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Recent years have witnessed an explosion of interest in quantum devices for the production, storage,
and transfer of energy. This Colloquium concentrates on the field of quantum energy storage by
reviewing recent theoretical and experimental progress in quantum batteries. Provided first is a
theoretical background discussing the advantages that quantum batteries offer with respect to their
classical analogs. The existing quantum many-body battery models are then reviewed and a thorough
discussion of important issues related to their “open nature” is presented. The Colloquium concludes
with a discussion of promising experimental implementations, preliminary results available in the
literature, and perspectives.
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I. INTRODUCTION

Developments in the field of quantum information have
generated great expectations that quantum effects like entan-
glement could be exploited to perform certain taskswith sizable
advantages over classical devices (Horodecki et al., 2009).
Theoretical examples for the existence of such advantages have
led to considerable research and industry operations in the
fields of computations (Ladd et al., 2010; Fedorov et al., 2022),
cryptography (Gisin et al., 2002; Portmann and Renner, 2022),
and sensing (Giovannetti, Lloyd, and Maccone, 2011; Degen,
Reinhard, and Cappellaro, 2017). The emergence of new
quantum technologies based on these effects is expected to
eventually lead to a disruptive technological revolution
(Acín et al., 2018).
In the past, technological revolutions were driven by the

development of a new scientific theory. Two centuries ago, the
success of the first industrial revolution was deeply intertwined
with the development of thermodynamics (Carnot, 1824; Fermi,
1956). As an empirical theory based on laws postulated from
experience (Fermi, 1956), thermodynamics has a universal

character, offering predictions that are valid for both classical
and quantum settings. For example, just as heat cannot naturally
flow from a cold to a hot bath, the efficiency of a heat engine
based on a quantum system cannot surpass the Carnot limit.
Analogously, entanglement cannot be used to extractmorework
from a thermal energy reservoir (Hovhannisyan et al., 2013).
Thus, at first glance there seems to be no place for a quantum
advantage in thermodynamics.
However, thermodynamics at equilibrium does not set

bounds on how fast energy is transformed into heat and
work. Therefore, it is natural to seek thermodynamic quantum
advantages in quantum systems that are driven out of
equilibrium (Vinjanampathy and Anders, 2016; Binder
et al., 2018). Groundbreaking theoretical results in the field
of quantum thermodynamics have shown that entanglement
generation is linked to faster work extraction when energy is
stored in many-body quantum systems (Hovhannisyan et al.,
2013). These and other results have sparked interest in
quantum systems used as heat engines (Kieu, 2004; Uzdin,
Levy, and Kosloff, 2016) and energy storage devices. This led
to the emergence of research on quantum batteries, formally
introduced by Alicki and Fannes (2013), and the search for
quantum effects that improve their performance (Binder et al.,
2015b; Campaioli et al., 2017).
Like electrochemical batteries, quantum batteries are tem-

porary energy storage systems. They have a finite energetic
capacity and power density (Julià-Farré et al., 2020) and can
lose energy to the environment (Liu, Segal, and Hanna, 2019;
Gherardini et al., 2020). However, quantum batteries can be
charged (or expended) via operations that generate coherent
superpositions between different states (Binder et al., 2015a).
In quantum batteries composed of many subcells, these
coherences can form entanglement and other nonclassical
correlations (Campaioli et al., 2017), leading to a super-
extensive scaling of the charging power. This quantum effect,
which is akin to the Heisenberg scaling in quantum metrology
and that of Grover’s search algorithm, leads to an advantage
over classical devices and has thus been one of the main
driving forces of this field.
A major boost to this research field occurred when Ferraro

et al. (2018) showed that a quantum battery based on the
Dicke model1 (Dicke, 1954) could achieve a superextensive
power scaling. Since this finding, many other quantum battery
models have been theoretically proposed, from one-dimen-
sional spin chains (Le et al., 2018) to strongly interacting
Sachdev-Ye-Kitaev fermionic batteries (Rossini et al., 2020).
More recently important but preliminary steps toward the
experimental implementation of quantum batteries have
also been made (Hu et al., 2022; Joshi and Mahesh, 2022;
Quach et al., 2022).
Meanwhile, theoretical studies have clarified the role

of quantum correlations and collective effects toward achiev-
ing superextensive power scaling (Campaioli et al., 2017;
Andolina et al., 2018; Julià-Farré et al., 2020; Gyhm,

1The Dicke model can be engineered in solid-state and other
quantum architectures. Its energy storage properties were studied by
Fusco, Paternostro, and De Chiara (2016), Ferraro et al. (2018),
Crescente et al. (2020a), Dou et al. (2022), and Gemme et al. (2023).
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Šafránek, and Rosa, 2022), i.e., a charging power that grows
faster than the number of subcells. Recent studies have also
proposed protocols to maximize charging efficiency and
precision (Friis and Huber, 2018; Santos et al., 2019; Rosa
et al., 2020) and methods to prevent energy loss due to the
environment (Liu, Segal, and Hanna, 2019; Gherardini et al.,
2020; Quach and Munro, 2020; Mitchison, Goold, and Prior,
2021; Hernández-Gómez et al., 2022). However, many
aspects of the physics of quantum batteries remain unex-
plored, such as the ultimate limits on energy density, absolute
power, and the lifetime of energy storage (Mohan and Pati,
2021). Furthermore, experimental work on quantum batteries
is still in its infancy, and a fully operational proof of principle
is yet to be demonstrated.
This Colloquium aims to be a self-contained, pedagogical

review of this rapidly developing field. In Sec. II, we
introduce the theoretical framework to study quantum
batteries and look at theorems and bounds of general
validity. We then examine the most prominent models of
quantum batteries in Sec. III, focusing on the superextensive
scaling of the charging power. The effect of work fluctua-
tions on the precision of charging and work extraction
protocols are reviewed in Sec. IV. We then review
approaches for charging and stabilization in the presence
of decoherence and energy-loss processes in Sec. V. In
Sec. VI, we survey the most promising platforms for the
experimental realization of quantum batteries. With the aim
of providing scope and momentum to this emerging research
field, we conclude by presenting in Sec. VII an overview of
urgent research questions.

II. THEORETICAL BACKGROUND AND METHODS

A. Unitary charging and work extraction

In their seminal work, Alicki and Fannes (2013) defined a
quantum battery as a d-dimensional system whose internal
Hamiltonian H0 (or bare Hamiltonian) has nondegenerate
energy levels (ϵk < ϵkþ1),

H0 ¼
Xd
k¼1

ϵkjkihkj: ð1Þ

In Eq. (1) we relax this condition by allowing partial
degeneracy (ϵk ≤ ϵkþ1) as long as the Hamiltonian H0 has
a nonzero bandwidth2 w½H0� ≔ ϵmax − ϵmin > 0, where ϵmax
(ϵmin) is the largest (smallest) eigenvalue.3 Energy can be
stored in this system by preparing it in some excited state ρ
such that its energy Tr½H0ρ� > ϵ1. Examples of quantum
systems that can be used as quantum batteries include (but are
not limited to) spins in a magnetic field (Le et al., 2018),
semiconductor quantum dots (Wenniger et al., 2022), super-
conducting qubits (Santos et al., 2019; Dou, Wang, and Sun,
2022a), the electronic states of an organic molecule (Liu and
Hanna, 2018; Quach et al., 2022), and the states of the

electromagnetic field confined in a high-quality photonic
cavity (Friis and Huber, 2018).
In contrast with its classical counterpart, a quantum battery

can be charged via unitary operations that may temporarily
generate coherences between its eigenstates jki. Besides
minimizing heat production, unitary charging can generate
nonclassical correlations in many-body quantum batteries,
leading to the superextensive charging power scaling dis-
cussed in Secs. II.B.1 and III.
For the moment, we focus on the amount of energy that can

be reversibly injected (charging) or extracted (discharging) via
a cyclic unitary process,

ρ̇ðtÞ ¼ −i½H0 þH1ðtÞ; ρðtÞ�; ð2Þ

where H1ðtÞ is a Hermitian time-dependent interaction that is
turned on at time t ¼ 0 and off at time t ¼ τ and ρ̇ðtÞ
represents the time derivative of ρðtÞ, with ρ0 ≔ ρð0Þ. Note
that ℏ is set to 1 unless otherwise specified. The energy W
deposited in such a way is measured with respect to the
internal Hamiltonian H0,

WðτÞ ¼ Tr½H0ρðτÞ� − Tr½H0ρ0�; ð3Þ

where ρðτÞ ¼ Uðτ; 0Þρ0U†ðτ; 0Þ is obtained from the solution
of Eq. (2), with Uðt; 0Þ ¼ T ( expf−iR t

0ds½H0 þH1ðsÞ�g) the
time-evolution operator expressed in terms of the time-order-
ing operator T . If we restrict ourselves to unitary evolution,
work injection (charging) and extraction are effectively
equivalent tasks. More precisely the work extracted from
the system Wout is related to the energy deposited Win by the
relationWin ¼ −Wout, whereWin is obtained as in Eq. (3). The
subscripts are often omitted here to simplify the notation.
The processes of reversible charging and work extraction

are illustrated in Fig. 1 in relation to those of energy loss

FIG. 1. A quantum battery is a quantum system with nonzero
energy bandwidth wðH0Þ ¼ ϵmax − ϵmin > 0. Charging and work
extraction can be performed bymeans of cyclic unitary operations,
as prescribed by Eq. (2). An active state ρ (i.e., a nonpassive state)
and a unitary operation U are needed, so some work Tr½ðρ −
UρU†ÞH0� > 0 can be extracted from the system. Optimally U
extracts the ergotropy EðρÞ, defined in Eq. (4). In practice, a
quantum batterymay lose energy at some relaxation rate τ−1r due to
the interactionwith the environment, as discussed in Sec. V. Ideally
charging or extraction and relaxation timescales should be well
separated (τr ≫ τc; τe).

2Corresponding to the maximal amount of energy that can be
stored in the system.

3w½H0� ≔ ϵd − ϵ1 for nondegenerate spectra.
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(or leakage), as discussed in Sec. V. We now introduce some
figures of merit and key concepts by gradually introducing the
fundamental relation between charging power and the for-
mation of quantum correlations, which is later reviewed in
Sec. II.B.

1. Ergotropy and passive states

Restricting the dynamics to unitary cycles imposes a bound
on the amount of energy that can be deposited or extracted via
Eq. (2). This observation leads to the definition of ergotropy
(Allahverdyan, Balian, and Nieuwenhuizen, 2004), denoted
by E or Wmax, as the maximal amount of work that can be
extracted from a state ρ via unitary operations,

EðρÞ ≔ Tr½H0ρ� − min
U∈SUðdÞ

fTr½H0UρU†�g: ð4Þ

In Eq. (4) the minimization is performed with respect to
unitary operators U in the special unitary group SUðdÞ. As
such, the ergotropy is one of the key figures of merit for the
performance of quantum batteries (Sone and Deffner, 2021;
Tirone, Salvia, and Giovannetti, 2021; Touil, Çakmak, and
Deffner, 2022).
When no work can be extracted from some state, such a

state is called passive. In other words, a state σ is passive when
Tr½H0σ� ≤ Tr½H0UσU†� for all unitaries U. It turns out that σ
is passive if and only if it is diagonal in the basis of the
Hamiltonian H0, and its eigenvalues are nonincreasing with
the energy (Lenard, 1978; Pusz andWoronowicz, 1978; Salvia
and Giovannetti, 2021; Mazzoncini et al., 2023),

σ ¼
Xd
k¼1

skjkihkj; skþ1 ≤ sk: ð5Þ

For any state ρ ¼ P
k rkjkihkj, there is a unique4 passive

state σρ that minimizes the term Tr½H0UρU†� in Eq. (4). The
state σρ is obtained via some unitary operation Uρ that sorts
the eigenvalues of ρ in nonincreasing order frkg → fr0kg such
that

σρ ¼ UρρU
†
ρ ¼

Xd
k¼1

r0kjkihkj: ð6Þ

Accordingly the ergotropy can be expressed in terms of such a
passive state as EðρÞ ¼ Tr½H0ρ� − Tr½H0σρ�.
As one would expect from Eq. (5), all thermal states5 Gβ ¼

exp½−βH0�=Z are passive since they commute with H0 and
their eigenvalues do not increase with energy. Less trivial is
the fact that the ergotropy of some state ρ is upper bounded as

EðρÞ ≤ Tr½H0ρ� − Tr½H0Gβ̄�; ð7Þ

where β̄ is such that ρ and Gβ̄ have the same von Neumann
entropy SðρÞ¼−Tr½ρlogρ�¼SðGβÞ (Alicki and Fannes, 2013).
Since every state of a two-level system (TLS) can be seen as

a thermal state, when d ¼ 2 all passive states are thermal and
Eq. (7) becomes a tight bound. In general, passive states may
not be thermal, and finding σρ effectively becomes a sorting
problem in the eigenbasis of the Hamiltonian H0, whose
computational complexity typically scales as Oðd log dÞ
(Zutshi and Goswami, 2021).

2. Completely passive states

A key question in quantum thermodynamics is to determine
whether or not quantum phenomena like coherence (Francica
et al., 2020) and entanglement can be harnessed in some
thermodynamics task (Binder et al., 2018). To address this
question, Alicki and Fannes (2013) considered the case of
composite systems with N constituents and focused on states
of the form ⊗N ρ ≔⊗N

j¼1 ρ, i.e., states that are given by N
copies of the same state ρ. They considered a system whose

Hamiltonian HðNÞ
0 is given by N local copies of H0,

HðNÞ
0 ¼

XN
i¼1

Hi; ð8Þ

where Hi ≔ 11 ⊗ � � � ⊗ 1i−1 ⊗ H0 ⊗ 1iþ1 � � � ⊗ 1N . This
system can be seen as a quantum battery given by N
noninteracting cells.6 In Secs. III and VI we discuss possible
experimental implementations of such a Hamiltonian.
Note that N copies of a passive state may not form a passive

state with respect to HðNÞ
0 . It therefore makes sense to define a

subclass of passive states that are called completely passive.
These are N-copy states that are passive for any N. Notably a
state ρ is completely passive if and only if it is thermal
(Lenard, 1978).

3. Bounds on extractable and injectable work

Using the aforementioned result, Alicki and Fannes (2013)
showed that the bound in Eq. (7) could be achieved asymp-
totically in the N → ∞ limit for systems with N constituents.
Given an N-copy state ⊗N ρ, the ergotropy per copy εðNÞ is
defined as

εðNÞ ≔ 1

N
fTr½HðNÞ

0 ⊗Nρ� − Tr½HðNÞ
0 σ⊗Nρ�g: ð9Þ

In the N → ∞ limit, εðNÞ is tightly bounded as in Eq. (7),
limN→∞ εðNÞ ¼ Tr½H0ρ� − Tr½H0Gβ̄�, which follows from the
fact that the energy difference between the passive state of the
copies σ⊗Nρ and ⊗NGβ̄ vanishes in the limit N → ∞ (Alicki
and Fannes, 2013).

4. Entanglement generation and work extraction and injection

Since the passive state of the copies σ⊗Nρ is diagonal in the

eigenbasis of the local Hamiltonian HðNÞ
0 , it follows that it is4If H0 has a nondegenerate spectrum.

5In Gβ, β ¼ 1=kBT is the inverse temperature, or inverse thermal
energy, Z ¼ Tr exp½−βH0�, and kB is the Boltzmann constant. 6Note that in general HðNÞ will have degenerate eigenvalues.
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also separable.7 However, using local operations (here per-
mutations8) of the eigenvalues of ⊗N ρ, we can reach only
⊗N σρ at best. Therefore, to extract the ergotropy (or,
equivalently, to inject the antiergotropy) one must use entan-
gling operations, i.e., operations that can generate entangle-
ment between two or more subsystems.
This observation led Alicki and Fannes (2013) to suggest

that entanglement generation is needed for optimal revers-
ible work extraction. However, it was later shown by
Hovhannisyan et al. (2013) that the ergotropy can in fact
be extracted from N copies of ρ while keeping their state
separable at all times as long as at least two-body operations
are available. They showed that entanglement generation can
always be avoided by taking a longer unitary trajectory. The
results of Hovhannisyan et al. (2013) hinted at a relation
between entanglement generation and power, and in the
process answered the key questions of Sec. II.A.2 and led
the way toward the quantitative study of such a relation.

