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Fundamental properties of light unavoidably impose features on images collected using fluorescence
microscopes. Accounting for these features is often critical in quantitatively interpreting microscopy
images, especially those gathering information at scales on par with or smaller than light’s emission
wavelength. Here the optics responsible for generating fluorescent images, fluorophore properties, and
microscopymodalities leveraging properties of both light and fluorophores, in addition to the necessarily
probabilistic modeling tools imposed by the stochastic nature of light and measurement, are reviewed.
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I. INTRODUCTION

A. A history of optics

The ancient Greeks were divided over whether vision arose
from rays entering or leaving the eyes (Darrigol, 2012;
Thibodeau, 2016). For instance, atomists believed that per-
ception arose from an atom flux traveling through space to the
eyes. Aristotle (384–322 BCE) later proposed the notion of
ether serving as a medium for transmission of intrinsic
qualities of objects to the eye rather than fluxes of atoms.
An alternative formulation advocated by Pythagoras (570–495
BCE) and Euclid (325–270 BCE) proposed the notion of
ocular fire whose rays impassively scanned their surround-
ings. Following this logic, Euclid established a geometric
optics explaining the perception of size and angles from the
geometry of these ocular rays. Along these same lines, the
Chinese philosopher Mo Di (470–391 BCE) established a
geometric optics similar to Euclid’s explaining the formation
of shadows and images in mirrors (Wang and Wang, 2008).
An amalgam of these ideas with fire originating from the

eyes coalescing with another fire derived from objects
enabling vision was perhaps now demanded on philosophical
grounds and promoted by Plato (427–347 BCE). In Ptolemy’s
optics (100–170 CE), sunlight activated objects whose emitted
rays now interacted with visual rays to give rise to perception.
In Ptolemy’s theory, perception relied on the angular distri-
bution, length, refraction, and reflection of rays from the eye
(Smith, 1996; Darrigol, 2012).
Although these early Greek theories appear manifestly naive,

emerging notions of geometric optics served as a starting
point for Medieval Arabs, who took a decidedly more

phenomenological approach. For example, inspired by
Euclid’s geometric opticsAl-Kindi (801–873CE) demonstrated
that visual rays travel in straight lines by simple experiments on
shadows (Darrigol, 2012). This early progress was followed by
insights from Ibn al-Heytham [latinized as Alhazen (965–1040
CE)], who showed that eyesight is derived from light rays
received by the eyes fromobjects (Nasr andDeSantillana, 1968;
Darrigol, 2012). Further, Ibn al-Heytham consistently devised
experiments to test his theories, including theories on refractive
and reflective properties of light rays on boundaries, lenses,
spherical mirrors, etc. (Nasr and De Santillana, 1968; Kriss and
Kriss, 1998; Tbakhi and Amr, 2007; Darrigol, 2012).
The distribution of Latin translations of Alhazen’s Book of

Optics (Al-Khalili, 2015), among other ancient works, ulti-
mately sparked a renaissance that presages the onset of
modern optics in Europe. From the democratization of knowl-
edge driven by the Gutenberg presses followed refractive
telescopes attributed to the Dutch spectacle makers Zacharias
Janssen (1585–1638 CE) and Hans Lippershey (1570–1619
CE) and reflecting telescopes attributed to Issac Newton
(1643–1727 CE) (Bardell, 2004). In contrast to telescopes,
there is uncertainty regarding the original inventor of the
microscope, though it is often credited to Zacharias Janssen
(Kriss and Kriss, 1998; Chung and Liu, 2017).
From the start, the worlds of microscopy and biology were

intertwined: the Dutch businessman and scientist Antonie van
Leeuwenhoek (1632–1732 CE) exploited his microscope to
single-handedly discover bacteria, sperm cells, and red blood
cells, among other actors dominating the microscopic realm
(Chung and Liu, 2017). Little in this regard has changed
throughout history, with sizes, features, and other optical
properties of the natural world guiding the design of modern
microscopes. Subsequent compound microscopes (Gest,
2004), also credited to Janssen and foreshadowing our multi-
lens microscopes, provided improved magnification and were
widely used by Robert Hooke (1635–1703 CE) (Gest, 2004),
author of the first book on microscopes, Micrographia.
Now taken for granted successive properties of light (includ-

ing diffraction, refraction, reflection, and light’s particulate
nature) were each individually leveraged inmicroscope develop-
ment with diffraction through an aperture first reported by the
Italian Jesuit Francesco Maria Grimaldi (1618–1663 CE),
followed by a number of discoveries culminating in the electro-
magnetic theory of Maxwell (1831–1879 CE) and theories on
light’s quantization (Planck, 1901, Einstein, 1905) attributed to
Planck (1858–1947 CE) and Einstein (1879–1955 CE).
Setting aside noteworthy later microscopy advances, includ-

ing phase imaging (Popescu, 2011; Park, Depeursinge, and
Popescu, 2018), we interrupt history to pause at fluorescence
microscopy, which has dominated the scene over the last half
century, as smaller scales demanded increased contrast between
the background and the object of interest (Lichtman and
Conchello, 2005). At such scales, the stochastic properties of
light intrinsic to quantum mechanics dictate our ability to
interpret fluorescence microscopy data and return us to the
primary focus of this review: fluorescence microscopy from a
statistics-optics perspective.
Modeling light’s stochastic properties is not an exercise in

mitigating the recurring nuisance of shot noise. It is instead
fundamental to how we draw insights on the scales at which

Mohamadreza Fazel et al.: Fluorescence microscopy: A statistics-optics …

Rev. Mod. Phys., Vol. 96, No. 2, April–June 2024 025003-2



fluorescence microscopy has unraveled. In fact, a fluorescent
photon’s emission time, absorption time, emission wave-
length, and detection location, i.e., where a photon is detected
on an image plane, are all random variables. These random
variables themselves are drawn from probability distributions.
In the classical limit, the probability density for locating
photons is proportional to the time-averaged energy flux given
by Poynting’s theorem (Poynting, 1884), which was intro-
duced by John Henry Poynting (1852–1914 CE). For point-
like sources of light such as fluorophores, the normalized
spatial distribution, coinciding with a slice orthogonal to the
propagation direction, is termed the point spread function
(PSF). This inherent randomness in a photon’s location,
imperfectly detected and reporting only probabilistically on
a fluorescent object of interest, introduces multiple levels of
stochasticity between the object whose properties we care to
characterize and the measurement output. This unavoidably
introduces statistical concepts, including notions of latent
variables and hierarchical probabilistic models, in the quanti-
tative modeling of imaging systems.
The manipulation of hierarchical dependencies between

random variables then requires what is known today as
Bayes’s theorem. The theorem, attributed to its namesake
Thomas Bayes (1702–1761 CE), was popularized by Pierre-
Simon de Laplace (1749–1827 CE), who introduced and
codified, through seminal texts on probability (Laplace, 1820,
1840), probabilistic modeling to the sciences (Dale, 1982).
Before we return to microscopy, we now take a detour to
discuss statistical modeling relevant to our future applications.

B. Introduction to statistical modeling

The photon, the electromagnetic force carrying a particle, is
intrinsically both wavelike and particulate. While the con-
tinuous spatial distributions over a photon’s location are
dictated by the photon’s wave properties, photon detections
themselves are necessarily pointillistic and probabilistic. As
such, even before other sources of stochasticity like detection
are considered, a quantitative picture of microscopy demands
at its most fundamental level an exposition of the theory of
statistical sampling.
Here we first lay out the main concepts for probabilistic

modeling. We then discuss the concept of likelihoods and
Bayesian inference that are key to the statistical frameworks
introduced throughout this review.

1. Basic concepts and notation

Stochasticity in a system arises from the inherent random
nature of the physical system, the measurement noise, or both.
Both elements are relevant in quantitative microscopy, and
thus we minimally require two layers of stochasticity: at the
level of photon shot noise and at the level of detection; see
Appendix A. Shortly we also see that additional levels of
stochasticity may arise from the behavior of fluorescent labels.
For this reason, we begin by defining the requisite notions

of a random variable. A random variable R follows the
statistics of a probability distribution P. As such, we often
writeR ∼ P, which reads, “the random variableR is sampled
from the probability distribution P.” We then denote r a

particular realization of R and pðrÞ the probability density
associated with the probability distribution P.
Generally the probability distribution itself depends on the

parameters ϑ. To make such dependency explicit, we can write
pðr; ϑÞ and PðϑÞ (Pressé and Sgouralis, 2023). For example,
the location at which the photon is detected is itself a random
variable R sampled from a distribution centered at the emitting
molecule’s location r0. As such, we write

R ∼ Uðr0Þ; ð1Þ

pðr; r0Þ ¼ Uðr; r0Þ; ð2Þ

where ϑ≡ r0 and pðr; ϑÞ is the probability density, i.e., the
PSF, from which r is drawn.
It is often of interest to compute the probability of obtaining

a value from a subset η of the possible values (r∈ η) given by

Pη ¼
Z
η
drpðr; ϑÞ: ð3Þ

By definition if η is the entire set of options, then Pη ¼ 1. For
instance, the probability of a photon reaching a pixel is given
by the integral of the PSF over the pixel area A

Ppix ¼
Z
A
Uðr; r0Þdr: ð4Þ

In probabilistic modeling, we often work with many
random variables R1;R2;…;RN at once. For this reason,
we define the joint density as

pðr1∶N ; ϑÞ ¼ pðr1; r2;…; rN ; ϑÞ: ð5Þ

The density of any individual rn is then obtained by
integrating the joint density with respect to all values of
r1∶n−1 and rnþ1∶N as

pðrn; ϑÞ ¼
Z

dr1∶n−1drnþ1∶Npðr1∶N ; ϑÞ: ð6Þ

Equation (6), which is termed a marginalization, results in a
marginal density pðrn; ϑÞ. Marginalization is often useful in
computing, say, the probability over the diffusion coefficient
of an emitter (a fluorescently labeled molecule or dye)
irrespective (and thus integrating over) its exact location in
space. This is later explored in Fig. 69.
If the random variables R1∶N are independent and identi-

cally distributed (i.i.d), then Eq. (5) assumes the simpler form

R1;R2;…;RN ∼i:i:d:PðϑÞ; ð7Þ

with the understanding that the joint density decomposes into
the product of independent densities pðr1; ϑÞ; pðr2; ϑÞ;…;
pðrN ; ϑÞ. For example, i.i.d. random variables include photon
arrival times following pulsed excitation for a static distribu-
tion of molecules, as later explored in Fig. 46.
In general, random variables are not independent, such as

the position of a molecule in time where the system’s state
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depends on its state at a previous time point either exactly or
by approximation. This dependency, which is explored in the
context of fluorophore dynamics in Sec. II.C and Appendix B,
is termed the Markov assumption. In this case, we say that
values that can be ascribed to R2 depend on the realization of
a preceding random variable r1. This dependency is often
expressed as

R2jr1; ϑ ∼ Pðr1; ϑÞ; ð8Þ

which reads, “the random variable R2 given the parameters ϑ
and realization (or “conditioned on”) r1 ofR1 is sampled from
the probability distribution Pðr1; ϑÞ.” The density that we
associate with this probability distribution then reads
pðr2jr1; ϑÞ and is referred to as a conditional density. In
general a random variable RN can depend on many other
random variables R1∶N−1 with associated conditional density
pðrN jr1∶N−1; ϑÞ. Such conditionals will become useful as we
build hierarchical models relating random variables across our
boxed environments presented as figures.
Bayes’s theorem, which is of central importance in express-

ing hierarchical random variable dependencies, then follows
from the observation that conditional densities such as
pðr1∶2Þ ¼ pðr2jr1Þpðr1Þ satisfy pðr1∶2Þ ¼ pðr2∶1Þ and thus

pðr1jr2Þpðr2Þ ¼ pðr2jr1Þpðr1Þ: ð9Þ

As is customary in physics, we relax notation and denote
both random variables and their realizations with lowercase
letters. The distinction between the two notions is implied by
the context throughout the review.

2. Likelihood

We now introduce the object at the heart of quantitative
analysis of microscopy data: the likelihood. The likelihood is
a probability distribution over random variables coinciding
with K experimental observations w1∶K conditioned on ϑ. The
likelihood’s density is thus written as pðw1∶KjϑÞ, where
w1∶K ¼ fw1; w2;…; wKg. It is also convenient to denote this
set with an overbar: w̄.
The term likelihood follows from the notion that pðw1∶KjϑÞ

is a likelihood of observing the sequence of observations w1∶K
under the assumptions of the model (i.e., calibrated values for
parameters ϑ of a particular model). Indeed, all box environ-
ments in multiple figures in the review contain likelihoods for
each statistical framework presented.
As the parameters are themselves unknown, we often ask

what values for these parameters maximize the likelihood of
the observed sequence w1∶N . These parameter values are
called estimators and are denoted by ϑ̂. For example, we can
ask what values of the excited-state lifetime (assuming one
fluorophore species) make the photon arrival times observed
most probable; see Fig. 46.
For practical reasons, it is common to work with, and maxi-

mize, the likelihood’s logarithm Lðw1∶KjϑÞ ¼ log ½pðw1∶KjϑÞ�,
sometimes termed the log-likelihood rather than the likelihood
itself; see Sec. V.C. This is because the logarithm both is
monotonic with the original function and avoids numerical

underflow typical of small probability densities arising as
K grows.
Within a maximum likelihood estimation (MLE) frame-

work, ϑ are treated as fixed deterministic parameters and the
data w1∶K and are understood as realized random variables.
While the MLE yields a single value (estimator) for the
parameters, the uncertainty around the parameter estimate is
captured by computing the likelihood’s breadth around its
maximum. The breadth is often estimated as

σ2ϑl ¼ ½QðϑÞ−1�ll; ð10Þ

where l counts the elements of the model parameter set ϑ. In
Eq. (10) QðϑÞ is the Fisher information matrix defined as
(Rao, 1992; Cramér, 1999)

Qll0 ðϑÞ ¼ −E
�
∂
2Lðw1∶KjϑÞ
∂ϑlϑl0

����
ϑ̂

�
; ð11Þ

where E denotes the expected value of the expression within
the parentheses. As Eq. (10) sets the variance (an uncertainty
bound) around the MLE, it is sometimes termed the Cramér-
Rao lower bound (CRLB).
As evident, MLE-based approaches present challenges for

likelihoods with multiple degenerate maxima or, more impor-
tantly, when the model is unknown. What is more, even
assuming a model form the MLE provides only a point
estimate, not a full distribution over the putative parameter
values.
It is for all these reasons that we often turn to a more general

Bayesian paradigm. In this setting, we use the likelihood to
construct the distribution over the parameters of interest given
the observed data pðϑjw1∶KÞ. The latter object is termed the
posterior and is central to Bayesian inference.

3. Posterior

In working with likelihoods, the data are understood as
random variables and parameters ϑ as fixed but to be
determined. In contrast, in a Bayesian setting both the data
and the parameters are random variables. In particular, the data
are random variables that are already realized and whose
values are used to construct the probability pðϑjw1∶KÞ over the
unknown random variables ϑ. The Bayesian paradigm allows
proper propagation of uncertainty over ϑ from all sources,
including detector noise, camera pixelation, motion aliasing,
photon shot noise, etc.
The posterior is constructed from the likelihood by invok-

ing Bayes’s theorem [Eq. (9)],

pðϑjw1∶KÞ ¼
pðw1∶KjϑÞpðϑÞ

pðw1∶KÞ
; ð12Þ

where by normalization

pðw1∶KÞ ¼
Z

dϑpðw1∶KjϑÞpðϑÞ: ð13Þ

In Eqs. (12) and (13) pðϑÞ, termed the prior, provides a means
to regulate the parameters. For instance, determining a range
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over which nonzero values of the density arise, for example,
positive or integer values, prior to considering the data.
Thus, from Bayes’s theorem we obtain a clear recipe w1∶K

by which the prior distribution is updated from the data
encoded in the likelihood to determine the posterior
pðϑjw1∶KÞ. To avoid priors biasing posteriors, K must be
sufficiently large (McNeish, 2016; Smid et al., 2020; Van de
Schoot and Miocević, 2020; Zitzmann et al., 2021). However,
even with large datasets the prior may still impact the posterior
in cases including degenerate flat likelihoods, a number of
unknowns that increases with more data, and priors excluding
regions of parameter space warranted by the data (i.e., priors
set to zero in those regions) (Gelman et al., 1995; Le Cam and
Yang, 2000).
As we see in all applications, likelihoods can generally be

constructed from knowledge of the microscopy technique and
the physics of the problem, while priors are normally
determined by prior belief and computational convenience.
The following broad question then arises: Can we determine
whether the posterior peaks at some value of ϑ? More
concretely, what does our posterior look like?
Note that posteriors rarely attain simple analytic forms on

account of the measurement and physics informing the like-
lihood. As such, values of ϑ are typically numerically sampled
from posteriors using Monte Carlo methods. For example, as
later discussed in the context of confocal microscopy (see
Sec. IV.C), we see that ϑ includes quantities such as diffusion
coefficients, emission rates, and emitter locations. As poste-
riors are thus often multivariate, a common Monte Carlo
strategy involves sampling one random variable at a time in a
scheme termed Gibbs sampling (Geman and Geman, 1984).
Whether sampling a posterior exactly or numerically, such

as with Monte Carlo calculations, it is often computationally
convenient to judiciously select prior functional forms.
Indeed, some prior forms play a special role in Bayesian
modeling by having the unique mathematical property that,
when multiplied by the likelihood, results in a posterior of the
same form as the original prior (albeit with updated, “renor-
malized” parameters). As such, we often speak of conjugate
prior-likelihood pairs or, for succinctness, conjugate priors
when such priors can be identified. While we do not dwell on
specialized notions of Bayesian inference in the review, we
point out that computational efficiency is what makes it
possible to include measurement noise details at marginal
added computational cost while improving the spatiotemporal
resolution of any fluorescence analysis method. Indeed,
whenever possible specialized Monte Carlo schemes [from
Gibbs sampling (Geman and Geman, 1984) to the Metropolis-
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970)
to slice sampling (Murray, Adams, and MacKay, 2010) and
beyond (Bishop and Nasrabadi, 2006; Brooks et al., 2011;
Pressé and Sgouralis, 2023)] used across all applications
discussed here benefit from any available computational
advantage.

4. Bayesian nonparametrics

In Eq. (12), we see that constructing a posterior demands a
mathematical, i.e., “parametric,” form of the likelihood.
However, for most practical cases we often do not know

which competing models describe a given dataset. We also
know, and can demonstrate by way of example, that the more
complicated we make a model, the larger its likelihood; i.e.,
we overfit the data.
Compromising between data underfitting and overfitting is

at the heart of the fundamental model selection problem. From
the onset, progress in model selection has been critical, for
instance, in clustering problems where the number of clusters
(i.e., the model) are unknown (Richardson and Green, 1997;
Neal, 2000; Gelfand, Kottas, and MacEachern, 2005;
Sgouralis and Pressé, 2017). Indeed, the model selection
problem manifests itself across microscopy applications, for
example, determining the number of molecules within a
diffraction-limited spot (i.e., the model) explored in Fig. 66
or determining the number of fluorophore species in lifetime
imaging explored in Fig. 46.
While heuristically comparing a fixed set of models to

resolve model selection [for example, by relying on informa-
tion criteria (Quan et al., 2011) and other tools introduced as
postprocessing steps] is computationally advantageous, such
approaches present theoretical problems. For example, they
are often limited to cases where we can exhaustively enu-
merate models, such as how many emitters in each frame
across a stack of frames can we consider in any wide-field
tracking application? Even if they are enumerable, how do we
assign probabilities to these competing models given the data?
Answers to these questions have led to the formal develop-

ment of Bayesian nonparametrics (BNPs) (Ferguson, 1973;
Pressé and Sgouralis, 2023) alongside Monte Carlo tools to
sample from the resulting nonparametric posteriors, including
reversible jump Markov Chain Monte Carlo (Green, 1995). In
short, BNPs treat model and parameter estimation on the same
footing (Orieux et al., 2012; Hines, Bankston, and Aldrich,
2015; Sgouralis and Pressé, 2017; Gabitto et al., 2021) and
construct nonparametric posteriors over both models and their
associated parameters.
In particular, within a nonparametric treatment we consider

a priori an infinite number of competing models. We place
priors on these models alongside their associated parameters
just as we place priors on parameters alone within the regular
parametric Bayesian paradigm.
One catch is that BNPs are limited to a particular class of

models termed nested models. Note that many models
considered across microscopy applications belong to this
class. Nested models include all models that can be generated
from a more general model by setting parameters to different
values (including zero), with the most general model itself
being infinite dimensional. For example, a two state model
used in analyzing a Förster resonance energy transfer (FRET)
time trace, which is explored in Sec. II.A, follows from a three
state model where transitions to the third state are all set to
zero. Other examples of nested models that we explore in the
review include (1) the number of molecules in a diffraction-
limited spot (see Figs. 66 and 59), (2) the number of
fluorophore species in lifetime imaging (see Fig. 46), and
perhaps less intuitively (3) all competing two-dimensional
lifetime maps obtained from scanning confocal lifetime
imaging; see Fig. 48.
These examples were intentionally numbered. They allow

us to introduce three commonly used nonparametric priors
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used in constructing nonparametric posteriors. In the order in
which these examples are listed, we have the beta-Bernoulli
process prior (Hjort, 1990; Paisley and Carin, 2009;
Broderick, Jordan, and Pitman, 2012; Shah, Knowles, and
Ghahramani, 2015; Al Labadi and Zarepour, 2018; Pressé and
Sgouralis, 2023), the Dirichlet process prior (Neal, 2000;
Gelfand, Kottas, and MacEachern, 2005; Sgouralis and
Pressé, 2017; Sgouralis et al., 2018; Gabitto et al., 2021;
Pressé and Sgouralis, 2023), and the Gaussian process (GP)
prior (Rasmussen, 2003; Quinonero-Candela and Rasmussen,
2005; Pressé and Sgouralis, 2023).
The beta-Bernoulli process prior is used when we try to

estimate the number of discrete elements contributing to the
data. These could be the number of clusters or, equivalently,
the number of emitters contributing photons generating an
image frame or producing a stream of photons within a
confocal spot; see Fig. 42. Within a BNP paradigm, we assign
a Bernoulli variable (binary random variable) bm, called a
load, to each discrete element (molecule). Considering as
many as M loads (and letting M eventually tend to infinity),
one finds that the unknowns appearing in ϑ are augmented to
include b1∶M. Thus, ϑ for the single spot confocal would now
include the diffusion coefficient, emission rate, molecular
locations, and the loads b1∶M.
When multiplying the likelihood by the appropriate beta-

Bernoulli prior process, we can then construct a posterior
whose parameters we want to sample, including the loads. The
resulting posterior is in turn often sampled using Monte Carlo
techniques to determine which loads are sampled mostly as 0s
(and thus coincide with molecules not warranted by the data)
or coincide with 1s (and thus coincide with molecules
warranted by the data). The number of molecules in each
draw from the posterior is then determined by summing
all loads.
We now turn to the subsequent two nonparametric priors.

For instance, the Dirichlet process prior is used when we want
to assign probabilities to an infinite number of components,
for example, when we want to determine to what degree each
unique chemical species contributes photons in a lifetime
experiment; see Fig. 46. Ideally, based on Monte Carlo
sampling of the nonparametric posterior (obtained from the
product of the likelihood and the Dirichlet process prior), we
would find which of the infinite species introduced in
modeling contribute non-negligibly to the data.
Finally, GP priors are used in estimating smooth functions.

Smooth functions of interest in microscopy include the
fluorophore density maps explored in Sec. IV.C or even
smooth backgrounds for large numbers of emitters. Each of
these maps consists of an infinite set of correlated random
variables, i.e., values of the map at every point in space. Draws
from the nonparametric posterior then assign values to each
point on the map. In practice the number of map points whose
value we want to deduce is kept finite and limited to a fixed
number of points, typically over a uniform mesh grid termed
the inducing points (Quinonero-Candela and Rasmussen,
2005; Bryan, Sgouralis, and Pressé, 2020; Fazel, Jazani
et al., 2022). The value of the map on a finer spatial grid
can then be interpolated from the spatial correlation function
already informing the GP prior. Having now introduced key
notions from statistics, we turn to microscopy.

C. Basic characteristics of fluorescence microscopy

All optical microscopes use light, one way or another, to
interact with the sample under observation. Indeed, bright-
field, dark-field, or even phase contrast imaging differ from
each other in details pertaining to which part of the excitation
or detection arms are altered or blocked to create images at the
detector.
However, these microscopes are limited in their ability to

discern contrast at molecular and even supramolecular length
scales at which life unravels. At such scales, we exploit
fluorescence microscopy involving fluorophore-labeled sam-
ples, as detailed in Sec. II. When excited, fluorophores emit
light that can be selectively filtered from the excitation beam
to form an image. In its simplest form, a fluorescence
microscope is a two-lens system: an objective lens with small
focal length f1 and a tube lens with long focal length f2;
see Fig. 1.
In modern infinity-corrected research microscopes, the

objective converts the diverging spherical wave front emitted
by a point emitter in the focal plane in sample space into a
planar wave front. The planar wave front is then reconverted
by the tube lens into a spherical wave front converging into a
point on the image plane.
The two most important characteristics of a microscope are

its magnification and its resolution, i.e., how well the sample
features are resolved. In Fig. 1, the system’s magnification is
given by the ratio f2=f1 (from the proportionality of vertical
to horizontal distances). However, the magnification of an
optical microscope today is of secondary importance, as
images are recorded with array detectors, such as comple-
mentary metal-oxide semiconductor (CMOS) or electron
multiplying charge-coupled device (EMCCD) cameras with
varying pixel size; see Appendix A. This is in contrast to
visual inspections of a sample where our rod and cone cell
sizes are fixed. For such wide-field microscopes equipped
with a camera, the detector’s physical pixel size divided by the
microscope’s magnification set at an upper bound on the

FIG. 1. Schematic of an infinity-correctedwide-fieldmicroscope
consisting of an ideal objective lens with focal length f1 and an
ideal tube lens with focal length f2. We show light propagation
from a point source in the focal plane (sample space) to the image
point in image space. The plane between the lenses, a distance f1
away from the objective lens and a distance f2 from the tube lens, is
called the conjugate plane (the green vertical line). The conjugate
plane is also sometimes termed the back focal plane, Fourier plane,
or pupil plane. Here the light from any point source on the focal
plane crosses through the same lateral position. By considerations
of geometric proportion, the ratio of the lateral displacement of the
image point to the lateral displacement of the source point is equal
to the ratio of the focal lengths f2=f1. This ratio is themicroscope’s
magnification M.
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image quality. This effective pixel size should be at least 2
times smaller than the microscope’s optical resolution (the
Nyquist criterion).
This leads us to the second important microscope character-

istic: its resolution. The microscope resolution is limited by a
number of factors including the diffraction of light and light
collection by objective lenses. These two effects lead to a
fundamental resolution limit of approximately half of the
wavelength. As such, if the emitted light’s wavelength were to
be far smaller than typical dimensions of the molecular species
of interest, then our review would stop here and textbooks
would be filled with real-life images reminiscent of David
Goodsell’s artistic renderings of life inside the cell (Goodsell,
2009). However, this is not the case.
We discuss resolution of different microscope modalities

more thoroughly shortly, though we start with a heuristic
visualization of a fundamental microscope’s optical resolution
limit; see Fig. 2. There we show the far-field electric field
distribution of light from two coherent point sources, des-
ignated by red dots, before an objective lens. As both point
sources are assumed to emit light coherently, the resulting
intensity distribution shows characteristic lanes of construc-
tive and destructive interference. When the distance between
the two point emitters y is gradually reduced (from left to right
in Fig. 2), the two symmetric lanes of destructive interference
(directions of zero light intensity) closest to the optical axis
migrate toward higher emission angles until they reach the
objective lens’ edge. At that point, the objective detects only
the light of a continuous spherical wave front absent any zero-
intensity minima within its light detection cone (with half
angle Θ), similar to what the objective would see from a single
emitter.
Simple trigonometry dictates that the path difference

between (1) the first emitter and the edge of the lens and
(2) the second emitter and the same edge of the lens is y sinΘ.
In so doing, we assumed that the separation of the lens and
the emitters is much larger than y in the far-field limit. The
first destructive interference lane therefore occurs at the
angle Θ if the path difference is half the wavelength, i.e.,

ymin sinΘ ¼ λ=2n, where λ is the vacuum emission wave-
length and n is the refractive index of the medium in which the
emitters are embedded. As such, the wavelength in this
medium is λ=n. Abbe’s well-known resolution limit, which
was first formulated by Ernst Abbe (1840–1905 CE) in 1873
(Abbe, 1873), follows from this result as

ymin ¼
λ

2n sinΘ
¼ λ

2NA
; ð14Þ

where NA is the objective’s numerical aperture.
A similar simplified consideration can also be applied

toward understanding the spatial resolution of a confocal
laser-scanning microscope (CLSM). In a CLSM, the sample is
scanned with a tightly focused laser beam, and the excited
fluorescence light is collected by the microscope optics,
focused through a confocal pinhole to suppress out-of-focus
light, and finally detected with a point detector (usually a
silicon-based photodiode or a photoelectron multiplier tube);
see Sec. IV.B.1. The recorded fluorescence light intensity as a
function of scan position is then used to reconstruct an image.
The fundamental advantage of a CLSM as compared to a
wide-field imaging microscope is its optical sectioning
capability, i.e., its capability to record true three-dimensional
sample images, which is later detailed when the optical
transfer functions (OTFs) of both microscope types are
considered. If one momentarily neglects a CLSM’s confocal
detection volume, its lateral resolution is determined by how
tightly a laser beam can be focused onto an excitation spot. In
a mathematically more precise manner, one asks about the
tightest spatial intensity modulation still present in a diffrac-
tion-limited focus. The answer is given in Fig. 3, which shows
that the tightest modulation is achieved by the interference of
the two light rays exiting the objective at the highest possible
angle, which is exactly the half angle of light detection Θ of

FIG. 2. Visualization of the diffraction limit of resolution.
Displayed are the interference patterns of two coherently emitting
point emitters, shown by red dots, for three different distances
between emitters across panels. The closer the emitters are
positioned with respect to each other, the larger the angular
positions of the destructive interference lanes (directions of zero
light intensity). At a critical distance, shown in the right panel, the
first lane of destructive interference is positioned at the half angle
Θ of light collection of the objective, and the objective lens
receives a continuous wave front absent intensity minima
appearing as a single emitter wave front.

FIG. 3. Lateral resolution limit of a CLSM. The resolution is
determined by the highest lateral spatial frequency contained in a
focused bright spot. This is generated by the interference of two
rays traveling from the edges of the objective to the focal point
with the highest possible incidence angle Θ with respect to the
optical axis as shown. The associated wave vectors are of equal
magnitude 2πn=λ, where λ is the vacuum wavelength. The
corresponding lateral components kx;θ of these wave vectors
are of equal magnitude given by kx;θ ¼ 2πn sinΘ=λ and opposite
directions resulting in a difference of 4πn sinΘ=λ. As such, the
interference of the two beams leads to a periodic interference
pattern in the lateral direction with a periodicity λ=2n sinΘ that is
equal to the lateral resolution limit of a CLSM.
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the objective. The spatial periodicity of this intensity modu-
lation is again given by Abbe’s formula [Eq. (14)], but with
the emission wavelength now replaced by the excitation
wavelength (usually shorter than the emission wavelength
due to the spectral Stokes shift of fluorescence emission with
respect to excitation; see Sec. II).
In a similar vein, we can also obtain the axial resolution

limit of a confocal laser-scanning microscope by asking about
the tightest spatial intensity modulation achievable when
focusing light through the objective. The answer is presented
in Fig. 4, where the tightest modulation is now generated by
the interference of an axial light ray with a light ray traveling
at the highest possible incidence angle Θ. This directly yields
the axial resolution limit of an optical microscope, comple-
mentary to Abbe’s lateral resolution limit, and is given by

zmin ¼
λ

nð1 − cosΘÞ ≈
2nλ

ðNAÞ2 ; ð15Þ

where the approximation on the right-hand side is valid only
for small numerical aperture values.
We summarize physical scales associated with lateral and

axial resolution of diffraction-limited optical microscopes in
Fig. 5. There we show lateral and axial resolutions as
functions of the NA for optical wavelengths across the visual
spectrum using for concreteness a water immersion objective
(i.e., designed for imaging in water with a refractive index
of 1.33).
While providing qualitative guidance on the optical system

design, the axial and lateral spatial resolution expressions
provided in Eqs. (14) and (15) remain theoretical. In particu-
lar, such expressions provide an upper bound on a resolution
this is otherwise limited by factors including crucial notions of
stochastic nature of photons and undesired out-of-focus light.
A final important note is warranted on light (information)

collection efficiency and suppression of out-of-focus light
from regions outside the focal plane, i.e., limiting light
collection to a certain axial range termed optical sectioning.

For this purpose, specialized sample illumination and fluo-
rescent light detection techniques have been developed,
including total internal reflection fluorescence (TIRF) micros-
copy (Axelrod, 1981), supercritical angle fluorescence (SAF)
microscopy (Enderlein, Ruckstuhl, and Seeger, 1999;
Ruckstuhl and Verdes, 2004), metal-induced energy transfer
(MIET) microscopy (Chizhik et al., 2014), confocal micros-
copy (Marvin, 1961), image scanning microscopy (ISM)
(Sheppard, 1988; Müller and Enderlein, 2010), two-photon
microscopy (Denk, Strickler, and Webb, 1990), 4Pi micros-
copy (Hell and Stelzer, 1992), structured illumination micros-
copy (SIM) (Bailey et al., 1993), light-sheet microscopy
(Voie, Burns, and Spelman, 1993; Huisken et al., 2004),
and multiplane microscopy (Blanchard and Greenaway, 1999;
Prabhat et al., 2004).
All of the aforementioned methods accomplish optical

sectioning and enhance photon collection efficiency in
improving image resolution and contrast. These techniques
pushed the optical resolution to its limits, as dictated by
Abbe’s diffraction barrier. However, it was not until the end of
the 20th century that this barrier was overcome to achieve
spatial resolutions in far-field light microscopy far beyond the
diffraction limit (Hell and Wichmann, 1994). Research on this
front is still ongoing and leverages advances in four main
components of fluorescence microscopes: fluorescent emit-
ters, optical setups, detectors, and analysis. In what follows,
we first discuss fluorescent light sources and then proceed to
review the optics of different microscope modalities while
presenting statistical analysis frameworks throughout.

II. FLUOROPHORES

Point fluorescent emitters or light sources, often molecules
termed fluorophores, are key to the fluorescence imaging of
labeled samples. Both conventional fluorescence imaging and
microscopy techniques achieving resolution beyond light’s
diffraction limit rely on tunable properties of fluorophores
including emission rates, brightness, absorption and emission
spectra, excited-state lifetimes, and other photophysical prop-
erties such as blinking and photobleaching (Moerner,
Shechtman, and Wang, 2015). Here we discuss quantum

FIG. 4. Axial resolution of a CLSM. Like the lateral resolution,
the axial resolution is determined by the tightest spatial modu-
lation of light that can be generated along the optical axis. This is
achieved by interfering an axially propagating beam with one
traveling at the highest possible incidence angle. The axial
component of the wave vector of the former is equal to the full
wave-vector length k0 ¼ 2πn=λ, and the axial component for the
latter is kz;Θ ¼ 2πn cosΘ=λ. The resulting interference therefore
leads to a spatial intensity modulation along the optical axis
with a periodicity λ=nð1 − cosΘÞ setting a CLSM’s axial
resolution limit.

FIG. 5. Lateral and axial resolution in diffraction-limited optical
microscopy using a water immersion objective (designed for
imaging in water with a refractive index of 1.33) as a function of
numerical aperture (NA) and wavelength.
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fluorophore properties, alongside their statistical modeling,
and relegate classical models to Sec. III.D, where we derive
their emission fields.

