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New developments in superconductivity, particularly through unexpected and often surprising
forms of superconducting materials, continue to excite the community and stimulate theory. It is
now becoming clear that there are two distinct platforms for superconductivity: natural and
synthetic materials. The study of these artificial materials has greatly expanded in the past decade or
so, with the discoveries of new forms of superfluidity in artificial heterostructures and the
exploitation of proximitization. Natural superconductors continue to surprise through Fe-based
pnictides and chalcogenides, and nickelates as well as others. This review presents a two-pronged
investigation into such superconductors, with an emphasis on those that have come to be understood
to belong somewhere between the Bardeen-Cooper-Schrieffer (BCS) and Bose-Einstein conden-
sation (BEC) regimes. The nature of this “crossover” superconductivity, which is to be distinguished
from crossover superfluidity in atomic Fermi gases, is a focus here. Multiple ways of promoting a
system out of the BCS and into the BCS-BEC crossover regime are addressed in the context of
concrete experimental realizations. These involve natural materials, such as organic conductors, as
well as artificial, mostly two-dimensional materials, such as magic-angle twisted bilayer and trilayer
graphene, or gate-controlled devices, as well as one-layer and interfacial superconducting films.
Such developments should be viewed as a celebration of BCS theory, as it is now clear that, even
though this theory was initially implemented with the special case of weak correlations in mind, it
can be extended in a natural way to treat the case of these more exotic strongly correlated
superconductors.
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I. INTRODUCTION: BACKGROUND AND HISTORY

There has been a recent abundance of papers addressing a
new form of superconductivity. Superconductivity as tradi-
tionally addressed within the well-known Bardeen-Cooper-
Schrieffer (BCS) theory (Bardeen, Cooper, and Schrieffer,
1957) arises in metals when an attractive interaction is present.
We often refer to this attractive interaction as the pairing glue.
This attraction causes fermions to form pairs, called Cooper
pairs, that are in some sense “bosonic” (Schrieffer, 1964).
Because of this connection to bosonic statistics, the ground
state of the pairs can effectively counteract the Pauli exclusion
principle. Thus, as in a Bose system, the ground state of
fermion pairs can now be macroscopically occupied, and the
system thereby condenses. This BCS form of condensation,
however, is not the same as the phenomenon of Bose-Einstein
condensation (BEC), which is appropriate for Bose systems,
in which all fermionic degrees of freedom have disappeared.
But something different from the BCS picture is found in a

newgeneration of superconductors inwhich it appears that there
is an anomalously strong pairing glue (of unspecified origin).
We refer to these systems as strongly correlated superconduc-
tors, and we characterize their form of superconductivity as
being described by a machinery that is neither the more familiar
BCS theory nor does it correspond to BEC; here the fermionic
degrees of freedom are not completely absent. These super-
conductors are said to be described via “BCS-BEC crossover
theory.” This new type of condensation phenomenon also
appears to be present in ultracold atomic Fermi gases, where
it has been widely studied (Chen et al., 2005; Giorgini,
Pitaevskii, and Stringari, 2008; Randeria and Taylor, 2014).
An interesting fact is that there is now a large class of

recently discovered superconductors that appear to exhibit
BCS-BEC crossover-like characteristics. These include iron-
based superconductors, organic superconductors, magic-angle
twisted bilayer graphene (MATBG) and magic-angle twisted
trilayer graphene (MATTG) gate-controlled two-dimensional
devices, interfacial superconductivity, and magnetoexcitonic
condensates in graphene heterostructures. High-transition-
temperature cuprates may also be included in this class.
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We note here an important characteristic of BCS-BEC
crossover theory aside from the previously discussed ground
state. In this theory, because the pairing interaction is stronger
than in conventional materials, it follows that fermion pairs
form before they Bose condense at the superfluid transition
temperature Tc. We find in the review that this property leads
to a variety of experimental implications. It is in sharp contrast
to the well-established theory of BCS, where (because the
attractive interaction is extremely weak) pairing and conden-
sation occur at exactly the same temperature; there is no hint
that a given BCS superconductor will undergo the phase
transition at any temperature above Tc.
This review addresses these issues in considerable depth

and describes what has been observed in these two-dimen-
sional (2D) and three-dimensional (3D) superconductors,
which appear to be somewhere between BCS and BEC.
We show how their various experimentally measured char-
acteristics relate to BCS-BEC crossover, paying special
attention to 2D materials, where there seem to be a surpris-
ingly large number of examples. In the process, we present a
theoretical understanding of the crossover formalism at gen-
eral temperatures.
Lest there be any confusion at the start, throughout this

review what we mean by BCS-BEC crossover is not the onset
or proximity to the BEC regime as defined by some research-
ers, but rather an intermediate regime between BCS and BEC,
where a significant departure from strict BCS theory is
apparent. We also emphasize that what is being discussed
here pertains to the theoretical “machinery” of superconduc-
tivity rather than the microscopic pairing mechanism.
We begin the discussion of BCS-BEC crossover by follow-

ing the original discovery papers (Eagles, 1969; Leggett,
1980), which focused on a particular choice of ground state,
namely, that having the form originally introduced in BCS
theory. While there is a body of literature on alternative
approaches to BCS-BEC crossover in the solid state (some of
which is reviewed here), we focus mainly on this so-called
BCS-Leggett ground state and its finite-temperature implica-
tions (Kadanoff and Martin, 1961), rather than on variants that
have ground states that are incompletely characterized and less
well understood.
The appreciation of this broader applicability of BCS theory

and its straightforward extension to a form of Bose con-
densation underlines how remarkable the original contribution
of Bardeen, Cooper, and Schrieffer was. We note that their
discovery has provided support and a crucial framework for
multiple Nobel prizes (on the order of ten or so) besides their
own, including those in nuclear and particle physics. In this
way, the recognition of its even greater generality is particu-
larly significant.
This recognition can be credited to two physicists: A. J.

Leggett (Leggett, 1980) and D. M. Eagles (Eagles, 1969).
Leggett’s contribution was motivated by the discovery of a
BCS-like triplet-pairing state in neutral superfluid helium-3.
Leggett emphasized that this form of fermionic superfluidity
has features that are distinct from conventional superconduc-
tors; here the Cooper pairs have complex degrees of freedom.
Moreover, the underlying attraction that leads to supercon-
ductivity in this neutral system must derive from a distinct
pairing mechanism (Levin and Valls, 1983).

In making his claims, Leggett pointed to the sweeping
generality of the BCS ground state,

ΨBCS ¼ Πkðuk þ vka
†
k;↑a

†
−k;↓Þj0i; ð1Þ

where a†k;↑a
†
−k;↓ creates a pair of fermions with opposite spins

and opposite momenta k and −k from the vacuum (j0i).
The broader applicability of this wave function is accessed

by self-consistently adjusting the variational parameters uk
and vk as one varies the strength of the attractive interaction.
This accommodates a continuous evolution from weak to
strong pairing. One can replace uk and vk with more
experimentally relevant parameters: the fermionic chemical
potential μ and the zero-temperature fermionic excitation gap
parameter

Δ0 ≡ ΔðT ¼ 0Þ:
These are two important parameters that we refer to through-
out this review. Notably the wave function ΨBCS supports a
smooth transition between a BCS- and a BEC-like phase. The
former is characterized by a large pair size, a small Δ0, and a
chemical potential equal to the noninteracting Fermi energy
(EF). In the latter case the pair size is small, Δ0 is large
(comparable to or even larger than EF), and μ is negative.
We emphasize that this BEC phase is specific to the ground-

state fermionic wave function and need not represent that of a
true weakly interacting Bose gas. Note that within a gener-
alized BCS framework it is relatively straightforward to
address finite temperatures above and below Tc (Kadanoff
and Martin, 1961); this is, in part, a consequence of the fact
that the pairing formalism is closely related to an exactly
solvable many-body problem (Richardson, 1963).
In a related way, Eagles (1969) also made groundbreaking

observations. Eagles should be credited with emphasizing the
concept of “pairing without superconductivity.” This pre-
formed-pair normal-state scenario is at the heart of BCS-
BEC crossover theory once the attraction strength is beyond
the BCS regime. Eagles should also be credited with drawing
attention to the possibility that superconductivity in lightly
doped semiconductors can be described by a form of BCS-
BEC crossover. Indeed, we see in this review that there is
currently renewed interest in these superconductors with low
carrier density.
Conventions and notation. We follow standard notations as

much as possible. They are summarized in the List of Symbols
and Abbreviations. When we specify the interaction parameter
U as increasing or decreasing, we always refer to the
absolute value.
Throughout this review, we use the convention for units

where it is not explicitly spelled out: ℏ ¼ kB ¼ c ¼ 1. In
numerics, we set the volume to unity and EF ¼ TF ¼ kF ¼
2m ¼ 1 for the free-space cases, which leads to n ¼ 1=3π2 in
three dimensions.
For the lattice cases, we take the half bandwidth W ¼ zt ¼

1 and lattice constants a ¼ b ¼ c ¼ 1. In a simple (quasi-)2D
square or 3D cubic lattice, n ¼ 1 at half filling.
Our fermionic chemical potential μ is measured with

respect to the bottom of the noninteracting energy band, such
that ϵk¼0 ¼ 0. (i) This leads to μ ¼ EF in the noninteracting
limit at T ¼ 0, and (ii) μ changes sign when the system crosses
the boundary between the fermionic and bosonic regimes.
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A. Early theoretical work: Extending BCS-BEC crossover theory
to finite temperatures

In 1985, Noziéres and Schmitt-Rink (NSR) began to think
about going beyond the ground state and including the effects
of finite temperature. They wrote a well-known and important
paper (Nozières andSchmitt-Rink, 1985) that brought attention
back to the earlier work by Eagles and Leggett and presented an
in-depth discussion of the ground state given in Eq. (1).
Moreover, they suggested an approach for computing the
transition temperature Tc. Note, however, that the extrapolated
ground state associatedwithNSR’s finite-temperature theory is
different (Diener, Sensarma, and Randeria, 2008) than the
expressionΨBCS in Eq. (1). Additionally, NSR were the first to
emphasize that BCS-BEC crossover theory in a solid-state
lattice system assumes a character in the strong-coupling BEC
regime that is significantly different from that of a Fermi gas.
Figure 1 relates to this observation. It compares the phase

diagram for BCS-BEC crossover in (a) a lattice as contrasted
with (b) a Fermi gas. A central difference arises from the
kinetic-energy degrees of freedom associated with the motion
of fermions in solids having a periodic lattice that is distinct
from their motion in free space. The most striking conse-
quence is that in a solid Tc in the BEC regime can become
arbitrarily small as the pairing strength increases. Indeed, we
emphasize this distinction in this review, as it bears on the
relevance (or lack thereof) of the ultracold atomic Fermi-gas
superfluids to the solid-state superconductors discussed here.
Related work in the form of a review was written by

Micnas, Ranninger, and Robaszkiewicz (1990), who

addressed superconductors in the BEC-like or strong-attrac-
tion limit. In their approach, a local pairing scenario was
adopted, rather like treating a hard-core Bose gas on a lattice.
The emphasis was on clarifying the various alternative phases
that compete with superconductivity. Subsequently, the finite-
temperature theory of the NSR paper was followed by work
from Sá de Melo, Randeria, and Engelbrecht (1993), who
provided its functional-integral reformulation.
At around the same time and in collaboration with Trivedi

and Randeria (1995), Sá de Melo, Randeria, and Engelbrecht
presented a series of papers using quantum Monte Carlo
(QMC) simulation techniques to address normal-state features
of the attractive 2D Hubbard model. This was thought to be
relevant to high-temperature superconductivity and its anoma-
lous “pseudogap” phase. This phase corresponds to a “nor-
mal” state above Tc in which there is a gap for fermionic
excitations. Sá de Melo, Randeria, and Engelbrecht (1993)
presumed that the pseudogap was associated with pairing in
the absence of condensation.1

The onset temperature for such a normal-state gap is called
T�. Although there are a number of competing explanations,
understanding the origin of this pseudogap, which shows up in
thermodynamics and transport (Timusk and Statt, 1999), has
been a central focus in the cuprate field. We emphasize that the

FIG. 1. Contrasting behavior of the 3D s-wave BCS-BEC crossover phase diagram for (a) superconductors, as in the attractive
Hubbard model, and (b) Fermi gases with contact interactions and a free-particle dispersion. Note the contrasting behavior in the BEC
regime where Tc approaches either (a) zero or (b) a finite number. Also important is the ubiquitous dome shape in the solid-state system.
The minimum or shoulder in both Tc curves marks a transition to a different physical regime, as it corresponds to the onset of a bosonic
superfluid, with μ ¼ 0. We emphasize here that the crossover regime begins at the point where the two temperature scales T�
(corresponding to the opening of a pairing gap) and Tc become distinct. Microscopic units for the superconducting case are provided in
Fig. 12(a) in Sec. V.C.

1They noted that their particular numerics supported the inter-
pretation of the pseudogap (or equivalently a normal-state excitation
gap) as a “spin gap” in which the charge degrees of freedom did not
equally participate.
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pseudogap and the distinct temperature scales T� ≠ Tc both
play important roles in general BCS-BEC crossover physics
and are discussed throughout this review. They are also
depicted in the schematic comparison plot in Fig. 1.

B. BCS-BEC crossover in cold-atom experimental research

Because the cold-atom systems constitute ideal laboratories
for investigating the phenomena of BCS-BEC crossover
(albeit in a Fermi gas), it is useful next to summarize the
groundbreaking achievements beginning in around 2003,
when Fermi condensates in trapped atoms were first reported.
Condensation was observed initially (Greiner, Regal, and Jin,
2003; Jochim et al., 2003) at strong coupling in the BEC
regime (where μ < 0) and shortly thereafter (Regal, Greiner,
and Jin, 2004; Zwierlein et al., 2004) at intermediate coupling
(in a “unitary” gas, where the chemical potential was positive).
These experiments should be recognized by the solid-state
physics community as a true tour de force. Researchers
managed to surmount multiple challenges stemming from
the facts that the atomic gases are charge neutral, that they are
confined to inaccessible traps, and that there is no direct way
of measuring their temperature.
As a result, in the first few generations of experiments,

“proof” of superfluidity was established indirectly through
magnetic-field sweeps. These sweeps make use of a Feshbach
resonance to take a gas in the more fermionic regime and
quickly change the magnetic field, thereby projecting the
system onto the strong-pairing regime. In this limit, a
bimodality in the density profiles of the fermion pairs, with
a narrow central peak on top of a broad distribution, reveals
the presence of a condensate along with thermally excited
pairs. In the following year or two, subsequent experiments
made claims for superfluidity through measurements of the
specific heat (Kinast et al., 2005), and later it was definitively
established through direct observation of quantized vortices
(Zwierlein et al., 2005).
With increased understanding of these Fermi-gas super-

fluids, the community then focused on additional probes such
as transport (Sommer et al., 2011; Joseph, Elliott, and
Thomas, 2015) and additional complexities associated with
spin-imbalanced or polarized gases (Partridge et al., 2006;
Zwierlein et al., 2006) (much like superconductors in mag-
netic fields), as well as in optical lattices (Chin et al., 2006).
Along these lines, there were interesting accompanying
theoretical contributions (Chien, Chen et al., 2006;
Radzihovsky and Sheehy, 2010), as well as those that
contemplated even more exotic phases (for example, spin-
orbit coupled and topological phases) (He et al., 2013; J.
Zhang et al., 2014; Anderson et al., 2015; Wu et al., 2015a).
Also notable were the contrasts with solid-state superconduc-
tors centered around low viscosity or “perfect” fluids (Kovtun,
Son, and Starinets, 2005; Guo et al., 2011a) in the Fermi gases
and “bad metals” (Gunnarsson, Calandra, and Han, 2003; Guo
et al., 2011b) associated with highly resistive transport, as in
cuprate superconductors.
The collective contribution of the dedicated experimental

groups who met the challenge of finding and characterizing
these Fermi condensates deserves great respect. Among these
groups were Greiner, Regal, and Jin (2003), Regal, Greiner,
and Jin (2004), and Stewart, Gaebler, and Jin (2008);

Zwierlein et al. (2003, 2004); Jochim et al. (2003) and
Bartenstein et al. (2004); O’Hara et al. (2002) and Kinast
et al. (2004); Zhang, Sackett, and Hulet (1999) and Strecker,
Partridge, and Hulet (2003); and Bourdel et al. (2004).
Among the first to apply BCS-BEC crossover theory to cold

gases were Ohashi and Griffin (2002), who implemented the
theory of Nozières and Schmitt-Rink (1985). This was followed
by our work (Stajic et al., 2004), which, shortly before the 2003
discovery, called attention to the expected importance of a
pseudogap in these cold gases. This in turn helped motivate
experimental efforts beginning with early observations of
possible pseudogap signatures (Jochim et al., 2003) using rf
spectroscopy (Chin et al., 2004). Later research by Stewart,
Gaebler, and Jin (2008) introduced a rather ingenious analog of
angle-resolved photoemission spectroscopy (ARPES) to inves-
tigate the pseudogap in more detail. These experiments were
revisited more recently with some of the trap complications
removed using a so-called box trap, where pseudogap effects
appear to be more prominent (Li et al., 2024).
In addition to this focus on the pseudogap, substantial effort

was devoted to the unitary gas, which is intermediate between
BCS and BEC, where the scattering length becomes infinite.
Here precise numbers for thermodynamic features, variables
in the equation of state, and special interrelationships (Tan,
2008; Nascimbène et al., 2010; Ku et al., 2012) provided a
series of challenges to test the numerical accuracy of different
BCS-BEC crossover theories.

C. Hamiltonian and interpretation of the ground-state wave
function

All discussions of detailed theory are deferred to later
sections of the review, but for the purposes of an overview we
next introduce the underlying Hamiltonian. As in all super-
conductors, it is assumed that electrons are paired in the
superconducting phase. This pairing arises from an attractive
interaction. In strict BCS theory, pairing takes place only
between electrons with opposite momenta (k;−k). More
generally, in BCS-BEC crossover theory we consider pairings
between kþ q=2 and −kþ q=2, where the pair momentum q
can be arbitrary but generally is small (compared to kF). This
pairing physics is described by the following Hamiltonian:

H ¼
X
kσ

ϵka
†
kσakσ

þ
X
k;k0;q

Vkk0a†kþq=2↑a
†
−kþq=2↓a−k0þq=2↓ak0þq=2↑; ð2Þ

where a†kσ creates an electron in the momentum state k with
spin σ and ϵk is the kinetic-energy dispersion. We assume a
separable potential Vkk0 ¼ Uφkφk0 , where U ¼ −jUj is the
attractive coupling strength; the momentum-dependent func-
tion φk determines the symmetry of the order parameter. For a
contact potential or on-site interactions φk ¼ 1, whereas for d-
wave cuprate superconductors φk ¼ cos kx − cos ky. To avoid
this notational complexity here we drop φk in the forthcoming
equations and set the volume to unity in free space. Similarly,
we choose the lattice constant to be 1 for the lattice case.
In Eq. (2) we assume spin-singlet pairing, which is relevant

for both simple s-wave and d-wave superconductors. We do
not make any assumptions in this review about the origin or
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the detailed nature of the interaction, other than that it is
attractive. The energy dispersion ϵk can be associated with
either a lattice or a free gas. We generally consider only a one-
band model (with the exception of Sec. V.E, where band
topology plays a role), but this Hamiltonian can be extended to
include more bands and a finite range of interaction. For the
s-wave case on a lattice, the interaction Vkk0 in Eq. (2)
corresponds to an attractive Hubbard model with on-site
interactions. We have found that the effect of a finite range
is generally not qualitatively important in the context of BCS-
BEC crossover. In the d-wave case, Vkk0 is in general nonlocal
in real space and should be regarded as an approximation to
the actual pairing interaction in real materials.
Note that when we refer to a finite-q pairing, this does not

refer to condensed Larkin-Ovchinnikov (Larkin and
Ovchinnikov, 1965) or Fulde-Ferrell phases (Fulde and
Ferrell, 1964), but rather to noncondensed or thermally
excited pair states. These are to be distinguished from
condensed pairs having zero center-of-mass momentum.
We emphasize that BCS-BEC crossover deals with super-
conductors that have strong pairing or strong “glue.” This
characterizes the interaction term in the Hamiltonian, where it
is assumed that the pairing strength jUj is not small compared
to the kinetic energy. As a result of large jUj, pairing and
condensation will take place at different temperatures. In
particular, at the superconducting transition temperature Tc
there will be a finite number of noncondensed pairs present.
Note that H in Eq. (2) is a many-body Hamiltonian, and

there are many ways of solving it. In this review and as in the
literature (Leggett, 1980), we base our solution on a varia-
tional ground state of the BCS form that was presented in
Eq. (1). By contrast with strict BCS theory, we allow the
attractive interaction to be arbitrarily strong, assuming that this
does not change the generic form of the variational wave
function ΨBCS. We emphasize that ΨBCS is not an exact
solution of Eq. (2), but rather an approximation that presumes
that the system does not make large excursions from BCS
theory, no matter how strong the attraction is. Throughout this
review we adopt this version of BCS-BEC crossover theory.
Unless otherwise indicated, all equations that we present in the
review are based on this ground state and its finite-temperature
implications.
We emphasize that the advantage of this approach to BCS-

BEC crossover theory is that we are dealing with a known
ground state. This preserves the fundamental way that
superconductivity has come to be understood. Another
advantage of the BCS wave function is that these Cooper
pairs form an essentially ideal gas. One can see this from the
form of the BCS wave function of Eq. (1), which can be
rewritten as ΨBCS ∝ eb

†
0 j0i, with the composite bosonic

operator b†0 ¼
P

kðvk=ukÞa†k;↑a†−k;↓. Thus, this condensate
corresponds to a ground state containing bosons that
interact directly with the fermions and only indirectly with
each other (Combescot, Pogosov, and Betbeder-Matibet,
2013; Combescot, Combescot, and Dubin, 2017). This
makes for a simpler and more solvable many-body problem
(Richardson, 1963).
One could contemplate other ground states with a structure

different from the Gaussian-like ΨBCS, in which one has a

composite bosonic operator in the exponent that involves four
or more fermionic creation operators (Tan, 2008). Such
approaches can be viewed as more equivalent to a weakly
interacting theory of bosons: Bogoliubov theory. But a more
complicated theory such as this is not necessarily an improve-
ment, as Bogoliubov theory for bosons is known to be
inappropriate at temperatures near Tc, or even well above T ¼
0 but far below Tc, as it is strictly a low-temperature theory.
Nevertheless, the known weaknesses of the BCS-Leggett

approach should be clarified at this point. In particular, such
an approach leads to inaccuracies in numerical values of
thermodynamic parameters associated with the unitary gas.
One can attribute this in part to the approximate treatment of
the particle-hole channel for BCS-based theories, which focus
primarily on the particle-particle channel. This is evident
through the Bertsch parameter appearing as the ground-state
fermionic chemical potential ratio μ=EF of the unitary Fermi
gas. This is found experimentally (Ku et al., 2012) to be
around 0.37, whereas in the BCS ground state this parameter
is equal to 0.59 (Viverit et al., 2004).

D. Kadanoff and Martin interpretation: BCS theory as a Bose
condensation of electron pairs

Knowing the ground state still leaves the challenge of how
to introduce finite-temperature effects. At this stage, to gain
further physical insight into BCS-BEC crossover theory, it is
useful first to revisit an approach due to Schafroth (1955). Two
years before the BCS ground state of Eq. (1) was proposed,
Schafroth suggested a more expanded interpretation of super-
conductivity. He argued that superconductivity could be
thought of as being associated with Bose condensation of
an ideal charged Bose gas. While most in the community view
Schafroth’s scheme as appropriate to the extreme BEC, often
called the local pair limit, here we consider this approach to
fermionic superconductivity more generally for all systems
beyond the strict BCS limit.
Schafroth argued that condensation sets in at the transition

temperature Tc, where there are preformed electron pairs. The
expression for this temperature, which follows that of an ideal
Bose gas, is given by

Tc ¼
�
2π

C

�
n2=3B ðTcÞ
MBðTcÞ

; ð3Þ

where C ¼ ½ζð3=2Þ�2=3 with the Riemann zeta function
ζð3=2Þ ≈ 2.612. The parameters nB and MB represent the
3D number density and mass of the bosons. We view these as
yet unspecified bosons representing fermion-pair degrees of
freedom such that

nB ≡ npair; MB ≡Mpair: ð4Þ

Note that at the time of the BCS discovery there was some
resistance to Schafroth’s notion that this approach had any-
thing in common with BCS theory. The key point that
Schafroth emphasized is that there must be a form of Bose
condensation embedded in superconductivity theory and that
this boson inevitably involves a pair of electrons.
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Schafroth’s work introduced an important question: What
kind of out-of-condensate boson or preformed pair is in fact
compatible with BCS theory? The answer to this query would
allow us to compute the transition temperature after establish-
ing a precise meaning for npair andMpair. Presumably because
this work predated BCS theory, Schafroth did not ascribe any
complexity to these quantities, which we now think must
depend on both temperature and attractive interaction strength.
Because of the latter, we inevitably have to deal with BCS-
BEC crossover physics.
The challenge to quantitatively characterize these out-of-

condensate pairs at general temperatures T was met in an
important paper by Kadanoff and Martin (1961). Just as
Eagles (1969) and Leggett (1980) recognized the greater
generality of the BCS ground-state wave function, Kadanoff
and Martin provided key insights into the finite-temperature
physics of BCS theory. Their work was based on a systematic
study of the coupled equations of motion. This established
how to characterize the noncondensed pairs associated with
BCS theory (through their propagator or “t matrix”).
Kadanoff and Martin made an important observation that

related to the Schafroth picture. They stated, “Below [the
transition] temperature … a nonperturbative, stable solution
involving aBose condensation of pairs can be derivedwithin the
pair correlation approximation … which [approximation] is
identical with the one proposed by BCS … that the super-
conducting transition is a Bose condensation phenomenon
[was] originally proposed by Schafroth [and co-workers].”
From their work, one infers that the BCS gap equation can

be reinterpreted as a BEC condensation condition requiring
that the noncondensed pairs have zero chemical potential (that
is, they are gapless) at every T ≤ Tc. This Hugenholtz-Pines
constraint (Hugenholtz and Pines, 1959) is also a generali-
zation of the familiar Thouless condition (Thouless, 1960).
While in strict BCS theory all preformed pairs at the onset of
the superconducting transition should be viewed as virtual, it
is reasonable to presume that, once one enters the BCS-BEC
crossover regime, these noncondensed pairs are no longer
virtual, and their number and mass at general T can be
quantified according to the prescription of Kadanoff and
Martin.
The work that we summarize here should be differentiated

from other approaches to BCS-BEC crossover, such as those
of Nozières and Schmitt-Rink (1985), Sá de Melo, Randeria,
and Engelbrecht (1993), Ohashi and Griffin (2002), and
Pieri, Pisani, and Strinati (2004). Their finite-temperature
analysis was presumably designed to accommodate some of
the physics of bosonic Bogoliubov theory for the fermion
pairs. In the NSR picture, which involves more strongly
interacting composite bosons than would be associated with
a BCS-like ground state, the bosonic degrees of freedom
were described as follows (Nozières and Schmitt-Rink,
1985): “A bound pair [which] is a collective mode of the
superfluid … Tc thus results from thermal excitation of
collective modes.” Their scenario can be compared to other
work (Pieri and Strinati, 2005; Tan and Levin, 2006) that
addresses the extreme BEC regime and investigates the
nature of that fermionic ground-state wave function asso-
ciated with a composite-boson Bogoliubov picture (includ-
ing Lee-Huang-Yang corrections).

