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Scalarization is a mechanism that endows strongly self-gravitating bodies, such as neutron stars and
black holes, with a scalar-field configuration. It resembles a phase transition in that the scalar
configuration appears only when a certain quantity that characterizes the compact object, for example,
its compactness or spin, is beyond a threshold. A critical and comprehensive review of scalarization,
including the mechanism itself, theories that exhibit it, its manifestation in neutron stars, black holes
and their binaries, potential extension to other fields, and a thorough discussion of future perspectives,
is provided.
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binary-pulsar constraints 11
a. Static neutron stars 11
b. Observational constraints from binary pulsars 13
c. Rotating scalarized neutron stars 14

2. Massive scalar field 15
3. Incorporating further physics 16

B. Dynamics of scalarized neutron stars
and binary mergers 16
1. Linearized dynamics 16

a. Stability 16
b. Gravitational waves from perturbed NS 17

*daniela.doneva@uni-tuebingen.de
†framazanoglu@ku.edu.tr
‡hector.silva@aei.mpg.de
§Thomas.Sotiriou@nottingham.ac.uk
∥yazad@phys.uni-sofia.bg

REVIEWS OF MODERN PHYSICS, VOLUME 96, JANUARY–MARCH 2024

0034-6861=2024=96(1)=015004(45) 015004-1 © 2024 American Physical Society

https://orcid.org/0000-0001-6519-000X
https://orcid.org/0000-0003-3075-1457
https://orcid.org/0000-0002-0066-9471
https://orcid.org/0000-0002-9089-4866
https://orcid.org/0000-0002-1280-9013
https://crossmark.crossref.org/dialog/?doi=10.1103/RevModPhys.96.015004&domain=pdf&date_stamp=2024-05-03
https://doi.org/10.1103/RevModPhys.96.015004
https://doi.org/10.1103/RevModPhys.96.015004
https://doi.org/10.1103/RevModPhys.96.015004
https://doi.org/10.1103/RevModPhys.96.015004


2. Nonlinear stability and collapse to a black hole 18
3. Stellar core collapse 19
4. Dynamical scalarization and neutron star mergers 20

C. Astrophysical implications of scalarized NSs
in the DEF model 21
1. Electromagnetic observations 21
2. Universal relations 22

D. Extended scalar-tensor theories beyond
the Damour–Esposito-Farèse model 23
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I. INTRODUCTION

Exploring the nature of gravity in the strong curvature
regime has seen a recent surge of interest. This is expected to
intensify, as it is driven by current and future observations of
compact objects: black holes (BHs) and neutron stars (NSs).
In particular, gravitational waves (GWs) produced by coa-
lescing compact binaries have by now been routinely
detected by the LIGO-Virgo-Kagra (LVK) Collaboration
(Abbott et al., 2019, 2021, 2023). These observations
enabled us to probe the highly dynamical and strong-field
regime of general relativity (GR) for the first time. They have
enabled one to perform new tests of GR and to constrain
modifications thereof in a hitherto unexplored regime. Future
spaceborne and ground-based GWobservatories have testing
GR and the standard model (SM) among their key priorities
(Sathyaprakash et al., 2019; Barausse et al., 2020; Kalogera
et al., 2021; Arun et al., 2022). At the same time, there is a
new suite of electromagnetic observations that probe NSs
with unprecedented sensitivity and timing resolution
(Gendreau, Arzoumanian, and Okajima, 2012; Arzoumanian
et al., 2014; Gendreau and Arzoumanian, 2017). On other
fronts, the precision timing of binary pulsars has continually
improved (Kramer et al., 2021), measurements of the motion
of stars at the Galactic Center are becoming more precise

(Abuter et al., 2018, 2020; Do et al., 2019), and we have
witnessed breakthroughs in supermassive BH imaging
(Akiyama et al., 2019).
An interesting prospect is that these observations may

reveal the existence of some otherwise elusive new funda-
mental fields, which could be an ingredient of new physics
beyond the SM or beyond GR; see Clifton et al. (2012), Yunes
and Siemens (2013), Berti et al. (2015), and Barack et al.
(2019). For such fields to have remained undetected, there has
to exist a mechanism to suppress them when gravity is weak.
For scalar fields, which are ubiquitous in extensions of the SM
and of GR, a possible realization of such a mechanism was
first proposed by Damour and Esposito-Farèse (1993) and
named spontaneous scalarization. They showed that a specific
type of nonminimal coupling between scalar field and gravity
(or matter, after a field redefinition) leads to a theory that is
indistinguishable from GR in weak-field gravitational experi-
ments and yet predicts order unity deviations from general-
relativistic expectations in the strong-gravity regime of NSs.
As today, the first model of spontaneous scalarization came

about at a time in which gravitational experiments were
producing new data from a then unexplored regime of gravity:
the slow-velocity but strong-field regime of binary pulsars
discovered by Hulse and Taylor (1975); see Damour (2015).
This discovery inaugurated a new arena to test GR and its
contenders (Taylor and Weisberg, 1982; Damour and Taylor,
1992; Taylor, Wolszczan, and Damour, 1992). Meanwhile,
slow velocities and weak-field Solar System tests had reached
an accuracy that made it questionable whether viable theories
that predict deviations from GR that are measurable with
binary pulsars can exist (Will, 2014). Spontaneous scalariza-
tion settled this question and provided further motivation for
the use of binary-pulsar observations to test GR. By now these
observations have ruled out the Damour-Esposito-Farèse
(DEF) scalarization model (Antoniadis et al., 2013; Kramer
et al., 2021; Zhao et al., 2022).
In recent years, however, spontaneous scalarization has

received renewed interest. This is due to the realization that
vacuum BH solutions of GR can also scalarize when the scalar
field or fields couple suitably to the spacetime curvature
(Doneva and Yazadjiev, 2018b; Silva et al., 2018). This
development also showed that the earlier DEF model is part
of a much broader class of theories (Andreou et al., 2019) that
exhibit what resembles a phase transition in the strong field:
once a quantity that describes a compact object, such as its
compactness (Damour and Esposito-Farèse, 1993; Doneva
and Yazadjiev, 2018b; Silva et al., 2018) or spin (Dima et al.,
2020), exceeds a certain threshold, the scalar field switches
from a trivial constant configuration to a nontrivial one, and
large deviations from GR appear. Conversely, one can think of
this as deviations from GR getting severely “screened” as soon
as one crosses the same threshold in the opposite direction. It
is this phase transition behavior that distinguishes scalariza-
tion from other models in which deviation from GR is induced
and controlled by coupling to curvature, such as more general
scalar-tensor theories with linear (Yunes and Stein, 2011;
Sotiriou and Zhou, 2014a, 2014b) or exponential (Kanti et al.,
1996) couplings to the Gauss-Bonnet invariant.
Since the advent of GW astronomy, the broader class of

theories that exhibit spontaneous scalarization have played a
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role similar to the one that the DEF model has played for
binary-pulsar observations. These theories provide a putative
explanation of why we have not detected new fundamental
fields with existing observations, but we might still uncover
them with high precision observations of astrophysical sys-
tems with specific characteristics.
The aim of this review is to summarize, in a unified

manner, the current status of this field. In Sec. II, we start
by providing the theoretical background of the scalarization
mechanism and its various subcases, following a pedagogical,
rather than historical, approach. Next we discuss in more
detail the literature on scalarization, first of NSs in Sec. III and
then of BHs in Sec. IV. In so doing, we present the state of the
art of our understanding of the consequences of scalarization
for various situations of observational interest. In Sec. V, we
discuss attempts to generalize scalarization to other field
types. In Sec. VI, we outline open issues and summarize
future perspectives in the field. Unless stated otherwise, we
use geometrical units G ¼ 1 ¼ c and employ the mostly plus
metric signature convention.

II. THEORETICAL BACKGROUND: MECHANISM
AND THEORIES

A. Spontaneous scalarization mechanism

1. Tachyonic instability and nonlinear quenching

Before we discuss spontaneous scalarization in the context
of gravity, it is instructive to review the dynamics of a real
scalar field φ with a quartic self-interaction in Minkowski
spacetime. The Lagrangian for this field is

L ¼ 1
2
ημν∂μφ∂μφþ VðφÞ; ð1Þ

where ημν is the Minkowski metric

VðφÞ ¼ 1
2
μ2φ2 þ 1

4
λφ4; ð2Þ

μ is the bare mass, and λ is a coupling constant. The scalar then
satisfies the following field equation:

□ηφ − μ2φ − λφ3 ¼ 0; ð3Þ
where □η ¼ ημν∂μ∂ν is the flat-spacetime d’Alembertian.
φ ¼ 0 is a solution of this equation. Consider now small
perturbations δφ around φ ¼ 0. By linearizing Eq. (3), we find
that δφ obeys

□ηδφ − μ2δφ ¼ 0: ð4Þ

The corresponding dispersion relation is ω2 ¼ k2 þ μ2, where
ω is the frequency and k is the wave number. If μ2 > 0, the
relevant solutions to this equation are plane waves and the
perturbations decay. If instead μ2 < 0, one encounters a
tachyonic instability and the perturbations with small wave
number exhibit exponential growth.
This exponential growth seems catastrophic at first sight,

but it does not have to be. As φ grows, the previously used
linear approximation will quickly become invalid, and the
nonlinear self-interaction λφ3 will become important. It will
be this interaction that will determine the end point of the

instability. Assume that λ > 0 (and μ2 < 0), in which case
the potential has the well-known “Mexican hat” shape.
Equation (3) will then admit a second solution with constant
φ, which we denote as φmin, as it will correspond to the
minimum of the potential. Equation (3) implies that
φ2
min ¼ −μ2=λ. Thus, the tachyonic instability simply drives

the scalar field away from the unstable local maximum of the
potential and toward a stable minimum. This is sometimes
referred to as tachyon condensation and is associated to a
phase transition of the system.
The key message from this simple example is that linearized

perturbations around the unstable maximum capture the onset
of the tachyonic instability, but they are oblivious to the shape
of the rest of the potential and hence cannot determine the end
point. Nonlinear interactions, represented in this specific case
by the φ4 term in the potential (2), eventually quench the
instability and drive the field to a different, stable configuration.

2. Tachyonic instability in curved spacetime

In Sec. II.A.1 we considered a scalar-field that exhibited a
tachyonic instability in flat spacetime. The generalization to
curved spacetime is simple. If we promote the Minkowski
metric to some general curved background described by a
metric gμν, Eq. (4) becomes

□δφ − μ2δφ ¼ 0; ð5Þ

where □ ¼ gμν∇μ∇ν, with ∇μ the covariant derivative. The
key difference here is that in curved space μ2 < 0 is no longer
sufficient for having a tachyonic instability.
To see this, we take gμν to be the Schwarzschild metric,

which can describe either a nonrotating BH or the exterior
spacetime of a nonrotating NS in GR. The line element is

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2 þ r2dΩ2; ð6Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2 and M is the mass of the
compact object. Because the spacetime is static and spheri-
cally symmetric, we can decompose the scalar perturbation δφ
into spherical harmonics Ylmðθ;ϕÞ and assume a harmonic
time dependence

δφ ¼
X
lm

ψlmðrÞ
r

Ylmðθ;ϕÞe−iωt; ð7Þ

and by substitution into Eq. (5) we obtain a Schrödinger-like
equation

d2ψlm

dr2�
þ ½ω2 − VeffðrÞ�ψlm ¼ 0; ð8Þ

where we introduced the tortoise coordinate r� defined as
dr=dr� ¼ 1 − 2M=r and Veff is an effective potential given by

Veff ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
þ 2M

r3
þ μ2

�
; ð9Þ
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which encodes information about the background, curved
spacetime. To have an instability in a Schwarzschild BH
spacetime it is sufficient but not necessary that

Z
∞

−∞
dr�VeffðrÞ ≤ 0; ð10Þ

where r� ¼ −∞ corresponds to the horizon radius in tortoise
coordinates. ForM ¼ 0 (flat spacetime) this condition is always
satisfied when μ2 < 0 and Eq. (8) yields the same dispersion
relation that we discussed in Sec. II.A. The situation is different
for M ≠ 0. Although it is not immediately obvious upon
inspection of Eq. (9), it turns out that μ2 would have to be
sufficiently negative for the tachyonic instability to occur. The
main lesson here is that, in curved spacetime, the threshold for
the tachyonic instability to happen depends on the spacetime;
we return to how one can determine it later. Note that, although
we previously used Schwarzschild spacetime as an example,
one can rederive Eq. (8) for a general static, spherically
symmetric background provided that r� is chosen appropriately.

3. Scalarization and gravity

We have thus far considered a scalar field with a negative
bare mass squared, which is not well motivated. However,
fields can acquire an effective mass squared μ2eff in specific
situations due to their coupling to other fields. As an example,
consider a scalar field that is nonminimally coupled to gravity
and a term φ2R is present in the action, where R is the Ricci
scalar. We then expect a contribution proportional to φR to the
scalar’s field equation; hence, the Ricci scalar contributes to
the field’s effective mass, that is, μ2eff ∝ μ2 þ R. Assume that
the scalar field has no bare mass (i.e., μ ¼ 0) and that the
coupling to R is the only contribution to its effective mass μeff .
In flat spacetime, scalar-field perturbations would then be
massless, whereas in curved spacetimes (with R ≠ 0) they
would be massive and in general also position dependent.
Moreover, the sign of μ2eff would be controlled by the sign of R
in this case. Hence, in some situations it would be possible for
μ2eff to become sufficiently negative in some spacetime region
and cause the scalar field to become tachyonically unstable
despite this being impossible in flat spacetime.
Just as in the flat-spacetime example of the scalar with

negative μ2 and quartic interactions in Sec. II.A.1, this
tachyonic instability does not have to be catastrophic. It
can simply signal that the scalar needs to transition to a
different configuration once curvature exceeds some thresh-
old. The instability implies that the scalar field will grow,
nonlinearities will become important, and, if they can quench
the instability, then one can end up with a stable, different
configuration, for both the scalar field and the spacetime.
This is precisely the idea behind spontaneous scalarization,1

which was first proposed by Damour and Esposito-Farèse
(1993). In a given generalized scalar-tensor theory, a con-
figuration with a constant scalar field and a metric that solves
Einstein’s equations describes all gravitating systems except

some that exhibit strong gravity. In the latter case, curvature
becomes significant enough to render the constant scalar
configurations tachyonically unstable. The tachyonic insta-
bility is eventually quenched by nonlinear effects, and there is
a stable configuration with a nontrivial scalar and a spacetime
that is no longer a solution to Einstein’s equations.

4. Strong-field phase transitions and weak-field screening

We have not yet shown that the mechanism of spontaneous
scalarization, as described heuristically earlier, can be at play
within a consistent gravity theory; we do so in Sec. II.B.
Nonetheless, assuming that the proposal can be successfully
implemented in some model, the following key observations
can already be made:

• Scalarization is a sharp transition to a new configuration
that can differ significantly from the GR configuration
for the same object, even when one is very near the
threshold of the tachyonic instability. This is intuitive
when one thinks of scalarization as a linear instability
quenched by nonlinearity: even for a mild instability
(large timescale) the scalar has to grow significantly for
nonlinear effects to become important and manage to
stop further growth.

• The onset of instability can be controlled by curvature
couplings. In Sec. II.A.3, we considered as an example a
coupling between the scalar field and the Ricci scalar R,
but one can envisage couplings with other curvature
invariants, as we see in Sec. II.B. Hence, there can be
models in which scalarization will occur only in the
strong-field regime (where curvature can become large),
while objects that exhibit weak gravity will show no
deviation from GR (because the curvature is small).
Combined with the previous point, this suggests that
spontaneous scalarization can be thought of as a strong-
field phase transition, whereby a field that is dormant in
the weak field transitions to a nontrivial configuration in
the strong field. Alternatively, one can think of scalari-
zation in the reverse way: as a screening mechanism that
forces a scalar field to transition to a trivial configuration
in the weak field and hence explains why this field has
managed to remain undetected so far.

• The previous argument is based on the rather naive
expectation that curvature invariants are a good measure
of how strong the gravitational interaction is. As an
example of the failure of this expectation, recall that for a
Schwarzschild BH the Ricci scalar is zero; however,
other curvature scalars, such as the Kretschmann scalar
RμνρσRμνρσ , are nonzero. In general, curvature invariants
can have a complicated dependence on the properties
of compact objects. Hence, more work is needed to
understand what controls the threshold of the tachyonic
instability and the onset of scalarization. This is ad-
dressed in Sec. II.C.

B. Models of scalarization

1. Tachyonic instability and the minimal action

We now turn our attention to the gravity theories that
can exhibit spontaneous scalarization. As discussed, at the

1To our knowledge, the expression “spontaneous scalarization”
was first used in print by Damour and Esposito-Farèse (1996a).
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perturbative level the hallmark of spontaneous scalarization is
a tachyonic instability. This begs the following question: Can
we construct a minimal gravity theory that can have scalar-
field perturbations that are tachyonically unstable? To do so,
consider a gravity theory with a metric gμν and a scalar field φ.
Assume that the theory is such that the following hold:
A.1 Spacetimes that are solutions of Einstein’s equations,

potentially with a cosmological constant, and a con-
stant scalar field are admissible solutions of this theory
as well.

A.2 All terms in the action are at least quadratic in φ.
A.3 The field equations are second-order partial differential

equations.
Under these requirements, the equation governing the
dynamics of scalar perturbations δφ on GR spacetimes can
be cast in the form

gμνeff∇ð0Þ
μ ∇ð0Þ

ν δφ − μ2effδφþ NLC ¼ 0; ð11Þ

where gμνeff , ∇ð0Þ, and μ2eff are all computed in the background

spacetime gð0Þμν and NLC denotes nonlinear corrections. In

Eq. (11) geffμν is an effective metric that can differ from gð0Þμν for
certain types of nonminimal couplings between the metric and
the scalar field and μ2eff may contain not only a bare mass term
but also other contributions.
If one neglects nonlinearities and assumes that geff is

nondegenerate and has a Lorentzian signature, Eq. (11)
becomes a curved-spacetime version of Eq. (4). This means
that one can identify all theories with a single scalar field that
are expected to lead to spontaneous scalarization by consid-
ering which couplings between a scalar and the metric can
contribute to geff and μ2eff while still satisfying the aforemen-
tioned assumptions A.1–A.3. The benefit of taking into
account all possible such terms is that it would allow one
to fully explore the onset of scalarization and identify a class
of gravity theories that result in a scalarized spacetime.
Assumption A.2 appears to be essential to avoid having a

source term in Eq. (11). We return to this shortly and show
that it is a redundant assumption. But we first consider
assumption A.3. It ensures that there are no unwanted degrees
of freedom, as would generically be the case if the equations
contained higher-order derivatives (exceptions can exist, most
notably in cases where field redefinitions can reduce the
differential order of the equations). This assumption does limit
the possibilities of the terms that one can consider. For
example, a coupling term of the type φ2RμνλσRμνλσ in the
action would contribute to μ2eff but leads to higher-order field
equations (in the absence of suitable counterterms). To deal
with this potential pitfall, one can follow the lines of Andreou
et al. (2019) and start with the Horndeski action (Horndeski,
1974; Deffayet, Deser, and Esposito-Farèse, 2009), also
known as generalized scalar-tensor theory,2

S ¼ 1

16πG

X5
i¼2

Z
d4x

ffiffiffiffiffiffi
−g

p
Li þ Sm½Ψm; gμν� ð12Þ

and

L2 ¼ G2ðφ; XÞ; ð13aÞ

L3 ¼ −G3ðφ; XÞ□φ; ð13bÞ

L4 ¼ G4ðφ; XÞRþ G4X½ð□φÞ2 − ðφμνÞ2�; ð13cÞ

L5 ¼ G5ðφ;XÞGμνφμν − 1
6
G5X½ð□φÞ3 − 3□φðφμνÞ2þ2ðφμνÞ3�;

ð13dÞ

where G2, G3, G4, and G5 are arbitrary functions of the scalar
field φ and its kinetic term X ¼ −∇μφ∇μφ=2. In Eq. (13)
GiX ¼ ∂Gi=∂X (i ¼ 4 and 5), Gμν is the Einstein tensor,
and the notationφμν ¼ ∇μ∇νφwas introduced, so, for example,
ðφμνÞ2 ¼ φμνφ

μν ¼ ∇μ∇νφ∇μ∇νφ. Finally, Sm is the matter
action, withmatter fields collectively denoted byΨm. This is the
most general action for a metric and a scalar field that leads to
second-order field equations in four dimensions upon direct
variation; see Kobayashi (2019) for a review.We assume for the
moment that matter couples minimally to the metric only. This
means that the choice of fields gμν and φ correspond to the so-
called Jordan frame; we return to this issue later.
Imposing assumptions A.1 and A.2 on the action (12)

places restrictions on the Gi functions, as we later see. We
refer to Andreou et al. (2019) for a detailed discussion. For our
purposes, it is sufficient to say that, by perturbing around
an arbitrary spacetime that is assumed to be a solution of
Einstein’s equations with a constant scalar field, we can
identify all of the terms that contribute, at the linear level,
to gμνeff and μ2eff , as defined in Eq. (11). These terms amount to
the following action:

Smin ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ðγ1 þ γ2RÞ∇μφ∇μφ

þ γ2Rμν∇μφ∇νφ −
1

2
μ2φφ

2 −
1

4
βφ2Rþ 1

2
αφ2G − 2Λ

�

þ Sm½Ψm; gμν�; ð14Þ
where G is the Gauss-Bonnet invariant, which is defined in
terms of the Riemann tensor and its familiar contractions as

G ¼ RμνρσRμνρσ − 4RμνRμν þ R2; ð15Þ

and where α, β, γi, and μ2φ can be expressed in terms of the Gi

functions and their derivatives evaluated in the background
configuration (Andreou et al., 2019).3 We refer to this action,

2See also Motohashi and Minamitsuji (2018) for a classification of
a broader class of scalar-tensor theories according to their BH
solutions, including those of GR.

3We are not following the notation of Andreou et al. (2019) but
have instead adapted it to match that of some of the specific models
that we later study. While expected, it is nontrivial to show how the
Gauss-Bonnet invariant emerges from Eq. (12). This was first shown
by Kobayashi, Yamaguchi, and Yokoyama (2011) at the level of the
field equations, and by Langlois, Noui, and Roussille (2022) at the
level of the action.
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in a slight abuse of terminology, as the minimal action for
scalarization, in the sense that it contains all of the terms that
contribute to the onset of scalarization manifesting as a
tachyonic instability. As such, it can be used to study and
understand what triggers scalarization and to determine the
relevant instability thresholds.
Before we go further, we examine what happens if we

decide to drop assumption A.2 altogether, but still impose
assumptions A.1 and A.3. Working along the same lines
as before, one arrives at a different set of terms composing
the action

S0min ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2

γ01 þ γ02R
φ

∇μφ∇μφ

þ γ02
φ
Rμν∇μφ∇νφþ τφþ ηφRþ λφG − 2Λ

�

þ Sm½Ψm; gμν�: ð16Þ

As before, τ, η, λ, and γ0i can be expressed in terms of the Gi
functions and their derivatives evaluated in the background
configuration. It might seem counterintuitive that an action
containing terms linear in φ leads to perturbation equations
that are in the form of Eq. (11), which has no source terms.
This is due to the presence of terms that are nonanalytic in φ.
The first impression may be that abandoning assumption A.2

has given rise to a second minimal action for scalarization.
However, action (16) is just a field redefinition away from
action (14). Indeed, one can start with Eq. (16), introduce the
redefinition4 φ → φ2, and obtain action (14), with the following
mapping of parameters: γ1 ¼ 4γ01, μ2φ ¼ −4τ, β ¼ −η, and
α ¼ λ (Andreou et al., 2019). This equivalence demonstrates
(i) that assumption A.2 is redundant and (ii) that up to
field redefinitons Eq. (14) is sufficient to capture all terms
that contribute to the onset of scalarization and satisfy
assumptions A.1 and A.3.
One can see by inspection that the γi terms in Eq. (14) will

contribute to gμνeff , while the rest of the terms will contribute
to μ2eff . Hence, if the latter vanish, the former cannot trigger
scalarization by themselves, as the effective mass would
vanish. Nevertheless, the γi terms will affect the threshold
of the tachyonic instability we associate with scalarization;
cf. the discussion about the tachyonic instability in curved
spacetime in Sec. II.A.2. Additionally, μ2φ corresponds to the
bare mass of the scalar field, so it is expected to be positive.
We then conclude that the terms that are expected to trigger
scalarization in the strong-field regime are only the couplings
of φ to R and G. In fact, we see shortly that these are indeed the
terms present in the known models of scalarization.
To summarize, the minimal action (14) can be used to study

the onset of spontaneous scalarization triggered by a non-
minimal coupling to gravity. It contains all possible terms
that contribute to the associated tachyonic instability at the
linearized level, so it could be used to study the threshold and
onset of this instability in full generality. As previously

discussed, as the instability progresses it is expected to be
quenched nonlinearly, and the end point will be a scalarized
configuration. The terms in Eq. (14) can contribute non-
linearly as well, but one could add a plethora of other
nonlinear interactions, ranging from scalar self-interactions,
for example, φ4, to nonminimal coupling terms that do not
contribute to linear perturbations around curved spacetime
with constant scalar, for instance, φ4G. That is, one can start
with Eq. (14), or even a subset of terms therein, and construct
different scalarization models. Models that differ only by
terms that are not in Eq. (14) will have the same behavior in
regard to the onset of scalarization, and hence the configu-
rations that one expects to not scalarize, but they can differ in
the properties of scalarized solutions (Andreou et al., 2019;
Macedo et al., 2019; Minamitsuji and Ikeda, 2019b; Silva
et al., 2019). This is further discussed along with specific
examples in Secs. IV.A.1 and IV.A.2.
Before proceeding to discuss more specific known models,

we return to the issue of the coupling to matter. We have thus
far assumed that matter couples minimally to the metric only.
This assumption is sufficient to ensure that the theory is
compatible with the weak equivalence principle (WEP) (Will,
2018). To satisfy the WEP it is sufficient to have matter couple
minimally to some metric, but this does not need to be the
same metric (or choice of other fields) for which the theory has
second-order field equations. However, it is known that a
disformal transformation (Bekenstein, 1993) of the form

gμν → CðφÞ½gμν þDðφÞ∇μφ∇νφ� ð17Þ

leaves the Horndeski action (12) formally invariant (Bettoni
and Liberati, 2013; Zumalacárregui and García-Bellido,
2014). It was shown by Andreou et al. (2019) that coupling
matter minimally to a metric that is related to gμν by such a
disformal transformation, as done by Minamitsuji and Silva
(2016), amounts to a redefinition of γ2 in the linearized theory
around spacetimes that are solutions of Einstein’s equations.
Hence, such a coupling would be redundant when the onset of
scalarization is studied using the minimal action (14). One
could also entertain the idea of coupling matter to some
composite metric ḡμν that depends on both gμν and φ in a
different manner than in Eq. (17). In such a case, it is likely
that assumption A.3 would be violated and one would have
to start the analysis presented here with a generalization of
the action (14).