A. Fluorophore properties

Most molecules do not naturally fluoresce in regimes
detectable by modern detectors and cannot easily be excited
without inducing photodamage. Thus, one must often resort to
specific fluorescence labeling of biological samples (Specht,
Braselmann, and Palmer, 2017), for example, to identify and
investigate structures against the vast cellular background of
proteins, nucleic acids, lipids, and small molecules.
While the addition of fluorescent labels introduces chal-

lenges, their intrinsic properties as well as the nonlinear
response to light in itself open windows of opportunity, for
example, to study molecular interactions (Ciruela, 2008; Luo
et al., 2020), determine molecular copy numbers (Gruβmayer,
Yserentant, and Herten, 2019; Hummert et al., 2021; Bryan,
Sgouralis, and Pressé, 2022), and improve optical resolution
(Huang, Bates, and Zhuang, 2009; Schermelleh et al., 2019),
as detailed in Sec. V.
The most common labels include fluorescent proteins

(Tsien, 1998; Zhang et al., 2002; Dedecker, De Schryver,
and Hofkens, 2013); organic dyes (Dempsey et al., 2011;
Lavis, 2017), generally small organic molecules containing
conjugated π-electron systems; and semiconductor quantum
dots, inorganic nanocrystals with especially broad excitation
and correspondingly narrow emission spectra (Resch-Genger
et al., 2008).
Fluorescent labels include a large variety of fluorophores

with excitation and emission wavelength maxima spanning the
near-infrared, visible, and UV spectrum (Giepmans et al.,
2006; Li and Vaughan, 2018). Less common, “exotic” fluo-
rescent labels providing an even larger color palette and
increasingly tunable photophysical properties include carbon
nanorods, carbon dots, polymer dots, fluorocubes, and fluo-
rescent defects in diamond or 2D materials (Aharonovich and
Neu, 2014; Jin et al., 2018; Saurabh et al., 2022).
Basic fluorophore photophysics is captured by Jablonski

diagrams such as Fig. 6 for an organic dye illustrating select
transitions between different molecular energy and spin states.
More rigorous treatments of transition rules, molecular spec-
tra, and interactions of light and matter were given by
Lakowicz (2006) and Valeur and Berberan-Santos (2012).
A molecule in the typically singlet ground state is excited to

a singlet excited state by absorbing a photon with a probability
depending on the excitation light intensity and the molecule’s
absorption cross section [linearly related to the molar extinc-
tion coefficient (Lakowicz, 2006)]. The molar extinction
coefficient ϵλ is a measure of how strongly a solution
containing 1 mol of a fluorophore absorbs (attenuates) light
at wavelength λ. This is expressed using the Lambert-Beer law
as (Lakowicz, 2006)

ϵλ ¼
Aλ

cMl
¼ log10ðI0λ=IλÞ

cMl
; ð16Þ

where Aλ is the measured absorbance, I0λ is the initial light
intensity of wavelength λ, and Iλ is the light intensity after the

light travels the path length l through the solution with molar
concentration cM. From Eq. (16), it is clear that the Système
International unit of the molar extinction coefficient is
m2=mol, but the commonly used unit is (l/cm)/mol.
From ϵλ, we immediately arrive at another important

fluorophore property, namely, the molecular brightness Bλ.
To achieve a high signal-to-noise ratio (SNR), fluorescent
labels with a high molecular brightness Bλ ¼ Qfϵλ are
desired. Here Qf is a unitless quantity called fluorescence
quantum yield describing how many fluorescence photons are
emitted relative to the number absorbed. This is given by the
ratio of the sum of radiative transitions to the total transitions,
i.e., the sum of transition rates corresponding to all transition
paths out of the excited state,

Qf ¼
P

kfP
kf þ

P
knon

; ð17Þ

where kf and knon, are the rate of fluorescence or radiative
decay and the rate of nonradiative decay, respectively.
Another important fluorophore property is the average time

τ that a fluorophore remains excited prior to emitting a photon,

τ ¼ 1P
kf þ

P
knon

: ð18Þ

In Eq. (18) τ, termed the fluorescence lifetime, typically lasts
on the order of nanoseconds for organic dyes. The fluores-
cence lifetime is a characteristic property of fluorophores in
their unique environment tuned by pH, ion or oxygen
concentration, molecular binding, or proximity-dependent
intermolecular energy transfers primarily influencing the rate
of nonradiative decay (Lakowicz, 2006; Valeur and Berberan-
Santos, 2012). As such, differences in fluorophore lifetimes
can be employed to distinguish fluorophore species, thereby

FIG. 6. Simplified Jablonski diagram. The electronic ground
state S0, the singlet excited states Sn, the triplet excited states Tn,
and radical cation F·þ or anion states F·−. The thick lines
represent electronic energy levels, the thin lines indicate vibra-
tional energy levels, and rotational energy states are left un-
marked. P, phosphorescence; VR, vibrational relaxation; IC,
internal conversion; ISC, intersystem crossing. The rates of
oxidation and reduction are kox and kred, respectively. The arrows
represent a subsample of all possible transitions between different
states.
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broadening the appeal of fluorescence lifetime imaging
microscopy (FLIM) (Digman et al., 2008; Datta et al.,
2020) in functional and multiplexed imaging of disparate
fluorophores with otherwise overlapping spectra (Fereidouni,
Bader, and Gerritsen, 2012; Valm et al., 2017; Scipioni et al.,
2021); see Sec. IV.B.1.
As described, the quantum yield is tied to the number of

possible transitions out of the excited state either nonradia-
tively or radiatively. Upon fluorophore excitation, one such
radiative transition occurs via rapid vibrational relaxation to
the lowest energy level of the S1 excited state followed by
radiative decay to a vibrational ground-state level with
spontaneous fluorescence emission; see Fig. 6. The fluores-
cence emission is shifted toward longer wavelengths (Stokes
shift) as compared to excitation due to fast internal conversion
and vibrational relaxation to the lowest level of the S1 excited
state [Kasha’s rule (Kasha, 1950)]. Another radiative tran-
sition out of the excited state, of later interest, is stimulated
emission. Typically stimulated emission does not play a role at
room temperature as long as the excitation intensity is low.
However, this nonlinear process is exploited in stimulated
emission depletion (STED) superresolution imaging (Hell and
Wichmann, 1994), as described in Sec. V.A.1.
In addition to radiative transitions, several alternative non-

radiative pathways are available for transition from the first
singlet excited state S1 to the ground state. For instance, the
molecule can return to the ground state, thereby dissipating
the energy to the environment as heat. Another example is the
nonradiative transition to the triplet state T1 via the intersystem
crossing often employed in single-molecule localization
microscopy (SMLM); see Sec. V.B.1. Return from T1 to the
ground singlet state (phosphorescence) is typically delayed on
account of a forbidden spin flip transition; see Fig. 6. As such,
transitions to and from triplet or further reduced or oxidized off
states (also referred to as bright and dark states, respectively)
occur on longer timescales (0.1–100 ms).
To control fluorophore switching between triplet dark and

bright states, i.e., to control blinking, oxygen concentration
may be adjusted. Upon reaction with dissolved molecular
oxygen, fluorophores may transition from the triplet dark state
(off state) to the singlet ground state (on state) by interacting
with molecular oxygen’s ground triplet state. Molecular
oxygen can also accept an electron from a triplet fluorophore,
thereby inducing typically undesirable phototoxic effects, i.e.,
irreversible photobleaching (Zheng et al., 2014) occurring
from many states, as shown in Fig. 6.
Though in some applications photobleaching is desirable, in

others, such as particle tracking (Shen et al., 2017; Sgouralis
et al., 2023; Xu, Sgouralis et al., 2023) and protein-protein
interactions via FRET (Förster, 1948; Lerner et al., 2018),
photobleaching and blinking are problematic and are sup-
pressed by the removal of dissolved oxygen via oxygen
scavenging systems, such as glucose oxidase coupled with
catalase (Aitken, Marshall, and Puglisi, 2008), or by the
depopulation of dark states, thus leveraging both the reducing
and oxidizing agents (Vogelsang et al., 2008).
In many cases, such as in stochastic optical reconstruction

microscopy (STORM) (Rust, Bates, and Zhuang, 2006), the
blinking of fluorophores is desirable for achieving spatial
resolution below the diffraction limit; see Sec. V.B.1. Here

many cyanine and rhodamine dyes are used, as they can be
reversibly photoswitched from a bright state to a dark state
(blink) in a buffer containing enzymatic oxygen scavengers
and a primary thiol such as β-mercaptoethylamine or
β-mercaptoethanol (Li and Vaughan, 2018; Jradi and Lavis,
2019). Alexa Fluor 647 is the organic dye of choice for state-
of-the-art direct stochastic optical reconstruction microscopy
(dSTORM) imaging due to its high brightness and efficient
switching behavior (Diekmann et al., 2020). For several
cyanines, such as Cy5, it has been shown that thiolate anions
covalently bind to the fluorophore (Dempsey et al., 2009),
thereby disrupting the conjugated system and resulting in a
dark state. The dyes can also be chemically reduced by
NaBH4 to a nonfluorescent form or synthesized in a caged
form that can later be photoactivated, an approach that has
been used in different SMLM techniques (Vaughan, Jia, and
Zhuang, 2012; Lehmann et al., 2015). Rhodamine dyes can
also reversibly switch from a fluorescent to a nonfluorescent
form by intramolecular spirocyclization either spontaneously
or driven by UV light. This has been exploited to generate
sensors and switches and can be used across SMLM appli-
cations (Li and Vaughan, 2018; Zheng et al., 2019).
Examples of SMLM include photoactivated localization

microscopy (PALM) and fluorescence photoactivated locali-
zation microscopy (fPALM) (Betzig et al., 2006; Hess,
Girirajan, and Mason, 2006), as well as derivatives such as
single particle tracking PALM (Manley et al., 2008). In these
applications, fluorescent proteins switch between fluorescent
states reversibly (for example, on and off for dronpa by cis-
trans isomerization) or through photoactivation (for example,
photoactivatable green fluorescent protein by decarboxyla-
tion) or photoconversion (for example, green to red wave-
length for the photoconvertible green-yellow fluorescent
protein mEos by β elimination) (Dedecker, De Schryver,
and Hofkens, 2013; Jradi and Lavis, 2019).
More recently studies of protein activity and SMLM have

benefited from the discovery of a new class of ligand-activated
fluorescent proteins (Kumagai et al., 2013). The prototype
UnaG binds the small molecule bilirubin via multiple non-
covalent interactions and forms a fluorescent complex. The
oxidized (and photobleached) ligand can detach from the
protein, allowing a fresh bilirubin molecule to bind and act as
a sensor for small molecules, thereby reporting on protein
activity (Kwon et al., 2020).
In general fluorescent proteins have the advantage of being

genetically encodable, allowing fluorescent labeling of nearly
arbitrary target proteins in living cells and organisms through
fusion constructs. However, this also means that proteins must
undergo appropriate folding followed by chromophore matu-
ration, i.e., formation of a fluorescent molecule typically
starting with three amino acids (Dedecker, De Schryver, and
Hofkens, 2013). This process can take minutes to hours, may
be incomplete, and can impair the temporal accuracy of
measurements of rapid processes such as gene expression
dynamics (Balleza, Kim, and Cluzel, 2018). While organic
dyes circumvent some of these difficulties, both organic dyes
and fluorescent proteins often exhibit complex photophysical
and photochemical behaviors, therby complicating quantita-
tive analysis. For instance, organic dyes can exhibit spectral
blue shifts upon high laser radiation (Cho et al., 2021;
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Helmerich et al., 2021) or spectral shifts from substrate
(green) to product state (orange), as in the epoxidation of a
double bond in conjugation with a BODIPY dye (Rybina
et al., 2013). This is useful in mechanistic studies of chemical
reactions at the single-molecule level (Cordes and Blum,
2013). Such spectral shifts may affect multicolor applications,
such as in superresolution imaging or single particle tracking
(SPT), and are problematic to FRET experiments. Moreover,
many proteins have additional dark states, for example, mEos
cis-trans isomerization (Annibale et al., 2011; De Zitter et al.,
2019), and organic dyes may have several conformations with
different intensity levels, for example, ATTO647N, with at
least three states differing in fluorescent lifetimes (Wang and
Moerner, 2013), thereby complicating quantitative single-
molecule readout.

B. Förster resonance energy transfer

In Sec. II.A, we discussed fluorophore properties involving
radiative or nonradiative transitions. Here we continue by
considering nonradiative transitions through intermolecular
energy transfer (Valeur and Berberan-Santos, 2012). A few
examples of these transitions include photoinduced electron
transfer (Escudero, 2016), collisional quenching or FRET,
bioluminescence resonance energy transfer (Kobayashi et al.,
2019; Syed and Anderson, 2021), protein-induced fluores-
cence enhancement (Myong et al., 2009; Hwang, Kim, and
Myong, 2011), and the recently discovered proximity-assisted
photoactivation (Graham et al., 2022). These transitions are
distance dependent and thus have been leveraged to probe
binding interactions or conformational changes.
In what follows, we focus on FRET, an intermolecular

energy transfer process that is widely used to measure
molecular interactions and serves as a distance ruler for
structural biology (Lakowicz, 2006; Wu et al., 2020; Agam
et al., 2023). In FRET, nonradiative energy transfer from a
donor to an acceptor fluorophore occurs through dipole-dipole
coupling with a rate constant kFRET when the donor’s emission
spectrum overlaps with the acceptor’s absorption spectrum
(Förster, 1948). Under the dipolar approximation, the prob-
ability for energy transfer to occur, called the FRET efficiency
(EFRET), scales with the donor-acceptor distance to the inverse
sixth power (Jones and Bradshaw, 2019) and is 50% at the
Förster radius R0,

EFRET ¼ 1

1þ ðr=R0Þ6
¼ kFRETP

kf þ
P

knon
¼ 1 −

τDA

τD
; ð19Þ

where τDA and τD are the donor fluorescence lifetimes in the
acceptor’s presence and absence, respectively. For typical
donor-acceptor pairs, R0 is a few nanometers (Lakowicz,
2006) and depends on the donor emission-acceptor absorption
spectral overlap and the relative orientation of donor-acceptor
dipole moments. It is explicitly given by

R6
0 ¼

9000 ln 10
128π5NAn4

κ2Qf;D

Z
IDðλÞϵAðλÞλ4dλ; ð20Þ

where κ is the so-called orientation factor,

κ ¼ 3 cos θD cos θA − cos θDA; ð21Þ

Qf;D is the donor’s quantum yield in the absence of the
acceptor, n is the solution’s refractive index, NA is the
Avogadro constant, ID is the donor’s normalized fluorescence
emission spectrum, ϵA is the acceptor’s molar extinction
coefficient, θDA is the angle between the donor and acceptor
transition moments, and θD and θA are the angles between
these moments and the vector connecting donor to acceptor,
respectively. For ϵA and λ, respectively, given in (l/cm)/mol
and centimeters, R0 is in centimeters.
Ignoring the angular dependence of the energy transfer for

fixed dipoles, as described in Eq. (20), can yield significant
biases in FRET distance assessments (Hellenkamp et al.,
2018). In practice, the dipoles are often freely and rapidly
rotating (rapid compared to the donor deexcitation rate),
leading to an average value of κ2 ¼ 2=3.
FRET can also occur between spectrally identical mole-

cules (homo-FRET) and is observed by measuring its effect on
fluorescence polarization anisotropy (Gradinaru et al., 2010),

r ¼ Ik −GI⊥
Ik þ 2GI⊥

: ð22Þ

In Eq. (22) Ik=⊥ is the intensity measured when the polarizers
in the detection path are aligned parallel or perpendicular to
those in the excitation and G is a correction factor for the
difference in the instrument’s sensitivity to the two orthogonal
polarization orientations.
Upon exposure to linearly polarized light, the excitation

probability is highest for molecules whose absorption dipole
moments are aligned parallel to the polarization vector of the
exciting light. In most cases, the absorption and emission
dipoles of a molecule are colinear, such that fluorescence
emission remains polarized immediately after excitation.
Fluorescence remains anisotropic unless the molecule rotates
over the fluorescence lifetime or the excitation energy is
transferred to a different molecule. Thus, anisotropy or
polarization measurements inform us on molecular parameters
such as orientation, oligomerization or size, and environmen-
tal conditions like viscosity (Gradinaru et al., 2010; Bader
et al., 2011). Polarization can also be read out in super-
resolution imaging, for example, using polarized light in
illumination or detection and capturing polarized emission
by implementing specifically engineered PSFs sensitive to
polarization (Hulleman et al., 2021; Wu, Lu, and Lew, 2022);
see Sec. V.C.
Polarization, lifetime, FRET efficiency, and other photo-

physical markers discussed here are interesting only insofar as
their changes report back on the kinetics of the underlying
labeled molecules. We now turn to Markov models describing
discrete molecular events to extract molecular kinetics from
photophysical changes.

C. Markov models for fluorophores

To help encourage the use of Markov models, here we
consider them in the analysis of FRET data and the
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enumeration of fluorophores within a diffraction-limited
region of interest (ROI) is described in Appendix B.
For example, observations from FRET experiments with

photons individually recorded [at avalanche photodiodes
(APDs)] include a set of photon arrival times along with a
set of corresponding colors (wavelengths), designated by
c ¼ 1 or 2, attributing photons to either a donor or an acceptor
channel, respectively.
The set of photon arrival times (data) are measured either

with respect to the start of the experiment, for continuous
illumination (Saurabh, Safar et al., 2023), or with respect to
the pulse immediately preceding a photon detection, as in
pulsed illumination (Safar et al., 2022). For illustration, we
assume here continuous illumination where data consist of
intervals between photon arrivals. We let K þ 1 coincide with
the total number of photons and denote the data with
Δt1∶K ¼ fΔt1;…;ΔtKg. The sets of interarrival times are
then used to learn transition kinetics between system states
comprising molecular and labeled photophysical states. For
concreteness, we assume that molecular states coincide with
conformational states of a typically large biomolecule.
To collect such typical FRET datasets, the donor is excited

using an illumination laser and we assume, only for simplicity
here though performed more generally by Saurabh, Fazel et al.
(2023), that acceptors become excited exclusively via FRET.
The rate of donor and acceptor emission then depends on their
separation characterizing a conformational state and its
corresponding FRET efficiency; see Sec. II.B. As the number
of conformational states associated with different FRET
efficiencies [EFRET in Eq. (19)] may be unknown, these can
be learned nonparametrically (Saurabh, Fazel et al., 2023;
Saurabh, Safar et al., 2023). However, for simplicity we again
presume here two states termed high and low FRET desig-
nated by ξm;m ¼ 1 and 2. Further, given that both donors and
acceptors are rarely simultaneously excited, we consider only
three possible photophysical states: f1 ¼ ðground; groundÞ,
f2 ¼ ðexcited; groundÞ, and f3 ¼ ðground; excitedÞ, where
the first elements represent the donor’s state. The entire
problem’s state space is then spanned by a set of states
obtained from the tensor product of photophysical and
conformational states termed composite states. To facili-
tate the notation, we designate composite states by
sm ∈ fðξ1; f1Þ; ðξ1; f2Þ; ðξ1; f3Þ; ðξ2; f1Þ; ðξ2; f2Þ; ðξ2; f3Þg,
with m ¼ 1∶6.
We can now write a generative model required in con-

structing the likelihood used in the analysis of FRET experi-
ments. To do so, we start with the rate matrix

K ¼

2
666664

0 ks1→s2 … ks1→s6

ks2→s1 0 … ks2→s6

..

. ..
. . .

. ..
.

ks6→s1 ks6→s2 … 0

3
777775; ð23Þ

where self-transitions are by definition disallowed and ksm→sm0

is the transition rate from state sm to state sm0 . Furthermore,
elements of the rate matrix coinciding with simultaneous
conformational and photophysical transitions are set to zero
owing to their rarity. Nonzero matrix elements of the rate

matrix thus coincide with (1) transitions between the two
FRET conformational states (kξ1→ξ2 and kξ2→ξ1) while the
photophysical states remain fixed or (2) transitions between
different photophysical states while conformational states
remain fixed. To be more precise, photophysical transitions
include donor excitation (ks1→s2 ¼ kex), donor radiative relax-
ation (ks2→s1 ¼ kd), acceptor relaxation (ks3→s1 ¼ ka), FRET

transitions when in ξ1 (ks2→s3 ¼ kð1ÞFRET), and FRET transitions

when in ξ2 (ks5→s6 ¼ kð2ÞFRET). As such, written explicitly the
rate matrix for this simple case reads

K¼

2
66666666664

0 kex 0 kξ1→ξ2 0 0

kd 0 kð1ÞFRET 0 kξ1→ξ2 0

ka 0 0 0 0 kξ1→ξ2

kξ2→ξ1 0 0 0 kex 0

0 kξ2→ξ1 0 kd 0 kð2ÞFRET

0 0 kξ2→ξ1 ka 0 0

3
77777777775
: ð24Þ

Observations occur only when either the donor or the
acceptor emits radiatively. As such, the system may visit
intermediate states between photon emissions such as those
undergoing conformational transitions. For a perfect detector,
ignoring detector dead time (Saurabh, Fazel et al., 2023) and
assuming complete detection efficiency (otherwise, kex is
understood as an effective excitation rate), the photon inter-
arrival time coincides with the total time that the system
spends avoiding radiative transitions.
To construct the likelihood for a FRET dataset (interphoton

arrival times and detection channels), we begin by illustrating
how such a dataset can be obtained from a generative model.
To do so, we first designate the state of the composite system
at time tn as sðtnÞ. Next, following the notation introduced in
Sec. I.B [see Eq. (8)], a state trajectory is constructed
following the Gillespie algorithm (Gillespie, 1976) by first
selecting the state to which we transition and then deciding
when this transition occurs,

sðtnþ1ÞjsðtnÞ ∼ Categorical

�
ksðtÞ→s1

ksðtnÞ
;…;

ksðtÞ→s6

ksðtnÞ

�
; ð25Þ

δtn ∼ ExponentialðksðtnÞÞ: ð26Þ

where “Exponential” implies a normalization constant. In
Eqs. (25) and (26) δtn ¼ tnþ1 − tn is the time that the system
spends in state sðtnÞ and ksðtnÞ is the escape rate out of sðtnÞ,
i.e., the sum of rates pointing out of sðtnÞ. The Categorical
distribution introduced in Eq. (25) is treated as the generali-
zation of the Bernoulli distribution, albeit with more than two
outcomes.
Taken together, Eqs. (25) and (26) constitute what is called

a generative model, i.e., a model that is helpful not only in
generating the data but also in constructing the likelihood.
This generative model can indeed be further generalized to
include imperfect detectors, dead time, and other artifacts such
as direct acceptor excitation and crosstalk (Roy, Hohng, and
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Ha, 2008; Bacia, Petrášek, and Schwille, 2012; Sgouralis
et al., 2019; Saurabh, Fazel et al., 2023).
We are now presented with a modeling choice. That is, we

can learn the trajectory in composite state space (states
occupied across time points) and kinetic rates populating
the rate matrix (Kilic, Sgouralis, and Pressé, 2021; Safar et al.,
2022). Alternatively, we can marginalize [see Eq. (6)] over all
trajectories and learn only kinetic rates (Gopich and Szabo,
2005; Saurabh, Fazel et al., 2023).
As it is the most common, we select the latter path and

marginalize over all possible nonradiative paths between
observations. To achieve this, we use the master equation
(Van Kampen, 1992; Gopich and Szabo, 2005; Lee and
Pressé, 2012; Pressé and Sgouralis, 2023; Saurabh, Fazel
et al., 2023)

d
dt

PðtÞ ¼ PðtÞG ð27Þ

describing the evolution of the probability vector PðtÞ
collecting the probabilities of occupying different states at
the time t. In Eq. (27) the generator matrix G is related to the
rate matrix as follows:

G ¼ K −

2
666664

ks1 0 � � � 0

0 ks2 � � � 0

..

. ..
. . .

. ..
.

0 0 … ks6

3
777775; ð28Þ

where the diagonal matrix has the same size as K and its
nonzero elements coincide with the escape rates. From the
generator matrix, we obtain a propagator matrix Q collecting
transition probabilities over an infinitesimal period ε,

Q ¼ exp ½Gε�: ð29Þ

Therefore, given the probability vector at time t − ε, Pðt − εÞ,
the probability vector at time t reads PðtÞ ¼ Pðt − εÞQ. As
such, given the initial probability vector Pin, we can find the
probability at any time by dividing the time interval into N
small periods of ε,

P ¼ PinQ1 � � �QN; ð30Þ

where Q1 ¼ � � � ¼ QN ¼ Q in the absence of observations.
However, in the presence of observations the propagators in
Eq. (30) are modified according to the monitored transitions
(Saurabh, Fazel et al., 2023). For example, observation of no
photon over the nth period ε signifies no radiative transitions,
allowing us to set ka ¼ kd ¼ 0 for this period, which in turn
results in a modified propagator designated by Qnon

n .
Furthermore, a photon arrival, indicating a radiative transition,
forces nonradiative transition rates to be zero, thus leading to a
modified propagator Qrad

k for the kth photon over an infini-
tesimal period ε.
The likelihood over a set of observations is now expressed

in terms of these modified propagators (Gopich and Szabo,
2006; Saurabh, Fazel et al., 2023),

PðΔt1∶K jK;PinÞ ∝ PinQnon
1 � � �Qrad

k � � �Qnon
N PT

norm; ð31Þ

where Pnorm is a row vector of 1s.
Until now we have assumed a parametric framework with a

fixed number of conformational states, often set to two, low
and high FRET (McKinney et al., 2003), in the literature. We
lift this constraint and treat the number of conformational
states as unknown while extending the aforementioned for-
mulation to the nonparametric regime. To do so, we assume an
infinite number of conformational states with a load bm (see
Sec. I.B) associated with each mth state resulting in an
infinite-dimensional generator matrix; see Saurabh, Fazel
et al. (2023) and Saurabh, Safar et al. (2023). From the
nonparametric generator matrix, we compute the correspond-
ing propagator matrices and use them to build a likelihood
similar to Eqs. (29)–(31). The nonparametric posterior over
the set of unknowns ϑ ¼ fb̄;K;Ping is then constructed by
including a beta-Bernoulli process prior (see Sec. I.B) over the
loads and appropriate priors over the remaining unknowns
[ideally conditionally conjugate priors if available (Pressé and
Sgouralis, 2023)]; see Fig. 7. Strictly speaking, in computa-
tional applications we often use large albeit finite load
numbersM and verify that for large enoughM the conclusions
drawn are independent of M. Finally, the FRET posterior
obtained is sampled using Monte Carlo methods to deduce the
set of unknowns (Safar et al., 2022; Saurabh, Fazel et al.,
2023; Saurabh, Safar et al., 2023).
An alternative statistical FRET framework makes use of

photon counts over equal time windows, i.e., bins, during the
experiment, rather than single photons (Gopich and Szabo,
2005; Saurabh, Fazel et al., 2023). In this case, the likelihood
is derived using the fact that photon counts over fixed periods
are Poisson distributed (ignoring detector noise convoluted
with Poisson shot noise required of quantitative analyses)

FIG. 7. Statistical framework: FRET.
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(Saurabh, Fazel et al., 2023). The derivation of such like-
lihoods is more straightforward than in the single-photon case
(Patel et al., 2019; Sgouralis et al., 2019), and learning rates
(or, more accurately, transition probabilities) are achieved
using hidden Markov models (HMMs) (Roy, Hohng, and Ha,
2008). While traditional HMM frameworks require the num-
ber of FRET states as input, more recent iterations have
leveraged variational tools to determine states, for example,
the software package vbFRET (Bronson et al., 2009), with
recent developments in nonparametric infinite HMMs now
allowing posterior probabilities over states warranted by
the data to be sampled simultaneously alongside kinetics
(Sgouralis and Pressé, 2017; Sgouralis et al., 2019).
However, by virtue of binning photon arrivals, whether by

choice or due to the detector used, HMM frameworks naturally
compromise our ability to resolve fast kinetics occurring on
timescales at or below the bin size. For this reason, other than
the potential for computational speedup, there is no reason to
bin single-photon data. However, if one uses detectors that
unavoidably bin counts across pixels commonly used in wide-
field applications (see Appendix A), then fast transitions can be
deduced on timescales exceeding data acquisition. This is
achieved by leveraging the fact that the signal amounts to an
average of the properties over the state visited (Pirchi et al.,
2016; Kilic, Sgouralis, and Pressé, 2021; Kilic et al., 2021);
see Fig. 67.
Such strategies used to deduce dynamics on timescales at or

exceeding data acquisition rely on the Markov jump process
(MJP) (Hobolth and Stone, 2009; Kilic, Sgouralis, and Pressé,
2021), which assumes that the system evolves in continuous
time. This is in contrast to the HMM paradigm, which
approximates dynamics as occurring discretely and only at
the measurement time. In other words, the MJP accurately
presupposes a continuous time trajectory SðtÞ in the discrete
state space of the composite system generated using the same
procedure as described by Eqs. (25) and (26). The observation
for the kth data acquisition period (bin) is therefore (Kilic,
Sgouralis, and Pressé, 2021; Kilic et al., 2021)

wk ∼ Poisson

�Z
tkþδT

tk

μSðtÞdt
�
; ð32Þ

where μSðtÞ represents the photon emission rate for the
instantaneous state μSðtÞ occupied at a time t.
Having highlighted Markov model applications for the

analysis of temporal data from FRETexperiments, we relegate
further applications (counting fluorophores within a diffrac-
tion spot) to Appendix B. In what follows, we turn to
spatiotemporal data, andfor this we discuss the optics of
different microscope modalities and derive their correspond-
ing PSFs.

III. FLUORESCENCE MICROSCOPY: THE POINT
SPREAD FUNCTION

In this section, we develop in a self-contained manner
the physical theory of optical imaging using a wide-field
fluorescence microscope. We start by deriving the Abbe
sine condition subsequently used to describe fundamental

properties of electromagnetic wave propagation through
optical systems. We then continue to derive the basic
principles of how to compute the OTF and PSF of a micro-
scope, discuss the lack of optical sectioning of wide-field
microscopes, and illustrate the effect of optical aberrations
on PSFs.

A. Fundamental property of microscopic imaging: The Abbe
sine condition

To gain a deeper understanding of how a microscope forms
an image alongside fundamental principles governing image
formation, we start by considering the imaging of a generic
point source in sample space into an image point in image
space; see Fig. 8. We denote parameters associated with the
image and sample spaces with and without a prime, respec-
tively, hereafter. A point source in the focal plane on the
optical axis (symmetry axis designated by blue lines) emits
concentric electromagnetic waves. The segment of the spheri-
cal wave front collected by the objective is then converted by
the microscope into a segment of a spherical wave front
converging on the corresponding image point. To facilitate
subsequent derivations, we assume that the distance between
the sample point and the objective lens is large enough that the
spherical wave front incident on the objective can be con-
sidered as a superposition of planar wave front segments
traveling at different propagation angles θ with respect to the
optical axis (Fraunhofer diffraction limit). Correspondingly,
the transformed spherical wave front in image space is also
considered a superposition of planar wave front segments
traveling at angles θ0 with respect to the optical axis.
We can now obtain a relation between the angle θ and the

corresponding angle θ0 of a planar wave front segment within
the sample and image spaces, respectively; see Fig. 1. We
begin by assuming that the point source is shifted laterally
away from the optical axis by a distance y; see Fig. 9.
Considering a perfect imaging system, the spherical wave
fronts from the shifted point source, shown in green, will be
converted into spherical wave fronts converging onto a point
shifted a distance y0 away from the optical axis in the image
space where the relation between y0 and y is given by
y0 ¼ My. Here M denotes the microscope’s magnification.
Now consider two planar wave front segments traveling at

an angle θ from a source located at y and on the optical axis.
There is a phase difference between these two planar wave
front segments that is proportional to ny sin θ. The microscope
transforms these planar wave front patches into two planar
wave front patches traveling along an angle θ0 in the image

FIG. 8. The optical microscope, i.e., the imaging system, is a
wave front transforming system converting (left sketch) the
outgoing spherical wave front of a point emitter in sample space
into (right sketch) a concentric spherical wave front in image
space converging into an image point in the image space.
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space with a phase difference of y0 sin θ0 between the patches
(assuming both here and later that the refractive index of the
image space is always that of air, ≈1.0). To attain perfect
focus, all planar wave front patches originating from a point
source and converging at a corresponding focal point in the
image space must have the same phase at the focal point
(maximum constructive interference). In other words, the
phases of all planar wave components constituting the
spherical wave front must be the same at the image point
where the spherical wave front converges. We thus find that
ny sin θ ¼ y0 sin θ0. When considering that the ratio between y0

and y is the image magnification, this yields

n sin θ ¼ M sin θ0; ð33Þ

which is the so-called Abbe sine condition (Mansuripur, 1998,
2002) for a perfect aplanatic imaging system (i.e., emission
from a point at a lateral distance y in the focal plane in sample
space is converted into a perfect spherical wave front segment
converging on an image point at a position y0 ¼ My in the
image plane).
Invoking similar arguments, we can derive the relation

between θ and θ0 required for the perfect imaging of point
sources along the optical axis into corresponding image points
in image space. This situation is illustrated in Fig. 10, where
we again compare the phase differences between (1) wave
fronts from the point source in the focal plane with the shifted
point source and (2) corresponding wave fronts converging on
the image points. As such, we now find the following relation
between θ and θ0:

nðcos θ − 1Þ ¼ Mzðcos θ0 − 1Þ; ð34Þ

where Mz denotes the axial magnification (Hopkins, 1946;
Braat, 1997; Born and Wolf, 2013). It is impossible for both
the Abbe sine condition and Eq. (34) to be simultaneously
satisfied. This shows that an optical system that perfectly
images points from the focal plane onto the conjugate image
plane can do so only on these two specific planes and exhibit

aberrations, i.e., deviations of wave fronts from spherical
shape away from the focal plane. Note that for small values of
θ we can expand Eq. (34) into a first order Taylor series, i.e.,
nθ2=2 ≈Mzθ

02=2, which can simultaneously be satisfied by
the Abbe sine condition if

nsin2θ=2 ≈Mzsin2θ0=2 ð35Þ

and Mz ≈M2=n. Equation (35) is called Herschel’s con-
dition (Steward, 1927; Braat, 1997; Gross, 2005; Botcherby
et al., 2008; Born and Wolf, 2013). This shows that a system
satisfying the Abbe sine condition (aplanatic imaging system)
has an axial magnification of roughly the square of the lateral
magnification divided by the sample medium’s refractive
index.