E. Mechanisms for driving BCS-BEC crossover

An important aim of this review is to communicate in
physical terms what BCS-BEC crossover is and what it is not.
More specifically, we ask the following questions: How do we
know when a superconductor is promoted out of the BCS
regime, and what are the typical mechanisms for promoting it?
It is useful to establish the variables that quantify the size of

the deviation from BCS. One of these, the ratio T�=Tc, has
already emerged. When this ratio exceeds unity the super-
conductor may no longer be in the BCS regime. Here, as
defined previously, T� corresponds to that temperature at
which a gap opens in the fermionic excitation spectrum, while
Tc corresponds to the temperature for fermion-pair conden-
sation. Strong pairing is not uniquely implied by large T�=Tc;
however, the converse is true. Notably there can be other
mechanisms for this spectral gap opening.
By contrast, the presence of a large ratio of the zero-

temperature gap to EF, Δ0=EF, is more unambiguously
suggestive of a system that has been promoted out of the
BCS regime. Finally, there is a third, equally important
parameter that quantifies the deviation from BCS theory.
This corresponds to the size of the Ginzburg-Landau (GL)
coherence length, which we define more precisely later in this
section. When this is anomalously small, the system is
presumed to be driven away from the BCS regime.
What, then, are the mechanisms that are responsible for

driving a superconductor out of the BCS regime and into the
BCS-BEC crossover regime? We identify three main mech-
anisms: low dimensionality, strong attraction, and low elec-
tronic energy scales.
We begin with the issue of low dimensionality, which is

known to naturally introduce distinct energy scales T� and
TBKT. Notably, as stated by Kosterlitz (2016), “The onset of
superconductivity in 2D … requires a pre-existing condensate
or pairing of electrons.” One can understand this by noting that
the underlying physical picture characterizing the onset of two-
dimensional superconductivity [or the Berezinskii-Kosterlitz-
Thouless (BKT) superconducting state (Berezinskii, 1972;
Kosterlitz and Thouless, 1973)] assumes the separation of
energy scales: phase coherence cannot occur until a pairing
amplitude is established.
An equally important aspect of superconductivity in two

dimensions is that there is a stronger tendency to pair. In
particular, in the low-density limit where there is a quadratic
band dispersion near the conduction band bottom, it follows
that there is no critical value of the pairing interaction that is
required to form two-body bound states. This is in contrast to
the situation in three dimensions. Hence, the “pairing glue” in
a 2D superconductor need not be anomalously strong to
promote the system into the BCS-BEC crossover regime.
These observations may explain why there are many 2D
examples in the recent BCS-BEC crossover literature.
Figure 2 provides a key summary of different mechanisms

for promoting a system out of the BCS regime. The figure
quantifies the values of the attractive interaction at which a
given 2D or 3D superconductor departs from BCS theory and
enters into the BCS-BEC crossover regime, as well as where it
enters into the BEC regime. Plotted on the vertical axis is
T�=Tc (or for the two-dimensional system T�=TBKT).
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The horizontal axis indicates the strength of the dimensionless
attractive interaction in units of a characteristic electronic
energy scale Ekin.
A key observation about this figure is that a relatively weak

attraction jUj=Ekin is needed to promote a 2D superconductor
as compared to a 3D superconductor out of the strict BCS
limit. The point of departure from the BCS regime is
associated with the point where T�=Tc slightly exceeds unity,
say, by 20%. Figure 2 is characteristic of the intermediate- and
low-carrier-density regimes. The corresponding crossover
values of jUj=Ekin are indicated in the figure by the solid
dots. This fraction can assume sufficiently large values as a
consequence of a strong pairing glue; i.e., it is associated with
anomalously large jUj. We might speculate that this stronger
pairing scenario applies, if at all, to the cuprate supercon-
ductors. But the ratio can also be large when the characteristic
electronic energy scales (called Ekin) become anomalously
small. This can occur through flat bands (because of a small
hopping integral, called t, or a small bandwidth) or through
low electronic densities (which reduce EF). We see in this
review that both two dimensionality and/or small electronic
energy scales are likely to be responsible for the many recent
observations of BCS-BEC crossover superconductivity.
The fact that there is no critical value of the pairing required

to form bound states in a moderately low-density 2D super-
conductor also serves to interpret the illustrations to the left of

the curves in Fig. 2. These are schematic representations of the
number of pairs (or pair density npair) in the 2D sheets or 3D
volumes at the onset of the transition. For the same fixed
attractive interaction, Fig. 2 emphasizes that in two dimen-
sions there is a significantly higher density of pairs at TBKT
than for the analog 3D system.
We end this discussion by referring back to the GL

coherence length and showing that it provides a quantifiable
measure of where a superconductor is within the BCS-BEC
crossover spectrum. This is based on a calculation of TBKT that
is similar to the Schafroth-like result in Eq. (3) but here for the
2D limit. This analysis is abbreviated here as a summary and
further discussed in Sec. V.
We approach the BKT state from the high-temperature side,

and thus will use the methodology advocated for by the cold-
atom community (Prokof’ev and Svistunov, 2002; Hadzibabic
et al., 2006; José, 2013), where in atomic Bose gases one finds
some of the most convincing evidence for a Kosterlitz-
Thouless state. Although originally much of this literature
was focused on BKT for bosonic superfluids, by extension to
fermionic superconductors and superfluids, one can deduce
that this transition temperature roughly scales as2

TBKT ∼
nBðTBKTÞ
MBðTBKTÞ

; ð5Þ

where again these as yet unspecified bosons with a 2D number
density nB and massMB represent pair degrees of freedom, as
defined in Eq. (4). Note that a fraction involving the same
temperature-dependent terms npairðTÞ andMpairðTÞ enters into
both the 2D and 3D expressions for the transition temperature.
Here the omitted prefactor represents a slightly more com-
plicated term that is discussed later in the context of Eq. (23).
These Schafroth-like expressions for the transition temper-

atures in two and three dimensions [Eqs. (3) and (5)] then
provide a simple expression for the important superconduct-
ing GL coherence length ξcoh0 ; this is given by
ℏ2=½2Mpairðξcoh0 Þ2� ¼ kBTc (Boyack et al., 2018, 2019), where
we have restored Planck’s constant ℏ and the Boltzmann
constant kB. As a result ξcoh0 depends only on the pair density
npair (presumed at the onset of the transition). Note that this
coherence length reveals the location of a given system within
the BCS-BEC crossover for the 2D case,

kFξcoh0 ∝ ðn=npairÞ1=2;
where kF reflects the total particle density n, and a similar
expression (with an exponent of 1=3) can be obtained in the
3D case as well. Since the number of pairs at Tc varies from
essentially 0 in the BCS limit to n=2 in the BEC case, this
provides a measure of where a given superconductor is within
the BCS-BEC crossover spectrum. This GL coherence length
(Suzuki and Hikita, 1991) has been widely discussed in the
recent literature on superconductivity (Nakagawa et al., 2021;
Park et al., 2021; Suzuki et al., 2022). It is accessible through
the response to a magnetic field. Because it has been measured

FIG. 2. Comparison of schematic phase diagrams in two and
three dimensions for an attractive Hubbard model, based on plots
of T�=Tc as a function of the dimensionless attractive interaction
jUj=Ekin. The onset of the departure from the BCS into the BCS-
BEC crossover regime is determined from the point where the
ratio T�=Tc slightly exceeds unity, as shown by the solid circles.
Thus, a relatively weaker attraction jUj=Ekin is sufficient to
promote a 2D superconductor out of the strict BCS limit, as
compared to a 3D superconductor. Reaching either of these onset
values for jUj=Ekin (the solid circles) can be achieved by
increasing the attraction jUj or decreasing the electronic energy
scales Ekin. Insets: schematic representations of the number of
pairs (or pair density) in the 2D sheets or 3D volumes at these
onsets. Also shown is the transition to the BEC regime, which is
indicated by open circles. For actual units on this figure, see the
inset in Fig. 12(a).

2The proportionality constant between TBKT and nB=MB in Eq. (5)
has an additional double-logarithmic dependence (Fisher and
Hohenberg, 1988) on nB, which is weak.
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in a large number of systems that are viewed as candidates for
BCS-BEC crossover, it is addressed in some detail in this
review.

II. OVERVIEW OF BCS-BEC CROSSOVER

A. Signatures of BCS-BEC crossover

Since the concept of BCS-BEC crossover is sometimes
interpreted in different ways in the literature, we emphasize
what we associate with the term crossover in this review. We
consider here solid-state superconductors (as distinct from
atomic Fermi gases) that are promoted out of the strict BCS
regime through moderately strong pairing interactions (or
through a combination of the mechanisms discussed in
Sec. I.E). These interactions in turn lead to emerging bosonic
degrees of freedom that coexist with a well-defined Fermi
surface. With ever-increasing interaction strength, the bosonic
component will eventually become dominant, leading to a
disappearance of the fermiology; here the system enters the
BEC regime. It is still an open question as to whether a BEC
phase (with its attendant low transition temperatures) has ever
been observed in a solid-state system. While some researchers
(Sous, He, and Kivelson, 2023; Chen et al., 2024) have
identified crossover with the onset of the BEC regime, in this
review we adhere to the conventional definition of BCS-BEC
crossover emphasizing the associated new and interesting
properties, which are distinct from those observed in either the
BCS or BEC regime.
There are a number of signatures of BCS-BEC crossover,

some of which we discussed in Sec. I and which we more
precisely quantify here. Many of these features can have
multiple interpretations. While the first three criteria in the
following list are necessary conditions, a conclusion in
support of the appropriateness of a BCS-BEC crossover for
a particular superconductor often comes from a preponderance
of evidence, rather than from any “smoking gun” single
signature on this list. One makes the following observations:

(1) Large values of the normalized zero-temperature
pairing gap Δ0=EF from ≈ 0.1 to 1.0.

(2) The presence of a normal-state gap (or pseudogap)
with an onset at T�=Tc ≳ 1.2.

(3) A moderately short coherence length that should be no
longer than kFξcoh0 ∼ 30.

(4) Enhanced superconducting fluctuation-like behavior,
particularly in the response to a magnetic field (such as
the Nernst effect and diamagnetic susceptibility), well
above Tc.

(5) A precursor downturn (Timusk and Statt, 1999;
Boyack et al., 2021) in the temperature dependence
of the resistivity around the gap onset temperature T�.

(6) The presence of bosonic (or pair) degrees of freedom
above the transition. The pairing gap and the bosonic
degrees of freedom are two sides of the same coin,
although the latter aspect is more difficult to identify.

(7) BCS mean-field-like relations that characterize the
ratio of the ground-state excitation gap Δ0 and the
pairing-onset temperature T�.

(8) Two distinct energy gaps. In contrast to strict BCS
theory, in the crossover regime the gap associated with

coherent superconducting phenomena that set in at Tc
is distinct from that associated with bosonic or pair
excitations, which appear in the vicinity of T�.

(9) Normal-state experimental observations such as shot
noise (Zhou et al., 2019), which are indications of 2e
charge carriers.

(10) The observation of BCS-like “back bending” (Kanigel
et al., 2008) of the electronic band dispersion in the
vicinity of but above Tc.

B. Analogies with an ideal Bose gas

What is essential is that the treatment of BCS-BEC
crossover, which we present here, be compatible with
generalized BCS physics, both in the ground state and at
all temperatures T ≤ Tc. Unlike in strict BCS theory, in the
crossover regime bosonic degrees of freedom or preformed
pairs are already present at the onset of condensation. Their
number progressively increases as the system evolves from
BCS to BEC. These normal-state pairs are associated with an
excitation gap (or pseudogap) in the fermionic spectrum, and
in BCS-BEC crossover this implies that ΔðTcÞ ≠ 0. The gap
size increases continuously starting at nearly 0 in the BCS
regime. The excited pair states involve a combination of two
fermions associated with momenta kþ q=2 and −kþ q=2,
where the pair momentum q is nonzero. Preformed pairs
are necessarily distinct from condensed pairs, for which
q ¼ 0.
To understand these preformed pairs we present a simple

figure based on a close analogy to an ideal Bose gas. The
upper row of Fig. 3 is a schematic representation of the
temperature evolution of a BCS-BEC crossover superfluid.
This shows that as temperature decreases below an onset
temperature T� a new form of quasiparticle or excitation
appears. These noncondensed pairs are represented by dashed
red circles. At the same temperature a pairing gap or
pseudogap is present, which reflects the fact that there must
be an input of energy to create fermionic excitations by
breaking pairs. As temperature further decreases to just above
Tc, the number of these preformed pairs increases. Note that
the figure shows that there are also a number of unpaired
fermions at the transition. The ratio of the boson to fermion
number continuously increases from BCS to BEC. In the BCS
limit the number of pairs at Tc is essentially 0, while in the
BEC limit this number approaches n=2.
Below Tc, condensed pairs (solid blue circles) appear. As

the temperature is further lowered, noncondensed pairs
gradually (and, at T ¼ 0, completely) convert to the con-
densate. There are no noncondensed pairs in the BCS-like
ground state. Note that strict BCS theory is the special case
where T� ¼ Tc and concomitantly where the number of
noncondensed bosons becomes arbitrarily small at any tem-
perature T. This signals that there is essentially no pairing-
related gap in the fermionic excitation spectrum at Tc.

C. Contrasting the present pair-fluctuation and
phase-fluctuation scenarios

We emphasize that this pair-fluctuation picture of BCS-
BEC crossover is not the same as the phase-fluctuation
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scenario (Emery and Kivelson, 1995). There are similarities,
but the contrast was stressed by Emery and Kivelson (Emery
and Kivelson, 1995), who described the phase-fluctuation
scenario as follows: “Our discussion attributes the properties
of high-temperature superconductors to the low superfluid
density … and not to a short in-plane coherence length and a
crossover to real-space pairing.”
The most significant differences would appear, then, to be

attached to the driving mechanisms (small superfluid density
versus strong attraction) behind the observed exotic normal
states, as well as the pair “size” or in-plane coherence length.
This can help researchers distinguish between the so-called
phase-fluctuation picture and BCS-BEC crossover. A small
coherence length or the observation of concomitant, moder-
ately large Δ0=EF similarly lends support to the crossover
scenario.
To compare these two scenarios, we return to Fig. 3. In the

figure, the pair-fluctuation or BCS-BEC crossover picture in
the upper panel is associated with a new type of paired
quasiparticle (excited pair states), whereas the phase-fluc-
tuation scenario in the lower panel relates to more collective
behavior. In this collective behavior, low carrier density is
associated with poor screening, which is then responsible for
small phase stiffness. As a further point of contrast, we
emphasize that all parameters pertaining to the fermionic
sector (Δ0, T�, etc.) are essentially absent in the phase-
fluctuation scenario, as this theory is an effective low-energy
description of the bosonic degrees of freedom once the
fermions are integrated out.
At the same time, the deep BEC limit of the BCS-BEC

crossover scenario, where the fermions are essentially absent
at Tc, will have features in common with the phase-fluctuation
scenario. Similarly, in two dimensions, where fluctuation
effects become more pronounced, the differences between
the two approaches become more subtle, despite the fact that
this bosonic regime is driven by strong pairing glue rather than
low carrier density. Finally, we emphasize that phase fluctua-
tions themselves will be present in the usually narrow critical
region of temperatures near Tc in all superconductors once
one includes the beyond-mean-field effects, which are not
addressed in this review.

D. Quantitative summary of the present theory

It should not be surprising that accompanying the two forms
of quasiparticles in the upper panel of Fig. 3 (in red and blue)
are two different forms of fermionic excitation gaps: ΔPG and
Δsc. These represent the contributions from noncondensed and
condensed pairs, respectively. Indeed, their squares will turn
out to be proportional to the number density of these two types
of pairs.
A more detailed theory (Chen et al., 2005) discussed in

Sec. III revealed that the gaps combine approximately in
quadrature in such a way as to yield the total, physically
measurable fermionic excitation gap called ΔðTÞ. Thus,

Δ2ðTÞ ¼ Δ2
scðTÞ þ Δ2

PGðTÞ: ð6Þ

In this way, the total number density of pairs, which is
proportional to Δ2ðTÞ, will determine the energy that must be
applied in order to excite the fermions.
A central consequence of this picture, as we later establish,

is that

Δ2ðTÞ ¼ Δ2
BCSðTÞ for T ≤ Tc; ð7Þ

where ΔBCS is the mean-field gap obtained in BCS theory. In
this way, in the ordered phase the total fermionic excitation
gap coincides with the results of strict mean-field BCS
theory.
As shown in Fig. 4, the two contributions to Δ2, called Δ2

PG
and Δ2

sc, play a similar role as their respective counterparts in
the ideal-Bose-gas scenario. The latter theory considers a
decomposition of the total number of bosonic particles NB in
terms of those deriving from the excited bosons Nexcited and
the condensed bosons Ncond. As a function of decreasing
temperature, the former convert into the latter, so there are no
excitations in the ground state. The temperature-dependent
quantity Ncond is established by evaluating the difference
NB − Nexcited.
In the crossover picture, as in an ideal Bose gas, the

condensate contribution Δ2
sc is obtained by subtracting the

FIG. 3. Comparison of the 3D BCS-BEC crossover and phase-fluctuation scenarios. Throughout, the closed blue circles, lone arrows,
and dashed red circles represent condensed fermion pairs, unpaired fermions, and finite-momentum pairs, respectively. The crossover
theory is distinguished by the presence of noncondensed pairs, whose center-of-mass momentum q ≠ 0, for nonzero temperatures below
T�. The defining feature of the phase-fluctuation picture is the presence of different phase domains above Tc, which are indicated by the
regions labeled with distinct phases Φi.

Chen et al.: When superconductivity crosses over: From BCS …

Rev. Mod. Phys., Vol. 96, No. 2, April–June 2024 025002-10



noncondensate piece Δ2
PG from the total Δ2, which is

approximated as Δ2
BCSðTÞ near but above Tc. This determines

Tc from the condition that the noncondensed contribution is
no longer sufficiently large to accommodate the full value of
the mean-field gap squared. Thus, there must be an additional
contribution from the condensate Δ2

sc.
In this way, one can not only directly derive the Schafroth

expression (Schafroth, 1955) shown in Eq. (3) but also write
this same equation in a more familiar way from the perspective
of BCS theory. In strict BCS theory, Tc is obtained from

1 ¼ ð−UÞ
X
k

1 − 2fðjξkjÞ
2jξkj

����
T¼Tc

; ð8Þ

where U < 0 and fðxÞ ¼ 1=ðex=T þ 1Þ is the Fermi-Dirac
distribution function. In Eq. (8) ξk ¼ ϵk − μ is the bare
fermion dispersion measured from the Fermi level. We later
see that, in the present BCS-BEC crossover theory, there is a
similar expression for the determination of Tc,

1 ¼ ð−UÞ
X
k

1 − 2fðẼkÞ
2Ẽk

����
T¼Tc

; ð9Þ

where Ẽk ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ Δ2ðTcÞ

p
.

Thus, the central change from strict BCS theory [aside from
a self-consistent readjustment of the fermionic chemical
potential (Leggett, 1980)] is that Tc is determined in the
presence of a finite excitation gap ΔðTcÞ. Solving for Tc

involves finding the point of separation between Δ2
PGðTÞ and

the mean-field gap Δ2
BCSðTÞ as a function of decreasing

temperature, as shown in the bottom panel of Fig. 4.
We now have two different equations, Eq. (9) and the

Schafroth expression in Eq. (3), both of which determine the
transition temperature in the BCS-BEC crossover theory; both
are intuitively reasonable. What is satisfying is to find that
these two equations are equivalent, provided that one properly
computes the number of pairs and their mass. Thus, this meets
the goal of connecting a Schafroth-like approach to a more
microscopic approach based on BCS theory. Schafroth’s
expression for Tc in this extended form is appropriate
throughout the crossover once the system has emerged from
the BCS limit such that ΔðTcÞ is no longer strictly zero.

E. Qualitative summary of BCS-BEC crossover

Before going into more technical details of the present
BCS-BEC crossover theory, as addressed in Sec. III, we now
consider some of the more obvious questions that can be
raised at this point. One of the first issues that arises is to
clarify what is generic about BCS-BEC crossover theories. We
note that BCS-BEC crossover theory belongs to the class of
theories of strong-coupling superconductors. While there are a
number of others in this class, what is essential is that this
particular form of strong-coupling superconductivity is driven
by charge 2e Cooper pairing. This differs from some of the
alternative types of strongly correlated superconductors:
spinon-holon pairing (Lee, Nagaosa, and Wen, 2006),
kinetic-energy-driven superconductivity (Leggett, 1996),
superconductivity strongly coupled to antiferromagnetism
[“SOð5Þ”] (Demler, Hanke, and Zhang, 2004), and fraction-
alized electron superconductivity (Senthil and Fisher, 2000).
Moreover, within the BCS-BEC crossover class there are a

number of variants, some of which are reviewed in Sec. II.F.
Generically a BCS-BEC crossover theory of superconductiv-
ity represents an interpolation scheme between weak- and
strong-coupling forms of 2e-pairing-governed superconduc-
tivity. In the weak-coupling limit the fermions within a pair are
loosely associated, whereas in the strong-coupling limit they
become tightly bound. Between the two extremes, there is
generally a smooth crossover. In all theories of the BEC
regime in a lattice, the fermionic chemical potential lies below
the bottom of the noninteracting conduction band. These
generic features are illustrated in Fig. 1(a), which indicates
how the transition temperature and pairing-onset temperatures
smoothly vary between the fermionic and bosonic regimes.
There are, however, a number of features that are not

generic in the family of BCS-BEC crossover theories. For
example, not all theories reproduce BCS theory in the weak-
coupling limit. Indeed, even the “BEC” limit has many

FIG. 4. Comparison of ideal-gas decomposition of the boson
number NB into condensed and excited contributions (upper
panel) with the analog decomposition for a fermionic superfluid
(lower panel) which involves the square of the pairing gapΔ2 as a
function of temperature T. TBEC

c and TBCS-BEC
c are the respective

transition temperatures. The two gap contributions to Δ2, called
Δ2

PG and Δ2
sc, are closely analogous to their counterparts in the

ideal Bose gas. Indicated schematically is how to arrive at the
transition temperature. This is associated with the intersection of
the “excited” curve with either the total boson number curve
(black line in the top panel) or the total Δ2 curve (black line in the
bottom panel), which marks the onset of the condensate con-
tribution.
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different interpretations. Some would argue that the BEC limit
should be that of a true weakly interacting Bose system.
Alternatively, in the present theory it is argued to be distinctly
different, as this state is characterized through its fermionic
properties even though a Fermi surface is no longer present. In
such a BEC limit the fermionic pairing-gap parameter is large
and temperature independent well above and below Tc.
Among other features that are not generic is the presence
in the intermediate-coupling regime of a pseudogap, which is
indicated in Fig. 1. This pseudogap appears in some crossover
theories (Strinati et al., 2018), but not in others (Haussmann,
Punk, and Zwerger, 2009; Morawetz, 2011).
More precisely the pseudogap corresponds to a gap in the

fermionic excitation spectrum, which has a smooth onset at
T� > Tc. The pseudogap that we consider here enters into the
theoretical framework as a distinct parameter ΔPG and is more
apparent (Levin et al., 2010); in other approaches (Strinati
et al., 2018) it is only indirectly seen to be present through the
behavior of the fermionic spectral function. This reflects the
fact that electrons are starting to pair up at T� and that
breaking the pairs in order to create fermions will cost a gap
energy. There is no true ordering or broken symmetry that
takes place at T�, only the onset of bosonic (pair) degrees of
freedom. Because of the pseudogap, superconductivity at Tc
will occur in the presence of a finite fermionic excitation
gap ΔðTcÞ.
Additionally, we argue that these pseudogap effects persist

below Tc, as they reflect the contribution of noncondensed
pairs that are continuously converting to the condensate as
temperature is lowered toward the ground state. Below Tc
there is the additional energy gap deriving from the order
parameter Δsc. It is often difficult to disentangle these two gap
parameters, which reflect the energies that must be input to
break the noncondensed and condensed pairs, and for many
purposes they contribute additively in quadrature. Note that
the pseudogap is not associated with superconducting coher-
ence and is not responsible for Meissner or Josephson effects.
More concretely, this energy gap appears in both the charge

and spin channels and, more generally, in thermodynamics
and transport, which is in many respects similar to the way the
below-Tc superconducting gap shows up in BCS theory. It
enters, however, as a slightly rounded or smeared gap structure
in normal-state tunneling and photoemission and leads to a
gentle onset of a decrease in entropy with decreasing T. Note
that the energy gap corresponds not to a true zero of the
fermionic spectral function but rather to a depression that
appears at energies around the chemical potential due to a
finite lifetime of the noncondensed pairs.
In this approach, to a good approximation [see Eqs. (16)

and (20)] the electron spectral function Aðω;kÞ depends on a
self-energy of the form (Maly, 1997; Chen, Levin, and
Kosztin, 2001)

Σðω;kÞ ¼ Δ2
PG

ωþ ξ−k þ iγ
þ Δ2

sc

ωþ ξ−k
; ð10Þ

which contains both gap parameters (here written for the
s-wave case). Note the presence of a phenomenological
parameter iγ, which reflects the fact that the noncondensed

pairs have a finite lifetime or are metastable. Its magnitude is
not particularly important. In the normal state this expression
is associated with a phenomenology widely used for the
cuprates and introduced by Norman et al. (1998) in their
analysis of ARPES data.
Additionally, the pseudogap can be detected indirectly

through bosonic contributions that emerge as a result of the
pairing of fermions; these are generally associated with
familiar fluctuation transport signatures, as seen in a downturn
in the dc resistivity around T�.
In this review we connect the BCS-BEC crossover scenario

to experiments. There is a challenge here because the
fundamental tuning parameter jUj of the BCS-BEC crossover
is not accessible. This is in contrast to the Fermi gases where
the interaction strength can be directly measured through a
scattering length. What is most important is that it can be
reasonably straightforward to replace the attractive interaction
parameter, which always appears in traditional BCS-BEC
crossover calculations on a lattice, in favor of measurable
variables. This imposes a requirement on lattice crossover
theories: a broad range of phenomena must be able to be
addressed, thereby enabling connections to multiple experi-
ments. The phenomena of interest involve parameters that
scale directly or inversely with jUj. These are T�=Tc, Δ0=EF,
and kFξcoh0 .
How to interpret experimental observations is the final

important issue we consider in this qualitative summary
section. In particular, one needs to determine whether there
are experimentally verifiable or falsifiable conditions sur-
rounding the applicability of BCS-BEC crossover. We identify
qualitative trends that are seen through important correlations.
These involve the fact that increases in Δ0=EF should be
associated with increases in T�=Tc, and that decreases in the
coherence length, through kFξcoh0 , should be correlated with
increases in T�=Tc. In this review these correlations are
represented in a more quantitative fashion by detailed predictive
curves. These are shown in Figs. 10, 12, 13, and 15 and, most
importantly, in Figs. 36 and 40. Related issues have come up in
experimental studies, as seen in Fig. 19. To address specific
experiments, these predicted associations have to be tested
carefully by changing an internal variable such as pressure or,
possibly, doping within the same superconducting family.