2. Damour–Esposito-Farèse Model

As mentioned, the concept of scalarization as we described
it was first discussed by Damour and Esposito-Farèse (1993).
They considered the theory

S ¼ 1

16πG�

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μφ∇μφ� þ Sm½Ψm;A2ðφÞgμν�:

ð18Þ

Equation (18) is said to be written in the Einstein frame, which
means that, contrary to our previous assumptions and con-
ventions, the scalar field is coupled minimally to gravity and

4Here and elsewhere in the text, when two actions are related by a
field redefinition we do not relabel the field, in order to keep the
notation lighter.
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has a canonical kinetic term. The coupling with the matter
field Ψm is through the function A2ðφÞ. In Eq. (18) G� carries
a subscript, as it is not generally equal to G used thus far.
Variation of the action (18) with respect to φ yields the
field equation

□φ ¼ −4πG�αðφÞT; ð19Þ

where

αðφÞ ¼ d lnAðφÞ=dφ ð20Þ

and T ¼ gμνTμν is the trace of the matter energy-momentum
tensor in the Einstein frame defined as Tμν ¼
2ð−gÞ−1=2δSm=δgμν. We see that αðφÞ controls the coupling
strength between the scalar field and matter.
If αðφ0Þ ¼ 0 for some constant scalar-field value φ0, the

constant scalar configuration with T ≠ 0 will be an admissible
solution of the theory. It then follows from the generalized
Einstein’s equations

Rμν ¼ 2∇μφ∇νφþ 8πG�ðTμν − 1
2
gμνTÞ ð21Þ

that these will be solutions of GR since the first term on the
right-hand side vanishes.
At the same time, if we perturb Eq. (19) linearly in φ in

a fixed background metric that is a solution of GR and
compare with Eq. (11), we find that βðφ0Þ ¼ ðdα=dφÞφ¼φ0

and
T determine the value and sign of the effective mass square of
the perturbations, namely,

μ2eff ¼ −4πG�βðφ0ÞT: ð22Þ

For stars, one generally has T < 0. Hence, for a negative sign
of βðφ0Þ and the right magnitude of both quantities, the scalar
can develop a tachyonic instability around a spacetime that
describes stars in GR, as previously discussed and as studied
in detail by Harada (1997).5 It was shown by Novak (1998a)
that this instability is quenched by nonlinearities and that the
outcome is a NS with a nontrivial scalar-field configuration.
These scalarized NSs were shown by Damour and Esposito-
Farèse (1993) to have properties, such as their masses M and
radii R, that can be dramatically different from their GR
counterparts.
In much of the literature considering scalarization, the

function αðφÞ is taken to have the form6

α ¼ α0 þ β0φ≡ αDEF; ð23Þ

where α0 and β0 are dimensionless constants. Sometimes this
choice, rather that the more general action of Eq. (18), is
referred to as the DEF model. The constant α0 is then assumed

to vanish to allow for constant φ solutions [cf. Eq. (19)], or it is
assumed to be small. In the latter case, all stars will carry some
nontrivial scalar field, but by tuning down α0 any deviation
from GR would be undetectable until scalarization kicks in.
In its original formulation, the DEF model did not include a
bare mass or self-interactions for the scalar, but a potential
VðφÞ can be added to the action and this option has been
considered in the literature by Chen, Suyama, and Yokoyama
(2015), Popchev (2015), and Ramazanoğlu and Pretorius
(2016), as we see in Sec. III.
Thus far it appears that the DEF model is not covered by our

minimal action (14), because of our earlier assumption that the
scalar does not couple to the matter. However, by defining
A2ðφÞgμν as a new metric and rewriting the action (18) in
terms of that new metric, the scalar field is no longer coupled
to matter. This is referred to as the Jordan frame. It was shown
by Andreou et al. (2019) that, at linearized level and after a
suitable scalar-field redefinition, the DEF model is equivalent
to the action

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½ð1 − 1
4
β0φ

2ÞR − 1
2
∇μφ∇μφ�

þ Sm½Ψm; gμν�: ð24Þ

Equation (24) is indeed a particular case of the action (14) in
which γ1 ¼ 1, γ2 ¼ α ¼ Λ ¼ 0, and β ¼ β0. Hence, the DEF
model, with regard to the onset of the tachyonic instability that
leads to scalarization, is captured by the minimal action (14)
and corresponds to one of the two couplings to curvature that
can trigger scalarization.
Before moving on, we mention that the original formulation

of the DEF model, which leads directly to Eq. (19), suggests
that it is the coupling to matter that controls and triggers
scalarization. Indeed, when T ¼ 0, as is the case for BHs,
Eq. (19) becomes □φ ¼ 0 and admits only constant φ
solutions for stationary and asymptotically flat configurations
by virtue of a no-hair theorem by Hawking (1972) [this
remains true when one includes a potential; see Sotiriou and
Faraoni (2012)]. However, our previous analysis and the
correspondence between the DEF model and action (24) at
the linearized level makes it clear that the DEF model is part of
a broader class of theories in which scalarization is present and
controlled by the couplings to curvature, rather than matter,
and this observation has been crucial for the development
of models that exhibit BH scalarization. It is the fact that R
and T are related through the trace of the theory’s generalized
Einstein equation [cf. Eq. (21)] that allows for both inter-
pretations in the DEF model.

3. Scalar-Gauss-Bonnet gravity

It was first shown by Doneva and Yazadjiev (2018b) and
Silva et al. (2018) that theories described by the scalar-Gauss-
Bonnet (sGB) action

S¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½R− 1
2
∇μφ∇μφþ fðφÞG� þ Sm½Ψm;gμν�

ð25Þ

5Exceptions exist [see Mendes, Matsas, and Vanzella (2014a)], as
discussed in Sec. III.A.

6Damour and Esposito-Farèse (1993) also studied the case in which
A¼ cosð ffiffiffi

6
p

φÞ and hence α¼−
ffiffiffi
6

p
tanð ffiffiffi

6
p

φÞ≈−6φþ12φ3þ���,
which includes higher powers in the scalar-field-matter interaction
series (23) for α0 ¼ 0 and β0 ¼ −6.
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can exhibit BH scalarization provided that ðdf=dφÞφ¼φ0
¼ 0

for some constant φ0. This is an existence condition
for constant φ configurations that are solutions of GR.
As proven by Silva et al. (2018), BH solutions of GR
are unique solutions to the theory (25) provided that
ðd2f=dφ2Þφ¼φ0

G < 0. To understand this, we can proceed
as follows. By varying the action with respect to φ, we find

□φþ f;φðφÞG ¼ 0; f;φðφÞ ¼ df=dφ: ð26Þ

Once again, we can consider linear perturbation of φ on a
fixed background and compare with Eq. (11). We find that
ðd2f=dφ2Þφ¼φ0

G plays the role of an effective mass square for
the scalar perturbations,

μ2eff ¼ −ðd2f=dφ2Þφ¼φ0
G: ð27Þ

Hence, violating the condition ðd2f=dφ2Þφ¼φ0
G < 0 is neces-

sary but not sufficient to develop a tachyonic instability that
can lead to scalarization.
Doneva and Yazadjiev (2018b) chose fðφÞ to be fðφÞ ¼

λ2ð1 − e−3=2φ
2Þ=12, whereas Silva et al. (2018) focused on

fðφÞ ¼ αφ2=2. Note that, in the linearized theory around φ ¼
φ0 and provided that the condition ðdf=dφÞφ¼φ0

¼ 0 is
satisfied, any choice of fðφÞ is equivalent to fðφÞ¼αφ2=2.
Hence, all scalarization models described by action (25) are
captured by the minimal action (14) and, in particular, by the
coupling between the scalar and the Gauss-Bonnet invariant
in regard to the onset of scalarization. However, different
choices of fðφÞ will exhibit different behavior in the
nonlinear regime, and hence scalarized BHs will generally
have different properties.
Indeed, it was shown by Blázquez-Salcedo et al. (2018) that

the static, spherically symmetric scalarized BHs that were
found by Silva et al. (2018) for fðφÞ ¼ αϕ2=2 are unstable
against radial perturbations, unlike their counterparts for
fðφÞ ¼ λ2ð1 − e−3=2φ

2Þ=12 found by Doneva and Yazadjiev
(2018b). Silva et al. (2019) later demonstrated by examining
the case fðφÞ ¼ αφ2=2þ ξφ4 that it is indeed the nonlinearity
in φ that controls the stability of scalarized BHs. It was further
shown by Macedo et al. (2019) and Minamitsuji and Ikeda
(2019b) that a quartic scalar-field self-interaction would be
sufficient to make scalarized BHs stable for the fðφÞ ¼ αφ2=2
case. These results, which are discussed in Sec. IV, are a clear
demonstration that, although the onset of scalarization can be
described fully using action (14), the end point of the
tachyonic instability and the properties of the scalarized
configurations will depend on the nonlinear interaction
between the scalar and the curvature and are thus model
dependent.
We remark that models described by action (25) lead to

scalarization of compact stars as well for certain regions of
their parameter spaces; see Doneva and Yazadjiev (2018a) and
Silva et al. (2018).

4. The Ricci-Gauss-Bonnet model

As we have seen, the DEF model and the sGB models of
scalarization correspond, respectively, to the φ2R and φ2G

terms (in addition to R and the canonical kinetic term for the
scalar field) in the minimal action (14). We have also argued
that these two terms are the only terms that can trigger
scalarization as a tachyonic instability around a spacetime that
is a solution of GR. These facts together suggest considering
the following action (Antoniou, Bordin, and Sotiriou, 2021;
Antoniou et al., 2021):

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 1
2
∇μφ∇μφ − 1

4
βφ2Rþ1

2
αφ2G�

þ Sm½Ψm; gμν�. ð28Þ

This theory is interesting from the perspective of an effective
field theory (EFT). The previously considered terms can be
seen as part of anEFT in which the scalar field enjoys
reflection symmetry (i.e., invariance under φ → −φ), while
shift symmetry (i.e., invariance under φ → φþ const) is
broken only by the coupling to the curvature scalars. This
theory is not a complete EFT, as there are other operators
compatible with these symmetries, such as φ4R and
Gμν∇μφ∇νφ. Nonetheless, the theory is phenomenologically
interesting for various reasons.
To begin, it has GR with a constant scalar field as a late-time

cosmic attractor for β > 0 (Antoniou, Bordin, and Sotiriou,
2021). To appreciate why this is important, recall that one can
think of scalarization in terms of a tachyonic instability of
compact object configurations that are solutions of GR with
φ ¼ φ0. Below the threshold of this instability, these con-
figurations are expected to be stable and exhibit no deviation
from GR. The attractive feature of scalarization is that weakly
gravitating systems will belong in this category and hence
scalarization can be a form of weak-field screening of the
scalar field. However, this argument assumes that φ ¼ φ0

everywhere in the Universe and deviates from this value only
due to scalarization. If there were another reason for φ to
evolve away from φ0, this would make even weakly gravi-
tating objects develop a nontrivial scalar configuration.
Cosmic evolution can indeed cause such evolution, as shown
by Damour and Nordtvedt (1993), to the extent that weakly
gravitating systems would become sufficiently scalarized to
make the DEF model (Anderson, Yunes, and Barausse, 2016)
and sGB scalarization models (Anson et al., 2019; Franchini
and Sotiriou, 2020) fail weak-field and cosmological tests of
gravity without severely fine-tuning the initial conditions for
cosmic evolution.
The theory described by action (28) provides an elegant

solution to this problem (Antoniou, Bordin, and Sotiriou,
2021). As pointed out by Damour and Nordtvedt (1993), the
DEF model has GR as a cosmic attractor for β0 > 0, whereas
scalarization requires β0 to be sufficiently negative. It was
already mentioned that, at the linearized level around a GR
background, the DEF model is equivalent to action (24), so it is
reasonable to expect that the φ2R term in action (28) would tend
to drive the scalar field to a constant in late-time cosmology.
Moreover, this term should be dominant over the φ2G term at
low curvatures, while the latter should dominate at high
curvatures and trigger scalarization. It was indeed shown by
Antoniou, Bordin, and Sotiriou (2021) that cosmic evolution
in the model of action (28) tracks the cosmic evolution of GR
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from radiation domination onward, and that φ is driven to φ0

rapidly during matter domination.
It was also shown by Antoniou et al. (2021) and Ventagli

et al. (2021) that for β > 0 one can have a range of values for α
in which BHs scalarize but NSs do not. This is interesting
because the strongest constraints on scalarization thus far, and
specifically the DEF model, are based on binary pulsars
(Kramer et al., 2021; Zhao et al., 2022). These constraints can
be evaded if scalarization is limited to BHs. Antoniou et al.
(2021) also provided strong indication that scalarized BHs
should be radially stable for β > 0, which is not the case for
β ¼ 0. Both of these issues are discussed in Sec. IV.
In summary, adding a βφ2R term with β > 0 to the simplest

sGB scalarization model addresses a series of concerns. This
term would be there anyway in an EFT, as it has lower mass
dimensions than φ2G. These considerations should act as a
reminder that scalarization theories are currently still toy
models in need of a completion.

5. Tensor-multi-scalar theories

Thus far we have considered theories with a single field, but
one could also study scalarization in models with multiple
scalar fields. These tensor-multi-scalar theories were studied
by Damour and Esposito-Farèse (1992), and in their simplest
form they are described by the action

S ¼ 1

16πG�

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2γabðφÞ∇μφ
a∇μφb − 4VðφÞ�

þ Sm½Ψm;A2ðφÞgμν�; ð29Þ

where φ denotes a multiplet of N scalar fields fφ1;…;φNg
and γabðφÞ is a target-space metric that mixes their kinetic
terms. Equation (29) can be seen as a generalization of
action (18) to multiple fields. We return to this theory in
Sec. III, as it was studied in the context of scalarized NSs
by Horbatsch et al. (2015) and Doneva and Yazadjiev (2020a).
However, we emphasize that one could consider further
generalizations that involve, for example, couplings to the
Gauss-Bonnet invariant or further derivative interactions
between the scalar fields.

C. Types of scalarization

One can classify types of scalarization based on which
property of the compact object triggers scalarization and
controls the threshold of the tachyonic instability. As we
saw in our discussion of the model (14), it is the couplings
between the scalar and curvature invariants that control the
onset of scalarization. Therefore, if one thinks of the onset of
scalarization as an instability around a spacetime of GR, what
controls the onset reduces to how curvature invariants depend
on the properties of the object that curves spacetime.

1. Induced by compactness

For static, spherically symmetric BHs, there is a straight-
forward answer: in GR the exterior is described by the
Schwarzschild spacetime, so R ¼ 0 and G ¼ 48M2=r6, where
M is the mass of the BH and r is the areal radial coordinate.

Hence, for a given M, G scales monotonically with r and
whether the scalar will develop a negative enough effective
mass square outside the horizon is controlled by M, with
lighter BHs being susceptible to the scalarization instability.
The opposite trend is present in NS scalarization in the DEF
model: the trace of the energy-momentum tensor of the star is
what controls the onset, and for most equations of state (EOS)
its magnitude shows a steady increase as the radius decreases.
The tachyonic instability is stronger at the center of the star,
where the density is higher, and this in turn correlates with the
total mass of the star, with heavier stars scalarizing.
To unify these two pictures, one can observe that BHs get

more compact, in the sense of average mean density, as their
mass decreases, whereas for NSs it is the other way around for
most EOSs. Hence, how compact an object is plays a key role
in scalarization and can determine whether the object will be
affected by the tachyonic instability that triggers scalarization.
Although we colloquially refer to compactness as one of

the triggers of scalarization in the rest of the review, there
are some caveats that we ought to mention and on which we
further elaborate. First, compactness for BHs is often defined
in the literature as the mass over the horizon radius. By that
definition, unlike with the more colloquial meaning of the
term, Schwarzschild BHs of any mass have the same compact-
ness (but not the same curvature near the horizon). Second, for
NSs the relation between compactness and scalarization is
highly dependent on the EOS, and there are cases where the
tachyonic instability is not strongest at the center of the star.
Finally, as we next discuss, other properties of compact
objects also affect the value of curvature invariants, and hence
can also control scalarization.

2. Induced by spin

Rapidly rotating NSs in the context of scalarization were
first studied by Doneva et al. (2013). They showed that for
DEF-like models rapid rotation can enhance scalarization by
increasing the parameter space where scalarization can occur.
Conversely, it is also known that larger spin leads to weaker
scalarization for BHs in sGB gravity with d2f=dϕ2 < 0
(Cunha, Herdeiro, and Radu, 2019).
In suitable theories, spin can in itself induce a tachyonic

instability that triggers scalarization (Dima et al., 2020), and
spinning scalarized BHs in these theories were subsequently
constructed explicitly by Berti et al. (2021) and Herdeiro,
Radu et al. (2021). The fact that spin can trigger BH
scalarization (rather than just controlling the scalar charge)
is important because it opens up the possibility that only
rapidly rotating BHs carry scalar charge, irrespective of
their mass.
These results, as well as further work on scalarized rotating

compact objects that is discussed in Secs. III and IV, show that
spin, a ubiquitous property of astrophysical objects, can play
an important role in the amount of scalar charge that a
scalarized object carries.

3. Induced by matter or coupling to other fields

Thus far we have linked scalarization to a tachyonic
instability at the perturbative level (although it is fundamen-
tally a nonperturbative effect), and we have focused on models
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in which that instability is controlled by the nonminimal
coupling to gravity. However, as we saw, in the DEF model
one can think of μ2eff as being controlled either by the trace of
the stress-energy tensor of matter T [see Eq. (22)] or by the
Ricci scalar R [see the action (24)]. The latter interpretation
has the advantage of providing a unified framework of
scalarization of BHs and stars as linked to a nonminimal
coupling to gravity, which is the perspective that we followed.
However, the former interpretation highlights that μ2eff in
Eq. (11) could instead be attributed to any type of coupling
between φ and another matter field.
For example, Stefanov, Yazadjiev, and Todorov (2008)

considered a scalar field coupled to nonlinear electrodynam-
ics, while Herdeiro et al. (2018) focused on Einstein-
Maxwell-scalar theory with the addition of the coupling
e−λφ

2

FμνFμν, where Fμν is the usual Faraday tensor. In both
cases it was shown that electrically charged BHs can develop
scalar hair through scalarization. Further work in this direction
is summarized in Sec. IV.C.
When μ2eff in Eq. (11) is thought of as being introduced by a

coupling to matter, one is also led to consider whether
surrounding matter, such as an accretion disk, a companion,
or the Galaxy, could scalarize a BH even in models where BHs
cannot scalarize in vacuum. It was shown by Cardoso et al.
(2013a, 2013b) that this can indeed occur in the DEF model.

4. Dynamical scalarization

Thus far we have discussed the scalarization of isolated
compact objects, but what happens when they form a binary?
As we alluded to, when we embed a NS in an ambient scalar-
field environment [which is the case for the nonvanishing α0 in
Eq. (23)], stars will always carry some small scalar charge,
and they can still nonperturbatively develop large charge
values when they scalarize. This is called induced scalariza-
tion (Salgado, Sudarsky, and Nucamendi, 1998), and binaries
provide a natural scenario for it to occur. Imagine two NSs,
each with its own compactness, such that one is scalarized
and the other is not. As the system inspirals, at some point the
nonscalarized NS will start experiencing the presence of the
scalar field sourced by its companion, and induced scalariza-
tion will then take place (Barausse et al., 2013).
Another, perhaps more dramatic, scenario is that of

dynamical scalarization. In this case, two nonscalarized
NSs can become scalarized once their orbital separation
becomes sufficiently small. Qualitatively this can be quanti-
fied by some measure of an “effective compactness” of the
binary that, only for an isolated NS, can trigger scalarization
once it reaches a certain threshold (Palenzuela et al., 2014;
Shibata et al., 2014; Taniguchi, Shibata, and Buonanno,
2015). In a quasicircular binary this effective compactness
only increases (it scales inversely with the orbital separation),
but that does not have to be the case in an eccentric orbit. In
such cases, the effective compactness oscillates in time, being
largest when the NSs are closest. This leads to a transient
dynamical scalarization of the system, whereby the two NSs
continuously scalarize and descalarize as the system inspirals.
What about BHs? In sGB models the scalar field is sourced

by the Gauss-Bonnet invariant, and therefore a binary com-
posed of two scalarized BHs would in general result in an

unscalarized BH remnant since the latter has a larger mass and
therefore a smaller spacetime curvature. That is, the system
descalarizes (Silva, Witek et al., 2021). However, depending
on the initial nonscalarized BHs’ spins and masses, one can
have cases where the remnant scalarizes due to its large
spin, i.e., there can be dynamical spin-induced scalarization
(Elley et al., 2022).
As we have seen, compact binaries lead to new mani-

festations of scalarization. We further discuss these in
Secs. III and IV.

5. Beyond scalarization

Thus far we have discussed scalarizations as a linear,
tachyonic instability for a scalar field that is then quenched
nonlinearly and leads to a nontrivial scalar configuration.
There are many ways to extend this paradigm and yet keep the
key outcome: to have fields that undergo what resembles a
phase transition—a (sharp change from a trivial to a nontrivial
configuration) in the strong-field regime.
One direction is to generalize the mechanism to different

fields, such as vectors, tensors, and spinors, generating
models of spontaneous vectorization, tensorization, or spino-
rization (Ramazanoğlu, 2017, 2018a, 2018b, 2018c). Another
approach would be to construct models in which the transition
is triggered not by a tachyonic instability but by some other
linear instability (Ramazanoğlu, 2018a). Both of these direc-
tions are discussed in Sec. V. A third direction comes from
the possibility that the transition might not be triggered by a
linear instability, but might instead be a fully nonlinear effect
(Doneva and Yazadjiev, 2022). It was shown that if one
chooses fðφÞ ¼ expðβφ4Þ in the action (25), one obtains a
theory in which scalar perturbations are massless around Kerr
BHs, and hence there cannot be any linear tachyonic insta-
bility. Yet, stable scalarized solutions still exist for certain
masses and spins.

D. Quantum aspects and classical analogs

While most of this review deals with scalarization from a
classical field theory perspective, it is noteworthy to comment
on the quantum aspects of this phenomenon. In particular,
Lima, Matsas, and Vanzella (2010) studied a quantum scalar
field nonminimally coupled to gravity living in the classical
background of a compact star spacetime (i.e., they worked in
the semiclassical approximation). They showed that some
field modes can go through an exponential growth causing the
vacuum expectation value of the field operator φ̂2 to grow,
ultimately causing the vacuum expectation value of the
energy-momentum tensor T̂μν of the field itself to grow in
the same manner; see also Lima and Vanzella (2010). In this
sense, one can say that classical curved spacetimes can
“awake the vacuum state” of quantum fields. But what is
the connection with spontaneous scalarization? The model
studied by Lima, Matsas, and Vanzella (2010) is simply
Eq. (24) for a massive scalar field: the Jordan-frame equivalent
of the DEF model for a massive scalar. In the parameter space
spanned by the scalar-field–Ricci-scalar coupling constant
and stellar compactness relevant to our discussion, the regions
where the instability occurs agree with the classical prediction
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to where scalarization should happen, as shown by Pani,
Cardoso et al. (2011). Thus, one can think of the classical
“scalar-field perturbations,” which we have so often spoken
about to be seeded by quantum field fluctuations (Landulfo
et al., 2015). We refer the interested reader to Landulfo et al.
(2012), Lima et al. (2013), Mendes, Matsas, and Vanzella
(2014a, 2014b), and Santiago et al. (2016) for other works on
the semiclassical approach.
Finally, while our review focuses on astrophysical impli-

cations of scalarization, we remark that the realization of this
effect in condensed matter systems has also been studied.
More specifically Ribeiro and Vanzella (2020) devised a
classical analog that exhibits this phenomenon based on the
nonlinear optics of metamaterials, and this could in principle
be observed experimentally.

III. NEUTRON STAR SCALARIZATION

Scalarization of compact objects was first considered in
the context of NSs by Damour and Esposito-Farèse (1993).
As discussed in Sec. II, in this case the nonzero trace of the
energy-momentum tensor of the nuclear matter acts as a
source of the scalar field and evades the no-hair theorems
existing for vacuum BHs in certain scalar-tensor theories.
Since then, the scalarized NSs in the DEF model have
attracted significant attention, and they are perhaps the most
studied compact objects beyond GR. Over the years, NS
scalarization has also been examined in other scalar-tensor
theories beyond the DEF model.
In this section, we present the developments in the field

over the past three decades. In Sec. III.A, we start with the
DEF model and its generalizations, placing a special emphasis
on the constraints coming from binary-pulsar observations.
In Sec. III.B, we proceed to the dynamics of such compact
objects, both isolated ones and those in binaries, discussing
their stability in addition to GW emission. In Sec. III.C, we
discuss the various astrophysical implications of scalarized
NSs. Finally, in Sec. III.D we review NSs scalarization beyond
the DEF model.

A. Equilibrium neutron stars in the DEF model

In this section, we review the equilibrium properties of NSs
in the DEF theory, both in its original form and in extensions
of the theory. The strongest constraints on the former come
from binary-pulsar constraints, which we also discuss here.

1. The original Damour–Esposito-Farèse model
and binary-pulsar constraints

a. Static neutron stars

As we saw in Sec. II.B.2, the effective mass squared of
scalar-field perturbations in the DEF model is given by
Eq. (22), namely,

μ2eff ¼ −4πG�βðφ0ÞT;

where we recall that βðφ0Þ is the derivative of the scalar-matter
coupling αðφÞ evaluated at a constant background scalar-field
value φ0. Thus, the condition for scalarization μ2eff < 0 can be

satisfied when the trace of the energy-momentum tensor T
and βðφ0Þ have the same sign. For realistic NSs, which
are modeled as a perfect fluid with pressure p and energy
density ε, we normally have

T ¼ 3p − ε < 0; ð30Þ

and hence scalarization can happen when βðφ0Þ < 0. In
particular, for the coupling function (23) studied by Damour
and Esposito-Farèse (1993), we have βðφ0Þ ¼ β0 being a
constant. Thus, most studies focus on the case where both T
and β0 are negative, but we remark that at sufficiently high
densities some EOSs predict a positive sign of T, resulting in
scalarization when β0 > 0; see Mendes (2015) and Podkowka,
Mendes, and Poisson (2018). For most NS models, p and ε are
related by a barotropic EOS ε ¼ εðpÞ.
In Fig. 1 we show some properties of nonrotating scalarized

NSs for α0 ¼ 0 and some illustrative values of β0 < 0. Here in
Sec. III.A.1, we consider the case of a vanishing scalar-field
potential as in the original DEF model. The influence of a
nonzero potential is further discussed later. The EOS is taken
to be that of Akmal, Pandharipande, and Ravenhall (APR)
(Akmal, Pandharipande, and Ravenhall, 1998). In the left
panel of Fig. 1, we show the Einstein-frame Arnowitt-Deser-
Misner (ADM) mass of a sequence of NS solutions, para-
metrized by the energy density at the center of the star εc.
When α0 ¼ 0, NS solutions of GR are also solutions of the

DEF model; they are indicated by solid black lines. These
solutions are characterized by having a zero scalar field. We
see that when a specific critical central energy-density value is
reached (say, εc;1), the GR sequence becomes unstable and a
new branch of stable solutions with a nontrivial scalar
field (i.e., scalarized stars) bifurcates from it. In our example,
the value of εc;1 depends only on β0 and on the EOS. The
scalarized branch merges again with the GR branch at a
second bifurcation point at a larger energy density εc;2. Hence,
scalarized NSs exist only in the range εc ∈ ½εc;1; εc;2�. We see
that the larger jβ0j becomes, the more dramatic the deviations
in the NS mass relative to GR are. In addition, the range of εc
in which scalarization can happen increases. This is also
shown in the middle panel of Fig. 1, where we plot the ADM
mass as a function of the radius R, and in the right panel of
Fig. 1, where we show the scalar chargeD as a function of the
ADM mass. The scalar charge is defined in terms of an
expansion at spatial infinity of the scalar field φ, namely,

φ ¼ φ0 þD=rþOðr−2Þ; ð31Þ

where φ0 is the cosmological background value of φ, often
assumed to be zero for simplicity. The right panel of Fig. 1
shows howD has a small magnitude near the bifurcation point
where scalarization kicks in, grows monotonically with M,
and then approaches zero again once M approaches the mass
corresponding to the second bifurcation point at εc;2.
For which values of β0 does scalarization occur? Recall that

the effective potential Veff needs to be sufficiently negative in
order to support at least one tachyonic mode; cf. Eqs. (9)
and (10). For typical NS densities, Eq. (22) implies that
scalarization exists for β0 ≲ −4. Damour and Esposito-Farèse
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(1993) made this estimate using a Newtonian approximation
and confirmed it by integrating the fully relativistic equations
of stellar equilibrium. Subsequent works refined the threshold
for scalarization to β0 ≲ −4.35 and also showed that this
bound is not very sensitive to the EOS (Novak, 1998b; Silva
et al., 2015; Altaha Motahar et al., 2017). We note that, similar
to the GR branch of NSs, scalarized solutions in the original
DEF model are stable up to the maximum mass of the
corresponding branch,7 and the stable solutions are generally
energetically favorable over the GR NSs. This is further
discussed in Sec. III.B.1.
Let us briefly comment on the exact definition of mass in

scalar-tensor theories (shown in Fig. 1 and elsewhere). In
contrast to GR, the definition of mass in scalar-tensor theories
is subtle due to the fact that these theories violate the strong
equivalence principle. This results in the appearance of
different possible masses as a measure of the total energy
of the star (Lee, 1974; Scheel, Shapiro, and Teukolsky, 1995a,
1995b; Whinnett, 1999; Yazadjiev, 1999). These works
showed that only the so-called tensor mass has natural
energylike properties. For example, the tensor mass is positive
definite, it decreases monotonically by the emission of GWs,
and it is well defined even in dynamical spacetimes (Lee,
1974; Scheel, Shapiro, and Teukolsky, 1995a, 1995b). In
addition, only the tensor mass leads to a physically acceptable
picture since it peaks at the same point as the particle number,
a property crucial for the stability of the static stars (Whinnett,
1999; Yazadjiev, 1999). Therefore, the tensor mass, which is
defined as the ADM mass in the Einstein frame, should be
taken as the physical mass. As a matter of fact, though, for
most of the commonly used coupling functions the Jordan-
frame and the Einstein-frame NS masses are identical.
After the discovery of the phenomenon, scalarization was

examined for a larger set of parameters and in more detail by
Damour and Esposito-Farèse (1996a). They showed that the
presence of some externally imposed scalar-field background
φ0, as well as considering α0 ≠ 0, smoothens the transition to
a scalarized state. This is what we described as induced

scalarization in Sec. II.C.4. (Strictly speaking, we do not have
pure scalarization when α0 ≠ 0, since GR is no longer a
solution of the field equations.) Spontaneous scalarization was
further studied by Salgado, Sudarsky, and Nucamendi (1998),
who considered the problem in the Jordan frame and per-
formed an approximate Newtonian analysis of the system.
They showed that scalarization can also be associated with the
fact that the effective gravitational constant in scalar-tensor
theories decreases for large scalar fields. It was further argued
by Whinnett and Torres (2004) that scalarization leads to
violation of the weak energy condition in the inner regions of
NSs, which can cause instabilities. It was later demonstrated
by Salgado, Sudarsky, and Nucamendi (2004) that this is not a
general feature of scalar-tensor theories and that there are
subclasses of the theory where the weak energy condition is
easily satisfied.
Another consequence of scalarization is that for sufficiently

large β0 the maximum allowed mass for NSs increases
compared to GR,8 which can have various observational
consequences. This problem was studied by Sotani and
Kokkotas (2017), who took the effects of various micro-
physics parameters into account. Empirical relations were
derived for the maximum mass of scalarized NSs that are
parametrized with respect to the nuclear saturation parameters
and the maximum sound velocity in the core.
Until now we have discussed works that considered

negative β0. However, as we mentioned, when the trace of
the energy-momentum tensor is positive, scalarization can
occur for β0 > 0 as well, and this scenario introduces
qualitative differences relative to our story thus far (Mendes,
2015). In particular, for the commonly used coupling function
αðφÞ ¼ β0φ of the DEF theory, scalarized stars are not stable
for high values of β0 (β0 ≫ 1), which is further discussed in
Sec. III.B.2.

