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Many of the existing winged-insect species are extremely small (wing length ≈ 0.3–4 mm); they are
referred to as miniature insects. Yet, until recently much of our knowledge about the mechanics of
insect flight was derived from studies on relatively large insects, such as flies, honeybees, hawkmoths,
and dragonflies. Because of their small size, many miniature insects fly at a Reynolds number (Re) on
the order of 10 or less. At such a low Re, the viscous effect of the air is substantial: A miniature insect
moves through the air as a bumblebee would move through mineral oil. The great importance of
viscosity for miniature insects means that their flight relies on physical mechanisms that are different
than those exploited by large insects. These differences range from the nature of the wing stroke to the
structure of the wings, with some insects even using porous (bristled) wings to fly. Over the past
decade, much work has been done in the study of the mechanics of flight in miniature insects: novel
flapping modes have been discovered and new mechanisms of aerodynamic-force generation have
been revealed; progress has also been made on fluid-mechanics-related flight problems such as flight
power requirements and flight dynamic stability. This Colloquium reviews these developments and
discusses potential future directions.
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I. INTRODUCTION

The size of winged insects varies greatly (Dudley, 2000).
The insects that we see most often, for instance, flies,
honeybees, hawkmoths, and dragonflies, are relatively large;
their wing length (R) ranges from approximately 5 to 50 mm
(Dudley, 2000). But many winged insects are extremely small,
with R being approximately 0.3–4 mm (Polilov, 2015), and we
rarely notice them. Here we call these small insects miniature
insects, while we refer to the relatively large ones as medium

and large insects. Figure 1 shows the significant difference in
size between a typical miniature insect and a medium size
insect: the small wasp Encarsia formosa could fit inside the
eye of a drone fly. Close to half of the existing winged-insect
species are of a miniature size (Dudley, 2000). Until recently
most knowledge regarding the mechanics of flight of insects
has been derived from studies on medium and large insects.
For medium size insects, the relevant fluid flows have a
Reynolds number Re on the order of hundreds, indicating that
inertia is more important than viscous effects. However, the
Reynolds number Re ¼ ρUc=μ, where ρ is the air density, U
is the characteristic wing beating speed, c is the mean chord
length of a wing, and μ is the air viscosity. Since both U and c
decrease with insect size, Re is much smaller for miniature
insects than for medium and large insects; for instance,
Re ≈ 10 for the small wasp (Weis-Fogh, 1973). The great
importance of viscosity for miniature insects means that their
flight relies on physical mechanisms that differ from those
exploited by medium and large insects. These differences
range from the nature of the wing stroke to the structure of the
wings, with some insects even using porous (bristled) wings
to fly.
Before we discuss the flight of miniature insects, we

provide an overview of the flight of medium and large insects;
more detailed reviews were given by Sane (2003), Wang
(2005), Shyy et al. (2010), and Shelley and Zhang (2011).
Medium and large insects in hovering flight usually beat their
wings back and forth in an approximately horizontal plane
[Fig. 2(a)], actions referred to as upstroke and downstroke,
respectively. The plane in which the wings beat is called the
stroke plane (Weis-Fogh, 1973; Ellington, 1984c). Note that
dragonflies use an inclined stroke plane [see Norberg (1975)]
and that some insects, such as the hoverfly, use both horizontal
and inclined stroke planes (Weis-Fogh, 1973). In the begin-
ning of an upstroke or downstroke [Fig. 2(b)], the wing*m.sun@buaa.edu.cn
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accelerates and pitches down at the same time; in the
midportion of the stroke, the wing moves at an approximately
constant speed [Fig. 2(b)]; near the end of the stroke, the wing
decelerates and pitches up at the same time [Fig. 2(b)]. In
forward flight, the stroke plane tilts forward (Dudley and
Ellington, 1990a).
Although the wing of an insect beats at a high frequency

(usually above 150 Hz), the velocity of the wing relative to the
undisturbed air is small owing to the small wing length. As a
result, the lift coefficient of the wing required to balance the
weight is relatively high (Ellington, 1984a, 1984b, 1984c,
1984d); the mean lift coefficient required is around 2 (Liu
and Kawachi, 1998; Sun and Du, 2003), which is about 3 times
as large as that of a cruising airplane. This high lift coefficient
cannot be explained by conventional steady-state aerodynamics
and unsteady aerodynamic mechanisms must be operating
(Ellington, 1984c). Several unsteady mechanisms have been
proposed to explain the high aerodynamic-force coefficients.
Among them are the “delayed-stall” mechanism (Ellington
et al., 1996), the “pitching-up rotation”mechanism (Dickinson,
Lehman, and Sane, 1999; Sun and Tang, 2002a), and the “fast
acceleration” mechanism (Sun and Tang, 2002a; Sane, 2003).
The delayed-stall mechanism produces high lift by the leading-
edge vortex (LEV), which attaches to and moves with the wing
during an entire upstroke or downstroke. The fast acceleration
mechanism is where a wing in fast acceleration at a large angle
of attack can produce a large aerodynamic force. The “pitching-

up rotation” mechanism is when a wing moves forward and at
the same time pitches up quickly, and large lift and drag can be
produced.
For many insects in hovering flight, it has been shown that

the lift and drag of the wing generally have three peaks in an
upstroke or downstroke (Wang, Birch, and Dickinson, 2004;
Aono, Liang, and Liu, 2008; Liu and Sun, 2008), with an
example shown in Fig. 3 (CL and CD are the lift and drag
coefficients, respectively; t is the time and T is the flapping
period; t=T ¼ 0–0.5 is the upstroke and t=T ¼ 0.5–1 is the
downstroke). The force peak in the beginning of the upstroke
(t=T ≈ 0–0.1) or downstroke (t=T ≈ 0.5 − 0.6) is produced by
the fast acceleration mechanism. The “wider” force peak in
the midportion of the upstroke (t=T ≈ 0.1–0.4) or downstroke
(t=T ≈ 0.6 − 0.9) is due to the delayed-stall mechanism,
i.e., due to the LEV attached to and moving with the wing
[Fig. 3(c)]. The force peak near the end of the upstroke
(t=T ≈ 0.4–0.5) or downstroke (t=T ≈ 0.9–1) is generated by
the pitching-up rotation mechanism. Note that the force peak
at the beginning of an upstroke or downstroke is much smaller
than that in the midposition of the stroke. This is because
although the wing is in fast acceleration, it is at the same time
performing pitching-down rotation; see Fig. 2(b). The force

FIG. 1. Comparison between a typical miniature insect (a small
wasp Encarsia formosa) and a medium size insect (a drone fly
Eristalis tenax, which is the same size as a honeybee). Note that
most of the smallest insects use bristled wings.

FIG. 2. (a) Stroke diagram showing the wing-tip trajectory
(projected onto the symmetrical plane of the insect; the black
curve) of the drone fly Eristalis tenax, a relatively large insect. A
black dot defines the wing-root location on the insect body.
(b) Motion of a section of the wing and definition of aerodynamic
lift and drag, with dots marking the leading edge.

FIG. 3. (a) Lift and (b) drag coefficients of a drone fly in a
flapping period. Adapted from Liu and Sun, 2008. (c) Sketch of
the LEV on a flapping wing.
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peak near the end of the upstroke and downstroke is also
smaller; the reason for this is that, although the wing is in
pitching-up rotation, it is also in fast deceleration.
The large lift peak in the midportion of the upstroke or

downstroke, due to the delayed-stall mechanism, provides
approximately 60%–70% of the stroke-cycle mean lift (Liu
and Sun, 2008). We thus see that insects use the lift of the
wings to provide the weight-supporting vertical force and that
the high lift is produced mainly by the LEV that attaches to
the wing.
The aforementioned results for medium and large insects,

however, do not apply to the miniature insects, because of the
large effect of air viscosity. As mentioned, Re decreases
rapidly with decreasing insect size and for miniature insects
such as the small wasp Encarsia formosa, Re is approximately
10. At such a low Re, the viscous effect of the air is so large
that a miniature insect moves through the air as a bumble bee
would move through mineral oil. The LEV would be
significantly diffused owing to the large viscous effect, and
little lift and a large drag are generated (Miller and Peskin,
2004; Lyu, Zhu, and Sun, 2019a). It was shown that at Re ¼
100–400 (Re of medium size insects) CL and CD are
approximately 1.7 and 1.5, respectively, and the lift-to-drag
ratio is approximately 1.3, while at Re ¼ 10 CL becomes only
0.9 and CD reaches 3.1, and CL=CD is only 0.29 (Lyu, Zhu,
and Sun, 2019a). Therefore, miniature insects must use
different wing kinematics and aerodynamic mechanisms, even
different wing structures (bristled wings), than medium and
large insects use.
In the past ten years, much work has been done in the study

of the mechanics of flight in miniature insects: novel flapping
modes have been discovered and new mechanisms of aero-
dynamic-force generation have been revealed. Progress has
also been made regarding fluid-mechanics-related flight
problems such as flight power requirements and flight
dynamic stability. In this Colloquium we review the signifi-
cant work done thus far in the area of miniature insect flight
and discuss potential future directions.

