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The optics of correlated disordered media is a conceptually rich research topic emerging at the
interface between the physics of waves in complex media and nanophotonics. Inspired by photonic
structures in nature and enabled by advances in nanofabrication processes, recent investigations have
unveiled how the design of structural correlations down to the subwavelength scale could be exploited
to control the scattering, transport, and localization of light in matter. From optical transparency to
superdiffusive light transport to photonic gaps, the optics of correlated disordered media challenges
our physical intuition and offers new perspectives for applications. This review examines the
theoretical foundations, state-of-the-art experimental techniques, and major achievements in the study
of light interaction with correlated disorder, covering a wide range of systems: from short-range
correlated photonic liquids to Lévy glasses containing fractal heterogeneities to hyperuniform
disordered photonic materials. The mechanisms underlying light scattering and transport phenomena
are elucidated on the basis of rigorous theoretical arguments. Ongoing research on mesoscopic
phenomena such as transport phase transitions and speckle statistics and the current development of
disorder engineering for applications such as light-energy management and visual appearance design
are overviewed. Finally, special efforts are made to identify the main theoretical and experimental
challenges to address in the near future.
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I. INTRODUCTION

Correlated disordered media are noncrystalline hetero-
geneous materials exhibiting pronounced spatial correlations
in their structure and morphology. The topic has bloomed in
the context of optics and photonics, gradually unveiling the
considerable impact of structural correlations on the scattering,
transport, and localization of light in matter. In essence,
correlations engender constructive and destructive interfer-
ences that survive configurational average. This leads not only
to more pronounced spectral and angular features at the single-
scattering level but also to profound modifications of the
radiation properties of quantum emitters and the macroscopic
diffusion of photons by intricate near-field and multiple wave
scattering phenomena. Recent findings enable us to envision
novel types of materials with unprecedented optical function-
alities and raise a number of challenges in theoretical modeling,
material fabrication, and optical spectroscopy. This review
provides an overview of this emerging research field, ranging
from the basic principles of light interactionwith heterogeneous
media to the most recent and still actively debated topics.
The scattering of light by heterogeneous media has a long

and venerable history that started more than a century ago with
pioneering studies on the refractive index of fluids of atoms or
molecules (H. A. Lorentz, 1880; L. Lorenz, 1880), the electro-
magnetic scattering by particles (Rayleigh, 1899; Maxwell
Garnett, 1904; Mie, 1908), and the phenomenon of critical
opalescence in binary fluid mixtures (Smoluchowski, 1908;
Einstein, 1910; Ornstein and Zernike, 1914). The foundations
of a rigorous theoretical treatment of multiple light scattering
were built in the 1930s (Kirkwood, 1936; Yvon, 1937) and
achieved its full dimension a few decades later with various
important contributions (Foldy, 1945; Lax, 1951, 1952; Keller,
1964; Twersky, 1964). These early works already pointed out
the key role played by structural correlations on light
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scattering, with an illustration of this being the transparency of
the cornea resulting from short-range correlations in ensembles
of discrete scatterers (Maurice, 1957; Hart and Farrell, 1969;
Benedek, 1971; Twersky, 1975).
A new branch of research exploiting light waves to study

mesoscopic phenomena in disordered systems emerged in the
1980s, prompted by experimental demonstrations of weak
localization (Tsang and Ishimaru, 1984; Van Albada and
Lagendijk, 1985; Wolf and Maret, 1985) and theoretical
predictions for the three-dimensional Anderson localization
of light (John, 1984; Anderson, 1985). The advent of photonic
crystals (John, 1987; Yablonovitch, 1987), wherein photonic
band gaps are created by a periodic modulation of the refractive
index in twoor three dimensions, gave additionalmomentum to
research by stimulating the development of nanofabrication
techniques for high-index dielectrics (López, 2003). The
following decadewitnessed a flourishing of studies on periodic
dielectric nanostructures (Joannopoulos et al., 2011) and
disordered media made of resonant (Mie) scatterers (Van
Albada et al., 1991; Busch and Soukoulis, 1995; Lagendijk
and Van Tiggelen, 1996) from two overlapping communities
(Soukoulis, 2012).

The importance of short-range structural correlations on
light transport in disordered systems (Fraden and Maret, 1990;
Saulnier, Zinkin, and Watson, 1990) and of random imper-
fections on light propagation in periodic systems (Sigalas
et al., 1996; Asatryan et al., 1999; Vlasov et al., 2000) was
recognized early on. Research on correlated disordered media
in optics, however, took off in the mid-2000s with exper-
imental studies showing that disorder could be engineered to
harness light transport (Rojas-Ochoa et al., 2004; García et al.,
2007; Barthelemy, Bertolotti, and Wiersma, 2008). The
surprising observation of photonic gaps in disordered struc-
tures with short-range correlations (Edagawa, Kanoko, and
Notomi, 2008; Liew et al., 2011), reports of mesoscopic
phenomena in imperfect photonic crystals (Conti and
Fratalocchi, 2008; Toninelli et al., 2008; García et al., 2012),
and the prospects of new generations of photonic devices like
random lasers (Gottardo et al., 2008), thin-film solar cells
(Oskooi et al., 2012; Vynck et al., 2012; Martins et al., 2013),
and integrated spectrometers (Redding et al., 2013) contrib-
uted to the emergence of the research field. Figure 1 presents
some of the early achievements and applications of correlated
disordered media in optics and photonics.

FIG. 1. Early achievements and applications of correlated disordered media in optics and photonics. (a) Male mandrill (Mandrillus
sphinx) blue facial skin and cross section of its dermis in a structurally colored area that reveals parallel collagen fibers organized in a
correlated array. Adapted from Prum and Torres, 2004. (b) Modified light transport (described by the inverse transport mean free path
1=lt) produced by engineering short-range structural correlations thanks to Coulomb repulsion between charged particles (the filled
symbols and solid line). Hard-sphere systems (open symbols and dotted line) exhibit weaker correlations. The dashed line is a model
neglecting completely structural correlations. Adapted from Rojas-Ochoa et al., 2004. (c) Anomalous light transport in Lévy glasses. A
fractal heterogeneity is engineered by adding transparent spheres with sizes varying over orders of magnitude in a host matrix. Transport
can be modeled using a truncated Lévy walk. On finite-size samples, this leads to an anomalous scaling of the total transmittance
T ∼ L−α=2 (experiments shown as symbols; lines are fits). Adapted from Barthelemy, Bertolotti, and Wiersma, 2008. (d) Light
localization in randomly perturbed inverse opal photonic crystals (upper left inset). Simulations reveal spatially localized modes near the
photonic band edge (lower left inset). Their typical spatial extent (the localization length ξ) depends strongly on the degree of disorder.
Adapted from Conti and Fratalocchi, 2008. (e) Existence of photonic gaps in amorphous photonic materials. Simulations of the spectral
density (a quantity proportional to the density of states) in a connected amorphous diamond structure exhibiting short-range order shows
a photonic gap near d=λ ≃ 0.23, where d is the average bond length. Adapted from Edagawa, Kanoko, and Notomi, 2008. (f) Random
lasing in two-dimensional photonic structures with correlated disorder. Short-range correlations are shown to increase the lasing
efficiency at certain frequencies due to enhanced optical confinement. Adapted from Noh et al., 2011.
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Important efforts have been made in recent years to
elucidate the role of structural correlations on the emergence
of photonic gaps and Anderson localization of light in
two-dimensional (Conley et al., 2014; Froufe-Pérez et al.,
2016, 2017; Monsarrat et al., 2022) and three-dimensional
disordered systems (Klatt, Steinhardt, and Torquato, 2019;
Ricouvier, Tabeling, and Yazhgur, 2019; Aubry et al., 2020;
Haberko, Froufe-Pérez, and Scheffold, 2020; Scheffold et al.,
2022). Near-field interaction and light polarization consid-
erably complicate theoretical modeling (Cherroret, Delande,
and Van Tiggelen, 2016; Vynck, Pierrat, and Carminati, 2016;
Van Tiggelen and Skipetrov, 2021), thus explaining the
widespread use of full-wave numerical methods to address
this issue alongside phenomenological models (Naraghi et al.,
2015). The so-called hyperuniform disordered structures
(Torquato and Stillinger, 2003), introduced in photonics by
Florescu, Torquato, and Steinhardt (2009), have received
considerable attention in this context, leading to a wider
exploration of their optical properties (Leseur, Pierrat, and
Carminati, 2016; Froufe-Pérez et al., 2017; Bigourdan,
Pierrat, and Carminati, 2019; Gorsky et al., 2019;
Rohfritsch et al., 2020; Sheremet, Pierrat, and Carminati,
2020; Piechulla, Fuhrmann et al., 2021; Torquato and Kim,
2021) and advances on top-down and bottom-up fabrication
techniques (Man et al., 2013; Weijs et al., 2015; Muller et al.,
2017; Ricouvier et al., 2017; Maimouni et al., 2020; Chehadi
et al., 2021; Piechulla, Wehrspohn, and Sprafke, 2023).
In a different context, the interplay between order and

disorder appeared early on as an essential ingredient to explain
the colored appearance of certain plants and animals
(Kinoshita and Yoshioka, 2005). Research on natural photonic
structures continued at a fast pace with important findings,
such as the ubiquity of correlated disorder in animals
exhibiting vivid diffuse blue coloring (Noh et al., 2010;
Magkiriadou et al., 2012; Yin et al., 2012; Johansen et al.,
2017; Moyroud et al., 2017), the use of short-range correla-
tions to reduce light reflectance (Deparis et al., 2009;
Siddique, Gomard, and Hölscher, 2015; Pomerantz et al.,
2021), or structural anisotropy to enhance whiteness (Burresi
et al., 2014). Efforts have been made to realize artificial
materials exhibiting correlated disorder to create materials
with versatile visual appearances (Forster et al., 2010;
Takeoka, 2012; Park et al., 2014; Goerlitzer, Klupp Taylor,
and Vogel, 2018; Shang et al., 2018; Chan et al., 2019;
Schertel, Siedentop et al., 2019; Salameh et al., 2020; Jacucci
et al., 2021).
In this review, we introduce the key concepts and tech-

niques in the study of light in correlated disordered media,
assess the current state of knowledge on the topic, and define
the main challenges that lie ahead of us. Compared to existing
reviews on correlated disorder and disorder engineering in
optics and photonics (Shi et al., 2013; Wiersma, 2013; Wang
and Zhao, 2020; Yu et al., 2021; Cao and Eliezer, 2022), we
provide here a broader view on the field and sufficient
technical details for the interested reader who wants to further
explore it, whether from the theoretical or the experimental
side. This review also attempts to bridge the gap between
different research fields for which a strong literature already
exists, namely, on random heterogeneous materials (Torquato,

2013), multiple light scattering in complex media (Tsang and
Kong, 2001; Sheng, 2006; Akkermans and Montambaux,
2007; Carminati and Schotland, 2021), and periodic photonic
crystals (Joannopoulos et al., 2011), and which may serve as
complementary literature. We focus on two- and three-dimen-
sional dielectric materials, intentionally leaving aside one-
dimensional dielectric structures (i.e., layered media) (Izrailev,
Krokhin, and Makarov, 2012) and metallic nanostructures
(Shalaev, 2002). Quasicrystalline media, which are nonperi-
odic yet deterministic structures, are not discussed explicitly
here, despite many conceptual overlaps discussed at length,
for instance, by Dal Negro (2022). We also do not discuss the
fertile fields of metamaterials and metasurfaces, which show
some apparent similarities to the present topic in terms of
theoretical models and concepts (Mackay and Lakhtakia,
2020), but with different scopes of application. Finally, certain
concepts discussed here relate to transport theory in corre-
lated, stochastic media, where spatial correlations take place
on scales larger than the wavelength and do not give rise to
interference. This review covers only a small portion of the
vast literature on the topic, which was meticulously reviewed
by d’Eon (2022).
The remainder of the review is structured as follows.

Section II introduces the basic concepts and important
quantities for light scattering and transport in correlated
disordered media, namely, the extinction, scattering, and
transport mean free paths. We derive mathematically explicit
results, as a function of the degree of structural correlations,
from rigorous multiple-scattering theories for both continuous
permittivity media and discrete particulate media, emphasiz-
ing conceptual similarities between these two viewpoints.
Section III addresses the statistical description of the structural
properties of correlated disordered media. Different classes of
correlated systems are discussed together with numerical and
experimental techniques to realize and characterize them.
Section IV reviews experimental and theoretical studies
wherein structural correlations yield substantial variations
of light transport parameters, including enhanced scattering
in colloidal suspensions of particles, optical transparency in
hyperuniform media, and anomalous diffusion in materials
with large-scale fractal heterogeneities. Section V is con-
cerned with emergent mesoscopic phenomena relying on an
interplay of order and disorder, most of which are not yet fully
understood. This includes the formation of photonic gaps and
localized states in disordered systems, and the statistical
properties of near-field speckles and local density of states.
Section VI describes various applications of correlated dis-
ordered media in optics and photonics, namely, light trapping
for enhanced absorption, random lasing, and visual appear-
ance design. Section VII concludes the review with a
discussion on some open challenges in the field.

II. THEORY OF MULTIPLE LIGHT SCATTERING BY
CORRELATED DISORDERED MEDIA

The theoretical study of light propagation in disordered
media is a notoriously difficult problem that has experienced
many developments for more than a century. In this section,
we introduce the basic concepts of multiple light scattering by
heterogeneities with the aim of giving solid theoretical
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grounds to the role of structural correlations in light scattering
and transport.
In Sec. II.A, we first focus on the “constitutive” linear

relation between the average electric field and the average
polarization density in disordered media, which allows us to
introduce the concepts of the effective permittivity tensor and
extinction mean free path. Many of the derived results have
been used in the study of the effective optical response
and homogenization processes of periodic and amorphous
dielectrics (Van Kranendonk and Sipe, 1977; Mackay and
Lakhtakia, 2020). We derive the main equations that govern
the propagation of the average intensity and introduce the
scattering and transport mean free paths, two experimentally
measurable quantities that form the backbone of radiative
transfer theory (Chandrasekhar, 1960).
Within this unique theoretical framework, we then address

the light scattering problem for nonabsorbing media described
by either a continuous permittivity that fluctuates in space
(Sec. II.B) or discrete particles correlated in their position
(Sec. II.C); see Fig. 2. We derive analytical expressions for
the characteristic lengths, allowing us to show, on rigorous
grounds, how structural correlations impact scattering and
transport. We find that the choice of a specific effective
medium model does not affect the form of the expressions,
thereby demonstrating their generality.
The main outcomes of the theoretical analysis are provided

in Sec. II.D. Table I provides the final expressions for the
scattering and transport lengths (mean free paths) to be used in
practical situations.

A. General framework

1. Average field and self-energy

We consider a region of space filled with a nonmagnetic,
isotropic material [relative permeability μðrÞ ¼ 1] described
by a scalar spatially varying relative permittivity ϵðrÞ in a
uniform hostmedium with relative permittivity ϵh. Throughout
this review, we consider harmonic fields at frequency ω with
the e−iωt convention and drop the explicit dependence on ω in
the permittivities, fields, etc. In the absence of charges and
currents, the electric field EðrÞ at frequency ω satisfies the
propagation equation

∇ × ∇ ×EðrÞ − k20ϵhEðrÞ ¼ k20PðrÞ=ϵ0; ð1Þ

where k0 ¼ ω=c is the vacuum wave number and PðrÞ ¼
ϵ0½ϵðrÞ − ϵh�EðrÞ is the polarization density (electric
dipole moment per unit volume). The permittivity variation

ΔϵðrÞ ¼ ϵðrÞ − ϵh readily appears as the source of light
scattering in the system.
Upon statistical average over an ensemble of realizations of

disorder, denoted here as h� � �i, Eq. (1) describes the propa-
gation of the average field hEðrÞi with the average polariza-
tion density hPðrÞi as a source term. The difficulty in solving
this general problem essentially comes from the fact that the
permittivity variation and the electric field are not statistically
independent, i.e., hΔϵðrÞEðrÞi ≠ hΔϵðrÞihEðrÞi. The stan-
dard approach to solving this problem is to make an ansatz
about the effective permittivity ϵeff of the medium, thereby
establishing a constitutive linear relation between the average
field and the average polarization density, and to then calculate
it perturbatively from the spatial permittivity fluctuations.
We then rewrite Eq. (1) as (Ryzhov, Tamoikin, and

Tatarskii, 1965)

∇ × ∇ ×EðrÞ − k20ϵbEðrÞ ¼ XðrÞEðrÞ; ð2Þ

where ϵb is a constant, auxiliary, background permittivity that
can differ from the permittivity of the host medium ϵh andX is
an effective scattering potential (or electric susceptibility)
defined as

XðrÞ ¼ k20½ϵðrÞ − ϵb�1; ð3Þ

with 1 the unit tensor. The average field hEi then fulfills the
vector wave equation

∇ × ∇ × hEðrÞi − k2bhEðrÞi ¼ hXðrÞEðrÞi; ð4Þ

where k2b ¼ k20ϵb. We now introduce the susceptibility tensor
Σ, commonly known as the self-energy or mass operator
following the language of many-body scattering theory
(Dyson, 1949a), as

hXðrÞEðrÞi≡
Z

Σðr; r0ÞhEðr0Þidr0; ð5Þ

with

Σðr; r0Þ ¼ k20½ϵeffðr; r0Þ − ϵb1δðr − r0Þ�: ð6Þ

The self-energy depends on the nonlocal effective permit-
tivity tensor that results from multiple scattering in the
disordered medium. Hereafter we assume that the system
has a proper thermodynamic limit in which it becomes
spatially homogeneous and translationally invariant on
average [i.e., ϵeffðr; r0Þ ¼ ϵeffðr − r0Þ]. Aspects related to
the effective medium description in large but finite systems
and the deep connection with the Ewald-Oseen extinction
theorem (Van Kranendonk and Sipe, 1977; Hynne and
Bullough, 1987) are not discussed here. In Fourier space,
the self-energy is given by

Σðk;k0Þ ¼
ZZ

e−ik·rΣðr − r0Þeik0·r0drdr0 ð7Þ

¼ ð2πÞ3ΣðkÞδðk − k0Þ: ð8Þ

FIG. 2. Disordered media may be described using a continuous
permittivity model (left graphic) in the most general case or a
particulate model (right graphic) in the case where the permit-
tivity variation is compact.
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It is further convenient to decompose ΣðkÞ into its transverse
(⊥) and longitudinal (k) components as

ΣðkÞ ¼ Σ⊥ðkÞð1 − u ⊗ uÞ þ ΣkðkÞu ⊗ u; ð9Þ

where u ¼ k=jkj and u ⊗ u is the outer tensor product
between u and itself. Defining e as the unit polarization
vector with e · u ¼ 0, the transverse component of the self-
energy reads

Σ⊥ðkÞ ¼ e · ΣðkÞe: ð10Þ

2. Refractive index and extinction mean free path

To understand the role played by the self-energy in wave
propagation and scattering, we seek for transverse solutions of
the vector wave propagation equation of the form

hEðrÞi ¼ E0eeikeff ·r; ð11Þ
with keff ¼ k0neffu the wave vector describing propagation in
a homogeneous medium with the effective refractive index
neff . Assuming a statistically isotropic system, substituting
Eq. (11) into Eq. (4), and making use of Eqs. (5), (9), and (10)
leads to a transcendental equation for the effective wave
number

keff ¼ k0neff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2b þ Σ⊥ðkeffÞ

q

≡ kr þ i
1

2le
: ð12Þ

The real part of the effective index Re½neff � ¼ kr=k0 describes
the phase velocity of the average field (often called the
coherent or ballistic component) in the material, while the
imaginary part Im½neff � ¼ ð2k0leÞ−1 describes its exponential
decay with propagation due to absorption and/or scattering on
a characteristic length scale that is the extinction mean free
path le. In the weak extinction regime [i.e., ImΣ⊥ðkeffÞ ≪
k2b þ ReΣ⊥ðkeffÞ and krle ≫ 1], Eq. (12) leads to

1

le
≃
ImΣ⊥ðkrÞ

kr
: ð13Þ

In nonabsorbing dielectric materials, extinction is purely
driven by scattering (le ¼ ls, with ls the scattering mean
free path). The problem of light scattering by correlated
disordered media can therefore be apprehended by determin-
ing the self-energy of the system.

3. Multiple-scattering expansion

A key ingredient in solving multiple light scattering
problems is the electromagnetic Green’s tensor Gbðr; r0Þ,
which is the solution of the wave equation in a homogeneous
medium with permittivity ϵb [Eq. (2)] with a point source

∇ × ∇ ×Gbðr; r0Þ − k2bGbðr; r0Þ ¼ δðr − r0Þ1: ð14Þ

Physically, it corresponds to the electric field produced at a
point r by a radiating point electric dipole at r0 and is given by

Gbðr;r0Þ ¼−
1
3k2b

δðr− r0Þ

þ lim
a→0

Θðjr− r0j−aÞ
��

1þ∇⊗∇
k2b

�
eikbjr−r0 j

4πjr− r0j
�
;

ð15Þ

where Θ is the Heaviside step function. The Dirac delta
function on the right-hand side gives the well-known singu-
larity in the source region, while the second term corresponds
to the nonsingular, principal value of the Green’s function
(Yaghjian, 1980; Van Bladel and Van Bladel, 1991). The
exclusion volume defining the source region is chosen here to
be spherical, but nonspherical (spheroidal, cubic, etc.) regions
may also be used (Yaghjian, 1980; Tsang and Kong, 1981;
Torquato and Kim, 2021). The choice of a nonspherical
geometry can be particularly adapted to certain microstruc-
tures, for instance, with anisotropic correlation functions.
Mathematically the geometry of the source region affects
the values of integrals involving the individual singular or
nonsingular contributions of the Green’s function.
The Green’s function enables writing a general solution of

the wave equation in the form

EðrÞ ¼ EbðrÞ þ
Z

Gbðr; r0ÞXðr0ÞEðr0Þdr0; ð16Þ

where EbðrÞ is the solution of the homogeneous problem,
which can be seen as a background (incident) field with wave
number kb. Equation (16), known as the Lippmann-Schwinger
equation, can conveniently be written in operator form as

E ¼ Eb þ GbXE; ð17Þ

where Gb is an integral operator. Equation (17) can be
formally solved by successive iterations, leading to a multi-
ple-scattering expansion on orders ofX (i.e., single scattering,
double scattering, etc.). Eventually all multiple-scattering
orders are taken into account by defining the transition
operator T relating the polarization induced in the medium
to the background field as

E ¼ Eb þ GbT Eb; ð18Þ

with

T ¼ X þXGbX þ � � �
¼ ½1 −XGb�−1X : ð19Þ

Keeping only the lowest order in the expansion (T ¼ X ) is
known as the Born approximation, which corresponds to
single scattering. In the general case of multiple scattering,
the transition operator is spatially nonlocal, T Eb≡R
Tðr; r0ÞEbðr0Þdr0.
Upon statistical average of Eqs. (17) and (18) and having

Eq. (5), we finally reach a general expression for the average
field as a function of the self-energy operator Σ, known as the
Dyson equation (Yvon, 1937; Dyson, 1949a, 1949b; Rytov,
Kravtsov, and Tatarskii, 1989)
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hEi ¼ Eb þ GbΣhEi; ð20Þ

with

Σ ¼ hT i½1þ GbhT i�−1: ð21Þ

In summary, the disordered medium is described as a
permittivity that fluctuates around an auxiliary background
permittivity ϵb via the scattering potential X [Eq. (3)]. The
field propagates from fluctuation to fluctuation via the Green’s
tensor Gb in the homogeneous background with wave number
kb [Eq. (15)]. The multiple-scattering process on the scattering
potential X is described to infinite order via the transition
operator T [Eq. (19)]. The average transition operator hT i
finally defines the self-energy Σ [Eq. (21)], which describes
the propagation of the average field hEi in the disordered
medium, and leads to the extinction mean free path in the
medium [Eq. (13)].

4. Average intensity and four-point irreducible vertex

Light transport, that is, the propagation of the energy, is
formally described by the average intensity hjEðrÞj2i, which
we now consider. We first remark that the average intensity
can be decomposed into two components with distinct
physical meaning. Indeed, writing the field as the sum of
its average value and a fluctuating part E ¼ hEi þ ΔE with
hΔEi ¼ 0 by definition straightforwardly leads to

hjEðrÞj2i ¼ jhEðrÞij2 þ hjΔEðrÞj2i: ð22Þ
The first term jhEij2 corresponds to the so-called ballistic or
coherent intensity, which describes the part of the intensity
that propagates in the direction of the incident light and is
attenuated exponentially by scattering and absorption. Its
behavior is fully determined by the theory for the average
field presented in Sec. II.A.3. Our attention here should be
given instead to the second term hjΔEj2i, which corresponds
to the so-called diffuse or incoherent intensity and describes
the part of the intensity that spreads throughout the volume of
the medium in successive scattering events. The diffuse
intensity will lead to the definition of the scattering and
transport mean free paths, two additional length scales at the
heart of light propagation in disordered media (Rytov,
Kravtsov, and Tatarskii, 1989; Apresyan and Kravtsov,
1996; Van Rossum and Nieuwenhuizen, 1999).
We then consider the spatial correlation function of the

electric field, or “coherence matrix” (Mandel and Wolf, 1995),
Cðr; r0Þ≡ hEðrÞ ⊗ E�ðr0Þi, with the asterisk denoting the
complex conjugate. Starting with the Lippmann-Schwinger
equation [Eq. (17)], one can easily show thatC depends on the
correlator of the polarization density in the effective scattering
potential h½XðrÞEðrÞ� ⊗ ½X�ðr0ÞE�ðr0Þ�i. As with the self-
energy that allowed us to relate the average polarization to the
average field [Eq. (5)] eventually leading to the Dyson
equation [Eq. (20)], we can introduce here an operator Γ
known as the four-point irreducible vertex (or intensity vertex)
that relates the effective polarization density correlation to the
electric field correlation. This leads to a closed-form equation,
known as the Bethe-Salpeter equation (Salpeter and Bethe,
1951), that reads

Cðr; r0Þ ¼ hEðrÞi ⊗ hE�ðr0Þi þ
Z

hGðr; r1Þi ⊗ hG�ðr0; r01Þi

· Γðr1; r2; r01; r02Þ ·Cðr2; r02Þdr1dr01dr2dr02; ð23Þ

where the average Green’s function hGi is given by the Dyson
equation [Eq. (20)]

hGi ¼ Gb þ GbΣhGi: ð24Þ

The center dots in Eq. (23) denote tensor contraction,
defined such that ðA ⊗ BÞ · ðe ⊗ fÞ ¼ ðAeÞ ⊗ ðBfÞ and
ðA ⊗ BÞ · ðC ⊗ DÞ ¼ ðACÞ ⊗ ðBDÞ, where e and f are
vectors and A, B, C, and D are second-rank tensors.
The first term in Eq. (23) is the correlation function on the

average field that leads to the coherent intensity. The second
term expresses the field correlation as a multiple-scattering
process, where the propagation is described by the average
Green’s tensors and scattering by the vertex Γ that connects
two pairs of points (for the field and the complex conjugate).
Following steps similar to those leading to Eq. (21), we obtain
the following general expression for Γ (Carminati and
Schotland, 2021):

Γ ¼ ½GbG
�
b�−1½ð1þ GbhT i þ G�

bhT �i þ hT iGbG
�
bhT �iÞ−1

− ð1þ GbhT i þ G�
bhT �i þ hT GbG

�
bT

�iÞ−1�: ð25Þ

To proceed further, we rewrite the Bethe-Salpeter equation
in Fourier space. Assuming that the scattering events take
place on distances larger than the wavelength, the average
Green’s tensor can be approximated by its transverse compo-
nent

hGðkÞi ¼ ½k2PðuÞ − k2b1 − ΣðkÞ�−1 ð26Þ

≃ hG⊥ðkÞiPðuÞ; ð27Þ

where PðuÞ ¼ 1 − u ⊗ u is the transverse projection operator
and hG⊥ðkÞi ¼ ½k2 − k2b − Σ⊥ðkÞ�−1 is the scalar transverse
component. After some algebra provided in Appendix B, we
find that

��
k−

q
2

�
2

−
�
kþq

2

�
2

−Σ�⊥
�
k−

q
2

�
þΣ⊥

�
kþq

2

��
L⊥ðk;qÞ

¼
�
hG⊥

�
kþq

2

�	
−


G�⊥

�
k−

q
2

�	�

×
Z

Γ̄⊥
�
kþq

2
;k0þq

2
;k−

q
2
;k0−

q
2

�
·L⊥ðk0;qÞ dk0

ð2πÞ3 ;

ð28Þ

where we have assumed statistical homogeneity and transla-
tional invariance of the medium and neglected the exponen-
tially small coherent intensity. The field correlation described
by a new function

L⊥ðk;qÞ≡C⊥
�
kþ q

2
;k −

q
2

�
; ð29Þ
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with

C⊥ðk;k0Þ ¼ PðuÞ ⊗ Pðu0Þ ·Cðk;k0Þ; ð30Þ

depends only on the transverse part of the intensity vertex,
which is given by

Γ⊥ðk; κ;k0; κ0Þ ¼ PðuÞ ⊗ Pðu0Þ · Γðk;κ;k0;κ0Þ
¼ ð2πÞ3δðk − κ − k0 − κ0ÞΓ̄⊥ðk;κ;k0;κ0Þ:

ð31Þ

Equation (28) is general, as it considers all multiple-scattering
events within the medium and does not make any explicit
assumption on the kind of disorder. Note, however, that
neglecting the longitudinal component of the Green’s tensor
implicitly excludes near-field interactions between scattering
centers that might be important, for example, in dense
packings of high-index resonant particles.