FIG. 1. Some properties of NSs in the DEF model with α0 ¼ 0, β0 < 0, and using the APR EOS. We show the massM as a function of
the central energy density εc (left panel), the massM as a function of the radius R (middle panel), and the scalar chargeD as a function of
M (right panel). The solid black lines correspond to the GR solutions, which are also solutions in the DEF model. We use differently
colored lines to represent the scalarized branches for β0 ¼ −5.0;−4.8, and −4.5. NSs past the maximum mass in the M − εc plane are
unstable to radial oscillations. These sequences of stars are shown as dotted lines.

7For an exception in the case of a massive scalar field, see
Sec. III.A.2.

8This happens not only in scalar-tensor theories but also in other
modified gravity theories. Upper bounds on the maximum mass of
NSs in GR can be found under minimal assumptions on the EOS
using the approach of Rhoades and Ruffini (1974). See Hartle (1978)
for an early account of applications of this method to other gravity
theories.
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The calculation of NS parameters spanning the DEF theory
parameter space provides a challenging technical task. In
particular, tests of this theory against binary-pulsar observa-
tions (described in Sec. III.A.1.b) require knowledge of the
scalar charges (and their derivatives with respect to the star’s
mass) for a large catalog of EOSs. This calculation was
performed most extensively by Anderson and Yunes (2019)
and Guo, Zhao, and Shao (2021), who provided their results
in tabulated form or through surrogate models. Yagi and
Stepniczka (2021) [see also Horbatsch and Burgess (2011)]
computed scalar charges in the DEF model analytically using
a combination of perturbative weak-field expansion and Padé
resummation and found excellent agreement with numerical
calculations.
Spontaneous scalarization for the case of several nearby

compact objects was considered by Cardoso, Foschi, and
Zilhao (2020). Their analytical analysis showed that, even
though an isolated body might be below the threshold for
scalarization, a collection of such bodies could develop a
nonzero scalar field while maintaining average compactness
much below the scalarization limit.
We have already discussed spontaneous scalarization of

NSs, but other compact objects can also scalarize. The case of
BHs is considered in Sec. IV, but as an additional nonvacuum
example we now discuss the case of boson stars [cf. Liebling
and Palenzuela (2023) for a review], which were also shown
to scalarize (Whinnett, 2000). In such systems, one has a
complex scalar field as a matter source for the boson star and
an additional real scalar field responsible for scalarization
similar to the DEF model. The dynamics of this process was
examined by Alcubierre et al. (2010), who showed that
nonlinear development of the scalar field is observed in the
absence of self-interactions in the complex scalar field. Ruiz
et al. (2012) studied spontaneous and induced scalarization
starting with initial data corresponding to stable boson stars in
GR. They showed that a strong emission of scalar radiation
occurs during the scalarization process.

b. Observational constraints from binary pulsars

To date binary pulsars have set the best constraints on
scalarized NSs in the DEF models (Kramer et al., 2021; Zhao
et al., 2022). This is because determining different character-
istics of these systems through pulsar timing can be made
extremely precise by accumulating yearslong observations.
One of such important observables is the rate at which the
binary’s orbit decreases by energy loss through GWemission.
In contrast to GR, the DEF model has an additional scalar
degree of freedom that leads to a new channel of energy loss.
Thus, the shrinking of the orbit should happen faster. The
energy flux of the scalar-dipole radiation that gives the
dominant contribution is given by (Damour and Esposito-
Farèse, 1992)

Fdipole
scalar ¼ Að1þ q1q2Þ3ðq2 − q1Þ2; ð32Þ

where A is a function depending on the properties of
the binary, such as its total and reduced masses, and its
eccentricity; q2 and q1 are the scalar charges of each

binary component normalized with respect to their masses
qi ¼ Di=Mi (i ¼ 1 and 2).
Binary-pulsar observations were considered in the context

of scalarized NSs for the first time by Damour and Esposito-
Farèse (1996a). They calculated the gravitational form factors
(also known as sensitivities) of slowly rotating NSs, which
form the set of coupling constants appearing in the post-
Keplerian description of the binary in scalar-tensor theory; see
Horbatsch and Burgess (2012) for a summary. Only a few
such binary systems were known at the time, and β0 was
constrained to be greater than −5 using polytropic EOSs.
These results were later refined to include realistic EOSs, and
a limit of β0 > −4.5 was derived by Damour and Esposito-
Farèse (1998). In addition, an estimate was made that it
would be difficult for LIGO and VIRGO to improve β0
bounds for most EOS possibilities [some exceptions were
pointed out by Sampson et al. (2014) and Shao et al. (2017)].
The reason is that even though the merger events observed
using such GW detectors can lead to much stronger scalar-
dipole radiation, they are inferior in accuracy to the radio
observations of binary pulsars, leading to weaker overall
constraints. Next-generation detectors such as the Cosmic
Explorer and the Einstein Telescope, though, will be able to
improve the bounds on scalar-dipole radiation (Sampson
et al., 2014; Shao et al., 2017).
An example of how constraints can be imposed on DEF

models is presented in Fig. 2, which illustrates how the model

FIG. 2. Mass-mass diagram for the double pulsar PSR J0737-
3039A/B for the DEF model with α0 ¼ 5 × 10−4, β0 ¼ −4, and
the assumption that the NSs are described by EOS MPA1.
Various measured post-Keplerian parameters are shown as differ-
ent curves, with the width indicating the measurement uncertainty
in each parameter. For the point α0 ¼ 5 × 10−4 and β0 ¼ −4 of
the parameter space of the DEF model to be consistent with
observations, all curves would have to intersect in a region of the
mass-mass plane. This is not the case, as can be seen with the ω̇
(periastron advance) and Ṗb (change of orbital period) curves. For
further details and the definitions of the other post-Keplerian
parameters, see Kramer et al. (2021). From Kramer et al., 2021.
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fails the double pulsar test for specific values of the theory
parameters. In this case, the failure is due to the additional
energy loss from scalar GWs predicted by the DEF model,
predominantly the dipolar contribution.
With the advances in observational astronomy, more pulsars

in binary systems suitable for constraining the scalar-dipole
radiation have been discovered, a complete and up-to-date list
can be found in the paper by [139]Freire (2022).
Consequently, observational bounds on the scalar-tensor
gravity parameter β0 for such systems have been widely
discussed in the literature (Esposito-Farèse, 2004; Freire et al.,
2012; Antoniadis et al., 2013; Shibata et al., 2014; Wex, 2014;
Shao et al., 2017; Voisin et al., 2020; Kramer et al., 2021;
Chiba, 2022; Luo et al., 2022). The strongest current limit
comes from Zhao et al. (2022), who practically closed the
scalarization window for the original DEF model; i.e., the
possibility for scalarization is ruled out in this theory. As we
later discuss, though, there are a number of other well-
motivated models where scalarization is still possible or
cannot be constrained at all by binary-pulsar observations.
These include theories with a massive scalar field, tensor-
multi-scalar theories, or even the standard DEF model when
rapid rotation of NSs, which enhances the effect of scala-
rization, is considered. Furthermore, the theoretical and
numerical approaches developed for the study of the DEF
model are still applicable to these generalized theories in
most situations. Thus, we spend considerable time here on
the aspects of the DEF model, despite its original form being
essentially ruled out.
Constraints on scalarization with β0 > 0 using pulsar-

timing observations were investigated by Mendes and
Ottoni (2019). Owing to the fact that the scalar charge is
suppressed as β0 increases while the range of masses allowing
spontaneous scalarization decreases, it turns out that only
weak constraints can be imposed by binary-pulsar observa-
tions in this part of parameter space.

c. Rotating scalarized neutron stars

Thus far we have commented only on static NS models. All
observed NSs are at least slowly rotating, and some dynamical
processes such as NS mergers or stellar core collapse can
produce relatively long-lived rapidly rotating supramassive
protoneutron stars. Hence, the inclusion of rotation in NS
physics is an inseparable part of the goal to explore their
astrophysical implications.
Damour and Esposito-Farèse (1996a) were the first to study

slowly rotating scalarized NSs to leading order in rotation
frequency OðΩÞ using the formalism of Hartle (1967) and
Hartle and Thorne (1968), which allowed them to calculate the
NS moment of inertia; see also Sotani (2012). In this case
there is an exact analytical solution for the NS exterior
(Damour and Esposito-Farèse, 1996a). Static and slowly
rotating NSs for a wide range of realistic EOSs, including
examples with hyperons or quark matter, were considered by
Altaha Motahar et al. (2017). The extension to second order
in the rotational frequency OðΩ2Þ was made by Pani and
Berti (2014), who used the extension to calculate rotational
corrections to the stellar radius and mass, and also its
quadrupole moment.

Rapidly uniformly rotating scalarized stars, without
approximation, were obtained by Doneva et al. (2013).
They showed that for a fixed β0 the maximum deviation
from GR that is achieved at the mass-shedding limit is
considerably larger than in the static case, and the range of
central energy densities where scalarization is possible is
significantly broadened. This can be seen in Fig. 3, where
sequences of static scalarized NSs are compared to NSs
rotating at the Kepler limit for the same values of β0.
There are a number of factors leading to differences from

the static case. The first, more intuitive one is that the
rotational energy of the star also acts as a source for the
scalar field, and thus can change the onset and degree of
scalarization. Meanwhile, the rapidly rotating models tend to
be less compact, which can reduce the degree of scalarization.
The large deviations from GR compared to the static case,
conversely, are due mainly to the fact that scalarized stars can
sustain much larger angular momentum before reaching the
Kepler limit. This is a nonlinear effect that could not be
normally caught in the slow-rotation approximation.
A natural consequence of the aforementioned rotation

effects is that the minimum jβ0j where scalarization is possible
changes compared to the static case. Thus, for the same EOS II
(Diaz Alonso and Ibanez Cabanell, 1985) used by Damour
and Esposito-Farèse (1996a), scalarization happens for
β0 < −3.9 in rotating stars (Doneva et al., 2013), compared
to β0 < −4.35 in the static case (Damour and Esposito-Farèse,
1996a). Therefore, one can conclude that, although binary-
pulsar observations seem to rule out DEF scalarization for
static or slowly rotating NSs (Zhao et al., 2022), there is still
an observationally viable range of β0 where only rapidly
rotating NSs can scalarize. This is potentially relevant for
binary mergers and stellar core collapse, where such rapidly
rotating NSs can form.
A caveat in the previous argument is that one does not

expect the star to rotate uniformly in these extremely
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FIG. 3. Mass-radius relation for NSs in the DEF model for
β0 ¼ 0;−4.5, and −4.8 and employing the APR EOS. Non-
rotating NSs are shown as solid curves, whereas stars rotating at
the mass-shedding limitare depicted as dashed lines. As in Fig. 1,
stars unstable to radial oscillations are shown as dotted lines. The
radius of rotating stars refers to their equatorial radius.
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dynamical events. Such differential rotation was first studied
by Doneva, Yazadjiev et al. (2018), who adopted a
simple rotation law that can still capture some of the main
properties of the merger remnants, especially a few tens of
milliseconds after the merger of the binary (Bauswein and
Stergioulas, 2017).
When scalarization is considered, larger values of the

maximum mass as well as of the angular momentum
can be achieved for supramassive NSs compared to GR.
Moreover, the scalar field causes rapidly rotating models to be
less quasitoroidal than their general-relativistic counterparts.
This can have direct astrophysical implications, especially
for binary NS mergers, where the maximum possible mass
and angular momentum that a NS can sustain are crucial for
determining the merger outcome and the lifetime of the
merger remnant (in case a supramassive or hypermassive
NS forms9); see Bauswein, Baumgarte, and Janka (2013),
Takami, Rezzolla, and Baiotti (2014), Bauswein and
Stergioulas (2017), and Weih, Most, and Rezzolla (2018).

2. Massive scalar field

A key property of scalar-tensor theories that was neglected
in the previously discussed studies is the possibility of having
a nonzero scalar-field potential. The simplest case is to take a
potential that leads to a nonzero scalar-field mass μ, but more
complicated potentials, such as those with self-interaction
terms, can be considered as well; see Eq. (2). Although this
seems like a simple extension, it has a dramatic effect on the
observational properties of NSs, especially on the GW
emission. The reason lies in the different asymptotic behavior
of the scalar field. In the case of zero potential, the scalar field
decreases as D=r at infinity according to Eq. (31). This leads
to a nonzero scalar charge D and thus nonzero scalar-dipole
radiation. In the presence of nonzero scalar-field mass μ,
though, the scalar field tends exponentially to zero after some
characteristic distance related to its Compton wavelength
λφ ¼ 2π=μ, as discussed by Ramazanoğlu and Pretorius
(2016). Hence, the scalar field is effectively confined to a
characteristic radius and its scalar charge is zero. If the orbital
separation between the two objects in a binary-pulsar system
is much larger that λφ, the dynamics will not be directly altered
by the scalar field and there is no significant emission of
scalar-dipole radiation (Alsing et al., 2012). Since λφ is
controlled by μ in the simplest case of a scalar-field potential,
one can reconcile the DEF model (for arbitrarily small β0)
with binary-pulsar constraints by giving the scalar field a
mass μ≳ 10−16 eV.
Scalarized NSs in massive scalar-tensor theories were first

studied in the static case (Chen, Suyama, and Yokoyama,
2015; Popchev, 2015; Ramazanoğlu and Pretorius, 2016) and
later extended to slow (Yazadjiev, Doneva, and Popchev,
2016) and rapid rotation (Doneva and Yazadjiev, 2016). The
inclusion of a quartic self-interaction term to the potential was

considered by Staykov et al. (2018). These works showed that
the mass of the scalar field and the self-interaction have
similar effects on the scalar field around NSs and that they
both suppress scalarization. The quartic interaction by itself
cannot affect the range of central energy densities where
scalarized solutions exist, because it is a nonlinear contribu-
tion to the linearized scalar-field equation of motion [recall
Eq. (11)]. In contrast, the mass term shrinks the domain of
existence of scalarized NSs and, for large enough masses, no
scalarization is possible at all. This is evident in Fig. 4, where
NS mass is plotted as a function of its radius for different
combinations of β0 and μ. The massive scalar-field solutions
are confined between the zero scalar-field mass models (the
original DEF models) and the GR ones, corresponding loosely
speaking to μ → ∞. Note that for μ≳ 10−16 eV the solutions
are almost indistinguishable from the massless DEF model.
For this reason the latter represents an upper limit on the
possible deviations from GR in massive scalar-tensor theories.
The exponential asymptotic behavior of the massive scalar

field brings computational challenges to the construction
of scalarized NSs, which led to new numerical approaches
(Rosca-Mead, Moore et al., 2020) and also facilitated the
construction of NSs for highly negative β0 and large scalar-
field masses. Rosca-Mead, Moore et al. (2020) showed that
for sufficiently negative β0 qualitative changes in the strongly
scalarized branch of solutions are possible. For example, the
maximum of the scalar field can be located away from the
stellar center. In their most extreme form, these solutions are
composed of a highly compact NS model surrounded by a
scalar-field shell. Tuna, Ünlütürk, and Ramazanoğlu (2022)
showed that some scalarized solutions in this part of the
ðβ0; μÞ-parameter space gave indications of metastability: they
were stable to small perturbations but had lower binding
energy than their GR counterparts.
An extension of these results to other forms of coupling

functions and scalar-field potentials is the asymmetron model
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FIG. 4. Mass as a function of radius for the APR4 EOS. The
results for different values of the coupling constant β0 and mass
of the scalar field μ, given in eV, are plotted. The potential is
assumed to have the form VðφÞ ¼ ðμ2=2Þφ2, with the scalar field
defined though the action (25). From Yazadjiev, Doneva, and
Popchev, 2016.

9Supramassive NSs do not have a stable static limit but are
supported against collapse due to rapid rotation. Hypermassive
NSs do not have a stable uniformly rotating limit but are supported
against collapse due to differential rotation (Paschalidis and
Stergioulas, 2017).
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(Chen, Suyama, and Yokoyama, 2015; Morisaki and Suyama,
2017). It is interesting because of the fact that the asymmetron
model realizes proper cosmic evolution, and it can also
account for the cold dark matter. Chen, Suyama, and
Yokoyama (2015) and Morisaki and Suyama (2017) focused
especially on large scalar-field masses spanning several orders
of magnitude and having a Compton wavelength shorter than
10 km, which is the typical size of a neutron star.

3. Incorporating further physics

New aspects of the original DEF model were recently
studied with the inclusion of different physical details. For
instance, Silva et al. (2015) studied the presence of anisotropic
pressure of nuclear matter for both static and slowly rotating
NSs. The motivation for this comes from the fact that some
theoretical considerations, for instance, with magnetic fields
or within the Skyrme model (a low-energy EFT of quantum
chromodynamics) (Nelmes and Piette, 2012), suggest that at
high densities the NS EOS might have a significant degree of
anisotropy (Herrera and Santos, 1997). In such a case, the
effects of scalarization increase (decrease) when the tangential
pressure is larger (smaller) than the radial pressure. The
threshold value of β0 for the development of scalarization,
which in the isotropic case is β0 < −4.35, can be increased
due to the presence of anisotropy, thus widening the range of
parameters in which scalarization is possible.
Another astrophysically interesting extension of scalariza-

tion is to include the magnetic fields. According to observa-
tions and modeling, NS magnetic field values can span from
108 to 1012 G for standard “old” pulsars, ranging from 1016 G
at the surface of some magnetars to, hypothetically, as high as
1017–1018 G in the cores of newly formed protoneutron stars.
Such strong magnetic fields impact the properties of scalarized
NSs, including their magnetic deformability, maximum mass,
and range of scalarization, as studied by Soldateschi,
Bucciantini, and Del Zanna (2020). They found a magneti-
cally induced spontaneous scalarization whose essence is the
following: strong toroidal magnetic fields can support desca-
larized configurations and, if the star’s magnetic field
decreases during some nonideal magnetohydrodynamical
process, the star can undergo a rapid growth of the scalar
field; i.e., it scalarizes. The magnetic quadrupolar deforma-
tions of scalarized NSs and the related GWs produced by
rotating magnetars were studied by Soldateschi, Bucciantini,
and Del Zanna (2021).
Another interesting extension to the standard DEF model is

related to challenging the idea that the fundamental physics
remains unchanged in the star’s interior, which is a common
assumption when a nuclear matter EOS is constructed. This
was studied by Coates, Horbartsch, and Sotiriou (2017), who
considered two models in which the mass of the photon had a
different value in the interior and the vicinity of a compact star
compared to the mass measured by experiments performed in
a weak-gravity regime. The first model is based on a Proca-
like mass with an effective mass term dependent on φ. The
second model can be thought of as a gravitational Higgs
mechanism where the Higgs potential is replaced by the
scalar-gravity coupling. In both cases the scalar field under-
goes spontaneous scalarization, thus acquiring a nontrivial

profile if the compactness passes a certain threshold, provid-
ing a mass to the photon by coupling to it in an appropriate
manner. Although the focus of Coates, Horbartsch, and
Sotiriou (2017) was on the electromagnetic field as a proof
of principle, these results can be extended to other fields of the
standard model. The signatures of such a gravitational Higgs
mechanism on the behavior of magnetic field of NSs in
Einstein-Maxwell theory was studied by Krall, Coates, and
Kokkotas (2020).

B. Dynamics of scalarized neutron stars and binary mergers

The dynamics of isolated NSs can be studied by solving the
full nonlinear field equations of scalar-tensor gravity, which is
often a challenging task. Instead, one usually first approaches
the problem by linearizing the field equations around a
background solution and then analyzing the resulting linear-
ized dynamics. The study of nonlinear dynamics is then done
when necessary and feasible. We follow this sequence in
Secs. III.B.1–III.B.4. We then review what happens when NSs
in scalar-tensor theories are placed in binary systems.

1. Linearized dynamics

The studies of linearized dynamics concern the stability of
scalarized stars and the analysis of their quasinormal mode
(QNM) spectrum. The latter involves the study of different
classes of NS oscillation modes that are tied to the emission of
GWs. See Kokkotas and Schmidt (1999) for a review.

a. Stability

We have seen that scalarized NSs coexist with their non-
scalarized counterparts as solutions within the DEF model.
Which of these branches of solutions is the one realizable in
nature? One way of answering this question consists of
calculating the fractional binding energy M0=M − 1, where
M0 is the star’s baryonic mass. Through this calculation,
Damour and Esposito-Farèse (1993) showed that scalarized
NSs are usually energetically favored over the GR ones. This
is evident in Fig. 5, where we plot the binding energy as a
function of the baryonic mass. At constant baryonic mass, the
scalarized solutions (solid curve) have larger binding energies
relative to the GR solutions (dashed curve) and are thus
energetically favorable. In addition, we can see a cusp at the
maximum of the mass for both the scalarized and non-
scalarized NSs. This suggests a change of stability. Since
the branches beyond the maximum of the mass have a lower
binding energy (dotted curve in the inset), they are unstable.
The aforementioned stability analysis relied on the bulk

properties of the star. A rigorous complementary approach
considers the linear perturbations of the star. The first step in
this direction was taken by Harada (1997), who studied scalar-
field perturbation in the background of a NS with a zero (or
constant) scalar field within the DEF model. Harada (1997)
studied the perturbation equations in the frequency domain
and showed that the GR solution becomes unstable after a
specific critical central energy density. This is the point where
the scalarized solutions branch out from the GR ones; see
Fig. 1. Harada (1998) reached similar conclusions but worked
in the context of catastrophe theory. The radial stability of
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scalarized NSs was also studied by Mendes and Ortiz (2018).
They considered metric and scalar-field perturbations for both
signs of β0. They found that scalarized NSs are stable against
linear perturbations and that instability takes place past the
point of maximum mass.

b. Gravitational waves from perturbed NS

Linearized perturbations are also helpful for studying the
NS oscillation modes directly related to GWemission. We first
note that GWs in scalar-tensor gravity can carry additional
polarizations compared to GR. In particular, one can have
breathing modes in addition to the standard “plus” and “cross”
polarizations of GR (Will, 2018). Moreover, radial perturba-
tions in scalar-tensor gravity can excite GWs, contrary to what
happens in GR. These perturbations source monopole scalar

waves that result in a nonvanishing contribution to the
perturbed Jordan-frame Riemann tensor (linearized around
a Minkowski background) in the transverse-traceless gauge
(Damour and Esposito-Farèse, 1992; Novak and Ibanez,
2000). For DEF-like scalar-tensor theories, this requires
α0 ≠ 0. This contribution is then linked to the existence of
a breathing polarization mode of the GW. We can then
conclude that radially oscillating scalarized NSs in scalar-
tensor theories with α0 ≠ 0 will emit GWs. Their amplitude is
connected to α0 that controls the generation of tensorial waves
from the dynamics of the scalar field. Thus, larger α0 leads to
stronger coupling and stronger excitation of the breath-
ing modes.
The first study of radial oscillations of NSs in the DEF

model was performed by Sotani (2014) in the Cowling
approximation (Cowling, 1941; McDermott, Van Horn, and
Scholl, 1983). In the original GR version of this approxima-
tion, the spacetime is held fixed while only the fluid is
perturbed. In scalar-tensor gravity, the scalar-field perturba-
tions are also often neglected. Despite its limitations, the
Cowling approximation can actually capture well the quali-
tative features of the neutron star oscillation spectrum. The full
problem (i.e., when both the metric and the scalar-field
perturbations are taken into account) was addressed by
Mendes and Ortiz (2018). They found a new family of modes
named scalar modes that have no counterpart in GR. The
results show that they have distinct frequencies and damping
times compared to the fluid radial oscillation modes. In Fig. 6
we show the frequencies and damping times of the funda-
mental fluid radial oscillation mode and its first overtone, as
well as the fundamental scalar radial mode, as functions of the
stellar compactness. We see in Fig. 6(c) that scalarized NSs
become unstable at the maximum mass, and it is the scalar
mode that is responsible for the instability. This contrasts with
GR, where it is the fundamental radial fluid mode that
becomes unstable at the maximum of the mass.
Not only do the radial oscillations of scalarized NSs differ

significantly from those in the GR case, but the nonradial
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modes that are related to the tensorial gravitational wave
emission can be strongly influenced by the scalar field. The
behavior of nonradial oscillations modes, which are sources of
the usual tensor polarizations of GWs, can also be strongly
affected by the scalar field. These perturbations can be
classified as “polar” or “axial” depending on how they behave
under parity transformations (Regge and Wheeler, 1957;
Thorne and Campolattaro, 1967).
In particular, scalar-field perturbations are of the polar type,

meaning that they couple only to polar perturbations of the
fluid and metric. In GR, these perturbations are the most
efficient GW sources. Sotani and Kokkotas (2004) were the
first to study the nonradial oscillations of scalarized NSs. They
used the Cowling approximation, in which only polar-parity
fluid perturbations are dynamical. This simplifies the problem
considerably, and Sotani and Kokkotas (2004) calculated
the fundamental f-mode frequency and the pressure p-mode
frequency. In a follow-up work, Sotani and Kokkotas (2005)
went beyond the Cowling approximation and derived equa-
tions for both axial and polar perturbations that included
metric perturbations. They analyzed only the simpler axial
perturbations (discussed later). A study of polar perturbations
became possible only after new techniques were developed in
GR by Krüger and Kokkotas (2020a, 2020b). These tech-
niques were then used in scalar-tensor theory by Krüger and
Doneva (2021), who also considered self-interacting massive
scalar fields.10 Krüger and Doneva (2021) found that the scalar
field leaves clear imprints on the oscillation frequencies of
NSs. An extension of these results for rapidly rotating NSs,
but now back to the Cowling approximation, was made by
Yazadjiev, Doneva, and Kokkotas (2017). They also studied
the Chandrasekhar–Friedman-Schutz instability driven by
rotation (Chandrasekhar, 1970; Friedman and Schutz, 1978).
An interesting property of NS oscillations in GR is the

almost linear and EOS-independent relation between the
quadrupole (l ¼ 2) f-mode frequency and the average
density of the NS (Andersson and Kokkotas, 1998). Sotani
and Kokkotas (2004) and Krüger and Doneva (2021) showed
that this linear scaling is dramatically broken by scalarization.
We show this in Fig. 7, where we also see that the deviations
from GR increase with an increase of jβ0j.
Another class of modes that can be attributed, loosely

speaking, to the “oscillations” of the spacetime itself are the
axial spacetime w modes. These modes are somehow easier to
calculate (without approximations) because, in this case, the
perturbations of the fluid and the scalar field are zero. The
axial modes of scalarized NSs were considered for the first
time by Sotani and Kokkotas (2005), who calculated the
frequencies and the damping times of different classes of w
modes. Extensions of these results to a variety of realistic
EOSs including nuclear, hyperonic, and hybrid matter were
carried out by Altaha Motahar et al. (2018), while the case of
massive self-interacting scalar fields was studied by Altaha
Motahar et al. (2019). Numerical calculations showed that the
effect of scalarization is stronger on the damping times than

the effect on the frequencies, and in general the values of both
are lower than their GR values. In addition, EOS-independent
relations between w-mode properties known to exist in GR
can also be obtained in scalar-tensor theory.
A class of NS modes related to the crustal torsional

oscillation was studied by Silva et al. (2014) for the DEF
model in the Cowling approximation. These oscillations
probably follow the giant flares in soft gamma-ray repeaters
(Israel et al., 2005; Strohmayer and Watts, 2005, 2006) and
are associated with motions in the NS crust. Silva et al. (2014)
found that, for values of β0 consistent with binary-pulsar
constraints at the time, the effect of scalarization on the
torsional oscillation frequencies is smaller than the uncertain-
ties in the microphysics modeling of the crust.