B. Electromagnetic field of image formation

In this section, we consider a point emitter with incoherent
emission in sample space and proceed to derive a relation
between the corresponding electromagnetic fields in the
sample and image spaces. Specifically, we operate in the
Fourier domain to derive electric and magnetic field compo-
nents in image space in terms of the emissive electric fields in
sample space. To begin, we write the emitter’s electric field
plane wave Fourier representation in sample space as

EðrÞ ¼
Z

Θ

0

dθ sin θ
Z

2π

0

dϕE0ðθ;ϕÞ exp ðik · rÞ; ð36Þ

where r is the position vector in sample space with respect to
the objective focal point in sample space; see Fig. 1.
Moreover, E0ðθ;ϕÞ is the electric field amplitude for a plane
wave traveling along a wave vector k with a length jkj ¼
2πn=λ and a direction k̂ ¼ ðcosϕ sin θ; sinϕ sin θ; cos θÞ [a
hat above a vector always designates a unit vector with
components ðx; y; zÞ in Cartesian coordinates]; see Fig. 11.
Furthermore, the angular integration extends over the entire
cone of light, with the angle Θ detected by the objective
(recalling that n sinΘ is the objective’s numerical aperture;
see Fig. 2).
In Fig. 11, considering the plane on which both the optical

axis (the z axis in Fig. 11) and k lie, then it is convenient to
split the electric field amplitude E0ðθ;ϕÞ into two orthogonal
polarization components, namely, parallel and perpendicular
to this plane E0 ¼ E0;kðθ;ϕÞêk þ E0;⊥ðθ;ϕÞê⊥, where E0;k
and E0;⊥ are the corresponding electric field amplitudes along
the two polarization orientations and the corresponding unit
vectors are denoted by êk and ê⊥. These two unit vectors with
the unit vector k̂ form an orthonormal set of unit vectors that
are given as follows in Cartesian coordinates:

k̂ ¼ ðcosϕ sin θ; sinϕ sin θ; cos θÞ;
êk ¼ ð− sinϕ; cosϕ; 0Þ;
ê⊥ ¼ êk × k̂ ¼ ðcosϕ cos θ; sinϕ cos θ;− sin θÞ: ð37Þ

Equation (37) immediately allows us to write the magnetic
field in sample space. We do so by recalling that, for a plane

FIG. 9. The phase relation between planar wave front segments
propagating along the same angle θ but emanating from two
different point sources, where one point source is on the optical
axis (red) and the other is laterally shifted by a distance y (green).
The image point (the point of convergence of the spherical wave
front segment) corresponding to the shifted point source is
translated by a distance y0 away from the optical axis. The ratio
between y0 and y is the magnification M. Optical path length
differences between wave front segments traveling along angles θ
and θ0, respectively, are shown as thin blue lines at the emitters’
positions and oriented perpendicularly to the propagation direc-
tions θ and θ0.
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wave with a wave vector k and an electric field amplitude E0,
the magnetic field amplitude is B0 ¼ nk̂ × E0 (Jackson,
1999). Thus, the magnetic field amplitude in sample space
reads B0 ¼ n½−E0;kðθ;ϕÞê⊥ þ E0;⊥ðθ;ϕÞêk�.
The microscope’s optics now converts each plane wave

component of Eq. (36) into a corresponding plane wave
component E0

0ðθ0;ϕÞ expðik0 · r0Þ in the image space; see the
right image in Fig. 11. Here r0 is centered at the focus of
the tube lens (see Fig. 1), the angle ϕ remains the same, and
the propagation angles θ and θ0 are connected via the Abbe
sine condition given by Eq. (33). As before, we split the
electric field amplitude into two principal polarization direc-
tions E0

0 ¼ E0
0;kðθ;ϕÞêk þ E0

0;⊥ðθ;ϕÞê0⊥, where the set of unit
vectors in the image space is obtained by substituting θ0 for θ
in Eq. (37). Moreover, we note that ê0k ¼ êk due to its

independence from θ. The corresponding magnetic field
amplitude can then be obtained as B0

0 ¼ −E0
0;kðθ0;ϕÞê0⊥ þ

E0
0;⊥ðθ0;ϕÞêk assuming a refractive index in the image space

of unity.
We now relate the electric field amplitudes in sample and

image spaces by considering the conservation of energy flux
density along the optical axis for every plane wave component
absent attenuation (attenuation can be considered a form of the
aberration discussed in Sec. III.F). This flux density is given
by the z component of the time-averaged Poynting vector P
(Jackson, 1999), which reads

Pz ¼
c
8π

êz · ðE0 × B�
0Þ ¼

c
8π

êz · ðE0
0 × B0�

0 Þ; ð38Þ

where an asterisk denotes complex conjugation. For B0 ¼
nk̂ ×E0 in sample space and B0

0 ¼ k̂0 ×E0
0 in image space,

we obtain njE0j2 cos θ ¼ jE0
0j2 cos θ0 from which the electric

field amplitudes in image and sample spaces are related

jE0
0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
cos θ
cos θ0

r
jE0j: ð39Þ

Furthermore, by combining the Abbe sine condition n sin θ ¼
M sin θ0, Eq. (33), and its differential n cos θdθ ¼
M cos θ0dθ0, we have

sin θdθ ¼
�
M
n

�
2 cos θ0

cos θ
sin θ0dθ0: ð40Þ

Substituting Eq. (40) into the electric field’s plane wave
representation (36) and leveraging Eq. (39), we arrive at
the following expression for a plane wave representation of the
image space electric field:

E0ðr0Þ ¼ M2

n3=2

Z
Θ0

0

dθ0 sin θ0
ffiffiffiffiffiffiffiffiffiffiffi
cos θ0

cos θ

r Z
2π

0

dϕ

× ½E0;kêk þ E0;⊥ê0⊥� exp ðik0 · r0Þ; ð41Þ

where the maximum integration angle derived from the
Abbe sine condition for Θ and Θ0 is now Θ0 ¼
arcsin ðn sinΘ=MÞ ¼ arcsin ðNA=MÞ. Similarly, for the
magnetic field we find that

B0ðr0Þ ¼ M2ffiffiffi
n

p
Z

Θ0

0

dθ0 sin θ0
ffiffiffiffiffiffiffiffiffiffiffi
cos θ0

cos θ

r Z
2π

0

dϕ

× ½−E0;kê0⊥ þ E0;⊥êk� exp ðik0 · r0Þ: ð42Þ

Recognizing that the previously mentioned equations for
both electric andmagnetic field components [Eqs. (41) and (42)]
are simplyFourier representations [expansions into planewaves
expðik0 · r0Þ], we now comment on the frequency support
restricted to wave vectors with k0¼jk0j¼ðk02x þk02y þk02z Þ1=2¼
2π=λ, 0 ≤ θ0 ≤ Θ0, and 0 < ϕ ≤ 2π. This restriction is illus-
trated as a spherical cap of radius k0 ¼ 2π=λ in the frequency
domain; see the left panels in Figs. 12 and13. In otherwords, the
Fourier amplitudes of the electric and magnetic fields are only
nonzero on this spherical cap in Fourier space. To better see this,
we rewrite Eq. (41) as

E0ðr0Þ ¼
Z

d3k0

ð2πÞ3 Ẽ
0ðk0Þ exp ðik0 · r0Þ; ð43Þ

where a variable with a tilde denotes the Fourier representation
of the variable hereafter. Now, assuming that the three-dimen-
sional integration extends over the entire k space (Fourier
space), the integration measure in the spherical coordinates is
d3k0 ¼ k02 sin θ0dk0dθ0dϕ, and the electric field Fourier ampli-
tude [the integrand in Eq. (43)] for angles 0 ≤ θ0 ≤ Θ0 is given
by (all constant prefactors omitted)

Ẽ0ðk0Þ ∝ δ

�
k0 −

2π

λ

� ffiffiffiffiffiffiffiffiffiffiffi
cos θ0

cos θ

r
ðE0;kêk þ E0;⊥ê0⊥Þ; ð44Þ

FIG. 10. Phase relation between planar wave front segments
propagating along the same angle θ but emanating from two
different point sources along the optical axis. As in Fig. 9, optical
path differences (phase differences) between wave front segments
traveling along angles θ and θ0, respectively, are shown as blue
rectangles.

FIG. 11. Geometry of propagation of a narrow section of the
wave front from the emitter to the image plane.
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while it is zero for angles θ0 > Θ0. In Eq. (44) δ denotes Dirac’s
delta function and guarantees that k0 ¼ 2π=λ. The absolute
value of the electric field in Eq. (44) is obtained as (see the left
panels in Figs. 12 and 13)

jẼ0j∝
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosθ0
cosθ ðE2

0;k þE2
0;⊥Þ

q
; k0 ¼ 2π

λ ; 0≤ θ0 ≤Θ0;

0; otherwise:
ð45Þ

A similar expression holds for the Fourier representation of the
magnetic field when E0;⊥ is replaced by −nE0;k and E0;k is
replaced by nE0;⊥.

C. Point spread function

We are now in a position to calculate the PSF denoted by
Uðr0Þ. The PSF is by its nature a probability density over a
photon reaching the point r0 on the image plane, i.e., the

detector, where r0 is a random variable. That is, the PSF plays
the role of a normalized spatial distribution of light intensity
recorded by a detector at the image plane for a pointlike
emitter located in the sample space. Most statistical concepts
inherent to the modeling of fluorescence microscopy follow
from this fundamental probabilistic property of light.
The PSF itself once again follows from the Poynting

vector’s z component [see Eq. (38)],

Uðr0Þ ¼ c
8π

êz · ½E0ðr0Þ ×B0�ðr0Þ�

¼ c
8π

½E0
xðr0ÞB0�

y ðr0Þ − E0
yðr0ÞB0�

x ðr0Þ�: ð46Þ

As the PSF is known, the image model Λðr0Þ, i.e., the spatial
distribution of the expected photon intensity or photon count
in image space, for an arbitrary sample follows from the
convolution

Λðr0Þ ¼ I
Z

d3r0Uðr0 −Mr0ÞSðr0Þ; ð47Þ

where Sðr0Þ is the so-called sample function describing the
fluorophore distribution. We assume that the PSF U is
normalized to unity and that I reflects the total photon
emission per fluorophore.
For an aplanatic imaging system, which is shift invariant

(see Sec. III.F), Eq. (47) is exact for all emitters on the focal
plane, i.e., for z0 ¼ 0. However, it is approximate for emitters
outside the focal plane, as follows from the discussion of the
Abbe and Herschel conditions in Sec. III.A.
Using the electric field of Eq. (44), one finds that the lateral

components of the electric and magnetic fields in the Fourier
domain are explicitly given (for θ0 ≤ Θ0) by

�
Ẽ0
x

Ẽ0
y

�
∝ δ

�
k0 −

2π

λ

� ffiffiffiffiffiffiffiffiffiffiffi
cos θ0

cos θ

r

×

�−E0;k sinϕþ E0;⊥ cos θ0 cosϕ

E0;k cosϕþ E0;⊥ cos θ0 sinϕ

�
ð48Þ

and

�
B̃0
x

B̃0
y

�
∝ δ

�
k0 −

2π

λ

� ffiffiffiffiffiffiffiffiffiffiffi
cos θ0

cos θ

r

×

� −E0;k cos θ0 cosϕ − E0;⊥ sinϕ

−E0;k cos θ0 sinϕþ E0;⊥ cosϕ

�
; ð49Þ

where we also use the Cartesian representations of êk and ê0⊥,
as in Eq. (37). Moreover, we remember that the refractive
index in image space is assumed to be 1 (air). Thus, no
additional prefactor appears in the coinciding magnetic field
expression.
With the Fourier representations of the electric and mag-

netic fields at hand, we now derive the imaging OTF and then
the PSF. To start, we note that the PSF is given by the product
of the electric and magnetic field components in the spatial
domain; see Eq. (46). However, within the Fourier domain,
we use the well-known convolution theorem: the Fourier

FIG. 12. From electric or magnetic field to intensity. Left
panel: two spherical caps show the support of the Fourier
representations of electric and magnetic fields given by
Eq. (44). Right panel: representation of the extent of frequency
support of the imaging OTF obtained by the convolution of the
two caps in the left panel; see Eq. (50). The shape of the right
panel is termed the butterfly shape, and its missing cone in the
middle highlights a wide-field microscope’s inability to collect
sufficient axial frequencies and thus a lack of optical sectioning.

FIG. 13. Visualization of the maximum axial and lateral extents
of the Fourier representation of the electric field and the imaging
OTF. (a) Cross section of a Fourier representation of the electric
field (cap) at k0y ¼ 0. The cross section is an arc with radius
k0 ¼ 2π=λ and 0 ≤ θ0 < Θ0; see Eq. (45). The maximum extents
of the cap along the lateral and axial directions are given by
Δk0k ¼ ð2π=λÞ sinΘ0 and Δk0z ¼ ð2π=λÞð1 − cosΘ0Þ, respec-

tively. (b) Convolution of the caps associated with the electric
and magnetic fields along the largest axial and lateral extents
beyond which the convolution is zero.
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representation of the product of two functions is proportional
to the convolution of their Fourier representations. As such,
the imaging OTF is given by

Ũðk0Þ ∝ Ẽ0
xðk0Þ ⊗ B̃0�

y ðk0Þ − Ẽ0
yðk0Þ ⊗ B̃0�

x ðk0Þ

¼
Z

d3k00½Ẽ0
xðk0 − k00ÞB̃0�

y ðk00Þ

− Ẽ0
yðk0 − k00ÞB̃0�

x ðk00Þ�; ð50Þ

where ⊗ denotes convolution. The resulting OTF is then
related to the PSF by Fourier transform,

Uðr0Þ ¼
Z

d3k0

ð2πÞ3 Ũðk0Þ exp ðik0 · r0Þ: ð51Þ

The convolution of Eq. (50) is depicted in Fig. 12. The two
spherical caps (note that it is only the area on the surface)
shown in the left panel represent regions where the Fourier
amplitudes of the electric and magnetic fields are nonzero; see
Eq. (45). The convolution of these caps results in the butterfly-
shaped three-dimensional figure shown in the right panel of
Fig. 12, where the surface shown represents the maximum
extent of frequency support of the OTF. That is, the OTF
amplitude vanishes for all frequencies outside this region and
takes nonzero values only for frequencies within the three-
dimensional shape, which is also termed the microscope’s
bandpass.
From Fig. 13(a), one finds that the lateral and axial extents

of the Fourier representations of the electric and magnetic
fields are Δk0k ¼ 2π sinΘ0=λ and Δk0z ¼ 2πð1 − cosΘ0Þ=λ,
respectively. As the OTF is computed from the autoconvo-
lution of the cap associated with the electric and magnetic
fields, the lateral and axial sizes of the OTF are then found
to be 4π sinΘ0=λ and 2πð1 − cosΘ0Þ=λ, respectively; see
Fig. 13(b).
In other words, the microscope does not transmit any lateral

spatial frequencies beyond k0k > 4π sinΘ0=λ or any axial

spatial frequencies beyond k0z > 2πð1 − cosΘ0Þ=λ, where

k0k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02x þ k02y

q
is the amplitude k0’s projection in the

kx-ky plane. Thus, the three-dimensional intensity distribution
in image space does not transmit lateral spatial modulations
smaller than 2π=max k0k ¼ λ=2 sinΘ0. This leads to spatial

modulations of Mλ=2n sinΘ in image space using the Abbe
sine condition and translates into the smallest discernible
spatial variation λ=2n sinΘ in the sample space when one
takes into account that the lateral magnification is M.
Therefore, we recover Abbe’s resolution limit (14) as 2π over
the largest lateral spatial frequency transmitted by the micro-
scope from sample to image space,

rlmin ¼
2π

klmax
; ð52Þ

where rlmin and klmax denote the resolution and maximum
extent of the OTF along the lth direction, respectively.
While Eq. (52) provides a measure of resolution for lens-

based imaging systems with OTF magnitudes consisting of a

single lobe monotonically decaying to zero, for example,
lateral magnitude of wide-field microscope’s OTF, it should be
used with care for more complicated OTFs such as axial
resolution for wide-field microscopes (see Fig. 12 and
Sec. III.E), SIM (see Sec. IV.D), some types of light-sheet
microscopes with multiple gaps in their OTF magnitudes (see
Sec. IV.E), etc.
As such, regarding the wide-field microscope’s axial

resolution, the situation is more complicated due to the
OTF’s shape in the axial direction. Specifically, in the right
panel of Fig. 12 one can see that the butterfly-shaped imaging
OTF does not support axial frequencies within a cone defined
by k0z=k0k > tanΘ0. This is often called the OTF’s missing
cone. One effect of this missing cone is that a wide-field
microscope does not provide optical sectioning (z sectioning).
That is, for k0k ≈ 0 a wide-field microscope collects limited

axial spatial frequencies. In other words, the PSF pattern
formed by light collected from a fluorophore using a wide-
field setup varies slowly with the fluorophore’s axial position.
Yet, as seen in Fig. 12, axial frequencies k0z have nonzero

amplitudes for 0 < k0k < max k0k ¼ 4π sinΘ0=λ. The maximal

value k0z ¼ 2πð1 − cosΘ0Þ=λ contained in the OTF shows that
the smallest possible spatial modulation of the PSF along the
optical axis is approximately λ=ð1 − cosΘ0Þ. For paraxial
optics, i.e., for small values of Θ and Θ0 where we have
approximately an axial magnification Mz ¼ M2=n (see
Sec. III.A) and with the approximation 1 − cosΘ0 ≈ Θ02=2≈
n2Θ2=2M2, this translates into a small axial modulation of
2λ=nΘ2 ≈ 2nλ=ðNAÞ2 of the sample function transmitted
through the microscope. This is in accordance with our
previous estimate of the axial resolution limit in Eq. (15).
Problems associated with the OTF’s missing cone, i.e., the
missing z sectioning, is considered in Sec. IV, where we
discuss confocal microscopy alongside other modalities.

D. Electromagnetic field emission of an oscillating
electric dipole

In Sec. III.C, we derived integral expressions for the OTF
and PSF of a wide-field microscope; see Eqs. (46), (50),
and (51). Here we evaluate these integrals and obtain a wide-
field microscope’s exact OTF and PSF using E0ðθ;ϕÞ ¼
E0;kêk þ E0;⊥ê⊥ for a fluorescent point emitter; see Eq. (44).
We do so by noting that the electromagnetic emission of
fluorescence emitters (organic dyes, proteins, quantum dots,
etc.) used in fluorescence microscopy are often well approxi-
mated as an oscillating electric dipole. Important exceptions
on which we can generalize include some emission bands of
rare-earth emitters (for example, europium complexes) that
exhibit magnetic dipole or electric quadrupole properties
(Moskovits and DiLella, 1982; Binnemans, 2015).
To compute the electric dipole’s oscillating electromagnetic

field, we start with a dipole moment with an amplitude p and
an oscillation frequency ω located at rd ¼ ðxd; yd; zdÞ in a
sample medium with a refractive index nd. Moreover, con-
sidering that all fields oscillate as expð−iωtÞ as the dipole
moment oscillations, we focus on the amplitudes of the
electric and magnetic fields. In this case, the Maxwell’s
equations read
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∇ × E ¼ iω
c
B;

∇ × B ¼ −
iωϵd
c

Eþ 4π

c
j; ð53Þ

where ϵd ¼ n2d is the dielectric constant of the sample solution
in which the dipole is embedded and j ¼ −iωpδðr − rdÞ is the
electric current generated by the oscillating dipole. Thus, we
find that ∇ ×∇ ×Ed − k2dEd ¼ 4πk20pδðr − rdÞ for the elec-
tric field Ed of the dipole emitter, where k0 ¼ ω=c and
kd ¼ ndk0. Using ∇×∇×Ed ¼∇∇ ·Ed−∇2Ed (Jackson,
1999) and passing to Fourier space yields, for the Fourier
amplitude Ẽd,

ðk02 − k2dÞẼd − k0ðk0 · ẼdÞ ¼ 4πk20p exp ð−ik0 · rdÞ; ð54Þ

where k0 is the Fourier space coordinate. Multiplying Eq. (54)
by k0 yields k0 · Ẽd ¼−ð4π=ϵdÞðk0 ·pÞexpð−ik0 ·rdÞ, which
we substitute into Eq. (54) to arrive at

Ẽd ¼
4π expð−ik0 · rdÞ

ϵdðk02 − k2dÞ
½k2dp − k0ðk0 · pÞ�: ð55Þ

In real space, Eq. (55) reads

Ed ¼
Z

d3k0

2π2ϵd
½k2dp − k0ðk0 · pÞ� exp ½ik

0 · ðr − rdÞ�
k02 − k2d

; ð56Þ

where jr − rdj is the distance between the electric dipole’s
location rd and the observation point r.
To obtain an expression well suited in modeling the

emission of a dipole in a planar system (for example, above
a flat cover slide), we perform the integration along the k0z
coordinate in Eq. (56) using Cauchy’s residue theorem. To do
so, we close the integration path along the real axis and
complete a semicircle at infinity over the complex k0z plane, as
shown in Fig. 68. To make sure that the exponent vanishes
when the contour is extended into the complex plane, one has
to close the contour over the positive imaginary half plane
when z − zd > 0 and over the negative imaginary half plane
when z − zd < 0. Along the real axis, the integrand has two

poles at positions �wd ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d − q2

q
, where q2 ¼ k02x þ k02y .

However, the integration’s result must contain only outgoing
plane waves [the Sommerfeld radiation condition
(Sommerfeld, 1949)], achieved by deforming the integration
contour around the two poles as shown in Fig. 68.
Subsequently applying Cauchy’s residue theorem yields

Ed ¼
i

2πϵd

Z
d2q
wd

½k2dp − kdðkd · pÞ�

× exp ½iq · ðρ − ρdÞ þ iwdjz − zdj�; ð57Þ

where we use the abbreviations kd ¼ ðq; wdÞ, with

wd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d − q2

q
as the pole location. In Eq. (57) ρ and q

collect lateral coordinates in the real and Fourier spaces,
respectively. Further, ðρd; zdÞ denotes the dipole spatial
coordinates. The two-dimensional integration over q extends

over an infinite Fourier plane oriented perpendicularly to the
optical axis. Equation (57) is the plane wave representation of
the electric field of a free oscillating dipole, also called the
Weyl representation (Weyl, 1919; Banõs, 1966; Mertz,
2019a). As we later see, the Weyl representation is particularly
suited to modeling the imaging of an emitter through a
microscope.
Next we consider the situation where the refractive index nd

of the medium in which the emitting dipole is embedded and
the refractive index n of the immersion medium of the
microscope’s objective differ (for example, imaging with an
oil-immersion objective with an emitter in water). This
situation is schematically shown in Fig. 14. We use
Eq. (57) to model the propagation of the electric field through
an interface dividing the sample (dipole) and immersion
medium, i.e., the cover slide surface. To do so, we recast
the integrand in Eq. (57) as

k2dp − kdðkd · pÞ ¼ k2d½ðp · êkÞêk þ ðp · êd⊥Þêd⊥�; ð58Þ

where we use p ¼ ðp · êkÞêk þ ðp · êd⊥Þêd⊥ þ ðp · k̂dÞk̂d

since the unit vectors êk, êd⊥, and k̂d form an orthonormal
set similar to that in Eq. (37). As such, the problem reduces to
considering the propagation of s- and p-polarized plane waves
through a planar interface.
We now use Eqs. (57) and (58) to write the electric field

after it crosses the interface between the two media and travels
a distance through the immersion medium (with refractive
index n) before arriving in front of the objective lens in terms
of the p- and s-polarized components

Ed ¼
ik20
2π

Z
d2q
w

½tkðp · êkÞêk þ t⊥ðp · ê⊥Þê⊥�

× exp ½iq · ðρ − ρdÞ − iwdzd þ iwðz − fÞ�; ð59Þ

where tk;⊥ are the Fresnel transmission coefficients, ðρ; zÞ
represents the observation point coordinates within the

FIG. 14. Angular distribution of the electric field generated by a
single dipole emitter. The gray rectangle represents the cover
slide (commonly assumed to coincide with the z ¼ 0 plane),
which is the interface between the electric dipole’s embedding
medium (above the cover slide) and the immersion medium
below the cover slide. The red two-headed arrow depicts the
dipole; α and β are the polar and inclination (azimuthal) angles
describing the orientation of the dipole, respectively, ϕ is the
polar angle of the wave vector, and θd and θ are the azimuthal
angles of the wave vector above and below the interface.
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immersion medium, and the focal distance f is the location of
the focal plane with respect to the interface z ¼ 0 coinciding
with the cover slide surface separating the sample from the
immersion medium; see Fig. 14. In Eq. (59) the axial
component w of the wave vector k in the immersion medium

is given by w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − q2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k20 − q2

p
. Moreover, the unit

vector ê⊥ is similar to êd⊥ but is formed from the wave vector

ðq;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k20 − q2

p
Þ instead of ðq;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2dk

2
0 − q2

q
Þ.

Equation (59) can be readily generalized to an arbitrary
number of interfaces. For instance, if an emitter is imaged
through a stack of several layers characterized by different
refractive indices, then the single interface’s Fresnel trans-
mission coefficients in Eq. (59) must simply be replaced by
those for the stacked structure.
Finally, when considering Fig. 14, we have w ¼ nk0 cos θ

and q ¼ nk0ðsin θ cosϕ; sin θ sinϕ; 0Þ, leading to d2q=w ¼
dqxdqy=w ¼ nk0 sin θdθdϕ in spherical coordinates.
Substituting this result into Eq. (59) and comparing it to
Eq. (36) yields the following electric field amplitude E0ðθ;ϕÞ
for a dipole emitter (up to some constant factor):

E0 ∝ ½tkðp · êkÞêk þ t⊥ðp · ê⊥Þê⊥�
× exp ½−iq · ρd − iwdzd − iwf�; ð60Þ

or more explicitly

�
E0;k
E0;⊥

�
¼
�
E0 · ek
E0 · e⊥

�

∝ jpjexpð−iq · ρd − iwdzd − iwfÞ

×

� −tk sinβ sinðϕ−αÞ
t⊥½sinβ cosθ cosðϕ−αÞ− cosβ sinθ�

�
; ð61Þ

where α and β are the dipole orientation angles described in
Fig. 14. By inserting these expressions into Eqs. (41), (42),
and (46), one can compute the wide-field image PSF of the
dipole emitter with arbitrary position and orientation. When
doing so, one can present the results in terms of the lateral
sample coordinates ρ ¼ ρ0=M instead of the image space
coordinates ρ0 and as a function of the axial position zd (with
respect to the cover slide) of the emitter. This notation is
applied to all PSF visualizations in this review. Thus, in what
follows, when writing the PSF UðrÞ as a function of r it is
assumed that the lateral coordinates x and y are the coor-
dinates conjugate to x0 and y0, i.e., x ¼ x0=M and y ¼ y0=M,
and z refers to the axial position zd of the emitter.
As a first example of a PSF visualization, Fig. 15 shows

three-dimensional representations of a dipole emitter’s PSF
along the optical axis for a dipole oriented along the x axis
(left panel) and the z axis (middle panel), and for a rapidly
rotating emitter (right panel) where the isotropic PSF UisoðrÞ
is given by an average of the PSFs calculated for dipole
orientations along the x, y, and z axes (Richards and Wolf,
1959),

UisoðrÞ ¼ 1
3
½UxðrÞ þ UyðrÞ þ UzðrÞ�: ð62Þ

Accounting for the effects of emitter orientation is of key
interest in SMLM (Sec. V.B.1), as fixed orientations can lead
to systematic mislocalization of emitters in space (Enderlein,
Toprak, and Selvin, 2006; Backlund et al., 2014; Deschout
et al., 2014; Fazel and Wester, 2022). That being said,
fluorescent labels are often coupled to structures with a
sufficiently flexible linker that allows us to approximate labels
as nearly freely rotating.
As an example, Fig. 16 shows images of single emitters

with different axial positions and inclination angles toward the
optical axis. For out-of-focus emitters intermediate values of
the inclination angle β (see Fig. 14) can lead to considerable
shifts in an emitter’s image apparent center of mass, which is
especially significant for emitters away from the focal plane.
The situation worsens when working with oil-immersion
objectives with a larger total internal reflection (TIR) critical

FIG. 15. PSF of a wide-field microscope projected into sample
space. Shown are plots of the 1=e, 1=e2, and 1=e3 isosurfaces of
the maximum PSF value. The lateral coordinates refer to back-
projected sample space coordinates ðx; yÞ ¼ ðx0; y0Þ=M, whereas
the axial coordinate refers to an emitter’s axial position zd. We
retain this PSF representation throughout the review. The panels
are described in the text. Calculations were performed for a
NA ¼ 1.2 water immersion objective with n ¼ 1.33 and an
emission wavelength λ ¼ 550 nm.

FIG. 16. Effect of orientation on the emitter’s image. Top
row: images of electric dipole emitters of fixed strength but
different orientations in the x-z plane, where β is the inclination
angle; see Fig. 14. The emitter is situated 400 nm below the focal
plane (NA ¼ 1.2, n ¼ 1.33). Middle row: same as the top row, but
for an emitter situated in the focal plane. Bottom row: same again
but for an emitter situated 400 nm above the focal plane. The scale
bar is 0.5 μm.
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angle than water immersion objective, which allows fluores-
cent light with larger incident angles to be collected. In this
case, even in-focus positions depend on the emitter’s orienta-
tion. While this effect hinders the localizations of rigid single
molecules under the assumption of a symmetric PSF, it can be
exploited to learn three-dimensional orientations of molecules
(Backer et al., 2019; Hulleman et al., 2021; Rimoli et al.,
2022; Wu, Lu, and Lew, 2022).
Finally, we consider the refractive index mismatch resulting

in PSF distortion; see Sec. III.F. As an example, Fig. 17 shows
this effect for a slight refractive index mismatch ofΔn ¼ 0.05,
again for a water immersion objective with NA ¼ 1.2. We
further assume that the objective lens is corrected for the light
refraction introduced by the cover slide. This mismatch results
primarily in PSF axial stretching and an axial shift between its
center position toward larger z values with respect to the actual
position of the emitter. However, the lateral PSF cross section
at the axial location of its maximum does not change
significantly, meaning that the refractive index mismatch
does not affect the lateral position of the focused image of
an emitter, but does result in its mislocalization along the
optical axis.

E. Scalar approximation of the PSF

In Sec. III.D, we derived the exact electric field of an
emitter, i.e., the oscillating dipole [see Eq. (61)], and used it to
compute the PSF. However, these exact expressions are
difficult to computationally manipulate. As such, here we
provide a simple approximation to the emitter’s electric field
and the resulting PSF.
Along these lines, for many practical applications we

assume an isotropic emitter, i.e., one with a uniform emission
amplitude in all directions. In such a case, we can ignore the
vectorial nature of the electric (and magnetic) fields, thus
resulting in an approximate scalar model. To derive such
scalar approximations, we start with Eq. (41) and replace the

amplitude vector E0;kêk þ E0;⊥ê0⊥ with a scalar constant.
Therefore, the expression for the now “scalar” electric
(magnetic) field in the image plane generated by an isotropic
emitter on the optical axis at position z ¼ zd simplifies (up to a
constant factor) to

EðrÞ ∝
Z

Θ0

0

dθ0 sin θ0
ffiffiffiffiffiffiffiffiffiffiffi
cos θ0

cos θ

r Z
2π

0

dϕeiq
0·ρ0−ik cos θz

∝
Z

Θ0

0

dθ0 sin θ0
ffiffiffiffiffiffiffiffiffiffiffi
cos θ0

cos θ

r Z
2π

0

dϕeijqjρ cosϕ−ik cos θz

∝
Z

Θ

0

dðsin θÞ sin θ J0ðk sin θρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos θ0 cos θ

p e−ik cos θz; ð63Þ

where we used q0 · ρ0 ¼ q · ρ ¼ jqjρ cosϕ due to ρ0 ¼ Mρ
and the Abbe sine condition sin θ0 ¼ ðn=MÞ sin θ while
remembering jq0j ¼ k0 sin θ0 and jqj ¼ k sin θ ¼ nk0 sin θ.
In the second step, we performed the integral with respect
to ϕ and used the Abbe sine condition and its differential form
[see Eq. (40)] and ignored all of the prefactors of n and M.
Here Jm is the Bessel function of the first kind of order m
(Olver et al., 2010).
Further simplification is possible by replacing the square

root factor for unity valid for small values of θ0 and θ (far-field
limit). Equation (63) therefore simplifies to

Eðρ; zÞ ≈
�

n
M

�
2
Z

sinΘ

0

dη ηJ0ðkηρÞe−ik
ffiffiffiffiffiffiffi
1−η2

p
z; ð64Þ

where η ¼ sin θ. For the special case of z ¼ 0 (emitter in the
focal plane), analytic integration then yields

EðρÞ ≈ NA
M2k0ρ

J1ðNAk0ρÞ; ð65Þ

where we use k sinΘ ¼ NAk0. In Eq. (65) J1 is the Bessel
function of the first kind of the order of 1 (Olver et al., 2010).
The PSF is then given by the absolute square of the scalar
electric field. Therefore, for the 2D PSF of an in-focus
isotropic emitter in the far-field limit, we find the well-known
Airy pattern

UðρÞ ∝
�
J1ðNAk0ρÞ

k0ρ

�
2

; ð66Þ

where we omit a constant factor and where we recall that
k0n sinΘ ¼ NAk0 is the maximum lateral wave-vector com-
ponent transmitted by the microscope from the sample to the
image plane; see Sec. I.C.
In situations where the scalar approximation is suitable (for

example, 3D imaging with molecules more than a wavelength
away from the cover slide), this approximate PSF facilitates a
computationally lighter model, as calculating Eq. (66) requires
a single integration (Fourier transform), while evaluating
Eq. (62) requires three integrations. To check the accuracy
of this approximation, Fig. 18 shows a comparison of the
PSF’s line cross section through its center, calculated using the
full vectorial model of Secs. III.C and III.D and the scalar
approximation of Eq. (66). The scalar approximation shows

FIG. 17. Effect of a refractive index mismatch on the PSF. The
PSF of a rapidly rotating electric dipole emitter (isotropic emitter)
is positioned at various distances from a cover slide surface
(z ¼ 0). The calculations were done for an NA ¼ 1.2 objective
corrected for an immersion or medium with n ¼ 1.33, while the
solution above the cover slide has n ¼ 1.38 (i.e., a refractive
index mismatch Δn ¼ 0.05). The bottom of each box shows a
density plot of the PSF’s cross section through its maximum
value.
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negligible deviations from the accurate model for the system
considered (water immersion objective with NA ¼ 1.2 and an
emission wavelength of 500 nm). In most cases, this approxi-
mation is sufficient for quantitative analysis of fluorescence
microscopy data, for example, fitting single-molecule images
(see Sec. V.B.1) while provided with rapidly rotating
molecules.
However, the usefulness of the scalar approximation is

further evident when one considers a microscope’s OTF.
When Eqs. (41) [see also Eq. (45)] and (63) are compared,
the frequency support of the Fourier transforms for the vector
and scalar representations of the electric field are identical and
are given by a spherical cap centered at k0 ¼ 0 with radius
2π=λ and half opening angle Θ0; see Figs. 12 and 13. As with
the PSF visualization, one can show the OTF back-projected
to sample space, which is done using the Abbe sine condition
as ðk0x; k0yÞ ¼ n=Mðkx; kyÞ and the relation k0 ¼ k=n. Cross
sections of the corresponding electric (magnetic) field
Fourier representation amplitude is shown in the two leftmost
panels of Fig. 19 at ky ¼ 0. In the case of vectorial model, for
each of the vector fields E and B one has two such cross
sections, one for the Ek (Bk) component and one for the E⊥
(B⊥) component. Figure 19 represents the scalar approxima-
tion with a uniform field amplitude over the entire spherical
cap; cf. Eq. (63). In both the exact vector field description and
the scalar approximation, the PSF is found by products of the
electric and magnetic fields, which translates in Fourier space
to a convolution of the corresponding Fourier representations
of these fields.
A cross section of the OTF amplitude at ky ¼ 0 is visualized

in the right panel of Fig. 19, with the (auto)convolution of the

two Fourier amplitude distributions shown on the left. We note
that in general the OTF is a complex quantity and all panels
show the OTF amplitudes, which are sometimes called
modulation transfer functions but for brevity are simply called
OTFs in all subsequent figures. Although the exact amplitude
distribution over the butterfly-shaped frequency support of the
OTF will be slightly different for the full vector field [see
Fig. 12 and Eq. (45)] and the scalar approximation [see
Eq. (65)], the frequency support of the OTF remains identical.
This is particularly important to emphasize because the limits
of this frequency support determines the microscope’s optical
resolution. Here we again emphasize that the resolution along
a given direction is determined by the maximum frequency
kmax of this support along the chosen direction by Eq. (52). For
the wide-field microscope in Fig. 19, the lateral and axial
extents of the OTF’s frequency support are kmax;y ¼
2nk0 sinΘ and kmax;z ¼ nk0ð1 − cosΘÞ, respectively; see also
Fig. 13. This leads to the previously derived lateral and axial
resolutions [see Secs. I.C and III.C and Eq. (52)]

ymin ¼
2π

kmax;y
¼ λ

2n sinΘ
¼ λ

2NA
ð67Þ

and

zmin ¼
2π

kmax;z
¼ λ

nð1 − cosΘÞ ≈
2nλ
NA2

: ð68Þ

Equation (67) is Abbe’s well-known lateral resolution limit
for a wide-field microscope, while the obtained approximate
axial resolution in Eq. (68) is valid only for small numerical
apertures.
We can further simplify the PSF by approximating Eq. (66)

with a 2D Gaussian function

FIG. 18. Comparison between scalar and vector PSF calcula-
tions. Shown are cross sections of the PSF across the x axis in the
focal plane. The red curve shows the results of the full wave-
vector PSF calculation for an electric dipole emitter with a fixed
x-axis orientation, the blue curve displays the same calculation
for a rapidly rotating isotropic or random emitter, the green curve
presents the result of Eq. (66), and the ochre curve shows the
Gaussian approximation of Eq. (69). Left inset: three-dimen-
sional isosurface PSF plot using the exact vector field calculation
for an isotropic emitter. Right inset: three-dimensional isosurface
PSF plot using the exact vector field calculation for the scalar
approximation. All calculations were performed for a water
immersion objective with NA ¼ 1.2.