B. Charging power

1. Average and instantaneous power

Binder et al. (2015b) proposed shifting the focus from work
extraction to charging. They considered the average charging
power hPiτ of some unitary process as the ratio between the
average deposited energy WðτÞ and the time τ required to
complete the procedure. Let PðtÞ ≔ ẆðtÞ be the instantaneous
power

PðtÞ ¼ Tr½H0ρ̇ðtÞ� ð10Þ

intended as time-local energy gain with respect to the time-
independent internal Hamiltonian of the battery. The average
power is then given by

hPiτ ¼
WðτÞ
τ

; ð11Þ

where hfiτ denotes the time average of some function fðtÞ in
the time interval t∈ ½0; τ�, i.e., hfiτ ≔ ð1=τÞR τ

0dtfðtÞ. For
simplicity, we often omit the subscript τ in hPiτ in the
Colloquium and assume the implicit dependence of the
average power on the time interval over which it is calculated.
In practical applications, it is desirable for charging to be as

fast as possible. Binder et al. (2015b) therefore sought to
maximize the average power hPi. Alternatively, they proposed
studying a family of objective functions F α½P;W� ≔
hPiαhWi1−α with 0 ≤ α ≤ 1 to balance between work and
power outputs.

2. Bound on the maximal power

To seek a bound on the average power hPi, Binder et al.
(2015b) formulated the charging problem in terms of finding

the minimal time required to reach some target state ρ⋆

starting from some initial state ρ0 by means of unitary
evolution. This problem, which is known as the quantum
speed limit (QSL) (Giovannetti, Lloyd, and Maccone, 2003;
Deffner and Lutz, 2013; Deffner and Campbell, 2017), has
been studied as an operational interpretation of time-energy
uncertainty relations (Campaioli, 2020). When one considers
pairs of pure states jψi and jϕi, the minimal time τ required to
unitarily evolve between them is given by the unified bound
(Mandelstam and Tamm, 1945; Margolus and Levitin, 1998;
Levitin and Toffoli, 2009; Deffner and Lutz, 2013)

τ ≥ τQSL ¼ arccos jhψ jϕij
minfhEi; hΔEig ; ð12Þ

where hEi and hΔEi are the time-averaged expectation value
and the standard deviation of the total Hamiltonian HðtÞ ¼
H0 þH1ðtÞ. These are calculated from EðtÞ ¼ Tr½HðtÞρðtÞ�−
ω1ðtÞ, where ω1ðtÞ is the instantaneous ground-state energy of
HðtÞ and ΔEðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½H2ðtÞρðtÞ� − Tr½HðtÞρðtÞ�2

p
(Deffner

and Lutz, 2013). Equation (12) is attainable for the evolution
of pure states for any H1ðtÞ of Eq. (2). A prescription for the
interaction Hamiltonian H1ðtÞ to saturate the bound is

H1ðtÞ ¼ λðtÞ½−H0 þ αjψihϕj þ α�jϕihψ j�; ð13Þ

where λðtÞ ¼ 1 for 0 < t ≤ τ and zero otherwise for orthogo-
nal pairs of states, where α is a nonzero complex number. By
imposing H1ðtÞ to have finite energy, for example, via the
operator norm kHðtÞk ¼ Emax for some Emax > 0, the min-
imal evolution time becomes τ ¼ π=2Emax. From this result,
Binder et al. (2015b) concluded that the following inequality
must be true:

hPi ≤ 2WEmax=π; ð14Þ

when considering a charging process between orthogonal
states associated with an injection of energyW. The right-hand
side of the bound in Eq. (14) has units of power, provided that
ℏ is reintroduced.

C. Quantum advantage

We now review how a quantum advantage can be achieved
for the task of charging a quantum battery. To seek a formal
definition, we consider a figure of merit Γ that is built in such a
way that Γ > 1 when a quantum advantage is achieved. A first
formulation was given by Campaioli et al. (2017),

Γ ≔
hPqi
hPci

: ð15Þ

In Eq. (15) hPqi (hPci) represents the maximal charging power
of a quantum (classical) charging protocol.
While the distinction between quantum and classical is

loose here, initial consensus on this definition was based on
the idea that a charging protocol is quantum mechanical when
it generates nonclassical correlations (Campaioli et al., 2017;
Ferraro et al., 2018; Le et al., 2018) like entanglement and

7A state ρ is separable if it is a convex of combination of the
product states (Mintert et al., 2005).

8Local permutations are permutations of the eigenvalues of each
individual copy ρ.
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quantum discord (Modi et al., 2011). Nevertheless, the notion
of an advantage that is genuinely quantum mechanical is still
under investigation (Andolina, Keck, Mari, Giovannetti, and
Polini, 2019; Rossini et al., 2020); see Sec. II.C.4.

1. Local and global charging

We now again consider the quantum battery given by the
composite system with Hamiltonian HðNÞ

0 defined in Eq. (8).
When depositing energy onto such a system by means of some
unitary process, we can consider two different scenarios:
(i) local charging if each subsystem is charged independently
and (ii) global9 charging if the control interaction couples
different subsystems. In this scenario, it is insightful to
consider a charging task jGi → jEi, which deposits some
energyW from the N-copy passive state jGi ≔ ⊗N jgi (a dead
battery) to the active state jEi ≔⊗N jei (a charged battery),
where jgi ≔ j1i and jei ≔ jdi are the ground and excited
states of the d-dimensional system defined in Eq. (1).
If we can only use local interactions, the best approach to

achieve the jGi → jEi task is to drive each subsystem
independently at the QSL. This can be done using the local
(i.e., one-body interactions only) charging Hamiltonian

HðNÞ
k ¼

XN
i¼1

Vi; ð16Þ

where each Vi is a local copy of −H0 þ αjeihgj þ α�jeihgj
acting on the subsystem i, as discussed in Sec. II.B.2. If
instead we can use arbitrary N-body interactions, the best
approach is to use the global Hamiltonian (Binder et al.,
2015b)

HðNÞ
♯ ¼ −HðNÞ

0 þ αN jEihGj þ α�N jEihGj: ð17Þ

To make a fair comparison between these two charging
approaches, we impose that both Hamiltonians have the same

operator norm, i.e., that kHðNÞ
k k ¼ kHðNÞ

♯ k ¼ Emax. We then

obtain Emax ¼ jαN j ¼ Njαj, which implies the minimal time
of local charging is τk ¼ Nπ=2Emax, that is, N times larger
than that of global charging τ♯ ¼ π=2Emax. We then arrive at
an explicit expression for the quantum advantage of this
charging task,

Γ ¼ hP♯i
hPki

¼ τk
τ♯

¼ N: ð18Þ

Since the global Hamiltonian generates entanglement between
the subsystems during the charging process, Binder et al.
(2015b) concluded that entanglement generation was respon-
sible for the N-fold speedup and necessary to obtain some
nontrivial advantage Γ > 1.

However, as discussed in Sec. II.C.2, a quantum advantage
can be achieved even without generating entanglement, at the
price of reducing the amount of energy extracted or injected
(Campaioli et al., 2017). In recent years, the nature of the
advantage Γ > 1 has been explored by many (Andolina et al.,
2018; Andolina, Keck, Mari, Giovannetti, and Polini, 2019;
Farina et al., 2019; Andolina, 2020; Julià-Farré et al., 2020;
Rossini et al., 2020; Fan, Wu, and Yu, 2021; Abah et al.,
2022; Carrasco et al., 2022; Shaghaghi et al., 2023). In the
remainder of this section we review the main results of these
research efforts while aiming to clarify the role that quantum
correlations, coherences, and many-body interactions have
on Γ.

2. Role of entanglement, correlations, and coherence

With an explicit example, Campaioli et al. (2017) proved
that it is possible to achieve an advantage that scales with a
power law of N, like that in Eq. (18) even without generating
entanglement, at the cost of dramatically reducing the amount
of energy injected (or extracted). The example involves an
initial completely passive N-copy state ρ0 ¼ ⊗NGβ for some
inverse temperature β and its corresponding active state
ρ⋆ ¼ ⊗NG−β, both of which were calculated with respect
to the local internal Hamiltonian H0. By choosing a suffi-
ciently small β > 0, the state ρ0 is within the region of the
states space known as the separable ball (Aubrun and Szarek,
2006). The latter is a spherically symmetric region of the space
of states that is centered on the maximally mixed state and
that contains only separable states. Any unitary charging
procedure that drives ρ0 to ρ⋆ will keep ρðtÞ within the
separable ball at all times. Nevertheless, the charging power
of the time-optimal global Hamiltonian is N-fold10 larger than
that of the local optimal Hamiltonian. However, in this case no
entanglement is generated during the evolution.
Two remarks are in order. First, while the power advantage

is still scalable (i.e., it yields a power that scales with N2),
the total deposited energy and the absolute charging power
reduce as β decreases. In other words, the closer ρ0 is to the
maximally mixed state, the less energy will be extractable
from ρ⋆ (Campaioli et al., 2017). Since the separable ball is a
comparatively small region of the space of states (Gurvits and
Barnum, 2005), achieving quantum advantage without entan-
glement generation comes at the cost of a considerable
reduction in the exchanged work W ¼ Tr½H0ðρ⋆ − ρ0Þ�.
This example shows the importance of entanglement, which
must be generated for speedup with pure states and without
degradation. Second, this type of Hamiltonian is known to
produce quantum discord (Modi et al., 2011; Giorgi and
Campbell, 2015; Niedenzu, Huber, and Boukobza, 2019),
which need not vanish for separable states. The role of
entanglement and coherence in the charging process was
also explored by Caravelli et al. (2020), Kamin, Tabesh,
Salimi, and Santos (2020), Shi et al. (2022), and Yang
et al. (2023).

9Local and global are otherwise referred to as parallel and
collective in some references. Here we use global for generality to
make a distinction between collective and quantum advantage, as
discussed in Sec. II.C.4.

10When using a constraint on the operator norm of the charging
Hamiltonian, as described in Sec. II.C.1.
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3. Role of interaction order

The examples considered thus far to achieve Γ ¼ N require
the use of N-body interactions, i.e., interactions that directly
couple N subsystems. However, the vast majority of physical
systems display at most two-body interactions, with a few
exceptions such as the three-body (Efimov) interaction in
nuclear (Naidon and Endo, 2017) and atomic systems (Roy
et al., 2013). It is therefore important to determine whether a
quantum advantage can be achieved with such limitations on
the Hamiltonian. To address this question, Campaioli et al.
(2017) examined the scaling of Γ for N-body systems when
the charging Hamiltonian is limited to k-body interactions,
where k is sometimes referred to as the interaction order.
They showed that, for composite systems with local internal

Hamiltonians HðNÞ
0 , the quantum advantage is bounded as

Γ < γ½k2ðm − 1Þ þ k�; ð19Þ

where γ is a constant that does not depend on N and the
participation number m is the number of subsystems that are
coupled with a given subsystem; see Fig. 2. They also
conjectured that Γ < γk for an arbitrary k-body Hamiltonian,
sparking work to determine the properties of the charging
Hamiltonian required to achieve a scalable power advantage
(Andolina et al., 2018; Ferraro et al., 2018; Le et al., 2018;
Andolina,Keck,Mari, Campisi et al., 2019; Farina et al., 2019).
Recently Gyhm, Šafránek, and Rosa (2022) demonstrated

that a scalable quantum advantage for the charging power
cannot be achieved without global operations. They bounded
the instantaneous power PðtÞ using the norm of the commu-
tator that generates the evolution jPðtÞj ≤ k½H0; H1ðtÞ�k for
composite systems of batteries driven by Hamiltonians with at
most k-body interactions. They obtained a tight bound for the
quantum advantage Γ ≤ γk, where γ does not depend on N
and k. In Secs. II.C.4 and III.C.2 we discuss some proposed
approaches to achieve a quantum advantage that scales with a
power law of N, such as quantum batteries based on the

Sachdev-Ye-Kitaev (SYK) model (Rossini et al., 2020; Kim
et al., 2022).

4. Genuine quantum advantage

The results on the role that entanglement and other quantum
correlations have on charging and extraction power have
provoked a discussion around the definition of the quantum
advantage Γ. Andolina et al. (2018) presented a new figure of
merit to fairly compare quantum protocols against classical
ones, unlike that of Eq. (15). Andolina et al. (2018) aimed to
quantitatively distinguish charging speedups emerging from
many-body interactions from those that stem from the
quantum-mechanical nature of the system. They proposed
that an unbiased comparison can be made only when a
quantum system defined by some Hamiltonian H admits a
classical analog H.
If the dynamics of the quantum system is governed by

Eq. (2), that of the classical system is governed by Hamilton’s
equations of motion,

q̇i ¼ ∂pi
H; ṗi ¼ −∂qiH: ð20Þ

In Eqs. (20) q⃗ and p⃗ are a set of canonically conjugated
variables (coordinates and momenta, respectively) such that
fqi; pig ¼ δij, where f·; ·g denotes the Poisson brackets.
Thus, Andolina et al. (2018) suggested measuring the advan-
tage stemming from genuine quantum-mechanical effects by
comparing the power scaling of the quantum and classical
Hamiltonians H and H, respectively, i.e.,

R ≔
Γq

Γc
: ð21Þ

Charging protocols that yield R > 1 are said to be charac-
terized by a genuine quantum advantage. In Eq. (21) Γq ¼
hP♯i=hPki represents the advantage of using global operations
over local ones, as in Eq. (18), and Γc is the same quantity but
calculated for the corresponding classical model.
The ratio R has been studied for a variety of charging

models (Andolina et al., 2018; Andolina, Keck, Mari, Campisi
et al., 2019; Farina et al., 2019; Andolina, 2020; Fan, Wu, and
Yu, 2021; Abah et al., 2022; Carrasco et al., 2022; Mondal
and Bhattacharjee, 2022). This ratio depends on the model and
its microscopic parameters. Note that R is well defined only
for quantum battery models that admit a classical analog.
There are plenty of models of quantum batteries that do not
have a classical analog such as the SYK model considered by
Rossini et al. (2020) and discussed in Sec. III.C.2. In these
cases, it is not possible to evaluate R, and any advantage Γ > 1
is expected to be stemming from the underlying quantum
many-body dynamics (Rossini et al., 2020).
A crucial step in disentangling the contribution of collective

interactions from that of quantum correlations was made by
Julià-Farré et al. (2020). They separated the two contributions
using a geometric approach where the instantaneous charging
power PðtÞ was studied. To begin, they noticed that the
quantum Fisher information (Barndorff-Nielsen and Gill,
2000) was related to the speed in the Hilbert space (IQ)
and the speed in the energy eigenspace (IE), while the variance

FIG. 2. The bound on the quantum advantage of Eq. (19)
depends on the interaction order k (the number of subsystems
directly coupled by some interaction) and the participation
number m (the number of subsystems that are coupled with
any given subsystem). In the 2D lattice with nearest-neighbor
interaction shown here, each subsystem directly interacts via
pairwise interactions (k ¼ 2) with at most four other neighbors
(m ¼ 4). Adapted from Campaioli, 2020.
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of the battery Hamiltonian ΔE2
B ¼ Tr½H2

BρB� − Tr½HBρB�2
encoded nonlocal correlations between subsystems. Note that
if the battery Hamiltonian HB is made of a sum of local terms
HB¼

P
N
i¼1hi, it is possible to write ΔE2

B¼ΔE2
BjlocþΔE2

Bjent,
where

ΔE2
Bjloc ≡

X
i

[Tr½h2i ρB� − Tr½hiρB�2]; ð22Þ

ΔE2
Bjent ≡

X
i≠j

[Tr½hihjρB� − Tr½hiρB�Tr½hjρB�]: ð23Þ

The first quantity ΔE2
Bjloc in Eq. (22), a sum of local terms,

scales linearly with N by construction. However, ΔE2
Bjent,

whose explicit form can be immediately linked to correlations
between sites i and j, may display a superlinear scaling withN
if correlations between different battery units are developed.
With this approach, Julià-Farré et al. (2020) obtained a bound
on the instantaneous power PðtÞ,

PðtÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE2

BðtÞIEðtÞ
q

; ð24Þ

whose geometric interpretation is illustrated in Fig. 3, as well
as a similar bound on the average power hPiτ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔE2

BiτhIEiτ
p

(Julià-Farré et al., 2020).
As detailed in Sec. III.B.3, Julià-Farré et al. (2020) used this

method to confirm that the advantage discussed by Binder
et al. (2015b) and Campaioli et al. (2017) is quantum since it
stems from nonlocal correlations, while that of the Dicke
battery (Sec. III.B) is collective since it stems from a higher
speed in the energy eigenspace that is characterized by more
extensive Fisher information IE. The importance of the bound
on power discussed by Julià-Farré et al. (2020) is striking
since it enables the discrimination between a collective
advantage in power emerging from the Fisher information

and a genuine quantum advantage due to quantum correlations
between battery cells. Note also that their approach does not
require the definition of an analog classical Hamiltonian HB.
Power bounds have been generalized to the case of open
quantum batteries (Zakavati, Tabesh, and Salimi, 2021) and
should be an object of further study.

