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The weak gravity conjecture holds that in a theory of quantum gravity any gauge force must mediate
interactions stronger than gravity for some particles. This statement has surprisingly deep and
extensive connections to many different areas of physics and mathematics. Several variations on the
basic conjecture have been proposed, including statements that are much stronger but are nonetheless
satisfied by all known consistent quantum gravity theories. These related conjectures and the evidence
for their validity in the string theory landscape are reviewed. Also reviewed are a variety of arguments
for these conjectures, which tend to fall into two categories: qualitative arguments that claim the
conjecture is plausible based on general principles and quantitative arguments for various special
cases or analogs of the conjecture. The implications of these conjectures for particle physics,
cosmology, general relativity, and mathematics are also outlined. Finally, important directions for
future research are highlighted.
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I. INTRODUCTION

The weak gravity conjecture is a simple statement about
theories of quantum gravity. In essence, it says that any gauge
force must be stronger than gravity. More precisely, in its
mildest form the weak gravity conjecture holds that any Uð1Þ
gauge theory must have at least one object satisfying

jqj
m

≥
jQj
M

����
ext
; ð1Þ

where jQj=Mjext is the charge-to-mass ratio of a large extremal
black hole. This simple statement has profound consequences
that touch virtually every aspect of modern fundamental
physics, including string theory, cosmology, particle physics,
algebraic geometry, black holes, quantum information, holog-
raphy, and scattering amplitudes.
The original paper on the weak gravity conjecture (WGC)

from Arkani-Hamed, Motl, Nicolis, and Vafa (AMNV)
(Arkani-Hamed, Motl et al., 2007) is now more than 15
years old. It sparked a flurry of research shortly after it was
released, which slowly tapered off over the course of the next
several years. The middle of the 2010s, however, saw a
resurgence of interest in the conjecture, which has continued
to the present day.
This resurgence of interest was driven in part by the hope

that quantum gravity may have something to say about
testable low-energy physics, despite the fact that quantum
gravitational effects are naively suppressed by powers of
energy divided by the Planck mass. Originally it was hoped
that this problem could be circumvented using string theory to
predict low-energy parameters such as Yukawa couplings
or the scale of supersymmetry breaking, but the gradual
acceptance that string theory has a vast landscape of four-
dimensional vacua has posed a major challenge to this idea:
the more possibilities one has, the harder it is to make a unique
prediction.
Nonetheless, there may be some simple rules that con-

clusively exclude particular low-energy actions. The WGC is
one such rule, and as we see in this review it potentially
constrains certain models of particle physics and cosmology

and thus offers hope that quantum gravity may yet make
decisive predictions for IR physics in the near future.1

The WGC has many interesting theoretical implications. In
the context of AdS=CFT, it implies nontrivial statements for
conformal field theories. In the context of string compactifi-
cations, it implies nontrivial statements about Calabi-Yau
geometry. In the context of black hole physics, it is intimately
related to the preservation of cosmic censorship. These
connections, and others that we later review, suggest that
the WGC is pointing us toward deep fundamental principles of
quantum gravity.
However, despite recent progress we are still far from a

concrete understanding of such principles, and some of the
most basic questions about the WGC remain unanswered.
First and foremost, we emphasize that the WGC is not really a
single universally-agreed-upon conjecture, but rather a family
of distinct but related “weak gravity conjectures,” each of
which attempts to formalize the idea that “any gauge force
must be stronger than gravity” in a different way. The various
conjectures have different consequences for particle physics,
cosmology, etc. Some versions of the WGC have been
discarded as counterexamples have been identified, while
other versions have seen a growing body of evidence in their
favor. Some of the most promising versions of the conjecture
are known as the tower weak gravity conjecture and the
sublattice weak gravity conjecture, and we elaborate on
them here.
Moreover, thus far no nontrivial version of the conjecture

has actually been proven in the sense of being derived from
some accepted general principle. A number of promising
routes toward a proof of some version of the WGC have been
proposed in recent years, but these routes all suffer from at
least one of the following two drawbacks: either they establish
some statement that is qualitatively like the WGC, but without
the correct Oð1Þ factors included (i.e., “no gauge force can be
much weaker than gravity”), or they argue for a precise
version of the WGC but rely on additional unproven assump-
tions. In particular, in the original paper AMNVadvocated for
the WGC using black hole physics: the requirement that any
nonsupersymmetric black hole should be able to decay
necessitates some version of the WGC. It is not clear, however,
why any nonsupersymmetric black hole must be able to decay,
and it is also not clear that black hole decay is the fundamental
principle underlying the WGC, as opposed to an accidental
consequence of it. In particular, there is strong evidence for
some versions of the conjecture (such as the sublattice WGC),
with sharp consequences going beyond the minimal require-
ments of black hole instability. A proof of some form of the
WGC (even a mild one) would represent a significant
development in our understanding of the conjecture.

1The set of low-energy actions that cannot be realized in quantum
gravity has been called the swampland (Vafa, 2005), and many more
rules for ruling out such actions have been proposed. Some of these
proposals are closely related to the WGC, while others are not. In this
review we focus on the WGC specifically, so our discussion of other
parts of the swampland program is subjective and incomplete. See
Brennan, Carta, and Vafa (2018), Palti (2019), Graña and Herráez
(2021), and van Beest et al. (2021) for broader discussions.
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Without a proof of the conjecture or a deeper understanding
of why the conjecture must be true, it is difficult to be sure
which version or versions of the conjecture are correct, so it is
difficult to determine how strong the constraints imposed by
the WGC on particle physics, cosmology, geometry, etc., are.
This means that despite the immense progress in our under-
standing of the WGC in recent years, the most important
discoveries may lie ahead.
The remainder of this review is structured as follows. In

Sec. II, we review arguments for the absence of global
symmetries in quantum gravity, which may be viewed as a
sort of precursor to the WGC. In Sec. III, we introduce the
weak gravity conjecture in its mild and stronger variants. In
Sec. IV, we outline evidence for different versions of the
WGC, focusing on concrete examples in string theory and
Kaluza-Klein theory. In Sec. V, we present qualitative argu-
ments for approximate versions of the WGC, i.e., without
precise Oð1Þ factors included. In Sec. VI, we review the
attempted derivations of the WGC, explaining why (in our
opinion) each of them falls short of a “proof” of the WGC. In
Sec. VII, we discuss broader implications of the WGC for
phenomenology, mathematics, and other areas of theoretical
physics. In Sec. VIII, we finish with conclusions and an
outlook. In the Appendix we describe a general procedure for
determing the black hole extremality bound (needed to
correctly normalize the WGC bound) in theories with moduli.

II. NO GLOBAL SYMMETRIES

The WGC has its origins in an older conjecture that says
that theories of quantum gravity admit no global symmetries
of any kind. One motivation for this conjecture is the
following. An evaporating black hole emits all particles in
a theory without regard to their global charges (Hawking,
1975). This differs from gauge charge, where (at least for a
continuous gauge group) the electric field outside of a charged
black hole provides a chemical potential that favors discharge
during evaporation. This insensitivity of black hole evapora-
tion to global charges suggests that black holes can violate
global symmetries and destroy global charge (Zeldovich,
1976, 1977).
A more precise argument (Banks and Seiberg, 2011) is that

a continuous global symmetry would violate the Bekenstein-
Hawking formula for black hole entropy. For example,
suppose that we had a quantum gravity theory with a Uð1Þ
global symmetry. By colliding objects that are charged under
this symmetry, one could produce large black holes of
arbitrarily large global chargeQ. The semiclassical calculation
of Hawking evaporation implies that these black holes will
decay, at least until they reach a radius rsc ≫ lPl below which
the effective field theory description is invalid. A black hole of
initial charge Q will have a final charge Q0 ∼Q: the Hawking
evaporation process may emit charged particles, but it does not
preferentially discharge the black hole. Thus, we can prepare
black holes of size rsc but an arbitrarily large charge. The
information stored in this charge is arbitrarily large and, in
particular, exceeds the Bekenstein-Hawking entropy πr2sc=G.
This argument, which is illustrated in Fig. 1, extends directly
to any continuous global symmetry and implies a bound on

the size of a finite global symmetry group, albeit one that is
exponentially weak in rsc=lPl, which can be a large number in
a weakly coupled theory (Banks and Seiberg, 2011).
Another, somewhat more vague, argument for global

symmetry violation in quantum gravity is that if certain
“Euclidean wormholes” are included in the gravitational path
integral, then an apparent global symmetry violation is a
consequence (Giddings and Strominger, 1988; Abbott and
Wise, 1989; Coleman and Lee, 1990; Kallosh et al., 1995); see
also Hawking (1996) for an alternative view. The basic idea is
that if there is a finite amplitude for adding a closed connected
spatial component to the Universe, usually called a baby
universe, then global charge can end up in such a baby
universe, and therefore charge conservation can appear to be
violated in the part of the Universe that we can actually access;
see Fig. 2. This statement does not apply to gauge charge, as
the gauge charge of a closed universe must be zero.2

Such general arguments about black hole physics or
Euclidean gravity have been supplemented by observations
about concrete theories of quantum gravity. In perturbative
string theory, given a putative continuous global symmetry,
one can create a vertex operator on the world sheet that creates

FIG. 1. Gravitational collapse of global-charged objects creates
black holes of arbitrarily large global charge. If subsequently left
alone, effective field theory dictates that the resulting black holes
decay to objects of a size r ∼ rsc and a corresponding mass M ∼
Msc via Hawking radiation without appreciably changing the
expected value of their global charge. This implies an infinite
number of microstates for black holes of any fixed mass
M ≫ Msc, in violation of the Bekenstein-Hawking entropy
formula. (Whether this process eventually results in stable
remnants is immaterial.)

2This argument for the violation of global symmetries is similar to
the semiclassical argument that black holes destroy quantum in-
formation, so it may be surprising that the modern consensus is that
global symmetries are indeed violated but information is not lost. The
difference is that the global charge of Hawking radiation is a “simple”
observable, which is the kind the low-energy effective field theory
needs to get right, while any extraction of information about the
initial state of a black hole requires “complex” observables with the
capability to invalidate the semiclassical picture. See Harlow and
Shaghoulian (2021) for details on why global symmetries are not
allowed in theories where black hole evaporation is unitary.
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a gauge field in spacetime coupling to the symmetry current,
demonstrating that the would-be global symmetry is, in fact,
gauged (Banks and Dixon, 1988). Similarly, in AdS=CFT a
conserved current for a continuous global symmetry of the
conformal field theory (CFT) implies the existence of a
corresponding gauge symmetry in the bulk quantum gravity
theory (Witten, 1998).
In the context of AdS=CFT, a holographic argument against

global symmetries, both continuous and discrete, was pre-
sented by Harlow and Ooguri (2019, 2021). Here a symmetry
generator Ug associated with a group element G acting on the
boundary R is split into the following product:

UgðRÞ ¼
Y
i

UgðRiÞUedge; ð2Þ

where R ¼∪i Ri, each UgðRiÞ acts only in the region Ri, and
Uedge acts at the boundaries of the Ri. A charged operator
localized in the center of the bulk should transform under
UgðRÞ, but since the entanglement wedge of each Ri will not
contain the center of the bulk for Ri sufficiently small, the
charged operator cannot transform under the right-hand side
of Eq. (2), which is a contradiction; see Fig. 3. We conclude
that such a global symmetry cannot exist under the assumption
that entanglement wedge reconstruction holds valid. This
argument also applies to the higher-form global symmetries of
Gaiotto et al. (2015), under which the charged objects are
strings or branes instead of particles.
The use of AdS=CFT by Harlow and Ooguri (2019, 2021)

is restrictive, but more recently it was observed by Harlow
and Shaghoulian (2021) that essentially the same argument
can be used to exclude global symmetries in any theory of
quantum gravity where entanglement wedge reconstruction
can be applied to an auxiliary reservoir coupled to an
evaporating black hole. This assumption is the essential
feature of recent calculations of the “Page curve” for an
evaporating black hole, and thus is closely related to the
unitarity of black hole evaporation (Almheiri et al., 2019;
Penington, 2020). Moreover, it was observed, following
Lewkowycz and Maldacena (2013), that semiclassically this

calculation can be interpreted as arising from the appearance
of certain Euclidean wormholes in the gravitational path
integral (Almheiri et al., 2020; Penington et al., 2022).
Finally, Chen and Lin (2021) and Hsin, Iliesiu, and Yang
(2021) showed that these Euclidean wormholes can indeed
lead to concrete violations of global symmetry, thereby
quantifying global symmetry violation in evaporating black
hole backgrounds.
Finally, we remark that the absence of global symmetries in

quantum gravity is closely related to another swampland
conjecture, the completeness hypothesis (Polchinski, 2004).
This hypothesis holds that in any gauge theory coupled to
gravity there must be charged matter in every representation of
the gauge group. The existence of such states is supported by
black hole arguments (Banks and Seiberg, 2011) and holo-
graphic arguments in the context of AdS=CFT (Harlow, 2016;
Harlow and Ooguri, 2019). In G gauge theory, if G is compact
and connected or finite and Abelian, then the presence of
charged matter in every representation is equivalent to the
absence of a 1-form symmetry under which Wilson lines are
charged. If G is compact but disconnected or finite and non-
Abelian, then the presence of charged matter in every
representation is equivalent to the absence of “noninvertible”
global symmetries, which are associated with certain codi-
mension-2 topological operators in the gauge theory (Rudelius
and Shao, 2020; Heidenreich et al., 2021b). This close
connection between the absence of global symmetries and
the completeness hypothesis means that arguments for one
conjecture serve as indirect evidence for the other. An
interesting quantitative approach to completeness based on
algebraic ideas was developed by Casini et al. (2020, 2021)
and Casini and Magan (2021), who used relative entropy and
conditional expectations to diagnose to what extent field
theories obey the completeness hypothesis.
The strongest arguments against the existence of global

symmetries in quantum gravity are arguments against exact
global symmetries. For applications, it is important to refine
these arguments to ask to what extent approximate global
symmetries are allowed. Recent general arguments along
these lines were formulated by Daus et al. (2020), Fichet
and Saraswat (2020), and Nomura (2020). As we later see, the
weak gravity conjecture is one attempt to address this
question: the weak coupling limit of a gauge theory has a

FIG. 2. Global symmetry violation by a Euclidean wormhole: a
pair of charged particles is created from the vacuum, with the
positive charge staying in the asymptotically flat region but the
negative charge ending up in a baby universe. For someone living
in the asymptotic region, this apparently violates the symmetry.
Such a process cannot happen for a gauge symmetry, since the
baby universe is closed and compact, so its gauge charge
must be zero.

FIG. 3. An AdS=CFT contradiction between global symmetry
and entanglement wedge reconstruction. The symmetry operators
are products of operators supported in the regions R1; R2;…, but
no such operator can implement the symmetry on a charged
operator in the center of the space.
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global symmetry and should be forbidden in quantum gravity.
As we discuss in Sec. V.B, the weak gravity conjecture is also
related to the breaking of approximate 1-form global sym-
metries associated with the absence of charged particles.

III. WEAK GRAVITY CONJECTURES

We now consider quantum gravity theories coupled to a
Uð1Þ gauge field in D > 3 spacetime dimensions, with low-
energy actions of the form

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

4e2ðϕÞFμνFμν þ � � �
�
: ð3Þ

In Eq. (3) e2ðϕÞ is some function of the scalar fields ϕi in
the theory and the omitted terms include kinetic terms for
these scalars, as well as other possible terms involving
additional matter fields and/or higher-derivative terms for
the gauge field and the metric.3 The compactness of the
gauge group requires the charge to be quantized, and we
normalize the gauge field so that the covariant derivative on a
field of unit charge is ∂μ − iAμ. We then define the electric
charge as

Q ¼
Z
SD−2
∞

1

e2ðϕÞ⋆F; ð4Þ

where SD−2
∞ is a sphere at spatial infinity, in which case the

charge is quantized in integer units (i.e., the canonically
normalized electrostatic potential is proportional to eQ).
The mildest version of the weak gravity conjecture then

says the following.
Conjecture 1.—Mild weak gravity conjecture. Given any

Uð1Þ gauge field coupled to gravity as in Eq. (3), there must be
an object of charge q and mass m satisfying

jqj
m

≥
jQj
M

����
ext
: ð5Þ

In Eq. (5) jQj=Mjext indicates the charge-to-mass ratio of an
extremal black hole of arbitrarily large size [in general there
are finite-size corrections to this ratio that are not included in
Eq. (5)]. We refer to any object obeying Eq. (5) as super-
extremal in the review. It is convenient to parametrize the
extremal charge-to-mass ratio as

ejQj
M

����
ext

≡ γ1=2κ; ð6Þ

where κ > 0 is the gravitational coupling constant appearing
in Eq. (3), related to the Planck mass MPl and the Newton
constant G through

κ2 ¼ 8πG ¼ 1

MD−2
Pl

; ð7Þ

and e2 ¼ e2ðhϕiÞ denotes the gauge coupling in the vacuum
when written without an argument. The dimensionless param-
eter γ depends in general on the function e2ðϕÞ and on the
metric on moduli space (see the Appendix). If e2ðϕÞ is
independent of the moduli, then we simply have

γ ¼ D − 3

D − 2
: ð8Þ

Throughout this review, we have set ℏ ¼ c ¼ 1, but
we emphasize that even if we restore them there are no
factors of ℏ in Eq. (6) since the extremality bound is a classical
notion.
The original motivation for the conjecture is that it provides

a kinematic condition that would allow an extremal black hole
to shed its charge, which can happen even at zero Hawking
temperature via Schwinger pair production (Gibbons, 1975;
Johnson, 2020). However, there is no obvious pathology in a
theory that admits infinitely many stable extremal black holes;
due to the extremality bound, this would not lead to infinite
entropy at finite mass as in the global-charge case in Fig. 1.
Hence, this motivation falls far short of a proof or even a
strong argument.
Although the mild weak gravity conjecture has an appeal-

ing simplicity, in practice it is too weak to imply anything
interesting. The object that obeys Eq. (5) could be heavy, in
which case it would have no substantive consequences for
particle physics or cosmology. Moreover, it would not even be
sufficient to allow “medium-sized” near-extremal black holes
to decay, and thus would not address the original motivation
for the conjecture. The mild weak gravity conjecture is
nonetheless useful to consider, as it is a consequence of all
of the various stronger versions of the WGC that have been
proposed, which do have other more interesting implications,
and thus an argument that shows that the mild WGC holds
would hopefully also lead to an argument for one or more of
the stronger versions. We now turn to discussing these
possible generalizations.

A. WGC for P-form gauge fields

The mild WGC can be generalized in an obvious way from
particles charged under an ordinary 1-form gauge field to
(P − 1)-branes charged under a P-form gauge field, with the
restrictions 1 ≤ P ≤ D − 3. Instead of bounding the charge-
to-mass ratio jqj=m of such a particle, the WGC instead
bounds the charge-to-tension ratio of the (P − 1)-brane.
Conjecture 2.—Mild WGC for P-form gauge fields. Given

a P-form gauge field coupled to gravity, there must exist a
(P − 1)-brane of charge Q and tension TP satisfying

3ForD ¼ 4 if massless charged particles exist, then several aspects
of this discussion need to be modified due to the logarithmic running
that eventually drives the renormalized gauge coupling e to vanish in
the deep infrared. The mild WGC still holds in such theories since,
after all, there are massless charged particles, but to simplify our
exposition we assume that for D ¼ 4 all charged particles are
massive.
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jQj
TP

≥
jQj
TP

����
ext
: ð9Þ

In Eq. (9) jQj=TPjext is the charge to tension of an extremal
black brane. It is useful to consider a concrete low-energy
theory with an action

S¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

4κ2
ð∇ϕÞ2− 1

2e2P
e−αPϕF2

Pþ1

�
: ð10Þ

In Eq. (10) FPþ1 ¼ dAP is the field strength for a P-form
gauge field Aμ1;…;μP , with

F2
q ≔

1

q!
Fμ1;…;μqF

μ1;…;μq ; ð11Þ

and by convention we shift ϕ to set hϕi ¼ 0, so eP is indeed
the gauge coupling in the vacuum. In this theory we can write
the extremal charge-to-tension ratio as

ePjQj
TP

����
ext

¼ γ1=2P κ; ð12Þ

with

γP ¼ α2P
2
þ PðD − P − 2Þ

D − 2
: ð13Þ

If we replace e2Pe
αPϕ with some more general function e2PðϕÞ,

then γP is modified as appropriate; see the Appendix. For
future reference we write in one place the following super-
extremality bound:

e2PQ
2 ≥ γPκ

2T2
P: ð14Þ

B. Magnetic WGC

The magnetic version of the mild WGC is simply
the ordinary mild WGC applied to the electromagnetic
dual gauge field. For the case of a P-form gauge field, this
implies the existence of a superextremal magnetically charged
(D − P − 3)-brane with magnetic charge jQ̃j and tension
TD−P−2 satisfying

jQ̃j
TD−P−2

≥
jQ̃j

TD−P−2

����
ext
: ð15Þ

In four dimensions, for p ¼ 1 this becomes a statement about
the charge-to-mass ratio of a magnetic monopole. The
monopole mass can be estimated in terms of the energy
stored in its magnetic field. This energy is UV divergent, but if
we cut it off at the semiclassical radius rsc ∼ 1=ΛNP associated
with the “new physics” scale ΛNP at which the low-energy
effective field theory (EFT) breaks down, we obtain

mmon ≳ ΛNP

e2
ð16Þ

in the absence of a finely tuned cancellation between the field
energy and the bare mass, where e is the electric gauge
coupling.4 By Dirac quantization, the magnetic gauge cou-
pling is given by ẽ ¼ 2π=e, so the magnetic WGC bound (15)
becomes

ΛNP ≲ eMPl: ð17Þ

In other words, the magnetic WGC places a cutoff on the new
physics scale of the Abelian gauge theory, which vanishes (in
Planck units) in the limit e → 0. The magnetic WGC thus
quantifies the extent to which effective field theory breaks
down in the limit of weak gauge coupling. Without imposing
the WGC itself, the conclusion (17) can also be obtained by
requiring that the magnetic monopole is not a black hole, i.e.,
that its Schwarzschild radius is smaller than rsc (Arkani-
Hamed, Dubovsky et al., 2007; de la Fuente, Saraswat, and
Sundrum, 2015).
We emphasize that the new physics scale ΛNP ∼ 1=rsc is not

a cutoff on effective field theory altogether. The Abelian gauge
theory may be embedded in another effective field theory with
a higher cutoff, such as a Kaluza-Klein theory, a non-Abelian
gauge theory, etc. In Sec. III.D we introduce several strong
forms of the WGC, and in Sec. V we see that some of these
strong forms provide a bound not only onΛNP ∼ 1=rsc but also
on the energy scale ΛQG at which gravity becomes strongly
coupled. The latter energy scale represents a cutoff on low-
energy effective field theory in any form above which
quantum gravity effects cannot be neglected.
Finally, note that a similar argument can be applied to

(D − P − 3)-branes magnetically charged under a P-form
gauge field in D dimensions (Hebecker, Henkenjohann,
and Witkowski, 2017b). The tension of such an object can
be approximated as

TD−P−3 ∼
ΛP

e2P
; ð18Þ

where rsc ¼ Λ−1 is again the semiclassical radius of the brane
and eP is the electric coupling constant. On the other hand, the
tension of a black brane is given by

TBB ∼MD−2
Pl RP

S ; ð19Þ

where RS is the Schwarzschild radius of the black brane. If we
then demand that the magnetic brane is not itself a black hole,
such that Λ−1 ¼ rsc ≳ RS, we then have

Λ ≲ ðe2PMD−2
Pl Þ1=2P: ð20Þ

4This logic is not valid for electrically charged particles, because
the self-energy should be cut off at the Compton radius, which is
much larger than Λ−1

NP. In other words, the classical radius of an
electric charge is less than its Compton wavelength, whereas the
reverse is usually true for a magnetic charge, unless it is exceptionally
light due to a finely tuned cancellation between the bare mass and the
field energy.
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Equation (20) reduces to Eq. (17) in the familiar case ofD ¼ 4

and P ¼ 1.

C. The convex hull condition

Thus far we have focused on theories with a single gauge
field. In general, however, a quantum gravity theory will have
more than one gauge field, so the statement of the WGC must
be generalized to this case. For simplicity, we focus on the
case of particles charged under 1-form gauge fields, though
analogous statements hold for branes charged under higher-
form gauge fields.
In a theory of N Abelian gauge fields, the charge of a given

particle may be represented by an N-vector Q⃗, where Qi is the
charge under the ith gauge field. The set of all possible
charges Q⃗ consistent with charge quantization forms a lattice
Γ ≃ ZN ⊂ RN . We define a charge direction Q̂ as a unit vector
in RN , and we say that such a charge direction is rational if
λQ̂ ∈ Γ for some λ ∈ R.
Finally, we define a multiparticle state as consisting of one

or more actual particles in the theory with a massm and charge
q⃗ equal to the sums of the masses and charges of the
constituent particles. This corresponds to a limit where the
particles in question are taken infinitely far from each other, so
they do not interact. A multiparticle state is superextremal if
z⃗ ≔ q⃗=m has a length that is greater than or equal to the
charge-to-mass ratio of an extremal black hole in the Q̂ charge
direction. The length of this vector is measured using the
inverse of the kinetic matrix of the Uð1Þ gauge fields; i.e.,
given a Lagrangian −ð1=4ÞKijFi

μνFjμν, the length of z⃗ is
ðKijzizjÞ1=2, where KijKjk ¼ δik.
With this, we may define a mild WGC in such a theory as

follows.
Conjecture 3.—Mild WGC for multiple gauge fields. For

every rational direction Q̂ in charge space, there is a super-
extremal multiparticle state with z⃗ ∝ Q̂.
When there are a finite number of stable particles in the theory,
this statement admits an equivalent, geometric formulation
known as the convex hull condition (CHC) (Cheung and
Remmen, 2014b). The CHC considers the set of all charge-to-
mass vectors z⃗i ≔ q⃗i=mi for the particles in the theory, and it
holds that the convex hull of this set should contain the region
in Z⃗ space where black holes live. This condition is depicted
graphically in Fig. 4. Note that in the absence of massless
scalar fields the black hole region is simply the interior of an
ellipsoid Kijzizj ≤ γκ2. If massless scalar fields are added to
the theory, the black hole region will generically grow in size,
and it may change its shape as well. Thus, the CHC gives
stronger bounds in theories with massless scalar fields than
those without.

D. Strong forms of the WGC

Thus far all versions of the WGC that we have discussed are
still mild in the sense of not having particularly interesting
implications. From the first paper on the WGC, however, there
has been interest in stronger versions of the WGC. This
interest is not just wishful thinking: as we see in Sec. IV, all

known examples in string theory seem to satisfy stronger
statements than the mild WGC. Moreover, the heuristic
arguments that we review in Sec. V also give support to
the idea that something stronger than the mild WGC is true.
A first strong form to mention that is at times implicit in

AMNV is the statement that the WGC should be satisfied by
superextremal particles which are not themselves black holes.
Higher-dimension operators in the action can modify the
extremality bound of finite-sized black holes, as we discuss
further in Sec. VI. If the charge-to-mass ratio of these finite-
sized extremal black holes decreases as their mass is taken to
infinity, the mild form of the WGC can be satisfied by stable,
finite-sized black hole states. This scenario satisfies the letter
of the WGC law but not the spirit of it, which holds that all
black holes should be able to decay by emitting charged
particles. This points to a first strong form of the WGC: the
particles satisfying the WGC bound should not be black holes.
AMNV suggested two additional possible strong forms

of the WGC: The first held that the lightest charged particle
should be superextremal. The second held that the particle of
smallest charge should be superextremal. Neither of these
statements holds in general, however: they are violated, for
instance, in certain Tn orbifold compactifications of type II
and heterotic string theory (Heidenreich, Reece, and
Rudelius, 2017).
However, a growing body of evidence points to another pair

of strong forms (Montero, Shiu, and Soler, 2016; Heidenreich,
Reece, and Rudelius, 2017, 2019; Andriolo et al., 2018).
Conjecture 4.—Tower weak gravity conjecture. For every

site in the charge lattice q⃗ ∈ Γ there is a positive integer n such
that there is a superextremal particle of charge nq⃗.
Conjecture 5.—Sublattice weak gravity conjecture. There

is a positive integer n such that for any site in the charge lattice
q⃗ ∈ Γ there is a superextremal particle of charge nq⃗.
A few remarks about these conjectures are in order. First, note
that the tower WGC implies that in any charge direction q̂
there must be an infinite tower of superextremal particles.

FIG. 4. Convex hull condition. In theories with multiple Uð1Þ’s,
the WGC is equivalent to the statement that the convex hull of the
charge-to-mass vectors of the various particle species must
contain the black hole region.
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Indeed, the tower WGC is often defined by the latter state-
ment. In Sec. IV, however, we see that consistency under
dimensional reduction requires the formal definition that we
have given here.
Second, note that the sublattice WGC is strictly stronger

than the tower WGC: the sublattice WGC implies that the
integer n appearing in the definition of the tower WGC can be
chosen independently of q⃗. The sublattice WGC is equivalent
to the statement that there is a full-dimensional sublattice of
the charge lattice such that there is a superextremal particle at
each site in the sublattice. The integer n is sometimes referred
to as the coarseness of the sublattice. If n ¼ 1, we say that the
theory satisfies the lattice WGC. However, the lattice WGC is
false in general; we exhibit a counterexample in Sec. IV.C.3.
Third, note that the tower WGC and the sublattice WGC

require an infinite set of superextremal particles in each
rational charge direction, whereas the ordinary WGC may
be satisfied in a given charge direction by multiparticle states.
We see in Sec. IV that the existence of superextremal particles,
rather than merely multiparticle states, is required for con-
sistency under dimensional reduction. For small charges, the
necessary particles are ordinary quantum-mechanical particles
represented by fields in the effective field theory. Far out on
the charge lattice, the “particles” are actually black holes. The
tower and sublattice WGCs thus interpolate between the
effective quantum field theory regime and the gravitational
regime of the quantum gravity theory in question. This is
schematically illustrated in Fig. 5.
Fourth, note that it is possible (and, in fact, common in

string theory examples) for the particles satisfying the tower or
sublattice WGCs to be unstable resonances rather than stable
states of the theory. Unstable resonances are not as easy to
define as stable single-particle states, since they correspond
not to states in the Hilbert space of the theory but rather to
localized peaks in the S matrix of some scattering process. If
the theory is weakly coupled, such a peak will be localized at a
particular energy scale (the mass of the unstable particle) and
the lifetime of this particle will be long. If the theory is
strongly coupled, however, such a peak will be spread out
across a range of energy scales, and it is not easy to define the
mass of the resonance. Correspondingly, the tower WGC and
sublattice WGC are not easy to define in this case.

Fifth, and finally, note that the tower or sublattice WGCs
are modified in the presence of a few light charged particles in
four dimensions due to the logarithmic running of the gauge
coupling. Such charged particles appear near special loci in
the moduli space where they become massless (for instance,
where the Coulomb and Higgs branches of an N ¼ 2 theory
intersect). For D ≥ 5, this has a mild effect (generating finite
threshold corrections), but in four dimensions the log running
reduces the infrared gauge coupling gradually to zero as the
massless locus is approached. A naive reading of the tower or
sublattice WGCs would then suggest that an infinite tower of
charged particles becomes light near the massless locus, but
this does not always occur, particularly when the massless
locus lies at finite distance in the moduli space.5 While this
seems to be a counterexample to the 4D tower or sublattice
WGCs, as originally stated replacing the infrared gauge
coupling in the WGC bound with its renormalized value
resolves the problem (Heidenreich, Reece, and Rudelius,
2018b), suggesting that the conjectures are subtly modified
rather than being invalidated in four dimensions. By contrast,
this problem is absent in D ≥ 5 and no modification seems to
be needed there; see Alim, Heidenreich, and Rudelius (2021).6

In closing, we mention one other proposed “strong form” of
the WGC: a superextremal state can saturate the WGC bound
(i.e., be extremal) only if the theory is supersymmetric and the
state in question is a Bogomol’nyi-Prasad-Sommerfield (BPS)
state (Ooguri and Vafa, 2017). This conjecture is a mild
extension of the ordinary WGC since there is no good reason
why the mass of a superextremal particle should be tuned
precisely to extremality unless the state is a BPS state in a
supersymmetric theory. Nonetheless, this extension is inter-
esting, as it suggests that extremal black holes can be
marginally stable only if they are in a BPS state. When
applied to the WGC for p-form gauge fields, the analogous
statement further implies that any nonsupersymmetric anti–de
Sitter (AdS) vacuum supported by fluxes must be unstable.

E. WGC for non-Abelian gauge fields

Thus far our definition of the WGC has dealt exclusively
with particles charged under continuous Abelian gauge
groups. We now discuss its extension to continuous non-
Abelian gauge groups. For D ¼ 4 this discussion is compli-
cated by the fact that non-Abelian gauge fields are often
confined, in which case the notion of a charged particle is not
well defined, so this topic is of most interest for D > 4.
The mild form of the WGC extends in a rather trivial way:

one simply decomposes the irreducible representations of the
gauge group G into charges under the Uð1ÞrkðGÞ Cartan and
demands that the ordinary WGC should be satisfied with

FIG. 5. Schematic illustration of WGC-satisfying particles (red
dots) if the tower or sublattice WGCs hold. The black hole
extremality bound is the dashed diagonal line. At small Q, the
WGC is satisfied by light particles described by EFT. At large Q,
black holes with small corrections obey the WGC; these
asymptotically approach the extremality bound at large Q.

5The absence of an infinite tower of light charged particles in such
cases agrees with the emergence proposal (Grimm, Palti, and
Valenzuela, 2018; Heidenreich, Reece, and Rudelius, 2018a, 2018b).