5. Radiative transfer limit and scattering mean free path

Further approximations are required to obtain an explicit
transport equation for the average intensity. First, we take the
large-scale approximation jqj ≪ fjkj; jk0jg, also known as the
radiative transfer limit (Barabanenkov and Finkel’berg, 1968;
Ryzhik, Papanicolaou, and Keller, 1996), which assumes that
the average intensity varies on length scales 2π=jqj much
larger than the wavelength in the medium 2π=kr. This amounts
to assuming krle ≫ 1, which corresponds to the weak
extinction regime. Equation (28) becomes

½−2k · qþ 2iImΣ⊥ðkÞ�L⊥ðk;qÞ

¼ 2iImhG⊥ðkÞi
Z

Γ̄⊥ðk;k0;k;k0Þ ·L⊥ðk0;qÞ dk0

ð2πÞ3 :

ð32Þ

The weak extinction regime also corresponds to jΣ⊥j ≪ k2b;
see Eqs. (12) and (13). Using

lim
ϵ→0þ

1

x − x0 − iϵ
¼ PV

�
1

x − x0

�
þ iπδðx − x0Þ; ð33Þ

where PV stands for the Cauchy principal value operator, the
imaginary part of the average Green’s function reduces to

ImhG⊥ðkÞi ¼ πδ½k2 − k2b − ReΣ⊥ðkÞ�: ð34Þ

This relation fixes the real part of the effective wave vector
kr ¼ Re½keff � to

kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2b þ ReΣ⊥ðkrÞ

q
; ð35Þ

which is the so-called on-shell approximation. Second, we
assume that the field is fully depolarized, which is valid when
the observation point is at a large distance from the source
compared to the average distance between scattering events
(Bicout and Brosseau, 1992; Gorodnichev, Kuzovlev, and

Rogozkin, 2014; Vynck, Pierrat, and Carminati, 2016). This
means that

Cðk;k0Þ ¼ Cðk;k0Þ1; ð36Þ

leading to

L⊥ðk;qÞ ¼ Lðk;qÞPðuÞ ⊗ Pðu0Þ · 1: ð37Þ

An inverse Fourier transform of the trace of Eq. (32) together
with Eqs. (34) and (37) eventually leads to the well-known
radiative transfer equation (RTE) (Chandrasekhar, 1960)

�
u · ∇r þ

1

le

�
Iðr;uÞ ¼ 1

ls

Z
pðu;u0ÞIðr;u0Þdu0; ð38Þ

where du represents an integration over the unit sphere or,
equivalently, over the solid angle and I is the specific intensity,
which is defined as

δðk − krÞIðr;uÞ ¼ Lðr;kÞ: ð39Þ

The specific intensity can be interpreted as a local (at position
r) and directional (on direction u) radiative flux. In the RTE,
ls and pðu;u0Þ are the scattering mean free path and the phase
function describing, respectively, the average distance
between two scattering events and the angular diagram for
an incident plane wave along u0 scattered along the direction
u. Both quantities are related to the intensity vertex via the
relation

1

ls
pðu;u0Þ ¼ 1

32π2
Tr½PðuÞ ⊗ PðuÞ

· Γ̄ðkru; kru0; kru; kru0Þ · Pðu0Þ ⊗ Pðu0Þ · 1�;
ð40Þ

and the phase function is normalized as

Z
pðu;u0Þdu0 ¼ 1: ð41Þ

Equation (41) immediately shows that 1=ls, the key quantity
to describe the scattering strength of a medium, is obtained in
the radiative transfer limit from the angular integral of the
intensity vertex, that is, the integral of the right-hand side of
Eq. (40) over u0. The trace appearing in Eq. (40) is a
consequence of the assumption of a depolarized field. The
RTE [Eq. (38)] can be seen as an energy balance
(Chandrasekhar, 1960). The spatial variation of the specific
intensity (the term involving the derivative) is due to the loss
induced by extinction along the direction u (the term
involving le) and the gain from scattering from direction
u0 to direction u [the term involving ls and pðu;u0Þ].
Previously we showed that the extinction mean free path le

could be obtained from the self-energy Σ and noted that in the
absence of absorption we should have le ¼ ls, with the latter
defined from the intensity vertex Γ. It is important to remark
that the two operators are indeed formally linked by the Ward
identity (Barabanenkov and Ozrin, 1995; Cherroret, Delande,
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and Van Tiggelen, 2016), which may be seen as a generali-
zation of the extinction (optical) theorem and ensures energy
conservation (Apresyan and Kravtsov, 1996; Lagendijk and
Van Tiggelen, 1996; Tsang and Kong, 2001; Sheng, 2006;
Carminati and Schotland, 2021).

6. Transport mean free path and diffusion approximation

Many experiments on light in disordered media are per-
formed in situations where light experiences not just a few but
rather many scattering events on average. In the deep multiple-
scattering regime, the RTE can be simplified into a diffusion
equation. In this limit, light transport is driven by a new length
scale, known as the transport mean free path lt, which we
introduce here.
We start by taking the first moment of Eq. (38) (i.e.,

multiplying both sides by u and integrating over u), which
directly leads to

Z
½u · ∇rIðr;uÞ�uduþ 1

lt
jðrÞ ¼ 0; ð42Þ

where jðrÞ ¼ R
Iðr;uÞudu is the radiative flux vector and

lt ≡ ls

1 − g
ð43Þ

is the transport mean free path. In Eq. (43)

g ¼
Z

pðu;u0Þu · u0du ð44Þ

is the average cosine of the scattering angle, or the scattering
anisotropy factor. Structural correlations impact the transport
mean free path via both the scattering mean free path ls and
the scattering anisotropy described by g.
After a large number of scattering events, we can assume

that the specific intensity becomes quasi-isotropic. Expanding
the specific intensity in the RTE [Eq. (38)] on Legendre
polynomials to first order in u, which is known as the P1

approximation (Ishimaru, 1978), leads to the diffusion equa-
tion. In the steady-state regime, it reads

−DΔuðrÞ ¼ sðrÞ; ð45Þ
whereuðrÞ ¼ v−1E

R
Iðr;uÞdu is the energy density,with vE the

energy velocity (Lagendijk and Van Tiggelen, 1996), D ¼
vElt=3 is the diffusion constant, and s is a source term. An
analysis of the diffusion equation shows that it is valid on length
scales large compared to lt. This allows us to reinterpret lt as
the distance after which the intensity distribution is quasi-
isotropic (Ishimaru, 1978; Carminati and Schotland, 2021).
Resolving this equation in a slab geometry of thickness L

under plane wave illumination at normal incidence gives the
following asymptotic behavior for the total transmittance:

T ∼
5

3

lt

L
; ð46Þ

which is Ohm’s law for light (Van Rossum and
Nieuwenhuizen, 1999). Many transport observations in the

diffusive limit depend directly on the transport mean free path,
including the linewidth of the coherent backscattering cone
(Akkermans, Wolf, and Maynard, 1986; Akkermans et al.,
1988), the time-resolved transmittance and reflectance
(Contini, Martelli, and Zaccanti, 1997), and long-range
speckle correlations (Scheffold and Maret, 1998; Shapiro,
1999; Fayard et al., 2015).
In summary, the average transition operator of the medium

hT i defines the four-point irreducible vertex Γ [Eq. (25)].
Neglecting the near-field interaction between scattering
elements, taking the radiative transfer limit, and assuming
fully depolarized light allow us to relate the transverse
component of Γ to the scattering mean free path ls and
phase function pðu;u0Þ [Eq. (40)]. In the diffusion approxi-
mation, the transport mean free path lt [Eq. (43)] drives the
energy flux. It is related to the intensity vertex via
Eqs. (40) and (41).
We now use the theoretical framework described here to get

closed-form expressions for the different optical length scales
in the cases of random media described by a continuous
permittivity (Sec. II.B) or as an assembly of discrete particles
(Sec. II.C).

B. Media with fluctuating continuous permittivity

1. Weak permittivity fluctuations

We consider a statistically homogeneous and isotropic
disordered medium described by a spatially dependent per-
mittivity ϵðrÞ ¼ hϵi þ ΔϵðrÞ, where Δϵ is the fluctuating part
with statistics

hΔϵðrÞi ¼ 0; ð47Þ

hΔϵðrÞΔϵðr0Þi ¼ hϵi2δ2ϵhϵðjr − r0jÞ: ð48Þ

In Eq. (48) δ2ϵ ¼ hΔϵ2i=hϵi2 is the normalized variance of ϵ
and hϵðjr − r0jÞ ¼ hΔϵðrÞΔϵðr0Þi=hΔϵ2i is the normalized
permittivity-permittivity correlation function [hϵð0Þ ¼ 1].
Hereafter we assume ergodicity such that the ensemble
average is equivalent to a volume average in the infinite-
volume limit and isotropic permittivity fluctuations, keeping
in mind, however, that anisotropic fluctuations may take
place in materials described by a scalar permittivity (Landau,
Lifshitz, and Sykes, 2013).
The statistical properties of ϵðrÞ straightforwardly translate

into statistical properties of XðrÞ via Eq. (3). The self-energy
Σ can be expressed in terms of X by inserting the expression
for the transition operator T given by Eq. (19) into Eq. (21),
leading to

Σ ¼ hX ½1 − GbX �−1ih½1 − GbX �−1i−1: ð49Þ

In the simplest approach, we proceed by assuming that the
scattering potential X weakly fluctuates around its average
value hXi. Expanding the last expression near hXi in Eq. (49)
leads to

Kevin Vynck et al.: Light in correlated disordered media

Rev. Mod. Phys., Vol. 95, No. 4, October–December 2023 045003-9



Σ ∼ hXi þ hðX − hXiÞGbðX − hXiÞi þ � � � . ð50Þ

At this stage,we need to explicitly define the constant auxiliary
background permittivity ϵb, which describes the reference value
around which the permittivity fluctuates. A reasonable choice is
to set it to the average permittivity ϵb ¼ hϵi≡ ϵav, which for a
two-component medium with permittivities ϵp and ϵh at filling
fractions f and 1 − f, respectively, would simply be
ϵav ¼ fϵpþð1−fÞϵh. Having hXi ¼ 0, the leading term for
the self-energy then becomes hXGbXi, such that

Σðr − r0Þ ¼ k4avδ2ϵhϵðjr − r0jÞGavðr − r0Þ; ð51Þ

whereGav is the Green’s tensor in a homogeneous medium with
permittivity ϵav. Correlated permittivity fluctuations mutually
interacting via Gav are readily responsible for the nonlocal
character of the self-energy [Eq. (6)]. In Fourier space,
Eq. (51) becomes

ΣðkÞ ¼ k4avδ2ϵ

Z
hϵðjk − k0jÞGavðk0Þ dk0

ð2πÞ3 : ð52Þ

The extinction mean free path le can finally be determined
using Eq. (13) with kr ¼ kav. For nonabsorbing media [ϵðrÞ
real], the imaginary part of the Green’s tensor is given by

ImGavðkÞ ¼ πδðk2 − k2avÞPðuÞ; ð53Þ

with kav ¼ k0
ffiffiffiffiffiffi
ϵav

p
. Using Eq. (10) for the transverse compo-

nent with e the unit vector defining the polarization direction
such that e · u ¼ 0, we find that

1

le
≃
ImΣ⊥ðkavÞ

kav

¼ k4av
16π2

δ2ϵ

Z
hϵðkavju − u0jÞ½e · Pðu0Þe�du0: ð54Þ

Introducing the scattering wave number q ¼ kavju − u0j, we
eventually reach

1

le
¼ k40

8πk2av
ϵ2avδ

2
ϵ

Z
2kav

0

P

�
q

2kav

�
hϵðqÞqdq; ð55Þ

where

PðkÞ≡ 1 − 2k2 þ 2k4 ð56Þ

is specific to the vector nature of light.
Equation (55), obtained in nonabsorbing disordered media

with weak permittivity fluctuations, constitutes the first
analytical expression for the extinction mean free path in
correlated media. It shows that, besides the amplitude of the
permittivity fluctuations ϵ2avδ

2
ϵ ¼ hΔϵ2i, spatial correlations,

described here by hϵ, also play a crucial role in light scattering.

2. Lorentz local fields: Strong fluctuations

The approximation of weak fluctuations is prohibitive in
many realistic cases. This constraint can be eliminated by

properly handling the singularity of the dyadic Green’s
function at the origin [Eq. (15)], which constitutes the basis
of a strong fluctuation theory (Finkel’berg, 1964; Ryzhov,
Tamoikin, and Tatarskii, 1965; Tsang and Kong, 1981).
Related approaches were introduced by Bedeaux and
Mazur (1973) and Felderhof (1974) in the description of
the optical response of nonpolar fluids. Extensions to chiral
and anisotropic media have also been proposed (Ryzhov and
Tamoikin, 1970; Michel and Lakhtakia, 1995; Mackay and
Lakhtakia, 2020) but are not discussed here. Noteworthy is the
recent work by Torquato and Kim (2021), which relied on the
same theoretical grounds and proposed an analytical expres-
sion for the effective permittivity of two-phase composite
media that takes into account structural correlations up to an
arbitrary order n (whereas we restrict the discussion to
correlations of order n ¼ 2 in this review).
The singularity of the Green’s function is handled by

considering the scattering medium as being made of infini-
tesimal volume elements within which the polarization density
PðrÞ is constant. This physical viewpoint is the basis of the
well-known discrete dipole approximation (Lakhtakia, 1992;
Draine and Flatau, 1994). We then write the Green’s function
as the sum of two contributions

Gbðr; r0Þ ¼ Θðjr − r0j − aÞG̃bðr; r0Þ
þ Θða − jr − r0jÞgbðr; r0Þ; ð57Þ

where gb contains the singular part of the Green’s function and
G̃b is the so-called Lorentz propagator, which is purely
nonlocal. The contributions are distinguished as belonging
to or not belonging to a spherical region with radius a and
volume v ¼ 4πa3=3 around r0. Choosing a such that kba ≪ 1,
the singular part reads

gbðr; r0Þjkba≪1 ¼ −
1

3k2b
δðr − r0Þ1þ i

kb
6π

1þ � � � . ð58Þ

Keeping the lowest-order terms in the real and imaginary
parts, the Lippmann-Schwinger equation [Eq. (16)] can be
rewritten as

EðrÞ ¼ EbðrÞ þ
�
−

1

3k2b
þ i

kbv
6π

�
XðrÞEðrÞ

þ
Z

G̃bðr; r0ÞXðr0ÞEðr0Þdr0: ð59Þ

The actual field at r is then given by the sum of the external
field EbðrÞ, the local contributions, and the nonlocal con-
tributions coming from neighboring permittivity fluctuations
(the integral term).
In this framework, the fieldEexcðrÞ exciting a small volume

element around r is the sum of the incident (background) field
and the field scattered by other permittivity fluctuations.
Again using operator notation, we thus reach an important
set of equalities

Eexc ¼ Eb þ G̃bXE ¼ ½1 − gbX �E
¼ Eb þ G̃bT̃ Eexc ¼ ½1þ G̃bT �Eb: ð60Þ
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We have introduced here the new quantity T̃ , which is the
transition operator of small volume elements. From Eq. (60),
we straightforwardly obtain

T ¼ T̃ ½1 − G̃bT̃ �−1: ð61Þ

The transition operator of the medium can be seen as a
multiple-scattering expansion on independent scattering ele-
ments, connected via the nonlocal Lorentz propagator. In
accordance with this picture, from Eq. (60) we also obtain

T̃ ¼ X ½1 − gbX �−1: ð62Þ

For kba ≪ 1, the transition operator T̃ðr; r0Þ is directly
proportional to the polarizability of the volume element,

T̃ðr; r0Þ ¼ k2b
αðrÞ
v

δðr − r0Þ1; ð63Þ

with

αðrÞ¼ α0ðrÞ
1− iðk3b=6πÞα0ðrÞ

; α0ðrÞ¼ 3v
ϵðrÞ− ϵb
ϵðrÞþ2ϵb

; ð64Þ

where α0 is the quasistatic polarizability. Note that αðrÞ is a
space-dependent local polarizability defined in a continuous
medium.

3. Average exciting field

To determine the self-energy Σ of the system, we introduce
a self-energy Σ̃ for the exciting field defined from a Dyson
equation

hEexci ¼ Eb þ G̃bΣ̃hEexci; ð65Þ

thereby leading to

Σ̃ ¼ hT̃ ½1 − G̃bT̃ �−1ih½1 − G̃bT̃ �−1i−1: ð66Þ

Note the similarity of Eq. (66) to Eq. (49), where the self-
energy Σ was expressed directly in terms of the scattering
potential X . Equations (21), (61), and (66) show that the two
self-energies are related as

Σ ¼ Σ̃½1þ gbΣ̃�−1: ð67Þ

We then expand Σ̃ in Eq. (66) near hT̃ i ¼ T̃ − ΔT̃ as

Σ̃ ∼ hT̃ i þ hΔT̃ ĜbΔT̃ i þ � � �≡ Σ̃1 þ Σ̃2 þ � � � : ð68Þ

We have introduced in Eq. (68) a new “dressed” propagator

Ĝb ¼ ½1 − G̃bhT̃ i�−1G̃b: ð69Þ

Note that hT̃ i corresponds to an average polarizability of the
medium [for kba ≪ 1; see Eq. (63)]. Ĝb describes the field
propagation from fluctuation to fluctuation via a medium with

a permittivity that can differ from the background permittivity
ϵb (Bedeaux and Mazur, 1973; Felderhof, 1974).
The self-energy for the average exciting field Σ̃ in Eq. (68)

now explicitly depends on the spatial correlations of the
fluctuations of T̃ (i.e., of the polarizability of small volume
elements). In most practical cases, the expansion is limited to
second order, corresponding to the so-called bilocal approxi-
mation (Tsang and Kong, 2001), due to the lack of informa-
tion on higher-order correlation functions in real systems.
Expanding Σ in Eq. (67) near Σ̃1, we obtain

Σ ∼ Σ̃1½1þ gbΣ̃1�−1 þ Σ̃2½1þ gbΣ̃1�−2 þ � � �
≡ Σ1 þ Σ2 þ � � � . ð70Þ

The self-energy is now expressed in terms of the scattering
properties of vanishingly small individual scattering elements.

4. Long-wavelength solutions: Bruggeman versus Maxwell
Garnett models

As in the case of previously discussed weakly fluctuating
media, we now need an explicit definition of the constant
auxiliary background permittivity ϵb that describes the homo-
geneous effective medium in which the permittivity fluctua-
tions scatter light. We later see that this sole parameter
constitutes the essential difference between the two “mixing
rules” attributed to Maxwell Garnett (1904) and Bruggeman
(1935), presented here in a unique theoretical framework.
Despite the arbitrariness in the choice of ϵb, it is important to
realize that all models would eventually be strictly equivalent
when carried out to infinite order. The applicability of a model
is thus mainly a question of accuracy at low orders and
convergence.
A first possibility for ϵb is to set it such that hT̃ i ¼ 0. In

the limit of small volume elements, this corresponds to
having a zero average polarizability; see Eqs. (63) and (64).
Considering a two-component medium with relative permit-
tivities ϵp (at filling fraction f) and ϵh (at filling fraction 1 − f)
in the quasistatic limit [α ¼ α0 in Eq. (64)], one obtains

ϵp − ϵBG
ϵp þ 2ϵBG

f þ ϵh − ϵBG
ϵh þ 2ϵBG

ð1 − fÞ ¼ 0; ð71Þ

which is the Bruggeman mixing rule (Bruggeman, 1935) with
ϵb ≡ ϵBG. The generalization to N-component media is
straightforward. Having k2b ¼ k2BG ¼ k20ϵBG, Ĝb ¼ G̃BG, and
Σ ∼ Σ̃ since Σ̃1 ¼ 0, we eventually find that

ΣðkÞ ¼ k4BGδ
2
α

Z
hαðjk − k0jÞG̃BGðk0Þ dk0

ð2πÞ3 ; ð72Þ

with δ2α ¼ hΔα2i=v2 a normalized variance of the polarizability
and hαðjk − k0jÞ the Fourier transform of the normalized
polarizability-polarizability correlation function hαðjr − r0jÞ ¼
hΔαðrÞΔαðr0Þi=hΔα2i. The function hα plays the same role as
hϵ in the weakly fluctuating permittivity model to describe
structural correlations.
Assuming nonabsorbing media and following the same

steps as those leading to Eq. (55) with Im G̃BGðkÞ ¼
πδðk2 − k2BGÞPðuÞ, we obtain
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1

le
¼ k40

8πk2BG
ϵ2BGδ

2
α

Z
2kBG

0

P

�
q

2kBG

�
hαðqÞqdq; ð73Þ

with q ¼ kBGju − u0j. Equation (73) is markedly similar to
Eq. (55), with the essential differences being (i) the permit-
tivity of the homogeneous effective medium and (ii) the
description of the medium via a local polarizability instead of
a local permittivity.
A second possibility for the choice of ϵb is to set it to the

permittivity of the host medium (i.e., ϵb ¼ ϵh), in which case
hT̃ i ≠ 0. Considering again a two-component system in the
quasistatic limit, we obtain

Σ̃1ðr − r0Þ ¼ k2hρα0δðr − r0Þ1; ð74Þ

with ρ ¼ f=v the average number density of the small volume
elements with permittivity ϵp, and

Σ̃2ðr − r0Þ ¼ k4hδ
2
αhαðjr − r0jÞĜhðr − r0Þ: ð75Þ

Using Eq. (70), we find the following expression for the self-
energy in reciprocal space:

ΣðkÞ ¼ k20ðϵMG − ϵhÞ1

þ k4hδ
2
αfL

Z
hαðjk − k0jÞĜhðk0Þ dk0

ð2πÞ3 ; ð76Þ

where fL ¼ ð∂ϵMG=∂ρÞ=ϵhα0 and

ϵMG ¼ ϵh þ ϵh
ρα0

1 − ρα0=3
ð77Þ

is the Maxwell Garnett mixing rule (Maxwell Garnett, 1904;
Markel, 2016). By contrast with the previous case, the lowest-
order term now provides the renormalization of the wave
number in the effective medium, structural correlations
appearing at the next order. The factor fL is a local-field
correction coming from the fact that the fluctuation of polar-
izability (Δα in δ2α) is evaluated with respect to the host
medium. Following again the same steps as those leading to
Eq. (55), noting that ϵMG is real in the quasistatic limit for
nonabsorbing media, and using

Im ĜhðkÞ ¼ πfLδðk2 − k2MGÞPðuÞ; ð78Þ

which is derived in Appendix A.2, we eventually obtain

1

le
¼ k40

8πk2MG
f2Lϵ

2
hδ

2
α

Z
2kMG

0

P

�
q

2kMG

�
hαðqÞqdq; ð79Þ

with q ¼ kMGju − u0j. This expression for le takes the same
form as Eq. (73), with differences in the definition of the
effective medium and a prefactor that accounts for local-field
corrections.
All in all, the similarity between Eqs. (55), (73), and (79)

demonstrates the deep physical implication of structural
correlations for light scattering. The same functional structure
is kept regardless of the approach used to define the effective
medium.

5. Expressions for the scattering and transport mean free paths
from the average intensity

We conclude this segment on continuous permittivity media
by deriving the expressions for ls and lt from the theory for the
average intensity. A second-order expansion of the intensity
vertex Γ in Eq. (25), with T given by Eq. (19), leads to

Γ ∼ hT T �i − hT ihT �i ∼ hXX �i − hXihX�i: ð80Þ

Equation (80) is valid in theweak extinction limit krle ≫ 1. As
in the case of weakly fluctuating media, we set the auxiliary
background permittivity as ϵb ¼ hϵi≡ ϵav, such that hXi ¼ 0,
and assume a nonabsorbing material. This leads to

Γ̄ðkavu; kavu0; kavu; kavu0Þ ¼ k40ϵ
2
avδ

2
ϵhϵðkavju − u0jÞ

× 1 ⊗ 1: ð81Þ

The scattering mean free path is then obtained by integrating
Eq. (40) over u0 and, making use of Eq. (81), we find that

1

ls
¼ k40

8πk2av
ϵ2avδ

2
ϵ

Z
2kav

0

P

�
q

2kav

�
hϵðqÞqdq; ð82Þ

with q ¼ kavju − u0j. Similarly, the transport mean free is
obtained by calculating the average cosine of Eq. (40) and using
Eqs. (43) and (44), leading to

1

lt
¼ k40

16πk4av
ϵ2avδ

2
ϵ

Z
2kav

0

P

�
q

2kav

�
hϵðqÞq3dq: ð83Þ

In the absence of absorption, we expect ls ¼ le, which is
actually found by comparing Eqs. (82) and (55).

C. Particulate media

1. Expansion for identical scatterers

We now consider a system whose morphology consists in
localized (i.e., compact) permittivity variations in a uniform
background. We take the most natural choice for the back-
ground permittivity ϵb ¼ ϵh from the start but the theory can
also be developed with an arbitrary ϵb. We also restrict the
discussion to composite media made of identical inclusions
with a relative permittivity ϵp confined to a volume v, centered
at positions R ¼ ½R1;R2;…;RN �. The medium permittivity
then reads

ϵðrÞ ¼
X
j

ϵpðr −RjÞΘða − jr −RjjÞ: ð84Þ

A configuration of the medium is described statistically by the
probability distribution function pðRÞ. Implicitly we neglect
here the possibility of having orientational correlations
between particles (otherwise, the distribution should include
orientational variables). Under the ergodic hypothesis, when
defining the statistical average as an average over all possible
particle positions as hfðRÞi ¼ R

fðRÞpðRÞdR, where fðRÞ is
an arbitrary tensor, the statistical properties of the medium can
be described by n-particle probability density functions
(Lebowitz and Percus, 1963; Tsang, Kong, and Ding, 2004)
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ρnðr1;…;rnÞ¼

 X

j1≠j2���≠jn
δðr1−Rj1Þ� � �δðrn−RjnÞ

	
ð85Þ

or, equivalently, by n-particle correlation functions

gnðr1;…; rnÞ ¼
1

ρn
ρnðr1;…; rnÞ; ð86Þ

where ρ is the constant particle number density reached in the
limit of infinite system size (ρ ¼ limN;V→∞ N=V). In sta-
tistically homogeneous ensembles of impenetrable spheres,
the particle correlation functions gn are formally related to the
probability functions of finding n points separated by given
distances in the particle phase (Torquato and Stell, 1982;
Torquato, 2013).
As in the case of random media described using

a continuous permittivity, the first step is to derive an
expression for the transition operator T of the medium.
Having a discrete set of identical particles allows us to express
the multiple-scattering problem in such a way as to separate
the effects associated with particle resonances and structural
correlations on light scattering. We start by rewriting the
integral equation for the total field [Eq. (17)] for particulate
media,

E ¼ Eh þ
X
j

GhX jE; ð87Þ

with the effective scattering potential X jðr −RjÞ≡
k20½ϵpðr −RjÞΘða − jr −RjjÞ − ϵh�1. We can then express
the polarization induced in particle j in terms of the polari-
zation induced in all particles as

X jE ¼ X jEh þX j

X
k

GhXkE ð88Þ

¼ X jEh þX jGhX jEþX j

X
k≠j

GhXkE ð89Þ

¼ T jEh þ T j

X
k≠j

GhX kE: ð90Þ

In Eq. (89) we separated the self-contribution of particle j
from the contribution of all other particles. The last expression
[Eq. (90)] was obtained by introducing the transition operator
T j of an individual particle centered at Rj as

T j ¼ X j½1 − GhX j�−1: ð91Þ

One can determine T j for particles of virtually any size,
shape, or composition, either analytically using Mie theory for
simple geometries like spherical particles (Bohren and
Huffman, 2008) or numerically using any method for solving
Maxwell’s equations otherwise (Mishchenko, Hovenier, and
Travis, 1999). This allows us to consider resonant particles
exhibiting high-order multipolar resonances as the building
blocks of the disordered medium.
Inserting Eq. (90) into Eq. (87) and iterating over scattering

sequences, we reach an expression for the transition operator

T of the entire system [Eq. (18)] in terms of the transition
operator of the individual particle as

T ¼
X
j

T j þ
X
j

T j

X
k≠j

GhT k

þ
X
j

T j

X
k≠j

GhT k

X
l≠k

GhT l þ � � � . ð92Þ

Equation (92) is the root of multiple-scattering theory for
particulate media and was introduced in the pioneering works
of Kirkwood (1936) and Yvon (1937) to determine the
permittivity of molecular liquids. Similar multiple-scattering
equations were later discussed by Foldy (1945) and Lax
(1951). Note also the occurrence of so-called recurrent
scattering, that is, scattering sequences that involve the same
particle multiple times [for instance, l can be equal to j in the
last displayed term of Eq. (92)].
The Green’s function in Eq. (91) for the transition operator

T j of a specific particle j always connects two points that
belong to the same particle, whereas the Green’s function in
Eq. (92) for the transition operator T of the entire medium
always connects two points that belong to different particles.
This is conceptually analogous to Eq. (57) for continuous
permittivity media where the Green’s function was split into
local and nonlocal terms. To determine the self-energyΣ in the
Dyson equation [Eq. (20)], we follow the strategy used for
continuous permittivity media and consider the exciting field
Eexc. We then write the Green’s function Gh as gh when
connecting two points in the same particle, or G̃h otherwise.
Removing the local contribution on the induced polarization
in Eq. (89) and rewriting X kE in terms of the exciting field
leads to

X jEexc ¼ X jEh þX j

X
k

G̃hT̃ kEexc; ð93Þ

with T̃ j ¼ X j½1 − ghX j�−1 ¼ T j; see Eq. (91). Note that the
sum now runs over all particles k. Further defining
T̃ ≡P

j T̃ j, we find that

T ¼ T̃ ½1 − G̃hT̃ �−1; ð94Þ

which agrees with Eq. (61) derived for continuous media.
Expanding the self-energy Σ̃ for the average exciting field
near hT̃ i ¼ T̃ − ΔT̃ then leads to Eq. (68), and expanding Σ
near Σ̃1 leads to Eq. (70).
The problem of scattering by particulate media is thus

described in a strictly similar manner to that of scattering by
strongly fluctuating continuous permittivity media (i.e.,
including local-field corrections). The essential difference is
that the volume elements composing the medium are no
longer vanishingly small but rather actual finite-size scattering
particles.
Finally, remember that Eq. (68) is obtained by neglecting

particle correlations beyond second order. Higher-order cor-
relations may yet be taken into account by treating them as
sequences of two-particle correlations (which is formally
exact for crystalline media). This approach corresponds to
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the so-called quasicrystalline approximation (QCA) originally
introduced by Lax (1952), further developed by Fikioris and
Waterman (1964), Tsang and Kong (1980), and Tsang and
Kong (1982), and currently used in various contexts (Tsang
et al., 2000; Kristensson, 2015; Gower et al., 2018; Wang and
Zhao, 2018a).

2. Extinction mean free path and effective medium theories

To get an expression for le, we need an expression for the
self-energy Σ̃. Using Eq. (68) to the lowest order, we obtain

Σ̃1 ≡ hT̃ i ¼

X

j

T̃ j

	
: ð95Þ

Writing the transition operator of an individual particle as
T j ≡ T0ðr −Rj; r0 −RjÞ, Eq. (95) can be rewritten as

Σ̃1ðr − r0Þ ¼ ρ

Z
T0ðr − rp; r0 − rpÞdrp: ð96Þ

Similarly, the second-order contribution is

Σ̃2 ≡ hΔT̃ ĜhΔT̃ i
¼ hT̃ ĜhT̃ i − hT̃ iĜhhT̃ i; ð97Þ

which leads to

Σ̃2ðr − r0Þ ¼ ρ

Z
½δðjrp − rqjÞ þ ρh2ðjrp − rqjÞ�

× T0ðr − rp; r00 − rpÞĜhðr00 − r000Þ
× T0ðr000 − rq; r0 − rqÞdr00dr000drpdrq: ð98Þ

In Eq. (98) we have defined the total pair-correlation function

h2ðrÞ≡ g2ðrÞ − 1 ð99Þ

and g2 is defined from Eq. (86).
To reach a general expression for the self-energy Σ via

Eq. (70), we need to define the operator gh that describes the
local propagation of radiation within each particle. As first
pointed out by Sullivan and Deutch (1976), gh may be chosen
to obtain different lowest-order results for the effective
permittivities and refractive index, such as the Maxwell
Garnett (Bedeaux and Mazur, 1973; Felderhof, 1974),
Onsager-Bütcher (Onsager, 1936; Böttcher et al., 1978;
Hynne and Bullough, 1987), and Wertheim (Wertheim,
1973) models. Differences vanish when all orders of the
expansion are taken into account, but the rate of convergence
of the different formulations is influenced by the particular
choice of Green’s function (Bedeaux and Mazur, 1973;
Sullivan and Deutch, 1976; Geigenmüller and Mazur,
1986; Bedeaux, Wind, and Van Dijk, 1987).
For pedagogical reasons, we restrict ourselves here to the

Maxwell Garnett result obtained in the long-wavelength limit.
For some applications dealing with particles with complex
shapes and relatively low scattering contrast, one can simplify
the problem using the well-known Rayleigh-Gans

approximation (Bohren and Huffman, 2008) or subsequent
generalizations (Acquista, 1976). In this framework, the
transition operator can be written as

T0ðr−Rj;r0−RjÞ¼ k2h
αp
v
Θ½a− jr−Rjj�δðr− r0Þ1; ð100Þ

with αp the particle polarizability. Inserting this expression
into Eqs. (96) and (98) straightforwardly leads to an expres-
sion for the self-energy that reads in reciprocal space

ΣðkÞ ¼ k20ðϵMG − ϵhÞ1þ ρ
k4hα

2
p

ϵhαp

∂ϵMG

∂ρ

×
Z

Sðjk − k0jÞ
���� 3j1ðjk − k0jaÞ

jk − k0ja
����
2

Ĝhðk0Þ dk0

ð2πÞ3 :

ð101Þ

In Eq. (101) jn is the spherical Bessel function of the first kind
and order n, ϵMG is the Maxwell Garnett permittivity given by
Eq. (77) with α0 ≡ αp, and

SðkÞ≡ 1þ ρh2ðkÞ ð102Þ

is the static structure factor, a key quantity for light scattering
studies in correlated disordered media.
Following the same steps as are taken with continuous

permittivity random media, assuming nonabsorbing materials,
we eventually reach a simple expression for the extinction
mean free path,

1

le
¼ 2πρ

k4MG

Z
2kMG

0

FðqÞSðqÞqdq; ð103Þ

with q ¼ kMGju − u0j. We have defined here the form factor

FðqÞ ¼ k2MG
dσ
dΩ

�
q

2kMG

�
f2L

���� 3j1ðqaÞqa

����
2

ð104Þ

and the Rayleigh differential scattering cross section

dσ
dΩ

ðkÞ ¼ k4h
α2p

ð4πÞ2 PðkÞ; ð105Þ

where PðkÞ is given by Eq. (56).
The respective contributions of the individual scattering

elements, via the form factor FðqÞ, and of their spatial
arrangement, via the structure factor SðqÞ, on the extinction
(or scattering) strength of the medium are treated independ-
ently. Structural correlations act as a weighting function to the
optical response of a random assembly of identical scatterers.
Physically, the structure factor describes far-field interferences
between fields scattered by pairs of particles.
Equation (103) was obtained here in the long-wavelength

limit for small nonresonant particles. The more general
situation of resonant particles is significantly more difficult
to address within the theory for the average field. A heuristic
extension of the Maxwell Garnett approximation to resonant
dipolar particles was proposed by Doyle (1989) and further
analyzed by Grimes and Grimes (1991) and Ruppin (2000).
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The approach provides some understanding of the spectral
resonances observed in certain light scattering experiments,
but it fails to fulfill a fundamental scaling law between the
material and effective permittivities, as observed by Bohren
(2009). A more rigorous framework is given by the so-called
coherent potential approximation (CPA) (Tsang and Kong,
1980, 2001), which may be seen as a generalization of the
approach leading to the Bruggeman mixing rule for continu-
ous permittivity media, as previously presented, for particulate
media. Considering scattering elements that are not only the
particles but also the host medium, one looks for an auxiliary
background permittivity ϵb such that the average transition
operator vanishes (hT i ¼ 0) or, equivalently, that the back-
ground Green’s functionGb equals the actual averaged Green’s
function hGi. Different CPA-like models have been developed
based on different self-consistent conditions (Soukoulis,
Datta, and Economou, 1994; Busch and Soukoulis, 1995).
The so-called energy-density CPA (ECPA) introduced by
Busch and Soukoulis (1995), in particular, stands out from
classical effective medium approaches, as it focuses on energy
transport (described by the average intensity) rather than wave
propagation and attenuation (described by the average field).

