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For quantum computers to successfully solve real-world problems, it is necessary to tackle the
challenge of noise: the errors that occur in elementary physical components due to unwanted or
imperfect interactions. The theory of quantum fault tolerance can provide an answer in the long term,
but in the coming era of noisy intermediate-scale quantum machines one must seek to mitigate errors
rather than completely eliminate them. This review surveys the diverse methods that have been
proposed for quantum error mitigation, assesses their in-principle efficacy, and describes the hardware
demonstrations achieved to date. Commonalities and limitations among the methods are identified,
while mention is made of how mitigation methods can be chosen according to the primary type of
noise present, including algorithmic errors. Open problems in the field are identified, and the
prospects for realizing mitigation-based devices that can deliver a quantum advantage with an impact
on science and business are discussed.
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I. INTRODUCTION

The central promise of quantum computing is to enable
algorithms that have been shown to provide both polynomial
and superpolynomial speedups over the best-known classical
algorithms for a special set of problems. These problems range
from simulating quantum mechanics (Feynman, 1982) to
purely algebraic problems such as factoring integers (Shor,
1999). The strongest challenge to the viability of practical
quantum computing has always been its sensitivity to errors
and noise. It was realized early on that the coupling of
quantum systems to their environment sets an ultimate time
limit and size limit for any quantum computation (Unruh,
1995). This constraint poses a formidable challenge to the
ambitions of realizing a quantum computer since it set bounds
on the scalability of any algorithm. With the advent of
quantum error correction (QEC) (Shor, 1995; Calderbank
and Shor, 1996; Steane, 1996), this challenge has been solved,
at least in theory. The well-known threshold theorem
(Aharonov and Ben-Or, 1997; Kitaev, 1997) showed that if
errors in the quantum hardware could be reduced below a
finite rate, known as the threshold, a fault-tolerant quantum
computation could be carried out for an arbitrary length even
on noisy hardware. However, besides the technical challenge
of building hardware that achieves the threshold, the imple-
mentation of a fault-tolerant universal gate set with current
codes, such as the surface code (Fowler et al., 2012), generates
a qubit overhead that currently seems daunting . For example,
recent optimized approaches showed that scientific applica-
tions that are classically intractable may require hundreds of
thousands of qubits (Kivlichan et al., 2020), while industrial
applications will require millions of qubits (Lee et al., 2021).
There is ongoing theoretical research to find alternative codes
with a more favorable overhead, and recent progress gives
reasons for optimism (Gottesman, 2014; Breuckmann and
Eberhardt, 2021; Dinur et al., 2022; Panteleev and Kalachev,
2022). Nevertheless, the challenge of realizing full-scale fault-
tolerant quantum computing is a considerable one.
This begs the question as to whether other approaches, prior

to the era of fully fault-tolerant systems, might achieve
quantum advantage with significant practical impacts. One

might hope so, given the continual and noteworthy progress
that has been made in quantum computational hardware. In
recent years, it has become routine to see reports of experi-
ments demonstrating high-quality control over multiple qubits
(Asavanant et al., 2019; Madjarov et al., 2020; Ebadi et al.,
2021; Jurcevic et al., 2021; Xue et al., 2022), sometimes
reaching even beyond 50 qubits ( Arute et al., 2019; Wu et al.,
2021). Meanwhile, other experiments have indeed demon-
strated early-stage fault-tolerant potentials (see Egan et al.,
2021; Abobeih et al., 2022; Krinner et al., 2022; Postler et al.,
2022; Ryan-Anderson et al., 2022; Takeda et al., 2022;
Google Quantum AI, 2023). The works mentioned here are
far from exhaustive, as it is impossible to capture all of the
breakthroughs on different fronts across the diverse range of
platforms. See Acín et al. (2018) and Altman et al. (2021) and
references therein for key milestones in different platforms.
The primary goal of quantum error mitigation (QEM) is to

translate this continuous progress in quantum hardware into
immediate improvements for quantum information process-
ing. While accepting that hardware imperfections will limit
the complexity of quantum algorithms, nevertheless we can
expect every advance to enable this boundary to be pushed
further. As this review demonstrates, the mitigation approach
indeed proves to be both practically effective and interesting
as an intellectual challenge.
When exploring the prospects for achieving quantum

advantage through error mitigation, it is crucial to consider
suitable forms of circuits. It is understood that in the era of
noisy intermediate-scale quantum (NISQ) devices only certain
approaches may be able to achieve meaningful and useful
results. Owing to the limited coherence times and the noise
floor present in quantum hardware, one typically resorts to the
idea of quantum computation with short-depth circuits.
Motivating examples include variational quantum circuits in
physics simulations (Peruzzo et al., 2014; Wecker, Hastings,
and Troyer, 2015; McClean et al., 2016), approximate opti-
mization algorithms (Farhi, Goldstone, and Gutmann, 2014),
and even heuristic algorithms for quantum machine learning
(Biamonte et al., 2017). In applications of these kinds, the
algorithm can typically be understood as applying a short-
depth quantum circuit to a simple initial state and then
estimating the expectation value of a relevant observable.
Such expectation values ultimately lead to the output of the
algorithm, which must be accurate enough to be useful in some
context [for example, for estimating the energies of molecular
states a useful level of chemical accuracy corresponds to
1 kcal=mol (Helgaker, Jorgensen, and Olsen, 2000)]. This
leads to the most essential feature of QEM: the ability to
minimize the noise-induced bias in expectation values on noisy
hardware. However, this can also be achieved by QEC and
many other long-established tools like decoherence-free sub-
spaces and dynamical decoupling sequences (derived from
optimal quantum control) (Lidar, 2014; Suter and Álvarez,
2016). Therefore, this feature alone is not sufficient to capture
the QEM techniques that we cover in this review.
It is challenging to find a universally acceptable definition

of quantum error mitigation. For the purposes of this review,
we will define the term quantum error mitigation as algo-
rithmic schemes that reduce the noise-induced bias in the
expectation value by postprocessing outputs from an ensemble
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of circuit runs, using circuits at the same noise level as the
original unmitigated circuit or above. That is, QEM will only
reduce the effective damage due to noise for the entire
ensemble of circuit runs (with the help of postprocessing),
but when we zoom into each individual circuit run the circuit
noise level remains unchanged or even increases. This is in
contrast to other techniques like QEC that aim to reduce the
effect of noise on the output in every single circuit run.
Since QEM performs postprocessing using data directly

from noisy hardware, it will become impractical if the amount
of noise in the entire circuit is so large that it completely
damages the output. In practice, this usually means that, for a
given hardware setup, there is a maximum circuit size (circuit
depth times qubit number) beyond which QEM will become
impractical, usually due to an infeasible number of circuit
repetitions. In contrast to QEC, there is no specific error
threshold that one must surpass before QEM can be useful;
different qubit operation error rates lead simply to different
circuit sizes for whichQEMwill be practical. In other words, as
quantum hardware continues to advance, we will be able to
apply QEM to ever larger quantum circuits for more challeng-
ing applications without requiring large jumps in technology.
There are certain desirable features for error mitigation; the

methods reviewed here meet the following criteria to differing
extents. To begin, the mitigation method should ideally
only require a modest qubit overhead to remain practical on
current and near-term quantum hardware. Nevertheless, error-
mitigation techniques should provide an accuracy guarantee
for the method. Such a guarantee should ideally provide a
formal error bound on the mitigated expectation values that
indicates howwell the method works at varying levels of noise.
The bounds would then indicate which concrete hardware
improvements would lead to improved estimates. Methods that
are conceptually simple and easy to implement experimentally
lead to practically feasible approaches. Last, a reliable error-
mitigation method should require few assumptions (or no
assumptions) about the final state that is prepared for the
computation. Making strong assumptions about the final state,
for example, that the state is a product state, may restrict the
method to scenarios where a computational advantage over
classical approaches may not be given.
We start by introducing the basic notion of QEM in Sec. II,

with the details of different QEM techniques presented in
Sec. III. The comparison and combinations of these individual
techniques are then discussed in Sec. IV. In Sec. V we explore
the application of QEM in different noise scenarios. Finally,
we discuss the open problems in the field in Sec. VI and offer a
conclusion in Sec. VII

II. CONCEPTS

A. Narrative introduction to concepts and terminology

In this section we introduce certain key concepts and
terminology that are common to all QEM methods.
However, note that the approach used in this section might
not be the native way for introducing individual techniques in
Sec. III. In those cases, we keep terminology that is unique to
the given technique self-contained in the respective section.

Near-term quantum devices have imperfections that
degrade the desired output information. A QEM protocol will
aim to minimize this degradation. We use the term primary
circuit here to describe the process that, ideally, would
produce the perfect output state ρ0 whose properties we are
interested in. In practice, owing to the noise present in the
primary circuit, the actual output state is some noisy state ρ
instead.
Typically the ideal output information that we seek is the

expectation value of some observable of interestO of the ideal
output ρ0. Commonly we would obtain this information
simply by averaging the measurement results of repeated
execution, as opposed to, say, some phase estimation tech-
niques that can obtain the result through single-shot mea-
surements but require deeper circuits that are more relevant to
the fault-tolerant computing era. Therefore, even if we had
ideal hardware, we would still need to perform repeated
executions to determine the average. We use Ncir to denote the
number of circuit executions, or “shots,” that we employ: this
includes any executions of variant circuits called for in the
QEM protocol. Even in the noiseless limit, the finite Ncir
usually implies a finite inaccuracy in our estimated average,
often called shot noise. However, with perfect noiseless
hardware, there would be zero bias. In other words, there
would be no systematic shift to the estimated mean versus the
true value (the infinite sampling limit). Given that our
hardware is not perfect, there generally is finite bias. QEM
protocols aim to reduce this bias, but this often means an
increase in the variance (for a fixed number of circuit
executions Ncir). One could increase Ncir to compensate
but this cost should be acknowledged; the cost is the sampling
overhead of that error-mitigation method versus the ideal
noiseless case. In Secs. II.B–II.D we make these terms and
concepts more precise.

B. Error-mitigated estimators

Our goal is to estimate the expectation value Tr½Oρ0� of
some observable of interest O. Using the outputs of the
primary circuit and its variants, we can construct an estimator
Ô for our target parameter Tr½Oρ0�. The quality of a given
estimator can be assessed in different ways. One way is to use
prediction intervals, which calculate the interval within which
the outcome of the estimator will fall with a given probability,
offering a rigorous bound on the worst-case deviation of the
estimator. Here, however, in order to see the different factors
that contribute to the deviation of the estimator more clearly,
we instead focus on the expected (average-case) square
deviation of our estimator Ô from the true value Tr½Oρ0�,
which is called the mean square error,

MSE½Ô� ¼ E[ðÔ − Tr½Oρ0�Þ2]: ð1Þ

The ultimate goal of error mitigation is to reduce MSE½Ô� as
much as possible, but this needs to be achieved using only
finite resources. To quantify this, it is useful to decompose the
mean square error of an estimator into two components, the
bias and the variance of the estimator,
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MSE½Ô� ¼ bias½Ô�2 þ var½Ô�;

with the bias and the variance defined as

bias½Ô� ¼ E½Ô� − Tr½Oρ0�;
var½Ô� ¼ E½Ô2� − E½Ô�2:

In this review, when we say bias we are sometimes referring to
the magnitude of the bias jbias½Ô�j; the exact meaning should
be obvious from the context.
The simplest way to construct the estimator Ô is by directly

measuring O on the noisy output state of the primary circuit ρ,
and the measurement output is denoted simply using the
random variable Ôρ. After running the noisy primary circuit
Ncir times, we can take the average of these noisy outputs
(obtaining the noisy sample mean) to estimate the ideal
expectation value Tr½Oρ0�. This noisy sample mean estimator
is denoted as Ōρ, and its mean square error is given by

MSE½Ōρ� ¼ ðTr½Oρ� − Tr½Oρ0�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
bias½Ōρ�¼bias½Ôρ�

Þ2 þ Tr½O2ρ� − Tr½Oρ�2
Ncir|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

var½Ōρ�¼var½Ôρ�=Ncir

: ð2Þ

We see that the error contribution due to the variance, which is
often called shot noise, will reduce as we increase the number
of circuit runs Ncir. In the limit of a large number of circuit
executions, the mean square error MSE½Ōρ� will be mainly
limited by the bias of the estimator jbias½Ōρ�j, which is a
systematic error that cannot be reduced by increasing the
number of circuit runs.
To reduce the bias, we can apply QEM using data obtained

from the noisy primary circuit and its variants, as discussed in
Sec. III. We construct an error-mitigated estimator Ōem using
the same number of circuit runs Ncir. We want to construct the
error-mitigated estimator Ōem in such a way that it can achieve
a smaller bias than the naive noisy estimator Ōρ,

jbias½Ōem�j ≤ jbias½Ōρ�j:

This reduction in the bias is usually achieved by constructing a
more complex estimator that extracts and amplifies the useful
information buried within the noise. As a result, the error-
mitigated estimator is also more sensitive to the variation in
the sampled data, and thus its variance will usually increase,

var½Ōem� ≥ var½Ōρ�:

Such a bias-variance trade-off is illustrated in Fig. 1 and can be
found in almost all areas of parameter estimation. As we later
see, different ways of performing error mitigation often lead to
different trade-offs between bias and variance, giving the user
a choice between a quickly converging QEM method with
large residual error and one that is more costly but more
accurate.
We can define a “one-shot” error-mitigated estimator

Ôem that will satisfy E½Ôem� ¼ E½Ōem� and var½Ôem� ¼
Ncirvar½Ōem�. The number of circuit runs needed for a given

estimator X̂ to achieve the shot noise level ϵ is given by
Nϵ

shotðX̂Þ ¼ var½X̂�=ϵ2. To reach the same shot noise level as
the original noisy estimator, the error-mitigated estimator will
require more circuit runs. This factor of increase in the number
of circuit runs is called the sampling overhead, which is
given by

Cem ¼ Nϵ
shotðÔemÞ

Nϵ
shotðÔρÞ

¼ var½Ôem�
var½Ôρ�

: ð3Þ

The sampling overhead can also be estimated using
the range of the estimator through Hoeffding’s inequality.
The range of a random variable X̂, denoted as R½X̂�, is the
difference between the maximum and minimum possible
values taken by X̂. Using Hoeffding’s inequality, the number
of samples that is sufficient to guarantee an estimation of E½X̂�
to ϵ precision with 1 − δ probability is given by

Nϵ;δ
HffðX̂Þ ¼

lnð2=δÞ
2ϵ2

R½X̂�2; ð4Þ

which can be used to estimate the sampling overhead required
for the error-mitigated estimator Ôem to achieve the same ϵ
and δ as the unmitigated estimator Ôρ,

Cem ¼ Nϵ
shotðÔemÞ

Nϵ
shotðÔρÞ

∼
Nϵ;δ

HffðÔemÞ
Nϵ;δ

HffðÔρÞ
¼ R½Ôem�2

R½Ôρ�2
: ð5Þ

C. Faults in the circuit

To gain intuition about the performance and costs of QEM,
we need a way to quantify the damages due to noise in the
circuit. Doing this by modeling noise in complete generality
on a quantum system can be challenging (Lidar and Brun,
2013). One useful approximation that is widely employed in
the field of quantum error correction is to model noise as
discrete, probabilistic events named faults that can occur at the

FIG. 1. Probability density distributions of the unmitigated
estimator and the error-mitigated estimator. We see a decrease
of bias and an increase of variance after performing error
mitigation.
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various locations in the circuit including gates, idling steps,
and measurements (Gottesman, 2009; Terhal, 2015). For
simplicity, we assume that all locations are afflicted with
Pauli noise with the error probability of location f given by
pf.

1 If we further assume that the error events in all locations
are independent, then the total probability that there is no fault
in the circuit is given by

P0 ¼
Y
f

ð1 − pfÞ; ð6Þ

which we simply call the fault-free probability of the circuit. It
decays exponentially with the increase in the number of fault
locations in the circuit (and thus the number of qubits and
the circuit depth). Note that the fault-free probability is not the
fidelity of the output state, but it is a lower bound for the
fidelity under our noise assumption.
We can also quantify the amount of noise in the circuit

using the average number of faults in each circuit run, which is
given by

λ ¼
X
f

pf ð7Þ

and is called the circuit fault rate. In the simple case that allM
fault locations in the circuit have the same error rate p, we then
simply have λ ¼ Mp. If the circuit contains a large number
(more than dozens) of fault locations and the circuit fault rate
is of the order of unity λ ∼ 1, then the number of faults
occurring in a given circuit run can be modeled using a
Poisson distribution with mean λ using Le Cam’s theorem
(Le Cam, 1960; Endo, Benjamin, and Li, 2018; Cai, 2021a);
i.e., the probability that l faults occur in the circuit is given
by Pl ¼ e−λλl=l!. In this way, the fault-free probability is
given by

P0 ¼ e−λ; ð8Þ

which decay exponentially with the circuit fault rate. Note that
for the intuitive arguments made in Sec. II.D, and indeed for
general estimation about the feasibility of error mitigation,
approximate estimates of P0 and λ are often good enough to be
useful.

D. Exponential scaling of the sampling overhead

We can perform bias-free QEM if we are able to postselect
for the fault-free circuit runs without needing any additional
circuit components. The fraction of circuit runs that are
selected is simply given by the fault-free probability e−λ in

Eq. (8), which means that we still require eλ times more circuit
runs to obtain the same number of “effective” circuit runs as a
noise-free machine and achieve the same level of shot noise.
Hence, even allowing for the “magical” postselection of fault-
free circuit runs, the sampling overhead Cem ¼ eλ will still
increase exponentially with the circuit fault rate (and thus the
circuit size). This implies a sampling overhead of Cem ∼ 150

when λ ¼ 5 and Cem ∼ 104 when λ ¼ 9, which provides
intuition on why QEM is unlikely to be efficient when the
circuit fault rate is beyond Oð1Þ. This does not constitute a
rigorous bound on the overhead of QEM.
We now move beyond trying to extract the error-free state

and instead focus on obtaining the right expectation value for
the observable of interest. Cai (2021a) and Wang, Fontana
et al. (2021) showed that the expectation value of Pauli
observables under Pauli gate noise is bounded by an expo-
nential decay curve against the increase of the circuit fault rate
λ. To resolve such an exponentially small quantity at large λ,
we need an exponential number of samples [Cem ¼ OðeβλÞ for
some positive β]. This exponential scaling of sample overhead
still applies when we consider error-mitigated estimators that
are linear combinations of the output of such noisy circuits;
see Appendix A.1.a.
For a given noisy circuit with the circuit fault rate λ, rather

than performing active correction to reduce λ in each circuit
run as in quantum error correction, QEM relies on postpro-
cessing the outputs from an ensemble of circuit runs with the
same circuit fault rate λ or above. Hence, through the
aforementioned simple examples, we see that QEM cannot
efficiently tackle noisy circuits with large λ on its own due to
the exponential sampling overhead. However, as we later see,
owing to the much lower implementation cost for QEM in
terms of additional circuit components and qubits, it has
become an effective means of stretching the application
potential of near-term noisy devices and will be a useful tool
to help alongside quantum error correction in the longer term.

III. METHODS

After introducing the overall concept of QEM, we now look
at how the various error-mitigated estimators are actually
constructed by performing different QEM methods.

