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CPHT, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

Lars Nordström

Department of Physics and Astronomy, Division of Materials Theory, Uppsala University,
Box 516, SE-75120 Uppsala, Sweden
and Wallenberg Initiative Materials Science for Sustainability, Uppsala University,
75121 Uppsala, Sweden

Olle Eriksson

Division of Materials Theory, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
and Wallenberg Initiative Materials Science for Sustainability, Uppsala University,
75121 Uppsala, Sweden

Alexander I. Lichtenstein

Institut für Theoretische Physik, Universität Hamburg,
Notkestraße 9, 22607 Hamburg, Germany

Mikhail I. Katsnelson

Institute for Molecules and Materials, Radboud University,
Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands

(published 11 September 2023)

This review addresses the method of explicit calculations of interatomic exchange interactions of
magnetic materials. This involves exchange mechanisms normally referred to as a Heisenberg
exchange, a Dzyaloshinskii-Moriya interaction, and an anisotropic symmetric exchange. The
connection between microscopic theories of the electronic structure, such as density functional
theory and dynamical mean-field theory, and interatomic exchange is examined. The different aspects
of extracting information for an effective spin Hamiltonian that involves thousands of atoms, from
electronic structure calculations considering significantly fewer atoms (1–50), is highlighted.
Examples of exchange interactions of a large group of materials is presented, which involves heavy
elements of the 3d period, alloys between transition metals, Heusler compounds, multilayer systems
as well as overlayers and adatoms on a substrate, transition metal oxides, 4f elements, magnetic
materials in two dimensions, and molecular magnets. Where possible, a comparison to experimental
data is made that becomes focused on the magnon dispersion. The influence of relativity is reviewed
in a few cases, as is the importance of dynamical correlations. Development to theories that handle
out-of-equilibrium conditions is also described here. The review ends with a description of extensions
of the theories behind explicit calculations of interatomic exchange to nonmagnetic situations, such as
those that describe chemical (charge) order and superconductivity.
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I. INTRODUCTION

Magnetic phenomena naturally have a quantum origin. This
follows from the success that quantum theory has had in
describing magnetism, but it can also be ascribed to the
discovery of a theorem of Bohr and van Leeuwen that
demonstrates that a classical treatment fails in describing
any magnetic properties at thermal equilibrium, with the
magnetic susceptibility identically equal to zero (Mohn,
2006). Quantum mechanics has offered an excellent tool to
analyze and interpret magnetic materials and, since its birth
nearly 100 years ago, the magnetism community has devel-
oped concepts as well as experimental and theoretical tech-
niques to study magnetism. Many have covered the essentials

of these techniques, as well as magnetic materials and
magnetic phenomena (Goodenough, 1963; Vonsovskii,
1974; White and Bayne, 1983; Jensen and Mackintosh,
1991; Yosida, 1996; Fazekas, 1999; Buschow and Boer,
2003; Mohn, 2006; Stöhr and Siegmann, 2006; Getzlaff,
2008; Coey, 2010; Eriksson et al., 2017; Kübler, 2017;
Skomski, 2021). The purpose of this review is by no means
an attempt to cover what has already been described in detail
in the literature. Instead, the main ambition of this work is to
describe in detail how interatomic exchange interactions can
be evaluated from ab initio electronic structure theory in a
framework based on density functional theory (DFT)
(Hohenberg and Kohn, 1964; Kohn and Sham, 1965) and
dynamical mean-field theory (DMFT) (Georges et al., 1996;
Lichtenstein and Katsnelson, 1998; Kotliar et al., 2006). The
pioneering work that this review focuses on was published in
1984 (Liechtenstein, Katsnelson, and Gubanov, 1984). Since
then many important contributions have been made to what is
now a vibrant research field; these both include fundamental
questions on the nature of the interatomic exchange interaction
and involve practical investigations into how to find functional
materials with tailor-made properties. The latter studies involve
green energy technologies, for instance, the attempt to find
permanent magnets that do not contain the costly and (from a
mining perspective) environmentally troublesome rare-earth
metals, as well as to discover materials to be used in magneto-
caloric devices (Tegus et al., 2002; Gutfleisch et al., 2011). As
this review describes, it is possible to evaluate the interatomic
exchange interaction between any pair of magnetic atoms of a
solid from theoretical electronic structure calculations that
consider atoms only within a primitive unit cell. This is
illustrated schematically in Fig. 1, and the capability of
extracting information from one scale (that of a conventional
unit cell) to another scale that involves thousands or even
millions of atoms is an important step in realizing approaches
for an effective description of magnetism and magnetization
dynamics.
This review hence describes how to calculate from elec-

tronic structure theory the interaction term J ij of the
Heisenberg Hamiltonian,

FIG. 1. Schematic illustration of the multiscale step of using
information from electronic structure calculations considering the
primitive unit cell (bright square) to evaluate the exchange inter-
actionJ between twoatomic spinmoments shownbyred (darkgray)
arrows. Note that atomic magnetic moments are depicted for only
one pair of atoms; moments of other atoms are not shown.
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HH ¼
X
hiji

J ijS⃗i · S⃗j; ð1:1Þ

where the summation is made over pairs of atomic spins S⃗i
and where its relativistic generalization (Udvardi et al., 2003)
allows one to evaluate the Dzyaloshinskii-Moriya (DM)

interaction (of vector form D⃗ij)
1 in

HDM ¼
X
hiji

D⃗ij · ðS⃗i × S⃗jÞ: ð1:2Þ

Since this review is focused on methods to evaluate inter-
atomic exchange interactions from electronic structure theory,
a word on the nature of the electron states is relevant. In solids
the electron states producing an atomic spin that is mapped to
describe low-energy excitations by means of Eqs. (1.1)
and (1.2) are traditionally divided into localized electron
states or itinerant Bloch states. Traditionally the Heisenberg
Hamiltonian was adopted primarily for the class of magnetic
materials with localized electron states, but as this review
outlines many investigations have also shown its success for
systems where the electron states are best described as Bloch
states. The key aspect for this success is described in Sec. I B,
which demonstrates that magnetism (and atomic spins) can be
localized in space even though the electronic structure is
completely itinerant. With modern developments in the theory
of electronic structure, it is in fact quite possible to describe
with equal accuracy the electronic structure of localized and
itinerant-electron systems, something we return to later. The
key question is actually a question of not so much localized
versus itinerant-electron states but rather how configuration
dependent the calculated parameters of Eqs. (1.1) and (1.2)
are. This is discussed in Sec. V.
The steps described in this review, which are used to derive

an expression of interatomic exchange interactions, can be
seen as the most robust argument (or derivation) for using the
Heisenberg Hamiltonian (and its generalizations) to analyze
magnetic phenomena, compared to the original argument of
Heisenberg and Dirac (Dirac, 1926; Heisenberg, 1926), who
considered a simple system, that of a two-electron system and
the energy difference between spin-singlet and spin-triplet
states (a derivation that is covered in most work in solid-state
physics). In fact, the connection between electronic structure
information and interatomic exchange interactions pioneered
by Liechtenstein, Katsnelson, and Gubanov (1984) can be
seen as the magnetic parallel to the quantum mechanical
forces that are available from the Hellmann-Feynman theo-
rem. The similarity also extends to their use; the interatomic
exchange interactions can be used for torque minimization to
find a ground-state magnetic configuration similar to the force
minimization to obtain the geometrical minimum of the
nuclear position. In addition, the use of a magnetic torque
for studies of dynamics of magnets [in so-called spin-
dynamics simulations (Antropov et al., 1995)] is completely
analogous to the use of forces for molecular dynamics
simulations. Note that coupled spin-lattice dynamics simu-
lations (Antropov et al., 1995) involving both interatomic

forces and exchange have also been described and used in
practical simulations (Hellsvik et al., 2019).
This review outlines explicit calculations of exchange

parameters, where the term explicit implies that the parameters
are obtained explicitly and directly once the solution to an
electronic structure calculation is obtained (Liechtenstein,
Katsnelson, and Gubanov, 1984, 1985; Liechtenstein et al.,
1987). This can be compared to implicit approaches, where a
Hamiltonian of the form used in Eqs. (1.1) and (1.2) is used to
fit total energies obtained from electronic structure calcula-
tions for a large number of magnetic configurations. A third
method that is frequently employed is to calculate in a DFT
framework the total energies of spin-spiral configurations for
severalwavelengths of the spin spiral. In thiswayone canobtain
information of a reciprocal space representation of the
exchange, and after a Fourier transform the real-space inter-
atomic exchange paramaters are obtained (Kübler et al., 1988;
Mryasov et al., 1991; Sandratskii, 1991, 1998; Halilov et al.,
1998; Sandratskii and Bruno, 2002; Jakobsson et al., 2015).
The implicit, cluster expansion approach and the spin-spiral

approach have both been used with success, but they are
beyond the scope of this review. We do, however, note a few
key references that have outlined the cluster expansion
approach (Drautz and Fähnle, 2004; Singer, Dietermann,
and Fähnle, 2011), and various treatises that have covered
the spin-spiral approach (Kübler et al., 1988; Sandratskii,
1998; Jakobsson et al., 2015). The focus of this review is, as
mentioned, on the explicit method of extracting intra-atomic
exchange directly from a single electronic structure calcu-
lation, and details on how this is done both formally and
practically are presented. We note that the method introduced
by Liechtenstein, Katsnelson, and Gubanov (1984) has its
strengths, in that it is a universal way to calculate exchange
parameters of Eqs. (1.1) and (1.2), in the sense that systems
with or without translation symmetry can be considered and
that alloys and compounds can be treated on an equal footing.
It also offers an orbital decomposition of the interactions that
opens up for symmetry analysis from contributions between
different irreducible representations of the electron states. It is
also an excellent way to investigate general trends of the
exchange interaction.
Note that approaches similar to the one reviewed here for

the calculations of interatomic exchange have been derived
and used with success in other fields of solid-state science.
Examples involve, for instance, the chemical interaction
between atomic species in alloys, in a method referred to
as generalized perturbation theory, first presented by
Ducastelle and Gautier (1976) [for a review see Ruban
et al. (2004)], that is designed to calculate chemical inter-
actions in alloys. We will discuss this method in Sec. X.

A. The early history of magnetism

Before continuing these introductory remarks, we provide a
short expose of the early historical discoveries of magnetic
phenomena. In ancient times it was known that a type of stone
found in northern Greece, close to a place called Magnesia,
could attract iron. Thales of Milet (a Greek philosopher living
in the seventh century BCE) is documented to be aware of the
mysterious and invisible force these stones could have on iron1See Eqs. (3.14) and (3.15) for a more precise generalization.
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(Verschuur, 1996; Mohn, 2006). Other philosophers of the
past that were attracted to the mysterious properties of these
magnetic minerals (later named lodestone, where the magnet-
ism stems from Fe3O4) involve Plinus the Elder and Lucretius,
both of whom were active in the first century CE (Verschuur,
1996). The name of this first discovered magnetic mineral
comes from the Lodestar (the pole star), which leads to (or
marks) the northerly direction (Verschuur, 1996). The first
documented magnetic device used for establishing direction,
the compass, was found in a Chinese manuscript dating from
the 11th century (Mohn, 2006), and it is indeed curious that
this technology is used widely even today, 1000 years later.
Apart from their use in navigation, these first compasses were
used for construction of buildings and their alignment, in the
belief that they would be in harmony with the forces of nature
(Verschuur, 1996).
Other historical breakthroughs in the science of magnetism

and magnetic materials involved Peter Peregrinus (13th
century), who undertook several experiments with lodestone
and discovered that a magnet has poles. He in fact used the
term polus to describe the north and south ends of a magnet
(Verschuur, 1996). Curiously, he is known for the quote,
“experience rather than argument is the basis of certainty in
science,” a principle most natural science lives by today that
he realized over half a millennium ago. Some 300 years after
the investigations of Peregrinus, the first treatise of magnetism
was published by William Gilbert (Verschuur, 1996). In his
book, with a title translated in English as “On the Lodestone
and Magnetic Bodies and on the Great Magnet the Earth; a
New Physiology, Demonstrated by Many Arguments and
Experiments,” he presented, among many things, his greatest
realization, namely, that magnetism could be found to dis-
appear when the material was heated and that Earth itself is
magnetic (Verschuur, 1996).
The final major historical leap in the science of magnetism,

before the development of quantum mechanics, was the
discovery of electromagnetism, one of the greatest discoveries
of the 19th century. This is covered in almost all of the physics
literature and thus is not further discussed here. We note,
however, that, from a practical point of view, several discov-
eries made in the 19th century concerning magnetic materials
now form a firm basis for technologies used to propel our
society. As a concrete example, Faraday’s induction law,
which allows the conversion of mechanical energy to elec-
tricity, is used in all power plants. In addition, the development
of electrical motors, which increasingly becomes a standard
technology for motorized vehicles, has performance based on
the magnetic field strength (Tegus et al., 2002; Gutfleisch
et al., 2011). A final example is that of magnetic refrigeration
and the principle of adiabatic demagnetization, which is
considerably less energy demanding than a compressor-based
technology of cooling (Tegus et al., 2002; Gutfleisch et al.,
2011). Hence, many technologies that rely on magnetic
materials are used in our society, as they are key components
to the economy and to the well-being of household and private
use. The functionality of these technologies is based on the
performance of the magnetic materials that they are con-
structed around. Hence, in a general aim of a more electrified
society, and with an ambition of finding greener technologies
to generate electricity, for instance, in farms of wind power

mills, the search for magnetic materials with tailored proper-
ties has become an active field of science (Tegus et al., 2002;
Gutfleisch et al., 2011).
We end this section with a comment on the coupling of

magnetism and biology. The coupling of magnetism and
living matter have been discussed over the many centuries that
magnetic phenomena have been known. For instance,
Bartholomew the Englishman (13th century) advocated for
its medicinal powers (Verschuur, 1996), and the ideas of Franz
Anton Mesmer (late 18th and early 19th centuries) around
“animal magnetism” have escaped few. Although the ideas of
Mesmer are now regarded as nonsense, the influence of
magnetic fields on biological matter is well established, for
instance, as demonstrated by levitating animals or fruit when
they are subjected to strong magnetic fields.2 It has also been
established that birds use nanoparticles of magnetite (Fe3O4) to
navigate Earth’s magnetic field (Wiltschko et al., 2006). In
addition, it is well known that magnetic materials, again in the
form of magnetite, can be produced by bacteria such as
magnetotactic bacteria, and the bacterium GS-15 is known to
produce magnetite (Snowball, Zillén, and Sandgren, 2002). It
has even been speculated that this is one reason for large
amounts of fine-grained magnetite found in ancient sediments.
Single-domain magnetite produced in this way could then
reveal the magnetic recording of the ancient geomagnetic
field.

B. Magnetic materials and magnetic phenomena

Most elements have for the free atom a pairing of electron
spins due to an intra-atomic exchange interaction among the
electrons. This leads to atomic moments, similar to what is
schematically illustrated in Fig. 1, for almost all elements in
the periodic table, provided that they are isolated atoms. In
solid-state materials things are more complicated since the
spin-pairing energy competes with the kinetic energy, which is
lowest for equal population of spin-up and spin-down elec-
trons. Combined with the fact that band formation of electron
states can make the kinetic energy rather significant, one ends
up with a competition between two mechanisms, one favoring
an equal population of spin states and another favoring spin
pairing and local (or atom-centered) moments. Stoner theory
quantifies this competition and allows one to identify a simple
rule for when magnetic order is expected; see Mohn (2006).
Among most elemental solids, it is in fact the kinetic energy
and band formation that dominate, such that an equal amount
of spin-up and spin-down electron states are populated,
making these materials either Pauli paramagnetic or diamag-
netic. Spontaneous magnetic order occurs for only a limited
number of elements in the periodic table, and at (or just below)
room temperature only four are found to have spontaneous
ferromagnetic (FM) order (bcc Fe, hcp Co, fcc Ni, and hcp
Gd). However, there are thousands of compounds and alloys
that show significant magnetic moments, and there are plenty
of materials to investigate with respect to the many interesting
magnetic phenomena that have been reported.

2As can be seen at https://www.youtube.com/watch?v=A1vyB-
O5i6E.
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One of the more efficient ways to evaluate the delicate
balance between band formation and spin pairing relies on
DFT and the invention of efficient methods for solving the
electronic structure of solids such that measured magnetic
moments can be reproduced with good accuracy. These
calculations are often referred to as ab initio ones, indicating
that they are carried out without experimental input. Results
from ab initio theory are shown in Fig. 2, where a comparison
is made to experimental results for the four previously
mentioned ferromagnetic elements, as well as for the ferro-
magnetic, hexagonal compound Fe2P. This compound has Fe
atoms occupying two distinct crystallographic sites, a tetra-
hedral and an octahedral site, and neutron scattering mea-
surements have revealed that the magnetic moments of these
sites are significantly different. As Fig. 2 shows, ab initio
theory reproduces the measured magnetic moments with good
accuracy. The moments for Fe2P are particularly interesting
since they reveal a delicate balance between band formation
and interatomic exchange energy, resulting in entirely differ-
ent moments for Fe atoms situated on different crystallo-
graphic sites. The results shown in Fig. 2 actually reveal a
rather typical accuracy of theory based on DFT, at least when
it comes to reproducing magnetic moments. Based on 2935
calculations, Huebsch et al. (2021) showed the predictive
power of spin-polarized density functional theory (combined
with cluster-multipole expansion) by reproducing the exper-
imental magnetic configurations with an accuracy of �0.5μB.

Notable difficulties of DFT-based theory are, however, found
for correlated electron systems, where multiconfiguration
effects become important, something that we also discuss
in this review.
Ab initio theory provides another important piece of

information: that provided by the magnetization density.
This is illustrated in Fig. 3 for bcc Fe for a plane inside
the crystal, spanned by vectors parallel to the axis of the
conventional unit cell of the bcc structure. Note that red (dark
gray) coloration indicates high magnetization density, while
blue (light gray) indicates low values for this density. As the
figure shows, the magnetization density is high only in a small
region that is located close to the atomic nuclei of the Fe
atoms. This is a typical result and allows one, for almost all
materials, to describe the magnetic state as being composed of
atom-centered (or atomic) moments, as illustrated in the upper
right of the figure. The results shown in Fig. 3 justify a
discussion based on atomic moments and the different types of
phenomena such moments display. These results also shine a
light on the dynamics of magnetism, and the distinction made
between fast (electrons) and slow (site-dependent magnetiza-
tion directions) variables, illustrating the concept of “tempo-
rarily broken ergodicity,” which was analyzed in detail by
Staunton et al. (1984, 1985) and Gyorffy et al. (1985). This is
the basic principle for performing atomistic spin-dynamics
simulations, as outlined by Eriksson et al. (2017), where the
slow variables evolve under the influence of a local Weiss field.
The inset of Fig. 3 illustrates a specific arrangement of

atomic moments and, as the figure shows, bcc Fe is a
ferromagnet; all atomic moments point in the same direction.
However, for other materials many different orderings of
atomic moments have been reported, including antiferromag-
netism, where every other magnetic moment shown in the
inset of Fig. 3 would have its direction reversed. A majority of
the materials that have finite atomic moments have one of
these two types of collinear magnetic order. However, more
complex magnetic orders exist in nature, where atomic
moments form a noncollinear arrangement; see Kübler
(2017). Among the elements, such order is found predomi-
nantly among the lanthanides (Jensen and Mackintosh, 1991).
As highlighted by the Nobel Prize in Physics 2021, glasslike
phenomena are also found for specific groups of magnetic
materials in which one singular magnetic ground state is never
realized. Instead, the magnetism can be understood to reflect a
multivalley landscape, where many different configurations of
the atomic moments result in similar energies (Snowball,
Zillén, and Sandgren, 2002). Thermal fluctuations can make
the system drift from one configuration to the next, and aging
phenomena are a fingerprint of spin glasses. Dilute alloys
[such as Mn impurities in a Cu matrix (Cannella and Mydosh,
1972)] and, more recently, elemental Nd (Kamber et al., 2020;
Verlhac et al., 2022) are known spin glass systems.
Each class of magnetic materials has its own characteristic in

terms of ground-state properties aswell as fingerprints revealing
its excited state. This involves quasiparticle properties of the
collective excitations, referred to as magnons [see Mohn
(2006)], the temperature dependence of the magnetic state,
the value of the ordering temperature, and the critical exponents
used to characterize second-order phase transitions when the
magnetic state vanishes with temperature. Many (if not all) of

FIG. 2. Comparison between measured magnetic spin moments
and results obtained from theoretical calculations based on DFT.
Data are given in μB per atom. Data from Eriksson et al. (2017).

FIG. 3. Magnetization density of bcc Fe from theoretical
calculations based on DFT. Adapted from Eriksson et al., 2017.
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these phenomena are typically analyzed using Eqs. (1.1)
[and (1.2)], and different forms of Heisenberg exchange
interactions have been discussed to be responsible for the
widespread list of magnetic properties found in nature. As
reviewed here, this involves direct exchanges, super and double
exchanges, Rudderman-Kittel-Kasuya-Yosida (RKKY) inter-
actions, and interlayer exchanges. In these investigations the
dimensionality of the magnetic material is a natural component
of the analysis, and the celebrated Mermin-Wagner theorem
describes the connection between dimensionality and finite
temperature effects of spontaneously broken symmetries of
magnets; see Mermin and Wagner (1966), Chakravarty,
Halperin, and Nelson (1989), Irkhin, Katanin, and
Katsnelson (1999), and Ruelle (1999).

C. Recent trends in magnetism

Recent trends in magnetism have often focused on systems
in the nanoscale. This relates, for instance, to magnetic
multilayers and trilayers, where perhaps the most celebrated
finding is the giant magnetoresistance effect and its applica-
tions for sensors (Baibich et al., 1988; Binasch et al., 1989).
Most applications in magnetic information storage currently
rely on sensors based on the tunneling magnetoresistance
effect (Bowen et al., 2001), where the use of MgO as an
optimal tunneling layer was predicted (Butler, 1985) by
ab initio theory before experimental verification. These
investigations have focused on systems that are confined to
one dimension, and thin-film physics has been reviewed in
many works on magnetism (Stöhr and Siegmann, 2006;
Kübler, 2017). Such studies of quasi-two-dimensional sys-
tems have now been expanded to focus on topological
magnetic states (such as skyrmions, merons, and hopfions)
(Belavin and Polyakov, 1975) as well as investigations of
purely 2D materials. The latter class is particularly interesting
given its strong influence on geometrical dimensionality and
magnetism, as stated by the Mermin-Wagner theorem.
However, Cr trihalides have been synthesized and their
magnetic properties are by now well known (Huang et al.,
2017). Other aspects of magnetism that are currently under
investigation are coupled to questions about ultrafast dynam-
ics, pioneered by Beaurepaire et al. (1996), as well as
magnonics (Kruglyak, Demokritov, and Grundler, 2010)
and spintronics (Wolf et al., 2001). As a final remark in this
section, we note the recent interest in spin-ice (Bramwell and
Gingras, 2001) and spin-liquid states (Norman, 2016), as well
as the so-called Kitaev systems (Kitaev, 2006).

D. Early theories of interatomic exchange

This review has as its starting point the work of
Liechtenstein, Katsnelson, and Gubanov (1984), but it is
clear that the work by Liechtenstein, Katsnelson, and
Gubanov (1984) overlapped with earlier works that also
attempted to find a formalism that allows one to extract
interatomic exchange from information given by ab initio
electronic structure theory. We specifically mention the early
work of Oguchi, Terakura, and Hamada (1983) and Oguchi,
Terakura, and Williams (1983), who presented a similar but
not identical method. In this work an approach was used in

which the magnetic moments were rotated by 180° in order to
extract the exchange interaction strength, instead of the use of
infinitesimally small rotations, which is the essence of the
work in Liechtenstein, Katsnelson, and Gubanov (1984). The
results of Oguchi, Terakura, and Hamada (1983) and Oguchi,
Terakura, and Williams (1983) were in fact similar to earlier
work by Inoue and Moriya (1967) and Lacour-Gayet and
Cyrot (1974). We also mention here the early work of Gyorffy
and Stocks (1980) and Liu (1961), which inspired the work of
Liechtenstein, Katsnelson, and Gubanov (1984) and an early
work of Wang, Prange, and Korenman (1982), who studied
fluctuating local band theory of itinerant-electron ferromag-
netism in nickel and iron.
Note also that exchange interactions in solids have a

bearing on many phenomena and theories of magnetism that,
due to space limitations, cannot be fully covered here. For
instance, spin-fluctuation theories have been used with great
success to analyze excited-state properties of magnetic solids,
including the temperature dependence of magnetism, suscep-
tibility, and specific heat; see Mohn (2006). These theories are
typically connected to Landau or Ginzburg-Landau theories,
which are not the topic of this review, since they have already
been covered thoroughly in the literature (White and Bayne,
1983; Mohn, 2006; Stöhr and Siegmann, 2006; Kübler, 2017).

E. Comment on nomenclature

Before discussing the main results of this review, we
comment on the form of the Hamiltonian used in this text.
In the derivations and the examples given, we use the
following expressions:

HH ¼
X
hiji

Jije⃗i · e⃗j ð1:3Þ

and

HDM ¼
X
hiji

D⃗ij · ðe⃗i × e⃗jÞ; ð1:4Þ

where e⃗i is a unit vector describing the direction of the
magnetic moment of the atom at site i. In this review we refer
to the interaction parameters in Eq. (1.3) either as interatomic
exchange or as Heisenberg exchange (Jij) and the DM

interaction (D⃗ij), or simply as the Jij’s or D⃗ij’s. Note also
that the definition of the interatomic energy used in this work
is with a plus sign in front of the summations in Eq. (1.3),
where the summation is made over pairs of atoms hiji. One
sometimes uses a slightly different notation in which the
summation is made such that i ≠ j, but the indices i and j run
over all atoms considered in a calculation. In this case a factor
1=2 appears in front of the summations in Eq. (1.3) to ensure
that each pair interaction is calculated only once. Some choose
to use a minus sign in front of Eq. (1.3). We also note that in
the derivation of the interatomic exchange formula a sum
where the local interaction i ¼ j is also considered will be
temporally needed, as shown in Eq. (5.53). In Sec. VII, where
results of exchange parameters are given, the numerical values
(in the main text and also in the figures) are consistent with the
nomenclature given by Eq. (1.3).
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A comparison between Eqs. (1.1) and (1.3) gives the result
that Jij ¼ J ijSiSj, where Si and Sj stand for the lengths of the

vectors S⃗i and S⃗j. Similarly, we obtain that D⃗ij ¼ D⃗ijSiSj.
This distinction is important when one compares interactions
obtained from different theoretical methods and experiments.
The different forms of Eqs. (1.1) and (1.3) [and between
Eqs. (1.2) and (1.4)] also allows an important distinction
between quantum and classical spin Hamiltonians. We adopt
here the nomenclature that Eqs. (1.3) and (1.4) allow for
infinitesimal rotations of the direction of an atomic moment,
and hence e⃗i can be treated as a classical vector. This differs

from approaches when S⃗i [as in Eqs. (1.1) and (1.2)] is
considered as a quantum mechanical operator. The latter is
preferable from a formal point of view, but it is in many cases
impractical. In fact, all material specific examples given in this
review make use of Eqs. (1.3) and (1.4). Here we describe
magnetic fields that are expressed in energy units. In other

words, we consider a magnetic field as B⃗ ¼ ð1=2ÞgμB ⃗B̃,
where B̃ is measured in tesla, μB is the Bohr magneton,
and g equals approximately −2 for electrons. Note also that we
use bold symbols here for vectors in real and reciprocal space,
while symbols with an arrow denote vectors in spin space.
Finally, note that we the dot symbol when components of a
vector or a tensor are contracted (summed over), for instance,

A⃗ · B⃗ ¼PμA
μBμ or D⃗ · C · E⃗ ¼PμνD

μCμνEν, the cross
symbol is used for a cross product (or vector product), and
the star symbol is used when an equation continues on a
new line.

II. LINEAR RESPONSE THEORY OF THE
SUSCEPTIBILITY

In this review we present a description of magnetic
interactions of many-electron systems via the separation of
specific spin degrees of freedom (roughly, directions of
localized magnetic moments) from a complete quantum
description of all properties of the system starting with the
Schrödinger equation. This cannot be done without approxi-
mations, due to a presence of strong interelectron interactions.
Nevertheless, it makes sense to start with a formally rigorous
scheme and then introduce these approximations step by step,
something that we do here.
For equilibrium properties, there are two main practical

schemes: density functional theory (DFT) based on the
Hohenberg-Kohn theorem (Hohenberg and Kohn, 1964) with
the associated Kohn-Sham quasiparticles (Kohn and Sham,
1965) and a Green’s function formalism based on the
Luttinger-Ward generating functional (Luttinger and Ward,
1960; Hedin, 1965a). Spin dynamics deal with out-of-
equilibrium properties, and both of these main techniques
can be generalized for this case. For the Green’s function
functional, this was done in the most general form by Baym
and Kadanoff (1961) but in reality this method does not have
any applications to the properties of real materials, since it is
computationally too demanding. Only in model systems has
there been any real progress (Aoki et al., 2014). Since we are
focused on the applications to real materials connecting

calculated results to experimental observations, we do not
consider time-dependent Green’s function functionals here.
On the other hand, the time-dependent generalization of

density functional theory has been realized. It is based on the
Runge-Gross theorem (Runge and Gross, 1984) and its
generalization to spin-polarized calculations (Liu and
Vosko, 1989). There are numerous examples of time-
dependent density functional theory (TDDFT) having been
applied to specific magnetic materials (Cooke, Blackman, and
Morgan, 1985; Savrasov, 1998; Sharma et al., 2007; Buczek,
Ernst, and Sandratskii, 2011; Gorni, Timrov, and Baroni,
2018; Singh et al., 2019). In principle, if one knows the exact
time-dependent density functional and, in particular, the so-
called exchange-correlation kernel (Runge and Gross, 1984),
one can calculate the dynamical magnetic susceptibility and
find the spin-wave spectrum as the poles of the dynamical
susceptibility. A fitting of exchange parameters could even be
done to the calculated spectrum. This method would be
formally exact, but not practical, at least at this stage, since
the successes in building of reliable expressions for the
exchange-correlation kernel are still highly restrictive [note,
however, that the first attempts have been made (Thiele,
Gross, and Kümmel, 2008; Castro, Werschnik, and Gross,
2012)]. To proceed with practical calculations, we introduce
an approximation, that is, the so-called adiabatic approximation
(ADA) within TDDFT. According to this approximation, the
exchange-correlation kernel is equal to its equilibrium form.
This is a significant simplification. Indeed, whereas the full
exchange-correlation kernel depends on two times, in the
adiabatic approximation it depends on only one time, via the
time dependence of the charge and spin densities only.After this
approximation is made, one can proceed to the final expression
for the exchange parameters (Katsnelson and Lichtenstein,
2004). We follow this derivation here, which generalizes earlier
theories (Callaway, Wang, and Laurent, 1981).
We proceed with the master equation of density functional

theory, theKohn-Shamequation,which has the formof a single-
particle Schrödinger equation. Within the self-consistent
ADA-TDDFT approximation, it has the form

i
∂ψ

∂t
¼ Hψ ;

H ¼ −∇2 þ VðrÞ − ½B⃗xcðrÞ þ B⃗extðrÞ� · σ⃗; ð2:1Þ

whereVðrÞ is the effective potential, B⃗extðrÞ and B⃗xcðrÞ are the
external magnetic field and the exchange-correlation field,
respectively, that couple to the electrons spin, and σ⃗ stands for
the Pauli spin matrices fσx; σy; σzg. Note that we adopt the
original formulation of density functional theory, which was
composed at T ¼ 0. The work of Mermin (1965) and
subsequent other work (Eschrig, 2010; Pittalis et al.,
2011), showed that the power of density functional theory
also extends to finite temperature. However, for the purposes
of this review, it is sufficient to adopt the original formulation
of density functional theory. Note also that Rydberg units are
used here: ℏ ¼ 2m ¼ e2=2 ¼ 1.
Next we employ the adiabatic approximation while assum-

ing that the functional dependencies of the exchange-
correlation potential, and hence the field of the charge and
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spin density, are the same as in the stationary case. In the local-
spin-density approximation (LSDA) the effective potential
depends on the values of charge and spin densities at the same
spatial and temporal point only,

VðrÞ ¼ VextðrÞ þ
Z

dr0
nðr0Þ
jr − r0j þ

∂

∂n
½nεxc�;

B⃗xcðrÞ ¼ −
m⃗
m

∂

∂m
½nεxc�; ð2:2Þ

where nðrÞ and m⃗ðrÞ are the charge and spin density, mðrÞ is
the magnitude of m⃗ðrÞ, εxc is the exchange-correlation energy
density, and VextðrÞ is the external potential, that is, the
electrostatic potential of the nuclei. Note that the spin-orbit
interaction is considered later in the review. We also note that
in the previous expressions we have, in some places, omitted
for simplicity the spatial argument r that is present in all
variables in Eq. (2.2). In some of the following equations, we
also adopt this simplifying notation.
The spin susceptibility that we are interested in is the

linear-response function; therefore, we consider the limit
B⃗extðrÞ → 0. The effective complete “nonequilibrium” field
contains both an external field and an additional exchange-
correlation field due to redistribution of the spin density. The
variation in this field can be expressed as

δBα
tot ¼ δBα

ext þ
δBα

xc

δmβ δm
β; ð2:3Þ

where αβ are Cartesian indices and a sum over repeated
indices is assumed.
The exact, nonlocal, frequency-dependent spin susceptibil-

ity χ̂αβ is the kernel of the operator that connects the variation
of the spin density and the external magnetic field,

δmα ¼ χ̂αβδBβ
ext: ð2:4Þ

We use here the standard definition of the operator product,

ðχ̂φÞðrÞ ¼
Z

dr0χðr; r0Þφðr0Þ: ð2:5Þ

A parallel consideration for the calculation of the spin
susceptibility follows from the Runge-Gross theorem
(Runge and Gross, 1984) and its generalization to the spin-
polarized case (Liu and Vosko, 1989), where in the time-
dependent density functional theory one has the exact relation

δmα ¼ χ̂αβ0 δBβ
tot; ð2:6Þ

where χ̂αβ0 is the susceptibility of an auxiliary system of one-
electron Kohn-Sham particles. Comparing Eqs. (2.3), (2.4),
and (2.6), we arrive at the result in which

χ̂αβ ¼ χ̂αβ0 þ χ̂αγ0
δBγ

xc

δmδ χ̂
δβ; ð2:7Þ

which is a particular case of the Bethe-Salpeter equation
(Salpeter and Bethe, 1951), with δBγ

xc=δmδ playing the role
of the vertex Γ. Note that this equation turns out to be formally
exact within ADA TDDFT. Actually, even if one does not
assume the local-spin-density approximation, Eq. (2.7) is still
exact, but the vertex Γ is then not local in spatial coordinates.

