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The striking success of the standard model in explaining precision data and, at the same time, its lack
of explanations for various fundamental phenomena, such as dark matter and the baryon asymmetry
of the Universe, suggest new physics at an energy scale that greatly exceeds the electroweak scale.
In the absence of a short-range–long-range conspiracy, the standard model can be viewed as the
leading term of an effective “remnant” theory (referred to as the SMEFT) of a more fundamental
structure. In recent years, many aspects of the SMEFT have been investigated, and it has become a
standard tool for analyzing experimental results in an integral way. In this review, after a presentation
of the salient features of the standard model, the construction of the SMEFT is reviewed. The range of
its applicability and bounds on its coefficients imposed by general theoretical considerations are
discussed. Since new-physics models are likely to exhibit exact or approximate accidental global
symmetries, especially in the flavor sector, their implications for the SMEFT are also discussed. The
main focus of the review is the phenomenological analysis of experimental results. How to use various
effective field theories to study the phenomenology of theories beyond the standard model is
explicitly shown. Descriptions of the matching procedure and the use of the renormalization group
equations are given, allowing one to connect multiple effective theories that are valid at different
energy scales. Explicit examples from low-energy experiments and from high-pT physics illustrate
the workflow. Also commented upon are the nonlinear realization of electroweak symmetry breaking
and its phenomenological implications.
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I. INTRODUCTION

The standard model (SM) of particle physics, formulated
approximately 50 years ago and judiciously completed
over the years, forms the basis of our understanding of the
fundamental interactions:

Maybe the main point of our analysis is that it
demonstrates explicitly how remarkable the stan-
dard electroweak theory is (Buchmüller and Wyler,
1986).

More precisely, the SM is the quantum field theory (QFT) that
describes how the basic matter constituents (quarks and
leptons) interact at the microscopic level via weak, strong,
and electromagnetic forces. While all data from Earth-based
laboratory experiments agree with the SM predictions (with a
few possible exceptions that we later comment upon), there is
some indirect evidence derived from cosmological observa-
tions that the model is not complete: It does not explain the
baryon asymmetry of the Universe, dark matter, or dark
energy. These are all phenomena that could find their
explanation in the domain of particle physics or, more
generally, within QFT. There are also theoretical concerns
about the SM itself, such as the strong sensitivity of the Higgs
mass term to high-energy modes in the renormalization
procedure (the so-called hierarchy problem), the absence of
an explanation for the hierarchical structure of the fermion
spectrum, and the lack of a bridge to quantum gravity. Finally,
nonvanishing neutrino masses cannot be accounted for by the
“classical version” of the standard model, containing only left-
handed neutrinos and only renormalizable interactions.
To address these problems, a large number of new “funda-

mental” theories beyond the standard model (BSM) were
formulated over the past 40–50 years. In fact, the 1980s and,
to a lesser extent, the 1990s saw an explosion of model
building. While some of the theories addressed specific
questions, others offered veritable extensions of the basics
of the SM, such as supersymmetric models, models with
composite Higgs sectors, and composite quarks and leptons:
concepts that might become important again in the future,
possibly within a new context, such as string theory. These
models have new particles and interactions, generally at
energies well above the Fermi scale. They were designed
to explain some of the facts that the SM cannot, such as the
quantization of the electric charge, the hierarchical genera-
tional structure of quarks and leptons, the possible unification
of interaction strengths, etc. However, many of these models
have been shown to be inconsistent with data or will not be
testable at present or near-future experimental facilities.

To explore these new-physics scenarios, most likely man-
ifested in small discrepancies between the SM predictions and
the observations, both theoretical and experimental progress
will be necessary. Over many years and with increasing
intensity and success in the new century, theoretical work
on the standard model has improved enormously. Apart from
devising new calculational tools, this progress has been made
possible by developing and applying the concepts of effective
field theory (EFT) in several relevant areas. Roughly speak-
ing, a quantum EFT is a quantum field theory that is not
considered to be fundamental, as it is valid in only a limited
range of energies or distances, or even in specific kinematic
configurations. The wide separation between the Fermi scale
(or theW-boson mass mW) and the masses of the B mesons or
the charmed particles has allowed EFT and renormalization
group techniques to be successfully used to calculate the
expected inclusive decay rates of these mesons with astonish-
ing accuracy. The formulation of new quantum EFTs like
heavy quark effective theory and soft collinear effective theory
have also led to accurate predictions for exclusive decays. In
addition, high-energy calculations, such as those used for jet
dynamics at the Large Hadron Collider (LHC), have benefited
from EFT techniques. The oldest effective field theory of
the SM, namely, chiral perturbation theory (ChPT), has been
extensively used to obtain precise results for low-energy
meson dynamics. We expect this quest for ever higher
precision, on both the theoretical and the experimental side,
to continue, in the hope of finding deviations from the SM for
which there are well motivated reasons.
In this perspective, it is natural to consider the original

formulation of the SM as the effective low-energy “remnant”
of a more fundamental theory whose new heavy degrees of
freedom are removed in favor of generating additional
effective contact interactions between the known SM fields.
As argued by Wilson (1983), the true physics of the “full”
theory below the cutoff scale can be recovered by including all
possible interactions allowed by the particles and symmetries
of the theory. The effective Lagrangian thus obtained consists
of a string of local interaction terms (operators), each
characterized by an appropriate coefficient (effective coupling
or Wilson coefficient), organized in a series of increasing
dimensionality corresponding to the expected decreasing
relevance. As is common for EFTs, this construction is not
renormalizable in the usual strict sense, because it involves an
infinite number of coupling constants. It is, however, renor-
malizable order by order in an energy or momentum expan-
sion reflected in the operator expansion. The independence
from the renormalization scale of physical amplitudes can be
exploited using the renormalization group flow of the operator
coefficients, allowing the largest quantum corrections to be
identified and resummed.
Given the success of effective theories thus far, this

approach seems to be a good way to access the next layer
of physics, as proposed by Buchmüller and Wyler (1986) even
before the last building blocks of the SM where experimen-
tally identified. In this review, we trace its development and
highlight some of the most recent results. Our main scope is to
illustrate how considering the SM as an EFT can help in
identifying properties of the new physics and single out future
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research directions. The EFT approach provides not only a
systematic way for analyzing experimental results but also a
precious tool to correlate different observables while obtaining
deeper insights on where to look for the next layer.
This review is organized as follows: In the rest of this

section we introduce the SM, also recalling the motivations for
why we want to go beyond it; we review general aspects of
EFT; and finally we introduce the so-called standard model
effective field theory (SMEFT). A detailed analysis of the
SMEFT, with a special focus on the structure of operators
of dimension 6, is presented in Sec. II. The role of global
symmetries in the SMEFT, with a particular emphasis on exact
and approximate flavor symmetries, is discussed in Sec. III.
Section IV is devoted to a discussion of the differences
between the SMEFT and the more general case of a non-
linearly realized electroweak symmetry. In Sec. V we review
the low-energy (E ≪ MW) effective theory of the SMEFT,
particularly in comparison with the standard model. Finally, in
Sec. VI we present two concrete examples of the SMEFT at
work, i.e., of applications of the SMEFT to analyze concrete
phenomenological problems. In the Appendix we discuss
some technical details of dimensional regularization showing
up in SMEFT computations.

A. The standard model of particle physics

Within the standard model1 the three fundamental forces are
described via the principle of gauge invariance, requiring the
theory to be invariant under the local symmetry group

GSM ¼ SUð3Þc × SUð2ÞL × Uð1ÞY: ð1:1Þ

The quantum fields can be divided into three categories: (i) the
gauge fields associated with the local gauge symmetry groups
ðGμ;Wμ; BμÞ, (ii) the matter (fermion) fields ðl; e; q; u; dÞ,
and (iii) the Higgs boson doublet H responsible for the
breaking of the electroweak subgroup of GSM down to the
QED group Uð1Þe,

SUð2ÞL × Uð1ÞY → Uð1Þe: ð1:2Þ

The field content of the SM is shown in Table I together
with the transformation properties of each field under the
different gauge groups and the hypercharge assignments.2

The basic fermion family ðl; e; q; u; dÞ is replicated
three times.
The SM Lagrangian is the most general renormalizable

expression that can be constructed out of the fields in Table I
that is invariant under GSM,

LSM¼−1
4
GA

μνGAμν− 1
4
WI

μνWIμν− 1
4
BμνBμν

−
θ3g23
32π2

GA
μνG̃

Aμν−
θ2g22
32π2

WI
μνW̃Iμν−

θ1g21
32π2

BμνB̃μν

þ iðl̄pDlpþ ēpDepþ q̄pDqpþ ūpDupþ d̄pDdpÞ

þðDμHÞ†ðDμHÞþm2H†H−
λ

2
ðH†HÞ2

− ð½Ye�prl̄perHþ½Yu�prq̄purH̃þ½Yd�prq̄pdrHþH:c:Þ:
ð1:3Þ

1. The gauge sector

The first three lines of Eq. (1.3) contain all gauge inter-
actions in the SM. The gauge couplings associated with the
gauge groups SUð3Þc, SUð2ÞL, and Uð1ÞY are g3, g2, and g1,
respectively. The indices A ¼ 1;…; 8 and I ¼ 1; 2; 3 denote
adjoint SUð3Þc and SUð2ÞL gauge indices, respectively. In the
first line of Eq. (1.3) the field-strength tensors are defined by

GA
μν ¼ ∂μGA

ν − ∂νGA
μ þ g3fABCGB

μGC
ν ; ð1:4aÞ

WI
μν ¼ ∂μWI

ν − ∂νWI
μ þ g2εIJKWJ

μWK
ν ; ð1:4bÞ

Bμν ¼ ∂μBν − ∂νBμ; ð1:4cÞ

where fABC and εIJK are the totally antisymmetric structure
constants of SUð3Þc and SUð2ÞL. They contain the kinetic
terms for the gauge fields as well as all interactions among the
gauge fields themselves.
On the second line, the dual field-strength tensors are

defined by F̃μν ¼ ð1=2ÞεμνρσFρσ for F ¼ GA;WI; B with the
totally antisymmetric Levi-Civita tensor defined by ε0123 ¼
−ε0123 ¼ þ1. The Lagrangian terms containing dual field-
strength tensors are proportional to total derivatives, meaning
that we can rewrite them as GA

μνG̃
A;μν ¼ 2εμναβ∂μ½GA

ν ∂αGA
β þ

ð1=3Þg3fABCGA
νGB

αGC
β �. Therefore, they can contribute only to

topological effects. For simplicity, we drop them from here on.
The third line comprises the kinetic terms of the fermion

fields as well as their gauge interactions. The latter are
encoded in the gauge covariant derivative

Dμ ¼ ∂μ − ig3TAGA
μ − ig2tIWI

μ − ig1yBμ; ð1:5Þ

where TA ¼ λA=2 and tI ¼ τI=2 are the generators of the
fundamental representation of SUð3Þc and SUð2ÞL, respec-
tively, with the Gell-Mann matrices λA and the Pauli
matrices τI . The hypercharge generator is denoted as y.

TABLE I. Standard model field content with the transformation
properties of the fields under SUð3Þc × SUð2ÞL and the hypercharge
assignments. The fields are divided into fermions ðl; e; q; u; dÞ, the
Higgs doublet (H), and the gauge fields ðG;W;BÞ.

l e q u d H G W B

SUð3Þc representation 1 1 3 3 3 1 8 1 1
SUð2ÞL representation 2 1 2 1 1 2 1 3 1
Uð1ÞY charge −1

2
−1 1

6
2
3

−1
3

1
2

0 0 0

1For a pedagogical introduction to the SM, see Donoghue,
Golowich, and Holstein (2014) and Grossman and Nir (2023).

2In principle, one could extend the fermion content including
right-handed neutrinos. However, those fields would be completely
neutral under GSM. We prefer to define the SM as the theory of the
chiral fermions with nontrivial transformation properties under GSM

that acquire mass via the Higgs mechanism. As such, right-handed
neutrinos are not SM fields.
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2. The Higgs sector

The last two lines of Eq. (1.3) include the Higgs and
Yukawa sectors of the SM written in symmetric notation
before electroweak symmetry breaking. The complex Higgs
doublet is denoted by H, and we define H̃ ¼ iτ2H�.
Minimizing the scalar potential

VðHÞ ¼ −m2H†H þ λ

2
ðH†HÞ2 ð1:6Þ

yields a nonvanishing vacuum expectation value (VEV) for
the Higgs field, v2 ¼ 2h0jH†Hj0i, whose tree-level expres-
sion reads v2 ¼ 2m2=λ. Considering the breaking of the
electroweak symmetry, it is convenient to rewrite the Higgs
doublet as

H ¼ 1ffiffiffi
2

p
�

φ2 þ iφ1

vþ h − iφ3

�
; ð1:7Þ

where h is the massive physical Higgs boson and φa denote
the three Goldstone bosons that, in the unitary gauge, are
“eaten” by the massive gauge bosons. The tree-level mass of
the physical Higgs is m2

h ¼ 2m2.
The Yukawa couplings ½Yi�pr for i ¼ e; u; d are complex

3 × 3 matrices in flavor space contracted to the fermion fields
via the global flavor indices p and r, which run from 1 to 3.
After electroweak symmetry breaking the Yukawa interactions
in Eq. (1.3) yield the fermion mass terms as well as the
Yukawa interactions with the physical Higgs boson h. The
Yukawa matrices Yu;d are the only source of flavor violation in
the SM, as the gauge interactions are all flavor diagonal. They
are also the only source of CP violation in the SM apart from
the topological terms associated with the dual field-strength
tensors, which are shown on the second line of Eq. (1.3).

3. The success of the standard model

With the discovery of the Higgs boson by the ATLAS (Aad
et al., 2012) and CMS (Chatrchyan et al., 2012) experiments
at the LHC in 2012, the last missing piece of the standard
model was observed. The measurement of the Higgs mass also
made it possible to complete the determination of all the free
parameters of the SM Lagrangian, except for the topological
terms. The overall agreement of the theoretical predictions of
the SM with the plethora of available experimental data is
noteworthy. The achieved precision is high, especially in the
electroweak sector (Haller et al., 2018; de Blas et al., 2022), as
highlighted by the results in Fig. 1. We emphasize that the
results shown in the figure are only a small subset of the many
tests successfully passed by the SM in the past few years,
including flavor-violating transitions of both quarks and
leptons (Isidori and Teubert, 2014; Bona et al., 2022) and
high-energy processes (Boyd, 2022). In particular, no clear
deviation from the SM predictions has been observed in the
high-energy distributions analyzed thus far during the ATLAS
and CMS experiments, which collected an integrated lumi-
nosity of about 140 pb−1 each in proton-proton collisions at
an energy of

ffiffiffi
s

p ¼ 13 TeV at the LHC.

B. Motivations for and hints of new physics

Despite the strong agreement of the SM with experimental
data, there are well-known deficiencies that hint at a more
fundamental theory. The most important is arguably the failure
to incorporate gravity, the fourth known fundamental force
of nature, into a coherent QFT framework that is valid at
arbitrary energy scales. As anticipated, the SM does not
provide an explanation for cosmological observations such as
the baryon asymmetry, dark matter, and dark energy. These
phenomena do not necessarily need to be explained in the
domain of particle physics. However, no convincing alter-
native explanations have yet been provided and, if interpreted
in a QFT framework, they unavoidably point to the existence
of new degrees of freedom beyond the SM ones.
The clear experimental evidence of nonvanishing neutrino

masses is also an unambiguous indication that the SM
Lagrangian in Eq. (1.3) is not complete. As we discuss in
Sec. II.A, a natural solution to this problem is obtained when
one interprets Eq. (1.3) as the first part (more precisely, the
leading part containing operators up to dimension 4) of a more
general EFT Lagrangian. A serious consistency problem of
the SM is the instability of the Higgs quadratic term in
Eq. (1.6) with respect to the quantum corrections, the so-called
electroweak hierarchy problem (Barbieri, 2019). While none
of the previously mentioned problems point to a well-defined
energy scale for the breakdown of the SM, a solution of the
electroweak hierarchy problem would necessarily require new
physics not far from the Fermi scale (v ≈ 246 GeV). More
precisely we should expect some new degrees of freedom in
the few-TeV energy domain able to screen the quadratic

FIG. 1. Pulls of the electroweak observables as obtained by a
global SM fit, namely, differences between SM predictions and
direct measurements, normalized to the experimental uncertain-
ties. From Haller et al., 2022.
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sensitivity of the mass term in Eq. (1.6) to possible higher
scales in the theory. The fact that no clear evidence of new
physics has yet been found at the LHC has led researchers to
consider explanations of this problem beyond the EFT
framework (Giudice, 2019). However, we emphasize that
the few-TeV energy domain is still largely unexplored, and
many solutions within the EFT domain are still possible. This
provides motivation for a deeper study of the SM as the low-
energy limit of a more complete theory with new degrees of
freedom not far from the Fermi scale, and thus potentially
detectable in near-future experiments.
Besides these general considerations, there are a few

specific hints of deviations from the SM predictions observed
in precision measurements. None of these hints are sta-
tistically compelling yet. However, they provide an illustration
of the types of deviations that we can expect in the near future,
and of the types of effects that we can describe within the EFT
approach to new physics. This is why we now discuss two
such hints in more detail: we use these results in Sec. VI to
illustrate, in practice, the power of the EFT approach.

1. Muon anomalous magnetic moment

A long-standing discrepancy between SM predictions and
observations concerns the anomalous magnetic moment of the
muon. The magnetic moment of the muon μμ is defined as

μμ ¼ gμ

�
e

2mμ

�
s; ð1:8Þ

where s denotes the muon spin and gμ is the so-called g factor.
The prediction from the Dirac equations is gμ ¼ 2; however,
in QFT this value is modified by quantum effects sensitive
to heavy degrees of freedom. The interesting quantum effects
are parametrized by the anomalous magnetic moment
aμ ¼ ð1=2Þðgμ − 2Þ. According to the detailed analysis by
Aoyama et al. (2020), the current SM prediction is aSMμ ¼
116 591 810ð43Þ × 10−11. The E989 experiment at the Fermi
National Accelerator Laboratory (FNAL) (Abi et al., 2021)
recently measured a deviation from this value that, combined
with the previous Brookhaven National Laboratory E821
experiment (Bennett et al., 2006), yielded the following
4.2σ discrepancy:

Δaμ ¼ aExpμ − aSMμ ¼ ð251� 59Þ × 10−11: ð1:9Þ

The chance of a statistical fluctuation of this size is below
0.003%, making this an interesting hint of possible BSM
dynamics. We discuss the possible interpretation of this effect
in terms of the SM effective field theory in Sec. VI.D.
However, we point out that there is an intense debate on
the reliability of the error in the SM prediction entering
Eq. (1.9). The main uncertainty is due to hadronic contribu-
tions to the photon vacuum-polarization amplitude. The latter
is computed either via σðeþe− → hadronÞ data and dispersion
relations or via lattice QCD. Recent results from lattice QCD
(Borsanyi et al., 2021) [see also Cè et al. (2022), Davies et al.
(2022), and Alexandrou et al. (2023)] hinted at a possibly
smaller deviation from the SM than what was obtained by

Aoyama et al. (2020) using dispersive techniques; see also
Colangelo et al. (2022). More recently a new measurement of
σðeþe− → hadronÞ presented by Ignatov et al. (2023) also
showed some discrepancies with previous experimental inputs
used in the dispersive approach.

2. Lepton universality violation

Deviations from the SM predictions were recently reported
in tests of lepton flavor universality in semileptonic B-meson
decays. These tests were performed via universality ratios
such as

RDð�Þ ¼ BðB → Dð�ÞτντÞ
BðB → Dð�ÞlνlÞ

; ð1:10Þ

where l∈ fμ; eg, probing the quark-level amplitude b → clν
and similar ratios in neutral-current processes of the type
b → sll. These ratios can be predicted with high accuracy
within the SM due the cancellation of hadronic uncertainties.
The latest results on RDð�Þ indicate a 3.1σ deviation from the
SM predictions (Amhis et al., 2023b). We discuss a possible
interpretation of this effect in terms of the SM effective field
theory in Sec. VI.E.1. Until recently, an even more significant
deviation was reported by the LHCb experiment in univer-
sality ratios in b → sll decays; however, this effect was not
confirmed by the latest analysis (Aaij et al., 2023).

C. Effective field theories

In physics we are interested in much different length or
energy scales. Progressing from the scale of the entire
Universe for cosmological studies all the way down to the
scales of elementary particle physics at the LHC, the relevant
energy scales vary by many orders of magnitude. Each energy
region usually requires its own physical theory to describe its
phenomena. Note that we often do not need to know in detail
the laws at all energies if we want to describe processes at a
given scale: it often suffices to set scales that are small or large
compared to the process of interest to zero or infinity,
respectively, to get correct results. This is the basic principle
of effective theory. We state it as a principle; however, in a
wide class of quantum field theories, and specifically when
considering effective theories with an ultraviolet cutoff, this
principle follows from the decoupling theorem (Appelquist
and Carazzone, 1975).3

Computations in an effective theory are usually simpler
than in the full theory and reproduce the complete results with
a degree of accuracy that can be systematically improved.
A common example is Newtonian mechanics, which is the
effective theory of special relativity in the limit of small
energies and small velocities. Relativistic (or post-Newtonian)
corrections are included in an expansion in the small param-
eter v2=c2 to the desired accuracy. Descriptions of the essence
of effective quantum field theories were given by Georgi
(1993), Skiba (2010), Weinberg (2016), Manohar (2018), and
Falkowski (2023), on which our forthcoming discussion is

3Possible exceptions were discussed by Donoghue (2009).
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based. Recent and further information can be found in the All
Things EFT lecture series.4

Quantum EFTs as we use them today grew out of attempts
to simplify and systematize the calculations of low-energy
pion observables, which were originally based on current
algebra techniques. Weinberg (1979b) argued5 that, adhering
strictly to the relevant symmetry properties embodied in
current algebra, it is possible to construct an effective
Lagrangian of the pion fields that is able to reproduce all
known results and that greatly simplifies the treatment. This,
together with the work of Wilson (1969), who clarified the
concept of integrating out heavy states in QFT obtaining
universal results, and the related decoupling theorem by
Appelquist and Carazzone (1975), put EFTs on a solid basis.
Starting with this basis, the systematic construction of the
effective theory of low-energy QCD, namely, ChPT, was
developed by Gasser and Leutwyler (1984, 1985). This theory,
whose leading expansion parameter is E=ΛQCD, where E is the
energy of the process, has been applied with great success to
describe a multitude of low-energy systems with high pre-
cision. For a recent review, see Ananthanarayan, Alam Khan,
and Wyler (2023).
Another well-known example of an effective theory is

Fermi’s theory of weak interactions (Fermi, 1934), which is
part of the EFT of the standard model, and actually the first
quantum EFT considered in particle physics (although its
recognition as quantum theory, valid also beyond lowest order
in the loop expansion, arrived much later). While certain
amplitudes of the Fermi theory diverge at high energies,
thereby violating unitarity, this does not spoil the low-energy
limit of the SM, and particularly the infrared (IR) behavior of
QCD and QED, which are still correctly reproduced.
To elucidate in simple terms the basic concepts of quantum

EFT, we now consider a theory containing two types of fields
ϕL and ϕH. We further assume that m ≪ M, where m denotes
the mass of the excitations of ϕL and M indicates the mass
associated with ϕH. The generating functional of the sources
JL associated with the light fields and the corresponding EFT
Lagrangian can be obtained by performing the path integral
over the heavy fields,

Z½JL� ¼
Z

DϕL exp

�Z
d4x½LEFTðϕLÞ þ ϕLJL�

�

¼
Z

DϕHDϕL exp

�Z
d4x½LðϕL;ϕHÞ þ ϕLJL�

�
:

ð1:11Þ

This formal manipulation, usually referred to as integrating
out the heavy degrees of freedom, essentially amounts to
averaging over all ϕH configurations. The LEFTðϕLÞ thus
obtained contains nonlocal operators built only out of the light
fields. Using an operator-product expansion we can then
express LEFT as a generally infinite sum of higher-dimensional
operators,

LEFT ¼ Ld≤4 þ
X∞
d¼5

1

Md−4

Xnd
i¼1

CðdÞ
i QðdÞ

i ; ð1:12Þ

where d is the mass dimension of the operator QðdÞ
i , and nd is

the number of independent operators at a given dimension d,

which is always finite. The effective couplings CðdÞ
i associated

with each operator are named Wilson coefficients. This
procedure of integrating out the heavy fields changes the
ultraviolet (UV) structure of the theory, but it ensures that the
EFT is constructed in such a way as to reproduce the same
low-energy behavior as the original theory.
As can be seen in Eq. (1.12), the higher-dimensional

operators are suppressed by inverse powers of the mass scale
M of the heavy fields. Computing physical observables using
LEFT thus leads to an expansion in powers of E=M, where E is
the typical energy scale of the process of interest. The EFT
description is valid if E ∼m ≪ M, i.e., if the energies probed
are far below the mass scale of the heavy states and only the
light particles can be produced on shell. This energy region is
exactly where the EFT offers a valid approximation of the
underlying theory. It is then sufficient to truncate the sum over
d in Eq. (1.12) at a finite order, depending on the required
accuracy of the result, since higher-dimensional operators
contribute with higher powers of the suppression factor E=Λ.
More details on the validity of the EFT approach are given in
Sec. II.C.1.

Since the operatorsQðdÞ
i in Eq. (1.12) are of mass dimension

d > 4, these terms are nonrenormalizable in the traditional
sense, that is, all infinities cannot be absorbed into a finite
number of coefficients. For example, a divergent Feynman
graph with two insertions of a d ¼ 5 operator is of the order of
OðM−2Þ and therefore requires a counterterm of mass dimen-
sion d ¼ 6. A diagram with two insertions of this counterterm
would then require a d ¼ 8 counterterm, etc. Thus, an infinite
set of operators would be required to render the theory finite.
However, the EFT comes with an associated expansion in
powers of E=M: if all terms with more than k powers of this
parameter are neglected, only a finite set of parameters
remains and the theory can be renormalized in the usual sense.
This means that all infinities up to terms of the order of
ðE=MÞk can be canceled by a finite set of couplings, and that
the corresponding renormalization group (RG) equations can
be derived.
The procedure of integrating out heavy particles as shown

in Eq. (1.11) can be performed repeatedly. Suppose that we
have a theory with particles at several well separated mass
scales Λ1 ≫ Λ2 ≫ Λ3 ≫ � � �. We can first integrate out the
heavy particles at the scale Λ1 and then compute the RG
equations of the resulting EFT to run the theory down from Λ1

to Λ2. Next we can integrate out the particles at the mass scale
Λ2, obtaining a second EFT only containing practices with
masses ≲Λ3. Again we can compute the RG equations of the
new EFT to run down to the scale Λ3, etc., until we reach the
desired mass scale. The advantage of this multistep procedure
is the systematic resummation of large logarithms that would
appear in the matching steps if we would only do a single
matching at the desired scale and integrate out all heavy
particles at once.

4See https://sites.google.com/view/all-things-eft.
5For early work, see Weinberg (1967) and Dashen and Weinstein

(1969); see also Weinberg (1980a, 2010).
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The previously described scenario can be viewed as the top-
down approach to EFTs. We start with a known theory at the
high scale and integrate out the heavy particles. This is the
adequate procedure when we strive to make precise predic-
tions from a known theory with known UV behavior.
However, EFTs can also be a useful tool if the full theory
at the high scale is unknown, with only some of its features
known. This was the case for the strong interactions before the
discovery of the SUð3Þc gauge theory, which was helped by
the work on current algebra and chiral perturbation theory.
This scenario is often referred to as the bottom-up approach.
This is also the case for the present situation, where the
standard model is known and one wants to understand the
underlying theory. This is the approach of the SM effective

theory. In this case the operators QðdÞ
i in Eq. (1.12) do not

emerge in the matching procedure but have to be constructed
using symmetry arguments. Suppose that we want to find the
EFT operators for the SM. In this case we have Ld≤4 ¼ LSM,

and for the EFToperatorsQðdÞ
i at a given mass dimension dwe

simply have to construct all structures that are invariant under
the local and global symmetries of the theory of interest, i.e.,
the SM. In this bottom-up setup we usually replace the explicit
mass M in Eq. (1.12) by a generic UV scale Λ that can be
identified with a heavy BSM mass scale once the EFT is
matched to a UV theory. In the remainder of this review we
focus on these EFT extensions of the SM, with particular
emphasis on the so-called SMEFT.

D. The standard model as an effective theory

As mentioned, the standard model can be interpreted as the
leading-order dimension-4 piece of a larger effective theory.
This EFT must have the same gauge symmetries as the SM.
The gain of embedding the unknown physics into an effective
theory is that it applies to all particle-physics processes and
thus allows us to use a common framework to relate results
of different experiments. There are actually two candidate
EFTs that are distinguished only by their assumptions on the
realization of the electroweak symmetry group. The SMEFT
assumes that the electroweak symmetry is realized linearly,
whereas the Higgs effective field theory (HEFT) allows us to
consider the more general case of a nonlinear realization.6

Within the SM the two versions are equivalent, as they are
related by a field redefinition. However, they lead to different
EFT descriptions, as in the EFT framework it is not always
possible to find a field redefinition to go from a nonlinear to a
linear realization of the electroweak symmetry (we review this
issue in more detail in Sec. IV). The HEFT is thus a more
general theory containing the SMEFT as a special case. In
particular, the HEFT scenario also applies to BSM theories
where the Higgs is part of a strongly interacting and not fully
decoupled sector.
In this review we focus mainly on the SMEFT: on the one

hand, because of its “simplicity” and, on the other hand,
because present data on SM precision tests and Higgs
couplings seem to favor a linearly realized electroweak

symmetry, i.e., a fundamental (or quasifundamental) Higgs
field transforming as doublet of SUð2ÞL. For an extensive
discussion about differences between HEFT and SMEFT,
see Brivio and Trott (2019).
Applying the general concepts of EFT discussed in Sec. I.C,

we can decompose the SMEFT Lagrangian as

LSMEFTðψ ; H; AÞ ¼ LSMðψ ; H; AÞ

þ
X∞
d¼5

Xnd
i¼1

CðdÞ
i

Λðd−4Þ Q
ðdÞ
i ðψ ; H; AÞ: ð1:13Þ

In Eq. (1.13) ψ , H, and A collectively denote the SM fermion,
Higgs, and gauge fields, respectively, as listed in Table I. The
key assumption of this construction is indeed the hypothesis
that physics beyond the SM is characterized by one or more
heavy scales. As in most of the literature, we adopt the

convention where the Wilson coefficients CðdÞ
i are dimension-

less quantities; this is why we explicitly pull the factor Λð4−dÞ

out in the effective couplings. In principle, the sum on d runs
over all possible values; however, the majority of our
discussion here focuses on operators up to dimension 6,
and therefore we often drop the superscript d denoting the
operator dimension.
After fixing the mass dimension up to which we expand the

EFT, which is equivalent to determining the desired accuracy
of our result, LSMEFT is capable of describing the low-energy
signatures of generic UV completions of the SM. One of the
less trivial aspect of this approach is the construction of a
suitable basis of operators at a given dimension. Not surpris-
ingly a long time passed from the initial formulation of a
complete basis for the SMEFT at dimension 6 by Buchmüller
and Wyler (1986) until the identification of a complete and
nonredundant basis by Grzadkowski et al. (2010). We review
how this is done in general, and specifically for the SMEFT up
to dimension 6, in Sec. II.A.
In many realistic UV completions, the physics above the

electroweak scale is characterized by several mass scales.
What matters to determine the convergence of the EFT
expansion is the lowest of such scales, which we can identify
with Λ. However, the presence of additional energy scales

can play a role in determining the size of the CðdÞ
i given the

conventional choice of assuming a unique normalization
scale Λ in Eq. (1.13). We return to this point at the end of
Sec. II and in Sec. III.
The two key assumptions of this construction in describing

generic extensions of the SM is that no unknown light
particles exist and the electroweak symmetry is linearly
realized. Under these hypotheses, any experimental result
on the search for new physics can be given in the framework
of the SMEFT, i.e., in terms of bounds on the Wilson
coefficients, if the energies probed in the experiment are well
below the scale of new physics. At the same time, different
models of new physics can be matched onto the SMEFT
Lagrangian by integrating out the heavy particles in each
theory. Note that if a deviation from the SM emerges, the
SMEFT can be used to test its consistency in pointing out
correlated observables and discriminating among large

6The HEFT is sometimes also called the electroweak chiral
Lagrangian.
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varieties of UV completions. Illustrating all this with concrete
examples is the subject of Sec. VI.
The absence of light new particles is definitely a strong

hypothesis. Several examples of light new states, such as
axionlike particles or the dilaton, are well founded and can
originate by physics at energies far beyond the weak scale.
However, such new states are necessarily weakly coupled to
the SM fields (otherwise, they would have already been
discovered). This implies that we can neglect their effect in
a large class of observables, for which the description in terms
of the SMEFT remains an efficient tool. To describe in full
generality these frameworks requires the corresponding light
fields in the EFT to be added. This can be done case by case
according the nature of the new degrees of freedom but is
beyond the scope of this review.

II. STANDARD MODEL EFFECTIVE FIELD THEORY

In this section, we provide a comprehensive introduction to
the SMEFT. We start by presenting general arguments on how
to find an operator basis and then focus on the construction of
the commonly usedWarsaw basis (Grzadkowski et al., 2010).
In Sec. II.B, we analyze how the size of the different operator
coefficients can be estimated using general theoretical con-
siderations. We conclude in Sec. II.C by analyzing some
constraints on the Wilson coefficients and discussing the
validity of the EFT approach to describe BSM physics.

