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A comprehensive theory of the Lamb shift in light muonic atoms such as μH, μD, μ3Heþ, and μ4Heþ

is presented, with all quantum electrodynamic corrections included at the precision level constrained
by the uncertainty of nuclear structure effects. This analysis can be used in the global adjustment
of fundamental constants and in the determination of nuclear charge radii. Further improvements in
the understanding of electromagnetic interactions of light nuclei will allow for a promising test of
fundamental interactions by comparison with “normal” atomic spectroscopy, in particular, with H-D
and 3He-4He isotope shifts.
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I. INTRODUCTION

Two-body systems such as hydrogen ðe−pþÞ, positronium
ðe−eþÞ, and muonium ðe−μþÞ have long been recognized
as the best tools to verify fundamental interaction theories
(Kinoshita, 1990). This is because their energy levels can be
calculated analytically or numerically to a high precision,
limited in principle by the accuracy of fundamental physical
constants. Starting with nonrelativistic quantum mechanics,
the Hamiltonian of two charged particles with masses m1 and
m2 interacting with an attractive Coulomb potential,

H ¼ p⃗ 2
1

2m1

þ p⃗ 2
2

2m2

−
Zα
r

¼ Ek þH0; ð1Þ

can be decomposed in terms of the total kinetic energy

Ek ¼
ðp⃗1 þ p⃗2Þ2
2ðm1 þm2Þ

ð2Þ

and the one-body Hamiltonian with the reduced mass μ

H0 ¼
p⃗ 2

2 μ
−
Z α

r
; ð3Þ

where p⃗ ¼ −i∇⃗r is the relative momentum of these two
particles. For a precise definition of constants and units,
see Sec. II. The eigenvalues of this Hamiltonian

Enl ¼ −
ðZ αÞ2μ
2 n2

ð4Þ

depend on the principal quantum number n ¼ 1; 2; 3;… and
not on the angular momentum number l ¼ 0; 1;…; n − 1. The
degeneracy of states with different l is a characteristic feature
of the nonrelativistic Coulomb Hamiltonian. We know, how-
ever, that a more accurate description of hydrogenlike levels
must rely on the relativistic theory. The first questions arise
here: What is the relativistic analog of the instantaneous
Coulomb interaction, and what is the correct two-body
equation for charged particles? In fact, there is no definitive
answer to these questions yet. Only in the case in which the
mass of one particle goes to infinity can we write a Dirac
equation for the second spin-1=2 particle (or a Klein-Gordon
equation for a spin-0 particle) in the Coulomb potential of a
static nucleus (Itzykson and Zuber, 1980). For a hydrogen
atom having a proton mass that is approximately 2000 times
larger than the electron mass, the Dirac equation is a good
starting point. It yields energy levels that depend not only on
the principal quantum number n (as in the nonrelativistic case)
but also on the total angular momentum number j, as well as
on the fine structure constant α. Accordingly, the states 2S1=2
and 2P1=2 carry the same j and are thus degenerate. Here we
use the historical notation, which is still used by atomic
spectroscopists, where a state is labeled by its nLj, with
S; P;D; F;… standing for l ¼ 0; 1; 2; 3;…, and the subscript
j denoting the particular value of the total angular momentum.

However, in a true hydrogen atom the energy of the 2S1=2 state
is slightly above that of the 2P1=2 one. This splitting, first
observed experimentally by Lamb and Retherford (1947) and
subsequently named the Lamb shift, was fundamental for
the construction of quantum electrodynamics (QED) by
Feynman, Schwinger, and Tomonaga, for which they were
awarded the Nobel Prize (Dyson, 1965). QED theory allows
us to account in a perturbative manner for the finite nuclear
mass (Shabaev, 1998), for the electron self-interaction and the
vacuum polarization (Itzykson and Zuber, 1980; Berestetskii,
Lifshitz, and Pitaevskii, 1982), and, in current use, for the
accurate description of not only hydrogenlike but also
arbitrary atomic systems (Drake, 2023). All of these effects
are described in Sec. III for such hydrogenlike systems, where
the electron is replaced by the muon, a 200 times heavier
lepton that is also a pointlike particle.
In contrast to leptons, however, the nucleus in most cases

cannot be treated as a pointlike particle. For example, a
proton has a finite charge distribution that can be measured
in lepton-proton scattering experiments, as was first shown
by Chambers and Hofstadter (1956). At present the nuclear
charge distribution cannot be calculated ab initio, at least
not with the accuracy needed by atomic spectroscopy mea-
surements. This nuclear charge distribution affects the
Coulomb interaction at small distances. Although it is a small
effect (about 1 MHz in H), it needs to be taken into account
due to the high accuracy of spectroscopic measurements;
for example, the 1S − 2S transition frequency in hydrogen
(Parthey et al., 2011) is

νHð1S − 2SÞ ¼ 2 466 061 413 187 035ð10Þ Hz: ð5Þ

The finite proton size effect can in principle be determined
from the comparison of theoretical predictions for νHð1S−2SÞ
to the aforementioned measurement. However, the Rydberg
constant Ry enters into the comparison as a conversion
constant between experiment (measured in SI units) and
theory (performed in atomic units) (Pohl et al., 2017;
Tiesinga et al., 2021). Thus far the only determination of
Ry has been available from hydrogen itself because only this
system can be calculated and measured accurately enough at
the same time. Therefore, we need a second transition like
2S − nS to determine the two unknowns (Tiesinga et al.,
2021): the Rydberg constant and the mean square proton
charge radius; see Eq. (73). Since the measurements of
2S − nS and other transitions in hydrogen are much less
accurate, the atomic spectroscopy determination of the proton
charge radius was of limited accuracy: rp ¼ 0.8768ð69Þ fm
(Mohr, Taylor, and Newell, 2008), which is consistent with the
electron-proton scattering determination (Bernauer et al.,
2014). This situation was stable for a long time, until a
new determination of the proton charge radius became
available from the Lamb shift measurement in muonic hydro-
gen μH (Pohl et al., 2010). This new determination resulted in
a much smaller proton charge radius of rp ¼ 0.841 84ð67Þ fm
and thus questioned the universality of electromagnetic
interactions and the validity of QED theory for composite
particles (Pohl et al., 2013).
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This is why the comparison of nuclear charge radii obtained
at first from μH (Pohl et al., 2010; Antognini et al., 2013),
then from μD (Pohl et al., 2016), μ4He (Krauth et al., 2021),
and μ3He (Schuhmann et al., 2023) to those obtained from
“normal” atomic spectroscopy is a sensitive test of lepton
universality and also a search for the existence of possible yet
unknown lepton-nucleus interactions at the scale from a few to
a few hundred femtometers; these interactions have not yet
been probed experimentally by other means (Pohl et al., 2013;
Carlson, 2015). A similar or even stronger sensitivity to the
lepton universality is expected from a direct comparison of the
electron versus muon scattering of the proton, which is the aim
of the MUSE Collaboration (Lorenzon, 2020). The charge
radii of the proton and other light nuclei are also important for
the determination of fundamental physical constants like the
Rydberg constant from the spectroscopy of H (Tiesinga et al.,
2021) or Heþ (Herrmann et al., 2009; Krauth et al., 2020) and
the electron-nucleus mass ratios from the spectroscopy of
HDþ (Alighanbari et al., 2020; Patra et al., 2020; Kortunov
et al., 2021). In fact, the global adjustment of fundamental
constants, performed periodically every four years by
CODATA (Tiesinga et al., 2021), will now employ the nuclear
charge radii obtained from muonic atom spectroscopy. Indeed,
the most accurate determination of the root mean square (rms)
nuclear charge radius rC is by the measurement of the 2S − 2P
transition in the hydrogenlike system, which consists of a
muon and the nucleus (Pohl et al., 2010; Antognini et al.,
2013). Owing to the 200-times-heavier muon, muonic atoms
are much more sensitive to the nuclear size and to nuclear
structure effects than normal electronic atoms. In particular,
the rms radius shift of the muonic atom energy levels is ∼2003
larger than that of the electronic ones. Therefore, the deter-
mination of the nuclear charge radii from muonic atoms is
much more accessible and precise. For this purpose, one needs
to calculate QED and nuclear structure effects on the energy
levels accurately enough to be able to interpret the remainder
as a finite nuclear size effect. Borie and Rinker (1982)
performed an extensive study of energy levels in muonic
atoms by solving the Dirac equation with the muon mass
replaced by the reduced mass of the muon-nucleus system,
and by including the Breit interaction. This treatment partially
accounts for the nuclear recoil corrections, but its results are
not accurate enough for light muonic atoms. Therefore, an
approach suited to light atomic systems, exact in the mass
ratio, was developed by Pachucki (1996) and was widely
followed in the later literature.
Here we present a comprehensive theory of the Lamb shift

in light muonic atoms, with particular attention paid to
the consistent separation of a point-nucleus QED from the
nuclear structure effects. It is based mostly on the recent
literature [see reviews by Antognini, Kottmann et al. (2013),
Krauth et al. (2016), Franke et al. (2017), and Diepold et al.
(2018) and references therein], with several contributions
calculated or recalculated here. All results are shown in
Table I, with each entry explained in its dedicated section.
The crucial point is the preservation of consistency in the
Lamb shift theory among all muonic and electronic atoms
and, consequently, the consistent determination of nuclear
charge radii.

II. EXPANSION OF ENERGY IN POWERS
OF THE FINE STRUCTURE CONSTANT α

Throughout this review, we use the natural units ℏ ¼ c ¼ 1.
We start with the definition of the Lamb shift in the presence

of the nuclear spin I⃗, the spin of the orbiting lepton S⃗, and
the angular momentum L⃗. The effective Hamiltonian in the
subspace of states with a definite principal quantum number n,
orbital momentum l ¼ 0 or 1, and nuclear spin I ≤ 1 is

Heffðn; lÞ ¼ E1 þ E2 S⃗ · L⃗þ E3 S⃗ · I⃗ þ E4 L⃗ · I⃗

þ E5 ðLiLkÞð2ÞðIiIkÞð2Þ þ E6 ðLiLkÞð2ÞIiSk; ð6Þ

where ðLiLkÞð2Þ ¼ LiLk=2þ LkLi=2 − L⃗2δik=3. Here i and k
are Cartesian indices; to distinguish them from Minkowski
indices, the latter are denoted by lowercase greek letters.
Furthermore, we use Einstein notation, which implies a sum
over repeated indices. Note that we also limit the consid-
eration to the case in which the orbiting lepton is a muon. Let

J⃗ ¼ L⃗þ S⃗; then for the S1=2 state l ¼ 0, j ¼ 1=2, and we
define EðnS1=2Þ ¼ E1ðn; 0Þ, while for the P1=2 state

EðnP1=2Þ ¼ E1ðn; 1Þ þ E2ðn; 1ÞhS⃗ · L⃗ij¼1=2

¼ E1ðn; 1Þ − E2ðn; 1Þ; ð7Þ
so we calculate energies as if there were no nuclear spin
couplings. Owing to the hyperfine mixing of the P1=2 and P3=2

states, this definition is not equivalent to the centroid energy
but follows the definitions assumed in the literature devoted to
muonic atoms and those of CODATA (Tiesinga et al., 2021).
Having defined the Lamb shift

EL ¼ Eð2P1=2Þ − Eð2S1=2Þ; ð8Þ
we employ an expansion in the fine structure constant
α ¼ e2=4π, with e the proton charge, to classify all important
contributions and express EL as the sum of many terms that
have a definite power of α or Zα (where Z is the nuclear
charge in units of e) but may depend on the muon-nuclear
mass ratio in a nontrivial way. For this we assume that the
electron vacuum polarization gives a single power of α (details
are explained in Sec. III). All corrections up to α5 are
calculated with the exact mass dependence, while corrections
of the order of α6 are obtained using the expansion in the
muon-nucleus mass ratio up to the linear term only because
these higher-order corrections are almost negligible.
To obtain the numerical values in Table I, we use the

following constants from the CODATA 2018 adjustment
(Tiesinga et al., 2021):