The adiabatic approximation, however, assumes its locality
in time.
The local-spin-density approximation (2.2) leads to further

simplifications. Indeed, one then obtains

δBγ
xc

δmδ ¼ Bxc

m

�
δγδ −

mγmδ

m2

�
þmγmδ

m2

∂Bxc

∂m
; ð2:8Þ

where the first term is purely transverse and the second one is
purely longitudinal with respect to the local magnetization
density (or the local magnetic moment) and Bxc is the length
of B⃗xc.
As a next simplification, we restrict ourselves to the case of

collinear magnetic ground states with moments along the
z direction. Thus, the coupling between the longitudinal
and transverse components of the magnetic susceptibility
vanishes. For the transverse spin susceptibility, which is
commonly denoted by χþ− and depends on the frequency
ω, we have the following simple expression:

χþ−ðr; r0;ωÞ ¼ χþ−
0 ðr; r0;ωÞ

þ
Z

dr00χþ−
0 ðr; r00;ωÞIxcðr00Þχþ−ðr00; r0;ωÞ;

ð2:9Þ
where

Ixc ¼
2Bxc

m
ð2:10Þ

is an exchange correlation Stoner (or Hund) interaction. This
is the standard random phase approximation (RPA) equation
for the transverse susceptibility written for the spatially
inhomogeneous case. This follows directly from the adiabatic
local spin-density approximations of TDDFT without any
further assumptions. The magnetic and charge electron
densities, as well as the bare magnetic susceptibility, are
related to the Kohn-Sham states in the usual way,

m ¼
X
μσ

σfμσjψμσðrÞj2; ð2:11Þ

n ¼
X
μσ

fμσjψμσðrÞj2; ð2:12Þ

and

χþ−
0 ðr;r0;ωÞ¼

X
μν

fμ↑−fν↓
ω− εμ↑þ εν↓

ψ�
μ↑ðrÞψν↓ðrÞψ�

ν↓ðr0)ψμ↑ðr0):

ð2:13Þ
In Eqs. (2.11),(2.12),(2.13), ψμσ and εμσ are eigenstates and
eigenenergies for the following time-independent Kohn-Sham
equation:

ðH0 − σBxcÞψμσ ¼ εμσψμσ;

H0 ¼ −∇2 þ VðrÞ: ð2:14Þ
In Eq. (2.14) σ (without a vector symbol) stands for the spin
index �1 ¼ ↑↓, fμσ ¼ fðεμσÞ is the Fermi distribution
function, and μ labels the Kohn-Sham states.
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The same approach leads to expressions for the longitudinal
spin susceptibility, which turns out to be coupled to the charge
density. Since these expressions are not necessary for the
derivation of the values of the exchange parameters, we do not
show them here but instead refer the interested reader to
Katsnelson and Lichtenstein (2004).
Further transformations are needed to make the expressions

for the spin-wave spectrum more explicit. When substituting
Eq. (2.10) into Eq. (2.9), we have the product of the exchange-
correlation field and wave functions. According to Eq. (2.14),
this can be transformed as

2Bxcψμ↑ψ
�
ν↓ ¼ ðεν↓ − εμ↑Þψ�

ν↓ψμ↑

þ ∇ðψμ↑∇ψ�
ν↓ − ψ�

ν↓∇ψμ↑Þ: ð2:15Þ

Substituting Eq. (2.15) into Eq. (2.13), one has

2ðχþ−
0 BxcÞðr;r0;ωÞ¼mðrÞδðr− r0)−ωχþ−

0 ðr;r0;ωÞ; ð2:16Þ

where we have used the completeness conditionX
μ

ψ�
μσðrÞψμσðr0Þ ¼ δðr − r0Þ: ð2:17Þ

Substituting Eq. (2.16) into Eq. (2.9), we can transform the
latter expression to the following form:

χ̂þ− ¼ χ̂þ−
0 þ χ̂þ−

0

2Bxc

m
χ̂þ−

¼ χ̂þ−
0 þ χ̂þ− − ωχ̂þ−

0

1

m
χ̂þ− þ Λ̂

m
χ̂þ− ð2:18Þ

or, equivalently,

χ̂þ− ¼ m½ω − ð bχ0þ−Þ−1Λ̂�−1; ð2:19Þ

where

Λðr;r0;ωÞ¼
X
μν

fμ↑−fν↓
ω−εμ↑þεν↓

ψ�
μ↑ðrÞψν↓ðrÞ

⋆∇½ψμ↑ðr0)∇ψ�
ν↓ðr0)−ψ�

ν↓ðr0)∇ψμ↑ðr0)�: ð2:20Þ

Using Eqs. (2.13) and (2.19), we come to the final expression

χ̂þ− ¼ ðmþ Λ̂Þðω − IxcΛ̂Þ−1: ð2:21Þ

We emphasize that the transformation from Eq. (2.9) to
Eq. (2.21) is exact. The latter, however, is more convenient
for studying the magnon spectrum.
The susceptibility expressed in Eq. (2.21) has poles at the

condition

ω ¼ Ωðr; r0;ωÞ≡ IxcΛðr; r0;ωÞ: ð2:22Þ

Solutions to Eq. (2.22) allow us to find a real-valued
expression for the magnon spectrum. The imaginary part of
Ω describes Stoner damping of magnons that appear in metals.
Note that there are many practical calculations of exchange

interactions and magnon dispersion of real material using the
dynamical susceptibility (Callaway, Wang, and Laurent, 1981;
Cooke, Blackman, and Morgan, 1985; Savrasov, 1998; Muniz
and Mills, 2002; Costa, Muniz, and Mills, 2005; Lounis et al.,
2010; Belozerov, Katanin, and Anisimov, 2017; Gorni,
Timrov, and Baroni, 2018; Ke and Katsnelson, 2021).
The last step we describe in this section, which allows a

crucial result, is to restore effective exchange integrals from
Eq. (2.19). This procedure cannot be made in a unique way;
there are at least two different definitions of exchange
integrals and both are reasonable, although not identical.
We can first try to fit interatomic exchange parameters to

the poles of the susceptibility, that is, to the magnon spectrum.
To do this explicitly, we need more transformations.
Substituting Eq. (2.15) into Eq. (2.20), one obtains

Λðr;r0;ωÞ¼
X
μν

fμ↑−fν↓
ω− εμ↑þ εν↓

⋆ψ�
μ↑ðrÞψν↓½2Bxcðr0Þ− εν↓þ εμ↑�ψ�

ν↓ðr0Þψμ↑ðr0Þ:
ð2:23Þ

Therefore, one can write

Ωðr; r0;ωÞ ¼ 4

mðrÞ Jðr; r
0;ωÞ þ IxcðrÞ

X
μν

fμ↑ − fν↓
ω − εμ↑ þ εν↓

⋆ ðεμ↑ − εν↓Þψ�
μ↑ðrÞψν↓ðrÞψ�

ν↓ðr0Þψμ↑ðr0Þ:
ð2:24Þ

It is reasonable to identify the quantity

Jðr; r0;ωÞ ¼
X
μν

fμ↑ − fν↓
ω − εμ↑ þ εν↓

⋆ ψ�
μ↑ðrÞBxcðrÞψν↓ðrÞψ�

ν↓ðr0ÞBxcðr0Þψμ↑ðr0Þ
ð2:25Þ

as frequency-dependent interatomic exchange parameters. If
one sets ω ¼ 0 in Eq. (2.25), one arrives at RKKY-type
indirect interactions (Vonsovskii, 1974; Yosida, 1996). As
later shown, Eqs. (2.23),(2.24),(2.25) are exactly equivalent to
the expressions given by Liechtenstein, Katsnelson,
and Gubanov (1984), Liechtenstein et al. (1987), and
Liechtenstein, Anisimov, and Zaanen (1995). In fact,
Eqs. (2.23),(2.24),(2.25) are more general, since they do
not assume a rigid-moment approximation and they take into
account the full coordinate dependence of the wave functions.
Using Eq. (2.17), one can also show that

Ωðr; r0; 0Þ ¼ 4

mðrÞ Jðr; r
0; 0Þ − 2BxcðrÞδðr − r0Þ: ð2:26Þ

The other way to evaluate interatomic exchange inter-
actions is to connect exchange parameters to the energy of
spin-spiral configurations, that is, with the static magnetic
susceptibility χ̂þ−ð0Þ. This can be rewritten as

χ̂þ−ð0Þ ¼ mðΩ̂−1 − 1
2
B−1
xc Þ; ð2:27Þ

Attila Szilva et al.: Quantitative theory of magnetic interactions …

Rev. Mod. Phys., Vol. 95, No. 3, July–September 2023 035004-9



which corresponds to the renormalized spin-wave energy

ˆ̃Ω ¼ Ω̂ð1 − 1
2
B−1
xc Ω̂Þ−1: ð2:28Þ

Note that Eq. (2.28) corresponds to the definition of exchange
parameters in terms of the energy of static spin configurations
(Szczech, Tusch, and Logan, 1998; Antropov, 2003; Bruno,
2003). As we later show, this corresponds to the exchange
parameters of Liechtenstein, Katsnelson, and Gubanov
(1984), Liechtenstein et al. (1987), and Liechtenstein,
Anisimov, and Zaanen (1995), normalized by taking into
account constraints of the density functional (Bruno, 2003).
Thus, strictly speaking, one cannot map the density func-

tional susceptibility onto an effective Heisenberg model with
interatomic exchange parameters in a unique way. The formal
reason is the renormalization of the numerator, that is, the
residue of the susceptibility at the magnon pole in Eq. (2.21).
There are, however, two important limits where this difference
disappears.
First, if we pass to the Fourier representation with the wave

vector q and consider the limit q → 0, then, due to the
Goldstone theorem (Ω → 0), the renormalizationof themagnon
spectrum (2.28) disappears. This means that the expression for
the spin-wave stiffness constant (Liechtenstein,Katsnelson, and
Gubanov, 1984) determiningmagnon spectrumatq → 0 iswell
defined and exact within the local-spin-density approximation.
Second, if typical magnon energies are much smaller than the
Stoner splitting, B−1

xc Ω̂ is small and the two definitions of
exchange integrals coincide. This corresponds to an adiabatic
approximation for magnons (note that magnon energies are
much smaller than typical electron energies) that should be
clearly distinguished from the adiabatic approximation in the
sense of TDDFT. This is the case where the mapping of a full
quantum mechanical description to the effective spin model is
possible. In the remainder of the review, we focus on this case.
In Fig. 4 we highlight the results of Wan, Yin, and Savrasov

(2006) using the expressions for the previously discussed
exchange parameters. The figure shows results of a calculation
for NiO and, after performing a Fourier transform from real
space Jðr; r0Þ from Eq. (2.25) to reciprocal space JðqÞ, the

magnon dispersion was calculated. Figure 4 also shows
experimental data, and one can see that the agreement between
observation and calculation is satisfactory if the correct level
of approximation is used for solving the Kohn-Sham equa-
tion (2.1). For NiO dynamical mean-field theory, LDAþ U,
where LDA stands for local-density approximation, and
the Hubbard 1 approximation are both found to reproduce
experiments reasonably well. This is further discussed in
Sec. VII.

III. MAPPING ELECTRONIC ENERGIES TO AN
EFFECTIVE SPIN HAMILTONIAN

In Sec. I we mentioned the central aspect of this review: to
extract from calculations of the electronic structure parameters
that accurately describe magnetic excitations. In this section
we outline the basic principles of a method to do this, as was
originally proposed by Liechtenstein, Katsnelson, and
Gubanov (1984). A more detailed description of this method,
with an extension for noncollinear spin systems when spin-
orbit coupling (SOC) is also considered, will be presented in
Sec. V. We emphasize that unless explicitly stated, we are
concerned only with parameters that describe the coupling
between spin moments. We start with a section that contains
the essential aspect of Liechtenstein, Katsnelson, and
Gubanov (1984) and Liechtenstein et al. (1987), which
involves how to connect changes of the energy of a spin
Hamiltonian [such as that in Eq. (1.1)] with changes of the
grand canonical potential that contains energies of the
electronic subsystem.

A. Basic assumptions

We start by making a central assumption: that it is possible
to identify well-defined regions of a material where the
magnetization density is more or less unidirectional and
sizable only close to an atomic nucleus. This implies the
existence of local atomic magnetic moments (atomic spins), as
illustrated in Fig. 3, with ferromagnetic, antiferromagnetic
(AFM), or noncollinear interactions between atomic spin
moments. As discussed in connection with Fig. 3, few if
any materials are not accurately described in this way.
An atomic spin moment is chosen here to be described with

a direction e⃗i quantified as

e⃗i ¼ ( sinðθiÞ cosðϕiÞ; sinðθiÞ sinðϕiÞ; cosðθiÞ); ð3:1Þ

where θi and ϕi stand for the polar and azimuthal angles,
respectively, of the atomic spin moment at site i. The rigid-
spin approximation (Phariseau and Gyorffy, 2012) is also
assumed, where upon rotation of atomic spins the length is not
changed.
The method employed by Liechtenstein, Katsnelson, and

Gubanov (1984) is an explicit method for calculations of
interatomic exchange interactions that relies on a formalism of
the Green’s function of the electronic subsystem (Gyorffy
et al., 1985; Kübler, 2017). The basic idea is that an effective
spin Hamiltonian accurately describes the energy of different
atomic spin configurations that are close to the magnetic
ground state. We later refer to the energy of the spin

FIG. 4. Calculated and measured magnon dispersion of NiO.
Note that several levels of approximation for the theory are shown
(solid lines) together with experiments (solid circles). Adapted
from Wan, Yin, and Savrasov, 2006.
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Hamiltonian as H, and one must make sure that the variation
ofH, when the spin configuration is modified slightly, closely
follows the changes of the true total energy (the later described
grand canonical potential Ω) provided by the electronic
subsystem. This then allows us to map energies of the electron
subsystem, as provided by, for instance, density functional
theory, to energies of an effective spin Hamiltonian, as given
in Eq. (1.1). Practically, this mapping is based on the magnetic
force theorem, which states that the variation of total energy of
the electronic subsystem can be expressed in terms of
variations only of occupied single-particle energies
(Andersen et al., 1980; Mackintosh and Andersen, 1980;
Methfessel and Kübler, 1982; Liechtenstein, Katsnelson, and
Gubanov, 1984). Recently a comparison of different mapping
procedures for calculation of exchange interactions in various
classes of magnetic materials was presented by Solovyev
(2021). More details on the argumentation and its extension
for correlated systems are discussed in Secs. VA and V K,
respectively.

B. The mapping scheme

In making the mapping between energies of the spin
Hamiltonian and energies of the electronic subsystem, one
considers as a reference state the atomic spin arrangement of
the ground state with the energy H. The orientation of one
atomic spin moment, at site i, is then rotated at an infinitesi-
mally small angle, keeping the length of the spin vector
conserved; see Fig. 5. The variation of the direction of the spin
due to this rotation is denoted δe⃗i, and the new direction of the
perturbed spin can be written as

e⃗0i → e⃗i þ δe⃗i: ð3:2Þ
The energy of this system, which can be seen as having a small
perturbation from the ground state, can be written as
H0 ¼ H0ðδe⃗iÞ, where

H0 ¼ Hþ δHone
i : ð3:3Þ

As a second step, one considers a system with two atomic spin
moments rotated, at the sites i and j. One can then express the
energy of this spin arrangement as

H00 ¼ Hþ δHone
i þ δHone

j þ δHtwo
ij ; ð3:4Þ

where H00 ¼ H00ðδe⃗i; δe⃗jÞ stands for the energy of a spin
system with two atomic moments rotated an infinitesimal
amount; see Fig. 6.
One can assume that the same procedure can be done for the

grand canonical potential variation of the electronic system,
where the value of the single-site rotated system is

Ω0 ¼ Ωþ δΩone
i ð3:5Þ

and the value of the two-site rotated system is

Ω00 ¼ Ωþ δΩone
i þ δΩone

j þ δΩtwo
ij : ð3:6Þ

The next step is to derive explicit expressions for both
δΩone

i and δΩtwo
ij and to make a comparison with δHone

i and
δHtwo

ij , respectively. The limit when the SOC is neglected and
the spins are arranged collinearly along a global quantization
axis (for instance, the z direction) is referred to here as
the Liechtenstein-Katsnelson-Antropov-Gubanov (LKAG)
limit (Liechtenstein, Katsnelson, and Gubanov, 1984;
Liechtenstein et al., 1987). A typical case for a small
deviation from the collinear state with atomic moments
along the z axis considered here is δe⃗i ≃ (δθi; 0;−1=2ðδθiÞ2).

C. Excitation of the spin model

The classical Heisenberg spin Hamiltonian was introduced
in Eq. (1.3). As shown in Fig. 5, we first derive the one-site
spin rotation variation δHone

H;i . We denote the nonperturbed
spin configuration by the set of fe⃗lg vectors and a perturbed
system by the set of fe⃗l þ δilδe⃗ig, where δe⃗i stands for an
infinitesimal variation of the spin direction due to a rotation at
site i with the angle δθi. One then finds that

H0
H ¼

X
hlki

Jlkðe⃗l þ δilδe⃗iÞ · ðe⃗k þ δikδe⃗iÞ

¼ HH þ 1
2

X
lð≠iÞ

Jlie⃗l · δe⃗i þ 1
2

X
kð≠iÞ

Jikδe⃗i · e⃗k; ð3:7Þ

FIG. 5. Schematic for the one-site spin rotation when the
unperturbed system is collinear and ferromagnetic. An atomic
spin at site i is rotated with an infinitesimal vector δe⃗i. This
process costs the energy δHone

i due to the fact that the spin
interacts with every other spin in the rest of the spin system.

FIG. 6. Schematic for the two-site spin rotation when the
unperturbed system is collinear, ferromagnetic. Atomic spins
at sites i and j are rotated with the infinitesimal vector δe⃗i
and δe⃗j, respectively. This process costs the energy
δHone

i þ δHone
j þ δHtwo

ij , where δHone
i and δHone

j stand for the
energy cost of a one-site rotation (shown in Fig. 5), while the
interacting term δHtwo

ii (see the text) characterizes the exchange
energy between the spins located at sites i and j.
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where the origin of the factor of 1=2 is as explained in Sec. I E.
Note that Eq. (3.7) can be simplified to describe the energy
gain due to the rotation as

δHone
H;i ¼

X
lð≠iÞ

Jlie⃗l · δe⃗i ð3:8Þ

since the interaction is symmetric: Jil ¼ Jli. This means that
the energy variation of the one-site spin rotation is an energy
cost resulting from the interaction of the rotated spin and its
environment formed by the nonrotated spins, as shown
in Fig. 5.
If the nonperturbed configuration is now collinear ferro-

magnetic, i.e., fe⃗jg ¼ fð0; 0; 1Þg for all j in the spin system
with the energy HH, one obtains e⃗j · δe⃗i ¼ δezi , which is
proportional to cos δθi − 1, i.e., approximately proportional to
−ð1=2ÞðδθiÞ2. Therefore, in the ferromagnetic limit, one can
demonstrate that

δHone
H;i ≃ −1

2

X
jð≠iÞ

JjiðδθiÞ2: ð3:9Þ

Next we simultaneously rotate two spins at sites i and jwith
δθi and δθj, respectively. As shown in Fig. 6, the perturbed
system for the two-site spin rotation is given by the set of
fe⃗l þ δilδe⃗i þ δjlδe⃗jg and its energy is

H00
H ¼ HH þ δHone

H;i þ δHone
H;j þ Jijδe⃗i · δe⃗j: ð3:10Þ

Comparing Eq. (3.10) to Eq. (3.4), we obtain3

δHtwo
H;ij ¼ Jijδe⃗i · δe⃗j: ð3:11Þ

In the LKAG limit when δe⃗i ¼ ðδθi; 0; 0Þ, δe⃗j ¼ ðδθj; 0; 0Þ,
and δθi ¼ −δθj ¼ δθ, i.e., the spins are rotated in the opposite
directions, it can be shown that

δHtwo
H;ij ¼ Jijδθiδθj ¼ −JijðδθÞ2: ð3:12Þ

One can in a more general way consider a spin Hamiltonian
with a tensorial coupling between the spins as follows:

HT ¼
X
hiji

e⃗i · Jij · e⃗j; ð3:13Þ

where Jij ¼ fJμνij ; μ; ν ∈ fx; y; zgg. This is needed even in a
collinear system when SOC is present (Udvardi et al., 2003).
Note that HT can be rewritten as

HT ¼ HH þHanis þHDM; ð3:14Þ
where

Hanis ¼
X
hiji

e⃗i ·Aij · e⃗j ð3:15Þ

is the symmetric anisotropic interaction tensor and HH and
HDM were introduced in Eqs. (1.3) and (1.4), respectively.
More precisely, the 3 × 3 tensorial interaction is given by

Jij ¼

0B@ Jij þ Axx
ij Dz

ij þ Axy
ij −Dy

ij þ Axz
ij

−Dz
ij þ Axy

ij Jij þ Ayy
ij Dx

ij þ Ayz
ij

Dy
ij þ Azx

ij −Dx
ij þ Ayz

ij Jij þ Azz
ij

1CA: ð3:16Þ

Such a 3 × 3 tensor can be decomposed by symmetry
into three independent tensor terms; a symmetric scalar or
rank 0 S, an asymmetric vector or rank 1 V , and a symmetric
rank 2 tensor term T , respectively. These are defined as

S ¼ 1
3
TrJ; ð3:17Þ

V ¼ D⃗; ð3:18Þ

T ¼ A − 1
3
TrA: ð3:19Þ

While we have referred to the Heisenberg interaction as the
term where the explicit magnetic interaction is a scalar, there is
an alternative view that the Heisenberg interaction is an
interaction that effectively is a scalar, i.e., S. This approach
ensures that the other interactions are traceless. This means
that the Dzyaloshinskii-Moryia interaction is unique, but the
exact Heisenberg and second rank tensor are matters of
choice.
The one- and two-site energy variations ofHT can be given

as the sum of the variations of HH, Hanis, and HDM, i.e.,

δHone
T;i ¼

X
jð≠iÞ

½Jijδe⃗i · e⃗j

þ D⃗ij · ðδe⃗i × e⃗jÞ þ δe⃗i ·Aij · e⃗j� ð3:20Þ

and

δHtwo
T;ij ¼ Jijδe⃗i · δe⃗j

þ D⃗ij · ðδe⃗i × δe⃗jÞ þ δe⃗i ·Aij · δe⃗j; ð3:21Þ

respectively. The expressions of energy variations of the spin
Hamiltonian in Eqs. (3.20) and (3.21) must now be compared
to similar expressions for the grand canonical potential
variations of the electrons. Before we make this connection,
we review a few important aspects of electronic structure
theory in Sec. IV.

IV. BASIC CONCEPTS OF ELECTRONIC
STRUCTURE THEORY

In this section we introduce a few central concepts of
electronic structure theory, such as the one-electron Green’s
function and the integrated density of states that is needed in
Sec. V, where we present the details of the derivation of the
generalized interatomic exchange formulas.
We first need an expression for the electronic energy and its

variations under a perturbation, such as the rotations in Figs. 5
and 6. The grand canonical ensemble is used for this purpose,
where energy and particles of the system considered can be
exchanged with a reservoir, implying that the chemical
potential (μ) and temperature (T) are relevant thermodynamic
variables. The grand canonical potential can be calculated as

3A factor of 2 would appear in the last term of Eq. (3.10), but it is
canceled by a factor of 1=2; see Sec. I E for an explanation.
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Ω ¼ E − TS − μN; ð4:1Þ

where E is the energy given by

E ¼
Z∞
−∞

dε εfðεÞnðεÞ; ð4:2Þ

S is the entropy of the band electrons

S ¼ −
Z∞
−∞

dε nðεÞffðεÞ ln fðεÞ þ ½1 − fðεÞ� ln ½1 − fðεÞ�g;

ð4:3Þ
andN is the number of electrons in the valence band. Note that
fðεÞ is the Fermi-Dirac distribution function and nðεÞ denotes
the density of states (DOS). The exact conditions, which have
proven crucial in constraining and constructing accurate
approximations for ground-state DFT, are generalized to finite
temperature. They are based on the work of Mermin (1965)
and were discussed by Pittalis et al. (2011).

A. Grand canonical potential at zero temperature

Considering that the Fermi energy εF usually is much
higher than the critical Curie or Néel temperature, it is for
most cases enough to work in the T ¼ 0 approach [i.e., fðεÞ is
a step function]. In this case Ω ¼ E − εFN, i.e.,

Ω ¼
ZεF
−∞

dε εnðεÞ − εFN ¼ −
ZεF
−∞

dεNðεÞ; ð4:4Þ

where partial integration has been used. In Eq. (4.4) the
number of states function [or integrated density of states
(IDOS)] NðεÞ is introduced, and one finds that the grand
canonical potential can be calculated as an integral of this
function. This means that one has to determine the variations
of IDOS to get the variations of the grand canonical potential.
A practical way to do this is to employ the so-called Lloyd
formula, which is described in Sec. V. Note that the corre-
sponding formula of Eq. (4.4) for cases when the energy
argument is in the complex plane is presented in Sec. IV B.

B. Green’s function formalism

Since the derivation of the interatomic exchange formulas
relies on a Green’s function formalism of the electronic
structure, we summarize here the most central aspects needed.
A full account was given by Economou (2006). The Green’s
function (or resolvent) of the electronic Hamiltonian H is
defined as

GðzÞ ¼ ðz −HÞ−1; ð4:5Þ

where z ∈ C. This implies thatGðz�Þ ¼ G†ðzÞ. If both sides of
the equation ðz2 −HÞ − ðz1 −HÞ ¼ z2 − z1 are multiplied by
Gðz1ÞGðz2Þ, one stipulates that z2 ¼ zþ dz and z1 ¼ z, and
one considers the limit dz → 0, then

dGðzÞ
dz

¼ −G2ðzÞ ð4:6Þ

can be obtained.
Next we consider an electronic Hamiltonian H with a

discrete spectrum4 with solutions Hφμ ¼ εμφμ. Note that
hφμjφνi ¼ δμν and the solutions to H form a complete set.
The spectral resolution of the Green’s function can then be
obtained from the so-called Lehmann representation,

GðzÞ ¼
X
μ

jφμihφμj
z − εμ

: ð4:7Þ

This implies that on the basis of the eigenfunction of H the
Green’s function could be represented as GμνðzÞ ¼
δμν½1=ðz − εμÞ�. In addition, GðzÞ is undefined for z ¼ εμ.
However, considering z in the complex plane just above or
below the real axis (z ¼ ε� iδ) allows us to define5

G�ðεÞ ¼ lim
δ→0þ

Gðε� iδÞ: ð4:8Þ

Note that a lattice site-dependent Green’s function GijðzÞ is
relevant here, and it is obtained as

GðzÞ ¼
X
ijμ

jϕiihϕijφμihφμjϕjihϕjj
z − εμ

¼
X
ij

jϕiiGijðzÞhϕjj

ð4:9Þ

with local functions jϕii at site i.

C. Grand canonical potential at finite temperature

To derive the grand canonical potential at finite temper-
ature, it is useful to find a relationship among the IDOS, the
DOS, and the Green’s function, and one may note that, in a
system of independent fermions, the expectation value of a
one-particle observable A is given as

hAi ¼
X
μ

pμhφμjAjφμi; ð4:10Þ

where pμ ¼ fðεμÞ, i.e., the Fermi-Dirac distribution function.
One can evaluate Eq. (4.10) with the help of Cauchy’s
theorem, which states that for a closed contour oriented
clockwise the integration of a function gðzÞ=ðz − aÞ is equal
to −2πigðaÞ if a is within the contour (otherwise, the result is
zero). With the help of Cauchy’s theorem and Eq. (4.7),
Eq. (4.10) can be given simply by GþðεÞ as follows6:

hAi ¼ −
1

π
ℑ
Z∞
−∞

dεfðεÞTrLσAGþðεÞ; ð4:11Þ

4Our conclusions would be the same for a continuous spectrum.
5Note that G�ðεÞ ¼ ½G∓ðεÞ�†.
6For more details, see http://newton.phy.bme.hu/~szunyogh/

Elszerk/Kkr-slides.pdf.
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where the trace is taken over both the orbital (L) and spin (σ)
spaces. If A is the identity operator, one obtains

N ¼ −
1

π
ℑ
Z∞
−∞

dεfðεÞTrLσGþðεÞ: ð4:12Þ

This allows us to identify the following relationship between
the DOS and the Green’s function:

nðεÞ ¼ −
1

π
ℑTrLσGþðεÞ: ð4:13Þ

In the rest of the review we consider the limit of the upper
part of the complex plane [Eq. (4.8)], and the plus sign is
omitted for brevity for functions of real energies.
One can recognize that in Eq. (4.12) the integral is taken

along the real axis, which is not always convenient, i.e., it is
preferable to transform such integrals to the complex plane.
We proceed with the realization that the DOS can equally well
be calculated with the help of G−ðεÞ, or since ℜGþðεÞ ¼
ℜG−ðεÞ one can use

nðεÞ ¼ −
1

2πi
TrLσfGþðεÞ − G−ðεÞg: ð4:14Þ

With the latter choice, the number of particles of Eq. (4.12)
can be reformulated as

N ¼ −
1

2πi

Z∞
−∞

dεfðεÞTrLσfGþðεÞ − G−ðεÞg

¼ −
1

2πi
TrLσ

�Z∞
−∞

dεfGþ þ
Z−∞
∞

dεfG−
�
: ð4:15Þ

Referring to the two integrals as Iþ and I−, one can view them
as the two path integrals illustrated with thick blue lines in
Fig. 7. A closed contour integral can be obtained by adding the
two paths labeled Cþ and C−, respectively, shown in the figure
as a thin red line, that both give vanishing contributions since
the energies of this part of the path can be chosen to lie

infinitely far away from the poles of the Green’s functions.
Since the integrand is analytical within these contours, these
integrals can be evaluated by summing the residues that arise
from the Fermi-Dirac distribution Resðf; μþ iωnÞ ¼ −T due
to its poles at the Matsubara energies z ¼ μþ iωn, where
ωn ¼ ð2nþ 1ÞπT and T is the temperature(Auerbach, 1994).
Hence,

N ¼ ðIþ þ CþÞ þ ðI− þ C−Þ

¼ −
1

2πi

�I
þ
dzfGþ

I
−
dzfG

�
¼ −

1

2πi
TrLσ

X∞
n¼−∞

ð2πiÞResðfG; μþ iωnÞ

¼ T
X∞
n¼−∞

TrLσGðμþ iωnÞ: ð4:16Þ

V. DERIVATION OF THE EXCHANGE FORMULAS

In this section, we present the details of the mapping of the
electronic Hamiltonian to the spin Hamiltonian given by the
Jij tensor, as shown in Eq. (3.13). The derivation is general in
the sense that we consider a noncollinear spin arrangement
when the SOC interaction is present. Hence, we later give
explicit expressions for the Heisenberg Jij, the DM vector D⃗ij,
and the symmetric anisotropic exchange term Aij in general,
and the interpretation of the results in the LKAG limit.

A. Magnetic local force theorem

As mentioned in Sec. III, the mapping of the electronic
Hamiltonian to the spin Hamiltonian is based on the magnetic
force theorem, since one can always consider small variations
from the ground states; i.e., a mapping to an effective
Hamiltonian is locally7 possible (close enough to the magnetic
ground state).
We now write the grand canonical potential as

Ω ¼ Ωsp − Ωdc: ð5:1Þ

In Eq. (5.1) the subscript sp stands for single particle and Ωsp

represents the integral in Eq. (4.4). In addition, Ωdc stands for
the interaction or “double-counting” term. One can calculate
the first-order change in Ω when the system is under some
perturbation. In deriving the magnetic force theorem, one can
consider small rotations as perturbations. These changes are
assumed to be described by a certain set of parameters
(Methfessel and Kübler, 1982). As a first step, the potential
is held fixed, which leads to a variation in the single-particle
energy δ�Ωsp. In a second step, the parameters that character-
ize the changes are held constant and the potential is allowed
to relax to self-consistency. This leads to variations δ1Ωsp and
−δΩdc in the single-particle energies and the double-counting

FIG. 7. Integration paths in the complex plane.

7See the discussion of local versus global spin models later in this
section.
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term, respectively. However, these two contributions δ1Ωsp

and −δΩdc cancel each other, as shown by Andersen et al.
(1980), Mackintosh and Andersen (1980), Methfessel and
Kübler (1982), and Liechtenstein, Katsnelson, and Gubanov
(1984). In summary, the magnetic force theorem indeed shows
that the variation of total energy of the electronic subsystem
can be expressed in terms of variations only of occupied
single-particle energies. Note that the magnetic local force
theorem strictly holds only for first-order variations.
Finally, we close this section by mentioning that it is a

challenge to find the ground state due to many local minima in
the DFT-total-energy landscape. The problem of how to find a
list of initial magnetic configurations for the practical calcu-
lations was addressed by Huebsch et al. (2021) and Zheng and
Zhang (2021).

B. Energy variation from a noncollinear Kohn-Sham
Hamiltonian

We start this section with a general noncollinear state
with spin moments fe⃗ig and the Kohn-Sham Hamiltonian
defined by Eq. (2.1). For simplicity we introduce B⃗ðrÞ as
B⃗ðrÞ ¼ B⃗xcðrÞ þ B⃗extðrÞ, and in condensed form we can
express the spin-dependent interaction as B≡ B⃗ðrÞ · σ⃗. One
can then let the directions of the local moments rotate away
slightly from a given magnetic configuration. Instead of the
case in which only one spin is rotated in the spin system, as
shown in Fig. 5 and by Eq. (3.2), we allow in principle a δe⃗i
change at all possible sites. As we later see, this is more than a
sum of one-site rotations because of the intersite interactions.
However, the corresponding perturbation in the electronic
potential δV, which is purely spin dependent, can be divided
into local changes of the spin-polarized potential in a given
region around the atomic sites where the moments are varied,

δV ¼ −
X
i

δB⃗i · σ⃗ ¼ −
X
i

Biδe⃗i · σ⃗; ð5:2Þ

where B⃗i ≡ Bie⃗i. Having the perturbation δV, one can write
for the perturbed Green’s function G0 (omitting for simplicity
the energy argument) that

G0 ¼ Gþ G δV G0; G ¼ G0 −G δV G0 ¼ ð1 − G δVÞG0;
ð5:3Þ

where G stands for the unperturbed Green’s function.
From Eq. (4.6) one can deduce that

G ¼ −
∂ lnG
∂ε

; ð5:4Þ

which means that the IDOS, which is the primitive function to
the DOS of Eq. (4.13), is given by

N ¼ −
1

π
ℑTriLσð− lnGÞ ð5:5Þ

and the change in IDOS is then given by the Lloyd formula
(Lloyd, 1967), i.e.,

δN ¼ −
1

π
ℑTriLσf− lnG0 þ ln ð1 − GδVÞG0g

¼ −
1

π
ℑTriLσ ln ð1 −GδVÞ: ð5:6Þ

This means that one does not have to deal with the exact
Green’s function G0 in order to calculate δN. One can also
expand the logarithm in a series as long as δV is small, which
yields

δN ¼ 1

π
ℑTriLσ

X∞
k¼1

ðδVGÞk
k

; ð5:7Þ

where the order of the two factors can be altered due to the
properties of the trace. Note that G is the Green’s function
corresponding to the electronic Hamiltonian (2.1). It can be
decomposed to intersite terms Gij according to Eq. (4.9),
which can be further decomposed into spin components in a
form where

Gij ¼ G0
ij þ G⃗ij · σ⃗; ð5:8Þ

where G⃗ij is a vector with the components ofGx
ij,G

y
ij, andG

z
ij.

We introduce here the notation Gη
ij, where the index η

enumerates both the scalar spin-independent Green’s function
and the components of the spin-dependent vector Green’s
function of Eq. (5.8), i.e., η can be 0, x, y, or z. Note that Gij is
defined in both the spin and orbital spaces, while Gη

ij is
represented only in the orbital space. In other words,Gij can be
represented by an 18 × 18 matrix, while Gη

ij is a 9 × 9 matrix
when spd orbitals are used in a practical calculation. We refer
here to G0

ij as the charge part and to G⃗ij as the spin part of the
Green’s function. The physical interpretation of the decom-
position is discussed in Sec. V E. Note that in the LKAG limit
the vector G⃗ij has only a z component, and in Sec. V I we define
the up and down spin channelswith thehelp ofG0

ij andG
z
ij. Note

also that the trace inEqs. (5.6) and (5.7) is over the atomic sites i,
the local basis functions L, and the spin components σ.
Based on Eq. (4.4), the variation in grand canonical

potential [Eq. (4.1)] due to the moment rotations is obtained
through integration of the change in the number of states
function, i.e.,

δΩ ¼ −
Z∞
−∞

dε δNðεÞfðεÞ; ð5:9Þ

where Eq. (5.7) can be used for δN. The corresponding grand
canonical potential variation formula at finite temperature can
be expressed as

δΩ ¼ T
X∞
n¼−∞

π δNðμþ iωnÞ; ð5:10Þ

where δN [which along the real axis is given by Eq. (5.6)] is
generalized to the following expression in the complex plane:
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δNðzÞ ¼ −
1

π
TriLσ ln ½1 − δVGðzÞ�; ð5:11Þ

with the limit

ℑ lim
ℑz→0þ

δNðzÞ ¼ δNðεÞ: ð5:12Þ

With Eq. (5.11) one can rewrite the sum over Matsubara
frequencies in Eq. (5.10) as the trace

δΩ ¼ −Tr ln ð1 − δVGÞ ¼ Tr
X
k

ðδVGÞk
k

; ð5:13Þ

which is short notation for

Tr ¼ TrωiLσ ¼ T
X∞
n¼−∞

TriLσ: ð5:14Þ

Using analytical continuation from the Matsubara space to the
real frequencies, we get the following relation (Katsnelson and
Lichtenstein, 2000):

TrωiLσ ¼ −
1

π

Z∞
−∞

dε fðεÞℑTriLσ: ð5:15Þ

C. Perturbation to first order

One can directly conclude that whenever the lowest order in
Eq. (5.7) is not vanishing it will dominate providing torques
on some of the local moments. Therefore, we first analyze the
first-order term, which can be described as a sum of one-site
rotations, i.e.,

δNone ¼ 1

π
ℑTriLσδVG ¼

X
i

δNone
i ; ð5:16Þ

where the site local variation of the number of states is

δNone
i ¼ −

1

π
ℑδe⃗i · TrLσBiσ⃗Gii

¼ −
2

π
ℑδe⃗i · TrLBiG⃗ii; ð5:17Þ

and the factor 2 arises from the trace over spin variables. The
grand canonical potential variation (δΩone

i ) due to one-site
rotation (Fig. 5) is based on the expression δNone

i [given by
Eq. (5.17)], and the details of the derivation are presented in
Sec. V F. Note that Fig. 5 shows a collinear (ferromagnetic)
case. However, Eq. (5.17) also holds for cases in which the
rotation δe⃗i appears in a noncollinear background of atomic
moments.

