
Colloquium: Eigenvector continuation
and projection-based emulators

Thomas Duguet
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Eigenvector continuation is a computational method for parametric eigenvalue problems that uses
subspace projection with a basis derived from eigenvector snapshots from different parameter sets. It
is part of a broader class of subspace-projection techniques called reduced-basis methods. In this
Colloquium, the development, theory, and applications of eigenvector continuation and projection-
based emulators are presented. The basic concepts are introduced, the underlying theory and
convergence properties are discussed, and recent applications for quantum systems and future
prospects are presented.
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I. MOTIVATION

The challenges of nuclear few- and many-body physics
have been addressed theoretically with a wide range of
accurate but often computationally expensive high-fidelity
methods. However, when we need to change the parameters
characterizing the problem, such as Hamiltonian coupling
constants, it can become computationally prohibitive to
repeat high-fidelity calculations many times and challeng-
ing to reliably extrapolate. An alternative is to replace
the high-fidelity model with an emulator, which is an
approximate computer model that in the literature is
sometimes referred to as a surrogate. We focus in this
Colloquium on the recent development and application
of emulators that exploit a technique called eigenvector
continuation (EC) and its extensions. Our illustrative
examples are primarily drawn from nuclear structure and
reactions, for which there has been an explosion of EC
applications in the last few years. We emphasize, however,
the general scope of the methods, which are broadly
applicable to physics problems.
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Even more broadly, being able to efficiently vary the
parameters in high-fidelity models to enable design, control,
optimization, inference, and uncertainty quantification is a
general need across engineering and science fields (Benner
et al., 2020a, 2020b, 2021). A common theme in these
endeavors is that much of the information in high-fidelity
models is superfluous. This can be exploited when tracing
parametric dependencies by reducing the complexity through
a so-called reduced-order model, i.e., an emulator. The
universe of model order reduction methods is relatively
mature but continues to expand, along with their applications.
We can put EC emulators in perspective by considering a

high-level classification of reduced-order models into data-
driven and model-driven categories; see Fig. 1. Data-driven
methods typically interpolate the outputs of high-fidelity
models without requiring an understanding of the underlying
model structure; examples include Gaussian processes, arti-
ficial neural networks, and dynamic mode decomposition.
Model-driven methods solve reduced-order equations derived
from the full equations, so they are physics based and respect
the underlying structure; examples include the broad class
of reduced-basis methods (RBMs) (Hesthaven, Rozza, and
Stamm, 2016; Quarteroni, Manzoni, and Negri, 2016).
Increasingly there are hybrid approaches drawing from knowl-
edge about the underlying physics problem and thereby
combining both data- and model-driven aspects (Chen
et al., 2021).
Although originally developed independently, the model-

driven EC method has long-established antecedents among
RBMs [for example, eigenvalue problems in structural engi-
neering discussed by Aktas and Moses (1998) and Nair,
Keane, and Langley (1998) and in applied mathematics
reviewed by Machiels et al. (2000), with more recent
applications addressed by Fumagalli et al. (2016), Horger,
Wohlmuth, and Dickopf (2017), and Pichi, Quaini, and Rozza
(2020)]. EC uses a basis derived from selected eigenvectors
from different parameter sets, called snapshots in the RBM
world, to project onto a much smaller subspace than the
original problem. In its simplest form, EC generates a highly
effective variational basis. Typically EC applications exploit
the RBM off-line–on-line workflow, in which expensive high-
fidelity calculations are performed once in the off-line phase,

enabling inexpensive but still accurate emulator calculations
in the on-line phase.
When the off-line–on-line workflow is applied to calculate

observables for many parameters characterizing Hamiltonians
or other operators, the EC emulators can achieve tremendous
speedups over high-fidelity computational methods. This
facilitates large-scale parameter exploration and calibration
as well as uncertainty quantification, sensitivity analysis,
and experimental design that would otherwise be infeasible.
The model-driven nature of the EC approach not only
ensures accurate interpolation in the parameter space but in
many cases provides accurate extrapolations in the spaces of
control parameters such as coupling strengths, energies, and
boundary conditions. A consequence is that problems that
are difficult or even intractable for some range of control
parameters can be attacked by calculating in a range that can
be more easily solved, and then extrapolating using the
emulator.
Reliable emulator technology is also useful for collabora-

tion as it enables the development of self-contained and
accurate miniapplications that mimic the output of complex
model calculations (Tews et al., 2022; Zhang and Furnstahl,
2022). These emulators are easy to distribute given their
typically small memory footprint. This allows other research-
ers to generate fast and accurate model predictions, even
without the in-depth knowledge and significant computational
resources typically required to create applications from com-
plex or closed-source code bases.
In Sec. II we review the basic concepts of EC and the early

work in nuclear physics. An overview of the RBM formu-
lation and the off-line–on-line workflow is given in Sec. III,
along with alternative approaches to generalized eigenvalue
problems from a nuclear physics perspective. EC convergence
properties are covered in Sec. IV, including the application to
many-body perturbation theory. A major EC application is
to large Hamiltonian eigensystems (Sec. V), which include
adaptations to the shell model and the coupled cluster method.
As illustrations of the wide range of EC applications,
extensions are described for scattering (Sec. VI.A), finite-
volume dependence and resonances (Sec. VI.B), and quantum
Monte Carlo simulations (Sec. VI.C). A summary and a
consideration of future directions are presented in Sec. VII.

II. BACKGROUND

The development of EC discussed by Frame et al. (2018)
was inspired by the quantum many-body problem and the
desire to find the extremal eigenvalues and eigenvectors of a
Hamiltonian matrix too large to store in computer memory.
While there are numerous quantum many-body methods used
to solve such problems, they all fail when some control
parameter in the Hamiltonian matrix exceeds a certain thresh-
old value. Monte Carlo methods break down when there are
strong sign oscillations and positive and negative amplitudes
cancel. Simple order-by-order summations of diagrammatic
expansions and perturbation theory are divergent when the
magnitude of the expansion parameter exceeds unity.
Variational methods are not effective if there are strong
correlations not adequately captured by some wave-function
ansatz or truncated set of basis states.

FIG. 1. Schematic classification of model order reduction
emulators into data-driven methods, including Gaussian proc-
esses, artificial neural networks, and dynamic mode decompo-
sition; model-driven methods, including reduced-basis methods
(RBMs); and hybrid methods. Eigenvector continuation (EC)
approaches are a subset of RBMs.
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In the following, we review some of the concepts of
EC as well as the early literature. We consider a family of
matrix Hamiltonians HðθÞ that depends analytically on some
vector of control parameters θ, which we write in vector
notation. We assume that the matrix Hamiltonians are
Hermitian for all real values of the parameters. One particu-
larly interesting and important example is the affine case
where the dependence on each parameter decomposes as a
sum of terms

HðθÞ ¼
X
α

fαðθÞHα ð1Þ

for some functions fα and Hermitian matrices Hα. We are
interested in the properties of a particular eigenvector of HðθÞ
and its corresponding eigenvalue EðθÞ,

HðθÞjψðθÞi ¼ EðθÞjψðθÞi: ð2Þ

The basic idea of eigenvector continuation is that jψðθÞi is an
analytic function for real values θ, and the smoothness implies
that it approximately lies on a linear subspace with a finite
number of dimensions. We note that if there are exact
eigenvalue degeneracies, the relative ordering of eigenvalues
may change as we vary θ. However, the eigenvectors can still
be defined as analytic functions in the neighborhood of those
exact level crossings. The smoother and more gradual the
undulations in the eigenvectors, the fewer the needed dimen-
sions. A good approximation to jψðθÞi can be efficiently
found using a variational subspace composed of snapshots
of jψðθiÞi for parameter values θi. We note that for complex
values of the parameters the guarantee of smoothness no
longer holds.
At this point we note that other methods exist that are based

on projecting a large-scale linear algebra problem into a low-
dimensional subspace. Krylov methods, and, in particular,
Lanczos (or, more generally, Arnoldi) iteration for calculating
extremal eigenvalues of linear operators, are well established
[see Saad (2011) for a textbook discussion] and used broadly,
not only in physics. An important distinction compared to EC
is, however, that these Krylov methods are employed at
fixed θ, and thus they solve a much more limited problem.
In fact, many of the EC applications discussed in Sec. V
would typically use Lanczos iteration to determine the
individual jψðθÞi snapshots for the EC off-line stage.
Following Frame et al. (2018), we consider the Bose-

Hubbard model for identical bosons on a three-dimensional
cubic lattice as an illuminating and pedagogical example of
EC, specializing to four bosons on a 4 × 4 × 4 spatial lattice.
The parameter t is the coefficient for the kinetic energy,
and the parameter U is the coefficient for the pointlike
interaction between pairs of bosons. For this system the
relevant control parameter is the dimensionless ratio θ ¼ U=t.
A variational subspace is constructed from snapshots of the
eigenvectors for selected training parameters θj. With the
shorthand jψ ji ¼ jψðθjÞi, the norm matrix Ñij and projected
Hamiltonian matrix H̃ijðθÞ are given by

Ñij ¼ hψ ijψ ji; ð3Þ

H̃ijðθÞ ¼ hψ ijHðθÞjψ ji: ð4Þ

The generalized eigenvalue problem is then solved as dis-
cussed in Sec. III. While “norm matrix” is the name com-
monly used in the nuclear physics literature for the matrix of
inner products between vectors, we should note that this
matrix is called the Gram matrix in the standard mathematical
literature.
In Fig. 2 we show the ground-state energy E divided by t vs

U=t, along with an excited state. The exact ground-state
energies are shown with open circles, which reveal a sharp
bend near U=t ¼ −3.8. The sharp bend is caused by an
avoided level crossing of eigenvalues, and the abruptness of
the bend indicates that there are branch points located near the
real axis. EC results are shown for subspace dimensions
varying from 2 to 4. With snapshot parameter values at
U=t ¼ −2.0;−1.9;−1.8, and −1.7, the EC calculation is
capable of extrapolating past the sharp bend.
We can understand how eigenvector continuation is able to

extrapolate in this case by exploring the connection with
analytic continuation. We consider a power series expansion
of the eigenvector jψðθÞi around θ ¼ 0,

jψðθÞi ¼ lim
M→∞

XM
m¼0

jψ ðmÞð0Þi θ
m

m!
: ð5Þ

When the series converges, we can approximate jψðθÞi to any
desired accuracy as a finite sum of M þ 1 vectors jψ ðmÞð0Þi,
with m ranging from 0 to M.
The series will diverge when jθj exceeds the magnitude of

the nearest nonanalytic point. If HðθÞ is a finite-dimensional
matrix that depends analytically on θ, then the nonanalytic
behavior is associated with branch points where two or more
eigenvectors become the same vector (Kato, 2013). If HðθÞ is
a Hermitian matrix for real θ, then all of the branch points lie
away from the real axis and come in complex conjugate pairs.
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FIG. 2. Ground-state energy E of the Bose-Hubbard model
divided by t vs U=t. The exact ground-state energies are shown
with open circles, while the EC results are shown for variational
subspace dimensions varying from 2 to 4. To highlight the
avoided level crossing, the exact excited-state energies are also
shown as open squares. Adapted from Frame et al., 2018.
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In Fig. 3 we show an example where z and z̄ are the branch
points closest to the origin. While the power series expansion
around θ ¼ 0 converges only for jθj < jzj, we can choose a
secondary point w with jwj < jzj and expand around w,

jψðθÞi ¼ lim
N→∞

XN
n¼0

jψ ðnÞðwÞi ðθ − wÞn
n!

