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In this review recent investigations are summarized of many-body quantum systems with long-range
interactions, which are currently realized in Rydberg atom arrays, dipolar systems, trapped-ion setups,
and cold atoms in cavities. In these experimental platforms parameters can be easily changed, and
control of the range of the interaction has been achieved. The main aim of the review is to present and
identify the common and mostly universal features induced by long-range interactions in the behavior of
quantum many-body systems. Discussed are the case of strong nonlocal couplings, i.e., the nonadditive
regime, and the one in which energy is extensive, but low-energy, long-wavelength properties are altered
with respect to the short-range case. When possible, comparisons with the corresponding results for
classical systems are presented. Finally, cases of competition with local effects are also reviewed.
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I. INTRODUCTION

The successful use of mathematical models in the theory of
critical phenomena lies in the universal behavior of continu-
ous phase transitions. Owing to universality, it is possible to
describe different physical situations within the same theo-
retical framework. The OðN Þ-symmetric models provided
privileged tools to investigate the universal behavior occurring
close to criticality in a large class of physical systems ranging
from magnets and superconductors to biological systems and
cold atom ensembles (Chaikin and Lubensky, 1995; Pelissetto
and Vicari, 2002). Over the last century, intense investigations
of the properties of OðN Þ models, dating back to Ising’s
original paper (Ising, 1925), have provided the physics
community with deep insight into the physics of phase
transitions (Cardy, 1996; Mussardo, 2009; Nishimori and
Ortiz, 2015).

For several decades such understanding has been limited
mostly to the universal behavior of systems with local, short-
range interactions, such as lattice systems with nearest-
neighbor couplings or local ϕ4 field theories. Only in more
recent times has the overall picture of the universal phenom-
ena appearing in classical systems due to long-range inter-
actions been delineated. The range of the effective interactions
among the constituents of a system is in general one of its
main properties, and it can affect in many ways the phase
diagram, the critical properties, and the dynamical behavior of
physical observables. Therefore, a natural question to be asked
for both classical and quantum systems is how the properties
of the system are modified by increasing the range of the
interactions V, or equivalently reducing the power exponent α,
where VðrÞ ∼ 1=rα for large interconstituent distances r.
For classical systems, the effect of long-range interactions

has been systematically investigated in both the equilibrium
and out-of-equilibrium realms (Campa et al., 2014). There the
range of interactions in most of the cases is given, and one
studies its consequences on, among others, ensemble equiv-
alence and thermodynamic properties such as specific heat
and the occurrence of quasistationary states, i.e., metastable
configurations whose lifetime scales superlinearly with the
system size. See the reviews by Dauxois, Ruffo et al. (2002),
Campa, Dauxois, and Ruffo (2009), and Campa et al. (2014)
for discussions and references on equilibrium and out-of-
equilibrium properties of classical systems, including OðN Þ
models, with long-range interactions.
At the same time, the study of the influence of nonlocal

couplings, and especially of the competition between local
and long-range interactions, in quantum systems has seen a
surge in the wake of several experimental realizations in
atomic, molecular, and optical (AMO) systems; see Fig. 1 for
an illustration. The same set of questions on how long-range
interactions modify the properties of models when the

FIG. 1. Illustration of long-range interactions in quantum many-
body systems. Atoms (red spheres) trapped in a potential land-
scape (blue) are coupled to the light field inside an optical cavity.
Far distant atoms can interact with each other via the exchange of
photons (yellow arc) confined in the cavity mode. Using diverse
tools of AMO systems (such as those provided by trapped ions,
Rydberg atoms, or dipolar atoms), other types of long-range
interactions (colored arcs) can also be induced.
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interactions are varied from the short-range limit to the strong
long-range regime is present not only in classical systems but
also in the quantum realm.
The recent interest in quantum long-range systems pri-

marily derives from the desire to understand the fundamental
physics of nonlocal systems and the interplay between local
and long-distance properties, and how they are changed with
respect to the classical counterpart. It is rooted as well in the
role of long-range systems as powerful tools for efficient
quantum computing and quantum simulation, as they allow
highly entangled or correlated dynamical states to be realized
(Jozsa and Linden, 2003; Vidal, 2003; Gyongyosi and Imre,
2019). Long-range interactions promise to play a crucial role
in quantum technology applications since their prominent
collective character promotes entanglement spreading and
leads to novel forms of dynamical scaling, which cannot be
observed in traditional systems with local interactions. As an
example, the physics of long-range interacting atomic assem-
blies provides a clear route to circumventing the constraints
imposed by thermal equilibrium, linear entanglement spread-
ing, and fast decoherence.
Despite outnumbering investigations, the current literature

still lacks a comprehensive perspective on long-range inter-
acting quantum systems, making it difficult to place results in
the existing framework. Indeed, most current results present
their findings in comparison with the traditional ones on short-
range systems, rather than with more recent but established
results in the quantum long-range realm. While this has often
helped to raise the interest of the physics community in these
investigations, it eventually hinders the drawing of a com-
prehensive picture on long-range interacting quantum systems
and the admission of this knowledge in the domain of general-
interest physics.
In this review we construct an account of the phenomena

arising due to long-range couplings in quantum systems, with
a focus on the universal common features that may be
observed in AMO experiments. After reviewing basic notions
of classical long-range models and discussing the phases of
nonlocal systems, we extend our understanding beyond the
equilibrium properties and clarify paradigmatic questions
regarding relaxation and thermalization dynamics. Long-
range quantum systems as they are typically experimentally
realized are mostly isolated, and their dynamics is governed
by unitary time evolution. In this context, several open
questions derive from the comparison with the conventional
local interacting case, as motivated by recent progress in the
experimental simulation of quantum long-range systems
with a tunable range. At variance, the strong coupling to
the environment is inevitable for cold atom ensembles in
cavities, and the discussion about their properties necessarily
connects with nonadditive classical systems.
The main motivation in this review, i.e., identifying the

universal features induced by long-range interactions in
quantum many-body systems, directly points to the over-
whelming amount of research, appearing almost every day in
the literature, featuring both theoretical results and state-of-
the-art experimental measurements of the dynamical universal
behavior of highly nonlocal interacting systems, such as
trapped ions, cavity quantum electrodynamics, Rydberg atom
arrays, and cold atoms. All these experimental platforms

present a high degree of complexity and the comprehensive
picture, which we draw here, serves as a chart to set in a
context both novel experimental realizations and recent
theoretical findings.
Our ambition is not only to derive an all-in-one picture to

direct outsiders in the realm of long-range-induced physical
effects but also to pinpoint the most relevant and broad results
in the field. This effort will provide a step toward the inclusion
of the physics of long-range many-body systems in the
inventory of university-taught physics. Given this purpose
and the growing amount of publications in the field, we are
necessarily limited to a selection of themes, and not all of the
expected references are cited. For each topic, we include only
the references relevant for our main goal of the discussion of
universal properties of quantum long-range systems or the
ones that are better suited to summarizing the previous
literature on the issue. Whenever possible, we cite references
containing accounts of previous efforts on the different topics.
The review is organized as follows: In the remainder of

Sec. I, we start with a definition of what we refer to as a long-
range interaction, and we present reminders on the behavior of
classical long-range systems that are used in the subsequent
presentation. We then move on to a classification of quantum
systems in different groups. An account of the most relevant
properties of each group is presented. In Sec. II, we discuss the
most relevant experimental realizations of each of the afore-
mentioned groups. Section III is devoted to the definition and
identification of critical and universal behavior in classical
many-body long-range systems, both at equilibrium and in the
dynamical regime. The content of Sec. IV mainly concerns the
equilibrium critical properties of long-range interacting quan-
tum many-body systems, evidencing the analogies and
differences with respect to the classical case. Finally, Sec. V
focuses on the mosaics of dynamical critical scalings observed
in long-range systems when they are driven out of their
equilibrium state. Concluding remarks and an outlook are
reported in Sec. VI.

A. Classification of long-range systems

Since the concept of long-range interactions encompasses
nonlocal terms, beyond on-site or nearest-neighbor couplings,
it is natural to classify long-range systems based on the shape
of the considered interactions. This arrangement does not only
reflect differences in the interaction shapes but indicates the
radically different properties that appear in each class.
The word long range conventionally, but not universally,

refers to couplings that, as a function of the distance r between
the microscopic components, decay as a power law in the
large r limit r → ∞ as

VðrÞ ∼ 1

rα
: ð1Þ

The exponent α is one of the main characters in this review,
together with the related one

σ ≡ α − d; ð2Þ

where d is the spatial dimension of the system.
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A preliminary disclaimer is due at this point. The word long
range is sometimes used to denote generic nonlocal couplings,
which are beyond on-site or nearest-neighbor couplings, so
that within this convention an exponentially decaying cou-
pling would be called long range. In this review, for clarity we
stick (and to a certain extent promote) the use of the word
nonlocal for a generic coupling that is not local (exponential,
finite range, power law, etc.) and long range for interactions
that at large distances decay as a power law of the form of
Eq. (1), i.e., 1=rα, with an exponent α “small enough,” in a
sense that is defined later.
An important result for the critical properties of classical

systems with power-law interactions (Sak, 1973; Defenu et al.,
2020) is that if α is larger than a critical value α�, then the
critical behavior is indistinguishable from the short-range
limit of the model, which is retrieved for α → ∞. Thus, for
α > α� the behavior of the model is not “genuinely” long
range and its universal behavior is the same as in the short-
range limit. The specific value of α� depends on the system
and on the transition under study.
Among the unique effects produced by long-range inter-

actions, notable features appear in the case α that are smaller
than the dimension of the system d. There the interaction
energy of homogeneous systems becomes infinite due to the
diverging long-distance contribution of the integral

R
r−αddr.

Therefore, when α ≤ d the energy is not extensive (Campa
et al., 2014).
Since α� is larger than d, there is an interval of values of α

for which the energy is extensive yet the long-distance
properties of the system are altered by the long-range nature
of the interactions.
Given this, for our presentation we employ the following

classification.
• Weak long-range interactions.—These involve infinite-
range interactions with power-law behavior (1) for large
r and for α such that d < α < α�.

• Strong long-range interactions.—These involve infinite-
range interactions with power-law behavior (1) for large
r and for α < d.

Therefore, with short-range interactions we refer to the limit
α → ∞ and, by extension, to α larger than α�, bearing in mind
that for α > α� it is the critical behavior to be of short-range
type, but nonuniversal properties may also be affected.
In both of the previous definitions for weak and strong

long-range interactions, by “infinite-range interactions with
power-law behavior” we mean that the power-law decay is
present for large distances, i.e., for the tails of the potential,
regardless of the short-range structure of the interactions
(Mukamel, 2008). To appropriately cover the cases in which
there is competition between excitations on different length
scales, for instance, between a certain long-range interaction
and another one acting at short range, we use the following
additional notation:

• Competing nonlocal interactions.—These involve finite-
and/or infinite-range interactions with different signs.

Note that this classification has been introduced for ease
of discussion, but it does not purport to be rigorous or
perfect. Indeed, certain strong long-range systems may
exhibit a critical scaling that is analogous to the general weak

long-range case; in an infinite-range interacting system the
dominant effect could be the creation of nonhomogeneous
patterns so that its physics is more similar to the case of finite-
range sign-changing interactions. Similarly, it could be that in
a system with finite-range interaction plus a power-law
interaction with power decay α, the long-range tail does not
affect ground-state properties, so according to the classifica-
tion the interaction could be long range and, nevertheless, the
system would behave as a non-long-range system. Given a
variety of situations, when needed for clarity of presentation
we regroup the material according to the phenomena exhibited
by the different systems. Nevertheless, when it is not mis-
leading, we stick to the previous convention, which has the
merit of classifying different interactions independently of
further considerations and knowledge of the actual behavior
of the quantity of interest studied in the particular models
at hand.
In Table I we summarize physical systems governed by

long-range interactions. Results for some of the interactions
in the classical limit are summarized in the remaining part of
this section and further discussed in the quantum case in
Secs. III–V.

B. Classical systems with long-range interactions

In the rest of the section, we take account of the most
established phenomena occurring in each of the previously
introduced classes in the classical limit to lay the groundwork
for the quantum case.

1. Strong long-range interactions

For α < d, the common definitions of internal energy lead
to a nonextensive energy and traditional thermodynamics
does not apply. These properties are shared by a wide range of
physical systems ranging from gravity to plasma physics; see
Table I. Apart from the cases summarized there, the general
results of strong long-range systems often also apply to
mesoscopic systems, far from the thermodynamic limit,
whose interaction range, even if finite, is comparable to the
size of the system. In the perspective of quantum systems,

TABLE I. Different applications where systems are governed by
long-range (LR) interactions. These systems present interactions that
remain long range up to the thermodynamics limit. Here the ratio α=d
signaling how strong the long range is refers to d ¼ 3 in the first four
lines; see the text for a discussion of different d. Notice that for
multimode cavity QED systems α is tunable.

System α α=d Comments

Gravitational systems 1 1=3 Attractive forces, possibly
nonhomogeneous states

Non-neutral plasmas 1 1=3 Some LR effects are also
present in the neutral case

Dipolar magnets 3 1 Competition with local
ferromagnetic effects

Dipolar gases 3 1 Anisotropic interactions
Single-mode cavity
QED systems

0 0 Interactions mediated by
cavity photons

Trapped-ion systems ∼0–3 ∼0–3 Interactions mediated by
crystal phonons
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this situation is particularly relevant for Rydberg gases
(Böttcher et al., 2020).
Owing to the lack of extensivity, theoretical investigations

in the strong long-range regime need a suitable procedure to
avoid encountering divergent quantities. This has been
obtained in the literature by scaling the long-range interaction
term using a volume prefactor guaranteeing energy exten-
sivity, i.e., the so-called Kac prescription (Kac, Uhlenbeck,
and Hemmer, 1963).
The salient feature of the Kac prescription is that it allows a

proper thermodynamic description of strong long-range sys-
tems without disrupting their key property, i.e., nonadditivity.
Indeed, other possible regularizations where the long-range tails
of the interactions are cut off exponentially or at a finite range
tend to disrupt the peculiar physics of these systems. Similar
cutoff regularizations are often employed in neutral Coulomb
systems, where the 1=r potential tails are naturally screened by
the presence of oppositely charged particles. However, even in
the screened case the long-range tails of the interaction potential
may give rise to finite corrections to thermodynamic quantities
from the boundary conditions, which also remain finite in the
thermodynamic limit (Lewin and Lieb, 2015).
Similarly, the appearance of nonadditivity in strong long-

range systems is connected to a finite contribution of the system
boundaries to the thermodynamic quantity, as in the prototypi-
cal case of fully connected systems where the boundary and
bulk contributions are of the same order. It is in fully connected
systems that most of the properties of strong long-range
systems were first identified, such as ensemble inequivalence
(Barré, Mukamel, and Ruffo, 2001). This is the property
of nonadditive systems to produce different results when
described with different thermodynamical ensembles, leading
to apparently paradoxical predictions such as negative specific
heat or susceptibility. These models also present the so-called
quasistationary states (QSSs) in the out-of-equilibrium dynam-
ics, i.e., metastable configurations whose lifetime scales super-
linearly with the system size. Extensive accounts of the peculiar
properties of long-range systems in the classical case were
given by Dauxois, Ruffo et al. (2002) and Campa et al. (2014).
In the following we focus only on the quantum case.
Based on the previous discussion, one may be tempted to

exclusively relate peculiar properties such as ensemble inequi-
valence, negative specific heat, and QSSs to the nonextensive
scaling of strong long-range systems in the thermodynamic
limit. However, similar effects also appear in mesoscopic
systems, where the interaction range is finite but of the same
order as the system size, or for attractive systems where most of
the density is localized within a finite radius (Thirring, 1970).
To emphasize that effective strong long-range models with
α ¼ 0 can also emerge when the couplings occur not between
components separated in space but rather in another, “internal”
space, we mention effective models of interacting neutrinos
where the energy and the momentum dependence of the
neutrinos enter a Heisenberg model in a magnetic field with
α ¼ 0 (Pehlivan et al., 2011).

2. Weak long-range interactions

The focus on short-range interactions in the theory of
critical phenomena (Nishimori and Ortiz, 2015) is motivated

not only by simplicity but also by the resilience of the
universal behavior upon the inclusion of nonlocal couplings,
at least in homogeneous systems. Indeed, common wisdom
states that universal properties close to a critical point depend
not upon variations of the couplings between the microscopic
components but instead on the symmetry of the order
parameter and the dimension of the system under study.
However, this statement is not generally true when long-range
interactions are introduced into the system.
Indeed, while universal properties are insensible to the

intermediate-range details of the interactions for critical systems
with homogeneous order parameters, they are sensitive to the
power-law decaying tails of long-range couplings (and, to be
explicit, not on the strength of the interaction itself). For α < d,
the interaction energy diverges and the universal behavior
typically belongs to the mean-field universality class. On the
contrary, as a function of the parameter σ ≡ α − d > 0 three
different regimes can be found (Defenu et al., 2020):

• For σ ≤ σmf, where σmf can be calculated in the mean-
field approximation, the mean-field approximation cor-
rectly describes the universal behavior.

• For σ > σ�, the model has the same critical exponents as
its short-range version, i.e., the σ → ∞ limit.

• For σmf < σ ≤ σ� the system exhibits peculiar long-
range critical exponents, where the notation σ� ≡ α� − d
has been used.

Therefore, there are a range of long-range decay exponents
0 < σ ≤ σ� where thermodynamics remains well defined
and the critical behavior is qualitatively similar to the one
appearing in the limit σ → ∞. Nevertheless, the universal
properties become σ dependent and loosely mimic the depend-
ence of the short-range universal properties as a function of the
spatial dimension d (Fisher, Ma, and Nickel, 1972). In other
words, varying σ at fixed dimension is approximately equiv-
alent to changing the geometric dimension in short-range
systems. Notice that this equivalence is not expected to be
exact in general, but it is at the Gaussian level, as one can
explicitly see in the spherical model (Joyce, 1966).
While the boundary σmf can be exactly calculated by

appropriate mean-field arguments, the location of the σ� is
the result of a complex interplay between long-range and
short-range contributions to critical fluctuations. This inter-
play is at the root of several interesting phenomena that appear
in a wide range of different critical systems upon the inclusion
of long-range interactions in the weak long-range regime
(Defenu, Trombettoni, and Codello, 2015; Defenu et al.,
2020). The appearance of novel effects is not limited to the
equilibrium universal properties but instead extends to the out-
of-equilibrium realm, whose plethora of interesting long-
range phenomena has been only partially understood.
Given these considerations, most of the focus of the discussion
on weak long-range interacting systems concerns universal
properties both at and out of equilibrium.

3. Competing nonlocal interactions

Systems with nonlocal interactions whose tails are rapidly
decaying, with σ > σ�, or exponentially decaying may still
produce universal features due to the interplay with other local
couplings or to the presence of frustration in the system.
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Indeed, when long-range repulsive interactions compete with
short-range attractive ones, the pertinent order parameter of
the system can form spatial modulations in the form of
lamellae, cylinders, or spheres. These modulated phases
are ubiquitous in nature and emerge in a large variety of
physical systems ranging from binary polymer mixtures,
cold atoms, and magnetic systems to high-temperature
superconductors (Seul and Andelman, 1995). Especially
in two dimensions, modulated phases lead to rich phase
diagrams with peculiar features that are currently far from
being fully understood. In particular, the appearance of
modulated phases has been invoked to describe several
properties of strongly correlated electronic systems, includ-
ing high-temperature superconductors and manganites
with colossal magnetoresistance (Bustingorry, Jagla, and
Lorenzana, 2005; Ortix, Lorenzana, and Castro, 2008).
At finite temperatures, another effect of modulated phases

is the so-called inverse melting, which is a consequence of
reentrant phases. Indeed, a modulated phase may be “too
hot to melt” (Greer, 2000), which occurs when the system
recovers the disordered state at low temperature after being in
a symmetry-broken state in an intermediate temperature
regime. The extension of this reentrance becomes appreciable
for systems where the homogeneous and modulated phases
present similar energy cost and the order parameter remains
small, and it is thus strongly influenced by the form and
intensity of nonlocal interactions (Mendoza-Coto, Nicolao,
and Díaz-Méndez, 2019).
The study of the universal properties of modulated phases

was initiated long ago (Brazovskii, 1975), but a comprehen-
sive picture of their critical properties is still lacking, despite
many investigations (Cross and Hohenberg, 1993), due to
the difficulty of devising reliable approximation schemes.
However, the increasing number of experimental realizations
featuring striped phases could lead to a renovated interest in
such problems within the framework of the physics of long-
range interactions.

II. EXPERIMENTAL REALIZATIONS

As mentioned, the rising interest for long-range physics
has been made pressing by the current developments of the
experimental techniques for the control and manipulation of
AMO systems. Indeed, long-range quantum systems are
currently being realized in several experimental platforms,
such as Rydberg atoms (Saffman, Walker, and Mølmer, 2010),
dipolar quantum gases (Lahaye et al., 2009), polar molecules
(Carr et al., 2009), quantum gases coupled to optical cavities
(Ritsch et al., 2013; Mivehvar et al., 2021), and trapped ions
(Blatt and Roos, 2012; Schneider, Porras, and Schaetz, 2012;
Monroe et al., 2021). Long-range interactions with a tunable
exponent α can currently be realized using trapped ions off-
resonantly coupled to motional degrees of freedom stored in a
Paul trap (Islam et al., 2013; Jurcevic et al., 2014; Richerme
et al., 2014) or in a Penning trap (Dubin and O’Neil, 1999;
Britton et al., 2012), or neutral atoms coupled to photonic
modes of a cavity (Douglas et al., 2015; Vaidya et al., 2018).
Note also that the dependence of the decay at intermediate
length scales can in turn be tuned, as in polar gases in one-
dimensional lattices (Li et al., 2020).

Based on the aforementioned classification, we focus our at-
tention on three different classes of experimental systems:
trapped ions, quantum gases in cavities, and dipolar systems,
including, in particular, Rydberg states. All of these systems are
quantum in nature and represent prototypical applications of
recent investigations in long-range physics. Trapped ions
present an almost unique possibility to experimentally realize
long-range interactions with a decay exponent that may be
tuned in the range α ∈ 0 − 3, and then allow one to explore
both the strong and weak long-range regimes. Conversely,
cavity-mediated interactions between atoms are typically flat
(α ¼ 0) and constitute the experimental counterpart of the
Dicke or Lipkin-Meshkov-Glick (LMG) models (Dicke, 1954;
Lipkin, Meshkov, and Glick, 1965; Hepp and Lieb, 1973), two
real workhorses in long-range interactions. Finally, Rydberg
states and dipolar atoms in general present several common
features with thin magnetic films, which have been the tradi-
tional experimental setup for the study of modulated critical
phenomena at finite temperatures (Selke, 1988).
Thus, each of these experimental platforms represents a

realization of the peculiar physics in the long-range regimes.
However, this statement should not be considered strictly, but
instead mostly as a general guideline to ease our presentation.
The reason for this disclaimer is that in the following we
describe several examples violating this correspondence, such
as the observation of QSSs in the strong long-range regime of
trapped ions (Neyenhuis et al., 2017), the presence of pattern
formation in cavity systems (Baumann et al., 2010; Landini
et al., 2018), and the realization of the LMGmodel in the fully
blockade limit of Rydberg atoms (Henkel, Nath, and Pohl,
2010; Zeiher et al., 2016).

A. Trapped ions

Laser-cooled ions confined in radio-frequency traps are one
of the most advanced platforms for both quantum computing
(Ladd et al., 2010) and quantum simulation (Monroe et al.,
2021). In these systems, time-dependent electric fields create
an effective harmonic, eV-deep potential (Dehmelt, 1968;
Brown and Gabrielse, 1986; Paul, 1990) that allows a long
storage time of collections of charged particles in vacuum
systems (Pagano et al., 2018). When laser cooled (Leibfried,
Blatt et al., 2003), the atomic ions formWigner crystals whose
equilibrium positions and vibrational collective modes are
determined by the competition between the Coulomb inter-
actions and the harmonic confinement induced by the trap. In
this section, we review the experimental techniques used to
realize spin models with tunable power-law interactions. In
Secs. IV and V, we describe the experimental realizations of
these models where the long-range character of the interaction
allowed the observations of new physical phenomena in
many-body quantum systems.

1. Phonon-mediated interactions

In trapped-ion systems, the spin degree of freedom can
be encoded in two long-lived atomic states, either in the
hyperfine ground-state manifold (Knight et al., 2003) or using
a metastable electronic state (Blatt and Wineland, 2008). Both
approaches guarantee coherence time of the order of a
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few seconds, near-perfect initialization via optical pum-
ping (Happer, 1972), and high-fidelity detection via state-
dependent fluorescence (Myerson et al., 2008; Noek et al.,
2013; Christensen et al., 2020).
Without any spin-motion coupling, the ion crystal can be

described as a set of normal modes of motion (phonons) and
an independent set of internal (spin) degrees of freedom, with
the Hamiltonian

H ¼
X
m

ℏωma
†
mam þ

X
i

Bi
!

·σ⃗i; ð3Þ

where a†m (am) is the creation (annihilation) operator of
the mth phonon mode with ½am; a†n� ¼ δmn and σ⃗i ¼
f1i; σxi ; σyi ; σzig and B⃗i are the Pauli matrix vector and effective
magnetic fields associated with the ith ion, respectively.
The effective magnetic fields are implemented experimentally
with microwaves or one-photon and two-photon laser-induced
processes.
Laser-cooling and sub-Doppler techniques, such as resolved

Raman sideband cooling (Monroe et al., 1995) and electro-
magnetic-induced transparency cooling (Roos et al., 2000; Lin
et al., 2013; Jordan et al., 2019; Feng et al., 2020), can prepare
all motional states near their ground states, which is crucial for
the simulation of the later-described spin models.
Quantum operations can be carried out by exerting a spin-

dependent optical force on the ion crystal, coherently coupling
the spin and the motional degrees of freedom. High-fidelity
coherent spin-motion coupling can be realized with one-
photon optical transitions in the case of optical qubits
(Blatt and Wineland, 2008), two-photon stimulated Raman
transitions in the case of hyperfine qubits (Kim et al., 2009;
Britton et al., 2012; Harty et al., 2014), and near-field
microwaves (Ospelkaus et al., 2011; Harty et al., 2016;
Srinivas et al., 2021).
When the momentum ℏΔk imparted by the laser on the ions

confined in a harmonic potential well is considered, the
general light-atom Hamiltonian in the rotating frame of the
qubit is

H ¼ ℏΩ
2

X
i

½ðθ⃗ · σ⃗iÞeiðΔkXi−μt−ϕÞ þ H:c:�; ð4Þ

where Ω, μ, and ϕ are the Rabi frequency, the laser beat-note
frequency, and the laser phase, respectively. The spin Pauli
operators σ⃗i are multiplied by the complex coefficients

θ⃗ ¼ fθ0; θ1; θ2; θ3g, depending on the specific experimental
configuration. The position operator can be written in terms of
collective phononic modes as

Xi ¼
X
m

ηimða†meiωmt þ ame−iωmtÞ; ð5Þ

with ηim ¼ ηmbim, where bim is the normal mode
transformation matrix1 and ηm ¼ Δk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mωm

p
is the

Lamb-Dicke parameter associated with the mth normal mode
at frequency ωm.