D. The sum rule

While δNone
i (and therefore δΩone

i ) can be obtained by direct
calculation based only on on-site quantities, as shown by
Eq. (5.17), we prefer to deepen the analysis by taking an

algebraic step that allows us to express this first-order term as
a bilinear intersite magnetic interaction that eases the under-
standing of these magnetic interactions. Since the local
Green’s functions arise from a self-consistent solution of a
magnetically ordered state, one can derive an explicit expres-
sion for it in the following way. Consider a solution obtained
from a well-defined nonmagnetic system with a Hamiltonian
in the form of the right-hand side of Eq. (2.1): more precisely,
VðrÞ ¼ Vnm

0 . In this case B⃗xcðrÞ ¼ B⃗extðrÞ ¼ 0. Note that the
non-spin-polarized potential Vnm

0 for this nonmagnetic state in
general will not be equivalent to the corresponding spin-
independent part of the potential V0 for a magnetic state. The
Green’s function of the magnetic state is related to the Green’s
function of the nonmagnetic state Gnm through Dyson’s
equation as follows (omitting for simplicity the energy
argument):

G ¼ Gnm þ GnmΔVG ð5:18Þ

or

ðG−1 −G−1
nmÞij ¼ fVnm

0 − V0 þ B⃗j · σ⃗gδij; ð5:19Þ

where the spin-polarized fields can be written as B⃗j ¼ Bje⃗j
and ΔV ¼ V0 − B⃗j · σ⃗ − Vnm

0 .
To arrive at a suitable expression, one makes use of the fact

that this magnetic state has to be degenerate with the
corresponding time reversed state, i.e., the state in which
all moments are switched and the direction of a charge current
is reversed. The Green’s function for this time reversed
problem G̃ is given by

ðG̃−1 − G−1
nmÞij ¼ fVnm

0 − V0 − B⃗j · σ⃗gδij: ð5:20Þ

The difference between Eqs. (5.19) and (5.20) gives

ðG−1 − G̃−1Þij ¼ 2B⃗j · σ⃗δij: ð5:21Þ

By letting G̃ and G act on Eq. (5.21) from either side in a
symmetric fashion, we arrive at the following sum rule for the
local Green’s functions:

G̃ii −Gii ¼
X
j

ðGijB⃗j · σ⃗G̃ji þ G̃ijB⃗j · σ⃗GjiÞ: ð5:22Þ

E. Further decomposition of the Green’s function and its physical
interpretation

To be able to utilize Eq. (5.22), one can further decompose
the components of the Green’s function in Eq. (5.8) into terms
that are either even or odd under space reversal (Fransson
et al., 2017). This can be done by introducing Gηκ

ij , where the
first index η was introduced and explained after Eq. (5.8),
while the second index κ can be viewed as an indicator
whether the terms that are space reversal invariant and those
are not, i.e., κ can be 0 or 1. This decomposition of the Green’s
function can be summarized as
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Gη
ij ¼ Gη0

ij þ Gη1
ij ; ð5:23Þ

where it also turns out that G00
ij and G⃗1

ij are time reversal

invariant, whileG01
ij and G⃗0

ij are not, where we havewritten the
x-, y-, or z-dependent components of the Green’s function as
vectors, i.e., G⃗κ. This decomposition plays a useful role in how
the Green’s function behaves under site exchange, since in a
real local basis (Fransson et al., 2017) we have

Gηκ
ij ¼ ð−1ÞκGηκ

ji
T : ð5:24Þ

In fact, Fransson et al. (2017) showed that these two-index
Green’s functions are decomposed in terms that produce local

charge G00 or spin densities G⃗0 and charge G01 and spin
currents G⃗1, an aspect we later return to.
We can express both the Green’s function and its time

reversed version as a superposition of these two index-
decomposed Green’s functions as

G ¼ G00 þ G01 þ G⃗0 · σ⃗ þ G⃗1 · σ⃗; ð5:25Þ

G̃ ¼ G00 −G01 − G⃗0 · σ⃗ þ G⃗1 · σ⃗: ð5:26Þ

These decomposed Green’s functions are then inserted into
Eq. (5.22), which leads to

G̃ii −Gii ¼
X
j

fðG00 þG01 þ G⃗0 · σ⃗þ G⃗1 · σ⃗ÞijB⃗j · σ⃗ðG00 −G01 − G⃗0 · σ⃗þ G⃗1 · σ⃗Þji

þ ðG00 −G01 − G⃗0 · σ⃗þ G⃗1 · σ⃗ÞijB⃗j · σ⃗ðG00 þG01 þ G⃗0 · σ⃗þ G⃗1 · σ⃗Þjig; ð5:27Þ

which for the spin-dependent and time reversal odd part G⃗0
ii of ð1=2ÞðGii − G̃iiÞ ¼ G01

ii þ G⃗0
ii · σ⃗ allows us to identify the

following expression (Cardias, Bergman et al., 2020):

G⃗0
ii ¼ −

X
j

fðG00
ij B⃗jG00

ji −G01
ij B⃗jG01

ji Þ þ iðG⃗1
ij × B⃗jG00

ji þ G00
ij B⃗j × G⃗1

jiÞ

− iðG⃗0
ij × B⃗jG01

ji þ G01
ij B⃗j × G⃗0

jiÞ þ ðG⃗1
ij · B⃗jG⃗

1
ji − G⃗0

ij · B⃗jG⃗
0
jiÞ

− ½ðG⃗1
ij × B⃗jÞ × G⃗1

ji − ðG⃗0
ij × B⃗jÞ × G⃗0

ji�g: ð5:28Þ

Note that Eq. (5.28) is general, despite the fact that we
arrived at it from considerations of the Green’s function of its
normal and spin reversed state. Hence, Eq. (5.28) can also be
used for small angle rotations of moments,8 which is utilized
in Sec. V F.
To give a physical interpretation for the charge and spin

densities and charge and spin currents, it is useful to study the
decomposition of the Green’s function in real space Gðr; r0; εÞ
into eight independent two indexed contributions, i.e., to
consider

Gðr; r0; εÞ ¼
X

η∈f0;x;y;zg

X1
κ¼0

σηGηκðr; r0; εÞ; ð5:29Þ

where σ0 represents the identity matrix. Note that the second
index κ of the Green’s function in Eq. (5.29) indicates whether
the function is even ð0Þ or odd ð1Þ under the exchange of
spatial coordinates (r ↔ r0)

Gηκðr0; r; εÞ ¼ ð−1ÞκGηκðr; r0; εÞ; ð5:30Þ

where the κ decomposition is defined through

Gκðr; r0; εÞ ¼ Gðr; r0; εÞ þ ð−1ÞκGðr0; r; εÞ
2

: ð5:31Þ

The meaning of this two-index decomposition can be sum-
marized by

Gðr; r0; εÞ ¼
X

η∈f0;x;y;zg

X1
κ¼0

ð−1ÞκσηGηκðr0; r; εÞ: ð5:32Þ

The four different Green’s functions, two scalar and two
vector valued, as previously discussed, each have a direct
physical property, as in the local and nonrelativistic limit they
give rise to charge and spin density (scalar and vector) and
charge and spin current densities (vector and tensor), respec-
tively, through

nðrÞ ¼ −
1

π
ℑlim
r0→r

Z
G00ðr; r0; εÞdε; ð5:33Þ

m⃗ðrÞ ¼ −
1

π
ℑlim
r0→r

Z
G⃗0ðr; r0; εÞdε; ð5:34Þ

jðrÞ ¼ −
1

π
ℜlim

r0→r

Z
∇G01ðr; r0; εÞdε; ð5:35Þ

q⃗ðrÞ ¼ −
1

π
ℜlim

r0→r

Z
∇G⃗1ðr; r0; εÞdε: ð5:36Þ

8Note that ΔV, which we consider in Secs. V D and V E, is not the
same as δV, which stands for perturbations due to different kind of
infinitesimally small spin rotations in the rest of Sec. V.
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These four independent density quantities are important in the
case of magnetic materials and are known to appear in many
other approaches, including general Hartree-Fock theory
(Fukutome, 1981).
Expanding the Green’s function represented in real space in

a local basis [Eq. (4.9)] results in

Gηκðr; r0; εÞ ¼ ϕT
i ðrÞGηκ

ijϕjðr0Þ; ð5:37Þ

where space is divided into regions around the atomic sites
such that the site i is specified by the position r and the vector
of basis functions ϕiðrÞ is uniquely defined. The condition of
Eq. (5.30) then leads to

Gηκðr0; r; εÞ ¼ ϕT
j ðr0ÞGηκ

jiϕiðrÞ
¼ ð−1ÞκϕT

i ðrÞGηκ
ijϕjðr0Þ

¼ ð−1Þκ½ϕjðr0ÞTfGηκ
ij gTϕiðrÞ�T

¼ ð−1Þκϕjðr0ÞTfGηκ
ij gTϕiðrÞ; ð5:38Þ

where the outer transpose is superfluous since it is acting on a
scalar. This leads to the relation for the Green’s function
matrices expanded in a real basis shown in Eq. (5.24), which
illustrates that the decomposed Green’s functions that stem
from currents (κ ¼ 1) are asymmetric in the direction of the
propagation, in contrast to those that stem from densities
(κ ¼ 0).

F. Bilinear interaction parameters due to one-site spin rotation

One can generally express the variation of the grand
potential as a series of contributions coming from different
orders of perturbation as

δΩ ¼ δΩone þ δΩtwo þ � � � : ð5:39Þ

It is relevant to express the first two terms in the series in terms
of bilinear interaction parameters. In the case of one-site spin
rotation, one then has to express the one-site grand potential
variation δΩone in terms of intersite Green’s functions, which
corresponds to inserting Eq. (5.17) into Eq. (5.9), where
Eq. (5.17) is given by the on-site Green’s function G⃗ii.
However, it is only the time reversal odd spin-dependent
Green’s function G⃗0

ii that will give rise to a nonzero product
TrLBiG⃗ii in Eq. (5.17), where G⃗0

ii in turn can be expressed in
terms of intersite Green’s functions due to the sum rule of
Eq. (5.28). Hence, one can express the first-order term as a
superposition of different pair interactions using

δΩone ¼ 2

π
ℑ
X
i

δe⃗i ·
Z

TrLBiG⃗
0
iiðεÞdε

¼ 2
X
hiji

δe⃗i · J
ð1Þ
ij · e⃗j þ δΩone

loc ; ð5:40Þ

where the tensor Jð1Þij has the same form as Eqs. (3.13),(3.14),

(3.15),(3.16), with the exchange parameter Jð1Þij , the DM

vector D⃗ð1Þ
ij , and the symmetric anisotropic interaction tensor

A1
ij. Note that comparing Eq. (5.40) to Eq. (3.20) allows us to

identify the exchange parameter Jð1Þij as

Jð1Þij ¼ −
2

π
ℑ
Z

TrL

�
BiG00

ij BjG00
ji − BiG01

ij BjG01
ji

þ
X
ν

BiGν0
ij BjGν0

ji −
X
ν

BiGν1
ij BjGν1

ji

�
dε; ð5:41Þ

while the components of the vector D⃗ð1Þ
ij and the tensor Að1Þ

ij

are given by

Dð1Þν
ij ¼ −

4

π
ℜ
Z

TrLðBiG00
ij BjGν1

ji − BiG01
ij BjGν0

ji Þdε ð5:42Þ

and

Að1Þνμ
ij ¼−

4

π
ℑ
Z

TrLðBiGν1
ij BjG

μ1
ji −BiGν0

ij BjG
μ0
ji Þdε; ð5:43Þ

respectively, where μ and ν can be x, y, or z. Note that the

index (1) in Jð1Þij , D⃗ð1Þ
ij , and Að1Þ

ij reffers to the fact that these
parameters are derived from one-site spin rotation. We also
note that the prefactor 2 in the second line in Eq. (5.40) arises
for the same reason that the one-site term is entered twice in
Eq. (3.6). The second term in Eq. (5.40) is given by

δΩone
loc ¼

X
i

δe⃗i · J
ð1Þ
ii · e⃗i; ð5:44Þ

which may play roles for the magnetic anisotropy (Solovyev,
Dederichs, and Mertig, 1995) or the longitudinal exchange
couplings (Shallcross et al., 2005); i.e., we have arrived at a
more general model that is beyond what is usually considered
in bilinear spin models such as Eq. (3.20). However, in the
collinear-nonrelativistic limit, this term can be shown to be
canceled by a similar local term in the second-order inter-
action (Liechtenstein et al., 1987), which we return to in
Sec. V I. Nevertheless, considering the intersite terms on the
second line in Eq. (5.40), a local mapping can always be made

with the Heisenberg exchange parameter Jij ¼ Jð1Þij , the DM

vector D⃗ij ¼ D⃗ð1Þ
ij , and the symmetric anisotropic interaction

tensor Aij ¼ Að1Þ
ij around the magnetic order of the reference

state.

G. Bilinear interaction parameters due to two-site spin rotations

Whenever the first-order term vanishes, the second-order
perturbation plays a role. This is the case for a collinear state in
the absence of SOC where the first-order contribution is
identically zero. This term might also be of importance when
one aims to calculate collective excitations, i.e., spin waves, in
linear spin-wave theory, where the spin Hamiltonian has to be
bilinear in the variations of the magnetic moments (Toth and
Lake, 2015). The second-order term in Eq. (5.7) can be written
as δNtwo, which is analogous to δNone as given by Eq. (5.16).
Inserting δNtwo into Eq. (5.9) leads to the grand potential
variation δΩtwo, which corresponds to simultaneous rotations

Attila Szilva et al.: Quantitative theory of magnetic interactions …

Rev. Mod. Phys., Vol. 95, No. 3, July–September 2023 035004-18



at sites i and j, as illustrated in Fig. 6, and is naturally bilinear.
This term also contains a local term δΩtwo

loc that we again
ignore. One can then obtain

δΩtwo−δΩtwo
loc ¼−

1

2π

X
hiji

Z
ℑTrLσδe⃗i · σ⃗BiGijδe⃗j · σ⃗BjGjidε:

ð5:45Þ

Note that Fig. 6 shows a collinear ferromagnetic case, but
Eq. (5.45) also holds for the general noncollinear case. Note
that Eq. (5.45) can be simplified in a similar fashion as the
first-order contributions; first decompose the Green’s func-
tions and then sum out the spin degrees of freedom after
manipulating the matrix product by means of Pauli algebra. A
comparison with Eq. (3.21) leads to

δΩtwo − δΩtwo
loc ¼

X
hiji

δe⃗i · J
ð2Þ
ij · δe⃗j; ð5:46Þ

where Jð2Þij is defined as

Jð2Þij ¼ −
2

π
ℑ
Z

TrL

�
BiG00

ij BjG00
ji þ BiG01

ij BjG01
ji

−
X
ν

BiGν0
ij BjGν0

ji −
X
ν

BiGν1
ij BjGν1

ji

�
dε; ð5:47Þ

while the components of D⃗ð2Þ
ij and Að2Þ

ij are given by

Dð2Þν
ij ¼−

4

π
ℜ
Z

TrLðBiG00
ij BjGν1

ji þBiG01
ij BjGν0

ji Þdε ð5:48Þ

and

Að2Þνμ
ij ¼−

4

π
ℑ
Z

TrLðBiGν1
ij BjG

μ1
ji þBiGν0

ij BjG
μ0
ji Þdε; ð5:49Þ

respectively, where the superscript (2) in Jð2Þij , D⃗ð2Þ
ij , and Að2Þ

ij

refers to the fact that these parameters are derived from two-
site spin rotations. This is an alternative mapping since

Jð2Þij ≠ Jð1Þij ; i.e., the mapping procedures based on the one-
and two-site spin rotations lead to different results in general.
Their comparison and physical interpretations are discussed in
Sec. V I.

H. Explicit symmetric or asymmetric interactions

With a relation in hand for the decomposed Green’s
function, we observe that the interactions are explicitly
determined as symmetric or asymmetric. For example, for
the Dzyaloshinskii-Moryia interaction of Eq. (5.42) we can,
since the trace of the transpose of a matrix is equal to the trace
of the matrix and the trace of a product is invariant under
cyclic permutation of the factors, derive its asymmetric
property explicitly due to the property of Eq. (5.24) as follows:

Dð1Þν
ij ¼ −

4

π
ℜ
Z

TrLðBiG00
ij BjGν1

ji − BiG01
ij BjGν0

ji ÞTdε

¼ 4

π
ℜ
Z

TrLðBjGν1
ji BiG00

ij − BjGν0
ji BiG01

ij Þdε

¼ −Dð1Þν
ji : ð5:50Þ

In general, we can conclude that pair interaction terms that
include an even number of asymmetric Green’s functions
become symmetric, while those that include an odd number
are asymmetric. It is clear then that it is only the
Dzyaloshinskii-Moriya interaction that is asymmetric among
the bilinear interactions of Eqs. (5.41),(5.42),(5.43). Note that

the argumentation presented here holds for Dð2Þν
ij ; see

Eq. (5.48) as well.

I. Interaction parameters obtained from
one- and two-site variations

Since we have reformulated the first-order interactions into
a bilinear form [Eq. (5.41)], it can be directly compared with
the second-order interactions that are naturally bilinear
[Eq. (5.47)]. There are clear differences between the two
expressions, which might not be surprising, since they reflect
different quantities. The first-order interaction describes the
local torques on the magnetic moments, while the second-
order interaction mainly describes the interaction of rotated
moments. However, in the LKAG limit, i.e., with collinear
order and negligible spin-orbit coupling, it has been observed
(Liechtenstein, Katsnelson, and Gubanov, 1984) that they
actually give rise to identical interaction parameters. When
one studies the details of this limit, it turns out that this is
slightly fortuitous. The mapping to the spin Hamiltonian HT
based on one-site spin rotation resulted in the exchange

parameters Jð1Þij , D⃗ð1Þ, and Að1Þ, while a similar mapping

based on two-site spin variations led to the parameters Jð2Þij ,

D⃗ð2Þ, and Að2Þ. In the LKAG limit there is no spin or charge
current present, and we can choose a global coordinate system
in which the nonperturbed spin arrangement will point in the z
direction. One has the freedom to restrict the small rotations to
the x-z plane.
We start with the exchange parameters obtained from two-

site variations. In this case we can see that the Jð2Þij parameter
defined by Eq. (5.47) is reduced to

Jð2Þij ¼ −
2

π
ℑ
Z

TrLðBiG00
ij BjG00

ji − BiG
z0
ij BjG

z0
ji Þdε: ð5:51Þ

In the LKAG limit, D⃗ð2Þ, as defined in Eq. (5.48), vanishes and
the symmetric anisotropic interaction tensorAð2Þ, as defined in
Eq. (5.49), will only have one nonvanishing component Að2Þzz

ij

with a collinear magnetic order along the z direction.
However, since the variation δezi ¼ −ðδθiÞ2=2 is quadratic
in the small rotation angle δθi, this term gives a variation of
fourth and not second order in the rotation angles.9 This means

9When δθi ¼ −δθj ¼ δθ, then δeziδe
z
j is proportional to ðδθÞ4.
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that only the first Heisenberg term of Eq. (5.46) is relevant,
i.e., of second order in the variation angle. We introduce the

notation G↑
ij ¼ G00

ij þ Gz0
ij and G↓

ij ¼ G00
ij − Gz0

ij . The LKAG
exchange expression is then given in the following well-
known form:

Jð2Þij ¼ −
2

π
ℑ
Z

TrLðBiG
↑
ijBjG

↓
jiÞdε: ð5:52Þ

We note here that, substituting Eq. (4.7) into Eq. (5.52) and
integrating over energy, one arrives at an expression that is
equivalent to Eq. (2.25) (Antropov, Katsnelson, and
Liechtenstein, 1997). We also note that the leading term in
the corresponding variation in the grand potential becomes

δΩtwo ≈ 1
2

X
ij

Jð2Þij δθiδθj. ð5:53Þ

In other words, only the on-site i-i term will have a factor 1=2
and the intersite terms will be given as shown in Eq. (3.12).
Next we focus on the parameters obtained from one-site

variation in the absence of SOC. For a collinear order along z,
one has to deal only with the component δezi of the variation,
and the second line in Eq. (5.40) is reduced to

δΩone ≈ −
X
ij

ðJð1Þij þ Að1Þzz
ij ÞðδθiÞ2=2: ð5:54Þ

In the nonrelativistic limit a global spin rotation, i.e., all
δθi ¼ δθ, is always a symmetry operation, which is now seen
to appear as a nontrivial cancellation of the first- and second-
order interactions from the consideration that

δΩ ¼ δΩone þ δΩtwo þ � � �
≈ −1

2

X
ij

ðJð1Þij þ Að1Þzz
ij − Jð2Þij ÞðδθÞ2 ¼ 0; ð5:55Þ

which is justified by inspection of Eqs. (5.40) and (5.51)
considering the vanishing intersite Green’s functions G⃗1 ¼
G01 ¼ 0 in the LKAG limit. Another case in which there is a
cancellation between first and second order is the case of
rotation of the moment at a single site i ¼ 0. We then note that
in the LKAG limit the sum over all intersite exchange

parameters J0 ¼
P

h0ii J
ð2Þ
0i is determined by a cancellation

(Liechtenstein et al., 1987) of δΩone
loc and δΩtwo

loc in the total
variation of the grand potential, resulting in the following
expression10:

δΩone þ δΩtwo
loc ¼ − 2

π
ℑ
Z

TrL

�
B0

G↑
00 −G↓

00

2

ðδθ0Þ2
2

þ 1

2
B0G

↑
00B0G

↓
00ðδθ0Þ2

�
dε

¼ −
X
h0ii

2ðJð1Þ0i þ Að1Þzz
0i Þ ðδθ0Þ

2

2

¼ −
X
h0ii

Jð2Þ0i ðδθ0Þ2 ¼ −J0ðδθ0Þ2: ð5:56Þ

Note also that for a collinear state with SOC included the
symmetric interactions still vanish at first order, while the
asymmetric DM interaction will be finite in the absence of
inversion symmetry. This nonvanishing torque leads to insta-
bilities of collinear order such as ferromagnetic states that are
unstable toward cycloidal order (Mankovsky and Ebert, 2017)
or antiferromagnetic order that are unstable toward tilting,
which might give rise to a weak ferromagnetic order
(Solovyev, Hamada, and Terakura, 1996a; Mazurenko and
Anisimov, 2005).
Finally, we note that the components of the DM vectors

D⃗ð1Þ
ij and D⃗ð2Þ

ij are sums of two independent terms. Both terms
are mediated by products of Green’s functions such that one
factor is density related and the other is current related, as
indicated by the zero- and one-site exchange symmetry
indices κ defined in Eqs. (5.24) and (5.42),(5.43),(5.44),
(5.45),(5.46),(5.47),(5.48). This implies that, for a trivial
topology with collinear spin arrangement, the DM term will
vanish in the absence of SOC, as the current contributions are
then prohibited, while for general noncollinear order these
interactions are nonvanishing even in the absence of SOC. For
the second term of the symmetric anisotropic interaction

parameters Að1Þ
ij and Að2Þ

ij defined in Eqs. (5.43),(5.44),
(5.45),(5.46),(5.47),(5.48),(5.49) is mediated by density-
related spin-polarized Green’s functions that exist for all
magnetic order even in the absence of SOC. This term was
investigated and discussed as an anisotropy anomaly by
Lounis and Dederichs (2010).
We end this section with the comment that, for practical

reasons, we give in Sec. VII numerical examples of exchange
interactions that are based mostly on the equations obtained
from the two-site energy variations. An exception is the results
given in Fig. 13, where the first derivative of the grand
potential with respect to the angle is shown.

J. Local versus global spin models

We comment here upon the distinction between local and
global spin models proposed by Streib et al. (2021). Here we
are focusing on spin models that are obtained within a
generalization of the LKAG approach. This approach is still
based on the fact that there is a perturbation that consists of
small rotations of local moments in an already magnetic
reference state. The generalization of LKAG is that the
magnetic state is now allowed to have any noncollinear order
and that relativistic effects, i.e., mainly spin-orbit coupling, are
included, but only in a weak enough limit that the local
moments are still well defined as spin moments. In such an
approach the reference state will incorporate composed

10Note that the expressions on the first and second lines
of Eq. (5.56) are proportional to −ðδθ0Þ2. This leads to a non-
trivial expression for J0 that depends exclusively on on-site
Green’s functions, which can be utilized in the testing of code
implementations.
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Green’s functions G⃗0, G⃗1, and G01 that are directly dependent
on the magnetic order. Hence, the mapped spin model is valid
only locally on the energy versus configuration curve; i.e., it is
relevant only for small magnetic variations around the reference
state. This is in contrast to the concept of global spin models,
which are supposed to be valid for all magnetically ordered
states and the full curve of energy versus configuration.
The fact that the models are local implies that they do not

have to fulfill global symmetry requirements. A magnetic state
dependence of the interaction coefficients arises naturally for
local models due to their dependence on the reference state
(Cardias, Bergman et al., 2020; Streib et al., 2021). If the state
dependence is taken into account for a local spin model, all
global symmetries are recovered.
One way to avoid the reference state dependence is to start

with a nonmagnetic reference state for which the Green’s
functions are independent of any magnetic state. In this
approach (Brinker, Dias, and Lounis, 2019, 2020) there will
be extensions of the formulas beyond bilinear interactions,
which involve biquadratic effects with coupling terms

like
P

hijiJ
BQ
ij ðS⃗i · S⃗jÞ2 and generalizations of it, i.e.,P

hijkliJ
Ring
ijkl ðS⃗i · S⃗jÞðS⃗k · S⃗lÞ, where i, j, k, and l are site

indices. In such an approach the perturbations are proportional
to the full spin-dependent potentials, and these larger pertur-
bations in the series of equations (5.7) will generally be slowly
convergent, so higher orders play a role.
These two approaches, with nonmagnetic and magnetic

reference states, are in a sense complementary. While one
approach includes the effects in terms of multispin interactions
(Drautz and Fähnle, 2004; Mankovsky, Polesya, and Ebert,
2020b), the other approach includes the same effects within
the composite Green’s functions mediating the interaction.
The first approach will have a large validity range, in favorable
cases perhaps even global, but will be less accurate for any
given magnetic state, while the second approach can calculate
the interaction parameters accurately for any general magnetic
order, but for only one local magnetic state at a time.
It is also important to realize that the existence of global

spin models for itinerant-electron systems is not guaranteed,
since there is no way to prove that the magnetic degrees of
freedom can be globally described using a Hamiltonian
dependent solely on spin operators. At the same time, at
least for small frequencies and small wave vectors, any
ferromagnetic system should be described by the macroscopic
Landau-Lifshitz equation (Akhiezer, Bar’yakhtar, and
Peletminskii, 1968; Vonsovskii, 1974; Aharoni, 2000). This
means that at least the expression for the spin-wave stiffness
constant based on small variations from the ferromagnetic
ground state is always meaningful (Liechtenstein, Katsnelson,
and Gubanov, 1984). Moreover, within local approximations
such as dynamical mean-field theory (see Sec. V K) the
expression for the spin-wave stiffness constant derived from
magnetic force theorem becomes exact (Lichtenstein and
Katsnelson, 2001).

K. Exchange interactions in correlated systems

To calculate the effective exchange interaction parameters
for correlated magnetic systems, the dynamical mean-field

theory (DMFT) approach has been explored with a
local frequency-dependent self-energy. The implementation
of DMFT into DFT-based first-principles calculations
(Lichtenstein and Katsnelson, 1998; Kotliar et al., 2006) is
based on the mapping to multiband Hubbard-like model. It
assumes knowledge of effective parameters characterizing
local Coulomb interactions (the problem involving the
Hubbard U parameter). The state-of-the-art approach includes
taking into account screening effects via the so-called con-
strained random phase approximation (cRPA) (Aryasetiawan
et al., 2004). Within this approach no arbitrary parameters are
introduced and calculations remain fully first principles. Note
that in the early days of this method U was frequently used as
a fitting parameter. The historical developments of the method
and its relations to the previous LDAþ U formalism were
discussed by Kotliar et al. (2006). What is important here is
the statement that in principle DFT and DMFT can be
combined in a fully ab initio way. The remaining questions
on the applicability of cRPA for realistic situations were
recently analyzed in detail by van Loon et al. (2021).
We first prove the analog of the local force theorem in

DMFT-like theory (Katsnelson and Lichtenstein, 2000).
Instead of working with the thermodynamic potential Ω as
a density functional, we have to start with its general
expression in terms of an exact Green’s function (Luttinger
and Ward, 1960; Kotliar et al., 2006), i.e.,

Ω ¼ Ωsp − Ωdc;

Ωsp ¼ −Trfln ½Σ − G−1
0 �g;

Ωdc ¼ TrΣG −Φ; ð5:57Þ
where G, G0, and Σ are an exact Green’s function, its bare
value, and its self-energy, respectively; Φ is the Luttinger
generating functional (the sum of all connected skeleton
diagrams without free legs); Tr ¼ TrωiLσ is the sum over
Matsubara frequencies Trω � � � ¼ T

P
ω � � �, ω ¼ πTð2nþ 1Þ,

and n ¼ 0;�1;…; and T is the temperature. Furthermore, iLσ
represents site numbers (i), orbital quantum numbers
(L ¼ l; m), and spin projections σ, respectively. The two
Green’s functions are related via the Dyson equation as

G−1 ¼ G−1
0 − Σ; ð5:58Þ

with the important variational identity

δΦ ¼ TrΣδG: ð5:59Þ

We represent Eq. (5.57) as a difference of single-particle (sp)
and double-counted (dc) terms, as usual in density functional
theory. When quasiparticle damping is neglected, Ωsp is
simply the thermodynamic potential of “free” fermions but
with exact quasiparticle energies. Suppose that we change the
external potential by small spin rotations. The variation of the
thermodynamic potential can then be written as

δΩ ¼ δ�Ωsp þ δ1Ωsp − δΩdc; ð5:60Þ

where δ� is the variation without taking into account the
change of the “self-consistent potential” (i.e., self-energy) and
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δ1 is the variation due to this change of Σ. When Eq. (5.59) is
taken into account, it can be easily shown [see Luttinger and
Ward (1960) and Kotliar et al. (2006)] that one can identify

δ1Ωsp ¼ δΩdc ¼ TrGδΣ ð5:61Þ

and hence

δΩ ¼ δ�Ωsp ¼ −δ�Tr ln ½Σ − G−1
0 �; ð5:62Þ

which is an analog of the local force theorem in density
functional theory (Andersen et al., 1980; Mackintosh and
Andersen, 1980; Methfessel and Kübler, 1982; Liechtenstein,
Katsnelson, and Gubanov, 1984).
In the DMFT scheme, the self-energy is local; i.e., it is

diagonal in site indices. We write the spin-matrix structure of
the self-energy and Green’s function in the following form:

Σi ¼ Σc
i þ Σ⃗s

i σ⃗;

Gij ¼ Gc
ij þ G⃗s

ijσ⃗; ð5:63Þ

where Σðc;sÞ
i ¼ ð1=2ÞðΣ↑

i � Σ↓
i Þ and Σ⃗s

i ¼ Σs
i e⃗i, with e⃗i the

unit vector in the direction of the effective spin-dependent
potential on site i and in the local moment approximation not
depending on frequency (discussed further in Sec. IX), Gc

ij ¼
ð1=2ÞTrσðGijÞ, and G⃗s

ij ¼ ð1=2ÞTrσðGijσ⃗Þ.
Following the general idea of infinitesimal rotation of local

magnetic potential and self-energy, the effective exchange
interactions in correlated magnetic systems can be obtained by
rewriting all equations in this section with a substitution of Σs

i
for Bi, leading to (Katsnelson and Lichtenstein, 2000)

Jij ¼ 2TrωLðΣs
iG

↑
ijΣs

jG
↓
jiÞ; ð5:64Þ

compared to Eq. (5.15). In the strong-coupling limit for the
half-filled Hubbard model, Eq. (5.64) is reduced to the
standard Anderson kinetic exchange t2ij=U (Stepanov,
Brener et al., 2022).

VI. BEYOND KINETIC EXCHANGE

We now return to a general discussion of exchange
interactions within the formally rigorous scheme of the
time-dependent density functional presented in Sec. I E. In
this approach, the entire dynamics of the many-electron
system is described in terms of the time-dependent one-
particle density matrix ραβðr; r;tÞ ¼ hηþβ ðr; tÞηαðr; tÞi, where
ηαðr; tÞ is the annihilation operator for the electron at the point
r with spin projection α at the instant time t. Equivalently, one
can introduce the charge nðr; tÞ ¼ TrLσρðr; r; tÞ and magneti-
zation m⃗ðr; tÞ ¼ TrLσρðr; r; tÞσ⃗ densities [also obtained in the
time-independent case from Eqs. (2.11) and (2.12)]. In the
adiabatic approximation, the spin and charge densities are
expressed in terms of Kohn-Sham spinor eigenfunctions
ψναðr; tÞ and the corresponding eigenenergies ϵνðtÞ satisfying
the Kohn-Sham equations (2.1) and (2.14). The Kohn-Sham
wave functions and the corresponding energies depend here
on time due to the time dependence of the densities and

external field (the latter is supposed to be slowly varying in
time compared to the characteristic electron energies).
Even in the local-density approximation there is a non-

locality in the kinetic term in the total density functional, via
nonlocality of the kinetic-energy term T½ρ̂�, due to the non-
locality of the Kohn-Sham states. The total effective magnetic
field can be represented as

B⃗totðrÞ ¼ −
δT

δm⃗ðrÞ −
δExc

δm⃗ðrÞ þ B⃗extðrÞ; ð6:1Þ

and the first term on the rhs of Eq. (6.1) depends on m⃗ðr0Þ at
r0 ≠ r even if the exchange-correlation term B⃗xcðrÞ is local.
This leads to exchange interactions, i.e., a connection between
magnetization direction in different points of space. In this
sense, exchange parameters discussed thus far all correspond
to kinetic, or indirect, exchange. Note that despite the fact that
the GW approach formally goes beyond locality it deals with
the nonlocality in charge density only, not that of the spin
density. This means that within GW theory one has only
kinetic exchange as well.
As discussed in Sec. VII, the entire experience of calcu-

lations of exchange parameters via the LKAG formula or its
extensions is that for many classes of systems it reproduces
experimental data with good accuracy. This means that in
most cases an indirect, that is, a kinetic, contribution to
exchange interactions is dominant. There is nevertheless a
natural question as to what exactly is neglected in this
approach (Katsnelson and Antropov, 2003). To answer this
question one needs to go beyond the local spin-density
approximation and study the nonlocality of B⃗xc½m⃗�.
There are many works on a general analysis of noncollinear

magnetism within a density functional without a local spin-
density approximation (Heine and Samson, 1983; Kübler
et al., 1988; Nordström and Singh, 1996; Kleinman, 1999;
Capelle, Vignale, and Györffy, 2001; Capelle and Gyorffy,
2003; Katsnelson and Antropov, 2003; Peralta, Scuseria, and
Frisch, 2007; Sharma et al., 2007, 2018; Scalmani and Frisch,
2012; Bulik et al., 2013; Eich and Gross, 2013; Eich, Pittalis,
and Vignale, 2013; Kübler, 2017; Ullrich, 2018). Here we
focus on only one aspect of this activity, namely, the
applicability of the local spin-density approximation to the
calculations of exchange parameters. To study this issue we
need to investigate the origin of nonlocality in the exchange-
correlation functionals.
At the construction of the local spin-density approximation,

one starts with the calculation of the exchange-correlation
energy for a homogeneous electron gas from a given charge
and spin density. A natural step in studying its nonlocality is to
replace this reference system with the simplest nonuniform
state, namely, the electron gas in a spin-spiral state. This
approach was suggested by Kleinman (1999) at the level of
the Fock approximation, and by Katsnelson and Antropov
(2003) at the level of the RPA. The latter was developed
further and used in electronic structure calculations; see
Peralta, Scuseria, and Frisch (2007), Sharma et al. (2007,
2018), Scalmani and Frisch (2012), Bulik et al. (2013), Eich
and Gross (2013), Eich, Pittalis, and Vignale (2013), and
Ullrich (2018). To illustrate the basic idea and some simple
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estimations, we follow here the presentation of Katsnelson and
Antropov (2003).
We now consider a homogeneous electron gas in the spin-

density-wave (SDW) state. This is characterized by anoma-
lous averages sp ¼ hcþpþQ=2↑cp−Q=2↓i, where cþpσ and cpσ are
the creation and annihilation operators of electrons with
momentum p and spin projection σ. To consider a spin-
density wave, it is convenient to use a spinor representation of
the creation and annihilation operators similar to the Gorkov-
Nambu formalism in the theory of superconductivity
(Vonsovsky, Izyumov, and Kurmaev, 1982; Schrieffer,
1999). To this end, we introduce the spinor operator
ηp ¼ ðcþpþQ=2↑; cp−Q=2↓Þ. The Hamiltonian of the homo-
geneous electron gas then takes the following form:

H ¼
X
p

ηphpηp þ 1
2

X
q≠0

X
pp0

vcðqÞðηþpþqηpÞðηþp0−qηp0 Þ; ð6:2Þ

where vcðqÞ ¼ 4πe2=q2V, with V a volume, hp ¼ θpþ
τpσz − Δpσx, and

θp ¼ 1
2
ðεpþQ=2 þ εp−Q=2Þ ¼ p2=2þQ2=8 − μ;

τp ¼ 1
2
ðεpþQ=2 − εp−Q=2Þ ¼ pQ=2; ð6:3Þ

where εp ¼ p2=2 − μ is the energy of the free electron and
2Δp is the antiferromagnetic gap related to the formation of
the spin-density wave. Note that in this section we use the
units ℏ ¼ m ¼ 1. In the Fock approximation the gap is equal
to

Δp ¼
X
p0

vcðp − p0Þsp0 : ð6:4Þ

To simplify the consideration as much as possible, one
can replace vc with an effective Stoner exchange splitting

I ¼ ðV↑
exc − V↓

excÞ=ðn↑ − n↓Þ, where Vσ
exc ¼ ∂ðnεexcÞ=∂nσ .

Equation (6.4) can then be replaced by Δ ¼ Iðn↑ − n↓Þ=2,
where Δ does not depend on p.
To calculate the correlation contribution to the energy of the

homogeneous electron gas, one can restrict oneself to the
simplest meaningful approximation, namely, the RPA corre-
sponding to the summation of all “bubble” diagrams (Mahan,
2000; Giuliani and Vignale, 2005). The “bare” Green’s
function in the Matsubara representation has the following
form:

Gðiωm;pÞ ¼
1

iωm − hp
¼ iωm − θp þ τpσz − Δpσx

ðiωm − ξp↑
Þðiωm − ξp↓

Þ ; ð6:5Þ

where ξp↑;↓ ¼ θp ∓ Ep is a quasiparticle spectrum for a SDW

with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2p þ Δ2

q
. From Eq. (6.5) one can find the

occupation number matrix

2Np ¼
�
1þ τpσz − Δσx

Ep

�
fp↑ þ

�
1 −

τpσz − Δσx
Ep

�
fp↓;

ð6:6Þ

where fpσ ¼ fðξpσÞ is a Fermi function. For the Fock
contribution to the exchange-correlation energy one then has

EFock ¼ −1
2

X
pp0

vcðp − p0ÞTr½NðpÞNðp0Þ�

¼ Eð1Þ
Fock þ Eð2Þ

Fock; ð6:7Þ

where

Eð1Þ
Fock ¼ −

1

4

X
pp0σ

vcðp − p0Þfpσfp0σ

�
1þ τpτp0 þ Δ2

EpEp0

�
;

Eð2Þ
Fock ¼ −

1

2

X
pp0

vcðp − p0Þfp↑fp0↓

�
1 −

τpτp0 þ Δ2

EpEp0

�
: ð6:8Þ

Further, one may consider the case of small Q only, which is
sufficient for the calculation of the contributions to the spin-
wave stiffness constant. The RPA-based calculations without
this restriction were first performed by Eich, Pittalis, and
Vignale (2013). Expansion of Eq. (6.7) up to Q2 leads to the
corrections of the chemical potential (from the conservation of
the number of particles),

δμ̃ ¼ μ̃Q − μ̃Q¼0 ¼ −
Q2

8Fðn↑; n↓Þ
; ð6:9Þ

and to the total energy,

EFock

V
¼ −

e2

8π3

�
ðp4

F↑ þ p4
F↓Þ

−Q2

��
1

2F
−
2

3

�
ðp2

F↑ þ p2
F↓Þ þ

ðpF↑ þ pF↓Þ2
12F2

��
;

ð6:10Þ

where F ¼ ðpF↑ þ pF↓ÞIðn↑; n↓Þ=2π2 is a dimensionless
Stoner enhancement factor, pFσ ¼ ð6π2nσÞ1=3.
To treat the correlation effects, one may use RPA and sum

up the bubble diagrams (Mahan, 2000; Giuliani and Vignale,
2005). The corresponding expression is given as follows in
terms of the empty-loop polarization operator:

Πðiω;qÞ ¼ −Tr
X
p

T
X
εn

Gðpþ q; iεn þ iωnÞGðp; iεnÞ:

ð6:11Þ

The corresponding contribution to the Ω potential equals

Ωcorr ¼
X
q

Z
∞

−∞

dω
4π

�
ln

�
1þ vcðqÞΠðiω; qÞ

1þ vcðqÞΠQ¼0ðiω;qÞ
�

− vcðqÞ½Πðiω; qÞ − ΠQ¼0ðiω;qÞ�
�
; ð6:12Þ

where only theQ-dependent part of the correlation energy was
considered. Substituting Eq. (6.5) into Eq. (6.11), one finds
that
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Πðiω; qÞ ¼ 1

2

X
p;σ

�
1þ τpτpþq þ Δ2

EpEpþq

�
fpσ − fpþqσ

iωþ ξpqσ − ξpσ

þ 2
X
p

�
1 −

τpτpþq þ Δ2

EpEpþq

�
fp↑ − fpþq↓

iωþ ξpþq↓ − ξp↑
:

ð6:13Þ

The corresponding exchange-correlation addition to the spin-
wave spectrum at finite Q can be written as

δωQ ¼ 4

M
½ESDWðQÞ − ESDWð0Þ�; ð6:14Þ

where ESDWðQÞ is the total energy of the spin spiral and M is
the magnetic moment of the unit cell.
The next step is to restore the expression of the exchange-

correlation functional corresponding to Eq. (6.14). The
simplest rotational invariant expression has the form

Eexc ¼
Z

drfnεexcðn↑; n↓Þ þ λðn↑; n↓ÞDg; ð6:15Þ

where D ¼ ð∇αeβÞð∇αeβÞ ¼ ð∇θÞ2 þ sin2θð∇φÞ2 is the rota-
tional invariant of lowest order. Here e⃗ ¼ m⃗=jm⃗j≡
ðsin θ cosφ; sin θ sinφ; cos θÞ. More detailed analysis of the
functional dependence in the general density functional was
given by Sharma et al. (2007), Scalmani and Frisch (2012),
Bulik et al. (2013), Eich and Gross (2013), Eich, Pittalis, and
Vignale (2013), and Ullrich (2018). Based on the analysis of
Fock and random phase approximation (RPA) expressions for
the total energy of the spin-spiral state, the following
expression for λ was suggested by Katsnelson and
Antropov (2003):

λðn↑;n↓Þ¼−
e2

16π2

�
1

F
−
4

3

�
ðV↑

excpF↑−V↓
excpF↓Þþ

e2

96π3F2
:

ð6:16Þ

To evaluate the importance of the nonlocality of the
exchange-correlation functional for the exchange parameters,
one can calculate the corresponding contribution to the spin-
wave stiffness constant, which can be expressed as

D ¼ 4

M

�
lim
Q→0

ESDWðQÞ − ESDWð0Þ
Q2

�
: ð6:17Þ

Namely, Eq. (6.15) gives

δD ¼ 4

M

Z
drλðn↑; n↓Þ; ð6:18Þ

with integration over the entire elementary cell. The numerical
calculations for the case of Fe and Ni performed by
Katsnelson and Antropov (2003) led to the following results:
whereas the standard local-spin-density approximation gave
the values 239 and 692 meVÅ2 for D in bcc Fe and fcc Ni,
respectively, the corrections [Eq. (6.18)] for δD were equal to
13 and 45 meVÅ2, respectively. Hence, the total D became

253 and 735 meVÅ2 for bcc Fe and fcc Ni, respectively.
Thus, for these materials, which serve as important systems
for testing theoretical models, the indirect kinetic contribu-
tions are much larger than the direct contributions from the
nonlocality of the exchange-correlation functional.
In the model approach (for instance, a tight-binding one),

direct exchange enters the Hamiltonian straightforwardly via
the matrix elements

Jij ¼ hijjvjjii

¼
Z

drdr0ψ�
i ðrÞψ�

jðr0Þvðr − r0Þψ jðrÞψ iðr0Þ; ð6:19Þ

where vðr − r0Þ is the effective potential of the electron-
electron interaction (in the simplest approximation, just
Coulomb interaction). In most cases this contribution is
supposed to be irrelevant, but in some cases it is claimed
that this interaction is important and can even change the
calculated magnetic ground state (for instance, it can trans-
form a spin-spiral state into a ferromagnet). Examples include
single-side hydrogenated graphene (Mazurenko et al., 2016)
and half-metallic CrO2 (Solovyev, Kashin, and Mazurenko,
2015). The direct exchange interaction is also relevant in
single-side fluorinated graphene (Mazurenko et al., 2016) and
fourth-group adatoms at the surface of Sið111Þ (Badrtdinov
et al., 2016) and SiCð0001Þ (Badrtdinov et al., 2018).
Whereas sp-bonded magnets may be considered an exotic
exception, the example of CrO2 demonstrates that this issue is
not completely clear even for conventional 3d-electron mag-
nets and requires a careful investigation.