A. Operator bases

On general grounds, we consider the SMEFT in a bottom-up
EFT perspective: we know the low-energy limit of the theory,
which is the standard model, while we do not know its UV
completion. The goal is to find a general description, in terms
of higher-dimensional operators, of the effects generated by
integrating out heavy degrees of freedom that are a priori
unknown. In the absence of a clear UV theory to start with, we
constrain the set of operators using only symmetry arguments.
The symmetries we assume are Lorentz invariance, the SM
gauge symmetry GSM, and possible additional global sym-
metries such as baryon and lepton number. With the known
symmetries, it becomes a pure group theory exercise (although
a nontrivial one) to construct all of the allowed operators.
Concerning the global symmetries, it is unclear whether

properties of the SM, such as baryon and lepton number,
are fundamental symmetries of the underlying theory or are
approximate symmetries arising accidentally at low energies.
We postpone a detailed discussion of this point to Sec. III.
However, there is no doubt that the SM local symmetry
provides a useful and unambiguous tool to classify the higher-
dimensional operators since the UV theory must have a local
symmetry group that includes GSM as a subgroup.
For the construction of an operator basis, we restrict

ourselves for now to work only up to mass dimension 6.
To this end, we express the SMEFT Lagrangian as

LSMEFT ¼ LSM þ 1

Λ
L5 þ

1

Λ2
L6 þOðΛ−3Þ; ð2:1Þ

where L5ð6Þ contains all dimension-5 (dimension-6) operators.

As an illustration, we construct following Buchmüller and
Wyler (1986) the dimension-5 piece L5, which consists of a
single term, the so-called Weinberg operator (Weinberg,
1979a), and its Hermitian conjugate. For dimensional reasons
it is impossible to form a dimension-5 operator only out of
fermions or only out of field-strength tensors. It can also not
be built only out of Higgs doublets H, due to gauge
invariance. For the same reason, or due to Lorentz invariance,
it is also impossible to combine three scalars with a field-
strength tensor. In principle, the combination of a field-
strength tensor and a fermion bilinear is of the right
dimension, but for it to be Lorentz invariant the fermion
bilinear would have to be a tensor current, which necessarily
transforms as an SUð2ÞL doublet, therefore violating gauge
invariance. Thus, the only remaining option is to combine
two scalars and two fermions. If we choose H and H� as the
scalars, the net hypercharge of the fermion product must
vanish, which is possible only by choosing a fermion and its
charge conjugate, but this combination does not yield a
Lorentz scalar. Therefore, both scalars must beH and combine
into an SUð2ÞL triplet, as the singlet combination vanishes.
Therefore, both fermions also have to be SUð2ÞL doublets that
combine into a triplet and carry no color to form a gauge
invariant operator. The resulting operator can be written as

QWeinberg ¼ εikεjlHkHll
c
ilj; ð2:2Þ

where we explicitly show the SUð2ÞL indices ði; j; k; lÞ and
suppress the flavor ones.7 After electroweak symmetry
breaking, the Weinberg operator introduces the following
Majorana mass for the left-handed neutrinos νL: hQWeinbergi ¼
ðv2=2Þν̄LcνL, where v=

ffiffiffi
2

p
is the vacuum expectation value

of H. The operator QWeinberg violates one of the global
symmetries of the SM Lagrangian: it violates the total lepton
number by two units. As we discuss in Sec. III, this fact could
naturally justify its smallness and, correspondingly, the small-
ness of the neutrino masses. Postponing a discussion about
global symmetry violations to Sec. III, in the rest to this
section we focus on lepton- and baryon-number-conserving
operators, which start at dimension 6.
Besides the aforementioned continuous global symmetries,

one can also constrain the SMEFT structure via the discrete
global charge-parity (CP) symmetry, which experimentally is
violated only in specific flavor-changing processes, as pre-
dicted in the SM. Contrary to continuous symmetries, impos-
ing CP invariance limits not the operator structures but rather
the form of the allowed couplings: non-Hermitian operators
are not allowed to appear in the Lagrangian with imaginary
couplings. However, requiring only real Wilson coefficients
does not offer sufficient protection from CP violation, since
CP-even operators can still interfere with the CP-violating
phase of the SM. This form of indirect CP violation, also
called opportunistic CP violation, allows us to derive addi-
tional constraints on CP-even operators from measurements

7The fully antisymmetric rank-2 tensor εij is defined by εij ¼ −εji

and ε12 ¼ ε12 ¼ þ1, and the superscript c denotes the charge
conjugate of a fermion given by ψc ¼ Cψ̄⊺, with the charge
conjugation matrix C ¼ iγ2γ0.
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of CP-violating observables. For more details about CP
violation in the SMEFT, see Bonnefoy et al. (2022, 2023).
The operators of L6 can be obtained by considerations

analogous to those presented in the derivation of Eq. (2.2).
We list a minimal and independent set of them in Sec. II.A.2.
The first complete SMEFT operator set up to dimension 6
was constructed in the original analysis by Buchmüller and
Wyler (1986).8 Some extensive lists of previously known
operators were given by Leung, Love, and Rao (1986) and
references therein. However, these lists contain many redun-
dant operators that were eliminated by Buchmüller and
Wyler (1986), who, however, still did not provide a minimal
basis. This goal was later achieved by Grzadkowski et al.
(2010). We now discuss general arguments on how different
effective operators can be related and how an independent set
can be obtained.

1. Toward a nonredundant basis

A set of effective operators constructed with the procedure
illustrated in the previous example usually contains many
redundancies.9 Two or more operators or a larger set of
operators are redundant if they yield the same contribution to
all physical observables; hence, some of them can be dropped
with no physical consequences if the coefficients of the
remaining operators are modified accordingly. Redundant
operators can be eliminated using various techniques. The
most relevant ones are (a) integration by parts, (b) field
redefinitions (and equations of motion), (c) Fierz identities,
and (d) Dirac structure reduction. We now proceed by
discussing each of them in more detail. Note, however, that
it might be necessary to perform further simplifications, for
example, by applying either the Jacobi or Bianchi identity
or the Chisholm identity, to obtain a minimal operator basis
for the EFT. Furthermore, it might be required to exploit
the internal symmetries of the EFT operators, such as
(anti)symmetric indices. Thus, the following discussion is
not meant as a complete description for reducing a given
operator set to a basis, but instead only highlights the most
common methods used in this procedure.

a. Integration by parts

Within QFT we commonly assume that total derivatives
vanish; i.e., all fields vanish at infinity. Thus, the action S of
the theory S ¼ R d4xL is invariant under integration by parts
(IBP) identities. As a consequence, we can use IBP to relate
different operators. In the SM this can be used to write the
kinetic term for the Higgs in the two equivalent forms
ðDμHÞ�ðDμHÞ and −H�D2H. The same technique can also
be applied to rewrite higher-dimensional effective operators in
the SMEFT.

b. Field redefinitions

Probably the most relevant form of equivalence among
different effective operators is due to field redefinitions.
According to the Lehmann-Symanzik-Zimmermann (LSZ)
reduction formula (Lehmann, Symanzik, and Zimmermann,
1955), we are free to choose any form for the interpolating
quantum fields of our theory without affecting physical
observables, as long as the fields that we use can create all
the relevant states from the vacuum. This freedom allows
us to perform field redefinitions for our effective Lagrangian
modifying the operators and, in practice, reducing the operator
basis but leaving the physical observables invariant (Politzer,
1980; Georgi, 1991; Arzt, 1995). The field redefinitions
of interest for the SMEFT are perturbative transformations
of the type

ϕ → ϕ̃ðϕÞ ¼ ϕþ ϵFðϕÞ; ð2:3Þ

where the new field ϕ̃ is given by the original field ϕ plus a
small (ϵ ≪ 1) perturbation FðϕÞ that can depend not only on
the field ϕ itself but also on all the other fields of the SM and
their covariant derivatives. We furthermore assume that F is an
analytic function of the SM fields, their derivatives, and ϵ. For
the SMEFT the expansion parameter ϵ is usually related to a
power n of the EFT expansion parameter ðE=ΛÞn, where E is
the typical energy scale for the process of interest.
Following Criado and Pérez-Victoria (2019), we now show

that field redefinitions leave the S matrix, and by that all
observables, invariant. Let the generating functional of the
SM be

ZSM½J� ¼
Z

Dϕ expðiSSM½ϕ� þ JϕÞ; ð2:4Þ

with ϕ representing all SM fields collectively and J the
corresponding source terms. Assuming that the field redefi-
nition in Eq. (2.3) is always invertible in a perturbative sense,
we can perform a coordinate transformation for the path
integral in Eq. (2.4),

ZSM½J� ¼
Z

Dϕ det

�
δϕ̃ðϕÞ
δϕ

�
expfiSSM½ϕ̃ðϕÞ� þ Jϕ̃ðϕÞg:

ð2:5Þ

Thus, a field redefinition in the action S̃SM½ϕ� ¼ SSM½ϕ̃ðϕÞ�
leaves the resulting generating functional invariant if it is
accompanied by the Jacobian of the transformation and an
appropriate transformation of the source terms.
Using ghost fields η and η̄, we can write the Jacobian as

det

�
δϕ̃ðϕÞ
δϕ

�
¼
Z

Dη̄Dη exp

�
−iη̄

δϕ̃ðϕÞ
δϕ

η

�
: ð2:6Þ

We can then simply add the ghost part to the action SSM. Using
Eq. (2.3), we find that the ghost propagator is proportional to
the identity and ghost loops can depend only on δFðϕÞ=δϕ,
which is a polynomial in the internal momenta since ϕ̃ is
analytic in the fields and their derivatives. In dimensional

8In fact, one operator was missing in the printed version of that
paper but mentioned by Buchmüller, Lampe, and Vlachos (1987).

9The effective operators form a complex vector space, and the
redundancy in the operator choice is equivalent to the redundancy in
defining a basis for this vector space (Einhorn and Wudka, 2013). We
also call a minimal set of operators an operator basis.
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regularization, which we assume throughout this work, these
scaleless loops thus vanish. Therefore, the Jacobian of the
coordinate transformation is the identity and we can simply
neglect the ghosts.
The modification of the source terms affects off-shell

quantities; however, owing to the LSZ formula (Lehmann,
Symanzik, and Zimmermann, 1955) the source terms do not
alter the S matrix or, by extension, the physical observables.
This means that the generating functional with the action
obtained after the field transformation

Z̃SM½J� ¼
Z

Dϕ expðiS̃SM½ϕ� þ JϕÞ ð2:7Þ

yields the same S matrix as the original generating functional
ZSM½J�, and therefore they are physically equivalent. For a
more detailed analysis and further information on the treat-
ment of fields with nonzero vacuum expectation values and a
discussion of the inclusion of renormalization, see Criado and
Pérez-Victoria (2019).
Next we give a concrete example of how field redefinition

can be used to eliminate redundant operators from the
SMEFT. Consider the SM amended by the two effective
operators

½QDl�pr ¼ ½lpðD⃖þ ~DÞlr�ðH†HÞ; ð2:8Þ

½QeH�pr ¼ ðli
perÞHiðH†HÞ; ð2:9Þ

with the corresponding Wilson coefficients ½CDl�pr and
½CeH�pr. In Eqs. (2.8) and (2.9) p and r are flavor indices
and i is a fundamental SUð2ÞL index shown only when the
contraction is nontrivial. Our goal is to show that both of these
operators are equivalent. We first notice that both operators are
of mass dimension 6 and are allowed by the SM symmetries.
Moreover, QDl is Hermitian, contrary to QeH . We can now
write the part of the SMEFT Lagrangian relevant for this
example,

LSMEFT ⊃ iðlpDlpÞ − f½Ye�prðli
perÞHi þ H:c:g

þ
�½CeH�pr

Λ2
½QeH�pr þ H:c:

�

þ ½CDl�pr
Λ2

½QDl�pr þOðΛ−4Þ: ð2:10Þ

We now apply the perturbative field redefinitions

lip→lipþ
1

Λ2
Fipðl;HÞ; li

p→li
pþ

1

Λ2
Fi
pðl;HÞ; ð2:11Þ

where F is an analytic function of the fields l;l; H, and H†

and their derivatives. Since l is a complex field, we also
have to shift its charge conjugate or, equivalently, l.
Assuming that the field redefinition is perturbative in our
EFT expansion, i.e., keeping a consistent truncation at mass
dimension 6, we find that

LSMEFT → iðlpDlpÞ þ
i
Λ2

ðF̄p
~Dlp − lpD⃖FpÞ

−
�
½Ye�prðli

perÞHi þ
1

Λ2
½Ye�prðF̄i

perÞHi þ H:c:

�

þ ½CDl�pr
Λ2

½lpðD⃖þ ~DÞlr�ðH†HÞ

þ
�½CeH�pr

Λ2
ðli

perÞHiðH†HÞ þ H:c:

�
þOðΛ−4Þ;

ð2:12Þ

where we use IBP for the last term of the first line to move the
derivative away from the function F. We observe that, when
Fip ¼ −i½CDl�prlirðH†HÞ is chosen, the two terms originat-
ing from the shift of the kinetic term of the fermions exactly
cancel the operator QDl. The final result we thus obtain reads

LSMEFT ⊃ iðlpDlpÞ − f½Ye�prðli
perÞHi þ H:c:g

þ
�½C0

eH�pr
Λ2

½QeH�pr þ H:c:

�
þOðΛ−4Þ: ð2:13Þ

We find that the operator QDl is redundant and that it is
sufficient to include only QeH in the Lagrangian. The effect of
removing the redundant operator QDl in our example is a shift
of the Wilson coefficient of the remaining operator QeH given
by ½C0

eH�pr ¼ ½CeH�pr − i½CDl�ps½Ye�sr. Equally well we could
also have removed QeH in favor of QDl with the field
redefinition lp → lp þ ½A�prlrðH†HÞ=Λ2, where A is the
matrix defined by ½A�ps½Ye�sr ¼ ½CeH�pr. However, it is often
more convenient to remove operators with more derivatives
instead of operators with fewer derivatives, which is also the
strategy that we pursue in the following. The previously
presented procedure can be used to eliminate any operator that
is redundant due to field redefinitions. In the case where we
remove an operator with derivatives, it is always the shift of
the kinetic term that cancels the redundant effective operator.
In many cases, including the SMEFT, when one keep-

seffective operators of mass dimension 6 only, there is a
simpler way to remove redundant operators than using field
redefinitions. It can be shown that at leading power in the EFT
expansion the use of equations of motion is equivalent to
applying field redefinitions, which we now prove.
Consider a Lagrangian L depending on the fields ϕ,

e.g., the SM Lagrangian depending on all of the SM fields.
We then perform a perturbative field redefinition of the form
ϕ → ϕ̃ ¼ ϕþ ϵδϕ on the Lagrangian, where ϵ is again a small
(ϵ ≪ 1) expansion parameter related to a power n of the EFT
expansion ðE=ΛÞn. Expanding the shifted action around the
original field configuration ϕ, we find that

S½ϕ� → S½ϕ̃� ¼ S½ϕ̃�jϕ̃¼ϕ þ ϵ
δS½ϕ̃�
δϕ̃

����
ϕ̃¼ϕ

δϕþOðϵ2Þ

¼ S½ϕ� þ ϵ

Z
d4xE½ϕ�δϕþOðϵ2Þ ð2:14Þ

at leading order in ϵ, where E½ϕ� ¼ ðδL½ϕ̃�=δϕ̃Þjϕ̃¼ϕ symbol-
izes the equations of motion of the field ϕ. Therefore, instead
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of performing a field redefinition, we can also add a term
proportional to the equations of motion of a field to the
Lagrangian, which at leading power has the same effect. Since
we work up to the order OðϵÞ, it is also sufficient to use only
the leading piece of the equations of motion. That means for
the SM we can simply use the pure SM equations of motion,
thereby dropping all contributions of higher-dimensional
operators.
We now return to our example of Eq. (2.10) and find that the

operator we removed before is indeed proportional to the
equations of motion for the fields l and l. We already know
that in this case ϵ ¼ Λ−2. Thus, we can use the leading SM
equations of motion

E½l�ip ¼ i ~Dlip − ½Ye�prerHi þOðΛ−2Þ; ð2:15aÞ

E½l�ip ¼ −ili
pD⃖ − ½Y�

e�prērH�i þOðΛ−2Þ: ð2:15bÞ

Adding the term ϵδϕi
pE½l�ip þ ϵE½l�ipδϕip with δϕp ¼

Fpðl; HÞ to the Lagrangian in Eq. (2.10) then yields the
same result as using field redefinitions. Note that since l is a
complex field we need to use the equations of motions for
both the field and its charge conjugate. In practice it is easier to
directly plug the equations of motion into the effective
operators that we want to remove. In our example we could
simply replace ⃗Dlip and li

p⃖D in the operator QDl by
−i½Ye�prerHi and i½Y�

e�prērH�i, respectively, directly
obtaining the result in Eq. (2.13).
In the literature it is often stated that some operators are

removed by means of the equations of motion. This state-
ment is not strictly correct in general, since the equations
of motion can only be used at leading order in the EFT
expansion. If we work at subleading power ϵ2 (e.g., if we
include dimension-8 operators in our previous example),
we should add the term

1

2
ϵ2

δ2S½ϕ̃�
δϕ̃2

����
ϕ̃¼ϕ

δϕ2 ð2:16Þ

to Eq. (2.14) to obtain a consistent truncation of the EFT
expansions up to the orderOðϵ2Þ. It is immediately clear that in
this case the use of equations of motion is no longer equivalent
to applying field redefinitions, as the former do not capture the
subleading shift of the fields in Eq. (2.16). Therefore, when
considering a Lagrangian with effective operators of different
powers, we must not use the equations of motion to remove
redundancies, but we have to apply the field redefinitions to
obtain the correct result. For more details on the failure of
equations of motion, see Jenkins, Manohar, and Stoffer (2018a)
and Criado and Pérez-Victoria (2019).
The common approach is thus to first use IBP, if necessary,

to bring an operator into the form of the equations of motion,
and then to use these to eliminate the operator in favor of other
effective operators containing fewer derivatives. If we work at
subleading power in the EFT, the equations of motion cannot
be used and we have to apply field redefinitions instead. In this
situation, we have to remove the redundant operators order by
order, starting with the lowest-order operators, since a shift to

eliminate an operator produces operators of the same or higher
mass dimension when massless fields are shifted.10

c. Fierz identities

These identities follow from completeness relations on
certain matrix spaces and provide additional relations among
operators. We start by discussing Fierz identities of the
Lorentz group (Fierz, 1937). These identities can be applied
to four-fermion operators, allowing us to rearrange the order-
ing of the different spinors. For their derivation we follow the
discussion of Nishi (2005). When working with a chiral theory
such as the SMEFT, it is usually most convenient to derive the
Fierz identities in the chiral basis fΓng for the Dirac algebra in
four spacetime dimensions that we define as

fΓng ¼ fPL; PR; γμPL; γμPR; σμνg; ð2:17aÞ

fΓ̃ng ¼ fPL; PR; γμPR; γμPL; σμν=2g; ð2:17bÞ

where PR=L ¼ ð1=2Þð1� γ5Þ are the chirality projectors
and σμν ¼ ði=2Þ½γμ; γν�, with μ < ν. Moreover, we have also
defined the dual basis fΓ̃ng. With this definition the ortho-
gonality condition trfΓnΓ̃mg ¼ 2δnm is satisfied. Since fΓng
forms a basis of all 4 × 4 matrices, we can write any such
matrix X as X ¼ XnΓn, with Xn ¼ ð1=2ÞtrfXΓ̃ng, and thus
X ¼ ð1=2ÞtrfXΓ̃ngΓn. Dividing the latter equation into its
components and inserting the appropriate delta functions,
we obtain

δijδkl¼ 1
2
ðΓ̃nÞkjðΓnÞil or ð1Þ⊗ ½1�¼ 1

2
ðΓ̃n�⊗ ½ΓnÞ; ð2:18Þ

where in the second equation we schematically identify the
indices with brackets as follows: i ∼ ð; j∼Þ;k ∼ ½, and l∼�.
Multiplying this equation by generic matrices X and Y, we
find that

ðXÞ ⊗ ½Y� ¼ 1
4
trfXΓ̃nYΓ̃mgðΓm� ⊗ ½ΓnÞ; ð2:19Þ

which allows us to project any tensor product of two matrices
onto a product of matrices from the chosen Dirac basis. In
particular, by choosing X; Y ∈ fΓng we can derive the Fierz
identities

ðPAÞ⊗ ½PA�¼ 1
2
ðPA�⊗ ½PAÞþ 1

8
ðσμνPA�⊗ ½σμνPAÞ;

ð2:20aÞ

ðPAÞ⊗ ½PB�¼ 1
2
ðγμPB�⊗ ½γμPAÞ; ð2:20bÞ

ðγμPAÞ⊗ ½γμPA�¼−ðγμPA�⊗ ½γμPAÞ; ð2:20cÞ

ðγμPAÞ⊗ ½γμPB�¼2ðPB�⊗ ½PAÞ; ð2:20dÞ

10In the SMEFT, only the Higgs H has a mass term; thus, shifting
it to remove a redundant operator can introduce lower-dimensional
operators.

Gino Isidori, Felix Wilsch, and Daniel Wyler: The standard model effective field theory at work

Rev. Mod. Phys., Vol. 96, No. 1, January–March 2024 015006-11



ðσμνPAÞ⊗ ½σμνPA�¼6ðPA�⊗ ½PAÞ− 1
2
ðσμνPA�⊗ ½σμνPAÞ;

ð2:20eÞ

ðσμνPAÞ⊗ ½σμνPB�¼0; ð2:20fÞ

where A; B∈ fL; Rg but A ≠ B. Equations (2.20) correspond
only to relations among Dirac structures; however, when
applying them to four-fermion operators we also anticom-
mute two spinors, thus acquiring an additional minus sign
with respect to the equations. For example, Eq. (2.20d)
allows us to rewrite the operator as ðliγμqiÞðd̄γμeÞ ¼
−2ðlieÞðd̄qiÞ, which has the quarks and leptons in separate
currents. Note that we assumed the Dirac algebra in four
spacetime dimensions to evaluate the traces in Eq. (2.19) and
obtain Eqs. (2.20). However, when working at the loop level,
we encounter divergent integrals that we regulate using
dimensional regularization inD ¼ 4 − 2ϵ dimensions, which
is incompatible with the previously obtained results. At the
loop level, using Eqs. (2.20) while working in D dimensions
introduces so-called evanescent operators, i.e., operators that
vanish in D ¼ 4. We discuss these evanescent contributions
in Sec. II.A.5.
Furthermore, we have the following Fierz identity for the

generators Ta of the fundamental representation of SUðNÞ
groups:

ðTaÞijðTaÞkl ¼
1

2

�
δilδkj −

1

N
δijδkl

�
ð2:21Þ

or, in our notation,

ðTaÞ ⊗ ½Ta� ¼ 1

2
ð1� ⊗ ½1Þ − 1

2N
ð1Þ ⊗ ½1�; ð2:22Þ

where the brackets now correspond to indices of the
fundamental representation of SUðNÞ. For example, for

SUð2ÞL this allows us to rewrite the Higgs operator
as ðH†τIHÞðH†τIHÞ ¼ ðH†HÞ2.

d. Dirac structure reduction

Equation (2.17a) constitutes a Dirac basis in D ¼ 4 dimen-
sions and is therefore enough to construct an EFToperator basis
in the physical four-dimensional limit. Nevertheless, we can
write operators with Dirac structures differing from those in
Eq. (2.17a), which we then have to project onto our chosen basis
fΓng using gamma-tensor reduction (Tracas andVlachos, 1982;
Buras and Weisz, 1990; Herrlich and Nierste, 1995). Following
Fuentes-Martin et al. (2023b), we write this projection as

X ⊗ Y ¼
X
n

bnðX; YÞΓn ⊗ Γ̃n þ EðX; YÞ: ð2:23Þ

Note that in D dimensions the Dirac algebra is infinite dimen-
sional, and thus it is not possible to project a generic structure
onto the finite four-dimensional basis fΓng. As in the case of the
Fierz identities, performing such a projection then introduces an
evanescent operator EðX; YÞ, which is implicitly defined by
Eq. (2.23). Working at tree level, which we assume for the
moment, we can take the four-dimensional limit; therefore,
EðX; YÞ vanishes. However, at loop level this is not the case and
the evanescent contributions can be treated as in the discussion
in Sec. II.A.5 and in that of Fuentes-Martin et al. (2023b).
The coefficients bnðX; YÞ can be determined by contracting
Eq. (2.23) with the basis elements Γk,

trfΓkXΓ̃kYg ¼
X
n

bnðX; YÞtrfΓkΓnΓ̃kΓ̃ng þOðϵ2Þ; ð2:24Þ

which for k ¼ 1;…; 10 yields a system of equations that we can
solve to find the coefficients bnðX; YÞ. To compute the afore-
mentioned traces, we use naive dimensional regularization
(NDR) (see Appendix A.2) to define our evanescent operator
scheme. We find that

γμγνPA ⊗ γνγμPA ¼ ð4 − 2ϵÞPA ⊗ PA þ σμνPA ⊗ σμνPA; ð2:25aÞ

γμγνPA ⊗ γνγμPB ¼ 4ð1 − 2ϵÞPA ⊗ PB þ E½2�
AB; ð2:25bÞ

γμγνγλPA ⊗ γλγνγμPA ¼ 4ð1 − 2ϵÞγμPA ⊗ γμPA þ E½3�
AA; ð2:25cÞ

γμγνγλPA ⊗ γλγνγμPB ¼ 16ð1 − ϵÞγμPA ⊗ γμPB þ E½3�
AB; ð2:25dÞ

γμγνσλρPA ⊗ σλργνγμPA ¼ 16ð3 − 5ϵÞPA ⊗ PA þ 2ð6 − 7ϵÞσμνPA ⊗ σμνPA þ E½4�
AA; ð2:25eÞ

implicitly defining the evanescent structures E½2�
AB, E

½3�
AA, E

½3�
AB, and E

½4�
AA, where A; B∈ fL; Rg, with A ≠ B. Other schemes, and hence

alternative definitions of the evanescent operators differing from our choice byOðϵÞ terms, are also possible; see Herrlich and Nierste
(1995) and Dekens and Stoffer (2019).

2. The Warsaw basis

We can now apply the methods illustrated thus far in this section to the set of all effective operators that are compatible with the
symmetries of the SM. By doing so, we can construct a basis, i.e., a minimal set of effective operators of the SMEFT.11

11Note that the term basis is not always appropriately used in the EFT literature. Keep in mind that sometimes it is also incorrectly used for
overcomplete or even incomplete operator sets. Sometimes we refer here to complete operator sets without redundancies as minimal bases.
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As mentioned, a complete list of operators up to mass
dimension 6 was first given by Buchmüller and Wyler (1986).
Besides proving that at dimension 5 there is a single operator,
namely, QWeinberg in Eq. (2.2), they identified 80 independent
operators at dimension 6 (up to the flavor structure) that
conserve baryon and lepton number. However, some redun-
dancies still remained in this set of operators, as pointed out by
Grzadkowski et al. (2004), Fox et al. (2008), and Aguilar-
Saavedra (2009a, 2009b). Not until 2010 was the first minimal
basis for dimension-6 operators in the SMEFT derived by
Grzadkowski et al. (2010). It contains only 59 dimension-6
operators that conserve baryon and lepton number.
Considering the flavor structure of the operators, this amounts
to 2499 couplings, of which 1350 are CP even and 1149 are
CP odd (Alonso, Jenkins et al., 2014). The basis is known as
the Warsaw basis and is the most commonly used basis for the

d ¼ 6 SMEFT. Table II lists all baryon- and lepton-number-
conserving d ¼ 6 operators of the Warsaw basis. For the non-
Hermitian operators the Hermitian conjugate is understood to
be included. The operators are divided into classes according
to their field content and chirality in the manner taken by
Grzadkowski et al. (2010) and Alonso, Jenkins et al. (2014),
which we now follow in our classification of the operators.
The underlying algorithm used to construct the Warsaw basis
can be summarized as follows:

(1) Use IBP and equations of motion to remove operators
with more derivatives in favor of operators with fewer
derivatives.

(2) Use the Fierz identities (2.20) and (2.21) such that the
following apply:
(a) Leptons and quarks do not appear in the same

fermion currents.

TABLE II. List of all baryon- and lepton-number-conserving SMEFToperators at mass dimension 6 in the Warsaw basis (Grzadkowski et al.,
2010). The division into classes 1–8 is adapted from Alonso, Jenkins et al. (2014) and further refined according to the chirality of the fields. It is
also indicated which classes are potentially tree generated (PTG) and which are loop generated (LG) according to Arzt, Einhorn, and Wudka
(1995) and Einhorn and Wudka (2013).

1–4: Bosonic operators
1: X3 (LG) 2: H6 (PTG) 3: H4D2 (PTG) 4: X2H2 (LG)

QG fABCGAν
μ GBρ

ν GCμ
ρ QH ðH†HÞ3 QH□ ðH†HÞ□ðH†HÞ QHG ðH†HÞGA

μνGAμν QHB ðH†HÞBμνBμν

QG̃ fABCG̃Aν
μ GBρ

ν GCμ
ρ QHD ðH†DμHÞ�ðH†DμHÞ QHG̃ ðH†HÞG̃A

μνGAμν QHB̃ ðH†HÞB̃μνBμν

QW εIJKWIν
μ W

Jρ
ν WKμ

ρ QHW ðH†HÞWI
μνWIμν QHWB ðH†τIHÞWI

μνBμν

QW̃ εIJKW̃Iν
μ W

Jρ
ν WKμ

ρ QHW̃ ðH†HÞW̃I
μνWIμν QHW̃B ðH†τIHÞW̃I

μνBμν

5–6: Non-Hermitian fermion bilinears

5: ψ2H3 þ H.c: (PTG) 6: ψ2XH þ H:c: (LG)

QeH ðH†HÞðlperHÞ QeW ðlpσ
μνerÞτIHWI

μν QuG ðq̄pσμνTAurÞH̃GA
μν QdG ðq̄pσμνTAdrÞHGA

μν

QuH ðH†HÞðq̄purH̃Þ QeB ðlpσ
μνerÞHBμν QuW ðq̄pσμνurÞτIH̃WI

μν QdW ðq̄pσμνdrÞτIHWI
μν

QdH ðH†HÞðq̄pdrHÞ QuB ðq̄pσμνurÞH̃Bμν QdB ðq̄pσμνdrÞHBμν

7: Hermitian fermion bilinears ψ2H2DþQHud (PTG)
ðL̄LÞ ðR̄RÞ ðR̄R0Þ þ H:c:

Qð1Þ
Hl ðH†iD

↔

μHÞðlpγ
μlrÞ QHe ðH†iD

↔

μHÞðēpγμerÞ QHud iðH̃†DμHÞðūpγμdrÞ
Qð3Þ

Hl ðH†iD
↔I

μHÞðlpτ
IγμlrÞ QHu ðH†iD

↔

μHÞðūpγμurÞ
Qð1Þ

Hq ðH†iD
↔

μHÞðq̄pγμqrÞ QHd ðH†iD
↔

μHÞðd̄pγμdrÞ
Qð3Þ

Hq ðH†iD
↔I

μHÞðq̄pτIγμqrÞ
8: Fermion quadrilinears ðψ4Þ (PTG)

Hermitian Hermitian Hermitian Non-Hermitian
ðL̄LÞðL̄LÞ ðR̄RÞðR̄RÞ ðL̄LÞðR̄RÞ ðL̄RÞðL̄RÞ þ H:c:

Qll ðlpγμlrÞðlsγ
μltÞ Qee ðēpγμerÞðēsγμetÞ Qle ðlpγμlrÞðēsγμetÞ Qð1Þ

quqd
ðq̄ipurÞεijðq̄jsdtÞ

Qð1Þ
qq

ðq̄pγμqrÞðq̄sγμqtÞ Quu ðūpγμurÞðūsγμutÞ Qlu ðlpγμlrÞðūsγμutÞ Qð8Þ
quqd

ðq̄ipTAurÞεijðq̄jsTAdtÞ
Qð3Þ

qq ðq̄pγμτIqrÞðq̄sγμτIqtÞ Qdd ðd̄pγμdrÞðd̄sγμdtÞ Qld ðlpγμlrÞðd̄sγμdtÞ Qð1Þ
lequ ðli

perÞεijðq̄jsutÞ
Qð1Þ

lq
ðlpγμlrÞðq̄sγμqtÞ Qeu ðēpγμerÞðūsγμutÞ Qqe ðq̄pγμqrÞðēsγμetÞ Qð3Þ

lequ ðli
pσμνerÞεijðq̄jsσμνutÞ

Qð3Þ
lq

ðlpγμτ
IlrÞðq̄sγμτIqtÞ Qed ðēpγμerÞðd̄sγμdtÞ Qð1Þ

qu
ðq̄pγμqrÞðūsγμutÞ

Qð1Þ
ud

ðūpγμurÞðd̄sγμdtÞ Qð8Þ
qu ðq̄pγμTAqrÞðūsγμTAutÞ

Qð8Þ
ud

ðūpγμTAurÞðd̄sγμTAdtÞ Qð1Þ
qd

ðq̄pγμqrÞðd̄sγμdtÞ ðL̄RÞðR̄LÞ þ H:c:

Qð8Þ
qd

ðq̄pγμTAqrÞðd̄sγμTAdtÞ Qledq ðli
perÞðd̄sqtiÞ
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(b) The gauge indices of the largest gauge group are
contracted within each bilinear.

(c) Each current is a hypercharge singlet.
The purely bosonic operators are built out of combina-

tions of the field-strength tensors Xμν ∈ fGμν;Wμν; Bμνg, the
Higgs doubletH, and the covariant derivativesDμ. Owing to
SUð2ÞL and Lorentz invariance, the Higgs fields and the
covariant derivatives must both appear in even numbers in
the operators. After all allowed operators are constructed
and the redundant ones removed, the following four classes
of bosonic operators remain:

• Four pure gauge operators containing three field-strength
tensors (class 1: X3).

• One pure scalar operator with six Higgs doublets
(class 2: H6).

• Two operators with four Higgs fields and two covariant
derivatives (class 3: H4D2).

• Eight mixed operators with two Higgs fields and two
field-strength tensors (class 4: X2H2).

For operators with two fermion fields, we have the following
three types of fermion currents: scalar ðψ̄L=RψR=LÞ, vector
ðψ̄L=Rγ

μψL=RÞ, and tensor ðψ̄L=Rσ
μνψR=LÞ. After removing the

redundant operators, we obtain one class of operators for each
following type of current:

• Three non-Hermitian Yukawa-like operators with a
scalar fermion current and three Higgs fields (class 5:
ψ2H3).