II. GOVERNING EQUATIONS

The governing equations of the flow around an insect are
the incompressible Navier-Stokes equations,

∇ · u ¼ 0; ð1Þ

∂u
∂t

þ u · ∇u ¼ − 1

ρ
∇pþ ν∇2u; ð2Þ

where u is the fluid velocity, p is the pressure, ρ is the density,
ν is the kinematic viscosity, ∇ is the gradient operator, and ∇2

is the Laplacian operator.
Using the wing chord length c as the reference length, the

mean flapping speed U as the reference speed (U ¼ 2Φr2f,
where Φ is the flapping amplitude, r2 is the radius of gyration
of the wing area, and f is the flapping frequency), and c=U as
the reference time, the nondimensionalized Navier-Stokes
equations can be written as

∂u�

∂t�
þ u� · ∇u� ¼ −∇p� þ 1

Re
∇2u�; ð3Þ

∇u� ¼ 0 ð4Þ

where the asterisk represents a nondimensional quantity:
u� ¼ u=U, t� ¼ tU=c, p� ¼ p=ρU2, and Re ¼ cU=ν
(Reynolds number). If instead of c=U the flapping period
T (T ¼ 1=f) is used as the reference time, Eq. (3) becomes

St
∂u�

∂t�
þ u� · ∇u� ¼ −∇p� þ 1

Re
∇2u�; ð5Þ

where t� ¼ t=T and St ¼ c=UT (¼cf=U) (Strouhal number
or reduced frequency).
It is well known that Re represents the ratio of the inertial

force (the part of the inertial force caused by convection
acceleration) to the viscous force of the fluid, and also that St
represents the ratio of the characteristic time of body motion
(here T) to the characteristic time of fluid convection (U=c).
Since both U and T are related to the flapping frequency f, St
can be written as St ¼ c=Φr2. For many insects, Φ is
approximately 120° and r2=c is approximately 1.65 (Weis-
Fogh, 1973). Hence, St ≈ 0.3. Re is proportional to both c and
r2. When an insect is small, both c and r2 are also small, and
Re will become low. That is, for a miniature insect the viscous-
force term in Eq. (5) (the second term on the right) will be
large, i.e., the viscous effect will be strong.
When the wing motion of an insect is given (usually by

measurement), Eqs. (3) and (4) or Eqs. (5) and (4) can be
numerically solved to give the flows around and the aerody-
namic force acting on an insect. The equations are also used in
the analysis of flows and aerodynamic mechanisms.

III. FLAPPING MODE CHANGE AND DIFFERENT
AERODYNAMIC MECHANISMS

A. A typical miniature insect: Encarsia formosa

As mentioned in Sec. I, in order to generate the aerody-
namic forces necessary for flight, miniature insects must have
different flapping kinematics and aerodynamic mechanisms
than medium and large insects have. What flapping pattern do
the miniature insects use, and how do they generate the
necessary aerodynamic forces? Cheng and Sun (2018)
addressed these questions by studying the hovering flight
of a typical miniature insect, the small wasp Encarsia
formosa, which was brought to researchers’ attention by
the seminal work of Weis-Fogh (1973). Its wing length (R)
is approximately 0.6 mm, its flapping frequency (f) is 360 Hz,
and its mass (m) is about 0.02 mg. Cheng and Sun (2018) first
used high-speed cameras to measure the detailed wing
kinematics, and then, on the basis of the data, they solved
the Navier-Stokes equations and obtained the flows around the
insect and the aerodynamic forces acting on it.
They found that the miniature wasp has a distinctive pattern

of wing motion. Figure 4 gives the wing-motion diagram. Let
T be the period of the flapping cycle. A flapping cycle can be
divided into four phases. To begin, in the upstroke the wings
accelerate rapidly downward and backward at an almost 90°
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angle of attack [Fig. 4(a); t=T ≈ 0–0.25 (the first phase)].
They then close up on the right and left sides on the back of the
insect while moving slowly upward at an almost 0° angle of
attack [Fig. 4(a); t=T ≈ 0.25–0.5 (the second phase)]. At the
beginning of the downstroke, the wings quickly rotate about
their trailing edges [Fig. 4(b); t=T ≈ 0.5–0.6 (the third phase)]
and then sweep forward at a high angle of attack [Fig. 4(a);
t=T ≈ 0.6–1.0 (the fourth phase)]. The wing motion in the first
phase, quickly accelerating downward and backward at almost
a 90° angle of attack, resembles that of the stroking oars of a
boat; this phase is referred to as impulsive rowing. The second
phase is referred to as clap and slowly moving up. The third
phase is the well-known “fling”motion, which was discovered
in this species by Weihs and Barta (2008). The fourth phase is
referred to as forward sweep. As mentioned in Sec. I, medium
and large insects have planar upstrokes and downstrokes. For
the small wasp, the upstroke has a deep U shape [Fig. 4(a)].
The downstroke also has a U shape, but it is much shallower.
In an entire wingbeat cycle, the wing tip follows a twisted
figure-eight loop [Fig. 4(a)].
What do these odd features of wing flapping provide in

terms of aerodynamic-force production? The computed aero-
dynamic forces are shown in Fig. 5; in the figure and in the rest
of this Colloquium, the vertical and horizontal components of
the total aerodynamic force of a wing are referred to as the
vertical force and the horizontal force, respectively. When the
wing does not translate along the horizontal plane, the vertical
force is not the lift of the wing and the horizontal force is not
the drag of the wing. The velocity at the radius of gyration
of the wing is used to represent the velocity of the wing
[Fig. 5(e)]. Lift and drag are defined as the components of the
total aerodynamic force that are perpendicular to and parallel
to the velocity of the wing, respectively. As seen in Fig. 5, a
large vertical-force peak is produced during the impulsive
rowing [Fig. 5(a); t=T ≈ 0–0.2], and another smaller one is
generated during the fling and the beginning of the forward
sweeping [Fig. 5(a); t=T ≈ 0.55–0.75]. The other parts of the
cycle do not produce any positive vertical force; during the
“clap and slowly moving up” motion, the motion is slow and
drag is small, and moreover two wings “clap” and move
somewhat as one wing, further reducing their drag or the

negative vertical force (Cheng and Sun, 2019). The impulsive
rowing contributes 70% of the total vertical force, and the
fling and the beginning of the forward sweeping contribute the
other 30%.
Cheng and Sun (2019) further explained that the large

vertical-force peak during the impulsive rowing is mainly
from the drag of the wing, and that the large drag is due to the
fast acceleration of the wing (referred to as the impulsive
rowing mechanism). As for the vertical-force peak during the
fling and the beginning of the forward sweeping, it is also
mainly from the large drag of the wing [see Figs. 5(a), 5(d),
and 5(f)]. The production mechanism of the large drag is
where the opening of the wing pair generates a low-pressure
region of rapidly swirling air that persists until the beginning
of the forward sweeping, creating the large drag (referred to as
the fling mechanism). The fling mechanism was discovered
by Weis-Fogh (1973); it was further studied by many
researchers including Miller and Peskin (2005) and Sun and
Yu (2006).
We thus see that the small wasp uses the drag produced by

distinctive wing motion and novel aerodynamic mechanisms
(impulsive rowing and fling) to offset the otherwise formi-
dable effects of increased viscosity. These two mechanisms
can also be explained by examining the flow equations
[Eq. (5)] and rewriting them as

St
∂u�

∂t�
|fflffl{zfflffl}

inertial force
ðlocal rate of changeÞ

þ u� · ∇u�
|fflfflfflffl{zfflfflfflffl}

inertial force
ðconvectionÞ

¼ −∇p� þ 1

Re
∇2u�

|fflfflfflffl{zfflfflfflffl}

viscous force

. ð6Þ

When Re is small, the viscous effect, represented as the
second term on the right-hand side of Eq. (6), is large. As
mentioned in Sec. II, the characteristic time used in St is
usually T (flapping period). But when the wing has a large

FIG. 4. (a) Stroke diagram showing the wing motion of E.
formosa. The dashed curve indicates the wing-tip trajectory
(projected onto the symmetrical plane of the insect); the black
lines indicate the orientation of the wing at 20 temporally
equidistant points, with dots marking the leading edge; and
the black dot defines the wing-root location on the insect body.
(b) Wing motion at dorsal stroke reversal showing the fling. R is
the wing length. Adapted from Cheng and Sun, 2018.