α−1 ¼ 137.035 999 084ð21Þ; ð9Þ
mμ ¼ 105.658 375 5ð23Þ MeV; ð10Þ
ƛμ ¼ 1.867 594 306ð42Þ fm; ð11Þ

where mμ is the mass and ƛμ ¼ 1=mμ is the reduced Compton
wavelength of the muon. The conversion constant that
connects the energy and length units is
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ℏc ¼ 197.326 980 459…MeV fm: ð12Þ
The relevant mass ratios are

mμ

me
¼ 206.768 283 0ð46Þ; ð13aÞ

mμ

mp
¼ 0.112 609 526 4ð25Þ; ð13bÞ

mμ

md
¼ 0.056 332 718 3ð13Þ; ð13cÞ

mμ

mh
¼ 0.037 622 379 7ð8Þ; ð13dÞ

mμ

mα
¼ 0.028 346 557 7ð6Þ; ð13eÞ

where the subscripts d, h, and α denote the deuteron,
helion (3He nucleus), and α particle (4He nucleus),

respectively. Moreover, with μ the reduced mass of the
two-body system,

μ ¼ mμ

1þmμ=M
; ð14Þ

with M standing for the nuclear mass, we define the ratio

β ¼ me

Z α μ
; ð15Þ

for which we obtain the following values:

βp ¼ 0.737 383 68; ð16aÞ
βd ¼ 0.700 086 14; ð16bÞ
βh ¼ 0.343 842 92; ð16cÞ
βα ¼ 0.340 769 14: ð16dÞ

TABLE I. Contributions to the 2P1=2 − 2S1=2 energy difference EL in meV, with the charge radii rC given in fm. All corrections larger than 3%
of the overall uncertainty are included. Theoretical predictions for EL are ELðtheoÞ ¼ EQED þ Cr2C þ ENS. The last two rows show the values of
rC determined from a comparison of ELðtheoÞ to ELðexpÞ.
Section Order Correction μH μD μ3Heþ μ4Heþ

III.A αðZαÞ2 eVPð1Þ 205.007 38 227.634 70 1641.886 2 1665.773 1
III.A α2ðZαÞ2 eVPð2Þ 1.658 85 1.838 04 13.084 3 13.276 9
III.A α3ðZαÞ2 eVPð3Þ 0.007 52 0.008 42(7) 0.073 0(30) 0.074 0(30)
III.B ðZ; Z2; Z3Þα5 Light-by-light eVP −0.000 89ð2Þ −0.000 96ð2Þ −0.013 4ð6Þ −0.013 6ð6Þ
III.C ðZαÞ4 Recoil 0.057 47 0.067 22 0.126 5 0.295 2
III.D αðZαÞ4 Relativistic with eVPð1Þ 0.018 76 0.021 78 0.509 3 0.521 1
III.E α2ðZαÞ4 Relativistic with eVPð2Þ 0.000 17 0.000 20 0.005 6 0.005 7
III.F αðZαÞ4 μSEð1Þ þ μVPð1Þ, LO −0.663 45 −0.769 43 −10.652 5 −10.926 0
III.G αðZαÞ5 μSEð1Þ þ μVPð1Þ, NLO −0.004 43 −0.005 18 −0.174 9 −0.179 7
III.H α2ðZαÞ4 μVPð1Þ with eVPð1Þ 0.000 13 0.000 15 0.003 8 0.003 9
III.I α2ðZαÞ4 μSEð1Þ with eVPð1Þ −0.002 54 −0.003 06 −0.062 7 −0.064 6
III.J ðZαÞ5 Recoil −0.044 97 −0.026 60 −0.558 1 −0.433 0
III.K αðZαÞ5 Recoil with eVPð1Þ 0.000 14(14) 0.000 09(9) 0.004 9(49) 0.003 9(39)
III.L Z2αðZαÞ4 nSEð1Þ −0.009 92 −0.003 10 −0.084 0 −0.050 5
III.M α2ðZαÞ4 μFð2Þ

1 , μFð2Þ
2 , μVPð2Þ −0.001 58 −0.001 84 −0.031 1 −0.031 9

III.N ðZαÞ6 Pure recoil 0.000 09 0.000 04 0.001 9 0.001 4
III.O αðZαÞ5 Radiative recoil 0.000 22 0.000 13 0.002 9 0.002 3
III.P αðZαÞ4 hVP 0.011 36(27) 0.013 28(32) 0.224 1(53) 0.230 3(54)
III.Q α2ðZαÞ4 hVP with eVPð1Þ 0.000 09 0.000 10 0.002 6(1) 0.002 7(1)

IV.A ðZαÞ4 r2C −5.197 5r2p −6.073 2r2d −102.523r2h −105.322r2α
IV.B αðZαÞ4 eVPð1Þ with r2C −0.028 2r2p −0.034 0r2d −0.851r2h −0.878r2α
IV.C α2ðZαÞ4 eVPð2Þ with r2C −0.000 2r2p −0.000 2r2d −0.009ð1Þr2h −0.009ð1Þr2α

V.A ðZαÞ5 TPE 0.029 2(25) 1.979(20) 16.38(31) 9.76(40)
V.B α2ðZαÞ4 Coulomb distortion 0.0 −0.261 −1.010 −0.536
V.C ðZαÞ6 3PE −0.001 3ð3Þ 0.002 2(9) −0.214ð214Þ −0.165ð165Þ
V.D αðZαÞ5 eVPð1Þ with TPE 0.000 6(1) 0.027 5(4) 0.266(24) 0.158(12)
V.E αðZαÞ5 μSEð1Þ þ μVPð1Þ with TPE 0.000 4 0.002 6(3) 0.077(8) 0.059(6)

III EQED Point nucleus 206.034 4(3) 228.774 0(3) 1644.348(8) 1668.491(7)
IV Cr2C Finite size −5.225 9r2p −6.107 4r2d −103.383r2h −106.209r2α
V ENS Nuclear structure 0.028 9(25) 1.750 3(200) 15.499(378) 9.276(433)

EL (exp) Experimenta 202.370 6(23) 202.878 5(34) 1258.598(48) 1378.521(48)

rC This review 0.840 60(39) 2.127 58(78) 1.970 07(94) 1.678 6(12)
rC Previous worka 0.840 87(39) 2.125 62(78) 1.970 07(94) 1.678 24(83)

aPresented by Antognini et al. (2013), Pohl et al. (2016), Krauth et al. (2021), and Schuhmann et al. (2023).
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Finally, the nonrelativistic Coulomb wave function ϕ with
nonrelativistic energy E0 is the solution of ðH0 − E0Þϕ ¼ 0,
with H0 as given by Eq. (3) and E0 ¼ Enl from Eq. (4).
The radial parts of the wave function for the states of
interest are

R20ðrÞ ¼
ðμZ αÞ3=2ffiffiffi

2
p exp

�
−
μZ α r

2

��
1 −

μZ α r
2

�
; ð17Þ

R21ðrÞ ¼
ðμZ αÞ3=2

2
ffiffiffi
6

p exp

�
−
μZ α r

2

�
μZ α r; ð18Þ

and the wave function at the origin is

ϕ2
nlð0Þ ¼

R2
nlð0Þ
4π

¼ ðμZ αÞ3
πn3

δl0: ð19Þ

Note that our choice of electromagnetic units is specified by
the definition of α in terms of e. However, the expressions
for the relevant energies [Eqs. (3) and (4)], the wave functions
[Eqs. (17)–(19)], and the final results for the energy shifts
do not depend on this choice. At the same time, intermediate
quantities such as the photon propagator may change if one
uses different electromagnetic units.

III. QED CONTRIBUTIONS TO THE LAMB SHIFT

To calculate QED corrections to the energy levels, we
assume at first that the nucleus is pointlike, while the nuclear
size and nuclear structure are considered separately in
Secs. IV and V. A pointlike nucleus with spin 0 satisfies
the Klein-Gordon equation, a nucleus with spin 1=2 satisfies
the Dirac equation, and a nucleus with spin 1 satisfies the
Proca equation, with the last corresponding to a g factor equal
to 1. The radiative corrections on the nucleus line are included
in the nuclear electromagnetic form factors and structure
functions, with an exception described in Sec. III.L. As
explained in Sec. II, all corrections up to α5mμ order are
calculated with the exact muon-nuclear mass ratio, and α6mμ

QED corrections are expanded in the mass ratio. We now start
with the leading QED effects. Since we specialize in the case
of an orbiting muon, from this point on we suppress the label
on the muon mass, denoting it as m to make the equations
more compact.

A. Electron vacuum polarization

The electron vacuum polarization (eVP) (see Fig. 1) modi-
fies the photon propagator

−
gμν

k2
→ −

gμν

k2½1þ ω̄ðk2=m2
eÞ�

; ð20Þ

where k2 ¼ ðk0Þ2 − k⃗2 is the photon momentum squared. The
sum of one-particle irreducible diagrams ω̄ is expanded in a
power series of α=π,

ω̄ ¼ ω̄ð1Þ þ ω̄ð2Þ þ ω̄ð3Þ þ � � � ; ð21Þ

which results in the following expansion of the photon
propagator:

−
gμν

k2
→ −

gμν

k2
ð1þ ρð1Þ þ ρð2Þ þ ρð3Þ þ � � �Þ; ð22Þ

where

ρð1Þ ¼ −ω̄ð1Þ; ð23Þ

ρð2Þ ¼ −ω̄ð2Þ þ ðω̄ð1ÞÞ2; ð24Þ

ρð3Þ ¼ −ω̄ð3Þ þ 2 ω̄ð1Þω̄ð2Þ − ðω̄ð1ÞÞ3: ð25Þ

Each ρðiÞ generates an eVP potential VðiÞðrÞ at k0 ¼ 0,

VðiÞðrÞ ¼ −Z α

Z
d3k
ð2πÞ3

4π

k⃗ 2
ρðiÞð−k⃗ 2Þeik⃗·r⃗; ð26Þ

and the corresponding corrections to the energy are

Eð1Þ ¼ hVð1Þi; ð27Þ

Eð2Þ ¼ hVð2Þi þ
�
Vð1Þ 1

ðE0 −H0Þ0
Vð1Þ

�
; ð28Þ

Eð3Þ ¼ hVð3Þi þ 2

�
Vð2Þ 1

ðE0 −H0Þ0
Vð1Þ

�

þ
�
Vð1Þ 1

ðE0 −H0Þ0
ðVð1Þ − hVð1ÞiÞ 1

ðE0 −H0Þ0
Vð1Þ

�
;

ð29Þ

where the prime in the denominator denotes a subtraction of
the reference state. For example, at the one-loop level Vð1Þ is

Vð1ÞðrÞ ¼ −
Z α

r
α

π

Z
∞

4

dðξ2Þ
ξ2

e−meξ ruðξ2Þ; ð30Þ

where

uðξ2Þ ¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

ξ2

s �
1þ 2

ξ2

�
; ð31Þ

FIG. 1. Feynman diagrams for the pure QED electric vacuum
polarization contribution to the Lamb shift. (a) Uehling potential.
(b) Källen-Sabry potential, reducible two-loop part. (c),
(d) Källen-Sabry potential, irreducible two-loop part.
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and similarly

ω̄ð1Þðζ2Þ ¼ α

π
ζ2
Z

∞

4

dðξ2Þ 1

ξ2ðξ2 − ζ2Þ uðξ
2Þ: ð32Þ

Using the radial functions for the 2P and 2S states from
Eqs. (17) and (18), we find that the one-loop vacuum
polarization contribution to the Lamb shift is

Eð1Þ
L ¼ μðZ αÞ2 α

π

Z
∞

4

dðξ2Þ
ξ2

uðξ2Þ ðβ ξÞ2
2ð1þ β ξÞ4 ; ð33Þ

with the numerical results presented in Table I. All of these
one-, two-, and three-loop eVP contributions have already
been obtained in the literature; see Korzinin, Ivanov, and
Karshenboim (2013) and references therein. While the two-
loop vacuum polarization (VP) is also known analytically
(Källen and Sabry, 1955), the three-loop VP is known only
numerically. It was first calculated for μH by Kinoshita and
Nio (1999) and later corrected by Ivanov, Korzinin, and
Karshenboim (2009) as well as by Kinoshita and Nio
(2009). For other muonic atoms, Korzinin, Ivanov, and
Karshenboim (2013) obtained approximate values, and the
numerical values in Table I are taken from Table I of their work.

