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The burgeoning field of “fractons,” a class of models where quasiparticles are strictly immobile
or display restricted mobility that can be understood through generalized multipolar symmetries
and associated conservation laws, is reviewed. With a focus on merely a corner of this fast-
growing subject, it is demonstrated how one class of such theories, symmetric tensor and coupled-
vector gauge theories, surprisingly emerge from familiar elasticity of a two-dimensional quantum
crystal. The disclination and dislocation crystal defects, respectively, map onto charges and
dipoles of the fracton gauge theory. This fracton-elasticity duality leads to predictions of fractonic
phases and quantum phase transitions to their descendants that are duals of the commensurate
crystal, supersolid, smectic, and hexatic liquid crystals, as well as amorphous solids, quasicrys-
tals, and elastic membranes. It is shown how these dual gauge theories provide a field-theoretic
description of quantum melting transitions through a generalized Higgs mechanism. It is
demonstrated how they can be equivalently constructed as gauged models with global multipole
symmetries. Extensions of such gauge-elasticity dualities to generalized elasticity theories are
expected to provide a route to the discovery of new fractonic models and their potential
experimental realizations.
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I. INTRODUCTION AND MOTIVATION

Characterization and classification of phases of matter and
the phase transitions between them is a central pursuit of
condensed matter physics. The simplest and most ubiquitous
organization of matter is according to Landau’s symmetry-
breaking paradigm. Such phases [crystals, magnets, super-
fluids, a panoply of liquid crystal phases, and many others
(De Gennes and Prost, 1993; Chaikin and Lubensky, 1995;
Kleman and Lavrentovich, 2003)] are distinguished by
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patterns of spontaneous symmetry breaking that are charac-
terized by a local order parameter and a short-range entangled,
nearly product many-body wave function.1

Stimulated by an ever-growing class of unusual quantum
materials that appear to lie outside of these Landau symmetry-
breaking and Fermi liquid paradigms, much effort has been
directed at exploring models that exhibit quantum phases
with fractionalized anyonic quasiparticles, robust spectral
degeneracy sensitive only to the topology of space, and other
unusual properties common to the so-called topological
quantum liquids (Savary and Balents, 2017). Such exotic
phenomenology is captured by conventional gauge theories,
where fractionalized quasiparticles appear at the ends of
effective field lines, free to move by growing the correspond-
ing tensionless string, much like charges in Maxwell’s
electrodynamics.
Motivated by a continued interest in topological quantum

matter, by quantum glasses, and by a search of fault-tolerant
quantum memory, more recently researchers have discovered
a new class of theoretical models. These feature system-size-
dependent ground-state degeneracy, gapped quasiparticles
with restricted mobility,2 and many other highly unusual
properties; see Fig. 1. The first, and most well-known,
example is the strictly immobile excitation, named a fracton.
Fractons and other subdimensional particles (lineons and
planeons, restricted to move in one and two dimensions)
were originally discovered in fully gapped models of com-
muting projector (stabilizer code) lattice spin Hamiltonians
(Chamon, 2005; Bravyi, Leemhuis, and Terhal, 2011b; Haah,
2011, 2013a, 2013b, 2016; Castelnovo and Chamon, 2012;
Bravyi and Haah, 2013; Yoshida, 2013; Vijay, Haah, and Fu,
2015, 2016), which were recently reviewed by Pai and Pretko
(2018), Nandkishore and Hermele (2019), Pretko, Chen, and
You (2020), and Grosvenor et al. (2022).3

These fractonic models challenge our understanding of the
relationship between phases of matter and quantum field
theories (QFTs) for a number of reasons (Qi, Radzihovsky,
and Hermele, 2021). For instance, until recently it was

conventional wisdom that any gapped phase of matter has
a low-energy topological QFT (TQFT) description. However,
gapped fracton phases have a robust ground-state degeneracy
where on a spatial d torus the dimension of the ground-state
degeneracy grows exponentially with system size4 (Bravyi,
Leemhuis, and Terhal, 2011b; Haah, 2011, 2013a). This is
incompatible with a TQFT description. The absence of a
continuum field theory description for the Haah model can
also be seen from the bifurcating nature of the renormalization
group flow (Haah, 2014). There is, however, a description in
terms of TQFT supplemented with a defect network (Aasen
et al., 2020; Wen, 2020). Moreover, the number of super-
selection sectors (i.e., distinct types of particlelike excitations)
also diverges (Haah, 2013b, 2016; Pai and Pretko, 2018).
This is suggestive of an infinite number of fields required in
the continuum, with a nontrivial dependence on lattice scale,
i.e., no obvious continuum field theory limit.
More recently it was realized that (even if incomplete)

such exotic excitations have a natural theoretical description
in the language of higher-rank symmetric tensor gauge
theories and complementary coupled-vector gauge theories,
which exhibit restricted mobility due to an unusual set of
higher (for example, dipole) moment charge conservation
(Pretko, 2017a, 2017b, 2018; Pretko and Radzihovsky, 2018a;
Gromov, 2019a; Pretko, Zhai, and Radzihovsky, 2019;
Radzihovsky and Hermele, 2020). In contrast to the afore-
mentionedmodels, which are based on discrete symmetries, this
class of UðNÞ fractonic tensor gauge theories exhibits gapless
degrees of freedom. These are related to discretemodels through
a condensation of higher chargematter (Bulmash andBarkeshli,
2018a; Ma, Hermele, and Chen, 2018). Rapid recent progress in
the field has established connections with numerous other areas
of physics, such as localization (Prem, Haah, and Nandkishore,
2017; Pretko, 2017c; Pai, Pretko, and Nandkishore, 2019),
gravity (Pretko, 2017d), holography (Yan, 2019), quantum Hall
systems (Doshi and Gromov, 2021; Du et al., 2022), and
deconfined quantum criticality (Ma and Pretko, 2018), among
many other theoretical developments (Xu and Horova, 2010;
Williamson, 2016; Albert, Pascazio, and Devoret, 2017; Halász,
Hsieh, and Balents, 2017; Hsieh and Halász, 2017; Ma et al.,
2017, 2018; Pretko, 2017e; Shi and Lu, 2017; Slagle and Kim,
2017a, 2017b; Vijay, 2017; Vijay and Fu, 2017; Devakul,
Parameswaran, and Sondhi, 2018; He et al., 2018; Prem,
Pretko, and Nandkishore, 2018; Shirley, Slagle, and Chen,
2019; Slagle, Prem, and Pretko, 2019; Bidussi et al., 2022;
Jain and Jensen, 2022).
While exotic properties of fractons have been a subject

of intense study, concrete physical realizations have been
lacking. However, it was recently demonstrated explicitly
through dualities (Kleinert, 1983) between quantum elasticity
and Uð1Þ symmetric tensor (Pretko and Radzihovsky, 2018a,
2018b; Gromov, 2019b, 2020; Kumar and Potter, 2019;
Pretko, Zhai, and Radzihovsky, 2019; Gromov and Surowka,
2020; Nguyen, Gromov, and Moroz, 2020; Radzihovsky,
2020; Zhai and Radzihovsky, 2021) and coupled-vector gauge

FIG. 1. (a) Illustration of dipole conservation enforcing (b) the
immobility of the fractonic charges with dipole conservation.
(c) Subdimensional mobility of a dipole.

1Fermionic phases are more challenging, with the simplest and
best understood one being Landau’s Fermi liquid.

2No local operator can move an isolated excitation in one or
more spatial directions (or all of them) without creating additional
excitations.

3There are two qualitatively distinct classes of models with
restricted mobility. As discussed in Sec. IV, one class is with highly
fragile, fine-tuned global multipolar and subsystem symmetries. The
other class is gaugelike theories with topological order that are
generally robust over some nonzero range of all local perturbations.

4Gapped, topologically ordered fracton models can appear only in
dimensions d > 2. (Aasen et al., 2020; Haah, 2021).
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theories5 (Radzihovsky and Hermele, 2020; Qi, Radzihovsky,
and Hermele, 2021) that the fracton phenomena is realized
as topological defects in two-dimensional quantum crystals,
supersolids, and smectics. In this Colloquium we review the
physics of gapless fractons, with a particular focus on the
application of fractons and corresponding fractonic gauge
theories to real physical systems. In Sec. II we define and
discuss in a model-independent way the unifying properties of
fractonic quasiparticles. The central component of the
Colloquium appears in Sec. III, where we present dualities
between various quantum elastic systems, such as crystals,
supersolids, and liquid crystals, and their fractonic gauge
theories. In Sec. IV we utilize these gauge-theoretic descrip-
tions to discuss phase transitions between these quantum phases
of matter, and most notably a gauge-theoretic formulation of
quantum melting. A variety of field-theoretic constructions that
give rise to gapless and gapped fracton phases are summarized
and reviewed in Sec. V. Synthesis, open questions, and future
directions are relegated to the end of Sec. V.

II. GENERAL PERSPECTIVE ON RESTRICTEDMOBILITY

As we see throughout the Colloquium, fracton excitations
emerge in a wide variety of much different physical systems.
Consequently, it is useful to decouple the phenomenon of
restricted mobility of excitations from a specific model or
a physical origin that enforces it. Thus, in this section we
present a general, realization-independent formulation of
excitations with restricted mobility, taking a symmetry-based
approach. In all systems that we consider it is assumed that
the total number (or charge) of the fractons is conserved. The
conservation can be either exact, implemented by a Uð1Þ
symmetry, or partially broken, implemented by a symmetry-
breaking pattern Uð1Þ → Zp. We start with the former.
A global Uð1Þ symmetry implies the continuity equation

∂0ρþ ∂iJi ¼ 0 ⇒ ∂0Q ¼ 0; ð1Þ

where ρ is the fracton density, Ji is the fracton current, and
QðtÞ ¼ R

ddxρðt;xÞ is the total charge. In a seminal paper
Pretko (2017a) showed that the mobility of charges is
restricted by further enforcing the conservation of multipole
moments Qi1i2���in of the charge density,

Qi1i2���in ¼
Z

ddx xi1xi2 � � � xinρðxÞ: ð2Þ

To enforce such a conservation law we demand the current
to be of a special form,

Ji ¼ ∂i1∂i2 � � � ∂inJi1i2���ini; ð3Þ

where Ji1i2���ini is a symmetric tensor of rank nþ 1. It describes
the transport of the nth multipole moment Qi1i2���in in the
direction x̂i. Combining Eqs. (1)–(3), we find that all
multipole moments up to the nth moment are conserved
(assuming that all fields decay to 0 at infinity)

∂0Qi1i2���ik ¼ 0; k ≤ n: ð4Þ

Conservation law (4) implies restricted mobility because
generic motion of the charges will change the multipole
moment of the system. The symmetry leading to these
conservation laws is an extension of spatial symmetries named
the multipole algebra and has nontrivial commutation rela-
tions with generators of rotation and translations (Gromov,
2019a). Tensor and coupled-vector gauge theories discussed
later emerge upon gauging this symmetry.
To make this generic formulation more concrete, we

consider a theory with a conserved dipole moment Qi and
examine its two fracton excitations of equal and opposite
charge located at x1 and x2. Let TiðaiÞ be an operator that
translates the ith fracton by vector ai. Dipole conservation
then implies

hx1;x2jT1ða1ÞT2ða2Þjx1;x2i ∝ δðdÞða1 − a2Þ: ð5Þ

The same conclusion can also be reached directly from the
constraint on the current Ji ¼ ∂jJji. For simplicity, focusing
on two dimensions we consider a wide strip extended in the x̂2
direction and assume that the system is in a homogeneous
steady state. The total charge current flowing through a cross
section of a strip in the x̂1 direction is

Jitot ¼
Z

∞

−∞
dx2ð∂1J1i þ ∂2J2iÞ ¼ ∂1

Z
∞

−∞
dx2J1i ¼ 0; ð6Þ

where in the last step we used homogeneity. Indeed, if the
charges can move around only in the form of bound dipoles,
the total current through any cross section in a homogeneous
state will always be 0.
Complementarily we can define a microscopic dipole

current J̃ij ¼ xiJj, with the dipole density ρi satisfying

∂0ρ
i þ ∂jJ̃ij ¼ Ji: ð7Þ

Equation (7) demonstrates that the motion of monopoles
(Ji ≠ 0) generates dipoles, thereby violating their continuity
equation, and equivalently dipole conservation demands a
vanishing of the monopole current, Ji ¼ 0, i.e., immobility of
fractonic monopoles (Radzihovsky, 2020; Radzihovsky and
Hermele, 2020).
The previously discussed conservation laws do not cover

the variety of mobility-constrained systems. There are two
important generalizations that one has to consider. First,
Eq. (3) assumes that the tensor current transforms in a
representation of SOðdÞ. Since most systems supporting
fractons are initially formulated on a lattice, there is no
a priori reason for SOðdÞ symmetry to be relevant. Indeed,
the current may transform in representations of a point group
symmetry. This is crucial to fit lattice models with discrete
symmetries, like the X-cube, Chamon, and Haah codes, into
this framework. Second, the charge density ρ itself can be
assumed to be a tensor transforming in some representation of
either SOðdÞ or its point subgroup. In this case the relevant
multipole moments are the elementary excitations and cannot
be further divided into smaller moments or point charges.
Finally, when the charge conservation is broken down to Zp,

5The latter admit high-dimensional and lattice generalizations.
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the multipole conservation still imposes modulo-p constraints
on the system. However, a general theory of such systems has
not yet been developed.

III. FRACTONS AS CRYSTALLINE DEFECTS

In this section we describe an interesting connection of
fractonic dynamics to the restricted mobility of positional
topological defects (dislocations) and orientational topological
defects (disclinations) in a familiar quantum two-dimensional
crystal (Pretko andRadzihovsky, 2018a, 2018b;Gromov, 2019b;
Pretko, Zhai, and Radzihovsky, 2019; Radzihovsky and
Hermele, 2020). Thus, a quantum crystal has provided the only
knownphysical realization of a fractonic system to date. Building
on this we further show here how the corresponding coupled
Uð1Þ vector and the equivalent symmetric tensor gauge theories
provide a theory of quantum melting of a crystal and discuss
intermediate liquid crystal phases. This section introduces the
main ideas from the theory of particles with restrictedmobility as
well as tensor and multipole gauge theories.