VII. NUMERICAL EXAMPLES OF INTERATOMIC
EXCHANGE

In this section we provide examples of numerical calcu-
lations of interatomic exchange interactions as well as
magnetic moments for several classes of materials. Reviews
of theoretical results of magnetic materials have previously
been published, albeit with different foci than this review.
However, it is noteworthy that Mohn (2006), Eriksson et al.
(2017), and Kübler (2017) made a comparison between
experiment and theory regarding bulk magnetic moments,
with some of the results shown in Fig. 2. In general, DFT
calculations reproduce experimental magnetic moments with
an error that seldom exceeds 5%, in particular, for transition
metal elements and their intermetallic compounds. Since
reviews of magnetic moments have already been published,
we focus in this section on results of the interatomic exchange.
Kübler (2017) reviewed results of interlayer exchange inter-
actions of magnetic multilayers, as well as magnon dispersion
from spin-spiral calculations (Kübler et al., 1988; Sandratskii,
1991, 1998; Halilov et al., 1998; Sandratskii and Bruno, 2002;
Jakobsson et al., 2015). Results for thin films were reviewed
by Etz et al. (2015), who compared magnon measurements
based on spin-polarized electron energy loss spectroscopy
(SPEELS) to adiabatic magnon spectra evaluated from explicit
calculations of interatomic exchange. Finally, we note that
Sato et al. (2010) conducted a full review of the magnetic
properties, including explicit calculations of interatomic
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exchange of diluted magnetic semiconductors. We also note
here that the most direct comparison between experiment and
theory of interatomic exchange interactions is likely to be the
magnon dispersion. This is in contrast to estimates of the
Curie temperature, which in principle also reflects the strength
of the interatomic exchange. However, most of the DFT
calculations of interatomic exchange are carried out at low (in
fact zero) temperature, which challenges a comparison for
results at finite temperature. If the exchange interaction were
not dependent on temperature (or magnetic configuration), a
comparison to experimental results at finite temperature, such
as the ordering temperature, would not be problematic.
Although most materials do have an interatomic exchange
that depends on temperature, there has been progress in
calculations of configuration-dependent exchanges and mag-
netic properties at finite temperature, as discussed in Sec. V.
Before entering details of material specific results of inter-
atomic exchange, we note that since we give examples from
previously published works there will be a mixture of units
presented. In particular, energy is in some works given in eV
and sometimes in rydbergs. We have, however, been con-
sistent with the definition of the spin Hamiltonian introduced
in Sec. I, which means that a negative value of the interatomic
exchange corresponds to a ferromagnetic coupling.
Early implementations of the explicit method, i.e.,

Eq. (5.52), were incorporated in the linear muffin-tin orbital
(LMTO) (Andersen and Jepsen, 1984) and Korringa-Kohn-
Rostoker (KKR) (Korringa, 1947; Kohn and Rostoker, 1954)
electronic structure methods. Both approaches were first
formulated within either the muffin-tin (MT) or the atomic
sphere approximation (ASA), where the potential inside each
sphere is assumed to be spherically symmetric. For close-
packed systems this is a reasonable approximation, and the
results were consistent. However, with the development of so-
called full-potential electronic structure methods, which are
free from geometrical constraints of the self-consistent density
and potential, it quickly became clear that for more loosely
packed, or low-dimensional, systems, this level of approxi-
mation is needed. There are several ab initio implementations,
using different basis functions, that employ a full-potential
approach. However, note that the computationally much more
efficient ASA calculations are still being pursued with good
accuracy, especially for close-packed systems.
The greatest advantage of ASA-based codes is the compact

representation of the basis functions, which are atom centered
and have a well-defined angular momentum character. This is
convenient for implementation of the magnetic force theorem,
which operates with quantities that have a site index i attached
(Sec. V). In the full-potential codes the basis set is more
extended and a minimal basis set is generally avoided. In this
case, the problem of defining a good representation of the
local basis [see Eq. (4.9)] becomes less obvious and generally
does not have a unique solution. This issue sometimes hinders
a proper quantitative comparison between the results obtained
with various codes or even implementations within a given
code.
When one evaluates the interatomic exchange interaction

between two atoms, the resulting values may depend on the
choice of orbitals that represent these atoms; see Han, Ozaki,
and Yu (2004) and Yoon et al. (2018). This issue was

discussed in detail by Kvashnin, Grånäs et al. (2015) and
Steenbock et al. (2015), where the comparison between the
Jij’s obtained with the projection on the muffin-tin sphere and
Löwdin-orthogonalized orbitals were presented. Overall, the
results for fcc Ni and hcp Gd have been consistent, but in
general it is found that, depending on the system, there may be
an unwanted sensitivity to the projection. Moreover, strong
covalent bonding between 3d and ligand states also calls either
for perturbing the spins of the hybrid orbitals or for explicit
treatment of ligand spins as a stand-alone entity (Logemann
et al., 2017, 2018; Solovyev, 2021).
One commonly used choice is to use Wannier functions to

obtain a localized basis for the Jij calculations (Rudenko
et al., 2013; Korotin et al., 2015; Logemann et al., 2018; Zhu,
Edström, and Ederer, 2020). In particular, maximally localized
Wannier functions (Marzari et al., 2012) form an appealing
basis set that is well defined for a given set of bands and thus
enables the comparison of the magnetic interactions obtained
with different DFT codes. There are a couple of versatile
software applications that allow one to apply the present
formalism for an arbitrary tight-binding Hamiltonian inde-
pendent of the chosen projection scheme (Yoon et al., 2020;
He et al., 2021). Keeping these issues in mind, we now
proceed with a discussion of calculated results of interatomic
exchange for several classes of magnetic materials.

A. Elemental transition metals

One of the most important test cases for explicit calcu-
lations of interatomic exchange is the ability to quantitatively
reproduce magnetic properties such as spin-wave dispersion
and ordering temperature of the three ferromagnetic 3d
elements: bcc Fe, hcp Co, and fcc Ni. The spin-wave stiffness
D of bcc Fe was evaluated in the original articles with
explicit calculations of interatomic exchange (Liechtenstein,
Katsnelson, and Gubanov, 1984; Liechtenstein et al., 1987).
In these works, the interaction between the first two co-
ordination shells was calculated for bcc Fe. The dominant,
nearest-neighbor (NN) coupling was found to be FM, while
the next NN coupling was found to be antiferromagnetic and
much smaller. The obtained value of the spin-wave stiffnessD
was 294 meVÅ2 for bcc Fe, which is in good agreement with
experimental values that range from 305 (You et al., 1980) to
314 meVÅ2 (Stringfellow, 1968). This initial result proved
the formalism described in detail in Sec. V to be highly
promising. The formula for calculating the Heisenberg
exchange Jij also allowed Liechtenstein, Katsnelson, and
Gubanov (1984) and Liechtenstein et al. (1987) to evaluate D
as a function of the upper integration limit, which can be
viewed as the position of the Fermi level; see Fig. 8. This
provides valuable information on how D can be affected by
doping of the material. In particular, as one changes the Fermi
level to arrive at the half-filled 3d shell, at around−1 to −3 eV
in Fig. 8, D takes negative values, indicating that the FM
reference state becomes unstable.
Liechtenstein, Katsnelson, and Gubanov (1984) and

Liechtenstein et al. (1987) argued that the NN exchange
coupling primarily determines the value of spin-wave stiff-
ness. The interactions with the neighbors beyond the second
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coordination shell were not computed, as their contribution toD
was expected to be negligibly small due to their oscillatory sign
(Oguchi, Terakura, and Hamada, 1983). However, later it was
shown that the magnetic interactions in elemental transition
metals are in fact extremely long range (Antropov, Harmon, and
Smirnov, 1999; van Schilfgaarde and Antropov, 1999; Frota-
Pessôa, Muniz, and Kudrnovský, 2000), and obtaining a well-
converged value of the spin-wave stiffness was indeed found to
be extremely difficult (Antropov, Harmon, and Smirnov, 1999;
van Schilfgaarde and Antropov, 1999).
Pajda et al. (2001) made a substantial advancement in that

direction by performing a thorough study of spin waves and
ordering temperatures, calculated from explicit values of Jij,
for bcc Fe, fcc Co, and fcc Ni. Their calculations were
performed using a tight-binding LMTO method (Andersen
and Jepsen, 1984). This work was done using the full set of
valence states (spd basis) and a fine k-point mesh. For a
magnetic material with one atom per unit cell, the spin-wave
dispersion is governed by the exchange couplings Jij in the
following manner:

ωðqÞ ¼ 4

M

X
j

Jij½1 − exp ðiq ·RijÞ�; ð7:1Þ

whereM is the value of the saturated magnetic moment. Since
the real-space values of Jij ’s are involved, the summation has
to be truncated. Pajda et al. (2001) considered interactions
with 195 and 172 shells for bcc and fcc metals, respectively, in
order to ensure that the spin-wave dispersions are converged.
The obtained dispersion for fcc Ni is shown in Fig. 9. The
experimental data obtained with inelastic neutron scattering
are also shown for comparison. Since the experimental spin
waves become damped for higher values of q, it is possible to
compare experiments and theory only in a region around the
zone center and, as Fig. 9 shows, in this regime the agreement
between theory and experiment is impressive. Results of
similar accuracy were obtained from spin-spiral calculations
(Kübler, 2017), and it is reassuring that DFT calculations of
interatomic exchange obtained from different methods give
similar results. In fact, a direct comparison between the two

methods was made for bcc Fe, with similar results
(Bergqvist, 2005).
In Fig. 9 experimental data are shown only for fcc Ni. This is

due primarily to the fact that it is difficult to measure inelastic
scattering of polarized neutrons of Co owing to the strong self-
absorption effect. In addition, the crystal structure of bulk Co is
hcp, not fcc. However, as reviewed by Etz et al. (2015),
experimental results of the magnon dispersion have been
published for thin films of Co (in the fcc structure) as an
overlayer of, for instance, Cu (001). For these systems, one can
also find good agreement between theory and experiments. The
results for thin films of fcc Co were also reported by Liu et al.
(1996), Vollmer et al. (2003, 2004), and Balashov et al. (2014),
with good agreement between theory and observations.
Since this review focuses on the explicit method, in Fig. 10

we compare selected, calculated interatomic exchange param-
eters of bcc Fe, which is a common test material in the case of
code implementations. The exchange parameters in Fig. 10 are
calculated by Eq. (5.52); however, the actual electronic
structure methods used, energy functionals employed, and
details of the implementations differ in the different inves-
tigations reported. This causes some differences among the
various investigations. The first-nearest-neighbor couplings
[and here using the form of the Heisenberg Hamiltonian in
Eq. (1.3)] were obtained as −1.97 (Morán, Ederer, and Fähnle,
2003), −2.86 (Pajda et al., 2001), −2.40 (Frota-Pessôa,
Muniz, and Kudrnovský, 2000), −2.44 (Antropov, Harmon,
and Smirnov, 1999), −1.90 (Mankovsky, Polesya, and Ebert,
2020a), and −1.90 mRy (Kvashnin et al., 2016). These data,
together with interactions at longer distances, are shown in
Fig. 10. Note from the figure that the general behavior of the
interatomic exchange interaction as a function of distance
between atoms is similar for all reported studies. The strongest
interactions are between nearest neighbors, followed by that
from next nearest neighbors, while longer range interactions
are in all published studies much weaker. Figure 10 also shows
that differences in the value of interatomic exchange varies
between the published results, which reflects the sensitivity of
this parameter with respect to computational details (basis set,
energy functional, etc.). Another relevant parameter that is
extracted from a set of interatomic exchange is the total

FIG. 9. Calculated spin-wave dispersion relation of fcc Ni from
Pajda et al. (2001). Experimental data are from Mook and
Paul (1985).

FIG. 8. Spin-wave stiffness in bcc Fe as a function of the upper
integration limit. Adapted from Liechtenstein, Katsnelson, and
Gubanov, 1984.
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exchange value J0 ¼
P

h0iiJ0i given by Eq. (5.56). Values for
J0 were found to be −10.00 (Sakuma, 1999), −11.03 (Frota-
Pessôa, Muniz, and Kudrnovský, 2000), −12.20 (Katsnelson
and Lichtenstein, 2000), and −13.58 mRy (Pajda et al., 2001).
These values vary approximately with the same amount as the
values in Fig. 10, which seems natural. Note that all numerical
values that we report here are adjusted11 to the spin
Hamiltonian of Eq. (1.3). More details on this issue are given
in Sec. I E.
Pajda et al. (2001) discussed the long-range character of the

oscillations in detail. Using stationary phase approximation
and the asymptotic behavior of the intersite Green’s function,
the long-range character of the Jij’s was shown to be of the
following form:

Jij ∝ ℑ
exp fi½ðk↑

F þ k↓
FÞRij þΦ↑ þΦ↓�g
R3
ij

; ð7:2Þ

where kF is the wave vector of energy EF having the direction
such that the associated group velocity is parallel to Rij, Φ is
an additional phase factor, and ↑ and ↓ denote spin projec-
tions. For weak itinerant-electron ferromagnets, which have
both spin-up (majority) and spin-down (minority) bands
partially occupied, the Fermi wave vectors are real and one
recovers the oscillatory exchange interaction, known as the
RKKY mechanism of indirect exchange (Ruderman and
Kittel, 1954). At the same time, if one of the spin channels
is completely empty or filled, the Fermi wave vector becomes
imaginary kF ¼ iκF, which in turn results in the evanescence
of the Jij’s. Thus, in weak ferromagnets one can expect more
long-range magnetic interactions than in half metals or strong
ferromagnets, which have a filled majority band. This result
also provides an explanation for why bcc Fe, as a weak
ferromagnet, shows much more pronounced Kohn anomalies
in the spin-wave spectra than Co and Ni (Halilov et al., 1998).
Pajda et al. (2001) demonstrated that the interactions with

distant neighbors must be taken into account when one
calculates the spin-wave stiffness. However, by considering
interactions between distant atoms (which are more than six
lattice constants apart), one finds that the value of D keeps
oscillating as more coordination shells are taken in the
summation. The reason for this is that the expression for D
includes a term R2

ij; see Eq. (7.3). The Jij’s have at worst
(from a summation point of view) an R−3

ij dependence
[Eq. (7.2)]. As a result, the numerical convergence of D is
problematic. One solution to this problem was proposed by
Pajda et al. (2001). It was suggested that the expression for
spin-wave stiffness can be regularized by introducing an
additional decay factor η, which ensures its convergence at
large distances. Thus, the DðηÞ is then defined as

DðηÞ ¼ lim
Rmax→∞

2

3M

X
Rij≤Rmax

JijR2
ije

−ηRij=a; ð7:3Þ

and the spin-wave stiffness is finally calculated by taking the
limit of η going to zero:

D ¼ lim
η→0

DðηÞ: ð7:4Þ

The obtained values are shown in Table I. They show system-
atically good agreement with experimental data measured by
different techniques. In Table I we also show the experimental

FIG. 10. Interatomic exchange parameters in bulk bcc Fe
calculated from Eq. (5.52) with different code implementations.
(a) Denoted by red squares, a tight-binding (TB) LMTO-ASA
method was used by Morán, Ederer, and Fähnle (2003).
(b) Another TB LMTO method was used by Pajda et al.
(2001). (c) Results obtained using a real-space LMTO-ASA
code by Frota-Pessôa, Muniz, and Kudrnovský (2000). Other
real-space LMTO-ASA calculations made by (d) Antropov,
Harmon, and Smirnov (1999) and (e) van Schilfgaarde and
Antropov (1999). (f) Real-space tight-binding framework used
by Spišák and Hafner (1997). (g) LDA++ approach used for the
first time by Katsnelson and Lichtenstein (2000). (h) Full-
potential, relativistic calculation (RSPt) was used with an
extended basis and in (i) RSPt was used by with a minimal
basis (unpublished). Note that J1 ¼ −1.9 mRy was found using a
KKR calculation by Mankovsky, Polesya, and Ebert (2020a).

TABLE I. Calculated and measured values of spin-wave stiffness in
elemental ferromagnets in meVÅ2.

Metal Dtheo (Pajda et al., 2001) Dexp

Fe (bcc) 250� 7 281,a 266,b 256b

Co (fcc) 663� 6 384,b 371,b 466,c 435,d 580e

Ni (fcc) 756� 29 374,b 403,b 555f

aFrom Shirane, Minkiewicz, and Nathans (1968).
bFrom Pickart et al. (1967) and references therein.
cFrom Liu et al. (1996) (thin films).
dhcp Co. From Liu et al. (1996).
ehcp Co. From Pauthenet (1982).
fFrom Mook, Lynn, and Nicklow (1973).

11In many cases one can find −ð1=2ÞJij values in the literature
where the nomenclature differs.
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results for hcp Co. The magnetic interactions in hcp Co were
calculated in several studies (van Schilfgaarde and Antropov,
1999; Turek, Kudrnovský, Drchal et al., 2003; Kvashnin, Sun
et al., 2015). In one of the more recent works the spin-wave
excitations and Tc were calculated by means of atomistic spin-
dynamics simulations, and excellent agreement with experi-
ment for both properties was reported (Chimata et al., 2017).
The magnetic ordering temperatures of the three FM metals

have also been calculated from several different approaches:
mean-field approximation (MFA), Tiablikov’s decoupling
scheme [also known as RPA (Tiablikov, 2013)], classical
Monte Carlo simulations, or atomistic spin dynamics
(Turzhevskii, Liechtenstein, and Katsnelson, 1990; Antropov
et al., 1995, 1996; Evans et al., 2014; Eriksson et al., 2017;
Shirinyan et al., 2019), where the last reference uses unsuper-
vised machine learning. The MFAvalues for bcc Fe and fcc Co
were reported to be in reasonably good agreement with experi-
ment. For instance, for Fe it was found to be∼1400 K,while the
experimental value is 1045K (Pajda et al., 2001). Given the fact
that MFA is known to overestimate the values by roughly 30%
compared to the more accurate Monte Carlo method (Binder
and Heermann, 2010), the calculated value is close to what
should be expected.
The calculations for fcc Ni suggested Tc values of about

397 K in MFA and 350 K in RPA (Pajda et al., 2001), which
are much smaller than the experimental value of about 630 K.
This underestimation was already reported by Liechtenstein
et al. (1987) and van Schilfgaarde and Antropov (1999). On
the contrary, the spin-wave stiffness is overestimated com-
pared to the experiment. This suggests that the inconsistency
of the results for Ni cannot be circumvented by a simple
rescaling of the exchange integrals.
The problem related to describing magnetic excitations in

fcc Ni has been addressed for a long time. Bruno (2003)
suggested that the corrections to the LKAG formula due to
transverse constraining fields become substantial when the
exchange splitting is small and becomes comparable with
magnon energies, as discussed in Sec. I E. This is indeed the
case for fcc Ni, whose saturated magnetic moment amounts to
roughly 0.6μB per atom, indicating that the splitting between
spin-up and spin-down bands is the smallest among three
elemental magnets, as shown by Singer, Fähnle, and
Bihlmayer (2005). Using renormalized values of exchange
parameters, it was shown that the MFA-based Tc estimates can
be substantially improved (Bruno, 2003). At the same time,
the employed corrections were shown not to modify the
magnon spectrum (Katsnelson and Lichtenstein, 2004), such
that the good agreement between theory and experiment
remained (Fig. 9).
However, as discussed, the Ni case also raises questions as

to whether the small moment of Ni can be treated classically.
In addition, the values of the magnetic moments in fcc Ni
significantly depend on the magnetic configuration, and
this dependence is much more pronounced than in bcc
Fe (Turzhevskii, Liechtenstein, and Katsnelson, 1990;
Rosengaard and Johansson, 1997; Antropov, Harmon, and
Smirnov, 1999). The best gauge for estimating the accuracy of
an interatomic exchange of fcc Ni is to compare magnon
dispersion, as opposed to the Curie temperature.

Since both the calculated magnetic moments and the
interatomic exchange integrals depend on the reference state,
the spin stiffness should be better described by the set of Jij ’s
extracted from the ordered magnetic ground state, while Tc

should be estimated using a magnetic configuration found at
the ordering temperature (Ruban et al., 2004; Shallcross et al.,
2005). The problem is that representing such a state in DFT
calculations is not straightforward. In the so-called disordered
local moment picture discussed in Sec. VII D, the magnetic
moments experience a completely spin-disordered environ-
ment introduced via the coherent potential approximation
(CPA) (Soven, 1967; Elliott, Krumhansl, and Leath, 1974;
Kakehashi, 1992). However, in these calculations the local
moment in fcc Ni collapses to zero (Shallcross et al., 2005), in
contrast to observations. A generalized Heisenberg model that
not only takes into account the short-range order effects
(Antropov, 2005) but also allows the magnetic moments to
change their magnitude, i.e., introduces longitudinal spin
fluctuations, was proposed by Rosengaard and Johansson
(1997), Ruban et al. (2007), and Wysocki, Glasbrenner, and
Belashchenko (2008). This model indicates that the calculated
Tc values of bcc Fe and fcc Ni are in good agreement with the
experimental values.
In general, interatomic exchange is a quantity that critically

depends on the details of the electronic structure. The results
discussed thus far were obtained employing the LSDA or the
similar, spin-polarized generalized gradient approximation
(GGA). Electron correlations beyond the LSDA and GGA
can be captured by means of a combination of DFT and
dynamical mean-field theory (Georges et al., 1996;
Lichtenstein and Katsnelson, 1998; Kotliar et al., 2006).
Katsnelson and Lichtenstein (2000) used this method to
calculate interatomic exchange. It was shown that taking into
account local correlations of bcc Fewill influence both the local
magnetic moment and Jij.
The results shown in Fig. 11 indicate that the calculation of

the spin-wave stiffness in bcc Fe, obtained using the LSDA, is
different from results of DFTþ DMFT (by roughly 20%). We
note that the starting point for these calculations was a
nonmagnetic DFT solution, and therefore the local exchange
splitting emerges purely from DMFT and is governed by the
HubbardU term. However, it was shown that if one starts with
magnetic DFT and performs DMFT calculations in addition,
then the differences between the LSDA and LSDAþ DMFT
results are modest (Kvashnin, Grånäs et al., 2015). This is
related partly to the fact that the exchange splitting is
introduced by the LSDA and does not change much after
U is explicitly added to consideration. In the case of moderate
correlation strength, the overall differences in the total
exchange interaction J0 are related to the quasiparticle’s mass
renormalization, which is brought about by electron-electron
interactions (Mazurenko et al., 2013). However, since orbitals
of different symmetries have different effective masses, the
overall impact of dynamical correlations on each individual
Jij is more sophisticated. Borisov et al. (2021) showed that
dynamical correlations, as described by DMFT, can produce
an up to 30% variation of the leading Heisenberg and DM
exchange interactions. This was exemplified by a study of
intermetallic compounds such as CoPt and FePt and MnSi and
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FeGe, as well as transition metal bilayers Co=Ptð111Þ and
Mn=Wð001Þ. Furthermore, nonlocal correlations modeled on
the GW level have also been made for Fe, Co, and Ni (Yoon
et al., 2019), albeit with marginal changes in the Heisenberg
exchange.
An advantage of the formalism of explicit calculation of the

Jij parameters is that one can perform orbital-by-orbital
decomposition of each magnetic coupling. This decomposi-
tion is possible since in the LKAG formula [given by
Eq. (5.52)] TrL can first be taken over just a part of the
orbitals, i.e., one can analyze the individual orbital contribu-
tions of the exchange parameter. In a cubic material one can
then follow the coupling between different irreducible repre-
sentations of the 3d orbitals (Eg and T2g). This turns out to be a
powerful tool for obtaining a microscopic understanding of
the nature of magnetic interactions. To be specific, if the
material has cubic symmetry, the d orbitals split into Eg and
T2g manifolds. In the basis of cubic harmonics, the local
exchange splitting becomes a diagonal matrix and the
exchange interaction can be represented as a sum of orbital
contributions Jmm0

ij , where an orbital m on the site i is coupled
to each orbital m0 on the site j. In the cubic system it is
therefore natural to group these terms into three contributions,

Jij ¼ J
Eg−Eg

ij þ J
Eg−T2g

ij þ J
T2g−T2g

ij ; ð7:5Þ

which combine the individual orbital contributions according
to the symmetry of the d orbitals involved. Kvashnin et al.
(2016) performed this orbital decomposition of the NN
exchange integral for a series of transition metal alloys in
the bcc structure. The results, which are shown in Fig. 12,
reveal that in the cases of Mn and Fe there is strong
competition between different terms having opposite (FM

and AFM) signs. This balance is most intricate for bcc Fe,
where all three terms in Eq. (7.5) are of comparable size. It
was shown that, thanks to this decomposition, it was possible
to identify the microscopic exchange mechanisms for each of
these three channels, revealing a combination of RKKY,
double exchange, and superexchange (Kvashnin et al., 2016).
Overall, the sign of the NN coupling in all elemental 3d

systems follows the well-known Bethe-Slater curve, but it is
governed by a complex interplay between different orbital
contributions (Cardias et al., 2017). This result paves the way
to designing magnetic interactions in metallic 3d systems in
general and allows for a deeper analysis of interatomic
exchange interactions. One way to continue the analysis is
to calculate the symmetry-decomposed interaction parameters
between further neighbors, as has been done for bcc Fe
(Kvashnin et al., 2016) and other 3d elements (Cardias et al.,
2017). One of the most important conclusions in the case of
bcc Fe is that the exchange between the T2g orbitals is
Heisenberg-like and long range, while it is relatively short
range with a substantial non-Heisenberg behavior in the case
of the Eg − Eg and mixed (Eg − T2g) channels (Kvashnin
et al., 2016).
Note that the non-Heisenberg behavior of bcc Fe and,

especially, fcc Ni has been discussed for a long time
(Turzhevskii, Liechtenstein, and Katsnelson, 1990), from
calculations that considered δΩone

i [see Eqs. (3.3), (3.4),
(5.39), and (5.40)] when a spin is rotated by a finite θi, as
shown in Fig. 13. The results of the figure are clear: a strong
configuration dependence can be observed for the magnetic
moment and the angular dependence of the energy variation
does not follow a sine function, especially for angles far from
the ground state.
Szilva et al. (2017) considered a similar system, i.e., one

spin was rotated by a finite θi at site i on a bcc Fe lattice when
all other spins formed a ferromagnetic background and θi ran
from 0 to π. In the study the two-site energy variation was the
main focus. Note that in general one formally gets for the two-
site energy variation (in the lack of SOC)

δΩtwo
ij ¼ −ðJHij cos θi þ JNHij sin θiÞðδθÞ2; ð7:6Þ

FIG. 11. Spin-wave dispersion in bcc Fe as obtained fromDFTþ
DMFT [referred to as LDAþ ΣðEÞ] and spin-polarized DFT
(LSDA) calculations. From Katsnelson and Lichtenstein, 2000.

FIG. 12. Calculated orbital-decomposed first-nearest-neighbor
exchange interaction in elemental 3d metals in the bcc structure
from Kvashnin et al. (2016). The calculations were made with the
use of the real-space LMTO-ASA method.
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where the terms that are proportional to a cosine and a sine
function are referred to as the Heisenberg (H) term and non-

Heisenberg (NH) terms, respectively, and JHij ¼ Jð2Þij þ Að2Þxx
ij

and JNHij ¼ −2Að2Þzx
ij according to Eqs. (5.47) and (5.49). In

this discussion, when the first-nearest-neighbor couplings are
considered, the ij indices are replaced by the index 1. The
calculated Heisenberg and non-Heisenberg results for differ-
ent values of θi are shown by the solid black line in Fig. 14.
The figure shows that in a general noncollinear case the non-
Heisenberg contribution can be significant. However, the
symmetry decomposition proves that in the T2g channel the
system is more Heisenberg-like and the non-Heisenberg
behavior originates from Eg and the mixed channel. This is
in good agreement with the conclusions based on the collinear

formalism presented by Kvashnin et al. (2016) and Cardias
et al. (2017).

B. Itinerant magnets based on 3d metal alloys and compounds

The explicit method for calculating exchange has been
widely applied to study 3d-based alloys and compounds
(Turek et al., 2006; Ebert, Ködderitzsch, and Minár, 2011),
andwe describe in this section some examples.According to the
Slater-Pauling curve, themaximalmagnetization per atom in 3d
metal alloys is achieved for the Fe1−xCox family. In the entire
composition range, these alloys are ferromagnetic (Ležaić,
Mavropoulos, and Blügel, 2007). Ležaić, Mavropoulos, and
Blügel (2007) suggested that all pairs of Fe-Fe, Fe-Co, and
Co-Co interactions are FM and that the NN JFe-Co have the
highest value. The latter result was reported earlier for an
ordered B2-FeCo system (MacLaren et al., 1999), highlighting
the fact that the efficient hybridization between the Fe and Co
states results in the enhancement of both the saturated mag-
netization and Tc. For x > 0.17, an experimental value of Tc of
the bcc phase is unknown since the structural bcc-fcc transition
occurs before the bcc structure reaches aCurie temperature. The
temperature of the bcc-fcc transition sets a lower value of the
expected Tc of the bcc structure, and it is high. In fact, MFA-
based estimates predict a value of 1600 K for x ¼ 0.5 (Ležaić,
Mavropoulos, and Blügel, 2007), which is consistent with
expectations. An interesting feature of this family of alloys is
that by changing concentration one gradually transforms the
electronic structure to achieve a transition from weak to strong
ferromagnetism. As a result, depending on Co concentration,
the magnetic interactions (and hence the Tc’s) have sub-
stantially different sensitivities to volume changes (Ležaić,
Mavropoulos, and Blügel, 2007).
Iron-nickel alloys form in the fcc crystal structure and are

celebrated thanks to the Invar effect: a vanishing thermal
expansion at room temperature that is in an intrinsic relation
with the temperature dependence of the magnetic configura-
tion (van Schilfgaarde, Abrikosov, and Johansson, 1999).
Ruban et al. (2005) calculated the magnetic interactions in
Fe0.5Ni0.5 and Fe0.65Ni0.35. They were compared with those in
fcc γ-Fe, and it was found that although both types of systems
are frustrated, the physical picture is drastically different. In
fcc Fe, the frustration comes from the competition between
FMNN exchange coupling and that of more distant neighbors,
which have a long-range oscillatory character. In contrast, the
Fe-Ni alloys are already characterized by highly dispersive
interactions with the first coordination shell, as shown in
Fig. 15. Although CPA-based results agree well with the
averaged Jij’s obtained from the supercell approach, the latter
captures more details and reveals strong influence of the local
environment, which infers why the magnetic order of these
alloys is so complex. Note that fcc-based Fe-Mn alloys have a
tendency similar to AFM coupling and noncollinearity
(Sakuma, 2000). Generally, for Ni-based alloys it was found
that the renormalized (Bruno, 2003) Jij’s provide better
estimates of the Tc’s (Kudrnovský, Drchal, and Bruno,
2008), which is again related to the relatively small exchange
splitting of its 3d states.
Heusler alloys have been intensely studied with the explicit

formalism of exchange interactions (Kurtulus et al., 2005;

FIG. 13. Magnetic moment in μB (solid lines) and the first
derivative of the energy (Ω) with respect to angle θi (dashed lines)
for the cases of bcc Fe (left) and fcc Ni (right) when one spin
is rotated with a finite θi in a ferromagnetic background
(Turzhevskii, Liechtenstein, and Katsnelson, 1990), as shown
in the added schematic.

FIG. 14. First-nearest-neighbor Heisenberg and non-Heisenberg
interatomic exchange parameters in bcc Fe when one spin is
rotated by a finite θi running from zero to π at site i in a
ferromagnetic background in the case of bcc Fe (Szilva et al.,

2017). JH1 ¼ Jð2Þ1 þ Að2Þxx
1 and JNH1 ¼ −2Að2Þzx

1 ; see Eqs. (5.47)
and (5.49). The black (solid) curve stands for the total value while
the red (dotted), blue (dashed), and green (dash-dotted) lines
show its symmetry decomposition in the d channel defined by
Eq. (7.5).
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Rusz et al., 2006; Buchelnikov et al., 2008, 2010; Thoene
et al., 2009; Comtesse et al., 2014; Wollmann et al., 2014;
Khmelevskyi, Simon, and Szunyogh, 2015; Simon et al.,
2015; Chico et al., 2016). For instance, Thoene et al. (2009)
conducted a systematic study of magnetic interactions, spin-
wave dispersion, and Tc for the series of Heusler compounds
with L21 structure. The results shown in Fig. 16 demonstrate
that Tc’s calculated from Jij’s combined with a MFA estimate
of the ordering temperature are in excellent overall agreement
with experiment. Given all the approximations of their work,
such as a MFA for Tc estimation and the neglection of local
correlations, one may regard this excellent result as somewhat
fortuitous. However, it is still impressive that the theory is able
to correctly reproduce the experimental trend so well.
Heusler alloys attract significant attention partially due to the

half-metallic character that is observed in some of them.
However, there are many other half metals, such as Cr and

Mn compounds, with a zinc blende structure that were
also successfully modeled using the formalism presented here
(Sanyal, Bergqvist, and Eriksson, 2003; Bose and Kudrnovský,
2010; Liu, Bose, and Kudrnovský, 2010). An overall review of
the calculated Jij’s in half-metallic magnets was given by
Katsnelson et al. (2008). As expected from the earlier consid-
erations [Eq. (7.2)], the Jij’s in half metals are relatively
short range.

C. Alloys with 4d and 5d elements

The 4d and 5d metals are typically nonmagnetic due to
relatively more pronounced band dispersion, which makes it
difficult for the Stoner criterion to get satisfied. However,
when placed in proximity to 3d metals, these elements can
have substantial induced magnetic moments (Mohn and
Schwarz, 1993). The problem regarding coexisting intrinsic
and induced moments was addressed in several works on FePt
and CoPt alloys with L10 structure (Mryasov, 2004, 2005). It
was suggested that the size of the induced moments of 5d
elements is defined by an effective Weiss field that is produced
by the surrounding 3d magnetic moments. This idea was later
elaborated on when a generalized Monte Carlo–based scheme
was suggested that dynamically updates the induced magnetic
moments for each magnetic configuration during the simu-
lation (Polesya et al., 2010). Application of this scheme to the
series of FexPd1−x and CoxPt1−x alloys was shown to deliver a
systematically good agreement with experimental values of
Tc. Polesya et al. (2016) pointed out that such treatment of the
induced moments effectively leads to the emergence of
higher-order biquadratic exchange interactions between 3d
metal moments. Indeed, such interactions were suggested
(Mryasov, 2005) to play a key role in explaining the
metamagnetism of FeRh (Barker and Chantrell, 2015). In
ordered FePd3, the biquadratic interactions were suggested to
stabilize the noncollinear 3Q phase under pressure (Kvashnin
et al., 2012), and they were needed to get a consistent model
of magnetism in ferropnictides (Wysocki, Belashchenko, and
Antropov, 2011).
Alloying 3dmetals with heavier elements can also boost the

effective strength of the spin-orbit coupling. The SOC con-
stant of Pt 5d states is 1 order of magnitude larger than that of
Fe 3d states, and can therefore be used to enhance anisotropic
magnetic interactions and the magnetocrystalline anisotropy
(MAE). Indeed, the results for Pt-doped 3d metals (Solovyev,
Dederichs, and Mertig, 1995) showed that the MAE is to a
large extent defined by nonlocal scattering of electrons from
the SOC potential of Pt states. We later see how these ideas
become particularly useful for inducing large magnetocrystal-
line anisotropy and DM interactions in low-dimensional
systems.