B. Light-by-light electron vacuum polarization

This contribution comes from a closed electron loop with
four photon legs. These legs can be attached in all possible
ways to the muon and the nucleus lines; see Fig. 2. There are
three types of diagrams with one, two, or three legs attached to
the muon and the remaining legs attached to the nucleus. Those
with three legs attached to the nucleus are called the
Wichmann-Kroll correction in the literature, those with two
legs on each line are called the virtual Delbrück scattering
correction, and those with one leg on the nucleus side we call
here the inverted Wichmann-Kroll correction. They were all
calculated by Borie and Rinker (1978), Karshenboim et al.
(2010), and Korzinin, Ivanov, and Karshenboim (2013) (“LbL”
in their Table I). The overall contribution is of the same order in
α as the three-loop eVP but is about 10 times smaller.

C. Leading recoil ∼ðZαÞ4

This is the leading-order nuclear recoil contribution. The
nonrelativistic energies of the 2S and 2P states are the same,

so the ðZαÞ2 recoil cancels out in the difference. The leading
ðZαÞ4 relativistic correction is almost the same; the difference
is quadratic in the muon-nucleus mass ratio. It is derived
starting with the expectation value of the Breit-Pauli
Hamiltonian Hð4Þ (Bethe and Salpeter, 1977) with the non-
relativistic wave function, namely,

δE ¼ hHð4Þi; ð34Þ

where

Hð4Þ ¼ −
p4

8

�
1

m3
þ 1

M3

�
−

Z α

2mM
pi

�
δij

r
þ rirj

r3

�
pj

þ
�

1

4m2
þ 1

2mM

�
Z α

r3
r⃗ × p⃗ · σ⃗

þ π Z α

2

�
1

m2
þ δI
M2

þ 4

3
r2C

�
δð3Þðr⃗Þ; ð35Þ

and where δI ¼ 1 for I ¼ 1=2, and δI ¼ 0 for I ¼ 0 and 1 by
convention (Pachucki and Karshenboim, 1995). This results
from the assumption that the scalar particle satisfies the
Klein-Gordon equation and the vector particle satisfies the
Proca equation. The Hamiltonian (35) includes the finite
nuclear size correction, the treatment of which is deferred to
Sec. IV; see Eq. (72). Without the finite size term, Eq. (35)
yields for the 2P1=2 − 2S1=2 energy difference (Jentschura,
2011b)

δEL ¼
� ðZ αÞ4μ3=ð48M2Þ for δI ¼ 1;

ðZ αÞ4μ3=ð12M2Þ for δI ¼ 0;
ð36Þ

with the numerical results presented in Table I.

D. Relativistic correction with the one-loop
electron vacuum polarization

This is a contribution of the order of αðZαÞ4 that combines
the leading relativistic corrections with the one-loop eVP.
To derive it, we construct the photon propagator Gμν in the
modified Coulomb gauge. What we mean is the following: We
require the time component G00 of the propagator to coincide
with the Coulomb potential including the vacuum polarization

charge density, namely, G00 ¼ ρðk⃗2Þ=k⃗2. The transverse part
of the propagator has to be of the form (Pachucki and
Yerokhin, 2023)

GijðkÞ ¼ ρð−k2Þ
k2

�
δij −

kikj

ðk0Þ2
�
−

kikj

ðk0Þ2
ρðk⃗ 2Þ
k⃗ 2

ð37Þ

in order to be equivalent to the well-known propagator in the
Feynman gauge

Gμσ
F ðkÞ ¼ −

gμσ

k2
ρð−k2Þ: ð38Þ

FIG. 2. Feynman diagrams for the light-by-light vacuum polari-
zation contribution to the Lamb shift. (a) Wichmann-Kroll
correction. (b) Virtual Delbrück scattering correction. (c) Inverted
Wichmann-Kroll correction.
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For the evaluation of relativistic corrections with eVP, one
needs the coordinate-space representation of the propagator at
k0 ¼ 0, which is

G00ðr⃗Þ ¼
Z

d3k
ð2πÞ3 eik⃗·r⃗

ρðk⃗2Þ
k⃗2

; ð39Þ

Gijðr⃗Þ ¼ −
1

2

�
δij −

rirj

r
d
dr

�
G00ðr⃗Þ: ð40Þ

In the case of ρðk⃗2Þ ¼ 1 it becomes

G00ðr⃗Þ ¼ 1

4 π r
; ð41Þ

Gijðr⃗Þ ¼ −
1

8 π

�
δij

r
þ rirj

r3

�
; ð42Þ

the standard Coulomb gauge propagator at k0 ¼ 0. One can
now repeat the derivation of the Breit-Pauli Hamiltonian
Hð4ÞðVÞ, as done by Veitia and Pachucki (2004), using the
aforementioned modified Coulomb propagator,

Hð4ÞðVÞ ¼ −
p4

8

�
1

m3
þ 1

M3

�
þ 1

8

�
1

m2
þ δI
M2

�
∇2V

þ
�

1

4m2
þ 1

2mM

�
V 0

r
L⃗ · σ⃗

þ 1

2mM

�
∇2

�
V −

1

4
ðr VÞ0

�
þ V 0

r
L⃗2

þ p2

2
ðV − r V 0Þ þ ðV − r V 0Þp

2

2

	
; ð43Þ

and obtain the correction

δE ¼ hHð4ÞðVð1ÞÞi þ 2

�
Vð1Þ 1

ðE0 −H0Þ0
Hð4Þ

�
; ð44Þ

where Hð4Þ ¼ Hð4Þð−Zα=rÞ. Equation (44) was first derived
and calculated for μH by Pachucki (1996), but with some
mistakes. We take the numerical values from Table I of
Jentschura (2011b), who corrected these mistakes and calcu-
lated Eq. (44) for all nuclei of interest. The use of Gijðr⃗Þ from
Eq. (40) will allow for future nonperturbative calculations
of eVP corrections by solving the Schrödinger or Dirac
equation numerically, which is much more efficient for
heavier elements.

E. Relativistic correction with the two-loop
electron vacuum polarization

This correction is of the order of α2ðZαÞ4 and can be
obtained as in the one-loop case in Sec. III.D. However,
Korzinin, Ivanov, and Karshenboim (2013) calculated it
numerically using a slightly different approach that employed
the Dirac equation. The numerical values (see their Table VI)
are about 1% of the one-loop case and are shown in Table I.

F. Leading muon self-energy and vacuum polarization

For the calculation of the one-loop muon self-energy μSEð1Þ

and the muon vacuum polarization μVPð1Þ corrections to the
Lamb shift, we rewrite the corresponding formula known for
electronic hydrogen,

Eð2S1=2Þ ¼
1

8
m
α

π
ðZ αÞ4

�
μ

m

�
3
�
10

9
−

4

15
−
4

3
ln k0ð2SÞ

þ 4

3
ln

�
m

μðZ αÞ2
�	

; ð45Þ

Eð2P1=2Þ¼
1

8
m
α

π
ðZαÞ4

�
μ

m

�
3
�
−
1

6

m
μ
−
4

3
lnk0ð2PÞ

	
; ð46Þ

where ln k0ðn; lÞ is the Bethe logarithm,

ln k0ð2SÞ ¼ 2.811 769 893 1…; ð47Þ

ln k0ð2PÞ ¼ −0.030 016 708 9…; ð48Þ

which is the same for electronic and for muonic hydrogen-
like atoms.

G. Next-to-leading muon self-energy and vacuum polarization

This is a two-photon exchange contribution accompanied
by the one-loop self-energy μSEð1Þ or vacuum polarization
μVPð1Þ. For a point nucleus it is given by a contact interaction
and thus has the same form for electronic and muonic
hydrogenlike atoms, namely (Eides, Grotch, and Shelyuto,
2001),

δEðn; lÞ ¼ αðZ αÞ5
π n3

μ3

m2
4 π

�
139

128
þ 5

192
−
ln 2
2

�
δl0; ð49Þ

where the second term in parentheses comes from μVPð1Þ.
There is a nuclear recoil correction to this formula that is
considered in Sec. III.O, and there is also a finite nuclear size
correction that is considered in Sec.V.E.

H. Combined muon and electron vacuum polarizations

Correction to the energy due to μVPð1Þ can be represented
as a contact interaction,

δE ¼ −
4

15m2
αðZ αÞhδð3ÞðrÞi ¼ −

1

15m2

α

π
h∇2Vi; ð50Þ

where V ¼ −Zα=r. Combining this contact interaction with
the perturbation due to eVPð1Þ, one obtains

δE ¼ −
2

15m2

α

π
½h∇2Vð1Þi þ 4 π Z αϕð0Þδ ϕð0Þ�; ð51Þ

where

jδϕi ¼ 1

ðE0 −H0Þ0
Vð1Þjϕi: ð52Þ
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This correction was obtained by Eides, Grotch, and Shelyuto
(2001), among many others. Particular values for the consid-
ered muonic atoms were taken from Korzinin, Ivanov, and
Karshenboim (2013).

I. Muon self-energy combined with the electron vacuum
polarization

This is similar to the previous correction, with μVPð1Þ

replaced by μSEð1Þ. It is the one-loop muon self-energy in the
Coulomb potential with one eVPð1Þ insertion. For its deriva-
tion we generalize Eqs. (45) and (46) to an arbitrary potential

δE ¼ α

4 πm2
hϕj∇2ðVÞjϕi

�
10

9
þ 4

3
ln

�
m

μðZαÞ2
�	

þ 2α

3 πm2
hϕj∇!ðH − EÞ ln

�
2ðH − EÞ
μðZαÞ2

�
∇!jϕi

þ α

4 πm μ
hϕjV

0

r
L⃗ · σ⃗jϕi; ð53Þ

where H is the nonrelativistic Hamiltonian with the potential
V and eigenenergy E. The perturbation due to Vð1Þ was first
estimated by Pachucki (1996). The complete calculation
including the perturbed Bethe logarithm was performed by
Jentschura and Wundt (2011) in their Eqs. (29a)–(29d), and in
Table I we use their results.