A. Particle-vortex duality

As a warm-up for fractonic duality of crystals and
liquid crystals, we review the standard ð2þ 1ÞD particle
vortex or, equivalently,6 XY-to-Abelian-Higgs model duality
(Peskin, 1978; Dasgupta and Halperin, 1981; Fisher and
Lee, 1989).
The low-energy effective Lagrangian describing ð2þ 1ÞD

bosons is given by7

L ¼ K
2
ð∂μϕÞ2; ð8Þ

where ϕ is the superfluid phase and we used the units in which
the speed of sound is 1. In the presence of vortices, the boson
current ∂μϕ can be decomposed into smooth and singular
vortex parts ∂μϕ ¼ ∂μϕs þ vμ. The circulation of the latter

ϵμνρ∂νvρ ≡ ð∂ × vÞμ ¼ jμv ð9Þ

gives the vortex 3-current jvμ ¼ ðρv; jvi Þ.
Introducing a Hubbard-Stratonovich field Jμ transforms the

Lagrangian (8) into

L ¼ K−1

2
JμJμ þ ð∂μϕs þ vμÞJμ: ð10Þ

Integrating out the smooth component of ϕ enforces the boson
continuity equation

∂μJμ ¼ 0; ð11Þ

which is solved in terms of a vector potential Jμ ¼ ϵμνρ∂νAρ ¼
ð∂ × AÞμ, with the physical current invariant under a gauge
transformation

δAμ ¼ ∂μχ: ð12Þ

The Lagrangian (8) then takes the form of a Uð1Þ gauge
theory,

L̃ ¼ K−1

2
ð∂ × AÞ2 þ jμvAμ

¼ K−1

2
ðE2 − B2Þ þ jμvAμ; ð13Þ

where the electric field Ei ¼ ∂0Ai − ∂iA0 and the magnetic
field B ¼ ϵij∂iAj, respectively, describe the spatial compo-
nents of bosonic current and number densities, and under
the duality the vortex 3-current jμv enters Lagrangian as the
dual matter.
In an equivalent Hamiltonian description that is illustrated

in Fig. 2, bosons are described by

Ĥ ¼ 1
2
j∇ϕ̂j2 þ 1

2
ρ̂2 ð14Þ

in terms of canonically conjugate ½ρ̂; ϕ̂� ¼ iδð2ÞðxÞ and vortex
singularities ∇ × ∇ϕ ¼ ρv. On the dual side, rotating the
boson current ∇ϕ lines by π=2 transforms them into electric
field lines E and boson density into dual flux density B,
with ½Â; Ê� ¼ iδð2ÞðxÞ. This then transforms the bosonic
Hamiltonian into the dual Maxwell theory

˜̂H ¼ 1
2
jÊj2 þ 1

2
ð∇ × ÂÞ2 − jv ·A: ð15Þ

It is more formally obtained from the dual Lagrangian (13)
by introducing an independent electric field E as the

FIG. 2. Boson-vortex duality in a ð2þ 1ÞD XY model (also
known as superfluid-superconductor duality), whose tensor
generalization is the fracton-disclination (gauge-elasticity) dual-
ity summarized in Fig. 3.

6It is also known as a duality between a superfluid and a
superconductor.

7The XY model Lagrangian and its duality can be treated more
carefully on a lattice, giving equivalent results. Thus, our streamlined
continuum approach is fundamentally justified by lattice regulari-
zation.
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Hubbard-Stratonovich field to decouple the spatial (electric
field energy) part of the Maxwell term. Integration over the
time component A0 then gives the Gauss law

∇ · E ¼ ρv; ð16Þ
which generates Eq. (12) and is the dual counterpart of the
circulation constraint [Eq. (9)].
We thus recover the well-known Dasgupta-Halperin duality

(Peskin, 1978; Dasgupta and Halperin, 1981; Fisher and
Lee, 1989), where a bosonic liquid is dual to vortex matter,
described by a complex scalar field Ψ minimally coupled to a
Uð1Þ gauge field Aμ,

L ¼ iΨ⋆ð∂0 − iA0ÞΨ −
1

2m
jð∂i − iAiÞΨj2 þ VðjΨjÞ

þ K−1

2
ð∂ × AÞ2: ð17Þ

It is also known as the Abelian-Higgs model of a dual
superconductor, with V a generic Uð1Þ-symmetric potential.
In this duality, a superfluid and Mott-insulating phase of
bosons thus, respectively, correspond to a dual-normal (dual-
nonsuperconducting,Ψ ¼ 0) state and a dual-superconducting
vortex condensate (Ψ ≠ 0 dual-Higgs) phase.

B. Fracton-disclination duality: Commensurate crystal

1. Tensor gauge theory duality

The duality of an elastic medium is a technically straight-
forward tensor generalization (Kleinert, 1983, 1989, 2008;
Beekman et al., 2017) of the aforementioned XY duality,
where the phonons ui, the dislocations, and the disclinations
are respective vector counterparts of the superfluid phase ϕ
and vortices. Since a 2D elastic medium is described by
phonon Goldstone modes that are spatial vectors, it is not
surprising that their dual is captured by a tensor (rather than a
vector) gauge field8 Aij.
To this end (Pretko and Radzihovsky, 2018a, 2018b;

Pretko, Zhai, and Radzihovsky, 2019), we begin with a
low-energy elastic description of a (2þ 1)-dimensional quan-
tum crystal captured by a harmonic Lagrangian

L ¼ 1
2
ð∂0uiÞ2 − 1

2
Cijkluijukl; ð18Þ

where uij ¼ ð1=2Þð∂iuj þ ∂juiÞ is the linearized symmetric
strain tensor (encoding target-space rotational invariance),
the rank-4 tensor Cijkl encodes elastic moduli and underlying
crystal symmetry, and we specialized to unit mass density
(Chaikin and Lubensky, 1995). To include topological defects,
we express the displacement in terms of smooth phonon
and singular defect components ui ¼ usi þ udi , with the latter
accounting for the disclination density ρ,

ϵikϵjl∂i∂jukl ¼ ρ; ð19Þ

and implicitly for dislocations as they are dipole bound states
of two disclinations (Landau, Lifshitz, and Kosevich, 1986;
Seung and Nelson, 1988; Chaikin and Lubensky, 1995).
Introducing the Hubbard-Stratonovich momentum πi and
symmetric stress σij fields and integrating over the phonons
usi enforces the momentum continuity ∂0π

i þ ∂jσ
ij ¼ 0.

To make contact with electromagnetism, it is convenient to
introduce dual vector magnetic (Bi ¼ ϵijπj) and symmetric

tensor electric (Eij
σ ¼ ϵikϵjlσkl) fields in terms of which the

momentum continuity equation takes the form of a general-
ized Faraday law

∂0Bi þ ϵjk∂
jEki

σ ¼ 0 ð20Þ
of the scalar-charge tensor gauge theory (Pretko, 2017a). As in
conventional electromagnetism, the latter can be solved
in terms of gauge fields, here the symmetric tensor Aij and
scalar A0,

Bi ¼ ϵkl∂kAli; Eij
σ ¼ −∂0Aij þ ∂

i
∂
jA0; ð21Þ

which are invariant under the gauge transformations

δAij ¼ ∂i∂jχ; δA0 ¼ ∂0χ: ð22Þ

The elasticity Lagrangian (18) then takes on the Maxwell-like
form

L ¼ 1
2
C̃ijklEijEkl − 1

2
B2 þ ρA0 − JijAij; ð23Þ

where C̃−1
ijkl ¼ C−1

mnpqϵi
mϵj

nϵk
pϵl

q and Eij ¼ C̃−1
ijklE

kl
σ . The

dual gauge fields are sourced by crystalline topological
defects through the last two terms in Eq. (23), with the
dislocation current given by

Jij ¼ ϵikϵjlð∂0∂k − ∂k∂0Þul; ð24Þ

where Jij corresponds to a dipole pi (a π=2 rotated Burgers
vector) moving in the j direction. Gauge invariance (22)
requires that the dual charge and current densities ρ and Jij

satisfy the continuity equation

∂0ρþ ∂i∂jJij ¼ 0; ð25Þ

with a current constrained in the manner discussed in Sec. II,
as required on general grounds. Notably the immobility of
fractonic disclination charges ρ is reflected in the absence
(vanishing) of the fracton current. Gauss’s law generating the
gauge transformations (22) can be read out from Eqs. (21)
and (23), appears as a constraint after integration over the
scalar potential A0, and takes the form

∂i∂jEij ¼ ρ: ð26Þ

Equation (26) is the counterpart of the topological disclination
condition (19), as illustrated in Fig. 3.
For an isotropic crystal, the elastic tensor Cijkl reduces to

two independent Lamé moduli μ and λ, and dual Maxwell-
like theory (23) exhibits 2 propagating gapless degrees
of freedom corresponding to transverse and longitudinal

8See, however, Sec. III.B.4 for the coupled Uð1Þ vector gauge
theory formulation of the elasticity dual at low energies equivalent to
the tensor gauge theory presented in this section.
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phonons. This demonstrates that a quantum crystal is dual to
so-called traceless scalar-charge gauge theory (Pretko and
Radzihovsky, 2018a, 2018b; Gromov, 2019b; Pretko, Zhai,
and Radzihovsky, 2019) and gives the only known physical
realization of fractonic matter.
As further discussed in Sec. III.E, we note that a con-

servation of the number of occupied lattice sites, i.e., the
absence of vacancy and interstitial point defects, characteristic
of a “commensurate” crystal implies that Jij is traceless (since
the trace Jii corresponds to dipole motion along its orientation,
which is forbidden by atom conservation) and further con-
strains the motion of defects (Pretko and Radzihovsky, 2018b;
Kumar and Potter, 2019; Pretko, Zhai, and Radzihovsky,
2019). Equation (25) then implies that the total dual charge,
dipole moment, and trace of the quadrupole moment are
conserved,

∂0Q ¼ 0; ∂0Qi ¼ 0; ∂0trðQijÞ ¼ 0. ð27Þ

Identification of the charges, dipoles, and quadrupoles of
this fracton phase FUð1Þ with disclinations, dislocations (with a
Burgers vector perpendicular to the dipole moment), and
vacancies and interstitials (Pretko and Radzihovsky, 2018b;
Gromov, 2019b; Kumar and Potter, 2019; Pretko, Zhai, and
Radzihovsky, 2019) gives an effective gauge theory formu-
lation of their quantum dynamics in a commensurate crystal.
Namely, the fracton charges encode the immobility of dis-
clinations, the duality prediction (Pretko and Radzihovsky,
2018a) that can also be understood directly in terms of crystal

degrees of freedom, as illustrated in Fig. 4. The lineon
dipoles, with motion constrained [by the Uð1Þ conservation
of the trace of quadrupoles in Eq. (27)] transverse to the
dipole moment, correspond to the well-known glide-only
constraint that, in the absence of vacancies and interstitials,
prevents dislocations from climbing perpendicular to their
Burgers vector (Pretko and Radzihovsky, 2018b; Gromov,
2019b; Kumar and Potter, 2019; Pretko, Zhai, and
Radzihovsky, 2019), as illustrated in the top sketches in
Fig. 5. In Sec. III.E, we further discuss the relaxation of this
Uð1Þ symmetry-enriched constraint, which leads to a quali-
tatively distinct fractonic state F, which corresponds to an
incommensurate crystal, i.e., a supersolid.

FIG. 4. Instantiation of an immobile fracton as a disclination
defect of a ð2þ 1ÞD crystal. When a disclination as an end point of
a ray of dislocation dipoles is viewed, its hop by a lattice constant
[from the first (red) to the second (blue) dot] corresponds to the
addition of a dislocation dipole. Since the latter corresponds to an
addition of a half ray of atoms, this highly nonlocal operator is not
allowed in a local Hamiltonian (and not just by a global symmetry),
thereby strictly forbidding disclination motion.

FIG. 5. Top illustration: a dislocation climb transverse to the
Burgers vector b (motion of a dipole along the dipole) that is
forbidden by charge conservation but made possible by a nonzero
density of vacancies and interstitials. Bottom illustration: the
allowed dislocation lineon glide motion along b (transverse to
the dipole).

