

At the end of this section, we reconsider the experimental
data presented in Fig. 2 in light of the model equations (136)
and (137); cf. Fig. 9. According to the model, in the ultimate
regime the following scaling should hold (up to logarithmic
corrections): Nu ∼ Pr�1=2Ra1=2, where a negative exponent
(−1=2) for Pr should be taken for large Pr and a positive
one (þ1=2) for small Pr. Thus, the Nusselt number is a
function of PrξRa, with ξ ¼ 1 for Pr ≤ 1 and ξ ¼ −1 for
Pr > 1. In Fig. 17(a), the experimental data considered for Nu
are plotted versus PrξRa. One sees that all datasets, including
the Oregon data, follow a scaling close to Nu ∼ ðPrξRaÞγ , with
γ ≈ 1=3 for smaller values of PrξRa and γ between 0.4 and 0.5
at the highest values of PrξRa.
Figure 17(b) provides a compensated plot of

NuðRaPrξ̂Þ−1=3 versus RaPrξ̂. Here ξ̂ is a function of Pr that
substitutes the discontinuous change of ξ from þ1 to −1
at Pr ¼ 1 for a continuous and smooth function ξ̂ðPrÞ≡
− tanhðdlog10 PrÞ that matches the small Pr and large Pr
regimes. [Here different options are possible to match the
small Pr and large Pr regimes, particularly by optimizing the
constant d, which in Fig. 17(b) equals d ¼ 0.5.] All data
again show a transition for large Ra. The thin inclined lines
in Fig. 17(b) highlight the scaling exponent γ ¼ 0.4 and
the thick green line γ ¼ 0.5. We interpret the results in
Fig. 17(b) as support for the model of Eqs. (136) and (137);
cf. Fig. 9.

G. Which experiments can verify and illuminate the subcritical
nature of the transition to the ultimate regime?

Which further experiments should be done to learn more
about the transition to ultimate turbulence? Larger Ra and a

FIG. 17. (a) Nu vs RaPrξ (with ξ ¼ 1 for Pr ≤ 1 and ξ ¼ −1 for Pr > 1) and (b) compensated Nusselt number NuðRaPrξ̂Þ−1=3 vs RaPrξ̂
[where the function ξ̂ðPrÞ≡ − tanhð0.5log10 PrÞ helps smoothly connect the two regimes ξ ¼ 1 for Pr ≪ 1 and ξ ¼ −1 for Pr ≫ 1], as
obtained in different Rayleigh-Bénard experiments in cylindrical containers; see the Fig. 2 caption for reference information. The blue
curve shows the Grossmann-Lohse predictions for the classical regime for Pr ¼ 1 and Γ ¼ 1. The inset of (a) presents all available data,
while the main (a) and (b) contain data only for αΔ < 15% (i.e., with one of the Oberbeck-Boussinesq conditions fulfilled; see
Sec. VI.B). All datasets at the highest Rayleigh numbers achieved in these experiments show the transition to the ultimate regime, with
slopes between Nu ∼ Ra0.4 (the thin solid brown, cyan, green, pink, and magenta lines) and Nu ∼ Ra0.5 (the thick solid green line). These
transitions are also seen in the noncompensated plot (a). The same datasets are considered here as in Fig. 2.

5Among all SF6 and He properties the most sensitive one to
temperature variation is the specific heat at constant pressure cp.
DNS for an extreme variation of cp (as in the measurements at the
highest Ra) considered for Ra up to 1010 show only a slight variation
in Nu compared to the OB cases (Weiss, Emran, and Shishkina,
2024).
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larger range of the other two control parameters (Pr and Γ) are
needed. Indeed, Table II has various gaps and should be
extended to larger and smaller Γ and different Pr, which in the
best case do not vary too much when one increases Ra. In
particular, more measurements with liquid metals (Pr ≈ 0.02)
are needed, but also those for much larger Pr, for which only a
few measurements of the heat flux exist (Xia, Lam, and Zhou,
2002). In addition to heat flux measurements, measurements
on the Reynolds number are also needed and, in the best case,
noninvasive. One should also continue trying to measure the
velocity and temperature profiles in the boundary layers to
directly verify their logarithmic character in the ultimate
regime. These are all obvious extensions of the present type
of measurements.
But we also suggest new types of experiments, namely,

those that explicitly probe the non-normal–nonlinear nature
of the transition to ultimate turbulence, to further establish
(or falsify) and illuminate it. These experiments can be
along the lines of what was done by Hof et al. (2006) and
Avila et al. (2011, 2013) for pipe and channel flow [see also
the reviews on the non-normal–nonlinear transition men-
tioned in the Introduction (Grossmann, 2000, Schmid and
Henningson, 2001, Kerswell, 2002, Eckhardt et al., 2007,
Schmid, 2007, Barkley, 2016, Manneville, 2016, Wu, 2019,
Avila, Barkley, and Hof, 2023)], namely, to locally apply
controlled disturbances to the flow (here the BLs) such as
placing obstacles, an injection of jets, and local vibrations at
various Ra, and measure how the flow reacts: Can the
transition from a laminar to a turbulent BL be triggered and
identified based on local measurements or the overall heat
transfer? And if so, what is the lifetime of the new turbulent
state and how does it depend on Ra? Does the laminar state
recover? We also suggest probing the hysteretic character
of the transition by slowly increasing and decreasing Ra
around the transition. The non-normal–nonlinear picture
suggests that the onset of the ultimate state should occur at
larger Ra compared to the offset when decreasing Ra again.
Performing corresponding experiments can confirm (or
refute) the hypothesis about the subcritical nature of the
transition to the ultimate regime.

VIII. LARGE RAYLEIGH NUMBER NUMERICS

A. 3D Rayleigh-Bénard flow simulations in the classical regime

One of the first direct numerical simulation (DNS) of 3D
turbulent RB convection was done by Kerr (1996), who
employed a spectral code with lateral periodicity boundary
conditions. Kerr achieved Ra ¼ 2 × 107 on a 288 × 288 × 96
grid. For Pr ¼ 0.7 he found an effective power law
Nu ∼ Ra0.28.
We first focus on large Ra DNS. Verzicco and Camussi

(1999, 2003) and Stringano, Pascazio, and Verzicco (2006),
building on the advanced finite difference scheme developed
by Verzicco and Orlandi (1996), achieved up to Ra¼2×1011

for Pr ¼ 0.7 in a slender container with Γ ¼ 1=2. Using
the same method, Stevens, Verzicco, and Lohse (2010) and
Stevens, Lohse, and Verzicco (2011) achieved Ra ¼ 2 × 1012

for a cylindrical container with Γ ¼ 0.23 and 1/2 and
0.5 < Pr < 10. The largest currently achieved Rayleigh

number6 is Ra ¼ 1013 for a cylinder Γ ¼ 1=2; see Stevens,
Lohse, and Verzicco (2020) and Figs. 18 and 19. This second-
order finite difference code AFiD/RBflow was then further
optimized, including for GPUs, by van der Poel et al. (2015)
and Zhu, Mathai et al. (2018), who achieved Ra ¼ 1011 for
laterally periodic boundary conditions.
There are other popular computational DNS codes that

have also been used to study different aspects of turbulent
Rayleigh-Bénard convection at smaller Ra. GOLDFISH code
[see Shishkina et al. (2015), Reiter, Zhang et al. (2021), and
Reiter, Zhang, and Shishkina (2022)] applies a fourth-order
finite-volume discretization on staggered grids and a third-
order Runge-Kutta time marching scheme. It was used to
study thermal convection enhanced by rotation (Horn and
Aurnou, 2018, 2019; Zhang et al., 2020; Ecke, Zhang, and
Shishkina, 2022; Ecke and Shishkina, 2023) or magnetic field
(McCormack et al., 2023; Teimurazov et al., 2024) and
convection at extremely small Prandtl numbers (Zwirner,
Tilgner, and Shishkina, 2020; Zwirner et al., 2020, 2022;
Teimurazov et al., 2023).
Other studies of Rayleigh-Bénard convection, also at Prandtl

numbers that correspond to liquid metals, were conducted with
a general purpose spectral-element code NEK5000; see Scheel
and Schumacher (2016, 2017), Schumacher et al. (2016), and
Pandey, Scheel, and Schumacher (2018). Although NEK5000 is
significantly slower than dedicated codes like AFiD or
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FIG. 18. Number of grid points N and Ra, which were achieved
in sufficiently resolved 3D direct numerical simulations for a
cylindrical container with Γ ¼ 1=2 and Pr ≈ 1, as a function of
the available computational power, expressed during the year the
simulation was done. Black squares, various data from the
literature; blue bullets, simulations from Stevens, Lohse, and
Verzicco (2020) and their prior data. Unpublished data from
Stevens et al. are also included. Adapted from Stevens, Lohse,
and Verzicco, 2020.

6Iyer et al. (2020) tried to calculate Nu for Ra of up to 1015 and
Γ ¼ 1=10. The Supplemental Material for that paper shows that
the error intervals of the calculated Nusselt numbers are large. For
Ra ¼ 1013 the error intervals for Nu calculated in different ways,
namely, either evaluated at the plates or averaged over the entire
volume, do not even intersect, which reflects the lack of grid
resolution and/or statistical convergence. The reported Nu values
therefore do not reflect the true heat transport in the system.
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GOLDFISH [as Kooij et al. (2018) showed in a direct quantitative
comparison at Ra ¼ 108, Pr ¼ 1, and Γ ¼ 1], it has its own
advantages, such as the ability to accurately calculate higher-
order moments of flow components and to give a more detailed
analysis of the boundary-layer structure provided that the grid
resolution is sufficient and the convergence time large enough,
as done by Scheel, Emran, and Schumacher (2013), Scheel and
Schumacher (2014, 2016, 2017), and Schumacher et al. (2016).
Bailon-Cuba, Emran, and Schumacher (2010) focused on
cylindrical containers with large aspect ratios up to Γ ¼ 12,
with the cost restricted to at most Ra ¼ 109. Emran and
Schumacher (2015) even achieved the large aspect ratio
Γ ¼ 50, for which they were limited to Ra ¼ 5 × 105. All
of these simulations are still far into the classical regime and
quite far from the ultimate regime.
How does one numerically achieve the ultimate regime in 3D

simulations? No kind of turbulence modeling, including
Reynolds-averaged Navier-Stokes (RANS) simulations and
large-eddy simulations (LESs) with available turbulence mod-
els, can be used to study the flow physics of the ultimate regime
or the transition to this regime. To develop accurate turbulence
models for the ultimate regime required for such RANS
simulations or LESs, one must first know the detailed flow
physics in that regime, which can be studied only through
experiments and DNSs. DNSs, however, require fine resolution
of the flow, i.e., fine computational grids in space and time, on
the level of the Kolmogorov scales. We further discuss this in
Sec. VIII.B. Under-resolved DNSmight be interpreted as a type
of LES modeling with an imposed (generally inaccurate)
turbulence model, which then leads to incorrect results.7

Thus, DNSs with sufficiently fine grids and sufficiently
large time of statistical averaging seem to be the straightfor-
ward and correct way to numerically study high-Ra thermal
convection, including the ultimate regime in RB convection.
DNSs at high Ra are expensive. To save resources and ease the
approach of the ultimate regime, one might consider simulat-
ing only a slender convection container, i.e., a container with
Γ ≪ 1. However, this is not viable. As we see in Sec. VIII.B,
the complexity of the DNS, i.e., the number of operations
needed to complete the DNS for a Rayleigh number at the
transition to the ultimate regime, scales as ∼Γ3 for large Γ and
as Γ−1 for small Γ (Shishkina, 2021). Therefore, simulations
with Γ of the order of 1 are the most reasonable when one
wants to achieve large Ra. When making Γ ≪ 1 smaller and
smaller for large Ra, due to the required increase in computa-
tional resources as Γ−1, one inevitably encounters under-
resolution, a short statistical averaging time, too early of a start
in collecting statistical information, or all of these problems.8

B. Basic resolution and convergence requirements
for a direct numerical simulation

The requirements for a well-resolved numerical RB sim-
ulation were formulated first by Grötzbach (1983) and then
with enhanced requirements by Shishkina et al. (2010),
Stevens, Verzicco, and Lohse (2010), and Stevens et al. (2011)
and in the Supplemental Material of Ahlers et al. (2022),
which we closely adhere to in the following. These require-
ments hold in the classical regime, as described in Sec. VIII.A,
and all the more so in the ultimate regime, for two reasons:
First, there the fluctuations are even more intermittent (i.e.,
there is a larger flatness of the signals). Second, in the ultimate
regime the BLs are even thinner, which requires not only more
grid points because of the smaller BL thickness but also more
grid points per BL thickness, as we explain in the following.