6The difference between the 4D and higher-dimensional cases can
also be explained by noting that the tower or sublattice WGCs are
related to the mild WGC in one lower dimension (see Sec. IV.A),
whereas the mild WGC requires modification in three dimensions, if
it continues to exist at all, due to the absence of asymptotically flat
black holes.
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respect to this Cartan subgroup. This requirement is auto-
matically satisfied by the massless gluon fields of the theory.
The sublattice WGC, on the other hand, is somewhat more
subtle to define in the non-Abelian context. We use the
following definition in this review (Heidenreich, Reece, and
Rudelius, 2018b).
Conjecture 6.—Sublattice WGC for non-Abelian gauge

fields. Given G gauge theory (with G a connected Lie group)
coupled to quantum gravity, there is a finite-index Weyl-
invariant sublattice Γ0 of the weight lattice ΓG such that for
every dominant weight Q⃗R ∈ Γ0 there is a superextremal
resonance transforming in the G irreducible representation R
with highest weight Q⃗R.
Conjecture 6 is stronger than simply requiring that the
Abelian sublattice WGC should be satisfied with respect
to the Cartan of G, as the latter can be satisfied by particles
transforming under a sparse set of representations provided
that they are sufficiently light. One argument for this stronger
statement is that it is satisfied in perturbative string theory;
this follows from the modular invariance argument discussed
in Sec. IV.D. Conjecture 6 has also been shown to hold in
certain 6D F-theory compactifications (Cota, Klemm, and
Schimannek, 2021).
A natural question, now that we have defined the sublattice

WGC for continuous Abelian and non-Abelian gauge groups,
is whether there are further extensions for finite groups (or
disconnected groups more generally). Thought experiments
involving the evaporation of black holes carrying charge under
finite gauge groups suggest bounds on UV cutoffs that are
similar in spirit to WGC bounds (Craig, Garcia, and Koren,
2019a; Dvali and Redi, 2008; Dvali et al., 2008; Dvali, 2010).
WGC bounds can also be applied separately to the A and B
fields associated with a massive gauge field in BF theory
(Reece, 2019), which can lead to conclusions consistent with
black hole thought experiments in ZN gauge theory (Craig,
Garcia, and Koren, 2019a). These considerations may hint at
the existence of a formulation of the WGC encompassing all
gauge groups.

F. WGC in asymptotically AdS spacetimes

Thus far we have focused on the WGC in flat Minkowski
spacetimes. It is also worthwhile to define the conjecture in
spacetimes with nontrivial curvature. Here, with an eye toward
AdS=CFT, we restrict ourselves to possible definitions of the
WGC in AdS spacetimes.
The flat-space definition (5) depends on the mass m of the

particle, but in AdSD with AdS radius R a more natural
quantity is its rest energy Δ=R (in AdS=CFT Δ is the scaling
dimension of the CFToperator that is dual to the field creating
the particle). The relation between m and Δ depends on the
dimensionality of spacetime and the spin of the particle; for a
scalar field in AdSD the relationship is

Δ ¼ D − 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 1Þ2

4
þ R2m2

r
: ð21Þ

A minimal requirement of any WGC bound in AdSdþ1 is
that it reduces to the flat-space bound in the limit where

R → ∞. One obvious proposal that does this was noted by
Nakayama and Nomura (2015),

e2q2 ≥ γκ2
Δ2

R2
: ð22Þ

As in Eq. (5), γ ¼ ðD − 3Þ=ðD − 2Þ in the absence of massless
scalar fields. Using the AdS=CFT correspondence, this bound
can be recast in terms of data of the CFTD−1 as a bound on the
charge q and dimension Δ of the operator O dual to the
charged field. For D ¼ 5, the CFT bound is (Nakayama and
Nomura, 2015)

q2

b
≥

Δ2

12c
; ð23Þ

where c ∼ hTTi is the central charge of the CFT and b ∼ hJJi
is the beta function coefficient of the conserved current
associated with the gauge field in the bulk. On the other
hand, there is no particular reason why Eq. (22) is more likely
than some other expression with the same flat-space limit, so
the proper formulation of the WGC in AdS remains an open
problem.
The weak gravity conjecture in AdS=CFT is closely related

to the recently formulated Abelian convex charge conjecture
(Aharony and Palti, 2021). Given a CFT with a Uð1Þ global
symmetry, if we define ΔðnÞ to be the dimension of the lowest
dimension operator of charge n, then this conjecture holds that

Δðn1q0 þ n2q0Þ ≥ Δðn1q0Þ þ Δðn2q0Þ ð24Þ

for q0 ≥ 1 as an order-1 integer. A similar statement is
conjectured to hold for non-Abelian gauge groups.
Semiclassical tests of this statement were carried out by
Antipin et al. (2021). If true, this conjecture implies that
there must be a particle in the AdS bulk theory with non-
negative self-binding energy, which is similar to the later-
discussed repulsive force conjecture. Strong forms in which q0
is 1 or is the charge of the lowest dimension charged operator
were considered by Aharony and Palti (2021), but such
statements (as currently formulated) are in tension with a
flat-space example, as we discuss in Sec. IV.C.3.
When comparing the convex charge conjecture and various

strong forms of the WGC, it is important to remember that not
every CFT operator corresponds to a single-particle state in
AdS. A convex spectrum of charged single-trace operators
would have important implications for moduli stabilization.
Consider a theory in which the gauge coupling eðϕÞ is a
function of a stabilized modulus ϕ with mass mϕ and which
has a separation of length scales L ≫ m−1

ϕ ≫ rsc, where L is
the curvature radius of an AdS (or dS) vacuum and rsc is the
size of the smallest black hole we can treat as semiclassical. In
this case, there are black hole solutions that can be approxi-
mated as flat-space black holes with a massless modulus ϕ
when the black hole radius r obeys m−1

ϕ ≫ r ≫ rsc, and as

flat-space black holes with no modulus when L ≫ r ≫ m−1
ϕ .

Consequently, the black hole spectrum includes a range
of extremal black holes that effectively have a modulus-
dependent constant γϕ in the extremality bound (6), and
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another range with the modulus-independent value γ0
[Eq. (8)]. The modulus-dependent constant γϕ is larger, as
in Eq. (13), so the WGC becomes weaker in the infrared than
in the UV. As a result, the minimum mass as a function of
charge for any black hole spectrum that interpolates between
these limits must fail to be convex, as illustrated in Fig. 6. On
the other hand, at large jQj one could consider states
consisting of multiple small black holes instead of a single
large black hole, which could then have a lower mass
following the “unstabilized” line. From the CFT viewpoint,
these would correspond to multitrace, rather than single-trace,
operators. A better understanding of the convex charge
conjecture in CFTs and its relationship to large-N expan-
sions,therefore, could potentially have important implications
for the existence of vacua with stabilized moduli and scale
separation.

G. WGC for axions and axion strings

In Sec. III.A, we extended the WGC to the case of a P-form
gauge field. An interesting case to consider is P ¼ 0, in which
the gauge field A0 is a periodic scalar field (A0 ∼ A0 þ 2π),
which is also known as an axion.
This case is somewhat degenerate, however, since the

objects charged under this gauge field must be (−1)-branes,
also known as instantons, with tension given by the instanton7

action T0 ≡ Sinst. The instanton charge, also called the
instanton number, is given in Euclidean signature by

n ¼ i
Z
Sd−1

f2⋆dA0; ð25Þ

where f ≡ 1=e0 is sometimes called the axion decay constant
and Sd−1 is a small sphere surrounding the instanton. In
attempting to formulate an axion version of the WGC,
however, we run into the problem that there is no immediately
obvious notion of extremality. Indeed, naively plugging P ¼ 0

into Eq. (13) (assuming the absence of massless scalar
moduli), we see that γ0 is zero, so the naive WGC bound (9)
is trivial. Most likely this does not indicate the absence of any
sort of axion WGC bound but rather that the Oð1Þ coefficient
γ0 must be fixed by some other means. Absent a clear notion
of extremality, the axion WGC bound is typically written
simply as follows.
Conjecture 7.—Axion WGC. Given an axion (i.e., a

periodic scalar) with an axion decay constant f coupled to
quantum gravity, there must be an instanton of instanton
number n satisfying

n
f
≳ Sinstκ: ð26Þ

Note, in particular, that the sharp bound in the P-form
WGC (9) has been replaced by ≳ to account for the unknown
Oð1Þ coefficient γ0.
There have, however, been proposals for what this Oð1Þ

coefficient should be. In the case of a 1-form, the WGC
bound is the opposite of the black hole extremality bound,
which sets the maximal charge-to-mass ratio of a macro-
scopic object in the low-energy theory (namely, a black
hole). When it comes to instantons charged under an axion
gauge field, there is once again a family of macroscopic
solutions in the low-energy theory, known as gravitational
instantons, that can ostensibly be used to fix γ0 and define the
extremality bound.
How exactly this should be done is not clear, however, and

there are at least two proposals on the table. The confusion
deals with the question of which class of gravitational
instanton should be used to define the extremality bound,
as there are three such classes:

(1) Solutions with a singular core, also known as cored
solutions.

(2) Solutions with a flat metric (which we refer to as
extremal solutions).

(3) Wormhole solutions, which have two different asymp-
totic regions connected by a smooth throat.

The metric for these solutions takes the form

ds2 ¼
�
1þ C

r2D−4

�
−1
dr2 þ r2dΩ2

D−1; ð27Þ

FIG. 6. Modulus stabilization and a nonconvex spectrum of
charged black holes. In a theory where a modulus ϕ is stabilized
with mass mϕ, the extremal black hole spectrum (red curve)
should interpolate between small black holes that follow the
unstabilized extremality bound (lower dashed black line) with
slope γ−1=2ϕ and large black holes that follow the “stabilized”
extremality bound (upper dashed black line) with larger slope
γ−1=20 . The red curve indicates the smallest possible mass for a
given charge. The detailed shape depends on the potential and
couplings of ϕ, but any spectrum that interpolates between the
two linear regimes must fail to be convex for some intermediate
values of jQj.

7A potential source of confusion here is that in general these
instantons have nothing to do with the topologically nontrivial gauge
field configurations introduced by Belavin et al. (1975), but they
coincide for the particular case of the QCD axion in four dimensions.
However, there can be axions without gauge fields and gauge fields
without axions, and forD ≠ 4 these two meanings of instanton do not
even correspond to objects with the same dimensionality. The
instantons discussed here are always zero-dimensional dynamical
objects in the Euclidean path integral, with the property that their
instanton number as defined by Eq. (25) is nonzero.
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where dΩ2
D−1 is the metric on the unit (D − 1)-sphere and C is

positive, vanishing, and negative for cored, extremal, and
wormhole solutions, respectively.
These solutions can all be obtained when we consider

theories with a massless dilatonic modulus. Starting with the
action (10) for P ¼ 0, the action of the extremal instanton
solution is given by

Sext ¼
ffiffiffi
2

p jnj
αfκ

; ð28Þ

where n is the instanton number. Meanwhile, the lower bound
on the action of a cored solution is given by (Bergshoeff et al.,
2004, 2005)

Smin ¼
ffiffiffi
2

p jnj
fκ

×

8<
:

1
α ; α ≥ α̃;

1
α̃

ffiffiffiffiffiffiffiffiffiffiffiffi
2α̃
α − 1

q
; α < α̃;

ð29Þ

where

α̃ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD − 2Þ
D − 1

r
: ð30Þ

Finally, the instanton action for half of a wormhole solution is
given by (Gutperle and Sabra, 2002)

Sð1=2Þwh ¼
ffiffiffi
2

p jnj
αfκ

sin

�
π

2

α

α̃

�
; ð31Þ

where α̃ is as previously defined.
After this review, we are now in a position to ask this

question: What is the Oð1Þ coefficient for the axion WGC
bound in this theory? It is natural to suppose that the extremal
instanton should set the axion WGC bound, just as the
extremal black hole sets the ordinary WGC bound. From
the instanton action (28), this gives the following bound:

jnj
fS

≥
jnj
fSext

¼ ακffiffiffi
2

p ; α > α̃: ð32Þ

Equation (32) is a plausible candidate for the axion WGC
when α ≥ α̃. Equation (28) suggests that cored instantons have
a larger action than the extremal instanton of the same
instanton number, just as subextremal black holes have a
larger mass than an extremal black hole of the same charge.
For α < α̃, however, things become more complicated.

Cored instantons now have a smaller action than the extremal
solution. Thus, the axionWGC bound should perhaps be given
by the cored instanton of smallest action, which means that

jnj
fS

≥
jnj

fSmin
¼ α̃κffiffiffi

2
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2α̃=α − 1
p ; α < α̃: ð33Þ

However, the half-wormhole solution has an even smaller
action than the cored and extremal instanton solutions. If the
WGC bound is to be set by the macroscopic object of smallest
action, then perhaps the axion WGC bound should be set by
the half-wormhole solution so that

jnj
fS

≥
jnj

fSmin
¼ ακffiffiffi

2
p 1

sin ½ðπ=2Þα=α̃� : ð34Þ

Note that the right-hand side of Eq. (34) remains finite in the
α → 0 limit.
It is not clear which of these bounds should be viewed as

the “correct” version of the axion WGC. Heidenreich, Reece,
and Rudelius (2016) proposed the bounds (32) and (33),
whereas Hebecker et al. (2017) and Hebecker, Mikhail, and
Soler (2018) suggested the bound (34). One difference in
viewpoint is that Heidenreich, Reece, and Rudelius (2016)
assumed that only true instanton solutions, not wormholes,
can contribute to an axion potential because a wormhole is
effectively an instanton–anti-instanton pair with no net
charge. Hebecker et al. (2017) and Hebecker, Mikhail,
and Soler (2018) argued that, because the instanton and
anti-instanton ends of the wormhole can be distant from each
other in Euclidean time, they do in fact generate an axion
potential. The latter perspective has a close affinity with the
heuristic argument that wormholes violate the global sym-
metries discussed in Sec. II.
Just as the precise statement of the axion WGC is somewhat

difficult to define, so too is its magnetic version. Naively we
want to say that there must be a (D − 3)-brane whose charge-
to-tension ratio is greater than or equal to that of a large,
extremal black (D − 3)-brane (such as a string in D ¼ 4).
Such objects do not exist in asymptotically flat spacetime, as
we further discuss shortly. Hence, rather than assuming an
inequality with an exact coefficient determined by an extrem-
ality bound, it is natural to suppose that the WGC should
imply the existence of some charged (D − 3)-brane (i.e., a
vortex) of charge Q̃ and tension TD−2, satisfying

eD−2jQ̃j
TD−2

≳ κ; ð35Þ

where eD−2 ¼ 2πf is the magnetic coupling. The inequality
again has a ≳ sign, and there is an Oð1Þ coefficient that
remains to be fixed. Specializing toD ¼ 4 for convenience, an
argument for this has been given in terms of axionic black
holes, i.e., those with a nonvanishing integral

R
ΣB of the

axion’s dual B field over the horizon (Bowick et al., 1988). It
has been argued that axionic strings obeying Eq. (35) are
needed to allow this axionic charge to change and avoid a
remnant problem in black hole evaporation (Hebecker and
Soler, 2017; Montero, Uranga, and Valenzuela, 2017).
Because the magnetically charged object in this case has

codimension 2 (e.g., a string in D ¼ 4 or a 7-brane in
D ¼ 10), the classical tension stored in the winding axion
field is logarithmically divergent in both the IR and the UV,
whereas our discussion of the magnetic WGC in Sec. III.B
incorporated only a UV divergence. Consequently Eq. (20) is
not valid in the case of P ¼ 0. Revisiting the logic by
estimating the classical self-energy with UV and IR cutoffs
and requiring it to satisfy the magnetic axion WGC
bound (35), we have

T ∼ f2 log
ΛUV

ΛIR
≲ f

κ
ð36Þ
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or, in other words,

ΛUV

ΛIR
≲ exp

Oð1Þ
κf

: ð37Þ

This is compatible with the idea that instantons will generate
an IR scale ΛIR ∼ e−SΛUV together with the electric axion
WGC (26), which implies S≲ 1=κf. Indeed, once an axion
potential is generated through instantons, the axion vortex
becomes the boundary of a domain wall, such that the winding
of the axion field is localized inside the wall and there is no
significant energy density outside the wall. When an axion
vortex is attached to a semi-infinite domain wall, we would
view the energy outside the axion vortex core as reflecting the
finite domain wall tension rather than an infinite correction to
the axion vortex tension. In this way, domain walls naturally
provide an IR cutoff to the estimate of the axion vortex
tension, and there is a relationship between the magnetic and
electric WGC that has the same spirit, although more
complicated details, as in the cases 1 ≤ P ≤ D − 3.
The previous estimate neglects gravitational backreaction,

which is significant for objects of low codimension.
In particular, static vortices in gravitational theories
produce a deficit angle. Implications of gravitational back-
reaction on axion strings (in D ¼ 4) for the magnetic axion
WGC were considered by Dolan et al. (2017) and Hebecker,
Henkenjohann, and Witkowski (2017b). The static axion
string solution in general relativity (in the case with zero
axion potential so that the strings are not confined by domain
walls) was first found by Cohen and Kaplan (1988). The IR
and UV divergences of the string without gravity are
reflected in singularities of this solution. When f<

ffiffiffi
2

p
MPl,

the IR singularity lies exponentially far away in Planck units
from the core of the string and the deficit angle is positive.
Hence, one could consider, for example, large loops of
closed string, which would be well behaved in the IR and
potentially completed by UV physics in the string core.
When f >

ffiffiffi
2

p
MPl, the deficit angle becomes negative, the

singularity is inside the core of the string, and there is no
longer a sensible interpretation of stringlike objects in
approximately asymptotically flat spacetime with sensible
UV completions in the string core. This suggests f <

ffiffiffi
2

p
MPl

as a possible consistency condition on 2-form gauge theory
in four dimensions.
Although the physics of static axion strings is relatively

straightforward, one could consider whether the magnetic
axion WGC could be satisfied by time-dependent rather than
static objects (Dolan et al., 2017; Hebecker, Henkenjohann,
and Witkowski, 2017b). Nonsingular, time-dependent string
solutions were written for a complex scalar Φ with a Uð1Þ
global symmetry by Gregory (1996) that features a
Lagrangian of the form

L ¼ −
1

2
j∂Φj2 − λ

4
ðjΦj2 − f2Þ2; ð38Þ

such that the phase of Φ is an axion with decay constant f in
the low-energy theory. For f smaller than some critical fcrit,
there are nonsingular axion string spacetimes that inflate along

the string direction but that have a static field configuration
along slices orthogonal to the string. For f > fcrit, the field Φ
itself becomes time dependent and the theory undergoes
“topological inflation.” This occurs when the core region of
a topological defect of size Rcore has a potential energy density
Vcore sufficiently large to sustain a Hubble expansion rateH ∼ffiffiffiffiffiffiffiffiffiffi
Vcore

p
=MPl with HRcore ≳ 1 (Linde, 1994; Vilenkin, 1994).

The numerical analysis of Cho (1998) found fcrit ¼ 1.63MPl
as the critical value for the onset of topological inflation.
Dolan et al. (2017) pointed out that the computation with
f ≳MPl is not necessarily under control, but a scenario with
axion strings of winding number n ≫ 1 such that f ≪ MPl ≪
nf provides a controlled setting with similar conclusions.
Numerical studies by Dolan et al. (2017) confirmed expo-
nential expansion in this scenario. They also demonstrated
power-law expansion in a different model in which the axion
was the holonomy of a higher-dimensional gauge field. In this
case, the radial mode associated with the axion is the radion
modulus R of an extra dimension. The string core sees a
decompactification limit R → ∞ that lies at infinite distance in
field space where VðRÞ → 0 (hence no exponential expan-
sion). In both the jΦj4 case and the radion case, there is no
obvious pathology associated with the time-dependent infin-
ite, straight string configurations. However, Dolan et al.
(2017) argued that the topological inflation of a closed loop
of an axion string with nf ≳MPl would violate the “topo-
logical censorship theorem” of Friedman, Schleich, and Witt
(1993), suggesting that it would always collapse into a black
hole. It would then be impossible for an observer to traverse a
loop linking with a closed axion string to measure the field
excursion. The impossibility of such a scenario is one
candidate for a magnetic axion WGC.

H. Repulsive force conjecture

The WGC was inspired by the idea that gravity should be
weaker than any gauge force. The previously descibed
definition, however, deals not with the relative strength of
gravity against other forces but rather with the notion of
superextremal particles. These two notions agree if the only
forces are gravity and electromagnetism: a particle is super-
extremal if and only if the long-range electromagnetic
repulsion between a pair of such particles is stronger than
their gravitational attraction. In theories with massless scalar
fields, however, this correspondence breaks down, and the
question of whether a particle is superextremal is distinct from
the question of whether or not a pair of such particles will
repel each other at long distances. With this in mind, we thus
define a particle to be self-repulsive if a pair of such particles
repel one another at long distances, and we define the
repulsive force conjecture (RFC) as follows.
Conjecture 8.—RFC. In any theory of a single Abelian

gauge field coupled to gravity, there is a self-repulsive charged
particle (Palti, 2017).
After being emphasized by Palti (2017), Conjecture 8 was
further studied by Lee, Lerche, and Weigand (2019a) and Lüst
and Palti (2018). This statement can be easily generalized
from particles charged under 1-form gauge fields to (P − 1)-
branes charged under P-form gauge fields. The generalization
to theories with more than one gauge field is somewhat subtle;
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see Heidenreich, Reece, and Rudelius (2019) for a further
explanation.
While the RFC and the WGC are distinct conjectures in

the presence of massless scalar fields, close connections
remain; for instance, at the two-derivative level extremal
black holes have a vanishing long-range self-force
(Heidenreich, 2020), and the same towers of charged
particles typically satisfy the tower or sublattice versions
of both conjectures (Heidenreich, Reece, and Rudelius,
2019; Heidenreich and Lotito, 2022).
The idea of gravity as the weakest force has also led to

several variations on a scalar weak gravity conjecture,
proposing that light scalars should always mediate forces
stronger than gravity for some particles (Li et al., 2007;
Palti, 2017; Lüst and Palti, 2018; Gonzalo and Ibáñez,
2019). Such conjectures can lead to interesting conse-
quences, including for phenomenology and cosmology.
However, because they do not involve gauge fields and
have no connection to black hole extremality, we do not
discuss them further here. Similarly, we do not discuss
weak gravity statements related to higher-spin particles, for
which there are sharp bounds from causality (Kaplan and
Kundu, 2021).
Here we focus primarily on the WGC and the notion of

superextremality, but much of our analysis applies equally
well to the RFC and the notion of self-repulsiveness. We stress
once again that these conjectures are equivalent (and the
notions of superextremality and self-repulsiveness are equiv-
alent) in the absence of scalar fields.

IV. EVIDENCE FOR THE WGC

The WGC was originally inspired by the idea that non-
supersymmetric extremal black holes should be able to
decay. As we have discussed, this motivation is not
compelling, since there is no obvious reason why stable
extremal black holes present a problem for a theory.
Nonetheless, this motivation seems to have gotten people
to start digging in the right place since there have been a
number of lines of evidence to date that support the WGC
and its variants. In this section, we focus on four such lines:
an argument from dimensional reduction, examples in string
theory, a general argument from modular invariance in
perturbative string theory, and the relation between the
WGC and the swampland distance conjecture (Ooguri
and Vafa, 2007).

A. Dimensional reduction

One approach to assessing the validity of the WGC is to
examine its internal consistency under dimensional reduc-
tion (Heidenreich, Reece, and Rudelius, 2016); similar
checks under T duality were carried out by Brown et al.
(2015). Our starting point is the Einstein-Maxwell-
dilaton action (10) for a P-form gauge field Aμ1;…;μP in D ¼
dþ 1 dimensions. We could in principle include
additional terms in the low-energy action, such as Chern-
Simons terms, but for our purposes the previous action
will suffice.

1. Preservation of the p-form WGC bound

We consider a dimensional reduction ansatz of the form

ds2 ¼ eλðxÞ=ðd−2Þdŝ2ðxÞ þ e−λðxÞdy2; ð39Þ

where y ∼ yþ 2πR. For now, we do not include a Kaluza-
Klein photon in our dimensional reduction ansatz, but we do
so later in this section. The coefficients of λðxÞ in the
exponentials have been carefully chosen so that the dimen-
sionally reduced action is in the Einstein frame; i.e., there is no
kinetic mixing between λ and the d-dimensional metric,

1

2κ2D

Z
dDx

ffiffiffiffiffiffi
−g

p
RD

→
1

2κ2d

Z
ddx

ffiffiffiffiffiffi
−ĝ

p
Rd −

1

2

Z
ddx

ffiffiffiffiffiffi
−ĝ

p
Gλλð∇λÞ2; ð40Þ

where

1

κ2d
¼ Md−2

d ¼ ð2πRÞMD−2
D ; ð41Þ

GðdÞ
λλ ¼ d − 1

4κ2dðd − 2Þ ¼ Md−2
d

d − 1

4ðd − 2Þ : ð42Þ

Upon dimensional reduction, the P-form gauge field in D
dimensions gives rise to both a P-form gauge field and a
p ¼ ðP − 1Þ-form gauge field in d dimensions, obtained,
respectively, by taking all of the legs of the gauge field to
lie in noncompact directions, or by taking one leg to wrap the
compact S1 direction. The gauge couplings of the two gauge
fields are given, respectively, by

e2P;d ¼
1

2πR
e2P;D; e2p;d ¼ ð2πRÞe2P;D: ð43Þ

Similarly, a charged (P − 1)-brane in D dimensions reduces
to both a (P − 1)-brane and a (p − 1)-brane, obtained,
respectively, by taking the brane to lie exclusively in non-
compact dimensions or by taking the brane to wrap the
compact direction. The tensions of these branes are given,
respectively, by

TðdÞ
P ¼ TðDÞ

P ; TðdÞ
p ¼ ð2πRÞTðDÞ

P : ð44Þ

Recall from Eqs. (14) and (13) that the WGC bound is
modified by the exponential coupling of the radion to the
Maxwell term. The Maxwell term of the P-form gauge
field couples to a linear combination of both ϕ and the radion
λ, and it is useful to rewrite these scalar fields in terms of
two canonically normalized fields σ and ρ, the former of
which decouples from the Maxwell term and the latter
of which couples to it as e−αP;dρF2

Pþ1. The coefficient αP;d
is then given by

α2P;d ¼ α2P;D þ 2P2

ðd − 1Þðd − 2Þ : ð45Þ

Equation (45) can be rewritten as
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α2P;d
2

þ Pðd − P − 2Þ
d − 2

¼ α2P;D
2

þ PðD − P − 2Þ
D − 2

; ð46Þ

which by Eq. (13) implies

γP;dðαP;dÞ ¼ γP;DðαP;DÞ; ð47Þ

from which we conclude that the (P − 1)-brane satisfies the
P-form WGC bound (14) in D dimensions if and only if it
satisfies the P-form WGC bound in d dimensions: in other
words, the WGC is exactly preserved under dimensional
reduction.
A similar story applies to the case of the wrapped brane: a

particular linear combination of ϕ and λ couples to F2
pþ1,

which ultimately leads to the coefficient

α2p;d ¼ α2P;D þ 2ðd − p − 2Þ2
ðd − 1Þðd − 2Þ : ð48Þ

Equation (48) can be rewritten as

α2p;d
2

þ pðd − p − 2Þ
d − 2

¼ α2P;D
2

þ PðD − P − 2Þ
D − 2

; ð49Þ

which by Eq. (13) implies

γp;dðαp;dÞ ¼ γP;DðαP;DÞ; ð50Þ

so again the WGC bound is exactly preserved. The (P − 1)-
brane satisfies the P-formWGC bound inD dimensions if and
only if it satisfies the p-form WGC bound in d dimensions
after wrapping on S1.

2. Kaluza-Klein modes and a violation of the CHC

We now add a Kaluza-Klein photon to our dimensional
reduction ansatz,

ds2 ¼ eλðxÞ=ðd−2Þdŝ2ðxÞ þ e−λðxÞðdyþ RB1Þ2; ð51Þ

where y ≅ yþ 2πR and B1 is normalized so that the Kaluza-
Klein (KK) modes carry integral charges. The dimensionally
reduced action is then given by

S ¼
Z

ddx

ffiffiffiffiffiffi
−ĝ

p
2κ2d

�
R̂d −

d − 1

4ðd − 2Þ ð∇λÞ
2

−
R2

2
e½−ðd−2Þ=ðd−2Þ�λH2

2

�
; ð52Þ

where H2 ¼ dB1. From Eq. (52), we can read off the KK
photon gauge coupling and the radion-KK photon coupling
such that

1

e2KK
¼ 1

2
R2Md−2

d ; αKK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þ
d − 2

r
: ð53Þ

In Eq. (53) αKK is defined by the coupling to the normalized
radion λ̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðd − 1Þ=2ðd − 2Þ�p

λ.

The WGC bound for a particle with n units of KK charge is
then given by Eq. (14) as

�
α2KK
2

þ d − 3

d − 2

�
m2 ≤ e2KKn

2Md−2
d : ð54Þ

This means that γKK ¼ 2, and the WGC bound is simply

m2 ≤
n2

R2
: ð55Þ

This can be compared to the spectrum of KK modes for a
particle of mass m0 in the parent theory,

m2 ¼ m2
0 þ

n2

R2
; n ∈ Z; ð56Þ

where the KK charge n specifies the momentum n=R of the
particle along the compact circle. We see, therefore, that KK
modes of massless particles saturate the WGC bound, whereas
KK modes of uncharged massive particles violate the WGC
bound. The D-dimensional parent theory necessarily has at
least one massless particle (namely, the graviton), so the
dimensionally reduced theory necessarily has superextremal
particles charged solely under the KK photon. Indeed, each of
the KK modes of the graviton is superextremal, so there is
actually an infinite tower of superextremal KK modes, as
required by the tower or sublattice WGC.
What happens, however, if we include a Uð1Þ in the parent

theory in D dimensions? The resulting d-dimensional theory
will now have two Uð1Þ gauge fields, and the WGC is
equivalent to the CHC introduced in Sec. III.C.
In the parent theory, a particle of charge q and mass m is

superextremal when the dimensionless charge-to-mass ratio

ZD ≔ ðq=mÞeDγ−1=2D MðD−2Þ=2
D has a magnitude jZDj ≥ 1.

Likewise, in the dimensionally reduced theory a particle of
charge ðq; qKKÞ and mass m is superextremal when the
dimensionless charge-to-mass ratio vector

Z⃗d ≔
�
q
m
edγ

−1=2
d Mðd−2Þ=2

d ;
qKK − qθ=2π

mR

�
ð57Þ

has a length jZ⃗dj ≥ 1, where θ ¼ H
A is the vacuum expect-

ation value (VEV) of the axion descending from the gauge
field and γd ¼ γD, thereby accounting for the radion coupling
as previously discussed.
The nth KK mode of a particle of charge q and mass m0 in

the parent theory has a mass m2 ¼m2
0þð1=R2Þðn−qθ=2πÞ2,

and hence the charge-to-mass vector

Z⃗ðnÞ
d ¼ ðμZD; xnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 þ x2n
p ; μ ¼ m0R; xn ¼ n −

qθ
2π

: ð58Þ

The charge-to-mass vectors of the KK modes, along with the
convex hull that they generate, are plotted in Fig. 7 (top panel).
The vectors lie on the ellipsoid Z2

d1=Z
2
D þ Z2

d2 ¼ 1, which lies
outside the unit disk provided that jZDj ≥ 1, so each KK mode
of a particle that was superextremal in the parent theory is
superextremal.
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However, the fact that each individual KK mode is super-
extremal does not ensure that the convex hull condition is
satisfied. As shown in Fig. 7 (bottom panel), as we take the
limit R → 0 the KK modes of the particle are pushed closer
and closer to the point ð0; 1Þ. Below some critical value of R,
the convex hull condition is violated. In fact, if ZD ¼ 1, thus
saturating the WGC bound, then the convex hull condition
will be violated for any value of R. Starting with a theory that
satisfies the WGC in D dimensions, we have arrived at a
theory that violates the WGC in d dimensions.
It is important to realize that this does not represent a

counterexample to the WGC, because there is no good reason
to think that the D-dimensional theory that we started with is
in the landscape as opposed to the swampland. Rather, we
showed that the WGC in D dimensions alone is not sufficient
to ensure that the WGC holds in d dimensions. If we want the
WGC to hold in d dimensions, we need to impose a stronger
constraint than the WGC in D dimensions.
To identify such a constraint, note that a violation of the

convex hull condition for sufficiently small R will arise
whenever the number of superextremal particles in D dimen-
sions is finite. To satisfy the WGC in d dimensions for all R,
therefore, requires an infinite number of superextremal par-
ticles in D dimensions. Indeed, it is not difficult to see that the
tower WGC, as defined in Sec. III.D, is a sufficient condition
for ensuring that the WGC is satisfied in the dimensionally

reduced theory. Indeed, this observation is what originally
inspired the tower or sublattice WGC. There are at present
no known counterexamples to either of these conjectures in
string theory.
One can further verify that the tower WGC is satisfied in d

dimensions provided that it is satisfied in D dimensions (and
likewise for the sublattice WGC), so the tower WGC and
sublattice WGC are automatically preserved under dimen-
sional reduction, unlike the mild WGC. The general idea that a
proposed consistency criterion in quantum gravity should
apply not only to a single vacuum but to all of its compacti-
fications, whose application to the WGC discussed here
originated in the work of Heidenreich, Reece, and Rudelius
(2016), was later named the total landscaping principle by
Aalsma et al. (2021) and has been successfully applied in
several contexts (Montero, Uranga, and Valenzuela, 2017;
Heidenreich, Reece, and Rudelius, 2019; Aalsma et al., 2021;
Cremonini et al., 2021; Rudelius, 2021).