A. Zero-noise extrapolation

In this section, we make use of noisy states obtained at
different circuit fault rates. The state obtained at the circuit
fault rate λ is denoted as ρλ. The noisy expectation value
Tr½Oρλ� can be viewed as a function of λ. In this way, the ideal
expectation value that we want is simply the value of the
function at λ ¼ 0. Trying to obtain this zero-noise value using
data points at different circuit fault rates brings us to the
concept of zero-noise extrapolation (also called error extrapo-
lation), which was introduced by Li and Benjamin (2017) and
Temme, Bravyi, and Gambetta (2017).
Using λ1 to denote the smallest circuit fault rate that we can

achieve, we can probe Tr½Oρλ� at a range of a boosted error
rate fλmg with λm < λmþ1 to obtain a set of data points
fðλm;Tr½Oρλm �Þg. We can model Tr½Oρλ� using a parametrized

1All of the arguments will still apply if we define 1 − pf as the
coefficient of the error-free part of the Kraus representation of some
general noise (we select the Kraus representation that gives the
largest 1 − pf). In this case, 1 − pf is not the average gate fidelity.
For example, for any nonidentity unitary channel 1 − pf will always
be 0, which is not the case for the average gate fidelity. More
generally we can always apply Pauli twirling to transform all noise to
Pauli noise such that our arguments become valid.
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function fðλ; θ⃗Þ and fit it to the data points to obtain a set of

optimal parameters θ⃗�. The error-mitigated estimate of the
zero-noise output Tr½Oρ0� is then given by

E½Ôem� ¼ fð0; θ⃗�Þ:

A simple illustration of zero-noise extrapolation is shown
in Fig. 2.
If λ is small, Temme, Bravyi, and Gambetta (2017) showed

that Tr½Oρλ� can be approximated using a polynomial function
in the same spirit as a truncated Taylor expansion,

Tr½Oρλ� ≈ fðλ; θ⃗Þ ¼
XM−1

l¼0

θl
λl

l!
: ð9Þ

In Eq. (9) we have a polynomial of degree M − 1 that has M
different free parameters, and the zero-noise estimate that we

want is θ�0 ¼ fð0; θ⃗�Þ. The simplest case is linear extrapolation
with M ¼ 2 (Li and Benjamin, 2017). If we try to fit Eq. (9)
with M data points, which is the minimal number of data
points needed, we can perform Richardson extrapolation as
discussed by Temme, Bravyi, and Gambetta (2017). The
corresponding error-mitigated estimate obtained using the set
of data points fðλm;Tr½Oρλm �Þg is (Giurgica-Tiron et al.,
2020)

E½Ôem� ¼ θ�0 ¼
XM
m¼1

Tr½Oρλm �
Y
k≠m

λk
λk − λm

: ð10Þ

The bias in our estimate is due mostly to our omission of the
higher degree terms in the polynomial approximation, and
thus we should expect that bias½Ôem� ¼ OðλMÞ.
The error-mitigated expectation value in Eq. (10) is a linear

combination of the set of noisy expectation values fTr½Oρλm �g;
thus, it can be estimated using the Monte Carlo sampling

method (see Appendix A.1), and the corresponding sampling
overhead for Richardson extrapolation is given by

Cem ∼
�XM

m¼1

����Y
k≠m

λk
λk − λm

����
�

2

: ð11Þ

We see that if any of the probed circuit fault rates λm are too
large or the gap between any two data points jλm − λkj is too
small, thenCem will blow up and the extrapolation will become
infeasible. For the simple case of equal-gap Richardson
extrapolation (λm ¼ mλ1), the sampling overhead in Eq. (11)
becomes Cem ∼ ð2M − 1Þ2, which grows exponentially with
the number of data points M. The example here is mainly for
illustrating the scaling behavior of the sampling overhead. In
practice, Richardson extrapolation usually takes amore general
data gapΔwith data points at λm ¼ λ1 þ ðm − 1ÞΔ. Evenmore
sophisticated Richardson extrapolation beyond the equal-gap
variant is possible, which can reduce the sampling overhead
(Krebsbach, Trauzettel, and Calzona, 2022).
As mentioned, theoretically Richardson extrapolation will

be valid only for small λ due to the approximation that wemade
in Eq. (9). However, a recent experiment by Kim, Wood et al.
(2023) showed that Richardson extrapolation can be effective
at large λ in practice. They performed a 26-qubit simulation of
the 2D transverse field Ising model in the limit of strong
entanglement and showed that the error-mitigated evolution of
the magnetization is competitive in comparison to standard
tensor network methods. To look for an extrapolation method
that is naturally compatiblewith large λ, we can consider a large
circuit with Pauli noise. Such a circuit in the limit of λ → ∞will
become a random circuit with zero expectation value for
bounded traceless observables, as mentioned in Sec. II.D. A
polynomial extrapolation function diverges at λ → ∞ and thus
does not fit the aforementioned intuition, which leads to
extrapolation schemes that use an exponential decay curve
or even a multiexponential decay curve instead. Exponential
extrapolation has proven to be able to achieve smaller biases
than Richardson and more generally polynomial extrapolation
in some numerical simulations and cloud experiments (Endo,
Benjamin, and Li, 2018; Giurgica-Tiron et al., 2020), espe-
cially for Pauli noise (Cai, 2021a). Note that, going beyond
Richardson extrapolation, the error-mitigated estimator
obtained through least-squares fitting often does not have a
closed-form representation, and thus there are not yet analytical
expressions for their biases and variance in most of the cases. It
is possible to combine exponential and Richardson extrapola-
tion by performing Richardson extrapolation on the function
eλTr½Oρλ� instead of Tr½Oρλ�, which can give explicit bounds
on the sampling overheads and biases (Cai, 2021b).
When we try to boost the noise in the circuit, we must know

the exact factor of increase in the circuit fault rate. Ideally, we
want to increase the error strength in the various fault locations
without changing their error models, which can be challenging
to implement in experiments. Temme, Bravyi, and Gambetta
(2017) showed that under the assumption that the noise
was time invariant, the noise could be effectively amplified
by stretching and recalibrating the gate pulses, which was
demonstrated on a superconducting platform (Kandala et al.,
2019). When targeting only single-qubit gate errors, these

FIG. 2. Error-mitigated estimate obtained using zero-noise
extrapolation. We perform extrapolation using three noisy expect-
ation values at the circuit fault rate of λ ¼ 0.5, 1, and 1.5, where
0.5 is the lowest circuit fault rate that we can achieve and the other
two values are obtained by boosting the noise in the device.
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experiments can successfully perform Richardson extrapola-
tion up to the fourth order, highlighting the accuracy of the
noise amplification. Rescaling noise for two-qubit cross-
resonance gates in these architectures can be more challenging
due to reasons like more complicated drive Hamiltonians and
drive-dependent coherence times (Chow et al., 2011).
Nevertheless, pulse-stretching experiments with slowed-down
two-qubit cross-resonance gates have been shown to be
effective with linear extrapolation (Kandala et al., 2019),
most recently demonstrated in experiments with up to 26
qubits and a depth of 120 (Kim, Wood et al., 2023).
Alternatively, Dumitrescu et al. (2018), Giurgica-Tiron

et al. (2020), and He et al. (2020) tried to boost the circuit
fault rate by inserting a sequence of abundant gates that are
equivalent to the identity if operated noiselessly. This is easier
to implement and calibrate than the pulse-stretching method.
However, while this will work well with depolarizing gate
noise, it may change the gate error model for more general
gate noise such that the factor of increase in the error strength
is no longer well defined (Kim, Wood et al., 2023). To address
this, Henao, Santos, and Uzdin (2023)replaced the gate-based
inverse with a pulse-based inverse that is applicable beyond
depolarizing noise. They also adapted the weights of the
noise-amplified circuits to the strength of the noise in order to
extend beyond the weak noise assumption in Richardson
extrapolation. Note that for both pulse stretching and gate
insertion, an M-time increase in the noise strength might lead
to an up toM-time increase in the circuit run-time. If the error
models at the various fault locations are completely known, Li
and Benjamin (2017) suggested that it is possible to con-
trollably amplify the noise by probabilistically inserting gates
to simulate the faults. In fact, as noted first by Cai (2021a) and
later by Mari, Shammah, and Zeng (2021), it would be more
efficient to use these probabilistically inserted gates to
perform probabilistic error cancellation instead (Sec. III.B),
which yields new data points at reduced error strength.
Learning a representative noise model can be challenging
for large-scale devices, especially for correlated noise.
Owing to the simplicity of zero-noise extrapolation, it is one

of the most widely implemented QEMmethods. Recently Kim
et al. (2023) simulated the time dynamics of the Ising model up
to a circuit size of 127 qubits and 60 layers of two-qubit gates,
and with the help of zero-noise extrapolation they are able to
produce results in agreement with state-of-the-art classical
simulations for that circuit size (Begušić and Chan, 2023;
Kechedzhi et al., 2023; Tindall et al., 2023). In addition to the
aforementioned experiments, it was also successfully demon-
strated in awide range of other experiments, especially through
cloud platforms (Klco et al., 2018; Garmon, Pooser, and
Dumitrescu, 2020; Keen et al., 2020; Tacchino et al., 2020;
Yeter-Aydeniz, Pooser, and Siopsis, 2020).

B. Probabilistic error cancellation

An alternative quantum error-mitigation method referred to
as probabilistic error cancellation was introduced by Temme,
Bravyi, and Gambetta (2017). A particular feature of this
method is that it can fully remove the bias of expectation
values of generic quantum circuits (bias½Ôem� ¼ 0). This
comes at the expense of a sampling overhead Cem that grows

exponentially with the circuit fault rate λ. The key idea is
noting that the noise-free expectation value can be written as a
linear combination of expectation values from a set of noisy
quantum circuits. This real-valued, linear combination can be
interpreted as a quasiprobability decomposition that can be
sampled (cf. Appendix A.1), according to a Monte Carlo
procedure. In this review we formalize the method using the
superoperator representation (Gilchrist, Terno, and Wood,
2011), in which density matrices ρ are vectorized into jρ⟫
and quantum channels are written as matrices acting on jρ⟫,
denoted using a script font like U. Taking the trace with the
observable O is then written as the inner product with the
vectorized observable Tr½Oρ� ¼ ⟪Ojρ⟫. In this section, we
employ this representation over the standard density matrix
formalism for clearer representations of the linear combination
and decomposition of a set of noisy quantum circuits.
To construct an estimator for an ideal channel U from noisy

operations, we need to choose a set of noisy basis operations
fBng that we can implement in the physical hardware. These
operations are, for example, noisy gates, state preparation
operations, and measurements. These operations are assumed
to be learned from the noisy hardware in experiments through
some form of tomography. An example of a complete set of
basis operations was discussed by Endo, Benjamin, and Li
(2018). With a sufficiently large basis, we can decompose the
ideal operation into

U ¼
X
n

αnBn; ð12Þ

with real coefficients αn. Some of the coefficients αn in
Eq. (12) can be negative, which means that this decomposition
does not necessarily correspond to a probabilistic mixture of
physical maps. The expansion therefore is often not a physical
map that can be implemented directly. However, if we are
applying U on some input state ρin in order to measure some
observable O and obtain the ideal expectation value
Tr½Oρ0� ¼ ⟪Ojρ0⟫, then the ideal expectation value can be
decomposed into

⟪Ojρ0⟫ ¼ ⟪OjUjρin⟫ ¼
X
n

αn⟪OjBnjρin⟫; ð13Þ

i.e., the ideal expectation value ⟪OjUjρin⟫ can be decomposed
into a linear combination of noisy expectation values
f⟪OjBnjρin⟫g that we can obtain individually.
When the expansion in Eq. (13) has many terms, the

linear combination of noisy expectation values in Eq. (13) can
be estimated using the Monte Carlo sampling method
(Appendix A.1). The method samples different basis oper-
ations Bn according to their weight in the expansion (i.e., the
noisy circuit corresponding to Bn is chosen with the proba-
bility jαnjQ−1, where Q ¼ P

njαnj), and the circuit output is
multiplied by sgnðαnÞQ before being used to estimate the
error-mitigated expectation value E½Ôem�. This multiplicative
factor leads to an increase in the variance and, correspond-
ingly, to a sampling overhead [given by Eq. (A4)]

Cem ∼Q2 ¼
�X

n

jαnj
�

2

: ð14Þ
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In practice, we can often implement the noisy version of the
target operation, denoted as Up, which can be written as
Up ¼ ð1 − pÞU þ pN , where p is the operation error rate and
N is the noise element. It can be rewritten as

U ¼ 1

1 − p
Up −

p
1 − p

N : ð15Þ

Comparing Eq. (15) to Eq. (12), we see that Up is one of the
basis operations Up ¼ B1. In the simple case that N is also
one of the basis operations that we can implement N ¼ B2,
the sampling overhead for removing the noise in Up is
given by

Cem ∼Q2 ¼
�

1

1 − p
þ p
1 − p

�
2

¼
�
1þ p
1 − p

�
2

: ð16Þ

More generally N must be decomposed into the rest of the
basisN ¼ P

n≠1wnBn. For the common scenario in which Up

suffers from Pauli noise and we can perform high-fidelity
Pauli gates to be used as our basis fBng, the sampling
overhead is still given by Eq. (16).
Thus far we have used the basis set to cancel out the noisy

componentN inUp ¼ ð1 − pÞU þ pN . Alternatively, there is
another means of decomposition to effectively “invert” the
noise channel Ep inUp ¼ EpU as discussed byTemme, Bravyi,
and Gambetta (2017) and Endo, Benjamin, and Li (2018), and
its resultant sampling overhead is similar. However, this noise-
inversion implementation requires inserting additional oper-
ations after every noisy operation, and thuswemight need up to
twice the original circuit run-time.
To perform the previously described error cancellation, we

need to have the full description of the noisy operation Up.
This can be efficiently characterized only for individual local
gates. Any circuit we want to implement can be decomposed
into a sequence of M ideal gates fUmg, and the ideal
expectation value to obtain will be

⟪Ojρ0⟫ ¼ ⟪Oj
YM
m¼1

Umjρin⟫:

As in Eq. (13), we decompose the individual gates into the
noisy basis using Eq. (12),

⟪Ojρ0⟫ ¼ E½Ôem� ¼ ⟪Oj
YM
m¼1

�X
nm

αmnmBnm

�
jρin⟫

¼
X
n⃗

αn⃗⟪OjBn⃗jρin⟫; ð17Þ

where n⃗ ¼ fn1; n2;…; nMg is the set of labels for a sequence
of basis elements and we have defined Bn⃗ ¼

Q
M
m¼1Bnm ,

αn⃗ ¼
Q

M
m¼1αmnm , and Q ¼ P

n⃗jαn⃗j. Note that the set of noisy
basis elements fBng here includes the basis for all the gates in
the circuit; it is thus overcomplete and contains the noisy
version of all of the target gates. Again we can obtain samples
of Ôem using Monte Carlo sampling as previously discussed

with the label of a single basis n replaced by the label of a
sequence of basis n⃗.
The overall sampling overhead of mitigating the errors in

the entire circuit is simply the product of the sampling
overhead of each gate. As explored by Temme, Bravyi, and
Gambetta (2017) and subsequently by Endo, Benjamin, and
Li (2018), if we assume all of the gates suffer from Pauli noise
with the same error rate p, the circuit size M is large and the
circuit fault rate λ ¼ Mp is finite, then taking the product of
the gate-level sampling overhead in Eq. (16) gives

Cem ¼
YM
m¼1

�
1þ p
1 − p

�
2

≈ e4Mp ¼ e4λ: ð18Þ

In fact, the overhead here is still valid even if the gates in the
circuit have different error rates, as long as the circuit faults
follow a Poisson distribution; see Sec. II.C. More generally, as
discussed first by Cai (2021a) and later by Mari, Shammah,
and Zeng (2021), it is possible to apply probabilistic error
cancellation only partially. When the resultant circuit fault rate
is denoted as λem, the corresponding sampling cost is simply
Cem ¼ e4ðλ−λemÞ, which grows exponentially with the reduction
in the circuit fault rate.
As mentioned, to be able to perform the decomposition in

Eq. (12) we need to have a set of basis elements that span the
ideal operations, and full characterization of this basis. Endo,
Benjamin, and Li (2018) showed that such a basis can be
constructed using single-qubit Clifford gates and Z measure-
ments with reasonable fidelity, while the characterization can
be carried out efficiently using gate set tomography. In
practice we usually supplement this set of basis elements
with the noisy version of the target operation, such that it is
overcomplete as discussed. Only noisy operations with local
noise can be efficiently characterized using the aforemen-
tioned protocol.
A recent experimental implementation of the probabilistic

error cancellation method used a correlated Pauli-noise model
that is supported over the full gate layer on the device (Van den
Berg et al., 2023). The noise model is given in terms of a
sparse Pauli Lindbladian LðρÞ ¼ P

kλkðPkρPk − ρÞ for a set
of Pauli matrices Pk, which can be efficiently learned for a
polynomial number of Pauli terms (usually low-weight Pauli
terms). Although the noise model is correlated across the full
circuit, it can be inverted efficiently and its quasiprobability
distribution can be sampled exactly. A similar approach was
also adopted by Ferracin et al. (2022), who used cycle
benchmarking to characterize the low-weight correlated
Pauli-noise components for performing probabilistic error
cancellation. It is also possible to mitigate these correlated
noise components by performing noise characterization using
matrix product operators (Guo and Yang, 2022) or with the
help of learning-based methods (Strikis et al., 2021), as
discussed in Sec. III.H.
From Eqs. (12) and (14), we see that the sampling over-

head of probabilistic error cancellation is highly dependent on
the basis that we choose. For the standard basis proposed by
Endo, Benjamin, and Li (2018), it will perform well when
the gates in the circuit suffer from Pauli noise (which
can be achieved via Pauli twirling). Going beyond that,
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Takagi (2021) derived a lower bound for the sampling
overhead under general noise models. Such a lower bound
on the sampling overhead has proven to be a good measure for
many properties of the noise channel that we try to mitigate
(Jiang, Wang, andWang, 2021; Regula, Takagi, and Gu, 2021;
Guo and Yang, 2023), but the basis required to reach this
lower bound may not be implementable using the given
hardware. To find a better practical basis beyond the standard
basis, Piveteau, Sutter, and Woerner (2022) proposed using
variational circuits to construct the basis and numerically
tested this using real hardware noise models. For actual
experiments, probabilistic error cancellation was successfully
demonstrated by Song et al. (2019) and Zhang et al. (2020) on
superconducting and trapped-ion platforms. Sun et al. (2021)
showed that probabilistic error cancellation can also be
applied to continuous noise processes, for which partial
mitigation is possible by expanding the noise process into
a perturbation series (Hama and Nishi, 2022). It is also
possible to use the non-Markovianity in noise to reduce the
sampling cost (Hakoshima, Matsuzaki, and Endo, 2021).

