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Mechanical vibrations are being harnessed for a variety of purposes and at many length scales, from the
macroscopic world down to the nanoscale. The considerable design freedom in mechanical structures
allows one to engineer new functionalities. In recent years, this has been exploited to generate setups
that offer topologically protected transport of vibrational waves (topological phonon transport), both in
the solid state and in fluids. Borrowing concepts from electronic physics and being cross fertilized by
concurrent studies for cold atoms and electromagnetic waves, this field of topological transport in
engineered mechanical systems offers a rich variety of phenomena and platforms. In this Colloquium, a
unifying overview of the various ideas employed in this area is provided, different approaches and
experimental implementations are summarized, and the challenges as well as the prospects are
commented upon.
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I. INTRODUCTION

Topology is a branch of mathematics that deals with
properties of objects that are invariant under smooth defor-
mation. Even in the earliest days of research in topology,
potential connections to physics were already pointed out.
In the 1860s, for example, Lord Kelvin speculated that atoms
might be knots in the ether, and this inspired the first attempts
at a complete classification of knots. While this idea was not
borne out, topological defects are now known to occur in a
large variety of important physical settings, ranging from
vortices in fluids and superfluids and dislocations in crystal-
line solids to liquid crystals as well as magnetic skyrmions.
Even on the largest scales, topological defects may play a role
in the form of cosmological strings.
These are all examples of topology directly present in real-

space structures. A more subtle but far-reaching example of
topological physics was uncovered upon closer inspection of
the quantum Hall effect, pointing toward topological proper-
ties of Bloch waves in quasimomentum space. After its
discovery in 1980 (Klitzing, Dorda, and Pepper, 1980), the
surprising precision of the quantization of Hall resistance in a
2D electron sample in a magnetic field (even in the presence of*tirth.shah@mpl.mpg.de
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disorder) called for a fundamental explanation. An early
explanation given by Laughlin (1981) was at its heart a
topological argument. However, the entirety of the deep
connection to mathematical topology was uncovered a bit
later, when Thouless et al. (1982) and Kohmoto (1985)
showed that the quantized Hall conductance is directly related
to a topological invariant, the so-called Chern number. This
invariant can be calculated for an infinitely extended periodic
system where it relates to how the Bloch waves change when
moving through quasimomentum space.
In general, topological invariants, i.e., quantities that do not

change under smooth deformations, play a prominent role in
any analysis of topology. Simple examples include winding
numbers for vortices and the number of holes in an object.
While the Chern number can be calculated for the infinitely
extended bulk system, it is directly related to the number of
edge channels that carry electrical current along the boundary
of a finite sample. This is the bulk-boundary correspondence.
These edge channels are topologically protected against
backscattering, which explains the precision of conductance
quantization even in the presence of disorder.
Haldane (1988) showed that it is the breaking of time-

reversal symmetry, and not a finite magnetic field, which is
responsible for nonzero Chern numbers and the unidirectional
edge channels, leading to a general discussion of so-called
Chern insulators. Later Kane and Mele (2005a) and Bernevig
and Zhang (2006) pointed out that it is possible to obtain
topological transport even for time-reversal-invariant systems,
introducing the study of topological insulators. In such
materials, the intrinsic spin-orbit coupling leads to spin-
polarized unidirectional edge channels (so-called “helical”
channels). This phenomenon is now called the quantum spin
Hall effect. A review of these developments was given by
Hasan and Kane (2010).
Given the importance of topologically protected transport in

the domain of electronic systems, it was natural to ask whether
other systems could show the same kind of physics. However,
this raised a number of challenges since many interesting
particles and excitations neither are affected by magnetic
fields nor naturally exhibit some kind of spin-orbit coupling.
This pertains to cold atoms as well as photons and phonons. In
all of these cases, some engineering is required to make
progress toward the realization of topological transport.
The first ideas for the design of artificial magnetic fields for

neutral particles emerged in the field of cold atoms in optical
lattices (Jaksch and Zoller, 2003). A few years later, the
breaking of time-reversal symmetry for microwave photons
using the magneto-optical effect as a means of producing
chiral edge channels was suggested and subsequently realized
(Haldane and Raghu, 2008; Wang et al., 2009). Since those
days, considerable progress has been made in the design
and exploitation of artificial chiral transport in cold atomic
systems (Aidelsburger, Nascimbene, and Goldman, 2018;
Cooper, Dalibard, and Spielman, 2019) and photonic systems
(Lu, Joannopoulos, and Soljačić, 2014; Ozawa et al., 2019).
In this Colloquium, we devote our attention to another

important excitation: phonons, i.e., vibrations in solids or
sound waves in fluids. The topological waves of interest here
need not to be quantized, but we, like many researchers in the
field, still use the terminology phonons even when referring to

high-amplitude, classical vibrations involving many phonons.
Just as with photons and neutral cold atoms, the basic
underlying mathematics is the same as that for electrons.
This shared language across platforms has proven to be
beneficial, as it has enabled researchers to learn from ideas
first advocated for in other settings and adapt them in a
suitable manner. However, despite this joint basis there are
important differences that make every platform unique with its
own challenges and opportunities. For example, the design
capabilities, the readout modalities, and the possibilities of
creating excitations and of coupling them to other systems
are all vastly different, in addition to the large range in
physical parameters. More specifically, for phononic systems
their technological application potential is greatly aided by the
compactness of the resulting devices when they are fabricated
in the form of nanomechanical systems (Bachtold, Moser, and
Dykman, 2022). This is due to the relatively slow wave speed,
which allows for devices that are a million times smaller than
photonic systems at the same frequencies. As a solid-state
platform for quantum technologies, they also offer unique
efficient coupling to localized spins and other solid-state
qubits (like superconducting qubits or quantum dots)
(Safavi-Naeini et al., 2019; Clerk et al., 2020; Barzanjeh
et al., 2022). This could turn topologically protected phononic
edge channels into a particularly promising way of intercon-
necting such qubits or quantum sensors (Lemonde et al.,
2019). We add that optomechanical interactions (Aspelmeyer,
Kippenberg, and Marquardt, 2014; Barzanjeh et al., 2022;
Delaney et al., 2022) represent one of the most promising
ways to turn on-chip quantum information into photons for
long-distance communication, adding to the power of on-chip
phononic networks. All of these are reasons for studying the
topologically protected transport of phonons. Ideas like
unidirectional amplification inside chiral edge channels
(Peano et al., 2016) add to these prospects.
As we describe in this Colloquium, the design of vibrational

topological transport started in the macroscopic domain,
including pendula and sound waves in flowing fluids, but
is now moving into the microscopic and nanoscopic domains,
reaching important milestones such as detection precision at
the scale of thermal fluctuations (Ren et al., 2022), gigahertz
carrier frequencies (Zhang et al., 2022), and submicron
lattice constants (Nii and Onose, 2023). This ongoing
progress in miniaturization will unlock the aforementioned
promising applications.
In this Colloquium, we concentrate on topologically pro-

tected transport along phononic edge channels since that is the
most promising area for applications. This means that we deal
here specifically with 1D edge channels at the boundary of 2D
systems (which in the nanoscopic domain are engineered chip
platforms). There are other interesting aspects of phonon
topology that we do not cover, like zero-frequency modes in
isostatic lattices (Kane and Lubensky, 2014), 0D localized
states [for example, at the boundary of the 1D Su-Schrieffer-
Heeger model (Xiao, Ma et al., 2015; Yang and Zhang, 2016;
Chaunsali et al., 2017) or in the form of corner states (Serra-
Garcia et al., 2018) or Dirac vortices (Ma et al., 2021)], and
Weyl cones in 3D systems (Xiao, Chen et al., 2015; Yang and
Zhang, 2016; Fruchart et al., 2018; Ge et al., 2018; He et al.,
2018; Li et al., 2018; Wang and Tsai, 2018). Some reviews on
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phononic topology already exist (Huber, 2016; Zhang, Xiao
et al., 2018; Ma, Xiao, and Chan, 2019; Liu, Chen, and Xu,
2020; Nassar et al., 2020; Huang, Chen, and Huo, 2021;
Miniaci and Pal, 2021) but have a different scope than our
work: Huber (2016) and Ma, Xiao, and Chan (2019) offered
short reviews of the field, Zhang, Xiao et al. (2018) covered
acoustic systems, Miniaci and Pal (2021) and Huang, Chen,
and Huo (2021) discussed elastic systems, while Nassar et al.
(2020) focused mainly on nonreciprocal systems. In this
Colloquium, we present an up-to-date snapshot of the field,
covering a wide variety of systems including both acoustic-
and elastic-wave systems, as well as discrete mechanical
systems like arrays of gyroscopes and pendula. We also give a
comprehensive and unifying discussion of the physics behind
the different design possibilities, emphasizing the conceptual
connections and differences between the various design
schemes. Finally, we analyze the peculiarity of mechanical
waves compared to other types of topological waves and the
challenges hampering future applications.
Our Colloquium is organized as follows: We first describe

the general platform-independent mathematics behind topo-
logically protected transport: topology in band structures, the
bulk-boundary correspondence, Chern numbers in systems
with broken time-reversal symmetry, and topological insula-
tors with intact time-reversal symmetry. We then provide an
overview of the entire field of topological phonon transport,
highlighting the general trends and some early works in this
domain. The bulk of this Colloquium is given in Sec. IV.
There we discuss in more detail the similarities and differences
among electrons, electromagnetic waves, and vibrations in the
context of topological transport. We then describe each of the
different approaches to designing topological transport: from
engineering the breaking of time-reversal symmetry, thus
leading to phononic Chern insulators, to the various design
schemes that rely purely on suitable geometry and connec-
tivity and do not require broken time-reversal symmetry. We
conclude with a discussion of challenges, like mechanical
dissipation, and future applications.

II. GENERAL BACKGROUND: TOPOLOGICAL
TRANSPORT OF WAVES

A. Overview: Topology in band structures
and bulk-boundary correspondence

In mathematics, topological properties of geometrical
objects are those that are invariant under smooth deforma-
tions, such as the number of holes in the object. Even before
the discussion of topological transport, the existence of
topological features in physics had long been recognized.
Early examples include topological defects in fields (Mermin,
1979), such as vortices and skyrmions. Mathematically a
continuous deformation of one function (for example, a field)
into another function (a smoothly distorted version of the
field) is denoted as a “homotopy” and establishes that the two
functions are topologically equivalent.
When we turn to the propagation of waves in an infinitely

extended 2D periodic medium [Fig. 1(a)], we arrive at the
concept of Bloch waves as stationary solutions of the under-
lying wave equation. Attention often tends to be focused on

the band structure, i.e., the eigenfrequencies of these waves as
a function of their quasimomentum inside the Brillouin zone;
cf. Fig. 1(b). However, to discover topological features, one
needs to inspect the behavior of the Bloch waves themselves.
The Brillouin zone is formally equivalent to a torus, i.e., a
compact manifold. The Bloch waves live in a Hilbert space of
suitably normalized wave functions, again a compact mani-
fold. One can thus ask what happens to this map [see Fig. 1(c)]
from Brillouin zone to Hilbert space when the underlying
periodic medium is smoothly deformed (for example, when
changing the geometry or potential), and thereby arrive at
topological properties. These properties, typically expressed
via so-called topological indices, remain invariant as long
as the smooth deformations leave the map uniquely defined.
This breaks down only when a band gap closes, leading to a
degeneracy at some point in the Brillouin zone. This is when
topological properties can change abruptly.
Studying these topological properties by inspecting Bloch

waves in the bulk can be done mathematically but is rather
difficult in experiments since it requires measurement access
to the wave functions (Li et al., 2016). However, one of the
most noteworthy aspects of Bloch-wave topology is that the
mathematical properties of the bulk have immediate conse-
quences for what happens at the boundary of a finite sample,
or at an interface between two domains of the medium
that have different topological features. In particular, lower-
dimensional stationary states develop at the boundary or
interface, the so-called edge states; cf. Fig. 1(d). This is the
bulk-boundary correspondence. It is these edge states that
permit topologically protected robust transport and that are of
greatest importance for potential applications.

(a)

(c) (d)

(b)
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FIG. 1. Topological transport. (a) Schematic of a periodic
crystal with two different sublattices. (b) Fictitious band structure
of (a) featuring two bands with a band gap in the middle.
(c) Topological features can be inspected by investigating, for
each band, the map from the Brillouin zone (torus) to the Hilbert
space. Here it is visualized as a Bloch sphere. Each pole
represents a Bloch wave localized on a sublattice. (d) Topologi-
cally protected edge state featuring transport in only one direction
(for a Chern insulator). The transport is immune to backscattering
even at irregularities.
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We now review the more detailed description of edge states
and bulk topological indices. Two qualitatively different
situations have to be distinguished, according to whether
time-reversal symmetry is broken or not. For the time-
symmetric case, we further distinguish between the schemes
that allow one to implement a spin-Hall Hamiltonian support-
ing spin Chern numbers for each of two local phononic
pseudospin directions, and those in which each pseudospin
direction and the corresponding topological excitations are
described by a Dirac Hamiltonian derived within a smooth-
envelope approximation. While our description should be
sufficient to provide the reader with enough background to be
able to understand the remainder of this Colloquium, with the
applications to topological transport in mechanical systems
there are much more extensive mathematically oriented
reviews that can be consulted for additional details (Hasan
and Kane, 2010; Ozawa et al., 2019).