: ð6Þ

The derivatives at w can in turn be expanded using the power
series about the origin. This yields the double sum

jψðθÞi ¼ lim
N→∞

XN
n¼0

lim
M→∞

XM
m¼0

jψ ðnþmÞð0Þiw
mðθ − wÞn
m!n!

: ð7Þ

We can now approximate jψðθÞi in the shaded region in Fig. 3
to any desired accuracy as a finite sum of N þM þ 1 vectors
jψ ðnþmÞð0Þi, with n ranging from 0 to N andm ranging from 0
to M. This process of analytic continuation shows that the
approximation of jψðθÞi using a finite linear subspace can
extend beyond the nearest branch point. By including addi-
tional expansion points, this can be extended to all values of θ
where jψðθÞi is analytic.
We now return to the general problem where HðθÞ depends

on a vector of control parameters θ. When the eigenvector
snapshots jψðθiÞi are chosen with θi infinitesimally close to
some common limit point θ̄, the variational subspace is
spanned by gradients and higher-order gradients of jψðθÞi
at θ̄. The EC calculation is then equivalent to a variational
subspace calculation with basis states

∇i1∇i2 � � �∇in jψðθÞijθ¼θ̄: ð8Þ

These are the same terms that appear in the perturbation theory
expansion of the eigenstate wave function (Frame et al.,
2018). The difference is that we are performing a variational

calculation rather than evaluating partial sums of a power
series. Demol et al. (2020) used eigenvector continuation to
accelerate the convergence of Bogoliubov many-body pertur-
bation theory; this is discussed in Sec. IV.B.
The application of EC to quantum Monte Carlo simulations

was considered by Frame (2019). Since quantumMonte Carlo
simulations use the Euclidean time evolution operator e−HðθÞt,
one produces eigenstates jψðθÞi together with exponential
factors of e−EðθÞt. This produces some technical challenges
in applications to large quantum many-body systems. The
resolution of such problems is described in Sec. VI.C.
König et al. (2020) realized that EC could be used as a fast

and accurate emulator for quantum many-body calculations
by taking relatively few snapshots θi to cover a compact
domain of the parameter space. Ekström and Hagen (2019)
extended the use of EC as an emulator to non-Hermitian
matrices as encountered in coupled cluster calculations. This
is discussed in Sec. V.B. Applications of EC emulators for
quantum scattering problems in nuclear physics were first
explored by Furnstahl et al. (2020). This work and several
subsequent works extending the method and improving the
performance are discussed in Sec. VI.A.
As noted by Bonilla et al. (2022) and Melendez et al.

(2022), EC should be considered as a special case of a more
general area of RBMs that has been well developed in applied
mathematics over several decades, especially in the area of
partial differential equations; see Hesthaven, Rozza, and
Stamm (2016) and Quarteroni, Manzoni, and Negri (2016).
Although the early development of EC emphasized quantum
many-body systems and extrapolations for eigenvalue prob-
lems where the eigenvectors are too large to store in memory,
the use of EC as an emulator is in line with many other
applications of RBMs.

III. REDUCED-BASIS METHODS

The literature on RBMs is extensive (Benner et al., 2020a,
2020b, 2021), with recent guides from the perspective of
nuclear physicists (and EC), including pedagogical code
examples, given by Melendez et al. (2022) and Drischler
et al. (2023). Here we touch upon some key features that are
common to EC applications.

A. RBM workflow for a Hamiltonian eigenvalue problem

The basic ingredients of an RBM workflow, which is built
on a separation into off-line and on-line stages, are illustrated
for a familiar Hamiltonian eigenvalue problem in Fig. 4.
Formulation in integral form. To begin, we cast the

equations for the Schrödinger wave function or other quan-
tities of interest (such as a scattering matrix) in integral form.
For the Hamiltonian eigenvalue problem in Fig. 4(a) (left
panel) with parameters θ, solving the finite matrix problem of
a large basis size Nh × Nh is formally equivalent to findingNh
approximate stationary solutions to the variational functional

E½ψ � ¼ hψ jHðθÞjψi − EðθÞðhψ jψi − 1Þ ð9Þ

in the space spanned by the Nh basis elements. This is our
high-fidelity model. (In practice, the use of previously

FIG. 3. While the power series expansion at θ ¼ 0 converges
only for jθj < jzj, we can choose a secondary point w with
jwj < jzj. The power series expansion at θ ¼ w converges in the
shaded region and can be reexpressed as a double series around
θ ¼ 0. From Frame et al., 2018.
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mentioned Krylov methods means that finding all Nh sol-
utions is not needed, but the computational cost still scales
withNh.) Other RBM formulations are discussed in Sec. III.B.
Off-line stage. Next we reduce the dimensionality of the

problem by substituting for the general solution a trial basis of
a size nb. RBMs start with a snapshot basis consisting of high-
fidelity solutions jψ ii at selected values fθi; i ¼ 1;…; nbg
in the parameter space, as in Fig. 4(a) (right panel). When
seeking the ground-state energy and wave function for
arbitrary θ, these jψ ii are ground-state eigenvectors from
diagonalizing HðθiÞ. For many EC applications in nuclear
physics to date it has been sufficient to choose this basis
randomly, for example, with a space-filling sampling algo-
rithm such as Latin hypercube sampling. This basis spans a
reduced space and can be used directly (after orthonormaliz-
ing the snapshots),

jψ̃i ¼
Xnb
i¼1

βijψ ii; ð10Þ

with basis expansion coefficients βi. The Hamiltonian is then
projected onto a much smaller nb × nb space, as shown in
Fig. 4(b).

More generally in RBM applications one first compresses the
snapshot basis by applying some variant of principle compo-
nent analysis [known as proper orthogonal decomposition
(POD) in this context], which builds on the singular value
decomposition (SVD) of the snapshots and enables a smaller
basis size than nb. Alternatively, or in conjunction with POD,
one can efficiently select snapshots by applying an active
learning protocol (greedy algorithm) that aims to minimize the
overall error of the emulator (Hesthaven, Rozza, and Stamm,
2016). For a recent application of a greedy algorithm to
quantum spin systems, including an efficient mapping of
ground-state phase diagrams; see Herbst et al. (2022) and
Brehmer et al. (2023). These approaches are the standard in
RBM applications but are not yet widely applied in nuclear
physics (Bonilla et al., 2022; Sarkar and Lee, 2022).
On-line stage. For variational formulations, we enforce

stationarity with respect to the trial basis expansion coef-
ficients. This leads to an nb × nb generalized eigenvalue
problem for the basis coefficients

H̃ðθÞβ⃗ðθÞ ¼ ẼðθÞÑðθÞβ⃗ðθÞ;
H̃ijðθÞ ¼ hψ ijHðθÞjψ ji;
ÑijðθÞ ¼ hψ ijψ ji; ð11Þ

as introduced in Sec. II and visualized in Fig. 4(c). Note that if
the basis has been orthonormalized, then Ñ is an identity
matrix. Extending such an emulator to matrix elements of
other operators and even transitions is straightforward; see
Wesolowski et al. (2021) for a nuclear example.
In uncertainty quantification, for which sampling of many

parameter sets are usually required, it is essential that the
emulator be many times faster than the high-fidelity calcu-
lations. This is achieved for RBM emulators via the off-line
and on-line separation because the on-line stage requires
computations scaling only with nb (small) and not with Nh
(large). An affine operator structure, meaning a factorization
of parameter dependence as in Eq. (1), is needed to achieve the
desired on-line efficiency because size-Nh operations such as
hψ ijHαjψ ji are independent of θ and need to be calculated
only once in the off-line stage. If the problem is nonaffine,
then the strategy is to apply a so-called hyper-reduction
approach, which leads to an approximate affine form
(Quarteroni, Manzoni, and Negri, 2016). A nuclear scattering
example that treats a nonaffine Hamiltonian was given by
Odell et al. (2024).

B. Variational and Galerkin formulations

More generally an RBM can be formulated in terms of a
functional that is stationary at the desired solution (the
variational approach) or via a weak form arising from
multiplying the underlying equations and boundary conditions
by arbitrary test functions and integrating over the relevant
domains (the Galerkin approach) (Brenner and Scott, 2008;
Zienkiewicz, Taylor, and Zhu, 2013; Hesthaven, Rozza, and
Stamm, 2016). To date EC in nuclear physics has most often
been implemented with a variational formulation, which for
bound energy eigenstates is familiar from introductory phys-
ics. Less familiar but well established are various variational

FIG. 4. Reduced-basis model workflow for a matrix eigen-
value problem. (a) High-fidelity calculations of snapshots, each
with a large size Nh, (b) are projected in the off-line stage to a
reduced-basis matrix of a small size nb × nb. (c) In the on-line
stage, the emulator only uses size nb operations. Adapted from
Drischler et al., 2023.
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approaches to quantum scattering, where each approach leads
to a different emulator; see Sec. VI.A.
The Galerkin approach starts with the schematic form

hζjHðθÞ − EðθÞjψi ¼ 0; ∀ hζj; ð12Þ

with arbitrary test functions jζi. The reduced dimensionality
for Galerkin RBM formulations enforces orthogonality with a
restricted set of nb test functions,

hζijHðθÞ − ẼðθÞjψ̃i ¼ 0; i ¼ 1;…; nb: ð13Þ

If the test functions are chosen to be the trial basis functions
hζij ¼ hψ ij, then they are called Bubnov-Galerkin or Ritz-
Galerkin (or just Galerkin) formulations. If a different basis
of test functions is used, it is called a Petrov-Galerkin
formulation. For eigenvalue problems with Hamiltonians
that are bounded from below, the Ritz-Galerkin procedure
yields the same equations as the variational approach. The
Petrov-Galerkin option means that the Galerkin procedure is
more general.
For boundary-value partial or ordinary differential

equations, there are general variational and Galerkin RBM
formulations. A projection-based emulator seeks the solution
ψ to

Dðψ ; θÞ ¼ 0 in Ω; Bðψ ; θÞ ¼ 0 on Γ; ð14Þ

whereD and B are operators in the domainΩ and its boundary
Γ, respectively. There are many good references on Galerkin
methods; see Brenner and Scott (2008) and Zienkiewicz,
Taylor, and Zhu (2013). The canonical example of a Poisson
equation with Neumann boundary conditions was worked out
by Melendez et al. (2022).
The same RBM ingredients as in the eigenvalue problem

apply here, with an integral formulation using a stationary
functional such as an action S½ψ �, with δS ¼ 0 yielding
Eq. (14), or starting with

