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Catalysts open up new reaction pathways that can speed up chemical reactions while not consuming
the catalyst. A similar phenomenon has been discovered in quantum information science, where
physical transformations become possible by utilizing a quantum degree of freedom that returns to its
initial state at the end of the process. In this review, a comprehensive overview of the concept of
catalysis in quantum information science is presented and its applications in various physical contexts
are discussed.
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I. INTRODUCTION

Puzzles have been around since the dawn of human history
and have guided countless discoveries. A good puzzle is easy
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to formulate but challenging to solve, while its solution can
lead to deep insights. This review is devoted to quantum
catalysis, a puzzle that has propagated to various areas of
quantum information theory. As a warm-up, we first consider
another puzzle, known as the towers of Hanoi. This brain-
teaser helps us to elucidate some of the fundamental concepts
of catalysis without having to deal with the complexities of
quantum physics.
The towers of Hanoi is a mathematical puzzle that involves

k rods and n disks of different sizes. At the beginning, the
disks are arranged on a single rod in decreasing order of size,
with the smallest disk on top; see Fig. 1. The goal of the puzzle
is to find the minimal number of moves needed to transfer the
entire stack of disks from one rod to another, given that each
disk can be placed only on top of a larger disk.
When the number of disks n is greater than 1, the puzzle

requires at minimum k ¼ 3 rods to be feasible, in which case
the minimal number of moves needed to transfer the disks
from one rod to another is 2n − 1 (Petkovic, 2009). Removing
one of the three rods makes the puzzle impossible to solve
since the set of allowed moves becomes too restrictive.
However, adding a fourth rod allows the puzzle to be solved
in only six moves, which is less than the minimal number of
moves (seven) required in the case of n ¼ 3 (Bousch, 2014).
The minimal number of moves for more than four rods
remains an open problem.
We can refer to the arrangement of disks on each rod as the

state of the rod. When a new rod is introduced, the problem
becomes more complex due to the increased number of
potential states. Crucially, to solve the puzzle the newly
added rod must ultimately return to its initial state (i.e.,
remain empty). In more technical terms, adding extra degrees
of freedom expands the configuration space of the problem.
The key point to remember is that even though the additional
degrees of freedom return to their initial states in the end,
expanding the configuration space allows the puzzle to be
solved in a manner that was previously unattainable. This
phenomenon can be seen as an instance of catalysis. Its
analog in quantum information science is the main focus of
this review.
The towers of Hanoi puzzle may serve as a simplified

representation of a physical scenario. Yet, it contains several

essential ingredients that we later encounter in this review.
First, the possible states of each rod in the puzzle are
analogous to the potential states of a physical system (for
example, an atom). Second, the puzzle’s rules correspond to
limitations on how the physical system can be manipulated
(for example, due to energy conservation). Third, the puzzle’s
objective can be viewed as a state-transition problem, which
involves determining whether a physical system in one state
can be transformed into another (for example, transforming a
hot atom into a colder one). The rods in the puzzle represent
various physical systems utilized to accomplish the task.
Finally, despite its seemingly straightforward description,
finding the minimum number of moves required for k > 4

remains an unsolved problem. This demonstrates the com-
plexity and richness of the puzzle.
The laws of physics place fundamental constraints on what

is possible, much like the rules of the towers of Hanoi puzzle.
For example, conservation laws tell us that certain measurable
properties of isolated physical systems remain constant as the
system evolves over time. These laws are essential to our
understanding of the physical world in that they describe
which processes can or cannot occur in nature. Since we
cannot globally create or destroy conserved quantities, such as
mass energy, we can change them locally only by introducing
additional degrees of freedom that store or inject these
physical quantities. In the same way, the time-translation
symmetry of physical processes means that we cannot create a
state that violates time-translation invariance without access-
ing a system that already breaks it. Clocks are an example of
such systems: They use an internal asymmetric flow of
information to distinguish a preferred direction of time.
The situation becomes more intricate when quantum theory

is considered the fundamental description of nature. When all
the involved degrees of freedom are taken into account, the
overall dynamics is ultimately unitary. This combined with
conversation laws imposes nontrivial constraints that are not
immediately evident from conservation laws alone. For
instance, consider a probabilistic mixture of spin-up and
spin-down of a spin-1=2 particle in a magnetic field.
Although this mixture has the same average energy as a
superposition of the two states, we cannot transform the
mixture into the superposition using unitary transformations.
This is true regardless of the fact that both states have the same
expected energy, and regardless of whether we have access to
a clock; see also Bartlett, Rudolph, and Spekkens (2006).
To give another example, the relativistic principle of

locality states that we cannot instantaneously affect spacelike
separated systems. Entanglement can be described as the
property between such systems that cannot be created using
only local actions and classical communication. To over-
come the limitations imposed by the relativistic locality,
additional resources (such as preshared entanglement) are
required. Yet, even if a quantum state ψ contains more
entanglement than ϕ, it does not necessarily mean that ψ can
be converted into ϕ using local operations and classical
communication. In this case, the interplay between opera-
tional restrictions gives rise to a rich mathematical structure
that requires more refined ways of quantifying entanglement;
see Horodecki et al. (2009).

FIG. 1. Towers of Hanoi. The puzzle involves k rods that can
hold disks of different sizes. The objective is to move a stack of
n > 1 disks from the first rod to the second rod, one disk at a time,
without placing a larger disk on top of a smaller disk. The puzzle
is solvable when k ¼ 3, but it cannot be solved when k ¼ 2.
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Using auxiliary degrees of freedom to lift restrictions
imposed by physical laws often comes at a cost: Such degrees
of freedom typically lose their ability to lift restrictions, as
seen in the previous examples. For instance, a clock used to
break time-reversal symmetry ideally produces a series of
evenly distributed ticks. However, this process has an intrinsic
backaction on the clock, driving it closer to equilibrium with
each tick and gradually decreasing its time-keeping potential.
To counteract this mechanism, clocks must continuously
consume nonequilibrium resources; see Cao et al. (2015),
Barato and Seifert (2016), Erker et al. (2017), and Milburn
(2020). Similarly, the use of preshared entanglement in the
form of an ancillary quantum state to entangle two distant
physical systems results in the loss of entanglement of the
ancillary state itself (Lo and Popescu, 2001).
It is surprising that some restrictions imposed by unitarity

of quantum mechanics can often be lifted using auxiliary
degrees of freedom that do not degrade; i.e., their quantum
state remains identical before and after the process.
Nevertheless, their presence allows for physical transforma-
tions that would otherwise be impossible to accomplish.
This phenomenon, which has been named quantum cataly-

sis, demonstrates that the presence of quantum states opens up
new and interesting possibilities. The name quantum catalysis
is derived from the analogy to chemistry, where catalysts
allow for chemical reactions at higher rates by opening up new
dynamical pathways with lower activation energies. In a
similar manner, quantum catalysts open up new dynamical
pathways in the Hilbert space, connecting quantum states that
would otherwise be dynamically disconnected due to physical
constraints. Understanding when such alternative connections
can be formed not only helps us to better understand the
fundamental limitations of quantum physics but also provides
protocols exploiting quantum resources more efficiently.
To date several reviews discussing quantum catalysis in

brevity have been published. Horodecki et al. (2009) men-
tioned the usage of catalysis in the context of entanglement
transformations. Goold et al. (2016), Vinjanampathy and
Anders (2016), and Lostaglio (2019) discussed some aspects
of catalysis from a thermodynamic point of view. Gour et al.
(2015) and Chitambar and Gour (2019) discussed the subject
for generic resource theories; see Sec. II.A. What all of these
works have in common is that they discussed quantum
catalysis only as a supporting concept, i.e., as an extension
of existing protocols like resource conversion or work
extraction. A similar treatment of quantum catalysis was
manifested in numerous prominent works that used catalytic
effects as a central proof technique; see Bose, Vedral, and
Knight (1999), Groisman, Popescu, and Winter (2005),
Bartlett, Rudolph, and Spekkens (2007), Berta, Christandl,
and Renner (2011), and Bennett et al. (2014). This approach,
however, does not emphasize the role of catalysis as a stand-
alone concept.
This review gathers our current understanding of quantum

catalysis and its applications across various fronts of quantum
physics. During the preparation of this review, another review
on catalysis in the context of quantum resource theories
appeared as a preprint (Datta, Kondra et al., 2023). It can
be considered complementary reading.

Structure of the review. In the remaining part of this section
we establish the basic notation used throughout the review.
Section II introduces the basic concept of catalysis as under-
stood in this review in a general manner. This is followed by a
discussion of the concept of resource theories and a summary
of basic mathematical tools used throughout the review. In
Sec. III, we provide a detailed introduction to the various types
of catalysis that can arise by relaxing constraints discussed in
Sec. II in different ways. We also offer an example to illustrate
the different types in detail. Subsequently, Sec. IVexplores the
known ways to mathematically construct catalyst states.
The core of the review is Sec. V, which collects and discusses
the applications of catalysis in various physical settings.
Section VI collects additional applications and discussions
that do not naturally fit into the previous sections. However,
this does not imply that we consider them less important or
less interesting. Open problems and avenues for future work
are mentioned throughout the review. Owing to their diverse
nature, it would be difficult to collect them in a conclusions
section, and we have intentionally refrained from doing so.

A. Quantum states and channels

This short section sets up the notation and prerequisites
used throughout the review. We start by introducing some
basic terminology used in quantum mechanics. Physical
systems (or systems for short) are denoted in the review by
sans-serif font, for example, A;B, and S. Describing the
problem may sometimes require the use of multiple such
systems, in which case the systems will be addressed by
additional subscripts, such as S1 and S2. With every physical
system we associate a complex Hilbert space denoted by HS
for a system S, with jSj ≔ dimðHSÞ its dimension. For most
of the review it is sufficient to consider finite-dimensional
Hilbert spaces. The set of bounded linear operators acting on
H is denoted as LðHÞ. An operator A∈LðHÞ is called pos-
itive semidefinite if it is self-adjoint and satisfies hxjAjxi ≥ 0

for all jxi∈H. We denote by “≥” the Löwner partial order;
i.e., for two linear operators X and Y the relation X ≥ Y means
that X − Y is positive semidefinite.
In quantum mechanics the possible states of a system S are

described using density operators, i.e., positive semidefinite
operators acting on HS with unit trace. We collect such
operators in a set

DðSÞ ≔ fρ∈LðHSÞjρ ≥ 0; tr½ρ� ¼ 1g. ð1Þ

To highlight that a density operator ρ corresponds to a specific
system S, we often write ρS. The evolution (or dynamics)
of quantum systems is fundamentally unitary if all involved
degrees of freedom are incorporated. This means that a
quantum system S prepared in a state ρS evolves as ρS →
UρSU†, where U satisfies UU† ¼ U†U ¼ 1. The effective
unitary U represents discrete-time dynamics obtained by
integrating the Schrödinger equation up to a fixed time
(ℏ is set to 1).
Often the system of interest S interacts with other systems

such as a thermal environment or a measurement apparatus. In
such cases, the effective dynamics on the system of interest
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may no longer be unitary. To model this, one introduces an
environment that encompasses all of the auxiliary degrees of
freedom. Owing to their role in the global evolution, in this
review we differentiate between two types of environments: an
ordinary environment E and a catalytic environment (or
catalyst for short) C. The environment E corresponds to all
of the degrees of freedom that cannot be accessed or are seen
as irrelevant after the evolution. This is usually the case for
thermal environments. However, the environment C captures
all of the degrees of freedom that cannot, or should not,
experience any irreversible backaction from the system. In the
remainder of the review, we demonstrate that this distinction is
well motivated from both a physical and a mathematical
perspective. It is also often more convenient to consider the
effective dynamics on SC alone instead of the unitary
dynamics on SCE. If the initial state of E is uncorrelated
to SC, then the resulting dynamics takes the form of a
quantum channel E∶DðSCÞ → DðSCÞ, which is a completely
positive trace-preserving linear map. In most cases, when the
space on which the channel acts is clear from the context, we
avoid explicitly writing the domain and image of the channel.
Conversely, any quantum channel acting on SC can be

realized with a suitable choice of environment state ρE and
unitaryU (Stinespring, 1955). Given a quantum channel E, we
refer to ðρE; UÞ as a dilation of E. The channel is obtained by
averaging over all the degrees of freedom of the environment
E. Mathematically this is obtained by applying the partial
trace TrEð·Þ with respect to E, which is a quantum channel
TrE∶ DðSCEÞ → DðSCÞ. The dilation ðρE; UÞ is said to
implement a quantum channel E when

E½ρSC� ¼ TrE½UðρSC ⊗ ρEÞU†� ð2Þ

holds for every ρSC ∈DðSCÞ. We also call E the quantum
channel induced by ðρE; UÞ. A quantum channel can be
physically realized in different ways, with multiple dilations
inducing the same channel locally. However, if we restrict to
pure states ρE, there always exists a minimal Stinespring
dilation in which E has minimal dimension. Any other
Stinespring dilation with a pure state on a system E0 is related
to this one via an isometry from E to E0.

II. THE CONCEPT OF CATALYSIS

In this section we formalize the concept of catalysis in a
general manner. We then describe the paradigm of resource
theories and argue that it provides a convenient set of tools
allowing for a systematic study of the catalytic effects. Finally,
we summarize the most relevant mathematical tools and
techniques that are used throughout this review. We emphasize
that this section focuses on generic features of catalysis that
are valid regardless of the particular physical setting.
We begin by describing a simple motivating example from

the early times of quantum information science to illuminate
some essential features of catalysis. This example was first
proposed theoretically by Phoenix and Barnett (1993) and
Cirac and Zoller (1994), and the first experimental demon-
stration was reported by Hagley et al. (1997). Consider an
optical cavity with a field mode F in resonance with the
transition frequency of two two-level systems, such as the

energy eigenstates j↓i and j↑i of two identical atoms A and B.
We assume that we are restricted to performing the following
actions: initializing the cavity in the vacuum state j0iF,
initializing the atoms in one of their two eigenstates, and
turning on an energy-preserving interaction Hamiltonian
between the atom A ðBÞ and the cavity F for a chosen amount
of time t.
We now observe how one can make use of the cavity to

prepare a maximally entangled Bell state between atoms A
and B while returning the cavity to its initial vacuum state. To
begin, prepare atom A in the excited state j↑iA, and let it
interact with the cavity for a time tA. If the interaction time is
short enough, we can assume that no dissipation occurs
and the interaction is described by the Jaynes-Cummings
Hamiltonian, which has the property that in the interaction
picture j0iFj↓iA is invariant, while the states j1iFj↓iA and
j0iFj↑iA experience Rabi oscillations. Here j1iF is the state of
the cavity with one photon. If we choose tA to correspond to a
quarter of a Rabi oscillation, the state of FA after the
interaction is (in the interaction picture)

UFAðtAÞj0iFj↑iA ¼ 1ffiffiffi
2

p ðj0iFj↑iA − j1iFj↓iAÞ: ð3Þ

Now prepare the second atom B in the ground state j↓iB, and
let it interact with the cavity for a time tB such that j1iFj↓iB
experiences half of a Rabi oscillation so that the states
j1iFj↓iB ↔ j0iFj↑iB are interchanged (up to a phase).
Since j0iFj↓iB is invariant under the dynamics, the final state
of FAB is (up to a global phase)

j0iF ⊗
1ffiffiffi
2

p ðj↑iAj↓iB − j↓iAj↑iBÞ: ð4Þ

The systems AB end up in a Bell state, while F returns to its
initial state and can be used to entangle further pairs of atoms.
In the words of Hagley et al. (1997), “The field, which starts
and ends up in vacuum and remains at the end of the process
decorrelated from the atoms, acts as a ‘catalyst’ for the atomic
entanglement.” Similar techniques can be used to implement a
two-qubit CNOT gate between trapped ions, where the role of
the cavity is now played by the center-of-mass mode of the
trapped ions. This is the basis for trapped-ion quantum
computers as envisioned by Cirac and Zoller (1995). At the
same time, it is clear that without the cavity we cannot
achieve this.
In comparison with the towers of Hanoi puzzle from the

Introduction, the limited actions correspond to the allowed
moves in the game and the empty cavity corresponds to an
empty rod.
The aforementioned simple example demonstrates that

catalytic effects can be observed in generic quantum systems.
While it is only a specific instance of catalysis, it contains
some of the essential features. For one, catalysis always
requires at least two systems: a system of interest S and a
catalyst C. In our previous example, the field corresponds to
the catalyst C and the atoms to the system S. Given a quantum
system S, we introduce a family of quantum channels O that
describes all physical operations that can be implemented
under the constraints of a particular physical setting. In the
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previous example, the set O corresponds to all unitary
evolutions that can be generated by turning on the interaction
between the cavity and one of the atoms for some time. More
generally, any physical operation in O is described by some
quantum channel F ∈O. Limitations on O can originate in
many ways, as we see in the following partial list:

• As a consequence of conservation laws.
• Owing to limited resources (for example, a finite power
supply).

• As a result of finite control accuracy or complexity (for
example, a limited time of evolution).

• Owing to the causality constraints in special relativity.
The limitations may be of a fundamental nature or may arise
from practical limitations. While most work on catalysis in
quantum information theory focuses on fundamental limita-
tions, throughout the review we do not distinguish between
the two. Now imagine that our system S is prepared in a state
ρS and that we would like to bring it to a target state σS,

ρS ⟶ σS: ð5Þ

It may then happen that, with the operations that we can
implement as described by the setO, we are unable to perform
the transformation. This means that there is no quantum
channel F ∈O such that F ½ρS� ¼ σS. However, Eq. (5) may
become possible if we can act on additional degrees of
freedom represented by a quantum system C. The central
idea of catalysis is that this type of activation may be possible
even without disturbing the quantum state of the subsystem C,
and hence one can reuse C to “catalyze” the same state
transition on another system S0 prepared in the same state ρ. In
the ideal case, given a set of operations O, we say that a state
transition is achievable with a catalyst and denote this by
ρS ↪ σS, if there exists a state ωC on C and a quantum
channel F ∈O such that F ½ρS ⊗ ωC� ¼ σS ⊗ ωC. The cen-
tral question is then as follows:

Which state transitions are made possible by
catalysis?

In approaching this question, we begin by presenting a simple
lemma that serves as a guideline for such considerations.
Imagine that we want to implement a quantum channel F
using a unitary U and auxiliary degrees of freedom E prepared
in some state ρE, as described in Sec. I.A.
Lemma II.1 (Basic lemma). Consider a finite-dimensional

Hilbert space HSEC ¼ HSE ⊗ HC. Let U be a unitary on
HSEC, let ρSE ¼ ρS ⊗ ρE ∈DðSEÞ be a density operator on
SE, and let ωC ∈DðCÞ be a density operator on C. If

UðρS ⊗ ρE ⊗ ωCÞU† ¼ σSE ⊗ ωC ð6Þ

for a density operator σSE ∈DðSEÞ, then there exists a unitary
operator V on HSE such that σSE ¼ VρSEV†.
Proof. Owing to the tensor-product structure of the output

state, raising Eq. (6) to any power k ≥ 0 and taking the trace
yield tr½ρkSE� ¼ tr½σkSE�. This is possible for two matrices only
if their eigenvalues (including multiplicities) coincide. Hence,
ρSE and σSE are related by a unitary transformation. ▪

Lemma II.1 is illustrated in Fig. 2. It tells us that if we use a
Stinespring dilation ðU; ρEÞ to implement F on SC such that
the state onC does not change and remains uncorrelated to both
S andE, then there exists a unitary operatorV onSE alone that
leads to the same state transition onSE (and therefore onS). In
other words, the state transition ρS → σS can already be
implemented using E, and hence there is no need to use an
additional catalyst C. From this, we can observe the three
following essential ways in which one can circumvent the
assumptions of the lemma (and therefore enable catalysis):

(1) Catalysis is not exact, which means that

TrS[F ½ρS ⊗ ωC�] ≠ ωC: ð7Þ

Therefore, the state on C changes at least a small
amount.

(2) The final state on C is correlated with SE, that is,

UðρS ⊗ ρE ⊗ ωCÞU† ¼ σSEC ≠ σSE ⊗ ωC; ð8Þ
where TrSE½σSEC� ¼ ωC. In particular, ωC is not pure.

(3) The set of implementable operations O is sufficiently
restricted. This means that, while the unitary V in
Lemma II.1 exists, the quantum channel it induces onS,

E½ρS� ¼ trE½VρS ⊗ ρEV†�; ð9Þ

is not an implementable operation, i.e., E ∉ O.
Different ways of relaxing Eq. (6), as captured by the

aforementioned items (1) and (2), lead to different types of
catalysis; see Sec. III. However, as captured by item (3),
different physical settings may lead to distinct sets of
implementable operations O. This in turn generally leads to
different answers concerning the central question of catalysis.
In recent years, such operational restrictions have been
formalized under the framework of resource theories. In
Sec. II.A we discuss the main concepts of resources theories
and describe three paradigmatic examples.
Before we close this section, we discuss the reusability of

catalysts and how this is related to correlations that catalysts
establish with other systems. As mentioned, a catalyst ωC that
catalyzes a state transition ρS ⟶ σS via F ½ρS ⊗ ωC� ¼
σS ⊗ ωC can be reused to catalyze a further such state

FIG. 2. Illustration of Lemma II.1. Unitary U uses E to
implement a quantum channel F on SC. If C is catalytic and
remains uncorrelated to ES, then the same state transition on S
can be realized using a unitary V acting only on ES by
implementing a quantum channel E on S. The channels fulfill
trC∘F ½ρS ⊗ ωC� ¼ E½ρS� ¼ σS.
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transition on a fresh copy of the same state (in other words, on
a different system S0 such that ρS0 ¼ ρS), and S0 is uncorre-
lated to C prior to its interaction with C. This is because the
catalyst by definition is guaranteed to act as a catalyst only for
a specific initial state ρ and a specific operation F . In other
words, if we change the initial state from ρS to σS, the catalyst
will not in general remain catalytic,

trS[F ½σS ⊗ ωC�] ≠ ωC if σS ≠ ρS: ð10Þ

In this sense a catalyst is always fine-tuned. However, a small
error on the preparation leads to a small error on the final
states of S andC only. This is further discussed later. Since the
main purpose of the catalyst is to change the state of S, there is
not much sense in discussing the reusability of the catalyst on
the same system. Even so, reusing the catalyst on a different
system also has its own drawbacks: As shown in Lemma II.1
the catalyst can become correlated to either S or E in general.
If the catalyst is now reused on S0, these correlations generally
will spread to S0. Whether or not such an uncontrollable
spread of correlations is problematic generally depends on the
context. Furthermore, if S and S0 were already initially
correlated, then after the action of F on SC, the resulting
state ρ̂S0C may be correlated, and therefore trS[F ½ρ̂S0C�] ≠ ωC,
even if ρ̂S0 ¼ ρS0 and ρ̂C ¼ ωC.
Despite the previous discussion, one can easily imagine

situations in which it is reasonable to demand that the catalyst
also remains invariant for different states on S. For one such
situation, see Sec. III.G, where we discuss the closely related
notion of state-independent catalysis.

A. Resource theories

We have seen that catalysis is strongly related to the set of
operations that obey certain constraints that can be imple-
mented on a physical system. Such allowed operations can be
formalized using the concept of a resource theory, which we
introduce in this section, first in an abstract way and then by
means of three well-studied examples that become important
in the remainder of this review. An in-depth review on
resource theories was given by Chitambar and Gour (2016).
A resource theory partitions the space of states and

operations on physical systems into those that are either
“easy” or “difficult” to prepare or implement under given
physical constraints. The easy states and operations are
typically called free. We continue to use the symbol O to
denote free operations, while we use the symbol S to denote
the set of free states. A resource theory is specified by such a
tuple R ¼ ðS;OÞ. For a fixed system S we denote by
SðSÞ ¼ S ∩ DðSÞ the set of free states corresponding to
that system. One usually assumes the consistency condition
that free operations always transform free states into free
states, i.e.,

ρS ∈S; FS ∈O ⇒ FS½ρS�∈S: ð11Þ

Any state that is not a free state is interpreted as resourceful
because it cannot be created using only operations from the
set O acting on states in S. However, resourceful states
can be used to implement nonfree operations: Given a

resourceful state σA on an auxiliary system A and a free
operation FSA on SA, the operation defined by

ES½ρS� ¼ trA[FSA½ρS ⊗ σA�] ð12Þ

is typically not free, that is, ES ∉ O. To denote when ρ can be
converted into σ, we use the standard notation

ρ⟶
O

σ ⇔ ∃F ∈O such thatF ½ρ� ¼ σ: ð13Þ

The relation ⟶
O

between quantum states is generally only a

partial order one, i.e., typically there are pairs of states for
which neither ρ⟶

O
σ nor σ⟶

O
ρ is true. Given a resource

theory R, the central question is: Which state transitions are
made possible using free operations?
In general it is difficult to characterize the partial order

induced by a given resource theory. However, it is sometimes
possible to specify a set of necessary conditions for the state
transition, in terms of so-called resource monotones. A
resource monotone f with respect to a resource theory O is
a function from quantum states to real numbers such that

ρ⟶
O

σ ⇒ fðρÞ ≥ fðσÞ: ð14Þ

In other words, since free operations cannot make the state
more resourceful, every resource monotone can be seen as
measuring some abstract resource. For this reason, resource
monotones are sometimes viewed as resource-theoretic ana-
logs of the second law of thermodynamics. A typical example
of a resource monotone is the quantum relative entropy with
respect to the set of free states (Brandão and Gour, 2015; Berta
et al., 2022), i.e.,

fðρSÞ ¼ inf
γS ∈SðSÞ

DðρSkγSÞ; ð15Þ

where DðρkσÞ ≔ trfρ½logðρÞ − logðσÞ�g is the relative
entropy between two density matrices; see Eq. (31) for a
more formal discussion. Sometimes it is possible to find a
complete set of resource monotones, that is, a family ffαg of
resource monotones that collectively characterizes both nec-
essary and sufficient conditions for state transformations.
More formally,

ρ⟶
O

σ ⇔ fαðρÞ ≥ fαðσÞ ∀ α: ð16Þ

It can be shown that, under some general assumptions about
the resource theory R, any complete set of resource monot-
ones must be infinite (Datta, Ganardi et al., 2023). This may
be surprising since, in finite dimensions, it should be clear that
a finite number of parameters specify whether a state trans-
formation is possible. Nevertheless, the two statements are
compatible because a complete set of monotones allows one to
evaluate the possibility of state transitions by simply checking
whether none of the monotones increase. It is, however, often
possible to determine the possibility of a state transition via
more complicated functions of a finite number of monotones.
Most of the statements in this review are formulated for

general quantum resource theories. However, in some cases
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we need to restrict ourselves to a specific types of resource
theories that we refer to as permutation-free resource theories.
In such resource theories permuting subsystems (i.e., physi-
cally swapping two subsytems) is allowed for free. In this case
permuting subsystems can be considered simply as a relabel-
ing of the subsystems. To our knowledge, the resource
theories considered thus far in the literature all fulfill this
assumption either fully or for specific subsystems, such as
local subsystems in the context of local operations and
classical communication (LOCC), which we discuss. We
emphasize, however, that permuting subsystems cannot
always simply be considered a free relabeling: For example,
swapping qubits in a quantum computer is an essential
operation that requires nontrivial gates that pick up errors
in general. In a fault-tolerant quantum computer, we can
expect that swapping logical qubits can be done error free
using Clifford operations (see Sec. V.F) but can still require
significant computational time.
With this general introduction in mind, we turn to some

examples.

1. Entanglement

The idea of resource theories originated with entanglement
theory in the 1990s (Bennett, Bernstein et al., 1996; Vedral
et al., 1997), when it was realized that entanglement shared
between multiple parties can be useful for certain tasks, and
that it cannot be increased in the absence of quantum
communication. The theory of quantum entanglement is
now a mature field of study, as reviewed by Horodecki et al.
(2009), and forms a central part of quantum information
theory (Wilde, 2009; Nielsen and Chuang, 2012; Watrous,
2018). The resource theory that captures these restrictions is
known as LOCC, denoted as RLOCC ¼ ðSLOCC;OLOCCÞ. The
corresponding set of free operations OLOCC consists of any
protocol that is composed of the following operations per-
formed by the different parties:

(i) Preparing arbitrary local quantum states.
(ii) Applying local unitary operations and measurements.
(iii) Exchanging classical messages between the parties.
(iv) Discarding physical subsystems.

This choice of free operations encapsulates the idea that
preparing quantum states locally and communicating classi-
cally is easy, but exchanging (or communicating) quantum
states in a coherent manner is difficult. The set of free states
SLOCC is simply given by all quantum states that can be
prepared using the free operations OLOCC. All the free states
can be prepared using only classical shared randomness.
Consequently, they are called classically correlated states
(Werner, 1989) or separable states (Horodecki and
Horodecki, 1996; Peres, 1996). Any state that is not classi-
cally correlated is called entangled.
The amount of entanglement can be quantified using

various resource monotones (Vedral et al., 1997; Vidal,
2000; Horodecki et al., 2009), which in this case are usually
called entanglement monotones. For example, in the setting
with only two parties Alice (A) and Bob (B) the monotone
defined in Eq. (15) translates into the relative entropy of
entanglement

ErelðρABÞ ¼ inf
γAB ∈SLOCCðABÞ

DðρABkγABÞ: ð17Þ

In Sec. V.B we review the role of catalysis in the resource
theory of LOCC.

2. Asymmetry

Conservation laws place fundamental restrictions on the
possible dynamics on physical systems. To focus our atten-
tion, we consider the case when the conserved quantity is the
total energy. Suppose that we want to include all participating
degrees of freedom in our quantum description such that the
dynamics is ultimately unitary. The unitary operator U that
describes the dynamics must conserve the total energy. In
other words, owing to Noether’s theorem U has to commute
with the group of time translations t ↦ tþ s, which on the
Hilbert space is represented by s ↦ expð−isHÞ, with H
denoting the total Hamiltonian of the system.
The resource theory of asymmetry with respect to a group

G (Janzing and Beth, 2003b; Marvian, 2012), also known as
the resource theory of reference frames (Bartlett, Rudolph,
and Spekkens, 2007; Gour and Spekkens, 2008; Vaccaro
et al., 2008), provides an idealized framework to study the
restrictions imposed by such commutation conditions. In
Rasym ¼ ðSasym;OasymÞ, every system S carries a projective
unitary representation of the group G given by g ↦ WSðgÞ.
The free operations Oasym consist of all quantum channels
that are covariant: a quantum channel F∶DðSÞ → DðS0Þ is
covariant with respect to the given representations of the
group G if, ∀ g∈G,

F ½WSðgÞρSWSðgÞ†� ¼ WS0 ðgÞF ½ρS�WS0 ðgÞ†: ð18Þ

For two independent systems S1 and S2, we further require
that they jointly carry the representation g ↦ WS1S2

ðgÞ ¼
WS1

ðgÞ ⊗ WS2
ðgÞ. The free states Sasym are all density

matrices that are invariant or symmetric with respect
to G, i.e.,

WSðgÞρSWSðgÞ† ¼ ρS ∀ ρS ∈SasymðSÞ: ð19Þ

Thus, the valuable resources in Rasym are all quantum states
which are asymmetric with respect to the group G. In the
particular Rasym with respect to time translation, the free
states are simply stationary states of the time evolution.
Moreover, a state is resourceful if and only if it carries
coherence between different energies.
In the resource theory of asymmetry, Eq. (15) translates into

the relative entropy of asymmetry, also known as the relative
entropy of frameness (Vaccaro et al., 2008; Gour, Marvian,
and Spekkens, 2009),

AðρSÞ ¼ inf
γS ∈Sasym

DðρSkγSÞ ¼ HðG½ρS�Þ −HðρSÞ; ð20Þ

where HðρSÞ ¼ −tr½ρS logðρSÞ� is the von Neumann entropy
(von Neumann, 1932). The rightmost equality holds if the
infimum is attained, in which case G is the group-twirling
channel that maps a quantum state to the closest symmetric

Lipka-Bartosik, Wilming, and Ng: Catalysis in …

Rev. Mod. Phys., Vol. 96, No. 2, April–June 2024 025005-7



state. For a compact group, this channel corresponds simply to
a group average over its normalized, unique left- and right-
invariant Haar measure μ,

G½ρS� ¼
Z

WSðgÞρWSðgÞ†dμðgÞ: ð21Þ

Every covariant quantum channel can be realized by (1) adding
an ancillary system E prepared in a symmetric state, (2) apply-
ing a covariant unitary (or, more generally, an isometry) U
mapping from HSE to HS0E, and (3) tracing out the ancillary
system E (Keyl and Werner, 1999). This leads to a quantum
channel of the form

F ½ρS� ¼ trE½UρS ⊗ ρEU†�; ð22Þ

with the conditions

UWSðgÞ ⊗ WEðgÞ ¼ WS0 ðgÞ ⊗ WEðgÞU; ð23Þ

WEðgÞρEWEðgÞ† ¼ ρE: ð24Þ

Moreover, the state ρE may be chosen to be pure. In Sec. V.D
we discuss catalysis in the context of symmetries and
conservation laws.