F. Other theoretical approaches: Addressing BCS-BEC
crossover on lattices

As emphasized in the Introduction, this review focuses
primarily on a theoretical approach to BCS-BEC crossover
based on the ground state of Eq. (1). Nevertheless, for
completeness it is useful to give an overview of some
alternative theoretical schemes in the literature that are
particularly relevant to solid-state systems.
We first note that there is significantly less literature on

BCS-BEC crossover theory in solid-state superconductors
than in Fermi gases. For these atomic systems this extensive
effort has largely been driven by experimental discoveries.
Review articles (Chien et al., 2010; Levin et al., 2010) are
available that summarized different variations of a t-matrix
approach to BCS-BEC crossover theory at finite temperature.
Key aspects of these comparisons are discussed in Sec. III.D,
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albeit with an emphasis on applications to solid-state systems.
Among the Fermi-gas reviews are those from our own group
(Chen et al., 2005), from Strinati et al. (2018), and from
Zwerger (2012). In addition, extensive overviews were given
by Randeria and Taylor (2014) and Bloch, Dalibard, and
Zwerger (2008). What has not been as thoroughly reviewed is
the next-generation research on crossover effects associated
with superconductors in the solid state. Notable is an overview
from Loktev, Quick, and Sharapov (2001), who covered early
work through 2001.
This section presents an overview of alternative theories of

crossover in the solid state. A key point to note here is that Tc
approaches zero in the extreme BEC limit. This has to do with
the fact that the hopping or kinetic degrees of freedom are
associated with the fermions. The “composite bosons” do not
directly hop on a lattice, even in the BEC regime, as a
consequence of the assumed form for the Hamiltonian in
Eq. (2). The depression of Tc in the BEC regime coincides
with the onset of negative μ or, equivalently, where μ falls
below the band bottom. Indeed, the transition to BEC can be
seen in Fig. 1 to correspond to the onset of shoulders.
The fact that Tc in a superconductor progressively

decreases with stronger coupling in the BEC regime was
pointed out by Nozières and Schmitt-Rink and is reasonably
straightforward to understand. The hopping of pairs requires
the individual hopping of fermions, and when two fermions
are tightly glued together this hopping is highly suppressed,
leading to the asymptotic behavior seen in Fig. 1(a). More
quantitatively, Nozières and Schmitt-Rink showed that this
suppressed hopping of pairs varies as t2=jUj, where t is the
fermionic hopping matrix element and jUj is the magnitude of
the attractive interaction.
The contributions of Nozières and Schmitt-Rink (1985) are

considered groundbreaking, and it is fitting that we discuss
their work early in this section. Nevertheless, they expressed
some reservations that should be noted, as they state that their
particular “continuum model… provides an accurate descrip-
tion of the two [BCS-BEC] limits but [leads to] a failure for a
lattice gas.” In hindsight, this is probably an unduly negative
assessment, but perhaps it bears on the rather small body of
literature applying NSR theory to solid-state superconductors.
Most of the canonical features in the lattice phase diagram,

such as those shown in Figs. 5(a)–5(c), including this t2=jUj

asymptote, can be obtained from different BCS-BEC cross-
over theories. These involve the t-matrix-approximation-
(TMA-) based approaches [of which there are three main
categories (Chien et al., 2010; Levin et al., 2010), as discussed
in Sec. III.D], dynamical mean-field theory (DMFT) (Georges
et al., 1996; Bauer and Hewson, 2009; Lin, Gull, and Millis,
2010; Koga and Werner, 2011; Kuchinskii, Kuleeva, and
Sadovskii, 2015, 2016; Peters and Bauer, 2015; Sakai et al.,
2015; Park and Choi, 2019), quantum Monte Carlo simu-
lations (Sewer, Zotos, and Beck, 2002), and the functional
renormalization group method (Strack, Gersch, and Metzner,
2008), as well as other techniques. Among these, the TMA
approach is principally analytical and thus provides more
intuition about the relevant physical processes behind the
crossover, making it the primary theoretical tool discussed in
this review.
We can understand why there is a smaller body of analytical

literature on lattice BCS-BEC crossover theories as compared
to the Fermi gases. This is due in part to the fact that many of
the sophisticated and insightful field theory techniques, such
as large-N and ϵ expansions (Nishida and Son, 2006, 2007a;
2007b; Nussinov and Nussinov, 2006; Nikolić and Sachdev,
2007; Veillette, Sheehy, and Radzihovsky, 2007; Abuki and
Brauner, 2008; Nishida and Son, 2010), are not directly
adaptable to lattice systems. In the following we summarize
some of the DMFT and QMC studies, highlighting a few
prototypical phase diagrams shown in Fig. 5, which reflect a
spectrum of different approaches in the literature. To begin, we
note that Sewer, Zotos, and Beck (2002) provided a useful
study of 3D comparative crossover approaches that yield the
phase diagrams shown in Fig. 5(c). These are in many ways
similar to their 2D analogs; see Fig. 5(b) for Monte Carlo–
based results.
DMFT studies of the attractive Hubbard model (addressing

either the ground state or the normal state) were presented by
Keller, Metzner, and Schollwöck (2001), Capone, Castellani,
and Grilli (2002), Garg, Krishnamurthy, and Randeria (2005),
and Bauer and Hewson (2009). Some representative phase
diagrams are presented in Fig. 5(a) (Koga and Werner, 2011).
In DMFT, the attractive Hubbard model is mapped to an
impurity problem on a lattice, which typically has a dimension
that is effectively infinite. In this infinite-dimension limit, the
fermionic self-energy associated with pairing becomes a

FIG. 5. Comparison of BCS-BEC crossover phase diagrams obtained from different theoretical approaches in the literature. All the
diagrams are for a local attractive Hubbard model with attraction strength jUj on a lattice. (a) Summary from Koga and Werner (2011) of
dynamical mean-field calculations. The energy units are the half bandwidth associated with a Bethe lattice, having an infinite
coordination number. (b) Quantum Monte Carlo result (Scalettar et al., 1989) for a 2D square lattice with a nearest-neighbor hopping t.
(c) Comparison of Tc calculated with different approaches in a 3D Hubbard model. (c) From Sewer, Zotos, and Beck, 2002.

Chen et al.: When superconductivity crosses over: From BCS …

Rev. Mod. Phys., Vol. 96, No. 2, April–June 2024 025002-13



function only of frequency. As a result, computing the self-
energy can be reduced to self-consistently solving a local
impurity problem, for which one can generally resort to
various numerical methods. The advantage of DMFT is that
it may capture local dynamical quantum fluctuations non-
perturbatively, which can be important for a quantitative
accounting of the quasiparticle spectral function at intermedi-
ate coupling (jUj on the order of the bandwidth). However,
DMFT is exact only in infinite dimensions because it ignores
both spatial fluctuations beyond mean-field level and dimen-
sional fluctuations. Therefore, the DMFT results need to be
interpreted with care when one makes a quantitative com-
parison to other approaches in three or two dimensions.
Keller, Metzner, and Schollwöck (2001) provided an

interesting DMFT study of the normal phase of the attractive
Hubbard model showing that it is a Fermi liquid at weak
coupling but consists of bound pairs and pseudogap physics at
strong coupling. Perhaps surprisingly, the crossover between
these two normal states may not be smooth at temperatures
lower than Tc when the superconductivity is suppressed.
There are indications at these low temperatures that, in this
form of DMFT, a first-order transition occurs in the attractive
Hubbard model between a thermally excited Fermi liquid state
and a thermally excited bound-pair state as the attraction
strength increases.
Figure 5(b) shows a Monte Carlo result for Tc or TBKT for

an attractive Hubbard model on a 2D square lattice with
nearest-neighbor hopping (Scalettar et al., 1989). At a generic
electron filling level, the overall shape of the TBKT vs jUj=t
curve is similar to its 3D counterpart, as shown in Fig. 5(c).
It is notable that, in two dimensions, it is more straightfor-

ward to arrive at a mean-field-level understanding of TBKT
varying from BCS to BEC (provided that the lattice is away
from half filling). An illustrative example (Denteneer, An, and
van Leeuwen, 1993) is based on calculations of the superfluid
density or helicity modulus where one treats crossover effects
at the mean-field level. This can be done either within the
attractive Hubbard model or within its repulsive counterpart,
which is obtained via a particle-hole transformation on the
bipartite lattice. The TBKT results calculated in this way are
similar to those shown in Fig. 5(b).
For completeness, it is useful to highlight some additional

literature contributions that address the physics of BCS-BEC
crossover for fermions on a lattice. Closely related to the NSR
theory (which has been mostly applied to the Fermi-gas state)
is work by Wallington and Annett (2000) and Quintanilla
et al. (2002), who studied lattice crossover theory using a
functional-integral formalism, including Gaussian fluctua-
tions. Their focus was on the effects of varying the symmetry
of the order parameter within the extended attractive Hubbard
model. Similarly, Tamaki, Ohashi, and Miyake (2008) also
addressed NSR theory on a lattice, by providing an interesting
comparison with other t-matrix theories.
It is also useful to summarize additional miscellaneous

references of interest. Zero-temperature approaches based
mainly on the BCS-like ground-state wave function in
Eq. (1) were addressed by Andrenacci et al. (1999),
Pistolesi and Nozières (2002), Herbut (2004), and Volcko
and Quader (2012). Similarly relevant to topics in this review
are observations about the contrast between s- and d-wave

superconductors (Loktev, Quick, and Sharapov, 2001), where
it was noted that in the d-wave case moderate densities and
large coupling suppress the BEC region of the phase diagram,
leading to a premature disappearance of the superfluid phase
deep inside the fermionic regime (Chen et al., 1999).
Finally, by way of a digest of the more analytical theories of

the crossover (for the gas as well as the lattice), we note that in
describing BCS-BEC crossover effects it is tempting to
introduce features of Bose superfluidity. As in Bogoliubov
theory, this includes more direct interaction effects between
bosons or pairs of fermions. One is saddled, however, with
theoretical obstacles, as finite-temperature effects are much
more difficult to include properly in Bose superfluids than in
the BCS (fermionic) case. In strict BCS theory the entire
temperature range is accessible, whereas in the Bose case one
is restricted to the low-temperature regime. As a consequence,
in many BCS-BEC crossover approaches one can encounter
unphysical effects that are inherited from problems in theories
of Bose gases (Reatto and Straley, 1969; Shi and Griffin,
1998). Among these are first order jumps in thermodynamic
properties at Tc and violations (Haussmann and Zwerger,
2008) of the Hugenholtz-Pines constraint (Hugenholtz and
Pines, 1959).

III. MICROSCOPIC THEORY OF 3D BCS-BEC
CROSSOVER SUPERCONDUCTIVITY AT T ≠ 0

Section II.D provided a reasonably complete summary of
results from the current formalism. In this section we present
additional details.

A. Characterizing the bosons embedded in BCS theory

Here we determine how to microscopically and quantita-
tively understand the noncondensed bosons of the BCS
approach using slightly different language (Chen et al.,
2005) than that of Kadanoff and Martin. We present the theory
for the s-wave case, while the application to d-wave super-
conductivity can be found elsewhere (Chen, 2000).We build on
a centrally important observation: at any temperature in which
there is a condensate, the noncondensed bosons that are in
equilibrium with the condensate must have a vanishing
chemical potential,

μpair ¼ 0 for T ≤ Tc: ð11Þ

This statement is equivalent to the famous Hugenholtz-Pines
theorem (Hugenholtz and Pines, 1959). How do we guarantee
that the pair chemical potential is zero? BCS provides us with
an important temperature-dependent self-consistency condi-
tion known as the gap equation that is valid for all T ≤ Tc. This
gap equation is given by

0 ¼ 1

U
þ
X
k

1 − 2fðEkÞ
2Ek

; ð12Þ

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ Δ2

p
and Δ is the temperature-dependent

pairing gap.
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We argue that Eq. (12) should be incorporated in one way or
another to arrive at an understanding of pair excitations. This
leads us to constrain the form of the pair propagator tðqÞ (or,
more precisely, the t matrix) for the noncondensed pairs to
satisfy

t−1ðq ¼ 0Þ ∝ μpair ¼ 0; T ≤ Tc: ð13Þ

Indeed, Thouless argued that a divergence of a sum of
“ladder” diagrams (within a pair propagator) is to be asso-
ciated with the BCS transition temperature. Here we assert that
this Thouless condition can be extended to characterize the
full temperature-dependent gap equation for all T ≤ Tc, not
just the transition region. This constraint leads to a pair
propagator of the form3

t−1ðqÞ ¼
X
k

GðkÞG0ðq − kÞ þ U−1; ð14Þ

whose diagrammatic representation is shown in Fig. 6. In
Eq. (14) G0ðkÞ¼ ðiωn−ξkÞ−1 and GðkÞ≡ ½G−1

0 ðkÞ−ΣðkÞ�−1,
corresponding to the bare and dressed fermion Green’s
functions, respectively, with ΣðkÞ ¼ −Δ2G0ð−kÞ. We define
k ¼ ðiωn;kÞ and q ¼ ðiΩl;qÞ as two four-vectors with ωn ¼
ð2nþ 1ÞπT and Ωl ¼ 2lπT, while

P
k is a shorthand notation

for T
P

n

P
k, with fn; lg∈Z.

It is important in Eq. (14) to properly define the fermionic
chemical potential4 μ. In this way one avoids unphysical
effects that stem from the asymmetric form of the t matrix of
BCS theory involving different spin states pertaining to
dressed and bare Green’s functions. If care is not taken, such
calculations may lead incorrectly to an artificial Fermi surface
mismatch between the two spin states, and thereby to regions
of unstable superconductivity in the phase diagram (Pini,
Pieri, and Strinati, 2019).
Kadanoff and Martin (1961) and Patton (1971) arrived at

the same conclusion concerning the presence of both dressed
and bare Green’s functions. As stated by Kadanoff and Martin,
“This asymmetry … has led several people to surmise that the
symmetrical equation … solved in the same approximation
would be more accurate. This surmise is not correct… .”

B. Determining the pair mass Mpair and the
noncondensed pair number density npair for T ≤ Tc

The fundamental quantities that determine the transition
temperature (Chen et al., 2005) in Eqs. (3) and (5) require that
we determine npair andMpair. We argue that both of these must
depend on the BCS gap Δ. In general t-matrix theories the
self-energy is given by a convolution between a Green’s
function and the t matrix. Here this self-energy due to
noncondensed pairs takes the form

ΣPGðkÞ ¼
X
q≠0

tðqÞG0ðq − kÞ: ð15Þ

Note that the q ¼ 0 component of tðqÞ (which corresponds to
the condensate) is necessarily excluded in the summation in
Eq. (15). To proceed further one adopts the so-called pseu-
dogap (PG) approximation. This was inspired originally by
detailed numerical work (Maly, Jankó, and Levin, 1999a,
1999b). We also emphasize that it is appropriate at all T below
Tc. It can also be applied to a restricted set of temperatures
near but slightly above the transition (Maly, Jankó, and Levin,
1999a, 1999b) where jμpairj is small. Since jμpairj ≈ 0, tðqÞ is
strongly peaked at about q ¼ 0 so that the self-energy can be
approximated by

ΣPGðkÞ ≈ −Δ2
PGG0ð−kÞ; ð16aÞ

with

Δ2
PG ¼ −

X
q≠0

tðqÞ; T ≲ Tc: ð16bÞ

We emphasize that Eqs. (16a) and (16b) constitute the central
approximation made [for numerical simplicity (Maly, Jankó,
and Levin, 1999a)] in the present theoretical framework. The
other crucial approximation is the adoption of Eq. (1) as the
essential starting point.
We are now in a position to compute the pair mass and

number density. After analytical continuation iΩl → Ωþ
i0þ, we expand the inverse tmatrix for small argument q to find

tðΩ; qÞ ¼ Z−1

Ω −Ωq þ μpair þ iΓΩ;q
; ð17Þ

where Z is a frequency- and momentum-independent propor-
tionality coefficient; the pair mass is contained in the pair
dispersion5 Ωq ¼ q2=2Mpair; the last term in the denominator
iΓΩ;q is frequency dependent and describes the finite lifetime of
the noncondensed pairs due to decay into the two-fermion
continuum. Defining the propagator for the noncondensed pairs
as ZtðΩ;qÞ and neglecting the generally small dissipative term
iΓΩ;q, one can obtain the noncondensed pair density as

FIG. 6. Pair propagator, where U is the attractive interaction and
G0 and G are the bare and dressed fermion Green’s functions,
respectively, as given by Kadanoff and Martin (1961).

3A more systematic and first principles derivation of this t matrix
can be found using Eqs. (2.3), (2.4), (2.7), (2.8), ð2.70Þ, ð2.80Þ, and
(2.10) of Kadanoff and Martin (1961).

4To be consistent, this requires setting ReΣðkμÞ ¼ 0 so that
Hartree-like terms in the diagonal part of the self-energy are absorbed
into the chemical potential. Here kμ is a wave vector on the Fermi
surface.

5In the quasi-2D case, one can expand the pair dispersion as
Ωq ¼ q2

k=2Mpair;k þ q2⊥=2Mpair;⊥, where the subscripts k and ⊥
denote in-plane and out-of-plane components, respectively. Away
from the long-wavelength limit on a lattice, one can use a Bloch band
dispersion instead of a simple parabola. An Ω2 term may be added to
the expansion of t−1ðqÞ for better quantitative accuracy.
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npair ¼
X
q

bðΩqÞ ¼ ZΔ2
PG; ð18Þ

which is naturally temperature dependent. In Eq. (18), bðxÞ ¼
1=ðex=T − 1Þ is the Bose-Einstein distribution function.
We have asserted that the total fermionic gap is given by

Δ2 ¼ Δ2
sc þ Δ2

PG. To complete the arguments, we now show
that this derives from the following two self-energy contri-
butions [from the condensate (sc) and the noncondensate
(PG)]:

ΣðkÞ ¼
X
q

tðqÞG0ð−kþ qÞ ¼ ΣscðkÞ þ ΣPGðkÞ: ð19Þ

In Eq. (19), Σsc comes from the Dirac delta function piece of
tðqÞ at q ¼ 0, i.e., tsc ≡ tðq ¼ 0Þ ¼ −ðΔ2

sc=TÞδðqÞ. Using
Eq. (16a), we then obtain

ΣðkÞ ≈ −ðΔ2
sc þ Δ2

PGÞG0ð−kÞ≡ −Δ2G0ð−kÞ: ð20Þ

In this way, Eq. (6) results and we have Δ2 ¼ Δ2
sc þ Δ2

PG.

C. Establishing the form of Tc

We approach Tc from high temperatures, where Δ2
PG ¼ Δ2

and μpair < 0. As T decreases, μpair increases, and Eq. (18) will
be satisfied under the condition Δ2

PG ¼ Δ2 at T ≥ Tc. The
transition temperature Tc is reached when this is no longer
possible; below this temperatureΔ2

PG cannot accommodate the
value of Δ2, so an additional contribution Δ2

sc is needed. This
occurs when μpair, as a function of decreasing T, first reaches
zero in Eq. (18), from which one recovers the following
Schafroth-like expression for Tc:

Tc ¼
�
2π

C

�
n2=3pairðTcÞ
MpairðTcÞ

; ð21Þ

as was anticipated in Eq. (3). While it was not recognized in
the original Schafroth calculations, on the right-hand side of
Eq. (21) both npair and Mpair depend on Δ2 and are therefore
functions of T. Below Tc, Eq. (18) holds for noncondensed
pairs with μpair ¼ 0 and Δ2

PG < Δ2. Here the total pair density
can be deduced to be ntotalpair ¼ ZΔ2.

D. Alternative t-matrix approaches to BCS-BEC crossover

From Fig. 6 or, equivalently, Eq. (14) one can see that,
within the BCS ground-state-based t-matrix approach to BCS-
BEC crossover, an asymmetric combination of dressed (G)
and bare (G0) Green’s functions enters the definition of the t
matrix or pair propagator. As noted earlier, the connection
between this combination and BCS theory was first identified
by Kadanoff and Martin (1961), who used an equation of
motion approach. However, in general one could contemplate
other combinations of G and G0 in defining the t matrix.
Except for the particular combination shown in Fig. 6, the
related ground states are not as well understood (Diener,
Sensarma, and Randeria, 2008).

The NSR scheme is associated with two bare Green’s
functions. The self-consistent t-matrix approximation
(SCTA), associated with two dressed Green’s functions,
was discussed by Haussmann (1993) and Haussmann et al.
(2007) in applications to the Fermi gases, and even earlier in
the context of the cuprates (Micnas et al., 1995;
Tchernyshyov, 1997; Allen and Tremblay, 2001). It is also
known as the Luttinger-Ward formalism (Haussmann, Punk,
and Zwerger, 2009) or Galitskii-Feynman theory (Šopík et al.,
2011). This Φ-derivable theory possesses an appealing sim-
plicity, as it readily satisfies conservation laws. However, this
t-matrix theory will not satisfy the equations of motion, such
as those derived by Kadanoff and Martin (1961), as prescribed
by the Hamiltonian.
Comparisons among these different t-matrix schemes have

been extensively discussed in the literature (Levin et al.,
2010). Here we give a critical summary, noting that it is useful
to first discuss the comparisons in the context of Fermi gases
and then turn to the lattice case. While the differences among
different schemes might seem to be technical and therefore
possibly minor, they have led to significantly different
qualitative physics. Among these is the fact that the transition
at Tc is first order (Pieri, Pisani, and Strinati, 2004; Fukushima
et al., 2007; Haussmann et al., 2007; Hu, Drummond, and
Liu, 2007) in the standard NSR-based approaches, as well as
in the SCTA scheme. This leads to unwanted features in the
Fermi-gas density profiles (Perali et al., 2004) and temper-
ature dependence of the superfluid density (Fukushima
et al., 2007).
Serene (1989) and Sofo and Balseiro (1992) addressed

other problematic aspects regarding the NSR approach. Of
additional concern in the SCTA scheme is the failure to
satisfy the Hugenholtz-Pines gapless condition (Haussmann
and Zwerger, 2008). In this context it was also noted by
Haussmann, Punk, and Zwerger (2009) that “a simple
pseudogap ansatz for the spectral function (Norman et al.,
1998) is not consistent with our results… we do not observe
a strong suppression of the spectral weight near the
chemical potential.” More generally there is some contro-
versy in the Fermi-gas literature (Tchernyshyov, 1997;
Morawetz, 2011; Šopík et al., 2011; Zwerger, 2012) about
the presence or absence of a (pseudo)gap in this SCTA
approach. In the same vein, we note that the principal
weakness of the BCS-Leggett approach is that it focuses on
the pairing channel while embedding all Hartree-like effects
in an effective chemical potential. This leads to numerical
discrepancies of some significance, particularly for the
unitary Fermi gas.
In the lattice case an on-site attractive Hubbard Hamiltonian

provides a prototypical model for studying BCS-BEC cross-
over in the literature. While in many ways t-matrix schemes
involving all fully dressed Green’s functions (Deisz, Hess, and
Serene, 1998; Engelbrecht, Zhao, and Nazarenko, 2002;
Tamaki, Ohashi, and Miyake, 2008) would seem to be more
complete, in this model the nature of the (pseudo)gap and
whether it exists both above and below Tc continues to be
debated in the lattice context as well (Micnas et al., 1995;
Tchernyshyov, 1997; Moukouri et al., 2000; Allen and
Tremblay, 2001; Tremblay, Kyung, and Sénéchal, 2006).
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Indeed, a relatively complete study of the associated excitation
spectrum for a conserving SCTA formalism showed multiple,
complex excitation branches (Micnas et al., 1995).
Tamaki, Ohashi, and Miyake (2008) presented comparative

Tc calculations for SCTA schemes along with the NSR
approach and with DMFT. Here one sees that the transition
temperatures in the NSR scheme are significantly higher
(particularly in the asymptotic regime at large jUj). This is
attributed to the fact that this approach may tend to under-
estimate the effects of an indirect repulsion between fermion
pairs. All t-matrix approaches, in some sense, ignore the
effects of direct interpair repulsion (Micnas, Ranninger, and
Robaszkiewicz, 1990), but indirect effects appear via inter-
actions with the fermions. These observations may bear on
Haussmann’s observation (Haussmann, 1994) that the
approach to the BEC asymptote in the Fermi-gas case should
be from below and not above in a T-U phase diagram, as
found by NSR.

IV. QUANTITATIVE IMPLICATIONS FOR 3D CROSSOVER
SUPERCONDUCTORS

A. Two-gap physics present in BCS-BEC crossover

One should understand the necessity of having two distinct
energy gaps in BCS-BEC crossover physics. These were
illustrated in Fig. 4. The recognition of these two distinct gaps
is an issue that bears on some of the interesting candidate
materials that are claimed to exhibit BCS-BEC crossover, as
we discuss in this review.
One of the central ways inwhich these two-gap contributions

are manifested has to do with the distinction between two
classes of experiments: those associated with phenomena that
reflect superfluid coherence and those that reflect an excitation
or pairing gap. The superfluid density ns (Chen et al., 1998;
Chen, 2000) provides a useful example, as it necessarily
vanishes when coherence is destroyed or, equivalently, when
Δsc ¼ 0. Notably, however, it also depends on the total
fermionic excitation gapΔ through the quasiparticle energyEk,

ns
m

¼ 2

3

X
k

�
∂ξk
∂k

�
2 Δ2

sc

E2
k

�
1 − 2fðEkÞ

2Ek
þ ∂fðEkÞ

∂Ek

�
; ð22Þ

which is written here for an isotropic s-wave superconductor in
three dimensions with fermion mass m.
Similarly, it has been argued that Andreev scattering

appears to measure the gap associated with the order param-
eter, as opposed to conventional quasiparticle tunneling,
which measures the full pairing gap Δ. This has been
recognized for the cuprates (Deutscher, 2005) and more
recently for twisted bilayer graphene (Oh et al., 2021).
We emphasize the fact that, even though the bosonic degrees

of freedom may be viewed as “quasi-ideal” within this gener-
alizedBCS framework, in contrast to an ideal Bose gas, this does
not compromise the existence of stable superfluidity.
Superconductivity is stable in this framework, as it is to be
associated with the underlying fermionic degrees of freedom.
This analysis of the superfluid density provides a general

template for other experiments that reflect true long-range
order in a superconductor. Its low-T behavior has often been

used to distinguish between superconductors of different
pairing symmetries, such as s-wave versus d-wave super-
conductors. We end by noting that this intrinsic two-gap
behavior appears to have no natural counterpart in other
preformed-pair scenarios (such as the phase-fluctuation
approach) for the pseudogap.

B. Contrasting BCS-BEC crossover in s- and d-wave
superconductors

A crucial feature of BCS-BEC crossover in superconduc-
tors (in either two or three dimensions) to be emphasized
throughout this review is that the canonical plots of the phase
diagram (based on Fermi gases) do not capture the physics of
superconductivity in the solid state. For the latter, as shown in
Fig. 1(a), one finds that Tc follows a superconducting dome as
a function of variable interaction strength within the fermionic
regime. Thus, one should not infer, as is often the case, that for
solid-state superconductors in the BEC there is a large and
maximal transition temperature.
Figure 7 provides further quantitative details on the key

energy scale parameters that enter BCS-BEC crossover for the
s-wave lattice case in Fig. 1(a). Figure 7 indicates the behavior
of Δ and μ at Tc in units of a characteristic electronic scale (in
this case corresponding to the half bandwidth). These energies
are plotted as a function of varying attractive interaction
strength, normalized to the half bandwidthW ¼ 6t, where t is
the hopping matrix element. Also plotted is the important
parameter npair, which corresponds to the number density of
pairs at the onset of the transition [normalized by n=2, as
determined from Eq. (18)].
In particular, one can glean from the plot of npair that the

BEC or μ ¼ 0 transition is associated with the absence of
fermions so that only pairs are present (npair ¼ n=2). More
generally one can view the function npair as a kind of
theoretical “dial” indicating approximately where a given
system is within the crossover. Tuning the dial provides access
to the counterpart values of μ and Δ at Tc. When npair is
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FIG. 7. Quantitative values of the parameters μ, Δ, and the
number of pairs npair at Tc for the s-wave BCS-BEC crossover
superconductor on a 3D cubic lattice in Fig. 1(a) as a function of the
attractive interaction U (normalized by the half bandwidth
W ¼ 6t). Here the electron density is n ¼ 0.1 per unit cell. The
normal-state electronic energy dispersion is ϵk ¼ 2tð3 − cos kx−
cos ky − cos kzÞ, where the lattice constant a has been set to unity.
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essentially zero this corresponds to the BCS case, and when
npair ≈ n=2 one enters the BEC regime.
The crossover behavior for a d-wave superconductor is

generally different (Chen et al., 1999); some aspects are
discussed in Appendix B. For definiteness, we consider here
the symmetry to be of the form dx2−y2 , which is relevant to the
cuprate superconductors. The central contrasting feature is the
termination of d-wave superconductivity well before the BEC
regime is entered. This is found at all but extremely low
electron densities and derives principally from the fact that d-
wave pairs have a more extended size. As a result, a pair-pair
repulsive interaction that is always present (Micnas,
Ranninger, and Robaszkiewicz, 1990) is sufficiently strong
to inhibit pair hopping, and pairs become localized. Note that
this happens in the fermionic regime, well away from where
μ < 0. Consequently, in the d-wave case, the BEC limit
cannot generally be accessed (Chen et al., 1999), as illustrated
in Fig. 8.
What this implies more concretely is that the d-wave system

undergoes a transition at moderately strong attraction, where
Tc → 0. Here superconductivity continuously disappears,
albeit in the presence of a finite pairing gap Δ or finite T�.
This has features that are suggestive of the widely discussed
“Cooper-pair insulator” (Hebard and Paalanen, 1990;

Paalanen, Hebard, and Ruel, 1992; Hollen et al., 2011) or
a pair density wave alternative (Che, Wang, and Chen, 2016;
Chen, Wang et al., 2020; Sun and Chen, 2022; Sun et al.,
2022). But the form of pair localization considered here
pertains to a clean system and represents a different mecha-
nism, derived from strong intrapair attraction and strong
interpair repulsion, that inhibits pair hopping. This same
localization has also been observed in cases where the band
filling is high in s-wave superconductors, as well as in 2D
systems. In these instances it provides an interesting com-
parison but is not to be associated with strong disorder effects,
which are known to drive a superconductor-insulator tran-
sition in superconducting films (Fisher, 1990; Hebard and
Paalanen, 1990; Paalanen, Hebard, and Ruel, 1992; Yazdani
and Kapitulnik, 1995).
Figure 9 provides more quantitative details on the character-

istic energy scale parameters that enter BCS-BEC crossover
for this d-wave lattice case (Chen et al., 1999). Plotted in the
figure is the behavior of Δ and μ at Tc as a function of varying
attractive interaction. Also indicated is the number of pairs
npair [derived from Eq. (18)] at the onset of the transition.