B. Broken time-reversal symmetry

The topological properties of interest in the general field of
topological band structures are properties of a band gap that
are invariant under continuous modifications of the underlying
Hamiltonian. As discussed, these properties are encoded in
so-called topological invariants, integer quantities that are a
function of the bulk normal modes but that can also be inferred
directly from the spectrum in a system with a physical
boundary. Here we highlight this aspect for the special case
of systems with broken time-reversal symmetry. For this
purpose, we initially consider the simplest geometry compris-
ing a physical boundary: a semi-infinite plane [Fig. 2(a)]. This
approach also provides some simple physical intuition for the
resulting topologically robust transport and to understand why
aZ-topological invariant (assuming arbitrary integer values) is
required to classify topological band gaps in systems with
broken time-reversal symmetry.
For a semi-infinite plane, the frequency can be plotted as a

function of the quasimomentum in the direction longitudinal
to the edge, which is a conserved quantity. A typical example
of such a band structure is shown in Fig. 2(b). In this example,
two blue (dark gray) bulk bands separated by a green (light
gray) bulk band gap are connected via a gapless edge state.
The edge state is a right mover because the slope, which sets
the group velocity, is always positive [Figs. 2(a) and 2(b)]. The
chiral nature of the wave transport is robust even when weak
disorder (compared to the width of the bulk band gap) is
introduced into the system: no backscattering can occur,
simply because the system does not support any left-moving
states in the bandwidth of interest. This argument applies even
when the edge changes direction at a corner in a finite system
with a closed boundary [Fig. 2(d)]. We note that the breaking
of time-reversal symmetry is a precondition to realize this kind
of physics because it opens up the possibility of engineering
systems with chiral edge states without time-reversed counter-
propagating solutions.
Next we consider any arbitrary translationally invariant

continuous modification of the underlying Hamiltonian that
does not close the bulk band gap. The band structure will then
also change continuously, with the only constraint being that
the edge bands should remain single-valued periodic functions

of the quasimomentum or start from a bulk band and end in
the neighboring bulk band (such edge bands would also be
periodic functions of the quasimomentum in a strip con-
figuration with a finite number of bands). For example,
conceivable continuous modifications could introduce one
or more local maxima in the edge band or pull one or more
edge bands into the bulk bands; cf. Fig. 2(c). We observe
that these modifications might lead to a frequency-
dependent number of edge states also giving rise to left-
moving states. However, no conceivable continuous
modification can change the difference of the numbers of
right movers and left movers without closing the bulk band
gap. Thus, the net number of edge states NR − NL (with NR
and NL the number of right and left movers, respectively) is
a Z-topological invariant. Here Z indicates that the invariant
takes an arbitrary integer value.
The net number of edge states has its foundation in the

topological properties of the bulk of the system. Indeed, it is
fixed by the bulk-boundary correspondence (Hatsugai, 1993;
Bernevig and Hughes, 2013; Asbóth, Oroszlány, and Pályi,
2016; Prodan and Schulz-Baldes, 2016) NR−NL¼−

P
nCn,

where the sum is taken over the bands below the band gap of
interest and the band’s Chern number Cn is an integer-valued
global property of the band’s Bloch waves across the Brillouin
zone (BZ) (Thouless et al., 1982). In a two-material scenario
in which a domain wall separates two domains with different
bulk Hamiltonians, the same formula holds, with the differ-
ence being that Chern numbers across the surface replace the
Chern number.
As originally recognized by Simon (1983), the Thouless–

Kohmoto–Nightingale–den Nijs invariant (Thouless et al.,

(a) (d)

(b) (c)

(e)

FIG. 2. Topological transport in a Chern insulator. (a) Domain-
wall geometry. Also indicated are the Chern number of the lower
band for the two domains and the edge-state propagation
direction (arrow). (b) Topological band structure for the domain-
wall geometry shown in (a). (c) Band structure of a smoothly
deformed system, with the same resulting net number of right
movers at any frequency. (d) Robustness against deformations of
the domain wall. (e) Global properties of the Berry connection.
The shade of green (gray) identifies a BZ region over which
AnðkÞ varies smoothly. Each region is defined by fixing the
phase of the Bloch waves on a particular sublattice. For the
topological case, the crosses indicate quasimomenta whose Bloch
waves have zeros at the sublattice used to define the gauge in the
light-shaded region.
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1982), later known as the Chern number, can be defined as a
surface integral of a curvature

Cn ¼
1

2π

Z
BZ

d2k½∇k ×AnðkÞ� · ez: ð1Þ

The relevant surface (the BZ) is a torus and the curvature
(known as the Berry curvature) is the curl of the Berry
connection AnðkÞ ¼ ihknj∇kjkni, where jkni are the Bloch
waves for the nth band. We note that the Berry connection
AnðkÞ plays a role similar to the vector potential in electro-
magnetism. Here too Stokes’s theorem allows one to convert
surface integrals into line integrals over the surface boundary,
which can be interpreted as the geometrical Berry phases
(Berry, 1984) accumulated while the quasimomentum is
adiabatically varied along a closed path. For a trivial band,
one can define a Berry connectionAnðkÞ that varies smoothly
across the BZ by fixing the phase of all Bloch waves at the same
sublattice. This allows one to apply Stokes’s theorem to the BZ
as a whole and conclude that the Chern number is zero, as the
BZ has no boundary; cf. Fig. 2(e) (top sketch). For a topological
band [bottom sketch of Fig. 2(e)], it is not possible to fix a
global gauge in this manner, because for any choice of
sublattice there are one or more quasimomenta (crosses) whose
Bloch waves have a zero (Kohmoto, 1985). In the neighbor-
hoods of a zero (the dark patches), one can fix the phase at a
different sublattice. This leads to a phase mismatch fðkÞ
between the Bloch waves inside and immediately outside of
a patch: jkni inside the patch (on the dark contours) is
transformed into exp ½ifðkÞ�jkni outside (the light contours).
The phase mismatch must increase by a multiple of 2π while
moving in a circle along a patch boundary, defining a winding
number for the patch. By applying Stokes’s theorem separately
to each patch and to the region outside of the patches (the light-
shaded region), one can show that the Chern number is simply
the sum over the patches of the patch winding numbers
(Kohmoto, 1985; Ohgushi, Murakami, and Nagaosa, 2000).

C. Time-reversal-symmetric topological insulators

1. Edge states protected by Kramers degeneracy

Time-reversal symmetry significantly constrains the topo-
logical properties of 2D systems. For each finite-speed

boundary excitation in the bulk band gap of an insulator,
there should be a counterpropagating time-reversed partner.
This also means that the sum of the Chern numbers for the
bands below a band gap is always zero (Brouder et al., 2007).
Nevertheless, boundary excitation of time-reversal-symmetric
systems can have a topological underpinning, as originally
predicted (Kane and Mele, 2005a; Bernevig and Zhang, 2006)
and experimentally demonstrated (König et al., 2007) in
electronic systems. The topological protection for these types
of edge states results from a general property of fermionic
systems. For every normal mode jψi there is a time-reversed
partner normal mode T jψi with equal frequency. This
property, known as Kramers degeneracy, arises because
the time-reversal operator T squares to minus the identity
(T 2 ¼ −1) for any fermionic excitation with half-integer total
spin (Landau and Lifshitz, 1981). This implies that the
coupling between a “Kramers pair” of time-reversed counter-
propagating boundary excitations in the bulk band gap of a
topological insulator is forbidden because it would split the
degeneracy; cf. Fig. 3(a). This results in transport that is robust
against backscattering in the presence of weak time-reversal-
symmetric disorder.
Next we show how a topological invariant can be inferred

from the spectrum of a system with a semi-infinite geometry.
As in the Chern insulator case, we discuss how a band
structure can be modified under continuous translationally
invariant changes of the underlying Hamiltonian that do not
close the bulk band gap, here with the additional prescription
that the time-reversal symmetry is preserved. Without loss of
information, we display only positive quasimomenta [EnðkÞ¼
Enð−kÞ because of the time-reversal symmetry]; cf. Figs. 3(b)
and 3(c). For the band structure of a time-reversal-symmetric
Hamiltonian with T 2 ¼ −1, only the band crossings that
occur at a time-reversal-invariant high-symmetry point are
essential symmetry-protected degeneracies. In a semi-infinite
configuration these are the Γ and X points with quasimomenta
k ¼ 0 and π=a (with a the lattice constant), respectively.
Accidental band crossings away from these special quasimo-
menta are not a consequence of Kramers degeneracy (the
underlying normal modes are not Kramers pairs) and can be
lifted without breaking the time-reversal symmetry. Starting
with any arbitrarily complicated band structure, lifting acci-
dental degeneracies, and pulling edge bands (pairs of edge

(a) (b) (c)

FIG. 3. (a) Top sketch: spectrum of a finite-size time-symmetric topological insulator. Each pair of degenerate levels corresponds to a
pair of counterpropagating edge waves (bottom sketch). Any coupling is forbidden because it would violate Kramers degeneracy.
(b) Trivial and (c) topological band structures in a semi-infinite plane geometry. The degeneracies at the time-symmetric high-symmetry
points Γ and X correspond to Kramers doublets. The trivial and topological band structures, respectively, can be smoothly modified into
a gapped band structure and a band structure with a single edge state connecting the two bulk bands without lifting any Kramer doublets.
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bands) into the bulk bands, we arrive at either of two
topologically distinct configurations: a trivial configuration
in which no edge band is present [see Fig. 3(b)] or a
topological configuration in which a single edge band
connects the bulk bands below and above the band gap [cf.
Fig. 3(c)]. Thus, the topology of 2D time-symmetric topo-
logical insulators is encoded in a Z2-topological invariant.
Here Z2 refers to the cyclic group formed by the two possible
values of the invariant (Kane and Mele, 2005b). By con-
vention, the value ν ¼ 1 (ν ¼ 0) is assigned to the topological
(trivial) configuration.
However, for bosonic excitations and, in particular, the

phononic excitations of interest in this Colloquium, the physical
time-reversal symmetry squares to the identity T 2 ¼ 1. Thus,
Kramers degeneracy does not naturally emerge in the presence
of time-reversal symmetry in bosonic systems. Nevertheless,
no fundamental principle prevents us from engineering the
effective Hamiltonian of a bosonic system identical to the
single-particle Hamiltonian of a fermionic system of interest
(here a topological insulator). In this scenario, Kramers
degeneracy will be produced via an engineered local antiunitary
symmetry T en with T 2

en ¼ −1. We note that U ¼ T enT is then
a local unitary symmetry that can be interpreted as a conserved
pseudospin. In practice, the pseudospin can be a duplicate or
internal degree of freedom in an array of discrete systems, such
as coupled pendula or whispering gallery mode resonators
(Sec. IV.C.1). For the special case of a binary pseudospin
(equivalent to a spin 1=2 particle), we have

Ĥ ¼
�
Ĥ↑ 0

0 Ĥ↓

�
; ð2Þ

with Ĥ↓ ¼ Ĥ�
↑. For a topological bosonic insulator, each

pseudo-spin-polarized block supports arbitrary integer nonzero
Chern numbers. An explicit example is given in Sec. IV.C.1.
We note that for electronic systems, this form of the quantum
spin-Hall Hamiltonian corresponds to the special case in which
the out-of-plane mirror transformation is a symmetry. Without
this symmetry, a Rashba spin-orbit interaction leads to a
coupling of the two blocks (Kane and Mele, 2005a). This
more general form can be implemented in a bosonic system
only by breaking the physical time-reversal symmetry T .
Conversely, any perturbation that couples the different pseu-
dospin directions without breaking T will break T en, and thus
evade the topological protection.

2. Engineered Dirac Hamiltonians

For continuum systems such as photonic or phononic
crystals, it is usually impossible to engineer a desired effective
Hamiltonian across the entire BZ. This limitation can be
circumvented by designing edge states that remain well
localized in quasimomentum space but can nonetheless
propagate along arbitrarily shaped domain walls with negli-
gible backscattering, even turning sharp corners; cf. Fig. 4(a).
In Sec. IV.C, we review several schemes to engineer such
quasi-momentum-localized edge states. These schemes have a
common theoretical foundation based on an effective Dirac
equation that we review in this section.