III. MODELS OF MANY-BODY BATTERIES

At the microscopic level, matter is granular as it can be
described in terms of a collection of N elementary units, such
as atoms or molecules. In many cases, the behavior of a
macroscopic system can be accurately described by assuming
that these units behave independently, leading to intensive
quantities (such as pressure) that do not depend on the size of
the system or to extensive quantities (such as energy or
volume) that scale linearly with the number of constituent
units N. However, in some cases interactions between the
elementary units can give rise to collective effects that cannot
be explained by the properties of a single unit. These
collective effects can result in macroscopic quantities showing
a superextensive scaling Nα with α > 1.
An example of paramount importance is provided by the

Dicke model (Dicke, 1954), where an ensemble of N atoms
collectively radiates with a superextensive intensity that scales
as N2, i.e., is enhanced by a factor N with respect to ordinary
fluorescence. In the latter case, atoms emit independently. In the
former, synchronization of the electrical dipoles of the atoms
occurs, leading to an enhanced emission that has been named
superradiance (Gross and Haroche, 1982; Haroche, 2013).
Superradiant emission has been measured in a plethora of

different systems, such as Rydberg atoms in a cavity (Kaluzny
et al., 1983) and color centers in diamond (Angerer et al.,
2018). The concept of superabsorption (Higgins et al., 2014),
where collective effects are used to speed up energy absorp-
tion, has also been proposed based on the time-reversal
symmetry of the superradiant dynamics of an ensemble of
emitters interacting with electromagnetic radiation (Yang
et al., 2021).
Ferraro et al. (2018) proposed a model of a battery that could

be engineered in a solid-state device. The quantum many-body
model comprises N TLSs coupled to the same mode of an
electromagnetic field. For these reasons, the battery was termed
the Dicke quantum battery. There were three reasons for
proposing such a model: (i) the fact that the N TLSs were
coupled to the same cavity mode effectively provided a way to
couple all the TLSs together during the nonequilibrium dynam-
ics, (ii) the superradiant collective effects displayed by the
previously discussed Dicke model were thought to be useful in
determining an advantage in the charging process, and (iii) as
we see in Sec. VI, Dicke models can be experimentally realized
in a variety of ways. Quach et al. (2022) observed collective
effects in the charging process of a superabsorber. In
Secs. III.A–III.D, we review the charging properties of a variety
of many-body battery models.

A. Charging protocols and figure of merits

We begin with a presentation of a framework for describing
the charging process. The battery is a system B, described by a

FIG. 3. (a) The speed IQ of quantum dynamics in the Hilbert
space and the speed IE ≤ IQ in the energy eigenspace of the
battery Hamiltonian are related to the quantum Fisher informa-
tion. The instantaneous charging power is bounded by IE as in
Eq. (24). (b) Dynamics of the energy levels pk associated with the

internal Hamiltonian HðNÞ of Eq. (8) during local (HðNÞ
1 ) and

global (HðNÞ
N ) charging, where ω is the associated charging

frequency. The global charging scheme takes a shortcut in the
Hilbert space by driving the battery through the maximally
entangled state jψi ∝ jGi þ jEi. Adapted from Julià-Farré
et al., 2020.
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Hamiltonian Hð0Þ
B consisting of N identical units. It is often

assumed that the battery Hamiltonian is the sum of N local

Hamiltonians: Hð0Þ
B ¼ P

N
i¼1h

ðBÞ
i . The battery is initially pre-

pared in the ground state, and energy is injected into the
battery through a charging protocol with a time duration τ.
After the protocol, the energy stored in the battery WðτÞ is

given by Eq. (3), i.e., WðτÞ ¼ Tr½Hð0Þ
B ρBðτÞ�, where ρBðτÞ is

the state of the battery at the time τ and the second term in
Eq. (3) vanishes as the ground-state energy is fixed to zero.

1. Direct charging protocol

In a direct charging protocol, the Hamiltonian of the battery
is externally changed by suddenly switching on an interaction

HamiltonianHð1Þ
B for a charging time τwhile switching offHð0Þ

B
(Binder et al., 2015b; Campaioli et al., 2017; Le et al., 2018;
Rossini, Andolina, and Polini, 2019; Rosa et al., 2020; Rossini
et al., 2020), as depicted in Fig. 4(a). The battery dynamics
is therefore dictated by the following time-dependent
Hamiltonian:

HBðtÞ ¼ Hð0Þ
B þ λðtÞðHð1Þ

B −Hð0Þ
B Þ; ð25Þ

where λðtÞ is a classical parameter representing an external

control. The term Hð1Þ
B is referred to as the charging

Hamiltonian, and Hð0Þ
B is the battery Hamiltonian. In this case,

all energy is injected in the battery by the external classical
control. For simplicity, we have assumed that the control is a
step function that is equal to 1 during the charging time t∈ ½0; τ�
and zero otherwise.

2. Charger-mediated protocol

In the charger-mediated protocol (Andolina et al., 2018;
Ferraro et al., 2018; Andolina, Keck, Mari, Campisi et al.,
2019; Farina et al., 2019; Crescente et al., 2020a; Delmonte
et al., 2021), an auxiliary system referred to as the chargerC is
introduced. Initially, the charger contains a certain amount of
energy, which is intended to be transferred to the battery B.
The charging process occurs due to an interaction between the
charger and the battery that lasts a charging time τ, as depicted
in Fig. 4(b). Thus, the global Hamiltonian of the composite
CB system is

HðtÞ ¼ H0 þ λðtÞH1; ð26Þ

H0 ¼ HC þHð0Þ
B ; ð27Þ

where HC is the charging Hamiltonian, H1 is the interaction
Hamiltonian, and λðtÞ is an external control. In this protocol,
the composite system CB [described by the composite state
ρCBðtÞ] can exchange work with the environment through the
classical control, leading to some energy ambiguity.
The external control λðtÞ modulates the interaction between

the charger and the battery. It may introduce an energy cost
WswðτÞ (Andolina et al., 2018) at switching times, specifically
when the external control is switched on at t ¼ 0 and switched
off at t ¼ τ. Note that in such a case the total system energy
EðtÞ ¼ Tr½HðtÞρCBðtÞ� remains constant except at the switch-
ing times (0 and τ). The energy cost can be thus expressed as
WswðτÞ≡ limϵ→0f½Eðτþ ϵÞ−Eðτ− ϵÞ�þ ½EðϵÞ−Eð−ϵÞ�g. By
ensuring that H1 only exchanges well-defined excitations of
the bare Hamiltonian H0, i.e., ½H0; H1� ¼ 0, the energy
transfer from the charger to the battery becomes unambiguous
as the energy cost vanishes:WswðτÞ ¼ 0. If the interactions are
noncommuting, i.e., ½H0; H1� ≠ 0, the final energy of the
quantum battery is partially supplied by the modulation of
λðtÞ, as shown by Andolina et al. (2018) and Chiara et al.
(2018). This introduces an element of arbitrariness in the
charging protocol given that the energy transfer does not
exclusively occur between the charger and the battery (Ferraro
et al., 2018).

B. Charging properties of the Dicke quantum battery

1. The Dicke battery

We now discuss a quantum battery based on the Dicke
model (Dicke, 1954). The model describes the collective
interaction of an ensemble ofN TLS atoms with a single mode
of the cavity field,

HDicke ¼ ωcâ†âþ ω0

XN
i¼1

σ̂zi þ g
XN
i¼1

σ̂xi ðâ† þ âÞ: ð28Þ

In Eq. (28) â (â†) annihilates (creates) a cavity photon with a
frequency ωc, ω0 is the resonant frequency of a TLS σ̂αi , with
α ¼ x; y; z the components of the Pauli operators σ̂αi of the ith
TLS, and g is the TLS-cavity coupling parameter. Cavities are
typically composed of two mirrors that reflect light back and
forth, creating a standing wave of electromagnetic radiation

FIG. 4. (a) In a time-dependent direct charging protocol, the
Hamiltonian of the battery is externally changed by suddenly
quenching an interaction Hamiltonian Hð1Þ

B for a finite amount

of time τ, while the battery Hamiltonian Hð0Þ
B is turned off during

the charging process. (b) In a charger-mediated protocol, a
“charger” C initially containing some input energy transfers
energy to the battery B. The charging process is enabled by an
interaction Hamiltonian H1 that couples the charger and the
battery for a finite amount of time τ.
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(Haroche, 2013), whose frequencies are determined by the
cavity’s geometry. In this context, the single-mode approxi-
mation is typically employed since one of the cavity modes is
designed to be resonant with the atomic transition frequency.
This resonant mode dominantly interacts with the atoms,
while the interaction with off-resonant modes is negligible.
Note that when deriving the Dicke model from a microscopic
underlying model, the light-matter coupling g is found to scale
as 1=

ffiffiffiffi
V

p
, where V is the volume of the cavity. This scaling has

significant implications that are discussed in Sec. III.B.4.
The Dicke model represents a situation where all atoms are

collectively coupled to the same cavity mode. Thus, tracing
out this cavity mode results in a scenario where all the TLSs
interact with each other, i.e., the so-called all-to-all interaction
(corresponding to a participation number m ¼ N; see
Sec. II.C.3). Ferraro et al. (2018) proposed the use of the
Dicke model for a quantum battery due to its experimental
feasibility and relation with superradiant emission.
In the Dicke battery, the charging is performed via a

charger-mediated protocol, where the cavity acts as a charger
while the TLSs are seen as the battery. During the charging,
one aims to transfer the energy of the cavity to the TLSs. The
quantum dynamics of this Dicke charging protocol is
described by the following Hamiltonian terms:

HC ¼ ωcâ†â; ð29Þ

Hð0Þ
B ¼ ω0

2

XN
i¼1

ðσ̂zi þ 1Þ; ð30Þ

H1 ¼ g
XN
i¼1

σ̂xi ðâ† þ âÞ; ð31Þ

to be compared with the generic charger-mediated protocol
defined by Eq. (26). During the charging dynamics where the
time t is in the interval ½0; τ�, the evolution of the state is
dictated by the Dicke Hamiltonian in Eq. (28). To begin, the
system is initialized in the state

jψ ðnÞð0Þi ¼ jni ⊗ jGi; ð32Þ

where jni is a Fock state of n photons in the cavity and
jGi ¼ ⊗N jgi, with jgi the ground state of each TLS. Since the
goal is to fully charge the TLSs, it is convenient to inject into
the cavity a number n of photons that is at least equal to N.
Ferraro et al. (2018) took n ¼ N and enforced the resonant
condition ω0 ¼ ωc to favor energy transfer. Finally, Ferraro
et al. (2018) chose the charging time to be the optimal
charging time τ̃ that maximizes the average power, i.e.,
hPiτ̃ ¼ maxτ½hPiτ�.

2. Parallel versus collective charging

To quantify whether charging the TLSs via the collective
coupling H1 in Eq. (31) yields an advantage, Ferraro et al.
(2018) compared the maximum charging power hP♯iτ̃ that can
be obtained in the collective charging case, i.e., via the Dicke
interaction term in Eq. (31), with the maximum charging
power hPkiτ̃ that can be achieved through “parallel charging.”

In the latter charging scheme, N identical systems, each
comprising a single TLS interacting with its own cavity
containing a single photon (n ¼ 1), are considered. Each
system is a Rabi battery, i.e., a battery described using the
Rabi model (Braak, 2011),

HRabi ¼ ωcâ†âþ ω0σ̂
z þ gσ̂xðâ† þ âÞ: ð33Þ

Parallel and collective charging protocols are illustrated in
Figs. 5(a) and 5(b), respectively.
Ferraro et al. (2018) showed that, in the limit N ≫ 1,

hP♯iτ̃
hPkiτ̃

∼
ffiffiffiffi
N

p
: ð34Þ

This advantage stems from the superextensive scaling of the
collective power hP♯iτ̃ ∼ N3=2 and from the extensive scaling
of the parallel charging power hPkiτ̃ ∼ N, as shown in
Fig. 5(c). Note that the quantity hPkiτ̃ scales extensively with
N because, by construction, the parallel charging scheme is
free of collective behavior. Since in both cases the energy

hHð0Þ
B iτ̃ of the battery scales extensively with the number of

FIG. 5. (a) Parallel charging protocol for an array of identicalRabi
batteries. The single battery unit consists of a two-level systemwith
transition energy ω0 between the ground state jgi and excited state
jei. Each two-level system is coupled to its own cavity hosting a
single mode with frequency ωc. In the corresponding collective
charging protocol, a Dicke quantum battery is composed byN two-
level systems coupled to the same photonic mode. (c) The
maximum average power hPiτ̃ (divided by the factor N

ffiffiffiffi
N

p
) is

plotted as a function of the numberN of qubits. Solid (dashed) lines
refer to the collective (parallel) protocol. The collective advantage
manifests as a saturation to a constant (solid lines) forN ≫ 1 of the
collective-case maximum power divided by N

ffiffiffiffi
N

p
. The red lines

correspond to theweak-coupling regime (i.e., g=ω0 ¼ 0.05), while
the blue lines correspond to the strong-coupling regime (i.e.,
g=ω0 ¼ 0.5). Adapted from Ferraro et al., 2018.
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battery units N, this advantage corresponds to a speedup in the
optimal charging time τ̃ ∼ 1=

ffiffiffiffi
N

p
.

The Dicke battery therefore displays a collective speedup in
the charging time, outperforming the parallel charging protocol
by a

ffiffiffiffi
N

p
factor. The Dicke battery model has seen extensive

exploration and diverse generalizations. For instance, the
charging process has been optimized in the simplified case
where the semiclassical limit is taken (Zhang et al., 2019;
Crescente et al., 2020a). Researchers have also studiedwhether
this speedup has a quantum or collective origin (Andolina,
Keck, Mari, Giovannetti, and Polini, 2019; Julià-Farré et al.,
2020) and a two-photon version of the model (Crescente et al.,
2020b, 2022; Delmonte et al., 2021), where an atomic
excitation can be converted into two resonant photons, and
vice versa. Other aspects of theDickemodel, such as the task of
energy extraction, have also been examined (Andolina, Keck,
Mari, Campisi et al., 2019). In the remainder of this section, we
review these issues in more detail.

3. Origin of the charging advantage

Using the arguments presented in Secs. II.C.2 and II.C.4, we
now show that the Dicke battery’s collective speedup has a
many-body collective origin rather than a genuine quantum
one. A first hint that the Dicke battery’s charging speedup is not
related to entanglement was given by Andolina et al. (2018),
who studied a simplified version of the Rabi battery. It
consisted of a single TLS described by the Hamiltonian

Hð0Þ
B ¼ ω0ðσ̂z þ 1Þ=2, which is charged by a cavity mode

initialized in a Fock state with n photons. The simplification
with respect to theRabimodel lies in the fact that the interaction
Hamiltonian H1 chosen by Andolina et al. (2018) contained
only rotating terms, i.e., H1 ¼ gðσ̂−â† þ σ̂þâÞ, where σ̂þ (σ̂−)
is the Pauli creation (annihilation) operator. In this case, the
time τ̄ required to reach the maximum energy can be calculated
analytically, and it was found to scale as τ̄ ∼ 1=

ffiffiffi
n

p
. This simple

example demonstrates that it is possible to speed up the
charging process by a factor 1=

ffiffiffi
n

p
for a single TLS by initially

placing n photons in the cavity. Only one excitation is trans-
ferred from the charger to the quantum battery in this protocol,
with the remaining n − 1 excitations acting as a “catalytic
resource” to increase the speed of the process. Since there is
only one battery unit in this protocol, this example also
illustrates that entanglement between different units is not
necessary to achieve a charging speedup. Along these lines,
Zhang and Blaauboer (2023) analyzed the Dicke battery
without assuming n ¼ N, showing that the charging time
scales as τ̄ ∼ 1=

ffiffiffi
n

p
in the limit n ≫ N.

Another hint came from the analysis of a Dicke battery in
the case in which the cavity is initialized in a coherent state
with an average number of photons N. In this case, the
charging dynamics leads to low entanglement between the
charger and the battery (Andolina, Keck, Mari, Campisi et al.,
2019). Notwithstanding, the Dicke battery still exhibits a
collective speedup τ̄ ∼ 1=

ffiffiffiffi
N

p
.