3. Scattering and transport mean free paths for resonant
scatterers

In this last section, we show that, in the presence of resonant
particles, it is more convenient to use the theory for the
average intensity. To this aim, we assume that an effective
index can be defined such that Re½neff � ¼ kr=k0 (but an
explicit model for neff is not needed). In the weak extinction
limit (i.e., krle ≫ 1) and using the expansion of the transition
operator T in Eq. (92), the intensity vertex given by Eq. (25)
can be reduced to its lowest-order terms as

Γ ∼ hT T �i − hT ihT �i

∼

X

i;j

T iT
�
j

	
−

X

i

T i

	
X
j

T �
j

	
: ð106Þ

In Fourier space, this leads to

Γ̄ðkru; kru0; kru; kru0Þ ¼ ρT0ðkru; kru0Þ ⊗ T�
0ðkru; kru0Þ

× S(krðu − u0Þ): ð107Þ

In the radiative transfer limit, taking the on-shell approxima-
tion and using Eqs. (40) and (41) lead to

1

ls
¼ ρ

16π2

Z
jPðuÞT0ðkru; kru0Þe0j2S(krðu − u0Þ)du; ð108Þ

where e0 is the polarization vector perpendicular to u0.
Equation (108) is valid for a spherical particle of arbitrary
size. Note also that T0 is the transition operator of the particle
in the host medium, evaluated for the incident and scattered
wave vectors in the effective medium (i.e., at the wave number
kr). Equation (108) can eventually be reformulated using the
form factor

FðqÞ ¼ k2r
dσ
dΩ

ðqÞ; ð109Þ

where q ¼ krju − u0j and the differential scattering cross
section is now defined as

dσ
dΩ

ðqÞ ¼ 1

16π2
jPðuÞT0ðkrju − u0jÞe0j2: ð110Þ

This leads to

1

ls
¼ 2πρ

k4r

Z
2kr

0

FðqÞSðqÞqdq: ð111Þ

We observe that the approaches based on the average field and
the average intensity lead to the same final expressions
[Eqs. (103) and (111), respectively] for nonabsorbing media.
A similar derivation using Eqs. (40), (43), and (44) finally

leads to a closed-form expression of the transport mean
free path,

1

lt
¼ πρ

k6r

Z
2kr

0

FðqÞSðqÞq3dq: ð112Þ

Equations (111) and (112) seem to be the most widely used
expressions in the literature on light scattering and transport
in correlated disordered media (Fraden and Maret, 1990;
Saulnier, Zinkin, and Watson, 1990; Rojas-Ochoa et al.,
2004; Reufer et al., 2007). Equations (111) and (112), which
were originally obtained from phenomenological arguments,
have been derived here within a rigorous theoretical
framework.

D. Summary and further remarks

The literature on multiple light scattering theory is vast, and
many approaches have been developed through the years. We
adopted here a unique theoretical framework that can handle
families of systems described either by a continuous permit-
tivity that randomly fluctuates in space or by a set of identical
particles that are randomly arranged in space. This has the
great benefit of highlighting the main physical principles
behind the role of spatial correlations on light scattering and
transport, as well as the underlying approximations.
Analytical expressions for the characteristic lengths were
obtained in the weak extinction limit (krle ≫ 1, with kr the
effective wave number and le the extinction mean free path)
for statistically homogeneous, isotropic, and nonabsorbing
media. These final expressions are provided in Table I in their
most general form.
The model for continuous permittivity media presented in

Sec. II.B does not make any specific assumption on the size or
shape of a particular scattering element, and may thus be
applied to different types of microstructures. Several expres-
sions for the scattering mean free path ls were derived from
the average field or from the average intensity, assuming that
there are not weak fluctuations, taking or not taking the long-
wavelength limit [Eqs. (55), (73), (79), and (82)]. All
expressions eventually take the same form, reported in
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Table I, thereby unveiling the fundamental relation between
structural correlations and light scattering and transport. In the
case of strong fluctuations [Eqs. (73) and (79)], the expression
to use depends on the choice of the “reference” homogeneous
medium around which the permittivity fluctuates: the former
is associated with the Bruggeman mixing rule and the latter is
associated with the Maxwell Garnett mixing rule. The
common ground that links these two approaches, as discussed
by Mackay and Lakhtakia (2020), is often overlooked.
The model for particulate media presented in Sec. II.C

applies specifically to disordered assemblies of identical
particles, wherein the contributions of the individual particles
(possibly exhibiting a resonant behavior) and of the particle
spatial arrangement on light scattering can be formally
separated. A first expression for the scattering mean free path
ls was obtained from the average field in the long-wavelength
limit [Eq. (103)]. A comparison with Eq. (79) unveils a
fundamental concept, namely, that a fluid of small identical
particles with a fluctuating density (for instance, a fluid of
molecules) can be assimilated to a continuous medium with a
fluctuating permittivity (or polarizability). Indeed, inserting
Eqs. (104) and (105) into Eq. (103), taking the limit qa → 0
(small particles) and comparing the resulting expression
for 1=le to Eq. (79) lead to the equivalence δ2αhαðqÞ≡
α2pρSðqÞ in reciprocal space. In real space, using Eq. (C10)
in Appendix C.2 leads to

hΔρðrÞΔρðr0Þiα2p ≡ hΔαðrÞΔαðr0Þi=v2; ð113Þ

with ΔρðrÞ ¼ ρðrÞ − hρðrÞi the particle density fluctuation
around the average density [hρðrÞi≡ ρ using our notation].
This is why Rayleigh’s and Einstein’s quantitative results on
the mean free paths (explaining the blue color of the sky) were
essentially identical (Rayleigh, 1899; Einstein, 1910).
A second yet identical expression for ls was obtained from

the average intensity [Eq. (111)] under the assumption that a
solution for the real part of the effective index exists. The
correspondence between the two expressions highlights again
how structural correlations impact light scattering regardless
of the effective medium description. Note that this and the

expression for the transport mean free path lt [Eq. (112)] are
not restricted to the long-wavelength limit, thereby explaining
their popularity in studies on resonant scattering and transport
in photonic liquids and glasses (Sec. IV.A).
To reach the expressions reported in Table I, we assumed

the disordered media to be nonabsorbing everywhere in space
[ϵðrÞ∈R]. This indicates that extinction is driven by scatter-
ing, leading to 1=le ¼ 1=ls. To end this section, we give the
motivation for this initial choice and explain how absorption
might change the picture.
In practice, absorption reduces the number of scattering

events a wave can experience in a disordered medium and
hinders wave interference phenomena between multiply
scattered waves. Although the absorption of a medium has
been proposed as a means to identify Anderson localization of
light (John, 1984), the mesoscopic optics community has been
interested mostly in the study of strongly scattering materials
with negligible absorption, which has naturally led to the
consideration of high-index dielectrics like Si and Ge in the
near-infrared range, and TiO2 in the visible range. Many
experiments have also been made with lower-index materials
with negligible absorption in the visible range, including
polymers (polystyrene, PMMA, etc.), which are well suited to
direct laser writing (see Sec. III.E), and SiO2. Thus, our
assumption about nonabsorbing media is valid in most cases
of interest.
The theoretical problem of multiple light scattering in the

presence of absorption has received relatively little attention
compared to its nonabsorbing counterpart. Generally speaking,
the extinction length in a scattering and absorbing medium is
given simply by 1=le ¼ 1=ls þ 1=la, with la the absorption
mean free path, which remains to be determined.
For particulate media, the absorption may come from the

particles themselves, in which case it is incorporated into the
transition operator T0 of the individual particle, and from
the host medium, in which case the wave number kh should
have a nonzero imaginary part due to absorption. Initial efforts
to take correlations into account were made in the 1990s
(Kumar and Tien, 1990; Ma, Varadan, and Varadan, 1990) but
were limited to small Rayleigh particles. A multiple-scattering

TABLE I. Analytical expressions for the scattering and transport mean free paths ls and lt in nonabsorbing media with correlated disorder.
These expressions were obtained from the average field and/or the average intensity using different models (fluctuating permittivity or identical
particles). Δx and hx describe the amplitude of the fluctuation and the two-point correlation function of material descriptor x, respectively, ϵb is
the auxiliary background permittivity, and kr is the wave number associated with the real part of the effective index. Hence, for weakly
fluctuating media [Eqs. (55), (82), and (83)], set Δx ¼ δϵ, hx ¼ hϵ, ϵb ¼ ϵav, and kr ¼ k0

ffiffiffiffiffiffi
ϵav

p
. For strongly fluctuating media, set Δx ¼ δα,

hx ¼ hα, ϵb ¼ ϵBG, and kr ¼ k0
ffiffiffiffiffiffiffiffi
ϵBG

p
when using the Bruggeman mixing rule [Eq. (73)], or Δx ¼ fLδα with fL ¼ ð∂ϵMG=∂ρÞ=ϵhα0, hx ¼ hα,

ϵb ¼ ϵh, and kr ¼ k0
ffiffiffiffiffiffiffiffi
ϵMG

p
, when using the Maxwell Garnett mixing rule [Eq. (79)]. For monodisperse particulate media [Eqs. (103), (111),

and (112)], the form factor FðqÞ can be expressed directly in terms of the differential scattering cross section ðdσ=dΩÞðqÞ [Eq. (109)], leading to
the simple expressions given on the last line; see also Eqs. (118) and (119) in Sec. IV.A.1. The ability to recover the same expressions with
different approaches highlights a fundamental relation between structural correlations and light scattering and transport that is independent of
the choice of a specific effective medium approximation.

Scattering ð¼ extinctionÞ Transport

Fluctuating permittivity media 1
ls
¼ k4

0

8πk2r
ϵ2bΔ2

x

R 2kr
0 P

�
q
2kr


hxðqÞqdq 1

lt
¼ k4

0

16πk4r
ϵ2bΔ2

x

R 2kr
0 P

�
q
2kr


hxðqÞq3dq

Monodisperse particulate media 1
ls
¼ 2πρ

k4r

R 2kr
0 FðqÞSðqÞqdq

¼ ρ
R
4π

dσ
dΩ ðθÞSðθÞdΩ

1
lt
¼ πρ

k6r

R 2kr
0 FðqÞSðqÞq3dq

¼ ρ
R
4π

dσ
dΩ ðθÞSðθÞð1 − cos θÞdΩ
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model for the average field in assemblies of spherical particles
of arbitrary sizes was developed by Durant et al. (2007) and
led to analytical expressions of the effective wave number
(directly related to the extinction mean free path) as a function
of the pair-correlation function g2ðrÞ. The approach was later
generalized by Mishchenko (2008) to arbitrary particulate
media, including nonspherical particles and polydispersity.
The theory, however, does not provide analytical expressions
for the absorption mean free path as a function of correlation.
This limitation can be lifted via a model for the average
intensity, as shown, though for dipolar particles only, by Wang
and Zhao (2018b) under the QCA. Wang and Zhao (2018b)
found that short-range correlations have a weaker effect on the
absorption mean free path than on the scattering mean
free path.
The case of fluctuating permittivity media with absorption

has been tackled only recently, to our knowledge, by
Sheremet, Pierrat, and Carminati (2020), who relied on a
diagrammatic description of multiple scattering for the aver-
age field and average intensity to reach an analytical expres-
sion for the absorbed power as a function of structural
correlations. Although the theory is made specifically for
scalar waves in fluctuating media with short-range correla-
tions, it leads to the same conclusion as previously discussed
on the impact of correlations on the scattering and absorption
lengths.

III. STRUCTURAL PROPERTIES OF CORRELATED
DISORDERED MEDIA

Correlated disordered media can exhibit a rich variety of
complex morphologies, which will impact light scattering and
transport in many different ways. This section is concerned
with the statistical description of the structural properties of
these materials. For a more complete and thorough descrip-
tion, see Torquato (2013).
After comparing the quantities describing spatial correla-

tions and derived in Sec. II for realistic systems (Sec. III.A)
and introducing a fundamental relation between fluctuations
of particle number and spatial correlations in point patterns
(Sec. III.B), we define the main classes of correlated disor-
dered media according to their pair-correlation function g2ðrÞ
and structure factor SðqÞ (Sec. III.C). We then review the main
techniques for numerically generating correlated disordered
materials and simulate their optical properties (Sec. III.D).
Experimental fabrication techniques for correlated disordered
media are then presented (Sec. III.E). The section concludes
with a summary of the experimental techniques used to
characterize structural correlations in real materials
(Sec. III.F).

A. Continuous permittivity versus particulate models in practice

As shown in Sec. II, light scattering in correlated disordered
media can be described either with a continuous permittivity
model that relies on a spatial permittivity correlation function
or with a particulate model that relies on a two-point
correlation function in the specific case of localized permit-
tivity variations. To start this section, we compare these two
pictures in practical cases.

We consider a classical and relevant example for photonics,
that is, a two-dimensional (2D) assembly of impenetrable
disks (diameter a) at two different packing fractions p ¼ 0.10
and 0.50; see Fig. 3. The disk packings were generated with a
compression algorithm (Skoge et al., 2006) that is described in
Sec. III.D. The top-left panel of Fig. 3 shows the permittivity
correlation function gϵðjr − r0jÞ ¼ hϵðjr − r0jÞ þ 1 for the disk
packings. This correlation function was introduced to describe
media with a fluctuating continuous permittivity but can in
fact be applied to any type of microstructure given its
generality. The function first displays a rapid decrease of
correlation followed by regular, vanishing oscillations. The
short-range correlation here is associated mostly with the
finite size of the disks, and the oscillations, which are stronger
for higher packing fractions, are mostly a signature of
correlations between neighboring particles. The difficulty to
formally distinguish distinct types of correlations is a down-
side of the generality of hϵ.
The generated disk positions can also serve as a basis to

generate more complex structures. An example often encoun-
tered in photonics is based on Delaunay tessellations
(described in Sec. III.D). In the bottom-left panel of Fig. 3,
we show the permittivity correlation function for these
“inverted” structures, as generated from the previously dis-
cussed disk packing. Note that the behavior of the correlation
functions is similar to those of the disk packing. The major
difference is observed at small distances due to a much
different morphology, but the curves become indistinguish-
able for jr − r0j≳ a.
Finally, we can consider the pair-correlation function

g2ðjr − r0jÞ, which is applicable specifically to ensembles
of identical scatterers. The results are shown in the right panel
of Fig. 3. The pair-correlation function for the disk packing is
zero for jra − rbj from 0 to 2R due to the impenetrability of the
disks and exhibits strong oscillations that indicate structural

FIG. 3. Description of structural correlations for hard disk
(diameter a) packings at packing fractions p ¼ 0.10 (black
curves) andp ¼ 0.50 [blue (gray) curves]. Left panels: correlation
function gϵðrÞ ¼ hϵðrÞ þ 1 describing correlations due to the
finite size of the disks and their positional correlation for two
different topologies: a packing of disks (top panel) and a
continuous network (bottom panel). Right panel: pair-correlation
function g2ðrÞ ¼ h2ðrÞ þ 1, which describes only the positional
correlation between the disk centers.
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correlations in the relative position between the particles. Note
that the amplitude of the oscillations is much larger than
for gϵðjr − r0jÞ.
This simple comparison shows that the use of the two-

point permittivity correlation is hardly sufficient to distin-
guish different types of correlated disordered media. In fact,
the permittivity correlation of the inverted disk structure at
p ¼ 0.50 would be strictly identical to that of the direct
structure by definition, while light scattering would evi-
dently be markedly different. This is a strong indication that
scattering is dramatically affected by both the local mor-
phology of the system, which yields optical resonances, and
structural correlations in the relative position between the
scattering elements. Since a “scattering element” is not well
defined for inverted structures such as connected networks,
for clarity and simplicity we focus on the particulate
description of scattering media in the remainder of this
section.

B. Fluctuation-correlation relation

The description of point patterns underlying the structure of
correlated disordered media is central, and in general many
descriptors may be used. An important attribute of point
patterns is the variance of the number N of points contained
within a window Ω with volume V. This quantity has a long
history, several derivations are found for both continuous and
discrete disorder models (Ornstein and Zernike, 1914; de
Boer, 1949; Van Kranendonk and Sipe, 1977; Landau and
Lifshitz, 1980; Martin and Yalcin, 1980; Torquato and
Stillinger, 2003). Considering a spherical window of radius
R for simplicity, we find that probabilistic calculations
eventually lead to a closed-form expression for the variance
of N (Torquato and Stillinger, 2003),

hN2ðRÞi − hNðRÞi2
hNðRÞi ¼ 1þ ρ

Z
h2ðrÞΛðr;RÞdr; ð114Þ

where Λðr; RÞ ¼ vint2 ðr;RÞ=V is the intersection volume
vint2 ðr;RÞ of two windows separated by r normalized to the
window volume V ¼ ð4=3ÞπR3. In the limit of large windows,
one finds that

lim
R→∞

hN2ðRÞi − hNðRÞi2
hNðRÞi ¼ lim

jqj→0
SðqÞ ð115Þ

¼ 1þ ρ

Z
h2ðrÞdr; ð116Þ

which corresponds to the simplified definition given in
Appendix C.2.
Equations (114)–(116) are noteworthy in that they describe

the spatial fluctuations in the number of points in the pattern
from its pair correlation between points or, equivalently, its
structure factor near 0, which is a measurable quantity (for
instance, by small-angle scattering; see Sec. III.F). A Poisson
point pattern pN ¼hNiN exp ½−hNi�=N! yields hN2i¼ hNiþ
hNi2, which as expected corresponds to a fully uncorrelated
system with h2ðrÞ ¼ 0 or limjqj→0 SðqÞ ¼ 1. Implementing

structural correlations at constant density ρ therefore results in
weaker or stronger point density fluctuations. Negative
correlations are obtained when ρ

R
h2ðrÞdr < 0, leading to

sub-Poissonian fluctuations, while positive correlations are
obtained when ρ

R
h2ðrÞdr > 0, leading to super-Poissonian

fluctuations. In the literature, such structures are sometimes
denoted as negatively and positively correlated, respectively
(Davis and Mineev-Weinstein, 2008). As illustrated in Fig. 4,
they correspond to situations in which the points either repel
or attract one another. As we see in Sec. IV, the impacts of
negative and positive correlations on optical transport are
markedly different.

C. Classes of correlated disordered media

Figure 5 summarizes the most important classes of corre-
lated disordered media and their properties, which we now
specifically describe. Note that this panel is nonexhaustive:
other families of correlated disordered media exist, such as
paracrystals (Hosemann, 1963), which are characterized by
regular point patterns deformed on scales that are typically
larger than the distance between neighboring points. Our
focus here is on the classes that have led to a substantial body
of work in optics and photonics.

1. Short-range correlated disordered structures

Consider a volume containing a disordered ensemble of
mobile, impenetrable particles (i.e., a fluid of hard particles) at
a low density. With increasing particle density, the particles
tend to organize themselves to fill space. In this regime of low
to moderate densities, the system exhibits no structural
correlation in the long range, but the impenetrability of the
particles imposes a short-range correlation that increases with
the packing fraction (Hansen and McDonald, 1990). As
shown in Fig. 5 (first column), short-range structural corre-
lations give rise to decaying oscillations in the pair-correlation
function g2. The most likely distance to find a neighboring
particle is given by the position of the first peak, and the decay
of the higher-order peaks, which is generally rapid, allows a
correlation length to be defined. In reciprocal space, such
oscillations are also observed. When increasing short-range

FIG. 4. Illustration of the fluctuation-correlation relation with
three point patterns. Left image: a negatively correlated disor-
dered medium in which points tend to repel one another. Middle
image: a Poisson point pattern that is uncorrelated. Right image: a
positively correlated disordered medium in which clustering is
present. The variance of the number of points in a spherical
window Ω of radius R is related to the total pair-correlation
function h2 via Eq. (114).
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correlations, the structure factor goes from a flat response of
around 1 to sharper peaks whose amplitudes decrease with
increasing q. Short-range structural correlations can be
described, for instance, by analytical and semianalytical
solutions of the Ornstein-Zernike equation using the so-called
Percus-Yevick approximation (Percus and Yevick, 1958;
Wertheim, 1963) in three dimensions and the Baus-Colot
approximation in two dimensions (Baus and Colot, 1987),
respectively. At higher densities, these models become less
accurate, although for slightly polydisperse systems errors
appear to cancel, and predictions from the Percus-Yevick
approximation can describe experimental data up to random
close packing or jamming (Frenkel et al., 1986; Scheffold and
Mason, 2009).
Short-range correlated disordered systems constitute the

primary class found in colloidal suspensions with isotropic
interactions since short-range correlations stem from the
impenetrability of particles in suspension. The behavior of
other repulsive particles, such as charge-stabilized particles,
can often be mapped onto the isotropic hard-sphere case
(Pusey and Van Megen, 1986; Gast and Russel, 1998). The
recent advent of colloids interacting via sticky patches could

open a pathway to more complex structures through self-
assembly (He et al., 2020).
In general, short-range structural correlations are not

limited to sphere assemblies but can also be encoded in
connected networks (Florescu, Torquato, and Steinhardt,
2009; Liew et al., 2011; Muller et al., 2014), in which case
the individual scattering centers are more difficult to identify.
This form of correlated structure is widespread in natural
photonic structures such as bird feathers (Saranathan et al.,
2012) and popular in artificial photonic structures fabricated
using top-down techniques (Liew et al., 2011; Muller et al.,
2014, 2017). Dry foams are promising candidates for corre-
lated network structures that can be made using self-assembly
(Klatt, Steinhardt, and Torquato, 2019; Ricouvier, Tabeling,
and Yazhgur, 2019; Maimouni et al., 2020).

2. Polycrystalline structures

For a disordered ensemble of identical hard particles, one
reaches a liquid-crystal coexistence at about 49% and a purely
crystalline phase for concentrations above 54.5% (Pusey and
Van Megen, 1986; Pusey, 1991; Zhu et al., 1997; Gast and

FIG. 5. Classes of correlated disordered media. Displayed from top to bottom, illustrations of a correlated disordered medium, a pair-
correlation function, a structure factor, a SEM image of a fabricated correlated disordered structure. Displayed from left to right,
disordered short-range correlated structures (SEM image adapted from García et al., 2008), a polycrystalline structure (SEM image
adapted from Salvarezza et al., 1996), imperfect ordered structures (SEM image adapted from García et al., 2012), disordered
hyperuniform structures (SEM image adapted from Haberko and Scheffold, 2013), and disordered hierarchical structures (SEM image
adapted from Burresi et al., 2012).
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Russel, 1998). The equilibrium structure appears to be face-
centered cubic, but hexagonal close-packed structures can also
be observed and are found to be at least metastable (Pusey
et al., 1989). This liquid to crystal phase transition, also
known as the Kirkwood-Alder transition (Gast and Russel,
1998), is purely driven by the higher entropy of the crystalline
phase compared to the liquid phase. The densest packing of
monodisperse spheres in three dimensions is approximately
74%, also referred to as the close packing of equal spheres.
Monodisperse particles usually assemble in finite-size crystal
clusters. These clusters are randomly arranged and form a
polycrystalline material (Astratov et al., 2002; Yang, Schreck
et al., 2010); see Fig. 5 (second column). In the bulk,
crystallites are formed by homogeneous nucleation through-
out the sample (Pusey et al., 1989). The size of the crystal
clusters is then typically several tens of microns, much larger
than the particle diameter (∼λ) but smaller than the usual
sample size, which is typically in the millimeter to centimeter
range. The radially averaged pair-correlation function exhibits
peaks indicating the position of the nth-order neighboring
particles, as well as minima approaching zero. Positional
correlations vanish for distances exceeding the size of the
crystal clusters. Similarly, the structure factor shows well-
defined Debye-Scherrer rings due to Bragg scattering from
randomly oriented crystal planes that can be identified in light
scattering (Pusey et al., 1989), as in powder diffraction in x-
ray crystallography.
The formation of clusters of regular arrays in fluids of hard

particles is strongly influenced by the polydispersity of the
particles since particles of much different sizes do not
naturally arrange in a crystal. Indeed, for hard-sphere fluids
with a polydispersity larger than 6%–12%, crystallization is
avoided in three dimensions (Pusey, 1987). The spheres
remain disordered and particles enter a solid glass phase at
about 58%. The glass can be further compressed until the
spheres “jam,” forming what is known as a randomly close-
packed or maximally jammed structure in the literature
(Torquato, Truskett, and Debenedetti, 2000). The presence
of some hidden structural order, crystalline precursors, or
locally favored structures in the glass and jammed phase is
still being discussed (Zhang et al., 2016).
Owing to the unavoidable finite polydispersity, experimental

realizations of crystalline photonic structures based on colloi-
dal suspensions are the exception rather than the rule even at
high packing fractions. By careful synthesis of colloidal
particles made from polystyrene or silica (SiO2), it is possible,
however, to induce crystallization rather easily (Salvarezza
et al., 1996). These materials are usually polycrystalline and
display some defects and stacking faults to a varying degree.
Polycrystalline structures are also observed in natural photonic
structures such as opals. Relatively little is known about the
comparison of scattering and light transport between random
close-packed assemblies of spheres and polycrystalline mate-
rials (Yang, Schreck et al., 2010), particularly when the size of
crystallites is gradually reduced to smaller length scales.

3. Imperfect ordered structures

The two previous classes of correlated disorder
were obtained by “adding order” to a fully disordered

(uncorrelated) system. Materials with correlated disorder
can also be obtained starting with the other limit, that is, a
periodic system with random perturbations; see Fig. 5
(third column). In systems of infinite size, both the pair-
correlation function g2 and the structure factor S are charac-
terized by a series of Dirac peaks located at r − r0 ¼
u1a1 þ u2a2 þ u3a3, with ui ∈Z and ai the lattice vectors,
and G ¼ v1b1 þ v2b2 þ v1b2, with vi ∈Z and bi the recip-
rocal lattice vectors (Kittel, 1976; Joannopoulos et al., 2011).
If the position of a point of the lattice is randomly shifted (for
instance, with normal distribution) around its nominal posi-
tion, this results in a broadening of the Dirac peaks with a
width that depends on the disorder amplitude. In contrast to
the previous classes of disordered systems, disorder in such a
periodic-on-average structure does not impact the correlation
length, which remains infinite. A notable consequence of this
is that the structure factor is characterized by Dirac peaks of
vanishing width (for systems of infinite size) and decreasing
amplitude with increasing wave number q on top of a
diffuse background. The latter, which is due to the random
nature of the point pattern, equals 1 for large values of q and
quadratically goes to zero when q goes to zero, as discussed
by Klatt, Kim, and Torquato (2020). Real systems, however,
are never exactly periodic, due to fabrication imperfections. In
practice, this also leads to a finite correlation length (Meseguer
et al., 2002; López, 2003; Koenderink, Lagendijk, and Vos,
2005; Nelson et al., 2011).
A plethora of studies of ordered photonic crystal structures

with imperfections, both numerical and experimental, can be
found in the literature (Soukoulis, 2012). Defects were also
added intentionally, at either random or selected positions, to
study the interplay between defect states, density of states,
wave tunneling and percolation, random diffuse scattering,
and directed Bragg scattering of light (García et al., 2009;
Florescu, Torquato, and Steinhardt, 2010; Aeby et al., 2021).
Moreover, the interaction between the band structures and
defect scattering is interesting since it might lead to other
critical coherent transport phenomena, such as Anderson
localization of light (John, 1987). Defect states can also be
introduced in a photonic crystal to deliberately implement a
particular function, such as an optical sensing application,
lasing, or optical circuitry (Joannopoulos et al., 2011; Nelson
et al., 2011; Soukoulis, 2012).

4. Disordered hyperuniform structures

One of the important characteristics of point patterns is how
the number of points contained in a given volume fluctuate
with various disorder realizations (Torquato, 2013). This
quantity is related to the notion of spatial uniformity. For a
Poisson point process, one shows with Eq. (114) that the
variance in the number of points N contained in a d-dimen-
sional sphere of radius R grows as the sphere volume (i.e.,
hN2i − hNi2 ¼ hNi ∼ Rd). This result holds for many disor-
dered point patterns. By contrast, the same analysis performed
on a periodic pattern shows that the variance grows with the
surface of the sphere, hN2i − hNi2 ∼ Rd−1. In a founding
work, Torquato and Stillinger (2003) proposed defining a
general class of point patterns, named hyperuniform, the
property of which is to exhibit point number fluctuations
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scaling as the surface of the window, that is slower than
expected for usual disordered media. Hyperuniformity encom-
passes periodic, quasiperiodic, but also (of interest in the
framework of this review) a subclass of disordered systems;
see Fig. 5 (fourth column) for an illustration and Torquato
(2018) for a review. It was observed numerically that
maximally jammed packings of spheres and platonic solids
tend to a hyperuniform structure (Donev, Stillinger, and
Torquato, 2005; Jiao and Torquato, 2011; Zachary, Jiao,
and Torquato, 2011). While such long-range fluctuations
can hardly be observed on the pair-correlation function,
hyperuniform point patterns can be recognized from the
behavior of the structure factor at low values

lim
q→0

SðqÞ ¼ 0: ð117Þ

Of particular interest in photonics are so-called stealthy
hyperuniform structures, for which SðqÞ¼ 0 for 0<q≤
qmax, where qmax can be set to an arbitrary value. The region
of the zero structure factor is often followed by oscillations
similar to those found in short-range disordered correlated
media (Froufe-Pérez et al., 2016).
The concept of hyperuniformity in photonics was intro-

duced in a numerical study by Florescu, Torquato, and
Steinhardt (2009). Important efforts have been made since
then on the fabrication of hyperuniform disordered systems,
which have been achieved thus far using lithography in two
(Man et al., 2013) and three dimensions (Muller et al., 2014),
block-copolymer assembly (Zito et al., 2015), emulsion routes
(Weijs et al., 2015; Ricouvier et al., 2017; Piechulla et al.,
2018; Piechulla, Wehrspohn, and Sprafke, 2023), and spino-
dal solid-state dewetting (Salvalaglio et al., 2020).