The Dirac equation describes two (out of infinitely many)
bands of the continuum system in a restricted bandwidth and
quasimomentum region that is often referred to as the valley.
It reads (Jackiw and Rebbi, 1976; Semenoff, 1984)

ωΨðxÞ ¼ ĤΨðxÞ; Ĥ ¼ ω0 þmðxÞσ̂z þ vp · σ̂; ð3Þ

where v is the Dirac velocity, σ̂x;y;z are the Pauli matrices,
σ̂ ¼ ðσ̂x; σ̂yÞ, and x ¼ ðx; yÞ and p ¼ ð−id=dx;−id=dyÞ are
the position and momentum variables, respectively. The mass
function mðxÞ assumes opposing values mðxÞ ¼ �mbk in two
distinct bulk regions divided by a one-dimensional zero-mass
domain wall; cf. Fig. 4(b). In this way, the two bulk regions
share the same gapped Dirac-cone band structure; cf. Fig. 4(c).
We note that formally p∈R2, as in a system without an
underlying bulk crystal structure. This reflects the fact that the
lattice has been eliminated under the assumption that the
envelope wave function ΨðxÞ is smooth on the lattice length
scale. Thus, the Dirac equation will provide reliable results
only if jpj≲ 1=a.
Before providing more details on the derivation and limit of

validity of the Dirac equation, we discuss its topological
properties when it is taken at face value (i.e., without viewing
it as only an approximation in a small region of quasimo-
mentum space). For a straight domain wall (for concreteness

(a)

(e) (f)

(b) (c) (d)

FIG. 4. Edge states generated via an engineered Dirac Hamil-
tonian. (a) Edge excitations can travel around arbitrarily shaped
corners. The change of direction involves only a small momen-
tum transfer Δp. Backscattering requires large Δp and thus is
suppressed. (b) Edge channel localized along a domain wall
separating two domains governed by the Dirac Hamiltonian
Eq. (3) with opposite values �mbk of the mass parameter m.
(c) The two domains share the same gapped Dirac-cone band
structure. (d) Straight domain-wall geometry. The valley Chern
numbers CV are also indicated. (e) Top sketch: flux CW of the
Berry curvature through a closed surface surrounding the Weyl
(Dirac) point (red). The flux lines are shown in black. CW is equal
to the difference of the fluxes through two semi-infinite planes in
different domains (bottom sketch) or, equivalently, the difference
of the local valley Chern numbers. (f) Band structure for the
geometry and chiral charge displayed in (d) and (e) (left sketch)
and for the time-reversed Dirac Hamiltonian (right sketch). The
edge states obey the bulk-boundary correspondence.
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in the x direction), the Dirac equation supports the edge band
ω ¼ sgnðmbkÞvpx with envelope wave function

ΨðxÞ ¼
�

1

sgnðmbkÞ

�
eipxxesgnðmbkÞ

R
y

0
mðy0Þdy0=v: ð4Þ

In Eq. (4)mbk is the mass in the lower-half plane; cf. Figs. 4(d)
and 4(f). This solution, which was originally derived by
Jackiw and Rebbi (1976), connects the lower and upper bulk
bands. Additional edge states starting and ending in the same
bulk band can also appear for a smooth mðyÞ; see Wang et al.
(2020). In any case, a smooth deformation of mðyÞ that does
not eliminate the domain wall preserves the net number of
edge states,

NR − NL ¼ sgnðmbkÞ: ð5Þ

This topological feature has its underpinning in a spectral-
flow theorem recently introduced by Faure (2022) for topo-
logical waves in continuum systems without an underlying
bulk crystal symmetry, like ocean waves (Delplace, Marston,
and Venaille, 2017; Faure, 2022) and plasma waves (Qin and
Fu, 2023). Faure’s theory treats the coordinate y transverse to
a domain wall as an auxiliary momentum. In this setting, the
Dirac point can be viewed as a Weyl point in the three-
dimensional space p3D ¼ ðpx; py; yÞ. Faure’s theorem applied
to the Dirac equation relates the flux CW of the Berry
curvature through a closed surface surrounding the Weyl
point to the net number of edge states NR − NL ¼ −CW . From
the theory of Weyl semimetals, it is well known that
Weyl points are “monopoles” for the Berry curvatures with
“chiral charge”CW ¼ −sgnðmbkÞ (Wan et al., 2011). Thus, we
recover Eq. (5), giving it a topological interpretation. We note
that for the Dirac equation Faure’s theorem can be cast in the
form of a bulk-boundary correspondence NR − NL ¼ −ΔC,
where ΔC is the difference between the valley Chern numbers
across the domain wall; cf. Fig. 4(e). In each bulk region, the
valley Chern number CV is defined as in Eq. (1) but now
integrated over the px-py plane instead of the BZ: CV ¼
sgnðmÞ=2 (Zhang, MacDonald, and Mele, 2013).
Next we discuss the applicability of the Dirac equation to

time-reversal-invariant systems. We observe that the Dirac
Hamiltonian (3) is not invariant under any antiunitary sym-
metry T (with T 2 ¼ 1). For this reason, Dirac cones must
always appear in pairs in time-symmetric systems. It is
possible to describe each cone with a copy of Eq. (3).
Because of the time-reversal symmetry, the two copies must
have opposing mass parameters. This ensures that the two
Dirac Hamiltonians also have opposing chiral charges CW ,
and thus the domain wall supports counterpropagating edge
states; cf. Fig. 4(e). Introducing a binary valley pseudospin
degree of freedom τz ¼ �1, we arrive at the effective
Hamiltonian

Ĥ ¼ ω0 þmðxÞτ̂zσ̂z þ vp · σ̂: ð6Þ

We note that this is equivalent to the large-wavelength limit of
the Bernevig-Hughes-Zhang model (Bernevig, Hughes, and
Zhang, 2006), a well-known model for topological insulators.

In addition to the time-reversal operator T ¼ τ̂yσ̂yK, it also
supports an antiunitary symmetry T en ¼ T τ̂z ¼ iτ̂xσ̂yK with
T 2

en ¼ −1 (K is the complex conjugation and τ̂x;y;z is a set of
Pauli matrices).
Finally, we discuss the derivation and limits of validity

of the Dirac equation. Here we provide a general discussion.
For a more concrete discussion of specific symmetry-based
schemes, see Sec. IV.C. The “valley” pseudospin τ̂z is defined
starting with a geometry supporting a pair of symmetry-
protected Dirac cones. Each pseudospin direction (τz ¼ 1
or −1) identifies a pair of bands that are degenerate at the tip of
a cone (at k ¼ k0 or −k0) but are coupled by a symmetry-
breaking gap-opening perturbation of the initial geometry,
with coupling constant m. Equation (3) is derived by applying
perturbation theory for quasidegenerate levels using the
quasimomentum variation p ¼ k� k0 as a small parameter
(Semenoff, 1984; Mousavi, Khanikaev, and Wang, 2015; Wu
and Hu, 2015; Brendel et al., 2017), an approach known as
k · p perturbation theory (Kittel, 2004; Marconcini and
Macucci, 2011). We note that the Dirac equation is reliable
if the Fourier transform Ψ̃ðpÞ of the envelope functionΨðxÞ is
localized in the small region jpj ≪ 1=a. In this regime, the
coupling between opposing pseudospins, which might lead to
gapped edge bands and backscattering, is suppressed because
it is mediated by the tails of Ψ̃ðpÞ (Shah, Marquardt, and
Peano, 2021). This reasoning also applies to the special case
k0 ¼ 0 for which the two counterpropagating edge states are
localized in the same quasimomentum region but remain
uncoupled in this region. In a closed-domain geometry, this
mechanism allows topological waves to turn sharp corners
with negligible backscattering; cf. Fig. 4(a). The condition
jpj ≪ 1=a sets a limit on both the longitudinal quasimomen-
tum px and the transverse localization length ξ of the edge
states. For sharp domain walls we have ξ ¼ v=mbk [cf.
Eq. (4)]; therefore, ξ ≫ a imposes a limit on the mass
parameter mbk ≪ v=a, and thus on the bandwidth available
for topological transport [cf. Fig. 4(c)]. This trade-off between
backscattering suppression and bandwidth is eliminated for
smooth domain walls (Shah, Marquardt, and Peano, 2021).
Ultimately the bandwidth is limited because of the restriction
on the longitudinal momentum jpxj ≪ 1=a. For jmbkj≳ v=a,
the Dirac equation is not valid across the entire bulk band gap
because jpxj≳ 1=a for jωj ≈ jmbkj, at the edge of the bulk
band gap. This typically leads to edge states that do not
connect the upper and lower bulk bands; see Ren et al. (2022).

III. OVERVIEW: TOPOLOGICAL PHONON TRANSPORT

After having understood the general fundamental mecha-
nisms behind topologically protected edge states, we now
focus on mechanical vibrations. Adopting the usual terminol-
ogy in the field, we often refer here to topologically protected
phonon transport, even though all of the systems studied
experimentally thus far are firmly in the classical regime,
where many phonons are involved in the high-amplitude
classical vibrational states. As long as one stays in the linear
regime, the mathematics remains the same regardless of the
amplitude and regardless of whether individual phonons can
be excited and resolved.
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Since the design of geometrical structures is key in this
field, we decided to show a pictorial overview of some of the
most relevant theoretical and experimental works from the
field, in chronological order, in Figs. 5 and 6. Many of these
works are described in Sec. IV.

A. Different classification criteria

It is useful to systematically classify these works according
to several criteria. We adopt the following categories, which
are used to label works in the timeline of Figs. 5 and 6.
Beyond distinguishing experimental implementations from
theoretical proposals, we show the typical length scales of the
system. Since most possible future applications of interest will
most likely be on a micrometer- or nanometer-scale chip, this
is a crucial key characteristic. While theoretical proposals may
not commit themselves to a certain length scale, they some-
times rely on a macroscopic setting or, alternatively, take care
to present a design that would work on the nanoscale, which
we try to indicate.
Furthermore, we can separate the different works based on

the type of topological protection. We distinguish between
systems that break time-reversal symmetry (and thus result in
a Chern insulator) and setups that do not break the time-
reversal symmetry.
Moreover, most works can also be classified according to

one of the following three categories: discrete systems,
acoustic-wave systems, or elastic-wave systems. The first
category corresponds to edge states that are formed by
vibrational excitations of discrete lattice sites, i.e., coupled
modes in a lattice. Exemplary systems are coupled pendula
and theoretical works that take tight-binding models as their
starting point. In contrast, both acoustic- and elastic-wave
systems start with a continuum description, although some-
times this might eventually be transformed into an effective
coupled-mode theory. Acoustic-wave systems feature topo-
logical modes that appear in the continuous fields of the
pressure distribution within fluids. The airflow in an array of
solid steel rods or water waves in a pipe of changing diameters
are systems of that category. Finally, systems with topological
edge modes appearing in the continuous deformation field of
solid materials, for example, suitably patterned slabs of
silicon, are referred to as elastic-wave models. The distinction
according to these three categories is not always clear cut, but
we find it helpful nonetheless.
Overall the topological systems of interest in this

Colloquium cover a broad range of carrier frequencies and
unit-cell length scales, from the infrasonic to the hypersonic
regime and from the micrometer to the meter scale; see the
scatterplot in Fig. 7.

B. Evolution of research in this field: A chronological overview

In this section, we give an overview of the most salient early
works in chronological order to provide some general context
for the following sections, which aim to be comprehensive.
The first work to point out that topologically protected
transport of phonons is a possibility stems from the field of
biophysics. In their pioneering early paper, Prodan and Prodan
(2009) conjectured that under certain assumptions vibrational

edge states may form at the ends of long macromolecules that
are part of the cell skeleton, the so-called microtubules,
provided that magnetic elements give rise to time-reversal
symmetry breaking. This hypothesis remains to be tested.
Moving to the domain of deliberately engineered topologi-

cal phonon transport, the first idea for how this might be
realized was introduced in 2014. The approach discussed there
(Peano et al., 2015) employed the optomechanical coupling
between light and mechanical modes to generate time-reversal
symmetry breaking and a phononic Chern insulator. It also
was the first work to describe a potential nanoscale imple-
mentation based on phononic crystals.
A few months later, it was pointed out that topological

transport can also be designed in macroscale engineered
systems of fluids, where time-reversal symmetry can be
broken by circulating flows, which results in a Chern insulator
for the acoustic modes propagating inside the fluid (Yang
et al., 2015). This was followed by further analyses of the
circulating-flow scenario in different settings (Khanikaev
et al., 2015; Ni et al., 2015). Fleury, Khanikaev, and Alù
(2016) proposed implementing a Chern insulator in an array of
coupled acoustic resonators by modulating their resonant
frequencies via piezoelectric actuators.
At around the same time, many implementations of Chern

insulators were proposed for discrete systems. Wang, Lu, and
Bertoldi (2015) predicted chiral edge states in an array of
gyroscopes coupled with springs. Alternatively, the Coriolis
force was suggested to break the time-reversal symmetry in a
lattice of mass coupled with springs (Kariyado and Hatsugai,
2015; Wang, Luan, and Zhang, 2015).
Realizing mechanical topological phases requires a high