C. The interplay of conventional fluctuations and BCS-BEC
crossover physics: Normal-state transport

The question as to how conventional superconducting
fluctuations relate to BCS-BEC crossover physics continues
to be raised in the literature. In this regard it is interesting to
note that the treatment of preformed pairs presented here is
closely related to self-consistent theories of fluctuation super-
conductivity. In particular, it represents a natural extension to
arbitrarily strong attraction of time-dependent Ginzburg-
Landau-based transport theory (Ullah and Dorsey, 1991)
when the quartic terms in this free-energy expansion are
treated in a self-consistent Hartree-level approximation
(Patton, 1971; Ullah and Dorsey, 1991; Stajic et al., 2003;
Tan and Levin, 2004). This observation suggests that there is a
continuous variation, associated with an enhancement of

FIG. 8. BCS-BEC crossover phase diagram for a d-wave
superconductor. This is for an attractive Hubbard-like interaction
Vk;k0 ¼ Uφkφk0 , where the momentum-dependent function φk

possesses a dx2−y2 symmetry. This system (near half filling) has
vanishing Tc before the onset of the BEC regime. This behavior
persists down to n ≃ 0.1. We can compare this scenario with the
schematic s-wave case in Fig. 1(a). For s-wave symmetry the
BEC regime is in principle accessible up to around a quarter
filling. Actual units for the vertical and horizontal axes can be
found in Fig. 37, which corresponds to a slightly modified band
structure that is specific to the cuprates. From Chen et al., 1999.
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FIG. 9. Quantitative values of the parameters μ and Δ and the
number density of pairs npair at Tc for the quasi-2D d-wave BCS-
BEC crossover superconductor in Fig. 8 as a function of the
attractive interaction (normalized again by the half bandwidthW).
The normal-state kinetic-energy dispersion is ϵk ¼ ð4tþ 2tzÞ−
2tðcos kx þ cos kyÞ − 2tz cos kz, with tz=t ¼ 0.01. The electron
density is n ¼ 0.85 per unit cell.
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many transport fluctuation signatures, as the coupling varies
from weak to strong.
To address these issues more quantitatively, we note that

dominating transport in these more strongly correlated super-
conductors (Boyack et al., 2018, 2019, 2021) is the fact that
there are now two distinct temperature scales that control
“fluctuation” effects: Tc and T�. Transport is additionally
complicated by the fact that there are two types of quasipar-
ticles: fermions that experience the gap onset at T�, where they
thus generally become less conducting, and bosons whose
presence is expected to increase conductivity at temperatures
somewhat below T�. These two types of quasiparticles are
schematically represented in the upper row of Fig. 3.
The fermionic contribution has been discussed (Wulin and

Levin, 2012; Wulin et al., 2012) in some detail both above and
below Tc. The more familiar fluctuation contributions to
bosonic transport derive from the Aslamazov-Larkin
(Aslamazov and Larkin, 1968) diagrams and are associated
with a small pair chemical potential μpairðTÞ that is found in the
immediate vicinity ofTc. In conventional superconductors, μpair
depends only on Tc, but in the presence of more stable
preformed pairs one expects that T� will play an important
role. It is at this higher temperature that the pair density
vanishes; consequently, fluctuation effects are expected to have
a presence even at temperatures as high as T�.
The previous discussion leads one to conclude that, for

more strongly coupled superconductors, the nature of fluc-
tuation effects associated with T� in transport requires that one
establish the relative size of the contributions from the
fermionic and bosonic channels; as we have seen, these
two channels generally introduce opposite temperature
dependencies in their conduction properties. Their relative
size depends on their relative scattering times.
Central to this comparison is the fact that the resistivity

downturn, a canonical signature of the pseudogap onset at T�,
is frequently associated with the concomitant and rather
ubiquitous large normal-state resistivity. This bad-metal behav-
ior (Gunnarsson, Calandra, andHan, 2003; Boyack et al., 2021)
reflects a suppressed fermionic conduction channel. Note that
bad metallicity allows the bosonic conducting channel to
become more prominent and leads to a boson-related downturn
near T� in the resistivity that would otherwise be obscured by
gap effects in the fermionic spectrum.
We see later in the review examples of transport signatures

that are viewed as indicative of the presence of BCS-BEC
crossover physics. In addition to a resistivity downturn, these
include enhanced diamagnetism and Nernst signatures, albeit
not all uniquely pointing to a BCS-BEC crossover scenario.

D. Relation between BCS-BEC crossover and the Uemura plots

In an interesting series of papers, Uemura et al. (1989,
1997) used muon-spin resonance (μSR) experiments to
establish a classification scheme for superconducting materi-
als. This classification, in effect, distinguishes so-called exotic
superconductors from conventional superconductors. The
μSR relaxation rates in these experiments effectively measure
the London penetration depth, which in turn reflects the ratio
of the number of superfluid electrons ns to their effective
mass m. Notably at sufficiently low temperatures these same

two quantities help one to determine an effective Fermi
temperature.
Uemura used this analysis to suggest that “unconventional”

superconductors are characterized by the proportionality
Tc ∝ TF, where TF ¼ EF=kB is the Fermi temperature. This
observation, which follows from plots of the transition
temperature versus muon-spin relaxation rate, has led many
to believe that a dependence on a single parameter TF is
suggestive of a Bose-condensation description of exotic
superconductors. Underlying this inference is the behavior
of the Fermi-gas phase diagram, as shown in Fig. 1(b), where
the asymptotic BEC value of Tc is given by Tc ≡ TBEC ¼
0.218TF in three dimensions.
In Uemura’s analysis it seems that there is a large number of

superconductors belonging to the unconventional category,
although one should not presume that all of these are
associated with Bose condensation or BCS-BEC crossover.
While focusing on a smaller subset of just the high-temper-
ature superconductors, Tallon et al. (2003) argued for an
interesting and modified version of the Uemura scheme that
plots the ratio Tc=Δ0 vs TF, thereby introducing a second
energy scale Δ0, which reflects T�. Figure 10 shows the
resulting universal scaling of the cuprate data. The solid black
line represents the d-wave BCS-BEC crossover theory at
moderate band filling, as previously discussed.
Such an analysis emphasizes that for an arbitrary super-

conductor, more relevant for establishing that a crossover
picture is applicable is showing the presence of distinct energy
scales T� and Tc. This is a necessary although insufficient
requirement. In the crossover scenario a moderately large
value for Δ0=EF must simultaneously be present. In this way
the Uemura plots have elucidated a useful classification
scheme, but we stress that one should be cautious about
inferring too strong a connection to BCS-BEC crossover.

FIG. 10. Replot of results from Tallon et al. (2003) suggesting
a modification of the Uemura plot in which Tc depends not only
on TF but also on T�. This replotting yields a simple, complete
scaling of cuprate transition temperatures for different hole
concentrations. A BCS-BEC crossover theory curve (solid
black line) for the quasi-2D d-wave case (Chen et al., 1999)
is included. Legend: La214, La2−xSrxCuO4; Bi2212,
Bi2Sr2CaCu2O8þδ; Y123, Y0.8Ca0.2Ba2Cu3O7−δ. The dashed
line (labeled Uemura) corresponds to Tc ¼ 0.03TF.
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Thus, in this review it is useful to show how to arrive at a
more discriminating procedure that was inspired to some
extent by Fig. 10. We do so here, focusing on 2D super-
conductors in the form of plots of Δ0=EF vs T�=TBKT. To
begin, however, one has to have a better understanding of 2D
superconductivity.

V. BCS-BEC CROSSOVER PHYSICS IN THE 2D LIMIT

A. Overview of 2D theory

In two dimensions there is no true condensation with off-
diagonal long-range order. More quantitatively, in the lan-
guage of a t-matrix approach to BCS-BEC crossover, the
chemical potential for pairs μpair never reaches zero; this is
effectively a consequence of the Thouless criterion, which
provides a constraint on the t matrix. A subtle issue that is
pertinent here and in the following discussion is that a
fermionic system in either two or three dimensions involves
in some sense noninteracting bosons, but these noninteract-
ing pairs nevertheless support superconductivity only
because they interact indirectly through their underlying
fermionic nature.
In this review we build on the cold-atom literature to

address the BKT phase transition (Berezinskii, 1972;
Kosterlitz and Thouless, 1973). This focuses on the approach
from the high-temperature side and on bosonic degrees of
freedom or bosonic “quasicondensation” (associated with
algebraic rather than long-range order). This transition can
be equivalently described as the onset of vortex-pair binding
and unbinding as in the original BKT papers; in the latter
context the role of superfluid phase stiffness is more apparent.
From the quasicondensation perspective, the BKT transi-

tion occurs when the de Broglie wavelength is large and
comparable to the interpair separation, similar to a BEC
transition in three dimensions. More precisely, this transition
arises when the temperature-dependent bosonic phase-space
density reaches a critical value as was independently estab-
lished in well-known papers by Fisher and Hohenberg (1988)
and Popov (2001). This leads to

TBKT ¼
�

2π

Dcrit
pair

�
npairðTBKTÞ
MpairðTBKTÞ

; ð23Þ

where Dcrit
pair is the critical phase-space density, which is

essentially a constant and is specified later in the review.
Note that in Eq. (23) we have replaced the number density and
mass of true bosons appearing in the standard expression
[Eq. (5)] with their counterpart values for a composite-boson
(or fermion-pair) system. In this way we see that the pair
density and pair mass play a role similar to that in the 3D
superfluid transition in Eq. (21).
Note that, since npairðTÞ is temperature dependent and

disappears at T�, there is a significant difference between
BKT behavior in Bose and Fermi superfluids. That is, the
latter will be implicitly dependent on the two distinct
temperature scales T� and TBKT. Since TBKT ≤ T�, the
physical implications of these two scales become apparent

only when one studies the BKT transition, as we do here, by
approaching the transition from the normal state.
The most detailed numerical analysis of 2D atomic-gas

condensates focuses on the Bose gas in the weakly interacting
limit and provides (Prokof’ev and Svistunov, 2002) results for
the critical value Dcrit

pair, which is given by

Dcrit
pair ¼ lnðC=g̃Þ; ð24Þ

where g̃ is a dimensionless coupling constant reflecting the
effective repulsive interaction between pairs. Note that the
constant

C ≈ 380 ð25Þ

has been established (Prokof’ev and Svistunov, 2002) from
Monte Carlo studies. We also note that g̃ in Eq. (24) is, in
principle, dependent on the bosonic pair density, as shown by
Fisher and Hohenberg (1988). However, this dependence is
logarithmic (and therefore weak) and can be neglected for
most purposes because of the large constant C. This is a
normal-state approach to the BKT transition; it is based on the
phase-space density and has been supported by numerous
experimental studies on atomic Bose gases (Cladé et al., 2009;
Tung et al., 2010; José, 2013).
It is useful to compare this to the more familiar expression

(Nelson and Kosterlitz, 1977) for the same TBKT in a super-
conductor when it is approached from the low-temperature
superfluid side. This provides a complementary interpretation

TBKT ¼ π

2
ρsðTBKTÞ≡ π

8

�
ns
m

�
; ð26Þ

where one introduces the temperature-dependent superfluid
phase stiffness ρsðTÞ, evaluated at TBKT, instead of the total
pair density as in Eq. (23). In Eq. (26), ns and m are the
superfluid density and the effective mass of the fermions,
respectively. To connect Eq. (23) to Eq. (26), one replaces
Dcrit

pair with 4 and converts from pairs to fermions, following
Halperin and Nelson (1979).
Note that there is a practical difficulty in using either of

these formulations. We need phenomenological input to arrive
at g̃ in Eq. (24). However, to apply Eq. (26) one must
approximate ρsðTÞ using a suitably chosen (generally
mean-field) expression.6

B. Procedure for determining TBKT in the Fermi gases

The Heidelberg cold-atom group (Murthy et al., 2015)
claimed that the fits for their 2D Fermi-gas data find a range of
values for Dcrit

pair ¼ 4.9–6.45 (Murthy et al., 2015; Ries et al.,
2015). These values are close to but somewhat different than
values for atomic Bose gases, where the range is about 6–10.
In general, Dcrit

pair depends on the nonuniversal boson-boson

6This excludes using the present t-matrix theory, more precisely
the 2D counterpart of Eq. (22), where the superfluid density ns is
necessarily zero in two dimensions, which reflects the fact that simple
bosonic condensation with long-range order cannot occur.
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interaction strength g̃, about which one has no precise
knowledge. A relatively small value of g̃ is presumed in
the theoretical framework (Prokof’ev, Ruebenacker, and
Svistunov, 2001; Prokof’ev and Svistunov, 2002), which
represents an effectively weakly interacting gas. This would
be expected in a BCS ground state of composite bosons, as the
bosonic degrees of freedom enter this wave function in a
quasi-ideal manner. For the analysis in this review, we adopt
the value Dcrit

pair ¼ 4.9 (Ries et al., 2015), which turns out to
best fit the data on Fermi gases.7

Based on experiments (Ries et al., 2015) in Fermi gases, the
2D BKT superconducting transition is thus interpreted as a
“quasicondensation” of preformed Cooper pairs. For appli-
cation to 2D superconductors, more generally the BKT
transition temperature is presumed to be

npairðTBKTÞ
MpairðTBKTÞ

¼
�
4.9
2π

�
TBKT ð27Þ

in two dimensions.

Experiments from the Heidelberg group (Murthy et al.,
2015; Ries et al., 2015) on a strongly interacting 2D Fermi gas
use the momentum distribution to establish the presence of a
quasicondensate. This is based on magnetic-field sweeps that,
through a Feshbach resonance, convert pairs to deeply bound
molecules. As shown in Fig. 11(a), in this way one obtains a
plot of the quasicondensation transition temperature as a
function of scattering length or equivalently variable inter-
action strength. An overlay of theory and experiment is shown
in Fig. 11(a), while Fig. 11(b) represents only the theory (Wu
et al., 2015b). Note that there are claims (Hazra, Verma, and
Randeria, 2019) that the experimentally observed maximum,
which is above TF=8, could be an artifact of coupling to a third
dimension in the trap, although this issue, which pertains
exclusively to the 2D Fermi gas, has not been settled.
Subsequent experiments on the 2D gas (Hueck et al., 2018;

Sobirey et al., 2021) extended these measurements on trapped
gases to accommodate a box potential. An alternative meth-
odology was used in those experiments to obtain the momen-
tum distribution. These important studies presented more
direct measurements of superfluidity, as distinct from quasi-
condensation of pairs. Determination of one particular critical
temperature in the BEC regime yielded consistency with the
experiments of the Heidelberg group as a check.

C. Quantitative description of BCS-BEC crossover in two
dimensions and comparison with three dimensions

Equation (27) is adopted along with the results of Sec. III.B
for npair and Mpair, as these characterize TBKT and other
features of 2D superconductors. Plotted in Fig. 12 is a
comparison of transition temperatures, pairing-onset temper-
atures, pair size (Leggett, 2012), gap size, and coherence
length in both two and three dimensions for the s-wave case.
In Fig. 12(a) one sees the presence of a domelike structure
reflecting BCS-BEC crossover in the solid state, which should
be evident for Tc or TBKT. This dome is well within the
fermionic regime, where μ > 0. The transition to the BEC
regime with negative μ is evident here as a shoulder in each of
the transition temperature curves. There has been some
emphasis on bounds on the magnitude of the highest transition
temperature in these 2D systems (Hazra, Verma, and
Randeria, 2019), although we caution that in a lattice system
these are less indicative of the BEC limit, as the maximum is
found in the fermionic regime.
The inset of Fig. 12(a) quantifies the important effect of two

dimensionality presented in Fig. 2. This inset, representing
moderately low filling n ¼ 0.1 per unit cell, shows that the
deviation from BCS behavior (associated with T�=Tc sub-
stantially above 1.0) occurs at significantly smaller attraction
for 2D than for 3D superconductors.
We turn now to Figs. 12(b) and 12(c), which are the basis

for more experimentally relevant studies. The main plots in
those two panels represent a natural extension of the Tallon-
Uemura scaling (Tallon et al., 2003) in Fig. 10, but for the case
of s-wave pairing in both two and three dimensions. They
show that the ratio of the two distinct temperature scales
T�=Tc or T�=TBKT (which are in principle measurable) is
correlated with the magnitude of the T ≈ 0 value of Δ=EF
(which is also measurable).

FIG. 11. (a) Comparison of theory (Wu et al., 2015b) and
experiment for quasicondensation phase diagram of the strongly
interacting 2D Fermi gas. The color variations reflect the
normalized momentum distribution of pairs at low momentum
q, Nq=N, which is used to quantify the quasicondensate fraction
(Ries et al., 2015). (b) Theoretical results (with a trap included)
(Wu et al., 2015b). The color variations similarly refer to the pair-
momentum distribution at low q. The estimated onset of the
superfluid transition, which derives from an abrupt change in
Nq=N is indicated by the solid black line in both panels: the
dashed line for experiment and the solid line for theory. The
dashed white line in (a) is a theoretical estimate for the BKT
transition from Petrov, Baranov, and Shlyapnikov (2003).

7Note that this best fit case presumes a larger value of g̃ than would
be expected for the weakly interacting case (Murthy et al., 2015).
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The inset in Fig. 12(b) shows how the zero-temperature pair
size ξ0 varies as the system crosses out of the BCS regime.
Representing this crossover in the figure is T�=Tc, which is
chosen as the horizontal axis. The pair size is a reasonably
good indicator of when the system is promoted out of the BCS
regime. However, it can be inferred from Fig. 12(c) (where the
BEC transitions are marked) that it does not display features at
the onset of the BEC; rather, the pair size decreases con-
tinuously toward zero as this limit is approached. Note that in
two dimensions the pair sizes for equivalent T�=Tc are
significantly larger than in the 3D case.
Finally, we emphasize that the pair size (which is less

accessible experimentally) and the coherence length represent
important but distinct length scales. The “bare” GL coherence
length can be most readily obtained experimentally from the
measured slope of the upper critical field Hc2 versus the
temperature T plot

dHc2

dT

����
T¼Tc

¼ −
Φ0

2πðξcoh0 Þ2Tc
; with Φ0 ¼

hc
j2ej ;

where h ¼ 2πℏ. Here the slope is evaluated at the zero field
Tc. The parameter ξcoh0 satisfies (Boyack et al., 2018; Boyack
et al., 2019)

ξcoh0 ¼ ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MpairðkBTcÞ

p : ð28Þ

This quantity times the Fermi wave vector is plotted in the
inset in Fig. 12(c). From an experimental point of view there
may be some advantage to measuring and evaluating ξcoh0 in a
somewhat different way, just above Tc in the normal state
(Suzuki and Hikita, 1991) as here one avoids the challenging
determination of TcðHÞ, which corresponds to a magnetic-
field broadened transition.

The coherence length has a distinct physical interpretation
when we make use of the expressions for the transition
temperatures in Eqs. (3) and (23). We define kF in terms of
the free and isotropic electron dispersion such that kF ≡
ð3π2nÞ1=3 and ð2πnÞ1=2 in three and two dimensions, respec-
tively, where we use the same symbol n to refer to the
appropriate fermion number density. It follows that kFξcoh0

evaluated near the transition temperature depends only on the
normalized pair density npair=n. This leads to

kFξcoh0 ¼ 1.6ðn=npairÞ1=2 ð29Þ
and

kFξcoh0 ¼ 1.2ðn=npairÞ1=3 ð30Þ
in two and three dimensions, respectively.
We note that Eqs. (29) and (30) are relatively easy to

understand physically. The coherence length is a length scale
representing the effective separation between pairs. Not
surprisingly for weakly interacting pairs, it relates only to
their density. This is distinct from the pair size. In BCS theory
there are almost no pairs present at Tc, and the length that
represents their average separation is necessarily long. As
pairing becomes stronger more pairs form and their separation
becomes shorter. On a lattice, in the BEC regime their
separation is bounded from below by the characteristic lattice
spacing and ξcoh0 approaches an asymptote set by the inter-
particle distance as the system varies from BCS to BEC.
From plots of npair=n such as those in Fig. 7, one sees that

kFξcoh0 allows a useful and direct monitoring of the location of
a system between the BCS and BEC limits. Notably kFξcoh0

reaches a finite lower bound at the onset of the BEC, given by
kFξcoh0 ≈ 2.2 in two dimensions and 1.5 in three dimensions
(for the case of s-wave superconductors). The fact that these
saturation numbers are of order unity is consistent with what
has been anticipated by the experimental community (Park
et al., 2021).
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FIG. 12. Detailed comparison of 2D and 3D transition temperatures, as well as other properties in the BCS-BEC crossover scenario for
a tight-binding s-wave superconductor at a low density n ¼ 0.1. (a) Transition (Tc or TBKT) and pairing-onset temperatures (T�) as a
function of −U=t, the strength of the attractive interaction in units of the hopping matrix element t. The vertical axis in the inset
quantifies the degree of departure from strict BCS (through the difference between T�=Tc and unity). (b) Characteristic magnitude of
Δ0=EF in two and three dimensions on a normalized scale. Inset: pair size ξ0. (c) Extended view of the results in (b). Indicated here are
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We end this section with a discussion of Fig. 12(c), which
presents an enlarged view of the main figure in Fig. 12(b).
This provides information about where to expect the onset of
the BEC. The BEC regime appears to be associated with large
values of T�=Tc. In this way, one might expect the BEC limit
to be inaccessible.

D. Low carrier density in BCS-BEC crossover

In this section we clarify what one should expect when the
carrier density is dramatically reduced in a lattice super-
conductor. For definiteness we consider only two-dimensional
systems here and presume that “low density” corresponds well
below quarter-filled bands, say, n < 0.1.
The notion that low carrier density promotes a system out of

the BCS regime dates back to Eagles (1969). Indeed, in the
literature it has been stressed (Kanigel et al., 2008) that when
the band is nearly empty it requires only a small change in the
attractive interaction to push the fermionic chemical potential
below the conduction band bottom; hence, the BEC regime is
more accessible at low n.
What is not clear is whether or not low n alone can increase

the magnitude of Tc (or TBKT). Also of interest is determining
whether or not at low densities the nature of the underlying
lattice dispersion becomes irrelevant. If so, this would mean
that the low-density system could be treated as a Fermi gas.
In the phase-fluctuation approach of Sec. II.C, low density

plays a dominant role (Emery and Kivelson, 1995). While this
scenario has been developed primarily for the cuprates, it can
be considered in a broader context, much as the BCS-BEC
crossover scenario is viewed as more generally applicable.
Indeed, one might wonder whether the two scenarios converge
in the low-carrier-density limit. We find that they do not.
In the phase-fluctuation scenario it is emphasized that low

carrier density is associated with both poor screening and
small phase stiffness or low superfluid density. Small phase
stiffness, in turn, means that classical phase fluctuations of the
superconducting order parameter become more prominent.
These fluctuations necessarily lead to a more extensive (in
temperature) “critical regime.”
To address to what extent this scenario is to be distinguished

from the low-carrier-density limit in BCS-BEC crossover, it is
useful to determine what the implications for other properties
are: namely, the size of the transition temperature and the
coherence length along with Δ0=EF. Figures 13 and 14
address these questions.
Figure 13(a) presents a plot of T�=TBKT as a function of the

pairing interaction normalized to half of the normal-state
bandwidth for a range of different low densities. This figure is
in many ways similar to the inset of Fig. 12(a). It shows that
low carrier density does indeed promote the system out of the
BCS limit, where T� ≡ TBKT. One can determine from the
small kinks in the figure where the Bose-condensation regime
sets in. It is evident that, as expected, low density makes this
BEC regime more accessible, as the BEC onset occurs at a
smaller attraction strength.
An important message is contained in Fig. 13(b), namely,

Δ0=EF remains comparably large at low and relatively high
densities for the same T�=TBKT. Thus, pairing remains strong
and, because of the large size of Δ0=EF (and the small size of

kFξcoh0 , which is not shown), even in the low-carrier-density
limit it should be possible to distinguish BCS-BEC crossover
from a phase-fluctuation scenario. We emphasize, however,
that the phase-fluctuation approach does not address fer-
mionic degrees of freedom; hence, strictly speaking, the
pairing gap is irrelevant.
Figure 14 presents a plot of the normalized transition

temperature TBKT=W as a function of normalized interaction
strength for variable density. One sees that all curves assume a
fairly universal shape, but there is a dramatic reduction in the
size of the transition temperature as the density is decreased.
One can glean from these observations a notable trend. In the
cases both of changing dimensionality from three to two and
of changing carrier density from moderate to low, it follows
that the superconductor is more readily promoted out of the
strict BCS regime. But at the same time the transition
temperatures are significantly reduced.
Another important observation from Fig. 14 is that the

effect of the underlying lattice structure is always present in
the BEC regime of the TBKT phase diagram (Chen, 2012). In
particular, the TBKT ∼ t2=jUj asymptote at large jUj persists
all the way to the zero carrier density limit, so a Fermi-gas
description of the phase diagram is not applicable. At the same
time, Fig. 13(b) indicates that Δ0=EF approaches its counter-
part value for a Fermi gas. This occurs at extremely low
densities but still in the BCS-BEC crossover regime, where
the strength of jUj is such that the fermionic chemical
potential μ remains positive.
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FIG. 13. (a) Plots of T�=TBKT for an s-wave superconductor on
a square lattice at different low electron filling levels n, as labeled.
The normal-state band dispersion is ϵk ¼ 4t − 2tðcos kxþ
cos kyÞ, with t the hopping integral. W ¼ 4t is half of the
bandwidth. Low density more readily promotes a given super-
conductor out of the strict BCS limit (where the ratio T�=Tc is
unity). (b) Ratio of the zero-temperature gap to EF (i.e., Δ0=EF)
vs T�=TBKT for different n. This panel indicates that at extremely
low densities and as long as μ=EF is neither too small nor
negative, Δ0=EF plotted here is equivalent to the values obtained
for a Fermi gas. The sizable Δ0=EF is indicative of BCS-BEC
crossover.
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The small size of TBKT found here for BCS-BEC crossover
at low density should not be surprising from the perspective of
the phase-fluctuation scenario, as the transition temperature,
even in 3D, is governed by the small superfluid density. But it
is interesting to note that there are instances in the literature
when a decreasing carrier density is found to be associated
with an increase in the transition temperatures (Nakagawa
et al., 2021). This would seem to require that the pairing
mechanism is assisted by lowering density. Although this is
highly speculative, one might suspect that when this occurs
Coulomb interactions are driving the pairing and not under-
mining it.