FIG. 19. Scalar approximation of the OTF of a wide-field
microscope. Calculations were done for an NA ¼ 1.2 water
immersion objective and an emission wavelength of 550 nm.
Left panel: kxkz cross section of the electric field amplitudes in
sample space having a frequency support (frequencies with
nonzero amplitude) in the shape of a spherical cap with radius
k ¼ 2πn=λ and an opening half angle equal to the objective’s
maximum half angle Θ. Middle panel: the same distribution for
the magnetic field. Right panel: three-dimensional convolution of
the left two panels yielding the scalar approximation of the OTF
amplitude. All panels show density plots of the decadic logarithm
of the Fourier amplitude’s absolute value (see the color bar on the
right-hand side) normalized by the maximum absolute value of
the corresponding amplitudes. In all panels, the coordinate origin
(kx ¼ 0 and kz ¼ 0) is at the center. Throughout this review, we
use the same representation for all OTFs shown.
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UGaussðρ − ρ0Þ ∝ exp

�
−
jρ − ρ0j2
2σ2PSF

�
; ð69Þ

where σPSF ¼ ffiffiffi
2

p
=NAk0 ¼ λ=

ffiffiffi
2

p
πn sinΘ, as found when the

same curvature values are required at the maximum for both
Eqs. (69) and (66); see also Fig. 18. This approximation is
useful in creating a simple model, allowing straightforward
fitting algorithms for many localization applications (Stallinga
and Rieger, 2010; Fazel and Wester, 2022). This model fits the
PSF’s main lobe and thus is a good approximation when
imaging is performed within the depth of focus of an
aberration-free microscope. The width σPSF is usually exper-
imentally fit from a calibration sample or model (Santos and
Young, 2000).

F. Optical aberrations

Finally, we discuss the impact of optical aberrations on the
PSF. Optical aberrations refer to any deviation from the
previously presented idealized imaging models and can be
classified into various groups. The first distinction revolves
around the wavelength, i.e., monochromatic aberrations
occurring for a single wavelength, in contrast to chromatic
aberrations originating from the chromatic dispersion of the
components in the optical system. The second distinction is
characterized by shift invariance, i.e., aberrations similar at
every point in the field of view (FOV) versus off-axis
aberrations. In the presence of optical aberrations, modeling
the PSF as a two-dimensional Fourier transform F 2D oper-
ation is common as the aberrations can then be treated as part
of the system’s OTF. Here we focus on the scalar model, i.e.,
Eq. (63). This approach can, however, be generalized to the
vectorial case (Backer and Moerner, 2014; Siemons et al.,
2018; Ferdman et al., 2020).
As optical aberrations can generally be a function of ðϕ; θ0Þ,

we return to Eq. (63) and extend it to include an additional
amplitude or phase function that takes aberrations into
account. We can then recast it as a F 2D operation prior to
the integration over ϕ,

Eðρ; z; r0Þ ∝ F 2D½Aðθ0;ϕÞei½Ψðθ0;z;fÞþΦðθ0;ϕÞ��; ð70Þ

where we ignored the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos θ0= cos θ

p
due to its negligible

contribution. In Eq. (70) AeiðΨþΦÞ is the so-called pupil
function, whereas Aðθ0;ϕÞ is the pupil function’s amplitude,
which, neglecting all constant factors, simplifies to the Fourier
plane support, limited by either the NA or nd as follows:

Aðθ0;ϕÞ ¼
�
1 if sin θ0 ≤ min ðnd=n;NA=nÞ;
0 otherwise;

ð71Þ

where n and nd are the refractive index of the objective
immersion and the dipole (emitter) medium, respectively. In
full generality,A can be a function of θ0 and ϕ, for instance, in
the presence of aberrations in the form of attenuation of the
transmitted electric and magnetic fields. However, these types
of aberrations are rare and often induce negligible changes to
the PSF compared to the phase terms (Oppenheim and Lim,

1981). Therefore, it is safe to neglect the effect of amplitude
and focus on the phase.
The first term in the phase Ψðθ0; z; fÞ is induced by

the molecule’s shift off axis and out of focus, i.e., the term
−q · ρd − wdzd − wfz in Eq. (61),

Ψðθ0; z; fÞ ¼ k0znd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin θ02

p

− k0fn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
nd
n
sin θ0

�
2

s
: ð72Þ

For instance, the phase −k
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
z in Eq. (64), where

η ¼ sin θ, is attributable to the out-of-focus location of the
emitter. The second phase term Φðθ0;ϕÞ in Eq. (70) describes
any additional phases of the pupil function (originating from
optical aberrations as described in this section or the PSF
modulating elements described in Sec. V.C), which otherwise
are null in perfect aplanatic imaging conditions, as in Eq. (64).
We start by considering monochromatic shift-invariant, i.e.,

ðx; yÞ-independent, aberrations. In this case, aberration terms
can be readily added to Eq. (70) as a phase termΦðθ0;ϕÞ. This
phase function lives on the disklike support ϕ∈ f0; 2πg and
θ0 ∈ f0;Θ0g defined by the electric (magnetic) field Fourier
amplitude distribution; see Sec. III.B and Fig. 12.
It is often convenient to expand phase aberrations into a

system of orthogonal basis functions, namely, Zernike poly-
nomials Zm

l ðξ ¼ sin θ0= sinΘ0;ϕÞ [see Noll (1976) and
Roddier (1999)],

Φðξ;ϕÞ ¼
X
l

Xl

m¼−l
vlmZm

l ðξ;ϕÞ; ð73Þ

where vlm are coefficients corresponding to Zm
l . These

polynomials are defined by

Zm
l ðξ;ϕÞ ¼

�
Rm
l ðξÞ sinðmϕÞ if m > 0;

Rm
l ðξÞ cosðmϕÞ if m ≤ 0;

ð74Þ

where the radial functions Rm
l are given by

Rm
l ðξÞ ¼

Xðl−jmjÞ=2

k¼0

ð−1Þkðl − kÞ!ξl−2k
k!½ðlþmÞ=2 − k�!½ðl −mÞ=2 − k�! ð75Þ

if l − jmj is even, and zero otherwise; see Table I.
Figures 20 and 21 show density plots for the first 12 Zernike

polynomials and their impacts on the PSF for an isotropic
emitter, respectively. The first three polynomials, namely,
horizontal tilt, vertical tilt, and defocus, coincide with phases
due to lateral, vertical, and axial shifts in the emitter’s position,
respectively. All other terms describe PSF distortions due to
optical aberrations.
In some cases, aberrations may not be well described by

low order Zernike polynomials. For example, when using
liquid crystal spatial light modulators (Moser, Ritsch-Marte,
and Thalhammer, 2019) or in some PSF engineering methods
(Nehme et al., 2021), a sudden phase step in the pupil function
may require the aberration to be evaluated in a pixelwise
manner (Ferdman et al., 2020).
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The second kind of aberration is chromatic shift invariant.
In microscopy, it is common to use achromatic objectives,
though dispersion from various other components inducing
PSF deviations is unavoidable. These aberrations originate
from the broad, nonmonochromatic emission spectrum SðλÞ
of fluorescent molecules describing the probability of emitting
at a wavelength λ, often with a width of a few tens of
nanometers; see Sec. II.A. In such cases, the image model
follows from a superposition integral over the molecule’s
spectrum,

Λðx; y; r0Þ ¼
Z
λ
SðλÞUðx; y; r0; λÞdλ; ð76Þ

where Uðx; y; r0; λÞ is the λ-dependent PSF (as described in
Sec. III.E as a function of k0 ¼ 2π=λ). Such aberrations are
often detrimental in 3D microscopy. For example, in multi-
focus microscopy a phase mask (further discussed in
Sec. IV.F) with custom chromatic correction gratings are
designed to correct the chromatic shifts (Abrahamsson
et al., 2013).

The most challenging aberrations are shift variant, both
chromatic and monochromatic, which cannot be simply
described by the proposed model of Eq. (70), as the aberration
is now a function of the lateral coordinates Φðθ0;ϕ; x; yÞ. In
microscopy, these kinds of aberrations can occur either from
the sample itself or from off-axis aberrations in the optical
system, namely, systematic aberrations. Sample induced
aberrations occur when the sample structure has significant
refractive index variations (for example, imaging in deep
tissue). This issue can sometimes be addressed with adaptive
optics (AO) (Roddier, 1999; Booth et al., 2002; Ji, Milkie, and
Betzig, 2010; Tao et al., 2011; Gould et al., 2012; Ji, 2017;
Liu et al., 2018; Rodríguez and Ji, 2018; Rodríguez et al.,
2021). In AO techniques, the wave front distortion (due to
aberrations) of light from fluorescent markers embedded
within the sample, called guide stars, is typically measured
and then used for a wave front correction. The wave front
correction is performed using deformable mirrors to remove
the aberrations and achieve a distortion-free wave front. Off-
axis aberrations often caused by the optical system, rather than
by the sample itself, are typically easier to model as they tend
to vary more smoothly. These aberrations can be modeled as
2D polynomial coefficients over the FOV (which multiply
Zernike coefficients, for example) (Shajkofci and Liebling,
2020) or addressed by nodal aberration theory (Shack and
Thompson, 1980).

IV. FLUORESCENCE MICROSCOPY: MODALITIES

In Sec. III, we described the fundamental optics of the wide-
field microscope and derived its OTF and PSF. We also tied
the lack of optical sectioning in wide-field microscopes to the
OTF’s missing cone; see Fig. 12. Here we turn to different
fluorescence microscopy modalities achieving optical section-
ing and higher resolutions, i.e., near field, point scanning,
SIM, light sheet, and multiplane. In deriving their OTFs, we

TABLE I. The first 12 Zernike polynomials.

No. l m Zm
n Name

1 1 −1 ξ cosϕ Horizontal tilt
2 1 1 ξ sinϕ Vertical tilt
3 2 0 2ξ2 − 1 Defocus
4 2 −2 ξ2 cos 2ϕ Vertical astigmatism
5 2 2 ξ2 sin 2ϕ Oblique astigmatism
6 3 −1 ð3ξ2 − 2Þξ cosϕ Horizontal coma
7 3 1 ð3ξ2 − 2Þξ sinϕ Vertical coma
8 4 0 6ξ4 − 6ξ2 þ 1 Primary spherical
9 3 −3 ξ3 cos 3ϕ Oblique trefoil
10 3 3 ξ3 sin 3ϕ Vertical trefoil
11 4 −2 ð4ξ2 − 3Þξ2 cos 2ϕ Vertical secondary astigmatism
12 4 2 ð4ξ2 − 3Þξ2 sin 2ϕ Oblique secondary astigmatism

FIG. 20. Density plots for the first 12 Zernike polynomials
presented in Table I: (1) horizontal or x tilt, (2) vertical or y tilt,
(3) defocus, (4) vertical astigmatism, (5) oblique astigmatism,
(6) horizontal coma, (7) vertical coma, (8) primary spherical
aberration, (9) oblique trefoil, (10) vertical trefoil, (11) vertical
secondary astigmatism, and (12) oblique secondary astigmatism.

FIG. 21. Model calculations of the image of an isotropic emitter
(a rapidly rotating dipole emitter) aberrated by a phase function
given by the Zernike polynomials shown in Fig. 20. To better
visualize the effects of aberration, all Zernike polynomials were
multiplied by a factor of 2.5. Calculations were again done for a
water immersion objective with NA ¼ 1.2 and for an emission
wavelength of 550 nm. The yellow scale bar is 0.5 μm.
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show that these modalities accomplish optical sectioning
by collecting more spatial frequencies along the axial
direction through modifications to the illumination and/or
detection arms.

A. Near-field methods for enhanced axial resolution

Here we turn to fluorescence imaging methods improving
axial resolution using near-field effects. Electromagnetic near
fields are nonpropagating (evanescent) fields with intensity
gradients exceeding those of propagating waves.

1. Total internal reflection fluorescence microscopy

The first method discussed leverages TIR occurring when a
plane wave is incident on an interface separating two media
with different refractive indices. We begin with Fresnel’s
reflection and transmission coefficients r⊥, rk, t⊥, and tk for
s- and p-polarized plane waves reflected at an interface
dividing a medium with a refractive index n1 (incidence
medium) from a medium with a refractive index n2, which are
given as follows (Novotny and Hecht, 2012):

r⊥ ¼ n2⋆ − w⋆

n2⋆ þ w⋆
; rk ¼

1 − w⋆

1þ w⋆
;

t⊥ ¼ 2n⋆
n2⋆ þ w⋆

; tk ¼
2

1þ w⋆
; ð77Þ

where n⋆¼n2=n1 and w⋆ ¼ w2=w1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn22 − q2Þ=ðn21 − q2Þ

p
defining w1;2 as the wave vector’s axial components in the first
and second media, respectively. Moreover, q¼2πn1 sinθinc=λ
is the length of the wave vector’s lateral component, with θinc
its incidence angle upon the interface with respect to the
normal to the interface within the first medium. Here it is
convenient to work in a unit system where the length of the
vacuum wave vector is unity. In this unit system, we have
q ¼ n1 sin θinc.
Since electric field and wave vectors are perpendicular, the

electric field amplitude of the transmitted wave reads

E⊥;k ¼ E0t⊥;k

�
−
w2q̂þ qẑ

n2

�
exp ½iw2zþ iq · ρ�; ð78Þ

where E0 is the amplitude of the incident field, with q̂ and ẑ
unit vectors along the lateral wave-vector component parallel
to the interface and along the axial (z) direction perpendicular
to the interface, respectively.
As seen in the definitions of w⋆ following Eq. (77), for

q ¼ n1 sin θinc > n2 the axial component w2 becomes purely
imaginary and the absolute values of the reflection coefficients
in Eq. (77) both become unity. Here TIR is possible only if
n1 > n2 and becomes manifest when the critical incidence
angle (TIR angle) is θTIR ¼ arcsinðn2=n1Þ. However, as seen
in Eq. (78), the electric field in medium 2 does not instantly go
to zero but decays exponentially with increasing distance z
from the interface. This decaying field in the second medium
is termed the evanescent field or wave. The characteristic
decay length dTIR of the electric field intensity can be directly
derived from Eq. (78) and reads

dTIR ¼ 1

2jw2j
¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21sin

2θinc − n22
p : ð79Þ

As such, although evanescent waves do not penetrate far
within medium 2, they can still be used to excite fluorophores
within a distance of dTIR from the surface, such as in TIRF
microscopy (Axelrod, 1981). By the same token, out-of-focus
fluorophores deeper than dTIR are less likely to become
excited, thereby decreasing undesired out-of-focus light.
To decode emitter axial location, variable angle TIRF

(vaTIRF) (Stock et al., 2003) is used where several images
are recorded at differing incidence angles of the excitation
plane wave above the TIR angle. For increasing incidence
angles (see Fig. 22), the excitation intensity’s decay becomes
steeper. The variation in emitter brightness values across
incidence angles is then used to assess its distance from
the interface upon deconvolution (Saffarian and Kirchhausen,
2008; El Arawi et al., 2021), with an axial resolution in some
cases down to a few nanometers, i.e., by approximately 2 to 3
orders of magnitude better than the diffraction-limited reso-
lution of a confocal microscope, albeit within a limited range
(≈dTIR) from the interface.

2. Supercritical fluorescence microscopy

The second near-field method discussed is SAF micros-
copy. This method employs the coupling of a fluorophore’s
near-field emission into propagating modes in the cover slide’s
glass to improve the axial resolution (Enderlein, Ruckstuhl,
and Seeger, 1999; Ruckstuhl and Verdes, 2004; Winterflood
et al., 2010; Deschamps, Mund, and Ries, 2014; Oheim,
Salomon, and Brunstein, 2020; Dasgupta et al., 2021). To be
precise, fields attributed to an oscillating electric dipole have
components decaying as 1=r, 1=r2, and 1=r3, where only the
first term coincides with the propagating term. The other two
terms are nonpropagating and represent near-field emissions
decaying on short distances (≈λ). However, when the electric
dipole is located close to a cover slide’s interface, non-
propagating near-field dipolar components are converted into

FIG. 22. TIRF microscopy. The excitation intensity above a
cover slide interface with the sample medium is displayed as a
function of incidence angle. The sample solution and cover slide
refractive indices are 1.33 (water) and 1.52, respectively, resulting
in a TIR critical angle of ≈61°. The excitation wavelength is taken
as 470 nm.
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propagating modes upon coupling into the glass, which can
then be collected and imaged by the microscope objective.
These modes can be decomposed into a superposition of plane
waves traveling along directions above the critical TIR angle
for the given emission wavelength (supercritical angle fluo-
rescence or SAF emission). The coupling of near-field modes
of the fluorophore into propagating modes in the glass
decrease with increasing distance from the interface. In
contrast, the emission into the angle below the TIR angle
[undercritical angle fluorescence (UAF) or UAF emission] is
due to the propagation of the emitter’s far-field emission into
the glass and does not depend on its distance from the surface.
Thus, at its core SAF microscopy leverages the variation in
SAF to estimate the distance of an emitter from the cover
slide’s interface by measuring the ratio of its SAF to SAF plus
UAF emission intensity.
To calculate the ratio of supercritical to undercritical angle

emissions, we use the theoretical framework developed in
Sec. III. In particular, for calculating SAF emission intensity,
we use Eqs. (41) and (42), but with integration boundaries
from θ0 ¼ arcsin ðn sin θTIR=MÞ, dictated by the critical TIR
angle, to θ0 ¼ Θ0, dictated by the numerical aperture. We then
compute the energy flux density distribution from Eq. (46).
The integral of the resulting energy flux density over the x-y
plane is then proportional to the detectable SAF intensity. The
UAF intensity is computed analogously but with integration
boundaries from θ0 ¼ 0 to θ0 ¼ arcsin ðnθTIR=MÞ. As an
example, Fig. 23 shows the SAF to SAF plus UAF ratio
for a glass-water interface as a function of distance, assuming
an isotropic emitter with an emission wavelength of 550 nm.
The dynamic range over which one can use this ratio in

determining the emitter’s distance from the surface is similar
to the dynamic range over which vaTIRF is applicable;
see Fig. 22.

3. Metal-induced energy transfer imaging

MIET, another near-field method used for axial localization
(Chizhik et al., 2014), is based on near-field coupling similar
to SAF microscopy. MIET uses the fact that, when a
fluorescent emitter (electric dipole emitter) approaches a
metal layer, its electric near field excites surface plasmons
(coherent metal electron oscillations) in the metal, accelerat-
ing deexcitation of the fluorescent emitter’s excited state. This
is observed as a strong decrease in fluorescence lifetime with
decreasing distance from the surface; see Fig. 24 and Eq. (18).
To infer distances from lifetime measurements, we use the

theoretical framework developed in Sec. III. The lifetime
depends on the emission power requiring the explicit calcu-
lation of both the electric and magnetic fields.
We start with the Weyl representation of the electric field of

a free dipole emitter obtained in Eq. (57) to derive the electric
field distribution above a MIET substrate (denoted by a metal
surface in Fig. 25). As shown in Fig. 25, two sources
contribute to the electric field above this metal surface:
(1) direct emission from the dipole and (2) emission reflected
from the surface (i.e., emission from the emitter’s image)

E�
d ¼ ik20

2π

Z
d2q
wd

fðp · êkÞêkð1þ rkeiwdjzþzdjÞ

þ ½ðp · ê�⊥Þê�⊥ þ ðp · êþ⊥Þê−⊥r⊥eiwdjzþzdj�g
× exp ½iq · ðρ − ρdÞ þ iwdjz − zdj�; ð80Þ

where terms with the reflection coefficients rk;⊥ describe
contributions from the reflected emission. Moreover, the plus
sign and minus sign superscripts refer to plane waves moving
toward and away from the metal surface. The r⊥;k terms are

FIG. 23. Supercritical angle fluorescence (SAF) microscopy.
Ratio of supercritical to total downward fluorescence emission
for a rapidly rotating molecule as a function of distance from the
interface of the cover slide and the sample medium. The refractive
indices of the sample solution and cover slide are assumed to be
1.33 (water) and 1.52 (glass), respectively, with an emission
wavelength of 550 nm. Inset: angular emission intensity distri-
bution of an emitter directly on the interface (with the blue, red,
and green curves denoting the UAF and SAF emissions and the
emission toward the sample solution, respectively). The SAF
emission strongly depends on the emitter’s distance to the
interface, while the undercritical emission is independent of
the emitter axial position. By determining the ratio of SAF to SAF
plus UAF emission, we can find the axial position of an emitter.

FIG. 24. MIET microscopy: Dependence of the fluorescence
lifetime (in terms of the free space lifetime τ0) on the emitter’s
distance from the glass substrate (cover slide) coated with a
20 nm gold layer. Calculations were done for an emission
wavelength of 550 nm and a unit fluorescence quantum yield.
Free curves for the vertical, horizontal, and random emission
dipole orientations are shown. Inset: MIET sample geometry.
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Fresnel’s q-dependent reflection coefficients for p and s
waves for the MIET substrate.
For planar structures of arbitrary complexity, these coef-

ficients are readily obtained using the propagation matrix
formalism discussed by Heavens (1965), Knittel (1976), Yeh
(1988), and Born and Wolf (2013). We now distinguish
between two p-wave polarization unit vectors: êþ⊥ for plane
waves traveling toward the substrate and ê−⊥ for plane waves
traveling away from the substrate. The corresponding s-wave
polarization unit vector êk is the same for both waves. We note
that the result depends on the three-dimensional orientation of
the emitter (given by the Euler angles α and β; see Fig. 25) via
the scalar products p · ê�⊥ and p · êk.
Analogously we can find the magnetic field as

B�
d ¼ indk20

2π

Z
d2q
wd

× fðp · êkÞðê�⊥ − êþ⊥rkeiwdjzþzdjÞ
þ ½ðp · ê�⊥Þ þ ðp · êþ⊥Þr⊥eiwdjzþzdj�êkg
× exp ½iq · ðρ − ρdÞ þ iwdjz − zdj�: ð81Þ

Given both the electric and magnetic fields of Eqs. (80)
and (81), the total emission power of the emitter, designated
by SðβÞ, follows by integrating the outward component of the
Poynting vector over two planar interfaces sandwiching the
emitter

SðβÞ¼ndc
8π

Z
d2ρẑ ·

h
ðEþ×Bþ�Þz¼0−ðE−×B−�Þz<zd

i
: ð82Þ

The emission power depends only on the dipole’s polar
orientation angle β, not its azimuthal angle α. The emission
power SðβÞ can now be compared to the emission power S0 of
a “free” dipole within a homogeneous medium with a
refractive index nd, given by the well-known formula of

Jackson (1999) [and also obtained from Eqs. (81) and (82) by
neglecting the contribution from reflected emission including
coefficients r⊥;k] as S0 ¼ cndp2k40=3.
The observable enhancement of the radiative deexcitation

rate kf of a fluorescence emitter due to the presence of the
metal substrate with respect to the same emitter in a homo-
geneous environment is then given by the ratio SðβÞ=S0
(Chance, Prock, and Silbey, 2007).
As noted in Sec. II, there is a contribution to the excited-

state lifetime from nonradiative decay pathways arising by
collision with surrounding molecules and thermal dissipation
of the excited-state energy quantified by the fluorescence
quantum yieldQf. HereQf is the probability that deexcitation
proceeds radiatively with photon emission; see Eq. (17). The
observable fluorescence lifetime τ is then the inverse of the
total deexcitation rate kf þ knon [see Eq. (18)], such that its
change in the presence of the metal substrate is given by

τ

τ0
¼ S0

SðβÞQf þ ð1 −QfÞS0
: ð83Þ

Equation (83) is the final equation needed for calculating the
dependence of the fluorescence lifetime τ on the emitter
distance zd. An example is provided in Fig. 24 for the
three cases of a vertically, horizontally, and randomly ori-
ented emitter. In the third case, the orientation-dependent
SðβÞ is substituted for its orientational average hSi ¼
ð1=2Þ R π

0 dβ sin βSðβÞ. As seen in Fig. 24 for a randomly
oriented emitter, within a range of up to 200 nm from the
surface the lifetime depends monotonically on distance and a
unique distance follows from the measured lifetime.
Further recent angstrom spatial resolution along the optical

axis has been afforded by the use of materials such as indium
tin oxide (Moerland and Hoogenboom, 2016) and single-sheet
graphene (graphene-induced energy transfer) (Ghosh et al.,
2019), leading to a distance-dependent modulation of the
fluorescence lifetime on approximately an 8 times smaller
length scale.

B. Point scanning microscopy

Unlike wide-field imaging using multipixel detectors, point
scanning microscopes sequentially record images by scanning
samples over a set of positions and recording a fluorescence
signal for each position scanned. Moreover, in contrast to
wide-field imaging, point scanning allows for out-of-focus
light reduction, thereby achieving optical sectioning. Here we
first consider image formation in the most widely used point
scanning microscope: the CLSM (Marvin, 1961; Pawley,
2006). We then discuss the enhanced resolution achieved
by ISM, 4Pi, and two-photon microscopy.

1. Confocal laser-scanning microscopy

A schematic of a point scanning microscope is shown in
Fig. 26. An excitation laser beam, shown in yellow, is laterally
deflected by a beam scanning unit along both directions
perpendicularly to the optical axis. Figure 26 shows only one
of these scanning directions, where the excitation beam can be
directed up and down upon reflection from the scanner by

FIG. 25. Geometry for deriving the electric field generated by a
single dipole emitter above the MIET substrate (the metal
surface). The red double-headed arrow shows a dipole located
a distance zd above the metal surface with an orientation of β and
α denoting the polar and inclination azimuthal angles, respec-
tively. The three longer single-headed arrows show plane wave
component vectors with the corresponding perpendicular polari-
zation unit vectors êk and ê�⊥. Here êþ⊥ is the unit vector
associated with the wave vector moving toward the metal surface.
Similar conventions hold for the other unit vectors.
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adjusting the scanner’s orientation. Following deflection, the
excitation light is focused by the objective into a diffraction-
limited focus within the sample. The emitted fluorescence
light from the illuminated spot, shown in red, is then collected
by the same objective and guided back through the same beam
scanner toward the dichroic mirror. This process is known as
descanning.
After descanning, fluorescence light is reflected away from

the excitation beam by the dichroic mirror, which reflects light
only within a range of wavelengths. The fluorescent light is
next focused by the tube lens onto the circular aperture of a
confocal pinhole obstructing the undesired fluorescent light
from out-of-focus fluorophores. After potentially passing
additional optical filters for background suppression, the
fluorescence light is refocused onto a single-pixel point
detector to record the in-focus fluorescence intensity.
In what follows, we derive the confocal PSF for a single

scanning spot. To avoid notational confusion, PSFs for the
wide field and CLSM are denoted by Uwf and Ucf , respec-
tively, in the remainder of this section.
To derive the confocal PSF for an isolated emitter sitting in

an excitation focal spot in sample space, we first consider
major differences with the wide-field setup [described for the
most general case and its approximate analytical forms in
Secs. III.C and III.D; see Eqs. (66) and (69)]. These
differences include (1) the spot illumination procedure and
(2) the existence of the confocal pinhole.
We start with the fluorescent light from the emitter propor-

tional to the three-dimensional excitation laser intensity at the
focal spot Iexðρ; zÞ (excitation is in the sample space and thus
is described by nonprime coordinates). The fluorescent light is
in turn collected by the objective and focused onto the
confocal pinhole (within image space). This results in a
fluorescent intensity UwfIex prior to the pinhole, where Uwf
is this setup’s wide-field PSF in the absence of the pinhole and
spot illumination. In the end, the confocal PSF (the imaging
PSF of a confocal microscope) is proportional to the fluo-
rescence intensity (ignoring all constant prefactors) following
the pinhole,

Ucfðρ; zÞ ∝ ½A ⊗ Uwf �Iexðρ; zÞ

¼
Z

dρ0Aðρ0ÞUwfðρ0 − ρ; zÞIexðρ; zÞ; ð84Þ

where A captures the confocal pinhole, which is set to unity
for ρ0 ¼ jρ0j smaller than the aperture radius a, and zero
otherwise. In Eq. (84) Uwfðρ0 − ρ; zÞ represents the wide-field
PSF when the fluorescence from an emitter is imaged at
position r ¼ ðρ; zÞ in sample space onto a lateral position ρ0 in
the plane of the confocal aperture within the image space
(prime coordinates). In other words, the confocal PSF of
Eq. (84) is given as a product of A ⊗ Uwf , describing the
detection, sometimes termed detection PSF, and Iex, describ-
ing excitation, sometimes termed excitation PSF.
The integral in Eq. (84) is performed over the entire ρ0

plane. The excitation PSF (excitation intensity distribution)
Iex entering Eq. (84) is itself a function of the absorption
dipole orientation pex of a fluorophore via IexðrÞ ∝
jEexðrÞ · pexj2, where Eex denotes the electric field distribu-
tion in the focal spot.
In most cases of practical interest, one deals with rapidly

rotating emitters for which the orientationally averaged
excitation intensity reads [see also Eq. (62)]

IexðrÞ ∝ jEex;xj2 þ jEex;yj2 þ jEex;zj2: ð85Þ

Toperform this calculation,we first consider the focusing of a
planar wave front through the objective into a diffraction-
limited spot; see Fig. 27. As with the Abbe sine condition
relating propagation angles of wave front patches in sample and
image spaces, there is a similar relation between the distance ρ
of a patch on the planar wave front from the optical axis and the
propagation angle θ of the corresponding patch after focusing
through the objective; see Fig. 27. This relation can be found
from the Abbe sine condition when moving the focus in image
space to infinity (i.e., the focal length ftube of the tube lens tends
toward infinity) and remembering that the magnification M is
given by the focal distance of the tube lens ftube divided by the
focal distance f of the objective; see Fig. 1. Thus, we find that
M sin θ0 ¼ ðftube=fÞ sin θ0 ¼ n sin θ. When the value ftube is
increased to infinity, the angle θ0 tends to zero, though the
product ρ ¼ ftube sin θ0 remains finite and coincides with the
distance from the optical axis in the back focal plane. Thus, one

FIG. 26. Schematic of a CLSM. The yellow and red beams show
the excitation and emission light, respectively. The emission
passes through a confocal pinhole suppressing out-of-focus light;
see the text for details.

FIG. 27. Schematic of the geometry when a planar laser wave
front is focused through the objective into the sample space; see
Fig. 26. Wave front patches at distance ρ from the optical axis in
the back focal plane are converted into spherical wave front
patches traveling at an angle θ ¼ arcsin ðρ=nfÞ with respect to
the optical axis z, where f is the focal length of the objective lens;
see the text for details.

Mohamadreza Fazel et al.: Fluorescence microscopy: A statistics-optics …

Rev. Mod. Phys., Vol. 96, No. 2, April–June 2024 025003-28



finds the relation ρ ¼ nf sin θ between the distance ρ before the
objective and the propagation angle θ in sample space.
Using this relation for ρ, we can expand the electric field in

sample space into a plane wave superposition, as what we did
in deriving the electric field of a point emitter in image space;
see Eq. (41). When reading Eq. (41) in reverse, i.e., replacing
all primed variables with nonprimed ones, and vice versa (thus
starting with light coming from the back side of the objective
focused through the objective into sample space), and when
taking into account that the angles θ0 for the incoming light are
all zero (plane wave front) such that cos θ0 ≈ 1, we arrive at

EexðrÞ ∝
Z

Θ

0

dθ sin θ
ffiffiffiffiffiffiffiffiffiffi
cos θ

p Z
2π

0

dϕ½E0;kðρ;ϕÞêk
þ E0;⊥ðρ;ϕÞê0⊥� exp ðikex · rÞ; ð86Þ

where kex ¼ ð2πn=λexÞðcosϕ sin θ; sinϕ sin θ; cos θÞ is now
the wave vector of a plane wave with a wavelength λex
(excitation light wavelength), where the electric field of the
incoming laser beam in the back focal plane is expanded into
its radially (E0;⊥) and azimuthally polarized components
(E0;k); see Fig. 27. For example, for a linearly polarized laser
beam with a polarization direction along x one has E0;⊥ ∝
cosϕ and E0;k ∝ − sinϕ. This equation can now be used to
calculate the three-dimensional excitation PSF in sample
space. As an example, the left panel of Fig. 28 shows the
CLSM PSF calculated assuming a 470 nm circularly polarized
laser focused through a water immersion objective onto a
diffraction-limited spot (the planar wave front at the back
focal plane).
While we have focused on using Eq. (86) in computing the

CLSM PSF, that equation is much more general. For instance,
it can be used to calculate the intensity distribution of a
doughnut excitation beam appearing in STED microscopy

(Hell and Wichmann, 1994). This doughnut intensity distri-
bution, with zero intensity on the crossing of the optical axis
with the focal plane (focus center), can be generated in
two ways.
The first method generates a doughnut-shaped laser inten-

sity in the focal plane by sending a circularly polarized laser
light through a ring-shaped phase plate that is thicker at its
center. This results in retardation of the beams of light closer
to the optical axis by half a wavelength with respect to the
beams passing through the thinner outer part of the plate; see
the middle panels in Fig. 28. A snapshot of the resulting
polarization structure across the back focal plane is depicted in
the top middle panel in Fig. 28. Mathematically this can be
described by setting E0;⊥ ∝ cosϕ − i sinϕ and E0;k ∝
− sinϕþ i cosϕ for ρ ≤ ρΦ, and the same expressions but
with opposite signs for ρΦ < ρ < f sinΘ, where ρΦ ¼
f sinΘ=

ffiffiffi
2

p
is the radius of the thicker central part of the

phase plate. This special choice of ρΦ ensures that the total
excitation intensity in the focus center will indeed be zero.
The second method sends circularly polarized light through

a helical wave plate, as shown in the top right panel of Fig. 28.
When an appropriate helical pitch is chosen, this leads to an
excitation beam with a polarization structure E0;⊥ ∝ sin 2ϕ −
i cos 2ϕ and E0;k ∝ cos 2ϕþ i sin 2ϕ. Three-dimensional rep-
resentations of the resulting stimulated emission (STE)
intensity distributions and corresponding cross sections are
shown in the bottom panels of Fig. 28. Neither the disk phase
plate (middle panels) nor the helical phase plate (right panels)
lead to an ideal STE intensity distribution, i.e., a perfect
doughnut shape with zero intensity in the middle. Whereas the
disk phase plate leads to an intensity distribution achieving
good axial compression of the STED PSF, it performs poorly
in lateral directions. In contrast, helical wave plates lead to
excellent compression of the STED PSF laterally, but not
along the optical axis. Thus, 3D STED systems use a
combination of the two excitation modalities (Sahl and
Hell, 2019).
Having an exact description of the excitation PSF (excita-

tion intensity distribution) in place, we can return to the
imaging PSF of a CLSM and consider its optical resolution.
To do so, we consider its OTF, i.e., the Fourier transform of
Eq. (84), in which we replace Iex and Uwf of Eq. (84) with
their Fourier expansions,

Uwfðρ0 − rÞ ¼
Z

dk
2π

ŨwfðkÞ exp½ik · ðρ0 − rÞ�;

IexðrÞ ¼
Z

dk
2π

ĨexðkÞ expðik · rÞ; ð87Þ

where we recall that a tilde over a symbol denotes its Fourier
amplitude. This immediately leads to

UcfðrÞ ∝
Z

dρ0
Z

dk
Z

dk0Aðρ0ÞŨwfðk0Þ

exp ½ik0 · ðρ0 − rÞ�ĨexðkÞ exp ðik · rÞ: ð88Þ

The integration over ρ0 can now be performed analytically,
resulting in

FIG. 28. CLSM and STED intensity distributions at the focus.
Shown is a comparison of intensity distribution (left panels) with
a conventional CLSM focus, (middle panels) with a z-STED
focus, and (right panels) with an xy-STED focus. Calculations
were done for a water immersion objective with NA ¼ 1.2 at an
excitation wavelength of 470 nm. The excitation polarization and
its generating phase plate are shown in the top panels. The bottom
panels show 3D contour plots of the 1=e, 1=e2, and 1=e3 intensity
isosurfaces and projections of x-y, x-z, and y-z cross sections
through the center.
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Z
dρ0Aðρ0Þ exp ðik0 · ρ0Þ ¼ 2πa

q0
J1ðaq0Þ; ð89Þ

where a is the radius of the confocal aperture, q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02x þ k02y

q
is the modulus of the radial part of the vector k0, and J1 is the
first order Bessel function of the first kind. Substituting this
result into Eq. (88), we write

UcfðrÞ ∝
Z

dk
Z

dk0 2πa
q0

J1ðaq0ÞŨwfðk0ÞĨexðkÞ

exp ½iðk − k0Þ · r�: ð90Þ

Following some algebra, we find for the Fourier transform
of UcfðrÞ, i.e., the CLSM’s OTF (up to some constant
prefactor),

ŨcfðkÞ ∝
Z

dk0 J1ðaq0Þ
q0

Ũwfðk0ÞĨexðkþ k0Þ: ð91Þ

Thus, the OTF of the confocal microscope is given by the three-
dimensional convolution of a wide-field microscope OTF
ŨwfðkÞ modulated by the aperture function J1ðaq0Þ=q0 [the
Fourier transform of the detection PSF (84), also sometimes
termed the detection OTF] and the Fourier transform of the
excitation PSF ĨexðkÞ (also sometimes termed the excitation
OTF). This is depicted in Fig. 29, where the left panel shows the
amplitude of the excitation OTF ĨexðkÞ, the middle panel is the
detectionOTFgiven by the absolutevalue of thewide-fieldOTF
ŨwfðkÞmultiplied by J1ðaq0Þ=q0, and the right panel represents
a cross section of the amplitude of confocalOTFobtained by 3D
convolution of the previous two panels.
The most noticeable difference between the confocal OTF of

Fig. 29 and the wide-field OTF of Fig. 19 is that the confocal
OTF has nonzero components along the optical axis (here
kx ¼ 0, with the origin at the center), highlighting a confocal
microscope’s ability for optical sectioning. The corresponding
axial resolution is given by 2π divided by the maximum
frequency supported along the kz axis; see Eq. (52).
Figure 30 shows how the confocal OTF changes with the

pinhole size. As expected, for a large confocal pinhole radius of
200 μm (top left panel), the confocal OTF approaches that of a
wide-fieldmicroscope at the samewavelength, as can be seen in
a comparison with the right panel of Fig. 19. As the pinhole size
shrinks (a ¼ 1 μm), optical sectioning and axial resolution are

optimized; see the bottom right panel of Fig. 30. In this case, the
confocal aperture can be approximated using a delta function so
that the integral Eq. (89) results in a constant. As such, the OTF
for a small aperture reduces to the convolution of thewide-field
OTF Ũwf with the excitation OTF Ĩex. Thus, the maximum
frequency passed by the confocal OTF with a small aperture is
given by kmax ¼ kmax;ex þ kmax;em, where kmax;ex and kmax;em

denote the maximum extents of Ĩex and Ũwf, respectively.
The maximum extents of excitation and detection OTFs in

the lateral direction are kmax;ex= det ¼ 4πn sinΘ=λex=em, which
in turn results in the following lateral resolution [see Eq. (52)]:

ymin ¼
1

2NA

�
1

λex
þ 1

λem

�
−1
; ð92Þ

and in a similar fashion for the axial resolution,

zmin ¼
1

2nð1 − cosΘÞ
�

1

λex
þ 1

λem

�
−1
; ð93Þ

where λex and λem are the excitation and emission wave-
lengths, respectively. Thus, ignoring the spectral Stokes shift
between excitation and emission, i.e., λem ≈ λex (see Sec. II),
the confocal microscope with an infinitely small pinhole has a
twofold higher lateral resolution than a wide-field microscope,
as we see when comparing Eqs. (92) and (67). This improve-
ment in resolution can also be explained in the spatial domain
using Eq. (84) by setting Aðρ0Þ ¼ δðρ0 − ξÞ (an infinitely small
aperture centered at ξ) and adopting Gaussian approximations
for both the wide-field PSF as in Eq. (69) and the excitation
PSF Iex. In this case, the resulting confocal PSF would be the
product of the two Gaussian approximations, which is
Gaussian as well (Zhang, Zerubia, and Olivo-Marin, 2007),

FIG. 29. Anatomy of the OTF (amplitude) of a confocal
microscope. Left panel: excitation OTF. Middle panel: detection
OTF for a confocal pinhole with a 50 μm radius and 60 times
magnification. Right panel: the resulting confocal OTF obtained
via a 3D convolution of the two leftmost distributions.