degree of control in the engineering of mechanical structures.
Not surprisingly, therefore, the earliest successful experimen-
tal implementations of topological mechanical systems were
established in the realm of macroscopic centimeter-scale
systems, starting in 2015 with 2D arrays of coupled pendula
(Süsstrunk and Huber, 2015) with time-reversal symmetry
intact (modeling a topological insulator), and of coupled
gyroscopes (Nash et al., 2015) with time-reversal symmetry
broken. These systems provided direct and convenient exper-
imental access and attracted considerable attention to the
possibilities of engineered topological transport in mechanical
systems, paving the way for subsequent rapid developments.
Subsequent experimental works expanded into the domains

of acoustic waves directed by engineered scatterers (He, Ni
et al., 2016; Lu et al., 2017), and shortly thereafter elastic
vibrations in metal plates patterned with holes (Vila, Pal, and
Ruzzene, 2017; Miniaci et al., 2018; Yu et al., 2018). More
recently Chern insulator phases have been realized for
acoustic waves (Ding et al., 2019) in the presence of the
circulation of a setup similar to the aforementioned original
proposal of Yang et al. (2015), and for elastic waves in an
array of piezoelectric membranes (Darabi et al., 2020.
In parallel developments, theoretical investigations contin-

ued to explore the potential for nanoscale and microscale
topological vibrational materials, as previously discussed.
The first theoretical work to present a design in this domain
for time-reversal-preserved topological transport (Mousavi,
Khanikaev, and Wang, 2015) relied on a freestanding pat-
terned mechanical metamaterial with suitable symmetries.
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FIG. 5. Graphical timeline of works on topological transport in vibrational systems. We depict both theoretical proposals and
experimental works. Each panel is labeled with the name of the first author. The icons indicate whether time-reversal symmetry is broken
and whether the model employed in thework is based mainly on the coupling of discrete localized modes (pendulum symbol), the acoustics
in gases or liquids (acoustic wave), or the elastic vibrations in solids (vibrating plate). The length scale is shown for experimental
implementations. Whenever theoretical works propose concrete designs that can work at the nanoscale, this is indicated; likewise, we
indicate when concepts by their nature are geared toward macroscopic or mesoscopic scales. From top left to bottom right (ordered
according to first appearance in e-print form or journal submission date): Prodan and Prodan, 2009, Peano et al., 2015, Wang, Luan, and
Zhang, 2015, Yang et al., 2015, Ni et al., 2015, Süsstrunk and Huber, 2015, Wang, Lu, and Bertoldi, 2015, Nash et al., 2015, Kariyado and
Hatsugai, 2015, (Khanikaev et al., 2015, Mousavi, Khanikaev, and Wang, 2015, Peng et al., 2016, Salerno et al., 2016, Pal, Schaeffer, and
Ruzzene, 2016, Fleury, Khanikaev, and Alù, 2016, Chen and Wu, 2016, He, Ni et al., 2016, Lu et al., 2017, Mei, Chen, and Wu, 2016,
Brendel et al., 2017, Matlack et al., 2018, Zhang et al., 2017, Abbaszadeh et al., 2017, Souslov et al., 2017, Süsstrunk, Zimmermann, and
Huber, 2017, Pal and Ruzzene, 2017, Mitchell et al., 2018, Brendel et al., 2018, Deng et al., 2017, Vila, Pal, and Ruzzene, 2017, Yves
et al., 2017, Yu et al., 2018, Chaunsali, Chen, and Yang, 2018, Zhang, Tian, Cheng et al., 2018, and Miniaci et al., 2018.
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Other works in this direction used honeycomb (graphene-
type) lattices, either producing pseudomagnetic fields via
engineered distortions (Brendel et al., 2017) or adopting
enlarged unit cells (Brendel et al., 2018).

Building on these proposals as well as recent advances in
microfabrication techniques, the first on-chip nanoscale topo-
logical phonon transport was realized in 2018 (Cha, Kim, and
Daraio, 2018) and followed by recent further promising
experimental developments in this direction (Mathew, del
Pino, and Verhagen, 2020; Ma et al., 2021; Ma, Xi, and Sun,
2021; Xi et al., 2021; Ren et al., 2022; Zhang et al., 2022).
Beyond freestanding devices, topological waves also can be
engineered on chip in the form of surface acoustic waves, as
recently demonstrated in three pioneering experiments (Zhang
et al., 2021; Wang et al., 2022; Nii and Onose, 2023). These
efforts are part of an ongoing quest to reduce the footprint and
increase phonon frequencies and bandwidths, as well as to
explore more versatile actuation and detection schemes.

IV. APPROACHES FOR ENGINEERING TOPOLOGICAL
TRANSPORT OF PHONONS

A. Electrons versus electromagnetic waves versus vibrations

The underlying mathematics of topological protection is
equivalent for any kind of waves, be they electronic matter

FIG. 6. Graphical timeline ofworks (continued). From top left to bottom right: Zhu, Liu, and Semperlotti, 2018, Ding et al., 2019, Lu et al.,
2018, (Zhang, Tian, Wang et al., 2018, Wen et al., 2019, Cha, Kim, and Daraio, 2018, Mathew, del Pino, and Verhagen, 2020, Tian et al.,
2020,Wang et al., 2020,Mei et al., 2019,Darabi et al., 2020, Zhang et al., 2021, Sanavio, Peano, andXuereb, 2020,Ma et al., 2021,Xi et al.,
2021, (Yu et al., 2021, Ren et al., 2022, Ma, Xi, and Sun, 2021, Wang et al., 2022, Zhang et al., 2022, and Nii and Onose, 2023.
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waves, electromagnetic waves, or vibrational waves, as long
as interactions can be neglected. Nevertheless, there are
fundamental physical differences: distinguishing between
fermionic and bosonic systems, but also differences with
respect to other characteristics like the presence of a charge
and the typical length and frequency scales that need to be
manipulated in engineered structures. These differences lead
to distinct, platform-specific approaches for implementing and
exploiting topologically protected waveguides; cf. Fig. 8.
Electrons are charged and can therefore be manipulated

with the help of electromagnetic fields. Breaking the time-
reversal symmetry is straightforward using a static magnetic
field, which produces the quantum Hall effect, a Chern
insulator, with its characteristic robust protection. The fer-
mionic nature of electrons implies that transport properties are
affected only by the electronic matter waves near the Fermi
energy, up to which all of the levels are occupied.
By contrast, electromagnetic waves and vibrational waves

are neutral, so breaking the time-reversal symmetry needs to
be engineered with some effort, such as via some form of
time-dependent driving, as detailed in Sec. IV.B.
Alternatively, one can rely on geometrical engineering to
produce time-reversal-preserved systems that are the counter-
parts of the electronic topological insulators (which, in the
electronic domain, arise from spin-orbit coupling). Both types
of waves, electromagnetic and vibrational, are also bosons.
There is no Fermi energy, and waves can be injected and
probed at any frequency. One can view this as a unique
advantage over electrons since it allows easy access to the full

band structure and all edge states. At the same time, this also
means that interactions (i.e., nonlinearities in the wave
equation) can more easily scatter waves into other states,
while these effects are suppressed for electrons due to the
Pauli principle.
There are differences regarding scales that are important for

engineering. Electronic wave functions live in materials with
angstrom lattice periodicity, and “engineering” takes place via
chemistry, apart from the comparatively rare cases where one
relies on the design of superlattices. By comparison, both
photonic and phononic wave functions are being engineered
on a wide range of length scales, depending on the frequency,
ranging from macroscopic centimeter-scale setups down to
100 nm. The methods employed encompass tools as diverse as
3D printing and lithography.
Thus far we have highlighted the similarities between sound

waves and electromagnetic waves, contrasting them with
electronic matter waves. However, in a number of aspects
that are important for topological transport sound and light
differ considerably. Differences include the possibility of
engineering fluid flows for time-reversal-symmetry breaking
of sound waves, the fact that vibrational waves are necessarily
confined to the material and cannot radiate away energy into
free space nearly as easily as electromagnetic waves, and their
compact footprint (small wavelength) at a given frequency.
We now turn to the core of this Colloquium: a detailed
discussion of the different engineering approaches employed
in the literature to implement topological transport in
mechanical systems.

B. Broken time-reversal symmetry: Chern insulators

As mentioned, Chern insulators have been discovered by
analyzing the dynamics of 2D electrons in an external
magnetic field (Klitzing, Dorda, and Pepper, 1980; Thouless
et al., 1982). If a particle of charge q travels clockwise around
a loop containing a magnetic flux Φ, then it will pick up a
phase qΦ=ℏ. Reversing the direction of the loop also reverses
the sign of the phase acquired, indicating that the time-reversal
symmetry has been broken. Since phonons do not have a
charge, this mechanism is not directly available for vibrations.
However, any physical mechanism that breaks time-reversal
symmetry can potentially give rise to phases of this kind, and
thus also the physics of charged particles in a magnetic field.
Taking advantage of this way of thinking, it is possible to

build Chern insulators for phonons by engineering complex
hopping amplitudes between the lattice sites such that the total
phase picked up by a phonon around a closed loop is nonzero.
We remark that these complex amplitudes are, in most cases,
matrix elements of effective Hamiltonians defined in a rotating
frame after a rotating-wave approximation.
Incidentally, there is no need to mimic a constant magnetic

field in order to obtain edge channels. This was demonstrated
by the Haldane model, which is the prototypical example of a
tight-binding model with broken time-reversal symmetry but
zero average magnetic field. In this model, charged excitations
can hop on a honeycomb lattice via nearest-neighbor and next-
nearest-neighbor transitions with probability amplitudes J1
and J2 exp ð�iϕÞ, respectively. An excitation moving on a
closed loop around a triangular plaquette picks up a

(a)

(b)

wavefunction, 
charged

fermions (Fermi 
level)

microscopic 
(Å)

Phonons

Electrons

deformation, 
neutral

bosons (access 
any energy)

engineered 
(>100nm) 

k

F
re

qu
en

cy

k

F
re

qu
en

cy

FIG. 8. Main differences between (a) electrons and (b) phonons
from the perspective of topological transport. Left column: elec-
tronic transport can be affected by magnetic fields or spin-orbit
coupling, while the transport of neutral phonons requires different
approaches. Middle column: while electronic transport typically
involves only states at the Fermi level, vibrations can be excited at
any frequency in the band structure. Right column: electronic
topological transport may exploit the microscopic crystal struc-
ture, while phononic transport is engineered on larger length
scales (nanoscopic up to macroscopic).
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nonreciprocal phase, for example, the phase ϕ following the
thick arrows in Fig. 9(a). These nonreciprocal phases can be
viewed as being induced by a staggered magnetic field as
shown in Fig. 9(a). Haldane demonstrated that this configu-
ration leads to topological bulk band gaps and the associated
gapless edge states; cf. Fig. 9(b). Haldane further pointed out
that an interaction breaking the inversion symmetry, in the
form of different on-site energies on the two sublattices [the
shades of gray in Fig. 9(a)], could induce a transition to a

topologically trivial phase. Haldane’s prototypical model
highlights two key features of Chern insulators: (i) The
breaking of time-reversal symmetry is the key precondition
allowing bands with nontrivial Chern numbers. (ii) Time-
reversal-symmetry-breaking perturbations favoring topologi-
cal band gaps are in competition with inversion-breaking
perturbations favoring trivial band gaps.
Although phonons are neutral excitations, an external

magnetic field can still break the time-reversal symmetry
for lattice vibrations. Analogously to the magneto-optical
effect, a magnetic coupling can be mediated by charged
particles in the hosting material. This mechanism leads to
the phonon Hall effect (Strohm, Rikken, and Wyder, 2005)
and in a suitable lattice geometry would also lead to a
topological band structure supporting nontrivial Chern num-
bers. This idea was at the core of the first pioneering analysis
of topological lattice vibrations (Prodan and Prodan, 2009;
Zhang et al., 2010; Qin, Zhou, and Shi, 2012). In the first
theoretical analysis of phononic topologically protected edge
states in any system, Prodan and Prodan (2009) presented the
hypothesis that topological effects could play a role in the
vibrational modes of microtubules, i.e., the self-assembled
hollow protein tubes that are part of the cytoskeleton of living
cells. They modeled the microtubule as a folded 2D lattice
of dimers and speculated that the time-reversal symmetry may
be broken by some magnetic properties of the surrounding
medium. Shortly thereafter Zhang et al. (2010) and, sub-
sequently, Qin, Zhou, and Shi (2012) showed that an
external magnetic field would give rise to Chern insulator
phonon bands for a simple bipartite ionic crystal and
analyzed the footprint of the underlying band topology
on the thermal Hall conductivity.
Given that the bandwidth of the topological excitations for

crystal lattice vibrations is expected to be small, subsequent
theoretical (Zhang and Niu, 2015; Nomura et al., 2019) and
experimental (Zhu et al., 2018; Xu et al., 2020) research
focused on nontopological bulk transport. As predicted by
Nomura et al. (2019) and later demonstrated by Xu et al.
(2020), the combination of an external magnetic field and a
lattice with broken inversion symmetry can give rise to the
nonreciprocal bulk propagation of chiral lattice vibrations,
which is known as the magnetochiral effect. Similar nonre-
ciprocal bulk propagation has been predicted (Zhang and Niu,
2015) and experimentally demonstrated (Zhu et al., 2018) in
setups in which the time-reversal symmetry is broken by
driving a chiral crystal with polarized light.
Moving on from examples of potentially naturally occur-

ring topological transport of sound waves, we now turn to
ideas for designing artificial structures. The first such idea
(Peano et al., 2015) proposed exploiting the coupling between
light and sound to generate the required time-reversal sym-
metry breaking. The starting point would be a suitably
engineered phononic crystal with micrometer-scale unit size,
in this case consisting of a kagome pattern of coupled
mechanical subunits. Using the principles of cavity optome-
chanics, the interaction between light and sound could be
boosted by embedding photonic-crystal defect cavities,
thereby creating an optomechanical array. When the entire
structure is illuminated by a superposition of three laser
beams, optical vortices are formed that impose their