FIG. 5. Aerodynamic forces. (a)–(d) Vertical force, horizontal
force, lift, and drag of a wing. (e) Diagram showing the wing
position, velocity vector, and force vector at various times in one
stroke cycle (side view). (f) Back view of the wing in fling
motion, represented as the wing section at 0.7R, and the
corresponding velocity vector and force vector. Blue arrow,
velocity; red arrow, force. Adapted from Cheng and Sun, 2018.
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velocity change (i.e., large acceleration) in a short time, say,
0.1T, there will be a new, smaller timescale. Using this smaller
characteristic time as the reference time, St would be 1 order
of magnitude larger. This would make the inertial force, the
first term on the left-hand side of Eq. (6), large, thereby
overcoming the large viscous effect.
That miniature insects may use the drag mechanism for

flight was previously suggested (Horridge, 1956; Jones et al.,
2015). Two modes of wing motion that can use drag to
produce weight-supporting vertical force (Fig. 6) were sug-
gested by Jones et al. (2015). The downward motion of the
wing in Fig. 6(a) looks similar to the rowing motion of the
small wasp, but there is a major difference between the two:
the discussion of the wing by Jones et al. (2015) suggested
that motion moves at an approximately constant speed, while
the real miniature insect moves with fast acceleration. Without
large acceleration, the required large drag cannot be produced.
Using the downward motion of the wing (the first part of the

U-shaped stoke) and drag to produce the vertical force has
been shown in some insects. Wang (2004) found that for a
hovering dragonfly (with an inclined stroke plane and asym-
metric flapping) drag contributes approximately three-quarters
of the required vertical force. Hovering hoverflies with an
inclined stroke plane and asymmetric flapping use drag to

support approximately three-quarters of the weight (Zhu and
Sun, 2017). Dragonflies and hoverfies can also hover with a
horizontal stroke plane (Ellington, 1984b); in this case the
vertical force is produced using the lift principle only. That is,
dragonflies and hoverflies can choose to use lift or drag to
produce the required vertical force. However, the small wasps
must use the downward wing motion and the drag principle to
fly; moreover, rapid wing acceleration must be used.

B. Some miniature insects of different size

As mentioned, the upstrokes and downstrokes of medium
and large insects are generally planar (Fig. 2). But for the
small wasp E. formosa discussed in Sec. III, the planar
upstroke commonly used by medium and large insects
changes to a deep U-shaped upstroke [Fig. 4(a)]. The first
part of the deep U-shaped upstroke (accelerating quickly
downward) produces a large vertical force through the
impulsive rowing mechanism, and the second part (wings
clapped and slowly moving up) produces a small negative
vertical force. Thus, the deep U-shaped upstroke gives a large
mean vertical force and overcomes the otherwise formidable
effects of increased viscosity.
The small wasp E. formosa is an extremely small insect:

R ≈ 0.6 mm and Re ≈ 10 (m ≈ 0.02 mg). Lyu, Zhu, and Sun
(2019a) examined the literature and noticed that small fruit
flies, a relatively large miniature insect whose R ≈ 3 mm and
Re ≈ 80 (m ≈ 0.72 mg), have a shallow U-shaped upstroke
(Fry, Sayaman, and Dickinson, 2005). The wing-tip trajectory
of the fruit fly compared with that of the small wasp is plotted
in Fig. 7: the U upstroke of the fruit fly (at the top of Fig. 7) is
much shallower than that of the small wasp (at the bottom of
Fig. 7). This inspired Lyu, Zhu, and Sun (2019b) to conjecture
that as the insect size decreases, i.e., Re decreases, deeper and
deeper U-shaped upstrokes would be used to overcome the
larger and larger viscous effects, as shown by the wing-tip
trajectories drawn using dotted lines in Fig. 7.
Lyu, Zhu, and Sun (2019b) measured the wing motions of

several insects with sizes smaller than that of the small fruit fly
and larger than that of the small wasps. These insects are
vegetable leaf miner Liriomyza sativae (LS) (Re ≈ 40,
R ≈ 1.5 mm, and m ≈ 0.25 mg), biting midge Forcipomia
gloriose (FG) (Re ≈ 29.8, R ≈ 1.4 mm, and m ≈ 0.2 mg),
biting midge Dasyhelea flaviventris (DF) (Re ≈ 23.7,
R ≈ 0.95 mm, and m ≈ 0.08 mg), gall midges Anbremia sp.
(AS) (Re ≈ 17.4, R ≈ 1.3 mm, and m ≈ 0.05 mg), and thrips
Frankliniella occidentalis (FO) (Re ≈ 13.5, R ≈ 0.79 mm, and
m ≈ 0.02 mg). The stroke diagrams showing the flappingmode
of the these insects are plotted in Fig. 8. As mentioned, medium
and large insects such as the drone fly (Fig. 2) have an
approximately planar upstroke and downstroke, while in
Fig. 8 we see that for miniature insects, the upstroke changes
to aU shape, and as size decreases deeper and deeperU-shaped
upstrokes are employed [Figs. 8(a)–8(g)]. This is just what Lyu,
Zhu, and Sun (2019b) conjectured; see Fig. 7.
Moreover, for the two smallest of these insects, thrips F.

occidentalis and the small wasp E. formosa, the downstroke
also becomes U shaped, but the downstroke U-shaped curve
is shallower than that of the upstroke [Figs. 8(f) and 8(g)].

FIG. 6. Idealized wing kinematics (represented by a sections of
the wing). The dot represents the leading edge of the wing, and
the downstrokes and upstrokes are shown separately. The solid
red arrows indicate the direction and relative magnitude of the
dimensionless drag (CD) during each downstroke or upstroke,
and the solid blue arrows indicate the direction and relative
magnitude of the dimensionless lift (CL). The solid axes on the
right indicate the net CD and CL during a flapping cycle. The
directions of the dimensionless vertical (CV) and dimensionless
horizontal forces (CH) always face the same way with respect to
the global frame (the dashed arrows). (a) A vertical, drag-based
stroke uses only CD to produce CV. (b) A tilted, hybrid stroke
uses both CL and CD to produce CV. Adapted from
Jones et al., 2015.
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Thus, in an entire wingbeat cycle the wing tip follows a
“twisted” figure-eight loop.
Using the wing-motion data, Lyu, Zhu, and Sun (2019b)

solved the Navier-Stokes equations and obtained the aerody-
namic forces acting on the insects, and they showed
the following: For the relatively large miniature insects, the
U-shaped upstroke produces a larger vertical force than planar
upstroke by having a larger wing velocity. For the extremely
small ones, like the small wasp E. formosa discussed in
Sec. III.A, the U-shaped upstroke becomes deep, and in its
first phase the wing smashes on the air (impulsive rowing) and
generates a large drag directed upward (vertical force). On the
contrary, in its second phase the wing slices slowly through
the air and generates a small drag directed downward. They
also showed that the fling mechanism was used by some of the
miniature insects.
Note that the asymmetric stroke, which is “downward

moving at a large angle of attack and upward moving at a
near-zero angle of attack,” is also used by some large insects
(for instance, dragonflies and hoverflies); the downward
motion provides a large vertical force for weight support
and the upward motion (“slicing the fluid”) produces only a
small downward force (Sun and Lan, 2004; Wang, 2004). The
difference is that the downward wing motion of miniature
insects has an impulsive start that increases the magnitude of
the drag or vertical force in a viscous flow.

C. An even smaller miniature insect (a small beetle
with bristled wings)

In Sec. III.B, the flight of some miniature insects of
different size were discussed, with the smallest ones being
the small wasp E. formosa and the thrips F. occidentalis
(m ≈ 0.02 mg). But there are many even smaller winged
insects. Most of these smallest winged insects have bristled
wings (Polilov, 2005; Farisenkov et al., 2020); a bristled wing
is sketched in Fig. 9.
Do these even smaller insects use an even deeper U-shaped

upstroke, use both a deep U-shaped upstroke and a deep

FIG. 7. Top diagram: wing-tip trajectory (projected onto the
symmetrical plane of the insect) of a fruit fly (R ¼ 3 mm), which
is a relatively large miniature insect. Bottom diagram: wing-tip
trajectory of a small wasp (R ¼ 0.5 mm), which is a typical
miniature insect. Middle diagrams: conjectured wing-tip trajec-
tories for insects with sizes in between.