B. Higgsing

We have just seen that the mild WGC is not automatically
preserved under compactification: starting with a theory that
satisfies the WGC, we can produce a theory that violates the
WGC by Kaluza-Klein reduction on a circle. This points
toward a stronger version of the WGC, such as the tower or
sublattice WGCs, which are automatically preserved.
In this section, we see that a similar issue arises due to the

process of Higgsing. Starting with a theory that satisfies
certain forms of the WGC, we can produce a theory that
violates these forms of the conjecture by Higgsing. However,
other versions of the WGC will be preserved. In particular, we
show, following Saraswat (2017), that the mild WGC, tower
WGC, and sublattice WGC are preserved (barring a special
fine-tuning that we do not expect to occur). In contrast, the
statements that the lightest charged particle should be super-
extremal or that a particle of smallest charge should be
superextremal are not preserved under Higgsing.
Consider a theory with two Uð1Þ gauge fields A and B.

For simplicity, we assume that their gauge couplings are
identical (gA ¼ gB ¼ g) and that we are working in four
dimensions. Suppose that there are two superextremal
particles with masses with m1 < m2 and charges q1 ¼
ð1; 0Þ and q2 ¼ ð0; 1Þ, respectively. Let these be the lightest
charged particles in the theory.
Next suppose that there is a scalar field of charge ðn; 1Þ that

acquires a VEV v. Under this process, the gauge boson H ¼
nAþ B acquires a mass mH ¼ gv

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p
and the gauge

boson L ¼ ðA − nBÞ=ðn2 þ 1Þ remains massless, with gauge
coupling geff ¼ g=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p
. After Higgsing, the particle of

charge q1 ¼ ð1; 0Þ has quantized charge 1 under the massless
gauge field L. It still has mass m1, so for n sufficiently large
we find that this particle is no longer superextremal after
Higgsing, since geff ≃ g=n ≪ m1=MPl.
On the other hand, the particle of charge q2 ¼ ð0; 1Þ has

quantized charge −n, so it remains superextremal after
Higgsing. Thus, the mild version of the WGC remains
satisfied in this theory. However, since we assumed that
m1 < m2, the lightest charged particle is no longer

FIG. 7. Top panel: the Kaluza-Klein modes of a superextremal
particle with charge qF in dþ 1 dimensions are superextremal
after reduction on S1, as their charge-to-mass vectors Z⃗ lie outside
the elliptical black hole region. Bottom panel: if the S1 is
sufficiently small, the convex hull condition is violated and
the Kaluza-Klein modes of the superextremal particle in question
do not satisfy the WGC.
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superextremal and there is no longer a superextremal particle
of charge 1. We see that the strong forms of the WGC that
demand that either the lightest charged particle or the particle
of smallest charge should be superextremal are not automati-
cally preserved under Higgsing: they are violated here in the
Higgsed theory even though they were satisfied in the un-
Higgsed theory.
As with the previous reasoning that led to the tower or

sublattice WGCs, one might be tempted to search for stronger
conjectures that ensure that the lightest charge particle and/or
particle of smallest charge automatically remain superextre-
mal, even after Higgsing. However, in Sec. IV.C, we see an
explicit example in string theory in which the latter versions of
the WGC are violated, so these conjectures should simply be
discarded rather than fixed up with an even stronger con-
sistency condition.
In the Higgsing example considered here, the mild form of

the WGC is preserved by the Higgsing process. Similarly, if
we assume that the tower or sublattice WGCs are satisfied
before Higgsing, we find that they are still satisfied after
Higgsing by the tower of particles with charge proportional to
ðn; 1Þ. However, this is no longer automatically true when we
generalize our theory. If we assume that there is mixing in the
charge lattice between the two Uð1Þ’s, such that the canoni-
cally normalized charge vectors take the forms ðgA; 0Þ and
ðg1B; g2BÞ, with g1B=gA irrational. If we assume that the sublattice
WGC is exactly saturated before Higgsing so that there are no
particles in the theory charged under B strictly below the
WGC bound, then by giving a VEV to a scalar field with
charge 0 under B we find that there are no superextremal
particles in the Higgsed theory. In this special case, the tower,
sublattice, and mild forms of the WGC are all violated after
Higgsing.
However, this special scenario is not likely in practice. It is

true that the WGC bound may be exactly saturated in much or
all of the charge lattice: this happens, for instance, in theories
with extended supersymmetry, where BPS bounds may forbid
strictly superextremal particles in certain directions in the
charge lattice. However, the same BPS bound ensures that any
Higgs field with the required charges is massive; hence, the
previously discussed problematic Higgsing scenario does
not arise.
We conclude that the tower or sublattice WGC and the

mild form of the WGC are unlikely to be violated by
Higgsing in any UV-complete theory of quantum gravity.
However, even in the example considered previously in this
section, the sublattice of superextremal particles after
Higgsing may be much sparser than the sublattice of super-
extremal particles before Higgsing, with indices that differ
by a factor of n. Relatedly, the superextremal particle of
charge q2 ¼ ð0; 1Þmay have a mass m2 that is well above the
magnetic WGC scale of the IR theory: Λ ∼ geffMPl ∼ gMPl=n
(Saraswat, 2017); see also Furuuchi (2018). To ensure that
the lightest superextremal particles do not have parametri-
cally large charge, one must argue for an Oð1Þ upper bound
on the charge n of the Higgs field in this theory. Little work
has gone into arguing for such an upper bound [outside of
specific string theory contexts (Ibáñez and Montero, 2018)],
although it would be a worthwhile direction for future
research.

C. String theory examples

1. Heterotic string theory

As a first example, we consider SOð32Þ heterotic string
theory in ten dimensions. The low-energy effective action in
the Einstein frame is given by (Polchinski, 2007)

1

2g2sκ210

Z
d10x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μΦ∂

μΦ
�

−
1

2g2sg210

Z
d10x

ffiffiffiffiffiffi
−g

p
e−ϕ=2TrVðjF2j2Þ; ð59Þ

where TrV is the trace in the fundamental representation,
normalized such that TrVðTaTbÞ ¼ 2δab for the basis of
generators Ta.
We may then define

8πGN ¼ M−8
10 ¼ g2sκ210 ¼ 1

2
g2sð2πÞ7α04; ð60Þ

e2 ¼ 1
2
g2sg210 ¼ g2sð2πÞ7α03; ð61Þ

where e2 is the coupling constant associated with any single
Uð1Þ in the maximal torus. Notice that our dilaton coupling
parameter is α ¼ 1=2, which by Eq. (13) gives γ ¼ 1.
The charge lattice of the SOð32Þ heterotic string consists of

all charge vectors of the following form:

q⃗ ¼ ðq1; q2;…; q16Þ or q⃗ ¼ ðq1 þ 1
2
;…; q16 þ 1

2
Þ;

with qi ∈ Z;
X
i

qi ∈ 2Z: ð62Þ

This lattice is even, i.e., jqj2 ∈ 2Z for any q⃗ in the lattice.
States must satisfy the level-matching condition

α0

4
m2 ¼ NL þ 1

2
jq⃗j2 − 1 ¼ NR −

1

2
; ð63Þ

where NL;R are the occupation numbers of the left- and right-
moving oscillators, with NL a non-negative integer and NR a
positive half integer. Given any choice of NL ≥ 0 and q⃗ ≠ 0,
we can always choose NR to satisfy the level-matching
condition. Thus, the lightest state with a given q⃗ ≠ 0 has

m2 ¼ 2

α0
ðjq⃗j2 − 2Þ: ð64Þ

The charge-to-mass vector of this state then obeys

jZ⃗j2 ¼ 2

α0

���� q⃗m
����2 ¼ jq⃗j2

jq⃗j2 − 2
> 1; ð65Þ

which shows that the state is superextremal. This means that
there is a superextremal particle in every representation of the
SOð32Þ gauge group, so the theory satisfies the non-Abelian
sublattice WGC (in fact, it satisfies even the lattice WGC).
Compactifying this theory on Tn and turning on Wilson lines,
the gauge group is generically broken to its Cartan subgroup,
and the resulting theory will satisfy the lattice WGC for
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Abelian gauge groups. The same is true for E8 × E8 heterotic
string theory.

2. F theory

Consider F theory compactified to six dimensions on an
elliptically fibered Calabi-Yau threefold Y3 with base B2. A
gauge symmetry G arises from a stack of 7-branes wrapping a
holomorphic curve C in the base, and the gauge coupling and
6D Planck scale are related to the volume of B2 and C via

M4
6 ∼ volðB2Þ;

1

g2YM
∼ volðCÞ: ð66Þ

Lee, Lerche, and Weigand (2018) showed that the limit
gYM → 0 with M6 finite can be achieved only if the base
B2 contains a rational curve C0 whose volume goes to zero as
volðCÞ → ∞. A D3-brane wrapping C0 gives rise to a string
with string states charged under the gauge group, and in the
tensionless limit volðC0Þ → 0 this string is identified with a
heterotic string in a dual description.
In some cases, such as when the base B2 is a Hirzebruch

surface, the dual heterotic string is weakly coupled. In this
case, the sublattice WGC follows from modular invariance, as
we show in Sec. IV.D. If the heterotic string is strongly
coupled, however, it is not so simple to compute the spectrum
of string states, and the best that one can do is to compute an
index of charged BPS string states using the elliptic genus.
Using properties of the elliptic genus, Lee, Lerche, and
Weigand (2018) argued that the sublattice WGC is necessarily
satisfied with respect to the gauge group G. This was
strengthened by Cota, Klemm, and Schimannek (2021) to
an argument that 6D F-theory compactifications on Calabi-
Yau threefolds in fact satisfy the non-Abelian sublattice WGC
of Sec. III.E.
Subsequent work (Lee, Lerche, and Weigand, 2019b;

Klaewer et al., 2021) analyzed the elliptic genera of tension-
less strings coming from wrapped D3-branes in 4D theories
coming from F theory compactified on elliptically fibered
Calabi-Yau fourfolds. For generic fluxes, properties of the
elliptic genus suffice to prove the sublattice WGC. For
nongeneric fluxes, there are still superextremal string states,
but (unlike in six dimensions) these superextremal particles do
not necessarily furnish a sublattice. Indeed, Lee, Lerche, and
Weigand (2019b) identified an example of an F-theory
compactification for which the elliptic genus detects no
superextremal string states of charge 4q⃗ for any q⃗ in the
charge lattice. This does not necessarily imply a counterex-
ample to the sublattice WGC, however, as there are other
sectors of charged states not visible to the elliptic genus, and it
is conceivable that these sectors may contain the requisite
superextremal particles to satisfy the sublattice WGC.

3. Counterexample to the lattice WGC

We have seen a number of examples that satisfy the WGC,
as well as its stronger variants. We now present an example
that violates a number of proposed strong forms of the WGC.
Nonetheless, it still satisfies the WGC, tower WGC, and
sublattice WGC.

The example in question comes from compactifying type II
string theory on the T6=ðZ2 × Z0

2Þ orbifold with orbifold
action defined by the two generators:

θ∶ θ4 ↦ θ4 þ π; θ5 ↦ θ5 þ π;

ω∶ θ6 ↦ θ6 þ π; θi ↦ −θi; i ¼ 1;…; 4: ð67Þ

In Eq. (67) the T6 in question is parametrized by the angles
θi ≅ θi þ 2π, where i ¼ 1;…; 6. For simplicity we take the
metric to be diagonal in the θi basis. Note that the ω generator
acts as a “rototranslation”: a rotation combined with a trans-
lation in a different direction. This rototranslation acts freely,
and thus the orbifold geometry is smooth. As a result, the
compactification can be understood within supergravity, as
well as on the string world sheet.
For our purposes, it suffices to concentrate on the θ4, θ5,

and θ6 dimensions of T6. Each of these dimensions has a
gauge field associated with Kaluza-Klein momentum around
the S1; we denote them, respectively, as A4

μ, A5
μ, and A6

μ. The
action of ω projects the first of these fields out of the spectrum,
leaving A5

μ and A6
μ as the only Kaluza-Klein gauge bosons in

the theory.
Next consider a field ϕ on T3 parametrized by θ4, θ5, and

θ6. Its field decomposition is given by

ϕðxμ; θ4; θ5; θ6Þ ¼
X

ϕn4;n5;n6ðxμÞein4θ4þin5θ5þin6θ6 : ð68Þ

The orbifold action imposes the identifications

θ∶ ϕn4;n5;n6ðxÞ ¼ ð−1Þn4þn5ϕn4;n5;n6ðxÞ;
ω∶ϕn4;n5;n6ðxÞ ¼ ð−1Þn6σðϕÞϕ−n4;n5;n6ðxÞ: ð69Þ

In Eq. (69) σðϕÞ denotes an additional sign that may arise,
depending on the nature of the field ϕ: for instance, the
graviton, A5

μ, and A6
μ have σ ¼ 1, whereasWμ has σ ¼ −1 due

to the action of ω (and is therefore projected out of the
spectrum).
Now we look at the sublattice of the charge lattice

consisting of the charges ðn5; n6Þ under the surviving
Kaluza-Klein fields A5

μ and A6
μ. For n5 and n6 both even,

Kaluza-Klein modes of the graviton with n4 ¼ 0 are projected
in and saturate the extremality bound, so there are indeed
superextremal particles of these charges. For n6 odd and n5
even, a mode will be projected out unless it has σ ¼ −1, but
KK modes of the gauge field A4

μ satisfy this condition and
similarly saturate the extremality bound. For odd n5, however,
the action of θ imposes the constraint that n4 must be odd,
which leads to an additional contribution of ðn4=RÞ2 to the
mass squared of such a mode:

m2 ¼
�
n5
R5

�
2

þ
�
n4
R4

�
2

; n5 odd; n4 odd: ð70Þ

This additional contribution renders such modes subextremal:
there are no superextremal particles of charge ðn5; n6Þ for n5
odd. This result is summarized in Table I.
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This theory represents a counterexample to the lattice
WGC: there are charges in the charge lattice without super-
extremal particles, namely, any charge ðn5; n6Þ with n5 odd.
By moving in the moduli space of the theory, the sizes of the
Ri of the cycles of the torus can be adjusted freely, and for
certain values of the moduli additional proposed strong forms
of the WGC may also be violated. For example, taking R4 ≫
R5 > R6 and RI ≫

ffiffiffiffi
α0

p
, the winding modes become heavy

and the lightest charged particle in the spectrum is subex-
tremal with ðn5; n6Þ ¼ ð1; 0Þ. This particle is also the state of
smallest charge in its direction in the lattice. Thus, this theory
represents a counterexample to both of the strong forms of the
WGC considered by AMNV (Arkani-Hamed, Motl et al.,
2007): neither the lightest charged particle nor the particle of
smallest charge in the n5 direction in the lattice are super-
extremal. Furthermore, the masses of the particles of odd A5

charge n violate the convexity condition:

2mn ≥ mnþ1 þmn−1; ð71Þ

where mn is the mass of the lightest particle of charge n. If
there is an AdS analog of this example, it would violate the
strong forms of the Abelian convex charge conjecture of
Aharony and Palti (2021) introduced in Sec. III.F.
On the other hand, the tower WGC and the sublattice WGC

are satisfied in this example: given any charge q⃗, there is a
superextremal particle of charge 2q⃗. The sublattice of super-
extremal particles therefore has coarseness 2.
Finally, we remark on a puzzling feature of this example: at

tree level in string perturbation theory, the lightest particles
with odd n5 are in fact stable (Heidenreich, Reece, and
Rudelius, 2017). This suggests that black holes of odd n5
charge cannot decay, in violation of the original motivation of
the WGC. It is possible that loop corrections could modify the
spectrum so that this conclusion could be avoided; more work
is needed to see whether this possibility is actually realized.
A number of other counterexamples to the lattice WGC

were identified by Heidenreich, Reece, and Rudelius (2017).
These counterexamples all involve orbifold compactifications
of string theory, and all of them satisfy the sublattice WGC
with a superextremal sublattice of coarseness no larger than 3.
Furthermore, in all such examples the majority of sites in the
charge lattice have superextremal particles (even sites outside
the superextremal sublattice). This means that when it comes
to the existence of superextremal particles quantum gravity
seems to impose even stronger constraints than the tower or
sublattice WGC; such constraints are seldom discussed,
simply because it is not easy to formulate them as precise
mathematical statements.

4. Axions in string theory

Recall that the WGC for axions (26) implies an upper
bound on the axion decay constant f in terms of the instanton
action S,

f ≲MPl

S
: ð72Þ

Within string theory, the condition S≳ 1 is typically required
for perturbative control. For instance, the instanton action may
represent the size of some compactification cycle in string
units, so the α0 expansion breaks down when this cycle is
smaller than the string scale. The WGC for axions thus
amounts to the condition that f ≲MPl within the perturbative
regime of string theory.
In fact, this condition was famously pointed out by Banks

et al. (2003) even before the original AMNV paper on the
WGC. In particular, Banks et al. (2003) considered axions in
heterotic, type I, type IIA, type IIB, and M theory compacti-
fied to four dimensions. In all cases, these axions arise either
as the periods of a p-form Cp over a p-cycle Σp of the
compactification manifold

H
Σp

Cp or as the dual of a 2-form

gauge field Bμν in four dimensions. In all cases, their decay
constants were found to be bounded from above8 as f ≲MPl.
More recently a number of works have taken advantage of

an improved understanding of Calabi-Yau compactifications
to investigate the prospects for super-Planckian decay con-
stants in type IIA or IIB string theory with greater precision
(Montero, Uranga, and Valenzuela, 2015; Palti, 2015;
Rudelius, 2015a; Bachlechner, Long, and McAllister, 2016;
Brown et al., 2016; Conlon and Krippendorf, 2016; Junghans,
2016; Hebecker, Henkenjohann, and Witkowski, 2017a;
Long, McAllister, and Stout, 2017; Zyla et al., 2020). In
all cases, the axion decay constants appear to be bounded from
above by f ≲MPl. This remains true even in theories with
multiple axions; see Sec. VII.A.5.
The size of decay constants allowed in string theory is

important because models of so-called natural inflation
require f > MPl. From the perspective of inflation, however,
we are interested not only in the kinematic question of how
large an axion decay constant can be but also in the dynamical
question of how an axion rolls in its potential. Obtaining the
potential of an axion in a type IIB compactification is not
simple, as it requires information about the sheaf cohomology
of curves or divisors of the Calabi-Yau compactification
manifold, which is not known in general. Some progress in
understanding the relevant sheaf cohomology was made by
Braun et al. (2020). Finally, note that bounds on axion decay
constants do not directly constrain axion monodromy models
(Silverstein and Westphal, 2008; McAllister, Silverstein, and
Westphal, 2010).
The axion WGC can also be studied outside of the context

of specific string constructions. In general, the breakdown of
the instanton expansion that arises when S≲ 1 is always due
to the presence of new light states. This has been argued to

TABLE I. Superextremal particles in type II compactified on the
T6=ðZ2 × Z0

2Þ orbifold exist for n5 even but not for n5 odd. As a
result, the lattice WGC is violated, whereas the sublattice WGC is
satisfied with coarseness 2.

n6 or n5 Even Odd

Odd ✗ ✗
Even ✓ ✓

8Banks et al. (2003) incorrectly claimed the model-independent
heterotic axion, i.e., the 4D dual of Bμν, has f ¼ MPl. In fact, it has
f ∼M2

s=MPl; see Svrcek and Witten (2006).
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follow from the general Lee-Yang theory of phase transitions
(Stout, 2022). If the potential VðθÞ is a smooth function of the
axion value θ, then its harmonics asymptotically decay as
expð−nSÞ, where S is determined by the location of the
nearest singularity ζ� to the unit circle for the complexified
coordinate ζ ¼ expðiθÞ. This asymptotic notion of S has been
suggested to define the correct formulation of the axion WGC
in the limit when instantons are not well-defined semiclassical
objects (Stout, 2022).

D. Modular invariance

Thus far we have seen that the WGC and its tower versions
hold true in a large class of examples in string orM theory. In
this section, we present a general argument for the sublattice
WGC in 2D CFTs on the basis of modular invariance. This
result can be viewed as either (a) a proof of the sublattice
WGC in perturbative string theory viewing the 2D CFT as the
world sheet theory (Heidenreich, Reece, and Rudelius, 2017)
or (b) a proof of the sublattice WGC in AdS3 viewing the 2D
CFT as the boundary dual of an AdS3 theory (Montero, Shiu,
and Soler, 2016).
A 2D CFT has a partition function of the form9

Zðμ; μ̃; τ; τ̄Þ≡ TrðqΔq̄Δ̃yQỹQ̃Þ; ð73Þ

where Δ ¼ L0 − c=24, Δ̃ ¼ L̃0 − c̃=24, Q and Q̃ are the
charges carried by left and right movers under a conserved
current, q ¼ e2πiτ, y ¼ e2πiμ, and ỹ ¼ e2πiμ̃. The partition
function satisfies

Zðμþ ρÞ ¼ ZðμÞ ∀ ρ ∈ Γ�
Q; ð74Þ

where Γ�
Q ¼ fðρ; ρ̃ÞjρQ − ρ̃ Q̃ ∈ Zg is the dual lattice to the

charge lattice.
Modular transformations form a group SLð2;ZÞ generated

by the T transformation τ → τ þ 1 and the S transformation
τ → −1=τ. Following Benjamin et al. (2016), we find that
modular transformations act on the partition function as

Zðμ; τ þ 1Þ ¼ Zðμ; τÞ;
Zðμ=τ;−1=τÞ ¼ eπikðμ2=τÞ−πik̃ðμ̃2=τ̄ÞZðμ; τÞ: ð75Þ

In Eq. (75) k and k̃ are related to the leading term in the
current-current operator product expansion,

JLðzÞJLð0Þ ∼
k
z2

þ � � � ; JRðz̄ÞJRð0Þ ∼
k̃
z̄2

þ � � � : ð76Þ

Unitarity implies that k and k̃ are non-negative, and positive
for nontrivial currents. For the case of multiple currents, this
becomes

JaLðzÞJbLð0Þ∼
kab

z2
þ�� � ; JãRðz̄ÞJb̃Rð0Þ∼

k̃ã b̃

z̄2
þ��� : ð77Þ

kab and k̃ab can be thought of as metrics, which raise and
lower indices and define inner products. Thus, we may write

μ · ρ≡ μakabρb, μ ·Q≡ μaQa, and Q̃2 ≡ Q̃ãk̃−1ã b̃Q̃
b̃.

Next we combine the periodicity condition (74) with the S-
duality transformation (75), which implies

Zðμþ τρ; τÞ ¼ exp½−2πiðμ · ρÞ − πiτρ2 þ 2πiðμ̃ · ρ̃Þ
þ πiτρ̃2�Zðμ; τÞ: ð78Þ

The partition function encodes the spectrum of the theory,
which means that the quasiperiod μ → μþ τρ must map the
spectrum to itself. This occurs thanks to a rearrangement of
simultaneous changes in charge and conformal weight, a
phenomenon known as spectral flow (Schwimmer and
Seiberg, 1987). To describe this, we define

T ≡ Δ − 1
2
Q2; T̃ ≡ Δ̃ − 1

2
Q̃2; ð79Þ

which allows us to rewrite Eq. (78) as

Z ¼ TrðqTþð1=2ÞQ2

q̄T̃þð1=2ÞQ̃2

yQỹQ̃Þ
¼ TrðqTþð1=2ÞðQþρÞ2 q̄T̃þð1=2ÞðQ̃þρ̃Þ2yQþρỹQ̃þρ̃Þ; ð80Þ

where we have introduced the shorthand notation

yQ ≡ exp½2πiμaQa�; ỹQ ≡ exp½−2πiμ̃aQ̃a�: ð81Þ

By expanding the traces in Eq. (80) in powers of Q and
matching the first and second lines of the equation, we find
that the spectrum must be invariant under

Q → Qþ ρ; Q̃ → Q̃þ ρ̃; ð82Þ

with T and T̃ held fixed. This implies

Γ�
Q ⊆ ΓQ; ð83Þ

i.e., the dual lattice Γ�
Q is a sublattice of the charge lattice ΓQ.

From here, beginning with the graviton, which has Δ ¼ Δ̃ ¼
0 and Q ¼ Q̃ ¼ 0, we use invariance of the spectrum under
the transformation (82) to deduce the existence of a state with

Δ ¼ Δ̃ ¼ α0

4
m2 ≤ max

�
1

2
Q2;

1

2
Q̃2

�
ð84Þ

for all Q ∈ Γ�
Q. One can show that these states are super-

extremal (Heidenreich and Lotito, 2022), which means that
the sublattice Γ�

Q is entirely populated by superextremal
particles, and the sublattice WGC is satisfied.

E. Relation to the swampland distance conjecture

Ooguri and Vafa (2007) introduced a number of swampland
conjectures regarding the moduli space M of a consistent

9Here and to follow we use μ̃ rather than μ̄ as a reminder that μ and
μ̃ are independent variables. Indeed, in many cases, such as the world
sheet CFT of heterotic string theory, the number of left-moving and
right-moving currents is different, so there is no way to identify the
chemical potentials in complex conjugate pairs.
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theory of quantum gravity. First, they conjectured that such a
moduli space is parametrized by vacuum expectation values of
massless scalar fields. Second, they conjectured that such a
moduli space has an infinite diameter: there are points at
arbitrarily large geodesic distance. Third, they introduced
what is now known as the swampland distance conjecture
(SDC); see also Klaewer and Palti (2017).
Conjecture 9.—Swampland distance conjecture.

Compared to the theory at some point p0 ∈ M, the theory
at a point p ∈ M has an infinite tower of particles, each with a
mass scaling as

m ∼ exp½−λdðp; p0Þ�; ð85Þ

where dðp; p0Þ is the geodesic distance in M between p and
p0 and λ is some order-1 number in Planck units.
Consequently, in the infinite distance limit dðp; p0Þ → ∞ an
infinite tower of states becomes light.
The appearance of an infinite tower of light particles is

reminiscent of the tower WGC, as well as the tower RFC, both
of which require that an infinite tower of particles become
light in the limit of vanishing gauge coupling. Indeed, in many
contexts these conjectures are satisfied simultaneously by the
same tower of particles. In 4D theories with N ¼ 2 super-
symmetry, for instance, Gendler and Valenzuela (2021)
proved that in any infinite distance limit with a vanishing
gauge coupling there is an infinite tower of charged particles
satisfying

�
q
m

�
2

≥
�
q
m

�
2
����
ext

¼ 1

2

1

M2
4

þ gijμiμj; ð86Þ

where μi is the scalar charge of the particle with respect to the
ith massless scalar field and gij is the inverse metric on moduli
space. The equality on the right-hand side of Eq. (86) implies
an equivalence between the WGC bound and the RFC bound
for these particles: they are superextremal precisely when they
are self-repulsive. This in turn implies gijμiμj ¼ α2m2 for
some Oð1Þ constant α. If the moduli space is one dimensional,
this implies that these states must also satisfy the SDC, with
λ ¼ α. If the moduli space has a dimension greater than 1, the
relationship between λ and α is more complicated, as it
depends on the path taken. However, in a number of examples
considered by Gendler and Valenzuela (2021) the tower
satisfying the tower WGC also satisfies the SDC for some
Oð1Þ constant λ.
It is natural to expect that the towers of particles stipulated

by the tower WGC and the SDC should agree whenever a
point in moduli space of vanishing gauge coupling is also at
infinite distance. It has been shown that all infinite distance
limits in Kähler moduli space in 4D and 5D supergravity
theories descending from type II orM theory on a Calabi-Yau
threefold are associated with vanishing gauge coupling
(Corvilain, Grimm, and Valenzuela, 2019; Heidenreich and
Rudelius, 2021). More generally, it has been conjectured that
every infinite distance limit in moduli space should corre-
spond to the vanishing of some p-form gauge coupling
(Gendler and Valenzuela, 2021) and, more concretely, it
has been conjectured that every infinite distance limit should

correspond either to a decompactification limit (at which point
a tower of KK modes becomes light) or to a tensionless string
limit (Lee, Lerche, andWeigand, 2022b). The latter conjecture
goes by the name of the emergent string proposal and, if true,
suggests that either a 1-form gauge field or a 2-form gauge
field (or both) must become weakly coupled at any infinite
distance limit in moduli space. Further evidence for this
conjecture in the context of 4D N ¼ 1 string compactifica-
tions was provided by Lanza et al. (2021a, 2021b). They
postulated the closely related distant axionic string conjecture,
which states that any infinite distance limit of a 4D N ¼ 1

quantum gravity theory corresponds to the tensionless limit of
a string that is charged under some 2-form gauge field.
Conversely, in compactifications of M theory to five

dimensions, it has been shown that every point of vanishing
gauge coupling is at infinite distance in moduli space
(Heidenreich and Rudelius, 2021). An analogous statement
holds in the context of AdS=CFT: in any superconformal field
theory in d > 2 dimensions, every point on the conformal
manifold at which some sector of the theory becomes free is at
an infinite distance in the Zamolodchikov metric (Perlmutter
et al., 2021). This translates to the statement that the vanishing
of a gauge coupling must occur at infinite distance in the
moduli space of the bulk AdS dual theory. Additional progress
toward classifying infinite distance limits in string compacti-
fications was discussed by Grimm, Palti, and Valenzuela
(2018), Grimm, Li, and Palti (2019), Marchesano andWiesner
(2019), Grimm and Heisteeg (2020), Grimm, Li, and
Valenzuela (2020), Baume and Infante (2021), Álvarez-
García, Kläwer, and Weigand (2022), and Lee, Lerche, and
Weigand (2022a, 2022c).
In the case of infinite distance, weak coupling limits,

therefore, the WGC and SDC can be essentially unified.
More general, qualitative arguments can be given in support of
some sort of unification between these two conjectures: we
elaborate on these arguments in Sec. V.

V. QUALITATIVE ARGUMENTS FOR THE WGC

Having introduced various versions of the WGC and given
some empirical evidence for them, we now turn to the
question of why any of them might be true. In our view
the most compelling arguments of this type are those that are
more qualitative. We do not attempt to reproduce some version
of the WGC in detail but instead share some intuition for why
a statement of this type should hold. In this section we review
several such arguments, and in Sec. VI we review attempts at a
more precise derivation.

A. Emergence

It has long been suspected that spacetime itself must be
emergent in any theory of quantum gravity that is nontrivial
enough to have some kind of black hole thermodynamics. One
simple argument in this vein is that the Bekenstein-Hawking
formula

S ¼ area
4G
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tells us that the maximal entropy in a region of spacetime
scales only like the surface area of the region, which is
different from the volume scaling we have in quantum field
theory (’t Hooft, 1993; Susskind, 1995; Bousso, 2002). This
idea is concretely realized in the AdS=CFT correspondence,
which formulates quantum gravity in asymptotically AdS
spacetime as the quantum mechanics of a dual CFT living on
the asymptotic boundary (Maldacena, 1998). Harlow (2016)
observed that this emergence can be used to motivate a
qualitative version of the WGC. The basic idea is that if
spacetime itself is emergent, then surely any bulk gauge fields
must also be emergent. It is impossible, however, to have an
emergent gauge field without the presence of charged par-
ticles, and moreover these charged particles cannot be
too heavy.
More concretely, we can consider the maximally extended

AdS-Schwarzschild geometry, which in AdS=CFT is dual to
the thermofield double state

jTFDi≡ 1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X

i

e−βEi=2ji�iLjiiR ð87Þ

that lives in the tensor product Hilbert space

H ¼ HL ⊗ HR ð88Þ

of two copies of the CFT on a spatial sphere (Maldacena,
2003a). In the gravity picture this geometry describes a spatial
wormhole connecting two AdS boundaries. If there is a Uð1Þ
gauge field in the gravity description, we therefore can have
Wilson line operators

WLR ¼ e
i
R
cLR

A

that are integrated on a curve cLR that connects the two
boundaries through the wormhole; see Fig. 8. These Wilson
lines, however, are somewhat puzzling from the point of view
of the tensor product Hilbert space (88). In a tensor product
Hilbert space every operator can be written as a sum of
product operators, but WLR does not seem to have such a
decomposition. Indeed, if we try to view it as a product of two
“half-Wilson lines,” these parts are not gauge invariant and
thus should not act on the physical Hilbert space (88). The
way out of this puzzle is that if charged objects exist, we can

indeed split the Wilson line into two gauge-invariant oper-
ators, each of which consists of a Wilson line connecting an
asymptotic boundary to a charged operator; see Fig. 8.
Thus far this has only been an argument for some version of

the completeness hypothesis; we have not yet really used the
emergence of the gauge field. The idea of Harlow (2016) is as
follows: since the gauge field is emergent, there must be some
scale ΛUð1Þ ≤ ΛQG at which the coefficient of the Maxwell
term in the Wilson action flows to zero. Here ΛQG is the scale
at which gravity becomes strongly coupled, which in general
can be much less than MPl if there are many degrees of
freedom. If the infrared value of the Maxwell coupling e is
small, then it must undergo a substantial renormalization
group (RG) flow between the scaleΛUð1Þ, where it is large, and
the mass scale m of the lightest charge particles since below
the scale m the gauge coupling can no longer flow. Therefore,
there can be a small infrared gauge coupling if and only if
there are light charged particles, which is the essence of the
stronger versions of the WGC. Quantifying this argument in
general is difficult, but it can be illustrated in concrete models
of an emergent Uð1Þ gauge field. For example, the CPN−1 σ
model is a theory of N complex scalar fields zaðxÞ obeying the
constraint

P
az

�
aza ¼ 1 and interacting with the Lagrangian

L ¼ −
N
g2

ðDμzÞ†Dμz; ð89Þ

where the gauge field Aμ appearing in the covariant derivative
Dμ ¼ ∂μ − iAμ is given by

Aμ ≡ 1

2i
ðz†∂μz − ∂μz†zÞ: ð90Þ

This theory is renormalizable forD ¼ 2, while for generalD it
can be understood as a lattice model with cutoff energy ΛUð1Þ.
Either way, there is a critical value of g near which (for
large N) its infrared description is as N charged scalars of
mass m interacting via Maxwell interactions of strength
(Harlow, 2016)

1

e2
¼

8>>>>><
>>>>>:

N=6πm2; D ¼ 2;

N=12πm; D ¼ 3;

ðN=12π2Þ log ðΛUð1Þ=mÞ; D ¼ 4;

NΛD−4
Uð1Þ; D > 4.