2. Mapping to spin models

In the Lamb-Dicke regime, ΔkhXii ≪ 1, the first-order
term of the Hamiltonian (4) gives rise to spin-phonon
couplings of the form σ�;z

i ameiωmt þ H:c:, where the spin
operator depends on the experimental configuration. These
terms generate an evolution operator under a time-dependent
Hamiltonian that can be written in terms of Magnus expan-
sions (Zhu, Monroe, and Duan, 2006). In the limit of
ðμ − ωmÞ ≫ ηmΩ for all m, the motional modes are only
virtually excited, meaning that only the second-order term of
the Magnus expansion is dominant and leads to the following
pure spin-spin Hamiltonian:

H ¼
X
ij

Jijσθ⃗i σ
θ⃗
j ; ð6Þ

where the choice of the Pauli spin operator σθ⃗i is controlled
by the laser configuration.2 One common configuration
fθ1 ¼ 1=2; θ2 ¼ i=2; θ0 ¼ θ3 ¼ 0g leads to the so-called
Mølmer-Sørensen gate (Sørensen and Mølmer, 1999), where
two laser beat notes are tuned close to the motional mode
transitions with the opposite detunings �μ. In this configu-

ration σθ⃗i ¼ σϕi ¼ σxi cosðϕÞ þ σyi sinðϕÞ, where ϕ can be
tuned by controlling the phases of the two laser beat notes
(Monroe et al., 2021). Another widely used laser configura-
tion is fθ1 ¼ θ2 ¼ θ0 ¼ 0; θ3 ¼ 1g (Leibfried et al., 2003),
where the ion motion is modulated by a spin-dependent
light shift.3

The spin-spin interaction matrix Jij can be explicitly
calculated given the frequencies of the normal modes ωm
and the detuning μ as follows:

Jij ¼ Ω2ωrec

X
m

bimbjm
μ2 − ω2

m
; ð7Þ

where ωrec ¼ ℏðΔkÞ2=2M is the recoil frequency associated
with the transfer of momentum ℏðΔkÞ; see Fig. 2. The spin-
spin interaction can be approximated with the following
tunable power law:

Jij ¼
J0

ji − jjα : ð8Þ

The approximate power-law exponent can be adjusted in
the 0 < α < 3 range by tuning the detuning μ and the trap
frequencies ωm. In the limit μ ≫ Δω, with Δω the typical
mode separation, all modes contribute equally, and the spin-
spin interaction decays with a dipolar power law, for instance,
Jij ∼ 1=ji − jj3. On the other hand, when μ is tuned close to
ωc.m. (see Fig. 2), the exponent α decreases.

1P
i bimbin ¼ δnm and

P
m bimbjm ¼ δij.

2For a detailed derivation of Eq. (6), see Monroe et al. (2021).
3In the following, we often employ the conventions that the σ⃗ ’s are

quantum spin operators and the S⃗’s are classical or collective spins.

Nicolò Defenu et al.: Long-range interacting quantum systems

Rev. Mod. Phys., Vol. 95, No. 3, July–September 2023 035002-7



Note that in the quantum simulation regime large trans-
verse fields (μ − ωc:m: ≫ Bz ≫ J0) have been used in the
Mølmer-Sørensen configuration to tune the Hamiltonian (6)
and experimentally realize the following long-range XY
model:

H ¼
X
ij

Jijðσxi σxj þ σyi σ
y
jÞ≡

X
ij

Jijðσþi σ−j þ σ−i σ
þ
j Þ: ð9Þ

Qualitatively, the large field Bz transverse to the interaction
direction energetically suppresses the processes involving two
spin flips (∼σþi σ

þ
j þ σ−i σ

−
j ) of the Ising Hamiltonian (6) and

retains only the spin preserving part (∼σþi σ−j þ σ−i σ
þ
j ). Note

that some refer to the Hamiltonian (9) as an XX Hamiltonian
rather than an XY one. In the following we use the two
synonymously, depending on the specific reference that is
being discussed.

B. Cold atomic gases in cavities

When microscopic interactions between particles are
local, effective nonlocal models can also be realized by
coupling the particles to the mode of microwave or optical
resonators (Majer et al., 2007; Leroux, Schleier-Smith, and
Vuletić, 2010). Photons delocalized over the volume of a
resonator can then mediate interactions between the par-
ticles, leading to highly tunable long-range or global-range
interactions. Since the photons constantly decay from the
resonator, these systems have to be externally driven.
Depending on the parameters, the lossy character of the
cavity can thus be made dominant such that the physics has
to be effectively described by nonequilibrium, driven-
dissipative models. In the following, we discuss how this
basic scheme has been applied to cold thermal ensembles of
atoms to realize effective spin interactions, and to quantum
degenerate ensembles of atoms to realize effective density-
density interactions.

1. Thermal ensembles with cavity-mediated interactions

Thermal ensembles of cold atoms coupled to optical
cavities have proven to be a versatile platform for engineering
long-range spin interactions. Nonlocal, tunable Heisenberg
models and spin-exchange dynamics have been implemented
using photon-mediated interactions in atomic ensembles,
where the coupling between atomic sublevels is controlled
via magnetic and optical fields.
For example, by coupling the clock transition of an ensemble

of strontium atoms to a detuned narrow-linewidth optical
resonator, photons mediate an effective spin-exchange interac-
tion whose strength can bewidely tuned since it scales inversely
with the detuning between the drive and the cavity resonance
(Norcia et al., 2018). The long-range interactions featured in this
system have been exploited to explore the nonequilibrium phase
diagram of the LMG model with transverse and longitudinal
fields (Muniz et al., 2020); see also Sec. V.D.
Photon-mediated spin-exchange interactions have also been

realized in a spin-1 system of Rb atoms (Davis et al., 2019,
2020). Here a detuned four-photon Raman process is induced:
A first atom absorbs a drive photon and emits it virtually into
the cavity mode while changing its internal state. This virtual
photon is absorbed by a second atom that then emits the photon
back into the drive field while also changing its internal state,
thereby realizing a “flip-flop interaction.” Since these processes
depend via the Zeeman shift on the applied magnetic field,
spatially dependent interactions can also be generated. Using
multifrequency drives in conjunction with a magnetic field
gradient, highly tailorable interactions in arrays of atomic
ensembles within an optical cavity have recently been realized
(Periwal et al., 2021); see also Hung et al. (2016) for a
theoretical proposal in crystal waveguides. This approach
allowed a multitude of interesting structures, such as Möbius
strips with sign-changing interactions or treelike geometries,
to be generated. With these tools, models that exhibit fast
scrambling connecting spins separated by distances that are
powers of 2 were proposed by Bentsen et al. (2019), which
neatly connects to 2-adic models (Gubser et al., 2017).

(a)

(b) (c) (d)

FIG. 2. Trapped-ion systems. (a) A 77 linear chain of 171Ybþ ions. The harmonic confinement and Coulomb interactions cause the
spacing between ions to be inhomogeneous, thereby breaking translational invariance. (b) A laser drive at frequency μ is detuned from
the radial center-of-mass mode frequency ωc.m. to create phonon-mediated spin-spin interactions. (c) Calculated spin-spin interaction
(blue circles) for a 1D chain of 20 ions vs the distance from the edge ion. In this case δ ¼ μ − ωc.m. ¼ 2π × 100 kHz and J1;1þr ∼ 1=r1.3

(red solid line). (d) Calculated Ising couplings in a 2D crystal of 217 ions vs a sampling of the distance dij between ion pairs (empty
circles). The solid lines are best-fit power-law exponents (α ¼ 0.01, 0.12, 0.75, 1.73, and 2.72 from top to bottom) for various detunings
from the center-of-mass (c.m.) mode of 795 kHz. Adapted from Britton et al., 2012.
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2. Quantum gases with cavity-mediated interactions

Dilute quantum gases of neutral atoms are a powerful
platform to study many-body physics (Bloch, Dalibard, and
Zwerger, 2008). However, these gases typically interact only
via collisional, short-range interactions. Nonlocal dipole-
dipole interactions can nevertheless be implemented by
employing either particles with a large static dipole moment
(such as heteronuclear molecules or atomic species with
large magnetic dipole moments) or with an induced dipole
moment, such as Rydberg atoms. These approaches are
discussed in Sec. II.C. A complementary route to exploit
induced dipolar interactions is to couple the quantum gas to
one or multiple modes of an optical cavity (Ritsch et al.,
2013; Mivehvar et al., 2021). In this section, we first provide
an introduction to the fundamental mechanism giving rise to
cavity-mediated long-range interactions and then turn to
experimental realizations of relevance to this review.
The basic setting is shown in Fig. 3. A Bose-Einstein

condensate (BEC) is trapped by an external confining
potential at the position of the mode of an optical cavity.
The quantum gas is exposed to a standing-wave transverse
pump laser field with a wave vector kp whose frequency
ωp is far detuned by Δa ¼ ωp − ωa from the atomic
resonance ωa. In this dispersive limit, the atoms are not
electronically excited but form a dynamical dielectric
medium that scatters photons. At the same time, the
resonance frequency ωc of a cavity mode with wave vector
kc (where jkcj ≈ jkpj ¼ k) is tuned close to the frequency
of the transverse pump field, such that photons scattered off
the atoms are preferentially scattered into the cavity mode.
Compared to free space, such vacuum-stimulated scattering
is enhanced by a factor proportional to the finesse of the
optical cavity.

The scattering of a photon from the pump off a first atom into
the cavity and then back into the pump off a second atom is the
microscopic process mediating the interaction between two
atoms. This photon scattering process imparts each one recoil
momentum along the cavity direction and the pump field
direction onto the atoms such that atoms initially in the zero-
momentumBEC state jp0i ¼ jpx; pyi ¼ j0; 0i are coupled to a
state jp1i, which is the symmetric superposition of the four
momentum states j � ℏkc;�ℏkpi. Since the photon is delo-
calized over the cavity mode, this interaction is of global range.
The strength of the interaction can be increased either by
reducing the absolute value of the detuning Δc ¼ ωp − ωc

between the pump frequency and the cavity resonance or by
increasing the power of the transverse pump field. The
interaction inherits its shape from the interference of the
involved mode structures of the transverse pump and cavity.
More formally, after adiabatically eliminating the electroni-

cally excited atomic states, a quantum gas driven by a
standing-wave transverse pump field with mode function
χðrÞ and coupled to a linear cavity with the mode function
ξðrÞ can be described using the second-quantized many-
body Hamiltonian (Maschler, Mekhov, and Ritsch, 2008)
H ¼ Hc þHa þHac, with

Hc ¼ −ℏΔca†a;

Ha ¼
Z

d3rΨ†ðrÞ
�
p2

2m
þ Vpχ

2ðrÞ þ g
2
Ψ†ðrÞΨðrÞ

�
ΨðrÞ;

Hac ¼
Z

d3rΨ†ðrÞℏ½ηχðrÞξðrÞðaþ a†Þ þ U0ξ
2ðrÞa†a�ΨðrÞ;

ð10Þ

where Hc describes the dynamics of a single cavity mode with
the photon creation (annihilation) operator a†ðaÞ. The atomic
evolution in the potential provided by the pump field with
depth Vp is captured by the term Ha, where p is the atomic
momentum, m is the atomic mass, g describes the atomic
contact interaction (Bloch, Dalibard, and Zwerger, 2008), and
ΨðrÞ is the bosonic atomic field operator. The term Hac
describes the interaction between atoms and light fields. Its
first term captures the photon scattering between the cavity and
the pump fields at a rate given by the two-photon Rabi
frequency η ¼ g0Ωp=Δa, where g0 is the maximum atom-
cavity vacuum Rabi coupling rate and Ωp is the maximum
pump Rabi rate. The second term describes the dynamic
dispersive shift of the cavity resonance, with U0 ¼ g20=Δa

the light shift of a single maximally coupled atom.
The atomic system evolves on a timescale given by the

energy ∼ℏωr of the excited momentum state, where
ωr ¼ ℏk2=2m is the recoil frequency of the photon scattering
and k is the cavity wave vector. If the cavity evolution is
fast compared to this timescale (i.e., if the cavity decay rate
κ ≫ ωr), the cavity field can be adiabatically eliminated,
which yields

a ¼ ηΘ
Δ̃c þ iκ

; ð11Þ

(a) (b)

FIG. 3. Experimental scheme for realizing cavity-mediated
interactions and mode softening at the superradiant phase
transition. (a) A BEC (shaded cloud) inside an optical cavity
is transversally illuminated by a far-red-detuned standing-wave
laser field. In a quantized picture, atoms off-resonantly scatter
photons from the pump field into a close-detuned cavity mode
and back, creating and annihilating pairs of atoms in the super-
position of momenta ðpx; pyÞ ¼ ð�ℏk;�ℏkÞ (one of four pos-
sible processes is shown schematically). This results in global
interactions between all atoms. The interaction strength V is
controlled via the power of the transverse laser field and the
detuning Δc. (b) The cavity-mediated atom-atom interaction
causes a softening of a collective excitation mode with energy
ℏωs at the momenta ð�ℏk;�ℏkÞ and a diverging susceptibility
(shaded area) at a critical interaction strength (dashed line).
Adapted from Mottl et al., 2012.
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where Δ̃c ¼ Δc − U0

R
d3rΨ†ðrÞξ2ðrÞΨðrÞ is the dispersively

shifted cavity detuning. Equation (11) shows that the cavity
field is proportional to the order parameter operator
Θ ¼ R

d3rΨ†ðrÞχðrÞξðrÞΨðrÞ, which measures the overlap
between atomic density modulation and the mode structure of
the interfering light fields. This relation is essential for the
real-time observation of the atomic system via the light field
leaking from the cavity.
Eliminating the steady-state cavity field in Eqs. (10) using

Eq. (11), an effective Hamiltonian is obtained (Mottl et al.,
2012),

Heff ¼Haþ
Z

d3rd3r0Ψ†ðrÞΨ†ðr0ÞV lrðr;r0ÞΨðrÞΨðr0Þ; ð12Þ

with the long-range interaction potential

V lrðr; r0Þ ¼ VχðrÞξðrÞχðr0Þξðr0Þ: ð13Þ

This periodic interaction potential with a strength V ¼
ℏη2Δ̃c=ðΔ̃2

c þ κ2Þ is of global range and favors a density
modulation of the atomic system with a structure given by the
interference of pump and cavity fields. For a standing-wave
transverse pump field impinging on the BEC perpendicular to
the cavity mode, this interference has a checkerboard shape of
the form cosðkxÞ cosðkyÞ.
While integrating out the light field provides access to a

simple description in terms of a long-range interacting
quantum gas, it is important to keep in mind that the system
is of a driven-dissipative nature. The excitations of the system
are polaritons that share the character of both the atomic and
photonic fields. Furthermore, as we later detail, in the side-
band resolved regime κ ≲ ωr the cavity field can no longer be
integrated out and the interaction becomes retarded (Klinder,
Keßler, Wolke et al., 2015).
The sign of the interaction V can be chosen by a change in

the detuning Δ̃c. For V < 0, this interaction leads to density
correlations in the atomic cloud favoring a λ-periodic density
structure, where λ ¼ 2π=k is the wavelength of the pump laser
field. This can also be understood by inspecting the first term
in Hac from Eqs. (10). A λ-periodic density structure would
act as a Bragg lattice, enhancing the coherent scattering of
photons between pump and cavity. The emerging intracavity
light field interferes with the pump lattice and builds an optical
potential in which the atoms can lower their energy. However,
the long-range interaction favoring the density modulation
competes with the kinetic energy term. Above a critical
interaction strength, the system undergoes a quantum phase
transition to a self-ordered state characterized by a density-
modulated cloud and a coherent field in the cavity mode;
see Sec. IV.G.2.
In addition, tunable-range interactions can be engineered

by extending the previously described scheme to multi-
mode cavities (Gopalakrishnan, Lev, and Goldbart, 2009;
Gopalakrishnan, Lev, and Goldbart, 2010, 2011). In such
cavities, a large number of modes with orthogonal mode
functions (in theory an infinite number, in practice several
thousands) are energetically quasidegenerate. An atom within
the quantum gas will thus scatter the pump field into a

superposition of modes, with the weights set by the position of
the atom and a residual detuning between the modes. These
modes interfere at large distances destructively, such that only
a wave packet localized around the scattering atom remains
where constructive interference dominates. Accordingly, the
effective atomic interaction acquires a finite-range set by the
number of contributing modes.
Full degeneracy can be reached only in a multimode cavity

that is either planar or concentric, both of which are margin-
ally stable cavity configurations (Siegman, 1986). However,
the experimentally stable confocal cavity configuration also
supports a high degree of degeneracy where either all even or
all odd modes are degenerate. The resultant effective atomic
interaction also features a tunable short-range peak; see
Fig. 4. This interaction has been experimentally realized
(Kollár et al., 2017; Vaidya et al., 2018) and can be further
employed to realize sign-changing effective atomic inter-
actions (Guo et al., 2019, 2020). Changing the range of the
mediated interaction is also expected to impact the univer-
sality class of the self-ordering phase transition described in
Sec. IV.G.2. With an increasing number of modes, the initially
second-order phase transition is expected to develop into a
weakly first-order phase transition (Gopalakrishnan, Lev, and
Goldbart, 2009, 2010; Vaidya et al., 2018).

3. Mapping to spin models

One of the most fundamental models in quantum optics is
the Dicke model, which describes the collective interaction
between N two-level atoms (captured as collective spin S)
with resonance frequency ω0 and a single electromagnetic
field mode at frequency ω (Dicke, 1954; Kirton et al., 2019).
The Dicke model exhibits for a sufficiently strong coupling Λ
between matter and light Λ > Λc ≡ ffiffiffiffiffiffiffiffiffi

ωω0

p
=2 a quantum

phase transition to a superradiant ground state (Hepp and

FIG. 4. Tunable-range cavity-mediated interaction in a multi-
mode cavity. The dimensionless interaction strength Dðx1; x1Þ as
a function of BEC position in a mode with waist w0 for five
different cavities is indicated by the saturation of the color. The
darkest data correspond to a confocal cavity at a high degene-
racy of modes, while the brighter shades correspond to fewer
interacting modes. Inset: enlargement near the cavity center
illustrating how a larger number of interacting modes allows a
more localized effective atomic interaction to be engineered.
From Vaidya et al., 2018.
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Lieb, 1973; Wang and Hioe, 1973), with a macroscopically
populated field mode hai and a macroscopic polarization hSxi
of the atoms. The observation of the Dicke phase transition
employing a direct dipole transition was hindered due to the
limited realizable dipole coupling strengths. However, it was
theoretically proposed to make use of Raman transitions
between different electronic ground states, allowing the
critical coupling in a rotating frame of the driven-dissipative
Dicke model to be reached (Dimer et al., 2007).
Neglecting atomic collisional interactions and the disper-

sive shift of the cavity, the self-organization phase transition
(see Sec. IV.G.2) can be mapped to the superradiant quantum
phase transition of the Dicke model (Baumann et al., 2010;
Nagy et al., 2010). Exploiting the quantized atomic motion,
the two-mode ansatz Ψ ¼ ψ0c0 þ ψ1c1 for the atomic wave
function can be inserted into the Hamiltonian (10). Here c0
and c1 are bosonic mode operators annihilating a particle in
the flat BEC mode ψ0, respectively, in the excited motional
mode ψ1 ∝ ψ0 cosðkxÞ cosðkyÞ. Introducing the collective
spin operators Sþ ¼ S†− ¼ c†1c0 and Sz ¼ ðc†1c1 − c†0c0Þ=2,
one arrives at the Dicke Hamiltonian

H=ℏ ¼ −Δca†aþ ω0Sz þ
Λffiffiffiffi
N

p ða† þ aÞðSþ þ S−Þ; ð14Þ

with a bare energy of the motional excited state ℏω0 and a
coupling strength Λ ¼ η

ffiffiffiffi
N

p
=2. Compared to the original

Dicke model, the mode frequency ω has been mapped to
−Δc in the rotating frame of the pump field. The observation
of the onset of self-organization in the transversally pumped
BEC constitutes the first realization of the Dicke phase
transition (Baumann et al., 2010). The phase diagram of
the self-ordering phase transition is shown in Fig. 5 together
with the well-matching theoretical prediction for the open
Dicke model phase transition.
It is instructive to rewrite the long-range interaction (13) in

terms of center-of-mass and relative coordinates. Focusing for
simplicity on the 1D case results in

V lrðx; x0Þ ¼ V cosðkxÞ cosðkx0Þ

¼ V
2
½cosð2kxc.m.Þ þ cosðkxrelÞ�; ð15Þ

with xc.m. ¼ ðxþ x0Þ=2 and xrel ¼ x − x0. The term
cosð2kxc.m.Þ originates from the cavity standing-wave mode
structure and breaks continuous translational invariance,
pinning the center of mass of the system at the phase transition
onto the underlying mode structure with periodicity λ=2.
More interesting is the term cosðkxrelÞ, which leads to the
tendency of atoms to separate by a multiple of the wavelength
λ. Owing to the different periodicities of the two terms, a
parity symmetry is broken at the self-ordering phase tran-
sition. The interaction term capturing the relative coordinate
allows this system to be mapped to the Hamiltonian mean-
field model (Ruffo, 1994; Antoni and Ruffo, 1995; Dauxois,
Latora et al., 2002; Campa et al., 2014; Schütz and Morigi,
2014). This model is a paradigmatic model of the statistical
mechanics of nonadditive long-range systems. Employing this
mapping, it was possible to show that the transition to spatial

self-organization is a second-order phase transition of the
same universality class as ferromagnetism, whose salient
properties can be revealed by detecting the photons emitted
by the cavity (Keller, Jager, and Morigi, 2017).

4. Lattice models with cavity-mediated long-range interactions

Ultracold atoms loaded into optical lattices are an unprec-
edented resource for the quantum simulation of condensed
matter systems such as the Hubbard model (Lewenstein et al.,
2007; Bloch, Dalibard, and Zwerger, 2008). A prominent
example is the experimental realization of the superfluid-to-
Mott-insulator quantum phase transition (Greiner et al., 2002)
caused by the competition of kinetic and interaction energy.
However, since the dominant interaction in quantum gases is
the collisional interaction, simulating models with long-range
interactions poses a challenge. Adding cavity-mediated long-
range interactions to this setting thus opens the path to access
long-range interacting, extended Hubbard models. If this
additional energy scale competes with the other two, the
phase diagram will feature, besides the superfluid and the
Mott insulating phases, a density-modulated superfluid
phase (the lattice supersolid) and a density-modulated insu-
lating phase (the charge-density wave). Theoretical predic-
tions discussed the resulting phases and phase diagrams
in the case of commensurate and incommensurate lattices
(Larson et al., 2008; Fernández-Vidal et al., 2010; Habibian
et al., 2013; Li, He, and Hofstetter, 2013; Bakhtiari et al.,
2015; Caballero-Benitez and Mekhov, 2015; Chen, Yu, and
Zhai, 2016; Dogra et al., 2016; Himbert et al., 2019; Lin
et al., 2019).

(a)

(b) (c)

FIG. 5. Dicke model phase diagram. (a) The power of the
transverse pump is increased over 10 ms for different values of
the pump-cavity detuning Δc. The recorded mean intracavity
photon number is displayed (intensity scale) as a function of
pump power (and the corresponding pump lattice depth) and
pump-cavity detuning Δc. A sharp phase boundary is observed
over a wide range of values; this boundary is in good agreement
with a theoretical mean-field model (dashed curve). The dis-
persively shifted cavity resonance for the nonorganized atom
cloud is marked by the arrow on the vertical axis. (b),(c) Typical
traces showing the intracavity photon number for different
pump-cavity detunings, as indicated by the symbols. From
Baumann et al., 2010.
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The system is captured in a wide parameter range by the
following extended Bose-Hubbard model:

H ¼ −t
X
he;oi

ðb†ebo þ H:c:Þ þ Us

2

X
i∈e;o

niðni − 1Þ

−
Ul

V

�X
e

ne −
X
o

no

�
2

−
X
i∈e;o

μini: ð16Þ

In Eq. (16) e and o refer to the even or odd lattice sites, bi is
the bosonic annihilation operator at site i, ni ¼ b†i bi counts
the number of atoms on site i, V is the total number of lattice
sites, and μi is the local chemical potential that depends on
the external trapping potential. The first term captures the
tunneling between neighboring sites at rate t. It supports
superfluidity in the system since it favors delocalization of
the atoms within each 2D layer. In contrast, the second term
represents the on-site interaction with strength Us and leads
to a minimization of the energy if the atoms are localized on
the individual lattice sites, favoring a balanced population of
even and odd sites. The third term describes the effective
global-range interactions of strength Ul, mediated by the
cavity, and favors an imbalance between even and odd sites.
The last term leads to an inhomogeneous distribution due to
the trapping potential.
Self-organization in a cavity typically results in a 2D

structuring of the atomic medium. If the cloud is additionally
confined in a lattice along the third direction, it can be
brought into an insulating, density-modulated regime
(Klinder, Keßler, Bakhtiari et al., 2015). An experimental
scheme to implement a setting that in addition features the
aforementioned superfluid-to-Mott-insulator phase transi-
tion, and thus also a transition between nonmodulated and
modulated insulating phases, is shown in Fig. 6(a) (Landig
et al., 2016). A BEC is sliced into 2D systems that are
subsequently exposed to a 2D optical lattice formed from one
on-axis beam pumping the cavity and a standing-wave lattice
perpendicular to the cavity. The latter simultaneously acts as
a transverse pump field inducing cavity-mediated global-
range interactions in the atomic system. The combined
control over the lattice depth V2D and the detuning Δc
allows one to independently tune the ratios of collisional
short-range interaction Us, tunneling t, and global-range
interaction Ul. In the experiment one observes absorption
images of the atomic cloud after ballistic expansion, indicat-
ing whether the atomic system is insulating or superfluid and
the field leaking from the cavity, signifying a homogeneous
or a density-modulated system. Their combination allows the
phase diagram to be determined, as shown in Fig. 6(b), which
features the aforementioned phases.
Of special interest in the context of the global-range

interaction is the first-order phase transition between the
nonmodulated Mott insulating and the density-modulated
charge-density wave phase. A system with only short-range
interactions supports the formation of domain walls due to
additivity. The reduction in energy scales with the volume of
the domain, while the energy cost for the domain wall scales
with its surface area. Fluctuations creating a domain wall
thus grow and lead to a decay of the metastable state

(Dauxois, Latora et al., 2002). This is different in a global-
range interacting system, where nonadditivity makes domain
formation energetically costly: the energy of a domain wall
here is proportional to the system size and not to the surface
area. Accordingly, long-range interactions can stabilize meta-
stable phases, whose lifetime then scales with system size and
diverges in the thermodynamic limit (Antoni and Ruffo, 1995;
Mukamel, Ruffo, and Schreiber, 2005; Campa, Dauxois, and
Ruffo, 2009; Levin et al., 2014; Defenu, 2021).
Quenching the system between these two insulating phases

by changing the strength Ul of the global-range interaction
leads to hysteresis and metastability, which has been observed
in the cavity field measuring the imbalance between even and
odd sites (Hruby et al., 2018). The quench eventually triggers
a switching process that results in a rearranged atomic
distribution and self-consistent potential. The timescale during
which this process takes place is intrinsically determined by
the many-body dynamics of the gas and is continuously
monitored in the experiment. The Mott insulator, in which the
system is initially prepared, forms a wedding-cake structure
consisting of an insulating bulk surrounded by superfluid
shells at the surface. Such an inhomogeneous finite-size
system can exhibit a first-order phase transition of the bulk

FIG. 6. Lattice models with cavity-mediated long-range inter-
actions. (a) Left image: experimental scheme. A stack of 2D
systems along the y axis is exposed to a 2D optical lattice in the x-z
plane (red arrows). Right image: illustration of the three competing
energy scales, tunneling t, short-range collisional interactions Us,
and global-range, cavity-mediated interactions Ul. (b) Measured
phase diagram as a function of detuning Δc between pump field
and cavity and 2D lattice depth V2D, featuring superfluid (SF),
lattice supersolid (SS), charge-density wave (CDW), and Mott
insulating (MI) phases. From Landig et al., 2016.
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material (the Mott insulator) that is triggered by a second-
order phase transition that took place previously on the
system’s surface (Lipowsky and Speth, 1983; Lipowsky,
1987), where the superfluid atoms possess higher mobility
than in the insulating bulk (Hung et al., 2010). Ground-state
phases and quantum relaxation have been calculated for a 1D
lattice in the thermodynamic limit (Blaß et al., 2018).