FIG. 3. Fracton-elasticity dictionary. The topological defects,
phonons, and strains of a two-dimensional quantum crystal (right
column) are in a one-to-one relation with the charges, gauge
fields, and fields of the scalar-charge rank-2 tensor gauge theory
(left column).
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2. Disclination field theory

With crystalline defects appearing as dual matter that
sources tensor gauge fields, the formulation extends to a
concrete field-theoretic representation of fractonic matter ρ
and Jij. To this end, we describe disclinations by a complex
scalar field Φ, treating them as bosonic excitations. The
Lagrangian L ¼ Ls½Aij;Φ� þ LMax½Aij� is a sum of the dual
disclination matter sector Ls and the Maxwell-like sector
LMax, which were derived in Sec. III.B.1 and capture the
phonon degrees of freedom. The dual matter Lagrangian Ls
takes the form (Pretko, 2018)

Ls ¼ iΦ�ð∂0 − iA0ÞΦþ g½jD1ðΦÞj2 þ jD2ðΦÞj2� þ VðΦÞ;
ð28Þ

whereDIðΦÞ are differential operators, bilinear inΦ, given by

DIðΦÞ ¼ Πij
I ð∂iΦ∂jΦ −Φ∂i∂j − iAijΦÞ; Π⃗ ¼ ðσ1; σ3Þ;

ð29Þ

where σ1 and σ3 are the Pauli matrices. In the absence of
gauge fields, the Lagrangian (28) exhibits a conservation
law (25) due to the presence of an unusual “global” symmetry,

Φ0 ¼ eiχgðxÞΦ; χgðxÞ ¼ αþ βixi þ 1
2
γjxj2; ð30Þ

characterized by the phase χgðxÞ, which by the virtue of
Noether’s theorem leads to the conservation of the Uð1Þ
charge, dipole, and trace of the quadrupole moments. In the
presence of tensor gauge fields transforming according to
Eq. (22), the Lagrangian (28) is also invariant under
a general gauge transformation Φ → eiχðxÞΦ with an arbi-
trary χðxÞ. As in conventional gauge theories, here the
disclination density and dislocation current are given as
variational derivatives

ρ ¼ δS
δA0

; Jij ¼ δS
δAij

: ð31Þ

It follows from Eq. (29) that the current Jij is indeed
traceless, as expected.9

3. Dislocation field theory

The kinetic energy of the aforementioned disclination field
theory Ls is quartic in the fields and thus does not admit a
weak-coupling quadratic representation, thereby reflecting its
strongly interacting UV degrees of freedom. Indeed, in real
crystals disclinations appear in tightly bound lattice-scale
dislocation dipoles. To construct their field theory Ld, we
observe that a dislocation with a Burgers vector b (an
elementary lattice vector) is created by an operator ψ†

d labeled
as the disclination dipole d (corresponding to the ρi density of

Sec. II and p in the following), with the corresponding
coherent state field

ψ�
dðxÞ ¼ Φ

�
x −

d
2

�
Φ�

�
xþ d

2

�
; ð32Þ

and is bilocal in the disclination fields, with b ¼ d × ẑ. Under
the global symmetry (30), in the d → 0 limit the dipole
operator transforms as

ψdðxÞ → eiβid
iþiγdixiψdðxÞ; ð33Þ

where the first factor is a global phase enforcing Uð1Þ
symmetry, while the second factor enforces the glide-only
constraint.
In constrast to a strongly interacting disclination

Lagrangian (28) (which has no noninteracting limit), mobile
dislocations admit a weakly interacting Lagrangian. Its form
is constrained by the generalized global (subsystem) sym-
metry (33) as well as the gauge symmetry (22) and is uniquely
given by (Kumar and Potter, 2019; Pretko, Zhai, and
Radzihovsky, 2019)

Ld ¼
X
d

iψ�
dð∂0 − iA0Þψd

−
Pij
⊥

2m
ð∂i þ idkAikÞψ�

dð∂j − idlAjlÞψd þ Vðjψdj2Þ;
ð34Þ

where Pij
⊥ ¼ δij − didj=jdj2 is the projector onto the axis

perpendicular to the dipole moment d (i.e., along the Burgers
vector b ¼ ẑ × d), thus enforcing the glide-only constraint
dictated by Eq. (33). The dipole moment enters as the
“charge” of the field ψd under the tensor gauge field Aij.
The Lagrangian (34) is also invariant under discrete trans-
formations that permute primitive lattice vectors, correspond-
ing to the point group symmetry of the crystal.

4. Coupled-vector gauge theory duality

A complementary, more convenient, and more transparent
formulation of a crystal’s dual gauge theory is that given in
terms of the coupled Uð1Þ vector gauge fields that were
introduced and discussed by Radzihovsky and Hermele
(2020). The idea is in fact simple and is based on the
observation that elasticity formulated in terms of the unsym-
metrized strain ∂iuk has a form of two flavored ux and uy XY
models. Independent XY models would dualize to conven-
tional nonfractonic Uð1Þ vector gauge theories. Thus, it is the
nontrivial “flavor-space” phonon coupling (a symmetrization
of ∂iuk in the conventional formulation) that is responsible for
the appearance of fractons (Radzihovsky and Hermele, 2020;
Qi, Radzihovsky, and Hermele, 2021). Some formal aspects of
the duality were also discussed by Caddeo, Hoyos, and
Musso (2022).
To get to an equivalent flavored vector gauge theory

description, we reformulate the conventional elastic theory (18)
in terms of minimally coupled quantum XY models by
introducing the orientational bond-angle field θ and its

9More precisely, Jij transforms in a spin-2 irreducible represen-
tation of SOð2Þ.
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canonically conjugate angular momentum density L. The
Lagrangian density (characterizing the elastic constant tensor
Cijkl as a single elastic constant C for simplicity) is given by

L ¼ πk∂0uk þ L∂0θ − 1
2
π2k −

1
2
Cð∂iuk − θϵikÞ2

− 1
2
L2 − 1

2
Kð∇θÞ2: ð35Þ

Coupling of the unsymmetrized strain ∂iuk to θϵik “Higgses” its
antisymmetric part below a scale set by C, reducing L to
standard crystal elasticity in terms of the symmetrized strain uik
[Eq. (18)], which is the starting point used by Pretko and
Radzihovsky (2018a). This reformulates 2D elasticity in terms
of two translational XY models for two phonons uk coupled
using the orientational XY model for the orientational bond
field θ. To dualize L, we decouple the elastic and orientational
energies in Eq. (35) via Hubbard-Stratonovich vector fields,
stress σk (with flavor index k inherited from ∇uk), and torque τ.
We then introduce disclinations ∇ × ∇θs ¼ ð2πs=nÞδ2ðrÞ≡
ρðrÞ, with charge 2πs=n (s ¼ �Z and n ¼ 6 for hexagonal
crystal) and their dipoles, dislocations, and ∇ × ∇usk ¼
bkδ2ðrÞ≡ bkðrÞ, with Burgers charge b. We then integrate
over the single-valued elastic components of θ and uk. This
enforces the conservation of linear and angular momenta:
∂0πk − ∇ · σk ¼ 0 and ∂0L − ∇ · τ ¼ εijσij ≡ σa.
Expressing this linear momentum constraint in terms

of dual magnetic and electric fields as πk ¼ ϵkjBj and
σik ¼ −ϵijϵklEjl gives the k-flavored Faraday equations
∂0Bk þ ∇ ×Ek ¼ 0, which are solved using the k-flavored
vector Ak and scalar A0k gauge potentials Bk ¼ ∇ ×Ak and
Ek ¼ −∂0Ak − ∇A0k. We emphasize that, in contrast to the
symmetric tensor approach (Pretko and Radzihovsky, 2018a,
2018b), here the k ¼ ðx; yÞ–flavored vector gauge fieldAk has
components Aik that form an unsymmetrized tensor field.
The conservation of angular momentum can now be solved

with another set of vector a and scalar a0 gauge fields

L ¼ ∇ × aþ Aa; τk ¼ ϵkjð∂0aj þ ∂ja0 − A0jÞ; ð36Þ

leading to the dual Lagrangian density

L̃cr ¼ 1
2
C−1ð∂0Ak þ ∇A0kÞ2 − 1

2
ð∇ ×AkÞ2

þ 1
2
K−1ð∂0ak þ ∂ka0 − A0kÞ2 − 1

2
ð∇ × aþ AaÞ2

þAk · Jk − A0kpk þ a · j − a0ρ; ð37Þ

where the dipole charge pk is given by the dislocation
density pk ¼ ðẑ × bÞk, the fracton charge ρ is the disclination
density, and the corresponding currents are given by
Jk ¼ ϵlkẑ × ð∂0∇ul − ∇∂0ulÞ and j ¼ ẑ × ð∂0∇θ − ∇∂0θÞ.
The corresponding Hamiltonian density

H̃cr ¼ 1
2
CjEkj2 þ 1

2
ð∇ ×AkÞ2 þ 1

2
Kjej2

þ 1
2
ð∇ × aþ AaÞ2 −Ak · Jk − a · j ð38Þ

involves three Uð1Þ vector gauge fields with electric fields Ek
(flavors k ¼ x and y) and e, and corresponding canonically
conjugate vector potentials Ak and a, with the former gauging
the latter through a 2-form Aa ¼ ϵikAik minimal coupling

ðda − AÞ2. This translational and orientational gauge field
coupling encodes a semidirect product of spatial translations
and rotations constrained by the generalized gauge invariance
(Radzihovsky and Hermele, 2020).
The Hamiltonian is supplemented by Gauss’s laws,

∇ · Ek ¼ pk − ek; ∇ · e ¼ ρ: ð39Þ

Note that the components of the electric field ek (which would
be generated by the motion of charges ρ) function as an
additional dipole charge in the dipole Gauss law for Ek
[Eq. (39)], and its conservation thus encodes the fractonic
immobility of the disclination charges ρ. Equivalently we note
that the continuity equation for dipole densities pk,

∂0pk þ ∇ · Jk ¼ j; ∂0ρþ ∇ · j ¼ 0; ð40Þ

is violated by the charge current j, which thus must vanish in
the absence of dipole charges, i.e., pk ¼ 0 → jk ¼ 0, leading
to immobility of the fractonic charges enforced by gauge
invariance.
Although the aforementioned elasticity-gauge duality

works only in ð2þ 1ÞD dimensions, the generalization of
the gauge dual to d dimensions is straightforward (although it
does not correspond to any physical elasticity) and
consists of dþ 1 Uð1Þ gauge fields obeying the same
Gauss laws but with k ¼ 1;…; d. The main difference in
the Hamiltonian is that ð∇ × aþ AaÞ2 is replaced by a sum of
the dðd − 1Þ=2 terms of the 2-form minimal coupling
ð∂iaj − ∂jai þ Aij − AjiÞ2 ¼ ðda − AÞ2. At low energies
this coupled Uð1Þ vector gauge theory reduces to the
d-dimensional scalar-charge tensor gauge theory
(Radzihovsky and Hermele, 2020).

C. Fracton-disclination duality: Smectic

A smectic state of matter characterized by a uniaxial
spontaneous breaking of rotational and translational sym-
metries is ubiquitous in classical liquid crystals of highly
anisotropic molecules (such as classic 40-octyl-4-biphenyl-
carbonitrile) (De Gennes and Prost, 1993). Its quantum
realizations range from “striped” states of a two-dimensional
electron gas at half-filled high Landau levels (Koulakov,
Fogler, and Shklovskii, 1996; Moessner and Chalker, 1996;
Fradkin and Kivelson, 1999; Lilly et al., 1999; MacDonald
and Fisher, 2000; Barci et al., 2002; Radzihovsky and
Dorsey, 2002; Schreiber and Csáthy, 2020), striped spin
and charge states of weakly doped correlated quantum
magnets (Tranquada et al., 1997; Kivelson, Fradkin, and
Emery, 1998) of the putative Fulde-Ferrell-Larkin-
Ovchinnikov paired superfluids (Fulde and Ferrell, 1964;
Larkin and Ovchinnikov, 1965) in imbalanced degenerate
atomic gases (Radzihovsky and Vishwanath, 2009;
Radzihovsky, 2011), ferromagnetic transitions in one-
dimensional spin-orbit-coupled metals (Kozii et al., 2017),
spin-orbit-coupled Bose condensates (Radzihovsky and Choi,
2009; Zhai, 2015), and helical states of bosons or spins on a
frustrated lattice (Hsieh, Ma, and Radzihovsky, 2022). We
thus next review a smectic dual gauge theory representation
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and the associated quantum melting transitions from sur-
rounding crystal and nematic phases.
The simplest description of a ð2þ 1ÞD quantum smectic

(Radzihovsky, 2020; Zhai and Radzihovsky, 2021) is in
terms of a single phonon Goldstone mode with a Lagrangian
density,

Lsm ¼ 1

2
ð∂0uÞ2 −

κ

2
ð∂yuÞ2 −

K
2
ð∂2xuÞ2; ð41Þ

which is a close cousin of the quantum Lifshitz model10

(Ardonne, Fendley, and Fradkin, 2004; Fradkin et al.,
2004; Vishwanath, Balents, and Senthil, 2004; Zhai and
Radzihovsky, 2019; Gorantla et al., 2022; Kapustin and
Spodyneiko, 2022; Lake, Hermele, and Senthil, 2022; Lake
et al., 2022; Radzihovsky, 2022; Zechmann et al., 2022).
This more familiar low-energy universal description natu-

rally emerges from a more “microscopic” (low-energy equiv-
alent) formulation in terms of a phonon (layer displacement)
u ¼ uðrÞŷ and the unit-normal (layer orientation) n̂ðrÞ ¼
−x̂ sin θ̂ þ ŷ cos θ̂≡ ŷ þ δn̂ field operators and the corre-
sponding canonically conjugate linear and angular momentum
fields πðrÞ and LðrÞ, with the Hamiltonian density

Hsm ¼ 1
2
π2 þ 1

2
L2 þ 1

2
κð∇uþ δn̂Þ2 þ 1

2
Kð∇n̂Þ2; ð42Þ

where κ and K are elastic constants.
Working in a phase-space path-integral formulation, the

corresponding Lagrangian density is

Lsm ¼ π∂0uþ L∂0θ − 1
2
π2 − 1

2
L2 þ 1

2
κ−1σ2 þ 1

2
K−1τ2

− σ · ð∇u − x̂θÞ − τ · ∇θ: ð43Þ

In Eq. (43), we neglected θ nonlinearities, took the x axis to
be along the smectic layers and, as with a crystal duality of
Sec. III.B.4, for later convenience introduced the Hubbard-
Stratonovich fields σ and τ corresponding to the local stress
and torque, respectively. Integrating over the auxiliary fields
π, L, σ, and τ easily recovers the phonon-only Lagrangian
in Eq. (41).
Equation (43) allows us to separate Goldstone modes into

smooth and singular (defect) components and to functionally
integrate over the smooth, single-valued parts of the phonon u
and orientation θ fields. With this, we obtain the coupled
linear and angular momenta conservation constraints

∂0π − ∇ · σ ¼ 0; ∂0L − ∇ · τ ¼ x̂ · σ. ð44Þ

Solving these in terms of gauge fields,

π ¼ ẑ · ð∇ ×AÞ; σ ¼ ẑ × ð∂0Aþ ∇A0Þ;
L ¼ ẑ · ð∇ × a − x̂ ×AÞ; τ ¼ ẑ × ð∂0aþ ∇a0 − x̂A0Þ;