C. Measurement error mitigation

Depending on the error-mitigation procedure, it is neces-
sary to make a distinction between the types of errors that
occur during a calculation. Errors that occur during the state
preparation and measurement (SPAM) stage are referred to as
SPAM errors (Merkel et al., 2013; Lin et al., 2021). The error
that occurs at the final measurement stage introduces an
additional bias in the expectation value of interest. To put this
into a more concrete form, we continue to use the super-
operator representation introduced in Sec. III.B. When we
performmeasurements and obtain the binary string x∈ f0; 1gN
as the output, ideally we want to perform projective mea-
surements in the computational basis f⟪xjg. However, some
measurement noise A might occur and transform the projec-
tive measurements into some positive operator-value measures
(POVM) f⟪Exjg ¼ f⟪xjAg, leading to a different output
statistic.
The origins of the measurement errors are as diverse as the

hardware that is used to implement quantum processors. For
example, a dominant error in the measurement of super-
conducting qubits is due to thermal excitations and T1 decay
(Blais et al., 2004; Wallraff et al., 2004), while for ion traps a
major source of uncertainty arises from the difficulty of
detecting an ion’s dark state and collisions in the trap
(Bergquist et al., 1986; Nagourney, Sandberg, and Dehmelt,
1986; Sauter et al., 1986). Other architectures experience noise
in the measurement stage from different sources (Haroche and
Raimond, 2006). From the perspective of the measurement
error protocols most frequently considered in the literature, it is
sufficient to consider a simplified model that is agnostic
regarding the actual origin of the noise. This model makes
the assumption that the noise channelA has the computational
subspace f⟪xjjx∈ f0; 1gNg as its invariant subspace; i.e., the
resultant POVM basis f⟪Exjg lives within the computational
subspace. This is not the most general measurement error
model, but it is nonetheless the most frequently considered
model, as other coherent errors are usually assumed to be part of
the computational stage instead of the measurement stage.

Under this assumption, the POVM ⟪Exj can be decomposed
into the computational basis,

⟪Exj ¼
X
y

⟪Exjy⟫⟪yj ¼
X
y

⟪xjAjy⟫⟪yj ¼
X
y

Axy⟪yj: ð19Þ

In Eq. (19) the assignment matrix A is a transition matrix
(stochastic matrix) whose entries ⟪xjAjy⟫ represent the
transition probability from the measurement result y to x
due to the noise channel A (Chow et al., 2010). The entry
Axy ¼ ⟪xjAjy⟫ ¼ ⟪Exjy⟫ can be obtained by estimating the
probability of the x outcome when we prepare the computa-
tional state jy⟫ (assumed to be almost perfect) and perform the
set of noisymeasurements f⟪Exjg. IfA is full rank, thenwe can
invert Eq. (19) and obtain

⟪yj ¼
X
x

A−1
yx ⟪Exj. ð20Þ

That is, we can simulate the behavior of the ideal measurement
f⟪yjg using a linear combination of the noisy measurements
f⟪Exjg, just as we did in probabilistic error cancellation in
Sec. III.B. Hence, the associated sampling overhead will
increase exponentially with the measurement fault rate, as
with Eq. (18) for probabilistic error cancellation.
For an incoming state jρ⟫, the output distribution using the

ideal measurements is given by the vector p⃗0 ¼ f⟪yjρ⟫g,
while the output distribution using the noisy measurements is
p⃗noi ¼ f⟪Exjρ⟫g. Applying Eqs. (19) and (20) on jρ⟫, we
then have

p⃗noi ¼ Ap⃗0 ⇒ p⃗0 ¼ A−1p⃗noi: ð21Þ

For a given observable O with the spectrum O⃗ ¼ fOxg, i.e.,
⟪Oj ¼ P

xOx⟪xj, its ideal expectation value is

⟪Ojρ⟫ ¼ O⃗Tp⃗0 ¼ O⃗TA−1p⃗noi: ð22Þ

Hence, the ideal expectation value can be obtained once
we know the assignment matrix A and the noisy output
distribution p⃗noi.
In early experiments with only a few qubits, Kandala et al.

(2017) performed a full readout tomography of the noisy
output distribution p⃗noi in the computational basis. All entries
of the assignment matrix A were then estimated, which can be
used to calculate the ideal expectation value using Eq. (22).
This approach is not efficiently scalable as the size of A scales
exponentially with the number of qubits N.
The simplest way to tackle the problem is to assume that the

measurement errors of different qubits are not correlated,
which implies that the assignment matrix is simply the tensor
product of the assignment matrices of the individual qubits
A ¼ ⊗N

n¼1An. However, realistic noise encountered in experi-
ments may not be captured accurately by this simplified
model, and it can be observed that correlations between
individual bit flips are in fact present (Heinsoo et al., 2018).
Bravyi et al. (2021) tried to construct the assignment matrix

using continuous-time Markov processes with the generators
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(transition rate matrices) fGig being single- and two-qubit
operators,

A ¼ eG; with G ¼
X2N2

i¼1

riGi: ð23Þ

The assignment matrix A is now determined by 2N2 positive
coefficients frig that can be learned by only considering a
polynomial number of input bit strings. Once the coefficients
are learned, we can easily construct the inverse matrix
A−1 ¼ e−G for error mitigation.
As mentioned in Appendix A.2, we can perform Pauli

twirling on the noise channelA by conjugating it with random
Pauli operators, which will remove all the off-diagonal
elements of A in the Pauli basis and produce a Pauli channel
D. This can be used to simplify measurement error mitigation,
as discussed by Chen et al. (2021) and Van den Berg, Minev,
and Temme (2022). Since we are interested only in the action
ofA on the computational subspace, we need to consider only
Pauli basis elements that are the tensor products of Z denoted
as f⟪Zxjg, with x as the bit string that marks the qubits that are
acted on by Z. Ideally we want to perform the Pauli
measurement ⟪Zxj; however, we can perform only the noisy
measurement ⟪ZxjA. Using Pauli twirling, we can transform
the noisy measurement into

⟪ZxjD ¼ Dx⟪Zxj ð24Þ

using the fact that the twirled channel D is diagonal in the
Pauli basis, with the entries being Dx ¼ ⟪ZxjDjZx⟫ ¼
⟪ZxjAjZx⟫. Thus, the noisy measurement ⟪ZxjD is simply
the ideal measurement ⟪Zxj rescaled by a factor Dx. For a
given input state jρ⟫, we have

⟪Zxjρ⟫|fflfflffl{zfflfflffl}
ideal

¼ D−1
x ⟪ZxjDjρ⟫|fflfflfflfflfflffl{zfflfflfflfflfflffl}

twirled noisy

:

Hence, by transforming the observable into Zx and performing
Pauli twirling, we need to rescale the noisy expectation value
only by a factor D−1

x to obtain the ideal expectation value.
Note that, since conjugation with Z will have trivial effects
within the computational subspace, we need only conjugate
the noise channel with a random operator in fI; Xg⊗N (i.e.,
random bit flips) to achieve the aforementioned effect of Pauli
twirling.
In practice, the ideal output distribution p⃗0 is often sparse.

With weak measurement noise, we would expect the corre-
sponding noisy output distribution p⃗noi to also be sparse and to
have nonzero probability at all positions that are nonzero in
p⃗0. Using this fact, Nation et al. (2021) proposed focusing on
the action of measurement noise A within the subspace
spanned by the basis of p⃗noi with nonzero probability, which
gives an assignment matrix with a much smaller dimension.
The ideal output distribution p⃗0 can then be obtained by
inverting the assignment matrix within this subspace. The
inversion can be sped up by considering a matrix-free
preconditioned iteration algorithm.

Owing to sampling noise, the estimation of the ideal
distribution p⃗0 obtained using matrix inversion in Eq. (21)
may contain negative values and thus is not a valid probability
distribution. However, one is still able to provide an unbiased
expectation value estimate using Eq. (22) (Bravyi et al., 2021).
However, instead of using matrix inversion, one might try to
solve a constrained optimization problem with the cost
function kAp⃗0 − p⃗noik22 such that p⃗0 is a valid probability
distribution. This can be solved using maximum likelihood
(Chen et al., 2019; Geller, 2020; Maciejewski, Zimborás, and
Oszmaniec, 2020) or iterative Bayesian unfolding (Nachman
et al., 2020).
There is a wide range of other techniques for combating

measurement errors. Hamilton et al. (2020) proposed a
representation on cumulant expansion to capture correlations
between observables. Kwon and Bae (2021) looked into the
use of Clifford twirling in the context of measurement error
mitigation. Measurement error protocols that are directly
tailored to calculations of the variational quantum eigensolver
(VQE) type are possible (Barron and Wood, 2020). Other
approaches have proposed the use of final premeasurement
entangling circuits to combat noise (Hicks et al., 2022). Tannu
and Qureshi (2019) proposed exploiting a potential asymme-
try in the noise strength of the assignment matrix A by flipping
bit values into a configuration less likely to be affected by
noise. The experimental observations have been used to train
classical neural networks to infer predictions of the correct
expectation values (Palmieri et al., 2020). As measurement
noise is a major obstacle in almost all experimental setups,
implementation of measurement error mitigation is almost
ubiquitous in all near-term experiments.

D. Symmetry constraints

A simple but effective scheme for suppressing errors is to
identify errors that break the symmetries of the ideal quantum
state and remove them via postselection. This notion origi-
nates from quantum error correction (Gottesman, 1997;
Terhal, 2015), in which we explicitly define a set of mea-
surements to detect and correct all local errors at the cost of
additional qubit overhead. Though explicitly correcting errors
is required for scalability (Shor, 1996), quantum error
detection of artificially added symmetries has been widely
recognized as an important milestone toward this end goal
(Nigg et al., 2014; Córcoles et al., 2015; Kelly et al., 2015;
Gottesman, 2016; Linke et al., 2017). In practical applica-
tions, quantum circuits often possess inherent symmetries that
can be used for error mitigation without the need to execute a
quantum circuit on an error-detection code. Measuring these
inherent symmetries and discarding circuit runs that produce
the wrong results produces a postselected state ρsym. The
broad class of schemes that directly or indirectly measure
Tr½Oρsym� are known collectively as symmetry verification
(Bonet-Monroig et al., 2018; McArdle, Yuan, and Benjamin,
2019). If the symmetry measurements are perfect, ρsym must
have nondecreasing overlap on the ideal state ρ0 compared to
the noisy state ρ, as we have thrown away states with zero
overlap. In practice, symmetry measurements may themselves
introduce errors into the state; thus, choosing the right
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symmetries and optimizing their measurements are at the core
of symmetry verification.
Bonet-Monroig et al. (2018) and McArdle, Yuan, and

Benjamin (2019) proposed various easily accessible sym-
metry operators S for symmetry verification, drawing from
those that naturally emerge in physical systems. In this
context, given a physical system its symmetry operators S
are operators that commute with the system Hamiltonian H:
½H; S� ¼ HS − SH ¼ 0. When this is the case, H and S may
be simultaneously diagonalized, i.e., energy eigenstates jΨji
can be chosen in such a way that SjΨji ¼ sjΨji, where s is an
eigenvalue of S. Thus, measuring S on a prepared quantum
state, and postselecting on the correct symmetry eigenvalue s
for the target energy eigenstate should project one closer to
said energy eigenstate. Furthermore, time evolution by eiHt

leaves the eigenspaces of S invariant, which means that
dynamic properties of the physical system can be studied
entirely within these eigenspaces as well. Common examples
of symmetries are the parity

Q
iZi and the Z component of the

total spin
P

iZi of a spin system, or the particle number
P

ini
of a fermionic system. Note that the Jordan-Wigner trans-
formation maps

P
ini to

P
iZi modulo a constant shift. Given

an N-qubit simulation, the eigensubspaces of these sym-
metries have dimension 2N−1, ð N

ðN−sÞ=2Þ, and ðNsÞ, respectively,
with s as the eigenvalue of the given eigensubspace. With the
right s, these subspaces are large enough to execute classically
intractable quantum algorithms. Note, though, that it is not
necessary to enforce symmetries during an entire circuit in
order to verify them at the end (Dallaire-Demers et al., 2019).
Even when one employs a circuit that does not conserve
the symmetry of the target physical problem, symmetry
verification can still be used for projecting back into the
appropriate spin or number sector (Yen, Lang, and Izmaylov,
2019; Tsuchimochi, Mori, and Ten-no, 2020; Khamoshi,
Evangelista, and Scuseria, 2021), which can be viewed as
mitigating algorithmic errors (Sec. V.C).
As mentioned, the process of direct symmetry verification is

carried out by measuring both the symmetry operators S and
the target observableO in every circuit run and discarding runs
that produce the wrong output for S (i.e., that fail the symmetry
check). Since symmetries S are typically global observables,
measuring them alongside the target observableO is nontrivial.
The additional circuit components required for their measure-
ments can introduce additional errors, reducing or even
nullifying the effect of error mitigation. Various ways to
measure multiple operators (such as the symmetry operator
and the target observable) in the same circuit run are discussed
in Appendix A.3. One way is to use a Hadamard test to
measure a Pauli symmetry like the number parity (Bonet-
Monroig et al., 2018; McArdle, Yuan, and Benjamin, 2019).
Other practical schemes involve measuring qubitwise com-
muting operators (Izmaylov, Yen, and Ryabinkin, 2019), i.e.,
when both S andO can be obtained through postprocessing the
same set of single-qubit Pauli measurements across all qubits;
see Appendix A.3. This implies that if we are using only
single-qubit rotations and readout to perform the measure-
ments, symmetries such as the Z component of the total spinP

iZi or parity
Q

iZi cannot be measured simultaneously with
any operator that is not diagonal in the computational basis.

The issue of qubitwise commutativity presents a specific
problem in chemistry, where the fermion hopping operator
c†i cj þ c†jci (our target observable) commutes with the particle
number

P
ini (the symmetry operator), but not qubitwise. An

identical problem presents in spin physics between the
operators XiXj þ YiYj and

P
iZi. This can be solved by

noting that the rotation

exp

�
i
π

8
ðXiYj − YjXiÞ

�
ð25Þ

maps XiXj þ YiYj to Zi − Zj while leaving Zi þ Zj invariant
(Huggins, McClean et al., 2021). In terms of fermionic
systems, this is the operator eiðπ=2ÞFSWAPi;j, where FSWAP ¼
c†i cj þ c†jci − ni − nj (Google Quantum AI et al., 2020a). In a
spin system, this allows for the joint measurement of hopping
terms and the Z component of the total spin using only a
constant depth circuit (assuming all-to-all coupling).
However, this measurement does not parallelize efficiently:
one can measure hopping terms simultaneously only between
disjoint pairs of qubits, requiring OðNÞ distinct measurements
to estimate all spin-spin hopping terms simultaneously with
the Z component of the total spin. In contrast, without the
requirement to simultaneously measure the total spin-Z
component, all spin-spin hopping terms can be estimated
by only two distinct choices of single-qubit rotation and
readout. In a fermionic system, we need OðNÞ distinct
measurements in the first place for estimating all fermionic
hopping terms due to the lack of mutually commuting terms
(Bonet-Monroig, Babbush, and O’Brien, 2020), so simulta-
neous measurements of the particle number do not represent
significant overhead.
Instead of constructing circuits to simultaneously diago-

nalize and measure the symmetry operators S and the target
observable O, Bonet-Monroig et al. (2018) showed that it is
possible to perform effective postselection via postprocessing
in symmetry verification, which turns out to be closely related
to subspace expansion (McClean et al., 2017); see Sec. III.F.
We now consider the simple example in which there is only a
single Pauli symmetry operator S and where the ideal state
lives within the þ1 eigenspace of S defined by the projector
Π ¼ ð1=2Þð1þ SÞ. In this way, if the state prepared prior to
the postselection is ρ, the postselected state is then

ρsym ¼ ΠρΠ
Tr½ΠρΠ� : ð26Þ

The symmetry-verified expectation value for the target observ-
able O is given by

Tr½Oρsym� ¼
Tr½OΠρΠ�
Tr½ΠρΠ� ¼ Tr½Osymρ�

Tr½Πρ� ; ð27Þ

where Osym ¼ ΠOΠ is the symmetrized observable; i.e., the
verified expectation value Tr½Oρsym� is simply the quotient
between the noisy expectation value of Osym and Π. The
symmetrized observable Osym and the symmetry projector Π
can be further decomposed into the Pauli basis. For instance,
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if O is Pauli, the Pauli decomposition of Osym is simply
Osym ¼ ΠOΠ ¼ ðOþ SOþOSþ SOSÞ=4. In this way, the
expectation values of Osym and Π can be obtained by
measuring the expectation values of these Pauli basis oper-
ators (or via the Monte Carlo sampling in Appendix A.1). In
the previously described method, we need only measure one
Pauli observable in a given circuit run, which can be carried
out using only single-qubit Pauli measurements without
needing additional circuit components. The aforementioned
simple examples can be further generalized to the cases of
multiple symmetries and non-Pauli symmetries with a change
in the definition of the projector Π, reflecting a change in the
symmetry subspace. We can also decompose the observables
into bases beyond the Pauli basis as long as the components
are easy to measure. Instead of combining the measurement
results of the basis to reconstruct the projected observable
Osym and the projector Π, Cai (2021c) showed that it is
possible to achieve smaller biases by combining these
measurement results with different weights, at the cost of
larger sampling overhead.
Note that as we try to describe different ways of performing

the aforementioned symmetry verification, we clearly separate
postselection from postprocessing (for a clear distinction
between different methods) even though postselection is
technically a specific type of postprocessing in the most
general context of QEM.
For direct in-circuit symmetry verification, the fraction of

circuit runs that are “useful” is simply the “pass rate” of the
symmetry checks given by Tr½Πρ�. The corresponding sam-
pling overhead is simply the inverse of this pass rate:
Cem ∼ Tr½Πρ�−1. The fault-free postselection discussed in
Sec. II.D can be viewed as the ideal symmetry verification
that can detect all faults. It can achieve zero bias, but
correspondingly its sampling overhead also sets the upper
bound for all possible direct symmetry verification. As dis-
cussed, we can greatly simplify the measurement circuit
through postprocessing, but this will come at a higher sampling
overhead, which scales as Cem ∼ Tr½Πρ�−2 (Cai, 2021c;
Huggins, McClean et al., 2021).
Though it is simplest to rely on the native symmetries of a

system for the purpose of error mitigation, one can consider
adding more symmetries artificially or unitarily transforming a
system to improve the error-mitigation power of a set of
symmetries. This is important, as symmetry-based methods
cannot mitigate against errors that commute with all sym-
metries of the system. Bonet-Monroig et al. (2018) showed
that one can unitarily transform chemistry Hamiltonians such
that no single-qubit operator commutes with all symmetries,
and that this can be preferable even to removing qubits from
the system. They also described a basic scheme to add
artificial symmetries to a system. However, this scheme makes
local system operators highly nonlocal and thus is relatively
unscalable.
A solution to the aforementioned problem was found in the

Bravyi-Kitaev superfast transformation, where artificial sym-
metries are used to transform local fermionic Hamiltonians to
local qubit Hamiltonians (Bravyi and Kitaev, 2002; Setia and
Whitfield, 2018). These symmetries are necessary for imple-
menting a geometrically local fermion-to-qubit transformation

in more than one dimension, and at the same time they provide
a natural boon for symmetry-based QEM. The list of fermion-
to-qubit transformations has seen significant development and
optimization in recent years (Steudtner and Wehner, 2018,
2019; Setia et al., 2019), with attempts to optimize the number
of local errors that can be mitigated (Jiang et al., 2019; Derby
and Klassen, 2021). Jiang et al. (2019) pointed out that this
need not be constrained to fermionic lattice models: Since
time evolution on a fermionic system can be mapped to a
series of operations that are local on a lattice (without any
asymptotic growth in the circuit depth), one can implement
this using a mapping intended for a local fermionic lattice
without having some system observables become extensively
large. Jiang et al. (2019) further found an encoding (the
“Majorana loop stabilizer code”) that can mitigate or even
correct all single-qubit errors, making it in effect an error
correcting code of distance 3. However, the Eastin-Knill
theorem suggests that these methods cannot be extended to
construct codes of arbitrarily large distances (Eastin and
Knill, 2009).
Encoding the qubits into QEC codes is also a way to add

artificial symmetry. Performing direct in-circuit verification in
this case is simply quantum error detection. However, if the
symmetries (stabilizers) of the code are hard to directly
measure due to high weight or connectivity constraints, then
as discussed one can instead perform postprocessing verifi-
cation for QEC codes (McClean et al., 2020). This was later
extended to include midcircuit stabilizer checks (Tsubouchi
et al., 2023) and bosonic codes (Endo et al., 2022).
A large number of experiments have demonstrated stabi-

lizer measurements in error correction codes throughout the
2010s (Nigg et al., 2014; Córcoles et al., 2015; Kelly et al.,
2015; Linke et al., 2017; Vuillot, 2018). However, to our
knowledge the first experimental demonstration of symmetry
verification using natural symmetries (

Q
iZi) in a quantum

algorithm was by Sagastizabal et al. (2019) through post-
processing, as low-cost techniques to measure natural sym-
metries were not previously known. Later Google Quantum
AI et al. (2020a) made direct simultaneous measurement of
the number operator and the fermionic one-particle reduced
density matrix (1RDM) using the FSWAP rotation [Eq. (25)]
and combined this with McWeeny purification (Sec. III.E).
Stanisic et al. (2022) successfully demonstrated the verifica-
tion of multiple symmetries (number, particle-hole symmetry,
and total spin) and also combined it with learning-based
methods (Sec. III.H). Owing to the simplicity and effective-
ness of symmetry verification, it has been employed in a wide
range of other experiments (Google Quantum AI et al., 2020b,
2022; Neill et al., 2021; Dborin et al., 2022; Stanisic
et al., 2022).