FIG. 8. Stroke diagrams showing the wing motions of the
insects. The solid curve indicates the wing-tip trajectory (pro-
jected onto the symmetrical plane of the insect); black lines
indicate the orientation of the wing at various times in one stroke
cycle, with dots marking the leading edge; a black dot defines the
wing-root location on the insect body; and the purple arrow
represents the velocity of the wing at the radius of gyration.
Adapted from Lyu, Zhu, and Sun, 2019b.
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U-shaped downstroke, or use another novel flapping mode?
Recently Farisenkov et al. (2022) studied the flight of the
small beetle Paratuposa placentis. Its m is only 0.0024 mg,
R ¼ 0.49 mm, f ¼ 180 Hz, and Re ¼ 9 (for Encarsia for-
mosa, which was discussed in Sec. III.A, m ¼ 0.02 mg,
R ¼ 0.6 mm, and f ¼ 360 Hz; in comparison, the small
beetle P. placentis, m of E. formosa is 8.3 times as large
and R is only 22% larger, but f is twice as high). They used
high-speed videography to obtain the wing kinematics,
electron microscopy measurements to obtain the morphologi-
cal data, and computational fluid mechanics methodology to
compute the flow and aerodynamic forces.
The measured wing kinematics is shown in Fig. 10 by a

diagram of wing-tip trajectory (side view) and a wing
orientation at 20 points of the equal time interval. In
Fig. 10, curve ABC is the wing-tip trajectory of the upstroke
and curve CDA is that of the downstroke. An upstroke (or
downstroke) can be divided into two phases, called the power
phase and the recovery phase, respectively, by Farisenkov
et al. (2022).
We first look at the upstroke. In the first phase (the power

phase) of the stroke (Fig. 10, from A to B), the wings move

downward and backward at large velocity and acceleration at
nearly a 90° angle of attack. In the second phase (the recovery
phase) of the upstroke (Fig. 10, from B to C), the wings move
upward slowly at nearly a zero angle of attack [at the
beginning of the moving up, the two wings close up (clap)
at the back of the insect (this can be seen in Fig. 11)], and near
the end of the moving up the wings start to separate from each
other. Note that the upstroke of the small beetle is similar to
the deep U-shaped upstroke of the previously discussed small
insects. Next we look at the downstroke. In the first phase of
the stroke (Fig. 10, from C to D), as in the first part of the
upstroke, the wings move at large velocity and acceleration at
nearly a 90° angle of attack, but here they move downward and
forward, not downward and backward. In the second phase of
the stroke (Fig. 10, fromD to A), as in the case of the upstroke,
the wings move upward slowly at nearly a zero angle of attack;
the two wings are also closed, but now the wings are in front of
the insect. The downstroke is also similar to a deep U-shaped
stroke. Since both the upstroke and the downstroke are a deep
U shape, the wing-tip trajectory is a figure-eight loop (Fig. 10).
On the basis of the measured kinematic and morphological

data, Farisenkov et al. (2022) computed the flow around the
insect and obtained the aerodynamic force on the bristled
wings. As seen in Fig. 11, large, nearly upward pointing drag
is produced by the wing in the first phase of the U-shaped
upstroke, when the wings move at large velocity and accel-
eration at nearly a 90° angle of attack (the impulsive rowing
mechanism), and small, nearly upward pointing drag is
produced in the second phase, in which the wings move
upward slowly. This is also the case for the down-
stroke (Fig. 11).
The smallest insects discussed in Secs. III.A and III.B), i.e.,

the small wasp E. formosa and thrips F. occidentalis, mainly

FIG. 9. Sketch of the bristled wing of a small beetle Paratuposa
placentis plotted according to the photograph taken by Farisen-
kov et al. (2022).

FIG. 10. Stroke diagrams showing the wing motions of Para-
tuposa placentis. The solid curve indicates the wing-tip trajectory
(projected onto the symmetrical plane of the insect); black lines
indicate the orientation of the wing at various times in one stroke
cycle, with dots marking the leading edge; a red dot defines the
wing-root location on the insect body. Adapted from Farisenkov
et al., 2022.

FIG. 11. Wing-tip trajectories and direction of aerodynamic
force and wing velocity. Cyan arrows show aerodynamic force,
magenta arrows show wing-tip velocity, and yellow disks show
dorsal surface orientation of the wing at nine time instants.
Opaque and transparent curves correspond to the right and left
wings, respectively. Adapted from Farisenkov et al., 2022.
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use a deep U-shaped upstroke (impulsive rowing mechanism)
and a shallower U-shaped downstroke to overcome the strong
viscous effect. The small beetle P. placentis discussed here is
even smaller. From the previous discussion, we see that the
wing-motion style of the small beetle P. placentis is only
slightly different from that of the thrips F. occidentalis and the
small wasp E. formosa. Comparing Fig. 8(f) and 8(g) with
Fig. 10, it is seen that they all have a deep U-shaped upstroke;
the only difference is that the small beetle P. placentis also has
a deep U-shaped downstroke, while the thrips F. occidentalis
and the small wasp E. formosa have only a shallower
U-shaped downstroke. For the thrips F. occidentalis and
the small wasp E. formosa, in an entire wingbeat cycle
the wing tip follows a twisted figure-eight loop [Figs. 8(f)
and 8(g)], while for the small beetle P. placentis the wing tip
follows a “normal” figure-eight loop (Fig. 10).
In Sec. III, we have discussed eight species of miniature

insects whose wing kinematics have thus far been measured.
The size of these insects, represented by body mass m, ranges
from m ≈ 0.72 mg (the small fruit fly D. virilis) to m ≈
0.0024 mg (the small beetle P. placentis). From the measured
data (Figs. 8 and 10), the following trend regarding flapping
pattern variation is observed: The planar upstroke commonly
used by the medium and large insects changes to a U-shaped
upstroke; as the size of the insect becomes smaller, deeper and
deeper U-shaped upstrokes are used. When m decreases to
about 0.02 mg (the small wasp E. formosa and thrips F.
occidentalis), the downstroke also becomes U shaped, but the
U shape is shallower [Figs. 8(f) and 8(g)]. When m decreases
to about 0.0024 mg (small beetle P. placentis), the downstroke
also becomes deep U shaped (Fig. 10). The features of a deep
U-shaped upstroke or downstroke are as follows: In its first
phase [wings quickly accelerating downward and backward
(or forward)], a large vertical force is produced by the
impulsive rowing mechanism. In its second phase (wings
clapped and slowly moving up), only a small negative vertical
force is produced. Thus, the deep U-shaped upstroke or
downstroke gives a large mean vertical force.

IV. BRISTLED WINGS ENHANCE THE FLIGHT
EFFICINCY OF EXTREMELY SMALL INSECTS

Many of the smallest flying insects have bristled wings
(Fig. 9), for instance, thrips (Lewis, 1973), small beetles
(Polilov, 2005), and fairy flies (Huber and Noyes, 2013).
Some of them, such as the small wasp E. formosa, have
partially bristled wings (Weis-Fogh, 1973).
The wing surface area of a bristled wing is much smaller

than that of the membranous wing of the same outline.
Therefore, it has been commonly considered that a bristled
wing is much lighter than the equivalent membranous wing,
and hence the inertial power for flapping a bristled wing
would be much less than that for the membranous wing; see
Sunada et al. (2002) and Weihs and Barta (2008). However,
formal quantitative studies on this possible merit have only
recently been conducted (Farisenkov et al., 2022; Jiang et al.,
2022). In their study of the small beetle P. placentis,
Farisenkov et al. (2022) determined the mass and moment
of inertia of the bristled wing on the basis of the measured
data. They estimated the mass and moment of inertia of the