C. Dipolar and Rydberg systems

The study of modulated and incommensurate phases arising
from the competition between short-range attractive inter-
actions and long-range repulsive ones has been a long-
standing topic in condensed matter physics (Fisher, Pynn,
and Skjeltorp, 1984; Blinc and Levanyuk, 1986). Several
theoretical investigations focused on simplified models, where
the competition was limited to finite-range interaction terms
(Brazovskii, 1975; Swift and Hohenberg, 1977; Fisher and
Selke, 1980). However, the natural occurrence of modulated
phases is due mostly to the repulsive interaction decaying as a
power law of the usual form 1=rα. The most relevant examples
include dipolar (α ¼ 3) and Coulomb (α ¼ 1) interactions.
In the framework of condensed matter experiments, dipolar

interactions are known to produce modulated structures in a
monolayer of polar molecules (Andelman, Broçhard, and
Joanny, 1987), block copolymers (Bates and Fredrickson,
1990), ferrofluids (Cowley and Rosensweig, 1967; Dickstein
et al., 1993), superconducting plates (Faber, 1958), and thin
ferromagnetic films (Saratz et al., 2010). On the other
hand, long-range Coulomb interactions are typical of low-
dimensional electron systems, but experimental results are
limited in this case. Evidences of stripe order have been found
in 2D electron liquids (Borzi et al., 2007), quantum Hall states
(Lilly et al., 1999; Pan et al., 1999), and doped Mott insulators
(Kivelson, Fradkin, and Emery, 1998). In this perspective, the
appearance of stripe order is believed to be an ingredient in
high-temperature superconductivity (Tranquada et al., 1997;
Parker et al., 2010).
The strong relation between traditional investigations in

solid-state systems and cold atomic platforms has emerged
since the long-range nature of the forces between the atoms
has begun to be exploited in experiments. Rydberg gases have
been used to observe and study spatially ordered structures
(Schauß et al., 2012, 2015) and correlated transport (Schempp
et al., 2015). Dipolar spin-exchange interactions with lattice-
confined polar molecules were observed as well (Yan et al.,
2013). Furthermore, dipolar atoms (Lu, Burdick, and Lev,
2012; Park, Will, and Zwierlein, 2015) can open a new
window into the physics of competing long-range and
short-range interactions (Natale et al., 2019), clearing the
path for the comprehension of modulated phases in strongly
interacting quantum systems, as well as to higher-spin physics
dynamics (de Paz et al., 2013; Lepoutre et al., 2019; Gabardos
et al., 2020; Patscheider et al., 2020).
In the following we review basic notions on dipole-dipole

interactions and dipolar gases, as needed for the following
presentation. We then move to Rydberg atoms, focusing
on their interactions and the mapping of their effective
Hamiltonians on spin systems.

1. Dipolar interactions and dipolar gases

In the context of ultracold atoms, several platforms have
been used to study the effect of electric and magnetic dipole-
dipole interactions. A typical example is provided by electric
dipole moments using heteronuclear molecules (Carr et al.,
2009; Moses et al., 2017) or Rydberg atoms in an electric field
(Saffman, Walker, and Mølmer, 2010). We remind that, due to
rotational symmetry, there is no permanent electric dipole
moment in an atom or in a molecule in its nondegenerate
rotational ground state. However, when an external electric
field couples to the electric dipole moment operator, an
electric dipole moment may be induced. A permanent electric
dipole moment in homonuclear molecules can be obtained
with a ground-state atom bound to a second atom electroni-
cally excited to a high-lying Rydberg state (Li et al., 2011).
Another active area of research is provided by the manipu-
lation of heteronuclear molecules, where an electric field
mixes two rotational states within the electronic molecular
ground state. In this way, one can generate ultracold molecular
systems with a large electric dipole moment. Recent progress
in this direction includes the creation of an ultracold gas of
triatomic Na-K molecules from an atomic-diatomic molecule
mixture (Yang et al., 2022) and the magneto-optical trapping
of calcium monohydroxide polyatomic molecules (Vilas et al.,
2022). At variance, neutral atoms can have permanent
magnetic dipole moments even at zero fields, and the effect
of magnetic dipole interactions can be studied under full
rotational symmetry at arbitrarily small magnetic fields.
In general, for two particles denoted by 1 and 2, with

dipole moments along the unit vectors e1 and e2 and having a
relative position is r, the energy due to their dipole-dipole
interaction reads

Udd ¼
Cdd

4π

ðe1 · e2ÞR2 − ðe1 ·RÞðe2 · rÞ
R5

: ð17Þ

The coupling constant Cdd is μ0μ
2 for particles having a

permanent magnetic dipole moment μ (μ0 is the permeability
of vacuum) and d2=ϵ0 for particles having a permanent electric
dipole moment d (ϵ0 is the permittivity of vacuum) (Weber
et al., 2017). A relevant character of the dipolar interaction is
its anisotropy. In fact, the dipole-dipole interaction has the
angular symmetry of the Legendre polynomial of second order
P2ðcos θÞ, i.e., the d wave.
Dipolar gases, particularly dipolar Bose-Einstein conden-

sates, have been studied (Lahaye et al., 2009; Trefzger et al.,
2011; Baranov et al., 2012). The presence on the nonlocal
interaction ∝ =r3 and its anisotropy give rise to a series
of interesting properties that have been theoretically and
experimentally investigated. At the mean-field level, a non-
local Gross-Pitaevskii equation describes the static ground-
state properties, as well as the dynamical effects, such as
the excitation spectrum, and the hydrodynamic behavior.
Solitons, vortices, and the formation of patterns have inten-
sively been studied [see the review by Lahaye et al. (2009)], as
has the role of dipolar interactions in spinor Bose-Einstein
condensates (Kawaguchi and Ueda, 2012; Ueda, 2017). The
energy scale associated with dipolar interactions in alkali
atoms is relatively small, in the hertz range. On the contrary,
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highly magnetic atoms, such as Cr, Er, and Dy, display dipole
moments of six, seven, and ten Bohr magnetons, respectively
(Chomaz et al., 2022). It is customary to define the length as

add ≡ Cddm
12πℏ2

: ð18Þ

Equation (18) plays the role of a dipolar length, giving a
measure of the absolute strength of the dipole-dipole inter-
action. The ratio εdd ≡ add=a of the dipolar length over the
s-wave scattering length a may also be introduced in order to
compare the relative strength of the dipolar and contact
interactions. Thus, εdd often determines the physical proper-
ties of the system. The possibility of having a large dipole
moment allows the exploration of regimes induced by the 1=r3

tail of the interaction (Chomaz et al., 2022).
See the reviews by Lahaye et al. (2009), Trefzger et al.

(2011), Baranov et al. (2012), Böttcher et al. (2020), and
Chomaz et al. (2022) for further details and references on
dipolar gases, and Carr et al. (2009), Gadway and Yan (2016),
Bohn, Rey, and Ye (2017), Moses et al. (2017), Matsuda et al.
(2020), Valtolina et al. (2020), and Bause et al. (2021) for
details on polar molecules. We comment upon dipolar gases
and polar molecules later in the text when discussing
phenomena where the nonlocal, possibly long-range (depend-
ing on the dimension d) tail of the interactions 1=r3 plays a
crucial role. In the remaining part of this section, the focus is
centered on Rydberg atoms due to their recent applications for
the simulation of spin systems with long-range and nonlocal
interactions, which are the focus of this review.

2. Interactions between Rydberg atoms

In this discussion, we review the main mechanisms
leading to the simulation of paradigmatic long-range spin
Hamiltonians with Rydberg atoms in the frozen motion limit.
When one restricts to alkali atoms and denotes by di; i ¼ 1; 2,
the electric dipole moments, the dominant interaction term in
the large r limit is the dipole-dipole interaction (17),

Udd ¼
1

4πϵ0

d1 · d2 − 3ðd1 · nÞðd2 · nÞ
R3

; ð19Þ

with n ¼ r=r. Representing as jαi and Eα the single eigen-
states and eigenergies of each atom, one can compute in
perturbation theory the effect of the perturbation given by
Eq. (19). The unperturbed eigenenergies of the two-atom
states are given by Eα;β ¼ Eα þ Eβ, where for simplicity
the greek letter α describes the set of quantum numbers
ðn; l; j; mjÞ. Depending on the states involved, the relative
energies, and the dipole-dipole interaction strength, one
identifies one of two main regimes: the van der Waals regime
or the resonant dipole-dipole regime. To illustrate the main
difference between the two, we assume that two atoms in the
state jαβi are coupled to a single two-atom state jγδi; see
Fig. 7(a). The reduced Hamiltonian in this two-state basis then
takes the form

Hred ¼
�

0 C̃3=R3

C̃3=R3 −ΔF

�
; ð20Þ

where ΔF ¼ Eγ þ Eδ − Eα − Eβ is the Förster defect, C̃3 is an
effective strength of the dipole-dipole interaction, and R is the
distance between the two atoms. The eigenvalues of Hred are

then ΔE ¼ −ΔF=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

F þ 4ðC̃3=R3Þ2
q

. The van der Waals

regime is recovered if C̃3=R3 ≪ ΔF. The state jαβi is then
only weakly admixed to jγδi. Its energy is perturbed to
ΔE ≈ ð1=ΔFÞðC̃3=R3Þ2 ≡ C̃6=R6. One obtains the scaling
of the van der Waals coefficient with the principal quantum
number n as C̃6 ∝ n11, as verified experimentally in several
cases (Béguin et al., 2013; Weber et al., 2017). More
generally, to properly estimate the van der Waals coefficient,
one has to formally include the contribution of all nonresonant
states, employing second-order perturbation theory to com-
pute the two-atom energy shift as

ΔEαα ¼
X
β;γ

jhααjUddjβγij2
Eαα − Eβγ

; ð21Þ

where the sum extends to all the states that are dipole coupled
to jαi.
In the case where the jαβi is resonant with jγδi, i.e.,

Eαβ ≈ Eγδ, or, equivalently,ΔF ≪ C̃3=R3, the two eigenvalues
of Hred become E� ≈ �C3=R3, and the corresponding eigen-
states are j�i ¼ ðjαβi � jβαiÞ= ffiffiffi

2
p

. This is equivalent to a
resonant flip-flop interaction jαβihγδj þ H:c: In this case the
interaction energy scales as 1=R3 regardless of the distance
between the two atoms (the Förster resonance). In the case of
Rb it is easy to achieve resonance with weak electric fields
(Ravets et al., 2014). The resonant dipole-dipole interaction is
also naturally realized for two atoms in two dipole-coupled
Rydberg states. Moreover, this interaction is anisotropic,
varying as VðθÞ ¼ 1 − 3 cos2ðθÞ, with θ the angle between
the internuclear axis and the quantization axis.
A central concept, essential for both many-body physics

and quantum technology, is the Rydberg blockade (Jaksch
et al., 2000; Lukin et al., 2001; Gaetan et al., 2009; Urban
et al., 2009; Isenhower et al., 2010; Wilk et al., 2010), where
the excitation of two or more atoms to a Rydberg state is
prevented due to the interaction (Browaeys and Lahaye, 2020;
Morgado and Whitlock, 2020). The blockade concept is
illustrated in Fig. 7(b). The strong interactions between atoms
excited to a Rydberg state can be exploited to suppress
the simultaneous excitation of two atoms and to generate
entangled states. Consider a resonant laser field that coher-
ently couples the ground state jgi to a given Rydberg state jri
with a Rabi frequency Ω. In the case of two atoms separated
by a distance R, the doubly excited state jrri is shifted in
energy by the quantity C6=R6 due to the van der Waals
interaction, with C6 the interaction coefficient (all the other
pair states have energy nearly independent of R). Assuming
that the condition ℏΩ ≪ C6=R6 is fulfilled, that is, R ≪ Rb ¼
ðC6=ℏΩÞ1=6 (blockade radius), then, starting at the ground
state jggi, the system performs collective Rabi oscillations
with the state jψi ¼ ðjrgi þ jgriÞ= ffiffiffi

2
p

. These considerations
can be extended to an ensemble of N atoms, all included
within a blockade volume. In this case, at most one Rydberg
excitation is possible, inducing collective Rabi oscillations
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with an enhanced frequency Ωcoll ¼
ffiffiffiffi
N

p
Ω, leading to the

so-called superatom picture, which is illustrated in Fig. 7(c).
The system dynamics is confined to the symmetric subspace
of zero excitations (nr ¼ 0) and one excitation (nr ¼ 1),
whose bases are the Fock states j0i ¼ jg1;…; gNi and the
entangled W state j1i ¼ ð1= ffiffiffiffi

N
p ÞPN

i¼1jg1;…; ri;…; gNi,
where gi and ri label the ith atom in the ground or
Rydberg state (Zeiher et al., 2015).
An important objective is to implement interacting many-

body systems combining atomic motion with tunable long-
range interaction via Rydberg atoms. The main experimental
challenge is to bridge the mismatch in energy and timescales
between the Rydberg excitation and the dynamics of the
ground-state atoms. A possible solution is the so-called
Rydberg dressing, where ground-state atoms are coupled
off resonantly to Rydberg states, leading to effectively weaker
interactions with lower decay rates (Henkel, Nath, and Pohl,
2010; Johnson and Rolston, 2010; Pupillo et al., 2010;
Balewski et al., 2014; Macrì and Pohl, 2014; Jau et al.,
2016). The main difficulty with this approach is that decay and
loss processes of Rydberg atoms have to be controlled on
timescales that are much longer than they are for near-resonant
experiments, and more exotic loss processes become relevant
(Zeiher et al., 2016, 2017; Guardado-Sanchez et al., 2021).
Rydberg dressing also allows one to impose local constraints,
which are at the heart of the implementation of models related
to gauge theories, like the quantum spin ice (Glaetzle et al.,
2014). Other predictions include cluster Luttinger liquids

in 1D, supersolid, and glassy phases; see Sec. IV.E for more
details. It might also be possible to implement a universal
quantum simulator or quantum annealer based on Rydberg
dressing (Lechner, Hauke, and Zoller, 2015; Glaetzle
et al., 2017).

3. Mapping to spin models

The two-atom picture described in Sec. II.C.2 can be
extended to the many-body case. Including the coupling of
single-atom states to an external coherent laser drive, one
obtains in the rotating frame of the laser the Ising Hamiltonian
(Schauß et al., 2012, 2015; Labuhn et al., 2016)

HIsing ¼
ℏΩ
2

X
i

σix −
X
i

ℏΔni þ
X
i<j

C6

R6
ij

ninj; ð22Þ

where ni ¼ jriihrj ¼ ð1þ σizÞ=2 is the projector to the excited
state jri and Δ is the single-atom detuning from the Rydberg
state jri. Discussions with references on the simulation of
quantum Ising models in a transverse field were given by
Schauss (2018) and Morgado and Whitlock (2020). See
Lewenstein et al. (2007) and Trefzger et al. (2011) for
references on effective interacting lattice models obtained
for dipolar gases in optical lattices at low energy.
The realization of the Ising Hamiltonian in Rydberg atom

quantum simulators led to the observation of many interesting
effects, from the Kibble-Zurek mechanism and its related

(a)

(d)

(b) (c)

FIG. 7. Long-range interactions in systems of Rydberg atoms for many-body dynamics. (a) Illustration of the interaction between pairs
of atoms excited to Rydberg states. Shown are the relevant dipole-coupled pair states labeled by quantum numbers α; β;… with the
Förster defectΔF relative to the pair states jαβi and jγδi. (b) Principle of the Rydberg blockade. For two nearby atoms, the van der Waals
interaction ∝ C6=R6 (R is the interatomic distance) shifts the doubly excited state jrri preventing the double excitation of the atomic pair
when R < Rb ¼ ðC6=ℏΩÞ1=6. (c) Illustration of a superatom from the collective blockaded lattice of N atoms. Shown is a Bloch sphere
with its basis states (labeled by excitation numbers ne) and coupled states highlighted [south pole (ne ¼ 0) and singly excited state
(ne ¼ 1), represented by the shaded (red) plane]. The small pictograms above and below the sphere depict the lattice system with atoms
in the ground (below, in red) and Rydberg states (above, in blue). The dashed (red) line indicates an enlargement into the subspace
spanned by the lowest two states. The Husimi distribution of these states and their enhanced couplingΩN is shown in the center. Adapted
from Zeiher et al., 2015. (d) The first row displays the experimental image of the initial state of a Rydberg atom array. The following
rows represent the atom array after a slow sweep across the phase transition, showing larger average sizes of correlated domains for the
slower sweep. The green spots (open circles) represent atoms in the ground (Rydberg) state. The blue rectangles mark the position of
domain walls. Courtesy of A. Omran.
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critical dynamics [see Fig. 7(d)] (Keesling et al., 2019) to
antiferromagnetic phases (Guardado-Sanchez et al., 2018;
Lienhard et al., 2018; Scholl et al., 2020; Ebadi et al., 2021),
quantum spin liquids (Samajdar et al., 2021; Semeghini et al.,
2021; Verresen, Lukin, and Vishwanath, 2021), and the
quantum critical dynamics of a 2D Ising quantum phase
transition (Ebadi et al., 2021). The trapping and manipulation
of Rydberg atoms in optical tweezers with defect-free con-
figurations has played a major role in this perspective
(Barredo et al., 2016; Endres et al., 2016; Anderegg et al.,
2019; Covey et al., 2019; Ohl de Mello et al., 2019; Bohrdt
et al., 2020; Y. Wang et al., 2020; Festa et al., 2021; Schymik
et al., 2021).
Rydberg dressing provides an alternative way to implement

quantum Ising models with important implications beyond
quantum simulation. Two internal ground states are used to
encode spin-up and spin-down states in the dressing protocol.
Coherent many-body dynamics of Ising quantum magnets
built up by Rydberg dressing are experimentally studied both
in an optical lattice and in an atomic ensemble. An illustration
of the Ising dynamics in a finite-range model is presented in
Fig. 8, where we show the trajectories of the collective spin
from Borish et al. (2020). An important application of this
Hamiltonian is to study the Loschmidt echo protocol applied
to the LMG one-axis twisting model for quantum metrology
purposes (Gil et al., 2014), for instance, for the preparation of
non-Gaussian states that can be detected via the quantum
Fisher information (Macrì, Smerzi, and Pezzè, 2016; Borish
et al., 2020). Rydberg dressing of atoms in optical tweezers
can also be employed for the realization of programmable
quantum sensors based on variational quantum algorithms,
which are capable of producing entangled states on demand
for precision metrology (Kaubruegger et al., 2019). This
investigation is not limited to Rydberg atoms, as it also
extends naturally to ion platforms (Davis, Bentsen, and
Schleier-Smith, 2016; Morong et al., 2021).
A special case of the quantum Ising model arises when

alatt < Rc < 2alatt, with alatt the lattice spacing (nearest-
neighbor blockade) and Vij ≈ 0 for everything beyond nearest
neighbors. This situation was experimentally realized in a 1D
chain of Rydberg atoms by Bernien et al. (2017) and
Bluvstein et al. (2021). In this case one can derive an effective
Hamiltonian for the low-energy subspace, which amounts to
neglecting configurations with two adjacent excitations. In
one dimension the resulting Hamiltonian takes the form of a
PXP model

H ¼
X
i

Ωi

2
Pi−1σ

i
xPi; ð23Þ

where Pi ¼ jgihgj is the projector onto the ground state.
Resonant dipole-dipole interactions between Rydberg

atoms are at the basis of several proposals to simulate the
quantum dynamics of many-body spin systems. As an
example, it is possible to see that a system containing two
dipole-coupled Rydberg states can be mapped to a spin-1=2
XY model; see the review by Wu et al. (2021) and references
therein. Coherent excitation transfer between two types of
Rydberg states of different atoms has been observed in a

three-atom system (Barredo et al., 2015). The resulting long-
range XY interactions give rise to many-body relaxation
(Piñeiro Orioli et al., 2018).
Given the well-known mapping between the XY model

and hard-core bosons (Friedberg, Lee, and Ren, 1993), it is

(a)

(c)

(e)

(d)

(b)
atoms

FIG. 8. Finite-range interactions in spin systems: dynamics and
applications. (a) An experimental setup and Rydberg dressing
scheme for a cloud of Cs atoms is held in an optical dipole trap and
locally illuminated with 319 nm light to generate Ising interactions
of a characteristic range rc and strength J0. The quantization axis is
set by a 1 G magnetic field B. (b) Energy level diagrams for a pair
of atoms. (c) Transverse-field Ising dynamics. Trajectories for
initial states jθ;ϕi (square data points) and up to four Floquet
cycles were obtained with dressing parameters ðΩ;ΔÞ ¼ 2π ×
ð2.8; 25Þ MHz. (i)–(iv) Λeff ¼ 0; 1.2ð2Þ; 1.8ð3Þ; 2.7ð4Þ, respec-
tively. The blue flow lines show mean-field theory for best fit
Λ ¼ 0; 1.1; 1.5; 2.2; see the main text. (a)–(c) Adapted from
Borish et al., 2020. (d) Loschmidt echo protocol applied to the
LMG one-axis twisting model, with a snapshot of the Husimi
distribution. Top image: a spin-polarized state is prepared at the
north pole of the Bloch sphere. Center image: the interaction is
switched on for a time t1 (transformation U1). The state is then
rotated of an angle θ [RyðθÞ]. Bottom image: the interaction is
switched on again for a time t2 (transformation U2) such that
U1U2 ¼ 1. In these plots θ=π ¼ 0.01 and τ=π ¼ 0.05. (e) Prob-
ability P0ðθÞ (solid line) as a function of phase shift and as a
function of θ for τ=π ¼ 0.05. The dashed line is the second-order
expansion involving the quantum Fisher information FQ. Here
N ¼ 101. (d),(e) Adapted from Macrì, Smerzi, and Pezzè, 2016.
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possible to provide an experimental realization of the bosonic
Su-Schrieffer-Heeger model (Su, Schrieffer, and Heeger,
1979) and its symmetry-protected topological order with a
single-particle edge state (de Léséleuc et al., 2019; Lienhard
et al., 2020); see also Kanungo et al. (2021). Proposals to
observe topological bands (Peter et al., 2015) and topologi-
cally protected edge states (Weber et al., 2018) have been
presented. Moreover, a realization of a density-dependent
Peierls phase in a spin-orbit-coupled Rydberg system was
recently demostrated (Lienhard et al., 2020).
We finally mention that with Rydberg systems one could

implement digital simulation techniques (Georgescu, Ashhab,
and Nori, 2014). The total unitary evolution operator UðtÞ is
decomposed into discrete unitary gates (Weimer et al., 2010,
2011), and one can study a broad class of dynamical regimes
of spin systems, such as nonequilibrium phase transitions
and nonunitary conditional interactions in quantum cellular
automata (Lesanovsky, Macieszczak, and Garrahan, 2019;
Gillman, Carollo, and Lesanovsky, 2020; Wintermantel et al.,
2020). Kinetically constrained Rydberg spin systems in which
a chain of several traps has each loaded with a single Rydberg
atom and coupled with the bosonic operators expressing the
deviation from the trap centers, also referred to as facilitated
Ryberg lattices, have also been studied (Mazza, Schmidt, and
Lesanovsky, 2020).
A promising further line of research is provided by Rydberg

ions both for quantum simulation purposes (Müller et al.,
2008; Gambetta et al., 2020) and for the realization of fast
quantum gates for quantum information processing (Müller
et al., 2008; Mokhberi et al., 2020). Two-dimensional ion
crystals for quantum simulations of spin-spin interactions
using interactions of Rydberg excited ions were proposed by
Nath et al. (2015) to emulate topological quantum spin liquids
using the spin-spin interactions between ions in hexagonal
plaquettes in a 2D ion crystal. The role of a Rydberg ion is to
modify the phonon mode spectrum in order to realize the
constrained dynamics of the Balents-Fisher-Girvin model on
the kagome lattice. There the effective spin-spin interaction
for the hexagonal plaquette can be written as an extended
XXZ model

Hσσ ¼
X
i<j

Jzijσ
z
iσ

z
j þ

X
i<j

J⊥ijðσxi σxj þ σyi σ
y
jÞ: ð24Þ

Long-range XXZ Hamiltonians with tunable anisotropies can
be Floquet engineered using resonant dipole-dipole inter-
actions between Rydberg atoms and a periodic external
microwave field coupling the internal spin states (Geier et al.,
2021; Scholl et al., 2021).
Note that in a realistic Rydberg atom system coherent

driving offered by external fields often competes with dis-
sipation induced by coupling with the environment. Such a
controllable driven-dissipative system with strong and non-
local Rydberg-Rydberg interactions can be used to simulate
many-body phenomena distinct from their fully coherent
counterparts. Evolution of such an open many-body system
is often governed by the master equation ∂tρ ¼ −i½H; ρ� þ Lρ,
where ρ is the state of the system, H is the system
Hamiltonian, and L is the Liouvillian superoperator
(Gardiner and Zoller, 2004; Benatti and Floreanini, 2005;

Manzano, 2020). Correspondingly, several aspects of driven-
dissipative dynamics in Rydberg systems and dissipative
Rydberg media were addressed (Lesanovsky and Garrahan,
2013; Lee, Cho, and Choi, 2015; Goldschmidt et al., 2016;
Levi, Gutiérrez, and Lesanovsky, 2016; Letscher et al., 2017;
Lee et al., 2019; Torlai et al., 2019; Bienias et al., 2020;
Pistorius, Kazemi, and Weimer, 2020; Lourenço et al., 2021).

III. THERMAL CRITICAL BEHAVIOR

Phase transitions are among the most noteworthy phenom-
ena occurring in many-body systems. Among various kinds of
phase transitions, continuous phase transitions are particularly
interesting since they are tightly bound with the concept of
universality. Thanks to the universality phenomenon, the same
formalism can be applied to phase transitions occurring both
at a finite temperature and at T ¼ 0. The latter are usually
denoted as quantum phase transitions (Sachdev, 1999). The
intense efforts of the scientific community have paid their
rewards, and the critical properties of several physical systems
have been characterized (Pelissetto and Vicari, 2002).
Usually, universality is defined as the insensitivity of the

critical scaling behavior of thermodynamic functions with
respect to variations of certain microscopic details of the
system under study, such as the lattice configurations or the
precise shape of the couplings. This definition alone cannot
be considered rigorous unless one specifies all the possible
adjustments of the microscopic features that preserve univer-
sality. In the following, we reserve the adjective “universal” for
all those phenomena that may be quantitatively described by a
suitable continuous formulation. Therefore, in our language the
concept of universality is strictly tied to the existence of a
continuous field theory formulation, which, albeit ignoring the
microscopic details of the lattice description, can produce an
exact estimate for the universal quantities.
The quantum critical behavior of local models in dimension

d at T ¼ 0 can often be related to their critical scaling at finite
temperature T, but in a dimension dþ 1 (Sondhi et al., 1997;
Sachdev, 1999), with a typical example being the nearest-
neighbor quantum Ising model in a transverse field (at T ¼ 0)
and the short-range classical Ising model at finite temperature
(Mussardo, 2009). The situation changes for long-range
models, and for this reason we review in this section the
basic properties of equilibrium critical long-range systems at
finite temperature and compare them in Sec. IV to the
corresponding properties at zero temperature.
The prototypical playground for the study of universal

properties at finite temperature are the classical OðN Þ spin
systems, whose Hamiltonian reads

H ¼ −1
2

X
i≠j

JijSi · Sj; ð25Þ

where Si is an N -component spin vector with unit modulus,
Jij > 0 are ferromagnetic translational invariant couplings and
the indices i and j run over all sites on any d-dimensional
regular lattice of V sites. The usual terminology is thatN ¼ 1

is the Ising model, N ¼ 2 is the XY model, N ¼ 3 is the
Heisenberg model, and N → ∞ is the spherical model
(Stanley, 1968). It is well known (Mussardo, 2009;
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Nishimori and Ortiz, 2015) that for N ≥ 1 and d > 2 the
Hamiltonian in Eq. (25) and fast enough decaying couplings
(i.e., in the short-range limit) presents a finite-temperature
phase transition between a low-temperature state T < Tc
with finite magnetization m ¼ jhPiSiij=N ≠ 0 and a high-
temperature phase with m ¼ 0. For N ¼ 1, the phase tran-
sition also occurs for d ¼ 2 (Mussardo, 2009; Nishimori and
Ortiz, 2015).
Close to the critical point the thermodynamic quantities

display power-law behavior as a function of the reduced
temperature τ≡ ðT − TcÞ=Tc, with universal critical expo-
nents that depend only on the symmetry index N and the
dimension d of the system. These critical exponents coincide
with the ones of the OðN Þ-symmetric field theory with the
action

S½φ� ¼
Z

ddxf∂νφi∂νφi þ μjφj2 þ gjφj4g; ð26Þ

where φ is an N -component vector with an unconstrained
modulus, the lattice summation has been replaced by a real-
space integration, ν ¼ 1;…; d runs over the spatial dimen-
sions, i ¼ 1;…;N refers to the different components, the
quadratic coupling controls the distance from the critical point
(μ ∝ τ), the value of the constant coupling is g > 0, and the
summation over repeated indices is intended.
An extensive amount of theoretical investigations has been

performed on the critical properties of OðN Þ-symmetric
models, in both their continuous and lattice formulations,
reaching an unmatched accuracy in the determination of
universal properties with a fair degree of consistency in the
entire dimension range 2 ≤ d ≤ 4 (Holovatch and Shpot,
1992; Kleinert, 2001; Pelissetto and Vicari, 2002; Codello,
Defenu, and D’Odorico, 2015; Cappelli, Maffi, and Okuda,
2019). Numerical simulations, which are limited to integer-
dimensional cases d ∈ N, are mostly consistent with theo-
retical investigations (Pelissetto and Vicari, 2002), while
the recently emerging conformal bootstrap results confirmed
and extended the existing picture (Poland, Rychkov, and
Vichi, 2019).