E. Purity constraints

Many quantum algorithms target the preparation of an ideal
state ρ0 that is pure: ρ0 ¼ jψ0ihψ0j. Many common noise
channels are stochastic, which will turn our ideal pure state ρ0
into some noisy mixed state ρ. At a high level, error-mitigation
techniques based on purity constraints attempt to reduce the
bias in the expectation value by trying to approximate the pure
state closest to ρ. If we look at the spectral decomposition of ρ,
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ρ ¼
X2N
i¼1

pijϕiihϕij; ð28Þ

where the eigenvalues are ordered pi ≥ pj for i < j and we
assume that p1 > p2 for simplicity, then the closest pure state
to ρ in the trace distance is simply the dominant eigenvector
jϕ1ihϕ1j. In principle, one could use the quantum principle
component analysis to sample from the eigenbasis of ρ
(Lloyd, Mohseni, and Rebentrost, 2014). Combined with
postselection this would allow for the efficient preparation
of the dominant eigenvector. However, the additional circuit
required is too deep for mitigating errors in near-term devices,
and thus simpler strategies are needed.
One such strategy, referred to as virtual distillation (VD)

(Huggins, McArdle et al., 2021) or error suppression by
derangement (ESD) (Koczor, 2021b), uses collective mea-
surements of M copies of ρ in order to access expectation
values with respect to the Mth degree purified state

ρðMÞ
pur ¼ ρM

Tr½ρM� ¼
1P

2N

i¼1 p
M
i

X2N
i¼1

pM
i jϕiihϕij: ð29Þ

We see that, under the assumption that p1 is strictly greater

than p2, we have limM→∞ρ
ðMÞ
pur ¼ jϕ1ihϕ1j. The rate at which

this is achieved is exponential in the number of copies used for
purification M. The remaining bias in the VD or ESD
estimator at M → ∞ comes from the deviation between
jϕ1ihϕ1j and the target state ρ0, which is sometimes known
as the coherent mismatch or noise floor (Huggins, McArdle
et al., 2021; Koczor, 2021b). As the largest sources of noise in
state-of-the-art quantum devices are typically incoherent, this
coherent mismatch can be expected to be significantly smaller
than the error in the unmitigated state. Indeed, numerical and
analytic studies have confirmed that the error suppression
from VD or ESD can be of multiple orders of magnitude for
large systems, even using as little asM ¼ 2 copies of the state
(Huggins, McArdle et al., 2021; Koczor, 2021a, 2021b).
It was shown by Huggins, McArdle et al. (2021) and

Koczor (2021b) that one can estimate expectation values of the
purified states in Eq. (29) without ever having to prepare them
on a quantum device. The expectation value of this purified
state with respect to the observable of interest O is

Tr½OρðMÞ
pur � ¼ Tr½OρM�=Tr½ρM�. In VD or ESD, this is obtained

by estimating Tr½OρM� and Tr½ρM� in separate measurements.
If we let SM be the cyclic permutation operator between M
copies of ρ, the quantity Tr½OρM� can be estimated using

Tr½OρM� ¼ Tr½SMOmρ
⊗M� ¼ Tr½SMŌρ⊗M�; ð30Þ

where Om is the operator O acting on the mth copy and Ō ¼
ð1=MÞPmOm is the observable symmetrized under copy
permutation. Thus, Tr½OρM� can be obtained by measuring
SMOm or SMŌ onM noisy copies of ρ. A diagrammatic proof
of Eq. (30) is shown in Fig. 3. One can extend this to estimate
Tr½ρM� by putting I in the place of O.
Measuring a global operator like SM can be challenging, but

it can be decomposed into transversal operations among

different copies SM ¼⊗N
n¼1 S̃

ðnÞ
M , where S̃ðnÞM cyclically per-

mute the nth qubits of different copies as shown in Fig. 4. If
the observable O acts on a single qubit, then the symmetrized

observable Ōwill commute with all S̃ðnÞM (and thus SMŌ can be

obtained by measuring low-weight operators S̃ðnÞM and Om for
all n and m) and then postprocess. This requires only trans-
versal operations among the identically labeled qubits of each
copy of ρ, thereby avoiding global measurement. Explicit
circuits for O ¼ Z and M ¼ 2 and 3 without ancilla qubits
were given by Huggins, McArdle et al. (2021); more general
measurements can be achieved with Hadamard tests using
ancilla qubits (Huggins, McArdle et al., 2021; Koczor,
2021b). If the observable O is not single qubit but rather is
a tensor product of single-qubit operators, O ¼⊗N

n¼1 G
ðnÞ (for

instance, O is Pauli), then the observable SMOm in Eq. (30)
can be decomposed into a tensor product of low-weight

operators ⊗N
n¼1 S̃

ðnÞ
M GðnÞ

m that can be measured in a transversal
manner (Cai, Siegel, and Benjamin, 2023). We can use

Hadamard tests to measure each S̃ðnÞM GðnÞ
m , which requires N

ancilla qubits in total. To efficiently carry out any of the
aforementioned low-weight measurement schemes, we need
transversal operations among different copies, which can be
challenging to implement in practice and may involve long-
range interactions. A hardware architecture with native trans-
versal operations among different copies was proposed (Cai,
Siegel, and Benjamin, 2023) in which an implementation of
VD or ESD is shown with almost no space-time overhead.

FIG. 3. Diagrammatic proof of Eq. (30) for three copies
(M ¼ 3) with the observable acting on the first copy (m ¼ 1).
The proof uses tensor network notations (Bridgeman and Chubb,
2017) and can be easily extended to more copies and/or with O
acting on the mth copy rather than the first.

FIG. 4. Decomposition of the copy-swap operator S2 into
transversal qubit-swap operators S̃2. A similar decomposition
also applies to other cyclic copy-permutation operators SM
with M > 2.
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In the more general case, one can imagine either unitarily
transforming O to a single-qubit observable (if possible) or
linearly decomposing it into a sum of simpler terms (which is
always possible). One could additionally imagine decompos-
ing SMOm or SMŌ into a linear combination of Pauli operators
and measuring the entire set of operators using shadow
tomography (Huang, Kueng, and Preskill, 2020; Hu et al.,
2022; Seif et al., 2023). This has the advantage that one can
reuse a single copy of ρ rather than using multiple physical
copies. However, the sampling cost in this case scale expo-
nentially with the number of qubits and thus may be difficult
to scale beyond small system sizes (Seif et al., 2023).
Instead of estimating Tr½Oρ2� using two copies of ρ

separated in space, it is possible to do the estimation using
two copies separated in time. This technique has been given
multiple names since its initial incarnation (Cai, 2021d;
O’Brien et al., 2021; Huo and Li, 2022), but here we refer
to it as echo verification (EV). To perform EV, we ideally want
to measure the ideal state projector ρ0 ¼ jψ0ihψ0j at the end of
the circuit for postselection, which returns 1 if the output state is
the ideal state and 0 otherwise, just like a symmetry check. The
measurement of the projector ρ0 is carried out by applying the
inverse of the primary circuit (O’Brien et al., 2021), and the
noise in the inverse circuit means that we are effectively
measuring the noisy operator ρ̄ instead of ρ0. If we measure
the observable of interestO along with the noisy projector ρ̄ in
the same circuit run and postselect according to the outcome of
ρ̄, we are effectively performing a measurement of O on the
state ðρ̄ρþ ρρ̄Þ=2Tr½ρ̄ρ� (Huo and Li, 2022). Compared to
Eq. (29), we see that this is simply the second-degree purified
statewith ρ̄ in the place of ρ. Themeasurement ofO alongside ρ̄
is usually carried out using a Hadamard test (O’Brien et al.,
2021). Alternatively, it is possible to achieve a similar degree of
error suppression without the ancilla by preparing a super-
position of ρ0 with a known eigenstate of O and applying the
gate O on the quantum state (assuming that O is unitary) (Lu,
Bañuls, and Cirac, 2021; O’Brien et al., 2021), though this is
not formally equivalent to second-degree purification. The
error-mitigation power of EV has been demonstrated in
numerical simulation (O’Brien et al., 2021) and a four-qubit
experiment (Huo and Li, 2022). The results differ depending on
the exact circuit implementation of the methods, even in
simplified noise models (O’Brien et al., 2021), indicating that
further optimizing the circuit implementation could be an
interesting direction to investigate. Gu et al. (2023) recently
proved that applying EV to control-free phase estimation (Lu,
Bañuls, and Cirac, 2021; O’Brien et al., 2021; Russo et al.,
2021) corrects any noise source with Hermitian Kraus oper-
ators to first order.
Owing to their similarity, EV and VD or ESD are directly

comparable in terms of performance and resource requirements.
If one wants to suppress the incoherent contributions of ρ
beyond second-degree purification, then one canonly useVDor
ESD instead of EV. However, EV has a smaller qubit footprint
and requires less circuit overhead for measurement (especially
as it removes the need to perform operations across multiple
copies of the same state). In fact, EV can be combined with VD
or ESD to achieve a high degree of purification with a lower
qubit and circuit overhead (Cai, 2021d). There is also a

difference between these two approaches in terms of their
sampling overhead, similar to the difference between the
sampling overhead of direct and postprocessing symmetry
verification (Sec. III.D). For EV, the error mitigation is done
through direct postselection, and thus the sampling overhead is
simply the inverse of the success probability Cem ∼ Tr½ρ̄ρ�−1∼
Tr½ρ2�−1. For the two-copy version of VD or ESD, the error
mitigation is done through effective postselection (postprocess-
ing), and thus the sampling overhead increases more steeply,
scaling asCem ∼ Tr½ρ2�−2. More generally, the sampling cost of
VD or ESD scales exponentially in the number of copiesM (as
Tr½ρM� is exponentially small inM unless ρ is pure). If the faults
in the circuit follow a Poisson distribution (Sec. II.C), we then
have Tr½ρ2�≲ P2

0 ¼ e−2λ, where P0 is the fault-free probability
of the circuit and λ is the circuit fault rate. This suggests that both
EV and VD or ESD can incur a sampling cost growing
exponentially with the circuit fault rate, as we discussed for
general bias-free QEM in Sec. II.D. Furthermore, both methods
(in their standard form) lack the parallelizability of unmitigated
expectation value estimation. As mentioned, VD or ESD
typically estimates expectation values of only N operators
(rather than their products). EV is restricted further; Polla,
Anselmetti, and O’Brien (2023) showed that EV cannot be
efficiently parallelized for even commuting observables, reduc-
ing the information extracted by the method to a single bit per
state preparation. Though this can be significantly optimized
over a simple Pauli decomposition of a complex O (Polla,
Anselmetti, and O’Brien, 2023), it presents roughly an OðNÞ
overhead in sampling compared to VD or ESD.
The original formulation of EV in terms of projection on the

initial state gives a clear connection between purification- and
(symmetry) projection-based techniques (Sec. III.D). Though
they are not equivalent, this raises the question of whether a
similar connection can be made to VD or ESD. A connection
was originally made by Huggins, McArdle et al. (2021), who
pointed out that in the eigenbasis fjϕjig of ρ the swap
operator measurement has zero expectation value on terms in
ρ ⊗ ρ except for those of the form jϕjihϕjj ⊗ jϕjihϕjj. Cai
(2021c) showed that VD and ESD can naturally arise from the
verification of copy-permutation symmetry by replacing the
symmetry projector with a general linear combination of
permutation operators, which is also connected to subspace
expansion using symmetry operators (as discussed in
Sec. III.F). Yoshioka et al. (2022) further exploited the
connection between VD or ESD and subspace expansion
and looked at the effect of performing error mitigation using a
linear combination of states with different degrees of purifi-
cation. Both EV and VD or ESD were successfully imple-
mented experimentally by O’Brien et al. (2023), where they
performed variational ground state energy estimations up to
20 qubits (two copies of ten-qubit states for VD or ESD) and
achieved 1 to 2 order of magnitude error reductions by
applying these QEM methods.

F. Subspace expansions

In some quantum tasks, one has knowledge of not only the
ideal circuit and potential noise sources but also the structure
of the task at hand. One such class of methods that can take
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advantage of the knowledge on the problem are quantum
subspace expansion techniques (McClean et al., 2017, 2020;
Takeshita et al., 2020). Many tasks in quantum computing,
such as optimization or state preparation, can be phrased as the
desire to minimize the objective function hψ jHjψi with
respect to the state jψi for a known Hermitian operator H.
Often we are unable to directly prepare the optimal state, due
to either a coherent error in our implementation of the ideal
circuit or a simple lack of knowledge of the ideal circuit.
However, there is usually a set of M different states fjϕiig
(linearly independent but not necessarily orthogonal to each
other) that we can easily prepare, which can be used to
construct our target state through linear combination
jψ w⃗i ¼

P
M−1
i¼0 wijϕii. In this way, the problem of finding

the optimal state becomes finding the optimal set of coef-
ficients w⃗�,

w⃗� ¼ argmin
w⃗

hψ w⃗jHjψ w⃗i such that hψ w⃗jψ w⃗i ¼ 1: ð31Þ

This has the well-known exact solution in the form of a
generalized linear eigenvalue problem

H̄W ¼ S̄WE; ð32Þ

where

H̄ij ¼ hϕijHjϕji; S̄ij ¼ hϕijϕji. ð33Þ

That is, H̄ is the M ×M matrix representation of H in the
chosen basis set fjϕiig and S̄ is the overlap matrix for the
basis set. In Eq. (32),W and E are the matrices of eigenvectors
and eigenvalues, respectively, of the solved problem. The
eigenvector in W with the lowest eigenvalue is precisely the
optimal combination of coefficients w⃗� for the state jψ w⃗� i.
If we want to obtain the improved expectation value of

some observable O with respect to our new found state jψ w⃗� i,
it is given simply as

hψ w⃗� jOjψ w⃗� i ¼
XM−1

i;j¼0

w�
i w

�
jhϕijOjϕji.

That is, we can construct it using the optimal weight w⃗� and
the measurement results of hϕijOjϕji, without needing to
explicitly prepare jψ w⃗� i. For the special case of O ¼ H, the
improved expectation value is given simply by the smallest
eigenvalue in E when we solve Eq. (32). If desired, however,
one could prepare the state jψ w⃗� i via linear combination of
unitaries methods (Childs and Wiebe, 2012) in order to use it
as the input state for a subsequent quantum routine.
If one takes the limit of choosing jϕii to be a complete basis

for the entire Hilbert space, then solving the optimization
problem will return the ideal state; however, choosing an
exponentially large space to perform classical optimization
defeats the purpose of using a quantum computer to begin
with. Hence, how to choose the right set of basis states fjϕiig
is the key to the success of quantum subspace expansion.
The first basis state jϕ0i that we select is usually the best state
that we can prepare before performing quantum subspace

expansion. In this way, in the worst case we simply obtain jϕ0i
through subspace expansion.
For the other basis states, the original work of McClean

et al. (2017) suggested that we can draw inspiration from the
configuration interaction expansions (Helgaker, Jorgensen,
and Olsen, 2000) in quantum chemistry, which is commonly
used for improving energy and properties of mean-field states
as well as determining excited states for response properties.
There each of the other basis states is generated by applying an
expansion basis operator Gi on the original state such that
Gijϕ0i ¼ jϕii. Knowledge of a good set of expansion basis
operators fGig can come from symmetry considerations, from
excitation operators, or simply from knowing that correcting
(as opposed to replacing) the state jϕ0i requires that the
additional states are connected directly or indirectly through
H. In this way, the expanded state is now jψ w⃗i ¼ Γw⃗jϕ0i,
where Γw⃗ ¼ P

M−1
i¼0 wiGi is the expansion operator, which is a

weighted sum of expansion basis operators. Once the expan-
sion basis operators are determined, the matrix elements
required for solving the optimization equation in Eq. (32)
can be measured on a quantum computer through

H̄ij ¼ hϕ0jG†
i HGjjϕ0i ¼ Tr½G†

i HGjρ�;
S̄ij ¼ hϕ0jG†

i Gjjϕ0i ¼ Tr½G†
i Gjρ� ð34Þ

without needing detailed knowledge of the original state
ρ ¼ jϕ0ihϕ0j.
Thus far both the starting state jϕ0i and the expanded state

jψ w⃗� i are pure states; as a result, any errors that we have
removed are coherent errors. This is in stark contrast to our
focus on incoherent errors in Sec. III.E. The right-hand side of
Eq. (34) is suggestive of the fact that we can apply expansion
around a mixed state ρ to remove incoherent errors. This was
indeed first conjectured in the original work of McClean et al.
(2017) and was later confirmed by several experimental
implementations of the method (Colless et al., 2018;
Sagastizabal et al., 2019; Urbanek et al., 2020). These
observations were put on more solid theoretical footing by
Bonet-Monroig et al. (2018) and McClean et al. (2020). The
effective state after performing a subspace expansion on a
noisy state ρ was shown to be (McClean et al., 2020)

ρsub ¼
Γw⃗ρΓ

†
w⃗

Tr½Γw⃗ρΓ
†
w⃗�
: ð35Þ

We see that Eq. (35) is similar to the symmetry-verified state
in Eq. (26), with the symmetry projector Π replaced by the
expansion operator Γw⃗. This implies that, using the symmetry
operators as our expansion basis operators, we can recover the
symmetry subspace by performing subspace expansion. Cai
(2021c) tried to further generalize this by searching for
expanded “states” of the form Γw⃗ρ=Tr½Γw⃗ρ� instead, which
allows us to also incorporate purification-based QEM in
Sec. III.E under this formalism.
A number of recent works have looked into other possible

sets of expansion basis operators fGkg. For example, when
the operators fGkg are chosen to be powers of the
Hamiltonian fHkg, we see that these methods coincide with
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quantum Krylov subspace methods like the QLanczos
algorithm (Motta et al., 2020) or other methods based on
filtering the eigenspectrum via functions of the Hamiltonian
(Suchsland et al., 2021). A previously mentioned recent work
(Yoshioka et al., 2022) included operators that are powers of
the density matrix, making close ties to the purification-based
QEM methods. By doing so, optimal combinations of states
can now exploit problem-specific knowledge related to purity
in addition to general knowledge.