FIG. 30. OTF amplitude of a confocal microscope as a function
of confocal aperture size. The confocal aperture radius is given in
the top row. We assumed an excitation wavelength of 470 nm, an
emission wavelength of 550 nm, and a water immersion objective
of NA ¼ 1.2 at 60 times magnification. The top left panel shows
the limit of an extremely large confocal pinhole in which the OTF
approaches that of a wide-field microscope imaging at the same
wavelength as the excitation wavelength of the excitation laser.
The bottom right panel shows the limit of a nearly zero-size
pinhole (a ¼ 1 μm) in which the OTF approaches that of an ISM;
see Sec. IV.B.2.
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Ucfðρ; zÞ ∝ exp

�
−
ðρ − ξρÞ2

2σ2ρ
−
ðz − ξzÞ2

2σ2z

�
: ð94Þ

In Eq. (94) the widths of the resulting Gaussian PSF σρ and σz
are smaller than the widths of both the excitation and detection
PSFs, thus leading to higher resolutions.
The PSFs corresponding to the OTFs shown in Fig. 30 are

presented in Fig. 31, which illustrates how the PSF’s lateral
width shrinks with decreasing pinhole size and thereby
improves the lateral resolutions, albeit at a price. The smaller
the confocal pinhole size, the fewer the photons that reach the
detector, thereby reducing theSNR(Sheppard et al., 2006). This
is quantified in Fig. 32, which shows the relation between the
PSF diameter (in the focal plane) and the light detection
efficiency for increasing the pinhole radii (1 − 200 μm) while
assuminga 470nmexcitation and550nmemissionwavelength,
and for awater immersionmicroscopewithNA ¼ 1.2 objective
and 60 times magnification. The light detection efficiency
decreases as the confocal pinhole radius drops below 20 μm,
which encourages the use of ISM (introduced next).

2. Image scanning microscopy

As discussed in Sec. IV.B.1 upon consideration of a confocal
PSF, the maximum possible spatial resolution is achieved when
an infinitely small confocal pinhole is approached; see
Eqs. (92)–(94). However, as this would reduce light detection
efficiency to almost zero (see Fig. 32), such an option is often
avoided in practice. To simultaneously maximize spatial res-
olution and light detection efficiency, in the late 1980s Colin
Sheppard proposed combining scanning spot illumination of
confocal microscopes and wide-field light detection of an array
detector, for example, an EMCCD camera, without pinholes
mitigating light loss (Sheppard, 1988). This idea, termed ISM,
was first experimentally demonstrated more than a decade ago

by Müller and Enderlein (2010). The core idea of ISM is to
replace the confocal pinhole and the single-pixel detector of a
conventional CLSM with an array detector in the image plane
(pinhole plane); see Fig. 26. The fluorescence light from an
illumination spot at a position r is then spread across multiple
pixels of the detector array. In this setup, a pixel located at ξ
records photons from the illuminated spot corresponding to a
pinhole located at ξwith the same size as thepixel. Thepixel size
is often chosen to be small enough that each pixel records an
image of the illumination spot with a resolution similar to that of
aCLSMwith close to a zero pinhole size; see Eqs. (92) and (93).
Moreover, as ISM builds on a CLSM, it also provides optical z
sectioning.
The ISM setup described here results in Np recorded

images for each illumination spot associated with all
Np pixels of the detector array. As such, upon scanning the
sample at Ns locations one acquires Np × Ns images. To
combine all acquired images into a single high resolution
image, we first consider the scan image recorded by one pixel
at a given position ξ on the array detector. The PSF of this scan
image is easily found when the aperture function AðρÞ of
Eq. (84) is replaced by the pixel area. However, as an
idealization we can consider the pixel area as a delta function
δðρ − ξÞ as compared to the size of the features that we want to
determine. As such, the PSF for the scan image recorded by a
pixel at a position ξ is

Upixðr; ξÞ ∝ Uwfðξ − rÞIexðrÞ; ð95Þ

where Uwf is the wide-field imaging PSF (detection PSF) and
Iex is the excitation PSF. This is visualized in Fig. 33, where a

FIG. 31. Confocal microscope PSF for an isotropic emitter as a
function of confocal aperture size. The aperture radius is given
above each panel. The parameters are similar to those in Fig. 30,
with 60 times magnification.

FIG. 32. Relationship between PSF size and detection efficiency
in a CLSM. We show the light detection efficiency vs the
Gaussian radius σ of the PSF in the focal plane as a function
of the confocal aperture’s radius (denoted as a). Calculations
were made for a water immersion objective with NA ¼ 1.2 and
an image magnification of 60 times (focal plane to pinhole plane).
It was assumed that excitation is achieved with 470 nm circular
polarized light focused onto a diffraction-limited spot, and that
the fluorescence emission is of 550 nm wavelength. We found the
focal radius by fitting a radially symmetric Gaussian approxi-
mation expð−ρ2=2σ2Þ to the PSF in the focal plane. The curve’s
undulations at the upper right arise from the diffraction effects of
light passing through a circular pinhole.
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cross section of the excitation PSF IexðrÞ is shown together
with the detection PSF for a pixel at a position ξ [described by
Uwfðξ − rÞ] and the product of the two; see Eq. (95).
When one estimates the excitation and detection PSFs using

Gaussian approximations with variances σ2ex and σ2em, respec-
tively, the product of the two yields

IexðrÞUwfðr − ξÞ ∝ exp

�
−
ðr − ξ=κÞ2
2σ2PSF

�
; ð96Þ

with σ−2PSF ¼ σ−2ex þ σ−2em and κ ¼ 1þ σ2em=σ2ex. Recalling that
σex and σem linearly scale with wavelength [see Eq. (69)], we
find that

κ ¼ 1þ ðλem=λexÞ2; ð97Þ

which equals 2 if one neglects the spectral Stokes shift
between the excitation and fluorescence emissions. Thus,
the maximum of the product of the excitation intensity
distribution and the detection PSF is located between the
centers of the two at the position ξ=κ so that the scan image is
shifted by the same amount with respect to an image recorded
by a pixel at the position ξ ¼ 0; see Fig. 33. This insight yields
a recipe for how to superimpose different scan images
recorded by different pixels: an image recorded by a pixel
at position ξ must be shifted by ξ=κ toward the optical axis
before being added to the final sum image. Mathematically
this is expressed as

UISMðrÞ ∝
Z

dξUpix

�
rþ ξ

κ
; ξ

�

¼
Z

dξUwf

�
κ − 1

κ
ξ − r

�
Iex

�
rþ ξ

κ

�
: ð98Þ

There are two ways to realize this summation in practice. As
shown in Fig. 34, one way is to scale down, by a factor of κ, all
images recorded by the array detector at each scan position
before adding them to the final image at the corresponding
scan position (from top to bottom right in Fig. 34).
Alternatively, one can leave the recorded array detector
images as they are but place them a factor of κ farther away
from each other when adding them to the final image (from
top to bottom left in Fig. 34).
Both procedures are mathematically equivalent ways to

realize the algorithm described by Eq. (98), although the
second algorithm is numerically simpler as it does not require
any interpolation-based downscaling of the images recorded
by the array detector. However, as first demonstrated by York
et al. (2012) and De Luca et al. (2013), both algorithms can be
realized in a fully optical way. The first algorithm, which
scales down the array detector images, is optically realized by
inserting an extra demagnifying lens pair into the detection
pathway [as realized by instant SIM (York et al., 2012, 2013),
optical photon reassignment (Roth et al., 2013), or confocal
spinning disk ISM (Azuma and Kei, 2015)], while the second
algorithm, which scales up distances between recorded
images, is realized via a double mirror rescan system [rescan
microscopy (De Luca et al., 2013)] or by recoupling the
emission into the excitation scan system [rapid two-photon-
excitation ISM (Gregor et al., 2017)].
By construction both the OTF and the PSF of an ISM are

identical to that of a confocal microscope with an infinitely

FIG. 33. Image formation in ISM. The blue curve represents the
excitation intensity distribution Iex (excitation PSF) with its
center at ξ ¼ 0 (the optical axis). The yellow curve shows the
detection PSF (Uwf) for a pixel located at ξ away from the optical
axis. The pixel PSF (Upix) describing the image formation is,
however, given by the product of the excitation and detection
PSFs, which is designated by the green curve and centered at ξ=κ.
Thus, a fluorophore at ξ ¼ 0 (the excitation intensity’s center)
will appear at ξ=κ.

FIG. 34. ISM image reconstruction. Top image: at each scan
position, the array detector records a small image of the
illuminated region. To reconstruct a final ISM image, we can
either downscale each recorded small image by a factor of κ
(bottom right image) or leave the recorded images unchanged but
place them in the final ISM image by a factor of κ farther way
from each other (bottom left image).
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small confocal pinhole; see the last panels of Fig. 30 (OTF)
and Fig. 31 (PSF), respectively. The corresponding achievable
optical lateral and axial resolutions then immediately follow
from Eqs. (92) and (93). One particularly important property
of ISM is that it also “concentrates” the collected fluorescence
light into an area of the final image that is 4 times smaller than
that of a conventional CLSM [“superconcentration of light”
(Roth, Sheppard, and Heintzmann, 2016); see also the top and
right panels of Fig. 34], thereby significantly increasing the
image contrast. Meanwhile, multiple ISM variants [reviewed
by Gregor and Enderlein (2019)] and several commercial
systems are available that provide CLSMs with ISM options
for improved resolution and high contrast imaging.

3. 4Pi microscopy

One peculiarity of conventional CLSM is the disparity
between lateral and axial resolutions [see Eqs. (92) and (93)]
due to the PSF’s elongated shape along the optical axis, which
yields stretched 3D CLSM images; see Fig. 31. To overcome
this strongly anisotropic PSF shape, Hell and Stelzer (1992)
developed 4Pi microscopy using two opposing objectives to
focus (and detect) light. When sending laser excitation light
through both objectives in a coherent manner, the resulting
interference of the two beams generates a multipeaked
interference pattern along the optical axis. The corresponding
Fourier representations of the excitation electric fields are
shown in the left and middle panels of Fig. 35, and the
convolution of the two, i.e., the 4Pi excitation OTF, is shown
in the right panel of Fig. 35. In contrast to the CLSM
excitation OTF of Fig. 29, its 4Pi counterpart populates high
frequencies along the optical axis coinciding with a tight
modulation of the excitation intensity along this axis. The
corresponding excitation intensity distribution (the excitation
PSF) in real space is shown in the left panel of Fig. 36.
Detection in a 4Pi microscope is done as usual in confocal

detection mode, whereby two principal options are possible:
(1) fluorescence is collected using both objectives and
detected by two detectors, resulting in two independent scan
images added later to attain a single image [4Pi type A
microscope (Lang et al., 2007)], and (2) fluorescence is
collected using both objectives and coherently superimposed

onto one detector [4Pi type C microscope (Bewersdorf,
Schmidt, and Hell, 2006)]. A special case is the 4Pi type B
microscope, which performs similarly to the type A micro-
scope, with which excitation is done incoherently (i.e., with no
interference pattern generation) but the collected light is
superimposed coherently (Hao et al., 2022).
To determine the maximal possible resolution attainable

with 4Pi microscopy, we show in Figs. 37 and 38 the OTFs for
type A and type C microscopes in the limit of an infinitely
small confocal pinhole (realized by combining 4Pi micros-
copy with ISM). Thus, the OTF of a 4Pi type A microscope, as
shown in Fig. 37, is obtained via a convolution of the 4Pi
excitation OTF (see Fig. 35) with the OTF of a simple ISM
(corresponding to wide-field detection).
As with 4Pi type C microscopes, detection is achieved by

coherently superposing fluorescence light from both objec-
tives. The OTF of such a detection looks similar to that of the
excitation shown in Fig. 35, except that it is calculated for the
fluorescence emission wavelength. The convolution of such a
detection OTF with the excitation OTF then yields the OTF of

FIG. 35. 4Pi microscope excitation OTF generated by the
interference of light focused through two opposing objectives.
The left and middle panels show the same Fourier transform of
the excitation electric field in sample space. The resulting
excitation OTF shown in the right panel is the (auto)convolution
of this electric field Fourier transform and represents the Fourier
transform of the excitation intensity (the excitation OTF). Ex-
citation is assumed to be done using a water immersion objective
with NA ¼ 1.2.

FIG. 36. Excitation PSF and imaging PSF of 4Pi microscopy for
a rapidly rotating emitter. Left panel: excitation PSF in the focus
of a 4Pi microscope. Middle panel: imaging PSF of a 4Pi type A
microscope. Right panel: imagine PSF of a 4Pi type C micro-
scope. Calculations were performed using a water immersion
objective with an NA ¼ 1.2, a 470 nm excitation wavelength, and
a 550 nm fluorescence emission wavelength, and for a confocal
detection in the limit of an infinitely small pinhole.

FIG. 37. OTF of a type A 4Pi microscope where excitation is
done through two opposing objectives, and detection is per-
formed from one side through a confocal pinhole. For simplicity
we consider here only the limiting case of an infinitely small
pinhole maximizing the spatial resolution. Left panel: excitation
OTF. Middle panel: the OTF of detection with an infinitely small
pinhole. Right panel: the resulting 4Pi OTF as a convolution of
the two distributions shown on the left. Excitation and detection
are achieved using a water immersion objective with an
NA ¼ 1.2, and any Stokes shift between excitation and emission
light is neglected.
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the 4Pi type C microscope; see Fig. 38. The corresponding
real space PSFs for both type A and type C 4Pi microscopes
are shown in the middle and right panels of Fig. 36.
As seen in Figs. 37 and 38, 4Pi microscopes collect more

spatial frequencies than CLSMs (see Fig. 30), thereby
improving their axial resolution. As before, we can again
obtain quantitative numbers for the lateral and axial resolu-
tions by inspecting the OTF and determining the maximum
lateral and axial frequencies supported by the OTF. Concretely
the inverse of these maxima multiplied by 2π yields approxi-
mate values for the resolution; see Eq. (52). The lateral
resolution of a 4Pi microscope (with an infinitely small
pinhole) is the same for both type A and type C and equal
to that of an ISM; see Eq. (92). However, the axial resolution
of a type A 4pi microscope now reads

zmin ≈
1

2

�
1

λex
þ 1

λem
ð1 − cosΘÞ

�
−1
; ð99Þ

and there is a similar approach for the type C 4Pi microscope,

zmin ≈
1

2

�
1

λex
þ 1

λem

�
−1
: ð100Þ

As seen in the PSFs of Fig. 36, there are considerable
sidelobes neighboring the central maximum along the optical
axis, leading to “ghost” images in a recorded 3D scan image of
a sample (Bewersdorf, Schmidt, and Hell, 2006). These ghost
images are much more pronounced for type A than for type C,
though even for type C they must be eliminated, currently by
applying deconvolution algorithms (Bewersdorf, Egner, and
Hell, 2006; Liu and Huang, 2020). Both the technical
complexity of a 4Pi microscope and image deconvolution
challenges to eliminate ghost images have prevented their
further distribution. However, the ISM lateral resolution of a
4Pi type C (image scanning) microscope together with its
axial resolution represent the maximum possible spatial
resolutions available along the x and z directions using a
diffraction-limited microscope.

4. Two-photon microscopy

An important variant of the point scanning microscope is
the two-photon (or multiphoton) excitation scanning

microscope (Denk, 2007). Here a fluorophore is excited by
a two-photon (or multiphoton) absorption process, typically
with an excitation wavelength that is roughly 2 times (or
multiple times) as large as that of one-photon absorption
fluorescence excitation. Such two-photon excitation micro-
scopes have several important properties (Denk and Svoboda,
1997; Williams, Zipfel, and Webb, 2001). First, owing to the
longer excitation wavelength, typically in the infrared, exci-
tation light can penetrate deeper into tissue than visible light.
Thus, two-photon excitation microscopes are ideal for deep-
tissue imaging in lipid and water-rich samples with high
optical absorption in the visible spectrum. Second, there is a
critical improvement in the in-focus signal-to-background
ratio, i.e., the undesired light from out-of-focus fluorophores,
compared to one-photon absorption fluorescence microscopy.
This arises from (1) fluorophore excitation taking place at
much longer wavelengths than the emission wavelength. In
other words, the probability of simultaneous absorption of two
or more photons is significant only at a focal spot with high
photon density. (2) Excitation light scattering decreases at
longer wavelengths. (3) Two-photon (or multiphoton) exci-
tation does not require confocal detection for optical section-
ing. This is because the two-photon-excitation PSF is
proportional to the square of the excitation light intensity
distribution (the probability of two simultaneous photon
absorption is given by the square of the one-photon-excitation
PSF) (Pawley, 2006), represented by an autoconvolution of
the excitation OTF in Fourier space. A similar convolution
was already considered in the discussion of the ISM’s OTF (as
idealized by the last panel of Fig. 30), which covered higher
spatial frequencies than are associated with the OTF of a wide-
field microscope or the CLSM with a wide pinhole shown in
the first panel of Fig. 30. Thus, a two-photon-excitation
microscope has an optical sectioning capability that is similar
to a confocal (one-photon-excitation) microscope at the same
excitation wavelength when it uses an infinitely small detec-
tion pinhole (neglecting the spectral Stokes shift between
excitation and emission). The required peak power of the
excitation pulses, which is orders of magnitude larger than that
of single-photon excitation, thereby increasing photodamage
and photobleaching (Tauer, 2002), is the primary downside of
two-photon-excitation microscopy.
To gain deeper insight into the best possible lateral

resolution achievable with a two-photon-excitation micro-
scope, we consider two-photon excitation along with ISM
detection, i.e., record at each scan position a small image of
the excited region and perform pixel reassignment to obtain
the high resolution ISM image; see Sec. IV.B.2. To do so, we
approximate the one-photon-excitation PSF and the single-
pixel detection PSF once more by Gaussian approximations
with variances σ2ex and σ2em; see Sec. IV.B.2. We can visualize
the PSF of the scan image recorded by one pixel at position ξ
on the array detector, as shown in Fig. 39; see also Eq. (96).
The new reassignment factor κ (see Sec. IV.B.2) is found by

looking at the product of the detection PSF with the square of
the one-photon-excitation PSF, yielding a Gaussian function
with a variance σ−2 ¼ 2σ−2ex þ σ−2em and a midpoint position
ξ=κ, with κ ¼ 1þ 2ðλem=λexÞ2, which yields for the case λex ¼
2λem the value κ ¼ 3=2; see also Eq. (97).

FIG. 38. OTF of a type C 4Pi microscope. Like Fig. 37, but in
this configuration both excitation and detection occur through
two opposing objectives. Again we consider here only the
limiting case of an infinitely small pinhole. Left panel: excitation
OTF. Middle panel: the identical Fourier transform for coherent
confocal detection from both sides. Right panel: the resulting
OTF as a convolution of the two panels shown on the left.
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We now compare the performance of such a two-photon-
excitation ISM to that of a one-photon-excitation CLSM and
ISM at half the wavelength. For simplicity we consider the toy
model of a one-dimensional microscope. The Fourier repre-
sentation of the excitation electric field of such a one-
dimensional microscope is a uniform amplitude distribution
over the frequency range supported by the microscope (the
maximum lateral frequency transmitted is nk0 sinΘ). This is
shown in Fig. 40 by the tabletop function (electric field). The
autoconvolution of this uniform amplitude distribution yields
the excitation OTF and is, for the one-dimensional and one-
photon case, the triangular function shown in Fig. 40 and
denoted by “1hν excitation (λ0).”
The two-photon-excitation PSF for an excitation with a 2λ0

wavelength is given by the square of the one-photon-excita-
tion PSF. As such, its OTF corresponds to the autoconvolution
of the one-photon OTF shown as 1hν excitation (λ0) in Fig. 40
but is scaled down along the frequency axis by a factor of 2
(remember that we compare two-photon excitation at 2λ0
with one-photon excitation at 1λ0). The corresponding
curve is denoted by 2hν excitation (2λ0). The OTFs for the ex-
tensions of one-photon-excitation and two-photon-excitation

fluorescence microscopy with ISM are also shown, together
with the OTF of the one-photon excitation at λ0=2 for
comparison.
The frequency support of two-photon excitation at a 2λ0

wavelength is equal to that of the one-photon excitation at λ0,
but with increased amplitudes at low frequencies and
decreased amplitudes at large frequencies. In other words, a
two-photon microscope transmits high lateral spatial frequen-
cies less efficiently than a one-photon microscope operating at
half the wavelength. This is also true when we compare two-
photon ISM with one-photon ISM, as shown by the two
curves 1hν excitation ðλ0Þ þ ISM and 2hν excitation ð2λ0Þ þ
ISM in Fig. 40. Both modes have a frequency support equal to
that of a one-photon excitation at λ0=2, but with considerably
damped amplitudes at high spatial frequencies, with one-
photon ISM performing slightly better than two-photon ISM.
Thus, two-photon (or multiphoton) excitation generally per-
forms worse, in terms of resolution, than one-photon micro-
scopes at half the wavelength, though biological tissue
remains more transparent (less scattering) at long wave-
lengths, giving access to greater penetration depths in two-
photon and multiphoton excitation microscopes.

C. Models for single spot confocal analysis

Point scanning microscopes, including confocal and two-
photon microscopes, have been used to study both dynamic
(Sprague et al., 2004; Digman and Gratton, 2011; Wunderlich
et al., 2013; Jazani, Sgouralis, and Pressé, 2019; Jazani et al.,
2019) and static phenomena (Berland, So, and Gratton, 1995;
Rossow et al., 2010; Kristoffersen et al., 2014; Karpf et al.,
2020; Thiele et al., 2020) with both immobile (Berland, So,
and Gratton, 1995; Nettels, Hoffmann, and Schuler, 2008;
Wunderlich et al., 2013; Jazani, Sgouralis, and Pressé, 2019;
Jazani et al., 2019) and scanning spots (Digman et al., 2008;
Rossow et al., 2010; Digman and Gratton, 2011; Fazel, Jazani
et al., 2022) under continuous or pulsed illumination (Gregor,
Patra, and Enderlein, 2005; Jazani, Sgouralis, and Pressé,
2019). Point scanning microscopes, particularly confocal
microscopes, provide data for myriad analysis tools, including
fluorescence recovery after photobleaching (Sprague et al.,
2004; Lorén et al., 2015; Moud, 2022) used in the study of
subcellular environments by monitoring diffusion of fluoro-
phores into previously photobleached regions FLIM (Suhling
et al., 2015; Datta et al., 2020), where photon arrival time
statistics following pulsed excitation are collected and ana-
lyzed, and fluorescence correlation spectroscopy (FCS) (Elson
and Magde, 1974; Magde, Elson, and Webb, 1974; Digman
and Gratton, 2011), where photon arrival times or fluores-
cence intensities, often collected under constant illumination,
are correlated in time to infer dynamical parameters (Jazani,
Sgouralis, and Pressé, 2019; Jazani et al., 2019).
Here we begin with a description of FCS where a static

confocal spot is used to determine the reaction kinetics and
diffusion coefficient of particles freely diffusing through the
spot; see Fig. 41(a). In particular, Fig. 41 illustrates a scenario
often analyzed using FCS with labeled molecules freely
diffusing through a static confocal spot becoming excited
in proportion to the local light intensity. In traditional FCS
analysis, a fraction of emitted photons are captured and

FIG. 39. Pixel reassignment in two-photon-excitation ISM. In
contrast to the ISM in Fig. 33, the excitation intensity distribution
(one-photon-excitation PSF) in two-photon microscopy has a
larger width due to its larger excitation wavelength.

FIG. 40. Comparison of one- and two-photon microscopy. See
the text for details.
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dynamical properties are obtained by autocorrelating in time
the emitted light intensity or photon arrival times (Elson and
Magde, 1974; Magde, Elson, and Webb, 1974; Bright et al.,
1989; Lakowicz, 2006). While autocorrelating photon arrivals
is computationally informative, it is data inefficient and
eliminates single-molecule information already encoded in
the signal (Jazani et al., 2019, 2022; Tavakoli, Jazani,
Sgouralis, Shafraz et al., 2020). What is more, uncertainty is
rarely propagated on derived quantities. Thus, a statistical
method directly analyzing photon arrivals is warranted to
avoid data postprocessing including autocorrelation (Jazani,
Sgouralis, and Pressé, 2019; Jazani et al., 2019; Tavakoli,
Jazani, Sgouralis, Shafraz et al., 2020). Here we begin by
deriving the likelihood for the collection of K þ 1 photons
whose interarrival intervals (Tavakoli, Jazani, Sgouralis,
Shafraz et al., 2020) are designated by Δt1∶K ¼
fΔt1;…;ΔtKg [see Fig. 41(b)] under the assumption of
continuous illumination.
We begin by considering the confocal PSF derived earlier in

Eq. (94) and for simplicity immediately adopt Cartesian
coordinates where r ¼ ðρ; zÞ. For an arbitrary M molecules
located at rmk at time tk, we write the following profile:

SkðrÞ ¼
XM
m¼1

δðr − rmk Þ: ð101Þ

As such, the total expected photon emission rate μk at time
level k follows from

μkðrÞ¼μBþμ0

Z
drUcfðrÞSkðrÞ¼μBþ

XM
m¼1

μmk ðrmk Þ; ð102Þ

where μmk ðrmk Þ ¼ μ0Ucfðrmk Þ is the expected photon emission
rate from the mth molecule located at rmk , μ0 is the maximum
photon emission rate associated with a molecule located at the
PSF center, and μB is the background photon emission rate.
The photon emission rate μk then dictates the photon interval
time Δtk,

Δtk ∼ Exponential(μkðrÞ); ð103Þ
where “Exponential” implies a normalization constant and the
notation used was introduced in Sec. I.B. This exponential
waiting time follows from Poisson distributed photon emis-
sion per unit time implying exponentially distributed photon
interarrival times.
Finally, under the assumption of a normal diffusion model

with open boundary conditions,

rmk jD ∼ Normalðrmk−1; 2DΔtkÞ; ð104Þ
where D is the diffusion coefficient assumed to be constant
across time and space. In Eq. (104) we see that the rate μkðrÞ
inherits its stochasticity from the stochastic positions.
Given the previously described forward model, we now

construct the likelihood for K photon interarrival times Δt1∶K
given by Eq. (103). As Δt1∶K are i.i.d. (see Sec. I.B), the
trace’s likelihood is simply the product of the likelihood of
every individual photon time interval,

PðΔt1∶K jM;D; ¯̄r; μ0; μBÞ
¼

Y
k

Exponential(Δtk; μkðrÞ); ð105Þ

where “Exponential” implies a normalization constant and
μkðrÞ is an implicit function of M;D; μ0, and μB; see
Eqs. (102) and (104). Moreover, double overbars represent
the set of all possible values for the two associated indices,
namely, m and k.
To maximize the likelihood, we need to either determine the

number of molecules in advance, i.e., the parametric model, or
work within a nonparametric paradigm and infer the number
of molecules alongside other parameters. The aforementioned
likelihood cannot be naively maximized to obtain parameters
due to classic overfitting problems favoring more complex
models, i.e., larger numbers of molecules. However, in the
former case, assuming an incorrect parametric model with M
molecules (Jazani et al., 2019; Tavakoli, Jazani, Sgouralis,
Shafraz et al., 2020) can result in incorrect estimates of other
parameters, for example, the diffusion coefficient; see Fig. 69.
As such, we abandon the parametric paradigm and start

leveraging BNP tools (Ferguson, 1973; Hjort et al., 2010;
Gershman and Blei, 2012; Pressé and Sgouralis, 2023). Of
particular interest within the BNP paradigm is the beta-
Bernoulli process prior (see Sec. I.B) on the number of
candidate molecules M formally allowed to tend to infinity
(M → ∞) a priori. In other words, each molecule is treated as
a Bernoulli random variable (a load) bm determined simulta-
neously along with other unknowns; see Sec. I.B. The

FIG. 41. (a) Schematic of confocal volume (in blue) with
labeled molecules emitting photons in proportion to their degree
of excitation decaying from the confocal volume center. (b) Syn-
thetic trace with 1500 photons generated assuming four mole-
cules diffusing at 1 μm2=s for 30 ms using background and
molecule photon emission rates of 103 and 4 × 104 photons=s,
respectively. Adapted from Tavakoli, Jazani, Sgouralis, Shafraz
et al., 2020.
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probability of the load being 1, equivalently, the probability of
the molecule being warranted by the data, is the single
parameter of the Bernoulli distribution on which we place
a beta prior.
Within this framework, Eq. (102) is modified by replacingP
M
m¼1μ

m
k ðrmk Þ on the right-hand side with

P∞
m¼1bmμ

m
k ðrmk Þ and

summing over infinite molecules. The likelihood then adopts
the form

PðΔt1∶KjϑÞ ¼
Y
k

Exponential(Δtk; μkðrÞ); ð106Þ

where “Exponential” implies a normalization constant but ϑ
now collects all unknowns, including all loads. Our non-
parametric posterior is proportional to the product of this
likelihood and all priors, including beta-Bernoulli process
priors on each molecule; see Fig. 42.
Now equipped with the posterior, we draw samples using

Monte Carlo methods to learn the set of unknowns ϑ. To learn
the trajectories ¯̄r, we use forward filtering backward sampling
(Scott, 2002; Bishop and Nasrabadi, 2006; Tavakoli, Jazani,
Sgouralis, Shafraz et al., 2020; Pressé and Sgouralis, 2023),
while the remaining parameters are sampled either directly or
using the brute-force Metropolis-Hastings algorithm; see
Sec. I.B. Figure 43 benchmarks the statistical framework of
Fig. 42 versus FCS.
While the previous approach returns a trajectory, owing to

the symmetry of the confocal PSF [see Eq. (94), the photon
emission rate of Eq. (102) and thus the likelihood given by

Eq. (106) are invariant under transformations leavingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ=σρÞ2 þ ðz=σzÞ2

q
unchanged. As such, equivalent posi-

tions lead to the same likelihood, and thus unique positions
cannot be determined using a single confocal setup.
In contrast, it is possible to determine absolute molecular

locations (trajectories) by breaking the spatial symmetry of the
confocal spot by introducing a multifocus confocal setup
(Lessard, Goodwin, and Werner, 2007; Wells et al., 2010;
Jazani et al., 2022). Such a setup splits the confocal spot by
introducing four detectors with axially and laterally offset

FIG. 42. Statistical framework: confocal under continuous
illumination.

FIG. 43. Comparison of the diffusion coefficients D obtained
from the statistical framework vs FCS plotted against photon
counts used in the analysis. The photon arrival times were
simulated using the parameter values in Fig. 41(b). Adapted
from Tavakoli, Jazani, Sgouralis, Shafraz et al., 2020.

FIG. 44. Multifocal setup uniquely resolving many molecular
trajectories simultaneously. (a) A beam splitter is used to divide
the fluorescent emission (indicated in green) into two paths later
coupled into fibers and detected by four APDs corresponding to
different focal spots. (b) PSFs associated with different light
paths. (c) Trajectories for two freely diffusing molecules with
D ¼ 1 μm2=s, μ0 ¼ 5 × 104photons=s, and μB ¼ 103photons=s.
The orange and blue curves represent the learned trajectories’
ground truth and median, respectively. The blue and gray areas,
respectively, denote the 95% confidence intervals and the PSF’s
width. Adapted from Jazani et al., 2022.
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detection volumes; see Figs. 44(a) and 44(b). Photons from
molecules in such a setup are detected in the lth detector with
the following rate:

μlkðrÞ ¼ μlB þ μ0
X
m

blmUl
cfðrmk Þ ð107Þ

at time k; see Eq. (102). The total photon detection rate is in
turn the sum of detection rates across all different detectors
μk ¼

P
lμ

l
k, and the likelihood is similar to the likelihood seen

in Eq. (106). From this likelihood follows a posterior
analogous to Fig. 42 that, when sampled, yields absolute
molecular trajectories; see Fig. 44(c).
It is now conceivable to imagine generalizing the afore-

mentioned treatment to include multiple diffusing species
(Bacia and Schwille, 2007), species with donor and acceptor
labels (FCS FRET) (Torres and Levitus, 2007; Schuler, 2018),
and species undergoing reactions that alter their emission rate
and kinetics (Zosel et al., 2018; Xu, Jazani et al., 2023).
This brings us to the merits of statistical approaches

compared to FCS. Such approaches are more data efficient,
rigorously propagate errors (including effects of finite data via
the likelihood), and can deal with any PSF shape and optical
aberrations (Enderlein et al., 2004; Sarkar et al., 2019). But
also, fundamentally, by avoiding data postprocessing they
learn more. For instance, in contrast to FCS the previously
described statistical methods can learn properties of individual
molecules diffusing through the spot, thereby providing
single-molecule resolution, albeit at a computational cost.
Having dealt with continuous illumination, we now turn to

pulsed illumination and, for simplicity, assume an immobile
sample. Under pulsed illumination, the data acquired are a
trace of K photon arrival times Δt1∶K reported with respect to
the immediate preceding pulses. These arrival times, also
termed microtimes, encode the excited-state lifetimes τm for
the mth species of fluorophore species (see Sec. II) present
within the confocal spot. They also encode the associated
photon ratios (weights) shown by πm for the mth species
related to fluorophore densities, as we later show.
Although there are intuitive methods to determine excited-

state lifetimes (Digman et al., 2008), as in Fig. 43 we find that
learned lifetimes are sensitive to the parametric assumption on
the number of lifetime species considered (Fazel, Vallmitjana
et al., 2023). Indeed, existing techniques cannot simultane-
ously (1) decode the number of fluorophore species present in a
trace of photon arrival times; (2) operate on a broad range of
lifetimes below the instrument response function (IRF) (see
Appendix A) or lifetimes comparable to the laser interpulse
times or similar lifetimes; (3) provide uncertainties over
parameter estimates; and (4) infer continuous fluorophore
densities, i.e., lifetimemaps given byΩmðrÞ ¼ μmSmðrÞ, where
Sm and μm are the fluorophore densities [see Eq. (101)] and
fluorophore excitation probability (for in-focus fluorophores)
during a laser pulse for the mth species, respectively.
Here we review statistical frameworks for FLIM analysis

addressing the previously highlighted issues with minimal
photon budgets. In doing so, we first discuss a framework for a
single confocal spot and then generalize to FLIM analysis
methods using data from a scanning confocal setup to deduce
lifetime maps over large FOVs.