A. The weak long-range regime

Having introduced the formalism and notation for univer-
sality problems, we can start with the case of interest of long-
range OðN Þ spin systems, i.e., the Hamiltonian in Eq. (25)
with Jij ¼ J=rdþσ

ij , where rij is the distance between sites i
and j, a coupling constant J > 0, and a positive decay
exponent dþ σ ≥ 0. The Fourier transform of the matrix
Jij produces a long-wavelength mean-field propagator of the
form Gmf ∼ Jσqσ þ J2q2, setting the mean-field threshold for
the relevance of long-range interactions to σmf� ¼ 2 (Fisher,
Ma, and Nickel, 1972).
The renormalization group (RG) approach (Wegner and

Houghton, 1973; Polchinski, 1984) can provide a compre-
hensive picture for the universal properties of long-range
OðN Þ models. In the so-called functional RG (FRG) one
writes an, in principle, exact equation for the flow of the
effective average action Γk of the model and then resort to

various approximation schemes (Wetterich, 1993; Berges,
Tetradis, and Wetterich, 2002; Delamotte, 2012). The Γk is
obtained by the introduction of a momentum space regulator
RkðqÞ, which cuts off the infrared divergences caused by slow
modes q ≪ k, while the high-momentum model q ≫ k is left
almost untouched. The problem of weak long-range inter-
actions in the continuous space could be then represented by
the scale-dependent action

Γk½φ� ¼
Z

ddxfZk∂
σ=2
ν φi∂

σ=2
ν φi þ UkðρÞg; ð27Þ

where ρ ¼ ð1=2Þφiφi and the index i ¼ 1;…;N is summed
over as in Eq. (26).
The ansatz in Eq. (27) is already sufficient to qualitatively

clarify the influence of long-range interactions on the uni-
versal properties. Indeed, the difference between the bare
action (26) and the effective action (27) is limited to the

presence of the fractional derivative ∂σ=2μ into the kinetic term
instead of the traditional ∇2 term. The definition of the
fractional derivative in the infinite volume limit (Pozrikidis,
2016; Kwaśnicki, 2017) leads to the straightforward result in
which its Fourier transform yields a fractional momentum
term qσ . The renormalization of the anomalous kinetic term qσ

is parametrized in Eq. (27) by a running wave-function
renormalization Zk, as is customarily done in the short-range
case (Dupuis et al., 2020).
The actual subtlety of the weak long-range universality

resides in the competition between the analytic momentum
term q2 and the anomalous one qσ arising due to the long-
range interaction. This effect cannot be properly reproduced
by the ansatz in Eq. (27), which includes only the most
relevant momentum term at the canonical level in the low-
energy behavior of long-range OðN Þ models. Yet, Eq. (27) is
revealed to be a useful approximation to recover and extend
the mean-field description of the problem at least in the
limit σ ≪ 2, where the nonanalytic momentum term is the
leading one.
Close to the transition, the correlation length of the

system, which controls the spatial extent of the correlations
hφðxÞφð0Þi ≈ expðjxj=ξÞ=xd−2, diverges as ξ ∝ τ−ν. Thus, the
diverging critical fluctuations produce an anomalous scaling
of the correlation functions via the presence of a finite
anomalous dimension η. The standard definition used for
short-range models (Nishimori and Ortiz, 2015) is

hφðxÞφð0Þi ≈ 1

jxjd−2þη : ð28Þ

Conventionally, we refer to a correlated universality when
η ≠ 0 and anomalous scaling appears. If one refers to the
definition (28) of the decay of correlation functions in short-
range systems, then the anomalous dimension of the long-
range model is already finite at the mean-field level, giving
ηlr ¼ 2 − σ, due to the contributions of the power-law cou-
plings to the scaling of the correlations (here and in the
following the subscripts lr and sr stand for long- and short-
range, respectively). However, to have a proper account of
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correlation effects, it is convenient to redefine the anomalous
dimension ηlr of the long-range OðN Þ models as follows:

ηlrðd; σÞ≡ 2 − σ þ δη; ð29Þ

with respect to the canonical dimension of the long-range
terms, which is in agreement with the definition in the classic
paper by Fisher, Ma, and Nickel (1972).
Therefore, the low-momentum scaling of the critical propa-

gator becomes GðqÞ−1 ≈ qσ−δη. Within the RG formalism the
correction δη is expected to appear as a divergence of the
wave-function renormalization, which signals the rise of a
modified scaling. Yet, the β function of the wave-function
renormalization for the fractional momentum term identically
vanishes (k∂kZk ¼ 0) for any d and σ, at least in the
approximation parametrized by Eq. (27). Therefore, the
correlated correction for long-range interactions vanishes,

δη ¼ 0. ð30Þ

This result was first obtained by J. Sak in 1973 (Sak, 1973).
The flow of the effective potential remains the only nontrivial
RG evolution for the ansatz in Eq. (27).
Like the wave-function flow, the RG evolution of the

effective potential UkðρÞ has been obtained following the
traditional derivative expansion approach of the FRG
(Delamotte, 2012) by introducing a suitable regulator function
RkðqÞ ¼ Zkðkσ − qσÞθðkσ − qσÞ. The resulting β function for
the effective potential reads

∂tUk ¼ −dŪkðρ̄Þ þ ðd − σÞρ̄Ū0
kðρ̄Þ þ

σ

2
cdðN − 1Þ 1

1þ Ū0
kðρ̄Þ

þ σ

2
cd

1

1þ Ū0
kðρ̄Þ þ 2ρ̄Ū00

kðρ̄Þ
; ð31Þ

with c−1d ¼ ð4πÞd=2Γðd=2þ 1Þ. As usual in RG calculations,
we set t ¼ logðk=ΛUVÞ as the RG time, with ΛUV the ultra-
violet scale, typically ∼1=alatt. In Eq. (31) rescaled units are
also used: ρ̄ ¼ Zkkσ−dρ and Ukðρ̄Þ ¼ k−dUkðρÞ.

1. Competing momentum contributions

The determination of the threshold decay exponent σ�
represents one of the most interesting questions in the study
of weak long-range universality. Its value is the result of a
subtle interplay between different momentum terms in the
critical propagator and of their contribution to the universal
behavior. In particular, the question concerns the renormal-
ization of the long-range pσ term and its effect on the p2 one.
The first answer to this question was given by Fisher, Ma,

and Nickel (1972), who took a second-order ε-expansion
approach. This analysis suggested that the mean-field result
η ¼ 2 − σ holds at all orders in perturbation theory with
respect to the parameter ε ¼ 2σ − d, a result later extended by
Honkonen (1990). The conclusion of this study implied a
discontinuity of the anomalous dimension η as a function
of the parameter σ when σ reaches σ� ¼ 2, the mean-field
prediction for σ� (Fisher, Ma, and Nickel, 1972). The
discontinuity issue was later solved with the inclusion of

both nonanalytic pσ and analytic p2 terms in the propagator;
see Sak (1973), which confirmed the result η ¼ 2 − σ but
found a different threshold value

σ� ¼ 2 − ηsr:

Most Monte Carlo (MC) investigations featuring speci-
fic algorithms for long-range interactions (Luijten and
Blöte, 1997; Fukui and Todo, 2009; Gori et al., 2017) appear
to be in agreement with Sak’s scenario (σ� ¼ 2 − η) (Luijten
and Blöte, 2002; Angelini, Parisi, and Ricci-Tersenghi,
2014; Gori et al., 2017; Horita, Suwa, and Todo, 2017).
Nevertheless, in recent times several different theoretical
pictures have been compatible with the σ� ¼ 2 result
(Suzuki, 1973; Yamazaki, 1977; van Enter, 1982; Picco,
2012; Blanchard, Picco, and Rajabpour, 2013; Grassberger,
2013). Recently conformal bootstrap results (Behan et al.,
2017) confirmed Sak’s scenario and, albeit not giving numeri-
cal estimates for the long-range critical exponents, furnished a
rigorous framework for its understanding. A detailed study of
RG fixed points in a model of symplectic fermions with a
nonlocal long-range kinetic term was reported by Giuliani,
Mastropietro, and Rychkov (2021).
In the framework of the FRG approach, the absence of the

analytic term in Eq. (27) makes the aforementioned approxi-
mation unsuitable to properly investigate the σ ≃ σ� regime,
where the momentum term interplay is crucial. A more
complete parametrization that accounts for the leading and
first subleading term in the expansion of the mean-field
propagator was introduced by Defenu, Trombettoni, and
Codello (2015).
The flow equations obtained by Defenu, Trombettoni, and

Codello (2015) yield the following picture: when a fixed point
can emerge for nonvanishing long-range coupling Jσ ≠ 0, this
implies that η ¼ 2 − σ. Therefore, the fixed point value for
the long-range coupling J�σ has to be such that the short-
range momentum term in the propagator is renormalized
with η ¼ 2 − σ. This solution is possible only for
d=2 < σ < 2 − ηsr, which is consistent with Sak’s scenario,
where η ¼ 2 − σ. Therefore, while at the short-range fixed
point the long-range coupling vanishes (Jσ ¼ 0), with the
long-range one the short-range momentum term does not
vanish, but its scaling dimension is increased to match that of
the long-range terms. This complex structure demonstrates
that the effective dimension approach described for the long-
range spherical model by Joyce (1966) (i.e., that the critical
properties of a long-range system are the same as those of the
corresponding short-range model, but in a higher dimension)
apparently does not hold in the interacting case, as the critical
propagator of the long-range universality class features a
multiple power-law structure, already noticed in MC simu-
lations (Angelini, Parisi, and Ricci-Tersenghi, 2014), that is
absent in the short-range case; see also the discussions by
Defenu, Trombettoni, and Codello (2015) and Defenu,
Trombettoni, and Ruffo (2016, 2017).
The final summary for the universality picture for weak

long-range ferromagnetic interactions is the following:
• For σ ≤ d=2 the mean-field approximation correctly
describes the universal behavior.
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• For σ greater than the threshold value σ� ¼ 2 − ηsr the
model has the same critical exponents as the short-range
model (the local, short-range model is strictly defined as
the limit σ → ∞).

• For d=2 < σ ≤ σ� the system exhibits peculiar long-
range critical exponents, which may be approximated by
those of the short-range model in the effective fractional
dimension4 deff ¼ ð2 − ηsrÞd=σ.

These results, albeit obtained in the approximated frame-
work of the derivative expansion [see Defenu, Trombettoni,
and Codello (2015)], also appear to hold for the full theory and
it is fair to say that the result η ¼ 2 − σ has now been
confirmed with multiple techniques (Defenu, Trombettoni,
and Codello, 2015; Behan et al., 2017; Gori et al., 2017;
Horita, Suwa, and Todo, 2017). In the FRG context, the
validity of Sak’s scenario has also been confirmed for long-
range disordered systems (Balog, Tarjus, and Tissier, 2014).
The approximate nature of the effective dimension

approach described by Defenu, Trombettoni, and Codello
(2015) will not hinder its adoption to compute numerical
estimates for the critical exponents. Indeed, the actual cor-
rection, rising from analytical contributions to the critical
propagator, appears to be rather small, and the application of
the effective dimension approach produced rather accurate
theoretical benchmarks for MC data, in both the long-range
Ising and percolation models; see Fig. 9.

2. Berezinskii-Kosterlitz-Thouless scaling

For short-range interacting models with continuous sym-
metry, the occurrence of spontaneous symmetry breaking
(SSB) in d ¼ 2 is forbidden by the Mermin-Wagner theorem
(Mermin and Wagner, 1966; Hohenberg, 1967). Yet, the
inclusion of long-range interactions with 0 < σ < σ� modifies
the scaling dimension of operators, also allowing SSB in low
dimensions. The effect of such altered scaling is summarized
by the effective dimension approach, which consists in the
possibility for a long-range interacting system in d dimensions
to reproduce, at least approximately, the scaling of any
deff -dimensional short-range system with deff ∈ ½d;∞�.
Given these considerations, it is not difficult to genera-

lize the results of the Mermin-Wagner theorem to long-
range interactions (Bruno, 2001), leading to the vanishing
of the inverse correlation length exponent in the σ → 2

limit for N ≥ 2; see Fig. 10. For d ¼ N ¼ σ ¼ 2 the tradi-
tional picture for short-range models is recovered and
the Berezinskii-Kosterlitz-Thouless (BKT) scenario occurs
(Kosterlitz and Thouless, 1973; Kosterlitz, 1974; José, 2013).
BKT scaling is a characteristic of two-dimensional systems

ranging from condensed matter (Nelson and Kosterlitz, 1977;
Yong et al., 2013) and cold atoms (Hadzibabic et al., 2006;
Murthy et al., 2015) to network theory (Dorogovtsev, Goltsev,
and Mendes, 2008) and biology (Nisoli and Bishop, 2014). Its
prototypical realization is certainly the XY model, where its
properties have been well characterized (Gupta et al., 1988;
Gupta and Baillie, 1992; Hasenbusch, Marcu, and Pinn, 1992)

and its relation to topological excitations first discovered
(Kosterlitz, 2017).
Yet, the first theoretical indications of this topological phase

transition occurred in long-range interacting classical systems
(Thouless, 1969). In particular, the Coulomb gas problem and

FIG. 9. Inverse correlation length exponent of long-range
interactions. The results obtained from MC simulations for 1D
long-range percolation are compared to the results of the effective
dimension approach. The MC data of Gori et al. (2017) (empty
blue circles) are compared to the results obtained using an
effective dimension and the ε-expansion result (black dashed
line) for the short-range model (Gracey, 2015). The low accuracy
of the analytical result in the σ → 1 limit is due to the appearance
of BKT scaling (Cardy, 1981), which cannot be captured by the ε
expansion. Inset: MC simulations for the long-range Ising model
in d ¼ 2 given by Luijten and Blöte (1997) and Angelini, Parisi,
and Ricci-Tersenghi (2014) (blue diamonds and red squares,
respectively). The black circles were obtained by mapping the
conformal bootstrap results for the short-range critical exponents
(El-Showk et al., 2014) via the effective dimension approach
described by Defenu, Trombettoni, and Codello (2015). The axis
labels of the inset coincide with main axis labels.

FIG. 10. Classical correlation length exponent. The correlation
length exponent 1=νlr is given as a function of σ in d ¼ 2 for several
values ofN (from top,N ¼ 1; 2; 3; 4; 5; 10; 100). The discrepancy
between the N ¼ 1 and the N ≥ 2 cases is in agreement with the
expectations of theMermin-Wagner theorem. The black dashed line
is the analytical result obtained for the spherical model N ¼ ∞
(Joyce, 1966). Adapted from Defenu, Trombettoni, and Codello,
2015, where the FRG calculation of the critical exponent νlr was
discussed.

4At the mean-field threshold the anomalous dimension vanishes
(ηsr ¼ 0) and, posing deff equal to the upper critical dimension
(deff ¼ 4), one obtains the mean-field threshold σmf ¼ d=2.
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the Ising model with d ¼ σ ¼ 1 were known to display an
infinite-order transition akin to the BKT mechanism before its
traditional formulation (Anderson and Yuval, 1969;
Anderson, Yuval, and Hamann, 1970). This fact is not
surprising, since for d ¼ σ ¼ 1 the scaling dimension of
the operators is consistent with that of the short-range
interactions in d ¼ 2. Understanding in detail the difference
between the number of degrees of freedom in the traditional
short-range BKT scaling with d ¼ N ¼ 2 and the long-range
one occurring for d ¼ N ¼ σ ¼ 1 is a more complicated and
possibly open task, but it may be related to the irrelevance of
amplitude fluctuations in d ¼ 2 (Defenu et al., 2017;
Jakubczyk and Metzner, 2017; Krieg and Kopietz, 2017).
Note that long-range BKT scaling occurring in d ¼ σ ¼ 1
occurs not only in the Ising model but also in long-range
percolation and Potts models (Cardy, 1981; Gori et al., 2017).
Despite this long-lasting relation between BKT scaling and

long-range interactions, the influence of power-law couplings
on topological scaling has been the subject of a limited amount
of research thus far. Indeed, the applicability of the aforemen-
tioned threshold value σ� ¼ 2 − ηsr to BKT scaling seems
questionable since the anomalous dimension of two-point
correlations in d ¼ N ¼ 2 originates not from critical fluctua-
tions but from long-wavelength phase fluctuations, which
disrupt the zero-temperature magnetization. Long-range inter-
actions with σ < 2 can be mathematically proven to stabilize
spontaneous magnetization at finite temperature in the 2D XY
model (Kunz and Pfister, 1976), thus implicitly suggesting that
σ� ¼ 2. On the other hand, early results concerning the XY
model on diluted Lévy graphs (Berganza and Leuzzi, 2013),
which has been conjectured to lie in the same universality
class of the long-range XY model, appeared to be consistent
with σ� ¼ 7=4. However, these results have been challenged
(Cescatti et al., 2019). Moreover, self-consistent harmonic
approximation results give an upper bound for σ� equal to 2
(Giachetti et al., 2021b). No MC results for the 2D XY model
with nondisordered power-law long-range couplings around
σ ¼ 2 are available, to our knowledge.5

Extending the RG approach first employed by Kosterlitz
(1974), Giachetti et al. (2021a) proposed a scenario of the
complex phase diagram of the d ¼ 2 long-range XY model,
which features a novel transition between a low-temperature
magnetized state (T < T�) and an intermediate temperature
state with topological scaling (T� < T < Tc) that disappears
at higher temperatures (T > Tc). This unexpected transition
occurs only for 2 − 1=4 ¼ 7=4 < σ < 2, while for σ ≥ 2 one
has only two phases separated by a BKT transition, as in the
short-range 2D XY model. These results were also applied to
XXZ chains by Giachetti, Trombettoni et al. (2022), whose
results are in agreement with those of Maghrebi, Gong, and
Gorshkov (2017), as further discussed in Sec. IV.C.
Thus, the introduction of long-range interaction patterns in

systems with Uð1Þ symmetry in d ¼ 2 generates exotic critical
features, which have no counterpart in the traditional univer-
sality classification (Raju et al., 2019). This is not surprising,
since the interplay between Uð1Þ systems and complex
interaction patterns is known to generate peculiar critical

behavior as in the anisotropic 3D XY model (Shenoy and
Chattopadhyay, 1995), coupled XY planes (Bighin et al., 2019),
2D systems with anisotropic dipolar interactions (Maier and
Schwabl, 2004; Vasiliev et al., 2014) or four-body interactions
(Antenucci, Ibáñez Berganza, and Leuzzi, 2015), and high-
dimensional systems with Lifshitz criticality (Jacobs and Savit,
1983; Defenu, Trombettoni, and Zappalà, 2021).

B. Strong long-range regime

1. Ensemble inequivalence

The traditional universality problem concerns the numerical
characterization of universal quantities in the strongly corre-
lated regime, where long-range collective correlations are
relevant and mean-field approximations, as well as other
perturbative techniques, cannot in general be trusted. Such
questions have no actual application to the case of long-range
interactions with σ < 0, i.e., α < d, since the divergent
interaction strength stabilizes the mean-field solution of the
problem and the Gaussian theory also reproduces the universal
features at the critical point.
Nevertheless, several interesting effects arise due to strong

long-range interactions in the thermodynamic behavior of
statistical mechanics models. These effects may be loosely
regarded as universal since they appear regardless of the
particular model considered, as well as regardless of the
introduction of any finite-range couplings, and they may be
often characterized starting with a continuous description
(Antoniazzi et al., 2007; Bachelard et al., 2011).
At equilibrium, the most striking feature of systems in the

strong long-range regime is probably ensemble inequivalence,
i.e., the appearance of substantial differences in the phase
diagram of strong long-range systems depending on the
application of the microcanonical or the canonical thermody-
namic descriptions (Barré, Mukamel, and Ruffo, 2001). This
property has been extensively revised in several review articles
and books on the physics of classical long-range systems
(Dauxois, Ruffo et al., 2002; Campa, Dauxois, and Ruffo,
2009; Campa et al., 2014) and there is no need to discuss it
further here. For the following discussion, we simply mention
the existence of two diverse issues of ensemble inequivalence.
The first example of ensemble inequivalence is found in

systems with long-range attractive or antiferromagnetic inter-
actions, which feature a two-phase coexistence state. These
coexistence states are usually connected with a “dip” or a
“convex intruder” in an otherwise concave entropy, possibly
leading to a negative specific heat. The phase boundary
associated with such coexistence states carries an infinite
entropy cost that makes them unstable in the canonical
ensemble. On the other hand, in the microcanonical descrip-
tion such entropy cost is not relevant, and these equilibrium
states may be realized by tuning the energy (Lynden-Bell,
1999; Ispolatov and Cohen, 2001; Dauxois, Latora et al.,
2002). The same phenomenon is observed on sparse random
graphs, where the condition of a negligible surface in the
thermodynamic limit is violated (Barré and Gonçalves, 2007).
The second example of ensemble inequivalence is conven-

tionally found in long-range systems with a two-parameter-
dependent free energy Sðε; λÞ, which present a line of5See also the recent results of Sbierski et al. (2023).
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second-order critical points along a line εcðλÞ, terminating at a
tricritical point at λc. The location of this tricritical point, as
well as the structure of the first-order lines beyond it, depends
on the considered thermodynamic ensemble. In particular, the
microcanonical description as a function of the temperature
1=T ¼ ∂S=∂ε does not match the standard canonical descrip-
tion, as it should for short-range interacting systems (Barré,
Mukamel, and Ruffo, 2001).
Note that the convex intruder causing the first case of

ensemble inequivalence is not exclusive of long-range interact-
ing systems, but it is also present in short-range systems with
finite sizes, where the boundary contribution is comparable to
the one from the finite bulk (Ispolatov and Cohen, 2001). This
feature is then omitted in the thermodynamic limit in short-
range systems, while it remains in strong long-range ones.

2. Violation of hyperscaling

Apart from ensemble inequivalence, the relevance of boun-
daries in the scaling theory of strong long-range systems
produces several anomalies that influence the understanding
of their critical behavior. In particular, we comment on the usual
finite-size scaling theory, which relates the thermodynamic
critical exponent of any quantity, for instance, the susceptibility

χ ∝ jT − Tcj−γ ð32Þ

with its finite-size correction (Cardy, 1996)

χN ∝ Nγ=ν; ð33Þ

where the subscript N indicates the corresponding quantity in a
system of size N. In long-range systems, the correspondence
between thermodynamic exponents and finite-size scaling ones
is not obtained via the correlation length exponent ν, but rather
via an exponent ν� ¼ νmfduc, where νmf and duc are, respec-
tively, the mean-field correlation length exponent and the upper
critical dimension of the corresponding short-range system
(Botet, Jullien, and Pfeuty, 1982).
This modification of finite-size scaling theory has been

related to the violation of hyperscaling and, more generally, to
a nontrivial power-law scaling of the correlation length ξ with
the system size N (Flores-Sola et al., 2015), leading to several
anomalous differences between the actual finite-size scaling
of strong long-range systems and the mean-field solution
(Colonna-Romano, Gould, and Klein, 2014). These observa-
tions are not peculiar to strong long-range systems but have
also been found in the study of critical phenomena in short-
range systems above the upper critical dimension (Binder,
1985; Luijten and Blöte, 1996; Flores-Sola et al., 2016).

C. Competing nonlocal systems

Modulated phases resulting from the competition of inter-
actions at different length scales are ubiquitous in nature (Seul
and Andelman, 1995) and also display universal scaling close
to their critical points. Despite this ubiquity, a comprehensive
description of their universal behavior has not yet emerged
and their understanding is apparently behind that of the
homogeneous phase transition. A convenient effective action

for modulated phases was introduced by Brazovskii (1975);
it reads

S½φ� ¼ 1

2

Z
ddq
ð2πÞd φ⃗ðqÞ

�
λþ ðq − q0Þ2

m

�
φ⃗ðqÞ

þ u
Z

ddx
jφ⃗ðxÞj4
4!

; ð34Þ

where φðqÞ is the Fourier transform of φðxÞ, which is an
N -component vector field, q ¼ jq⃗j is the momentum ampli-
tude, and q0 is a constant given by the nature of competing
interactions. In writing Eq. (34) we assumed that the long-
range tails of the interactions are not relevant (α > α�).
The system described by the Hamiltonian (34) represents a

different paradigm with respect to the ordinary N -vector
models. Indeed, the Hamiltonian (34) for λ < 0 supports a
condensate with any of the finite wave vectors occurring on
the (d − 1)-dimensional sphere jq⃗j ¼ q0. Therefore, the con-
densed phase of the model is somehow “doubly” symmetry
broken since the model not only chooses the i ¼ 1 component
of the field in which it condenses but also must make a single
choice for the wave vector q⃗ ¼ q⃗0 out of the infinite set of
equivalent order parameters with jq⃗j ¼ q0. The diversity in the
symmetry-breaking procedure is also reflected in different
phase space for fluctuations since the d-dimensional phase
space around the jq⃗j ¼ q0 surface is anisotropic, with fluc-
tuations parallel to the surface that are exactly degenerate and
fluctuations away from it that are only nearly degenerate. This
discussion should have clarified that the Brazovskii model in
Eq. (34) does not belong to any of the usual universality
classes of isotropic models and presents its own set of
universal properties as a function of the parameters N and d.
Interesting applications of the physics described by the

Brazovskii model occur in two-dimensional or highly aniso-
tropic systems, such as quantum Hall platforms (Fradkin and
Kivelson, 1999), high Tc superconductors (Kivelson, Fradkin,
and Emery, 1998; Kivelson et al., 2003), and ultrathin
magnetic films (Kashuba and Pokrovsky, 1993; Vaterlaus
et al., 2000; Saratz et al., 2010). Nevertheless, the first efforts
to apply the momentum shell renormalization group theory
(Wilson and Kogut, 1974) to the Hamiltonian (34) with
d ¼ 2, resulting in the impossibility of constructing a reliable
perturbative picture (Hohenberg and Swift, 1995). Applying
the RG approach described by Shankar (1994) for fermionic
systems, Hohenberg and Swift (1995) found that momentum-
dependent corrections to the interacting coupling u are
relevant and that no weak coupling expansion is possible in
the treatment of modulated phases. Nevertheless, a symmetry
analysis of these relevant corrections suggests the appearance
of a second-order nematic-isotropic transition (Barci and
Stariolo, 2007). Similar difficulties have been encountered
by more modern treatments (Shiwa, 2006), and the description
of systems belonging to the Brazovskii universality has been
confined to mean-field theory (Barci and Stariolo, 2007;
Barci, Ribeiro, and Stariolo, 2013; Capati et al., 2015),
scaling arguments (Barci and Stariolo, 2009; Portmann et al.,
2010; Barci and Stariolo, 2011; Mendoza-Coto and Stariolo,
2012), and numerical simulations (Cannas et al., 2006;
Poderoso, Arenzon, and Levin, 2011).
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Recently the study of the nematic-isotropic transitions in
the Brazovskii model has been extended beyond the analytic
momentum paradigm in Eq. (34) to include long-range
repulsive interactions of the form 1=rα

0
, with particular

focus on the Coulomb (α0 ¼ 1) and dipolar (α0 ¼ 3) cases
(Mendoza-Coto, Stariolo, and Nicolao, 2015). Note particu-
larly that, within the effective field theory approach of
Mendoza-Coto, Stariolo, and Nicolao (2015), it is possible
to show the exact correspondence between the universality of
the nematic-isotropic transition and that of homogeneous rotor
models at finite temperature with decay exponent α ¼ α0 þ 2

(Mendoza-Coto, Barci, and Stariolo, 2017). Therefore, for
modulated phases with d ¼ 2, the relevant regime for long-
range interactions is rigidly shifted in such a way that any
power-law decay α0 > 2 is always irrelevant, while for α0 < 2

the interaction energy also remains finite in the absence of any
rescaling due to the modulation pattern of the order parameter.
Within this framework, the scalar φ4 theory with competing

long-range and short-range interactions lies in the same
universality class as the long-range ferromagnetic Oð2Þ model
with σ ¼ α0 described in Sec. III.A (Mendoza-Coto, Stariolo,
and Nicolao, 2015). Therefore, for α0 > 2 the isotropic
nematic transition displays in d ¼ 2 BKT scaling, as in the
short-range XY model, while for α0 < 2 actual orientational
order occurs. Given this relation, one would expect, based on
the work of Giachetti, Trombettoni et al. (2022), that for α0 ∈
½1.75; 2� the same phenomenology as described in Sec. III.A.2
will occur.