G. N representability

Often, in the context of quantum simulation (and sometimes
more broadly), the goal is ultimately to measure a set of
observables corresponding to a marginal of the total density
matrix known as the reduced density matrix (RDM). Given a
general quantum state ρ on N qubits, the set of p-qubit RDMs
is obtained by integrating out q qubits (such that N − q ¼ p)
of the joint distribution,

pρm1;…;mp
¼ Trn1;n2;…;nq ½ρ�; ð36Þ

resulting in ðnpÞ different RDMs, each of dimension 2p × 2p.
The coefficients n1;…; nq on the trace operator indicate which
qubits are integrated out of ρ, and coefficientsm1;…; mp label
the subsystem marginal. The result of this marginalization is a
distribution over p qubits.
The connection to error mitigation is that these RDMs are

known to have special geometric structures; not all marginals
that one can write are consistent with having come from a
valid (or, in the parlance of this field, representable) wave
function. In principle there is a set of conditions that constrain
the space of representable RDMs. Articulating and evaluating
these equality and inequality constraints is known as the
N-representability problem (Mazziotti, 2016), and the problem
is formally quantum Merlin-Arthur complete (Liu, Christandl,
and Verstraete, 2007). However, for most RDMs of interest one
can write and evaluate at least some of the N-representability
conditions. That knowledge can often be used to mitigate
errors, in a spirit similar to the application of symmetry
constraints, but generally using different methods.
The focus on measuring RDMs is especially common when

simulating many-body systems of identical particles. For
example, because real fermions interact pairwise, most proper-
ties of interest can be obtained using only the one-particle and
two-particle reduced densitymatrices [and because the particles
are identical, there is only a single 1RDM and a single two-
particle RDM (2RDM)]. Using the second quantized fermionic
creation and annihilation operators acting on sitesp, a†p, andap,
the fermionic 1RDM and 2RDM can be expressed as

1Di
j ¼ Tr½a†i ajnD� ¼ hψ ja†i ajjψi; ð37Þ

2Dpq
rs ¼ Tr½a†pa†qasarnD� ¼ hψ ja†pa†qasarjψi; ð38Þ

where kD is the k-particle RDM and the equalities on the right-
hand side correspond to the case of pure states. For a system of
N sites this 2RDM is only of dimensions N2 × N2 (in contrast
to 2N × 2N for the full density matrix) and yet completely

determines the energy of a fermionic system with pairwise
interactions.
Some of the simpler constraints we can express on the

1RDM and the 2RDM are as follows:
(1) Hermiticity of the density matrices

1Dj
i ¼ ð1Di

jÞ�; ð39Þ
2Dpq

rs ¼ ð2Drs
pqÞ�. ð40Þ

(2) Antisymmetry of the two-particle marginal

2Dpq
rs ¼ −2Dpq

sr ¼ −2Dqp
rs ¼ 2Dqp

sr . ð41Þ

(3) The (p − 1)-marginal is related to the p-marginal by
contraction; for instance, the 2-marginal can be con-
tracted to the 1-marginal

1Di
j ¼

1

n − 1

X
k

2Dik
jk. ð42Þ

(4) The trace of each marginal is fixed by the number of
particles in the system

Tr½1D� ¼ n; ð43Þ

Tr½2D� ¼ nðn − 1Þ. ð44Þ

(5) The marginals are proportional to density matrices and
are thus positive semidefinite,

f1D; 2Dg ≽ 0: ð45Þ

Note that this is not an exhaustive list of all N-representability
constraints.
Rubin, Babbush, and McClean (2018) first suggested that

knowledge of these constraints could be used for mitigating
errors when measuring RDMs. The essential idea is that in the
course of a NISQ simulation one might measure an RDM that
violates N-representability conditions as a consequence of
errors corrupting the estimation of the tomography elements
composing the RDM. However, one can use even a partial list
of RDM conditions in order to project the noisy and
unrepresentable RDM estimate back to the nearest RDM
consistent with a list of RDM constraints. Because the RDM
constraints all take the form of equality and inequality
constraints, this can be performed using semidefinite pro-
gramming. Such an approach was demonstrated numerically
by Rubin, Babbush, and McClean (2018) and experimentally
by Smart and Mazziotti (2020).
Of special interest for error mitigation is a subdiscipline of

the N-representability field known as pure-state N represent-
ability that is concerned with describing the geometry of pure
density matrices (i.e., N representability that must hold for
pure states). In principle using pure-state representability
would potentially allow one to measure the 2RDM of a
partially decohered state and then project that estimate back to
the nearest RDM consistent with having come from a pure
state. While this idea was first discussed by Rubin, Babbush,
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and McClean (2018), it has been difficult to realize in practice
since pure N-representability conditions are extremely diffi-
cult to compute. The state of the art in the field is that
specialized computer algebra systems are needed to generate
the pure-state conditions (Klyachko, 2006; DePrince, 2016).
Nevertheless, some work has succeeded in using some of
these conditions in quantum simulations (Smart and
Mazziotti, 2019).
In the case when the 1RDM of a fermionic system is

expected to be idempotent (D2 ¼ D), a special type of
purification known as McWeeny purification (McWeeny,
1960) is possible. This purification scheme is achieved by
iterating on a nonidempotent 1RDM estimate as

1Diþ1 ¼ 3ð1DiÞ2 − 2ð1DiÞ3 ð46Þ

until idempotency is restored. The only fermionic states
with idempotent 1RDMs are Slater determinants, a factor
that limits the applicability of this scheme in strongly
correlated systems. Despite the lack of theoretical justifica-
tion, McCaskey et al. (2019) demonstrated moderate miti-
gation success from McWeeny purification in a correlated
four-qubit chemistry simulation. The most notable success,
however, came from the application made by Google
Quantum AI et al. (2020a) to a Hartree-Fock state, for which
the idempotency assumption is justified. They demonstrated
McWeeny purification between 1 and 2 orders of magnitude
of error suppression, on top of the other mitigation methods
used. Hope remains that similar results can be demonstrated in
other experiments by enforcing the just-discussed pure-state
representability constraints, or by applying purification-based
QEM methods discussed in Sec. III.E.

H. Learning-based methods

Given the primary circuit P, its noisy expectation value is
denoted as EðPÞ, and we are trying to estimate its noiseless
expectation value E0ðPÞ. To achieve this, we obtain the error-
mitigated expectation value Eθ⃗ðPÞ as a function of the primary

circuit and a set of parameters θ⃗. Thus far we have seen that

the function parameters θ⃗ in different QEM methods are
obtained through different noise calibration processes.

However, we can also obtain θ⃗ through learning-based
methods (Czarnik et al., 2021; Strikis et al., 2021) using
training circuits. We construct a training circuit T here that
satisfies the folllowing conditions:

(1) It is similar to P, usually in terms of circuit structures,
such that it contains circuit faults similar to P.

(2) It is classically simulable; i.e., its ideal expectation
value E0ðTÞ can be obtained via classical simulation.

Knowing the exact value of E0ðTÞ enables us to find a good

set of parameters θ⃗ for the error-mitigation function Eθ⃗ by
minimizing the difference between E0ðTÞ and Eθ⃗ðTÞ. We
assume that the error-mitigation protocol Eθ⃗ obtained from the
training circuit T also works well for the primary circuit P due
to their similarity, which give us the error-mitigated result
Eθ⃗ðPÞ as an estimate of the ideal result E0ðPÞ. More generally
we can have more than one training circuit, which is denoted
using the training set T . The simplest loss function we can

construct to obtain the optimal θ⃗ is

LT ðθ⃗Þ ¼
1

jT j
X
T ∈ T

½E0ðTÞ − Eθ⃗ðTÞ�2: ð47Þ

The entire process of learning-based QEM is summarized in

Fig. 5. If the error-mitigated estimate Eθ⃗ðTÞ is linear in θ⃗,

which is the case for many QEM schemes, then the optimal θ⃗
can be obtained using linear least squares.
The simplest error-mitigation function simply rescales and

shifts the noisy expectation value to approximate the ideal
expectation value,

E0ðAÞ ≈ Eθ⃗ðAÞ ¼ θ0 þ θ1EðAÞ: ð48Þ

In Eq. (48) the input circuit A can be the primary circuit P or
the training circuits T ∈ T . Czarnik et al. (2021) first proposed
using such a linear function to mitigate errors, whose
coefficients can be obtained by training using the Clifford
variants of the primary circuit. This has been shown to be

FIG. 5. The process of learning-based quantum error mitigation. For cases in which we need to construct variants of the input circuit for
the error-mitigation function as in Eq. (49), the entire process is similar, but instead of running only the input circuits on the quantum
hardware, we need to run all the different variants of the input circuits.
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effective in experiments (Mi et al., 2021; Urbanek et al.,
2021). When performing fermion simulations, it is also
possible to train using the closest free-fermion model as
proposed and demonstrated by Google Quantum AI et al.
(2020b), or using fermionic linear optics (Montanaro and
Stanisic, 2021) as demonstrated experimentally by Stanisic
et al. (2022). In some particular use cases like measuring the
out-of-time-order correlator (Mi et al., 2021), by simply
removing or replacing a small number of gates of the primary
circuit, one can analytically derive the output of the resultant
circuits, which can also be used as the training circuits.
Rosenberg, Ginsparg, and McMahon (2022) experimentally
compared the different ways to perform such rescaling
methods.
The linear error-mitigation function in Eq. (48) can natu-

rally arise when we assume that all noise sources in the circuit
are globally depolarizing. In such a case, the resultant noisy
state is simply a mixture of the ideal state and the completely
mixed state ρ ¼ P0ρ0 þ ð1 − P0ÞI=2N (Mi et al., 2021;
Vovrosh et al., 2021), where P0 is the fault-free probability
of the circuit (Sec. II.C). Hence, the ideal expectation value
takes the simple form of

Tr½Oρ0�|fflfflfflffl{zfflfflfflffl}
E0ðPÞ

¼ 1

P0

Tr½Oρ�|fflfflffl{zfflfflffl}
EðPÞ

−
1 − P0

P02
N Tr½O�;

which is in the same form as Eq. (48). The assumption of
global depolarizing noise motivates the linear error-mitigation
function but is not a necessary assumption for applying this
error-mitigation function using training circuits. There is
evidence that global depolarizing noise is an effective phe-
nomenological error model emerging from gatewise error
models when the gate number is large (Qin, Chen, and Li,
2023). However, if indeed there is only global depolarizing
noise in the circuit, we can actually estimate the rescaling
factor P−1

0 using Eq. (8) if we know the circuit fault rate, or
obtain P−1

0 by measuring

Tr½ρ2� ¼ P2
0 þ P0ð1 − P0Þ=2N−1 þ ð1 − P0Þ2=22N

and solving the quadratic equation (Vovrosh et al., 2021).
Multiple ways to measure Tr½ρ2� have been discussed in
purification-based QEM (Sec. III.E). These circuits for
obtaining P−1

0 do not have the same circuit structure as the
primary circuit P, so instead of viewing them as the training
circuits for applying learning-based rescaling and shifting it
may be more appropriate to view them as the noise calibration
circuits for performing probabilistic error cancellation
(Sec. III.B) against global depolarizing channels or for a special
case of linear error extrapolation (Sec. III.A) (Cai, 2021a).
In Eq. (48), Eθ⃗ðAÞ is simply a function of the noisy expect-

ation value EðAÞ of the input circuit A; thus, only the input
circuit A needs to be run on the quantum hardware. This is not
the case formany of the previously discussedQEMmethods. In
general for a given input circuit A, we need to construct a set of
response measurement circuits fArsp;ig that are variants of the
input circuit A by adding or replacing gates and/or adding
measurements. These circuits can be, for instance, circuits of

different noise levels for zero-noise extrapolation, circuits with
different added gates for probabilistic error cancellation, and
circuits with different added measurements for symmetry
verification. The error-mitigated expectation value will be a
function of the outputs of all of these response measurement
circuits instead of merely the input circuit,

Eθ⃗ðAÞ ¼ f(fEðArsp;iÞg; θ⃗): ð49Þ

One such example would be the error-mitigation estimate
for probabilistic error cancellation in Eq. (17),

E½Ôem� ¼ Σn⃗αn⃗⟪OjBn⃗jρin⟫ ↦ Eθ⃗ðAÞ ¼ Σn⃗θn⃗EðArsp;n⃗Þ.

Here the response measurement circuit Arsp;n⃗ corresponds to
preparing ρin, applying the sequence of operation Bn⃗, and
measuring O, which as mentioned differs from A by additions
or replacements of some subset of gates. The parameters θn⃗
can be obtained as αn⃗ through device calibration, as discussed
in Sec. III.B. Note that we can also obtain θn⃗ via learning-
based methods (Strikis et al., 2021). Applying learning-based
methods to probabilistic error cancellation implies that we do
not have enough information about the gate errors in the
primary circuit (otherwise, we will apply probabilistic error
cancellation directly). Hence, we would need to assume
Pauli gate errors in the primary circuit or apply Pauli twirling
such that the set of response measurement circuits can be
constructed by simply adding Pauli gates. Other than opti-
mizing over θn⃗ directly, we see that the response circuit
coefficient αn⃗ is actually the product of the coefficients for
individual gates in Sec. III.B. In a similar way, we can write θn⃗
as the product of the coefficients for individual gates and
optimize over the gate coefficients instead. This would greatly
simplify the optimization problem if the number of gate types
in the circuit is small. By incorporating the appropriate
response measurement circuit Arsp;n⃗, it is also possible to
mitigate spatially and temporally correlated noise using
learning-based methods.
We continue to use probabilistic error cancellation with

Clifford training (Strikis et al., 2021) as an example to
illustrate how the training circuits can be constructed. In
probabilistic error cancellation, we want to remove all faults in
the circuit. To find a way to mitigate these faults using the
training circuits, the same faults must exist in these training
circuits. Such training circuits can be constructed by replacing
gates in the primary circuit with gates that have the same error
channels. If we compile the primary circuit such that all the
multiqubit gates in the primary circuit are Clifford ones, we
then need only replace the single-qubit gates to construct
Clifford training circuits that are classically simulable. If we
further assume that all the single-qubit gates have the same
error channel or they have negligible error rates compared to
the multiqubit gates, then the fault distribution of these
Clifford training circuits will be the same as the primary
circuit. We use C and U to denote the set of all possible
circuits generated by replacing the single-qubit gates in the
primary circuit with random single-qubit Clifford and random
single-qubit unitary circuits, respectively (note that C ⊂ U and
P∈U). By constructing the training circuits in the previously
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outlined manner, the training loss function LT ðθ⃗Þ in Eq. (47) is
a homogeneous polynomial of degree 2 in matrix elements of
the single-qubit gates in the circuits. Since the Clifford group

is a unitary 2-design, the loss function satisfies LCðθ⃗Þ ¼
LUðθ⃗Þ (Wang, Chen et al., 2021). Therefore, by training over

the Clifford circuits and minimizing LCðθ⃗Þ, we are minimiz-
ing the errors in the more general unitary circuits in U. When

LCðθ⃗Þ goes to zero, we have LUðθ⃗Þ ¼ 0, which implies
Eθ⃗ðAÞ ¼ E0ðAÞ (i.e., all errors are perfectly mitigated) for
all A∈U, including the primary circuit P.
Since the size of the Clifford setC grows exponentially with

the number of qubits, it is impractical to evaluate E0ðTÞ and
the corresponding noisy response measurements fEðTrsp;iÞg
for all Clifford training circuits T ∈C. Furthermore, the
majority of noisy Clifford training circuits have near-zero
expectation values that are costly to evaluate in terms of
sampling overhead. One way to circumvent this is to trun-
cate the Clifford training set using only circuits with large
noiseless expectation values jE0ðTÞj due to their more
significant contribution to the loss function, which was shown
to be effective in numerical simulations (Strikis et al., 2021;
Czarnik et al., 2022). It is also possible to use Monte Carlo

sampling and a variational update of the parameters θ⃗ to
overcome the large size of C (Strikis et al., 2021). Since it is
possible to classically simulate circuits with a small number
of non-Clifford gates, we can keep a few single-qubit gates
in the primary circuit untouched when we define the training
set. Alternative ways to truncate the Clifford set can be
explored, for instance, based on their similarity to the primary
circuits.
If the training set is large enough that the training can target

a wide range of application circuits (computational tasks),
then the training can be carried out at the device calibration
stage and the training sampling overhead can be omitted when
a particular computational task is considered. However, when
the training set is small such that the training is targeting a
small set of application circuits (computational tasks), then the
training is best viewed as a part of a task itself and the training
overhead needs to be included in any resource audit for that
computational task. Note that a smaller training set usually
also means a smaller sampling overhead for training. The
relation between the size of the training set jT j and the
performance of applying the trained result onto the target
circuit P is rigorously developed only when the training uses
the full Clifford set C for probabilistic error cancellation, as
previously discussed. More general studies into the trade-off
between them would be essential for different learning-based
methods.
Thus far we have only explicitly talked about learning-based

methods applied to rescaling and shifting the noisy result
[Eq. (48)] and to probabilistic error cancellation. However,
learning-based methods are in general compatible with almost
all QEM methods that we have discussed, for instance, error
extrapolation (Lowe et al., 2021) and purification-based meth-
ods (Bultrini et al., 2023). There are also suggestions that it can
be applied to symmetry-based methods (Cai, 2021c). Some
possible roles for learning-based methods in other QEM
methods will be further discussed in the next section.

IV. COMPARISONS AND COMBINATIONS

A. Comparison among QEM methods

In Sec. III, we provided a detailed account of the individual
QEM methods. To see the connections and differences among
them more clearly and provide a discussion of their respective
costs in a more coherent framework, Cai (2021b) divided the
process of QEM into the following two stages:

(1) Noise calibration measures the strength of some given
noise components.

(2) Response measurement measures how the observable
of interest responds to changes in the noise compo-
nents that were calibrated in the last step.

Combining the two components will inform us about how the
observable of interest changes due to the presence of the
calibrated noise components, and thus will enable us to
construct an error-mitigated estimator protected from the
calibrated noise components. We already discussed such a
structure for QEM methods when introducing the learning-
based methods (Sec. III.H); there the noise calibration process
is simply the training process. The division between noise
calibration and response measurement is not always clear cut.
For most of the QEM methods that we have discussed, the
error-mitigated estimator will be a linear combination of the
results obtained from the response measurement, and the way
to combine them (the weightings of each term) will be
determined by the noise calibration. Treating QEM as a
two-stage process enables us to discuss the costs of noise
calibration and response measurement separately.