E. Topology and quantum geometry in BCS-BEC crossover

In this review, we see that current experimental candidates
for BCS-BEC crossover tend to have values of T�=Tc of the
order of 2 or 3, and corresponding values of Δ0=EF of the
order of 0.5. From Fig. 12(c), one can infer that these are not
likely to be in the BEC regime. There is, however, an
exception having to do with flat-band, topological systems.
These may be relevant to the recent discovery of 2D super-
conductivity in MATBG andMATTG, where there are claims
that these flat-band systems are somewhere between BCS
and BEC (MATBG) or even beyond, within the BEC regime
(MATTG) (Cao et al., 2018; Park et al., 2021; Kim
et al., 2022).
Experimentally when twist angles in these graphene sys-

tems are associated with extremely flat bands, this seems to
correlate with the highest transition temperatures. There is,
however, a subtle and important feature here. In flat-band
superconductors, pair hopping, like single-particle hopping, is
also suppressed (Peotta and Törmä, 2015; Wang et al., 2020;
Törmä, Peotta, and Bernevig, 2022). As a consequence, the
pair mass Mpair becomes large and the superfluid stiffness is
small. This would lead to a vanishing TBKT in the extremely
flat-band limit, were it not for multiband (or multiorbital)
effects. Moreover, it has been emphasized (Peotta and Törmä,
2015) that the latter interband contributions (which work to
decrease the pair mass) can be amplified in the presence of
nontrivial normal-state band topology. This occurs through so-
called quantum geometric effects.
Such multiband effects have been incorporated into a 2D s-

wave BCS-BEC crossover framework (Wang et al., 2020)
where a phase diagram with the usual superconducting dome
is found, as shown in Fig. 15(a). The model topological
Hamiltonian yields two bands, whose conduction bandwidth
is much smaller than the interband energy separation. The
calculated phase diagram resembles that obtained from
Monte Carlo results using the same model Hamiltonian
(Hofmann, Berg, and Chowdhury, 2020).
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carrier density, showing a nearly universal shape but with a
dramatically decreasing magnitude of the transition temperature.
The model and dispersion are the same as in Fig. 13. The small
dips displayed are associated with the crossover to the BEC
regime, after which the canonical t2=jUj dependence is found for
the transition temperature. This dependence is a lattice effect,
which persists even in the zero carrier density limit. W is half the
bandwidth.
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FIG. 15. Flat-band and quantum geometric effects in the BCS-BEC crossover theory showing (a) TBKT and T� for a 2D topological
band structure. (b) Plot of T�=TBKT as well as the number of pairs as a function of attractive interaction strength. The BEC onset,
determined from μðT ¼ 0Þ ¼ 0, is indicated by arrows. (c) Plots analogous to Fig. 12(c), but here the BEC appears with a similar Δ0=EF
and considerably smaller T�=TBKT. T�=TBKT is reduced by quantum geometric effects that substantially increase TBKT without affecting
T�. This tight-binding band structure for a square lattice (with t the nearest-neighbor hopping) leads to two energy bands whose
conduction bandwidth is approximately 0.2 times the interband separation. Here n ¼ 0.3 is the electron density per square lattice site.
From Wang et al., 2020.
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Note that this phase diagram can be used to extract the ratio
T�=TBKT along with the number of bosons npair=n, as shown
in Fig. 15(b); both of these variables are plotted as a function
of renormalized interaction strength. The quantity npair pro-
vides a ready indication of where the BEC sets in, as here npair
first reaches n=2.
At the transition point to the BEC regime [indicated by the

arrows in Fig. 15(b)], the interaction strength U is on the order
of the entire conduction bandwidth. Correspondingly
Δ0=EF ∼ 3, as shown in Fig. 15(c), which is not unlike the
single-band result in Fig. 12(c). However, because of quantum
geometry, TBKT is substantially enhanced by interband effects
while T� is almost unaffected, leading to a smaller and
physically more accessible value of T�=TBKT ∼ 5. This behav-
ior is summarized in Fig. 15(c), where the BEC onset point is
indicated by the arrow. This provides a counterpart plot of
Fig. 12(c), but here for a multiband, topological case. We note
that the value ofΔ0=EF at the BEC onset is nonuniversal. For a
topological band structure with an extremely flat conduction
band (Wang et al., 2020), Δ0=EF can be as large as 30.
This contrast leads us to the conclusion that, in the presence

of flat bands and nontrivial band topology, a BEC phase can
potentially become more accessible, as it leads to a moderate
size for T�=TBKT. We emphasize that these effects derive from
the participation of more than one band in the superconduc-
tivity and note for completeness that there are other, rather
different approaches in the literature that also treat BCS-BEC
crossover phenomena in multiband systems both analytically
(Chubukov, Eremin, and Efremov, 2016; Tajima, Pieri, and
Perali, 2021) and numerically (Loh et al., 2016).

VI. STRONGLY DISORDERED CONVENTIONAL FILMS:
TWO ENERGY SCALES AND A PSEUDOGAP

We return to our discussion of Fig. 12(b), noting that it
presents a unique signature of 2D pseudogap effects asso-
ciated with a strong-pairing mechanism. It may be surprising,
but strong disorder can lead to similar pseudogap effects in 2D
superconducting films (Sacépé et al., 2010). However, the
parameters governing these dirty thin films are very different
from those indicated in Fig. 12(b). In understanding the origin
of this other pseudogap, it is important to recall that 2D
superconductors have a propensity for manifesting a separa-
tion of the two energy scales T� and TBKT, which can be
thought of as corresponding to the onset temperatures for
amplitude and phase coherence, respectively. As an important
signature, those conventional superconducting films in which
the two temperature scales are well separated due to disorder
(Sacépé et al., 2010; Zhao et al., 2013) will have rather small
values of Δ0=EF.
While the distinctions between the two scenarios for a

pseudogap (strong pairing and strong disorder) should be
obvious, a number of phenomenological similarities are
striking. Most notable are the reported observations of charge
2e pairs (Božović and Levy, 2020; Bastiaans et al., 2021), the
contrasting behavior of Andreev and conventional tunneling
(Dubouchet et al., 2019; Oh et al., 2021), and the observations
of boson or pair localization (Chen et al., 1999; Hollen
et al., 2011).

The behavior found rather generically for a highly disor-
dered 2D superconductor is illustrated in Fig. 16, which
represents an experimentally determined phase diagram
(Chand et al., 2012) with temperature on the vertical axis
and disorder measured through kFl on the horizontal axis.
Here l is the electron mean free path. In Fig. 16, the
superconducting state is shown in orange, the pseudogap
state in red, and the normal-state metal in white. Also
indicated are the temperatures T� and Tc ¼ TBKT.
There are three demarcated regions in Fig. 16. At small

disorder (region I) a pseudogap is absent and T� ≈ Tc, while as
disorder increases (region II) T� separates from Tc and is
relatively independent of the disorder strength, whereas the
transition temperature (which is more sensitive to the under-
mining of coherence) rapidly decreases. Finally, in region III
Tc vanishes although there are indications that pairing persists.
The two temperatures become distinct at a critical value of kFl.
These experiments on NbN are reasonably generic, and

similar observations have been made for TiN and InOx as well,
where Sacépé et al. (2010) claimed that a pseudogap appears
to be present, reflecting the existence of paired electrons above
TBKT. This pseudogap is found to be continuously and directly
transformed into a superconducting gap below the transition.
An interesting set of parallel experiments (Zhao et al., 2013)

shown in Fig. 17 was performed on Pb films by a group at
Tsinghua University that determined the experimental phase
diagram obtained by studying crystalline and atomically flat Pb
films, now as a function of variable thickness. In Fig. 17,
temperature appears on the vertical axis and film thickness on
the horizontal axis. The superconducting state is shown in
green, the “fluctuating” or pseudogap state is depicted in blue
(where nonsuperconducting Cooper pairs are said to exist), and
the normal-state metal is shown in yellow. The solid circles
represent superconducting or phase-coherent order, as

FIG. 16. Experimental temperature scales as a function of mean
free path kFl in disordered NbN films (Chand et al., 2012). The
value of kFl is determined from resistance and Hall-coefficient
measurements at T ¼ 285 K. With increasing disorder or suffi-
ciently small kFl a pseudogap (PG) phase appears, which is
associated with T� ≠ Tc in region II, while in region III Tc is 0
although pairing likely persists in this insulating phase.
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determined by transport with an onset at Tφ ≡ TBKT; the open
symbols represent the pairing transition (TΔ ≡ T�), which is
established by tunneling spectroscopy.
From Fig. 17 one can infer that the pairing temperature

remains nearly constant with variable thickness, while the
coherence temperature is strongly depressed. This appears to
suggest that disorder may be playing a role,8 as supported by
the sheet resistance data measured by Zhao et al. (2013).
It is reasonably well established that TBKT generally

decreases with decreasing thickness in 2D films (Khestanova
et al., 2018), although there is no consensus on the extent to
which disorder is the only relevant mechanism. The central
point is that pairs form at higher temperatures than those at
which they exhibit superfluidity. Equivalently, at Tφ, while
phase coherence is destroyed, the superconducting gap remains
nonzero. Note that for Pb the two characteristic temperatures
merge in the 3D regime, as is the hallmark of a “conventional”
weak-coupling bulk superconductor.
A key finding of the Tsinghua group (Zhao et al., 2013)

pertains to the voltage-current (V-I) characteristics, which
provide an alternative method for deducing the pairing-onset
temperature T�. We emphasize that this shortcut procedure
should be applicable to all 2D superconductors. More pre-
cisely, Zhao et al. (2013) showed that V-I plots of this type
can be used to simultaneously measure the two important
energy scales T� and TBKT. This is illustrated in Fig. 18, where
voltage-current plots are presented for a range of different
temperatures in a specific Pb thin film.
More specifically, it is well known (Halperin and Nelson,

1979) that estimates based on V-I curves allow one to
determine the BKT transition, which occurs when the

condition V ∝ Iα is satisfied with a particular value of
α ¼ 3. Zhao et al. (2013) pointed out that one can also obtain
the pairing-onset temperature T� from V-I plots. This is
associated with the recovery of fully Ohmic behavior shown in
Fig. 18 by the V ∝ I black line.
While this observation could seem intuitively obvious,

Zhao et al. (2013) made the last point more convincing by
accompanying their analysis with more direct measurements
of the pairing gap through scanning tunneling microscopy
(STM) experiments, which yield ΔðTÞ and hence T�. We note
that one should take care in establishing the “Ohmic recovery”
temperature, as it involves the behavior of the entire V-I curve
for an extended range of I above the critical current.

VII. APPLICATION OF BCS-BEC CROSSOVER IN THE
LITERATURE (BEYOND FERMI GASES)

In this section we present summaries of experimental
observations concerning candidate systems for BCS-BEC
crossover. We show here that the majority of the candidates
appear to be consistent with this scenario, as they possess all
or most of the first three discriminating properties listed in
Sec. II.A. These correspond to (i) the observation of large
Δ0=EF, (ii) the presence of a normal-state pseudogap such that
T�=Tc is significantly above 1.0, and (iii) a moderately short
coherence length kFξcoh0 . Also reported in a few cases is the
observation of enhanced superconducting fluctuation-like
behavior in the normal state, particularly in the response to
a magnetic field (Li et al., 2010; Proust and Taillefer, 2019).
Notably, however, what is missing in a number of cases

[particularly for the organic superconductors (Suzuki et al.,
2022) and the two twisted magic-angle graphene systems] is
information about how the temperature scale T� varies across
their respective Tc domes. We note that in strictly 2D systems

FIG. 17. Experimental behavior of characteristic temperatures
T� ≡ TΔ and Tφ ≡ TBKT as a function of the thickness d of Pb
films. A more extensive analysis of the resistivity (see the text)
suggests that the pseudogap effects, evident here and in Fig. 16,
are likely to be associated with high disorder rather than strong-
pairing correlations. ML, monolayer. From Zhao et al., 2013.

FIG. 18. V-I isotherms on a log-log plot associated with the Pb
films in the Fig. 17. Each curve is labeled with its temperature (in
kelvins), and a straightforward analysis identifies TBKT with the
V ∝ I3 black line. One sees that the V-I characteristics display a
continuous evolution toward Ohmic behavior as the temperature
is raised to the pairing-onset temperature T�, here identified as
7 K (the V ∼ I black line) for a Pb film of a particular fixed
thickness. From Zhao et al., 2013.

8Since T� essentially represents a mean-field transition temper-
ature of an s-wave superconductor, this should satisfy Anderson’s
theorem (Anderson, 1959) of disordered superconductivity; T� is
thus expected to remain fairly robust in the presence of weak disorder
that does not break time-reversal symmetry provided that the
effective pairing interaction is not strongly affected by localization
effects.
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this appears to be reasonably accessible should there be future
measurements of the V-I characteristics. This capability was
discussed in Sec. VI based on the Ohmic recovery temper-
ature, which effectively yields T�.
Overall, what seems to be nearly universally observed in

these candidate BCS-BEC crossover superconductors is a
large magnitude for Δ0=EF and a relatively small size for the
GL coherence length kFξcoh0 . The focus on the last quantity
serves to emphasize the contrast with Fermi gases, where this
coherence length is not as readily accessible.
Connections to more specific aspects of BCS-BEC cross-

over theory are presented in Sec. IX via a summary figure
(Fig. 36) for all the candidate materials in two dimensions.
Unlike Fermi gases, where the magnitude of the attractive
(Hubbard-like) interaction can be quantified, here one has to
circumvent this parameter. As we later show, in Fig. 36 we
address correlations of T�=TBKT and Δ0=EF instead. A related
plot that focuses on commonalities between the graphene and
cuprate families is Fig. 40. While in Fig. 36 a simple tight-
binding band structure is used for all candidate materials, we
argue that the specific details of the band structure are viewed
as less important than distinguishing between s- and d-wave
pairing symmetries, or 2D and 3D systems or addressing some
of the more universal features of the crossover.

A. BCS-BEC crossover in 2D organic conductors

Over the years there have been observations that a class of
quasi-2D organic superconductors based on the bis(ethylene-
dithio)tetrathiafulvalene (BEDT-TTF) molecule, of the type
κ-ðBEDT-TTFÞ2X, might have something in common with the
high-temperature superconductors (McKenzie, 1997).HereX is
an inorganic anion and κ denotes the specific packing arrange-
ment in the crystal. The basic unit here is a dimer consisting of
twoBEDT-TTFmolecules stacked on topof each another.Upon
binding with the anion, the dimer provides one electron to the
anion leaving behind a mobile hole.
The similarity with the cuprates has been based on the

observations (Oike et al., 2017; Imajo et al., 2021; Matsumura
et al., 2022) of competingmetallic, insulating, superconducting,
and antiferromagnetic states in the phase diagram, which is
generally plotted as a function of pressure. As the pressure
decreases (presumably in analogy to a decrease in doping in the
cuprates), the properties of the molecular conductor (and its
superconducting phase) deviate progressively from those of a
typical metal (and BCS superconductor). Conversely, with an
increase in pressure the behavior appears more conventional.
Of interest is the case where X involves HgBr [specifically,

one studies κ-ðBEDT-TTFÞ4Hg2.89Br8] in the “parent” com-
pound of these systems, which seems to exhibit features of a
quantum spin liquid (Powell and McKenzie, 2011; Suzuki
et al., 2022). This quantum spin liquid is associated with a
frustrated spin configuration, often modeled theoretically via a
triangular Hubbard lattice (Yokoyama, Ogata, and Tanaka,
2006). Notably (Oike et al., 2017; Imajo et al., 2021;
Matsumura et al., 2022) with varying pressure this particular
class of organic superconductors exhibits possible dx2−y2
ordering and transition temperatures as high as 7–10 K, with
suggestions of pseudogap behavior for T > Tc. One also sees
an unexpectedly large slope for dHc2=dT near Tc in fields

both in parallel with and perpendicular to the two-dimensional
conducting layers. There is also a wide region of fluctuating
superconductivity above Tc, along with a large superconduct-
ing energy gap.
What is particularly relevant in this review is that recent

studies have more quantitatively addressed pressure variations
in κ-ðBEDT-TTFÞ4Hg2.89Br8 in the context of BEC-BCS
crossover. It is presumed that pressure works to enhance
the itinerant nature of electrons through the increase of the
transfer integral t between molecular orbitals, leading to a
pressure-dependent band structure. Thus, one can imagine in
the context of Fig. 12 that variable pressure could cause a
variation in Tc through the generic phase diagram parameter
jUj=t; as t increases, the dimensionless interaction strength
decreases, thus moving the system closer to the BCS regime.
Indeed, this is what is observed in Fig. 19. Of considerable

interest in Fig. 19 are the combined plots of the in-plane
coherence length kFξcoh0 and the transition temperature. If we
implicitly make the assumption that pressure scales inversely
with jUj=t, this provides a pedagogical and rather powerful
representation of BEC-BCS crossover. Figure 19 appears to be
consistent with the various plots of the Tc dome and the
behavior of the coherence length shown in Fig. 12. Notably,
for a d-wave gap symmetry, the smallest value reached by
kFξcoh0 will be significantly larger than for s-wave symmetry
since the BEC limit is generally not reachable for these
extended-size pairs; see also Fig. 8.

FIG. 19. Pressure dependence of the measured in-plane coher-
ence length kFξcoh0 (where kF is determined by the Hall coefficient)
and superconducting transition temperatures in κ-ðBEDT-
TTFÞ4Hg2.89Br8. If we assume that pressure scales inversely with
the effective attractive interaction strength, the Tc dome with
overlain coherence length provides an ideal prototype for BCS-
BEC crossover in the solid state. From Suzuki et al., 2022.
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Adding support to the picture of BCS-BEC crossover in this
family of organic metals are studies of nuclear magnetic
resonance (NMR) (Kanoda et al., 1996; McKenzie, 1997) and
the Nernst coefficient. In a closely related organic super-
conductor (McKenzie, 1998), NMR experiments have pro-
vided evidence for d-wave pairing as well as a pseudogap.
We turn next to the Nernst studies (Suzuki et al., 2022) in

the HgBr system, as shown in Fig. 20. In the strong-pairing
regime, as Tc is approached from above the Nernst coefficient
acquires (Boyack et al., 2021) a large positive (magnetic-field-
dependent) value that peaks within the superconducting state
and subsequently falls below. From Fig. 20 it can be seen that
the Nernst coefficient becomes anomalously large well above
the transition temperature for low pressures where the
molecular superconductor is closest to the strong-coupling
end of the spectrum. This enhancement of the standard
Aslamazov-Larkin (AL) contribution is expected (Boyack
et al., 2021). It reflects the fact that the noncondensed pairs
have a more extended temperature region where the chemical
potential of the pairs jμpairj (which governs the size of the AL
contribution) becomes small. Such an enhancement becomes
more pronounced as the system deviates progressively from
the BCS regime.
In summary, these studies of κ-ðBEDT-TTFÞ4Hg2.89Br8

seem to suggest a welcome convergence between different
schools of thought for treating strongly correlated super-
conductors through the concept of “Mott-driven BCS-BEC
crossover.” In the context of cuprates both the doped Mott
insulator (Lee, Nagaosa, and Wen, 2006) and the BCS-BEC
scenarios have been widely discussed. It would appear in this
organic superconductor system that both aspects are com-
bined: Mott physics may well provide the source of the pairing
mechanism, while BCS-BEC crossover appears to be relevant
to the machinery.

B. BCS-BEC crossover in the iron chalcogenides

Considerable attention has been paid to the superconduct-
ing properties of iron chalcogenides (Kasahara et al., 2014,
2016; Okazaki et al., 2014; Hanaguri et al., 2019; Kang et al.,
2020; Shibauchi, Hanaguri, and Matsuda, 2020; Mizukami
et al., 2023), where there appears to be growing evidence that
FeSe and isovalent substituted FeSe1−xSx and FeSe1−xTex
may be in the BCS-BEC crossover regime. These systems, in
which the characteristic electronic energy scales are anoma-
lously low, appear to exhibit strong-pairing effects. This is not
due to two dimensionality, nor is it because the pairing glue
itself is particularly large on an absolute scale. Rather, the
attractive interaction is large when compared to the character-
istic low Fermi energies. Also present, and possibly relevant,
are nematic effects (Hashimoto et al., 2020; Shibauchi,
Hanaguri, and Matsuda, 2020) associated with broken rota-
tional symmetry (but preserved translational symmetry). FeSe
is a layered anisotropic material; it is also a compensated
semimetal, with roughly equal densities of electron and hole
carriers. This leads to both electron and hole pockets and a
more complicated scenario for BCS-BEC crossover.
Adding to the support for a BCS-BEC crossover picture is

the fact that in the iron chalcogenides (Shibauchi, Hanaguri,
and Matsuda, 2020) the characteristic Fermi energies and
zero-temperature gap magnitudes are comparable. STM and
STS experiments indicate gap sizes of the order of Δ1 ≈
3.5 meV and Δ2 ≈ 2.5 meV for the two bands. From this it
follows that the ratios of the pairing gaps to transition
temperatures (Tc ≈ 9 K) in FeSe are large, of the order of
2Δ1=kBTc ≈ 9 and 2Δ2=kBTc ≈ 6.5, well beyond the BCS
value of 3.5. The Fermi energies associated with the two
nearly cylindrical Fermi surface sheets are anomalously small,
of the order of EF ≈ 10–20 meV for the holelike Fermi surface
(Shibauchi, Hanaguri, and Matsuda, 2020). This leads to
estimates of Tc=TF ≈ 0.04–0.08. This analysis has led many
to conclude that these superconductors are well outside the
strict BCS regime.
ARPES experiments (Hashimoto et al., 2020) on bulk FeSe

show that, rather than the characteristic backbending asso-
ciated with conventional BCS superconductors, there is
instead a flat dispersion near k ¼ 0, which appears to be
more typical of the crossover regime. This flat-band feature is
even more enhanced with the addition of sulfur.
Of considerable importance is the characteristic correlation

length extracted from magnetic-field data (Kasahara et al.,
2014), which is argued to be small, of the order of
kFξcoh0 ≈ 1–4. One can deduce from these numbers that
FeSe superconductors are most likely not in the BCS regime.
One can also compare these numbers with earlier theoretical
estimates of kFξcoh0 , which found a BEC saturation value of
approximately 2 to 3 [Fig. 12(c)]. We caution, however, that
complementary diagnostic information comes from vortex
imaging using STM. This derives from the subgap fermionic
states that are inside the vortex core. The observation of
Friedel-like oscillations (Chien, He et al., 2006; Hanaguri
et al., 2019) suggests that fermionic degrees of freedom are
still present in bulk FeSe, and thus these superconductors are
not yet in the BEC regime.

FIG. 20. Temperature-pressure plot of the Nernst signal eN for
the organic superconductor at a magnetic field of 9 T. The white
circles indicate the zero-field transition temperature Tc. As the
system becomes more strongly paired with decreasing pressure, an
enhanced positive Nernst response appears at temperatures far
above Tc. From Suzuki et al., 2022.
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Also notable is that there are enhanced superconducting
fluctuation effects (Kasahara et al., 2016) in FeSe. This
enables one to identify a characteristic temperature T� where,
in particular, diamagnetism sets in. Figure 21 presents a plot of
this “unprecedented, giant” diamagnetic response. The inset
serves to emphasize the key point that the diamagnetic
fluctuation regime in FeSe is considerably wider than pre-
dicted from the conventional fluctuation theory of Aslamazov
and Larkin (1975) and Larkin and Varlamov (2009). It was
argued that this provides evidence for preformed pairs
associated with BCS-BEC crossover, as fluctuation effects
are expected to be amplified. Similarly, studies of the dc
conductivity showed that the expected downturn behavior is
observed in the resistivity. Additionally, NMR experiments
(Shibauchi, Hanaguri, and Matsuda, 2020) showed the
expected suppression of 1=T1T around T�, although there
seem to be none of these large fluctuation effects in the heat
capacity (Hardy et al., 2019).
There has also been a focus on crossover from BCS to BEC

in a slightly different iron chalcogenide (Rinott et al., 2017)
Fe1þySexTe1−x, where chemically doping the carrier concen-
tration, through decreasing y, introduces an increased ratio of
Δ0=EF, where EF is as small as a few meV. Here there are
claims9 based on figures such as Fig. 22 that, as Δ0=EF
increases, the dispersion of the peak in ARPES evolves from
the characteristic backbending behavior seen in the BCS
regime to a BEC-like signature with a gap minimum at k ¼ 0.
All of this would make an effective illustration of super-

conductivity in the intermediate- and even strong-coupling
regime, were it not for the fact that STM and STS experiments
do not support the existence of a spectroscopic pseudogap in
this class of compounds (Shibauchi, Hanaguri, and Matsuda,

2020). Understanding this behavior is still a work in progress;
the multiband character of the iron chalcogenides may be
relevant here. Issues such as interband pairing may also be
playing an important role.

C. BCS-BEC crossover in interfacial superconductivity

A great deal of excitement has been generated recently in
studies of interfacial superconductivity (Reyren et al., 2007;
Caviglia et al., 2008; Richter et al., 2013; W.-H. Zhang et al.,
2014; Cheng et al., 2015; Gariglio et al., 2015; Ge et al., 2015;
Gasparov et al., 2017; Rebec et al., 2017; Suyolcu et al.,
2017; Wang et al., 2017; Zhang et al., 2019; Kang et al., 2020;
Han et al., 2021; Song et al., 2021), particularly involving the
iron chalcogenide FeSe. Here one sees an unexpected and
dramatic enhancement of the pairing-onset temperature in
interfacial monolayer FeSe (Ge et al., 2015). While the early
literature (W.-H. Zhang et al., 2014; Rebec et al., 2017;
Pedersen et al., 2020) did not often distinguish this pairing-
gap onset from that of coherent superconductivity, it is now
becoming clear that this system is associated with a large
pseudogap, as well as a sizable BKT transition temperature.
Indeed, it was discovered in 2012 (Wang et al., 2012) that

one-unit-cell-thick (1UC) FeSe grown on SrTiO3 exhibits a
gap that survives up to 60–70 K. Remarkably this gap onset
temperature is 1 order of magnitude higher than the Tc of bulk
FeSe, and it has inspired an enormous effort to reveal the
mechanism driving the interfacial enhancement. Owing to the
extreme air sensitivity, it has been challenging to perform
traditional resistivity measurements. FeTe-capping or in situ
transport measurements have made it possible to characterize
Tc from the resistivity transition. Among these measurements,
except for a singular study that reported a Tc of 109 K, all
transport studies reported a resistivity onset associated with
coherent superconductivity at T ≲ 45 K.
Recent work by one of us (Faeth et al., 2021) combined

in situ ARPES and in situ transport measurements to simulta-
neously characterize the spectroscopic and resistive transitions
(Fig. 23). The former is sensitive to the presence of a
pseudogap that can be associated with pairing, while the
latter probes superconductivity. The band structure of the 1UC
FeSe is simpler than in the bulk system. Only electron-like
Fermi surfaces are identified by ARPES near the Brillouin
zone corners, with a Fermi energy EF ≈ 60 meV (Liu et al.,
2012). An excitation gap Δ ≈ 15 meV is observed at 12 K and
persists up to 73 K. This leads to a ratio of Δ=EF of the order
of 0.25. The coherence length from vortex mapping is about
2 nm (Chen, Liu et al., 2020), which suggests that kFξcoh0 ≈ 4.
This places 1UC FeSe=SrTiO3 firmly in the BCS-BEC
crossover regime, but not yet in the BEC.
A second example of interfacial superconductors that has

been interpreted in terms of a possible BCS-BEC crossover
scenario (Božović and Levy, 2020) corresponds to a super-
conductor formed within the conducting 2D interface between
two band insulators LaAlO3 and SrTiO3. This belongs to the
class of superconductors with anomalously low carrier den-
sity. Indeed, it is argued that this 2D superconductor is similar
in many ways to the behavior in 3D doped SrTiO3 and also
has features of the high-Tc copper oxides. The phase diagram
(Richter et al., 2013) shown in Fig. 24 is analogous to the

FIG. 21. Diamagnetic magnetization response in bulk FeSe as a
function of temperature at different values of the applied
magnetic field H. Inset: comparison of the diamagnetic suscep-
tibility χdia with the predictions χAL of AL theory (Larkin and
Varlamov, 2009), showing an extended range of fluctuations.
From Kasahara et al., 2016.

9There are complications in this analysis due to the vicinity of a
heavy dxy band, which may affect the interpretation.
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cuprates in many ways; in addition, there are claims of
preformed pairs in both. In the two cases the gap onset
temperature does not follow Tc in the underdoped region but
increases with charge carrier depletion.
This heterostructural system is particularly useful, as it can

be tuned continuously through gating. There is a super-
conducting dome along with a pairing gap Δ that survives
up to T� ≈ 500 mK for the 2D carrier density n ∼ 0.02 per unit
cell (Richter et al., 2013). At T ¼ 0, Δ0 ≈ 65 μeV. Moreover,
with decreasing temperature the pseudogap ΔPG evolves
smoothly into the pairing gap within the superconducting
phase. Also supporting the pairing-onset interpretation of T� is
that the ratio of Δ0 to T� remains close to the BCS prediction;

at more general temperatures the pairing gap follows the BCS-
like mean-field temperature dependence.
Using an atomic force microscope tip, the Levy group

(Cheng et al., 2015) was able to draw single-electron
transistors on the LaAlO3=SrTiO3 interface. This enabled
the observation of preformed pairs that persist up to 900 mK,
well above the transition temperature, which ranges between
200 and 300 mK.
These temperature scales, however, pose some concern

about interpreting the nature of interfacial superconductivity
in LaAlO3=SrTiO3. The Fermi energies of various 3d t2g
bands have been characterized by soft x-ray ARPES
(Cancellieri et al., 2014) and found to be around 50 meV

FIG. 22. ARPES signatures in Fe1þySexTe1−x, where chemically doping the carrier concentration is through decreasing y.
(a)–(c) ARPES spectra for three samples from left to right, in order of decreasing y. The green dashed line is the best fit to the
data. (d)–(f) Theory plots using parabolic band dispersion and other model parameters. From Rinott et al., 2017.