2. Nonlinear stability and collapse to a black hole

While the stability and oscillations of a scalarized NS can be
studied perturbatively, the formation of scalar hair starting from
a GR NS solution is a fully nonlinear process. More precisely
the initial exponential growth of the scalar field starting from an
unstable GR solution can be modeled by linearized dynamics,
but the subsequent saturation of the scalar field to an equilib-
rium value is a nonlinear phenomenon.
The transition from a nonscalarized to a scalarized NS

was first considered by Novak (1998a) [see also Degollado,
Salgado, and Alcubierre (2020)], who studied the nonlinear
evolution in spherical symmetry. The numerical simulations of
Novak (1998a) showed that the scalar field for an unstable GR
NS first grows exponentially and then saturates, with the
system saturating to an equilibrium scalarized end state.11

A consequence of the work by Novak (1998a) was the proof
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10See Staykov et al. (2015) and Blázquez-Salcedo, Scen Khoo,
and Kunz (2020) for a discussion of a case of massive scalar-tensor
theory that is mathematically equivalent to R2 gravity.

11A realistic astrophysical scenario for it is a low-mass NS that
cannot scalarize on its own. If this star accretes matter, its mass will
gradually increase, eventually crossing the point of instability and
then scalarizing.

Daniela D. Doneva et al.: Spontaneous scalarization

Rev. Mod. Phys., Vol. 96, No. 1, January–March 2024 015004-18



of nonlinear stability of scalarized NSs. That is, the numerical
simulations showed that the scalarized NSs have stable evo-
lution if the full nonlinear system of field equations (in spherical
symmetry) is considered. Although effort was not strictly
dedicated to a stability analysis, a fully nonlinear evolution
of scalarized NSs was performed in a series of papers that we
discuss later. This provides strong support for the stability of
these objects under the most general circumstances.
Novak (1998b) studied the collapse of a scalarized NS to a

BH in spherical symmetry. Since BH no-hair theorems include
DEF models [see Herdeiro and Radu (2015) for a review], the
resulting BH will be bald and the scalar field has to be radiated
away during collapse.12 This takes place in the form of scalar
waves, in analogy to what we discussed in the case of radial
NS oscillations in Sec. III.B.1.
Our previous discussion covered the β0 < 0 case. Mendes

and Ortiz (2016) and Palenzuela and Liebling (2016) studied
the end state of the tachyonic instability in scalar-tensor
theories for representative coupling functions with β0 > 0

and realistic EOSs. This was done both through an energy
balance analysis of the existing equilibrium configurations
and by nonlinear dynamical simulations. They found that
(contrary to the β0 < 0 case) the final state of the instability is
highly sensitive to the details of the coupling function,
varying from gravitational collapse to spontaneous scalari-
zation. They also found that in the original DEF model
[where αðφÞ ¼ β0φ, with α0 ¼ 0] scalarized solutions can
become unstable compared to the GR ones when β0 ≫ 1.
However, stability can be recovered for all values of β0
by considering different coupling functions. This is the
case for coupling functions with bounded values, such as
αðφ → ∞Þ ¼ α∞ for some constant α∞. This distinction
could give rise to novel astrophysical tests for determining
the detailed form of the coupling.

3. Stellar core collapse

Once we know that equilibrium scalarized NS solutions
exist in the DEF model and they are stable against linear
perturbations, the next step is to study how they are formed.
Isolated NSs can form after the collapse of the core of a
massive star during a supernova explosion. A NS, on the other
hand, can collapse to a BH if a threshold for the mass and the
angular momentum is reached. All these are highly dynamical
nonlinear processes that can have strong observational sig-
natures in both the electromagnetic and GW signals.
The first study of a degenerate stellar core collapse (more

specifically, with white dwarf initial data) to a scalarized NS
through a bounce and the formation of a shock was performed
by Novak and Ibanez (2000). The simulations were done in
spherical symmetry, which allowed them to calculate only the
resulting gravitational monopolar radiation. They found that
the emitted breathing modes can be potentially detected by
LIGO or VIRGO. Notably the emitted signal will be sub-
stantially different than the collapse of a NS to a BH, allowing
one to distinguish between them.

Gerosa, Sperhake, and Ott (2016) studied the problem of
spherically symmetric core collapse in the DEF model in
further detail. Two types of initial data were used: collapse of a
stellar iron core and collapse of “realistic” NS progenitors that
were obtained from computations of stellar evolution.
Depending on the theory parameters, three possible outcomes
of the core collapse are possible: collapse to a GR NS,
collapse to a scalarized NS, or collapse to a short-lived
protoneutron star followed by a nonscalarized BH formation.
It was in the last case that the most prominent GW signal with
a clear signature from the presence of nontrivial scalar fields
was observed. While the fluid dynamics during the collapse is
only weakly affected by the scalar field, the converse is not
true: the scalar radiation depends strongly on the specifics of
the matter collapse, as well as on the choice of the coupling
parameters α0 and β0.
The inclusion of a scalar-field mass to the core-collapse

simulations has some interesting consequences (Sperhake
et al., 2017). The waveform rφ during such events is shown
in Fig. 8. The mass itself does not have a large influence on the
dynamics, but it allows theory to be reconciled with binary-
pulsar observations for a much larger range of α0 and β0, as
discussed in Sec. III.A.2. Thus, a dramatic increase in the
radiated GW signal observable even with the existing LVK
detectors was predicted.
A prominent feature is that we expect to receive an inverse

chirp signal from such events that will last for years, with a
near monochromatic signature on timescales of ∼1 month. In
fact, the inverse chirp signal is connected to the scalar field’s
mass and, consequently, to the dispersion relation. Thus, the
scalar wave burst that is emitted during the collapse is
effectively stretched in time with decreasing amplitude.
Extensions of these results to the case of a self-interacting
scalar-field potential were made by Cheong and Li (2019) and
Rosca-Mead et al. (2019). Constraints on the theory based on
the scalar-field evolution in the Einstein frame were imposed
by Geng, Kuan, and Luo (2020). The problem was considered
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12For a discussion of collapse in theories where BHs can be
endowed with a scalar field, see Sec. III.D.
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in greater detail by Rosca-Mead, Sperhake et al. (2020), who
found the three possible scenarios of the collapse outcome
in scalar-tensor theory with sufficiently negative β0. These
constitute the formation of a BH following multiple NS stages,
the multistage formation of a strongly scalarized NS, and the
single-stage formation of a strongly scalarized NS. Rosca-
Mead et al. (2019) found that the resulting GW signal can
reach a signal-to-noise ratio of over 20 for the existing GW
detectors, which has the potential to put strong constraints on
the theory.

4. Dynamical scalarization and neutron star mergers

Another highly dynamical and nonlinear process that has
important astrophysical, and especially GW, implications is
binary NS mergers. This problem can be more challenging to
solve than stellar core collapse because it is not possible by
construction to apply certain approximations, such as spheri-
cal symmetry. That is why the binary merger dynamics in the
DEF model was addressed shortly thereafter, first by Barausse
et al. (2013) and then by Shibata et al. (2014). The overall
conclusions of both works are similar and they reside in the
fact that, even if one or both of the NSs are not scalarized
before the merger, they can develop nonzero scalar fields
during the inspiral. This was called dynamical scalarization.
The main advances made by Shibata et al. (2014) constitute
using several realistic EOS with consistently derived bounds
on the parameter β0, as well as developing an initial data
solver for scalarized binary NSs. The overall results demon-
strated a significant change of the inspiral GW signal at the
moment of dynamical scalarization and afterward. The reason
is that the inspiral is accelerated due to the scalar-dipole
radiation and the total number of GW cycles is significantly
decreased with respect to the general-relativistic case.
The actual merger and the postmerger phases were

addressed only by Shibata et al. (2014), who showed that
dynamical scalarization can happen not only in the inspiral
phase but also during the merger since a massive compact star
is formed in this process. The evolution during the NS merger
of the maximum values of the rest-mass density ρmax and
scalar field φmax for several binary NSs with total mass
M ¼ 2.7M⊙ and several values of β0 is shown in Fig. 9.
Two EOSs are considered in the two panels and the cosmo-
logical value of the scalar field is taken to be φ0 ¼ 10−5 in
order to satisfy constraints from the binary-pulsar observa-
tions (Freire et al., 2012; Antoniadis et al., 2013). Some of the
binary NSs are not scalarized at the beginning of the evolution
(the models with φmax ¼ 0 at the beginning), but the values of
β0 are chosen such that all of them develop scalar fields at a
certain point of the evolution. The actual merger of the two
NSs is marked by the rapid increase of φmax. Afterward, either
a hypermassive or supramassive NS is formed or the merger
remnant collapses to a bald BH and the scalar field is radiated
away. In agreement with the studies of equilibrium differ-
entially rotating NSs discussed in Sec. III.A.1, the scalarized
merger remnant can sustain a larger mass without collapsing
to a BH (Doneva, Yazadjiev et al., 2018). This is evident in the
bottom panel of Fig. 9, where collapse to a BH is observed in
pure GR, while a supramassive NS is formed after the merger
in scalar-tensor gravity with small enough β0.

The quasiperiodic oscillations of the merger remnant were
examined by Shibata et al. (2014), showing a clear distinction
compared to the GR case. Such oscillations were studied in a
series of papers in GR (Bauswein and Janka, 2012; Bauswein
et al., 2012; Hotokezaka et al., 2013; Bauswein, Stergioulas,
and Janka, 2014; Clark et al., 2014; Takami, Rezzolla, and
Baiotti, 2014, 2015; Maione et al., 2016; Rezzolla and
Takami, 2016), mainly as a tool to determine the nuclear
matter EOS from the postmerger GW signal. The observed
differences with the scalarized case can potentially be used to
discriminate between GR and modified gravity theories. This
is especially the case because scalarized merger remnants are
produced only if specific initial conditions related to the mass
of the merging compact objects and the specifics of the EOS
are met (Shibata et al., 2014).
Taniguchi, Shibata, and Buonanno (2015) took a different

approach in which they calculated quasiequilibrium sequences
of binary NSs at different time instants instead of performing
time evolution. This approach is well known in GR
(Gourgoulhon et al., 2001; Taniguchi and Gourgoulhon,
2003; Taniguchi and Shibata, 2010), and it is assumed that

FIG. 9. Evolution of the maximum values of the rest-mass
density ρmax and scalar field φmax during NS merger for several
models with a total mass M ¼ 2.7M⊙ with the APR4 EOS (top
panel) and the H4 EOS (bottom panel). The merger sets in at the
time as the maximum density steeply increases. We note that, for
β0 ≥ −4.2 with the APR4 EOS and for β0 ¼ −4.75 with the H4
EOS, the scalarization had already occurred at t ¼ 0. From
Shibata et al., 2014.
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the characteristic time of the system to settle to equilibrium is
much smaller than the inspiral timescale. This is supposed to
give a relatively accurate picture of the binary evolution even
close to the merger. The results are in agreement with Shibata
et al. (2014), while the small deviations relative to Barausse
et al. (2013) are probably due to the fact that GR initial data
were used in the latter. Taniguchi, Shibata, and Buonanno
(2015) showed that the absolute value of the binary binding
energy is smaller than in GR. In addition, the GW cycles prior
to the merger were significantly reduced compared to pure GR
once scalarization kicks in, and the effect is considerably
stronger than the one due to tidal interactions.
The post-Newtonian (PN) approximation has also been a

valued tool to model NS inspiral in the DEF model. Initial
work has focused on tensor-multi-scalar theories and simple
scalar-tensor theories that do not allow scalarization (Damour
and Esposito-Farèse, 1992, 1996b; Mirshekari andWill, 2013;
Lang, 2014). This approach cannot be immediately applied to
the case of dynamical scalarization, since this is a non-
perturbative effect that is absent from the weak-field regime.
Palenzuela et al. (2014) were the first to address this issue.
They used the equations of motion at 2.5PN order, derived in
scalar-tensor gravity by Mirshekari and Will (2013), modi-
fied in such a way that the changes in the stars’ scalar charges
are taken into account. More specifically, they solved a
system of nonlinear algebraic equations at each step of the
orbital evolution to compute the scalar charges. The resulting
inspiral evolution was found to be in agreement with the
numerical simulations of Barausse et al. (2013). The
approach of Palenzuela et al. (2014) is computationally
inexpensive, and this allowed them to study large portions of
the parameter space, including (un)equal-mass and eccentric
binaries. This approach can also be used to efficiently
generate inspiral GW templates in the DEF model. A further
step forward taken by Sennett and Buonanno (2016) intro-
duced a methodology called post-Dickean expansion. Their
main improvement with respect to Palenzuela et al. (2014) is
a 1PN extension of the feedback mechanism. The post-
Dickean expansion was compared against the quasiequili-
brium calculations of Taniguchi, Shibata, and Buonanno
(2015), and it was shown that this can accurately predict the
onset and magnitude of dynamical scalarization.
Sennett, Shao, and Steinhoff (2017) took a different

approach in the perturbative study of the inspiral that con-
stitutes an analytical model of dynamical scalarization using
an effective action. The motivation was to cure two deficien-
cies in the previous PN studies. In an effective action
approach, the nonlinear scalarization process is reduced to
a pair of cubic equations that have a closed-form solution
depending on the binary separation when dynamical scalari-
zation happens and on the magnitude of the developed scalar
charge. This simplifies the problem relative to Palenzuela
et al. (2014) and Sennett and Buonanno (2016). In addition,
the effective action approach allows one to construct a simple
two-body Hamiltonian that can be used to compute the
binary’s binding energy. Sennett, Shao, and Steinhoff (2017)
used this Hamiltonian, in combination with Landau’s theory
of phase transitions, to interpret dynamical scalarization as a
second-order phase transition. Khalil et al. (2019) extended
these results to general theories admitting scalarization for

either BHs or NSs and are valid for adiabatic (quasistationary)
and quasicircular orbits. Khalil et al. (2022) took it a step
further, where these approximations were dropped and the
dynamical evolution around the phase transition to the
scalarized regime was studied. The results showed that in
some cases assuming a quasistationary evolution might not be
accurate enough even for quasicircular binaries.
Last, Ponce et al. (2015) studied the effect of the scalar field

on the electromagnetic radiation emitted in the merger of
magnetized NSs. They found that deviations in the emitted
electromagnetic flux due to scalarization are not negligible yet
are challenging to measure. However, if combined with GW
observations, constraints on scalar-tensor theory can in prin-
ciple be placed, showing the usefulness of multimessenger
astronomy.

C. Astrophysical implications of scalarized NSs
in the DEF model

In this section, we further discuss the astrophysical impli-
cations of scalarized NSs. Many aspects have already been
covered, such as binary-pulsar observations, NS oscillations,
stellar core collapse, and binary mergers, as they naturally
appeared in the presentation. Here we shed further light on the
possible astrophysical implications of scalarization, trying to
be as complete as possible in two main areas. We first discuss
the astrophysical implications directly related to electromag-
netic observables. Afterward, we address the problem of
universal relations for scalarized NS models.

1. Electromagnetic observations

Scalarized NSs in the DEF model and its extensions were
studied in a variety of astrophysical scenarios in an attempt to
probe the existence of the scalar field. Since NSs are often
surrounded by accretion disks, it is natural to study the effect
of a nontrivial scalar field on disk properties. The simplest
model is called the thin disk model, in which particles are
assumed to move on geodesics around the central compact
object. Any small perturbation acting upon these particles
will lead to oscillations around their equilibrium orbit with
some characteristic epicyclic frequencies. Epicyclic and
orbital frequencies are thought to be, in one way or another,
related to the interpretation of different accretion disk proper-
ties. An example is the quasiperiodic oscillations (QPOs)
observed in the spectrum of low-mass x-ray binaries. For this
reason, some works calculated these frequencies in the
spacetime of scalarized NSs. DeDeo and Psaltis (2004) did
this for nonrotating NSs, Staykov, Doneva, and Yazadjiev
(2019) included slow rotation and also a mass to the scalar
field, while Doneva, Yazadjiev, Stergioulas et al. (2014)
studied rapidly rotating NSs. The conclusion of these works
is that, if one takes into account current observational
constraints, only the cases of rapid rotation and massive
scalar fields leave room for a significant effect of the scalar
field. Yet, a question that deserves further work is how one can
disentangle uncertainties in the NS EOS and in the disk model
from modifications to GR.
Another prospective way to infer information about accret-

ing compact objects is through the shape of the Fe Kα
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fluorescent line at 6.4 keV. Since it is emitted from the inner
regions of the accretion disk, it carries traces of the underlying
spacetime geometry. This line can be observed for both
accreting NSs and BHs, and the accuracy of the observations
is expected to be improved through future x-ray missions such
as Athena. Bucciantini and Soldateschi (2020) calculated the
shape of this line by taking the light propagation around a
scalarized NS into account. They argued that the influence of
GR modification both on the intensity of the low-energy tails
and on the position of the high-energy edge of the line are
potentially observable in the future.
Accretion onto NSs can also trigger a process called the

gravitational phase transition, which was named in analogy
with matter phase transitions from confined nuclear matter to
deconfined quark matter (Kuan et al., 2022). This process can
happen when the maximum mass of the scalarized NSs is
smaller than the maximum mass of the zero scalar-field (GR)
solution. The idea then is that if a scalarized NS close to this
maximum mass accretes some matter, it may pass beyond the
stability point. In GR this would cause a collapse to a BH. In
scalar-tensor theory, the star will radiate its scalar hair and
evolve toward the zero scalar-field (i.e., the GR) branch.
A significant amount of GWs can be produced in this process,
and they will potentially be detectable with the next generation
of GW detectors.
The NS surface as an emitter of x-ray radiation is also an

important probe in strong-field gravity because the electro-
magnetic radiation is emitted from a region with large
spacetime curvature. In this regard, the simplest observable
is the gravitational redshift of surface atomic lines. The
redshift carries information about the NS mass, radius, spin,
and, in scalar-tensor gravity, the scalar field. DeDeo and
Psaltis (2003) showed that scalarization had a significant
effect on the redshift, but only for negative enough values
of β0. Such values are already ruled out by binary-pulsar
observations. One could entertain the idea that a small scalar-
field mass could allow for large deviations in redshift relative
to GR, while reconciling the theory with binary-pulsar
constraints (Popchev, 2015; Doneva and Yazadjiev, 2016;
Ramazanoğlu and Pretorius, 2016). A study of this problem
has not yet been performed.
The x-ray pulse profiles emitted by hot spots at NS surfaces

have also received considerable attention. Observations of
these signals allow for a relatively clean inference of NS
masses and radii (Watts et al., 2016). This potential was met
with observations (Bogdanov et al., 2019a; Miller et al., 2019;
Riley et al., 2019) by the Neutron Star Interior Composition
Explorer (NICER) (Arzoumanian et al., 2014). Sotani (2017)
and Silva and Yunes (2019b) developed pulse-profile models
for NSs in a massless DEF model. Xu, Gao, and Shao (2020)
considered the case of massive scalar fields and Hu et al.
(2021) studied the positive β0 case. Silva and Yunes (2019a)
made the first study of what constraints can be placed on the
DEF model with pulse-profile observations and found they
can be competitive with binary-pulsar observations. However,
their work is rather simple and not at the level of realism found
in the analysis of real data. This remains an important avenue
for future work.
At last, Tuna, Ünlütürk, and Ramazanoğlu (2022) used

NS mass and radius measurements (Bogdanov et al., 2016;

Ozel et al., 2016) to constrain the massive extensions of the
DEF model. They obtained a weak lower bound β0 ≳ −20 for
scalar-field masses μ≲ 2 × 10−11 eV; see Fig. 10. This is
significant since no other bound is known for μ ≫ 10−16 eV.
These results show that large scalar masses enable agreement
with observations, even for extremely negative β0, and
demonstrate the difficulty to constrain scalarization when
the scalar field is massive.

2. Universal relations

One of the largest obstacles when using NS observations
to test modified theories of gravity is the uncertainty in the
NS EOS, which remains unknown at high densities (Lattimer
and Prakash, 2016; Baym et al., 2018). In general mod-
ifications to NS properties predicted by different EOSs are
degenerate with changes to the underlying gravity theory
used to model these stars. One way to break this degeneracy
is to consider relations between different NS properties that
depend weakly on the EOS (Yagi and Yunes, 2017; Doneva
and Pappas, 2018). In fact, in Sec. III.B.1.b we already met
one such example relating the QNM frequencies and damp-
ing times to the mean density of the NSs. Here we focus on
other EOS-independent relations connecting various equi-
librium properties of scalarized NSs.
A class of universal relations that has attracted considerable

attention is the I-Love-Q relations, which connect the nor-
malized moment of inertia, the tidal Love number, and the
quadrupole moment of the NSs (Yagi and Yunes, 2013a,
2013b). If any two quantities in the I-Love-Q trio are
measured independently, one can constrain deviations from
GR by determining whether these observations agree with
the GR I-Love-Q relation within observational accuracy.
Silva, Holgado et al. (2021) applied this strategy to constrain
dynamical Chern-Simons gravity (Jackiw and Pi, 2003;

FIG. 10. The posterior probability density for β0 ∈ ½−100; 0� for
various assumed values of the scalar-field mass μ in a massive
version of the DEF-model that was introduced by Ramazanoğlu
and Pretorius (2016) (marginalized over various EOSs). One can
obtain the bound β0 ≳ −20 for μ≲ 2 × 10−11 eV (left panel), but
there is no effective bound for higher masses, at least not in the
interval β0 ∈ ½−100; 0� (right panel). No bound is possible for
μ≳ 10−10 eV using these data since scalarization does not occur
for such high μ values within the considered β0 interval. From
Tuna, Ünlütürk, and Ramazanoğlu, 2022.
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Alexander and Yunes, 2009) using observational data from
LVK and NICER. The application to scalarization models has
not yet been done.
The I-Love-Q relations for scalarized NSs were studied in

slow (Pani and Berti, 2014) and rapid rotations (Doneva,
Yazadjiev, Staykov, and Kokkotas, 2014a), including the case
of massive scalar fields (Doneva and Yazadjiev, 2016; Hu
et al., 2021). In Fig. 11 we show the relation between the
normalized moment of inertia Ī and the quadrupole moment Q̄
for sequences of scalarized NSs with a fixed rotational
parameter α ¼ MΩ=2π. We see that for small absolute values
of β, for example, β0 ¼ −4.5, the deviations from GR are
practically negligible for slow rotation (such as α ¼ 0.32),
while they are enhanced by rapid rotation. As we have seen,
massive scalar fields allow for much smaller values β0 while
remaining consistent with observations. Hence, these scala-
rization models allow for larger differences between the
scalarized NS universal relations and the GR ones (Doneva
and Yazadjiev, 2016).
The moment of inertia I and the quadrupole moment Q are

among the leading-order multipole moments in the asymptotic
expansion of the metric functions at infinity. There are
infinitely many other higher-order multipole moments, how-
ever, and it is interesting to explore whether similar universal
relations hold for them. This was first addressed in GR
(Pappas and Apostolatos, 2014; Yagi et al., 2014), where
such universal relations were derived for the higher multipole
moments when proper normalization was applied. Pappas and
Sotiriou (2015) and Pappas et al. (2019) extended these results
to scalarized NSs. This required the generalization of the

multipole moment formalism of Geroch (1970) and Hansen
(1974) to scalar-tensor gravity. Pappas et al. (2019) showed
that future observations of QPOs of low-mass x-ray binaries
can in principle be used to measure different NS properties
and distinguish different theories of gravity.
Another class of universal relations studied in the context

of the DEF model connects the NS moment of inertia and
compactness. This was endorsed by Lattimer and Schutz
(2005) [see also Breu and Rezzolla (2016)], who used this
relation to argue that pulsar-timing observations could lead to
a measurement of the moment of inertia to within 10%. These
relations were generalized to scalarized NSs with massless
scalar-field potential by Altaha Motahar et al. (2017), and later
to massive self-interacting scalar fields by Popchev et al.
(2019). As with the I-Love-Q relations, only the massive
scalar-field case leads to large deviations from GR when
observational constraints are taken into account.
Ofengeim (2020) proposed connecting the physical param-

eters of static NSs, such as mass, radius, central energy
density, pressure, and sound speed, at the maximum-mass
point for a given EOS. This is based on the observations that
the nuclear matter EOS (without phase transitions) can be well
parametrized by only two parameters (Lindblom, 2010). As a
result, Ofengeim (2020) derived multiple constraints on the
nuclear matter EOS. Danchev and Doneva (2021) generalized
these relations to scalarized NSs. They showed how sensitive
these relations can be to the underlying theory of gravity.
Thus, all of the EOS restrictions derived in GR should be
taken with care since the possibility for GR modifications is
rarely taken into account in observational data observations.

D. Extended scalar-tensor theories beyond
the Damour–Esposito-Farèse model

Thus far we have discussed scalarization in the DEF model
or other DEF-inspired models. However, as we saw in
Sec. II.B, spontaneous scalarization is also possible for other
modified theories of gravity. Here we discuss the theories
where scalarized NS solutions were obtained.

1. Scalar-tensor theories with disformal coupling

Minamitsuji and Silva (2016) studied NS scalarization in
scalar-tensor theories with disformal coupling of the form of
Eq. (17). More specifically, instead of the standard conformal
transformation between the Einstein-frame metric (gμν) and
the Jordan-frame metric (g̃μν)

gμν ¼ A2ðφÞg̃μν; ð33Þ

where AðφÞ is a function of the scalar field related to the
Jordan-frame coupling between the scalar field and the Ricci
scalar, we have a more general and complicated transforma-
tion that also involves scalar-field derivatives,

gμν ¼ A2ðφÞ½g̃μν þ ΛB2ðφÞ∇μφ∇νφ�; ð34Þ

where BðφÞ is a function of the scalar field and Λ is a
parameter of dimensions of ½length�2. The motivation behind
this modification of the conformal factor comes from

FIG. 11. Comparison between Ī-Q̄ relations for GR and
scalar-tensor theory for several values of β0, where Ī ¼ I=M3

and Q̄ ¼ QM=J2. The presented data are restricted to APR
EOS in order to provide better visibility, but the deviations for
other EOSs are small, typically below roughly 2%. Sequences
for different values of the normalized rotational parameter
α ¼ MΩ=2π are given, with Ω the angular velocity of the star.
The dash-dotted lines with β ¼ −4.5 appear for each value of
α, but they are limited to the low Q̄ region and deviate only
slightly from GR. From Doneva, Yazadjiev, Staykov, and
Kokkotas, 2014.
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Bekenstein (1993), who aimed to find the most general
coupling constructed from the metric gμν and the scalar field
φ that respected causality and the WEP. More recently
Andreou et al. (2019) showed that such disformal coupling
is actually equivalent to a kinetic coupling with the Ricci
scalar and thus is contained in the minimal action (14); see
Sec. II.B.1 for a discussion.
Minamitsuji and Silva (2016) showed that, for negative

values of the disformal coupling parameter Λ, scalarization
can be suppressed, while for large positive values of Λ the
stellar structure equation becomes singular. Thus, regular NS
solutions cannot be found in the latter case, which can be used
to impose the upper limit Λ ≲ 100 km2. They also explored
the universal relations between the moment of inertia and the
compactness of NSs, and they determined the range of
parameters where these relations can deviate significantly
from GR.