1. Noise calibration overhead

When previously talking about sampling overhead, we were
referring mostly to the response measurement sampling
overhead. We often assumed certain knowledge about the
noise without discussing the cost of obtaining it. We now look
more closely into the cost of the noise calibration for various
types of QEM methods.

a. Gate error mitigation

These QEM methods target the gate errors in the primary
circuit. Their noise calibration can simply be carried out using
standard gate noise benchmarking and characterization tech-
niques (Eisert et al., 2020; Kliesch and Roth, 2021) such as
gate infidelity estimation for zero-noise extrapolation
(Sec. III.A), full gate error characterization for probabilistic
error cancellation (Sec. III.B), and detector error characteri-
zation for measurement error mitigation (Sec. III.C). These
can all be done in the device calibration stage. If this is the
case, then ideally noise calibration is effectively free at the
stage of QEM application. However, fully correlated noise
models are exponentially expensive (in terms of qubit number)
to characterize. Various ways to circumvent this were men-
tioned in Secs. III.B and III.C. Moreover, device parameters
can drift in time, and thus routine recalibration might be
needed. In such a case, the noise calibration cost is no longer
negligible at the QEM application stage and low-cost device
calibration techniques would be essential (Google Quantum
AI et al., 2020b).
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b. State error mitigation

These QEM methods target the errors on the output state of
the primary circuit. Since we do not know the exact form of
the ideal state, we now try to probe errors that violate known
constraints on the output state like symmetry constraints
(Sec. III.D) and purity constraints (Sec. III.E). Their noise
calibration will measure the strength of the noise that violates
these constraints, for instance, the fraction of the circuit runs
that fail the symmetry verification. In these cases, both noise
calibration and response measurement involve measuring
additional operators on the unmitigated noisy state. Hence,
in some settings the noise calibration can be performed
alongside response measurement by simply measuring addi-
tional operators without additional circuit runs (Bonet-
Monroig et al., 2018; Cai, 2021b,2021c), which means that
the noise calibration is essentially free.

c. Observable error mitigation

Not all errors in the primary circuit will affect our
observable of interest, and this class of QEM methods target
only the error components that are damaging to our observ-
able. Methods like subspace expansion (Sec. III.F) and

N-representability (Sec. III.G) target error components that
violate some given constraints on the noiseless observables
(which can be the observable of interest or its components).
For observable error mitigation, the noise calibration will be
dependent on the observable of interest. Hence, the noise
calibration accuracy required is highly dependent on the
problems that we try to solve, and thus the associated cost
has not been analytically derived.
As mentioned, learning-based methods (Sec. III.H) are a

means to perform the noise calibration process using training
circuits. Compared to the circuits used in the original noise
calibration process for different QEM methods, the training
circuits are usually more closely related to the primary circuit,
so we can target faults that are more specific to the primary
circuit and that optimistically can reduce the calibration cost.
For example, when trying to construct the training circuit, we
can make use of the structure of the primary circuit for gate
error mitigation, or we can make use of the known observable
of interest for state error mitigation. The training cost for
learning-based methods is thus highly problem specific and
usually hard to analytically quantify, just like the cost for noise
calibration in observable error mitigation.

TABLE I. Summary of the assumptions, costs, and performances associated with some of the QEM methods mentioned in this review. Some
of the expressions of the sampling overhead and the fidelity boost are derived under the assumption that the occurrence of faults in the circuit
follows a Poisson distribution with a circuit fault rate of λ, as discussed in Sec. II.C. We use ρ and ρ0 to denote the unmitigated noisy state and the
ideal noiseless state, respectively. Only a specific instance of error extrapolation is included here. Measurement error mitigation is not included
here, since it can be viewed as a special case of probabilistic error cancellation focusing on measurement noise. Quantum subspace expansion
and N representability are also not included, since their implementation costs and performance are highly problem specific.

Methods

Probabilistic
error

cancellation

Richardson
extrapolation
(equal gapa) Symmetry verification

Virtual
distillation Echo verification

Main assumptions Full knowledge
of the noise

Ability to scale
the noise;
small λb

The ideal state contains
inherent symmetry

The ideal state ρ0 is pure; the noise is stochastic
such that ρ0 is the dominant eigenvector of the

noisy state ρc

Hyperparameters
Circuit fault rate
after mitigation:

λem

Number of data
points: M

Projector of the symmetry
subspace: Π

Degree of
purification: M

0

Qubit overhead 1 1 1d M 1

Circuit run-time overhead Up to ∼2 Up to ∼M 1 ∼1e 2

Sampling overhead (Cem) e4ðλ−λemÞ ð2M − 1Þ2 Postselection Tr½Πρ�−1
Postprocessing: Tr½Πρ�−2

Tr½ρM�−2 ≳
e2Mλ=½1þ ðeλ − 1ÞM�2

Tr½ρ2�−1≳
e2λ=½1þ ðeλ − 1Þ2�

Fidelity boostf eλ−λem eλ þOðλMÞ Tr½Πρ�−1 Tr½ρ0ρ�M−1=Tr½ρM�≳
eλ=½1þ ðeλ − 1ÞM�

Same as VD
with M ¼ 2

Bias Can reach
0 when
λem ¼ 0.

OðλMÞ Can be upper bounded using the error-mitigated fidelity using Eq. (53), which
in turn is related to the achieved fidelity boost.

aThere are other variants of Richardson extrapolation that may provide better scaling for the overhead (Sidi, 2003).
bThere are successful experiments operating beyond the small-λ assumption. The small-λ assumption is not needed for some other

extrapolation methods (Sec. III.A).
cIf ρ0 is not the dominant eigenvector of the noisy state, the achieved ultimate fidelity will be limited by coherent mismatch

(Sec. III.E).
dAssuming that only the inherent symmetries of the physical problems are used. Additional qubit overhead might be needed if we

want to introduce additional symmetries.
eAdditional circuit components are needed to swap in between the noisy copies and the corresponding additional run-time required

will depend on the connectivity of the hardware.
fFidelity boost is the factor of increase in the fidelity against the ideal state ρ0 after applying error mitigation (Sec. IV.B.3).
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The aforementioned categorization of QEM methods is
mainly for providing more intuition and does not represent a
definitive guide. For example, the RDM measured in the
N-representability method can be viewed as an observable,
in which case the method is seen as a type of observable error
mitigation. Alternatively, it can be viewed as a state in a
reduced subspace such that the method is a form of
state error mitigation. After this discussion of noise
calibration requirements, we now move on to more general
comparisons between QEM methods beyond the noise
calibration stage.

2. Mean square errors

As discussed in Sec. II.B, the most straightforward metric
for comparing two different error-mitigated estimators is
simply to compare their mean square errors [Eq. (1)].
However, general comparisons between two QEM methods
cannot be made in a similar manner, because for each QEM
method there is a wide range of error-mitigated estimators that
we can construct using different hyperparameters (the degree
of purification for purification-based QEM, the number of
symmetries in symmetry-based QEM, the number of data
points in zero-noise extrapolation, etc.). Each of these estima-
tors has a different trade-off between bias and variance and
thus a different mean square error. Comparisons between two
QEM methods are further complicated by their different sets
of assumptions (whether there are known constraints to states,
knowledge about the noise, etc.) and different hardware
requirements (such as qubit number and connectivity).
Hence, to compare two QEM methods we often need to
know the exact primary circuit whose noise we are trying to
mitigate and the set of experimental constraints that we need
to adhere to (on things like qubit numbers, run-time, and
hardware error rate), such that we can specify exact imple-
mentations of the two given QEM methods and deduce the
corresponding mean square errors. Even in such cases the bias
and variance often can be calculated analytically for only
some canonical implementations. Hence, in most of the QEM
literature mentioned in this review, when trying to assess or
compare the performance of QEM methods, their bias and
variance are often obtained using numerical simulations or
physical experiments by applying them to a specific use case.
This is not a good indicator of the general performance of a
given QEM method, but it can usually demonstrate key
characteristics of the QEM methods such as their target noise
types and their scaling behavior.
While recognizing that it is difficult to make general

comparisons between different QEM methods, nevertheless
we summarize the costs and performance of some canonical
implementations of typical QEM methods in Table I. The
intention is to capture the essential distinguishing features of
these QEM approaches.

B. Benchmarking QEM from other perspectives

Besides computing the mean square error for a specific
implementation of a given QEM method, we can also look
into other general characteristics of the QEM method by
viewing the process of QEM from another perspective.

1. State discrimination

QEM allows us to better estimate the expectation values of
the various noisy states output from a noisy system. However,
the data-processing inequality never allows the distinguish-
ability between these noisy states to increase (Nielsen and
Chuang, 2010). This fact was used by Takagi et al. (2022) to
obtain explicit bounds on the range that the error-mitigated
estimator may take, which in turn determined the number of
samples needed to achieve a given level of performance.
They considered an error-mitigation protocol in which the

first step was obtaining M noisy copies of the error-free state
ρ0 through a process denoted as L,

Lðρ0Þ ¼ ⊗
M

m¼1
Emðρ0Þ;

where fEmg are the different effective noise channels act-
ing on different copies. The second step is constructing an
error-mitigated observable Oem based on the QEM technique
and the observable of interest O such that measuring Oem
on these noisy copies will output the error-mitigated estima-
tor Ôem,

E½Ôem� ¼ Tr½OemLðρ0Þ�:

The maximum bias that can be achieved by the QEM method
for all possible observables of interest O and target states ρ0 is
given as

Bmax ¼ max
O;ρ0

bias½Ôem� ¼ max
O;ρ0

[Tr½OemLðρ0Þ� − Tr½Oρ0�]:

Using this, Takagi et al. (2022) proved the following lower
bound for the range of the error-mitigated estimator:

R½Ôem� ≥ max
ρ0;σ0

Dtrðρ0; σ0Þ − 2Bmax

Dtr(Lðρ0Þ;Lðσ0Þ)
; ð50Þ

whereDtr denotes the trace distance. The range R½Ôem� can be
used to obtain the sufficient number of samples required via
Eq. (4). A scaling relationship similar to R½Ôem� for the case of
depolarising noise was proven byWang, Czarnik et al. (2021).
Building on the aforementioned framework, Takagi,

Tajima, and Gu (2023) further obtained the explicit lower
bound for the number of samples M necessary for achieving
the target accuracy δ (this deviation includes both the bias and
the shot noise) with success probability 1 − ϵ,

M ≥ max
ρ0 ;σ0

Dtr ðρ0 ;σ0Þ≥2δ
min

E ∈ fEmg
2ð1 − 2ϵÞ2

ln 2S(Eðρ0ÞjjEðσ0Þ)
: ð51Þ

In Eq. (51) SðρkσÞ ¼ Trðρ log ρÞ − Trðρ log σÞ is the relative
entropy, which is related to the trace distance through the
quantum Pinsker’s inequality Dtrðρ; σÞ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2SðρkσÞ=2p

(Hiai, Ohya, and Tsukada, 2008). It has been shown that
the relative entropy between two output states from noisy
circuits under local depolarizing noise decreases exponen-
tially with the circuit depth (Kastoryano and Temme, 2013;
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Müller-Hermes, França, and Wolf, 2016), which implies that
the sampling cost in Eq. (51) will grow exponentially with the
circuit depth in this case. Note that by using fidelity instead of
relative entropy a bound tighter than Eq. (51) can also be
obtained, as discussed by Takagi, Tajima, and Gu (2023).
Quek et al. (2022) managed to construct a circuit structure

for which the relative entropy of two different output states
decreases exponentially in both circuit depth and the number
of qubits, which allowed them to prove that the worst-case
sampling lower bound for QEM scaled exponentially with the
circuit size (instead of just depth), confirming our intuition
obtained in Sec. II.D. They further showed that, for a
geometrically local circuit, this exponential scaling is deter-
mined by the number of gates in the light cone of observables
rather than the circuit size. Note that the bounds obtained in
this section are more for the purpose of demonstrating the
fundamental limits on the performance of a given QEM setup
than for use as a metric for comparing the practical perfor-
mance of different QEM methods.

2. Quantum estimation theory

In estimation theory, the variance of any unbiased estimator
can be lower bounded by the inverse of the Fisher information
through the Cramér-Rao inequality. Without loss of generality,
we assume that our goal is to estimate TrðOρ0Þ for some
traceless observable O, but the state is suffering from the
noise channel E. We can still obtain the ideal expectation value
if we have a way to measure the operator Y ¼ E†ðOÞ on the
noisy state Eðρ0Þ. Watanabe, Sagawa, and Ueda (2010)
showed that the quantum Fisher information for estimating
the observable O using the noisy state Eðρ0Þ is given by
JO ¼ fTr½Eðρ0ÞY2� − Tr½Eðρ0ÞY�2g−1. When one uses the
quantum Cramér-Rao inequality, the number of samples M
needed for evaluating the noiseless estimator with additive
error ϵ can then be bounded as

M ≥
1

ϵ2JO
: ð52Þ

Thus, Watanabe, Sagawa, and Ueda (2010) concluded that the
cost-optimal strategy for obtaining the unbiased estimator of
TrðOρ0Þ from the noisy state Eðρ0Þ is simply to measure Eðρ0Þ
with the observable Y.
Tsubouchi, Sagawa, and Yoshioka (2023) applied these

arguments to the NISQ scenario with the estimator as an
error-mitigated estimator and obtained two lower bounds on
the sampling cost of QEM. Their first lower bound is for
generic layered quantum circuits under a wide class of
Markovian noise. By showing that the quantum Fisher
information decays exponentially with the depth of the layered
quantum circuit, they demonstrated the exponential growth of
the sampling overhead as the depth of the circuit increases.
In the special case of global depolarizing errors, the
required number of samples M for achieving an additive
error ϵ in the standard deviation can be lower bounded as
M ≳ ½TrðO2Þ=2Nϵ2�ð1 − pÞ−2L, which can be saturated by
simply rescaling the measurement result by a factor of
ð1 − pÞ−L; see Sec. III.H. For random quantum circuits under
local noise, they further showed that the sampling cost grows

exponentially with both the circuit depth and the number of
qubits through analytical arguments and numerical simula-
tions. The scaling behavior found here is consistent with
Sec. IV.B.1.

3. State extraction

In symmetry-based or purification-based QEM, it is natural
to think of QEM as a process of extracting the symmetry-
verified or purified state out of the noisy state (Bonet-Monroig
et al., 2018; McArdle, Yuan, and Benjamin, 2019; Huggins,
McArdle et al., 2021; Koczor, 2021b). More generally, in
most of the QEM methods the error-mitigated expectation
value E½Ôem� is a linear function of the observable of interest
O, which can be written as

E½Ôem� ¼ Tr½Oρem�:

Here ρem can be viewed as the error-mitigated component that
we try to extract out of the noisy state using the given QEM
method (Cai, 2021b).
A higher fidelity of the error-mitigated state ρem against the

ideal state ρ0, denoted as Fðρ0; ρemÞ, has been shown to
correspond to lower biases in various numerical simulations
(Cai, 2021c; Huggins, McArdle et al., 2021; Koczor, 2021b).
More exactly, using the results of Koczor (2021a) and the
Fuchs–Van de Graaf inequality (Fuchs and Van de Graaf,
1999), the bias after error mitigation can be bounded by

bias½Ôem� ≤ 2kOk∞Dtrðρ0; ρemÞ
≤ 2kOk∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Fðρ0; ρemÞ

p
; ð53Þ

where kOk∞ is the largest absolute eigenvalue of O.
As discussed by Cai (2021b), by assuming the ideal state ρ0

to be a pure state we can decompose the noisy state ρ into the
error-mitigated component ρem and an erroneous component
ρerr (not necessarily a valid density matrix) that is orthogonal
to the ideal state ρ0 (Tr½ρ0ρerr� ¼ 0),

ρ ¼ pemρem þ ð1 − pemÞρerr: ð54Þ

In Eq. (54) pem is the amount of the error-mitigated compo-
nent contained in the noisy state. Only a partial amount of this
error-mitigated component can be successfully extracted using
the given QEM method; this amount is denoted as qem,
with qem ≤ pem.
In this picture of extracting error-mitigated states, the factor

of improvement in the fidelity, which we call the fidelity boost
here, is given by

Bem ¼ Tr½ρ0ρem�
Tr½ρ0ρ�

¼ p−1
em

(where ρ0 is assumed to be pure), and the corresponding
sampling overhead is given as

Cem ∼ q−2em: ð55Þ
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Cai (2021b) gave a list of examples showing how pem and qem
can be calculated to obtain Bem and Cem, with some of the
results shown in Table I.
The fraction of the error-mitigated state that is successfully

extracted using the QEM method is called the extraction rate,

rem ¼ qem
pem

¼ Bemffiffiffiffiffiffiffiffi
Cem

p :

This is simply the ratio between the fidelity boost and the
square root of the sampling overhead, and thus is a natural
indicator for the cost effectiveness of a given QEM method.
Successful extraction of all of the error-mitigated components
contained in the noisy state corresponds to the maximum
extraction rate rem ¼ 1, which can be achieved by symmetry
verification (Cai, 2021b), indicating its cost effectiveness.
Note that if we are able to perform direct postselection instead
postprocessing to extract the error-mitigated state (as in direct
symmetry verification and echo verification), then the sam-
pling overhead will be Cem ∼ q−1em instead and the extraction
rate will be rem ¼ Bem=Cem. As in Sec. IV.B.1, the arguments
in this section also do not apply to QEM techniques that
nonlinearly combine the results from response measurements.