3. Athermality

Our last example is the resource theory of athermality
Ratherm ¼ ðSatherm;OathermÞ, which can be seen as an idealized
model of thermodynamics in the quantum realm, see Janzing
et al. (2000), Brandão et al. (2013, 2015), Horodecki and
Oppenheim (2013), Gour et al. (2015), and Yunger Halpern
and Renes (2016). In this resource theory, every system S
carries a Hamiltonian ĤS and Ratherm is defined with respect
to a fixed background temperature T ¼ β−1 (we set the
Boltzmann constant kB ¼ 1). The free states are given by
thermal (Gibbs) states,

γβðĤSÞ ≔
e−βĤS

ZS
; ZS ¼ Tr½e−βĤS �: ð25Þ

Thus, the set of free states of a system S consists of a single
state, that is, SathermðSÞ ¼ fγβðĤSÞg. There are multiple
possibilities for choosing the set of quantum channels repre-
senting Oatherm. All such channels must at least preserve
Satherm, and hence map thermal states to thermal states at the
same temperature. Channels with this property are referred to
as Gibbs-preserving maps (Faist, Oppenheim, and Renner,
2015). Often it is additionally demanded that the free
operations be covariant with respect to the group of time
translations (see the previous section). This set of operations
was coined enhanced thermal operations (Ćwikliński et al.,
2015). The two aforementioned classes of free operations lead
to a valid resource theory; however, they lack a clear physical
interpretation, and therefore a more restrictive set of free
operations known as thermal operations is commonly con-
sidered. These are channels that can be written as

FS½ρS� ¼ trEfU½ρS ⊗ γβðĤEÞ�U†g; ð26Þ

where γβðĤEÞ is a Gibbs state of inverse temperature β and the
unitary U is strictly energy preserving, i.e., it satisfies
½U; ĤS þ ĤE� ¼ 0. It is known that thermal operations are
a strict subset of enhanced thermal operations (Ding, Ding,
and Hu, 2021). Major progress in understanding the state-
transition conditions for enhanced thermal operations was
reported by Gour et al. (2018), but no simple characterization
is known.
An important resource monotone in the resource theory of

athermality is the nonequilibrium free energy

FβðρS; ĤSÞ ≔ tr½ρSĤS� −
1

β
HðρSÞ ð27Þ

¼ 1

β
fD½ρSkγβðĤSÞ� − logZSg. ð28Þ

Since Satherm consists of only a single state, up to rescaling and
a shift by the equilibrium free energy −β log ZS, the non-
equilibrium free energy corresponds to the general monotone
defined in Eq. (15). When free operations are given by
(enhanced) thermal operations, the resource theory of athe-
rmality can be seen as the resource theory of asymmetry with
respect to time translations, with the additional restrictions
imposed on the sets of free states and free operations. In
Secs. V.C.3 and V.C.5 we discuss catalysis in the context of
the resource theory of athermality.
We have discussed three major examples of resource

theories. However, there are many more, such as the resource
theory of contextuality (see Sec. V.B.11), non-Gaussianity
(see Sec. V.E.4), and stabilizer operations (see Sec. V.F), to
name a few that we encounter later in this review.

B. Basic mathematical tools

In this section we introduce some mathematical tools that
are often used to describe the properties and the relationships
between quantum states, for example, to capture the partial
order induced by a resource-theoretic framework. These tools
serve as a technical basis to study how such partial orders can
change in the presence of catalysts.

1. Distinguishability measures

It is often necessary to measure how easy or difficult it is to
distinguish between two quantum states. In the context of this
review, this is used for two main purposes: (i) quantifying how
close the final state of the system S is to a given target state
and (ii) quantifying how close the final state of the catalyst C
is to its initial state.
Suppose that we receive two datasets from two independent

runs of some experiment, each of which is derived from raw
measurement data via the same postprocessing technique. It is
then intuitively clear that all the information that distinguishes
the two datasets has already been present in the measure-
ment data, i.e., before postprocessing was applied. In other
words, postprocessing two datasets in the same way cannot
increase their distinguishability. Similarly, no postprocessing,

Lipka-Bartosik, Wilming, and Ng: Catalysis in …

Rev. Mod. Phys., Vol. 96, No. 2, April–June 2024 025005-8



as represented generally by a quantum channel E, should
increase the distinguishability between two quantum states ρ
and σ. Therefore, any operationally meaningful measure of
distinguishability dð·; ·Þ between two quantum states should
satisfy

dðE½ρ�; E½σ�Þ ≤ dðρ; σÞ ð29Þ

for any two density operators ρ and σ and any quantum
channel E. Equation (29) is called the data-processing inequal-
ity (DPI) and is a central concept in quantum information
theory. An important measure that satisfies the DPI is the trace
distance Δð·; ·Þ, i.e.,

Δðρ; σÞ ≔ 1
2
kρ − σk1; ð30Þ

where k · k1 is the Schatten 1-norm. When the two density
matrices commute, i.e., when ½ρ; σ� ¼ 0, the trace distance
reduces to the total variation distance between the two
probability vectors formed from the eigenvalues of ρ and σ.
Another relevant distinguishablity measure is the Umegaki
quantum relative entropy (Umegaki, 1962), which is
defined as

DðρkσÞ ≔ trfρ½logðρÞ − logðσÞ�g; ð31Þ

with DðρkσÞ ¼ þ∞ if the support of ρ is not contained in
that of σ. For commuting density operators ρ and σ, the
quantum relative entropy reduces to the Kullback-Leibler
divergence (Kullback and Leibler, 1951). One can also
consider generalizations of relative entropy, so-called
quantum Rényi divergences; see the next section and
Tomamichel (2016). While the trace distance is a metric,
the quantum relative entropy is not. Specifically it neither is
symmetric in its arguments nor satisfies the triangle inequal-
ity. Nevertheless, it satisfies the data-processing inequality
of Eq. (29), and furthermore the quantum relative entropy
has a strong operational relevance (Hiai and Petz, 1991): It
gives rise to the logarithm of the minimal type-2 error in a
quantum hypothesis testing scenario (involving ρ and σ as
the null and alternative hypotheses) regularized in the
asymptotic limit. The relative entropy can also be used to
express the mutual information

IðA∶BÞρ ¼ DðρABkρA ⊗ ρBÞ; ð32Þ

which is a measure of the amount of correlations between
subsystems A and B.
Another important measure of distinguishability is the

fidelity Fð·; ·Þ defined as Fðρ; σÞ ¼ k ffiffiffi
ρ

p ffiffiffi
σ

p k1. The classical
counterpart of fidelity is known as the Bhattacharyya distance
(Bhattacharyya, 1943). As opposed to previous distinguish-
ability measures, the fidelity fulfills a reverse DPI, i.e.,

Fðρ; σÞ ≤ FðE½ρ�; E½σ�Þ; ð33Þ

and is close to unity for states that are similar. Although the
fidelity is not a metric, other metrics derived from the fidelity
naturally satisfy the data-processing inequality (Gilchrist,

Langford, and Nielsen, 2005) and are therefore valid distin-
guishability measures.
In the context of a resource theory R ¼ ðS;OÞ, every

distinguishability measure dð·; ·Þ that fulfills the DPI allows a
resource monotone fd to be defined via (Gonda and Spekkens,
2023)

fdðρSÞ ≔ inf
σS ∈SðSÞ

dðρS; σSÞ: ð34Þ

The monotone fdðρSÞ therefore measures how the state ρS can
be distinguished from the free states SðSÞ on S, as measured
by dð·; ·Þ.

2. Entropic quantifiers

Information encoded in physical systems can be conven-
iently characterized using various entropic quantifiers, most of
them having well-established operational interpretations.
Perhaps the most well-known entropic quantifier is the
Shannon entropy HðpÞ (Shannon, 1948), which for a prob-
ability vector p is defined as HðpÞ ≔ −

P
ipi logðpiÞ, where

pi denotes the ith element of the vector p.1 Throughout
the review we use the logarithm of base 2, i.e., logð2Þ ¼ 1.
The generalization of Shannon entropy to density operators is
known as von Neumann entropy (von Neumann, 1932),

HðρSÞ ¼ H½λðρÞ�≡ −Tr ρ log ρ; ð35Þ

where λðAÞ denotes the vector of eigenvalues of A, including
multiplicities. Another generalization of the concept of
entropy are the α-Rényi entropies (Rényi, 1961), which, for
a parameter2 α∈ ð−∞; 0Þ ∪ ð0; 1Þ ∪ ð1;∞Þ, are defined as

HαðpÞ ≔
sgnðαÞ
1 − α

log
X
i

pα
i : ð36Þ

In Eq. (36), we use the convention that sgnð0Þ ¼ 1, 00 ¼ 0,
and 0α ¼ þ∞ for α < 0. In particular, HαðpÞ ¼ ∞ for α < 0

if p has an entry pi ¼ 0, whereas HαðpÞ for α > 0 depends
only on the nonzero entries of p. For α ¼ f0; 1;∞g the
associated entropies are defined by continuity in α, i.e.,

H0ðpÞ ¼ log (rankðpÞ); ð37Þ

H1ðpÞ ¼ −
X
i

pi logðpiÞ ¼ HðpÞ; ð38Þ

H∞ðpÞ ¼ − logðmaxfpigÞ; ð39Þ

where rankðpÞ is defined as the number of nonzero elements
of p, so rank½λðρÞ� ¼ rankðρÞ for any density operator ρ.
The α-Rényi entropy of a density operator ρ is defined as

1When p corresponds to a probability distribution, we also
sometimes use pðiÞ to denote the ith element of p.

2More often the Rényi entropies are defined in the literature for
α ≥ 0 since, for negative values of α, HαðpÞ tends to infinity when p
is not of full rank. However, this generalization proves to be useful in
the context of catalysis as we see later.
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HαðρÞ ¼ Hα½λðρÞ� (Wehrl, 1976; Thirring, 1980; Ohya and
Petz, 1993), so

HðρÞ ¼ sgnðαÞ
1 − α

logðtr½ρα�Þ: ð40Þ

The Rényi entropies are nonincreasing in α such that, in
particular, H0ðρÞ ≥ H1ðρÞ ≥ H∞ðρÞ. All Rényi entropies
derive from a family of parent quantities known as Rényi
divergences (Rényi, 1961). These quantities generalize the
Kullback-Leibler divergence (as we define later in the review);
hence, they can also be seen as measures of distinguishability
between probability distributions. Rényi divergences for two
probability vectors p and q and parameter α∈R are defined as

DαðpkqÞ ≔
(

sgnðαÞ
α−1 log

hP
i qi

�
pi
qi

�
α
i

if p ≪ q;

þ∞ otherwise;
ð41Þ

where p ≪ q means that qi ¼ 0 implies pi ¼ 0 for all i. In the
limit α → 1 we recover the Kullback-Leibler divergence
(Kullback and Leibler, 1951), or relative entropy,

DðpkqÞ ¼
X
i

pi log

�
pi

qi

�
: ð42Þ

Rényi entropies and Rényi divergences are linked via

DαðpkπÞ ¼ sgnðαÞ logðdÞ −HαðpÞ; ð43Þ
where π ∝ ð1; 1;…; 1Þ⊤=d is the uniform d-dimensional
probability vector. In contrast to Rényi entropies, there is
no unique quantum generalization for Rényi divergences. If
½ρS; σS� ¼ 0 (the quasiclassical case), we can simply diago-
nalize both density matrices in a common eigenbasis and
consider Dα½λðρSÞkλðσSÞ�. Perhaps the simplest and most
commonly used candidate for the quantum generalization of
Rényi divergences are the Petz-Rényi divergences (Petz,
1986a), which for α∈ ½0; 1Þ ∪ ð1;∞Þ are defined as

DαðρkσÞ ¼
(

1
α−1 logðtr½ρασ1−α�Þ if ρ ≪ σ;

þ∞ otherwise;
ð44Þ

where ρ ≪ σ means that the support of ρ is contained in the
support of σ; i.e., hψ jσjψi ¼ 0 implies hψ jρjψi ¼ 0 for all
vectors jψi. The Petz-Rényi divergences fulfill the data-
processing inequality for α∈ ½0; 2�. Another commonly con-
sidered family of quantum Rényi divergences is the minimal
(or sandwiched) Rényi divergence (Müller-Lennert et al.,
2013), which is defined as

D̃αðρkσÞ ¼
1

α − 1
log ftr½ðσð1−αÞ=2αρσð1−αÞ=2αÞα�g ð45Þ

for α∈ ð1=2; 1Þ ∪ ð1;∞Þ if ρ ≪ σ, and D̃αðρkσÞ ¼ ∞ other-
wise.3 The sandwiched Rényi divergence fulfills the data-
processing inequality (29) for the given range of α and, just as

with the Petz-Rényi divergence, coincides with the relative
entropyDðρSkσSÞ in the limit α → 1. See Tomamichel (2016)
for detailed information about quantum generalizations of
Rényi divergences.

3. Majorization

Majorization is a preorder between vectors: Given two
vectors p and q∈Rd, we say that p majorizes q if

Xk
i¼1

p↓
i ≥

Xk
i¼1

q↓i for all k∈ f1;…; dg ð46Þ

and
P

d
i¼1pi ¼

P
d
i¼1qi, where p↓ and q↓ denote vectors

ordered nonincreasingly. We use p ≻ q to denote that p
majorizes q. For probability vectors, the normalization con-
dition is automatically satisfied, and the partial sums appear-
ing in Eq. (46) can be interpreted as discrete cumulative
distribution functions (CDFs) for p↓ and q↓. Thus, p ≻ q if
and only if the CDF of p↓ is at each point larger than or equal
to the CDF of q↓. Moreover, any deterministic probability
vector [for example, p ¼ ð1; 0;…; 0Þ⊤] majorizes all proba-
bility vectors, while the uniform one π ¼ ð1=d;…; 1=dÞ⊤ is
majorized by all probability vectors of dimension d.
Majorization can be extended to density matrices, in which

case it can be seen as a preorder of their spectra. Specifically,
we say that ρ ≻ σ if λðρÞ ≻ λðσÞ, where λðAÞ denotes the
vector of eigenvalues of a matrix A (including multiplicities).
This seemingly simple preorder of density matrices can be
used to characterize randomness or uncertainty in states and is
tightly linked to the resource theories of (LOCC) entangle-
ment (see Sec. II.A.1) and noisy operations (see Sec. III.H). A
particularly useful theorem in the context of majorization is
the Schur-Horn theorem, which uses majorization to relate the
spectrum of a Hermitian matrix with its diagonal (Schur,
1923; Horn, 1954).
Theorem II.2 (Schur-Horn theorem). Let H be any d-

dimensional Hermitian matrix with a vector of eigenvalues
λðHÞ. The following statements are equivalent:

(1) There exists a unitary U such that λ0 ¼ diagðUHU†Þ.
(2) λðHÞ ≻ λ0.
Majorization is an indispensable tool in the theory of

statistical comparisons (Blackwell, 1953). Suppose that p
and q describe the information encoded in a physical system
(such as an energy distribution). We then say that p is more
informative than q, in the absence of prior knowledge, when the
latter can be obtained from the former by a bistochastic
processing. Owing to the Hardy-Littlewood-Pólya theorem,
this is equivalent to p ≻ q (Hardy, Littlewood, and Pólya,
1952). More generally, when prior knowledge is available in
the form of probability distributions p0 and q0 (for example,
thermal distribution of energies), we say that a pair of
probability distributions ðp; p0Þ is more informative than
ðq; q0Þ when there exists a stochastic processing that maps p
onto q while also mapping p0 into q0. When such a processing
exists, the first pair is said to relatively majorize the second
(Hardy, Littlewood, and Pólya, 1952; Ruch, Schranner, and
Seligman, 1978); see also Renes (2016). Finally, we note that
several extensions of relative majorization to density matrices

3As is also the case for Petz-Rényi divergences, the condition
ρ ≪ σ is required only for α > 1, which guarantees that the resulting
quantity is finite.
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have been proposed (Buscemi and Gour, 2017; Gour
et al., 2018).
An important generalization of majorization is approxi-

mate majorization (van der Meer, Ng, and Wehner, 2017;
Horodecki, Oppenheim, and Sparaciari, 2018). Let dð·; ·Þ
denote some distance measure between vectors. If p ≻ q does
not hold, one can then still ask whether p majorizes q
approximately. Formally, one asks whether there exists a
sufficiently small error ϵ > 0 and a probability vector qϵ such
that dðq; qϵÞ < ϵ and p ≻ qϵ. One can also consider a related
problem where the approximation error ϵ is located in the
initial state, i.e., the existence of a probability vector pϵ such
that dðp; pϵÞ < ϵ and pϵ ≻ q. The two resulting relations are
sometimes called, respectively, postmajorization and prema-
jorization and are known to be equivalent (Chubb,
Tomamichel, and Korzekwa, 2018, 2019). One can also
ask for the minimal approximation error ϵ such that either
p ≻ qϵ or pϵ ≻ q holds. If dð·; ·Þ is the total variation distance,
Horodecki, Oppenheim, and Sparaciari (2018) proposed an
algorithm that not only finds the optimal value of ϵ but also
provides explicit constructions of the corresponding opti-
mizers, i.e., the so-called steepest and flattest states. These
constructions can be generalized for relative majorization
(van der Meer, Ng, and Wehner, 2017) or used to address the
majorization preorder in the asymptotic independent iden-
tically distributed (i.i.d.) limit (Chubb, Tomamichel, and
Korzekwa, 2018; Boes, Ng, and Wilming, 2022), as well as
to address approximately catalytic transformations (Ng et al.,
2015; Lipka-Bartosik and Skrzypczyk, 2021a).

III. CATALYTIC TYPES

In Sec. II we gave a general outlook on the concept of
catalysis in quantum mechanics. We also described some
basic mathematical tools that will help us gain a better
understanding of the mechanisms behind catalytic effects.
Moreover, we saw in Lemma II.1 that catalytic effects can
emerge only when at least one of the following conditions is
satisfied: (1) the catalyst becomes perturbed, (2) the catalyst
develops some correlations with the other degrees of freedom,
or (3) the set of allowed operations is appropriately restricted.
The different ways in which these conditions can be combined
and quantified lead to different types of catalysis, which we
summarize in Fig. 3. Each type in principle induces a different
set of transformation laws (i.e., what is possible and what is
not) in a given resource theory. While the variations between
different types of catalysis may seem pedantic at first, we later
see that these seemingly technical distinctions can give rise to
a fundamentally different physical behavior.
In this section we define and discuss various types of

catalysis arising from relaxing conditions (1)–(3) in the
context of a general resource theory R ¼ ðS;OÞ. In Sec. V,
we discuss their applications in different physical settings.

A. Strict catalysis

In the strictest formulation of catalysis, the catalyst C must
be returned unperturbed and uncorrelated with the main
system S at the end of the process. Owing to Lemma II.1,
nontrivial catalysis in this scenario is possible only if the set of

allowed operations is sufficiently restricted. We refer to this
category as strict catalysis.
Definition III.1 (Strict catalysis). A state transition from ρS

to σS is called strictly catalytic if there exists a free operation
F∈O and a quantum state ωC such that F ½ρS⊗ωC�¼
σS⊗ωC. We denote a strictly catalytic state transition by

ρS↪
O

σS: ð47Þ

In this conservative type, catalysis results from the fact
that the set of free operations O is nontrivial; therefore,
certain state transitions are forbidden. This allows one to
avoid the consequences of Lemma II.1 by relaxing, in
particular, condition (3). Even so, one sees how correlations
play a critical role: First, despite the fact that the initial and
final states of the system S and the catalyst C are not
correlated, they have to be correlated during the dynamical
process that implements the state transformation. In this
sense, building temporary correlations between S and C is
what actually enables the state transformation. Second, when
the set of free operations O consists of nonunitary quantum
channels (as is the case in the resource theory of athermality),
correlations can still build up among S, C, and an environ-
ment E, which dilates the original nonunitary quantum
channel. These correlations are formally lost upon discarding
the environment.
Note that any resource monotone f with respect toO that is

additive over tensor products will also be a resource monotone
for any strictly catalytic state transformation. Specifically,

fðρSÞ þ fðωCÞ ¼ fðρS ⊗ ωCÞ ≥ fðσS ⊗ ωCÞ
¼ fðσSÞ þ fðωCÞ: ð48Þ

Conversely, suppose that O admits a complete family of
resource monotones fαðρSÞ ≥ fαðσSÞ for all valid α implies
that ρS⟶

O
σS. If the operations admit a single example of

FIG. 3. Overview of allowed errors and correlations for the
catalytic types detailed in Sec. III. The condition specified in the
left column is fulfilled for a given type of catalysis if a ✓ is
displayed and not fulfilled if a ✗ is shown. The errors are defined
with respect to a state transformation ρS ⊗ ωC ⊗ ωA → σSCA as
ϵi ≔ dðωi; σiÞ for i∈ fC;Ag. Subsystem A is required only for
the formal definition of arbitrarily strict catalysis but also can be
incorporated into the categories of approximate catalysis and
embezzlement by viewing A as part of C [indicated by (✓)].
IðS∶CÞ denotes the mutual information between subsystems S
and C in state σSC. See Sec. III.C for precise definitions of
different catalytic types.
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nontrivial strict catalysis, at least one of the monotones fα
cannot be additive over tensor products (Fritz, 2017).
The earliest report of strict catalysis in a resource-

theoretic framework was given by Jonathan and Plenio
(1999) in the context of entanglement theory. They affirma-
tively solved a conjecture of S. Popescu by showing for the
first time that strict catalysis arises in LOCC; see Sec. V.B.1.
This result made clear that the mathematical structure of
entanglement is much richer than previously expected.
Jonathan and Plenio (1999) started the systematic explora-
tion of catalytic effects in entanglement theory and resource
theories more generally. As discussed in our example, a
method of generating entangled states using strict catalysis
was previously proposed by Phoenix and Barnett (1993) and
Cirac and Zoller (1994) and connected to the term catalyst
by Hagley et al. (1997). To our knowledge, this is the first
explicit appearance of the notion of catalysis in quantum
information literature.4

One can also consider strictly catalytic transformations that
produce the desired state on the system S approximately. In
this case, instead of transforming the system into the target
state σS, one transforms it into σεS, which is ε close to σS.
Typically, ε is quantified using the trace distance in Eq. (30),
but, depending on the situation, other notions of distance
could also be used.
In general relatively little is known on how to construct

suitable catalyst states. Known constructions for various types
of catalysis are discussed in Sec. IV. An extreme case arises
with self-catalysis (Duarte, Drumond, and Terra Cunha,
2016), where ωC ¼ ρS, where a copy of the system catalyzes
itself. Finally, one can also consider variations of strict
catalysis: there are cases where two state transitions impos-
sible on their own mutually catalyze each other (Feng, Wang,
and Xu, 2002). Instead of demanding that the catalyst is
returned exactly, one could try to save as much of the
resources that are being lost on S in the catalyst C as possible,
thereby increasing the resource content of C while facilitating
a state conversion on S. This approach is called supercatalysis
and was studied in the context of entanglement theory by
Bandyopadhyay and Roychowdhury (2002). Self-catalysis,
supercatalysis, and mutual catalysis remain understudied
(particularly outside of LOCC), however, and provide an
interesting avenue for further research.

B. Correlating catalysis

In strict catalysis, we allow for correlations between the
environment E and the joint system SC, but not between S
and C. When condition (2) is considered, a first step toward
relaxing the requirements for strict catalysis is to allow for
correlations between S and C to persist at the end of the
process.
Definition III.2 (Correlating catalysis). A state transition

from ρS to σS is called correlating catalytic if there exists a

free operation F ∈O and a quantum state ωC such that the
state σSC ≔ F ½ρS ⊗ ωC� fulfills

trC½σSC� ¼ σS; trS½σSC� ¼ ωC: ð49Þ

We denote a correlating-catalytic state transition by

ρS ↪
corr

O
σS: ð50Þ

We see in Sec. V.A that, even when the set of operations O
consists of all possible unitary operations, nontrivial catalytic
effects persist. Allowing the catalyst to retain correlations with
the system enables finite-size effects in state transitions for
many resource theories to be bypassed; see Sec. IV.B.
Specifically, the ability to correlate the system with the
catalyst radically simplifies the state-transition conditions,
so a single monotone is often sufficient to characterize all
possible state transformations; see Sec. III.H. If a catalyst C
remains correlated with some system S and is then reused for

the same state transition ρS ↪
corr

O
σS on a different system S0,

then the resulting joint state of both systems σS0S will in
general be correlated (Vaccaro, Croke, and Barnett, 2018;
Boes et al., 2019, 2020),

σS0S ≠ σS ⊗ σS0 : ð51Þ

As emphasized in Sec. II, whether such residual correlations
are problematic, however, depends on the concrete physical
context. In particular, one can envision situations where the
ability to bypass finite-size effects overcomes the drawback of
residual correlations. In Sec. IV.B we further see that, for a
large class of resource theories, the residual correlations can
be made arbitrarily small. However, Rubboli and Tomamichel
(2022) showed that arbitrarily small residual correlations
require arbitrarily large catalysts (as measured by resource
content) in a wide class of resource theories. Recent works
investigated the interplay between quantum and classical
correlations that a catalyst C may develop with an external
reference R under quantum channels that have local access
only toC. In particular, Lie and Ng (2023) found that any such
process must degrade genuinely quantum correlations
between subsystems C and R.
Strict catalysis typically imposes strong constraints on state

interconvertibility. A key guiding intuition of why correlations
between S and C help to overcome these constraints is that, in
any resource theory O that allows for permuting systems, we
have for any state ρS1S2

that

ρS1S2
↪
corr

O
ρS1

⊗ ρS2
: ð52Þ

To see this, choose a copy of S2 as the catalyst, i.e., take
ωC ¼ ρS2

, and choose the free operation that simply swaps the
catalyst C for S2. Thus, with the help of correlating-catalytic
transformations one can freely decorrelate the subsystems.
Furthermore, any monotone for correlating-catalytic trans-
formations has to fulfill fðρS1S2

Þ ≥ fðρS1
⊗ ρS2

Þ. This often
rules out constructions of monotones based on Rényi

4The prior example, however, falls outside of the resource theory
of LOCC and is therefore only slightly related to the structure of
entanglement itself. Indeed, within LOCC it is not possible to
generate new entanglement even when using strict catalysis.
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divergences because the quantum relative entropy is the
unique continuous and superadditive Rényi divergence. In
other words,

DðρABkσA ⊗ σBÞ ≥ DðρAkσAÞ þDðρBkσBÞ ð53Þ

holds for all states ρAB, while for any Dα with α ≠ 1
counterexamples to the inequality can be found.
Lostaglio, Müller, and Pastena (2015) and Müller and

Pastena (2016) were the first to make use of the aforemen-
tioned fact, in the context of a slightly different scenario called
marginal-correlating catalysis. In this situation, a multipartite
catalyst is used, and a state transition is possible via marginal-
correlating catalysis when there exists a free operation F and
an initially uncorrelated catalyst

ωC1���Cn
¼ ⊗

n

i¼1
ωCi

ð54Þ

such that F ½ρS ⊗ ωC1���Cn
� ¼ σS ⊗ ω0

C1���Cn
, where for each

i ¼ 1;…; n we have ω0
Ci

¼ ωCi
. In other words, instead of

allowing for final correlations to persist between system and
catalyst, one allows for correlations to exist between different
parts of the catalyst.
An immediate question arises as to the relationship between

correlating catalysis and marginal-correlating catalysis. If

ρ ↪
corr

O
σ using a catalyst ωC1

, and the set O includes

permutations of subsystems, then the state transition is also
possible via marginal-correlating catalysis, using the catalyst
ω̃C1C2

≔ ωC1
⊗ σC2

. To see this, first use the C1 part of the
catalyst in the same way as for the correlating-catalytic state

transition ρS ↪
corr

O
σS, then substitute the system S for the

second part of the catalyst (C2). Consequently, the set of
marginal-correlating-catalytic state transitions includes the set
of correlating-catalytic state transitions. Marginal-correlating
catalysis often leads to similar (or even identical) state-
transition conditions as correlating catalysis does. However,
its physical significance is less clear since in general the
catalyst cannot be reused, even when one starts with a fresh
copy of the system. Moreover, in the resource theory of
asymmetry for time translation, marginal-correlating catalysis
can essentially trivialize all state-transition conditions (Takagi
and Shiraishi, 2022); see also Sec. V.D.2. This can be seen as a
particular form of the general embezzlement phenomenon,
which we further discuss in Sec. III.E.

C. Arbitrarily strict catalysis

Thus far in our classification of catalysis, we have not
allowed for any errors on the catalyst. However, from a
physical point of view, this is likely a stringent restriction: it is
practically impossible for any physical system to undergo an
evolution and be returned in exactly the same state. Hence, for
all practical purposes it should be sufficient if the catalyst can
be returned with a small perturbation. This, in view of
Lemma II.1, corresponds to relaxing condition (1).
A subtle point that can be easily missed is the distinction

between two scenarios in which the error on the catalyst can

be defined. In the first scenario, one allows for a small error for
a fixed state of the catalyst. In the second scenario, one first
fixes the error, then constructs the catalyst (which generally
depends on the error). Perhaps surprisingly, these two scenar-
ios are significantly different. In this section we discuss the
former, then address the latter in Sec. III.D.
For clarity of presentation we assume that the errors occur

on a fixed subsystem of the catalyst. To emphasize this
distinction, we denote this part with A (for an auxiliary
system).
Definition III.3 (Arbitrarily strict catalysis). A state

transition from ρS to σS is called arbitrarily strictly catalytic
if there exists a quantum state ωC, a sequence of quantum

states fωðnÞ
A g∞n¼0 on a fixed, finite-dimensional quantum

system A, and a sequence of free operations F ðnÞ ∈O such
that the following hold:

(1) For each n ≥ 1 we have

F ðnÞ½ρS ⊗ ωC ⊗ ωð0Þ
A � ¼ σS ⊗ ωC ⊗ ωðnÞ

A : ð55Þ

(2) The state of the auxiliary system A changes an
arbitrarily small amount as n → ∞, i.e.,

lim
n→∞

ΔðωðnÞ
A ;ωð0Þ

A Þ ¼ 0: ð56Þ

We denote arbitrarily strictly catalytic state transitions by

ρS ↪
arb

O
σS: ð57Þ

In the example of the resource theory of purity, an
alternative but equivalent definition of arbitrarily strict cataly-
sis was given by Gour et al. (2015) in their Definition 45.
Arbitrarily strict catalysis was first introduced as exact
catalysis by Brandão et al. (2015). It might be confusing as
to why this catalytic type should be called exact given that an
error does occur on the catalyst. However, there is a good
consensus that a state transition that achieves its target state
with arbitrarily good precision should be referred to as being
exact if the systems involved are of fixed dimensions; see the
discussions of Brandão et al. (2015) and Gour et al. (2015).
Nevertheless, here we have decided to use the term arbitrarily
strict catalysis to prevent misunderstanding.
One can wonder when arbitrarily strict catalysis actually

differs from strict catalysis. For some resource theories, such
as LOCC entanglement theory and athermality, the state-
transition conditions can be highly sensitive to the rank of the
density matrices. Note, however, that the rank is not a
continuous function of the density operator. In particular,
any density operator can be approximated arbitrarily well with
a full-rank operator. In this sense, arbitrarily strict catalysis
often allows such instabilities to be regularized. To see this,
consider two density matrices ρS and σS, and let σϵS be a full-
rank approximation of σS satisfying ΔðσS; σϵSÞ < ϵ. Suppose
that ρS↪

O
σϵS holds for any arbitrarily small ϵ > 0 but not for

ϵ ¼ 0. Thus, whenever O allows for permuting subsystems,

we have ρS ↪
arb

O
σS. Specifically, choose ω

ð0Þ
A ¼ σ and ωðnÞ

A ¼
σϵn with ϵn ¼ 1=n for all n > 0 so that
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ρS ⊗ σA↪
O

σϵnS ⊗ σA⟶
O

σS ⊗ σϵnA ; ð58Þ

where in the second step we swapped subsystems A and S.
Thus, we see that with the help of arbitrarily strict catalytic
transformations one can avoid the instabilities resulting from
changing the rank of a density operator.