FIG. 23. Combined ARPES and transport studies on 1UC FeSe=SrTiO3 showing (a) ARPES data near theM point of the Brillouin zone
taken at 12 K. (b) Extracted values of the gap Δ and spectral weights δSW at the Fermi level as a function of temperature. (c) Resistivity
measurements. (d) Voltage-current relationship. From Faeth et al., 2021.
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for the dxy orbital band (Sulpizio et al., 2014; Pai et al.,
2018),10 which leads to a rather small ratio of Δ0=EF ∼ 10−3.
This observation, indicative of a more BCS-like system,

appears to be incompatible with a strong-pairing crossover
scenario. Even more persuasive of this incompatibility is the
additional fact that the measured coherence length is large, of
the order of 30–70 nm (Fillis-Tsirakis et al., 2016), leading to
kFξcoh0 ≈ 30–70. This is based on previous estimates in the
literature for kF ≈ 0.1 Å−1 (Pai et al., 2018).
There is strong evidence that disorder effects are important

in this interfacial superconductor (Chen et al., 2018). In
particular, Chen et al. (2018) showed that applying an
electrostatic gate voltage not only tunes the carrier density
but also significantly modifies the interfacial disorder via the
mobility. Nevertheless, it is somewhat difficult to associate a
phase diagram like that in Fig. 24, in which there is a Tc dome
while T� is monotonic, with the effects of disorder. This
behavior of T� can be contrasted with the disorder-induced
pseudogap effects discussed in Sec. VI. While there is some
uncertainty, a reasonable conclusion is that disorder is relevant
to interfacial superconductivity in LaAlO3=SrTiO3, and a
strong-pairing mechanism does not seem to be operative.
Possibly related to these observations are theoretical calcu-
lations (Che et al., 2017), albeit for 3D s-wave systems,
that reveal that disorder-induced superconductor-insulator

quantum phase transitions can occur in the BCS regime.
Here the superconducting order is destroyed, leading to an
insulating phase that is caused by a residual pseudogap.

D. BCS-BEC crossover in magic-angle twisted bilayer and
trilayer graphene

There is growing support that MATBG (Cao et al., 2018) as
well as MATTG (Park et al., 2021; Kim et al., 2022)
superconductors exhibit BCS-BEC crossover features.
Notably these are clean systems associated with a BKT
transition. One piece of cited evidence is based on the
relatively large values of TBKT=TF. These were reported in
the initial groundbreaking paper by Cao et al. (2018), as well
as in subsequent works (Lu et al., 2019; Oh et al., 2021; Kim
et al., 2022). Such estimates are in turn based on V-I plots that
allow one to determine the BKT transition that occurs when
V ¼ Iα with a specific value of α ¼ 3. As a caution we note
that the ratio TBKT=TF should not be viewed as a proxy for the
fraction of electrons involved in superconductivity; in the
BEC regime, this parameter becomes extremely small.
More recent tunneling experiments on MATBG [which are

summarized in Fig. 25(a)] help to make the association with
BCS-BEC crossover stronger (Oh et al., 2021). They have
presented clearer indications of an extensive pseudogap
regime in the phase diagram, as can be seen in Fig. 25.
These STM experiments suggest an anomalously large
value for the ratio 2Δ0=kBTBKT ≈ 25 (Oh et al., 2021) that
can be viewed as representative of strong pseudogap effects
and can be equivalently associated with large T�=TBKT.
Adding support to a BCS-BEC crossover scenario is the
presence of another much smaller energy-gap scale associated
with point-contact Andreev tunneling, which is present only in
the ordered phase where there is phase coherence.
The results from this STM tunneling (Oh et al., 2021)

provide a value for Δ0 ≈ 1.4 meV in MATBG. We previously
pointed out that V-I measurements in 2D films can be used
(Zhao et al., 2013) for estimates of T�. One can infer from
these data (Cao et al., 2018) that T� ¼ 3–5 K, which is
obtained from the Ohmic recovery temperatures.11 One can
compare this to the transition temperature TBKT ≈ 1 K and the
estimated Fermi temperature of the bilayer system, TF ≈ 20 K
(Cao et al., 2018). The resulting relatively large ratios of
T�=TBKT and Δ0=EF suggest that MATBG is a superconduc-
tor in the intermediate BCS-BEC crossover regime.
Indeed, based on the claims (Oh et al., 2021) that MATBG

has some similarities with high-Tc superconductors, it is
striking to observe similar T�=TF and T�=Tc values in
Fig. 40 (in Appendix C) for the underdoped cuprates and
both twisted graphene families of superconductors. That
figure addresses this similarity more quantitatively.
The situation for MATTG appears to be somewhat clearer

and provides more quantitative information. Some pertinent
results (Park et al., 2021; Kim et al., 2022) are summarized in

FIG. 24. Interface superconductivity in LaAlO3-SrTiO3 (shown
in red), which is tuned with an electric gate field. Represented
is a comparison between high-Tc cuprate superconductors and
the n-doped interface superconductors. The horizontal axis is the
carrier density per unit cell. The end point of the LaAlO3-SrTiO3

SC dome on the underdoped side is a quantum critical point that
separates the superconducting from an insulating phase (Caviglia
et al., 2008). SC, superconducting; AFM, antiferromagnetic.
From Richter et al., 2013.

10We note that in the literature whether or not the dxy orbital
actively participates in the superconductivity is still being debated;
see Scheurer and Schmalian (2015). Using the dxz=dyz orbital bands
for EF would lead to a relatively larger Δ0=EF ∼ 0.05. Our choice of
the dxy band for EF is based on the consistency between the estimated
Δ0=EF and kFξcoh0 .

11Ideally one could arrive at more accurate numbers by making
systematic V-I plots over finely separated temperature intervals in
order to more precisely establish the temperature for the Ohmic
recovery, which corresponds to T�.
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Figs. 25(c) and 25(d), which address useful coherence-length
experiments (Park et al., 2021) based on the magnetic-field
dependence of the superconducting transition temperature.
Figure 25(c) shows published data for ξcoh0 as well as the
interparticle distance d as a function of the band filling factor
ν, along with the transition temperature TBKT. We note that the
error bars are large here, indicative of the experimental
challenges encountered when deducing the coherence length
using resistivity measured at a finite magnetic field.
Particularly in two dimensions and in extreme type-II super-
conductors, the presence of a magnetic field necessarily leads
to broad transitions that make it difficult to establish TcðHÞ
without incorporating a fairly arbitrary standard for determin-
ing where the transition is located.
The experimentally observed12 dimensionless product

kFξcoh0 [Fig. 25(d)] can be compared with the theory in
Fig. 25(e), where kFξcoh0 is plotted as a function of T�=Tc.
[This is similar to the inset in Fig. 12(c).] We note that the plot

in Fig. 25(d) and the theoretical plot in Fig. 25(e) are for
different horizontal axis variables; however, a direct associ-
ation of the two would allow one to relate the important ratio
T�=Tc to the filling factor ν, hence completing the T�=Tc vs ν
phase diagram. From the data in Fig. 25(d) it follows that for
ν≳ −2.5MATTG also belongs in the intermediate BCS-BEC
crossover regime.
Recent tunneling experiments (Kim et al., 2022) provided

additional important quantitative information about MATTG,
with a focus on the gap energy scale plotted in Fig. 25(b) as a
function of ν. These studies indicated that T� ¼ 7 K at the ν
value where the gap is at maximum. Additional parameters are
TBKT ≈ 2.25 K (Park et al., 2021), with the estimated Fermi
temperature given by TF ≈ 30 K.
Overall, there appears to be compatibility between the ξcoh0

data from the MIT group and pairing-gap experiments (Kim
et al., 2022) shown in Fig. 25(b). Making use of the estimates
of EF based on quantum-oscillation experiments (Park et al.,
2021), it follows that the ratio Δ0=EF exhibits a trend similar
to ξcoh0 , changing from more BCS-like behavior at ν ≈ −3 to
characteristic crossover behavior at ν ≈ −2.2. We note that
interpretations of these tunneling experiments (Kim et al.,
2022) have suggested that the BEC regime is reached around

(a)

(c) (d) (e)

(b)

FIG. 25. Superconducting properties of MATBG and MATTG. (a) Phase diagram of hole-doped MATBG superconductors (SC). The
electron filling factor ν ¼ 4n=ns, where n is the carrier density defined by the applied gate voltage and ns is the corresponding n when
the lower fourfold degenerate moiré flat band is fully filled. The displayed large pseudogap regime, indicated in light blue, is determined
by combining conventional STM and point-contact Andreev tunneling spectroscopy (Oh et al., 2021). (b) Gap size Δ vs the gate voltage
VGate (and the filling factor ν) for MATTG. Δ is measured from conventional STM tunneling at low temperatures. The data points are
extracted from the separation between coherence peaks at the halfway point (black squares) and from a nodal gap fit (red dots) (Kim
et al., 2022). In the green and violet regions the dI=dV curve exhibits a V shape and a U shape, respectively. (c) T − ν phase diagram of
MATTG at displacement field D=ϵ0 ¼ −0.5 Vnm−1, along with the curves of the interparticle distance d≡ dparticle and the coherence

length ξGL (Park et al., 2021). Here dparticle ¼ 1=
ffiffiffiffiffi
n�

p
, where n� is the effective carrier density that can be deduced from quantum-

oscillation and Hall density measurements. Note that n� is different from the density n. (d) Replotting of the ξGL data from (c) in terms of
the product kFξGL. To convert n� to kF we use kF ¼ ð2πn�Þ1=2. The dashed blue line shows the expected kFξGL value when npair saturates
to n�=2. (e) Product kFξGL calculated theoretically as a function of T�=TBKT for a 2D s-wave superconductor. In the theoretical
calculation, n� is the same as n.

12Note that the band degeneracy used in the conversion here is 2,
not the naive 4. As supported by experiments, the spin-valley
degeneracy is broken to 2 at −3 < ν≲ −2.
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the upper half of the TBKT dome at ν≳ −2.5, although it is not
straightforward to reconcile a BEC phase with the presence of
coherence peaks seen in the tunneling data.
Finally, we additionally note that the theoretical plot of the

coherence length in Fig. 25(e) is for the s-wave case, while the
experimental data seem to suggest a nodal form of super-
conductivity. Some aspects of the crossover theory for an
anisotropic gap symmetry were addressed in Sec. IV.B,13 but
one might additionally expect that other ingredients such as
flat energy bands and quantum geometry (discussed in
Sec. V.E) may play an important role as well in reaching
an ultimate understanding of BCS-BEC crossover for
MATBG and MATTG.

E. BCS-BEC crossover for 2D gated semiconductors

There has been recent interest (Saito, Nojima, and Iwasa,
2016; Nakagawa et al., 2018, 2021) in a group of layered
nitrides LixZrNCl, which are intrinsically semiconductors and
exhibit superconductivity through Li-intercalated doping.
These experiments impose control of the carrier density by
use of ionic gating,which provides access to low-carrier-density
systems that are otherwise inaccessible. Concomitantly, the
varying carrier number enables a tuning of the weakly to
strongly coupled superconducting regimes by simultaneously
controlling the carrier density and a dimensional crossover from
anisotropic three dimentions to two dimensions. Both tunneling
and resistivity measurements (Nakagawa et al., 2021) yield
systematic information about the detailed phase diagram of this
system.
This phase diagram (Nakagawa et al., 2021), which is

shown in Fig. 26, indicates a pronounced pseudogap regime
established from dI=dV measurements. This is particularly
notable at low carrier densities, where the system is more
two dimensional. In particular, at extreme underdoping
TBKT shows a maximum of 19 K. In the most underdoped

sample probed, Δ0=EF ≈ 0.3, TBKT=TF ≈ 0.12, and T� is
roughly 3TBKT.
A summary (Nakagawa et al., 2021) of experimental

observations is presented in Fig. 26 as a plot in terms of
T=TF vs Δ0=EF, with data points indicating TBKT and T�. The
pseudogap and associated T� were found to be largest when
the carrier number was lowest. Here for these large gap
systems (which are in the strong-coupling limit) one finds the
smallest coherence length kFξcoh0 ≈ 3, as obtained from the
upper critical fields. This suggests a system that may be close
to but not yet in the BEC regime. In the opposite, highest
electron doping regime, one recovers more characteristic BCS
behavior with TBKT ≈ T�. We conclude that all of this
constitutes a body of evidence that lends reasonably strong
support to a BCS-BEC crossover description of these ionic
gated superconductors.

F. Magnetoexciton condensates with BCS-BEC crossover

The concept of condensation based on particle-hole pairs
(Kohn and Sherrington, 1970; Comte and Nozières, 1982;
Combescot, Combescot, and Dubin, 2017) is a natural
extension of particle-particle pairing in superconductors.
Indeed, one usually invokes the same ground-state wave
function as in Eq. (1), here modified by replacing one of
the electron operators with a hole operator and presuming that
the two are associated with different bands. This subject has
generated considerable enthusiasm, as one could conceive of
such condensation as taking place at high temperatures. There
are a number of subtle features, however, as the electrons and
holes need to be sufficiently well separated to avoid recombi-
nation. Their number and effective masses also need to be
equivalent; otherwise, pairing could be impeded, as this
system would behave like a superfluid with population or
mass imbalance.
An important configuration for arriving at exciton conden-

sation involves quantum Hall fluids (Eisenstein, 2014;
Eisenstein, Pfeiffer, and West, 2019), as was first implemented
by Eisenstein, Pfeiffer, and West (2019) in a GaAs=AlGaAs
heterostructure. Here two thin GaAs layers are separated by the
AlGaAs spacer layer, which serves to mitigate electron-hole

FIG. 26. Experimental data in electron-doped zirconium nitride chloride. The results are from tunneling spectroscopy and dc resistivity
measurements. The transition temperature Tc is defined as the midpoint in the resistivity curves, which is identified as TBKT. The in-
plane coherence length ξ ¼ ξcoh0 is determined from the temperature-dependent upper critical magnetic field measured near the zero-field
Tc. From Nakagawa et al., 2021.

13In the single band d-wave case, the counterpart of the curve in
Fig. 25(e) looks qualitatively similar at low density but will not reach
BEC until a much larger T�=TBKT result. No BEC is found at high
densities.
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recombination processes. Because each layer forms a 2D
electron gas, in the presence of a strong perpendicular magnetic
field B their energies are quantized into Landau levels (LLs).
These bilayer quantum Hall systems have the potential to
realize novel quantum states that have no analog in a single
layer. A relevant parameter for characterizing such states is
d=lB, where d is the interlayer spacing and lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=jeBjp
is

the magnetic length.
There has been a focus (Eisenstein, 2014) on the interlayer

coherent state observed in the zero or small interlayer
tunneling limit and at total electron filling fraction
νtot ¼ ν1 þ ν2 ¼ 1=2þ 1=2 ¼ 1. Here the electron filling
fraction νi ¼ nið2πl2

BÞ is defined for each individual layer,
with ni the electron density of the ith layer. Important
questions such as whether there is a quantum phase transition
separating the large and small d=lB limits have been raised
(Halperin, 1983; Murphy et al., 1994; Moon et al., 1995;
Bonesteel, McDonald, and Nayak, 1996), although recently it
was suggested that the evolution of the state from the large to
small d=lB might be understood as a crossover of BCS
behavior to a BEC of magnetoexcitons (Sodemann et al.,
2017; Wagner et al., 2021; Liu et al., 2022).
This picture can be understood in terms of Jain’s composite

fermions (CFs) (Jain, 2007), where a CF can be roughly
viewed as the original electron attached to two magnetic flux
quanta (2h=e). In the extreme d → ∞ limit, the two layers
decouple and each of them has a LL filling fraction ν ¼ 1=2
that can be described by a metallic state (Halperin, Lee, and
Read, 1993) of either electronlike or, equivalently, holelike
CFs with well-defined Fermi surfaces.
At finite d one can then consider electronlike and holelike

CFs from the two different layers forming interlayer Cooper
pairs, i.e., magnetoexcitons. It is reasonable to assume that
their effective masses are equal near ν ¼ 1=2 due to an
approximate particle-hole symmetry. The pair formation is
driven by an interlayer attraction U that is derived from the
original interlayer Coulomb interaction between electrons and
holes, whose magnitude14 is jUj ∼ V inter ∼ e2=ϵd. Here ϵ is the
background dielectric constant. At the same time the parameter
Ekin, which represents the kinetic energy of a partially filled
Landau state, is set by the intralayer Coulomb repulsion Ekin ∼
V intra ∼ e2=ϵlB (Halperin, Lee, and Read, 1993).
In this way the important ratio jUj=Ekin ∝ lB=d that sets

the scale of a BCS-BEC crossover can be tuned experimen-
tally by varying either d or B. Large-d or high magnetic fields
correspond to the BCS-like limit, while the BEC regime is
present at small-d or low magnetic fields; see Fig. 27. This
BCS-BEC crossover picture is supported by recent measure-
ments on graphene double-layer heterostructures (Liu et al.,
2017, 2022). Compared to the GaAs/GaAlAs double-layer
experiments, this graphene bilayer system has an additional

advantage, as it allows the two graphene layers to be separated
by a thin hexagonal boron nitride layer, which prohibits direct
interlayer tunneling without introducing disorder.
Because the magnetoexcitons are neutral and cannot be

probed in traditional electronic transport, two unconven-
tional designs for resistance measurements have been
employed to experimentally probe the magnetoexciton
superfluidity via “counterflow” and “drag” experiments
(Eisenstein, 2014). Figure 27 presents a summary of the
results from these measurements for the double-layer gra-
phene system (Liu et al., 2022).
In the counterflow configuration electric currents in the two

layers are of the same magnitude but flow in opposite
directions. The absence of dissipation due to “superfluidity”
is associated with a vanishing Rcounter

xx that measures the
longitudinal resistance. These experiments serve to determine
the transition temperature Tc (solid black line) in Fig. 27(a).
A striking signature of magnetoexcitonic superfluidity is a

quantized Hall drag resistance at low temperature in the

FIG. 27. BCS-BEC crossover for magnetoexcitons. (a) Color
coding is associated with the temperature derivatives of the
measured longitudinal resistance in the counterflow configura-
tion. Hall drag and counterflow resistances are used, respectively,
to arrive at the pairing-onset temperature T� (dashed line) and to
infer Tc (solid line) as a function of the ratio of kinetic energy
over effective attraction (through the magnetic field B). (b) Sche-
matic phase diagram expected for a magnetoexciton condensate.
Tpair is the same as T�. From Liu et al., 2022.

14When d ≪ lB, the interlayer interaction is actually governed by
e2=ϵlB, not e2=ϵd. We also note that the actual interlayer interaction
between the CFs is not the same as V inter. Instead, it is mediated by an
emergent Chern-Simons gauge field that makes the renormalized
interaction highly frequency dependent (Halperin, Lee, and Read,
1993; Bonesteel, McDonald, and Nayak, 1996; Wang et al., 2014).
Here we ignore these complications.
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so-called drag configuration. Here the electric current is fed to
only one layer, while the Hall voltage drops are measured in
both layers, from which one can define the usual Hall
resistance Rxy for the current-driving layer. One can also
define a Hall drag resistance Rdrag

xy for the passive layer.
Both Rxy and R

drag
xy are expected to be quantized to the same

value h=ðe2νtotÞ at low T. As T increases above Tc, R
drag
xy

decreases monotonically. Liu et al. (2022) defined the
important temperature scale T� as the point where Rdrag

xy drops
to below 50% of h=ðe2νtotÞ. This temperature T� is plotted in
Fig. 27(a) as the dashed black line. It is reasonable to associate
the residual Rdrag

xy at high temperatures with incoherent pair
correlations between electronlike and holelike CFs. In this
way one interprets T� as the onset of electron-hole CF pair
formation. While there are some uncertainties in the definition
of T�, a clear separation of the two temperature scales Tc and
T� is apparent from Fig. 27(a), which is to be compared to the
schematic phase diagram sketched in Fig. 27(b).
What is not as clear is whether at the lowest appliedmagnetic

field B ≈ 5 T the system has reached the BEC regime, as
suggested15 by Fig. 27. In comparing with a prototypical
example of BCS-BEC crossover, as in the 2D electron gas, it
is useful to establish the magnitude of the effective Δ0=EF,
which would be expected to become arbitrarily large in a more
traditional BEC superconductor. However, exact diagonaliza-
tion studies showed that for the bilayer magnetoexciton system
Δ0 ≲ EF (Wagner et al., 2021). This contrast highlights some of
the key differences between traditional superconductors and
themagnetoexciton bilayer that one needs to bear inmind in the
interpretation of the phenomenology. Quantification of the
exact behavior of Tc=TF, and other quantities characteristic
ofBCS-BECcrossover, for the entire range ofd=lB from∞ to 0
requires further work, both theoretical and experimental.
Since one defining feature of the BEC regime is the

disappearance of Fermi surfaces, a potentially useful future
experiment is to directly probe the Fermi surface of CFs at
Tc < T < T� for small d=lB, using geometric resonance
techniques as employed in the determination of the Fermi
wave vector of CFs for the single layer ν ¼ 1=2 state
(Kamburov et al., 2014). Achieving a number of these goals
seems promising given the high tunability of the bilayer
graphene heterostructure, as demonstrated in a new generation
of experiments (Liu et al., 2017, 2022).

VIII. APPLICATION TO THE CUPRATES

A. Support for and counterarguments against BCS-BEC
crossover in the cuprates

The question as to whether a BCS-BEC scenario is relevant
to the cuprates is, like all aspects of the cuprate literature, a
highly controversial one. Despite this controversy, it is useful

to let readers make an independent judgment; thus, here we
discuss the implications of such a theory for the cuprates. We
address aspects that are both consistent and inconsistent with
the data.
There are claims in the literature that the cuprates are

somewhere betweenBCS andBEC.We cite some of these here.
• From Leggett (2006): “The small size of the cuprate pairs
puts us in the intermediate regime of the so-called BCS-
BEC crossover.”

• From Hufner et al. (2008): “High-Tc superconductors
cannot be considered as classical BCS superconductors,
but rather are smoothly evolving from BEC into the BCS
regime.”

• From Božović and Levy (2020): “We show the likely
existence of preformed pairs in the cuprates…. The
existence of preformed pairs is a necessary but not
sufficient condition for BEC or for BCS-BEC crossover
to occur. Indeed, since Fermi surfaces have been mapped
out … this favors a picture in which pairing is relatively
strong, pre-formed pairs first appear at T > Tc … but
copper oxides are still on the BCS side of the crossover.”

• From Uemura (1997): “Combining universal correla-
tions … and pseudogap behavior in the underdoped
region, we obtain a picture to describe superconductivity
in cuprate systems in evolution from Bose-Einstein to
BCS condensation.”

We note that, even if BCS-BEC crossover theory plays a
role in the cuprate superconductors, this will not address or
elucidate a number of important issues that characterize their
behavior and need to be understood in an ultimate theory.
Among these is the pairing mechanism (Lee, Nagaosa, and
Wen, 2006), which remains unknown; also challenging is
arriving at an understanding of the “strange metal” behavior
including the linear temperature dependence of the resistivity,
which is widespread among other strongly correlated super-
conductors (Varma, 2020).Another puzzle is the distinct change
observed in carrier concentration as a function of hole doping,
which seems to correlate with the presence of a pseudogap
(Proust and Taillefer, 2019). This appears to be consistent with
recent ARPES claims (Chen et al., 2019) that the pseudogap
suddenly collapses at a fixed hole concentration.
We next list issues that have been raised to challenge the

relevance of BCS-BEC crossover theory for the cuprates.
Examples are the following:

(1) Current cuprate experiments show no sign of a
chemical potential μ that is near or below the band
bottom, as might be expected in the BEC regime. This
would show up in ARPES experiments.

(2) Tc and T� are observed to vary inversely in the
underdoped regime. Some have argued that if T� were
related to preformed pairs, then as pairing becomes
stronger both Tc and T� would tend to increase
together.

(3) One finds that a number of (but not all) superconduct-
ing fluctuation phenomena appear only in the imme-
diate vicinity of Tc, which is well below the pseudogap
onset temperature T� (Vishik, 2018).

(4) There are multiple signatures of a “nodal-antinodal
dichotomy” (Hashimoto et al., 2014) corresponding to
different behavior of the d-wave energy gap along the

15Rescaling the measured Tc of the top panel by TF, which can be
estimated as e2=ϵlB, andplotting the obtainedTc=TF as a function ofB
shows that this ratio has not passed the point where it starts to decrease
with decreasingB even atB ≈ 5 T. It suggests that the systemmay still
be in the crossover regime, not yet into the BEC, if we compare this
trend of Tc=TF to that for the 2D electron gas in Fig. 11.
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nodal and antinodal directions. This is widely inter-
preted to mean that rather than preformed pairs,
another (unspecified) ordering must be responsible
for the pseudogap, which is mostly confined to the
antinodes.

(5) There areARPES experiments (Hashimoto et al., 2010)
that indicate that at higher temperatures in the normal
state, butwell belowT�, the fermionic dispersion shows
disagreement with the characteristic energy dispersion
associated with BCS-like quasiparticles.

(6) There are other indications of additional ordering
associated with the pseudogap phase (Ghiringhelli
et al., 2012), quite possibly with an onset associated
with its boundary (Xia et al., 2008; Zhao et al., 2017).

(7) There are claims (Tallon et al., 1999) suggesting that
quantum critical behavior is present such that T�
actually vanishes beneath the superconducting dome;
this is inconsistent with the BCS-BEC crossover
picture, in which T� is necessarily larger than Tc.

Of this list of seven items, the last two seem to be most
challenging for the BCS-BEC crossover scenario, while the
first five are not necessarily so, as discussed in this section and
in Appendices A–C. Attributing the cuprate pseudogap to
preformed pairs as distinguished from a competing order
parameter is admittedly highly controversial. This is not a
central component of this review, which is focused principally
on noncuprate superconductors. Nevertheless, for complete-
ness it is useful to present the predictions concerning the
cuprates that are derived from one particular preformed-pair
scenario: a BCS-BEC crossover perspective. The discussion
presented here and in Appendices B and C functions as a
catalog summary of some relevant theory in the literature.
Further details are provided in the cited papers.

B. Experimental evidence that BCS-BEC crossover may be
relevant to the cuprates

All indications are that, if this scenario is relevant to the
cuprates, these superconductors are on the BCS side and well
away from BEC (Chen et al., 2024). This is consistent with the
claims in a recent paper by Sous, He, and Kivelson (2023),
although they adopted a different definition of crossover
associating it with proximity to a BEC. Indeed, there are
several experiments that stand out as providing among the
strongest support for a BCS-BEC-crossover-like description
of the copper oxides.
ARPES measurements (Kanigel et al., 2008) reveal a

Bogoliubov-like dispersion in part of the Brillouin zone that
is away from the nodal Fermi-arc region. This is observed
slightly above Tc, as shown in Fig. 28. It is highly unlikely,
and indeed inconsistent with the theory that we are discussing
[see Eq. (16), which bears on point 5 in Sec. VIII.A], that this
Bogoliubov dispersion continues up to much higher temper-
atures near the onset of the pseudogap. Indeed, there are
studies that suggest that this characteristic backbending
dispersion is absent well below T� (Hashimoto et al.,
2010). But in the normal state not far from Tc these experi-
ments provide indications that the presence of a pseudogap is
associated with the same fermionic quasiparticles as are found
in the ordered phase (Kanigel et al., 2008).

In a similar vein a smooth evolution of the measured
ARPES excitation gap around the antinodes as the temper-
ature is varied from above to below Tc lends some support to
the crossover picture. An additional, conceptually simple
experiment involves STM studies that compare the ratio of
the zero-temperature pairing gap to T�. This ratio appears to
be close to the expected mean-field result (Oda et al., 1997;
Kugler et al., 2001). This associates the ratio of Δ0 and T� in a
fashion analogous to the BCS prediction of Δ0 and Tc and for
d-wave pairing.
There are additional classes of experiments that constitute

less direct support but are worthy of note and thus are
discussed in this section. These involve the following:

(i) Recent shot-noise measurements (Zhou et al., 2019),
which provided a more direct and quantitative sig-
nature of pairing above Tc. Through pair contributions
to tunneling, these shot-noise experiments (Zhou et al.,
2019) indicated that pairs of charge 2e are present in
large portions of the parameter space dominated by the
pseudogap.Wecautionhere, however, that evidence of
2e pairing may be found in the pseudogap phase of
highly disordered, presumably weakly coupled 2D
superconductors (Bastiaans et al., 2021). In this way,
2e pairing is a necessary but not sufficient effect to
establish BCS-BEC crossover.