5. Disordered fractal structures

In all of the previously discussed classes of disordered point
patterns, the average number of points N contained in a
d-dimensional sphere of radius R is expected to grow as
hNi ∝ Rd. By doubling the observation radius for a three-
dimensional (3D) point pattern, the number of points increases
by a factor of 23 ¼ 8. This scaling, however, is not a general
rule. Introduced by Mandelbrot (1967), the concept of fractals
encompasses systems for which the power-law scaling of the
mass with the system size does not have the Euclidean
dimension as an exponent. More specifically, for fractal point
patterns, we have hNi ∝ Rdf , where df is a noninteger fractal
dimension. Fractality has a dramatic impact on the structure,
as illustrated in Fig. 5 (fifth column). First, it is statistically
self-similar, meaning that the structure is statistically iden-
tical regardless of which scale is looked at (though lower and
upper bounds are always met in practice). Second, it exhibits
enormous local density fluctuations and high lacunarity
(Allain and Cloitre, 1991), meaning that both dense and
empty regions are found. As a result, the pair-correlation
function can be shown to decay as a power law as
g2ðrÞ ∼ r−α, and so does the structure factor SðqÞ − 1 ∼
jqj−ðd−αÞ assuming that 0 < α < d. Depending on the process
of structure formation, one can directly relate the exponent α
to the fractal dimension df . For instance, clustering described

by the Soneira-Peebles model gives α ¼ d − df , leading to
SðqÞ − 1 ∼ jqj−df (Soneira and Peebles, 1977). Note that real
systems generally exhibit lower and upper bounds in their
fractal nature. This implies that the power-law decays are
observed on a finite range [g2ðrÞ eventually goes to 1 at
large r].
Fractal disordered optical materials are encountered in a

wide variety of colloidal aggregates that form naturally for
certain charged particles (Meakin, 1987), as well as in certain
emulsions (Bibette et al., 1993). They can also be designed in
a laboratory by inserting spacing particles with a size
distribution that covers several orders of magnitude in a
statistically homogeneous disordered medium (Barthelemy,
Bertolotti, and Wiersma, 2008; Bertolotti et al., 2010).

D. Numerical simulation of correlated disordered media

Numerical simulations of the complex heterogeneous
morphologies play a key role in colloidal chemistry and soft
matter physics. For light scattering studies, modeled struc-
tured materials are taken as input data for solving Maxwell’s
equations. Here we present some standard numerical
approaches that have been used in the literature to generate
correlated disordered structures and simulate their optical
properties.

1. Structure generation

Random packings of hard spheres in different dimensions
are of great interest due to their structural and thermodynamic
properties. The numerical generation of such ensembles plays
a key role in research, especially in the case of random close
packings (Song, Wang, and Makse, 2008; Parisi and Zamponi,
2010; Torquato and Stillinger, 2010). When the packing
fraction of the system is kept below a few tens of percent,
a random sequential absorption (RSA) model (Widom, 1966)
is suitable to generate large nonequilibrium ensembles in any
dimensionality. In the RSA model, new points are randomly
added to the system following a uniform distribution. The new
point is rejected if it is closer than a given distance to any of
the previous points in the pattern. A careful management of
the coordinate storage in appropriate structures leads to highly
efficient algorithms, but the computational time nevertheless
diverges due to a high rejection rate when the maximum
possible RSA filling fraction is approached, namely, about
54% and 38% for disks in two dimensions (Wang, 2000) and
spheres in three dimensions (Meakin and Jullien, 1992),
respectively. This limitation was lifted by Zhang and
Torquato (2013), who proposed a precise algorithm to gen-
erate a saturated RSA configuration within a finite time.
To achieve larger packing fractions up to the jamming point

(at a filling fraction ϕ ≃ 64% in three dimensions), several
approaches leading to efficient algorithms were developed.
The Lubachevsky-Stillinger (or compression) algorithm
(Lubachevsky and Stillinger, 1990) generates random pack-
ings of any physically realistic ϕ by placing a set ofN particles
of a vanishingly small size in a closed or periodic domain at
random and then letting the particles grow at a given rate,
move, and collide (elastically) until the desired ϕ is reached.
This algorithm has been successfully used in the study of
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sphere packings in any dimensionality (Skoge et al., 2006)
and is largely used in photonics (Conley et al., 2014; Froufe-
Pérez et al., 2016). An approach named ideal amorphous
solids was proposed by Lee, Stachurski, and Richard
Welberry (2010) to realize maximally random jammed pack-
ings of polydisperse particles. The method relies on the
building of aggregates of touching spheres by placing spheres
one by one around a center of mass.
Enlarging the kind of correlations encountered in sphere

packings requires the use of interaction potentials beyond the
hard-sphere model. Simple two-body interactions such as the
Lennard-Jones potential together with standard Monte Carlo
techniques have been used to generate assemblies of scatterers
in different phases (de Sousa et al., 2016b). Two- and three-
body interaction models like the Stillinger-Weber model
(Stillinger and Weber, 1985) can be used to generate fully
connected dielectric networks showing the same statistical
structural properties (coordination and angle statistics) as
amorphous silicon or diamond. Stealthy hyperuniform point
patterns have been generated numerically using a suitable
pairwise, long-range potential in real space (Froufe-Pérez
et al., 2016). Structures are often generated using molecular
dynamics. Since this is a vast and mature field, various
softwares are now available, including NAMD (Phillips et al.,
2005) and CHARMMS (Brooks et al., 2009), which are both
extensively used in the fields of chemistry and biochemistry.
Other software packages include HOOMD-blue (Anderson,
Lorenz, and Travesset, 2008), which is implemented for
graphics processing unit (GPU) computing, and LAMMPS

(LAMMPS Collaboration, 2019), which exploits massive
parallelization (Plimpton, 1995).
Instead of using constraints in real space as in the

case of hard spheres, targeted interaction potentials can
be obtained by imposing constraints on the structure factor
in reciprocal space (Uche, Stillinger, and Torquato, 2004),
which allows for the realization of, for instance, stealthy
hyperuniform structures (Batten, Stillinger, and Torquato,
2008; Florescu, Torquato, and Steinhardt, 2009). A more
general approach to the problem is obtained using con-
strained Fourier transforms as collective coordinates (Kim
et al., 2018).
Materials forming a continuous correlated disordered

network are relevant on different levels (Wright and
Thorpe, 2013). On the one hand, a network presents the
necessary structural stability required for different fabrica-
tion methods (Gaio et al., 2019). On the other hand, the
topology of the network apparently plays an important role
in the emergence of different optical properties, such as
photonic gaps in disordered networks (Weaire, 1971;
Florescu, Torquato, and Steinhardt, 2009). Besides the
previously considered Stillinger-Weber model, there are
different protocols described in the literature to generate
continuous random networks. The Wooten-Winer-Weaire
algorithm (Wooten, Winer, and Weaire, 1985) considers a
collection of points and bonds connecting pairs of points.
The initial network that can be ordered is randomized after a
number of bond reassignments followed by a relaxation of
the structure (for instance, following the Stillinger-Weber
interaction potential). In this way, accurate predictions of the
electronic structure, bond geometry statistics, and atomic

structure of amorphous semiconductors are obtained
(Barkema and Mousseau, 2000). Replacing the chemical
bonds with dielectric rods leads to amorphous dielectric
materials (Edagawa, 2014).
A protocol to generate strongly correlated continuous

random networks was first proposed by Florescu, Torquato,
and Steinhardt (2009) in two dimensions and used by Liew
et al. (2011) in three dimensions. The idea is to create a
uniform topology network starting from an arbitrary point
pattern. The Delaunay tessellation (Watson, 1981) is con-
structed from the seed point pattern. By definition, each
Delaunay cell is surrounded by three (in two dimensions) or
four (in three dimensions) neighbors. The protocol indicates
that the centroids of neighboring triangles (2D) or tetrahe-
drons (3D) are linked. This connected network shows a
uniform connectivity since each node of the network is linked
to the same number of neighbors. When the seed pattern is
strongly correlated, for instance, using random closed or
stealthy hyperuniform packings, the resulting dielectric net-
work presents interesting photonic properties, for example,
complete gaps in its density of states (Florescu, Torquato, and
Steinhardt, 2009; Liew et al., 2011; Froufe-Pérez et al., 2016)
in two and three dimensions. The optical properties of these
structures are further discussed in Sec. V.

2. Electromagnetic simulations

No numerical method has been specifically developed to
model the optical properties of correlated disordered struc-
tures. Generic electromagnetic methods are being used
instead, with the choice of the specific method depending
on the type of structure to simulate, the quantity of interest,
and the computational load. See Wriedt (2009b) and Gallinet,
Butet, and Martin (2015) for overviews of the computational
techniques used in photonics and light scattering, and to the
Internet portal ScattPort by Wriedt (2009a), which provides a
large collection of freely available software packages dedi-
cated to light scattering problems.
The most widely used numerical methods for the quanti-

tative analysis of 2D and 3D correlated disordered media are
(i) the T-matrix method and its variants (Mishchenko, Travis,
and Mackowski, 1996), (ii) the finite-difference time-domain
(FDTD) method (Sullivan, 2013), and (iii) the plane wave
expansion (PWE) method (Ho, Chan, and Soukoulis, 1990;
Johnson and Joannopoulos, 2001).
The T-matrix method, which was initially proposed by

Waterman (1965) and has been further developed over the
years (Mishchenko, Travis, and Mackowski, 1996), is prob-
ably the most adapted to solve light scattering problems using
particulate media, including in layered environments
(Kristensson, 1980; Videen, 1991; Mackowski, 2008). The
method essentially relies on the possibility to decompose the
incident and scattered fields around a particle as a super-
position of vector spherical wave functions (VSWFs).
Formally, the T matrix relates the amplitude coefficients of
the incident wave functions to those of the scattered wave
functions, and the multiple-scattering problem is solved with a
high degree of analyticity by making use of the translation
addition theorem for VSWFs (Stein, 1961; Cruzan, 1962).
Several publicly available codes exist, among them the
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long-established MSTM (Mackowski and Mishchenko, 2011;
Mackowski, 2022) and the more recent GPU-parallelized
CELES (Egel et al., 2017) and SMUTHI (Egel et al., 2021),
which have been used to model large disordered clusters of
particles; see Aubry et al. (2017) and Yazhgur et al. (2021).
In assemblies of small scatterers, the T matrix of the

individual elements reduces to their electric polarizability
and the electromagnetic interaction between scatterers can be
described directly with the dyadic Green’s tensor [Eq. (15)].
More straightforward to implement than the T-matrix method,
the so-called coupled dipole method (Foldy, 1945; Lax, 1952)
is a standard to test new concepts or theoretical models, for
instance, on homogenization (Schilder et al., 2017), light
emission statistics (Pierrat and Carminati, 2010; Sapienza
et al., 2011), or mesoscopic transport regimes (Leseur et al.,
2014). For resonant scatterers with high-quality factors (such
as cold atoms), the coupled dipole equations in the absence of
an incident field become a linear non-Hermitian eigenvalue
problem (Rusek, Orłowski, and Mostowski, 1996) whose
solutions are the so-called quasinormal modes (QNMs) of the
system with complex-valued frequencies (Ching et al., 1998).
The statistical properties of QNMs provide information on
collective phenomena, like polaritonic modes (Schilder et al.,
2016) and the Anderson transition (Skipetrov and Sokolov,
2014; Monsarrat et al., 2022; Sgrignuoli, Torquato, and Dal
Negro, 2022).
The FDTD method is instead the most popular choice for

nonparticulate structures (such as connected networks). In
essence, the method provides numerical solutions of the time-
dependent Maxwell’s equations with discretized space and
time partial derivatives (Yee, 1966) over a necessarily finite
volume and for a certain duration. Quantities related to light
emission, scattering, transport, and localization can be com-
puted using appropriate boundary and initial conditions on the
fields and sources; see Scheffold et al. (2022) and Yamilov
et al. (2022) for recent examples. The FDTD method is
extremely versatile, but the requirement to discretize the entire
space for large disordered structures and perform simulations
over long times implies a high computational load, which is
mitigated by efficient parallelization. Many commercial and
noncommercial software packages are currently available.
Among those, MEEP is a powerful, maintained, and open-
source solution that is extensively used by the community
(Oskooi et al., 2010).
Last, the PWE method is the most common choice for

identifying photonic gaps in nonabsorbing (nondispersive)
dielectric structures. In short, the method solves the source-
free wave propagation equation with periodic boundary
conditions, expanding the fields and space-dependent permit-
tivity in a Fourier series in reciprocal space to solve the
photonic band structure of the geometry (Ho, Chan, and
Soukoulis, 1990). Primarily applied to photonic crystals, the
use of the supercell approach (see Sec. V.A) on large
disordered structures generated with periodic boundary con-
ditions can provide quantitative information on the photonic
density of states (Florescu, Torquato, and Steinhardt, 2009).
De facto, the standard tool used by the community is the MIT

PHOTONIC BANDS open-source software package (Johnson and
Joannopoulos, 2001).

E. Fabrication of correlated disordered media

Here we present an overview of the different strategies and
important design parameters for the experimental fabrication
of strongly scattering correlated disordered media. We
mainly focus on the fabrication of 3D materials but note
that many of the concepts discussed here also hold for 2D
materials. We illustrate the fabrication concepts with a few
examples but do not attempt to provide a comprehensive
overview of this field of materials research, which is beyond
the scope of this review. We note that the fabrication of
disordered correlated photonic materials faces the same
challenges as other optical metamaterials, such as photonic
crystal circuits or other 3D arrangements of structural units
(Soukoulis and Wegener, 2011). The trade-offs that one
needs to consider are simplicity, freedom of design, speed or
throughput, accuracy, and resolution. These parameters vary
enormously, and therefore no one-method-fits-all fabrication
route can be singled out.
The range of interest to observe strong scattering and

coherent phenomena due to structural correlations is when
typical length scales of the structure are on the order of the
wavelength (typically half a wavelength) in the medium. This
mandates, to begin, the submicron structuring of dielectric
materials on length scales comparable to the wavelength of
light with a refractive index contrast n=nh − 1 ≫ 0.1. In
practice, finding the optical material properties is also influ-
enced by the fact that the effective refractive index neff is often
higher than the nominal background material index nh, which
tends to reduce the scattering and transport coefficients
(Reufer et al., 2007; Naraghi et al., 2015; Schertel,
Wimmer et al., 2019). As a general rule, the higher the space
filling fraction of the scattering material, the higher neff ≥ nh
and the stronger this effect. The optimum space filling fraction
is often found around ϕ ∼ 0.3 which is much lower than the
space filling fraction obtained naturally by randomly packing
spheres ϕ ∼ 0.64. In addition to these fundamental scattering
parameters, structural correlations are key for the design and
fabrication of optimally white materials.
In general, we can distinguish global structural properties,

that is, properties that can be expressed by statistical averages
and a corresponding structure factor SðqÞ, and local properties
related to the local topology, the filling fraction, and the
scatterer morphology. In the following, we describe different
approaches that have been used to fabricate disordered and
strongly scattering media. Structural correlations then appear
naturally or by design.
Figure 6 summarizes the most important fabrication meth-

ods of correlated disordered media, which we describe
consecutively to follow. Thermal or assisted self-assembly
are bottom-up processes driven by a combination of entropy
and external forces, such as gravity. Equilibrium and non-
equilibrium self-assembly design routes following predefined
pathways are frequently found in nature but are also increas-
ingly considered as alternatives in the laboratory. Top-down
approaches based on lithography come in many flavors and
take advantage of the powerful technology at hand.
Lithography is powerful for structuring two-dimensional
materials but only more recently significant has progress
been made to fabricate 3D structured materials on submicron
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length scales. We later discuss some of the strengths and
limitations of the different methods.

1. Jammed colloidal packing

Dispersing submicron-size colloidal particles in a solvent
phase with a lower index of refraction is the most common and
most simple way to fabricate a strongly scattering, disordered
medium. Ubiquitous examples are white paints, often based
on a dispersion of submicron TiO2 or polymer latex particles,
and milk. For uniform suspensions of spherical particles,
structural correlations appear naturally owing to the inter-
actions between the particles, which can be longer-range
Derjaguin-Landau-Verwey-Overbeek-type double-layer
repulsion or short-range excluded volume interactions. The
preparation is fairly simple and only requires some command
over the stability of the suspension to avoid the formation of
large aggregates or flocks (Galisteo-López et al., 2011). The
degree of structural correlations can be controlled by the
composition in particle volume fraction, electrolyte, and type
of solvent.
Colloidal particles can also be processed as powders, which

provide a higher refractive index contrast to air (nairh ¼ 1) than
solvent-based dispersions (for instance, nwaterh ¼ 1.33) but
offer less control over the microstructure. The statistically
well-defined structure in a liquid can be transferred to a solid
film by film drying, often preceded by sedimentation or
centrifugation; see Fig. 6 (left panel, top) (Reufer et al.,
2007). Such a colloidal film has the structural properties of a
frozen colloidal liquid at random close-packing conditions.

For identical spheres, this results in pronounced short-range
correlations. However, it is often difficult to avoid crystal-
lization. To avoid the formation of crystallites one can employ
size polydispersity, the preformation of aggregates, or the use
of nonspherical particles, but this usually leads to a reduction
of structural correlations. Photonic crystals with controlled
disorder can also be fabricated by combining spherical
colloids of two different polymers, and to selectively etch
one after the crystal deposition (Peng and Dinsmore, 2007). In
this way, controlled defects in an otherwise periodic lattice are
formed (García et al., 2009). Optimizing this fabrication
process has been the subject of active research (García et al.,
2007).
Finally, densely packed colloidal aggregates, typically of

micron-size spherical shapes, can be realized by selective
solvent evaporation or spray drying (Manoharan, Elsesser, and
Pine, 2003; Yi et al., 2003; Moon et al., 2004; Vogel et al.,
2015; Yazhgur et al., 2021); see Fig. 6 (left panel, bottom).
These so-called photonic balls, which can be composed of
dielectric or metallic particles and can be suspended in air or in
a solvent, have been used to realize angle-independent
structural colors (Park et al., 2014), artificial (meta)materials
(Dintinger et al., 2012), or micron-size random lasers (Ta
et al., 2021). The finite size of the photonic balls breaks the
translational invariance, and for small photonic balls this leads
to an additional metaball-scattering contribution. Structural
correlations within the balls are likely to depend on the size of
the aggregate and the quenching rate. Crystallization of the
surface layer is often observed.

FIG. 6. Overview of fabrication methods. Left panel: jammed colloidal packing. The colloids deposit via gravity assisted methods, or
where they assemble in confined spaces due to local interactions. Middle panel: thermodynamically driven assembly. The system goes
through a phase separation and rearrangement driven by entropy or preprogrammed interactions such as those using DNA strands. Right
panel: optical and electron lithography. Samples are fabricated by direct sculpturing of a material, using optical or electron beams to
modify the local physical and chemical properties (subtractive) or where material is locally added to the structure via selective
polymerization or deposition (additive). Courtesy of Mélanie M. Bay (University of Cambridge).
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2. Thermodynamically driven self-assembly

Colloidal self-assembly proceeds via a random process that
arranges a prefabricated scatterer of a given size a in space.
The fabrication process is stochastic and driven by thermal
motion or external fields such as gravity, and the resulting
structures are relatively simple. In contrast, biology and recent
DNA-based nanofabrication processes rely on well-defined
fabrication pathways or cascades that can be programmed,
which leads to beautiful and complex optical materials in
nature (Prum et al., 1998; Vignolini et al., 2012). In biology, it
is known that many species are able to produce optical
materials that show color or whiteness with optimal morphol-
ogy and structural correlations, short or long range (Prum
et al., 2009; Luke, Hallam, and Vukusic, 2010; Burresi et al.,
2014). The physical mechanisms that underlies the assembly
of photonic structures in living organism is still not under-
stood (Dufresne et al., 2009; Prum et al., 2009; Onelli et al.,
2017; Wilts et al., 2019). Even without a complete under-
standing of the biological processes, it is possible to use such
architectures as materials for biotemplating. To this end, the
biological material is used as a template or cast for a synthetic
material with a high refractive index such as TiO2 (Galusha,
Jorgensen, and Bartl, 2010). Analogous three-dimensional
architectures have been produced on the tens of nanometer
scale via block-copolymer self-assembly (Stefik et al., 2015),
and the interplay between order and disorder on a slightly
larger scale (few hundreds of nanometers) have been shown to
be controllable via block-copolymer brush systems (Song
et al., 2018); see Fig. 6 (middle panel, top).
Another promising route is based on DNA nanotechnology

(He et al., 2020). DNA-origami techniques, invented over a
decade ago (Rothemund, 2006), are considered one of the
breakthroughs in nanotechnology. Recently methods for
making micrometer-scale DNA-origami objects have been
developed (Zhang and Yan, 2017); see Fig. 6 (middle panel,
bottom). The use of DNA-origami or bioinspired assembly
techniques is still in its infancy. It is, however, the only
fabrication route that may possibly allow the design of
complex, correlated, disordered three-dimensional optical
materials in the visible range owing to the nanoscale control
over the fabrication process.

3. Optical and e-beam lithography

Despite the rapid advances in nanoassembly, such as DNA
origami, it is still difficult and often impossible to fabricate
tailored disordered optical materials at will. In particular,
optimized structures designed in silico cannot yet be readily
transferred into real materials using such approaches.
Lithography is an established and powerful alternative to
self-assembly. Its leading performance is unchallenged in the
fabrication of two-dimensional materials, such as silicon,
owing to the decades of optimization in the semiconductor
industry. The resolution of deep UV-based optical lithography
is now at 10–20 nm (Sanders, 2010). The use of a predefined
photographic mask means that this is a highly parallelized
method and that the resolution can be reached over a large
area, such as on entire 30 cm silicon wafers. High resolution
optical lithography, however, has a high start-up cost for
instrumentation and for the fabrication of individual photo

masks. e-beam lithography is a serial fabrication tool with a
similar resolution capacity. It is versatile and can fabricate any
2D structure, but it is much slower and thus not suited for
high-output volumes (Altissimo, 2010). Early attempts in the
late 1990s focused on the fabrication of structured photonic
materials in two dimensions for visible and near-infrared
wavelengths using lithographic patterning followed by reac-
tive ion etching to produce long air holes in high-index
materials (Krauss, Richard, and Brand, 1996; Zoorob et al.,
2000). It is challenging to generalize the use of these powerful
2D methods for the fabrication of 3D materials. Small three-
dimensional infrared photonic crystals on a silicon wafer were
reported based on the stacking of several layers of 2D
structures, fabricated with fairly standard microelectronics
fabrication technology (Lin et al., 1998). In principle, this
approach can be applied to correlated disordered materials, but
owing to its extreme cost and complexity as well as limitations
in size it has not been widely used. More recently the etching
of air rods has been applied to fabricate 3D hole arrays using
3D masks (Grishina et al., 2015). This method is at an early
stage of development, and the evaluation of the optical
performance of the materials obtained is still in progress.
Nonetheless, it offers potential also for the template-free,
direct fabrication of correlated disordered 3D photonic mate-
rials with a high refractive index contrast.
The inherent limitations of conventional colloidal self-

assembly strategies have led to the development of a class
of 3D high resolution lithography tools in the late 1990s and
the early 2000s known as direct laser writing (DLW) (Sun,
Matsuo, and Misawa, 1999; Deubel et al., 2004). The most
popular implementation of direct laser writing is based upon
the development of the two-photon microscope by Denk,
Strickler, and Webb (1990). Using a focused femtosecond
pulsed laser two photons are absorbed simultaneously in the
focal spot, but not elsewhere, owing to the highly nonlinear
absorption cross section. In microscopy the reemission of a
photon is used for imaging, while in direct laser writing the
absorbed energy is used to initiate a chemical reaction in the
photoresist. By scanning a near-infrared femtosecond-pulsed
laser beam in three dimensions, a polymeric structure can be
written with a resolution of approximately 200 nm laterally
and 500 nm axially. The resolution is limited by the point
spread function of the microscope objective and the two-
photon cross section as well as the photoresist. Recently it was
shown that the resolution can be further enhanced using a
stimulated-emission-depletion microscopy inspired approach
(Fischer and Wegener, 2011; Klar, Wollhofen, and Jacak,
2014) or by controlled heat-induced shrinkage of polymeric
network structures (Aeby et al., 2022). DLW has been used to
fabricate polymer templates for a variety of optical metama-
terials including woodpile photonic crystals, quasicrystals,
and polarizers (Deubel et al., 2004; Ledermann et al., 2006;
Gansel et al., 2009; Soukoulis and Wegener, 2011). It has also
been instrumental for the experimental realization of 3D
correlated disordered network materials, based on hyperuni-
form point patterns and other types of disordered correlated
photonic materials (Renner and Freymann, 2015). Despite its
power and versatility, the DLW method also suffers from
imperfections due to shrinkage of the polymer structure during
development and deformations (Deubel et al., 2004; Haberko,
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Muller, and Scheffold, 2013; Renner and Freymann, 2015).
Moreover, owing to the relatively low refractive index of the
polymer photoresist (n ≃ 1.5), it is usually necessary to
transfer the cast or template into another, higher index,
material such as TiO2 or silicon. This can be done using
single or double inversion protocols that can be parallelized
(Tétreault et al., 2006; Staude et al., 2010; Muller et al., 2014,
2017; Marichy et al., 2016). Therefore, such single or double
inversion of the template is, in principle, not a time limiting
step in the fabrication protocol. However, the complex
chemical and etching procedures needed often lead to an
incomplete infiltration (and thus a lower refractive index)
(Staude et al., 2010; Marichy et al., 2016), a general
deterioration of the quality of the structure, and additional
surface roughness (Muller et al., 2017).

F. Measuring structural correlations

Structural correlations in disordered photonic media can be
measured using microscopy, tomography, and scattering.
Scattering can be employed only if the materials structure
is translationally invariant and isotropic or aligned in a well-
defined direction. This is the case for colloidal photonic
liquids and glasses or randomly close-packed particles or rods
that are correlated on short length scales but statistically
uncorrelated (at least asymptotically) on long length scales
(Rojas-Ochoa et al., 2004; García et al., 2007; Reufer et al.,
2007). A challenge is the fact that the material has to be fairly
transparent to the used radiation, and light is therefore not a
suitable probe unless some form of refractive index matching
or clearing is possible. In the latter case, confocal microscopy
has also been applied successfully (Haberko, Muller, and
Scheffold, 2013). Optical materials are usually fairly trans-
parent to neutrons or x rays. Ultra-small-angle neutron and x-
ray scattering instruments are in principle suitable for this task
and available at large-scale facilities (Bahadur et al., 2015),
but these experiments are difficult and time consuming and are
thus not routinely carried out to measure structural correla-
tions in complex photonic media. Small-angle neutron scat-
tering (SANS) has been used successfully to measure the
structure factor of photonic liquids composed or relatively
small colloids in suspension (Rojas-Ochoa et al., 2004). The
direct visualization of the materials local and global structure
is often more useful or, for many novel systems, even
required. To this end, electron microscopy is routinely
applied, often in tandem with focused ion beam milling
and cutting. More recently x-ray imaging and x-ray tomog-
raphy have been developed as noninvasive tools for the real
space characterization of correlated photonic materials (Wilts
et al., 2018; Grishina et al., 2019). Another promising route
for studying the internal structure of 3D photonic materials is
destructive tomography using ion beam milling or etching
techniques in conjunction with electron or atomic force
microscopy (Magerle, 2000; Burresi et al., 2014).

IV. MODIFIED TRANSPORT PARAMETERS

The primary effect of structural correlations is to modify the
light scattering and transport parameters. This section offers a
survey of the theoretical predictions and experimental

observations of modified transport properties due to structural
correlations. We first focus on colloidal systems and photonic
materials, which are typically characterized by short-range
correlations (i.e., negatively correlated) (Sec. IV.A). We
discuss optical transparency and enhanced single backscat-
tering phenomena on the basis of the theory developed in
Sec. II and survey progress on resonant and Bloch-mediated
scattering. In Sec. IV.B, we describe the markedly different
transport properties of materials with large-scale hetero-
geneities (i.e., they are positively correlated). Transport in
such systems requires a generalization of the radiative
transfer equation and can become anomalous in the presence
of a fractal heterogeneity.

A. Light scattering and transport in colloids and photonic
materials

1. Impact of short-range correlations: First insights

We start this section by examining the expressions derived
for the scattering and transport mean free paths for assemblies
of spherical particles [Eqs. (111) and (112)]. In deriving these
expressions, we have assumed that an effective permittivity
ϵeff for the system can be defined, leading to an effective wave
number kr ¼ k0Re½neff � and a scattering wave vector
q ¼ krju − u0j, where u and u0 are the scattered and incident
directions. The form factor is given by FðqÞ ¼ k2r ðdσ=dΩÞðqÞ
[Eq. (109)], where dσ=dΩ is the differential scattering cross
section of the individual particle in the host medium evaluated
at the wave number kr. The structure factor SðqÞ is the key
quantity describing structural correlations for particulate
media. Figure 7(a) shows the structure factor predicted within
the Percus-Yevick approximation for hard spherical particles
(Wertheim, 1963) at different filling or packing fractions
p ¼ ðπ=6Þa3ρ, where a is the particle diameter and ρ is the
particle density. Increasing the density and/or the particle
diameter leads to short-range correlations characterized by a
reduction of S at small values of q (gray-shaded area), the
emergence of a peak slightly above qa ¼ 2π (Liu, Schöpe,
and Palberg, 2000), and oscillations with a decaying ampli-
tude at larger values of qa.
The effect of these short-range correlations on light scatter-

ing can be apprehended by rewriting the scattering wave
vector as q ¼ 2kr sin θ=2, with θ the scattering angle.
Expressions for the scattering and transport mean free paths
can in fact be derived from this change of variables, leading to

1

ls
¼ ρ

Z
4π

dσ
dΩ

ðθÞSðθÞdΩ ð118Þ

and

1

lt
¼ ρ

Z
4π

dσ
dΩ

ðθÞSðθÞð1 − cos θÞdΩ; ð119Þ

respectively, where Ω is the solid angle. Similarly, the
scattering anisotropy parameter is given by

g ¼
R
4πðdσ=dΩÞðθÞSðθÞ cos θdΩR

4πðdσ=dΩÞðθÞSðθÞdΩ
: ð120Þ
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The structure factor can thus be seen as a quantity that
modifies the scattering diagram ðdσ=dΩÞðθÞ of the individual
particle due to far-field interference. In the absence of
correlations (S ¼ 1), the scattering mean free path is given
simply by l0

s ¼ ðρσsÞ−1, with σs ¼
R
4πðdσ=dΩÞðθÞdΩ the

scattering cross section of an individual particle.
Figure 7(b) shows the structure factor for p ¼ 0.4

expressed as a function of a=λr, with λr ¼ λ=Re½neff �, and
θ. The most notable features here are the systematic reduction

of scattering around the forward direction θ ≈ 0 and strong
increases in the backward direction θ ≈ π at specific frequen-
cies, especially near qa ¼ 2π, which is similar to the Bragg
condition in crystals.
We apply Eqs. (118)–(120) to a practical situation, namely,

spherical polystyrene particles (np ¼ 1.6) with diameter
100 nm dispersed in water (nh ¼ 1.33). We use the CPA to
get the effective refractive index (Soukoulis, Datta, and
Economou, 1994), resulting in neff ≈ 1.44 in the entire wave-
length range considered here, although the actual choice of the
effective medium theory is of little importance for such low-
index contrast systems. Figures 7(c) and 7(d) show the
variation of scattering efficiency l0

s=ls and the scattering
asymmetry parameter g in the limit of an uncorrelated medium
(asymmetric scattering is then entirely due to the particle
alone) and for a strongly correlated system p ¼ 0.4. Two main
conclusions can be drawn here. First, structural correlations
lead to a reduction of the scattering efficiency that is
particularly pronounced in the low-frequency range, where
the wavelength is much larger than the characteristic length of
the system. Thus, an incident wave propagates ballistically on
longer distances (on average). Second, the angular depend-
ence up to the first peak in the structure leads to a negative
scattering anisotropy parameter g, meaning that light is
predominantly scattered backward, leading to lt < ls. Both
effects have been observed experimentally, as later discussed.
We consider here particles with a fairly low-index contrast

to emphasize the role of short-range structural correlations on
light scattering and transport. The range of optical properties
is significantly enriched when one considers the possibility of
having spectrally sharp Mie resonances in high refractive
index contrast materials or longer-range structural correla-
tions, as discussed in Secs. IV.A.4 and IV.A.5.