C. Combinations of QEM methods

Rather than trying to pick a better QEM method, one might
instead try to combine different QEM methods in the hope of
being able to target more noise components and/or achieving a
better trade-off between bias and variance. We mentioned
some possible connections and combinations of QEM meth-
ods while discussing individual techniques in Sec. III, and we
provide additional insights in this section.
The simplest way of combining different QEM methods is

applying them in parallel such that each of them targets a
different noise source in the circuit. For example, using zero-
noise extrapolation or probabilistic error cancellation to target
noise in the main computation while using measurement error
mitigation to tackle noise at the measurement stage. For a
circuit consisting of Pauli-symmetry-preserving components
affected by Pauli noise, we can detect and partially mitigate
the circuit faults that anticommute with the symmetry using
symmetry verification, while the rest of the circuit faults that
commute with the symmetry and thus are immune to sym-
metry verification can be mitigated using zero-noise extrapo-
lation (through only scaling this “commuting” noise) or
probabilistic error cancellation (Cai, 2021a). As discussed
in Sec. V.C, QEM can be used to mitigate errors in the circuit
compilation. Hence, it is possible to use one QEM method to
mitigate these compilation errors while using another QEM
method to mitigate noise in the circuit. Note that we can also
apply a given QEM method multiple times, each time
targeting a different noise source, which has been demon-
strated for zero-noise extrapolations (Otten and Gray, 2019).
When the different QEM methods applied interfere with

each other rather than working entirely independently, their
order of application becomes important. The QEM method
that is first applied will be called the base QEM method. In a
sense, applying one QEM method after another can be viewed
as “concatenating” the QEM methods, and the overall

sampling overhead is simply the product of the sampling
overheads of both stages of QEM. If we want to apply
symmetry- or purification-based QEM along with another
QEM method, we can view the base QEM method simply as a
process of extracting error-mitigated states out of the noisy
state, as discussed in Sec. IV.B.3, and then apply symmetry
constraints or purity constraints to this error-mitigated state
(Cai, 2021b). In this way, we are able to remove the remaining
symmetry- or purity-violating noise that was not targeted by
the base QEM method. In a similar way, for a given error-
mitigated state we can also perform subspace expansion
around it or we can measure its RDM, which means that
we can directly perform a subspace expansion or N represent-
ability in addition to other QEM methods. Google Quantum
AI et al. (2020a) experimentally demonstrated the application
of N representability along with symmetry verification.
One can apply zero-noise extrapolation with another QEM

method by performing extrapolation using error-mitigated
expectation values (McArdle, Yuan, and Benjamin, 2019).
However, the error models of the circuit can be altered by the
base QEM method such that the noise scaling factor might no
longer be well defined. Furthermore, the shape of the
extrapolation curves may be altered by the base QEMmethod.
It is possible to circumvent this by using probabilistic error
cancellation as the base QEM method since it can be applied
partially without changing the error models, yielding data
points of reduced noise strength for extrapolation, as men-
tioned in Sec. III.A (Cai, 2021a). For other base QEM
methods, as long as we know the effective noise scaling
factor and the circuit fault rate is small after the base QEM,
Richardson extrapolation will still be applicable; for instance,
it has been applied along with purification-based methods in
numerical simulations (Koczor, 2021b) and together with
instances of probabilistic error cancellation that changes the
error models (Sun et al., 2021). In some specific use cases, the
new shape of the extrapolation curve can be analytically
deduced. One such example was given by Cai (2021a), with
symmetry verification being the base QEM method. More
generally, we can try to use learning-based methods to predict
the shape of the extrapolation curves after performing the base
QEM, especially in the special case of rescaling and shifting
the noisy expectation value; see Sec. III.H. Applying rescaling
in addition to symmetry verification has been demonstrated in
numerical simulations (Stanisic et al., 2022) and experiments
(Google Quantum AI et al., 2020b). As mentioned in
Sec. III.H, rescaling and shifting can be viewed as performing
probabilistic error cancellation for mitigating global depola-
rizing noise. However, probabilistic error cancellation in a
more general context is difficult to perform alongside other
QEM methods because the effective error model in the circuit
will change due to the base QEM method.
Learning-based methods can be viewed as a way to perform

the noise calibration process rather than a stand-alone QEM
method, as mentioned in Sec. IV.A.1. Hence, it can be easily
combined with the other methods by replacing their noise
calibration process (Cai, 2021b; Lowe et al., 2021), which we
have mentioned in several examples. We can also use
learning-based methods to obtain the optimal hyperparameters
for various QEM methods (Bultrini et al., 2023).
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There were also attempts to construct a unified framework
containing hyperparameters that can lead to different existing
QEM methods for different values taken. Such frameworks
give us access to a wide range of other possible QEM
implementations by taking hyperparameters values sitting
between existing QEM methods. We can think of this as
interpolating between different QEM methods instead of
concatenating different QEM methods. These new “interpo-
lated” QEM implementations can achieve different bias-
variance trade-offs beyond the existing QEM methods and
often also target a different set of noise components. This
allows us to choose the implementation that best fits our target
problem and experimental constraints rather than being
restricted to the existing QEM methods. We mentioned some
of these examples in Sec. III, for instance, the combination
of purification-based methods with subspace expansion
(Yoshioka et al., 2022), the generalization of symmetry
verification and subspace expansion (Cai, 2021c), and the
combination of zero-noise extrapolation and probabilistic
error cancellation (Mari, Shammah, and Zeng, 2021). Some
QEM combinations mentioned earlier in this section can also
be viewed as attempts to construct a unified framework (Lowe
et al., 2021; Bultrini et al., 2023). Note that many QEM
methods can also be natively combined with shadow tomog-
raphy (Jnane et al., 2023), which may provide performance
advantages when we want to estimate a large number of
observables.

D. Comparison to the other error-suppression methods

Quantum error mitigation is one family of strategies for
suppressing errors. It is natural to consider how it relates to other
well-known error-suppression methods, such as decoherence-
free subspace or subsystem (DFS), dynamical decoupling (DD),
andQEC.Symmetry is at the heart of all themethodsmentioned
here; thus, we first try to compare QEC against symmetry
verification to gain some intuition.
In QEC, we perform regular symmetry (stabilizer) mea-

surements to detect and correct errors accumulated in the
quantum system. If we discard the quantum states that violate
these symmetry checks instead of correcting them, we have
quantum error detection instead. Symmetry verification
(Sec. III.D) can usually be seen as an error-detection scheme
whose symmetries are given by the physical problem of
interest, and the detection can be carried out via postprocess-
ing. Such native symmetries and the possible use of post-
processing detection typically mean that many fewer qubits

and a much lower gate fidelity are required for symmetry
verification than for QEC to achieve the “break-even” point of
performing better than the uncorrected or unmitigated circuit.
Furthermore, performing logical operations in QEC code
usually comes with higher space-time overhead than the
physical operations performed in QEM, leading to a longer
circuit run-time and even more qubit overhead for QEC.
Even though we are talking about symmetry verification in

this comparison, much of the intuition provided is applicable
to general QEM methods. As mentioned in Sec. I, general
QEM methods aim to correct the output distribution in an
ensemble of circuit runs, while QEC aims to correct the output
in every circuit run. If we are trying to remove almost all bias
as in fault-tolerant QEC, the sampling overhead of general
QEM will grow exponentially with the circuit size, as
discussed in Sec. II.D. Using all of the aforementioned
arguments, we can compile a rough guide for the differences
between QEC and QEM, as outlined in Table II. Note that
there are intersections between QEC and symmetry-based
QEM like postprocessing quantum error detection and adding
more symmetries to QEM (at the cost of adding more qubits),
as discussed in Sec. III.D. Adding to what we have discussed,
Cao et al. (2022) also looked at the difference between
QEM and QEC in the setting of communication instead of
computation.
Without knowing the specific application task, it is difficult

to compare the amount of resources required for QEC and
QEM. There have been attempts to estimate the resource
required to obtain classically intractable Fermi-Hubbard
ground state energy using VQE with the help of symmetry
verification and error extrapolation (Cai, 2020). To overcome
the sampling overhead, which is partly due to QEM, it was
estimated that more than 100 independent quantum processors
are needed for parallelization, each containing 50 qubits and
having a gate error rate of 10−4. The gate fidelity and the total
number of qubits required here are actually similar to those
required for solving the problem using a fault-tolerant
algorithm (Kivlichan et al., 2020). However, given the same
total number of qubits, building hundreds of identical quan-
tum processors (cores) using commercial fabrication tech-
niques is usually easier than building the single large
integrated processor required for the fault-tolerant algorithm.
Note that what we have discussed here is not a sheer
comparison between QEC and QEM, but rather more of a
comparison between a NISQ algorithm with the help of QEM
and a fault-tolerant algorithm for a specific application.

TABLE II. Rough guide to the differences between QEC and QEM. The difference will be dependent on the QEC codes,
the QEM method, and the exact application scenario.

QEC QEM

Qubit overhead High Low
Circuit run-time Often scales with code distance Like the unmitigated circuit
Sampling overhead Constant Exponential in the circuit sizea

Error rate Must be below code threshold Important to keep it low; no thresholdb

Midcircuit measurement Essential and frequent Infrequent or not required
aAssuming that we try to construct a nearly unbiased estimator as in QEC and with fixed gate error rates.
bLower error rate means smaller sampling overheads. No threshold for the gate noise in the unmitigated circuit,

but there might be requirements on the additional gates needed for QEM.
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In practice, QEC and QEM are more likely to be comple-
mentary rather than competing methods since in many
practical applications we can apply QEM in addition to
QEC, as further discussed in Sec. V.B. It is also possible to
use QEM to mitigate compilation errors, which is not possible
using QEC, as discussed in Sec. V.C.
Unlike QEC and QEM, both DD and DFS methods are

open-loop quantum control techniques whose action does not
depend on the status of the quantum state, and thus no
measurements are needed for their implementation (Lidar,
2014; Suter and Álvarez, 2016). In fact, DFS is a passive
technique that requires no action at all: we need only choose
the correct symmetry subspace that is immune to the target set
of noise. QEC and symmetry-based QEM all have some
element of DFS in them, in the sense that they are all immune
to noise generated by the symmetry operators. Conversely,
DD is achieved by applying a sequence of decoupling pulses
to “average out” the harmful interaction between the quantum
system and the environment. In the limit of many rounds of
instantaneous decoupling pulses, group-based DD is shown to
be equivalent to making continuous symmetry measurements
to achieve the quantum Zeno effect (Facchi, Lidar, and
Pascazio, 2004; Burgarth et al., 2019). Such a DD sequence
can be applied using the native symmetry of the physical
problem as in symmetry-based QEM, which has been shown
to be effective in quantum simulations (Tran et al., 2021).

V. APPLICATIONS

Thus far we have discussed QEM mostly in the general
context of expectation value estimation without overspecifying
the application scenarios. There is a range of software packages
for carrying out the QEM techniques that we have mentioned.
For example, QERMIT, MITIQ, and QISKIT each provide its own
implementation of zero-noise extrapolation, probabilistic error
cancellation, and measurement error mitigation (LaRose et al.,
2022; Cirstoiu et al., 2023; Qiskit Contributors, 2023c). In
addition, QERMIT and MITIQ contain the Clifford variants of the

learning-based method. There is also a wide range of other
packages providing measurement error mitigation like
QCompute, PennyLane, and QREM (Bergholm et al.,
2018; Maciejewski et al., 2020; Baidu, 2023a).
Through numerical experiments, QEM has proven effective

in a wide range of applications including linear equation
solvers (Vazquez, Hiptmair, and Woerner, 2022), quantum
metrology (Yamamoto et al., 2022; Conlon et al., 2023),
Monte Carlo simulations (Yang, Lu, and Li, 2021), and
numerous other examples mentioned in Sec. III. Moreover,
many physical experiments have successfully employed QEM
for noise suppression, with some pioneering and state-of-the-
art examples summarized in Table III, spanning across differ-
ent application scenarios such as Fermi-Hubbard models
(Stanisic et al., 2022) and multiparticle bound states
(Google Quantum AI et al., 2022), with a circuit size of up
to 127 qubits and 60 layers of two-qubit gates (Kim et al.,
2023). Different application scenarios and hardware platforms
will give rise to different types of noise. In this section, we
look into ways to adapt the implementation of QEM to
different noise types and discuss the expected results.

A. Coherent errors

The degree of coherence in an error channel can be
quantified by how well it preserves the purity of an average
incoming state (Wallman et al., 2015). In this sense the “most
coherent” errors are simply unitary errors, while incoherent
errors usually refer to stochastic Pauli channels. More gen-
erally the term coherent errors refers to a broad spectrum
of noise that sits closer to the unitary errors than the Pauli
errors. There are cases in which coherent errors can be
mitigated using coherent control solutions such as dynamical
decoupling (Lidar, 2014; Suter and Álvarez, 2016). The
remnant coherent errors can be mitigated using most of
the aforementioned QEM techniques (with the exception
of purity-based methods). In fact, subspace expansion
(Sec. III.F) was originally constructed to target coherent

TABLE III. Examples of pioneering and state-of-the-art experimental applications of QEM. Note that measurement error mitigation is present
in almost all experimental work and thus is not explicitly included here. SC, superconducting qubits; ion, trapped-ion qubits; ZNE, zero-noise
extrapolation; PEC, probabilistic error cancellation; SYM, symmetry constraints; PUR, purity constraints; SUB, subspace expansion; NRP, N
representability; LEA, learning-based methods.

QEM methods Platform Applications Reference(s)

ZNE SC Variational eigensolver Dumitrescu et al. (2018) and Kandala et al. (2019)
ZNE SC Real-time dynamic simulation Kim et al. (2023) and Kim, Wood et al. (2023)
ZNE Ion Entanglement entropy measurement Foss-Feig et al. (2022)
PEC SC Deterministic quantum computation with pure states Song et al. (2019)
PEC SC Real-time dynamic simulation Van den Berg et al. (2023)
PEC Ion Gate fidelity estimation Zhang et al. (2020)
PEC Ion Real-time dynamic simulation Chen et al. (2023)
SYM SC Variational eigensolver Sagastizabal et al. (2019)
SYM Ion Variational state preparation Zhu et al. (2020)
PUR SC Variational eigensolver O’Brien et al. (2023)
SUB SC Variational eigensolver Colless et al. (2018)
LEA SC Variational eigensolver Dborin et al. (2022)
LEA SC Quantum information scrambling Mi et al. (2021)
SYM and NRP SC Variational state preparation Google Quantum AI et al. (2020a)
SYM and LEA SC Variational eigensolver Stanisic et al. (2022)
SYM and LEA SC Real-time dynamic simulation Google Quantum AI et al. (2020b)
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errors (McClean et al., 2017). However, for many other QEM
methods Pauli errors can be far easier to mitigate than
coherent errors, as previously discussed. The advantages of
mitigating Pauli noise are summarized as follows:

• Zero-noise extrapolation. Arguments can be made that
the expectation value of a Pauli observable should decay
following a multiexponential curve under Pauli noise.
Knowing the form of the extrapolation curve can lead to
lower sampling costs and smaller biases.

• Probabilistic error cancellation. Pauli noise requires less
overhead to be characterized and removed using the
standard basis, in a manner similar to measurement error
mitigation.

• Symmetry constraints. When one deals with symmetry-
preserving circuit components and Pauli symmetry,
analytical arguments can be made about the proportion
of noise removed when considering Pauli noise. This
also enables us to select a good set of symmetries to use.

• Purity constraints. Errors that are less coherent can
improve the ultimate accuracy that can be reached using
purity constraints.

• Learning-based methods. Standardizing error channels
by transforming them into Pauli noises will result in a
more similar error model between the training circuits
and target circuits. The effects of Pauli noise on the
observable are usually easier to characterize and thus
require less training.

Even for subspace expansion, though Pauli errors might not be
easier to mitigate, they are certainly easier to analyze and thus
enable us to select a better set of expansion operators.
Furthermore, coherent errors usually accumulate at a faster
rate than their Pauli counterpart (Gutiérrez and Brown, 2015;
Sanders, Wallman, and Sanders, 2015; Kueng et al., 2016).
Hence, one of the most effective ways to deal with coherent
errors in the context of QEM is simply to transform them into
Pauli errors.
Any arbitrary quantum channel can be transformed into a

Pauli channel using Pauli twirling, which originated from
entanglement purification (Bennett, Brassard et al., 1996;
Bennett, DiVincenzo et al., 1996; Knill, 2004) and is widely
used in areas like quantum benchmarking (Kliesch and Roth,
2021) for transforming quantum states or noise channels into a
standardized form. When applying Pauli twirling to environ-
mental noise or noise from Clifford gates, we simply insert
random Pauli gates during the circuit compilation (as dis-
cussed in Appendix A.2). Most of these random Pauli gates
can in fact be absorbed into the existing Pauli gates (Wallman
and Emerson, 2016), and thus it can often be implemented
with a relatively small gate cost. It is also possible to twirl over
the Clifford group, which will further homogenize the
probability of different Pauli errors, resulting in a depolarizing
channel, which is even easier to analyze and mitigate.
However, Clifford gates, especially multiqubit ones, can be
much more difficult to implement than Pauli gates.

B. Logical errors in fault-tolerant quantum computation

The ultimate goal of quantum computation is to have a fully
scalable fault-tolerant quantum system in which we can
suppress the logical errors to an arbitrary small level by

increasing the size of the system. However, before we achieve
that it is likely that there will be an extended period of time in
which quantum error correction is successfully implemented,
but the minimum logical error rate achievable is still sub-
stantial due to reasons such as hardware limitations in the
system size, challenges in large-scale decoding, and insuffi-
cient resources for magic state distillation. In this “early fault-
tolerant” era, many tasks of interest requiring an effectively
zero error rate will be impossible to perform. As long as the
results of the fault-tolerant algorithm are obtained through
expectation value estimation, the residual logical errors can be
mitigated using all of the aforementioned QEM methods. We
can follow the same arguments outlined previously and simply
replace the qubit registers, the operations, and the error
channels with their logical equivalents.
In particular, the role of probabilistic error cancellation in the

Cliffordþ T paradigm of universal fault-tolerant quantum
computation was studied extensively in several works
(Lostaglio and Ciani, 2021; Piveteau et al., 2021; Suzuki
et al., 2022). The logical noise associated with Clifford gates
can be transformed into logical Pauli channels using Pauli
twirling by inserting random Pauli gates, as mentioned in
Sec. V.A. To mitigate the resultant logical Pauli noise using
probabilistic error cancellation, we need only insert Pauli gates
into the unmitigated circuit. These additional logical Pauli
gates required for error mitigation can be applied virtually and
noiselessly by updating the Pauli frame (Suzuki et al., 2022),
thereby boosting the effectiveness of probabilistic error can-
cellation in the fault-tolerant setting. The errors in the noisy
logical T gate can be mitigated in a similar way, but to twirl
them we need to apply additional logical Clifford gates instead
of just Pauli gates; see Appendix A.2. Suzuki et al. (2022)
showed that to achieve a logical circuit fault rate of 10−3 with a
sampling overhead of 100, probabilistic error cancellation can
reduce the physical qubit overhead by 80% for some classically
intractable problems and more than 45% in many practical
fault-tolerant applications.
Themagic state distillation process needed for implementing

fault-tolerant T gates accounts for significant costs in fault-
tolerant computation even with recent advances (O’Gorman
and Campbell, 2017; Litinski, 2019). Therefore, it makes sense
to study the details of error mitigation for imperfect logical T
gates. Piveteau et al. (2021) considered logical T gates
implemented through either gate teleportation or code switch-
ing and found that it is sufficient to consider the effective logical
error as a dephasing channel (with the help of logical twirling),
which is much easier to characterize and mitigate using
probabilistic error cancellation. Assuming perfect Clifford
gates, they showed that one can use probabilistic error
cancellation to remove errors in a circuit that has 2000 T gates
and a physical error rate of 10−3 at a sampling overhead of
1000. This is well beyond the classically tractable regime of
∼50 T gates (Bravyi and Gosset, 2016). Lostaglio and Ciani
(2021) discussed the application of QEM to noisy logical T
gates but with more emphasis on the resource theoretical
aspect. They introduced a resource measure called quantum-
assisted robustness of magic, which indicates the speedup of
quantum circuit simulation with noisy non-Clifford gates using
probabilistic error cancellation.
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Besides gate errors, there will also be compilation errors
when we try to approximate an arbitrary unitary gate using the
Cliffordþ T gate set. The form of the resultant compilation
errors can be analytically computed for local gates, which can
then be mitigated using probabilistic error cancellation
(Suzuki et al., 2022). The resultant compilation error will
decrease exponentially with the increase of the number of T
gates used (Kitaev, 1997; Dawson and Nielsen, 2006;
Kliuchnikov, Maslov, and Mosca, 2013; Ross and Selinger,
2016). Hence, there is a trade-off between the number of T
gates used and the cost of the QEM we need to apply. We
discuss more instances of compilation errors beyond the
context of gate synthesis in Sec. V.C.