Finally, Andolina, Keck, Mari, Giovannetti, and Polini
(2019) questioned the quantum origin of the charging
speedup of a series of many-body batteries, including the
Dicke one. Their study was based on a comparison between

quantum-mechanical many-body batteries and the corre-
sponding classical models. The correspondence was obtained
at the Hamiltonian level by replacing quantum commutators
with classical Poisson brackets, as discussed in Sec. II.C.4.
Here we focus specifically on the Dicke battery. Using the fact
that the Dicke model has a well established classical analog
(de Aguiar et al., 1992; Rodriguez, Chilingaryan, and
Rodríguez-Lara, 2018; Chávez-Carlos et al., 2019), one can
easily construct a classical Dicke battery that is described by
the following Hamiltonian:

Hð0Þ
B ¼ Nω0

1þ cosðθÞ
2

: ð35Þ

The charger is described by a classical harmonic oscillator

HC ¼ ω0

2
ðp2

a þ q2aÞ: ð36Þ

Finally, charging occurs via the following classical interaction
Hamiltonian:

H1 ¼ g
ffiffiffi
2

p
Nqa sinðθÞ cosðϕÞ: ð37Þ

In Eq. (36) ðpa; qaÞ and (ðN=2Þ cosðθÞ;ϕ) are conjugate
variables (Chávez-Carlos et al., 2019). The classical pro-
tocol in Eqs. (35)–(37) has to be interpreted as a charger-
mediated protocol, dictated by a classical HamiltonianHðtÞ ¼
Hð0Þ

B þHC þ λðtÞH1.
Andolina, Keck, Mari, Giovannetti, and Polini (2019)

calculated the charging power of the classical Dicke
Hamiltonian, finding that the collective advantage Γc intro-
duced in Eq. (21) scales like

ffiffiffiffi
N

p
. This should be contrasted

with the quantum collective advantage Γq of the Dicke battery

[see Eq. (29)], i.e., Γq ∼
ffiffiffiffi
N

p
. Hence, in the case of a Dicke

battery the ratio R defined in Eq. (21) was found not to scale
with N. For Dicke batteries, R depends on the value of the
coupling constant g that controls the interaction between the
charger and the battery itself. This analysis clarified that no
quantum advantage R scaling with N can be found in the
charging dynamics of the Dicke battery. Similar results were
found for other many-body battery models.

4. Charging advantage in the thermodynamic limit

As discussed in Sec. II.C.4, Julià-Farré et al. (2020)
derived a bound for the average charging power hPiτ ≤ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔE2

BiτhIEiτ
p

, which allows one to distinguish a genuine
entanglement-induced speedup (arising from the first term, the
variance of the battery Hamiltonian hΔE2

Biτ) from a collective
many-body speedup (stemming from the second term, the
quantum Fisher information hIEiτ). This bound was employed
to study the charging dynamics of the Dicke battery intro-
duced in Eqs. (29)–(31); τ was fixed to maximize the energy
stored in the battery, i.e., τ ¼ τ̄. However, a different nor-
malization with respect to that in Eq. (31) was used for the
interaction Hamiltonian H1 upon making the replacement

g → gTD ≡ gffiffiffiffi
N

p ð38Þ

in Eq. (31).
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This normalization is used when analyzing the phase
diagram of the Dicke model, as described by Hepp and
Lieb (1973) and Wang and Hioe (1973), and guarantees that
the total energy and energy fluctuations of the Dicke model
will exhibit a well-defined, extensive behavior in the thermo-
dynamic limit (N → ∞ and V → ∞ while maintaining a
constant ratio N=V). Here V represents the volume of the
cavity, which is assumed to scale linearly with the number of
TLSs N to ensure a constant density of TLSs N=V.
Julià-Farré et al. (2020) analytically derived a bound on the

scaling of the quantum Fisher information IEðtÞ, thereby
obtaining

ffiffiffiffiffiffiffiffiffiffi
IEðtÞ

p ≲ ffiffiffiffi
N

p
. In the weak-coupling g ≪ ω0 limit,

the variance of the battery Hamiltonian
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔE2

Biτ
p

(see also

Sec. II.C.4) scales as ∼N0.44. The bound
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔE2

BiτhIEiτ
p

was
therefore found to scale sublinearly with N, i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔE2

BiτhIEiτ
p ≲ N0.94. On the contrary, in the strong-cou-

pling g ¼ ω0=2 regime, the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔE2

Biτ
p

was found to scale

as ∼N0.92, yielding
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔE2

BiτhIEiτ
p ≲ N1.42. Julià-Farré et al.

(2020) also found that in the strong-coupling regime the
average power scales extensively as hPiτ ∼ N, despite the
quantum enhancement in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔE2

Biτ
p

. This is because in this
case the bound derived is significantly looser and far from
being saturated, with hPiτ ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔE2

BiτhIEiτ
p

. This explains
why, in the case of the Dicke battery, the bound fails to
accurately predict the scaling behavior of the charging power.
We now observe that if the normalization in Eq. (31) is

adopted, as it was by Ferraro et al. (2018), one finds thatffiffiffiffiffiffiffiffiffiffihIEiτ
p

scales linearly in N even if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔE2

Biτ
p

∼
ffiffiffiffi
N

p
, and the

bound on power hPiτ scales superextensively as N
ffiffiffiffi
N

p
with-

out the requirement of any quantum superextensive scaling inffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔE2

Biτ
p

. This means that to accelerate the charging process
entanglement generation is not essential in this case, as

ffiffiffiffi
N

p
even in the absence of system correlations; see Eq. (22). In
agreement with the findings of Andolina, Keck, Mari,
Giovannetti, and Polini (2019), Julià-Farré et al. (2020)
concluded that the Dicke battery model does not exhibit a
genuine quantum advantage.
However, while the replacement g → g=

ffiffiffiffi
N

p
is necessary

when considering a thermodynamic limit with a fixed density
N=V, there are instances where N ≫ 1 is large but finite and
there is no need to scale the cavity length to accommodate
more battery units. When derived from fundamental princi-
ples, the light-matter coupling strength scales as g ∼ 1=

ffiffiffiffi
V

p
,

where V is the cavity volume. Hence, there are experimental
platforms where there is no need to adopt the normalization in
Eq. (38), as the cavity volume V can be kept fixed, while the
number of atoms N is varied. For instance, cavity quantum
electrodynamics experiments that study superradiance are
performed in this limit even if the number of atoms is large
(N ∼ 103) (Haroche, 2013). The capacity to accommodate
numerous atoms in a single fixed cavity stems from the
significant size disparity between a typical cavity (approx-
imately a few centimeters, or around 1 cm for microwave
cavities) and the effective size of an atom (a few micrometers
for Rydberg atoms). Hence, to describe these experiments the
normalization of Eq. (38) is not adopted. As Andolina, Keck,
Mari, Giovannetti, and Polini (2019) discussed , whether one

uses Eq. (29) with or without the renormalization g → g=
ffiffiffiffi
N

p
ultimately depends on the specific experimental setup.

5. Variations of the Dicke batteries

Owing to the success of the Dicke battery model, several
variations of it were subsequently proposed. Recent studies
on trapped-ion (Felicetti et al., 2015) and superconducting-
flux-qubit setups (Felicetti et al., 2018) showed the potential
to suppress the dipole contribution, which is linear in the
photon coupling [Eq. (31)], thereby enhancing the two-photon
coupling. If the TLSs of a Dicke battery are set to be resonant
with twice the cavity frequency (ω0 ¼ 2ωc), their dynamics is
dominated by two-photon processes that are described as the
so-called two-photon Dicke model. This model presents an
interesting phase diagram with two quantum criticalities:
(i) the superradiant phase transition (Garbe et al., 2017)
and (ii) a spectral collapse (Garbe et al., 2020). In this
context, Crescente et al. (2020b) focused on two-photon
Dicke quantum batteries in which the interaction
Hamiltonian in Eq. (29) was replaced by the following one:

H1 ¼ g2ph
XN
i¼1

σ̂xi ½ðâ†Þ2 þ ðâÞ2�; ð39Þ

where g2ph is the coupling strength forthe two-photon proc-
esses. Crescente et al. (2020b) found that the maximum
charging power scaled quadratically in N; hPiτ̃ ∼ N2, which isffiffiffiffi
N

p
times faster than the conventional Dicke battery.

However, they noted that if consistency with the thermody-
namic limit (discussed in Sec. III.B.3) is enforced, the two-
photon coupling needs to be rescaled as g2ph → g2ph=N, which
exactly cancels the superextensive scaling of the power,
yielding hPiτ̃ ∼ 1. Additionally, the scaling of energy fluctu-
ations (Crescente et al., 2020b), the extractable work, and the
dependence upon the initial photonic state (Delmonte et al.,
2021) were also studied in this model. Recently Gemme et al.
(2023) studied a case in which a Dicke quantum battery was
driven with off-resonant pulses via an exchange of virtual
photons.
The Dicke model is a widely used tool to describe atoms

interacting with a cavity. In some physical situations, however,
it may require extensions. For example, in a Bose-Einstein
condensate coupled to an optical cavity, direct dipole-dipole
interactions between different atoms need to be considered
(Baumann et al., 2010; Rodriguez, Chilingaryan, and
Rodríguez-Lara, 2018). Dou et al. (2022) considered an
extended Dicke model that includes an interatomic interaction
term in addition to the atom-photon Dicke coupling
Hamiltonian in Eq. (31). This model was found to exhibit
faster battery charging in the strong-coupling regime, with a
maximum power scaling of hPiτ̃ ∼ N1.88. Not surprisingly, in
the weak-coupling regime the power was found to scale as
∼N1.5 as in the conventional Dicke model. Another variation
of the Dicke model was studied by Dou, Zhou, and Sun (2022)
who examined the charging dynamics of a Heisenberg spin-
chain battery (see Sec. III.C.1) and found that the maximum
power scaling was at most hPiτ̃ ∼ N0.75. A superconducting
implementation of an extended Dicke battery was recently
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proposed by Dou and Yang (2023). However, by coupling the
spin-chain battery to a common cavity field, it was possible to
enhance the maximum power scaling to ∼N2 (Dou, Zhou, and
Sun, 2022). The extended Dicke model was also studied by
Zhao, Dou, and Zhao (2022), while Yang, Yang, and Dou
(2023) recently studied a three-level version of the Dicke
battery.

C. Charging properties of other many-body batteries

1. Spin-chain and spin-network batteries

A spin chain is a one-dimensional array of TLSs that
interact with each other. These theoretical models have been
widely studied in the field of condensed matter physics; they
are closely related to the study of magnetism (Auerbach,
1994) and have also been applied to quantum devices,
communication, and computation (Zueco et al., 2009). Le
et al. (2018) proposed a spin-chain model of a many-body
quantum battery in which energy is injected via the direct
charging protocol introduced in Eq. (25), where the battery
Hamiltonian is

Hð0Þ
B ¼ B

XN
i¼1

σ̂zi −
X
i<j

gij½σ̂zi σ̂zj þ αðσ̂xi σ̂xj þ σ̂yi σ̂
y
jÞ� ð40Þ

and the charging Hamiltonian is Hð1Þ
B ¼ ω

P
N
i¼1 σ̂

x
i . In

Eq. (40) B is the strength of an external Zeeman field and
gij is the interaction strength. The anisotropy parameter α can
be tuned to recover Ising (α ¼ 0), XXZ (0 < α < 1), and XXX
Heisenberg models (α ¼ 1) (Le et al., 2018). Additionally, a
transverse magnetic field parametrized by ω is used to charge
the system. Either nearest-neighbor gij ¼ gδi;j or long-range
gij ¼ g=ji − jjp interactions, with p > 0, are considered.
Unlike customary battery models, energy can be stored in

the interactions between the different spins, as the battery
Hamiltonian is not a sum of local independent terms. This
implies that the eigenstates of the internal Hamiltonian Hð0Þ

B
can be entangled if the coupling strength gij is nonvanishing
due to the presence of two-body interactions between the
spins. In reference to the discussion in Sec. II.C.3, the N
battery units are interacting via a k ¼ two-body interaction
term with an arbitrarily long range, corresponding to a
participation number m that scales with the system size as
m ¼ N. This comparison, in light of Eq. (19), implies that
the power is bounded to scale quadratically with size, i.e.,
hPiτ̃ ∼ N2 in the long-range scenario.
In addition, the role of the anisotropy α and the interaction

range was discussed by Le et al. (2018). The isotropic
coupling of the XXX Heisenberg model (α ¼ 1) resulted in
the independent charging of each spin. This phenomenon
occurs even in the presence of interactions, because for

α ¼ 1 the battery Hamiltonian Hð1Þ
B commutes with these

interactions due to rotational invariance of the model.
Consequently, the XXX model exhibits an extensive maxi-
mum power hPiτ̃ ∼ N. Conversely, the full anisotropy of the
XXZ model, i.e., α ¼ −1, leads to much higher power than in
the independent case.

In the weak-coupling
P

i<jgij ≪ Nω regime, the scaling of
the maximum power is analyzed. In particular, in the case of
nearest-neighbor interactions, the power is extensive in N.
When the coupling strength decays algebraically as 1=ji − jj
(p ¼ 1), where i and j denote the lattice size along the
chain, the charging power grows superextensively as
hPiτ̃ ∼ N logðNÞ. Finally, for a “uniform” p ¼ 0 interaction
strength, a superextensive power hPiτ̃ ∼ N2 is found.
Le et al. (2018) discussed a strategy to implement the global

entangling Hamiltonian in Eq. (17) proposed by Binder et al.
(2015b) and Campaioli et al. (2017). In the limit of strong
nearest-neighbor attractive interactions (g ≫ ω), it is possible
to write an effective global entangling Hamiltonian with a
k ¼ N-body interaction. However, this effective interaction
scales as ωðω=gÞN , and since it has been obtained in the
perturbative regime g ≫ ω exponentially vanishes in the limit
of large N. For this reason, the power deposited in the battery
actually worsens when the spins traverse the correlated
shortcut suggested by Binder et al. (2015a) and vanishes in
the N → ∞ limit. The study of spin-chain batteries has been
further extended to disordered models; see Rossini, Andolina,
and Polini (2019) and Ghosh, Chanda, and Sende (2020).
Additionally, separate investigations have focused on charg-
ing spin chains through the use of a cavity mode (Dou, Zhou,
and Sun, 2022) or another spin system (Yang et al., 2020;
Huangfu and Jing, 2021; Liu et al., 2021; Lu et al., 2021; Peng
et al., 2021; Qi and Jing, 2021; Zhao, Dou, and Zhao, 2021;
Arjmandi, Mohammadi, and Santos, 2022; Barra,
Hovhannisyan, and Imparato, 2022; Gao et al., 2022;
Ghosh and De, 2022; Konar, Lakkaraju et al., 2022; Yao
and Shao, 2022; Crescente et al., 2023; Rodríguez et al.,
2023; Guo, Yang, and Dou, 2024).

2. SYK quantum batteries

Motivated by the discussions reported in Secs. II.C.4
and III.B.3, Rossini et al. (2020) proposed a model for a
many-body battery that unequivocally presents a genuine
quantum advantage [certified using the bound of Julià-Farré
et al. (2020)].
This implementation relies on the SYKmodel (Sachdev and

Ye, 1993; Kitaev, 2015). The SYK model describes quantum
matter defying the Landau paradigm of normal Fermi liquids
in that it displays no quasiparticles. It has garnered a great deal
of attention in recent years due to its unique properties, which
include fast scrambling (Maldacena and Stanford, 2016),
nonzero entropy density at vanishing temperature (Georges,
Parcollet, and Sachdev, 2001) and volume-law entanglement
entropy in all its eigenstates (Liu, Chen, and Balents, 2018),
and it is holographically connected to the dynamics of the
two-dimensional anti–de Sitter horizon of a quantum black
hole (Kitaev, 2015).
The SYK battery introduced by Rossini et al. (2020), which

is illustrated in Fig. 6(a), is charged via a direct charging

protocol, as in Eq. (25). The internal battery Hamiltonian Hð0Þ
B

is a sum of local terms given by

Hð0Þ
B ¼

XN
i¼0

ω0σ
y
i ; ð41Þ
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while charging is performed via the complex SYK (cSYK)
Hamiltonian

Hð1Þ
B ¼

XN
i;j;k;l¼1

Ji;j;k;lĉ
†
i ĉ

†
j ĉkĉl: ð42Þ

In Eq. (42) ĉ†j (ĉj) is a spinless fermionic creation (annihilation)
operator. This has to be understood in its spin-1=2 representa-
tion, which is obtained via the Jordan-Wigner (JW) trans-
formation, i.e., ĉ†j ¼ σ̂þj ðΠj−1

m¼1σ̂
z
mÞ, where σ̂�j ≡ðσ̂xj�iσ̂yjÞ=2.