D. Approximate catalysis

We now discuss the second scenario that corresponds to
relaxation of (1) in Lemma II.1. In this case, one fixes the
magnitude of the allowed perturbation of the catalyst and then
constructs its state. Generally, this leads to dynamical con-
straints that are less tight than in the case of arbitrarily strict
catalysis. In other words, approximate catalysis usually
enables state transformations that were previously impossible
under arbitrarily strict catalysis. Formally, we state the
following definition:
Definition III.4 (Approximate catalysis). A state transition

from ρS to σS is called ϵ-approximate catalytic with respect to
the distance measure dð·; ·Þ if there are two quantum states ωC
and ω0

C and a free operation F ∈O such that

F ½ρS ⊗ ωC� ¼ σS ⊗ ω0
C; dðω0

C;ωCÞ ≤ ϵ: ð59Þ

We refer to ϵ ≥ 0 as the “smoothing parameter” and denote an
ϵ-approximate catalytic state transition as

ρS ↪
approx

O
σS: ð60Þ

From a physical perspective, approximate catalysis pro-
vides a more realistic framework for investigating catalytic
effects for reasons given earlier. Another perspective that
supports approximate catalysis is that some physical proc-
esses, due to fundamental reasons, must change the state of the
catalyst (ancilla). For example, a problem often studied in
thermodynamics is that of minimizing the energy dissipated to
the environment. In this case, nontrivial dynamics on the
system can only be achieved when the state of the environ-
ment changes. From the perspective of approximate catalysis,
this problem amounts to finding an appropriate catalytic
environment that suffers minimal backaction from the system;
see Sec. V.C.1 for more details.
From a mathematical perspective, approximate catalysis

can be viewed as an interpolation between strict catalysis and
generic activation phenomena. Activation is a phenomenon
demonstrating that quantum systems processed in assistance
with another are strictly more useful than systems that are
processed independently. The standard example comes from
thermodynamics, where the so-called passive states, i.e., states
that cannot perform any thermodynamic work, can provide
work when processed collectively (Lenard, 1978; Pusz and
Woronowicz, 1978; Alicki and Fannes, 2013). Similar exam-
ples can be found in entanglement theory, where ancillary
states can reveal nonlocal properties of quantum states
(Masanes, 2006; Palazuelos, 2012; Cavalcanti et al., 2013;
Yamasaki et al., 2022). In this sense, approximate catalysis
puts further restrictions on how the activator might be
processed, with the aim of preserving the quality of the

activator for future transformations. The second extreme case
of approximate catalysis is the previously discussed case of
arbitrarily strict catalysis; see Sec. III.C. Therefore, for any
ϵ ≥ 0 we obtain a different set of dynamic constraints, which
translates into a different partial order between states. In the
language of resource theories this is often referred to as a
“regularization” of the underlying partial order. In Sec. IV.B
we describe this effect in more detail. We emphasize that even
though the possible state transitions depend sensitively on the
error ϵ in the chosen distance measure, the realized final state
of the system and catalyst in a state transformation is stable to
small perturbations to their initial states. See also Vidal,
Jonathan, and Nielsen (2000) for an early discussion of the
robustness of catalysis in the context of LOCC.
The choice of the distance measure dð·; ·Þ used in

Definition III.4 is essential. It not only must quantify the
closeness of ω0

C to ωC but should also preserve its catalytic
properties (or resource content). It is perhaps surprising that
these two requirements are not always simultaneously
satisfied. For example, the trace distance Δð·; ·Þ is often
used as a default distance measure between two quantum
states. This is because of its strong operational meaning in
terms of distinguishing states via an optimal measurement
(Helstrom, 1969; Nielsen and Chuang, 2012), and its
desirable properties as a metric fulfilling the data-processing
inequality; see Sec. II.B.1. However, even if an arbitrarily
small fixed perturbation ϵ > 0 in trace distance is allowed on
the catalyst, in a large class of resource theories any state
transition can become possible. This phenomenon is known
as embezzlement, and we discuss it in Secs. III.E and IV.C.
One way of understanding this is that, although two states
can be close to each other in terms of the trace distance,
extensive quantities can still grow with the logarithm of the
Hilbert-space dimension; see also Sec. VI.B. Therefore, for
any given target error ϵ one can always choose a large
enough dimension that the change in resource monotone is
significant.
To prevent embezzlement, one can consider a stronger

restriction, for example, that the deviation in an extensive
quantity must be small, for example, dðρ; ρ̃Þ ¼ jHðρÞ −Hðρ̃Þj.
A more stringent requirement would be to ask for the largest
deviation in a set of quantities (monotones) ffαgα, for example,

dðρ; ρ̃Þ ¼ sup
α
jfαðρÞ − fαðρ̃Þj; ð61Þ

or even a linear combination of several such distance measures.
As an alternative to changing dð·; ·Þ one can also let the allowed
error ϵ depend on different parameters, such as the dimension of
the state; see Brandão et al. (2015) and Sec. III.H. To
summarize, in general the choice of dð·; ·Þ and the allowed
error ϵ qualitatively change the landscape of possible state
transitions.
When the state ωC of C changes, its ability to catalyze other

transformations generally decreases, and therefore it becomes
less useful. Still, if the final state ω0

C of the catalyst is
sufficiently close to ωC, it may be possible to reuse it without
significantly affecting the transformation on S. Concretely
consider a free transformation F that leads to a perturbed
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catalyst ω0
C satisfying Eq. (59), where dð·; ·Þ satisfies the

triangle inequality and the data-processing inequality; see
Sec. II.B.1. Reusing the same catalyst on a new copy of the
system S and F leads to a state σ̃S ≔ TrC[F ½ρS ⊗ ω0

C�],
where

dðσ̃S; σSÞ ≔ d(TrCF ðρS ⊗ ω0
CÞ; σS)

≤ dðρS ⊗ ω0
C; ρS ⊗ ωCÞ ≤ ϵ; ð62Þ

which follows from the data-processing and triangle inequal-
ities, with Eq. (59). Suppose that we now want to use the same
catalyst n times to implement F (each time with a fresh copy
of ρS). To look at the resulting state, we introduce intermediate
states for each step 0 ≤ i ≤ n,

σðiþ1Þ
S ≔ TrCF ½ρS ⊗ ωðiÞ

C �; ð63Þ

ωðiþ1Þ
C ≔ TrSF ½ρS ⊗ ωðiÞ

C �; ð64Þ

with identifications σð1ÞS ≔ σS and ωð0Þ
C ≔ ωC. The state of the

system and the catalyst after k transformations satisfy

dðσðkÞS ; σSÞ ≤ kϵ; dðωðkÞ
C ;ωCÞ ≤ kϵ; ð65Þ

which is again a consequence of the triangle inequality, the
data-processing inequality, and Eq. (59). The catalyst can
therefore be used approximately k ¼ α=ϵ times before it
accumulates an error of the size α. Intuitively, in approximate
catalysis we try to make ϵ as small as possible so that the
catalyst retains its catalyzing properties. From the previous
discussion it should be clear that quantifying the perturbation
in the state of the catalyst, as well as identifying its usefulness
for future applications, is at the core of approximate catalysis.
We close this section with a comment on nomenclature.

One can also consider combinations of different types of
catalysis that arise from lifting several restrictions at once. For
example, by allowing for an error on the catalyst C and
correlations between S and C, one can study correlated
approximate catalysis. In fact, some simply use the term
approximate catalysis for that setting; see Datta, Kondra
et al. (2023).

E. Embezzlement

In the previous section, we saw that when the state of the
catalyst is allowed to change, it is often possible to unlock
transformations that are impossible under (arbitrarily) strict
catalysis. This naturally comes at the cost of reducing the
usefulness of the catalyst for future transformations. One
might argue that in such cases, rather than using C catalyti-
cally, one is consuming it as a resource, nonfree state.
However, sometimes it is possible for the catalyst to com-
pletely lift all of the relevant dynamical constraints while at
the same time suffering almost no reduction of its catalytic
capabilities. This phenomenon was first reported by van Dam
and Hayden (2003), who called it embezzlement.
Embezzlement provides a mechanism for simulating for-

bidden dynamics on S, using operations that are free on the

composite system SC while perturbing C only an arbitrarily
small amount in trace distance. Formally, it is defined as
follows:
Definition III.5 (Embezzlement). Given a system S and a

set of free operationsO, a state ωC is a δ embezzler if for all ρS
and σS ∈DðSÞ there exists F ∈O such that

ΔðF ½ρS ⊗ ωC�; σS ⊗ ωCÞ ≤ δ: ð66Þ

An embezzling family is a sequence of δn embezzlers fωðnÞ
C gn

such that δn → 0 as n → ∞.
At first sight, embezzlement can be viewed as a particular

instance of approximate catalysis; see Sec. III.D. However, it
was initially surprising that approximate catalysis can fully
trivialize arbitrary state transitions when a single catalyst that
is not fine-tuned for a particular initial system state is used.
The first example of an embezzlement family was introduced
in RLOCC by van Dam and Hayden (2003); see Sec. V.B.5. In
Sec. IV.C, we describe a general construction for embezzlers
that works whenever permutations of subsystems are allowed.
This construction was first used by Leung, Toner, and
Watrous (2013).
Embezzlement results from the fact that trace distance is not

sensitive enough to capture the difference in resource content
between two quantum states. In other words, when a quantum
channel E transforms one state into another, it could be that
there is no optimal quantum measurement that can determine
(signifcantly better than a random guess) whether the resource
has been consumed during E.
We describe a simple example illustrating the aforemen-

tioned idea. Consider a wave function of a harmonic oscillator
that is spread over many energy levels, such as a coherent state
of light with a large photon number. Such states are usually
used to describe light emitted from a laser with a fixed
frequency; see Sec. V.D.1. Shifting the wave function in the
energy space can change the expected energy (photon num-
ber) by a fixed amount while at the same time perturbing the
state an arbitrarily small amount in terms of trace distance. In

FIG. 4. Embezzlement of energy. Consider a coherent state of
light jαi with energy levels jii whose energy variance is given by
VarðEÞ ¼ jαj2; see Eq. (174) for details. Left panel: change in
the occupation pi ¼ hijαjii of the energy level i obtained
by shifting the state by ΔE, i.e., jαi → jβi ¼ Sjαi with
S ¼ P∞

i¼0 jiþ ΔEihij. Right panel: relationship between ΔE
and the trace distance ϵ ≔ ð1=2Þkα − βk1 for different values of
α. A large energy variance allows one to change the average
energy significantly while maintaining a large overlap with the
initial state.
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this case, even when a single photon disappears from the beam
of light there is no physical process that can determine with
high probability whether this process actually happened; see
Fig. 4 for details.
In practice, the aforementioned mechanism can be used to

implement coherent unitary operations on the system S that
seemingly violate conservation of energy. This is achieved
using an interaction between the system S and a laser field C
that is globally energy preserving while perturbing the state of
the field an arbitrarily small amount. Indeed, as we discuss in
Sec. V.D.1, whenever a large-dimensional system C is used to
implement a unitary dynamics on S, it can be done in such a
way that the state on C is perturbed an arbitrarily small
amount. Thus, in a sense embezzlement is ubiquitous in
physics and occurs whenever a “macroscopic” quantum
system is used to implement a controlled unitary dynamics
on a smaller quantum system. In this case, the systemC can be
seen to act as a macroscopic reference frame for the time-
translation group; see Sec. V.D for more results relating
catalysis to quantum reference frames. In Sec. VI.B we
discuss the results of Coladangelo and Leung (2019), who
showed how embezzlement can lead to interesting mathemati-
cal results in quantum theory, namely, that there is a limit to
how continuous extensive quantities can be.

F. Infinite-dimensional catalysis

Thus far we have almost exclusively discussed quantum
systems described by finite-dimensional Hilbert spaces. While
this is natural from the perspective of quantum information
theory, physics also requires infinite-dimensional Hilbert
spaces. This is exemplified by continuous-variable systems
such as quantum harmonic oscillators, or more generally by
quantum field theory. It is therefore reasonable to ask how the
phenomenon of catalysis changes when we allow for infinite-
dimensional catalysts.
In this discussion, we keep the system S finite dimensional

to highlight the key differences between finite- and infinite-
dimensional catalysis. For a discussion of catalytic effects
in continuous-variable systems and quantum optics, see
Sec. V.E. We also restrict our attention to strict and correlating
catalysis since embezzlement already shows that allowing for
fixed errors (even arbitrarily small ones) on the catalyst
trivializes the state-transition problem in infinite dimensions.
Furthermore, we also discuss the notion of perfect embezzle-
ment, which sheds light on some fundamental questions about
the formulation of quantum theory. It was discovered early on
by Daftuar (2004) that there is a strict difference between
catalysis with (i) finite-dimensional catalysts, but of arbitrarily
large dimension, and (ii) infinite-dimensional catalysts.
Specifically, in RLOCC there are bipartite states jψi and jϕi
such that jϕi is reachable from jψi when (ii) is used but not
reachable when (i) is used. Moreover, Aubrun and Nechita
(2008, 2009) showed that the target state jϕi cannot be
reached even with arbitrarily small error with finite-dimen-
sional catalysts. They also made progress toward character-
izing the set of reachable states (of a fixed dimension) using
infinite-dimensional catalysts. However, to our knowledge no
complete characterization of this set has been given. Since the
previously described results are all based on majorization,

they immediately transfer to the resource theory of noisy
operations; see Sec. III.H.
We close this section by discussing embezzlement using

infinite-dimensional systems. Based on the discussion in
Sec. III.E one may be tempted to expect that an infinite-
dimensional catalyst C could be used to perform perfect
embezzlement: there are no changes in the catalyst, while any
state on a finite-dimensional system S could still be achieved
(with an arbitrary accuracy). However, as is typical with
infinite-dimensional spaces, subtleties exist that must be
carefully addressed. Indeed, Cleve, Liu, and Paulsen (2017)
and van Luijk et al. (2024a, 2024b) showed that local unitary
perfect embezzlement is impossible in the framework of
LOCC if spacelike separated parties are modeled by tensor
products of Hilbert spaces, as is common in quantum
information theory. In contrast, perfect embezzlement
becomes possible in a so-called commuting operator frame-
work; see also Sec. V.B.6. This is common in quantum field
theory, where spacelike separated parties are modeled by
commuting operators on a single, infinite-dimensional Hilbert
space. In this context, Cleve, Liu, and Paulsen (2017) showed
that for every finite dimension d there exists a quantum state
jΩi on a separable and infinite-dimensional Hilbert space R
such that, for every jψi∈Cd ⊗ Cd, there are unitaries uψ and
vψ on Cd ⊗ R and R ⊗ Cd, respectively, that satisfy

ðuψ ⊗ 1Þð1 ⊗ vψÞj0i ⊗ jΩi ⊗ j0i ¼ jψi ⊗ jΩi ð67Þ

for some fixed j0i∈Cd, and such that ½uψ ⊗ 1; 1 ⊗ vψ � ¼ 0.
Equation (67) should be read with an implicit reordering of
tensor factors.
The construction by Cleve, Liu, and Paulsen (2017) had the

drawback that in general ½uψ ⊗ 1; 1 ⊗ vφ� ≠ 0 if jψi and jφi
are different states (perhaps arising because both parties
attempt to embezzle different states). This shows that a proper
bipartite structure is missing. van Luijk et al. (2024a, 2024b)
showed that if Minkowski spacetime is partitioned into two
wedges L and R, each of which is interpreted as one local
system, then all pure states in the vacuum representation
of relativistic quantum field theories allow any finite-
dimensional entangled state jψi∈Cd ⊗ Cd to be embezzled
to arbitrary precision in the sense that for every ε > 0 there
exist local unitaries uψ ;ε and vψ ;εsuch that

kuψ ;εvψ ;εj0iA ⊗ j0iB ⊗ jΩi − jψi ⊗ jΩik < ε; ð68Þ

where uψ ;ε acts on LA and vψ ;ε acts on RB, respectively.
Importantly, ½uψ ;ε; vφ;ε0 � ¼ 0 for all states jψi and jφi because
they are elements of commuting von Neumann algebras MLA
and MRB associated with different subsystems. These results
are shown by establishing a quantitative connection between
embezzlement of entanglement and the classification of von
Neumann algebras.
In Sec. V.B.6, we see that the (non)existence of perfect

embezzlers is closely related to the fact that only certain kinds
of correlations can exist in quantum theory. Moreover, in
Sec. V.E.4 we discuss catalysis in the context of Gaussian
states and operations on continuous-variable systems, where
both the catalyst C and the system S are infinite dimensional.
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Note, however, that the Gaussian framework is special
because states and operations can be fully represented using
finite-dimensional matrices.
Finally, we are not aware of studies of perfect embezzle-

ment outside of the pure-state LOCC framework. Still, it is
possible to make the following general remark: If the resource
theory in question has an additive monotone f, then it must
diverge on a perfect embezzler. Consider a transformation
ρS → σS using a hypothetical perfect embezzler ωC. Then

fðρSÞ þ fðωCÞ ≥ fðσSÞ þ fðωCÞ ð69Þ
by monotonicity under free operations and additivity. But
since we are considering embezzlement, we can choose ρS
and σS such that fðρSÞ < fðσSÞ, which leads to a contra-
diction with Eq. (69) unless fðωCÞ ¼ ∞. For example, a
perfect embezzler in the resource theory of quantum thermo-
dynamics would require an infinite amount of free energy if it
were to exist mathematically.

G. State-independent catalysis

One can consider the possibility that a given catalyst C
prepared in a state ωC remains a catalyst not only for a single
state but also for a set of input states. Given a free operation
F∶DðSCÞ → DðS0CÞ in a resource theory R and a density
operator ωC, we can define the associated set of catalytic states
CðF ;ωCÞ by

CðF ;ωCÞ ≔ fρSjtrS0 [F ½ρS ⊗ ωC�] ¼ ωCg: ð70Þ
The set CðF ;ωCÞ may be empty. The other extreme case
occurs when C is a catalyst for any input density matrix. In
this case we have the following definition:
Definition III.6 (Catalytic quantum channel). The pair

ðF ;ωCÞ is called a catalytic quantum channel if CðF ;ωCÞ ¼
DðSÞ.
Despite the natural definition, state-independent catalysis

has received comparably little attention thus far. Vidal and
Cirac (2002) showed how certain unitary operations could be
realized under the constraints imposed by LOCCwhile using a
catalyst that could not be realized otherwise. Furthermore, Lie
and Jeong (2021b) considered the special case where F ½·� ¼
Uð·ÞU† is a unitary channel acting on SC. They referred to the
effective quantum channel Eð·Þ ≔ TrCfU½ð·ÞS ⊗ ωC�U†g
induced on S by the pair ðU;ωCÞ as a randomness-utilizing
quantum channel. To see why this is an adequate description,
note that such a randomness-utilizing quanum channel must
be doubly stochastic, i.e., it must leave the maximally mixed
state invariant. Moreover, it follows that ½U; 1S ⊗ ωC� ¼ 0. In
particular, when ωC has no degenerate eigenvalues, i.e., all of
its eigenspaces are one dimensional, this implies that
U ¼ P

iUi ⊗ jiihijC, where jiiC is the eigenbasis of ωC.
The resulting dynamics on S is then given by a mixed-unitary
channel of the form

ρS ↦
Xm
i¼1

piUiρSU
†
i ; ð71Þ

where pi ¼ hijωCjii.

Channels of the form in Eq. (71) can be interpreted as a
nonselective measurement of classical information repre-
sented by C and a unitary processing Ui applied to S,
conditioned on the measurement outcome i. They can also
be interpreted as quantum channels that can be reversed by
first measuring the environment appearing in the Stinespring
dilation and then performing a correcting unitary operation to
recover ρS (Gregoratti and Werner, 2003).
How to characterize the set of all randomness-utilizing

channels is currently an open problem. Lie and Jeong (2021a)
showed that they are a strict subset of doubly stochastic
quantum channels. Moreover, they also showed that U
induces a randomness-utilizing quantum channel on S for
some state ωC if and only if UTS is also a unitary, where TS is
a partial transpose on S. In this case, the unitary U also
induces a generally different randomness-utilizing channel for
the maximally mixed catalyst state ωC ¼ 1C=dC. Moreover, it
follows from a result of Haagerup and Musat (2011) that
randomness-utilizing quantum channels are a strict superset of
mixed-unitary channels (Lie, 2022).

H. Illustrative example: Noisy operations

In this section, we compare the various types of quantum
catalysis that were formally defined in Sec. III. We do so by
focusing on a simple yet illustrative example of majorization-
based resource theories. In such resource theories the state-
transition conditions are fully characterized by majorization.
The paradigmatic example here is the resource theory of noisy
operations (NOs) (Horodecki, Horodecki, and Oppenheim,
2003; Horodecki et al., 2003), also known as the resource
theory of purity or informational nonequilibrium (Gour et al.,
2015). In this resource theory the set of free operations ONO
consist of all quantum channels that can be implemented with
a maximally mixed environment E, i.e.,

T ∈ONO ⇒ TðρÞ ¼ TrE

�
U

�
ρS ⊗

1E
dE

�
U†

�
ð72Þ

for some dimension dE. The Schur-Horn lemma
(Theorem II.2) implies that

ρ⟶
ONO

σ ⇔ λðρÞ ≻ λðσÞ: ð73Þ

We later summarize families of state-transition conditions that
characterize different types of catalytic transformations. We
see that these conditions can be formulated in terms of
progressively fewer entropic conditions. To illustrate this,
Fig. 5 shows quantum states that can be obtained using
different types of catalysis when starting from a fixed initial
state. Nielsen’s theorem (see Theorem V.2) implies that all the
results equivalently apply to the case of LOCC operations
restricted to pure states. In fact, many of the results were first
obtained in this setting.
For the following, note that the Rényi entropies Hα are

antimonotone, as they are Schur concave, i.e.,

λðρÞ ≻ λðσÞ ⇒ HαðρÞ ≤ HαðσÞ: ð74Þ
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Equation (73) then implies that the Rényi entropies can only
increase under free operations.
Strict catalysis. A strictly catalytic state transformation

requires a finite-dimensional density operator ωC such that

λðρSÞ ⊗ λðωCÞ ≻ λðσSÞ ⊗ λðωCÞ: ð75Þ

Conditions for strict catalysis were first derived by Klimesh
(2007) and Turgut (2007) [see also the more recent works by
Kribs, Pereira, and Plosker (2013) and Pereira and Plosker
(2013, 2015)] and are known as trumping conditions. Here we
provide a simplified but still equivalent set of conditions
expressed in terms of the Rényi entropies Hα, as proposed by
Brandão et al. (2015). Specifically, unless ρS and σS are
unitarily equivalent, we have

ρS↪
ONO

σS ⇔

	
HαðρSÞ < HαðσSÞ ∀ α∈Rnf0g;
H0ðρSÞ ≤ H0ðσSÞ:

ð76Þ

If an arbitrarily small error on S (but not C) is allowed, then
the previous strict inequalities relax to nonstrict ones. Strict
catalysis can enable new transformations only if the dimen-
sion of the system is large enough, i.e., dS > 3 (Jonathan and
Plenio, 1999). General bounds on the catalyst (such as its
dimension) were obtained by Sanders and Gour (2009) and
Grabowecky and Gour (2019).
Arbitrarily strict catalysis. Since the Rényi entropies Hα

for α > 0 are continuous, the conditions in Eq. (76) are stable
under small perturbations in the state of the catalyst, which is
the case for arbitrarily strict catalysis. The conditions corre-
sponding to α < 0, however, may be removed. This can be
achieved by introducing a qubit A initially prepared in a pure

state ωA ¼ jψihψ j that is returned in a full-rank state ω0
A that is

arbitrarily close to jψihψ j. Now observe that any pure state has
HαðωAÞ ¼ ∞ for α < 0, and at the same time any full-rank
state must have finite Rényi entropies, i.e.,Hαðω0

AÞ < ∞. This
simple observation effectively removes all entropic conditions
corresponding to α < 0 in Eq. (76). Hence, unless ρS and σS
are unitarily equivalent, we have

ρS ↪
arb

ONO

σS ⇔

	
HαðρSÞ < HαðσSÞ ∀ α > 0;

H0ðρSÞ ≤ H0ðσSÞ:
ð77Þ

Correlating catalysis. The Rényi entropies H0 and H1 are
the only Rényi entropies that are subadditive; i.e., they fulfill
H0=1ðρS1S2

Þ ≤ H0=1ðρS1
Þ þH0=1ðρS2

Þ. It is therefore clear
that they cannot decrease under a correlating-catalytic state
transformation. Conversely, any monotone under correlating
catalysis that is additive over tensor products must also be
superadditive; see Sec. III.B. Müller (2018) first showed that
the simultaneous increase of both H0 and H1 ≡H is indeed
the sole criterion for the existence of a correlating-catalytic
transformation in the case of noisy operations. Specifically, if
ρS and σS are not unitarily equivalent, then

ρS ↪
corr

ONO

σS ⇔

	
H0ðρSÞ ≤ H0ðσSÞ;
HðρSÞ < HðσSÞ:

ð78Þ

Since any state can be approximated (up to an arbitrary
accuracy) by a state with a full rank, then if state trans-
formations up to an arbitrarily small error (on S, not C) are
considered, the only condition that remains is HðρSÞ ≤
HðσSÞ. In fact, we see in Sec. V.A that already correlating-
catalytic unitary state transformations (i.e., without the envi-
ronment E) yield the same set of state transitions (Boes et al.,
2019; Wilming, 2021, 2022).
Approximate catalysis. As approximate catalysis depends

on the distance measure used, no general statement can be
made. If a finite error ϵ > 0 in terms of the trace distance is
allowed on the catalyst C, then any state transition becomes
possible; see Sec. IV.C. However, if an error of the order of
1= logðdCÞ is allowed, with dC the dimension of the Hilbert
space of the catalyst, then HðρSÞ < HðσSÞ is the only
remaining condition for state transitions (Brandão et al.,
2015). In other words, we essentially obtain the same state-
transition conditions as we do for correlating catalysis.
The interplay between the error ϵ on the catalyst and the
resulting simplification of the state-transition conditions was
analyzed by Ng et al. (2015) and (Lipka-Bartosik and
Skrzypczyk (2021a).
Embezzlement. Per the definition of embezzlement, any

state can be reached to arbitrary accuracy via embezzlement.
A general construction of embezzling families that achieve
this is given in Sec. IV.C. The first example of an embezzling
family fωðnÞ

C g was presented by van Dam and Hayden (2003)
in the context of LOCC. In the context of an NO it takes the
form

ωðnÞ
C ¼ 1

Cn

Xn
j¼1

1

j
jjihjj; Cn ¼

Xn
j¼1

1

j
; ð79Þ

FIG. 5. States achievable with noisy operations under different
catalytic types. The three colored sets indicate achievable states
starting with a fixed state ρ (the turquoise dot) with eigenvalues
λðρÞ ¼ ½0.65; 0.2; 0.15� under various types of catalytic trans-
formations. In this case (dS ¼ 3) the set of states achievable
under strict catalysis coincides with the set of states that are
majorized by ρ, that is, all states achievable without using a
catalyst. Every state can be obtained to arbitrary precision with
embezzlement.
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for some orthonormal basis fjjig; see also Fig. 6. George and
Chitambar (2023) provided a detailed discussion on the
optimality of this construction.
Infinite-dimensional catalysis. The same remarks as given

in Sec. III.F apply here to the case of pure-state LOCC.
State-independent catalysis. To our knowledge, the set of

catalytic quantum channels for noisy operations has not yet
been characterized. However, the randomness-utilizing chan-
nels from Sec. III.G constitute a subset.

IV. CONSTRUCTING CATALYSTS

The transformation laws for quantum catalysis rarely tell us
anything about the state of the catalyst that enables a desired
transformation. Therefore, most current results treat catalytic
transformations as enigmatic “black boxes.” While it is
theoretically possible to achieve certain transformations with
some catalysts, it is unclear how to identify the suitable
catalyst state or determine the actual transformation. This
limitation severely hinders the practical applicability of
catalysis. In this section, we describe the few existing results
on the explicit constructions of catalysts.

A. From multicopy transformations to strict catalysis

In many resource theories [denoted by R ¼ ðS;OÞ], one
commonly adopted assumption is the ability to condition
operations on classical randomness. Consider a system A
described by a state ωA diagonal in some fixed basis jiiA. We
view this system as classical due to the distinguished basis.
Let S be another system in state ρS, and let fF igi be a set of
free operations on S, i.e., F i ∈O for every i. The trans-
formation

ρS ⊗ ωA ↦
X
i

F i½ρS� ⊗ jiihijωAjiihij ð80Þ

is then also a free operation on SA. The resource theories
presented in Sec. II.A all permit such operations for free. Note
that if ωA is diagonal in the basis of jiiA, then system A retains
its marginal density operator (but potentially builds up
correlations with S). If the resource theory in question
additionally allows classical randomness to be prepared
(i.e., any state diagonal in jiiA of an arbitrary dimension)

for free and allows subsystems to be discarded, then the sets S
and O must be convex.
Now consider the situation where a state ρS cannot be

transformed to σS but, for some sufficiently large n∈N, the
multicopy state ρ⊗n

S can be transformed to σ⊗n
S . This can be

seen as a form of activation (see Sec. III.D) and was first
observed in the context of LOCC by Bandyopadhyay,
Roychowdhury, and Sen (2002). A key observation is that
ifR allows one to permute identical subsystems and condition
operations on classical information, then ρS can be trans-
formed to σS via strict catalysis,

ρ⊗n
S ⟶

O
σ⊗n
S ⇒ ρS↪

O
σS: ð81Þ

Therefore, strict catalysis can be used to reduce multicopy
transformations to catalytic transformations. The converse of
this statement is false in general, as demonstrated by Feng,
Duan, and Ying (2006); see also Aubrun and Nechita (2009)
and Gupta et al. (2022).
Equation (81) is shown by providing a general construction

for the required catalyst. This construction first appeared in the
context of LOCC transformations given by Duan et al.
(2005a). Consider the density operator

ωðnÞ
C ðρ; σÞ ≔ 1

n

Xn
i¼1

ρ⊗i−1 ⊗ σ⊗n−i ⊗ jiihijA ð82Þ

acting on n − 1 tensor copies of the Hilbert space HS and an
n-dimensional Hilbert space HA representing classical infor-
mation. Thus, C ¼ S2 � � �SnA, and we later use the con-
vention S ¼ S1. We can envision the state as corresponding to
n distinguishable boxes, where the ith box contains i − 1

particles in the state ρ and n − i particles in the state σ. The
boxes are distinguished by the classical label i, which is
unknown.
Suppose that we can perform a free transformation F ∈O

such that F ½ρ⊗n� ¼ σ⊗n for some n∈N. The following
protocol then transforms a single copy of ρS into σS using
ωðnÞðρ; σÞ as a strict catalyst (see Fig. 7 for an illustration):

(1) Apply a conditional operation as in Eq. (80). Perform
F on systems S1 � � �Sn if A is in state jnihnj, and the
identity otherwise.

FIG. 6. Embezzlement in noisy operations. Themaximal amount
of entropy changeΔH between the stateωðnÞ

C [see Eq. (79)] and its
δ perturbation is shown for different dimensions n.

FIG. 7. Strict catalysis emulating multicopy transformations.
Illustration of the operation implementing the transformation

ρS ⊗ ωðnÞ
C ðρ; σÞ → σS ⊗ ωðnÞ

C ðρ; σÞ. The dark purple dots signify
ρ, the lighter green triangles represent σ, and the rows correspond
to the states jiiA. The free transformation F is applied to the
dashed box, followed by the cyclic permutations indicated by the
gray arrows.
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(2) Cyclically permute the quantum part S1 � � �Sn of the
system SC such that

ρ⊗i ⊗ σ⊗n−i ⊗ jiihijA → σ⊗ ρ⊗i ⊗ σ⊗n−i−1 ⊗ jiihijA:

(3) Cyclically relabel the classical register A of C, i.e.,
map jii → jiþ 1i for i < n and jni → j1i.

As a result, the joint state of the system SC transforms as

ρS ⊗ ωðnÞ
C ðρ; σÞ → σS ⊗ ωðnÞ

C ðρ; σÞ: ð83Þ

The dimension of the catalyst ωðnÞ
C ðρ; σÞ increases exponen-

tially with the number of necessary copies n for multicopy
activation. Furthermore, the catalyst must also be finely tuned
with respect to the initial and target states on S. Despite these
disadvantages, the construction still serves as a key technical
tool in various proofs of catalysis.

B. From asymptotic transformations to correlating catalysis

The main problem addressed in any resource theory is
determining whether there exists a free operation F ∈O such
that F ðρÞ ¼ σ. This is generally a difficult problem that has to
be addressed on a case-by-case basis. In general, there exists
no systematic way of characterizing which transitions are
allowed in a given resource theory. One potential approach to
better understand what is achievable within a particular
resource theory is to employ reasonable relaxations.
The first relaxation that we discuss is to allow for a small

error in the final system state, which is also called smoothing.
Specifically, given a fixed error ϵ we allow the channel to
produce any state σϵ ¼ F ½ρ� that is ϵ close in trace distance to
the target state σ. Owing to the definition of trace distance, no
observables of σϵ differ much from σ. The second relaxation is
assuming an i.i.d. distribution; that is, instead of considering a
direct transformation from ρ to σ, we ask whether it is possible
to convert ρ⊗n into σ⊗brnc for some r > 0 and a large enough
n∈N. One key insight is that for large n the multicopy state
ρ⊗n, when smoothed, is almost indistinguishable from the
maximally mixed state spanned over its typical subspace
(Wilde, 2009). Therefore, characterizing state transformations
between such states is much easier than solving the corre-
sponding single-shot problem. The standard quantity studied
in this smooth asymptotic limit is the conversion rate, which
for any set of free operations O can be defined as

Rn
ϵ ðρ; σÞ ≔ supfrj inf

F ∈O
ΔðF ½ρ⊗n�; σ⊗bnrcÞ ≤ ϵg: ð84Þ

The rate Rn
ϵ ðρ; σÞ represents approximately how many copies

of the target state can be generated per copy of the initial state
when using n copies of the initial state. Of particular
importance is the asymptotic rate Rn

ϵ in the limit of infinite
copies, i.e.,

R∞ðρ; σÞ ¼ lim
n→∞

Rn
ϵ ðρ; σÞ: ð85Þ

Importantly, R∞ðρ; σÞ does not depend on ϵ as long as ϵ > 0.
Note that the asymptotic rate R∞

ϵ allows the approximate

conversion problem to be fully characterized in the asymptotic
limit. Indeed, when R∞ðρ; σÞ > 1, there exists an n∈N and a
free operation mapping ρ⊗n onto a state that is ϵ close to σ⊗n.
Conversely, when R∞ðρ; σÞ < 1, we are guaranteed that there
is no free operation that can ever map n copies of ρ onto n
copies of σ for an arbitrary small error ϵ. In this sense, the
partial order of states becomes regularized, or simplified, in
the approximate i.i.d. limit. All possible state transformations
can now be characterized by a single quantity, the rate, as
opposed to the single-shot case, in which they are usually
characterized by a set of monotones.
It was first observed by Shiraishi and Sagawa (2021) in the

context of thermodynamics that asymptotic state transfor-
mations and correlating-catalytic state transformations are
closely related using a generalization of the construction
employed by Duan et al. (2005a) that is presented in
Sec. IV.A. Specifically, the following lemma can be proven,
which can be seen as a generalized summary of the results of
Char et al. (2021), Kondra, Datta, and Streltsov (2021),
Lipka-Bartosik and Skrzypczyk (2021b), Shiraishi and
Sagawa (2021), Wilming (2021), Takagi and Shiraishi
(2022), and Datta, Ganardi et al. (2023).
Lemma IV.1. Let ρS and σS be two density operators, and

let R ¼ ðS;OÞ be a resource theory that allows for classical
conditioning and permutation of identical subsystems. Then

Rn
ϵ ðρS; σSÞ ≥ 1 ⇒ ρS ↪

corr

O
σϵS; ð86Þ

with ΔðσϵS; σSÞ ≤ ϵ. In fact, the catalyst ωC can be chosen
such that ΔðηSC; σS ⊗ ωCÞ ≤ 2ϵ, where ηSC is the final state
on SC.
The lemma shows that whenever it is possible to transform

n copies of ρS into n copies of σS with a given accuracy, there
also exists a correlating-catalytic transformation that converts
a single copy of ρS into σS with the same accuracy. When the
transformation can be performed without error, i.e., when
ϵ ¼ 0, the mapping becomes strictly catalytic and no corre-
lations are established between catalyst and system, thus
recovering the setting of Sec. IV.A.
Let F be a free operation such that ΔðF ½ρ⊗n

S �; σ⊗n
S Þ ≤ ϵ,

which exists whenever Rn
ϵ ðρS; σSÞ ≥ 1. To prove Lemma IV.1

by construction, one follows the same strategy as in Sec. IV.A

but replaces the states σn−iS in the definition of ωðnÞ
C with the

reduced state tr>n−i[F ½ρ⊗n
S �] on the first n − i marginals. The

result then follows by making use of the data-processing
inequality for the trace distance.
In certain resource theories (such as majorization-based

resource theories), it is known that R∞ can be directly
computed and expressed using an appropriate resource mono-
tone. Let R be a resource theory whose asymptotic rate is
given by

R∞ðρS; σSÞ ¼
fðρSÞ
fðσSÞ

for any ϵ > 0; ð87Þ

where f is a monotone of the resource theory. For example, as
we see in Sec. V.B.2, f corresponds to the entanglement
entropy in the context of pure-state entanglement.
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Lemma IV.1 then shows that fðρSÞ > fðσSÞ implies that a
correlating-catalytic state transformation is possible. To our
knowledge, it is currently unknown if the possibility of a
correlating-catalytic state transition also implies that the
asymptotic rate fulfills R∞ðρS; σSÞ ≥ 1.
The previous result shows not only that correlating-catalytic

state transformations are strictly more powerful than the
corresponding single-shot free operations but also that they
sometimes have a simple mathematical characterization in
terms of the asymptotic resource monotone determining the
rate R∞. In Sec. V we review and describe applications of the
previous results in different physical settings.