J. Recoil ∼ ðZαÞ5

This is the ðZαÞ5 contribution to the energy of two bound
point particles, the muon and the nucleus, without any
radiative corrections. It vanishes in the limit of a heavy
nucleus; therefore, we call it a recoil correction. It depends
not only on the muon-nucleus mass ratio but also on the value
of the nuclear spin I. The explicit formula was derived
originally for the spin I ¼ 1=2 nucleus by Salpeter (1952)
and Erickson (1977); this formula was valid for an arbitrary
mass ratio. Here we extend this formula to the case in which
one of the particles has spin I ¼ 0 or 1 using derivations
presented in Sec. V.A. The result is

Eðn; lÞ ¼ μ3

mM
ðZ αÞ5
π n3

�
2

3
δl0 ln

�
1

Z α

�
−
8

3
ln k0ðn; lÞ

−
1

9
δl0 −

7

3
an − 2 δl0 ln

�
1þ m

M

�

þ m2

M2 −m2
ln

�
M
m

�
δl0½2þ Ið2I − 1Þ�



; ð54Þ

where

an ¼ −2
�
ln

�
2

n

�
þ
�
1þ 1

2
þ � � � þ 1

n

�
þ 1 −

1

2n

	
δl0

þ 1 − δl0
lðlþ 1Þð2lþ 1Þ : ð55Þ

It agrees with that of Shelyuto, Korzinin, and Karshenboim
(2018, 2019) for I ¼ 0 and 1 nuclei under the assumption that

g ¼ 1. For other values of g, this recoil correction would have
a logarithmic UV divergence. Numerical results using Eq. (54)
for all nuclei are shown in Table I.

K. Recoil with the electron vacuum polarization

This is the eVPð1Þ correction to the ðZαÞ5 contribution in
Eq. (54). It is difficult to calculate; in fact, it was obtained only
by Jentschura and Wundt (2011) and only in the logarithmic
approximation. The results shown in Table I are numerically
small and suppressed with respect to the leading recoil
correction given in Eq. (54) by a factor of α. To account
for nonlogarithmic terms, we assume a conservative 100%
uncertainty.

L. Nuclear self-energy

If we assume a pointlike nucleus with spin 1=2, the
contribution of the nuclear self-energy for an arbitrary hydro-
genic state is

Eðn; lÞ ¼ ZðZ αÞ5μ3
πn3M2

��
10

9
þ 4

3
ln

M
μðZ αÞ2

�
δl0 −

4

3
ln k0ðn; lÞ

	
:

ð56Þ

For a nonpointlike nucleus there is a finite size correction.
The problem is that the nuclear self-energy is modified by,
and modifies as well, the finite size effect. To incorporate the
correction (56) unambiguously, we must precisely specify the
nuclear mean square charge radius. The usual definition
through the Sachs electric form factor

r2C
6

¼ ∂GEðq2Þ
∂ðq2Þ

����
q2¼0

ð57Þ

is not correct at our precision level, because GE cannot be
uniquely defined in the presence of electromagnetic inter-
actions. Following Pachucki (1995) we propose a different
definition using the forward scattering amplitude described by

TμνðqÞ ¼ −i
Z

d4x eiqxhtjTjμðxÞjνð0Þjti; ð58Þ

where t ¼ ðM; 0; 0; 0Þ. We consider the behavior of the dom-
inant T00 component at small q2 and p2−M2¼ðtþqÞ2−M2.
For a pointlike particle without self-energy corrections, one
finds that

T00 ¼ Tr

�
γ0

1

=p −M
γ0

ðγ0 þ IÞ
4

	
þ ðq → −qÞ

≈
2M

p2 −M2
þ ðq → −qÞ: ð59Þ

For a finite size particle without self-energy corrections

γμ → Γμ ¼ γμF1ðq2Þ þ i
σμν

2M
qνF2ðq2Þ; ð60Þ
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T00 acquires a correction

ΔT00 ≈
2M

p2 −M2
½G2

Eðq2Þ − 1� þ ðq → −qÞ

≈
2M

p2 −M2
q2

r2C
3
þ ðq → −qÞ; ð61Þ

where GE ¼ F1 þ ðq2=4M2ÞF2. The self-energy corrections
for a pointlike particle coming from the diagrams in Fig. 3 are
(Pachucki, 1995)

ΔT00¼Z2α

πM
q2

p2−M2

�
10

9
þ4

3
ln

M2

M2−p2

�
þðq→−qÞ: ð62Þ

We thus define r2C using the following equation, which describes
the low-energy behavior of the correction to the forward
scattering amplitude of a pointlike particle:

ΔT00¼ q2M
p2−M2

�
4Z2α

3πM2
ln

M2

M2−p2
þ2

3
r2C

�
þðq→−qÞ: ð63Þ

We expect that for any nucleus the aforementioned logarithmic
termwill be the same because it is related only to the fact that the
nucleus has a charge; it does not depend on other details like its
spin. There is an arbitrariness in the choice of the constant term,
i.e., what belongs to the charge radius and what belongs to the
nuclear self-energy. The proposed definition separates only the
logarithmic term from the charge radius; thus, the associated
correction to the energy has the form

Eðn;lÞ¼ 2

3n3
ðZαÞ4μ3r2Cδl0

þ4ZðZαÞ5
3πn3

μ3

M2

�
ln

�
M

μðZαÞ2
�
δl0− lnk0ðn;lÞ

	
; ð64Þ

where the correction forP states beyond ln k0ðn; lÞ goes into the
nuclear magnetic moment. The same formula for the nuclear
self-energy will be assumed for all nuclei, and numerical results
coming from the second line of Eq. (64) are presented in Table I.

M. Muon two-loop form factors and vacuum polarization

This correction comes from the muon two-loop form factors
and the two-loop vacuum polarization μVPð2Þ:

EðnS1=2Þ ¼
μ3

m2

�
α

π

�
2 ðZαÞ4

n3

�
4F0

1ð0ÞþF2ð0Þ−
82

81

�
; ð65Þ

EðnP1=2Þ ¼
μ2

m

�
α

π

�
2 ðZ αÞ4

n3

�
−
1

3

�
F2ð0Þ; ð66Þ

where the muon two-loop form factors are (Barbieri, Caffo,
and Remiddi, 1973)

F0
1ð0Þ¼−

3ζð3Þ
4

−
4819

5184
−
49π2

432
þ 1

2
π2 ln2

þ
�
1

9
ln2

m
me

−
29

108
ln

m
me

þ π2

54
þ 395

1296
þO

�
me

m

�	
ð67Þ

and

F2ð0Þ ¼
3ζð3Þ
4

þ 197

144
þ π2

12
−
1

2
π2 ln 2

þ
�
1

3
ln

m
me

−
25

36
þO

�
me

m

�	
: ð68Þ

The terms in square brackets in Eqs. (67) and (68) come from
the closed electron loop and thus are dominant. Numerical
results for all muonic atoms of interest are presented in Table I.

N. Pure recoil ∼ðZαÞ6

The ðZαÞ6 contribution to the energy of a bound system
of two particles is expanded in the mass ratio m=M. The
nonrecoil term coincides with the Dirac energy and thus
vanishes in the 2P1=2 − 2S1=2 difference. The leading term is
linear in the mass ratio and is given by (Pachucki and Grotch,
1995; Jentschura and Pachucki, 1996)

δEL ¼ −
m2

M
ðZ αÞ6

8

�
1

3
þ 4 ln 2 −

7

2

�
; ð69Þ

which results in a relatively small correction; see Table I.

O. Radiative recoil ∼αðZαÞ5

The αðZαÞ5 contribution to the energy is given by a contact
interaction and is thus proportional to ϕ2ð0Þ. We expand the
coefficient in powers of the muon-nucleus mass ratio m=M.
The nonrecoil term was already accounted for in Sec. III.G;
the next term in the mass ratio expansion is the radiative recoil
correction (Pachucki, 1995; Eides, Grotch, and Shelyuto,
2001),

δEL ¼ μ3

mM
αðZ αÞ5

8
1.364 49; ð70Þ

which includes μSEð1Þ and μVPð1Þ.

P. Hadronic vacuum polarization

To estimate the effect of the hadronic vacuum polarization
(hVP), we assume “the most realistic value” according to
Karshenboim and Shelyuto (2021) (“Scatter” in their Table 4).

FIG. 3. Feynman diagrams for the radiative corrections to the
forward Compton scattering off a nucleus.
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Using as a reference the energy shift due to μVPð1Þ [the second
term in Eq. (45)], we write the hVP contribution as

Eðn; lÞ ¼ μ3

m2

α

π

ðZ αÞ4
n3

�
−

4

15

�
γhad δl0: ð71Þ

Equation (71) differs from the μVPð1Þ term by a factor of
γhad ¼ 0.6746ð160Þ, thus giving an appreciable effect that
should be included in the same way in muonic and electronic
atoms to obtain consistent nuclear charge radii. The corre-
sponding numerical values are shown in Table I.

Q. Combined electron and hadronic vacuum polarization

We represent this correction as the aforementioned coef-
ficient γhad times the correction due to μVPð1Þ combined with
eVPð1Þ from Sec. III.H.

IV. FINITE NUCLEAR SIZE CONTRIBUTION

All corrections in this section are proportional to the mean
square charge radius and thus have the form Cr2C.

A. Leading finite size r2C

The definition of the rms charge radius r2C depends on the
nuclear spin and, in particular, there are different definitions
for a spin-1 particle, such as the deuteron, as discussed by
Jentschura (2011a). For a particle with spin I and mass M, r2C
can be defined through the effective interaction with the
electromagnetic field,

δH ¼ eA0 − e

�
r2C
6
þ δI
8M2

�
∇! · E⃗

−
e
2

Q
Ið2I − 1Þ ðI

iIjÞð2Þ∇jEi −
μI
I
I⃗ · B⃗; ð72Þ

where μI and Q are the magnetic dipole and electric quadru-
pole moments, and the Darwin-Foldy term δI has been defined
after Eq. (35). Namely, for a scalar particle δ0 ¼ 0, and for a
spin-1=2 particle the Dirac equation gives δ1=2 ¼ 1. For a
vector particle, we assume that the charge radius is defined
with respect to the Proca particle, namely, the point vector
particle with g ¼ 1 and Q ¼ 0, and this gives δ1 ¼ 0

(Pachucki and Karshenboim, 1995). This convention coin-
cides with the definition employed in nuclear physics (Filin
et al., 2021) and affects the relativistic recoil correction (see
Sec. III.C), while the finite nuclear size correction is

EFNSðn; lÞ ¼
2 π

3
Z αϕ2ð0Þr2C ¼ 2

3 n3
ðZ αÞ4μ3r2C δl0: ð73Þ

Apart from the spin dependence, the nuclear self-energy
affects the definition of rC. This is described in Sec. III.L,
where following Pachucki (1995) we propose using the
forward two-photon exchange amplitude for the precise
definition of the nuclear charge radius.

B. One-loop electron vacuum polarization with r2C

The leading QED correction to the finite size contribution
is due to the one-loop eVP and is described by two terms
(Pachucki, 1996), corresponding to the two diagrams in Fig. 4,

δEFNS ¼ r2C
6
½h∇2Vð1Þi þ 8 π Z αϕð0Þδϕð0Þ�: ð74Þ

The correction is proportional to r2C, and the coefficient is
presented in Table I.

C. Two-loop electron vacuum polarization with r2C

This is a correction similar to the previous one but is
suppressed by an additional factor of α. Thus, it is almost
negligible. It was calculated by Martynenko, Krutov, and
Shamsutdinov (2014) for μD in their Eqs. (30)–(32), and by
Krutov et al. (2015) for μHeþ (items 18 and 19 in their Table I).
Because they neglected third-order perturbation theory diagrams,
we have added a conservative uncertainty of 10% to their results.
Finally, the result for μH was obtained by rescaling it from μD.

V. NUCLEAR STRUCTURE CONTRIBUTIONS

The nuclear structure contributions beyond the finite
nuclear size are expanded in powers of the fine structure
constant α, as with all other corrections. We call the leading
term of the order of ðZαÞ5 the two-photon exchange (TPE).
There are several corrections of higher order in α, which are all
considered in separate sections. Moreover, we assume that the
possible radiative corrections on the nucleus line are all
included in ETPE, with the exception of the leading nuclear
self-energy considered in Sec. III.L.