The couplings Ji;j;k;l are zero-mean Gaussian-distributed com-
plex random variables with a variance ⟪J2i;j;k;l⟫ ¼ J2=N3,

where ⟪J2i;j;k;l⟫ denotes an average over different disorder
realizations. This scaling ensures that the SYK battery model of
Rossini et al. (2020) has a well-defined thermodynamic limit,
precluding any potential collective advantage that might have
been present if a different normalization was chosen. Note that

Eq. (41) differs from the battery Hamiltonian Hð0Þ
B in Eq. (30)

since Hð1Þ
B commutes with the battery Hamiltonian in Eq. (30),

which cannot inject energy in the system.
This model displays a superextensive scaling of the optimal

charging power hPiτ ∼ N3=2. Furthermore, a certification of
the quantum origin of the charging advantage of the cSYK
model is provided by considering the following bound:

hPiτ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔE2

BiτhΔE2
1iτ

q
; ð43Þ

where hΔE2
Biτ (hΔE2

1iτ) is the time-averaged variance of Hð0Þ
B

(Hð1Þ
B ). Equation (43) is a loose version of the bound on the

average power derived by Julià-Farré et al. (2020).
Furthermore, hΔE2

1iτ scales linearly in N, while the power
enhancement is linked to a quadratic scaling of hΔE2

1iτ, which
hints at a genuine quantum advantage (see Sec. II.C.4) for the
cSYK model.
Rossini et al. (2020) examined a bosonic version of the

SYK battery and a parallel charging scheme, showing that
neither model holds a quantum advantage. The poor perfor-
mance of the bosonic SYK battery compared to the cSYK
battery suggests that nonlocal JW strings for fermions are
crucial for maximizing entanglement production during time
evolution, and therefore correlations between the battery units.
This result is in accordance with the bound PðtÞ ≤ γkN
derived by Gyhm, Šafránek, and Rosa (2022) that was
discussed in Sec. II.C.3, with k the interaction order and γ
a constant. When the Hamiltonian in Eq. (42) is represented in
the spin basis via the JW transformation a Jordan string
Πiþk

m¼iσ̂
z
m emerges in the Hamiltonian with an interaction order

of k ∼ N. Conversely, when one considers the bosonic SYK
model Jordan strings are absent, resulting in an interaction
order of k ¼ 4.
Rossini et al. (2020) provided a quantum many-body

battery model where fast charging occurs due to the max-
imally entangling underlying quantum dynamics envisioned
by Binder et al. (2015b) and Campaioli et al. (2017). Still, the
nonlocal interactions peculiar to the SYK model may be
extremely challenging to realize in practice, and the feasibility
of such a many-body battery remains under dispute; see,
however, the discussion in Sec. VI.

D. Work extraction

Most of the previous discussion focused on the scaling of
the charging dynamics with the number N of battery units.
However, the performance of a battery cannot be captured by a
single figure of merit such as the charging power hPiτ. For
example, a “good” battery should not only be charged in a
small amount of time but also have the capability of fully
delivering such energy in a useful way, i.e., to perform work.
This ability is measured by the ergotropy E, which was
introduced in Sec. II.A.1. In the context of a many-body
battery, the presence of correlations and entanglement
between different constituents may induce limitations on
the task of energy extraction (Oppenheim et al., 2002).
Andolina, Keck, Mari, Campisi et al. (2019) studied the
maximum work Eðτ̃Þ that can be extracted from N TLSs in a
Dicke battery, where τ̃ is the optimal charging time (i.e., the
time that maximizes the charging power). It was observed that,
for finite-size batteries, the extractable energy Eðτ̃Þ constitutes
a small fraction of the total energy Eðτ̃Þ stored in the battery.
This reduction is due to the presence of correlations (entan-
glement) between the charger and the battery, proving that
quantum effects can be detrimental for work extraction.
However, this issue can be mitigated in the limit of a large

FIG. 6. (a) Sketch of the SYK model (Sachdev and Ye, 1993;
Kitaev, 2015) for randomly interacting fermions with all-to-all
interactions. (b) Dynamics of the populations pk of the kth energy

level associated with the battery Hamiltonian Hð0Þ
B ; cf. Fig. 3(b).

The charging Hamiltonian consists of the cSYK Hamiltonian

Hð1Þ
B of Eq. (48). This global charging scheme takes a shortcut in

the Hilbert space by driving the battery through maximally
entangled states. This can be seen in the short-time behavior
of the populations. In this regime, the populations do not
propagate locally in the Hilbert space, as in the case of global
charging; see Fig. 3(b). (c) Fraction of useful energy E=E as a
function of the fraction M=N at a fixed time τ. This quantity can
be used to discriminate whether the system is in an Anderson
localized (AL), many-body localized (MBL), or ergodic phase.
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number of battery units since the fraction of energy locked by
correlations becomes negligible, i.e., limN→∞ Eðτ̃Þ=Eðτ̃Þ ¼ 1,
regardless of the initial state of the charger.
As further demonstrated by Rossini, Andolina, and Polini

(2019), this is a general property of quantum charging processes
of closedHamiltonian systems, which is ultimately linked to the
integrability of the dynamics and does not depend on the details
of the underlying microscopic model. Rossini, Andolina, and
Polini (2019) considered a disordered quantum Ising chain
Hamiltonian charged via a direct charging protocol. The
quantum Ising Hamiltonian that was studied has a rich equi-
libriumphase diagram presentingmany-body localized (MBL),
Anderson localized (AL), and ergodic phases. Here the ergo-
tropy of a subsystem of M ≤ N battery units EMðτ̃Þ properly
normalized by the energy of the same subsystem EMðτ̃Þ can
be used to discriminate different thermodynamic properties
of the eigenstates of the system, as shown in Fig. 6(b).
Indeed, considering half of the chain (M ¼ N=2), the ratio
EN=2ðτ̃Þ=EN=2ðτ̃Þ saturates to a finite constant when the thermo-
dynamic N → ∞ limit is taken if the ergodic phase is consid-
ered. In contrast, in theMBLandALphases the energetic cost of
creating correlations becomes negligible in the thermodynamic
limit, i.e., EN=2ðτ̃Þ=EN=2ðτ̃Þ → 1. This stems from the fact that
in these phases the dynamics is restricted to a subportion of the
Hilbert space. The findings of this study demonstrate that
ergotropy can effectively distinguish among different thermo-
dynamic phases of a quantum system and reveal insight into its
underlying dynamics. The issue of energy extraction was also
investigated in waveguide quantum electrodynamics setups
(Monsel et al., 2020; Maffei, Camati, and Auffèves, 2021),
in random quantum systems (Caravelli et al., 2021), and by
means of auxiliary subsystems (Chaki et al., 2023).

IV. CHARGING PRECISION

While powerful energy transfer always seems to be desir-
able, speed can come at the expense of precision. We now look
at some results on the precision of unitary charging and work
extraction (Friis and Huber, 2018; Rosa et al., 2020; Santos
et al., 2019; Crescente et al., 2020b; Santos, Saguia, and
Sarandy, 2020; Delmonte et al., 2021; Moraes et al., 2021;
Abah et al., 2022; Dou, Wang, and Sun, 2022a; Dou et al.,
2022; Hu et al., 2022; Imai, Gühne, and Nimmrichter, 2023;
Bakhshinezhad et al., 2024), which aim to mitigate work
fluctuations.

A. Bosonic batteries and Gaussian unitaries

Friis and Huber (2018) proposed focusing on charging
precision and studying a bosonic quantum battery given by an
ensemble of harmonic oscillators, i.e., H0 ¼

P
jωjâ

†
j âj, with

no charger involved. Friis and Huber (2018) considered a
quantum battery in an initial, completely passive state
ρ0 ¼ Gβ½H0� ¼ ⊗jGβ½H0;j�, where H0;j ¼ ωjâ

†
j âj is the

Hamiltonian of the jth mode and

Gβ½H0;j� ¼ ð1 − e−βωjÞ
X
n

e−nβωj jnjihnjj: ð44Þ

In Eq. (44) jnji is the Fock state with n particles in the jth
mode. The system is charged by some unitaryU to a final state
ρ ¼ Uρ0U† such that W ¼ Tr½H0ρ� − Tr½H0ρ0� is the energy
deposited by U. To quantify the charging precision, Friis and
Huber (2018) considered two quantities. First, they studied
fluctuations in the final energy of the battery using the
variance of the internal Hamiltonian with respect to the final
state,

ΔE2ðρÞ ¼ Tr½H2
0ρ� − Tr½H0ρ�2: ð45Þ

Second, they evaluated energy fluctuations ΔW during the
charging process using

ΔW2 ¼
X
m;n

pm→nðWm→n −WÞ2; ð46Þ

where Wm→n ¼ Tr½H0jnihnj� − Tr½H0jmihmj� is the energy
difference between two energy levels m and n and pm→n ¼
pmjhnjUjmij2 is the transition probability from an initial state
jni with population pn ¼ Tr½ρ0jnihnj� to a final state jmi with
population pm.
Friis and Huber (2018) focused on the special class of

Gaussian unitaries (Gardiner and Zoller, 2000) generated by
Hamiltonians that are at most quadratic in a†j , aj due to the
feasibility of their practical implementation. They showed that
neither ΔE nor ΔW is bounded from above or increases with
W for infinite-dimensional systems. They then provided lower
bounds on ΔE and ΔW for single-mode and multimode
systems, presenting the optimal protocols for maximizing
charging precision as a function of W and temperature T,
respectively. The best Gaussian operations produce energy
fluctuations that vanish asymptotically when compared to W
for large energy supplies.
Such a clear-cut interpretation is more difficult to obtain in

the case of multimode batteries (Konar, Patra et al., 2022), for
which more investigations are needed to clarify the role of
coherences and correlations. Further work in this direction
could focus on the role of higher-order interactions [i.e.,
interactions mediated by ân and ðâ†Þn with n ≥ 1] in the
performance of bosonic batteries (Delmonte et al., 2021). The
charging of bosonic quantum batteries via squeezing is also
worth considering, as recently shown by Centrone, Mancino,
and Paternostro (2023).

B. Adiabatic quantum charging

Santos et al. (2019) proposed an approach to mitigate work
fluctuations based on the use of stimulated Raman adiabatic
passage (STIRAP) (Gaubatz et al., 1990; Vitanov et al.,
2017), which is akin to transitionless quantum driving (Berry,
2009). The protocol is based on the idea of slowly varying the
interaction Hamiltonian to prevent any undesired transition
between its eigenstates. To achieve adiabatic driving, Santos
et al. (2019) considered a time-dependent interaction
Hamiltonian H1ðtÞ such that ½H1ð0Þ; ρ̃0� ¼ 0, where ρ̃0 ¼
eiH0tρ0e−iH0t is the initial state of the battery in the interaction
picture. The interaction Hamiltonian is then slowly changed
until some target state ρ⋆ ¼ ρðτÞ is reached at a time τ.
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Santos et al. (2019) studied adiabatic charging for the case
of a three-level system, which is well known in the field of
STIRAP (Vitanov et al., 2017), using the interaction
Hamiltonian H1ðtÞ¼Ω12ðtÞj1ih2jþΩ23ðtÞj2ih3jþH:c:, where
the time-dependent transition frequencies Ω12ðtÞ ¼ Ω0fðtÞ
and Ω23ðtÞ ¼ Ω0½1 − fðtÞ� are chosen such that fð0Þ ¼ 0 and
fðτÞ ¼ 1, with Ω0 the maximal frequency of the interaction.
Santos et al. (2019) compared the energy deposited onto the

battery WðτÞ with the bandwidth of the Hamiltonian
Wmax ≔ w½H0� ¼ ϵ3 − ϵ1, i.e., the maximal amount of energy
that can be deposited onto the battery. They also compared the
average charging power hPi ¼ WðτÞ=τ with the maximal
achievable power hPimax ≔ WðτÞ=τQSL, which they calculated
using a Margolus-Levitin form of the QSL in Eq. (12), i.e.,
τQSL ¼ π=2Wmax. These quantities were studied as a function
of the dimensionless parameter Ω0τ. As expected, far from
adiabaticity, i.e., for Ω0τ ≪ 1, the battery performs poorly and
W=E; hPi=hPimax ≈ 0. As Ω0τ grows, the energy deposited
grows until the battery can be fully charged (W=E ¼ 1).
However, the charging power grows until it reaches a
maximum value at Ω0τ ∼ 1 and then decreases for larger
values of Ω0τ. This result shows a trade-off relation between
charging power and precision that is dictated by the com-
petition between adiabaticity and the saturation of the QSLs.
Note that maximal power hPi=hPimax ≈ 1 may be achieved

via shortcuts to adiabaticity (STAs) (Santos et al., 2019), i.e.,
by engineering a fast process that leads to the same final state
and work fluctuations as in adiabatic processes. However,
STAs require more energy due to control interactions
Campbell and Deffner (2017), thus affecting the efficiency
of the protocol (Uzdin et al., 2012; Campaioli et al., 2019).
The promising role of adiabatic driving in quantum bat-

teries was demonstrated in an experiment by Hu et al. (2022)
(see Sec. VI) and the protocols proposed by Dou, Wang, and
Sun (2020), Santos, Saguia, and Sarandy (2020), Moraes et al.
(2021), and Dou, Wang, and Sun (2022a, 2022b). Outlooks
should focus on the trade-off among the charging power,
precision, and energetic cost of the charging protocol. The
relation between the speed of evolution and the cost of STAs
was studied by Santos and Sarandy (2015) and Campbell and
Deffner (2017). Extending these works by explicitly account-
ing for finite deviations from adiabaticity could clarify the
feasibility of powerful and precise charging. Another inter-
esting direction could be to jointly optimize charging
power and precision by choosing a suitable target function
F ðhPi;W; δWÞ (Binder et al., 2015b).

C. Entanglement and work fluctuations

Fabrication defects and other sources of noise introduce
disorder in the energies of each subsystem and in the
couplings between them. In the presence of disorder, unitary
dynamics is characterized by temporal fluctuations that
manifest at different timescales. These fluctuations affect
WðtÞ and need to be mitigated to improve charging precision.
Rosa et al. (2020) focused on these fluctuations and showed
that they can be suppressed by preparing many-body quantum
batteries in highly entangled states. Note that in practice
entanglement in many-body systems is usually fragile due to
an exponentially fast suppression of correlations as an effect

of decoherence. Therefore, the feasibility of the protocol
introduced by Rosa et al. (2020) depends on the ability to
sustain highly entangled states.
Rosa et al. (2020) considered the local N-spin battery

model in Eq. (8) with Hj ¼ hσ̂zj, where h represents the
energy scale of each subsystem. The battery is charged via the
direct charging protocol in Eq. (25). They considered two

different models for the interaction HðNÞ
1 ,

HðNÞ
MBL ¼

XN
j¼1

ðJjσ̂xj σ̂xjþ1 þ J2σ̂xj σ̂
x
jþ2Þ; ð47Þ

HðNÞ
SYK ¼

X
i<j<k<l

Ji;j;k;lγ̂iγ̂jγ̂kγ̂l; ð48Þ

where Jj and J2 are the nearest-neighbor and next-to-nearest-
neighbor Ising couplings and γ̂i is the Majorana fermion

operator.11 Together with the internal Hamiltonian HðNÞ
0 the

many-body localized Hamiltonian HðNÞ
MBL is a model for many-

body quantum systems that exhibits different quantum phases
(eigenstate thermalization hypothesis, Anderson localized,
many-body localized, and spin-glass phases) depending on
the value of its parameters (Kjäll, Bardarson, and Pollmann,
2014; Nandkishore and Huse, 2015). The SYK Hamiltonian

HðNÞ
SYK, which was discussed in Sec. III.C.2, is characterized by

nonlocal interactions that promote the formation of highly
entangled states (Rosa et al., 2020).
Rosa et al. (2020) studied fluctuations in WðτÞ relative to

the Hamiltonian bandwidth Nh using the parameter
RðτÞ ¼ WðτÞ=Nh. They showed that fluctuations of RðτÞ
were suppressed in the presence of nonlocal correlations (see
Fig. 7), with an amplitude that decreases with the number of
subsystems N involved. Rosa et al. (2020) provided extensive
mathematical evidence to support the thesis that energy

FIG. 7. Temporal fluctuations affecting the charging precision
can be suppressed in many-body quantum batteries by promoting
the formation of volume-law entanglement. Work fluctuations in
SYK batteries (black line) are exponentially suppressed over all
timescales as localized states transition to highly entangled states.
Instead, MBL quantum batteries are characterized by localized
states and exhibit large work fluctuations at all timescales.
Adapted from Rosa et al., 2020.

11It holds that γ̂i ¼ γ̂†j and fγ̂i; γ̂jg ¼ δij.
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fluctuations in WðτÞ are mitigated by the rapid and homo-
geneous formation of highly entangled states over many
energy levels (volume-law entanglement), which is typical
of the SYK Hamiltonian and other models for quantum chaos
(Bianchi et al., 2022).
Rosa et al. (2020) linked the exponential suppression of

stored-energy fluctuations at all timescales to the collective
nonlocal thermalization of chaotic systems. An interesting
outlook is to test their conjecture that the SYK model sets an
upper bound on the precision of quantum batteries. Since SYK
models can provide both powerful and precise charging (Rosa
et al., 2020; Rossini et al., 2020), further work in this direction
should focus on experimentally viable SYK charging archi-
tectures; see Sec. VI. The relation between entanglement
and work fluctuations was also considered by Caravelli
et al. (2021) and Imai, Gühne, and Nimmrichter (2023).
Furthermore, quantum control (Mazzoncini et al., 2023;
Rodríguez et al., 2024) could be used to generate fluc-
tuation-free active states in many-body systems based on
more experimentally feasible models, as done for entangle-
ment storage by Caneva, Calarco, and Montangero (2012).