2. Scalar-Gauss-Bonnet theory

Another well-studied modified gravity theory that allows
for NS scalarization is the scalar-Gauss-Bonnet gravity dis-
cussed in Sec. II.B. Spacetime curvature itself, as well as
matter, can be the source of the scalar field in this theory.
Scalarized NS solutions in scalar-Gauss-Bonnet gravity were
studied for the first time by Doneva and Yazadjiev (2018a) and
Silva et al. (2018). The solutions exhibit much different
features than the DEF model while being qualitatively similar
to NS solutions in other classes of Gauss-Bonnet theories
where scalarization is not possible (Pani, Berti et al., 2011;
Kleihaus et al., 2016; Saffer, Silva, and Yunes, 2019). For
example, for a given central energy density the stellar mass is
always smaller than in GR. Moreover, there is normally only
one bifurcation point at small central energy densities, and
afterward the branches of solutions are terminated because of
violation of the regularity conditions.
In Fig. 12, we show the branches of scalarized NS solutions

for a coupling function fðφÞ ¼ −λ2ð2βÞ−1½1 − expð−βφ2=4Þ�.

Here λ is a parameter with dimensions of ½length�−1 that
controls the coupling strength in the action (25). Note that
the sign of fðφÞ is the opposite of that discussed in Sec. II.B.3,
and thus cannot lead to BH spontaneous scalarization, since in
vacuum μ2eff > 0, as defined in Eq. (27). However, owing to the
presence of matter, NSs can scalarize. Scalarized NS solutions
were also found for the more “conventional” sign of fðφÞ,
namely, fðφÞ ¼ λ2ð2βÞ−1½1 − expð−βφ2=4Þ� (Doneva and
Yazadjiev, 2018a). As in the DEF model, it was demonstrated
that binary pulsars strongly constrain the coupling parameters
of the theory, thereby leaving a small window for scalarization
(Danchev, Doneva, and Yazadjiev, 2022).
Little is currently known about the astrophysical impli-

cations of these stars. Kuan, Doneva, and Yazadjiev (2021)
considered the spherically symmetric core collapse of a
noncompact star either to a protoneutron star or to a BH in
Gauss-Bonnet theory. They also proposed a realistic physi-
cal mechanism for the formation of isolated scalarized BHs
and NSs The complexity of the problem is greatly increased
with respect to GR, though, and there are fundamental
difficulties such as the loss of hyperbolicity of the evolution
equations for certain ranges of parameters, effectively
limiting the maximum possible scalar field to relatively
low values; see also East and Ripley (2021a, 2021b) and
Ripley and Pretorius (2020) for the case of BHs. Core-
collapse simulations show that the remnant in scalar-Gauss-
Bonnet theory can be rich, with (de)scalarization happening
at the intermediate or final stages of the collapse, depending
on the properties of the progenitor and the theory param-
eters. Since breathing modes are absent from this theory, the
effect on GW emission can be estimated only if one drops
the assumption of spherical symmetry. This is something
that has not yet been done in any modified gravity theories
due to the complexity of the problem.

3. Ricci-Gauss-Bonnet model

One can further modify the action in scalar-Gauss-Bonnet
gravity to include additional terms. This is the case for
the Ricci-Gauss-Bonnet model discussed in Sec. II.B.4.
This model has advantages such as the possibility of recon-
ciling scalarization with cosmology. Here we focus on the NS
solutions within this theory that were considered by Ventagli
et al. (2021). They conducted a thorough exploration of the
theory parameter space in order to find the sectors where
NS solutions exist. Since their scalar charge is nonzero, in
these sectors one can put severe constraints on the theory
based on binary-pulsar observations, as in the DEF model;
see Sec. III.A.1.b.
The free parameters in the theory, as evident from the

action (28), are β and α, which control the coupling strength to
the Ricci scalar and the Gauss-Bonnet invariant, respectively.
In Fig. 13 the existence of NS solutions is shown in a two-
dimensional plot spanning the parameters α and β in a broad
range for a fixed central energy density and the MPA1 EOS
(Müther, Prakash, and Ainsworth, 1987). The white area
in Fig. 13 corresponds to the region of the parameter space
where the GR solution is stable against scalar perturbations.
Throughout the parameter space that is spanned by α and β,
a new unstable mode appears every time that one crosses a
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FIG. 12. Scalarized NSs in scalar-Gauss-Bonnet gravity. We
show the mass as a function of the radius for GR (a trivial branch
with φ ¼ 0), as well as several scalarized branches with different
values of the scalar-field coupling parameters λ and β. From
Doneva and Yazadjiev, 2018a.
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black line. These unstable modes can be labeled by the
number of scalar-field nodes (denoted by n ¼ 0, 1, 2, and 3
in the figure). Any point in the parameter space that lies within
a gray region corresponds to a configuration where the GR
neutron star solution is unstable. The red (blue) area corre-
sponds to the region where scalarized solutions with n ¼ 0

(n ¼ 1) nodes exist.
It is evident that scalarized solutions exist in only part of the

parameter space. In the β > 0 and small-α range (the white
region in Fig. 13) the GR neutron stars are stable. This is the
region that is most noteworthy from the point of view of BH
scalarization and where we can reconcile scalarization with
cosmology (Antoniou, Bordin, and Sotiriou, 2021; Antoniou
et al., 2021); see also Sec. IV.A.2. Thus, including a Ricci
coupling to the scalar-Gauss-Bonnet action seems to allow for
BH scalarization while evading the binary-pulsar constraints.
Figure 13 is for only one EOS and a specific central energy

density. Different EOSs and central densities can lead to
significant deformations of the existence and stability regions.
The general point made by Ventagli et al. (2021), however, is
that the stability (white) region always survives.

4. Tensor-multi-scalar theories

Another class of gravity theories where NS scalarization
was considered is the tensor-multi-scalar theories (TMSTs)
(Damour and Esposito-Farèse, 1992), whose basics were
discussed in Sec. II.B. In this theory, the gravitational
interaction is mediated by the spacetime metric gμν and N
scalar fields φa, which take values in a coordinate patch of
an N-dimensional Riemannian target manifold EN with a

positive-definite metric γabðφÞ defined on it (Damour and
Esposito-Farèse, 1992; Horbatsch et al., 2015).
The main features of TMST are the inclusion of more than

one scalar field and a structure called the target-space metric.
In that sense, there are two directions to go in order to obtain
scalarized NSs. The first one is to consider a mixture of
several more or less equivalent scalar fields; this was the
approach followed by Horbatsch et al. (2015). They exam-
ined the case of two scalar fields in the form of a complex
scalar with a maximally symmetric target-space metric γab.
Doneva and Yazadjiev (2020a) studied scalarization in
tensor-multi-scalar gravity in a more complicated setup,
namely, when γab is a three-dimensional maximally sym-
metric space together with a nontrivial map φ∶spacetime →
target space. While the solutions given by Horbatsch et al.
(2015) can be viewed as a generalization of the DEF model to
multiple scalar fields, the scalarized NSs given by Doneva
and Yazadjiev (2020a) have some distinct properties and they
can be considered more as a limiting case of the topological
NSs discovered by Doneva and Yazadjiev (2020b). More
specifically the scalar field is zero in the stellar center, while
only its first derivative is zero in the DEF model. The scalar
charge for the scalarized stars in TMST is zero as well. This
automatically reconciles this theory with the binary-pulsar
observations (due to the absence of scalar-dipole radiation)
while still allowing for large deviations from GR. Another
interesting property is the fact that there is nonuniqueness of
the scalarized solutions with respect to the central energy
density, something that had never been observed before, at
least for scalarized NSs. Figure 14 illustrates this property.
Kuan et al. (2021) showed that all of these solutions
are stable until the maximum NS mass, regardless of the
nonuniqueness.

FIG. 13. Regions of existence of scalarized solutions in the
ðα; βÞ plane for the MPA1 EOS with central energy density
εc ¼ 6.3 × 1017 kg=m3. In GR, a star with this choice of εc and
EOS is light, with MGR ¼ 1.12M⊙. The wedgelike red (wedge-
like and upward-curving blue) region is the region where
scalarized solutions with 0 (1) scalar-field nodes exist. The gray
contours obtained by Ventagli, Lehébel, and Sotiriou (2020) are
superimposed and represent the lines beyond which GR solutions
with the same density are unstable to scalar perturbations with 0,
1, 2, etc., nodes. We see that the region where there are scalarized
solutions with n nodes is included in the region where the GR
solutions are unstable to scalar perturbations with n nodes but
much smaller. The dashed boundary of the blue region corre-
sponds to a breakdown of the integration inside the star. From
Ventagli et al., 2021.
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FIG. 14. Tensor-multi-scalar theories: the mass as a function of
the central energy density (left panel) and as a function of the
stellar radius (right panel) for scalarized NSs in tensor-multi-
scalar theories where the target-space metric represents a three-
dimensional maximally symmetric space and we have a nontrivial
map φ∶spacetime → target space. Sequences of scalarized
solutions for different combinations of parameters are given.
Observe the appearance of nonuniqueness of the solutions with a
nonzero scalar field for certain combinations of the parameters
(for example, the small central energy-density region indicated by
the dotted line). From Doneva and Yazadjiev, 2020a.
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5. Other scalarization models

Apart from the previously discussed models of scalarized
NSs, other works have attempted to consider scalarization in
more exotic theories of gravity, or even different types of
scalarization. For example, Azri and Nasri (2021) considered
NS scalarization in what is called scalar-connection gravity,
where gravity is mediated by a scalar field and the connection.
Other types of scalarization can happen in standard scalar-
tensor theories if we allow for different scalar-field potentials.
Minamitsuji and Tsujikawa (2023) showed this when con-
sidering the potential VðφÞ ¼ m2

φf2B½1þ cosðφ=fBÞ� of a
pseudo-Nambu-Goldstone boson. Here ðμφ; fBÞ are constants
with dimensions of length and the scalar field has a negative
mass (μ2 ¼ −m2

φ). Minamitsuji and Tsujikawa (2023) showed
that in this case the scalar field sits at its vacuum expectation
value far from the source, while inside a NS a symmetry
restoration can take place, resulting in a new type of
scalarization. This theory also has an advantage in that it
avoids the cosmological instabilities present in certain other
scalarization models.

IV. BLACK-HOLE SCALARIZATION

In this section, we discuss the spontaneous scalarization of
BHs in three parts. To begin, in Sec. IV.Awe consider models
in which BHs can scalarize in vacuum due to couplings
between the scalar field and curvature scalars. Next, in
Sec. IV.B we discuss models in which scalarization is induced
by the presence of extra fields (such as gauge or matter fields)
in the BH spacetime. Finally, in Sec. IV.C we review a
selection of other models of BH scalarization.

A. Black-hole scalarization: Vacuum spacetimes

As we saw in Sec. II, some gravity theories admit the same
vacuum BH solutions as GR, yet can give rise to new branches
of solutions with scalar hair once certain conditions are met.
The prototypical example is described by scalar-Gauss-
Bonnet theories, whose action in the absence of matter is
given by Eq. (25), namely,

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 1
2
gμν∂νφ∂μφþ fðφÞG�:

As discussed in Sec. I, the first models exhibiting BH
scalarization in vacuum were proposed by Doneva and
Yazadjiev (2018b) and Silva et al. (2018). These models
remain the most studied BH scalarization models to date in
the literature. For this reason, they will be our main focus in
this section.13

As explained in Sec. II.B.3, in theories described by the
action (25), a no-hair theorem guarantees that the BH
solutions of GR are unique to the theory, as long as

ðd2f=dφ2Þφ¼φ0
G < 0, for some constant φ0 (Silva et al.,

2018). If this condition is violated, scalar-field perturbations
can become tachyonic unstable and the end point is expected
to be a nonlinear, scalarized BH (Ripley and Pretorius, 2020).
Scalarized BHs have been shown to form dynamically, as
outcomes from the core collapse of an initially unscalarized
star (Kuan, Doneva, and Yazadjiev, 2021).
Here we first review our understanding of isolated scalar-

ized BHs in scalar-Gauss-Bonnet theories, focusing on their
properties and their stability. We then review what is under-
stood about when they are found in binaries. Finally, we give
an overview of vacuum BH solutions in models that generalize
the action (25).

1. Scalarized black holes

Spontaneously scalarized BH solutions were first found
by Doneva and Yazadjiev (2018b) and Silva et al. (2018).
What distinguishes these works is the choice of the coupling
function fðφÞ that couples the scalar field to the Gauss-Bonnet
invariant [cf. Eq. (25)],

f ¼ ðλ2=12Þ½1 − ε expð−3φ2=2Þ�; ð35aÞ

f ¼ ðη=8Þεφ2; ð35bÞ

where λ2 and η, positive by definition, are coupling constants
with dimensions of ½length�2 and ε ¼ �1, which should not be
confused with the energy density of Sec. III. The two coupling
functions agree in the small-φ limit (i.e., when φ ≪ 1) and
therefore result in the same prediction for the onset of
scalarization of GR BHs. This threshold can be found by
searching for bound state solutions, i.e., time-independent
solutions of the linearized field equation for φ around a GR
BH, which are regular at the event horizon rh and that vanish
at spatial infinity. Hence, the determination of the scalarization
threshold reduces to a boundary value problem. In the simplest
case of a Schwarzschild BH of mass M, the dimensionless
quantity η=M2 plays the role of the eigenvalue and can be
determined numerically with standard techniques such as the
shooting method. The smallest eigenvalue gives the threshold
for the formation of the “fundamental” scalarized BH solution
(in the sense that the radial profile of the scalar field has n ¼ 0
nodes). The other eigenvalues give the thresholds for the
formation of “excited states,” that is, solutions with one or
more nodes. In Fig. 15 we show the results of such a
calculation in the spacetime of a Schwarzschild BH and
ε ¼ 1, as done by Silva et al. (2018). We remark that no bound
states can form for ε ¼ −1, because the effective mass of
scalar-field perturbations is positive; therefore, the effective
potential is positive definite. See the discussion in Sec. II.A.2.
While both models in Eqs. (35) agree in their prediction

of the threshold for scalarization, they differ significantly in
their prediction of the properties of the nonlinear, scalarized
solution, as discussed in Sec. II.A. In Fig. 16 we show the
branches of scalarized BHs, in a parameter space spanned by
the dimensionless scalar charge and BH mass. The solutions
were obtained by solving the full system of field equations;
see Doneva and Yazadjiev (2018b) and Julié et al. (2022)
for detailed discussions. The results are for the Gaussian

13We remark that Doneva and Yazadjiev (2018b) and Silva et al.
(2018) worked with different scalar-field normalizations, with the
former being 1/2 times the latter. Here we use the latter; hence, the
scalar charge D reported in Fig. 16 is twice what one would obtain
with our normalization.
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coupling (35a) with ε ¼ 1. We show the fundamental, zero-
node scalar-field solution (dashed red curves) and also the
excited scalarized BHs (solid green and blue curves). We see
that the branches of excited BHs can terminate at finite masses
M. This is due to a violation of an inequality at the BH horizon
that must be satisfied for the scalar field to be real valued and
is typical of scalar-Gauss-Bonnet theories; see Kanti et al.
(1996) and Antoniou, Bakopoulos, and Kanti (2018). The
parameters in the coupling function (35a) are chosen in such a
way that this disappearance of BH solutions does not affect the
fundamental branch. For other couplings, such as Eq. (35b),
even this branch can violate the regularity condition shortly
after bifurcation; see Doneva, Kiorpelidi et al. (2018) and
Silva et al. (2019). Hence, the domain of existence of
scalarized solutions in the Gaussian model (35a) is larger
with respect to that of the “quadratic” model (35b).
Asymptotically flat, spinning scalarized BHs in the

Gaussian models (with ε ¼ 1) and quadratic theories were
explored, respectively, by Cunha, Herdeiro, and Radu (2019)
and Collodel et al. (2020). In discussing these solutions, we
consider a plane spanned by the dimensionless scalar charge
Qs=λ and dimensionless spin parameter j≡ J=M2, where J is
the angular momentum of the BH. Figure 17 shows the
domain of existence of scalarized rotating BH solutions. In
particular, we focus on the inset, which corresponds to ε ¼ 1

in Eq. (35a). We see that as the spin increases the existence
domain of the solutions (the shaded region) becomes smaller.
This result can be understood in terms of the Gauss-Bonnet
invariant not being positive definite for the Kerr metric
(Cherubini et al., 2002). More specifically, a Kerr BH
develops increasingly large regions where the Gauss-
Bonnet invariant is negative as the spin increases and hence

FIG. 15. Results of the numerical integration of the equation of a
monopole (l ¼ m ¼ 0) scalar perturbation δφ on a Schwarzs-
child BH background. Top panel: asymptotic value of jdσ=drj
(with σ ≡ rδφ) evaluated at a point rmax ≫ rh, far from the event
horizon rh ¼ 2M, as a function of η=M2. Cusps mark when
bound state solutions form. They signal the transition between
stable Schwarzschild BHs and scalarized solutions. Bottom-left
panel: effective potential Veff (see Sec. II.A.2) for ðη=MÞ2 ¼ 0
and 5. In the latter case, Veff develops a negative region and can
support bound states. Bottom-right panel: radial profiles of δφ for
the first three bound states corresponding to η=M2 ¼ 2.902,
19.50, and 50.93. These profiles have 0, 1, and 2 nodes,
respectively. The properties of these solutions are shared between
the models of Doneva and Yazadjiev (2018b) and Silva et al.
(2018). From Silva et al., 2018.
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FIG. 16. Scalar charge D normalized to the coupling parameter
λ as a function of the normalized BH mass M=λ for sequences of
scalarized BH solutions. The GR solutions have zero scalar field
and thus zero D and lie along the x axis, which is depicted by the
horizontal magenta line. The dashed line corresponds to solutions
with nodeless scalar-field profiles, which was found to be the
only stable branch (Blázquez-Salcedo et al., 2018). The curves
with different colors correspond to scalarized solutions with
scalar fields having different numbers of nodes. Solutions
with one and two nodes branch off the GR solution around
M=λ ≃ 0.15 and M=λ ≃ 0.24, respectively. The scalarized
branches are symmetric with respect to the y axis due to the
reflection symmetry (φ → −φ) in the theory. Adapted from
Doneva and Yazadjiev, 2018b.

FIG. 17. Rotating scalarized BHs in the Gaussian model (35a).
The shaded regions represent the domain of existence of
scalarized rotating BHs in the plane spanned by the dimension-
less scalar charge (Qs=λ) and spin (j ¼ a=M). These regions are
bound by the Kerr family of solutions Qs=λ ¼ 0 (solid blue line)
and, in the nonrotating limit, by the Schwarzschild solution
(black dot-dashed line), and also when the regularity condition
for the scalar field is violated (dotted curve). The inset shows the
case for positive coupling constant studied by Cunha, Herdeiro,
and Radu (2019), while the main panel shows nonlinear spin-
induced scalarized BHs. From Herdeiro, Radu et al., 2021.
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suppresses scalarization (or triggers scalarization, when
ε ¼ −1, as discussed in Sec. IV.A.3.) As a consequence,
the deviations relative to GR predictions on physical observ-
ables (for example, the location of the innermost stable
circular orbit of massive particles or the BH shadow) are
smaller for rapidly rotating BHs. See Fig. 18 for an example.
Collodel et al. (2020) studied the quadratic coupling (35b) and
reached similar conclusions. They obtained radially excited
solutions (i.e., scalar-field profiles with nodes in the radial
direction) and also noted the existence of “angularly” excited
rotating BHs (i.e., scalar-field profiles with nodes in the
angular directions).

2. Stability of scalarized black holes and implications
for model building

Having established the existence of scalarized BHs, the
natural next task is to study their stability. A first indication
comes from the study of the thermodynamical properties of
such BHs. Doneva and Yazadjiev (2018b) found that the
scalarized solutions belonging to the fundamental branch in
the Gaussian model are thermodynamically favored relative to
the Kerr solution (35a), in the sense that they have a smaller
Wald entropy (Wald, 1993). This suggests the stability of the
former; i.e., in a dynamical process BHs in this model would
evolve toward a state of smaller entropy. In contrast, the
quadratic coupling (35b) model always results in scalarized
BHs with higher entropy relative to their GR counterparts.
These observations remain true in the case of rotating BHs
(Collodel et al., 2020; Herdeiro, Radu et al., 2021).
A complementary question is whether scalarized BHs are

stable to linear perturbations. The first step in this direction
was carried out by Blázquez-Salcedo et al. (2018), who
considered radial scalar-field and metric perturbations. They
showed that Schwarzschild BHs became unstable at the
scalarization threshold and that the stability of the funda-
mental (i.e., the zero-node) scalarized solution depended on
which model in Eqs. (35) was considered: in the quadratic
case all solutions were unstable, whereas stable solutions
existed in the Gaussian model.
This important difference between the two models can be

traced back to the higher-than-quadratic terms in the scalar
field in the theory’s action. More concretely Silva et al. (2019)
and Minamitsuji and Ikeda (2019a) showed that the inclusion

of a quartic interaction, say, ðζ=16Þφ4G, is sufficient to yield
stable BH solutions as long as ζ is negative and satisfies
ζ=η < −0.8. These two conditions are satisfied by the
Gaussian model. Indeed, expanding Eqs. (35) to order Oðφ4Þ,
we find that ζ=η ¼ −3=2, which helps to explain the stability
of BHs in this model.
It was later shown by Macedo et al. (2019) [see also

Macedo (2020)] that the original quadratic model can be made
stable under radial perturbations by making the scalar field
massive and self-interacting, VðφÞ ∝ μ2φ2 þ λφ4, as dis-
cussed in Fig. 19. From an EFT perspective, these terms
are of lower order than in the quartic scalar-Gauss-Bonnet
interaction and hence should be included. A similar analysis
was also performed for the Ricci-Gauss-Bonnet model by
Antoniou et al. (2021) and is shown in Fig. 20. See also
Doneva, Staykov, and Yazadjiev (2019) for a study of
scalarization with massive scalar fields.
The nonlinear stability of BHs in this model was also

studied in the time domain by Ripley and Pretorius (2020).
They found evidence for regions in mass-coupling parameter
space in which the end state of the radial instability of the
Schwarzschild BH is a stable scalarized BH. For larger
couplings, however, regions where the time-evolution equa-
tions change character from hyperbolic to elliptic appear
outside the BH horizon. This signals a regime in which
the theory does not have a well-posed initial-value problem.
See Hilditch (2013) and Ripley (2022) for discussions.

FIG. 18. Gravitational lensing and shadow produced by rotating
BHs under similar observation conditions. Left panel: scalarized
BH with mass M=λ ≈ 0.237 and spin j ¼ 0.24. Right panel: a
comparable Kerr BH. From Cunha, Herdeiro, and Radu, 2019.

FIG. 19. Scalar-charge-mass diagram for scalarized BHs with a
quadratic scalar-Gauss-Bonnet model with a scalar-field potential
VðφÞ ¼ ðμ2=2Þφ2 þ ðλ=2Þφ4. Dimensionless quantities obtained
by factors of η1=2 are used: BH charge Q̂ ¼ Q=η1=2 and mass
M̂=η1=2, and scalar-field parameters μ̂ ¼ μη1=2 and λ̂ ¼ λη1=2. The
vertical line marks the threshold for scalarization M̂th. BHs with
M̂ ≥ M̂th are radially unstable, while the Schwarzschild solution
is stable. For large λ̂, we can obtain solutions with M̂ < M̂th and
form two branches. The ones that are radially unstable solutions
are denoted with a dashed line (upper branch) and those stable to
radial perturbations are denoted with a solid line (lower branch).
The dot marks are the marginally stable solutions, which
correspond to a minimum mass but maximally scalar charged
BHs for fixed μ̂ and λ̂. From Macedo et al., 2019.
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These results are in agreement with earlier findings by
Blázquez-Salcedo et al. (2018), but in the linear regime.
The radial stability of scalarized BHs in the Ricci-Gauss-
Bonnet model introduced in Sec. II.B.4 was analyzed by
Antoniou et al. (2022). They found that although the Ricci
scalar does not affect the scalarization threshold, at the
nonlinear level it can stabilize the BHs in the quadratic model.
The problem of nonradial perturbations of scalarized BH

solutions, which is relevant in the context of testing such
theories with ringdown GW signals, was addressed by
Blázquez-Salcedo, Doneva et al., 2020a, 2020b). However,
the stability of rotating scalarized BHs remains an open
problem, even in the slow rotating limit.

3. Spin-induced scalarization

One property of the Gauss-Bonnet invariant of the
Schwarzschild metric is that it is positive definite everywhere
and, as a consequence, spontaneous scalarization can occur
only for positive values of the coupling constant. Does this
always have to be the case? In the case of the Kerr metric, it is
known that regions where G < 0 outside the outer horizon are
possible if the BH spins with a=M ≥ 0.5 (Cherubini et al.,
2002), suggesting the possibility of a spin-induced scalariza-
tion when the coupling constant is negative, i.e., ε ¼ −1
in Eqs. (35).
Although conceptually simple, the problem is not straight-

forward to analyze, because (i) the analytical form of G forbids
the separation of variables as done in Sec. I, and thus the
determination of the scalarization threshold will in principle
require more sophisticated numerical methods than the
Schwarzschild case, and (ii) the Kerr metric (with a=M ≥ 0.5)
has regions where G can be either negative or positive, where
in the latter regions, for negative coupling constants, the
effective mass may trigger a superradiant instability (Brito,

Cardoso, and Pani, 2015). To overcome these difficulties,
Dima et al. (2020) reduced the (2þ 1)-dimensional non-
separable scalar-field equation to a (1þ 1)-dimensional sys-
tem of equations that are coupled through spherical harmonic
multipole indices l and m. They then performed time-domain
numerical integration of the scalar-field borrowing methods
that were previously developed to study superradiant insta-
bility (Dolan, 2013). Dima et al. (2020) showed that the
tachyonic instability is the dominant one and charted the
parameter space in which spin-induced scalarization would
occur. This is shown in Fig. 21. Hod (2020) worked
analytically in the infinitely large coupling limit (η=M2 → ∞)
and confirmed the expectation that a=M ≳ 0.5 is the minimal
necessary spin value for which spin-induced scalarization
occurs. The corrections for large but finite coupling were
obtained by Hod (2022).
Nonlinear spin-induced scalarized BH solutions were

obtained by Berti et al. (2021) and Herdeiro, Radu et al.
(2021). They confirmed the existence of scalarized BH
solutions in the parameter space region in which linear theory
predicts the spin-induced tachyonic instability. In Fig. 17 we
show the domain of the spin-induced scalarized BHs in the
Gaussian model (35a). We see that scalarized solutions exist
only for j≳ 0.5, and that their scalar charge increases with
spin. Moreover, there are solutions that can violate the Kerr
bound j ≤ 1 on BH spins.
A approach complementary to that of Dima et al. (2020)

was used by Doneva, Collodel et al. (2020a) and Doneva and
Yazadjiev (2021a). They evolved the scalar-field equation in
2þ 1 dimensions, i.e., without doing a multipolar decom-
position. The influence of a nonvanishing scalar-field mass
was explored by Doneva, Collodel et al. (2020b). A similar

FIG. 20. Like Fig. 19, but now in a “mixed” model where a
quadratic coupling between the scalar field and the Ricci tensor is
added to the quadratic scalar-Gauss-Bonnet interaction. As in
Fig. 19, we show the charge Q̂ ¼ Q=α1=2 and mass M̂=α1=2, made
dimensionless by division by α1=2, for different values of scalar-
Ricci coupling β. See Eq. (28) for the theory’s action. The left-
bending black lines correspond to values of β for which all
scalarized BHs have masses below the GR instability mass
threshold, while the right-bending red lines mark values of β that
lead to scalarized BH masses that are larger than the GR mass
threshold. Past the turning points (marked with blue dots), the BHs
are expected to be unstable to radial perturbations. From Antoniou
et al., 2021.