equivalent membranous wing using the wing thickness of
some of the smallest membranous-winged insects (body
length of about 0.8 mm). They found that the bristled wings
are lighter than the equivalent membranous wings and have a
much smaller moment of inertia. With the moment of inertia
of the bristled and membranous wing evaluated, they numeri-
cally solved the Navier-Stokes equations and computed the
inertial and aerodynamic powers of the free-flying small
beetle (the power required for flight is the sum of the
aerodynamic and inertial power; see Sec. VI). They found
that with the bristled wing the instantaneous power may reach
up to 110W per kilogram of body mass (Wkg−1) in the power
phase of the flapping cycle, while with the membranous wings
the value can reach up to 180–210 Wkg−1 because of the
large inertial power due to the large moment of inertia. With
the bristled wing, the time-averaged power is 28 W per
kilogram of body mass (the value is approximately the same
with or without elastic energy storage since the wing is light).
But with a membranous wing, even with perfect elastic energy
storage the time-averaged power reaches 37 W per kilogram
of body mass. The bristled wing makes the elastic energy
storage obsolete and greatly reduces the peak mechanical
power requirements of the flight muscles.
As discussed, the projected wing area of a bristled wing is

much smaller than that of the equivalent membranous wing; for
example, the projected wing area of the bristled wing of the
miniature beetle P. placentis is only 15% that of the equivalent
membranous wing (Kolomenskiy et al., 2020). This means that
the force per unit area of a bristled wing is much larger than that
of the corresponding membranous wing. Furthermore, the
bristles are slender and seem to be flexible. One might
intuitively wonder whether the bristles would have large
deformation and whether the wing geometry could be
maintained.
Jiang et al. (2022) recently investigated this problem. They

considered the bristled wings of the parasitoid wasp Anagrus
Haliday. They first measured the morphological character-
istics and the Young’s modulus of the bristles. Next they
performed fluid-structure-interaction computations [i.e., they
solved the Navier-Stokes equations (3) and (4) coupled with
the equilibrium equation for elastic body] of a model bristled
wing. Their measurements showed that the bristles have a
conical tubular structure, tapering toward the tip, and that the
Young’s modulus of the bristles is in the range of 18.6–
25.2 GPa, which is much higher than that conventionally
considered value for bristles (8–10 GPa) (Seale et al., 2018).
Their computations showed that at the extreme flow velocity
and angle of attack (90°) of small wasps given in literature, the
bristles deflect only marginally (a bending angle of less than
0.3°). That is, the bristled wing at high aerodynamic loading
has negligible deformation and wing geometry could be
maintained.
The aforementioned results are for the parasitoid wasp A.

Haliday. No such detailed quantitative studies have yet been
conducted for any other miniature insects. However, in high-
speed video recordings of several free-flying miniature insects
with bristled wings, for instance, thrips in takeoff flight
(Santhanakrishnan et al., 2014) and hovering flight (Lyu,
Zhu, and Sun, 2019b), the small wasp E. formosa in hovering
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(Weis-Fogh, 1973; Cheng and Sun, 2018), and the small
beetle P. placentis in hovering and forward flight (Farisenkov
et al., 2022), no noticeable wing (bristles) deformation has
been observed. This indicates that the slender bristles have
special morphological structure and material characteristics
for resisting deformations.
The aforementioned results (Farisenkov et al., 2022; Jiang

et al., 2022) show that the flight weight of the bristled wing
(greatly reducing inertial power) and the sophisticated design
of the bristle structure (extremely stiff and leading to a
marginal deformation) enable the flapping flight in the
smallest insects. This is an important discovery in this area
of study.

V. FORCE-PRODUCTION MECHANISMS AND SOME
OTHER MERITS OF BRISTLED WINGS

As discussed in Sec. IV, for many of the extremely small
insects a bristled wing is a prerequisite for their efficient
flapping flight. Therefore, it is of interest to engage in further
discussion of the aerodynamic mechanisms of bristled wings
and the advantages of a bristled wing over a membranous
wing.

A. Aerodynamic force

Sunada et al. (2002) measured the aerodynamic forces on a
model bristled wing and a solid-plate wing of the same shape.
Different simple wing motions were considered: azimuthally
rotating at a constant angular speed and at a constant angular
acceleration and translating at a constant speed and a constant
acceleration. They showed that while flying at Re of around
10 or below, the aerodynamic forces acting on the model
bristled wing were only a little smaller than those on the solid-
plate wing [miniature insects with bristled wings fly at Re ≈
10 or below (Sunada et al., 2002; Lyu, Zhu, and Sun, 2019b;
Farisenkov et al., 2022)]. In the aforementioned experiments
(Sunada et al., 2002), the wing model has a rectangular
planform and the bristles are in the chordwise direction. In a
real bristled wing (as sketched in Fig. 9), in the inner part of
the wing the bristles point forward and backward, while in the
outer part of the wing the bristles point laterally. Kolomenskiy
et al. (2020) performed experimental and numerical studies
using a model bristled wing of realistic morphology of a
miniature beetle. They found that, in the considered biologi-
cally relevant regimes of flow parameters, the bristled wing
produced between 60% and 96% of the aerodynamic force of
an equivalent membranous wing. In the experiment, the
wing performed constant-speed rotation, not real flapping
motion. In some recent numerical studies, realistic wing
motions, a realistic bristled-wing morphology of a small
beetle (Farisenkov et al., 2022), and a small wasp (Jiang
et al., 2022) were used. It was shown that the bristled wing
produced an aerodynamic force that is more than 80% that of
the corresponding membranous wing.
The aforementioned studies show that, at Re of the bristled-

winged miniature insects (Re ≈ 10 and below), the bristled
wing can produce aerodynamic forces that are only slightly
smaller than the corresponding membranous wing.

B. Production mechanisms of aerodynamic force

A bristled wing is morphologically much different than a
membranous wing of the same outline. The membranous wing
is solid, like a flat plate, while the bristled wing has gaps
between the bristles, like a comb (Fig. 9). The gap width is
approximately 10 times the bristle diameter (Sunada et al.,
2002; Jones et al., 2016). Their aerodynamic-force production
mechanisms should be different. As discussed in Sec. III, the
wings of the smallest insects move at nearly a 90° angle of
attack, producing large drag to provide the weight-supporting
vertical force. For a flat-plate wing moving at nearly a 90°
angle of attack, the drag comes mainly from the pressure
difference between the windward and the rearward surfaces of
the wing (frictional force is tangential to the surfaces and
makes only a slight contribution to the drag). For a bristled
wing, the situation is different. Each bristle of the wing is a
slender “cylinder.” When the Reynolds number of the wing is
10 (based on the mean chord length of the wing), the Reynolds
number of the bristle is only about 0.05 (based on the diameter
of the bristle). That is, the flows around the bristles must be
Stokes flows and the drag on the bristles must be similar to
that of a cylinder in the Stokes flow, half of the contribution
from the friction force and half from the pressure force. Cheer
and Koehl (1987) examined the flows and drag of a model
bristled wing represented by a pair of cylinders, using the
existing analytical solution of the Oseen equation obtained
from matched-asymptotic analysis (Umemura, 1982). Barta
and Weihs (2006) modeled the bristled wing by a row of
parallel slender bodies (rodlike ellipsoids with a slenderness
ratio smaller than 0.01) and solved the Stokes equation
analytically. In these models, the bristles generate forces by
the Stokes-flow (or the creeping-flow) mechanism. Since they
solved the Stokes or Oseen equation, the Reynolds number of
their model wing (Re based on wing chord length) needs to
tend to zero, i.e., Re ≪ 1. The flow near the “bristle” (the near
field) and the flows in the far field are all Stokes flows. Lee,
Lee, and Kim (2020) and Wu, Liu, and Sun (2021) modeled
the bristled wing using a row of two-dimensional circular
cylinders and solved the Navier-Stokes equation numerically.
Here Re can be any value, as long as it is low enough for
turbulence to not occur (for miniature insects, Re ≈ 10; this is
not a problem). Lee, Lee, and Kim (2020) considered the
effects of varying the gap width between bristles and varying
Re on the flows around the bristles. Wu, Liu, and Sun (2021)
investigated the effects of wing acceleration. Both group’s
results showed the following: When Re of the bristled wing is
about 10 or less (the Reynolds number of a bristle is about
0.05 or less), the flow near each bristle is Stokes flow in
nature. The streamlines in the front of the bristle and those in
the back are symmetrical; the surface frictional force and
pressure force have approximately the same contribution to
the drag on the bristle. The flow away from the bristles (the far
field) resembles that of the corresponding flat-plate wing.
Recently Jiang et al. (2022) used a realistic configuration of
the bristled wings of a small wasp and realistic flapping
motion in their numerical solution of the Navier-Stokes
equations. They also found that approximately half of the
contribution of the aerodynamic force on the bristle comes
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from the surface pressure force and half comes from the
surface friction force.
From the aforementioned results, we see that the drag

production mechanism of the bristled wing is different than
that of the membranous wing. For the membranous wing, the
flow is blocked by the wing, giving a positive pressure on the
windward surface and a negative pressure on the leeward
surface; the drag is due to the pressure forces and the frictional
stress makes almost no contribution. For the bristled wing,
each bristle operates in a creeping flow and produces thick and
strong shear layers; strong viscous force generates a large
pressure difference between the windward and leeward
surfaces of each bristle and large frictional stress on the
bristle surface, resulting in a large drag on each bristle, and
pressure and frictional forces make equal contributions to
the drag.