FIG. 19. Cross-sectional snapshot of the dimensionless temperature ðT − T−Þ=Δ as obtained in a fully resolved DNS of Stevens,
Lohse, and Verzicco (2020) for Ra ¼ 1013, Pr ¼ 1, and Γ ¼ 1=2 at a distance of z ≈ λθ from the bottom plate. Evident are the small
thermal plume structures, which are visible due to the large grids employed in the simulation. Right panel: enlargement of the
indicated area.

7Amati et al. (2005) and Verzicco and Sreenivasan (2008)
achieved Ra ¼ 2 × 1014 at Pr ¼ 0.7 and Γ ¼ 1=2, but only at the
cost of considerably overestimated heat transfer (i.e., Nu), as the
dissipative flow structures are not resolved, as shown by Stevens,
Verzicco, and Lohse (2010). Given the exact relation (14), which
directly connects the thermal dissipation rate ϵθ with Nu, this
connection is straightforward.

8For details on an attempt to calculate the heat transport at Ra up to
1015 for Γ ¼ 1=10, see footnote 6.
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The total number of grid points for a simulation is given by
the sum of those needed to resolve the boundary layers and
those for the bulk: the former depend on the boundary
layer (thermal or kinetic), while the latter depend on the
Kolmogorov (or Batchelor) scale and have a different depend-
ence on the Rayleigh number. Having both regions with their
much different flow dynamics (as also reflected in the GL
approach of splitting the dissipation rates in the BL and the
bulk part) properly discretized is crucial for the reliability of
the numerical results, and their resolution requirements must
be satisfied simultaneously. Moreover, what is crucial is that
the statistical averaging of the data must be over a long enough
period of time to achieve statistical convergence and that it
must not start prior to the development of a statistically steady
flow. We summarize these important criteria for the quality of
direct numerical simulations of turbulent RB convection in
confined geometry as follows.
Total number of grid points. Since the number of grid

points in the bulk grows with Ra at a faster rate than that in
the boundary layer, eventually the former becomes dominant,
and one can estimate the total mesh size in direct numerical
simulations while considering only the first contribution (with
the caution that the actual number of nodes should always be
larger). In particular, for cylindrical containers with the aspect
ratio Γ an estimate for the required total number of grid points
N (or, equivalently, the number of mesh cells or degrees of
freedom) is

N ≈
πΓ2

4

L3

η3
∼ Γ2

�
L4ϵu
ν3

�
3=4

ð149Þ

(Shishkina et al., 2010; Stevens, Verzicco, and Lohse, 2010;
Stevens et al., 2011), where η≡ ν3=4=ϵ1=4u is the Kolmogorov
microscale. With increasing computational power in recent
decades, this number of grid points N has grown considerably,
as shown in Fig. 18, thus allowing for larger and larger
Rayleigh numbers in the simulations. We stress that the total
number of grid point being large enough is not sufficient, as
the flow field must be resolved in a proper way at all locations
to avoid situations when some regions are over-resolved and
the others are under-resolved.
Number of grid points in the boundary layers. In addition to

the total number of grid points, what is also essential for
accurate and well-resolved simulations is the boundary-layer
resolution (Grötzbach, 1983; Shishkina et al., 2010; Stevens,
Verzicco, and Lohse, 2010). Shishkina et al. (2010) derived a
lower bound for the number of required grid points in the
thermal boundary layer, namely,

Nth;BL;min ≈ 0.35Ra0.15; ð150Þ

which holds for 106 ≤ Ra ≤ 1010 and Pr≈0.7; see Eq. (44) of
Shishkina et al. (2010). This implies that for increasing Ra an
increasing number of grid points must be placed in the thermal
boundary layers, which is in agreement with the numerical
simulations of Stevens, Verzicco, and Lohse (2010). For larger
Ra > 1010 the power law Nth;BL ∼ Ra0.15 becomes even
steeper due to the transition to turbulence of the boundary
layers and the intermittency of the temperature field (Stevens
et al., 2011), as previously mentioned.

Statistical convergence. Not only resolution issues but also
statistical stationarity and statistical convergence are impor-
tant for the production of accurate data in DNS. One can only
start to collect statistics when the flow is fully developed and
has attained a statistically stationary state. This requires initial
transient calculations to be run and, only after the statistically
stationary state has been achieved, statistics to be collected for
a sufficiently long time (Shishkina et al., 2010; Stevens,
Verzicco, and Lohse, 2010; Stevens et al., 2011).
Howmany time stepsNt are needed in the simulations? The

time steps Nt should scale as a ratio of the turnover time
τ ∼ 2ðLþDÞ=U and the Kolmogorov time microscale
τη ≡ ðν=ϵuÞ1=2, i.e., as

Nt ∼
LþD
U

ϵ1=2u

ν1=2
∼
Γþ 1

Re

�
L4ϵu
ν3

�
1=2

: ð151Þ

From the scaling relations (149) and (151) we find that the
complexity of the DNS (the number of operations Σ) grows at
least as fast as

Σ≳ NNt ∼
ðΓþ 1ÞΓ2

Re

�
L4ϵu
ν3

�
5=4

¼ ðΓþ 1ÞΓ2

Re
Ra5=4ðNu − 1Þ5=4Pr−5=2

≳ ðΓþ 1ÞΓ2Ra: ð152Þ

In the estimate (152) we use the scaling relations of the
classical regime. Therefore, the DNS complexity for
Ra ≈ Ra�, i.e., close to the transition to the ultimate regime,
scales with Γ as Σ ≳ Γ3 for large Γ ≫ 1 (as then Ra� is
independent of Γ), while for small Γ ≪ 1 we have Σ ≳ Γ−1 (as
then Ra� ∼ Γ−3). Therefore, Γ ∼ 1 is the most reasonable
choice to numerically achieve large Ra. Converged direct
numerical simulations with smaller Γ generally require longer
computational time, as confirmed by Zwirner, Tilgner, and
Shishkina (2020) and Hartmann et al. (2021).
We add two notes on the issue of statistical convergence:

First, for small Γ, the temporal averaging cannot be compen-
sated by area averaging, as in the case of large Γ. Second,
different flow quantities can require different averaging time
for statistical convergence due to different probability dis-
tributions. For example, obtaining the average of higher-order
moments takes more time than that of lower-order moments,
as in the former the rare events of the tails of the probability
distribution function have larger weight relative to what is the
case for lower-order moments.
The aforementioned considerations on resolution and con-

vergence imply that taking slender containers (i.e., small Γ) in
the numerical simulations does not help one to achieve larger
Ra with a well-resolved grid resolution and statistical con-
vergence. This is intuitive upon realizing the large area of the
sidewalls of containers with small Γ, implying a relatively
large volume fraction of (here sidewall) BLs, which requires a
particularly fine resolution. For a given plate size and maximal
temperature difference Δmax, the optimal aspect ratio Γopt of a
cylindrical container that maximizes the Rayleigh number
range between Ramax (based on Δmax) and the Rayleigh
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number Rac for the onset of convection in that container is
Γopt ≈ 0.46 (Shishkina, 2021).

C. 2D Rayleigh-Bénard flow simulations at large Ra

To begin, one may want to ask what one could learn on 3D
RB flow from 2D RB DNS. By 2D RB DNS we mean solving
the dynamical equations given in Sec. II with their corre-
sponding boundary conditions in a 2D domain. We note that
this is much different from the limit of 3D RB, with one lateral
dimension made small, as in that Hele-Shaw-type limit the
flow is strongly stabilized by the no-slip sidewalls in that
lateral direction (Chong and Xia, 2016; Chong et al., 2018).
While 2D and 3D homogeneous isotropic turbulence behave
much differently due to an extra time-conserved quantity in
the 2D case [enstrophy; cf. the seminal paper by Kraichnan
(1967)], this does not hold for 2D and 3D RB turbulence,
where this extra conserved quantity is absent due to the
symmetry breaking by gravity.
Indeed, the theoretical arguments given in Sec. III (under-

lying GL theory) and many of those in Secs. IV and V are
based on the Prandtl boundary-layer equations, which are two
dimensional and which should hold equally well for 2D and
3D situations. Correspondingly, the usefulness of 2D RB DNS
for the understanding of RB flow has been repeatedly
demonstrated, from the early 2D RB DNS of Werne et al.
(1991) on. van der Poel, Stevens, and Lohse (2013) system-
atically compared 2D and 3D RB DNS with respect to flow
topology, boundary layers, and transport properties. While the
large-scale flow topology in two and three dimensions can
be much different due to the stronger confinement in two
dimensions, the boundary-layer structures and the resulting
heat transport (for sufficiently large Pr) are much less so. The
reason for this lies in the fact that both 2D and 3D flows are
driven by detaching thermal plumes from the BLs and the
instabilities of the BLs.
For direct numerical RB simulations, the resolution

and convergence criteria outlined in Sec. VIII.B in principle
hold for both the 3D and 2D cases. 2D DNSs have the
immediate advantages that there are many fewer grid points
and that therefore they seem to be computationally cheaper.
However, they come with the caveat that the time to achieve
statistical convergence (expressed in large-eddy turnover
times) is much longer than in three dimensions. This can be
intuitively understood from the stronger confinement of
the flow in two dimensions than in three dimensions.
Another consequence of this stronger confinement in 2D
RB simulations is the pronounced dependence of the flow
on the initial flow conditions and the long transients, as
shown by Wang et al. (2020, 2021) and Wang, Goluskin,
and Lohse (2023).
In this review on the ultimate regime, we do not further

report on the many 2D DNSs in the classical regime, but
instead focus on the 2D DNSs with the largest Ra, namely,
those discussed by Zhu, Mathai et al. (2018, 2019), who
achieved up to Ra ¼ 4.64 × 1014 on a 31 200 × 25 600 grid
with 28 grid points in the boundary layers, with Pr ¼ 1 and
Γ ¼ 2 with periodicity boundary conditions in the lateral
direction. They did so by employing the highly parallelized
and optimized AFiD code (van der Poel et al., 2015). Note