A. Two-photon exchange

The ðZαÞ5 TPE contribution in a muonic atom with a
nucleus of spin I is given by (Pachucki, 1999)

ETPE ¼−
ðZe2Þ2

2
ϕ2ð0Þ

Z
s

d4q
ð2πÞ4i

1

q4
½Tμν − tμνðI;MÞ�tμνðmÞ

¼−2ðZe2Þ2ϕ2ð0Þm
M

Z
s

d4q
ð2πÞ4i

×
½T2 − t2ðI;MÞ�ðq2 − ν2Þ− ½T1 − t1ðI;MÞ�ðq2þ 2ν2Þ

q4ðq4 − 4m2ν2Þ ;

ð75Þ

FIG. 4. One-loop electron vacuum polarization corrections to
the nuclear finite size. (a) Photon propagator correction. (b) Wave
function correction.
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where Tμν is the forward virtual Compton scattering ampli-
tude, defined in Eq. (58), that can be expressed in terms of two
Lorentz invariant functions T1ðν;−q2Þ and T2ðν;−q2Þ,

Tμν ¼ −
�
gμν −

qμqν

q2

�
T1

M

þ
�
tμ

M
−

ν

q2
qμ
��

tν

M
−

ν

q2
qν
�
T2

M
; ð76Þ

and where ν ¼ q0 is the lab-frame photon energy. To be
consistent with the ðZαÞ5 recoil correction in Eq. (54), we
assume in Eq. (75) that tμνðI;MÞ corresponds to the pointlike
nucleus of spin I. For I ¼ 1=2, tμνðMÞ≡ tμνð1=2;MÞ, and

tμνðMÞ ¼ Tr

�
γμ

1

=p −M
γν
γ0 þ I
4

	
þ ðq → −qÞ; ð77Þ

with p ¼ tþ q. From Eq. (77) one obtains for a point
Dirac particle

t1ð1=2;MÞ ¼ −
4M2 ν2

q4 − 4M2 ν2
; ð78Þ

t2ð1=2;MÞ ¼ 4M2 q2

q4 − 4M2 ν2
: ð79Þ

For a point scalar particle one obtains

t1ð0; MÞ ¼ 1; ð80Þ

t2ð0;MÞ ¼ 4M2 q2

q4 − 4M2 ν2
; ð81Þ

and for a Proca vector particle (Lee and Yang, 1962)

t1ð1;MÞ ¼ −
2 ν2 ð6M2 − q2Þ − q4

3ðq4 − 4M2 ν2Þ ; ð82Þ

t2ð1;MÞ ¼ 2 q2 ð6M2 − q2Þ
3ðq4 − 4M2 ν2Þ : ð83Þ

The subscript s in the integral in Eq. (75) denotes an additional
subtraction of a 1=q5 singularity, which has to be proportional
to r2C provided the subtraction of a point nucleus with an
appropriate spin is assumed.
We now make a digression regarding the pure recoil ðZαÞ5

correction. It was originally calculated for the point spin-1=2
nucleus. The difference between an arbitrary spin I and a
spin-1=2 point nuclei of the same mass is given by

δE¼−2ðZe2Þ2ϕ2ð0Þm
M

Z
s

d4q
ð2πÞ4i

×
½t2ðIÞ− t2ð1=2Þ�ðq2−ν2Þ− ½t1ðIÞ− t1ð1=2Þ�ðq2þ2ν2Þ

q4ðq4−4m2ν2Þ ;

ð84Þ

using the aforementioned t1;2 functions with the mass argu-
ment implicit. This δE gives the term proportional to Ið2I − 1Þ
in Eq. (54), which generalizes the pure recoil correction to the
case of spin I ¼ 0, 1 point nuclei, while for higher spins this
integral diverges.
We now make a second digression. Tμν is a complete

forward virtual Compton scattering amplitude and thus
includes radiative corrections. Consequently, it has a
lnðM2 − p2Þ singularity at the threshold; see Eq. (63) with

p ¼ tþ q and t ¼ ðM; 0⃗Þ. This singularity comes from the
nuclear self-energy, and thus the corresponding ln q=q5

singularity should also be subtracted out in Eq. (84). The
last subtraction is not mentioned in any calculation of the
TPE correction from the scattering amplitudes, but it should
because Tμν on the nucleus line is a complete amplitude.
Moreover, the presence of the logarithmic singularity at
threshold indicates the lack of the possibility to separate
Tμν into elastic and inelastic contributions. However, we
neglect this singularity and disregard the associated difficul-
ties in what follows because the related effect is negligible at
the current precision level.

1. TPE in μH

Returning to the calculation of TPE in Eq. (75), we find that
it is conventionally split into a Born and a polarizability part,

ETPEðμHÞ ¼ EBorn þ Epol: ð85Þ

The Born contribution

EBorn ¼ EFri þ Erec ð86Þ

in the infinite nuclear mass limit is given by

EFri ¼ −
π

3
ϕ2ð0ÞðZ αÞ2μ r3F; ð87Þ

where rF is the Friar radius

r3F ¼
Z

d3r1

Z
d3r2 ρðr1Þ ρðr2Þ jr⃗1 − r⃗2j3; ð88Þ

and the remainder is given by the small recoil correction Erec.
The presence of μ instead of m in Eq. (87) is a matter of
convention, and this affects the definition of the TPE recoil
correction. For the polarizability part

Epol ¼ Esub þ Einel; ð89Þ

one can use dispersion relations to express T1 and T2 in terms
of proton structure functions measured in electron-proton
scattering. In the case of T1, a once-subtracted dispersion
relation is needed, giving rise to the subtraction function
T1ð0;−q2Þ, which cannot be measured directly, but has to be
modeled or predicted from chiral perturbation theory (χPT),
covariant (Alarcon, Lensky, and Pascalutsa, 2014; Lensky
et al., 2018), or heavy baryon (Birse and McGovern, 2012;
Peset and Pineda, 2014, 2015a, 2015b). The inelastic structure
functions needed for the dispersive evaluation are known only
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for the proton, deuteron, and helion, although not in the entire
kinematic region, especially for the deuteron and helion; thus,
a different approach will have to be employed for nuclei other
than the proton.
In the case of the 2S state of μH, the Friar contribution

EFri ¼ −0.0211ð2Þ meV ð90Þ

is obtained using the recent Friar radius r3FðpÞ ¼ 2.310ð26Þ fm3

from Lin, Hammer, and Meißner (2022). Their work is a
dispersive fit of nucleon form factors based on data in both
the spacelike and timelike regions. Note that the dispersive
analyses of the proton form factor (Mergell, Meißner, and
Drechsel, 1996; Belushkin, Hammer, and Meißner, 2007;
Lorenz et al., 2015) predicted the smaller proton charge radius
rp ¼ 0.84 fm before the μH Lamb shift measurement. These
analyses have improved since then, taking into consideration
new data from, for example, the Mainz (Bernauer et al., 2010)
and Jefferson Lab (JLab) (Xiong et al., 2019) electron-proton
scattering measurements. For a recent review of the history and
the theoretical framework of the dispersive form factor analyses,
see Lin, Hammer, and Meißner (2021).
The recoil correction was considered by Karshenboim et al.

(2015), who obtained

Erec ¼ 0.000 03ð5Þ meV: ð91Þ

A similar result recently obtained by Tomalak (2022)

Erec ¼ 0.000 05ð1Þ meV ð92Þ

was based on the proton form factor parametrization of Borah
et al. (2020), who used the small proton charge radius from the
μH Lamb shift as a constraint.
In total the Born contribution amounts to

EBorn ¼ −0.0211ð2Þ meV: ð93Þ

This prediction not only is more precise but also differs from
older values: EBorn ¼ −0.0186ð16Þ meV (Tomalak, 2019) and
EBorn ¼ −0.0247ð16Þ meV (Birse and McGovern, 2012). To
explain this, we note that Birse and McGovern (2012) and
Tomalak (2019) used proton form factor parametrizations
that corresponded to a large rp. Since the value of the latter is
correlated with the resulting EBorn, a consistent TPE evalu-
ation should use a form factor parametrization that results in a
small rp, as argued by Karshenboim (2014). While Tomalak
(2019) used a procedure suggested by Karshenboim (2014)
and Karshenboim et al. (2015) to correct for the large radius
of the A1 parametrization (Bernauer et al., 2010, 2014), the
comparison to Eq. (93) indicates that the suggested correction
might not be sufficiently accurate.
The subtraction contribution was considered in various

works (Birse and McGovern, 2012; Gorchtein, Llanes-
Estrada, and Szczepaniak, 2013; Peset and Pineda, 2014;
Tomalak and Vanderhaeghen, 2016; Lensky et al., 2018), and
we take the value

Esub ¼ 0.0046ð24Þ meV ð94Þ

from the most recent prediction in the framework of χPT
(Lensky et al., 2018). As previously mentioned, the q2

dependence of the T1ð0;−q2Þ subtraction function, which
is related to the magnetic dipole polarizability, has not been
experimentally constrained, and its uncertainty is the largest
among all contributions to the μH Lamb shift. Last, for the
inelastic contribution

Einel ¼ −0.0127ð5Þ meV ð95Þ

we take a value of Carlson and Vanderhaeghen (2011). As a
final result for the TPE with the subtracted point proton,
we obtain

ETPEðμH; 2SÞ ¼ −0.0292ð25Þ meV; ð96Þ

with the uncertainty dominated by the one from the sub-
traction term. Note that, given the present uncertainties of the
Friar and polarizability contributions, the recoil correction is
negligible in the case of μH.

2. TPE in μD

In the case of μD, the first data-driven dispersive evaluation
of the TPE correction was performed by Carlson, Gorchtein,
and Vanderhaeghen (2014) with the result ETPEðμD; 2SÞ ¼
−2.011ð740Þ meV, but with an inconsistent subtraction of the
point deuteron tμν. They set GC ¼ 1 and GM ¼ GQ ¼ 0 for a
point deuteron, whereas they should have set GC ¼ GM ¼ 1
and GQ ¼ 0, which would correspond to G1 ¼ G2 ¼ 1 and
G3 ¼ 0 (in their notation) because the ðZαÞ5 recoil correction
in Eq. (54) was calculated assuming these values for the elastic
form factors of the point deuteron. The same formalism as was
used by Carlson, Gorchtein, and Vanderhaeghen (2014) was
employed in several more recent works (Acharya et al., 2021;
Lensky, Hagelstein, and Pascalutsa, 2022b). To make it
consistent with Eq. (54), it is sufficient to modify the elastic
contribution of Carlson, Gorchtein, and Vanderhaeghen
(2014), as shown in Appendix A. The numerical effect of
this modification turns out to be small (∼ − 0.000 04 meV)
and thus can be neglected.
A remark regarding the dispersion relation formalism is in

order. The subtraction function T1ð0;−q2Þ is treated differ-
ently in composite nuclei than in μH. In a data-driven
approach, the dominant purely nuclear response in electron-
nucleus scattering can be separated from the response of the
individual nucleons, leading to a finite-energy sum rule for
the nuclear part of T1ð0;−q2Þ, as shown by Gorchtein (2015).
As an alternative to using data, one often utilizes the nuclear
response functions calculated from a theory of nuclear
interactions. In this case, there is also as a rule no need for
a subtraction, at least when the theory does not yet resolve the
structure of the individual nucleons. That said, the small
subtraction contribution due to the individual nucleons inher-
its all of the difficulties of the μH case.
Most recent works use chiral effective field theories (χEFT)

of nuclear interactions (Epelbaum, Hammer, and Meißner,
2009; Machleidt and Entem, 2011; Epelbaum, Krebs, and
Reinert, 2020; Hammer, König, and Van Kolck, 2020) to
evaluate the deuteron structure functions instead of using
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experimental input, due to the lack of quality data; see the
discussion given by Acharya et al. (2021). Lensky, Hagelstein,
and Pascalutsa (2022a, 2022b) analyzed pionless effective
field theory (=πEFT) and χEFT predictions and pointed out that
the deuteron charge form factor parametrization by the JLab
t20 Collaboration (Abbott et al., 2000) does not describe the
deuteron well enough in the low q2 region, i.e., in the region
without data. The latter parametrization was employed by
Carlson, Gorchtein, and Vanderhaeghen (2014) and Acharya
et al. (2021) to evaluate the elastic TPE. Accordingly,
we update the elastic part of Acharya et al. (2021) by taking
the value −0.4456ð18Þ meV from Table II of Lensky,
Hagelstein, and Pascalutsa (2022b), a result stemming from
a χEFT calculation of GC (Filin et al., 2021). For the inelastic
part of Acharya et al. (2021) we take the arithmetic mean of
their two results −ð1.511þ 1.519Þ=2 meV and finally add
their hadronic contribution −0.028 meV to obtain