C. Other merits of the bristled wings

As seen in Sec. V.A, a bristled wing operating at Re of the
order of 10 or less could produce an aerodynamic force close
to that of a membranous wing. And it has been shown that the
light weight of bristled wings makes the efficient flight of the
extremely small insect possible (Sec. IV). The bristled wing
also has some other merits; an example is given later.
Some bristled-wing miniature insects perform the fling

motion at the beginning of the downstroke [in the fling
motion, the left and right wings are initially parallel and
close to each other (i.e., they are clapped) and the wings then
rotate quickly around the trailing edge and open to form a V
shape]; see Weis-Fogh (1973). In the later stage of the fling
motion, a relatively large vertical force can be produced; this
aerodynamic-force production mechanism is referred to as the
fling mechanism (Maxworthy, 1979). The fling motion can
also enhance the vertical-force production in the subsequent
downstroke; see Cheng and Sun (2021). The fling motion was
identified in the small wasp E. formosa in 1973 (Weis-Fogh,
1973), and since then many studies were based on this motion
(Miller and Peskin, 2005, 2009; Arora et al., 2014).
Membranous wings were considered in these studies: the
flow structure and aerodynamic-force production mechanism,
the effects of the initial distance between the two wings, the
effects of wing flexibility, etc., were studied. One of the
important results of these studies is that the cost of flinging is
rather high: the drag required to “open” the wings apart may
be an order of magnitude large than the force require to move a
single wing with the same motion. Is it like this for bristled
wings? Santhanakrishnan et al. (2014) investigated this
question using two-dimensional (2D) porous flat plates to
simulate the bristled wings. They numerically solved the
Navier-Stokes equations for the porous plates and the corre-
sponding solid plates. They found that, compared to solid
wings, the porous nature of the wings contributes largely to
drag reduction. This result may indicate that bristled wings,
compared to solid wings, reduce the drag required to fling the
two wings apart. However, a porous plate is not a bristled
wing; it was desired to study the flows of bristled wings
directly. Jones et al. (2016) studied the flows and aerodynamic
forces of 2D bristled wings and the corresponding solid wings
by numerically solving the Navier-Stokes equations. Kasoju

and Santhanakrishnan (2021) studied the case of three-dimen-
sional (3D) wings experimentally, using robotic bristled-wing
models. Both the 2D numerical study and the 3D experimental
studies showed that, in fling motion, bristled wings signifi-
cantly decrease the drag required to fling the wings apart
compared to the case of solid wings.

VI. POWER REQUIREMENTS AND FLIGHT STABILITY:
SIZE EFFECTS

A. Power requirements

The wings of a flying insect must produce vertical force to
support its weight and thrust to propel its body moving
through the air. When producing these forces, the flight
muscles must do work to move the wings against the
aerodynamic drag and accelerate the wing mass. The power
needed to overcome the aerodynamic force is referred to as the
aerodynamic power, and that required to overcome the wing’s
inertial force is referred to as the inertial power. The sum of
these two is the mechanical power that the flight muscles must
deliver. When the metabolic rate of the flight muscles is
known, the mechanical power can give the mechanochemical
efficiency of the muscles, and knowing how much contribu-
tion the inertial power makes to the mechanical power can tell
us whether or not an elastic muscle system is essential for
insects (Ellington, 1984c; Dudley and Ellington, 1990b).
Therefore, the study of the mechanical power requirement
is of great importance for understanding the physiological and
biomechanical mechanisms of insect flight.
The calculation of the inertial power is relatively simple.

When the flapping kinematics and the wing mass and its
distribution are measured, the wing’s rotational velocity and
acceleration and the moments of inertia of the wing can be
obtained. From these data, the inertial power can be straight-
forwardly computed by means of a calculation of the
aerodynamic power involving flow computation, i.e., numeri-
cally solving the Navier-Stokes equations [Eqs. (3) and (4)], or
a force and moment measurement using a dynamically scaled
wing model. Conventionally the mechanical power is denoted
by P and its flapping-cycle-mean value denoted by P̄. Because
the wings have acceleration in some parts of the cycle and
deceleration in other parts, the inertial power, and hence the
mechanical power P, may become negative in some parts of
the cycle. How the negative power fits into the power budget
depends on the elastic energy storage of the flightmuscle.When
calculating P̄, researchers commonly consider two limiting
cases, and the real P̄ lies between these limits (Dudley, 2000).
One limiting case is 0% elastic energy storage, in which the
negativework is ignored in the power budget; the other limiting
case is 100% elastic energy storage, in which the negative
mechanical work can be completely stored in an elastic element
and later released to do positive work. The cycle-mean
mechanical power divided by the mass of the insect is referred
to as the mass-specific power, denoted as P�,

P� ¼ P̄=m; ð7Þ

where m is the mass of the insect. Note that P� represents the
power required per unit mass (weight) of the insect. Since P̄ has
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two limiting values, so does P�. In the case of 0% elastic power
storage, themass-specific power is denoted as ðP�Þ1; in the case
of 100% elastic power storage, it is denoted as ðP�Þ2.
Earlier studies on flight power requirements were for

medium and large insects, for which the wing’s kinematic
and morphological data were available (Dudley and Ellington,
1990a; Sun and Tang, 2002b; Young et al., 2009). In recent
years, the required data have been measured for a number of
miniature insects (Lyu, Zhu, and Sun, 2019b; Farisenkov
et al., 2022), and their power requirements can be computed.
Lyu and Sun (2021) calculated the power requirement of six
species of miniature insects in hovering flight; these insects
are vegetable leaf miners LS (m ≈ 0.25 mg), biting midges FG
(m ≈ 0.2 mg), biting midges DF (m ≈ 0.08 mg), gall midges
AS (m ≈ 0.05 mg), thrips FO (m ≈ 0.02 mg), and small wasps
E. formosa (m ≈ 0.02 mg). The masses of these miniature
insects range from 0.02 to 0.25 mg. From the literature, they
obtained the power requirement data for medium and large
insects with masses ranging from about 1 (fruit fly D.
melanogaster) to 1600 mg (hawkmoth Manduca sexta).
With the power requirements of the miniature insects and
those of the medium and large insects available, they could
examine how the power requirement changed with size across
the “full size range” of insects. Figure 12, which was adapted
from Lyu and Sun (2021), compares the mass-specific powers
of the insects [the nine species of medium and large insects
considered in the earlier literature and the six species of
miniature insects considered by Lyu and Sun (2021)]. More
recently Farisenkov et al. (2022) computed the power require-
ment of an even smaller miniature insect, the small beetle P.
placentis (m ≈ 0.0024 mg), and their results ðP�Þ1 ≈ ðP�Þ2 ¼
28 Wkg−1 are also added to Fig. 12. Note that in the
computations of Lyu and Sun (2021) one species of small
insects (thrips F. occidentalis) have bristled wings, but the
wings were modeled by an equivalent membranous wing. In
the computation of Farisenkov et al. (2022), for the small
beetle P. placentis a realistic bristled-wing model was used.
In Fig. 12, the mass of the smallest insect (the small beetle