(a) (b)

(c) (d)

(e) (f)

FIG. 9. Chern insulators. (a) Haldane model. Excitations hop on
a honeycomb lattice between nearest-neighbor and next-nearest-
neighbor sites. Regions pierced by the same magnetic flux Φ1,
Φ2, or Φ3 ¼ −6ðΦ1 þΦ2Þ are highlighted in the same color. All
next-nearest-neighbor transitions in the direction indicated by the
arrow have the probability amplitude J2 expðiϕÞ, with ϕ ¼
2πðΦ1 þ 2Φ2Þ=Φ0 and Φ0 the magnetic-flux quantum. (b) Band
structure (right sketch) of the semi-infinite translationally invari-
ant strip configuration (left sketch; infinitely extended in the
horizontal direction). The topological edge mode (red curve)
connects subsequent bulk bands. (c)–(f) Different mechanisms to
break the time-reversal symmetry in topologically protected
phononic systems: (c) The rotating blue cylinder generates a
fluid flow that results in a different sound speed along the two
circulation directions of the acoustic waves, thus breaking time-
reversal symmetry (Khanikaev et al., 2015; Ni et al., 2015; Yang
et al., 2015; Chen and Wu, 2016). (d) Precession of a spinning
gyroscope, part of a lattice connected with springs (Nash et al.,
2015; Wang, Lu, and Bertoldi, 2015; Mitchell et al., 2018).
(e) Rotation of a lattice to create a Coriolis force acting on spring-
coupled masses (Kariyado and Hatsugai, 2015; Wang, Luan, and
Zhang, 2015). (f) Time-dependent modulation of lattice sites in a
chiral fashion, such as using optomechanical interactions and
suitable illumination or other mechanisms (Peano et al., 2015;
Fleury, Khanikaev, and Alù, 2016; Darabi et al., 2020; Mathew,
del Pino, and Verhagen, 2020).
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nonvanishing orbital angular momentum on the sound waves
via the optomechanical interaction. The resulting driving laser
phases have a phase difference of 2π=3 between neighboring
sublattices; cf. Fig. 9(f). The combination of the choice of
lattice and of the laser phases allows one to open band gaps
between subsequent bands by breaking the time-reversal
symmetry while maintaining the inversion symmetry. As
discussed for the Haldane model in Sec. IV.B, this leads to
a Chern insulator band structure, with topologically protected
edge channels around the boundaries of the sample. The
possibilities offered by this approach include in situ time-
dependent switching of topological domains via the light.
Depending on parameters, one can choose to have only a
small admixture of photonic excitations or deliberately enter a
regime of strong hybridization and topological transport of
combined photon-phonon excitations. This proposal pointed
the way toward nanomechanical topological phonon transport,
and experiments in recent years are moving closer to even-
tually realizing such ideas, with Ren et al. (2022) having
already shown 800 unit cells in an optomechanical array.
Other proposals based on optomechanical arrays were

recently put forward (Mathew, del Pino, and Verhagen,
2020; Sanavio, Peano, and Xuereb, 2020). Sanavio, Peano,
and Xuereb (2020) proposed an implementation based on
optomechanical microtoroids. In their approach, the array is
driven only from the perimeter, and neighboring microtoroids
are coupled via the evanescent radiation without any direct
mechanical coupling. If the optical modes are engineered to
have a spin-orbit coupling (Hafezi et al., 2013), the opto-
mechanical interaction induces a nonreciprocal mechanical
coupling between the breathing modes. The approach of
Mathew, del Pino, and Verhagen (2020), with time-dependent
modulation of the laser intensity generating coupling between
mechanical modes of different frequencies, required less
precise control of the optical modes and experimentally
demonstrated a building block of the envisaged lattice.
Similar schemes involving the parametric modulation of an
array of mechanical oscillators with a periodic pattern of phase
delays have also been proposed for arrays of pendula (Salerno
et al., 2016) and of acoustic cavities (Fleury, Khanikaev,
and Alù, 2016). Both works also investigate the full time-
dependent dynamics beyond the rotating-wave approxima-
tion, using the Floquet formalism. More recently the driving
protocol and geometry of Fleury, Khanikaev, and Alù (2016)
(involving oscillator trimers arranged on a honeycomb lattice)
has been experimentally demonstrated for an array of piezo-
electrically modulated elastic membranes (Darabi et al.,
2020), thereby representing the first experimental realization
of a Chern insulator for elastic waves.
A number of schemes employing time-reversal symmetry

breaking are based on acoustic-wave propagation in fluids.
The unit-cell lengths for these systems are on the centimeter
scale. The initial theoretical proposal by Yang et al. (2015),
followed by Khanikaev et al. (2015) and Ni et al. (2015) and
experimentally demonstrated by Ding et al. (2019), involved
breaking the time-reversal symmetry by running a circulating
airflow around cylinders. Owing to this external airflow, the
acoustic-wave speed in the direction along the flow and
opposite to it is different. In this way, the wave picks up a
different propagation phase in the clockwise and the

counterclockwise directions [see Fig. 9(c)], effectively
leading to an acoustic Aharonov-Bohm effect. Chen and
Wu (2016) used this scheme to propose a tunable topologi-
cal phononic crystal. In a conceptually similar setting,
Souslov et al. (2017) proposed and theoretically analyzed
the topological density waves appearing in a liquid com-
posed of self-propelled particles.
Chronologically the first experimental implementation of a

Chern insulator for mechanical vibrations was presented in early
2015, for a macroscopic system: an array of coupled spinning
motor-driven gyroscopes on a honeycomb lattice (Nash et al.,
2015). The precession of the gyroscopes around the suspension
point breaks the time-reversal symmetry. To provide the
coupling, a small magnet is placed in each gyroscope, leading
to a magnetic repulsion between neighboring gyroscopes that
can be modeled as a spring; see Fig. 9(d). This array of about 50
gyroscopes, with centimeter-scale unit size, was then imaged
directly in real time, revealing the chiral propagation of a wave
packet along the boundary of the array. In addition, in 2015 a
similar gyroscope-based platform was independently proposed
by Wang, Lu, and Bertoldi (2015). Subsequently, following up
on their own previously discussed experimental work, Mitchell
et al. (2018) studied Chern insulators both theoretically and
experimentally in an amorphous lattice of gyroscopes while
analyzing the interplay with strong disorder.
An alternative mechanism to implement a Chern insulator

phase for discrete coupled mechanical systems is to take
advantage of the Coriolis force by rotating a lattice of masses
coupled with springs, as illustrated in Fig. 9(e). This approach
was advocated by Kariyado and Hatsugai (2015) and Wang,
Luan, and Zhang (2015).
In summary, Chern insulators for vibrations have been

proposed, and in a few cases already experimentally imple-
mented, based on a variety of mechanisms. These include
time-reversal symmetry breaking via magnetic interactions,
optomechanical interactions, time-dependent piezoelectric
modulation, circulating airflows, gyroscopic motion, and
Coriolis forces.

C. Preserved time-reversal symmetry

While time-reversal symmetry breaking gives rise to robust
edge states, it can sometimes be easier if no such measures are
required. This is especially true for nanoscale systems, where
purely passive geometric designs are easiest to implement.
In Sec. II.C, we identified two complementary approaches

to implement helical edge states in bosonic systems: (i) an
effective spin-Hall Hamiltonian (block-diagonal across the BZ
and supporting an engineered time-reversal symmetry T en)
(cf. Sec. II.C.1) and (ii) via effective Dirac Hamiltonians
describing selected bands in a limited quasimomentum
region (cf. Sec. II.C.2). Here we discuss their corresponding
implementations in phononic systems starting with the first
approach.

1. Implementing spin-Hall Hamiltonians

How can the classical dynamics of coupled mechanical
harmonic oscillators, governed by Newton’s laws m̈ri ¼
−Dijrj (D̂ is the dynamical matrix), imitate the dynamics
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of the spin-Hall Hamiltonian (2)? This question was addressed
by Süsstrunk and Huber (2015), who provided the first
experimental realization of a two-dimensional mechanical
phononic topological insulator (as opposed to a Chern
insulator). They employed an array of centimeter-scale
macroscopic pendula, each of which has only one motional
degree of freedom, but coupled pairwise in a suitably
designed way with several mechanical springs. In this
way, they created an entire array imitating the required
dynamical matrix D; see Fig. 10(a).
More specifically Süsstrunk and Huber (2015) considered

two copies of the Hofstadter model (Hofstadter, 1976) with
opposing magnetic field and one-third of the magnetic-flux
quantum per plaquette; cf. Fig. 10(a). The Hamiltonian Ĥ is
complex valued and cannot be easily realized with coupled
harmonic oscillators. Therefore, a local unitary transformation
Û ¼ û ⊗ 1lattice is performed Û†Ĥ Û ¼ D̂ such that the
dynamical matrix D̂ becomes real valued and symmetric.
More explicitly, at each lattice site the pseudospin states
(ψ↑;ψ↓) of the double-Hofstadter model are related to the
vibrations x and y of two pendula [Fig. 10(b)] via the unitary
operation

�
ψ↑

ψ↓

�
¼ û

�
x

y

�
; û ¼ 1ffiffiffi

2
p

�
1 −i
1 i

�
: ð7Þ

Thus, the two pseudospin eigenstates of Ĥ can be seen as
certain relative motion patterns of the two pendula at each
lattice site, which would correspond to left- and right-hand
circular polarization in electromagnetism. The directed link
between two neighboring unit cells is characterized by four
effective spring constants, grouped in a 2 × 2 matrix K, as
shown in Fig. 10(c). The required matrix is determined by the
hopping amplitudes in the target model,

KðϕÞ ¼ Jû†
�
eiϕ 0

0 e−iϕ

�
û ¼ J

�
cosϕ sinϕ

− sinϕ cosϕ

�
: ð8Þ

In Eq. (8) ϕ (−ϕ) is the phase acquired by a pseudospin up
(down) excitation moving in the direction of the arrow
between the unit cells; cf. Fig. 10(c). In the target model,
ϕ ¼ 0, 2π=3, and 4π=3, respectively, for the black, red (dark
gray), and blue (light gray) links in Fig. 10(a). Effective
negative spring constants (required for ϕ ≠ 0) are engineered
by coupling pendula via lever arms.
In a strip configuration, this particular system gives rise to

two topological edge states in each of the two bulk band gaps,
as illustrated in Fig. 10(d). The experiment of Süsstrunk and
Huber (2015) demonstrated the existence of the edge states
and tested their robustness against various boundary defor-
mations. As a sequel to this work, they demonstrated the idea
of switchable topological phonon channels in the same kind of
platform (Süsstrunk, Zimmermann, and Huber, 2017).
The edge states demonstrated by Süsstrunk et al. are

protected against any perturbation that preserves the engi-
neered time-reversal symmetry T en ¼ UT . Here T is the
physical time-reversal symmetry and U is the local unitary
symmetry ðx; yÞ → ðy;−xÞ. We note that arbitrary disorder in
the spring constants would preserve T but not T en, and thus
can introduce backscattering. In other words, generic time-
symmetric disorder coupling the two pseudospins plays the
same role as magnetic disorder for an electronic topological
insulator. This is generally true for any bosonic implementa-
tion of topological insulators. Although this seems like a
great disadvantage, experiments and numerical simulations
with moderate levels of geometrical disorder have shown the
backscattering to be surprisingly small; see Süsstrunk and
Huber (2015), Lu et al. (2017), and Brendel et al. (2018).
The implementation of spin-Hall Hamiltonians has also

been proposed for phononic platforms other than arrays of
pendula, including bilayer lattices of masses coupled via
springs (Pal, Schaeffer, and Ruzzene, 2016) and elastic
metamaterials (Matlack et al., 2018) comprising perforated
plates coupled by beams. In addition, Peng et al. (2016)
proposed and experimentally demonstrated a topological
insulator based on coupled-resonator acoustic waveguides.
Their platform is the acoustic analog of the well-known
topological photonics platform based on optical resonators
coupled via coupler waveguides; see Hafezi et al. (2013). The
relevant pseudospin is the chirality of the sound propagating
clockwise or anticlockwise around a ring-shaped lattice
resonator. It is conserved because the propagation direction
does not change when the sound is transmitted between a
lattice resonator and a coupling resonator. Peng et al. (2016)
observed the topological phase transition predicted by Liang
and Chong (2013) for symmetric couplers in the strong
coupling regime. A similar platform was proposed by He,
Li et al. (2016) for the spin-polarized transport of underwater
sound. Beyond spin-Hall Hamiltonians, the connection
between mass-spring models and single-particle quantum
mechanical Hamiltonians was analyzed by Süsstrunk and
Huber (2016), who developed a classification of the topo-
logical phases of such models based on the symmetry class
and spatial dimension (in one, two, or three dimensions).