V. OPEN QUANTUM BATTERIES

An open quantum battery (OQB) is an open quantum
system that may be charged by an auxiliary system, i.e., the
charger, denoted by C and/or may interact with the external
environment, denoted by E. If the battery system is isolated,
closed, or perfectly protected from the outside, then it will
evolve unitarily as in Eq. (2). Conversely, the dynamics of an
OQB is generated by the Hamiltonian of the universe H,
whose microscopic details may not be fully accessible,

H ¼ HB þHC þHE þHint; ð49Þ

where the interaction terms Hint may couple the battery,
charger, and environment to each other. In this regard, we are
going to propose the wording dissipative quantum battery
(DQB) to denote more specifically an OQB subject to an
external environment E that is usually unknown, uncontrol-
lable, and whose degrees of freedom far outnumber those of
the battery and charger subsystem (Carrega et al., 2020;
Carrasco et al., 2022).
The dynamics of an open battery can be described using

density operator master equations (Breuer and Petruccione,
2002) such as the general Liouville–von Neumann equation
ρ̇BðtÞ ¼ Lt½ρBðtÞ�, where Lt is a time-dependent superoper-
ator. The latter prescribes the dynamics of the battery’s density
operator ρBðtÞ ¼ Λt;0½ρBð0Þ�, which approximates the under-
lying process

ρBðtÞ ¼ TrCE½ρðtÞ� ¼ TrCE[Uðt; 0Þ½ρ0�]; ð50Þ

where ρðtÞ is the state of the universe at time t starting from an
initial state ρ0. The unitary map U t;0½·� ¼ Uðt; 0Þ ·Uðt; 0Þ† is
generated by the total Hamiltonian H such that Uðt; 0Þ ¼
T fexp½−iR t

0dsHðsÞ�g. The dynamics of OQBs have been
studied extensively in the Markovian regime (Farina et al.,
2019; Gherardini et al., 2020; Quach and Munro, 2020) using

the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) quan-
tum master equation (Chruściński and Pascazio, 2017),

ρ̇BðtÞ ¼ −i½HB; ρBðtÞ� þD½ρBðtÞ�; ð51Þ

where D½ρ� ¼ P
kγkðL̂kρL̂

†
k − fL̂†

kL̂k; ρg=2Þ is a superoper-
ator modeling the interaction between the battery and the rest
of the universe, via a set of operators L̂k generating incoherent
transitions at rates γk (Breuer and Petruccione, 2002). Some
have also considered OQBs beyond the Markovian approxi-
mation (Kamin, Tabesh, Salimi, Kheirandish, and Santos,
2020; Ghosh et al., 2021; Morrone et al., 2023), where
memory effects become important for a complete description
of the dynamics.
DQBs are subject to decoherence and energetic relaxation,

which tend to deteriorate resourceful active states, leading
them toward passive (via dephasing or depolarization) or even
completely passive states (via thermalization). If these proc-
esses are not properly prevented, their timescale puts a limit on
the lifetime of the active states and thus on how long the DQB
can keep its charge. Furthermore, the performance of some
DQB models can decrease over time when many charging-
discharging cycles are performed in an aging process ana-
log to that of electrochemical batteries (Pirmoradian and
Mølmer, 2019).
For these reasons, protection mechanisms from relaxation

are essential for device implementation (Bai and An, 2020; Xu
et al., 2022); they are reviewed in Secs. V.B and V.C. This
issue was addressed originally by Liu, Segal, and Hanna
(2019), Gherardini et al. (2020), and Quach and Munro (2020)
and later by Mitchison, Goold, and Prior (2021), Yao and
Shao (2021), and Yao and Shao (2022), while Camati et al.
(2016), Batalhão et al. (2019), and Landi and Paternostro
(2021) focused on the thermodynamics of DQB stabilization.

A. Charging a dissipative quantum battery

1. Dissipative charging

A dissipative charging scheme was proposed by Barra
(2019) and extended by Hovhannisyan, Barra, and Imparato
(2020) and Chang et al. (2021). Barra (2019) proposed
engineering a dissipative process that involves an ensemble
of auxiliary quantum systems A, all initialized in a thermal
Gibbs state Gβ½HA� at some temperature ðkBβÞ−1. A sequence
of interactions between the battery and individual elements of
this ensemble is then used to drive the battery’s state to an
active equilibrium π (Kamin et al., 2023), i.e., an equilibrium
state with positive ergotropy (E½π� > 0). This is akin to
collisional models, which were applied to DQBs by
Guarnieri et al. (2020), Landi (2021), Seah et al. (2021),
Barra (2022), Chen et al. (2022), Ciccarello et al. (2022),
Shaghaghi et al. (2022, 2023), and Salvia et al. (2023).
Barra (2019) coupled the battery with an auxiliary subsystem

A via a time-independent interaction V for a time interval τ
during which the battery’s state evolves as ρ → ρ0 ¼
TrA[Uρ ⊗ Gβ½HA�U†]≕Φ½ρ�, with U ¼ exp½−iðHB þHA þ
VÞ�. This implicitly defines a dissipative dynamical map Φ on
the battery,which is assumed to have a unique fixed point π such
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thatΦ½π� ¼ π and limn→∞ Φn½ρ0� ¼ π for any initial state of the
battery ρ0.
Any unitary operator U associated with a map with equilib-

rium satisfies ½U;H0
B þHA� ¼ 0 for some HamiltonianH0

B on
the battery’s space such that π ¼ Gβ½H0

B� (Barra and Lledó,
2017). Now, if H0

B ¼ HB, then π is a completely passive
state and E½π� ¼ 0. Instead, if H0

B ≠ HB, the equilibrium π
may be activewith respect to the bareHamiltonian of the battery
HB, leading to E½π� > 0. Barra (2019) obtained a general
condition for reaching an active equilibrium, which stems
from the fact that ½U;H0

B þHA� ¼ 0 if ½HB; H0
B� ¼ 0 and

½H0
B þHA; V� ¼ 0. They concluded that π is an active equi-

librium if there is a pair ði; jÞ such that ðϵi − ϵjÞðϵ0i − ϵ0jÞ ≤ 0,
with ϵi and ϵ0i the eigenenergies of HB and H0

B, respectively.
While it is clear whatH0

B should be used for π to be active in
HB, such as H0

B ¼ −HB, the power of the result by Barra
(2019) is that it provides a prescription for the interaction V to
obtain an effective Hamiltonian H0

B with an associated active
equilibrium π. They showed that a generic interaction V ¼P

αB̂α ⊗ Âα leads to an active state if the battery (auxiliary)
interaction operators B̂α (Âα) satisfy ½HB; B̂α� ¼ λαB̂α

(½HA; Âα� ¼ λαÂα) for some fλαg, leading to H0
B ¼ −HB.

Barra (2019) also examined the energetic cost of charging
Wch associated with performing such repeated interactions V
leading to π. They obtained Wch ¼ Tr½ðHB −H0

BÞðπ − ρ0Þ�,
which vanishes if π is a thermal equilibrium state of HB. They
were then able to quantify the efficiency η of the associated
charging process, which was given as the ratio between the
ergotropy of π and the cost of the charging process,

η ≔
E½π�
Wch

¼ 1 −
jQchj
Wch

; ð52Þ

in agreement with the second law of thermodynamics and in
analogy with the Carnot limit, whereQch ¼ Tr½H0

Bðπ − σπÞ� is
the total heat exchanged, with σπ the passive state of π.
These results outline a trade-off between the charging

efficiency η and the ergotropy E. Hence, one cannot maximize
both at the same time, and this is a general property of
thermalization-assisted charging (Barra, 2019; Hovhannisyan,
Barra, and Imparato, 2020).

2. Environment-assisted charging

The charging mechanism described in Sec. V.A.1 can be
generalized by relaxing the condition on π to be thermal,
which may be attained for a more structured environment,
where a charger can also be included. The proposed
approaches can be classified as follows: first, the case of
charging assisted by non-Markovian effects (Kamin, Tabesh,
Salimi, Kheirandish, and Santos, 2020; Ghosh et al., 2021)
and, second, the benefits of engineering the interactions
between the battery and the external environment (Tabesh,
Kamin, and Salimi, 2020; Xu et al., 2021; Xu et al., 2023). In
both cases the environment is at least partly known, so some
modeling of the experimental data can be built.
We begin with charging assisted by non-Markovian effects.

Kamin, Tabesh, Salimi, Kheirandish, and Santos (2020)
showed that both the battery and the charger are given by

TLSs resonantly coupled and interacting with an independent
environment. The latter is given by an amplitude damping
reservoir, modeled as an ensemble of quantum harmonic
oscillators. Kamin, Tabesh, Salimi, Kheirandish, and Santos
(2020) determined that in the underdamped regime12 the
presence of the environment leading to non-Markovian effects
allows for the optimal energy transfer from the charger to the
battery. Thus, albeit the environment E generally degrades
the charging of the battery, there are parameter regimes where
the charging performance is close to ideal.
Ghosh et al. (2021) considered a case study where the

presence of an external noise source leading to non-
Markovian effects effectively improves the performance of
the charging process with respect to the noiseless case. The
key difference found by Kamin, Tabesh, Salimi, Kheirandish,
and Santos (2020) was that both the battery and the charger are
quantum many-body systems. Specifically, Ghosh et al.
(2021) initially prepared the battery as the ground state of
a one-dimensional XY model with a transverse magnetic field
in open boundary conditions, and the battery was charged and
discharged via interactions with local bosonic reservoirs. In
the transient regime, the DQB can store energy faster and
return a higher ergotropy if it is affected by non-Markovian
dephasing noise.
A complementary scenario is that of engineered battery-

environment interactions. Xu et al. (2021) also considered a
battery and the charger given by the TLS and showed that, by
tuning the spectral density function (SDF) of the environment,
the performance of the charging process increases when a
stronger coupling strength with the environment is enabled in
the so-called band-gap configuration. In other words, the SDF
consists of positive- and negative-weighted Lorentzian spectra
centered around the same frequency. In this condition, one can
fully charge the DQB and extract the total stored energy as
useful work. Another approach, proposed by Tabesh, Kamin,
and Salimi (2020), consisted of a battery and a charger that
were not directly coupled but were allowed to interact through
a common environment. Quach and Munro (2020) took a
similar approach in which the battery was charged more
efficiently with a strong battery-environment interaction.

B. Active charging and stabilization methods

1. Controllability of closed and open quantum batteries

The charging and stabilization of OQBs can be framed as
control tasks, whereby some control operations are used to
increase the energy of the battery with respect to its internal
Hamiltonian HB and then protect it from leaking back into the
environment. For isolated and closed quantum batteries, we
are asking for the existence of a unitary operator Uðτ; 0Þ so
that ρðτÞ ¼ Uðτ; 0Þ½ρ0� ¼ jeihej. If such a unitary operator
Uðτ; 0Þ does not exist, one can relax the control requirements
of the charging process. For example, one could vary the
target time τ or choose a different target state ρ⋆ from the
maximally charged state associated withHB. Alternatively, we

12The interaction between the battery and the charger is stronger
than the coupling among such single quantum systems and the
common environment.
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can still seek full charging jei → jgi by opening the quantum
battery to external resources. This can be achieved via the
charger (Ferraro et al., 2018; Farina et al., 2019), as seen in
Sec. III.B for the case of the Dicke quantum battery. A charger
can be employed regardless of whether the battery is interact-
ing with the external environment. However, in the presence
of a dissipative environment (Carrega et al., 2020; Carrasco
et al., 2022) one would seek conditions to guarantee that the
charging process is energetically efficient, despite the effect of
dissipation.
In the current literature, several solutions have been

proposed to realize a charger. Among the most meaningful
have involved a thermal heat engine (Levy, Diósi, and Kosloff,
2016; Son, Talkner, and Thingna, 2022), an external quantized
light field (Ferraro et al., 2018; Andolina, Keck, Mari,
Campisi et al., 2019; Monsel et al., 2020), an ancilla system
acting as a controllable switch (Farina et al., 2019), and a
stream of coherently prepared quantum units (Landi, 2021;
Seah et al., 2021; Salvia et al., 2023).

2. Stabilization power and its energy cost

We now consider a scenario where we charge a DQB onto
the maximally charged state ρ⋆ ¼ jeihej from an arbitrary
initial quantum state at the desired time τ and stabilize ρ⋆ for
an arbitrarily long time until the external user requests the
stored energy. For such a purpose, unitary operations are no
longer sufficient since they are isentropic (and thus adiabatic
and reversible) processes and cannot decrease the entropy
changes induced by E. Hence, a nonunitary operation is
needed, requiring an extra energy cost, named the stabilization
cost, due to the use of auxiliary systems.
For these strategies to be energetically favorable, the

stabilization cost Wstab must be smaller than the energy
storage capacity Emax ¼ Tr½HBðρ⋆ − jgihgjÞ�. To this end,
Gherardini et al. (2020) introduced two figures of merit:
the instantaneous relative stabilization cost

ηstabðtÞ ≔
WstabðtÞ
Emax

ð53Þ

and the instantaneous relative excess stabilization cost

ζstabðtÞ ≔
WstabðtÞ − LðtÞ

Emax
ð54Þ

that identifies the excess cost besides the total amount of
energy spent to compensate the energy leakage LðtÞ due to
decoherence and thermalization. For open dynamics described
by the GKSL equation (51), LðtÞ ≔ Tr[HBD½ρBðtÞ�]. Ideally
one should allow for WstabðtÞ ¼ LðtÞ such that ηstabðtÞ ¼
LðtÞ=Emax and ζstabðtÞ ¼ 0 for any time t, so the energy
needed to stabilize the DQB is minimized. This intuitive result
can be analytically demonstrated with thermodynamics argu-
ments (Gherardini et al., 2020).
The power PstabðtÞ ≔ ẆstabðtÞ in stabilizing a DQB has a

lower bound (Gherardini et al., 2020) that determines the
minimum amount of energy that has to be supplied from the
outside. The lower bound derives from the first law of
thermodynamics (Horowitz and Jacobs, 2015),

ĖðtÞ ¼ ẆstabðtÞ þ J E→BðtÞ; ð55Þ

where EðtÞ ¼ Tr½HBðtÞρBðtÞ� is the instantaneous total battery
energy,13 while J E→BðtÞ ≔ ĖEBðtÞ denotes the instantaneous
energy current driven into the battery by the external envi-
ronment. It can thus be shown (Gherardini et al., 2020) that
the stabilization power PstabðtÞ follows the inequality

PstabðtÞ ≥ ĖðtÞ − TπṠ½ρBðtÞ�; ð56Þ

where Tπ is an effective temperature able to parametrize π, the
invariant state of the DQB under the influence of the environ-
ment.14 In case the open dynamics of the battery is governed by
Eq. (51), then Ṡ½ρBðtÞ� ¼ −Tr[D½ρBðtÞ� log ρBðtÞ].
The lower bound of Eq. (56) also entails an inequality on

the time derivative of the nonequilibrium free energy FðtÞ ≔
EEBðtÞ − TπS½ρBðtÞ� for the battery without the charger and
the controller. This inequality reads ḞðtÞ ≤ 0, where the
nonequilibrium free energy FðtÞ reduces over time due to
the increase of the battery von Neumann entropy. Hence, the
action of the control procedure assisting the charger is to invert
this time behavior of FðtÞ. As a consequence, the minimum
stabilization power is the one allowing for ḞðtÞ ¼ 0 (i.e.,
constant nonequilibrium free energy), such that the entropy
due to the environment is perfectly compensated by the
control. Therefore, Eq. (56) implicitly indicates that the
minimum energy cost to stabilize a DQB is proportional
to EðtÞ − TπS½ρBðtÞ�.

3. Charging and stabilization via sequential measurements

Gherardini et al. (2020) introduced a control strategy for the
stabilization of a DQB given by a nonunitary open-loop control
that requires a sequence of projective energy measurements to
be performed at discrete consecutive times (Gherardini, 2019;
Gherardini et al., 2021). The energy measurements have to be
close enough in time that the dynamics of the DQB is frozen in
the corresponding energy basis, which is in agreement with the
quantum Zeno regime (Smerzi, 2012; Müller et al., 2016). In
thisway the energybasis becomes a decoherence-free subspace,
and the DQB is stabilized in the maximally charged state15

ρe ≔ jeihej. Albeit maintaining the quantum Zeno regime
imposes stringent constraints (Smerzi, 2012; Gherardini
et al., 2016; Müller et al., 2016), the time intervals among
projective measurements can be optimized to minimize the
stabilization power Pstab.
As shown in Fig. 8, the protocol of Gherardini et al. (2020)

consists of three steps.