P. placentis) is 0.0024 mg and that of the largest insect
(hawkmoth M. sexta) is 1648 mg. There is a 6 orders of
magnitude difference in mass. As seen from Fig. 12, even with

the large difference in size, these insects have a relatively
small difference in their mass-specific power: ðP�Þ2 of these
insects approximately vary in the range of 20–40 W=kg, and
ðP�Þ1 vary in the range of 20–60 W=kg. Compared with the
difference in their sizes, the difference in their mass-specific
power is negligible; i.e., the power consumption of an insect in
hovering flight is approximately proportional to its mass.
Assuming that the mean power per unit of muscle mass is the
same under the same type of muscle, the aforementioned size–
specific-power relation indicates that the ratio of flight-muscle
mass to insect mass is approximately the same for differently
sized insects.
The aforementioned results on miniature insects and

medium and larger insects (Lyu and Sun, 2021) were obtained
using the rigid-wing model. Insect wings are not rigid, and
during flapping motion they deform and display small devia-
tions from the rigid plane. Young et al. (2009) measured the
wing deformation of a tethered locust in a wind tunnel, and
based on the measured data they conducted a computational
study on the effects of deformation. Their results showed that
the power economy in locust flight can be improved by wing
deformation. Walker, Thomas, and Taylor (2010) measured
the wing deformation of freely flying hoverflies, and Du and
Sun (2010) investigated the effect of wing deformation on
aerodynamic forces using the data of Walker, Thomas, and
Taylor (2010). It was shown that deformation increased the lift
by about 10%, increased drag by about 3%, and decreased the
aerodynamic power required to generate the lift by about 5%
compared to the results for the rigid flat-plate wing. A 10%
increase in lift, allied with a 5% reduction in aerodynamic
power to generate that lift, could significantly enhance flight
performance. Nakata and Liu (2012a) developed a fluid-
structure-interaction (FSI) model of insect flapping flight
with flexible wings. Using this FSI-based model, they
performed a systematic analysis on the aerodynamic perfor-
mance of a hovering hawkmoth (Nakata and Liu, 2012b).
They showed that wing flexibility increased downwash in the
wake and hence the aerodynamic force. Moreover, an increase
in hovering efficiency of the flexible wing was achieved as a
result of the wing twist. Ishihara (2018) and Cai et al. (2022)
showed that using a model wing with three torsional springs at
the wing hinge can satisfactorily determine the flexible wing
behavior and its aerodynamic performance. Their model also
showed that wing flexibility reduces the energy requirements
of insect flight. These results of aerodynamic force and power
expenditure with flexible wings are for medium and large
insects (bumblebees, hawkmoths, and locusts), and also for
flapping wing micro air vehicles (Hao, Wu and Zhang, 2019).
For miniature insects, work on wind flexibility effects has not
yet been done and should be considered for future study.

B. Flight stability

Dynamic flight stability (inherent or passive stability) is of
great importance in the study of biomechanics of insect flight
(Taylor and Thomas, 2003; Sun and Xiong, 2005; Cheng and
Deng, 2011; Ristroph et al., 2013). It is the basis for studying
flight control because the passive stability of a flying system
represents the dynamic properties of the basic system, such as

FIG. 12. Mass-specific powers in cases of 0% and 100% elastic
energy storage for 16 species of insects. Adapted from Lyu and
Sun, 2021.
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which degrees of freedom are unstable, how fast the instability
develops, which variables are observable, etc.
In the study of flight stability in insects, the averaged model

is commonly used (Taylor and Thomas, 2003): the insect is
treated as a rigid body of 6 degrees of freedom and the action
of the flapping wings is represented by the wingbeat-cycle-
average forces and moments. Thus, the equations of motion of
the insect are the same as those of an airplane. The equations
of motion are linearized by approximating the body’s motion
as a series of small disturbances from a steady, symmetric
reference flight condition. As a result of the linearization, the
longitudinal and lateral small disturbance equations are
decoupled and can be separately solved. The longitudinal
(or lateral) small disturbance equations are a system of four
linear differential equations. We denote the system matrix of
the longitudinal (or lateral) equations as A (the values of
the elements of A can be computed by numerically solving the
Navier-Stokes equations or experimentally measuring the
aerodynamic forces and moments of the flapping wings).
The central elements of the solutions for the flight stability
problem are the eigenvalues of A. Being a fourth order matrix,
A has four eigenvalues ðλ1; λ2; λ3; λ4Þ. A real eigenvalue (or a
conjugate pair of complex eigenvalues) represents a natural
mode of the system. The motion of the flying body after an
initial deviation from its reference flight is a linear combina-
tion of the natural modes. In a natural mode, the real part of the
eigenvalue determines the time rate of growth of the disturb-
ance quantities. A positive (negative) real eigenvalue will
result in exponential growth (decade) of each of the disturb-
ance quantities, so the corresponding natural mode is dynami-
cally unstable [called the unstable divergent (stable
subsidence) mode]. For an unstable divergent mode, the time
to double the starting value (td) is given by

td ¼ 0.693=λ ð8Þ

A pair of complex conjugate eigenvalues, for instance,
λ1;2 ¼ s� ωi, will result in an oscillatory time variation of
the disturbance quantities with ω as its angular frequency. The
motion grows when s is positive (called the unstable oscil-
latory mode). The time to double the oscillatory amplitude is

td ¼ 0.693=s: ð9Þ

Until recently studies on flight stability addressed medium
and large insects (Taylor and Thomas, 2003; Cheng and Deng,
2011; Wu and Sun, 2012); the masses of these insects range
from about 1600 (hawkmoths) to about 1 mg (mosquitoes and
fruit flies). This covers the mass range of many winged
insects, except that of miniature insects, whose mass is more
than 1 order of magnitude smaller. One reason for the absence
of the stability analysis of miniature insects was that their
wing kinematical and morphological data were not available.
Recently the wing data for some miniature insects were
measured (Lyu, Zhu, and Sun, 2019b; Farisenkov et al.,
2022), and the stability properties of these miniature insects
can be calculated. As a first step, Lyu and Sun (2022)
considered the longitudinal flight stability problem of two
hovering miniature insects: the vegetable leaf miner L. sativae

(m ≈ 0.25 mg) and gall midge Anbremia sp. (m ≈ 0.05 mg).
They found that for each of the two miniature insects there is a
pair of complex eigenvalues λ1 and λ2 that have a positive real
part, and there are two negative real eigenvalues (λ3 and λ4),
one with a large magnitude and the other with a small
magnitude. Therefore, the longitudinal motion has three
natural modes: an unstable oscillatory mode, a stable fast
subsidence mode, and a stable slow subsidence mode. Owing
to the unstable mode, the longitudinal motions of the gall
midge and the vegetable leaf miner are unstable.
By comparing it to the results of the medium and large

insects (Sun and Xiong, 2005; Cheng and Deng, 2011), they
pointed out that the modal structure of the two miniature
insects is the same as that of the medium and larger insects,
having an unstable oscillatory mode, a stable fast subsidence
mode, and a stable slow subsidence mode. That is, although
the insects considered have a 30 000-fold difference in mass
(mass of the gall midge, 0.05 mg; that of the hawkmoth,
16 000 mg), they have the same modal structure. Because of
the unstable mode, the hovering flight of insects of all
considered sizes is passively unstable. This means that flight
must be actively controlled to be stable: the insects need to
constantly react to their surroundings and adjust their wing
motion in order to keep from tumbling. The response time of
the nervous system needs to be fast enough to react and keep
the unstable mode from growing too large. Therefore, the
growth rate of the unstable mode is of much interest. The time
to double the initial values of disturbances td [Eq. (7) or (8)]
represents the growth rate of instability. Lyu and Sun (2022)
calculated the values of td of the two miniature insects, and
they also calculated the values of td for the other medium and
larger insects using the values of λ1 and λ2 from previous
studies. The value of td for the insects (12 species) are plotted
in Fig. 13. An approximate analytical expression of td as a
function of m was derived by Lyu and Sun (2022); it showed
that td is proportional to the 0.17 power of m (also plotted in
Fig. 13). That is, as m becomes smaller, td decreases (i.e., the
instability becomes faster). This means that miniature insects
need a faster nervous system to control instability than larger
insects. For example, the response time, represented by td, of
the miniature insect the gall midge (m ≈ 0.05 mg) needs to be
faster by approximately 7 times than that of the large insect the
hawkmoth (m ≈ 1600 mg).