FIG. 21. Instability timescale τ for spin-induced scalarization in
the dimensionless spin a=M and dimensionless coupling constant
−η=M2 planes. The instability threshold for the total recon-
structed field is shown as a solid green line, while the threshold
when the m ¼ 0 modes are excluded is shown as a blue dotted
line. The red dashed line corresponds to the instability threshold
for the m ¼ 0 odd modes, while the dot-dashed cyan line marks
the instability threshold for the spherical mode l ¼ m ¼ 0. From
Dima et al., 2020.
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time-domain study that instead used the hyperboloidal foliation
method (Zenginoglu, 2008) was performed by Zhang et al.
(2020), and a model with both the Pontryagin and Gauss-
Bonnet invariants was studied by Myung and Zou (2021).
Annulli, Herdeiro, and Radu (2022) studied the effect of strong
magnetic fields on spin-induced scalarization. They found that
the magnetic field suppressed this effect; i.e., it pushed the
scalarization threshold to larger values of the dimensionless
spin j of the BH. The case of spin-induced scalarization has
been much less studied in terms on its stability and on how
additional nonlinear interactions affect the scalar charge.

4. Scalarized black holes in binary systems

Most work in BH scalarization has focused on isolated
BHs, but to be able to confront these models against GW
observations one has to turn to the two-body problem. What
phenomenology would we expect in BH binaries? To answer
this question we first consider work that explored the non-
linear regime of the late inspiral and merger of BH binaries, a
regime that relies on numerical relativity. Next we consider
work that focused on the inspiral alone, a regime that can be
modeled with PN theory.
The first work in this area was done by Silva, Witek et al.

(2021), who studied the scalar-field dynamics (i.e., in the
decoupling limit) in head-on collisions and nonspinning,
quasicircular inspirals of binary BH spacetimes obtained from
numerical relativity simulations. This work adapted the
methods developed by Witek et al. (2019) for shift-symmetric
scalar-Gauss-Bonnet theory to theories that allow for sponta-
neous scalarization. In particular, because they were interested
at phenomenology near the scalarization threshold, Silva,
Witek et al. (2021) adopted the quadratic model (35b), with a
coupling strength η such that both (or one of them, depending
on the mass ratio) binary components or the remnant BH can
carry a scalar-field bound state through the simulation. They
showed that BH binaries can either form a scalarized remnant
or dynamically descalarize by shedding off the initial scalar
hair (i.e., the scalar bound state configuration) depending
on the values of the coupling constants and the mass ratio
between the two BHs. An example of dynamical descalariza-
tion is shown in Fig. 22. Dynamical descalarization was also
shown to occur in nonlinear scalarization models (see

Sec. II.C.5) by Doneva, Vañó Viñuales, and Yazadjiev
(2022) that simulated head-on BH collisions and worked in
the decoupling limit.
A natural question that follows is: What would happen

when ε ¼ −1, i.e., the case in which spin-induced scalariza-
tion occurs? This is relevant from an observational point of
view because BH remnants of binary BH coalescences have
typical dimensionless spins of j ∼ 0.7. This value comfortably
meets the criteria for spin-induced scalarization to happen.
This question was explored by Elley et al. (2022), who found
through a suite of numerical relativity simulations that (i) spin-
induced dynamical descalarization can happen when the

FIG. 22. Dynamical descalarization in binary BH head-on collisions. Scalar-field and Gauss-Bonnet dynamics on the x-y plane of the
BHs with initial mass ratio q ¼ m1=m2 ¼ 1=2. We show the amplitude of log10 jΦj (color map) together with the isocurvature levels of
the Gauss-Bonnet invariant at the beginning of the evolution (top-left panel), during the BH approach (top-right panel), shortly before
the collision (bottom-left panel), and shortly after the merger (bottom-right panel). These levels correspond to 1 M−4 (solid line),
10−1 M−4 (dashed line), 10−2 M−4 (dot-dashed line), and 10−3 M−4 (dotted line). From Silva, Witek et al., 2021.

FIG. 23. Snapshots of the scalar field, here labeled Φ, and the G
invariant in the x-z plane illustrating the stealth scalarization. The
color map indicates the amplitude of the scalar field. The curves
represent isocurvature contours for the following values of jGj:
1 M−4 (solid line), 10−1 M−4 (dashed line), 10−2 M−4 (dot-
dashed line), and 10−3 M−4 (dotted line). The black (red) lines
correspond to positive (negative) values of G. We show the
system during its inspiral (top-left panel), at half an orbit before
merger (top-right panel), at formation of the first common
apparent horizon (bottom-left panel), and at 200 M after the
merger. From Elley et al., 2022.
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remnant BH spin is smaller than that of the initially spinning
(and scalarized) binary components, and (ii) spin-induced
dynamical scalarization in an initially nonspinning BH binary
system can result in a scalarized rotating BH. In the latter case,
if the value of the coupling constant is sufficiently large the
scalar field may affect the late inspiral and ringdown of the
binary. For values of the coupling constant near the scalariza-
tion threshold for the remnant BH, the tachyonic instability
can be delayed to some time ≈100 M after the binary merger,
and can thus hide the scalar field throughout the binary’s
inspiral. This was termed stealth scalarization by Elley et al.
(2022); Fig. 23 displays an example.
A restriction of the decoupling limit is that it does not

capture the backreaction of the scalar field onto the spacetime
metric, and thus does not allow one to derive the modifications
to the gravitational waves in previously mentioned the binary
setups. These difficulties can be partially overcome by
employing a formulation of the theory’s field equations in
a generalized harmonic gauge that was first developed by
Kovács and Reall (2020a, 2020b); see also Ripley (2022).
This formulation in principle allows one to evolve the
complete scalar-field and metric dynamics in scalar-Gauss-
Bonnet gravity. However, the first binary BH coalescence
simulations using this formalism in scalar-Gauss-Bonnet
theories that allow for BH scalarization (East and Ripley,
2021a, 2021b) demonstrated that evolution ceases to be well
posed for larger values of the coupling. How different gauge
choices and different models perform in this respect has not
been well explored.
Franchini et al. (2022), motivated to go beyond the small-

coupling approximation, explored the fixing-the-equations
approach to perform numerical simulations, an approach
inspired by work in dissipative relativistic hydrodynamics
(Cayuso, Ortiz, and Lehner, 2017). The main idea is to
modify evolution equations of the theory such that the short
wavelength modes (associated with strong coupling and the
breakdown of well-posedness) with respect to some chosen
scale are somewhat controlled, while longer wavelength
modes become tractable. Franchini et al. (2022) were able
to use the formalism to study scalar-field collapse in spherical
symmetry in the scalarization model of Silva et al. (2019).
This allowed them to evolve the system past situations where
the original equations fail due to the appearance of regions in
spacetime where the evolution changed character from hyper-
bolic to elliptic, which prevented further evolution of the
system in time (Ripley and Pretorius, 2020). Moreover, the
“fixed-equation” system evolves toward the static BHs
predicted by the original system of equations, thus indicating
that it may provide a suitable “completion” of the original
theory. Whether this approach remains valid in a situation
with less symmetry, for example, the case of BH binaries,
remains to be explored.
Progress has also been made in modeling compact binary

dynamics in the regime of wider separation and lower
velocities, i.e., in the domain of validity of PN theory. In
particular, Shiralilou et al. (2021, 2022) extended to a general
fðφÞ coupling the calculations of Yagi et al. (2012), which
applied for the shift-symmetric scalar-Gauss-Bonnet theory,
i.e., fðφÞ ∼ φ. These works calculated the leading-order
corrections due to curvature nonlinearities in the GW and

scalar waveforms, finding that corrections due to the Gauss-
Bonnet term appear at 1PN order in GWs. They also obtained
the GW polarization and phasing. In addition, Julié and Berti
(2019) argued that during the adiabatic inspiral of two BHs the
Wald entropy of each BH is constant. This allows a precise
definition of the sensitivities of BHs in scalar-Gauss-Bonnet
gravity in terms of the variation of the ADM mass as a
function of the ambient scalar field that the BH is embedded
in at fixed Wald entropy. This parallels the notion that the
baryonic mass of NSs is constant during the inspiral (Damour
and Esposito-Farèse, 1996a). They also derived the two-body
Lagrangian at 1PN order. Julié et al. (2022) used this result in
conjunction with the numerical calculation of sensitivities of
spontaneously scalarized BHs to study binaries. They found
that in principle BHs can evolve toward a situation in which
the inner singularity approaches the event horizon of the BH
before the merger. This suggest the possibility that, depending
on the model of scalar-Gauss-Bonnet gravity and the binary
parameters, the field equations might simply not be able to
predict a full binary evolution ranging from inspiral to merger.

B. Black-hole scalarization in the presence of matter

Stefanov, Yazadjiev, and Todorov (2008) suggested the
earliest model of BH scalarization, which consisted of the
DEF model coupled to nonlinear electromagnetism (Stefanov,
Yazadjiev, and Todorov, 2007a, 2007b). They introduced a
coupling between the scalar field and the Born-Infeld
Lagrangian and found that BH solutions with scalar hair
branch off from the general-relativistic sequence of solutions.
These BHs violate the no-scalar-hair theorems of Mayo and
Bekenstein (1996) and Sen and Banerjee (2001), which are
valid for charged, nonrotating BHs in scalar-tensor theory.
The bifurcation point occurs where the GR sequence of
solutions becomes unstable to scalar perturbations (Doneva
et al., 2010).
A variety of scalarization models have been studied in

Einstein-Maxwell-scalar theory following Herdeiro et al.
(2018), who introduced a coupling between the scalar
field and the Lorentz invariant F 2 ¼ FμνFμν of the form
expð−αφ2ÞF 2, where α is a dimensionless constant. In this
model BHs can scalarize, with F 2 playing the role of the trace
of the energy-momentum tensor in the NS scalarization
in DEF-like models, or the Gauss-Bonnet invariant in BH
scalarization models.
The simpler nature of the model allowed Herdeiro et al.

(2018) to perform numerical relativity simulations to study
the scalarization process in the time domain by expanding
upon already available code bases (Sanchis-Gual, Degollado,
Herdeiro et al., 2016; Sanchis-Gual, Degollado, Montero
et al., 2016). This allowed Herdeiro et al. (2018) to show that
the end point of the instability of the Reissner-Nordström BH
was indeed a BH with scalar hair. Additional studies of this
model were done by Astefanesei et al. (2019), Fernandes
et al. (2019b), Herdeiro, Ikeda et al. (2021), Luo et al.
(2022), Niu et al. (2022), and Xiong et al. (2022). Within this
model, Myung and Zou (2019b) studied the instability of
the Reissner-Nordström solution, while Myung and Zou
(2018, 2019c) and Blázquez-Salcedo et al. (2021) analyzed
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the stability of the scalarized solutions. Fernandes et al.
(2019a) and Herdeiro and Oliveira (2020) explored other
variations on this theme, including scalar-axion couplings,
i.e., ∝ hðφÞFμνF̃μν, where F̃μν ¼ ð1=2ÞϵμναβFαβ. In addition,
Ikeda, Nakamura, and Minamitsuji (2019) considered
the coupling between the double dual of the Riemann
tensor and Fμν.
Zhang (2021) studied an Einstein-Maxwell-scalar model,

with a coupling between scalar and Maxwell fields of the form
expðβφ4ÞF 2. In this model, the Reissner-Nordström solution
is linear stable against scalar perturbations, but it can become
unstable under large, nonlinear perturbations. Zhang (2021)
observed a critical phenomena separating unscalarized and
scalarized BHs. This establishes an interesting connection
between nonlinear scalarization with the result of critical
phenomena in gravitational collapse, which was first observed
by Choptuik (1993). Similar investigations were carried out in
Einstein-Maxwell-scalar the Reissner—Nordström—anti–de
Sitter BHs (Zhang et al., 2022) and in the Ricci-Gauss-Bonnet
model (Liu et al., 2022, 2023).
Cardoso et al. (2013a, 2013b) explored a relevant scenario

from an astrophysical perspective: matter in the vicinity of a
BH could trigger scalarization and in turn endow the BH
with scalar hair. They showed that this “matter-induced”
scalarization (see Sec. II.C.3) is in principle possible for
the DEF model. The viability of this proposal in realistic
matter configurations, such as an accretion disk or a dark
matter halo, has not yet been explored. Matter-induced
scalarization seems unlikely to happen in light of the severe
constraints on the DEF model. However, this might not
be the case for other scalarization models, and the topic
deserves further investigation.
After it was understood that in scalar-Gauss-Bonnet theo-

ries the Schwarzschild solution can scalarize, it was natural to
ask if the same can happen to its charged counterpart, i.e., the
Reissner-Nordström solution. Doneva, Kiorpelidi et al. (2018)
analyzed this and found the existence of two bifurcation
points, one at larger masses where the scalarized solutions
bifurcated from the Reissner-Nordström one, and one at
smaller masses where the scalar charge of the solution
decreases again to zero and the branch merges again with
the GR one. Scalarized charged BHs in the fundamental mode
are also thermodynamically favored over the Reissner-
Nordström solution. Brihaye and Hartmann (2019) showed
that, for the near-extremal Reissner-Nordström case, scalari-
zation can happen for either sign of the scalar-to-Gauss-
Bonnet coupling constant (35b). Other works varying the
choice of the coupling function f between the scalar field (or
the axion field) and the Maxwell invariant and studying the
scalarization of dyonic BHs were given by Fernandes et al.
(2019b, 2019a), Blázquez-Salcedo, Herdeiro et al. (2020), and
Blázquez-Salcedo et al. (2021).
Herdeiro and Radu (2019) put forward their motivation for

studying these models. They noted that quantum effects can
break the scale invariance and vanishing energy-momentum
trace properties of electro-vacuum GR BHs. As a conse-
quence, even the simplest nonminimally scalar-field coupling
ξφ2R can result in BH scalarization when these quantum
effects are taken into account. Within these models, they

discussed the scalarization of the Reissner-Nördstrom solution
and a noncommutative generalization of the Schwarzschild
solution. They found that the resulting scalarized BHs are in
general entropically favored over the GR solutions.

C. Variations of the curvature-induced scalarization model

In light of the nontrivial effect of rotation on scalarization, it
is natural to consider what happens when the Gauss-Bonnet
invariant is replaced by the Pontryagin invariant �RR as the
“curvature source” to which the scalar field is coupled. The
Pontryagin density is known to vanish in spherically sym-
metric spacetimes (such as that of a Schwarzschild BH) and
becomes nonzero in nonspherically symmetric spacetimes
(such as that of a Kerr BH). In this sense, all scalarized BHs
in theories that replace the Gauss-Bonnet invariant with
the Pontryagin density are necessarily “spin induced”; a
characteristic shared with BH solutions in dynamical
Chern-Simons gravity [see, Alexander and Yunes (2009),
Konno, Matsuyama, and Tanda (2009), and Yunes and
Pretorius (2009) for reviews], which features a linear
coupling between the scalar field and the Pontryagin invariant.
The coupling between a scalar field and the Pontryagin
density leads to equations that are of third order in derivatives
[see Motohashi and Suyama (2012) and Delsate, Hilditch,
and Witek (2015)], which is not the case for a coupling with
the Gauss-Bonnet invariant. Thus, although both of
these couplings can be seen as part of an EFT, they lead to
distinct challenges when it comes to nonlinear evolution.
Myung and Zou (2019a) studied the combined effect of
Gauss-Bonnet and Pontryagin densities. In the test field limit,
the scalar-field dynamics with an effective mass proportional
to ϕ2�RR was also studied in a Kerr background (Gao,
Huang, and Liu, 2019; Doneva and Yazadjiev, 2021b) and
in the Schwarzschild-Newman-Unti-Tamburino background
(Brihaye, Herdeiro, and Radu, 2019).
Another extension of the original Gauss-Bonnet sponta-

neous scalarization model involves the consideration of n > 1
scalar fields φa, whose interaction is determined by their
“target space” γabðφcÞ, an n-dimensional Riemannian mani-
fold (Damour and Esposito-Farèse, 1992; Horbatsch et al.,
2015). These are similar to the tensor-multi-scalar DEF
models for NS scalarization presented in Sec. III.D. In these
models, the scalar-field dynamics is determined by the
quantity γabðφÞgρσ∂ρφa

∂σφ
b. Doneva, Staykov et al. (2020)

numerically obtained a scalarized BH for the case n ¼ 3 and
maximally symmetric target-space geometries. An important
feature of these solutions is that the scalar fields decay
asymptotically as 1=r2 (i.e., the BHs do not have a monopole
scalar charge). This shows that BHs in these theories will not
emit dipole scalar radiation when they are placed in binaries.

V. GENERALIZATIONS OF SCALARIZATION
TO OTHER FIELDS AND INSTABILITIES

We identified the underlying reason for spontaneous
scalarization in its various forms to be a tachyonic insta-
bility. However, the scalar nature of the field did not play
a special role in the mechanism. This suggests that other
fields such as vectors might also spontaneously develop
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nontrivial configurations around compact objects when they
exhibit suitable couplings to curvature. In this section, we
investigate this idea, which leads to the so-called sponta-
neous tensorization theories.
A second type of generalization of spontaneous scalariza-

tion considers new types of instabilities, as opposed to new
types of fields. For instance, instead of replacing the scalar
field with, say, a vector, we replace the tachyonic instability
with, say, a ghost instability. We later see that a surprising key
result of spontaneous tensorization is that these two paths are
intimately connected. Namely, even if we intend only to have
a theory of tachyons living on nonscalar fields, ghost and
gradient instabilities necessarily arise in almost all models.

A. Spontaneous vectorization

What happens if we replace the scalar field of spontaneous
scalarization with a vector? In scalarization, we started with
the most general context in Sec. II.B.1, considering all the
allowed couplings to the metric. Here we follow the reverse
path, starting with individual models of vector-tensor theories
and considering the more encompassing theory later. This
exposition is preferable because the study of specific models
that are straightforward generalizations of known scalarization
models reveals some pathologies and provides guidance for
further model building.
The idea and the first specific model of vectorization were

introduced in analogy with a massive version of the DEF
model in Eq. (18). Consider the vector-tensor theory action
(Beltrán Jiménez, Delvas Fróes, and Mota, 2013;
Ramazanoğlu, 2017)

S ¼ 1

16πG�

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − FμνFμν − 2μ2XX
2�

þ Sm½Ψm;A2ðX2Þgμν�; ð36Þ

where Fμν ¼ ∇μXν −∇νXμ and X2 ¼ gμνXμXν ¼ XμXμ. The
vector field Xμ has the canonical kinetic term in this frame,
and the matter degrees of freedom couple to the metric
g̃μν ¼ A2ðX2Þgμν, which is conformally scaled with respect
to gμν. The vector field equation is

∇ρFρμ ¼ ½−8πG�A4ΛT̃ þ μ2X�Xμ; ð37Þ

where Λ ¼ d lnA=dx, Tμν is the energy-momentum tensor in
the Einstein frame, and T̃ is the trace of the stress-energy
tensor in the Jordan frame, i.e., with respect to the metric g̃μν.
Equation (37) is that of a massive vector (Proca) field

where the expression inside the square brackets acts as an
effective mass μ2eff . In parallel with the DEF model, when A
has an appropriate form, for instance,A ¼ expðβ0X2=2Þwith
sufficiently negative β0, μ2eff becomes negative. Furthermore,
for dense enough objects such as NSs this occurs for order-
of-unity values of β0. The expectation is that the vector field
will grow from arbitrarily small perturbations around Xμ ¼ 0

due to this tachyonic behavior, which can be called sponta-
neous vectorization, in exact analogy with spontaneous

scalarization. However, we later see that there are many
subtle points in this narrative.
Even though we presented spontaneous vectorization in

the Einstein frame with a nonminimal coupling to matter, it
can be converted to a theory of minimal matter coupling and
vector-curvature couplings as in spontaneous scalarization
(Ramazanoğlu, 2019a). Even more directly, there are theories
of spontaneous vectorization that are purely conceived
through curvature coupling, with the first example being
the Hellings-Nordtvedt theory (Hellings and Nordtvedt, 1973)
studied by Annulli, Cardoso, and Gualtieri (2019),

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − FμνFμν − ΩX2R−ηXμXνRμν�

þ Sm½Ψm; gμν�; ð38Þ

where Ω and η are coupling constants. Scalarization through
coupling to the Gauss-Bonnet term also has a vector analog,
as in the action (Ramazanoğlu, 2019b)

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − FμνFμν þ fðX2ÞG� þ Sm½Ψm; gμν�;

ð39Þ

which has a similar structure as Eq. (25). The action (39) leads
to BH vectorization as well, unlike the other models we have
seen thus far.
The models of vectorization that we have examined are

merely specific examples, and any theory of scalarization can
be generalized to vector fields in principle. In this regard,
Brihaye and Verbin (2020) studied the coupling of a vector
field to a scalar, and Oliveira and Pombo (2021) and Brihaye
et al. (2022) studied the coupling between two vector fields
to obtain vectorized compact objects. Kase, Minamitsuji,
and Tsujikawa (2020) considered generalized Proca theories
(Heisenberg, 2014; Tasinato, 2014) with various couplings of
a massive vector field and showed that spontaneous vectori-
zation occurred in those models as well. Ramazanoğlu
(2018b) investigated models where the effective mass of
the vector field was generated by the Higgs mechanism, thus
preserving the gauge symmetry. On a separate front, con-
formal scaling of the metric in the matter action (36) can be
generalized to disformal transformations, and spontaneous
vectorization still occurs (Ramazanoğlu and Ünlütürk, 2019;
Minamitsuji, 2021). In terms of approximate solutions,
Garcia-Saenz, Held, and Zhang (2022) recently calculated
the Schwarzschild QNMs of nonminimally coupled vector
fields. There have also been efforts to study all these
phenomena in a unified manner in compact binaries, using
more generic EFT tools (Khalil et al., 2019).
To summarize, coupling of the vector field to any non-

vanishing term in the action can be considered for sponta-
neous vectorization (Ramazanoğlu, 2019b), and most options
have been considered in at least a preliminary sense. The case
of all possible couplings, an analog of the minimal action of
scalarization in Sec. II.B.1, was studied by Garcia-Saenz,
Held, and Zhang (2021). They also revealed some of the
fundamental problems with vectorization, as we later discuss
more broadly.
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Vectorization models strongly resemble scalarization mod-
els in terms of their actions, but this can be misleading.
One major difference is in the number of additional degrees
of freedom. Scalar fields contribute a single new degree of
freedom irrespective of whether they are part of spontaneous
scalarization provided that the field equations are of second
order in derivatives. For vectorization, this is not the case. The
action (37) and all of the vector-tensor theory actions that we
have discussed break the gauge freedom found in massless
vector fields.14 As a result, the vectors of vectorization models
carry 3 degrees of freedom instead of the 2 degrees found in
electromagnetism. This is not an immediate reason of concern,
since minimally coupled massive vectors, known as Proca
fields (Proca, 1936), also break the gauge symmetry, and
they still provide a classical field theory with well-behaved
dynamics. However, as we later see, the extra degree of
freedom is far more problematic in vectorization.
Although the vectorization models are designed to have a

linear tachyonic instability in analogy with scalarization, the
presence of the third degree of freedom, whose dynamics is
not obvious, casts doubt on the success of this design. Namely,
whether vectorization can indeed be described as a tachyonic
instability of the vector modes that is then quenched non-
linearly is not apparent. This concern is amplified by the fact
that vectorized compact objects in the models studied thus far
seem to have some striking differences with respect to their
scalarized counterparts.
As an example, consider vectorized BHs in the theory

described by the action (39). Entropy can be a measure of
stability for BHs, where higher entropy solutions are favored
in terms of stability. Entropies of spherically symmetric
vectorized BHs were numerically computed by Barton et al.
(2021), and GR BHs were shown to be entropically favored
over vectorized ones in all cases. The verdict of stability is
not definite without time evolution, but this is a strong
indication for the instability of vectorized BHs. In contrast,
scalarized BHs in scalar-Gauss-Bonnet theories such as
Eq. (25) can be entropically favored over those in GR for
appropriate coupling functions (Doneva and Yazadjiev,
2018b), and their stability is also indicated through other
methods (see Sec. IV.A.2), which makes the stability of
vectorized objects even more suspect.
Scalarized and vectorized NSs also show major differences.

For example, the dependence of the strength of vectorization15

on the NS mass has no discernible pattern, as can be seen in
Fig. 24, whereas scalarization occurs in a finite NS mass
interval and vanishes at the boundary mass values; see Fig. 1.
It is also known that while scalarized NSs are continuously

connected to those of GR as the theory parameters are
smoothly changed (for example, in the limit β → 0 in
Fig. 1), this is not the case in vectorization (Ramazanoğlu,
2017; Minamitsuji, 2020a). The latter is known to be an
indication of instability in certain scalarization theories; see
Mendes and Ortiz (2016). Thus, qualitative differences
between scalarized and vectorized objects are also apparent
for NSs and, moreover, point to the instability of the
vectorized ones.
These observations suggest that the vectorized compact

object solutions obtained thus far may not be stable. Hence,
they are not astrophysically relevant, at least in the case of
spherically symmetric spacetimes. A close look at the insta-
bility mechanism of vectorization reveals the underlying
reasons for this in Sec. V.B.

B. Vectorization and ghosts

Despite the fact that the vectorization phenomena that we
have presented are directly inspired by scalarization, we have
seen noteworthy differences between the two mechanisms.
Even though it was puzzling for a time, this is now strongly
suspected to be related to the fact that vectorization models
suffer from ghost and/or gradient instabilities in addition to
tachyonic ones, as demonstrated by Garcia-Saenz, Held, and
Zhang (2021) and Silva et al. (2022). Here we first follow the
latter and later outline the methodology of the former.16

We begin by reviewing the basic aspects of different types
of instabilities (Demirboğa, Coates, and Ramazanoğlu, 2022).

FIG. 24. The strength of vectorization measured byAðr¼0Þ−1
as a function the NS mass M for various values of β0 and μX in
Eq. (37). Top row: μX ¼ 1.6 × 10−11 eV. Middle row: μX ¼
8.0 × 10−12 eV. Bottom row: μX ¼ 4.8 × 10−12 eV. Left col-
umn: β0¼−4. Middle column: β0 ¼ −5. Right column: β0 ¼ −6.
The dashed and dot-dashed lines, respectively, indicate solutions
where the energy density ε and Φ ¼ −nμXμ (with nμ the normal
vector field to spatial hypersurfaces) do not monotonically
decrease with radius. From Ramazanoğlu, 2017.

14Even though we have an intrinsic mass μX for the vector field in
our discussion, vectorization can occur without this term, as is the
case for scalarization.

15There is no analog of the scalar charge in Eq. (31) for massive
scalarization or vectorization theories due to different asymptotic
behavior at r → ∞. However, A − 1 is a monotonic function of the
norm of the vector field in this case and is known to be a good
indicator of the deviation of vectorized star structures from those
of GR (Ramazanoğlu, 2017). Thus, we use it as a measure of
vectorization strength.