Z
Ω
dΩ ζDðψÞ þ

Z
Γ
dΓζ̄BðψÞ ¼ 0; ð15Þ

and integrating by parts to reach a Galerkin weak formulation
(Zienkiewicz, Taylor, and Zhu, 2013), which for arbitrary
test functions ζ and ζ̄ also yields Eq. (14). With the snapshot
trial basis (10), δS ¼ 0 can be solved for the optimal βi
(for linear operators this is simply a matrix equation). The
Galerkin formulation needs a choice for the test basis
hζj ¼ Pnb

i¼1δβihζij, where δβi organize the orthogonalization
conditions for each i,

δβi

�Z
Ω
dΩζiDðψ̃Þ þ

Z
Γ
dΓζ̄iBðψ̃Þ

�
¼ 0: ð16Þ

[For notational simplicity we leave the partial integrations
implicit in Eq. (16).] Again we have Ritz-Galerkin and Petrov-
Galerkin options. For a broad set of engineering and science
applications using these approaches, good starting points are
works by Hesthaven, Rozza, and Stamm (2016), Quarteroni,

Manzoni, and Negri (2016), and Benner et al. (2017, 2020a,
2020b). Galerkin methods for quantum scattering are dis-
cussed in Sec. VI.A, including an application to a nonaffine
Hamiltonian parametrization.
A pedagogical illustration of Galerkin methods adapted to

nuclear physics energy density functionals for uncertainty
quantification was given by Giuliani et al. (2023). Figure 5
shows the singular values from snapshots of various functions
that arise in the coupled nonlinear differential equations to be
solved in minimizing such an energy density functional. The
efficacy of a basis obtained by POD from snapshots is implied
by the rapid decrease in magnitude of the singular values,
leading to high accuracy from a relatively small basis and
speedups of the order of several thousand (the actual speedup
will be implementation dependent).

C. Other approaches to generalized eigenvalue problems

As emphasized, the key to fast emulation with EC is a
decomposition into one-time off-line tasks and repeated,
computationally efficient on-line tasks. In this context, the
key equations to be solved on-line are the low-dimensional
generalized eigenvalue problem of Eq. (11) and Fig. 4(c). The
nonorthogonality of the high-fidelity snapshots yields a non-
trivial norm matrix ÑðθÞ on the right-hand side of Eq. (11).
This type of secular equation is routinely encountered in
nuclear physics in the discretized version of the projected
generator coordinate method (Griffin and Wheeler, 1957;
Brink and Weiguny, 1968; Ring and Schuck, 1980; Frosini,
Duguet, Ebran, and Somà, 2022) and in the Monte Carlo shell
model (Otsuka et al., 2001; Shimizu et al., 2012). The same is
true for the nonorthogonal configuration interaction (Thom
and Head-Gordon, 2009) in quantum chemistry.
Because the norm matrix is Hermitian and the EC on-line

problem is low dimensional, the norm matrix ÑðθÞ can be
diagonalized to transform Eq. (11) into a standard matrix

FIG. 5. Normalized singular values from nb ¼ 50 snapshots of
various functions that enter a nuclear physics energy density
functional. The snapshots correspond to different parameter sets
to be used in a Galerkin formulation of the energy density
functional, which will be solved many times with different sets
for Bayesian parameter estimation. The rapid decrease with
principal component number k indicates that a small basis size
will be accurate, leading in this case to speedups of several
thousand compared to the original solver. Adapted from Giuliani
et al., 2023.
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diagonalization problem.1 Near-linear redundancies between
the high-fidelity snapshots make the norm matrix poorly
conditioned numerically. Consequently, its kernel L0 must
be explicitly separated from its orthogonal complement L⊥
before transforming Eq. (11) unitarily. In fact, as 0 is an
accumulation point of the eigenspectrum of the norm matrix in
the limit of infinite dimension, small nonzero eigenvalues can
generate instabilities even for the finite dimensions presently
under consideration. The practical remedy to this problem
consists of removing eigenvectors in L0 associated with
eigenvalues smaller than a given threshold ϵth chosen such
that the end results do not depend on its specific value.2

There are several other methods used to deal with the
inversion of poorly conditioned norm matrices. Tikhonov
regularization is one popular approach (Tikhonov, 1943). The
simplest form of Tikhonov regularization is ridge regression
or nugget regularization. In this approach, a small positive
multiple of the identity is added to the norm matrix that needs
to be inverted. However, it is often not clear how to estimate
the systematic bias introduced using this approach.
A new approach called the trimmed sampling algorithm

was introduced by Hicks and Lee (2023). Trimmed sampling
uses physics-based constraints and Bayesian inference
to reduce errors of the generalized eigenvalue problem.
Instead of simply regulating the norm matrix, probability
distributions are sampled for the Hamiltonian and norm matrix
elements, weighted by likelihood functions derived from
physics-informed constraints. These physics-informed con-
straints include well-motivated physics principles such as
positivity of the norm matrix and the smooth convergence of
extremal eigenvalues with respect to variational subspace size.
The posterior distribution is determined for the Hamiltonian
and norm matrix elements, and eigenvectors and observables
are then sampled from that distribution.
In Fig. 6 a schematic diagram of trimmed sampling is

displayed. The raw uncertainty of some observable obtained
from solving the generalized eigenvalue problem is sketched.
The raw uncertainty centered around the starting estimate is
used as the prior probability distribution. The posterior
probability is proportional to the product of the prior prob-
ability and the likelihood associated with the enforcement of
some physics-informed constraints. The posterior probability
distribution does not give a rigorous estimate of the error.
However, it can be concluded that the exact solution is located
at a point where neither the prior probability nor the likelihood
is small (Hicks and Lee, 2023).

IV. CONVERGENCE PROPERTIES OF EC

An important and fundamental question regarding EC is
how fast it converges to the exact answer as a function of the
number of snapshots.

A. Bounds on the EC convergence rate

We are interested in the rate of convergence of EC for
interpolation as well as the more difficult problem of extrapo-
lation. We start with the problem of interpolation and consider a
HamiltonianHðθÞ with a single control parameter θ. Let B be a
compact real-valued domain for θ, and let jψðθÞi be the
eigenvector of interest. Let dðθ; SnbÞ be the norm of the residual
vector when approximating jψðθÞi using EC with snapshots
Snb ¼ fjψðθ1Þi;…; jψðθnbÞig chosen from B. We let dnb
denote the best possible uniform error bound for dðθ; SnbÞ.
This means that we optimize the selection of snapshots for fixed
nb such that maxθ∈Bdðθ; SnbÞ is minimized. Our dnb is an
example of a Kolmogorov N width, which is used to character-
ize the error and convergence of linear subspace approxima-
tions (Kolmogoroff, 1936; Tikhomirov, 1960; Pinkus, 1985).
Within its radius of convergence, a power series expansion

converges exponentially fast with respect to truncation order.
For example, if we truncate the power series around θ ¼ 0 in
Eq. (5) at order M, the resulting error will be Oðjθ=zjMþ1Þ in
the limit of largeM, where z is the nearest nonanalytic point. If
jψðθÞi is analytic on B, we can use this fundamental property
of power series to derive an upper bound on EC errors when
they are used for interpolation.
To begin, we select a set of points such that all parts of B lie

within the radius of convergence of one of these points, which

FIG. 6. Schematic of trimmed sampling. The raw uncertainty
of some observable obtained from solving the generalized
eigenvalue problem is sketched. The raw uncertainty is cen-
tered around the starting estimate and is used as the prior
probability distribution. The posterior probability is propor-
tional to the product of the prior probability and the likelihood
associated with the enforcement of some physics-informed
constraints. The exact solution is located at a point where
neither the prior probability nor the likelihood is small. From
Hicks and Lee, 2023.

1Different numerical methods are called for when the dimension is
large enough to forbid a straight diagonalization of the norm matrix;
see Frosini, Duguet, Ebran, Bally et al. (2022). Note further that the
equivalence of the original and transformed secular equations is not
guaranteed in the continuous version of the projected generator
coordinate method (de Toledo Piza et al., 1977; Broeckhove and
Deumens, 1979). However, neither of these issues occurs in the
present context.

2This is effectively equivalent to removing the singular values
below ϵth in a truncated POD or SVD algorithm and is standard
practice in the RBM approach.
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we call anchor points. We then take snapshots at these anchor
points as well as points infinitesimally close to the anchor
points. Linear combinations of the snapshots can be used to
construct derivatives and higher-order derivatives of jψðθÞi at
each anchor point. If we take nb snapshots, then, in the limit of
large nb, we have enough basis vectors to express the power
series at each anchor point up to a truncation order that scales
asOðnbÞ. It follows that dnb isOðxnbÞ for some positive x < 1.
The generalization to compact real-valued domains in d
dimensions is straightforward. We have OðkdÞ gradients
and higher-order gradients for the multiparameter power series
in θ1;…; θd at truncation order k. For the multidimensional
case, dnb is Oðxnb1=dÞ for some positive x < 1. In the RBM
literature, snapshots composed of high-fidelity solutions and
their first derivatives at different anchor points have been used
for partial differential equations and this is known as the
Hermite subspace approach (Ito and Ravindran, 2001).
In general, EC extrapolation converges more slowly than

interpolation. Consider the case where the EC snapshots lie in
the neighborhood of some point, but extrapolation is required
beyond the radius of convergence at that point. As illustrated
in Fig. 3, we can perform secondary expansions and analyti-
cally continue past branch points in the complex plane. We
can bound the EC extrapolation error in terms of the con-
vergence of multiseries expansions such as that shown in
Eq. (7). These secondary expansions result in slower con-
vergence, and the problem is most severe when there are
branch points at θ ¼ z and z̄ that pinch the real axis. The
number of secondary expansions needed will scale inversely
with the imaginary part of z. The smaller that Im z is, the
sharper the resulting avoided level crossing. For systems
undergoing a quantum phase transition, Im z will decrease
with system size, and this limits the ability of EC to
extrapolate across the transition point in large systems
(Franzke et al., 2024).
The previously described analysis based on power series

and perturbation theory gives an upper bound on the asymp-
totic error of EC for Hamiltonians HðθÞ that are analytic in θ.
However, the actual convergence rate of EC is typically faster
than that of perturbation theory when snapshots are selected
infinitesimally close to some anchor point. This stems from
the fact that the gradients and higher-order gradients in Eq. (8)
are not orthogonal to each other. As described by Sarkar
and Lee (2021) and illustrated in Fig. 7, this results in a
phenomenon that they called differential folding, where
cancellations occur between terms in the power series expan-
sion for jψðθÞi. No such phenomenon occurs in subspace-
projection methods such as EC. As new snapshots are
included, the linear subspace is expanding along directions
that are orthogonal to the previous snapshots. This produces a
faster convergence for EC than perturbation theory.
The faster convergence of EC versus perturbation theory

can be seen in three different matrix examples denoted as
models 1A, 1B, and 1C by Sarkar and Lee (2021). Each of
these matrix models has an affine dependence on one
parameter. In Fig. 8, we show the logarithm of the error
for the eigenstate wave function versus truncation order for
perturbation theory (PT), vector continuation (VC), and EC.
Vector continuation corresponds to simple projection of the

exact eigenvector onto the subspace spanned by the EC
snapshots. For all three cases, we see that the VC and EC
are converging significantly faster than in perturbation theory.
Sarkar and Lee (2021) proved that VC and EC approximations
agree up to terms that scale quadratically with the error of the
VC and EC approximations.