IV. QUANTUM CRITICAL BEHAVIOR

Our discussion of zero-temperature criticality starts with the
observation that field theory approaches allow the universal
behavior at a T ¼ 0 quantum critical point to be related to
that of the corresponding T ≠ 0 classical phase transition in
dimension dþ z, where z is the dynamical critical exponent
(Sachdev, 1999). This correspondence is exact for local,
continuous OðN Þ field theories with z ¼ 1 and it can also
be proven for the one-dimensional lattice Ising model in a
transverse field (Mussardo, 2009; Dutta et al., 2015). Thus, it
is natural to connect, whenever possible, the universal
behavior in the quantum regime to that of finite-temperature
phase transitions for long-range models. In the following, we
divide our presentation according to the nature of the variables
at hand.

A. Quantum rotor models

Given the correspondence between quantum and classical
universalities, OðN Þ field theories also constitute a paradig-
matic model for quantum critical behavior. However, unlike
in the classical case they generally do not describe the
universality of ferromagnetic quantum spin systems, since
quantum spins possess SUðN Þ rather than OðN Þ symmetry.
Nevertheless, the low-energy behavior of quantum OðN Þ
models describes the physics of several quantum models,
such as the quantum Ising model N ¼ 1, superfluid systems
N ¼ 2, and antiferromagnetic quantum Heisenberg spin
systems, which correspond to N ¼ 3 (Sachdev, 1999).

In this context, a convenient lattice representation of
quantum OðN Þ field theories is provided by quantum rotor
models, whose Hamiltonian reads

HR ¼ −
X
ij

Jij
2
n̂i · n̂j þ

λ

2

X
i

L̂2
i ; ð35Þ

where n̂i are n-component unit length vector operators
(n̂2i ¼ 1), λ is a real constant, and L is the invariant operator
formed from the asymmetric rotor space angular momentum
tensor (Sachdev, 1999). As previously done, we focus on
power-law decaying ferromagnetic couplings Jij ¼ J=rdþσ

ij ,
with J > 0.
In the short-range limit (σ → ∞) the continuum formulation

of quantum OðN Þ rotor models would exactly correspond to a
(dþ 1)-dimensional OðN Þ field theory, with the extra dimen-
sion representing the temporal propagation of quantum
fluctuations. However, in the long-range regime the field
theory action is anisotropic as the spatial coordinates feature a
leading nonanalytic momentum term, at least for σ < σ�.
Following the same FRG approach as in Sec. III.A, one can
introduce the following ansatz for the effective action of an
OðN Þ quantum rotor model:

Γk ¼
Z

dτ
Z

ddxfKk∂τφi∂τφi − ZkφiΔσ=2φ

− Z2;kφiΔφþ UkðρÞg; ð36Þ

where Δ is the spatial Laplacian in d dimensions, τ is the
“Trotter” or imaginary time direction, φiðxÞ is the ith
component (i ∈ f1;…; ng) of the system, and ρ≡P

φ2
i =2

is the system order parameter. In Eq. (36) the summation over
repeated indices is again intended.
Remember that the ansatz in Eq. (36) for the effective

action, albeit sufficient to characterize the physics of long-
range rotor models, only approximately represents the exact
critical action of correlated models. Indeed, it contains only
two kinetic terms in the d spatial directions, as necessary to
represent the competition between long-range and short-range
contributions to the critical propagator, but does not contain
momentum-dependent corrections to the theory vertices
(Dupuis et al., 2020). As expected, the time direction τ does
not contain any fractional derivative, so one may obtain a
nonunity value for the dynamical critical exponent z defined
by the scaling of the dispersion relation ω ∝ qz.

1. Effective dimension approach

The characterization of the critical properties of the action
in Eq. (36) proceeds in analogy with the case of classical
anisotropic systems (Defenu, Trombettoni, and Ruffo, 2016),
but it leads to a far more interesting picture. Scaling analysis
allows the universal properties of long-range quantum
rotor models in d dimensions to be approximately related
to those of their classical short-range correspondents in an
effective dimension as

deff ¼
2ðdþ zÞ

σ
; ð37Þ

Nicolò Defenu et al.: Long-range interacting quantum systems

Rev. Mod. Phys., Vol. 95, No. 3, July–September 2023 035002-23



where d and z are, respectively, the dimension and the
dynamical critical exponent of the long-range model under
study. For σ < 2 it is found that z ¼ σ=2 (Defenu,
Trombettoni, and Ruffo, 2017). Inserting this value of z into
Eq. (37) and imposing deff ¼ 4 one then obtains σmf ¼ 2d=3,
which is to be compared to the classical result σmf ¼ d=2. For
d ¼ 1 one has σmf ¼ 2=3.
The anisotropy between the time and the spatial direction

in the long-range model is already apparent in the mean-
field estimations for the critical exponents (Dutta and
Bhattacharjee, 2001; Monthus, 2015)

η ¼ 2 − σ; ð38Þ
z ¼ σ=2; ð39Þ
ν ¼ 1=σ: ð40Þ

Upon inserting the result in Eq. (39) into the effective dimension
relation in Eq. (37), one obtains the mean-field expression
deff ¼ 2d=σ þ 1, which proves that the effective dimension of
quantum rotor models is increased by 1 with respect to the
classical case, as occurs for traditional short-range systems.
The correspondence between quantum and classical OðN Þ

models based on the effective dimension approach in Eq. (37)
exactly applies to quadratic models in general (Vojta, 1996)
and is expected to be close to the upper critical dimension.
Thus, we can employ the effective dimension approach to
construct the phase diagram displayed in Fig. 11. Indeed, the
upper critical dimension result duc can be derived using the
condition d ≥ 4, so

duc ¼ 3
2
σ; ð41Þ

as also follows from standard scaling arguments (Dutta and
Bhattacharjee, 2001). Correspondingly, the lower critical
dimension dlc for continuous symmetriesN ≥ 2 follows from
the condition deff ≤ 2, which yields

dlc ¼
σ

2
: ð42Þ

We emphasize once again that Eq. (42) is valid only for
continuous symmetries N ≥ 2. As a result, correlated uni-
versality is observed in the region 2 ≤ deff < 4, i.e., the cyan
shaded region in Fig. 11. Therefore, the critical exponents do
not coincide with the mean-field result, and we need to take
the effective potential in Eq. (36) into account.

2. Beyond mean-field critical exponents

The study of the action in Eq. (36) evidences two regimes,
as the same mechanism is found for the transition between the
long-range and the short-range universality that occurs at
σ� ¼ 2 − ηsr, as in the classical case. For σ > σ� the effective
action of quantum rotor models is isotropic and analytic in the
momentum sector, and its flow equations are identical to
the ones in the classical dþ 1 case (Codello, Defenu, and
D’Odorico, 2015). For σ < σ�, however, the anisotropy
between spatial and imaginary time dimensions produces
the following novel flow equations for the effective potential
and the wave-function renormalization Kk:

∂tŪk ¼ ðdþ zÞŪkðρ̄Þ − ðdþ z − σÞρ̄Ū0
kðρ̄Þ

−
σ

2
ðN − 1Þ 1 − ητz=ð3σ þ 2dÞ

1þ Ū0
kðρ̄Þ

−
σ

2

1 − ητz=ð3σ þ 2dÞ
1þ Ū0

kðρ̄Þ þ 2ρ̄Ū00
kðρ̄Þ

; ð43Þ

−
∂tKk

Kk
¼ ητ ¼

f(ρ̃0; Ũð2Þðρ̃0Þ)ð3σ þ 2dÞ
dþ ð3σ þ dÞ½1þ f(ρ̃0; Ũð2Þðρ̃0Þ)�

: ð44Þ

In the derivation of Eqs. (43) and (44), analytic terms in the
spatial direction are discarded (Defenu, Trombettoni, and
Ruffo, 2017) setting Z2;k ¼ 0 in Eq. (36), as their contribu-
tions to the RG running of other quantities remain small up to
σ ≃ σ�; see the discussion in Sec. III.A.1.
The numerical study of quantum long-range OðN Þ

models appears to be more extensive in the literature than
the classical case. Numerical simulations for both the
quantum long-range Ising and Oð2Þ rotor models have been
performed, yielding numerical curves for both critical
exponents z and ν while also confirming the mean-field
result η ¼ 2 − σ in the correlated regime (Sperstad, Stiansen,
and Sudbø, 2012). Figure 12 compares the numerical
estimates obtained with the flow equations (43) and (44)
using the solution approach described by Codello, Defenu,
and D’Odorico (2015) and Defenu, Trombettoni, and
Codello (2015) along with the results from the MC simu-
lations of Sperstad, Stiansen, and Sudbø (2012).
In Fig. 12 (upper panel) the dynamical critical exponent z is

reported as a function of σ in d ¼ 1. These numerical results

FIG. 11. Phase diagram of long-range quantum rotors models in
the plane d, σ. The universal behavior features the mean-field
critical exponents in Eqs. (38), (39), and (40) in the cyan shaded
region (upper left corner), while the universal properties are
associated with an interacting Wilson-Fisher point in the white
region. The red, blue, and green lines represent the boundary
between long-range and short-range universality (N ¼ 1; 2; 3
from left to right, respectively). Finally, the gray shaded region
(lower right corner) displays no phase transition at all.
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have been obtained solving Eqs. (43) and (44) at the fixed
points and studying their stability matrix accordingly, as
described by Codello, Defenu, and D’Odorico (2015) and
Defenu, Trombettoni, and Codello (2015). The mean-field
region σ < 2=3 is not shown, as it is exactly described by the
analytical estimates in Eqs. (38)–(40). Numerical results for
σ < 1=2 deviating from the mean-field expectation have not
been reported (Fey and Schmidt, 2016). The dynamical
critical exponents of the transverse-field Ising model with
long-range power-law interaction in the weak long-range
regime were derived by Maghrebi, Gong, and Gorshkov
(2017) up to two-loop order within the renormalization group
theory. Recent quantumMonte Carlo (QMC) simulations have
shown substantial agreement with the behaviors displayed
in Fig. 12 (Koziol et al., 2021). Note that recent simulations
have also targeted the finite-temperature transition at α < d
(Gonzalez-Lazo et al., 2021) and the two-dimensional case
(Fey, Kapfer, and Schmidt, 2019; Koziol et al., 2019).
Nonlocal dissipation can act on Ising lattices molding the
universality class of their critical points (Marino, 2021) and
can potentially be realized and characterized in cavity experi-
ments (Seetharam et al., 2021).
Out of the mean-field region, correlation effects tend to

increase the value of the dynamical critical exponent, increas-
ing the gap with the analytic prediction in Eq. (39). This effect
is mitigated for continuous symmetries N ≥ 2 due to the

vanishing of the anomalous dimension at the short-range
threshold σ� ¼ 2. Accordingly, the agreement between the
FRG curves and the numerical MC results (the red solid line
and circles in Fig. 12) remains consistent in the entire σ range.
On the other hand, the N ¼ 2 case displays poorer overall
consistency, due mostly to the inaccuracy of the MC esti-
mates. Indeed, while the effective action parametrization in
Eq. (36) proved unable to properly describe the continuous
BKT line (Gräter and Wetterich, 1995), it consistently
reproduces the scaling of critical exponents in the BKT limit
(Codello, Defenu, and D’Odorico, 2015).6

The lower accuracy found for the N ¼ 2 case is confirmed
by the comparison of the MC simulation for the correlation
length estimates to the FRG curve (the blue circles and line in
Fig. 12). Indeed, the MC data provide a finite correlation length
exponent in the limit σ → 2 for the Oð2Þ model, in contra-
diction to rigorous analytical predictions from the deff − 2

expansion (Brézin and Zinn-Justin, 1976). On the contrary, the
FRG curve correctly reproduces the expected feature, as it did
in the classical case; see Fig. 10. Therefore, the flow equa-
tions (43) and (44) yield all the qualitative features and reach
quantitative accuracy for all values d, σ, and N in the phase
diagram of quantum long-range OðN Þmodels, producing good
accuracy with exact numerical simulations. The difficulties in
the FRG characterization of the BKT transition (Gräter and
Wetterich, 1995; Jakubczyk, Dupuis, and Delamotte, 2014;
Jakubczyk and Metzner, 2017) appear not to be problematic in
this case, as MC simulations are plagued by severe finite-size
effects as well. Recent numerical results on the long-range XY
model were reported by Adelhardt et al. (2020).
A notable fact is that the MC points in Fig. 12 appear to

also provide σ� ¼ 2 − ηsr, with η ¼ 1=4, for N ¼ 2, without
any apparent distinction between the N ¼ 1 and 2 cases.
As mentioned, this is in stark contradiction to the picture
furnished by FRG, which suggests that σ� ¼ 2 identically for
all continuous symmetries. The correct picture is most likely in
between, as suggested by the analysis presented in Sec. III.A.2.

B. Kitaev chain

The introduction of long-range couplings in Fermi systems
produces radically different results with respect to the bosonic
case. The Kitaev chain (Kitaev, 2001) emerged as one of the
most studied playgrounds in which effects of long-range terms
have been investigated. In the fermionic context we first
consider the generalized Kac-normalized (Kac, Uhlenbeck,
and Hemmer, 1963) long-range Kitaev chain (Maity,
Bhattacharya, and Dutta, 2020). Its Hamiltonian reads

H ¼ −
XN
j¼1

XR
r¼1

�
Jrc

†
jcjþr þ Δrc

†
jc

†
jþr þ H:c:

�

− h
XN
j¼1

�
1 − 2c†jcj

�
; ð45Þ

FIG. 12. Universal properties of long-range quantum rotor
models. Upper panel: estimates for the dynamical critical
exponent z ¼ σ=ð2 − ητÞ obtained using the fixed point solution
of the evolution equations (43) and (44) in the cases N ¼ 1; 2; 3
in red, blue, and green (from top to bottom), respectively. Lower
panel: inverse correlation length exponents N ¼ 1; 2; 3, pro-
gressing from top to bottom. The MC simulations of Sperstad,
Stiansen, and Sudbø (2012) are shown as empty circles in the
N ¼ 1; 2 cases top (red) and bottom (blue) lines, respectively. In
both panels the upper gray dashed lines represent the mean-field
results, while the dashed lower black lines represent the spherical
model results (N ¼ ∞).

6Note that the power-law scaling of BKT correlations originates from
phasecorrelationsanddoesnot contradict thevanishingof the anomalous
dimension defined according to Eq. (44) (Defenu et al., 2017).
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where

Jr ¼ t
d−αr
N α

; Δr ¼ g
d−βr
N β

ð46Þ

are the hopping and pairing profiles, respectively, with
hopping t > 0 and normalization satisfying one of the two
relations

N x ¼
	P

R
r¼1 d

−x
r ; Kac rescaling;

1; otherwise;
ð47Þ

where R denotes the range of the interactions; dr is the
distance between the sites i and iþ r; x≡ α; β refers to the
power-law exponents; h is the chemical-potential strength;
and cj and c†j are the fermionic annihilation and creation
operators, which obey the canonical anticommutation rela-
tions fcl; c†jg ¼ δl;j and fcl; cjg ¼ 0. In Eq. (47) we allowed
the possibility of either implementing Kac rescaling or leaving
the couplings unscaled, as in the literature both conventions
are employed.
The definition of distance depends on the choice of the

boundary conditions. Thus, a ring structure, i.e., closed boun-
dary conditions, leads to the definition dr ¼ minðr; L − rÞ,
while open boundary conditions simply produce dr ¼ r.
Conventionally, (anti)periodic boundary conditions allow the
straightforward analytical solution of the problem in the short-
range limit. Yet, long-range couplings extending over the entire
chain length lead to the cancellation of the hopping (pairing)
operators for antiperiodic (periodic) boundary conditions due to
the anticommutation relations (Alecce and Dell’Anna, 2017).
This issue justifies the introduction of a finite interaction rangeR
into the Hamiltonian in Eq. (45).
In the following we mainly discuss the ring convention with

dr ¼ minðr; L − rÞ and fix R ¼ L=2 − 1, where L is the
number of sites in the ring chain. This choice allows
us to deal with ring boundary conditions but still obtain a
nontrivial thermodynamic limit L → ∞, where the couplings
display infinite-range tails. One can thus introduce the Fourier
transform

cj ¼
1ffiffiffiffi
L

p
XB:z:
k

ckeikj; ð48Þ

where the sum is over the first Brillouin zone. On a finite
ring the values of the momenta have to be chosen in
order to comply with periodic (k ¼ 2πn=L) or antipe-
riodic (k ¼ ½2πðnþ 1=2Þ�=L) boundary conditions. The
Hamiltonian in momentum space reads

H¼
XB:z:
k

½ðc†kck−c−kc
†
−kÞðh−JkÞþðc†kc†−k−ckc−kÞΔk�; ð49Þ

where the momentum space couplings have been obtained by
Fourier transforming Jr and Δr:

Jk ¼
t

N α

XR
r¼1

cosðkrÞ
rα

; ð50Þ

Δk ¼
g
N β

XR
r¼1

sinðkrÞ
rβ

: ð51Þ

The Hamiltonian (49) is quadratic and can be explicitly
diagonalized via a Bogoliubov transformation

ck ¼ i sin
θk
2
γk þ cos

θk
2
γ†−k; ð52Þ

where γk and γ†k are fermionic operators that, respectively,
annihilate and create Bogoliubov quasiparticles. They obey
the conventional anticommutation relations fγk; γ†pg ¼ δk;p
and fγk; γpg ¼ 0. The proper choice for the momentum-
dependent angle θk in order to diagonalize the
Hamiltonian (49) reads

θk ¼ arctan
Δk

h − Jk
; ð53Þ

which leads to the diagonal Hamiltonian

H ¼
XB:z:
k

ωkðγ†kγk − γ−kγ
†
−kÞ ð54Þ

with the quasiparticle spectrum

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh − JkÞ2 þ Δ2

k

q
: ð55Þ

In the thermodynamic limit L → ∞, the short-range model
(α; β → ∞) features the familiar relations Jk ¼ t cosðkÞ
and Δk ¼ g sinðkÞ. Accordingly, the minimal gap occurs at
k ¼ 0; π, depending on the sign of h, and vanishes as the
chemical potential approaches the critical values h → �t. The
two short-range critical points h ¼ �t feature a soft mode at,
respectively, k ¼ 0; π, in correspondence to the appearance of
ferromagnetic or antiferromagnetic order in the short-range
Ising chain obtained using the Jordan-Wigner transformation
(Fradkin, 2013). Yet, in terms of the fermionic operators of the
Kitaev chain no local order is found, but the quantum critical
points divide different topological phases, where only non-
local string orders are found (Chitov, 2018).
Without loss of generality, we can then impose t ¼ g ¼ 1

from now on, fixing the location of the short-range critical
point. Upon crossing the critical point, the system undergoes a
quantum phase transition between a topologically trivial phase
at jhj > 1 and one featuring a finite winding number

w ¼ 1

2π

I
dθk; ð56Þ

where the integral has to be taken along the periodic
Brillouin zone.
In terms of topological properties, the quantum phase

transition occurs between the trivial phase w ¼ 0 at jhj > 1
and the topologically nontrivial phase at jhj < 1. The exist-
ence of a nontrivial topological order in the bulk of the system
is connected to the occurrence of zero-energy Majorana
modes at the boundaries with the normal phase. In particular,
such zero-energy Majorana modes are found at the edges
of the finite chain with open boundaries (Kitaev, 2001).
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The inclusion of interactions beyond the nearest-neighbor case
modifies and extends this traditional picture.
Before continuing the discussion, we observe that the use of

open boundary conditions allows one to predict that the edge
modes are exponentially localized at the chain edges in the
isotropic case when pairing and tunneling rates are equal, i.e.,
α ¼ β (Jäger, Dell’Anna, and Morigi, 2020). Algebraic decay
of the edge modes is found in the anisotropic case when either
the exponent or the rates of tunneling and pairing are different.
In the latter case, the smallest exponent causes the algebraic
scaling of the tails, while at short distances the decay is
exponential. For slow enough power-law decaying super-
conducting pairings, the massless Majorana modes at the
edges pair into a massive non-local Dirac fermion localized
at both edges of the chain called a topological massive
Dirac fermion with fractional topological numbers (Viyuela
et al., 2016).
Note that signatures of Majorana edge modes have been

studied in ferromagnetic atomic chains on top of super-
conducting leads (Nadj-Perge et al., 2014). In this context,
the realization of power-law decaying couplings via
Ruderman-Kittel-Kasuya-Yosida interactions has been pro-
posed (Klinovaja et al., 2013). A weakening of the bulk-
boundary correspondence in the presence of a long-range
pairing with Aubry-André-Harper on-site modulation has
been observed (Fraxanet et al., 2021). For this model, a 2D
Chern invariant can still be defined. However, in contrast to
the short-range model, this topological invariant does not
correspond to the number of edge mode crossings.

1. Finite-range couplings

As usual, finite-range interactions with R < ∞ in the
thermodynamic limit cannot alter the universal critical scaling
close to the quantum phase transition, but they may alter the
topological phase diagram, leading to modifications in the
number and properties of the edge modes. However, this is
not the case if finite-range interactions appear only in the
hopping or the pairing sector separately, i.e., β → ∞ or
α → ∞, respectively. There the phase diagram remains almost
unaltered with respect to the short-range case, apart from a
modification of the critical boundaries, which become aniso-
tropic, with the k ¼ 0; π instabilities occurring at different
values of jhj.
For generic values of α and β, the topological phase

diagram also contains regions with jwj > 1, with a maximum
value equal to the range of the interactions jwjmax ¼ R. The
range of parameters in which w is maximum decreases with α,
and the phase diagram of the standard Kitaev chain model is
recovered in the α → ∞ limit independently of β. The winding
number may also assume intermediate values between 1 and R
with steps of 2 (Alecce and Dell’Anna, 2017).
The separation into even and odd numbers of Majorana

modes depending on the range R is justified by the possibility
for Majorana modes on the same edge to annihilate each other
one by one per edge, according to the mechanism described by
Alecce and Dell’Anna (2017). The topological phase with
jwj ¼ 1 instead persists for each interaction range R ≥ 1

because the annihilation of a single Majorana pair requires
overlap between the two wave functions that peaked at the
opposite edges of the chain.

2. Infinite-range pairing

In general, the influence of long-range interactions on
topology has also been investigated for infinite-range cou-
plings in antiferromagnetic spin-1 chains where α� for the
survival of the topological phase depends on the frustrated or
unfrustrated nature of the long-range terms, i.e., α ≃ 0 or 3
(Gong, Maghrebi, Hu, Foss-Feig et al., 2016; Gong,
Maghrebi, Hu, Wall et al., 2016). Moreover, the interplay
between topology and long-range connectivity generates a
wide range of peculiar phenomena, including novel quantum
phases (Gong, Maghrebi, Hu, Foss-Feig et al., 2016), modi-
fications of the area law (Gong et al., 2017), and breaking of
the Lieb-Robinson theorem (Maghrebi et al., 2016).
The first studies of the long-range Kitaev chain focused

on the case of infinite-range long-range coupings R ∝ L
only in the paring sector (Vodola et al., 2014), leading to
the thermodynamic limit expressions

Jk ¼ cosðkrÞ; ð57Þ

Δk ¼
1

N β

X∞
r¼1

sinðkrÞ
rβ

¼ Im½LiβðeikÞ�
2ζðβÞ ; ð58Þ

where the case N β ¼ 1 is discussed first. In the absence of
Kac rescaling, the critical line at h ¼ −1 appearing in the
short-range models persists independently of β, while the
one at h ¼ 1 disappears as soon as β < 1. Notably some
references discuss the persistence of the h ¼ −1 critical line
below α ¼ 1 (Lepori et al., 2016; Lepori and Dell’Anna,
2017). Subsequent work clarified that the ground-state energy
of the system

e∞;β ¼
Z

π

−π
ωkdk ð59Þ

remains finite for all β and h due to the fermionic nature of
the model and at variance with the classical case. Yet, the
zero-momentum spectrum diverges (limk→0 ωk → ∞) for
β < 1, leading to the disappearance of the quantum critical
point at h ¼ 1, which could be made stable by the intro-
duction of Kac rescaling, as in the classical case; see Eq. (47).
This entire picture is in loose agreement with the discussion
in Sec. III.C, where we have shown that for modulated
phases, characterized by instability at finite momentum, no
internal energy divergence is detected for a decay exponent
α < d, while ferromagnetic models with homogeneous order
need Kac rescaling.
Therefore, the divergence in k ¼ 0 is the cause for the

disappearance of the h ¼ 1 quantum critical point for α < 1.
At the same time, at every finite α divergences in some k
derivatives for ωk occur both at k ¼ 0 and at k ¼ π (Vodola
et al., 2014; Lepori et al., 2016), giving rise to interesting
effects in the correlation decay and the dynamics (Lepori,
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Trombettoni, and Vodola, 2017). In particular, these diver-
gencies generate several novel features in the equilibrium
behavior of the Kitaev chain. They may be summarized by the
following main effects:

• Hybrid decay of static correlations with an intermediate-
range exponential part and power-law tails (Lepori,
Trombettoni, and Vodola, 2017), which can be con-
nected to the existence of a Lieb-Robinson bound
peculiar to long-range systems (Foss-Feig et al., 2015;
Van Regemortel, Sels, and Wouters, 2016; Hernández-
Santana et al., 2017).

• A breakdown of conformal invariance for β < 2 has been
found (Lepori et al., 2016). Nevertheless, the scaling
of the von Neumann entropy fulfills the area law up to
α ¼ 1 as in the short-range limit (β → ∞) (Eisert,
Cramer, and Plenio, 2010). At the critical point, the
central charge defined by the logarithmic correction to
the von Neumann entropy remains c ¼ 1=2 as in the
short-range limit as well (Lepori et al., 2016).