D. Results from the disordered local moment approximation

Thus far we have focused most of our discussion on
theoretical calculations of the electronic structure, and the
mapping of these results to the Hamiltonians (1.3) and (1.4).
However, the electronic structure can have a strong configu-
ration dependence, which was demonstrated in a sequence of
papers (Staunton et al., 1984, 1985; Gyorffy et al., 1985).

FIG. 15. Calculated Fe-Fe exchange interactions with first three
coordination shells in fcc Fe0.5Ni0.5 for two different unit cell
volumes (V) (Ruban et al., 2005). The 16-atom supercell-based
results for V ¼ 73.6 a.u.3 and V ¼ 70.3 a.u.3 are shown with
blue (dark gray) and green (light gray) circles, respectively.
Supercell- and CPA-averaged Jij’s are shown for comparison.

FIG. 16. Calculated vs measured Tc’s in the series of L21
Heusler alloys. From Thoene et al., 2009.
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In these works finite temperature effects were introduced by
separating the variables into slow and fast, and the concept of
temporarily broken ergodicity was introduced, as mentioned
in connection to Fig. 3. A central aspect of these works was
the description of the electronic structure above an ordering
temperature by means of the disordered local moment (DLM)
model (Hasegawa, 1979a; Hubbard, 1979b; Edwards, 1982;
Oguchi, Terakura, and Hamada, 1983; Pindor et al., 1983;
Staunton et al., 1984, 1985; Gyorffy et al., 1985), in which the
electronic structure is evaluated from a single-site approxi-
mation of the coherent potential approximation. This implies
that the electronic structure at finite temperature is represented
by an atom with a potentially finite magnetic moment in an
environment with “spin-average” scattering properties. Hence,
there is no short-range order in this model, which seems at
variance with experimental results from, for instance, muon-
spin resonance, with a significant amount of short-range order
also at elevated temperatures. The fluctuating local band
(FLB) model (Korenman, Murray, and Prange, 1977a;
Capellmann, 1979; Moriya, 1981) also builds on short-range
magnetic order at or even above the ordering temperature, and
in fact the early works of the FLB model express the basic
principles behind noncollinear electronic structure theory. In
this discussion it becomes relevant to note some early works
of Hubbard, who argued for a theory that builds on itinerant-
electron states, but with a local exchange field that varies in
direction and strength from atom to atom; see Hubbard
(1981a, 1981b). The probability of finding a system in a
given configuration of a local exchange field was evaluated by
an energy expression together with a Boltzmann factor,
allowing for calculations of magnetism at finite temperature.
This theory resulted in a Curie temperature of 1840 K for Fe
and 1200 K for Ni. Both values are significantly larger than
the experimental values.
Although many materials show short-range order above the

ordering temperature, the DLM approach, which neglects
short-range order, has given encouraging result; see
Khmelevskyi et al. (2007), Delczeg-Czirjak et al. (2012),
Ruban and Razumovskiy (2012), and Dong et al. (2017). As
an example of this method, we show in Fig. 17 the inverse of
the susceptibility of bcc Fe, evaluated as a function of
temperature, in a calculation that builds on the DLM model
(Staunton et al., 1984). As seen in the figure, the susceptibility
diverges at 1260 K, corresponding to the ordering temper-
ature, which is in good agreement with the experimental Curie
temperature of 1040 K. There are several examples of
calculations of Heisenberg exchange from the DLM approach,
e.g., the works quoted earlier in this section, and the
relativistic extension of the DLM approach it makes possible
to calculate the temperature dependence of magnetic
anisotropy as well (Staunton et al., 2006). We also note that
a notable review of critical dynamics of magnets above and
below the transition temperature was given by Frey and
Schwabl (1994).

E. Multilayers and atoms on metallic surfaces

With the development of epitaxial growth techniques, it is
now possible to produce extremely thin layers of magnetic
materials with good control of the structural homogeneity. The

magnetic interactions in such low-dimensional magnets bring
many surprises and opportunities for applications, such as in
spintronics and magnonics.
For thin-film systems, SPEELS serves as an accurate

experimental tool for observing magnon excitations
(Vollmer et al., 2003). In a number of works, the adiabatic
magnon spectra, calculated using Jij’s, are directly compared
against measured spectra, with a generally good agreement
(Chuang et al., 2014; Meng et al., 2014; Zakeri, Qin, and
Ernst, 2021). To incorporate finite temperatures into the
theory, atomistic spin-dynamics simulations have also been
widely used to model the surface magnons; for a review, see
Etz et al. (2015). Among the studied materials one observes
the Co=Cuð111Þ, Co=Cuð001Þ, Fe=Cuð001Þ, and Fe=Wð110Þ
systems (Bergqvist et al., 2013).
Exchange interactions in multilayers of elemental transition

metals have been investigated in many studies. Vaz, Bland,
and Lauhoff (2008) provided a comprehensive overview of
calculated spin-wave stiffnesses that were obtained using
different electronic structure methods. An interesting result
was obtained by Pajda et al. (2000) and Bruno et al. (2002),
where Fe and Co monolayers on Cuð001Þ were considered.
Depending on the thickness of the capping Cu layer, the Tc’s
were shown to have an oscillatory character. This result, also
shown in Fig. 18, was suggested to be caused by the
interference effects in the capping layer. Such oscillations
have actually been observed in Co=Cu=Ni trilayers (Ney
et al., 1999) and also explained using the explicit approach of
calculating exchange interactions (Isaev et al., 2001).
Multilayers of 3d metals on the substrates of heavier

elements get even more unpredictable behavior. This is
partially related to substantial exerted strain as well as a
modification of the bandwidth of electron states. For instance,
Meng et al. (2014) studied Fe=Rhð001Þ and found a pro-
nounced softening of acoustic magnons at theM point, shown
as a dip in the dispersion in Fig. 19. Usually in layered systems
the lowest magnon branch originates from the spins subject to

FIG. 17. Calculated inverse susceptibility of bcc Fe in units of
10−2μ−2B ½Ry=ða0=2πÞ2� (where a0 ¼ 2.789 Å), from DLM elec-
tronic structure theory (see the text), evaluated as a function of
temperature. Adapted from Staunton et al., 1984.
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the smallest effective Weiss field (defined by the total
exchange interaction). Meng et al. (2014) demonstrated that
Fe atoms at the interface have a strong tendency to AFM
coupling and therefore give the main contribution to the
lowest acoustic magnon mode. This is an unexpected result,
given that bulk bcc Fe has such a pronounced NN and next NN
FM interaction. In fact, this tendency was also reported for a
pure Fe surface (Keshavarz et al., 2015) and is related to the
changes of density of states of the surface Fe atoms. A
tendency similar to AFM Fe-Fe interactions was reported for
Fe=Irð001Þ (Kudrnovský et al., 2009; Zakeri et al., 2013;
Chuang et al., 2014). We note that in a similar system, a
monolayer Fe on Rhð111Þ, an up-up-down-down double-row-
wise antiferromagnetic magnetic ground state was directly
observed by Krönlein et al. (2018). Note also that the
occurrence of a novel type of atomic-scale spin lattice in
an Fe monolayer on the Irð001Þ surface was predicted by
Hoffmann et al. (2015).

F. Influence of spin-orbit coupling

Although several LKAG-inspired approaches for calculat-
ing relativistic interactions have been proposed, DM inter-
actions have attracted the most attention (Solovyev, Hamada,
and Terakura, 1996a; Udvardi et al., 2003; Mazurenko and
Anisimov, 2005; Ebert and Mankovsky, 2009; Katsnelson
et al., 2010; Secchi et al., 2013; Mankovsky and Ebert, 2017;
Ebert, Mankovsky, and Wimmer, 2021). As described here,
DM parameters can be extracted using a first-order or second-
order variation in the spin rotation angles, depending on the
situation.
The first-order approach was utilized to calculate the

instability of a ferromagnetic state toward a formation of a
cycloid configuration by Mankovsky and Ebert (2017), as
well as of the so-called weak ferromagnets [which are weakly
ferromagnetic due to uncompensated antiferromagnetism,
in contrast to the weak itinerant-electron ferromagnets
(Mazurenko and Anisimov, 2005; Katsnelson et al., 2010)
discussed in Sec. VII A]. In regard to weak ferromagnets, this
leads to good agreement with experimentally observed cant-
ing angles for both La2CuO4 (Katsnelson et al., 2010) and
FeBO3 (Dmitrienko et al., 2014). This approach relies on the
fact that the canting angle is small and a collinear magnetic
state, subject to a finite torque acting on the magnetic
moments, is not far from the true one. In this approach one
can rotate spin and orbital momenta separately, and for both
studied systems the latter contributed significantly to the total
DM interaction value. Similar calculations of finite torques on
collinear magnetic moments due to symmetry allowed DM
interactions are the calculation of the small tiltings due to
lattice distortions in LaMnO3 (Solovyev, Hamada, and
Terakura, 1996a) and the instability of the ferromagnetic state
of the B20 alloy Fe1−xCoxGe toward a cycloidal spin-density
wave (Mankovsky and Ebert, 2017). The latter instability is
the origin of the formation of skyrmion lattices in this system
(Heinze et al., 2011).
The second-order approach is most appropriate for DM

interactions that are used for spin-wave spectra. Udvardi et al.
(2003) demonstrated the relativistic effects on the excitation
spectra through a systematic comparison of relativistic
exchange couplings calculated for Fe=Cuð001Þ and
Fe=Auð001Þ. They showed that strong SOC of Au-5d states
gives rise to substantially different magnon spectra for the in-
plane and out-of-plane orientation of the magnetization.
Currently experimental efforts are concentrated on the studies
of DM interactions in such systems (Zakeri et al., 2010).
Indeed, DM interactions can be effectively enhanced on the
surfaces of heavy elements due to the combined effect of
narrow surface states and substrate-induced, large SOC. By
means of explicit calculations, it was shown that a sizable DM
interaction exists between Fe atoms on a Wð110Þ surface
(Udvardi and Szunyogh, 2009). The so-obtained DM vectors
are shown in Fig. 20. Owing to the symmetry of the system,
the DM vectors are oriented strictly in the plane of the surface
such that the z component of the DM vector is zero.
Moreover, Udvardi and Szunyogh (2009) predicted these

interactions to give rise to an asymmetry of the magnon
dispersion, i.e., a preferred chirality, with an asymmetry
energy defined as ΔE ¼ EðqÞ − Eð−qÞ. This asymmetry

FIG. 18. RPA-derived estimates of the Tc of (left panel) Co and
(right panel) Fe monolayers on a Cuð001Þ substrate, covered by a
Cu layer of varying thickness. From Pajda et al., 2000.

FIG. 19. Computed and measured acoustic magnon dispersions
in Fe=Rhð001Þ. Inset shows the parts of the Brillouin zone used in
the plot. From Meng et al., 2014.

Attila Szilva et al.: Quantitative theory of magnetic interactions …

Rev. Mod. Phys., Vol. 95, No. 3, July–September 2023 035004-33



was later confirmed experimentally by Zakeri et al. (2010).
The comparison between computed and measured asymmetry
energy for the Fe=Wð110Þ system, also shown in Fig. 21, was
made by Bergqvist et al. (2013). Without DM interactions,ΔE
is strictly zero for all q vectors. Thus, ΔE can be effectively
used for quantifying DM couplings in this class of systems,
partially due to the high resolution of SPEELS-based experi-
ments and partially due to the theory of evaluating Dij. In this
respect, the relativistic interactions between transition metals
deposited on Ptð111Þ have particularly attracted attention
(Mankovsky et al., 2009; Vida et al., 2016; Simon et al.,
2018; Zimmermann et al., 2019).
As demonstrated by Udvardi and Szunyogh (2009), a

Hamiltonian with a 3 × 3 tensorial coupling between the
spins can be considered where the x component of the moment
on atomic site i can interact with the y component of the
moment on atomic site j, as shown in Eqs. (3.13) and (3.14).
These interactions come in a form that is antisymmetric under

an interchange of the x and y indices, which leads to the
previously discussed DM interaction. However, there is also a
symmetric component to the anisotropic exchange interaction,
as shown in Eq. (3.15), that in some cases is significant. An
example is a recent calculation of symmetric and antisym-
metric exchanges of CoPt, where the two interactions were
found to be of similar size (Borisov et al., 2021). As a final
remark in this section, we note that more references on
calculations of DM interactions by various first-principles
methods were included in a recent review focused on this topic
(Yang, Liang, and Cui, 2023).

G. Clusters of atoms on surfaces

With the invention of real-space methods for calculations of
electronic structures (Haydock, Heine, and Kelly, 1975;
Andersen and Jepsen, 1984), it has become possible to study
magnetic exchange interactions of systems without periodic
boundary conditions. This is the case when clusters or defects
are embedded into a solid or at a surface with the use of
LMTO (Andersen and Jepsen, 1984) or KKR methods
(Korringa, 1947; Kohn and Rostoker, 1954). In Fig. 22 we
give an example in which the real-space LMTO-ASA method
was used (Igarashi et al., 2012), since its implementation is
built on a Green’s function formalism and the expressions of
interatomic exchange (Sec. V) are more or less straightfor-
ward to implement. This has been discussed in a series of
works (Frota-Pessôa, Muniz, and Kudrnovský, 2000;
Bergman et al., 2007; Ribeiro et al., 2011; Igarashi et al.,
2012; Bezerra-Neto et al., 2013; Szilva et al., 2013, 2017;
Cardias et al., 2016; Carvalho et al., 2021). The results shown

FIG. 20. Schematic representation of the calculated DM inter-
actions in Fe=Wð110Þ between the central iron atom (C) and its
NN and next NN, denoted as 1 and 2, respectively. The DM
vectors are seen to obey twofold rotational symmetry. From
Udvardi and Szunyogh, 2009.

FIG. 21. Experimental (Zakeri et al., 2010) and theoretical
(Udvardi and Szunyogh, 2009) chiral asymmetry of the magnon
spectrum of bilayer Fe=Wð110Þ. From Bergqvist et al., 2013.

FIG. 22. Upper panel: geometry of Mn chain shown by orange
(dark gray) spheres on a bcc Fe surface [ð001Þ orientation] with
Fe atoms as light gray spheres. Lower panels: calculated ex-
change interactions between Mn-Mn pairs and between Fe-Mn
pairs. Data from Igarashi et al. (2012).
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in Fig. 22 were obtained from a calculation based on the
LSDA, for an isolated chain of Mn atoms (five and nine Mn
atoms in the chain were considered) on top of a bcc Feð001Þ
surface. The results of Fig. 22 show that interactions are
dominantly short range between all atom types. In addition,
the interactions between Mn-Mn pairs and between Mn-Fe
pairs can be either ferromagnetic or antiferrmagnetic, depend-
ing on the distance between the atoms. This competition
between interactions is responsible for the complex, noncol-
linear magnetic structures found in this system.

H. f -electron systems

Unpaired electrons of transition metal d states is the most
common source of magnetism, but not the only one. Many
elements with partially filled electronic f shells also exhibit
intrinsic magnetic ordering. Modeling magnetism of such
systems is challenging since the f electrons are governed by a
sophisticated interplay among strong local correlations, spin-
orbit coupling, crystal field effects, and hybridization.
Capturing all these ingredients on equal footing is a great
challenge for first-principles electronic structure calculations.
An advantage of the rare-earth elements is that their 4f

wave functions are extremely localized and hybridization
effects can be neglected (with two exceptions: La and Ce)
(Jensen and Mackintosh, 1991). Indeed, although 4f electrons
are responsible for the formation of the local magnetic
moments, they do not explicitly participate in the formation
of magnetic interactions (Ruderman and Kittel, 1954).
Instead, the 4f electrons locally spin polarize the valence
6s6p5d orbitals, which mediate the exchange couplings; see
Perlov, Halilov, and Eschrig (2000).
Turek, Kudrnovský, Bihlmayer, and Blügel (2003) showed

that, by treating the 4f electrons as a noninteracting spin-
polarized core, a good description of magnetic interaction can
be achieved for hcp Gd from calculations of a ferromagnetic
(FM) state. Gadolinium orders ferromagnetically with an
observed total magnetic moment of about 7.6μB per atom,
where 7μB come from half-filled f shell (S ¼ 7=2) (Jensen and
Mackintosh, 1991). This was reproduced by theory (Colarieti-
Tosti et al., 2003). Turek, Kudrnovský, Bihlmayer, and Blügel
(2003) determined the MFA-based estimate of the Tc as 334 K,
which is in excellent agreement with experiment (293 K)
(Jensen and Mackintosh, 1991). Subsequent studies treated
the paramagnetic phase of Gd by means of the DLM approach
(Khmelevskyi et al., 2007). Although the calculated values of
NN Jij were different from the FM-derived ones, a similar Tc

estimate was obtained.
A systematic study of the entire series of late rare-earth

elements was conducted by Locht et al. (2016). They showed
that the calculations incorporating local 4f correlations on
Hubbard I level of approximation (HIA) (Lichtenstein and
Katsnelson, 1998) are capable of reproducing both electronic
valence band excitation spectra, showing well pronounced
atomic multiplets, and magnetic interactions of these systems.
In addition, full charge self-consistency in DMFT was shown
to be of utter importance for correctly describing the exchange
couplings. The interaction terms Jij can already be well
described with the 4f-as-core approach, which is much less
computationally demanding.

As Locht et al. (2016) showed, the best possible approach
to the electronic structure of the rare-earth elements is the
HIA approximation. It reproduces measured electronic
structures (both occupied and unoccupied states) and results
in realistic magnetic properties. As Locht et al. (2016)
discussed, LDAþ U has a significantly worse performance
for elemental rare-earth elements. This was explicitly shown
in Fig. 14 of Locht et al. (2016), where the valence band of
HIA calculations was compared to LDAþ U calculations.
The latter is seen to not capture experiments, while the
former does. In addition, for compounds such as TbN, HIA
gives a much better description of the total energy, equilib-
rium lattice constant, and bulk modulus than LDAþ U
(Peters et al., 2014). At the same time, as Locht et al.
(2016) argued, a poor-man’s treatment of the 4f electrons is
to consider them as nonhybridizing core states with a spin
moment constrained according to LS coupling, an approach
also considered by Turek, Kudrnovský, Bihlmayer, and Blügel
(2003) that successfully reproduced experimental moments and
exchange interactions. In the case where nonlocal interaction
effects are important, that is, intersite Coulomb interactions, a
reasonable alternative could be the self-interaction-corrected
approximation (SIC LSDA) (Temmerman, Szotek, andWinter,
1993; Temmerman et al., 2007).
The Fourier transform of the obtained Jij of the heavy rare-

earth elements, which was calculated by Locht et al. (2016), is
shown in Fig. 23 [as Jðq⃗Þ − Jð0Þ]. The minimum value of this
curve indicates the ground-state magnetic ordering q vector.
The results show that Er and Tm have a tendency to have
noncollinear magnetic order [similar to Eu (Turek,
Kudrnovský, Diviš et al., 2003)]. Holmium also borders on
having a finite-q maximum, which is compatible with experi-
ments (Jensen and Mackintosh, 1991). In fact, Ho just passed
the border between ferromagnetism and noncollinearity, and
measurements demonstrate a finite spin-spiral vector.
Calculations based on nonhybridizing core states with a 4f
spin moment constrained according to LS coupling have

FIG. 23. Fourier transform of the exchange interaction
Jðq⃗Þ − Jð0Þ in heavy elemental lanthanides (Locht et al., 2016).
If the minimum corresponds to the Γ point, the ferromagnetic order
is preferable.
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reproduced this experimental finding accurately (Nordström
and Mavromaras, 2000).
Locht et al. (2016) calculated the ordering temperatures

from the spin Hamiltonian [Eq. (1.3)] using explicit calcu-
lations of the obtained Jij. This combined with Monte Carlo
simulations allowed for estimates of the ordering temperature,
which was shown to be in good agreement with experiments
for all studied, heavy rare-earth elements. Overall, the order-
ing temperature was found to decrease linearly with the
number of electrons in the 4f shell. In addition, an interesting
self-induced spin glass state was recently experimentally
observed for elemental Nd (Kamber et al., 2020; Verlhac
et al., 2022). Ab initio calculations of the exchange parameters
of this element have revealed that this is related to the unique
exchange interactions of the crystal structure of Nd (double
hcp), with competing FM and AFM interactions of equal
strength.
Numerous lanthanide-based systems (Rusz, Turek, and

Diviš, 2005; Liu and Altounian, 2010; Khmelevskyi, 2012;
Söderlind et al., 2017; Gong et al., 2019) were successfully
modeled using the methods reviewed here to calculate the
interatomic exchange by treating the 4f electrons as core
states. Alternatively, HIA (which also neglects the hybridi-
zation effects) was also used in some works (Han, Wan, and
Savrasov, 2008; Wan, Dong, and Savrasov, 2011). Both
theoretical methods to treat the 4f shell have been used to
analyze the magnetism of intermetallic compounds containing
4f elements. This class of materials, often referred to as hard
magnets, is of particular importance for electromagnetic
applications, such as the conversion of mechanical energy
to electricity or as a key component in electrical engines; see
Skomski and Coey (1993, 1999), Coey (2010), and Skomski
(2021). The most established permanent magnet is Nd2Fe14B
[see Croat et al. (1984), Herbst et al. (1984), and Sagawa et al.
(1984)], a material that has had its electronic structure and
magnetic properties investigated with DFT (Jaswal, 1990;
Nordström, Johansson, and Brooks, 1993). In these earlier
theories of the electronic structure of compounds containing
lanthanides, the 4f shell was treated as a nonhybridized part of
a spin-polarized core, where the magnetic state was confined
to follow LS coupling, and in general good agreement
between theory and observations was found. Calculations
using the HIA have also been published for hard magnets, for
instance, for SmCo5 (Grånäs et al., 2012), where the elec-
tronic structure and magnetic properties were found to be in
good agreement with experiments (Tie-song et al., 1991). The
reason why calculations based on “4f as core” and HIA
reproduce the experimental magnetic properties is connected
to the fact that both are faithful to the standard model of the
lanthanides (Jensen and Mackintosh, 1991), in which the 4f
shell basically is an atomiclike, nonhybridized entity. In more
recent years the theory connected to HIA has been developed
to also enable calculations of crystal field splittings of the 4f
shell (Pourovskii et al., 2020; Boust et al., 2022), an important
achievement in the field, since the 4f crystal field splitting is
connected to the magnetocrystalline anisotropy of these
systems (Jensen and Mackintosh, 1991; Skomski and Coey,
1999; Coey, 2010; Skomski, 2021), and therefore for their
excellent magnetic performance. When it comes to calcula-
tions of interatomic exchange using the LKAG formalism,

fewer examples have been published. A notable recent
exception, however, is calculations of the Heisenberg
exchange of the compound Ce2Fe17 (Vishina et al., 2021),
a material that is considered an alternative to Nd2Fe14B for
applications as a hard magnet. Its peculiar magnetic properties
were explained from electronic structure calculations coupled
to the LKAG formalism of interatomic exchange (Vishina
et al., 2021).
The magnetic interactions of 5f-based compounds are

much more complicated due to more pronounced hybridiza-
tion and the stronger spin-orbit coupling. This situation often
leads to strong spin-orbital mixing, which in turn gives rise to
high anisotropy of the spin density, so approximating spins
with dipoles no longer applies. Instead, higher-order multi-
poles come into play that have been extensively discussed in
the context of actinide oxides (Santini et al., 2009) as well as
other actinide compounds (Bultmark et al., 2009; Cricchio,
Grånäs, and Nordström, 2011). A new methodology has
recently been applied to investigate the magnetism of UO2

(Pourovskii and Khmelevskyi, 2019) and NpO2 (Pourovskii
and Khmelevskyi, 2021). In the former case, calculated
quadrupolar exchange interactions have successfully pre-
dicted stabilization of the 3Q magnetic order in the cubic
phase, which previously could be explained only by the
presence of lattice distortions. To calculate these multipoles,
a generalized many-body force theorem was proposed by
Pourovskii (2016). It relies on the assumption that the
correlated states (responsible for magnetism) can be well
projected onto atomic wave functions (calculated via HIA).
Another general approach valid for less correlated actinide
compounds adopts the DFTþ U method, which treats the
correlation in mean-field level (Bultmark et al., 2009). This
type of approach is in agreement by large with experiments
regarding magnitudes of actinide magnetic moments, with
substantial orbital moments and reduced spin moments. The
effect behind these calculated magnetic moments can be
explained as due to the presence of large high rank magnetic
multipoles (Cricchio, Grånäs, and Nordström, 2011).

I. Transition metal oxides

Transition metal oxides (TMOs) are a class of materials that
show awide variety of different magnetic orders and interesting
physical and chemical properties. The magnetism of these
materials can usually be explained in terms of superexchange
(Kramers, 1934; Goodenough, 1955, 1963; Anderson, 1959;
Kanamori, 1959) or double-exchange processes (Zener, 1951).
The competition between them is responsible for a particularly
rich phase diagram of doped manganites (Schiffer et al., 1995).
Oguchi, Terakura, and Hamada (1983) and Oguchi,

Terakura, andWilliams (1983) calculatedmagnetic interactions
in transition metal monoxides MnO and NiO from first
principles at an early stage. The obtained values were too high
comparedwith experiment, whichwasmost likely related to the
absence of strong local correlations in the calculation. Indeed,
later it was shown that taking a HubbardU term into account for
the transition metal 3d states substantially improves the
situation (Solovyev and Terakura, 1998; Fischer et al., 2009;
Logemann et al., 2017; Keshavarz et al., 2018). As demon-
strated byFischer et al. (2009), a systematic, gooddescription of
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the Néel temperatures can be obtained in the entire series of
transition metal monoxides using a SIC version of DFT,
although the valence band spectrum of these types of calcu-
lations does not agree with observations. The magnon spectra
calculated from SIC theory of MnO, FeO, CoO, and NiO
(Fischer et al., 2009) is shown in Fig. 24, and there is excellent
agreement with experimental data. Furthermore, the impact of
dynamical correlations (treated in DMFT) on Jij of the
transition metal monoxides was considered by Wan, Yin, and
Savrasov (2006) and Kvashnin, Grånäs et al. (2015). Although
there are some quantitative differences, the results of DMFTare
close to the LDAþ U results, SIC data, and values from the
HIA; see Fig. 4. This result might seem counterintuitive since
the electronic structure resulting from the different approaches
is substantially different (Grånäs et al., 2012). The likely reason
is probably due to the fact that wide-gap TMOs are close to the
U ≫ t limit, where the exchange integrals are roughly defined

as t2=U, which is similar in the various approaches. The
interatomic exchange extracted from a calculation of the
susceptibility using the GW approximation provides results
of similar quality (Kotani and Schilfgaarde, 2008).
Perovskite 3d oxides were intensely studied by Solovyev,

Hamada, and Terakura (1996a, 1996b), Solovyev and
Terakura (1999a, 1999b), and Solovyev (2006). Despite the
large variety of magnetic phases found in these materials, Jij’s
are usually consistent with experimental ground-state mag-
netic orders. This is a rewarding result. Treating the electron
interactions beyond DFT usually results in better values of the
interatomic exchange interactions of these materials. LaMnO3

may be an interesting exception to this rule. Solovyev,
Hamada, and Terakura (1996b) suggested that the Hubbard
U acting on the eg and t2g orbitals of this compound are
different due to differences in the screening of the two sets of
orbitals. It was thus suggested that having no U is a better
choice than adding the same U on the entire set of Mn-3d
orbitals for LaMnO3. However, this result depends on details
of the implementation, as discussed by Jang et al. (2018).
Generally, TMOs are regarded as good Heisenberg mag-

nets, in the sense that the spins are localized around 3d ions
and the interactions are of a bilinear kind without strong
configuration dependence. However, the total energies of
different magnetic orders are not always consistent with the
Heisenberg model of Eq. (1.3), as previously reported
(Solovyev, 2009; Logemann et al., 2017). Oxygen polariza-
tion is suggested to be responsible for this inconsistency
(Keshavarz et al., 2018). Moreover, for certain oxides, like
LiCu2O2, which have a 90° superexchange, direct exchange
also plays a crucial role (Mazurenko et al., 2007). Direct
exchange interactions were introduced in the original Heitler-
London scheme (Heitler and London, 1927). Oxides with
more complex crystal structures (Mazurenko, Mila, and
Anisimov, 2006; Jodlauk et al., 2007; Mazurenko et al.,
2008; Barker, Pashov, and Jackson, 2020; Gorbatov et al.,
2021), including the ones with 4d and 5d elements (Solovyev,
2002; Etz et al., 2012; Panda et al., 2016) have also been
successfully analyzed with respect to the interatomic
exchange using the method reviewed here. We also note that
multispin interactions have been found to be important in
magnetic oxides (Fedorova et al., 2015).
As a final point of this section, we point out that, for heavy

transition metals of the 5d series, the large spin-orbit coupling
leads to strong spin-orbital mixing as in the j ¼ 1=2 pseu-
dospin relevant for Ir oxides (Moon et al., 2008). The
arguments in Sec. VII H for the case where the pure spin
moment has less meaning is also valid for 5d oxides.

J. Novel 2D magnets

Magnetism in layered van der Waals–bonded materials was
reported in the 1960s (Tsubokawa, 1960; Dillon and Olson,
1965). For a long time, these materials were not the focus of
researchers, but in recent years they have attracted significant
attention (Gong et al., 2017; Huang et al., 2017). The
discovery of intrinsic 2D magnetic order not only challenges
well-established preconceptions about 2D magnetism
(Mermin and Wagner, 1966) but also offers prospects for
building ultrathin spintronic devices by combining these types

FIG. 24. Calculated spin-wave dispersion in MnO, FeO, CoO,
and NiO (solid lines). Experimental results are shown with
symbols. From Fischer et al., 2009.
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of layered materials (Burch, Mandrus, and Park, 2018;
Gibertini et al., 2019).
CrI3 is the most well-studied example of 2D magnets. It is

ferromagnetic and the Tc of its monolayer form is 45 K, which
is slightly smaller than that of the bulk form (61 K) (Huang
et al., 2017). The crystal structure of the monolayer of CrI3 is
shown in Fig. 25. Here Cr atoms are seen to form a
honeycomb lattice, and each of them is surrounded by six
iodine atoms forming an octahedron. Two I octahedra of the
NN Cr atoms are sharing an edge, as illustrated in Fig. 25(b),
which results in the Cr–I–Cr bond angle being close to 90°.
The material is an insulator, so the magnetic interactions are
expected to be defined by a superexchange process that also
involves the I 5p states. Nominally the Cr3þ ions should be
characterized by a d3 configuration, with a half-filled t2g shell
and with the eg states completely empty. Besbes et al. (2019)
showed that the eg states form strong covalent bonds with I 5p
orbitals and become effectively occupied by hybridization and
band broadening. As a result, the NN Jij’s between Cr atoms
are affected by two competing contributions, namely, the
AFM superexchange between half-filled t2g orbitals and the
FM superexchange between t2g and eg states. The latter
dominates and results in the overall FM sign of the NN
exchange. The same physics was confirmed to also take place
in the case of monolayer CrI3 (Kashin et al., 2020; Soriano
et al., 2021). Since the structure is the same in all three
chromium halides CrX3 (X ¼ fCl;Br; Ig), the complex nature
of the NN coupling in these materials explains why its sign is
so sensitive to lattice distortions and strain (Webster and Yan,
2018; Dupont et al., 2021; Sadhukhan et al., 2022). A similar
orbital analysis for the interlayer coupling (Jang et al., 2019)
provided a microscopic description of the theoretically pre-
dicted stacking-dependent magnetic order in bilayer CrI3
(Sivadas et al., 2018), which was also confirmed experimen-
tally (Li et al., 2019; Song et al., 2019). The calculated
magnetic interactions in trilayer CrI3 were suggested to
exhibit similar features (Wang and Sanyal, 2021).
One interesting aspect of bulk CrI3 is a large gap (≈4 meV)

between the two magnon branches, which was observed

experimentally (Chen et al., 2018). There are mainly two
mechanisms that have been proposed to explain this, namely, a
large next NN DM interaction (Chen et al., 2018) or a NN
Kitaev interaction (Lee et al., 2020). Relativistic exchange
interactions in bulk and monolayer CrI3 were studied by
Kvashnin et al. (2020). Using both conventional DFT and two
different flavors (Anisimov, Zaanen, and Andersen, 1991;
Czyżyk and Sawatzky, 1994) of LDAþ U calculations, they
found that calculated DM interaction and Kitaev terms were
both found too small to induce a substantial gap in the magnon
spectrum at the K point. Ke and Katsnelson (2021) suggested
that CrI3 is a moderately correlated material with strong
nonlocal interaction effects and GW approximation combined
with a Hubbard U are needed to reproduce the magnon
spectrum and, most importantly, that the ≈4 meVmagnon gap
is open by correlation enhanced interlayer coupling. More
elaborate discussions on the role of nonlocal correlation
effects and on the importance of charge self-consistency in
CrX3 were conducted by Acharya, Pashov, Cunningham et al.
(2021) and Acharya, Pashov, Rudenko et al. (2021). Given the
relatively young age of this field of magnetic materials, it is
likely that other mechanisms will be discussed in the future.
Other 2D magnets such as Cr2Ge2Te6 (Wang et al., 2019),

Fe3GeTe2 (Jang et al., 2020), CrOX (X ¼ fCl;Brg) (Jang
et al., 2021), and FeX2 (Ghosh, Jose, and Kumari, 2021) have
been studied with the help of explicit calculations of inter-
atomic exchange. The class of 2D versions of Cr2X2Te6
(X ¼ Ge and Si) systems was predicted from ab initio
electronic structure theory (Lebègue et al., 2013) before the
experimental realization. A common feature of magnetic 2D
materials is that they are characterized by relatively strong
hybridization of 3d orbitals of the transition metals and the p
orbitals of the ligand states. In this case, the choice of
electronic states that should be used in the expressions of
interatomic exchange (Sec. V), i.e., the projection scheme,
becomes particularly nontrivial. This issue was raised by
Besbes et al. (2019) and Wang et al. (2019).

K. sp magnets

Another class of systems where the magnetism emerges
from highly covalent states is sp magnets. One example of
such materials is semihydrogenated or fluorinated graphene
(Mazurenko et al., 2016). Another example is systems of X
adatoms (X ¼ fSn;C; Si; Pbg) deposited periodically on
silicon Sið111Þ (Slezák, Mutombo, and Cháb, 1999; Lobo
et al., 2003; Upton, Miller, and Chiang, 2005; Modesti et al.,
2007; Zhang et al., 2010; Li et al., 2013; Tresca et al., 2018),
germanium Geð111Þ (Carpinelli et al., 1997; Floreano et al.,
2001; Tresca and Calandra, 2021), or SiCð0001Þ surfaces
(Glass et al., 2015). These systems are characterized by the
presence of a single relatively narrow half-filled band crossing
Fermi level, which is subject to strong local and nonlocal
electron correlations; see Hansmann, Ayral et al. (2013),
Hansmann, Vaugier et al. (2013), and Badrtdinov et al.
(2016). Although this band originates from the sp electrons
of adatoms, its wave function is highly delocalized and has
tails well inside the Si slab, as seen in Fig. 26. It has been
proposed that this band leads to a magnetic instability and
various exotic magnetic orders can be realized in these

(b)(a)

FIG. 25. Left panel: crystal structure of a CrI3 monolayer with I
atoms shown as spheres with a light part in their center and Cr
shown as homogeneously colored spheres. The Cr atoms form a
honeycomb lattice. Right panel: local structure of the Cr–I–Cr
bond.
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materials. For instance, the low-temperature ground state of
Sið111Þ∶X systems ranging from a 120° Néel temperature
(Schuwalow, Grieger, and Lechermann, 2010) to a collinear
row-wise state (Li et al., 2011) and different noncollinear
chiral magnetic orders (Tresca et al., 2018; Vandelli et al.,
2023). Moreover, formation of skyrmions is suggested to
emerge upon application of a high magnetic field (Badrtdinov
et al., 2016) or high-frequency laser field (Stepanov, Dutreix,
and Katsnelson, 2017).
Owing to the delocalized nature of the orbitals carrying the

magnetic moments, the influence of direct exchange mecha-
nism is extremely pronounced. It gives rise to a ferromagnetic
exchange (as expected for wave functions with small overlap),
and its magnitude is so strong that it may compensate for
indirect exchange contributions (Badrtdinov et al., 2016). As a
result, the isotropic exchange can be effectively suppressed,
which results in a relatively large jD⃗j=J ratio, where jD⃗j is the
size of the DM interaction (Badrtdinov et al., 2016; Vandelli
et al., 2023). Since this ratio defines the period of magnetic
texture, the suppression of J has led to the proposition that
extremely compact skyrmions can be realized (Badrtdinov
et al., 2018). Ultimately, it has been envisaged that exchange-
free skyrmions can also potentially emerge (Stepanov,
Nikolaev et al., 2019).