that Zhu, Mathai et al. (2018, 2019) obeyed the resolution
and convergence criteria outlined in Sec. VIII.B. A snapshot
of the temperature field for Ra ¼ 1014 is shown in Fig. 20(a),
while Fig. 20(b) shows NuðRaÞ (in a compensated plot),
clearly displaying a transition at around Rac ≈ 1013 from
an effective local scaling exponent γ < 1=3 in Nu ∼ Raγ to
γ > 1=3 and signaling the onset of the ultimate regime.
This interpretation of the data of Zhu, Mathai et al. (2018)
was challenged by Doering, Toppaladoddi, and Wettlaufer
(2019), but Zhu, Stevens et al. (2019) irrefutably settled
this issue and gave four pieces of evidence for the
transition toward the ultimate regime in their 2D DNS:
(i) They fitted the last k data points, with 2 ≤ k ≤ 6 and
1013 ≤ Ra ≤ 4.64 × 1014, of their results for NuðRaÞ with an
effective power law Nu ∼ Raγ. For all cases γ > 1=3 [see the
inset of Fig. 20(b)], which shows the ultimate regime.
(ii) They locally measured the effective power-law exponent
in the plume ejecting areas of the flow, which for large
Ra dominate the overall heat transfer (Reiter, Shishkina
et al., 2021), and obtained Nuejecting ∼ Ra0.38 in those areas.
(iii) They found a clear logarithmic velocity profile of the
Prandtl–von Kármán type for much more than a decade in
the kinetic boundary layer, thereby indicating the ultimate
regime. (iv) Previously Krug et al. (2018), employing the
data of Zhu, Mathai et al. (2018), found an extended self-
similarity behavior of the temperature structure in the
kinetic boundary layer (as is typical for fully developed
turbulence flow) above the transition at Ra� ≈ 1013, while
this was absent below the transition.
We note that while the Nusselt number statistically

converged in the simulations of Zhu, Mathai et al. (2018)

FIG. 20. (a) Snapshot of a 2D DNS at Ra ¼ 1014, Pr ¼ 1,
Γ ¼ 2, and periodic boundary conditions in the horizontal
direction. From Zhu, Mathai et al., 2018. (b) Nu compensated
with Ra0.357 vs Ra. Inset: the effective scaling exponent γ
obtained from a power-law fit Nu ∼ Raγ to the last k data points
in the main figure. Adapted from Zhu, Mathai et al., 2019.
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and Zhu, Verschoof et al. (2018), the overall Reynolds
number, as defined using the root-mean-square velocity
fluctuations, has not yet converged, thereby reflecting the
challenge of the long convergence times (as measured in
large-eddy turnover times) for some flow quantities in 2D
RB DNS. Even longer simulations will be necessary to
further explore the ultimate regime in 2D RB flow, and also
in 3D RB flow, where, as stated in Sec. VIII.A, no ultimate
regime has yet been achieved.

D. Can numerical simulations verify and illuminate the
subcritical nature of the transition to the ultimate regime?

How can direct numerical simulations be helpful to further
illuminate the nature of the ultimate regime and its onset,
beyond simply moving toward larger and larger grids and
higher and higher Ra? Our answer is similar to what we wrote
in Sec. VII.G, in which we suggested subjecting the BLs in
RB experiments with Ra > 1011 to controlled distortions in
order to trigger the onset of the ultimate regime. As explained
in the Introduction and in Sec. III.C, with the hypothesis that
the onset has a non-normal–nonlinear character, one would
expect double-threshold behavior: For large enough Ra and at
the same time large enough distortions, one would expect the
onset of the transition; in fact, for a given Ra, the earlier the
onset is, the larger the distortion. DNSs offer the opportunity
to do this in a controlled way and it may numerically be
only borderline affordable, in both 2D and 3D DNSs, given
that the potential transition regime under investigation is
between Ra ¼ 1011, where the transition was observed by
Chavanne et al. (1997), and Ra ¼ 1014, where the transition
was observed by He, Funfschilling, Bodenschatz, and Ahlers
(2012) and He, Funfschilling, Nobach et al. (2012) (for both
Γ ¼ 1=2 and Pr∼0.7).
Even if one does not succeed in finding a distortion that is

large enough to trigger a full and sustainable transition to the
ultimate regime with its turbulent BL, one may be able to
numerically measure the lifetime of the distortion as a
function of Ra. Following the ideas of Hof et al. (2006)
and Avila et al. (2011, 2013) [see also the reviews on
the non-normal–nonlinear transition mentioned in the
Introduction (Grossmann, 2000; Schmid and Henningson,
2001; Kerswell, 2002; Eckhardt et al., 2007; Schmid, 2007;
Barkley, 2016; Manneville, 2016; Wu, 2019; Avila, Barkley,
and Hof, 2023)], even below onset of the non-normal–
nonlinear transition to turbulence of the BL one would
expect features of the turbulent state, namely, an increasing
lifetime of the distortions with increasing Ra. These lifetimes
could be numerically measured as a function of Ra and
compared with the situations for pipe flow or channel flow
just below onset of the transition to turbulence.
If one succeeds in numerically triggering by some distortion

a full and sustainable transition toward the ultimate regime,
say, at Ra ¼ 1012, it may even be numerically feasible to
probe its hysteretic character [cf. Fig. 4(c)] by slowly reducing
Ra and wondering when the system would recover in its
classical state. However, the running times for such studies
may be prohibitively long in DNSs at these high Ra, where the
ultimate regime is expected.

IX. ULTIMATE TURBULENCE IN RELATED SYSTEMS

Ultimate turbulence occurs not only in strongly driven RB
flow but also in various other related strongly driven wall-
bounded flows. In Sec. I we outlined the analogy between the
transition to ultimate RB turbulence and the transition to fully
developed turbulence in pipe flow, channel flow, and flow
along a plate; cf. Fig. 3. In this section we provide further
examples, with a focus on thermally driven flows (which are
incomplete due to limited space). In addition, we discuss
Taylor-Couette (TC) turbulence (see Sec. IX.B) due to the
close formal analogy between TC and RB flow.

A. Turbulent convection with centrifugal buoyancy

We began Sec. VII with the consideration that there are
three different ways to increase Ra defined in Eq. (4), namely,
by increasing the height L of the container or the temperature
difference Δ or by optimizing the material properties of the
fluid (for example, by decreasing ν and κ). However, from
Eq. (4) it becomes clear that there is even a fourth way,
namely, increasing the acceleration g. While this is impossible
in long-time terrestrial experiments, large accelerations can be
achieved in a centrifuge. This is exactly the path proposed and
followed by Chao Sun and co-workers at Tsinghua University
(Jiang et al., 2020, 2022). The outward centrifugal acceler-
ation in these experiments is much larger than the gravitational
acceleration, namely, up to 100 times, so the effect of the
gravitational acceleration can be considered small.
The principle of the setup is shown in Figs. 21(a) and 21(b).

Two coaxial cylinders are rigidly rotating with an angular
velocity ω around the vertical axes of the cylinders, with a
fluid in between. The outer cylinder is heated and the inner
cylinder is cooled, with a temperature difference Δ between
them. Hot, lighter (colder, heavier) fluid then experiences
inward centripetal (outward centrifugal) forces. The respective
governing equations are similar to Eqs. (1)–(3), with an
extra centrifugal acceleration −αðT − T0Þω2rer and an extra
Coriolis acceleration 2ωu × ez in the Navier-Stokes equa-
tion (2). When one neglects the acceleration due to gravita-
tional buoyancy, the extra Coriolis force, and the different
geometry with the outer surface being larger than the inner one
and both being curved, one can view the modified equations
as identical to those of the RB system, with a centrifugal
Rayleigh number

Ra ¼ ω2ðro þ riÞαΔL3

2κν
; ð153Þ

where L ¼ ro − ri is the gap width between the outer cylinder
with radius ro and the inner cylinder with radius ri and ω is the
angular velocity of the rotating setup. Within this approxi-
mation the other two control parameters remain as in the
traditional RB geometry, namely, the Prandtl number Pr of the
fluid and the aspect ratio Γ ¼ H=L of the cylindrical setup,
where H is the height of the cylinder.
However, without this simplification the system has three

additional dimensionless control parameters: The different
domain geometry as compared to the original RB setup is
quantified by the radius ratio η ¼ ri=ro. Obviously, ri < ro,
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which breaks the top-down symmetry of the original RB
setup. In a sense this symmetry breaking can be viewed as a
kind of non-Oberbeck-Boussinesq effect. In the experiments
by Jiang et al. (2020, 2022) its value is η ¼ 1=2. The second
new control parameter is the inverse Rossby number

Ro−1 ≡ 2

�
αΔðro þ riÞ

2L

�
−1=2

¼
�

8

αΔ
1 − η

1þ η

�
1=2

; ð154Þ

which is a measure of the Coriolis effects compared to the
centrifugal effects. The measure depends on the geometry and
on αΔ. And the third new control parameter is the original
Rayleigh number (4) defined via the gravitational acceler-
ation, which now, however, acts perpendicularly to the mean
temperature gradient; we therefore call it Ra⊥. For strong
centrifugal acceleration as applicable in the ultimate regime, it
has a small effect. Alternatively, as a third parameter one can
take the inverse Froude number

Fr−1 ≡ 2g
ω2ðro þ riÞ

; ð155Þ

which is a measure of the gravitational acceleration compared
to the centrifugal acceleration. The main response parameter

remains Nu, which is the nondimensionalized heat flux from
the outer to the inner cylinder.
The centrifugal buoyancy setup, therefore, is equivalent to

the Rayleigh-Bénard setup under the following three limits
(which must all hold): (i) Fr → ∞ (required for the vanishing
gravitational buoyancy term in the Navier-Stokes equation),
(ii) η → 1 (needed for the independence of the centrifugal
buoyancy term from the radial coordinate r and for the
vanishing Coriolis term, which is proportional to Ro−1
[cf. Eq. (154)]; for this the boundedness of αΔ is also required),
and (iii) ro → ∞ (required for vanishing curvature effects).
In any real system, η < 1, and therefore the Coriolis term is
always present; cf. Eq. (154), as well as the radial dependence
of the centrifugal acceleration term (which can also be under-
stood as a non-Oberbeck-Boussinesq effect). The gravitational
buoyancy term [∼Fr−1; cf. Eq. (155)] also contributes, but
only slightly for high rotation rates. The Coriolis force
and the gravitational buoyancy provide additional shear to
the system, namely, in the horizontal and vertical directions,
respectively, which together with the curved surfaces can
trigger the onset of the ultimate regime earlier than in the
Rayleigh-Bénard system.
Some of the measurements by Jiang et al. (2020, 2022) of

the Nusselt number in centrifugal buoyancy convection are

(f)(e)(d)

(c)(b)(a)