ð91Þ

If we now couple the model to gravity, for it to work we need
ΛUð1Þ ≤ ΛQG, where ΛQG is the scale where gravity becomes
strongly coupled. In a large-N theory this is related to the
infrared Newton constant G by (Veneziano, 2002; Arkani-
Hamed, Dimopoulos, and Kachru, 2005; Distler and
Varadarajan, 2005; Dimopoulos et al., 2008; Dvali and
Redi, 2008; Dvali, 2010; Kaplan and Kundu, 2019)

1

G
∼

1

Gbare
þ NΛD−2

QG : ð92Þ

For the massive scalars to be qualitatively superextremal in the
sense of Eq. (5), we need to have

FIG. 8. Wilson line threading an AdS wormhole. For such an
operator to respect factorization, we need to be able to split it into
a product of “left” and “right” pieces, each consisting of a partial
Wilson line ending on a charged operator.
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1

e2
≲ 1

m2G
; ð93Þ

which indeed follows from Eqs. (91) and (92) together with
ΛUð1Þ ≤ ΛQG and Gbare > 0.
There are a few things to note about this argument. First, it

is not sufficient to have only one heavy superextremal particle.
To break the Wilson line in the unit charge representation as in
Fig. 8, we need to have objects of unit charge. This thus gives
some qualitative support to the stronger versions of the WGC
such as the tower and sublattice WGCs. Second, one might
worry that this verification of the WGC is accidental since
only a few parameters were involved. In fact, it is robust. In
particular, one can consider M copies of the CPN−1 model,
each with different values of N and m, and a similar argument
shows that the convex hull version of the multiple-Uð1ÞWGC
that we discussed in Sec. III.C holds throughout a large
parameter space of theories (Harlow and Ooguri, 2021).
Moreover, one can also show that the “Grassmannian”
generalization of the model, which flows to an SUðNÞ gauge
theory in the infrared, has objects in the fundamental repre-
sentation that obey the non-Abelian WGC discussed in
Sec. III.E.
We can develop this idea further to make it less dependent

on the details of the CPN−1 model. Specializing for conven-
ience toD ¼ 4, at one-loop order the gauge coupling eUV at an
energy scale ΛUV is related to the low-energy gauge coupling
e according to

1

e2UV
¼ 1

e2
−
X
i

bi
8π2

q2i log
ΛUV

mi
: ð94Þ

In Eq. (94) mi and qi are the mass and charge of the particles
in the tower and bi is a beta function coefficient. For ΛUV
sufficiently large, the right-hand side of Eq. (94) vanishes and,
correspondingly, eUV diverges: this is the well-known Landau
pole of Uð1Þ gauge theory coupled to charged matter. The
energy scale ΛUð1Þ of the Landau pole thus represents a UV
cutoff on the Uð1Þ gauge theory. Gravity has a similar UV
cutoff ΛQG that can be thought of as a result of divergent one-
loop corrections to the Einstein-Hilbert term. This is described
by Eq. (92), which for D ¼ 4 implies that

M2
Pl ≳ Nd:o:f:Λ2

QG: ð95Þ

The energy scale ΛQG is the energy scale at which quantum
effects significantly modify gravity. It is also sometimes
referred to as the species bound scale, as it scales inversely
with the number of light particle species Nd:o:f. in the theory.
Now suppose our theory has a superextremal particle of

each integer charge, so it satisfies the sublattice WGC (and, in
fact, the lattice WGC). The number of particles below a mass
scale Λ is then given by NðΛÞ ≥ Λ=eMPl, so the species
bound satisfies

M2
Pl ≳ NðΛQGÞΛ2

QG ≥
ΛQG

eMPl
Λ2
QG ð96Þ

or, equivalently,

ΛQG ≲ e1=3MPl: ð97Þ

We see that in the weak coupling limit e → 0 the species
bound scale tends to zero and effective field theory breaks
down due to the tower of superextremal particles.
This tower of charged particles also affects the Landau pole

of the gauge theory ΛUð1Þ. Treating the logarithms and
numerical prefactors as parametrically order 1, the gauge
coupling eUV in Eq. (94) diverges when

1

e2
∼
XQ
q¼1

q2 ∼Q3; ð98Þ

where Q ∼ ΛUð1Þ=eMPl is the largest charge in the tower. This
again leads to the conclusion

ΛUð1Þ ∼ e1=3MPl: ð99Þ

Thus, we see that the tower of superextremal particles
leads to UV cutoffs on both gauge theory and gravity.
Moreover, for the simple spectrum of charged particles we
have considered here, the UV cutoffs for gauge theory and
gravity are at parametrically the same energy scale,10 namely,
ΛQG ∼ e1=3MPl. In a sense, gauge theory and gravity are
“unified” at this energy scale, as both of them emerge in the
infrared from a strongly coupled theory at the energy scale
ΛQG by integrating out a tower of charged states.
Conversely, we now assume that the gauge theory becomes

strongly coupled at or below the energy scale ΛQG,

1

e2
∼

X
ijmi<Λgauge

q2i for Λgauge ≲ ΛQG; ð100Þ

where again we are ignoring Oð1Þ factors. We can rewrite this
in terms of the average charge squared hq2iΛ of the particles
with mass below Λ as

1

e2
∼ NðΛgaugeÞhq2iΛgauge

≲ 1

Λ2
gauge

M2
Plhq2iΛgauge

; ð101Þ

where we have used the definition of the species bound (95).
Finally, we may rearrange this result in a form reminiscent of
the WGC bound,

Λ2
gauge ≲ e2hq2iΛgauge

M2
Pl: ð102Þ

Since all of the particles contributing to hq2iΛgauge
have a mass

below Λgauge, we see that, in a sense, the “average” charged
particle in the theory is superextremal. This is not the same as
the condition that the theory satisfies the tower WGC, but it
points in that direction.

10The same parametric cutoff has appeared in a significantly
different EFT context involving photons with a Stueckelberg mass
(Craig, Garcia, and Kribs, 2020). It would be interesting to determine
whether this is a coincidence or something deeper.
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We have considered here only one simple case: Uð1Þ gauge
theory in four dimensions with a single superextremal particle
of each integer charge. However, as shown by Heidenreich,
Reece, and Rudelius (2018b), this phenomenon of gauge-
gravity unification generalizes to theories in d ≥ 4 spacetime
dimensions, multiple Uð1Þ’s, non-Abelian gauge groups
satisfying the sublattice WGC for non-Abelian WGC (see
Sec. III.E), theories that satisfy the tower and sublattice
WGCs, but not the lattice WGC (provided that the tower
of superextremal states is not too sparse), and theories with a
more general density of states (provided that the density of
states is sufficiently well behaved). In this wide array of
theories, gauge theory and gravity become strongly coupled at
parametrically the same energy scale ΛQG. Conversely,
demanding that gauge theory and gravity become strongly
coupled at parametrically the same energy scale implies that,
in the same sense as Eq. (102), the average particle should
satisfy the WGC bound.
Finally, we remark that a similar emergence picture applies

to scalar field theories that satisfy the SDC: just as loop effects
from a tower of superextremal particles lead to a strongly
coupled gauge theory at the scale ΛQG, loop effects from a
tower of particles satisfying the SDC lead to a strongly
coupled scalar field theory at the scale ΛQG (Grimm, Palti,
and Valenzuela, 2018; Heidenreich, Reece, and Rudelius,
2018a). This concept of emergence thereby unifies the SDC
and the sublattice WGC. Indeed, in many cases the tower of
particles that satisfies the sublattice WGC also satisfies the
SDC, and integrating out this tower of particles produces both
a weakly coupled gauge theory and a weakly coupled scalar
field theory in the IR.

B. No approximate global symmetries

As is familiar from a first-year course on electromagnetism,
Gauss’s law holds that the total electric flux through a closed
two-dimensional surface S is equal to the charge enclosed. In
particular, the size and shape of the surface is irrelevant: the
surface may be continuously deformed, and the total electric
flux will not change provided that the charge enclosed remains
constant.
The modern notion of a higher-form global symmetry offers

another perspective on this scenario. The fact that such
deformations of the surface S do not affect the total electric
flux through it signals the existence of a family of topological
surface operators in the theory, which are labeled by an angle
α ∈ ½0; 2πÞ and given by the exponentiated electric flux
integral,

UαðSÞ ¼ exp

�
i
α

e2

I
S
⋆F

�
; α ∈ ½0; 2πÞ. ð103Þ

This surface operator signals the existence of a 1-form global
symmetry, which is associated with a conserved charge:
namely, the electric flux through S counts the charge of
any probe particles contained in such a surface. The conserved
Noether current associated with this symmetry is given by the
electric flux density J ¼ 1=e2⋆F.
This symmetry is broken in the presence of dynamical

charged particles, which screen the charge of a probe particle.

At long distances, however, the charge is approximately
conserved: the divergence of the Noether current ∂μFμν is
small, and the flux through a closed surface enclosing a probe
particle has only weak dependence on the size of the surface.
This is encoded by the effective electromagnetic potential in
QED at distances that are large compared to the mass of the
electron, also known as the Uehling potential (Uehling, 1935),

VðrÞ¼−e2

4πr

�
1þ e2

16π3=2
e−2mr

ðmrÞ3=2þ�� �
�
; rm≫ 1: ð104Þ

In Eq. (104) e is the renormalized coupling constant in the IR.
We see that corrections to the leading-order Coulomb poten-
tial are exponentially suppressed at long distances, and the
charge

H
S2ðrÞ ⋆F ∝

H
S2ðrÞ V

0ðrÞ is approximately conserved.
At distances r ∼ 1=m, on the other hand, one starts to

penetrate the polarization cloud and see the bare charge. The
gauge coupling runs logarithmically, and the corrections to the
effective Coulomb potential from the electron are Oðe2Þ.
More generally, corrections to the Coulomb potential at a

distance scale r ¼ 1=Λ from a tower of charged particles are
given roughly by

ΠðΛ2Þ ¼
X

ijmi<Λ

e2q2i : ð105Þ

Equation (105) is the same expression we saw in our
previous discussion of emergence, so the corrections become
Oð1Þ precisely when the gauge theory becomes strongly
coupled. We showed there that a Uð1Þ gauge theory satisfy-
ing the tower or sublattice WGCs will become strongly
coupled at the scale ΛQG at which gravity becomes strongly
coupled, so by the same token the approximate 1-form
symmetry of such a gauge theory will be badly broken at
ΛQG. This gives us a new intuitive understanding of the tower
or sublattice WGCs. These conjectures are intimately tied to
the absence of global symmetries in quantum gravity,
including higher-form and approximate global symmetries.
Other versions of the WGC, including the magnetic version
and the 0-form version, can be similarly related to the
absence of approximate global symmetries in quantum
gravity (Córdova, Ohmori, and Rudelius, 2022).

C. Axion strings

As a final qualitative check, we review an argument for the
WGC in the presence of Chern-Simons terms (Heidenreich,
Reece, and Rudelius, 2021). This argument is somewhat
circular from the point of view of establishing the WGC,
as it assumes the WGC for axions and charged strings in order
to prove the ordinary WGC for charged particles. Nonetheless,
it demonstrates an important phenomenon: in the presence of
Chern-Simons terms involving multiple gauge fields, the
WGC bounds for these different gauge fields are “mixed
up” with one another. This offers a bottom-up criterion for
determining when the tower of superextremal particles
demanded by the tower or sublattice WGCs are modes of
some fundamental string, which aligns with recent work
(reviewed previously in Sec. IV.E) examining emergent
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strings in infinite distance limits (Lanza et al., 2021b; Lee,
Lerche, and Weigand, 2022b).
The argument relies on five simple assumptions. First, we

assume a 4D theory of axion electrodynamics, in which an
axion couples to the gauge field via a θF ∧ F Chern-Simons
coupling,

S ¼
Z �

−
1

2g2
F ∧ ⋆F −

1

2
f2θdθ ∧ ⋆dθ þ 1

8π2
θF ∧ F

�
:

ð106Þ

Second, we assume the axion WGC,

fθS≲MPl; ð107Þ

where S is the instanton action. Third, we assume the WGC
for a string of tension T charged magnetically under the axion,
also known as an axion string,

T ≲ 2πfθMPl: ð108Þ

Fourth, we assume that the instanton action takes the form

S ¼ 8π2

g2
: ð109Þ

This form of the instanton action is most familiar from
Yang-Mills theory, but Abelian gauge theories also feature
instantons with actions of this type, in the form of monopole
loops with dyonic winding (Fan et al., 2021), as a conse-
quence of the Witten effect (Witten, 1979). Finally, we
assume that the axion θ is a fundamental axion, meaning that
the core of the axion string probes physics in the deep
ultraviolet. [For more details on the distinction of funda-
mental versus nonfundamental strings, see Dolan et al.
(2017) and Reece (2019).]
From here we may combine Eqs. (107)–(109) to get a

bound on the string scale of the axion string,

Mstr ≔
ffiffiffiffiffiffiffiffiffi
2πT

p ≲ gMPl; ð110Þ

which is precisely the WGC scale associated with the gauge
field A. Next our assumption of the Chern-Simons coupling
θF ∧ F ensures that the higher-spin string excitations of the
axion string carry charge under the gauge field A, which
follows from anomaly inflow on the string world sheet (Callan
and Harvey, 1985). From Eq. (110), we learn that the
excitations of the axion string satisfy the WGC [up to Oð1Þ
factors].
Finally, invoking our assumption that the axion is a

fundamental axion, we further conclude that there is an entire
tower of string excitations. This establishes [up to Oð1Þ
factors] not only the WGC but also the tower WGC for the
gauge field A. Additionally, local quantum field theory breaks
down at the axion string scale Mstr ∼ gMPl, which for g small
is parametrically below the emergence energy scale g1=3MPl
discussed in Sec. V.A. This can have important consequences
for phenomenology in that it leads to tension between

effective field theories that require a high-energy scale and
those that require a small gauge coupling.
As noted, this argument represents more of a consistency

check on the WGC than an argument for it, as it assumes the
WGC for axions and axion strings. Furthermore, note that it
relies heavily on the presence of the Chern-Simons term:
without this term, there is no reason for the form of the
instanton action in Eq. (109) to hold, and there is no
guarantee that the excitations of the axion string will carry
electric charge. Indeed, the circle compactification of a 5D
gravity theory yields a Kaluza-Klein photon that does not
couple to the axion via a θF ∧ F coupling. Consequently the
Kaluza-Klein modes are not excitations of the axion string,
and effective field theory breaks down at the larger scale
e1=3KKM4 ¼ M5. For more details, see Heidenreich, Reece, and
Rudelius (2021).
The bottom-up argument of this section coheres nicely

with studies of infinite distance limits in string theory
discussed in Sec. IV.E. In particular, the emergent string
conjecture (Lee, Lerche, and Weigand, 2022b) implies that
every weak coupling limit should correspond to either an
emergent string limit or a decompactification limit. We
see here that these two cases are distinguished at low
energies by the presence or absence of a Chern-Simons
coupling. Similarly, Lanza et al. (2021b) found that in a
large class of 4D N ¼ 1 string compactifications any
infinite distance limit yields a fundamental axion string
whose tension scales with the mass of a tower of light
particles as Tw ∼m2, where w ¼ 1, 2, or 3. Here we see that
the case w ¼ 1 corresponds to the case where the light
particles are charged and a θF ∧ F coupling is present. The
large-radius limit of a Kaluza-Klein compactification of
minimal 5D supergravity, where there is no such Chern-
Simons coupling involving the KK photon, but there is one
involving the 4D descendant of the 5D graviphoton and
corresponding to the w ¼ 3 case.
Thus far the argument we have sketched in this section is

unique to four dimensions, as Eq. (109) does not have a well-
known higher-dimensional parallel. However, supergravity
constraints in higher dimensions impose similar relations, so
the argument of this section does admit higher-dimensional
analogs within the supergravity context. For further details,
see Heidenreich, Reece, and Rudelius (2021) for the 5D case
and Kaya and Rudelius (2022) for even higher-dimen-
sional cases.

VI. ATTEMPTED DERIVATIONS OF THE WGC

A. The WGC from holography

The weak gravity conjecture is a proposed restriction on
nonperturbative quantum gravity, and thus it is natural to ask
whether we can show that it holds in the theories of non-
perturbative quantum gravity we currently possess. In par-
ticular, we can ask whether the WGC holds within AdS=CFT,
which is our best-understood set of quantum gravity theories.
Thus far this has not been established, but a holographic
argument for something closely related to the WGC was given
by Montero (2019). In this section we sketch this argument
and make a few related observations.
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One of the main motivations for the WGC is the idea that
near-extremal black holes in flat space should be unstable. In
AdS=CFT that would be a statement about “small” black
holes, whose size is small compared to the AdS radius, but
small black holes are not well understood in AdS=CFT.
Montero instead argued that large near-extremal black
holes in AdS must be unstable, as otherwise the thermofield
double state of the dual CFT at large chemical potential and
small temperature would have rather surprising (and likely
impossible) entropic properties. This argument does not
amount to a proof of the WGC, as we later see that there
are other ways these black holes could decay besides
emitting charged particles obeying Eq. (5), but the argument
is still suggestive, and we are optimistic that more could be
learned from it.
Charged AdS black holes that are large compared to the

AdS scale asymptotically become charged black branes,
which in D bulk Euclidean dimensions have a gauge field

Aτ ¼
iρ

D − 3

�
1

rD−3 −
1

rD−3þ

�
ð111Þ

and a metric

ds2 ¼ fðrÞdτ2 þ dr2

fðrÞ þ r2dx⃗2D−2; ð112Þ

with

fðrÞ≡ r2 −
2κ2ϵ

ðD − 2ÞrD−3 þ
κ2ρ2

ðD − 2ÞðD − 3Þr2D−6 : ð113Þ

In Eqs. (111)–(113) ϵ and ρ are the boundary energy and
charge densities, respectively, rþ is the largest positive zero
of fðrÞ, and we have set the AdS radius to 1. If we work at
fixed inverse temperature β and chemical potential μ, then we
have

rþ ¼ 2π

ðD − 1Þβ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðD − 1ÞðD − 3Þ2κ2β2μ2

4π2ðD − 2Þ

s �
;

ρ ¼ ðD − 3ÞrD−3þ μ;

ϵ ¼ ðD − 2ÞrD−3þ
2κ2

�
r2þ þ ðD − 3Þκ2μ2

D − 2

�
: ð114Þ

This black brane approaches extremality when κβμ ≫ 1,
with the extremal radius given by

rþjβ¼∞ ≡ re ¼
ðD − 3ÞκjμjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD − 1ÞðD − 2Þp : ð115Þ

At extremality the function fðrÞ has a double zero at r ¼ re,
so the radial geodesic distance from re to any large but finite
radius rc is logarithmically divergent.
The main point of Montero (2019) is that if we study the

Hartle-Hawking state of two such extremal black branes
obtained by slicing the Euclidean path integral, there is

tension between two facts that apparently follow from the
bulk picture together with the holographic correspondence.11

• Exponential correlators.—the fixed-time correlators of
boundary operators decay exponentially with distance.

• Volume-law entanglement.—the union of a boundary
subregion AR in the right CFTand the same subregion AL
in the left CFT has a von Neumann entropy that grows
like the volume of the subregion.

There are various ways to understand why the bulk picture
implies these results. One way is based on the idea that black
hole horizons are extremal surface barriers (Engelhardt and
Wall, 2014). What this means is that an extremal surface of
any codimension greater than or equal to 2 cannot be smoothly
deformed from a surface that does not cross a horizon to a
surface that does. The reason is simple: If such a deformation
were possible, then at some point the surface would have to be
tangent to the horizon; however, then the extremality equa-
tions would imply that the surface would be entirely contained
in the horizon. In particular, for Euclidean states such as the
Hartle-Hawking state, we can approximate the two-point
function of as massive field as

hOðxÞOðyÞi ∼ e−mjx−yj; ð116Þ

where jx − yj is the geodesic distance between x and y. As
shown in Fig. 9, the geodesic that is relevant for computing the
correlator of two boundary fields necessarily has a length that
grows like the boundary distance between the fields. The
horizon at r ¼ re is an extremal surface barrier, so the
geodesic has no choice but to involve a large extensive
component that lies just outside the horizon. Moreover, any
geodesics that cross the horizon must have infinite length, and
therefore there is no correlation between boundary operators
on opposite sides.

FIG. 9. Exponential decay of spatial correlators for the extremal
black hole back brane.

11It has gradually been understood that the semiclassical picture of
the bulk needs to be used with some care at low temperatures, as
quantum effects eventually become important (Preskill et al., 1991;
Maldacena, Michelson, and Strominger, 1999; Page, 2000Almheiri
and Kang, 2016; Iliesiu and Turiaci, 2021; Heydeman et al., 2022). It
would be worthwhile to revisit this argument from the point of view
of the modern understanding of these quantum effects via a dimen-
sional reduction to Jackiw-Teitelboim gravity, as they could poten-
tially change the conclusions, but we will not attempt to do so here.
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The volume-law entanglement can be understood along
similar lines. We can compute the von Neumann entropy of
the dual CFT on AL ∪ AR using the Ryu-Takayanagi formula,
which tells us that it is given by the area of the minimal-area
surface that is homologous to AL ∪ AR. There are two possible
candidates for the Ryu-Takayanagi surface (see Fig. 10), only
one of which gives a volume law, and at finite temperature the
“area-law surface” eventually wins for large enough regions.
At zero temperature, however, the area-law surface always has
infinite area due to the infinite distance to the horizon, so the
“volume-law surface” always wins.
The reason that exponential decay of correlators and

volume-law entanglement are in tension is that the former
suggests only short-range entanglement is present, while the
latter requires long-range entanglement. If the entropy of AR ∪
AL is growing like the volume, then since the total state is pure
all this entanglement must be purified by something in the
complementary region. Such a purification is unlikely given
the exponential decay of correlation with distance. This
intuition has been formalized in 1þ 1 dimensions into a
precise theorem (Hastings, 2007), and it plausibly holds in
general.
If the tension just described indeed constitutes a contra-

diction, then the only way out is for the thermodynamic
description of the extremal black brane to break down. There
are two ways that this can happen. The first way is that there
could be an exactly BPS particle, which turns out to lead to
power-law correlators and thus removes the tension. This is
the situation that is realized for BPS branes in supersymmetric
theories. The second possibility, which thus far has been
manifested for all nonsupersymmetric extremal branes, is that
there is some kind of matter present that causes the brane to be
unstable. Had we been discussing small black holes, such an
instability would have immediately required the existence of
superextremal charged particles and thus given a derivation of
some version of the WGC. For large black holes, however,
there are more possibilities for the instability. Indeed, this
topic has a long history in the literature on applications of
AdS=CFT to condensed matter physics, where the various
possibilities go under the names holographic superconductor
(Gubser, 2008; Hartnoll, Herzog, and Horowitz, 2008a,
2008b) or holographic Fermi surface (Hartnoll et al., 2010;
Faulkner et al., 2011; Liu, McGreevy, and Vegh, 2011)
depending on whether the particle causing the instability is
a boson or a fermion. The rough idea for the bosonic case is as
follows: in the near-horizon region the gauge kinetic term

−ð∇μϕ − inAμϕÞ†ð∇μϕ − inAμϕÞ −m2ϕ†ϕ ð117Þ

for a boson of charge n leads to an effective mass

m2
eff ¼ m2 −

n2e2

κ2
ð118Þ

in the near-horizon AdS2 region. This leads to an instability if
m2

eff violates the AdS2 Breitenlohner-Freedman bound
m2 > −ðD − 1ÞðD − 2Þ=4, so, in other words, there is an
instability for masses in the range

−
ðD − 1Þ2

4
< m2 ≤

n2e2

κ2
−
ðD − 1ÞðD − 2Þ

4
: ð119Þ

The first inequality in Eq. (119) is the D-dimensional
Breitenlohner-Freedman bound, which is necessary for the
vacuum to be stable. When n ≠ 0 the first term on the right-
hand side of Eq. (119) gives something like the WGC
inequality, as first noticed by Denef and Hartnoll (2009),
but it is missing the factor of γ. And, moreover, owing to the
second term it is possible to have an instability even if n ¼ 0,
so the brane can be unstable even if there are no charged
particles at all.12 Thus, any argument that requires an
instability only of large extremal black holes in AdS is not
sufficient to imply the validity of the WGC, although it is
certainly suggestive. Various other types of instability for this
system have been discussed in the AdS=CMT literature, and
the connection to the WGC was also discussed by Henriksson,
Hoyos, and Jokela (2020).

B. The WGC from thermodynamics

1. WGC and quasinormal mode frequencies

An interesting argument linking the WGC to a bound
on the imaginary part of the frequencies of black hole
quasinormal modes was given by Hod (2017). The argument
relies on the “universal relaxation bound” that was previ-
ously proposed by Hod (2007b). To derive this bound, Hod
began with Bekenstein’s bound on information transfer
(Bekenstein, 1981a) [which itself was derived from
Bekenstein’s entropy bound (Bekenstein, 1981b)] and placed
the following upper bound on the rate at which an observer
can receive information:

İ ≤
πE
log 2

: ð120Þ

In Eq. (120) I is the information and E is the energy of the
package containing the information. Using

FIG. 10. Competing minimal surfaces to compute the von
Neumann entropy of AL ∪ AR in the thermofield double state.
At nonzero temperature the red area-law surface on the right
always wins for large enough volume, but at zero temperature its
area is infinite so the blue “volume-law” surface on the left
prevails for any region size.

12In the absence of charged particles, it is not clear what the end
point of this instability might be. It would need to be inhomogeneous
since the homogeneous brane solution is unstable. The final end point
would likely be theory dependent.
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S ¼ I log 2; Ṡ ¼ ΔS
Δτ

; T ¼ ΔE
ΔS

ð121Þ

one can rewrite the bound as

Δτ ≥
1

πT
; ð122Þ

which Hod interpreted as a bound on the time Δτ over
which a system can relax to equilibrium, deemed the
universal relaxation bound. Finally, he applied this bound
to the quasinormal modes of a black hole by setting T as the
temperature of the black hole and Δτ as the inverse of the
smallest imaginary part of a quasinormal mode frequency
Δτ ¼ fmin½ImðωÞ�g−1, eventually arriving at the bound

min½ImðωÞ� ≤ πT: ð123Þ

In response, note that while the derivation of Hod’s
bound (122) follows straightforwardly from Bekenstein’s
bound (120), its interpretation as a universal bound on
relaxation times is more suspect. Bekenstein derived his
bound by imagining a scenario in which one observer sends
a package full of information to another. It is not clear how this
scenario can be translated into the case of interest at hand, in
which a black hole is perturbed and relaxes to equilibrium. A
sharper derivation of the proposed universal relaxation bound,
particularly in the context of quasinormal mode frequencies, is
clearly desirable. However, note that Hod and others have
given both numerical and analytical evidence in favor of the
bound (123) (Gruzinov, 2007; Hod, 2007a, 2007b) and
bounds similar to (122), but without the precise Oð1Þ factors
have been argued for in other contexts; see Lucas (2019) and
references therein.
Assuming Eq. (123), Hod argued for the WGC as follows.

None of the quasinormal modes arising from gravitational and
electromagnetic perturbations of a nearly extremal Reissner-
Nordström black hole obey the bound. However, if we assume
that the bound merely requires that some mode in the black
hole background obeys Eq. (123), then the bound could be
satisfied by a quasinormal mode of a matter field. In particular,
Hod showed analytically that, to leading order in T in the
extremal limit, a charged scalar field has a quasinormal mode
that obeys the bound (123) precisely when the scalar satisfies
the WGC (Hod, 2017). A similar conclusion was also
obtained analytically in the asymptotically AdS2 × S2 near-
extremal, near-horizon limit (Urbano, 2018). These are
interesting results that call for further study. Black holes that
are far from extremality have modes that comfortably satisfy
the bound. Near extremality, black hole quasinormal modes
split into two families: damped modes, which have ImðωÞ of
the order of the inverse black hole radius, and zero-damped
modes (ZDMs), which have ImðωÞ → 0 as T → 0 (Yang et al.,
2013). The bound (123) can be obeyed only by a ZDM. Much
of the literature on the numerical computation of quasinormal
modes focuses on damped modes, whereas ZDMs are less
well studied (Detweiler, 1980; Konoplya and Zhidenko, 2013;
Yang et al., 2013; Richartz and Giugno, 2014). ZDMs for a
Reissner-Nordström black hole have been found in the pure
Einstein-Maxwell theory (Zimmerman and Mark, 2016), so

the precise numerical coefficient in Eq. (123) is important for
the link to the WGC. Future work could determine whether
Eq. (123) is equivalent to the WGC away from the T → 0
limit. It would also be of interest to explore this correspon-
dence for more general black holes (for instance, dilatonic
black holes). Strong numerical evidence for a WGC–quasi-
normal mode connection would provide the motivation for
further study of the quasinormal mode relaxation bound itself.
The inequalities (122) and (123) bear a superficial resem-

blance to the well-studied chaos bound (Maldacena, Shenker,
and Stanford, 2016), which requires a Lyapunov exponent
λ ≤ 2πT. However, the relaxation rate and the rate of growth
of chaos are generally not the same. For example, the
Sachdev-Ye-Kitaev model saturates the chaos bound, but its
thermal two-point function falls exponentially with a time-
scale τ ¼ q=2πT (Maldacena and Stanford, 2016), where q is
a positive even integer. This is consistent with Eq. (122) but
does not saturate the bound,13 except when q ¼ 2.

2. WGC and entropy

As discussed in Sec. II, one argument against continuous
global symmetries is based on the existence of finite-mass
black hole states of arbitrarily large global charge, leading to
infinite entropy in a finite-size region, in violation of entropy
bounds in quantum gravity. This has inspired studies relating
the WGC to entropy bounds. For small but nonzero gauge
coupling, a WGC-violating theory can have a large but finite
number of stable extremal black holes in a finite-mass range.
For example, Banks, Johnson, and Shomer (2006) suggested
that the uncertainty in a measurement of the charge of a black
hole is of the order of 1=e, leading to an entropy scaling as
logð1=eÞ and eventually violating entropy bounds for suffi-
ciently small e. However, it is unclear why one would not be
able to measure charge more precisely than 1=e (such as by
measuring the motion of charged particles in the long-range
electric field outside the black hole) or why the Bekenstein-
Hawking entropy should be the relevant bound for an
ensemble with such a large range of possible charges.
Furthermore, examples in which exactly stable BPS charged
black holes exist (with moduli spaces such that e can be made
arbitrarily small) illustrate that the existence of many margin-
ally stable species is not in itself in contradiction with
quantum gravity.
Subsequent studies have examined logarithmic corrections

to black hole entropy in the presence of WGC-violating matter
(Fisher and Mogni, 2017; Shiu, Cottrell, and Soler, 2017;
Shiu, Soler, and Cottrell, 2019). These corrections have
interesting properties, but their computation has not led to
an undisputed proof of the WGC. In particular, Andriolo et al.
(2018) claimed that the argument of Fisher and Mogni (2017)
relies on applying a formula outside its regime of validity.

C. WGC from corrections to large black holes

The extremality bound for black holes is derived from the
two-derivative effective action. From the beginning, it was

13B. H. thanks Zachary Fisher and Ziqi Yan for discussions on this
point.
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understood that the WGC could potentially be satisfied by
large black holes when higher-derivative corrections to the
effective action are taken into account (Arkani-Hamed, Motl
et al., 2007). Schematically, these modify the extremality
bound to take the form jQj=M ≥ ðjQj=MÞjextð1þ c=Q2Þ,
where c is a linear combination of Wilson coefficients of
four-derivative operators and ðjQj=MÞjext is the charge-to-
mass ratio of asymptotically large extremal black holes,
which is computed with the two-derivative action. We
continue to define a superextremal state as one for which
jQj=M ≥ ðjQj=MÞjext, such that finite-size black holes are
superextremal when c ≥ 0. The corrections to the extremality
bound from general four-derivative operators added to
Einstein-Maxwell theory were calculated (Kats, Motl, and
Padi, 2007), and it was found that certain black holes in
heterotic string compactifications do in fact become
superextremal.14

Before discussing the technical details, it is useful to
describe two different interpretations that one might attach
to the observation that small corrections to large black holes
can allow them to become superextremal. The first is that this
trivializes the weak gravity conjecture. The WGC in its most
mild form requires that some state in the theory be super-
extremal. If this state is a large black hole, the WGC is simply
a statement about the signs of some higher-dimension oper-
ators in the effective action, and does not imply the existence
of any light charged particles below the Planck scale. If a
general positivity proof can be constructed for the linear
combination of operator coefficients appearing in the cor-
rected extremality bound, the WGC will follow, and as such
will be reduced to a statement about gravitational effective
field theory. The second viewpoint is that the evidence we
have for the WGC, as already discussed, favors the much
stronger tower or sublattice WGCs, involving an infinite tower
of charged particles of increasing charge and mass, all of
which are superextremal. For large values of jQj, the charged
“single-particle states” are simply black holes, so the tower or
sublattice WGCs require that they be superextremal (as
depicted in Fig. 5). From this perspective, an EFT argument
could explain superextremality far out in the charge lattice, but
the tower or sublattice WGCs will also imply the existence of
superextremal states at smaller Q, where the states are no
longer well described as black holes in EFT. Arguments in
favor of superextremality from higher-derivative corrections
cannot decisively favor the former perspective (that EFT is
everything) over the latter (that swampland constraints go
beyond EFT). However, if we find consistent theories of
quantum gravity (not just EFTs) in which large black holes are
subextremal, this would immediately falsify the tower or
sublattice WGCs.