L. Molecular magnets

Single molecular magnets are a class of systems where
transitionmetal atoms are embedded in an organic environment
(Gatteschi et al., 1994). The chemical formulas of these systems
are complicated. One of them is K6½V15As6O42ðH2OÞ� · 8H2O,
which is most often referred to as V15 for brevity. The coupling
between the 3d magnetic moments often results in a total
magnetization that is uncompensated, where the net moment is
regarded as a total molecular spin. Since the interactions
between these molecular complexes are weak, their collective
behavior is similar to that of an ensemble of noninteracting
pointlike magnetic entities. Thus, molecular magnets allow one
to not only address fundamental aspects of magnetism on the
mesoscale (Chiorescu et al., 2000; Dobrovitski, Katsnelson,

andHarmon, 2000) but also find their applications in spintronics
(Bogani and Wernsdorfer, 2008; Mannini et al., 2009).
DFT calculations have been widely used to understand the

basic electronic and magnetic properties of molecular mag-
nets; for a review, see Postnikov, Kortus, and Pederson (2006).
The formalism of Sec. V has been widely applied to model
magnetic interactions and excitation spectra in the systems
like V15 (Boukhvalov et al., 2004), Mn4 (Kampert et al.,
2009), and Mn12 (Boukhvalov et al., 2002; Mazurenko et al.,
2014). This work has shown that a good description of both
electron spectroscopy and magnetic excitations is possible
only if the correlation effects of the 3d states are taken into
account via application of the LDAþ U approach, which is
similar to the situation involving 3d oxides. Note that the total
energy difference method has also been widely used to extract
the Jij parameters for these systems; see Park, Pederson, and
Stephen Hellberg (2004) and Ruiz, Cano, and Alvarez (2005).
The most complete description of exchange interactions in

molecular magnets was done for Mn12 acetate by Mazurenko
et al. (2014). The structure of this complex, shown in Fig. 27,
contains two inequivalent types of Mn atoms having different
oxidation states. Eight Mn3þ and four Mn4þ ions are coupled
antiferromagnetically, which results in a total uncompensated
spin S ¼ 10. Contrary to previous works, which addressed
only isotropic interactions, Mazurenko et al. (2014) added
relativistic exchange interactions and single-ion anisotropy to
the picture. The following spin Hamiltonian was considered
by Mazurenko et al. (2014):

Ĥ ¼ HDM þHH þ
X
iμν

Ŝμi A
μν
i Ŝνi ; ð7:7Þ

where fμ; νg ∈ fx; y; zg and Aμν
i is the single-site anisotropy

tensor. Hence, this is a generalization of the sum of Eqs. (1.1)
and (1.2) since magnetic crystalline anisotropy is included.

FIG. 26. Maximally localized Wannier functions representing
the band crossing of the Fermi level in Sið111Þ∶X, where
X ¼ fSn;C; Si;Pbg. Large (violet) spheres denote adatoms,
while isosurfaces indicate the different parts of the Wannier
functions. From Badrtdinov et al., 2016.

FIG. 27. Crystal structure of Mn12 acetate. Purple atoms (large
dark gray spheres) represent Mn3þ (S ¼ 2) ions, and green atoms
(large light gray) correspond to Mn4þ (S ¼ 3=2). Carbon and
oxygen are shown as small light gray and small dark gray red,
respectively; hydrogen atoms were omitted for clarity. From
Zabala-Lekuona, Seco, and Colacio, 2021.

Attila Szilva et al.: Quantitative theory of magnetic interactions …

Rev. Mod. Phys., Vol. 95, No. 3, July–September 2023 035004-39



Since transitionmetal ions in suchmolecular complexes have
a relatively low-symmetric environment, the Dzyaloshinskii-
Moriya interactions can take relatively large values (more than
typically encountered in bulk 3d oxides). This was the case for a
Mn12 complex,where the calculations using spin-orbit coupling
revealed that the ferrimagnetic arrangement of Mn spins is
canted due to the presence of DM interaction. Combining
Heisenberg exchange, DM interaction, and magnetocrystalline
anisotropy, Mazurenko et al. (2014) performed an exact
diagonalization study of the complete 12-spin Hamiltonian
given by Eq. (7.7) while treating all constituent spins as
quantum operators. Thanks to an efficient realization of a
parallel Lanczos algorithm, it was possible to calculate the
50 lowest eigenvalues of the system, which allowed for a
qualitative comparison with inelastic neutron scattering data
and to assign different measured peaks to the transitions from
the lowest (S ¼ 10) to the excited (S ¼ 9) multiplets.

VIII. OUT-OF-EQUILIBRIUM EXCHANGE

Femtosecond laser sources provide a unique possibility of
manipulating magnetism at ultrafast timescales (Kirilyuk,
Kimel, and Rasing, 2010; Mentink, 2017). In particular, the
light irradiation of magnetic materials allows one to modify
the value of the exchange interaction (Melnikov et al., 2003;
Subkhangulov et al., 2014; Mikhaylovskiy et al., 2015). The
idea of small spin rotations as a way to derive effective
exchange interactions can be generalized to the case of time-
dependent electron Hamiltonians (Secchi et al., 2013). Secchi
et al. (2013) applied the approach to the time-dependent
multiorbital Hubbard model, that is, only on-site interaction
was taken into account. The Hamiltonian has the form

ĤðtÞ≡ ĤTðtÞ þ ĤV; ð8:1Þ

where ĤTðtÞ is the time-dependent single-particle Hamiltonian

ĤTðtÞ≡
X
iaλa

X
ibλb

Tiaλa;ibλbðtÞ
X
σ

ϕ̂†
iaλaσ

ϕ̂ibλbσ

¼
X
a

X
b

TabðtÞϕ̂†
a · ϕ̂b; ð8:2Þ

wherewe have grouped the site and orbital indices according to
a≡ ðia; λaÞ and b≡ ðib; λbÞ and introduced the spinor fer-
mionic operators

ϕ̂†
a ¼

	
ϕ̂†
a↑ ϕ̂†

a↓



; ϕ̂b ¼

 
ϕ̂b↑

ϕ̂b↓

!
: ð8:3Þ

The interaction Hubbard-like Hamiltonian ĤV is assumed to be
time independent:

ĤV ≡ 1
2

X
i

X
λ1λ2λ3λ4

X
σσ0

Vλ1λ2λ3λ4 ϕ̂
†
iλ1σ

ϕ̂†
iλ2σ0

ϕ̂iλ3σ0 ϕ̂iλ4σ : ð8:4Þ

The spinor field operators ϕ̂a describe both spin and charge
dynamics of the interacting itinerant-electron system. To
separate supposedly slow spin dynamics from fast charge
dynamics, one can introduce the rotational matrices

RiðtÞ≡
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jξiðtÞj2
p

ξ�i ðtÞ
−ξiðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jξiðtÞj2

p !
; ð8:5Þ

where we have introduced the bosonic fields

ξiðtÞ≡ −eiφiðtÞ sin ½θiðtÞ=2�; ð8:6Þ

with θi ∈ ½0; π½, φi ∈ ½0; 2π½ the polar angles that determine
the spin axis on site i at time t. It holds that R†

i ðtÞ · RiðtÞ ¼ 1.
The matrix R̂ provides a transition to the new field operators

ψ̂a via the transformation

ϕ̂†
aðtÞ ¼ ψ̂†

aðtÞR†
aðtÞ;

ϕ̂aðtÞ ¼ RaðtÞψ̂aðtÞ; ð8:7Þ

andwe assume that in the new coordinate frame the average spin
at site i at time instant t, h0jψ̂†

aσ σ̂aψ̂aσj0i, is directed along the
z axis. Thus, all information about the instant direction of the
local spin h0jϕ̂†

aσ σ̂aϕ̂aσj0i is passed to the bosonic field ξiðtÞ.
Secchi et al. (2013) reformulated the problem at the Baym-

Kadanoff-Keldysh contour (Kadanoff and Baym, 1962;
Rammer and Smith, 1986; Kamenev, 2011; Stefanucci and
Leeuwen, 2013), which is a common way to proceed in
nonequilibrium quantum statistical mechanics. The effective
action of the system is expanded up to the second order in the
angles of spin rotations θiðtÞ, and the result is compared to the
effective action of the time-dependent classical Heisenberg
model. As a result, we have expressions for the time-
dependent exchange parameters that are expressed in terms
of single-particle Green’s functions and electron self-energies.
Both the derivation and the final expressions are cumbersome;
see Secchi et al. (2013) for the original paper. The procedure
can be dramatically simplified if we consider electron correla-
tions at the level of a time-dependent mean-field approximation
(Secchi, Lichtenstein, and Katsnelson, 2016a). In this case one
can derive relatively compact expressions for the time-
dependent magnetic susceptibility and extract the exchange
parameters from them, which is similar to the method used in
Sec. I E. The corresponding expression has the following form
(Secchi, Lichtenstein, and Katsnelson, 2016a):

JijðtÞ¼ iΣiSðtÞ lim
ϵ→0þ

Z
∞

0

dτe−ϵτΣjSðt−τ=2Þ

×
h	

G<
↓



i;tþτ=2

j;t−τ=2

	
G>

↑



j;t−τ=2

i;tþτ=2
−
	
G>

↓



i;tþτ=2

j;t−τ=2

	
G<

↑



j;t−τ=2

i;tþτ=2

i
:

ð8:8Þ

In Eq. (8.8) ΣiSðtÞ ¼ ð1=2Þ½Σi↑ðtÞ − Σi↓ðtÞ� is the spin part of
the local self-energy that is dependent only on one time t in the

mean-field approximation and ðGh;i
σ Þi;tj;t0 are the corresponding

components of the Keldysh two-time Green’s functions.
The theoretical description of interacting electronic systems

under different time-dependent perturbations, such as an
applied electric field, generally requires the use of advanced
many-body numerical techniques. However, there is a par-
ticular type of perturbation, namely, an off-resonant periodic
driving, that can be addressed in a relatively simple way.
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Indeed, this type of driving brings the system to a non-
equilibrium steady state, and the corresponding many-
body problem can therefore be solved using existing
time-independent approaches. The standard theoretical frame-
work to describe the periodically driven system is the Floquet
formalism (Bukov, D’Alessio, and Polkovnikov, 2015;
Eckardt, 2017). This method relies on an effective time-
independent Hamiltonian description of the nonequilibrium
system at stroboscopic times. In the limiting case of a high-
frequency driving, this effective Hamiltonian can be derived
analytically. The key idea is to take advantage of a high-
frequency feature of the light and use a Magnus-like pertur-
bation expansion that allows one to reduce the time evolution
of a quantum state to a time-independent eigenvalue problem
with respect to the effective Hamiltonian (Itin and Neishtadt,
2014; Itin and Katsnelson, 2015). This can be done as follows:
The time-periodic Hamiltonian HðtÞ of the initial problem
obeys the time-dependent Schrödinger equation

i∂tΨðλ; tÞ ¼ HðtÞΨðλ; tÞ: ð8:9Þ

One can introduce a dimensionless parameter λ ¼ δE=Ω that
compares a certain energy scale δE of the system to the
frequency Ω of the applied field. One then tries to find a
unitary transformation Ψðλ; τÞ ¼ expf−iΔðτÞgψðλ; τÞ that
removes the time dependence of the Hamiltonian. Here we
introduce τ ¼ Ωt and also impose the condition that
ΔðτÞ ¼Pþ∞

n¼1λ
nΔnðτÞ, with ΔnðτÞ a 2π periodic function.

The Schrödinger equation (8.9) can then be rewritten as

i∂tψðλ; τÞ ¼ λHψðλ; τÞ ð8:10Þ

with an effective Hamiltonian

H̄ ¼ eiΔðτÞH̄ðτÞe−iΔðτÞ − iλ−1eiΔðτÞ∂τe−iΔðτÞ: ð8:11Þ

In Eqs. (8.10) and (8.11) the bar over the Hamiltonian indicates
a normalization on the energy scale δE: H̄ðτÞ ¼ HðτÞ=δE.
Using the series representation H̄ ¼Pþ∞

n¼1λ
nH̃n, one can

determine operators H̃n and ΔnðτÞ iteratively in all orders in
λ. The zeroth-order term in this representation is given by the
time average over the period of the driving H̃0 ¼ hH̄ðτÞi ¼ H̄0

defined as H̄m ¼ Rþπ
−π ðdτ=2πÞeimτH̄ðτÞ. The first- and second-

order terms λ in the effective Hamiltonian are given by the
following equations:

H̃1 ¼ −
1

2

X
m≠0

½H̄m; H̄−m�
m

; ð8:12Þ

H̃2 ¼
1

2

X
m≠0

[½H̄m; H̄0�; H̄−m]
m2

þ 1

3

X
m≠0

X
n≠0;m

[½H̄m; H̄n−m�; H̄−n]
mn

; ð8:13Þ

where the square brackets stand for a commutator. The resulting
effective time-independent Hamiltonian describes the strobo-
scopic dynamics of the system, whereas its evolution between

two stroboscopic times is encoded in the time-dependent
functionΔnðτÞ. This approach allows one to explore interesting
phases of matter and to control different properties of materials
through a direct tuning of model parameters (hopping ampli-
tudes and electronic interactions) that in Floquet theory become
explicitly dependent on characteristics of the applied perturba-
tion; see Itin and Katsnelson (2015), Bukov, Kolodrubetz, and
Polkovnikov (2016), Dutreix, Stepanov, and Katsnelson
(2016), Kitamura and Aoki (2016), Dutreix and Katsnelson
(2017), Stepanov, Dutreix, and Katsnelson (2017), Peronaci,
Parcollet, and Schiró (2020), and Valmispild et al. (2020).
The introduced formalism can also be used for calculating

magnetic exchange interactions under the effect of high-
frequency light irradiation (Itin and Katsnelson, 2015;
Mentink, Balzer, and Eckstein, 2015; Claassen et al., 2017;
Mentink, 2017; Stepanov, Dutreix, and Katsnelson, 2017;
Barbeau et al., 2019). In particular, in a strong-coupling limit
U ≫ t, where U is the Coulomb interaction and t is the
hopping amplitude, one can make a Schrieffer-Wolff trans-
formation in order to map the derived effective Hamiltonian
onto a Heisenberg Hamiltonian (Chao, Spałek, and Oleś,
1977a, 1977b; MacDonald, Girvin, and Yoshioka, 1988;
Spałek, 2007). In the presence of an external time-dependent
perturbation, transformation was performed by Bukov,
Kolodrubetz, and Polkovnikov (2016), Stepanov, Dutreix,
and Katsnelson (2017), and Valmispild et al. (2020).
The resulting isotropic symmetric exchange interaction
J ¼ JK − JD contains two contributions. The kinetic
exchange interaction corresponds to a usual AFM super-
exchange JK ¼ t̃2=U that exists in equilibrium. However, out-
of-equilibrium JK contains the hopping amplitude
t̃ ¼ tJ 0ðEÞ, which is renormalized by the mth-order Bessel
function of the first kind J mðEÞ due to the effect of high-
frequency light irradiation. The dimensionless parameter
E ¼ eE0a=Ω contains the strength of the laser field E0, the
elementary charge e, and the lattice constant a0. The AFM
exchange JK competes with the direct FM exchange interaction
JD ¼ JDbare þ JDind. The bare part of the direct exchange JDbare
stems from nonlocal electronic interactions and is already
present in equilibrium; see Mazurenko et al. (2007, 2008,
2016), Rudenko et al. (2013), and Badrtdinov et al. (2016). The
second part corresponds to the contribution that is induced by
the high-frequency light irradiation (Itin and Katsnelson, 2015;
Bukov, Kolodrubetz, and Polkovnikov, 2016),

JDind ¼ 2t2U
Xþ∞

m¼1

J 2
mðEÞ

m2Ω2 − U2
: ð8:14Þ

In the case of a nearly resonant driving Ω ≃ U=m (Itin and
Katsnelson, 2015; Mentink, Balzer, and Eckstein, 2015) or
when the bare direct exchange is sufficiently large (Stepanov,
Dutreix, and Katsnelson, 2017), the total isotropic symmetric
exchange interaction can be substantially modified by high-
frequency light and can even change sign under certain
conditions. The introduced formalism can also be extended
to other types of magnetic exchange interactions, such as
Dzyaloshinskii-Moriya (Stepanov, Dutreix, and Katsnelson,
2017), chiral three-spin (Claassen et al., 2017), and biquadratic
exchange interations (Barbeau et al., 2019), which can all be
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tuned by high-frequency laser pulses. In particular, the light
control of magnetic interactions may dynamically induce chiral
spin liquids in frustrated Mott insulators (Claassen et al., 2017).
This may also allow for creation, stabilization, and modification
of the shape of skyrmions in materials where these topological
spin textures do not exist at equilibrium conditions (Stepanov,
Dutreix, and Katsnelson, 2017). Moreover, when the isotropic
symmetric exchange interaction J is completely suppressed by
the light irradiation, one can access a unique phase where
magnetic properties of the system are governed solely by
the Dzyaloshinskii-Moriya interaction (Stepanov, Nikolaev
et al., 2019).

IX. LOCALMOMENT FORMATION AND SPIN DYNAMICS

Historically, the density functional theory became the
standard language for the theory of magnetism and magnetic
interactions. As previously discussed, in this framework
exchange interactions can be obtained considering variations
of the total energy with respect to small rotations of magnetic
moments starting from equilibrium ground states. Despite the
success of this approach in describing many magnetic materi-
als, there are several important problems that cannot be
addressed using this language. Indeed, realistic models for
magnetic materials that are derived within DFT are interacting
electronic problems. However, finding a possibility of map-
ping these electronic models onto Heisenberg-like spin
problems is a highly nontrivial task that remains unsolved
in the framework of DFT. In addition, calculating the
exchange interactions using the magnetic force theorem is
based on the assumption that the variation of the magnetiza-
tion from the ground-state magnetic configuration is small,
which is frequently not the case, especially for itinerant-
electron systems.
The most common way to introduce an effective spin model

for an interacting electronic problem is based on a Schrieffer-
Wolff transformation (Chao, Spałek, and Oleś, 1977a, 1977b;
MacDonald, Girvin, and Yoshioka, 1988; Spałek, 2007),
which, strictly speaking, is justified only at integer filling
in the limiting case of a large interaction between electrons.
Already t-J or s-d exchange models (Vonsovskii, 1974)
that are frequently used to describe the physics of a doped
Mott insulator cannot be easily mapped onto a pure spin
Hamiltonian. Moreover, spin degrees of freedom in the
transformed problem are described in terms of composite
fermionic variables and not in terms of physical bosonic fields
as would be desirable for pure spin models. This results in a
need to introduce artificial constraints in order to conserve the
length of the total spin. In addition, one also has to assume that
the average value of these composite fermionic variables that
defines the local magnetization is nonzero. The latter is hard to
justify in a paramagnetic regime, where, generally speaking,
it should also be possible to introduce a Heisenberg-like
spin model.
Even though deriving an effective spin problem for inter-

acting electrons is not an easy task, one must do more than that
and find a way to introduce a correct equation of motion for
spin degrees of freedom. For localized spins, the classical
equation for the spin precession can be obtained by evaluating
path integrals over spin-coherent states in the saddle-point

approximation (Schapere and Wilczek, 1989; Inomata,
Kuratsui, and Gerry, 1992; Auerbach, 1994). In this approach,
the kinetic term that describes the rotational dynamics of spins
originates from the topological Berry phase, for which the
conservation of the length of the total spin on each site is a
necessary condition. For this reason, generalizing the forma-
lism of spin-coherent states to itinerant-electron problems is
mathematically a highly nontrivial task. Nevertheless, finding
a way to derive the equation of motion for the local magnetic
moment in the framework of electronic problems is crucial for
a correct description of the full spin dynamics of the system.
Indeed, studying classical spin Hamiltonians allows one to
describe only a uniform precession of the local magnetic
moment. Taking into account dissipation effects, e.g., Gilbert
damping, requires one to couple classical spins to itinerant
electrons (Sayad and Potthoff, 2015; Sayad, Rausch, and
Potthoff, 2016). In addition, considering classical spins
disregards quantum fluctuations of the modulus of the local
magnetic moment (Pekker and Varma, 2015) that were
observed in recent experiments (Rüegg et al., 2008;
Merchant et al., 2014; Hong et al., 2017; Jain et al., 2017;
Souliou et al., 2017; Ying, Schmidt, and Wessel, 2019). In
analogy with high-energy physics, these fast fluctuations are
usually described in terms of a massive Higgs mode (Englert
and Brout, 1964; Guralnik, Hagen, and Kibble, 1964; Higgs,
1964a, 1964b), while slow spin rotations are associated with
Goldstone modes that originate from the broken rotational
invariance in spin space.
The problem of describing the physics of the local magnetic

moment in the framework of interacting electronic models
was intensively studied in the late 1970s and early 1980s
(Korenman, Murray, and Prange, 1977a, 1977b, 1977c;
Hasegawa, 1979b; Hubbard, 1979a, 1979b; Hasegawa,
1980a, 1980b, 1983; Edwards, 1982, 1983). In these works
the local moments were formally introduced into the Hubbard
model using the Hubbard-Stratonovich transformation and
making use of a static approximation for the introduced
decoupling fields. Note that the static approximation in the
Hubbard model is closed conceptually to the disordered local
moment approach (Oguchi, Terakura, and Hamada, 1983;
Pindor et al., 1983; Gyorffy et al., 1985; Staunton et al., 1986;
Staunton and Gyorffy, 1992; Niklasson et al., 2003) within
density functional theory. As a result, the initial translationally
invariant system of interacting electrons is replaced by a
single-particle problem involving electrons moving in a
random magnetic field acting on spins. Fluctuations in the
direction of these fields are taken into account, thus allowing
one to go beyond a mean-field approach. For the case of
the Hubbard or s-d exchange models at Bethe lattices,
one can build the effective classical spin Hamiltonian, taking
into account both Anderson superexchange and Zener
double exchange of essentially a non-Heisenbergian character
(Auslender and Katsnel’son, 1982; Auslender and Katsnelson,
1982). This approach allows one to go far beyond the Stoner
picture of itinerant-electron magnetism and clarifies several
important questions, such as the origin of Curie-Weiss law for
magnetic susceptibility above Curie temperature, but it does
not result in a complete quantitative theory of magnetism of
itinerant electrons. In particular, it does not work at low
temperatures where magnonlike dynamical excitations play a

Attila Szilva et al.: Quantitative theory of magnetic interactions …

Rev. Mod. Phys., Vol. 95, No. 3, July–September 2023 035004-42



crucial role. An attempt to add these effects and to come to a
unified picture in a phenomenological way was made by
Moriya (2012). Several important questions have remained
unsolved; for instance, the role of dynamical fluctuations that
are known to be responsible for the Kondo effect (Hamann,
1967) was not clarified.
There have also been many attempts to address the problem

involving the spin dynamics of interacting electrons. To get
the Berry phase, one usually follows a standard route that
consists in introducing rotation angles for a quantization axis
of electrons (Schulz, 1990; Weng, Ting, and Lee, 1991;
Dupuis and Pairault, 2000; Dupuis, 2001). These angles are
considered as path-integral variables to fulfill rotational
invariance in the spin space. In this case, the Berry phase
term appears as an effective gauge field that, however, is
coupled to fermionic variables instead of a spin bosonic field.
Considering purely electronic problems makes it difficult to
disentangle spin and electronic degrees of freedom. For this
reason, until recently it was not possible to connect the Berry
phase to a proper bosonic variable that describes the modulus
of the local magnetic moment. For the same reason, it was also
not possible to introduce a proper Higgs field to describe
fluctuations of the modulus of the magnetization. Indeed, in
electronic problems this field is usually introduced by decou-
pling the interaction term (Sachdev, 2008; Scheurer et al.,
2018; Thomson and Sachdev, 2018; Wu et al., 2018; Gazit,
Assaad, and Sachdev, 2020). First, this decoupling field does
not have a clear physical meaning and its dynamics does not
necessary correspond to the dynamics of the local magnetic
moment. Second, in actual calculations this effective Higgs
field is usually treated in a mean-field approximation, assum-
ing that it has a nonzero average value, which is nontrivial to
justify in a paramagnetic phase. Keep in mind that although
the decoupling of the interaction term is a mathematically
exact procedure, it can be performed in many different ways.
In particular, this fact leads to a famous Fierz ambiguity
problem (Jaeckel, 2002; Jaeckel and Wetterich, 2003; Baier,
Bick, and Wetterich, 2004) if the decoupling field is further
treated in a mean-field approximation.
The aim of this section is to collect all previous achieve-

ments in describing spin degrees of freedom of interacting
electrons and unify them in a general theory of spin dynamics
and effective exchange interactions in strongly correlated
systems. In this section we discuss how an effective quantum
spin action written in terms of physical bosonic variables can
be rigorously derived starting with a pure electronic problem.
We show that this derivation can be performed without
assuming that the average magnetization is nonzero and
without imposing any constraints, such as artificial magnetic
fields. We illustrate that the introduced effective spin problem
allows one to obtain all kinds of exchange interactions
between spins, and thus to establish relations between the
magnetic local force approach and the standard language of
response functions. Further, we show that the corresponding
equation of motion for this action correctly describes the
dissipative rotational dynamics of the local magnetic moment
via the Berry phase and the Gilbert damping term and also
takes into account the Higgs fluctuations of the modulus of the
magnetic moment. At the end, we introduce a physical
criterion for the formation of the local magnetic moment in

the system and show that this approach is applicable even in
the paramagnetic regime. As a whole, this section provides a
solid and mathematically consistent background for a com-
plete description of spin dynamics in strongly correlated
electron systems.

A. Derivation of the bosonic action for the fermionic problem

To introduce a consistent theory of spin dynamics, we
follow the route presented by Stepanov et al. (2018) and
Stepanov, Brener et al. (2022) and use the action formalism
based on the Feynman path-integral technique as a more
appropriate language for treating many-body quantum prob-
lems. We start with the following general action for a multi-
orbital extended Hubbard model as a particular example of the
strongly correlated electronic problem that possesses spin
dynamics:

Slatt½cð�Þ� ¼ −
Z

β

0

dτ
X

jj0;σσ0;ll0
c�jτσl½G−1�ττll0jj0σσ0cj0τσ0l0

þ 1

2

Z
β

0

dτ

� X
j;σσ0;flg

Ul1l2l3l4c
�
jτσl1

cjτσl2c
�
jτσ0l4

cjτσ0l3

þ
X

jj0;ς;flg
Vjj0ς
l1l2l3l4

ρςjτl1l2ρ
ς
j0τl4l3

�
. ð9:1Þ

Equation (9.1) is written in terms of annihilation (creation)

fermionic Grassmann variables cð�Þjτσl and is considered in the
lattice j, imaginary time τ, spin σ ¼ f↑;↓g, and orbital l
space. The bare (noninteracting) Green’s function is defined
by the inverse of the matrix

½G−1�ττ0ll0jj0σσ0 ¼ δττ0 ½δjj0δσσ0δll0 ð−∂τ þ μÞ − εσσ
0

jj0ll0 �: ð9:2Þ

It contains the chemical potential μ and the hopping matrix
εσσ

0
jj0ll0 . The latter has the following form in the spin space:

εσσ
0 ¼ εδσσ0 þ iκ⃗ · σ⃗σσ0 , where the diagonal part ε of this

matrix corresponds to the usual hopping amplitude of the
electrons. The nondiagonal part κ⃗ accounts for the spin-orbit
coupling in the Rashba form (Bychkov and Rashba, 1984;
Yildirim et al., 1995). The interacting part of the model
action (9.1) consists of the local Coulomb potential Ul1l2l3l4

and the nonlocal interaction Vjj0ς
l1l2l3l4

(Vjj ¼ 0) between
electrons in the charge (ς ¼ c) and spin (ς ¼ s ¼ fx; y; zg)
channels. Composite fermionic variables ρςjτll0 ¼ nςjτll0 − hnςll0 i
describe fluctuations of charge and spin densities
nςjτll0 ¼

P
σσ0c

�
jτσlσ

ς
σσ0cjτσ0l0 around their average values.

We note that the exchange interactions between spins in the
bosonic problem that we aim to derive are nonlocal, while the
dynamics of the magnetic moment is usually described by
local Berry and Higgs terms. For this reason, it would be
useful to explicitly decouple local and nonlocal correlations in
the system. Stepanov et al. (2018) and Stepanov, Brener et al.
(2022) proposed performing this decoupling by considering
the local site-independent reference problem that accounts for
the local part of the lattice action (9.1),
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SðjÞ
imp½cð�Þ� ¼ −

ZZ
β

0

dτdτ0
X
σ;ll0

c�jτσl½g−10 �ll0ττ0cjτ0σl0

þ 1

2

Z
β

0

dτ
X
σσ0;flg

Ul1l2l3l4c
�
jτσl1

cjτσl2c
�
jτσ0l4

cjτσ0l3 ;

ð9:3Þ

where

½g−10 �ll0ττ0 ¼ δττ0δll0 ð−∂τ þ μÞ − Δll0
ττ0 ð9:4Þ

is the inverse of the bare Green’s function of the reference
system. Equation (9.3) has the form of the impurity problem
of dynamical mean-field theory (Georges et al., 1996) and is
intended to describe the local correlation effects of the initial
lattice action (9.1). This is achieved by introducing a non-
stationary hybridization function Δll0

ττ0 ¼ Δll0 ðτ − τ0Þ that aims
at capturing the effect of surrounding electrons on a given
impurity site. In general, the impurity problem (9.3) can be
considered either in a polarized (Stepanov et al., 2018) or in a
nonpolarized form (Stepanov, Brener et al., 2022), which
corresponds to an ordered or paramagnetic solution for the
problem, respectively. At present we stick to a nonpolarized
local reference system, which allows one to describe a regime
of the system where the average local magnetization is
identically zero hnsll0 iimp ¼ 0. In this case, the hybridization

function Δll0
ττ0 is spin independent and can be determined from

the self-consistent condition ð1=2ÞPσG
ττ0ll0
jjσσ ¼ gll

0
ττ0 (Stepanov,

Brener et al., 2022), which equates the spin diagonal, local
part of the interacting lattice Green’s function Gττ0ll0

jjσσ and the
interacting Green’s function of the local reference problem
gll

0
ττ0 . A DMFT-like form of the reference system [Eq. (9.3)]
allows for the exact solution of this local problem using, for
example, the continuous-time quantum Monte Carlo method
(Rubtsov, Savkin, and Lichtenstein, 2005; Werner et al., 2006;
Werner and Millis, 2010; Gull et al., 2011). This implies that
the corresponding local many-body correlation functions
including the full interacting Green’s function gll

0
ττ0 and the

susceptibility χςττ
0

l1l2l3l4
can be obtained numerically exact. This

drastically simplifies the investigation of many physical
effects that are directly related to local electronic correlations,
which, in particular, includes formation of the local magnetic
moment (Stepanov, Brener et al., 2022). We discuss this point
in more detail in Sec. IX D.
After isolating the local reference system, the nonlocal

correlations are contained in the remaining part of the lattice
action Srem½cð�Þ� ¼ Slatt½cð�Þ� −

P
j S

ðjÞ
imp½cð�Þ�. However, the

local and nonlocal correlation effects are not yet disentangled,
because Simp½cð�Þ� and Srem½cð�Þ� are written in terms of the
same fermionic Grassmann variables. Calculating any physi-
cal observable using the present form of the lattice action will
immediately mix these correlations up. After that, a separation
of them is possible only with a complex resummation of
corresponding contributions to a Feynman diagrammatic
expansion (Li, 2015; Brener et al., 2020). As an alternative,
there is a simpler way to completely disentangle local and
nonlocal correlation effects. The idea consists in integrating

out the reference system, as proposed in the dual fermion
(Rubtsov, Katsnelson, and Lichtenstein, 2008; Hafermann
et al., 2009; Rubtsov et al., 2009) and dual boson theories
(Rubtsov, Katsnelson, and Lichtenstein, 2012; van Loon et al.,
2014; Stepanov, Huber et al., 2016; Stepanov, van Loon et al.,
2016; Peters et al., 2019). To this aim, we first rewrite the
nonlocal part of the action in terms of new fermionic
cð�Þ → fð�Þ and bosonic ρς → ϕς variables by means of the
Hubbard-Stratonovich transformation (Stratonovich, 1957;
Hubbard, 1959). After this transformation, the lattice action
Slatt½c�; f�;ϕς� depends on two fermionic and one bosonic
variables. Original Grassmann variables cð�Þ are contained
only in the local part of the lattice action, which includes the
impurity problem [Eq. (9.3)], and thus can be integrated out.
Before making this integration, one should recall that

isolating local correlation effects should help one to correctly
describe the dynamics of spin degrees of freedom. In general,
spin dynamics might have a nontrivial form since it involves a
combination of a slow spin precession and fast Higgs
fluctuations of the modulus of the local magnetic moment.
For this reason, it is more convenient to treat these two
contributions separately. In electronic systems, the Berry
phase term that describes the uniform spin precession is
commonly obtained by transforming original electronic var-
iables to a rotating frame (Schulz, 1990; Weng, Ting, and Lee,
1991; Dupuis and Pairault, 2000; Dupuis, 2001). This can be
achieved by introducing a unitary matrix in the spin space,

Rjτ ¼
�

cosðθjτ=2Þ −e−iφjτ sinðθjτ=2Þ
eiφjτ sinðθjτ=2Þ cosðθjτ=2Þ

�
; ð9:5Þ

and making the corresponding change of variables
cjτl → Rjτcjτl, where cjτl ¼ ðcjτl↑; cjτl↓ÞT . Rotation angles
ΩR ¼ fθjτ;φjτg are considered as site j and time τ dependent
variables. Introducing an additional functional integration
over them allows one to preserve the rotational invariance
in the spin space. As a consequence, the modified lattice
action takes the following form: Slatt½c�; f�;ϕς;ΩR�.
The Berry phase arises from the local impurity problem that

upon rotation becomes (Stepanov, Brener et al., 2022)

SðjÞ
imp½cð�Þ� → SðjÞ

imp½cð�Þ� þ
Z

β

0

dτ
X
s;l

As
jτρ

s
jτll: ð9:6Þ

The z component of an effective gauge fieldAs
jτ has the desired

form of the Berry phase term Az
jτ ¼ ði=2Þ _φjτð1 − cos θjτÞ. To

exclude other components of the gauge field from consider-
ation, one usually assumes that the rotation angles ΩR corre-
spond to the spin-quantization axis of the electrons. In this case,
the composite fermionic variable in the spin channel ρs is
replaced by its z component ρz which is coupled to the “correct”
component of the gauge fieldAz

jτ. Proceeding in this direction
leads to several problems. Associating rotation angles with the
spin-quantization axis is nontrivial to formulate in a strict
mathematical sense. Dupuis and Pairault (2000) and Dupuis
(2001) introduced the slave boson approximation. However,
there is no guarantee that the average magnetization on a given
lattice site will also point in the z direction. Indeed, the
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spin-quantization axes on different sites may point in different
directions, which may induce an effective mean magnetic field
that will change the direction of the magnetization on a given
site. In particular, this does not allow one to replace the
composite fermionic variable ρz by its average value in the
Berry phase term (9.6). Moreover, in the paramagnetic phase
this replacement does not make sense, because the average
magnetization in this case is identically zero. Finally, in
Eq. (9.6) the effective gauge fieldAs

jτ is coupled to a composite
fermionic variable ρs instead of a proper vector bosonic field
that describes fluctuations of the local magnetic moment. This
representation of spin degrees of freedom does not conserve the
length of the total spin, which is a necessary condition for a
correct description of a spin precession.
We emphasize that the rotation angles cannot be associated

with the direction of the newly introduced bosonic field for spin
degrees of freedom ϕs. This field enters the lattice action as an
effective quantum magnetic field that polarizes the electrons
(Stepanov et al., 2018; Stepanov, Brener et al., 2022) and is
frequently associated with the Higgs field (Sachdev, 2008;
Scheurer et al., 2018; Thomson and Sachdev, 2018; Wu et al.,
2018; Gazit, Assaad, and Sachdev, 2020). However, this
effective bosonic field is introduced as the result of a
Hubbard-Stratonovich transformation and does not have a clear
physical meaning. Moreover, even if it would be possible to
associate ϕs with the physical Higgs field, its dynamics would
not necessarily correspond to the dynamics of the local
magnetic moment. All these observations suggest that the idea
of describing the spin precession in terms of rotation angles is
appealing, but one has to find a way to relate these angles to the
direction of the local magnetic moment and not to the spin-
quantization axis or to the effective Higgs field.
After the original electronic variables cð�Þ are transformed

to a rotating frame, they can finally be integrated out, which
results in the so-called dual boson action Slatt½fð�Þ;ϕς;ΩR�
(Rubtsov, Katsnelson, and Lichtenstein, 2012; van Loon et al.,
2014; Stepanov, van Loon et al., 2016). In this action, bare
propagators for the fermionic fð�Þ and bosonic ϕς variables are
purely nonlocal and explicitly depend on rotation angles ΩR
(Stepanov, Brener et al., 2022). All local correlations are
absorbed in the interaction part of the fermion-boson action
F̃ ½fð�Þ;ϕς;ΩR�, which consists of all possible fermion-
fermion, fermion-boson, and boson-boson vertex functions
of the local reference problem (9.3). To proceed further, we
truncate the interaction at the two-particle level and keep only
the four-point (fermion-fermion) Γ and three-point (fermion-
boson) Λς vertices. This approximation is widely used in the
dual fermion approach (Rubtsov, Katsnelson, and Lichtenstein,
2008; Hafermann et al., 2009; Rubtsov et al., 2009), the dual
boson method (Rubtsov, Katsnelson, and Lichtenstein, 2012;
van Loon et al., 2014; Stepanov, Huber et al., 2016; Stepanov,
van Loon et al., 2016; Peters et al., 2019), and the recently
introduced dual triply irreducible local expansion (Stepanov,
Harkov, and Lichtenstein, 2019; Harkov et al., 2021; Vandelli
et al., 2022), including their diagrammatic Monte Carlo real-
izations (Iskakov,Antipov, andGull, 2016;Gukelberger,Kozik,
and Hafermann, 2017; Vandelli et al., 2020), which provide
results that are in good agreement with the exact benchmark
methods (Iskakov, Antipov, and Gull, 2016; Gukelberger,

Kozik, and Hafermann, 2017; Iskakov, Terletska, and Gull,
2018; Vandelli et al., 2020; Harkov et al., 2021; Schäfer
et al., 2021).
Integrating out the reference system not only disentangles

local and nonlocal correlations but also allows one to get rid of
composite fermionic variables ρς that are no longer present in
the dual boson action Slatt½fð�Þ;ϕς;ΩR�. Charge and spin
degrees of freedom are now described by a proper bosonic
field ϕς that has a well-defined propagator and a functional
integration over them. Moreover, in this action the gauge field
As

jτ is coupled up to a certain multiplier to the spin component
of this bosonic field ϕs (Stepanov, Brener et al., 2022).
However, as previously discussed, the bosonic variable ϕς

does not have a clear physical meaning. The way to introduce
a physical bosonic variable was proposed by Stepanov et al.
(2018) and was inspired by Dupuis and Pairault (2000) and
Dupuis (2001), who performed a similar transformation for
fermionic fields. The idea consists in introducing a source
field ης for the original composite fermionic variable ρς that
describes fluctuations of charge and spin densities. After
obtaining the dual boson action one then performs an addi-
tional Hubbard-Stratonovich transformation ϕς → ρ̄ς that
makes ης the source field for the resulting physical bosonic
field ρ̄ς. Further, unphysical bosonic fields ϕς are integrated
out, which leads to the fermion-boson action Slatt½fð�Þ; ρ̄ς;ΩR�.
The derived fermion-boson action has a simpler form than

the dual boson action Slatt½fð�Þ;ϕς;ΩR�. Indeed, the interaction
part of the fermion-boson action contains only the three-point
vertex function Λς. The four-point vertex Γ that is present in
the dual boson action is approximately canceled by the
counterterm that is generated during the last Hubbard-
Stratonovich transformation (Stepanov et al., 2018;
Stepanov, Harkov, and Lichtenstein, 2019). As a result, the
fermion-boson action Slatt½fð�Þ; ρ̄ς;ΩR� takes the form of an
effective t-J or s-d exchange model (Vonsovskii, 1974) that
describes local charge and spin moments ρ̄ς coupled to
itinerant electrons fð�Þ via the local fermion-boson vertex
function Λς. Moreover, in this action the gauge field As

jτ is
coupled to the spin component of the physical bosonic field
ρ̄s, as desired for a correct description of the rotational
dynamics of the local magnetic moment (Stepanov, Brener
et al., 2022).
We note that at this point all parameters of the fermion-

boson action, including the coupling of the gauge field As
jτ to

the bosonic field ρ̄s, explicitly depend on the rotation angles
ΩR. From the beginning, these angles are introduced to
account for the spin precession explicitly. For this reason,
ΩR should be related to the direction of the local magnetic
moment, which in the fermion-boson action is defined by a
bosonic vector field ρ̄s. It is convenient to rewrite the latter in
spherical coordinates as ρsjτll0 ¼ Mjτll0esjτ, where Mjτll0 is a
scalar field that describes fluctuations of the modulus of the
orbitally resolved local magnetic moment. In this expression
we assume that the multiorbital system that exhibits a well-
developed magnetic moment is characterized by a strong
Hund’s exchange coupling that orders spins of electrons at
each orbital in the same direction. Therefore, the direction of
the local magnetic moment in the system is defined by the
orbital-independent unit vector e⃗jτ, as described by a set of
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polar angles ΩM ¼ fθ0jτ;φ0
jτg associated with this vector.