13Assuming that the ground state has zero energy.
14If the battery is a TLS or the invariant state π is thermal, then the

parametrization is exact. Otherwise, the value of Tπ can be deter-
mined by setting further constraints on the energy or the entropy
associated with π (Salvia and Giovannetti, 2020). Another possibility
to set the value of Tπ is to invoke the concept of virtual temperatures
(Brunner et al., 2012).

15The DQB is repeatedly brought back to jeihej with a much
greater probability, as ρBðtÞ and jeihej are statistically indistinguish-
able; i.e., their difference is detectable by no measurement devices
(Wootters, 1981).
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(i) Initialization. Any initial state of the battery ρ0 ≔ ρBð0Þ is
driven to the unitarily connected state that is closest to ρe, here
denoted as ρ⋆0 . This transformation is allowed by controlling the
battery through a time-dependent Hamiltonian as in Eq. (2).
(ii) Full charging and stabilization via projective energy

measurements. Once the battery is in ρ⋆0 , a projective energy
measurement (defined in the eigenbasis of HB) is performed.
The battery’s state collapses into the maximally charged state
jei with a probability pe½ρ⋆0 � ¼ Tr½ρ⋆0 ρe�. Subsequently the
interaction with the environment leads the battery to the lower-
energy state ρα ¼ Λτα ½ρe�. A sequence of projective measure-
ments M0 on the basis of the battery Hamiltonian HB

repeatedly takes the battery to the state ρα →
M0

ρe at consecutive
times with the probability pe½ρα�. For the protocol to be
successful, the time τα between subsequent measurements
must be much smaller than the timescale of both the battery
free evolution and the decoherence time dictated by E.
ðiiiÞ → ðiÞ Reinitialization. When a projective measurement

collapses ρα onto the ground state jgihgj, a new initialization is
performed by applying unitary driving as in step (i).
For an unstable DQB, attaining this quantum Zeno regime

allows for full charging and stabilization at the price of extra
energetic and entropic costs. On average, no energetic cost is
associated with the jumps of the projective energy measure-
ments, independently of which the quantum state is measured.
However, there is a cost associated with storing and erasing
the information associated with these measurements that is
connected to the entropic cost of the protocol. Let pk½σ� be the
probability for some d-level battery’s state σ to collapse onto
one of its energy eigenstates ϵk. These probabilities carry the
informational content of the outcomes obtained by measuring
the state σ. The storing and erasure of each measurement
outcome requires an entropy production whose rate of change
over time is proportional to the time derivative of the Shannon
entropy SSh½σ� ≔ −

P
kpk½σ� logpk½σ�.

Hence, implicitly as an effect of Landauer’s principle
(Landauer, 1961; Bérut et al., 2012; Zhen et al., 2021), the
irreversible erasure of the measurement information content is
responsible for an energetic cost WZeno. Formally

WZeno ¼ m̄β−1erasSSh½ρα�; ð57Þ

where m̄ denotes the average number of projections in the
quantum Zeno regime [step (ii)] and βeras is the inverse
temperature of the macroscopic system that erases the
memory containing the measurement outcomes.

4. Charging and stabilization with feedback control

Another approach to charging and stabilization consists in
using linear feedback, as proposed by Mitchison, Goold, and
Prior (2021). They considered a finite-dimensional battery and
showed that feedback (or closed-loop) control can fully charge
the battery by monotonically increasing its average total
energy. They also showed that this protocol can be used to
keep the battery in a charged state ρBðtÞ ¼ ρ⋆ despite the
presence of the environment E. Note that feedback asymp-
totically makes the target state a nonequilibrium steady state
that is robust to small additional (i.e., not explicitly modeled)
thermal noise.
The procedure proposed by Mitchison, Goold, and Prior

(2021) used homodynelike continuous measurements and
linear feedback control (Belavkin, 1987; Wiseman and
Milburn, 1993;Wiseman, 1994). A finite-dimensional quantum
battery was coupled to a two-level quantum charger that
pumped energy into the battery. In the following, σiC, with
i ¼ x; y; z, denotes the standard Pauli operators acting on the
charger. The battery resonantly exchanges energy with the
charger via the interactionHamiltonianH1 ¼ gðŝBσ̂þC þ ŝ†Bσ̂

−
CÞ,

where g is the battery-charger coupling strength, σ̂�C ≔
ðσ̂xC � iσ̂yCÞ=2, and ŝB ≔

P
d−1
k¼1jk − 1ihkj denotes the lowering

operator for the battery.
The bare Hamiltonian HB þHC, with HC ¼ σ̂zC=2, com-

mutes with H1: ½HB þHC; H1� ¼ 0. Thus, the local energy of
both the battery and the charger does not change on average.
Instead,ω0 ∝ kHB þHCkop is taken as the largest energy scale
of the composite battery-charger system. While the battery is
considered a well-isolated system, the charger is coherently
driven via the Rabi Hamiltonian HdriveðtÞ ¼ ΩðtÞσ̂yC, with
ΩðtÞ ≫ ω0 ∀ t, in the interaction picture with respect to
HB þHC and in the rotatingwave approximation. The external
environment, which is represented by a multimode field,
induces spontaneous emission from the charger. Therefore,
in the absence of feedback control, the composite battery-
charger system evolves following a driven-dissipative
dynamics.
The linear feedback control discussed by Mitchison, Goold,

and Prior (2021) consists of measuring the photons that are
spontaneously emitted by the charger via homodyne detec-
tion. The latter returns the signal

rðtÞdt ¼ Tr½ρBCðtjrÞσ̂xC�dtþ
dωðtÞffiffiffiffiffi

ςγ
p ; ð58Þ

FIG. 8. Single-run pictorial representation of a sequential
measurement protocol for a TLS battery. After the initialization
step from the initial state ρ0, the stabilization protocol consists of
intermittent free evolutions, fast unitary controlled dynamics U t
(solid blue lines), and projective measurements M0 (solid red
lines) in time intervals of a duration τ. The green dots denote the
maximally charged state ρe, while the yellow dots represent
the battery state ρα into which the DQB decays as an effect of
the environmental action Λτ, here exaggerated for illustrative
purposes. Finally, ρ⋆0 and ρ⋆g are the nearest states to ρe on the
unitary orbit of ρ0 and ρg ¼ jgihgj, respectively. Adapted from
Gherardini et al., 2020.
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with γ the spontaneous emission rate, ς the measurement
efficiency, and ρBCðtjrÞ the instantaneous state of the battery-
charger system conditioned on the measurement outcome r.
The Wiener increment dωðtÞ models the noise in the detector
output that makes the measurement signal a stochastic
process. The feedback loop, therefore, is closed by applying
a driving field directly proportionally to the measurement
record to the charger: ΩðtÞ ¼ Ω0 − frðt − τÞ, where τ > 0 is
the lag in the feedback loop, f is the feedback strength, andΩ0

is a constant function.
In the nearly ideal case of negligible feedback lag τ ≈ 0, the

dynamics of the battery subject to feedback is well described
by a Markovian GKSL master equation for the ensemble-
averaged density operator ϱ̄BCðtÞ ≔ Er½ρBCðtjrÞ�, with Er½·�
denoting the average over the detector noise. For τ > 0 the
Markovian description is no longer valid. Hence, in such a
case one needs to solve a stochastic Ito equation and then
average over several realizations of the corresponding quan-
tum dynamics (Mitchison, Goold, and Prior, 2021).
In the ideal case of noiseless measurement signals (i.e., the

maximum measurement efficiency ς) and instantaneous feed-
back, a battery can be fully charged. Nevertheless, Mitchison,
Goold, and Prior (2021) found that a good performance of the
charging process and battery stabilization are observed even
under more realistic constraints of inefficient measurements
and the time delay τ in the feedback loop. However, for
sufficiently large τ the control action stops counteracting both
the measurement backaction and the detrimental presence of
the environment on the charger. As a result, the feedback loop
breaks and behaves as a random sequence of quantum
measurements (Gherardini et al., 2021) such that the charger
relaxes to the maximally mixed state, which is equivalent to a
thermal state at infinite temperature.
Further studies on measurement-based stabilization could

focus on the evaluation of its energetic and entropic cost
(Mitchison, Goold, and Prior, 2021; Yao and Shao, 2021,
2022; Morrone, Rossi, and Genoni, 2023; Yan and Jing,
2023), precision, work extraction, and autonomy (Mitchison,
2019; Hernández-Gómez et al., 2022).

C. Protection from energy losses

We now discuss some approaches based on the preparation
of active states that are protected from the environment (Liu,
Segal, and Hanna, 2019; Quach and Munro, 2020; Liu and
Segal, 2021). These methods do not require energy expendi-
ture following state preparation, in contrast to the previously
discussed active stabilization methods.

1. Protection via decoherence-free subspaces

Liu, Segal, and Hanna (2019) proposed an approach to
engineer loss-free open quantum batteries, i.e., OQBs that are
protected from losing energy to the environment. Their
scheme consisted of preparing the battery in some energeti-
cally favorable state of a decoherence-free subspace (DFS).
The latter is a subset of the states space that is protected from
decoherence in which the dynamics is perfectly unitary and
unaffected by the environment (Lidar and Birgitta Whaley,
2003). DFSs have been extensively studied in the theory of

open quantum systems and quantum information (Zanardi and
Rasetti, 1997) as a promising mean to shield quantum states
from noise sources that limit the performance of quantum
computing (Lidar, Chuang, and Whaley, 1998; Bacon et al.,
2000; Beige et al., 2000) and quantum key distribution
(Walton et al., 2003). This strategy can also be used to
prevent energy loss by engineering a relaxation-free subspace
(de Ponte, Mizrahi, and Moussa, 2007), i.e., a DFS unaffected
by thermal relaxation.
The working principle of the loss-free battery of Liu, Segal,

and Hanna (2019) is based on the decomposition of the
battery’s Hilbert space into subspaces that are invariant with
respect to the dynamics induced by the total Hamiltonian.
Following Liu, Segal, and Hanna (2019), we now consider a
system (battery) described by a quantum network Hamiltonian

HB ¼
X
j

Ejjjihjj þ
X
ðj;kÞ

ðJjkjjihkj þ H:c:Þ; ð59Þ

where Ej is the energy of each site in the network and Jjk is
the coupling between pairs of sites ðj; kÞ. Liu, Segal, and
Hanna (2019) considered an environment given by a bath of
uncorrelated, harmonic vibrational modes coupled to the
system only via a subset S of site operators jjihjj, here
associated with surface sites. If there is a unitary symmetry
operator Π̂ such that

½Π̂; HB� ¼ 0; ½Π̂; jjihjj� ¼ 0 ∀ jjihjj∈S; ð60Þ

then Π̂ and HB admit a common eigenbasis fjψ ðkÞ
α ig, where

the index α is associated with eigenvalues λα whose degen-
eracy dα is spanned by an index k ¼ 1;…; dα. Under these
conditions one can decompose the system’s Hilbert space
HB ¼ ⨁αHB;ðαÞ such that the dynamics generated by the
total system-environment Hamiltonian HB þHint þHE
leaves these subspaces HB;ðαÞ invariant (Lidar and Birgitta
Whaley, 2003).
To illustrate this approach, Liu, Segal, and Hanna (2019)

considered a networkwith six siteswith ring topology (Trudeau,
1994; Thingna, Manzano, and Cao, 2016); see Fig. 9. This
system, which is similar to the tight-binding model of a benzine
molecule (Bancewicz, Diercksen, and Karwowski, 1989), can
be realized with excitonic (Mikhnenko, Blom, and Nguyen,
2015; Jang and Mennucci, 2018; Alicki, 2019) and super-
conducting architectures (Blais et al., 2021), as well as on other
quantum technology platforms. This system can be engineered
to have two dark states16 jψ�i that are not subject to
decoherence or relaxation. Specifically, if the composite system
is initialized in a state ρ0 ¼ jψ�ihψ�j ⊗ ρE, then the battery
will remain in the state jψ�ihψ�j at all times.
We now mention a few considerations. First, the robustness

of dark states depends on how well the conditions of Eq. (60)
are met. Their lifetime depends on the magnitude of the
disorder affecting the energies and couplings, as well as on
the temperature and the strength of the coupling with the

16In analogy with the optically dark states that arise under similar
conditions in coupled TLSs interacting with light.
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environment (Liu, Segal, and Hanna, 2019). Second, charging
the battery in such dark states is a challenging task in its own
right. Sudden quenches, such as optical pumping with a
pulsed laser, can take both the system and the environment out
of equilibrium and generate correlations between strongly
coupled excitons and phonons (Wells and Blank, 2008).
Third, Liu’s proposal has been the subject of a discussion
around its loss-free nature and ability to store energy (Liu,
Segal, and Hanna, 2021; Tejero, Thingna, and Manzano,
2021) rather than just excitons. Nonetheless, the general
consensus is that relaxation-free subspaces are a promising
way to protect quantum batteries from energy losses and
should be a subject of further study.
Further work is needed to generalize loss-free quantum

batteries to the case of many-body systems. Another obser-
vation is that dark states like jψ�i are not the most energetic
states of the battery Hamiltonian and instead sit roughly in the
middle of its spectrum. This is akin to the subradiant states of
Dicke models, which sit around the midpoint of the Dicke
ladder (Glicenstein et al., 2022). Therefore, it is important to
understand whether there is a trade-off relation between the
robustness of dark states and their energetic content, and
whether they are compatible with superextensive power
scaling. Future work should explore the possibility of using
high-energy ratchet states17 while retaining absorption
enhancement (Quach et al., 2022).

2. Engineering spontaneous dark-state preparation

Loss-free quantum batteries rely on our ability to prepare
dark states. However, adiabatic passage and quantum optimal
control may not always be viable options, due to limitations on
the set of control operations and their bandwidth. Note that
protected states can also form spontaneously due to an
interaction with an auxiliary charger and the environment.
This approach, which was proposed by Quach and Munro
(2020), can be adopted to protect many-body excitonic
quantum batteries from radiative and vibrational losses while
retaining the superextensive scaling in the charging power
discussed in Secs. II and III.
Quach and Munro (2020) considered an NB-body battery

and an NC-body charger, both given by ensembles of
uncoupled quantum TLSs with an energy gap ω. The battery
and the charger are also coupled with a thermal reservoir,
given by a bath of optical harmonic modes at a temperature T.
The total system-reservoir Hamiltonian is

H ¼ ωðĴzB þ ĴzCÞ þ
Z

dkEkr̂
†
kr̂k

þ g
2
½ðĴþB þ ĴþC ÞR̂þ ðĴ−B þ Ĵ−CÞR̂†�; ð61Þ

where Ĵx;y;zi denotes the usual collective spin operator of
ensembles i ¼ B;C and Ĵ�i ≔ Ĵxi � iĴyi . The reservoir is
represented via the linear dispersion relation Ek as a function
of the wave vector k with the creation and annihilation
operators r̂k and r̂†k, respectively. The parameter g represents
the coupling strength between the battery-charger system and
the reservoir, while the reservoir operator R̂ ¼ R

dk κkr̂k is
expressed as a function of a general continuous function κk
whose form depends on the considered system. The reservoir
is assumed to be weakly coupled (g ≪ ω) to the system and
approximately in the thermal state Gβ½HR� ¼ exp½−βHR�=Z,

with HR ¼ R
dkEkr̂

†
kr̂k. Under these conditions, the dynamics

of the system’s density operator ρðtÞ is well approximated via
the Markovian GKSL master equation as

ρ̇ðtÞ¼−iω½ĴzBþ ĴzC;ρðtÞ�þγðn̄þ1ÞD−½ρ�þγn̄Dþ½ρ�; ð62Þ

where D�½ρ� ≔ 2ÔρÔ† − fÔ†Ô; ρg; with Ô ¼ Ĵ�B þ Ĵ�C , γ a
function of g, and n̄ ¼ 1=½expðβωÞ − 1� the mean thermal
population.
Although the battery and charger are not directly coupled,

the superoperators D� can generate correlations between the
spins of the two subsystems. Quach and Munro (2020)
considered an initial product state jψ0i ¼ jGiB ⊗ jEiC given
by the ground state of the battery and the excited state of the
charger. The dynamical map generated by Eq. (62) leads jψ0i
to a steady state ρ∞ that partially overlaps with a dark state
forbidden from further decaying toward a completely passive
thermal equilibrium state. Even at zero temperature this
approach allows a battery state with finite energy to be
prepared. With a numerical study conducted for NB ≤ 10,
Quach and Munro (2020) showed that the power density
scales linearly as hPiτ=NB ∝ NB, thus exceeding that of the
Dicke model in the regime discussed in Sec. III.B.