C. Constructions for approximate catalysts and embezzlers

In Sec. IV.B we showed that correlating catalysis enables
state transitions that are otherwise possible only in an
approximate sense in the asymptotic limit. In this section
we describe a generic construction for approximate catalysis
that allows one to map between arbitrary states whenever the
set of free operations O allows identical subsystems to be
permuted. We then generalize it to construct an embezzler for
state transitions on a fixed finite-dimensional system S. The
construction explicitly demonstrates that a fixed error in trace
distance is not sensitive enough to prevent embezzlement. We
follow Leung, Toner, andWatrous (2013), but the construction
is closely related to the construction of strict catalysts to
emulate multicopy transformations presented in Sec. IV.A.
Suppose that we want to implement the state transition

ρS → σS using a catalyst ωC that is perturbed by at most ϵ in
trace distance. Consider the states

ωC ¼ 1

n − 1

Xn−1
k¼1

ρ⊗k
S ⊗ σS

⊗n−k; ð88Þ

ω0
C ¼ 1

n − 1

Xn
k¼2

ρ⊗k
S ⊗ σS

⊗n−k: ð89Þ

By applying a cyclic permutation of subsystems represented
by the unitary Uπ, we find UπðρS ⊗ ωCÞU†

π ¼ σS ⊗ ω0
C.

Since

ω0
C − ωC ¼ 1

n − 1
½ρ⊗n

S − ρS ⊗ σS
⊗n−1�; ð90Þ

we find that ΔðωC;ω0
CÞ ≤ 1=ðn − 1Þ. Thus, for fixed ϵ and

sufficiently large n any state transition is possible using the
given construction for approximate catalysts.
Note that the construction in Eq. (90) currently depends on

ρS and σS. However, using it we can construct a universal
embezzler for any fixed system S with finite-dimensional
Hilbert space: Since the set of density operators on a finite-
dimensional Hilbert space is compact, for any δ > 0 there

exists a finite collection of density operators fχðiÞS gNi¼1 such

that for any density operator ρS we have ΔðρS; χðiÞS Þ ≤ δ=4 for
some 1 ≤ i ≤ N. The size of this set N depends on δ. For any

1 ≤ i; j ≤ N, let ωði;jÞ
Cij

be the approximate catalyst

implementing the state transition χðiÞS → χðjÞS . The embezzler
consisting of N2 copies Cij with state

ωðδÞ
C ¼ ⊗

N

i;j¼1
ωði;jÞ
Cij

ð91Þ

is then a δ embezzler. Suppose that we want to transform ρS to

σS. We need only to identify χðiÞS and χðjÞS such that

ΔðρS; χðiÞS Þ ≤ δ=4; ΔðσS; χðjÞS Þ ≤ δ=4: ð92Þ

Using ωðδÞ
C as a catalyst, one finds that there is a free operation

F consisting only of permutations involving S and the
subcatalyst Cij such that

ΔðF ½ρS ⊗ ωðδÞ
C �; σS ⊗ ωðδÞ

C Þ ≤ δ: ð93Þ

A related formulation was used by Datta et al. (2022) to
construct a correlated catalyst for all state transitions in LOCC
between pure states where the entanglement entropy is non-
increasing. In the context of LOCC, the structure of embez-
zling families has been studied in much more detail and can be
characterized comprehensively; see van Dam and Hayden
(2003), Leung and Wang (2014), and Zanoni, Theurer, and
Gour (2023).
We close the section with a word of caution on nomen-

clature: According to our classification of catalysis, the
previously constructed states ωC are approximate catalysts,

and we reserve the term universal embezzler for ωðδÞ
C because

only the latter allow arbitrary state transitions to be imple-
mented with vanishing error (as N → ∞). Yet, at times the
states ωC have already been referred to as universal embez-
zlers in the literature, with the idea that the notion of
embezzlement refers to the fact that approximate catalysis
in terms of a fixed trace distance allows for arbitrary state
transitions. In Sec. VI.B we discuss how the aforementioned
construction can be used to constrain continuity properties of
resource monotones.

D. Numerical construction of catalysts

In this section, we discuss a simple yet useful method for
computing the exact state of the catalyst. Specifically, for a
fixed quantum channel ESC and a fixed input state on S, this
method determines the corresponding state of the catalyst,
namely, the fixed point of the described quantum channel on
C. To our knowledge, this approach was first used in the
context of catalysis by Boes et al. (2020).
Let E ∈LðHS ⊗ HCÞ be an arbitrary quantum channel

acting on SC, and let ρS ∈DðHSÞ be a fixed density operator.
The effective channel acting on C can be written as

ECð·Þ ¼ TrSE½ρS ⊗ ð·ÞC�: ð94Þ

Suppose that we want to implement the correlating-catalytic
transformation discussed in Sec. III.B. This means that we
have to find a density operator ωC that satisfies ECðωCÞ ¼ ωC.
This is equivalent to finding the fixed points of the map EC,
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which exist due to Brouwer’s fixed point theorem (Wolf,
2012). This problem can be formulated as a semidefinite
program (SDP), i.e.,

min
X

0

subject to EC½X� ¼ X;

X ≥ 0; TrX ¼ 1.

ð95Þ

The solution of Eq. (95) is a positive semidefinite operator X,
which can be interpreted as the quantum state of the correlated
catalyst, i.e., ωC ¼ X. The main advantage of semidefinite
programs stems from the fact that they can be efficiently
solved numerically (Boyd, Boyd, and Vandenberghe, 2004),
for example, using the modeling language CVX (Grant and
Boyd, 2014). Moreover, in certain cases some essential
features of the solution can even be inferred analytically;
see Napoli et al. (2016), Cavalcanti and Skrzypczyk (2017),
and Bavaresco, Murao, and Quintino (2021). As an example
in the context of catalysis, note that the output state σS ¼
TrCE½ρS ⊗ ωC� is, a priori, arbitrary. However, if some
additional information about E is available, it may even be
possible to deduce some essential features of σS analytically.
Boes et al. (2020) successfully used this technique in the
context of work extraction from multipartite systems to show
that correlating catalysis allowed the stringent conditions
imposed by Jarzynski’s inequality to be surpassed.
The formulation in Eq. (95) allows additional constraints on

the catalyst state to be added as long as they can be formulated
in terms of semidefinite constraints. This freedom can be used
to investigate other regimes of catalysis. To see this, consider a
more general version of the problem in Eq. (95),

min
X

FðXÞ
subject to kECðXÞ − Xk1 ≤ ϵ;

X ≥ 0; TrX ¼ 1;

ð96Þ

where F is a linear function of X and ϵ > 0. Equation (96) is
still an SDP, as can be seen using a standard reformulation of
the trace norm k · k1 in terms of a semidefinite constraint
(Vandenberghe and Boyd, 1996). Equation (96) allows the
approximate catalysts discussed in Sec. III.D to be determined
by taking FðXÞ ¼ 0, and fixing ϵ > 0 allows the state of an
approximate catalyst to be found.
One can also consider nonlinear functions Fð·Þ as long as

they can themselves be expressible through semidefinite
programs. An example of such a function is the trace
distance, i.e., k · k1; see Watrous (2009). Taking FðXÞ ¼
kEðρS ⊗ XCÞ − σS ⊗ XCk1 allows one to determine the state
of the catalyst that ends up being the least correlated with the
system S. When the SDP problem defined according to this
recipe achieves FðX�Þ ¼ 0, the resulting optimal variable X�

corresponds to the strict catalyst discussed in Sec. III.A.
At this point, we note that from a resource-theoretic

perspective the aforementioned method is limited, as it
requires ESC and ρS to be fixed. Therefore, it does not allow
the catalyst that would enable a given state transformation on
the system to be found. However, in many realistic appli-
cations the available joint quantum channel ESC either is

fixed or can be parametrized using a small number of
parameters. This happens in experimentally relevant models
of light-matter interactions like the Jaynes-Cummings
(Jaynes and Cummings, 1963) and Dicke models (Hepp
and Lieb, 1973). Moreover, owing to experimental capabil-
ities the set of states ρS prepared is usually also restricted and
efficiently parametrized. In such special cases, the previously
described method of determining the catalyst performs
reasonably well. This approach was used by de Oliveira
Junior et al. (2023) to demonstrate the effect of catalytic
activation of Wigner negativity (see also Sec. V.E.2) and by
Lipka-Bartosik, Perarnau-Llobet, and Brunner (2023) to
show a catalytic enhancement in cooling or heating using
a single-mode optical cavity.
Finally, we note that, beyond the regime of analytical

constructions and convex optimization, the avenue for deter-
mining whether ρ → σ is possible using a certain type of
catalyst remains a space for much potential exploration. For
example, by training a neural network to learn majorization,
machine learning techniques were implemented to see if they
could successfully identify whether a transition could be
achieved catalytically (Acácio and Duarte, 2022). Similar
techniques could be used to learn how to identify a catalyst
that activates the desired transformation.

V. APPLICATIONS OF CATALYSIS

A. Unitary quantum mechanics

One of the simplest resource theories that one could
imagine is given by unitary quantum mechanics RQM ¼
ðSQM;OQMÞ. The set of free states SQM is empty (every state
is resourceful) and the free operations OQM are all simply
unitary transformations. That means that all free operations
are reversible and randomness (even classical) is costly. In
particular, the resource theory is not convex and the tools of
Sec. IV.B do not directly apply. While perhaps less plausible
physically at first sight, RQM serves as an interesting test bed
to distinguish among different types of catalysis. First, the law
for state transitions is simple: Two states ρS and σS on the
same Hilbert space can be converted into each other if and
only if their eigenvalues (including multiplicities) are iden-
tical. Second, Lemma II.1 implies that strict catalysis is
useless in this scenario. However, correlating catalysis was
shown to enlarge the set of states that can be reached.
Specifically, Boes et al. (2019) and Wilming (2021, 2022)
showed that the set of achievable states is described by a
statement akin to the second law of thermodynamics.
Theorem V.1. Let ρS and σS be density matrices on a finite-

dimensional Hilbert space that are not unitarily equivalent.
Thus, the following two statements are equivalent:

(1) There exists a finite-dimensional density operator σC
and a unitary operator U on SC such that

trC½UρS ⊗ σCU†� ¼ σS; ð97Þ

trS½UρS ⊗ σCU†� ¼ σC: ð98Þ

(2) HðρSÞ < HðσSÞ and rankðρSÞ ≤ rankðσSÞ.
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The same results hold in the classical case where density
matrices are replaced by probability vectors and unitary
transformations are replaced by permutations. By continuity
of von Neumann entropy, the theorem implies that any state
σS can be reached from ρS to arbitrary accuracy using
correlating catalysis if and only if HðσSÞ ≥ HðρSÞ. Thus, we
find a complete operational characterization of von Neumann
entropy without any reference to thermodynamics, entangle-
ment, or information theory. Previously, Müller (2018)
showed that Theorem V.1 holds if one allows for general
mixed-unitary quantum channels instead of reversible unitary
channels. Boes et al. (2019) used this to generalize a classic
result of Aczél, Forte, and Ng (1974) for Shannon entropy to
the quantum case: If a continuous function on densitymatrices
is (a) invariant under unitary transformations, (b) additive
over tensor products, and (c) subadditive, then it is given by
von Neumann entropy up to rescaling and a dimension-
dependent shift of the origin. In particular, if appropriate
normalization for maximally mixed states and pure states is
required, this uniquely singles out von Neumann entropy.
In passing, we remark that the conditions in Eqs. (97)

and (98) also appeared in Deutsch’s analysis of quantum
mechanics near closed timelike curves (D. Deutsch, 1991),
where the condition that the state on C remains the same is a
consistency requirement to prevent certain logical paradoxes.
Deutsch already observed HðσSÞ ≥ HðρSÞ and that some σC
and σS fulfilling Eqs. (97) and (98) always exist once ρS and
U are specified.
Where does the entropy increase on S come from? It

corresponds precisely to the correlations built up between the
system S and the catalystCwhen measured in terms of mutual
information,

HðσSÞ −HðρSÞ ¼ IðS∶CÞUρS⊗σCU† : ð99Þ

How large does the system C need to be? When ρS ≻ σS,
the catalyst C can be chosen to be a maximally mixed
state of dimension at most ⌈

ffiffiffiffiffiffi
dS

p
⌉ (Boes et al., 2018),

corresponding to a regime where the entropy increase on
S can be considered large. However, as HðσSÞ −HðρSÞ
becomes small, it can be shown that there exists catalytic
state transitions requiring arbitrarily large catalyst dimen-
sions (Boes, Ng, and Wilming, 2022). In particular, if
HðρSÞ ¼ HðσSÞ, either the two states are unitarily equivalent
or there does not exist a finite-dimensional catalyst. It is
currently unknown whether an infinite-dimensional catalyst
can be used in this case.
In Sec. V.C.6 we discuss some applications of Theorem V.1

in the context of quantum thermodynamics. Gallego et al.
(2018) further used the previous result of Müller (2018) to
show that in principle a single catalyst can be used to bring an
arbitrary many many-body systems that are initially in
equilibrium permanently out of equilibrium.

B. Entanglement theory

Entanglement is perhaps the most striking manifestation of
the nonclassical nature of quantum mechanics (Einstein,
Podolsky, and Rosen, 1935). After its first experimental
demonstration (Aspect, Dalibard, and Roger, 1982),

researchers realized that entanglement could be used as a
resource enabling new types of protocols, including new
communication tasks (Bennett et al., 1993) and uncondition-
ally secure cryptographic schemes (Bennett and Brassard,
1984; Ekert, 1991).
The most common approach for studying entanglement is

the so-called distant-lab paradigm, which was introduced in
Sec. II.A.1. Consider the scenario where a multipartite
quantum system is distributed to spatially separated parties,
who are restricted to act locally on their respective subsystems
by performing local quantum operations. A common
assumption is that the parties can exchange classical infor-
mation in order to enhance their measurement strategies.
Quantum operations implemented in this manner are known as
LOCC. When communication is not allowed, such as in Bell
nonlocality, the relevant set of operations involves local
operations and shared randomness (LOSR). In this paradigm
parties cannot communicate; however, they are allowed to
share classical randomness. This captures the natural restric-
tions encountered in Bell-like experiments and nonlocal
games (Buscemi, 2012). In both cases, the set of free states
SLOCC=LOSR is given by classically correlated states. In the
bipartite scenario involving Alice (A) and Bob (B), they take
the form

ρAB ¼
X
i

piρ
i
A ⊗ ρiB ð100Þ

for some probability distribution pi. Since the LOSR
operation is an LOCC protocol without communication,
the LOSR set is a strict subset of LOCC. By definition,
neither LOSR nor LOCC operations can create entangle-
ment. Both of these classes have a fairly intuitive physical
description; however, they are notoriously difficult to char-
acterize mathematically (Chitambar et al., 2014). In this
section, we review the role of catalysis in LOCC (Sec. V.B.1)
and LOSR (Sec. V.B.5) transformations.

1. Local operations and classical communication

A physical operation is called a one-way LOCC operation
from A to Bwhen it can be implemented by applying arbitrary
local quantum operations by Alice (A) and Bob (B), and a
single round of classical communication from A to B. More
generally, n-LOCC operations involve exchanging n rounds
of classical communication. The class of LOCC operations
LOCCðA∶BÞ between Alice and Bob is the union of all
n-LOCC operations. It is known that (nþ 1)-LOCC oper-
ations are strictly more powerful than n-LOCC operations
(Chitambar et al., 2014). In general the outcome of an LOCC
operation on an initial state ρ consists of classical measure-
ment outcomes x and the associated conditional quantum
states σx. In other words, an LOCC operation corresponds to
a quantum instrument fF xg, where F x are completely
positive maps such that F ≔

P
x F x is a quantum channel

and σx ¼ F x½ρ�=px with px ≔ Tr[F x½ρ�]. We say that an
LOCC operation converts ρ to σ (deterministically) if σx ¼ σ
for all x. The success probability to convert ρ to σ via the
LOCC operation fF xg is the total probability of the events x
that have σ as the outcome,
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psuccðρ → σjfF xgÞ ≔
X

x∶σx¼σ

px: ð101Þ

The optimal success probability psuccðρ → σÞ to convert ρ
into σ via LOCC is obtained by maximizing the success
probability over all LOCC instruments fF xg. An easy-to-
miss subtlety is the following: LOCC allows subsystems,
particularly those storing classical measurement records, to
be discarded, thereby effectively averaging over these out-
comes. Thus, if σ ¼ P

xpxσx is the average outcome of a
given LOCC protocol acting on ρ, then there is a different
LOCC protocol (represented by the quantum channel
F ¼ P

xF x) that converts ρ into σ deterministically. If σ
is pure, then all σx already need to be identical to σ.
When restricted to bipartite pure states, then the most

general LOCC transformation requires only one-way com-
munication (Lo and Popescu, 2001). This is because any
bipartite pure state admits a Schmidt decomposition that is
symmetric (up to local unitaries) under an exchange of parts A
and B. Therefore, without loss of generality an LOCC
protocol involving pure states can always be executed by a
single measurement on one party, followed by a local unitary
operation on the second party conditioned on the measure-
ment outcome. Consequently, while characterizing general
LOCC transformations for general mixed states is difficult, for
bipartite pure states a simple characterization exists. It is
known as Nielsen’s theorem (Nielsen, 1999).
Theorem V.2 (Nielsen’s theorem). State jψi can be

converted into state jϕi by means of LOCC if and only if

λðψAÞ ≺ λðϕAÞ; ð102Þ

where λðψAÞ is the vector of Schmidt coefficients of jψi, i.e.,
the eigenvalues of the reduced state ψA ≔ TrB½jψihψ jAB�.
Nielsen’s theorem provides a connection between entan-

glement transformations and the theory of majorization
(Marshall, Olkin, and Arnold, 2011). Moreover, the condi-
tions given in Eq. (102) are easy to check numerically, and
therefore provide a powerful tool for determining when one
pure bipartite state can be converted into another via LOCC.
Nielsen’s theorem directly implies that there are incomparable
states, in the sense that neither ψ nor ϕ can be directly
transformed into another using LOCC. To address this
interconversion barrier, Vidal (1999) generalized Nielsen’s
work by characterizing probabilistic transformations in the
LOCC framework.
Theorem V.3 (Vidal’s theorem). State jψi can be con-

clusively converted into jϕi with probability μ by means of
LOCC if and only if

λðψAÞ ≺w μλðϕAÞ: ð103Þ

The symbol ≺w denotes a general form of majorization
called weak majorization (Bhatia, 2013) to compare unnor-
malized distributions. Vidal (1999) also presented an optimal
protocol demonstrating that the transformation from jψi to
jϕi is always possible probabilistically, with the success
probability

psuccðjψi → jϕiÞ ¼ min
1≤k≤d

1 − LkðψÞ
1 − LkðϕÞ

; ð104Þ

where LkðψÞ ≔
P

k−1
i¼1λ

↓ðψAÞi, with λðψAÞ0 ≡ 0. See
Example V.4 for an application.
Example V.4. Consider the following bipartite pure states:

jψi ¼
ffiffiffiffiffiffiffi
0.4

p
j00i þ

ffiffiffiffiffiffiffi
0.4

p
j11i þ

ffiffiffiffiffiffiffi
0.1

p
j22i þ

ffiffiffiffiffiffiffi
0.1

p
j33i;

jϕi ¼
ffiffiffiffiffiffiffi
0.5

p
j00i þ

ffiffiffiffiffiffiffiffiffi
0.25

p
j11i þ

ffiffiffiffiffiffiffiffiffi
0.25

p
j22i: ð105Þ

The eigenvalues of ψA and ϕA are given by

λðψAÞ ¼ ½0.4; 0.4; 0.1; 0.1�; ð106Þ

λðϕAÞ ¼ ½0.5; 0.25; 0.25; 0�: ð107Þ

Since λðψAÞ ⊀ λðϕAÞ, Nielsen’s theorem precludes the exist-
ence of a deterministic LOCC transformation jψi → jϕi. Still,
if one attempts to transform jψi into jϕi probabilistically,
Vidal’s theorem from Eq. (104) implies that it is possible to
achieve it with a probability psuccðjψi → jϕiÞ ¼ 4=5.
It was later observed by Jonathan and Plenio (1999) that a

catalytic version of LOCC can be considered where Alice and
Bob are allowed to use preshared entanglement in the form of
auxiliary bipartite pure states. One can do so in such a way that
the auxiliary state is returned exactly in its initial state after the
transformation. To demonstrate this, Jonathan and Plenio
(1999) proposed a particular example of this type of trans-
formation; see Example V.5 for details.
Example V.5. Consider the two states defined in Eq. (105)

and a two-qubit catalyst prepared in the state

jωi ¼
ffiffiffiffiffiffiffi
0.6

p
j00i þ

ffiffiffiffiffiffiffi
0.4

p
j11i: ð108Þ

Nielsen’s theorem applied to the transformation jψi ⊗ jωi →
jϕi ⊗ jωi implies that the transition can be realized deter-
ministically via LOCC.
The example demonstrates that an appropriately chosen

catalyst can increase the success probability of a transforma-
tion, even from p < 1 to p ¼ 1. This type of transformation
was named entanglement-assisted LOCC (ELOCC) by
Jonathan and Plenio (1999) and is the first example of strict
catalysis in LOCC. They also showed that two bipartite pure
states jψi and jϕi that were interconvertible via ELOCC, i.e.,
each state was convertible to the other, were already equivalent
up to local unitaries. In other words, strict catalysis does not
arise for the question of interconvertibility between pure states
(cf. Sec. VI.A). The mathematical characterization of strict
catalysis in the framework of LOCC was later examined by
Daftuar and Klimesh (2001). It was discovered that there is no
upper bound on the dimension that should be considered.
Specifically, for most initial states the set of final states
achievable with catalysts of a local dimension dC is strictly
larger than the set of states achievable with catalysts of a
smaller dimension (d0C < dC). Moreover, there are state transi-
tions that cannot be implemented with any finite-dimensional
catalyst but can be implemented with an infinite-dimensional
catalyst (Daftuar, 2004). This poses serious difficulty in
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characterizing which state transformations are possible under
ELOCC. Furthermore, Daftuar and Klimesh (2001) proved
that any entangled state that has at least two nonzero and
nonequal Schmidt coefficients can serve as a catalyst for some
LOCC transformation. A separable state cannot be useful as a
catalyst. However, counterintuitively the maximally entangled
state cannot catalyze any transition either, since taking a tensor
product with this state would preserve the majorization
structure.
In general not much is known about the structure of strict

catalysis in LOCC in the case in which the dimension of the
catalyst is bounded. An exception to this unsatisfactory state
of the art was discussed by Anspach (2001), who derived the
necessary and sufficient conditions for the existence of a
catalyst when the systems A and B have the local dimension
dA ¼ dB ¼ 4 and the local dimension of the catalyst is
dC ¼ 2. Xiaoming, Duan, and Ying (2005) presented a
polynomial time algorithm to decide whether a given entan-
glement transformation can be deterministically catalyzed by
a pure bipartite catalyst with a local dimension k.
The first full characterization of strict catalysis in entangle-

ment theory (ELOCC) for a case of unbounded catalyst
dimension was given by Turgut (2007)), who used an infinite
set of entropic conditions. Independently, Klimesh (2007)
proposed a different description of a complete set of inequal-
ities characterizing ELOCC. These two sets of conditions are
in fact equivalent; see Kribs, Pereira, and Plosker (2013) and
Pereira and Plosker (2013, 2015). Finally, the closure of the
set containing all states reachable from a fixed entangled state
jψi was studied by Kribs, Pereira, and Plosker (2013), who
found that the set could be fully described using a generali-
zation of the majorization relation called power majorization
(Allen, 1988). The mathematical structure of probabilistic
entanglement transformations was studied by Feng, Duan, and
Ying (2005), who gave a necessary and sufficient condition
for the existence of strict catalysts that could increase the
success probability of a state transformation; see also the
previous work of Feng, Duan, and Ying (2004) and Duan et al.
(2005b). Feng, Duan, and Ying (2005) showed that the
maximal probability of success psucc for a transformation
jψi ⊗ jωi → jϕi ⊗ jωi optimized over jωi depends only on
the minimal Schmidt coefficients of jψi and jϕi. Moreover,
Feng, Duan, and Ying (2005) also derived necessary and
sufficient conditions for a given k-dimensional bipartite pure
catalyst state jωki to enable a given transformation jψi → jϕi.
One of the main limitations of studying catalysis in LOCC

arises from the complete state-transition conditions being
known only for bipartite pure states. Eisert and Wilkens
(2000) took the first steps in generalizing catalysis to the case
of mixed states. Specifically, they found an explicit example
of two bipartite mixed states ρ; σ ∈DðHA ⊗ HBÞ such that
ρ↪
OLOCC

σ, but there exists no LOCC transformation turning ρ

into σ.

2. Entanglement distillation and formation

Suppose that Alice and Bob want to communicate quantum
information over a noisy quantum channel. The quality of
their communication depends crucially on their ability to
maintain a high degree of entanglement (Lloyd, 1997).

Entanglement distillation and formation constitute two fun-
damental protocols that aim to enhance quantum communi-
cation by collectively processing multiple copies of quantum
states (Bennett, Bernstein et al., 1996; Dür and Briegel, 2007;
Horodecki et al., 2009).
In the paradigmatic setting of entanglement distillation,

Alice and Bob share n ≫ 1 copies of a bipartite state ρ, and
the aim is to transform them into m copies of the maximally
entangled state ϕ via LOCC, where the rate is given by R ≔
m=n (Bennett, Bernstein et al., 1996). Formally, the asymp-
totic distillation cost EDðρÞ is defined as the largest rate R� for
which

lim
n→∞

inf
E ∈ LOCCðA∶BÞ

kE½ρ⊗n� − ϕ⊗m
þ k1 ¼ 0. ð109Þ

While EDðρÞ measures the maximum rate of distilling ϕ from
ρ via LOCC, one can also ask about the inverse process: What
is the optimal rate of creating n copies of ρ from m maximally
entangled states ϕþ. This has been termed entanglement
formation (Bennett, DiVincenzo et al., 1996), and the asso-
ciated optimal conversion rate is the asymptotic formation cost
EFðρÞ, i.e., the largest rate R� ¼ n=m for which

lim
n→∞

inf
E ∈ LOCCðA∶BÞ

kE½ϕ⊗m
þ � − ρ⊗nk1 ¼ 0. ð110Þ

Generally EDðρÞ ≠ EFðρÞ, leading to the fundamental irre-
versibility of entanglement transformations even in the
asymptotic limit. However, for bipartite pure states, the two
entanglement quantifiers coincide and are equal to the
entanglement entropy of the state, i.e., for a pure state ψAB,

EDðψABÞ ¼ EFðψABÞ ¼ HðψAÞ: ð111Þ

Outside of the asymptotic limit, i.e., when n < ∞, the
quantifiers EDðρÞ and EFðρÞ lose their operational signifi-
cance. Recently it was discovered that this operational signifi-
cance is recovered when correlating catalysis is allowed. This
approach was addressed by Kondra, Datta, and Streltsov
(2021), who proved a variant of Theorem V.2 for correlat-
ing-catalytic LOCC with bipartite pure states. Specifically,
Kondra, Datta, and Streltsov (2021) proved the following
theorem, which can be seen as an instance of Lemma IV.1.
Theorem V.6. Given bipartite pure states jψiAB and jϕiAB,

HðψAÞ ≥ HðϕAÞ if and only if jψiAB ↪
corr

OLOCC

jϕiAB to arbitrary

accuracy in terms of trace distance.
More generally, with the help of a correlating-catalytic

LOCC operation it is possible to convert any distillable state
ρAB (to arbitrary accuracy) into a pure state ψAB with
entanglement entropy HðψAÞ ≤ EDðρABÞ. Conversely, via
correlating-catalytic LOCC it is also possible to create any
bipartite quantum state ρAB from a pure entangled state ψAB
with entanglement entropy HðψAÞ ≥ ECðρABÞ.
Furthermore, Kondra, Datta, and Streltsov (2021) used

similar techniques to show that in the tripartite setting, i.e.,
when three spatially separated parties A, B, and C share a pure
quantum state jψi, the analog of distillable entanglement
extended by the use of correlating catalysis is given by
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min½HðψAÞ; HðψBÞ�, in close analogy to the asymptotic
setting (Smolin, Verstraete, and Winter, 2005).
This result uses a catalyst to convert an asymptotic result

into the single-shot setting. Previously Bennett et al. (2000)
defined a notion of catalysis directly in the asymptotic
setting, i.e., while also asymptotically involving many copies
of the catalyst and allowing for an arbitrarily small error.
They showed that such transformations can even simulate
LOCC transformations that additionally allow for a sublinear
amount of quantum communication. Vidal and Cirac
(2001) argued that this class of catalytic transformations,
nevertheless, cannot be used to distill bound entanglement;
see Sec. V.B.9. Bound entangled states are entangled states
with EDðρÞ ¼ 0, and hence their entanglement cannot be
extracted using LOCC. Recently Lami, Regula, and Streltsov
(2023) conclusively showed that not even correlating or
marginal-correlating catalysis can be used to distill bound
entanglement, while Ganardi, Kondra, and Streltsov (2023)
showed that the distillable entanglement of distillable states
cannot be increased using correlating catalysis.

3. Quantum state merging

Quantum state merging, sometimes called coherent state
transfer, is a communication task that enables a known
quantum state to be transferred to a distant party that already
holds part of the state (Horodecki, Oppenheim, and Winter,
2005, 2006). Specifically, consider three parties: A, B, and
Referee (R) who share asymptotically many copies of some
pure state jψABRi. The goal is to send the A part of the state to
B while preserving all correlations with R. It is further
assumed that Alice and Bob can perform any LOCC protocol
and, on top of that, they may share an arbitrary number of
maximally entangled states. As shown by Horodecki,
Oppenheim, and Winter (2005), the rate at which maximally
entangled states have to be supplied in order to accomplish
this process is given by the quantum conditional entropy

HðAjBÞψ ≔ HðψABÞ −HðψBÞ: ð112Þ

In other words, for HðAjBÞψ > 0 state merging is possible
when singlets are consumed at a rate HðAjBÞψ . For
HðAjBÞψ < 0, state merging not only is possible but also
generates entangled pairs at a rate given by −HðAjBÞψ. This
provides an operational meaning to the quantum conditional
entropy. Variants of the state merging task were analyzed,
including its single-shot version (Berta, 2008) and an exten-
sion to multiple parties (Dutil and Hayden, 2010).
An extension of the state merging protocol allowing

correlating catalysis was proposed by Kondra, Datta, and
Streltsov (2021). The setup is similar to the single-shot
setting discussed by Berta (2008): the parties A, B, and R
share a single copy of jψiABR and are allowed to use any
entangled state as a correlating catalyst. In this extended
protocol, state merging can be performed as long as
HðAjBÞψ > 0. Conversely, if HðAjBÞψ < 0, then catalytic
state merging can be performed not only without extra
entanglement but also with Alice and Bob gaining an
additional pure state with entanglement entropy

−HðAjBÞψ . Both procedures are optimal in the sense that
state merging is not possible if a pure state with a smaller
entanglement entropy is provided [when HðAjBÞψ > 0], and
state merging with entanglement gain exceeding −HðAjBÞψ
is not possible when HðAjBÞψ < 0. This procedure provides
an operational interpretation of the quantum conditional
entropy in the single-shot regime.