Stepanov, Brener et al. (2022) showed that taking the path
integral over rotation angles ΩR in the saddle-point approxi-
mation allows one to equate these two sets of angles
ΩR ¼ ΩM, which from now on define the direction of the
local magnetic moment. After that, the remaining dependence
on rotation angles can be eliminated from fermionic parts of
the fermion-boson action. This can be achieved in the
adiabatic approximation that assumes that characteristic times

for electronic degrees of freedom are much faster than those
for spin ones.
The bosonic problem that describes the behavior of charge

and spin densities can be obtained by integrating out fermionic
fields fð�Þ. The fermion-boson action is Gaussian in terms of
these fields, so this integration can be performed exactly. The
resulting bosonic action takes the following final form
(Stepanov, Brener et al., 2022):

Slatt ¼ −Tr ln
�
½G̃−1�ττ0ll0jj0σσ0 − δjj0

Z
β

0

dτ1
X
ς;l1l01

σςσσ0Λ
ςττ0τ1
ll0l1l01

ρ̄ςjτ1l01l1

�
þ 1

2

Z
β

0

dτ
X

jj0;ς;flg
ρ̄ςjτll0V

jj0ς
ll0l1l01

ρ̄ςj0τl0
1
l1

−
1

2

ZZ
β

0

dτdτ0
X
j;flg

fρ̄cjτll0 ½χc−1�ττ
0

ll0l1l01
ρ̄cjτ0l0

1
l1
þMjτll0 ½χz−1�ττ0ll0l1l01

Mjτ0l0
1
l1g þ

Z
β

0

dτ
X
j

Az
jτMjτ: ð9:7Þ

In this action the modulus of the total magnetic moment
Mjτ ¼

P
lMjτll is coupled only to the z component of the

effective gauge field Az
jτ, which gives exactly the desired

Berry phase term. Other components of the gauge field
disappear upon associating rotation angles with the direc-
tion of the local magnetic moment.

B. Exchange interactions in many-body theory and relation to
other approaches

Before introducing the explicit expression for the exchange
interaction, we note that an unambiguous definition for this
quantity does not exist. The exchange interactions are internal
parameters of the model and thus depend on the particular
form of the considered Hamiltonian. In its turn, the latter
crucially depends on the downfolding scheme used to map the
interacting electronic problem onto an effective bosonic (i.e.,
spin) model. For instance, it has been shown that considering
small local variations from the ordered magnetic state leads to
a bilinear exchange interaction that depends on the magnetic
configuration, and the resulting spin Hamiltonian also con-
tains higher-order nonlinear exchange interactions that are
non-negligible a priori (Auslender and Katsnel’son, 1982;
Auslender and Katsnelson, 1982). On the other hand, one can
try to map the interacting electronic problem onto a global
Heisenberg-like spin model with only a bilinear exchange
interaction. In this case, the value of the bilinear exchange
might differ from the one of the nonlinear spin model.
However, both forms of the spin Hamiltonian are useful.

The form that contains nonlinear exchange interactions better
reproduces the spectrum of spin waves (Pajda et al., 2001). On
the other hand, the Heisenberg Hamiltonian is a standard
model for atomistic spin simulations and gives reasonable
thermodynamic properties of the system (Eriksson et al.,
2017). To establish connection between different definitions
for the exchange interaction, we start with the previously
derived bosonic action (9.7). In this action local and nonlocal
correlation effects are completely disentangled by construc-
tion of the theory. The first line in Eq. (9.7) describes nonlocal
exchange interactions between charge ρ̄c and spin ρ̄s densities.
The first term in Eq. (9.7) is responsible for all possible kinetic

exchange processes (including higher-order ones) mediated
by electrons. This can be illustrated by directly expanding the
logarithm function to all orders in ρ̄ς variables. Since this
expansion is performed in terms of the bosonic variables that
correspond to charge and magnetic densities, the resulting
bilinear and nonlinear exchange interactions are well defined.
This expansion is essentially different from the one performed
in terms of rotation angles in DFT-based formalisms.
Indeed, the latter is based on the magnetic force theorem
(see Sec. VA), which, however, cannot be used for the
discussion of higher-order expansion terms in the rotation
angle. The situation is similar to that in the problem involving
calculations of elastic moduli of solids in density functional:
Whereas the first-order variations with respect to deformation
are simple and can be calculated according to the local force
theorem, the second-order variations contain a lot of addi-
tional terms related to the differentiation of the double-
counting contributions (Zein, 1984). At the same time, the
effective bosonic action discussed here is based on formally
exact transformations.
The bilinear exchange interaction Jςς

0
jj0 is given by the

second order of the expansion

Jςς
0ττ0

jj0ll0l00l000 ¼
Z

β

0

fdτig
X

fσig;flig

⋆ Λ�ςττ1τ2
ll0l1l2

G̃τ1τ3l1l3
jj0σ1σ3

G̃τ4τ2l4l2
j0jσ4σ2

Λς0τ3τ4τ0
l3l4l00l000

; ð9:8Þ

where a “transposed” three-point vertex function Λ�ςτ1τ2τ3
l1l2l3l4

¼
Λςτ3τ2τ1
l4l3l2l1

is introduced to simplify notations and G̃ stands for the
nonlocal Green’s function given by the difference between
DMFT G and impurity g Green’s functions

G̃ττ0ll0
jj0σσ0 ¼ Gττ0ll0

jj0σσ0 − δjj0δσσ0gll
0

ττ0 . ð9:9Þ

The DMFT Green’s function corresponds to the bare lattice
Green’s function (9.2) dressed in the exact self-energy Σimp of
the local reference problem (9.3) (Georges et al., 1996).
According to the self-consistency condition, the local part of
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the DMFT Green’s function is identically equal to the exact
local Green’s function g of the reference problem.
The diagonal part of the bilinear exchange interaction is

given by the Heisenberg exchange Jssjj0 for the spin density
(Stepanov et al., 2018; Stepanov, Brener et al., 2022) and the
Ising interaction Jccjj0 for the charge density (Stepanov, Huber
et al., 2019). The latter is discussed in detail in Sec. X. The
nondiagonal Js≠s

0
jj0 components give rise to the Dzyaloshinskii-

Moriya and the symmetric anisotropic interactions [see
Yildirim et al. (1995)] that may appear in the system due
to spin-orbit coupling. These kinetic exchange interactions
compete with the bare nonlocal electron-electron interaction
Vς
jj0 , which plays the role of a direct exchange between the

charge and spin densities. This makes the total nonlocal
bilinear exchange interaction have the form

I ςς0
jj0 ¼ Jςς

0
jj0 þ δςς0V

ς
jj0 : ð9:10Þ

The nonlocal interaction Vς
jj0 enters the bosonic problem as it

was introduced in the initial lattice action (9.1). We also note
that the direct spin-spin interaction Vs

jj0 usually has the
opposite sign to the kinetic interaction Jssjj0 . More involved
interactions (Auslender and Katsnel’son, 1982; Auslender and
Katsnelson, 1982), for example, the ring (Honda, Kuramoto,
and Watanabe, 1993; Eroles et al., 1999; Lorenzana, Eroles,
and Sorella, 1999), chiral three-spin (Pachos and Plenio, 2004;
Bauer et al., 2014; Owerre, 2017; Grytsiuk et al., 2020; Zhang
et al., 2020; Sotnikov et al., 2021), and four-spin exchange
interactions (Sato, 2007; Heinze et al., 2011; Paul et al., 2020)
can be obtained by expanding the first term in Eq. (9.7) to
higher orders in the ρς variable. For calculations of the bilinear
exchange interactions (9.8) in a realistic material context, see
Vandelli et al. (2023).
At this step we can already establish relation between

bilinear exchange interactions derived using a magnetic force
theorem and a quantum many-body path-integral technique. In
this case it is convenient to work in the Matsubara fermionic ν
and bosonic ω frequency representation. To simplify expres-
sions we further omit orbital indices that can be restored
trivially. We first note that the three-point vertex function Λς

for the zeroth bosonic frequency can be obtained from single-
particle quantities,

Λs
ν;ω¼0 ¼ △s

ν þ χs−1ω¼0; ð9:11Þ

by varying the self-energy of the local reference problem (9.3)
with respect to the magnetization (Stepanov, Brener et al.,
2022)

△s
ν ¼ ∂Σimp

ν =∂Mω¼0. ð9:12Þ

In the ordered phase, where the spin rotational invariance is
broken, this variation can be given as

△s
ν ¼

Σimp
ν↑↑ − Σimp

ν↓↓

2hMi : ð9:13Þ

Equation (9.13) is justified by local Ward identities and the
fact that in the regime of a well-developed magnetic moment
the renormalized fermion-fermion interaction (four-point
vertex function) does not depend on fermionic frequencies
(Stepanov et al., 2018). Therefore, in Eq. (9.11) the △s

ν term
describes the spin splitting of the self-energy due to polari-
zation of the system. In turn, χs−1ω¼0 can be seen as a kinetic self-
splitting effect because χsω ¼ −hρsωρs−ωiimp is the exact spin
susceptibility of the reference system. In magnetic materials
with a relatively large value of the magnetic moment, the
kinetic contribution can be neglected. Indeed, in this case the
spin splitting of the self-energy is determined by the Hund’s
exchange coupling. The latter is much larger than the inverse
of the spin susceptibility, for which the estimation χsω¼0 ∼ T−1

holds due to the Curie-Weiss law (Moriya, 2012). The static
exchange interaction Jss

0
jj0 ðω ¼ 0Þ ¼ R dτ0Jss0jj0 ðτ − τ0Þ [see

Stepanov, Brener et al. (2022) for a discussion] then reduces
to the form

Jss
0

jj0;ω¼0
¼
X
ν;fσg

△s
jνG̃

σ1σ3
jj0ν △

s0
j0νG̃

σ4σ2
j0jν ; ð9:14Þ

which under the approximation (9.13) coincides with
Eq. (5.64), which for the ordered phase was derived in
Sec. V K using the magnetic force theorem (Liechtenstein,
Katsnelson, and Gubanov, 1984, 1985; Liechtenstein et al.,
1987; Katsnelson and Lichtenstein, 2000; Cardias, Bergman
et al., 2020). Note that Eq. (9.14) contains the sum over spin
indices fσg and, for this reason, does not contain the prefactor
2 that is present in Eq. (5.64). The magnetic force theorem can
also be applied in a paramagnetic phase. In the HIA this was
done by Pourovskii (2016), and the result coincides with
Eq. (9.14), where Eq. (9.12) is calculated numerically exactly.
We emphasize that in Eq. (9.8), and consequently in
Eq. (9.14), the vertex function (9.11), and thus the self-
energy (9.12), are given by the local reference system (9.3).
Moreover, the Green’s function (9.9) that enters the expression
for the exchange interaction is also dressed only in the local
self-energy. The spin splitting △s obtained from the nonlocal
self-energy was introduced by Secchi, Lichtenstein, and
Katsnelson (2016b). However, the corresponding exchange
interaction is formulated in terms of bare noninteracting
Green’s functions and can be derived considering only the
density-density approximation for the interaction between
electrons. For these reasons, the limit of applicability of this
approach and the relation to other methods remain unclear.
In addition, if the fermionic frequency dependence in

Eq. (9.11) is fully neglected, the vertex function can be
approximated by the inverse of the local bare polarization
Λs ≃ χ0−1ω¼0, where χ0ω ¼Pνgνgνþω. The exchange interac-
tion (9.8) then reduces to the form of an effective bare
nonlocal susceptibility, as derived by Antropov (2003),

Jss
0

jj0;ω¼0
¼ χ0−1ω¼0X̃

0
jj0;ω¼0

χ0−1ω¼0; ð9:15Þ

where X̃0
jj0ω ¼Pν G̃jj0νG̃j0jνþω.

One can also establish a relation between the results of the
introduced many-body theory result and the bilinear exchange
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interaction that can be deduced from the lattice susceptibility

Xςς0
jj0 using the following expression:

J̄ςς
0

j≠j0 ¼ δjj0δςς0 ½χς�−1 − ½X−1�ςς0jj0 : ð9:16Þ

Equation (9.16) was used by Antropov (2003), Igoshev,
Efremov, and Katanin (2015), Belozerov, Katanin, and
Anisimov (2017), and Otsuki et al. (2019) to estimate the
magnetic exchange interaction based on the DMFT approxi-
mation for the spin susceptibility (Georges et al., 1996). One
can find that this form for the bilinear exchange interac-
tion (9.16) can also be obtained from the previously derived
many-body theory if the nonlinear action (9.7) is approxi-
mated by the Gaussian form

S̄ ¼ −
1

2

Z Z
0

β
dτdτ0

X
jj0;ςς0

ρ̄ςjτ½X−1�ςς0;ττ0jj0 ρ̄ς
0
j0τ0 : ð9:17Þ

Since the bosonic variables ρ̄ς correspond to the charge and

magnetic densities, the quantity Xςς0;ττ0
jj0 is simply the lattice

susceptibility (Stepanov et al., 2018; Stepanov, Huber et al.,
2019; Stepanov, Brener et al., 2022). More accurately this
approximation can be done using Peierls-Feynman-Bogoliubov
variational principle (Peierls, 1938; Bogolyubov, 1958;
Feynman, 1972). Comparing the two actions (9.7) and (9.17)
shows that in this case the bilinear exchange interaction should
indeed be given by Eq. (9.16).
Effectively, this procedure corresponds to the mapping of

the spin problem (9.7), which contains all possible exchange
interactions, to an effective Heisenberg problem that accounts
only for the bilinear exchange. We emphasize that for this
reason it would be incorrect to relate two expressions for the
bilinear exchange introduced in Eqs. (9.8) and (9.16). Indeed,
equating these two quantities corresponds to truncating the
expansion of the logarithm in the bosonic action (9.7) at the
second order in terms of ρ̄ variables. In other words, it means
neglecting the effect of the higher-order exchange interactions
on the lattice susceptibility and, consequently, on the bilinear
exchange interaction J̄. Taking this effect into account will
modify Eq. (9.8) for the bilinear exchange interaction. In
particular, it will result in dressing the Green’s functions G̃
with the nonlocal self-energy and in the renormalization of
one of the two vertex functions (Λ) by collective nonlocal
fluctuations in the fashion of Hedin (1965b).
These observations confirm the statement that we made at

the beginning of this section, namely, that the expression for
the exchange interaction strongly depends on the form of the
considered spin model. If one is limited to the simplest
approximation with only the bilinear form of the exchange
interaction, then the latter should be calculated via Eq. (9.16)
provided that consistent calculation for the lattice susceptibil-
ity is possible. For instance, using the DMFT form of the
susceptibility might already be questionable because it
accounts for the renormalization of the vertex function (in
the ladder approximation) but disregards the nonlocal self-
energy. At the same time, if a more accurate model that
contains the bilinear and nonlinear exchange interactions is
considered, these interactions should be computed in the form

given by the action (9.7). In this case, the bilinear interaction is
given by Eq. (9.8) or its approximation (9.14). Calculating it
via the lattice susceptibility (9.16) would be incorrect because
it would lead to a double-counting problem for the higher-
order interactions since some contribution from them is
already taken into account in the lattice susceptibility. The
difference between the two forms for the bilinear exchange
interaction can also serve as a measure of the importance of
the nonlinear exchange processes in the system.

C. Equation of motion for the local magnetic moment

The second line in the bosonic action (9.7) contains only
local contributions that describe dynamics of charge and spin
degrees of freedom. The first term in this line accounts for the
Higgs fluctuations of the modulus of the charge ρc and spinM
moments around their average value. This can be seen by
formally expanding the time dependence of the moments in
powers of τ − τ0. For the local magnetic moment this gives

SHiggs ¼ −
1

2

ZZ
β

0

dτdτ0
X
j

Mjτ½χz−1�ττ0Mjτ0

≃ −
1

2

Z
β

0

dτ
X
j

�
χz−1ω¼0M

2
jτ þ

∂
2χz−1ω

2∂ω2

����
ω¼0

_M2
jτ

�
. ð9:18Þ

The first-order difference in time vanishes because the exact
local susceptibility χςω is the even function of the frequency ω.
The Lagrangian equation for this action immediately gives the
standard equation of motion for a simple harmonic oscillator
M̈jτ þ λ2Mjτ ¼ 0, where λ2 ¼ −2χz−1ω¼0=ð∂2ωχz−1ω Þjω¼0. Note
that in our definition the susceptibility χςω is negative.
However, this expansion has to be performed with ultimate
care. Indeed, Higgs fluctuations of the modulus of the local
magnetic moment are fast, and the spin susceptibility is
strongly nonlocal in time (Stepanov, Brener et al., 2022).
For this reason, there is no uniform justification that the Higgs
fluctuations can be accurately described using an equal-time
term [the second line of Eq. (9.18)] instead of the full
nonstationary in time local part of the lattice action [the first
line of Eq. (9.18)].
The last term in the bosonic action (9.7) that contains the

effective gauge field Az
jτ accounts for the rotational spin

dynamics. Stepanov, Brener et al. (2022) showed that after
averaging over fast Higgs fluctuations the equation of motion
for the bosonic action reduces to the standard Landau-
Lifshitz-Gilbert form. To illustrate this, we replace the scalar
field Mjτ with its constant nonzero average value hMjτi ¼ 2S

and introduce S⃗jτ ¼ Se⃗jτ. The spin part of the action becomes

Sspin ¼
Z

β

0

dτ
X
j

½i _φjτð1 − cos θjτÞS − S⃗jτ · h⃗jτ�; ð9:19Þ

where we have explicitly rewritten the gauge field in terms of
rotation angles. Components of the effective magnetic field

h⃗jτ can be expressed via the bilinear exchange interaction and
the effective magnetic field that appears due to spin-orbit
coupling (Stepanov, Brener et al., 2022),
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hsjτ ¼ −4
Z

β

0

dτ0
X
j0;s0

I ss0
jj0 ðτ − τ0ÞSs0j0τ0 þ hSOC;sjτ : ð9:20Þ

In the general case, the equation of motion for the nonsta-
tionary spin action (9.19) is a complex set of integrodiffer-
ential equations. However, one can make use of the fact that
the interaction between spins is determined by the super-
exchange processes mediated by electrons [Eq. (9.8)] and thus
decays fast on the timescales of the inverse bandwidth.
Instead, the time dependence of the angle variables φjτ and
θjτ is slow because the spin precession is slow in time (Sayad
and Potthoff, 2015; Sayad, Rausch, and Potthoff, 2016;
Watzenböck et al., 2020). Unlike the case of Higgs fluctua-
tions, this allows one to expand the time dependence of the
spin variable Ss

0
j0τ0 in Eq. (9.20) up to the first order in powers

of τ − τ0, which allows one to write

hsjðtÞ ¼ −4
X
j0;s0

IR;ss
0

jj0 ðΩ ¼ 0ÞSs0j0 ðtÞ þ hSOC;sj ðtÞ

− 4
X
j0;s0

∂

∂Ω
ImIR;ss

0
jj0 ðΩÞj

Ω¼0
_Ss

0
j0 ðtÞ: ð9:21Þ

With Eq. (9.21) for the effective magnetic field the spin
problem (9.19) becomes stationary in time, and the corre-
sponding equation of motion for this action takes the standard
Landau-Lifshitz-Gilbert form

_S⃗jðtÞ ¼ −h⃗jðtÞ × S⃗jðtÞ. ð9:22Þ

Equation (9.22) can be derived by making an analytical
continuation that transforms the imaginary-time exchange
interaction I ss0

jj0 ðτ − τ0Þ to a retarded function IR;ss
0

jj0 ðt − t0Þ in

real time t. In turn, IR;ss
0

jj0 ðΩÞ is a Fourier transform of the
retarded exchange interaction to real frequency Ω. This
transformation allows one to obtain the Gilbert damping,
which is described by the last term in the effective magnetic
field (9.21). A similar expression for the Gilbert damping was
derived by Sayad and Potthoff (2015) and Sayad, Rausch, and
Potthoff (2016) for the case of a classical spin coupled to the
system of conduction electrons. Note that the Gilbert damping
cannot be obtained in the imaginary-time representation,
because the exchange I ss0

jj0 ðτ − τ0Þ is an even function of time.
Physically, this means that dissipation effects cannot be visible
in the equilibrium formalism.
There are several restrictions for the derived Landau-

Lifshitz-Gilbert equation of motion that have to be discussed.
Equation (9.22) describes the spin precession, which is
assumed to be slow in time compared to the electronic
processes in the system. The corresponding effective magnetic
field (9.21) thus takes into account only the low-frequency
part of the exchange interaction. In general, the exchange
term (9.8) has a nontrivial frequency dependence, and even
diverges at high frequencies, because it is given by a nonlocal
part of the inverse of the lattice susceptibility (9.16).
Nonadiabatic effects that correspond to high-frequency behav-
ior of the exchange interaction are not taken into account by

Eq. (9.22). The latter can only be described using the derived
bosonic action (9.7), which has no restriction on the regime of
frequencies but is nonstationary in time.
Another important point is that the Higgs and Berry phase

terms, in the form in which they enter the bosonic action (9.7),
can be obtained only after associating the rotation angles with
the direction of the local magnetic moment. As discussed, this
can be done taking the path integral over rotation angles in the
saddle-point approximation. However, this approximation can
be justified only in the case of a large magnetic moment
(Stepanov, Brener et al., 2022). In practice, it means that the
classical Landau-Lifshitz-Gilbert equation of motion is appli-
cable only in the multiorbital case, where the large value of the
local magnetic moment is provided by a strong Hund’s
coupling. If the magnetic moment is small, the spin dynamics
in the system is governed by quantum fluctuations. In this
case, the local magnetic moment can still be well defined, but
its behavior can no longer be described in terms of classical
equations of motion.

D. Local magnetic moment formation

The Landau-Lifshitz-Gilbert equation of motion (9.22)
makes physical sense only for a nonzero value of the average
magnetic moment hMi. In the ordered phase this is ensured by
a nonzero average value of the magnetization. Defining hMi in
a paramagnetic regime is much more problematic because, in
this case, the average magnetization is identically zero. For
this reason, the value of hMi is commonly estimated from the
static equal-time spin susceptibility as

3χzττ ¼ hM2i ≃ hMiðhMi þ 2Þ. ð9:23Þ

However, Eq. (9.23) gives a large and almost temperature-
independent value for the magnetic moment even in the high-
temperature regime, where the moment is not yet formed
(Stepanov, Brener et al., 2022). Taking into account dynami-
cal screening effects changes the value of the average moment,
but it still remains substantially larger than the one measured
experimentally (Hansmann et al., 2010; Toschi et al., 2012;
Watzenböck et al., 2020). This result can be explained by the
fact that the local spin susceptibility simultaneously accounts
for correlations of the local magnetic moment and for spin
fluctuations of itinerant electrons. These two contributions to
the susceptibility cannot be easily disentangled.
Stepanov, Brener et al. (2022) proposed the average value

of the magnetic moment to obtain from the free energy of the
local problem that describes the behavior of the magnetic
moment. The action of this local problem

Sloc ¼ −Tr ln
�
½g−1�ττ0δσσ0 þ

Z
β

0

dτ1
X
ς

σςσσ0Λ
ς
ττ0τ1

ρςτ1

�
−
1

2

ZZ
β

0

dτdτ0
X
ς

ρςτ½χς−1�ττ0ρςτ0 ð9:24Þ

can be derived by excluding the contribution of itinerant
electrons from the local reference system (9.3). The resulting
problem is reminiscent of the bosonic action (9.7), where the
nonlocal Green’s function G̃ is replaced by the full local
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Green’s function g. In the introduced local problem (9.24) the
magnetic moment appears as a result of a spontaneous
symmetry breaking. According to Landau phenomenology
(Landau and Lifshitz, 1980), the latter corresponds to the
change of the free energy from a paraboloidlike form with a
minimum at hMi ¼ 0 to a Mexican-hat potential characterized
by a continuous set of minima at hMi ≠ 0; see the insets in
Fig. 28. The resulting value for the average local magnetic
moment appears to be substantially smaller than the one
deduced from the local spin susceptibility (9.23).
The change of the form of the free energy can be captured

by the sign change of its second variation with respect to the
local magnetic moment,

−
∂
2Sloc½ρs�
∂ρsτ∂ρ

s
τ0

¼ ½χs−1�ττ0 − Jlocττ0 : ð9:25Þ

The right-hand side of Eq. (9.25) can be seen as a self-
exchange between the local magnetic moments because it is
given by the inverse of the local susceptibility with subtracted
contribution of itinerant electrons. The latter is described by
the folowing local analog of the kinetic exchange interaction
(9.8):

Jlocττ0 ¼
Z

β

0

fdτig
X
σ

Λ�s
ττ1τ2g

σ
τ1τ3g

σ
τ4τ2Λ

s
τ3τ4τ

0 . ð9:26Þ

We emphasize that the local magnetic moment exists only at
relatively long times compared to single-electron processes. In
the static limit the moment is screened by the Kondo effect or
by intersite exchange-induced spin flips. For this reason,
formation of the local magnetic moment in the system
corresponds to the symmetry breaking at intermediate time-
scales. Consequently, as shown by Stepanov, Brener et al.

(2022), the second variation of the local free energy (9.25)
changes sign at any time except τ ¼ τ0. Therefore, the
formation of the local moment is not a real physical transition
and should be considered as a crossover effect. The static
contribution to the local problem (9.24) is contained in the
inverse of the local susceptibility χs−1ττ0 ¼ ðΠs;imp

ττ0 Þ−1 − δττ0Us.
It is given by the bare local interaction in the spin channel
Us ¼ −U=2. In this expression Πs;imp

ττ0 is the exact polarization
operator of the reference system (9.3). The criterion for the
local magnetic moment formation can thus be obtain by
explicitly excluding this static contribution from Eqs. (9.24)
and (9.25). The corresponding condition written in the
frequency space is that

C ¼ ðΠs;imp
ω¼0 Þ−1 − Jlocω¼0 ¼ 0: ð9:27Þ

Equation (9.27) illustrates that when the effective self-
exchange becomes diamagnetic (C > 0) the system acquires
a magnetic moment. The derived criterion (9.27) can be
approximately related to the first variation of the local
electronic self-energy with respect to the magnetization.
This fact suggests that the formation of the local magnetic
moment is energetically favorable when this variation is
negative, which minimizes the energy of the electrons.
Applying the derived criterion (9.27) to interacting elec-

tronic systems shows that the local magnetic moment devel-
ops at temperatures well above the phase transition to the
ordered state (Stepanov, Brener et al., 2022). At the same
time, the moment can be formed only above a relatively large
critical value of the local Coulomb interaction U, which for
the case of a half-filled single-orbital cubic lattice exceeds half
of the bandwidth. The corresponding result is shown in
Fig. 28, where the blue (dark gray) line corresponds to the
Néel phase boundary and the red (light gray) line is obtained
from the condition (9.27). At low temperatures the red (light
gray) line determines the point at which the local magnetic
moment disappears. In the regime of large interactions this is
related to Kondo screening (Hewson, 1993; Chalupa et al.,
2021). At small U, the local magnetic moment is destroyed by
local spin fluctuations, which corresponds to the regime of
valence fluctuations of the Anderson model (Hewson, 1993).
The low-temperature branch of the red (light gray) line splits
the ordered phase into two parts, which allows one to
distinguish between the Slater (Slater, 1951; Rohringer and
Toschi, 2016) and Heisenberg regimes of spin fluctuations.
To summarize, the path-integral formalism allows us to

derive the bosonic problem (9.7) that describes the spin
dynamics of itinerant-electron systems. The nonlocal part
of this problem gives a general form for all kinds of magnetic
exchange interactions. Upon certain approximations, the
derived expression for the bilinear exchange (9.8) reduces
to the result that was originally introduced in a completely
different framework of DFT. These approximations are
justified by the existence of a well-developed magnetic
moment in the system and determine the limit of applicability
of the DFT result. Apart from deriving the magnetic inter-
actions, the path-integral formalism makes it possible to
introduce the equation of motion for spin degrees of freedom.
It was shown that for a relatively large value of the magnetic

FIG. 28. Phase diagram for the 3D Hubbard model as a function
of temperature T and local Coulomb interaction U. The red (light
gray) line corresponds to the criterion (9.27) for the formation of
the local magnetic moment. The blue (dark gray) line depicts the
Néel phase boundary obtained by Hirschmeier et al. (2015).
Insets: local free energy (9.24) as a function of the magnetic
moment in two regimes when it does not exist to the left of the
red (light gray) line and where it is already formed shown by
the red (light gray) shaded area. Adapted from Stepanov,
Brener et al., 2022.
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moment its slow rotational dynamics is described by a
standard Landau-Lifshitz-Gilbert equation, and fast Higgs
fluctuations can be taken into account by the local nonsta-
tionary in time contribution to the bosonic problem. Deriving
the criterion for the formation of the local magnetic moment
completes the path-integral formulation of the theory of
magnetism and magnetic interactions.

X. NONMAGNETIC ANALOGS OF EXCHANGE
INTERACTION

The basic idea presented and discussed in this review is an
idea of a coarse-grained description of collective behavior in a
system of strongly interacting electrons in solids. The proto-
type example is magnetism, and “gross” variables in the
coarse-grained description of spin degrees of freedom are
angles determining directions of individual local magnetic
moments. Technically, the main tool is the magnetic force
theorem, in which we express the variation of the total
thermodynamic potential under small spin rotations in terms
of variations of single-electron Green’s function. This
approach is general and can be applied to collective phenom-
ena other than magnetism. Here we consider two examples,
namely, superconductors and charge-ordered systems. Since
these subjects are auxiliary to the main aim of the review, we
restrict ourselves to the presentation of main ideas and some
illustrative results emphasizing similarities with the discussed
approach to magnetic exchange interactions.
We start with the case of superconductors; our presentation in

this part will mostly follow Harland et al. (2019). The super-
conductor is characterized, in the simplest case of singlet
Cooper pairing, by a complex-valued order parameter, meaning
a wave function of condensate of the Cooper pairs. There is an
extensive literature on the subject; for a basic introduction, see
Abrikosov (1988), Schrieffer (1999), and Mahan (2000).
We now consider a model of a strong-coupling super-

conductor with Cooper pairs relatively well localized in real
space, an analog of a magnet with well-defined local magnetic
moments. This is a poor model for conventional supercon-
ductors with a typical diameter of Cooper pairs in thousands
of interatomic distances (Abrikosov, 1988; Schrieffer, 1999)
but it can apply reasonably well to cuprate high-temperature
superconductors, assuming that we consider the lattice of
copper plaquettes rather than individual sites (Lichtenstein
and Katsnelson, 2000; Harland et al., 2019). Therefore, the
macroscopic superconductivity in the system can be described
in terms of a coherence of the phase of the local Cooper pairs
θi, which are all supposed to be equal in the ground state
(without the loss of generality, this ground-state value of the
phase can be chosen as zero). The model that can address the
issue of superconducting phase ordering, and thus macro-
scopic quantum properties of the superconductor, is the
Josephson lattice model,

Heff ¼
X
hiji

Jij cos ðθi − θjÞ; ð10:1Þ

where i and j are supersite indices (such as plaquette indices
for the two-dimensional Hubbard model used in the theory
of superconducting cuprates). The Josephson coupling

parameters Jij determine, in particular, superfluid density
and London penetration depth (Abrikosov, 1988; Schrieffer,
1999; Mahan, 2000).
Instead of magnetic systems where we deal with the local

rotational [or SUð2Þ] symmetry, for singlet superconductors we
dealwith theUð1Þ symmetry; see Fig. 29. Following thegeneral
approach accepted in this review, we have to calculate the
variation of the thermodynamic potential under small phase
variations, and the answerwill be expressed in terms of a single-
particleGreen’s function. In the superconducting state, the latter
is a supermatrix with normal and anomalous parts (the so-called
Nambu-Gorkov representation) (Schrieffer, 1999),

�
Gp↑ F

F Gh↓

�−1

ij

¼
 
Gp↑

0 0

0 Gh↓
0

!−1

ij

− δij

�
Σp↑ S

S Σh↓

�
i

;

ð10:2Þ

where Gaσ
0 and Gaσ are the normal parts of the bare (G0) and

interacting (G) Green’s functions for an electron (a ¼ p) and a
hole (a ¼ h) with the spin projection σ ∈ f↑;↓g. F is the
anomalous part of the interacting Green’s function, which is
considered to be local in the supersite, as done by Lichtenstein
and Katsnelson (2000) and Harland et al. (2019). Σaσ and S are
the normal and anomalous parts of the self-energy, respectively.
To obtain explicit expressions for the Josephson couplings

Jij, we have to calculate the variation of the thermodynamic
potential Ω under small variations of the superconducting
phases and compare the result to Eq. (10.1). Following the
consideration of the exchange interactions within dynamical
mean-field theory discussed in Sec. V K, we start with a
general representation of the thermodynamic potential in
terms of single-particle and double-counted contribution with
the Luttinger-Ward functional Φ and use the local force
theorem. The result is (Harland et al., 2019)

δΩ ≃
X
ij

TrðδijGiiδ
�Σi þ 1

2
Gijδ

�ΣjGjiδ
�ΣiÞ; ð10:3Þ

where δ� denotes the local variation of the self-energy Σ
without taking into account its variation due to the

FIG. 29. Illustration of the Hubbard-plaquette lattice ðtij; UÞwith
lattice vector r, self-energies Σi, and plaquette sites 0–3. It is
mapped to the Josephson lattice model with effective coupling Jij
of plaquettes due to phase fluctuations δθi of the d-wave super-
conducting order parameterΦi. Adapted fromHarland et al., 2019.
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self-consistency procedure. We omit here for simplicity matrix
indices of intraplaquette and Nambu spaces.
The variation of the self-energy under an infinitesimal

change of the local phase δθi entering Eq. (10.3) in a
homogeneous environment reads

δ�Σi ¼ eiδθiσz=2Σie−iδθiσz=2 − Σi

¼
 

Σp↑
i eiδθiSi

e−iδθiSi Σh↓
i

!
− Σi

≃

 
0 fiδθi − ½ðδθiÞ2=2�gSi

f−iδθi − ½ðδθiÞ2=2�gSi 0

!
;

ð10:4Þ

where Σp↑
i , Σh↓

i , and Si are electron-up, hole-down, and
anomalous parts of the supersite self-energy, respectively,
and the third Pauli matrix σz acts in the Nambu space.
A straightforward calculation up to second order in δθ

results in

δΩ ¼
X
ij

TrωαðGp↑
ij SjG

h↓
ji Si − δijFiiSi − FijSjFjiSiÞδθ2i

þ 1
2

X
ij

TrωαðFijSjFjiSi − Gp↑
ij SjG

h↓
ji SiÞδθ2ij: ð10:5Þ

The trace goes over Matsubara frequencies and over the sites
within the supersite (α).
The term ∝ δθ2i vanishes, reflecting the gauge invariance of

the theory, which can be checked using the direct calculation
(Harland et al., 2019). The remaining nonlocal term is
proportional to δθ2ij, i.e.,

δΩ≡ −1
2

X
hiji

Jijδθ2ij: ð10:6Þ

Equation (10.6) should be compared with Eq. (10.1) to find
the coupling constants Jij. The answer is an expression where

Jij ¼ 2TrωαðGp↑
ij SjG

h↓
ji Si − FijSjFjiSiÞ: ð10:7Þ

To study macroscopic observables of the Josephson lattice
model, we take the continuum, long-wavelength limit of
Eq. (10.1). In this limit, the interaction becomes the super-
conducting stiffness,

Iab ¼ −
1

ð2πÞd
Z

ddkTrωα

⋆
�
∂Gp↑ðkÞ

∂ka
S
∂Gh↓ðkÞ
∂kb

S −
∂FðkÞ
∂ka

S
∂FðkÞ
∂kb

S

�
; ð10:8Þ

with the effective Hamiltonian

Heff ¼
1

2

X
ab

Iab

Z
ddr

∂θ

∂ra

∂θ

∂rb
: ð10:9Þ

If we assume that the discussed lattice is isotropic (in two or
three dimensions), we have Iab ¼ Iδab, where the constant I is
related to the London penetration depth (Abrikosov, 1988;
Schrieffer, 1999),