(ii) Also relevant is the two-gap dichotomy (Hufner et al.,
2008; Hashimoto et al., 2014) in which there are
distinctive temperature dependencies of the ARPES-
or STM-associated gaps in the nodal and antinodal

FIG. 28. Experimental pseudogap ARPES data showing back-
bending of the dispersion in the normal state (b), which is
suggestively similar to that in the superconducting state (a).
The energy distribution curves were measured at the momenta
along the cut in the Brillouin zone shown in (c). From Kanigel
et al., 2008.
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regions. In the BCS-BEC crossover scenario this two-
gap behavior derives from the simultaneous presence
of condensed and noncondensed pairs.

(iii) Additionally, an observed downturn in the dc re-
sistivity near or below T� seems to be most naturally
associated with the contribution from bosonic trans-
port or from preformed pairs (Timusk and Statt,
1999). Indeed, this small downturn feature is often
used as the canonical signature of T�.

(iv) Lending some support to the crossover picture is the
behavior of the GL coherence length in the cuprates,
which is still not firmly established, as it turns out to
be difficult to measure due to vortex liquid effects.
Some indications of behavior that is rather similar to
that found in the organic 2D superconductor (Suzuki
et al., 2022) are seen in Fig. 14(a) of Suzuki and
Hikita (1991). This is measured above Tc in the
normal state (Chen et al., 2024).

(v) Finally, there is a notable similarity between many
properties of a single-layer cuprate material and that
found for its counterpart in bulk systems (Y. Yu
et al., 2019); this seems to be compatible with the
similarity contained in Eqs. (3) and (5).

Wediscuss someof these experiments inSecs.VIII.C–VIII.H.

C. The spectral function: Distinguishing condensed and
noncondensed pairs

We first address the so-called two-gap dichotomy (Hufner
et al., 2008; Hashimoto et al., 2014), which pertains to the
behavior of the spectral function, where it should be clear that
d-wave pairing plays an important role. In the BCS-BEC
crossover scenario (Chen et al., 2005) the fermionic self-
energy, which is measured in the spectral function, has two
contributions from noncondensed (PG) and condensed (sc)
pairs,

Σðω;kÞ ¼ Δ2
PG;k

ωþ ξ−k þ iγ
þ Δ2

sc

ωþ ξ−k
þ iΓ0: ð31Þ

This same spectral function appeared earlier as Eq. (10), but
here we emphasize the momentum dependence associated
with non-s-wave pairing, and, as customary, we add an
additional phenomenological lifetime Γ0 arising from inco-
herent, single-particle scattering processes. Note that, because
of these two components, this BCS-BEC crossover scheme
has Green’s functions that are similar to those in a well-known
cuprate theory often called the Yang-Rice-Zhang (YRZ)
theory (Rice, Yang, and Zhang, 2012). In the BCS-BEC
crossover scenario one finds Fermi arcs, whereas YRZ
incorporates Fermi pockets (Scherpelz et al., 2014).
In the normal state, a form (Chen and Levin, 2008) similar

to Eq. (31) was shown (Norman et al., 1998) to provide a
reasonably good fit to ARPES data and insights into the Fermi
arcs (Kondo et al., 2015). How do the Fermi arcs originate?
Note that the noncondensed pairs have a finite lifetime, in
contrast to the condensate. This is particularly important for
the case of d-wave pairing. If we consider cooling from above
to below Tc, we see that the onset of the condensate gap Δsc in

the fermionic spectral function is more dramatic in the nodal
region, where there is no normal-state background gap already
present. By contrast, in the antinodal region the onset of Δsc
on top of a largeΔPG has little impact. Thus, as illustrated later
in the review, it is the temperature dependence of the nodal
gap that reflects the onset of the ordered state.
More quantitatively, one defines the spectral (or ARPES)

gap as one-half of the peak-to-peak separation in the spectral
function (Chen and Levin, 2008; Chien et al., 2009).
Figure 29 illustrates the temperature evolution of the spectral
function for φ ¼ 9° (close to the antinodes in Fig. 31) and
φ ¼ 36° (close to the nodes) at varying T=Tc from top to
bottom. Above Tc (top panel of Fig. 29) the well understood
behavior (Chubukov et al., 2007; Norman et al., 2007;
Kanigel et al., 2008) sets the stage for the normal phase that
underlies the superconducting state in the middle and bottom
panels of Fig. 29. At this temperature (T=Tc ¼ 1.1), one sees
Fermi arcs in the Brillouin zone. Here the spectral function is
gapless on the Fermi surface near the nodal direction, while it
is gapped in the vicinity of the antinodal direction. The Fermi
arcs derive from the presence of a temperature-independent
broadening term γ in ΣPG. When T is slightly below Tc
(middle panel of Fig. 29), a dip in the spectral function at
φ ¼ 36° suddenly appears at ω ¼ 0. At this φ the underlying
normal state is gapless, so the onset of the additional
component of the self-energy via Σsc with long-lived pairs
leads to the opening of a spectral gap.
By contrast, the presence of this order parameter is not

responsible for the gap near the antinodes (φ ¼ 9°), which

FIG. 29. Calculated spectral function Aðω;φÞ at T=Tc ¼
1.1; 0.9, and 0.1 (from top to bottom) for φ ¼ 9° (black lines)
and φ ¼ 36° (red lines). The black and red arrows indicate the
size of the spectral gap, which is measured in ARPES. The angle
φ is defined in Fig. 31. From Chien et al., 2009.
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instead primarily derives from ΔPG. Here the positions of the
two maxima are relatively unchanged from their counterparts
in the normal phase. Nevertheless, Δsc does introduce a
sharpening of the spectral function associated with the
deepening of the dip at ω ¼ 0. When T ≪ Tc (lower panel
of Fig. 29), pairing fluctuations are small such that
ΔðTÞ ≈ ΔscðTÞ, and one returns to a conventional BCS-like
spectral function with well-established gaps at all angles
except at the precise nodes.

D. Transport in the cuprates

That the cuprates are highly resistive or bad metals is
important for understanding their transport properties
(Gunnarsson, Calandra, and Han, 2003). This is what allows
the boson-related downturn of resistivity at T�, a canonical
signature of the pseudogap onset (Timusk and Statt, 1999), to
become evident; see Fig. 30. This would otherwise be
obscured by gap effects in the fermionic spectrum. The
fits to the longitudinal dc resistivity shown in Fig. 30 are
based on a phenomenological model (Boyack et al., 2021)
for the pair chemical potential (μpair) that incorporates
the standard fluctuation behavior for T ≳ Tc given by
μpair ≈ ð8=πÞðTc − TÞ. Here, however, one also includes T�

and higher temperature effects through a natural interpola-
tion by associating T� with the temperature where the
number of pairs vanishes. This leads to the following
consolidated form:

μpair ¼
8

π
ðT� − TcÞ ln

T� − T
T� − Tc

: ð32Þ

This form for μpair leads to fits to the resistivity ρðTÞ and its
downturn in Fig. 30 that are not unreasonable. Also empha-
sized here is the presence of “Fermi arcs,” which additionally
help to reveal bosonic transport by suppressing the gap in the
fermionic spectrum. With the same parameters one can arrive
at some understanding of the Nernst effect (Boyack et al.,
2021). However, there are problematic issues concerning the
Hall coefficient (Geshkenbein, Ioffe, and Larkin, 1997;
Boyack et al., 2021) and the thermopower, which affect
essentially all theoretical attempts to understand these cuprate
data and make a direct comparison difficult between theory
and experiment.
Indeed, there is a sizable literature dealing with the Hall

coefficient in the underdoped regime (Rice et al., 1991;
Hwang et al., 1994; Lang et al., 1994; Samoilov, 1994; Jin
and Ott, 1998; Konstantinovic, Li, and Raffy, 2000; Matthey
et al., 2001; Ando and Segawa, 2002; Segawa and Ando,
2004). Among the most serious problems is that the measured
σxy does not appear to be as singular near Tc, as predicted by
Gaussian pairing fluctuation theories, where the expected
singularity is stronger than in σxx. This is presumably
associated with the experimental observation that RH ∝ ρyx
starts to drop with decreasing T slightly above Tc (Lang et al.,
1994; Jin and Ott, 1998) and can even change its sign as T
decreases toward Tc.

FIG. 30. Calculated behavior of the cuprate resistivity and temperature evolution of the Fermi arcs. Bad-metal behavior is important
here, as the small conductivity in the fermionic channel enables the bosonic downturn in the resistivity to be more evident. (a)–(c),
(e) Representative spectral function Aðω ¼ 0;kÞ for temperatures T=t equal to (a) 0.11, (b) 0.15, (c) 0.18, and (e) 0.23. Here Tc=t ¼ 0.1
and T�=t ¼ 0.2, where t is the nearest-neighbor hopping integral. (d) Experimental data for an underdoped Bi2Sr2CaCu2O8þδ indicated
as black dots (Watanabe, Fujii, and Matsuda, 1997). The solid and dashed lines are theoretical fits. Solid blue line, calculated total ρxx;
dashed red line (dashed dark-green line), fermionic (bosonic) contribution to ρxx. From Boyack et al., 2021.

Chen et al.: When superconductivity crosses over: From BCS …

Rev. Mod. Phys., Vol. 96, No. 2, April–June 2024 025002-38



Similarly, the normal-state thermopower in underdoped
cuprates (Huang et al., 1992; Munakata et al., 1992; Fujii
et al., 2002; Badoux et al., 2016; Cyr-Choinière et al., 2017)
(at T ≃ T�) is positive in the experiments for the samples with
the largest pseudogap. This is the opposite of the usual band-
structure predictions and also the opposite of the sign of the
Hall coefficient. Given these problems for the thermopower
and Hall coefficients, comparisons between experiments are
best addressed in the case of the Nernst coefficient.

E. Quantifying the Fermi arcs

Understanding and quantifying the Fermi arcs has become
an important issue in the cuprates. In addition to ARPES
experiments, the existence of Fermi arcs appears to have been
independently established in STM data as well (Lee et al.,
2009; Pushp et al., 2009). The right panel of Fig. 31 presents
gaps extracted from ARPES data (Lee et al., 2007) for a
moderately underdoped sample. The three curves correspond
to three different temperatures with the same legend as that in
the left panel (representing the results of theory). One sees a
pronounced temperature dependence in the behavior of the

ARPES spectral gap for the nodal region (near 45°) compared
to the antinodal region (near 0° and 90°), where there is
virtually no T dependence. The left panel of Fig. 31 presents
the corresponding theoretically predicted behavior, which
exhibits some similarities.
Figure 32 addresses the temperature dependence of the

Fermi arcs and their sharp collapse from above to below Tc
(Chen and Levin, 2008). Note that here it is assumed for
simplicity that the broadening parameter γ is temperature
independent, as the noncondensed pairs, which persist below
Tc, continue to be distinguished from the condensate there.
Plotted is the percentage of arc length as a function of T=T�

and for different doping concentrations from the optimal to
the underdoped regime. There is a clear universality seen in
the normal state in both theory and experiment (shown in the
inset) (Kanigel et al., 2007).

F. Behavior of the finite-ω conductivity

There is substantial interest in the complex ac conductivity
σðωÞ ¼ σ1ðωÞ þ iσ2ðωÞ in the cuprates, notably both in the
optical regime and at terahertz frequencies (Basov and
Timusk, 2005; Bilbro et al., 2011). These experiments are
particularly useful as they can reveal important information
about low-energy excitations and charge dynamics. Both
gapped fermions and noncondensed Cooper pairs can con-
tribute to σðωÞ. In theoretical work summarized here, only the
fermionic contributions were considered, which might rea-
sonably be viewed as a shortcoming.
A key feature of the in-plane σ1ðωÞ is its two component

nature consisting of a “coherent,” Drude-like low-ω feature
followed by an approximately T-independent midinfrared
(MIR) peak (Santander-Syro et al., 2004; Basov and Timusk,
2005; Lee et al., 2005). This is illustrated in Fig. 33.AsLee et al.
(2005) stated: “The two component conductivity extends to the
pseudogap boundary in the phase diagram…. Moreover a
softening of the mid-infrared band with doping resembles the
decrease of the pseudogap temperature T�.”Also of importance
is the fact (Kamarás et al., 1990) that “high Tc materials are in
the clean limit” and also that “… the MIR feature is seen above
and below Tc.” Thus, it appears that this MIR feature is not
associated with disordered superconductivity and related
momentum nonconserving processes, but rather is due to the

FIG. 31. Inferred ARPES gaps as a function of k in one quadrant of the Brillouin zone. Fermi arcs (associated with d-wave pairing)
appear on the Fermi surface near the nodal direction at around φ ¼ 45°. Comparison of (left panel) theory (Chien et al., 2009) with (right
panel) experiment (Lee et al., 2007).

FIG. 32. ARPES comparisons in cuprates showing the collapse
of the Fermi arcs at the superconducting transition. Experimental
data points (Kanigel et al., 2007) are compared to theoretical
curves (Chen and Levin, 2008). T�

ex is the experimental T�
determined by ARPES data.
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unconventional nature of the finite-frequency response (Basov
and Timusk, 2005).
Within the crossover scenario, the presence of noncon-

densed pairs both above and below Tc yields a midinfrared
peak. This peak occurs around the energy needed to break
pairs and thereby create conducting fermions (Wulin et al.,
2012). Its position is doping dependent, and only weakly
temperature dependent, following the weak T dependence of
the excitation gap ΔðTÞ. As T decreases below Tc, the
relatively high frequency spectral weight from these pseudo-
gap effects present in the normal phase is transferred to the
condensate. This leads to a narrowing of the low-ω Drude
feature, as can be seen in both panels of Fig. 33.
Figure 34 shows the theoretical prediction (Wulin and

Levin, 2012) and experimental behavior (Bilbro et al.,
2011) found for the imaginary part of the terahertz conduc-
tivity σ2ðωÞ in the right and left panels, respectively. With
decreasing temperature, at roughly Tc, σ2 shows a sharp
upturn at low ω of the form σ2 ∝ ns=ω, where ns is the

superfluid density. The low-ω contribution above Tc is of
interest to the extent that it may reflect the presence of
dynamical superfluid correlations. This is shown in the insets,
which present an expanded view of the temperature depend-
encies near Tc. Both theory and experiment show that the
nesting of the σ2 vs T curves switches order above Tc. We
emphasize that for this class of experiments the contribution
from preformed pairs does not extend to high temperatures.
Indeed, here the effects are confined to temperatures in the
vicinity of Tc, well below T�. This is in contrast to other
fluctuation experiments. It is notable that the experimental
data show a more pronounced normal-state contribution than
found in theory.

G. Precursor diamagnetism

The normal-state diamagnetic susceptibility in cuprates has
also been widely discussed (Li et al., 2010). Here, in contrast
to the previous discussion surrounding σðωÞ, the interest is

(a) (b)

FIG. 33. Midinfrared conductivity plots in cuprates showing experiment (left panel) (Hwang, Timusk, and Gu, 2007) and theory (right
panel) (Wulin et al., 2012) for an underdoped (UD) Bi2212 superconductor with Tc ¼ 82 K. Both the theory and experimental panels
show the real part of the frequency-dependent conductivity σ1ðωÞ at different indicated temperatures. The midinfrared peak is presumed
to be associated with the presence of a pseudogap.

FIG. 34. Comparison of the behavior of the imaginary part of the terahertz conductivity (σ2) in cuprates at different frequencies as a
function of temperature. Left panel: experimental data at optimal doping (x ¼ 0.16) . Right panel: theory at optimal doping. A
moderately large normal-state σ2 is thought to reflect the presence of a dynamical or fluctuating superfluid density. For this reason there
are enhanced plots of the normal-state regions in both insets accompanying both plots. Left panel: From Bilbro et al., 2011. Right
panel: From Wulin and Levin, 2012.
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focused on the bosonic contributions. In conventional fluc-
tuation theory (Larkin and Varlamov, 2009) the diamagnetic
susceptibility χdia in the vicinity of T ≈ Tc can be relatively
large, as it scales in three dimensions as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T − Tc

p
. What

happens in BCS-BEC crossover theory as a consequence of
the presence of a pseudogap? In a BCS-BEC crossover
scenario χdia now scales (Boyack et al., 2018) asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=jμpairj

p
and, as seen in Eq. (32), the principal effect is

that the inverse pair chemical potential remains appreciable
now for an extended range of temperatures well beyond the
critical region around Tc and strictly vanishes only at T�.
This in turn suggests that there are fluctuation contributions

to the diamagnetism at relatively higher temperatures than are
generally observed in conventional superconductors. Note,
however, that the visibility of fluctuation diamagnetism
depends on other background (generally paramagnetic) con-
tributions, which are often difficult to quantify. A more
detailed analysis leads to the results in Fig. 35, which
compares experiment (G. Yu et al., 2019) and theory
(Boyack et al., 2018).

H. Other applications of BCS-BEC crossover: Features of the
non-Fermi liquid

By way of completeness, we end by including several other
contributions from the literature that address BCS-BEC
crossover theory in cuprates but for which there are no direct
back-to-back experimental comparisons. These involve stud-
ies of how the non-Fermi-liquid pseudogap state is reflected in
quasiparticle-interference (QPI) experiments (Wulin et al.,
2009) based on STM probes, and how it is reflected in
quantum oscillations (Scherpelz, He, and Levin, 2013). In
particular, it was found that the observation of a QPI pattern
consistent with the so-called octet model is a direct signature
of coherent superconducting order (Kohsaka et al., 2008). It
appears from theory that the QPI pattern in the pseudogap

state (Wulin et al., 2009) is distinctly different than that in the
superconducting phase.

IX. CONCLUSIONS

A. Summary

This review was written in response to the large and
relatively recent experimental literature on strongly correlated
superconductors that are thought to exhibit BCS-BEC
crossover phenomena. Many of these derive from artificial
materials such as magic-angle twisted bilayer and trilayer
graphene, quantum Hall bilayers, or ionic-gate-tuned semi-
conductors, as well as single unit cell and interfacial super-
conducting films. Also interesting are naturally grown
superconductors such as Fe chalcogenides and the organic
superconductor κ-ðBEDT-TTFÞ4Hg2.89Br8.
Because of the widespread interest, it is important to

establish more precisely what BCS-BEC crossover theory
is and what it is not. We have done so in this review and in the
process have clarified distinctions between the Fermi-gas and
solid-state superconductors, between two- and three-dimen-
sional materials, and between s- and d-wave order parameter
symmetries. We have also established distinguishing features
of the BEC phase.
More generally, in this review and in the context of different

experiments, we have addressed the three distinct ways of
promoting a system out of the BCS and into the crossover
regime via (i) small electronic kinetic energy scales, (ii) two
dimensionality, or (iii) strong pairing glue. We have empha-
sized that superconducting “domes” and pseudogaps are
ubiquitous for crossover systems in periodic lattices.
The narrative arc of this review is encapsulated through the

evolution from Fig. 1 to Fig. 36, which we now discuss.
Figure 1 introduced the concept of BCS-BEC crossover by
raising the question of how to treat superconductivity in the
presence of progressively stronger attractive interaction
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FIG. 35. Comparison of the behavior of the diamagnetic response above Tc between (a) experiment and (b) theory. In (b), the black
curve for optimal hole doping (x ¼ p ¼ 0.15) and the blue curve for an underdoped system are labeled. The dashed lines are the Pauli
paramagnetic susceptibility for each, while the solid lines are the sum of the paramagnetic and diamagnetic contributions. The solid dots
in (b) indicate the temperature where the onset of the diamagnetism occurs. For the underdoped case the red dotted lines are a linear fit to
the high-temperature data. (a) From G. Yu et al., 2019. (b) From Boyack et al., 2018.
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strengths. Notably, in contrast to the cold Fermi gases, solid-
state experiments have little access to this interaction strength
parameter.
Figure 36, which represents a summary of many of the

various 2D superconducting materials discussed in this
review, allows us to compare crossover theory and experi-
ment. This is made possible by effectively representing the
dimensionless interaction strength parameter in BCS-BEC
crossover theory through dimensionless ratios of physically
accessible parameters such as T�=TBKT andΔ0=EF. One could
similarly consider kFξcoh0 in counterpart plots. All of these are
strongly interconnected, and Fig. 36 indicates that their
interdependencies are generally robust to variations in the
pairing symmetry (here from s wave to d wave).
Plotted on the vertical axis in a logarithmic scale is Δ0=EF,

where Δ0 is the zero-temperature excitation gap, while on the
horizontal axis in a linear scale T�=TBKT is plotted for two-
dimensional superconductors. The upper (black) and lower
(blue) theoretical curves are for s- and d-wave pairing
symmetries, respectively. The data points come from the
lithium-intercalated nitride films (Nakagawa et al., 2021),
from one unit cell FeSe on strontium titanate (Faeth et al.,
2021), and from magic-angle twisted bilayer as well as trilayer
graphene (Cao et al., 2018; Oh et al., 2021; Park et al., 2021;
Kim et al., 2022).
Two additional datasets are associated with strongly

disordered Pb films (Zhao et al., 2013) and from the
interface superconductor LaAlO3SrTiO3 (Božović and
Levy, 2020). In Fig. 36, because of their small Δ0=EF
ratios, both are distinct from BCS-BEC crossover candidate

materials. A comparison of theory and experiment in this
replotting thus highlights the distinction between strong
pairing and strong disorder. In this way, Fig. 36 serves as a
template for helping to identify BCS-BEC crossover sys-
tems. The existence of a pseudogap (through the deviation
of T�=Tc from unity), as well as observations of 2e pairing,
appears to be insufficient.
Additionally, we have addressed the question of under

what circumstances one should expect to reach the BEC
regime for a solid-state superconductor. In general, in this
regime, rather than a large transition temperature, one finds
small magnitudes of Tc or TBKT. This point has often been
missed in the literature because the standard for the BCS-
BEC crossover phase diagrams is based on Fermi-gas
physics, where the BEC asymptote is large. This distinction
is emphasized in Fig. 1.
In the BEC regime, all signs of a Fermi surface have

disappeared. Thus far we have not been able to report any
unambiguous evidence that candidate systems have reached
the BEC regime. Some signatures of the BEC that we have
previously invoked are that in this regime the character of the
states within vortex cores is distinctly different (Chien, He
et al., 2006). Similarly, in this regime coherence peaks in the
quasiparticle tunneling characteristics will be absent.
Theoretical indications are that a BEC superconductor can
occur when either T�=TBKT is much larger (say, of the order of
10), accompanied by more conventional values of Δ0=EF, or
alternatively with Δ0=EF of the order of 10 or more,
accompanied by more conventional values of T�=TBKT.
The latter relates to the interesting scenario in which

FIG. 36. Summary comparison between 2D BCS-BEC crossover theoretical predictions and experimental systems discussed in this
review. The two theoretical curves correspond to s- and d-wave pairing results obtained for a square lattice. On the vertical axis, the
value ofΔ0 is assumed to be at T ¼ 0. The data points (see Appendix A) come from experiments on the lithium-intercalated nitride films
(Nakagawa et al., 2021), one unit cell FeSe on strontium titanate (Faeth et al., 2021), and magic-angle twisted bilayer and trilayer
graphene (Cao et al., 2018; Oh et al., 2021; Park et al., 2021; Kim et al., 2022). Two additional datasets are associated with strongly
disordered Pb films (Zhao et al., 2013) and those from the interface superconductor LaAlO3SrTiO3 (Božović and Levy, 2020). Among
these the disordered Pb films are not related to BCS-BEC crossover, nor are the LaAlO3=SrTiO3 films, which also appear to be subject to
disorder (Chen et al., 2018). This figure suggests a clear separation between superconductors that are compatible with BCS-BEC
crossover physics and those that are not.
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superconductivity occurs in the presence of flat energy bands
with nontrivial band topology and quantum geometry.
We emphasize that establishing a given superconductor as

belonging to the crossover regime can be done through a
two-parameter analysis (both Δ0=EF and T�=Tc must be
moderately large, as in Fig. 36) or through a one-parameter
analysis by showing that kFξcoh0 is moderately small but in
excess of the lower bounds set by Eqs. (29) and (30). These
bounds arise because the dimensionless coherence length is
readily quantified in terms of a fundamental variable of
crossover physics: the normalized pair density npair=n at the
transition temperature. This necessarily varies continuously
from 0 in the strict BCS limit to exactly 1=2 (discounting
small thermal effects) in the BEC regime, where kFξcoh0

saturates. As discussed in this review, such a compact
expression for the coherence length follows from the
Schafroth-like equation for Tc in Eq. (3). We note that kF
here reflects the fixed density of electrons in the super-
conductor, and thus does not contain many-body effects or
other band-structure complexities. Finally, it is most grati-
fying that experiments studying superconductivity in the
solid state (as distinct from cold gases) have access [albeit
with some uncertainty (Suzuki and Hikita, 1991)] to this
parameter, as outlined in Sec. VII.