ð45Þ

allows us to express smectic’s Lagrangian density in terms of
these Goldstone-mode-encoding gauge fields and to obtain the
Maxwell part of the smectic dual Lagrangian,

L̃sm
M ¼ 1

2κ
ð∂0Aþ∇A0Þ2−

1

2
ð∇×AÞ2

þ 1

2K
ð∂0aþ∇a0−A0x̂Þ2−

1

2
ð∇×a− x̂×AÞ2. ð46Þ

As with the crystal’s gauge dual in Sec. III.B.4, the smectic’s
gauge dual displays a nontrivial “minimal” coupling between
the translational and orientational gauge fields and exhibits a
generalized gauge invariance under transformations,

ðA0;AÞ → A0
μ ¼ ðA0 − ∂0ϕ;Aþ ∇ϕÞ; ð47aÞ

ða0; aÞ → a0μ ¼ ða0 − ∂0χ; aþ ∇χ − x̂ϕÞ: ð47bÞ

The six gauge field degrees of freedom Aμ and aμ reduce to
two physical Goldstone modes after gauge fixing ϕ; χ and
implementing two Gauss law constraints [Eq. (51)].
To include dislocations and disclinations, we allow for the

nonsingle-valued components of u and θ, respectively, which
are defined by

p ¼ ẑ · ∇ × ∇u; J ¼ ẑ × ð∇∂0u − ∂0∇uÞ; ð48aÞ

ρ ¼ ẑ · ∇ × ∇θ; j ¼ ẑ × ð∇∂0θ − ∂0∇θÞ: ð48bÞ

Equations (48) together with L̃sm
M ðAμ; aμÞ give the dual

Lagrangian density for the quantum smectic

L̃sm ¼ L̃sm
M ðAμ; aμÞ þA · J − A0pþ a · j − a0ρ ð49Þ

corresponding to the Hamiltonian density

H̃sm ¼ 1
2
κE2 þ 1

2
ð∇ ×AÞ2 þ 1

2
Ke2

þ 1
2
ð∇ × a − x̂ ×AÞ2 −A · J − a · j. ð50Þ

Equation (50) supplemented by the generalized Gauss law
constraints,

∇ ·E ¼ p − e · x̂; ∇ · e ¼ ρ: ð51Þ

p and J are x̂ dipole charge and current densities representing
ŷ dislocations, while ρ and j are fractonic charge and current
densities corresponding to disclinations. The generalized
gauge invariance of Eq. (50) imposes coupled continuity
equations for the densities

∂0pþ ∇ · J ¼ −j · x̂; ∂0ρþ ∇ · j ¼ 0; ð52Þ

10A generalized m Lifshitz model has an elasticity with m “soft”
(Laplacian) axes and d-m complementary “hard” (gradient) axes. In
this nomenclature, the conventional classical 3D smectic is them ¼ 2

Lifshitz model, and the ð2þ 1ÞD quantum smectic and 3D classical
columnar liquid crystal are described by the m ¼ 1 Lifshitz model.
Other generalizations include a nonscalar Goldstone mode field as
in tethered membranes (Radzihovsky and Toner, 1995, 1998; Le
Doussal and Radzihovsky, 2018) and nematic elastomers (Xing and
Radzihovsky, 2003, 2008).
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where dipole conservation is violated by a nonzero charge
current j · x̂ along smectic layers.
Equations (52) thus transparently encode the restricted

mobility of the disclination charges ρ, illustrated in Fig. 6,
with a relaxation rate Γk ¼ Dk2y þ γk4x, resulting in slow
subdiffusive decay ρðtÞ ∼ 1=t3=4, and mobility and diffusion
coefficients vanishing along the x̂-directed smectic layers, i.e.,
j · x̂ ¼ 0 in the absence of dislocation dipoles (Feldmeier
et al., 2020; Gromov, Lucas, and Nandkishore, 2020;
Guardado-Sanchez et al., 2020; Radzihovsky, 2020;
Glorioso et al., 2022; Guo, Glorioso, and Lucas, 2022).

D. Quantum melting

Starting with the gauge dual of the quantum crystal (derived
in Sec. III.B.1), either in tensor (34) or in its equivalent
coupled-vector gauge theory form (37), and minimally cou-
pling it to dynamic dislocation-dipole matter (ψd) gives a
quantum Lagrangian density,

L̃cr ¼
X
k¼1;2

Jk
2
jð∂μ− iAk

μÞψkj2 −VðfψkgÞþLcr
MðA1;μ;A2;μ;aμÞ;

ð53Þ

where ψk¼1;2 correspond to p̂1;2 dipoles (two elementary
dislocations), Ak;μ, aμ gauge fields capture the kth phonons
and bond orientational Goldstone modes (with unit dipole
charges pk absorbed into the definitions of Ak;μ), and
Vðψ1;ψ2Þ is a Uð1Þ-symmetric Landau potential, with a dual
Maxwell Lagrangian (37). This field theory11 thus gives a
complete description of the quantum melting transitions out of
the fractonic crystal state. The nature of this quantum
transition is then dictated by the form of the dipole interaction
potential Vðψ1;ψ2Þ.

1. Crystal-to-hexatic Higgs transition

In a 2D hexagonal (square) crystal, the C6 (C4) invariance
enforces the symmetry between ψ1- and ψ2-dislocation
dipoles; i.e., their interaction potential Vðψ1;ψ2Þ is 1 ↔ 2

symmetric. Thus, as illustrated in Fig. 7, driven by quantum

fluctuations both types of dipoles unbind and Bose condense
at a single Higgs transition, that is, the quantum crystal-to-
hexatic (tetratic) melting, the counterpart of the well-known
2D classical thermal melting transition predicted by Kosterlitz
and Thouless, Halperin and Nelson, and Young (Kosterlitz
and Thouless, 1973; Halperin and Nelson, 1978; Young,
1979; Zhai and Radzihovsky, 2019).12 The Higgs transition
thus gaps out both translational gauge fields A1;μ and A2;μ,
which can therefore be safely integrated out, or to lowest order
effectively set to zero. This reduces the coupled gauge theory
to a conventional Maxwell form for the remaining rotational
gauge field aμ, with

Lhex
M ðaμÞ ≈ Lcr

MðA1;2μ ≈ 0; aμÞ ¼ 1
2
K−1e2 − 1

2
ð∇ × aÞ2: ð54Þ

As expected, it is the dual to the quantum XY model of the
orientationally ordered quantum hexatic (tetratic) liquid13

Lhex ¼ ð1=2Þð∂0θÞ2 − ð1=2ÞKð∇θÞ2. As with the conven-
tional Uð1Þ Higgs (normal-superconductor) transition,
the mean-field approximation breaks down for dþ 1 ≤ 4
and may be driven to first order by translational gauge
field Ak;μ fluctuations (Halperin, Lubensky, and Ma, 1974;
Radzihovsky, 1995). Analysis of the non-mean-field critical-
ity of this quantum crystal-superhexatic (supertetratic) melting
transition remains an open problem.

2. Crystal-to-smectic Higgs transition

An alternative to the aforementioned direct, continuous
crystal-to-hexatic (or crystal-to-tetratic) quantum melting
scenario is a two-stage transition that takes place in a uniaxial

FIG. 7. Schematic illustrating phases derived from the super-
solid [a Uð1Þ-symmetry-broken fracton phase F]. Upon con-
densation of vortex defects, bosons can transition to a
commensurate-crystal [a Uð1Þ-symmetric fracton phase FUð1Þ],
superhexatic, or superfluid phase. Note that Uð1Þ-symmetric
liquid and hexatic phases are forbidden at zero temperature for
reasons summarized in Fig. 12.

FIG. 6. Illustration of restricted along-layers mobility of þ=−
disclination (lineon) charges (making up a dislocaton b, i.e., a
dipole p) in a quantum smectic, forbidding their separation,
which corresponds to a nonlocal process of adding a smectic half
layer per lattice constant of charge separation.

11As discussed in Sec. III.D.1, for a complete description it must
be supplemented by the vacancy and interstitial (atom) sector
captured by a conventional Abelian-Higgs model with bosonic
matter.

12A classical electrostatic limit of the crystal’s gauge dual reduces
Eq. (53) to a vector sine-Gordon model H̃ ¼ ð1=2ÞC̃−1

ij;kl∂i∂jϕ∂k∂lϕ −
gb
Pp

n¼1 cosðbn · ẑ ×∇ϕÞ − gs cosðspϕÞ that reproduces (Zhai and
Radzihovsky, 2019) the two-stage crystal-hexatic-isotropic melting
of the Kosterlitz-Thouless-Halperin-Nelson-Young model.

13Because a condensation of dislocations necessarily leads to Bose
condensation of bosonic vacancies and interstitials, the resulting
hexatic fluid is necessarily a superfluid, i.e., a superhexatic.
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crystal where C6 or C4 symmetry is broken down to C2, as
illustrated in Fig. 8. The reduced uniaxial symmetry is
necessarily encoded in the Landau potential Vðψ1;ψ2Þ,
specifically, controlled by the quadratic term gkjψkj2, with
g2 < g1 leading to a condensation of ψ2-dislocation dipoles,
with ψ1 remaining gapped.
Alternatively, this breaking ofC6 (orC4) symmetry down to

C2 may happen spontaneously, with g1 ¼ g2 instead con-
trolled by the sign of the v coupling in the dislocation
interaction vjψxj2jψyj2. For v > 0, only one of the two dipole
species condenses, say, ψ2 ≠ 0 with ψ1 ¼ 0. This Higgs
transition thus only gaps out A2;μ, which then can be safely
integrated out. To lowest order this corresponds to A2μ ≈ 0,
thereby reducing the crystal’s Maxwell Lagrangian to that of
the quantum smectic (41), with

Lsm
M ðA1;μ; aμÞ ≈ Lcr

MðA1;μ; A2;μ ≈ 0; aμÞ: ð55Þ

While this phase transition faithfully captures the crystal-
smectic melting at the mean-field level, as with the crystal-
hexatic Higgs transition, its true critical properties are
expected to be nontrivial and remain to be analyzed. The
two ways of obtaining the smectic gauge dual (by dualizing a
smectic Lagrangian and through the aforementioned Higgs
melting transition of the crystal’s gauge dual) are summarized
in Fig. 9.

3. Quantum smectic-to-nematic Higgs transition

As illustrated in Fig. 8, the aforementioned crystal-to-
smectic transition is then naturally followed by quantum
melting into a nematic superfluid by condensation of ψ1

dipoles (aligned with the smectic layers), i.e., a proliferation of
b1 dislocations with Burgers vectors transverse to smectic
layers. The resulting ψ1 ≠ 0 Higgs phase gaps out the
remaining smectic translational gauge field Aμð¼ Ax

μÞ, which
can therefore be safely integrated out. This reduces the model
to a conventional Maxwell form for the rotational gauge
field aμ, with

Lnem
M ðaμÞ ≈ Lsm

M ðAμ ≈ 0; aμÞ ¼ 1
2
K−1e2 − 1

2
ð∇ × aÞ2; ð56Þ

that is, a dual to the quantum XY model of the nematic
Lnem ¼ ð1=2Þð∂0θÞ2 − ð1=2ÞKð∇θÞ2. Fluctuation corrections
lead to an anisotropic stiffness and subdominant higher-order
gradients. As with the conventional Uð1Þ Higgs normal-
superconductor transition, a mean-field approximation breaks
down for dþ 1 ≤ 4, and may be driven to first order by
fluctuations of the translational gauge field Aμ (Halperin,
Lubensky, and Ma, 1974; Radzihovsky, 1995). An analysis of
the non-mean-field criticality of the quantum smectic-nematic
transition also remains an open problem.

E. Supersolid, superhexatic, supersmectic:
Vacancies and interstitials

As discussed in Sec. III.B.1, thus far we have neglected
vacancies and interstitials (see Fig. 10), which physically
correspond to a restriction to their Mott-insulating, commen-
surate-crystal state. This misses the additional atomic sector of
the system encoded by a Bose-Hubbard (quantum XY) model
or its gauge-dual Abelian-Higgs model from Sec. III.A. The
need for this missing vacancy and interstitial (atomic) sector is
clear, as quantum melting a crystal of bosons at zero temper-
ature and in the absence of a substrate or disorder generically
leads to a gapless superfluid.
Thus, as discussed by Pretko and Radzihovsky (2018b),

Kumar and Potter (2019), and Pretko, Zhai, and Radzihovsky
(2019) and illustrated in Fig. 7, at zero temperature two
qualitatively distinct commensurate and incommensurate
quantum crystals are possible, distinguished as the Mott-
insulating and superfluid states of this atomic vacancy and
interstitial sector, respectively. In the former, the Uð1Þ

FIG. 9. Quantum crystal-smectic duality relations and the
associated quantum melting transition.

FIG. 10. Mobile vacancy and interstitial defects of a crystal,
which are necessary to faithfully capture the associated super-
solid and superfluid phases.