(a) (b)

(c)

(d)

FIG. 10. Phononic spin-Hall Hamiltonians. (a) Two-copy
version of the Hofstadter model. The phases �ϕ acquired by
a pseudospin up and down hopping in the direction of the arrows
for the three types of links (with varying shading) are indicated.
Overall a pseudospin up (down) going around any plaquette
acquires the Berry phase 2π=3 (−2π=3). (b) The two modes x, y
were realized by Süsstrunk and Huber (2015) as two one-
dimensional pendula. (c) Definition of the matrix K. The unit
cells are highlighted in gray. (d) Band structure (right sketch) of
the semi-infinite strip configuration (left sketch) featuring topo-
logical edge states (red and orange arrows).
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We now describe several schemes in which robust helical
edge states are engineered via an effective Dirac Hamiltonian;
see Sec. II.C.2. In these methods, the bulk normal modes need
not be engineered across the BZ but only near some special
high-symmetry points, based on robust symmetry-based
designing principles. This family of approaches is particularly
suitable for elastic vibrations and acoustic waves whose
dynamics cannot be easily reduced to an effective tight-
binding model.

2. Valley Hall

How can we most easily implement the Dirac
Hamiltonian (3) in an engineered structure like a patterned
slab or an array of scatterers? We start by observing that Dirac
cones are ubiquitous for band structures in crystals in the
wallpaper groups p6 (point group C6 formed by the sixfold
rotations) or p31m (point group C3ν with three mirror planes,
each including a primitive lattice vector) when time-reversal
symmetry T is respected. A prominent example is graphene.
In this scenario, each Dirac cone stems from an essential
degeneracy of two Bloch waves with opposing quasiangular
momentum at the high-symmetry points K or K0 of the
Brillouin zone. The Dirac cones become gapped when
the point group is reduced to C3; see Fig. 11(a). We thus
arrive at Eq. (6), where τz ¼ 1 (τz ¼ −1) and q ¼ k −K
(q ¼ k −K0) in the valley around the high-symmetry point
K (K0). At a domain wall for the mass parameter, this leads
to the appearance of a pair of counterpropagating edge
channels, with each channel localized around a different
valley; cf. Fig. 11(b). This is analogous to the quantum spin-
Hall effect, with the two valleys playing the role of effective
pseudospin directions, and it is known for this reason as the
valley Hall effect.
The valley Hall effect was originally predicted for bilayer

graphene (Martin, Blanter, and Morpurgo, 2008), where it
was experimentally demonstrated by Ju et al. (2015).
Subsequently, it has found fruitful application in engineered
crystals. For these systems, it is straightforward to design a
mass domain wall: any unit-cell geometry with weakly broken
symmetry (C2 or Cν) will have a mass parameter m≡mbk
(positive or negative). One can then obtain a suitable geometry
with mass parameter m ¼ −mbk by simply applying the
broken symmetry transformation to this unit cell; for example,
the unit cell in the second domain is obtained by a 180°
rotation of the unit cell in the first domain.
The first experimental implementation of acoustic topo-

logical edge states utilizing the valley Hall effect relied on
acoustic waves propagating in a 2D lattice of triangular
rodlike scatterers (Lu et al., 2017); see Fig. 11(c). As the
triangles are not aligned with the hexagonal lattice, a mis-
match of mirror symmetries between the lattice and scatterers
arises, breaking the C3v symmetry, thereby producing the
valley Hall effect and, eventually, the edge channels.
Various publications based on valley-polarized acoustic

waves followed this initial work (Lu et al., 2018; Wang et al.,
2018, 2020; Wen et al., 2018; Xia et al., 2018; Yang, Yang,
and Zhang, 2018; Zhang, Tian, Cheng et al., 2018; Zhang,
Tian, Wang et al., 2018; Han et al., 2019; Shen et al., 2019;
Tian et al., 2020; Fan et al., 2022). Lu et al. (2018) proposed a

bilayer design of scatterers for airwaves. Xia et al. (2018)
demonstrated valley-polarized acoustic edge channels
between a square lattice of scatterers, thereby going beyond
the conventional triangular lattice employed in the valley Hall
effect. The concept of topological acoustic valley transport has
been leveraged to build acoustic antennas (Zhang, Tian, Wang
et al., 2018) and acoustic delay lines (Zhang, Tian, Cheng
et al., 2018); cf. Sec. VI. The acoustic antennas are used to
out-couple airwaves from the lattice of rod-shaped scatterers
to the surroundings in a desired direction, and to perform the
reverse process of receiving sound only from a source in the
desired direction. The delay line is used to control the time it
takes for the energy to travel between two different points on a
lattice. Zhang, Tian, Cheng et al. (2018) implemented acoustic
delay lines using three-legged rod scatterers, where these rods
can be rotated with computer-controlled motors to build
reconfigurable topological edge states. An alternative recent
implementation of tunable lattices, this one based on coupled
acoustic cavities, was presented by Tian et al. (2020). With the
goal of providing a more flexible interface to other acoustic
devices, Wang et al. (2020) proposed and experimentally
demonstrated a setup in which two topologically distinct
domains were separated by a massless domain.
Approaches based on the valley Hall effect for elastic

vibrations in macroscopic solids soon followed the

(a) (b)

(c) (d)

FIG. 11. Valley Hall effect. (a) Effect of different symmetries on
the Dirac cones. The degeneracy splits on breaking the C2 or Cv
symmetry of the original C6 or C3v crystal. The shading of the
resulting hyperbolic bands encodes the valley Chern number.
(b) Left sketch: translationally invariant strip including two
domains of opposite mass, with a helical edge channel arising
at the domain interface (with the propagation direction depending
on the valley index). Right sketch: the distinct valley Chern
number CK of the band for each domain. (c) Array of triangular
scatterers for the acoustic waves discussed by Lu et al. (2017).
The scatterers are rotated to break the mirror symmetry Cv, which
opens a gap in the Dirac cones. (d) Implementation of the valley
Hall effect in an optomechanical crystal (Ren et al., 2022). The
silicon slab consists of patterned holes of two different sizes,
which are used to manipulate the Dirac cones. The vibrations are
measured optically via the photonic-crystal cavity mode.

Shah et al.: Colloquium: Topologically protected transport …

Rev. Mod. Phys., Vol. 96, No. 2, April–June 2024 021002-15



aforementioned first ideas for airflows (Huo et al., 2017; Pal
and Ruzzene, 2017; Vila, Pal, and Ruzzene, 2017). Pal and
Ruzzene (2017) proposed an array of resonators arranged in a
triangular lattice on an elastic plate. Vila, Pal, and Ruzzene
(2017) implemented it experimentally by building a hexago-
nal elastic lattice out of an acrylic panel.
The first experimental demonstration of nanoscale topo-

logical phonon transport based on the valley Hall effect was
recently presented. It utilizes an optomechanical array (Ren
et al., 2022) that is designed starting with a patterned Si slab
phononic crystal with snowflake-shaped holes (Brendel et al.,
2017). The Dirac cones are gapped by breaking the Cv
symmetry by engineering different properties of the A and
B sublattice units. Furthermore, a photonic crystal is
embedded inside the larger phononic unit cell; see Fig. 11(d).
The purpose of producing an optical photonic-crystal defect
cavity at each site of this array is to enhance the sensitivity of
light-based detection of mechanical motion (by a factor of the
finesse of the cavity). This allowed one, for the first time in
any system, to measure thermal topological vibrations, of
amplitudes around 10 fm, and to do so in a spatially resolved
way by scanning along the domain wall. Valley-locked edge
states have been demonstrated in other recent nanoscale
experiments with surface acoustic waves (Zhang et al.,
2021) and in an array of suspended silicon nitride membranes
(Ma, Xi, and Sun, 2021; Xi et al., 2021) [similar to the setup
used by Cha, Kim, and Daraio (2018) but with a different
symmetry of the etching pattern; cf. Fig. 12(d)]. Zhang et al.
(2022) reached the hypersonic regime for the first time using a
piezoelectrically actuated aluminum nitride snowflake pho-
nonic crystal.
Next we highlight two important theoretical contributions

to the general understanding of the valley Hall physics. Fan
et al. (2022) drew an interesting connection between valley
Hall edge states and the topological edge states of 3D Weyl
semimetals. They focused on setups supporting a geometrical
angle parameter α that controls the value of the mass
parameter; cf. Fig. 11(c) for an example. Viewing this angle
as the quasimomentum for a third synthetic dimension
promotes the Dirac cones to 3D Weyl cones. In the presence
of a straight boundary or domain wall, the valley edge states
for varying values of the angle parameter α and longitudinal
quasimomentum k are thus mapped onto the topological edge
states of a Weyl semimetal. In addition, the synthetic quasi-
momenta (α and k) for the subset of valley edge states with
eigenfrequency exactly in the middle of the bulk band gap
form arcs in the α-k plane. Each arc connects the projections
of a pair of artificial Weyl points onto this plane, analogous to
Fermi arcs in Weyl semimetals (Wan et al., 2011). Shah,
Marquardt, and Peano (2021) analyzed the residual back-
scattering induced by large quasimomentum transfer, provid-
ing an interpretation of these transitions as tunneling processes
in quasimomentum space; see Sec. V for further details.

3. Zone folding

The zone-folding scheme is an alternative symmetry-
based approach to engineer an effective Dirac Hamiltonian
with a tunable mass. As for the valley Hall effect, the
Hamiltonian (6) is obtained by modifying an initial design

with C6 point-group symmetry that supports a pair of Dirac
cones. In this scheme, the mass term is obtained by breaking
the original translational symmetry without breaking the C2
symmetry. This generates a smaller Brillouin zone into
which the original bands are folded back (hence the name).
This scheme was originally proposed by Wu and Hu (2015)
for photonic crystals.
The effective Hamiltonian for the previously described

scenario is intimately connected to the valley Hall
Hamiltonian. In both scenarios, one starts with the same
assumptions leading to the effective Dirac equation [Eq. (6)
with mðxÞ ¼ 0] before introducing the symmetry-breaking
perturbation. We note that q is the quasimomentum of the
enlarged unit cell. Thus, the band structure can be viewed as
supporting a double Dirac cone (i.e., a doubly degenerate
Dirac cone) centered at the Γ point of the reduced Brillouin
zone; cf. Fig. 12(a). We further note that the Hamiltonian is
invariant under any valley-admixing rotation of the pseudo-
spin degree of freedom. In particular, one can combine the
Bloch waves in the two valleys to obtain four C6-symmetric
Bloch waves at the Γ point. It can be shown that under
rotations they behave as p� and d� atomic orbitals (with
quasiangular momenta �1 and �2, respectively). A pertur-
bation that breaks the original translational symmetry Ta
without breaking the C6 symmetry splits the degeneracy
between the p and d Bloch waves, leading to a twofold

(a)

(c) (d)

(b)

FIG. 12. Zone folding. (a) Left sketch: unit cell of an array of
rod-shaped scatterers for acoustic waves used by Deng et al.
(2017). Right sketch: description of the Dirac cone in k space for
both the primitive (blue inner) and a larger (red outer) real-space
unit cell, indicating the folding back to the Γ point. (b) Breaking
the original discrete translational symmetry T a by making the
central rod smaller induces a gap in the Dirac cone. (c) Domain-
wall configuration consisting of two domains with an inverted
band arrangement. The radius of the central rod relative to that of
its surroundings is varied in the two domains. The helical edge
states appear in the bulk band gap of the strip band structure.
(d) Schematic implementation of the zone-folding scheme for
elastic waves on a patterned plate, as used in the experiment of
Cha, Kim, and Daraio (2018). The distance w of the etched holes
(white dots) from the blue center unetched region is varied to
break the translational symmetry.
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degenerate gapped cone band structure; cf. Fig. 12(b). As with
the valley Hall effect, the underlying effective Hamiltonian
has the form of Eq. (6). However, the rotated pseudospin τz
now has a different interpretation: τz ¼ 1 (τz ¼ −1) if the
carrier waves are pþ or dþ (p− or d−) Boch waves. This
reflects the fact that, up to leading order in k for the k · p
perturbation theory, only states that differ by one unit of
quasiangular momentum are coupled. We note that τzσz ¼ 1