B. Outlook

More generally, in looking toward the future we are poised
at the beginning of an extremely interesting era where the
development of synthetic superconductors seems limitless.
Tunable 2D superconductors [such as MATBG (Cao et al.,
2018; Oh et al., 2021), MATTG (Park et al., 2021; Kim et al.,
2022), LixZrNCl (Nakagawa et al., 2021), etc.] are likely
candidates for realizing superconductivity in the strong-
coupling regime. The coupling strength and Fermi energy
can be dramatically and precisely tuned by twisting, gating,
and doping, which provides the best platform to observe BCS-
BEC crossover physics and to compare with theory.
This review can serve as a blueprint for future experimental

endeavors, as it establishes concrete, experimentally falsifi-
able criteria to determine whether a given superconductor is in
the BCS-BEC crossover regime. A singular observation of
only the pseudogap phase or pairing above Tc no longer
suffices. Future experimental studies will need to combine
measurements of Δ, EF, T�, and Tc or TBKT to place candidate
materials on Fig. 36. Critical tests will be to perform these
measurements with a continuous tuning parameter (gating,
doping, twisting, or isovalent substitution) to enable a com-
parison between theory and experiment in an extended region
of Fig. 36. An example of such complete studies is the work
on LixZrNCl summarized by Nakagawa et al. (2021).
We note that other tunable 2D superconductors such as

twisted transition metal dichalcogenides can also host flat
bands (Devakul et al., 2021; Li et al., 2021) and should be

viewed as future candidates for superconductivity in the BCS-
BEC crossover regime. It has also been predicted that non-
equilibrium optical driving on twisted bilayer graphene can
induce flat-band behavior associated with an effective Floquet
Hamiltonian (Assi et al., 2021); this provides a route toward
the strong-coupling limit. The implications of the BCS-BEC
crossover scenario in a general nonequilibrium context will be
important to address. Ultrafast spectroscopic experiments
should more generally be explored to characterize this
band-structure engineering and its potentially new forms of
superconductivity.
Additionally, the study of high-Tc Fe-based superconduc-

tors will lead to new opportunities and challenges to explore
the connection between the BCS-BEC crossover physics,
high-Tc superconductivity, and topological superconductivity.
We note that the disparity between the transport Tc (∼40 K)
and the spectroscopic T� (∼70 K) has been a fundamental
issue undermining further progress on monolayer
FeSe=SrTiO3 systems (Faeth et al., 2021). This review can
serve as the starting point to systematically explore crossover
physics for understanding this interesting 2D high-Tc super-
conductor. A systematic tuning experiment using gating,
doping, or Se:Te substitution will need to be performed.
With a specific Se:Te ratio of x∶1 − x between x ¼ 0.45 and
0.55, the FeTe1−xSex bulk system exhibits a nontrivial top-
ology with a superconducting topological surface state (Zhang
et al., 2018). It remains to be seen what the role of this
topology will be in crossover physics.
Among new theoretical challenges, BCS-BEC crossover

theories of superconductivity will need to accommodate the
effect of magnetic fields, which will complete understanding
of the canonical superconducting phase diagrams. What is the
nature of the noncondensed pairs in the presence of a magnetic
field (Scherpelz et al., 2013)? How does condensation proceed
when the dimensions of the system are effectively reduced by
the presence of Landau levels (Schafroth, 1955; Lee and
Shenoy, 1972), and how does one understand the dynamics of
vortices from BCS to BEC (Mozyrsky and Chubukov, 2019)?
Conceptually related is the central and difficult issue: How to
generalize the Bogoliubov–de Gennes equations to the
crossover situation at finite temperature. This would enable
other important calculations, for example, those describing
Andreev tunneling, the effects of proximitization, and how to
address the vast number of situations that involve spatially
dependent superconductivity. This is notably a difficult
problem, as one needs to incorporate two distinct types of
now spatially dependent gaps associated with condensed and
noncondensed pairs.
In a discipline where theory and experiment work hand in

hand, it is clear that the multiple experimental platforms
described in this section collectively present enormous oppor-
tunities for future theoretical developments. In the process
they enhance our understanding of this generalized BCS
theory in a deeper and much broader sense.
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LIST OF SYMBOLS AND ABBREVIATIONS

ℏ (reduced) Planck constant
kB Boltzmann constant
c speed of light
e electron charge
EF Fermi energy
kF Fermi momentum
Tc critical temperature for the (superfluid or superconducting) phase

transition
TBKT, Tφ BKT transition temperature for (quasi-)2D superfluids
T�, TΔ, Tpair pair formation or pseudogap onset temperature
T temperature
μ fermionic chemical potential
μpair pair chemical potential
μB bosonic chemical potential
μN normal-state fermion chemical potential (which could be extrapolated

down to T ¼ 0)
Δ fermionic excitation gap
Δsc superconducting or superfluid order parameter
ΔPG pseudogap
ΔBCS mean-field gap obtained from BCS theory
Δ0 ≡ ΔðT ¼ 0Þ zero-temperature gap
four-vector k≡ ðiωn;kÞ

P
k ≡ T

P
n

P
k, where ωn ¼ ð2nþ 1ÞπkBT=ℏ is the odd (fermionic)

Matsubara frequency, with n∈Z
four-vector q≡ ðiΩl;qÞ

P
q ≡ T

P
l

P
q, whereΩl ¼ 2lπkBT=ℏ is the even (bosonic) Matsubara

frequency, with l∈Z
fðxÞ ¼ 1=ðex=kBT þ 1Þ Fermi-Dirac distribution function
bðxÞ ¼ 1ðex=kBT − 1Þ Bose-Einstein distribution function
GðkÞ, G0ðkÞ full and bare Green’s functions for fermions
ΣðkÞ self-energy of fermions
ΣscðkÞ superconducting self-energy of fermions
ΣPGðkÞ pseudogap self-energy of fermions
χðqÞ pair susceptibility
tðqÞ t matrix
U < 0 strength of the attractive interaction between fermions
Uc critical interaction strength at which the two-body scattering length

diverges in free space or, more generally, the strength at which a bound
state starts to emerge

Vk;k0 ¼ Uφkφk0 separable pairing interaction with a strength U < 0 and a symmetry
factor φk: for a contact potential or the attractive Hubbard model,
φk ¼ 1; for the cuprates, φk ¼ cos kx − cos ky

Ekin characteristic kinetic-energy scale, which can be taken to be half of the
bandwidth at moderate density or EF at low density

ϵk ¼ k2=2m bare fermion dispersion in free space, with ℏ ¼ 1.
ϵk ¼ 2tð2 − cos kx − cos kyÞ þ
4t0ð1 − cos kx cos kyÞ þ 2tzð1 − cos kzÞ

bare fermion dispersion in a quasi-2D square lattice, where t and t0 are
the nearest and next-nearest neighbor in-plane hopping integral,
respectively, and tz is the out-of-plane hopping integral; the lattice
constants have been set to unity: a ¼ b ¼ c ¼ 1

ξk ¼ ϵk − μ bare fermion dispersion measured from the chemical potential
Ek Bogoliubov quasiparticle dispersion
u2k ¼ ð1=2Þð1þ ξk=EkÞ,
v2k ¼ ð1=2Þð1 − ξk=EkÞ

coherence factors as given in BCS theory
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ΨBCS ground-state BCS wave function
n fermion number density
p ¼ 1 − n or x ¼ 1 − n hole-doping concentration (in cuprates)
nB ≡ npair fermion pair or boson number density
MB ≡Mpair effective mass of fermion pairs or bosons
Nq=N quasicondensate fraction (in 2D Fermi-gas experiments)
ρs superfluid phase stiffness having dimension ½n�=½m�
as s-wave interfermion scattering length
a2D 2D s-wave interfermion scattering length
d interparticle distance≡dparticle (in MATBG and MATTG) and interlayer

distance in the double-layer quantum Hall context
ξcoh0 GL coherence length
ξ0 pair size
Hc2 upper critical field
B magnetic-field strength
lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=jeBjp
magnetic length

Φ0 ¼ hc=j2ej flux quantum
ρxx longitudinal resistivity
ρxy transverse resistivity
RH; Rxy Hall resistance, transverse resistance
Rcounter
xx longitudinal counterflow resistance measured in the double-layer

quantum Hall systems
Rdrag
xy Hall drag resistance

σ1, σ2 real and imaginary parts of the conductivity σðωÞ
χdia diamagnetic susceptibility
Mdia diamagnetic response in magnetization
Dcrit

pair critical value associated with the phase-space density of pairs for the
BKT transition

1=T1 nuclear spin-lattice relaxation rate
Vg; Vgate gating voltage
ν electronic band filling factor (in MATBG and MATTG)
θ twist angle (in MATBG and MATTG)
3D three-dimensional
2D two-dimensional
1UC one unit cell (thickness)
AL Aslamazov-Larkin (theory)
AFM antiferromagnetic
ARPES angle-resolved photoemission spectroscopy
BCS Bardeen-Cooper-Schrieffer (theory)
BEC Bose-Einstein condensation
BKT Berezinskii-Kosterlitz-Thouless (transition)
BSCCO, Bi2212 Bi2Sr2CaCu2O8þδ

CF composite fermion
dc direct current
DMFT dynamical mean-field theory
GL Ginzburg-Landau (theory)
GP Gross-Pitaevskii (equation)
LAO/STO LaAlO3=SrTiO3 (interface)
LSCO, La214 La1−xSrxCuO4

LL Landau level
MIR midinfrared (conductivity)
MATBG (MATTG) magic-angle twisted bilayer (twisted trilayer) graphene
meV milli-electron volts
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NMR nuclear magnetic resonance
NSR Nozières and Schmitt-Rink
OD overdoped (cuprates)
PG pseudogap
QMC quantum Monte Carlo (simulations)
QPI quasiparticle interference
rf radio frequency (spectroscopy)
RPA random phase approximation
TDGL time-dependent Ginzburg-Landau (theory)
TMA t-matrix approximation
SC superconductor
SCTA self-consistent t-matrix approximation
SI superconductor-insulator (transition)
SIN superconductor-insulator-normal metal (tunneling junction)
STM scanning tunneling microscopy
STS scanning tunneling spectroscopy
UD underdoped (cuprates)
YBCO YBa2Cu3O7−δ
Y123 Y0.8Ca0.2Ba2Cu3O7−δ
YRZ Yang-Rice-Zhang (theory)
μSR muon-spin resonance, rotation, or relaxation
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APPENDIX A: EXPERIMENTAL DATA FOR 2D
SUPERCONDUCTORS

In this appendix, we present in Table I the data collected for
Fig. 36 from various sources. In the table, if TBKT is not
available, we use the corresponding Tc.
The sources of the data are as follows: for ðFeSeÞ1=STO,

fTBKT; T�g are from Faeth et al. (2021) and fΔ0; EFg are from
Liu et al. (2012). For ðPbÞ4=Si the data for fTBKT; T�g are
from Zhao et al. (2013). To estimate Δ0=EF we use data from
Zhang et al. (2010), whose sample was actually a monolayer
Pb film on a Si substrate [ðPbÞ1=Si]. We do not expect Δ0=EF
to differ much between ðPbÞ4=Si and ðPbÞ1=Si.
The data for LixZrNCl are from Nakagawa et al. (2021). For

ð001ÞLAO=STO we use data from Pai et al. (2018) for TBKT,
data from Richter et al. (2013) for fT�;Δ0g, and data from

TABLE I. Experimental data collected for Fig. 36. We identify the low-temperature gap withΔ0. For LixZrNCl, different rows are for different
carrier densities. ðFeSeÞ1=STO, monolayer FeSe grown on the SrTiO3 substrate; ðPbÞ4=Si, four-monolayer Pb film grown on the Si substrate;
ð001Þ LAO/STO, ð001Þ-oriented LaAlO3=SrTiO3 interface; MATBG, magic-angle twisted bilayer graphene; MATTG, magic-angle twisted
trilayer graphene.

Materials TBKT T� Δ0 EF T�=Tc Δ0=EF

ðFeSeÞ1=STO 38 K 72 K 15 meV 60 meV 1.89 0.25
ðPbÞ4=Si 2.4 K 6.9 K 0.35 meV 380 meV 2.9 0.001
(001) LAO/STO 100 mK 500 mK 65 μeV 47 meV 5 0.001
LixZrNCl 0.031TF 0.055TF � � � � � � 1.78 0.067

0.061TF 0.13TF � � � � � � 2.1 0.18
0.088TF 0.20TF � � � � � � 2.25 0.26
0.097TF 0.24TF � � � � � � 2.45 0.27
0.10TF 0.30TF � � � � � � 2.84 0.31
0.12TF 0.35TF � � � � � � 3.0 0.36

MATBG 1.0 K 4 K 1.4 meV 20 K 4 0.8
MATTG 2.25 K 7 K 1.6 meV 32 K 3.1 0.58
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Sulpizio et al. (2014) and Pai et al. (2018) for EF. In this
system we have used the dxy orbital band to arrive at EF, and
the data collected all roughly correspond to the same gating
voltage (Vg ≈ −100 V).
The values of fTBKT; T�; EFg for MATBG are from Cao

et al. (2018) for a twist angle θ ≈ 1.05°. Here T� is estimated
using the Ohmic recovery point from the V-I characteristic
measurement, and Δ0 was obtained from Oh et al. (2021). The
latter was measured for a close but slightly different twist
angle (θ ≈ 1.01∘) system.
For MATTG we use data from Park et al. (2021) for TBKT

and data from Kim et al. (2022) for fT�;Δ0g. The value of EF
was estimated by Stevan Nadj-Perge and was provided
through a private communication.

APPENDIX B: GENERAL BCS-BEC CROSSOVER
THEORY FOR d-WAVE CASE NEAR HALF FILLING

In this appendix, we present additional details about BCS-
BEC crossover theory in the d-wave case, focusing on the
region around half filling in the electron band. The results here
are presumed to be generally appropriate to nodal super-
conductors in this half-filled regime where (as discussed in the
text) a BEC is not accessible. In Appendix C, we address some
aspects of cuprate experiments, but it is important not to
confuse the phenomenological appendix with the more precise
predictions that we present here.
For definiteness, we look at a typical band structure that

happens to be used for cuprates (but otherwise is of no
consequence). We take ϵk ¼ ð4tþ 4t0 þ 2tzÞ − 2tðcos kx þ
cos kyÞ − 4t0 cos kx cos ky − 2tz cos kz with t0=t ¼ −0.3. This
band structure is more complicated than that used in the
main text (for both s- and d-wave systems), as it has a
van Hove singularity which is prominent for the band fillings

that we address. This is found to affect some properties of the
crossover.
The goal of this appendix is to present the general behavior

of the T� and Tc phase diagrams and the associated proper-
ties of the chemical potential. The latter is useful to establish
because it can in principle be measured. Moreover, the size
of the fermionic chemical potential is often viewed as a
measure of where a given system is in the crossover
spectrum. By contrast, we emphasize here how improbable
it is to find a solid-state superconductor anywhere near a
BEC, unlike in the Fermi gases. As discussed in the main
text, there are better indicators of crossover physics than
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found in μ, for example, through the behavior of T�=Tc and
the coherence length.
Figure 37(a) plots a d-wave phase diagram at a hole

concentration p ¼ 1 − n ¼ 0.15 as a function of the attractive
coupling constant. Indicated are representative values of T�

and Tc. The solid line in Fig. 37(b) serves to characterize the
behavior of the self-consistently determined fermionic chemi-
cal potential μðTÞ for this particular interaction strength as a
function of temperature T. The dashed line indicates the
counterpart value of the extrapolated normal state μNðTÞ,
which is obtained by turning off the attraction. A crucial point
follows by comparing Figs. 37(a) and 37(b), where we see
that, although there is an appreciable separation between T�
and Tc, the chemical potential differs only slightly from its
normal-state value (Sous, He, and Kivelson, 2023; Chen
et al., 2024).
Figure 38 presents the calculated phase diagrams for a

range of hole concentrations near half filling. For reasons that
later become clear, we choose T�=Tc to be 4.7 to illustrate the
behavior for a slightly lower hole doping p ¼ 0.1, while
T�=Tc ¼ 1.05 for a system with higher doping corresponding
to p ¼ 0.25. These two cases show the effects of increasing
and decreasing the size of the pseudogap, respectively.
Table II summarizes some central findings. Here we tabulate

results for all three hole-doping levels p ¼ f0.1; 0.15; 0.25g,
including the behavior of the chemical potentials. The table
presents the ratios of the zero-temperature chemical potential μ
to their normal-state counterparts. The difference from unity is
small and, in the most extreme case, still less than 10%. From
this comparison, one might view these systems as conventional
BCS superconductors, but we emphasize that they all belong to
the BCS-BEC crossover regime, as Tc and T� are distinct.

APPENDIX C: IMPLICATIONS OF THE CUPRATE
PHASE DIAGRAM AND ITS RELATION TO THE
TWISTED GRAPHENE FAMILY

Whether any of the previous discussion is relevant to
cuprates cannot be unequivocally established. But it is useful
to explore what the consequences are if we assume the values
of n and T�=Tc chosen above and then establish the

implications of this d-wave BCS-BEC crossover. Indeed,
the correspondence between both of these parameters can
be seen as reasonably compatible with the cuprate phase
diagram shown in Fig. 39 (Hashimoto et al., 2014). This
compatibility of the parameter set assumes that the measured
T� is related to pairing.
We emphasize that there are complexities concerning this

phase diagram that are still not fully settled. Among these is
the observation of a second characteristic temperature (Vishik,
2018), which is not shown in Fig. 39. This temperature is
typically about 20% above Tc, although significantly below
T� for heavily underdoped cuprates; this could be associated
with the onset of a more extended fluctuation regime where
bosonic transport derived from quasistable preformed pairs
near condensation is significant. Here we focus only on the
higher pseudogap temperature T�. We emphasize that there is
no unanimity as to whether one should associate the exper-
imental T� with pairing or an alternative energy scale, for
example, deriving from possible ordering [for example, d-
density wave (Chakravarty et al., 2001)] or fluctuations in the
particle-hole channel.
We view the ratio T�=Tc and the corresponding density as

input parameters. However, one test of the applicability of this
theory comes from establishing the corresponding size of the
electronic energy scales needed to match the size of the
measured Tc and T�, say, in kelvins. At issue are the hopping
matrix elements, which determine the bandwidth and Fermi
energy for each cuprate with a different hole concentration.
One could estimate that Tc=TF is around 0.1 in the

underdoped cuprates, as confirmed in Table III, where we
present a more precise analysis. We emphasize that in the
literature the observation that Tc=TF ≈ 0.1 is often

TABLE II. Changes in chemical potential associated with different
values of T�=Tc. Here W ¼ 4t.

Hole doping T�=Tc jUj=W μðT ¼ 0Þ=μNðT ¼ 0Þ
p ¼ 0.10 4.73 1.06 1.09
p ¼ 0.15 2.03 0. 45 1.04
p ¼ 0.25 1.05 0.095 1.003

FIG. 39. Experimental cuprate phase diagram. From Hashimoto
et al., 2014.

TABLE III. Key parameters for hole-doped cuprates. In some sense these are near weak coupling, which reflects the fact that the cuprates
T�=Tc are not large, except at extreme underdoping. Here Δ0 ¼ 2Δ, which is the zero-temperature spectral gap jΔkj ¼ jΔðcos kx − cos kyÞj at
ðkx; kyÞ ¼ ðπ; 0Þ as measured in ARPES.

Hole doping T� (K) Tc (K) T�=Tc t (meV) 2Δ0=kBTc TF (K) Tc=TF jUj (meV)

p ¼ 0.10 260 55 4.73 22.7 25.9 502 0.11 96.4
p ¼ 0.15 190 93 2.03 46.6 9.85 975 0.095 84.0
p ¼ 0.25 32 30.6 1.05 130 4.28 2466 0.012 49.3
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misinterpreted as representing the BEC limit of a Fermi gas.
By contrast, the analysis here shows that this characteristic
number is associated with a solid-state superconductor that is
far from the BEC regime.
More specific cuprate parameters are presented in Table III,

which indicates that the only adjustable parameter is the
hopping parameter t, in the fifth column of the table. We note
that this fitting suggests that the effective bandwidths will
have to decrease as the system becomes more underdoped.
Moreover, the attractive interaction U appears to become
stronger as the insulator is approached. This should have some
consequences for the origin of the pairing glue. The TF values
shown seem to be slightly smaller than those presented by
Uemura (1997), but not by orders of magnitude. This remains
an unsettled issue.
We note that, in a recent work (Harrison and Chan, 2022)

that applied BCS-BEC crossover theory to cuprates, it was
suggested that the cuprates with a “magic” ratio of 2Δ0=Tc ¼
6.5 can be identified with the unitary point in a three-
dimensional cold Fermi gas. This unitary point relates to
the location of an isolated two-body bound state. However, as
emphasized in this review, the superconducting phase dia-
grams of solid-state superconductors and Fermi gases are
much different, making such an identification difficult to
support. In particular, from Table III it follows that even at the
optimal doping p ¼ 0.15, we have 2Δ0=Tc ¼ 9.85, which is
consistent with numbers obtained from photoemission experi-
ments (He et al., 2018). This value is larger than 6.5 and, on
the basis of the analysis of the chemical potential (Table II), it
follows that such systems are far from the BEC.
We end this review with a discussion of Fig. 40, which

consolidates the results in Table III with those in Figs. 10
and 36. Figure 40 presents a combination of the key parameters
associated with both MATBG and MATTG and a collection of
counterpart data on the hole-doped cuprates. Indeed, one can
see that the two graphene points are sandwiched between the

two most underdoped cuprates (p ¼ 0.10 and 0.15). While it
has been conjectured thatMATBG bears a striking similarity to
cuprates (Oh et al., 2021), Figure 40 presents some quantitative
evidence in support of this point.

REFERENCES

Abuki, H., and T. Brauner, 2008, Phys. Rev. D 78, 125010.
Allen, S., and A.-M. S. Tremblay, 2001, Phys. Rev. B 64, 075115.
Anderson, B. M., C.-T. Wu, R. Boyack, and K. Levin, 2015, Phys.
Rev. B 92, 134523.

Anderson, P. W., 1959, J. Phys. Chem. Solids 11, 26.
Ando, Y., and K. Segawa, 2002, J. Phys. Chem. Solids 63, 2253.
Andrenacci, N., A. Perali, P. Pieri, and G. C. Strinati, 1999, Phys.
Rev. B 60, 12410.

Aslamazov, L. G., and A. I. Larkin, 1968, Sov. Phys. Solid State 10,
875.

Aslamazov, L. G., and A. I. Larkin, 1975, Sov. Phys. JETP 40, 321,
http://jetp.ras.ru/cgi-bin/dn/e_040_02_0321.pdf.

Assi, I. A., J. P. F. LeBlanc, M. Rodriguez-Vega, H. Bahlouli, and M.
Vogl, 2021, Phys. Rev. B 104, 195429.

Badoux, S., et al., 2016, Phys. Rev. X 6, 021004.
Bardeen, J., L. N. Cooper, and J. R. Schrieffer, 1957, Phys. Rev. 108,
1175.

Bartenstein, M., A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H.
Denschlag, and R. Grimm, 2004, Phys. Rev. Lett. 92, 120401.

Basov, D. N., and T. Timusk, 2005, Rev. Mod. Phys. 77, 721.
Bastiaans, K. M., et al., 2021, Science 374, 608.
Bauer, J., and A. C. Hewson, 2009, Europhys. Lett. 85, 27001.
Berezinskii, V., 1972, Sov. Phys. JETP 34, 610, http://jetp.ras.ru/cgi-
bin/dn/e_034_03_0610.pdf.

Bilbro, L., R. V. Aguilar, G. Logvenov, O. Pelleg, I. Bozovic, and N.
Armitage, 2011, Nat. Phys. 7, 298.

Bloch, I., J. Dalibard, and W. Zwerger, 2008, Rev. Mod. Phys. 80,
885.

Bonesteel, N. E., I. A. McDonald, and C. Nayak, 1996, Phys. Rev.
Lett. 77, 3009.

Bourdel, T., L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M.
Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans, and C. Salomon,
2004, Phys. Rev. Lett. 93, 050401.

Boyack, R., Q. J. Chen, A. A. Varlamov, and K. Levin, 2018, Phys.
Rev. B 97, 064503.

Boyack, R., X. Wang, Q. J. Chen, and K. Levin, 2019, Phys. Rev. B
99, 134504.

Boyack, R., Z. Wang, Q. J. Chen, and K. Levin, 2021, Phys. Rev. B
104, 064508.

Božović, I., and J. Levy, 2020, Nat. Phys. 16, 712.
Cancellieri, C., M. L. Reinle-Schmitt, M. Kobayashi, V. N. Strocov,
P. R. Willmott, D. Fontaine, P. Ghosez, A. Filippetti, P. Delugas,
and V. Fiorentini, 2014, Phys. Rev. B 89, 121412.

Cao, Y., V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras,
and P. Jarillo-Herrero, 2018, Nature (London) 556, 43.

Capone, M., C. Castellani, and M. Grilli, 2002, Phys. Rev. Lett. 88,
126403.

Caviglia, A., S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M.
Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M. Triscone,
2008, Nature (London) 456, 624.

Chakravarty, S., R. B. Laughlin, D. K. Morr, and C. Nayak, 2001,
Phys. Rev. B 63, 094503.

Chand, M., G. Saraswat, A. Kamlapure, M. Mondal, S. Kumar, J.
Jesudasan, V. Bagwe, L. Benfatto, V. Tripathi, and P.
Raychaudhuri, 2012, Phys. Rev. B 85, 014508.

FIG. 40. Evidence supporting that cuprates may belong to the
BCS-BEC crossover family and that cuprates and the two twisted
graphene superconducting families MATBG and MATTG seem
to be similar. The cuprate data of La214, Bi2212, and Y123 are
the same as in Fig. 10. In the legend, “Table III” represents the
additional two cuprate data points from Table III for hole doping
p ¼ 0.1 and 0.15. The solid line is the predicted behavior for a d-
wave crossover superconductor.

Chen et al.: When superconductivity crosses over: From BCS …

Rev. Mod. Phys., Vol. 96, No. 2, April–June 2024 025002-49

https://doi.org/10.1103/PhysRevD.78.125010
https://doi.org/10.1103/PhysRevB.64.075115
https://doi.org/10.1103/PhysRevB.92.134523
https://doi.org/10.1103/PhysRevB.92.134523
https://doi.org/10.1016/0022-3697(59)90036-8
https://doi.org/10.1103/PhysRevB.60.12410
https://doi.org/10.1103/PhysRevB.60.12410
https://doi.org/10.1142/9789814317344_0004
https://doi.org/10.1142/9789814317344_0004
http://jetp.ras.ru/cgi-bin/dn/e_040_02_0321.pdf
http://jetp.ras.ru/cgi-bin/dn/e_040_02_0321.pdf
http://jetp.ras.ru/cgi-bin/dn/e_040_02_0321.pdf
http://jetp.ras.ru/cgi-bin/dn/e_040_02_0321.pdf
https://doi.org/10.1103/PhysRevB.104.195429
https://doi.org/10.1103/PhysRevX.6.021004
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRevLett.92.120401
https://doi.org/10.1103/RevModPhys.77.721
https://doi.org/10.1126/science.abe3987
https://doi.org/10.1209/0295-5075/85/27001
http://jetp.ras.ru/cgi-bin/dn/e_034_03_0610.pdf
http://jetp.ras.ru/cgi-bin/dn/e_034_03_0610.pdf
http://jetp.ras.ru/cgi-bin/dn/e_034_03_0610.pdf
http://jetp.ras.ru/cgi-bin/dn/e_034_03_0610.pdf
http://jetp.ras.ru/cgi-bin/dn/e_034_03_0610.pdf
https://doi.org/10.1038/nphys1912
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PhysRevLett.77.3009
https://doi.org/10.1103/PhysRevLett.77.3009
https://doi.org/10.1103/PhysRevLett.93.050401
https://doi.org/10.1103/PhysRevB.97.064503
https://doi.org/10.1103/PhysRevB.97.064503
https://doi.org/10.1103/PhysRevB.99.134504
https://doi.org/10.1103/PhysRevB.99.134504
https://doi.org/10.1103/PhysRevB.104.064508
https://doi.org/10.1103/PhysRevB.104.064508
https://doi.org/10.1038/s41567-020-0915-8
https://doi.org/10.1103/PhysRevB.89.121412
https://doi.org/10.1038/nature26160
https://doi.org/10.1103/PhysRevLett.88.126403
https://doi.org/10.1103/PhysRevLett.88.126403
https://doi.org/10.1038/nature07576
https://doi.org/10.1103/PhysRevB.63.094503
https://doi.org/10.1103/PhysRevB.85.014508


Che, Y. M., J. B. Wang, and Q. J. Chen, 2016, Phys. Rev. A 93,
063611.

Che, Y. M., L. F. Zhang, J. B. Wang, and Q. J. Chen, 2017, Phys. Rev.
B 95, 014504.

Chen, C., Q. Liu, W.-C. Bao, Y. Yan, Q.-H. Wang, T. Zhang, and D.
Feng, 2020, Phys. Rev. Lett. 124, 097001.

Chen, Q. J., 2000, Ph.D. thesis (University of Chicago) [arXiv:1801
.06266].

Chen, Q. J., 2012, Phys. Rev. A 86, 023610.
Chen, Q. J., I. Kosztin, B. Jankó, and K. Levin, 1998, Phys. Rev. Lett.
81, 4708.

Chen, Q. J., I. Kosztin, B. Jankó, and K. Levin, 1999, Phys. Rev. B
59, 7083.

Chen, Q. J., and K. Levin, 2008, Phys. Rev. B 78, 020513.
Chen, Q. J., K. Levin, and I. Kosztin, 2001, Phys. Rev. B 63, 184519.
Chen, Q. J., J. Stajic, S. Tan, and K. Levin, 2005, Phys. Rep. 412, 1.
Chen, Q. J., J. B. Wang, L. Sun, and Y. Yu, 2020, Chin. Phys. Lett.
37, 053702.

Chen, Q. J., Z. Q. Wang, R. Boyack, and K. Levin, 2024, npj
Quantum Mater. 9, 27.

Chen, S.-D., et al., 2019, Science 366, 1099.
Chen, Z., et al., 2018, Nat. Commun. 9, 4008.
Cheng, G., et al., 2015, Nature (London) 521, 196.
Chien, C.-C., Q. J. Chen, Y. He, and K. Levin, 2006, Phys. Rev. Lett.
97, 090402.

Chien, C.-C., H. Guo, Y. He, and K. Levin, 2010, Phys. Rev. A 81,
023622.

Chien, C.-C., Y. He, Q. J. Chen, and K. Levin, 2006, Phys. Rev. A 73,
041603.

Chien, C.-C., Y. He, Q. J. Chen, and K. Levin, 2009, Phys. Rev. B 79,
214527.

Chin, C., M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. H.
Denschlag, and R. Grimm, 2004, Science 305, 1128.

Chin, J. K., D. E. Miller, Y. Liu, C. Stan, W. Setiawan, C. Sanner, K.
Xu, and W. Ketterle, 2006, Nature (London) 443, 961.

Chubukov, A. V., I. Eremin, and D. V. Efremov, 2016, Phys. Rev. B
93, 174516.

Chubukov, A. V., M. R. Norman, A. J. Millis, and E. Abrahams,
2007, Phys. Rev. B 76, 180501.
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