FIG. 8. Illustration of quantum melting of a 2D crystal into a
smectic melting followed by a smectic-to-nematic melting,
driven, respectively, by condensations of bx (ψy dipoles) and
by (ψx dipoles) dislocations.
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symmetry-enriching constraint imposes a glide-only motion
of dislocation (illustrated in Figs. 5 and 11) that is broken in
the latter, where the dipole dislocation motion is uncon-
strained (Marchetti and Radzihovsky, 1999; Pretko and
Radzihovsky, 2018b).
Under duality, these two types of quantum crystals then

map onto two distinct fractonic phases FUð1Þ and F, respec-
tively, with and without quadrupole-imposed restriction on
the dipole glide-only and unrestricted motion, as illustrated in
Figs. 11(b) and 11(c) (Pretko and Radzihovsky, 2018b).
This dipole constrained motion condition is concisely

encoded in the Ampère law of the corresponding tensor gauge
theory,

∂0Eij þ 1
2
ðϵik∂kBj þ ϵjk∂kBiÞ ¼ −Jij; ð57Þ

whose trace can be expressed in terms of the vacancy-
interstitial density nd ¼ Ei

i þ n0∂iui and the corresponding
current Jid ¼ πi,

∂0nd þ ∂iπ
i ¼ −Jii; ð58Þ

where we used Ei
i ¼ nd − n0∂iui ≈ nd, which was first

derived by Marchetti and Radzihovsky (1999). With this
vacancy-interstitial continuity equation [sourced by Jii, cor-
responding to the longitudinal (along-dipole) motion of
dipoles (Pretko, 2017b; Pretko and Radzihovsky, 2018b)],
Eq. (58) is encoded such that the climb of dislocations creates
vacancy-interstitial defects. Conversely, the Mott-insulating
(commensurate-crystal) state of the latter restricts the motion
of dislocations to glide-only lineon type, dualizing to a
symmetry-enriched fracton state FUð1Þ. It can then undergo
a quantum phase transition to a distinct fracton state F when
vacancies and interstitials Bose condense, thereby breaking
the atom-number Uð1Þ symmetry. The corresponding phase
diagram is illustrated in Fig. 7.
In contrast to a crystal that allows an FUð1Þ ground state, we

observe that hexatic and smectic states are dislocation con-
densates [corresponding to the condensation of both or just
one of the x̂- and ŷ-dislocation dipoles (created by b̂†b)]. Thus,
vacancies and interstitials (created by â† and illustrated in
Fig. 12) consisting of pairs of oppositely charged dislocations

(disclination charge quadrupoles) are necessarily driven to
Bose condense by the allowed coupling âb̂†bb̂

†
−b. Thus, a

hexatic and a smectic are necessarily incommensurate “super-
hexatic” and “supersmectic,” respectively, and their dual
gauge theory (50) is implicitly understood to be coupled
(via axionlike E-B and B-E couplings) to a conventional Uð1Þ
gauge theory with fields E and B, a dual to the liquid of
vacancies and interstitials (Pretko and Radzihovsky, 2018b;
Pretko, Zhai, and Radzihovsky, 2019).

F. External perturbations

With an eye toward experimental probes, we now discuss
the role of external perturbations. A crystal’s analog of a
chemical potential is the imposed velocity, a “momentum
chemical potential” that imposes a nonzero density of finite-
momentum boson density nG, i.e., a nonzero momentum on
the crystal. On the dual side this corresponds to an external
dual-magnetic field. In the dual-nonsuperconducting state of
vanishing disclination and dislocation density, the response is
linear, as expected due to a crystal’s Galilean invariance. In
contrast, the dual superconductor expels the imposed flux,
either completely in a dual-Meissner state or in a “mixed”
Abrikosov-like state, respectively, corresponding to a viscous
response of a fluid or as a lattice of dislocations carrying a
nonzero momentum.
A crystal can also be subjected to a compressive or shear

stress that on the dual side is an imposition of a tensor electric
field. A dislocation will generically be set in motion by the
associated Peach-Koehler force Eijpj encoded as an imposed
dual electrictrostatic field on a charged dipole particle pj. In
the absence of dipoles this probes the response of the external
tensor field across the dual “dielectric.” For stress above a
critical value, a dual dielectric breakdown corresponding to a
proliferation of dipole dislocations will take place. The
response of a smectic is more complex: it is dual Meissner-
like along and nonsuperconducting across the smectic layers.
A substrate also plays a qualitatively interesting role, as it

breaks the underlying rotational and translational symmetries,
thereby breaking angular and linear momentum conserva-
tions. Repeating the duality analysis for a translationally
incommensurate substrate, we find that it reduces the

FIG. 12. Constructed as a bound state of two equal and opposite
dislocations with Burgers vectors b and −b, a disclination
quadrupole carrying a unit of vacancy (atom) number, a local
defect that can be seen as a deficiency of an atom in the middle of
the configuration, as illustrated in Fig. 10. This construction
demonstrates the allowed b̂†bb̂

†
bâ operator, which is encoded

such that the condensation of dipoles is necessarily accompanied
by the condensation of vacancies and intetstitials and thus leads to
superfluidity of the fluid phases.

FIG. 11. (a) Fracton motion is forbidden, as it requires emission
of a conserved dipole. (b) In the FUð1Þ-charge-enriched fractonic
phase (commensurate-crystal) longitudinal dipole motion (dis-
location climb) is forbidden, as it requires the emission of a linear
quadrupole carrying conserved vacancy or interstitial number
corresponding to local compression of the crystal, i.e., a vacancy
defect. (c) Transverse dipole motion (dislocation glide) is
allowed, as it creates a square quadrupole corresponding to a
local shear.
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orientational Uð1Þ sector ðe; aÞ to a discrete Zn gauge theory
(for n-fold orientational commensurability) coupled to a
noncompact Uð1Þ translational-sector gauge theory ðEk;AkÞ.
For n ¼ 1 à la Polyakov confinement in ð2þ 1ÞD, the
orientational degrees are eliminated and the translational
sector reduces to two conventional decoupled Uð1Þ gauge
theories, for k ¼ x and y. These are compact in the presence
of a translationally p-fold commensurate substrate and will
also be reduced to discrete Zp gauge theories and are fully
confined, i.e., pinned for p ¼ 1.

G. Vortex crystal

The superfluid state formed after condensation of disloca-
tions supports another type of topological defect: vortices.
When vortices are induced by, for example, rotation or
proliferate due to quantum or thermal fluctuations, they
may form either a crystal, a liquid crystal, or a vortex fluid.
We review these states from the fracton point of view in
Secs. III.G and III.H.
We now consider the constrained dynamics of vortices. The

first system of interest is a vortex crystal. We assume that it
was formed by nucleating a large number of vortices in a
superfluid. The elasticity of a vortex crystal is described in
terms of both superfluid phase degree of freedom and vortex-
lattice phonons. The low-energy Lagrangian takes the follow-
ing form:

L ¼ −
1

2
Γn̄ϵijui∂0uj −

1

2
Cijkluijukl þ Γeiui þ

1

g2
ðe2 − b2Þ;

ð59Þ

where Γ is the vorticity, n̄ is the superfluid density, and the
dual electromagnetic fields ei and b capture the Goldstone
modes of the superfluid; see Sec. III.A. The first term (a single
time derivative Berry phaselike term) in Eq. (59) is unique to
the vortex crystals and explicitly breaks parity. It originates
from the Magnus force (associated with a nonzero boson
density that is seen by the vortices as an effective magnetic
field) experienced by the vortices, encoding the noncommu-
tativity of ux and uy.
The duality transformation follows the steps similar to

those discussed previously, and the final dual Lagrangian is
(Pretko, Zhai, and Radzihovsky, 2019; Nguyen, Gromov, and
Moroz, 2020)

L̃ ¼ 1

2Γn̄
ϵijðBi − ΓϵikakÞ∂0ðBj − ΓϵjlalÞ

þ 1
2
C̃−1
ijklðEij þ Γδija0ÞðEkl þ Γδkla0Þ: ð60Þ

The tensor and vector gauge sectors are coupled through a
nontrivial minimal-like coupling akin to the coupled-vector
gauge theories of crystal (Sec. III.B.4) and smectic duals
(Sec. III.C) (Radzihovsky and Hermele, 2020; Radzihovsky,
2020; Zhai and Radzihovsky, 2021). The gauge transforma-
tions act as follows:

δAij ¼ ∂i∂jαþ Γδij; δA0 ¼ −∂0α; δaμ ¼ ∂μβ: ð61Þ

The first term in Eq. (60) has no analog in ordinary
electromagnetism. The dipole conservation law (25) remains
the same; however, the glide constraint is modified due to
the possibility of vortex creation in the superfluid, akin to the
earlier discussion of vacancies and interstitials in an incom-
mensurate atomic crystal [Eq. (58)],

∂μjμ ¼ Jii; ð62Þ

where jμ is the superfluid vortex current. The glide
constraint (62) states that the dislocations can climb at the
expense of vortex creation (i.e., they can violate the vortex
continuity equation ∂μjμ ¼ 0) (Marchetti and Radzihovsky,
1999).
An analysis of vortex-lattice melting similar to the dis-

cussion in Sec. III.D was presented by Nguyen, Gromov, and
Moroz (2020).

H. Vortex fluid

Notably a classical system of interacting vortices (or,
equivalently, electric charges in a strong magnetic field)
conserves the dipole moment on its own, and is thus fractonic.
We demonstrate this in the example of a classical system of N
vortices.
On increasing vortex density (such as by rotation), we

expect a vortex crystal to melt into a vortex fluid. Neglecting
dissipation, at zero temperature a vortex system can be
approximated as a Hamiltonian for any number of vortices
and is described by the following Lagrangian:

L ¼ 2π
X
α

γαxα1∂0x
α
2 − 2π

X
α<β

γαγβ ln jxα − xβj: ð63Þ

We note that Eq. (63) neglects the effects of vortex drag and
the normal component of a superfluid.
Owing to translational and rotation invariance, the total

linear and angular momenta are conserved. However, because
of the noncommutative nature of the vortex coordinates in
Eq. (63) the linear momentum is equal to the dipole moment
rotated by π=2 and the angular momentum coincides with the
trace of the quadrupole moment,

Pi ¼ ϵij
X
α

γαxαj ¼ ϵijQj; L ¼
X
α

γαxαj x
α
j ¼ trðQijÞ: ð64Þ

Consequently, a vortex dipole moves perpendicularly to the
dipole moment, while isolated vortices are immobile (Doshi
and Gromov, 2021). Exactly the same Lagrangian describes
the electrons at the lowest Landau level, where these con-
servation laws are related to the area-preserving diffeomor-
phism symmetry (Gromov, 2019b; Du et al., 2022).
The vortex lattice discussed in Sec. III.G can melt into a

vortex liquid. This liquid can be understood as a hydro-
dynamic limit of Eq. (63). It retains the same conservation
laws as the finite N system, and its continuity equation takes
the same form as the traceless scalar-charge theory (25).
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I. Geometric theory of defects

We have discussed two complementary approaches to
elasticity and crystalline defects. In this section we make a
connection between fractons and the geometric description of
crystalline defects. This description dates back to the work
of Kondo (1949) and is valid in all spatial dimensions. The
disclinations and dislocations are described using Riemann-
Cartan (RC) geometry, while the phonons are described by the
fluctuations of the metric. The geometric theory of defects
leverages RC geometry to describe physical properties of
defects as well as defect-phonon scattering (Katanaev and
Volovich, 1992).
The description of dislocations and disclinations in RC

geometry can be understood by noting that torsion Ta
ij and

curvature Rab
ij (the main ingredients of the RC geometry)

correspond to defects in translational and rotational sym-
metries. This follows directly from the definition14

½∇i;∇j�va ¼ Tb
ij∂bv

a þ Ra
b;ijvb: ð65Þ

Equation (65) states that transporting a vector va around a
small loop leads to an infinitesimal rotation by Rab (Franck
angle) and translation by Ta (Burgers vector).
The relation between dislocations and disclination dipoles

is built into the structure of RC geometry and is phrased as a
relation between the Levi-Civita curvature and the torsion,

2R ¼ ∂iðϵabeiaTbÞ; ð66Þ

where eia is the frame field, Tb ¼ Tb
ijϵ

ij, and R is the Ricci
scalar curvature constructed from the curvature 2-form Ra

b;ij

(Nakahara, 2018). A similar relation plays a foundational role
in the teleparallel formulation of gravity, in which the
spacetime geometry is described using torsion (Blagojevic
and Hehl, 2012). RC geometry further supplies us with a
geometric formulation of Eqs. (7), (40), and (52) by virtue of
the Bianchi identity. We illustrate the relationship in two
spatial dimensions. It becomes physically transparent when
we define the dislocation and disclination currents in terms of
torsion and curvature according to

Jμa ¼ ϵμνρTa;νρ; Θμ ¼ ϵμνρRνρ: ð67Þ

The Bianchi identity then takes the following form [Eq. (7)]:

∇μJ
μ
a ¼ ϵabebρΘρ: ð68Þ

Finally, we discuss the origins of the glide constraint in the RC
language. The glide constraint requires extra information regard-
ing the conservation of the total number of lattice sites. The latter
can be formulated in an effective geometric way as follows. To
begin, we introduce a current of lattice sites as follows:

Jμ ¼ ϵμνρϵabeaνebρ: ð69Þ

The conservation of the number of lattice sites then takes the
form of the continuity equation

∂μJμ ¼ 0: ð70Þ

The conserved quantity is the total volume, which translates to
the total number of lattice sites,

V ¼
Z

d2xJ0 ¼
Z

d2x detðeai Þ: ð71Þ

The glide constraint becomes more transparent after rewriting
Eq. (70) as

∂0 detðeai Þ þ 2eb0ϵabJ
a
0 ¼ 0; ð72Þ

where Ja0 ¼
P

Ib
aδðx − xIÞ is the dislocation density defined

by Eq. (67) and the temporal frame eb0 plays the role of the
velocity field. Thus, the local volume detðeai Þ changes when the
dislocations are carried out in the direction perpendicular to
the Burgers vector. Equation (70) has to be postulated, in
addition to the RC structure.

J. Diverse realizations of tensor gauge theories

Since the original identification of fractons with crystals
and liquid crystals (Pretko and Radzihovsky, 2018a, 2018b,
2020; Gromov, 2019b, 2020; Kumar and Potter, 2019; Pretko,
Zhai, and Radzihovsky, 2019; Zhai and Radzihovsky, 2019,
2021; Gromov and Surowka, 2020; Nguyen, Gromov, and
Moroz, 2020; Radzihovsky and Hermele, 2020), fractons have
naturally appeared in a number of other elastic systems that
support geometric defects. Again, fractons emerge after an
appropriate duality transformation. Here we review a few of
these interesting connections.