2. Enhanced optical transparency

The impact of structural correlations on light scattering in
colloids emerged in the 1950s when it was noticed that the
light intensity scattered either by protein solutions (Doty and
Steiner, 1952) or by collagen fibrils in the cornea stroma
(Maurice, 1957) was not following the behavior expected for
small scattering elements uncorrelated in position. In the well-
known article by Maurice (1957), it was supposed that a
periodic organization of the fibrils was at the origin of a
surprising optical transparency. Later works showed theoreti-
cally that this transparency can be explained by short-range
correlated disorder (Hart and Farrell, 1969; Benedek, 1971;
Twersky, 1975). More recently dense nanoemulsions, a kind
of synthetic mayonnaise made from smaller than usual oil
droplets with a diameter of around 50 nm, have been shown to
be much more transparent than more dilute suspensions ϕ ∼
0.1 of the same droplets (Graves and Mason, 2008). A
transparency window has been observed in scattering fibrillar
collagen matrices as a function of collagen concentration
(Salameh et al., 2020). All of these observations are explained
by the strongly reduced scattering efficiency observed in the
long-wavelength regime and shown in Fig. 7(c).
The notion of transparency relies on the proportion of

ballistic light after a sample and therefore depends on the ratio
between the extinction mean free path le (or the scattering

FIG. 7. Impact of structural correlations on light scattering and
transport in colloids. (a) Structure factor S of a hard-sphere liquid
for three different packing fractions p ¼ π=6a3ρ, with a the
particle diameter and ρ the particle number density. The gray-
shaded area indicates the low scattering wave number range
where the structure factor is strongly diminished. (b) Angular and
spectral response of the structure factor taking q ¼
ð4π=λrÞ sin θ=2 and θ as the scattering angle for p ¼ 0.4. Exact
backscattering (θ → π) is particularly pronounced when λr ≈ 2a.
(c) Ratio of the scattering mean free paths neglecting structural
correlations (l0

s ) and considering structural correlations (ls), and
(d) scattering anisotropy parameter g without and with structural
correlations, obtained in the realistic case of particles of diameter
a ¼ 100 nm and refractive index np ¼ 1.6 (e.g., polystyrene) in a
host medium with index nh ¼ 1.33 (for instance,water). The
observed features are directly linked to the structure factor.
The red-shaded (gray-shaded) area in (d) highlights the range
where single scattering is dominantly backward, implying
that lt < ls.
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mean free path ls in the absence of absorption) and the
sample thickness L. Thus, materials exhibiting short-range
correlated disorder unavoidably become opaque for large
thicknesses. The question of whether this conclusion holds
for stealthy hyperuniform media, for which the structure
factor strictly equals 0 on a range of scattering wave vectors
q, naturally follows. The perturbative expansion of the
intensity vertex (or, equivalently, of the phase function)
up to second order [Eq. (106)] predicts that scattering is
completely suppressed for such media [Eq. (111)]. Scattering
may occur, however, due to the higher-order terms. Taking
these into account leads to the definition of a criterion for
optical transparency that reads (Leseur, Pierrat, and
Carminati, 2016)

L
l0
s
≪ krl0

s ; ð121Þ

which is derived here for point scatterers (ls ¼ lt). This
shows that stealth hyperuniformity does not completely
suppress scattering. Optical transparency can be achieved
in situations in which an uncorrelated disordered medium
would be opaque (L=l0

s ≫ 1), but only provided that the
ratio l0

s=λr is sufficiently large.

3. Tunable light transport in photonic liquids

Spherical colloids are often considered to be large atoms in
soft matter physics (Poon, 2004). From this viewpoint, each
colloidal particle takes the place of an atom that is interacting
with its peers via specific colloidal interactions. For colloids in
suspensions these interactions are often tunable in both
strength and sign, as with the well-known double-layer
repulsion between charged microspheres suspended in salty
water. Thus, depending on the volume fraction occupied by
the particles and the interaction strength, different colloidal
phases can be found, such as correlated liquids, entropic
glasses, jammed packings, and crystals (Pusey and Van
Megen, 1986).
Early experiments of light scattering by charged particles,

typically made of polystyrene or PMMA, were initiated in the
mid 1970s, notably by Brown et al. (1975), who could
measure the structure factor of colloidal suspensions of
subwavelength particles beyond the first peak by conventional
light scattering. The impact of structural correlations on light
transport in the multiple-scattering regime was later studied by
Fraden and Maret (1990) and Saulnier, Zinkin, and Watson
(1990), who reported transmission and coherent backscatter-
ing measurements of the transport mean free path in optically
thick materials composed of resonant (wavelength-scale)
particles at various packing fractions; see also Kaplan et al.
(1994), Rojas-Ochoa et al. (2002), Yazhgur et al. (2021), and
Sbalbi, Li, and Furst (2022). Fraden and Maret (1990) and
Saulnier, Zinkin, and Watson (1990) both observed an
increase of the transport mean free path due to structural
correlations. A further step forward was made by Rojas-
Ochoa et al. (2004), who showed that a fine control over
structural correlations via Coulomb repulsion could induce a
strong wavelength dependence of the optical properties of
colloidal liquids and even negative values of the scattering

anisotropy parameter (g < 0) (i.e., lt < ls). In such “photonic
liquids,” the strong spectral variations of transport parameters
make samples that are of intermediate optical thickness and/or
partly absorbing become structurally colored in reflection.
Note the overall excellent agreement between experiments
and theoretical predictions based on direct measurements of
SðqÞ with SANS (Rojas-Ochoa et al., 2004).
Initial works (Fraden and Maret, 1990; Saulnier, Zinkin,

and Watson, 1990; Rojas-Ochoa et al., 2004) have not
considered an effective index to correct the scattering wave
number q. Note that the outcome of doing so does not
significantly impact the results due to the low-index contrast.

4. Resonant effects in photonic glasses

Photonic glasses are solid materials composed of close-
packed dielectric spheres with a size comparable to the
wavelength of light, arranged in a disordered way (García
et al., 2007). This is usually achieved by intentional colloidal
flocculation and subsequent deposition. The monodispersity
of the building blocks that compose them induces Mie
resonances, which remain observable in closely packed
systems (Aubry et al., 2017). The resonances are all the
stronger as a higher-index contrast is achieved by evapora-
tion of the host liquid. Besides, when the scattering material
is solid, material stability is ensured by physical contacts
between neighboring particles, thereby resulting in stronger
short-range correlations compared to photonic liquids and
strong near-field interaction between particles. The latter
impacts both the magnitude and the frequency of the Mie
resonance of the individual sphere (Sapienza et al., 2007)
and can transmit more light than expected from classical
scattering theory (as developed in Sec. II) (Naraghi
et al., 2015).
The strong short-range correlation and near-field inter-

actions makes the modeling of realistic photonic glasses
challenging. Recent works (Aubry et al., 2017; Schertel,
Wimmer et al., 2019) have argued that the effect of the near-
field coupling on transport in photonic glasses could be
captured by defining an effective wave number kr with an
index obtained from the ECPA (Busch and Soukoulis, 1995).
This appears to be in contradiction with our rigorous deriva-
tion of Eqs. (111) and (112), which required near-field
interaction between particles to be neglected. Besides, it is
surprising that an approach based on the evaluation of the
energy density would correctly predict the average field phase
velocity. The most advanced formalism to date to describe
scattering and transport by dense particulate media, possibly
with high-index materials, is the QCA, exploited recently by
Wang and Zhao (2018a) to study the interplay between Mie
resonances and structural correlations.
Numerical simulations can be useful to validate theoretical

models and provide physical insight. For example, the strong-
contrast formulas derived by Torquato and Kim (2021) for
two-phase composites have been tested with FDTD simula-
tions in the case of 2D and 3D dense packings of spheres with
hard-sphere (equilibrium) and stealthy hyperuniform corre-
lated disorder, showing in passing the existence of a trans-
parency window up to a finite wave number in the latter. The
complexity of the relation between structural correlations and
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light transport was evidenced in a recent work by Pattelli et al.
(2018), who used a GPU implementation of the T-matrix
method (Egel et al., 2017) to investigate scattering by large
assemblies of particles on a wide range of parameters.
Simulations reveal that, given the wavelength, the particle
size, and the refractive index, the shortest transport mean free
path is obtained at intermediate degrees of correlations and
particle densities. Although much remains to be understood,
photonic glasses and all resonant dense scattering media have
demonstrated their great versatility and efficiency to harness
light scattering and transport, with interesting applications in,
for instance, structural colors and random lasing, as discussed
in Sec. VI.

5. Modified diffusion in imperfect photonic crystals

An extreme case of correlated disordered media is that of a
disordered photonic crystals, in which long-range order is
established by the almost-periodic structure and scattering can
be induced by imperfections, defects, or intentional contami-
nation with additional scattering elements. In a crystal, light
propagation is dictated by the photonic band diagram that
maps the frequency–wave vector relation of propagating
Bloch modes (Joannopoulos et al., 2011). Perfectly periodic
structures are typically characterized by strong variations of
the group velocity and the formation of partial (or even
complete) photonic gaps corresponding to a lack of propa-
gating states. The scattering cross section of a defect typically
increases with the reduction of the group velocity and light
will scatter only where propagating states exist, and therefore
scatter anisotropically.
Multiple scattering and transport of light are expected to

be strongly affected, while a more quantitative prediction
requires a precise modeling of the kind of scattering and the
crystal topology. Pioneering experiments on coherent back-
scattering (Koenderink et al., 2000; Huang et al., 2001) and
diffuse light transport (Astratov et al., 1995; Vlasov,
Kaliteevski, and Nikolaev, 1999) in photonic crystals
searched for signatures of Bloch-mode-mediated scattering
but showed merely standard light diffusion (Koenderink,
Lagendijk, and Vos, 2005; Rengarajan et al., 2005; Aeby
et al., 2021). Single light scattering in a disordered photonic
crystal has been measured, with clear modification of the
scattering mean free path around the band gap (García et al.,
2009), reflection studies have shown anisotropic scattering
(Haines et al., 2012), and dynamical studies have shown
exceptionally reduced diffusion constants (Toninelli
et al., 2008).
Instead of relying on natural imperfections in otherwise

ordered photonic crystals, correlated disordered media can be
made by creating lattice vacancies in photonic crystals (García
et al., 2011). In these structures, the scattering and transport
mean free paths, as well as the diffusion constant, have been
measured to present strong dispersion (García et al., 2011).
The transition from order to disorder in the structure and its
impact on the transport parameters is still an active field of
research (Priya et al., 2018), which has also served as
motivation for the development of hyperuniform materials,
where such a transition can be driven by a single parameter, as
discussed in Sec. V.

B. Anomalous transport in media with large-scale heterogeneity

We have been concerned thus far with systems for which
the distribution pN for the number of scatterers in a window of
volume V ≫ 1=ρ has a small variance, thereby making the
system appear quite homogeneous on the scale of tens or
hundreds of scatterers. Here we are concerned with disordered
systems exhibiting large-scale heterogeneities leading to a
large variance, also known as positively correlated systems, as
described in Sec. III. Such systems are ubiquitous in nature, a
well-known example being cloudy atmospheres (Marshak and
Davis, 2005). The density of droplets in suspension in clouds
can indeed fluctuate over orders of magnitude. As illustrated
in the right panel of Fig. 4, one may find sparse as well as
denser regions, implying a strongly fluctuating scattering
efficiency. Research on the topic has experienced numerous
developments, most notably in the framework of transport
theory in so-called non-Markovian stochastic mixtures, also
known as nonclassical transport theory (Pomraning, 1991).
For a recent and thorough review of the literature on non-
classical transport, see d’Eon (2022). As we now see, despite
the absence of coherent interference effects between neigh-
boring scatterers, such long-range correlations have a dramatic
impact on transport, as illustrated in Fig. 8.

1. Radiative transfer with nonexponential extinction

The first element to describe radiative transfer is extinction.
Equations (11) and (12) in Sec. II impose the condition that
the coherent intensity jhEij2 should decay exponentially on an
average distance given by the extinction mean free path le. In
strongly heterogeneous media, however, one may anticipate
that the decay will be slower than exponential. An intuitive

FIG. 8. Impact of large-scale heterogeneity on transport in
multiple-scattering media. (a) Sketch of a transport process in
a statistically homogeneous medium (the gray-shaded area).
Within radiative transfer, transport can be described as a
random-walk process with an exponentially decaying step-length
distribution. For thick media, transport is well described by the
diffusion equation. (b) Sketch of transport in a scattering medium
containing large nonscattering regions (white disks). Transport is
driven by long steps, making the step-length distribution no
longer exponential. For certain systems with fractal hetero-
geneity, such as Lévy glasses (Bertolotti et al., 2010), transport
can experience a transient superdiffusive behavior.
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explanation is that spatially extended nonscattering or weakly
scattering regions promote trajectories much longer than the
average decay length (i.e., the extinction mean free path).
Discussions on nonexponential extinction in strongly hetero-
geneous media date back to the mid 20th century, with
studies conducted on neutron propagation in pebble bed
reactors (Behrens, 1949; Randall, 1962) and light absorption
in suspensions of photosynthesizing cells (Rabinowitch,
1951; Duyens, 1956). The topic gained further attention
with later studies on radiative transfer in cloudy atmospheres
(Natta and Panagia, 1984; Városi and Dwek, 1999; Davis
and Marshak, 2004) and, more recently, in the framework of
computer graphics (Bitterli et al., 2018; Jarabo, Aliaga, and
Gutierrez, 2018).
A common approach to describe the nonexponential

decay of the coherent intensity, proposed by several
researchers about two decades ago (Marshak et al., 1998;
Kostinski, 2001, 2002; Borovoi, 2002), consists in describ-
ing the heterogeneous medium as local “patches” or clusters
of particles exhibiting a varying average extinction rate (or,
equivalently, average particle densities). To describe this
heuristic model, we define a position-dependent particle
density ρðrÞ ¼ hNðrÞi=V, with hNi the average number of
scatterers in volume V. We consider a system that is dilute
at all points of space [ρðrÞλ3 ≫ 1] such that radiative
transfer applies. The key point of the approach is to assume
that the distribution of number N of particles in the volume
V, and consequently the distribution of number of extinc-
tion events, follows a Poisson distribution pNjhNðrÞi ¼
hNiN exp ½−hNi�=N!. The patchiness leads to variations of
hNðrÞi via a distribution phNi. The distribution of extinction
counts in a volume V should then be

pN ¼
Z

∞

0

pNjhNðrÞiÞphNidhNi

¼
Z

∞

0

hNiN exp ½−hNi�
N!

phNidhNi. ð122Þ

The relation with the classical extinction (Beer-Lambert)
law is established by noting that the probability to cross the
volume with no extinction event over a depth z is given by
p0 and invoking the law of large numbers with hNi ¼ z=le.
Taking phNi ¼ δðhNi − βÞ and the ballistic transmission
Tb ¼ jhEi=E0j2 of a plane wave along the z direction
through a medium leads to

TbðzÞ≡ p0ðzÞ ¼ exp½−hρiσez�; ð123Þ

where we have set β ¼ hρiσez and σe is the extinction cross
section. By contrast, the use of Γ or fractional Poisson
distributions leads to asymptotic power-law decays with
varying exponentsm (Kostinski, 2001; Casasanta and Garra,
2018)

TbðzÞ ∼ ð1þ βÞ−m: ð124Þ

One key aspect is the determination of an actual function in
realistic systems. Important efforts have notably been dedi-
cated to the determination of particle density distribution in

clouds (Kostinski and Jameson, 2000). Slower-than-exponen-
tial decays of the coherent intensity have also been observed in
photosynthetic cultures (Knyazikhin et al., 1998).
The radiative transfer equation [Eq. (38)] has been gener-

alized to account for arbitrary nonexponential extinction.
Defining a probability density function fs of the random
step length s as fsðsÞ≡ TbðsÞ=

R∞
0 TbðsÞds, one reaches a

generalized scalar radiative transfer equation (Larsen and
Vasques, 2011)

�
∂

∂s
þ u · ∇r þ ΣeðsÞ

�
Iðr;u; sÞ

¼ δðsÞγ
Z

pðu;u0ÞΣeðs0ÞIðr;u0; s0Þds0du0; ð125Þ

where γ ¼ le=ls is the single-scattering albedo (the proba-
bility to be scattered upon an extinction event) and Iðr;u; sÞ
now depends on the step length s via

ΣeðsÞ ¼
fsðsÞ

1 −
R
s
0 fsðs0Þds0

: ð126Þ

Equation (38) is recovered by taking fsðsÞ ¼ exp½−s=le�=le.
A few remarks are in order. First, the distribution fsðsÞ should
have a finite mean so as to allow the definition of a mean free
path le. Second, one of the key features of transport with
nonexponential step-length distributions is the fact that it is a
non-Markovian process (i.e., one implying memory in the
construction of individual steps), contrary to the classical
Beer-Lambert law which is a Markovian (memory-less)
process (exp½xþ y� ¼ exp½x� exp½y�). Third, Eq. (125)
describes transport in the volume of a medium. Care should
be taken on its applicability to bounded domains since an
incorrect treatment of the initial steps (light entering the
medium) can result in a breaking of reciprocity. An extension
of the formalism to bounded domains was proposed by
d’Eon (2018). Finally, and this aspect has not previously
been significantly emphasized, the formalism assumes an
“annealed” disorder, meaning that the medium is randomized
after each scattering event. As we later see, correlations
between successive scattering events due to a “quenched”
disordered potential can have a significant impact on
transport.
Along similar lines, radiation transport can be efficiently

modeled numerically in arbitrary geometries via random-walk
Monte Carlo simulations either in heterogeneous media with
spatially varying scattering parameters (Glazov and Titov,
1977; Boissé, 1990; Audic and Frisch, 1993) or in statistically
homogeneous media using arbitrary step-length distributions,
including those with diverging second moments (Nolan,
2003). The latter are known as Lévy walks (Zaburdaev,
Denisov, and Klafter, 2015) and have been proposed as a
tool to describe radiation transport in clouds (Davis and
Marshak, 1997), leading to enhanced ballistic transmission
and transmitted intensity fluctuations.

2. From normal to superdiffusion

In classical radiative transfer, the incoherent intensity is
expected to follow the laws of diffusion after many scattering
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events [Eq. (45)]; see Fig. 8(a). Physically, diffusion is related
to the Brownian motion of many independent moving
elements (i.e., random walkers). As long as the second
moment of the step-length distribution fsðsÞ is finite, the
central-limit theorem shows that the average step length
converges toward a normal distribution, eventually leading
to a diffusive process, characterized by a mean-square
displacement hr2ðtÞi ∼ 2dDt. Under these circumstances,
the presence of large heterogeneities does not prevent the
diffusion limit but does lead to a modified diffusion constant.
From a simple isotropic random-walk consideration (Ben-
Avraham and Havlin, 2000), it is possible to show that the
diffusion constant for a step-length distribution fsðsÞ is given
by (Svensson et al., 2013)

D ¼ v
2d

E½s2�
E½s� ; ð127Þ

where E½X� is the expectation value of the random variable X.
Equation (127) is apparently not well known but is interesting.
It shows that the fluctuations in the step length are as
important as the mean step length. In practice, any correlated
system exhibiting slower-than-exponential decay will
experience an increased diffusion constant. The known
expression D ¼ vlt=d is recovered only for an exponentially
decaying function of fsðsÞ and using the similarity rela-
tion lt ¼ ls=ð1 − gÞ.
A fundamentally different behavior is observed when

heterogeneities are so strong that they make the second
moment of fsðsÞ diverge. This is the case for power-law
decays fsðsÞ ∼ s−ðαþ1Þ, with α < 2, defining the so-called
Lévy walks. By virtue of the generalized central-limit theorem
(Gnedenko and Kolmogorov, 1954), one shows that the
average step length should follow an α-stable Lévy distribu-
tion, which is identically heavy tailed. Lévy walks lead to
superdiffusive transport, characterized by a mean-square
displacement growing faster than linear with time
(Zaburdaev, Denisov, and Klafter, 2015),

hr2ðtÞi ∼ tγ; with 1 < γ ≤ 2: ð128Þ

Lévy statistics and anomalous diffusion are widespread in
science, from the random displacement of molecules in flows
(Solomon, Weeks, and Swinney, 1993) to the foraging
strategy of animals (Bartumeus et al., 2005). While early
studies had already evidenced modified path length distribu-
tions of light in fractal aggregates of particles (Dogariu,
Uozumi, and Asakura, 1992, 1996; Ishii et al., 1998), the
first experiments aiming to control the anomalous diffusion of
light in disordered systems were initiated by Barthelemy,
Bertolotti, and Wiersma (2008). So-called Lévy glasses are
fabricated by incorporating in a disordered medium contain-
ing small scattering particles a set of transparent, nonscatter-
ing spheres with sizes ranging over orders of magnitude acting
as spacers; see the last column in Fig. 5 as well as Fig. 8(b). By
controlling the distribution of sphere diameters and assuming
single scattering in the interstices between the spheres and
annealed disorder, one can control the step-length distribution
pðsÞ in the medium (Bertolotti et al., 2010). Latest time-

resolved experiments on Lévy glasses indeed showed a
transient superdiffusive light transport (Savo et al., 2014).
Lévy statistics in light transport has also been observed in hot
atomic clouds (Mercadier et al., 2009; Baudouin et al., 2014;
Araújo, Passerat de Silans, and Kaiser, 2021) as a result of
Doppler broadening (Pereira, Martinho, and Berberan-Santos,
2004; Baudouin et al., 2014), not structural correlations.
An important aspect of transport in Lévy glasses is the fact

that the disorder is frozen or quenched. Classical transport
models assume annealed disorder, in the sense that there is no
correlation between successive scattering events: a photon
“sees” a new structure after each scattering event. In real
samples, however, successive steps are not independent. There
are correlations due to the large empty regions. As shown
theoretically and in experiments on scattering powders con-
taining large monodisperse voids (Svensson et al., 2014),
quenched disorder leads to an effective reduction of the
diffusion constant compared to annealed disorder. The impact
of quenched disorder in Lévy-like systems has been subject to
various numerical and theoretical investigations (Beenakker,
Groth, and Akhmerov, 2009; Barthelemy et al., 2010; Burioni,
Caniparoli, and Vezzani, 2010; Buonsante, Burioni, and
Vezzani, 2011; Burioni et al., 2012; Groth, Akhmerov, and
Beenakker, 2012; Burioni, Ubaldi, and Vezzani, 2014), which
eventually showed that the actual observation of superdiffusive
transport in a finite-size system (and hencewith truncated step-
length distribution) requires a proper finite-size scaling analy-
sis and packing strategy (Burioni, Ubaldi, and Vezzani, 2014).

V. MESOSCOPIC AND NEAR-FIELD EFFECTS

The interplay of order and disorder in photonic structures
not only impacts light transport but also promotes strong
coherent effects, resulting in the emergence of sometimes
unexpected phenomena for disordered systems. This section is
devoted to the main mesoscopic and near-field phenomena
that have attracted attention in recent decades, namely, the
opening of photonic gaps in disordered systems (Sec. V.A),
transitions between various mesoscopic transport regimes
(Sec. V.B), nonuniversal speckle correlations (Sec. V.C),
and large local density of states fluctuations (Sec. V.D). We
attempt to provide a clear picture of the current understanding
in the field.

A. Photonic gaps in disordered media

Photonic gaps are one of the most noteworthy manifes-
tations of structural parameters on optical transport. As with
electronic gaps in semiconductors, a photonic gap corre-
sponds to a spectral range in which no propagating modes
exist. The concept of a photonic gap has been known in optics
since the early works on one-dimensional thin-film optical
stacks (Yeh et al., 2005), having emerged as a consequence of
the periodic modulation of the refractive index on the wave-
length scale. The idea was generalized in the late 1980s to
two- and three-dimensional periodic structures (John, 1987;
Yablonovitch, 1987) and has been at the heart of research in
optics and photonics for about two decades. The interest
in photonic gaps comes largely from the possibility of
engineering defects states with high-quality factors and
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wavelength-scale confinement, opening unprecedented oppor-
tunities to control spontaneous light emission and light
propagation for applications in all-optical integrated circuits
(Joannopoulos et al., 2011).
Probably because of the convenience of Bloch’s theorem

and the development of numerical methods exploiting perio-
dicity to solve Maxwell’s equations, it is widely believed in
the optics and photonics communities that the opening of
photonic gaps requires the refractive index variation to be
periodic in space (i.e., the structure to exhibit long-range
periodic correlations). However, early works investigating the
impact of structural imperfections on optical properties came
to the realization, by drawing a parallel with semiconductor
physics (where similar questions have been addressed)
(Phillips, 1971; Weaire, 1971; Thorpe, 1973), that certain
gaps could persist even in the absence of periodicity (Chan,
Chan, and Liu, 1998; Jin et al., 2001) thanks to local (Mie or
short-range correlated) resonances (Lidorikis et al., 2000).
Later reports on photonic gaps in 3D disordered structures
exhibiting short-range correlations (Edagawa, Kanoko, and
Notomi, 2008; Imagawa et al., 2010; Liew et al., 2011) and
the proposition that hyperuniformity was a requirement for
photonic gaps (Florescu, Torquato, and Steinhardt, 2009)
greatly stimulated the community to unveil the relation
between local morphology and structure, as well as the
opening of spectrally wide gaps (Froufe-Pérez et al., 2016;
Sellers et al., 2017; Klatt, Steinhardt, and Torquato, 2019;
Ricouvier, Tabeling, and Yazhgur, 2019).

1. Definition and identification of photonic gaps in disordered
media

The notion of photonic gap is closely linked with that
of the density of states (DOS). Formally the DOS describes
the spectral density of eigenmodes in the medium (i.e., the
solutions of the source-free Maxwell’s equations) around
frequency ω. For instance, the DOS of a closed and non-
absorbing system with volume V is simply

ρðωÞ ¼ 1

V

X
m

δðω − ωmÞ; ð129Þ

where ωm is the frequency, that is, the eigenvalue, associated
with the resonant mode m. For nondissipative systems, this
frequency is real. In this framework, a photonic gap thus
corresponds to a spectral region wherein ρðωÞ ¼ 0 and can
therefore easily be found from an eigenmode analysis. In the
case of disordered media, a classical strategy, illustrated in
Fig. 9(a) for the case of parallel dielectric cylinders in TM
polarization, is to employ the PWE method (Ho, Chan, and
Soukoulis, 1990; Johnson and Joannopoulos, 2001), pre-
sented in Sec. III.D.2, with a large periodic supercell.
As the system is conservative, a photonic gap is easily
recognized as a spectral region containing no propagating
modes [Fig. 9(b)]. A photonic gap can also be identified by
time-domain simulations in real space (FDTD) using the
order-N spectral method (Chan, Yu, and Ho, 1995). Special
attention should be paid to whether the gap persists in the
thermodynamic limit (i.e., when the system size increases), an
aspect that was overlooked until recently (Klatt, Steinhardt,

and Torquato, 2022). This approach can only be numerical, as
the DOS is not directly accessible experimentally and real
systems are always of finite size and open. The latter
characteristic indicates that the DOS can never in fact be
strictly equal to zero.
A second approach that may now be taken experimentally

(Lodahl et al., 2004; Leistikow et al., 2011; Sapienza et al.,
2011; Aubry et al., 2020) consists in performing a finite-size
scaling analysis of the emitted power (or spontaneous emis-
sion rate) of a quantum emitter embedded in a finite-size
system; see Fig. 9(c). The power Pem emitted by a dipole
source with moment p ¼ pu, derived from Maxwell’s equa-
tions (Novotny and Hecht, 2012; Carminati et al., 2015), reads

Pem ¼ πω2

4ϵ0
jpj2ρeðr;u;ωÞ; ð130Þ

where ρe is the projected local density of states (LDOS) (in
sm−3) defined as

FIG. 9. Signatures of photonic gaps in short-range correlated
ensembles of dielectric rods in TM polarization. The rods have a
permittivity ϵ ¼ 11.6, have a radius r ¼ 0.189a, are placed in air,
and are packed through RSA at a surface filling fraction f ¼
11.2% (number density n ¼ a−2). (a) Disordered ensemble of
rods generated in a square region with periodic boundary
conditions. (b) Photonic band structure with a gap that corre-
sponds to an absence of eigenmodes in a finite spectral range a=λ.
Numerically, the eigenmodes can be computed using the plane
wave expansion method with the supercell approach. The band
structure was calculated here for a supercell containing N ¼ 100
rods. (c) A photonic gap can be identified by monitoring the
spontaneous emission rate of a dipole source in the center of the
system for varying system sizes. The emitter here is always
placed in air. (d) Finite-size scaling of the spontaneous emission
rate (or LDOS) for systems containing 25, 50, and 100 rods. hρei
is the projected LDOS averaged over disorder configurations and
ρ0 is the projected LDOS in air. A gap leads to a strong damping
of spontaneous emission with system size.
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ρeðr;u;ωÞ ¼
2ω

πc2
Im½u ·Gðr; r;ωÞu�: ð131Þ

Gðr; r0;ωÞ is the total Green’s tensor in the structured
environment. Decomposing it as a sum of the Green’s tensor
in the homogeneous background and the Green’s tensor due to
the fluctuating permittivity, one readily understands that the
suppression (enhancement) of the LDOS results from destruc-
tive (constructive) interference at the dipole position between
the field radiated in the homogeneous background and the
field scattered by the heterogeneities.
Equation (131) is general, yet it does not explicitly depend

on the actual states of the system. To gain some physical
insight, it is possible to express G in terms of the eigenmodes
of the system; see Appendix D for more details. The
eigenmodes of open (non-Hermitian) systems, also known
as QNMs (Ching et al., 1998; Lalanne et al., 2018), are
described by complex frequencies ω̃m ¼ ωm − iγm=2 and
normalized fields ẼmðrÞ, where the nonzero imaginary part
stems from leakage. Physically the existence of a photonic gap
translates into the absence of resonant modes in the volume of
the medium: the resonant modes may be confined only to the
boundaries of the medium [i.e., on a length scale of the order
of the extinction (scattering) mean free path]. Thus, their
excitation by a source deep inside the system, the LDOS, and
the resulting emitted power are all expected to tend toward
zero with increasing size in the photonic gap, while it should
remain unchanged in the presence of propagating modes
[Fig. 9(d)].
Despite the conceptual simplicity of the second strategy,

care should be taken with the interpretation of emitted power
(or spontaneous emission decay rate) spectra measurements.
Indeed, as we show in Sec. V.D, LDOS fluctuations can be
enormous in complex media, depending considerably on the
local environment around the emitter position as well as on the
emitter orientation. The interplay between near-field inter-
action and the far-field radiation was studied using FDTD
simulations in finite-size photonic crystals by Mavidis et al.
(2020). Additionally, in disordered systems only average
quantities acquired over a large set of disorder realizations
are statistically relevant. This raises a second difficulty related
to the fact that quantum emitters like quantum dots have a
finite size, thereby inducing a local spatial correlation, and
they are usually not distributed uniformly in all materials
composing the complex medium (for instance, a semicon-
ductor and air). Thus, the configurational average of the
LDOS for a real emitter will often not be strictly equal to the
average LDOS, as may be computed numerically, for instance.
Although it seems reasonable to assume that the average
LDOS should converge toward the DOS in the limit of infinite
system size, it appears that the link between photon emission
statistics, and the existence of photonic gaps has been
established only phenomenologically to date.