B. Improved many-body perturbation theory

A natural application of EC relates to overcoming some
critical limitations of many-body perturbation theory(-ies)
applied to nuclear systems. While more advanced (for

FIG. 7. The convergence of perturbation theory is impacted by
a phenomenon called differential folding, where cancellations
occur between terms in the power series expansion for jψðθÞi.
Differential folding does not occur in EC calculations, since the
linear subspace is expanding along new orthogonal directions.
From Sarkar and Lee, 2021.

FIG. 8. The logarithm of the error for the eigenstate wave
function vs truncation order for perturbation theory (PT), vector
continuation (VC), and eigenvector continuation (EC). The
results are for three different matrix examples described by
Sarkar and Lee (2021) and labeled as models 1A, 1B, and 1C.
We see that EC and VC both converge faster than in perturbation
theory.
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example, nonperturbative) expansion methods are currently
employed to obtain accurate solutions of the nuclear many-
body Schrödinger equation (Hergert, 2020), many-body
perturbation theories of various flavors are of great use in
many applications (Tichai, Roth, and Duguet, 2020).
In this context, the generic parametric dependence of the

Hamiltonian takes the simple form

HðθÞ ¼ H0 þ θH1; ð17Þ

with θ a complex number, knowing that the case of physical
interest corresponds to θ ¼ 1. Eigenstates of HðθÞ can be
accessed via perturbation theory as a Taylor series around
θ ¼ 0, i.e., via an expansion with respect to eigenstates of H0.
Eventually an eigenstate jΨnðθÞi of HðθÞ and its eigenenergy
EnðθÞ are approximated at perturbative order P through

jΨðPÞ
n ðθÞi≡XP

p¼0

θpjΦðpÞ
n i; ð18Þ

EðPÞ
n ðθÞ≡XP

p¼0

θpEðpÞ
n ; ð19Þ

where the corrections fðjΦðpÞ
n i; EðpÞ

n Þ;p∈Ng can be computed
from the eigenstates of H0 (Shavitt and Bartlett, 2009).
The key problem relates to the fact that the sequence

f(jΨðPÞ
n ðθÞi; EðPÞ

n ðθÞ);P∈Ng typically converges toward
(jΨnðθÞi; EnðθÞ) when P → ∞ only for jjθjj∈ ½0; Rc�, where
Rc denotes the convergence radius. If Rc < 1, the problem of
physical interest is inaccessible via perturbation theory.
In nuclear many-body calculations, several features can

lead to Rc < 1 (Tichai, Roth, and Duguet, 2020), such as
characteristics of the internucleon interactions, the choice of
H0, and the closed- or open-shell nature of the nucleus under
study. While appropriately acting on the first two aspects
allows one to bypass the problem in closed-shell nuclei
(Tichai et al., 2016), it is much more challenging to do so
in open-shell systems (Demol et al., 2021). In this context,
EC was shown to provide a systematic framework to
enlarge the convergence radius via analytic continuation;
i.e., the EC employing the set of P-order perturbative snap-

shots fjΨðPÞ
n ðθiÞi; i ¼ 1;…; Pþ 1g acts as a resummation

technique delivering a controlled and variational sequence
of approximations to Enð1Þ for increasing nb ¼ Pþ 1∈N
(Demol et al., 2020; Franzke et al., 2022).
Figure 9 demonstrates that the sequence of approximations

to the ground-state energy of the open-shell 18O nucleus
obtained via EC converges rapidly from above toward E0ð1Þ
even though the corresponding perturbative series diverges.
Because the Hilbert space dimension employed is small
enough, the results can be validated against the exact value
of E0ð1Þ obtained via the exact diagonalization of the nuclear
Hamiltonian based on configuration interaction (CI) tech-
niques. While the use of EC to resum diverging perturbative
series was first dedicated to nuclear ground states (Demol
et al., 2020), it was later extended to excited eigenstates
(Franzke et al., 2022).

Another successful application of EC is to pairing in many-
body systems; see Baran and Nichita (2023) and Franzke et al.
(2024). However, Franzke et al. also manifested an afore-
mentioned limitation of EC, as they found that they could not
extrapolate between the normal and superfluid regimes if they
included snapshots from only one regime. That is, extrapo-
lating between different phases of large systems will generally
fail unless information on both is included; see also Sowiński
and Garcia-March (2022) and Brehmer et al. (2023).

V. LARGE HAMILTONIAN EIGENSYSTEMS

A powerful approach to obtaining (part of) the spectrum of
the Hamiltonian of a quantum system is the explicit diago-
nalization of a large (typically sparse) Hamiltonian matrix.
Such approaches are ideal candidates for the straightforward
application of EC formulated by Frame et al. (2018), i.e., a
Galerkin projection. Since they play a crucial role in nuclear
structure theory, many related applications of EC arose
relatively quickly in this context.

A. No-core shell-model emulators

As a first application that fueled many subsequent develop-
ments, König et al. (2020) used a no-core shell-model

FIG. 9. Ground-state energy of 18O from Bogoliubov many-
body perturbation theory (BMBPT) (blue circles) and BMBPT-
based EC (red squares) as a function of the perturbative order P
against exact diagonalization (solid line). The employed Hilbert
space dimension is small enough for the exact diagonalization
of the nuclear Hamiltonian to be accessible via configuration
interaction (CI) techniques. Top panel: absolute values. Bottom
panel: relative error to exact diagonalization. Adapted from
Demol et al., 2020.
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framework (formulated in terms of Jacobi coordinates) to
construct EC-based emulators for A ¼ 3 and 4 nucleons, i.e.,
the nuclei 3H and 4He. In this approach, the wave function of
the Hamiltonian, written as H ¼ HðθÞ with a collection of
parameters θ, is expanded in eigenfunctions of a harmonic-
oscillator potential with a chosen frequency. Truncating the
harmonic-oscillator basis based on a maximum number of
oscillator quanta Nmax yields a large finite matrix that can be
diagonalized. For A ¼ 3 and 4 Hamiltonians formulated in
Jacobi coordinates, thereby exactly factorizing the center of
mass components of the wave functions, typical matrix
dimensions in the large space are Nh × Nh ¼ 104 × 104.
EC for one or more states can be set up directly using the
coefficient vectors obtained from Lanczos diagonalization.
The parameters θ considered by König et al. (2020) are

the low-energy constants of the chiral effective field theory
(χEFT) potential used in that work. Overall, there are
d ¼ 16 individual parameters subsumed in θ that determine
two- and three-nucleon interactions in the potential. Setting up
an EC emulator proceeds following the on-line–off-line
scheme described in Sec. II for the generic RBM workflow.

(i) Picking a training set fθignbi¼1 of nb parameters, using
space-filling Latin hypercube sampling (McKay,
Beckman, and Conover, 1979) in the d-dimensional
parameter domain (or some subset thereof).

(ii) Performing exact calculations (for the ground states
of 3H and 4He) in the case of König et al. (2020) for
each point in the training set.

(iii) Constructing a pair of Hamiltonian and norm ma-
trices as described in Sec. II for each evaluation of
the emulator at a target parameter point θ�.

An important property of the chiral Hamiltonian is that it
typically can be written as an affine combination, as intro-
duced in Eq. (1),

HðθÞ ¼ H0 þ
Xd
k¼1

θkHk; ð20Þ

where H0 denotes the kinetic energy plus parameter-
independent parts of the chiral Hamiltonian. This form makes
it particularly efficient to evaluate the emulator at different
target points in the parameter space [step (iii) in the previous
list] because each operator Hk can be individually projected
onto the EC space, and this is a one-time cost that is part of the
off-line emulator setup.
König et al. (2020) provided an analysis of the numerical

performance gain (speedup factor) that is achieved via EC,
shown in Fig. 10 as a particular example. While the details of
that analysis are particular to the employed Jacobi-coordinate
no-core shell-model calculation of 4He, which is a light-mass
nucleus of manageable computational complexity, much of
the discussion applies generally to EC-based emulators with
affine parameter dependence. Note that EC can be used to
greatly reduce the effective dimension of a matrix problem,
and the maximum speedup factor that follows is primarily
determined by the size of the reduced dimension compared
to the original one. The speedup factor as a function of the
number of on-line emulator samples shown in Fig. 10

approaches a maximum value asymptotically because this
analysis includes the off-line cost for setting up the emulator.
For applications of RBMs to heavier-mass nuclei (discussed in
Sec. V.B), which are also significantly more costly to solve for
computationally using high-fidelity models, speed-up factors
of the order of 106–109 have been observed.
Wesolowski et al. (2021) and Djärv et al. (2022) used EC to

construct fast and accurate emulators of no-core shell-model
calculations in the analysis of three-nucleon forces in χEFT.
Djärv et al. (2022) analyzed 6Li in the m scheme, i.e.,
laboratory coordinates. Thus, the dimensionality of the
Hamiltonian matrix also grew dramatically. For Nmax ¼ 8
the matrix dimension in the large space is already Nh × Nh ¼
106 × 106, which requires significant computational efforts to
be diagonalized even when using the Lanczos method. Becker
et al. (2023) expressed the Hamiltonian in a symplectic
symmetry-adapted no-core shell-model basis and used EC
to further reduce the dimensionality of the Hamiltonian to
construct accurate emulators for 12C.

B. Subspace-projected coupled cluster

In nuclear physics and quantum chemistry one often
encounters matrix representations of the many-body
Schrödinger equation that are too large to permit an efficient
diagonalization. For such cases, the coupled cluster (CC)
method (Shavitt and Bartlett, 2009) can be an effective tool for
approximating solutions in a space with dimensionality that is
significantly reduced compared to an asymptotically exact
method such as the no-core shell model. CC is based on a
similarity-transformed Hamiltonian H̄ðθÞ ¼ e−THðθÞeT ,
where the cluster operator T ¼ T1 þ T2 þ � � � þ Tn þ � � � þ
TA is the sum of n-particle n-hole excitation (np-nh) operators
acting on an A-particle vacuum state jΦi. In nuclear physics,
T is usually truncated at the coupled cluster singles and
doubles (CCSD) level, i.e., T ¼ T1 þ T2, with triples excita-
tions T3 incorporated perturbatively (Hagen et al., 2014).
This typically captures 99% of the correlation energy of
closed (sub)shell systems (Bartlett and Musiał, 2007; Ekström
et al., 2023a).