• Eight non-Hermitian dipole operators with a tensor
current, one Higgs field, and one field-strength tensor
(class 6: ψ2XH).

• Eight operators (all Hermitian except for QHud) with a
vector current, two Higgs fields, and a covariant deriva-
tive (class 7: ψ2H2D).

Last, we have 25 four-fermion operators in class 8 sub-
divided according to their chiral structures ðL̄LÞðL̄LÞ,
ðR̄RÞðR̄RÞ, ðL̄LÞðR̄RÞ, ðL̄RÞðL̄RÞ, and ðL̄RÞðR̄LÞ. To learn
explicitly how other types of operator classes can be removed,
see the discussion given by Grzadkowski et al. (2010).12

3. Other bases

The Warsaw basis is only one viable choice of basis, and
other options are possible. Although the Warsaw basis is
most commonly used, other bases can be advantageous when
specific sets of observables are considered. A commonly
adopted set of dimension-6 operators in phenomenological
analyses is the so-called strongly interacting light Higgs
(SILH) basis (Giudice et al., 2007). However, although
called a basis, it does not represent a complete set at
dimension 6 (Brivio and Trott, 2017). The same is also
true for the Hagiwara-Ishihara-Szalapski-Zeppenfeld basis
(Hagiwara et al., 1993). A full and minimal basis containing
the operators of the original SILH set was constructed by
Elias-Miró et al. (2014); see also Contino et al. (2013). An
extensive discussion on the basis choice in the SMEFT was
given by Passarino (2017).

The Green’s basis (Gherardi, Marzocca, and Venturini,
2020) is another common set of SMEFT operators. Although
constituting a complete set of operators, it is not a minimal
basis, as it contains redundancies. The Green’s basis is an
extension of the Warsaw basis where all the operators that are
removed from the latter by the equations of motion are kept.
Therefore, the operators in the Green’s basis are independent
only under IBP, but not under field redefinitions. This basis
is often convenient for SMEFT matching computations. In
functional matching the effective Lagrangian obtained by
integrating out some heavy particles is usually in the Green’s
basis (up to IBP). In addition, the diagrammatic off-shell
matching procedure involves the operators of this basis; see
Sec. VI.B for more details. The results from the matching
computations in the Green’s basis can then be converted to the
minimal Warsaw basis using the basis reduction relations
given in the appendix of Gherardi, Marzocca, and Venturini
(2020). See also Ren and Yu (2022) for a derivation of a
Green’s basis of the SMEFT at dimension 8.

4. Higher-dimensional operators

As discussed, at mass dimension 5 there is only a single
operator, i.e., the Weinberg operator (Weinberg, 1979a), and it
violates lepton number. Higher-dimensional operators that also
do not conserve baryon and lepton number were derived by
Weinberg (1980b). The first full set of dimension-7 operators
was given by Lehman (2014) finding a total of 20 independent
operators. However, Liao and Ma (2016) showed that two of
these operators are redundant, thus obtaining a basis of 18
operators. All of these contain either two or four fermions and
do not conserve lepton number. Furthermore, seven of these
operators violate baryon number as well. An important point to
note is that all odd mass-dimension operators in the SMEFT
violate either baryon or lepton numbers or both (Kobach, 2016;
Helset and Kobach, 2020). Owing to the stringent experimental
bounds on processes that do not conserve these symmetries,
the scale generating such violating process must be very high;
see Sec. III. Given that these are exact global symmetries of the
SM Lagrangian, it is common to assume that they are also exact
or almost-exact symmetries of the SMEFT, and operators that
violate baryon or lepton number are often neglected except for
specific analyses devoted to the corresponding symmetry-
violating processes.
More recently the first complete bases of dimension-8

operators were derived (Li, Ren, Shu et al., 2021; Murphy,
2020), with 1029 independent structures up to different flavor
contractions found (Murphy, 2020).13 Although these oper-
ators are suppressed by 4 powers of the new-physics scale
Λ−4, they can still be relevant for phenomenological studies.
This is particularly the case for UV theories that do not
generate dimension-6 operators contributing to a given set of
observables and in which the leading contribution starts at
dimension 8. More generally dimension-8 terms can be
relevant for observables where the dimension-6 operators
do not interfere (or have a suppressed interference) with the
SM amplitude; see Sec. II.C.1. Furthermore, a basis for the

12The Feynman rules for the SMEFT in the Warsaw basis in the Rξ

gauges were given by Dedes et al. (2017).

13For earlier attempts at deriving dimension-8 operators, see
Lehman and Martin (2016).
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SMEFT at dimension 9 is also known (Liao and Ma, 2020; Li,
Ren, Xiao et al., 2021a). An all-order approach to constructing
bases of EFTs was presented by Henning et al. (2017b). They
also counted the number of independent effective operators for
the SMEFT present at different higher dimensions using the
Hilbert series discussed by Henning et al. (2017a). See also
Fonseca (2017, 2020) and Li, Ren et al. (2022) for discussions
about computer tools that help with the construction of higher-
dimensional operator bases in generic EFTs.

5. Evanescent operators

Nearly all loop computations in the SMEFT are currently
performed using dimensional regularization working in
D ¼ 4 − 2ϵ dimensions. This leads to another subtlety when
redundant operators are reduced to a specific basis. As
mentioned, in noninteger dimensions the Lorentz algebra is
infinite dimensional, whereas in D ¼ 4 dimensions it is finite.
Now consider a D-dimensional BSM Lagrangian obtained
through a one-loop matching computation; see Sec. VI.B.
When we want to reduce it to a physical four-dimensional basis
such as the Warsaw basis, we necessarily introduce additional
operators called evanescent ones due to the mismatch of the
dimensionality of the bases. Schematically we can write

R⟶
P

Qþ E; ð2:26Þ

where R denotes a redundant operator, Q is an operator part of
the physical four-dimensional basis, and E is an evanescent
operator. The projection P is performed using, for example,
Fierz identities or Dirac algebra reduction identities (as pre-
viously discussed), which are intrinsically four dimensional.
The evanescent operator can then be implicitly defined as
E≡ R −Q. It is formally of rank ϵ and thus vanishes in the
four-dimensional limit. However, when an evanescent operator
is inserted into a UV divergent one-loop diagram, the operator
can combine with a 1=ϵ pole, resulting in a finite contribution to
a one-loop matrix element. Therefore, despite vanishing in four
dimensions, evanescent operators still yield physical contribu-
tions. However, these contributions are local since the UV poles
of any one-loop diagram are as well. Thus, the one-loop effect
of evanescent operators can be interpreted as finite shifts of
the Wilson coefficients of the physical basis. Therefore, their
physical effects can be absorbed by introducing finite counter-
terms. The resulting renormalization scheme is free of evan-
escent operators, but notably does not agree with the modified
minimal subtraction (MS) scheme.
Evanescent contributions were first studied in the context of

next-to-leading-order (NLO) computations of the anomalous
dimension of the weak effective Hamiltonian (Buras and Weisz,
1990; Dugan and Grinstein, 1991; Herrlich and Nierste, 1995)
and were recently extended to the low-energy effective field
theory (LEFT) (Aebischer and Pesut, 2022; Aebischer, Buras,
and Kumar, 2023; Aebischer, Pesut, and Polonsky, 2023)14 and
the SMEFT (Fuentes-Martin et al., 2023b).

Fuentes-Martin et al. (2023b) introduced an alternative but
equivalent projection prescription to handle evanescent oper-
ators. Let SR be the action of the EFT containing redundant
operators. Reducing the operators in SR to the Warsaw basis
(or any other physical basis) using four-dimensional identities
(such as Fierz or Dirac structure reduction), we then obtain
the action S0W. As previously discussed, SR and S0W do not
reproduce the same physics, and the difference is given by
evanescent operators. However, we have seen that their effects
can be absorbed by finite one-loop shifts of the Wilson
coefficients in S0W. Thus, take the action SW, which contains
the same operators as S0W, and we fix the Wilson coefficients
of SW by requiring that it describes the same physics as SR. We
can achieve this by requiring the corresponding quantum
effective actions to agree ΓW ¼ ΓR. We can express the
effective action as

ΓX ¼ Sð0ÞX þ Sð1ÞX þ Γ̄ð1Þ
X þ � � � ; ð2:27Þ

where Sð0;1ÞX contains only local operators and their corre-
sponding tree-level or one-loop Wilson coefficients, respec-

tively. Furthermore, Sð1ÞX contains the counterterms, and the

ellipsis denotes higher-loop contributions. The term Γ̄ð1Þ
X

represents the contributions by all one-loop diagrams built

with insertions of operators from Sð0ÞX . We then find that the
physical evanescent-free action describing the same physics
as SR is given by

Sð0ÞW ¼ PSð0ÞR ; ð2:28Þ

Sð1ÞW ¼ PSð1ÞR þ P½Γ̄ð1Þ
R − Γ̄ð1Þ

W �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≡ΔSð1Þ

; ð2:29Þ

where Γ̄ð1Þ
R − Γ̄ð1Þ

W is the sum of all one-loop diagrams con-
taining an evanescent operator. Since this term is already of
one-loop order, we can simply apply the four-dimensional
identities to project ðPÞ back to theWarsaw basis.15 Any effect
of evanescent operators in this projection would yield a two-
loop effect and can be neglected at the desired order.16 The
action SW thus obtained is free of evanescent operators and
reproduces the same physics as the original action with
redundant operators SR.

14See also Aebischer et al. (2020) and Aebischer, Bobeth et al.
(2021) for previous work on evanescent operators in ΔF ¼ 1; 2
transitions.

15Different definitions of the projection operator P differing by
theirOðϵÞ terms are possible. These define different prescriptions for
the evanescent operators, and we have to follow one prescription
consistently. For more details, see Fuentes-Martin et al. (2023b).

16Note that physical operators can flow into evanescent oper-
ators at two-loop order. Thus, leading to a nonvanishing coefficient
for the latter even if we started with zero coupling for the
evanescent operators, which could then possibly flow back into
the physical coefficients. However, as observed by Dugan and
Grinstein (1991) and Herrlich and Nierste (1995), the running of
the physical coefficients can be made independent of the evan-
escent ones through an appropriate finite compensation of the
evanescent couplings.
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For example, consider the redundant operator

½Rucelqc �prst ¼ ðūcperÞεijðli
sqct jÞ; ð2:30Þ

which, as we see in Sec. VI.B, is generated at tree level by
integrating out an S1 leptoquark. It can be projected onto
the Warsaw basis by applying the four-dimensional Fierz
identity (2.20a),

½Rucelqc �prst ¼ðd¼4Þ
− 1

2
½Qð1Þ

lequ�srtp þ 1
8
½Qð3Þ

lequ�srtp: ð2:31Þ

The evanescent operator introduced by Eq. (2.31) can be

written as Eucelqc ≡ Rucelqc − ½−ð1=2ÞQð1Þ
lequ þ ð1=8ÞQð3Þ

lequ�
schematically. The tree-level action can be directly obtained
from Eq. (2.31). However, this introduces the finite shift ΔSð1Þ
in the one-loop action of the evanescent-free scheme. To
determine it, we have to compute all one-loop diagrams with

the insertion of the operator Rucelqc or Qð1;3Þ
lequ . For simplicity,

we consider only the leptonic dipole contributions here, which
are due to the diagrams shown in Fig. 2. Computing the
corresponding amplitudes, we find

ΔSð1Þ ¼ −
1

16π2
5

8
g1½Y�

u�prð1 − ξrpÞ½CðRÞ
ucelqc �rtsp½QeB�st

þ 1

16π2
3

8
g2½Y�

u�prð1 − ξrpÞ½CðRÞ
ucelqc �rtsp½QeW �st

þ � � � ; ð2:32Þ

where CðRÞ
ucelqc is the Wilson coefficient of Rucelqc and the

ellipsis denotes other operators than the leptonic dipoles. The

diagrams involving the Qð3Þ
lequ operator are particularly com-

plicated since they involve closed fermion loops giving a
Dirac trace of the form

tr½γμγνγργμγσγδγ5�; ð2:33Þ
which is not well defined in dimensional regularization. This
is attributed to the commonly known problem of extending γ5,
which is an intrinsically four-dimensional object, to D
dimensions. Here we choose to work in NDR, where the
cyclicity of Dirac traces of the type given in Eq. (2.33) is lost.
Therefore, these traces exhibit a so-called reading point
ambiguity: the results of these Dirac traces depend on where

we start reading the closed fermion loops, i.e., on which vertex
or propagator comes first in the trace. This reading point
ambiguity is parametrized by ξrp in Eq. (2.32), which takes on
different values depending on where we start the trace. In our
case, we have ξrp ¼ 0 when the Dirac trace is read starting
from the Higgs interaction vertex (or the propagator coming
after it). For all other reading points we find that ξrp ¼ 1,
therefore leading to a vanishing of this particular evanescent

contribution. Nevertheless, removing Rucelqc in favor of Qð1;3Þ
lequ

will still yield nonvanishing evanescent contributions to
operators other than the dipoles, but we do not consider those
here. We can use any prescription for choosing the reading
point of this Dirac trace to compute the evanescent contribu-
tion in this basis change, given that we apply this prescription
consistently in all subsequent computations within the EFT,
i.e., for calculating all one-loop matrix elements involving

Qð3Þ
lequ. More details were provided by Fuentes-Martin et al.

(2023b) and in Appendix A.2.

B. How large are the Wilson coefficients?

The value of the Wilson coefficients in an EFT is deter-
mined by the matching condition to the corresponding UV
theory. However, in the bottom-up approach of SMEFT,
the underlying BSM model is unknown. In this case the
operator coefficients can be determined only by experiment.
Nevertheless, it is still possible to derive some information
about the size of the Wilson coefficients from general
theoretical arguments.
One way of estimating the coefficients is to use more

elaborate versions of dimensional analysis. A second option is
understanding whether an operator can be generated at tree
level, or only through loops by the full BSM theory. A third
possibility is using global (approximate) symmetries of the
underlying theory. We now discuss the first two options, while
the case of global symmetries is discussed in Sec. III.

1. Power counting and dimensional analysis

Thus far we have merely estimated the size of the
coefficient of an effective operator using its energy dimension.
As is well known, in D ¼ 4 spacetime dimensions each
Lagrangian term must be of mass dimension 4. Thus, a mass
dimension d operator must be suppressed by a factor of Λ4−d,
yielding its approximate size. There is, however, an alternative
option for estimating the size of coefficients called naive
dimensional analysis (NDA) that was first developed in the
context of chiral perturbation theory by Manohar and Georgi
(1984). It combines the EFT expansion in the new-physics
scale Λ with an expansion in factors of 4π or, equivalently, in
ℏ coming from the loop-expansion factor ℏ=ð4πÞ2. It was later
applied to general EFTs, and the NDA master formula for a
term in the SMEFT Lagrangian is (Gavela et al., 2016)

Λ4

ð4πÞ2
�
∂

Λ

�
Np
�
4πH
Λ

�
NH
�
4πA
Λ

�
NA
�
4πψ

Λ3=2

�
Nψ
�
g
4π

�
Ng
�
y
4π

�
Ny
�

λ

ð4πÞ2
�
Nλ

; ð2:34Þ

FIG. 2. One-loop SMEFT diagrams allowing for the insertion of
the evanescent operator Eucelqc and contributing to the leptonic
dipole operators.
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where ∂ is a derivative,H is the Higgs doublet, A∈ fG;W;Bg
is a vector field, ψ is one of the SM fermion fields,
g∈ fg3; g2; g1g, y is a Yukawa coupling, and λ is the quartic
Higgs coupling. The numbers Ni give the power for each
factor that is included in the Lagrangian term. The NDA
scaling of all operator classes in the Warsaw basis is shown
in Table III. We can now compare the SMEFT Lagrangian
with the conventional normalization

L ⊃ ðDμHÞ†ðDμHÞ þm2H†H −
λ

2
ðH†HÞ2

þ CH

Λ2
ðH†HÞ3 þ � � � ð2:35Þ

to the Lagrangian rewritten using NDA

L̂ ⊃ ðDμHÞ†ðDμHÞ þ m̂2Λ2H†H −
λ̂

2
ð4πÞ2ðH†HÞ2

þ ð4πÞ4ĈH

Λ2
ðH†HÞ3 þ � � � ; ð2:36Þ

and we refrain from writing out all of the other terms explicitly
for simplicity. Since NDA does not modify the Lagrangian
(i.e., we have L̂ ¼ L), we can identify the coefficients as
follows:

m̂ ¼ m
Λ
; λ̂ ¼ λ

ð4πÞ2 ; ĈH ¼ 1

ð4πÞ4 CH: ð2:37Þ

Following the discussion provided by Gavela et al. (2016),
we can now consider the one-loop contribution to CH,

ð2:38Þ

where we assume that the loop comes with a suppression
factor of 1=16π2. Using NDA instead, we find

ð2:39Þ

without any factors of 4π. The form of Eq. (2.39) is universal
and holds in general, regardless of the loop order, for NDA
(Gavela et al., 2016),

ΔĈi ∼
Y
k

Ĉik : ð2:40Þ

This holds for both strongly and weakly coupled theories. For
strongly coupled theories we have ΔĈ≲ 1 (Manohar and
Georgi, 1984), whereas for weakly coupled theories we can

have ΔĈ ≪ 1. Only ΔĈ ≫ 1 is not allowed, as in this case
the higher-order correction ΔĈ would be larger than Ĉ itself.
Thus, interactions become strongly coupled if Ĉ ∼ 1.
Therefore, the Wilson coefficients Ĉ in the NDA formalism
directly indicate how close a theory is to the strong coupling
regime without any factors of 4π. In the usual normalization,
which does not use NDA, the strong coupling regime is
reached for CH ∼ ð4πÞ4 in the previous example or for the SM
gauge couplings at g ∼ 4π, as can be seen in Eq. (2.34).
Note that the NDA master formula (2.34) dictates only the

maximally allowed size of an operator. Smaller or even
vanishing coefficients are always possible. For example, this
happens in the case where certain operators are forbidden or
suppressed by a global symmetry, as we discuss in Sec. III.

2. Loop- versus tree-level-generated operators

In principle, BSM theories, when matched to the SMEFT,
can generate effective operators at different orders in their loop
expansion. If the UV theory contains a tree-level process that
produces a specific effective operator after integrating out the
heavy states this operator is called tree generated. Conversely,
if there is no tree-level contribution but instead a contribution
at the loop level, then we call the operator loop generated.
Different UV theories can generate certain operators at
different orders in the loop expansion. Even though the
SMEFT is constructed to allow for a description of generic
UV completions of the SM, it is impossible to generate certain
effective operators at tree level, simply because no possible
UV extension exists for producing these operators at leading
order. The only assumption for the proof of this statement
made by Arzt, Einhorn, and Wudka (1995) is that the
underlying UV extension of the SM is a weakly coupled
gauge theory built out of a finite (small) number of scalars,
vectors, and fermions. For example, all four-fermion operators
can in principle be generated by the exchange of either a heavy
scalar or a heavy vector boson coupling to both fermion
currents in the UV, as shown in Fig. 3. Therefore, we call them
potentially tree generated (PTG), as it is still possible to find

TABLE III. NDA scaling of the operator classes in the Warsaw basis.

1: X3 2: H6 3: H4D2 4: X2H2 5: ψ2H3 6: ψ2XH 7: ψ2H2D 8: ψ4

4π
Λ2 X3 ð4πÞ4

Λ2 H6 ð4πÞ2
Λ2 H4D2 ð4πÞ2

Λ2 X2H2 ð4πÞ3
Λ2 ψ2H3 ð4πÞ2

Λ2 ψ2XH ð4πÞ2
Λ2 ψ2H2D ð4πÞ2

Λ2 ψ4

FIG. 3. The Feynman diagram on the left-hand side shows a
process in the UV theory generating the effective four-fermion
operator shown on the right-hand side. The solid lines represent
SM fermions, whereas the dashed line denotes a heavy boson
(either vector or scalar).
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specific models in which they are produced at the loop level
and not by tree graphs.
A counterexample are operators of the type X3 with three

field-strength tensors. It is impossible to generate them in any
gauge theory at tree level. These operators are therefore called
loop generated (LG), and their coefficients come with an
additional suppression factor of ð16π2Þ−n, where n is the loop
order, if they are produced by a weakly coupled UV theory.
The classification of the SMEFT operators according to tree
and loop generation was worked out by Arzt, Einhorn, and
Wudka (1995) and later adapted to the Warsaw basis by
Einhorn and Wudka (2013). Einhorn and Wudka (2013)
argued that, when constructing a basis of effective operators
for an EFT and having a set of equivalent operators where
some are PTG and others are LG, it is always preferable to
remove the LG operators since the PTG operators potentially
come with larger coefficients and are therefore phenomeno-
logically more relevant. If on the contrary one removes a PTG
operator in favor of a LG operator, the coefficient of the latter
could potentially gain a tree-level contribution through the
corresponding field redefinition (Arzt, Einhorn, and Wudka,
1995), depending on the specific UV model. This condition of
removing LG operators in favor of PTG operators whenever
possible is also satisfied by the Warsaw basis (Einhorn and
Wudka, 2013). As an example, the application of the tree or
loop classification to the dimension-6 operators of the SMEFT
contributing to the renormalization of h → γγ and h → γZ was
presented by Elias-Miró et al. (2013b). The role of the strong
coupling assumption was illustrated by a model discussed by
Manohar (2013): in the limit of infinitely many heavy
particles, which is equivalent to the strong coupling limit,
the leading terms are in fact loop generated. For further
discussion of the tree or loop classification, see Jenkins,
Manohar, and Trott (2013a) and Boggia, Gomez-Ambrosio,
and Passarino (2016).
All UV completions of the SM containing general heavy

scalar, spinor, and vector fields with arbitrary interactions that
contribute to the dimension-6 SMEFT Wilson coefficients
at tree level were classified by de Blas et al. (2018) and
references therein. This work also reports all tree-level
matching conditions for these models. Therefore, it presents
a complete tree-level UV/IR dictionary for the d ¼ 6 SMEFT,
allowing one to figure out which SMEFToperator is generated
by which UV model at tree level, and consequently to
determine all other operators induced in this UV scenario
at leading order. This greatly simplifies phenomenological
analyses when a deviation in the experimental data is observed
and the possibly contributing SMEFT operators have been
identified. Generalizations of this dictionary to higher dimen-
sions were discussed by Craig et al. (2020) and Li, Ni et al.
(2022), while generalizations to the one-loop level were
addressed by Guedes, Olgoso, and Santiago (2023).

C. Constraints and validity

We saw in Sec. II.B that the scaling of Wilson coefficients
can be constrained by purely theoretical arguments. Further
constraints on the entire structure of the theory and its validity
can be derived from additional general theoretical consider-
ations. A powerful constraint follows from unitarity: operators

with arbitrary coefficients can lead to an uncontrolled growth
of scattering amplitudes with energy, violating unitarity and
hinting at possible inconsistencies in the UV or a breakdown
of the EFT expansion. More general constraints on the EFT
coefficients follow from the combined requirement of analy-
ticity and unitarity of the S matrix. In this section, we review
these arguments, together with some general considerations
about the convergence of the operator expansion and the
validity of the SMEFT.

1. Convergence of the 1=Λ expansion and validity range

The EFT expansion can be performed on two different
levels, the amplitude (or Lagrangian) level and the level of the
observables, which is proportional to the square of a given
transition amplitude. To obtain results that have a consistent
expansion in powers of the UV cutoff, it is necessary to
consistently truncate the expansion of the observables. For
example, if we want to work up to dimension 8, we can write
the Lagrangian as

L ¼ LSM þ 1

Λ2
C6Q6 þ

1

Λ4
C8Q8 þOðΛ−6Þ; ð2:41Þ

where Q6ð8Þ represents a generic dimension-6 (dimension-8)
operator with the corresponding Wilson coefficient C6ð8Þ.
Using this Lagrangian to compute an observable O,
we schematically find

O ∼ SM2 þ 1

Λ2
C6 × SMþ 1

Λ4
C2
6 þ

1

Λ4
C8 × SMþOðΛ−6Þ;

ð2:42Þ

where SM denotes the standard model contribution. The first
term is the pure SM contribution to the observable of interest.
The second term is the interference of dimension-6 terms with
the SM and the only term of the order of Λ−2. Thus, if we
would have chosen to work up to dimension 6 instead, these
first two terms would be the only ones contributing. However,
note that working to Λ−2 at an observable level can in
principle lead to negative cross sections if the interference
term is sizable and negative. To ensure a positive cross section,
one includes the third term in Eq. (2.42) which is a
“new-physics-squared” contribution of a combination of
two dimension-6 operators and thus is of the order of Λ−4.
In principle, the last term, which is the interference of a
dimension-8 operator with the SM, is also of the order of Λ−4.
In many phenomenological applications these contributions
are neglected, which is consistent with the truncation of the
EFT series at the amplitude level. Only this truncation ensures
positive cross sections.
Besides the pure scaling with inverse powers of Λ, care

must be taken on the size of the interference terms with the SM
amplitude, which can easily be suppressed with respect to the
formally leading terms. As pointed out by Azatov et al.
(2017), helicity selection rules imply that, in a large fraction of
2 → 2 scattering processes at high energy, the 1=Λ2 terms in
Eq. (2.42) vanish, and the contribution from dimension-8
operators can be relevant. More generally dimension-8 oper-
ators as well as dimension-6 squared terms can become
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relevant for searches at high pT due to the energy growth of
the corresponding contribution to the cross section; see
Sec. II.C.2.
Studies on the impact of dimension-8 operators in the

SMEFT were conducted by Corbett et al. (2021), who
analyzed their effect on electroweak precision data, and
Hays et al. (2019), who investigated the operators’ impact
on Higgs measurements. A comparison of the effect of
dimension-6 and dimension-8 operators in more general terms
was made by Hays et al. (2020).
The issue regarding convergence of the 1=Λ expansion and

the growth with energy of the cross section is closely related to
the applicability range of the EFT approach. On the one hand,
it is clear that the momentum expansion cannot be trusted if
E=Λ ¼ Oð1Þ, such that all terms in the operator-product
expansion become of the same order. On the other hand, in
a bottom-up approach, it is not clear how to determine the
precise validity range of the EFT given the intrinsic ambiguity
in determining the value of Λ. More precisely the new-physics
scale Λ is not an independent parameter in the EFT. Only
ratios of Wilson coefficients over the new-physics scale can
be determined, i.e., CðdÞ=Λd−4 for a dimension-d operator.
Therefore, Wilson coefficients are often defined as dimen-
sionful quantities in the literature (CðdÞ ¼ CðdÞ=Λd−4, such that
½CðdÞ� ¼ M4−d). However, throughout this review we use
dimensionless coefficients for the benefit of having an explicit
EFT power counting. Consistency conditions for specific
classes of reactions, ensuring that data are analyzed in a
kinematical range where the SMEFT approach is valid, were
discussed by Contino et al. (2016), Baglio et al. (2020),
Boughezal, Mereghetti, and Petriello (2021), and Lang et al.
(2021); see also Brivio et al. (2022).

2. Unitarity violation and positivity constraints

The high-energy behavior of scattering amplitudes in the
SM is governed by a subtle set of cancellations among
different contributions. These protect the theory from uni-
tarity violations due to the unbounded growth of amplitudes
with energy. When working with the low-energy degrees of
freedom, i.e., the massive physical states after electroweak
symmetry breaking, the gauge symmetries responsible for
these cancellations are obscured, although they still guaran-
tee the same protection at high energies. A well-known
example in the SM is the scattering of longitudinally
polarized W bosons WLWL → WLWL (Llewellyn Smith,
1973; Lee, Quigg, and Thacker, 1977a, 1977b). If one does
not include the quartic self-interaction of the gauge bosons
required by the non-Abelian nature of the gauge symmetry,
the corresponding amplitude grows with the energy E as E4.
Including the quartic contact interaction dampens the energy
growth to E2 but still leads to unitarity violation. Only after
also considering the contribution from the Higgs and
Goldstone bosons, and in that way restoring the relations
imposed by a linear realization of the SUð2ÞL symmetry
breaking via the VEV of the Higgs field, do we find the
correct energy behavior of the amplitude, which no longer
grows with the energy.
The additional effective operators in the SMEFT can

modify the SM interactions or generate new Lorentz structures

after electroweak symmetry breaking. Both can alter the
energy growth of scattering amplitudes and potentially lead
to unitarity-violating effects, despite the SMEFT still respect-
ing the same gauge symmetry as the SM (Distler et al., 2007;
Corbett, Éboli, and Gonzalez-Garcia, 2015, 2017; Maltoni,
Mantani, and Mimasu, 2019, 2020). To this purpose, we note
that all SMEFT operators except for the four-fermion oper-
ators contain more than one interaction vertex. An operator
containing a certain number of Higgs doublets can have
different multiplicities of VEV insertions, and operators with
field-strength tensors can lead to interactions with different
numbers of gauge fields. Therefore, as in the SM, much
different scattering processes can be related by the underlying
gauge symmetry.
A contact interaction Qd of mass dimension d must have a

coupling of dimension 4 − d in four spacetime dimensions
L ⊃ Qd=Λd−4. The scattering amplitude for a 2 → N process
has the mass dimension 2 − N. The contact interaction Qd
thus leads to a contribution to the 2 → N amplitude with the
maximum energy scaling

δA ¼ 1

Λd−4 E
d−N−2: ð2:43Þ

Equation (2.43) implies that at d ¼ 6 the maximal energy
growth is E2, as expected from general dimensional consid-
erations, and it occurs in 2 → 2 scattering. The amplitude with
the maximal energy growth induced by a specific operator
originates from the highest-point contact interaction that the
operator includes. Lower-point interactions, such as those
obtained through VEV insertions or by picking the Abelian
part of a field-strength tensor instead of the non-Abelian piece,
usually come with lower energy scaling.17 The energy scaling
of amplitudes contributing to various scattering processes
measurable at the LHC, including SMEFT contributions at
d ¼ 6, and corresponding constraints imposed by avoiding
perturbative violations of unitarity were discussed by Corbett,
Éboli, and Gonzalez-Garcia (2015, 2017) and Maltoni,
Mantani, and Mimasu (2019).
A more general class of constraints on the SMEFT

coefficients follows from the general requirement of analy-
ticity and unitarity of the S matrix (Adams et al., 2006). The
corresponding bounds, which appear in the form of con-
straints on the sign of certain combinations of Wilson
coefficients, are commonly known as positivity bounds.
The basic idea behind these constraints is the following:
cross sections, which are necessarily positive, can be related
to the imaginary part of a forward scattering amplitude using
the optical theorem (i.e., exploiting unitarity). The imaginary
part of the scattering amplitude is in turn determined by the
analytical structure of the amplitude containing isolated
poles and branch cuts. We can then use Cauchy’s integration
formula to relate the amplitude to the Lagrangian parameters,
allowing us to determine certain combinations of Wilson
coefficients to be positive.

17However, a longitudinally polarized gauge boson can compen-
sate a VEV insertion and bring an additional scaling with the
energy E.
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For concreteness, consider a 2 → 2 scattering process, for
which the optical theorem reads

ImAðsÞ ¼ sσðsÞ; ð2:44Þ

where s ¼ ðp1 þ p2Þ2 is the Mandelstam variable, A is the
corresponding forward scattering amplitude, and σ is the
2 → N cross section (σ ≥ 0). After analytically continuing s to
the complex plane, the analytic structure of AðsÞ is deter-
mined by isolated poles, due to intermediate single-particle
on-shell production, and branch cuts, due to multiparticle on-
shell production. This allows for a power expansion of the
amplitude AðsÞ ¼Pkλks

k. To isolate individual expansion
coefficients, we can then apply Cauchy’s integral formula

λn ¼
1

2πi

I
γ

ds
snþ1

AðsÞ; ð2:45Þ

where we integrate along a suitable contour γ, as indicated
by the green (inner) dashed line in Fig. 4. For simplicity, we
consider only a branch cut on the real axis for jsj > s0 (the
gray shaded regions). Enlarging the radius of our contour γ
[the green (inner) dashed line], we can deform it into a new
contour containing a circle γ0 [the blue (outer) dashed line] and
an integration around the branch cuts (the orange dashed lines
marked “Disc”). We find that

λn ¼
1

2πi

I
γ0

ds
snþ1

AðsÞ

þ 1

2πi

�Z
−s0

−∞
þ
Z

∞

s0

�
ds
snþ1

DiscAðsÞ; ð2:46Þ

where we defined the discontinuity on the real axis by
DiscAðsÞ¼ limϵ→0½Aðsþ iϵÞ−Aðs− iϵÞ�¼2iImAðsÞ using
the Schwarz reflection principle [Aðs�Þ ¼ AðsÞ�].
Assuming that AðsÞ falls off sufficiently rapidly at infinity,
such that the integral along γ0 vanishes when the radius of the
circle is taken to infinity, we obtain

λn ¼
1

π
½1þ ð−1Þn�

Z
∞

s0

ds
snþ1

ImAðsÞ

¼ 1

π
½1þ ð−1Þn�

Z
∞

s0

ds
sn

σðsÞ; ð2:47Þ

where we changed variables s → −s in the first integral of
the second line in Eq. (2.46) and used Að−sÞ ¼ AðsÞ,
which holds due to the crossing symmetry of the forward
scattering amplitude, from which we can deduce
DiscAð−sÞ ¼ −DiscAðsÞ. Furthermore, we directly applied
the optical theorem (2.44) in the second equality. We thus find
that λn ¼ 0 for odd n, whereas

λn ¼
2

π

Z
∞

s0

ds
sn

σðsÞ ≥ 0 ð2:48Þ

holds for even n. The latter condition provides a positivity
constraint on a combination of Wilson coefficients. For more
on this topic, see Adams et al. (2006).
As a concrete but simple example, consider an EFTof a real

massless scalar ϕ whose Lagrangian contains a single d ¼ 8

interaction term,

L ¼ 1

2
ð∂μϕÞð∂μϕÞ þ

C8

2Λ4
½ð∂μϕÞð∂μϕÞ�2: ð2:49Þ

The 2 → 2 scattering amplitude M for this theory
reads Mðs; tÞ ¼ 2ðC8=Λ4Þðs2 þ t2 þ stÞ, where we use
sþ tþ u ¼ 0. Thus, we obtain the forward amplitude

AðsÞ ¼ lim
t→0

Mðs; tÞ ¼ 2
C8

Λ4
s2: ð2:50Þ

Realizing that λ2 ¼ 2C8=Λ4 and using our previous result from
Eq. (2.48), we find that C8 > 0. Therefore, we find that the
Wilson coefficient C8 must be positive based only on unitarity
and analyticity. More details on this specific example were
given by Remmen and Rodd (2019).
This type of bound can also be exploited for more

complicated theories, such as the SMEFT. In general λn
depend on several different coefficients, and we can thus
determine only certain combinations of Wilson coefficients
that must be positive. In fact, there has been substantial
progress on this front recently (Dvali, Franca, and Gomez,
2012; Remmen and Rodd, 2019; Zhang and Zhou, 2019;
Bellazzini et al., 2021; Yamashita, Zhang, and Zhou, 2021;
Chala and Santiago, 2022; Remmen and Rodd, 2022). The
possible range of SMEFT coefficients has been narrowed
down at both dimensions 6 and 8.