2. Competing viewpoints on the origin of photonic gaps

Discussions on the origin of photonic gaps in disordered
media started to emerge in the late 1990s, inspired by earlier
works on electronic gaps in periodic and amorphous semi-
conductors. Two main mechanisms have been identified.

The first generally accepted mechanism is that photonic
gaps build up from interference between counterpropagating
waves on a periodic lattice, thereby placing long-range
structural correlations at the core of the picture. It is the
photonic analog of the nearly free electron model in solid-state
physics (Kittel, 1976). Formally, the Bloch modes (the
eigenmodes of periodic systems) result from a coupling
between forward and backward propagating plane waves
on the periodic lattice (Yeh et al., 2005). In spectral gaps,
they form stationary patterns that do not carry energy (in the
lossless case) due to a backscattering phenomenon with a
precise phase-matching condition. Their propagation constant
is complex, leading to the damping of an incident wave in the
specular direction without scattering. Photonic band gaps in
1D media, or in one particular direction in a 2D or 3D
photonic crystal (Spry and Kosan, 1986), can exist even for
vanishingly small refractive index contrasts. Omnidirectional
gaps in higher dimensions require higher contrasts and a finely
optimized structure and morphology (Joannopoulos et al.,
2011). Because such spectral gaps are created by long-range
periodicity, they are expected to be sensitive to lattice
deformations.
The second proposed mechanism is that photonic gaps are

formed by coupled resonances between short-range correlated
neighboring scatterers. It is the photonic analog of the tight-
binding model in solid-state physics, developed, in particular,
to explain the origin of the electronic density of states of
amorphous semiconductors (Weaire, 1971). Intuitively, as
with the level repulsion observed in a pair of coupled
resonances, interaction between nearest neighbors in ensem-
bles of identical resonators may “push” the states of the
coupled system away from the resonant frequency. This is
typically obtained with high refractive index Mie scatterers at
moderate densities in low refractive index media. In this
picture, the interaction between distant resonators, and thus
long-range structural correlations, is irrelevant. As a conse-
quence, one expects photonic gaps to exist in both periodic
and disordered systems provided that the resonances of the
individual scatterers and the coupling coefficient between
scatterers remain nearly constant throughout the entire struc-
ture. Care should be taken, however, regarding the analogy
with the electronic tight-binding model due to the polarized
nature of light waves (Monsarrat et al., 2022).
A different, complementary viewpoint on this second

mechanism is provided by considering the effective material
parameters of assemblies of resonant objects (Lagendijk and
Van Tiggelen, 1996). In particular, the effective permittivity
ϵeff is predicted to exhibit a polaritonic response that could
possibly become negative in its real part for sufficiently strong
resonances and high densities. Having Re½ϵeff � < 0 implies
that Im½neff � > Re½neff �, corresponding to a coherent field
propagating in the effective medium that is overdamped, as in
a metal. Stealthy hyperuniform structures (be they ordered or
disordered) suppress scattering in the long-wavelength regime
(up to second order in the expansion of the intensity vertex).
This implies that Im½ϵeff � ≃ 0. Thus, one arrives at a situation
where propagation is damped by coupled resonances and
scattering is suppressed by structural correlations. This
describes a system behaving as a homogeneous medium with
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no propagating states, that is, a system exhibiting a pho-
tonic gap.

3. Reports of photonic gaps in the literature

The formation of photonic gaps depends greatly on the
dimensionality of the system and the light polarization for
both periodic and disordered media. For instance, early works
using numerical simulations with scalar waves have suggested
that 3D face-centered-cubic lattices of dielectric spheres could
exhibit an omnidirectional gap, but vector wave calculations
disproved this prediction (Ho, Chan, and Soukoulis, 1990).
Figure 10 shows various examples of disordered photonic
structures exhibiting photonic gaps.
It was suggested and demonstrated numerically about two

decades ago that photonic gaps in 2D ensembles of dielectric
(for instance, silicon) rods in TM polarization (electric field
normal to the propagation plane) are created by the strong
electric dipole resonance of individual rods (Jin et al., 2001).
Those gaps were actually previously observed in an experi-
ment on light localization (Dalichaouch et al., 1991) and were
interpreted as vestiges of the photonic band diagram of the
periodic system. The structures do not need to be hyperuni-
form to exhibit gaps but require a reasonable amount of short-
range correlations. Note that both the first and second gaps in
periodic arrays are actually due to the same electric dipole
resonance, while the intermediate conduction band is asso-
ciated with the magnetic dipole resonance (Vynck et al.,
2009). In TE polarization (the electric field in the propagation
plane), a similar resonant behavior leading to a gap was
pointed out by O’Brien and Pendry (2002) for high-index
materials, but the gap closes for typical dielectric materials in
the optical regime.
Two-dimensional inverted structures made of circular air

holes in dielectrics exhibit photonic gaps that by comparison
are much more sensitive to lattice deformations (Yang,
Schreck et al., 2010), suggesting that periodicity, at least
on a few periods, is required. It was shown, however, that

connected networks made of thin dielectric walls on a stealthy
hyperuniform pattern are favorable for exhibiting a photonic
gap in TE polarization (Florescu, Torquato, and Steinhardt,
2009). The first reports on nonperiodic arrays were made for
quasiperiodic structures (Chan, Chan, and Liu, 1998). This
result is more unexpected than for the direct structures since
one cannot define a unique scattering element in this case.
Nevertheless, short-range correlations tend to locally homog-
enize the size distribution and shape of the air pores, which,
surrounded by dielectric walls in TE polarization, could be
seen as nearly identical resonant scatterers. Though short-
range correlations have appeared to be sufficient to open a
photonic gap (Froufe-Pérez et al., 2016), a recent numerical
investigation by Klatt, Steinhardt, and Torquato (2022)
showed that the apparent gap of many non-stealthy-hyper-
uniform structures actually closes at sufficiently large system
sizes. This supports the conjecture that three attributes,
hyperuniformity, a high degree of stealthiness (χ parameter),
and bounded holes, are necessary for a photonic gap to exist in
the thermodynamic limit.
A greater challenge is to form photonic gaps in 3D

disordered media. Current studies tend to agree that the best
solution for the purpose are 3D connected networks, consist-
ing basically of air pores of nearly identical size surrounded by
an array of dielectric rods (Edagawa, Kanoko, and Notomi,
2008; Imagawa et al., 2010; Liew et al., 2011; Yin et al.,
2012). Recently Sellers et al. (2017) put forward the idea of
“local self-uniformity” to explain the formation of wide gaps.
Such structures strongly resemble foams (Klatt, Steinhardt,
and Torquato, 2019; Ricouvier, Tabeling, and Yazhgur, 2019),
which suggests the possibility of fabricating them with
bottom-up techniques (Maimouni et al., 2020; Bergman et al.,
2022). Important efforts are under way to demonstrate
experimentally 3D photonic gaps in the optical regime. The
first results on samples realized by direct laser writing and
double inversion to increase the refractive index contrast
indicated a depletion of transmission (Muller et al., 2017).
This feature could recently be pushed down close to the
telecommunications (telecom) wavelengths at 1.5 μm by heat-
induced shrinkage of the network polymer template prior to
silicon coating (Aeby et al., 2022).

B. Mesoscopic transport and light localization

Mesoscopic transport in disordered systems refers to a
regime wherein interferences between multiply scattered
waves lead to significant transport parameter deviations
compared to classical approaches such as radiative transfer.
Coherent effects at mesoscopic length scales often lead to
statistical distributions that are much broader and more
complex than those expected from thermodynamic consid-
erations. Signatures of mesoscopic effects, such as large
sample-to-sample transmittance fluctuations, non-self-averag-
ing transport parameters, and long-range speckle intensity
correlations, may still be visible on macroscopic scales
provided that the signal has a sufficiently long coherence
length compared to the characteristic system length. If many
concepts in mesoscopic physics have been developed in the
context of electronic transport (Mello and Kumar, 2004;
Sheng, 2006; Akkermans and Montambaux, 2007;

FIG. 10. Photonic structures lacking long-range order that were
shown to exhibit large photonic gaps. (a) 2D stealthy hyperuni-
form structure exhibiting a gap for both TM and TE polarizations.
The TM gap is due to the resonances of the dielectric rods, and
the TE gap is attributed to the air pores surrounded by dielectric
holes. Adapted from Florescu, Torquato, and Steinhardt, 2009.
(b) 3D amorphous diamond structure exhibiting an omnidirec-
tional photonic gap. The structure consists in a network of
dielectric rods forming air pores of comparable sizes. Adapted
from Edagawa, Kanoko, and Notomi, 2008. (c) First experimen-
tal realizations of 3D disordered structures potentially exhibiting
a photonic gap at optical frequencies. The silicon photonic
medium was realized by direct laser writing followed by a
double inversion process. Adapted from Muller et al., 2014.
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Altshuler, Lee, and Richard Webb, 2012), research on
classical waves brought many new ideas and challenges to
the topic (Rotter and Gigan, 2017), stimulated by the unique
possibility to engineer the scattering materials at the sub-
wavelength scale.
One of the most fascinating phenomena in mesoscopic

physics of classical waves is the Anderson localization
(Anderson, 1958); see Lagendijk, Van Tiggelen, and
Wiersma (2009) for a historical overview of the topic and
Abrahams (2010) for more technical details. The phenomenon
takes its roots in the so-called weak localization effect, which
describes a small reduction of the diffusion constant (com-
pared to that predicted from radiative transfer) due to
interference between counterpropagating waves. This effect
requires reciprocity to hold (Van Tiggelen and Maynard,
1998), which is generally the case in nonmagnetic optical
materials. Strong (Anderson) localization is obtained using a
progressive renormalization of the diffusion constant that
eventually leads to a complete halt of transport, as described
by the self-consistent diagrammatic theory due to Vollhardt
and Wölfle (1980, 1982). In open finite-size systems, the
localized regime is characterized by exponentially decaying
transmittance (Van Tiggelen, Lagendijk, and Wiersma, 2000),
anomalous time-dependent response (Skipetrov and Van
Tiggelen, 2006), large transmitted speckle intensity fluctua-
tions (Chabanov, Stoytchev, and Genack, 2000), and multi-
fractality of the field (Mirlin et al., 2006).
A transition between extended and localized regimes is

expected in 3D systems when the scattering mean free path
becomes comparable with the effective wavelength in the
medium (krls ≈ 1), also known as the Ioffe-Regel criterion
(Ioffe and Regel, 1960). Experiments on high-index semi-
conductor powders and photonic glasses, which offer among
the smallest ls in optics, have failed to provide evidence of
light localization (Wiersma et al., 1997; Scheffold et al., 1999;
Scheffold andWiersma, 2013; Sperling et al., 2013; Skipetrov
and Page, 2016), contrary to studies on ultrasound in elastic
networks (Hu et al., 2008) and matter waves in optical
potentials (Kondov et al., 2011; Jendrzejewski et al.,
2012). It turned out that the key role of polarization for
electromagnetic waves and near-field effects had been largely
underestimated (Bellando et al., 2014; Skipetrov and Sokolov,
2014; Naraghi et al., 2015; Cobus, Maret, and Aubry, 2022),
thereby placing a finer engineering of the local morphology
(and of structural correlations) at the heart of the problem.
In the literature, the challenge of reaching a localized

regime in three dimensions in optics appears to be closely
related to that of creating a photonic gap. In a founding work,
John (1987) proposed that a slight disorder in a periodic
medium exhibiting a photonic gap would promote Anderson
localization near the gap edge, where some (but not all)
propagation directions are inhibited. Anderson localization
occurs in the band and differs in that sense from classical light
confinement, where defect (cavity) modes (or bound states)
are formed in the gap. This distinction has remained somewhat
fuzzy in the optics literature. Localized modes have been
observed via numerical simulations in randomly perturbed
periodic inverse opals (Conti and Fratalocchi, 2008), where it
was found that the strongest light localization was obtained at
an optimal degree of disorder [Fig. 1(d)], as well as in

amorphous diamond structures [Fig. 1(e)] (Imagawa et al.,
2010), but their precise nature is unclear. The transition
between extended and Anderson-localized regimes (outside
the photonic gap) was evidenced only recently in a numerical
study on disordered hyperuniform structures thanks to a
statistical analysis based on the self-consistent theory of
localization (Haberko, Froufe-Pérez, and Scheffold, 2020;
Scheffold et al., 2022). Although the effect of structural
correlation on mesoscopic transport remains to be clarified,
disorder engineering has given new hope for the experimental
observation of 3D Anderson localization of light.
Light localization in 2D disordered systems has experi-

enced much less difficulty in comparison. Theoretical argu-
ments developed for electronic transport (Abrahams et al.,
1979) lead us to expect all waves to be localized on some
length scale ξ in two dimensions, regardless of the scattering
strength of the medium. Despite the absence of a “true”
transition, 2D systems have been appealing because they can
be fabricated, characterized (structurally and optically), and
modeled much more easily than their 3D counterparts. The
first report of localization of classical waves dates back to
Dalichaouch et al. (1991), who studied microwave propaga-
tion in high-index dielectric cylinders in TM polarization,
where a link with photonic gaps had already been made. The
first experimental demonstration of Anderson localization in
the optical regime was obtained by Schwartz et al. (2007) in
photonic lattices consisting of evanescently coupled parallel
waveguides wherein localization occurs in the transverse
direction (De Raedt, Lagendijk, and Vries, 1989). In this
configuration, the electromagnetic problem is mapped onto
the time-dependent Schrödinger equation, where the propa-
gation direction plays the role of time, enabling the explora-
tion of many interesting problems in condensed matter physics
(Rechtsman et al., 2013; Segev, Silberberg, and
Christodoulides, 2013; Weimann et al., 2017). Two-dimen-
sional Anderson localization was later reported for in-plane
propagation of near-infrared light in suspended high-index
dielectric membranes perforated by disordered patterns of
holes (Riboli et al., 2011). Quantum dots incorporated in the
membrane are excited locally by a near-field probe, and their
photoluminescence is collected using the same probe at the
same position. A post-treatment allows spatial and spectral
information on the resonant modes of the system to be
recovered (Riboli et al., 2014).
Structural correlations were not specifically considered in

those early works, probably because they were not necessary
for observing localized modes in two dimensions.
Nevertheless, they can impact mesoscopic transport in two
main ways. The first way is to create a photonic gap in the
vicinity of which localized modes appear, as shown exper-
imentally in photonic lattices with short-range correlations
(Rechtsman et al., 2011) and randomly perturbed periodic
hole arrays in dielectric membranes (García et al., 2012).
García et al. (2012) showed that the stronger confinement in
periodic systems is obtained with an optimal level of disorder,
as discussed by Conti and Fratalocchi (2008). The second way
is to modify the scattering and transport parameters of the
disordered systems, which in turn modify the localization
length ξ, as suggested by Conley et al. (2014). In two
dimensions, small changes of structural correlations may
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induce variations of ξ over orders of magnitude since this
quantity is expected to grow exponentially with the mean free
path (Abrahams et al., 1979; Sheng, 2006). This allows easy
transitions between quasiextended and localized regimes in
finite-size systems. Numerical simulations performed for TE-
polarized waves in 2D disordered patterns of holes in
dielectric confirm this possibility, although only a qualitative
agreement with theoretical predictions is obtained. Note also
that the study covers a short-range correlation up to the onset
of polycrystallinity, which might affect localization.
The variety of mesoscopic transport regimes in 2D dis-

ordered media was investigated recently by Froufe-Pérez et al.
(2017), who proposed a transport phase diagram, shown in
Fig. 11, for 2D stealthy hyperuniform structures made of high-
index cylinders in TM polarization. Uncorrelated media (small
values of χ) experience the standard behavior with quasiex-
tended and localized regimes, depending on the scattering
strength of the cylinders and the system size. Conversely,
strongly correlated media (high values of χ) are transparent at
low frequencies due to the suppressed single scattering over a
finite range of scattering wave numbers and exhibit a photonic
gap (i.e., zero DOS in infinite media) at intermediate frequen-
cies near the resonant frequency of the cylinder. The gap is
surrounded by a low-DOS region containing weakly coupled
resonant states (defect modes) and the Anderson-localized
regime. The phase diagram has been validated numerically
(Froufe-Pérez et al., 2017) and experimentally in the micro-
wave regime (Aubry et al., 2020). This diagram is specific to
the considered system (including system size) and polariza-
tion. Nevertheless, it is representative of the different transport
regimes that may be observed in correlated disordered media.
Localization of light in 2D ensembles of resonant scatterers

in TE polarization encounters difficulties similar to those in
the 3D case due to the vectorial nature of light (Máximo et al.,
2015). A recent theoretical study by Monsarrat et al. (2022) on

hyperuniform patterns of high-quality-factor resonant dipole
scatterers showed that localization of TE-polarized waves can
occur at moderate scatterer densities concomitantly with the
opening of a pseudogap, provided that a sufficiently high
degree of short-range correlation is implemented. In essence,
imposing a typical distance between resonant scatterers
enables efficient destructive interference of vector waves,
which leads to a depletion of the density of states and
promotes the formation of localized states. Analytical expres-
sions for the density of states and the localization length were
established and found to agree well with numerical simula-
tions. The generalization of this theoretical framework to 3D
resonant systems could contribute to unveiling the micro-
scopic mechanisms behind the 3D Anderson localization
of light.

C. Near-field speckles on correlated materials

Upon scattering by one specific realization of a disordered
medium, a speckle pattern is formed (Goodman, 2007).
Universal intensity statistics are found in far-field speckle
patterns, which are not dependent on the microscopic features
of disorder. When speckle patterns are observed in the near
field (i.e., at a distance from the output surface smaller than
the wavelength of the incident light), the statistical properties
of the speckle become dependent on the statistical features of
the medium itself. In particular, as we later see, near-field
speckles may exhibit direct signatures of the presence of
spatial correlations in the scattering medium (Carminati,
2010; Naraghi, Sukhov, and Dogariu, 2016; Parigi
et al., 2016).

1. Intensity and field correlations in bulk speckle patterns

A standard observable in the study of speckles is the
correlation function of the intensity fluctuations δI at two
different points r and r0, which is defined as

hδIðrÞδIðr0Þi ¼ hIðrÞIðr0Þi − hIðrÞihIðr0Þi; ð132Þ

with the intensity IðrÞ ¼ jEðrÞj2. As a measure of the degree
of correlation of the intensity, one uses the normalized
correlation function

CIðr; r0Þ ¼ hδIðrÞδIðr0Þi
hIðrÞihIðr0Þi ; ð133Þ

which in terms of the field amplitude is a fourth-order
correlation function. In the weak-scattering regime
krls ≫ 1, the field is a Gaussian random variable. Indeed,
the field at any point in the speckle results from a summation
of a large number of independent scattering sequences,
leading to Gaussian statistics by virtue of the central-limit
theorem (Goodman, 2015). Moreover, in a statistically homo-
geneous and isotropic medium, and far from sources, the
speckle pattern can be considered to be unpolarized. In these
conditions, the intensity correlation function factorizes in the
form (Carminati and Schotland, 2021)

FIG. 11. Correlation-frequency (χ-ν) transport phase diagram
for 2D disordered hyperuniform media. The system is stealthy
hyperuniform array of high-index dielectric rods and the wave is
TM polarized. χ is the degree of stealthiness (Batten, Stillinger,
and Torquato, 2008) and νa=c≡ a=λ is a reduced frequency, with
a the mean distance between scatterers (related to the cylinder
density). Five transport regimes may be identified, as discussed in
the main text. Note that the transition between photon diffusion
(quasiextended regime) and Anderson localization depends on
system size. Adapted from Froufe-Pérez et al., 2017.
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CIðr; r0Þ ¼
X
i

jCE
iiðr; r0Þj2; ð134Þ

whereCE
ij is the ði; jÞ component of the normalized correlation

function between two vector components of the field, or the
normalized coherence tensor, defined as

CEðr; r0Þ ¼ hEðrÞ ⊗ E�ðr0ÞiffiffiffiffiffiffiffiffiffiffiffiffihIðrÞip ffiffiffiffiffiffiffiffiffiffiffiffiffihIðr0Þip : ð135Þ

Recall that the spatial correlation of the field in the numerator
is described using the Bethe-Salpeter equation [Eq. (23)].
We first consider the simplest model of an infinite medium

illuminated by a point source at position r0. For large
observation distances (jr − r0j ≫ ls and jr0 − r0j ≫ ls),
one can derive the following general result (Vynck, Pierrat,
and Carminati, 2014; Dogariu and Carminati, 2015; Carminati
and Schotland, 2021):

CEðr; r0Þ ¼ 2π

kr
ImhGðr; r0Þi; ð136Þ

where hGi is the averaged Green’s function in the medium.
This form of the field correlation function is always found
under general conditions of the statistical homogeneity and
isotropy of the field (Setälä et al., 2003).
To characterize the field spatial correlation averaged over

the polarization degrees of freedom, one often introduces the
degree of spatial coherence

γEðr; r0Þ ¼ Tr½CEðr; r0Þ�: ð137Þ

In an infinite medium and for short-range correlation with
krlc ≪ 1, with lc the correlation length of disorder, it is
known that (Carminati et al., 2015; Carminati and Schotland,
2021)

γEðr; r0Þ ¼ sincðkrRÞ exp½−R=ð2lsÞ�; ð138Þ

where R ¼ jr − r0j. Equation (138) takes the same form as that
initially derived for scalar waves by Shapiro (1986). In an
infinite medium, for a Gaussian and unpolarized speckle
pattern the field and intensity correlation functions have a
range limited by the wavelength λr ¼ 2π=kr and by the
scattering mean free path ls.
The impact of structural correlations in the medium on

speckle correlations (of the field or intensity) can occur on
different levels. First, the value of ls is directly dependent on
the degree of correlation of disorder. Second, the general
shape of the field correlation function can also be substantially
modified when near fields cannot be ignored in either the
illumination process (for instance, under excitation by a
localized source inside the medium or close to its surface)
or the detection process (for instance, detection at subwave-
length distance from the surface). An example is discussed in
Sec. V.C.2.

2. Near-field speckles on dielectrics

A speckle pattern observed at subwavelength distance from
the surface of a disordered medium (near-field speckle)
exhibits statistical properties that may strongly differ from
the universal properties of far-field speckles. In the case of
near-field speckles produced by rough surface scattering, it is
known that in the single-scattering regime the spatial corre-
lation function of the near-field intensity is linearly related to
the spatial autocorrelation function of the surface profile
(Greffet and Carminati, 1995). In the case of speckles
produced by volume multiple scattering, the degree of spatial
coherence can be evaluated in a plane at a distance z from the
sample surface, in regimes ranging from the far field to the
extreme near field (Carminati, 2010). For z ≫ λ, we obtain

γEðr; r0Þ ¼ sincðk0ρÞ; ð139Þ

where ρ is the distance separating the two observation points r
and r0 in a plane at a constant z (parallel to the sample surface).
The width δ of the correlation function, which measures the
average size of a speckle spot, is limited by diffraction and
scales as δ ∼ λ=2. At subwavelength distance from the
medium surface, near fields are dominated by quasistatic
interactions. The scale of variation of the field is driven by
geometrical length scales, and no longer by the wavelength
(Greffet and Carminati, 1997; Novotny and Hecht, 2012).
Characterizing the structure by the correlation length lc and
assuming that lc ≪ λ, we can distinguish two regimes. For
lc ≪ z ≪ λ, we have

γEðr; r0Þ ¼ 1 − ρ2=8z2

½1þ ρ2=4z2�5=2 ; ð140Þ

which shows that δ ∼ z due to quasistatic (evanescent) near
fields. Finally, in the regime lc ≃ z ≪ λ (the extreme near
field), we obtain

γEðr; r0Þ ¼ M

�
3

2
; 1;

−ρ2

l2
c

�
; ð141Þ

where Mða; b; xÞ is the confluent hypergeometric function,
which here takes the form of a function decaying from 1 to 0
over a width δ ≃ lc. In summary, according to the theory of
Carminati (2010), we expect the speckle spot size to decrease
in the near field as the distance z to the surface, and to saturate
at a size on the order of the correlation length of the medium.
The dependence of the speckle spot size at short distance

can be probed experimentally using scanning near-field
microscopy. Studies were reported by Apostol and Dogariu
(2003, 2004) and Emiliani et al. (2003). The previously
described behavior was confirmed by Parigi et al. (2016);
the main result is summarized in Fig. 12. The measurement
provides the intensity correlation function CIðr; r0Þ, the width
of which, according to Eq. (134), can be qualitatively
compared to that of the degree of spatial coherence γE. By
recording near-field speckle images at different distances z
from the surface of the sample with correlated disorder, the
dependence of the speckle spot size δ on the distance to the
surface can be extracted. The result is displayed in Fig. 12(c).
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The decrease δ in the near-field regime is clearly visible, as is
the nonuniversal dependence at short distances (the two
curves correspond to two samples with different structural
correlations).
Retrieving information on structural correlations of disor-

dered media from optical measurements is also possible via a
stochastic polarimetry analysis of the scattered light (Haefner,
Sukhov, and Dogariu, 2008). As shown by Haefner, Sukhov,
and Dogariu (2010), the local anisotropic polarizabilities of a
complex material generally depend on the volume of excita-
tion (which may be controlled, for instance, via a near-field
probe). It turns out that one can define a length scale
corresponding to a maximum degree of local anisotropy,
which is characteristic of the material morphology. This length
scale has been evidenced in numerical simulations (Haefner,
Sukhov, and Dogariu, 2010), but not yet experimentally to our
knowledge.

D. Local density of states fluctuations

The modification of the spontaneous emission rate from
quantum emitters due to electromagnetic interaction with a
structured environment is one of the major achievements in
optics and photonics in recent decades (Pelton, 2015). As
discussed in Sec. V.A, this effect is formally described by the
LDOS that is expressed as a function of the Green’s tensor
Gðr; rÞ at the origin [Eq. (131)]. The LDOS is expected to be
highly sensitive to the local environment with which it
interacts, especially in the near field.
The near-field interaction regime was initially described

using numerical simulations of LDOS distributions inside
disordered media and a single-scattering theory (Froufe-Pérez,
Carminati, and Sáenz, 2007). The model system is a spherical

domain with radius R filled with subwavelength dipole
scatterers. The LDOS is calculated at the center of the domain
and surrounded by a spherical exclusion volume of radius R0.
The length scale R0 is a microscopic length scale that
characterizes the local environment (R0 can be understood
as the minimum distance to the nearest scatterer). It was
shown that the statistical distribution of the LDOS is strongly
influenced by the proximity of scatterers in the near field, and
by the local correlations in the disorder (Cazé, Pierrat, and
Carminati, 2010; Leseur, Pierrat, and Carminati, 2017). As in
the case of near-field speckle, this is a consequence of
quasistatic near-field interactions that make the LDOS sensi-
tive to the local geometry.
Statistical distributions of LDOS in strongly scattering

dielectric samples have been measured experimentally at
optical wavelength. The approach consists in dispersing
fluorescent nanosources inside a scattering material
(Birowosuto et al., 2010; Sapienza et al., 2011).
Experiments mimicking theoretically studied model systems
use powders made of polydisperse spheres of high-index
material (such as ZnO at wavelength λ ∼ 600–700 nm). An
example of measured LDOS distributions is shown in Fig. 13.
The LDOS distribution (top panels) inferred from the dis-
tribution of the decay rate Γ of nanoscale fluorescent beads
exhibits a high asymmetric shape with a long tail that is a
feature of near-field interactions. This experiment confirms
the sensitivity of LDOS fluctuations to the local environment
in a volume scattering material in the multiple-scattering
regime. A comparison with numerical simulations (bottom
panels) demonstrates the substantial role of the microscopic
length scale R0 on the shape of the distributions.
Disordered metallic films made by depositing noble metals

(silver or gold) on an insulating substrate (glass) are also
known to produce large near-field intensity fluctuations close
to the percolation threshold. On the surface of such materials,
the near-field intensity localizes in subwavelength domains
(hot spots) (Seal et al., 2005; Shalaev, 2007; Laverdant et al.,
2008). The near-field LDOS exhibits enhanced spatial fluc-
tuations in this regime that reveal the existence of spatially
localized modes (Krachmalnicoff et al., 2010; Cazé, Pierrat,
and Carminati, 2013; Carminati et al., 2015). Disordered
metallic films close to percolation are an example of nanoscale
disordered materials in which correlations in the disorder
substantially influence the optical properties.
Since the LDOS is sensitive to small changes in the local

environment of the emitter, the study of the statistics of the
LDOS, accessible through the decay rate Γ, can be related to
the structural properties of a dynamical system of interacting,
and hence correlated, scatterers. As an example, it has been
numerically demonstrated that the statistical distributions of
single emitter lifetimes in a scattering medium can evolve
from a unimodal distribution to a different one when the
system undergoes a phase transition. The regions of phase
coexistence in small systems often turn out to be dynamical
phase switching regions, where the entire system switches
between the two phases (Briant and Burton, 1975; Berry,
Jellinek, and Natanson, 1984; Honeycutt and Andersen, 1987;
Labastie and Whetten, 1990; Wales and Stephen Berry, 1994).
The signature of the phase switching regime in the Γ statistics
can be dramatic since the distribution can be bimodal in the

FIG. 12. Signatures of structural correlations on near-field
speckles. (a) Scanning electron microscope image of the surface
of a typical sample consisting of several layers of silica spheres in
a partially ordered arrangement. (b) Example of a speckle image
recorded with a scanning near-field optical microscope at a
wavelength λ ¼ 633 nm. (c) Measured correlation length δ in the
speckle pattern vs the distance z to the sample surface, in the
distance range for which the far-field to near-field transition is
observed. The vertical dashed line corresponds to z ¼ λ. The
black and red (gray) markers correspond to two samples with an
average diameter of the silica spheres d ¼ 276 and 430 nm. The
short-distance behavior is expected to depend on the level of
short-range order in the sample (the size and local organization of
the spheres in space). Adapted from Parigi et al., 2016.
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phase switching regime regions and unimodal in the pure
phases. This behavior can be related to the statistics of
neighboring scatterers surrounding the emitter and is not
signaled by other light transport properties such as scattering
cross-section statistics, for instance (de Sousa et al., 2016a).
Bimodal distributions of LDOSs have also been described for
emitters embedded in single layers of disordered but corre-
lated lattices (de Sousa et al., 2014).
Figure 14 shows numerical predictions for a system of

∼1000 resonant point dipoles interacting through a Lennard-
Jones potential and tightly confined within a spherical volume
(de Sousa et al., 2016a). The system is kept at a temperature
corresponding to the liquid-gas transition. Owing to strong
finite-size effects, the system is not in phase coexistence but
rather switches randomly between the two phases. We see that
the emitter decay rates are strongly correlated with the
energetic state of the system, leading to two clearly distin-
guishable modes. Thus, slight differences in structural

correlations can be clearly identified using a statistical
analysis of decay rate measurements.
Recent experiments have shown strongly inhibited sponta-

neous emission in systems undergoing an order-disorder
phase transition (Priya et al., 2018). The formation of clusters
exhibiting short-range correlations leads to a strong suppres-
sion of emission that is apparently comparable to that of an
ordered structure.