FIG. 10. Speedup factor (ratio of estimated required floating-
point operations) of EC emulation compared to direct calculation
as a function of the number of samples, i.e., the number of calls to
the emulator. The theoretical limit indicates the maximum
speedup reached asymptotically (as the off-line cost becomes
amortized) in the number of samples, which is 614 in this
example. Adapted from König et al., 2020.
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Truncating T makes the similarity transformation nonuni-
tary and H̄ðθÞ non-Hermitian. In the CCSD approximation,
the biorthogonal left and right eigenstates of H̄ are obtained as
solutions to the CCSD equations, which can be viewed as a
set of Galerkin equations based on 1p-1h and 2p-2h test
functions jΦa

i i≡ a†aaijΦi and jΦab
ij i≡ a†aa

†
bajaijΦi. CC

calculations of atomic nuclei belong to a class of ab initio
methods that scale polynomially with system size.
Nevertheless, high-fidelity and state-of-the-art calculations
beyond the lightest-mass nuclei require significant high-
performance computing resources. Ekström and Hagen (2019)
extended EC to non-Hermitian Hamiltonian matrices and the
CC method. This has paved the way for fast and accurate
emulations of properties of atomic nuclei and sophisticated
computational statistics analyses.
Subspace-projected CC (SPCC) is an RBM using snapshots

of the bivariational left and right CC states obtained at nb
different values of the parameters θ, such as the coupling
constants in the description of the strong interaction
Hamiltonian. The matrix elements of the nb × nb SPCC
Hamiltonian and norm matrices have been worked out for
the case of reference states built from harmonic-oscillator
single-particle states (Ekström and Hagen, 2019). Typically
CC calculations exploit a Hartree-Fock reference state. This
embeds a dependence on θ in the basis states that makes the
evaluation of the matrix elements of the SPCCHamiltonian and
the norm matrices more cumbersome but can be done using a
generalized Wick’s theorem. The use of SPCC with more
complex reference states is currently being explored. Inspired
by the success of SPCC, an RBM of an angular-momentum-
projected Hartree-Fock approximation was recently applied to
emulate Hartree-Fock calculations of excited states in axially
deformed nuclei (Ekström et al., 2023b).
The first application (Ekström and Hagen, 2019) of SPCC

to an atomic nucleus (16O) demonstrated that nb ≈ 50 CCSD
snapshots are sufficient to accurately emulate, i.e., with
subpercent precision, realistic predictions of the energy and
charge radius of the ground state in this nucleus as a function
of θ. Here θ denotes the 16 low-energy constants of a nuclear
interaction description at next-to-next-to-leading order in
χEFT. The accuracy of the SPCC emulator is noteworthy
even when one uses few snapshots in a wide range of values
for θ. Indeed, nb ¼ 64 snapshots θi in a Latin hypercube
design covering an extremely dispersed set of predictions for
the energy and radius in 16O is sufficient to obtain ∼97%
accuracy compared to exact CCSD predictions; see Fig. 11.
Narrowing the set of snapshots to a physically motivated
parameter domain increases the accuracy significantly while
using even fewer snapshots. SPCC emulators are also typi-
cally fast, and the bulk properties of 16O could be sampled for
106 values of θ in one hour on a standard laptop computer,
while an equivalent set of exact CCSD calculations would
require 20 years of single-node compute time, i.e., an
observed speedup factor of 105.
Since the first application, SPCC has been extended to

emulate the properties of ground and excited states in heavier-
mass nuclei (Hu et al., 2022; Kondo et al., 2023) and infinite
nuclear matter (Jiang et al., 2024a) at different levels of
fidelity up to perturbative triples excitations. The low

computational cost of the SPCC method, with observed
speedup factors of 109, has thus enabled a wide range of
exciting computational statistics analyses expounding on how
nuclear properties are linked to effective field theory descrip-
tions of the strong interaction.
The CC method follows a bivariational principle that

renders the SPCC Hamiltonian non-Hermitian. This may lead
to difficulties identifying the target state in the spectrum as it is
not guaranteed to be the lowest. Indeed, in heavier-mass nuclei
and nuclear matter, where level densities are higher, the target
state can sometimes appear to be an excited state. The
interpretation of the SPCC spectrum under these conditions
remains an open challenge. Using the bivariational principle,
Jiang et al. (2024b) introduced a method called small-batch
voting to detect the target state in such scenarios. Much
remains to be discovered regarding the convergence properties

FIG. 11. Comparison of SPCC, based on nb ¼ 64 snapshots,
and exact CCSD calculations for (top panel) the ground-state
energy and (bottom panel) charge radius across a wide range of
values. Adapted from Ekström and Hagen, 2019.
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of non-Hermitian EC and the advantages of RBMs applied to
the CC method.

C. Phenomenological shell model

While emulating low-energy constants stemming from
χEFT is probably one of the most relevant scenarios in
ab initio nuclear structure theory, EC provides opportunities
to enhance phenomenological approaches as well. One such
application was given by Yoshida and Shimizu (2022), who
applied EC in connection with the nuclear shell model. In a
shell-model calculation, the Hamiltonian is typically split
into one- and two-body terms H ¼ Hð1Þ þHð2Þ, with natural
extensions to include higher-body terms. Hð1Þ models the
effective mean field that generates nuclear orbitals, while Hð2Þ

describes interaction among valence nucleons. Input param-
eters for a shell-model calculation are single-particle energies
that determine the diagonal part of Hð1Þ and two-body matrix
elements that parametrize the interaction inHð2Þ. Both types of
parameters need to be fitted to experimental data within the
regime of nuclei that one wants to describe with a particular
model (for example, sd shell nuclei).
As a typical starting point, Yoshida and Shimizu (2022)

considered the unified sd shell interaction B (USDB) for sd
shell nuclei (Brown and Richter, 2006), which spans overall a
66-dimensional parameter space of three single-particle ener-
gies and 63 two-body matrix elements, collected into a vector
θ. While each individual diagonalization within the valence
space can be economical, the large number of parameters
implies that there is significant potential for speeding up the
fitting process via EC emulation. Setting up such an emulator
follows the standard EC procedure based on training points θi
with i ¼ 1;…; nb together with the Hamiltonian

H̃ij ¼ hψðθiÞjHðθ�ÞjψðθjÞi
¼

X
k

hð1Þk × OBTDk þ
X
k

Vð2Þ
k × TBTDk; ð21Þ

where hð1Þk and Vð2Þ
k are the single-particle energies and two-

body matrix elements that multiply one- and two-body
transition densities (OBTD and TBTD), respectively, and
jψðθiÞi denotes a particular shell-model wave function
obtained for parameters θi. Equation (21) has an affine
structure that enables the previously mentioned on-line–off-
line decomposition.
A number of benchmark scenarios are considered, varying

the number of training points nb from 50 to 250, and also the
number of states (lowest part of the spectrum starting with the
ground state) per training parameter set, from 1 to 5. Overall,
for a selection of nuclei such as 28Si and 24Mg relative
emulator errors of the order between less than 1% up to a
few percent are observed. A Monte Carlo sampling technique
is proposed to assign emulator uncertainties for individual
evaluations.
In line with other work such as König et al. (2020), Yoshida

and Shimizu (2022) found that emulated wave functions
generally show larger emulation discrepancies than binding
energies, leading to a larger spread for emulator evaluations of

operators such as magnetic dipole moments and quadrupole
moments. To improve the emulator accuracy and avoid
problems in correctly describing such observables, Yoshida
and Shimizu (2022) suggested using the shell-model emulator
as a preprocessor to generate optimized initial states for a
subsequent exact Lanczos diagonalization. More generally
there will be challenges in applying EC beyond the sd shell
(for example, to the pf shell), where there are many more
parameters and the time to generate low-lying states in the off-
line training phase will be greater. This is where the expe-
rience from the RBM community in reduced-order sampling
(such as using SVD methods; see Sec. III) could be profitably
carried over to nuclear problems.

VI. EXAMPLES OF EXTENSIONS

In Secs. VI.A–VI.C we introduce three extensions of the
basic EC method.

A. Emulators for quantum scattering

Uncertainty quantification will often require calculations of
scattering observables with many different Hamiltonian para-
metrizations. Examples in nuclear physics include the cali-
bration of χEFT interactions and of phenomenological optical
potentials. This has led to the extension of model-driven
emulators to the quantum mechanical two-body scattering
problem and beyond. Of particular importance for nuclear
applications is the ongoing development of three-body scat-
tering emulators.
Quantum scattering is not an eigenvalue problem, but the

same principles that make EC effective for bound states carry
over to scattering. In the time-independent formulation of
scattering, we still start with the strong form of the
Schrödinger equation HðθÞjψðθÞi ¼ EjψðθÞi, but now E is
specified rather than determined (although it can also be
treated as a parameter of the emulator). The freedom to
formulate the Schrödinger equation for scattering in different
ways, including homogeneous or inhomogeneous differential
equations for scattering wave functions as well as integral
equations for scattering matrices, leads to many possible
emulators. In addition, there is the freedom to choose trial
and test bases for Galerkin projection; see Sec. III. As such,
beyond the intrinsic use of scattering emulators the scattering
problem is a prototype for multiple approaches to model
reduction in other settings.
There are numerous variational formulations of scattering,

such as those due to Kohn, Schwinger, and Newton (Newton,
2002). Variational here means that there is a stationary
functional, but in most cases this does not imply that the
result is an upper bound, unlike the case with bound states. For
each of these variational formulations there is a corresponding
RBM emulator.
The first implementation of a quantum scattering emulator

(Furnstahl et al., 2020) used the Kohn variational principle
(KVP) for partial wave scattering (Kohn, 1948). For two-body
scattering in a single channel with angular momentum l at on-
shell energy E ¼ q2=2μ, the KVP functional takes the form

K½ψ̃ � ¼ K̃E þ hψ̃ jH − Ejψ̃i: ð22Þ
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In Eq. (22) the trial scattering wave function jψ̃i in position
space is constrained to satisfy the asymptotic normalization
condition

ψ̃ lðrÞ ⟶
r→∞

jlðqrÞ þ nlðqrÞ tan δl; ð23Þ

and

K̃E ¼ −
tan δl
2μq

ð24Þ

is the on-shellK matrix corresponding to the phase shift δlðEÞ.
This functional is stationary about the exact solution ψ such
that K½ψ þ δψ � ¼ KE þOðδKÞ2.
An EC-RBM emulator for the KVP uses a snapshot trial

basis as in Eq. (10), where each basis wave function satisfies
Eq. (23) and the overall constraint for the trial wave function,
which requires