4. Quantum teleportation

Quantum teleportation enables quantum states to be
transferred using preshared entanglement and classical
communication (Bennett et al., 1993). A and B share an
entangled state ρAB. Alice is additionally given a quantum
state φA0 that is unknown to both parties. They then attempt
to transfer the state on A0 from Alice to Bob using a quantum
channel E ∈ LOCCðA0A∶BÞ and the entangled state that they
share. The goal of the protocol is to simulate a noiseless
quantum channel from Alice to Bob, i.e., the identity map
idA0→B. The quality of teleportation is usually quantified
using the average fidelity of teleportation introduced by
Popescu (1994),

hFiρ ≔ max
E

Z
hφjBtrA0AEðφA0 ⊗ ρABÞjφiBdφB

such that E ∈ LOCCðA0A∶BÞ: ð113Þ

The integral in Eq. (113) is computed over a uniform
distribution of all pure input states φB ¼ jφihφjB according
to a normalized Haar measure

R
dφB ¼ 1B. It can easily be

verified that 0 ≤ hFiρ ≤ 1, where hFiρ ¼ 1 corresponds to
perfect teleportation that is possible if and only if ρ is
maximally entangled. As shown by Horodecki, Horodecki,
and Horodecki (1999), the fidelity of teleportation (113) can
be conveniently expressed as

hFiρ ¼
fðρÞdA0 þ 1

dA0 þ 1
; ð114Þ

where fðρÞ ≔ maxfhϕþjABEðρABÞjϕþiABjE ∈LOCCðA∶BÞg
is called the entanglement fraction, dA0 is the dimension of
A0, and jϕþiAB is a maximally entangled state on AB.
The protocol for quantum teleportation has been extended

to the case when ancillary entanglement is used catalytically
(Lipka-Bartosik and Skrzypczyk, 2021b). In that case, we
assume that Alice and Bob, in addition to ρAB, also have
access to a quantum system CACB prepared in ωCACB

. This
additional system is distributed such that Alice has access only
to CA, and Bob has access only to CB. Alice is then given an
unknown state φA0 , and the parties perform a protocol
E ∈ LOCCðA0ACA∶BCBÞ acting on both the shared systems
and the input. For the protocol to be catalytic, one further
demands that the local state of the system CACB remains the
same after E, although it can become correlated with AB. The
protocol E can then be viewed as an instance of correlating
catalysis in the LOCC framework that aims to perform
teleportation of A0.
If we have the freedom to choose the state of the catalyst

ωCACB
, we can then define a benchmark that optimizes over all
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possible states of the catalyst. This leads to the average fidelity
of catalytic teleportation defined as

hFcatiρ ¼ max
E;ω

Z
hφjtrA0ACC0EðφA0 ⊗ ρAB ⊗ ωCACB

Þjφidφ

such that trA0ABEðφA0 ⊗ ρAB ⊗ ωCACB
Þ ¼ ωCACB

;

ωCACB
≥ 0; TrωCACB

¼ 1;

E ∈ LOCCðA0AC∶BC0Þ: ð115Þ

The main result of Lipka-Bartosik and Skrzypczyk (2021b) is
the following achievable lower bound:

hFcatiρ ≥
fregðρÞdA0 þ 1

dA0 þ 1
; ð116Þ

where fregðρÞ is a regularization of entanglement fraction
fregðρÞ≔limn→∞½fnðρ⊗nÞ=n�, with fnðσÞ given by

fnðσÞ ≔ max
E

Xn
i¼1

hϕþjtr=iEðσÞjϕþi

such that E ∈LOCCðA1 � � �An∶B1 � � �BnÞ; ð117Þ

where tr=ið·Þ is the partial trace performed over local parties
1 � � � i − 1; iþ 1 � � � n. Note that, by taking a suboptimal guess
E ¼ E1 ⊗ E2 ⊗ � � � ⊗ En with E1 ¼ E2 ¼ � � � ¼ En, we have
fregðρÞ ≥ fðρÞ for all density operators ρ.
The proof of Eq. (116) is constructive; that is, there exists a

protocol T ∈LOCCðA0ACA∶BCBÞ and a catalyst ωCACB
that

achieves the bound from Eq. (116). Moreover, for most pure
bipartite states ψAB we have fregðψÞ > fðψÞ, implying that
hFcatiψAB

> hFiψAB
. As a consequence, the quality of telepor-

tation can be improved when ancillary entanglement is used
catalytically.

5. Local operations and shared randomness

We denote the set of all LOSR operations between A and B
as LOSRðA∶BÞ. Any operation E ∈ LOSRðA∶BÞ can be
written in Kraus representation as

E½ρAB� ¼
X
i

piðAi ⊗ BiÞρABðAi ⊗ BiÞ†; ð118Þ

where fAig and fBig are sets of local Kraus operators and
fpigi is a probability distribution. In analogy with Nielsen’s
theorem, transformations between pure bipartite states via
LOSR can be characterized using majorization.
Theorem V.7 (Schmid et al., 2020). A bipartite quantum

state jψi shared between two parties can be converted into jϕi
by means of LOSR if and only if there is a bipartite state jξi
such that

λðψAÞ↓ ¼ ½λðϕAÞ ⊗ λðξA0 Þ�↓ ð119Þ

.
Theorem V.7 implies that strict catalysis cannot provide an

advantage for LOSR between pure bipartite states.
Specifically, Schmid et al. (2020) showed that if jψi cannot

be converted into jϕi via LOSR, then jψi ⊗ jωi also cannot
be converted into jϕi ⊗ jωi for any bipartite state jωi. To see
this, note that due to Theorem V.7 jψi↪

OLOSR

jϕi is possible if

and only if there exists a pure bipartite state jξi with Schmidt
coefficients λðξA0 Þ such that

½λðψAÞ ⊗ λðωCA
Þ�↓ ¼ ½λðϕAÞ ⊗ λðωCA

Þ ⊗ λðξA0 Þ�↓: ð120Þ

We can read Eq. (120) as ½p ⊗ r�↓ ¼ ½q ⊗ r�↓ with probability
vectors p ¼ λðψAÞ, q ¼ λðϕAÞ ⊗ λðξA0 Þ, and r ¼ λðωCA

Þ. But
this is possible only if p↓ ¼ q↓: The largest entry gives

p↓
1 r

↓
1 ¼ q↓1r

↓
1 , so p↓

1 ¼ q↓1 . We can now remove all equations

involving p↓
1 . But then we similarly obtain p↓

2 ¼ q↓2 .
Repeating these steps, we get p↓ ¼ q↓, which corresponds
to Eq. (119). This means that any LOSR transformation that
can be achieved via strict catalysis can also be achieved
without using any catalyst, in strong contrast to LOCC. We
also see in Sec. V.D.2 that a similar distinction in terms of
catalysis arises when considering different ways to formalize
the concept of coherence as a resource theory.
This reasoning relies on two crucial assumptions: the

tensor-product structure of strictly catalytic transformations
and the purity of the catalyst state. Therefore, the proof ceases
to hold when applied directly to correlating-catalytic trans-
formations or when one is dealing with mixed states. It is an
interesting open question as to whether correlating catalysis
might be suitable for the LOSR framework. However,
embezzling was studied early on in LOSR: van Dam and
Hayden (2003) started with the state-transition conditions of
LOCC, i.e., majorization of Schmidt vectors in Eq. (102), and
showed that embezzling not only trivializes the state-transition
conditions (i.e., by enabling the preparation of a maximally
entangled state from a product state for free) but also does so
in such a way that the process can be accomplished using only
LOSR. All of this is achieved at the cost of only a disturbance
δ > 0 induced on the embezzler (in terms of trace distance),
which can be made as small as possible by choosing a large
enough dimension.

6. (Non)closure of quantum correlations

Bell’s theorem (Bell, 1964) states that no local hidden-
variable theory can account for all predictions of quantum
theory under the assumption that the hidden variables are
statistically independent from the measurement settings. At
the core of this theorem is the notion of a Bell experiment: A
source distributes two physical systems to distant observers
Alice and Bob so that they share a bipartite quantum state
described by a density matrix ρAB. Each observer performs a
randomly chosen measurement on their part of the system
labeled x and y and obtains outcomes a and b. The experiment
is characterized by the joint distribution pðabjxyÞ.
We say that the experiment has a local hidden-variable

model if there exists a hidden random variable λ with an
associated distribution pðλÞ and two local response functions
pðajx; λÞ for Alice and pðbjy; λÞ for Bob such that pðabjxyÞ
can be achieved using λ,
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pðabjxyÞ ¼
X
λ

pðλÞpðajx; λÞpðbjy; λÞ: ð121Þ

The distribution pðabjxyÞ is called nonlocal when it cannot be
described in the form of Eq. (121). Every possible action taken
by Alice and Bob can be viewed as an LOSR operation, and
vice versa (Buscemi, 2012).
Bell nonlocality is often formalized in terms of nonlocal

games, which have been extensively studied in computer
science, where they are a special instance of interactive proof
systems (Cleve et al., 2004). In such games, A and B play
against R. The referee R chooses a question x∈X for Alice
and y∈Y for Bob according to a probability distribution
pðx; yÞ∶X × Y → ½0; 1�, where X and Y denote finite sets of
questions. Without communicating, Alice (Bob) returns an
answer a∈A (b∈B) from a finite set of possible answers A
(B). In quantum mechanics, this corresponds to applying local
measurements fMajxg for Alice and fNbjyg for Bob. Based on
the received answers and according to a prearranged set of
rules, the referee decides whether the players win or lose the
game. These rules are typically expressed using a function
V∶A × B × X × Y → f0; 1g, where Vxy

ab ¼ 1 if and only if
Alice and Bob win the game when answering a and b for
questions x and y. The probability of Alice and Bob winning
the game G ¼ fpðx; yÞ; Vg, maximized over all measurement
strategies, is given by

pguessðG; ρABÞ ¼ max
X
a;b;x;y

pðx; yÞpða; bjx; yÞVxy
ab; ð122Þ

where pða; bjx; yÞ ¼ tr½ðMajx ⊗ NbjyÞρAB�. In Eq. (122) we
make explicit that we work in the tensor-product framework,
where Alice’s and Bob’s quantum systems are described by
local Hilbert spaces HA and HB, respectively, and the joint
Hilbert space is given by their tensor product. In the more
general commuting operator framework, it is simply assumed
that Alice’s and Bob’s measurement operators are defined on a
global Hilbert space HAB and that ½Majx; Nbjy� ¼ 0; see also
Sec. III.F. The tensor-product framework and the commuting
operator framework are equivalent for finite-dimensional
Hilbert spaces.
Bell inequalities provide upper bounds on Eq. (122) with

which the players can win the game using the best classical
strategy, i.e., when ρAB is separable. A violation of a Bell
inequality indicates that there is a quantum strategy that
outperforms the best classical strategy. In other words, Bell’s
theorem (Bell, 1964) asserts that there are games where
players who share entanglement can outperform players
who do not. The most well-known example of this is the
Clauser-Horne-Shimony-Holt (CHSH) game GCHSH (Clauser
et al., 1969), where Tsirelson’s theorem provides an upper
bound on the guessing probability pguessðGCHSH; ρABÞ for
classical strategies (Cirel’son, 1980). For a more complete
account of nonlocal games, see Watrous (2018).
An immediate application of nonlocal games is the task of

witnessing the dimension of entanglement. Specifically, a
nonlocal game G can be used as an entanglement dimension
witness if a certain pguessðG; ρABÞ can be achieved only with
entangled states ρAB on a Hilbert space with a given minimal

dimension (Brunner et al., 2008). In this spirit, Coladangelo
(2020) proposed a nonlocal game GColadangelo in which the
players’ maximum achievable guessing probability increased
monotonically with the allowed Hilbert-space dimension. In
the following, let

p�
Coladangelo ≔ sup

ρAB

pguessðGColadangelo; ρABÞ; ð123Þ

where the maximization is performed over quantum
states ρAB on Hilbert spaces with a finite (but arbi-
trarily large) dimension. Coladangelo (2020) showed that
pguessðGColadangelo;ρABÞ<p�

Coladangelo within the tensor-product
framework for both finite-dimensional and infinite-
dimensional quantum states5 ρAB. The proof of this statement
is based on choosing ρAB to be an approximate embezzler;
see Sec. III.E. Moreover, there it is further shown that a
strategy achieving p�

Coladangelo requires a perfect embezzler,
which requires a commuting operator framework; see also
Sec. III.F. An approximate embezzler allows Alice and Bob to
simulate an approximately coherent strategy, i.e., to perform
measurements in a way that retains a high degree of coherence
between the parties. High coherence of the process, however,
leads directly to a high score in the nonlocal game. The main
idea behind using embezzlers in such a coherent state
exchange process is described in Example V.8.
Example V.8 (Coherent state exchange). Consider a

bipartite pure state jϕiAB shared between A and B. The goal
is to transform jϕiAB into jψiAB under two assumptions: (i) no
communication is allowed and (ii) the process must be
implemented in a coherent way, that is,

αj00iA0B0 jγiAB þ βj11iA0B0 jϕiAB
→ αj00iA0B0 jγiAB þ βj11iA0B0 jψiAB; ð124Þ

where A0B0 represent control systems, one held by each player.
Nielsen’s theorem implies that Eq. (124) is impossible when
λðψAÞ ≻ λðϕAÞ. However, this is no longer true when catalysis
is involved: using an auxiliary state

jωni ¼
1ffiffiffi
n

p
Xn
i¼1

jϕi⊗ijψi⊗ðn−iþ1Þ ð125Þ

and cyclically permuting local subsystems transform
jϕiABjωni into jψiABjω0

ni, with hω0
niωn ¼ 1 − 1=n, so the

auxiliary state is approximately preserved. This protocol is
almost identical to the universal embezzlement construction in
Sec. IV.C. The fact that the auxiliary system is approximately
catalytic is the key property that ensures that the trans-
formation is done coherently. Controlling the cyclic permu-
tation on the control systems yields

5The set of correlations achievable by infinite-dimensional density
matrices in the tensor-product framework is included in the closure of
the set of correlations achievable by finite-dimensional quantum
states (Scholz and Werner, 2008).
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αj00iA0B0 jγiABjωni þ βj11iA0B0 jϕiABjωni
→ αj00iA0B0 jγiABjωni þ βj11iA0B0 jψiABjω0

ni;

and hence the parties can approximately implement the
coherent state exchange since jω0

ni ≈ jωni. If the state jω0
ni

is far from jωni, then discarding the ancilla effectively
decoheres the primary system. Indeed, the requirement (ii)
can be satisfied only if the process does not significantly
change the auxiliary state. For example, the players cannot
swap jϕiAB with an initially shared copy of jψiAB without
losing coherence.
From the perspective of the Bell nonlocality, Coladangelo

(2020) proposed an embezzlement-based Bell inequality that
cannot be maximally violated within the tensor-product
framework, but where the limiting value can be achieved
arbitrarily well. This shows that the set of quantum correla-
tions from a Bell experiment described in the tensor-product
framework is not closed. In fact, the existence of a suitable
game was first proved using representation theory for finitely
presented groups by Slofstra (2019, 2020), with subsequent
alternative proofs given by Dykema, Paulsen, and Prakash
(2019) and Musat and Rørdam (2020). In the case of
Coladangelo (2020), however, embezzlement-based tech-
niques allowed for a simpler proof using only basic linear
algebra and an explicit nonlocal game. Previously Cleve, Liu,
and Paulsen (2017) showed a similar result for coherent
embezzlement games (Regev and Vidick, 2013). Coladangelo
(2020) transparently demonstrated the relationship between
the dimension of the used entangled state and the associated
score in a nonlocal game. A similar technique involving
embezzlement was used to prove that any number of parties
can coherently exchange any pure quantum state for another,
without communication, given prior shared entanglement
(Leung, Toner, and Watrous, 2013).

7. Embezzlement and the reverse coding theorem

The classical channel capacity is the central concept in
information theory. It quantifies the maximum rate at which
classical data can be transmitted in the limit of many uses of
the channel (Cover, 1999). The noisy channel coding theorem
is a milestone result that provides a closed formula for the
channel capacity (Shannon, 1948). It states that the classical
capacity C of a memoryless classical communication channel
is given by the supremum of mutual information between the
input and the output of the channel. Specifically, let X be a
random variable distributed according to a probability dis-
tribution pX, and let E be a classical and memoryless channel.
The classical capacity of E is then given by

CðEÞ ¼ sup
pX

IðX∶YÞE½pX �; ð126Þ

where Y ∼ E½pX� denotes the output of the channel and
IðX∶YÞE½pX � ≔ HðXÞ þ XðYÞ −HðX; YÞ. After the appear-
ance of Shannon’s theorem, a closely related classical reverse
coding theorem was proven (Bennett et al., 2002). The
theorem states that every classical channel E can be simulated
exactly using CðEÞ bits of classical communication and free

shared randomness between the sender and the receiver. In
other words, when given access to shared randomness and
local operations, any classical channel N can be simulated
using E at a rate given by CðEÞ=CðN Þ. Therefore, every
classical channel is completely characterized by its capacity in
the limit of many uses of the channel.
The communication problem becomes more complex in

quantum theory, where channels are known to exhibit different
types of capacities (Holevo, 1998; Shor, 2003; Devetak,
2005). Presumably the most natural analog of classical
channel capacity in the quantum regime is the entangle-
ment-assisted classical capacity, CE. It is defined as the
highest rate at which classical information can be transmitted
when the sender and receiver share unlimited noiseless
entanglement (Bennett et al., 1999). An analog of the classical
noisy channel coding theorem was proven by Bennett et al.
(2002) and provides a closed-form formula relating CE to the
quantum mutual information [see Eq. (32)],

CEðEÞ ¼ max
ρ∈DðXÞ

IðY∶X0ÞðE⊗1ÞΦρ
; ð127Þ

where E is a quantum channel from X to Y,Φρ is a purification
of ρ on XX0, and the optimization ranges over all input states ρ
on X. Bennett et al. (2002) conjectured a quantum version of
the reverse coding theorem that was subsequently proven
(Bennett et al., 2014).
The quantum reverse coding theorem states that any

quantum channel E can be simulated using CEðEÞ bits of
classical communication under unlimited shared entangle-
ment. As a consequence, CE suffices to characterize the
quantum channel when preshared entanglement is allowed
for free. The reverse coding theorem conveys the idea that
entanglement cannot be easily discarded when access to
communication is limited. Specifically, when two entangled
states jϕ1iAB and jϕ2iAB are part of a superposition, i.e.,
jψiABC ¼ ðjϕ1iABj0iC þ jϕ2iABj1iCÞ=

ffiffiffi
2

p
, then it is impos-

sible to retain the entanglement in one branch of the super-
position and remove it from the other without either using
classical communication or causing decoherence. This can
also be understood as a consequence of the fact that changing
the entanglement spread of an entangled pure quantum state
always requires communication (Harrow, 2010).
In quantum information theory, free entanglement usually

takes the form of maximally entangled states. However, even
if one has an infinite supply of maximally entangled states, the
optimal entanglement-assisted capacity CE from Eq. (127)
cannot be reached (Bennett et al., 2014). Specifically, a
communication protocol can attain Eq. (127) only if it can
be implemented coherently, as in the coherent state exchange
protocol in Example V.8. The quantum reverse coding
theorem can be achieved using entanglement in the form of
embezzlers instead of maximally entangled states. This allows
one to overcome the constraints imposed by entanglement
spread and ultimately leads to the rate of communication
achieving the capacity CE.
In the previous example, embezzlement was used to

generalize a classical information processing task to the
quantum case. Recently George, Hsieh, and Chitambar
(2023) also used embezzlement to generalize the classical
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task of distributed source simulation to a fully quantum
setting, which they called embezzling source simulation.

8. Cryptography

In many situations, communication protocols require an
authentication step to ensure secure communication between
the two parties (Alice and Bob). This is necessary to protect
against potential security breaches from an impostor (Eve). To
authenticate Bob to Alice, the following protocol involving
strict catalysis was proposed by Barnum (1999):

(1) Alice and Bob select a pair of incomparable states such
as jψiAB and jϕiAB. Alice then prepares jψiAB in
her lab.

(2) They also share a strict catalyst jωiA0B0 that enables the
forbidden transition jψiAB → jϕiAB.

(3) Alice sends one part of the state jψiAB to Bob.
(4) Alice and Bob use the catalyst to perform the tran-

sition jψiAB ⊗ jωiA0B0 → jϕiAB ⊗ jωiA0B0 .
(5) Bob sends his part of jϕiAB to Alice, who measures it.

The security of this protocol relies on the incomparability of
the states jψiAB and jϕiAB. If Eve intercepts the communi-
cation and receives the B part of jψiAB, she will not be able to
transform it into jϕiAB without access to the catalyst.
A second cryptographic scenario involving catalysis was

discussed by Boes et al. (2018). Here Alice wants to
communicate an unknown quantum state ρD on a data register
D to Bob over a public quantum channel in such a way that no
information about ρD is revealed to the public. Alice and Bob
are assumed to share a number of maximally entangled qubits
(ebits). Alice now applies a suitable unitary (independent of
ρD) to D and her part of the shared ebits with the result that the
state on D is maximally mixed.
Afterward she sends D to Bob using a public quantum

channel. By applying a suitable unitary, Bob can recover the
initial state onD and, moreover, restore the ebits to their initial
state. The catalytic ebits act as a secret key that is used to
encrypt the quantum data for the transmission over the public
quantum channel. For a thorough review on quantum crypto-
graphic schemes, see Gisin et al. (2002) and Pirandola et al.
(2020), as well as the more recent review by Portmann and
Renner (2022).

9. Beyond local operations and classical communication

Thus far we have discussed two classes of quantum
operations in entanglement theory: LOCC and LOSR. The
relevance of these sets of operations is twofold: first, they
reflect typical physical restrictions imposed by many basic
protocols in quantum information theory (Alber et al.) and,
second, they characterize operationally entangled states as
those that cannot be prepared via LOCC or LOSR (Chitambar
et al., 2014).
Entanglement transformations are challenging to study

due to the fact that the mathematical structure of LOCC and
LOSR is far from being well understood. This motivates
us to investigate other operations that are potentially more
easily characterized. One such example is positive-partial-
transpose-preserving (PPTP) operations (Rains, 1999),
which are defined as quantum channels that map the set
of states with a positive partial transpose back on itself. It is

known that PPTP operations are strictly more powerful than
LOCC; for example, they allow bound entangled states to be
created from product states (Eggeling et al., 2001); see Rains
(2001) and Ishizaka and Plenio (2005) for studies of the
properties of PPTP operations. The significance of PPTP
operations lies mainly in the fact that they can be efficiently
characterized in terms of semidefinite constraints. Since
PPTP operations form a strict superset of LOCC operations,
one can then define and determine relevant quantifiers under
PPTP operations, such as entanglement cost (Audenaert,
Plenio, and Eisert, 2003) and distillable entanglement
(Ishizaka and Plenio, 2005). This approach allows one to
obtain meaningful bounds on the corresponding quantifiers
under LOCC. Similarly, one can consider catalytic PPTP
operations in order to understand the limitations of cata-
lytic LOCC.
Along these lines, Matthews andWinter (2008) investigated

transformations of pure bipartite states under PPTP opera-
tions. In particular, they demonstrated that, in analogy with
LOCC, strict catalysis also enlarges the set of possible
transformations under PPTP operations. In contrast to the
LOCC paradigm, even a maximally entangled quantum state
can be a useful catalyst under strictly catalytic PPTP oper-
ations. Specifically, Matthews and Winter (2008) showed that
a PPTP channel between two pure bipartite states jψiAB and
jϕiAB can exist only if

Hα½λðψAÞ� ≥ Hα½λðϕAÞ� for α∈ f1
2
; 1;∞g: ð128Þ

Matthews and Winter (2008) found necessary and sufficient
conditions for transforming a rank-k maximally entangled
state into any other pure state via PPTP operations, assisted by
a maximally entangled catalyst. That is, they found that a
transformation

jΦþ;kiAB↪
OPPT

jϕiAB ð129Þ

is possible if and only if the Rényi entropy of the order of
α ¼ 1=2 strictly decreases,

H1=2½λðΦþ;k
A Þ� > H1=2½λðϕAÞ�: ð130Þ

Note that in Eq. (130) both the initial system state and the
catalyst are maximally entangled. Because of Eq. (130), it is
possible to reach states that increase the Shannon entropy of
the Schmidt coefficients (i.e., the Rényi entropy of the order of
α ¼ 1), which is in stark contrast to strictly catalytic LOCC
state transformations that can never increase any of the Rényi
entropies, or correlating-catalytic LOCC state transformations
that never increase the Shannon entropy. As a consequence,
catalytic PPTP operations can increase the asymptotic entan-
glement content of quantum states and therefore loses some of
its operational significance when catalysis is allowed.

10. Multipartite entanglement

Thus far our discussion of entanglement has been mainly
restricted to scenarios involving two parties (bipartite scenar-
ios). For pure states, these scenarios can be relatively easily
studied using majorization due to the Nielsen’s Theorem V.2.
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However, this is not the case for genuine multipartite
scenarios, i.e., those involving more than two parties. In that
case, we do not have a simple criterion to decide which state
transitions are possible. Consequently, studying catalysis in
these scenarios is challenging.
One of the rare results for multipartite scenarios was given

by Chen et al. (2010). Given an N-partite pure quantum state
jψi∈ ⊗N

i¼1 Hi, the tensor rank rkðψÞ of jψi is defined as the

smallest number of product states f⊗N
i¼1 jψ 0iigrkðψÞj¼1 whose

linear span contains jψi. For N ¼ 2, the tensor rank reduces to
the Schmidt rank; however, for N > 2 computing this quantity
is generally nondeterministic polynomial time hard (Johan,
1990). It is known that the tensor rank is a monotone under
LOCC operations (Bengtsson and Zyczkowski, 2006). The
converse, however, is true only for certain classes of states; in
particular, it is true for states that are reversibly interconvert-
ible with respect to theN-partite Greenberger-Horne-Zeilinger
(GHZ) state: jGHZd

Ni ¼ ð1= ffiffiffi
d

p ÞPd
i¼1jii⊗N . For such states,

the possible state transitions are fully characterized by the
tensor rank. Chen et al. (2010) made use of this knowledge to
study catalysis in multipartite entanglement. They found
examples of nontrivial strict catalysis in the multipartite
scenario under probabilistic LOCC. Specifically, they found
that strict catalysis allows for an increase of the success
probability of a state transition from zero to a strictly positive
value. More recently Neven et al. (2021) reported the first
examples of strict catalysis under deterministic LOCC in a
genuinely multipartite scenario.
An important distinction between bipartite and multipartite

scenarios is that the latter leads to multiple inequivalent
classes of entanglement: States of one class cannot be
converted to states of the other class with a nonzero success
probability (Dür, Vidal, and Cirac, 2000). In this context,
Ghiu, Bourennane, and Karlsson (2001) showed that strict
catalysis does not help one to convert between distinct classes.

11. Contextuality

The notion of contextuality aims to characterize the
property of quantum theory that it is impossible to assign
predetermined values (hidden variables) to observables such
that the functional relationship between compatible observ-
ables is conserved (Bell, 1966; Kochen and Specker, 1967).
Specifically, letM be a set of n observables associated with a
physical setting. In general, not all of these observables will
be jointly measurable, but for any subset C ¼ fA1;…; Amg ⊂
M of jointly measurable observables, called the measurement
context, there is an associated probability distribution
pCða1;…; amÞ for the outcomes aj of the measurement
of observable Aj. A set of observables is jointly measurable
in quantum theory if and only if the observables arise
as a coarse graining of a parent observable (Gühne et al.,
2023). A noncontextual hidden-variable model for a physical
setting is given by a random variable λ with distribution qðλÞ
and an assignment of outcomes a1;…; an to all n observables
with probability qða1;…; anjλÞ such that the follow-
ing apply:

(1) For each value of λ and every context C, the assign-
ment of outcomes preserves the functional relationship

between the observables. That is, if Ai; Aj ∈C and
Ai ¼ fðAjÞ for some function f, then ai ¼ fðajÞ.

(2) The assignment reproduces the distributions pC,

pCða1;…; amÞ ¼
X
λ

qCða1;…; amjλÞqðλÞ; ð131Þ

where qCða1;…; amjλÞ is the restriction of qð·jλÞ
to the given measurement context C. If the distribu-
tions pC cannot be reproduced by a noncontextual
hidden-variable model, the physical setting is called
contextual.

Bell’s theorem and the Kochen-Specker theorem (Kochen
and Specker, 1967) showed that quantum theory is contextual
for Hilbert-space dimensions d ≥ 3. It has been found that
contextuality is closely related to quantum computational
speedups (Raussendorf, 2013; Howard et al., 2014; Bermejo-
Vega et al., 2017). This further suggests formulating a
resource theory where the free objects correspond to non-
contextual hidden-variable models and free operations corre-
spond to consistent wirings of the models. See Abramsky
et al. (2019) and Amaral (2019) for two different approaches
to formulating a resource theory of contextuality. Karvonen
(2021) showed that in the resource-theoretic framework of
Abramsky et al. (2019) strict catalysis is not useful, mirroring
the case of Bell nonlocality; see Sec. V.B.5. Since the set of
free operations considered by Abramsky et al. (2019) is
strictly larger than that of Amaral (2019) [see Budroni et al.
(2022)], it is not clear whether strict catalysis could be useful
in the latter. Furthermore, as far as we know it is currently
unknown whether other types of catalysis, such as correlating
catalysis, could be useful in contextuality.

C. Thermodynamics

Quantum thermodynamics is an interdisciplinary field that
adopts the tools of multiple frameworks like stochastic
thermodynamics (Esposito, Harbola, and Mukamel, 2009;
Seifert, 2012), open quantum systems (Breuer and
Petruccione, 2002; Kosloff, 2013), and quantum information
(Goold et al., 2016; Vinjanampathy and Anders, 2016) to
extend thermodynamic considerations to the quantum realm.
Although quantum thermodynamics often uses different
frameworks to make its considerations quantitative, the central
questions it raises are universal across complementary frame-
works. Most of these questions can be formulated in a unified
way by analyzing the closed evolution of the system and
environment. To do so, we consider the interaction of a system
of interest S prepared in a state ρS with a thermal environment
E in the state γE ¼ e−βĤE=ZE with ZE ¼ Tr e−βĤE by means
of a global unitary U. The final state of the composite system
SE after the interaction is given by

σSE ¼ UðρS ⊗ γEÞU†: ð132Þ

The unitary U encodes all physically plausible types of
interactions with respect to their strength (weak or strong
coupling), complexity (local or collective), or duration (short
or long relative to natural timescales). It also enables us to
study time-dependent Hamiltonians and work protocols, and
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furthermore makes no assumptions about the structure of E,
which can either be macroscopic or have dimensions com-
parable to those of S. The mapping in Eq. (132) is therefore
general and captures most of the effects encountered in
thermodynamics.
Despite its generality, Eq. (132) does not explicitly include

one of the most ubiquitous assumptions in classical thermo-
dynamics: auxiliary systems are used cyclically in the
thermodynamic process. These can be seen as an implicit
way to use catalysis in textbook thermodynamics: For
example, the operation of a piston when compressing an
ideal gas can be seen as a catalytic transformation where the
catalyst (piston) assists in transforming the system (ideal gas).
The cyclic auxiliary systems can be modeled by adding a

catalytic environment C interacting with both the system S
and the thermal environment E. The two environments are
fundamentally distinct: While E describes an environment
whose properties can freely change, C captures all of the
degrees of freedom that must be preserved. We can therefore
write the final state of the composite system SCE after an
arbitrary unitary interaction U as

σSCE ¼ UðρS ⊗ ωC ⊗ γEÞU†; ð133Þ

where we further require that TrE½σSCE� ≈ σS ⊗ ωC.
Furthermore, unless otherwise stated, we denote the local
Hamiltonians of the three subsystems as ĤA with A∈
fS;E;Cg. Catalysts evolving according to Eq. (133) can be
used to model various components of thermodynamic proc-
esses. Some particular examples include the following:

• Finite environments. When the environment is signifi-
cantly larger than the system, the backaction that it
experiences is usually negligible. However, in certain
situations (such as when the environment is finite) it is
important to quantify how it reacts due to the interaction
with the system. This is relevant, for example, when one
is interested in minimizing heat dissipation; see
Sec. V.C.1. In such cases one can think about the finite
thermal environment as an approximate catalyst.

• Heat engines. Heat engines are machines that make use
of the temperature gradient to generate useful work. The
machinery of an engine can be viewed as a catalyst that
facilitates the conversion of heat into work while
remaining unchanged during the operation. In fact,
Clausius’s statement of the second law of thermody-
namics is formulated for a system undergoing a cyclic
process, and therefore also for a catalyst. For details, see
Sec. V.C.2.

• Clocks. Control operations with respect to time are
required for turning on and off a time-dependent inter-
action term in the Hamiltonian, thus allowing thermo-
dynamic protocols to be run in an autonomous manner.
Any irreversible change in the clock system can deterio-
rate the protocol, and thus minimizing its disturbance is
of much importance. For this reason, clock systems are
modeled explicitly as catalysts; see Secs. V.C.3
and V.C.5.

• Apparatus. Laboratory equipment usually facilitates
experiments by augmenting control or improving

performance without undergoing change themselves
(clocks are a special example). This apparatus can be
modeled as a catalyst when one wants to avoid using it as
a source of energy or entropy; see Secs. V.C.6 and V.E.4.