FIG. 4. Analytical structure of a scattering amplitude containing
a branch cut (the gray shaded regions) on the real s axis. We also
show certain integration contours that we use to determine
positivity constraints on the coefficients entering the amplitude.
See the text for more details.
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3. Gauge anomalies and reparametrization invariance

To conclude this section, we mention two additional aspects
of the SMEFT coefficients related to the symmetry properties
of the underlying theory. The first aspect deals with gauge
anomalies. As is well known, in classically renormalizable
theories the criterion for the absence of gauge anomalies relies
entirely on the charges of the fermion fields under the local
symmetry (Georgi and Glashow, 1972). When moving from
the renormalizable case to the nonrenormalizable one, this
property is less obvious. In particular, doubts have been raised
if the request of anomaly cancellations does impose any
additional constraint on the SMEFT Wilson coefficients. This
issue was recently clarified by Feruglio (2021), who showed
that the dependence of the anomaly on the nonrenormalizable
part of the Lagrangian can be removed by adding a local
counterterm to the theory. As a result, the condition for gauge
anomaly cancellation is controlled only by the charge assign-
ment of the fermion sector, exactly as in the renormalizable
theory. In other words, no additional constraints can be
derived on the SMEFT by requesting anomaly cancellations.
The second aspect is the so-called reparametrization invari-

ance of the dimension-6 coefficients appearing in ψ̄ψ → ψ̄ψ
scattering amplitudes (Brivio and Trott, 2017). In the Warsaw
basis, the operators contributing to ψ̄ψ → ψ̄ψ scattering give
rise to a flat direction. For some time, this created confusion in
global SMEFT fits, given the central role played by ψ̄ψ → ψ̄ψ
data in constraining the parameter space. As pointed out by
Brivio and Trott (2017), this fact is a consequence of the
combined action of a field redefinition (for the vector fields)
together with a shift of the vector-fermion couplings. This
transformation leaves all of the physical ψ̄ψ → ψ̄ψ ampli-
tudes unchanged. However, this is not a complete degeneracy
of the theory, and indeed it is lifted when considering other
amplitudes, such as ψ̄ψ → ψ̄ψψ̄ψ . This property illustrates
well the importance of considering complete sets of data and a
complete operator basis when performing bottom-up analyses
of the SMEFT parameter space.

III. GLOBAL SYMMETRIES

A. The role of accidental symmetries

A key concept in any EFT is that of accidental symmetries,
i.e., symmetries that arise in the lowest-dimensional operators
as indirect consequences of the field content and the sym-
metries explicitly imposed on the theory. Within the SMEFT,
two well-known examples are baryon number (B) and lepton
number (L). These are exact accidental global symmetries of
the d ¼ 4 part of the Lagrangian or the SM: they do not need
to be imposed in the SM because gauge invariance forbids any
d ¼ 4 operator violating B or L.
If the accidental symmetries are not respected by the

underlying UV completion, we expect them to be violated
by the higher-dimensional operators. The strong bounds on
B-violating terms from proton stability, as well as the small
coefficient of the L-violating Weinberg operator in Eq. (2.2)
from neutrino masses, indicate that such symmetries remain
almost unbroken in the SMEFT. This observation can be
interpreted in a natural way, assuming that the fundamental
interactions responsible for B and L violation appear at high

energy scales, therefore assuming a high cutoff scale for these
operators. This does not contradict the possibility of having a
lower cutoff scale for the d ¼ 6 SMEFT operators preserving
B and L, since the symmetry-preserving sector cannot induce
violations of the global symmetries. In other words, accidental
global symmetries allow us to define a stable partition of the
tower of effective operators in different sectors characterized
by different cutoff scales, reflecting a possible multiscale
structure of the underlying theory. The key point is that this
partition is stable with respect to quantum corrections.
Besides B and L, the SM Lagrangian (or, better, the SMEFT

at d ¼ 4) has two additional exact accidental global sym-
metries related to the individual lepton flavor that we can
conventionally choose as Le−μ and Lμ−τ (combined with L,
these correspond to the conservation of each individual lepton
flavor). However, a much larger number of approximate
accidental symmetries appears in the limit in which we
neglect the small Yukawa couplings of the light families
and the small off-diagonal entries of the Cabibbo-Kobayashi-
Maskawa matrix. These approximate flavor symmetries are
responsible for the smallness of flavor-changing neutral-
current (FCNC) processes such as B–B̄ and K–K̄ mixing,
which are severely constrained by the data. Despite the
precision and the energy scales involved being much different,
the situation is similar to that of B and L: the experimental
bounds on FCNC processes imply high cutoff scales for the
d ¼ 6 operators violating the approximate SM flavor sym-
metries. As in the case of exact accidental symmetries,
approximate accidental symmetries allow us to conceive an
underlying multiscale structure separating the symmetry-
preserving and symmetry-breaking sectors of the theory (with
the maximal scale separation limited by the size of the explicit
symmetry-breaking terms). This implies that the scale of the
symmetry-preserving sector of the SMEFT can be as low as a
few TeV, if at that scale not only B and L but also the tightly
constrained accidental flavor symmetries remain valid, or are
broken only by small symmetry-breaking terms.
The technical implementation of the concept of small

symmetry-breaking terms, in the presence of approximate
(or exact) symmetries in the low-energy sector of the EFT, is
obtained via the spurion technique, which is discussed in
Sec. III.C. Generalizing the case of exact accidental sym-
metries, this technique can be viewed as a consistent parti-
tioning of the tower of effective operators, reflecting a possible
underlying multiscale structure. This classification is particu-
larly important in the SMEFT given the large number of
flavor-violating operators at d ¼ 6, and the much different
bounds on the symmetry-preserving and symmetry-breaking
terms. If we do not conceive an underlying multiscale
structure, we are unavoidably led to the conclusion that the
cutoff scale of the SMEFT is extremely high, preventing the
observation of any deviation from the SM except in rare B- or
L-violating processes.

B. Baryon and lepton number

As discussed in Sec. II.A, the unique d ¼ 5 operator of the
SMEFT is the L-violating term in Eq. (2.2). This operator
provides an illustration of the previously discussed general
concept of accidental symmetries: it describes all phenomena
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related to neutrino masses well; hence, it provides indirect
evidence18 that L is violated beyond d ¼ 4. However, its
coupling inferred from neutrino masses points to a high
effective scale: 1014 < Λ < 1015 TeV for Oð1Þ coefficients
(following from 0.03 <

P
mν < 0.3 eV).

Possible baryon-number-violating terms first appear at
d ¼ 6. The complete list of B (and L) violating d ¼ 6
operators is shown in Table IV. These operators satisfy the
SM gauge symmetries because of the SUð3Þc property
3 ⊗ 3 ⊗ 3 ∼ 1. This is also the reason why there are no
baryon- or lepton-number-violating operators of dimension 6
with three leptons and one quark, and why B − L is conserved
at this order. The strong bound from proton decay implies
severe bounds on some of these operators: Λ > 1016 GeV for
Oð1Þ coefficients for terms involving only first-generation
fermions. The constraints are significantly weaker for oper-
ators involving heavy fermions that cannot contribute to
proton decay at tree level (Nikolidakis and Smith, 2008).

C. Flavor symmetries

After imposing exact B and L conservation, the number of
independent electroweak structures at d ¼ 6 amounts to the 59
terms listed in Table II. The large proliferation in the number
of independent coefficients in the SMEFT at d ¼ 6 occurs
when all of the possible flavor structures for these terms are
taken into account: in the absence of a flavor symmetry, they
amount to 1350 CP-even and 1149 CP-odd independent
coefficients for the dimension-6 operators (Alonso, Jenkins
et al., 2014).
Among these couplings, those contributing at tree level to

flavor-violating observables, particularly meson-antimeson
mixing and lepton-flavor-violating processes, are strongly
constrained: these set bounds of Oð105 TeVÞ on Λ for
Oð1Þ coefficients (Isidori, Nir, and Perez, 2010). If this high
scale were the overall cutoff scale of the SMEFT, it would
imply that all the other d ¼ 6 operators play an irrelevant role
in current experiments, making the entire construction unin-
teresting from a phenomenological point of view. However,
from the known structure of the SM Yukawa couplings, we
know that flavor is highly nongeneric, at least in the d ¼ 4

sector of the SMEFT. As anticipated, it is conceivable to
assume this being the result of an underlying multiscale
structure, leading to approximate flavor symmetries in the
entire SMEFT also beyond d ¼ 4. This assumption allows us
to reduce in a consistent way the number of relevant
parameters, making the entire construction more consistent
and more interesting from a phenomenological point of view,
with competing constraints from flavor-conserving and flavor-
violating processes on a given effective operator.
The price to pay to achieve this goal is the choice of the

flavor symmetry and symmetry-breaking sector, which nec-
essarily introduces some model dependence given that there is
no exact flavor symmetry to start with (unlike the case of B
and L). If we are interested in symmetries and symmetry-
breaking patterns able to successfully reproduce the SM
Yukawa couplings and, at the same time, suppress nonstand-
ard contributions to flavor-violating observables, the choice is
limited. Here we analyze in some detail two cases that are
particularly inspired by this point of view: the flavor sym-
metries Uð3Þ5 and Uð2Þ5, with possible minor variations.
In both cases the starting point is the flavor symmetry allowed
by the SM gauge group.
The Uð3Þ5 symmetry is the maximal flavor symmetry

allowed by the SM gauge group, while Uð2Þ5 is the corre-
sponding subgroup acting only on the first two light gen-
erations. The Uð3Þ5 symmetry allows us to implement the
minimal flavor violation (MFV) hypothesis (Chivukula and
Georgi, 1987; D’Ambrosio et al., 2002), which is the most
restrictive consistent hypothesis that we can utilize in the
SMEFT to suppress nonstandard contributions to flavor-
violating observables (D’Ambrosio et al., 2002). The Uð2Þ5
symmetry with minimal breaking (Barbieri et al., 2011, 2012;
Blankenburg, Isidori, and Jones-Perez, 2012) is interesting
since it retains most of the MFV virtues, but it allows us to
have a much richer structure as far as the third-generation
dynamics is concerned.

1. Uð3Þ5 and minimal flavor violation

The largest group of global symmetry transformations
of the SM fermions compatible with the gauge symmetries
of the SM Lagrangian is (Gerard, 1983; Chivukula and
Georgi, 1987)

Gf ¼ Uð3Þl × Uð3Þq × Uð3Þe × Uð3Þu × Uð3Þd
≡ Uð3Þ5 ¼ SUð3Þ5 × Uð1Þ5: ð3:1Þ

Within the SM, the Yukawa couplings (Ye;u;d) are the only
source of breaking of Gf. They break this global symmetry as
follows:

Gf ¼
	
SUð3Þ5
Uð1Þ5 ⟶

Ye;u;d≠0 Uð1Þe−μ × Uð1Þτ−μ;
Uð1ÞB × Uð1ÞL × Uð1ÞY;

ð3:2Þ

where we explicitly separate the flavor-universal and flavor-
nonuniversal subgroups. The three unbroken flavor-universal
Uð1Þ groups are baryon number, lepton number, and
hypercharge.

TABLE IV. Baryon-number-violating dimension-6 operators in the
Warsaw basis (Grzadkowski et al., 2010), with the operator labels
adapted from Alonso, Chang et al. (2014). The color indices are
labeled fa; b; cg, the indices of SUð2ÞL are fi; j; k; lg, the flavor
indices read fp; r; s; tg, the charge conjugation matrix is C ¼ iγ2γ0,
and ε denotes the totally antisymmetric rank-2 or rank-3 tensor.

Baryon-number-violating ψ4 operators

Qduql εabcεij½ðdapÞ⊺Cubr�½ðqcisÞ⊺Cljt�
Qqque εabcεij½ðqaipÞ⊺Cqbjr�½ðucsÞ⊺Cet�
Qqqql εabcεilεjk½ðqaipÞ⊺Cqbjr�½ðqcksÞ⊺Cllt�
Qduue εabc½ðdapÞ⊺Cubr�½ðucsÞ⊺Cet�

18Alternative descriptions of neutrino masses not involving the
Weinberg operator and preserving L are possible but require the
enlargement of the field content or the inclusion of operators of even
higher dimensions; see Gonzalez-Garcia and Maltoni (2008).
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Most of the d ¼ 6 SMEFT operators can be viewed as
independent Gf-breaking terms; hence, they can be classified
according to their transformation properties under Gf. To
begin, we consider the limit of unbroken Gf: retaining only
the Gf invariant operators at d ¼ 6 is not a fully consistent
hypothesis, since Gf is broken in the d ¼ 4 sector. However, it
is a useful starting point for the classification of the operators,
and it is a coherent hypothesis to be implemented in the
SMEFT in the limit where we also neglect Gf-breaking terms
in the SM sector, i.e., in the limit where we neglect the SM
Yukawa couplings.
The number of independent d ¼ 6 terms respecting Gf is

reported in Table V in the “Exact” Uð3Þ5 column: the left
(right) value in each entry indicates the number of CP-even
(CP-odd) coefficients. For comparison, the counting of
independent coefficients if no symmetry is imposed, or if a
single generation of fermions is considered, is also shown. As
seen, the number of independent coefficients respecting the Gf

symmetry is smaller than in the single-generation case: this is
because Gf forbids bilinear couplings of fermions with
different gauge quantum numbers, such as those appearing
in the Yukawa couplings.
The MFV hypothesis is the assumption that the SMYukawa

couplings are the only sources of Uð3Þ5 breaking (Chivukula
and Georgi, 1987; D’Ambrosio et al., 2002). The exact Uð3Þ5
limit can be viewed as employing the MFV hypothesis and
working to zeroth order in the symmetry-breaking terms. To
go beyond the leading order, we promote the SM Yukawa
couplings to become Uð3Þ5 spurions, i.e., nondynamical fields
with well-defined transformation properties under Uð3Þ5. The
latter are deduced by the structure of the SM Lagrangian
(D’Ambrosio et al., 2002),

Yu ¼ð1;3;1; 3̄;1Þ; Yd ¼ð1;3;1;1; 3̄Þ; Ye ¼ð3;1; 3̄;1;1Þ:
ð3:3Þ

With these transformation properties, the d ¼ 4 sector of the
theory is formally invariant under Uð3Þ5. The MFV hypothesis
consists in constructing the higher-dimensional operators

using SM fields and spurions such that the EFT remains
formally invariant under Uð3Þ5 to all orders, and the
breaking occurs only via the appropriate insertions of the
spurions Yu;d;e.
In principle, the spurions can appear with arbitrary powers

both in the renormalizable (d ¼ 4) part of the Lagrangian and
in the dimension-6 effective operators. However, via a suitable
redefinition of both fermion fields and spurions, we can
always set the d ¼ 4 Lagrangian to its standard expression,
identifying the spurions with the SM Yukawa couplings. This
implies that we can always choose a flavor basis where the
spurions are completely determined in terms of fermion
masses and the Cabibbo-Kobayashi-Maskawa (CKM) matrix
VCKM. A representative example is the down-quark mass-
eigenstate basis, where

Ye ¼ diagðye; yμ; yτÞ; Yd ¼ diagðyd; ys; ybÞ;
Yu ¼ V†

CKM × diagðyu; yc; ytÞ: ð3:4Þ

The key point is that there are no free (observable) parameters
in the structure of the MFV spurions. A related important
point is the fact that, knowing the structure of the spurions, we
know that they are all small except for the top Yukawa yt. We
can thus limit the spurion expansion to a few terms.
The overall number of independent terms allowed by the

MFV hypothesis with at most one “small” Yukawa coupling,
namely, Yd or Ye, and up to 2 powers of Yu is shown in the last
column of Table V (Faroughy et al., 2020). This number is
almost 2 orders of magnitude smaller than what is obtained in
the absence of any symmetry (for three generations) and is
close to the single-generation case. With the corresponding set
of operators, we can describe the SM spectrum and possible
deviations from the SM in a series of rare flavor-violating
processes (D’Ambrosio et al., 2002). A representative set of
these operators is shown in Table VI.
The number of insertions of the leading Yu spurions has

been limited to two since, in the reference basis (3.4), one gets

½YuðYuÞ†�nr≠p ≈ y2nt V�
trVtp ∝ ½YuðYuÞ†�r≠p: ð3:5Þ

TABLE V. Number of independent d ¼ 6 SMEFT operators without any symmetry for three or one generation (gen.), and when imposing a
Uð3Þ5 or Uð2Þ5 flavor symmetry with different powers of symmetry-breaking terms (Faroughy et al., 2020). In each column the left (right)
number corresponds to the number of CP-even (CP-odd) coefficients. OðXnÞ indicates that terms up to OðXnÞ are included.

No symmetry Uð3Þ5 Uð2Þ5

Class operators 3 gen. 1 gen. Exact OðY1
e;d;uÞ OðY1

e; Y1
dY

2
uÞ Exact OðV1Þ OðV2;Δ1Þ

1–4 X3, H6, H4D2, X2H2 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6

5 ψ2H3 27 27 3 3 0 0 3 3 4 4 3 3 6 6 9 9
6 ψ2XH 72 72 8 8 0 0 8 8 11 11 8 8 16 16 24 24
7 ψ2H2D 51 30 8 1 7 0 7 0 11 1 15 1 19 5 23 5

8 ðL̄LÞðL̄LÞ 171 126 5 0 8 0 8 0 14 0 23 0 40 17 67 24
ðR̄RÞðR̄RÞ 255 195 7 0 9 0 9 0 14 0 29 0 29 0 29 0
ðL̄LÞðR̄RÞ 360 288 8 0 8 0 8 0 18 0 32 0 48 16 69 21
ðL̄RÞðR̄LÞ 81 81 1 1 0 0 0 0 0 0 1 1 3 3 6 6
ðL̄RÞðL̄RÞ 324 324 4 4 0 0 0 0 4 4 4 4 12 12 28 28

Total 1350 1149 53 23 41 6 52 17 85 26 124 23 182 81 264 123
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Equation (3.5) implies that within the MFV hypothesis rare
FCNC processes that, within the SM, are not helicity sup-
pressed and are dominated by virtual top-quark contributions
(such as B0–B̄0 and K0–K̄0 mixing, b → sγ, b → slþl−;…)
receive exactly the same CKM suppression as in the SM,

Aðdi → djÞMFV ¼ ðV�
tiVtjÞAðΔF¼1Þ

SM

�
1þ a1

16π2M2
W

Λ2

�
;

AðMij − M̄ijÞMFV ¼ ðV�
tiVtjÞ2AðΔF¼2Þ

SM

�
1þ a2

16π2M2
W

Λ2

�
;

ð3:6Þ

where AðiÞ
SM denote the SM loop amplitudes and ai are the

Oð1Þ parameters. The ai depend on different combinations
of SMEFT coefficients but are flavor independent. Actually,
Eq. (3.6) can be used to define in an operative way the MFV
hypothesis for a large class of flavor-changing processes,
as proposed by Buras (2003).

2. The Uð2Þ5 symmetry

The Uð2Þ5 flavor symmetry is the subgroup of the Uð3Þ5
global symmetry that, by construction, distinguishes the first
two generations of fermions from the third one (Barbieri et al.,
2011, 2012; Blankenburg, Isidori, and Jones-Perez, 2012). For
each set of SM fermions with the same gauge quantum
numbers, the first two generations form a doublet of a given
Uð2Þ subgroup, whereas the third one transforms as a singlet.
Denoting the five independent flavor doublets as L, Q, E, U,
and D, the flavor symmetry decomposes as

Uð2Þ5 ¼ Uð2ÞL × Uð2ÞQ × Uð2ÞE × Uð2ÞU × Uð2ÞD: ð3:7Þ

In the limit of unbroken Uð2Þ5, only third-generation fermions
can have nonvanishing Yukawa couplings, which is an
excellent first-order approximation for the SM Lagrangian.
This is why, unlike in the MFV case, the Uð2Þ5 symmetry
allows us to build an EFT where all the symmetry-breaking
terms are small.

A Uð2Þ3 symmetry in the quark sector can be viewed as the
result of a generalized MFV framework, taking into account
arbitrary insertions of the third-generation Yukawa couplings
without suppression [the so-called nonlinear representation of
MFV (Feldmann and Mannel, 2008) or general MFV (Kagan
et al., 2009) hypothesis]. However, this interpretation is less
motivated in the lepton sector and also implies a strict
structure for the symmetry-breaking terms. Nevertheless,
the symmetry group in Eq. (3.7) with the symmetry-breaking
terms discussed next can be viewed as an effective way to
describe in general terms the large class of SM extensions
where the third generation of fermions plays a special role.

a. Yukawa couplings and spurion structures

A set of symmetry-breaking terms sufficient to reproduce
the complete structure of the SM Yukawa couplings is
(Barbieri et al., 2011)

Vl ∼ ð2; 1; 1; 1; 1Þ; Vq ∼ ð1; 2; 1; 1; 1Þ;
Δe ∼ ð2; 1; 2̄; 1; 1Þ; ΔuðdÞ ∼ (1; 2; 1; 2̄ð1Þ; 1ð2̄Þ): ð3:8Þ

By construction Vq;l are complex two-vectors and Δe;u;d are
complex 2 × 2 matrices. In terms of these spurions, we can
express the Yukawa couplings as

Ye ¼ yτ

�Δe xτVl

0 1

�
; Yu ¼ yt

�Δu xtVq

0 1

�
;

Yd ¼ yb

�Δd xbVq

0 1

�
; ð3:9Þ

where yτ;t;b and xτ;t;b are free complex parameters expected to
be of order unity.
The spurion set in Eq. (3.9) is minimal in terms of

independent Uð2Þ5 structures (at least as far as the quark
sector is concerned) and leads to spurions that are small and
hierarchical in size. Unlike in the MFV framework, in this
case we cannot completely determine the spurions in terms of
the SM parameters. However, we can constrain their size
while requiring no tuning in the Oð1Þ parameters. In particu-
lar, from the 2 ↔ 3 mixing in the CKM matrix we deduce
jVqj ¼ OðjVcbjÞ, while light-quark and lepton masses imply
jΔu;d;ejij ≪ jVqj.
There are no unambiguous constraints about the size of Vl.

Actually, the SM lepton Yukawa coupling can be reproduced
even when setting Vl ¼ 0. However, assuming a common
structure for the three Yukawa couplings, as suggested by
the similar hierarchies observed in the eigenvalues, we also
assume that jVlj ∼ jVqj. The assumption that Vq;l are the
leading Uð2Þ5-breaking spurions ensures a suppression of
flavor-violating terms in the quark sector, via higher-
dimensional operators, that is as effective as the one implied
by the MFV hypothesis.
It is convenient to define as reference (or interaction) basis

the flavor basis in Uð2Þ5 space where Vq;l ¼ jVq;lj × n⃗, with

n⃗ ¼ ð0; 1Þ⊺, and where Δ†
u;d;eΔu;d;e are diagonal. After the

Uð2Þ5 symmetry is broken, the residual flavor symmetry
implies that the Yukawa matrices in the interaction basis can

TABLE VI. Representative set of SMEFT operators, with their
flavor structure determined according to the MFV hypothesis. Each
electroweak structure (first column) can admit different MFV
implementations. In the second column we indicate the one more
constrained by flavor-violating processes in the quark sector. The
corresponding bounds on the effective scale set by B- and K-meson
physics measurements is reported in the third column (95% C.L.
bound, assuming an effective coupling ∼� 1=Λ2, considering each
operator separately).

EW type Possible MFV form Bound on Λ (TeV)

QdB ½q̄rðYuY
†
uYdÞrpσμνdp�Hðg1BμνÞ 6.1

QdG ½q̄rðYuY
†
uYdÞrpσμνTAdp�Hðg3GA

μνÞ 3.4

Qð1Þ
Hq ðH†iD

↔

μHÞ½q̄rðYuY
†
uÞrpγμqp� 2.3

Qð1Þ
qq ½q̄rðYuY

†
uÞrpγμqp�½q̄rðYuY

†
uÞrpγμqp� 6.0

Qqe ½q̄rðYuY
†
uÞrpγμqp�½ēsγμes� 2.7

Qð1Þ
lq

½q̄rðYuY
†
uÞrpγμqp�½lsγμls� 1.7
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be written in the following form (Fuentes-Martin, Isidori
et al., 2020):

Yu ¼ jytj
�
U†

qO
⊺
uΔ̂u jVqjjxtjeiϕq n⃗

0 1

�
; ð3:10aÞ

Yd ¼ jybj
�
U†

qΔ̂d jVqjjxbjeiϕq n⃗

0 1

�
; ð3:10bÞ

Ye ¼ jyτj
�
O⊺

eΔ̂e jVljjxτjn⃗
0 1

�
; ð3:10cÞ

where Δ̂u;d;e are 2 × 2 diagonal positive matrices, Ou;e are
2 × 2 orthogonal matrices, and Uq is a complex unitary
matrix. The unitary matrices that diagonalize the aforemen-
tioned Yukawa matrices were discussed by Fuentes-Martin,
Isidori et al. (2020). After expressing the free parameters in
terms of fermion masses and CKM elements, the residual
terms that cannot be determined in terms of SM parameters are
as follows:

• Quark sector: 2 ↔ 3 mixing angle in the down sector,
sb ≈ jxbjjVqj, and CP-violating phase ϕq.

• Lepton sector: 2 ↔ 3 mixing angle sτ ≈ jxτjjVlj and
1 ↔ 2 mixing angle se (which appears in Oe).

As pointed out by Greljo, Palavrić, and Thomsen (2022),
the parametrization in Eq. (3.10) is redundant and all of the
previously listed non-SM parameters can be eliminated via a
suitable change of basis consistent within the Uð2Þ5 frame-
work. For instance, in the quark sector both sb and ϕq can be
eliminated by a transformation mixing the Uð2ÞQ singlet field
with the Uð2ÞQ doublet appropriately contracted with spu-
rions. While this is certainly correct, this change of basis
implies a shift in the tower of higher-dimensional operators.
In a pure bottom-up approach, this shift has no practical
consequences; hence, the redundancy can safely be removed.
However, keeping the redundant formulation in Eq. (3.10) is
particularly useful when matching to a specific UV theory:
it highlights the fact that the third generation, with a special
role in the UV, is not unambiguously determined by the SM
Yukawa couplings.

b. Higher-dimensional operators

The exact Uð2Þ5 symmetry is the natural and unavoidable
starting point to describe all processes where we can neglect
light-fermion masses. This is why the SMEFT with unbroken
Uð2Þ5 is employed to describe top-quark physics and related
processes at colliders (Barducci et al., 2018). The numbers of
relevant operators are listed in Table V.
In Table V the terms obtained with one V spurion, or two of

them and one Δ spurion, are given. The higher-dimensional
operators built in terms of a single Vq;l spurion contribute to
flavor-violating transitions that involve only left-handed fields
and connect only the 2 ↔ 3 sectors in the interaction basis.
Considering terms with two Vq spurions is the analog of
considering two Yu insertions in MFV. Compared to the latter
case, the Uð2Þ5 hypothesis leads to more freedom (differ-
entiating, for instance, effective operators contributing to the

flavor-violating process in B- and K-meson physics), but also
more terms. The latter statement can be understood by looking
at the number of independent invariant q̄rγμqp bilinears in the
two cases,19

q̄rγμqr

q̄rðYuY
†
uÞrpγμqp

�����
Uð3Þ5

→

q̄3γμq3
q̄iγμqi
q̄iðVqÞiγμq3 þ H:c:

q̄iðVqÞiγμðV†
qÞjqj

�����������
Uð2Þ5

.

In Fig. 5 we illustrate more concretely some of the features
showing bounds on two representative four-quark SMEFT

operators Qð1Þ
qq and Qð1Þ

qd (see Table II) for different flavor
indices. The strong bounds on the effective scales exceeding
100 TeV (the light yellow bars in Fig. 5) are those obtained
without any symmetry hypothesis. They correspond to flavor
combinations leading to unsuppressed tree-level contributions
to specific meson-antimeson mixing amplitudes. By contrast,
once the suppression due to the Uð2Þ5-breaking spurions is
taken into account, the same observables lead to bounds on the
effective scales below 10 TeV. Note that these bounds are
comparable to those obtained by direct searches for flavor-
conserving combinations involving only third-generation
fermions, which are the most severely constrained by high-
energy LHC data.

FIG. 5. Bounds on the effective scales of the SMEFT four-quark
operatorsQð1Þ

qq andQð1Þ
qd for different flavor indices, as reported on

the horizontal axis between square brackets (the bounds are
95% C.L. limits for effective scales defined as in Table VI). For
left-handed fields, the flavor indices refer to the down-quark
mass-eigenstate basis. The bounds “with Uð2Þ5” (brown bars) are
obtained while incorporating into the operators one or more
Uð2Þ5-breaking terms, according to the rules discussed in
Sec. III.C.2. The observables used to derive the bounds are also
indicated.

19Here the flavor indices fr; pg run from 1 to 3, whereas fi; jg run
only from 1 to 2.
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We stress that the hypothesis of a Uð2Þ5 flavor symmetry
broken by the minimal set of spurions in Eq. (3.9) implies
lepton-flavor violation in the charged lepton sector. This is
controlled by the size of Vl and se, which are left uncon-
strained by the SM Yukawa couplings. This is one of the most
evident differences between the genuine Uð2Þ5 approach and
the nonlinear MFV hypothesis (Feldmann and Mannel, 2008;
Kagan et al., 2009).

3. Other options and running

The previously discussed Uð2Þ5 case is the prototype of a
series of symmetry groups providing a suppression similar to
MFV in the quark sector but allowing more general breaking
terms. The common ground is the presence of the chiral non-
Abelian group Uð2Þ3 acting in the quark sector. The variations
come from obtaining this group as a subgroup of possible
larger symmetries, such as Uð2Þ2 × Uð3Þd or Uð2Þ3 × Uð1Þd
(Faroughy et al., 2020; Greljo, Palavrić, and Thomsen, 2022).
Given the smaller set of phenomenological constraints, a
larger set of variations have been proposed in the lepton sector
(Greljo, Palavrić, and Thomsen, 2022).
A somehow different approach is that of using only

Uð1Þ groups, as originally proposed by Froggatt and
Nielsen (1979). Recent analyses of this type were given by
Smolkovič, Tammaro, and Zupan (2019) and Bordone, Catà,
and Feldmann (2020).
To conclude the discussion about flavor symmetries, we

mention that the approximate symmetries present in the
SM are responsible for a series of powerful (approximate)
selection rules in the renormalization group evolution of
the SMEFT (Feldmann, Mannel, and Schwertfeger, 2015;
Machado, Renner, and Sutherland, 2023). These are simply
manifestations of the statement made in Sec. III.A, namely,
that the partitioning of the EFT due to global symmetries is
stable with respect to quantum corrections. These selection
rules become manifest when one works in a basis of flavor
invariants, where the apparently large anomalous-dimension
matrix of dimension-6 current-current operators is reduced
to a block-diagonal structure with several blocks of small
dimension (Machado, Renner, and Sutherland, 2023).