1. Fragile amorphous solids

A symmetric tensor gauge theory and its associated
fractonic order have also been applied to amorphous fragile
solids and granular media. These are highly nonequilibrium
and heterogeneous solid states that can sustain external shear
(O’Hern et al., 2003; Behringer and Chakraborty, 2019). The
effective long wavelength elasticity (Nampoothiri et al., 2020)
emerges from local force and torque balance constraints of
mechanical equilibrium on every grain when the force chain of
contacting grains percolates. In a continuum these grains can
be encoded through a condition of mechanical equilibrium on
the local symmetric stress tensor σijðrÞ and external force
fiðrÞ satisfying

∂iσijðrÞ ¼ fjðrÞ: ð73Þ

As with crystalline solids this static equilibrium condi-
tion (73) can be naturally interpreted as a generalized
Gauss law

∂iEijðrÞ ¼ ρjðrÞ ð74Þ
14Here indicesa; b; c;… refer to the tangent space, indicesμ; ν; ρ;…

refer to the spacetime, and indices i; j; k;… refer to the space.
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for a vector-charge Uð1Þ rank-2 tensor gauge theory (Pretko,
2017a), with a symmetric electric field tensor Eij and the
vector-charge density ρi describing the external force fi
(Nampoothiri et al., 2020). This formulation then automati-
cally encodes the net force and torque balance through vector-
charge and dipole moment neutrality.
The amorphous solid elasticity is then postulated to be

governed by the pseudoelectrostatics, with the energy density
H ¼ ð1=2ÞCijklEijEkl and curl-free condition on the electric
field coming from the electrostatic limit of Faraday’s law. The
latter implies the existence of an electrostatic potential that
plays the role of an effective phononlike field that, unlike
crystals, arises in the absence of spontaneous breaking of
translational symmetry. The rank-4 elastic tensor Cijkl is to be
determined experimentally and is generically heterogeneous
and anisotropic. The formulation then allows for an efficient
computation of the stress-stress correlations associated with a
distribution, geometry, and topology of the force-chain network
via the hEijEkli correlator. The latter gives fourfold pinch-point
singularities characteristic of the tensor gauge theory (Prem
et al., 2018; Pretko, Zhai, and Radzihovsky, 2019).
In contrast to a tensor gauge theory of crystalline solids,

which as we reviewed here can be derived explicitly through
duality (Pretko and Radzihovsky, 2018a), this gauge theory
formulation of amorphous solids is a conjecture that requires
the support of numerics and experiments. Indeed, the mea-
sured averaged stress-stress correlations are well fit by the
electric field correlator of the vector-charge tensor gauge
theory (Nampoothiri et al., 2020). Fitting this to numerics and
experiments (Geng et al., 2001; Bi et al., 2011) allows one to
extract the average pseudodielectric tensor Cijkl that fully
characterizes the emergent static elasticity of the amorphous
solid. The resulting tensor gauge theory can then be used to
further explore the solid’s phenomenology, such as its
response to perturbations, melting, and dynamics.

2. Elastic sheets

Another interesting connection, developed by Manoj,
Moessner, and Shenoy (2021), is the application of fractonic
tensor gauge theory to thin elastic sheets and their associated
defects, like folds and tears. With this they presented a tensor
gauge theory view of the kirigami mechanics. The fractonic
dual theory transparently encodes a number of known proper-
ties of such defects in thin sheets. They showed that the
observation that folding of a sheet of paper can be done only
along a straight line can be interpreted using the language of
fractons and the restricted mobility of vector-charge tensor
gauge theory.
Manoj, Moessner, and Shenoy (2021) formulated the sheet

elasticity in terms of its out-of-plane flexural field hðx; yÞ
while (questionably) neglecting the in-plane phonon displace-
ments uðx; yÞ. This model then corresponds to a fluid rather
than an elastic membrane (Nelson, Piran, andWeinberg, 1989;
Le Doussal and Radzihovsky, 2018). The sheet’s local
momentum density ∼∂0h is identified with the scalar magnetic
flux density B, the sheet’s curvature tensor ∂α∂βh is associated
with the tensor electric field Eαβ, and the flexural modes are
identified with a quadratically dispersing photon. A “tear”
defect is characterized by a nonzero closed line integral of ∂αh

around the end of the defect, thereby capturing a nonquantized
discontinuity Δh across a tear. This out-of-plane discontinuity
ray has some formal similarity with the in-plane dislocation
defect. A “fold” defect, an undeformable line along which
there is a sheet’s tangent vector discontinuity across the fold,
is characterized by a closed line integral of ∂α∂βh. It maps onto
a fractonic vector charge (the end point of the fold) of the
tensor gauge theory. One hopes that such a formulation can be
useful in the exploration of the quantum dynamics and
statistical mechanics of kirigami sheets.

3. Quasiperiodic systems

Another interesting example is that of quasicrystals (QCs),
whose elasticity-fracton duality was investigated by Surowka
(2021). As developed by its pioneers (Levine and Steinhardt,
1984; Kalugin, Kitaev, and Levitov, 1985; Lubensky,
Ramaswamy, and Toner, 1985) and discussed by Ding et al.

)1993 ), the elasticity of the QCs is characterized by two sets of
low-energy modes: phonons described by the symmetric
strain tensor uij and phasons described by a general rank-2
tensor wij. Consequently, the equations of motion are for-
mulated in terms of two stress tensors Tij and Hij. These can
be defined as derivatives of the Lagrangian density

Tij ¼ −
∂L
∂uij

; Hij ¼ −
∂L
∂wij

; ð75Þ

with [as evident from Eq. (75)] the stress tensor Hij non-
symmetric. Duality transformation follows the steps reviewed
in Sec. III.B.1. Under duality each QC stress is described by a
dual tensor gauge field, with a traceless scalar-charge theory
Aij; A0 for Tij and the general rank-2 tensorAij;A0 character-
izing Hij. In the dual gauge theory these degrees of freedom
are coupled and the Lagrangian takes the Maxwell form; i.e., it
is formulated as a quadratic form in terms of tensor electric
and magnetic fields.
Associated with phonons and phasons, QCs exhibit two

types of topological defects: those of uij (i.e., dislocations
and disclinations) and defects of wij known as stacking faults
(Lubensky, Ramaswamy, and Toner, 1985). Disclinations are
scalar charges, while stacking faults are vector charges
coupled to Aij; A0 and Aij;A0 tensor gauge fields. The
mobility of the dislocations in QCs (and QC symmetry-
protected topological states) was carefully studied by Else
et al. (2021), who found that the dislocations are lineons with
the mobility direction determined by the Burgers vector and
additional topological information.
A particular example of a quasiperiodic system is the moiré

superlattice generated in twisted bilayer graphene (Gaa et al.,
2021). The phasons in moiré systems correspond to a relative
displacement of the layers. Singularities of the phason modes
in this context were referred to as discompressions by Gaa
et al. (2021), which were indeed found to be immobile.

IV. GLOBAL SYMMETRIES AND GAUGE THEORIES

Tensor gauge theories describe fields that naturally
mediate interactions between fractons in a manner similar
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to electromagnetism. They were first introduced by Kleinert
(1983) in a discussion of a dual approach to the melting
transition. Later lattice versions of these gauge theories took
the form of low-energy effective theories of spin liquids (Xu
and Horova, 2010).
We encountered such gauge theories in Sec. III as duals of

elastic systems. Here we present a symmetry perspective on
these theories and explain how they arise from gauging an
abstract symmetry algebra: multipole algebra. This approach
allows us to generalize tensor gauge theories to multipole
gauge theories that are related to both anisotropic liquid
crystals and fractal surface codes.

A. General symmetric tensor gauge theories

Tensor gauge theories such as Eq. (23) arise from gauging a
global algebra of conserved charge and multipole moments.
This algebra has to include spatial symmetries such as
translations and rotations because they do not commute with
multipole charges. The simplest case of this algebra includes
all multipole charges up to some rank r and all translations
and rotations.
More formally it is described by a set of commutation

relations. Let Ti and Rij be generators of translations and

rotations, and let QðnÞ
i1i2���in be the charge corresponding to the

nth multipole moment. The multipole algebraMn;k then takes
the following form:

½Ti; Tj� ¼ 0; ½Rij; Tk� ¼ δk½iTj�; ð76Þ

½Rij; Rkl� ¼ δ[k½iRj�l];
h
QðnÞ

i1i2���in ; Q
ðmÞ
i1i2���im

i
¼ 0; ð77Þ

h
Tj;Q

ðnÞ
i1i2���in

i
¼

Xn
r¼1

δjirQ
ðn−1Þ
i1i2���îr���in ∀ n > k; ð78Þ

h
Tj;Q

ðkÞ
i1i2���ik

i
¼ 0; ð79Þ

h
Rjk; Q

ðnÞ
i1i2���in

i
¼

Xn
r¼1

δir½jQ
ðnÞ
k�i1���îr���in ; ð80Þ

where îr indicates that the index ir should be omitted and
n ≥ k and the square brackets in Eq. (76) indicate antisym-
metrization δk½iTj� ¼ δkiTj − δkjTi. Equation (79) indicates

that QðkÞ
i1i2���ik is the fundamental charge that happens to be a

rank-k tensor.

Given the conserved charges QðnÞ
i1i2���in , we postulate a local

conservation law in the form of the continuity equation

∂0ρi1���ik þ ∂in−k � � � ∂inJi1���in−k���in ¼ 0; ð81Þ

where Ji1���in−k���in is a symmetric tensor current. Equation (81)

implies that a tensor charge QðkÞ
i1���ik is conserved, as are its first

n − k moments. In other words, the indivisible unit charge in
Mn;k is a rank-k tensor,

QðkÞ
i1���ik ¼

Z
dx ρi1���ik ; ð82Þ

QðmÞ
i1���im ¼

Z
dx xikþ1

· � � � · ximρi1���ik ; m ≤ n − k: ð83Þ

We now introduce a set of gauge fields that are conjugate
(sourced by) to the tensor charge density ρi1���ik and the tensor
current Ji1���in ,

A0;i1���ik ; Ai1���in : ð84Þ

Given these fields, we can modify the Lagrangian of a theory
that is invariant under the multipole algebra Mn;k as follows
(this is known as gauging):

δL ¼ A0;i1���ikρ
i1���ik þ Ai1���inJ

i1���in : ð85Þ

Therefore, requiring invariance under gauge transformations

δAi1…in ¼
Xn
r¼1

∂irλi1…îr…in
; ð86Þ

δA0;i1…ik ¼
Xn
r¼1

∂0λi1…îr…in
ð87Þ

enforces the continuity equation (81).
The precise structure of Eqs. (86) and (87) depends on k. If

the lowest conserved moment is the scalar charge Qð0Þ, i.e.,
k ¼ 0, the gauge parameter takes the following general form:

λi1…in−1 ¼ ∂i1…∂in−1λ: ð88Þ

If the lowest conserved moment is QðkÞ
i1i2…ik

, the algebra still
makes sense, assuming that the commutator between trans-

lations and QðkÞ
i1i2…ik

vanishes: ½Tj;Q
ðkÞ
i1i2…ik

� ¼ 0. If that is the
case, we say that the theory has a rank-k tensor charge and the
higher moments of this charge are conserved. When k ¼ 1 this
is known as vector-charge theory.
The density and current can then be found using the usual

variational prescription

ρi1…ik ¼
δL

δA0;i1…ik

; Ji1…in ¼ δL
δAi1…in

: ð89Þ

The gauge-invariant electric field Ei1…in is easy to con-
struct. It is given by

Ei1…in ¼ ∂0Ai1…in −
Xn
r¼1

∂irA0;i1…îr…in
: ð90Þ

The Gauss law generating Eq. (90) takes the following form:

∂ikþ1
…∂inEi1…in ¼ ρi1…ik : ð91Þ

A gauge-invariant magnetic field can be defined in all of the
aforementioned cases; however, its explicit form depends on
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the theory and thus we do not provide its general expression.
Some tensor gauge theories emerge as a results of spontaneous
symmetry breaking of inhomogeneous higher-form sym-
metries (Hirono et al., 2022).