We begin by introducing the likelihood for Δt1∶K collected
from a single spot with M species,

PðΔt1∶Kjλ1∶M; π1∶MÞ ¼
YK
k¼1

PðΔtkjλ1∶M; π1∶MÞ; ð108Þ

where λm denotes the inverse lifetime τm ¼ 1=λm and
PðΔtkjλ1∶M; π1∶MÞ denotes the likelihood of the kth arrival
time. To derive PðΔtkjλ1∶M; π1∶MÞ, we sum over all possibil-
ities that could give rise to this photon, including all M
fluorophore species and all Npl previous laser pulses.
Assuming a Gaussian IRF, this leads to [see Appendix A
and Eq. (A23)] (Fazel, Jazani et al., 2022; Fazel, Vallmitjana
et al., 2023)

PðΔtkjλ1∶M;π1∶MÞ¼
�XM
m¼1

πm
XNpl

n¼0

λm
2

×exp

�
λm
2
½2ðτIRF−Δtk−nTÞþ λmσ

2
IRF�

�

×erfc

�
τIRF−Δtk−nTþ λmσ

2
IRF

σIRF
ffiffiffi
2

p
��

;

ð109Þ

where τIRF, σ2IRF, and T denote the IRF offset, the variance, and
the interpulse time, respectively; see Appendix A. Ignoring
excitation by previous pulses considered in Eq. (109), we
arrive at the likelihood obtained by Rowley et al. (2016).
To summarize, parametrically the number of fluorophore

speciesM is prespecified and often set to 1 or 2 for simplicity;
see Rowley et al. (2016) and Kaye et al. (2017). In contrast,
nonparametrically the number of fluorophore species are
a priori assumed to be infinite (Fazel, Jazani et al., 2022;
Fazel, Vallmitjana et al., 2023).
Within the nonparametric paradigm, the single spot FLIM

posterior is proportional to the likelihood (109) and priors
over all unknown parameters, namely, λ1∶M and π1∶M. For λm,
we use a gamma prior to guarantee non-negative values. For
πm, we leverage the nonparametric Dirichlet process prior
(Neal, 2000; Gelfand, Kottas, and MacEachern, 2005;
Sgouralis and Pressé, 2017) to facilitate inference over the
probability in the number of species present warranted by the
data, i.e., to address model selection; see Sec. I.B. Within this
framework, as before when operating nonparametrically we
assume an a priori infinite number of species (M → ∞) with
associated weights πm. As we sample these weights, the
weights ascribed to species not contributing to the data attain
negligible values. Figure 45 shows lifetime histograms for two
lifetimes below the IRF and with subnanosecond differences
using 500, 1000, and 2000 photons.
We now turn to FLIM over large FOVs, where we estimate

how to smooth lifetime maps from confocal scanning data; see
Fig. 47. FLIM data over large FOVs are typically collected
using a CLSM to scan the sample over uniformly spaced
horizontal trajectories where the spacing defines the data pixel
size. The collected data are often arranged into a 2D pixel
array where each pixel contains a subset of photon arrival
times acquired over the pixel.
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One naive way to process such data is to analyze each pixel
independently using the framework of Fig. 46. However, this
yields pixelated lifetime maps where information from one
pixel does not inform the neighboring pixels. In what follows,
we review a framework for multipixel FLIM over large FOVs
(Fazel, Jazani et al., 2022, 2023) while reporting lifetime
maps below the data pixel size leveraging spatial correlations
across pixels by invoking nonparametric GPs; see Sec. I.B
and Fig. 47.
The likelihood here is now given by

Pð ¯̄W; ¯̄ΔtjϑÞ ¼
Y
i

Y
kp

PðWi
kp
jϑÞPðΔtikp jϑÞ; ð110Þ

where Wi
kp
, for the kpth pulse and ith pixel, is a binary

variable designating whether or not a laser pulse leads to a
photon detection. As before, ϑ collects all unknowns includ-
ing the inverse of lifetimes λ1∶M, multipixel lifetime maps
Ω1∶M, the loads b1∶M, and hyperparameters ν1∶M over each
species. Further, double overbars represent the set of all

possible values for the pair of indices associated with the
corresponding parameter. In Eq. (110) the likelihood asso-
ciated with the photon arrival times is similar to Eq. (109) and
given by

PðΔtikp jϑÞ¼
�XM
m¼1

πm
XNpl

n¼0

λm
2

×exp

�
λm
2
½2ðτIRF−Δtikp −nTÞþλmσ

2
IRF�

�

×erfc

�τIRF−Δtikp −nTþλmσ
2
IRF

σIRF
ffiffiffi
2

p
��

Wi
kp
; ð111Þ

which reduces to 1 for pulses that do not yield any photon
detection (empty pulses with Wi

kp
¼ 0). In Eq. (111) the

weights π1∶M are directly related to the lifetime maps by πim ¼
ð1 − Pi

0mÞ
Q

q≠m Pi
0q (Fazel, Jazani et al., 2022), where Pi

0m

reflects the probability of no photon detection within the ith
pixel from the mth species given by

Pi
0m ¼ exp

�
−bm

Z
ΩmðrÞUcfðξi − rÞdr

�
; ð112Þ

where ξi is the center of the ith pixel. Moreover, bm denotes
the loads associated with the mth lifetime map (see Sec. I.B),
on which we place beta-Bernoulli process priors (as in Fig. 42)
to deduce the number of lifetime maps introduced by each
fluorophore species present within the data. We note that for
species with bm ¼ 0 the probability of no photon detection
is 1.
After illustrating how to compute PðΔtikp jϑÞ, we compute

PðWi
kp
jϑÞ following the observation that Wi

kp
is Bernoulli

distributed with a success probability of 1 − πi0,

(a) (b) (c)

FIG. 45. Lifetime histograms from single-pixel FLIM. Lifetimes
are below the IRF and differ by subnanoseconds. (a)–(c) Datasets
simulated with 5 × 102, 103, and 2 × 103photons, an IRF width
of 0.66 ns, and ground truth lifetimes of 0.2 and 0.6 ns denoted by
dotted lines. Learning the correct number of fluorophore species
here requires > 500 photons.

FIG. 46. Statistical framework: single spot FLIM.

(a)

(c)

(b)

(d)

(e)

FIG. 47. Experimental FLIM data from mixtures of two cellular
structures (lysosome and mitochondria, shown in green and red,
respectively) stained with two different fluorophore species. (a),
(b) Ground truth lifetime maps. (c) Data acquired from mixtures
of two ground truth maps. (d),(e) Resulting subpixel interpolated
lifetime maps obtained using the statistical framework of Fig. 48.
The average absolute difference between ground the truth and
learned maps is ≈4%. Scale bars are 4 μm. Adapted from Fazel,
Jazani et al., 2022.
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Wi
kp
∼ Bernoullið1 − πi0Þ: ð113Þ

In Eq. (113) πi0 is the probability of no photon detection from
the ith pixel given by πi0 ¼

Q
M
m¼1 P

i
0m.

After introducing the likelihoods, we construct the posterior
proportional to the product of the likelihood and priors over all
unknown parameters. Our framework is doubly nonparamet-
ric, as we use GP priors over continuous lifetime maps and
beta-Bernoulli process priors over the loads; see Sec. I.B. The
GP priors over lifetime maps comprise an infinite set of
correlated random variables, i.e., the value of the map at every
point in space

Ωm ∼ GPðνm;KÞ; ð114Þ

where K and νm denote the correlation kernel (also termed a
covariance matrix) and the GP prior’s mean. The remaining
priors are either physically or computationally inspired;
see Fig. 48.
With the posterior at hand, we make inferences on ϑ once

more by drawing samples from the posterior with Monte Carlo
calculations. Of note are elliptical slice samplers (Murray,
Adams, and MacKay, 2010) used to sample lifetime maps, as
the GP and likelihood do not form a conjugate pair.

D. Structured illumination microscope

As discussed in Sec. III.C, a major drawback of wide-field
fluorescence imaging is the lack of optical sectioning arising
from the OTF’s missing cone; see Fig. 12. This in turn yields
out-of-focus blur that degrades the final images. Previously
we discussed near-field and point scanning methods where,
for example, conventional confocal microscopes achieved
optical sectioning via pinholes; see Sec. IV.B.1. Here we
discuss how SIM achieves both optical sectioning and
resolution beyond the diffraction limit (Bailey et al., 1993;
Heintzmann and Cremer, 1999; Gustafsson, 2000; Ströhl and
Kaminski, 2016; Wu and Shroff, 2018; Mertz, 2019a).
Patterned illumination, with a high spatial stripe contrast

near the focal plane (Neil, Juškaitis, and Wilson, 1997), was
introduced in an effort to attain optical sectioning. The pattern,
whose illumination contrast ideally fades away from the focal
plane, was then translated twice, yielding three images I l with
corresponding phase offsets ϕl; l ¼ 0∶2. One way to attain
optical sectioning was to create three images from differences
in two images, say, ΔI ll0 ðrÞ ¼ I lðrÞ − I l0 ðrÞ, and combine
them according to

ΛsecðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔI01ðrÞ2 þ ΔI12ðrÞ2 þ ΔI20ðrÞ2

q
;

ϕl ¼
2lπ
3

; l ¼ 0∶2: ð115Þ

The hope was that, by subtracting images, unmodulated (out-
of-focus) contributions would cancel as they are approxi-
mately homogeneously illuminated.
These early efforts ultimately enabled structured illumina-

tion to achieve higher resolution (Heintzmann and Cremer,
1999; Gustafsson, 2000), which we now discuss by consid-
ering the SIM image formation model. SIM images are
generated from the product of the fluorophores’ distribution
SðrÞ (see Sec. IV.C) and the illumination intensity pattern
IexðrÞ, followed by convolution with the microscope’s wide-
field detection PSF [see also Eq. (47)],

ΛðrÞ ¼ B þ I½SðrÞIexðrÞ� ⊗ UwfðrÞ; ð116Þ

where B is the background arising from out-of-focus fluo-
rescent features (ignored here for simplicity) and UwfðrÞ and I
are the wide-field PSF (see Sec. III.E) and fluorophore
brightness per frame, respectively.
While various modulated illumination patterns are conceiv-

able for SIM (Heintzmann, 2003; Planchon et al., 2011;
Mudry et al., 2012), in practice the sample is typically
illuminated using a sinusoidal intensity IexðrÞ, with different
in-plane phases and angles (see Fig. 49) achieved via
interference-based methods (Heintzmann and Huser, 2017;
Ma et al., 2021) or using laser scanning (York et al., 2012,
2013; Gregor and Enderlein, 2019).
Under the former method, such intensity patterns are

generated by interference with two to three laser beams,
followed by rotation and translation of the grating embedded
within the setup’s illumination arm. For two beam interfer-
ence, the image formation is described byFIG. 48. Statistical framework: multipixel FLIM.
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ΛliðrÞ ¼ IfSðrÞ1
2
½1þM cos ðr · ki þ ϕlÞ�g ⊗ UwfðrÞ;

γi ¼ arctan
kix
kiy

; L ¼ 2π=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kix2 þ kiy2;

q
ð117Þ

where the modulation depthM is assumed for simplicity to be
1 in subsequent calculations and ki is the wave vector, with
the components kix and kiy defining the oscillatory pattern’s
period, i.e., the fringe spacing denoted by L; see Fig. 49. Here

γi and ϕl are the lth in-plane illumination angle and the ith
phase offset determining the position of the maxima relative to
the optical axis, respectively; see Fig. 49 and Eq. (115).
The improved resolution is achieved by exploiting the

frequency mixing, i.e., the moiré effect, between the excitation
pattern and the sample’s spatial frequencies. That is, previ-
ously unobservable high frequency information beyond the
wide-field OTF’s support is shifted down into the micro-
scope’s bandpass (i.e., frequency support of the microscope’s
OTF); see Figs. 19 and 50.
The effect of structured illumination is most intuitively

demonstrated in Fourier space. For the sinusoidal pattern
given in Eq. (117), its Fourier representation reads

Λ̃liðkÞ ¼ I½S̃ðkÞ ⊗ ĨexðkÞ�OTFwfðkÞ
¼ IfS̃ðkÞ ⊗ ½δð0Þ þ 1

2
eþiϕlδðkþ kiÞ þ 1

2
e−iϕlδðk − kiÞ�gOTFwfðkÞ

¼ I½S̃ðkÞ þ 1
2
eþiϕl S̃ðkþ kiÞ þ 1

2
e−iϕl S̃ðk − kiÞ�OTFwfðkÞ

¼ Ĩ0ðkÞ þ 1
2
eþiϕl Ĩþðkþ kiÞ þ 1

2
e−iϕl Ĩ−ðk − kiÞ; ð118Þ

where OTFwfðkÞ denotes the wide-field OTF (see Fig. 19
and the middle panel of Fig. 50) and the sinusoidal
illumination pattern (for a given angle and phase) is
described by three different frequencies in the Fourier
domain (see the left panel in Fig. 50) yielding the three SIM
harmonics Ĩ0, Ĩþ, and Ĩ−.
In Eq. (118) the first delta function within the parentheses

coincides with the Fourier representation of the uniform (wide-
field) illumination. However, the two subsequent terms arise
from the illumination patterning. These additional terms are two
copies of the Fourier representation of the sample S̃ðkÞ phase
shifted by a factor of ϕl and frequency shifted by ki, thereby
providing more information than wide-field microscopy.
If one supposes that the OTF cutoff frequency is kc,

the frequency shifted components contain high frequency
information that is otherwise absent in the central component
(sum frequency jkþ kij ≤ kc and difference frequency
jk − kij ≤ kc at each sample frequency of k). When imaged,
only frequencies inside the support of the wide-field OTF are
captured. However, sample information across different
(higher) frequency regions now lies within the microscope’s
bandpass; see Fig. 50.

While the three SIM harmonics Ĩ0, Ĩþ, and Ĩ− (the wide
field and � pattern wave vector) already contain frequencies
beyond the wide-field bandpass, no subdiffraction resolution
can yet be achieved. This is because these components overlap
in frequency space. To unmix the overlapping parts, we need
to acquire at least three images with different pattern phases ϕl

designated by Λ̃liðkÞ in Fourier space. The relation between
the three SIM harmonics and these images is best shown in
matrix form,

2
64
Λ̃0iðkÞ
Λ̃1iðkÞ
Λ̃2iðkÞ

3
75 ¼

0
B@

1 0.5eiϕ0 0.5e−iϕ0

1 0.5eiϕ1 0.5e−iϕ1

1 0.5eiϕ2 0.5e−iϕ2

1
CA
2
64

Ĩ0ðkÞ
Ĩþðkþ kiÞ
Ĩ−ðk − kiÞ

3
75:

Here we use a mixing matrix (the square matrix) with different
phases for the available spectra evenly spaced between 0 and
2π. This allows us to solve for Ĩ0, Ĩþ, and Ĩ−; i.e., we unmix
the SIM harmonics. The unmixed components are then
recombined by shifting them so that their true zero frequency
is aligned with their zero frequency in Fourier space, i.e.,
the k0 setting. This yields an effective OTF extended to

FIG. 49. Sinusoidal illumination pattern for SIM microscopy. ki
is the wave vector, L is the fringe spacing, and γi is the
illumination’s in-plane angle. The phase is related to the position
of the maxima relative to the optical axis.

FIG. 50. SIM OTF. Left panel: Fourier transform of the
modulated illumination intensity (SIM excitation OTF given
by the three delta peaks). Middle panel: Fourier transform of
the wide-field detection. Right panel: SIM OTF obtained by
convolution of the other two panels; see also Eq. (118).
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frequencies beyond the original OTF’s support and thus yields
high resolution SIM images, i.e., fluorophore densities SðrÞ
(Lal, Shan, and Xi, 2016; Müller et al., 2016).
Several techniques, mostly operating within the Fourier

domain, unmix the SIM harmonics to reconstruct SIM images
(Mudry et al., 2012; Lukeš et al., 2014; Lal, Shan, and Xi,
2016; Müller et al., 2016; Perez, Chang, and Stelzer, 2016;
Huang et al., 2018; Lai-Tim et al., 2019; Jin et al., 2020;
Christensen et al., 2021; Shah et al., 2021; Smith et al., 2021;
Cai et al., 2022; Chen et al., 2023; Qiao et al., 2023; Saurabh,
Brown et al., 2023). Ideally reconstruction requires knowl-
edge of multiple imaging system properties including the
exact OTF, pattern frequency, phases, and modulation depth;
see Eq. (117). Inaccurately specified properties can result in
imperfect SIM reconstructions that typically exhibit well-
known artifacts (Demmerle et al., 2017). For instance,
refractive index mismatches (see Fig. 17) may lead to repeated
features along the z axis known as ghosting. Similarly, fine
hexagonal “honeycomb” pseudostructures can arise when
background [B of Eq. (116)] in 2D SIM images is neglected;
a false k0 setting impacting the OTF leads to so-called
hatching, i.e., the appearance of angle-specific stripes in
one or more directions.
Working in real space not only allows us to cleanly

propagate uncertainty (as all data are collected in real space)
but also avoids artifacts tied to Fourier domain, such as the k0
setting. For this reason, we review SIM reconstruction in real
space (Orieux et al., 2012).
The total likelihood is the product of likelihoods corre-

sponding to each phase ϕl and wave vector ki,

Pð ¯̄w1∶N j ¯̄Λ1∶NÞ ¼
Y3
i¼1

Y3
l¼1

YN
n¼1

Pðwli
n jΛli

n Þ; ð119Þ

where the double overbars represent all possible values of i
and l (an overbar for each index) and Pðwli

n jΛli
n Þ is the

likelihood over a single pixel. In Eq. (119) wli
n and Λli

n denote
the observed data and the expected photon counts over the
pixel n, respectively, using an illumination with phase ϕl and
wave vector ki. The expected photon count is given by [see
Eqs. (3) and (4)]

Λli
n ¼

Z Z
An

dxdyΛliðrÞ; ð120Þ

where ΛliðrÞ is given by Eq. (117) and An is the pixel area.
Assuming a high SNR and a charge-coupled device (CCD)
camera noise model of Eq. (A12), we arrive at the following
single-pixel likelihood:

Pðwli
n jΛli

n Þ ¼ Normalðwli
n ; gΛli

n þ o; σ2wÞ; ð121Þ

where g, o, and σ2w are the camera gain, offset, and readout
variance, respectively; see Appendix A.
Finally, we present a Bayesian framework required in

rigorous noise propagation from the SIM data (Orieux
et al., 2012). Within this framework, we consider priors over
unknowns including the GP priors (see Sec. I.B) over the
fluorophore distributions SðrÞ and priors over the GP’s
covariance kernel KðνÞ. These parameters are collectively

regrouped under ϑ ¼ fSðrÞ; νg. The complete framework is
described in Fig. 51.
Finally, we numerically sample the posterior to learn the

unknowns ϑ. The sampling procedure is straightforward for
this SIM framework, as the GP prior is conjugate to the
Gaussian likelihood resulting in a closed form posterior. At
low SNR, this procedure fails, as it does not accurately model
photon and detector noise sources resulting in negative values
over the fluorophore distribution. While GP priors can be
adapted to avoid negative values at computational cost (Fazel,
Jazani et al., 2022), these issues have instead been addressed
in recent work incorporating photon and detector noise
sources applicable to both high and low SNR scenarios by
avoiding GP priors altogether (Saurabh, Brown et al., 2023).
The described SIM experiment combined with image

reconstruction typically achieves resolutions that are up to
approximately 2 times better than the diffraction limit. This is
because in practice the illumination pattern is also diffraction
limited, thus implying that its corresponding Fourier peaks lie
within the support of the system’s wide-field OTF, limiting the
resolution improvement to a factor of about 2 (not considering the
Stokes shift of fluorescence emission; see Sec. II). The resolution
of the SIM image is then approximately 2π=ðkc þ kiÞ along the
directionofki; seeEqs. (52), (67), and (68). Theprocesshas to be
repeated for at least three orientations (ki; i ¼ 1∶3) to achieve
near isotropic lateral resolution enhancement.
Resolution improvement using structured illumination can

also be combined with illumination modalities other than
wide-field epifluorescence, thereby providing optical section-
ing such as TIRF (Chung, Kim, and So, 2006), grazing
incidence illumination (Guo et al., 2018), or light-sheet
microscopy (Chen et al., 2014a; Chen et al., 2022; Chang,
Meza, and Stelzer, 2017).
While the previous discussion focused on 2D SIM, the

principle is extended to three dimensions using three or more

FIG. 51. Statistical framework: SIM.
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interfering beams and generating a laterally and axially
varying illumination pattern (Frohn, Knapp, and Stemmer,
2001; Gustafsson et al., 2008; Chang et al., 2009; Shao et al.,
2011; Fiolka et al., 2012; Heintzmann and Huser, 2017). In
three-beam interference, five phase shifts are necessary to
unambiguously unmix the frequencies, resulting in five SIM
harmonics for all three orientations (ki) as opposed to three
for 2D SIM; see Eq. (118). This leads to 15 SIM harmonics
requiring 15 images to unambiguously unmix the harmonics.
This process has to be repeated for each z position. Although
more complicated than 2D SIM, 3D SIM achieves approx-
imately twofold resolution improvement and optical section-
ing as the OTF copies in 3D SIM overlap and fill the wide-
field OTF’s missing cone; see Fig. 12.
All SIM implementations mentioned thus far use linear

fluorescence excitation. This has the advantage of being
relatively gentle to living samples as low excitation intensities
can be used in this approach compared to other superresolution
imaging methods employing nonlinear response of fluoro-
phores to excitation light; see Secs. II and V. While the SIM
resolution improvement is restricted to approximately twofold
as the illumination pattern itself is limited by diffraction, higher
resolution is achievable by combining SIM with nonlinear
fluorophore photophysics (Heintzmann, Jovin, and Cremer,
2002; Gustafsson, 2005); see Secs. II and V.A.
For instance, more than twofold resolution improvement

was achieved by combining structured illumination with
saturation of the excited-state emission, i.e., increasing the
excitation intensity above a threshold where fluorophores
spend a longer time in the excited state than in the ground
state (Gustafsson, 2005), termed saturated SIM (SSIM). In such
regimes, fluorophore responses to intensities exceeding the
saturation threshold remain unchanged, and thus the effective
intensity seen by fluorophores is the saturation intensity. As
such, the effective intensity pattern seen by fluorophores
beyond the saturation threshold start deviating from the
sinusoidal pattern, i.e., the flattop sinusoidal pattern. Such
distorted patterns contain more than three harmonics shifting
more frequencies within the bandpass of the microscope, in
contrast to sinusoidal patterns; see Fig. 49. However, the
frequency unmixing now provides more displaced SIM har-
monics in Fourier space that require more images to be
separated. When this process was repeated at multiple ori-
entations, SSIM achieved an isotropic lateral resolution of
approximately 50 nm on fluorescent beads (Gustafsson, 2005).
Alongside higher spatial resolution comes higher computa-

tional complexity in unmixing SIM harmonics, and high
intensities required for saturation prevent its use for biological
imaging. Instead, photoswitchable fluorescent proteins (see
Sec. II) cycling between dark and bright states at much lower
intensities can be used while remaining live-cell compatible.
By leveraging both dye photoswitching with structured
illumination patterns, resolutions similar to SSIM are achieved
(Rego et al., 2012; Li et al., 2015).

E. Light-sheet microscope

Optical sectioning led to the development of 3D micros-
copy such as light-sheet fluorescence microscopy (LSFM)
(Voie, Burns, and Spelman, 1993). LSFM allows optical

sectioning, i.e., increases the OTF’s kz content, by generating
a thin light sheet (Power and Huisken, 2017; Olarte et al.,
2018; Daetwyler and Fiolka, 2023). In doing so, LSFM
simultaneously both minimizes out-of-focus fluorescence
otherwise present in naive wide-field microscopy (see
Fig. 12) and reduces sample photodamage (Olarte et al.,
2018; Stelzer et al., 2021).
In LSFM, illumination and light collection paths are

orthogonal, providing volumetric information on the sample
when axially scanning the illumination sheet; see Fig. 52
(Chakraborty et al., 2019). This setup facilitates faster
volumetric imaging in contrast to previously discussed
point-by-point scanning; see Sec. IV.B.1. Moreover, LSFM
achieves optical sectioning through illumination, in contrast to
other modalities such as CLSM, where sectioning is possible
only along the detection path while illuminating large portions
of the specimen along the excitation path (Stelzer, 2015).
Indeed, while TIRF (see Sec. IV.A) avoids this unnecessary
light dose, it is restricted to volumes neighboring the illumi-
nated surface.
In modern LSFM, there are two main approaches to

generating a thin light sheet. In the first approach, a digitally
scanned laser moves rapidly along a direction perpendicular to
the detection axis to achieve a thin light sheet, termed DLSM
(Keller and Stelzer, 2008); see Fig. 52(a). In the second
approach, termed selective plane illumination microscopy
(SPIM) (Huisken et al., 2004), a cylindrical lens is typically
used along the excitation path to form an astigmatic Gaussian
beam effectively elongating the beam in one dimension to
generate a thin, static light sheet; see Fig. 52(b). The SPIM
OTF is provided in the right panel of Fig. 53 and obtained by
convolving the SPIM light sheet’s Fourier representation (the
SPIM excitation OTF) in the left panel with the wide-field
detection OTF in the middle panel. Compared to the wide-
field OTF in Fig. 19, the resulting SPIM OTF has a larger
bandpass along the z axis facilitating optical sectioning.
For the previously described Gaussian beam (Huisken

et al., 2004; Keller and Stelzer, 2008), LSFM’s axial reso-
lution is, as a first approximation, related to the Gaussian
beam’s thickness at twice the beam waist zmin ¼ 2w0; see
Fig. 52(c). Similarly, the FOV is related to the extent of the
elongated Gaussian beam given by twice the Raleigh length
2zr (Olarte et al., 2018),

zmin ≈ 2w0 ¼ 4
λf
πD

¼ 2nλ
πNA

; ð122Þ

FOV ¼ 2zr ¼ 2
πw2

0

λ
; ð123Þ

where f and D are the focal length and lens diameter,
respectively, with NA ¼ nD=2f, which is often smaller than
0.8 for light-sheet microscopes.
The improvement in axial resolution afforded by LSFM can

be made clear when the wide-field axial resolution approx-
imately given by Eq. (122) is compared to Eq. (15), as well as
differently derived in Eq. (68). According to Eqs. (122)
and (123), while thinner light sheets (smaller w0) improve
axial resolution, they lead to smaller FOVs because of
worsening illumination uniformity across the FOV. Such
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nonuniform illuminations may also result in varying PSFs and
OTFs across the FOV (Toader et al., 2022).
To soften the aforementioned trade-off and achieve simul-

taneous high axial resolutions and large FOVs, a few attempts
employing alternatives to Gaussian beams have been made
including Bessel beams (Fahrbach, Simon, and Rohrbach,
2010; Planchon et al., 2011), Bessel beam lattices (Chen et al.,
2014b; Woringer et al., 2017; Liu et al., 2018, 2023; Tsai
et al., 2020; Cao et al., 2021), Airy beams (Vettenburg et al.,
2014; Yang et al., 2014), spherically aberrated beams
(Fahrbach and Rohrbach, 2010), and double beams (Zhao
et al., 2016). While these beams typically achieve a Raleigh
length that is larger than the Gaussian beam, it is unclear in
practice whether high axial resolutions and contrasts are
maintained (Chang, Dean, and Fiolka, 2020; Remacha
et al., 2020; Shi, Daugird, and Legant, 2022; Liu et al.,
2023). This is because these alternative beams exhibit
strong sidelobes, which leads to the contribution of glare
worsening axial resolution and contrast. Moreover, owing
to these sidelobes the complex form of the resulting OTF
does not lend itself to resolution estimates relying on
Eq. (52) or (123) (Remacha et al., 2020; Shi, Daugird, and
Legant, 2022).
Further efforts at rejecting the light contribution from these

sidelobes combined LSFM with CLSM, SIM, and two-photon
microscopy (Keller et al., 2010; Palero et al., 2010; Planchon
et al., 2011). Moreover, the concepts of reversible saturable
optical fluorescence transitions (RESOLFT) (later introduced
in Sec. V.A) and STED have been used in conjunction with
SPIM to surpass the diffraction limit axially (Friedrich et al.,
2011; Hoyer et al., 2016). Light-sheet illumination has also
been combined with a nonlinear fluorophore response to light
for SMLM (Gebhardt et al., 2013; Galland et al., 2015;
Meddens et al., 2016); see Sec. II.
Since the lateral and axial resolutions differ, to avoid

anisotropic resolutions advanced LSFM configurations use
multiple objectives generating different views of the speci-
men. These images are then computationally fused, thereby
yielding improved isotropic resolution (Huisken and Stainier,
2007; Swoger et al., 2007; Preibisch et al., 2014; Guo et al.,
2020). Another approach involves axial swept light-sheet
microscopy (Dean et al., 2015, 2022; Chakraborty et al.,
2019) generating isotropic images by scanning the sample
laterally, i.e., perpendicular to the detection arm, using a
tightly focused light sheet synchronized by a moving camera
shutter. This allows only fluorescence originating from the
well-focused parts of the light sheet to reach the camera.
On the engineering front, orthogonal detection and illumi-

nation through separate objectives (see Fig. 52) pose technical
challenges when one uses two bulky, high NA objectives, i.e.,
NA ≈ 0.8. As such, multiple modifications to conventional
LSFM have been proposed. For instance, the inverted SPIM
design uses two objectives (with NA ¼ 0.8–1.1) at a 45° angle
with respect to the cover slide (Wu et al., 2011). More recently
different approaches have been developed achieving illumi-
nation and fluorescent light collection using a single objective
allowing use of higher NA objectives (Dunsby, 2008; Galland
et al., 2015; Meddens et al., 2016; Sapoznik et al., 2020; Yang
et al., 2022).

F. Multiplane microscope

To improve upon wide-field microscopy’s low axial reso-
lution, we can acquire images from multiple planes across
samples. The simplest approach toward achieving this is to
move the sample and focus planewith respect to each other; see
Fig. 54(a). However, this involves moving a large inertial object
(sample, objective, or camera) introducing time lags between
planes and mechanical perturbation. Fast adaptive elements or
smallmoving components in amore complex detection path can
speed this up but do not eliminate axial scanning. Acquiring
data across multiple focal planes simultaneously without mov-
ing the sample or the optical components has been achieved by
introducing either refractive or diffractive optical elements into
the detection arm. These elements split the fluorescent emission
into multiple paths leading to simultaneous acquisitions from
different focal planes (Blanchard andGreenaway, 1999; Prabhat
et al., 2004; Abrahamsson et al., 2013; Descloux et al., 2018;
Mertz, 2019b). For a more in-depth review on “snapshot”
volumetric microscopy, see Engelhardt and Grußmayer (2022).

FIG. 52. LSFM setups. (a) In digitally scanned laser light-sheet
microscopy (DLSM) a galvanometric (galvo) scanning unit
rapidly moves a Gaussian beam perpendicular to the detection
axis focused in the sample through the excitation objective lens
(OLex). Signal from the focal plane is collected through the
detection objective lens (OLdet) and tube lens (TL) onto a camera
(C). (b) In SPIM, a static light sheet is formed when a cylindrical
lens in the excitation path creates an elongated beam in one
direction and the same perpendicular detection optics as in (a).
(c) Schematic of the Gaussian beam in (a) and (b) focused
through a lens or objective with a diameter D, a beam waist ω0,
and a Raleigh length zr.

FIG. 53. SPIM OTF. Excitation is achieved by focusing a plane
wave through a low-aperture lens (NA ¼ 0.4) from the left,
resulting in a weakly diverging horizontally elongated excitation
region. See the text for further details.
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Multiplane microscopy, also termed multifocus microscopy
imaging, is versatile and can be combined with wide-field
fluorescence or light-sheet excitation (Ma et al., 2016) for a
number of applications. These include SPT (Ram et al., 2012;
Louis et al., 2020), superresolution microscopy [for statistical
modeling of multiplane superresolution SMLM data, see
Sec. V.C and Eqs. (135) and (136) (Hajj et al., 2014;
Babcock, 2018)], superresolution optical fluctuation imaging
(SOFI) (Geissbuehler et al., 2014; Descloux et al., 2018),
structured illumination (Abrahamsson et al., 2017; Descloux
et al., 2020), and single cell and whole organism imaging
(Abrahamsson et al., 2013; Xiao et al., 2020; Hansen et al.,
2021). Furthermore, phase imaging (Xiao et al., 2020; Mojiri
et al., 2021), polarization (Abrahamsson et al., 2015), and
dark-field microscopy (Xiao et al., 2020; Hansen et al., 2021)
may also use a multiplane setup.
In their simplest form, multiplane microscopes use beam

splitters, i.e., refractive elements, in combination with optical
detection paths of different lengths or tube lenses with
different foci (Prabhat et al., 2004; Geissbuehler et al.,
2014; Itano et al., 2016; Babcock, 2018; Hansen et al.,
2021). In such setups, the interplane distance, and thus the
axial resolution, can be independently adjusted from the pixel
size (which is tied to the lateral resolution; see Sec. I.C).
However, these versatile implementations are susceptible to

misalignment of the detection channels due to optomechanical
component drift, which is especially relevant in superresolu-
tion microscopy; see Sec. V. A better solution involves a
cascade of beam splitters fused into a single piece, i.e., a prism
(Descloux et al., 2018; Xiao et al., 2020), dividing the
fluorescent light into multiple beams traveling optical paths
with different lengths; see Fig. 54(b). Here increased mechani-
cal stability arises from having all beam splitting integrated
into one optical element, i.e., the prism, minimizing chromatic
aberration. This setup can also be extended to simultaneously
image several colors across planes using spectral beam
splitters (Gregor et al., 2021).
An alternative approach uses a multifocus grating (MFG),

i.e., a diffractive element, splitting fluorescence emission
into multiple paths corresponding to different diffraction
orders. The grating pattern is designed to introduce diffrac-
tion-order-dependent defocus phase shifts (see Sec. III.F),
leading to different focal planes for each path (Blanchard and
Greenaway, 1999); see Fig. 54(c). However, the grating
introduces chromatic dispersion, which is improved by
introducing a chromatic correction grating (CCG), and a
chromatic correction prism (CCP) to reverse the dispersion
due to MFG (Abrahamsson et al., 2013) and separate
the images laterally on the camera chip; see Fig. 54(c).
While aberration-corrected multifocus microscopy grating
design can further improve the imaging of thicker samples
(Abrahamsson et al., 2013, 2016; Hajj et al., 2017), gratings
have a lower transmission, and new gratings are required to
alter interplane distances.

V. SUPERRESOLUTION MICROSCOPY

Resolution across fluorescence microscopy, as described in
Sec. IV, is fundamentally limited by the frequency bandpass
given by the corresponding OTFs. This restricts the maximum

achievable resolution to approximately half of the emission
wavelength under optimal conditions. This limit can be
surpassed by exploiting the nonlinearity in fluorophore
response to excitation light; see Sec. II. This in turn has
led to the development of two main categories of super-
resolution, or nanoscopy, methods to which we now turn:
(1) targeted switching and (2) stochastic switching techniques.