C. Algorithmic (compilation) errors

To execute a unitary operation, we first need to compile it
into a sequence of gates that the quantum computer can
efficiently execute. The compiled circuit does not always
exactly represent the target unitary (often due to a limited
circuit depth); any resultant mismatches are called compila-
tion errors. This will lead to errors in the output expectation
value that we call algorithmic errors. We discussed one
instance of compilation errors in the context of gate synthesis
in Sec. V.B. In applications like variational eigensolvers, the
target unitary is represented using a parametrized ansatz
circuit, which can lead to algorithmic errors due to incorrect
values of parameters or limited representation power of ansatz
circuits. Algorithmic errors will be present even if all gates can
be executed perfectly without any noise, and thus they cannot
be removed through QEC. However, algorithmic errors can be
removed through some of the QEM techniques that we have
mentioned, and this is one of the areas where QEM is
nontrivially different from QEC.
Endo et al. (2019) made the first attempt to mitigate such

algorithmic errors via zero-noise extrapolation, which essen-
tially operates in the manner described in Sec. III.A, but with
algorithmic errors in the place of physical errors. For a given
application, there will be different ways to compile the target
unitary using different circuit structures (for instance, different
circuit depths) or different circuit parameters, which will
output data points with different algorithmic errors. If we
know the relative scaling of the algorithmic errors between
these data points, we can then apply zero-noise extrapolation
to them to remove the algorithmic errors. Endo et al. (2019)
looked at the specific problem of Hamiltonian simulation
using Trotterization (Suzuki, 1990, 1991). Higher-order
Trotterization will have fewer algorithmic errors but deeper
circuits. Balancing these two aspects means there is an optimal
order of Trotterization in a given practical setting. Data points
of different algorithmic errors can be obtained using different
orders of Trotterization up to the optimal order, using
which we can apply Richardson extrapolation to estimate
the result of infinite-order Trotterization with zero algorithmic
errors. Zero-noise extrapolation can also be used to mitigate
algorithmic errors in energy minimization algorithms (quan-
tum optimization algorithms) like quantum annealing and
variational eigensolver by extrapolating to the infinite-
annealing-time limit or the zero-energy-variance limit (Cao
et al., 2023).

Mitigating algorithmic errors is even more natural for QEM
methods that are based on the known constraints of the ideal
state or the ideal observables since algorithmic errors can
violate these constraints, just like gate errors. One such
example was discussed by Huggins, McArdle et al. (2021).
They looked at the randomized Trotterization (Campbell,
2019; Childs, Ostrander, and Su, 2019; Ouyang, White,
and Campbell, 2020) in which the compiled circuit is
inherently probabilistic while the ideal state is known to be
pure. Hence, it is natural to apply purification-based QEM
here to remove the stochastic errors due to the randomized
compilation process. Another example is subspace expansion
applied in the context of a variational eigensolver (McClean
et al., 2017) to overcome the limited representation power of
the ansatz circuit.

VI. OPEN PROBLEMS

A. Overarching problems

Having thus surveyed the diverse concepts, implementa-
tions, and applications of QEM, it is now appropriate to reflect
on the key unanswered questions in the field. We identify
several such questions next.

(1) What is the full landscape of the zoo of QEM? In
Sec. III, we discussed a set of QEM methods and their
variants, which are grouped into three categories in
Sec. IV.A.1. However, this is by no means the full
landscape of QEM. Are there better classifications of
the different QEM methods? Moreover, are there new
methods waiting to be discovered?

(2) What are some good performance metrics for QEM?
In Sec. II.B, we identified the bias and variance of
the error-mitigated estimator as its key performance
metrics, and in Sec. IV we further defined some
performance metrics by viewing QEM from other
perspectives. However, these metrics are greatly de-
pendent on the exact problem we are trying to solve,
and many of them can be obtained analytically for
only some canonical cases. Are there other perfor-
mance metrics for QEM that can better reflect their
practical performance and/or can be analytically cal-
culated for a wider range of methods? Can these
metrics take into account the various additional in-
formation and resources required by different QEM
methods? Instead of performance metrics, should we
identify a set of well-defined use cases that can then be
used to benchmark QEM methods through numerics
or experiments, much like the MNIST and ImageNet
databases in computer vision research?

(3) What is the optimal QEM strategy for a practical use
case? This is a natural question that follows from the
first two. After we have a full view of all possible
QEM methods and good performance metrics for their
practical performance, we can then identify the opti-
mal QEM strategy for some practical use cases. This is
most likely to be a hybrid of different QEM methods.

(4) What is the connection between QEM and QEC? We
attempted to connect QEM to QEC in Sec. IV.D. There
most of the connection was made specifically for
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symmetry-based QEM. It would be interesting to see a
more systemic approach to connect general QEM
methods to QEC, or even to merge them under a
larger common framework of error suppression. For
this to happen, we first need a good description of the
framework for QEM, which is the first question that
we presented here.

(5) Can we extend QEM beyond expectation value esti-
mation? While expectation value estimation has been
at the heart of many useful algorithms to date, there are
still many algorithms that fall outside this paradigm,
for instance, a repeat-until-success algorithm like
Shor’s algorithm and algorithms that output a sin-
gle-shot measurement, such as quantum phase esti-
mations using the quantum Fourier transform. Can we
identify an equivalent of QEM for these algorithms
and usefully apply concepts such as those described in
this review? For example, it should be possible to
improve single-shot algorithms via postselection in the
same spirit of quantum error detection.

B. Technical questions

There are also many other more technical questions about
the implementations and applications of different QEM
techniques, many of which we have mentioned in this review
when talking about individual techniques. We list some
sample questions here.

(1) Are there general protocols to scale the noise without
changing the error model? If yes, can we deduce the
shape of the extrapolation curve from the error model?
See Sec. III.A.

(2) How can we efficiently handle drifts in the error model
when applying probabilistic error cancellation in
practice? See Sec. III.B.

(3) What is the training cost for learning-based QEM? See
Sec. III.H.

(4) Various quantum computing hardware architectures
have been realized, at least at the prototype level, with
differing connectivities and native gate sets. What is
the interplay between the hardware feature set and the
suitable choices of QEM strategy?

VII. CONCLUSION

In this review, we have provided a comprehensive survey of
QEM which has ranged from basic concepts and motivations
to the implementation details of specific techniques. Owing to
the low hardware requirements of QEM compared to QEC, as
well as the broad range of mitigation techniques available to
target diverse application scenarios, QEM has already become
an integral part of many recent experimental demonstrations
of quantum hardware. Even though we cannot rely on QEM
alone to suppress all errors in all cases, especially when the
circuit fault rate is large, we can always aim for a sweet spot
between the amount of noise removed and the resource
required. Consequently we can expect QEM techniques to
continue to establish themselves as indispensable enablers,
which is vital to maximizing the reach of each generation of
hardware. We anticipate that this will remain true even into the

fault-tolerant era since recent work has shown that it is
possible to reduce the hardware requirements of fault toler-
ance by applying QEM alongside QEC. Indeed, there are
applications of QEM concepts that are entirely beyond
handling physical device imperfections and instead mitigate
compilation (algorithmic) imperfections, i.e., by honing the
performance of algorithms that of necessity produce only
approximate answers.
Despite already playing a significant role in practical

applications, the current landscape of QEM is still dynamic
and complex, with many unexplored territories. While we
have made every effort to present the rather tangled threads of
this topic in a clear way in this review, it is evident that a more
systematic and unified structure for QEM is desirable as the
field matures. There are still many open problems left
unanswered, as summarized in Sec. VI. Solving these prob-
lems may be the key to a clearer and more structured view of
QEM and its role in the grand scheme of error suppression. We
hope that the community of theoretical and experimental
researchers who will drive the field forward may find that the
survey of ideas and methods presented in this review provides
useful guidance along the way.

LIST OF SYMBOLS AND ABBREVIATIONS

Cem error-mitigation sampling overhead
N number of qubits

Ncir number of circuit runs
O observable of interest

Ôem error-mitigated estimator
Ôρ random variable from measuring O on state ρ
p physical gate error rate
P0 circuit fault-free probability
λ circuit fault rate: the average number of faults

per circuit run
ρ unmitigated noisy state
ρ0 ideal noiseless state
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APPENDIX: PRACTICAL TECHNIQUES IN
IMPLEMENTATIONS

1. Monte Carlo sampling

In many QEM techniques, the error-mitigated expectation
value E½Ôem� is often a linear sum of the expectation values of
a set ofK random variables fÔng that are the outputs of the set
of response measurement circuits for the QEM technique,

E½Ôem� ¼
XK
n¼1

αnE½Ôn�; ðA1Þ

where fαng are real coefficients. A naive way to estimate
E½Ôem� would be to perform an estimation of the individual
terms E½Ôn� up to a certain precision, then combine the
results. In such a way, the variance of the error-mitigated
estimator Ôem is given as

var½Ôem� ¼
XK
n¼1

jαnj2var½Ôn�.

The component randomvariables Ôn, which are generated from
circuits that are variants of the primary circuit, can be expected
to have a variance similar to the unmitigated estimator Ôρ

generated from the noisy primary circuit: var½Ôn� ∼ var½Ôρ�.
Hence, we have

var½Ôem� ¼
�XK

n¼1

jαnj2
�
var½Ôρ�.

Therefore, each component observable Ôn is associated with a
sampling overhead of

P
K
n¼1jαnj2. Since there are K of them,

the total sampling overhead is

Cnaive
em ¼ K

XK
n¼1

jαnj2: ðA2Þ

This method is not scalable if the number of terms K is large,
which is the case for many QEM methods. Instead, we can
construct the estimator Ôem using Monte Carlo methods. We
can rewrite Eq. (A1) as

E½Ôem� ¼ A
XK
n¼1

jαnj
A

sgnðαnÞE½Ôn� ¼ AE½Ômix�; ðA3Þ

where A ¼ P
K
n¼1jαnj. In Eq. (A3) we have defined a new

random variable Ômix that is a probabilistic mixture of the set
of random variables fsgnðαnÞÔng, with sgnðαnÞÔn chosen
with the probability jαnj=A. Each sample of Ôem is simply a
sample of Ômix scaled by the factor A,

Ôem ¼ AÔmix:

Using the same var½Ôn� ∼ var½Ôρ� assumption, we then have
var½Ômix� ∼ var½Ôρ�, and thus

var½Ôem� ¼ A2var½Ômix� ∼ A2var½Ôρ�:

Hence, the sampling overhead [Eq. (3)] of an error-mitigated
estimation performed using Ôem instead of Ôρ is then

CMC
em ¼ A2 ¼

�XK
n¼1

jαnj
�

2

: ðA4Þ

Using the Cauchy-Schwarz inequality to compare the sam-
pling costs in Eqs. (A2) and (A4), we have

�XK
n¼1

jαnj
�

2

≤ K
XK
n¼1

jαnj2

⇒ CMC
em ≤ Cnaive

em .

In other words, the Monte Carlo method is always more
sample efficient under our assumptions.
Instead of making assumptions about the variance of the

component random variables Ôn, we can obtain a similar
sampling overhead using Hoeffding’s inequality, as shown in
Eq. (5). This uses the fact that the component random
variables Ôn usually have the same range as Ôρ since they
are typically obtained from the measurement of the same
observable. Even if the observables are different, they are
often all Pauli observables that are in the same range.
Here we have discussed using Monte Carlo sampling for

estimating the error-mitigated expectation value. Similar
arguments can be applied to the estimation of loss functions
in learning-based methods and other comparable situations.

a. Exponential sampling overhead

As mentioned in Sec. II.D, if the component random
variables fÔng are obtained by measuring Pauli observables
on circuits suffering from Pauli gate noise with a circuit fault
rate of λ or more, then its expectation value will decay
exponentially with λ as

E½Ôn� ¼ Oðe−βnλÞ

for a positive βn. We also have

var½Ôn� ¼ E½Ô2
n� − E½Ôn�2 ¼ 1 −Oðe−2βnλÞ;

where we have used Ô2
n ¼ 1 as the Pauli observable.

As mentioned, Ômix is the probabilistic mixture of the set of
random variable fsgnðαnÞÔng with the probability distribu-
tion fpn ¼ jαnj=Ag. Using the properties of random variables
from mixture distribution, we have

E½Ômix� ¼
X
n

pnsgnðαnÞE½Ôn� ¼ Oðe−βλÞ;

Zhenyu Cai et al.: Quantum error mitigation

Rev. Mod. Phys., Vol. 95, No. 4, October–December 2023 045005-29



with β ¼ minnβn, and we also have

var½Ômix� ¼ E½Ô2
mix� − E½Ômix�2

¼
X
n

pnE½Ô2
n� − E½Ômix�2

¼ 1 −Oðe−2βλÞ;

wherewe have again used Ô2
n ¼ 1. This shows that whenwe are

considering a Pauli observable under Pauli circuit noise, the
assumption var½Ômix� ∼ var½Ôn�mentioned in Appendix A.1 is
valid at large λ evenwithout the need to consider exactly how the
various Ôn are constructed.
Since the error-mitigated estimator is Ôem ¼ AÔmix, we

then have

E½Ôem� ¼ AE½Ômix� ¼ OðAe−βλÞ.

To ensure that the expectation value of the error-mitigated
estimator does not decay with the noise level λ, we need to
have A ¼ OðeβλÞ, which implies that the sampling cost using
Eq. (A4) is

Cem ¼ A2 ¼ Oðe2βλÞ.

That is, it increases exponentially with λ.

2. Pauli twirling

Given a noise processN , twirling it over a symmetry group
G means conjugating N with random elements in G,

TGðN Þ ¼ 1

jGj
X
G∈G

GNG:

Note that here we are using the superoperator formalism.
Twirling over the Pauli group, which is called Pauli twirling,
will remove all of the off-diagonal elements of N in the Pauli
basis, thus transforming the error channel into Pauli noise.
Now suppose that we have a noisy Clifford gate Cϵ that is

simply the ideal Clifford channel C followed by the noise
channelN : Cϵ ¼ NC. If we want to twirl the noise channelN
of the noisy Clifford gate Cϵ, we can apply Cϵ with a random
Pauli G and its corresponding Pauli CGC† in each circuit run,

T0
GðCϵÞ ¼

1

jGj
X
G∈G

ðCGC†ÞCϵG ¼ 1

G

X
G0 ∈G

G0CϵðC†G0CÞ

¼
�

1

jGj
X
G∈G

GNG
�
C:

To twirl the error of a sequence of Clifford gates
Q

1
m¼MCm, the

random Pauli gates for twirling consecutive Clifford gates can
be merged.
To twirl a noisy T gate T ϵ ¼ NT , we then need to apply

the following circuit:

T0
GðT ϵÞ ¼

1

jGj
X
G0 ∈G

GT ϵðT †GT Þ ¼
�

1

jGj
X
G∈G

GNG
�
T ;

where T †GT is a Clifford gate.

3. Measurement techniques

To measure an arbitrary operator, we can always measure its
Pauli basis and then combine the results. Hence, without loss
of generality we focus mostly on Pauli measurements in this
section.
In practical experiments, it is often the case that we can

perform only single-qubit Z measurements to high accuracy.
Hence, one way to measure a Pauli operator is by transforming
it into a single-qubit Z using Clifford circuits. Given linear
qubit connectivity, the additional Clifford circuits needed will
require long-range gates of depth O( logðNÞ) or local gates of
depth OðNÞ, a concept discussed in the context of symmetry
verification by Bonet-Monroig et al. (2018). Alternatively, for
a given Pauli operator O, if we can implement controlled-O
gates, we can also indirectly measureO through the Hadamard
test, as shown in Fig. 6. The controlled-O gate can be
implemented using a Clifford circuit that transforms O to
single-qubit Z along with a controlled-Z gate. The cost of this
is similar to the previously discussed direct measurement.
Any given Pauli operator O can be written as the tensor

product of single-qubit Pauli operators O ¼⊗N
n¼1 Gn, where

Gn is the action ofO on the nth qubit. Hence, the controlledO
in the Hadamard test can also be decomposed into low-weight
controlled-Gn gates instead. In fact, we can measure O
directly by performing single-qubit Pauli measurements of
its components fGng and multiplying the results. In this way,
the additional circuitry needed for measuring O is only one
layer of single-qubit Clifford for changing the measure-
ment basis.
Now suppose that we want to measure two commuting

Pauli operators in the same circuit run, which can be useful in
symmetry verification, we can use the aforementioned single-
qubit measurements plus postprocessing scheme, but we must
make sure the two Pauli operators qubitwise commute
(Izmaylov, Yen, and Ryabinkin, 2019); i.e., for every qubit
the single-qubit Pauli components acting on it from different
observables commute. For example, XXI and IXZ are qubit-
wise commuting, but XX and YY are not. Note that for a set of
operators to qubitwise commute, their actions on a given qubit
must involve the same Pauli operator or the identity. More
generally the set of operators that are linear combinations of a
set of qubitwise commuting Pauli operators are also qubitwise

FIG. 6. Hadamard test circuit for performing Pauli O measure-
ments. If O is a general unitary, then the Hadamard test circuit in
which we measure X ⊗ I will output the expectation value
ReðTr½Oρ�Þ, while measuring Y ⊗ I will output the expectation
value ImðTr½Oρ�Þ.
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commuting and can be measured simultaneously using single-
qubit Pauli measurements in the same circuit run. Whenever
two Pauli operators commute, we can make them qubitwise
commuting using a suitable choice of Clifford circuit.
Examples of this were discussed for direct symmetry verifi-
cation in Sec. III.D.
In some other cases, we are more interested in the expect-

ation values of a set of commuting operators than in their exact
measurement results in any given circuit run. In these
scenarios, instead of trying to measure multiple observables
in every circuit run, it is possible to obtain these expectation
values through shadow tomography (Huang, Kueng, and
Preskill, 2020) using random single-qubit Pauli measurements
and postprocessing.
We now move beyond measuring commuting Pauli oper-

ators and consider the case in which we want to measure the
product of a Pauli operatorO and a general Hermitian operator
S that does not necessarily commute with O. For the circuits
shown in Fig. 7, if we first perform a projective measurement
of the Pauli operator O and then measure the operator S, then
the latter measurement is equivalent to measuring the com-
ponents of S that commute with O, which is simply Sþ ¼
ðSþOSOÞ=2 (Mitarai and Fujii, 2019; Cai, 2021d; Huo and
Li, 2022). Taking the product of the two measurements, we
can obtain the expectation value of the symmetrized product
OSþ ¼ ðOSþ SOÞ=2, which is useful for the symmetry
verification in Sec. III.D (in which S is the symmetry) and
the echo verification in Sec. III.E (in which S is the dual state).
The component of S that anticommutes with O, denoted as

S− ¼ ðS −OSOÞ=2, can be obtained by first applying the
Pauli rotation exp½−iðπ=4ÞO� and then measuring S (Mitarai
and Fujii, 2019; Cai, 2021d; Huo and Li, 2022). Combined
with the previous measurement of Sþ, we can obtain the
expectation value of the product observable OS. Alternatively,
if we can implement controlled-O and controlled-S gates, then
they can be composed to give a controlled-OS gate, which can
be used to measure OS using the Hadamard test.
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