1. Minimizing dissipation in thermodynamic protocols

Owing to the seminal work of Landauer (1961), it has been
recognized that a logically irreversible erasure of information
from a memory system leads to an unavoidable increase in the
entropy of its environment. Specifically, let S be the memory
system prepared as ρS with Hamiltonian ĤS, and let E be its
thermal environment with Hamiltonian ĤE. The erasure
process is modeled using Eq. (132) and leads to a joint state
σSE. The heat transferred to the environment E is defined as
the change in average energy, i.e., Q ≔ Tr½ĤEðσE − ρEÞ�.
Erasing information from S is equivalent to transforming it
into a deterministic (pure) state, which causes an inevitable
increase in the entropy of the environment equal to ΔHE ≔
HðσEÞ −HðρEÞ (Bennett, 1982). Owing to the unitarity of the
underlying dynamics, the entropy change on the system is
given by ΔHS ≔ HðσSÞ −HðρSÞ ¼ −ΔHE. The heat Q and
ΔHS are therefore related by

βQ ≥ −ΔHS; ð134Þ

which can be seen as a fundamental bound on the minimal
amount of heat that has dissipated to the environment
(Landauer, 1961). Reeb and Wolf (2014) derived a sharpened
equality version of Eq. (134), i.e.,

βQ ¼ −ΔHS þ IðS∶EÞσSE þDðσEkρEÞ; ð135Þ

which, due to the non-negativity of mutual information and
relative entropy, implies Eq. (134). The quantity Qdiss ≔ Qþ
ΔHS=β is known as the dissipated heat and captures the
irreversible character of the thermodynamic process
(Jarzynski, 2011). In the case in which ΔHS ≤ 0, Reeb and
Wolf (2014) proved the following lower bound:

βQdiss ≥
2ðΔHSÞ2

log2ðdE − 1Þ þ 4
: ð136Þ

Equation (136) is a strict improvement over the Landauer’s
bound Qdiss > 0 whenever the environment involved in the
process has a finite Hilbert-space dimension dE. The bound
was further shown to be achievable for specific states ρS and
Hamiltonians ĤS. It is currently not known whether Eq. (136)
is tight for general quantum processes. Furthermore, as
Eq. (136) results from mathematical properties of the relative
entropy, it is not clear whether there exists a physical process
that achieves Qdiss ∝ ðlog dEÞ−2. Specifically, we consider the
minimal achievable heat dissipation Q�

diss,

Q�
diss ≔ min

ĤE;U
Qdiss; ð137Þ

where Q ¼ QðρS; β; ĤS; ĤE; UÞ, and we proceed similarly
for ΔHS. The best known protocols that aim to minimize Q�

diss
were proposed by Reeb and Wolf (2014) and further analyzed

Lipka-Bartosik, Wilming, and Ng: Catalysis in …

Rev. Mod. Phys., Vol. 96, No. 2, April–June 2024 025005-32



by Skrzypczyk, Short, and Popescu (2014) and Bäumer et al.
(2019). In all of these cases heat dissipation decreases linearly
with log dE, i.e.,

βQ�
diss ¼ O

�
1

log dE

�
: ð138Þ

We now describe a protocol that achieves this scaling.
Consider E to be a system composed of n ¼ log dE= log dS
subsystems, E ¼ E1E2 � � �En, where each Ei has the same
dimension dS as the system of interest S and its own
Hamiltonian ĤEi

. The global unitary, denoted Uπ , is a
sequential swap between S and each Ei, leading to the overall
action

Uπji0iSji1iE1
ji2iE2

� � � jiniEn

¼ jiniSji0iE1
ji1iE2

� � � jin−1iEn
. ð139Þ

This is the same unitary used in describing the relationship
between correlating-catalytic and multicopy transformations
(see Sec. IV.B) and in the construction of universal approxi-
mate catalysts (see Sec. IV.C). To further perform the
minimization in Eq. (137), one optimizes over local
Hamiltonians ĤEi

, which yields the scaling in Eq. (138). In
fact, for any thermal environment composed of noninteracting
subsystems the scaling of Qdiss is at most linear in log dE
(Reeb and Wolf, 2014).
The aforementioned protocol for minimizing Q�

diss can
alternatively be viewed as the problem of finding the least-
disturbed approximate catalyst where the thermal environment
itself is treated as the approximate catalyst or embezzler. This
follows from the correspondence γE ∝ log ĤE, which makes
optimizing Eq. (137) over ĤE equivalent to optimizing it over
all possible density operators. To demonstrate this, we con-
sider a thermal environment whose Hamiltonian ĤE is chosen
such that its thermal state coincides with the universal
approximate catalyst described in Sec. IV.C. Specifically,
choose ĤE ¼ −ð1=βÞ log ρE, where ρE is given by

ρE ¼ 1

n − 1

Xn−1
i¼1

ρ⊗i
S ⊗ σ⊗ðn−iÞ

S : ð140Þ

This means that γE ¼ ρE and furthermore dE ¼ dnS. Applying
the unitary Uπ from Eq. (139) to ρS ⊗ ρE gives

σSE ¼ UπðρS ⊗ ρEÞU†
π ¼ σS ⊗ σE; ð141Þ

with ΔðρE; σEÞ ≤ 1=ðn − 1Þ, as in the analysis leading to
Eq. (90). For generic states ρE and σE of the aforementioned
structure, numerical analysis shows that DðσEkρEÞ scales as
Oð1= log dEÞ, as in Eq. (138). This brings us to the conclusion
that processes in which heat dissipation obeys this scaling are
actually performing thermal embezzlement on the thermal
environment. This connection between heat dissipation and
thermal embezzlement, to our knowledge, has not yet been
appreciated in the literature. Furthermore, it is an interesting
open question as to whether one can use stricter notions of

catalysis to engineer better, i.e., less dissipative, thermody-
namic protocols.
An alternative approach for lowering the heat dissipation

Qdiss was proposed byHenao andUzdin (2023). They included
an additional system C (the catalyst) such that the joint system
SCE evolved according to Eq. (133). The unitary U is then
composed of two steps, i.e., U ¼ VSCEðVSE ⊗ 1CÞ. That is,
one first implements a unitary VSE on the system and the
thermal environment, obtaining σSE ¼ VSEðρS ⊗ γEÞV†

SE.
One then applies a second unitary VSCE to the joint
system SCE, leading to the final global state σ0SCE ¼
VSCEðσSE ⊗ ωCÞV†

SCE. The second interaction (which
involves the catalyst) is introduced to mitigate the heat
Qdiss dissipated to the thermal environment during the first
interaction. Henao and Uzdin (2023) showed that, for any
correlated state σSE obtained in the first step of the protocol,
i.e., if IðS∶EÞσ > 0, there always exists a unitary VSCE that
can reduce the local entropy of the environment without
changing the local states of the system and the catalyst, that is,
σ0S ¼ σS and σ0C ¼ σC. As a consequence, the final dissipated
heat Q0

diss computed for the state σ0SCE is lower than Qdiss.
Based on this observation, Henao and Uzdin (2023) argued
that the use of a catalyst allows heat dissipation to bemitigated
in the process of information erasure (i.e., when ΔHS < 0).
This reduction in heat dissipation can be understood as a
consequence of broadcasting correlations fromSE to the joint
system SCE that lowers the entropy of the environment,
i.e., Hðσ0EÞ −HðσEÞ < 0.
We conclude this section by mentioning another situation in

which the thermal environment is formally treated as a strict
catalyst. In the theory of open quantum systems, the Born-
Markov approximation gives rise to a Markovian master
equation for the dynamics on the thermal environment E
(Breuer and Petruccione, 2002). Moreover, when combined
with a rotating wave approximation, it implies that the steady
state of the dynamics on E is a thermal state. The Born-
Markov approximation is often stated to assume that the
thermal environment remains thermal at all times and does not
build up correlations with the system S, i.e., that the evolution
from Eq. (132) can be approximated as

UðρS ⊗ γEÞU† ≈ σS ⊗ γE: ð142Þ

From the point of view of this review it can hence be seen as a
form of catalysis. We emphasize, however, that the validity of
the approximation in fact requires only (a) that the correlations
between the subsystems S and E are negligible as measured
by the interaction and (b) that the two-time correlation
functions of the operators of the interaction term on the
thermal environment match the thermal ones with high
accuracy. These requirements may already be fulfilled for a
thermal environment that is only locally thermal, for example,
in the sense of the eigenstate thermalization hypothesis; see
J. M. Deutsch (1991), Srednicki (1994), Polkovnikov et al.
(2011), D’Alessio et al. (2016), and Gogolin and Eisert
(2016). Strict catalysis is therefore not actually required for
the approximation to hold. However, the fact that the thermal
environment has to remain locally thermal can be seen as a
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form of approximate catalysis of the resource content (the
local thermality) of the bath.

2. Work extraction

Consider the general map from Eq. (132) specified to
the case in which the thermal environment is not included in
the global dynamics, i.e.,U ¼ USðtÞ ⊗ 1E. To do so, consider
a quantum system S that evolves under a Hamiltonian
ĤSðtÞ ¼ ĤS þ V̂ðtÞ, where V̂ðtÞ is a time-dependent ex-
ternal potential. From control theory we know that any
interaction V̂ðtÞ can be formally written using a unitary
US ¼ T exp ½−ði=ℏÞR t

0ĤSðsÞds�, where T is the time-
ordering operator. We consider a cyclic process during which
the system S performs work on an external source. A
thermodynamic process is called cyclic when the system is
coupled at time t ¼ 0 to an external source of work and fully
decouples at time t ¼ T, i.e., Vð0Þ ¼ VðTÞ ¼ 0. Since the
system generally does not return to its initial state at time T, this
allows one to perform thermodynamic work on the external
source. The maximal amount of work that can be extracted
under a cyclic process is known as the ergotropy and can be
written as (Allahverdyan, Balian, and Nieuwenhuizen, 2004)

WUðρSÞ ≔ max
U∈US

Tr½ĤSðρS − σSÞ�; ð143Þ

where σS ≔ UρSU† and US stands for the set of all unitary
operators on DðSÞ. We also identify ρS ≡ ρSð0Þ. Quantum
states from which no work can be extracted using unitary
operations are called passive states. The concept of passivity is
fundamental in thermodynamics: for instance, it singles out
Gibbs thermal states as the only passive states that remain
passive when one takes an arbitrary many uncorrelated copies
(Lenard, 1978; Pusz and Woronowicz, 1978).
The previous scenario can be extended to the case in which

an additional system (a catalyst) is used to increase the amount
of work extracted in the process. Note that due to the basic
lemma of catalysis (see Lemma II.1), no strict catalyst exists
that can be used to increase the ergotropy in Eq. (143).
However, this is no longer the case for the other, less stringent
notions of catalysis. To see this, we now consider an extension
of ergotropy to the case of correlating catalysis. In that case,
one can define the correlating-catalytic ergotropy as

WCC
U ðρSÞ ≔ max

U∈USC

max
ωC

Tr½ĤSðρS − σSÞ�; ð144Þ

where σSC ¼ UðρS ⊗ ωCÞU† and σC ¼ ωC. Sparaciari,
Jennings, and Oppenheim (2017) first observed that passive
states undergoing unitary evolutions can be activated when a
suitable catalyst is used. In particular, Sparaciari, Jennings,
and Oppenheim (2017) showed for three-level systems and
Lipka-Bartosik and Skrzypczyk (2021b) and Wilming (2021)
showed in general that

WCC
U ðρSÞ ¼ TrfĤS½ρ − γβ� ðĤSÞ�g; ð145Þ

where γβ� ðĤSÞ is the unique Gibbs state at inverse temperature
β� satisfying HðρSÞ ¼ H½γβ� ðĤSÞ�. What one observes here is

that the catalyst allows the main system to evolve in a way that
does not keep its spectrum invariant, which allows it to reach a
Gibbs state with the same entropy. This final state is optimal in
the sense that, among all states of the same entropy, γβ� ðĤSÞ
always achieves the minimum of the average energy.
The previous results were further generalized by Lipka-

Bartosik and Skrzypczyk (2021b) to general resource theories
R ¼ ðS;OÞ that satisfy certain reasonable assumptions.6

More concretely, one can consider two much different notions
of generalized ergotropy, one being achievable under correlat-
ing-catalytic state transformations, that is,

WCC
O ðρSÞ ≔ max

F ∈O
max
ωC

Tr½ĤSðρS − σSÞ� ð146Þ

such that σSC ¼ F ðρS ⊗ ωCÞ; σC ¼ ωC; ð147Þ

and the other being the asymptotic rate of extractable work
W∞

O ðρSÞ ≔ limn→∞WOðρ⊗nÞ=n, which is computed using the
total Hamiltonian of n independent copies of the quantum
system S, that is, Ĥn

S ≔
P

n
i¼1 ĤSi

, with ĤSi
≡ 1=Si

⊗ ĤSi
.

It then follows from the partial-order regularization using
correlating catalysis described in Sec. IV.B that WCC

O ðρSÞ ¼
W∞

O ðρSÞ. In other words, the use of an appropriate catalyst
allows exactly the same amount of work to be extracted from a
passive state as in the limit of asymptotically many copies on
average (i.e., per copy). In fact, even though WCC

O and W∞
O

have been defined according to the Hamiltonian of the system
ĤS, the techniques used to prove this fact are also applicable
to other observables, like particle number or the overlap with a
fixed quantum state. In this sense, correlating catalysis allows
passive states to activate with respect to arbitrary observables
as long as the corresponding asymptotic rate is larger than the
single-copy one (Lipka-Bartosik and Skrzypczyk, 2021b).
At this point, one notes that the ergotropy WU defined in

Eq. (143) is not the sole existing quantification of extractable
work in thermodynamics. While it quantifies thermodynamic
work as the difference in average energy induced in the main
system, this energy difference is not stored explicitly in
another physical system (a battery). In fact, owing to the
conservation of energy, the surplus energy must implicitly be
released into some external environment that in general could
be difficult to access for future use.
The natural question that arises is whether the energy

extracted from a quantum system can be stored in a way that is
fully usable in the future. Gallego, Eisert, and Wilming (2016)
argued from operational principles that one should always
model this “battery” or “work-storage device” explicitly in a
manner that is compatible with the intended future use of the
energy. In a similar spirit, explicit battery models are often
used to define work on a single-shot level in the context of the
resource theory of athermality; see Brandão et al. (2015) and
Faist et al. (2015). Here storing an amount of energy E
corresponds to preparing an appropriate battery system in an

6The result holds for any resource theoryR ¼ ðS;OÞ in which the
free operations O allow identical subsystems to be permuted and
operations to be conditioned on classical information; see Sec. IV.A.
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energy eigenstate of energy E, thereby modeling a determin-
istic energy storage. For more details, see Sec. V.C.5.

3. Thermal operations

We now consider the system of interest S interacting
with both the thermal (E) and the catalytic (C) environments
according to Eq. (133). Assume furthermore that there are no
external sources of work such that the total energy is
conserved and the global unitary U satisfies ½U; ĤS þ ĤEþ
ĤC� ¼ 0. This scenario is the main subject of the resource
theory of athermality,7 which we introduced in Sec. II.A.3.
The first steps for explicitly studying catalysis in the

resource theory of athermality were taken by Brandão et al.
(2015). They raised the question of whether it is possible to
characterize all possible state transformations on the system of
interest S when both the catalytic and thermal environments
can be chosen arbitrarily (i.e., up to their respective con-
straints). They started with the state-transition conditions for
thermal operations (thermomajorization) introduced in
Sec. II.A.3 and showed that they can be relaxed by strict
catalysis into a set of monotonic entropic conditions known as
the generalized second laws of quantum thermodynamics.
More concretely for energy-incoherent states that fulfill

½ρS; ĤS� ¼ 0, they identified a family of monotones

Fβ
αðρS; ĤSÞ ≔ Fβ

eqðĤSÞ þ
1

β
Dα(ρSkγβðĤSÞ); ð148Þ

where Dαð·k·Þ are the classical Rényi divergences, Fβ
eqðHÞ ≔

−ð1=βÞ logZβðHÞ is the equilibrium Helmholz free energy,
and ZβðHÞ ≔ Tr e−βH is the partition function. When the
initial state ρS and the target state σS are energy incoherent,
the necessary and sufficient conditions for a strictly catalytic
state transition ρS↪

TO
σS are then given by

Fβ
αðρS; ĤSÞ > Fβ

αðσS; ĤSÞ for α∈Rnf0g: ð149Þ

By relaxing the notion of catalysis from strict to arbitrarily
strict catalysis (recall Sec. III.C), all conditions with α < 0 can
be dropped. Refined alternative statements and proofs of this
result were since done by Rethinasamy and Wilde (2020) and
Gour and Tomamichel (2021). The fully quantum case where
ρS or σS is energy coherent is still open, even in the case in
which no catalyst is used. In the noncatalytic case several
necessary monotones are known (Brandão et al., 2015;
Lostaglio, Jennings, and Rudolph, 2015; Lostaglio et al.,
2015), but the minimal sufficient set of complete monotones
remains undetermined, with the exception of when the system
S is a qubit (Ćwikliński et al., 2015).

For energy-incoherent states in the i.i.d. limit, the gener-
alized free energies from Eq. (148) for all α∈R converge to a
single quantity, namely, the nonequilibrium free energy [see
also Eq. (27)]

FβðρS; ĤSÞ ¼ lim
α→1

Fβ
αðρS; ĤSÞ: ð150Þ

As a consequence, both thermomajorization conditions and
the generalized second laws converge to a single inequality,
namely, the monotonicity of the nonequilibrium free energy.
This convergence is consistent with our understanding from
macroscopic thermodynamics, strengthening the role of ther-
mal operations as a physical description of the microscopic
regime.
Historically the resource theory of thermodynamics served

as a natural starting ground for considering different relax-
ations to the notion of catalysis. Brandão et al. (2015)
envisioned that catalysts describe the apparatus used to control
the thermodynamic process, such as a clock (a reference
frame) that keeps track of the duration in which an interaction
Hamiltonian is switched on; see Sec. V.D.1.
At that time the existing research on quantum reference

frames highlighted the central issue of their inevitable deg-
radation, i.e., that the state of the reference frame does not
return exactly to its original state whenever information about
the main system is inferred from the reference frame (Poulin
and Yard, 2007), as opposed to the ideal setting (Bartlett,
Rudolph, and Spekkens, 2007; Ahmadi, Jennings, and
Rudolph, 2010). This was part of the original motivation to
investigate the robustness of the state-transition condi-
tions (149) under small errors in the catalyst. It was realized
that earlier results by van Dam and Hayden (2003) and Leung
and Wang (2014) implied the emergence of embezzlement in
catalytic thermal operations, resulting in the breakdown of the
generalized second laws of thermodynamics (even the macro-
scopic second law singled out in the i.i.d regime). Indeed, the
construction of Sec. IV.C also applies to thermal operations.
This undesirable effect is unphysical and indicates that more
care needs to be taken when allowing for an error in the
catalyst.
Brandão et al. (2015) then identified three different regimes

of catalysis corresponding to (1) embezzling, (2) approximate
catalysis where the remaining monotone is the nonequilibrium
free energy, and (3) strict catalysis. In particular, the second
regime can be seen as the intersection of approximate and
correlating catalysis (which used the same catalyst construc-
tion as discussed in Secs. IV.A and IV.C). In this regime
Brandão et al. (2015) assumed that the disturbance of the
catalyst in trace distance decreases with the size of the
catalyst. This allows one to show that the nonequilibrium
free energy Fβ is the only relevant monotone that fully
characterizes state transitions under this relaxation of cataly-
sis. The problem of thermal embezzlement was later addressed
by Ng et al. (2015), who derived the minimal achievable error
as a function of the catalyst dimension. Ng et al. (2015) also
showed that additional physical constraints on the catalyst,
such as an upper bound on the average energy, allowed for the
recovery of various monotones.

7The resource theory of athermality was originally introduced with
a number of additional technical assumptions about the spectrum of
the thermal environment (i.e., its Hamiltonian HB); see Janzing et al.
(2000), Horodecki and Oppenheim (2013), and Brandão et al.
(2015). However, one can equivalently consider all possible Ham-
iltonians for the thermal environment and then show that no
advantage is obtained in terms of the possible state transformation.
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A conceptually different functioning of the catalyst was
discussed by Woods and Horodecki (2023), who analyzed the
problem of implementing energy-preserving unitaries for
thermal operations in an autonomous manner, i.e., via a
time-independent global Hamiltonian; see also Malabarba,
Short, and Kammerlander (2015), Silva et al. (2016), Erker
et al. (2017), and Woods, Silva, and Oppenheim (2019) and
Sec. V.D. To achieve this, they explicitly modeled a quantum
clock that provides the necessary timing information, and
consequently degrades in the process. In the language of this
review such systems can be viewed as approximate catalysts.
Woods and Horodecki (2023) started by showing that some
amount of backaction on the clock system was inevitable
unless the clock had an unphysical Hamiltonian (such as those
without a ground state). They proceeded to bound the
maximal error (in trace distance) that can be induced on
the clock, denoted by εemb, and showed that such a backaction
would necessarily affect the accuracy of the implemented state
transition on the system. In that way, they derived an upper
bound on the resolution error εres for achieving the desired
transformation on the system, i.e., the minimum achievable
trace distance between a final system state with the original
target state. The upper bound on εres in particular depends on
the dimension of the system, the catalyst used, and the clock
considered, as well as the allowed error εemb. The main result
of Woods and Horodecki (2023) was that the two errors εres
and εemb can vanish together even when the clock system has a
physical Hamiltonian (what they referred to as a quasi-ideal
clock). This result implied that all catalytic thermal operations
can be (1) implemented in a fully autonomous manner with an
inexact catalyst where (2) the state-transition conditions in
Eq. (148) remain robust.
While strict catalysis was first investigated in the context of

entanglement transformations under LOCC, the concept of
correlating catalysis is much better founded in the framework
of thermal operations. This is because the majorization
relation, via Nielsen’s theorem, fully describes state transi-
tions only in the case of pure bipartite systems. In contrast, its
thermodynamic analog, relative majorization, also character-
izes state transitions under thermal operations between mixed
states. This implies that it can be used to address the
extensions of exact catalysis, for example, by allowing for
residual correlations between S and C (correlating catalysis)
or within different parts of C (marginal-correlating catalysis),
even after tracing out the environment E. Lostaglio, Müller,
and Pastena (2015) andMüller and Pastena (2016) constructed
an explicit multipartite catalyst such that, by allowing for final
correlations to be created between the partitions, it enabled the
bypassing of generalized second laws from Eq. (149) for all α
except α ¼ 0 and 1. The guiding intuition behind this work is
the fact that the relative entropy D1 is the unique quantity out
of the entire family of Rényi divergences Dα, which is
superadditive (with the exception of D0, which is unstable
under perturbations of the state). Subsequently Gallego,
Eisert, andWilming (2016) argued from operational principles
that one should consider the notion of correlating catalysis.
Wilming, Gallego, and Eisert (2017) showed that both
correlating catalysis and marginal-correlating catalysis single
out the nonequilibrium free energy Fβ as the unique

continuous and additive monotone. A natural question that
emerged from these considerations concerns whether monot-
onicity of the nonequilibrium free energy alone could be
sufficient for the convertability via correlating catalysis. In
other words, it was conjectured that (when allowing for an
arbitrarily small error on the final state, which eliminates the
constraint arising from Fβ

0)

FβðρS; ĤSÞ ≥ FβðσS; ĤSÞ ⇒ ρS ↪
corr

TO
σS: ð151Þ

For energy-incoherent states, Eq. (151) was proven by Müller
(2018) and Rethinasamy and Wilde (2020). It is wrong for
general coherent states since thermal operations cannot
build up coherences. This can be circumvented by enlarging
the set of free operations from thermal operations to Gibbs-
preserving (GP) operations (Faist, Oppenheim, and Renner,
2015). Using the construction discussed in Sec. IV.B,
Shiraishi and Sagawa (2021) showed that Eq. (151) is true
for general quantum states if the thermal operation (TO) is
replaced by a GP operation. These results show that correlat-
ing catalysis can lift the infinite family of second laws (149) to
just the monotonicity of the standard nonequilibrium free
energy. Note that in these results the catalyst can remain
correlated to the system of interest to an arbitrarily small
degree provided that its dimension is large enough.
As we conclude this section, we note that identifying an

appropriate state of a catalyst for thermal operations is
generally a challenging task. To date there has been no
comprehensive method that can determine the state of the
catalyst required by a given state transformation. This issue
was partially addressed by Lipka-Bartosik and Skrzypczyk
(2021a). Specifically, for a given pair of energy-incoherent
states ρS and σS that satisfy Eq. (149) for α ≥ 0, they observed
that a quantum state with randomly distributed occupations in
the energy basis can, with high probability, serve as an

approximate catalyst for the transition ρS⟶
TO

σS. This success
probability furthermore increases for catalysts with a larger
dimension. Moreover, Lipka-Bartosik and Skrzypczyk
(2021a) claimed to formally prove that, for any pair of
energy-incoherent states satisfying the second laws of
Eq. (149) for α ≥ 0, any energy-incoherent quantum state
can act as an approximate catalyst for the transition as long as
enough copies of the catalyst are available. However, it was
later discovered that the proof of this statement has a gap (i.e.,
Lemma 4 therein is not valid), which leaves this claim
unresolved.

4. Thermal operations with limited control

Thermal operations capture generic energy-preserving
interactions between a system and its surroundings.
However, sometimes it can be appealing to study specific
classes of thermal operations that can admit more straightfor-
ward experimental implementations, or better reflect actual
control capabilities. For this reason, two main classes of
thermal processes have been studied in recent years. The first
class is known as elementary thermal operations (ETOs)
(Lostaglio, Alhambra, and Perry, 2018), which are system-
bath interactions that can be decomposed into sequences of
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two-level operations on the system. The second class is called
Markovian thermal processes (MTPs) (Lostaglio and
Korzekwa, 2022), which is a hybrid approach that combines
Markovian master equations with resource-theoretic formu-
lations to describe memoryless system dynamics. While these
two classes of operations are formally different from each
other, for energy-incoherent initial states, it was shown by
Lostaglio and Korzekwa (2022) that the set of states reachable
via MTPs is a subset for that of ETOs.
Strictly catalytic versions of the aforementioned classes

have been studied (Son and Ng, 2022). The first point of
observation is that in both ETOs and MTPs, while a lot of
freedom is still given in preparing and using thermal Gibbs
states, such states are technically no longer free states in the
usual resource-theoretic sense. Take ETOs, for example: For
each two-level operation on the system of interest, one is
allowed to append any Gibbs state and turn on the system-bath
interaction; however, before proceeding to the next step this
Gibbs state is traced out and replaced by a fresh copy of
another Gibbs state. For this reason, in contrast to thermal
operations, even a catalyst in the Gibbs state can be useful
(Korzekwa and Lostaglio, 2022; Son and Ng, 2023). As for
the second point, since the gap between the ETO or MTPs and
the TOs exist due to a restricted form of Markovianity of the
former, intuitively this gap should be closed when a proper
memory system is allowed (for example, in the form of a
catalyst in a Gibbs state).
The previous idea was formalized and examined in two

studies using different approaches. Czartowski, de Oliveira
Junior, and Korzekwa (2023) developed a protocol using
MTPs, combined with an explicit modeling of a memory
acting as a strict catalyst. They showed that, in the infinite
temperature limit, MTPs can approximately reach all states
that are reachable by the TOs, with the precision increasing
with the size of the catalyst. They also conjectured that the
same holds at finite temperatures. Son and Ng (2023) took a
different approach by focusing on ETOs. They showed that for
any TO it is possible to decompose the global energy-
conserving unitary into a sequence of two-level unitaries
acting on the system up to an arbitrary precision using a
Suzuki-Trotter expansion. They then proved that any TO can
be implemented with arbitrary precision using ETOs with a
strict catalyst prepared in a Gibbs state. For energy-incoherent
initial states, they also showed that any final state achievable
via strictly catalytic TOs is also achievable via strictly catalytic
ETOs and MTPs.

5. Work extraction with explicit batteries

The concept of work is not easy to define in the formalism
of resource theories. This is because the resource-theoretic
approach requires us to explicitly model the physical mecha-
nism of storing and supplying thermodynamic work. Recall
that in Sec. V.C.2 work was modeled via an external potential
that performs work on the system. This approach is not
sufficient in the resource-theoretic mindset where all external
resources must be accounted for explicitly. The usual
approach of extending the scenario from Eq. (133) is to
add an explicit battery system B that supplies and stores the
thermodynamic work associated with the process.

With this in mind, Brandão et al. (2015) modeled the
battery system B using a two-level system with an energy gap
w initialized in a pure energy eigenstate j0ih0jB. They defined
deterministic work as the maximum value of w for which the
following state transition is possible:

ρS ⊗ j0ih0jB ↪
arb

TO
σS ⊗ j1ih1jB; ð152Þ

where a positive value of w corresponds to extracting work
from the system, while a negative value corresponds to
supplying work for the transformation. When the generalized
second laws (149) in the aforementioned state transition is
used, it can be found that the optimal value of w that allows the
system to be taken from one energy-incoherent state ρS to
another one σS is given by

Wdist ¼ inf
α≥0

½Fβ
αðρS; ĤSÞ − Fβ

αðσS; ĤSÞ�; ð153Þ

which is also known as the work distance (Brandão et al.,
2015). The immediate question arises as to whether the exact
form of Wdist has to depend strongly on the battery model.
Brandão et al. (2015) showed that Wdist can be defined more
generally as the ability of extracting and storing work in a pure
(i.e., zero entropy) state. They illustrated that by considering
another battery model, namely, the purity battery (Bennett,
1982; Faist et al., 2015), one arrives at Eq. (153) when
applying Landauer’s erasure to relate the purity of the battery
to thermodynamic work.
Building on these results, Woods, Ng, and Wehner (2019)

studied the scenario in which catalysts are used as controls or
machines undergoing a cyclic process in the presence of two
baths at different inverse temperatures βc and βh. More
specifically, they considered a setting where the hot bath acts
as the background that defines the set of catalytic thermal
operation to be TOðβhÞ, and the other bath is of a finite size,
initialized in the Gibbs state of inverse temperature βc with its
Hamiltonian HS.
Casting the problem of work extraction into a question of

battery state preparation allowed Woods, Ng, and Wehner
(2019) to establish a generic framework that provides sys-
tematic tools for investigating the quality of the extracted
energy. They characterized numerous types of extracted work
according to how the entropy of the battery compared with the
extracted average energy. The first type, which they called
perfect work, includes the situation in Eq. (152), where there
is a strictly zero increase in entropy of the battery state. A
slight relaxation of this condition, called near-perfect work,
allows for an increase in entropy of the battery as long as it is
arbitrarily small compared to the amount of extracted work.
Woods, Ng, and Wehner (2019) analyzed the impact of the
generalized free energies (148) on such a heat engine setting
and concluded that they place fundamental limitations on the
maximal efficiency η for the case of a single qubit of the
system, where

η ¼ Wext

ΔH
; ð154Þ

withWext extracted, near-perfect work, and ΔH the amount of
energy change in the hot bath. In particular, the existence of
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generalized free energies emerging as monotones apart from
the well-known nonequilibrium free energy implied that for
certain qubit Hamiltonians the maximum achievable effi-
ciency fell strictly below the Carnot limit ηC ¼ 1 − βh=βc.
Furthermore, it was shown that allowing for correlations to
build up between the system and the catalyst (i.e., relaxing the
notion of catalysis from strict to correlated) cannot be used to
bypass this limitation. This seems to contradict the insight
from Sec. IV.A, which states that correlating catalysis
completely regularizes the single-shot partial order into the
asymptotic one. However, note that Woods, Ng, and Wehner
(2019) derived the optimal efficiency of work extraction in the
limit of vanishing extractable work (the Carnot efficiency
limit). In this limit the correlations have to vanish sufficiently
quickly relative to the extracted work in order to achieve the
Carnot efficiency. In particular, they have to vanish quicker
than the scaling we discussed in Sec. IV.Awhen one analyzes
the single-shot regularization. These additional requirements
imply that the single-shot effects, as captured by the gener-
alized second laws, may still persist even when correlations
between the system and the catalyst are considered.
As discussed in Sec. V.C.3, correlating catalysis can lift the

second laws to essentially just the monotonicity of the free
energy. Therefore, when a correlating catalyst is used, the
amount of extractable work [in the sense of the battery model
from Eq. (152)] can be made arbitrarily close to

W ¼ FβðρS; ĤSÞ − FβðσS; ĤSÞ; ð155Þ

which can be significantly larger thanWdist. This is true either
for incoherent states when considering thermal operations or
for arbitrary states when considering the more general Gibbs-
preserving maps as free operations.
Another perspective on catalysis in thermodynamics was

unveiled in the context of fluctuation theorems (Jarzynski,
1997; Crooks, 1999; Tasaki, 2000), where the notion of work
is defined by the two-point measurement scheme, namely, the
difference between energy measurement outcomes before and
after a thermodynamic process,

W ¼ Ef − Ei: ð156Þ

More specifically, fluctuation theorems rule out the possibility
of extracting a macroscopic (i.e., scaling extensively with the
number of copies of the system) amount of work with non-
negligible probability in the case of unitary evolution of a
system prepared in a Gibbs state. Boes et al. (2020) proposed
a protocol that uses correlating catalysis in thermal operations
to extract a macroscopic amount of work with a non-
negligible probability in such as way that the averaged second
law still holds. To achieve macroscopic work, the logarithm of
the dimension of the catalyst and its free energy must also
grow linearly with the number of system copies. The general
results of Rubboli and Tomamichel (2022) applied to this
scenario imply that this extensive scaling of the catalyst’s
dimension and free energy is necessary.
Moving away from resource-theoretic considerations,

Rodriguez et al. (2023) considered the charging of quantum

batteries in a concrete physical model where a quantum
battery (harmonic oscillator) is charged by coupling it to a
harmonic oscillator driven by a classical laser field. They
showed that adding an intermediate coupler can enhance the
energy transfer from charger to battery while at the same time
removing the requirement to fine-tune the laser frequency to
the involved coupling strengths. At the same time the
intermediate coupler itself stores almost no energy and hence
effectively works as a catalyst.