• Below the threshold β ¼ 1, logarithmic corrections to the
area law have been found out of criticality, modeled by

SðlÞ ¼ ceff
6

logðlÞ; ð60Þ

where l is the size of the bipartition (Vodola et al., 2014,
2016). Notably this correction, which is identical to
that of short-range systems at criticality (Calabrese and
Cardy, 2004; Holzhey, Larsen, and Wilczek, 1994), has
also been found in the Ising model (Koffel, Lewenstein,
and Tagliacozzo, 2012).

• Again below β ¼ 1, the topological phase at μ < 1, the
Majorana edge modes, which remained well separated in
the short-range limit, hybridize and produce a massive
Dirac mode, effectively lifting the ground-state degen-
eracy present for β > 1. This mechanism is analogous to
that occurring in the short-range limit at finite size
(Kitaev, 2001). An explicit proof of this fact was given
by Patrick, Neupert, and Pachos (2017) for α ¼ β ¼ 0.

All of these features are also found in the general case
α; β < ∞, almost independently of the value of α (Vodola
et al., 2016; Alecce and Dell’Anna, 2017; Lepori and
Dell’Anna, 2017; Solfanelli et al., 2023), and they can be
straightforwardly reproduced using a continuous effective
field theory description (Lepori et al., 2016). Therefore, all
the aforementioned properties can be classified as universal,
according to our previous definition. Note that the peculiar
nature of the long-range Kitaev chain at β < 1 is signaled by a
noninteger value of the winding number defined in Eq. (56),
which in principle is not admissible. This effect points toward
a general breakdown of the traditional theory for topological
phases in short-range systems (Schnyder et al., 2008; Kitaev,
2009), leading to modifications in the bulk-edge correspon-
dence (Lepori and Dell’Anna, 2017).

3. The α = β case and its relation to the long-range Ising model

The topological features of the α < ∞ case are not sub-
stantially different from the α → ∞ case, as it is the paring
term in Eq. (45) that induces the topological behavior. Yet, the

presence of long-range hopping substantially alters both the
critical and dynamical properties of the long-range Kitaev
chain. Before discussing such properties, it is convenient to
discuss the case α ¼ β, which is strongly tied to the case of
1=2 spins. In this perspective, it is convenient to first introduce
the long-range Ising model Hamiltonian

H ¼ −
X
l<j

Jljσxl σ
x
j − h

X
j

σzj; ð61Þ

where σfx;y;zgj are the Pauli matrices on site j, h is the
transverse-field strength, and Jr, with r ¼ jl − jj, is the spin
coupling profile with power-law scaling (∝ 1=rα, α ≥ 0). As
usual, in the limit α → ∞ one recovers the short-range Ising
model, which is integrable and can be exactly solved with a
Jordan-Wigner transformation (Fradkin, 2013). Another inter-
esting limit is reached for α → 0, where the Hamiltonian (61)
represents the LMG model (Glick, Lipkin, and Meshkov,
1965; Lipkin, Meshkov, and Glick, 1965; Meshkov, Glick,
and Lipkin, 1965). In this limit, the flat infinite-range
interaction leads to permutation symmetry and allows one
to employ the Dicke basis (Nussenzveig, 1973), which scales
linearly with the system size and yields a tractable description
of the system that is amenable via exact diagonalization.
The equilibrium phase diagram of the Hamiltonian (61)

and its universal properties have been discussed in Sec. IV.A
in the case N ¼ d ¼ 1. In summary, the system displays a
finite-temperature phase transition for α < 2 (Dyson, 1969;
Thouless, 1969; Dutta and Bhattacharjee, 2001) within the
same universality class of the classical long-range Ising model
(Defenu, Trombettoni, and Codello, 2015). In the limit T → 0,
the system displays a quantum critical point at finite h, whose
universal properties depend on the value of σ according to
Fig. 11 (Defenu, Trombettoni, and Ruffo, 2017). In the
nearest-neighbor limit α → ∞ the universal behavior exactly
corresponds to that of the Kitaev chain with α ¼ β > 2 as a
consequence of the Jordan-Wigner mapping.
Therefore, one expects a qualitative understanding of

the Hamiltonian (61) to result from the mapping of the

spin operators σfx;y;zgj onto fermions (Jaschke et al., 2017;
Vanderstraeten et al., 2018)

σzj ¼ 1 − 2c†jcj; ð62Þ

σyj ¼ −i
�Yj−1
m¼1

ð1 − 2c†mcmÞ
�
ðcj − c†jÞ; ð63Þ

σxj ¼ −
�Yj−1
m¼1

ð1 − 2c†mcmÞ
�
ðcj þ c†jÞ; ð64Þ

where the fermionic annihilation and creation operators are
represented, respectively, by cj and c†j and, according to the
canonical anticommutation relations, one has fcl; cjg ¼ 0 and

fcl; c†jg ¼ δl;j. Note that the Jordan-Wigner transformation is
highly nonlocal and, despite preserving the excitation spec-
trum of the system, yields radically different eigenstates and
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topological properties; for a discussion of this topic, see
Greiter, Schnells, and Thomale (2014) and references therein.
The fermionic Hamiltonian for the long-range Ising model

reads

H ¼ −
X
l<j

Jjl−jjðc†l − clÞ
� Yj−1
n¼lþ1

ð1 − 2c†ncnÞ
�
ðc†j þ cjÞ

− h
X
j

ð1 − 2c†jcjÞ: ð65Þ

An exact solution of the Hamiltonian (65) is not possible
due to the inclusion of increasingly longer fermionic strings.
To introduce a treatable model, valid close to the fully
paramagnetic limit, one can employ the following approxi-
mation (Jaschke et al., 2017):

Yj−1
n¼lþ1

ð1 − 2c†ncnÞ ¼ 1 ð66Þ

for every j ≥ lþ 2 and neglect all the nonquadratic string
operators on the first line of Eq. (65). The resulting
Hamiltonian reads

H ¼ −
X
l<j

Jjl−jjðc†l cj þ c†l c
†
j − clcj − clc

†
jÞ

− h
X
j

ð1 − 2c†jcjÞ; ð67Þ

which corresponds to the Hamiltonian (45) in the infinite-
range limit R → ∞ with identical hopping and pairing
functions, i.e., g ¼ t and α ¼ β.
In the nearest-neighbor limit, the fermions in the

Hamiltonian (67) can be interpreted as domain walls in the
spin language. Consistently, long-range interactions introduce
an effective nonquadratic coupling between such domain
walls, which we have discarded in Eq. (66) (Fradkin, 2013).
Since the relevance of the quartic terms of the
Hamiltonian (65) crucially depends on the interaction range,
it is not surprising that Eq. (66) alters the universal properties
of the model, and the Hamiltonian (67) thus does not lie in
the same universality class as the long-range Ising model for
σ ¼ α − 1 < 2. The difficulty to reproduce the universal
properties of the long-range Ising model at small α with
the purely fermionic Hamiltonian can also be understood via
an effective dimension argument.
According to Eq. (37), the long-range Ising model dis-

plays the effective dimension deff ¼ 1 for α > 3, and there-
fore it is not surprising that the universal properties of the
fermionic theory in Eq. (67) correspond to those of the
interacting theory described by Eq. (36). Conversely, for
α < 5=3 the effective dimension becomes large (deff > 4),
and the universal features of the effective action in Eq. (36)
are exactly captured by the mean-field approximation, which
features bosonic excitations and cannot be reduced to the
purely fermionic theory in Eq. (67). In the intermediate range
(5=3 < α < 3) the low-energy excitations possess a hybrid

fermionic-bosonic character that cannot be captured by the
purely fermionic Hamiltonian (67).

4. The general α ≠ β case

In Sec. IV.B.3, we discussed the relation between the
universal properties of the Ising model and those of the
Kitaev chain with α ¼ β and t ¼ g. Now we explicitly derive
the critical exponents of the Kitaev chain in the general case
with R ∝ L and

Jk ¼
1

ζðαÞ
X∞
r¼1

cosðkrÞ
rα

¼ Re½LiαðeikÞ�
2ζðαÞ ; ð68Þ

Δk ¼
1

ζðβÞ
X∞
r¼1

sinðkrÞ
rβ

¼ Im½LiβðeikÞ�
2ζðβÞ ; ð69Þ

which are the momentum range couplings determining the
single-particle spectrum in Eq. (55). In analogy with the
nearest-neighbor case, the long-range Kitaev chain features
two quantum critical points, corresponding to the softening of
the k ¼ 0 or k ¼ π modes. When the Kac-normalized expres-
sions in Eqs. (68) and (69) are employed, the location of the
“homogeneous” critical point is fixed at hhc ¼ 1, regardless of
the choice of α or β. Conversely, the k ¼ π instability occurs at
the α-dependent critical point hac ¼ 1 − 2α. The definition of
critical exponents is given by the scaling of the excitation
spectrum close to each of these quantum critical points,

lim
h→hh;ac

ωk ≈ jh − hcjzν; k ¼ 0; π; ð70Þ

lim
k→0;π

ωk ≈ kz; h ¼ hh;cc : ð71Þ

As in the case of rotor models (see Sec. IV.A), the two
exponents z and ν are sufficient to characterize the entire
critical scaling.
Following the definitions in Eqs. (70), it is straightforward

to verify that limk→0 Δk ¼ 0 and that the critical exponent
combination is zν ¼ 1 for each of the two quantum critical
points, regardless of the values of α and β. Determination of
the dynamical scaling exponent z close to the hhc quantum
critical point requires the following expansions of the Fourier
couplings close to k ¼ 0:

Jk ¼ 1þ sinðαπ=2ÞΓð1 − αÞ
ζðαÞ kα−1

−
ζðα − 2Þ
2ζðαÞ k2 þOðk3Þ if α < 3; ð72Þ

Jk ¼ 1þ 2 logðkÞ − 3

4ζð3Þ k2 þOðk3Þ if α ¼ 3; ð73Þ

Jk ¼ 1 −
ζðα − 2Þ
2ζðαÞ k2 þOðkα−1Þ if α > 3; ð74Þ

and
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Δk ¼ cosðβπ=2ÞΓð1 − βÞ
ζðβÞ kβ−1

þ ζðβ − 1Þ
ζðβÞ kþOðk3Þ if β < 2; ð75Þ

Δk ¼
6½1 − logðkÞ�

π2
kþOðk3Þ if β ¼ 2; ð76Þ

Δk ¼
ζðβ − 1Þ
ζðβÞ kþOðkβ−1Þ if β > 2: ð77Þ

Apart from their relevance to the present case,
Eqs. (72)–(77) display a typical example of anomalous
terms in the excitation spectrum generated by long-range
interactions. A close inspection of Eqs. (72)–(77) leads
to the following result for the equilibrium dynamical critical
exponent:

z ¼
	
ϕ − 1 if ϕ < 2;

1 if ϕ > 2;
ð78Þ

where ϕ ¼ minðα; βÞ. According to the result in Eq. (78) the
relevant region for long-range couplings in the long-range
Kitaev chain radically differs from the case of the OðN Þ rotor
model described in Sec. IV.A. Indeed, long-range interactions
in the Kitaev chain also remain irrelevant in the range
2 < α; β < 3, while long-range couplings in rotor models
would be relevant in the entire α < 3 region. Yet, even if long-
range hopping couplings with 2 < α < 3 do not alter the
critical behavior, they still introduce relevant momentum
terms in the hopping sector. This discrepancy yields further
evidence that the approximation in Eq. (66) crucially alters the
universal behavior at small α and β.
For the forthcoming discussion, it is crucial to notice that

long-range interactions with different power-law exponents
α ≠ β modify the influence of the hopping and pairing
term on the critical scaling. Indeed, while for short-range
interactions the dynamical critical scaling exponents are
determined by the low-momentum terms in the pairing
coupling, for relevant long-range interactions with α < β it
is the scaling of the hopping coupling that determines z.
A similar scenario may also occur for finite-range com-
peting interactions and it is known to cause peculiar
dynamical features (Deng, Ortiz, and Viola, 2009;
Defenu et al., 2019; Divakaran et al., 2009), which is
discussed in Sec. V.C.1.
In summary, this section has delineated the equilibrium

critical properties of quadratic fermionic systems, with a
power-law decaying coupling of different decay rates. Yet,
the same characterization cannot be provided in the case of
fermionic systems with long-range nonquadratic interactions,
such as

H ¼
X
hiji;s

ðc†i;scj;s þ H:c:Þ þ
X
i≠j

Vijninj; ð79Þ

where the c†i;s operator and its conjugate create and annihilate
a fermion with spin s on the ith site of the lattice, while ni
represents the total density operator on the same site.

Our understanding of the influence of long-range density-
density interactions on the critical behavior of Fermi systems
is still relatively incomplete. One notable counterexample is
the 1D case, where mapping of fermionic systems onto
bosonic or spin degrees of freedom is possible.
In particular, the ground state of continuous 1D fermions

interacting via unscreened Coulomb repulsion was charac-
terized by bosonization techniques, finding metallic features
and a classical Wigner-crystal phase with slow-decaying
charge correlations (Schulz, 1993; Wang, Millis, and Das
Sarma, 2001). Numerical confirmation of this theoretical
picture has been provided by density matrix renormali-
zation group (DMRG) (Fano et al., 1999) and varia-
tional MC methods (Casula, Sorella, and Senatore, 2006;
Astrakharchik and Girardeau, 2011; Lee and Drummond,
2011). The corresponding lattice systems with commensurate
filling have been numerically shown to display an insulating
ground state, still of Wigner-crystal character, in contradiction
with the bosonization picture in the continuum (Poilblanc
et al., 1997; Capponi, Poilblanc, and Giamarchi, 2000).

C. XXZ models

The Hamiltonian of the long-range XXZ spin chain reads

H ¼
X
i>j

Jijð−σxi σxj − σyi σ
y
j þ σziσ

z
jÞ; ð80Þ

where Jij ≈ r−αij refers to the usual long-range couplings.
Notice that in Eq. (80) all the couplings x-x, y-y, and z-z are
long range. Putting the long-range couplings only in the z-z
directions actually corresponds to having hard-core bosons
with long-range density-density interactions; see Sec. IV.D for
more details.
Conventionally, the solution in the α → ∞ limit is obtained

through (Abelian) bosonization, showing that the universal
properties of the spin Hamiltonian (80) are exactly described
by the effective action of the quantum sine-Gordon model,
which also describes the universality of Oð2Þ quantum rotors
(Sachdev, 1999; Giamarchi, 2004; Fradkin, 2013).
However, such a mapping is not possible in the presence

of long-range couplings. Nevertheless, one can split the
Hamiltonian into long-range and short-range contributions
and then consider the long-range couplings only as a pertur-
bation of the short-range action (Maghrebi, Gong, and
Gorshkov, 2017); see also Bermudez et al. (2017). As a
result, one can consider the low-energy action

S½θ� ¼ K
2πu

Z
dτ dxfð∂τθÞ2 þ u2ð∂xθÞ2g

− g
Z

dτ
Z

dx dy
cos½θðτ; xÞ − θðτ; yÞ�

jx − yjα ; ð81Þ

where K is the so-called Luttinger parameter, u is a velocity
scale, and g is proportional to the strength of the long-range
interactions.
The final picture obtained for the critical behavior of the

action in Eq. (81) is analogous to that discussed for the 2D XY
classical case at finite temperature. In fact, one can define the
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shifted decay exponent σ ¼ α − d ¼ α − 1 and derive the
flow equations

dyk
dt

¼ −ð2 − 4KÞyk;
dg̃k
dt

¼ −
�
2 − σ −

1

2K

�
g̃k; ð82Þ

where yk is the fugacity of topological excitations and g̃k is
the dimensionless long-range coupling; see the discussion in
Sec. III.A.2. The phase diagram resulting from Eqs. (82)
follows in close analogy the one obtained in the classical case;
see Sec. III.A.2 and Giachetti, Trombettoni et al. (2022).
As long as σ > 2, long-range interactions are irrelevant and

the system displays universal BKT scaling. Conversely, for
σ < 2 a new phase emerges at large enoughK, where the long-
range RG coupling g̃ grows indefinitely. As a consequence,
a finite order parameter appears in the x-y plane hσþi ≠ 0

and the system undergoes spontaneous symmetry breaking.
Evidence of this quasiorder to true-order transition was found
in a numerical DMRG calculation. Indeed, computing the
effective central charge of the model, Maghrebi, Gong, and
Gorshkov (2017) were able to show that this quantity changes
from ceff ¼ c ¼ 1, which is typical of the isotropic short-
range sine-Gordon model (Mussardo, 2009), to ceff > 1 at
σ < 2. This change in the effective central charge is compat-
ible with the appearance of a new phase with broken
Lorentzian symmetry (Maghrebi, Gong, and Gorshkov,
2017). Correspondingly, the dynamical critical exponents
deviate from unity and acquire the expected value for
anisotropic long-range field theories z ¼ σ=2. Including the
renormalization of the Luttinger parameter does not alter the
aforementioned picture. The half-chain entanglement entropy
scaling features an anomalous ∝ logðLÞ contribution in the
ordered phase caused by the Goldstone mode (Frérot, Naldesi,
and Roscilde, 2017).
Making a characterization of the long-distance correlation

functions, Maghrebi, Gong, and Gorshkov (2017) showed that
the ordered phase displays a finite correlation length ξ that
diverges exponentially as the critical point with the quasior-
dered phase is reached. This exponential divergence is
reminiscent of the behavior of the correlation length at the
BKT transition (Fradkin, 2013).

D. Hard-core bosons in one dimension

In the section on the Kitaev chain, we discussed the
possibility of also recovering the homogeneous critical point
of the Kitaev chain for α; β < 1 by explicitly introducing
Kac rescaling, which is at variance with existing studies
(Vodola et al., 2014). In this section, we review results on
this matter by explicitly showing that implementing (or not
implementing) the Kac rescaling may significantly alter
the equilibrium phase diagram of a long-range interacting
quantum model.
Restricting our analysis to the one-dimensional case, we

can relate the findings discussed in Sec. IV.C to the study of
hard-core bosons with arbitrary power-law interactions. The
Hamiltonian under consideration reads

H ¼ −t
XL
i¼1

ðc†i ciþ1 þ H:c:Þ þ
X
i>j

VðαÞ
ij ninj; ð83Þ

with the power-law decaying potential including Kac rescaling

VðαÞ
ji−jj ¼

1

N α

V
dαi−j

V > 0: ð84Þ

As in the Kitaev chain study presented in Sec. IV.B, owing to
the quantum nature of the system one can choose to implement
or not implement Kac rescaling according to the physical
situation; see Eq. (47). DRMG simulations have been per-
formed on the Hamiltonian (83) to characterize the phase of the
system. In particular, from the energy of theN particles ground
state E0ðnÞ one can define the single-particle gap

ΔðnÞ ¼ E0ðnþ 1Þ þ E0ðn − 1Þ − 2E0ðnÞ; ð85Þ

which displays radically different behaviors, depending on the
implementation (or nonimplementation) of the Kac rescaling,
as the numerical results reported in Fig. 13 indicate.
In particular, the numerical simulations in the absence

of Kac rescaling predict a finite single-particle gap in the
thermodynamic limit, which is consistent with an insulating
phase for all values of the interaction coupling V of the
potential in Eq. (84). This scenario has been first evidenced by
Capponi, Poilblanc, and Giamarchi (2000) for α ¼ 1 and then
confirmed, in the general α case, by the simulations presented
by Botzung et al. (2021). Conversely, the implementation of

(a)

(b) (d)

(c)

FIG. 13. Comparison of Kac-on and Kac-off finite-size scalings
for hard-core bosons. The scaling of the boson single-particle
energy, as defined in Eq. (85), is displayed as a function of the
system size. The results have been obtained via a DRMG compu-
tation at half filling hnii ¼ 0.5 for α ¼ 1 and different interaction
strengths V (in units of the hopping energy t). The difference
between theKac scaled or unscaled scenario is evident, as in the first
case the single-particle energy always vanishes in the thermody-
namic limit, while in the second case the system remains gapped up
to the thermodynamic limit. Adapted from Botzung et al., 2021.
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Kac rescaling induces metallic behavior in the entire range
0 ≤ α ≤ 1, regardless of the interaction coupling V > 0. This
proves that the restoration of extensive interaction energy
significantly alters the phase diagram of the Hamiltonian (83).
Theoretical understanding of the discrepancy between the

scaled and unscaled theories can be obtained via the Luttinger-
liquid theory (Giamarchi, 2004), which reduces the universal
behavior of the Hamiltonian (83) to that of the continuous
action

HLL ¼ u
2π

Z
dx

	
KðπΠÞ2 þ ð∂xφÞ2

K
−
g
π
cosð4φÞ



; ð86Þ

where the parameters u andK depend on the Fermi velocity vF
and wave vector kF according to

uK ¼ vF; ð87Þ

u
K

¼ vF þ
1

π

XL
r¼1

VðαÞ
r ½1 − cosðkFrÞ�: ð88Þ

It is straightforward to show that the universal physics of the
Luttinger-liquid Hamiltonian (86) is the same as that of the
sine-Gordon model (Malard, 2013), featuring an infinite-order
transition between a line of free fixed points with power-law
bosonic correlations ha†i aji ¼ ji − jj−1=2K and a massive
phase with exponential correlations. Therefore, the free field
theory phase corresponds to the metallic phase of the
Hamiltonian (83). One can show that g is given by

g ¼
XL
r¼1

VðαÞ
r cosð2kFrÞ ð89Þ

and that the metallic phase breaks down beyond the critical
coupling strength Kc, which at half filling corresponds to
Kc ¼ 1=2 when multiple umklapp processes are neglected. In
the nearest-neighbor limit α → ∞ this scenario describes the
metal-insulator transition appearing at Vc ¼ 2t. This transi-
tion lies in the BKT universality, and the breakdown of the
metallic phase is akin to vortex proliferation in the physics of
the 2D XY model.
For α > 1 the introduction of Kac rescaling does not

influence the physics and the picture does not change, apart
from obvious changes in the value of the critical interaction
strength. On the other hand, the aforementioned universal
picture is broken as soon as α ¼ 1 since, in the absence of Kac
rescaling, the first term in the summation of Eq. (88) diverges
in the thermodynamic limit

P
r V

1
r ∼ logðLÞ, leading to a

vanishing K coupling. At the same time, the interaction
coupling remains finite due to the alternating sign in
Eq. (89), and therefore the system lingers in the insulating
phase, as verified with numerical computations (Capponi,
Poilblanc, and Giamarchi, 2000; Botzung et al., 2021).
The situation is reversed by the introduction of Kac

rescaling, which imposes convergence on the first summation
of Eq. (88), regardless of the α value, while it makes the
interaction coupling vanish identically. It does not come as a
surprise, then, that the Kac scaled systems always lie in the

metallic phase. While the Luttinger-liquid theory can repro-
duce the metallic (insulator) character in the presence
(absence) of Kac’s rescaling, the actual features of the phase
in both cases are not completely consistent with the continu-
ous theory prediction. Indeed, the comparison between the
numerical values for the K coupling obtained by the single-
particle correlation functions (K1p), the structure factor (K2p),
and the finite-size scaling of the gap (KΔ ¼ ∂Δ=∂L−1) (Kohn,
1964) do not match each other and especially do not match the
prediction of Luttinger-liquid theory in the Kac rescaled case;
see Fig. 14. Therefore, both the metallic and insulating phases
at α < 1 fail to obey Luttinger-liquid theory (Botzung et al.,
2021). Note that this picture does not apply to the flat
interaction case α ¼ 0, which is analytically solvable and
can be treated separately (Botzung et al., 2021).

E. Soft-core interactions

In this section, we discuss the case of nonlocal interactions
while also addressing cases of competing interactions relevant
for some of the previously introduced physical systems. Given
the rich variety of physical behaviors in these systems, we do
not attempt to cover all the phenomena. Rather, after an
introduction we focus on two main classes of applications: the
clustering phenomena induced by typical nonlocal inter-
actions and the structural phase transitions occurring in
mesoscopic long-range interactions.
The phase structure of ensembles of particles interacting

via nonlocal potentials diverging at the origin has been

(a) (b)

FIG. 14. Luttinger parameter. Thermodynamic limit extrapo-
lation of the Luttinger parameter K given as a function of
the long-range interaction strength V at half filling in the case
α ¼ 0.5 (the same scenario has been obtained for several α
values in the range 0 < α < 1). The three different definitions
for the Luttinger parameter have been compared in both the
(a) Kac unscaled and (b) Kac scaled cases (Botzung et al.,
2021). As a function of α, given a fixed value of the interaction
[V ¼ 1.5 in the inset of (b)], there is no discrepancy between the
Luttinger parameter obtained using a correlation function
K1p ¼ K2p, confirming the metallic character of the system.
Still the conventional Luttinger-liquid theory is not obeyed
since the Luttinger parameter does not fit the gap scaling KΔ.
As seen in the inset of (b), the traditional Luttinger-liquid
picture is recovered for α > 1.
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extensively studied in the last few decades both in the classical
and more recently in the quantum regime (Likos, 2001). A
major problem concerns the study of freezing transitions and
the respective crystal structure, which depends on the steep-
ness of the potential, the dimensionality, and the details of the
external trapping. At the classical level, power-law diverging
potentials of the form VðrÞ ¼ εðσ=rÞα, where ε > 0 is an
energy scale, σ has the dimension of a length, and r is the
interparticle distance, result in the formation of a crystalline
state at arbitrarily high temperatures. Moreover, one can show
that to ensure the stability against explosion (infinite thermo-
dynamic observables, such as the energy per particle or
pressure) one has to impose α > d (Weeks, 1981), with d
the system dimensionality, i.e., to be in the weak long-range or
short-range regime. If this condition is violated, i.e., α ≤ d, a
neutralizing background could be introduced to stabilize one-
component systems such as the one-component plasma (Baus
and Hansen, 1980). Both Kac rescaling and the introduction of
a neutralizing background can be used to perform calculations
and regularize physical quantities, but note that, while Kac
rescaling preserves the functional power-law form of the
interactions, a neutralizing background may introduce screen-
ing effects for charged systems. The study of quantum systems
with density-density power-law interactions without an intrin-
sic length scale provides a quantum counterpart of these
results holding for classical systems, and it was subsequently
investigated (Büchler et al., 2007; Dalmonte, Pupillo, and
Zoller, 2010; Pupillo et al., 2010).
Another interesting class of interactions is the one that

does not diverge at the origin; i.e., it is bounded. In soft-
matter physics, these soft-core potentials arise as effective
interactions between the centers of mass of soft, flexible
macromolecules such as polymer chains, dendrimers, poly-
electrolytes, etc. Indeed, the centers of mass of two macro-
molecules can coincide without violation of the excluded
volume conditions, hence bringing about a bounded inter-
action (Likos et al., 2007). A relevant consequence of the
removal of the on-site divergence is the possibility of over-
lapping particles, which under certain conditions can lead to
clustering. A rigorous criterion holding for a fluid at suffi-
ciently high densities states that a nonattractive and bounded
pair potential should satisfy the following requirements: (i) it
is bounded, (ii) it is positive definite, (iii) it decays fast enough
to zero at large separations that it is integrable and its Fourier
transform exists, and (iv) it is free of attractive parts, i.e., it
does not display clustering. Otherwise, if the Fourier trans-
form of the pair potential has a negative value for a finite
momentum km, then the system can freeze into clustered
crystals with multiple occupied sites with an intercluster
distance ∝ 1=km (Likos et al., 2001). An intuitive way to
understand such a criterion is via the high-density limit of the
structure factor SðkÞ of a fluid, which is a measure of the
susceptibility of the system to a spontaneous spatial modu-
lation having wave number k. Within the framework of the
fluctuation-dissipation theorem, SðkÞ appears to be a pro-
portionality factor between a weak external potential of
wave number k and the associated linear density response.
Employing the Ornstein-Zernike relation (Chaikin and
Lubensky, 1995; Hansen and McDonald, 2013), one finds
that in the high-density limit the structure factor is given by

SðkÞ ¼ 1

1þ ρβVðkÞ ; ð90Þ

where VðkÞ is the Fourier transform of the potential and ρ is
the system density. Hence, a structure factor with a high peak
at some wave number km is a signal of an incipient transition
of the fluid to a spatially modulated system, i.e., a crystal.
Recently Mendoza-Coto, Cenci et al. (2021) presented a
sufficient criterion for the emergence of cluster phases with
low filling (up to two particles per cluster) in an ensemble of
interacting classical particles with generic (also diverging at
the origin) repulsive two-body interactions in the classical
zero-temperature limit valid at intermediate densities. The
basis of the criterion is a zero-temperature comparison of the
energy imbalance between the single-particle lattice and
the first cluster-crystal configuration at small density obtained
by the use of the Fourier transform of a regularized version of
the potential. It determines the relevant characteristics of the
interaction potential that make the energy of a two-particle
cluster-crystal become smaller than that of a simple triangular
lattice in two dimensions. See also Díaz-Méndez et al. (2017)
for an application to the formation of a vortex glass in clean
systems of thin films of “type-1.5” superconductors.
In the quantum regime, it is possible to provide a con-

nection between the emergence of a structural transition to
the structure factor SðkÞ via an analysis of the spectrum of
elementary excitation through the Feynman-Bijl relation
(Feynman, 1954) SðkÞ ¼ ℏ2k2=2mεðkÞ, where εðkÞ is the
energy of excitations at momentum k. A peak at finite
momentum k of SðkÞ is associated with the presence of a
roton minimum in the spectrum εðkÞ. Eventually upon soft-
ening of the roton minimum the system enters the roton
instability. This connection has been realized in experiments;
see O’Dell et al. (2000), O’Dell, Giovanazzi, and Kurizki
(2003), Santos, Shlyapnikov, and Lewenstein (2003), Mottl
et al. (2012), Chomaz et al. (2018), and Hertkorn et al. (2021).
Dilute quantum gases can feature long-range interactions if

the constituent particles have (i) a strong magnetic dipole
moment, (ii) a strong permanent electric dipole moment as in
polar molecules, or (iii) an induced electric dipole moment as
in Rydberg atoms or cavity-mediated systems. Specifically,
quantum gases of atoms with strong magnetic dipole moments
have been extensively employed as an experimental platform
to detect the relation between the microscopic long-range
interactions and the low-energy excitation spectra (Bismut
et al., 2012) and to study crystallization in a quantum many-
body setting (Lahaye et al., 2009; Trefzger et al., 2011;
Baranov et al., 2012; Böttcher et al., 2020). The interplay
among the collisional contact interactions, the magnetic
dipolar interaction, and repulsive quantum fluctuations
(Lima and Pelster, 2011) can give rise to the stabilization
of droplets (Chomaz et al., 2016) or the formation of a
supersolid phase if the droplets share phase coherence in the
ground state (Tanzi, Lucioni et al., 2019; Böttcher et al., 2021;
Norcia et al., 2021; Sohmen et al., 2021; Tanzi et al., 2021), or
to a rich set of patterns out of equilibrium (Parker et al., 2009).
An interesting case is provided by doubly dipolar systems,
magnetic and electric, which may display dimensional cross-
over in the droplet phase, in the absence of an external
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confinement potential (Mishra, Santos, and Nath, 2020). For
sufficiently strong interactions dipolar systems display a roton
instability that triggers the phase transition to a dipolar
supersolid and arrays of isolated quantum droplets (Baillie
et al., 2016; Baillie and Blakie, 2018) or filaments in three
dimensions (Cinti et al., 2017). A similar phenomenology of
self-organized ground-state density modulations was pre-
dicted for a BEC illuminated by a single, circularly polarized
laser beam in the weak saturation limit by Giovanazzi, O’Dell,
and Kurizki (2002). The appearance of a structural transition
via a softening of the roton minimum has also been exten-
sively studied in the context of Rydberg-dressed systems
where an intrinsic soft-core potential can be engineered via
laser coupling to highly excited electronic states. In the
following we focus on results both in the continuum and
on a lattice, leading to pattern formation in the presence of
soft-core pairwise interactions.