A. Targeted switching superresolution microscopy

1. Stimulated emission depletion microscopy

Previously introduced fluorescent imaging techniques such
as confocal, light-sheet, and multiplane microscopy improve
axial resolution using different optical sectioning strategies.
Optical sectioning limits the collected fluorescence to an axial
subset of fluorescent molecules, thereby preventing interfer-
ence from fluorophores outside this axial subset. Although
these techniques can significantly increase contrast and
improve axial resolution, their resolution remains limited
by the diffraction of light. Alternatively, superresolution
methods such as STED microscopy (Hell and Wichmann,
1994; Klar, Engel, and Hell, 2001) and its generalization
RESOLFT (Hofmann et al., 2005; Hell, 2007) are based upon
a traditional point scanning microscope with a confocal
pinhole in the detection arm that allows for higher resolution
imaging while retaining the axial sectioning of confocal
microscopy.
STED imaging was first achieved in the mid 1990s by Hell

and Wichmann (1994), and its popularity grew thanks to the
high spatial resolution, relatively high imaging speed, and

FIG. 54. Multiplane microscopy. (a) A conventional fluores-
cence microscope with epifluorescence (FL) and white light
illumination (IL) acquire images of different focal planes across
the sample by moving the objective lens (OL) and the sample
with respect to each other. The nominal focal plane is shown in
black, while the planes shown in red and blue can be imaged by
adjusting the axial positions of the sample. Shown are the sample
(S), the objective lens (OL), the dichroic mirror (DM), and the
tube lens (YL). (b) A multiplane microscope relays the optical
path from the intermediate image formed in the panel via a
telescope with lenses of focal lengths F1 and F2 and uses a beam-
splitting prism, i.e., a refractive element, along the detection path
to separate fluorescence emission into multiple channels (here
four) with different focal planes projected next to each other on
two cameras (C1 and C2); see Descloux et al. (2018). (c) A
multifocus microscope uses a multifocus grating (MFG), i.e., a
diffractive element, a chromatic correction grating (CCG), and a
chromatic correction prism (CCP) to achieve multiple focal
planes on one camera; see the text for more details.

Mohamadreza Fazel et al.: Fluorescence microscopy: A statistics-optics …

Rev. Mod. Phys., Vol. 96, No. 2, April–June 2024 025003-45



considerable imaging depth. These made the visualization of
biomolecular assemblies and live-cell nanoscopy possible
(Hell, 2007; Eggeling et al., 2015).
In terms of temporal resolution, imaging times for rapid

dynamics in small fields of view as fast as a millisecond were
demonstrated by ultrafast STED nanoscopy (Schneider et al.,
2015), while spatially the highest reported 3D isotropic
resolution (<30 nm in x, y, and z simultaneously) was
validated with the ultrastable design of 4Pi-based isotropic
STED (Curdt et al., 2015).
In STED, spatial resolution improvement is achieved by

adding a second deexcitation (depletion) laser quenching
fluorescence around the excitation point confining fluores-
cence emission to a subdiffraction-limited spot. Stimulated
emission is one means by which to depopulate excited states.
In this process, which was theoretically discovered by Einstein
(1916), the incoming photon triggers the excited system to
decay to its ground state, emitting a photon with a phase,
frequency, polarization, and momentum identical to the
incident photon; see Sec. II.
In STED, stimulated emission must precede spontaneous

emission, requiring the excitation light to excite the sample
(≈200 ps) prior to laser quenching. The whole imaging
protocol is devised in two steps; see Fig. 55. First, fluoro-
phores are excited by a diffraction-limited laser beam with a
Gaussian waist (shown in green in Fig. 55). If we wait until
molecules spontaneously decay without stimulated emission,
no gain in resolution will be achieved. Therefore, it is
necessary to introduce the second step, where a fraction of

the fluorophores are depleted using a torus-shaped, or dough-
nut-shaped, diffraction-limited beam (shown in red in Fig. 55)
whose central minimum coincides with the Gaussian excita-
tion maximum. As such, the recorded signal originates only
from the “doughnut hole” far narrower than the original
Gaussian waist shown in orange in Fig. 55. To understand how
STED beams are generated, see Sec. IV.B.1 and Fig. 28.
The resolution gain ySTED in STED set by the inner

doughnut radius is given by

ySTED ¼ λ

2NA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I=Isat

p ¼ yminffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I=Isat

p : ð124Þ

In Eq. (124) ymin is the wide-field resolution [see Eq. (14)], I is
the depletion laser intensity, and Isat is the depletion intensity
required to outperform the fluorescence emission.
Although STED’s resolution can theoretically be arbitrarily

small provided that there is high enough depletion intensity
(I → ∞) (Pawley, 2006), in practice factors limiting resolution
include the nature of the fluorophores used (and their
absorption cross section of the depletion beam), uncorrected
aberrations (residual aberration) of the STED pattern, SNR,
and the STED beam’s relatively high power and propensity for
label photodamage.
Photodamage can be mitigated by working with solid-state

fluorescent nanodiamonds hosting negatively charged nitro-
gen-vacancy point defects. Using such photostable labels,
resolutions of ≈10 nm were demonstrated (Wildanger et al.,
2009; Arroyo-Camejo et al., 2013). However, the complex
functionalization of relatively large size 10–15 nm solid-state
probes, including issues related to specificity and cell per-
meability, limit their applications, especially in live-cell
imaging.
While we have focused on two dimensions thus far using

interference of two depletion beams (see the implementation
of 4Pi microscopy introduced in Sec. IV.B.3), STED super-
resolution imaging has been extended to three dimensions
(Wildanger et al., 2012; Osseforth et al., 2014), though in
practice axial resolution gain comes at the cost of lower lateral
resolution.

2. Reversible saturable optically linear fluorescence
transition microscopy

Numerous efforts in the past two decades have been
undertaken to improve upon STED’s need for high power
depletion beams (Eggeling et al., 2015). RESOLFT, a more
general method encompassing STED as a special case, was
one such effort proposed in the early 2000s that leveraged
fluorophore photophysics (Hell, 2007). This in turn renders
RESOLFT more appropriate for live-cell and long-term
experiments (Hofmann et al., 2005) including 3D live-cell
imaging using a recent implementation of highly parallelized
image acquisition with an interference pattern (Bodén
et al., 2021).
In contrast to STED, whose high laser power is required to

deplete the excited state back to the ground state, RESOLFT
uses doughnut-shaped beams to transition fluorophores into
any dark state, not just the ground state; see Fig. 55. Thus,
RESOLFT requires fluorophores controllably switchable

FIG. 55. Schematics for STED imaging. Excitation and
depletion beams are used to acquire a subdiffraction-limited
image, formed after raster scanning the full sample. The resulting
image can be understood as a convolution between the effective
PSF formed from the excitation and depletion laser beams and the
fluorescent molecule distribution in the sample. Left panel: sche-
matics comparing diffraction-limited confocal images of micro-
tubules with the coinciding STED image. Right panels: electronic
transitions of excitation, and stimulated emission in STED (top
panel), ground-state depletion GSD (middle panel), and RE-
SOLFT (bottom panels).
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between dark (off), and bright (on) states; see Fig. 55. For
instance, such fluorophores include reversibly switchable
fluorescent proteins and dyes (Grotjohann et al., 2012;
Pennacchietti et al., 2018).One such dark state is the triplet
state (see Sec. II) at the basis of ground-state depletion (GSD)
(Hell and Kroug, 1995), a special case of RESOLFT requiring
less intense depletion laser powers; see Fig. 55.

3. Minimal photon fluxes

Owing to the limited photostability of fluorophores, for
example, due to photobleaching, first generation nanoscopy
methods such as STED and RESOLFT reached practical
resolution limits of 20–40 nm. This led to the development
of a second generation of fluorescence nanoscopy techniques
achieving 1–10 nm resolutions that leveraged patterned illumi-
nation (Balzarotti et al., 2017; Gu et al., 2019; Reymond et al.,
2019; Cnossen et al., 2020; Jouchet et al., 2021; Masullo,
Lopez, and Stefani, 2022; Masullo et al., 2022).
The first implementations of such nanoscopy techniques

include minimal photon fluxes (MINFLUX), introduced in
2017 (Balzarotti et al., 2017) which extracts information from a
limited photon budget and uses minimal laser intensities
(Balzarotti et al., 2017; Eilers et al., 2018; Gwosch et al.,
2020). In contrast to STED, MINFLUX uses a doughnut-
shaped beam for excitation with the intensity minimum at its
center. To illustrate the MINFLUX concept, we assume here a
single fluorophore as shown in Fig. 56. The excitation beam is
scanned across the sample and the fluorescence signal is
collected by a confocal microscope. The number of collected
photons depends on the excitation intensity received by the
fluorophore and can be used to calculate the fluorophore’s
distance from the beam’s center. For instance, fluorophores
precisely at the doughnut-shaped beam center have minimal
emission. However, as the exact fluorophore’s location is
unknown, the beam scans the area at a few locations (see
Fig. 56), and the fluorophore’s distance from the beam center’s
locations (designated as blue dots in Fig. 56) are calculated to
pinpoint the fluorophore with nanometer precision.
Recently MINFLUX was used to simultaneously perform

3D and multicolor imaging (Gwosch et al., 2020) while
achieving high isotropic localization precision (1–3 nm). In
addition, MINFLUX was used in SPT (Eilers et al., 2018;
Pape et al., 2020) while localizing with a precision below
20 nm within ≈100 μs (Schmidt et al., 2021).
The concept of localizing with respect to patterned illumi-

nation has also been implemented using wide-field micros-
copy for faster imaging substituting doughnut-shaped

illumination with other illumination patterns (Gu et al.,
2019; Cnossen et al., 2020; Jouchet et al., 2021). For instance,
in SIMFLUX fluorophore locations are realized with respect
to a sinusoidal pattern (Cnossen et al., 2020).

B. Stochastic switching superresolution microscopy

Previously we described superresolution methods based on
a targeted switching of fluorophores. Here we discuss single-
molecule-based superresolution methods, a family of super-
resolution techniques achieving subdiffraction resolution by
imaging independent and stochastically blinking fluorophores
over time (Sigal, Zhou, and Zhuang, 2018; Schermelleh et al.,
2019; Lelek et al., 2021). In these methods, the gain in spatial
resolution is traded for temporal resolution as the acquisition
of many camera frames is required to computationally
reconstruct a single superresolved image. In such experiments,
a conventional wide-field microscope is typically used to
collect fluorescent light from (photo)activatable or switchable
probes; see Sec. II.A. Moreover, scanning image acquisitions
(York et al., 2011; Vangindertael et al., 2015) and light-sheet
microscopy (Galland et al., 2015; Meddens et al., 2016) have
also been successfully used to implement superresolution
microscopy.
The most common use of stochastic switching is applied to

techniques termed SMLM (Lelek et al., 2021). In SMLM,
spatially overlapping fluorophores are temporally separated
by acquiring image frame sequences. As in each frame only a
few fluorophores switch on (< 1%), high precision localiza-
tion is achieved by avoiding overlapping PSFs; see Fig. 2. The
set of nanometer-resolved localizations are then used to
reconstruct superresolved structures; see Fig. 57.

FIG. 56. MINFLUX’s working principle. MINFLUX employs a
doughnut-shaped excitation beam (orange) with the doughnut
translated to four locations (blue circles) at which fluorescence
signals are measured and used to determine the fluorophore’s
position. The red and black stars indicate the excited- and ground-
state fluorophores, respectively; see the text for details.

FIG. 57. Single emitters are stochastically activated to become
fluorescent. The activated emitters can be precisely localized
provided that they are spaced farther apart than the Nyquist limit;
see Sec. I.C. The process is repeated for tens of thousands of
frames. In each frame, single emitters are identified and fitted to
obtain their center of mass, allowing superresolved pointillistic
image reconstruction (bottom right panel). Repetitive activation,
localization, and deactivation temporally separate spatially un-
resolved structures in a reconstructed image, with the apparent
resolution gain compared to the standard diffraction-limited
image (bottom row).

Mohamadreza Fazel et al.: Fluorescence microscopy: A statistics-optics …

Rev. Mod. Phys., Vol. 96, No. 2, April–June 2024 025003-47



SMLM methods, however, require localizing by chance
well-separated molecules, thereby imposing long data acquis-
ition times. Therefore, more recently a range of alternative
techniques were developed to improve image resolution while
not identifying or localizing single molecules (Opstad et al.,
2020; Pawlowska et al., 2022). Rather, such methods analyzed
fluctuations in fluorescence emission over time and tolerated a
wider range of switching behavior and imaging conditions
including SOFI (Dertinger et al., 2009; Dertinger, Heilemann
et al., 2010) (see Appendix C), as well as Bayesian analysis of
blinking and bleaching (3B analysis) (Cox et al., 2012),
superresolution radial fluctuations (Gustafsson et al., 2016),
sparsity-based superresolution correlation microscopy
(Solomon et al., 2018), mean-shift superresolution (Torres-
García et al., 2022), and deblurring by pixel reassignment
(Zhao and Mertz, 2023). A common feature of fluctuation-
based techniques is that they provide lower resolutions than
SMLM methods despite requiring fewer input frames, as well
as lower laser powers than SMLM, making them more live-
cell compatible.

1. Single-molecule localization microscopy

Almost a decade preceding its experimental realization
(Lidke et al., 2005; Betzig et al., 2006), the idea underlying
SMLM was theoretically proposed by Betzig (1995), who
employed experimental implementations with photoactivat-
able genetically encoded proteins (Lippincott-Schwartz and
Patterson, 2009) and quantum dots (Lidke et al., 2005).
An initial iteration termed fPALM (Betzig et al., 2006;

Hess, Girirajan, and Mason, 2006) was followed by STORM
(Rust, Bates, and Zhuang, 2006), which exploits photoswitch-
ing in organic dyes. While differing only in their means to
achieve temporal separation of spatially overlapping fluoro-
phores, PALM leverages photoactivatable or photoconvertible
fluorescent proteins (Shroff et al., 2008), allowing for genetic
expression of fluorescent proteins. PALM is compatible with
live-cell imaging (Shroff et al., 2008), and thus the stoichio-
metric labeling of target proteins used in the counting (Rollins
et al., 2015; Bryan, Sgouralis, and Pressé, 2022). Conversely,
organic fluorophore photon emission rates are typically higher
than those for photoactivatable or photoconvertible fluores-
cent proteins, resulting in STORM’s slightly better resolution.
Further resolution improvements spurred the development of
the more general dSTORM, which introduced a pallet of
synthetic organic fluorophores as photoswitchable probes
(Heilemann et al., 2008), thereby allowing live-cell imaging
with site-specific tagging (Wombacher et al., 2010).
A more recent SMLM approach termed DNA point

accumulation for imaging in nanoscale topography
(PAINT) employs stochastic transient binding of diffusing
dyes in solution with a complementary molecules binding to
the target structure (Schnitzbauer et al., 2017); see Fig. 58.
Upon binding, the dye molecule is temporally immobilized
and is detected by the camera, while the freely diffusing dyes,
which are strongly aliased and difficult to track, are approx-
imately treated as background. Longer imager strands,
increasing binding time, typically lead to higher photon
numbers over one binding event and an improved SNR
alongside higher spatial resolutions; see Fig. 58(b). DNA

PAINT exhibits limited photobleaching, as imaging can be
continued as long as diffusing dyes are present in the solution,
and is furthermore compatible with multiplexing using color
and assortment of DNA strands’ lengths (Jungmann et al.,
2014; Wade et al., 2019; Strauss and Jungmann, 2020).

2. SMLM data analysis

In SMLM, data w1∶N typically consist of a set of pixel
values (observation) organized as 2D arrays, called image
frames. Localizations are then probabilistically determined
from pixel values wn using a likelihood.
To build the likelihood, we begin with the expected photon

counts for the pixel n, which are given as

Λn ¼ B þ
X∞
m¼1

bmImPn
m; ð125Þ

where we have immediately generalized our model to the
practical case with unknown emitter numbers. That is, we
adopt a nonparametric framework with an infinite number of
emitters (m ¼ 1∶∞) with load bm associated with each
emitter; see Sec. I.B. The loads associated with the emitters
not contributing photons are, as usual, recovered as zero.
Moreover, Im and B represent the intensity of the mth emitter
and the uniform background, respectively. Here Pn

m is the
probability of a photon from an emitter m reaching a pixel n
given by [see Eqs. (3) and (4)]

Pn
m ¼

Z Z
An

dxdyUðx; y; rmÞ; ð126Þ

FIG. 58. Imaging with DNA PAINT. (a) Schematics illustrate
DNA PAINT where dye-conjugated oligo (imager oligo) tran-
siently hybridizes with a complementary (docking) oligo. (b) The
binding time τB (or the dissociation rate 1=τB) depends on the
imager strand length. (c) Increasing either imager strand con-
centration or docking site density decreases the dark times τD
(interevent lifetime). Adapted from Schnitzbauer et al., 2017.
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whereAn is the pixel area and rm ¼ ðxm; ym; zmÞ is the emitter
position. As a simplification, the PSF is sometimes substituted
for its value evaluated at the middle of the pixel (Agarwal and
Macháň, 2016) or the integral can be evaluated using error
functions, say, for Gaussian PSFs. For more complicated cases
(engineered PSFs in Sec. V.C), the PSF appearing in the
integral of Eq. (126) can also be numerically evaluated over a
subpixel grid. Further improvements are also possible using
linear or spline PSF interpolations (Liu et al., 2013; Li et al.,
2018) between PSF values typically calibrated at select axial
positions.
Here we assume a CCD camera (see Appendix A) and

arrive at the following likelihood for the pixel n:

PðwnjϑÞ ¼ Normal(wn; gΛnðϑÞ þ o; σ2w); ð127Þ

where g, o, and σ2w are the detector gain, offset, and variance,
respectively. As before, we collect all unknown parameters in
ϑ ¼ fb̄; r̄; Ī;Bg, where the overbar denotes quantities over all
emitters. Finally, since pixel values are i.i.d (see Sec. I.B), the
likelihood of a ROI containing N pixels assumes a product
form

Pðw1∶N jϑÞ ¼
YN
n¼1

PðwnjϑÞ: ð128Þ

In parametric frameworks, the likelihood from Eq. (128) is
simplified given the known emitter numbers M,

Λn ¼ B þ
XM
m¼1

ImPn
m: ð129Þ

In such frameworks, the number of emitters are typically
heuristically set separately using alternate criteria such as
Bayesian information criteria (Quan et al., 2011), thresholding
(Babcock, Sigal, and Zhuang, 2012), etc. (Huang et al., 2011;
Fazel and Wester, 2022). In contrast, in joint (nonparametric)
optimization the number of active emitters are treated as random
variables (unknowns) on which we place priors (Jazani et al.,
2019, 2022). In other words, we obtain the BNP posterior from
the product of the likelihood equation (128) and the priors over
ϑ; see Sec. I.B. We adopt an empirical prior for fluorophore
intensity obtained by fitting isolated emitters from sparse
regions of the data (Fazel et al., 2019; van Dijk et al., 2023)
and adopt computationally convenient beta-Bernoulli process
priors for the loads; see Sec. I.B.
In the review we have discussed the localization of emitters

using information from one frame, though leveraging infor-
mation across frames improves spatial resolution by increas-
ing the photon budget available for analysis. The challenge
with using multiple frames is that several low-quality putative
localizations, if performed in each frame, must then be linked
across frames to improve high resolution localization. This
essentially becomes equivalent to the problem of single-
molecule tracking dealt with later in this section, where
molecule number determination alongside localization and
linking are performed simultaneously and self-consistently.
However, to avoid computational overhead a method termed

the Bayesian grouping of localizations (BaGoL) (Fazel et al.,
2022) uses frame-to-frame localization to identify which
localizations belong to which emitter. Further, BaGoL effi-
ciently accomplishes subnanometer precision under dense
labeling conditions by removing nanometer residual drift
within the input data and combining the set of identified
localizations from each emitter (Fazel et al., 2022). The idea
of combining localizations to improve precision has been also
employed in conjunction with orthogonal DNA sequences to
achieve angstrom resolutions (Reinhardt et al., 2023).
Having focused on static emitters thus far, we now

broaden our discussion to mobile emitters, namely, tracking
emitters across frames. In SPT, data consist of N pixel
values for each frame k ¼ 1∶K that are denoted by w1∶K

1∶N ¼
fw1

1; w
1
2;…; w1

N; w
2
1;…; wK

Ng. The parameter set ϑ is now
expanded to include particle trajectories across time rmðtÞ
for eachm particle. By approximation, these can be reduced to
locations across frames r1∶Km , though in full generality posi-
tions can be interpolated for any interframe time (Kilic,
Sgouralis, and Pressé, 2021; Sgouralis et al., 2023; Xu,
Sgouralis et al., 2023).
To obtain the SPT likelihood, as in SMLM we start with the

expected photon count per pixel. As particles evolve over each
exposure, the expected photon count for a pixel n in a frame k
[Λk

nðϑÞ] follows from Eq. (125) (Sgouralis et al., 2023; Xu,
Sgouralis et al., 2023),

Λk
nðϑÞ ¼ B þ

X∞
m¼1

bm

Z
exposurek

dtμðtÞPn
mðtÞ: ð130Þ

In Eq. (130) Pn
mðtÞ is adapted from Eq. (126) with a

time-dependent location and μðtÞ is the time-dependent

FIG. 59. Statistical framework: SMLM.
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fluorescence emission rate, for example, due to blinking. The
time integral of Eq. (130) is stochastic, and numerical
integration is often used in its evaluation. Under slow
dynamics, for simplicity we can approximate the integrand
as a constant resulting in Eq. (126) (Cheezum, Walker, and
Guilford, 2001). This approximation fails due to motion
blurring artifacts, i.e., aliasing, when particles diffuse rapidly
compared to the camera frame rate or exposure time (Wong,
Lin, and Ober, 2011; Michalet and Berglund, 2012).
As an alternative, an improved approximation is afforded

by the trapezoidal rule

Λk
nðϑÞ ¼ B þ

X∞
m¼1

bm
XL−1
l¼1

δt
2
½μmðtkl ÞPn

mðtkl Þ

þ μmðtklþ1ÞPn
mðtklþ1Þ�; ð131Þ

with

Pn
mðtkl Þ ¼

Z Z
An

dxdyU(x; y; rmðtkl Þ): ð132Þ

In Eqs. (131) and (132) tk1 represents the beginning of the
exposure for frame k, while tkL represents its end. The entire
exposure period δT is divided into L − 1 equal panels of a
length δt ¼ δT=ðL − 1Þ. A motion model, be it free diffusion
or any other, can be introduced to connect positions
rmðtklþ1Þjrmðtkl Þ ∼ Normal(rmðtkl Þ; 2Dδt), where D is the dif-
fusion coefficient of the emitters, assuming that they all satisfy
the same diffusive dynamics.
Though diffusion models are most commonly invoked,

alternative models such as anomalous diffusion are also used
(Muñoz-Gil et al., 2021). It remains to be seen, however,
whether alternative models can be useful in light of the
approximations that have often already been made in the
analysis, including but not limited to often assuming a number
of emitters by hand (Tinevez et al., 2017), a time-independent
integrand in Eq. (130), general corrupting noise from the
photon count and detectors (Tinevez et al., 2017), and
multiple other error sources.
The emission rates μm of the emitters can also be described

using Markovian models (Rollins et al., 2015; Bryan,
Sgouralis, and Pressé, 2022); see Sec. II. However, for
simplicity we assume that all emitters maintain the same
brightness throughout all frames, thus resulting in the sim-
plification of Eq. (131) to

Λk
nðϑÞ ¼ B þ μ

X∞
m¼1

bm
XL−1
l¼1

δt
2
½Pn

mðtkl Þ þ Pn
mðtklþ1Þ�:

Again assuming for simplicity a CCD camera noise model
(see Appendix A), the likelihood for pixel n in frame k reads

PðwnjϑÞ ¼ Normal(wk
n; gΛk

nðϑÞ þ o; σ2w): ð133Þ

As with the SMLM likelihood of Eq. (128), the likelihood of
the frame sequence is

Pðϑjw1∶K
1∶NÞ ¼

Y
n

Y
k

Pðϑjwk
nÞ: ð134Þ

By explicitly specifying all terms in Eq. (134), we see that ϑ
now includes ϑ ¼ fb̄; r̄ðt1∶K1∶L Þ; μ;B; Dg, where an overbar
denotes the set of all emitters. Sampling of the resulting
posterior is outlined in Fig. 60 (Sgouralis et al., 2023; Xu,
Sgouralis et al., 2023).
We do highlight that the unknowns parametrically exclude

the loads ϑ ¼ fr̄ðt1∶K1∶L Þ; μ;B; Dg, and the number of trajecto-
ries (emitters) are individually estimated with ad hoc metrics
(Tinevez et al., 2017). In contrast, nonparametrically trajec-
tories and emitter numbers are jointly estimated alongside
other parameters (Jazani et al., 2019, 2022; Sgouralis et al.,
2023; Xu, Sgouralis et al., 2023).
We note that this tracking reveals the z position only up to a

mirror symmetry above or below the focal plane when using a
single illumination plane. Thus, here a note is warranted
regarding 3D SMLM. In standard SMLM, localizing the
molecule’s position along the axial direction is challenging
due to the limited depth of field and symmetry of the wide-
field PSF with respect to the focal plane, i.e., the lack of
optical sectioning; see Sec. III.C. Multiple approaches have
been employed to address these issues, including multiplane
microscopy (see Sec. IV.F) and PSF engineering (Huang et al.,
2008; Pavani et al., 2009; Lew et al., 2011; Shechtman et al.,
2014), which is detailed in Sec. V.C.

FIG. 60. Statistical framework: tracking.
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C. PSF engineering

To overcome the limited optical sectioning of SMLM
imposed by wide-field PSFs (see Sec. III.C), engineered
PSFs have been used to intentionally introduce aberrations.
This typically involves inserting extra optical components into
the setup (Huang et al., 2008) or an adaptive optical element
such as a deformable mirror (Izeddin et al., 2012) at the
Fourier plane; see Fig. 1 (Pawley, 2006; Backer and Moerner,
2014; Shechtman et al., 2014). The resulting aberrations break
the PSF’s axial symmetry and thereby encode axial positions
of molecules used in 3D localization (Siemons et al., 2020).
Most initial efforts in PSF engineering coincide with PSFs

maintaining their shape throughout defocus. One of the
earliest PSF engineering applications reduced in-focus spot
sizes at the cost of larger sidelobes. This was achieved by
implementing a series of amplitude and phase rings in the
Fourier plane (Di Francia, 1952). As another example toward
achieving extended depth of field (EDOF) a cubic phase mask
was used, thereby leading to a PSF minimally changing over a
desired axial range (Dowski and Cathey, 1995); see Fig. 61(a).
While maintaining EDOF, other improvements were aimed at
reducing the required computation and raising the SNR, for
example, the log-asphere lens (Chi and George, 2001), Bessel
beams (McGloin and Dholakia, 2005), etc. (Ben-Eliezer
et al., 2003).
Recently PSFs have been engineered, either heuristically

or algorithmically (more details later), to provide improved
axial resolutions across different experimental conditions
(von Diezmann, Shechtman, and Moerner, 2017) such as
emitter density and wavelength. That is, at the other extreme
end of design space where PSFs remain similar throughout
defocus there are PSFs that are intentionally sensitive to
defocus. The purpose of such z-encoding PSFs is to encode
axial information (depth) in their shape, thus enabling
3D tracking or imaging (von Diezmann, Shechtman, and
Moerner, 2017).
An early instance of z-encoding PSF engineering is induced

astigmatism, typically implemented with a cylindrical lens, for
evaluations of defocus in compact disc players (Kao and
Verkman, 1994), an idea adapted for SMLM (Huang et al.,
2008). The astigmatic PSF provides high axial resolution over
an axial range of ≈1 μm.
Following similar ideas, larger axial ranges were attained

using rotating PSFs, based on a linear combination of
Laguerre-Gaussian functions (Schechner, Piestun, and
Shamir, 1996) that was later adapted to SMLM using the
double helix PSF (Pavani et al., 2009). In contrast to wide-
field PSFs that spread signal over a large area, resulting in low
SNRs away from the focus (see the first row in Fig. 61),
multiple 3D engineered PSFs have been designed including
the corkscrew (Lew et al., 2011), self-bending beams (Jia,
Vaughan, and Zhuang, 2014), tetrapods (Shechtman et al.,
2014), etc. (Baddeley, Cannell, and Soeller, 2011; Prasad,
2013). These often attain high resolutions over wider axial
ranges and maintain high SNR even at greater defocus.
Several examples of engineered phase masks, i.e., phases

intentionally added to the Fourier plane phase (the Fourier
plane phase is sometimes also termed the pupil phase), and
associated PSFs are shown in Fig. 61. We show both PSFs

maintaining their shapes over a wide axial range and those
encoding the axial location in their shapes.
We now turn to the question of how we can design phase

masks to engineer a desired PSF shape, for example, a PSF
maintaining high axial resolution or a high SNR over a wide
range. This requires first finding the relation between the
measured PSF and the phase mask at the Fourier plane.
To address this, we note the relation between the field at the

Fourier plane and the measured PSF intensity, as described in
Eqs. (63) and (70). Indeed, the measured PSF intensity
contains a Fourier transform of the electric field and an
absolute value operation, resulting in the loss of image plane
phase information. As such, the problem of recovering the
Fourier plane phase, i.e., the pupil phase Φðθ0;ϕÞ [see
Eq. (70)], at the heart of PSF engineering is known as phase
retrieval (Shechtman et al., 2015). The phase retrieval problem
in our context involves estimating the pupil phase Φðθ0;ϕÞ
from the measurements w1∶N encoding the real space PSF
through, for example, detector models such as Eq. (A9). This
ill-posed nonconvex optimization presents various challenges,
including degenerate solutions and unstable derivatives
(Shechtman et al., 2015). As it is impossible to determine
the phase using data from one plane, i.e., a single PSF slice,
we use data from several planes (a z stack) acquired, for
example, by scanning the objective to capture slices of a
fluorescent bead’s PSF or using a multiplane setup; see
Sec. IV.F.
Following the logic presented on an SMLM data analysis,

to construct a likelihood we write the expected photon count
Λq
nðϑ;ΦÞ for a pixel n at a plane q of the z stack, encoding the

pupil phase Φ information. For simplicity, we consider a
single fluorophore here.
Using this model, a likelihood can be constructed given the

data wq
n; n ¼ 1∶N; q ¼ 1∶Q, as in Eqs. (127) and (128).

Working for convenience with the log-likelihood function,
we write the z-stack log-likelihood function as

Lðw1∶Q
1∶N ; ϑ;ΦÞ ¼

XN
n¼1

XQ
q¼1

lðwq
n; ϑ;ΦÞ; ð135Þ

where lðwq
n; ϑ;ΦÞ is the log-likelihood function of a pixel n

within a plane q. In the most general case, the detector and
shot noise must both be simultaneously considered, as in
Eq. (A9). However, ignoring the detector noise for now, we
arrive at the single-pixel log-likelihood function used in
Eq. (135),

lðwq
n; ϑ;ΦÞ ¼ Λq

nðϑ;ΦÞ − wq
n log ½Λq

nðϑ;ΦÞ�: ð136Þ

To maximize the likelihood in Eqs. (135) and (136), we
employ iterative optimization, often relying on knowledge of
the likelihood’s gradient with respect to the phase (Smith
et al., 2016; Ferdman et al., 2020),

∂l
∂Φ

¼ ∂l
∂Λq

n

∂Λq
n

∂Φ
: ð137Þ

The first term on the right-hand side of Eq. (137) can be
analytically evaluated as ∂l=∂Λq

n ¼ 1 − wq
n=Λq

n. The next term
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involves the derivative of the PSF modelΛq
n with respect to the

pupil phase Φl, where in practice we discretize the set of
spatial frequencies in the Fourier plane l ¼ 1∶L and write

∂Λq
n

∂Φl
¼ 2ℜ

�
∂En

∂Φl
E�
n

�
: ð138Þ

In Eq. (138) En is the given electric field in the image plane
from Eq. (63), ℜ indicates the real portion of the expression
within the parentheses, and ∂En=∂Φl and ∂Λq

n=∂Φl are
complex and real matrices of size N × L, respectively.
Finally, we must evaluate ∂En=∂Φl. The electric field in the

image plane is obtained via a Fourier transform of the electric
field in the Fourier plane (designated by E0̃

l
) that also contains

the pupil phase Φ,

∂En

∂Φl
¼ ∂

∂Φl
F l̃½E0

l̃
� ¼ i exp

�
−i2πnl

M

�
E0
l̃
δl;l̃; ð139Þ

where F l̃ is a discrete Fourier transform operation over an
index l̃ and δl;l̃ is a Kronecker delta. Finally, if L ¼ N, the
summation over n of Eq. (135) and the exponential of
Eq. (139) can be evaluated as a compact Fourier transform
providing the desired derivative,

∂L
∂Φl

¼ 2ℜ

�
E0
lF n

�
iE�

n
∂L
∂Λq

n

��
: ð140Þ

The previously described approach can be used either to learn
the pupil phase producing a measured PSF or, equivalently, to
design a PSF and learn the required pupil phase.
In the realm of a high SNR, it is also common to

approximate the likelihood equation (135) via a Gaussian
distribution and use least squares minimization to determine
the pupil phase. The approximate log-likelihood function can
then be minimized using iterative optimization, for example,
the Gerchberg-Saxton algorithm or one of its variants
(Gerchberg, 1972; Fienup, 1978), possibly estimated over a
constrained Zernike polynomial set (Liu et al., 2013; Petrov,
Shechtman, and Moerner, 2017).
After describing the approach to derive the pupil phase for a

given PSF shape, we turn to the problem of seeking an optimal
PSF shape following predefined metrics. The engineered PSFs
of Fig. 61 represent the result of various optimization metrics
and numerical approaches. For instance, different PSFs
exhibit different CRLBs (Badieirostami et al., 2010);
CRLB optimization on the phase mask expanded in terms
of Zernike polynomials yields the tetrapod PSF (Shechtman
et al., 2014), while optimization on the phase mask expanded
in terms over Laguerre-Gaussian functions yields the double
helix PSF (Pavani and Piestun, 2008; Pavani et al., 2009).
Similarly, in the panel on DeepSTORM3D (DS3D) (Nehme
et al., 2020) the PSF is optimized to localize emitters within a
dense environment using a neural network. Finally, for the
EDOF PSF, a cost function is optimized to obtain PSFs
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FIG. 61. PSF engineering. (a) Frequently used engineered PSFs,
simulated for an objective lens with an NA ¼ 1.49 and a pixel
size of 110 nm. The top row is the wide-field PSF. Other rows
present commonly used phase masks and their corresponding
PSFs over a range of axial positions. (b) CRLB (see Sec. I.B) of
the 3D position (each axis individually) plotted as a function of
the axial position assuming that the system is laterally shift
invariant. The subscripts in the axis labels indicate the coordinate
for which the CRLB was calculated.
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maintaining their in-focus shape over wider axial ranges
(Nehme et al., 2021).
As an example of optimization, to attain a PSF achieving

optimal localization precision over a wide axial range we use
the Fisher information and CRLB metrics. To derive the
relevant CRLB, we start with the Fisher information matrix
elements ½Qðϑ;ΦÞ�i;j of the log-likelihood function given in
Eq. (136) (see Sec. I.B),

½Qðϑ;ΦÞ�i;j ¼
XN
n¼1

∂

∂ϑi
Λnðϑ;ΦÞ ∂

∂ϑj
Λnðn; ϑ;ΦÞ

×
1

Λnðn; ϑ;ΦÞ þ Bn
; ð141Þ

where ϑj is a parameter within the set of unknowns designated
by ϑ. After evaluating the Fisher information entries, we can
evaluate the CRLB given by Eq. (10).
In a practical implementation of an iterative optimization,

the PSFs are scaled to match realistic signal counts encoun-
tered in SMLM imaging, i.e., on the scale of a few hundred
photons per emitter per frame. Heuristic and CRLB optimized
PSFs, optimized for just one emitter, can drastically limit their
performance at high labeling density where engineered PSFs,
such as the tetrapod (Shechtman et al., 2014), suffer from PSF
overlaps due to their large lateral footprint. In such cases,
fitting algorithms like MLE designed for sparse cases exhibit a
significant drop in performance, with performance slightly
improved for the compact DS3D PSF (Nehme et al., 2020).
One solution for axial localization in dense environments is to
let a neural net learn the optimal pupil phase design (Nehme
et al., 2020). In this case, 3D localization and the encoding
pupil phase are simultaneously optimized. In a similar vein,
for optimizing PSFs for dense localization similar design
strategies have been used in multicolor imaging (Shechtman
et al., 2016; Smith et al., 2016), where neural networks have
been used to optimize phase masks to optimally discriminate
between colors (Hershko et al., 2019).