1. The corrected extremality bound

There are several possible four-derivative operators that
may be added to the Lagrangian of Einstein-Maxwell theory,
built out of Rμνρσ and Fμν. For this discussion, we work with
the normalization ð1=2κ2ÞR − ð1=4ÞFμνFμν for the two-
derivative Lagrangian. If we limit our attention to CP-
conserving terms, there are four independent physical four-
derivative terms. Their contribution to the effective action can
be parametrized as

S4∂ ¼
Z

dDx
ffiffiffiffiffiffi
−g

p ½cGBOGB þ cRFRμνρσFμνFρσ

þ cTTμνTμν þ cFðFμνFμνÞ2�; ð124Þ

where Tμν is the two-derivative Maxwell stress tensor
FμρFν

ρ − ð1=4ÞgμνFρσFρσ , and OGB ¼ R2 − 4RμνRμνþ
RμνρσRμνρσ is the Gauss-Bonnet term (for D ¼ 4, this is a
topological term that does not affect the extremality bound).
This is the basis favored by the discussion given by Arkani-
Hamed et al. (2022). All other four-derivative operators can be
related to these four terms (up to terms that are of higher order
in the derivative expansion) via equations of motion (or,
equivalently, field redefinitions). For example, terms involv-
ing the Maxwell stress tensor Tμν can be traded for terms
involving Rμν using the Einstein equations, while terms
involving ∇μFρσ can be transposed via integration by parts
into terms that vanish in pure Einstein-Maxwell theory as well
as terms involving a commutator of two covariant derivatives,
which can be eliminated in favor of the Riemann tensor.
The condition for extremal Reissner-Nordström black holes

to become strictly superextremal due to four-derivative terms
is (Kats, Motl, and Padi, 2007)

ðD − 3Þ½ðD − 2ÞðDcT þ 16cFÞ þ 8ðD − 3ÞcRFκ2�
− 4ðD − 4Þð3D − 7ÞcGBκ4 > 0: ð125Þ

For D ¼ 4 this simplifies15 to cT þ 4cF þ cRFκ2 > 0.
As discussed by Charles (2019), another convenient basis

related to familiar anomalies is

S̃4∂ ¼
Z

dDx
ffiffiffiffiffiffi
−g

p ½c̃WWμνρσWμνρσ þ c̃RFRμνρσFμνFρσ

þ c̃GBOGB þ c̃FðFμνFμνÞ2�: ð126Þ

In Eq. (126) Wμνρσ is the Weyl tensor. The relationship
between the bases (126) and (124) is

c̃F ¼ cF þ cT
ðD − 4Þ2
16ðD − 1Þ ; c̃W ¼ cT

κ4
D − 2

4ðD − 3Þ ;

c̃GB ¼ cGB −
cT
κ4

D − 2

4ðD − 3Þ ; c̃RF ¼ cRF: ð127Þ14However, note that the results of Giddings, Polchinski, and
Strominger (1993) and Natsuume (1994), upon which the work of
Kats, Motl, and Padi (2007) relied, are obtained at string tree level.
Because the string coupling diverges at the horizon of the black holes
in question, the string loop expansion may not be under control; see
also Cvetic and Tseytlin (1996).

15In the 4D case, stronger constraints can be obtained by
considering dyonic black holes; see Etheredge and Heidenreich
(2022).
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A more detailed discussion of the field redefinitions that can
convert between operator bases was given in Appendix B of
the work of Cheung, Liu, and Remmen (2018).
Early work on this subject derived the condition (125) by

directly solving the modified equations of motion in the
presence of higher-derivative operators and extracting the
corrected extremality bound from the perturbed black hole
solution. Recently calculations have been streamlined by the
discovery of formulas relating the change in the extremality
bound to integrals evaluated on the uncorrected black hole
solution. Specifically, the shift in the charge-to-mass ratio ζ ¼
jQj= ffiffiffi

γ
p

κM of an extremal black hole away from 1 is given by

Δζ ¼ 1

M
lim
ζ→1

Z
dD−1xN

ffiffiffi
h

p
ΔL

���
two-deriv

; ð128Þ

where ΔL consists of the higher-derivative corrections to the
leading-order Lagrangian, N and h are the lapse function and
spatial metric associated with a fixed-time slice (extending
from the horizon to infinity), and the subscript two-deriv
signals that the expression is to be evaluated on the two-
derivative solution.
Expressions of this form have been derived in multiple

ways. One approach (used mainly for 4D Reissner-Nordström
black holes) begins with the Wald entropy of the black hole
(Wald, 1993), which is related through standard thermody-
namic arguments to the Euclidean action evaluated on the
solution. This receives corrections only from the action
evaluated on the uncorrected solution since the evaluation
of the uncorrected action on corrections to the solution
vanishes at first order due to the extremality of the uncorrected
action at an uncorrected solution (Cheung, Liu, and Remmen,
2018; Reall and Santos, 2019).
The correction to the extremal charge-to-mass ratio is then

shown to be related to the change in the black hole entropy
(Cheung, Liu, and Remmen, 2018). This has been generalized
to rotating and dyonic black holes (Cheung, Liu, and
Remmen, 2019), dilatonic black holes (Loges, Noumi, and
Shiu, 2020b), AdS black holes (Cremonini et al., 2020),
and dyonic Kaluza-Klein black holes (Cremonini et al., 2021);
see Arkani-Hamed et al. (2022) for further discussion. In fact,
the extremality-entropy relationship was proven by Goon and
Penco (2020) using general thermodynamic considerations,
which imply that when there is a minimal mass for a given
charge M > MextðQ⃗Þ sensitive to a parameter ϵ (like the
coefficient of a four-derivative operator),

∂MextðQ⃗; ϵÞ
∂ϵ

¼ lim
M→Mext

�
−T

�
∂SðM; Q⃗; ϵÞ

∂ϵ

�����
M;Q⃗

�
; ð129Þ

even outside the black hole context. Recently similar results
have been derived using the Iyer-Wald covariant phase space
formalism (Aalsma, 2022); see also Aalsma et al. (2021).
Note that it is crucial that the partial derivative on the right-

hand side of Eq. (129) is evaluated at fixed mass, rather than at
fixed temperature (Etheredge and Heidenreich, 2022;
McPeak, 2022). Thus, the mass correction at fixed (zero)
temperature, i.e., at extremality, is related to the entropy
correction at fixed mass, which takes the black hole away from

extremality (since the extremal mass is corrected). A more
natural quantity is the extremal entropy correction, evaluated
at fixed (zero) temperature. However, this is not related to the
extremal mass correction, as has been noted for various
explicit stringy black holes (both asymptotically flat and
asymptotically AdS) (Charles and Larsen, 2016; Cano,
Ortín, and Ramirez, 2020; Cano et al., 2020; Bobev et al.,
2021). For example, in four dimensions the Gauss-Bonnet
term is topological, and it contributes to the black hole entropy
but does not affect the extremality bound. This is consistent
with Eq. (129) since nonzero contributions to ∂S=∂ϵ that are
independent of temperature in the extremal limit make no
contribution to the right-hand side of Eq. (129) due to the
explicit T prefactor.
Recently Eq. (128) was obtained without reference to the

Wald entropy via a direct attack on the equations of motion
combined with some general reasoning about the Lorentz
invariance of the Lagrangian. In this context, the formula was
shown to hold for extremal black holes coupled to arbitrary
moduli in any dimension (Etheredge and Heidenreich, 2022).
Similar techniques have been adapted to study not only

extremality but also long-range forces to assess whether the
repulsive force conjecture is satisfied by corrected black holes
(Cremonini et al., 2022); see also Etheredge and Heidenreich
(2022). The results suggest that the RFC may not be
automatically satisfied by four-derivative corrections.
However, they are obtained in EFT examples rather than
explicit string theory compactifications, so further work
should investigate whether these examples can be realized
in a full quantum gravity setting (and hence provide a
counterexample to the RFC for corrected black holes). A
study of the effects of higher-derivative corrections on the
force between dyonic strings was given by Ma, Pang, and
Lü (2022).

2. Overview of arguments

The previously sketched thermodynamic arguments have
provided an efficient tool for computing the correction to the
extremal charge-to-mass ratio in a given EFT as a function of
the Wilson coefficients of higher-dimension operators. Such
calculations lead to superextremality conditions that take the
form of positivity bounds like Eq. (125). A variety of attempts
have been made to prove such bounds from general principles.
In many cases, the general structure of a theory implies that

the cT and cF terms in Eq. (124), which involve only photons
and not gravitons, give the dominant corrections to the
extremality bound. When these coefficients are explicitly
calculable, they are often positive. Indeed, in quantum field
theory (without gravity), one can prove rigorous positivity
bounds on the coefficients of four-derivative operators involv-
ing Fμν (Adams et al., 2006; Cheung and Remmen, 2014a). In
a regime where the dominant contributions to cT and cF arise
from low-energy QFT effects that would persist in the MPl →
∞ limit, this is sufficient to prove Eq. (125), as noted by
Arkani-Hamed, Motl et al. (2007).
We are interested in gravitational theories, where com-

pletely general, rigorous positivity arguments are more elu-
sive. In four dimensions, loop effects involving gravitons can
provide dominant contributions to four-derivative operators in
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the IR, so taking the MPl → ∞ limit obscures important
physics. In general, when the WGC is not satisfied by light
charged particles but is parametrically saturated (or even
violated) by all light particles, EFT proofs of Eq. (125) are
more difficult to obtain. Next we summarize three broad
categories of arguments for positivity: those that explicitly
compute the coefficients in Eq. (124) within a given EFT;
those that rely on analyticity, unitarity, and/or causality; and
those based on entropy.

3. Explicit computations within low-energy EFTs

In four dimensions, the Wilson coefficients in Eq. (124)
exhibit logarithmic renormalization group evolution. This
follows from dimensional analysis; for example, ½cT � ¼
½cF� ¼ −D and ½κ4� ¼ 4 − 2D, which agree precisely when
D ¼ 4. An explicit example of a loop diagram contributing to
this running is shown in Fig. 11. For exponentially large black
holes, we expect the Wilson coefficients (evaluated at a
renormalization scale corresponding to the black hole’s size)
to be dominated by RG running. As a result, the sign of the
correction should be determined by such RG effects, regard-
less of the details of the UV completion and the operator
coefficients at the cutoff scale. The consequences were
explored first by Charles (2019) and more recently by
Arkani-Hamed et al. (2022). The case of multiple Uð1Þ’s
has also been considered (Jones and McPeak, 2020).
In the basis (126) there are logarithmic corrections to c̃W

and c̃GB, which are determined by the well-known Weyl
anomaly coefficients c and a, respectively (Charles, 2019).
The coefficients c̃RF and c̃F do not run. In the basis (126), cT
and cGB run (Arkani-Hamed et al., 2022). In both bases, the
running of OGB is not relevant to the extremality bound. In
Einstein-Maxwell theory plus any minimally coupled matter
of spin < 3=2, c > 0, thus ensuring the validity of Eq. (125).
Spin-3=2 fields contribute negatively to c, but a single spin-
3=2 field is insufficient to drive the running negative.
However, nonminimal couplings, such as dipole moments
for fermions, also contribute negatively to c for a small range
of Planck-suppressed couplings. In cases with N ≥ 2 super-
symmetry where extremal black holes are BPS, these
negative contributions precisely cancel positive ones such
that the black hole extremality bound remains uncorrected.
However, there are low-energy nonsupersymmetric effective
Lagrangians with no obvious pathologies in which multiple
fields with finely tuned nonminimal couplings could lead to a

negative running for c, and hence to large black holes that
cannot satisfy the WGC.
If the tower or sublattice WGC is true, then the corrections

to large black holes must allow them to become super-
extremal. Thus, there must be a bound on the number of
fermionic fields with dipole couplings in the limited range
where the running of c is negative; such theories would lie in
the swampland. In pure quantum field theory (QFT), negative
coefficients of the F4 operators would violate causality.
However, precisely because the negative contributions arise
from gravitational-strength interactions, there is no violation
of causality in the gravitational context (Arkani-Hamed
et al., 2022).
Moving beyond log running in the deep IR, we can also

consider the threshold corrections induced by integrating out
specific massive particles. Neutral bosons coupling to FμνFμν

or FμνF̃μν, exchanged at tree level, generate positive four-
derivative operator coefficients consistent with Eq. (125)
(Hamada, Noumi, and Shiu, 2019). Loops of charged particles
with a sufficiently large charge-to-mass ratio (obeying the
WGC themselves by a safe enough margin) also satisfy
Eq. (125) (Cheung and Remmen, 2014a). The challenging
case, then, is when there are no light neutral bosons and all of
the charged particles have m≳ eMPl. In that case, gravita-
tional-strength ultraviolet contributions can be competitive
and the sign is not obviously determined.

4. Arguments from analyticity, unitarity, and/or causality

In EFTs embedded within UV-complete quantum field
theories, positivity bounds on certain combinations of operator
coefficients (or, more invariantly, on derivatives of low-energy
scattering amplitudes) may be proven using analyticity, uni-
tarity, and causality (Pham and Truong, 1985; Adams et al.,
2006; de Rham et al., 2017, 2018; Zhang and Zhou, 2020;
Arkani-Hamed, Huang, and Huang, 2021). A prototypical
example is the positivity of the ð∂ϕÞ4 operator coefficient in
the theory of a massive scalar field derived from a forward
dispersion relation. This term contributes an s2 þ t2 þ u2 term
in the low-energy amplitude Aðs; tÞ for ϕϕ → ϕϕ scattering.
The coefficient of this term can be read off from a second
derivative and in turn related to a contour integral in the
complexified s plane using Cauchy’s theorem,

1

2
A00ðs0; t ¼ 0Þ ¼ 1

2πi

I
γ

Aðs; 0Þ
ðs − s0Þ3

¼ 1

π

Z
cuts

ds
sσtotðsÞ
ðs − s0Þ3

> 0: ð130Þ

In the last step, the contour γ around s0 has been deformed to
enclose the s- and u-channel branch cuts and two large arcs at
large s, as illustrated in Fig. 12. The integrals along the branch
cuts in the t → 0 limit are related to positive total cross sections
using the optical theorem. The contour at infinity does not
contribute, because the Froissart bound (in conjunction with a
Phragmén-Lindelöf theorem) constrains the large-s amplitude
to obey Aðs; t ¼ 0Þ < s2 log s. This argument, which was
given by Adams et al. (2006), can be extended to positive t
(below the branch cut) (de Rham et al., 2017, 2018). A version

FIG. 11. Example of a loop diagram leading to logarithmic
running of a four-derivative operator in four dimensions. Photons
scatter via a loop of gravitons. Owing to two couplings each
scaling as 1=M2

Pl, this gives rise to a contribution that schemati-
cally behaves as ð1=M4

PlÞF4
μν logðEÞ.
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of the argument can also be derived in AdS using CFT crossing
relations (Hartman, Jain, and Kundu, 2016). Causality con-
straints arising from superluminal propagation in nontrivial
field backgrounds lead to similar conclusions (Adams et al.,
2006). Notice that the positivity bound on the ð∂ϕÞ4 coefficient
is a strict inequality provided that ϕ is not free.
Corrected black holes satisfy the WGC if the inequal-

ity (125) holds. This inequality involves four-derivative
operators that contribute to scattering amplitudes of photons
and gravitons, so it is natural to seek a general argument
similar to that for ð∂ϕÞ4 that implies positivity independent of
the details of the UV completion. For example, in a theory of
only photons, the bounds derived from unitarity of forward
scattering of linearly polarized photons (of all possible
polarizations) imply

cT ≥ 0; DcT þ 16cF ≥ 0 ð131Þ

in the notation of Eq. (124). However, the arguments immedi-
ately become more difficult in a gravitational context. The
relationship between superluminality and causality is more
subtle because light cones are not rigid; see the discussions
given by Cheung and Remmen (2014a), Goon and
Hinterbichler (2017), de Rham and Tolley (2020), and
Bellazzini et al. (2022). Unitarity arguments based on forward
dispersion relations face the difficulty that graviton exchange
contributes a term ∝ −GNs2=t to scattering amplitudes,
rendering the t → 0 limit ill defined. Furthermore, high-
energy scattering in gravitational theories can produce large
black holes, so QFT bounds on the asymptotic UV behavior of
amplitudes do not necessarily hold. The fact that the 1=t
graviton-exchange pole scales as s2 poses a particular problem
for bounding four-derivative operators. For example, as shown

by Bellazzini, Cheung, and Remmen (2016), if one carries out
a contour integral to read offOðs4Þ coefficients and then sends
t → 0, one obtains candidate positivity constraints on oper-
ators involving four Riemann tensors that are compatible with
known string theory examples. On the other hand, one cannot
isolate the Oðs2Þ contributions from local operators from
those of graviton exchange in this way. Furthermore, if one
simply discards the −GNs2=t term and follows the logic of the
unitarity bound, one would conclude that (in D > 4, where it
affects 2 → 2 graviton scattering) the coefficient of the Gauss-
Bonnet term must be both ≥ 0 and ≤ 0 (Bellazzini, Cheung,
and Remmen, 2016). Theories are known in which this
coefficient is nonzero, so it is clear that discarding the t-
channel pole is not a strictly correct procedure. A plausible
interpretation of this result is that the coefficient of the Gauss-
Bonnet term cannot be too large with either sign, as further
argued by Camanho et al. (2016) on causality grounds.
In QFT, we can deform a theory by adding relevant

operators without changing the UV behavior. This provides
a method for addressing problematic IR divergences. In
quantum gravity, we do not have this luxury. Quantum gravity
theories are rigid: we cannot simply add terms to the
Lagrangian without modifying the entire theory. On the other
hand, we can study a consistent theory on different back-
grounds. This motivated a novel argument aiming to eliminate
the problematic s2=t pole by compactifying it to three
spacetime dimensions, where there is no propagating graviton
mode (Bellazzini, Lewandowski, and Serra, 2019). A subtlety
is that, in resolving the IR problem of gravity, a new UV
problem arises: 3D flat-space gravity does not admit localized
states of an arbitrarily high mass, because a massive particle
has a deficit angle that eventually eats up the entire space. In
other words, the physics of the 3D theory resembles that of the
4D theory over a range of high energies but strongly deviates
at truly asymptotic energies. Thus, the meaning of Aðs; tÞ
becomes obscure in high-energy regions, where it seems not
even to be well defined, much less analytic. This was
suggested by Alberte et al. (2020, 2021) as a possible culprit
behind their observation that the t-channel subtracted pos-
itivity bounds derived from compactification appear to be
overly strong. They require new physics to appear at pre-
maturely small energies, in contradiction to known consistent
theories. These works, reinforcing previous similar arguments
made by Hamada, Noumi, and Shiu (2019) [see also Tokuda,
Aoki, and Hirano (2020)], suggest that positivity arguments
can forbid terms of the form −c2s2=M4, with c ∼ Oð1Þ andM
held fixed in the limit MPl → ∞, but not terms of the form
−c2s2=M2M2

Pl, which tend to zero when gravity is decoupled.
Given the subtleties associated with making completely

general and rigorous arguments in gravitational theories,
much of the work on this subject has focused attention on
identifying a sufficient set of conditions to prove Eq. (125). As
discussed, explicit computations show that tree-level
exchange of light bosons interacting with photons and loops
of light charged particles both produce corrections to cT and
cF that satisfy Eq. (125). In these cases, effects from cRF and
cGB are subdominant. This is often the case, as large
contributions to cRF or cGB induce causality violation in
the absence of a tower of high-spin states (Camanho et al.,

FIG. 12. Contour integral for a dispersive proof of positivity of
four-derivative operators. Illustrated is the case of 2 → 2 scatter-
ing of a particle of mass m. The amplitude Aðs; t ¼ 0Þ has poles
at s ¼ m2; 3m2 and branch cuts at s ≤ 0 and s ≥ 4m2. The dashed
contour around the singularity inserted at s0 ¼ 2m2 can be
deformed to the solid contour γ surrounding the subtractable
pole contributions, the positive branch cut contributions, and a
negligible contour at infinity.
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2016; see also Li, Meltzer, and Poland (2017) and Afkhami-
Jeddi, Kundu, and Tajdini (2018) for holographic, CFT-based
arguments. The most difficult case to assess is when all
contributions to the four-derivative operators arise from an
ultraviolet scale like the string scale. In this case, additional
assumptions have been invoked. If Regge states associated
with the photon have effects dominating over those associated
with the graviton, Eq. (125) can again be derived (Hamada,
Noumi, and Shiu, 2019). Similar arguments were explored for
dilatonic black holes by Loges, Noumi, and Shiu (2020b).
Constraints from duality have also been shown to imply
positivity conditions (Andriolo et al., 2020; Loges, Noumi,
and Shiu, 2020a).
Recently new positivity bounds have been derived (Caron-

Huot et al., 2021) that, following Camanho et al. (2016),
avoid the t-channel pole problem by studying scattering at a
fixed impact parameter rather than a fixed t. It remains to be
seen whether such an approach can offer a new perspective on
the WGC. A crucial test of any completely general future
proof of a positivity bound is that it must be compatible with
exactly zero correction in the case of BPS black holes.

5. Arguments from entropy

As discussed in Sec. VI.C.1, recent work has shown that the
higher-derivative correction to the black hole extremality
bound is related in a general way to the shift in the Wald
entropy of the black hole due to higher-derivative terms. This
raises the interesting prospect of proving Eq. (125) by proving
that such corrections to the entropy must be positive (Cheung,
Liu, and Remmen, 2018). In particular, an argument based on
the Euclidean path integral for black holes with positive
specific heat (including Reissner-Nordström black holes of
sufficiently large charge) establishes that the correction to the
Wald entropy ΔS4∂ from four-derivative operators is positive
whenever the correction ΔF4∂ to the free energy of the black
hole at fixed temperature is negative. The restriction to
positive specific heat allows one to conclude that the classical
solution minimizes (not just extremizes) the Euclidean action.
Under these conditions, one can show that any four-derivative
operators generated at tree level lead to ΔS4∂ > 0, which in
turn implies that corrected black holes satisfy the WGC.
Extending these considerations to rotating dyonic black holes
leads to a range of inequalities generalizing Eq. (125)
(Cheung, Liu, and Remmen, 2019).
The assumptions in this argument are not universally valid,

even for tree-level exchange (Hamada, Noumi, and Shiu,
2019). For example, a massive spin-2 field hμν with a coupling
hλλFμνFμν generates a negative shift in the entropy. It evades
the assumptions because the Euclidean action is not a local
minimum with respect to hλλ. Although this example evades
the entropy argument, it violates unitarity and thus cannot be
embedded in a consistent quantum gravity theory to provide a
counterexample to Eq. (125). This connection between
unitarity and positive contributions to the Wald entropy
may hold more generally and hints at an argument that could
extend beyond tree level (Cheung, Liu, and Remmen, 2018).
Modular invariance is another supplementary assumption that
has been invoked to extend the range of validity of entropy
arguments for positivity (Aalsma, Cole, and Shiu, 2019).

VII. IMPLICATIONS AND CONNECTIONS

A. Implications for phenomenology and cosmology

1. Direct application of the WGC

Neither the WGC nor the toweror sublattice WGCs have
immediate novel implications for the standard model of
particle physics. The electromagnetic coupling constant at
low energies is e ¼ ffiffiffiffiffiffiffiffi

4πα
p

≈ 0.30, so the electron satisifies the
WGC by more than 20 orders of magnitude. Furthermore,
because e is an order-1 number, the charged particles in the
tower predicted by the tower or sublattice WGCs could all
have masses near or above the Planck scale. If one applies the
WGC to the non-Abelian gauge groups of the standard model
(above the QCD scale or the electroweak scale, such that the
gauge bosons appear massive), then the gauge bosons them-
selves obey the WGC, and again a WGC tower could
consistently lie around the Planck scale because the coupling
constants are of order 1. Perhaps a more interesting statement
is that the WGC implies that a magnetic monopole should
exist with a mass near the Planck scale or below (assuming
that the bound is not obeyed only by monopoles of large
magnetic charge), but this is not a statement that is readily
falsifiable by any conceivable experiment at this time.
Interesting direct applications of the WGC, then, should be

sought in new gauge interactions beyond the standard model.
These could be previously undetected forces through which
known particles interact or hidden sector interactions among
particles that are currently unknown (or perhaps detected only
indirectly through their gravitational effects in the form of
dark matter).
Given the minimal standard model matter content (without

right-handed neutrinos), the theory can be extended with a
single additional Uð1Þ gauge interaction, coupling to one of
the differences of lepton numbers for different generations:
Le − Lμ, Lμ − Lτ, or Le − Lτ. At most one of these sym-
metries can be consistently gauged, due to mixed ’t Hooft
anomalies (Foot, 1991; He et al., 1991). The case of Lμ − Lτ is
of particular interest, as it can explain the nearly maximal
mixing of muon and tau neutrinos (Ma, Roy, and Roy, 2002).
Any of these gauge symmetries must be spontaneously
broken. The regime of greatest phenomenological interest
involves relatively large gauge couplings, where the WGC has
little power, even assuming that it applies in the Higgs phase.
A more compelling example is the standard model with

Dirac neutrino masses, which admits a different Uð1Þ exten-
sion, gauging the difference B − L of baryon and lepton
number (Chanowitz, Ellis, and Gaillard, 1977; Deshpande and
Iskandar, 1980). In this case, the associated gauge field could
be exactly massless without contradicting the experimental
results provided that it is extraordinarily weakly coupled:
eB−L ≲ 10−24 (Wagner et al., 2012; Heeck, 2014). The
combination of the Planck constraint on the sum of neutrino
masses

P
mν < 0.12 eV (Aghanim et al., 2020) with the

values of the neutrino mass-squared differences inferred from
neutrino oscillations Δm2

21 ≪ jΔm2
31j ≈ 2.4 × 10−3 eV2 (Zyla

et al., 2020) implies that the lightest neutrino has a mass
≲0.03 eV. Thus, the lightest neutrino will obey the WGC for
B − L provided that eB−L ≳ 9 × 10−30. This provides about 5
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orders of magnitude in allowed B − L coupling in which the
mild form of the WGC would be satisfied. The tower or
sublattice WGCs, however, provide a significant constraint: an
infinite tower of (B − L)-charged particles should exist,
beginning at masses of order eB−LMPl ≲ 1 keV and extending
up indefinitely. This implies that if B − L is an unbroken
gauge symmetry in our Universe, then billions of undetected
particles that interact (albeit weakly) with ordinary matter
exist below the TeV scale. Although this would be surprising,
it is not obviously ruled out by data; it would have phenom-
enology akin to the large extra dimension scenario
(Arkani-Hamed, Dimopoulos, and Dvali, 1998). A minimal
WGC tower of (B − L)-charged particles would suggest a
breakdown of local quantum field theory at energies

≲e1=3B−LMPl ≲ 1010 GeV, a scaling analogous to that of
Kaluza-Klein theory. (However, because standard model
fermions carry B − L charge and are not accompanied by
low-mass excitations of higher B − L charge, we would not
expect the B − L gauge group to literally arise as a Kaluza-
Klein gauge field from a circle compactification.) The tower
or sublattice WGCs put the existence of a massless B − L
gauge field in tension with conventional models of grand
unified theories or of high-scale inflation, which postulate
local new physics at energy scales above 1010 GeV but are not
ruled out by experimental data.
The WGC might also be applied to possible gauge forces

in hidden sectors, possibly related to the dark matter in our
Universe. One might expect that forces weak enough to have
significant WGC constraints would also be too weak to have
observable consequences. Somewhat surprisingly, it turns
out that weak forces between dark matter particles can
sometimes have observable consequences in astrophysics
or cosmology. Dark matter charged under a massless Abelian
gauge field (or “dark photon”) has been considered as a
simple QFT with rich phenomenology (Feng, Tu, and Yu,
2008; Ackerman et al., 2009; Feng et al., 2009). Constraints
on the strength of such a coupling arise from evidence that
dark matter is approximately collisionless. However, even
for small couplings there can be collective dark plasma
effects (Ackerman et al., 2009; Heikinheimo et al., 2015).
These lead to density fluctuations in the plasma on a
timescale on the order of the inverse plasma frequency
ω−1
p ∼ ðmd=edÞρ−1=2, where md is the mass of an individual

dark matter particle, ed is the dark photon coupling, and ρ is
the mass density of dark matter (which is directly inferred
from observations). If we suppose that the dark matter
particles themselves obey the WGC for the dark Uð1Þ, this
can lead to interesting consequences, as discussed by Craig,
Garcia, and Koren (2019b). In this case, the dark WGC
implies that md=ed ≲MPl. Quantitative estimates show that
dark plasma fluctuations can then lead to shock waves
developing on the timescale of a merger of colliding galaxy
clusters. Thus, it is conceivable that observations of cluster
mergers could reveal dynamical evidence of weak gauge
forces between dark matter particles that approximately
saturate the WGC. If the dark matter particles are sufficiently
light, then the tower or sublattice WGCs could in turn imply
important constraints on the UV cutoff of physics in our
Universe. Dedicated work, including numerical simulations,

would be necessary to make more precise statements about
observable dark plasma effects.
The tower or sublattice WGCs can also have interesting

implications for non-Abelian gauge groups in the dark
sector. For example, dark matter charged under such a
gauge group can have distinctive cosmological signatures
even for weak couplings because the dark gluons constitute
a form of interacting dark radiation (Buen-Abad, Marques-
Tavares, and Schmaltz, 2015). The toweror sublattice WGC
cutoff on such theories is at most g1=2MPl (Heidenreich,
Reece, and Rudelius, 2018b). Thus, there can potentially
be a tension between cosmological observables associated
with interacting dark radiation and theories of high-scale
inflation.
Another topic of substantial recent phenomenological

interest has been kinetic mixing between a dark Uð1Þ and
ordinary electromagnetism (Holdom, 1986). Such a mixing
can be generated by loops of particles that carry both kinds of
Uð1Þ charge. The tower or sublattice WGCs imply the
existence of such particles and hence suggest a minimum
kinetic mixing, at least in the absence of gauged charge
conjugation symmetries that enforce an exact cancellation.
The size of kinetic mixing required for such an argument was
recently explored and compared to concrete string theory
examples by Benakli, Branchina, and Lafforgue-Marmet
(2020) and Obied and Parikh (2021).
Finally, a direct application of the magnetic WGC that is

only indirectly relevant for phenomenology was made by
Cribiori, Dall’Agata, and Farakos (2021) and Dall’Agata et al.
(2021), who argued that de Sitter critical points in certain
gauged supergravity models are incompatible with the mag-
netic WGC, since by Eq. (17) their associated Hubble scale is
larger than the scale of new physics: ΛNP ≲ eMPl ≲H.