B. Examples of symmetric tensor gauge theories

The first example is the scalar-charge theory (Pretko,
2017b). It requires the conservation of the dipole moment
only. The multipole algebra takes the following form:

½Ti; Tj� ¼ 0; ½Rij; Tk� ¼ δkiTj − δkjTi; ð92Þ

½Rij; Rkl� ¼ δ½k½iRj�l�;
h
Qð1Þ

i ; Qð1Þ
j

i
¼ 0; ð93Þ

h
Ti; Q

ð1Þ
j

i
¼ δijQ; ½Ti; Q� ¼ 0; ð94Þ

h
Rjk; Q

ð1Þ
i

i
¼ δkiQ

ð1Þ
j − δkjQ

ð1Þ
i : ð95Þ

A field theory invariant under Eqs. (92)–(95) can be readily
written. The only degree of freedom is a real scalar ϕ with a
Lagrangian given by

L ¼ ð∂0ϕÞ2 − ð∂i∂jϕÞ2 ð96Þ

and is a Lifshitz model with ubiquitous applications
(Gorantla et al., 2022; Lake, Hermele, and Senthil, 2022;
Radzihovsky, 2022; Stahl, Lake, and Nandkishore, 2022).
The Lagrangian (96) is invariant under a polynomial shift
symmetry

δϕ ¼ c0 þ cixi; ð97Þ

which by virtue of Noether’s theorem implies the conservation
of the total charge and total dipole moment. Indeed, there are
dþ 1 independent symmetry parameters leading to dþ 1

conserved quantities.
TWe introduce tensor gauge fields into gauge equation (97)

as follows:

L ¼ 1
2
ð∂0ϕ − A0Þ2 − 1

2
ð∂i∂jϕ − AijÞ2: ð98Þ

The density and tensor current [Eq. (89)] are then given by

ρ ¼ δL
δA0

¼ ∂0ϕ; Jij ¼ δL
δAij

¼ ∂i∂jϕ ð99Þ

and satisfy the continuity equation

∂0ρþ ∂i∂jJij ¼ 0; ð100Þ

which implies the dipole conservation.
Our second example is the traceless scalar-charge theory. Its

symmetry algebra is a subalgebra of M2 where the conserved
quantities are

Qð1Þ
i ; Δ ¼ trðQð2Þ

ij Þ: ð101Þ

The only additional nontrivial commutation relation [compared
to Eqs. (92)–(95)] is

½Ti;Δ� ¼ Qi: ð102Þ

A Lagrangian invariant under the symmetry algebra (92)–(102)
takes the following form:

L ¼ ð∂0ϕÞ2 −
��

∂i∂j −
1

d
δij∂

2

�
ϕ

�
2

: ð103Þ

The Lagrangian (103) is invariant under a polynomial shift
symmetry

δϕ ¼ c0 þ cixi þ c̃xkxk: ð104Þ

The last term in Eq. (104) leads to an extra conservation law for
the trace of the quadrupole moment. Gauging leads to a
traceless scalar-charge theory with a traceless tensor potential,
while the tensor current satisfies an extra constraint δijJij ¼ 0.
Finally, we discuss a general scalar-charge theory that is

invariant under the multipole algebra Mn;0. The commutation
relations are given by Eqs. (76)–(80) with k ¼ 0. The
Lagrangian takes the following form:

L ¼ 1
2
ð∂0ϕÞ2 − 1

2
ð∂i1 � � � ∂inϕÞ2; ð105Þ

which is invariant under a general polynomial shift symmetry

δϕ ¼ c0 þ
Xn
m¼1

ci1���imx
i1 · � � � · xim : ð106Þ

The local conservation law that follows from Noether’s
theorem takes the form of Eq. (81), with k ¼ 0.
We introduce a general rank-n tensor gauge field into gauge

equation (106) as follows:

L ¼ 1
2
ð∂0ϕ − A0Þ2 − 1

2
ð∂i1…∂inϕ − Ai1…inÞ2: ð107Þ

The density and tensor current are then given by Eq. (89),
with k ¼ 0.

C. General multipole algebra

Thus far we have assumed that the previously discussed
tensor gauge theories are invariant under continuous rotations.
This does not have to be the case, because we expect at least
some of those theories to emerge from UV lattice models and
to thereby inherit the lattice symmetries. We restrict our
discussion here to scalar-charge theories.
To incorporate the lattice symmetries, we observe that every

conserved multipole moment is associated with a polynomial
PðxÞ. For example, the conserved dipole moment is associated
with d monomials of degree 1: x1; x2;…; xd. Generally a

component of the multipole tensor QðnÞ
α is obtained by

integrating a polynomial of degree n [PðnÞ
α ðxÞ] against the

charge density

QðnÞ
α ¼

Z
dxPðnÞ

α ðxÞρðxÞ: ð108Þ
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The general index α in Eq. (108) may transform in an
irreducible representation of a point group. We now turn to
a more formal description of the general multipole algebra.
To describe the algebra we introduce the general multipole

moment as follows: Let PðnÞ
α ðxÞ be a homogeneous poly-

nomial of degree n. The multipole moment corresponding to

PðnÞ
α ðxÞ is then defined as Eq. (108).
Commutation relations between these multipole moments

and spatial symmetries form the multipole algebra

h
T r̂; Q

ðnÞ
α

i
¼ fðnÞαβQ

ðn−1Þ
β ; ð109Þ

h
Rr̂; Q

ðnÞ
α

i
¼ gðnÞαβQ

ðnÞ
β ; ð110Þ

where T r̂ is a translation in direction r̂, Rr̂ is the rotation about
r̂, and fðnÞαβ and gðnÞαβ are the structure constants. In general,
the rotations can either include a subgroup of SOðdÞ or be
discrete. For example, in the gauge theory approach to
the Haah code there is an SOð2Þ rotation symmetry, while
r̂ ∝ ð1; 1; 1Þ (Gromov, 2019a).
Given the polynomials, we define a set of homogeneous

differential operators Dα that annihilate all P
ðnÞ
I simultaneously

DαP
ðnÞ
I ¼ 0 ∀ I; n: ð111Þ

The local conservation laws then take form

∂0ρþ
X
α

D†
αJα ¼ 0; ð112Þ

where Jα are the multipole currents andD†
α is obtained fromDα

via integration by parts.
The gauging procedure follows the same logic as in

Sec. IV.A. We introduce the gauge fields Aα and A0 conjugate
to the multipole current Jα and density ρ. These gauge fields
are labeled as an abstract index (which also can transform into
an irreducible representation of the rotation group) and are
neither 1-forms nor symmetric tensors. A general Lagrangian
invariant under the multipole algebra is supplemented by

δL ¼ ρA0 þ JαAα: ð113Þ

The gauge transformation law takes the form

δAα ¼ Dαλ; δA0 ¼ ∂0λ ð114Þ

and confirms Eq. (112).
Using these Dα, we can construct the electric field and

Gauss’s law as follows: The electric field is invariant under
Eq. (114) and is given by

Eα ¼ ∂0Aα −DαA0; ð115Þ

which satisfies Gauss’s law with a generalized divergence,

X
α

D†
αEα ¼ ρ: ð116Þ

D. Relation to the symmetric case

The multipole algebra includes the symmetric case as a
special case. Here we illustrate how it works using an example
of traceless scalar-charge theory. In d spatial dimensions there
are dþ 1 polynomials,

Pð1Þ
1 ðxÞ ¼ x1;…; Pð1Þ

d ðxÞ ¼ xd; Pð2Þ
1 ðxÞ ¼ xixi: ð117Þ

The differential operators in Eq. (117) are of degree 2. The
index α can be represented as a multi-index α ¼ ði; jÞ, with
the differential operators given by

Di;j ¼ ∂i∂j −
1

d
δij∂

2; ð118Þ

where it is clear that Eq. (111) holds; i.e., Di;j annihilates all

the polynomials Pð1Þ
1 ðxÞ;…; Pð1Þ

d ðxÞ; Pð2Þ
1 ðxÞ. This algebra

includes all translations and continuous rotations.

E. Gaussian free field with multipole symmetries

Next we discuss an explicit example of a free field theory
that is invariant under a general multipole algebra. Consider a
real scalar field ϕ and a set of homogeneous polynomials

PðnÞ
I ðxÞ. We construct a Lagrangian invariant under the

following transformation:

ϕ → ϕþ PðnÞ
I ðxÞ: ð119Þ

To the lowest order in derivatives, the most general action
takes the form

L ¼ 1
2
ð∂0ϕÞ2 þ 1

2

X
α

ðDαϕÞ2 ð120Þ

by virtue of Eq. (111). The symmetry of Eq. (119) leads to the
conservation of Eq. (108).
We can also utilize Eq. (120) to obtain the multipole gauge

theory structure. Indeed, the symmetry of Eq. (119) can be
gauged by replacing the derivatives as follows:

L ¼ 1
2
ð∂0ϕ − A0Þ − 1

2

X
α

ðDαϕ − AαÞ2; ð121Þ

where Φ is the scalar potential. The action (121) is invariant
under the gauge transformation (114). The conserved charges
are explicitly given by

QðnÞ
I ¼

Z
∂0ϕP

ðnÞ
I : ð122Þ

F. Multipole gauge theory of a smectic

Next we discuss a simple example of multipole gauge
theory that arises as a dual theory to elasticity of a quantum
smectic phase (Zhai and Radzihovsky, 2019; Radzihovsky,
2020). We show that a ð2þ 1ÞD quantum smectic is dual to a
multipole gauge theory. We start with the following
Lagrangian density (De Gennes and Prost, 1993), which
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describes a smectic phase at long distances:

L ¼ 1
2
∂0u2 − 1

2
κð∂yuÞ2 − 1

2
κðλ∂2xuÞ2; ð123Þ

where the layers are perpendicular to the y axis and extend
along the x axis. We reiterate that a smectic is a liquid crystal
phase that spontaneously breaks rotational symmetry (by the
choice of layer orientation) and one out of the two translation
symmetries. It can be viewed as a periodic array of 1D liquids
with a period of order λ along the y axis. We denote

D†
1 ¼ ∂x; D†

2 ¼ λ∂2y: ð124Þ

In terms of these derivatives the action is

L ¼ 1
2
∂0u2 − 1

2
κðD†

1uÞ2 − 1
2
κðD†

2uÞ2: ð125Þ

We introduce auxiliary variables using the Hubbard-
Stratonovich trick as

L ¼ Pu̇ −
P2

2
− ðD†

1uÞT1 − ðD†
2uÞT2 þ ϵ

T2
1

2
þ ϵ

T2
2

2
. ð126Þ

Integrating out the phonon u, we find the constraint

∂0P −D1T1 −D2T2 ¼ 0: ð127Þ

Equation (127) is solved using

TI ¼ ϵIJð∂0AJ −DJA0Þ ¼ ϵIJEJ; ð128Þ

P ¼ B ¼ ϵIJDIAJ; ð129Þ

where ϵIJ is the Levi-Civita symbol and I; J ¼ 1 and 2. The
gauge redundancy of the solution is

δAI ¼ DIλ; δA0 ¼ λ̇; ð130Þ

which is exactly a multipole gauge theory structure. The
Gauss law that generates Eq. (130) is given by

D†
I EI ¼ ρ: ð131Þ

The defect density ρ is the density of smectic disclinations.
The defect matter conserves the dipole moment in the u
direction, which can be seen directly in Eq. (131). The
disclination dipole extended in the u direction is a dislocation
with the Burgers vector in the w direction. The dislocations
are completely mobile (Kleman and Lavrentovich, 2003),
whereas the disclinations are 1D particles (also known as
lineons) that can move only in the w direction. The low-energy
phonon is described by the multipole gauge theory with the
generalized Maxwell action

L ¼ 1
2
ϵðE2

1 þ E2
2Þ − 1

2
B2: ð132Þ

As required, L admits a single smectic mode with a linear
dispersion along the y axis and a quadratic dispersion along
the x axis.

G. Uð1Þ Haah code in three dimensions

Next we turn to a discussion of the “Uð1Þ Haah code”
studied by Bulmash and Barkeshli (2018b) and Gromov
(2019a). We begin by postulating the symmetries

δϕ ¼ c0 þ c1P
ð1Þ
1 þ c2P

ð1Þ
2 þ c3P

ð2Þ
1 þ c4P

ð2Þ
2 ; ð133Þ

where

Pð1Þ
1 ¼ x1 − x2; Pð1Þ

2 ¼ x1 þ x2 − 2x3; ð134Þ

Pð2Þ
1 ¼ ðx1 − x2Þðx1 þ x2 − 2x3Þ; ð135Þ

Pð2Þ
2 ¼ ð2x1 − x2 − x3Þðx2 − x3Þ: ð136Þ

These polynomials were chosen after the elementary
fracton configurations in the Haah code were examined
(Gromov, 2019a) and generalized to the Uð1Þ conserved
charge. These configurations carry the dipole moment in
the ð1; 1; 1Þ direction, which leads us to enforce conservation
of the dipole moment in the ð111Þ plane. Polynomials of
degree 2 were chosen in a similar manner. We also enforce the
SOð2Þ symmetry in the ð111Þ plane. This leaves us with three
invariant derivatives that take the following forms:

D1 ¼ qi∂i; D2 ¼ qij1 ∂i∂j; D3 ¼ qij2 ∂i∂j; ð137Þ

where

qi ¼

0
B@
1

1

1

1
CA; qij1 ¼

0
B@
1 0 0

0 1 0

0 0 1

1
CA; qij2 ¼

0
B@

0 1=2 1=2

1=2 0 1=2

1=2 1=2 0

1
CA:

The elementary charge configurations are shown in Fig. 13.
We then gauge these symmetries as previously explained.

The Lagrangian describing dynamics of the gauge field is
given by

L ¼
X
I

E2
I − B2

1 − B2
2; ð138Þ

where the magnetic fields are given by

BI ¼ ϵIJKDJAK ð139Þ

and the Gauss law takes the following form:

X
β

D†
βEβ ¼ ρ: ð140Þ

The Uð1Þ Haah model has a hidden infinite symmetry. We
now introduce a bit of notation. To begin, we define a basis
μ1i ; μ

2
i in the plane where the dipole moment is conserved. One

choice is μ1 ¼ ð1;−1; 0Þ and μ2 ¼ ð1; 1;−2Þ. With this basis
at hand we introduce new variables x ¼ μ1i x

i=jμ1j and
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y ¼ μ2i x
i=jμ2j. All invariant derivatives Dα (and consequently

the Lagrangian) are also invariant under an infinite symmetry

δϕðz; z̄; x3Þ ¼ fðzÞ þ gðz̄Þ; z ¼ xþ iy; ð141Þ

where fðzÞ is holomorphic and gðz̄Þ is antiholomorphic. This
is an example of the well-known “sliding” symmetry (Barci
et al., 2002) that appears in the physics of smectics (O’Hern
and Lubensky, 1998); it can be understood as a continuous
version of subsystem symmetries. Finally, the Uð1Þ Haah
model exhibits an anisotropic scaling symmetry that takes the
following form:

t→ λt; x→ λ1=2x; y→ λ1=2y; x3 → λx3; ϕ→ λ−1=2ϕ:

ð142Þ

Gromov (2020) showed that the gauge theory for the Uð1Þ
Haah code (138) is dual to the smectic-A phase in three
dimensions.