1. Quantum phases

We start by considering a system of N bosons interacting
via two-body soft-core potentials of the type

VðrÞ ¼ V0

rα þ Rα
c
; ð91Þ

where Rc is a characteristic length of the pair potential. While
the considered interaction does not straightforwardly occur in
natural crystals, it can be designed in ultracold atom experi-
ments. As commented in Sec. II.C soft-core interactions of the
type described by Eq. (91) can be realized with Rydberg-
dressed atoms where α ¼ 6, for which the Hamiltonian
provides a prototype system for addressing the general
physical picture. In general, this interaction approaches a
constant value V0=Rα as the interparticle distance r decreases
below the soft-core distance Rc and drops to zero for r ≫ Rc.
The limiting case α → ∞ yields the soft-disk model (Pomeau
and Rica, 1994), while α ¼ 3 and 6 correspond to soft-core
dipole-dipole (Cinti et al., 2010) and van der Waals inter-
actions (Henkel, Nath, and Pohl, 2010; Henkel et al., 2012)
that can be realized with ultracold atoms (Maucher et al.,
2011) or polar molecules (Büchler et al., 2007; Micheli
et al., 2007).
The mean-field analysis of the structure factor suggests the

occurrence of spontaneous symmetry breaking at zero temper-
ature in the form of a cluster-crystal phase that occurs at
sufficiently high densities. According to dimensional ana-
lysis, this phase should remain stable in dimensions d > 1.
Moreover, owing to the bosonic symmetry of this single-
component system, in a certain parameter interval of the phase
diagram one might expect the system to display both crys-
talline and superfluid properties, i.e., the simultaneous break-
ing of continuous translational and global gauge symmetry, a
supersolid state. The first mention of such a state goes back to
Gross (1957), who presented a theory for a density-modulated
superfluid emerging from a mean-field model for solid
helium. A microscopic picture of supersolidity was proposed
by Andreev, Lifshitz, and Chester (ALC) (Andreev and
Lifshitz, 1969) and is based on the following two key
assumptions: (i) that the ground state of a bosonic crystal

contains defects such as vacancies and interstitials and (ii) that
these defects can delocalize, thereby giving rise to super-
fluidity. For a review on the subject and the debate on the
observation of this phase in solid helium, see Boninsegni and
Prokof’ev (2012). For a more recent discussion of the
observation of supersolid phases in dipolar systems in both
quasi-one-dimensional and quasi-two-dimensional setups, see
the review by Böttcher et al. (2021).
Soft-core potentials for hard-core bosons or spinless fer-

mions on 1D lattice systems described by the Hamiltonian

H ¼ −t
X
hi;ji

b†i bj þ V
X

i<j;rij<rc

ninj; ð92Þ

where bi (b
†
i ) are hard-core bosonic annihilation (creation)

operators localized on site i and ni ¼ b†i bi is the density in i,
lead to correlated quantum liquid phases that do not fall into
the conventional Luttinger-liquid paradigm. Characteristic
features of these anomalous cluster Luttinger liquids (CLLs)
include a deformation of the critical surface in momentum
space and are evident in correlation functions such as
momentum distributions and structure factors (Mattioli et al.,
2013; Dalmonte et al., 2015) using DMRG and bosonization
techniques. Recently the spinful Fermi-Hubbard model with
both on-site interactions and soft-core (density-density) inter-
actions was investigated (Botzung et al., 2019), generalizing
the Fermi-Hubbard model with a soft-core radius equal to a
lattice site studied by Nakamura (2000). It displays different
types of CLLs and a nontrivial supersymmetric critical line.
The continuum version of this model was studied by Rossotti
et al. (2017), which showed evidence of the CLLs via exact
quantum Monte Carlo simulations. The phase diagram of one-
dimensional soft-core bosons is shown in Fig. 15(a), together
with the excitation spectrum in Fig. 15(b). The acoustic mode
of the CLL phase [Figs. 15(a) and 15(b)] is gapless at q ¼ qc,
corresponding to kF at this density. Above the transition line,
located (with t ¼ 1) at U ¼ Uc ¼ 18 [Fig. 15(b), left panel],
this lowest excitation turns into the rotonic mode [Fig. 15(b),
center and right panels]. A weaker secondary mode also
appears in the strongly correlated liquid phase, in the form of a
secondary roton. This secondary excitation in the Luttinger-
liquid phase can be linked to incipient cluster formation due to
particles being preferentially localized close to either the left
or the right neighbor. The gap of both such Luttinger-liquid
excitations and the anharmonic optical modes of the CLL
phase vanish at the transition.
In the higher-dimensional case in the continuum, a good

description is provided by a mean-field treatment (Pomeau
and Rica, 1994; Henkel, Nath, and Pohl, 2010; Macrì et al.,
2013), which is justified by the application of the first Born
approximation to the two-body scattering problem for the
interaction potential in Eq. (91) (Cinti et al., 2014). In mean-
field theory the system dynamics is described by a nonlocal
Gross-Pitaevskii equation (GPE) that reads

i∂tψðr; tÞ ¼
�
−
∇2

2
þ γ

Z
dr0Uðr − r0Þjψðr0; tÞj2

�
ψðr; tÞ;

ð93Þ
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where r→ r=Rc, UðrÞ¼U0=ð1þr6Þ, and γ ¼ mnU0=ðℏ2R2
cÞ

is a dimensionless interaction strength that determines
the ground-state properties and the excitation dynamics.
Equation (93) has been reported in reduced density units,
which are employed hereafter. The energy can be derived from
the GPE energy functional

H½ψ0�¼
Z

dr
1

2
j∇ψ0j2þ

γ

2

Z
drdr0jψ0ðrÞj2Uðr−r0Þjψ0ðr0Þj2:

ð94Þ
To numerically determine the location of the transition from a
uniform to a modulated ground state, one can first expand the
wave function ψ0ðrÞ in Fourier series as

ψ0ðrÞ ¼
X
Q

CQeiQ·r; ð95Þ

where Q ¼ nb1 þmb2, n and m are integers, and
b1 ¼ ð2π=aÞð1;−1= ffiffiffi

3
p Þ and b2 ¼ ð2π=aÞð0; 2= ffiffiffi

3
p Þ are the

reciprocal lattice basis vectors of a triangular lattice in two
dimensions. One can then substitute Eq. (95) into Eq. (93) and
iteratively solve the nonlinear equations for CQ until con-
vergence is reached (Kunimi and Kato, 2012). This procedure
allows the optimal lattice spacing, the chemical potential, and
the coefficients CQ to be determined. One finds that for low
interaction strengths (γ ≲ 28) the ground state of the system is
in a uniform superfluid phase. Upon increasing the interaction
at γ ≈ 28 one crosses a first-order phase transition to a cluster

supersolid phase characterized by a finite superfluid fraction
and broken translational invariance where particles arrange in
clusters (each cluster contains an average number of particles
according to the density) in a triangular geometry. For even
larger interactions (γ ≳ 38) the ground state preserves tri-
angular symmetry but superfluidity vanishes, resulting in an
uncorrelated cluster crystal.
The validity of the previously mentioned mean-field

theory is limited to the regime of high densities, where the
depletion of the condensate remains small in a wide range of
interaction strengths. At lower densities, one has to resort to
ab initio methods to deal with the development of nontrivial
correlations. Numerical results were obtained from path-
integral Monte Carlo (PIMC) simulations (Ceperley, 1995)
based on the continuous-space worm algorithm (Boninsegni,
Prokof’ev, and Svistunov, 2006) to determine the equilibrium
properties of the system in the canonical ensemble, that is, at a
fixed temperature T and a fixed particle number (of the order
of a few hundred). The properties of the system ground state
are obtained by extrapolating observables, such as the total
energy, superfluid fraction, and pair correlations to the zero-
temperature limit.
In Fig. 16(a) the zero-temperature phase diagram of two-

dimensional soft-core bosons in continuum space is presented.
At small densities R2

cρ ≤ 0.5 one finds two phases: a super-
fluid and an insulating triangular crystal composed of singly
occupied sites, that is, where the number of lattice sites Ns
equals the particle number N. A distinctive consequence of the
soft-core interaction is that the energy cost for forming close
particle pairs is bound by V0. This fact potentially enables the
formation of crystalline phases with N > Ns above a critical
density where doubly occupied lattice sites become energeti-
cally favorable on increasing the lattice constant.
The most interesting behavior takes place around the

superfluid-solid quantum phase transition at N=Ns ¼ 2.
Starting with the insulating solid with doubly occupied lattice
sites, removing a small number of particles does not cause
structural changes of the ground state but rather creates a small
fraction fdef ¼ ð2Ns − NÞ=Ns > 0 of zero-point crystal
defects in the form of singly occupied sites. These defects
delocalize and give rise to a finite superfluid fraction, which is
in agreement with the ALC scenario. Note that the coexistence
of a cluster crystalline structure, breaking translational sym-
metry in equilibrium, and of particle diffusion is explained
here by a thermally activated hopping mechanism, where
particles delocalize without altering the underlying cluster
crystalline matrix (Díaz-Méndez et al., 2015).
The extension of this picture to the lattice case is obtained

by considering the 2D extended Bose-Hubbard model in the
presence of both finite-range soft-core interactions and a hard-
core constraint. On the square lattice, this model already
displays interesting behavior (Pupillo et al., 2008; Masella
et al., 2019). For intermediate interaction strengths 4 ≤ V=t ≤
4.45 the stripes can turn into a superfluid, thus leading to a
self-assembled array of quasi-one-dimensional superfluids.
These bosonic superstripes turn into an isotropic supersolid
with decreasing interaction strength. Notice that the mecha-
nism for stripe formation is based on cluster self-assembling
that differs from recently proposed mechanisms for dipolar

(a)

(b)

FIG. 15. Zero-temperature phase diagram of one-dimensional
soft-core bosons in the continuum and their excitation spec-
trum. (a) Phase diagram of one-dimensional soft-core bosons
(log-log scale). A star marks the critical point between the
Luttinger-liquid and CLL phases for densities commensurate
with two-particle clusters. The long-dashed line corresponds to
the softening of the Bogoliubov roton. (b) Spectra at ρ ¼ 1.37
with decreasing U, compared to Feynman (εFA, thin solid lines)
and Bogoliubov approximations (εB, dotted lines), and the
harmonic chain acoustic mode ωacou (dashed lines). At q ≈ qc,
the secondary mode is fitted by the transverse Ising spectrum
εTI (thick solid). Adapted from Rossotti et al., 2017.
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magnetic atoms (Böttcher et al., 2021), spin-orbit-coupled
BECs (Li et al., 2017), or BECs with cavity-mediated
interactions (Léonard, Morales, Zupancic, Esslinger, and
Donner, 2017). A two-component version of this model in
the square lattice was proposed by Li et al. (2018). Among the
several phases of the model, one can observe that the
components that interact via a soft-core potential can induce
a supersolid phase in the other component. The out-of-
equilibrium dynamics following a temperature quench to
values well below the hopping amplitude (T=t ≪ 1) shows
that together with classical solid phases and supersolids (for
3.8 ≤ V=t ≤ 4.2) a normal glass is observed (for V=t > 5.5)
without any remnant superfluidity (Angelone et al., 2020).
One observes that in a triangular lattice the same system after a
temperature quench displays a superglass and a normal glass
phase (Angelone, Mezzacapo, and Pupillo, 2016). At a high
enough temperature, the glass and superglass turn into a
floating stripe solid and a supersolid, respectively. Similar
models of systems with nonlocal interactions diverging at the
origin leading to glassy phases were recently investigated
in the context of type-1.5 superconductors (W. Wang et al.,
2020), where the particles are pointlike vortices in the
presence of external disorder. The phase diagram of rotating
Rydberg-dressed atoms in magnetic traps was studied
by Burrello, Lesanovsky, and Trombettoni (2020), who
showed, using the Lindemann criterion, that there is an
optimal value of the dressing parameters minimizing the

ratio between the filling factor of the system and its critical
value to enter the Hall regime.
The three-dimensional soft-core model was originally

investigated by Henkel, Nath, and Pohl (2010) and
Ancilotto, Rossi, and Toigo (2013) in the repulsive case
and by Maucher et al. (2011) in the attractive one within a
mean-field approach based on the solution of the 3D GPE
of Eq. (93). In the repulsive isotropic case, the ground-state
phase diagram displays a transition from a superfluid phase
at low density and interactions to a fcc supersolid at
intermediate densities that is induced by a roton instability
similar to the 2D case. For attractive interactions, one can
prove the existence of bright soliton self-bound macroscopic
states that are stabilized purely by the competition of kinetic
and negative mean-field energies.

2. Elementary excitations

The elementary excitations in the mean-field approximation
are found by expanding the GPE energy functional around the
solution ψ0ðrÞ, thereby obtaining the so-called Bogoliubov–
de Gennes equations (Macrì et al., 2013; Macrì, Saccani, and
Cinti, 2014). Denoting the change in ψðr; tÞ by δψðr; tÞ ¼
e−iμt½uðrÞe−iωt − v�ðrÞeiωt� and substituting this expression
into the GPE (93), one finds a set of two coupled linear
differential equations for the Bogoliubov amplitudes uðrÞ and
vðrÞ. The solution of the Bogoliubov–de Gennes equations in
the uniform superfluid phase is analytical,

(a) (b)

(c)

FIG. 16. Two-dimensional soft-core bosons in the continuum and their excitation spectrum. (a) The phase diagram displays the
emergence of SF and normal solid (NS) and SS phases for the varying interaction strengthU and density ρ. The density on the left y axis
was scaled by the soft-core radius Rc. The right axis gives the density in units of the inverse area A ¼ ffiffiffi

3
p ð1.6RcÞ2=2 of the unit cell of

the high-density solid phase, corresponding to the lattice site occupationN=Ns for a given number of particles and lattice sites N andNs,
respectively. For Aρ≳ 1.5, the gray region labeled as NS corresponds to a cluster crystal with N=Ns > 1, as indicated by the gray scale.
The horizontal dashed lines refer to the integer filling. Supersolid phases with different occupation numbers are found between two
hyperbolas defined by R2

cρU ¼ const (dotted lines). At high densities (Aρ ≳ 3.5) they can be understood in terms of density-modulated
superfluids. In contrast, superfluidity within the low-density supersolid lobes emerges from delocalized zero-point defects according to
the ALC scenario. Adapted from Cinti et al., 2014. (b) Left panel: PIMC snapshot illustrating the particle density profile in the SF phase.
Right panel: excitation spectrum in the superfluid phase at γ ¼ 11.86 compared to the PIMC data (circles) of Saccani, Moroni, and
Boninsegni (2012). (c) Left panel: PIMC snapshot illustrating the particle density profile in the SS and NS phases. Right panel: mean-
field spectra (solid, dashed, and dash-dotted lines) at γ ¼ 16.93 (top) and γ ¼ 30.62 (bottom) numerically computed along the three
symmetry directions of the Brillouin zone (see the inset of the bottom panel). The symbols represent the PIMC data of Saccani, Moroni,
and Boninsegni (2012) for longitudinal excitations computed along the direction Γ–M–Γ in the first two Brillouin zones. (b),(c) Adapted
from Macrì et al., 2013.
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ϵq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

2

�
q2

2
þ 2γUq

�s
; ð96Þ

and depends only on the modulus of the excitation vector q.
In Eq. (96) Uq is the Fourier transform of the potential.
Equation (96) can be extended to the case of multibody
interactions (Laghi, Macrì, and Trombettoni, 2017). The
spectrum is linear for small momenta and the slope defines
the sound velocity of the system; for sufficiently large γ (the
specific value depends on the shape of the interaction) one
recovers the usual roton-maxon spectrum that is common in
other physical systems with nonlocal interactions as ultracold
dipolar systems or superfluid 4He. In nonuniform phases,
one has to rely on a numerical solution of the Bogoliubov
equations. One can use a Fourier expansion of the Bogoliubov
amplitudes followed by diagonalization of the corresponding
equations. The results presented in Figs. 16(b) and 16(c) are
obtained using a grid-based solution in real space for the
lowest excitation bands and for q vectors lying in the first
Brillouin zone (Macrì et al., 2013) for a soft-shoulder
potential. Figure 16 shows the excitation energies along the
three symmetry axes of the Brillouin zone corresponding to
the underlying triangular lattice. We find three gapless bands,
i.e., three Goldstone modes, reflecting the symmetries that are
broken in the supersolid phase (Watanabe and Murayama,
2012, 2013). In addition to the superfluid band due to the
breaking of global gauge symmetry, two bands correspond
to longitudinal and transverse phonon excitations of the
two-dimensional lattice. Even in the insulating phase,
Bogoliubov–de Gennes equations yield excellent agreement
for the longitudinal phonon mode with quantum Monte Carlo
calculations based on the method of genetic inversion, which
allows the calculation of the Laplace transform Fðk; τÞ ¼R
dωe−τωSðk;ωÞ of the dynamic structure factor (Saccani,

Moroni, and Boninsegni, 2012). However, this technique is
unable to describe the breakdown of global superfluidity. This
indicates that each droplet maintains a high condensate
fraction despite the apparent lack of global phase coherence
between the crystalline ordered droplets. Proper identification
of each band can be made by computing local fluctuations on
top of the mean-field solution ψ0ðrÞ. One can distinguish the
transverse band from the direction of the fluctuations, which is
orthogonal to the perturbing vector k. The contribution of this
band to phase fluctuations is strongly suppressed. The first
and third bands both contribute to density and phase fluctua-
tions with different weights. The first band is mostly respon-
sible for phase, whereas the third band is mainly responsible
for density fluctuations. Therefore, the lower band can be
associated with the superfluid response of the system, whereas
the other two bands can be associated with the classical
collective excitations of the crystal. The results for a Rydberg-
dressed potential of Eq. (91) were reported by Macrì, Saccani,
and Cinti (2014). They compared the modes obtained by the
solution of the Bogoliubov–de Gennes equations to quantum
Monte Carlo calculations with the inclusion of the transverse
excitation band. Good agreement between the two techniques
has been obtained for all three excitation bands. We comment
that the calculation and the measurement of the excitation
spectra also received significant attention in the context of

dipolar systems, in both trapped superfluid and droplet
phases (Baillie, Wilson, and Blakie, 2017; Petter et al.,
2019), and in supersolids (Tanzi, Roccuzzo et al., 2019;
Petter et al., 2020) in both ground states and excited states
(such as in vortices) (Cidrim et al., 2018; Lee et al., 2018;
Roccuzzo et al., 2020).

F. Structural transitions in mesoscopic long-range systems

The physics of structural transitions in power-law potentials
has been closely studied in prototypical mesoscopic systems
of ions and dipolar systems thanks to its close connection to
experimental realizations. The simplest one-dimensional case
of a chain of singly charged particles confined by a harmonic
potential exhibits a sudden transition to a zigzag configuration
when the radial potential reaches a critical value, depending
on the particle number (Bluemel et al., 1988; Birkl, Kassner,
and Walther, 1992). For charged particles interacting via the
Coulomb potential (α ¼ 1), this structural change is a phase
transition of second order whose order parameter is the crystal
displacement from the chain axis (Schiffer, 1993; Morigi and
Fishman, 2004; Piacente et al., 2004; Fishman et al., 2008),
as was also experimentally observed (Enzer et al., 2000;
Kaufmann et al., 2012). In the quantum limit the universality
of the transition lies in the same class as the ferromagnetic
Ising chain in a transverse field (Porras and Cirac, 2004;
Friedenauer et al., 2008; Shimshoni, Morigi, and Fishman,
2011). The zigzag transition also appears in strongly interact-
ing one-dimensional electrons systems, i.e., quantum wires,
whose Wigner-crystal phase corresponds to a splitting of the
Fermi gas into two chains (Meyer, Matveev, and Larkin,
2007). The zigzag transition has also been related to the
Peierls instability that occurs in antiferromagnetic spin chains
coupled to phonon modes (Bermudez and Plenio, 2012).
As the range of the interactions decreases to α > 2, the

nature of the transition is radically modified due to the
coupling between transverse and axial vibrations (Cartarius,
Morigi, and Minguzzi, 2014), which leads to a weakly first-
order transition in analogy with the case of ferromagnetic
transitions in the presence of phonon excitations (Larkin and
Pikin, 1969; Imry, 1974). This is particularly relevant to the
study of self-organized phases in polar systems (Góral,
Santos, and Lewenstein, 2002; Astrakharchik et al., 2007;
Büchler et al., 2007). In the case of purely dipolar interactions,
detailed QMC calculations at zero temperature investigated
the fluid-solid transition (Moroni and Boninsegni, 2014),
ruling out the microemulsion scenario for any physical
realization of this system, given the exceedingly large pre-
dicted size of the bubbles. In higher dimensions crystals of
repulsively interacting ions in planar traps form hexagonal
lattices and undergo an instability toward a multilayer struc-
ture as the transverse trap frequency is reduced. The new
structure is composed of three planes, with separation increas-
ing continuously from zero. Mapping to a six-state clock
model can be performed, implying that fluctuations split the
buckling instability into two thermal transitions, accompanied
by the appearance of an intermediate critical phase. A BKT
phase is predicted when interfacing the disordered and the
ordered phase (Podolsky, 2016).
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Another important case is the generalization to the case of
multiscale potentials, which was recently studied in the
quantum regimes by Cinti and Macrì (2019), Abreu, Cinti,
and Macrì (2020), and Pupillo, Ziherl, and Cinti (2020),
which, for specific configurations of the pairwise potential,
can support quasicrystalline phases or stripe phases. The
corresponding criteria to realize structural phases in these
more complex potentials have been investigated (Mendoza-
Coto and Stariolo, 2012; Mendoza-Coto, Stariolo, and
Nicolao, 2015; Mendoza-Coto, Barci, and Stariolo, 2017;
Mendoza-Coto, Nicolao, and Díaz-Méndez, 2019; Mendoza-
Coto, Turcati et al., 2021).
Finally, we comment on the presence of smectic, nematic,

and hexatic phases in quantum systems with competing non-
local interactions, which presents several analogies to the case
of classical liquid-crystal systems (Abanov et al., 1995). This
parallel, which derives from the similarity between the aniso-
tropic nature of the stripe order and the elongated shape of
liquid-crystal molecules, allows the application of traditional
results from liquid-crystal systems (de Gennes and Prost, 1993;
Chaikin and Lubensky, 1995) to predict the qualitative, and to
some extent also quantitative, phase behavior of many systems
with modulated order parameters.
In the context of dipolar Fermi gases theory has thus far

been ahead of experiments, with several preliminary theoreti-
cal calculations predicting exotic scenarios, such as p-wave
superfluid (Bruun and Taylor, 2008), supersolid (Lu et al.,
2015), hexatic (Bruun and Nelson, 2014; Lechner, Büchler,
and Zoller, 2014), and Wigner-crystal phases (Matveeva and
Giorgini, 2014). In these systems stripe formation (in the form
of charge-density waves) and nematic phases should also
occur with features analogous to the ones present in low-
temperature long-range solid-state systems.

G. Flat interactions

Systems with flat interactions (α ¼ 0) constitute a unique
setup in the realm of long-range interactions since they often
allow exact analytical solutions of their thermodynamic
and critical properties, at least at large scales. Yet, several
of their qualitative features exactly reproduce the more
complex physics of general strong long-range systems with
0 < α < d. This role makes such systems worthy of a special
focus, and in this section we consider examples of fully
connected quantum systems.