D. Custodial symmetry

The large number of fermions in the SM implies that most
of the exact or approximate global symmetries of the theory
are related to the fermion sector, as discussed. However, there
is one important symmetry that involves mainly (but not only)
the scalar sector.
Custodial symmetry is an exact symmetry of the pure Higgs

sector of the SM

LH ¼ ∂μH†
∂
μH − VðHÞ; ð3:11Þ

with the scalar potential defined as in Eq. (1.6). The simplest
way to realize the global symmetry of LH is to write the
complex Higgs doublet in terms of four independent real
scalar components ϕi as in Eq. (1.7),

H ¼ 1ffiffiffi
2

p
�
ϕ2 þ iϕ1

ϕ4 − iϕ3

�
: ð3:12Þ

We find that

Lϕ ¼ 1

2
ð∂μϕÞ · ð∂μϕÞ þ

m2

2
ϕ · ϕ −

λ

8
ðϕ · ϕÞ2; ð3:13Þ

where we define

ϕ ¼

0
BBBB@

ϕ1

ϕ2

ϕ3

ϕ4

1
CCCCA ¼

0
BBBB@

φ1

φ2

φ3

vþ h

1
CCCCA; ð3:14Þ

with the Higgs VEV v, the physical Higgs boson h, and the
Goldstone bosons of electroweak symmetry breaking φa. One
can verify that LH and Lϕ depend only on ϕ · ϕ ¼ 2H†H and
are thus invariant under a global Oð4Þ symmetry, with the
symmetry transformation ϕ → Oϕ for O∈Oð4Þ. The mini-
mum of the Higgs potential is the three-sphere S3 with radius v
defined by hϕ · ϕi ¼ v2. Hence, the Oð4Þ global symmetry of
LH is spontaneously broken by the Higgs VEV to its subgroup
Oð3Þ. The corresponding Goldstone bosons φ ¼ ðφ1;φ2;φ3Þ⊺
transform under this group as φ → Õφ, where Õ∈Oð3Þ.
This Oð3Þ global symmetry of the Higgs sector after

electroweak symmetry breaking is responsible for, among
other things, the tree-level relation ρ ¼ 1, where

ρ≡m2
W

m2
Z

g21 þ g22
g22

: ð3:15Þ

Equation (3.15) is tested to the per mill level, finding good
agreement with the SM prediction after taking into account
the small deviations generated beyond tree level. However,
adding to LH generic dimension-6 operators that are com-
patible only with the gauge symmetry of the SM, one would
expect ρ − 1 ¼ Oðv2=Λ2Þ.
Custodial symmetry is explicitly broken in the SM, both by

the electroweak gauge symmetry, which acts differently on
the different ϕi components, and by the Yukawa interactions.
These breaking terms are responsible for the deviation from
ρ ¼ 1 generated beyond tree level. In particular, the leading
contribution induced by the top Yukawa coupling reads

ðρ − 1ÞytSM ¼ 3y2t
32π2

≈ 1%: ð3:16Þ

Given the strong constraints on the SMEFT imposed by the
ρ parameter, one can conceive of the case of new-physics
models where the breaking of custodial symmetry is small, as
in the SM, originating only from the gauge and the Yukawa
sector. In other words, in close analogy to the previously
discussed flavor symmetries, one can treat custodial symmetry
as an approximate global symmetry of the SMEFT broken by
a well-defined set of spurion terms.
To describe the explicit breaking of custodial symmetry

occurring in the SM, it is more convenient to express the
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symmetry in a different way, taking into account the local
equivalence of the SOð4Þ group with the product of two
SUð2Þ groups,

Oð4Þ ≃ SUð2ÞL × SUð2ÞR: ð3:17Þ

To see how the SUð2Þ groups in Eq. (3.17) act on the Higgs
field, we can combine H and its conjugate H̃ ¼ εH�, where
ε ¼ iτ2 is the totally antisymmetric SUð2Þ tensor, to form the
2 × 2 matrix field Σ, which transforms as ð2L; 2̄RÞ under
Eq. (3.17), namely,

Σ≡ ðH̃; HÞ → VLΣV
†
R; ð3:18Þ

with VLðRÞ ∈ SUð2ÞLðRÞ. We find that tr½Σ†Σ�¼2H†H¼ϕ ·ϕ,
which allows us to write the Higgs Lagrangian LH as

LΣ ¼ 1

2
tr½ð∂μΣÞ†ð∂μΣÞ� þ

m2

2
tr½Σ†Σ� − λ

8
ðtr½Σ†Σ�Þ2: ð3:19Þ

With this notation one can verify that LH and LΣ are invariant
under SUð2ÞL × SUð2ÞR global transformations, and that
the spontaneous symmetry breaking due to the Higgs VEV
corresponds to Oð4Þ≃SUð2ÞL×SUð2ÞR→SUð2ÞLþR≃Oð3Þ.
While the SUð2ÞL group is fully gauged in the SM, only a part
of the SUð2ÞR group is gauged, leading to an explicit breaking
of custodial symmetry. To be more precise, gauging the
hypercharge in the Higgs sector is equivalent to gauging only
the Uð1Þ subgroup of SUð2ÞR corresponding to the diagonal
generator T3

R.
Up to this level, i.e., when only the gauge sector is

considered, the identification of the explicit breaking of
custodial symmetry from a general EFT point of view is
unambiguous. An ambiguity arises when the fermion sector is
also considered, given that the action of T3

R is not sufficient to
describe fermion hypercharges. On general grounds, we can
extend the symmetry to (Elias-Miró et al., 2013a)

Gcust ¼ SUð2ÞL × SUð2ÞR × Uð1ÞX ð3:20Þ

such that the hypercharge reads

Y ¼ T3
R þ X: ð3:21Þ

However, different embeddings of the SM fermions in Gcust
are possible. The simplest one corresponds to the choice of
X ¼ ðB − LÞ=2. In such a case, all right-handed fermions
belong to doublets of SUð2ÞR, with an incomplete doublet in
the lepton sector due to the absence of right-handed neutrinos,
while all left-handed fermions are assumed to be singlets
of SUð2ÞR. But other options are also possible (Elias-Miró
et al., 2013a).
Once a representation of the SM fermions under Gcust is

chosen, we have all the ingredients to define a consistent EFT
based on the hypothesis of minimal breaking of custodial
symmetry that is able to reproduce all SM properties. First,
all representations of Gcust including some SM fermions
are promoted to be complete representations by introducing
appropriate spurion (unphysical) fields that are set to zero in

physical processes (Elias-Miró et al., 2013a). Second,
SUð2ÞR-breaking terms in the Yukawa couplings, such as
the one responsible for the top-bottom splitting when tR and
bR are embedded in the same SUð2ÞR multiplet, are also
promoted as spurion fields (Isidori, 2010). Finally, spurion
gauge bosons are also introduced so that the entire group Gcust
is formally gauged, and the SM is recovered as the limit
obtained by setting the spurion fields to zero (Gonzalez-
Alonso et al., 2015). The consequences of these hypotheses
for various subsets of SMEFT operators (or physical ampli-
tudes evaluated at d ¼ 6 in the SMEFT) were discussed by
Contino et al. (2013), Elias-Miró et al. (2013a), and Gonzalez-
Alonso et al. (2015).

IV. NONLINEAR REALIZATION OF ELECTROWEAK
SYMMETRY BREAKING

Within the SM, the spontaneous breaking of electroweak
symmetry occurs through the nonvanishing vacuum expect-
ation value of the SUð2ÞL-doublet scalarH. Expanding around
the minimum of H as in Eq. (1.7), one identifies the massive
field with h and the three Goldstone bosons with φ1;2;3. From
measurements of various electroweak observables and high-
energy processes, the existence of the three Goldstone bosons
and the massive scalar h is well established. However, it is
not yet evident that they are necessarily embedded in the four
components of a single SUð2ÞL-doublet H, as in Eq. (1.7).
We refer to this embedding as the linear realization of the
electroweak symmetry-breaking mechanism. As we soon
discuss, in principle other embeddings are still viable.
The inclusion of the scalar state h in the theory and the

relations among the different couplings provided by embed-
ding h and the three φ1;2;3 in the doublet H are essential to
ensuring the unitarity of scattering amplitudes for longitudi-
nally polarized electroweak gauge bosons at high energies.
However, within an EFT approach the loss of unitarity is not a
problem as long as it happens above the cutoff scale of the
theory; see Brivio and Trott (2019). As a consequence, in a
general EFT approach to physics beyond the SM we are
allowed to relax the strict constraints following from the linear
embedding of h and the three φ1;2;3 in H and consider a more
general structure.
To this end, we employ the Callan-Coleman-Wess-Zumino

(CCWZ) formalism (Callan et al., 1969; Coleman, Wess, and
Zumino, 1969) and proceed as with the construction of chiral
perturbation theory. In other words, we construct an EFTwith
a nonlinear realization of the electroweak symmetry-breaking
mechanism. To make contact with the SM Lagrangian, we can
decompose the matrix field Σ introduced in Eq. (3.18) as

ΣðxÞ ¼ vþ ĥðxÞffiffiffi
2

p UðxÞ; with UðxÞ ¼ exp

�
i
τ · πðxÞ

v

�
;

ð4:1Þ

where we introduce the unitary dimensionless fieldUðxÞ and τ
denotes the three-vector of the Pauli matrices. The new fields
ĥ and π ¼ ðπ1; π2; π3Þ⊺, where the latter are the counterpart of
the pions in two-flavor QCD, are related to the original fields
h and φ via a nonlinear field redefinition. We can still interpret
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ĥ as the physical Higgs boson and π as the vector containing
the three Goldstone bosons. The fields transform under the
custodial symmetry group (3.17) as

ĥðxÞ → ĥðxÞ; UðxÞ → VLUðxÞV†
R: ð4:2Þ

Following the discussion of Appelquist and Bernard (1980),
Longhitano (1980, 1981), Appelquist and Bernard (1981),
Feruglio (1993), Grinstein and Trott (2007), and Stoffer
(2023) and substituting Eq. (4.1) into Eq. (3.19), we can
express the scalar part of the SM Lagrangian, including the
interactions with the weak gauge bosons, as

Lscalar
p2 ¼ 1

2
ð∂μĥÞð∂μĥÞ − 1

2
m2

hĥ
2

þ v2

4
F
�
ĥ
v

�
tr½ðDμUÞ†ðDμUÞ� − V

�
ĥ
v

�
; ð4:3Þ

with the massm2
h ¼ 2m2 ¼ λv2 of the physical Higgs boson ĥ

and where we define

F
�
ĥ
v

�
¼
�
1þ ĥ

v

�2

; ð4:4Þ

V

�
ĥ
v

�
¼ v4

�
m2

h

2v2

�
ĥ
v

�3

þ m2
h

8v2

�
ĥ
v

�4�
: ð4:5Þ

We now have a nonlinear formulation of the custodial
symmetry breaking that is in close analogy to chiral pertur-
bation theory, with the only difference being the presence of
the additional singlet state ĥ. To write Eq. (4.3), we promoted
the global custodial symmetry to a local one by introducing
two 2 × 2 matrix spurion fields Ŵμ and B̂μ as the gauge
bosons of the chiral SUð2ÞL and SUð2ÞR groups, respectively.
These fields must transform in the adjoint representation of
the chiral groups20 to make Eq. (4.3) formally invariant. The
covariant derivative then reads

DμU ¼ ∂μU − iŴμU þ iUB̂μ; ð4:6Þ

and we obtain the SM case by fixing the spurions to

Ŵμ → g2
τI

2
WI

μ; B̂μ → g1
τ3

2
Bμ; ð4:7Þ

where Wμ and Bμ are the weak gauge bosons of the SM. This
breaks the chiral symmetry down to its gauged SM subgroup

SUð2ÞL × SUð2ÞR → SUð2ÞL × Uð1ÞY: ð4:8Þ

A. The Higgs effective field theory

After the fermion and gauge sectors are added to the chiral
Lagrangian (Longhitano, 1980; Feruglio, 1993) as given in

Eqs. (4.3)–(4.5), it is equivalent to the usual SM Lagrangian
written in terms of the Higgs doublet H shown in Eq. (1.3).
The two Lagrangians are related via the nonlinear field
redefinition (4.1), which leaves the physical observables
invariant.
However, going beyond the SM, i.e., considering the EFT

extension of Eq. (4.3), the equivalence between the linear and
nonlinear realizations can be broken, as we soon discuss.
Amending the Lagrangian (4.3) to an EFT, we can express
the functions F and V as generic power series in their
argument ĥ=v,

F
�
ĥ
v

�
¼ 1þ

X∞
n¼1

an

�
ĥ
v

�n

; ð4:9Þ

V

�
ĥ
v

�
¼ v4

X∞
n¼3

bn

�
ĥ
v

�n

; ð4:10Þ

where we reproduce the SM by choosing a1 ¼ 2, a2 ¼ 1,
b3 ¼ λ=2, and b4 ¼ λ=8, with all other coefficients vanishing.
Given that ĥ is a singlet, in this generic EFT approach the
coefficients an and bn are free parameters that are not fixed
by the symmetries of the theory and have to be determined
experimentally. Since their determination requires the meas-
urement of multi-Higgs processes, the current experimental
constraints on these parameters are rather imprecise. Allowing
for generic coefficients an and bn is incompatible with the
field redefinition (4.1) that we used to relate the chiral SM
Lagrangian (4.3) to the linear one. In general, it is not possible
to find a field redefinition that brings the generic nonlinear
EFT case back to the linear one, while the reverse processes is
always possible.
This statement implies that the EFT constructed from the

chiral Lagrangian (4.3) is more general than the SMEFT,
which is built under the assumption of a linear realization of
the electroweak symmetry-breaking mechanism. This effec-
tive theory is known as the HEFT (Feruglio, 1993; Alonso
et al., 2013; Buchalla, Catà, and Krause, 2014; Pich et al.,
2017). The HEFT contains the SMEFT as the special case
where a nonlinear field redefinition can be found to map the
scalar components (ĥ and π1;2;3) into a single SUð2ÞL doublet
(H). For more details on distinguishing the SMEFT and the
HEFT, see the discussion in Sec. IV.B, Falkowski and Rattazzi
(2019), and Cohen et al. (2021). When the Yukawa inter-
actions are added to the EFT, these can also be multiplied by
an arbitrary power of ĥ=v, leading to an expansion of these
similar to Eqs. (4.4) and (4.5). The NLO Lagrangian can be
constructed in close analogy to chiral perturbation theory,
with the only difference being the presence of the additional
singlet ĥ, which allows every operator to be multiplied by a
generic function of ĥ=v.
The HEFT is therefore a combination of the fermionic and

gauge sectors of the SMEFT, with their power counting in the
canonical mass dimension, and the scalar sector of chiral
perturbation theory with a chiral power counting. The HEFT is
based on the same gauge symmetry as the SMEFT and
contains the same degrees of freedom apart from the Higgs
doublet H, which is replaced by the scalar singlet ĥ and the

20The transformation rules read Ŵμ → VLŴμV
†
L þ iVLð∂μVLÞ†

and B̂μ → VRB̂μV
†
R þ iVRð∂μVRÞ†.
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Goldstone boson matrix U. This decorrelates the interactions
of one or more ĥ and the Goldstone bosons, therefore allowing
more general BSM scenarios to be covered. A complication in
the HEFT is that the matrix field U and ĥ=v are adimensional:
½U� ¼ ½ĥ=v� ¼ 1. Therefore, the EFT series cannot be trun-
cated according only to the canonical mass dimension as in the
SMEFT case, but we also need to consider a chiral power
counting, i.e., an expansion in the number of derivatives. This
is possible since U†U ¼ 1, and thus the field U must always
be derivatively coupled, as is generically expected for
Goldstone bosons. Owing to the mixture of the different
countings, there is no unique way to define a consistent power
counting for the HEFT, but a commonly used counting
(Gavela et al., 2016) is NDA; see Sec. II.B.1. This counting
was employed for the construction of the NLO HEFT basis
given by Brivio et al. (2016); see also Sun, Xiao, and Yu
(2023a, 2023b). A discussion of the counting of the HEFT
operators using the Hilbert series technique was given by Sun,
Wang, and Yu (2022) and Gráf et al. (2023).

B. Geometric interpretation for the scalar sector

An interesting approach to better appreciate the difference
between the SMEFT and the HEFT is the geometric inter-
pretations of the scalar sectors of these EFTs, which we review
in this section. This technique, initially developed in the
context of nonlinear sigma models, has been extensively
applied to analyzing the scalar sectors of the SMEFT and
the HEFT (Alonso, Jenkins, and Manohar, 2016a, 2016b,
2016c; Helset, Paraskevas, and Trott, 2018; Helset, Martin,
and Trott, 2020; Corbett, Helset, and Trott, 2020).
The starting point of the geometric formulation is the

observation that, after spontaneous symmetry breaking, a
tower of higher-dimensional operators collapses into a single
composite operator form (Helset, Martin, and Trott, 2020).
Consider the SMEFT21 with the Higgs VEV defined by
vT ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hH†Hi
p

. An example of the breakdown of a tower
of higher-dimensional operators can be observed in the
effective Yukawa interactions. The operators of interest are
of the form ðH†HÞnðψ̄LHψRÞ for n∈N. When the Higgs field
acquires a VEV hH†Hi → v2T=2, these higher-dimensional
operators collapse into a number multiplying the effective
SM Yukawa operator, as illustrated in Fig. 6. A similar
breakdown of higher-dimensional operators is perceptible
for other interactions as well. Thus, the interactions of all of
the particles, including the physical Higgs h itself, can be
thought of as taking place in a Higgs medium (Helset,
Martin, and Trott, 2020). This medium can be described
by a scalar field manifold M with coordinates defined by
the scalar fields. The S matrix of the theory is invariant
under scalar field redefinitions that in this case are equiv-
alent to coordinate transformations on M. These coordinate
redefinitions also leave the geometry of the scalar manifold
M invariant. Therefore, the S matrix (and thus all of the
physical observables) depends only on the geometric

properties of M, but not on the choice of coordinates
(Alonso, Jenkins, and Manohar, 2016c).
The geometric formulation leads to a factorization of the

EFT power counting expansions. In the SMEFT there are two
distinct expansions that are often not properly distinguished.
The first expansion (i) is in the ratio of the electroweak scale
vT to the new-physics scale Λ, whereas the second expansion
(ii) is in the ratio of the kinematical scale p for the process of
interest relative to the new-physics scale,

ðiÞ∶ vT
Λ

; ðiiÞ∶ p2

Λ2
;

where p2 is a kinematic Lorentz invariant. In the geometric
formulation, expansion (i) is largely factorized out, as it can be
linked to the curvature of the scalar manifold, whereas (ii) is
determined by the derivative expansion (Alonso, Jenkins, and
Manohar, 2016c). This factorization of the power counting
allows one to define the SM Lagrangian parameters to all
orders in the SMEFT power counting, as shown by Helset,
Martin, and Trott (2020).
The geometric interpretation of the SM is particularly

simple. As seen in Sec. III.D, the scalar sector of the SM
is invariant under a global Oð4Þ symmetry, and the minimum
of the scalar potential VðϕÞ defines a three-sphere S3 with
radius v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffihϕ · ϕip

. Conventionally we align the VEVof ϕ
to its fourth component, i.e., hϕi ¼ ð0; 0; 0; vÞ⊺. This triggers
the breaking of the custodial symmetry group G ¼ Oð4Þ down
to the subgroup H ¼ Oð3Þ acting on the first three compo-
nents of ϕ. Expressing ϕ in terms of the radial component h
and the three Goldstone bosons as in Eq. (3.14), the scalar
Lagrangian (3.13) assumes the form

Lφ ¼ 1

2
ðDμφÞ · ðDμφÞ þ

1

2
ð∂μhÞ2 −

λ

8
ðh2 þ 2hvþ φ · φÞ2:

ð4:11Þ

The real scalar fields φa with a∈ f1; 2; 3g transform in the
vector representation of H, whereas the physical Higgs h
transforms as a singlet under H. Together these four real
scalar fields constitute coordinates in the scalar field space of
the SM.

1. Geometric formulation of the SMEFT

The generic kinetic term for a scalar field Φi in a general
scalar field space is

FIG. 6. Feynman diagrams contributing to the effective
Yukawa interactions in the SMEFT after one takes the vacuum
expectation value vT , which is symbolized by the crossed dot⊗
in the diagrams, by replacing hH†Hi ¼ v2T=2.

21Note that in general we have v ≠ vT due to the presence of
higher-dimensional operators in the scalar potential of the SMEFT, as
we discuss in Sec. V.
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Lkin ¼ 1
2
gijðΦÞðDμΦÞiðDμΦÞj; ð4:12Þ

where gijðΦÞ is the metric of the scalar field space. Comparing
Eqs. (3.13) and (4.12) by choosing Φi ¼ ϕi and promoting
partial to covariant derivatives, we find that gijðϕÞ ¼ δij.
Therefore, the scalar field manifold of the standard model is
MSM ¼ R4, i.e., the scalar field space is flat four-dimensional
Euclidean space and the fields ϕi (with i∈ f1; 2; 3; 4g) or,
equivalently, φa and h (with a∈ f1; 2; 3g) define a Cartesian
coordinate system onMSM, as shown at the top of Fig. 7. The
black dot in the center represents ϕ ¼ 0 or, equivalently,
H ¼ 0. The blue circle symbolizes the Goldstone boson
vacuum manifold S3 given by the coset space G=H. The
dashed blue arrow points to the physical vacuum denoted by
the green dot, where the Cartesian coordinate system is
centered. The direction h is orthogonal to S3 and φa are
the remaining three directions orthogonal to h.
We have seen that the SM corresponds to the simple case of

a flat four-dimensional scalar manifold. In the following we
generalize our previous considerations by extending the SM
by higher-dimensional operators and analyzing the geometric
properties of the SMEFT. The scalar kinetic term in the
SMEFT consists of all terms containing only Higgs doublets
and exactly two derivatives acting on them. At dimension 6 in
the Warsaw basis (Grzadkowski et al., 2010), the term reads

LH;kin
SMEFT ¼ ðDμHÞ†ðDμHÞ

þ CHD

Λ2
ðH†DμHÞ�ðH†DμHÞ

þ CH□

Λ2
ðH†HÞ□ðH†HÞ þOðΛ−4Þ: ð4:13Þ

Using only SUð2ÞL × Uð1ÞY gauge invariance and the SUð2Þ
Fierz identity in Eq. (2.21), it is straightforward to show that
at higher powers only two different, independent operator
structures can appear at each mass dimension,22

Qð8þ2nÞ
H;kin ¼ ðH†HÞnþ2ðDμHÞ†ðDμHÞ; ð4:14Þ

Qð8þ2nÞ
HD ¼ ðH†HÞnþ1ðH†DμHÞ�ðH†DμHÞ: ð4:15Þ

Using Eq. (3.12), we can express LH;kin
SMEFT (and these

operators) in terms of the real scalar coordinates ϕi. The
general expression for the kinetic term of the SMEFT in terms
of the coordinates ϕi is given by23

Lkin
SMEFT ¼ 1

2

�
A

�
ϕ · ϕ
Λ2

�
ðDμϕÞ · ðDμϕÞ

þ B

�
ϕ · ϕ
Λ2

� ðDμϕÞifijðϕÞðDμϕÞj
Λ2

�
; ð4:16Þ

where we have defined

fijðϕÞ ¼

0
BBB@
a 0 b c

0 a c −b
b c d 0

c −b 0 d

1
CCCA;

0
BBB@
a

b

c

d

1
CCCA¼

0
BBB@
ðϕ1Þ2þðϕ2Þ2
ϕ1ϕ3 −ϕ2ϕ4

ϕ1ϕ4þϕ2ϕ3

ðϕ3Þ2þðϕ4Þ2

1
CCCA:

ð4:17Þ

Equation (4.17) is valid only for a specific choice of the
operator basis. In Eq. (4.16) A and B are defined through a
power series expansion in their argument z≡ ðϕ · ϕÞ=Λ2,
which simplifies to the usual EFT expansion in v2T=Λ2 after
spontaneous symmetry breaking. Since Eq. (4.17) has to
reduce to the SM case in the limit Λ → ∞, we must have
Að0Þ ¼ 1 and Bð0Þ ¼ 0. Making a comparison again to the
general scalar kinetic term on a curved manifold in Eq. (4.12),
we find the SMEFT scalar field-space metric

gijðϕÞ ¼ A

�
ϕ · ϕ
Λ2

�
δij þ B

�
ϕ · ϕ
Λ2

�
fijðϕÞ
Λ2

: ð4:18Þ

FIG. 7. Illustration of the SM flat scalar field manifold
MSM ¼ R4. The vacuum manifold S3 ¼ G=H is represented
by the blue circle with radius hϕi ¼ v, the green dot on this circle
represents the physical vacuum, and the solid green axes
symbolize the scalar field coordinate system. In the top graphic
the Cartesian coordinates fφ1;φ2;φ3; hg centered at the physical
vacuum are chosen, whereas in the the bottom graphic polar
coordinates fπ1; π2; π3; ĥg are used, where ĥ is the radial
coordinate and the three πa form a vector nðπaÞ∈ S3. Adapted
from Alonso, Jenkins, and Manohar, 2016c.

22See also Helset, Martin, and Trott (2020) and references therein.
Note, however, that we use a different operator definition, and thus a
different basis. The two bases differ only by a Fierz redefinition and
thus reproduce the same metric.

23Similar expressions were given by Alonso, Jenkins, and Man-
ohar (2016c) for the SMEFT in the custodial limit. Note, however,
that the operator QHD breaks custodial symmetry. Therefore, the
formulas presented here are more general.
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Equation (4.18) describes in general a curved manifold
MSMEFT, and only for B ¼ 0 is the manifold flat. In the limit
Λ → ∞ we find that the SMEFT metric reduces to the SM
metric in Cartesian coordinates

gSMEFT
ij ðϕÞ ⟶Λ→∞

δij ¼ gSMij : ð4:19Þ

Therefore, the curvature of MSMEFT is determined entirely
by the EFT expansion parameter v2T=Λ2. Furthermore, we can
deduce all kinds of geometric quantities, such as Christoffel
symbols and Riemann curvature tensors.
Taking Eq. (4.13) we find the scalar metric of the SMEFT

up to dimension 6 (Helset, Paraskevas, and Trott, 2018),

gijðϕÞ ¼ δij þ
CHD

2Λ2
fijðϕÞ − 2

CH□

Λ2
ϕiϕj: ð4:20Þ

Note that the last term in Eq. (4.20) does not match the general
form of the metric in Eq. (4.18). This is because the operator
QH□ of the Warsaw basis does not agree with the definitions
in Eqs. (4.14) and (4.15). It could be rewritten in that form

using integration by parts identities. Apart from Qð6Þ
H;kin, this

would introduce further operators that have to be removed
using field redefinitions.24 The latter, however, change the
scalar field-space metric. Thus, the last term in Eq. (4.20)
could be removed in favor of a term proportional to δij, but for
consistency we stick with the Warsaw basis at dimension 6. In
this example we see that the explicit form of the metric is basis
dependent. However, a geometric formulation of the SMEFT
exists in every basis (Helset, Martin, and Trott, 2020).
We can now use Eqs. (4.14) and (4.15) and our previous

results to define the scalar field metric to all orders in the EFT
power counting

gij ¼
"
1þ

X∞
n¼0

�
ϕ · ϕ
2

�
nþ2 Cð8þ2nÞ

H;kin

Λ4þ2n

#
δij

þ 1

2

"
Cð6Þ
HD þ

X∞
n¼0

�
ϕ · ϕ
2

�
nþ1 Cð8þ2nÞ

HD

Λ4þ2n

#
fijðϕÞ

− 2
CH□

Λ2
ϕiϕj: ð4:21Þ

This entails a choice of basis; nevertheless, it is noteworthy
that we are able to define this geometric quantity to all orders
in the EFT power counting.
The ideas discussed thus far in this section apply to the

Higgs two-point function leading to the scalar field-space
metric. Following Helset, Martin, and Trott (2020), we can
generalize the concepts to higher n-point functions and other
types of field connections by factorizing the operators in the
SMEFT Lagrangian,

LSMEFT ¼
X
n

fnðμ; α;…ÞGnðI; A;…Þ: ð4:22Þ

The factors fn are composite operator forms containing all
nonscalar fields and all dependence on spacetime indices,
i.e., Lorentz ðμ;…Þ and spinor ðα;…Þ indices. The fn can
only depend on the scalar field coordinates through derivatives
acting on the scalars, for example, ðDμHÞ. The factors Gn,
however, depend on the nonspacetime group indices ðI; A;…Þ
and contain only scalar field coordinates and symmetry
generators acting on them, i.e., expressions built only out
of Hð†Þ and τI . It is evident that after electroweak symmetry
breaking the Gn collapse to a number and an appropriate
power of Higgs h emissions, largely factoring out the
expansion in v2T=Λ2 from the remaining composite operator
form fn, whereas the latter ðfnÞ contain the derivative
expansion in p2=Λ2 and retain only a minimal dependence
on the scalar coordinates and vT mixing the two expansions
(Helset, Martin, and Trott, 2020).
This allows us to define the scalar field metric

gijðϕÞ ¼
gμν

D
δ2LSMEFT

δðDμϕÞiδðDνϕÞj
����
fn→0

: ð4:23Þ

Similarly, we can now define all sorts of field-space con-
nections, for example, the Yukawa-type connection (Helset,
Martin, and Trott, 2020) that we already encountered,

½Yψ �prðϕiÞ ¼
δLSMEFT

δðψ̄L;i
p ψR

r Þ

����
fn→0

: ð4:24Þ

For this case we find fn ¼ ψ̄L;i
p ψR

r containing the fermion
bilinear and the factor Gn ∼

P
kðH†HÞkHi. Making a com-

parison to Fig. 6, we see that fn corresponds to the fermion
current, whereas the Gn corresponds to the emission of h
and the VEV (marked by ⊗). The operators contributing
to Gn at all orders in this case are (Helset, Martin, and Trott,
2020)

½Qð6þ2nÞ
ψH �pr ¼ ðH†HÞnþ1ðψ̄L;i

p ψR
r HiÞ; ð4:25Þ

leading to the all-order Yukawa connection

½Yψ �prðϕÞ ¼ −HðϕÞ½Yψ �pr

þHðϕÞ
X∞
n¼0

½Cð6þ2nÞ
ψH �pr
Λ2þ2n

�
ϕ · ϕ
2

�
nþ1

: ð4:26Þ

For more details and the definition of other field-space
connections, as well as for more all-order results, see
Helset, Martin, and Trott (2020). The key advantage of this
formulation is the reduction of the number of relevant
structures, especially when one goes beyond dimension 6
and obtains all-order results (or, better, results independent of
the operator power counting) for a series of relevant quantities,
such as the physical fermion masses.

24The replacement reads QH□ ¼ 2Qð6Þ
H;kin þ � � �, where the ellipsis

denotes terms that do not contribute to the metric after the appropriate
redefinition of the Higgs field H is applied.
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2. Geometric formulation of the HEFT

Thus far we have used Cartesian coordinates to describe the
scalar field manifold M. We could alternatively choose polar
coordinates on M since any given measurable quantity does
not depend on the choice of the coordinate system. Following
Alonso, Jenkins, and Manohar (2016c), we can use polar
coordinates to write the real scalar fields as

ϕ ¼ ðvþ ĥÞnðπÞ; ð4:27Þ

where nðπÞ∈ S3 ∼ G=H, with the radial coordinate ĥ and the
three angular coordinates πa=v associated with the Goldstone
bosons of the broken generators. The three angular coordi-
nates πa form a four-dimensional unit vector nðπaÞ∈ S3. The
polar coordinate system is shown in the bottom graphic of
Fig. 7. In the polar coordinate parametrization (4.27), there is
no obvious relation between the physical Higgs field ĥ and
the Goldstone bosons in n, unlike in the case of Cartesian
coordinates in Eq. (3.14), where such a relation is implicit
as h and φa transform together in the vector representation of
G ¼ Oð4Þ as ϕ → Oϕ, with O∈G.
The transformation properties of the coordinates under the

chiral symmetry group G are

ĥ⟶
G

ĥ; n⟶
G
On; with O∈G: ð4:28Þ

The field ĥ is a singlet, whereas n transforms linearly under G.
However, owing to the constraint n · n ¼ 1, this four-
component vector has only the three independent components
πa with a∈ f1; 2; 3g. Therefore, πa do not transform linearly
under G, which is why this choice of coordinates is called the
nonlinear representation.25 Possible parametrizations are the

square root parametrization nðπÞ¼ðπ1;π2;π3;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2−π ·π

p
Þ⊺=v

and the exponential representation

nðπÞ ¼ exp

0
BBB@1

v

2
6664

0 0 0 π1

0 0 0 π2

0 0 0 π3

−π1 −π2 −π3 0

3
7775
1
CCCA
0
BBB@

0

0

0

1

1
CCCA

¼

0
BBBBBBBBB@

sin


jπj
v

�
π1

jπj

sin


jπj
v

�
π2

jπj

sin


jπj
v

�
π3

jπj

cos


jπj
v

�

1
CCCCCCCCCA
; ð4:29Þ

where jπj ¼ ffiffiffiffiffiffiffiffiffi
π · π

p
. The latter corresponds to the standard

coordinates of CCWZ (Alonso, Jenkins, and Manohar,
2016c). However, we do not pick any explicit parametriza-
tions here.

Using Eq. (4.27) to express the scalar part of the SM
Lagrangian (3.13) in polar coordinates yields

L ¼ 1
2
ðvþ ĥÞ2ðDμnÞ · ðDμnÞ þ 1

2
ð∂μĥÞð∂μĥÞ −

λ

8
ðĥ2 þ 2vĥÞ2;

ð4:30Þ

where the Goldstone bosons of n are only derivatively coupled
and the potential is independent of the angular coordinates πa,
unlike in the case of Cartesian coordinates in Eq. (4.11).
Instead of changing the coordinate system on the scalar
field manifold M, we could alternatively compose a field
redefinition. Using Eqs. (3.14) and (4.27), we find that
ðvþ hÞ2 þ φ · φ ¼ ðvþ ĥÞ2, which yields

ĥ ¼ hþ φ · φ
2v

−
h
2

φ · φ
v2

þOðv−3Þ; ð4:31Þ

where h and ĥ are the Higgs fields in Cartesian and polar
coordinates, respectively.
As discussed, in the Cartesian coordinate system the Higgs

field in Eq. (3.12) or the corresponding real scalar fields ϕ in
Eq. (3.14) transform linearly under G or the electroweak
symmetry group. On the contrary, in the polar coordinate
system the scalar fields π do not transform linearly. However,
physical observables must be independent of the choice of
coordinates and, therefore, the SM Lagrangians in Eqs. (4.30)
and (4.11) are equivalent, as they differ only by a coordinate
redefinition. The question as to whether the Higgs transforms
linearly or nonlinearly under the electroweak symmetry group
thus depends on the choice of coordinate system and is
therefore unphysical (Alonso, Jenkins, and Manohar, 2016c).
The appropriate question is whether it is always possible to
pick a coordinate system in which the Higgs field transforms
linearly. As we have seen, this is true for the SM, but as we
later discuss this is not possible in general for all EFT
extensions of the SM.
In fact, it is possible if and only if the scalar field manifold

M has a G invariant fixed point (Alonso, Jenkins, and
Manohar, 2016c). In a neighborhood of this fixed point, it
is then possible to pick a coordinate system in which the Higgs
field transforms linearly under Oð4Þ. For the SM, this fixed
point is the origin ϕ ¼ 0 (black central dot), as can be seen in
both parts of Fig. 7.
We saw in Sec. IV.B.1 that the SMEFT is the extension of

the SM with higher-dimensional operators using Cartesian
coordinates on M. The Higgs field H transforms linearly
under G or the electroweak gauge group and the SMEFT has a
G ¼ Oð4Þ fixed point at the origin ϕ ¼ 0. On the contrary, the
HEFT is the EFT extension of the SM using polar coordinates
on the scalar field manifoldMHEFT. The corresponding scalar
part of the HEFT Lagrangian is a generalization of Eq. (4.30)
that is given by

LHEFT ¼ 1
2
v2FðĥÞ2ðDμnÞ · ðDμnÞ þ 1

2
ð∂μĥÞð∂μĥÞ − VðĥÞ;

ð4:32Þ

where VðĥÞ is the scalar potential that depends only on the
radial coordinate ĥ and FðĥÞ is a generic dimensionless

25Unlike in Eq. (4.1), we use the vector notation with the field n
here rather than the matrix notation with the fieldU. Nevertheless, the
two formulations are completely equivalent.