ETPEðμD; 2SÞ ¼ ½−0.446ð2Þ − 1.515ð15Þ − 0.028ð2Þ� meV

¼ −1.990ð15Þ meV: ð97Þ

The most recent calculation by Lensky, Hagelstein, and
Pascalutsa (2022a, 2022b) used =πEFT amplitudes for the
forward virtual Compton scattering off the deuteron (Lensky,
Hiller Blin, and Pascalutsa, 2021) to obtain a similar sum of
three contributions

ETPEðμD; 2SÞ ¼ ½−0.446ð8Þ − 1.509ð16Þ − 0.032ð6Þ� meV

¼ −1.987ð20Þ meV; ð98Þ

which is in perfect agreement with Eq. (97). Another recent
calculation (Emmons, Ji, and Platter, 2021) used =πEFT with
pointlike nucleons to evaluate the deuteron inelastic structure
functions. This calculation obtained the inelastic part of ETPE
[−1.574ð80Þ meV] with a larger central value (as a result of
treating the nucleons as pointlike) but also a larger uncertainty,
making it consistent with the other evaluations.
Regarding direct calculation of ETPE from the nuclear

theory, one can use an effective Hamiltonian, either phenom-
enological or rooted in χEFT, and derive the TPE correction.
The first such calculations were performed by Leidemann
and Rosenfelder (1995). Later, a much improved method
was introduced by Pachucki (2011) and expanded on by
Hernandez et al. (2014), Pachucki and Wienczek (2015), and
Ji et al. (2018), resulting in the following formula for the TPE
contribution:

ETPE ¼ Enucl1 þ Enucl2 þ Epol þ � � � ; ð99Þ

Enucl1 ¼ −
π

3
m α2 ϕ2ð0Þ½ZR3

FðpÞ þ ðA − ZÞR3
FðnÞ�; ð100Þ

Enucl2 ¼ −
π

3
m α2 ϕ2ð0Þ

XZ
i;j¼1

hϕN jjr⃗i − r⃗jj3jϕNi; ð101Þ

Epol ¼ −
4 π α2

3
ϕ2ð0Þ

Z
ET

dE

ffiffiffiffiffi
2μ

E

r
jhϕN jd⃗jEij2; ð102Þ

where the Coulomb distortion correction is considered sep-
arately in Sec. V.B since it is of ðZαÞ6 order. Here Enucl1 is a
sum of TPE contributions from each individual nucleon, Enucl2
is due to TPE with different nucleons, and Epol is the leading
nuclear polarizability correction originating from the low-
energy TPE and is given by the matrix elements of the electric

dipole operator ed⃗ between the nuclear ground state jϕNi and
excited states jEi, with ET the lowest excitation energy. Note
that Eq. (100) is proportional to m instead of μ, thus differing
from the convention in Eq. (87). The parameters RFðpÞ and
RFðnÞ are the effective proton and neutron radii, which
include the complete TPE with the corresponding nucleon.
The value for the proton is obtained from ETPE in μH,

R3
FðpÞ ¼ 2.876ð246Þ fm3; ð103Þ

and for the neutron the value was calculated by Tomalak
(2019),

R3
FðnÞ ¼ 0.712ð223Þ fm3: ð104Þ

There are many more small corrections in the effective
Hamiltonian approach for the calculation of the TPE contri-
bution in μD; they are denoted by dots in Eq. (99) and were
separately calculated by two groups: (i) Pachucki (2011) and
Pachucki and Wienczek (2015) and (ii) Hernandez et al. (2014,
2018, 2019) and Ji et al. (2018). Using the aforementioned
values of RFðpÞ and RFðnÞ, we update the calculation of
Pachucki and Wienczek (2015) by changing the single-nucleon
contributions [see Eqs. (45) and (46) in their paper] to δPE ¼
−0.034ð3Þ meV and δNE ¼ −0.008ð3Þ meV. Their total ETPE
thus becomes

ETPEðμD; 2SÞ ¼ −1.961ð20Þ meV: ð105Þ

Considering more elaborate calculations by the second
group (Ji et al., 2018), we note that the point deuteron
ðZαÞ5 recoil correction was not properly subtracted but do
not expect this to be significant. Therefore, we take their
δATPE ¼ ½−1.675ð15Þ − 0.262� meV (with the subtracted
Coulomb distortion) and add the nucleon contribution
δNTPE ¼ δPEþ δNE to obtain

ETPEðμD; 2SÞ ¼ −1.979ð15Þ meV; ð106Þ

which is in agreement with the updated value in Eq. (105).
As a final value we take the mean value of Eqs. (97), (98),
(105), and (106) and keep the largest uncertainty

ETPEðμD; 2SÞ ¼ −1.979ð20Þ meV ð107Þ

to account for possible systematic uncertainties in all of
these determinations; see the discussion in Sec. VI.

3. TPE in μHe+

A calculation of ETPE in μ3Heþ using the experimentally
measured inelastic structure functions was performed by
Carlson, Gorchtein, and Vanderhaeghen (2017), but with
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large uncertainties. Much greater accuracy is achieved by
direct nuclear structure calculations using Eqs. (99)–(102). In
the case of μ3Heþ and μ4Heþ, calculations of ETPE were
performed by Ji et al. (2013, 2018) and Nevo Dinur et al.
(2016). We start with their results, which were denoted
as δTPE by Ji et al. (2018) in their Table 7, subtract the

Coulomb distortion corrections δð0ÞC ðμ3HeþÞ ¼ 1.010 meV

and δð0ÞC ðμ4HeþÞ ¼ 0.536 meV, and update the single-
nucleon contributions using Eqs. (103) and (104): δNZem þ
δNpol ¼ −0.647ð55Þ meV for μ3Heþ and δNZem þ δNpol ¼
−0.738ð63Þ meV for μ4Heþ. This gives

ETPEðμ3Heþ; 2SÞ ¼ −16.38ð31Þ meV; ð108Þ

ETPEðμ4Heþ; 2SÞ ¼ −9.76ð40Þ meV; ð109Þ

where the improvement in the accuracy with respect to the
original results of Ji et al. (2018) is due to the updated single-
nucleon contributions.

B. Coulomb distortion correction

Among corrections of higher order in α, the largest one is
the Coulomb distortion correction, which comes from the
expansion in the ratio of the muon binding energy to the
nuclear excitation energy and is enhanced by a factor of
lnðZαÞ2,

δCE¼Z4α6μ4

6

Z
ET

dE
E

�
1

6
þ ln

�
2μðZαÞ2

E

�	
jhϕN jd⃗jEij2: ð110Þ

Since the first term 1=6 in square brackets in Eq. (110) is much
smaller than the logarithm, it is sometimes neglected (Ji et al.,
2018). This correction was calculated in a manner similar to
the leading nuclear polarizability correction in Eq. (102) [see
Ji et al. (2018) for details], with the numerical values
presented in Table I.

C. Three-photon exchange

In the nonrecoil limit, the elastic three-photon exchange
(3PE) contribution can be obtained by solving the Dirac
equation with a finite size nucleus. The corresponding relative
OðαÞ2 correction to the finite size effect can be represented as
(Pachucki, Patkóš, and Yerokhin, 2018)

Eð6Þ
FNSð2SÞ ¼ −ðZ αÞ6m3r2C

1

12

�
lnðmrC2Z αÞ þ γE −

31

16

	

þ ðZ αÞ6m5r4C
1

18

�
lnðmrC1Z αÞ þ γE þ 5

2

	

þ ðZ αÞ6m5r4CC
1

480
; ð111Þ

Eð6Þ
FNSð2P1=2Þ ¼ ðZ αÞ6m

�
m2r2C
64

þm4r4CC
480

�
; ð112Þ

where r4CC ¼ hr4i is the fourth moment of the charge density,
the effective nuclear charge radii rC1 and rC2 encode the

high-momentum contributions, and γE is the Euler constant.
For the exponential distribution of the nuclear charge
rCC=rC ¼ 1.257 433, rC1=rC ¼ 1.090 044, and rC2=rC ¼
1.068 497. The inelastic contribution is difficult to estimate.
The only known result is for μD (Pachucki, Patkóš, and
Yerokhin, 2018), where it was found to partially cancel the
elastic part. Therefore, for other composite nuclei we assume
that the total 3PE in the nonrecoil limit is half of the elastic
part, with the uncertainty being the other half.

D. Electron vacuum polarization with TPE

The eVPð1Þ correction to the TPE contribution is

δETPE ¼ −
ðZe2Þ2

2
ϕ2ð0Þ

Z
s

d4q
ð2πÞ4i

1

q4
½Tμν − tμνðI;MÞ�

× tμνðmÞ
�
−2ω̄ð1Þðq2=m2

eÞ þ 2
δϕð0Þ
ϕð0Þ

	
; ð113Þ

where δϕ is as defined in Eq. (52), ω̄ð1Þ is as defined in
Eq. (32), and the subscript s in the integral denotes an
additional subtraction of the finite size that is the same as
in Eq. (75). The eVPð1Þ correction to the elastic part in the
nonrecoil limit, namely, to the Friar term, was obtained by
Karshenboim et al. (2018). Their results were 0.0004, 0.0071,
0.212, and 0.139 meV for the Lamb shifts in μH, μD, μ3Heþ,
and μ4Heþ, respectively. However, these results are incom-
plete because the eVPð1Þ correction to the inelastic part is
unknown. Therefore, we do not use these results, and instead
calculate the eVPð1Þ corrections to the leading contributions to
ETPE, namely, Enucl1, Enucl2, and Epol in Eqs. (99)–(102). The
details are presented in Appendixes B, C, and D, respectively.
This largely completes the evaluation of the eVPð1Þ correction
with TPE.
In particular, for μH there is only the eVPð1Þ correction with

TPE on the proton, which amounts to

δETPEðμHÞ ¼ 0.0006ð1Þ meV ð114Þ

for the Lamb shift; see Eq. (B5). For μD, the resulting
correction to the Lamb shift is the sum of the single-nucleon
eVPð1Þ with TPE from Eq. (B5) and the eVPð1Þ polarizability
correction from Kalinowski (2019),