Pnb
i¼1βi ¼ 1, is enforced by a Lagrange

multiplier. Varying the KVP functional with this constraint
yields a low-dimensional ðnb × nbÞ linear matrix problem. If
the Hamiltonian is affine in the parameters, all of the relevant
matrix elements can be precomputed in the off-line stage as
in Fig. 4. An example of this emulator from Furnstahl et al.
(2020) is shown in Fig. 12 for a model nucleon-nucleon
potential with two parameters (the strengths of two Gaussians).
The snapshot wave functions for four randomly chosen sets
of θi are shown in Fig. 12(a), while the corresponding phase
shifts are shown in Fig. 12(b). Despite no indication from
Fig. 12 that this is a good basis, the emulator is fast and
accurate through the full range of energies.
The KVP is sometimes itself used as a high-fidelity solution

method, where it is well known to be plagued with numerical
issues known as Kohn anomalies. These can be mitigated for
emulators by a more general formulation than Eqs. (22)–(24)
that uses multiple scattering matrices (rather than just the K
matrix); see Drischler et al. (2021, 2023) for details. This
approach was extended to coupled channels and to momentum
space by Garcia et al. (2023), with successful tests of the full
range of two-body scattering observables using a state-of-the-
art χEFT Hamiltonian with 25 parameters (up to six in each
partial wave channel, with the parameters emulated independ-
ently). Speedups of 2 orders of magnitude over high-fidelity
calculations were found even when using basis sizes large
enough to achieve a mean relative emulator error of the order
of 10−10 over a wide region in parameter space (in practice this
means that nb is equal to twice the number of parameters in a
given channel).
Another form of the KVP-type emulator avoids using a

Lagrange multiplier to constrain the normalization of basis
wave functions by introducing a trial basis only for the second
(scattering) term of Eq. (23) rather than for the full wave
function. The free wave function [the first term in Eq. (23)]
fixes the normalization. The Schwinger and Newton emu-
lators use alternative variational principles, with the latter
having a trial basis of K matrices rather than wave function
(Melendez et al., 2021); it is applied to the calibration of χEFT
parameters given by Svensson, Ekström, and Forssén (2024).
Each of these variational formulations has a Galerkin

counterpart, so we can use a Galerkin projection as an

alternative path to constructing the emulators. This is worked
out for each of the Kohn, Schwinger, and Newton emulators
given by Drischler et al. (2023). This also means that we can
directly formulate scattering emulators that do not have an
obvious variational counterpart. With the normalization fixed at
the origin (r ¼ 0) by a free solution value and first derivative,
the snapshot basis of scattering terms can be used in a Galerkin
projection of Eq. (12). Application of this emulator to calibrate
phenomenological optical potentials by Odell et al. (2024),
implemented with ROSE software from the BAND project
(Beyer et al., 2023), uses proper orthogonal decomposition
(see Sec. III.A) to optimize the basis and demonstrates a
method to handle the nonaffine parameters of the potential. Yet
another formulation builds on R-matrix theory with successful
applications to fusion observables (Bai and Ren, 2021; Bai,
2022). The frontier for scattering emulators is for three-body
problems. A proof-of-principle demonstration using the KVP
for three bosons was given by Zhang and Furnstahl (2022), and
tests of realistic nuclear scattering are in progress.

B. Finite-volume dependence and resonances

Another extension of EC, developed by Yapa and König
(2022), is concerned with extrapolating or interpolating the

(a)

(b)

FIG. 12. (a) Scattering wave functions for a model nucleon-
nucleon potential at a fixed energy. The dot-dashed curves are for
four choices of θi ¼ fV0R; V0sg that compose the trial basis, the
dashed curve is for the target values, and the solid curve is the
prediction using the KVP emulator. The curves have a common
crossing point at the value of r where the second term in Eq. (23)
is zero. (b) Scattering phase shifts for the same parameter sets and
the emulator prediction. From Furnstahl et al., 2020.
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volume dependence of energy levels in finite periodic
boxes, with the particular application of studying resonance
properties via finite-volume (FV) simulations (Wiese, 1989;
Lüscher, 1991; Rummukainen and Gottlieb, 1995; Klos et al.,
2018). In this scenario, not only does the Hamiltonian
H ¼ HðLÞ depend explicitly on the size of a cubic box L
(via the periodic extension of the interaction part) but, since
eigenstates of HðLÞ have to satisfy the periodic boundary
condition, they also carry an implicit dependence on L.
Specifically, states defined in boxes with different L are
vectors in distinct Hilbert spaces, which makes it a priori
difficult to give a well-defined meaning to matrices

H̃ijðL�Þ ¼ hψLi
jHðL�ÞjψLj

i; ð25aÞ

Ñij ¼ hψLi
jψLj

i ð25bÞ

that appear in a standard EC setup, i.e., a Galerkin projection
with snapshots defined with training points Li and a target
volume L�.
Yapa and König (2022) overcame this issue by defining a

space

H ¼ ⋃
fL>0g

HL: ð26Þ

as a union of Hilbert spaces HL that contain periodic states
with a fixed period L. This setH is not a vector space with the
standard pointwise addition of functions (assuming that HL
are simple function spaces), but it can be made into one by
defining appropriate operations that combine functions with
different periods.
Yapa and König (2022) accomplished this by applying

dilatations (transformations involving stretching and rescal-
ing) that map states onto a common space prior to applying the
standard operations within that space and showed that, when
this procedure was applied to a truncated bases of periodic
functions [such as simple plane waves or the discrete variable
representation used by Klos et al. (2018) to study few-body
systems in finite volume], ultimately the outcome is equivalent
to simply operating within the Rn space of coefficient vectors
(where n denotes the dimension of the finite space). We note
that, in the broader RBM context, problems such as the
volume dependence discussed here have been treated by
mapping the physical domain to a fixed reference domain
and formulating an equivalent problem on this reference
domain (Rozza, 2005; Rozza and Veroy, 2007).
As mentioned at the outset of this section, studying

resonances in FV was a primary motivation for the develop-
ment of finite-volume eigenvector continuation (FVEC).
Figure 13, from Yapa and König (2022), demonstrates this
application with the example of a three-boson resonance
generated by a sum of attractive and repulsive Gaussian
potentials (Blandon, Kokoouline, and Masnou-Seeuws,
2007). For almost the entire range of volumes shown in
Fig. 13, FVEC produces results that in the resolution of the
plot are virtually indistinguishable from exact calculations,
and the avoided level crossing around L ∼ 28 fm, indicating
the resonance, is well reproduced.

Resonances are a fascinating phenomenon found in many
areas of physics that are closely related to the study of open
quantum systems. Numerically studying their properties is
notoriously challenging because accommodating states that
decay with a finite lifetime requires either a time-dependent
treatment or special “tricks” to describe them within a time-
independent framework. Enclosing the system in a finite
volume and looking for avoided level crossing in the vol-
ume-dependent energy spectrum is an elegant way to identify
resonances, but this approach is geared primarily toward few-
body systems. In formal scattering theory, decaying resonan-
ces are generally associated with poles of the scattering matrix
(the “S matrix”) at complex energies E ¼ ER − iΓ=2, located
in the fourth quadrant of the complex plane. The real part ER
denotes the resonance position, while the width Γ > 0 is
related to the inverse of the lifetime.
While ordinary Hermitian quantum mechanics can only

describe either bound states (real E < 0) or scattering (real
E > 0), different options to achieve non-Hermitian extensions
have been developed in order to allow for complex energy
eigenvalues. Yapa, Fossez, and König (2023) developed an
extension of EC that uses the so-called uniform complex
scaling technique to describe resonances, and, in particular,
their trajectories in the complex plane under variation of the
Hamiltonian, which is written as H ¼ HðθÞ. Complex scaling
is based on rotating radial coordinates according to r → reiϕ

with an angle ϕ > 0 or, equivalently (Afnan, 1991), the
conjugate momentum variable q according to q → qe−iϕ.
Along this rotated contour, resonance wave functions behave
effectively like bound states, and the complex-scaled (rotated)
Hamiltonian allows for complex energy eigenvalues. An
important aspect of complex scaling (as well as other methods
that enable the description of resonance in time-independent
quantum mechanics) is that inner products of complex-scaled
states do not involve complex conjugation of the “bra” state.
Yapa, Fossez, and König (2023) showed that eigenvector
continuation for resonance states can be implemented by

FIG. 13. Positive-parity finite-volume energy spectrum of three
bosons exhibiting a resonance state. The solid lines show the
exact states calculated in a certain basis of the discrete variable
representation, whereas the dashed lines indicate FVEC results
obtained based on training data at five different box sizes (solid
circles) using the eight lowest states in the spectrum at each
volume (including the ground state, which is not shown). From
Yapa and König, 2022.
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defining the Hamiltonian and norm matrix elements in terms
of the so-called c product (Moiseyev, Certain, and Weinhold,
1978; Moiseyev, 2011), which for eigenstates jψ1i and jψ2i
with equal angular-momentum quantum numbers is given by

hψ1jψ2i ¼
Z

drψ1ðrÞψ2ðrÞ: ð27Þ

Standard EC works well in this way for extrapolating (or
interpolating) the trajectory of a resonance state as it moves in
the fourth quadrant as a function of θ. While this is relevant,
for example, for constructing EC-based emulators for reso-
nance properties, Yapa, Fossez, and König (2023) are fur-
thermore interested in the case where EC is trained within a
regime of θ, where the state is actually bound, and then
extrapolate from there into the resonance domain. The key
result of that work is that while using the c product alone is not
sufficient to achieve this, an extension of EC that also includes
for each training bound state its complex conjugate (with
complex scaling, bound-state eigenvalues remain real, but the
corresponding wave functions defined along the rotated
contour have nontrivial complex behavior). This conjugate-
augmented eigenvector continuation (CAEC) is then able to
perform the desired extrapolation from bound states to
resonances. An example of this is shown in Fig. 14. While
Yapa, Fossez, and König (2023) considered as proof of
concept only two-body resonances calculated with
complex scaling, they conjectured that generally CAEC is
expected to work for quantum systems involving more
particles, as well as in conjunction with techniques other
than complex scaling.