FIG. 21. Flow transitions (a)–(c) for turbulent convection with centrifugal buoyancy and (d)–(f) for Taylor-Couette flow. This
depictions is analogous to Fig. 4, which was for turbulent RB flow and plate flow. In turbulent convection with centrifugal buoyancy, the
core part of the flow is always turbulent. With increasing centrifugal driving strength [i.e., increasing Ra; cf. Eq. (153)], the kinetic
boundary layers (BLs) change from (a) a laminar Prandtl-Blasius-type BL (blue areas) to (b) a turbulent Prandtl–von Kármán–type BL
(red areas). These two cases correspond to two distinct dependences of the heat transport (Nu) vs the thermal driving strength (Ra),
which are illustrated in (c) with blue and red lines, respectively. In full analogy with Rayleigh-Bénard flow, Taylor-Couette flow
undergoes a transition between (d) laminar and (e) turbulent BLs that have different dependences of the Nusselt number Nuω (which is
the nondimensional angular velocity transport from the inner to the outer cylinder) on the Taylor number (Ta), which are sketched in (f)
with blue and red lines, respectively.
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shown in Fig. 22. At around Ra ≈ 5 × 1010 one can identify
the transition from the classical regime with γ < 1=3 to the
ultimate regime γ > 1=3 with an enhanced heat transfer. The
ultimate regime extends over more than 2 orders of magnitude
in Ra. A power-law fit Nu ∼ Raγ in the regime Ra > 5 × 1010

gives an effective exponent of γ ≈ 0.40 (Jiang et al., 2022).
The transition at Ra ≈ 5 × 1010 is also seen in the rms
temperature fluctuations.
The modified RB equations for centrifugal buoyancy in a

cylindrical geometry with η ¼ 1=2 and periodic boundary
conditions in the vertical direction (but assuming Ra⊥ ¼ 0
or Fr ¼ ∞) were numerically solved by Jiang et al. (2020,
2022), Rouhi et al. (2021), Wang et al. (2022), and Zhong,
Wang, and Sun (2023) for various control parameters. Their
results accompany the experimental results of Jiang et al.
(2020, 2022).
What about the shear Reynolds number Res around the

transition? The largest DNS of Jiang et al. (2022) could be
completed for Ra ¼ 4.7 × 1010, just around the transition, and
for that value Res ≈ 400was found (for Pr ¼ 4.3), so it falls in
the range where the transition can be expected. For that
Rayleigh number Jiang et al. (2022), moreover, found a
logarithmic boundary-layer velocity profile for more than
1.5 decades, thereby providing further evidence that the
observed transition is indeed the one to the ultimate regime
with a turbulent Prandtl–von Kármán BL and, correspond-
ingly, enhanced heat transport.
For detailed discussions of the Coriolis effects in centrifugal

buoyancy-driven convection and for further examples of

mixed centrifugal and buoyancy-driven convection with
rotation, see Rouhi et al. (2021) (though in that paper the
numerical simulations are only at the edge of the onset toward
the ultimate regime). Again, also for centrifugal buoyancy-
driven convection, 3D DNSs in the ultimate regime could not
yet be realized.

B. Ultimate Taylor-Couette turbulence

As we later see, as compared to RB turbulence the situation
with respect to the achievability of 3D DNS in the ultimate
regime is much more favorable for ultimate TC turbulence.
Indeed, ultimate TC turbulence could be realized both in
3D DNSs and in controlled experiments; see the review on
TC turbulence by Grossmann, Lohse, and Sun (2016). The
Taylor-Couette system consists of the flow between two
independently rotating coaxial cylinders; see Figs. 21(d)
and 21(e). The flow is driven by the centrifugal forces in
an outward direction, but incompressibility and the outer
cylinder eventually lead to the formation of convection rolls,
as in RB flow; see Figs. 21(d) and 21(e). If the outer cylinder
is corotating, it can partially or fully stabilize the flow,
whereas some counterrotation of the outer cylinder leads to
further destabilization; again see the review of Grossmann,
Lohse, and Sun (2016).
In addition to the RB system, the TC system has always

been a popular approach for developing new concepts in the
physics of fluids, be it on linear instabilities (Chandrasekhar,
1953; Drazin and Reid, 1981), the flow organization just
above the onset of instabilities (Andereck, Liu, and Swinney,
1986), pattern formation (Cross and Hohenberg, 1993; Fardin,
Perge, and Taberlet, 2014), or turbulence (Grossmann, Lohse,
and Sun, 2016). Busse (2012) called the RB and TC systems
the twins of turbulence research. They share the properties that
both of them are closed systems for which exact global
balance relations between the driving and the dissipation can
be derived and that they are experimentally accessible with
high precision, thanks to the simple geometries and sym-
metries. The two systems in fact enjoy a much deeper formal
analogy based on the underlying Navier-Stokes equations.
At the onset of the instabilities it was first discovered by
Bradshaw (1969), then extended to the fully turbulent regime
by Dubrulle and Hersant (2002), Eckhardt, Grossmann, and
Lohse (2007a, and 2007b), and Brauckmann, Eckhardt, and
Schumacher (2017).
The underlying dynamical equations of TC flow are the

Navier-Stokes equation (2), without the buoyancy term but
supplemented by the Coriolis acceleration 2ωu × ez, and the
continuity equation (1), with no-slip boundary conditions at
the inner and outer cylinders and the top and bottom plates.
The dimensionless control parameters of the system are the
Reynolds number of the inner cylinder Rei ¼ riðro − riÞωi=ν,
that of the outer cylinder Reo ¼ roðro − riÞωo=ν, the radius
ratio η ¼ ri=ro, and the aspect ratio Γ ¼ L=ro. Here ri=o is the
radius of the inner (outer) cylinder, ωi=o are the respective
angular velocities, and L is the height of the cylinder.
Eckhardt, Grossmann, and Lohse (2007b) determined that

the analogy between TC and RB flow becomes visible in the
best way when the control parameters are taken as the
Taylor number

FIG. 22. Transport properties of turbulent convection with
centrifugal buoyancy: the Nusselt number (compensated with
Ra1=3) vs the Rayleigh number in turbulent convection with
centrifugal buoyancy for working fluid water (4.0 ≤ Pr ≤ 4.3;
blue symbols on the left) and Novec (10.0 ≤ Pr ≤ 10.4; red
symbols on the right). With growing Ra, the other control
parameter changes almost monotonically from Fr ≈ 8.9 and
Ro−1 ≈ 58 (i.e., αΔ ≈ 8 × 10−4) for Ra ≈ 1.17 × 109 to Fr ≈
100 and Ro−1 ≈ 9 (i.e., αΔ ≈ 3 × 10−2) for Ra ≈ 3.65 × 1012.
Inset: Nu vs Ra. The transition in the scaling toward the
ultimate regime is around Ra ≈ 5 × 1010. Data are from Jiang
et al. (2022).
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Ta ¼ ð1þ ηÞ4
64η2

ðro − riÞ2ðri þ roÞ2ðωi − ωoÞ2
ν2

ð156Þ

and the rotation ratio −ωo=ωi or, alternatively, the inverse
Rossby number

Ro−1 ¼ 2ωod
jωi − ωojri

¼ 2
1 − η

η

ωo=ωi

j1 − ωo=ωij
ð157Þ

and the main response parameter as a Nusselt number

Nuω ≡ Jω

Jωlam
≡ r3ðhurωiA;t − ν∂rhωiA;tÞ

Jωlam
; ð158Þ

with the angular velocity ω ¼ uϕ=r. In Eq. (158) h� � �iA;t
signals averaging over time and the area with constant
distance from the axis. The reason for Nuω being such a
relevant response parameter is that the conserved transport
quantify in TC flow is the angular velocity flux Jω from the
inner to the outer cylinder. In the definition (158) it was
nondimensionalized with the angular velocity flux Jωlam ¼
2νr2i r

2
oðωi − ωoÞ=ðr2o − r2i Þ in the laminar case, as with RB

flow, where the heat flux as a conserved quantity is non-
dimensionalized with the conductive heat flux in order to
obtain the Nusselt number; cf. Eq. (11). With these definitions,
the relation NuðRaÞ in RB flow directly corresponds to
NuωðTaÞ in TC flow.
The second key response parameter of the turbulent TC

system is the degree of turbulence of the “wind” in the gap (of
width ro − ri) between the cylinders, which measures the
strength of the secondary flows, i.e., the r and z components of
the velocity field (ur and uz). In a nondimensional way it is
expressed as the wind Reynolds number

Re ¼ σuwðro − riÞ
ν

; ð159Þ

where σuw is the standard deviation of either the radial or axial
velocity. The wind Reynolds number in TC flow [Eq. (159)]
directly corresponds to the wind Reynolds number Re in RB
flow. Similarly, the exact relation (13) for the energy dis-
sipation rate ϵu in RB flow has the exact relation

ϵu − ϵu;lam ¼ ν3

ðro − riÞ4
ðNuω − 1ÞTaPr−2geo ð160Þ

as an analogy in TC flow. In Eq. (160) Prgeo¼ð1þηÞ4=ð16η2Þ
is a geometric factor (and not a material property like Pr in RB
flow) and ϵu;lam is the kinetic energy dissipation rate of laminar
TC flow in the limit of Rei;o → 0.
The main difference between TC and RB flow may be that

in TC there is no symmetry between the inner and the outer
cylinder (ri < ro or η < 1), as there is in RB in the Oberbeck-
Boussinesq case, where symmetry between the top and
bottom plates holds. In a sense, just as for turbulent convection
with centrifugal buoyancy (Sec. IX.A), this symmetry break-
ing can be seen as a kind of non-Oberbeck-Boussinesq effect.
In the classical regime, the boundary layer is of the laminar

Prandtl-Blasius type, leading to an effective Nuω versus Ta

scaling exponent γ ≤ 1=3. However, when the shear Reynolds
number Res is around 420, this laminar-type boundary
layer can undergo a non-normal–nonlinear instability to
become of the turbulent Prandtl–von Kármán type; see
Fig. 23. This onset of the ultimate TC regime occurs at
around Ta ≈ 2 × 108 (van Gils, Huisman et al., 2011;
Huisman et al., 2012; Ostilla-Mónico et al., 2014b;
Grossmann, Lohse, and Sun, 2016); cf. Fig. 24(a). Beyond
that the effective Nuω versus Ta scaling exponent is
γ ≈ 0.38 > 1=3, as in the ultimate RB regime. As expected
for the ultimate TC regime, the mean velocity profile in the
BLs is logarithmic, as confirmed by Huisman et al. (2013) in
experiments [cf. Fig. 24(b)] and by Ostilla-Mónico et al.
(2014a, 2014b) in direct numerical simulations.
One may wonder why the ultimate regime can be reached

more easily in TC flow than in RB flow in both experiment
and DNS. The simple reason is that the mechanical driving
in TC flow is so much more efficient than the thermal
driving in RB flow that the required shear Reynolds
numbers to develop the non-normal–nonlinear instability
can be reached relatively easily.
Finally, we note that for TC flow there is also a math-

ematically strict upper bound on the transport (Doering and
Constantin, 1994), namely, when translated to Ta and Nuω
as the control and response parameters, Nuω ≲ Ta1=2, which is
in direct analogy with the upper bounds Nu ≲ Ra1=2 discussed
for RB flow in Sec. IV. Zhu, Verschoof et al. (2018)
experimentally and numerically realized this asymptotic
ultimate scaling exponent 1=2 in TC flow with rough walls
(such that pressure drag is dominant); these experiments can

FIG. 23. Transport properties of Taylor-Couette flow: the Nusselt
number Nuω (compensated with Ta1=3) vs Ta for a radius ratio
0.71 ≤ η≡ ri=ro ≤ 0.72. The filled green circles represent ex-
perimental data from van Gils, Huisman et al. (2011) and van Gils
et al. (2012) (the filled green circles for the smallest Ta reflect not
the flow properties but an artifact of the torque sensor that is used
to determine Nuω and that does not work properly in that regime),
the open blue circles are experimental data points given by Lewis
and Swinney (1999), the brown squares represent numerical data
from Ostilla-Mónico et al. (2014a, 2014b), and the open blue
diamonds depict numerical data by Brauckmann and Eckhardt
(2013). The transition from the classical regime (white area) to the
ultimate regime (red area) occurs at around Ta ¼ 2 × 108, where
the shear Reynolds number is around Res ≈ 420. Adapted from
Grossmann, Lohse, and Sun, 2016.
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be seen in analogy with the asymptotic ultimate scaling
exponent 1=2 in RB flow with roughness on all scales [cf.
Zhu, Stevens et al. (2019)], which we discuss in Sec. IX.C.
For further details on ultimate TC turbulence, see the turbulent
Taylor-Couette review by Grossmann, Lohse, and Sun (2016).