2. Bounding the electroweak hierarchy

A long-standing challenge in particle physics is the electro-
weak hierarchy problem: Why is the electroweak energy scale
(v ≈ 246 GeV) so many orders of magnitude below the Planck
scale (MPl ≈ 2.4 × 1018 GeV)? An enormous hierarchy
between the Planck scale and the masses of the electron,
proton, and neutron is necessary in order to have stable, large
objects like stars and planets. However, in the standard model
the electroweak hierarchy is large in only a small subset of the
UV parameter space, unlike the hierarchy between the Planck
and QCD scales, which is naturally exponentially large due to
asymptotic freedom. This has led to a number of suggested
extensions of the standard model in which the electroweak
hierarchy can naturally become large, ranging from scenarios
where electroweak breaking is triggered by dynamical super-
symmetry breaking to those where the Higgs boson is a
composite particle of a strongly interacting sector.
Traditionally these models all share the feature that they
relate the electroweak hierarchy to a scale generated by
dimensional transmutation, and they predict new particles
with masses near the electroweak scale. LHC measurements
have informed us that the Higgs boson appears to be
approximately elementary (i.e., it has standard-model-like
interactions with other fields), and additional electroweak-
scale particles have not yet been discovered. This has
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motivated theorists to pursue novel explanations of the
electroweak hierarchy problem.
Because the WGC gives rise to an upper bound on particle

masses, it is tempting to wonder if it could produce an upper
bound on the Higgs scale v, thereby explaining why v is so
small compared to MPl. This idea was first discussed by
Cheung and Remmen (2014b) and was further explored by
Lüst and Palti (2018) and Craig, Garcia, and Koren (2019b).
The simplest original version of the idea is to suppose that
B − L is gauged and that neutrinos, which acquire mass only
from electroweak symmetry breaking, are the particles respon-
sible for satisfying the WGC. The Dirac neutrino mass must
then obey mν ¼ yνv=

ffiffiffi
2

p
<

ffiffiffi
2

p
eB−LMPl. If we fix yν to its

standard model value (∼10−12) and we postulate a B − L
gauge coupling eB−L ∼ 10−28 (consistent with the experimen-
tal limits), this inequality tells us that v≲ 10−16MPl and thus
requires an electroweak hierarchy of the order that we observe
in nature.
While this offers an interesting perspective on how quantum

gravity might affect low-energy particle physics in surprising
ways, several elements of this argument are unsatisfactory.
One is that it seeks to explain the origin of a mysterious factor
of the order of 10−16 in terms of another small number of the
order of 10−28, which is unexplained. This is viewed as
progress because the electroweak hierarchy is not robust
against quantum corrections [the Higgs mass acquires additive
corrections of the order of ðh2=16π2ÞM2 when coupled to
heavy fields of mass M via interactions of size h, which must
be “tuned away” through cancellations against other contri-
butions], whereas the smallness of the gauge coupling eB−L is
“technically natural” (its corrections are all proportional to
eB−L itself). Nonetheless, if our goal is to understand the
origin of small numbers in our theory of nature, this at best
shifts the problem to explaining the origin of the small number
eB−L. One might hope that such a problem has a solution, for
instance, in terms of a dynamical mechanism of moduli
stabilization. Nonetheless, this shift of the hierarchy problem
toward a problem of explaining an exponentially small eB−L
is in some tension with the spirit of the WGC itself. A small
value of eB−L restores a global symmetry of the theory, so
quantum gravity should resist attempts to generate exponen-
tially small gauge couplings. This suggests that perspectives
rooted in a literal interpretation of technical naturalness may
encounter obstacles in a quantum gravity setting. A sharper
version of this concern is that the magnetic WGC tells us that
eB−LMPl serves as an ultraviolet cutoff on our EFT. This is
particularly problematic from the viewpoint of the tower or
sublattice WGCs, which postulate a tower of (B − L)-
charged particles appearing at this mass scale. If infinitely
many particles in such a tower obey the WGC, then it
was unnecessary to require that the neutrinos obey the
WGC, thus destroying the link between a small eB−L and
the Higgs scale v.
One refinement of the argument (Lüst and Palti, 2018;

Craig, Garcia, and Koren, 2019b) drew on the repulsive
force conjecture in the presence of a scalar field (Palti,
2017), arguing that the bound assumes the schematic form

m ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − μ2

p
MPl, where g is a gauge coupling and μ is a

coupling to scalars. In cases where g2 ≈ μ2, this can be a much

stronger bound than simply m ≤ gMPl. This offers the oppor-
tunity to push the magnetic WGC scale gMPl up to higher
energies, where it has less effect on the argument. On the other
hand, it introduces yet another small number, the ratioffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − μ2

p
=g, which requires explanation. One must postulate

a specific form of the scalar couplings of the light, WGC-
obeying matter fields in order to make this argument. It should
be different from the scalar couplings of black holes; other-
wise, the tower or sublattice WGC tower would begin at the

same scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − μ2

p
MPl rather than at gMPl. This application

of the RFC requires the scalar coupling providing the addi-
tional force to remain light, which itself requires explanation
and can lead to additional naturalness constraints on the EFT
(Craig, Garcia, and Koren, 2019b).
The most recent variations on the argument (Craig, Garcia,

and Koren, 2019b) have explored new forces under which no
standard model particle is charged. One could consider a
scalar field Φ charged under a new Uð1ÞX gauge interaction,
which should satisfy the WGC for Uð1ÞX. If we further posit
that Φ couples to the Higgs boson through a quartic coupling
κjΦj2jhj2, then the additive shift of the Φ mass squared by
ð1=2Þκv2 could cause Φ to fail to obey the WGC if v is too
large. Similar models can be constructed with fermionic fields.
These models make distinctive phenomenological predictions
relative to the original B − L model and could have implica-
tions for dark matter dynamics.
These attempts to bound the electroweak scale v using weak

gravity arguments all invoke a similar set of assumptions. We
must assume the existence of small (but technically natural)
couplings. We also assume that specific particles in the theory,
which happen to interact with the Higgs boson, are the ones
that satisfy the WGC. If the WGC were satisfied by an
independent set of particles, not interacting with the Higgs,
then the link to the electroweak hierarchy would be severed.
Finally, we suppose that this restricted set of theories is
relevant for the world that we live in. If the landscape of
quantum gravity contains many universes resembling our own
that do not contain the postulated Uð1ÞB−L or Uð1ÞX force and
the specific connections assumed between these forces and the
electroweak scale, then there is no reason why we would
expect our Universe to obey the assumptions. The argument
that the WGC constrains the electroweak scale would be
plausible only if such vacua were overwhelmingly more
common than others, or overwhelmingly more likely to be
populated by cosmology. In recent years, there has been a
proliferation of models that link cosmology to particle physics
by postulating the existence of a landscape that takes a specific
form, where, for instance, certain couplings are assumed to
exist and take on fixed values in all vacua. Only a limited set
of parameters “scan” from one vacuum to another. These have
been referred to as artificial landscapes (Strassler, 2014, 2016)
and, in the absence of evidence that they resemble the true
landscape of quantum gravity, it is unclear what lessons one
can draw from them.
Finally, we emphasize that the examples in which we have

checks of the WGC are cases where we compute the mass at
leading order in a perturbative expansion, or where the mass is
protected by supersymmetry. As a result, we have no explicit
examples in which the WGC is satisfied by a state whose mass
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is fine-tuned to be light due to a cancellation. Indeed, such
examples would be extremely difficult to generate. If one
could find such examples in the string theory landscape, they
would at least serve as an interesting proof of principle that the
WGC could require a fine-tuning that would appear accidental
from the viewpoint of low-energy effective field theory.

3. Other applications to the hierarchy problem

Graham, Kaplan, and Rajendran (2015) proposed a
dynamical mechanism known as cosmological relaxation as
a solution to the hierarchy problem. In this scenario, the Higgs
field h is coupled to a real scalar field ϕ through a potential of
the form

V¼ð−M2þgϕÞjhj2þðgM2ϕþg2ϕ2þ���ÞþΛ4 cosðϕ=fÞ;
ð132Þ

where M is the cutoff of the effective field theory and Λ
depends on the VEV of h. Initially, the dynamics of ϕ are
dominated by the polynomial terms and the cosine term is
negligible. When ϕ ∼M2=g, however, the Higgs field
acquires a VEV and the scale Λ for the cosine terms grows,
creating a barrier that stabilizes the axion and leaves the Higgs
with a mass well below the EFT cutoffM. For this mechanism
to work, however, the cosine terms must eventually be able to
compete with the gM2ϕ term. In typical relaxation scenarios,
this requires g to be roughly of the order of 10−34.
Furthermore, inflation must last long enough for ϕ to scan
the entire range of the Higgs mass. This places an additional
bound on the cutoff given by M ≲ ðΛMPlÞ1=2, which yields
M ≲ 109 GeV for Λ ¼ ΛQCD.
The small coupling g ∼ 10−34 is “technically natural,” but

this does not necessarily mean that the model can be UV
complete. In particular, as we take g → 0 the theory (132) has
an exact global symmetry ϕ0 ¼ ϕþ 2πf. If the arguments
against exact global symmetries have any robustness, they
should also rule out sufficiently small values of g. One
possible approach to avoiding this problem is to view ϕ0 ¼
ϕþ 2πf as a gauge symmetry or, in other words, to turn ϕ
into an axion. This, however, forbids most of the terms in
Eq. (132) (a small explicit violation of a gauge symmetry is
just as bad as a large one), and thus kills the feasibility of
the model.
To date the most promising proposal for obtaining a large

scalar field excursion that is consistent with all versions of the
WGC is the “axion monodromy” proposal of Silverstein and
Westphal (2008) and McAllister, Silverstein, and Westphal
(2010).16 The most basic version of this proposal (Kaloper and
Sorbo, 2009) uses an axion coupled to a 3-form gauge field A3

via the Lagrangian (which we here write as a 4-form),

L ¼ −
1

2
dϕ ∧ ⋆dϕ −

1

2e23
F4 ∧ ⋆F4 þ

g
e3

ϕF4; ð133Þ

with F4 ¼ dA3. Naively one might think that the coupling g
should be zero to respect the axion periodicity ϕ ∼ ϕþ 2πf,
but as is usual for Chern-Simons type interactions the fact that
the integral of F4 obeys the quantization

Z
F4 ¼ 2πm; m ∈ Z; ð134Þ

means that it is enough that we have

g ¼ ke3
2πf

; k ∈ Z: ð135Þ

We have normalized g here so that it matches the g in
Eq. (132), so we now have two ways to get a small g: either
we can take f large in Planck units or we can take e3 small.
To avoid trouble with the axion WGC (26), we do not want to
take f large in Planck units (we discuss this further in
Sec. VII.A.5), so our task is to understand how constrained
we are by the WGC for the 3-form gauge field A3. Before
discussing this, however, we explain in more detail how the
theory (133) allows for a super-Planckian field excursion.
The equations of motion following from Eq. (133) are

⋆d⋆dϕþ g
e3

⋆F4 ¼ 0; dðge3ϕ − ⋆F4Þ ¼ 0; ð136Þ

so the quantity

F̃0 ≡ ⋆F4 − ge3ϕ ð137Þ

is constant. In fact, it is quantized: the integral of A3 over
space is a periodic variable, and F̃0 is proportional to its
canonical conjugate. Working this out gives the quantization

1

e23
F̃0 ¼ n; ð138Þ

with n ∈ Z. Substituting this back into the first equation of
motion we find that

⋆d⋆dϕþ gðe3nþ gϕÞ ¼ 0; ð139Þ

which is the equation of motion for a scalar field with a
potential that is a second-order polynomial just as in
Eq. (132). Equation (139) may appear to not be gauge
invariant, but it actually is since n is a dynamical variable and
the relevant gauge transformation is

ϕ0 ¼ ϕþ 2πf; n0 ¼ n − k: ð140Þ

In Eq. (140) k is the integer defined by Eq. (135). One way to
think about the apparent nonperiodicity of the potential is to
observe that although ϕ is periodic, ⋆F4, which is not
periodic, is also rolling in order to ensure that F̃0 is constant.
Indeed, one can say that ⋆F4 is really the gauge-invariant
scalar which is rolling in axion monodromy.
There is an interesting subtlety in this model that is worth

mentioning explicitly: although the gauge invariance of the

16This was originally proposed as a model of inflation, as we
discuss later in this section, but it can also be used as a mechanism to
implement cosmological relaxation, as we discuss here.
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action prevents us from adding arbitrary powers of ϕ to the
action, ⋆F4 is perfectly gauge invariant, and thus there is
nothing that prevents us from introducing a potential Vð⋆F4Þ.
Such a potential presumably is generated by quantum gravity
effects, so why does it not ruin the model? To the extent that
axion monodromy can be realized in string theory (which
seems unlikely for the relaxion scenario but plausible for
inflation), such a potential does exist but is typically of the
form

Vð⋆F4Þ ¼
1

e23l
8
s
vðl4

s⋆F4Þ: ð141Þ

In Eq. (141) ls is the string scale and vð·Þ is a dimensionless
function of a dimensionless variable that is expected to be
Oð1Þ. [In models, the form of this function is known from, for
instance, the Dirac-Born-Infeld action (McAllister,
Silverstein, and Westphal, 2010).] The correction to the
equations of motion (136) arising from this potential does
not become important until ⋆F4 ∼ l−4

s . An axion excursion
Δϕ gives rise to a change in ⋆F4 that is of the order of

Δ⋆F4 ∼ ge3Δϕ ∼ ke23
Δϕ
f

; ð142Þ

so we can have an axion excursion that is large compared to f
without feeling the potential V provided that

ke23l
4
s ≪ 1: ð143Þ

In string theory, the dimensionless number e23l
4
s is often small:

it can be proportional to positive powers of gs, inverse powers
of volumes, or warp factors; whatever the reason, as long as it
is small we can achieve Δϕ ≫ f without being sensitive to
Vð⋆F4Þ. The robustness of axion monodromy thus relies on
high-energy information from string theory: it cannot be
established purely using low-energy power counting and
symmetries.
We now turn to applying the WGC for 3-form gauge fields

to axion monodromy (Ibáñez et al., 2016). The objects to
which it applies are domain walls of tension T3, across which
ð1=e23ÞF̃0 changes by an integer Q, and the WGC says there
should be such domain walls with

T3 ≤
4πfgMPlQ

k
: ð144Þ

The danger here is that an upper bound on the domain wall
tension also likely gives some sort of lower bound on the rate
for bubbles bounded by the domain wall to nucleate, and if
this happens too often it destroys the relaxation mechanism.
The domain walls separate regions whose potential energy
differs by

ΔV ∼ ge3ϕ ∼ fg2ϕ=k: ð145Þ

The bounce action computed by Ibáñez et al. (2016) is not
accurately described by the thin-wall approximation but
involves important gravitational backreaction (Coleman and
Luccia, 1980). The result is a bubble nucleation probability

P ∼ expð−BÞ; B ≈ wðbÞ 2π
2T3

H3
; ð146Þ

where H is the Hubble scale during inflation. The parameter b
is defined as

b ¼ ΔV
HT3

; ð147Þ

and it turns out that in the parameter range of interest wðbÞ ∼
Oð1Þ and b≲ 1. Using b, we can rewrite the bounce action
estimate as

B ∼ 2π2
T4
3b

3

ðΔVÞ3 : ð148Þ

The WGC provides a constraint, following Ibáñez et al.
(2016), because we require B ≫ 1 for an exponentially
suppressed tunneling probability, but the WGC implies that
B < Bmax, where Bmax is obtained when T3 saturates
Eq. (144). These can be consistent only when Bmax ≫ 1.
Together with the estimates ϕ ∼M2=g and gM2 ∼ Λ4=f
required for consistent relaxion phenomenology, this inequal-
ity translates into the following bound on the EFT scale:

M ≲ ð4π2b3Þ1=8
ffiffiffiffiffiffiffiffiffiffiffi
ΛMPl

p
: ð149Þ

For Λ ¼ ΛQCD, this bound becomes

M ≲ b3=8 × 2.5 × 109 GeV; ð150Þ

which for b ∼ 1 rivals the bound for consistency of the
previously discussed relaxion model.
Thus, the 3-form WGC provides an interesting constraint

on cosmological relaxation implemented via axion mono-
dromy. On the other hand, a similar constraint may also be
derived independently of the WGC, and in the original paper it
was shown that this constraint could be satisfied without
spoiling the model. Therefore, neither the axion WGC nor the
3-form WGC seem to pose a fatal challenge to the axion
monodromy version of the cosmological relaxation model.
Note, however, that embedding the model in string theory
nonetheless seems to be challenging, if not impossible. In
particular, McAllister et al. (2018) argued that within a string
compactification the large winding number of the relaxion
corresponds to a large charge carried by branes or fluxes [this
is already apparent in the model (133) since ⋆F4 is rolling].
This charge backreacts on the compactification geometry and
eventually spoils the relaxation mechanism. The relaxion
scenario may lie in the swampland, but if so the most stringent
top-down constraints do not come from the WGC. Even if
axion monodromy does not give a viable realization of the
relaxion model in string theory, however, it is a plausible
candidate for realizing inflation. We return to this in
Sec. VII.A.5.

4. Mass of the photon or dark photons

Conventionally, we assume that the photon is a massless
gauge field. However, theories of massive, Abelian spin-1
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particles are perfectly consistent, either with a simple mass
term and no gauge invariance at all (Proca, 1936) or with a real
scalar field added to provide the longitudinal mode, together
with a gauge invariance to eliminate the redundant degree of
freedom (Stueckelberg, 1938). If the photon has a small mass,
the longitudinal mode is extremely weakly coupled, so it is
difficult to experimentally distinguish from a massless photon
despite the change from two to three independent propagating
polarization states (Bass and Schrödinger, 1955). The photon
in our Universe must be extremely light. There is a large
literature on experimental constraints on the mass, to which a
few interesting entry points are Adelberger, Dvali, and
Gruzinov (2007), Goldhaber and Nieto (2010), and Wu et al.
(2016).
In four dimensions a massive photon in the Stueckelberg

regime can be described by BF theory: we have a 1-form
gauge field A with field strength F ¼ dA and a 2-form gauge
field B with field strength H ¼ dB interacting via the
Lagrangian

S¼
Z �

−
1

2f2
H∧⋆H−

1

2e2
F∧⋆Fþ k

2π
B∧F

�
; ð151Þ

where k ∈ Z just as in the axion monodromy discussion of
Sec. VII.A.3. The gauge coupling f of the 2-form field has a
mass of dimension 1. This theory describes a massive gauge
field with a mass

m ¼ k
2π

ef: ð152Þ

For k ≠ 0, taking the gauge field mass to zero requires either
e → 0 or f → 0. In either case, we are taking a gauge coupling
to zero, so the WGC imposes some constraint. In particular, if
we send e → 0, the magnetic WGC tells us that there is a UV
cutoff on the theory at the scale eMPl, and the tower or
sublattice WGCs suggest that effective field theory breaks
down irrevocably there at some scale, possibly a higher one
like e1=3MPl (as in Kaluza-Klein theory). If we send f → 0,
the mild WGC for the 2-form gauge field B implies that
strings charged under B should exist with a tension T ≲ fMPl.
In the case where the photon mass arises from the Higgs

mechanism, there is no fundamental obstruction to sending
f → 0. This corresponds to turning off the Higgs VEV, which
can be accomplished just by giving the Higgs a positive mass
term around the origin. In this case, the B field may be thought
of as an emergent gauge field in the IR below the scale of the
Higgs VEV, and the charged strings predicted by the 2-form
WGC are simply Abrikosov-Nielsen-Olesen (ANO) strings
(Abrikosov, 1957; Nielsen and Olesen, 1973). In the core of
an ANO string, the Higgs VEV is zero; in the limit that the
Higgs VEV is taken to zero, an ANO string simply becomes
more and more diffuse and fades away. The WGC, then, is
compatible with small masses arising from the Higgs
mechanism.
By contrast, there are massive gauge theories that are

fundamentally of the Stueckelberg type. In this case, the
strings charged under the B field are fundamental (for
instance, the F strings or D strings of string theory). The
core of the string is not well described by effective field

theory, and there is no finite-distance point in field space at
which the gauge boson mass can be sent to zero. In this case,
the limit f → 0 corresponds to a theory of fundamental,
tensionless strings, signaling a complete breakdown of local
effective field theory. In such a case, the fundamental quantum
gravity cutoff energy is bounded, ΛQG ≲ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πfMPl
p

.
The WGC, then, imposes an ultraviolet cutoff on theories of

a massive gauge boson with mass arising from a fundamental
Stueckelberg term (Reece, 2019). This can also be understood
as a consequence of the swampland distance conjecture: for
mass terms of a fundamental Stueckelberg type, the m → 0
limit is an infinite distance limit, so an infinite tower of light
states appears when one approaches this limit.
This constraint on massive, Abelian gauge bosons has

potentially important implications for the standard model
photon and for potential dark photons (Reece, 2019).
Consider first the standard model photon. A conservative
bound, obtained from the arrival time of different frequencies
from fast radio bursts, is thatmγ ≲ 10−14 eV (Wu et al., 2016).
Stronger bounds exist but involve more assumptions, so we
work with this simple kinematic bound; our conclusions can
be readily adapted to other constraints. If we assume that
electromagnetic charge is quantized in the usual way, the only
way to obtain a small standard model photon mass of a
fundamental Stueckelberg type is by taking f to be small:
ef=ð2πÞ ≲ 10−14 eV requires f ≲ 10−22 GeV. But then the
weak gravity conjecture would require fundamental strings
with a tension T ≲ fMPl ≲ ð20 MeVÞ2. However, we know
that gravity does not become strongly coupled near the MeV
scale, so we cannot have a fundamental string with its
associated tower of high-spin modes at such a low scale.
This strongly suggests that the only way for the standard
model photon to be massive is if it is Higgsed.
Could the standard model photon be Higgsed? The short

answer is “probably not,” and it becomes “no” provided that
we assume that the ratios among charges of light particles in
the theory are at most Oð1Þ (such an assumption is common in
discussions of phenomenological implications of the WGC).
With this assumption, if the standard model photon were
Higgsed, then we would already have discovered the corre-
sponding Higgs boson. The only way to avoid this is for the
standard model photon to obtain a mass from a Higgs field
with a charge that is a small fraction of the electron’s charge,
in which case the associated Higgs boson could remain hidden
from experiments. For example, suppose that the fundamental
unit of electric charge is not e but rather some e0 ¼ e=N
where N is a large integer. Our calculation then becomes
significantly different: we have mγ ¼ e0f=2π and, rather than
a small f, we are free to take a small e0. Furthermore, if f is a
Higgs VEV rather than a Stueckelberg scale, then there are no
associated fundamental strings providing a UV cutoff. As an
example, the choices of f ∼ eV and e0 ∼ 10−14 could be
consistent with experimental bounds on millicharged par-
ticles. This implies a WGC tower of states with small electric
charge beginning at the scale e0MPl ∼ 10 TeV, which is
allowed by data. Apart from a new hierarchy puzzle associated
with the small mass of the new Higgs field, the cost of
considering such a theory is the introduction of the enormous
integer N ∼ 1014. The standard model fermions would carry
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electric charge on this order in units of the fundamental
charge. There are no known consistent theories of quantum
gravity that can produce such large ratios of charges among
light particles. On the other hand, there are phenomenological
models in which such a large integer could be obtained as a
product of smaller integers, as in the clockwork scenario
(Choi, Kim, and Yun, 2014; Choi and Im, 2016; Kaplan and
Rattazzi, 2016), which was adapted to this context by Craig
and Garcia (2018). It remains to be seen if such scenarios can
be found in the landscape.
The WGC can constrain not only the possibility that the

standard model photon is massive but also the possibility that
a dark photon A0 has a fundamental Stueckelberg mass. One
application is to dark photon dark matter, which is now the
target of many dedicated experiments. Dark photon dark
matter can arise from the primordial fluctuations of a massive
vector field A0 during inflation, which can account for the
observed dark matter relic abundance if mA0 ≳ 10−5 eV
(Graham, Mardon, and Rajendran, 2016). However, for such
a light dark photon, if the mass is of a fundamental
Stueckelberg type then the WGC implies a cutoff lower than
the inflationary Hubble scale assumed in the calculation of the
dark matter relic abundance. This constraint excludes a
substantial part of the parameter space of such models
(Reece, 2019).

5. Axion inflation

The spectra of temperature and polarization fluctuations in
the cosmic microwave background (CMB) radiation strongly
suggest that the Universe experienced an early period of
accelerated expansion known as inflation (Peiris et al., 2003;
Akrami et al., 2020). This idea (Starobinsky, 1980; Guth,
1981) is most easily realized by a scalar field rolling slowly
down a potential (Linde, 1982). The action describing this
scenario is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð153Þ

where the scalar ϕ is called the inflaton. At leading order the
metric gμν is taken to be the Friedmann-Robertson-Walker
metric,

ds2 ¼ −dt2 þ a2ðtÞdx⃗2; ð154Þ

and the scalar field ϕ is taken to be homogeneous in space,
ϕðt; x⃗Þ ¼ ϕðtÞ. The equations of motion are

ϕ̈þ3Hϕ̇þV 0ðϕÞ¼ 0;
1

3M2
Pl

�
1

2
ϕ̇2þVðϕÞ

�
¼
�
ȧ
a

�
2

;

ð155Þ

and inflation happens when H ≡ ȧ=a is approximately con-
stant. Requiring jḢj ≪ H2 implies that ϕ̇2 ≪ V, and it is
usually also assumed that the acceleration of ϕ is small
(jϕ̈j ≪ ϕ̇H); see Weinberg (2008). Together these require-
ments are equivalent to the “slow roll conditions”

jV 0j
V

MPl ≪ 1;
jV 00j
V

M2
Pl ≪ 1: ð156Þ

Inflation ends when these conditions are violated, after which
the field is usually expected to oscillate about its current
minimum and in some manner (called reheating) decay into
the dense gas of hot particles that we usually call the big bang.
CMB observables give us data about the inflaton potential

V. Especially noteworthy for our purposes are the following
primordial scalar and tensor power spectra:

k3PsðkÞ¼
H4

2ϕ̇2
≈

V3

6M6
PlV

02 ; k3PtðkÞ¼
4H2

M2
Pl

≈
4V
3M4

Pl

; ð157Þ

where the quantities on the right are evaluated at the value of ϕ
corresponding to the time when modes of wave number kwere
exiting the inflationary horizon; see Maldacena (2003b). The
scalar power spectrum has been well measured by the
temperature anisotropy of the CMB, so it is the tensor
spectrum that causes anisotropy in the B-mode polarization
of the CMB, which is of most importance in learning more
about the physics of inflation. In particular, from Eq. (157) we
see that a measurement of tensor modes would give us direct
information about the overall scale of the inflationary poten-
tial. The tensor amplitude is usually expressed via the tensor-
to-scalar ratio

r≡ Ptðk�Þ
Psðk�Þ

¼ 8ϕ̇2

H2M2
Pl

≈
8M2

PlV
02

V2
; ð158Þ

where k� is a typical wave number of large scale structure, say,
0:05 Mpc−1. For high-scale inflation that might lead to
observable tensor modes, this corresponds to the value of
the inflaton about 60 e-foldings before the end of inflation
(i.e., at the time t� when log ½aðtendÞ=aðt�Þ� ≈ 60).
From Eq. (158), we see that the tensor-to-scalar ratio

measures how quickly the inflaton is rolling. We also know
how long inflation lasts (60 e-folds for high-scale inflation).
Putting these together and integrating ϕ̇ over time, we obtain
the following rough estimate on the distance traveled by the
field ϕ during the course of inflation, which is known as the
Lyth bound (Lyth, 1997):

Δϕ ≈Oð1Þ
�

r
0.01

�
1=2

MPl: ð159Þ

The Lyth bound tells us that if tensor modes can be detected in
the CMB in the near future (which would require
r≳ 0.001–0.01), then the inflaton must traverse a distance
of order 1 in Planck units.
This “super-Planckian” field range is important because

such large-field excursions can run into trouble with effective
field theory. Quantum gravity sets an EFT cutoff no larger
than the Planck scale, so a perturbative expansion of VðϕÞ
in powers of ϕ suppressed by MPl will cause trouble when
Δϕ is OðMPlÞ or larger. If tensor modes are observed in the
CMB, therefore, we will need a model of large-field inflation
that is not destroyed by large corrections arising from
quantum gravity.
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Historically, axions have been considered the most prom-
ising route for circumventing this issue. An axion has a
discrete gauge symmetry ϕ → ϕþ 2π. This shift symmetry
protects the axion potential from Planck-suppressed operators
ϕn=Mn−4

Pl . The dynamics are instead controlled by a periodic
potential, which is often assumed to be dominated by
instanton effects, leading to an action of the form

S ¼
Z

d4x½−1
2
f2ð∂μϕÞ2 − VðϕÞ�; ð160Þ

where

VðϕÞ ¼ Λ4
UVe

−Sinst ½1 − cosðϕÞ� þOðe−2SinstÞ: ð161Þ

In Eq. (160) f is the axion decay constant, Sinst is the instanton
action, and higher harmonics of the potential are suppressed
by additional powers of e−Sinst . The resulting model of
inflation is called natural inflation (Freese, Frieman, and
Olinto, 1990), and it yields phenomenologically viable
models of large-field inflation with detectable tensor modes
(r > 0.01) for f ≳ 10MPl.
Although natural inflation is an appealing model, it has

proven difficult to implement in string theory when f ≳MPl
and Sinst ≫ 1, with the basic problem being that such large
excursions in scalar field space often lead to additional light
degrees of freedom appearing that spoil inflation (Banks et al.,
2003). This difficulty is part of what led AMNV to propose
the WGC in 2007: the axion WGC (26) gives an upper bound
on f, which in D ¼ 4 and assuming the instantons satisfying
the WGC have a small instanton number tells us that

fSinst ≲MPl: ð162Þ

Thus, any natural inflation model with observable tensor
modes and a computable potential (meaning that f ≳ 10MPl
and Sinst ≫ 1) is in strong tension with the axion WGC.
By the time the WGC was introduced, various works had

already considered possible ways to get around the previously
mentioned difficulties and realize a model of large-field
natural inflation consistent with quantum gravity. One such
proposal is N-flation (Liddle, Mazumdar, and Schunck, 1998;
Dimopoulos et al., 2008). As its name suggests, N-flation
invokes not just 1 but N axion fields. If each field has a decay

constant f, then by traveling along the diagonal in field space
one sees an effective decay constant of feff ¼

ffiffiffiffi
N

p
f (using the

simple fact that an N-dimensional hypercube of side length f
has a diagonal of length

ffiffiffiffi
N

p
f; see Fig. 13). A related idea is

decay constant alignment (Kim, Nilles, and Peloso, 2005):
here only two axions are needed, but their decay constants are
“aligned” so that the fundamental axion domain is not a
square, but rather an elongated parallelogram, as shown in
Fig. 14. Even though each individual axion may have a sub-
Planckian decay constant, the diagonal direction in field space
may be much larger than MPl, thereby generating a model of
natural inflation with a super-Planckian effective decay con-
stant feff ≫ MPl.
However, in their simplest incarnations, neither N-flation

nor decay constant alignment evade the axion WGC. The
individual instantons involved may be superextremal, but
together they do not satisfy the convex hull condition, as
shown in Fig. 15. In other words, there are no superextremal
instantons associated with the diagonal directions of
field space.
We can make a more general argument. Suppose that our

theory features n instantons with an action

S ¼
Z

d4x½−1
2
∂μϕ⃗ ·K · ∂μϕ⃗ − Vðϕ⃗Þ�; ð163Þ

where K is the kinetic matrix for the axions. We further
suppose that instantons generate a leading-order potential of
the form

FIG. 13. In N-flation, a large number N of axions with
individually sub-Planckian decay constants give rise to an
effective decay constant feff that can be arbitrarily large and
are realized by traveling along the space diagonal of the N-
dimensional hypercube.

FIG. 14. In decay constant alignment, two axions with indi-
vidually sub-Planckian decay constants are aligned such that their
diagonal can be arbitrarily large.

FIG. 15. In their simplest incarnations, both N-flation and decay
constant alignment violate the axion WGC: the charge-to-action
vectors z⃗k ¼ Q⃗k=Sk of the instantons are superextremal, but their
convex hull does not contain the unit ball.
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Vðϕ⃗Þ ¼
X
k

Λ4
UVe

−Sk ½1 − cos ðQ⃗k · ϕ⃗Þ�; ð164Þ

Next suppose that we want to inflate in the e⃗ direction of field

space such that the inflaton starts at the point ϕ⃗ ¼ ϕ0ê and
rolls to the minimum at the origin in approximately a straight
line in field space. We assume that the largest value of ϕ0

allowed satisfies

ϕ0ðQ⃗k · êÞ ≤ π for all k ð165Þ

since otherwise the inflaton sits in a cosine well of the kth
potential term that does not contain the origin, which will
presumably lead the inflaton to roll into a neighboring vacuum

rather than the vacuum at ϕ⃗ ¼ 0.
Next we assume the axion WGC, which implies that for the

given direction ê there is a superextremal instanton satisfying

Q⃗k · ê
fSk

≳ 1

MPl
; ð166Þ

where f ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ê ·K · ê

p
is the axion decay constant for the

direction ê. Finally, we assume that Sk > 1 for perturbative
control of the instanton expansion. Together with Eq. (165),
this gives a bound on the physical displacement of the field,

kϕ⃗k ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ⃗ ·K · ϕ⃗

q
¼ fϕ0 ≲ πMPl: ð167Þ

Thus, the axion WGC constrains the maximum axion field
range to be OðπMPlÞ, which is too small to generate a
successful model of natural inflation with observable tensor
modes (Montero, Uranga, and Valenzuela, 2015; Rudelius,
2015a, 2015b; Brown et al., 2015, 2016). The generality of
this observation reinvigorated provides hope that the consis-
tency of quantum gravity might lead to testable predictions for
cosmology and generate renewed interest in the WGC and the
swampland program more generally.
There are several caveats to the previously mentioned

argument that need to be discussed. One is that it assumes
the axion WGC, which as we have seen is on somewhat
shakier footing than the higher-form versions of the WGC. In
particular, it is not immediately related to black hole evapo-
ration. Relatedly the Oð1Þ coefficient in the axion WGC has
thus far not been decisively fixed; hence, our argument
produced only a “squiggly” ≲ statement rather a sharper ≤
statement. Various possibilities for the precise Oð1Þ coeffi-
cient in the axion WGC bound were suggested by
Heidenreich, Reece, and Rudelius (2016) and Andriolo et al.
(2020). Moreover, the bound (162) relies on assuming that the
instantons obeying the axion WGC have an instanton number
that is Oð1Þ. This is natural from the point of view of the tower
or sublattice WGCs, and also from the point of view of the
idea that there should be objects obeying the WGC that are not
black holes (or in the axion case that do not have large
gravitational backreaction), but it follows from tower or
sublattice WGCs only if we assume that the relevant tower
or sublattice is not too sparse.

Another related issue is that the bound (165) assumes that
every instanton whose charge-to-action vector Q⃗k=Sk con-
tributes to the convex hull also contributes significantly to the
axion potential. However, it is conceivable that the dominant
contributions to the axion potential could come from instan-
tons that violate the axion WGC, whereas the instantons that
satisfy the WGC give only subleading, unimportant contri-
butions to the potential. In this case, the inflationary dynamics
are unconstrained by the axion WGC. This “extra instanton
loophole” has driven a lot of interest in strong forms of the
WGC (Hebecker et al., 2015; Bachlechner, Long, and
McAllister, 2016). However, even the lattice WGC is not
sufficient to close this loophole (Heidenreich et al., 2020). On
the other hand, threading the extra instanton loophole seems to
require a fair bit of tuning (Heidenreich et al., 2020), and to
date super-Planckian axion decay constants have yet to be
realized in string theory (Long, McAllister, and Stout, 2017).
It is also possible to try to relax the assumption that Sk ≫ 1,

which we suggested is required for perturbative control of the
instanton expansion. In string compactifications, Sk is typi-
cally the size of some cycle of the Calabi-Yau in string units,
so the α0 expansion of string theory is not valid unless Sk ≫ 1.
However, in “extranatural inflation” (Arkani-Hamed et al.,
2003) instantons in four dimensions come from the particles in
5D wrapping the compactification S1. The instanton action for
a particle of mass m wrapping a circle of radius R is given by
Sinst ¼ 2πmR, and the contribution to the axion potential is
given by

VðϕÞ ¼ 3ð−ÞS
4π2

1

ð2πRÞ4
X
n∈Z

cne−2πnRm5einϕ;

cn ¼
ð2πRm5Þ2

3n3
þ 2πRm5

n4
þ 1

n5
: ð168Þ

In this context, there is no problem with taking Sinst ≪ 1. This
corresponds simply to a light particle with m ≪ 1=R.
Likewise, there is no problem with perturbative control of
the potential: the 1=n5 term in cn suppresses higher harmonics
even for Sinst ≪ 1 (de la Fuente, Saraswat, and Sundrum,
2015). This significantly weakens the WGC bound (162) on
the axion decay constant. By imposing the convex hull
condition on both the Uð1Þ of the parent 5D theory and the
Kaluza-Klein Uð1Þ, one can strengthen the bound to
f ≲MPl=S

1=2
inst , but this is still insufficient to close this “small

action loophole” in the context of extranatural inflation
(Heidenreich, Reece, and Rudelius, 2015).
Finally, and perhaps most importantly, these arguments

apply solely to theories where the only fields relevant during
inflation are axions and the metric. Including nonperiodic
scalars would only reintroduce the UV sensitivity that we
avoided with axions, but we saw in our previous discussion of
the axion monodromy model (133) that the inclusion of a 3-
form gauge field A3 coupled to an axion by a Chern-Simons
term offers a simple mechanism whereby an axion with f ≲
MPl can nonetheless lead to a scalar ⋆F4 that rolls down a
potential for many Planck distances. Moreover, we saw that
the 3-form WGC applied to A3 and stringy corrections of the
form Vð⋆F4Þ lead to only weak constraints on the range of
this rolling. We presented this model in the context of
cosmological relaxation, but its most compelling application
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is actually inflation, which indeed is what it was originally
proposed for (Silverstein and Westphal, 2008; McAllister,
Silverstein, and Westphal, 2010). Moreover, proposals have
been given for embedding this model in a consistent string
compactification, although there are still certainly details
remaining to be worked out and to date no detailed model
has been given where a large-field range is realized (Baumann
and McAllister, 2015; McAllister et al., 2018; Kim and
McAllister, 2020).
It is sometimes suggested that string theory does not allow

for models with observable tensor modes, and the axion WGC
was proposed in part to give an explanation for this claim, but
axion monodromy casts serious doubt on this. Natural
inflation with observable tensor modes may well be in the
swampland, but the right lesson from this may just be that we
should see what kind of predictions follow from the more
general axion models that do seem to work. In particular,
given the ever-improving observational upper bounds on r, it
is natural to ask whether axion monodromy models exist
which are not excluded but nonetheless predict observable
tensor modes. The simplest potential, a quadratic one [see
Eq. (139)], as well as simple extensions with other powers
(McAllister et al., 2014), is now already excluded by the
Planck satellite and ground-based experiments including
BICEP and Keck (Ade et al., 2021; Kallosh and Linde,
2021), but variations on the model are possible (D’Amico,
Kaloper, and Westphal, 2021; D’Amico, Kaloper, and
Westphal, 2022). Perhaps the detailed issues remaining to
be resolved in realizing axion monodromy in a genuine string
compactification may yet lead to distinctive predictions. If so,
the various forms of the WGC will likely be important tools in
guiding us toward models that work. Either way it is note-
worthy that ongoing observations are teaching us concrete
things about physics near the Planck scale.