C. Quantum Monte Carlo simulations

QuantumMonte Carlo simulations are widely used for first-
principles calculations of quantum many-body systems across
many subfields of physics. In cases where sign oscillations are
not a problem, the computational effort usually scales as a
low-order polynomial in the number of particles. Since
quantum Monte Carlo simulations can work with vectors in

extremely large linear spaces, the combination of EC with
quantum Monte Carlo methods is potentially powerful. The
application of EC with quantum Monte Carlo was discussed
by Frame et al. (2018) as well as by Frame (2019).
In EC we perform a Galerkin projection and thus need to

compute inner products between energy eigenstates associated
with different Hamiltonians. However, computing the inner
product of the different eigenstates is not straightforward
using quantum Monte Carlo simulations. We illustrate the
problem with an example involving ground-state wave func-
tions. Let HA and HB be two quantum Hamiltonians with
ground-state wave functions jv0Ai and jv0Bi, respectively,
and ground-state energies E0

A and E0
B, respectively. Let jϕi

be any state that is not orthogonal to jv0Ai and jv0Bi. Starting
with the state jϕi, we can obtain jv0Ai by applying the
Euclidean time evolution operator e−HAt and taking t to be
large and positive. Similarly, we can obtain jv0Bi by applying
the Euclidean time evolution operator e−HBt. In the limit of
large t, we have

e−HAtjϕi ≈ e−E
0
Athv0Ajϕijv0Ai; ð28Þ

e−HBtjϕi ≈ e−E
0
Bthv0Bjϕijv0Bi: ð29Þ

The difficulty arises from the fact that jv0Ai and jv0Bi appear
with exponential factors of e−E

0
At and e−E

0
Bt, respectively.

Calculations of the magnitude of the inner product hv0Ajv0Bi are
prone to large relative errors since the amplitude is dominated
by factors of e−E

0
At and e−E

0
Bt for large t.

A technique called the floating block method that addresses
this problem was introduced by Sarkar, Lee, and Meißner
(2023). The floating block method is based on the observation
that

lim
t→∞

hϕje−HAte−HBte−HAte−HBtjϕi
hϕje−2HAte−2HBtjϕi ¼ jhv0Ajv0Bij2: ð30Þ

We note that the problematic exponential factors of e−E
0
At and

e−E
0
Bt cancel from this ratio. We can also calculate the complex

phase of the inner product using

lim
t→∞

hϕje−2HAte−2HBtjϕi
jhϕje−2HAte−2HBtjϕij ¼

hv0Ajv0Bi
jhv0Ajv0Bij

: ð31Þ

In Eq. (31) we are using the phase convention that hv0Ajϕi and
hv0Bjϕi are positive.
If we try to compute the ratio of the numerator and

denominator in Eq. (30) directly using Monte Carlo simu-
lations, the result will still be noisy since the numerator and
denominator are uncorrelated with each other. To overcome
this problem, the floating block method instead computes
ratios of quantities that are strongly correlated. We define
Zðt1; t2; t3; t4Þ to be the amplitude

Zðt1; t2; t3; t4Þ ¼ hϕje−HAt1e−HBt2e−HAt3e−HBt4 jϕi: ð32Þ

FIG. 14. Bound-state-to-resonance extrapolation performed
with CAEC for a two-body system supporting an S-wave
resonance for certain values of the parameter c. Five training
points were randomly drawn from the region c∈ ð0.9; 1.3Þ per
dataset, leading to bound states within the shaded line along
the negative real axis. Multiple samples of these five points were
used to obtain extrapolations with uncertainty estimates. From
Yapa, Fossez, and König, 2023.
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In the floating block method, we compute ratios of the form

Zðt1; t2; t3; t4Þ
Zðt01; t02; t03; t04Þ

ð33Þ

for values t1; t2; t3; t4 and t01; t
0
2; t

0
3; t

0
4 that are close to each

other. We can then form telescoping products of such ratios,

Zðt1; t2; t3; t4Þ
Zðt01; t02; t03; t04Þ

Zðt01; t02; t03; t04Þ
Zðt001; t002; t003; t004Þ

Zðt001; t002; t003; t004Þ
Zðt0001 ; t0002 ; t0003 ; t0004 Þ

� � � : ð34Þ

In this manner, we can calculate the ratio of the numerator and
denominator in Eq. (30). This is illustrated in Fig. 15.
Sarkar, Lee, and Meißner (2023) used the floating block

method to compute the binding energies of 4He, 8Be, 12C, and
16O using Monte Carlo simulations with a lattice Hamiltonian
of the form Hfree þ cLVL þ cNLVNL. VL is a two-nucleon
interaction with local interactions, meaning that the interaction
does not move the relative positions of the nucleons. VNL is a

two-nucleon interaction composed of nonlocal interactions
where the relative positions of the nucleons are allowed to
change. Sarkar, Lee, and Meißner (2023) normalized VL and
VNL so that ðcL; cNLÞ ¼ ð1; 0Þ and ðcL; cNLÞ ¼ ð0; 1Þ both
gave realistic results for 4He. In Fig. 16, we plot the ground-
state energy of 16O relative to the four-alpha threshold,
Eð16OÞ − 4Eð4HeÞ (Sarkar, Lee, and Meißner, 2023). The
EC calculation is performed with nb ¼ 2 snapshots at
ðcL; cNLÞ ¼ ð0.5; 0.5Þ and ð0; 1Þ in a periodic box of length
L ¼ 15.76 fm. The dashed line shows the contour for the
observed experimental value. The zero contour line corre-
sponds with the quantum phase transition where 16O falls apart
into four alpha particles. These results are consistent with the
finding of Elhatisari et al. (2016) that, without sufficiently
attractive local interactions, symmetric nuclear matter forms a
Bose gas of alpha particles rather than a nuclear liquid.

VII. SUMMARY AND FUTURE DIRECTIONS

In this Colloquium we have presented the historical devel-
opment, the theoretical framework, and the applications of EC
and projection-based emulators. The key concept is that the
eigenvector jψðθÞi is an analytic function for real values of the
parameters and approximately lies on a linear subspace with a
finite number of dimensions. The smoother and more gradual
the undulations, the fewer dimensions needed. The linear
subspace can be found efficiently by taking snapshots of
jψðθiÞi for the selected parameter values θi and using the
corresponding subspace spanned by the snapshots.
EC is part of a larger class of subspace-projection tech-

niques called RBMs, which are themselves part of a yet larger
category of model-driven reduced-order models. The develop-
ment of EC has emphasized applications to quantum systems,
from few-body problems to many-body problems, and from
bound states to scattering states and resonances. Some of the
addressed topics go beyond the traditional class of problems
typically encountered in the reduced-basis literature, such as
parameter extrapolation to domains that are not directly
calculable, accelerating the convergence of many-body per-
turbation theory, and working with extremely large or infinite-
dimensional vector spaces. As noted in Sec. IV, EC can
sometimes face challenges when it is applied to situations
where one tries to extrapolate across boundaries between
physically distinct phases.
While the development of EC and projection-based emu-

lators by the nuclear theory community has naturally focused
on problems of interest in nuclear physics, such as uncertainty
quantification and other computational statistics analyses of
the nuclear Hamiltonian, the methods are general and can be
applied to other fields where quantum wave functions are
important. Remaining challenges include how to identify EC
target states in the spectrum of non-Hermitian Hamiltonians
and how to best handle nonaffine parameter dependencies in
nuclear applications. The usefulness of combining distributed
emulators as miniapplications, for example, in Bayesian
inference analyses, also has yet to be capitalized on.
Other areas where EC and projection-based emulators

should be useful are atomic and molecular physics, ultracold
atomic gases, strongly correlated electronic systems, quantum

FIG. 15. Schematic showing the intermediate values for the
Euclidean time blocks, gradually interpolating between
hϕje−2HAte−2HBtjϕi in the denominator of Eq. (30) and
hϕje−HAte−HBte−HAte−HBtjϕi in the numerator of Eq. (30) (Sar-
kar, Lee, and Meißner, 2023). This corresponds to gradually
changing the values of t1, t2, t3, and t4 in Eq. (32).

FIG. 16. Contour plots for the difference between the EC
emulated energy for 16O and the four-alpha threshold energy
Eð16OÞ − 4Eð4HeÞ. cL is the coefficient of the local two-nucleon
interaction, and cNL is the coefficient of the nonlocal two-nucleon
interaction. The dashed line shows the contour for the observed
experimental value.
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spin liquids, and quantum chemistry. Mejuto-Zaera and
Kemper (2023) applied EC to problems in ab initio quantum
chemistry. In Fig. 17, we show the potential energy surface
for several molecules versus the bond stretching factor R=R0.
The molecules are F2, O2, N2, HF, H2CO, and CO. We show
the EC results obtained with nb ¼ 3, 4, or 5 snapshots and the
comparison with the exact full configuration interaction (FCI)
calculations. Eigenvector continuation is working well in
reproducing all of the potential energy surfaces.
The potential energy surface calculations described by

Mejuto-Zaera and Kemper (2023) can also be performed
on a quantum computer, and the corresponding algorithm is
called quantum EC (Francis et al., 2022). While much effort in
the quantum computing community has focused on variational
methods optimizing a single trial vector, variational calcu-
lations using subspace projection can in principle provide a
better approximation to the eigenstate of interest for the same
computational resources.
In quantum EC, the same general approach is used as

with a classical computer, though there are some technical
differences. On a digital quantum computer with N qubits, we
start with the state where all qubits are in the j0i state:
j00 � � � 0i. Let jψ ii denote eigenstate snapshots at parameter
values θi. We assume that our chosen quantum eigenstate
algorithm gives us some unitary gate Ui such that the action
on j00 � � � 0i gives us a good approximation to jψ ii.
The norm and Hamiltonian matrix elements can be deter-

mined using an ancilla qubit. We use the ancilla qubit to apply
the controlled operations for Ui and U†

j . Such a controlled
operation means that we perform the transformation only if the
ancilla qubit is in the j1i state. After these controlled unitary
operators, we then apply σX or σY rotations to the ancilla qubit
and measure it, with either j0i or j1i as the outcome. This
information is enough to determine the real and imaginary
parts of hψ jjψ ii. To compute the elements hψ jjHðθÞjψ ii, we
decompose HðθÞ into a sum of tensor products of Pauli
operators. For each tensor product of Pauli operators UP, we
use the ancilla qubit to apply the controlled operations for Ui,

UP, and U†
j . We then apply σX and σY rotations to the ancilla

qubit and measure it (Francis et al., 2022).
EC and projection-based emulators can also be combined

with data-driven reduced-order model techniques such as
Gaussian processes, neural networks, and dynamic mode
decomposition. The combination of reduced-basis methods
and machine learning is an active area of research and can be
realized in many different ways. As noted in Sec. III, active
learning methods (such as greedy algorithms) are often used to
optimize the off-line selection of snapshot parameters and
projection subspaces (Quarteroni, Manzoni, and Negri, 2016;
Chellappa, Feng, and Benner, 2021; Sarkar and Lee, 2022). In
numerically challenging problems where convergence with
respect to the projection subspace dimension is slow, it is
useful to treat the projection-based emulator as one compo-
nent embedded within a larger framework such as a deep
neural network or an autoencoder (Brunton and Kutz, 2019;
Dal Santo, Deparis, and Pegolotti, 2020; Fresca et al., 2020;
Chen et al., 2021).
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Lüscher, M., 1991, “Signatures of unstable particles in finite
volume,” Nucl. Phys. B364, 237–251.

Machiels, L., Y. Maday, I. Oliveira, A. Patera, and D. Rovas, 2000,
“Output bounds for reduced-basis approximations of symmetric
positive definite eigenvalue problems,” C. R. Acad. Sci., Ser. I:
Math. 331, 153–158.

McKay, M. D., R. J. Beckman, and W. J. Conover, 1979, “A
comparison of three methods for selecting values of input variables

in the analysis of output from a computer code,” Technometrics 21,
239–245.

Mejuto-Zaera, C., and A. F. Kemper, 2023, “Quantum eigenvector
continuation for chemistry applications,” Electron. Struct. 5,
045007.