C. Rayleigh-Bénard turbulence with pronounced plate roughness

As discussed in Sec. VI.C, some roughness of the plates
and sidewalls of the RB container is unavoidable. To better
understand the effect of roughness, measurements and
numerical simulations in RB containers with pronounced
and controlled plate roughness have been performed.
Strictly speaking, such systems are different from RB systems,
as the boundary conditions are deliberately different; there-
fore, we discuss them in this section on related systems.

Large isothermal obstacles inside a convection container
can affect the heat transport in the system since in that case
the flow is a complicated mixture of two differently scaling
convective processes RB convection and vertical convection,
where horizontal and vertical surfaces, respectively, are
isothermal and therefore are additional heat sources or sinks;
these flow configurations are beyond the scope of this review.
More interesting is that roughness of the heated and cooled
plates can significantly alter the mean heat and momentum
transport, i.e., Nu and Re, and even their scaling relations with
the main control parameter Ra. We discuss this further later in
the review.
Most of the RB convection studies for containers with

rough plates have been conducted for regular roughness,
which is determined by a single or only a few roughness
scales. An increase of Nu compared to the case of smooth
plates is usually reported there if the roughness scale is about
as large or larger than the BL thickness in the smooth case.
One observes an increase of either the effective scaling
exponent γ in Nu ∼ Raγ (Roche, Castaing, Chabaud, and
Hébral, 2001; Qiu, Xia, and Tong, 2005; Stringano, Pascazio,
and Verzicco, 2006; Tisserand et al., 2011; Salort et al., 2014;
Liot et al., 2016, 2017; Xie and Xia, 2017; Jiang et al., 2018;
Xu et al., 2018) or the prefactor in this relation (Shen, Xia, and
Tong, 1996; Du and Tong, 2000; Wei and Ahlers, 2014; Joshi
et al., 2017).
Roche, Castaing, Chabaud, and Hébral (2001), based on

their measurements in a cylindrical container with V-shape
grooves that covered the entire interior surface of the
container, plates, and sidewalls, found a roughness-induced
increase of the scaling exponent γ ≈ 0.5 in the Nu ∼ Raγ

scaling relation. With growing Ra the BLs become
thinner, and eventually their thickness reaches the rough-
ness height. Roche, Castaing, Chabaud, and Hébral (2001)
explained that when the BLs get sufficiently thin, the
roughness imposes a new length scale to the BLs, which
is a roughness height independent of Re. This makes
the friction coefficient independent of Re too (Roche,
Castaing, Chabaud, and Hébral, 2001), as in the asymptotic
ultimate regime, i.e., without logarithmic corrections,
which leads to the increased scaling exponent γ ≈ 1=2 in
their experiment. The situation is analogous to the fric-
tional drag in a pipe flow in the fully rough case, which
becomes independent of the Reynolds number (Nikuradse,
1933; Chung et al., 2021).
Three-dimensional DNS (Wagner and Shishkina, 2015;

Emran and Shishkina, 2020; Belkadi et al., 2021) and
experiments (Rusaouën et al., 2018) showed that, with
increasing Ra, the scaling exponent γ first remains unaf-
fected by the regular monoscale plate roughness, then
increases, and finally stagnates again to the level in the
smooth case (with the scaling prefactor being increased).
In addition, a two-dimensional DNS by Zhu et al. (2017)
for Ra up to 1012 showed that with increasing Ra, the local
effective scaling exponent γ ¼ d logNu=d logRa is first
about 1=3, grows to γ ≈ 1=2, and then falls back down to
γ ≈ 1=3. Therefore, the regime with a local effective expo-
nent of γ ≈ 1=2 cannot be interpreted as the ultimate regime
or as a transition to the ultimate regime; it is instead an

(a)

(b)

FIG. 24. Taylor-Couette flow. (a) Shear Reynolds number Res
vs the Taylor number Ta from DNS and from particle image
velocimetry (PIV) experiments. We also give Rei (upper axis);
the outer cylinder is at rest (Reo ¼ 0). The effective scaling
exponent is close to 1=4, as Re ∼ Ta1=2 and Res ∼ Re1=2. The
transition from the classical regime to the ultimate regime is
expected around the light red band for Res ≈ 420. From van
Gils et al., 2012. (b) Mean velocity profiles in so-called plus
units uþðyþÞ at the inner cylinder for various Ta. Also shown is
the logarithmic Prandtl–von Kármán profile uþðyþÞ ¼
κ−1K logðyþÞ þ B with the von Kármán constant κK ¼ 0.4 (Pope,
2000). Adapted from Huisman et al., 2013.
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intermediate regime,9 triggered by regular roughness, where
the thermal BLs are perturbed, leading to more thermal
plume shedding and having a large effective plate area. For
larger Ra when the effective exponent is γ ¼ 1=3 again, the
thermal and kinetic BLs are thinner than the roughness
length scale and follow the roughness structure but are not
turbulent. For even larger Ra one still can expect a transition
to the ultimate regime provided that the shear Reynolds
number has become large enough and that the distortions
are sufficient to trigger the transition. Note that in RB
convection with rough plates, as in the case of smooth
plates, the scaling exponent γ cannot be larger than 1=2
when Ra → ∞ (Goluskin and Doering, 2016).
An increase in the scaling exponent γ only for the case of

irregular (power-law-distributed) roughness but not for regular
(periodic) roughness was found experimentally by Ciliberto
and Laroche (1999). This result was consistent with an idea of
Villermaux (1998), who proposed a significant increase of γ,
which depends on the surface’s fractal dimension if the
spectrum of the typical roughness length scales is sufficiently
broad. Later a DNS by Zhu, Stevens et al. (2019) also
supported the hypothesis that the larger number of roughness
scales extends the Ra range with increased γ. Therefore, one
might expect that there exists an infinite spectrum of the
roughness length scales that for all sufficiently large Ra leads
to an increased scaling exponent γ for the rough plates
compared to that for the smooth plates.
For completeness, we also note that the plate roughness can

not only increase Nu but also decrease it, as demonstrated in
experiments (Tisserand et al., 2011), 2D DNSs (Shishkina and
Wagner, 2011), 3D DNSs (Stringano, Pascazio, and Verzicco,
2006; Wagner and Shishkina, 2015; Zhang et al., 2018; Emran
and Shishkina, 2020), and large-eddy simulations (Foroozani
et al., 2019). In that case, the fluid stagnates in the gaps
between the roughness elements, and this leads in general
to thicker thermal BLs and smaller overall heat transport in
the system. However, the problem involving heat transport
reduction induced by the plates’ roughness becomes irrelevant
for high Ra, and therefore is irrelevant to the ultimate regime
in RB convection.

D. Homogeneous Rayleigh-Bénard convection

The asymptotic ultimate regime can best be achieved by
fully eliminating all effects from the BLs in order to create the
conditions assumed in the model of Spiegel (1971) or regime
IV0

l of GL theory, i.e., ϵu ∼ U3=L and ϵθ ∼ UΔ2=L, without
any viscosity or thermal diffusivity entering. In experiments

this is nontrivial, but nonetheless approximately possible, as
later discussed. In numerical simulations this can be achieved
relatively easily by simulating so-called homogeneous RB, in
which the top- and bottom-temperature boundary conditions
have been replaced by periodic ones, with an unstratified
temperature gradient imposed (Lohse and Toschi, 2003;
Calzavarini et al., 2005). Indeed, in simulations of such a
flow the scaling exponent of the asymptotic ultimate regime
have been realized; cf. Fig. 25. Schmidt et al. (2012) showed
that this can be achieved in RB flow even in a cylinder in
which only the vertical, axial direction is homogeneous. Note
that in this type of flow (be it homogeneous in all directions or
only in the vertical, axial one) exponentially growing (in time)
solutions are possible; i.e., there are no mathematically strict
upper bounds for Nu (Calzavarini et al., 2006; Schmidt et al.,
2012). In the numerical simulations, however, the exponen-
tially growing modes nonlinearly couple with each other and
lose their energy in such a way that the heat flux does not grow
beyond all bounds.
Another effective realization of asymptotic ultimate turbu-

lence can be achieved in numerical simulations by introducing
permeable walls in the vertical direction, as done by Kawano
et al. (2021), who set the vertical component of the velocity at
the top and bottom surfaces as proportional to the pressure
fluctuations: uz ∝ ðp0=ρÞ=uff . With increasing permeability,
the critical Rac for the onset of convection gradually reduces,
and so does Ra� for the onset of the ultimate regime. For
Pr ¼ 1, Kawano et al. (2021) observed a transition of the
scaling exponent γ in Nu ∼ Raγ from γ ≈ 1=3 to 1/2 at
Ra ≈ 107. Thus, although the thermal BLs are still present
at the plates, there is no dramatic change in the vertical
velocity there, which makes the effect of the viscosity in
general negligible, particularly near the plates.
In experiments, homogeneous turbulence can be achieved

only approximately, as there are always BLs. However, one
can measure the heat flux far from the heated or cooled plates
in order to approximately realize homogeneous turbulence in
the vertical direction. This route was followed by Perrier,
Morat, and LeMouel (2002) and Gibert et al. (2006, 2009),
who used a vertical channel with wide entrance and exit

(a) (b)

(c) (d)

FIG. 25. DNS results for NuðRa;PrÞ and ReðRa; PrÞ for homo-
geneous RB convection. Adapted from Calzavarini et al., 2005.