B. Implications for mathematics

The WGC is a statement about the charges and masses of
particles in effective field theory. In string or M theory, super-
symmetric effective field theories arise from compactifying on
Calabi-Yau manifolds. Charged particles arise from p-branes
wrapping p-cycles of the Calabi-Yau manifold. The charge of
such a particle is determined by the homology class Σ wrapped
by the brane, and the mass of the particle is determined by the
volume of the wrapped cycle. Thus, the WGC translates into
geometric statements about the volumes of representatives of
various cycles in a Calabi-Yau manifold.
For concreteness, we now consider the case ofM theory on

a Calabi-Yau 3-fold X. This produces a 5D supergravity
theory, and charged particles arise from M2-branes wrapping
2-cycles of X. The charge lattice of the theory is identified
with the homology lattice H2ðX;ZÞ.
The resulting supergravity theory has a BPS bound: the

mass of a particle of charge qI is constrained to satisfy

m ≥
�ð2πÞ2

2κ5

�
1=3

jζqj; ð169Þ

where ζq is the “central charge,” a quantity that depends linearly
on qI . It is sometimes said that the BPS bound is a sort of

converse to theWGCbound, and there is a precise sense inwhich
this is true: if there are BPS black holes in a given direction q̂ in
the charge lattice, then the BPS bounds and extremality bounds
coincide in this direction in the lattice. The onlyway a particle of
charge qI ∝ q̂ can satisfy both the WGC bound and the BPS
bound is if it saturates both bounds. A particle that saturates the
BPS bound is called a BPS particle. Therefore, the tower or
sublattice WGCs require an infinite tower of BPS particles of
increasing mass or charge in every direction in the charge lattice
for which the BPS bound coincides with the extremality bound.
Geometrically BPS particles arise from M2-branes wrap-

ping “holomorphic” curves of X. Here a curve Σ is holomor-
phic if its volume is given by integrating the Kähler form J
over it, VΣ ¼ R

ΣJ. Equivalently, we say that the curve is
calibrated by the Kähler form.
The upshot of this is that the tower or sublattice WGCs

imply the existence of an infinite tower of holomorphic curves
in any direction q̂ of the homology lattice H2ðX;ZÞ for which
the BPS bound coincides with the extremality bound. In fact,
the condition that the BPS bound and extremality bounds
coincide in the direction q̂ can also be given a geometric
interpretation: these bounds necessarily coincide for any q̂ that
resides in the so-called cone of moving curves
K∨ ⊂ H2ðX;RÞ, which is equal to the cone dual of the “cone
of effective divisors” (Alim, Heidenreich, and Rudelius,
2021).17 Thus, the tower or sublattice WGCs translate to
the nontrivial geometric statement that there must be an
infinite tower of holomorphic curves for any rational direction
q̂ within the cone of moving curves K∨.
This statement is powerful in that (a) it is a purely geometric

statement with no reference to physics and (b) it can actually
be verified in examples. Gopakumar-Vafa (GV) invariants
(Gopakumar and Vafa, 1998a, 1998b, 1999) count the number
of BPS particles (i.e., holomorphic curves) of a given charge
qI in the lattice,

18 and these can be computed for many Calabi-
Yau hypersurfaces (Hosono et al., 1995a) and complete
intersection Calabi-Yau manifolds (Hosono et al., 1995b).
At the same time, the cone of moving curves K∨ can often be
computed (with some input from the 5D supergravity theory)
using the methods of Alim, Heidenreich, and Rudelius (2021).
Together with the automated computation of GV invariants
introduced by Demirtas, Rios-Tascon, and McAllister (2022),
this has enabled thorough checks of this geometric version of
the tower or sublattice WGCs in more than 1400 Calabi-Yau
manifolds (Gendler et al., 2022).

17If the theory in question allows certain Uð1Þ gauge fields to be
enhanced to a larger non-Abelian group, the effective cone of divisors
may change under a phase transformation representing a Weyl
reflection of the non-Abelian gauge group. In this case, the BPS
and extremality bounds coincide in an even larger cone in the charge
lattice, which is geometrically the cone dual to the intersection of the
effective cone of divisors over all phases of the theory (Gendler et al.,
2022).

18More accurately, GV invariants compute an index of BPS
particles of a given charge, meaning that a nonzero GV invariant
implies a nonzero number of BPS particles, whereas a vanishing GV
invariant could result from an equal number of BPS hypermultiplets
and BPS vector multiplets of a given charge.
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Thus far we have focused our attention on BPS particles,
which are required by the tower or sublattice WGCs in certain
directions in the charge lattice where the BPS bound and
extremality bound coincide. In a theory with eight super-
charges, however, there will generically be some directions for
which the BPS bound and the extremality bound do not
coincide. The tower or sublattice WGCs still require the
existence of superextremal particles, which means that they
still impose constraints on the volumes of cycles of the Calabi-
Yau manifold. To be more precise, the charge-to-mass vector
of a particle associated with a p-cycle Σ of a Calabi-Yau
manifold is given by (Hebecker, Rompineve, and Westphal,
2016)

z⃗ ¼ V1=2
X q⃗Σ
VΣ

; ð170Þ

where VX is the volume of the Calabi-Yau X, VΣ is the volume
of Σ, and q⃗Σ labels the charge vector associated with the
homology class. The norm kq⃗Σk is the norm of the harmonic
form related to Σ using the metric on X.
The particle is superextremal when kz⃗k ≥ γ1=24 . In general,

γ4 depends on the direction q̂ as well as the massless scalar
fields in the theory, but it necessarily satisfies γ4 ≥ 1=2, which
means that for a superextremal particle

V1=2
X kq⃗Σk
VΣ

≥
1ffiffiffi
2

p : ð171Þ

The tower WGC therefore implies that for a given cycle ½Σ�,
there is an integer n and a representative of n½Σ� satisfying
Eq. (171). The sublattice WGC further implies that there is a
universal n that is independent of ½Σ�.
In some cases, this bound leads to surprising, nontrivial

mathematical results. In particular, any 4-cycle ½Σ� in a Calabi-
Yau 3-fold X with h2;0ðXÞ ¼ 0 can be represented as a union
of holomorphic and antiholomorphic representatives. Upon
wrapping D4-branes on these representatives, these corre-
spond to BPS and anti-BPS particles, respectively. The
minimal volume representative of ½Σ� therefore has a volume
no larger than the sum of the volumes of these holomorphic
and antiholomorphic representatives, which we denote as
VðΣ∪Þ. But satisfying Eq. (171) may require this union of
holomorphic and antiholomorphic representatives to recom-
bine into a new representative Σmin whose volume is
significantly smaller than VðΣ∪Þ. More precisely, the
“recombination fraction”

τΣ ≔
VðΣ∪Þ − VðΣminÞ

VðΣminÞ
ð172Þ

may be much larger than 1 (Demirtas et al., 2020). Physically
this recombination corresponds toD4-branes wrapping these
representatives recombining and fusing, and particles in 4D
binding to form bound states of significantly smaller energy.
Mathematically the existence of representatives Σmin with a
large recombination fraction τΣ ≫ 1 is a nontrivial conse-
quence of the WGC that has been verified in some examples
(Long et al., 2021).

Finally, we remark that within the context of 5D M-theory
compactifications there are interesting connections among the
tower WGC, the WGC for strings, and the swampland
distance conjecture and various mathematical conjectures
about Calabi-Yau manifolds known as cone conjectures
(Morrison, 1993, 1994). See Heidenreich and Rudelius
(2022) for more discussion of these connections.

C. Implications for general relativity

The weak cosmic censorship hypothesis holds that for
generic initial data the maximal Cauchy development pos-
sesses a complete future null infinity (Penrose, 1969).
Colloquially there can be no naked singularities visible at
future null infinity: any such singularity must be hidden
behind a horizon.
There is strong numerical evidence that cosmic censorship

is violated in more than four spacetime dimensions (Lehner
and Pretorius, 2012), as black strings may pinch off and
develop singularities due to the Gregory-Laflamme instability
(Gregory and Laflamme, 1993). In four dimensions, however,
such instabilities do not exist, and violation of cosmic
censorship is much less certain.19

A promising class of counterexamples to cosmic censorship
in four dimensions was proposed by Horowitz, Santos, and
Way (2016), and strong numerical evidence for these counter-
examples was subsequently provided by Crisford and Santos
(2017). These examples involve a Uð1Þ gauge field coupled to
gravity in asymptotically AdS space, with an action (as usual
we set the AdS radius to 1)

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ 6 − FμνFμνÞ; ð173Þ

with F ¼ dA. The boundary metric is chosen to be flat,

ds2
∂
¼ −dt2 þ dr2 þ r2dφ2; ð174Þ

and the only nonzero component of the potential at the
boundary is the time component,

A∂ ¼ þ aðtÞdt
ð1þ r2Þn=2 ; ð175Þ

where n is an integer controlling the falloff of the field at
large r.
Apparent violations of cosmic censorship arise when aðtÞ is

chosen to vanish at t ¼ 0 but increases to a constant value
larger than some critical value amax. In this case, there is no
smooth static end point of the evolution, so one expects the
curvature F2 to grow indefinitely at late times. Numerical
simulations confirm this expectation for n ¼ 1 (Crisford and

19Even in higher dimensions, known violations of cosmic censor-
ship have zero mass and occur in Planck-sized regions where
quantum gravitational effects become important. It has been argued
that such quantum effects restore some notion of cosmic censorship,
so these counterexamples to cosmic censorship are relatively benign
(Emparan, 2020).
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Santos, 2017). Note that the curvature does not diverge in
finite time, so this example does not violate the letter of
cosmic censorship, although it does violate the spirit of it.
This class of counterexamples disappears, however, in the

presence of a superextremal scalar field (Horowitz, Santos, and
Way, 2016; Crisford, Horowitz, and Santos, 2018). In particu-
lar, suppose that we add a charged scalar Φ to the action,

SΦ ¼ −
1

4πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½ðDμΦÞðDμΦÞ† þm2ΦΦ†�; ð176Þ

with Dμ ¼ ∇μ − iq̃Aμ [here q̃ ¼ ð ffiffiffi
2

p
e=κÞq, where q is the

integral charge used throughout].20 The proposedWGC bound
in AdS (22) then becomes

q̃ ≥ Δ ¼ 3
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
þm2

q
: ð177Þ

When Eq. (177) is satisfied, for all choices of n perturbations of
Φ become unstable before a grows to the critical value amax,
and cosmic censorship is restored.When this bound is violated,
the solution with the scalar field is still singular, and it is once
again likely that cosmic censorship is violated (Horowitz,
Santos, and Way, 2016). Thus, there is evidently a one-to-one
correspondence between satisfying the WGC and obeying
cosmic censorship in this setup.
This result is already suggestive. But the connection

between the WGC and cosmic censorship becomes even
more impressive when dilatonic couplings and multiple scalar
fields are included, as was done by Horowitz and Santos
(2019). In the dilatonic case, one begins with the action

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ 6 − e−2αϕFμνFμν − 2∇μϕ∇μϕÞ

ð178Þ

in place of Eq. (173). In Eq. (178) ϕ is a massless, uncharged
scalar field that we refer to as the dilaton, not to be confused
with the massive, charged scalar field Φ. In the presence of
this dilatonic coupling, the WGC bound for Φ is modified to

q̃ ≥ q̃W ≡ Δð1þ α2Þ1=2; ð179Þ

whereΔ is given by Eq. (177). Notably the minimal charge-to-
mass ratio q̃=Δ varies continuously with the parameter α.
Horowitz and Santos (2019) constructed numerical solu-

tions to the equations of motion in the presence of the dilaton,
with a boundary vector potential given by

A∂ ¼
adt

ð1þ r2Þn ð180Þ

focusing, in particular, on the case of n ¼ 4. They found that
for α < 1 cosmic censorship is again preserved precisely
when the WGC bound (179) is satisfied, as shown in Fig. 16.
This is noteworthy in that it establishes a WGC–cosmic
censorship connection over a one-parameter family of theories
indexed by α. For α > 1, numerical solutions suggest that it
may be possible to preserve cosmic censorship even when
q̃=q̃W (or, equivalently, q=qW) is slightly smaller than 1, as
shown in Fig. 17. It is possible that this conclusion could be
modified at large values of a, and the one-to-one correspon-
dence between the WGC and cosmic censorship could be
restored.
Finally, Horowitz and Santos (2019) also considered the

relationship between cosmic censorship and the WGC in
theories with two gauge fields. In their analysis, the asymp-
totic profile of the gauge fields is taken to be

AI∂ ¼
aI

ð1þ r2Þn dt; ð181Þ

focusing again on the case of n ¼ 4, with a1 ¼ λa2. There are
now two massive scalar fields Φ1 and Φ2. The former has
charge q̃1 under the first gauge field and is uncharged under
the second gauge field, whereas the latter carries charge q̃2
under the second gauge field and is uncharged under the first
gauge field. Since there are multiple gauge fields, the WGC
bound is equivalent to the convex hull condition (see
Sec. III.C), which is given by

1

z21
þ 1

z22
≤ 1; ð182Þ

with zI ¼ q̃I=ΔI . By constructing numerical solutions to the
equations of motion for various choices of λ, q̃I , and ΔI ,

FIG. 16. For fixed n ¼ 4, Δ ¼ 2, and dilatonic coupling
α ¼ 0.9, the condition to preserve cosmic censorship is precisely
the WGC bound (179). The blue dots indicate the onset of
solutions with Φ ≠ 0, and the red dots indicate the approximate
location of singular solutions. From Horowitz and Santos, 2019.

20We observed after Eq. (8) that the WGC bound (6) does not
involve any powers of ℏ and thus potentially has classical conse-
quences, but those remarks applied to the case of a classical particle.
A similar statement applies for a charged classical field such asΦ, but
we need to be more careful since, if we restore c and ℏ, then (in
Heaviside-Lorentz units) the mass m and charge q̃ appearing in
Eq. (176) both have units of inverse length. The true charge and mass
of a particle appearing after this field is quantized are related to these
by powers of ℏ and c, but in writing the WGC inequality the powers
of ℏ and c drop out since m and q̃ have the same units and κ has
already been absorbed into q̃.
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Horowitz and Santos (2019) provided strong evidence that
cosmic censorship is preserved precisely when the convex hull
condition is satisfied. Figure 18 depicts this correspondence
for one choice of λ, q̃2, and Δ1 Δ2 and a varying q̃1.
Horowitz, Santos, and Way (2016), Crisford and Santos

(2017), and Horowitz and Santos (2019) thus revealed a
noteworthy and surprising correspondence between the WGC
and the weak cosmic censorship conjecture. A couple of
aspects of this correspondence are worth further attention.
First, note that the mildest form of the WGC, which simply
requires the existence of a superextremal state, is not sufficient

to preserve cosmic censorship. The mild WGC could be
satisfied in principle by a finite-size black hole state due to
subleading corrections that slightly increase Q=M relative to
Q=M for an infinitely large, extremal black hole. In the
present scenario, however, preserving cosmic censorship
requires a superextremal field Φ (and thus quantum mechan-
ically a superextremal particle) and not merely a superex-
tremal black hole.
Second, we observe that in all examples thus far the

superextremal field that saves cosmic censorship is a scalar.
The usual formulations of the WGC do not put any restrictions
on the spins of the superextremal particles that are required,
but it is interesting to consider whether there might be some
such restriction. One natural question for future study is
whether or not superextremal bosonic fields of nonzero spin
similarly prevent violations of cosmic censorship. More
generally one can also consider the question of whether or
not fermions can do the same once quantum effects are
included. All string compactifications that we are currently
aware of in fact do have a superextremal scalar, but this may
be an accident of supersymmetry, so there is no strong
evidence yet for an interplay between the WGC and spin.
Finally, we mention an interesting connection between the

WGC and a different kind of gravitational censorship, namely,
of super-Planckian spatial field variations. A simple dimen-
sional analysis suggests that such a field configuration could
collapse into a black hole. Indeed, this is often true (Nicolis,
2008). However, one case in which a classically stable field
configuration with an arbitrarily large scalar field variation,
not screened by a horizon, can be constructed is a charged
Kaluza-Klein bubble stabilized by flux (Horowitz, 2005). The
scalar field is the radion, which traverses an infinite distance in
field space to the bubble wall where R → 0. Thus, arbitrarily
large-field values are not classically censored. In quantum
theory, the solution becomes unstable if charged matter
satisfying the WGC exists due to Schwinger pair production,
which dynamically censors the large-field excursion (Draper
and Farkas, 2019).
The general picture painted by these examples is that the

WGC can play an important role in ensuring the validity of
effective field theory. It prevents a low-energy observer from
accessing arbitrarily high-energy scales (in the case of cosmic
censorship) or field values (in the case of super-Planckian
censorship).

VIII. OUTLOOK

In this review, we saw that the weak gravity conjecture
potentially offers a deep organizing principle for unlocking
the puzzle of quantum gravity. In particular, the landscape of
string vacua is large, yet to our knowledge the WGC is obeyed
in all of them. Suitably strong forms of the WGC place
meaningful constraints on particle physics and cosmology and
have further consequences for black holes, pure mathematics,
conformal field theories, etc. Thus, whereas most swampland
conjectures fall into either the “rigorous but uninteresting”
category or the “interesting but not rigorous” category, the
WGC has claims to both rigor and importance.
Nonetheless, despite all that we have learned about it, the

WGC remains shrouded in mystery. We saw in Sec. V that

FIG. 17. For fixed n ¼ 4, Δ ¼ 2, and dilatonic coupling
α ¼ ffiffiffi

3
p

, the condition to preserve cosmic censorship does not
seem to match with the WGC bound (179), although it is possible
that modifications at large a could restore the correspondence.
The blue dots indicate the onset of solutions with Φ ≠ 0, and the
red dots indicate the approximate location of singular solutions.
From Horowitz and Santos, 2019.

FIG. 18. For fixed n ¼ 4, a1 ¼ 3a2, q2 ¼ 4, Δ1 ¼ Δ2 ¼ 2, the
condition to preserve cosmic censorship is precisely the convex
hull condition (182). The blue dots indicate the onset of solutions
with Φ1 ≠ 0, and the red dots indicate the approximate location
of singular solutions. From Horowitz and Santos, 2019.
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several arguments point qualitatively to the validity of the
WGC: it is plausible that the WGC is satisfied up to Oð1Þ
coefficients. However, examples in string theory suggest
something stronger: in all such examples, the WGC is satisfied
with the precise Oð1Þ coefficient determined by the black hole
extremality bound. This suggests that the WGC may be
required for consistency in black hole physics, but it is not
yet clear what goes wrong if the WGC is violated.
The evidence for the WGC coming from string theory is

strong, but there is still a chance that the WGC suffers from the
lamppost effect: the known string examples necessarily
involve either (a) weak gauge coupling or (b) BPS particles,
the only particles that we currently know how to track in a
strongly coupled regime. An example in which the WGC is
satisfied by nonsupersymmetric states in a regime of strong
coupling is highly desirable, although perhaps unfeasible.
Without this, a more compelling black hole argument is likely
required to rule out the possibility of the lamppost effect.
Another interesting direction for future research involves

the classification of weak coupling limits, as initiated in by
Grimm, Palti, and Valenzuela (2018), Corvilain, Grimm, and
Valenzuela (2019), Klaewer et al. (2021), Lanza et al. (2021a,
2021b), Perlmutter et al. (2021), and Lee, Lerche, and
Weigand (2022b). The emergent string conjecture of Lee,
Lerche, and Weigand (2022b), in particular, suggests that any
infinite distance–weak coupling limit must be either a decom-
pactification limit or an emergent string limit in which a
fundamental string becomes tensionless. In the former case, a
tower of light, superextremal Kaluza-Klein modes emerge.21

In the latter case, the modular invariance argument of
Sec. IV.D ensures that the particles are superextremal.
Thus, at weak coupling the tower or sublattice WGCs follow
from the emergent string conjecture (which could have
stronger phenomenological implications).
In Sec. IV, we encountered examples in which the sublattice

WGC is satisfied by a sublattice of superextremal particles of
coarseness n > 1 (and index greater than 1). This raises the
question of how large the coarseness may become or,
equivalently, how sparse the sublattice is allowed to be.
This question is important because the consequences of the
sublattice WGC for low-energy physics can be arbitrarily
weak if the coarseness is allowed to be arbitrarily large. The
maximum coarseness we encountered was n ¼ 3: the sub-
lattice of superextremal particles is not sparse, and it is
plausible that the sublattice WGC will always be satisfied
with a coarseness of Oð1Þ.
Before we can attempt to place any sort of universal upper

bound on the coarseness or index of the sublattice, however,
we must first understand how this sublattice shows up in the
low-energy data of the theory. All of the examples with a
coarseness n > 1 constructed thus far are orbifold models, and
n divides the order of the orbifold group. However, we do not
yet have a clear understanding of how this UV relationship
manifests in the IR. One possibility is that the coarseness is

related to the global structure of the low-energy gauge group,
but more work is needed to clarify this picture.
As a final direction for future research, we remark that the

statement of the WGC in the presence of Chern-Simons terms
is not yet well understood. Heidenreich, Reece, and Rudelius
(2021) presented a recent example of WGC mixing in which
the WGC for different p-form gauge fields were mixed up in
the presence of Chern-Simons terms; see also Montero,
Uranga, and Valenzuela (2017), Heidenreich et al. (2021a),
Brennan and Cordova (2022), and Kaya and Rudelius (2022).
These Chern-Simons terms imply that the gauge symmetry
acquires a higher-group structure (Sharpe, 2015; Córdova,
Dumitrescu, and Intriligator, 2019), and it seems likely that
the full statement of the WGC is modified in the presence of
such higher-group symmetries, which is reminiscent of how
the WGC is modified to the convex hull condition in theories
with multiple Uð1Þ’s. Understanding this better might have
interesting implications for axion monodromy.
The weak gravity conjecture has produced no shortage of

surprises over the course of its 15-year existence, providing us
with new insights into quantum gravity and unexpected
connections between disparate areas of theoretical physics.
Yet, many of the most important questions remain open: Is the
weak gravity conjecture true? If so, why? And which versions
of the conjecture are the right ones? The answers to these
questions may well lead us to even greater surprises than the
ones we have already encountered.
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APPENDIX: THE BLACK HOLE EXTREMALITY BOUND

In a gravitational theory with no naked singularities, a black
hole of nonzero charge Q cannot be arbitrarily light,

21In the supersymmetric case, these KK modes are BPS and
saturate the WGC bound. In the nonsupersymmetric case, these KK
modes satisfy the WGC bound with room to spare after the radion is
stabilized; see Sec. IV.A for more details.
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MBH ≥ MextðQÞ > 0; ðA1Þ

where the extremal mass MextðQÞ is defined as the infinimum
of the set of possible masses for black holes of chargeQ. This
bound arises because the energy stored in the electromagnetic
field is a positive-energy source for the gravitational field, and
in a theory with matter obeying reasonable energy conditions
this gravitational flux cannot be canceled without introducing
a naked singularity as a negative-energy source. A black hole
saturating this bound is extremal, whereas all others are
subextremal.
To determine the extremal mass MextðQÞ, and thereby the

extremality bound (A1), it would suffice to find an extremal
black hole solution of charge Q and read off its mass.
However, an extremal black hole solution of a given charge
does not always exist because taking the extremal limit
sometimes generates a singularity at the event horizon.
Furthermore, identifying whether a given solution is extremal
is not straightforward. Experience with Reissner-Nordström
black holes suggests that vanishing surface gravity is closely
connected to extremality, but as we see in Appendix 4, not
every black hole solution with vanishing surface gravity is
extremal.
To solve the first problem, we expand our field of interest to

include charged solutions that are merely limits of black holes
and not necessarily black holes themselves. We call such
limiting cases singular black holes. Familiar examples of
singular black holes include the background generated by
N ≫ 1 D0-branes in type IIA string theory. Understanding
what happens near a singular black hole usually requires UV
information that goes beyond effective field theory. For
example, near a stack of D0-branes the string coupling
becomes large and there is a dual M-theory description.
To solve the second problem, note that Hawking radiation

must shut off in the extremal limit to satisfy cosmic censor-
ship, so either the surface gravity gh (the Hawking temper-
ature) or the horizon area Ah (the Bekenstein-Hawking
entropy) must go to zero in this limit. We refer to black
holes with either of these two properties as quasiextremal,
whereas those with Ah → 0 are singular. Cosmic censorship
requires extremal black holes to be quasiextremal, but as
previously noted quasiextremal black holes are not always
extremal; see Appendix 4 for examples. We call black holes
that are neither extremal nor quasiextremal nonextremal.
In this Appendix, we review general techniques for deter-

mining the extremality bound in the large-Q limit (where
derivative corrections can be ignored) for theories with
multiple Uð1Þ gauge fields AA, massless scalars ϕi, and a
vanishing cosmological constant. For simplicity, we assume
that the lightest black holes of a given chargeQ are spherically
symmetric.22 Temporarily ignoring the possibility of magnetic
charge, the relevant terms in the low-energy Einstein-frame
effective action at two-derivative order are

S0 ¼
Z

ddx
ffiffiffiffiffiffi
−g

p �
1

2κ2
R −

1

2
tABðϕÞFA

2 · FB
2

−
1

2
GijðϕÞ∇ϕi ·∇ϕj

�
; ðA2Þ

where FA
2 ¼ dAA

1 . The types of two-derivative terms omitted
from Eq. (A2) do not affect spherically symmetric black holes
with a purely electric charge (Heidenreich, 2020).

1. Black hole solutions

In a convenient gauge, a spherically symmetric metric
ansatz takes the form

ds2 ¼−e2ψðrÞfðrÞdt2þe−2ψðrÞ=ðd−3Þ
�
dr2

fðrÞþ r2dΩ2
d−2

�
ðA3Þ

for functions ψðrÞ and fðrÞ to be determined, where dΩ2
d−2 is

the round metric of unit radius on Sd−2. The electric charge of
the solution is

QA ¼
I
Sd−2

tABðϕÞ⋆FB
2 ; ðA4Þ

where the integral is taken over a sphere enclosing the
horizon. Spherical symmetry fixes the electric field at

FA
2 ¼ −

tABðϕÞQB

Vd−2

e2ψdt ∧ dr
rd−2

; ðA5Þ

where tABðϕÞ is the inverse of tABðϕÞ and Vd−2 ¼
2πðd−1Þ=2=Γ½ðd − 1Þ=2� is the volume of Sd−2.
One component of Einstein’s equations is now

f00ðrÞ þ 3d − 8

r
f0ðrÞ þ 2

ðd − 3Þ2
r2

½fðrÞ − 1� ¼ 0; ðA6Þ

with the solution fðrÞ ¼ 1þ A=rd−3 þ B=r2ðd−3Þ. To interpret
A and B, we switch to ingoing Eddington-Finkelstein coor-
dinates,

ds2 ¼ −
FðρÞdv2
R2ðd−3ÞðρÞ þ

2dvdρ
ðd − 3ÞRd−4ðρÞ þ R2ðρÞdΩ2

d−2; ðA7Þ

where ρ ¼ rd−3, RðρÞ ¼ re−ψ=ðd−3Þ, and FðρÞ ¼ r2ðd−3ÞfðrÞ.
A smooth event horizon occurs when F → 0 with R finite. If
one exists, FðρÞ ¼ ρ2 þ Aρþ B can be factored as

FðρÞ ¼ ðρ − ρþÞðρ − ρ−Þ; ρþ ≥ ρ−; ðA8Þ

leading to an outer (inner) horizon at ρ ¼ ρþ (ρ ¼ ρ−). We set
ρ− ¼ 0 using the residual gauge symmetry ρ → ρþ const
with FðρÞ and RðρÞ held fixed such that

FðρÞ ¼ ρðρ − ρhÞ ⇔ fðrÞ ¼ 1 −
rd−3h

rd−3
; ðA9Þ

with ρh ¼ rd−3h .

22Without this assumption, the problem is unsolved in general,
except in special cases where a BPS-like bound can be derived using
spinor methods, an approach taken by Gibbons et al. (1983).
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In terms23 of z ≔ 1=ðd − 3ÞVd−2rd−3, fðzÞ ¼ 1 − z=zh and
the remaining equations of motion are

d
dz

½fϕ̇j� þ fΓi
jkϕ̇

jϕ̇k ¼ 1

2
GijQ2

;jðϕÞd2ψ ; ðA10Þ

k−1N
d
dz

½fψ̇ � ¼ e2ψQ2ðϕÞ; ðA11Þ

k−1N ψ̇ðfψ̇ þ ḟÞ þ fGijðϕÞϕ̇iϕ̇j ¼ e2ψQ2ðϕÞ; ðA12Þ

where ˙¼ d=dz, GijðϕÞ is the inverse of GijðϕÞ, Γi
jk ¼

ð1=2ÞGilðGlj;k þ Glk;j − Gjk;lÞ are the associated Christoffel
symbols,

Q2ðϕÞ ≔ tABðϕÞQAQB; ðA13Þ

and

kN ≔
d − 3

d − 2
κ2 ðA14Þ

is the rationalized Newton force constant [such
that Fgrav ¼ ð−kN=Vd−2Þmm0=rd−2].
Note that Eqs. (A10)–(A12) are z-translation invariant,24 so

for any solution passing through a point ϕi
0 ¼ ϕiðz0Þ there is a

corresponding solution ϕi0ðzÞ ¼ ϕiðzþ z0Þ, with ϕi
∞
0 ¼ ϕi

0.
Moreover, Eq. (A12) is a consistent constraint in that the
derivative of f times Eq. (A12) is a linear combination of
Eqs. (A10) and (A11).
When rh > 0 (zh is finite), a smooth horizon requires

ψ̇ðzhÞ ¼ −kNzhe2ψhQ2ðϕhÞ ≤ 0 by evaluating Eq. (A11) at
z ¼ zh, where ψh ¼ ψðzhÞ. Likewise, when rh ¼ 0 (zh ¼ ∞),
a smooth horizon requires zeψ ∝ R−ðd−3Þ to approach a
nonzero constant as z → ∞. Hence, ψ → − log zþ const,
implying that ψ̇ → −1=z < 0. Combining Eqs. (A11) and
(A12), we obtain

ψ̈ ¼ ψ̇2 þ kNGijðϕÞϕ̇iϕ̇j. ðA15Þ

Hence, ψ̈ ≥ 0, and we conclude that

ψ̇ ≤ 0 for all z ≤ zh ðA16Þ

is required for a smooth horizon. Conversely, Eq. (A16)
together with ψ̈ ≥ 0 and ψ∞ ¼ ψðz ¼ 0Þ ¼ 0 gives zψ̇∞ ≤
ψðzÞ ≤ 0 for 0 ≤ z ≤ zh, so when rh > 0 (zh is finite), ψh is
finite and the horizon is smooth.
Because a condition of Eq. (A16) is preserved under limits,

singular black holes must also satisfy Eq. (A16). Likewise,
because any rh > 0 solution satisfying Eq. (A16) is smooth,
rh ¼ 0 solutions satisfying Eq. (A16) are limits of smooth
solutions, so solutions to Eqs. (A10)–(A12) are (possibly
singular) black holes if and only if Eq. (A16) holds.