VI. PHOTONICS APPLICATIONS

The considerable advances in nanofabrication in recent
decades have opened new opportunities in the engineering of
disordered materials at the subwavelength scale. In this
section, we describe the main applications of correlated
disordered media in optics and photonics, namely, in light
management (Sec. VI.A), random lasing (Sec. VI.B), and
visual appearance design (Sec. VI.C). The recent review by
Cao and Eliezer (2022) provided more examples of photonic
applications of correlated disorder.

A. Light trapping for enhanced absorption

Enhancing the interaction of light with matter is of para-
mount importance for various applications, including photo-
voltaics, white light emission, and gas spectroscopy. The
enhanced light-matter interaction generally translates into a
stronger light absorption, whether it is exploited for photo-
current generation, converted into emission by fluorescence,
or simply monitored.
The most popular light-trapping strategy for thick (L ≫ λ)

bulk materials relies on randomly textured surfaces, which act
as Lambertian diffusers to efficiently spread light along all
directions within the medium for an arbitrary incoming wave

FIG. 13. Impact of structural correlations on LDOS fluctuations.
Top panels: measured statistical distributions of the spontaneous
decay rate Γ ∝ ρ (LDOS) of fluorescent beads (nanosources with
a 20 nm diameter) in a ZnO powder with transport mean free path
lt ¼ 0.9 μm. A scanning electron microscope image of the
sample is shown on the left together with a schematic view of
the illumination and detection geometry. The asymmetric shape
of the statistical distribution of the LDOS and the long tail is a
signature of near-field interactions occurring inside the sample.
Bottom panels: numerical simulations of the statistical distribu-
tion of the normalized decay rate Γ=Γ0 ¼ ρ=ρ0 of a dipole emitter
placed at the center of a disordered cluster mimicking the ZnO
powder. The emitter is surrounded by an exclusion volume with
radius R0. This length scale describes local correlations in the
positions of the scatterers in the sample. The blue (light gray)
curves correspond to an exclusion radius R0 ¼ 0.14 μm, while
the red (dark gray) curves correspond to an exclusion radius R0 ¼
0.07 μm (the two curves of the same colors correspond to two
different densities of scatterers). The simulation demonstrates the
substantial influence of R0 (near-field interactions and local
correlations in the disorder) on the shape of the distribution.
Adapted from Sapienza et al., 2011.

FIG. 14. Signature of structural phase transition in LDOS
statistics. Monte Carlo sampling of energy per particle normal-
ized to the energy minimum ε (top panel) and decay rate
normalized to the vacuum one Γ0 (bottom panel) for a single
emitter placed at the center of a tightly confined system of
resonant point scatterers interacting via the Lennard-Jones
potential. The temperature is such that the system switches
entirely between two phases randomly. In the bottom panel,
the corresponding decay rate distributions are represented for the
low and high energy branches. The gray area shows the sum of
the two distributions. Adapted from de Sousa et al., 2016a.
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(Yablonovitch, 1982; Green, 2002). Structural correlations on
random rough surfaces provide angular and spectral control
over scattering (Martins et al., 2013), described via the so-
called bidirectional scattering distribution function (Stover,
1995). Volume scattering constitutes an interesting alternative
to surface scattering, as multiple scattering tends to increase
interactions between light and matter (Rothenberger, Comte,
and Grätzel, 1999; Muskens et al., 2008; Mupparapu et al.,
2015; Benzaouia et al., 2019). Counterintuitively, one should
note that the average path length for a Lambertian illumination
in nonabsorbing media is not dependent on the scattering
strength of the material (Pierrat et al., 2014) and is equivalent
to the surface scattering light trapping, as predicted by the
equipartition theorem (Yablonovitch, 1982) and as experi-
mentally verified (Savo et al., 2017). The absorption effi-
ciency, therefore, depends strongly on the ratio between
scattering and absorption. The benefit of structural correla-
tions on light absorption in disordered media was considered
only recently by Bigourdan, Pierrat, and Carminati (2019) and
Sheremet, Pierrat, and Carminati (2020), who showed through
theory and numerical simulations that stealthy hyperuniform
patterns of absorbing dipolar particles enhance the overall
absorption of the medium (compared to the uncorrelated
system) close to an upper bound.
Stimulated by technological development in next-genera-

tion photovoltaic panels, considerable efforts have been
dedicated to light trapping in thin films (L ≈ λ) in the past
two decades, with coherent phenomena exploited as a new
means for enhancing light-matter interactions (Fahr,
Rockstuhl, and Lederer, 2008; Mokkapati and Catchpole,
2012; Gomard et al., 2013). Coupling between an incident
plane wave and a resonant mode in the layered medium is
fundamentally enabled by fulfilling a matching condition
between the projected wave vectors parallel to the interface
kjj in the two media (Yu, Raman, and Fan, 2010). For periodic
photonic crystals, this condition is found for leaky Bloch
modes having wave vectors in the light cone kB;jj < k0nstr,
where nstr is the refractive index of the superstrate or substrate.
In periodic structures, the absorption peaks are spectrally
narrow and strongly depend on kB;jj. Further improvement can
be obtained by creating imperfections that broaden the
spectral and angular response, leading to an overall improved
optical efficiency (Oskooi et al., 2012; Peretti et al., 2013).
For disordered media, the quantity of interest is the so-

called spectral function, defined as (Sheng, 2006)

ρsðk;ωÞ ¼
2ω

πc2
Im½TrhGðk;ωÞi�; ð142Þ

which is the average density of states resolved in spatial
frequencies and is obtained from the Fourier transform of the
average Green’s tensor hGðr; r0;ωÞi. At a given frequency,
the spectral function typically exhibits a peak centered on the
effective wave vector in the disordered medium kr and a width
that is inversely proportional to the extinction mean free path;
see Fig. 15. As shown by Vynck et al. (2012), short-range
correlations allow a fine-tuning of the spectral function,
including in the radiative zone, eventually leading to a
spectrally and angularly optimal light absorption (Pratesi

et al., 2013; Bozzola, Liscidini, and Andreani, 2014). It
has been suggested that stealthy hyperuniform structures can
lead to an even higher overall absorption efficiency (integrated
over a spectrum of interest) than short-range correlated and
periodic media (Liu et al., 2018). Experiments on correlated
disordered hole patterns (Trompoukis et al., 2016), nanowire
arrays exhibiting fractality on some scale (Fazio et al., 2016),
complex nanostructured patterns (Lee et al., 2017), and hyper-
uniform structures (Piechulla, Slivina et al., 2021; Tavakoli
et al., 2022) have demonstrated the benefit of disorder
engineering for light trapping.
Finally, we point out that the coupling process between free

space and thin-film layers is also relevant in the optimization
of light extraction from light-emitting devices like organic
light-emitting diodes (Gomard et al., 2016), where correlated
disordered photonic structures could be realized on large
scales, for instance, by inkjet printing polymer blends (Donie
et al., 2021).

B. Random lasing

Random lasers where light is trapped in the gain medium by
multiple scattering offer new possibilities for efficient lasing
architectures. The disordered matrix folds the optical paths
inside the medium by multiple scattering, effectively increas-
ing the probability of stimulated emission, which in turn
provides optical gain and the amplification that triggers lasing
(Cao, 2005; Wiersma, 2008); see Fig. 16.
Its functioning principle is the same as in conventional

lasing, but without the need for carefully aligned optical
elements. The emission of a random laser is also surprisingly
coherent, with photon statistics close to that of normal laser
emission (Florescu and John, 2004), with strong mode
coupling (Türeci et al., 2008), nontrivial mode organization
(symmetry replica breaking) (Ghofraniha et al., 2015), and
unbounded (Lévy distributed) intensity fluctuations (Uppu
and Mujumdar, 2015). Owing to the volumetric and on
average isotropic nature of its lasing patterns, a random laser
is expected to feature β factors close to 1 [i.e., a thresholdless
behavior (Van Soest and Lagendijk, 2002)]. The result

FIG. 15. Process of light coupling and decoupling between a
thin dielectric membrane and free-space modes. (a) Sketch of a
photonic structure with correlated disorder containing several
leaky resonant modes (QNMs). The QNMs are described by
different complex frequencies and are coupled to free-space
modes. (b) Spectral functions of a short-range correlated dis-
ordered photonic structure at different frequencies. At low
frequencies, the spectral function is a narrow peak. The value
at kjj ¼ 0 provides information on the coupling efficiency at
normal incidence. At higher frequencies, the peaks broaden as a
result from stronger scattering and reach higher values for small
wave vectors, indicating more efficient coupling.
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(Fig. 16) is an opaque medium in which laser light is
generated along random paths in all directions, and over a
broad spectral range with complex temporal profiles (Leonetti,
Conti, and Lopez, 2011).
In the multiple-scattering regime, the random lasing thresh-

old can be related to a critical volume or size such that lasing
action can be achieved only for sample sizes larger than this
critical dimension. As with the critical volume in a neutron
bomb, the critical size ensures that the photons sustain net
amplification, and therefore that the light emerging from the
sample is due mostly to spontaneous emission. For a three-
dimensional scattering medium with isotropic scattering and
no correlation embedded in a slab geometry, the critical
thickness Lcr has been calculated using the radiative transfer
equation Pierrat and Carminati, 2007) and is the solution of

1

ls
−

1

lg
¼ π

ðLcr þ 2z0Þ tan ½πls=ðLcr þ 2z0Þ�
; ð143Þ

where z0 ¼ 0.7104ls is the extrapolation length and lg is the
net-gain length. Equation (143) reduces to Lcr ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lslg=3

p
in the diffusive limit with z0 ¼ 0. For anisotropic scattering,
we get Lcr ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ltlg=3

p
. In typical samples, the critical length

is of the order of 1 to 100 μm [for instance, Lcr ∼ lt with
lt ∼ 4 μm given by Caixeiro et al. (2016) and Lcr ∼ 300ls
given by Froufe-Pérez et al. (2009)].

The initial scattering architectures for lasing have been 3D
disordered semiconductor powders or randomly fluctuating
colloids in solution, which can be well thought of and
described as a random cloud of dipoles (i.e., without any
correlation). Pure randomness is the assumption that simpli-
fies the complexity of the problem to make it treatable with
theoretical models. Despite the many successes of this type of
uncorrelated disorder, a new generation of disordered lasing
architectures with more robust and collective light-trapping
schemes (Gottardo et al., 2008) and new topologies (Gaio
et al., 2019) has emerged.
In particular, spatial correlations between scatterers is an

effective approach for tuning the spectral properties, the
number of lasing modes, and their threshold by designing
photonic band-edge states at the position of the gain. For
example, localized modes near the edge of a 2D photonic gap
have been exploited for random lasing (Liu et al., 2014) and
single-mode operation has been achieved in compositionally
disordered photonic crystals (Lee et al., 2019). The role of the
gap edge has been highlighted in semiconductor membranes
with pseudorandom patterning (Yang, Boriskina et al., 2010),
randomly mixed photonic crystals (Kim et al., 2010), and
amorphous network structures (Wan et al., 2011), while in
photonic amorphous structures, the short-range order
improves optical confinement and enhances the quality factor
of lasing modes (Yang et al., 2011).
Modeling lasing action in correlated disordered media is

often a challenge. In particular, lasing occurs for the modes
with highest net gain, often escaping the transport models that

FIG. 16. Conventional vs random lasing. While a conventional
laser (left panel) is usually composed of a two-mirror cavity that
defines the optical modes, a random laser (right panel) exploits
the confinement by multiple scattering to enhance the probability
of stimulated emission. It lases on the “speckle” modes of the
disordered medium, either delocalized (bottom left) or localized
(bottom right). In both lasers lasing occurs when the gain is larger
than the losses, above a certain pumping threshold energy, when
stimulated emission becomes the dominant emission process.
Lasing peaks can appear in both diffusive and localized regimes
but are easily washed out by temporal or spatial averaging in
diffusive media. Adapted from Sapienza, 2019.

FIG. 17. (a) Kingfisher. The angular-independent blue (light
gray) coloration of the bird feather is the result of a correlated 3D
structure, which is shown in the SEM image in (b). See Stavenga
et al. (2011) for more information. (a) Courtesy of Pixabay.
(b) Courtesy of Bodo Wilts (University of Salzburg). (c) Pachyr-
hynchus sarcitis weevils. The blue (light gray) colored spot in the
weevil exoskeleton are the results of a polydomain diamond
photonic structure, which is shown in the SEM image in (d). (c),
(d): Adapted from Chang et al., 2020.
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instead deal with the average intensity. While a full-
wave solution of the Maxwell’s equations, coupled to the
dynamics of the gain as in Maxwell-Bloch models (Conti and
Fratalocchi, 2008), would contain all the relevant phenomena,
it is hard to implement in realistic samples due to its computa-
tional requirements. Advanced ab initio theoretical models
have been developed. Of particular relevance are the self-
consistent laser theory (Türeci et al., 2008; Ge, Chong, and
Stone, 2010), which relies on a decomposition of the lasing
field on a basis of resonant modes, and the Euclidean matrix
theory by Goetschy and Skipetrov (2011), which relies on
analytical predictions for the random Green’s matrix of a
system. Alternatively, more simplified models that neglect the
coherence of the modes and describe transport with the
radiative transfer equation (or within the diffusion approxima-
tion) can be used. The diffusion approximation stems from the
initial proposal by Letokhov (1968) and simplifies the calcu-
lations significantly (Wiersma and Lagendijk, 1996; Gaio,
Peruzzo, and Sapienza, 2015). These models can be extended
to include scattering correlations to modify the scattering and
gain parameters, following the theory described in Sec. II.

C. Visual appearance

1. Photonic structures in nature

Living organisms produce a vast variety of photonic
mechanisms to modulate their visual appearance by exploiting
a wide range of biopolymers and architectures. Colors
produced by these organisms are referred to as structural
colors, as they are mainly influenced by the nanostructural
features of the materials rather than pigments. However, the
lack of consistent methods and tools of analysis, as well as the
large number of species showing different architectures,
makes it difficult to categorize natural photonic structures.
Distinct species use different materials, structures, and strat-
egies for many biological functions (to attract mates, hide
from predators, or act as a defence mechanism) (Seago et al.,
2009; Whitney et al., 2009; Vignolini et al., 2012; Wilts et al.,
2014). Another degree of difficulty arises from the fact that
such natural architectures are often hierarchical and their
visual appearance depends on several factors, including
geometrical features, the addition of absorbing pigments,
and, finally, the visual system for which such structures are
built (different animals and insects have different perceptions).
Only a limited selection of explanatory examples are

discussed and analyzed here. Keep in mind that this represents
a minimal fraction of the efforts that have been done in this
field to systematically characterize and categorize natural
photonic structures. To remain within the scope of this review,
we mention only in passing the case of one-dimensional
disordered multilayered structures, which are found in certain
beetles (Hunt et al., 2007; Fernández del Río, Arwin, and
Järrendahl, 2016; Onelli et al., 2017), butterflies (Bossard,
Lin, and Werner, 2016), leaves (Vignolini et al., 2016), and
algae (Chandler et al., 2017). Imperfect one-dimensional
grating structures, which play an important role for flowers
to enhance signaling to pollinators (Moyroud et al., 2017), for
instance, are also not discussed further.
The most widespread family of 2D or 3D correlated

disorder in nature is the short-range correlation, which

generally aims at producing angular-independent colorations.
Short-range correlated structures are found in butterflies
(Prum, Quinn, and Torres, 2006), bacteria (Schertel et al.,
2020), and many animals. Probably the most famous exam-
ples are the structures found in the feathers of the eastern
bluebird Cotinga maynana (Prum et al., 1998) and of the
kingfisher (Stavenga et al., 2011) [Figs. 17(a) and 17(b)],
which present a short-range correlation of keratin fibrillary
network and also several others, such as the I. puella (Noh
et al., 2010). Correlated ensembles of collagen spheres
producing an angle-independent color are found in avian
skin (Prum and Torres, 2003) and mammalian skin (primates)
(Prum and Torres, 2004). These types of structures always
produce blue and green coloration in nature (Magkiriadou
et al., 2014; Jacucci, Vignolini, and Schertel, 2020; Hwang
et al., 2021; Jeon et al., 2023).
Many examples of polycrystalline structures are exploited

for coloration in insect wings using three-dimensional
photonic crystal structures such as diamond and gyroids.
In these cases, polydomains provide a more angular-
independent response that might again be functional for
signaling and camouflaging (Michielsen and Stavenga,
2008). Examples are the diamondlike structures observed
inside the scales of Lamprocyphus augustus (Galusha et al.,
2008), Entimus imperialis (Wilts et al., 2012), and
Pachyrhynchus weevils (Chang et al., 2020) [Figs. 17(c)
and 17(d)]. Similarly, three-dimensional gyroid structures
were found in many Lycaenidae and Papilionidae butterflies
(Michielsen and Stavenga, 2008) and in various species, such
as C. rubi (Michielsen, De Raedt, and Stavenga, 2010;
Schröder-Turk et al., 2011), C. remus, P. sesostris (Wilts
et al., 2011), and T. opisena (Wilts et al., 2017).
Distinct from these cases, anisotropic networklike struc-

tures can be optimized to enhance whiteness. There are several
natural examples; see Jacucci et al. (2021) for a recent review.
A notable example of optimized whiteness is found on the
scales of the beetle genus Cyphochilus, which shows a
brilliant white coloration while being only 5–7 μm thick
(Vukusic, Hallam, and Noyes, 2007; Luke, Hallam, and
Vukusic, 2010; Burresi et al., 2014; Wilts et al., 2018;
Burg et al., 2019). Optical and anatomical studies confirm
that anisotropy of the random polymeric network structure in
such beetle scales are crucial for scattering optimization at low
refractive indices (Cortese et al., 2015; Jacucci, Bertolotti, and
Vignolini, 2019; Utel et al., 2019; Lee, Han, and Han, 2020).

2. Synthetic structural colors

The ability to control visual appearance with correlated
photonic structures, in terms of both color and scattering
response, is critical in photonic pigments. With the improve-
ments in fabrication techniques, it is now possible to assemble
such photonic materials cheaply and on a large scale.
Therefore, their use as replacements for traditional pigments
is becoming a reality (Goerlitzer, Klupp Taylor, and Vogel,
2018; Lan et al., 2018; Saito et al., 2018). Of particular
interest here are short-range correlated structures (Shi et al.,
2013). The simplest way to achieve such materials in films
consists in a rapid drying of colloidal suspensions to form
photonic glasses (García et al., 2007; Forster et al., 2010;
Schertel, Siedentop et al., 2019). Combined with additive
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manufacturing techniques, one can fabricate complex-shaped
objects exhibiting diffuse colors (Demirörs et al., 2022).
Several types of colloidal particles, functionalization, and
matrices have been proposed to enlarge the color palette with
these structures (Forster et al., 2010; Ge et al., 2015; Häntsch
et al., 2019; Schertel, Siedentop et al., 2019; Kim et al., 2021),
and several tricks have been proposed to improve color
contrast and appearance (Hwang et al., 2020; Häntsch et al.,
2021) that also exploit absorbing species, such as carbon black
(Takeoka et al., 2013). However, all of these approaches have
thus far been capable of providing only faint blue and green
colors. To expand the visible palette toward red hues, core-
shell photonic glasses (Kim et al., 2017; Shang et al., 2018)
and inverse photonic structures have been exploited (Zhao
et al., 2020); however, their color purity and the reflected
intensity remain limited (Jacucci, Vignolini, and Schertel,
2020). Short-range crystalline systems with carefully tuned
domain orientations or the geometry of the systemmight allow
this issue to be overcome (Song et al., 2019).
The design of structural colors with artificial materials also

raises questions about their predictability with theoretical
models or numerical methods and the inverse design of
artificial materials. The starting point to predict a color is
the computation of the reflectance or transmittance spectra of
the disordered material. These spectra are then weighted by
the spectral power distribution of the illuminant and by color
matching functions for the chromatic response of the observer
to be finally projected onto a specific color space (Ohta and
Robertson, 2006), such as CIE 1931 XYZ. The computation
of the reflectance and transmittance spectra is evidently the
most tedious step. Most studies have relied on FDTD
simulations (Taflove and Hagness, 2005), for instance, for
3D particulate media (Dong et al., 2010) and porous dielectric
networks (Galinski et al., 2017), yet at the cost of heavy
computational loads (although this is mitigated by efficient
parallelization). Analytical expressions based on diffusion
theory have also been used (Schertel, Siedentop et al., 2019),
but care should be taken on the validity of diffusion approxi-
mation (L=lt ≫ 1). A good alternative is to rely on
Monte Carlo light transport simulations (Wang and
Jacques, 1992; Alerstam, Svensson, and Andersson-Engels,
2008), the numerical counterpart of radiative transfer, wherein
positional correlations can be taken into account analytically
via Eqs. (111) and (112) and assuming that an effective index
can be defined. This numerical approach was used to unveil
the importance of the packing strategy of photonic glasses on
their color saturation and angle dependence (Xiao et al.,
2021), efficiently explore the parameter space (Hwang et al.,
2021), and investigate the potential of random dispersions of
photonic balls (Yazhgur, Muller, and Scheffold, 2022) for
coloring applications (Stephenson et al., 2023).
The inverse design of structural colors is, by comparison,

still in its infancy. The aforementioned Monte Carlo approach
by Hwang et al. (2021) has been combined with Bayesian
optimization to determine the experimental parameters
required to reach a target color. Powerful topology optimiza-
tion techniques (Jensen and Sigmund, 2011), also known as
adjoint methods, have been used to design complex dielectric
network materials creating targeted colors in reflection
(Andkjær et al., 2014; Auzinger, Heidrich, and Bickel,

2018). Although the role of structural correlations in colo-
ration is implicit in this case, a subsequent structural analysis
of the optimal designs could lead to the definition of recipes
for materials creating vivid colors.

VII. SUMMARY AND PERSPECTIVES

Research on disorder engineering in optics and photonics
has grown considerably in the past decade, stimulated by the
advent of new concepts and applications. In this final section,
we attempt to identify some of the most promising develop-
ments for future research along with the theoretical and
experimental challenges that will need to be addressed.

A. Near-field-mediated mesoscopic transport in 3D high-index
correlated media

Multiple light scattering in disordered media has been
treated for many years as a process wherein the vector nature
of light could be simplified either by keeping its transverse
component only, as in Sec. II, or by treating light simply as a
scalar wave (Akkermans and Montambaux, 2007). Whereas
these approximations may be well justified in dilute media (for
both) and far from any polarized source in an opaque medium
(for the latter), it turned out that the importance of the
longitudinal component, which appears in the near-field
regime, in mesoscopic transport in dense systems has been
largely underestimated (Skipetrov and Sokolov, 2014;
Naraghi et al., 2015; Naraghi and Dogariu, 2016; Escalante
and Skipetrov, 2017; Cobus, Maret, and Aubry, 2022;
Monsarrat et al., 2022). This aspect deserves full attention
from the community. A first attempt to incorporate the
longitudinal component in the theory was proposed by Van
Tiggelen and Skipetrov (2021) for random ensembles of
resonant point scatterers, giving physical ground to the
existence of near-field channels in light transport. Near-field
interaction processes are impacted by subwavelength-scale
structural correlations, as seen in Sec. V.C, and developing a
theoretical framework to describe radiative transfer in arbi-
trary correlated media including the near-field contribution
would be an important step forward.
Related to this are the determination of effective material

parameters for dense, resonant disordered media and their use
to describe light scattering and transport, which are still
matters of investigation (Aubry et al., 2017; Yazhgur et al.,
2021, 2022), as quantitative agreement with experiments and
numerics has remained difficult to reach with classical models.
On this aspect, we point out the works by Gower, Abrahams,
and Parnell (2019) and Gower, Parnell, and Abrahams (2019),
who demonstrated that multiple coherent waves with different
wave numbers (at fixed frequency) should actually contribute
to the average field. This may have important consequences
for scattering in finite-size systems (Gower and Kristensson,
2021) and raises the question as to whether these multiple
waves are affected in a similar way by structural correlations.
The prominent role played by the precise morphology of

3D disordered media on the emergence of photonic gap and
Anderson-localized regimes also merits clarification. Three-
dimensional high-index connected (foamlike) structures
appear to be the best candidates for this purpose according
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to numerical simulations (Imagawa et al., 2010; Liew et al.,
2011; Sellers et al., 2017; Klatt, Steinhardt, and Torquato,
2019; Haberko, Froufe-Pérez, and Scheffold, 2020), but the
underlying physical mechanisms have remained difficult to
grasp, thereby calling for further theoretical advances
(Scheffold et al., 2022). In addition to near-field effects,
future works may need to consider high-order n-point corre-
lation functions (with n > 2) in descriptions of structural
characteristics (Torquato, 2013; Torquato and Kim, 2021) as
well as high-order diagrams in the multiple-scattering expan-
sion (Vollhardt and Wölfle, 1980), which can contribute
significantly in strongly correlated media (Leseur, Pierrat,
and Carminati, 2016). Numerical investigations will continue
in parallel, and progress would be accelerated with the
development of numerical methods to more efficiently solve
electromagnetic problems on large systems (Egel et al., 2017,
2021; Bertrand et al., 2020; Lin, Wang, and Hsu, 2022;
Valantinas and Vettenburg, 2022).
Experimental demonstrations of photonic gaps and 3D

Anderson localization of light in the optical regime have
remained out of reach until now and would be scientific
milestones. The main challenge to overcome at this stage is
the fabrication of 3D connected structures with finely tuned
correlated morphologies with sufficiently high refractive
indices (ideally offering an index contrast above 3) and
sufficiently large thicknesses (L ≫ lt). The steady progress
on bottom-up approaches such as biotemplating (Galusha,
Jorgensen, and Bartl, 2010), DNA origami (Zhang and Yan,
2017), and microfluidic-based foam processing (Maimouni
et al., 2020) gives hope for the first successful realizations in
the next few years. As a longer-term objective, the design and
fabrication of 3D stealthy hyperuniform media would be a
noteworthy result. Ultimately, the availability of such high-
index nanostructured materials will unlock the possibility of
experimentally exploring the physics of mesoscopic phase
transitions (Evers and Mirlin, 2008) for (vector) electromag-
netic waves.

B. Mesoscopic optics in fractal and long-range correlated media

Light propagation in positively correlated media is char-
acterized by a nonexponential decay of the coherent intensity.
As discussed in Sec. IV.B, materials exhibiting fractal hetero-
geneities in the form of nonscattering regions of varying sizes
can lead under certain conditions to superdiffusive behavior
(Burioni, Ubaldi, and Vezzani, 2014; Savo et al., 2014).
Anomalous transport processes (Klages, Radons, and
Sokolov, 2008) and dynamics on fractal networks
(Nakayama, Yakubo, and Orbach, 1994) have a long history,
but optical studies on fractal media have thus far been
concerned mostly with structure factor measurements in the
single-scattering regime (Lin et al., 1989) [note that the optical
properties of semicontinuous metal films near percolation, for
which there is a vast literature (Shalaev, 2007), strongly rely
on near-field plasmonic effects and not on light transport].
Coherent optical phenomena in “Lévy-like” media have been
only sparsely addressed to date (Burresi et al., 2012).
Multiple-scattering formalisms have been extended to media
described by fractal dimensions (Akkermans et al., 1988;
Wang and Lu, 1994) or exhibiting superdiffusion (Bertolotti,

Vynck, and Wiersma, 2010), disregarding, however, several
difficulties related to the definition of the self-energy and the
effective index (Tarasov, 2015), and perhaps more importantly
those related to the quenched nature of disorder (Barthelemy
et al., 2010; Burioni, Ubaldi, and Vezzani, 2014). All in all,
the development of a rigorous ab initio theory for multiple
light scattering in strongly heterogeneous materials would be a
formidable achievement.
Numerical and experimental studies on 1D and quasi-1D

Lévy-like systems have revealed anomalous conductance
fluctuations and scaling (Fernández-Marín et al., 2014;
Ardakani and Nezhadhaghighi, 2015; Lima, Pereira, and
Barbosa, 2019). Higher-dimensional systems are likely to
exhibit a similarly rich physics, as recently illustrated (Chen
et al., 2023), a topic that remains to be explored. One example
is the critical dimension of 2 above which the Anderson
transition exists (Abrahams et al., 1979), which may be
lowered, depending on the fractality or lacunarity of the
system. Optical experiments and numerical simulations could
be performed in this regard on high-index planar photonic
structures similarly to Riboli et al. (2014), giving access to
LDOS statistics, or similarly to Yamilov et al. (2014) for
transmittance and internal light intensity measurements.
An alternative route for the experimental study of meso-

scopic phenomena in long-range correlated systems could rely
on a disordered photonic network (Gaio et al., 2019), an
optical implementation of random graphs (Janson, Luczak,
and Rucinski, 2011) wherein light propagates through 1D
waveguides and is scattered at the waveguide vertices. The
waveguide lengths and vertex connectivity thus assume the
role of structural correlations. The network is a low-dimen-
sional medium embedded in three-dimensional space and
allows light transport and optical modes to be designed.
Complex networks with finely controlled parameters can be
fabricated by self-assembly (Gaio et al., 2019), produced by
standard lithography techniques, or implemented on macro-
scopic systems (Lepri, Trono, and Giacomelli, 2017).