VI. PERSPECTIVES

The world of microscopy and biology have been inter-
twined from the onset. As early as humankind could peer at
the world beyond its visual range, it peered into life (Gest,
2004) and we continue doing so from nuclear pore complexes
(Thevathasan et al., 2019), which are key to intracellular
communication, individual synaptic spines (Chakraborty
et al., 2019), cell adhesion (Fischer et al., 2021) at the basis
of tissue formation, actin filaments involved in cell motion and
division (Andrews et al., 2008; Riedl et al., 2008; Mazloom-
Farsibaf et al., 2021), etc.
Life presents events at all spatiotemporal scales with no

clear means of discriminating between object of interest and
background. Discrimination from background motivated fluo-
rescence (Renz, 2013), while probing smaller and faster
spatiotemporal scales, continues to motivate the experimental
and theoretical methodology development. Along these lines,
major improvements in fluorescent microscopy have followed
four main fronts: fluorescent probes, optical setups, detectors,
and data analysis.

Regarding fluorescent probes (see Sec. II), the discovery of
green fluorescent proteins was a milestone in fluorescence
microscopy (Shimomura, Johnson, and Saiga, 1962; Tsien,
1998). Next came the ability to switch biomarkers from dark
and bright states (Hell and Wichmann, 1994; Dickson et al.,
1997) resulting in superresolution microscopy and nanometer
resolution (Huang, Bates, and Zhuang, 2009; Lelek et al.,
2021); see Sec. V.
Concerning optical setups (see Secs. III and IV), the

invention of the confocal microscope (Marvin, 1961) marked
a milestone accomplishing optical sectioning by inserting a
pinhole in the detection arm to filter out-of-focus light.
Research in this area is ongoing, leading to the development
of different microscopy modalities such as light-sheet micros-
copy and SIM (as discussed in Sec. IV), yielding unprec-
edented optical sectioning as well as high lateral resolutions.
On the detector front (see Appendix A), cameras, including

CCDs, EMCCDs, and CMOSs, revolutionized fluorescence
microscopy and enabled rapid wide-field imaging. Indeed, the
need to amplify signal lead to the development of EMCCDs
capable of imaging dim fluorescent probes (Madan, Bhaumik,
and Vasi, 1983). The recent advent of CMOS cameras then
accelerated data acquisition up to hundreds of frames per
second over large FOVs with reduced readout noise (Bigas
et al., 2006). While we have focused mostly on integrative
detectors in the review, increasingly available single-photon
avalanche diode arrays (Bruschini et al., 2019; Ulku et al.,
2019) may herald an era of unparalleled spatiotemporal
resolution.
Finally, data analysis methods grounded in statistics are

naturally suited to process fluorescent microscopy data while
considering all sources of uncertainty; see Sec. I.B. Moreover,
considering the fundamental problem of model selection
inherent to fluorescence microscopy, BNP frameworks (see
Sec. I.B) show promise across applications. Deep learning
methods (Belthangady and Royer, 2019; de Haan et al., 2020;
Möckl, Roy, and Moerner, 2020; Volpe et al., 2023) have also
recently gained popularity and may likely be critical to the
analysis of large volumetric, fluorescence datasets (Wang
et al., 2021; Patel et al., 2022), though these tools require
continued model training for different applications. A concrete
future avenue for data analysis might merge the ideas from
both Bayesian and deep learning (Winter et al., 2023).
Despite continued progress in fluorescence microscopy

(Pawley, 2006; Sahl, Hell, and Jakobs, 2017; Stockert and
Blázquez-Castro, 2017), multiple challenges remain. These
include potentially perturbative effects of fluorescent probes
on the labeled systems, uncontrolled probe interactions with
themselves and their environment, phototoxic effects naturally
arising from any form of illumination, labeling and detection
challenges in thicker samples and complex environments,
rapid volumetric imaging, manipulating large dataset sizes,
and many other challenges.
Indeed, as we move to complex environments complemen-

tary readouts beyond fluorescence are often desired and, along
these lines, a number of other methods continue to be
developed. These include refractive index tomography (Lee
et al., 2013; Kim et al., 2016), Raman imaging (Camp et al.,
2014; Smith and Dent, 2019), phase imaging (Popescu, 2011;
Park, Depeursinge, and Popescu, 2018), lens-free imaging
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(Bishara et al., 2010), ghost imaging (Gatti et al., 2004;
Shapiro, 2008), rotating coherent scattering microscopy (Ruh
et al., 2018; Jünger et al., 2022), expansion microscopy
(Chen, Tillberg, and Boyden, 2015; Gambarotto et al., 2019),
and others that have proven to be useful at the nanoscale.
Together these approaches, alongside the development of
theoretical and numerical tools, may help us to visualize life
events that are otherwise unfolding in environments that
remain impenetrable and at scales still beyond our reach.
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APPENDIX A: DETECTOR PHYSICS

Every photon carries with it information that can be
recorded by detectors and later employed to draw inferences.
These detectors comprise one or many pixels arranged as 2D
arrays. The former is employed mostly in point scanning
microscopy to record single-photon arrival times, for example,
in FLIM and FRET. The latter is suitable to wide-field
fluorescence.
Ideally, in wide-field detectors pixel values would histo-

gram the photon counts incident on a particular pixel over the
course of an exposure. Similarly, single-photon detectors
would record precise photon arrival times. However, owing
to the stochastic noise inherent to detectors, pixel values and
recorded arrival times are related only probabilistically to
photon counts and direct photon emission times, respectively
(Michalet et al., 2007; Tavakoli, Jazani, Sgouralis, Heo et al.,
2020; Fazel, Jazani et al., 2022). This section lays out noise
models for values reported by different detectors motivated by
the detector physics. Once the model is formulated, its
parameters are estimated for specific detectors using data
from calibration experiments (Elson and Magde, 1974;
Magde, Elson, and Webb, 1974; Weiss, 1999; Huang et al.,
2013; Afanasyev et al., 2015; Heintzmann et al., 2016).

In what follows, we first describe wide-field detectors (inte-
grative detectors) and next turn to single-photon detectors.
There are three common types of wide-field detectors

used in fluorescence microscopy: CCDs (Amelio, Tompsett,
and Smith, 1970; Boyle and Smith, 1970; Fossum and
Hondongwa, 2014), EMCCDs (Madan, Bhaumik, and Vasi,
1983; Jerram et al., 2001; Basden, Haniff, and Mackay, 2003),
and CMOSs (Tian, 2000; Fossum and Hondongwa, 2014). In
what follows, we describe the architecture and physics of each
detector and, in turn, derive the appropriate noise model.
We begin with a sketch of detector devices. Figure 62

depicts the main components of CCDs and EMCCDs. The
green pixel grid represents photoactive capacitors accumulat-
ing photoelectrons proportional to the incident photon counts.
The blue grid is a set of capacitors that temporarily hold the
resulting photoelectrons. The blue grid then transfers its
electrons to the red register one row at a time. In CCD
cameras there is no electron multiplier (EM) stage, and the
transferred electrons follow the arrows to the right in Fig. 62
and go to the charge-to-voltage converter. The voltages are
then converted into analog-to-digital units (ADUs) and
recorded as pixel values.
By contrast, in EMCCD detectors the transferred electrons

follow the arrows to the left in the red register and undergo an
amplification stage shown in pink before going to the charge-
to-voltage converter; see Fig. 62. In the EM stage, electrons
are fed through a chain of avalanche EMs where an electric
field is applied to the electrons, giving them sufficient kinetic
energy to knock other electrons into the material’s conducting
band. This creates new electron-hole pairs, thereby amplifying
the current. Each stage of the EM process has a small expected
gain (≈1%), but the device has many stages dramatically
amplifying the current prior to reaching the charge-to-voltage
converter.
While CMOS detectors have similar architectures, they use

transistors instead of capacitors and every CMOS pixel has its
own amplifier; see Fig. 63. This allows for faster data
acquisition, a larger FOV, lower power consummation, and
larger quantum efficiency. However, such an architecture
imposes pixel-dependent noise requiring maps of pixel gain,

FIG. 62. Sketch of the CCD or EMCCD detector design detailed
in the text.
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variance, and offset (Huang et al., 2013; Liu et al., 2017;
Mandracchia et al., 2020).

1. Noise models

Every stage involved in detecting and converting incident
photons to ADUs in detectors introduces noise to the final
reported pixel values. Here we discuss the main noises that are
introduced at every stage.

(1) The first source of noise stems from the discrete nature
of the photons. Given the expected photon count Λn
for a pixel n over a fixed exposure time [see Eq. (129)]
the measured photon count Nph;n is Poisson distrib-
uted, i.e., shot noise limited (Ober, Ram, and Ward,
2004; Zhang and Chen, 2009; Harpsøe, Andersen, and
Kjægaard, 2012; Huang et al., 2013),

Nph;n ∼ PoissonðΛnÞ; ðA1Þ

where we use notation that was introduced in Sec. I.B.
(2) Only a fraction of the photons incident on the detector

generate photoelectrons, with the expected number of
photoelectrons per incident photon called the quantum
efficiency β (Zhang and Chen, 2009; Quan, Zeng, and
Huang, 2010; Hirsch et al., 2013). The number of
generated photoelectrons Npe;n, therefore follows a
Binomial distribution (Hirsch et al., 2013)

Npe;n ∼ BinomialðNph;n; βÞ: ðA2Þ

The distribution over the number of photoelectrons
given the expected number of photons Λn can then be
obtained by marginalizing over the incident number of
photons (see Sec. I.B) as follows:

PoissonðNpe;n; βΛnÞ ¼
X∞

Nph;n¼Npe;n

PoissonðNph;n;ΛiÞ

× BinomialðNpe;n;Nph;n; βÞ;
ðA3Þ

where we have distinguished between the Binomial
distribution of Eq. (A1) and the Binomial density of
Eq. (A3), as detailed in Sec. I.B.

(3) The third source of noise is due to spurious charge
consisting of unwanted electrons generated during the
transfer process, termed clock-induced charge (CIC)
(Daigle et al., 2009; Hirsch et al., 2013). The CIC
noise follows a Poisson distribution and gives rise to
additional electrons while being transferred to the
register

Nte;n ∼ PoissonðβΛn þ CÞ; ðA4Þ

where Nte;n and C are the number of electrons after the
transferring stage and the mean value of the CIC. This
noise is small but can be greatly amplified during the
electron multiplier step in EMCCD detectors.

(4) The EM process consists of many stages in which new
electrons are excited through impact ionization, which
can be considered a cascade of stochastic events.
These steps are approximately identical; thus, the
EM process can be modeled as a cascade of Poisson
processes or Bernoulli trials (Tubbs, 2003; Hirsch
et al., 2013) or a geometric model of multiplication
(Chao, Ward, and Ober, 2012; Chao et al., 2013).

The number of electrons after the EM stage Nae;n
is a random variable that approximately follows a
Gamma distribution (Basden, Haniff, and Mackay,
2003; Harpsøe, Andersen, and Kjægaard, 2012;
Hirsch et al., 2013),

Nae;n ∼ GammaðNte;n; ĝÞ; ðA5Þ

where ĝ denotes the amplification gain given by the
ratio of the output and input electrons to the EM stage.
For large values of Nte;n, this process is further
approximated by a Gaussian that is computationally
more efficient (Basden, Haniff, and Mackay, 2003;
Hirsch et al., 2013),

Nae;n ∼ NormalðĝNte;n; ĝ2Nte;nÞ: ðA6Þ

(5) The last stage termed readout takes the input electrons
following the EM stage Nae;n and converts them (with
noise) into discrete pixel values reported as the data wn
in ADUs. This stage introduces another gain γ (ADUs
per electron, also sometimes referred to as the sensi-
tivity and typically smaller than 1) and offset μ (the
output ADU at zero input electron often added to
avoid negative pixel values) modeled by a Gaussian
distribution and termed readout noise,

wn ∼ NormalðγNae;n þ μ; σ2roÞ; ðA7Þ

where σ2ro is the readout noise variance.
The combination of the noises introduced via the ampli-

fication and readout stages is obtained by marginalizing the
intermediate parameter Nae;n (namely, the number of electrons
after the EM stage) between Eqs. (A6) and (A7), resulting in

FIG. 63. Sketch of the CMOS detector design detailed in the
text.
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wn ∼ Normalðg̃Nte;n þ μ; σ2wÞ; ðA8Þ

where g̃ ¼ γĝ and σ2w ¼ γ2ĝ2Nte;n þ σ2ro denote the total gain
and variance, respectively. Finally, the entire detector model,
which relates the expected photon count (Λn) to the reported
pixel value (wn), is obtained by marginalizing the other
intermediate parameter Nte;n (namely, the number of electrons
after the transferring stage) between Eqs. (A4) and (A8),

PðwnjΛnÞ ¼
X∞

Nte;n¼0

PoissonðNte;n; βΛn þ CÞ

× Normalðwn; g̃Nte;n þ μ; σ2wÞ: ðA9Þ

Since we did not make any assumptions about the gain, offset,
or other parameters to derive the aforementioned noise model,
it is valid for both CCD and EMCCD detectors. Moreover, if
we assume pixel-dependent parameters such as gain and
offset, this model would be valid for CMOS detectors as
well. As Eq. (A9) remains complex, we make appropriate
approximations for computational efficiency to derive simpler
noise models specialized to each detector.
We start with CCD detectors lacking an EM amplification

stage (ĝ ≈ 1 and σ2w ≈ σ2ro). These are therefore suitable in
detecting large input signals compared to the readout noise
variance. This can be quantitatively expressed as

SNR ¼ Λn

σro
≫ 1; ðA10Þ

thereby implying that the signal is not buried by readout
noise. Under the large signal (Λn) assumption, the Poisson
distribution (A4) is approximated by a Gaussian in which both
the mean and the variance are given by the Poisson’s mean,

PðwnjΛnÞ ≈
X∞

Nte;n¼0

NormalðNte;n; βΛn; βΛnÞ

× Normalðwn; γNte;n þ μ; σ2wÞ; ðA11Þ

where we assume that g̃ ¼ γ and σ2w ¼ σ2ro and further neglect
the spurious charge C in the absence of amplification in CCD
cameras. Therefore, Eq. (A11) leads to

wnjΛn ∼ NormalðgΛn þ o; σ2wÞ; ðA12Þ

where g ¼ γβ, o ¼ μ, and σ2w ¼ σ2ro denote the gain, offset, and
variance for CCD detectors, respectively. It is also common to
apply the offset and gain to the pixel values (data) and write
Eq. (A12) for gain- and offset-corrected pixel values,

ðwn − oÞ=gjΛn ∼ NormalðΛn; σ2w=g2Þ: ðA13Þ

Next we consider EMCCD detectors. These detectors are
suitable for a low SNR. The EM stage of these detectors
amplifies the signal above the readout noise (ĝ ≫ σw). In an
effort to simplify Eq. (A9) for EMCCDs, we write it in explicit
form as

PðwnjΛnÞ¼
X∞

Nte;n¼0

ðβΛnÞNte;n e−βΛn

Nte;n!

×
1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2D

p exp

�
−
½Nte;n−ðwn−μÞ=g̃�2

2σ2w=g̃2

�
; ðA14Þ

where we have factorized g̃ in the exponent. For large
amplifications the standard deviation σ2w=g̃2 becomes small
and results in a narrow Gaussian approximated by a delta
function. Therefore, upon marginalization and some algebra
we recover (Huang et al., 2013)

P(ðwn − oÞ=gjΛn) ¼
1

Γ½1þ ðwn − oÞ=g� e
−βΛnðβΛnÞðwn−oÞ=g;

ðA15Þ

where o ¼ μ and g ¼ g̃ denote the offset and gain, respec-
tively. The aforementioned EMCCD model for the corrected
pixel values is similar to a Poisson noise model where the
corrected pixel values do not need to be integers (Huang et al.,
2013). An alternative EMCCD camera noise model could
be obtained by convolution of the Poisson distribution
equation (A4) and the gamma noise model for EM
amplification (A5), resulting in an approximate gamma noise
model for EMCCD detectors (Basden, Haniff, and Mackay,
2003; Hirsch et al., 2013; Bryan, Sgouralis, and Pressé, 2022).
The two noise models asymptotically converge to the same
model for a large gain g.
After deriving noise models for CCD and EMCCD detectors

with a pixel-independent gain g, an offset o, and a variance σ2w,
we continue by deriving the noise model for CMOSs where the
gain, variance, and offset are pixel dependent (Huang et al.,
2013; Liu et al., 2017; Mandracchia et al., 2020). Therefore,
every pixel follows a different noise model that is similar to
Eq. (A9),

PðwnjΛnÞ ¼
X∞

Nte;n¼0

PoissonðNte;n; βΛnÞ

× Normalðwn; g̃nNte;n þ μn; σ2w;nÞ; ðA16Þ

where n indexes the pixels. Provided small gain g̃n for CMOSs,
Eq. (A16) can be approximated via a Poisson distribution
assuming an extra source of photon for eachn pixel contributing
σ2w;n=g2n photons (Huang et al., 2013),

ŵnjΛn ∼ PoissonðΛn þ σ2w;n=g2nÞ; ðA17Þ

where ŵn ¼ ðwn − onÞ=gn þ σ2w;n=g2n, gn is the gain character-
ized from calibration experiments, and on ¼ μn is the pixel-
dependent offset.
After considering wide-field detectors, we proceed to

describe noise models for a single-photon detector. We do
so by assuming fluorophore excitation using a pulsed laser.
This is illustrated in Fig. 64, where the laser pulses are
designated as blue spikes with an interpulse window T. In the
figure a fluorophore gets excited during a pulse at a time text,
spendsΔtext time in the excited state and emits a photon, in the
most general case, after n pulses at tems. However, the photon
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arrival time is recorded as tdet via a Δ2 delay in the detector
and is reported with respect to the immediate previous pulse
given by Δtk for the kth photon.
Using Fig. 64, we can write the following relation for the

reported photon arrival time:

Δtk ¼ Δtext þ ΔtIRF − nT; ðA18Þ

where ΔtIRF ¼ Δ1 þ Δ2 is the noise introduced by the IRF
due to the laser pulses’ finite width and the stochastic delay of
the detector. Here the reported arrival time is the sum of three
random variables. As such, the noise model is given by the
convolution of three probability distributions,

PðΔtkjλÞ ¼ PðnjNÞ
⊗ ½PðΔtextjλÞ ⊗ PðΔtIRFjτIRF; σ2IRFÞ�; ðA19Þ

where λ; τIRF; σ2IRF, and N are the rate of excited state decay
[the inverse of the excited state lifetime; see Eq. (18)], the IRF
offset, the IRF variance, and the maximum possible number of
pulses after which the fluorophore emits, respectively. These
distributions are given by

Δtextjλ ∼ ExponentialðλÞ; ðA20Þ

ΔtIRFjτIRF; σ2IRF ∼ NormalðτIRF; σ2IRFÞ; ðA21Þ

njA1∶N ∼ CategoricalðA0;…; ANÞ; ðA22Þ

where “Exponential” implies a normalization constant and the
time spent in the excited state and the IRF time are sampled
from Exponential and Gaussian distributions. The pulse at
which the fluorophore emits is sampled from a Categorical
distribution where An is given by the integral of the term inside
brackets in Eq. (A19) over pulse n (Fazel, Jazani et al., 2022).
Finally, calculating the convolutions in Eq. (A19) we obtain
the following noise model for single-photon detectors under
pulsed illumination (Fazel, Jazani et al., 2022):

PðΔtkjλÞ¼
�XN
n¼0

λ

2
erfc

�
τIRF−Δtk−nTþλσ2IRF

σIRF
ffiffiffi
2

p
�

×exp

�
λ

2
½2ðτIRF−Δtk−nTÞþλσ2IRF�

��
; ðA23Þ

where erfcð·Þ denotes the complementary error function
(Olver et al., 2010). In many practical cases, the interpulse
time is much larger than the fluorophore lifetime (the inverse
of the fluorophore radiative decay T ≫ 1=λ) where the
fluorophore is emitted before the next pulse. In such cases,
the noise model can be simplified by setting N ¼ 0 (Tavakoli,
Jazani, Sgouralis, Heo et al., 2020).

APPENDIX B: FLUOROPHORE COUNTING

The application of Markov models for FRET data analysis
was discussed in Sec. II.C. Here we describe how Markov
models are used while enumerating fluorophores (Ulbrich and
Isacoff, 2007; Rollins et al., 2015; Tsekouras et al., 2016; Lee
et al., 2017; Bryan, Sgouralis, and Pressé, 2022), typically
with the intent of determining the stoichiometry of a labeled
protein complex within a diffraction-limited spot.
For a single fluorophore we assume for simplicity a state

space spanned by three photophysical states, though this
treatment is generalized elsewhere (Patel et al., 2019; Bryan,
Sgouralis, and Pressé, 2022). These include (1) the bright state
fA, (2) the dark state fD, and (3) the photobleached state fB.
Transitions between these states include fA → fA, fA → fD,
fA → fB, fD → fD, fD → fA, and fB → fB. Here the photo-
bleached state is an absorbing state from which escape is
impossible; see Sec. II.A.
Typically in such applications a wide-field detector (see

Appendix A) is used to record data from ROIs containing one
or multiple putative complexes. The ROIs may contain one or
more pixels. The input to the analysis then consists of the sum
of the intensity or brightness in each ROI typically obtained by
summing the pixel values (ADUs) in each pixel involved. The
sum of ADUs for each ROI is then recorded over K successive
frames and designated by w̄1∶K ¼ fw1

1∶K;…; wR
1∶Kg, where the

overbar represents the set of R ROIs. Typically the last frame
is taken after all fluorophores within the ROI have photo-
bleached; see Fig. 65. Assuming only photobleaching and
ignoring transitions from bright to dark states, we find that the
number of discrete intensity drops in the time trace, if all
fluorophores are initially bright, should coincide with the
number of photobleaching events and thus the complex
stoichiometry. However, not all fluorophores may initially
be active, as in the case of PALM (Rollins et al., 2015). What
is more, fluorophores blink; see Sec. II.A and Fig. 65.
If our goal is to enumerate the fluorophores, assuming

identical complexes across ROIs, then for independent ROIs
(i.i.d. variables) the likelihood reads (see Sec. I.B)

Pðw̄1∶K jΛ̄1∶K;ΞÞ ¼
Y
r

Y
k

Pðwr
kjΛr

k;ΞÞ; ðB1Þ

where Ξ denotes the camera parameters (see Appendix A) and
the elements of Λ̄1∶K , namely, Λr

k, coincide with the expected
photon count, i.e., the brightness obtained from the emission
rate multiplied by the camera exposure time, of the rth ROI at
a frame k.

FIG. 64. Single-photon detector. Laser pulses and their centers
are shown as blue spikes and dashed red lines with an interpulse
window T, respectively. The fluorophore excitation, photon
emission, and photon detection events take place at text, tems,
and tdet, respectively (designated as dashed black lines). The
fluorophore spends time Δtext in the excited state and emits a
photon after n pulses. The reported photon arrival time Δtk is
measured with respect to the immediate previous pulse center.
Moreover,Δ1 and Δ2 denote the difference of the excitation pulse
center and the detector delay in reporting the photon arrival time.
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Decomposed in terms of emission due to background and
fluorophores, Λr

k reads

Λr
k ¼ Br þ IA

XMr

m¼1

δA;srmk ; ðB2Þ

where m counts Mr fluorophores within the rth ROI. In
Eq. (B2) IA, Br, and srmk denote the fluorophore’s brightness,
the background brightness of the rth ROI per frame, and the
state of the mth fluorophore within the rth ROI at a frame k,
respectively. The Kronecker delta δA;srmk assumes that fluo-
rophores emit only in the bright state. This decomposition
assumes, perhaps erroneously in some cases, that the fluo-
rphores do not interact (Saurabh et al., 2022).
Next approximating the fluorophore state as remaining the

same over each frame and the state at frame k depending only
on its (potentially different) state at frame k − 1, i.e., the
Markov assumption, we can formulate the problem using
transition probabilities between different states and avoid
transition rates altogether. The transition probabilities asso-
ciated with a single fluorophore can be collected as elements
of a matrix, designated as Π, that are analogous to the
propagator Q in Eq. (29) for finite time windows,

Π ¼ exp ½GδT� ¼

2
64
πA→A πA→D πA→B

πD→A πD→D 0

0 0 1

3
75: ðB3Þ

In Eq. (B3) δT is the fixed period of time between measure-
ments (the frame exposure time) and each line of the transition
matrix contains transition probabilities out of a certain state.

For instance, we have πA ¼ ½πA→A; πA→D; πA→B� for the bright
state. The structure of the last row in Eq. (B3) reflects the
absorbing nature of the bleached state.
The state of a single fluorophore at frame k given its state at

k − 1 is sampled as follows:

smr
k jsmr

k−1 ∼ Categoricalðπsmr
k−1
Þ; ðB4Þ

where πsmr
k−1

collects the set of possible transition probabilities
out of smr

k−1. Finally, as fluorophore transitions are assumed to
be independent, transitions of the full system are obtained
from the product of the individual fluorophore transition
probabilities.
While the photophysics of individual fluorophores may be

known, the number of fluorophores are themselves unknown.
This presents a model selection challenge warranting a non-
parametric formulation. Conceptually this is achieved by
assuming an infinite number of fluorophores with associated
loads; see Sec. I.B. Concretely we modify Eq. (B2) as follows:

Λr
k ¼ Br þ IA

X∞
m¼1

brmδA;smr
k
; ðB5Þ

where brm is the load associated with the mth fluorophore in
the rth ROI. In this case, the number of fluorophores is
replaced by loads for each ROI. We collect the set of

unknowns in ϑ ¼ f ¯̄b; IA; B̄;Π; ¯̄Sg. Here double overbars
represent the set of all possible values for the two indices
associated with both of the parameters b and S.
Finally, to construct the posterior for the set of parameters in

ϑ, we introduce priors. The most notable priors are the beta-
Bernoulli process priors on loads and the prior on the
transition probabilities, the Dirichlet prior, due to its conju-
gacy to the Categorical distribution (B4). For the remaining
priors in Fig. 66, we opt for computationally efficient priors
when possible while leveraging the mathematical structure for
the likelihood (Bryan, Sgouralis, and Pressé, 2022); see
Sec. I.B. In particular, we invoke multiple Monte Carlo
procedures to draw samples of ϑ from the posterior with
forward filtering backward sampling specifically used to
sample fluorophore trajectories (Scott, 2002; Bishop and
Nasrabadi, 2006; Bryan, Sgouralis, and Pressé, 2022).

APPENDIX C: SUPERRESOLUTION OPTICAL
FLUCTUATION IMAGING

SOFI (Dertinger et al., 2009; Grußmayer et al., 2020a,
2020b) is a computational postprocessing tool for superreso-
lution single-molecule data. In contrast to SMLM, SOFI is not
aimed at resolving isolated molecules and is robust to the
presence of overlapping PSFs. Concretely SOFI improves the
resolution by exploiting correlations in the stochastic switching
of the underlying fluorophores, i.e., by leveraging the fact that a
molecule’s emission fluctuations spatiotemporally correlate
only with themselves and not with neighboring molecules.
The data processed in SOFI consist of photon counts

(intensity) wk
n at pixel n in frame k (time point k) detected

on a wide-field camera

FIG. 65. Fluorophore enumeration. (a) Sketch of the enumeration
problem where the ROI intensity varies as fluorophores switch
between the dark, bright, and photobleached states. (b)–(d) Histo-
gram of the sampled posterior over the number of fluorophores,
i.e., the sum of sampled loads, for experimental data with 24, 49,
and 98 fluorophores, respectively, using the statistical framework
appearing in Fig. 66. Adapted from Bryan, Sgouralis, and
Pressé, 2022.
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wk
n ¼ B þ I0

XM
m¼1

Uðrn − rmÞskm þ εkn; ðC1Þ

with M denoting the fluorophore number, I0 representing the
molecular brightness assumed uniform across molecules, U
denoting the optical system’s PSF, skm describing the state of
fluorophore m as an off or on state, B representing an average
background, rn denoting the location of pixel n, and εkn
representing the additive noise. Moreover, the sample is
assumed to be stationary over image acquisition, and the
PSF’s integral over the pixel area is approximated by the
integrand’s value at the pixel center.
In its simplest implementation, SOFI computes the cumu-

lants κðw1∶K
1∶NÞ of the pixel intensities across frames. For

instance, the second order temporal cross cumulant coincides
with the covariance in signal intensity across frames in one
pixel for different time lags. The lth order cumulant can be
approximated as (Deschout et al., 2016)

κlðw1∶K
1∶NÞ ≈ Il0flðρonÞ

XM
m¼1

Ulðr1∶N − rmÞ; ðC2Þ

where flðρonÞ denotes the lth order cumulant of skm given as an
lth order polynomial with respect to the probability of the
molecule (ratio of molecules) to be on designated by ρon.
Moreover, under assumptions of uncorrelated noise and sta-
tionary background, cumulants of the noise and background
are zero. In Eq. (C2), which is critical to the SOFI analysis, the

PSF is raised to the lth power. Thus, the lth order cumulant, if
plotted instead of the original image, yields a PSF

ffiffi
l

p
narrower

than the original PSF and offers an up to l-fold enlarged
frequency support in Fourier space. As such, the resolution
can be increased up to l-fold with postprocessing by either
Fourier reweighing (Dertinger, Colyer et al., 2010) or decon-
volution (Dertinger et al., 2009; Geissbuehler et al., 2012), as
discussed earlier; see Sec. IV.B.1 for a discussion of confocal
microscopy and Sec. IV.B.2 for more on ISM microscopy.
This can be further generalized to spatiotemporal cross
cumulants with various time lags across different pixel
combinations to leverage spatial information, albeit at
higher computational cost (Dertinger, Colyer et al., 2010;
Geissbuehler et al., 2012; Girsault et al., 2016).
One challenge with SOFI postprocessing is the possibility

of amplifying signal heterogeneities and potentially masking
dimmer structures (Geissbuehler et al., 2012), which is partly
addressed by a deconvolution method termed balanced
SOFI (Geissbuehler et al., 2012; Deschout et al., 2016).
Furthermore, compared to SMLM, SOFI is relatively insen-
sitive to background and tolerates higher labeling densities,
higher on-time ratios, lower SNR, and only hundreds to
thousands of frames to compute cumulants (allowing less
photodamaging), and faster live-cell imaging. Moreover,
SOFI achieves optical sectioning and resolution improvement
in the z direction using simultaneously acquired multiplane
data (Geissbuehler et al., 2014; Descloux et al., 2018).

FIG. 66. Statistical framework: counting.

FIG. 67. Data simulated for discrete measurements of two state
systems with (a) fast and (b) slow transitions. The system
trajectories in the state space, measurements at different times
intervals (δT), i.e., bins, and the state signal levels in the absence of
noise are denoted as cyan, gray, and dotted lines, respectively. The
measurements between the state signal levels coincide with time
intervals where the system has switched to a different state at some
point during those intervals. In the simulations, data acquisitions
take place at every δT ¼ 0.1 s,where the average time spent in each
state is 0.8 and 0.066 s for slow and fast kinetics, respectively.
Adapted from Kilic, Sgouralis, and Pressé, 2021.
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APPENDIX D: SUPPLEMENTARY FIGURES

Additional figures are presented in this appendix for the
evaluation of the integral of Eq. (56) and the posterior for the
single spot confocal analysis discussed in Sec. IV.C.
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FIG. 68. Contour for the integration over k0z of Eq. (56) in the
complex k0z plane. For positive values of z − zd, the contour has to
be closed at infinity over the positive Imðk0zÞ half-space, while for
negative values of z − zd it is closed at infinity over the negative
half-space. Along the real axis, the integrand has two poles at
�wd ¼ �
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k2d − q2

p
.

FIG. 69. Posteriors over diffusion coefficients strongly depend
on the prespecified M when operating within a parametric
Bayesian paradigm. The trace analyzed contains ≈1800 photons
generated from four molecules diffusing at D ¼ 1 μm2=s for
30 ms with a background and maximum molecule photon
emission rate of 103 and 4 × 104 photons=s, respectively. To
deduce D within the parametric paradigm, we assumed a fixed
number of molecules: (a) M ¼ 1, (b) M ¼ 2, (c) M ¼ 3,
(d) M ¼ 4, and (e) M ¼ 5. The correct estimate in (d) (and
the mismatches in all others) highlights why we must use the
available photons to simultaneously learn the number of mole-
cules and D. Adapted from Tavakoli, Jazani, Sgouralis, Shafraz
et al., 2020.
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S. Pressé, 2019, “An alternative framework for fluorescence
correlation spectroscopy,” Nat. Commun. 10, 3662.

Jazani, S., L. W. Q. Xu, I. Sgouralis, D. P. Shepherd, and S. Presse,
2022, “Computational proposal for tracking multiple molecules in a
multifocus confocal setup,” ACS Photonics 9, 2489–2498.

Jerram, P., P. J. Pool, R. Bell, D. J. Burt, S. Bowring, S. Spencer, M.
Hazelwood, I. Moody, N. Catlett, and P. S. Heyes, 2001, “The
LLCCD: Low-light imaging without the need for an intensifier,” in
Sensors and Camera Systems for Scientific, Industrial, and Digital
Photography Applications II, edited by N. Sampat, J. Canosa,
M. M. Blouke, J. Canosa, and N. Sampat, SPIE Proceedings
Vol. 4306 (SPIE—International Society for Optical Engineering,
Bellingham, WA), pp. 178–186.

Ji, N., 2017, “Adaptive optical fluorescence microscopy,” Nat.
Methods 14, 374–380.

Ji, N., D. E. Milkie, and E. Betzig, 2010, “Adaptive optics via pupil
segmentation for high-resolution imaging in biological tissues,”
Nat. Methods 7, 141–147.

Jia, S., J. C. Vaughan, and X. Zhuang, 2014, “Isotropic three-
dimensional super-resolution imaging with a self-bending point
spread function,” Nat. Photonics 8, 302–306.

Jin, D., P. Xi, B. Wang, L. Zhang, J. Enderlein, and A. M. Van Oijen,
2018, “Nanoparticles for super-resolution microscopy and single-
molecule tracking,” Nat. Methods 15, 415–423.

Jin, L., B. Liu, F. Zhao, S. Hahn, B. Dong, R. Song, T. C. Elston, Y.
Xu, and K. M. Hahn, 2020, “Deep learning enables structured
illumination microscopy with low light levels and enhanced speed,”
Nat. Commun. 11, 1934.

Jones, G. A., and D. S. Bradshaw, 2019, “Resonance energy transfer:
From fundamental theory to recent applications,” Front. Phys.
7, 100.

Jouchet, P., C. Cabriel, N. Bourg, M. Bardou, C. Poüs, E. Fort, and S.
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“Single photon smFRET. III. Application to pulsed illumination,”
Biophys. Rep. 2, 100088.

Saffarian, S., and T. Kirchhausen, 2008, “Differential evanescence
nanometry: Live-cell fluorescence measurements with 10-nm axial
resolution on the plasma membrane,” Biophys. J. 94, 2333–2342.

Sahl, S. J., and S. W. Hell, 2019, “High-resolution 3D light micros-
copy with STED and RESOLFT,” in High Resolution Imaging in
Microscopy and Ophthalmology, edited by J. Bille (Springer,
Cham, Switzerland), pp. 3–32.

Sahl, S. J., S. W. Hell, and S. Jakobs, 2017, “Fluorescence nanoscopy
in cell biology,” Nat. Rev. Mol. Cell Biol. 18, 685–701.

Santos, A., and I. T. Young, 2000, “Model-based resolution: Apply-
ing the theory in quantitative microscopy,” Appl. Opt. 39, 2948–
2958.

Sapoznik, E., et al., 2020, “A versatile oblique plane microscope for
large-scale and high-resolution imaging of subcellular dynamics,”
eLife 9, e57681.

Sarkar, A., J. Gallagher, I. Wang, G. Cappello, J. Enderlein, A.
Delon, and J. Derouard, 2019, “Confocal fluorescence correlation
spectroscopy through a sparse layer of scattering objects,” Opt.
Express 27, 19382–19397.

Saurabh, A., P. T. Brown, J. S. Bryan IV, Z. R. Fox, R. Kruithoff,
D. P. Shepherd, and S. P. Presse, 2023, “A structured illumination
microscopy framework with spatial-domain noise propagation,”
10.1101/2023.12.07.570701.

Saurabh, A., M. Fazel, M. Safar, I. Sgouralis, and S. Pressé, 2023,
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