FIG. 9. Liu, Segal, and Hanna (2019) considered Eq. (59) with
nearest-neighbor couplings Jjk with cyclic boundary conditions.
The bulk sites j ¼ 2; 3; 5, and 6 are set with the same energy
Ej ¼ Ebulk, which differs from E1 and E4. All couplings are
chosen to be Jjk ¼ J0. The environment is coupled to the battery
only via the surface site operators S ¼ fj1ih1j; j4ih4jg. The
unitary operator Π̂ ¼ exp½iðj2ih6j þ H:c:Þ� exp½iðj3ih5j þ H:c:Þ�
commutes with S. This system has two DFSs associated with the
eigenvalues λ� ¼ Ebulk � J0 of Π and its eigenstates jψ�i ¼
ð1=2Þðj6i − j2i � j5i ∓ j3iÞ. An initial charged state jψþi can be
preserved indefinitely. Work can be extracted by funneling
energy to a target site (j ¼ 4), thereby breaking the symmetry
with small perturbations χ of the energy of the bulk sites.

17Excited states that can absorb but not emit light (Higgins, Lovett,
and Gauger, 2017).
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Quantum metastability18 (Macieszczak et al., 2016, 2021)
may offer a path to the spontaneous formation of protected
states, thus helping to develop approaches to mitigate energy
loss in quantum batteries (Arjmandi et al., 2022; Song
et al., 2022).

VI. EXPERIMENTAL IMPLEMENTATIONS

This section is devoted to the presentation of the most
promising platforms for the realization of quantum batteries.
We can broadly divide suitable platforms in two macro-
categories: (i) platforms operating at ultralow temperatures
and (ii) platforms that work at room temperature.
Regarding the firstmacrocategory, any platform for quantum

computing is suitable for realizing quantum batteries.
Examples of scalable solid-state Dicke batteries in the quantum
coherent regime (Ferraro et al., 2018) include semiconductor
quantum dots (Burkard et al., 2023) and superconducting
materials (Blais et al., 2021). Other alternatives include nitro-
gen-vacancy (NV) centers in diamond (Schirhagl et al., 2014;
Casola, van der Sar, and Yacoby, 2018; Barry et al., 2020),
neutral atoms, Rydberg atoms (Adams, Pritchard, and Shaffer,
2020), and trapped ions (Bruzewicz et al., 2019). The reali-
zation of SYK quantum batteries is much more challenging in
that no experimental system where the SYK model has been
realized is yet available. However, potential candidates include
graphene quantum dots with disordered edges subject to
quantizing magnetic fields (Chen et al., 2018; Brzezinska
et al., 2023) and strange metals (Patel and Sachdev, 2019;
Hartnoll and Mackenzie, 2022) that are not well described by
Landau’s Fermi liquid theory.
First, battery platforms in the second macrocategory should

contain quantum systems with level spacings ΔE that greatly
exceed the room-temperature thermal energy kBT ≈ 25 meV
to be sufficiently robust to energy relaxation. Second, they are
expected to be dominated by a collective behavior rather than
being based on entanglement generation (Cruz et al., 2022)
because the decoherence rate becomes faster as temperature
increases.

A. Superconductors

Circuit QED setups (Blais et al., 2021) offer the opportunity
to simulate [in the sense of quantum simulation (Daley et al.,
2022)] some of the most important models of quantum optics.
For example, the Tavis-Cummings (TC) model [recently
studied for quantum batteries by Yang et al. (2024)], which
describes a system ofN TLSs coupled to a single-mode cavity,
was simulated in a circuit QED setup by Fink et al. (2009).
The TC model differs from the Dicke model in that it does not
contain counterrotating terms. Circuit QED therefore offers us
a natural platform to fabricate Dicke quantum batteries, as
discussed in Sec. III.B. In such a platform, TLSs can be
realized using superconducting qubits named transmons
(Koch et al., 2007), while the cavity is realized using a

coplanar waveguide resonator. The qubits are positioned at the
antinodes of the first-harmonic standing wave electric field
and have couplings that are nearly identical to the cavity
mode. The resonators are typically realized by employing
optical lithography and metal evaporation techniques on
suitable substrates (Fink et al., 2009), while the transmons
are fabricated by combining e-beam lithography and shadow
evaporation techniques for the metal of choice [typically
aluminum, niobium, or, more recently, tantalum (Place
et al., 2021)] and its oxide. Recent developments on materials
science aspects were addressed by Polini et al. (2022). Circuit
QED setups are operated in the microwave regime (with
typical level spacing being on the order of a few gigahertz) and
display timescales on the order of nanoseconds.
A preliminary prototype of a superconducting quantum

battery was realized experimentally by Hu et al. (2022). The
device contained a single superconducting qutrit (i.e., a three-
level system) coupled to a single-mode cavity. This system
cannot display either a quantum or a collective advantage,
since it contains a single quantum unit. The work of Hu et al.,
however, constitutes an important first step toward realizing
highly controllable superconducting quantum devices capable
of storing energy. Indeed, using two microwave pulses with
time-dependent Rabi frequencies, Hu et al. (2022) were able
to resonantly drive the qutrit and implement a number of
controlled adiabatic charging processes, such as those dis-
cussed in Sec. IV.B. Superconducting implementations can
also be studied, with some limitations, on platforms like the
IBM Quantum Experience (Gemme et al., 2022).

B. Quantum dots

Wenniger et al. (2022) conducted an experimental study
of energy transfer between a TLS and a reservoir of
electromagnetic modes. The energy transfer occurred via
spontaneous emission from a InGaAs quantum dot (the
charger) to a micropillar optical cavity (the battery). The
quantum dot was resonantly excited by a pulsed Ti:sapphire
laser in a cryostat at 5–20 K, to be brought into a superposition
of the ground and excited states. Wenniger et al. (2022) also
considered a work extraction phase during which the energy
stored in the battery flowed into another system (a laser field)
through homodyne-type interference. After spontaneous emis-
sion of the quantum dot into the cavity, the work transferred to
the battery corresponded to the coherent part of the emitted
field, while the incoherent component corresponded to the
heat exchanged. The latter was an energy-loss mechanism and
did not contribute to work extraction. Further efforts could
employ this setup with many-body quantum batteries and
approaches to protect active states from relaxation.

C. Organic microcavities

Quach et al. (2022) presented an experimental implemen-
tation of a many-body charging protocol, realized using an
organic semiconductor coupled to a confined optical mode in
a microcavity at room temperature. They provided evidence
for the system displaying superextensive scaling of the energy
absorption while interpreting the results in terms of the Dicke
model discussed in Sec. III.B. The setup consisted of a

18In quantum metastability, which is related to prethermalization
(Berges, Borsányi, and Wetterich, 2004), relaxation rapidly leads the
system toward long-lived nonequilibrium states, from which thermal
equilibration is reached over exponentially longer timescales.

Francesco Campaioli et al.: Colloquium: Quantum batteries

Rev. Mod. Phys., Vol. 96, No. 3, July–September 2024 031001-23



microcavity formed of two dielectric mirrors (Vahala, 2003)
containing a thin layer of a low-mass molecular semiconduc-
tor [Lumogen F Orange (LFO) (Russo et al., 2022)] dispersed
in a polymer matrix. Operating around the 0-0 transition,19 the
LFO molecules can be considered as TLSs, supporting the use
of the Dicke model. The number of TLSs was varied by
controlling the concentrations of the dye molecules.
Moreover, charging and energy storage dynamics were
measured using ultrafast transient-absorption spectroscopy,
allowing femtosecond charging times to be measured (Cerullo
et al., 2007). Quach et al. (2022) observed that the retention of
energy in the system had the benefit of a finely tuned balance
between cavity coupling and decoherence channels, allowing
the device to charge quickly and yet discharge much more
slowly. This effect, which is analogous to that discussed in
Sec. V.C, provides an example of a realistic noisy environment
that can aid in the implementation of quantum batteries.
A practical challenge discussed by Quach et al. (2022) was

that high concentrations of dye molecules led to quenching,
i.e., the formation of optically dark electronic ground states
that suppress light absorption. Overcoming this limitation
would require a careful choice of materials, so as to mitigate or
eliminate quenching. There are classes of materials where
such quenching is suppressed. For example, fluorescent
molecules can be surrounded by a “molecular cage” or
“bumper,” for example, one consisting of protein β sheets
(Dietrich et al., 2016). These cages force a minimum distance
between the chromophores that reduces the intermolecular
electronic couplings, thus allowing for the suppression of
exciton-exciton quenching at high concentrations (Dietrich
et al., 2016). Such materials are a promising route to studying
quantum battery at higher molecular concentrations and
higher energy densities.

D. Nuclear spins

Joshi and Mahesh (2022) recently used nuclear magnetic
resonance to study energy injection and extraction in nuclear
spin systems. They considered molecular structures with star
topology consisting of a so-called battery spin surrounded by
N ¼ 3 to 36 charger spins. They employed a single spin-1=2
battery, and the charger was a collection of N spin-1=2
systems. Although these systems resemble the spin-network
models discussed in Sec. III.C.1, here the “battery” is a single-
body system (N ¼ 1), while the charger is composed of
N > 1 subunits. The experiments were conducted at an
ambient temperature of 298 K. The initial thermal equilibrium
state of the charger spins were driven out of equilibrium by
inverting their populations with a π pulse. The energy of the
battery spin was then measured as a function of time and of
the numberN of the charger spins. Although similar in nature,
the charging speedup measured by Joshi and Mahesh (2022) is
not exactly the one described in Sec. II [the battery is indeed
composed of a single constituent (N ¼ 1)] but rather a case of
the supertransfer mechanism (Taylor and Kassal, 2018).

In the full 38-spin system of Joshi and Mahesh (2022), the
battery could store energy for up to 2 min. This result is a
promising step toward the implementation of room-temperature
quantum batteries based on nuclear spins. Further work could
extend this model to the case of many-body quantum batteries
(i.e., N > 1) and could clarify the nature of the charging
speedup scaling with N .

VII. CONCLUSIONS AND OUTLOOK

In the past decade, quantum batteries have been a frame-
work for studying energy injection, storage, and extraction
processes in the quantum regime. Despite significant progress,
we are only now beginning to understand the potential and the
applications of quantum energy storage. A complication is
posed by the fact that batteries are multifaceted devices whose
performance is evaluated using a variety of figures of merit.
Therefore, we could argue that a quantum battery is well
defined only with a clear goal in mind. Hence, the following
question is of paramount importance: What are the uses for a
quantum battery? Here we outline a few possible answers
while elaborating on how they could set a path for future
developments.
One option is to focus on the advantages that quantum

batteries may offer over classical ones. At the beginning of
this Colloquium we set out to determine whether genuine
quantum effects can improve the performance of energy
storage devices. The results that we reviewed suggest that
the answer is in the affirmative, as discussed in Secs. II and III,
at least in some systems and under conditions intended to
preserve such key quantum features.
Another avenue for quantum batteries is their integration

into emerging quantum technologies, which are expected to
assume a prominent role in a variety of practical tasks (Acín
et al., 2018; Deutsch, 2020), such as optimizations (Preskill,
2018; Atzori and Sessoli, 2019), simulations (Altman et al.,
2021), and measurements (Degen, Reinhard, and Cappellaro,
2017; Albarelli et al., 2020). As a major example, quantum
computation necessitates examining its energy consumption
for practical implementation and optimization (Auffèves,
2022). Bennett (1973) connected logical reversibility in
computation to thermodynamic reversibility, suggesting no
heat generation in logically reversible computations that
prevent information loss, which adheres to Landauer’s prin-
ciple (Landauer, 1961). Quantum computation is inherently
reversible because it uses unitary operations. This feature
allows, at least in theory, quantum computation to be
performed without generating heat. However, owing to the
quantum speed limit (Deffner and Campbell, 2017) finite-time
operations require energy input, necessitating an energy
source for a reversible quantum computer, even without heat
production.
Chiribella, Yang, and Renner (2021) demonstrated the

necessity of a quantum energy storage component when
performing reversible quantum computing. Their proposed
approach involves implementing a reversible quantum gate G,
which might not conserve energy, on the system used for the
computation through a free unitary UG. The latter acts on both
the system and the battery by preserving their combined
energy. Ideally the battery needs to supply only a finite energy

19In the presence of vibrational sublevels, 0-0 transitions are those
between the lowest vibrational states.
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for UG to approximate the desired gate G with arbitrary
precision. Chiribella, Yang, and Renner (2021) discussed the
energetic requirements for reversible quantum computing in
relation to those imposed by Landauer’s principle for irre-
versible processes. These results speak to the importance that
quantum batteries have for energy-efficient computing,
encouraging the investigation of several aspects, such as
the relation to the quantum speed limit (Deffner and
Campbell, 2017) and the finite-time Landauer principle
(Proesmans, Ehrich, and Bechhoefer, 2020).
Beyond computation, quantum batteries could prove

resourceful for other quantum devices that rely on coherences
and entanglement. The scheme proposed by Chiribella, Yang,
and Renner (2021) also finds an application in quantum
metrology (Chiribella and Yang, 2017) and has general
validity for reversible quantum operations. In this context,
it is likely that the energy storage components would require
some unique conditions to correctly interface with some
quantum device. For example, batteries might need to operate
at energy scales and timescales that can be achieved only with,
say, transmons, just as superconducting quantum interference
devices and NV centers are among the few available platforms
to offer nanotesla sensitivity for magnetometry (Buchner
et al., 2018; Barry et al., 2020). Based on these perspectives,
we can outline a road map for the development of quantum
batteries. In what follows, we start with theory and proceed
through experiments to arrive at future possible applications.
A key theoretical question is to understand whether the

amount of extractable energy affects the relaxation timescale.
Decoherence-free subspaces (Kwiat et al., 2000; Lidar and
Birgitta Whaley, 2003; Cappellaro et al., 2006), metastability
(see Sec. V.C.1) (Lan et al., 2018; Macieszczak et al., 2021),
and anomalous relaxation (Lu and Raz, 2017; Baity-Jesi et al.,
2019; Carollo, Lasanta, and Lesanovsky, 2021; Wildeboer,
Iadecola, and Williamson, 2022) offer a viable way to over-
come the trade-off that is apparently imposed by the relaxation
rate γR ∝ expðΔE=kBTÞ, which is exponentially faster with an
increasing energy gap ΔE. We need to find models that permit
these phenomena and platforms to realize them. Studying the
limits of energy density of quantum battery architectures is
another opportunity to push the field beyond power scaling.
Proof-of-principle experiments are the next step in demon-
strating advantages and uncovering new aspects of quantum
energy storage. With the experimental work on quantum
batteries still in its infancy, it is desirable to consider all
existing platforms for quantum technologies (Smyser and
Eaves, 2020; de Leon et al., 2021; Huang et al., 2023).
Finally, we consider the relation between the previously

discussed physical architectures and applications. The dis-
tinction between quantum and collective effects (see Secs. II
and III) suggests that “cold” platforms would be ideal to
explore quantum speedups. This is because most of the
experimental setups that can sustain entanglement work at
low temperatures. These conditions are achieved using cryo-
stats and other energy-consuming controls; therefore, we must
also carefully account for the associated energy expenditure
(Auffèves, 2022; Fellous-Asiani et al., 2023). However, room-
temperature setups offer a path toward collective speedups.
Architectures based on quantum dots and organic molecules
are strong candidates due to energy densities that are favorable

for optoelectronics (Ostroverkhova, 2016) and have already
found an application in light-harvesting devices (Calvin,
1983; Curutchet and Mennucci, 2017; Kundu and Patra,
2017; Jang and Mennucci, 2018).
In conclusion, for quantum batteries to make a direct

technological impact, we must address the aforementioned
important issues, like stabilization efficiency and energy
density. Note that this Colloquium does not address the use
of genuine quantum effects to enhance existing energy tech-
nologies like electrochemical batteries, capacitors, and solar
cells. This is a promising and relatively underexplored direc-
tion, with few exceptions, such as quantum supercapacitors
(Ferraro et al., 2019) and the role of coherence in light
harvesting (Scully, 2010; Kaake, Moses, and Heeger, 2013;
Chenu and Scholes, 2015; Brédas, Sargent, and Scholes, 2017;
Curutchet and Mennucci, 2017; Jang and Mennucci, 2018).
The management of energy resources is a key topic in social

and political discussions. Surprisingly, quantum technology
research has only recently begun to address this issue
(Auffèves, 2022). Recent findings suggest that quantum
technologies can revolutionize energy harvesting (Curutchet
and Mennucci, 2017; Wang et al., 2018), storage (Ho,
McClean, and Ong, 2018; Gao et al., 2021), delivery
(Zhong et al., 2016; Mattioni et al., 2021; Davidson,
Pollock, and Gauger, 2022), and conversion (von Lindenfels
et al., 2019; Ono et al., 2020), thereby giving rise to a quantum
energy sector (Metzler, Sandoval, and Galvanetto, 2023).
Scientific revolutions often arise from basic research, and
quantum batteries play a crucial role in advancing our funda-
mental understanding of energy storage.
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