C. Toward novel applications

The sensitivity of the LDOS to the local environment
discussed in Sec. V.D makes quantum emitters interesting
optical probes of nanostructured materials (Pelton, 2015).
Many studies have reported the dramatic impact of the local
morphology of a complex medium on the spontaneous
emission statistics from neighboring fluorescent molecules
or quantum dots (Birowosuto et al., 2010; Krachmalnicoff
et al., 2010; Sapienza et al., 2011; de Sousa et al., 2016a;
Riboli et al., 2017; Granchi et al., 2022). A key question to
address will be whether optical measurements mediated by
near-field probes could reveal statistical information on an
unknown morphology, which could be extremely interesting
for the remote monitoring of structural phases deep inside a
3D volume (de Sousa et al., 2016a). This would require a deep
understanding of the relation between subwavelength-scale
correlations and near-field phenomena. In addition to LDOS
measurements, measuring the cross spectral density of states
(CDOS) (Cazé, Pierrat, and Carminati, 2013), which describes
mode connectivity in structured media and could be obtained
from coherence measurements on the light emitted from two
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classical or quantum dipole sources (Canaguier-Durand,
Pierrat, and Carminati, 2019), may bring additional informa-
tion. Spatially resolved intensity correlations in the optical
regime have recently been measured in the bulk of a
disordered medium using pairs of emitters separated by
distances controlled via DNA strings (Leonetti et al., 2021)
and have already unveiled a rich physics. The first CDOS
measurements were recently realized in the microwave regime
(Rustomji et al., 2021).
The coherent control of light waves in disordered media is

an important branch of research in multiple light scattering
that has been powered in recent years by wave front shaping
techniques (Rotter and Gigan, 2017). We saw in Sec. V that
structural correlations can result into strong spectral variations
of scattering, transport, and localization, suggesting that
correlated disorder could yield higher degrees of spectral
and spatial control, with applications in optical imaging.
Disordered media are also being exploited as an unconven-
tional platform for quantum walks and quantum state engi-
neering (Defienne et al., 2016; Leedumrongwatthanakun
et al., 2020). These are delicate experiments requiring
lossless materials that have been attempted only in multi-
mode fibers thus far, but which could benefit in the future
from correlated disordered media for multiplexing and
spectral resolution.
The design of visual appearance is another aspect of

research on correlated disorder that has grown in importance
considerably in recent years. As illustrated by many diverse
examples in the living world, the interplay or order and
disorder has a direct impact on appearance at macroscopic
scales, yielding increased transparency or whiteness and
iridescent or noniridescent colors (Sec. VI.C). The numerical
modeling of realistic correlated materials, considering, for
instance, local imperfections (Chung et al., 2012) and large-
scale random variations (Chan et al., 2019) in certain ordered
systems, will be an essential development in the field in the
near future. Our perception of objects indeed relies on many
attributes of visual appearance (not only color but also gloss,
haze, translucency, texture, etc.) that are affected by multiple
scattering and are rarely considered in full (Hunter and
Harold, 1987). Understanding how optical properties created
by structural correlations at the microscopic scale translate
into visual effects at the macroscopic scale will be a consid-
erable challenge in the coming years. Success could be
enabled by merging concepts and techniques from coherent
light scattering and computer graphics (Musbach et al., 2013;
Guo, Jarabo, and Zhao, 2021; Vynck et al., 2022). Beyond
appearance, correlated disordered media will play an impor-
tant role in thermal management, for example, for radiative
cooling (Wang and Zhao, 2020), where broadband light
control from inexpensive self-assembled media is needed.
Correlated disordered materials could be used to realize
multifunctional materials, where optical (visual) properties
could be combined with the desired thermal, electrical,
mechanical, or tribological functionalities. Last, efforts should
be amplified to develop and promote low-carbon-footprint,
ecologically responsible material syntheses, which can best be
achieved in disordered assemblies such as those discussed in
this review.
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APPENDIX A: GREEN’S FUNCTIONS IN FOURIER
SPACE

1. Dyadic Green’s tensor

We now consider a statistically homogeneous and transla-
tionally invariant medium. The dyadic Green’s tensor in a
uniform background medium with auxiliary permittivity ϵb is
given by Eq. (15) and related to its Fourier transform as

Gbðr − r0Þ ¼ 1

ð2πÞ3
Z

GbðkÞeik·ðr−r0Þdk: ðA1Þ

The Green’s tensor in Fourier space is given by

GbðkÞ ¼ ½k21 − k ⊗ k − k2b1�−1 ðA2Þ

¼
�
−k2b

k ⊗ k
k2

þ ðk2 − k2bÞ
�
1 −

k ⊗ k
k2

��
−1

ðA3Þ

¼ 1

k2b

�
−
k ⊗ k
k2

þ k2b
k2 − ðkb þ i0Þ2

�
1 −

k ⊗ k
k2

��
: ðA4Þ

The small imaginary part i0 introduced here is relevant in
integrals involving GbðkÞ. Using Eq. (33), the Green’s tensor
can finally be rewritten as

GbðkÞ ¼
1

k2b

�
−
k ⊗ k
k2

þ PV

�
k2b

k2 − k2b

��
1 −

k ⊗ k
k2

��

þ iπδðk2 − k2bÞ
�
1 −

k ⊗ k
k2

�
: ðA5Þ

2. Dressed Green’s tensor

Following Eq. (57), the Green’s tensor can be decomposed
into local and nonlocal terms, with the latter also known as the
Lorentz propagator. In Fourier space, we thus have
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gbðkÞ ¼ −
1

3k2b
þ
Z
r<a

GbðrÞe−ik·rdr; ðA6Þ

G̃bðkÞ≡GbðkÞ − gbðkÞ: ðA7Þ

Specific expressions for arbitrary values of the radius a were
provided by Bedeaux and Mazur (1973). For kba ≪ 1, we
have

gbðrÞ ¼ −
1

3k2b
δðr − r0Þ1; ðA8Þ

which leads simply to

G̃bðkÞ≡GbðkÞ þ
1
3k2b

: ðA9Þ

We now consider a medium composed of small volume
elements within the Maxwell Garnett approximation. When
the auxiliary permittivity is set to that of the host medium
(ϵb ¼ ϵh), the average transition operator describing scattering
by a single volume element is then given by

hT̃ðkÞi ¼ k2hρα01; ðA10Þ

with α0 the polarizability. The Fourier transform of the
propagator Ĝb defined in Eq. (69) then reads

ĜhðkÞ ¼ ½1 − k2hρα0G̃hðkÞ�−1G̃hðkÞ ðA11Þ

¼
�
1 −

ρα0
3

1 − ρα0k2hGhðkÞ
�
−1
�
GhðkÞ þ

1
3k2h

�
: ðA12Þ

Taking into account the definition of the Maxwell Garnett
permittivity ϵMG in Eq. (77), one can eventually write the
dressed propagator as

ĜhðkÞ ¼
�
ϵMG þ 2ϵh

3ϵh

�
2
�
GMGðkÞ þ

ϵMG

ϵMG þ 2ϵh

1
k2MG

�
;

ðA13Þ

where GMGðkÞ is the Green’s tensor with kh replaced by the
Maxwell Garnett wave number kMG ¼ k0

ffiffiffiffiffiffiffiffi
ϵMG

p
.

In the absence of absorption, the imaginary part of Ĝh is
given by

ImĜhðkÞ ¼ π

�
ϵMG þ 2ϵh

3ϵh

�
2

δðk2 − k2MGÞ
�
1 −

k ⊗ k
k2

�
;

ðA14Þ

which leads to Eq. (78).

APPENDIX B: DERIVATION OF EQUATION (28)

In the Fourier domain and by making use of the average
Green’s function

hGðk;ωÞi ¼ ½k2Pðk̂Þ − k2b1 − ΣðkÞ�−1; ðB1Þ

we obtain

f1 ⊗ ½k02Pðk̂0Þ − Σ�ðk0Þ� − ½k2Pðk̂Þ − ΣðkÞ� ⊗ 1g·Cðk;k0Þ

¼ ½hGðkÞi ⊗ 1 − 1 ⊗ hG�ðk0Þi�·
Z

Γðk;κ;k0;κ0Þ

·Cðκ;κ0Þ dκ
8π3

dκ0

8π3
; ðB2Þ

where we have neglected the source term hEi ⊗ hE�i and
used the tensorial relation

ð1 ⊗ B −A ⊗ 1Þ−1 · ðA−1 ⊗ 1 − 1 ⊗ B−1Þ ¼ A−1 ⊗ B−1:

ðB3Þ

In Eq. (B3), 1 is the identity tensor. Since we are dealing with
dilute media and since the longitudinal part of the Green’s
tensor is irrelevent regarding light transport, we now consider
the transverse approximation, which consists in taking the
transverse part of all operators involved in Eq. (B2)
(Barabanenkov, Zurk, and Barabanenkov, 1995; Cherroret,
Delande, and Van Tiggelen, 2016). Using the definitions

Γ⊥ðk; κ;k0;κ0Þ ¼ PðuÞ ⊗ Pðu0Þ · Γðk;κ;k0; κ0Þ;
C⊥ðk;k0Þ ¼ PðuÞ ⊗ Pðu0Þ ·Cðk;k0Þ;

we obtain

½k02 − k2 − Σ�⊥ðk0Þ þ Σ⊥ðkÞ�C⊥ðk;k0Þ
¼ ½hG⊥ðkÞi − hG�⊥ðk0Þi�

×
Z

Γ⊥ðk;κ;k0; κ0Þ · C⊥ðκ; κ0Þ dκ
8π3

dκ0

8π3
: ðB4Þ

Still considering that we have statistical homogeneity
for the disordered medium, we have Γðr0; r00; ρ0; ρ00Þ ¼
Γðr0 þ Δr; r00 þ Δr; ρ0 þ Δr; ρ00 þ ΔrÞ, which leads to

Γ⊥ðk;κ;k0;κ0Þ ¼ 8π3δðk − k0 − κþ κ0Þ
× Γ̄⊥ðk; κ;k0;κ0Þ ðB5Þ

in Fourier space. By a change of variable, we also now define
the correlation

L⊥ðq;kÞ≡C⊥
�
kþ q

2
;k −

q
2

�
; ðB6Þ

which leads to this new form of the Bethe-Salpeter equation in
the Fourier domain
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2

��
L⊥ðq;kÞ
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G⊥
�
kþ q

2

�	
−


G�⊥

�
k −

q
2

�	�Z
Γ̄⊥

�
kþ q

2
;k0 þ q

2
;k −

q
2
;k0 −

q
2

�
·L⊥ðk0;qÞ dk0

ð2πÞ3 ; ðB7Þ

which is Eq. (28).

APPENDIX C: CONFIGURATIONAL AVERAGE FOR
STATISTICALLY HOMOGENEOUS SYSTEMS

1. Particle correlation functions

Weconsider a random ensemble ofN particles circumscribed
in a volume V and centered at positions R ¼ ½R1;R2;…;
RN �. A specific configuration is described by a normalized
probability distribution PðNÞ such that

PðNÞðR1;…;RNÞdR1 � � � dRN ðC1Þ

is the probability of finding a configuration inwhich particle j is
centered between Rj and Rj þ dRj.
Assuming that the particles are spherically symmetric

(otherwise, the distribution would also include orientational
variablesΩj) and identical, the distribution is symmetric in the
labels 1;…; N and we can define the M-particle density
ρðMÞðR1;…;RMÞ as the probability of finding a configuration
ofM particles regardless of the configuration of the remaining
N −M particles,

ρðMÞðR1;…;RMÞ

¼ N!

ðN −MÞ!
Z

PðNÞðR1;…;RNÞdRMþ1 � � � dRN . ðC2Þ

The instantaneous particle number density ρðrÞ for a given
configuration of particles R ¼ ½R1;…;RN � is defined as

ρðrÞ≡XN
j¼1

δðr −RjÞ; ðC3Þ

and its configurational average hρðrÞi is given by

hρðrÞi ¼

X

j

δðr −RjÞ
	

ðC4Þ

¼ N
Z

� � �
Z

PðNÞðr;R2;…;RNÞdR2 � � � dRN: ðC5Þ

In the limit of infinite system size and assuming a statistically
homogeneous and isotropic medium (i.e., all properties are
statistically invariant by translation and rotation), both the
number of particles and the volume of the material tend to
infinity (i.e., fN;Vg → ∞), and one can define an average
particle number density ρ≡ hρðrÞi ¼ N=V that is constant.
One can then define the n-particle probability density

functions ρnðr1; r2;…; rnÞ as

ρnðr1;…; rnÞ≡

 XN

j1 ;…;js¼1
j1≠j2 ���≠js

δðr1 −Rj1Þ � � � δðrs −RjsÞ
	
; ðC6Þ

as well as the n-particle correlation function

gnðr1; r2;…; rnÞ≡ ρnðr1; r2;…; rnÞ
ρn

: ðC7Þ

The important quantity in most systems is the pair-correlation
function g2ðr1; r2Þ, which describes the conditional proba-
bility of finding a particle at r2 given at a particle fixed at r1.
For isotropic media, g2 depends only on the radial distance
r12 ¼ jr1 − r2j. The total correlation function h2ðrÞ defined as

h2ðrÞ≡ g2ðrÞ − 1 ðC8Þ

has the benefit of converging to zero at separation distances
larger than a correlation length lc.

2. Fluctuations of the number of particles in a volume

The fluctuations of the number of particles N in a given
volume v can be defined as

δN ≡ 1

ρv
ðhN2i − hNi2Þ

¼ 1

v

Z
v

hΔρðrÞΔρðr0Þi
ρ

drdr0; ðC9Þ

with

hΔρðr1ÞΔρðr2Þi
ρ

¼ hρðr1Þρðr2Þi − ρ2

ρ

¼ 1

ρ

�
XN
a¼1

δðr1 −RaÞδðr2 −RaÞ
	

þ

X

a

X
b≠a

δðr1 −RaÞδðr2 −RbÞ
	
− ρ2

�

¼ δðr1 − r2Þ þ ρ

�
ρ2ðr1 − r2Þ

ρ2
− 1

�

≡ δðr1 − r2Þ þ ρh2ðr1 − r2Þ: ðC10Þ

If v is a sphere of radius Rs, one gets (Van Kranendonk and
Sipe, 1977; Torquato and Stillinger, 2003)

Kevin Vynck et al.: Light in correlated disordered media

Rev. Mod. Phys., Vol. 95, No. 4, October–December 2023 045003-47



δN ¼ 1þ ρ

Z
h2ðr12Þ

�
1 −

3

4

r
Rs

þ 1

16

�
r
Rs

�
3
�
4πr2dr12

∼ 1þ ρ

Z
h2ðr12Þ4πr2dr12; ðC11Þ

where in the last step we assumed that Rs is larger than the
correlation length lc of h2ðrÞ. Expressions also exist for two-
dimensional systems and nonspherical excluded volumes
(Torquato and Stillinger, 2003).
The static structure factor SðkÞ is related to the Fourier

transform of h2ðrÞ via

SðkÞ≡ 1þ ρh2ðkÞ; ðC12Þ

with h2ðkÞ ¼
R
h2ðrÞe−ik·rdr.

APPENDIX D: LOCAL DENSITY OF STATES AND
QUASINORMAL MODES

The LDOS is defined using the projected LDOS
[Eq. (131)] as

ρeðr;ωÞ ¼
2ω

πc2
Im½TrGðr; r;ωÞ�: ðD1Þ

We now express this quantity in terms of the eigenmodes of
the system.
The eigenmodes of nonconservative (non-Hermitian)

systems, known as QNMs, are described using the
complex frequencies ω̃m ¼ ωm − iγm=2 and normalized
fields ẼmðrÞ, with the nonzero imaginary part stemming
from leakage. QNMs have a long history (Baum, 1976;
Ching et al., 1998) and have been receiving considerable
attention from the photonics community for a few years
(Lalanne et al., 2018). Following a recent QNM formalism
(Sauvan et al., 2013, 2014; Yan, Faggiani, and Lalanne,
2018), we can write the field E generated by a dipole emitter
in terms of QNMs as

Eðr;ωÞ ¼
X
m

αmðωÞẼmðrÞ; ðD2Þ

with αm the excitation coefficients, defined as

αmðωÞ ¼ −
ω

2ϵ0ðω − ω̃mÞ
p · ẼmðrÞ: ðD3Þ

As expected, the efficiency of excitation of a mode
depends on the amplitude of the QNM field at the dipole
position and the spectral distance with the resonance
frequency. Having further that Eðr;ωÞ ¼ μ0ω

2Gðr; r0;ωÞp,
one arrives at a modal decomposition of the dyadic Green’s
function

Gðr; r0;ωÞ ¼ −
c2

2ω

X
m

ẼmðrÞ ⊗ Ẽmðr0Þ
ω − ω̃m

: ðD4Þ

Note that Eq. (D4) can also be obtained from the Mittag-
Leffler theorem, which introduces the residues of the

Green’s tensor at the QNM complex frequencies
(Muljarov and Langbein, 2016). Inserting Eq. (D4) into
Eq. (D1) finally leads to

ρeðr;ωÞ ¼ −
1

π
Im

�X
m

Tr½ẼmðrÞ ⊗ ẼmðrÞ�
ω − ω̃m

�
: ðD5Þ

The LDOS is now explicitly expressed as a sum over
resonant modes. To further convince ourselves, we can take
the limit of vanishing leakage, in which case both Em and
ω̃m tend to become real. Using Eq. (33), we arrive at the
well-known expression of the LDOS for conservative
systems (Novotny and Hecht, 2012; Carminati et al., 2015)

ρeðr;ωÞ ¼
X
m

jẼmðrÞj2δðω − ωmÞ: ðD6Þ
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glasses,” Adv. Funct. Mater. 20, 965–968.

Bertolotti, J., K. Vynck, and D. S. Wiersma, 2010, “Multiple
Scattering of Light in Superdiffusive Media,” Phys. Rev. Lett.
105, 163902.

Bertrand, M., A. Devilez, J.-P. Hugonin, P. Lalanne, and K. Vynck,
2020, “Global polarizability matrix method for efficient modeling
of light scattering by dense ensembles of non-spherical particles in
stratified media,” J. Opt. Soc. Am. A 37, 70–83.

Bibette, J., T. G. Mason, H. Gang, D. A. Weitz, and P. Poulin, 1993,
“Structure of adhesive emulsions,” Langmuir 9, 3352–3356.

Kevin Vynck et al.: Light in correlated disordered media

Rev. Mod. Phys., Vol. 95, No. 4, October–December 2023 045003-49

https://doi.org/10.1080/13642818508240619
https://doi.org/10.1364/JOSAB.31.000164
https://doi.org/10.1364/JOSAB.31.000164
https://doi.org/10.1103/PhysRevLett.91.093901
https://doi.org/10.1364/OL.29.000235
https://doi.org/10.1103/PhysRevE.103.L010101
https://doi.org/10.1103/PhysRevE.103.L010101
https://doi.org/10.1088/2040-8978/17/10/105601
https://doi.org/10.1103/PhysRevE.60.6118
https://doi.org/10.1103/PhysRevB.66.165215
https://doi.org/10.1103/PhysRevB.66.165215
https://doi.org/10.1007/BF02457208
https://doi.org/10.1007/BF02457208
https://doi.org/10.1103/PhysRevLett.125.127402
https://doi.org/10.1103/PhysRevLett.125.127402
https://doi.org/10.1103/PhysRevA.96.043871
https://doi.org/10.1103/PhysRevA.96.043871
https://doi.org/10.1016/0022-4073(93)90113-V
https://doi.org/10.1016/0022-4073(93)90113-V
https://doi.org/10.1145/3197517.3201376
https://doi.org/10.1145/3197517.3201376
https://doi.org/10.1021/ef502211w
https://doi.org/10.1021/ef502211w
http://jetp.ras.ru/cgi-bin/e/index/e/26/3/p587?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/26/3/p587?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/26/3/p587?a=list
https://doi.org/10.1163/156939395X00127
https://doi.org/10.1016/0375-9601(95)00576-O
https://doi.org/10.1103/PhysRevB.62.4985
https://doi.org/10.1103/PhysRevE.82.011101
https://doi.org/10.1038/nature06948
https://doi.org/10.1890/04-1806
https://doi.org/10.1063/1.2961314
https://doi.org/10.1103/PhysRevE.90.052114
https://doi.org/10.1103/PhysRevA.36.3912
https://doi.org/10.1016/0031-8914(73)90021-9
https://doi.org/10.1016/0031-8914(73)90021-9
https://doi.org/10.1007/BF01304251
https://doi.org/10.1007/BF01304251
https://doi.org/10.1103/PhysRevB.79.024204
https://doi.org/10.1103/PhysRevB.79.024204
https://doi.org/10.1088/0370-1298/62/10/302
https://doi.org/10.1103/PhysRevA.90.063822
https://doi.org/10.1103/PhysRevA.90.063822
https://doi.org/10.1364/AO.10.000459
https://doi.org/10.1364/AO.10.000459
https://doi.org/10.1103/PhysRevApplied.11.034033
https://doi.org/10.1103/PhysRevApplied.11.034033
https://doi.org/10.1002/smtd.202101491
https://doi.org/10.1103/PhysRevA.30.919
https://doi.org/10.1002/adfm.200902008
https://doi.org/10.1103/PhysRevLett.105.163902
https://doi.org/10.1103/PhysRevLett.105.163902
https://doi.org/10.1364/JOSAA.37.000070
https://doi.org/10.1021/la00036a006


Bicout, D., and C. Brosseau, 1992, “Multiply scattered waves
through a spatially random medium: Entropy production and
depolarization,” J. Phys. I (France) 2, 2047–2063.

Bigourdan, F., R. Pierrat, and R. Carminati, 2019, “Enhanced
absorption of waves in stealth hyperuniform disordered media,”
Opt. Express 27, 8666–8682.

Birowosuto, M. D., S. E. Skipetrov, W. L. Vos, and A. P. Mosk, 2010,
“Observation of Spatial Fluctuations of the Local Density of States
in Random Photonic Media,” Phys. Rev. Lett. 105, 013904.

Bitterli, B., S. Ravichandran, T. Müller, M. Wrenninge, J. Novák, S.
Marschner, and W. Jarosz, 2018, “A radiative transfer framework
for non-exponential media,” Dartmouth College Computer Science
Technical Report No. TR2018-841.

Bohren, C. F., 2009, “Do extended effective-medium formulas scale
properly?,” J. Nanophoton. 3, 039501.

Bohren, C. F., and D. R. Huffman, 2008, Absorption and Scattering
of Light by Small Particles (John Wiley & Sons, New York).
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Cazé, A., R. Pierrat, and R. Carminati, 2013, “Spatial Coherence in
Complex Photonic and Plasmonic Systems,” Phys. Rev. Lett. 110,
063903.

Chabanov, A. A., M. Stoytchev, and A. Z. Genack, 2000, “Statistical
signatures of photon localization,” Nature (London) 404, 850–853.

Chan, C. L. C., M. M. Bay, G. Jacucci, R. Vadrucci, C. A. Williams,
G. T. van de Kerkhof, R. M. Parker, K. Vynck, B. Frka-Petesic, and
S. Vignolini, 2019, “Visual appearance of chiral nematic cellulose-
based photonic films: Angular and polarization independent color
response with a twist,” Adv. Mater. 31, 1905151.

Chan, C. T., Q. L. Yu, and K. M. Ho, 1995, “Order-N spectral method
for electromagnetic waves,” Phys. Rev. B 51, 16635.

Chan, Y. S., C. T. Chan, and Z. Y. Liu, 1998, “Photonic Band Gaps in
Two Dimensional Photonic Quasicrystals,” Phys. Rev. Lett. 80,
956.

Chandler, C. J., B. D. Wilts, J. Brodie, and S. Vignolini, 2017,
“Structural color in marine algae,” Adv. Opt. Mater. 5, 1600646.

Chandrasekhar, S., 1960, Radiative Transfer (Dover, New York).
Chang, Y., Y. Ogawa, G. Jacucci, O. D. Onelli, H.-Y. Tseng, and S.
Vignolini, 2020, “Hereditary character of photonics structure in
Pachyrhynchus sarcitis weevils: Color changes via one generation
hybridization,” Adv. Opt. Mater. 8, 2000432.

Chehadi, Z., M. Bouabdellaoui, M. Modaresialam, T. Bottein, M.
Salvalaglio, M. Bollani, D. Grosso, and M. Abbarchi, 2021,
“Scalable disordered hyperuniform architectures via nanoimprint
lithography of metal oxides,” ACS Appl. Mater. Interfaces 13,
37761–37774.

Chen, Y., F. Sgrignuoli, Y. Zhu, T. Shubitidze, and L. Dal Negro,
2023, “Enhanced wave localization in multifractal scattering
media,” Phys. Rev. B 107, 054201.

Cherroret, N., D. Delande, and B. A. van Tiggelen, 2016, “Induced
dipole-dipole interactions in light diffusion from point dipoles,”
Phys. Rev. A 94, 012702.

Kevin Vynck et al.: Light in correlated disordered media

Rev. Mod. Phys., Vol. 95, No. 4, October–December 2023 045003-50

https://doi.org/10.1051/jp1:1992266
https://doi.org/10.1364/OE.27.008666
https://doi.org/10.1103/PhysRevLett.105.013904
https://doi.org/10.1117/1.3157171
https://ui.adsabs.harvard.edu/abs/1990A%26A...228..483B/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...228..483B/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...228..483B/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...228..483B/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...228..483B/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...228..483B/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...228..483B/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...228..483B/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...228..483B/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...228..483B/abstract
https://doi.org/10.1364/JOSAA.19.002517
https://doi.org/10.1364/JOSAA.19.002517
https://doi.org/10.1098/rsif.2015.0975
https://doi.org/10.1002/pip.2385
https://doi.org/10.1063/1.431542
https://doi.org/10.1002/jcc.21287
https://doi.org/10.1088/0305-4470/8/5/004
https://doi.org/10.1002/andp.19354160705
https://doi.org/10.1103/PhysRevE.84.021105
https://doi.org/10.1038/s42004-019-0202-8
https://doi.org/10.1103/PhysRevE.81.060101
https://doi.org/10.1103/PhysRevE.81.060101
https://doi.org/10.1103/PhysRevE.86.031125
https://doi.org/10.1103/PhysRevE.86.031125
https://doi.org/10.1103/PhysRevE.89.022135
https://doi.org/10.1038/srep06075
https://doi.org/10.1103/PhysRevLett.108.110604
https://doi.org/10.1103/PhysRevLett.75.3442
https://doi.org/10.1103/PhysRevLett.75.3442
https://doi.org/10.1002/adom.201600185
https://doi.org/10.1002/adom.201600185
https://doi.org/10.1103/PhysRevA.99.013835
https://doi.org/10.1088/0305-4470/38/49/004
https://doi.org/10.1063/5.0076318
https://doi.org/10.1103/PhysRevA.81.053804
https://doi.org/10.1016/j.surfrep.2014.11.001
https://doi.org/10.3390/fractalfract2010008
https://doi.org/10.1103/PhysRevA.82.043823
https://doi.org/10.1103/PhysRevLett.110.063903
https://doi.org/10.1103/PhysRevLett.110.063903
https://doi.org/10.1038/35009055
https://doi.org/10.1002/adma.201905151
https://doi.org/10.1103/PhysRevB.51.16635
https://doi.org/10.1103/PhysRevLett.80.956
https://doi.org/10.1103/PhysRevLett.80.956
https://doi.org/10.1002/adom.201600646
https://doi.org/10.1002/adom.202000432
https://doi.org/10.1021/acsami.1c05779
https://doi.org/10.1021/acsami.1c05779
https://doi.org/10.1103/PhysRevB.107.054201
https://doi.org/10.1103/PhysRevA.94.012702


Ching, E. S. C., P. T. Leung, A. Maassen van den Brink,
W.M. Suen, S. S. Tong, and K. Young, 1998, “Quasinormal-
mode expansion for waves in open systems,” Rev. Mod. Phys. 70,
1545.

Chung, K., et al., 2012, “Flexible, angle-independent, structural color
reflectors inspired by morpho butterfly wings,” Adv. Mater. 24,
2375–2379.

Cobus, L. A., G. Maret, and A. Aubry, 2022, “Crossover from
renormalized to conventional diffusion near the three-dimensional
Anderson localization transition for light,” Phys. Rev. B 106,
014208.

Conley, G. M., M. Burresi, F. Pratesi, K. Vynck, and D. S. Wiersma,
2014, “Light Transport and Localization in Two-Dimensional
Correlated Disorder,” Phys. Rev. Lett. 112, 143901.

Conti, C., and A. Fratalocchi, 2008, “Dynamic light diffusion, three-
dimensional Anderson localization and lasing in inverted opals,”
Nat. Phys. 4, 794.

Contini, D., F. Martelli, and G. Zaccanti, 1997, “Photon migration
through a turbid slab described by a model based on diffusion
approximation. I. theory,” Appl. Opt. 36, 4587–4599.

Cortese, L., L. Pattelli, F. Utel, S. Vignolini, M. Burresi, and D. S.
Wiersma, 2015, “Anisotropic light transport in white beetle scales,”
Adv. Opt. Mater. 3, 1337–1341.

Cruzan, O. R., 1962, “Translational addition theorems for spherical
vector wave functions,” Q. Appl. Math. 20, 33–40.

Dalichaouch, R., J. P. Armstrong, S. Schultz, P. M. Platzman, and
S. L. McCall, 1991, “Microwave localization by two-dimensional
random scattering,” Nature (London) 354, 53–55.

Dal Negro, L., 2022, Waves in Complex Media (Cambridge Uni-
versity Press, Cambridge, England).

Davis, A., and A. Marshak, 1997, “Lévy kinetics in slab geometry:
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wave transmission in Lévy-disordered systems,” Phys. Rev. E 99,
032118.

Lin, H.-C., Z. Wang, and C.W. Hsu, 2022, “Fast multi-source
nanophotonic simulations using augmented partial factorization,”
Nat. Comput. Sci. 2, 815–822.

Lin, M. Y., H. M. Lindsay, D. A. Weitz, R. C. Ball, R. Klein, and P.
Meakin, 1989, “Universality of fractal aggregates as probed by
light scattering,” Proc. R. Soc. A, 423, 71–87.

Lin, S.-y., J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas,
K. M. Ho, M.M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur,
1998, “A three-dimensional photonic crystal operating at infrared
wavelengths,” Nature (London) 394, 251.

Liu, J., H.-J. Schöpe, and T. Palberg, 2000, “An improved empirical
relation to determine the particle number density of fluid-like
ordered charge-stabilized suspensions,” Part. Part. Syst. Charact.
17, 206–212.

Liu, J., P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J.
Mørk, S. Stobbe, and P. Lodahl, 2014, “Random nanolasing in the
Anderson localized regime,” Nat. Nanotechnol. 9, 285.

Liu, M. Q., C. Y. Zhao, B. X. Wang, and X. Fang, 2018, “Role of
short-range order in manipulating light absorption in disordered
media,” J. Opt. Soc. Am. B 35, 504–513.

Lodahl, P., A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D.
Vanmaekelbergh, and W. L. Vos, 2004, “Controlling the dynamics
of spontaneous emission from quantum dots by photonic crystals,”
Nature (London) 430, 654.

López, C., 2003, “Materials aspects of photonic crystals,” Adv.
Mater. 15, 1679–1704.

Lorentz, H. A., 1880, “Ueber die beziehung zwischen der fortpflan-
zungsgeschwindigkeit des lichtes und der körperdichte,” Ann.
Phys. (Berlin) 245, 641–665.

Lorenz, L., 1880, “Ueber die refractionsconstante,” Ann. Phys.
(Berlin) 247, 70–103.

Lubachevsky, B. D., and F. H. Stillinger, 1990, “Geometric properties
of random disk packings,” J. Stat. Phys. 60, 561–583.

Luke, S. M., B. T. Hallam, and P. Vukusic, 2010, “Structural
optimization for broadband scattering in several ultra-thin white
beetle scales,” Appl. Opt. 49, 4246–4254.

Ma, Y., V. K. Varadan, and V. V. Varadan, 1990, “Enhanced absorp-
tion due to dependent scattering,” J. Heat Transfer 112, 402–407.

Mackay, T. G., and A. Lakhtakia, 2020, Modern Analytical Electro-
magnetic Homogenization with Mathematica, 2nd ed. (IOP Pub-
lishing, Bristol, England).

Mackowski, D.W., 2008, “Exact solution for the scattering and
absorption properties of sphere clusters on a plane surface,” J.
Quant. Spectrosc. Radiat. Transfer 109, 770–788.

Mackowski, D.W., 2022, computer code MSTM, https://github.com/
dmckwski/MSTM (accessed December 23, 2022).

Mackowski, D.W., and M. I. Mishchenko, 2011, “A multiple sphere
t-matrix FORTRAN code for use on parallel computer clusters,” J.
Quant. Spectrosc. Radiat. Transfer 112, 2182–2192.

Magerle, R., 2000, “Nanotomography,” Phys. Rev. Lett. 85, 2749.
Magkiriadou, S., J.-G. Park, Y.-S. Kim, and V. N. Manoharan, 2012,
“Disordered packings of core-shell particles with angle-indepen-
dent structural colors,” Opt. Mater. Express 2, 1343–1352.

Magkiriadou, S., J.-G. Park, Y.-S. Kim, and V. N. Manoharan, 2014,
“Absence of red structural color in photonic glasses, bird feathers,
and certain beetles,” Phys. Rev. E 90, 062302.

Maimouni, I., M. Morvaridi, M. Russo, G. Lui, K. Morozov, J.
Cossy, M. Florescu, M. Labousse, and P. Tabeling, 2020, “Micro-
metric monodisperse solid foams as complete photonic bandgap
materials,” ACS Appl. Mater. Interfaces 12, 32061–32068.

Man, W., M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad,
B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and P. J.
Steinhardt, 2013, “Isotropic band gaps and freeform waveguides
observed in hyperuniform disordered photonic solids,” Proc. Natl.
Acad. Sci. U.S.A. 110, 15886–15891.

Mandel, L., and E. Wolf, 1995, Optical Coherence and Quantum
Optics (Cambridge University Press, Cambridge, England).

Mandelbrot, B., 1967, “How long is the coast of Britain?
Statistical self-similarity and fractional dimension,” Science
156, 636–638.

Manoharan, V. N., M. T. Elsesser, and D. J. Pine, 2003, “Dense
packing and symmetry in small clusters of microspheres,” Science
301, 483–487.

Marichy, C., N. Muller, L. S. Froufe-Pérez, and F. Scheffold, 2016,
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