Gino Isidori, Felix Wilsch, and Daniel Wyler: The standard model effective field theory at work

Rev. Mod. Phys., Vol. 96, No. 1, January–March 2024 015006-32



function that is defined by a power expansion in ĥ=v with
Fð0Þ ¼ 1, such that the radius of the vacuum manifold is fixed
by v (Alonso, Jenkins, and Manohar, 2016c). The G trans-
formation rules for the fields ĥ and n are the same as in
Eq. (4.28). We can write

FðĥÞ ¼ 1þ c1

�
ĥ
v

�
þ c2

�
ĥ
v

�2

þ � � � ð4:33Þ

and, as stated in Sec. IV.A, we recover the SM case FSMðĥÞ ¼
1þ ĥ=v for c1 ¼ 1 and cn≥2 ¼ 0.
Defining the HEFT scalar field-space metric as in Eq. (4.12)

by choosing Φ ¼ ðπ1; π2; π3; ĥÞ⊺, we find that (Alonso,
Jenkins, and Manohar, 2016a)

gHEFTij ðϕÞ ¼
�
FðĥÞgabðπÞ 0

0 1

�
ij
; ð4:34Þ

where gab is theH ¼ Oð3Þ invariant metric on the coset space
S3 ¼ G=H for the angular coordinates π.
The scalar field manifold MHEFT for HEFT is shown in

Fig. 8. The manifold consists of ĥ (green arrow) and a
sequence of three-spheres (S3) of radius vFðĥÞ fibered over
any value of ĥ (the blue circle symbolizes the sphere for a
specific value of ĥ). From Eq. (4.28) we know that G acts on
any point n∈ S3 by rotations on the surface of S3, i.e.,
rotations along the blue circle. Therefore, it is possible to
have a G ¼ Oð4Þ invariant fixed point only if the radius of the
vacuum sphere is vanishing, meaning that there is an ĥ� for
which we have Fðĥ�Þ ¼ 0. In the SM this is the case for
ĥSM� ¼ −v. However, such a value ĥ� does not exist in general,
as can be seen in the example FðĥÞ ¼ eĥ=vcoshð1þ ĥ=vÞ,
which is nonvanishing for all ĥ (Alonso, Jenkins, and

Manohar, 2016c). In this case the green dashed range of ĥ
in Fig. 8 does not exist.
In summary, we found that the most general EFT extension

of the SM is the HEFT using polar coordinates on the scalar
field manifold. In this framework the Goldstone bosons
transform nonlinearly under the electroweak symmetry group
or the larger custodial symmetry group G ¼ Oð4Þ. The
subcategory of EFTs that have a G fixed point at the origin
belong to the SMEFT class. For these theories it is possible to
pick coordinates around this fixed point in which the Higgs
field transforms linearly. Eventually the SM becomes a
subcategory of SMEFT with a flat scalar field manifold
MSM ¼ R4. We can therefore schematically write

SM ⊆ SMEFT ⊆ HEFT: ð4:35Þ

Given Eq. (4.35), the past few years have seen intense
activity in identifying concrete examples of UV models that
cannot be well described by the SMEFT. As pointed out by
Cohen et al. (2021), this can happen under the following two
conditions: (i) when non-SM particles that acquire mass via
electroweak symmetry breaking are integrated out, introducing
nonanalytic dependence from the Higgs field in the corre-
sponding EFT (Falkowski and Rattazzi, 2019) and (ii) when
additional sources of electroweak symmetry breaking besides a
single scalar doublet are present.26 These two conditions signal
that the Oð4Þ fixed point in the scalar manifold is not the most
convergent choice as origin for a Taylor expansion and that the
cutoff of the effective theory is necessarily low, in fact below
4πv (Alonso andWest, 2022; Banta et al., 2022). Depending on
how these two conditions are realized (in terms of masses and
couplings of the new states), the SMEFT represents a good or
bad description of the underlying theory. An instructive
comparison of the SMEFT and the HEFT for a concrete UV
model was given by Buchalla et al. (2017).
On general grounds, a breakdown of the SMEFT descrip-

tion happens only if the non-SM states that have been
integrated out, which are connected to the mechanism of
electroweak symmetry breaking (either as sources of the
breaking or because they acquire mass via this breaking),
are sufficiently close to the electroweak scale (Banta et al.,
2022). No indication of such states is present in current high-
energy data.
At low energies, a pragmatic way to distinguish the two

EFTs is by looking at transition amplitudes with identical
electroweak and flavor structures that differ only by the
number of massive Higgs fields (Brivio et al., 2014;
Isidori, Manohar, and Trott, 2014; Isidori and Trott, 2014).
In the SMEFT, the linear realization implies a well-defined
relation among all these processes at a given order in the EFT
expansion. This relation can be broken at higher orders;
however, the effect is expected to be small based upon power
counting. On the contrary, in the HEFT the FðĥÞ function
and its analog for other electroweak structures lead to a
potentially complete decoupling among processes with differ-
ent numbers of Higgs fields. A particularly interesting study
case is provided by nonuniversal corrections to the Z → ff̄

FIG. 8. The scalar field manifoldMHEFT of the HEFT is fibered
with a three-sphere S3 of radius vFðĥÞ for every ĥ. An Oð4Þ fixed
point ϕ0 does only exist if there is a value ĥ� such that the radius
of the three-sphere vanishes [Fðĥ�Þ ¼ 0]. If no fixed point ϕ0

exists, the green dashed region does not exist and the manifold
might either be smoothly connected without a fixed point or
extend to infinity. The SMEFT corresponds to the theories with
an Oð4Þ fixed point at ϕ0 ¼ 0. For this type of theory it is possible
to change from polar coordinates to Cartesian coordinates, and
vice versa, in a neighborhood of the fixed point. Adapted from
Alonso, Jenkins, and Manohar, 2016c.

26An example was mentioned previously (Manohar, 2018).
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couplings (Isidori and Trott, 2014). Measurements at the Z
pole imply small deviations from the SM, implying strong
bounds on several operators in class 7 of Table II that control
these effects. Within the SMEFT, this implies in turn small
deviations from the SM in the related processes h → Zff̄
and ff̄ → Zh. A large deviation from the SM in the latter
processes could occur naturally in the HEFT, while it would
imply a breakdown of the SMEFT power counting.

V. LOW-ENERGY EFFECTIVE FIELD THEORY

A. Introduction and overview

The success of the SM rests to a large degree on tests in
low-energy processes such as decays of kaons and D mesons,
and even more on B physics, because these processes can be
calculated with high precision.27 The tool for this is the so-
called LEFT,28 which is derived from the SM by integrating
out the Higgs boson (h), the weak gauge bosons (Z and W),
and the top quark (tL and tR). This is a generalization of the
original Fermi theory with the four-fermion interaction

−
4GFffiffiffi

2
p ðψ̄γμψÞðψ̄γμψÞ; ð5:1Þ

where the Fermi constant GF is related to the vacuum
expectation value v by GF ¼ 1=

ffiffiffi
2

p
v2. The method works

so well because the relevant energies E are much smaller than
v ormW (and thus smaller than Λ) and the asymptotic freedom
of the strong interactions. Since the pioneering work in the
mid 1970s, this theory has been developed to an astonishing
degree of precision by including all kinds of strong and
electromagnetic corrections; see Buras (2020) for a recent
review.
The LEFT is thus an SUð3Þc × Uð1Þe invariant effective

theory valid below the electroweak symmetry-breaking scale
containing five quark flavors ðu; d; s; c; bÞ, three charged
leptons ðe; μ; τÞ, three left-handed neutrinos ðνe; νμ; ντÞ, the
gluons, and the photon. The LEFT Lagrangian is the sum of
the Lagrangians of QCD and QED of these particles and the
mass terms of the fermions

Lbroken
SM ¼ −

1

4
FμνFμν −

1

4
GA

μνGAμν − θ3
g23

32π2
GA

μνG̃
Aμν

þ
X

ψ¼u;d;e;νL

X
X¼L;R

ðψ̄X
piDψX

pÞ

−
� X
ψ¼u;d;e

½Mψ �prðψ̄L
pψ

R
r Þ þ H:c:

�
ð5:2Þ

and a series of higher-dimensional operators ðQÞ that is made
precise later,

LLEFT ¼ Lbroken
SM þ LEFT; ð5:3Þ

LEFT ¼
X∞
n¼−1

X
i

CðnÞi ðμÞ
vn

QðnÞ
i ðμÞ; ð5:4Þ

arising from the interactions with the heavy particles that were
integrated out. The best-known operator is the four-fermion
operator in Eq. (5.1). In Eq. (5.2) the flavor indices p and r run
over the values 1, 2, and 3 for ψ ¼ d; e, and ν and over 1 and 2
for ψ ¼ u. These operators are organized by their dimension,
starting with terms of dimension 3, and increasing powers
of 1=v (often expressed using the Fermi constant GF).
Sometimes mW ¼ Oð1Þ × v is instead used as expansion
parameter. In a SMEFT theory, there is an additional expan-
sion in powers of 1=Λ ¼ 1=v × ðv=ΛÞ, and therefore more
operators than in the SM. The LEFT Wilson coefficients CðμÞ
multiplying the operators depend on the renormalization
scale μ. As a rule, the renormalization scale should be chosen
near the physically relevant energy in order to avoid additional
large corrections in matrix elements of the operators.
However, the Wilson coefficients CðvÞ from the matching
to the underlying model, be it the SM or the SMEFT, are given
at the weak scale μ ≈mW . The connection between the two
scales is realized by the renormalization group and the running
of the CðμÞ described by the renormalization group equation

Ċ ¼ 16π2μ
d
dμ

C ¼ βC; ð5:5Þ

where βC is the beta function of the coefficient C. This implies
that the Wilson coefficients can pick up large logarithmic
correction of the form logðmb=mWÞ. Furthermore, the running
of the Wilson coefficients of lower-dimensional operators can
be proportional to the coefficients of higher-dimensional
operators due to the presence of light scales and masses in
the theory.
As mentioned, much work has been done in developing the

LEFT from the SM. If the underlying theory is the SMEFT
rather than the SM, we need to match the Wilson coefficients
of the LEFT to the coefficients in the SMEFT. We have to do
this matching in the broken phase of the SMEFT, in the same
way that we do for the SM. This implies that additional terms
suppressed by appropriate powers of 1=Λmust be added in the
matching equations for the LEFT coefficients at the scale mW .

B. Electroweak symmetry breaking in the SMEFT

The Lagrangian for the SMEFT in the unbroken phase, i.e.,
above the electroweak symmetry-breaking (EWSB) scale ∼v,
was discussed in Sec. I.D. We now consider EWSB in the
SMEFT by determining the Lagrangian in the broken phase.
We especially emphasize how EWSB is altered compared to
the SM due to the presence of additional higher-dimensional
operators, which modify the definition of several SM param-
eters at tree level. For this, we follow the discussions presented
by Alonso, Jenkins et al. (2014) and Jenkins, Manohar, and
Stoffer (2018b).

1. The Higgs sector

In the scalar sector both the Higgs kinetic term and the
scalar potential are modified in the SMEFT and read

27See Buchalla, Buras, and Lautenbacher (1996) for an early
review.

28Sometimes this theory is also called the weak effective theory.
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LH ¼ ðDμHÞ†ðDμHÞ þm2H†H −
λ

2
ðH†HÞ2

þ CH□

Λ2
ðH†HÞ□ðH†HÞ þ CHD

Λ2
ðH†DμHÞ�ðH†DμHÞ

þ CH

Λ2
ðH†HÞ3 þOðΛ−4Þ: ð5:6Þ

In unitary gauge we can write the Higgs doublet as

H ¼ 1ffiffiffi
2

p
�

0

½1þ cH;kin�hþ vT

�
; ð5:7Þ

where

cH;kin≡
�
CH□−

1

4
CHD

�
v2

Λ2
; vT≡

�
1þ3CH

4λ

v2

Λ2

�
v: ð5:8Þ

In Eqs. (5.7) and (5.8) cH;kin guarantees a canonical normali-
zation of the kinetic term of the physical real Higgs h and vT is
the vacuum expectation value of the complex Higgs doublet

H in the SMEFT, whereas v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2=λ

p
is the VEV of H in

the SM.29 Substituting Eqs. (5.7) and (5.8) into Eq. (5.6) we
find all self-interactions of the physical Higgs h. For example,
its mass term mh, which is defined by Lh ⊃ 1

2
m2

hh
2, reads

m2
h ¼ λv2T

�
1 −

3CH

λ

v2

Λ2
þ 2cH;kin

�
: ð5:9Þ

All masses and couplings of the particles are modified in a
similar manner. This concerns the fermions and their Yukawa
couplings as well as the masses and couplings of the gauge
bosons, which are modified by similar shifts.

2. The Yukawa sector

The fermion masses and Yukawa couplings in the broken
phase

Lbroken
Yukawa ¼ −½Mψ �prðψ̄L

pψ
R
r Þ − ½Yψh�prðψ̄L

pψ
R
r Þhþ H:c:

ð5:10Þ

are determined by the parameters Yψ and CψH through

½Mψ �pr ¼
vTffiffiffi
2

p
�
½Yψ �pr −

1

2

v2

Λ2
½CψH�pr

�
; ð5:11Þ

½Yψh�pr ¼
1ffiffiffi
2

p
�
ð1þ cH;kinÞ½Yψ �pr −

3

2

v2

Λ2
½CψH�pr

�
ð5:12Þ

for ψ ∈ fu; d; eg. Note that unlike in the SM the Yukawa
matrices Yψh are no longer proportional to the mass matrices
Mψ . Therefore, the two cannot be diagonalized simultane-
ously in general,30 and hence, when working in the mass basis,

the Higgs boson h will have flavor-violating couplings
starting at OðΛ−2Þ (Alonso, Jenkins et al., 2014).
Similarly, the d ¼ 5Weinberg operator (2.2) of the SMEFT

yields a neutrino Majorana-mass matrix in the LEFT

L ⊃ −1
2
½Mν�prðν̄LpcνLr Þ þ H:c:; ð5:13Þ

where ½Mν�pr ¼ −½CWeinberg�prv2T=ΛL. Here ΛL denotes the
new-physics scale of the Weinberg operator, where lepton
number is violated by ΔL ¼ 2. As mentioned, this scale is not
necessarily related to the new-physics scale Λ of other
operators and is known to be high [ΛL ≳ 1013 GeV for an
Oð1Þ coefficient CWeinberg], which explains the small neutrino
masses being of the order of ∼1 eV. Note that ½Mν�pr is
symmetric in the flavor indices p and r, and that this is the
only dimension-3 operator present in the LEFT.
In general, the mass matrices Mψ for ψ ∈ fν; e; u; dg are

nondiagonal. To go to the mass basis we need to diagonalize
them by unitary rotations UψL=R

of the fermion fields
ψL=R → UψL=R

ψL=R, such that

U†
ψLMψUψR

≡ diagðmψ1
; mψ2

; mψ3
Þ: ð5:14Þ

In general we have UdL ≠ UuL and UeL ≠ UνL leading to
the CKM and Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrices, respectively,

VCKM ¼ U†
uLUdL; VPMNS ¼ U†

eLUνL ; ð5:15Þ

which contribute to charged-current interactions. In the SM
it is conventional to align the mass- and weak-eigenstate
bases in either the up sector ðUuL ¼ 1Þ or the down sector
ðUdL ¼ 1Þ. In the SM these two choices, and any other
arbitrary alignment choices, are equivalent since the CKM
matrix is the only source of flavor violation in the SM, and it is
determined experimentally. On the contrary, in the SMEFT
there are potentially other sources of flavor violation due to
the higher-dimensional operators. Therefore, the alignment of
mass and weak eigenstates is crucial, as different choices lead
to different physics results for a given set of Wilson coef-
ficients. For example, for a four-fermion operator we find that

½C�prstðψ̄1;pΓψ2;rÞðψ̄3;sΓψ4;tÞ
↓

½C�prst½U†
1�p0p½U2�rr0 ½U†

3�s0s½U4�tt0 ðψ̄1;p0Γψ2;r0 Þðψ̄3;s0Γψ4;t0 Þ;
ð5:16Þ

where Γ denotes a Dirac structure, possibly in combination
with generators. We see that different alignment choices, i.e.,
different choices for the Un matrices, lead to different results
for the operators in the mass basis.

3. The gauge sector

The kinetic terms for the gauge bosons in the broken
phase receive additional contributions from the operators
QHG, QHW , QHB, and QHWB. To properly normalize the
kinetic terms, we redefine the gauge fields and couplings as
(Alonso, Jenkins et al., 2014)

29Note that we have v2T ¼ v2 þOðv2=Λ2Þ, and thus, when work-
ing at dimension-6 level, we can always replace vT with v when it is
multiplied by a d ¼ 6 operator.

30The two matrices also have different RG equations.
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GA
μ ¼GA

μ

�
1þv2T

Λ2
CHG

�
; ḡ3¼ g3

�
1þv2T

Λ2
CHG

�
; ð5:17Þ

WI
μ¼WI

μ

�
1þv2T

Λ2
CHW

�
; ḡ2¼ g2

�
1þv2T

Λ2
CHW

�
; ð5:18Þ

Bμ¼Bμ

�
1þv2T

Λ2
CHB

�
; ḡ1¼ g1

�
1þ v2T

Λ2
CHB

�
ð5:19Þ

such that their products are left invariant (for example,
g2WI

μ ¼ ḡ2WI
μ). This leads to canonically normalized kinetic

terms for the gluons GA
μ , but not for the weak gauge bosons

WI
μ and Bμ due to the kinetic mixing induced byQHWB, which

mixes theW3
μ state with the Bμ state. For the kinetic and mass

terms we find that

Lbroken
gauge ¼−1

2
Wþ

μνWμν
− − 1

4
W3

μνW
μν
3 þ 1

4
ḡ22v

2
TW

þ
μ Wμ

−

−
1

4
BμνBμν −

1

2

v2T
Λ2

CHWBW3
μνBμν

þ 1

8
v2T

�
1þ 1

2

v2T
Λ2

CHD

�
ðḡ2W3

μ− ḡ1BμÞ
�

2

; ð5:20Þ

where W�
μ ¼ ðW1

μ ∓ iW2
μÞ=

ffiffiffi
2

p
, and a similar definition is

adopted for the field-strength tensors. We can apply two
rotations (Grinstein and Wise, 1991)

�
W3

μ

Bμ

�
¼
�
1 ϵ

ϵ 1

��
c̄θ s̄θ
−s̄θ c̄θ

��Zμ

Aμ

�
; ð5:21Þ

where ϵ ¼ −v2TCHWB=2Λ2, to diagonalize the kinetic terms
and go to the mass-eigenstate basis containing the photon Aμ

and the Zμ boson. The rotation angles are

s̄θ ≡ sin θ̄ ¼ ḡ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡ21 þ ḡ22

p �
1þ ϵ

ḡ2
ḡ1

ḡ21 − ḡ22
ḡ21 þ ḡ22

�
; ð5:22Þ

c̄θ ≡ cos θ̄ ¼ ḡ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡ21 þ ḡ22

p �
1 − ϵ

ḡ1
ḡ2

ḡ21 − ḡ22
ḡ21 þ ḡ22

�
: ð5:23Þ

The photon Aμ remains massless due to Uð1Þe gauge invari-
ance, whereas the W�

μ and Zμ bosons acquire the masses

m2
W ¼ ḡ22v

2
T

4
; ð5:24Þ

m2
Z ¼ v2T

4

�
ðḡ21 þ ḡ22Þ

�
1þ 1

2

v2T
Λ2

CHD

�
− 4ḡ1ḡ2ϵ

�
: ð5:25Þ

We can then define the gauge couplings

ē ¼ ḡ2ðs̄θ þ ϵc̄θÞ; ḡZ ¼ ē
s̄θc̄θ

�
1 −

ϵ

s̄θc̄θ

�
ð5:26Þ

and the covariant derivative of the broken phase

Dμ ¼ ∂μ − iḡ2ðWþ
μ tþ þW−

μ t−Þ
− iḡZðT3 − s̄2θQÞZμ − iēQAμ; ð5:27Þ

where the electric charge is Q ¼ T3 þ Y with the hypercharge
Y and the third component of weak isospin T3. Furthermore, we
define t� ¼ ðt1 � it2Þ= ffiffiffi

2
p

, where tI are the SUð2ÞL gener-
ators. In addition, the couplings of the W and Z bosons to
fermions are modified by operators of the class ψ2H2D. For

example, in the broken phase the operator ½Qð3Þ
Hl �pr yields an

interaction term of the form

½Qð3Þ
Hl �pr → v2T

	
ḡZ
2
ðν̄LpγμνLr − ēLpγμeLr ÞZμ

þ ḡ2ffiffiffi
2

p ½ðν̄LpγμeLr ÞWþ
μ þ ðēLpγμνLr ÞW−

μ �
�
þOðhÞ;

ð5:28Þ

in addition to the SM interactions. For more details, see Jenkins,
Manohar, and Stoffer (2018b).31

C. Integrating out the weak-scale particles in the SMEFT

After having derived the SMEFT Lagrangian in the broken
phase, we can construct the LEFT Lagrangian by removing
the heaviest particles from the theory, i.e., the Higgs h, the W
and Z bosons, and the top quark t. This procedure is discussed
in general in Sec. VI.B; here we only anticipate the determi-
nation of the Fermi interaction (5.1) as an example.
For illustration consider the four-fermion interaction

−
4GFffiffiffi
2

p ðν̄Lμ γμμLÞðēLγμνLe Þ ð5:29Þ

in the LEFT mediating the muon decay μ− → e− þ νμ þ ν̄e,
whose measurement allows the value of the coupling constant
GF to be determined. In the SMEFT this decay is mediated
through the exchange of a W−

μ boson, either with its SM

couplings or with the modified coupling due toQð3Þ
Hl , as shown

in Eq. (5.28), or through the four-fermion SMEFT operator
Qll. The corresponding tree-level Feynman diagrams are
shown in Fig. 9.
We can now compute the tree-level amplitudes in the

LEFT and the SMEFT, expanding the W propagators as
1=ðp2 −m2

WÞ ¼ −1=m2
W þOðp2=m2

WÞ, where p is the
momentum carried by the W boson, which in the range of
validity of the LEFT is small p2 ≪ m2

W . Equating our results,
we find that (Alonso, Jenkins et al., 2014)

−
4GFffiffiffi
2

p ¼ −
2

v2T
−

2

Λ2
ð½Cð3Þ

Hl �11 þ ½Cð3Þ
Hl �22Þ

þ 2

Λ2
Reð½Cll�1221Þ; ð5:30Þ

31Note also that in the SMEFT the W boson can couple to right-
handed fermions through the QHud operator.
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where we use ½Cll�2112 ¼ ½C�
ll�1221. Equation (5.30) is called a

matching condition and determines the LEFT coefficient GF in
terms of the SMEFT parameters. We see that the LEFT and
SMEFT power expansions get mixed up in this case. In
general LEFT operators of dimension d are suppressed by

1

Λa

1

vb
; aþ b ¼ d − 4; a ≥ 0; ð5:31Þ

where a is always positive since the SMEFT contains Λ only
as a multiplicative prefactor with negative powers and b can be
negative due to Higgs VEV insertions.
From Eq. (5.30) we see that what is actually extracted from

experimental data on the muon decay is GF, not the SM value
GF ¼ ð ffiffiffi

2
p

v2Þ−1. The modification of the tree-level relations
of SM parameters like the aforementioned one in the SMEFT
requires extra care in extracting these from experiments. For
more details on the determination of the SM parameters and a
discussion of appropriate input schemes for SMEFT compu-
tations, see Brivio and Trott (2017) and Brivio et al. (2021).
The construction of a complete basis of the LEFT up to

dimension 6 and the derivation of all tree-level relations of the
LEFT Wilson coefficients to the SMEFT Wilson coefficients
was presented by Jenkins, Manohar, and Stoffer (2018b).
Subsequently LEFT operator bases of dimensions 7 (Liao,
Ma, and Wang, 2020), 8 (Li, Ren, Xiao et al., 2021b; Murphy,
2021), and 9 (Li, Ren, Xiao et al., 2021b) were also derived in
the literature. At the one-loop level, the matching requires the
calculation of a large number of loop diagrams. This mon-
umental program was taken up by Dekens and Stoffer (2019).
These are lengthy expressions and are most convenient and
usable given directly in digital form as in Appendix G and the
Supplemental Material of Dekens and Stoffer (2019).32

Therein the SMEFT coefficients appearing in the matching
conditions were understood to be renormalized in the MS
scheme and implicitly dependent on the matching scale
μ ∼mW . When using these one-loop matching results it is
important to also strictly follow all of the conventions used in
their derivation in all subsequent computations with the
resulting LEFT Lagrangian to avoid any inconsistencies.
The one-loop anomalous dimensions of all d ≤ 6 LEFT
coefficients were eventually derived by Jenkins, Manohar,
and Stoffer (2018a), so the toolbox for LEFT computations
has been augmented.

VI. BEYOND THE STANDARD MODEL
PHENOMENOLOGY WITH THE SMEFT

In this section we showcase the practical application of
effective field theory, particularly of the SMEFT, in the search
for new physics. Since the standard model predictions to date
have agreed well with experiments, a detailed treatment is
important. The uneven history of some of the precision results
shows the importance of a systematic treatment. Here we
discuss the different EFTs involved, and how they are linked.
We comment on existing work and consider in detail two
explicit examples to illustrate all of the steps needed in order
to reliably constrain the possible BSM scenarios.

A. The SMEFT analysis workflow

We start by discussing the general EFT workflow for new-
physics searches; detailed information on the various steps
involved is discussed in Secs. VI.B–VI.E. For a typical
BSM analysis, we consider a tower of effective theories, as
illustrated in Fig. 10. Each of these EFTs provides an accurate
description of nature at a given energy scale. The EFTs

FIG. 9. Tree-level diagrams contributing to the SMEFT-to-
LEFT matching for the Fermi constant. The W-boson propa-
gators in the SMEFT diagrams are understood to be expanded in
p2=m2

W , thus generating local contributions.

FIG. 10. Tower of effective field theories ranging from far UV
scales to the low energies at which the experiments are
performed. Depending on the observable, different EFTs might
be appropriate. The various EFTs can be connected through
matching and RG evolution. Moreover, spontaneous symmetry
breaking may occur at intermediate steps.

32The SMEFT-to-LEFTone-loop matching is also implemented in
codes such as Wilson (Aebischer, Kumar, and Straub, 2018) and
DsixTools (Celis et al., 2017; Fuentes-Martin, Ruiz-Femenia
et al., 2021).
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contain only the relevant degrees of freedom at that energy and
incorporate the effects of heavier states through higher-
dimensional effective operators. To connect theories at differ-
ent energy scales, matching computations are performed that
allow one to integrate out the heavy particles from one theory
to obtain the corresponding low-energy EFT. We encountered
a matching computation for the Fermi constant in Eq. (5.30);
further details on the procedure are given in Sec. VI.B. Within
each EFT, the corresponding RG equations can then be used to
evolve all couplings from the high-energy scale, where the
matching was performed, to the low-energy scale of the
heaviest particles remaining in the EFT; see Sec. VI.C.
These can then be integrated out in the next matching
computation to obtain yet another EFT, one that is valid at
even lower energies. This procedure has to be repeated until
the desired energy scale (usually the energy range of exper-
imental observables) is reached. Using such a multistep
procedure of alternate matching and running, we can ensure
a proper description of physics at all involved scales, as the
RG evolution allows one to resum large logarithms that would
appear if only a single matching would be performed at the
lowest scale, or if we would even use only the full theory.
As one can easily imagine, such a multiscale computation can
become highly involved, which would require automation of
all of the steps involved. There are already several computer
tools available that automate some of these steps; for an
overview, see Aebischer, Fael et al. (2019) and Aebischer
et al. (2023). However, complete automation is still a goal to
be achieved in the future.
To be concrete, we can take a BSM theory containing some

heavy particles with masses of the order of ΛBSM that are not
accessible at the energies of current experiments. We can then
match such a theory to the SMEFT, where the effect of these
heavy states is encoded in the effective operators. In general
not all of the SMEFT operators will be generated by the
matching, but instead only a certain subset. For example,
a list of all operators that are generated at tree level in all
possible BSM scenarios was worked out in the UV-IR
dictionary provided by de Blas et al. (2018). Consequently
the SMEFT RG equations (Jenkins, Manohar, and Trott,
2013b; Alonso, Jenkins et al., 2014; Jenkins, Manohar, and
Trott, 2014) are used to evolve the couplings from the
matching scale ΛBSM down to the electroweak scale ∼mW .
Through this RG mixing further operators can be generated
that were absent from the matching. At the electroweak scale
spontaneous symmetry breaking then takes place, as discussed
in Sec. V.B. After expanding the Higgs field around its
vacuum expectation value, we end up with the SMEFT
Lagrangian in the broken phase, which is invariant under
the SUð3Þc × Uð1Þe gauge symmetry and contains only the
physical Higgs h, not the full Higgs doublet H, which is
present only in the unbroken phase above the electroweak
scale. One can now integrate out the heaviest SM particles,
i.e., the top quark t and the Higgs h, Z, andW bosons, to arrive
at the LEFT (Jenkins, Manohar, and Stoffer, 2018b; Dekens
and Stoffer, 2019). Usually EWSB and the matching is
performed at the single scale ∼mW . Since the masses of all
particles that are integrated out here are similar, no large
logarithms arise, even though we choose only a single

matching scale. Afterward the known LEFT RG equations
(Jenkins, Manohar, and Stoffer, 2018a) can be used to evolve
the theory down to the bottom-quark mass scale mb. If
necessary, the b quark can then be integrated out, etc., until
one reaches the energy scale of the experimental observables
of interest. For example, for B physics experiments it is
sufficient to stop the procedure here, but for processes at even
lower energies one might also require integrating out the
charm quark. See Buchalla, Buras, and Lautenbacher (1996)
for a review of the EFTs at the b scale.
Ultimately one could end up at the QCD confinement scale

ΛQCD, where one matches onto ChPT. However, owing to
confinement, in this case the IR degrees of freedom of ChPT,
i.e., the pions, are not the same as in the EFT above ΛQCD,
where we have quarks. Because of the growth of the strong
coupling constant, perturbativity is lost and the matching has
to be performed nonperturbatively. The discussion of this
process, however, is beyond the scope of this review; see
Bernard (2008) for further details.
The BSM theory that we started with could well be simply

an EFT itself, originating from integrating out even heavier
particles in some more fundamental theory that is valid at
even higher scales Λ0

BSM. In this EFT picture we can simply
consider any theory as an effective description at a given
energy containing only the relevant degrees of freedom at
these energies and incorporating our agnosticism about the
laws of nature being valid at higher energies in terms of
higher-dimensional effective operators. Relating the different
EFTs through matching and running as previously discussed,
we can express the couplings in a UV theory through the
couplings or Wilson coefficients of a low-energy EFT that is
valid at the scale of experiments, therefore allowing us to
constrain these UV parameters from low-energy data.
Describing nature by a chain of EFTs is, by construction,

always an approximation. However, it can be systematically
improved by including higher orders in the EFT power
counting, i.e., higher-dimensional operators, thereby allowing
one in principle to describe physical laws up to arbitrary
precision. In practice, usually only the leading contributions
given by the dimension-6 operators and their interference with
the SM are relevant. Nevertheless, higher orders, such as
dimension-6-squared or d ≥ 8 operators, can be relevant when
they introduce new interactions that are not generated by the
leading order (Hays et al., 2019; Corbett et al., 2021) or when
they exhibit some energy enhancement, as in the case of high-
pT Drell-Yan tails that we discuss in Sec. VI.E.1. For a
discussion of higher-order operators and the EFT validity,
see Secs. II.A.4 and II.C.
Any SMEFT computation always involves a double expan-

sion in the EFT power-counting order and the loop order, and
the truncation of both has to be chosen individually according
to the desired precision and the process of interest.33 Going to
the one-loop level in the matching computation might be
especially required in cases where the operators of interest
are not generated at tree level, i.e., for all loop-generated
operators; see Sec. II.B.2. In principle consistency in the

33Conversely, in the HEFT the two expansions are linked together
and cannot be truncated individually.
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expansion parameters should be obeyed. For instance, a one-
loop matching computation would require two-loop running
to obtain scheme independent results. However, in practice
nearly always the one-loop RG equations are considered only,
as the full two-loop SMEFT RG equations are not yet known
and only partial results are available. In addition, one-loop
running suffices for the required precision and one-loop
matching computations are usually required only for operators
that cannot be generated at tree level.
Depending on the question that we ask, the EFT analysis

starts at the top or bottom of the tower of EFTs shown in
Fig. 10, which we have already denoted as top-down or
bottom-up studies. In the top-down approach one starts with
a given BSM theory and matches it to the SMEFT and
consecutively to the LEFT, etc., to determine the implications
of this given theory at low energies. The ultimate goal is to
constrain specific parameters of the BSM theory from suitable
low-energy measurements. The strong advantage of using
EFTs in this approach is the simplification of the initial
problem and the resummation of large logarithms.
In the bottom-up approach, however, the idea is trying to be

agnostic about the UV completion of the SM. In this case, one
can use many low-energy datasets to constrain a large number
of SMEFT Wilson coefficients. In principle the goal of this
approach is to perform a global fit to determine all of the
SMEFT parameters. In practice, owing to the large number of
free parameters, such a fit is currently unfeasible. These types
of analyses consider only a certain subset of parameters based
on general dynamical hypotheses and/or symmetry assump-
tions, such as the flavor symmetries discussed in Sec. III.
Eventually constraints provided in this manner should still be
used to constrain different BSM scenarios that simply have to
be matched to the SMEFT, rather than having to perform the
full analysis for every model individually.
Sometimes there is also no clear distinction between the

two approaches. A key point is that performing an EFT
analysis is especially useful if there is a signal for new physics.
Without such a signal, one can put constraints only on the
large parameter space of the SMEFT, gaining limited knowl-
edge about the underlying structure of the new physics. This is
particularly problematic, as not all of the SMEFT parameters
are equally relevant for experimental observations in different
BSM theories. In the absence of a new-physics signal, the
constraints are more efficiently expressed as direct bounds on
possible deviations from the SM for a given set of observables.
In this respect, an interesting approach is that of pseudo-
observables (Bardin, Grunewald, and Passarino, 1999;
Passarino, Sturm, and Uccirati, 2010), i.e., the definition of
a suitable set of on-shell amplitudes unambiguously con-
nected to measurable quantities that can be characterized
in general terms as deviations from the SM of short-distance
origin. This approach, which was introduced to describe
electroweak precision tests at the Z pole (Bardin, Grunewald,
and Passarino, 1999) and later extended to Higgs physics
(Passarino, Sturm, and Uccirati, 2010; Ghezzi et al., 2015;
Gonzalez-Alonso et al., 2015; David and Passarino, 2016;
Greljo et al., 2016), can be viewed as an intermediate,
consistent, and economical step between measurements and
their possible EFT interpretation. In the absence of deviations
from the SM, the EFT interpretation of data provides a useful

guiding principle in model building, but the power of the EFT
approach in predicting new effects and testing the validity of a
given BSM hypothesis cannot be exploited.
In the following we discuss all of the steps involved in a

new-physics SMEFT analysis. We also analyze for illustration
one example each of a top-down and a bottom-up analysis.