92D lattice Boltzmann simulations by Toppaladoddi, Succi, and
Wettlaufer (2017) for 4 × 106 ≤ Ra ≤ 3 × 109 and a fixed roughness
height and varying roughness wavelengths λ of a monoscale plate
roughness showed that Nu can scale as ∼Ra0.48 if for each Ra one
chooses the optimal λðRaÞ that maximizes Nu. This optimal λðRaÞ
gradually decreases with growing Ra. However, when fixing the
roughness wavelength λ and further increasing Ra, the scaling
exponent decreases again to a value γ ≤ 1=3, as indeed observed
in 2D DNSs by Zhu et al. (2017) and Zhu, Stevens et al. (2019), in
3D DNSs by Emran and Shishkina (2020), and in experiments by
Rusaouën et al. (2018).
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sections that avoided the influence of the thermal BLs on the
flow, and indeed achieved the asymptotic ultimate scaling
relations Nu ∼ Ra1=2 and Re ∼ Ra1=2 in this way. The operat-
ing fluids were air in the work of Perrier, Morat, and LeMouel
(2002) and water in the work of Gibert et al. (2006, 2009). A
similar approach, but with the density gradients created by
concentration differences and not temperature differences and
thus for a much larger Pr, was followed by Cholemari and
Arakeri (2005, 2009) and Pawar and Arakeri (2016), who
drove the flow by an unstable density difference across the
ends of a pipe, again achieving Nu ∼ Ra1=2 and Re ∼ Ra1=2.
We note that even the local convective heat flux in the bulk of
RB convection can be seen as homogeneous convection, and
indeed for such local heat flux Shang et al. (2003) and Shang,
Tong, and Xia (2008) measured Nulocal ∼ Ra1=2, which was
confirmed in simulations by Lakkaraju et al. (2012).

E. Other convective systems

There are various further convective and thermally
driven flow systems in which ultimate turbulence can occur.
In this section, we provide further details and references
on horizontal convection (HC) and internally heated con-
vection (IHC).
In HC (Hughes and Griffiths, 2008) the flow is driven by

differential heating along one horizontal plate; here we restrict
ourselves to HC in a closed fluid-filled container, with one
side of the horizontal plate heated and the other side cooled,
with a distance L between the heated and cooled parts. For
such a closed system, GL theory for RB flow can straight-
forwardly be extended by building on the balance relations for
the kinetic energy dissipation rate ϵu and the thermal dis-
sipation rate ϵθ. These are different for HC than for RB

convection but can again be straightforwardly derived from
the underlying dynamical equations (1)–(3) with the appro-
priate boundary conditions for HC. This was done by
Shishkina, Grossmann, and Lohse (2016). Shishkina and
Wagner (2016), Shishkina (2017), and Reiter and Shishkina
(2020) provided DNSs of HC in the laminar and classical
regimes that were consistent with the predictions of the
generalized GL theory for HC of Shishkina, Grossmann,
and Lohse (2016). Their theory also predicted an ultimate
regime for HC. The mechanism is the same as in strongly
driven RB flow, pipe or channel flow or flow over a plate (see
Fig. 4), or turbulent convection with centrifugal buoyancy or
TC flow (see Fig. 21): a boundary layer along a plate or a
sidewall becomes so strongly sheared that it undergoes the
non-normal–nonlinear transition from laminar-type Prandtl-
Blasius BL flow to turbulent-type Prandtl–von Kármán BL
flow (“ultimate HC”), typically around a shear Reynolds
number of Res ≈ 420. However, in the present DNS of HC
one is far from that regime, as thermal driving in the HC
configuration with its only local heating and cooling is
even less efficient than in the RB configuration. We finally
also note that the scaling exponent γ in a rigorous upper
bound Nu ≲ Raγ for HC is γ ¼ 1=3 (Siggers, Kerswell,
and Balmforth, 2004), i.e., significantly smaller than in
RB convection.
Yet another convective system is IHC (Goluskin, 2016),

where the flow is heated not from the walls but by thermal
absorption in the bulk. IHC flows can be seen as homo-
geneous RB flows, and indeed the asymptotic ultimate scaling
relations obtained in IHC (Lepot, Aumaître, and Gallet, 2018;
Bouillaut et al., 2019) show the expected scaling relations,
including the Prandtl number dependences Nu ∼ Ra1=2Pr1=2

and Re ∼ Ra1=2Pr−1=2 (Miquel et al., 2020). Wang, Lohse, and
Shishkina (2021) theoretically and numerically treated the
case of homogeneous internal heating. They found that the
main control parameter was the strength of the thermal driving
of the bulk (in dimensionless form called the Rayleigh-
Roberts number) and that the main response parameter was
the average mean temperature that develops in the closed
container. Again GL theory can be generalized to this case,
and Wang, Lohse, and Shishkina (2021) did so. For strong
enough driving the shear BLs along the plates and sidewall
can again undergo the non-normal–nonlinear transition
from laminar-type Prandtl-Blasius BL flow to turbulent-type
Prandtl–von Kármán BL flow (“ultimate IHC”), where the
average mean temperature depends more strongly on the
driving strength. For details and DNSs on this problem, see
Wang, Lohse, and Shishkina (2021).

X. CONCLUSIONS AND OUTLOOK

We started this review by discussing the consequences of
the seminal insight that the onset of instabilities in various
shear flows like pipe or channel flow or the flow along a
plate is of non-normal–nonlinear character and, following
Roche (2020) and Lohse and Shishkina (2023), argued that
the onset of the ultimate regime of RB flow also has this
character, as the boundary layers are strongly sheared
through the wind of turbulence. This point was elaborated

FIG. 26. Nu as a function of Ra for smooth plates and plates
with monoscale or multiscale roughness. In the smooth case, the
scaling exponent γ in Nu ∼ Raγ is γ ¼ 0.29� 0.01. For multi-
scale roughness, γ ¼ 0.49� 0.02. For monoscale roughness, an
increased γ can be observed only in a restricted Ra range; for
larger Ra, γ stagnated to that in the smooth case. In the monoscale
case, sinusoidal roughness elements of the same height (L=10)
were considered. In the multiscale case, sinusoidal roughness
includes roughness elements with heights L=10, L=20, and L=40.
Adapted from Zhu, Stevens et al., 2019.
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in Sec. III.C. Based on this idea, we then tried to reconcile
the various experimental and numerical findings on the
onset of the ultimate regime; see, in particular, Sec. VII.F.
The crucial insight is that the various results on the onset
Rayleigh number Ra� of the ultimate regime of RB turbu-
lence do not necessarily contradict each other: first because
Ra� depends on the other two control parameters of the RB
system, i.e., on Pr and on the aspect ratio Γ, and second
because of the intrinsic character of such non-normal–
nonlinear instability. It has no sharp onset but can occur
in an entire range of the Rayleigh number, depending on
even small distortions of the systems and its history, and it is
subcritical and hysteretic.
Insights about the non-normal–nonlinear character of the

onset of instabilities in shear flows in the late 1980s and
early 1990s (Boberg and Brosa, 1988; Farrell, 1988; Farrell
and Ioannou, 1993; Reddy and Henningson, 1993; Reddy,
Schmid, and Henningson, 1993; Trefethen et al., 1993)
heralded a new era of creative experiments, numerical
simulations, and theoretical and mathematical analyses on
shear flows; see the reviews by Barkley (2016), Manneville
(2016), Wu (2019), and Avila, Barkley, and Hof (2023).
One key idea here has been to trigger the instabilities with
controlled distortions and then measure the spreading
and/or the lifetime of the distortion. Another line of research
has been to study the hysteretic character of the transition.
Analogous experiments, numerical simulations, and theoreti-
cal analyses should be done for RB flow and related systems.
In Secs. VII.G and VIII.D we made some suggestions for
such new experiments and numerical simulations, including
detailed local flow visualizations. We foresee a boost of new
activity along these lines that will either further establish the
non-normal–nonlinear character of the transition to ultimate
turbulence in RB flow and related systems for which this
review has given so much evidence or falsify it.
One first result along this line is shown in Fig. 27. To show

the hysteretic character of the transition toward the ultimate
regime in Taylor-Couette flow (Huisman et al., 2012),
starting in the classical regime Luuk Blaauw and Sander
G. Huisman (University of Twente) first slowly increased the
driving strength Ta up to a sudden jump in the transport
property Nuω to a higher value. The jump occurred
at a nonreproducible value of Ta in a range of Ta between
2.5 × 108 and 3.5 × 108; see the light red regime in Fig. 27.
When slowly reducing Ta again, Nuω does not jump back to
the values for which the system underwent the transition, but
instead stays at a higher value (the green curves in Fig. 27).
Both phenomena support the non-normal–nonlinear nature
of the transition. It was doubled-checked that the hysteretic
phenomena are not caused by the torque sensor, which is
used to deduce Nuω, but rather that they are actually a
property of the flow, as the same features of the transition are
also seen in measurements of the Reynolds number using
laser Doppler velocimetry. We note that, in addition to the
question as to whether the flow has turbulent-type BLs above
the transition or laminar-type BLs below the transition,
the number of vertically stacked Taylor rolls can change
(Huisman et al., 2014), which presumably is the reason why
Nuω does not return to the value it had prior to the transition

into the ultimate regime. To settle this question, rather than
focusing on global response parameters, more work on the
visualization of the local flow is necessary.
We also suggest further mathematically studying the

Orr-Sommerfeld operator and properties of the associated
non-normal operators for RB convection and related locally
sheared thermal convection systems. If the eigenvalue analysis
cannot predict the onset of turbulence and the ultimate regime,
then how can this onset be mathematically identified and
predicted in other ways? Can one give quantitative estimates
with this respect? Indeed, as we saw regarding the strict upper
bounds for the heat transport of Sec. IV, RB flow is a good
example in which mathematical analysis goes hand in hand
with experiments, numerical simulations, and theory.
Accurate and well-resolved direct numerical simulations

for even more extreme parameters than have been studied to
date are desired. As we discussed (Shishkina, 2021; Ahlers
et al., 2022), the aspect ratio Γ ∼ 1 (to be more precise, close
to 1=2) is optimal in order to achieve the ultimate regime,
and performing experiments or numerical simulations with
small Γ is not the best or easiest pathway toward ultimate
turbulence.
Finally, we emphasize the universality and generality

of the approach outlined in this review; it is a versatile
recipe applicable to any wall-bounded turbulent flow, be it
Rayleigh-Bénard convection, turbulent convection with cen-
trifugal buoyancy, double-diffusive convection, Taylor-
Couette flow, pipe or channel flow, horizontal convection,
vertical convection, internally heated convection, penetrative
convection, or the flow in a stratified inclined duct. The first
part of the approach was summarized in Fig. 5(c), namely,
the generalized Grossmann-Lohse theory as described in
Sec. III. With this the transport properties in the classical

FIG. 27. Nuω − 1 (≈ Nuω compensated with the classical scaling
Ta1=3) vs Ta as obtained in recent measurements by Luuk Blaauw
and Sander G. Huisman in the Twente Turbulent Taylor-Couette
facility (van Gils, Bruggert et al., 2011; van Gils, Huisman
et al., 2011). The measurements reveal the hysteretic character
of the transition toward the ultimate regime. For the dark and
light blue curves Ta is slowly increasing (achieved by slowly
heating the liquid and thus decreasing the kinematic viscosity),
while for the green ones it is slowly decreasing (achieved by
slowly cooling the liquid). The red region shows the ultimate
regime, whereas the light red region shows the Ta range in
which the transition to the ultimate regime can happen.
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regime, i.e., for not too strong driving so that the boundary
layers are still of the Prandtl-Blasius type, can be obtained.
The second part of the approach makes note of the fact that
for strong enough driving the laminar Prandtl-Blasius-type
boundary layers must become unstable and undergoes a
transition to a turbulent boundary layer of the Prandtl–von
Kármán type. We hypothesized that the nature of this
instability is of the non-normal–nonlinear type, i.e., sub-
critical; it has no sharp onset but can occur in a certain range
of control parameters. In Sec. V we proposed a scaling model
for the ultimate regime in RB convection, which can be
understood as an extension of the model of Grossmann and
Lohse (2011) to the case of large Prandtl numbers. In the
research on wall-bounded turbulent flows, interesting times
are ahead that will help us to better understand the details of
the non-normal–nonlinear transition to the ultimate regime,
as well as the ultimate regime itself.
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Méthivier, L., R. Braun, F. Chillà, and J. Salort, 2022, “Turbulent
transition in Rayleigh-Bénard convection with fluorocarbon,”
Europhys. Lett. 136, 10003.