1

λ2
¼ 16πe2

ℏ2c2
I: ð10:10Þ

We present an example of the calculated Josephson cou-
plings Jr for plaquette translations r in Fig. 30. The figure
shows that Jr reduces sharply with increasing plaquette-
translation length jrj, and thus the short-range components
of Jr alone can give a complete description. The strongest
coupling is J100, followed by the interlayer coupling J001.
They have their maxima around δ ¼ 0.05 and 0.1, respec-
tively. All couplings diminish at large dopings (δ > 0.1). The
first term of Eq. (10.7) (GSGS) is negative, and the second
(FSFS) is positive. GSGS is a mixed term with normal (G)
and anomalous (S) contributions. This term provides the main
contribution to J, which can be finite only if there is a
superconducting gap and therefore a finite anomalous self-
energy S. Regarding the largest contributions to the nearest-
neighbor Josephson coupling Jð1;0;0Þ, GSGS is about 3 times
as large as FSFS.
Another interesting feature of correlated materials that can

potentially be described by a corresponding bosonic model is
charge ordering. In electronic systems this phenomenon
attracts considerable attention since the discovery of the
Verwey transition in magnetite (Fe3O4) (Verwey and
Haayman, 1941; Verwey, Haayman, and Romeijn, 1947;
Mott, 1974). Further, effects similar to the Verwey transition
have been observed in many other materials, such as the rare-
earth compound Yb4As3 (Fulde, Schmidt, and Thalmeier,
1995; Goto and Lüthi, 2003; Staub et al., 2005), transition
metalMX2 (Arguello et al., 2014; Ritschel et al., 2015; Ugeda
et al., 2016), and rare-earth R3X4 (Wachter, 1980; Furuno
et al., 1988; Irkhin and Katsnelson, 1990) chalcogenides
(M ¼ V;Nb;Ta, R ¼ Eu; Sm, and X ¼ S; Se), Magnéli phase
Ti4O7 (Chakraverty, 1980; Schlenker and Marezio, 1980;
Eyert, Schwingenschlögl, and Eckern, 2004; Leonov et al.,
2006), vanadium bronzes NaxV2O5, and LixV2O5 (Dumas,
Schlenker, and Buder, 1980; Goto and Lüthi, 2003). In these
materials the charge ordering is driven by the strong nonlocal
Coulomb interaction and/or the electron-phonon mechanism.
Both these interactions effectively reduce the strength of the
local Coulomb repulsion (Berger, Valášek, and von der

FIG. 30. Josephson coupling Jr (left panel) and its constituents
GSGS (center panel) and FSFS (right panel) as functions of
doping δ and for different plaquette translations r at T ¼ 1=52 ∼
0.02 and t⊥ ¼ 0.15. Adapted from Harland et al., 2019.
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Linden, 1995; Sangiovanni et al., 2005; Werner and Millis,
2007; Schüler et al., 2013; van Loon et al., 2016) and may
even result in an effective attraction between electrons.
Describing these effects in the framework of ab initio elec-
tronic models requires one to use advanced many-body
approaches, such as the quantum Monte Carlo technique
(Hohenadler et al., 2014; Wu and Tremblay, 2014;
Buividovich et al., 2017), the GW method combined with
the extended dynamical mean-field theory (Ayral, Biermann,
and Werner, 2013; Ayral et al., 2017), the dynamical cluster
approximation (Terletska, Chen, and Gull, 2017; Terletska
et al., 2018; Paki et al., 2019), or the dual theories (van Loon
et al., 2014, 2018; Stepanov, Huber et al., 2016; Vandelli
et al., 2020; Stepanov, Harkov et al., 2022). These theoretical
calculations require significant numerical efforts, which pro-
vides additional motivation for reformulating the original
electronic problem in terms of effective bosonic variables.
Like magnetism, charge ordering is characterized by the

local order parameter: the on-site electronic density. This
ordering appears as the result of a spontaneous symmetry
breaking of a discrete lattice symmetry contrary to the case of
a magnetic ordering, which is associated with breaking of a
continuous SUð2Þ symmetry. For this reason, effective models
formulated in terms of scalar bosonic variables are more
suitable for addressing this problem. In particular, Ising-like
models are frequently used for describing the ordering in
alloys (Ruban et al., 2004; Shallcross et al., 2005; Korzhavyi
et al., 2009; Ekholm et al., 2010; Alling et al., 2011). In this
framework, one deals with a configuration energy written in

terms of effective interactions VðnÞ
α for clusters of the order of

n and type α. For the case of a binary alloy AcB1−c with the
concentration c, the configuration energy can be written as

Hconf ¼
X
p

Vð2Þ
p

X
i;j∈p

σiσj þ
X
t

Vð3Þ
t

X
i;j;k∈t

σiσjσk

þ
X
q

Vð4Þ
q

X
i;j;k;l∈q

σiσjσkσl þ � � � ; ð10:11Þ

where scalar variables σi take the value−1 orþ1, depending on
whether the A or B atom occupies the site i. Parameters for this
microscopic model can be derived from ab initio energy
calculations within the framework of density functional theory
(Connolly and Williams, 1983; Hennion, 1983; Ducastelle,
1991; Ruban and Abrikosov, 2008). To this aim, one can apply
a generalized perturbation theory (Gautier, Ducastelle, and
Giner, 1975; Gautier, van der Rest, and Brouers, 1975;
Ducastelle and Gautier, 1976; Giner et al., 1976; Treglia,
Ducastelle, and Gautier, 1978; Ducastelle and Treglia, 1980;
Gonis et al., 1987; Monnier, 1997). In this approach effective

cluster interactions VðnÞ
α can be obtained either by calculating

the corresponding n-point correlation functions [see Ruban
et al. (2002) and Alling et al. (2011) or from the single-electron
energy using the force theorem (Mackintosh and Andersen,
1980). In the latter case, the variation of the concentration of
atoms of a given kind is considered a perturbation. This seems
to differ significantly from a consideration of small spin
rotations, the primary topic of this review, which have been
used successfully in the case of magnetism. Nevertheless, the
resulting pair interaction between sites j and j0 is given by

Vð2Þ
jj0 ¼ −

2

π
ℑ
Z

EF

−∞
dEΔtjG̃jj0 ðEÞΔtj0G̃j0jðEÞ; ð10:12Þ

which closely resembles the magnetic exchange interaction
derived using the magnetic force theorem; see Sec. V. In
Eq. (10.12)Δtj ¼ ðtAj − tBj Þ=2 is the difference between single-
site scattering matrices for A and B types of atoms and G̃jj0 ðEÞ
is the partial interatomic Green’s function of the reference
system provided by a random alloy.
As in the case of magnetism, using the force theorem does

not allow one to rigorously determine limits of applicability of
the theory. In this regard, deriving effective Ising-like models
in the many-body framework should be beneficial. In the
context of interacting electronic problems, this was achieved
by Stepanov, Huber et al. (2019) and Stepanov, Brener et al.
(2022). The corresponding derivation was discussed in
Sec. IX leading to the effective bosonic problem (9.7).
Note that introducing the bosonic model for charge degrees
of freedom does not require the adiabatic approximation that
separates timescales and energy scales of single- and two-
particle fluctuations in the magnetic case to be imposed
(Stepanov, Huber et al., 2019).
All possible interactions between the electronic densities at

different lattice sites can be obtained by expanding the
logarithm in Eq. (9.7) in terms of the bosonic field ρc that
describes fluctuations of the charge densities n around their
average values. The explicit form for the pair interaction is
given by Eqs. (9.8) and (9.10). The three-point vertex function
Λc that enters the kinetic exchange (9.8) represents a remor-
malized local coupling between electronic and charge degrees
of freedom. Thus, this vertex can be seen as a single-site
scattering matrix, which makes the many-body expression for
the exchange interaction (9.8) similar to the pair cluster
interaction derived in the context of alloys (10.12).
Mapping the quantum bosonic problem for electronic den-

sities (9.7) onto a classical Ising-likemodel can be justified only
in the regime of well-developed charge fluctuations. In a broken
symmetry, charge-ordered phase, the electronic density at a
given lattice site strongly differs from the average density of the
system. This allows one to replace the bosonic variable ρcj at
each site j by its average value hρcji, which reduces the quantum
bosonic action (9.7) to a classical Ising-like Hamiltonian. In the
normal phase the average density on each lattice site is uniform,
whichmakes it difficult to introduce the corresponding classical
problem and complicates the determination of the regime of
applicability of this approach.
Stepanov, Huber et al. (2019) proposed the double occu-

pancy d ¼ hn↑n↓i of the lattice site as a measure of the
strength of the charge fluctuations in the normal phase. The
double occupancy for a particular case of the extended
Hubbard model on a square lattice is shown in Fig. 31.
The result is obtained at half filling, where the maximum value
of the double occupancy is dmax ¼ 0.25. In this model the
charge-ordered phase (light gray area) is driven by the nearest-
neighbor Coulomb interaction V. If the latter defeats the on-
site Coulomb repulsion U, the electronic density forms a
checkerboard pattern on the lattice made of alternating doubly
occupied and empty sites. For a given value of U, the
maximum value of the double occupancy appears at the
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boundary between the normal and ordered phases, which is
depicted by a dashed red line. This fact confirms that the
strongest charge fluctuations in the normal phase emerge in
the region close to the phase transition to the ordered state.
However, the value of the double occupancy is not uniformly
distributed along the phase boundary and decreases with an
increase of the local Coulomb interaction. Stepanov, Huber
et al. (2019) showed that strong charge fluctuations drastically
suppress the frequency dependence of the effective local
electron-electron interaction (the two-particle irreducible
four-point vertex function). The value of the double occu-
pancy at which the effective local interaction is nearly
frequency independent and coincides with the actual
Coulomb interaction U was estimated as d≳ 70%dmax.
This condition defines the Ising regime of the system, depicted
by the black dashed line in Fig. 31, where charge fluctuations
are indeed well developed. Note that this regime is not limited
to small values of the local interaction U, which for some
values of V exceed half of the bandwidth.
In the Ising regime of the normal phase, the quantum

action (9.7) can be mapped onto an effective classical
Hamiltonian. This can be achieved by replacing the corre-
sponding bosonic variable by an effective charge density,
which is given by the square root of the double occupancy
ρc →

ffiffiffi
d

p
. Note that determining the effective charge density

can be performed more accurately by finding the minimum of
the local free energy in the same way that it is done for
estimating the value of the local magnetic moment; see the
discussion in Sec. IX. However, using the two-particle
correlation function (the double occupancy) to define the
average density in the case of charge degrees of freedom is
also well justified, contrary to the case of magnetism, where

the magnetic phase corresponds to the ordering of single-
particle quantities (local magnetizations). Since charge order-
ing is realized through the formation of double occupations,
one needs to characterize this state from two-particle observ-
ables. Stepanov, Huber et al. (2019) showed that the effective
Ising model introduced in such a simple way is able to predict
the transition temperature between the normal- and charge-
ordered phases in good agreement with much more elaborate
methods, even though the calculations are performed in the
unbroken symmetry phase.

XI. SUMMARY AND OUTLOOK

The developments that began with Liu (1961), Inoue and
Moriya (1967), Lacour-Gayet and Cyrot (1974), Gyorffy and
Stocks (1980), Oguchi, Terakura, and Hamada (1983), and
Oguchi, Terakura, and Williams (1983) culminated in the
work of Liechtenstein, Katsnelson, and Gubanov (1984) with
a practical and efficient scheme of extracting exchange
interactions between atomic magnetic moments of solids
and molecules. This has opened up a field of research where
a deeper understanding of magnetic interactions is possible.
These early works on explicit calculations of interatomic
exchange enabled new dimensions of DFT and DMFT
calculations, and it is now routine to extract from electronic
structure calculations on one scale (involving a few atoms per
unit cell) information about exchange interactions on a much
larger scale (involving pair interactions between thousands of
atoms), which if needed can be used to evaluate parameters of
micromagnetic simulations (Poluektov, Eriksson, and Kreiss,
2016, 2018). This represents multiscale transitions between
three length scales and enables simulations of magnetic
phenomena on scales equal to that of experimental sample
sizes without the use of experimental information as input. In
addition to offering a deeper understanding of basic magnetic
exchange between atoms, the method of Liechtenstein,
Katsnelson, and Gubanov (1984) has thus far been used to
calculate ordering temperatures of materials and to map out
magnon dispersions [via adiabatic approaches or in spin-
dynamics simulations via the dynamic structure factor, as
reviewed by Eriksson et al. (2017)]. It has also been used to
address ultrafast magnetization phenomena observed in pump
probe measurements (Evans, Atxitia, and Chantrell, 2015), as
well as to analyze topological magnetic states (Pereiro et al.,
2014) and spin glass formation (Kamber et al., 2020; Verlhac
et al., 2022), to name a few.12

FIG. 31. Double occupancy of the extended Hubbard model
shown on the U − V phase diagram. Calculations are performed
in the normal phase, where the value of the double occupancy d is
depicted in color. The charge-ordered phase is depicted in (light)
gray. The black dashed line surrounds the area of the large double
occupancy d ≳ 70%dmax, where charge excitations can be de-
scribed by an effective Ising model. Values of Coulomb inter-
actions U and V are given in units of half of the bandwidth
4t ¼ 1, where t is the nearest-neighbor hopping amplitude. The
inverse temperature for this calculation was set to T−1 ¼ 50.
From Stepanov, Huber et al., 2019.

12Developments in electronic structure theory in Uppsala with can
be found at https://www.physics.uu.se/research/code-development/
developments-in-electronic-structure-theory/. In addition, OpenMX
from Tokyo (https://www.openmx-square.org), AMULET from Ekate-
rinburg, Russia (http://www.amulet-code.org), ARTAIOS from Ham-
burg (https://github.com/molspintron), and TB2J, a PYTHON package
for computing magnetic interaction parameters (https://github.com/
mailhexu/TB2J) should be mentioned here. The exchange using
interaction parameters can be calculated using KKR codes as well. A
corresponding link of thegroup of Samir Lounis canbe found at https://
iffgit.fzjuelich. de/kkr/jukkr. Assuming that calculations with the code
dealingwith periodic structures are intended, one can find thewiki page
for the calculation of exchange coupling constants at https://iffgit.fz-
juelich.de/kkr/jukkr/-/wikis/jumu/jijdij.
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It is foreseeable that the method of Liechtenstein,
Katsnelson, and Gubanov (1984) will continue to be devel-
oped to enable a more detailed and deeper understanding of
the mechanisms that govern the properties of a magnetic
material. An example here is the coupling of spin and lattice
degrees of freedom, where initial steps have been taken. In a
recent work (Mankovsky et al., 2022) spin-lattice parameters
were calculated from an extension of the formalism of
Liechtenstein, Katsnelson, and Gubanov (1984). Hence,
coupled motion, such as that involving magnons and phonons,
is now possible to consider in combined spin-lattice simu-
lations (Antropov et al., 1995; Hellsvik et al., 2019). These
developments will continue to be developed such that a natural
output from electronic structure calculations is a set of
interaction parameters that enable simulations of all relevant
collective modes and the coupling between them.
The theories reviewed here have focused on bilinear effects,

such as those expressed in Eq. (1.1). This is natural in the spirit
of the LKAG approach, with perturbations corresponding to
small rotations of the local moments. As the perturbations can
all be considered infinitesimal, orders higher than 2 make little
sense. However, in perturbational approaches (Brinker, Dias,
and Lounis, 2019) that start with a nonmagnetic reference
state and where the perturbations then have to be larger, the
convergence is slower and higher-order terms do play a large
role (Brinker, Dias, and Lounis, 2020; Grytsiuk et al., 2020).
These multispin and multisite interactions become cumber-
some to calculate systematically in general, so in most cases
the interaction parameters are instead determined through a
fitting of the total energies. As these two perturbational
approaches lead to different descriptions and interpretation,
one hopes that their complementarity, discussed in Sec. V J,
will be utilized in the future to increase the understanding of
complex magnetic systems.
In these extensions, which one can expect to come into

focus in the approaching years, it would be of interest to
analyze the interaction terms in an orbital-composed fashion,
in the same way as was done for bilinear exchange (Kvashnin
et al., 2016), as shown in Fig. 12. In connection with this
analysis, we mention that a similar analysis of the DM
interaction is not straightforward since spin-orbit coupling
mixes orbitals that otherwise would belong to separate
irreducible representations. Orbital-decomposed DM interac-
tion hence becomes an issue of which basis is the most natural
to use, which most likely will vary from material to material,
given that spin-orbit coupling is either the weakest (for the 3d
transition metals) or equal in size to other interactions of the
electronic Hamiltonian (such as for the actinides).
The primary focus of this review is on the magnetic dipole

of an atom, as calculated from the expectation value of a spin
operator. This is natural since for the majority of materials it is
the most commonly observed order parameter. However, for
some solids other order parameters are of relevance, for
instance, the rank 5 or triakontadipole order that has been
observed in NpO2 (Santini et al., 2009). It would be valuable
if this method could be generalized from calculations of
interactions between rank 1 spin moments to the case of
calculations of interactions of multipoles of rank r. This would
require extensions. For instance, the method of small rota-
tions, as shown in Figs. 5 and 6, would have to be generalized

to be appropriate for these multipoles. Instead of the three
independent types of interaction parameters of Eq. (5.40), one
has derived expressions for 2rþ 1 independent types of
interaction parameters.
To illustrate the fact that the research field reviewed here is a

living, developing activity, we note a set of recent publications
regarding details of the spin Hamiltonian in Eq. (1.4). Cardias,
Bergman et al. (2020) and Cardias, Szilva et al. (2020)
suggested that DM-like interaction terms can be realized for
noncollinear magnetic structures, even if spin-orbit interactions
are neglected (or are vanishingly small). This interpretation was
criticized by dos Santos Dias et al. (2021), who suggested that
fundamental interactions of DM character have to rely on an
electronic Hamiltonian with spin-orbit coupling included.
Further elaborations on nonrelativistic DM interaction were
published by Cardias et al. (2022) and dos Santos Dias et al.
(2022) without a firm consensus being reached.
Alternative ways to extract exchange parameters have

recently been suggested (Streib et al., 2022), for instance,
from tight-binding electronic structure theory and adiabatic
spin-dynamics simulations, where the local Weiss field is
evaluated from the so-called constraining field. In this work it
was suggested that effective interatomic exchange can be
evaluated (dynamically) from the energy curvature tensor of
any magnetic configuration. Streib et al. (2022) demonstrated
that both moment lengths and effective exchange interactions
can strongly depend on the magnetic configuration. Terms
obtained from such an approach, which goes beyond the weak
relativistic limit, contribute to isotropic exchange (Secchi
et al., 2013), and their relation to nonlocal crystal field
excitations can be the subject of further studies.
Apart from magnetism of electrons in solids, there are some

interesting magnetic phenomena related to ordering of nuclear
spins in solid 3He (Roger, Hetherington, and Delrieu, 1983).
In this case, the exchange interactions cannot be described
by bilinear spin Hamiltonians, and three- and four-spin
exchange interactions turn out to be highly important
(Roger, Hetherington, and Delrieu, 1983; Ceperley, 1995).
Along with solid 3He, monolayers of 3He on graphite are the
other example of a system with complicated nuclear-spin-
based magnetism (Fukuyama, 2008). Applications of the
methods presented here to such systems seem to be an
interesting direction for further development.
Sections VIII–X present an alternative approach to the

theory of exchange interactions in light of contemporary
quantum many-body theory, with its mathematically more
advanced tools like path integrals and Feynman diagrams.
Changing the language allows one to go much further than the
initial formulation, considering the systems out of equilibrium
(Sec. VIII) and nonmagnetic collective phenomena such as
charge ordering and superconductivity (Sec. X), and gives a
full derivation of equations of spin dynamics for itinerant-
electron systems, including not only exchange-interaction-
related terms but also dynamical, spin-precession terms
(Sec. IX). These new developments are relatively recent,
and their potential for applications is far from completely
unveiled. In particular, a systematic study of laser-induced
nonlinear magnetic phenomena within the developed forma-
lism is an extremely promising prospect.
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As a final remark in this section, we note that equations of
the form of Eq. (1.3) (and extensions of it) have been used for
research outside of materials science, or even natural science.
In the Ising approximation of the classical Heisenberg
Hamiltonian, the atomic spins are arranged in a z graph,
usually a lattice, that can be in one of two states (þ1 or −1)
(Ising, 1925), and the strength of the interaction is given by Jij
in Eq. (1.3). This inspired the so-called classical voter model,
and its extensions, which represents an idealized description
for the evolution of opinions in a population (Clifford and
Sudbury, 1973; Holley and Liggett, 1975; Gleeson, 2013). In
the classic voter model, as in the Ising model, each voter can
assume one of two states, −1 orþ1. Avoter at site i is selected
at random and copies the state of a randomly chosen neighbor
voter j. Another example where the Ising model (and
percolation theory) can be used is epidemics as it is shown
in a comprehensive review focused on COVID-19 (Mello
et al., 2021). We mention the work of Giorgio Parisi on the
hidden patterns in spin glasses (Mézard, Parisi, and Virasoro,
1987) since it gave an extremely important contribution to the
theory of complex system, which is a quantitative, predictive,
and experimentally verifiable science (Thurner, Hanel, and
Klimek, 2018). In the case of complex systems a macroscopic
pattern can emerge of the mutual influence of a large number
of individuals (Anderson, 1972; Principi and Katsnelson,
2016; Bagrov et al., 2020), which makes it possible to
understand phenomena not only in physics but also in other,
significantly different areas such as mathematics, biology,
neuroscience, and machine learning (Castellano, Fortunato,
and Loreto, 2009; Wolf, Katsnelson, and Koonin, 2018;
Baity-Jesi et al., 2019).
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Eckardt, André., 2017, “Colloquium: Atomic quantum gases in
periodically driven optical lattices,” Rev. Mod. Phys. 89, 011004.

Economou, Eleftherios N., 2006, Green’s Functions in Quantum
Physics, Vol. 7 (Springer Science+Business Media, New York).

Edwards, D. M., 1982, “The paramagnetic state of itinerant electron
systems with local magnetic moments. I. Static properties,” J. Phys.
F 12, 1789–1810.

Edwards, D. M., 1983, “Iron above the Curie temperature,” J. Magn.
Magn. Mater. 36, 213–216.

Attila Szilva et al.: Quantitative theory of magnetic interactions …

Rev. Mod. Phys., Vol. 95, No. 3, July–September 2023 035004-59

https://doi.org/10.1103/PhysRevX.8.041028
https://doi.org/10.1103/PhysRevB.93.214439
https://doi.org/10.1103/PhysRevB.95.214417
https://doi.org/10.1103/PhysRevB.95.214417
https://doi.org/10.1103/PhysRevLett.84.3454
https://doi.org/10.1103/PhysRevLett.84.3454
https://doi.org/10.1103/PhysRevB.89.174404
https://doi.org/10.1103/PhysRevB.89.174404
https://doi.org/10.1038/s41467-016-0009-6
https://doi.org/10.1093/biomet/60.3.581
https://doi.org/10.1103/PhysRevLett.91.157201
https://doi.org/10.1103/PhysRevB.89.094410
https://doi.org/10.1103/PhysRevB.27.5169
https://doi.org/10.1103/PhysRevLett.54.718
https://doi.org/10.1103/PhysRevLett.54.718
https://doi.org/10.1103/PhysRevLett.94.137203
https://doi.org/10.1209/0295-5075/94/57009
https://doi.org/10.1209/0295-5075/94/57009
https://doi.org/10.1063/1.94584
https://doi.org/10.1103/PhysRevB.49.14211
https://doi.org/10.1103/PhysRevB.86.045126
https://doi.org/10.1063/1.1714194
https://doi.org/10.1063/1.1714194
https://doi.org/10.1098/rspa.1926.0133
https://doi.org/10.1098/rspa.1926.0133
https://doi.org/10.1038/nphys2859
https://doi.org/10.1103/PhysRevLett.84.3458
https://doi.org/10.1103/PhysRevB.96.174415
https://doi.org/10.1103/PhysRevB.103.L140408
https://doi.org/10.1103/PhysRevB.105.026402
https://doi.org/10.1103/PhysRevB.69.104404
https://doi.org/10.1088/0305-4608/6/11/005
https://doi.org/10.1088/0305-4608/10/10/011
https://doi.org/10.1080/01418638008221890
https://doi.org/10.1103/PhysRevLett.127.037204
https://doi.org/10.1103/PhysRevLett.127.037204
https://doi.org/10.1016/S0550-3213(01)00465-5
https://doi.org/10.1016/S0550-3213(01)00465-5
https://doi.org/10.1142/S0217979200002430
https://doi.org/10.1103/PhysRevB.95.024306
https://doi.org/10.1103/PhysRevB.95.024306
https://doi.org/10.1103/PhysRevB.93.241404
https://doi.org/10.1088/0034-4885/74/9/096501
https://doi.org/10.1088/0034-4885/74/9/096501
https://doi.org/10.1103/PhysRevB.79.045209
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1088/0305-4608/12/8/020
https://doi.org/10.1088/0305-4608/12/8/020
https://doi.org/10.1016/0304-8853(83)90117-8
https://doi.org/10.1016/0304-8853(83)90117-8


Eich, F. G., and E. K. U. Gross, 2013, “Transverse Spin-Gradient
Functional for Noncollinear Spin-Density-Functional Theory,”
Phys. Rev. Lett. 111, 156401.

Eich, F. G., S. Pittalis, and G. Vignale, 2013, “Transverse and
longitudinal gradients of the spin magnetization in spin-density-
functional theory,” Phys. Rev. B 88, 245102.

Ekholm, M., H. Zapolsky, A. V. Ruban, I. Vernyhora, D. Ledue, and
I. A. Abrikosov, 2010, “Influence of the Magnetic State on the
Chemical Order-Disorder Transition Temperature in Fe-Ni Perm-
alloy,” Phys. Rev. Lett. 105, 167208.

Elliott, R. J., J. A. Krumhansl, and P. L. Leath, 1974, “The theory and
properties of randomly disordered crystals and related physical
systems,” Rev. Mod. Phys. 46, 465–543.

Englert, F., and R. Brout, 1964, “Broken Symmetry and the Mass of
Gauge Vector Mesons,” Phys. Rev. Lett. 13, 321–323.

Eriksson, Olle, Anders Bergman, Lars Bergqvist, and Johan Hellsvik,
2017, Atomistic Spin Dynamics: Foundations and Applications
(Oxford University Press, New York).

Eroles, J., C. D. Batista, S. B. Bacci, and E. R. Gagliano, 1999,
“Magnetic Raman scattering of insulating cuprates,” Phys. Rev. B
59, 1468–1473.

Eschrig, Helmut, 2010, “T > 0 ensemble-state density functional
theory via Legendre transform,” Phys. Rev. B 82, 205120.

Etz, C., I. V. Maznichenko, D. Böttcher, J. Henk, A. N. Yaresko, W.
Hergert, I. I. Mazin, I. Mertig, and A. Ernst, 2012, “Indications of
weak electronic correlations in SrRuO3 from first-principles
calculations,” Phys. Rev. B 86, 064441.

Etz, Corina, Lars Bergqvist, Anders Bergman, Andrea Taroni, and
Olle Eriksson, 2015, “Atomistic spin dynamics and surface
magnons,” J. Phys. Condens. Matter 27, 243202.

Evans, R. F. L., U. Atxitia, and R.W. Chantrell, 2015, “Quantitative
simulation of temperature-dependent magnetization dynamics and
equilibrium properties of elemental ferromagnets,” Phys. Rev. B
91, 144425.

Evans, R. F. L., W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis,
and R.W. Chantrell, 2014, “Atomistic spin model simulations of
magnetic nanomaterials,” J. Phys. Condens. Matter 26, 103202.

Eyert, V., and U. Schwingenschlögl, and U. Eckern, 2004, “Charge
order, orbital order, and electron localization in the Magnéli phase
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Sanyal, and I. Galanakis, 2015, “First-principles calculations of
exchange interactions, spin waves, and temperature dependence of
magnetization in inverse-Heusler-based spin gapless semiconduc-
tors,” Phys. Rev. B 91, 174439.

Jang, Seung Woo, Min Yong Jeong, Hongkee Yoon, Siheon Ryee,
and Myung Joon Han, 2019, “Microscopic understanding of
magnetic interactions in bilayer CrI3,” Phys. Rev. Mater. 3, 031001.

Jang, Seung Woo, Do Hoon Kiem, Juhyeok Lee, Yoon-Gu Kang,
Hongkee Yoon, and Myung Joon Han, 2021, “Hund’s physics and
the magnetic ground state of CrOX (X ¼ Cl, Br),” Phys. Rev.
Mater. 5, 034409.

Jang, Seung Woo, Siheon Ryee, Hongkee Yoon, and Myung Joon
Han, 2018, “Charge density functional plus U theory of LaMnO3:
Phase diagram, electronic structure, and magnetic interaction,”
Phys. Rev. B 98, 125126.

Jang, Seung Woo, Hongkee Yoon, Min Yong Jeong, Siheon Ryee,
Heung-Sik Kim, and Myung Joon Han, 2020, “Origin of ferro-
magnetism and the effect of doping on Fe3GeTe2,” Nanoscale 12,
13501–13506.

Jaswal, S. S., 1990, “Electronic structure and magnetism of R2Fe14B
(R ¼ Y, Nd) compounds,” Phys. Rev. B 41, 9697–9700.

Jensen, Jens, and Allan R. Mackintosh, 1991, Rare Earth Magnetism
(Clarendon Press, Oxford).

Jodlauk, S., P. Becker, J. A. Mydosh, D. I. Khomskii, T. Lorenz, S. V.
Streltsov, D. C. Hezel, and L. Bohatý, 2007, “Pyroxenes: A new
class of multiferroics,” J. Phys. Condens. Matter 19, 432201.

Kadanoff, L. P., and G. Baym, 1962,Quantum Statistical Mechanics:
Green’s Function Methods in Equilibrium and Nonequilibrium
Problems, 1st ed. (CRC Press, Boca Raton).

Kakehashi, Y., 1992, “Monte Carlo approach to the dynamical
coherent-potential approximation in metallic magnetism,” Phys.
Rev. B 45, 7196–7204.

Kamber, Umut, et al., 2020, “Self-induced spin glass state in
elemental and crystalline neodymium,” Science 368, eaay6757.

Attila Szilva et al.: Quantitative theory of magnetic interactions …

Rev. Mod. Phys., Vol. 95, No. 3, July–September 2023 035004-62

https://doi.org/10.1103/PhysRevB.29.4176
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevB.92.144409
https://doi.org/10.1103/PhysRevB.92.020401
https://doi.org/10.1103/PhysRevB.90.085146
https://doi.org/10.1103/PhysRevB.90.085146
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1214/aop/1176996306
https://doi.org/10.1103/PhysRevB.47.11329
https://doi.org/10.1038/nphys4182
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/nature22391
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1103/PhysRevB.19.2626
https://doi.org/10.1103/PhysRevB.19.2626
https://doi.org/10.1103/PhysRevB.20.4584
https://doi.org/10.1103/PhysRevB.20.4584
https://doi.org/10.1063/1.329670
https://doi.org/10.1063/1.329670
https://doi.org/10.1103/PhysRevB.23.5974
https://doi.org/10.1103/PhysRevB.23.5974
https://doi.org/10.1103/PhysRevX.11.011031
https://doi.org/10.1103/PhysRevB.85.014436
https://doi.org/10.1103/PhysRevB.85.014436
https://doi.org/10.1103/PhysRevB.91.195123
https://doi.org/10.1143/PTP.38.41
https://doi.org/10.1103/PhysRevB.60.1082
https://doi.org/10.1103/PhysRevB.60.1082
https://doi.org/10.1016/0375-9601(90)90058-V
https://doi.org/10.1103/PhysRevB.65.024435
https://doi.org/10.1103/PhysRevB.65.024435
https://doi.org/10.1007/BF02980577
https://doi.org/10.1007/BF02980577
https://doi.org/10.1103/PhysRevB.94.035102
https://doi.org/10.1103/PhysRevB.94.035102
https://doi.org/10.1103/PhysRevB.97.125114
https://doi.org/10.1103/PhysRevB.97.125114
https://doi.org/10.1103/PhysRevLett.115.075301
https://doi.org/10.1103/PhysRevLett.115.075301
https://doi.org/10.1016/j.physleta.2014.01.007
https://arXiv.org/abs/hep-ph/0205154
https://doi.org/10.1103/PhysRevD.68.025020
https://doi.org/10.1038/nphys4077
https://doi.org/10.1103/PhysRevB.91.174439
https://doi.org/10.1103/PhysRevMaterials.3.031001
https://doi.org/10.1103/PhysRevMaterials.5.034409
https://doi.org/10.1103/PhysRevMaterials.5.034409
https://doi.org/10.1103/PhysRevB.98.125126
https://doi.org/10.1039/C9NR10171C
https://doi.org/10.1039/C9NR10171C
https://doi.org/10.1103/PhysRevB.41.9697
https://doi.org/10.1088/0953-8984/19/43/432201
https://doi.org/10.1103/PhysRevB.45.7196
https://doi.org/10.1103/PhysRevB.45.7196
https://doi.org/10.1126/science.aay6757


Kamenev, Alex, 2011, Field Theory of Non-Equilibrium Systems
(Cambridge University Press, Cambridge, England).

Kampert, Erik, et al., 2009, “Ligand-controlled magnetic interactions
in Mn4 clusters,” Inorg. Chem. 48, 11903–11908.

Kanamori, Junjiro, 1959, “Superexchange interaction and symmetry
properties of electron orbitals,” J. Phys. Chem. Solids 10,
87–98.

Kashin, I. V., V. V. Mazurenko, M. I. Katsnelson, and A. N. Rudenko,
2020, “Orbitally-resolved ferromagnetism of monolayer CrI3,” 2D
Mater. 7, 025036.

Katsnelson, M. I., and V. P. Antropov, 2003, “Spin angular gradient
approximation in the density functional theory,” Phys. Rev. B 67,
140406.

Katsnelson, M. I., Y. O. Kvashnin, V. V. Mazurenko, and A. I.
Lichtenstein, 2010, “Correlated band theory of spin and orbital
contributions to Dzyaloshinskii-Moriya interactions,” Phys. Rev. B
82, 100403.

Katsnelson, M. I., and A. I. Lichtenstein, 2000, “First-principles
calculations of magnetic interactions in correlated systems,” Phys.
Rev. B 61, 8906–8912.

Katsnelson, M. I., and A. I. Lichtenstein, 2004, “Magnetic suscep-
tibility, exchange interactions and spin-wave spectra in the local
spin density approximation,” J. Phys. Condens. Matter 16,
7439–7446.

Katsnelson, M. I., V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein,
and R. A. de Groot, 2008, “Half-metallic ferromagnets: From
band structure to many-body effects,”Rev. Mod. Phys. 80, 315–378.

Ke, Liqin, and Mikhail I. Katsnelson, 2021, “Electron correlation
effects on exchange interactions and spin excitations in 2D van der
Waals materials,” npj Comput. Mater. 7, 4.

Keshavarz, S., Y. O.Kvashnin, I. DiMarco, A.Delin,M. I. Katsnelson,
A. I. Lichtenstein, and O. Eriksson, 2015, “Layer-resolved magnetic
exchange interactions of surfaces of late 3d elements: Effects of
electronic correlations,” Phys. Rev. B 92, 165129.

Keshavarz, Samara, Johan Schött, Andrew J. Millis, and Yaroslav O.
Kvashnin, 2018, “Electronic structure, magnetism, and exchange
integrals in transition-metal oxides: Role of the spin polarization
of the functional in DFTþ U calculations,” Phys. Rev. B 97,
184404.

Khmelevskyi, S., T. Khmelevska, A. V. Ruban, and P. Mohn, 2007,
“Magnetic exchange interactions in the paramagnetic state of
hcp Gd,” J. Phys. Condens. Matter 19, 326218.

Khmelevskyi, Sergii, 2012, “Antiferromagnetic ordering on the
frustrated fcc lattice in the intermetallic compound GdPtBi,” Phys.
Rev. B 86, 104429.

Khmelevskyi, Sergii, Eszter Simon, and László Szunyogh, 2015,
“Antiferromagnetism in Ru2MnZ ðZ ¼ Sn;Sb;Ge;SiÞ full Heusler
alloys: Effects of magnetic frustration and chemical disorder,”
Phys. Rev. B 91, 094432.

Kirilyuk, Andrei, Alexey V. Kimel, and Theo Rasing, 2010, “Ultra-
fast optical manipulation of magnetic order,” Rev. Mod. Phys. 82,
2731–2784.

Kitaev, Alexei, 2006, “Anyons in an exactly solved model and
beyond,” Ann. Phys. (Amsterdam) 321, 2–111.

Kitamura, Sota, and Hideo Aoki, 2016, “η-pairing superfluid in
periodically-driven fermionic Hubbard model with strong attrac-
tion, Phys. Rev. B 94, 174503.

Kleinman, Leonard, 1999, “Density functional for noncollinear
magnetic systems,” Phys. Rev. B 59, 3314–3317.

Kohn, W., and N. Rostoker, 1954, “Solution of the Schrödinger
equation in periodic lattices with an application to metallic lithium,”
Phys. Rev. 94, 1111–1120.

Kohn, W., and L. J. Sham, 1965, “Self-consistent equations including
exchange and correlation effects,” Phys. Rev. 140, A1133–A1138.

Korenman, V., J. L. Murray, and R. E. Prange, 1977a, “Local-band
theory of itinerant ferromagnetism. I. Fermi-liquid theory,” Phys.
Rev. B 16, 4032–4047.

Korenman, V., J. L. Murray, and R. E. Prange, 1977b, “Local-band
theory of itinerant ferromagnetism. II. Spin waves,” Phys. Rev. B
16, 4048–4057.

Korenman, V., J. L. Murray, and R. E. Prange, 1977c, “Local-band
theory of itinerant ferromagnetism. III. Nonlinear Landau-Lifshitz
equations,” Phys. Rev. B 16, 4058–4062.

Korotin, Dm. M., V. V. Mazurenko, V. I. Anisimov, and S. V.
Streltsov, 2015, “Calculation of exchange constants of the Heisen-
berg model in plane-wave-based methods using the Green’s
function approach,” Phys. Rev. B 91, 224405.

Korringa, J., 1947, “On the calculation of the energy of a Bloch wave
in a metal,” Physica (Amsterdam) 13, 392–400.

Korzhavyi, P. A., A. V. Ruban, J. Odqvist, J.-O. Nilsson, and B.
Johansson, 2009, “Electronic structure and effective chemical and
magnetic exchange interactions in bcc Fe-Cr alloys,” Phys. Rev. B
79, 054202.

Kotani, Takao, and Mark van Schilfgaarde, 2008, “Spin wave
dispersion based on the quasiparticle self-consistent GW method:
NiO, MnO and α-MnAs,” J. Phys. Condens. Matter 20, 295214.

Kotliar, G., S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet,
and C. A. Marianetti, 2006, “Electronic structure calculations with
dynamical mean-field theory,” Rev. Mod. Phys. 78, 865–951.

Kramers, H. A., 1934, “L’interaction entre les atomes magnétogènes
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“Ab initio theory of exchange interactions and the Curie temper-
ature of bulk Gd,” J. Phys. Condens. Matter 15, 2771–2782.

Turek, I., J. Kudrnovský, M. Diviš, P. Franek, G. Bihlmayer, and S.
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