δETPEðμDÞ ¼ 0.0275ð4Þ meV; ð115Þ

for the Lamb shift. This is in agreement with the calculation
of the eVPð1Þ correction to TPE recently performed by Lensky,
Hagelstein, and Pascalutsa (2022a, 2022b), which gave
0.0274(3) meV. Finally, for μ3Heþ and μ4Heþ we add
δEnucl1 from Eq. (B5), δEnucl2 from Eq. (C11), and δEpol

from Eq. (D3) to obtain

δETPEðμ3HeþÞ ¼ 0.266ð24Þ meV; ð116Þ

δETPEðμ4HeþÞ ¼ 0.158ð12Þ meV ð117Þ

for the Lamb shift. These results are shown in Table I.
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E. Muon self-energy and vacuum polarization with TPE

This correction is given by

δETPE ¼ −
ðZe2Þ2

2
ϕ2ð0Þ

Z
d4q

ð2πÞ4i
1

q4
½Tμν − tμνðI;MÞ�

× ½tradμν ðmÞ − 2ω̄ð1Þðq2=m2ÞtμνðmÞ�; ð118Þ

where tradμν is the muon self-energy correction to the pointlike
tμν and ω̄ð1Þ is the one-loop muon vacuum polarization; see
Eq. (32). An analytic expression for tradμν is known (Pachucki,
1995), so this correction can in principle be calculated for μH
and μD using the experimentally or theoretically determined
nuclear amplitudes T1 and T2. For μHeþ, the most convenient
approach is the direct calculation using the nuclear theory with
an effective Hamiltonian; cf. Eq. (99). However, such a
calculation has not yet been performed. The correction in
Eq. (118) has thus far been calculated (Faustov et al., 2017;
Karshenboim et al., 2018) in the elastic limit for an infinitely
heavy nucleus with the use of different models for the charge
distribution. In Appendix E, we recalculate this correction
using the exponential charge distribution to obtain results in
agreement with Faustov et al. (2017) and Karshenboim et al.
(2018). Moreover, we note that this contribution is dominated
by the mean square charge radius with the radiatively
corrected muon density at the nucleus. Therefore, the inelastic
contribution is not expected to be significant, and we estimate
the relative uncertainties of our results in Eq. (E12) at 10%.

VI. SUMMARY

If the nuclei were pointlike particles, the 2S − 2P Lamb
shift in light muonic atoms would be sensitive to the hVP,
as the muon g − 2 is. A theoretical understanding of nuclear
structure at the relevant level of precision remains, despite
recent steady progress, a challenging matter. As a result, the
theoretical predictions for the energy spectra of muonic atoms
are currently a factor of 10 to ∼100 times less accurate than
what would be obtained in the pointlike limit; therefore, the
sensitivity to new physics in measurements in light muonic
atoms is at present limited.
The uncertainty of theoretical calculations are at present

dominated by the hadronic and nuclear contributions rather
than the QED terms, which can be obtained with much higher
accuracy. Focusing on such dominant contributions, it is
useful to distinguish between single-nucleon and few-nucleon
uncertainties. The fact that the structure of the single nucleon
is not well known is affecting terms such as Enucl1 in Eq. (99)
and generates the entire uncertainty of ENS in μH. Presently
such theoretical uncertainty for μH is of the order of the
current experimental uncertainty. Using only χPT makes it
difficult to match the projected new measurements, which
plan to achieve a factor of 5 improvement in the empirical
uncertainty. However, there are promising developments in
the data-driven approach (Tomalak and Vanderhaeghen,
2016), and lattice QCD calculations could achieve the needed
precision in the future; see Fu et al. (2022) for the first
calculation of the TPE contribution in μH. Furthermore,
Hagelstein and Pascalutsa (2021) showed that the TPE

contribution can be obtained using an alternative subtraction
at T1ðiQ;Q2Þ, which holds advantages for EFT and lattice
QCD calculations.
The uncertainties related to the few-nucleon dynamics start

at μD and move to heavier muonic atoms. They are due to the
model dependence intrinsic to the parametrization of nuclear
interactions. Calculations have been performed using different
nuclear potentials to allow for an estimate of the associated
model dependence (Ji et al., 2013, 2018; Nevo Dinur et al.,
2016). When the study is restricted to interactions developed
within χEFT, an order-by-order analysis in the chiral expan-
sion is necessary to estimate the uncertainty introduced in the
truncation of the expansion. To date this has been achieved
only for μD (Hernandez et al., 2014, 2018), and work is in
progress for μ3Heþ and μ4Heþ (Li Muli and Bacca, 2023).
Reducing such uncertainty is difficult and can be done only
either by increasing the order of the χEFT expansion or by
exploring other ways of fitting the χEFT low-energy constants
at the present order. Even if we were able to reduce these
errors, there are other sources of uncertainty, such as correc-
tions to Eq. (99) including higher-order polarizabilities and
unknown corrections to the nuclear electric dipole operator
(Wienczek, Puchalski, and Pachucki, 2014; Hernandez et al.,
2019; Li Muli et al., 2022).
When the uncertainties stemming from single-nucleon and

few-nucleon dynamics are compared for μD and μHeþ, the
two are found to be comparable in size even though the
absolute contribution of terms stemming from the few-
nucleon dynamics is larger; see Table 7 of Ji et al. (2018).
Finally, another important source of uncertainty in the μHeþ

ion is the unknown inelastic part of the three-photon exchange
correction; see Sec. V.C.
In view of these uncertainties, the comparison of the nuclear

rms charge radii between muonic and electronic atoms would
be interesting. Recent results using hydrogen spectroscopy
(Beyer et al., 2017; Fleurbaey et al., 2018; Bezginov et al.,
2019; Grinin et al., 2020; Brandt et al., 2022), although not
yet conclusive, tend to be in agreement with the μH value. The
absolute determination of nuclear radii from the optical
spectroscopy of normal atoms, other than hydrogen, has thus
far not been successful. The only attempt from the measure-
ment of the 23S − 23P transition in 4He (Patkóš, Yerokhin, and
Pachucki, 2021), although in agreement with the μ4Heþ

determination, is much less accurate due to the high complex-
ity of QED effects in systems consisting of more than one
electron. On the other side, the optical spectroscopy of the
one-electron Heþ ion has not yet been accomplished
(Herrmann et al., 2009; Krauth et al., 2020).
The proton rms radius rp extracted from the μH Lamb shift

(see Table I) is by far the most accurate. Therefore, one can
use this rp for the most accurate determination of the Rydberg
constant from the 1S − 2S hydrogen spectroscopy, for the
most accurate determination of the rms deuteron charge radius
rd from the H-D isotope shift in the 1S − 2S transition, or
recently for the most accurate determination of the electron-
proton mass ratio from the precise spectroscopy of the HDþ

molecule. The Lamb shift measurements in all other muonic
atoms, although they do not lead to improvements in tests of
fundamental physics, can give valuable information about
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electromagnetic properties of nuclei. Namely, we recall
that the energy shift due to the finite nuclear size is propor-
tional to the nuclear charge radius (EFNS ¼ Cr2C). It turns
out that the weighted isotope shift in muonic atoms
ELðDÞ=CD − ELðHÞ=CH, where the corresponding coeffi-
cients C are given in Table I, can be used for the determination
of the difference of squared nuclear charge radii with a higher
precision than the individual charge radii due to partial
cancellations of uncertainties, resulting in

r2d − r2pjmuonic ¼ 3.820 0ð7Þexpð30Þtheo fm2: ð119Þ

Equation (119) is in perfect agreement with the value obtained
from the electronic H-D isotope shift in the 1S − 2S transition
(Parthey et al., 2010), resulting in a much more accurate
determination (Pachucki, Patkóš, and Yerokhin, 2018),

r2d − r2pjelectronic ¼ 3.820 7ð3Þ fm2: ð120Þ

This indicates that we have a good understanding of the
electromagnetic properties of the deuteron. An analogous
comparison can be performed for the 3He-4He isotope shift,
for which we obtain

ELð4HeþÞ
C4Heþ

−
ELð3HeþÞ
C3Heþ

¼ 0.2585ð30Þ fm2 þ r2α − r2h; ð121Þ

where we took advantage of the partial cancellation of
uncertainties in the nuclear structure contribution ENS. A
recent measurement of the Lamb shift in μ3Heþ (Schuhmann
et al., 2023) gave

r2h − r2αjmuonic ¼ 1.0636ð6Þexpð30Þtheo fm2. ð122Þ

The value (122) deviated by 3.6σ from the recent measure-
ment of the 3He-4He isotope shift in the 23S1 − 21S0 transition
(Van der Werf et al., 2023),

r2h − r2αjelectronic ¼ 1.0757ð15Þ fm2. ð123Þ

We point out, however, that the other isotope shift measure-
ments in the 23P1 − 23S1 transition have thus far not been
conclusive, because they are in contradiction with each other
(Pachucki, Patkóš, and Yerokhin, 2017); see also Van der Werf
et al. (2023). Therefore, we postpone drawing conclusions
until measurements of the 23P1 − 23S1 transition in 3;4He are
confirmed.
Finally, our determination of the proton, the deuteron, and

the α particle charge radii differs from the original ones given
by Antognini et al. (2013), Pohl et al. (2016), and Krauth et al.
(2021) (see Table I), especially for the deuteron, while that for
the helion charge radius (Schuhmann et al., 2023) is based on
our calculations presented here. The main reason for these
differences is the neglect of the eVPð1Þ correction to the TPE
and the inelastic 3PE in the original determination. Moreover,
the large uncertainties in ENS indicate that a more accurate
calculation of the electromagnetic nuclear structure of light
nuclei is necessary to explore the great potential of the
precision muonic atom spectroscopy.
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APPENDIX A: SUBTRACTION OF THE POINT
DEUTERON AMPLITUDE

In this appendix we specify the changes to the covariant
dispersive formalism ofCarlson, Gorchtein, andVanderhaeghen
(2014) that were necessary to account for the subtraction of the
point deuteron amplitude described in Sec. V.A. As explained
there, Carlson, Gorchtein, and Vanderhaeghen (2014) assumed
that g ¼ 0 for the pointlike deuteron, whereas the definition of
the latter as a Proca particle means that g ¼ 1. To compensate
for this difference, one needs to modify Eq. (16) of Carlson,
Gorchtein, and Vanderhaeghen (2014), which describes the
elastic contribution of the TPE in terms of the elastic deuteron
form factors as follows:

Eel ¼ m α2

MðM2 −m2Þϕð0Þ
2

Z
∞

0

dQ2

Q2

×

�
2

3
½G2

M − 1� ð1þ τÞ γ̂1ðτ; τlÞ −
2

3
ðτ − τlÞ

γ1ðτlÞffiffiffiffi
τl

p

−
�
G2

C − 1

τ
þ 2

3
½G2

M − 1� þ 8

9
τG2

Q

	
γ̂2ðτ; τlÞ

þ 16M2
M −m

Q
G0

Cð0Þ


; ðA1Þ

where Q2 ¼ −q2, τ ¼ Q2=ð4M2Þ, τl ¼ Q2=ð4m2Þ, and the
weighting functions are defined as they were by Carlson,
Gorchtein, and Vanderhaeghen (2014),

γ̂1;2ðx; yÞ ¼
γ1;2ðxÞffiffiffi

x
p −

γ1;2ðyÞffiffiffi
y

p ; ðA2aÞ

γ1ðxÞ ¼ ð1 − 2xÞ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p þ 2x3=2; ðA2bÞ
γ2ðxÞ ¼ ð1þ xÞ3=2 − x3=2 − 3

2

ffiffiffi
x

p
: ðA2cÞ

Note the second term in the curly brackets in Eq. (A1) that is
generated by the nonpole part of the point deuteron amplitude,
and that the Thomson term still needs to be subtracted from
the nonpole amplitude as it was by Carlson, Gorchtein, and
Vanderhaeghen (2014). The numerical effect of the extra
subtraction terms in Eq. (A1) onETPEðμD; 2SÞ does not depend
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on the elastic deuteron form factors and turns out to be small,
namely, −0.000 038 meV.