(−1) for the d (p) Bloch waves. In other words, the sign of the
mass parameter m is set by the order of the p and d bands at
the Γ points; see Fig. 12(c). Thus, a band inversion at the
interface of two adjacent domains (here labeled types 1 and 2)
gives rise to helical edge states; cf. Fig. 12(c).
The zone-folding idea was first transcribed from the photonic

world to the phononic domain by Zhang et al. (2017), who
theoretically proposed and analyzed the propagation of airborne
sound in the presence of an array of cylindrical scatterers, in the
same arrangement as the photonic-crystal holes in the first
photonic proposal by Wu and Hu (2015). Shortly thereafter
Yves et al. (2017) proposed using the same arrangement for an
array of subwavelength Helmholtz resonators, in the form of
soda cans, to engineer topological polaritonic waves.
Chaunsali, Chen, and Yang (2018) employed the zone-folding
idea to propose topological transport of flexural waves on a thin
plate with resonators mounted on its top. The first experimental
implementation of the zone-folding mechanism for mechanical
topological transport (Deng et al., 2017) employed an array of
rodlike scatterers on a hexagonal lattice [see Fig. 12(a)], thereby
shaping the acoustic vibrations of air between those rods.
Owing to its simplicity, zone folding was recognized as a

promising approach for the nanoscale, with the first theory
proposal based on elastic waves in a phononic crystal with
snowflake-shaped patterned holes (Brendel et al., 2018).
Shortly thereafter Cha, Kim, and Daraio (2018) published
the first experimental realization of an on-chip nanoscale
topological metamaterial.
Their experiment is based on a zone-folding design, and

their on-chip phononic crystal is made out of a piezoelectric
material (SiN) to enable electrical signals to be transduced to
mechanical motion. The schematic of the geometry is shown
in Fig. 12(d), with a unit cell size of 18 μm and a frequency of
around 15 MHz. They were able to detect in a space-time
resolved way the propagation of wave packets along domain
boundaries. This was achieved using an excitation electrode to
inject flexural waves and a Michelson interferometer, which
can be scanned, for optical detection. The zone-folding trick
was also used for the first implementation of topological
transport for surface acoustic waves (Zhang et al., 2021).
Ma et al. (2021) proposed and experimentally demonstrated

an interesting extension of the zone-folding trick. Their
scheme features two different perturbations: the first breaks
the translational symmetry T a and the second breaks twofold
rotational symmetry. The strengths of the two perturbations
could be tuned independently by changing the appropriate
geometrical parameters in the same platform used by Ma, Xi,
and Sun (2021), allowing one to interpolate between the valley
Hall Hamiltonians and the sixfold symmetric zone-folding
ones while always keeping the same form of the effective
Dirac Hamiltonian [Eq. (6)].

4. Accidental degeneracy of Dirac cones

The previously described zone-folding scheme provides a
systematic engineering strategy to obtain double Dirac cones
in a crystal: consider the band structure of the larger unit cell
of a C6-symmetric crystal. In contrast, as the name itself
suggests, the “accidental degeneracy” approach relies on fine-
tuning. However, there is a logic behind the scheme, which is
to take advantage of the fact that a C6-symmetric crystal
automatically features the twofold degenerate symmetric
states p� and d�. If one can tune the parameters of the
geometry so as to bring a pair of p and d states to the same
frequency, then this would form a double Dirac cone at the Γ
point; see the schematic bands in Fig. 13(b). Afterward
one can follow the recipe that we described for the
zone-folding scheme to create counterpropagating topological
edge states out of a double Dirac cone.
The first experimental demonstration of phononic edge

states produced via the accidental degeneracy mechanism was
in the context of acoustic waves scattered by a lattice of steel
rods (He, Ni et al., 2016). By varying the ratio of the diameter
of steel rods to the lattice periodicity across a threshold value,
the order of a pair of p and d Bloch waves can be exchanged;
cf. Figs. 13(a) and 13(b). Close to the Γ point and for ratios in
the vicinity of the threshold value, the group of four bands is
described by the Hamiltonian (6), allowing helical edge states
to be engineered at a domain wall for the mass parameter. We
note that essentially the same scheme was independently
proposed by Mei, Chen, and Wu (2016). Going back to He, Ni
et al. (2016), their setup featured a new way of arranging the
two domains in a beam-splitter-like arrangement that has since
also been useful in helical edge-state implementations to
deduce to what extent the helical transport is spin polarized.
The approach based on the accidental degeneracy of pairs of p
and d Bloch waves has been also leveraged to implement
topological elastic vibrations in a patterned plate; see Yu et al.
(2018, 2021).
There is an alternative approach for obtaining degenerate

Dirac cones accidentally that again involves not only fine-
tuning but also use of the symmetries. As for the valley Hall
effect, one starts with a geometry with a wallpaper group
supporting symmetry-protected Dirac cones at the K and K0

points. Typically planar geometries (such as phononic crystals
and flexible plates) used for engineered 2D transport have an
out-of-plane mirror symmetry Mz for reflection about the 2D
plane. This prevents the mixing of modes that are symmetric
and antisymmetric with respect to this symmetry. Therefore, if
one can tune the geometry to bring the two Dirac cones
corresponding to these two modes to have the same Dirac
speed and degeneracy point, then they form a double Dirac
cone at the K and K0 points; see the schematic bands in
Fig. 13(d). Subsequently the mirror symmetry is broken to
produce a tunable mass term and to eventually create a domain
wall between two topologically distinct domains. This leads to
a pair of counterpropagating edge states at each Dirac point.
The underlying Hamiltonian can be viewed as comprising two
copies of Eq. (6).
This idea was presented early on by Mousavi, Khanikaev,

and Wang (2015). In their design, they proposed plates
patterned with holes arranged in a triangular lattice. The
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phononic crystal comprises two different feature sizes: the
macrolattice is designed to create a pair of Dirac cones,
whereas the smaller features on the microlattice are engi-
neered to make the pairs of Dirac cones coincide not only in
frequency but also in velocity. Inspired by this theoretical
work, Miniaci et al. (2018) later experimentally demonstrated
the accidental degeneracy of two Dirac cones in macroscopic
patterned elastic plates. Another implementation based on an
elastic rod lattice was demonstrated by Mei et al. (2019).

5. Pseudomagnetic fields

All schemes for engineering Dirac Hamiltonians presented
thus far have in common that they make use of the mass
term to generate topologically distinct domains, and thus
helical edge states, at a smooth domain wall. An alternative to
this approach is to use so-called pseudomagnetic fields.
Pseudomagnetic fields are indistinguishable from magnetic
fields if one is allowed to focus on a single pseudospin
direction but have opposite signs for two pseudospins in
opposite directions. This ensures that the time-reversal sym-
metry is preserved, in contrast to approaches in which the
action of a magnetic field is mimicked across the Brillouin
zone (as previously discussed for constructed Chern insula-
tors). In graphene-based materials, pseudomagnetic fields are
induced by position-dependent strain (Kane and Mele, 1997;
Mañes, 2007). This gave rise to the idea (Guinea, Katsnelson,

and Geim, 2010) to engineer constant pseudomagnetic fields
via strain to observe quantum Hall physics that would
otherwise require large magnetic fields, as demonstrated
shortly thereafter (Levy et al., 2010).
As with the other previously discussed Dirac-based

approaches, pseudomagnetic fields can be understood by
analyzing how the underlying Dirac Hamiltonian is modified
after breaking a symmetry. In particular, we consider the same
initial setup as in Sec. IV.C.2 (wallpaper group p6 or p31m in
the presence of the time-reversal symmetry T ), but now we
analyze what happens after breaking the threefold rotational
symmetry C3. In this case, the cones are not gapped (because
the degeneracy is protected by the twofold rotational sym-
metry); rather, their tips are displaced away from the high-
symmetry points K and K0. The location of the tip of the
cone in relation to the high-symmetry K0 (K) point can be
represented as a vector A ¼ ðAx; AyÞ; see Fig. 14(a). Within a
smooth-envelope approximation, the band structure in the
vicinity of one of the valleys (say, the K point) is then
described using the following 2D Dirac Hamiltonian:

ĤDðkÞ ¼ v½k −K −AðxÞ� · σ̂: ð9Þ

We observe that the quantity A is analogous to the magnetic
vector potential for the case of a relativistic charged particle in
a magnetic field. To use this effect to produce a pseudomag-
netic field B ¼ ∇ ×AðxÞ for phonons, A must vary spatially,
i.e., the location of the cone in momentum space needs to shift
as one moves along in real space. This can be achieved by
having a spatially varying deformation of the ideal phononic-
crystal geometry; see Fig. 14(b). For a constant magnetic field
in the z direction B ¼ B0ez, a typical choice is to use the

(a)

(c) (d)

(b)

FIG. 13. Accidental degeneracy of Dirac cones. (a) Unit cell of
an array of rods with C6v symmetry acting as scatterers for
acoustic waves (He, Ni et al., 2016). (b) Left sketch: the ratio of
the diameter to the periodicity is varied to observe the band
inversion via a double Dirac cone at the Γ point. As in the zone-
folding scheme, helical edge states appear in the bulk band gap.
(c),(d) Metal plates patterned with holes of two sizes: large holes
are used to obtain the Dirac cones at the K point for modes
that are symmetric and antisymmetric about the x-y plane, as
suggested by Mousavi, Khanikaev, and Wang (2015). The
smaller holes [the inset in (c)] are used to engineer the dispersion
for making the two cones identical. One can pattern partial holes
to break the mirror symmetry Mz, and thereby gap the double
Dirac cones (Miniaci et al., 2018).

(a) (b) (c)

FIG. 14. Pseudomagnetic fields. (a) Upon breaking the C3 point-
group symmetry, the Dirac cones shift in the Brillouin zone. The
displacement from the valleys is given by A ¼ ðAx; AyÞ (here
Ay ¼ 0). (b) Scheme proposed by Brendel et al. (2017) to
displace the Dirac cones in a phononic crystal. The horizontal
arm length LðyÞ of the snowflake-shaped hole is modified in a
spatially dependent way, thereby inducing a spatial dependence
AxðyÞ. (c) Left sketch: translationally invariant strip with smooth
boundaries. The gray scale encodes the vector potential Ax (for
an out-of-plane constant magnetic field B ¼ Bzez). Middle
sketch: the position dependence of the mass parameter m defines
the smooth boundaries. Right sketch: band structure in the
vicinity of the K point. The bulk band gap between the n ¼ 0
and n ¼ −1 Landau levels is highlighted by shading. Away from
the K point the Landau levels turn into gapless edge states. The
semiclassical orbits for three modes are displayed in (c).
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Landau gauge, i.e., to set A ¼ −B0yex, which implies a
certain spatial pattern of deformation. The band structure then
features Landau levels in the vicinity of the K and K0 points.
This also means that valley-polarized waves in the bulk of the
material will experience a Lorentz force.
Pseudomagnetic fields were originally transferred from the

electronic realm into the mechanical domain by Brendel et al.
(2017), who considered a nanoscale phononic crystal imple-
mentation; see Fig. 14(b). The same concept was also
analyzed for a tight-binding (mass-spring) mechanical model
of strained graphene (Abbaszadeh et al., 2017). More recently
pseudomagnetic fields were implemented for acoustic waves
by Wen et al. (2019). Apart from generating bulk pseudo-
magnetic fields, Brendel et al. (2017) also put forward the idea
of using those fields to engineer gapless helical edge states
analogous to their chiral counterparts in the presence of time-
reversal-symmetry-breaking magnetic fields. As for other
design schemes producing helical edge states based on the
Dirac Hamiltonian, successfully achieving robust edge-state
transport requires the coupling between different valleys to be
suppressed by means of smooth domain walls or boundaries;
cf. Figs. 14(c) and 14(d).