Mihaljan, J. M., 1962, “A rigorous exposition of the Boussinesq
approximations applicable to a thin layer of fluid,” Astrophys. J.
136, 1126–1133.

Miquel, B., V. Bouillaut, S. Aumaître, and B. Gallet, 2020, “On the
role of the Prandtl number in convection driven by heat sources and
sinks,” J. Fluid Mech. 900, R1.

Monin, A. S., and A. M. Yaglom, 1975, Statistical Fluid Mechanics
(MIT Press, Cambridge, MA).

Motoki, S., G. Kawahara, and M. Shimizu, 2018, “Maximal heat
transfer between two parallel plates,” J. Fluid Mech. 851, R4.

Musilová, V., T. Králík, M. L. Mantia, M. Macek, P. Urban, and L.
Skrbek, 2017, “Reynolds number scaling in cryogenic turbulent
Rayleigh-Bénard convection in a cylindrical aspect ratio one cell,”
J. Fluid Mech. 832, 721–744.

National Institute of Standards and Technology, 2013, computer code
REFPROP, version 9.1.

Niemela, J., L. Skrbek, K. R. Sreenivasan, and R. J. Donnelly, 2001,
“The wind in confined thermal turbulence,” J. Fluid Mech. 449,
169–178.

Niemela, J. J., S. Babuin, and K. R. Sreenivasan, 2010, “Turbulent
rotating convection at high Rayleigh and Taylor numbers,” J. Fluid
Mech. 649, 509–522.

Niemela, J. J., L. Skrbek, and R. J. Donnelly, 2000, “Ultrahigh
Rayleigh number convection in cryogenic helium gas,” Physica
(Amsterdam) 284B–288B, 61–62.

Niemela, J. J., L. Skrbek, K. R. Sreenivasan, and R. J. Donnelly,
2000, “Turbulent convection at very high Rayleigh numbers,,”
Nature (London) 404, 837–841.

Niemela, J. J., L. Skrbek, C. Swanson, S. Hall, K. R. Sreenivasan,
and R. J. Donnelly, 2000, “New results in cryogenic helium flows at
ultra-high Reynolds and Rayleigh numbers,” J. Low Temp. Phys.
121, 417–422.

Niemela, J. J., and K. R. Sreenivasan, 2003a, “Confined turbulent
convection,” J. Fluid Mech. 481, 355–384.

Niemela, J. J., and K. R. Sreenivasan, 2003b, “Rayleigh-number
evolution of large-scale coherent motion in turbulent convection,”
Europhys. Lett. 62, 829–833.

Niemela, J. J., and K. R. Sreenivasan, 2006a, “Turbulent convection
at high Rayleigh numbers and aspect ratio 4,” J. Fluid Mech. 557,
411–422.

Niemela, J. J., and K. R. Sreenivasan, 2006b, “The use of cryogenic
helium for classical turbulence: Promises and hurdles,” J. Low
Temp. Phys. 143, 163–212.

Niemela, J. J., and K. R. Sreenivasan, 2008, “Formation of the
Superconducting Core in Turbulent Thermal Convection,”
Phys. Rev. Lett. 100, 184502.

Niemela, J. J., and K. R. Sreenivasan, 2010, “Does confined turbulent
convection ever attain the asymptotic scaling with 1=2 power,”
New J. Phys. 12, 115002.

Nikolaenko, A., E. Brown, D. Funfschilling, and G. Ahlers, 2005,
“Heat transport by turbulent Rayleigh-Bénard convection in cylindri-
cal cells with aspect ratio one and less,” J. FluidMech. 523, 251–260.
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boundary layer near roughnesses in turbulent Rayleigh-Bénard
convection: Flow structure and multistability,” Phys. Fluids 26,
015112.

Sano, M., Z. Wu, and A. Libchaber, 1989, “Turbulence in
helium-gas free convection,” Phys. Rev. A 40, 6421.

Scheel, J. D., M. S. Emran, and J. Schumacher, 2013, “Resolving
the fine-scale structure in turbulent Rayleigh-Bénard convection,”
New J. Phys. 15, 113063.

Scheel, J. D., E. Kim, and K. R. White, 2012, “Thermal and viscous
boundary layers in turbulent Rayleigh-Bénard convection,” J. Fluid
Mech. 711, 281–305.

Scheel, J. D., and J. Schumacher, 2014, “Local boundary layer scales
in turbulent Rayleigh-Bénard convection,” J. Fluid Mech. 758,
344–373.

Scheel, J. D., and J. Schumacher, 2016, “Global and local statistics in
turbulent convection at low Prandtl numbers,” J. Fluid Mech. 802,
147–173.

Scheel, J. D., and J. Schumacher, 2017, “Predicting transition ranges
to fully turbulent viscous boundary layers in low Prandtl number
convection flows,” Phys. Rev. Fluids 2, 123501.

Schlichting, H., 1979, Boundary Layer Theory (McGraw-Hill,
New York).

Schlueter, A., D. Lortz, and F. Busse, 1965, “On the stability of
steady finite amplitude convection,” J. Fluid Mech. 23, 129–144.

Schmid, P. J., 2007, “Nonmodal stability theory,” Annu. Rev. Fluid
Mech. 39, 129–162.

Schmid, P. J., and D. S. Henningson, 2001, Stability and Transition
in Shear Flows (Springer-Verlag, New York).

Schmidt, L. E., E. Calzavarini, D. Lohse, F. Toschi, and R. Verzicco,
2012, “Axially homogeneous Rayleigh-Bénard convection in a
cylindrical cell,” J. Fluid Mech. 691, 52–68.

Detlef Lohse and Olga Shishkina: Ultimate Rayleigh-Bénard Turbulence

Rev. Mod. Phys., Vol. 96, No. 3, July–September 2024 035001-56

https://doi.org/10.1103/PhysRevLett.89.134501
https://doi.org/10.1002/zamm.19210010205
https://doi.org/10.1002/zamm.19210010205
https://doi.org/10.1002/zamm.19250050212
https://doi.org/10.1071/PH540176
https://doi.org/10.1103/PhysRevA.44.8091
https://doi.org/10.1063/1.1778031
https://doi.org/10.1017/S0022112007000080
https://doi.org/10.1080/14786441608635602
https://doi.org/10.1017/S0022112093003738
https://doi.org/10.1137/0153002
https://doi.org/10.1137/0153002
https://doi.org/10.1017/jfm.2020.211
https://doi.org/10.1017/jfm.2020.211
https://doi.org/10.1209/0295-5075/134/34002
https://doi.org/10.1017/jfm.2022.56
https://doi.org/10.1017/jfm.2020.1186
https://doi.org/10.1017/jfm.2024.86
https://doi.org/10.1098/rspl.1883.0018
https://doi.org/10.1088/1367-2630/ab9449
https://doi.org/10.1088/1367-2630/ab9449
https://doi.org/10.1103/PhysRevE.63.045303
https://doi.org/10.1209/epl/i2002-00405-1
https://doi.org/10.1007/s10051-001-8690-5
https://doi.org/10.1088/1367-2630/12/8/085014
https://doi.org/10.1088/1367-2630/12/8/085014
https://doi.org/10.1017/jfm.2020.959
https://doi.org/10.1017/jfm.2017.852
https://doi.org/10.1063/1.4862487
https://doi.org/10.1063/1.4862487
https://doi.org/10.1103/PhysRevA.40.6421
https://doi.org/10.1088/1367-2630/15/11/113063
https://doi.org/10.1017/jfm.2012.392
https://doi.org/10.1017/jfm.2012.392
https://doi.org/10.1017/jfm.2014.536
https://doi.org/10.1017/jfm.2014.536
https://doi.org/10.1017/jfm.2016.457
https://doi.org/10.1017/jfm.2016.457
https://doi.org/10.1103/PhysRevFluids.2.123501
https://doi.org/10.1017/S0022112065001271
https://doi.org/10.1146/annurev.fluid.38.050304.092139
https://doi.org/10.1146/annurev.fluid.38.050304.092139
https://doi.org/10.1017/jfm.2011.440


Schumacher, J., V. Bandaru, A. Pandey, and J. D. Scheel, 2016,
“Transitional boundary layers in low-Prandtl-number convection,”
Phys. Rev. Fluids 1, 084402.

Seis, C., 2015, “Scaling bounds on dissipation in turbulent flows,”
J. Fluid Mech. 777, 591–603.

Shang, X. D., P. Tong, and K.-Q. Xia, 2008, “Scaling of the Local
Convective Heat Flux in Turbulent Rayleigh-Bénard Convection,”
Phys. Rev. Lett. 100, 244503.

Shang, X.-D., X.-L. Qiu, P. Tong, and K.-Q. Xia, 2003, “Measured
Local Heat Transport in Turbulent Rayleigh-Bénard Convection,”
Phys. Rev. Lett. 90, 074501.

Shen, Y., K.-Q. Xia, and P. Tong, 1996, “Turbulent Convection over
Rough Surfaces,” Phys. Rev. Lett. 76, 908–911.

Shi, N., M. S. Emran, and J. Schumacher, 2012, “Boundary layer
structure in turbulent Rayleigh-Bénard convection,” J. Fluid Mech.
706, 5–33.

Shishkina, O., 2017, “Mean flow structure in horizontal convection,”
J. Fluid Mech. 812, 525–540.

Shishkina, O., 2021, “Rayleigh-Bénard convection: The container
shape matters,” Phys. Rev. Fluids 6, 090502.

Shishkina, O., M. S. Emran, S. Grossmann, and D. Lohse, 2017,
“Scaling relations in large-Prandtl-number natural thermal con-
vection,” Phys. Rev. Fluids 2, 103502.

Shishkina, O., S. Grossmann, and D. Lohse, 2016, “Heat and
momentum transport scalings in horizontal convection,” Geophys.
Res. Lett. 43, 1219–1225.

Shishkina, O., S. Horn, M. S. Emran, and E. S. C. Ching, 2017,
“Mean temperature profiles in turbulent thermal convection,”
Phys. Rev. Fluids 2, 113502.

Shishkina, O., S. Horn, and S. Wagner, 2013, “Falkner-Skan
boundary layer approximation in Rayleigh-Bénard convection,”
J. Fluid Mech. 730, 442–463.

Shishkina, O., S. Horn, S. Wagner, and E. S. C. Ching, 2015,
“Thermal Boundary Layer Equation for Turbulent Rayleigh-
Bénard Convection,” Phys. Rev. Lett. 114, 114302.