Melendez, J. A., C. Drischler, R. J. Furnstahl, A. J. Garcia, and X.
Zhang, 2022, “Model reduction methods for nuclear emulators,”
J. Phys. G 49, 102001.

Melendez, J. A., C. Drischler, A. J. Garcia, R. J. Furnstahl, and X.
Zhang, 2021, “Fast and accurate emulation of two-body scattering
observables without wave functions,” Phys. Lett. B 821, 136608.

Moiseyev, N., 2011, Non-Hermitian Quantum Mechanics
(Cambridge University Press, Cambridge, England)..

Moiseyev, N., P. Certain, and F. Weinhold, 1978, “Resonance
properties of complex-rotated Hamiltonians,” Mol. Phys. 36,
1613–1630.

Nair, P. B., A. J. Keane, and R. S. Langley, 1998, “Improved first-
order approximation of eigenvalues and eigenvectors,” AIAA J. 36,
1721–1727.

Newton, R. G., 2002, Scattering Theory of Waves and Particles
(Dover, Mineola, NY).

Odell, D., P. Giuliani, K. Beyer, M. Catacora-Rios, M. Y. H. Chan, E.
Bonilla, R. J. Furnstahl, K. Godbey, and F. M. Nunes, 2024, “ROSE:
A reduced-order scattering emulator for optical models,” Phys. Rev.
C 109, 044612.

Otsuka, T., M. Honma, T. Mizusaki, N. Shimizu, and Y. Utsuno,
2001, “Monte Carlo shell model for atomic nuclei,” Prog. Part.
Nucl. Phys. 47, 319–400.

Pichi, F., A. Quaini, and G. Rozza, 2020, “A reduced order modeling
technique to study bifurcating phenomena: Application to the Gross-
Pitaevskii equation,” SIAM J. Sci. Comput. 42, B1115–B1135.

Pinkus, A., 1985, n-Widths in Approximation Theory, Ergebnisse
der Mathematik und ihrer Grenzgebiete Vol. 7 (Springer-Verlag,
Berlin).

Quarteroni, A., A. Manzoni, and F. Negri, 2016, Reduced Basis
Methods for Partial Differential Equations: An Introduction,
La Matematica per il 3+2 Vol. 92 (Springer, New York).

Ring, P., and P. Schuck, 1980, The Nuclear Many-Body Problem
(Springer, Berlin).

Rozza, G., 2005, “Shape design by optimal flow control and
reduced basis techniques: Applications to bypass configurations
in haemodynamics,” Ph.D. thesis (École Polytechnique Fédérale de
Lausanne).

Rozza, G., and K. Veroy, 2007, “On the stability of the reduced
basis method for Stokes equations in parametrized domains,”
Comput. Methods Appl. Mech. Eng. 196, 1244–1260.

Rummukainen, K., and S. Gottlieb, 1995, “Resonance scattering
phase shifts on a non-rest-frame lattice,” Nucl. Phys. B450,
397–436.

Saad, Y., 2011, Numerical Methods for Large Eigenvalue Problems,
2nd ed. (Society for Industrial and Applied Mathematics,
Philadelphia).

Sarkar, A., and D. Lee, 2021, “Convergence of Eigenvector Con-
tinuation,” Phys. Rev. Lett. 126, 032501.

Sarkar, A., and D. Lee, 2022, “Self-learning emulators and eigen-
vector continuation,” Phys. Rev. Res. 4, 023214.

Sarkar, A., D. Lee, and U.-G. Meißner, 2023, “Floating Block
Method for Quantum Monte Carlo Simulations,” Phys. Rev. Lett.
131, 242503.

Shavitt, I., and R. J. Bartlett, 2009,Many-Body Methods in Chemistry
and Physics: MBPT and Coupled-Cluster Theory, Cambridge
Molecular Science (Cambridge University Press, Cambridge,
England).

Duguet et al.: Colloquium: Eigenvector continuation …

Rev. Mod. Phys., Vol. 96, No. 3, July–September 2024 031002-19

https://doi.org/10.1103/PhysRevC.107.054001
https://doi.org/10.3389/fphy.2022.1054524
https://doi.org/10.1103/PhysRev.108.311
https://doi.org/10.1103/PhysRev.108.311
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1103/PhysRevE.105.045303
https://doi.org/10.3389/fphy.2020.00379
https://doi.org/10.1103/PhysRevResearch.5.L022001
https://doi.org/10.1103/PhysRevResearch.5.L022001
https://doi.org/10.1051/m2an/2016025
https://doi.org/10.1051/m2an/2016025
https://doi.org/10.1038/s41567-022-01715-8
https://doi.org/10.1080/10618560108970021
https://doi.org/10.1080/10618560108970021
https://doi.org/10.1103/PhysRevC.109.L061302
https://doi.org/10.1103/PhysRevC.109.064314
https://doi.org/10.1103/PhysRevC.109.064314
https://doi.org/10.1103/PhysRevC.98.034004
https://doi.org/10.1103/PhysRev.74.1763
https://doi.org/10.2307/1968691
https://doi.org/10.2307/1968691
https://doi.org/10.1038/s41586-023-06352-6
https://doi.org/10.1038/s41586-023-06352-6
https://doi.org/10.1016/j.physletb.2020.135814
https://doi.org/10.1016/0550-3213(91)90584-K
https://doi.org/10.1016/S0764-4442(00)00270-6
https://doi.org/10.1016/S0764-4442(00)00270-6
https://doi.org/10.2307/1268522
https://doi.org/10.2307/1268522
https://doi.org/10.1088/2516-1075/ad018f
https://doi.org/10.1088/2516-1075/ad018f
https://doi.org/10.1088/1361-6471/ac83dd
https://doi.org/10.1016/j.physletb.2021.136608
https://doi.org/10.1080/00268977800102631
https://doi.org/10.1080/00268977800102631
https://doi.org/10.2514/2.578
https://doi.org/10.2514/2.578
https://doi.org/10.1103/PhysRevC.109.044612
https://doi.org/10.1103/PhysRevC.109.044612
https://doi.org/10.1016/S0146-6410(01)00157-0
https://doi.org/10.1016/S0146-6410(01)00157-0
https://doi.org/10.1137/20M1313106
https://doi.org/10.1016/j.cma.2006.09.005
https://doi.org/10.1016/0550-3213(95)00313-H
https://doi.org/10.1016/0550-3213(95)00313-H
https://doi.org/10.1103/PhysRevLett.126.032501
https://doi.org/10.1103/PhysRevResearch.4.023214
https://doi.org/10.1103/PhysRevLett.131.242503
https://doi.org/10.1103/PhysRevLett.131.242503


Shimizu, N., T. Abe, Y. Tsunoda, Y. Utsuno, T. Yoshia, T. Mizusaki,
M. Honma, and T. Otsuka, 2012, “New-generation Monte Carlo
shell model for the K computer era,” Prog. Theor. Exp. Phys.
01A205.

Sowiński, T., and M. A. Garcia-March, 2022, “Fundamental limi-
tations of the eigenvalue continuation approach,” Phys. Rev. C 106,
024002.

Svensson, I., A. Ekström, and C. Forssén, 2024, “Inference of the
low-energy constants in Δ-full chiral effective field theory includ-
ing a correlated truncation error,” Phys. Rev. C 109, 064003.

Tews, I., et al., 2022, “Nuclear forces for precision nuclear physics: A
collection of perspectives,” Few-Body Syst. 63, 67.

Thom, A. J. W., and M. Head-Gordon, 2009, “Hartree-Fock solutions
as a quasidiabatic basis for nonorthogonal configuration interac-
tion,” J. Chem. Phys. 131, 124113.

Tichai, A., J. Langhammer, S. Binder, and R. Roth, 2016, “Hartree-
Fock many-body perturbation theory for nuclear ground-states,”
Phys. Lett. B 756, 283–288.

Tichai, A., R. Roth, and T. Duguet, 2020, “Many-body perturbation
theories for finite nuclei,” Front. Phys. 8, 164.

Tikhomirov, V. M., 1960, “Diameters of sets in function spaces
and the theory of best approximations,” Russ. Math. Surv. 15,
75.

Tikhonov, A. N., 1943, “On the stability of inverse problems,” Dokl.
Akad. Nauk SSSR 39, 195–198.

Wesolowski, S., I. Svensson, A. Ekström, C. Forssén, R. J. Furnstahl,
J. A. Melendez, and D. R. Phillips, 2021, “Rigorous constraints on
three-nucleon forces in chiral effective field theory from fast and
accurate calculations of few-body observables,” Phys. Rev. C 104,
064001.

Wiese, U.-J., 1989, “Identification of resonance parameters from the
finite volume energy spectrum,” Nucl. Phys. B, Proc. Suppl. 9,
609–613.

Yapa, N., K. Fossez, and S. König, 2023, “Eigenvector continuation
for emulating and extrapolating two-body resonances,” Phys. Rev.
C 107, 064316.

Yapa, N., and S. König, 2022, “Volume extrapolation via eigenvector
continuation,” Phys. Rev. C 106, 014309.

Yoshida, S., and N. Shimizu, 2022, “Constructing approximate shell-
model wavefunctions by eigenvector continuation,” Prog. Theor.
Exp. Phys. 053D02.

Zhang, X., and R. J. Furnstahl, 2022, “Fast emulation of quantum
three-body scattering,” Phys. Rev. C 105, 064004.

Zienkiewicz, O. C., R. L. Taylor, and J. Z. Zhu, 2013, The Finite
Element Method: Its Basis and Fundamentals, 7th ed. (Butterworth-
Heinemann, Oxford).

Duguet et al.: Colloquium: Eigenvector continuation …

Rev. Mod. Phys., Vol. 96, No. 3, July–September 2024 031002-20

https://doi.org/10.1093/ptep/pts012
https://doi.org/10.1093/ptep/pts012
https://doi.org/10.1103/PhysRevC.106.024002
https://doi.org/10.1103/PhysRevC.106.024002
https://doi.org/10.1103/PhysRevC.109.064003
https://doi.org/10.1007/s00601-022-01749-x
https://doi.org/10.1063/1.3236841
https://doi.org/10.1016/j.physletb.2016.03.029
https://doi.org/10.3389/fphy.2020.00164
https://doi.org/10.1070/rm1960v015n03abeh004093
https://doi.org/10.1070/rm1960v015n03abeh004093
https://doi.org/10.1103/PhysRevC.104.064001
https://doi.org/10.1103/PhysRevC.104.064001
https://doi.org/10.1016/0920-5632(89)90171-0
https://doi.org/10.1016/0920-5632(89)90171-0
https://doi.org/10.1103/PhysRevC.107.064316
https://doi.org/10.1103/PhysRevC.107.064316
https://doi.org/10.1103/PhysRevC.106.014309
https://doi.org/10.1093/ptep/ptac059
https://doi.org/10.1093/ptep/ptac059
https://doi.org/10.1103/PhysRevC.105.064004