Such black hole solutions have an Arnowitt-Deser-Miser
mass

M ¼ k−1N

�
−ψ̇∞ þ 1

2zh

�
ðA17Þ

[positive by Eq. (A16)] and a surface gravity and horizon area

gh ¼
d− 3

2rh
e½ðd−2Þ=ðd−3Þ�ψh ; Ah ¼ Vd−2rd−2h e−½ðd−2Þ=ðd−3Þ�ψh

⇒ ghAh ¼ ðd− 3ÞVd−2rd−3h ¼ 1

2zh
: ðA18Þ

Therefore, rh ¼ 0 (zh ¼ ∞) is the quasiextremal case, with
coincident (possibly singular) inner and outer horizons, and
rh > 0 (zh finite) is the nonextremal (invariably smooth) case.

a. Magnetic charge

In four dimensions, spherical symmetry allows black holes
to carry both electric and magnetic charges. The theta term,
which had no effect on purely electrically charged black holes,
then becomes important,

S ¼ S0 −
1

8π2

Z
θABðϕÞFA

2 ∧ FB
2 : ðA19Þ

The electric and magnetic charges are defined as

QA ¼
I �

tAB⋆FB þ θAB
4π2

FB

�
; Q̃A ¼ 1

2π

I
FA: ðA20Þ

The black hole equations (A10)–(A12) take the same form as
before [see Heidenreich (2020)] but with

Q2ðϕÞ ¼ tABðϕÞ
�
QA −

θACðϕÞ
2π

Q̃C

��
QB −

θBDðϕÞ
2π

Q̃D

�
þ 4π2tABðϕÞQ̃AQ̃B: ðA21Þ

b. Black branes

Generalizing to homogeneous, isotropic, and spherically
symmetric black (p − 1)-branes, the relevant effective
action is

S ¼
Z

ddx
ffiffiffiffiffiffi
−g

p �
1

2κ2
R −

1

2
tABðϕÞFA

pþ1 · F
B
pþ1

−
1

2
GijðϕÞ∇ϕi · ∇ϕj

�
: ðA22Þ

With the appropriate ansatz [see Heidenreich (2020) with
zðhereÞ ¼ zðthereÞ=Vd−p−1] the black hole equations again take
the form of Eqs. (A10)–(A12), with kN replaced by the
rationalized gravitational force constant for (p − 1)-branes
kðpÞ¼½pðd−p−2Þ=ðd−2Þ�κ2. Magnetic charge can be added
consistent with spherical symmetry when d ¼ 2pþ 2; see
Heidenreich (2020) for details.

23Compared to (Heidenreich, 2020) zðhereÞ ¼ zðthereÞ=Vd−2.
24To preserve the boundary condition ψ∞ ¼ ψðz ¼ 0Þ ¼ 0, we

then shift ψ and rescale z to compensate.
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2. Quasiextremal black holes

The quasiextremal case, in which fðrÞ ¼ 1, has several
interesting properties that play an important role in determin-
ing the extremality bound.

a. Vanishing self-force

Evaluating Eq. (A12) at z ¼ 0 (r ¼ ∞), we obtain

kNM2 þ Gij
∞μiμj ¼ tAB∞ QAQB; ðA23Þ

where μi is the scalar charge appearing in
ϕiðzÞ ¼ ϕi

∞ − Gij
∞μjzþOðz2Þ. Thus, the long-range

self-force between an identical pair of quasiextremal
black holes vanishes (Heidenreich, 2020). As a corollary,

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=kNÞðtAB∞ QAQB − Gij

∞μiμjÞ
q

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=kNÞtAB∞ QAQB

p
;

hence, quasiextremal black holes coupled to moduli are no
heavier than an extremal Reissner-Nordström black hole of the
same charge that would result if the moduli were artificially
frozen in place at their asymptotic values.
At this point note that even the short-range forces between

identical quasiextremal black holes vanish if we restrict our
attention to the classical, two-derivative effective action.
This can be shown by explicitly constructing the static,
multicenter solutions corresponding to several such black
holes at rest near each other. While numerous examples of
such solutions date back many years (Majumdar, 1947;
Papaetrou, 1947; Breitenlohner, Maison, and Gibbons,
1988), a summary was recently given by Van Riet (2021).
Generic quantum and derivative corrections not only alter the
short-range forces but also change the extremal black hole
solutions, and thereby the long-range forces; see Sec. VI.C.

b. Attractor mechanism

A smooth horizon requires RðρÞ to remain finite as ρ → 0.
When we define χ ≔ ψ þ log z, e−χ ¼ ðd − 3ÞVd−2Rd−3, so
χðzÞ must remain finite as z → ∞. Written in terms of χ and
τ ¼ − log z, the equations of motion become

d2ϕi

dτ2
þ Γi

jk
dϕj

dτ
dϕk

dτ
¼ −

dϕi

dτ
þ 1

2
GijQ2

;je
2χ ; ðA24Þ

d2χ
dτ2

¼ −
dχ
dτ

þ kNe2χQ2 − 1; ðA25Þ
�
dχ
dτ

�
2

þ kNGij
dϕi

dτ
dϕi

dτ
¼ −2

dχ
dτ

þ kNe2χQ2 − 1: ðA26Þ

Equations (A24) and (A25) describe generalized Newtonian
motion in the potential Vðχ;ϕiÞ ¼ k−1N χ − ð1=2Þe2χQ2ðϕiÞ
with metric GIJ ¼ diagðk−1N ;GijÞ and a linear drag force. A
smooth horizon requires χðτÞ and ϕiðτÞ to approach finite
values χh and ϕi

h, respectively, as τ → −∞, which can occur
only at a critical point of Vðχ;ϕiÞ, i.e.,

kNe2χhQ2ðϕhÞ ¼ 1; Q2
;iðϕhÞ ¼ 0; ðA27Þ

from which the constraint (A26) automatically follows. Thus,
ϕh is a critical point of Q2ðϕÞ and Q2ðϕhÞ determines the
horizon area,

Ah ¼ Vd−2Rd−2
h ¼ Vd−2

� ffiffiffiffiffiffi
kN

p
QðϕhÞ

ðd − 3ÞVd−2

�ðd−2Þ=ðd−3Þ
: ðA28Þ

This is the attractor mechanism (Ferrara, Kallosh, and
Strominger, 1995; Cvetic and Tseytlin, 1996; Ferrara and
Kallosh, 1996a, 1996b; Strominger, 1996). The trivial sol-
ution ϕiðzÞ ¼ ϕi

h is a Reissner-Nordström one with mass

M0 ¼ k−1=2N QðϕhÞ. All other solutions are strictly heavier
sinceWðzÞ¼ k−1N ðd=dzÞðe−ψ Þ evaluates toMBH ¼ k−1N ð−ψ̇∞Þ
and M0 ¼ k−1N e−χh at z ¼ 0 and z ¼ ∞, respectively, and
Ẇ ¼ −e−ψGijðϕÞϕ̇iϕ̇j ≤ 0 per25 Eq. (A15).
If ϕi

h is a local minimum of Q2ðϕÞ (the attractor point is
“stable”), then ðχh;ϕi

hÞ is a local maximum of Vðχ;ϕiÞ and we
can roll off the hill in any direction. Hence, there are attractor
solutions for any nearby choice of ϕi

∞. This is not necessarily
the case farther from the attractor point, where the family of
solutions to Eqs. (A24) and (A25) beginning at ϕh may
encounter turning points and/or caustics.
Unstable critical points of Q2ðϕÞ also admit attractor

solutions, but by the same reasoning these do not exist for
generic values of ϕi

∞ and thus do not really play a role in
determining the extremality bound.

c. Fake superpotentials and a Bogomol’nyi bound

Combining the preceeding observations, we see that there
are families of quasiextremal solutions corresponding to
each stable attractor point ϕi

h, with mass M determined
by the choice of vacuum ϕi

∞. The resulting mass function
M ¼ Wðϕ∞Þ is also known as the fake superpotential
(Andrianopoli et al., 2007; Ceresole and Dall’Agata, 2007;
Andrianopoli, D’Auria, Ferrara, and Trigiante, 2010;
Andrianopoli, D’Auria, Orazi, and Trigiante, 2010;
Trigiante, Riet, and Vercnocke, 2012) associated with the
attractor point in question. Because each member of the family
has the same charge and horizon area (entropy), we can
identify ∂W=∂ϕi as the scalar charge μi via the first law δM ¼
μiδϕ

i
∞ þΦA

hδQA þ ð1=κ2ÞghδAh (Gibbons, Kallosh, and Kol,
1996). Therefore, owing to the no-force condition (A23), the
fake superpotential satisfies

kNW2ðϕÞ þ GijðϕÞ∂iWðϕÞ∂jWðϕÞ ¼ Q2ðϕÞ; ðA29Þ

where WðϕÞ has a global minimum at ϕi
h. Solutions to the

nonlinear first-order differential equation (A29) are in general
highly nonunique. However, the condition that WðϕÞ has a
minimum at ϕ ¼ ϕh is enough to fix this ambiguity, at least
locally.
This can be shown using a Bogomol’nyi bound as follows.

Consider any black hole solution ψðrÞ;ϕiðrÞ, and fðrÞ (not
necessarily quasiextremal). The functional

25Thus, k−1=2N QðϕhÞ ≤ M ≤ k−1=2N Qðϕ∞Þ.
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I½ψ ;ϕ; f� ≔
Z

zh

0

�
1

2kN
ðfψ̇ þ ḟÞ2 þ 1

2
f2GijðϕÞϕ̇iϕ̇j

þ 1

2
e2ψQ2ðϕÞ

�
dz ðA30Þ

evaluates to the black hole mass upon imposing the equations
of motion,

I½ψ ;ϕ; f� ¼ k−1N

�Z
zh

0

d
dz

�
1þ f
2

fψ̇

�
dzþ 1

2zh

�

¼ k−1N

�
−ψ̇∞ þ 1

2zh

�
¼ MBH; ðA31Þ

where the horizon boundary term vanishes in the quasiex-
tremal (f ¼ 1) case because ψ̈ ≥ ψ̇2 and ψ̇ ≤ 0 from
Eqs. (A15) and (A16) imply ψ̇ → 0 as z → ∞.
Given any function WðϕÞ satisfying kNWðϕÞ2 þ

GijW;iW;j ≤ Q2ðϕÞ along the entire trajectory ϕiðrÞ, I can
be factored as follows:

I½ψ ;ϕ; f� ¼
Z

zh

0

�
kN
2

�
fψ̇ þ ḟ
kN

þ eψWðϕÞ
�
2

þ 1

2
Gij½fϕ̇i þ eψGikW;k�½fϕ̇j þ eψGjlW;l�

�
dz

þ 1

2

Z
zh

0

e2ψ ½Q2ðϕÞ − kNWðϕÞ2

−GijW;iW;j�dzþWðϕ∞Þ; ðA32Þ

where we use
R zh
0 ðd=dzÞ½feψWðϕÞ�dz ¼ −Wðϕ∞Þ with the

horizon boundary term vanishing in the quasiextremal (f ¼ 1)

case because eψWðϕÞ ≤ k−1=2N eψ jQðϕÞj ¼ k−1N
ffiffiffiffi
ψ̈

p
, ψ̈ ≥ ψ̇2,

and ψ̇ ≤ 0 likewise imply ψ̈ → 0 as z → ∞. Every term in
Eq. (A32) but the last is positive definite, so we conclude that

MBH ≥ Wðϕ∞Þ: ðA33Þ

Saturating the bound requires Eq. (A29) along the trajectory
together with f ¼ 1 (quasiextremality)26 and the Bogomol’nyi
equations

ψ̇ ¼ −eψkNWðϕÞ; ϕ̇i ¼ −eψGijW;j: ðA34Þ

These equations, which imply Eqs. (A10)–(A12), have a
unique solution for each choice of ϕi

∞ provided that theWðϕÞ
gradient flow remains entirely within the region R0 where
Eq. (A29) is satisfied, and the solution has a smooth horizon
provided that the gradient flow ends at a critical point ofWðϕÞ
with WðϕcritÞ > 0 (ensuring that eψ ∝ 1=z as z → ∞). Thus,
given WðϕÞ and ϕi

∞, the black hole solution saturating
Eq. (A33) is unique if it exists.

If both W1ðϕÞ and W2ðϕÞ satisfy Eq. (A29) in a region R0

encompassing coincident local minima27 at ϕ ¼ ϕh, W1

gradient flows ending at ϕh produce quasiextremal solutions
of mass MBH ¼ W1ðϕ∞Þ, which must satisfy MBH ¼
W1ðϕ∞Þ ≥ W2ðϕ∞Þ per Eq. (A33). By the same token
W2ðϕ∞Þ ≥ W1ðϕ∞Þ, hence W1ðϕ∞Þ ¼ W2ðϕ∞Þ for all ϕ∞
in R0 flowing to ϕh.
Thus, the fake superpotential WðϕÞ associated with a given

stable attractor point ϕi
h is uniquely fixed near the attractor

point by Eq. (A29) and the condition that WðϕÞ has a
minimum at ϕi

h, and the corresponding attractor solutions
can be obtained from WðϕÞ by solving the gradient flow
equations (A34). [The family of attractor solutions beginning
at ϕi

h may have turning points and/or caustics farther from the
attractor point, so WðϕÞ does not necessarily extend uniquely
throughout moduli space.]

d. Asymptotic attractors

A special case of the attractor mechanism occurs when ϕi
h

lies at infinite distance in the moduli space, usually in a
direction28 where Q2ðϕÞ → 0. Such “asymptotic attractors”
technically do not lead to smooth black hole solutions [for
instance, Q2ðϕhÞ ¼ 0 implies vanishing horizon area] but can
be understood as the limit of a family of smooth nonextremal
solutions, and therefore play a role in determining the
extremality bound.
Asymptotic attractors are typically also characterized by a

fake superpotential. Heuristically, because modifying Q2ðϕÞ
far out in the moduli space can turn the asymptotic attractor
into a standard attractor at finite distance with an associated
unique fake superpotential, taking a limit where the new
attractor point is sent off to infinity, while restoring Q2ðϕÞ to
its original form should yield a fake superpotential for the
original asymptotic attractor. This argument could fail in
several ways when the asymptotic behavior of Q2ðϕÞ is
sufficiently strange, but within the realm of actual quantum
gravities we know of no issue with it.

3. The extremality bound

Cosmic censorship requires extremal black holes to be
quasiextremal, and therefore for a given choice of QA and
ϕi
∞ the lightest quasiextremal black hole should be extremal.

Combined with the discussion of fake superpotentials
in Appendix 2, this suggests that the extremality bound is
given by

MBH ≥ WðϕÞ ≔ min
fag

WaðϕÞ; ðA35Þ

where WaðϕÞ are the fake superpotentials associated with the
various stable or asymptotic attractors and the minimum is
taken among all the fake superpotentials defined at the point in
question.

26The Bogomol’nyi equations fψ̇ þ ḟ ¼ −eψkNW, fϕ̇i ¼
−eψGijW;j, and Eq. (A29) imply ðd=dzÞ½feψW� ¼ −e2ψQ2ðϕÞ,
whereas ðd=dzÞ½eψW� ¼−k−1N ðd=dzÞ½fψ̇þ ḟ� ¼−e2ψQ2 using
Eq. (A11). Thus, ðd=dzÞ½ð1−fÞeψW�¼0, implying ð1 − fÞeψW ¼
0 by integrating from z ¼ 0. Since eψW > 0, f ¼ 1 follows.

27This implies that Q2ðϕÞ also has a local minimum at ϕh.
28In principle, ϕi

h could lie at an infinite distance point where
Q2ðϕhÞ > 0, but this does not occur anywhere in the landscape to our
knowledge.
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To verify Eq. (A35), we assume that the “global fake
superpotential” WðϕÞ specified in Eq. (A35) is defined and
continuous everywhere in moduli space. Thus, the moduli
space is partitioned into different “attractor basins” associated
with the various stable or asymptotic attractors, with WðϕÞ
equal to the corresponding fake superpotential WaðϕÞ within
each basin. Since each constituent fake superpotential WaðϕÞ
satisfies Eq. (A29), WðϕÞ also satisfies Eq. (A29), except
possibly at the boundaries between attractor basins. However,
as these boundaries are sets of measure zero and the continuity
of WðϕÞ precludes delta-function contributions to ∇iW, the
argument leading to the Bogomol’nyi bound (A33) is unaf-
fected; hence, MBH ≥ WðϕÞ. As this bound can be saturated
by construction, it is indeed the extremality bound.
Naively, to construct WðϕÞ we must first classify all

quasiextremal solutions. However, this is not the case: given
any possibly incomplete collection of local fake superpoten-
tials WaðϕÞ such that ŴðϕÞ ≔ minfag WaðϕÞ is everywhere
defined and continuous, the same reasoning as previously
employed implies thatMBH ≥ ŴðϕÞ is the extremality bound;
hence, ŴðϕÞ ¼ WðϕÞ.

4. Examples

A simple example that has played an outsized role in the
development of the WGC is Einstein-Maxwell dilaton theory,
with the effective action

S¼
Z

ddx
ffiffiffiffiffiffi
−g

p �
1

2κ2

�
R−

1

2
ð∇ϕÞ2

�
−

1

2ê2
e−αϕjF2j2

�
:

ðA36Þ

Equation (A29) then becomes

ξκ2½WðϕÞ�2 þ 2κ2½W0ðϕÞ�2 ¼ eαϕðêQÞ2; ξ ≔
d − 3

d − 2
:

ðA37Þ

There is an asymptotic attractor at ϕh ¼ −∞. Guessing a
solution of the form WðϕÞ ¼ M̂eαϕ=2, we obtain

�
ξþ α2

2

�
ðκM̂Þ2 ¼ ðêQÞ2;

⇒ κM̂ ¼ γ−ð1=2ÞêjQj; γ ¼ ξþ α2

2
: ðA38Þ

Since WðϕÞ is globally defined, is positive, and satisfies
Eq. (A29) everywhere, it defines a global fake superpotential
and the extremality bound is

κMBH ≥ κWðϕ∞Þ ¼ γ−1=2ejQj; ðA39Þ

where e ¼ êeαϕ∞=2 is the vacuum gauge coupling. The same
result applies to the corresponding (p − 1)-brane theory with
ξ → ξðpÞ ¼ pðd − p − 2Þ=ðd − 2Þ, as in Eqs. (12) and (13).
As a somewhat less trivial example, consider the following

two gauge fields with different dilaton couplings:

S ¼
Z

ddx
ffiffiffiffiffiffi
−g

p �
1

2κ2

�
R −

1

2
ð∇ϕÞ2

�
−

1

2ê21
e−α1ϕjF2j2

−
1

2ê22
eα2ϕjH2j2

�
: ðA40Þ

Equation (A29) then becomes

ξκ2½WðϕÞ�2 þ 2κ2½W0ðϕÞ�2 ¼ eα1ϕðê1Q1Þ2 þ e−α2ϕðê2Q2Þ2:
ðA41Þ

Provided that α1α2 > 0 andQ1;2 ≠ 0, there is a stable attractor
point at ϕh ¼ ½1=ðα1 þ α2Þ� log ½α2ðê2Q2Þ2=α1ðê1Q1Þ2�.
Guessing a solution of the form WðϕÞ ¼ M̂1eα1ϕ=2þ

M̂2e−α2ϕ=2, the left-hand side of Eq. (A41) has cross terms
proportional to eðα1−α2Þϕ, whose cancellation requires
α1α2 ¼ 2ξ. With this condition, we obtain

κM̂1;2 ¼ γ−1=21;2 ê1;2jQ1;2j; γ1;2 ¼ ξþ α21;2
2

; ðA42Þ

so the extremality bound in this case is

κMBH ≥ γ−1=21 e1jQ1j þ γ−1=22 e2jQ2j; ðA43Þ

where e1 ¼ ê1eα1ϕ∞=2 and e2 ¼ ê2e−α2ϕ∞=2 are the gauge
couplings in the vacuum in question. When α1α2 ≠ 2ξ, the
fake superpotential solving Eq. (A41) is not known in closed
form (apart from some special cases) but is easily found using
numerical integration.
Thus far we have considered examples with a single

attractor basin. A simple (if contrived) example that exhibits
multiple attractor basins is

Q2ðϕÞ ¼ kNM2
0f1þ ½ðϕ=ϕ0Þ2 − λ�2g; Gϕϕ ¼ k−1N ;

⇒ WðϕÞ2 þW0ðϕÞ2 ¼ M2
0f1þ ½ðϕ=ϕ0Þ2 − λ�2g; ðA44Þ

with attractor points at ϕ ¼ � ffiffiffi
λ

p
ϕ0. The associated fake

superpotentials can be found by numerical integration; see
Figs. 19 and 20. Note that for some values of ϕ0 and λ there
are quasiextremal solutions that are not extremal, due to finite
overlap between the domains of the local fake superpotentials
W�ðϕÞ associated with the attractor points ϕ ¼ � ffiffiffi

λ
p

ϕ0.
Some examples where numerical integration was used to
determine the extremality bound in an actual theory of
quantum gravity were discussed by Alim, Heidenreich, and
Rudelius (2021).

5. Closing comments

To derive the extremality bound (A35), we assumed that
WðϕÞ ≔ minfag WaðϕÞ was everywhere defined and continu-
ous. This is easily proved for a one-dimensional moduli space
since (1) the domain Da of the fake superpotential WaðϕÞ
associated with a minimum ϕðaÞ ofQ2ðϕÞ is at least as large as
the interval between the two adjacent maxima of Q2ðϕÞ and
(2)WaðϕÞ ¼ jQðϕÞj= ffiffiffiffiffiffi

kN
p

at the boundary of this domain (see
Fig. 19), saturating the upper boundWbðϕÞ ≤ jQðϕÞj= ffiffiffiffiffiffi

kN
p

on
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all fake superpotentials, where these two properties ensure
(1) the existence and (2) the continuity ofWðϕÞ at each point.
While we do not know a general proof for higher-dimensional
moduli spaces, the existence and continuity of WðϕÞ can be
verified on a case-by-case basis.
Phase transitions in the moduli space can create additional

subtleties. While tABðϕÞ and GijðϕÞ need not be analytic at a
phase transition, in itself this has little effect on the foregoing
analysis. More importantly different branches of moduli space
can meet at a phase transition, opening up the possibility of
black hole solutions that cross from one branch to another.
This is a rather complicated question that has not been worked
out in the literature to our knowledge, but it seems probable
that some version of fake superpotentials will still be appli-
cable. Yet more drastically, the moduli space could have finite-
distance boundaries where a strongly coupled CFTappears, as
in some examples given by Alim, Heidenreich, and Rudelius
(2021). Black hole solutions that reach this CFT boundary
outside their event horizon lie outside the regime of validity of
the weakly coupled EFT that our analysis is based on and will
require a separate analysis.
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243–271, http://www.numdam.org/item/AST_1993__218__243_0/.

Morrison, David R., 1994, “Beyond the Kähler cone,” in Proceedings
of the Hirzebruch 65 Conference on Algebraic Geometry, edited by

Mina Teicher (Bar-Ilan University, Ramat Gan, Israel), pp. 361–
376.

Nakayama, Yu, and Yasunori Nomura, 2015, “Weak gravity con-
jecture in the AdS=CFT correspondence,” Phys. Rev. D 92,
126006.

Natsuume, Makoto, 1994, “Higher order correction to the GHS string
black hole,” Phys. Rev. D 50, 3949–3953.

Nicolis, Alberto, 2008, “On super-Planckian fields at sub-Planckian
energies,” J. High Energy Phys. 07, 023.

Nielsen, Holger Bech, and P. Olesen, 1973, “Vortex line models for
dual strings,” Nucl. Phys. B61, 45–61.

Nomura, Yasunori, 2020, “Spacetime and universal soft modes—
Black holes and beyond,” Phys. Rev. D 101, 066024.

Obied, Georges, and Aditya Parikh, 2021, “A tale of two Uð1Þ’s:
Kinetic mixing from lattice WGC states,” arXiv:2109.07913.

Ooguri, Hirosi, and Cumrun Vafa, 2007, “On the geometry of the
string landscape and the swampland,” Nucl. Phys. B766, 21–33.

Ooguri, Hirosi, and Cumrun Vafa, 2017, “Non-supersymmetric
AdS and the swampland,” Adv. Theor. Math. Phys. 21, 1787–
1801.

Page, Don N., 2000, “Thermodynamics of near extreme black holes,”
arXiv:hep-th/0012020.

Palti, Eran, 2015, “On natural inflation and moduli stabilisation in
string theory,” J. High Energy Phys. 10, 188.

Palti, Eran, 2017, “The weak gravity conjecture and scalar fields,” J.
High Energy Phys. 08, 034.

Palti, Eran, 2019, “The swampland: Introduction and review,”
Fortschr. Phys. 67, 1900037.

Papaetrou, Achille, 1947, “A Static solution of the equations
of the gravitational field for an arbitrary charge distribution,” Proc.
R. Ir. Acad., Sect. A 51, 191–204, https://www.jstor.org/stable/
20488481.

Peiris, H. V., et al. (WMAP Collaboration), 2003, “First year
Wilkinson Microwave Anisotropy Probe (WMAP) observations:
Implications for inflation,” Astrophys. J. Suppl. Ser. 148, 213–231.

Penington, Geoff, Stephen H. Shenker, Douglas Stanford, and
Zhenbin Yang, 2022, “Replica wormholes and the black hole
interior,” J. High Energy Phys. 03, 205.

Penington, Geoffrey, 2020, “Entanglement wedge reconstruction and
the information paradox,” J. High Energy Phys. 09, 002.

Penrose, R., 1969, “Gravitational collapse: The role of general
relativity,” Riv. Nuovo Cimento 1, 252–276, https://inspirehep
.net/literature/54979.

Perlmutter, Eric, Leonardo Rastelli, Cumrun Vafa, and Irene
Valenzuela, 2021, “A CFT distance conjecture,” J. High Energy
Phys. 10, 070.

Pham, T. N., and Tran N. Truong, 1985, “Evaluation of the derivative
quartic terms of the meson chiral Lagrangian from forward
dispersion relation,” Phys. Rev. D 31, 3027(R).

Polchinski, J., 2007, String Theory, Vol. 2: Superstring Theory and
Beyond, Cambridge Monographs on Mathematical Physics (Cam-
bridge University Press, Cambridge, England).

Polchinski, Joseph, 2004, “Monopoles, duality, and string theory,”
Int. J. Mod. Phys. A 19, 145–156.

Preskill, John, Patricia Schwarz, Alfred D. Shapere, Sandip Trivedi,
and Frank Wilczek, 1991, “Limitations on the statistical description
of black holes,” Mod. Phys. Lett. A 06, 2353–2362.

Proca, Alexandru, 1936, “Sur la theorie ondulatoire des electrons
positifs et negatifs [On the wave theory of positive and negative
electrons],” J. Phys. Radium 7, 347–353.

Reall, Harvey S., and Jorge E. Santos, 2019, “Higher derivative
corrections to Kerr black hole thermodynamics,” J. High Energy
Phys. 04, 021.

Harlow et al.: Weak gravity conjecture

Rev. Mod. Phys., Vol. 95, No. 3, July–September 2023 035003-57

https://arXiv.org/abs/2104.06420
https://doi.org/10.1103/PhysRevLett.122.216601
https://doi.org/10.1103/PhysRevLett.122.216601
https://doi.org/10.1007/JHEP02(2018)040
https://doi.org/10.1007/JHEP02(2018)040
https://doi.org/10.1103/PhysRevLett.78.1861
https://doi.org/10.1016/S0370-2693(01)01428-9
https://doi.org/10.1007/JHEP01(2022)157
https://doi.org/10.1007/JHEP01(2022)157
https://doi.org/10.1103/PhysRev.72.390
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1088/1126-6708/2003/04/021
https://doi.org/10.1088/1126-6708/2003/05/013
https://doi.org/10.1088/1126-6708/2003/05/013
https://doi.org/10.1088/1126-6708/1999/02/011
https://doi.org/10.1088/1126-6708/1999/02/011
https://doi.org/10.1007/JHEP08(2019)088
https://doi.org/10.1007/JHEP02(2018)124
https://doi.org/10.1103/PhysRevD.82.046003
https://doi.org/10.1103/PhysRevD.82.046003
https://doi.org/10.1007/JHEP09(2014)123
https://doi.org/10.1007/JHEP09(2014)123
https://doi.org/10.1103/PhysRevD.105.L081901
https://doi.org/10.1007/JHEP03(2019)157
https://doi.org/10.1007/JHEP10(2016)159
https://doi.org/10.1007/JHEP10(2016)159
https://doi.org/10.1007/JHEP08(2015)032
https://doi.org/10.1007/JHEP07(2017)123
http://www.numdam.org/item/AST_1993__218__243_0/
http://www.numdam.org/item/AST_1993__218__243_0/
http://www.numdam.org/item/AST_1993__218__243_0/
https://doi.org/10.1103/PhysRevD.92.126006
https://doi.org/10.1103/PhysRevD.92.126006
https://doi.org/10.1103/PhysRevD.50.3949
https://doi.org/10.1088/1126-6708/2008/07/023
https://doi.org/10.1016/0550-3213(73)90350-7
https://doi.org/10.1103/PhysRevD.101.066024
https://arXiv.org/abs/2109.07913
https://doi.org/10.1016/j.nuclphysb.2006.10.033
https://doi.org/10.4310/ATMP.2017.v21.n7.a8
https://doi.org/10.4310/ATMP.2017.v21.n7.a8
https://arXiv.org/abs/hep-th/0012020
https://doi.org/10.1007/JHEP10(2015)188
https://doi.org/10.1007/JHEP08(2017)034
https://doi.org/10.1007/JHEP08(2017)034
https://doi.org/10.1002/prop.201900037
https://www.jstor.org/stable/20488481
https://www.jstor.org/stable/20488481
https://www.jstor.org/stable/20488481
https://www.jstor.org/stable/20488481
https://doi.org/10.1086/377228
https://doi.org/10.1007/JHEP03(2022)205
https://doi.org/10.1007/JHEP09(2020)002
https://inspirehep.net/literature/54979
https://inspirehep.net/literature/54979
https://doi.org/10.1007/JHEP10(2021)070
https://doi.org/10.1007/JHEP10(2021)070
https://doi.org/10.1103/PhysRevD.31.3027
https://doi.org/10.1142/S0217751X0401866X
https://doi.org/10.1142/S0217732391002773
https://doi.org/10.1051/jphysrad:0193600708034700
https://doi.org/10.1007/JHEP04(2019)021
https://doi.org/10.1007/JHEP04(2019)021


Reece, Matthew, 2019, “Photon masses in the landscape and the
swampland,” J. High Energy Phys. 07, 181.

Richartz, Maurício, and Davi Giugno, 2014, “Quasinormal modes of
charged fields around a Reissner-Nordström black hole,” Phys.
Rev. D 90, 124011.

Rudelius, Tom, 2015a, “Constraints on axion inflation from the weak
gravity conjecture,” J. Cosmol. Astropart. Phys. 09, 020.

Rudelius, Tom, 2015b, “On the possibility of large axion moduli
spaces,” J. Cosmol. Astropart. Phys. 04, 049.

Rudelius, Tom, 2021, “Dimensional reduction and (anti) de Sitter
bounds,” J. High Energy Phys. 08, 041.

Rudelius, Tom, and Shu-Heng Shao, 2020, “Topological operators
and completeness of spectrum in discrete gauge theories,” J. High
Energy Phys. 12, 172.

Saraswat, Prashant, 2017, “Weak gravity conjecture and effective
field theory,” Phys. Rev. D 95, 025013.

Schwimmer, A., and N. Seiberg, 1987, “Comments on the N ¼
2; 3; 4 superconformal algebras in two dimensions,” Phys. Lett. B
184, 191–196.

Sharpe, Eric, 2015, “Notes on generalized global symmetries in
QFT,” Fortschr. Phys. 63, 659–682.

Shiu, Gary, William Cottrell, and Pablo Soler, 2017, “Weak gravity
conjecture and black holes in N ¼ 2 supergravity,” Proc. Sci.
CORFU2016, 130.

Shiu, Gary, Pablo Soler, and William Cottrell, 2019, “Weak gravity
conjecture and extremal black holes,” Sci. China Phys. Mech.
Astron. 62, 110412.

Silverstein, Eva, and Alexander Westphal, 2008, “Monodromy in the
CMB: Gravity waves and string inflation,” Phys. Rev. D 78,
106003.

Starobinsky, Alexei A., 1980, “A new type of isotropic cosmological
models without singularity,” Phys. Lett. 91B, 99–102.

Stout, John, 2022, “Instanton expansions and phase transitions,” J.
High Energy Phys. 05, 168.

Strassler, Matthew J., 2014, “On strings from things and things from
strings,” lecture, KITP Conference: From the Renormalization
Group to Quantum Gravity, Celebrating the Science of Joe
Polchinski, Santa Barbara, 2014, https://online.kitp.ucsb.edu/
online/joefest_c14/.

Strassler, Matthew J., 2016, “Digging deep at the LHC,” lecture,
ICTP Conference: A First Glance beyond the Energy Frontier,
Trieste, Italy, 2016, https://indico.ictp.it/event/7627/.

Strominger, Andrew, 1996, “Macroscopic entropy of N ¼ 2 extremal
black holes,” Phys. Lett. B 383, 39–43.

Stueckelberg, E. C. G., 1938, “Interaction energy in electrodynamics
and in the field theory of nuclear forces,” Helv. Phys. Acta 11, 225–
244, https://www.e-periodica.ch/digbib/view?pid=hpa-001:1938:
11::636#227.

Susskind, Leonard, 1995, “The world as a hologram,” J. Math. Phys.
(N.Y.) 36, 6377–6396.

Svrcek, Peter, and Edward Witten, 2006, “Axions in string theory,” J.
High Energy Phys. 06, 051.

Tokuda, Junsei, Katsuki Aoki, and Shin’ichi Hirano, 2020, “Gravi-
tational positivity bounds,” J. High Energy Phys. 11, 054.

Trigiante, Mario, Thomas Van Riet, and Bert Vercnocke, 2012, “Fake
supersymmetry versus Hamilton-Jacobi,” J. High Energy Phys. 05,
078.

Uehling, E. A., 1935, “Polarization effects in the positron theory,”
Phys. Rev. 48, 55–63.

Urbano, Alfredo, 2018, “Towards a proof of the weak gravity
conjecture,” arXiv:1810.05621.

Vafa, Cumrun, 2005, “The String landscape and the swampland,”
arXiv:hep-th/0509212.
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