FIG. 13. Relationship between td andm of 12 species of insects.
Adapted from Lyu and Sun, 2022.
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The aforementioned results on flight stability were obtained
by applying the averaged model. As discussed, the averaged
model is based on assumptions about the rigid body, the rigid
wing, the wingbeat-averaged forces and moments, and the
wingbeat-averaged position of center of mass. Bluman,
Sridhar, and Kang (2018) modified the averaged model by
including wing flexibility. They showed that wing flexibility
could influence the stability properties. However, their study
considered only the effects of chordwise flexibility in a two-
dimensional flow velocity field, and the resulting wing
deformation gave a negative wing camber (experimental
observations of flying insects showed that the deforming
wings have a positive camber). Richter and Patil (2010)
developed an integrated model of the flight dynamics and
wing flexibility of a flapping wing (fruit-fly wing). Their
model showed that the flight system is unstable, that the
flexibility effects amplify a given stability or instability of the
system, and that the flexibility effects reduce the damping of
the present oscillatory mode. At present, for medium and large
insects, work on the flexibility effect on flight stability is still
limited; for miniature insects, work in this area has not yet
been done.
In a recent study, Taha et al. (2020) argued that the direct

averaging used in the averaged model might miss the
stabilizing effect due to body oscillation. Their study con-
cluded that for large insects such as hawkmoths flight was
stable, which was the opposite of the results of the averaged
model (the averaged model shows that flight is unstable).
Their result indicating that body oscillation stabilizes flight is
somewhat questionable; this is explained as follows: Gao,
Aono, and Liu (2011) and Liang and Sun (2013) coupled the
equations of 6-degree-of-freedom motion with the Navier-
Stokes equations to study the flight stability of insects (includ-
ing the large insect the hawkmoth). They showed that flight was
unstable. This model fully included the body oscillation effect,
but flight was unstable. Therefore, the issue of “body oscillation
stabilizing flight” needs further examination.

VII. CONCLUDING REMARKS

To overcome the large viscosity effects, miniature insects
must employ wing motion and aerodynamic mechanisms that
differ from those of medium and large insects. Current data
show the following changes: The planar upstroke commonly
used by medium and large insects changes to a U-shaped
upstroke. As the insect size (represented by its mass m)
becomes smaller, deeper and deeper U-shaped upstrokes are
employed. When m decreases to about 0.02 mg, the down-
stroke also becomes U shaped, but the U shape is shallower.
When m decreases to about 0.0024 mg, the downstroke also
becomes deep U shaped. The features of a deep U-shaped
upstroke or downstroke are as follows: in its first phase the
wings rapidly accelerate downward at nearly a 90° angle of
attack, “smashing” the air and producing a large drag or
vertical force (the impulsive rowing mechanism). On the
contrary, in its second phase the wings are close to each other
and move slowly upward at a zero angle of attack, “slicing”
through the air and producing a small negative vertical force.
Thus, the deep U-shaped upstroke or downstroke gives a large
mean vertical force. Note that the aforementioned results were

obtained from only eight species of insects, whose wing
kinematics have previously been measured (fruit fly D. virilis,
m ≈ 0.72 mg; vegetable leaf miner L. sativae, 0.25 mg; biting
midge F. gloriose, 0.2 mg; biting midge D. flaviventris,
0.08 mg; gall midge Anbremia sp., 0.05 mg; thrips F.
occidentalis, 0.02 mg; small wasp E. formosa, 0.02 mg;
and small beetle P. placentis, 0.0024 mg). It is of much
importance to measure the wing motion of more miniature
insects to see whether the aforementioned trend of variations
in flapping pattern is general, and whether there are other
novel flapping patterns and new aerodynamic mechanisms.
The wings of many miniature insects are bristled rather than

membranous. Thus far the numerical studies on bristled wings
have been based on the Navier-Stokes equations with the no-
slip condition on the bristle surface; experimental studies have
used dynamically scaled models moving in mineral oil. That
is, in both numerical and experimental studies, the flow is
assumed to be in the continuum regime. It is known that, for
the flow to be in the continuum regime, the Knudsen number
(Kn) needs to be small [Kn is the ratio of the molecular mean
free path of the air (λ) to a characteristic length of the geometry
(Lc), for instance, the diameter of a cylinder]. Conventionally
when Kn ≲ 0.001, the flow is well within the continuum
regime, the Navier-Stokes equations are valid, and the no-slip
boundary condition can be used. When Kn≳ 0.001, there are
rarefied-gas effects on the flow, but if 0.001≲ Kn≲ 0.1, the
rarefied-gas effects mainly appear in the areas near the body
boundary and the major phenomenon is that the no-slip
condition is violated: the flow slips on the boundary (the
flow regime of 0.001≲ Kn ≲ 0.1 is referred to as the slip
regime). As noted by Liu and Aona (2009), because of the
small geometrical length scales of the bristled wings, Kn may
be larger than 0.001 and there may be rarefaction effects. At
20 °C and standard pressure, λ of the air is calculated as
0.065 μm. The diameter of the bristles (D) of the bristled
wings, for which measurements have been made, ranges from
about 0.6 to 2.0 μm (Jones et al., 2016; Farisenkov et al.,
2022; Jiang et al., 2022). Using D as the characteristic length,
Kn ranges from 0.03 to 0.11; the flow is well within the slip
regime and the rarefaction effects need to be studied. Recently
a study on this problem was conducted (Liu and Sun, 2023)
that showed that the rarefaction has only a small effect on the
aerodynamic force of the bristled wing: it decreases the
aerodynamic force by less than 0.5% that of the continuum
flow. However, the rarefaction has a significant effect on the
contributions of the viscous tangential and normal stress terms
to the aerodynamic force: in the continuum flow, the force
contribution of the viscous tangential stress is 50.7% and that
of the viscous normal stress is zero, whereas in the slip flow,
for instance, at Kn ¼ 0.08, the contribution of the viscous
tangential stress is only 37.7% and that of the viscous normal
stress is 12.9% instead of zero. This is only a preliminary
study: the bristled wing was simplified to a row of two-
dimensional cylinders and only steady-state motion was
considered. More realistic geometry of the wing and fast
acceleration motion of the wing should be considered in future
research.
Dynamic flight stability analysis has been made for two

species of miniature insects in hovering flight, the vegetable
leaf miner L. sativae (m ≈ 0.25 mg) and the gall midge
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Anbremia sp. (m ≈ 0.05 mg). The analysis showed that the
longitudinal modal structure of the two miniature insects is the
same as that of the medium and large insects: there is an
unstable oscillatory mode, a stable fast subsidence mode, and
a stable slow subsidence mode. The flight is unstable because
of the unstable mode. The difference between a smaller insect
and a larger one is that the instability of the smaller insect
grows faster than that of the larger one. The stability analysis
has been based on the averaged-model theory and treats the
flight as a fixed-point equilibrium. Because of the periodically
varying aerodynamic and inertial forces of the flapping wings,
a hovering or constant-speed flying insect is a cyclically
forcing system, and generally the flight is not in a fixed-point
equilibrium but rather a cyclic-motion equilibrium. The
averaged-model theory gives good results for insects with
relatively small body oscillations at wingbeat frequency, but
for some insects with relatively large body oscillations at
wingbeat frequency (such as large moths and butterflies)
cyclic-motion stability analysis is required (Wu and Sun,
2012). The wing and body motions of eight species of
miniature insects have been video recorded and measured
(Lyu, Zhu, and Sun, 2019b; Farisenkov et al., 2022). From the
video recordings, it can be observed that body pitch oscillation
is large for the smallest insect of the eight species, the small
beetle P. placentis: The body pitch angle variation in the
oscillation is approximately 30°. For a miniature insect like
this, one may need to treat the flight as a cyclic-motion
equilibrium and use the Floquet theory or numerical simu-
lation by solving the complete equations of motion coupled
with the Navier-Stokes equations to analyze the flight stabil-
ity. This is interesting and important future work (because
knowing the passive stability properties of an insect is the
basis for studying its stabilization of flight). Moreover, in most
studies on the flight stability of insects (large or small), a rigid-
wing model has been used; how wing flexibility (i.e., wing
deformation) affects the stability properties needs to be
studied.
Flight control is an important part of insect flight; without

control, insects cannot really fly. Flight control involves
coupling of the “inner” control systems (sensory system and
neuron-motor control system) and the “outer” dynamics (pas-
sive stability, wing-motion change, and aerodynamic-force
change). There are two broad types of flight control. One is
stabilization control, which is used to stabilize flight (keep the
disturbances from growing during hovering or constant-speed
flight). The other is maneuver control, which is used to generate
aerobatics, such as fast changing flight direction, recovering
from upside-down falling, and landing on a ceiling. Formedium
and large insects, important studies have been made on both
stabilization control (Ristroph et al., 2010, 2013; Cheng, Deng,
and Hedrick, 2011; Windsor, Bomphrey, and Taylor, 2014) and
maneuver control (Haselsteiner, Gilbert, and Wang, 2014;
Wang, Melfi, Jr., and Leonardo, 2022). For miniature insects,
however, study on flight control is currently absent. Research in
this direction is strongly recommended.
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