B. Matching BSM models to the SMEFT

The matching of a BSM theory to the SMEFT is involved,
and there are several variants. To expose the important points,
we consider the matching procedure in the context of EFTs
in general, as similar computations are required in all of the
matching steps illustrated in Fig. 10. By matching a given UV
theory to its corresponding low-energy EFT, we fix the value
of all the Wilson coefficients of the EFT such that both
theories reproduce the same physics in the low-energy limit.
Therefore, the Wilson coefficients have to be determined as
functions of the UV parameters, and constraints on the EFT
coefficients can be directly translated into bounds on the BSM
parameters. There are two different approaches, known as off-
shell and on-shell matching, that allow us to ensure that two
theories describe the same physics at low energies.
The most restrictive requirement that we can enforce is that

the effective action Γ of both theories, taken as a function
of the light fields ϕ only, agrees,

ΓUV½ϕ� ¼ ΓEFT½ϕ�: ð6:1Þ

This ensures that all off-shell amplitudes with light external
particles agree in the two theories at low energies. Therefore,
this method is commonly known as off-shell matching. The
matching condition (6.1) then determines the value of all
Wilson coefficients in terms of the UV parameters. One way to
determine the effective action is by calculating all relevant
Feynman diagrams with external light fields. Unlike the usual
computation of the effective action, where we need to consider
all one-particle-irreducible diagrams, it is required in this case
to compute all one-light-particle-irreducible (1LPI) Feynman
diagrams, i.e., the diagrams that cannot be split in two by
cutting any light internal line. This is because we consider
the effective action as a function of light fields only. More
on this “diagrammatic matching procedure” is provided in
Sec. VI.B.1. An alternative approach to calculating the
effective action is through its path integral representation,
which we discuss in Sec. VI.B.2.
Requiring off-shell amplitudes to agree is actually more

restrictive than necessary. It suffices to ensure that all physical
observables computed in either theory agree, which is
equivalent to equating the S matrices of UV and EFT for
all scattering processes with only light particles in the
external states,

hϕjSUVjϕi ¼ hϕjSEFTjϕi: ð6:2Þ

This amounts to equating on-shell amplitudes and is therefore
known as on-shell matching. We can again compute the S
matrix diagrammatically, but unlike with the off-shell match-
ing computation we now need to consider all contributing
diagrams, not simply the 1LPI ones. This can significantly
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increase the number of diagrams that need to be included in
the computation. In addition, the matching of the reducible
diagrams is computationally more challenging, which is why
in practice off-shell matching is used most often.
The main advantage of on-shell matching is that it suffices

to consider EFT operators from a minimal basis for the
matching computation. This is not the case for off-shell
matching, since for off-shell amplitudes further kinematical
structures are allowed, and therefore additional operators need
to be included. When discussing the construction of EFT
bases in Sec. II.A.1, we used field redefinitions to reduce the
operator list to a minimal basis. Recall that, to do so, we
argued that the LSZ-formula guarantees that physical observ-
ables remain unchanged under field redefinitions. For off-shell
matching, however, we do not compute physical observables.
Therefore, we are not allowed to use the LSZ formula and
have to use a larger set of operators, that is, a basis up to field
redefinitions. Such an operator set is commonly referred to
as a Green’s basis. We discuss the diagrammatic off-shell
matching procedure with a concrete example and mention the
differences versus the on-shell computation. Afterward we
provide an introduction to functional matching.
Before we continue with the different matching prescrip-

tions, a comment on the calculation of the loop integrals is in
order. Because loop integrals in the matching can depend on
light m and heavy M mass scales, certain regions of the
internal momentum k of the loop are enhanced. This is
encapsulated in the method of expansion by regions (Beneke
and Smirnov, 1998; Jantzen, 2011), which can be applied
to all of the previously mentioned matching techniques.
We can expand each integrand in the region where k is hard
ðk ∼M ≫ mÞ and where it is soft ðk ∼m ≪ MÞ. Performing
both integrals separately over the full D-dimensional space
and summing their results then yields the same outcome as
computing the full integral and expanding afterward in powers
of the ratio m=M. Applying the method of regions offers
the advantage of separating the UV from the IR physics. By
construction the full theory and its corresponding EFT
describe the same low-energy dynamics, i.e., IR physics.
This means that the soft region of the full theory integrals must
be equal to the soft region of the corresponding EFT diagrams.
Thus, we merely have to compute the hard region of all
integrals to determine the matching conditions since they
incorporate all of the short-distance dynamics that must be
captured by the Wilson coefficients. Next we notice that the
hard region of EFT integrals yields only scaleless integrals,
which vanish in dimensional regularization, since the EFT
depends only analytically on M. Therefore, we need only
consider tree-level EFT diagrams with insertions of one-loop
coefficients and full theory diagrams with at least one heavy
propagator in the loop to obtain the full matching conditions;
see Appendix A.1 and Manohar (2018) for more details.

1. Diagrammatic matching

To demonstrate the diagrammatic matching procedure, we
work with a concrete example. Consider the extension of the
SM by a heavy colored scalar S1 transforming as ð3̄; 1Þ1=3
under the SM gauge group. The S1 leptoquark couples to both
quarks and leptons (thus its name), and its BSM Lagrangian is

LS1 ¼ LSM þ ðDμS1Þ†ðDμS1Þ −M2
SS

†
1S1

− ½λLprðq̄cpεlrÞS1 þ λRprðūcperÞS1 þ H:c:�; ð6:3Þ

where we neglect any direct coupling of the S1 to the Higgs
doublet H. For the off-shell matching we need to consider a
Green’s basis for the SMEFT, i.e., a basis of operators up to field
redefinitions. Such a basis was given by Gherardi, Marzocca,
and Venturini (2020), who also presented the full matching
computation for the given model. Here we merely reproduce
partial results of this derivation to illustrate the procedure.
To begin, we realize that for tree-level matching only

interaction terms of the Lagrangian (6.3) with at most one
heavy field can contribute. Operators with more heavy fields
can contribute only at loop level. It is then obvious that only
four-fermion operators are generated in the EFT at tree level.
The resulting EFT Lagrangian is

LEFT ¼ LSM þ
X
X

½CðRÞ
X �prst
Λ2

½RX�prst; ð6:4Þ

where the sum runs over the “redundant” operators

½Rqcl�prst ¼ ðq̄cipljrÞðlj
sqct iÞ; ð6:5aÞ

½R0
qcl�prst ¼ ðq̄cipljrÞðli

sqct jÞ; ð6:5bÞ
½Recu�prst ¼ ðēcpurÞðūsect Þ; ð6:5cÞ

½Rucelqc �prst ¼ ðūcperÞεijðli
sqct jÞ ð6:5dÞ

defined following the conventions used by Fuentes-Martin
et al. (2023b). The Feynman diagrams in the UVand the EFT
relevant to the matching are shown on the left- and right-hand
sides of Fig. 11, respectively. Inserting the appropriate
interaction terms from the UV and EFT Lagrangian, we
can compute the corresponding amplitudes. Afterward we
expand the UV amplitudes as power series in 1=MS. Here
we work to mass dimension 6; thus, we need to truncate the
results at OðM−2

S Þ. We can then equate the amplitudes of both
the EFT and the UV to find the matching conditions

½CðRÞ
qcl �prst ¼ −½C0ðRÞ

qcl �prst ¼ λLprλ
L�
ts ; ð6:6aÞ

½CðRÞ
ecu�prst ¼ λRrpλ

R�
st ; ð6:6bÞ

½CðRÞ
ucelqc �prst ¼ −λRprλL�ts ; ð6:6cÞ

FIG. 11. Tree-level Feynman diagrams for the S1 model (left)
and the SMEFT (right) that are relevant to the matching of the
four-fermion operators. The UV diagram has to be expanded in
powers of 1=MS before equating it to the EFT diagram.
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where we also identify the new-physics scale Λ with the mass
of the S1 state: Λ ¼ MS.
For convenience we rewrite our result in the Warsaw basis.

The operators in Eq. (6.5) are related to the operators Qð1;3Þ
lq ,

Qeu, and Qð1;3Þ
lequ of the Warsaw basis through the Fierz

transformations (2.20). The matching conditions in the
Warsaw basis read

½Cð1Þ
lq �prst ¼ 1

2
½CðRÞ

qcl �trps þ 1
4
½C0ðRÞ

qcl �trps; ð6:7aÞ

½Cð3Þ
lq �prst ¼ 1

4
½C0ðRÞ

qcl �trps; ð6:7bÞ

½Ceu�prst ¼ 1
2
½CðRÞ

ecu�rtsp; ð6:7cÞ

½Cð1Þ
lequ�prst ¼ −4½Cð3Þ

lequ�prst ¼ −1
2
½CðRÞ

ucelqc �trps; ð6:7dÞ

where evanescent operators can be ignored since we work at
tree level. In this case there are no integration by parts
relations or field redefinitions required to reduce the matching
result to the Warsaw basis.
Next we perform the one-loop matching. Since the entire

computations are lengthy and the full results were given by
Gherardi, Marzocca, and Venturini (2020), we focus here on
the contributions to the leptonic dipole operators

½QeB�pr ¼ ðlpσ
μνerÞHBμν; ð6:8Þ

½QeW �pr ¼ ðlpσ
μνerÞτIHWI

μν; ð6:9Þ

which can be generated only at loop level. We choose to use
on-shell matching, which allows us to single out the dipole
matching contributions, for which the relevant diagrams are
shown in Fig. 12. The first four rows display the diagrams of
the UV theory, whereas the diagram in the last row is the only
EFT diagram. Recall that, since we employ the method of
regions, we have to consider only EFT tree diagrams with one-
loop coefficients, not loop diagrams. After one expands in the
hard loop-momentum region and performs the Dirac algebra,
including the application of the spinor equations of motions
and the Gordon identity, the diagrams in the third and fourth
rows provide a local contribution to the leptonic dipole
operators. If we had instead chosen off-shell matching, we
would have had to consider further topologies that do not
directly match to the dipole but do contribute to it only after
field redefinitions are applied to reduce the Green’s basis to
the Warsaw basis. However, it is not straightforward to
identify which topologies to consider, which is why we
choose to work out this explicit contribution on shell.34

Computing and equating the amplitudes corresponding to
the diagrams shown in Fig. 12, where for the UV amplitudes

we keep only the terms with a Lorentz structure matching that
of the dipole since the remaining terms will match onto other
operators of the Warsaw basis that we are not interested in,
we find at OðM−2

S Þ that

½CeB�pr ¼
1

16π2
g1
8

	
−½Ye�ptλR�st λRsr

þ λL�sp ½Y�
u�stλRtr

�
19

2
þ 5 log

�
μ2m
M2

S

���
þ ½ΔeB�pr;

ð6:10Þ

½CeW �pr ¼
1

16π2
g2
8

	
λL�spλLst½Ye�tr

− 3λL�sp ½Y�
u�stλRtr

�
3

2
þ log

�
μ2m
M2

S

���
þ ½ΔeW �pr;

ð6:11Þ

where μm is the matching scale, which we can conveniently
choose as μm ¼ MS to eliminate all logarithms in the matching
conditions.35

However, since we work at the one-loop level now, we can
no longer use the Fierz identities applied in the tree-level

FIG. 12. One-loop diagrams relevant to the on-shell matching of
the leptonic dipole operators for the S1 model. The first four rows
show the diagrams of the UV theory, whereas the last row
contains the only EFT diagram that contributes when one uses the
method of regions.

34In the case of off-shell matching, we could also neglect the
diagrams in the third and fourth rows of Fig. 12 since we have to
consider only 1LPI diagrams. Their contribution would be shifted to
the additional operators in the Green’s basis that reduce to the dipole
by applying field redefinitions such that the final results of the two
methods agree.

35Other choices for μm are possible, but it should not be chosen too
far from the mass threshold to avoid large logarithms and a worsening
of the perturbative expansion.
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matching in Eq. (6.7). As previously stated, these are intrinsi-
cally four-dimensional identities that must not be applied in
combination with a computation in dimensional regulariza-
tion, since they lead to evanescent operators. Instead, we apply
the corrected one-loop Fierz transformations as discussed
in Sec. II.A.5 and by Fuentes-Martin et al. (2023b)). These
transformations effectively project the evanescent operators
onto the physical four-dimensional Warsaw basis, allowing us
to ignore evanescent contributions afterward. We focus on the
dipole operator, whose additional contributions arising due to
the evanescent operators generated by applying the D ¼ 4
Fierz identities in Eq. (6.7) are labeled by ΔeB=eW in
Eqs. (6.10) and (6.11). The corresponding shift of the action
was derived in Sec. II.A.5 and is given by Eq. (2.32), with
which we find that

½ΔeB�pr ¼ −
1

16π2
5

8
g1½Y�

u�tsð1 − ξrpÞ½CðRÞ
ucelqc �srpt; ð6:12Þ

½ΔeW �pr ¼
1

16π2
3

8
g2½Y�

u�tsð1 − ξrpÞ½CðRÞ
ucelqc �srpt; ð6:13Þ

where ξrp is the parameter denoting the reading point
ambiguity when using NDR to evaluate the loop integrals;
see Sec. II.A.5 and Appendix A.2 for more details. For
convenience we decide to read all EFT loop integrals ending
with the EFT operator, as suggested by Fuentes-Martin et al.
(2023b). As previously mentioned, we then have to follow this
prescription for all subsequent computations within the EFT to
obtain consistent results, regardless of the choice of reading
point. The given prescription yields ξrp ¼ 1 (which also agrees
with the results obtained in the ’t Hooft–Veltman scheme),
and thus the evanescent contributions to the dipole happen
to vanish. Nevertheless, there are additional nonvanishing
and unambiguous evanescent contributions to further oper-
ators that we do not consider here. For more details on the
reading point ambiguity, see Appendix A.2 and Fuentes-
Martin et al. (2023b).

2. Functional matching

We now recap the functional formalism worked out by
Dittmaier and Grosse-Knetter (1996), del Aguila, Kunszt, and
Santiago (2016), Fuentes-Martin, Portoles, and Ruiz-Femenia
(2016), Henning, Lu, and Murayama (2016, 2018), Zhang
(2017), and Cohen, Lu, and Zhang (2021a) and employ it
for a specific matching computation. We make use of the
background-field method (Abbott, 1981; Abbott, Grisaru, and
Schaefer, 1983; Denner, Weiglein, and Dittmaier, 1995;
Denner, Dittmaier, and Weiglein, 1996) by separating all
fields η → η̂þ η in a background-field configuration η̂, which
satisfies the classical equations of motion, and a pure quantum
component η. In Feynman diagrams η̂ then corresponds to
tree-level lines, whereas η corresponds to lines in loops.
Expanding the action to one-loop accuracy we find that

S½η̂þ η� ¼ S½η̂� þ σηj
2
η̄i

δ2S
δη̄iδηj

����
η¼η̂

ηj þOðη3Þ; ð6:14Þ

where σηj ¼ 1 if ηj is bosonic and σηj ¼ −1 if it is Grassmann
due to anticommuting ηj to the right-hand side of Eq. (6.14).

The linear term vanishes due to the equations of motion,
and higher-order terms contribute only at two-loop order and
beyond. We identify the term that is quadratic in the quantum
fields as the fluctuation operator,

Ωij½η̂� ¼ σηj
δ2S

δη̄iδηj

����
η¼η̂

: ð6:15Þ

The effective action of the theory is then given by

expðiΓ½η̂�Þ ¼
Z

Dη exp

�
iS½η̂� þ i

2
η̄iΩij½η̂�ηj þOðη3Þ

�
:

ð6:16Þ

Thus, we find the tree-level effective action Γð0Þ½η̂� ¼ Sð0Þ½η̂�
and the one-loop effective action

Γð1Þ½η̂� ¼ Sð1Þ½η̂� − i log ðSDetΩð0Þ½η̂�Þ−1=2

¼ Sð1Þ½η̂� þ i
2
STr logΩð0Þ½η̂�; ð6:17Þ

where Sð1Þ½η̂� contains all local one-loop contributions; that is,
in renormalizable theories Sð1Þ½η̂� contains only the counter-
terms required to renormalize the theory. In EFTs the one-loop
induced Wilson coefficients are included in Sð1Þ½η̂� too. We
furthermore introduce the superdeterminant (SDet) and the
supertrace (STr), which are generalizations of the determinant
and trace to operators with mixed spin. The supertrace is a
trace over all internal degrees of freedom and therefore
involves an integration over all loop momenta

STr logΩ½η̂� ¼ �
Z

dDk
ð2πÞD hkjtr logΩ½η̂�jki; ð6:18Þ

where tr denotes the regular trace over all internal degrees of
freedom apart from momentum and the sign depends on the
spin of the considered field, withþ ð−Þ for bosonic (fermionic)
states. These operator traces can be evaluated using the so-
called covariant derivative expansion (Chan, 1986; Gaillard,
1986; Cheyette, 1988). However, a discussion of the supertrace
evaluation is beyond the scope of this review; see Henning, Lu,
and Murayama (2016), Cohen, Lu, and Zhang (2021a), and
Fuentes-Martin, König et al. (2021) for further details.
Since the path integral formulation allows one to compute

the effective action, we can also use it to calculate the off-shell
matching condition in Eq. (6.1). At tree level we find that

Sð0ÞEFT½η̂L� ¼ Sð0ÞUV½η̂L; η̂H�; ð6:19Þ

where we separate the fields into light η̂L and heavy η̂H. The
heavy background fields are understood as the solutions to
their equations of motion as a power series in 1=M, where M
is their mass, so they can be entirely expressed in terms of the
light fields η̂H ¼ η̂H½η̂L�.
Taking the Lagrangian (6.3) of the S1 leptoquark example,

we find the equation of motion for S1,

D2S1 þM2
SS1 − λL�prðlrεqcpÞ þ λR�pr ðērucpÞ ¼ 0: ð6:20Þ
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Its power series solution is given by

S1 ¼
1

M2
S

½λL�prðlrεqcpÞ − λR�pr ðērucpÞ� þOðM−4
S Þ: ð6:21Þ

Substituting this solution back into the Lagrangian (6.3) yields
the same matching condition as in the diagrammatic compu-
tation shown in Eq. (6.5).
For the one-loop matching it is convenient to split the

fluctuation operator into a kinetic and an interaction term,

Ωij≡δijΔ−1
i −Xij; withΔ−1

i ¼

8>><
>>:
−ðD2þM2

i Þ;
iD−Mi;

gμνðD2þM2
i Þ;

ð6:22Þ

for scalars, fermions, and vector bosons, respectively. For
simplicity we use the Feynman gauge for the quantum
fluctuations of the gauge fields. This does not imply any
particular choice for the gauge of the background fields, which
remain in the general Rξ gauge (Henning, Lu, and Murayama,
2016). For more details on gauge fixing the SMEFT in the
background-field method, see Helset, Paraskevas, and Trott
(2018). The interaction terms Xij are implicitly defined by
Eq. (6.22). This allows one to write the one-loop effective
action of the UV theory as

Γð1Þ
UV ¼ i

2
STr logΔ−1 þ i

2
STr logð1 − ΔXÞ: ð6:23Þ

We can again apply the method of regions splitting Γð1Þ
UV into a

hard and a soft part, which are computed by expanding the
loop integrands in the soft and the hard momentum region,

respectively. By construction we have Γð1Þ
EFTjsoft ¼ Γð1Þ

UVjsoft,
which ensures that both theories describe the same long-
distance dynamics. Therefore, we find the one-loop EFT

Lagrangian to be given by
R
dDxLð1Þ

EFT ¼ Γð1Þ
UVjhard, and thus

Z
dDxLð1Þ

EFT ¼ i
2
STr logΔ−1jhard þ

i
2

X∞
n¼0

1

n
STrðΔXÞnjhard;

ð6:24Þ

where we expand the logarithm in the latter term. This is the
master formula for functional one-loop matching, expressing
the EFT Lagrangian in terms of log-type and power-type
supertraces. These can be evaluated using the covariant
derivative expansion as discussed by Cohen, Lu, and
Zhang, (2021a) and Fuentes-Martin, König et al. (2021).
The main advantage of the functional formalism is that
Eq. (6.24) directly yields all generated EFT operators and,
unlike the diagrammatic approach, no a priori knowledge
of an operator basis is required. However, the Lagrangian
obtained using Eq. (6.24) is in a nonminimal form, and
redundant operators need to be removed to recover the EFT in
a minimal basis.
Computation of the previously discussed S1 example using

functional methods is tedious and thus not discussed here, but
further details were given by Dedes and Mantzaropoulos

(2021) and Fuentes-Martin, König et al. (2021).36 However,
this is a purely algebraic problem that can be solved by a
computer. The Mathematica package Matchete (Fuentes-
Martin et al., 2023a) was the first tool to fully automize the
functional one-loop matching.37 Previously, the diagrammatic
one-loop matching technique was automated in the
MatchMakerEFT tool (Carmona et al., 2022). This greatly
simplifies phenomenological BSM analyses and opens the
possibility of validating matching results with different
methods. Another tool for one-loop matching is CoDEx
(Das Bakshi, Chakrabortty, and Patra, 2019), which uses
the universal one-loop effective action (UOLEA) method
(Drozd et al., 2016; Ellis et al., 2016, 2017, 2020; Krämer,
Summ, and Voigt, 2020), which is also based on the
previously explained path integral approach. A more detailed
discussion of the UOLEA technique is, however, beyond the
scope of this review.

C. Renormalization group evolution

The Wilson coefficients of the SMEFT Lagrangian
obtained from the matching are related to the UV parameters
at the matching scale μm, which are usually taken at the mass
threshold μm ∼M. Next we have to evolve the coefficients
down to the electroweak scale (∼mW) using the SMEFT RG
equations. These have been computed by Jenkins, Manohar,
and Trott (2013b, 2014) and Alonso, Jenkins et al. (2014) at
one loop for the dimension-6 operators of the Warsaw basis
shown in Table II. The RG equations of the baryon- and
lepton-number-violating operators listed in Table IV, includ-
ing operators with right-handed neutrinos, were derived by
Alonso, Chang et al. (2014). The RG equations for the
dimension-5 and dimension-7 operators were derived by
Babu, Leung, and Pantaleone (1993), Liao and Ma (2016),
Davidson, Gorbahn, and Leak (2018), and Liao and Ma
(2019), whereas for dimension 8 only partial results are
currently available (Chala et al., 2021; Das Bakshi et al.,
2022). Results for specific sectors of the two-loop anomalous-
dimension matrix were derived by Bern, Parra-Martinez, and
Sawyer (2020) and Aebischer, Buras, and Kumar (2022).
For some recent phenomenological analyses of SMEFT RG
mixing effects, see Chala and Titov (2021), Aoude, Maltoni
et al. (2022), Isidori, Pagès, and Wilsch (2022), and Kumar
(2022). A careful analysis of the flavor structure of the
2499 × 2499 anomalous-dimension matrix of the SMEFT
was presented by Machado, Renner, and Sutherland (2023).
An important feature of the RG evolution is the mixing

of different operator classes. In particular, an operator that is
not generated by the matching can obtain a nonvanishing

36For applications of the functional matching formalism to other
simple BSM theories, see Dittmaier, Schuhmacher, and Stahlhofen
(2021), Zhang and Zhou (2021), Du, Li, and Yu (2022), Li, Zhang,
and Zhou (2022), and Liao and Ma (2022).

37Earlier codes such as STrEAM (Cohen, Lu, and Zhang, 2021b)
and SuperTracer (Fuentes-Martin, König et al., 2021) allow one
to compute the supertraces but do not perform the full matching
computation. In particular, they do not perform operator reductions
on the resulting EFT Lagrangian. See also MatchingTools
(Criado, 2018) for a pure tree-level matching implementation.
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coefficient through the running. This leads to nontrivial
relations among different operator types that need to be
carefully considered in a phenomenological analysis.
As an example, we consider the RG evolution of the

leptonic dipole operators in Eqs. (6.8) and (6.9) and the
Yukawa interactions that are described by

μ
d
dμ

½CX�pr ¼
1

16π2
½βX�pr; ð6:25Þ

with the beta functions given by

½βeB�pr ¼ 3jytj2½CeB�pr − 10g1y�t ½Cð3Þ
lequ�pr33; ð6:26aÞ

½βeW �pr ¼ 3jytj2½CeW �pr þ 6g2y�t ½Cð3Þ
lequ�pr33; ð6:26bÞ

½βYe
�pr ¼ 3λ

v2

Λ2
ð½CeH�pr − y�t ½Cð1Þ

lequ�pr33Þ ≈ 0; ð6:26cÞ

½βeH�pr ¼ 9jytj2½CeH�pr þ 12y�t jytj2½Cð1Þ
lequ�pr33; ð6:26dÞ

where for simplicity we keep only the numerically relevant
terms, i.e., top Yukawa ðytÞ-enhanced terms that are not
multiplied by λ. Thus, we can write the Wilson coefficients at a
low scale μl in terms of the coefficients at the matching scale
μm with one-loop accuracy as

½CX�prðμlÞ ¼ ½CX�prðμmÞ þ
1

16π2
log

�
μl
μm

�
½βX�pr: ð6:27Þ

The RG evolution of the Warsaw basis operators is also
automated in computer programs such as DSixTools (Celis
et al., 2017; Fuentes-Martin, Ruiz-Femenia et al., 2021) and
Wilson (Aebischer, Kumar, and Straub, 2018), making a
phenomenological analysis using the full 2499 × 2499

anomalous-dimension matrix of the d ¼ 6 SMEFT feasible.

D. Low-energy constraints in the LEFT

Having discussed the matching of the BSM model defined
in Eq. (6.3) to the dipole operators QeB and QeW , we now
relate them to the photon dipole operator

½Qeγ�pr ¼
vffiffiffi
2

p ēLpσμνeRr Fμν: ð6:28Þ

Equation (6.28) allows us to illustrate how the low-energy
constraints on these effective operators can be used to
constrain the high-energy couplings of the S1 field.
To this end, we write the SMEFT Lagrangian in the broken

phase38

ΔLbroken ¼ −½Ye�pr
vffiffiffi
2

p ðēLpeRr Þ − ½Yhe�pr
hffiffiffi
2

p ðēLpeRr Þ

þ ½Ceγ�pr
Λ2

vffiffiffi
2

p ðēLpσμνeRr ÞFμν

þ ½CeZ�pr
Λ2

vffiffiffi
2

p ðēLpσμνeRr ÞZμν þ � � � . ð6:29Þ

In Eq. (6.29) we also include the mass term, the Yukawa, and
the Z-boson dipole, where the last two are not phenomeno-
logically relevant in this analysis.
Assuming that new physics is not affecting the electroweak

symmetry-breaking pattern, i.e., assuming that the relations
between quantities in the broken and unbroken phases are the
same as in the SM (for example, ḡ1 ¼ g1, s̄θ ¼ sθ, vT ¼ v),
etc., we can use the results presented in Sec. V to relate the
coefficients of the broken phase Lagrangian to those of the
unbroken phase through ½Ceγ�pr

½CeZ�pr

!
¼
�

cθ −sθ
−sθ −cθ

� ½CeB�pr
½CeW �pr

!
; ð6:30Þ

 ½Ye�pr
½Yhe�pr

!
¼
�
1 − 1

2

1 − 3
2

� ½Ye�pr
v2

Λ2 ½CeH�pr

!
; ð6:31Þ

where

cθ ¼
g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22
p ¼ e

g1
; sθ ¼

g1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p ¼ e
g2

: ð6:32Þ

We can now combine our results for the relations to the
broken phase, which are shown in Eqs. (6.30) and (6.31), with
the RG evolution equations above the electroweak scale in
Eqs. (6.26) and (6.27) to express the electromagnetic dipole
and the mass Yukawa at the electroweak scale μw in terms of
the SMEFT Wilson coefficients at the new-physics matching
scale μm ∼ Λ,

½Ceγ�prðμwÞ ¼ ð1 − 3L̂y2t Þ½Ceγ�prðμmÞ
þ16L̂yte½Cð3Þ

lequ�pr33ðμmÞ; ð6:33Þ

½Ye�prðμwÞ ¼ ½Ye�prðμmÞ −
v2

2Λ2
½CeH�prðμmÞ

þ 6
v2

Λ2
L̂

�
y3t ½Cð1Þ

lequ�pr33 þ
3

4
y2t ½CeH�pr

�
μm

;

ð6:34Þ

where we assume the Yukawa couplings to be real and define
L̂≡ ð1=16π2Þ logðμm=μwÞ. We find that the semileptonic

triplet operator Qð3Þ
lequ can generate the electromagnetic dipole

Qeγ at the low scale, whereas the semileptonic singlet operator

Qð1Þ
lequ as well as QeH runs into the mass terms Ye.
We can now investigate the RG evolution below the

electroweak scale, which is given by (Jenkins, Manohar,
and Stoffer, 2018a)

38Note that for convenience we use a different definition here for
the Yukawa and mass matrices than we do in Eq. (5.10). Moreover,
for the dipole operators we directly apply the SMEFT instead of the
LEFT power counting.
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μ
d
dμ

½Ceγ�pr ¼
1

16π2
170

9
e2½Ceγ�pr; ð6:35Þ

μ
d
dμ

½Ye�pr ¼ −
1

16π2
6e2½Ye�pr; ð6:36Þ

where we consider all other operators to be turned off,39 and
thus we only have the self-renormalization of the dipole and
the mass term, which leave the flavor structure unchanged.
Note also that the LEFT dipole operator in Eq. (6.28) is a
dimension-5 operator; thus, in principle we had to consider
double insertions of this operator for the RG evolution.
However, from the matching conditions (6.10) and (6.11)
we know that such contribution is of the order of M−4

S in the
SMEFT power counting and can thus be neglected.
Equation (6.35) then allows one to evolve the photon dipole
to the low-energy scales of experimental measurements,
which for muons is μl ∼mμ. Note that in this case it is not
required to integrate out any other particles, such as the b
quark, since they do not affect the RG evolution in good
approximation due to their small Yukawa couplings.
Experimental measurements usually constrain couplings in

the mass basis, whereas our Wilson coefficients are given in
the generic flavor basis of the UV theory. Thus, rotating the
fermion fields to the mass basis is the last missing piece of our
analysis. To do this, we need to diagonalize the mass matrix
½Ye�pr, which is determined in terms of the SMEFT operators
in Eq. (6.31). Assume that the mass term is diagonalized
(diag ¼ ULYeU

†
R) while rotating the lepton fields by

e0L ¼ ULeL; e0R ¼ UReR; ð6:37Þ

where UL;R are unitary matrices and e0L;R denote the mass-
basis fields. The mass-basis dipole C0eγ is then given by

C0eγ ¼ ULCeγU
†
R: ð6:38Þ

The most sensitive probe of this operator is the lepton
flavor-violating transition μ → eγ; however, the anomalous
magnetic moment of the muon ðg − 2Þμ is also interesting,
especially given the tension of the recent FNAL measurement
(Abi et al., 2021) with the SM prediction by Aoyama et al.
(2020), which is summarized in Eq. (1.9). For mere illustrative
purposes, we take the latter result as the reference input of our
analysis, despite the recent doubts on its validity mentioned
in Sec. I.B.1. Taking into account the upper bound on the
branching ratio Bðμþ → eþγÞ determined by the MEG experi-
ment (Baldini et al., 2016), we can then write

Bðμþ → eþγÞ ¼ m3
μv2

8πΓμ

j½C0eγ�12j2 þ j½C0eγ�21j2
Λ4

< 4.2 × 10−13 ð90% C.L.Þ; ð6:39Þ

Δaμ ≡ aExpμ − aSMμ ¼ −
4mμ

e
vffiffiffi
2

p Re½C0eγ�22
Λ2

¼ ð251� 59Þ × 10−11; ð6:40Þ

which leads to

���� ½C0eγ�12ð21ÞΛ2

����≲ 2.1 × 10−10 TeV−2; ð6:41Þ

Re½C0eγ�22
Λ2

≃ −1.0 × 10−5 TeV−2: ð6:42Þ

We can now combine all of our results: the low-energy
constraints in Eqs. (6.41) and (6.42), the rotation to the mass
basis (6.38), the LEFT RG equations (6.35) and (6.36),
the EWSB relations (6.30) and (6.31), the SMEFT run-
ning (6.26), and the matching conditions (6.10) and (6.11),
where the last three results were already combined40 in
Eqs. (6.33) and (6.34).
For simplicity, we also consider ½CeH�pr ¼ 0, which holds

at tree level in the considered S1 model. We also assume Ye to
be diagonal such that the mass matrix is already diagonal and
such that we can set UL;R ¼ 1. Note that this is a strong
assumption on a marginal operator appearing in the UV, and in
general we have to consider rotation matrices UL;R ≠ 1. The
resulting constraints on the S1 couplings, assuming that these
are real quantities, are shown in Fig. 13, where we set the
leptoquark mass to MS ¼ 2 TeV. In the upper panel of
Fig. 13, the constraints derived from the Δaμ measurement
are shown, whereas the lower panel shows the constraints
from the μ → eγ decay, where we set λR31 ¼ 0 for simplicity.
In addition, couplings to quarks other than top quarks are
neglected, as they are not yt enhanced.
The scales of the two panels of Fig. 13 are much different,

signaling that underlying models able to explain the ðg − 2Þμ
anomaly, while being consistent with μ → eγ, require a
peculiar flavor-alignment mechanism. A more detailed
phenomenological analysis of the given model and a
discussion of the implied flavor structure were given by
Isidori, Pagès, and Wilsch (2022); see also Aebischer,
Dekens et al. (2021).
There are also tools automating large parts of such

analyses. For example, the flavio package (Straub,
2018) has a large set of low-energy measurements imple-
mented that can be used to constrain the Wilson coefficients.
In addition, the SMEFT-to-LEFT matching as well as the
RG evolution in both EFTs is available in the code [through
the Wilson package (Aebischer, Kumar, and Straub,
2018); see also DsixTools (Celis et al., 2017)]. A global
likelihood based on the data available in flavio can be
constructed with the smelli package (Aebischer, Kumar
et al., 2019), which can simplify the analyses.