Shishkina, O., and D. Lohse, 2024, “Ultimate regime of Rayleigh-
Bénard turbulence: Sub-regimes and their scaling relations for
Nu vs. Ra and Pr,” arXiv.org/abs/2407.16573.

Shishkina, O., R. J. A. M. Stevens, S. Grossmann, and D. Lohse,
2010, “Boundary layer structure in turbulent thermal convection
and its consequences for the required numerical resolution,” New J.
Phys. 12, 075022.

Shishkina, O., and A. Thess, 2009, “Mean temperature profiles in
turbulent Rayleigh-Bénard convection of water,” J. Fluid Mech.
633, 449–460.

Shishkina, O., and C. Wagner, 2006, “Analysis of thermal dissipation
rates in turbulent Rayleigh-Bénard convection,” J. Fluid Mech. 546,
51–60.

Shishkina, O., and C. Wagner, 2007, “Boundary and interior layers in
turbulent thermal convection in cylindrical containers,” Int. J.
Comput. Sci. Math. 1, 360–373.

Shishkina, O., and C. Wagner, 2011, “Modelling the influence of
wall roughness on heat transfer in thermal convection,” J. Fluid
Mech. 686, 568–582.

Shishkina, O., and S. Wagner, 2016, “Prandtl-Number Dependence
of Heat Transport in Laminar Horizontal Convection,” Phys. Rev.
Lett. 116, 024302.

Shishkina, O., S. Wagner, and S. Horn, 2014, “Influence of the angle
between the wind and the isothermal surfaces on the boundary layer
structures in turbulent thermal convection,” Phys. Rev. E 89, 033014.

Shishkina, O., S. Weiss, and E. Bodenschatz, 2016, “Conductive heat
flux in measurements of the Nusselt number in turbulent Rayleigh-
Bénard convection,” Phys. Rev. Fluids 1, 062301(R).

Shraiman, B. I., and E. D. Siggia, 1990, “Heat transport in high-
Rayleigh-number convection,” Phys. Rev. A 42, 3650–3653.

Siggers, J. H., R. R. Kerswell, and N. J. Balmforth, 2004, “Bounds on
horizontal convection,” J. Fluid Mech. 517, 55–70.

Siggia, E., 1994, “High Rayleigh number convection,” Annu. Rev.
Fluid Mech. 26, 137–168.

Skrbek, L., and P. Urban, 2015, “Has the ultimate state of turbulent
thermal convection been observed?,” J. Fluid Mech. 785, 270–282.

Sommerfeld, A., 1909, in Atti del IV Congresso Internazionale dei
Matematici, Rome, 1908, Vol. IV, edited by G. Castelnuovo
(Tipografia della R. Accademia dei Lincei, Rome), pp. 116–124.

Sorokin, V. S., 1954, “On stationary motions in a fluid heated from
below,” Prikl. Mat. Mekh. 18, 197–204.

Souza, A. N., I. Tobasco, and C. R. Doering, 2020, “Wall-to-wall
optimal transport in two dimensions,” J. Fluid Mech. 889, A34.

Spiegel, E. A., 1971, “Convection in stars I. Basic Boussinesq
convection,” Annu. Rev. Astron. Astrophys. 9, 323–352.

Spiegel, E. A., and G. Veronis, 1960, “On the Boussinesq approxi-
mation for a compressible fluid,” Astrophys. J. 131, 442–447.

Stevens, R. J. A. M., A. Blass, X. Zhu, R. Verzicco, and D. Lohse,
2018, “Turbulent thermal superstructures in Rayleigh-Bénard
convection,” Phys. Rev. Fluids 3, 041501(R).

Stevens, R. J. A. M., H. J. H. Clercx, and D. Lohse, 2010a, “Boun-
dary layers in rotating weakly turbulent Rayleigh-Bénard convec-
tion,” Phys. Fluids 22, 085103.

Stevens, R. J. A. M., H. J. H. Clercx, and D. Lohse, 2010b, “Optimal
Prandtl number for heat transfer in rotating Rayleigh-Bénard
convection,” New J. Phys. 12, 075005.

Stevens, R. J. A. M., D. Lohse, and R. Verzicco, 2011, “Prandtl and
Rayleigh number dependence of heat transport in high Rayleigh
number thermal convection,” J. Fluid Mech. 688, 31–43.

Stevens, R. J. A. M., D. Lohse, and R. Verzicco, 2014, “Sidewall
effects in Rayleigh-Bénard convection,” J. Fluid Mech. 741, 1–27.

Stevens, R. J. A. M., D. Lohse, and R. Verzicco, 2020, in Direct and
Large Eddy Simulation XII ERCOFTAC Series Vol. 27, edited
by M. García-Villalba, H. Kuerten, and M. V. Salvetti (Springer,
New York), p. 215.

Stevens, R. J. A. M., J. Overkamp, D. Lohse, and H. J. H. Clercx,
2011, “Effect of aspect-ratio on vortex distribution and heat
transfer in rotating Rayleigh-Bénard convection,” Phys. Rev. E
84, 056313.

Stevens, R. J. A. M., E. P. van der Poel, S. Grossmann, and D. Lohse,
2013, “The unifying theory of scaling in thermal convection: The
updated prefactors,” J. Fluid Mech. 730, 295–308.

Stevens, R. J. A. M., R. Verzicco, and D. Lohse, 2010, “Radial
boundary layer structure and Nusselt number in turbulent
Rayleigh-Bénard convection,” J. Fluid Mech. 643, 495–507.

Stevens, R. J. A. M., Q. Zhou, S. Grossmann, R. Verzicco, K.-Q. Xia,
and D. Lohse, 2012, “Thermal boundary layer profiles in turbulent
Rayleigh-Bénard convection in a cylindrical sample,” Phys. Rev. E
85, 027301.

Stewartson, K., 1966, in Non-Equilibrium Thermodynamics, Varia-
tional Techniques and Stability, edited by R. J. Donnelly, R. Herman,
and Ilya Prigogine (University of Chicago Press, Chicago),
pp. 158–162.

Stringano, G., G. Pascazio, and R. Verzicco, 2006, “Turbulent thermal
convection over grooved plates,” J. Fluid Mech. 557, 307–336.

Strogatz, S. H., 1994, Nonlinear Dynamics and Chaos (Perseus
Press, Reading, MA).

Sugiyama, K., E. Calzavarini, S. Grossmann, and D. Lohse, 2009,
“Flow organization in two-dimensional non-Oberbeck-Boussinesq
Rayleigh-Bénard convection in water,” J. Fluid Mech. 637,
105–135.

Detlef Lohse and Olga Shishkina: Ultimate Rayleigh-Bénard Turbulence

Rev. Mod. Phys., Vol. 96, No. 3, July–September 2024 035001-57

https://doi.org/10.1103/PhysRevFluids.1.084402
https://doi.org/10.1017/jfm.2015.384
https://doi.org/10.1103/PhysRevLett.100.244503
https://doi.org/10.1103/PhysRevLett.90.074501
https://doi.org/10.1103/PhysRevLett.76.908
https://doi.org/10.1017/jfm.2012.207
https://doi.org/10.1017/jfm.2012.207
https://doi.org/10.1017/jfm.2016.866
https://doi.org/10.1103/PhysRevFluids.6.090502
https://doi.org/10.1103/PhysRevFluids.2.103502
https://doi.org/10.1002/2015GL067003
https://doi.org/10.1002/2015GL067003
https://doi.org/10.1103/PhysRevFluids.2.113502
https://doi.org/10.1017/jfm.2013.347
https://doi.org/10.1103/PhysRevLett.114.114302
https://arXiv.org/abs/arXiv.org/abs/2407.16573
https://doi.org/10.1088/1367-2630/12/7/075022
https://doi.org/10.1088/1367-2630/12/7/075022
https://doi.org/10.1017/S0022112009990528
https://doi.org/10.1017/S0022112009990528
https://doi.org/10.1504/IJCSM.2007.016541
https://doi.org/10.1504/IJCSM.2007.016541
https://doi.org/10.1017/jfm.2011.348
https://doi.org/10.1017/jfm.2011.348
https://doi.org/10.1103/PhysRevLett.116.024302
https://doi.org/10.1103/PhysRevLett.116.024302
https://doi.org/10.1103/PhysRevE.89.033014
https://doi.org/10.1103/PhysRevFluids.1.062301
https://doi.org/10.1103/PhysRevA.42.3650
https://doi.org/10.1017/S0022112004000497
https://doi.org/10.1146/annurev.fl.26.010194.001033
https://doi.org/10.1146/annurev.fl.26.010194.001033
https://doi.org/10.1017/jfm.2015.638
https://doi.org/10.1017/jfm.2020.42
https://doi.org/10.1146/annurev.aa.09.090171.001543
https://doi.org/10.1086/146849
https://doi.org/10.1103/PhysRevFluids.3.041501
https://doi.org/10.1063/1.3467900
https://doi.org/10.1088/1367-2630/12/7/075005
https://doi.org/10.1017/jfm.2011.354
https://doi.org/10.1017/jfm.2013.664
https://doi.org/10.1103/PhysRevE.84.056313
https://doi.org/10.1103/PhysRevE.84.056313
https://doi.org/10.1017/jfm.2013.298
https://doi.org/10.1017/S0022112009992461
https://doi.org/10.1103/PhysRevE.85.027301
https://doi.org/10.1103/PhysRevE.85.027301
https://doi.org/10.1017/S0022112006009785
https://doi.org/10.1017/S0022112009008027
https://doi.org/10.1017/S0022112009008027


Sun, C., L.-Y. Ren, H. Song, and K.-Q. Xia, 2005, “Heat transport by
turbulent Rayleigh-Bénard convection in 1 m diameter cylindrical
cells of widely varying aspect ratio,” J. Fluid Mech. 542, 165–174.

Sun, C., and K.-Q. Xia, 2005, “Scaling of the Reynolds number in
turbulent thermal convection,” Phys. Rev. E 72, 067302.

Tai, N. C., E. S. C. Ching, L. Zwirner, and O. Shishkina, 2021,
“Heat flux in turbulent Rayleigh-Bénard convection: Predictions
derived from a boundary layer theory,” Phys. Rev. Fluids 6,
033501.

Takeshita, T., T. Segawa, J. A. Glazier, and M. Sano, 1996, “Thermal
Turbulence in Mercury,” Phys. Rev. Lett. 76, 1465–1468.

Teimurazov, A., M. McCormack, M. Linkmann, and O. Shishkina,
2024, “Unifying heat transport model for the transition between
buoyancy-dominated and Lorentz-forcedominated regimes in qua-
sistatic magnetoconvection,” J. Fluid Mech. 980, R3.

Teimurazov, A., S. Singh, S. Su, S. Eckert, O. Shishkina, and T.
Vogt, 2023, “Oscillatory large-scale circulation in liquidmetal
thermal convection and its structural unit,” J. Fluid Mech. 977,
A16.

Threlfall, D. C., 1975, “Free convection in low-temperature gaseous
helium,” J. Fluid Mech. 67, 17–28.

Tisserand, J. C., M. Creyssels, Y. Gasteuil, H. Pabiou, M. Gibert, B.
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