16Esposito-Farèse, Pitrou, and Uzan (2010) is an earlier similar
study that specifically investigated cosmological scenarios.
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Recalling our discussion of the tachyon in Secs. II.A.1
and II.A.2, we consider the linearized scalar-field equation (5)
in 1þ 1 dimensions,

gtt∂2t δφþ gxx∂2xδφ ¼ μ2φ; ð40Þ

where we assume for simplicity that the metric is diagonal
with constant components. The common case without insta-
bilities is when gtt < 0, gxx > 0, and μ2 > 0. What happens
when each of these three terms changes its sign while the other
two stay the same?
For a plane wave mode δφðt; xÞ ∝ exp½iðωt − kxÞ�, the

dispersion relation is given by

ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2 þ gxxk2Þ=ð−gttÞ

q
: ð41Þ

We saw that for μ2 < 0 the mode behaves as a tachyon, where
ωðkÞ becomes imaginary for sufficiently small jkj. This leads
to exponential growth, as discussed, and the fastest growing

mode behaves as ∼ exp½
ffiffiffiffiffiffiffiffiffiffiffiffi
μ2=gtt

p
t�; i.e., the growth rate has an

upper limit.
A ghost occurs when gtt > 0. There is also exponential

growth in this case; however, the growth rate diverges with
increasing wave number as ∼ exp½ ffiffiffiffiffiffiffiffiffiffiffiffiffi

gxx=gtt
p

kt� and hence
has no upper bound. The case gxx < 0 also gives the same
asymptotic growth rate as the ghost and is called a gradient
instability.17 In summary, ghost and gradient instabilities as we
presented them here have qualitative differences from tachy-
ons, with a main one being the arbitrarily fast growth rates.
This means that a well-defined time evolution can be
problematic in such theories, and it is more difficult to devise
nonlinear quenching mechanisms.
The spontaneous vectorization model of Eq. (36) modifies

the “mass term” in the field equation for the vector field.
Hence, the first impression might be that it leads to a tachyonic
instability as in scalarization. However, this approach is naive,
and a thorough analysis reveals that theories of vectorization
necessarily carry ghost instabilities in addition to tachyonic
ones. Following Silva et al. (2022), one way to understand this
is to use the Stueckelberg trick (Ruegg and Ruiz-Altaba,
2004), where we introduce a scalar field ψ into the action (36)
using the substitution

Xα → Xα þ μ−1X ∇αψ : ð42Þ

This leads to the scalar equation of motion

□̄ψ ¼ −ḡμν½μX∇̄μXν þ 1
2
ð∇̄μ log ẑÞð∇̄νψ þ μXXνÞ�; ð43Þ

where the covariant derivative ∇̄ is compatible with the
new metric

ḡμν ¼ ẑgμν; ẑ≡ μ2eff
μ2X

¼ 1 −
8πG�A4ΛT̃

μ2X
: ð44Þ

The signature of ḡαβ changes with the sign of ẑ, which controls
the change of sign of the effective mass of Xμ in Eq. (37).
In other words, when we try to instigate a tachyon on Xμ by
having negative ẑ in parts of the spacetime, ψ carries ghost and
gradient instabilities; cf. Eq. (40). This is a degree of freedom
whose dynamics is governed by the effective metric ḡμν, not
the spacetime metric gμν.
It is curious to see that the Stueckelberg trick reveals

the ghost, even though it is not apparent in the vector field
equation (37). However, a more careful analysis can clarify
this issue (Silva et al., 2022). Note first that the vector field
equation (37) is not manifestly hyperbolic; i.e., its principal
part, the term with the highest derivatives, is not the wave
operator, since

∇μFμν ¼ ∇μ∇μXν −∇μ∇νXμ: ð45Þ

The second term on the right-hand side of Eq. (37) vanishes in
Proca theory (A ¼ 1), making the principal part the wave
operator. This is not the case in general due to the so-called
(generalized) Lorenz condition

∇μðẑXμÞ ¼ 0; ð46Þ

which is obtained by acting on both sides of Eq. (37) with ∇μ

and recalling the antisymmetry of Fρμ. We can use Eq. (46) to
obtain a manifestly hyperbolic form of the linearized field
equations on a fixed background of vanishing vector fields as

∇μ∇μXν þ ð∇μ ln ẑÞ∇νXμ ¼ MνμXμ; ð47Þ

where we defined the mass-squared tensor

Mνμ ¼ ẑμ2Xgνμ þ Rνμ −∇ν∇μ ln jẑj: ð48Þ

In Eqs. (47) and (48) the metric and ẑ have their fixed
background GR values. This is a generalized massive wave
equation.
Since ẑ ¼ 1 in the absence of matter and it becomes

negative in a continuous manner inside matter for an insta-
bility to exist at all, ẑ necessarily vanishes at some points of a
NS spacetime. The ∇ν∇μ ln ẑ term introduced by the vecto-
rization contains powers of ẑ−1, which means that the effective
mass-squared tensor diverges at such points. Alternatively, if
we move the ẑ−1 terms to the other side of the equation, the
principle part becomes ẑ□Xν; i.e., it changes its sign with ẑ
the same way as the ψ field in Eq. (43). Hence, if we properly
rewrite the vector field equation into a manifestly hyperbolic
form, the ghost is apparent.

17For the simple equation (40), a simultaneous change of sign of
two of the coefficients is equivalent to changing the sign of the third
one; i.e., gtt > 0, gxx < 0, and μ2 > 0 is also a tachyon. Similarly, all
three coefficients changing signs gives a stable theory. This is due to
the fact that the equation as a whole or the action that leads to it can
be multiplied by an overall factor of −1 without changing the
physics. However, the scalar, or any investigated field that carries
instabilities, is always coupled to the metric and other terms in the
action, which means that the overall sign is meaningful. Hence,
we use the aforementioned classification here and say that a theory
with gtt > 0, gxx < 0, and μ2 > 0 carries both ghost and gradient
instabilities according to the literature (Demirboğa, Coates, and
Ramazanoğlu, 2022).
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Equations (47) and (48) show that calling μ2eff ¼ ẑμ2X the
effective mass squared of the theory is misleading, unlike in
the case of scalarization. Even though μ2eff replaces the mass
term in the vector field equation of a minimally coupled Proca
field, it is not actually the effective mass of physically
propagating degrees of freedom. The physical mass is deter-
mined by Eq. (48), which diverges at points where ẑ ¼ 0.
We have presented the appearance of the ghost in two

separate ways, the Stueckelberg mechanism of Eq. (43) and
the direct vector field formulation of Eq. (47). The degrees of
freedom in the two pictures are related to each other in a
nontrivial manner through Eq. (42). Hence, the presence of the
ghost manifests differently. Nevertheless, the criterion for the
appearance of the ghost ẑ ¼ 0 is the same in both cases. The
Stueckelberg picture has an advantage in that it can straight-
forwardly identify the ghost as a scalar degree of freedom ψ at
decoupling, which is well known in the case of the Proca field.
One might at first think that the ghost and gradient

instabilities can be regularized by nonlinearities. After all,
the tachyon of scalarization is also an instability, but it is
eventually quenched by nonlinear effects, as explained in
Sec. II.A. In such a scenario, one would expect the vectorized
objects to be free of instabilities even though the GR solutions
are unstable. However, current evidence points away from
this. Even though detailed mathematical analyses of the partial
differential equations have not been performed to ensure
nonlinear instability, Demirboğa, Coates, and Ramazanoğlu
(2022) showed that spherically symmetric vectorized NSs in
the theory (36), which could be potential stable end points of
vectorization, are also unstable to ghosts and gradient insta-
bilities at the perturbative level.
Even if stable solutions can be found in other vectorization

models, there is a more fundamental problem due to the
modification to the principal part of the vector equation (43)
or (47). The coefficient of the wave operator vanishes at
certain points in spacetime or, equivalently, the physical
effective mass diverges if we move these coefficients to the
other side of the equation. In either case, this leads to divergent
time derivatives for arbitrarily small perturbative vector field
values, which renders the initial assumptions of a perturbative
approach invalid. Overall, it is not clear whether one can even
define a well-posed time evolution, let alone one that can
somehow suppress the exponential growth of the vector field
(Silva et al., 2022). Further elucidation of these issues requires
a more rigorous mathematical investigation, which has not yet
been attempted.
Thus far we have investigated the ghost and gradient

instabilities of the specific vectorization theory in the
action (36), but similar results are known to exist for all
theories of vectorization (Garcia-Saenz, Held, and Zhang,
2021; Silva et al., 2022) due to similar mechanisms. To
summarize, replacing the scalar of scalarization with a vector
field results in theories where the central issue is not the nature
of the field the instability lives on, but rather the type of
instabilities that arise. We cannot construct vectorization
models that exhibit only the tachyonic instability commonly
associated with the scalarization mechanism, which can be
benign and tamed by nonlinear effects. Rather, vectorization
exhibits far more threatening instabilities.

We have closely followed Silva et al. (2022), but Garcia-
Saenz, Held, and Zhang (2021) reached similar conclusions
via an alternative approach. They considered the most general
action that contained a vector field and the metric (Heisenberg,
2014; Tasinato, 2014) and truncated its action at the quadratic
order around GR to obtain the linearized field equations. The
main qualitative difference from the scalar minimal action
of Sec. II.B.1 is that one can demonstrate that if any of the
physical degrees of freedom have a tachyonic instability,
then there are also degrees of freedom with ghost or gradient
instabilities, which are manifested by a change of sign of
coefficients in the dispersion relationship. The conclusion is
the same: vectorization based on tachyonic instabilities
necessarily has ghost or gradient instabilities as well.
Recent work has shown that the issues with vectorization

also happen in simpler theories, with an example being
minimally coupled self-interacting vector field theories. For
instance, for AðxÞ ¼ 1 the action (36) becomes the minimally
coupled Proca theory, which is well posed. However, gener-
alizations of the potential beyond a mass term, that is, 2μ2Xx →
4VðxÞ for some generic function V, results in ill-posedness
(Clough et al., 2022; Coates and Ramazanoğlu, 2022; Mou
and Zhang, 2022). The underlying reason for this is the fact
that there is an analog of the generalized Lorenz condition (46)
in this case as well, which ultimately leads to the same result:
there is a degree of freedom in the theory whose dynamics is
governed by an effective metric, an analog of ḡμν in Eq. (44).
This new metric depends on the vector field itself and can lose
its Lorentzian nature depending on how Xμ evolves in time
(Coates and Ramazanoğlu, 2022).
Esposito-Farèse, Pitrou, and Uzan (2010) provided some of

the earliest examples of the ill-posedness of self-interacting
vector field theories that we have mentioned in a cosmological
context, and it was recently demonstrated that initially healthy
configurations of self-interacting vectors naturally evolve
to a point where hyperbolic evolution becomes impossible
(Clough et al., 2022; Coates and Ramazanoğlu, 2022; Mou
and Zhang, 2022; Coates and Ramazanoğlu, 2023). This
means that nonlinear extensions of the Proca theory are more
delicate than their scalar counterparts in terms of providing
physical theories. It seems that the underlying reason for the
“failure” of vectorization is a much more general phenomenon
in theories with conditions such as Eq. (46), at least for the
models conceived thus far. In this sense, exploration of
vectorization has been leading to a deeper understanding of
vector fields in general, which has implications beyond
theories of gravitation.
We close this section with a pertinent comment on ghost

instabilities. We encountered them as an unappealing artifact
in vectorization theories, but one could consider making them
the driver of a spontaneous growth mechanism. This option
was indeed considered prior to their discovery in vectorization
models. The simplest example is another analog of the DEF
model where the conformal scaling function A depends on
derivative terms (Ramazanoğlu, 2018a)

S ¼ 1

16πG�

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2gμν∂μφ∂νφ − 2μ2φ2�

þ Sm½Ψm;A2ðKÞgμν�; ð49Þ
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with K ¼ −gμν∂μφ∂νφ=2. The scalar equation of motion is

∇μðẑ∇μφÞ ¼ μ2φ; ð50Þ

where ẑ≡1þ4πG�T̃A4ðdlnA=dKÞ. Unlike for the tachyonic
instability where the mass term is modified, the derivative
terms are modified in this case.
The nature of Eq. (50) can be better understood when we

consider the linearized equation for perturbative values of
the scalar around a GR background and highlight the
principal part as

ẑ□δφþ � � � ¼ 0: ð51Þ

For an appropriate choice such as A ¼ expðβ0KÞ with large
enough β0 > 0, the sign of ẑ can become negative in the
presence of matter. In all spontaneous scalarization theories
considered thus far, the source of the instability was the
change of sign of the effective mass term, which resulted in a
tachyon. In Eq. (51) the overall sign of the wave operator
changes; hence, we have both ghost and gradient instabilities,
recalling Eq. (40) and the subsequent discussion. Spontaneous
scalarization that might arise from this new mechanism is
called ghost-based spontaneous scalarization (Ramazanoğlu,
2018a). It has similar problems as vectorization in that it is
hard to tame the ghost and other instabilities; hence, we do not
end up with a theory with sensible dynamics.

C. Spontaneous tensorization

The basic mechanism of spontaneous scalarization can be
generalized beyond vector fields, resulting in spontaneous
tensorization. However, all such known theories also feature
ghosts and suffer from similar problems with vectorization,
aside from a single possible example of spinor-tensor theory.
The simplest mathematical generalization of scalarization

beyond vectors occurs for p-form fields, i.e., totally anti-
symmetric tensors Xμ1���μp of rank ð0; pÞ. This is due to the fact
that a vector field Xμ is a 1-form field, and the actions that we
encountered in spontaneous vectorization can be readily
generalized to this class of fields as (Ramazanoğlu, 2019c)

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − Fμ1���μpþ1
Fμ1���μpþ1 �

þ Sm½Ψm;A2ðX2Þgμν�; ð52Þ

where Fμ1���μpþ1
¼ ðpþ 1Þ∇½μ1Xμ2���μpþ1�, with the square

brackets denoting antisymmetrization and X2 ¼ Xμ1���μp×
Xμ1���μp . It is then straightforward to show that the analog
of μ2eff becomes negative inside NSs for an appropriate choice
of AðxÞ. However, these theories carry ghost instabilities
similar to those of vectors when we try to establish sponta-
neous growth from tachyonic instabilities since they possess
an analog of the Lorenz condition (46) (Silva et al., 2022).
Spontaneous tensorization of a symmetric rank ð0; 2Þ tensor

field fμν, which is spin 2, is a natural avenue to investigate
after spin-0 scalars and spin-1 vectors. Ghosts appear in this
case once more since the metric in our gravity theories gμν is

also a spin-2 field. Note that spontaneous tensorization
theories include terms where the field that tensorizes, in this
case fμν, is coupled to the metric gμν. However, interacting
spin-2 fields are known to generically lead to ghost degrees of
freedom, rendering most such theories unphysical (Boulware
and Deser, 1972; de Rham, 2014). Special ghost-free exam-
ples were discovered only recently in the form of massive
gravity and bigravity (de Rham, Gabadadze, and Tolley, 2011;
Hassan and Rosen, 2012; de Rham, 2014). Matter can couple
to one of the spin-2 fields in the novel ghost-free theories, but
coupling to both metrics generically invokes a ghost again
(Yamashita, De Felice, and Tanaka, 2014). For example,
trying to mimic the DEF model by having a conformal
scaling function that depends on fμν, i.e., changing the matter
action as gμν → Aðfμν; gμνÞgμν, leads to ghosts. Overall, there
is no known form of bigravity theory that features an analog of
spontaneous scalarization.
Spinor fields present the most interesting case of general-

izing scalarization, perhaps aside from vectors.18 The classical
Lagrangian for a Dirac spinor is

Lψ ¼ 1
2
½ψ̄γμð∇μψÞ −∇μγ̂

5γμψ � − μψ̄ψ ; ð53Þ

where the conventions for gamma matrices and the effect
of covariant derivatives on spinors are as given by
Ramazanoğlu (2018c). This action provides the usual
dispersion relation ω2 ¼ kiki þ μ2 for a plane wave of the
form ψ ∝ exp½iðωt − kixiÞ�. Since the mass term appears
linearly, not quadratically, changing its sign results in the
same dispersion relation. However, a tachyonic spinor action
is still possible in the following form:

L5
ψ ¼ 1

2
½ψ̄ γ̂5γμð∇μψÞ − ð∇μψ̄Þγ̂5γμψ � − μψ̄ψ ; ð54Þ

with the field equation

γμ∇μψ − γ̂5μψ ¼ 0: ð55Þ

In Eq. (55) ω2 ¼ kiki − μ2; that is, the dispersion relation is
tachyonic (Chodos, Hauser, and Kostelecky, 1985; Jentschura
and Wundt, 2012).
Ramazanoğlu (2018c) used Eq. (54) to obtain the first

spontaneous spinorization theory where spinor fields are
unstable to growth around GR backgrounds of NSs. Even
though the meaning of a ghost as opposed to a tachyon is a
subtle issue for spinors, the equation of motion in this theory
has divergent coefficients as in the vector field case (47).
Hence, this form of spinorization suffers from similar prob-
lems to vectorization.
Minamitsuji (2020b) proposed an alternative model of

spinorization given by the action

S ¼ 1

16πG�

Z
d4x

ffiffiffiffiffiffi
−g

p fRþ 1
2
½ψ̄ γ̂5γμð∇μψÞ

−ð∇μψ̄Þγ̂5γμψ �g þ Sm½Ψm;A2ðψ̄ψÞgμν�: ð56Þ

18Although a spinor is not a tensor in the technical sense, we
classify spinorization here as an example of tensorization.
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This model has an unusual feature in that the derivative part
of the spinor action is not the canonical one in Eq. (53), but
rather the tachyonic one in Eq. (54). The resulting tachyonic
equation of motion is

γμ∇μψ − γ̂5ð4πA4ΛT̃Þψ ¼ 0; ð57Þ

where Λ ¼ d lnA=dðψ̄ψÞ. The interpretation is straightfor-
ward: we have a tachyonic field with an effective mass
μeff ¼ 4πA4ΛT̃; cf. Eq. (55). The most important aspect of
this theory is the fact that the effective mass term and all
coefficients of the field equation are regular everywhere;
hence, the dynamics does not have any signs of the ill-
posedness that we have found in all generalizations of
scalarization thus far. In other words, the action (57) is the
only known analog of spontaneous scalarization for nonscalar
fields that does not suffer from ghost or gradient instabilities.
Our results on spontaneous tensorization suggest a no-go

theorem for generalizing scalarization beyond scalar fields,
at least if we want to avoid ghosts. It is curious that the
only exception to this trend is the relatively exotic case of
spinorization, which invites studies of the deeper reasons that
make spontaneous scalarization difficult to replicate for other
types of fields.

VI. OPEN PROBLEMS AND FUTURE PERSPECTIVES

We chose to review the literature by starting from the
theoretical underpinnings of the scalarization mechanism,
moving on to discussing NSs and BHs separately, and then
returning to model building in order to discuss generalization
of the mechanism to other fields. Most but not all open
problems have already been mentioned in one or more of
the previous sections and also discussed to some extent.
Nevertheless, we revisit them in this section and cover any
additional areas that require further development, opting for a
summary of future perspectives.

A. Scalarization and cosmology

As discussed in Sec. II.B.4, one of the key challenges for
scalarization is understanding whether it is compatible with
cosmology. Recall that the main premise of scalarization is
that there exists a constant value of the scalar field φ0 for
which spacetimes of GR become admissible solutions to the
field equations, and it is these solutions that describe sta-
tionary objects that we expect (from an observational per-
spective) to carry no scalar charge. For this to be true, cosmic
evolution needs to comply and drive φ to φ0 in the late
Universe; otherwise, the entire Universe will in effect be
“scalarized.” It was pointed out early on by Damour and
Nordtvedt (1993) and more recently by Anderson, Yunes, and
Barausse (2016) and Franchini and Sotiriou (2020) that
reaching this preferred value for the scalar fields in the late
Universe is not generic for simple models of scalarization and
instead requires severe fine-tuning of initial conditions.
This could well be an artifact of not having the complete

theory, and ideally one would expect the need for fine-tuned
initial conditions to disappear by addressing further correc-
tions to the model. A first step in this direction was made by

Antoniou, Bordin, and Sotiriou (2021) [who were inspired by
Damour and Nordtvedt (1993)], who showed that the mixed
model of scalarization discussed in Sec. II.B.4 has GR with a
constant scalar as a late-time cosmic attractor for the right
sign of the coupling between the scalar and the Ricci scalar.
This demonstrated that in principle scalarization models can
be made compatible with late-time cosmology and provided a
recipe for doing so: include in the action terms that will
dominate in late cosmology (for example, Ricci coupling)
over the terms that control the onset of scalarization (for
example, Gauss-Bonnet invariant) and hence impose the
desired cosmological behavior. However, the specific model
discussed as an example by Antoniou, Bordin, and Sotiriou
(2021) is by no means unique, and there have been many
other attempts to address similar concerns (Chen, Suyama,
and Yokoyama, 2015; Erices, Riquelme, and Zalaquett, 2022;
Minamitsuji and Tsujikawa, 2023). Perhaps more importantly,
understanding the efficiency of the attractor behavior in
reproducing the behavior of GR (with a cosmological con-
stant) quantitatively, down to evolution of perturbations,
structure formations, etc., certainly merits further investiga-
tion and could lead to constraints on realistic models of
scalarization.
A second point of friction between scalarization and

cosmology relates to the early Universe. Broadly speaking,
scalarization is controlled by the coupling between the scalar-
field and curvature invariants, so it is inevitable that these
couplings will become increasingly important as one runs
cosmic evolution backward and move to higher and higher
curvatures. In particular, they will tend to dominate when the
size of the Universe becomes comparable to the size of the
compact objects that we want scalarization to affect today
(Antoniou, Bordin, and Sotiriou, 2021). It was pointed out by
Anson, Babichev, and Ramazanov (2019) and Anson et al.
(2019) that quantum fluctuations could then seed a scalar-
izationlike instability during inflation, and that it would be
hard to prevent this linear instability by adding corrections to
the action. It should be stressed, however, that one does not
need the scalar field to necessarily remain constant or have its
current value through the evolution of the Universe. Hence,
one might not need to prevent such an instability, but might
instead just quench it nonlinearly, exactly as it happens in
scalarization itself. The scalar field could then smoothly
evolve away from the vacuum that leads to this instability
before it becomes relevant as one moves backward in cosmic
time. The key question here is whether there is an EFT
applicable to the early Universe that contains the scalarization
models as late Universe limits but that can also host an
inflationary scenario compatible with observations.
As a final remark in relation to cosmology, we emphasize

that we have discussed here only the cosmological implica-
tions of known scalarization models and only under the
assumption that the scalar field is cosmologically subdomi-
nant at late times. There are a plethora of generalized scalar-
tensor theories that have been used in the context of inflation
or dark energy and that exhibit couplings between the scalar
and curvature invariants similar to those employed for
scalarization models. In most cases, however, the nature of
the couplings differs significantly from that of scalarization
models. Reviewing such attempts goes well beyond the scope
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of this work. Exploring whether a scalar field that exhibits
scalarization around compact objects could also play a role
in inflation or account for dark energy would certainly be
interesting, but putting together such a model (with a single
scalar) seems particularly challenging. Note that in this
context evading constraints on the coupling between a scalar
and the Gauss-Bonnet invariant coming from the speed of
GWs requires the scalar to be cosmologically subdominant
(Franchini and Sotiriou, 2020).

B. Dynamical evolution

The study of the dynamical nonlinear regime of scalariza-
tion requires nonperturbative time-evolution schemes, whose
availability varies among models. Finding formulations of
gravity theories that are amenable to numerical time evolution,
i.e., numerical relativity, is nontrivial even in GR (Pretorius,
2005; Baker et al., 2006; Campanelli et al., 2006), and the
issue can become even more complicated for alternative
gravity theories.
Time-domain, nonlinear evolution of DEF-like models has

been evident since the early work by Novak (1998a, 1998b)
and Novak and Ibanez (2000), and binary inspirals have been
performed for nearly a decade (Barausse et al., 2013). This
was possible thanks to the relative simplicity of the field
equations, which allows one to establish their well-posedness
(Salgado, 2006; Salgado et al., 2008). However, detailed and
fully nonlinear numerical results in relation to GWs, a primary
tool to test scalarization, are still lacking, aside from the study
by Shibata et al. (2014).
The picture is much different for BH scalarization, where

the coupling to the Gauss-Bonnet term can result in a
complicated causal structure of the spacetime in dynamical
situations. It was demonstrated at both linear (Blázquez-
Salcedo et al., 2018; Blázquez-Salcedo, Doneva et al., 2020a,
2020b) and nonlinear (Ripley and Pretorius, 2020; East and
Ripley, 2021a, 2021b) levels that part, but not all, of the
parameter space of spontaneous scalarization where scalarized
BHs can be found loses hyperbolicity when the theory is
evolved in time in a certain set of gauges, which means that
no predictions can be obtained. The well-posedness of the
initial-value problem in broader classes of modified gravity
theories, including scalar-Gauss-Bonnet gravity, was studied
by Papallo (2017), Kovács (2019), and Kovács and Reall
(2020a, 2020b). At the moment there is no consensus on
whether this loss of hyperbolicity can be cured with a better
gauge choice or if it is intrinsic to the evolution equations,
which calls for further work on the issue. Furthermore, there
are no detailed studies of binary evolution and merger even for
the part of the parameter space for which hyperbolic time
evolution has been shown to exist. The dynamics of more
general models where various coupling terms are present as in
Eq. (14) are not available either. The lack of results on all of
these fronts presents important future research directions.
It can be the case that an EFT, obtained as a certain limit or

truncation of a more fundamental theory, is ill posed, while the
latter is or is expected to be well posed. A typical example is
relativistic hydrodynamics once viscosity has been taken into
account. Indeed, it has been suggested to introduce techniques
used in hydrodynamics to gravity in order to render the

problematic time evolution of some theories hyperbolic by
suitably modifying the equations while keeping the end point
of evolution the same (Cayuso, Ortiz, and Lehner, 2017).
This approach has seen increasing use in alternatives to GR,
including the specific case of scalar-Gauss-Bonnet theories
under certain symmetries (Franchini et al., 2022), and it is
another avenue to explore the dynamics of scalarization in
cases where current methods are inadequate. The applicability
and power of such methods to general cases, for instance, fully
nonlinear 3þ 1 evolution of a highly dynamical system, are
yet to be confirmed.

C. Model building in and beyond scalarization

We have covered several models of spontaneous scalariza-
tion and their phenomenology for NSs and BHs. What they
have in common is that scalarization is triggered by a
tachyonic instability whose threshold is controlled by fewer
than a handful of terms in the action (Andreou et al., 2019).
Yet, the properties of the final scalarized configuration depend
on the nonlinearities and coupling terms that contribute
beyond the linear level. The specific choices of these nonlinear
interactions have been shown to crucially affect the stability
(Blázquez-Salcedo et al., 2018; Silva et al., 2019; Antoniou
et al., 2022) and the scalar charge (Doneva, Kiorpelidi et al.,
2018; Macedo et al., 2019; Silva et al., 2019; Antoniou et al.,
2021) of scalarized solutions, as well as the cosmological
behavior of the corresponding theory (Anson et al., 2019;
Antoniou, Bordin, and Sotiriou, 2021; Erices, Riquelme, and
Zalaquett, 2022). Thus, such choices affect the viability and
observability of the models. As a result, although certain
models of scalarization, such as the original DEF model, have
been studied fairly exhaustively, the exploration of the broader
class of theories that exhibit scalarization, and their phenom-
enology, has only started.
Furthermore, one could consider introducing new classes

of scalarization based on instabilities that are not tachyonic
in nature. As discussed in Sec. V, success in this direction
has thus far been limited, but it is nevertheless an interesting
prospect. Alternatively, one can abandon the idea of a linear
instability quenched by nonlinearities altogether, as discussed
in Sec. II.C.5. Doneva and Yazadjiev (2022) demostrated that
a theory featuring a coupling to the Gauss-Bonnet invariant
with a leading-order expansion with respect to the scalar field
that is proportional to φ4 can still have scalarized BHs below a
certain mass threshold, although the Kerr solution is linearly
stable with respect to massless scalar perturbations (Blázquez-
Salcedo et al., 2022). This observation remains true in more
general theories, such as Gauss-Bonnet gravity with multiple
scalar fields (Staykov and Doneva, 2022). This strongly
suggests the existence of a class of theories in which
scalarization is a purely nonlinear phenomenon.
Scalarization models that have been considered thus far

typically assume that the scalar field does not couple to matter
directly in a suitable choice of variables, usually called
the Jordan frame, which suffices for the theory to satisfy
the WEP. However, as pointed out by Coates, Horbartsch,
and Sotiriou (2017), this assumption might not be necessary
because scalarization itself forces the scalar field into a
trivial configuration away from a specific compact object.