H. Subsystem symmetry

We now turn to an even more exotic class of much larger,
more extensive symmetries: the so-called subsystem sym-
metries, which lead to restricted mobility and multipole gauge
theories upon gauging (Vijay, Haah, and Fu, 2015, 2016).
These symmetries were initially defined on a lattice for
various spin models, but as we illustrate they can be extended
to the continuum.
While a covariant theory of subsystem symmetries has

not yet been developed, we can understand a class of these

symmetries as an infinite-dimensional generalization of the
multipole algebra discussed in Sec. IV.G. In our development
we assume that the physical model is defined on a flat space
and that we are given a set of lines, planes, or hyperplanes that
foliate the space.
As a pedagogical example, we consider a model of a real

scalar field in two dimensions ϕðx1; x2Þ, with the following
transformation being an example of subsystem symmetry:

δϕ ¼ f1ðx1Þ þ f2ðx2Þ; ð143Þ

where f1ðx1Þ and f2ðx2Þ are arbitrary functions of x1 and x2.
The set of lines consists of two families: (i) lines parallel to x2
and (ii) lines parallel to x1. Any 2D lattice provides enough
structure to develop a set of subsystem symmetries.
The algebra of subsystem symmetries is infinite dimen-

sional. Its action is intermediate between a global symmetry
that acts on full d-dimensional space and gauge redundancy
that acts on individual sites. We can also interpret it as an
infinite-dimensional generalization of the multipole algebra
by representing the functions f1 and f2 as the Taylor series
in x1 and x2, respectively,

δϕ ¼
X
n≥0

cnxn1 þ
X
m≥0

bmxm2 ; ð144Þ

where cn and bm are arbitrary coefficients. Viewed this way,
the symmetry implies conservation of arbitrary high multipole
moments in one of the axes,

QðnÞ
11…1; QðnÞ

22…2; n ≥ 0. ð145Þ

(a)

(b)

FIG. 13. (a) Elementary charge configurations corresponding to the invariant derivatives DI for the effective theory for the Uð1Þ Haah
code (137) charge configurations. These charge configurations violate conservation of the dipole moment in the ð1; 1; 1Þ direction. (b) A
different basis of elementary charge configurations. The first two configurations are those studied by Bulmash and Barkeshli (2018b),
while the last charge configuration is allowed by symmetries and is linearly independent of the others.
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The Lagrangian invariant under Eq. (143) breaks rotational
symmetry down to a discrete subgroup C4,

L ¼ 1
2
ð∂0ϕÞ2 − 1

2
ð∂1∂2ϕÞ2 þ � � � ð146Þ

and was analyzed by Gorantla et al. (2022).
Subsystem symmetries can also be gauged. Indeed, gauging

Eq. (143) requires a single “vector” potential A12 that trans-
forms as δA12 ¼ ∂1∂2λ. There is a single electric field given
by E12 ¼ ∂0A12 − ∂1∂2A0 and the Gauss law takes the
following form:

∂1∂2E12 ¼ ρ: ð147Þ

Other examples of subsystem symmetries were discussed by
Gromov, Lucas, and Nandkishore (2020).
The conservation law following from Eq. (143) is encoded

in the continuity equation

∂0ρþ ∂1∂2J ¼ 0; ð148Þ

where J is the current. It exhibits an infinite number of
conserved charges

Q1x¼
Z
x1¼x

dx2ρðx1;x2Þ; Q2y¼
Z
x2¼y

dx1ρðx1;x2Þ ð149Þ

that are conserved independently on any lines x and y,
respectively. It is thus clear that this conservation law makes
particles that are charged under both Q1x and Q2y completely
immobile, while the dipoles can move perpendicularly to their
dipole moments.

I. Fracton hydrodynamics

Conservation laws (25) and (148) can in principle be either
microscopic or emergent. In either case, the long-wave, long-
time phenomenology is affected if these conservation laws are
present. These effects manifest themselves in the transport of
charge and momentum, with the simplest manifestation being
subdiffusion.
We illustrate the emergence of subdiffusion in the

simplest case of a conserved dipole moment. As discussed,
the corresponding charge continuity equation takes the fol-
lowing form [Eq. (25)]:

∂0ρþ ∂i∂jJij ¼ 0: ð150Þ

To describe diffusion of charge, we relate the dipole current to
the charge density. In equilibrium the dipole current must
vanish. Consequently, the constitutive relation between ρ and
Jij takes the form

Jij ¼ χ−1∂i∂jρþ � � � ; ð151Þ

where χ is the susceptibility. The (sub)diffusion equation then
takes the form

∂0ρþ χ∂4ρ ¼ 0: ð152Þ

Equation (152) implies that the density perturbation at wave-
length λ will decay at a characteristic time τ ∼ χλ4 (Pretko and
Radzihovsky, 2018a; Gromov, Lucas, and Nandkishore, 2020;
Radzihovsky and Hermele, 2020; Radzihovsky, 2020) for
long wavelengths that are parametrically far slower than the
conventional diffusive time ∼λ2. Such slow relaxation time
enhancement has been observed in cold atomic gasses in tilted
optical lattices (Guardado-Sanchez et al., 2020). Subdiffusion
also emerges in random unitary circuits (Iaconis, Vijay,
and Nandkishore, 2019; Feldmeier et al., 2020; Moudgalya
et al., 2021).
Such subdiffusion straightforwardly generalizes to the case

of conservation of the nth multipole moment, where it gives

∂0ρþ χ∂2þ2nρ ¼ 0; ð153Þ

leading to an even slower characteristic time τ ∼ χλ2þ2n.
Another interesting effect occurs when the subsystem

symmetry constrains the diffusion equation. Consider the
charge conservation equation (148) with dipole symmetry.
Relating the generalized current to the density with the
subsystem constraint, we obtain the (sub)diffusion equation

∂0ρþ χ−1∂2x∂
2
yρ ¼ 0: ð154Þ

Thus, the subsystem symmetry breaks the rotational symmetry
down to a discrete subgroup of the lattice, with these effects
persisting at the longest scales. This is in stark contrast to
classic diffusion, which has an emergent rotational symmetry
to the lowest order in derivatives.

V. CONCLUSIONS

A. Summary

In this Colloquium we reviewed the theoretically inspired,
burgeoning subject of fractonic matter. We began with a
model-independent, symmetry- and conservation-based for-
mulation of fractons: excitations with restricted mobility
arising in a broad class of exotic models.
The central focus of this Colloquium is the emergence of

fractonic order from elasticity-gauge duality of a broad class
of quantum elasticity models that include quantum commen-
surate and incommensurate supersolid crystals, smectic liquid
crystals, hexatic fluids, amorphous solids, quasicrystals,
and elastic membranes, all of which encode some form of
multipolar global symmetry. We also discussed a vortex
crystal and a vortex liquid that dualize to parity-breaking
gauge-dual variants. Building on the familiar boson-vortex
duality, we explicitly reviewed how such dualities lead to
interesting tensor and coupled-vector gauge theories that
exhibit fractonic charges, dipoles, and higher multipoles as
duals of elastic topological defects, with gauge fields encod-
ing gapless phonons.
As discussed, such elasticity-gauge duality is a powerful

tool for discovery of a new class of fractonic models. The
resulting models can then be generalized into a broader class
beyond any elastic dual connection. A complementary moti-
vation for the duality studies is that they provide an efficient
formulation of the quantum elasticity and the topological
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defect dynamics. One striking example is the prediction of the
zero-temperature immobility of disclinations in a 2D crystal
(previously unknown despite decades of studies of it in the
elasticity context) that arose purely through this fractonic
gauge theory connection. In the Colloquium, we furthermore
demonstrated that gauge duals provide a field-theoretic
formulation of quantum melting of a crystal and a smectic
through a generalized Higgs mechanism associated with a
condensation of dislocations and disclinations.
As discussed, tensor gauge theories can be studied in

arbitrary dimensions and without any relation to elasticity.
We presented a general construction of a large class of such
gauge theories based on gauging the multipole algebra, an
algebra of spatial symmetries that includes dipole and higher
multipole symmetries. The resulting multipole gauge theories
include models obtained from dualities as special cases. We
expect these theories to serve as templates for identifying
exotic gapless excitations in spin liquids.
We also discussed even more exotic subsystem symmetries

and illustrated a formal relation between these symmetries and
infinite-dimensional multipole algebras. We concluded the
Colloquium with a description of the long-time subdiffusive
hydrodynamics of fractonic matter that emerges as a result of
multipole conservation laws.

B. Open problems

While the field of fractons and associated tensor and
multipole gauge theories has seen rapid growth in the past
ten years, it remains in an early stage of development, with
many open theoretical and experimental questions.

1. Mathematical structure

Most fundamentally the mathematical structure of tensor
gauge theories is still not well formulated. It is currently
unclear as to what will replace the G bundle of traditional
gauge theories. Consequently, the topology of the space of
tensor gauge fields is poorly understood. Namely, since the
geometric interpretation of tensor gauge fields is unclear, it is
not known how to construct topological invariants that
generalize Chern numbers. In fact, it is certain that such
invariants cannot be purely topological, because any naive
generalization of the Chern number will depend on the spatial
metric, leading to the metric dependence of the “topological
invariant.” One can also generalize the Chern-Simons theory
to the higher-rank case, but the dependence on the metric
appears to be unavoidable. Furthermore, in all cases the
inclusion of the metric is in tension with gauge invariance,
with the magnetic field found to be gauge invariant only in flat
space (or on an Einstein manifold in certain cases) (Gromov,
2019b; Slagle, Prem, and Pretko, 2019; Bidussi et al., 2022;
Jain and Jensen, 2022). One hopes, however, that a coupled-
vector gauge theory formulation (Radzihovsky and Hermele,
2020; Radzihovsky, 2020) will be more suitable for address-
ing these questions.
As discussed in the Introduction, fractonic gauge theories

concisely encode quasiparticle restricted mobility and
Gaussian fluctuations. However, these continuum field theo-
ries preclude an encoding of their expected exponential

in-system-size ground-state degeneracy15 and nontrivial
quasiparticle quantum statistics (Qi, Radzihovsky, and
Hermele, 2021). This contrasts strongly with discrete qubit
models (such as X-cube), where these properties are well
defined and have been calculated (Bulmash and Barkeshli,
2018a; Ma, Hermele, and Chen, 2018).
As recently demonstrated (Doshi and Gromov, 2021; Du

et al., 2022), a gauge structure and phenomenology similar to
that of fractonic tensor gauge theories also arises in super-
fluids and with the fractional quantum Hall effect. In fact, a
similar form and UV-IR mixing characteristic of fractonic
gauge theories (Gorantla et al., 2022) arise in the non-
commutative gauge theories as well as noncommutative
matter theories coupled to a gauge field. The development
and illumination of these relations remain open problems.

2. Quantum melting and insights on elasticity

Focusing on specific models and their phenomenology as
discussed in this Colloquium, we saw that these dual gauge
theories are also of interest because they provide a formulation
of crystal-to-hexatic, crystal-to-smectic, smectic-to-nematic
quantum melting transitions as a generalized Higgs transition
associated with a condensation of the topological defects.
However, these have thus far been analyzed only at the mean-
field level, thus leaving their true criticality to future studies.

3. Generalizations beyond bosonic elasticity

We note that, in all of the elastic models reviewed here and
studied in the literature, the focus has been on the simplest
bosonic realizations. These have led to bosonic statistics of
dislocation and disclination defects (i.e., bosonic fracton
matter) and superfluidity when crystalline order is lost. It is
natural to study extensions of the bosonic duality to that of
fermions and anyons and to explore the possibility of non-
trivial statistics of topological defects.

4. Experimental void

The field’s most vexing challenge is that of experimental
realizations, which thus far have been absent. In part this is
due to the fact that discrete qubit (for example, the simplest
X-cube) models are typically formulated in terms of many-
spin commuting projectors, which are therefore extremely
difficult to implement. A promising alternative direction is
that of the Uð1Þ tensor and coupled-vector gauge theories that
have been the focus of this Colloquium. These are related to
discrete models through the condensation of higher charge
matter (Bulmash and Barkeshli, 2018a; Ma, Hermele, and
Chen, 2018). In fact, the ð2þ 1ÞD crystal-gauge duality
demonstrates a concrete physical realization of fractonic order
in a familiar quantum crystal and in other elastic media.
In tensor gauge theories, realization-independent quadru-

polar pinch-point singularities have been predicted (Prem
et al., 2018; Nampoothiri et al., 2020; Nandkishore, Choi, and
Kim, 2021; Hart and Nandkishore, 2022), extending neutron

15That is, unless lattice regularization is introduced (Slagle and
Kim, 2017b; Rudelius, Seiberg, and Shao, 2021; Seiberg and Shao,
2021).
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scattering predictions for conventional spin liquids in frus-
trated magnets (Savary and Balents, 2017), and in fact have
been observed in granular solids (Behringer and Chakraborty,
2019). However, to date no smoking gun restricted mobility
experiments have been conceived, even in these physical
instantiations of an in-principle fractonic elastic system. The
immobility of disclinations is not a particularly impressive
observation, especially deep inside a crystal phase, where even
vacancies and interstitials are energetically immobile and
behave classically. Perhaps a study of a 4He crystalline film
or 2D lattices of ultracold bosons close to a low-temperature
quantum melting transition would be a good experimental
platform to explore.
Another obstacle in this area is that in two dimensions the

disclination energy is extensively large and thus is not an
excitation that is easy to explore. In contrast, the topology of a
spherical crystal, such as the buckminsterfullerene C60 mol-
ecule, and many other closed structures (as large as C960),
using the Gauss-Bonnet theorem automatically ensures 12
disclinations in the ground state, whose lattice hopping
dynamics could perhaps be studied experimentally. The
extension of dual gauge theories to a spherical geometry with
a detailed analysis remains an open problem, and correspond-
ing experiments would be an interesting direction to pursue.
Some further proposals for experimental realization of

fractons or tensor gauge fields have been made for spin
liquids (Yan et al., 2020), Rydberg atoms (Verresen,
Tantivasadakarn, and Vishwanath, 2021; Myerson-Jain et al.,
2022), and Ising antiferromagnets (Sous and Pretko, 2020a,
2020b). This plethora of interesting open problems bodes well
for a bright future in the engaging field of fractons, a current
glimpse of which we presented in this Colloquium.
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