V. CHALLENGES FOR TOPOLOGICAL
PHONON TRANSPORT

Various challenges will have to be addressed to fully realize
the potential of topological phonon transport in actual
applications. For instance, external modulation schemes are
an important possibility in order to realize Chern insulators for
phonons, but it is difficult to engineer them. As most future
applications of topological phonon waveguides are envisaged
for nanoscale devices, these engineering challenges will
become even more formidable to solve. For example, it is
not straightforward to achieve the required control of a
platform to implement a spin-Hall Hamiltonian across the
entire BZ. Even when this is possible, simple geometrical
disorder can induce backscattering since Kramers degeneracy
is enforced by an artificial symmetry ; cf. Fig. 15(a). As
another example, the promising schemes of topological trans-
port and phonon control in optomechanical arrays [starting
with Peano et al. (2015)] in some cases rely on optical modes
being tuned into resonance, which is still a challenge due to
unavoidable fabrication disorder. More progress in this
domain is needed, as it is for many other applications beyond
topological transport.
Hence, approaches based on engineered Dirac cones are

favored at the nanoscale (Cha, Kim, and Daraio, 2018; Ma
et al., 2021; Ma, Xi, and Sun, 2021; Xi et al., 2021; Zhang
et al., 2021, 2022; Ren et al., 2022; Wang et al., 2022).
Although for this case one can obtain Dirac cones by
enforcing a suitable symmetry in the crystal, one still needs
to perform additional engineering to get these cones spectrally
isolated. That is, there should not be any other bands in the
same frequency range; cf. Fig. 15(b). Moreover, the smooth-
envelope approximation (and thus the suppression of back-
scattering) relies on the assumption that the edge states are
well localized in quasimomentum. For this reason, tightly
confined edge states are more prone to backscattering;
cf. Fig. 15(c). For sharp domain walls this translates into a

constraint on the bandwidth; see our discussion in Sec. III.
In addition, the reflection strongly depends on the geometry
and carrier frequency of the wave. For sharp turns connecting
straight segments of the domain walls, it is well known that the
reflection is strongly reduced for so-called zigzag segments
oriented along the primitive lattice vector (of the smaller unit
cell in zone-folding schemes); see Lu et al. (2017). Indeed,
this type of domain wall is used in most experiments. The
more detailed analysis given by Shah, Marquardt, and Peano
(2021) advocated for smooth domain walls to eliminate the
trade-off between backscattering and bandwidth. They further
showed that in this scenario the backscattering takes place
predominantly at certain locations that coincide with special
values of the local angle of the domain-wall boundary;
cf. Fig. 15(d). Future attempts at engineering topologically
robust transport along edge channels in time-reversal-sym-
metric systems should take these observations into account.
Even when backscattering is negligible, there is one

remaining challenge, namely, mechanical dissipation: pho-
nons can simply get lost while traveling along the edge
channel. This is a common problem for transport in any
physical platform without particle number conservation, and it
is shared by electromagnetic waves, in particular. Great effort
has been expended over the past two decades to reduce

(a)

(c)

(b)

(d)

FIG. 15. Challenges for topological phonon transport. (a) Effects
of geometrical disorder in time-reversal symmetric systems.
Disorder coupling opposite pseudospin directions also breaks
Kramers degeneracy (top sketch), and thus could induce back-
scattering (bottom bottom sketch). (b) Spectral isolation. Phonon
band structure of an actual crystal featuring multiple Dirac cones
at theK point in the Brillouin zone. The spectrally isolated Dirac
cone is marked by a circle. (c),(d) Backscattering for edge states
based on Dirac engineering. (c) Transport with tight vs weak
transverse confinement. The reflection is guaranteed to be small
only if the transverse localization length ξ exceeds the lattice
spacing a. The reflection also depends on the domain-wall
orientation (the thickness of the arrows represents the wave’s
intensity). (d) Backscattering for a smooth domain wall and two
values of the carrier frequency ω. The reflection is enhanced at
certain locations (the short red segments) that depend on both the
frequency and the domain-wall orientation φ (relative to the
microscopic lattice).
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mechanical dissipation in nanomechanical systems (Cleland,
2003; Bachtold, Moser, and Dykman, 2022) since it represents
an important issue for a number of applications ranging from
sensing to quantum information processing. Strategies include
the choice of suitable materials, care in preparing the surfaces,
the design of geometries where clamping losses are minimized
and strain is distributed in an optimized way, and high tensile
stresses. Currently mechanical Q factors (the ratio of fre-
quency and dissipation rate Ω=Γ) can reach 109 (Tsaturyan
et al., 2017) or more in gigahertz-frequency phononic-crystal
platforms (MacCabe et al., 2020), which may be suitable for
conversion into topological waveguides.

VI. POTENTIAL APPLICATIONS AND FUTURE
RESEARCH DIRECTIONS

Topological transport phenomena have been explored in a
variety of physical platforms (such as electrons, atomic matter
waves, electromagnetic waves, sound waves, and magnons).
A strong motivating factor behind this research is the
mathematical beauty of the underlying concepts and the fact
that topological phenomena are generic and robust, and thus
not dependent on small details of the implementation.
However, even the first known incarnation of topological
transport, for electrons in the quantum Hall effect, was quickly
understood to be promising for applications. The precise
quantization of the electrical conductance afforded by topo-
logical protection is now used to measure the Planck constant
and define the kilogram. This history raises the question of
which features of phononic topological transport may even-
tually become useful for real applications.
Such applications will want to employ the resilience of

phononic topological waveguides against backscattering due
to disorder and sharp turns; cf. Fig. 16(a). Additionally, in
systems with time-reversal symmetry breaking, one can make
use of the nonreciprocal nature of transport along the edge
channels as well.
One such potential application is the delay line, which is

used to add desired delays for energy to travel from a source
to a detector. It can be implemented by simply elongating
the length of the waveguide connecting the source and the
detector. However, real applications for elastic-wave delay
lines will typically rely on microscale or nanoscale systems,
both to work in the required frequency band set by the
application and to restrict the overall size of the device. To
maximize the ratio of the waveguide length to the required
footprint, one imposes several turns of the waveguide in a
meandering structure; cf. Fig. 16(b). In this setting, topologi-
cal phononic waveguides can then be employed to have sound
travel through relatively sharp turns without any backscatter-
ing. This was previously explicitly suggested as an application
for the topological transport of electromagnetic waves (Hafezi
et al., 2011) and then translated to sound waves (Zhang, Tian,
Cheng et al., 2018).
Another possible application is the so-called superdirec-

tional acoustic topological antenna. The purpose of this device
is to transmit sound in a desired narrowly focused direction,
and likewise to receive sound only from a source in the desired
direction; cf. Fig. 16(c). This has been demonstrated based on
valley Hall waveguides for sound waves in air (Zhang, Tian,

Wang et al., 2018). Provided that the interface at the edge of
the device is properly designed, the valley-polarized character
of sound transmitted along the waveguide guarantees that
there is no undesired backscattering, in contrast to a standard
waveguide. The directionality is controlled by the geometry,
especially the lateral extent of the edge-state wave function.
Another promising potential application for unidirectional

transport along topological edge channels is the nonreciprocal
amplifier (Peano et al., 2016). Such an on-chip device
amplifies the signal coming from a source and injects the
resulting amplified wave into a more conventional second-
stage amplifier. The goal is to isolate the source (for example,
containing a fragile quantum device) from any noise that may
be injected back from the second-stage amplifier, which can
be a serious technological concern. This goal can be realized
by employing the unidirectional edge channels of a Chern
insulator, with extra nonlinearities in the wave equation
ensuring that external driving can provide an energy pump
and amplification; cf. Fig. 16(d). Shortly after the proposal by
Peano et al. (2016), a related version of this kind of physics
was realized for photonic systems in the form of the
topological insulator laser (Bandres et al., 2018; Harari et al.,
2018), with pumped edge states exhibiting lasing. More
generally, tuning dissipation and amplification (such as via
optomechanical interactions and/or geometrical engineering)
leads to the domain of non-Hermitian topology (Xu et al.,
2016; Bergholtz, Budich, and Kunst, 2021; del Pino, Slim,

(a) (b)

(c) (d)

FIG. 16. Applications of topological waveguides. (a) The ad-
vantage of topological waveguides is that the transport is robust
against sharp turns, permitting compact devices and some
insensitivity to fabrication imperfections. (b) Topological delay
lines constructed by elongating the path length with multiple
loops between source and detector. (c) Topological directional
antenna in a time-reversal preserved topological waveguide. The
path between the source and the detector through the waveguide
is indicated by the arrow. (d) Nonreciprocal amplifier. The signal
is amplified when it travels from the source to the detector,
but any noise going the other way will be deamplified, thus
protecting the source.
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and Verhagen, 2022), which likely will also become more
prominent in the future for topological phononics.
Being able to control and reconfigure topological edge

channels and rearrange their connectivity can greatly improve
their usefulness. In photonic systems, some early proposals in
this direction involved the macroscopic tunability of the
platform (Cheng et al., 2016; Zhao et al., 2019). In vibrational
topological systems, several ideas have been explored as well
(Zhang, Tian, Cheng et al., 2018; Darabi et al., 2020;
Tian et al., 2020). Specifically, for nanoscale phonons an
interesting possibility offered by optomechanics uses the
optical spring effect to locally tune vibrational modes in
and out of resonance, thereby enabling and blocking transport
(Aspelmeyer, Kippenberg, and Marquardt, 2014). In this way,
light could switch topologically robust phononic edge chan-
nels in real time.
Such reconfigurable networks of phononic edge channels

could be used to connect on-chip quantum devices like spins,
quantum dots, and superconducting qubits; see Habraken
et al. (2012). They could also serve to study thermal and
quantum transport of phonons in a new and unconventional
but well-controlled regime (Barzanjeh, Aquilina, and Xuereb,
2018).
Thus far we have almost exclusively discussed purely

linear dynamics, i.e., the propagation of noninteracting
phonons (with the exception of the aforementioned amplifier
physics, which relies on some nonlinearity for its imple-
mentation, but where the equations are nevertheless linear).
A rich set of new phenomena become available when
nonlinearities start to play a role. Owing to the typical
strength of such nonlinearities in nanomechanical systems, it
will be exceedingly difficult to observe them on the single-
phonon level (unless nonlinearities are drastically increased
by coupling to nonlinear quantum devices). However, even
the classical dynamics of nonlinear waves in edge channels
of topologically nontrivial systems is an interesting subject
of study that has barely been explored. Most existing
demonstrations and analysis to date have been based on
photonic systems (Lumer et al., 2013; Ablowitz, Curtis, and
Ma, 2014; Leykam and Chong, 2016; Mukherjee and
Rechtsman, 2020; Mittal et al., 2021) [as reviewed by
Smirnova et al. (2020)]. Nevertheless, the first ideas started
to appear for implementing nonlinear topological phononics
(Pal et al., 2018; Chaunsali and Theocharis, 2019; Darabi
and Leamy, 2019; Chaunsali et al., 2021), where the non-
linearity affects the waves propagating along the edge
channels and can even be responsible for producing such
edge channels.
Enabling all of these applications requires inventive new

designs, and the variety of approaches discussed in this
Colloquium provide examples of that. Recently it was realized
that deep learning methods can help with analyzing, predict-
ing, and ultimately designing and optimizing topological band
structures and topological transport. For example, Pilozzi
et al. (2018) trained a neural network to predict topological
band structures, taking as input a few parameters for simple
tight-binding models. Going a step further, Peano, Sapper, and
Marquardt (2021) showed that a neural network learned to
predict topological band structures for arbitrary geometries of
a crystal’s unit cell provided as an image. The network was

trained to output an approximate tight-binding model, taking
into account existing symmetries of the problem, and it was
used to optimize geometrical designs (made possible by the
fact that neural networks are differentiable function approx-
imators). Future studies in this direction will likely be of great
help in engineering better platforms.
Regarding experiments, in our view the most important

overall trend in topological phononics is the emergence of
first nanophononic realizations of topological transport (Cha,
Kim, and Daraio, 2018; Ma et al., 2021; Ma, Xi, and Sun,
2021; Xi et al., 2021; Zhang et al., 2021, 2022; Ren et al.,
2022; Wang et al., 2022; Nii and Onose, 2023). These are
crucial, as they will pave the way toward truly useful devices.
Such efforts are tied into the overall developments in the
fertile areas of nanomechanics (Cleland, 2003; Bachtold,
Moser, and Dykman, 2022) and optomechanics (Aspelmeyer,
Kippenberg, and Marquardt, 2014), with ever greater control
and ever better mechanical quality factors encompassing
phononic crystals, the use of nanomechanics for sensing,
and coupling to quantum devices.

VII. CONCLUSION

In this Colloquium, we have covered the recent develop-
ments of a wide range of ideas for engineering topologically
protected transport of vibrations in the solid state and of sound
waves in fluids. This field of topological phonon transport
initially evolved out of a desire to explore and access, in
vibrational and acoustic systems, the same conceptually
interesting phenomena that had already been established for
electrons and that had begun to be analyzed for electromag-
netic waves and cold atoms as well. A fruitful combination of
theory and experiment has since driven this field forward.
Investigations on the experimental side started at the macro-
scale. At the same time, theoretical works were already
exploring possibilities for future nanoscale platforms, where
most of the promising applications for topologically protected
transport of vibrations reside.
As devices are miniaturizing and becoming increasingly

densely packed with time, the robustness of topological
waveguides will help one to route the vibrations along desired
paths without any scattering losses. The nonreciprocity in
situations with engineered time-reversal symmetry breaking
can be exploited for isolation, for example, in nonreciprocal
amplification. Experimental efforts in the field of nanoscale
topological phonon transport are currently in only their
beginning stages, and the investigation of quantum phenom-
ena is likewise an outstanding challenge.
To add to these promises, such devices can turn into hybrid

platforms by incorporating coupling to microwaves, optical
waves, or spin waves. This can enable novel possibilities like
reconfigurable topological waveguides. All of these func-
tionalities of topological vibrational waveguides make them
a promising candidate to be used in future integrated
phononic chips. Time will tell which of the many concepts
and types of platforms covered in this Colloquium turn out to
be the most suitable for future technological applications,
and considerable further developments will be required
toward this end.
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