39For the SMEFT, the only numerically relevant contributions in
the running are due to the yt-enhanced terms. In the LEFT, however,
the top quark is integrated out and top loops cannot contribute; thus,
no such RG effects are present below the electroweak scale.

40Note that we choose ξrp ¼ 1 for convenience, which fixes the
NDR reading point that has to be used in all consecutive EFT
calculations.
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E. SMEFT at high-pT and global fits

While the SMEFT (in combination with the LEFT) is
practical for relating low-energy measurements to UV param-
eters, it can also be used to analyze measurements from higher
energies in a model independent way. This makes it a
powerful tool for combined analyses of multiple datasets
from various types of processes at different energy scales.
This is particularly advantageous in light of the plethora of
measurements of different processes performed at the LHC
and the Large Electron-Positron (LEP) collider. We can use
the SMEFT for phenomenological analyses of all of these
observables in Higgs physics (Corbett et al., 2013, 2015; Ellis,
Sanz, and You, 2014), diboson physics (Butter et al., 2016;
Biekoetter, Corbett, and Plehn, 2019; Gomez-Ambrosio,
2019; Grojean, Montull, and Riembau, 2019; Brivio et al.,
2020), and top physics (Hartland et al., 2019; Aoude, El
Faham et al., 2022; Aoude, Maltoni et al., 2022), as well as for
electroweak precision studies (Han and Skiba, 2005; Efrati,

Falkowski, and Soreq, 2015; Falkowski and Riva, 2015;
Falkowski and Straub, 2020; Bresó-Pla, Falkowski, and
González-Alonso, 2021; Almeida et al., 2022) and Drell-
Yan tails (Allwicher et al., 2023a; Greljo et al., 2023). Global
fits considering multiple components of the aforementioned
datasets were performed by Ellis et al. (2018, 2021), da Silva
Almeida et al. (2019), and Ethier et al. (2021); see also
Dawson, Homiller, and Lane (2020). Such combined analyses
of different types of data are necessary since in any reasonable
new-physics model multiple SMEFT operators are generated
when the heavy particles are integrated out (Jiang and Trott,
2017). These operators can contribute to different processes
that can be probed at various energies. In addition, RG mixing
can generate further operators contributing to even more
processes. Therefore, to carefully evaluate the plausibility
of a given BSM theory, it is not enough to look at only a single
measurement: we have to perform a global SMEFT fit.
One of the main challenges of these fits is the large number

of free parameters in the SMEFT. Thus, one has to apply some
simplifying assumptions to reduce the degrees of freedom in a
fit. For example, one can decide only to look at a specific set
of operators that is particularly relevant for a given set of
observables (for example, those involving only top and bottom
quarks and electroweak gauge bosons). Moreover, one can
apply some flavor-symmetry assumptions as discussed in
Sec. III.C. As shown in Table V, the latter allow us to
significantly lower the number of parameters that we have
to fit while still allowing us to describe the SM flavor structure
at a good approximation.
On the one hand, if experimental data show deviations

from the SM predictions, global fits are essential to deter-
mine the best-fit values of all relevant Wilson coefficients in
order to be simultaneously compatible with multiple possibly
correlated measurements. On the other hand, if no clear
signal of new physics is present in the data, global fits allow
us to put upper bounds on the coefficients only. In general the
constraints obtained depend on the assumptions entering
the fit. Since a truly global fit with all 2499 parameters of the
d ¼ 6 SMEFT is unfeasible, a selection of certain operators,
for example, by choosing a specific flavor symmetry, has to
be made. Therefore, keep in mind that the results of the
simplified fit cannot necessarily be applied to generic BSM
scenarios.
As an illustration of the present state of the art of global

fits, in Fig. 14 we report the results of one of the most
updated and extensive global analyses of SMEFT coeffi-
cients (Ellis et al., 2021). The results are obtained while
considering all of the relevant operators constrained by
electroweak precision observables, diboson processes,
and top-physics measurements from the LHC. The flavor
symmetries Uð3Þ5 and Uð3Þ3 × Uð2Þ2 are employed; see
Sec. III.C. The results for each Wilson coefficient are
obtained by marginalizing over the remaining ones.
Despite not being fully generic, the number of independent
coefficients that are varied at the same time is impressive.
One of the most important messages emerging from this
analysis is that, under motivated flavor-symmetry assump-
tions, the present data are compatible with an effective cutoff
scale for the SMEFT in the few-TeV domain.

FIG. 13. Constraints on the S1 leptoquark couplings derived
(bottom panel) from the measurements of the μ → eγ transition
and (top panel) from the ðg − 2Þμ measurement. The leptoquark
mass is chosen as MS ¼ 2 TeV, and only top-Yukawa-enhanced
contributions are considered in the numerical analysis. See the
text for more details.
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1. Drell-Yan tails

In this section we analyze the specific case of the Drell-Yan
process pp → lþl−, which represents a good example of a
high-energy transition constraining SMEFT Wilson coeffi-
cients. In the SM this process is mediated by the photon and
the Z boson, whereas in the SMEFT the dominant contribu-
tions are given by four-fermion operators (ψ4), dipole oper-
ators (ψ2XH), and operators modifying the Z-boson couplings
(ψ2H2D). The relevant tree-level Feynman diagrams are
shown in Fig. 15. The left diagram shows the SM contribution,
and the center diagram shows the contribution by the ψ4

contact interactions. The diagram for the ψ2XH and ψ2H2D
operators is similar to the SM diagram, with the SM
interaction vertices replaced by the respective SMEFT

interactions. The dominant contribution depends on the
energy range that we are investigating. The operators modi-
fying the Z-boson couplings can best be probed at the Z pole,
i.e., for invariant masses of the dilepton system of around
mll ∼mZ. At higher energies the four-fermion contact inter-
action yields the dominant contribution since its amplitude is
energy enhanced compared to the SM. This is what allows us
to probe effects due to the exchange of resonances with a mass
even above the center-of-mass energy of the collider, as
pointed out by Greljo and Marzocca (2017).
In the following, we focus on the high-pT constraints on ψ4

operators involving mainly third-generation fermions, which
have received considerable interest in the recent literature
(Faroughy, Greljo, and Kamenik, 2017; Dawson, Giardino,
and Ismail, 2019; Greljo, Camalich, and Ruiz-Álvarez, 2019;
Alioli et al., 2020; Angelescu, Faroughy, and Sumensari,
2020; Fuentes-Martin, Greljo et al., 2020; Boughezal,
Mereghetti, and Petriello, 2021; Endo et al., 2022; Allwicher
et al., 2023a, 2023b; Boughezal, Huang, and Petriello, 2023;
Greljo et al., 2023). We also consider measurements of low-
energy meson decays that are mediated by the same effective
operators. Therefore, we can utilize the SMEFT framework to
combine these complementary high-pT and low-energy con-
straints to assess the validity of a given BSM scenario. The
first analysis of this type, which focused on light-generation

FIG. 15. Tree-level Feynman diagrams contributing to the Drell-
Yan process in (left image) the SM, (center image) the SMEFT,
and (right image) the U1 leptoquark model.

FIG. 14. Bounds on SMEFT effective coefficients obtained by Ellis et al. (2021). Top panel: bounds on the coefficients assuming a
reference effective scale of 1 TeV. Bottom panel: corresponding bounds on the effective scales for different reference hypotheses for the
Wilson coefficients. The light yellow points are obtained in the Uð3Þ5 symmetric limit. The remaining points are obtained employing the
Uð3Þ3 × Uð2Þu × Uð2Þq flavor symmetry, which allows us to treat top-physics observables separately.
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four-fermion operators, was presented by Cirigliano,
Gonzalez-Alonso, and Graesser (2013).
In this example, we consider the U1 vector leptoquark

contributing to the Drell-Yan process (see the right diagram in
Fig. 15) and to charged-current semileptonic B-meson decays
with the underlying b → cτν transition. We follow the dis-
cussion presented by Aebischer, Isidori et al. (2023). The
example is particularly interesting due to the deviations
currently observed in these low-energy decays, known as
the B-anomalies, which were mentioned in Sec. I.B.2. We are
especially interested in the lepton-flavor-universality ratios
RDð�Þ defined in Eq. (1.10), which currently show a 3.1σ
discrepancy from the SM expectation (Amhis et al., 2023b).41

Consider the U1 Lagrangian

LU1
¼LSM− 1

2
U†

μνUμνþM2
UU

†
μUμþðUμJμþH:c:Þ; ð6:43Þ

Jμ ¼ gUffiffiffi
2

p ½βLprðq̄pγμlrÞ þ βRprðd̄pγμerÞ�: ð6:44Þ

Integrating out the U1 field at tree level using its equation of
motion Uμ ¼ −J†μ=M2

U þOðM−4
U Þ, we find that

LEFT ¼ LSM −
1

M2
U
J†μJμ: ð6:45Þ

Using the Fierz identities in Eqs. (2.20) and (2.21), we then
find the EFT Lagrangian in the Warsaw basis,

LW ¼ LSM −
g2U
2M2

U

	
1

2
βLprβ

L�
st ð½Qð1Þ

lq �trps þ ½Qð3Þ
lq �trpsÞ

þ βRprβ
R�
st ½Qed�trps − ð2βRprβL�st ½Qledq�trps þ H:c:Þ

�
:

ð6:46Þ

Note that since we restrict our analysis to tree level, we do not
have to consider evanescent contributions here.
This Lagrangian provides the appropriate description

for interactions at energies above the electroweak scale
but below MU. Thus, we can use it to describe the tails of
Drell-Yan distributions where we consider events with
200 GeV≲mll ≲MU. For a discussion of the EFT validity
in the case where the EFT cutoff scale MU is not sufficiently
high, see the end of this section and Allwicher et al. (2023a).
The event yield N in a given bin of the measured mll

distribution can then be schematically written as

N ¼ LintðA × ϵÞ
Z

m2
ll;max

m2
ll;min

ds
dσ
ds

; ð6:47Þ

where Lint is the integrated luminosity andA × ϵ parametrizes
the acceptance and efficiency of the detector and has to be
extracted using Monte Carlo simulations. The cross section σ
is computed as a function of the Wilson coefficients or

new-physics couplings, thus allowing them to be constrained.
For more details, see Allwicher et al. (2023a). The event
yields can also be automatically extracted using codes like
HighPT (Allwicher et al., 2023b) and flavio (Greljo
et al., 2023).
The operators in Eq. (6.46) also contribute to low-energy

processes. In particular, ½Qð3Þ
lq �3323 and ½Qledq�3332 can con-

tribute to the b → cτν transitions that we are interested in. The
relevant low-energy Lagrangian can be written as

Lb→c ¼ −
4GFffiffiffi

2
p V23½ð1þ CcLLÞðc̄LγμbLÞðτ̄LγμνLÞ

− 2CcLRðc̄LbRÞðτ̄RνLÞ�; ð6:48Þ

where GF is Fermi’s constant and V23 ¼ Vcb is a CKMmatrix
element. The coefficients are related to the Warsaw basis
Wilson coefficients by

CcLL ¼ −
1ffiffiffi
2

p
GF

1

M2
U

X3
k¼1

½Cð3Þ
lq �33k3V2k

V23

; ð6:49Þ

CcLR ¼ 1

4
ffiffiffi
2

p
GF

1

M2
U

X3
k¼1

½C�
ledq�333kV2k

V23

; ð6:50Þ

where we assume that the flavor basis of the new physics is
given by the down-quark and charged-lepton mass basis such
that we can write

qp¼
 
V�
rpuLr

dLp

!
; up¼uRp; dp¼dRp; lp¼

 
νLp

eLp

!
; ep¼eRp:

ð6:51Þ
Following Cornella et al. (2021), we can express the lepton-

flavor-universality ratios RDð�Þ in terms of these parameters as

RD

RSM
D

¼ j1þ CcLLj2 − 3.0Re½ð1þ CcLLÞCc�LR� þ 4.12jCcLRj2;

ð6:52Þ
RD�

RSM
D�

¼ j1þ CcLLj2 − 0.24Re½ð1þ CcLLÞCc�LR� þ 0.16jCcLRj2:

ð6:53Þ

As numerical input we use the world average for the
experimental measurements and the SM predictions for
these observables as provided by the HFLAV Collaboration
(Amhis et al., 2023a; Amhis et al., 2023b), respectively,

RD ¼ 0.356� 0.029; RSM
D ¼ 0.298ð4Þ; ð6:54Þ

RD� ¼ 0.284� 0.013; RSM
D� ¼ 0.254ð5Þ: ð6:55Þ

The LEFT beta functions of the coefficients are given by
(Jenkins, Manohar, and Stoffer, 2018a)

βCcLL ¼ −4e2CcLL; βCcLR ¼ ð4
3
e2 − 8g23ÞCcLR: ð6:56Þ

41Note that while the fate of this anomaly (as with any anomaly) is
unclear, the discussion presented here remains an illustrative example
of a SMEFT analysis.
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We use the LEFT RG equations42 to directly run the low-
energy coefficients from the scale μ ∼mb up to μ ¼ 1 TeV,
which is the appropriate scale for measurements of the high-
pT Drell-Yan tails at the LHC. There we directly match to the
SMEFT and neglect the SMEFT running in good approxi-
mation since it yields only a small logarithmic contribution.
To perform the combined fit of the high-pT Drell-Yan data

and the low-energy measurements of RDð�Þ , we assume that all

couplings except for βL=R33 and βL23 vanish, i.e., the U1 couples
dominantly to the third generation. Furthermore, we choose to
set βL33 ¼ −βR33 ¼ 1 and βL23 ¼ 2Vts, adopting the hypothesis of
a minimal breaking of the flavor symmetry (Aebischer,
Isidori et al., 2023). The combined constraints on the U1

model in the plane coupling versus mass are shown in
Fig. 16. We used the HighPT package (Allwicher et al.,
2023b) to derive the constraints from the Drell-Yan search
for new physics in pp → ττ scattering by the ATLAS
Collaboration (Aad et al., 2020). The 95% C.L. region
preferred by our previously discussed low-energy constraint
is shown in light orange, whereas the region excluded at
95% C.L. by the LHC is shown in dark gray. In combination,
only a fraction of parameter space is left viable, thus
showing the complementarity of the low- and high-energy
constraints.43 For more details on this analysis, see Cornella
et al. (2021) and Aebischer, Isidori et al. (2023).

In the case of low masses of the leptoquark ðMU ∼ 1 TeVÞ,
one might question the validity of the EFT approach to Drell-
Yan measurements since the kinematical distributions contain
events with corresponding center-of-mass energies

ffiffiffi
s

p
of

the same order. Therefore, the EFT expansion in s=M2
U

can converge poorly, or even break down. To improve the
convergence, one can include higher-dimensional operators.
We can fit them as additional free parameters, marginalize
over them,44 or we can match them to the parameters of a
given UV model, such as the U1 leptoquark, depending on the
scenario that we are considering. If we are too close to the
mass threshold of the heavy BSM states, there might be no
way to analyze the high-energy data apart from using a
concrete UV model. However, in this case the model inde-
pendence of the EFT approach might be less important as the
signal for a concrete new-physics model should be stronger.
A discussion of the EFT validity in Drell-Yan tails was
provided by Allwicher et al. (2023a). For more details, see
Sec. II.C.1 and Brivio et al. (2022).

VII. CONCLUSION

The standard model has set a natural and successful
framework for the qualitative and quantitative understanding
of the elementary particles and their interactions. It has been
possible to calculate its predictions with great precision,
allowing comparisons with similar progress on the experi-
mental side. However, as stated in the Introduction, there are a
number of observational and theoretical issues with the SM,
such as neutrino masses, baryon asymmetry, a natural bridge
to gravity, and the instability of the Higgs quadratic term. This
is why it is widely believed, and we share this point of view,
that the SM is the remnant of a more complete theory with new
degrees of freedom showing up at a higher energy scale. By
this statement we imply not that there cannot also be other
light states beyond the SM ones but that the SM fields are
embedded in a more complete QFT with heavy fields in the
UV, addressing many current open issues.
The strong agreement between experiment and theory,

which in various cases reaches the subpercent level, suggests
that the energy scale where new heavy particles will appear,
and where the SM will manifestly become an incomplete
description of nature, is well above the electroweak scale. This
fact does not prevent the observation of effects related to the
new degrees of freedom in current and near-future experi-
ments. However, these effects will be indirect manifestation of
new physics, and their interpretation in terms of hypothetical
new dynamics requires a suitable effective theory approach.
In this review we examined the EFT approach to physics

beyond the SM, focusing, in particular, on the linear realization
of the mechanism of electroweak symmetry breaking, i.e., the
SMEFT. Given that all measurements of the 125 GeV scalar
particle discovered at the LHC are consistent with the properties

FIG. 16. Constraints on the U1 model in the plane coupling gU
vs mass MU. Shown in light orange is the region preferred by
the low-energy fit of the RDð�Þ anomalies, and in dark gray
we show the parameter space excluded by the ATLAS search
(Aad et al., 2020) for new physics in pp → ττ scatterings. Both
constraints are given at 95% C.L.

42The dominant contribution is due to the strong coupling constant
αs ¼ g23=4π, which runs as αsðμÞ ¼ 4π=β0 lnðμ2=Λ2

QCDÞ at one loop
with the one-loop QCD beta function β0.

43CMS data currently indicate a 3σ excess of events in pp → ττ̄,
which is highly compatible with a possible U1 contribution in this
parameter region (CMS Collaboration, 2023).

44Note that when marginalizing over d ¼ 8 operators no corre-
lation among the d ¼ 6 and 8 operators is assumed, which is not true
in concrete BSM scenarios. In particular, the interference of d ¼ 6

and 8 operators with the SM amplitude are allowed to have opposite
signs, thus leading to cancellations.
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expected for the SM Higgs boson, the SMEFT emerges as the
most natural EFTapproach to physics beyond the SM. In Sec. II
we extensively reviewed the construction of the basis of effective
operators, the power counting, and various other technical
aspects of this EFT. In Sec. IV we illustrated the more general
approach represented by the HEFT and the possibility of a
nonlinear realizationof themechanismof electroweak symmetry
breaking. This is an option that, despite not being favored by
current data, cannot be excluded at present.
An important role in effective field theories is played by

exact and approximate symmetries emerging in the low-
energy limit of the theory, the so-called accidental sym-
metries. We reviewed this aspect in Sec. III, focusing, in
particular, on flavor symmetries, which represent the vast
majority of possible global symmetries in the SMEFT. As we
argued, in the absence of flavor symmetries the SMEFT
approach is not particularly useful: severe bounds from
flavor-violating observables would imply a very high scale
of new physics, rendering the entire construction not par-
ticularly appealing. However, with the help of motivated
hypotheses about a symmetry and symmetry breaking
resulting from general dynamical hypothesis in the UV, it
is possible to consistently reduce the bounds on the new-
physics scales and provide an a posteriori justification for
the observed mass hierarchies. In this theoretically motivated
limit, we can both reduce the number of free parameters of
the SMEFT and combine information from flavor-changing
and flavor-violating processes.
In Sec. V, and especially in Sec. VI, we discussed the

techniques used to put the SMEFT at work in analyzing data
and possibly extracting information about physics beyond
the SM. These involved a large array of theoretical concepts
and methods developed in recent decades, which we brought
together here. From the use of low-energy effective theories
valid below the electroweak scale to the running of the
SMEFT, and finally to the matching to explicit beyond-the-
SM theories. We reviewed various technical aspects of this
workflow, both from a bottom-up perspective and in top-down
approaches. We expect that the noteworthy progress of these
calculations will continue in the immediate future.
The SMEFT is already a mature subject, and many studies

exist in the literature, including reviews such as that by Brivio
and Trott (2019). However, most of the existing studies are
focused mainly on the use of this tool in setting bounds on
possible new-physics scenarios.
In this review we emphasized the advantage of using the

SMEFT in the case of a “positive” signal of new physics.
While new-physics bounds can be efficiently set, in many
cases, directly at the level of the observables, the full power of
the EFT approach manifests itself in the presence of a new-
physics signal. In this case the SMEFT, which is a consistent
QFT, allows us to connect a signal in one observable to those
in other processes and possibly recognize the underlying
origin of the new dynamics. We illustrated this chain via
two specific examples in Sec. VI that were inspired by
“anomalies” (i.e., deviations from the SM predictions) present
in current data: the ðg − 2Þμ anomaly and the deviation from
lepton-flavor universality in b → clν decays. While none of
these effects are statistically compelling, we analyzed them

since they provide a clear and general illustration of the power
of the EFT approach.
This leads us to the important question of how to design a

strategy for future experiments and where to focus theoretical
work. A general analysis of all experimental results aiming at a
global fit to all the 2499 SMEFT dimension-6 coefficients is
neither a viable nor a particularly useful option. It is hardly
feasible because of the large dimension of the parameter space
while also not being especially illuminating, given that in realistic
models only a subset of the operators play a relevant phenom-
enological role. A more purposeful strategy is to work out the
main features of representative classes of models as UV con-
ditions on the SMEFT, correspondingly identify the relevant
subsets of operators, and then proceed to a comparison with
experiments. As discussed in Sec. VI, the new generation of
automated tools for thematching,RGevolution, andcomputation
of experimental observables in the involved EFTs make such
an approach feasible. An important role in the data-theory
comparison is also played by formulating hypotheses on flavor
symmetries and corresponding symmetry-breaking terms. These
symmetries not only reduce the number of relevant free param-
eters but also allow us to consider more compelling new-physics
scenarios in the few-TeVenergy range that can be probed directly
by current and near-future experiments, as shown in Fig. 5.
Concerning experimental work, a fruitful direction is to

investigate possible differences between the HEFT and the
SMEFT. As discussed at the end of Sec. IV.A, progress
has been made in constructing UV models that cannot be
described by the SMEFT. Correspondingly some experimen-
tal signatures that would signal a breakdown of the SMEFT
description were also identified. A comprehensive strategy for
how to distinguish between the two effective theories could
lead to meaningful results in the near future.
The applicability of the SMEFT rests on the validity of the

effective theory approach. This itself relies on the hypothesis
of having identified all degrees of freedom and symmetries
relevant at low energies. In this respect, the wide class of SM
extensions with light new degrees of freedom, such as axions
or axionlike particles, is not entirely covered by the SMEFT
described here. In such models we can imagine that the BSM
physics produces two low-energy sectors, one of which is the
SM and the other of which is in the world of light particles
(such as axions). These two sectors are necessarily weakly
coupled to each other and generate low-energy axion physics.
In this sense, the SMEFT is part (probably the major part) of a
larger effective theory. The inclusion of additional light
particles is conceptually simple once the symmetry properties
of the new fields are specified; see Agrawal et al. (2021),
Bauer et al. (2021), and Galda, Neubert, and Renner (2021).
More generally EFTapproaches are based on the concept of

scale separation, a key paradigm that has guided the progress
in particle physics for several decades. The absence of TeV-
scale new physics, as expected from naive EFT consider-
ations, has stimulated theorists to consider alternatives to this
paradigm; see Giudice (2019). While this is an interesting
possibility, our knowledge of TeV-scale physics is still far
from complete. The possibility of new physics just around the
corner of the current energy and precision frontiers remains a
well-motivating option, and the SMEFT represents the most
suitable tool to analyze it.
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APPENDIX: DIMENSIONAL REGULARIZATION
IN THE SMEFT

As in any QFT, divergences can occur in the computation
of one-loop diagrams in EFTs, which need to be regulated.
Afterward the theory can be renormalized and physical
predictions can be derived. By far the most commonly used
regularization scheme in SMEFT computations is dimensional
regularization, which we also use throughout this review,
where we work in D ¼ 4 − 2ϵ spacetime dimensions. The
most common renormalization scheme for SMEFT compu-
tations is the MS scheme, which we also use in most of this
work. The only exception is when we deal with evanescent
operators, where we choose to work in an evanescent free
version of MS; see Sec. II.A.5. To be precise, we work in a
modified version of MS that contains additional finite counter-
terms that compensate for the effects of evanescent operators
to physical observables, so they can be neglected in all
computations.
In the following, we discuss two topics related to the use of

dimensionalregularization.First,wediscussthemethodofregions
that is often used in EFT computations, for example, when
computing one-loop matching conditions. Second, we comment
on the issue of chiral fermions in dimensional regularization,
i.e., the generalization of the γ5 matrix to D dimensions.

1. The method of regions

The method of expansion by regions (Beneke and Smirnov,
1998; Jantzen, 2011) simplifies the calculation of multiscale
loop integrals. Loop integrals can depend on several different
scales (for example, masses or external momenta), each
defining an integration region. For each scale we can expand
the loop integrand in the quantities that are small in the
respective region and then perform the resulting integral over
the entire D-dimensional space. The method of regions states
that doing this for all regions and summing the results yields
the same answer as performing the full original integral and
expanding afterward.
As an example, consider the loop integral

I¼
Z

dDk
ð2πÞD

1

k2−M2

1

k2−m2

¼ i
16π2

�
1

ϵ
þ log

�
μ2

M2

�
þ1þm2

M2
log

�
m2

M2

��
þOðM−4Þ;

ðA1Þ

which entails two regions called soft (k ∼m) and hard (k∼M).
Expanding the propagators in the soft ðk2 ∼m2 ≪ M2Þ and
hard ðk2 ∼M2 ≫ m2Þ regions before the integration

1

k2 −M2
¼ −

1

M2

�
1þ k2

M2
þO

�
k4

M4

��
; ðA2Þ

1

k2 −m2
¼ 1

k2

�
1þm2

k2
þO

�
m4

k4

��
; ðA3Þ

we find the corresponding integrals in each region,

I jsoft ¼ −
1

M2

Z
dDk
ð2πÞD

�
1

k2 −m2
þ � � �

�

¼ −
i

16π2
m2

M2

�
1

ϵ
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�
μ2

m2

�
þ 1

�
þOðM−4Þ; ðA4Þ

I jhard ¼
Z

dDk
ð2πÞD

1

k2
1
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þ � � �

�

¼ i
16π2

�
1

ϵ
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�
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�
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�
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ðA5Þ

Thus, we find working at the order OðM−2Þ,

I ¼ I jhard þ I jsoft þOðM−4Þ; ðA6Þ

as dictated by the method of regions.
As discussed in Sec. VI.B, the method of regions provides

a powerful tool for EFT matching computations. These are
multiscale problems, and applying this method allows for a
separation of the hard UV dynamics from the soft IR
behavior. In these computations we have to determine
Green’s functions in the UV theory and the corresponding
EFT. In both theories we can split these into hard and soft
regions. Since we require both theories to describe the same
IR physics, the soft regions of both theories (which describe
the low-energy dynamics) must agree. Thus, the one-loop
matching conditions for the EFT Wilson coefficients are
determined solely by the hard regions encoding the UV
dynamics. However, since the EFT by definition does not
contain any UV scales, its hard scale loop integrals must be
scaleless and thus vanish exactly in dimensional regulariza-
tion. This holds for all integrals apart from

Z
dDk
ð2πÞD

1

k4
¼ i

16π2

�
1

ϵUV
−

1

ϵIR

�
¼ 0; ðA7Þ

which vanishes only since we identify ϵUV ¼ ϵIR by analytic
continuation in dimensional regularization. Therefore, it is
sufficient to consider only the hard region of the Green’s
functions of the UV theory, which contains all of the
information required to determine the EFT Wilson coeffi-
cients. The entire procedure of applying the method of
regions is schematically shown in Fig. 17.
Figure 17 also highlights the connection of the different

UV and IR divergences encountered in the computation.
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The UV poles (red) and IR poles (yellow) of a theory must
match the corresponding poles in the hard and soft regions,
respectively. However, applying the method of regions
introduces additional artificial divergences (gray) into both
regions. But, since the sum of both regions must yield
back the full solution, these must cancel between the soft
and hard regions. Recall that the UVand IR poles of the hard
EFT region must also cancel due to Eq. (A7). In Fig. 17
canceling divergences are connected by dashed lines,
whereas equal poles are linked by solid lines. When
performing a computation, we use the renormalized versions
of these theories; i.e., we introduce counterterms canceling
the UV poles. As previously mentioned, for a matching
computation we need only compute the hard region of the
UV theory. The ϵUV poles of this region are canceled by the
appropriate counterterms, and from Fig. 17 we see that
the artificial IR poles provide the exact counterterms to
cancel the UV poles of the resulting EFT. Thus, the EFT is
automatically renormalized.
Note that the method of regions is also useful for extracting

only the UV divergences of a theory since these are entirely
encoded in its hard region. Therefore, it simplifies the
extraction of the RG equations of a theory, and also the
computation of the physical effect of the evanescent operators
(see Sec. II.A.5), since both are entirely determined by ϵUV.

2. Treatment of γ5 in D dimensions

When one works in D dimensions, the Dirac algebra is
infinite dimensional for noninteger D, as mentioned in
Sec. II.A.5. While the usual Dirac matrices are defined

by interpolation of the D-dimensional Dirac basis γμ

for μ∈ f0;…; D ¼ 2ng with an integer n ≥ 2, the γ5
matrix is not easily generalizable to D ≠ 4 dimensions.
This is due to the intrinsically four-dimensional relation
γ5 ¼ −ði=4!Þεμνρσγμγνγργσ linking it to the Levi-Civita tensor
that can be defined only for D ¼ 4. Thus, any regularization
and renormalization scheme must provide a prescription for
treating γ5 in dimensional regularization.
Throughout this review, we have employed the (semi)naive

dimensional regularization scheme, which assumes that
the four-dimensional anticommutation relations (Nicolai
and Townsend, 1980; Kreimer, 1990; Korner, Kreimer, and
Schilcher, 1992)

fγμ; γνg ¼ 2gμν; fγμ; γ5g ¼ 0; γ25 ¼ 1 ðA8Þ

also hold away from D ¼ 4. This is inconsistent with the
cyclicity of the trace and trðγμγνγργσγ5Þ ≠ 0. To reproduce
the correct four-dimensional limit, we formally substitute

trðγμγνγργσγ5Þ ¼ −4iεμνρσ ðA9Þ

with ε0123 ¼ þ1. This breaks the cyclicity of traces with six or
more γμ matrices and an odd number of γ5, thus introducing a
reading point ambiguity. That means that these traces depend
on which γ matrix is put first or last in the trace. For example,
when computing the Feynman diagrams in Fig. 2 with

insertions of the operator Qð3Þ
lequ, we find, depending on where

we start reading the closed fermion loop, the two Dirac traces

FIG. 17. Illustration of the method of regions applied for EFT matching. The separation of the full integration region into hard and soft
regions (green frames) is shown for the UV theory and the corresponding EFT. For each region the UV (IR) poles are highlighted in red
(yellow) at the top (bottom) of each box. The UV divergences require counterterms and allow one to extract the RGE and the
contributions of evanescent operators. The artificial divergences introduced by the method of region are shown in gray and cancel
between the soft and the hard region as indicated by the dashed lines connecting them. Divergences that are equal are connected by a
solid line, whereas divergences that have the same magnitude but opposite sign are linked by dashed lines. The soft region of both
theories are equal by construction, and the hard region of the EFT contains only scaleless integrals and thus vanishes in dimensional
regularization.

Gino Isidori, Felix Wilsch, and Daniel Wyler: The standard model effective field theory at work

Rev. Mod. Phys., Vol. 96, No. 1, January–March 2024 015006-52



tr1 ≡ trðγαγργσγαγμγνγ5Þ ¼ 4ið4 −DÞεμνρσ ; ðA10Þ

tr2 ≡ trðγργσγαγμγνγ5γαÞ ¼ −4ið4 −DÞεμνρσ; ðA11Þ

which can be shown using Eq. (A9) and γαγμγνγα ¼
4gμν1 − ð4 −DÞγμγν. We thus find that

tr1 − tr2 ¼ OðϵÞ ≠ 0; ðA12Þ

which contradicts the cyclicity of the trace. In EFT
analyses using the NDR scheme, we must therefore carefully
apply a consistent reading point prescription throughout all
computations to obtain consistent results (Fuentes-Martin,
König et al., 2021; Carmona et al., 2022; Fuentes-Martin
et al., 2023b).
To avoid the ambiguities related to the reading point of

Dirac traces, one can resort to the ’t Hooft–Veltman (HV)
scheme (’t Hooft and Veltman, 1972; Breitenlohner and
Maison, 1977), which is the only γ5 scheme that has proven
to be self-consistent to all orders. In this scheme we define

fγμ; γ5g ¼ 0 for μ∈ f0; 1; 2; 4g; ðA13Þ

½γμ; γ5� ¼ 0 otherwise: ðA14Þ

While being the only known self-consistent scheme, HV
comes with a subtlety in that it breaks chiral symmetry and
thus the Ward identities, which need to be restored by finite
renormalizations. In addition, the HV scheme is computa-
tionally more expensive than NDR due to the splitting of the
Dirac algebra into a four- and a (D − 4)-dimensional part.
We therefore stick to the NDR scheme throughout this
review, which is sufficient for the topics discussed here. For
a more detailed discussion of regularization schemes in D
dimensions and the problems of extending γ5 to D dimen-
sions, see Jegerlehner (2001), Gnendiger et al. (2017), and
references therein.
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