Daniela D. Doneva et al.: Spontaneous scalarization

Rev. Mod. Phys., Vol. 96, No. 1, January–March 2024 015004-39



Therefore, scalarization models can be indistinguishable from
GR in regard to the WEP for all current observations. It was
further argued by Coates, Horbartsch, and Sotiriou (2017)
and Franchini, Coates, and Sotiriou (2018) that particular
couplings to matter that do not disrupt scalarization could
introduce a Higgs-like mechanism in gravity: the scalar field
changes value only near compact objects, and its coupling to
matter changes the properties of the standard model in these
regions. This is a largely unexplored possibility.
As discussed in Sec. V, another important open question is

whether one can generalize the scalarization mechanism to
other fields. Doing so in the context of a theory that is free of
pathologies has thus far proven to be challenging, except
perhaps in the case of spinors (Minamitsuji, 2020b). This is in
part because controlling the dynamics of the extra degree of
freedom is notoriously difficult in general in gravity theories
with additional vector or tensor fields (de Rham, 2014), and
vectorization or tensorization models are no exception.
We stress that the work on scalarization and its extensions

has focused on isolated compact objects. In fact, theoretical
considerations for putting together scalarization models have
also been heavily influence by studies of isolated BHs and
NSs. However, as previously discussed, scalarization could
happen dynamically in a binary (Barausse et al., 2013;
Palenzuela et al., 2014; Shibata et al., 2014; Taniguchi,
Shibata, and Buonanno, 2015; Silva, Witek et al., 2021;
Doneva, Vañó Viñuales, and Yazadjiev, 2022; Elley et al.,
2022). Apart from finding ways to model this effect (Khalil
et al., 2022) and potentially constraining it with GW obser-
vations, it would be particularly interesting to further explore
which properties of a binary control dynamical scalarization,
and how this differs among the various scalarization models.

D. Observational prospects

Perhaps the most attractive feature of scalarization is that
the tachyonic instability typically leads to large scalar-field
amplitudes before it is quenched, which results in nonpertur-
bative deviations from GR in high curvature regions. At the
same time, the theory mimics GR closely for weak gravity,
easily satisfying existing tests. This suggests that new funda-
mental scalar fields that exhibit this behavior could be
discovered with strong-gravity observations.
Current observations put stringent bounds on scalar

radiation from pulsars that have already almost completely
ruled out the original (massless) DEF model (Zhao et al.,
2022). Electromagnetic observations of compact objects in
binaries or surrounded by some form of matter also have the
potential to extend such results to more general models of
scalarization. For example, x-ray data from NS surfaces
have recently been considered as a possible way to detect
scalarized objects (Silva and Yunes, 2019a, 2019b). The
masses, radii, and moment of inertia of NSs can be inferred
through such observations (Bogdanov et al., 2019a, 2019b,
2021). Future observation could be used to distinguish
scalarized NSs from nonscalarized ones by, for instance,
using EOS-independent relations. The astrophysical signa-
tures of most extensions of the DEF model, especially those
that allow BH scalarization, have not yet been studied in
detail, because they are recent.

The most interesting current development in strong gravity
is the advent of GW astronomy, which is an arena for
exploring spontaneous scalarization. The effects of scalariza-
tion on GWs of coalescing NSs and/or BHs have been
investigated to some extent, mostly in regard to the DEF
model (Sennett and Buonanno, 2016; Khalil et al., 2019,
2022; Niu et al., 2021) or scalar-Gauss-Bonnet gravity (Wong,
Herdeiro, and Radu, 2022). The most pressing issue on this
front is the development of accurate waveform models that
ideally would cover the inspiral, merger, and ringdown stages
of coalescing binaries. Developing such waveform models in
GR has been (and remains) a formidable task that combines
tools from post-Newtonian theory, numerical relativity, black-
hole perturbation theory, and gravitational self-force. Progress
on all these fronts is necessary for one to develop accurate
scalarized waveform models. Stars that undergo core collapse
are another interesting source of GWs. Albeit expected to be
rare, such events may produce large bursts of scalar radiation
(Sperhake et al., 2017; Rosca-Mead et al., 2019; Kuan et al.,
2022) and may contribute to the stochastic GW background,
which could in principle be probed by pulsar-timing arrays.
In addition, some models of scalarization (but not all) predict
the existence of extra polarizations in GWs, which provides
another way to test them.
Last, future spaceborne GW detectors such as LISA will

bring another channel for testing modified gravity. Especially
interesting with respect to scalarization is the case of extreme
mass-ratio inspirals when the secondary object is scalarized
(Maselli et al., 2020, 2022). Data from future GW detectors
such as LISA or third generation ground-based detectors such
as the Einstein Telescope and the Cosmic Explorer, combined
with more precise electromagnetic observations such as those
from improved x-ray observatories, will be crucial for
detecting or ruling out scalar fields that exhibit scalarization.
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J. 831, 184.

Bogdanov, S., et al., 2019a, Astrophys. J. Lett. 887, L25.
Bogdanov, S., et al., 2019b, Astrophys. J. Lett. 887, L26.
Bogdanov, S., et al., 2021, Astrophys. J. Lett. 914, L15.
Boulware, D. G., and S. Deser, 1972, Phys. Rev. D 6, 3368.
Breu, C., and L. Rezzolla, 2016, Mon. Not. R. Astron. Soc. 459, 646.
Brihaye, Y., and B. Hartmann, 2019, Phys. Lett. B 792, 244.
Brihaye, Y., B. Hartmann, B. Kleihaus, and J. Kunz, 2022,
Phys. Rev. D 105, 044050.

Brihaye, Y., C. Herdeiro, and E. Radu, 2019, Phys. Lett. B 788, 295.
Brihaye, Y., and Y. Verbin, 2020, Phys. Rev. D 102, 124021.
Brito, R., V. Cardoso, and P. Pani, 2015, Lect. Notes Phys. 906, 1.
Bucciantini, N., and J. Soldateschi, 2020, Mon. Not. R. Astron. Soc.
495, L56.

Campanelli, M., C. O. Lousto, P. Marronetti, and Y. Zlochower,
2006, Phys. Rev. Lett. 96, 111101.

Cardoso, V., I. P. Carucci, P. Pani, and T. P. Sotiriou, 2013a, Phys.
Rev. Lett. 111, 111101.

Cardoso, V., I. P. Carucci, P. Pani, and T. P. Sotiriou, 2013b, Phys.
Rev. D 88, 044056.

Cardoso, V., A. Foschi, and M. Zilhao, 2020, Phys. Rev. Lett. 124,
221104.

Cayuso, J., N. Ortiz, and L. Lehner, 2017, Phys. Rev. D 96, 084043.
Chandrasekhar, S., 1970, Phys. Rev. Lett. 24, 611.
Chen, P., T. Suyama, and J.Yokoyama, 2015, Phys.Rev.D 92, 124016.
Cheong, P. C.-K., and T. G. F. Li, 2019, Phys. Rev. D 100, 024027.
Cherubini, C., D. Bini, S. Capozziello, and R. Ruffini, 2002, Int. J.
Mod. Phys. D 11, 827.

Chiba, T., 2022, Prog. Theor. Exp. Phys. 013E01.

Daniela D. Doneva et al.: Spontaneous scalarization

Rev. Mod. Phys., Vol. 96, No. 1, January–March 2024 015004-41

https://doi.org/10.1051/0004-6361/201833718
https://doi.org/10.1051/0004-6361/201833718
https://doi.org/10.1051/0004-6361/202037813
https://doi.org/10.1051/0004-6361/202037813
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.1103/PhysRevC.58.1804
https://doi.org/10.1103/PhysRevC.58.1804
https://doi.org/10.1103/PhysRevD.81.124018
https://doi.org/10.1016/j.physrep.2009.07.002
https://doi.org/10.1103/PhysRevD.85.064041
https://doi.org/10.1103/PhysRevD.85.064041
https://doi.org/10.1103/PhysRevD.99.104006
https://doi.org/10.1103/PhysRevD.96.064046
https://doi.org/10.1103/PhysRevD.98.044032
https://doi.org/10.1088/1361-6382/ab2eda
https://doi.org/10.1088/1361-6382/ab2eda
https://doi.org/10.1103/PhysRevD.94.104064
https://doi.org/10.1103/PhysRevD.94.104064
https://doi.org/10.1046/j.1365-8711.1998.01840.x
https://doi.org/10.1046/j.1365-8711.1998.01840.x
https://doi.org/10.1103/PhysRevD.99.124022
https://doi.org/10.1103/PhysRevD.99.044038
https://doi.org/10.1103/PhysRevD.99.044038
https://doi.org/10.1016/j.physletb.2022.137227
https://doi.org/10.1016/j.physletb.2022.137227
https://doi.org/10.1088/1475-7516/2019/06/023
https://doi.org/10.1103/PhysRevD.100.104051
https://doi.org/10.1103/PhysRevD.100.104051
https://doi.org/10.1126/science.1233232
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1103/PhysRevD.103.024012
https://doi.org/10.1103/PhysRevD.103.024012
https://doi.org/10.1103/PhysRevD.104.044002
https://doi.org/10.1103/PhysRevD.106.024029
https://doi.org/10.1007/s41114-022-00036-9
https://doi.org/10.1007/s41114-022-00036-9
https://doi.org/10.1007/JHEP10(2019)078
https://doi.org/10.1007/JHEP10(2019)078
https://doi.org/10.1103/PhysRevD.103.024035
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1088/1361-6382/ab0587
https://doi.org/10.1103/PhysRevD.87.081506
https://doi.org/10.1103/PhysRevD.87.081506
https://doi.org/10.1007/s10714-020-02691-1
https://doi.org/10.1016/j.physletb.2021.136336
https://doi.org/10.1016/j.physletb.2021.136336
https://doi.org/10.1103/PhysRevLett.111.131101
https://doi.org/10.1103/PhysRevLett.111.131101
https://doi.org/10.1103/PhysRevLett.108.011101
https://doi.org/10.1103/PhysRevD.86.063001
https://doi.org/10.1093/mnras/stx1983
https://doi.org/10.1093/mnras/stx1983
https://doi.org/10.1103/PhysRevD.90.023002
https://doi.org/10.1103/PhysRevD.90.023002
https://doi.org/10.1088/1361-6633/aaae14
https://doi.org/10.1103/PhysRevD.48.3641
https://doi.org/10.1016/j.physletb.2013.07.032
https://doi.org/10.1103/PhysRevLett.126.011104
https://doi.org/10.1103/PhysRevLett.126.011104
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1103/PhysRevD.88.084020
https://doi.org/10.1103/PhysRevD.101.104006
https://doi.org/10.1103/PhysRevD.102.024086
https://doi.org/10.1103/PhysRevD.98.084011
https://doi.org/10.1103/PhysRevD.105.124005
https://doi.org/10.1140/epjc/s10052-021-08952-w
https://doi.org/10.1016/j.physletb.2020.135493
https://doi.org/10.1209/0295-5075/130/50002
https://doi.org/10.1209/0295-5075/130/50002
https://doi.org/10.3847/0004-637X/831/2/184
https://doi.org/10.3847/0004-637X/831/2/184
https://doi.org/10.3847/2041-8213/ab53eb
https://doi.org/10.3847/2041-8213/ab5968
https://doi.org/10.3847/2041-8213/abfb79
https://doi.org/10.1103/PhysRevD.6.3368
https://doi.org/10.1093/mnras/stw575
https://doi.org/10.1016/j.physletb.2019.03.043
https://doi.org/10.1103/PhysRevD.105.044050
https://doi.org/10.1016/j.physletb.2018.11.022
https://doi.org/10.1103/PhysRevD.102.124021
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1093/mnrasl/slaa059
https://doi.org/10.1093/mnrasl/slaa059
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevLett.111.111101
https://doi.org/10.1103/PhysRevLett.111.111101
https://doi.org/10.1103/PhysRevD.88.044056
https://doi.org/10.1103/PhysRevD.88.044056
https://doi.org/10.1103/PhysRevLett.124.221104
https://doi.org/10.1103/PhysRevLett.124.221104
https://doi.org/10.1103/PhysRevD.96.084043
https://doi.org/10.1103/PhysRevLett.24.611
https://doi.org/10.1103/PhysRevD.92.124016
https://doi.org/10.1103/PhysRevD.100.024027
https://doi.org/10.1142/S0218271802002037
https://doi.org/10.1142/S0218271802002037
https://doi.org/10.1093/ptep/ptab138


Chodos, A., A. I. Hauser, and V. A. Kostelecky, 1985, Phys. Lett.
150B, 431.

Choptuik, M.W., 1993, Phys. Rev. Lett. 70, 9.
Clark, J., A. Bauswein, L. Cadonati, H. T. Janka, C. Pankow, and N.
Stergioulas, 2014, Phys. Rev. D 90, 062004.

Clifton, T., P. G. Ferreira, A. Padilla, and C. Skordis, 2012, Phys.
Rep. 513, 1.

Clough, K., T. Helfer, H. Witek, and E. Berti, 2022, Phys. Rev. Lett.
129, 151102.

Coates, A., M.W. Horbartsch, and T. P. Sotiriou, 2017, Phys. Rev. D
95, 084003.

Coates, A., and F. M. Ramazanoğlu, 2022, Phys. Rev. Lett. 129,
151103.

Coates, A., and F. M. Ramazanoğlu, 2023, Phys. Rev. Lett. 130,
021401.

Collodel, L. G., B. Kleihaus, J. Kunz, and E. Berti, 2020, Classical
Quantum Gravity 37, 075018.

Cowling, T. G., 1941, Mon. Not. R. Astron. Soc. 101, 367.
Cunha, P. V. P., C. A. R. Herdeiro, and E. Radu, 2019, Phys. Rev.
Lett. 123, 011101.

Damour, T., 2015, Classical Quantum Gravity 32, 124009.
Damour, T., and G. Esposito-Farèse, 1992, Classical Quantum
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Damour, T., and G. Esposito-Farèse, 1998, Phys. Rev. D 58, 042001.
Damour, T., and K. Nordtvedt, 1993, Phys. Rev. Lett. 70, 2217.
Damour, T., and J. H. Taylor, 1992, Phys. Rev. D 45, 1840.
Danchev, V. I., and D. D. Doneva, 2021, Phys. Rev. D 103, 024049.
Danchev, V. I., D. D. Doneva, and S. S. Yazadjiev, 2022, Phys. Rev.
D 106, 124001.

DeDeo, S., and D. Psaltis, 2003, Phys. Rev. Lett. 90, 141101.
DeDeo, S., and D. Psaltis, 2004, arXiv:astro-ph/0405067.
Deffayet, C., S. Deser, and G. Esposito-Farèse, 2009, Phys. Rev. D
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2020b, Eur. Phys. J. C 80, 1205.

Doneva, D. D., S. Kiorpelidi, P. G. Nedkova, E. Papantonopoulos,
and S. S. Yazadjiev, 2018, Phys. Rev. D 98, 104056.

Doneva, D. D., and G. Pappas, 2018, Astrophys. Space Sci. Libr.
457, 737.

Doneva, D. D., K. V. Staykov, and S. S. Yazadjiev, 2019, Phys. Rev.
D 99, 104045.

Doneva, D. D., K. V. Staykov, S. S. Yazadjiev, and R. Z. Zheleva,
2020, Phys. Rev. D 102, 064042.

Doneva, D. D., A. Vañó Viñuales, and S. S. Yazadjiev, 2022, Phys.
Rev. D 106, L061502.

Doneva, D. D., and S. S. Yazadjiev, 2016, J. Cosmol. Astropart. Phys.
11, 019.

Doneva, D. D., and S. S. Yazadjiev, 2018a, J. Cosmol. Astropart.
Phys. 04, 011.

Doneva, D. D., and S. S. Yazadjiev, 2018b, Phys. Rev. Lett. 120,
131103.

Doneva, D. D., and S. S. Yazadjiev, 2020a, Phys. Rev. D 101, 104010.
Doneva, D. D., and S. S. Yazadjiev, 2020b, Phys. Rev. D 101, 064072.
Doneva, D. D., and S. S. Yazadjiev, 2021a, Phys. Rev. D 103, 064024.
Doneva, D. D., and S. S. Yazadjiev, 2021b, Phys. Rev. D 103, 083007.
Doneva, D. D., and S. S. Yazadjiev, 2022, Phys. Rev. D 105,
L041502.

Doneva, D. D., S. S. Yazadjiev, K. D. Kokkotas, and I. Z. Stefanov,
2010, Phys. Rev. D 82, 064030.

Doneva, D. D., S. S. Yazadjiev, K. V. Staykov, and K. D. Kokkotas,
2014, Phys. Rev. D 90, 104021.

Doneva, D. D., S. S. Yazadjiev, N. Stergioulas, and K. D. Kokkotas,
2013, Phys. Rev. D 88, 084060.

Doneva, D. D., S. S. Yazadjiev, N. Stergioulas, and K. D. Kokkotas,
2018, Phys. Rev. D 98, 104039.

Doneva, D. D., S. S. Yazadjiev, N. Stergioulas, K. D. Kokkotas, and
T. M. Athanasiadis, 2014, Phys. Rev. D 90, 044004.

Douchin, F., and P. Haensel, 2001, Astron. Astrophys. 380, 151.
East, W. E., and J. L. Ripley, 2021a, Phys. Rev. Lett. 127, 101102.
East, W. E., and J. L. Ripley, 2021b, Phys. Rev. D 103, 044040.
Elley, M., H. O. Silva, H. Witek, and N. Yunes, 2022, Phys. Rev. D
106, 044018.

Erices, C., S. Riquelme, and N. Zalaquett, 2022, Phys. Rev. D 106,
044046.
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Krüger, C. J., and K. D. Kokkotas, 2020b, Phys. Rev. Lett. 125,
111106.

Kuan, H.-J., D. D. Doneva, and S. S. Yazadjiev, 2021, Phys. Rev.
Lett. 127, 161103.

Kuan, H.-J., J. Singh, D. D. Doneva, S. S. Yazadjiev, and K. D.
Kokkotas, 2021, Phys. Rev. D 104, 124013.

Kuan, H.-J., A. G. Suvorov, D. D. Doneva, and S. S. Yazadjiev, 2022,
Phys. Rev. Lett. 129, 121104.

Landulfo, A. G. S., W. C. C. Lima, G. E. A. Matsas, and D. A. T.
Vanzella, 2012, Phys. Rev. D 86, 104025.

Landulfo, A. G. S., W. C. C. Lima, G. E. A. Matsas, and D. A. T.
Vanzella, 2015, Phys. Rev. D 91, 024011.

Lang, R. N., 2014, Phys. Rev. D 89, 084014.
Langlois, D., K. Noui, and H. Roussille, 2022, J. Cosmol. Astropart.
Phys. 09, 019.

Lattimer, J. M., and M. Prakash, 2016, Phys. Rep. 621, 127.
Lattimer, J. M., and B. F. Schutz, 2005, Astrophys. J. 629, 979.
Lee, D. L., 1974, Phys. Rev. D 10, 2374.
Liebling, S. L., and C. Palenzuela, 2023, Living Rev. Relativity 26, 1.
Lima, W. C. C., G. E. A. Matsas, and D. A. T. Vanzella, 2010, Phys.
Rev. Lett. 105, 151102.

Lima, W. C. C., R. F. P. Mendes, G. E. A. Matsas, and D. A. T.
Vanzella, 2013, Phys. Rev. D 87, 104039.

Lima, W. C. C., and D. A. T. Vanzella, 2010, Phys. Rev. Lett. 104,
161102.

Lindblom, L., 2010, Phys. Rev. D 82, 103011.
Liu, Y., C.-Y. Zhang, Q. Chen, Z. Cao, Y. Tian, and B. Wang, 2022,
arXiv:2208.07548.

Liu, Y., C.-Y. Zhang, W.-L. Qian, K. Lin, and B. Wang, 2023, J. High
Energy Phys. 01, 074.

Luo, W.-K., C.-Y. Zhang, P. Liu, C. Niu, and B. Wang, 2022,
Phys. Rev. D 106, 064036.

Macedo, C. F. B., 2020, Int. J. Mod. Phys. D 29, 2041006.
Macedo, C. F. B., J. Sakstein, E. Berti, L. Gualtieri, H. O. Silva, and
T. P. Sotiriou, 2019, Phys. Rev. D 99, 104041.

Maione, F., R. De Pietri, A. Feo, and F. Löffler, 2016, Classical
Quantum Gravity 33, 175009.

Maselli, A., N. Franchini, L. Gualtieri, and T. P. Sotiriou, 2020,
Phys. Rev. Lett. 125, 141101.

Maselli, A., N. Franchini, L. Gualtieri, T. P. Sotiriou, S. Barsanti, and
P. Pani, 2022, Nat. Astron. 6, 464.

Mayo, A. E., and J. D. Bekenstein, 1996, Phys. Rev. D 54, 5059.
McDermott, P. N., H. M. van Horn, and J. F. Scholl, 1983, Astrophys.
J. 268, 837.

Mendes, R. F., 2015, Phys. Rev. D 91, 064024.
Mendes, R. F., and N. Ortiz, 2016, Phys. Rev. D 93, 124035.
Mendes, R. F., and N. Ortiz, 2018, Phys. Rev. Lett. 120, 201104.
Mendes, R. F., and T. Ottoni, 2019, Phys. Rev. D 99, 124003.

Daniela D. Doneva et al.: Spontaneous scalarization

Rev. Mod. Phys., Vol. 96, No. 1, January–March 2024 015004-43

https://doi.org/10.1088/0264-9381/33/13/135002
https://doi.org/10.1088/0264-9381/33/13/135002
https://doi.org/10.1103/PhysRevD.63.064029
https://doi.org/10.1103/PhysRevD.104.104065
https://doi.org/10.1063/1.1666501
https://doi.org/10.1143/PTP.98.359
https://doi.org/10.1103/PhysRevD.57.4802
https://doi.org/10.1086/149400
https://doi.org/10.1016/0370-1573(78)90140-0
https://doi.org/10.1086/149707
https://doi.org/10.1007/JHEP02(2012)126
https://doi.org/10.1007/BF01877518
https://doi.org/10.1088/1475-7516/2014/05/015
https://doi.org/10.1103/PhysRevD.7.3593
https://doi.org/10.1103/PhysRevD.103.044019
https://doi.org/10.1007/JHEP07(2020)130
https://doi.org/10.1007/JHEP07(2020)130
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1103/PhysRevD.99.084039
https://doi.org/10.1103/PhysRevLett.121.101102
https://doi.org/10.1103/PhysRevLett.126.011103
https://doi.org/10.1016/S0370-1573(96)00042-7
https://doi.org/10.1142/S0217751X13400150
https://doi.org/10.1103/PhysRevD.102.084060
https://doi.org/10.1103/PhysRevD.105.024074
https://doi.org/10.1088/0264-9381/32/20/204001
https://doi.org/10.1088/1475-7516/2011/08/027
https://doi.org/10.1088/1475-7516/2011/08/027
https://doi.org/10.1088/0264-9381/29/24/245004
https://doi.org/10.1088/0264-9381/29/24/245004
https://doi.org/10.1007/BF01807638
https://doi.org/10.1103/PhysRevD.88.044026
https://doi.org/10.1103/PhysRevD.88.044026
https://doi.org/10.1103/PhysRevD.104.104014
https://doi.org/10.1086/181708
https://doi.org/10.1103/PhysRevD.100.104014
https://doi.org/10.1103/PhysRevD.100.104014
https://doi.org/10.1086/432615
https://doi.org/10.1103/PhysRevD.68.104012
https://doi.org/10.1088/1751-8113/45/44/444017
https://doi.org/10.1103/PhysRevD.100.104061
https://doi.org/10.1103/PhysRevD.105.124031
https://doi.org/10.1103/PhysRevD.105.124031
https://arXiv.org/abs/2111.06990
https://doi.org/10.1103/PhysRevD.54.5049
https://doi.org/10.1103/PhysRevD.102.024067
https://doi.org/10.1103/PhysRevD.102.024067
https://doi.org/10.1103/PhysRevD.106.104016
https://doi.org/10.1103/PhysRevD.106.104016
https://doi.org/10.1103/PhysRevD.100.124013
https://doi.org/10.1103/PhysRevD.100.124013
https://doi.org/10.1103/PhysRevD.93.064077
https://doi.org/10.1103/PhysRevD.93.064077
https://doi.org/10.1088/1361-6633/ab2429
https://doi.org/10.1143/PTP.126.511
https://doi.org/10.1143/PTP.126.511
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.1143/PTP.122.561
https://doi.org/10.1143/PTP.122.561
https://doi.org/10.1103/PhysRevD.100.024005
https://doi.org/10.1103/PhysRevD.101.124003
https://doi.org/10.1103/PhysRevLett.124.221101
https://doi.org/10.1103/PhysRevD.102.124065
https://doi.org/10.1103/PhysRevD.102.124065
https://doi.org/10.1103/PhysRevX.11.041050
https://doi.org/10.1103/PhysRevD.103.124034
https://doi.org/10.1103/PhysRevD.102.064026
https://doi.org/10.1103/PhysRevLett.125.111106
https://doi.org/10.1103/PhysRevLett.125.111106
https://doi.org/10.1103/PhysRevLett.127.161103
https://doi.org/10.1103/PhysRevLett.127.161103
https://doi.org/10.1103/PhysRevD.104.124013
https://doi.org/10.1103/PhysRevLett.129.121104
https://doi.org/10.1103/PhysRevD.86.104025
https://doi.org/10.1103/PhysRevD.91.024011
https://doi.org/10.1103/PhysRevD.89.084014
https://doi.org/10.1088/1475-7516/2022/09/019
https://doi.org/10.1088/1475-7516/2022/09/019
https://doi.org/10.1016/j.physrep.2015.12.005
https://doi.org/10.1086/431543
https://doi.org/10.1103/PhysRevD.10.2374
https://doi.org/10.1007/s41114-023-00043-4
https://doi.org/10.1103/PhysRevLett.105.151102
https://doi.org/10.1103/PhysRevLett.105.151102
https://doi.org/10.1103/PhysRevD.87.104039
https://doi.org/10.1103/PhysRevLett.104.161102
https://doi.org/10.1103/PhysRevLett.104.161102
https://doi.org/10.1103/PhysRevD.82.103011
https://arXiv.org/abs/2208.07548
https://doi.org/10.1007/JHEP01(2023)074
https://doi.org/10.1007/JHEP01(2023)074
https://doi.org/10.1103/PhysRevD.106.064036
https://doi.org/10.1142/S0218271820410060
https://doi.org/10.1103/PhysRevD.99.104041
https://doi.org/10.1088/0264-9381/33/17/175009
https://doi.org/10.1088/0264-9381/33/17/175009
https://doi.org/10.1103/PhysRevLett.125.141101
https://doi.org/10.1038/s41550-021-01589-5
https://doi.org/10.1103/PhysRevD.54.5059
https://doi.org/10.1086/161006
https://doi.org/10.1086/161006
https://doi.org/10.1103/PhysRevD.91.064024
https://doi.org/10.1103/PhysRevD.93.124035
https://doi.org/10.1103/PhysRevLett.120.201104
https://doi.org/10.1103/PhysRevD.99.124003


Mendes, R. F. P., G. E. A. Matsas, and D. A. T. Vanzella, 2014a,
Phys. Rev. D 90, 044053.

Mendes, R. F. P., G. E. A. Matsas, and D. A. T. Vanzella, 2014b,
Phys. Rev. D 89, 047503.

Miller, M. C., et al., 2019, Astrophys. J. Lett. 887, L24.
Minamitsuji, M., 2020a, Phys. Rev. D 101, 104044.
Minamitsuji, M., 2020b, Phys. Rev. D 102, 044048.
Minamitsuji, M., 2021, Phys. Rev. D 103, 084002.
Minamitsuji, M., and T. Ikeda, 2019a, Phys. Rev. D 99, 044017.
Minamitsuji, M., and T. Ikeda, 2019b, Phys. Rev. D 99, 104069.
Minamitsuji, M., and H. O. Silva, 2016, Phys. Rev. D 93, 124041.
Minamitsuji, M., and S. Tsujikawa, 2023, Phys. Lett. B 840, 137869.
Mirshekari, S., and C. M. Will, 2013, Phys. Rev. D 87, 084070.
Morisaki, S., and T. Suyama, 2017, Phys. Rev. D 96, 084026.
Motohashi, H., and M. Minamitsuji, 2018, Phys. Lett. B 781, 728.
Motohashi, H., and T. Suyama, 2012, Phys. Rev. D 85, 044054.
Mou, Z.-G., and H.-Y. Zhang, 2022, Phys. Rev. Lett. 129, 151101.
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