6. Cooling

The efficient cooling of quantum systems has been a central
topic in quantum thermodynamics, given both its fundamental
importance stemming from the third law of thermodynamics
(Nernst, 1907) and its significance for quantum technologies
(Bloch, Dalibard, and Zwerger, 2008; Langen, Geiger, and
Schmiedmayer, 2015).
We once again consider the situation described by Eq. (133)

in the special case of thermal operations, where the unitary U
conserves global energy. The problem of cooling down a
quantum system S prepared in some quantum state ρS can be
cast as a state-transition problem, i.e.,

ρS ↪
arb

OTOðβÞ
σS; ð157Þ

where if one sets σS ¼ γβ0 ðĤSÞ, then the goal of cooling is
defined as achieving a large inverse temperature β0. Moreover,
the assumption that σS must necessarily be thermal can be
dropped; generic measures for cooling can also be used, such
as simply maximizing the overlap of σS with the system
ground state or minimizing its average energy.
To understand the ultimate limits of cooling under the

framework of thermal operations, one can apply the gener-
alized second laws from Eq. (149) to the aforementioned state
transition and study the amount of nonequilibrium resources
required to perform this task. This approach was taken by
Wilming and Gallego (2017), who showed that, while general
state transitions are governed by a continuous family of
monotones indexed by α∈R, in the context of cooling down
to T 0 ≔ ðβ0Þ−1 → 0 only one monotone, called the vacancy,
remains relevant,

VβðρS; ĤSÞ ≔ D(γβðĤSÞkρS): ð158Þ

The vacancy is related to the (Petz-)Rényi divergences by

∂

∂α






α¼0

Dα(ρSkγβðĤSÞ) ¼ VβðρS; ĤSÞ: ð159Þ

Since γβðĤSÞ is of full rank, the vacancy diverges for states ρS
which do not have full rank (in particular, for states approach-
ing zero temperature). Using a resourceful state ρR with
Hamiltonian ĤR, one can cool an initially thermal system S to
a generic target state σS only if

VβðρR; ĤRÞ ≥ VβðσS; ĤSÞ: ð160Þ
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Furthermore, Eq. (160) is achievable up to a correction factor
that vanishes when σS is a thermal state of a temperature
TS → 0, meaning that this inequality fully characterizes the
fundamental limits of cooling. Similar results were previously
established by Janzing et al. (2000) for the special case where
the target system is composed of qubits, and assuming that the
resource ρR has an i.i.d. structure. In this respect, Wilming and
Gallego (2017) established the third law of thermodynamics in
the fully single-shot regime by allowing strict catalysis.
Wilming and Gallego (2017) also discussed the robustness
of Eq. (160) under approximate catalysis with respect to errors
in the catalyst measured via a vacancy change. In particular,
closeness of the catalyst to its original state in terms of the
vacancy change is a sufficiently strong measure to maintain
the robustness of Eq. (160).
The advantages of correlating catalysis can also be seen in

cooling. These advantages were discussed by Boes et al.
(2019), especially for the special case where the system
Hamiltonian is irrelevant. In such situations, cooling usually
then refers to the process of preparing states of high purity. We
saw in Sec. V.A that correlating catalysis within unitary
quantum mechanics allows for a system S to go from ρS
to σS as long as HðρSÞ > HðσSÞ. Boes et al. (2019) observed
that this result could be applied to cooling in an interesting
way. To illustrate this, consider S to contain two uncorrelated
systems (in general, states of full rank) ρS ¼ ρS1 ⊗ ρS2 such
that both HðρS1Þ; HðρS2Þ < log dS=4 and dS1 ¼ dS2 ¼

ffiffiffiffiffiffi
dS

p
.

One can then use a unitary transformation involving a
correlating catalyst to bring the system to any final state of
the form

σS ¼ σS1 ⊗
1
dS2

; ð161Þ

where σS1 has to be a state of full rank but can have an
arbitrarily small amount of entropy. In particular, σS1 can be
arbitrarily close to a pure state. Similar cooling rates were
obtained using protocols based on the idea of data compres-
sion (Schulman and Vazirani, 1999; Boykin et al., 2002;
Dahlsten et al., 2011) for the special case of qubits where,
instead of a catalyst, many identical copies of the system were
used. For example, we can take ρ⊗n

S qubits and roughly distill
Rn many close-to-pure qubits in the asymptotic limit, where

R ≈ 1 −HðρSÞ ð162Þ

and we use logð2Þ ¼ 1. In contrast, with the help of a
correlating catalyst (albeit probably with high dimension),
one can perform the distillation and reach the optimal rate
using as few as two copies of the system. Boes et al. (2019)
cautioned that the end result, while similar to the asymptotic
limit in terms of rates, has a subtle difference: a repeated use of
the catalyst creates correlations among all of the final cooled
states. Therefore, if the catalytic cooling protocol is repeated n
times with the same catalyst, the final state on the resulting n
copies of S1 is not given by σS1

⊗n.
Moving toward a more practical mindset, Henao and Uzdin

(2021) proposed explicit protocols for catalytic cooling for
systems of low dimension. This work relates the capacity for

cooling to the passitivity of nonequilibrium states when
joined with a bath or a catalyst. This setting has also been
studied in the context of ergotropy (Sparaciari, Jennings, and
Oppenheim, 2017). The protocols designed by Henao and
Uzdin (2021) are particularly interesting because of their use
of catalysts of small dimension (a qubit) and relatively simple
operations (up to three-body interactions).
The starting point of the investigation of Henao and Uzdin

(2021) was as follows: assuming that ρS ¼ P
ipSðiÞjiSihiSj is

a passive state with respect to the Hamiltonian ĤS (and hence
expressed diagonally in its energy eigenbasis fjiSigi), under
what conditions does the bipartite state ρS ⊗ ρB remain
passive with respect to ĤS? Here ρB represents a thermal
state or bath that is used in the process of cooling. Henao and
Uzdin (2021) showed that the passitivity of such a bipartite
state is determined fully by

pSðiÞ
pSðiþ 1Þ ≥

pBð1Þ
pBðdBÞ

for all i; ð163Þ

where pBðiÞ are the descendingly ordered eigenvalues of the
state ρB. From this analysis, one can observe that if ρB is set to
be a Gibbs state with temperature T, then the higher T is, the
smaller the rhs of Eq. (163); in particular, it converges to 1 in
the infinite temperature limit. Conversely, the left-hand side is
always greater than or equal to 1 due to the passitivity of ρS. In
summary, Eq. (163) will eventually be satisfied for some high
enough temperature T, making ρS ⊗ ρB passive with respect
to ĤS and thus disallowing further cooling of S.
Equation (163) spells out the limitations of achievable

cooling by means of unitary operations, having access only to
a thermal reservoir. Henao and Uzdin (2021) then proceeded
to show that an extension of Eq. (163) holds for an ancilla-
assisted cooling process: in other words, passivity including a
general ancilla ρC is again fully determined by

pSðiÞ
pSðiþ 1Þ ≥

pBð1Þ
pBðdBÞ

pCð1Þ
pCðdCÞ

for all i; ð164Þ

where pCð1Þ and pCðdCÞ are the maximum and minimum
eigenvalues of ρC, respectively. If we have a cooling protocol
that preserves the ancilla, we also have a catalytic cooling
process. Hence, Henao and Uzdin (2021) focused on a
particular subset of cooling processes that can be decomposed
in a two-step process: the first step corresponds to identifying
a unitary Ucool that decreases the average energy of system C
whenever Eq. (164) is satisfied. This process Ucool in general
alters ρC and hence is subsequently followed up by a restoring
unitary, i.e., a unitary Vres that brings the local reduced state of
the catalyst back to ρC. In particular, Henao and Uzdin (2021)
showed that Ucool and Vres can be chosen such that they act on
orthogonal subspaces. More importantly they showed that the
question of whether an ancilla can truly be recovered is fully
characterized: namely, by constructing an explicit Vres that
consists of a series of partial two-level swaps and determining
whether each of these swaps satisfies a simple condition that
can be checked algorithmically.
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D. Asymmetry and coherence

In Sec. II.A we introduced the resource theory of asym-
metry Rasym, which models the physical constraints arising
from conservation laws and the corresponding symmetries
present in the system. To recap, the resource theory of
asymmetry deals with scenarios where every physical system
S carries a unitary representation WS of some group G
[for example, G ¼ SOð3Þ corresponds to rotations in three-
dimensional Euclidean space R3], and the allowed dynamics
has to be covariant with respect to this group. If G is a
connected Lie group, then the representations of its generators
can be physically interpreted as conserved quantities, as any
covariant unitary channel has to leave them invariant. This can
be seen as an expression of Noether’s theorem. Indeed, if
WS½expðhÞ� ¼ expð−iĤSÞ for a generator h in the Lie algebra
of G and F ½ð·Þ� ¼ Uð·ÞU† is a covariant unitary quantum
channel on S, then

F �½ĤS� ¼ U†ĤSU ¼ ĤS: ð165Þ

For example, if G ¼ R is the group of time translations, then
ĤS can be identified with the Hamiltonian of the system and
Eq. (165) expresses energy conservation. A quantum system S
is then said to be resourceful if its state ρS is asymmetric with
respect to the group representation, meaning that there exists
at least one g∈G such that WSðgÞρSWSðgÞ† ≠ ρS.
Closely related to the resource theory of asymmetry is the

resource theory of coherence Rcoh, which was introduced by
Baumgratz, Cramer, and Plenio (2014) and Levi and Mintert
(2014) and reviewed by Streltsov, Adesso, and Plenio (2017).
From the point of view of the resource theory of coherence,
the degree of coherence of a quantum state measures the
magnitude of the off-diagonal terms in a fixed basis
H ¼ fjiig. For example, a qubit in the state ðj0i þ j1iÞ= ffiffiffi

2
p

is highly coherent with respect to the basis A ¼ fj0i; j1ig but
completely incoherent with respect to the basis
B ¼ fjþi; j−ig. From the point of view of the resource
theory of asymmetry, we can consider a representation of
the group G ¼ R of time translations induced by a non-
degenerate Hamiltonian ĤS with eigenbasis H via
t ↦ expð−iĤStÞ. A quantum state is then said to be coherent
if it is asymmetric with respect to the group representation.
Consequently, in this case the set of free states in Rcoh
coincides with the set of free states in Rasym.
Despite the aforementioned similiarity of Rcoh and Rasym

for the case G ¼ R, a crucial distinction arises in the allowed
free operations. While in Rasym only covariant operations
are allowed, in Rcoh the so-called incoherent operations
(Baumgratz, Cramer, and Plenio, 2014; Levi and Mintert,
2014; Streltsov, Adesso, and Plenio, 2017) are allowed,
which is a strictly larger set than the corresponding co-
variant operations (Marvian, Spekkens, and Zanardi, 2016).
Specifically, in the resource theory of asymmetry the set of
free operations depends on the concrete representation of time
translations (induced by the aforementioned Hamiltonian ĤS),
and not simply on the basis H. This distinction has significant
consequences for catalysis, as we review in Sec. V.D.2. For
critical comparisons of different approaches to establishing a

physically consistent resource theory of coherence, see
Chitambar and Gour (2016), Marvian and Spekkens
(2016), and Marvian, Spekkens, and Zanardi (2016).
Quantitative measures of coherence and asymmetry can be

defined in multiple ways. The most common one is perhaps
the relative entropy of asymmetry defined in Sec. II.A.2. In the
special case of coherence with respect to a basis H ¼ fjiig it
reduces to the relative entropy of coherence given by (Aberg,
2006)

AHðρÞ ¼ HðGH½ρ�Þ −HðρÞ; ð166Þ

where the twirling channel is given by GH ¼ P
ijiihijρjiihij.

The relative entropy of coherence is monotonic under inco-
herent operations, satisfies several desireable properties of a
proper coherence measure (Baumgratz, Cramer, and Plenio,
2014), and has a plausible operational interpretation as the
maximal distillable coherence from the state (Winter and
Yang, 2016).

1. Apparent violations of conservation laws

Coherence (or asymmetry) present in a quantum state can
be viewed as a resource that enables implementing coherent
operations on quantum systems. Specifically, in order to bring
an atom S from the ground state jgiS to the excited state jeiS
using time-translation covariant (energy-conserving) opera-
tions, we need an auxiliary system E from which the missing
energy can be taken. However, if we wanted to turn S into a
coherent superposition of the ground and excited states, i.e.,
ðjgiS þ jeiSÞ=

ffiffiffi
2

p
, then providing the necessary energy is not

enough to perform this transformation. Under the constraint of
energy conservation, the unitarity of quantum mechanics
forbids this type of operation if the atom and the energy
reservoir E have initially definite energies. Specifically, there
does not exist a unitary operator U for which

UjgiS ⊗ jEiE ¼ 1ffiffiffi
2

p ðjeiS þ jgiSÞ ⊗ jψiE ð167Þ

and, at the same time, ½U; ĤS þ ĤE� ¼ 0, where jEiE is an
eigenstate of ĤE and jψiE is arbitrary. This problem can be
circumvented by introducing a reservoir of coherence, i.e., a
large quantum system prepared in coherent superposition of
many energy levels. In the case of equally spaced energy
levels, such a reservoir of coherence constitutes a phase
reference and is usually achieved with the help of electro-
magnetic fields such as laser beams (Mandel and Wolf, 1995)
and radio-frequency fields (Vandersypen and Chuang, 2005).
The coherence between orthogonal states of the field is a
resource that enables different energies to be mixed in a
coherent, rather than probabilistic, way. Similarly, instead of
energy preservation, we can consider the more general notion
of covariance with respect to a group G as the constraint (such
as spatial rotations). In this case the coherence reservoir needs
to be replaced by a more general quantum reference frame for
the respective group; see the review by Bartlett, Rudolph, and
Spekkens (2007) and references therein.
It has been observed that coherence reservoirs are useful in

the context of thermodynamics (Janzing and Beth, 2003a;
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Janzing, 2006; Vaccaro et al., 2008; Lostaglio, Jennings, and
Rudolph, 2015; Lostaglio et al., 2015; Malabarba, Short, and
Kammerlander, 2015; Mitchison et al., 2015; Korzekwa et al.,
2016; Woods and Horodecki, 2023), where a coherence
reservoir is often understood as a clock that provides timing
information. For example, the nonequilibrium free energy of a
quantum system in a state ρS and Hamiltonian ĤS [see
Eq. (27)] naturally splits into an incoherent and a coherent part,

FβðρS; ĤSÞ ¼ FβðGH½ρS�; ĤSÞ þ
1

β
AHðρSÞ; ð168Þ

with AHðρSÞ as in Eq. (166) for the eigenbasis H of ĤS.
Without the coherence reservoir only the incoherent part, i.e.,
FβðGH½ρS�; ĤSÞ, can be extracted as work (Janzing, 2006). A
coherence reservoir can thus be seen as a thermodynamic
resource. Similarly, general quantum reference frames are
thermodynamic resources for other conserved quantities such
as angular momentum or spin.
A “good” quantum reference frame C can be used in such a

way that its state changes only minimally while at the same
time lifting all conservation laws. Indeed, it was proven first
by Tajima, Shiraishi, and Saito (2018, 2020) [and later
independently by Chiribella, Yang, and Renner (2021) and
Yang, Renner, and Chiribella (2022)] for the case of coherence
that whenever a quantum reference frame C in a pure state can
be used to approximately implement a unitary dynamics on S
to high precision using covariant dynamics on SC, it can be
done in such a way that the state on C changes only slightly.
van Luijk, Werner, and Wilming (2023) treated the same
problem for the resource theory of asymmetry with respect to
arbitrary groups. See also Tajima, Shiraishi, and Saito (2018,
2020), Takagi and Tajima (2020), Tajima and Saito (2021),
and Tajima, Takagi, and Kuramochi (2022) for trade-off
relations between the precision of the implemented unitary
and the required resources on the quantum reference frame.
The underlying reason for these results is that the approx-

imately coherent dynamic on S requires that almost no
information about the state on S flows to the environment,
since otherwise S would necessarily become entangled to the
environment. This is the information-disturbance trade-off in
quantum mechanics (Fuchs and Peres, 1996; Fuchs, 1998;
Kretschmann, Schlingemann, and Werner, 2008). To use the
terminology that we introduced in Sec. III.D, the coherence
reservoir essentially acts as an approximate catalyst.
Moreover, if it can be used to implement arbitrary state
transformations with high precision, it is even an embezzler:
By Stinespring’s theorem, any quantum channel on S can be
formally implemented to high precision using unitaries acting
on an extended Hilbert space of systems ES, where E is an
auxiliary environment with dimension d2S. Thus, if C can be
used to implement arbitrary unitaries on SE to high precision,
it is an embezzler. We now present a simple example
illustrating these considerations.
Suppose that we want to implement some quantum channel

E on a two-level system S with Hamiltonian ĤS ¼ ωj1ih1jS,
where j0iS and j1iS denote its ground and excited states,
respectively. Moreover, suppose that we are only able to apply
energy-conserving unitaries but have access to a harmonic
oscillator C with matching frequency ω (in resonance with S)

and energy eigenstates jniC. We now provide a construction
that manages to apply E to arbitrary accuracy on S if the initial
state on the oscillator is sufficiently coherent. This discussion
follows Åberg (2014); see also Messinger et al. (2020).
Consider a family of subspaces Hn spanned by the “logical”
states j0̄in; j1̄in defined for all n ≥ 1 by

j0̄in ≔ j0iSjniC; j1̄in ≔ j1iSjn − 1iC: ð169Þ

Any unitary acting separately on subspaces Hn is energy
preserving (note that j0iSj0iC must be an eigenstate of the
unitary). However, within each subspace Hn the unitary is
unconstrained. We now further introduce an auxiliary system
E with basis fjαiEg that serves as the dilating system in the
Stinespring dilation of E with unitary V on ES. For simplicity
we assume that it has a trivial Hamiltonian (or we have access
to only one energy subspace of a larger system). To implement
V, and thereby E, we define an energy-preserving unitaryU on
ESC by its matrix elements via

hαjEhk̄jnUjβiEjl̄in ≔ hαjEhkjSVjβiEj1ilS ð170Þ

for all n and hαjEh0jSh0jCUjβiEj0iSj0iC ¼ δαβ. In other
words, U acts as V on subspaces HE ⊗ Hn and trivially
on HE ⊗ spanfj0iSj0iCg.
We now write a general pure product state on ESC as

jχiEjψiSjϕiC ¼ jχiEðαj0iS þ βj1iSÞ
�X∞

n¼0

cnjniC
�

¼
X∞
n¼1

cn

�
αjχiEj0̄in þ β

cn−1
cn

jχiEj1̄in
�

þ c0αjχiEj0iSj0iC: ð171Þ

If cn−1 ≈ cn for many values of n (which requires each cn to be
small) we then get

UjχiEjψiSjϕiC ≈ ðVjχiEjψiSÞjϕiC: ð172Þ

In other words, if the state on C is spread smoothly over many
energy levels, then we can implement the desired unitary on
SE to an arbitrary accuracy. Concretely we can choose a
coherent superposition of M energy levels occupied starting
from the energy level jn0iC, that is, cn ¼ 1=

ffiffiffiffiffi
M

p
, where

n0 þM ≥ n ≥ n0 > 0, and cn ¼ 0 otherwise. The fidelity
between the two sides of Eq. (172) is then given by

jhχjEhψ jShϕjCU†ðVjχiEjψiSÞjϕiCj2 ≥ 1 −
2

M
: ð173Þ

Similarly, we can choose the initial state on C to be a coherent
state

jαiC ≔ e−jαj2=2
X∞
n¼0

αnffiffiffiffiffi
n!

p jniC ð174Þ

and obtain an error that decreases with the mean photon
number jαj2, which is also the variance of the photon number.
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We emphasize that this effect is made possible because the
state of a large quantum system may change an arbitrarily
small amount, as measured by the norm on vectors in the
Hilbert space, despite the fact that the mean of some
observable changes by a finite amount (here the energy). In
this way, a finite amount of energy can be transferred
coherently to S while perturbing the state on C an arbitrarily
small amount. In this sense, conservation laws can apparently
be violated. This is closely related to the continuity properties
of extensive quantities described in Sec. VI.B.
The seminal paper by Åberg (2014) further showed that if

the flat state of Eq. (173) is used, then despite the fact that the
state on C is changed, it can be reused a finite number of times
n0 to implement exactly the same quantum channel on n0
uncorrelated copies of S (while also making use of n0 copies
of E; see also Secs. II and III.B). In this special sense the
coherence stored in C is catalytic [or repeatable, as named by
Korzekwa et al. (2016)], while its quantum state is not. Åberg
(2014) referred to this phenomenon as catalytic coherence.
However, as emphasized by Vaccaro, Croke, and Barnett
(2018) and Messinger et al. (2020), the resulting state on the
n0 copies of S is not uncorrelated. Thus, this procedure does
not implement the quantum channel E⊗n0 . The reason for this
is that the system C mediates correlations that are being built
up between all the copies of ES, so their final joint state is not
given by ðVρESV†Þ⊗n0 ; see also Sec. V.C.6.

2. Correlations and broadcasting of quantum information

The no-cloning theorem (Park, 1970; Dieks, 1982;
Wootters and Zurek, 1982) states that it is impossible to
prepare exact, uncorrelated copies of an unknown quantum
state: There is no quantum channel E such that E½ρS� ¼ ρS ⊗
ρS for all states ρS on a fixed system S. More generally the no-
broadcasting theorem (Barnum et al., 1996) implies that there
is no quantum channel E from S to two copies of S such that
trSi [E½ρS�] ¼ ρS for i ¼ 1, 2. That is, it is impossible to
convert an unknown quantum state ρS to one where both
marginals coincide with ρS (broadcasting ρS), but the two
marginal states are possibly correlated. (Indeed, if this were
possible, one could clone pure quantum states.) In fact, this
feat is not possible even when E is required to implement
broadcasting for a pair of noncommuting quantum states
(instead of all quantum states).
One can ask whether, instead of broadcasting the full

quantum state, one could broadcast only some aspect of it,
such as some amount of its coherence or, more generally, its
asymmetry with respect to a groupG. For that, in the language
of the resource theory of asymmetry, we ask whether it is
possible to implement the state transition

ρC⟶
Oasym

σC1C2
ð175Þ

such that σC1
¼ ρC and σC2

∉ Sasym, i.e., the final state on
subsystem C2 is not symmetric with respect to G. One can
observe that if this were possible, then there would have to be
a covariant quantum channel F on C1C2, and a symmetric
state ρC2

such that

F ½ρC ⊗ ρC2
� ¼ σC1C2

: ð176Þ

Indeed, if F 1 were the covariant quantum channel implement-
ing Eq. (175), then the covariant quantum channel F ¼
F 1∘trC2

would work for any state ρC2
. But, in this case we

can see that C ¼ C1 acts as a catalyst that becomes correlated
to S ¼ C2. Therefore, we can equivalently ask whether there
is a correlating-catalytic transformation of the form

ρS ↪
corr

Oasym

σS; ð177Þ

where ρS ∈Sasym and σS ∉ Sasym. We refer to the aforemen-
tioned task as broadcasting of asymmetry: the possibility to
use an asymmetric quantum state (a quantum reference frame)
in a catalytic manner to transform a symmetric state into an
asymmetric state. Similarly, we call the special case of strict
catalysis cloning of asymmetry,

ρS↪
Oasym

σS: ð178Þ

It has been established that broadcasting and cloning of
asymmetry are both impossible in the case where G is a
connected Lie group (Lostaglio and Müller, 2019; Marvian
and Spekkens, 2019); see also Janzing and Beth (2003b). In
particular, broadcasting of coherence is impossible. With this
fact, it is tempting to think that the power of correlating
catalysis is the same as that of strict catalysis in the resource
theory of asymmetry of a connected Lie group. However, this
is not true: there are states ρS; σS ∉ Sasym such that Eq. (177)
is possible while Eq. (178) is not (Ding, Hu, and Fan, 2021).
That is, when acting on asymmetric states, it is generally
useful to build up correlations between the system and the
catalyst. Moreover, when one allows for marginal-correlating
catalysis (see Sec. III.B), catalysts can essentially lift all
restrictions on state transitions in the case of coherence
(Takagi and Shiraishi, 2022). Kondra, Ganardi, and
Streltsov (2023) and Shiraishi and Takagi (2023)) showed
that essentially the same statement is true for correlating
catalysis while one still allows for arbitrary small correlations
between system and catalyst. Thus, as long as an arbitrary
small amount of coherence is present in the initial state,
correlating catalysis can lift all restrictions imposed by
demanding covariance under time translation. In other words,
an arbitrary small amount of initial coherence can completely
circumvent the no-broadcasting theorem for quantum coher-
ence. It is an open problem to generalize the result to non-
commutative Lie groups.
In fact, establishing correlations between the catalyst and

some other degrees of freedom is not only useful but
necessary. van Luijk, Werner, and Wilming (2023) showed
that if a system C acts as a useful catalyst for a state transition
on S in the resource theory of asymmetry for a connected Lie
group (such as in the case of coherence), then it must
necessarily become correlated either to S or to the environ-
mental degrees of freedom E that dilate the covariant quantum
channel on SC to covariant unitary dynamics on ESC, just as
in Lemma II.1. (In fact, the same conclusion can be derived for
the case of thermal operations; see Sec. II.A.3.) In particular,
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this implies that a useful catalyst can never be in a pure state, a
result previously shown by Ding, Hu, and Fan (2021) for the
special case of coherence, and by Marvian and Spekkens
(2013) for the case where the states of interest on S are pure
but the group in question is an arbitrary compact connected
Lie group.
This situation is distinctly different than the resource

theory of coherence, where the full class of incoherent
operations is allowed, which renders pure catalysts useful
and makes it possible to characterize catalytic state tran-
sitions on pure states using Rényi entropies, as in the case of
LOCC (Bu, Singh, and Wu, 2016), because the state-
transition conditions are characterized by majorization
(Du, Bai, and Guo, 2015). In the context of incoherent
operations Liu and Zhou (2020) and (Xing and Yang (2020)
studied the strictly catalytic transformations between mixed
states. Chen et al. (2019) studied the one-shot distillation of
coherence using catalysts in this framework, related the
distillable coherence to the dimension of the catalyst, and
showed that coherence can be embezzled. Somewhat sur-
prisingly Lami, Regula, and Streltsov (2023) showed that
neither the asymptotic coherence cost nor the distillable
coherence under incoherent operations change when strict,
correlating, or marginal-correlating catalysts are allowed.
Rubboli and Tomamichel (2022) provided tools to lower

bound the dimension of correlating catalysts in certain limit-
ing cases in this setting. The distinction in terms of catalysis
with pure states between the resource theory of asymmetry
and the resource theory of coherence hence mirrors the one
between LOSR and LOCC in the context of entanglement; see
Sec. V.B.5.
We emphasize that the restriction to connected groups

(relevant for the constraints imposed by conservation laws) is
necessary for the aforementioned results to hold. As shown by
Marvian and Spekkens (2013), if G is a finite group and ρS
and σS are arbitrary states on the system S with a unitary
representationWSðgÞ ofG, then there exists a system C with a
unitary representation WCðgÞ of G and a pure state jϕihϕjC
together with a covariant quantum channel F such that

F ½ρS ⊗ jϕihϕjC� ¼ σS ⊗ jϕihϕjC: ð179Þ

In other words, strict catalysis with pure catalysts can lift all
constraints on possible state transitions. This is possible
because the state jϕiC can be chosen to be a perfect quantum
reference frame for the group G, i.e., a state satisfying
hϕjWCðgÞjϕi ¼ 0 for all g ≠ 1. The channel F can then be
defined as

F ½X� ¼
X
g∈G

tr½ð1 ⊗ WCðgÞjϕihϕjCWCðgÞ†ÞX� × � � �

×WSðgÞρ0SWSðgÞ† ⊗ WCðgÞjϕihϕjCWCðgÞ†: ð180Þ

A similar construction can be used to implement any unitary
transformation V on S (or ES) perfectly and not just
approximately as in Sec. V.D.1.

3. Locality of interactions and conservation laws

Locality of interactions is a fundamental property of physical
systems. In the case of short-range interactions, it implies a
finite speed of propagation of information, as highlighted by
the Lieb-Robinson bound (Lieb and Robinson, 1972). In this
sense locality puts restrictions on the short-time dynamics and
implies certain unitary evolutions. Nevertheless, any unitary
time evolution of a composite physical system can be imple-
mented with a time-dependent Hamiltonian using only local
interactions as long as it is allowed to evolve for a sufficiently
long time. This is the essence of a fundamental result in
quantum computing that states that unitary transformation on a
composite system can be represented (to arbitrary accuracy) by
a quantum circuit consisting only of two local unitary trans-
formations, i.e., unitary transformations acting nontrivially on
at most two subsystems (Deutsch, Barenco, and Ekert, 1995;
DiVincenzo, 1995; Lloyd, 1995).
As discussed throughout this section, the presence of

symmetries in physical systems also puts constraints on their
time evolution, as any realizable unitary has to respect the
associated symmetry. In view of this fact, a natural question to
ask is whether all symmetric unitaries on a composite system
can be generated using local symmetric unitaries, in analogy
with the aforementioned universality result that holds for
general evolutions. This question was posed and subsequently
answered in the negative by Marvian (2022): The universality
of interactions is no longer valid in the presence of continuous
symmetries such as Uð1Þ or time-translation covariance
(energy conservation). Generic symmetric unitaries cannot
be implemented, even approximately, using local symmetric
unitaries. In other words, a global unitary that obeys a certain
symmetry in general cannot be decomposed as a combination
of two local unitaries, where each local unitary obeys the
corresponding symmetry constraint. This implies that in the
presence of locality symmetries of the Hamiltonian impose
extra constraints on the time evolution of the system that are
not captured by Noether’s theorem.
In certain cases the aforementioned no-go theorem can be

circumvented using auxiliary systems. Such systems have to
be prepared in a fixed state and return to their initial states at
the end of the process. In the terminology of this review this
is an instance of strict catalysis. Specifically, Marvian (2022)
discussed the case of energy conservation and demonstrated
that the constraints resulting from the interplay of locality
and energy conservation can be circumvented provided that
the composite system is allowed to interact with a qubit
catalyst. In this case the use of a catalytic ancilla allows the
locality constraint to be lifted even in the presence of
symmetries. In this sense, the catalytic system manifestly
opens up new dynamical pathways that could not previously
be reached. A similar result was shown by Marvian, Liu, and
Hulse (2022) for the case of rotationally symmetric dynamics
and a catalyst of two qubits; see also Marvian, Liu, and
Hulse (2021).

E. Continuous-variable systems and quantum optics

In this section, we shift our attention to continuous-variable
systems (Lloyd and Braunstein, 1999; Braunstein and van
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Loock, 2005). Specifically, we consider an n-mode bosonic
quantum system Sn with continuous degrees of freedom. A
finite set of n continuous degrees of freedom can be
represented by n pairs of Hermitian operators x̂i and p̂i
fufilling the canonical commutation relations ½x̂i; p̂j� ¼ iδij1.
We also define the bosonic annihilation and creation operators
ai and a†i via ai ≔ ðx̂i þ ip̂iÞ=

ffiffiffi
2

p
. Following the usual

nomenclature of quantum optics, we refer to the labels i here
as modes since they typically correspond to modes of the
electromagnetic field.
Of special importance in quantum optics are so-called

quadratic Hamiltonians, i.e., Hamiltonians that can be
expressed as polynomials of the order of 2 in the canonical
operators. A standard example of such a Hamiltonian
is the n-mode quantum harmonic oscillator, i.e., ĤHO ¼
ð1=2ÞPn

i¼1ðp̂2
i þ ω2

i x̂
2
i Þ ¼

P
n
i¼1ωiða†i ai þ 1=2Þ. Quadratic

Hamiltonians are common and provide a consistent
approximation of quantum dynamics in many experimen-
tally relevant situations, for example, ion traps (Paul, 1990;
Bruzewicz et al., 2019), optomechanical systems (Hänsch
and Schawlow, 1975; Stenholm, 1986), nanomechanical
oscillators (Aspelmeyer, Kippenberg, and Marquardt,
2014), and many other systems (Bogoliubov, 1947;
Itzykson and Zuber, 2012). Unitaries that can be imple-
mented using quadratic Hamiltonians are known as
Gaussian unitaries.
A common tool used to represent quantum states of

continuous-variable systems is the Wigner function. This is
a quasiprobability distribution that assigns a value to each
point in phase space, thus allowing one to visualize quantum
states and observables in a manner that is similar to classical
probability distributions in the classical phase space. The
Wigner function Wðx; pÞ of a quantum state ρ of a single
continuous variable is defined as

Wðx; pÞ ¼ 2

π

Z
R
ei2px

0 hx − x0jρjxþ x0idx0: ð181Þ

Equation (181) is normalized as
R
R2Wðx; pÞdxdy ¼ 1, and

its integral over one canonical coordinate gives the proba-
bility of measuring the conjugate coordinate, for example,R
RWðx; pÞdp ¼ hxjρjxi. The Wigner function can be defined

in a similar manner for multimode systems.
An important family of states encountered in quantum

optics are Gaussian states, whose Wigner function is a
Gaussian. A typical example is the coherent states jαi, which
are eigenstates of the annihilation operator a and whose wave
function in phase space is a Gaussian centered at the complex
number α. Any Gaussian state has a non-negative Wigner
function. Therefore, a Wigner function that is negative some-
where necessarily corresponds to a non-Gaussian state. An
important example is Fock states. For a single mode they are
the energy eigenstates jki of the quantum harmonic oscillator
ĤHO and generally correspond to states with a fixed number of
photons. In fact, all pure quantum states with a non-negative
Wigner function correspond to Gaussian states (Hudson,
1974; Soto and Claverie, 1983). In other words, all non-
Gaussian pure states exhibit Wigner negativity. This is not true
for mixed states, as indicated by numerous examples

(Walschaers, 2021). While Gaussian states on multiple modes
can exhibit genuine quantum phenomena such as Bell non-
locality (García-Patrón et al., 2004; Nha and Carmichael,
2004), they are in general easier to prepare than non-Gaussian
quantum states (Braunstein and van Loock, 2005; Weedbrook
et al., 2012). Certain quantum phenomena such as entangle-
ment and coherence can result in negative values of the
Wigner function in some regions of phase space, indicating
genuine nonclassical features of the quantum state (Kenfack
and Życzkowski, 2004; Spekkens, 2008).
Of special importance in quantum optics are Gaussian

operations, which map Gaussian states to Gaussian states.
They are usually defined as quantum channels that can be
implemented using linear quantum optics, which also
makes them relatively easy to manipulate experimentally
(Weedbrook et al., 2012). A particular example is the
previously mentioned Gaussian unitaries. Gagatsos,
Oreshkov, and Cerf (2013) considered the utility of a beam
splitter in creating bipartite pure entangled states and
examined the majorization structure of the corresponding
Schmidt coefficients generated. In this way, they revealed
sets of incomparable states via LOCC that can be activated
by catalysis.
The experimental feasibility of Gaussian operations comes

naturally with the complementary weakness that Gaussian
operations can simulate only a small subset of all quantum
channels. Since any Gaussian operation acting on Gaussian
states can be simulated efficiently on a classical computer
(Mari and Eisert, 2012), Wigner negativity is also closely
related to computational speedups; see Bartlett et al. (2002),
Galvão (2005), and Veitch et al. (2012).
This mirrors the situation for Clifford operations on discrete

systems; see Sec. V.F. To implement more complex quantum
operations, one therefore has to use non-Gaussian states,
thereby motivating us to investigate potential tools to prepare
non-Gaussian states.