APPENDIX B: eVPð1Þ CORRECTION WITH TPE ON
SINGLE NUCLEONS

In this appendix we give an improved estimate for the
eVPð1Þ correction to the TPE between the muon and individual
nucleons [cf. Eqs. (100) and (113)],

δEnucl1 ¼ −
π

3
m α2ϕ2ð0ÞfZ δ½R3

FðpÞ� þ ðA − ZÞδ½R3
FðnÞ�g

þ 2
δϕð0Þ
ϕð0Þ Enucl1: ðB1Þ

For the Born TPE with an eVPð1Þ insertion, we use the nucleon
form factor parametrizations from Borah et al. (2020). For the
nucleon polarizability contribution with an eVPð1Þ insertion,
we use the leading-order χPT prediction plus the contribution
of the Δð1232Þ intermediate state (with the latter equal for p
and n); see Alarcon, Lensky, and Pascalutsa (2014), Lensky
et al. (2018), and Lensky, Hagelstein, and Pascalutsa (2022b).
Our total results for TPE with eVPð1Þ insertion are

δ½R3
FðpÞ� ¼ 0.053ð10Þ fm3; ðB2Þ

δ½R3
FðnÞ� ¼ 0.017ð10Þ fm3: ðB3Þ

The wave function correction was taken from Table 13 of
Karshenboim and Shelyuto (2021),

2
δϕð0Þ
ϕð0Þ ¼ α

π
×

8>>><
>>>:

1.4043 for μH;

1.4523 for μD;

2.1818 for μ3Heþ;

2.1920 for μ4Heþ:

ðB4Þ

Adding it all up, we find the total eVPð1Þ correction to TPE
with individual nucleons,

δEnucl1ð2SÞ ¼

8>>><
>>>:

−0.0006ð1Þ meV for μH;

−0.0010ð2Þ meV for μD;

−0.016ð2Þ meV for μ3Heþ;

−0.018ð3Þ meV for μ4Heþ:

ðB5Þ

APPENDIX C: eVPð1Þ CORRECTION WITH TPE ON
DIFFERENT NUCLEONS

This derivation is based on Pachucki and Wienczek (2015).
We now consider the muonic matrix element P for the
nonrelativistic two Coulomb exchange

P ¼ hϕj α

jr⃗ − r⃗aj
1

ðH0 − E0 þ EÞ
α

jr⃗ − r⃗bj
jϕi; ðC1Þ

where E is the nuclear excitation energy. Using the on-mass-
shell approximation and subtracting the point Coulomb
exchange, Eq. (C1) becomes

P ¼ α2ϕ2ð0Þ
Z

d3k
ð2 πÞ3

�
4 π

k⃗ 2

�
2
�
Eþ k⃗ 2

2 μ

�
−1

× ðei k⃗·ðr⃗a−r⃗bÞ − 1Þ: ðC2Þ

We now calculate the expansion coefficients in powers of E.

There are two characteristic integration regions: jk⃗j ∼ ffiffiffiffiffiffiffi
Em

p

and jk⃗j ∼m. In the first integration region, where jk⃗j is small,
one performs an expansion of the exponent in powers of

k⃗ · ðr⃗a − r⃗bÞ. The leading quadratic term is the electric dipole
contribution

Plow ¼ 4 π

3
α2ϕ2ð0Þ

ffiffiffiffiffiffi
2 μ

E

r
r⃗a · r⃗b; ðC3Þ

which gives Epol in Eq. (102). In the second integration region,

where jk⃗j ∼m is large, one performs an expansion in powers
not exactly of E but of the total nuclear energy Ẽ,

Ẽ ¼ Eþ k⃗ 2

2M
: ðC4Þ

The first expansion term after integration over k⃗ is

Phigh ¼
π

3
m α2ϕ2ð0Þjr⃗a − r⃗bj3; ðC5Þ

and the corresponding correction to the energy is Enucl2
in Eq. (101).
To obtain the eVPð1Þ correction to Enucl2, we modify one of

the Coulomb propagators in Eq. (C2), subtract the finite size
with the leading polarizability

δP ¼ α2ϕ2ð0Þ
Z

d3k
ð2πÞ3

�
4π

k⃗ 2

�
2 2m

k⃗ 2
½−2 ω̄ð1Þð−k⃗ 2=m2

eÞ�

× feik⃗·ðr⃗a−r⃗bÞ − 1þ ½k⃗ · ðr⃗a − r⃗bÞ�2=2g; ðC6Þ

and use the large-jk⃗j behavior of ω̄ð1Þ,

ω̄ð1Þð−k⃗ 2=m2
eÞ ≈

α

3π

�
5 − ln

k⃗ 2

m2
e

�
; ðC7Þ

to obtain

δP¼−4
9
mα3ϕ2ð0Þjr⃗a− r⃗bj3½ 512þ lnðmejr⃗a− r⃗bjÞþγE�. ðC8Þ

The corresponding correction to the energy is

δEnucl2¼2
δϕð0Þ
ϕð0Þ Enucl2−

X
a;b

hδPi

¼Enucl2

�
2
δϕð0Þ
ϕð0Þ −

α

π

4

3

�
5

12
þ lnðmerLÞþγE

�	
; ðC9Þ

where rL is defined by

X
a;b

hjr⃗a − r⃗bj3 ln jr⃗a − r⃗bji ¼
X
a;b

hjr⃗a − r⃗bj3i ln rL: ðC10Þ
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To estimate δEnucl2, we assume that rL ≈ 2rC, use the result of

Ji et al. (2018) for δð1ÞR3 ¼Enucl2ð2SÞ¼−8.625 and −3.580meV
for μ3Heþ and μ4Heþ, respectively, and obtain

δEnucl2ð2SÞ ¼
�−0.140 ð21Þ meV for μ3Heþ;

−0.060 ð10Þ meV for μ4Heþ;
ðC11Þ

where the relative uncertainties of 15% and 16% for μ3Heþ and
μ4Heþ result from the uncertainties of the adopted values of
Enucl2 and rL (2% and 15% for μ3Heþ; 5% and 15% for μ4Heþ)
summed in quadrature.

APPENDIX D: eVPð1Þ CORRECTION WITH THE LEADING
POLARIZABILITY

The derivation is based on the work of Kalinowski (2019).
We now consider the leading polarizability in Eq. (102) that
comes from the TPE

Epol ¼ −
4 π α2

3
ϕ2ð0Þ

Z
ET

dEjhϕN jd⃗jEij2
ffiffiffiffiffiffi
2 μ

E

r
: ðD1Þ

The eVPð1Þ correction modifies one of the photon propagators,
which leads to a complicated expression. When the smallness
of the parameter me=

ffiffiffiffiffiffi
Eμ

p
is taken into account, the first two

terms in its expansion are

δEpol¼−
8α3

9
ϕ2ð0Þ

Z
ET

dEjhϕN jd⃗jEij2
ffiffiffiffiffiffi
2μ

E

r

×

"
ln

�
2μE
m2

e

�
−
5

3
þ3π

2

ffiffiffiffiffiffiffiffiffi
m2

e

2μE

s #
þ2

δϕð0Þ
ϕð0Þ Epol; ðD2Þ

where the last term comes from the eVPð1Þ correction to the
wave function. Kalinowski (2019) obtained for μD the value
δEpolð2SÞ ¼ −0.0265ð3Þ meV. Using the wave function cor-
rection from Eq. (B5) and performing calculations with the
Argonne v18 potential (Wiringa, Stoks, and Schiavilla, 1995),
we obtain δEpolð2SÞ ¼ −0.0263 meV, which is in agreement
with the aforementioned result. Following the calculation by
Ji et al. (2018) of the leading polarizability with including
the Urbana IX three-body force, we obtain (Li Muli and
Bacca, 2023)

δEpolð2SÞ ¼
�−0.110 ð11Þ meV for μ3Heþ;

−0.080 ð6Þ meV for μ4Heþ;
ðD3Þ

where the relative uncertainty for μ4Heþ is 7%, distributed as
follows: 3% from the missing multipoles, 5% from the nuclear
model, and 4% from the numerical evaluation. For μ3Heþ, the
relative uncertainty is 10%, which comes mostly from the
missing multipoles (9%), with smaller additional uncertainties
of 2% from the nuclear model and 4% from the numerical
evaluation.

APPENDIX E: μSEð1Þ + μVPð1Þ CORRECTION
WITH THE ELASTIC TPE

This derivation is based on the work of Pachucki (1993).
In the limit of an infinite mass nucleus, the elastic TPE
with μSEð1Þ þ μVPð1Þ corrections and point-nucleus subtrac-
tion reads

δETPE ¼ α

π

ϕ2ð0Þ
m2

Z
d3p
ð2πÞ3

ð4 π αÞ2
p4

fðp2Þ½ρðp2Þ2 − 1�; ðE1Þ

where ρ is the nuclear charge form factor, fðp2Þ is the
radiatively corrected muon line at the momentum exchange
p0 ¼ 0 [see Eq. (118)],

α

π
fðp2Þ ¼ 1

2
trad00 þ 4

p2
ω̄ð1Þðp2Þ; ðE2Þ

and all momenta are in the muon mass units. fðp2Þ was
calculated by Pachucki (1993) using dispersion relations,

fðp2Þ ¼ −
Z

∞

0

dðq2Þ fAðq2Þ
q2 þ p2

; ðE3Þ

with

fAðq2Þ ¼ q2

4

�
1

1þ q2
− JA

�
þ
�
4

q2
þ 1

�
ðJA − 1Þ

þ Θðq − 2Þ
�
4

q2
þ 1

� 
1

q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4=q2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

q2

s !

þ 4

3
Θðq − 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

q2

s
1

q2

�
1þ 2

q2

�
; ðE4Þ

where the last term comes from μVP and

JA ¼ 1

q

�
arctanðqÞ − Θðq − 2Þ arccos

�
2

q

�	
: ðE5Þ

Using Eq. (E3), one can transform δETPE into

δETPE ¼ α

π

ϕ2ð0Þ
m2

ð4 π αÞ2
2π2

Z
∞

0

dðq2ÞfAðq2Þ gðqÞ; ðE6Þ

where

gðqÞ ¼
Z

∞

0

dp
1

p2ðq2 þ p2Þ ½1 − ρðpÞ2�: ðE7Þ

When one assumes a dipole parametrization of the electric
form factor

ρðp2Þ ¼ Λ4

ðΛ2 þ p2Þ2 ; ðE8Þ

gðqÞ becomes

gðqÞ ¼ π

16q
hðqÞ; ðE9Þ
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where

hðqÞ ¼ Λ2

ðΛþ qÞ4 þ
4Λ

ðΛþ qÞ3 þ
19

2ðΛþ qÞ2 þ
35

2ΛðΛþ qÞ :

ðE10Þ

Finally, the correction to the energy

δETPE ¼ αðZ αÞ2 ϕ
2ð0Þ
m2

Z
∞

0

dq hðqÞfAðq2Þ ðE11Þ

is integrated numerically with Λ ¼ 2
ffiffiffi
3

p
ƛμ=rC, rp¼0.841 fm,

rd ¼ 2.127 fm, rh ¼ 1.969 fm, and rα ¼ 1.678 fm to obtain

δETPEð2SÞ ¼

8>>><
>>>:

−0.0004 meV for μH;

−0.0026ð3Þ meV for μD;

−0.077ð8Þ meV for μ3He;

−0.059ð6Þ meV for μ3He;

ðE12Þ

where we have assumed a 10% uncertainty due to the elastic
approximation. These results are presented in Table I.
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