1. Multiphoton catalysis

When only Gaussian operations are available, such as in
setups involving linear optical systems, non-Gaussian
quantum states become valuable resources (Kok et al., 2007;
Slussarenko and Pryde, 2019). For this reason, one might
wonder whether such expensive states can be prepared only
once, and then reused multiple times in a specific task. In other
words, one could ask whether non-Gaussian states can serve as
useful catalysts. This approach was investigated by Lvovsky
and Mlynek (2002), who considered a phenomenon that they
termed “quantum optical catalysis” and that was further
generalized to “multiphoton catalysis” in later works (Scheel
et al., 2003; Bartley et al., 2012; Xu, 2015; Hu, Liao, and
Zubairy, 2017); see also Birrittella, Baz, and Gerry (2018),
Zhou et al. (2018), and Zhang et al. (2021). The basic idea
behind multiphoton catalysis is that one can build a linear
optical process acting on two modes (S and C) that takes
a coherent Gaussian state jαiS in one mode and a Fock state
jkiC of k photons in the second mode and outputs a nonclassical
state of light contingent upon measuring k photons in the output
mode C of the experiment. While interesting from an exper-
imental point of view, such a process cannot be seen as catalytic
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as described in this review for two reasons: (i) The density
operator describing the measured output port C is not given by
jkihkjC, so there is a nonzero probability that l ≠ k photons
are measured instead, and (ii) even if k photons are measured
on C, the measurement is typically destructive, so the photons
cannot be reused for further processes. These two issues can be
resolved when the k-photon state jkiC is replaced by a two-level
system in resonance with the coherent state of light jαiS.
In Sec. V.E.2 we describe such an alternative method of pre-
paring nonclassical states of light based on generic light-matter
interactions.

2. Activation of nonclassicality

We now describe another approach for preparing non-
classical states of light. The analysis presented here is based
on the work of de Oliveira Junior et al. (2023). Consider a
two-level system interacting with a single mode of light
trapped in an optical cavity. Specifically, let S denote
the electromagnetic field in the cavity with a bosonic
annihilation operator a, and let C be a two-level system with
energy levels jgi and jei and the raising and lowering
operators σþ ¼ jeihgj ¼ σ†−. These two systems interact via
the Jaynes-Cummings Hamiltonian (Jaynes and Cummings,
1963; Larson and Mavrogordatos, 2021), which reads

ĤSC ¼ γSa†aþ γCjeihej þ Ĥint ð182Þ

≔ ĤS þ ĤC þ Ĥint; ð183Þ

where Ĥint ≔ gðσþaþ σ−a†Þ. The quantity γS is the angular
frequency of the mode and γC is the transition frequency of the
two-level system. We assume that the two-level system is
driven on resonance, meaning that γS ¼ γC ¼ γ. This ensures
that the unitary evolution UðtÞ ≔ e−iĤSCt generated by ĤSC
conserves the total energy of both systems when it is
considered noninteracting: ½UðtÞ; ĤS þ ĤC� ¼ 0.
We assume that the electromagnetic fieldS is initialized in a

coherent state ρS ¼ jαihαjS, where jαi is as defined in
Eq. (174). Suppose that the atom C starts in a state ωCðτÞ
that is the solution of the operator equation

ωCðτÞ ¼ TrS½UðτÞρS ⊗ ωCðτÞUðτÞ†�; ð184Þ

where τ∈R. In other words, the atom is prepared in a state
chosen such that at time t ¼ τ it returns to its initial state.
The strength of the interaction between the cavity and the

atom is specified by the coupling constant g of the interaction
Hamiltonian Ĥint. From now on, we focus on the state of the
cavity and analyze the following two scenarios: (a) when there
is no interaction between the cavity and the atom (g ¼ 0) and
(b) when the systems interact, i.e., g ≠ 0. We are interested
here in investigating the nonclassical properties of the state of
the electromagnetic cavity at time t ¼ τ. For that reason we
analyze the Wigner function Wðx; pÞ of the mode S.
Consider the case in which g ¼ 0. In this scenario

UðtÞ ¼ USðtÞ ⊗ UCðtÞ, and both systems evolve independ-
ently. The Wigner function of the cavity remains positive at all

times becauseUSðtÞ is a Gaussian unitary that cannot produce
Wigner negativity (Weedbrook et al., 2012).
When g ≠ 0, the field S and the atom C exchange energy

over time. By construction, after a time t ¼ τ the atom
returns to its initial state [ωCðτÞ ¼ ωCð0Þ]. However, the
same is not true for the state of the electromagnetic field,
which in general can evolve into a state with a negative
Wigner function, as shown in Fig. 8. This is achieved by
starting with a coherent state for which the Wigner function
is everywhere positive, while the atom returns exactly to its
initial state. This means that it cannot be responsible for
delivering any resources (such as energy) to the cavity. If we
could decouple the atom from the field and have it interact
with another matching mode in the same initial coherent state
for time τ, then the second mode would end up in the same
state with the same negative Wigner function. Note that in
this procedure the second mode generally ends up being
correlated with the first one.

3. Continuous-variable quantum computation

An effect related to the one in Sec. IV.E.2 was previously
discussed by Lau and Plenio (2016) and Lau and Plenio
(2017) in the context of quantum computation. Suppose that
one has access to a qubit C (for example, an atom) and is able
to do the following:
(a) Implement coherent rotations of the form expðiθXCÞ.
(b) Implement a controlled interaction of the qubit with

each of a set of optical modes ai in the form Ui ¼
exp½iðπ=2Þð1C − ZCÞa†i ai�.

(c) Implement passive linear mode transformations, i.e.,
beam splitters and phase shifters.

Here X and Z refer to the corresponding Pauli matrices. Lau
and Plenio (2016, 2017) showed that under these conditions it
is possible to implement universal quantum computation
using the qubit C in a strictly catalytic way. Specifically,
up to initialization and final measurements the qubit remains
in the state jþiC throughout the computation. Note that this
scheme is possible for a large variety of encodings of the
logical states of computation into the quantum states of the

FIG. 8. The Wigner function of the mode S at time t ¼ τ.
Left panel: the evolved state of the cavity in the case of no
coupling (g ¼ 0). Right panel: the evolved state in the case of
nonzero coupling (g > 0). Nonclassicality is clearly generated,
while the process is (correlated) catalytic. The evolution was
computed with the parameters α ¼ ð1þ iÞ=2, γ ¼ 2π, τ ¼ 6,
and g ¼ 0.05γ.
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optical modes without having to change the implemented
operations. See Sec. V.F for a further discussion of catalysis in
the context of computation.

4. Gaussian thermal operations

Gaussian systems, owing to their experimental feasibility,
provide a platform for investigating thermodynamic properties
of quantum systems. Applications of the Gaussian tool kit to
thermodynamic problems involve, among many others, work
extraction (Brown, Friis, and Huber, 2016; Singh et al., 2019;
Francica et al., 2020), battery charging (Friis and Huber,
2018), optimization of thermodynamic protocols (Mehboudi
and Miller, 2022), and quantification of the information
gained from a continuously monitored system (Belenchia
et al., 2020).
In this section we discuss the thermodynamic analog of

catalysis within the Gaussian setting. Sometimes it is reason-
able to impose additional limitations on the allowed Gaussian
operations, such as when one is interested in the thermody-
namic cost of implementing specific operations. Along these
lines, Serafini et al. (2020) and Narasimhachar et al. (2021)
introduced a class of quantum channels that they termed
Gaussian thermal operations (GTOs). These channels form a
subset of thermal operations (see Sec. II.A.3) restricted to the
case in which the Hamiltonians ĤS and ĤB are quadratic and
the systems S and B interact via a Gaussian energy-preserving
unitary. Serafini et al. (2020) and Narasimhachar et al. (2021)
formulated GTOs in terms of maps acting on covariance
matrices, which is a standard representation in the Gaussian
regime, and determined the necessary and sufficient con-
ditions for the existance of a GTO state transformation
between Gaussian states. Subsequently Yadin et al. (2022)
investigated two types of catalysis within the class of GTOs:
strict and correlating catalysis, which Yadin et al. (2022)
referred to as strong and weak catalysis, respectively.
They found that strict catalysis provides no advantage
over noncatalytic GTOs, mirroring the no-go results for
LOSR entanglement (see Sec. V.B.5), contextuality (see
Sec. V.B.11), and the resource theory of asymmetry (see
Sec. V.D.2). Specifically, they showed that all possible state
transitions under strictly catalytic GTOs on the mode S can
be described as thermalizations toward the bath mode B,
which can be easily achieved without the help of any catalyst
mode C. However, when the system and the catalyst form a
single-mode Gaussian state, Yadin et al. (2022) found that a
correlating catalyst can significantly enlarge the set of
achievable states. Specifically, they discussed the power of
correlating catalysis in terms of their ability to concentrate
thermodynamic resources in a subset of modes. Without a
catalyst or with a strict catalyst, the Gaussian resources in
each mode need to be monotonic under GTOs, leading to
severe restrictions. However, a correlating catalyst allows
thermodynamic resources to move from one mode to
another, under the condition that the total thermodynamic
resource across different modes is monotonic. Finally, in the
case of multiple modes they found explicit necessary con-
ditions on state transformations, which they subsequently
expressed using the majorization relation.

F. Reversible computation and quantum computation

We now turn to the topic of computation and discuss
catalysis in the context of classical reversible computation and
fault-tolerant quantum computation. In a seminal work,
Landauer (1961) showed that reversible (one-to-one) logical
operations such as NOT can be performed without heat
dissipation. However, irreversible (many-to-one) operations
such as erasure always dissipate heat proportionally to the
number of bits of information lost; see Sec. V.C.1. This leads
to the question of whether thermodynamically irreversible
processes are needed to perform arbitrary computations.
It turns out that any classical computation (i.e., one that can

be realized using a Turing machine) can be performed in a
logically reversible manner. This is possible either by saving
the entire history of the process in ancillary systems (Bennett,
1973) or by embedding the irreversible mapping in a more
complex (and reversible) mapping (Fredkin and Toffoli,
1982). Therefore, in principle any classical computation
can be performed with arbitrarily little heat dissipation.
To implement a logically irreversible function f∶f0; 1gn →

f0; 1g taking n bits as input, one makes use ofm auxiliary bits
initialized to 0. One then constructs a reversible (invertible)
function Rf∶ f0; 1gnþm → f0; 1gnþm such that, for any
x∈ f0; 1gn,

Rfðx; 0;…; 0Þ ¼ fðxÞ; gðxÞ; ð185Þ

where fðxÞ denotes concatenation of bit strings and gðxÞ
corresponds to some “garbage” bit string on nþm − 1 bits. It
turns out that it is always possible to construct such a
reversible function Rf if sufficiently many auxiliary bits are
available. To see this, note that a classical bit can always be
reversibly copied to an empty register via the CNOT gate.
Therefore, by appending an additional bit to the string in
Eq. (185), one can implement f reversibly by (i) copying the
result of the computation fðxÞ into the appended bit and (ii)
undoing Rf on the first nþm bits. This leads to the process

x; 0 � � � 0; 0⟶Rf
fðxÞ; gðxÞ; 0⟶CNOTfðxÞ; gðxÞ; fðxÞ ð186Þ

⟶
R−1
f
x; 0 � � � 0; fðxÞ. ð187Þ

This approach is known as uncomputation (Bennett et al.,
1997). Instead of a string of 0s, the auxiliary bits could be
initialized in any other fixed state y (but the function Rf

depends on y). From the resource-theoretic perspective, we
can view reversible computations as a restricted class of free
operations Orev and the m auxiliary bits in a fixed state y as a
catalyst. In this context, the catalyst implements the reversible
catalytic transformation

x; 0↪
Orev

x; fðxÞ: ð188Þ

If the input x is not deterministic, then the auxiliary bits
remain perfectly catalytic and uncorrelated to the remaining
bits. However, in this case the data bit (corresponding to the
output of f) and the original input register become correlated.
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The amount of correlations between a random input and the
output of a function f can be seen as a measure for how
irreversible f is: For a reversible function the input can be
reconstructed from the output; hence, the input and output are
perfectly correlated. Conversely, for the constant function the
output is independent of the input.
We now turn our attention to quantum computation in the

circuit model (Nielsen and Chuang, 2012). Since this is a
reversible model for computation, most of our previous
remarks on reversible computation are applicable to quantum
computation as well. However, owing to the no-cloning
theorem quantum data cannot be simply copied, which leads
to subtleties regarding uncomputation (Bennett et al., 1997).
Even more interesting effects related to catalysis appear due

to the need for quantum error correction: Since quantum
computation is inherently fragile to errors, it requires fault-
tolerance techniques, in particular, quantum error correcting
codes. The most common approach to quantum error correc-
tion uses so-called stabilizer codes (Gottesman, 1996, 1997;
Calderbank et al., 1997): Let Pn be the group of operators that
can be written as a “word” of single-qubit Pauli operators on a
set of n qubits, possibly with an additional phase�1 or�i. We
refer to any P∈Pn as a Pauli operator. Consider a set of m
independent,8 mutually commuting, and Hermitian Pauli
operators S ¼ fSjgmj¼1 with Sj ≠ −1. Their common eigen-
space corresponding to eigenvalueþ1 has the dimension 2n−m

and is called a stabilizer subspace. The vectors in a stabilizer
subspace represent the logical states of a stabilizer code that
encodes k ¼ n −m qubits. Unitary operators that map Pauli
operators to Pauli operators are called Clifford operators, and
they are generated by the set of unitary operator fH; S; CNOTg.
Here H is the Hadamard gate, S is the phase gate, and CNOT is
the controlled-NOT gate. They typically correspond to unitary
operations that can be implemented directly on the logical
states represented by stabilizer states. However, Clifford
unitaries are insufficient to implement universal quantum
computation. In fact, any circuit consisting of Clifford
unitaries acting on stabilizer states and followed by measure-
ments of Pauli operators on some qubits can be efficiently
simulated on a classical computer (Gottesman, 1999;
Aaronson and Gottesman, 2004; Veitch et al., 2012). The
aforementioned formulation closely resembles the situation
for Gaussian states discussed in Sec. V.E.4; see also Gross
(2006) and Mari and Eisert (2012). This situation naturally
leads to a resource-theoretic approach where stabilizer states
are the free states and Clifford unitaries combined with
measurements of Pauli operators and classical feed-forward
correspond to free operations. As expected, the operations so
defined map stabilizer states to stabilizer states (Veitch et al.,
2014). We refer to this set of free operations simply as
“Clifford operations” or “stabilizer operations” Ostab.
Resource states corresponding to nonstabilizer states can be
used to implement non-Clifford unitaries such as the single-
qubit T gate, which is defined as

T ¼
�
1 0

0 eiπ=4

�
ð189Þ

in the fj0i; j1ig basis. One way to implement a T gate is via
the technique known as gate teleportation (also known as state
injection) (Gottesman and Chuang, 1999). Specifically, by
first preparing a suitable nonstabilizer state jTi, one can then
use Clifford operations to simulate a T gate. The pure states
required to implement a T gate have been named magic states
and can be distilled using Clifford operations from noisy
magic states (Knill, 2004; Bravyi and Kitaev, 2005).
Examples of single-qubit magic states are the eigenstates of
the Clifford operator H, that is,

HjH0i ¼ jH0i; HjH1i ¼ −jH1i;

as well as the state jTi ≔ Tjþi. A binary vector v ¼
ðv1;…; vnÞ further specifies the magic state Hv ¼⊗n

i¼1

jHvii on n qubits. Several resource measures have been
introduced to quantify the amount of magic contained in a
quantum state. These measures can be used to bound the
classical simulation cost of quantum circuits (Boykin et al.,
2002; Veitch et al., 2012, 2014; Brandão et al., 2015;
Pashayan, Wallman, and Bartlett, 2015; Bravyi and Gosset,
2016; Howard and Campbell, 2017; Ahmadi et al., 2018;
Bravyi et al., 2019; Seddon and Campbell, 2019; Wang,
Wilde, and Su, 2019, 2020; Raussendorf et al., 2020). In
particular, the classical simulation cost of a quantum circuit
acting on stabilizer states scales exponentially with the
number of T gates (Aaronson and Gottesman, 2004).
Hence, if we implement a quantum circuit using non-
Clifford unitaries via gate teleportation, its classical simula-
tion cost will scale with the number of required magic states.
It is therefore natural to ask how one can reduce the number

of required resource states to implement certain non-Clifford
unitaries. Since different non-Clifford gates require different
resource states, it is useful to know whether catalysis can be
used to convert certain resource states into others more
efficiently. This would reduce the number of magic states
that need to be distilled in order to implement a given quantum
circuit. We summarize two notable results in this direction. An
early result was from Campbell (2011), who first showed that
catalysis indeed happens in the resource theory of magic
states. Specifically, for a state jψi ¼ ðjH000i þ jH111iÞ=

ffiffiffi
2

p
they presented a Clifford circuit implementing the strictly
catalytic transformation

jψijH0i → jH0ijH0i: ð190Þ

Note that jψi cannot by itself be converted into jH0i via
Clifford operations; see Campbell (2011) for details.
Furthermore, they showed that strictly catalytic transforma-
tions are also possible when jψi is replaced by a mixed state.
More recently Gidney (2018) focused on the T count of the
adder circuit A, which is characterized by its action on the
n-qubit computational basis,

Ajiijji → jiijiþ j mod 2ni; ð191Þ
8Independence means that none of the operators Sj can be

expressed as a product of the remaining operators SnfSjg.
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which is a critical subroutine in quantum Fourier transform.
Using catalysis, Gidney (2018) introduced a circuit decom-
position that reduced the number of T counts from 8nþOð1Þ
in previous constructions to 4nþOð1Þ.
Building on the previously mentioned investigations,

Beverland et al. (2020) provided a more systematic study
of catalysis for magic states and generalized previous con-
structions from Selinger (2013), Gidney (2018), and Gidney
and Fowler (2019). In particular, they observed that catalysis
can be used to provide lower bounds on the implementation
cost of general unitaries. Furthermore, they showed that for a
large class of state conversions some degree of catalysis was
necessary. Beverland et al. (2020) then proceeded to charac-
terize a broad class of magic state conversions that can be
achieved via strict catalysis, and, in particular, demonstrated
that catalysts can increase multicopy conversion rates to and
from certain magic states.
We close this section with a further example of catalysis

from Beverland et al. (2020). While the S gate acting as j0i ↦
j0i; j1i ↦ ij1i is a Clifford gate, the controlled S gate, denoted
as CS, is not. It can be nevertheless implemented using the
resource state jCSi ¼ CSjþijþi. A no-go theorem used by
Beverland et al. (2020) implied that jCSi cannot be converted
to jTi ¼ Tjþi using Clifford operations. Consider, however,
the circuit equality shown in Fig. 9: The circuit on the right
corresponds to jCSijTi and Clifford operations. Together they
yield T ⊗ T corresponding to two jTi states when they are
applied to jþijþi. Therefore, jTi catalyzes the otherwise
impossible transition jCSi → jTi: A single jTi state together
with n copies of jCSi can be converted to nþ 1 copies of jTi
using stabilizer operations.

VI. FURTHER TOPICS AND RELATED AREAS

In this section we discuss several topics that are related to
catalyis but that either did not fit into the previous sections or
do not precisely fit into the definition of catalysis that we use
in the rest of the review.

A. Catalytic transformations of dichotomies

A central task in statistics is to infer a parameter θ∈Θ from
experimental samples. The experiment can described by a
θ-dependent family of probability distributions fpθg that is
typically assumed to be known. In the simplest case of binary
experiments Θ ¼ f0; 1g, the task amounts to distinguishing
between two hypotheses. The two hypotheses are represented
by a pair ðp0; p1Þ of probability distributions, which is often
called a dichotomy. A dichotomy ðp0; p1Þ is said to be more
informative than a second dichotomy ðq0; q1Þ if the latter
arises from the former by stochastic processing (Hardy,
Littlewood, and Pólya, 1952; Blackwell, 1953; Le Cam,

1996; Cohen, Kempermann, and Zbaganu, 1998). We also
say that the first dichotomy relatively majorizes the second
when there exists a stochastic map T such that Tpθ ¼ qθ
(Hardy, Littlewood, and Pólya, 1952).
In quantum mechanics, the objects to be compared are

quantum dichotomies, denoted by ðρ; σÞ for two density
operators ρ and σ. We say that the dichotomy ðρ0; ρ1Þ is
more informative than ðσ0; σ1Þ if there exists a quantum
channel E such that σθ ¼ EðρθÞ, and we say that they are
equivalent if there also exists a quantum channel R such that
ρθ ¼ RðσθÞ (Petz, 1986b, 1988; Ohya and Petz, 1993;
Shmaya, 2005; Jenčová and Petz, 2006; Chefles, 2009).
When the two density operators forming a quantum
dichotomy commute, they can be simultaneously diagonal-
ized, and thus can be treated classically. When the two
dichotomies do not commute, the inference task becomes
genuinely quantum and is notoriously harder to characterize.
Some considered a generalization of the problem of

comparing dichotomies using a dichotomy that acts as a
catalyst. Specifically, Rethinasamy and Wilde (2020) intro-
duced the notion of catalytic transformations between dichot-
omies of probability vectors (which they termed catalytic
relative majorization). In this task, the catalyst consists of a
pair ðc0; c1Þ of probability vectors cθ. The catalyst is then used
in conjunction with the original input pair ðp0; p1Þ to generate
the output ðq0; q1Þ by means of a stochastic matrix T acting as

Tðpθ ⊗ cθÞ ¼ qθ ⊗ cθ: ð192Þ

In the language of this review, this corresponds to strict
catalysis. However, in complete analogy to Eq. (192), one can
consider here other types of catalysis such as correlating
catalysis. While the physical interpretation of such a catalytic
transformation is less clear, the problem is well defined and
interesting from a mathematical perspective.
The main result of Brandão et al. (2015), which was

discussed in Sec. V.C.3, can be formally translated into the
language of dichotomies by interpreting the thermal state as
one of the probability distributions in a dichotomy, thereby
providing necessary and sufficient conditions for arbitrarily
strict catalytic transformations of dichotomies in terms of
Rényi divergences. Mu et al. (2021) independently obtained
these results for generic dichotomies. Farooq et al. (2023)
generalized the results from dichotomies to the case where Θ
is a general finite set and allowing for an arbitrarily small error
on the system (but not the catalyst). Rethinasamy and Wilde
(2020) obtained the necessary and sufficient conditions for
transforming dichotomies via correlating catalysis, showing
that the Kullback-Leibler divergence is the essentially unique
relevant monotone.
The problem of catalytically transforming generic quantum

dichotomies is more difficult. Shiraishi and Sagawa (2021)
showed that whenever Dðρ0kρ1Þ ≥ Dðσ0kσ1Þ there is a
correlating-catalytic state transition from ðρ0; ρ1Þ to ðσϵ0; σ1Þ
when allowing for an arbitrarily small error on the system (but
not the catalyst).
One can also ask whether catalysis is relevant for

the equivalence of dichotomies. For example, could it be
true that ðρ0; ρ1Þ and ðσ0; σ1Þ are not equivalent, while

FIG. 9. Example of magic state catalysis. The circuit identity
shows that jTi catalyzes the transition jCSi → jTi.
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ðρ0⊗ω0;ρ1⊗ω1Þ is equivalent to ðσ0 ⊗ ω0; σ1 ⊗ ω1Þ? Galke,
van Luijk, and Wilming (2023) showed that this form of
nontrivial strict catalysis does not occur for classical dichot-
omies (or commuting quantum dichotomies) and conjectured
that the same holds for the quantum case. In particular,
this shows that there is no catalysis for interconvertibility
of incoherent quantum states via thermal operations
(cf. Sec. V.C.3), thus mirroring the situation for pure-state
LOCC; see Sec. V.B.1.

B. Continuity of extensive quantities and embezzlement

We have emphasized throughout that embezzlement can be
seen as arising from the fact that trace distance can change an
arbitrarily small amount while a resource measure changes by
a finite amount. In other words, it is a consequence of the lack
of continuity of resource measures. More generally we now
discuss how approximate catalysis can be used in a simple
way to give bounds on how continuous extensive resource
measures can be. Let Dð⋆Þ denote the set of density matrices
of any finite dimension, i.e., Dð⋆Þ ¼∪d DðHdÞ. Given an
arbitrary function f from density matrices to real numbers, we
provide the following definition:
Definition VI.1 (Asymptotic continuity) (Donald,

Horodecki, and Rudolph, 2002). Let f∶Dð⋆Þ → Rþ. We say
that f is asymptotically continuous if there is a Lipshitz
constant K such that, for any d and ρ; σ ∈DðHdÞ,

jfðρÞ − fðσÞj ≤ Kkρ − σk1 log dþ ηðkρ − σk1Þ; ð193Þ

where η does not depend on d and satisfies ηð0Þ ¼ 0.
A standard example of an asymptotically continuous

quantity is the von Neumann entropy. In this case
Eq. (193) reduces to the well-known Fannes-Audenaert
inequality (Fannes, 1973; Audenaert, 2007). In the case of
von Neumann entropy, the property of asymptotic continuity
often leads to asymptotic continuity of many other entangle-
ment measures. This is often a key step in deriving expres-
sions or bounds for the asymptotic rates in quantum
information processing tasks; see Horodecki (1998) and
Terhal et al. (2002) for examples.
Following Coladangelo and Leung (2019), the aforemen-

tioned definition of continuity can be generalized to capture
the maximal change in the function f with respect to the
dimension of the density operator that takes the role of its
argument. We now consider the following definition:
Definition VI.2 (“More than asymptotic” continuity). Let

f∶Dð⋆Þ → Rþ. We say that f is more than asymptotically
continuous if there are α < 1 and a Lipshitz constant K such
that, for any d and ρ; σ ∈DðHdÞ,

jfðρÞ − fðσÞj ≤ Kkρ − σk1ðlog dÞα þ ηðkρ − σk1Þ; ð194Þ

where η does not depend on d and satisfies ηð0Þ ¼ 0.
We now characterize three properties of reasonable resource

measures. We say that f is nonconstant if there are two density
matrices ρ and σ such that fðρÞ ≠ fðσÞ. For tensor-product
Hilbert spaces corresponding to composite quantum systems,
a function f is said to be permutationally invariant if it does
not depend on the particular labeling of the subsystems. More

precisely, for any n∈N and any density operator ρ on R ¼
R1 ⊗ R2 � � �Rn and any permutation π ∈Sn, it holds that
fðUπρU0

πÞ ¼ fðρÞ, where Uπ is the unitary that permutes
registers Ri according to permutation π. Finally, a function f
is additive over tensor products if fðρ ⊗ σÞ ¼ fðρÞ þ fðσÞ
holds for any density matrices ρ and σ. These three character-
istics are natural properties of resource measures. For exam-
ple, the total magnetization number of a collection of identical
spins and many entanglement measures (for example, entan-
glement entropy) satisfy them naturally. In this context,
Coladangelo and Leung (2019) proved that any function f
that is nonconstant, permutation invariant, and additive can
never be more than asymptotically continuous according to
Definition VI.2. This is a direct consequence of the general
construction in Sec. IV.C that substantiates the relationship
between embezzlement and asymptotic continuity.
We now summarize the proof of Coladangelo and Leung

(2019). For two density matrices ρS and σS such that
c ¼ jfðρSÞ − fðσSÞj > 0, consider the approximate catalyst
states ωC and ω0

C on n − 1 copies of S from Sec. IV.C. They
fulfill kωC − ω0

Ck1 ≤ 2=ðn − 1Þ and
UπðρS ⊗ ωCÞU†

π ¼ σS ⊗ ω0
C; ð195Þ

where Uπ is the unitary implementing a cyclic permutation of
all subsystems. The permutation invariance property of f
implies that fðρS ⊗ ωCÞ ¼ fðσS ⊗ ω0

CÞ. Since f is further-
more additive, we have

c ¼ jfðρSÞ − fðσSÞj ¼ jfðω0
CÞ − fðωCÞj: ð196Þ

We now assume, by contradiction, that f is more than
asymptotically continuous. There are then a constant K and
α < 1 such that

jfðω0
CÞ−fðωCÞj≤KkωC−ω0

Ck1ðn logdÞαþηðkωC−ω0
Ck1Þ

≤ 2K
nα

n−1
ðlogdÞα: ð197Þ

Since α < 1 by assumption, the rhs tends to zero as n goes to
infinity, which contradicts our initial assumption that c > 0.

C. Quantum channel catalysis

Throughout we have focused on catalysis on the level of
quantum states. But one can also consider catalysis on the
level of quantum channels instead of quantum states. Suppose
that we can implement a channel E on a system C that is not a
free operation: E ∉ O. There may be free operations

F ðencÞ
SC→S0C;FS0 and F ðdecÞ

S0C→SC such that

F ðdecÞ
S0C→SC∘ðFS0 ⊗ ECÞ∘F ðencÞ

SC→S0C ¼ ES ⊗ EC; ð198Þ

and where ES is not a free operation. In Eq. (198) we allowed

the encodingmapF ðencÞ
SC→S0C and the decodingmapF ðdecÞ

S0C→SC to
map between different systems S0C and SC. The quantum
channel EC then catalyzes the nonfree quantum channel ES. A
simple example is given when S0 ¼ S, EC simply prepares a
fixed state ωC, FS prepares a fixed free state ρS, and the
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encoding map is trivial. Equation (198) then reduces to
F ½ρS ⊗ ωC� ¼ σS ⊗ ωC, with σS ¼ ES½ρS�; i.e., we recover
strict catalysis for quantum state transitions.
An example of similar behavior was discussed by Brun,

Devetak, and Hsieh (2006) and Brun, Devetak, and Hsieh
(2014) in the context of quantum error correction: An ideal
quantum channel EC ¼ IdC can be used to catalyze a noisy
quantum channel into an ideal quantum channel using an
entanglement-assisted quantum error correcting code. Note,
however, that the unassisted quantum capacity of a noisy
channel together with a noiseless channel is simply the sum of
the two (Bennett, DiVincenzo et al., 1996). Therefore, this
form of channel catalysis cannot be used to effectively
increase the rate of the noisy channel beyond its usual
capacity. Systematic studies of quantum channel catalysis
in various resource theories provide an interesting opportunity
for further research.

D. Catalytic decoupling and resource erasure

It is well known that it is impossible to construct a quantum
channel that achieves perfect cloning of unknown quantum
states on a given system S; see also Sec. V.D.2. Similarly, it is
impossible to construct a quantum channel E on a bipartite
sytems S1S2 that removes the correlations for arbitrary
quantum states ρS1S2

in the sense that

E½ρS1S2
� ¼ ρS1

⊗ ρS2
∀ ρS1S2

ðimpossibleÞ. ð199Þ

Decoupling refers to a process where one tries to remove the
correlations between a system A from a system E. Decoupling
protocols play an important role in quantum information
theory (Groisman, Popescu, and Winter, 2005; Horodecki,
Oppenheim, and Winter, 2005; Hayden et al., 2008;
Abeyesinghe et al., 2009; Dupuis, 2010; Dupuis et al.,
2014; Majenz et al., 2017; Berta et al., 2018; Li and Yao,
2021) and are closely related to quantum state merging
protocols; see Sec. V.B.3. The amount of resources that
one has to invest to achieve decoupling can be seen as a
measure for the correlations between A and E (Groisman,
Popescu, and Winter, 2005). One approach to decoupling is to
try to unitarily concentrate all correlations between A and E
into a subsystem A2 of A by way of a unitary UA acting only
on A, and then to trace out A2,

trA2
½UAρAEU

†
A� ≈ ωA1

⊗ ωE: ð200Þ

The Hilbert-space dimension of the subsystem A2 required to
achieve the aforementioned items with a given precision can
then be interpreted as a measure for the amount of correlations
between A and E (Dupuis, 2010). Majenz et al. (2017) defined
catalytic decoupling by introducing an additional system C in
a state σC that was initially uncorrelated to AE. In other words,
we have AC ¼ A1A2 and

trA2
½UACρAE ⊗ σCU

†
AC� ≈ ωA1

⊗ ωE: ð201Þ

The Hilbert-space dimension dA2
of the subsystem A2 that one

has to trace out is at most as large as in the case of standard

decoupling. In fact, Majenz et al. (2017) showed that logðdA2
Þ

precisely gives an operational meaning to the smooth max-
mutual information. Moreover, they showed that one can
choose A1 ¼ AC1 (i.e., A1 corresponds to the input system A
and part of the catalyst C) and ωA ¼ trC1

½ωA1
� ¼ ρA. That is,

the marginal on A does not change. Note, however, that the
full catalyst itself is not returned in the same state.
Additionally, the part C2 that is traced out must in general
build up strong correlations to E. In particular, the catalyst
may not immediately be reused to help decouple a further
system from E.
A task closely related to decoupling is the task of erasing

resources from a quantum state using random unitary oper-
ations from the set of free operations in a resource theory.
Specifically, one can then ask for the minimal amount of
classical randomness that is required to return a resourceful
state close to the set of free states. If one further allows for an
approximate, correlated catalyst in a free state during the
process, then the smooth max-relative entropy with respect to
the free states quantifies the amount of randomness required to
achieve resource erasure (Anshu, Hsieh, and Jain, 2018; Berta
and Majenz, 2018).
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