1. Lipkin-Meshkov-Glick model

The LMG, one the most well-known examples of strong
long-range interacting model in the quantum realm, was first
introduced as a simple test for the validity of perturbative
techniques in many-body theories (Glick, Lipkin, and
Meshkov, 1965; Lipkin, Meshkov, and Glick, 1965; Meshkov,
Glick, and Lipkin, 1965). Subsequently the model was applied
to investigating many-body systems, which has allowed for
descriptions in terms of mean-field interactions, such as
coupled BECs (Cirac et al., 1998) and BCS systems
(Dusuel and Vidal, 2005b). The LMG Hamiltonian describes
N spin-1=2-coupled flat ferromagnetic interactions of strength
J=N as

HLMG ¼ −
J
N

X
i<j

ðσxi σxj þ γσyi σ
y
jÞ − h

X
j

σzj; ð97Þ

where γ is the anisotropy parameter. At γ ¼ 0, the former
Hamiltonian corresponds to the fully connected quantum Ising
model in a transverse field.
The key property of any flat interaction problem is the

possibility to rephrase it in terms of the collective variable,
which is the linear combination of all the microscopic
variables. Indeed, in our case one can introduce the collective
spin Sμ ¼

P
N
i¼1σ

μ
i =2, where μ ∈ fx; y; zg. In terms of the new

variables Eq. (97) reads

HLMG ¼ −
2J
N

ðS2x þ γS2yÞ − 2hSz þ
J
2
ð1þ γÞ; ð98Þ

which describes a single self-coupled N-component spin
immersed in a magnetic field. The Hamiltonian HLMG
preserves both the total spin and the total magnetization values

½HLMG; S2� ¼ 0; ½HLMG; Sz� ¼ 0; ð99Þ

where S2 ¼ S2x þ S2y þ S2z . The highly symmetric nature of
this model also makes it particularly amenable to numerical
techniques, making it a prominent test bed for novel algo-
rithms (Albash and Lidar, 2018; Bapst and Semerjian, 2012).
Moreover, it has been used to demonstrate several generic
properties of quantum critical points, such as finite-size
(Botet, Jullien, and Pfeuty, 1982) and entanglement scaling
(Amico et al., 2008; Wichterich, Vidal, and Bose, 2010).
Currently the LMG model is also subject to renewed

interest due to its relation with the well-known Dicke model,
which is often used to describe driven-dissipative experimen-
tal setups, such as the cavity QED experiments outlined in
Sec. II.B. Its Hamiltonian contains spin-1=2 operators coupled
to the cavity electromagnetic field. In analogy with the long-
range Ising model, the Dicke model displays a phase transition
between a disordered ground state with hσxi ¼ ha†ai ¼ 0

and a superradiant one with polarized spins and a finite
photon density inside the cavity ha†ai ≠ 0 (Dicke, 1954).
At equilibrium, it can be rigorously proven that the
Hamiltonian of the Dicke and LMG models are equivalent
in the thermodynamic limit and then produce the same
critical behavior (Gibberd, 1974; Brankov, Zagrebnov, and
Tonchev, 1975).
The contribution of quantum fluctuations to the thermody-

namic observables is washed away in the large size limit
N → ∞ and the total spin S effectively becomes classical
(Bapst and Semerjian, 2012; Chayes et al., 2008). Therefore,
the control parameter for quantum fluctuations in the LMG
model is 1=N, which plays the same role of ℏ in more
traditional single-body problems. In the following, we restrict
to h > 1, as the spectrum of the model is symmetric under
inversion h → −h, and to ferromagnetic interactions J > 0. A
discussion on the physics of the antiferromagnetic problem
J < 0 and its relation to the supersymmetric formalism was
given by Vidal, Mosseri, and Dukelsky (2004). For ferro-
magnetic interactions J > 0, the ground state always belongs
to the maximum spin S ¼ N=2 subsector of the Hilbert space.
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Apart from the fully isotropic limit γ ¼ 1, the LMG
Hamiltonian cannot be analytically solved (Botet and Jullien,
1983). Nevertheless, the LMG Hamiltonian is integrable and
can be solved via an algebraic Bethe ansatz (Pan and Draayer,
1999) or by mapping it to the Richardson-Gaudin Hamiltonian
(Dukelsky, Pittel, and Sierra, 2004). Here we follow a simpler
route and employ the 1=N expansion. We first characterize the
critical behavior employing the mean-field approximation using
the noninteracting variational ansatz obtained via the external
product of the single spin states

jψ li ¼ cos

�
θl
2

�
e−iφl=2j↑i þ sin

�
θl
2

�
eiφl=2j↓i: ð100Þ

Since the system is translationally invariant, we can assume
that ðθl;φlÞ ¼ ðθ;φÞ ∀ l, corresponding to the spin expect-
ation values

S ¼ N
2
ðsin θ cosφ; sin θ sinφ; cos θÞ; ð101Þ

which coincide with the classical spin value. Owing to the
inversion symmetry of the model Sx → −Sx, one can select
φ ¼ 0 and J ¼ 1 without loss of generality. From the energy
minimization within the mean-field ansatz, one obtains the
explicit expression

θ ¼
	
0 if h ≥ 1;

arccosðhÞ if 0 ≤ h ≤ 1
ð102Þ

for the angle θ. The semiclassical equations of motion for the
total spin operators yield the system gap in the thermodynamic
limit (Botet and Jullien, 1983)

Δ ¼
	
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh − 1Þðh − γÞp
if h ≥ 1;

0 if 0 ≤ h ≤ 1.
ð103Þ

A close inspection of Eqs. (100)–(103) is all that one needs
to comprehend the quantum phase transition in the LMG
problem. At h ≥ 1 only the solution φ ¼ θ ¼ 0 exists, and the
system is fully magnetized along the magnetic field direction
hSzi ¼ 1. As h decreases below hc ¼ 1, a two state appears
with θ ≠ 0 and ϕ ¼ 0; π and the in-plane magnetization
continuously increases in the interval ½0; 1�, while the trans-
verse magnetization vanishes only at h ¼ 0. Accordingly,
the gap Δ between the ground and the first excited state,
which is finite at h > 1, smoothly vanishes as h → 1þ with
scaling behavior characterized by the critical exponent
zν ¼ 1=2. Note that the mean-field scenario can be applied
only to the thermodynamic limit, while it cannot capture
finite-size fluctuations. Indeed, in the ordered phase h < 1

the system gap Δ cannot vanish at a finite size, since
quantum fluctuations will lift the degeneracy and produce
an exponentially vanishing gap ΔN ∝ expð−NÞ (Newman and
Schulman, 1977).
To partially capture finite-size fluctuations, it is convenient

to perform the Holstein-Primakoff expansion (Holstein and
Primakoff, 1940) for the N-spin variable S around the mean-
field expectation value (Botet and Jullien, 1983; Dusuel and

Vidal, 2005a). One first rotates the total spin in order to align
it with the mean-field magnetization, introducing the new
variable S̄ ¼ RðθÞS, with the rotation matrix

RðθÞ ¼

0
B@

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

1
CA; ð104Þ

where θ is given by Eq. (102). The realigned spin variables can
then be expanded using the equivalence

S̄z ¼
N
2
− a†a; ð105Þ

S̄þ ¼ S̄x þ iS̄y ¼
ffiffiffiffi
N

p �
1 −

a†a
N

�
1=2

a; ð106Þ

S̄− ¼ S̄x − iS̄y ¼
ffiffiffiffi
N

p
a†
�
1 −

a†a
N

�
1=2

; ð107Þ

where the boson operators ½a; a†� ¼ 1 have been introduced.
This excitation characterizes a small depletion of the mean-
field spin expectation due to the finite-size quantum fluctua-
tions. At leading order in 1=N only quantum corrections up to
order 1=N have to be retained, yielding a quadratic bosonic
Hamiltonian that can subsequently be diagonalized using a
Bogoliubov transformation a → b (Dusuel and Vidal, 2005a).
The net result is

HLMG ¼ NE0 þ e0 þ ωb†bþO

�
1

N

�
; ð108Þ

such that we have reduced the many-body problem in Eq. (97)
to an effective zero-dimensional one that is described by a
single harmonic oscillator mode. This is the peculiarity of
several fully connected systems: the actual spectrum in the
thermodynamic limit is constituted not of a continuum
dispersion relation, but rather of a single quantum mode whose
contribution to the thermodynamic quantities is increasingly
washed out as it approaches the thermodynamic limit.
The quantities appearing in Eq. (108) can easily be written

in terms of the internal parameter and the average magneti-
zation m ¼ 2hSzi=N. The internal mean-field energy main-
tains the same form in both the symmetric and broken phases
E0 ¼ ð−1 − 2hmþm2Þ=2, while the next-to-leading energy
correction reads

e0 ¼
(
−hþ ð1þ γÞ=2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh − 1Þðh − γÞp

for h > 1;

−ð1 − γÞ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − h2Þð1 − γÞ

p
for h < 1;

ð109Þ

and the dynamical gap

ω ¼
(
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh − 1Þðh − γÞp
for h > 1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − h2Þð1 − γÞ
p

for h < 1.
ð110Þ
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Notice that ω is not the actual gap Δ of the system, at least not
in the ordered phase, where the minimal gap occurs between
the two classical ground states with different symmetry. It
instead represents the minimal gap between two states con-
nected by the Hamiltonian dynamics.
As expected, the dynamical gap in Eq. (110) vanishes

approaching the transition with a dynamical critical exponent
zν ¼ 1=2, which is in agreement with the semiclassical
prediction for the disordered phase; see Eq. (103). The
exponent is symmetric on both sides of the transition and
independent of the value of γ ≠ 1, proving that the anisotropy
plays no role in the universal behavior. The only exception is
γ ¼ 1, where the system acquires continuous rotation sym-
metry, giving rise to a gapless ordered phase and a critical
exponent zν ¼ 1; an analytical solution of the problem is
available in this case (Dusuel and Vidal, 2005a).

The in-plane magnetization hSxi=N ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2

p
is consis-

tent with a critical exponent β ¼ 1=2. Similar arguments can
be used to show that all the thermodynamic critical exponents,
i.e., those associated with global thermodynamic quantities,
are in agreement with mean-field theory. The question
becomes more complex, however, if we consider the scaling
of spatial-dependent quantities such as the correlation length.
Conventionally, the critical exponent ν is associated with the
scaling of the correlation length ξ at a quantum critical point
ξ ∝ λ−ν, where λ is the control parameter. This critical
exponent is particularly important since it relates to the
thermodynamic singularities of any critical quantity, with
its finite-size scaling close to the transition (Fisher, 1967;
Fisher and Barber, 1972). However, in a strong long-range
system, and particularly in a fully connected one, no concept
of length, or especially of correlation length, exists.
However, even in the absence of any definition of length,

it is possible to define a correlation number that diverges
close to the critical point Nc ∝ jh − 1jν� . In general, this
correlation number will be proportional to the correlation
volume Nc ∝ ξd and, assuming that the scaling has to remain
the same for all systems in the mean-field regime, one obtains
the estimate

ν� ¼ ducν: ð111Þ

The quantity duc represents the upper critical dimension of
the corresponding nearest-neighbor model (Botet, Jullien, and
Pfeuty, 1982). Since the LMG Hamiltonian (97) corresponds
to that of the quantum Ising model in a transverse field with
duc ¼ 3, the correlation number exponents read ν� ¼ 3=2.
This scaling theory, which was introduced by Botet, Jullien,

and Pfeuty (1982), provides the exact value for the finite-size
scaling of the dynamical gap ωN , which can be obtained by
incorporating higher-order 1=N corrections into Eq. (110)
via the continuous unitary transformation approach, yielding
ωN ≈ N−1=3 (Dusuel and Vidal, 2004, 2005a), which is in
perfect agreement with the generalized finite-size scaling
theory ωN ≈ N−zν=ν�. Despite this apparent simplicity, it has
been shown that for large enough anisotropy parameters the
spectrum of the LMG model may not converge to the
prediction of Eq. (108), due to the influence of two competing
semiclassical trajectories (Ribeiro, Vidal, and Mosseri, 2007).

More generally the convergence to the “simple” thermo-
dynamic limit solution in fully connected models has been
shown to present several anomalous features (Colonna-
Romano, Gould, and Klein, 2014). In particular, it has been
shown that the actual picture for the finite-size scaling of
many-body systems above the upper critical dimension duc is
actually more complicated than that depicted by Botet, Jullien,
and Pfeuty (1982) since the zero and fluctuation modes
present different scaling behaviors, and therefore different
quantities may display different finite-size corrections
depending on the dominating contribution to that quantity
(Flores-Sola et al., 2016).

2. Self-organization phase transition in cavity QED

The LMG model can effectively be realized using cavity
QED platforms, whose self-organization transition can be
described by a pure fully connected spin Hamiltonian upon
elimination of the cavity field in Eq. (14). There the cavity-
mediated long-range interaction [Eq. (13)] favors for V < 0 a
density modulation of the quantum gas and induces density
correlations with a spatial periodicity λ along the pump and
cavity directions. These density correlations are the collective
elementary excitations of the system with energy ℏωs and
correspond to the creation and annihilation of correlated
pairs of atoms in the momentum mode jp1i. However, the
kinetic energy term in Eqs. (10) stabilizes the gas against this
modulation.
Only if the long-range interaction becomes sufficiently

strong can the gain in potential energy overcome the cost in
kinetic energy, and the system undergoes a quantum phase
transition to a self-ordered state (Nagy, Szirmai, and
Domokos, 2008; Piazza, Strack, and Zwerger, 2013). At this
point, the energy ℏωs of the collective excitation has softened
such that the mode jp1i can be macroscopically populated
without energetic cost. The atomic density acquires a checker-
board modulation that efficiently scatters photons into the
resonator, and the atoms can further lower their energy in the
emerging optical interference lattice potential.
A few years after self-organization of a thermal gas coupled

to an optical cavity had been observed (Black, Chan, and
Vuletić, 2003), the phase transition to a self-ordered state
of a bosonic quantum gas coupled to a cavity was realized
(Baumann et al., 2010). While for a thermal gas the threshold
is set by thermal density fluctuations, for a quantum gas the
critical point scales with the recoil energy. A BEC of 105 87Rb
atoms is harmonically trapped at the location of a single mode
of a high-finesse optical cavity. The transverse pump power is
linearly increased over tens of milliseconds. The experimental
signature for self-ordering of a BEC, where the motion is
quantized, is twofold as shown in Fig. 17: The cavity photon
occupation rises abruptly when the critical interaction is
reached, as can be observed via the light field leaking from
the cavity. In addition, the momentum state distribution, as
observed from absorption images after ballistic expansion,
changes from occupying only the zero-momentum state jp0i
below the critical point to a superposition of the momentum
states jp0i and jp1i above the critical point. In real space, this
momentum state occupation corresponds to a checkerboard
order of the atomic density. When the transverse pump power
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is ramped down again, the normal phase with an empty cavity
and macroscopic occupation of only the single momentum
state jp0i is recovered. As discussed in Sec. II.B.3, the self-
organization phase transition can be mapped to the Dicke
phase transition.
The mode softening preceding the phase transition (Horak

and Ritsch, 2001; Nagy, Szirmai, and Domokos, 2008; Öztop,
Müstecaplıoğlu, and Türeci, 2013) has been studied using a
variant of Bragg spectroscopy (Mottl et al., 2012). The cavity
is seeded with a weak coherent field at a variable detuning
with respect to the transverse pump frequency. If the detuning
matches the soft mode frequency ωs, energy and momentum
conservation are fulfilled and the momentum mode jp1i
becomes macroscopically occupied by the probing process.
At the same time, photons from the transverse pump are
scattered into the cavity. The measured mode frequency ωs as
a function of transverse pump power is displayed in Fig. 18.
For the case of negative long-range interaction V < 0, a
clear mode softening toward the critical point of the self-
organization phase transition is observed. In contrast, a
positive long-range interaction V > 0 is leading to a mode
hardening without any phase transition.

Also in the case of a sideband-resolving cavity κ < ωs,
a self-organization phase transition takes place. However,
owing to the increased photon lifetime, the intracavity field
acquires a retardation with respect to the atomic evolution, and
the effective cavity-mediated atom-atom interaction can no
longer be captured in the simple form of Eq. (13) (Klinder,
Keßler, Bakhtiari et al., 2015). In this case, it is more
appropriate to use the coupled equation of motion. As we
discuss in Sec. V.C.4, the sideband resolved regime allows one
to study quench experiments that can be interpreted with a
Kibble-Zurek model.
The long-range interaction can be engineered to act on

more than the atomic density. By exploiting the atomic vector
polarizability or Raman schemes coupling different atomic
ground states, an effective long-range interaction acting on
the pseudospin can be realized (Camacho-Guardian, Paredes,
and Caballero-Benítez, 2017; Kroeze et al., 2018; Landini
et al., 2018).

3. Discrete and continuous symmetry breaking

The Dicke Hamiltonian (14) is invariant under the parity
transformation ða; S�Þ → ð−a;−S�Þ. Accordingly, at the
phase transition to the self-organized phase a discrete Z2

symmetry is broken, where the atomic density localizes on
either the even or odd sites of the emerging checkerboard
lattice and the cavity light field phase locks to either 0 or π
with respect to the pump field phase. Site-resolving real-
space imaging of the atomic system has not yet been
achieved. However, this discrete symmetry breaking has been
observed in the phase of the light field leaking from the
cavity using a phase-sensitive heterodyne detection system
(Baumann et al., 2011).
The discrete nature of this symmetry breaking is dictated

by the boundary conditions of the single cavity mode. The
symmetry can, however, be enhanced to a continuous Uð1Þ
symmetry, as had been originally discussed for highly

(a)

(d)

(b) (c)

FIG. 17. Signatures of atomic self-organization in an optical
cavity. (a) The transverse pump power (dashed line) is gradually
increased while the mean intracavity photon number (solid line)
is monitored. After the sudden release of the atomic cloud and its
subsequent ballistic expansion, absorption images are made for
pump powers corresponding to transverse pump lattice depths of
(b) 2.6Er, (c) 7.0Er , and (d) 8.8Er. (d) Self-organization is
manifested by an abrupt buildup of the cavity field accompanied
by the formation of momentum components at ðpx; pyÞ ¼
ð�ℏk;�ℏkÞ. The weak momentum components at ð0;�2ℏkÞ
result from loading the atoms into the one-dimensional standing-
wave potential of the transverse pump laser. From Baumann
et al., 2010.

FIG. 18. Excitation spectrum across the self-organization phase
transition. The measured resonance frequencies Es ¼ ℏωs, which
were obtained from atomic and photonic signals, are shown in
blue and red, respectively, for positive (open circles) and negative
interaction strengths (solid circles) V. Gray shading indicates
the theoretical prediction, including experimental uncertainties.
From Mottl et al., 2012.
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degenerate multimode cavities (Gopalakrishnan, Lev, and
Goldbart, 2009). In addition, the self-organization of a
transversely driven BEC in the combined fields of two
degenerate single-mode cavities crossing under an angle of
60° allows an approximate continuous Uð1Þ symmetry to be
engineered, as was demonstrated experimentally (Léonard,
Morales, Zupancic, Esslinger, and Donner, 2017). Photons
from the pump field were scattered into both cavities, and the
atoms self-organized in the resulting interference potential.
This system is invariant with respect to redistributing photons
between the two modes, where the interference lattice poten-
tial breaks a continuous spatial symmetry depending on the
relative photon occupation of the two cavities. The unique
real-time access to the light field leaking from the optical
cavities allowed one to identify the fundamental collective
excitations of the underlying Uð1Þ symmetry as a phase and
an amplitude mode (Léonard, Morales, Zupancic, Donner,
and Esslinger, 2017). The continuous symmetry can be redu-
ced to a Z2 ⊗ Z2 symmetry if atom-mediated scattering
between the two cavities is present (Lang, Piazza, and
Zwerger, 2017; Morales et al., 2018). Extending the scheme
to multiple crossing cavities, higher symmetries such as a
continuous SOð3Þ rotational symmetrymight also be realizable
(Chiacchio and Nunnenkamp, 2018). Furthermore, a continu-
ous symmetry can be broken if two counterpropagating modes
of a ring cavity are instead employed, as was proposed for a
transversally driven BEC (Mivehvar et al., 2018), and realized
for a BEC coupled to a ring cavity where two longitudinal
modes were simultaneously driven. This configuration can be
regarded as the minimal model of a supersolid state of matter
(Schuster et al., 2020), which was discussed in Sec. IV.E.

4. Criticality of the self-ordering phase transition

The critical behavior of the single-mode self-organization
phase transition corresponds to that of the open Dicke model,
falling into the universality class of the mean-field classical
Ising model (Emary and Brandes, 2003; Nagy et al., 2010;
Kirton et al., 2019). The constant flow of energy from the
pump laser to the cavity leakage causes additional fluctuations
of the cavity field and, accordingly, larger density fluctuations.
The cavity dissipation thus makes the system leave its ground
state and irreversibly evolve into a nonequilibrium steady
state. The global-range interaction instead turns the phase
transition into a quantum bifurcation in a zero-dimensional
system, such that there is no notion of a divergent correlation
length. However, one can investigate the critical exponent of
the fluctuations of the order parameter. While a mean-field
exponent of 1=2 is expected in the closed system (see the
discussion in Sec. IV.G.1), the prediction for the open system
is 1, as given by the vanishing of the imaginary part of the
spectrum at the critical point (Nagy, Szirmai, and Domokos,
2011; Öztop et al., 2012). The open system thus effectively
behaves thermally. Note that the actual steady state of the
system might not be reached in experiments, since close to the
critical point the quasinormal modes vanish, leading to a
critical slowdown. An analysis going beyond the mapping to
the open Dicke model and also considering a finite temper-
ature of the quantum gas produces an interesting picture of the
interplay between the self-organizing phase transition and

Bose-Einstein condensation (Piazza, Strack, and Zwerger,
2013; Piazza and Strack, 2014).
Monitoring the light field leaking from the cavity during

self-organization gives real-time access to the order parameter
of the phase transition; see Eq. (11). This allows one to not
only measure the mean density modulation of the atomic
cloud but also detect the fluctuations of the system (Brennecke
et al., 2013). Heterodyne detection of the light field provides
the low-energy spectrum of the system, which can be directly
converted into the dynamical structure factor of the gas at the
wave vector of self-organization (Landig et al., 2015); see
Figs. 19(a)–19(d). The observed spectrum features a carrier at
zero frequency with respect to the pump laser frequency and
sidebands at positive and negative frequencies. The sidebands
are signatures of density fluctuations, indicating either the
creation or the annihilation of quasiparticles. Approaching
the critical pump power Pcr, the mode softening is visible in
the vanishing sideband frequency. At the critical point, a
strong coherent field emerges at the carrier frequency, indicat-
ing the buildup of a static coherent density modulation. The
amplitude of the carrier and the integrated sidebands con-
verted into density modulation and density fluctuations,
respectively, is displayed in Fig. 19(f). While the density
modulation changes by more than 4 orders of magnitude, the
density fluctuations diverge toward the critical point. From
these data, critical exponents of 0.7ð1Þ and 1.1ð1Þ for the
fluctuations of the order parameter can be extracted on the
normal and self-organized sides, respectively. The sideband
asymmetry visible in Figs. 19(b)–19(d) can be used not only
to determine the occupation of the quasiparticle mode but also
to extract the irreversible entropy production rate (Brunelli
et al., 2018) when the system crosses the phase transition.

V. DYNAMICAL CRITICAL BEHAVIOR

In this section, we review the multifaceted aspects of
dynamical regimes in quantum long-range systems, emphasiz-
ing as much as possible universal behaviors. Given the vast
amount of literature on the subject, we have arranged the
material by presenting first a discussion of metastability, a
hallmark of long-range systems, followed by a presentation of
results on the Lieb-Robinson bound, the Kibble-Zurek mecha-
nism, dynamical phase transitions, and confinement in quan-
tum long-range systems. Miscellaneous material is presented
in Sec. V.F.

A. Metastability and diverging equilibration times

Diverging equilibration times in the thermodynamic limit
are a well-known characteristic of long-range interacting
systems. Recently the absence of equilibration of strong
long-range quantum systems has been directly linked to their
peculiar single-particle spectrum, which leads to a violation of
Boltzmann’s H theorem and the appearance of finite Poincaré
recurrence times in the thermodynamic limit (Defenu, 2021).
These observations are in agreement with the aforementioned
properties (see Sec. I.B), which are common to thermody-
namically large long-range systems and finite local ones, such
as the impossibility to fully disregard boundary over bulk
phenomena (Barré and Gonçalves, 2007; Latella et al., 2015),
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the existence of concave entropy regions (Ispolatov and
Cohen, 2001), or the presence of a macroscopic energy gap
between the ground state and the first excited state (Gupta,
Campa, and Ruffo, 2012a, 2012b).
The key point is that the spin-wave spectrum of the systems

does not become continuous in the thermodynamic limit,
as the eigenvalues of a long-range coupling matrix can be
shown to remain discrete even in the infinite component limit,
forming a pure point spectrum (Last, 1996) similar to the one
appearing in strongly disordered systems (Thouless, 1972;
Fröhlich and Spencer, 1983; Simon, Taylor, and Wolff, 1985;
Scardicchio and Thiery, 2017). A discussion of the spectral
discreteness of long-range couplings in the thermodynamic
limit was presented by Defenu (2021) and employed to justify
the observation of diverging equilibration times in a long-
range Ising model, quenched across its quantum critical point
(Kastner, 2011).
The first evidence of QSSs in quantum systems has been

described in the prototypical example of the long-range Ising
chain; see Eq. (61). The QSSs have been shown to appear for
quenches starting well inside the paramagnetic phase in the
h → þ∞ limit and terminating in deep in the ferromagnetic
phase at h ¼ 0. The system is then prepared in the trans-
versally polarized ground state and evolved according to the
classical ferromagnetic Hamiltonian in the absence of a
transverse field. It follows that the expectation of the
global operator mz ¼ hPiσ

z
i i=N with the Hamiltonian (61)

evolves from the initial value limt→0 mz ¼ 1 to the equilibrium
expectation limt→∞ mz ¼ 0 if the system actually equilibrates;
see Fig. 20(a). These observations may be extended to any

choice of the initial and final magnetic fields hi and hf using
the Kitaev chain representation of the Ising model given in
Eq. (66); see the discussion in Sec. IV.B.3.
Recall that for 1 < α < 3 the correspondence between the

fermion and spin Hamiltonians in, respectively, Eqs. (61)
and (66) is not exact. Yet, the existence of the quantum critical
points is preserved and the equilibration scenario for the two
systems is analogous (Essler, Evangelisti, and Fagotti, 2012;
Van Regemortel, Sels, and Wouters, 2016). The analogy
between the transition of the Ising and Kitaev chain was
discussed in Sec. IV.B.3 and by Jaschke et al. (2017) and
Defenu, Enss, and Halimeh (2019). Within the Kitaev chain
perspective, the critical point at h ¼ hc ¼ 1 is signaled by the
property limk→0�θk ¼ �π=2, where the critical Bogoliubov
quasiparticles are constituted by an equal superposition of
electrons and holes (juk¼0j ¼ jvk¼0j ¼ 1=

ffiffiffi
2

p
). This phenome-

non is often interpreted as a Dirac mode resulting from the
superposition of two Majorana edge states (Fradkin, 2013).
In the strong long-range regime (0 < α < 1) and in the

presence of the Kac rescaling a full characterization of the
quantum phase transition in the Kitaev chain has not yet been
attempted. Indeed, no clear continuum limit can emerge for
this regime in the thermodynamic limit due to the spectral
discreteness evidenced by Defenu (2021). Nevertheless, the
existence of the quantum critical point can also be inferred in
the strong long-range regime by analyzing the k → 0 limit of
the Bogoliubov angles.
The equilibration of a weak long-range Kitaev chain after a

sudden quench of the chemical potential h is summarized in

FIG. 19. Critical behavior of the self-organizing phase transition. (a) Power spectral density (PSD) of the light field leaking out of the
cavity shown as a function of frequency shift ω with respect to the pump laser frequency and the relative transverse pump power P=Pcr.
Two sidebands are visible, corresponding to the incoherent creation (ω < 0) and annihilation (ω > 0) of quasiparticles. The energy of
these quasiparticles vanishes toward the critical point. At the phase transition, a strong coherent field at the pump frequency appears
(ω ¼ 0). (b)–(d) Normalized dynamic structure factor for three different values of P=Pcr [see the dashed lines in (a)]. While the positions
and widths of the sidebands give direct access to the energy and lifetime of the quasiparticles, the sideband asymmetry can be used to
determine the occupation of the quasiparticle mode. (e) Sketch of the measurement setup. The atoms coupled to the cavity mode are
illuminated by the transverse pump field at frequency ωi, while the frequency emitted from the cavity is ωf. A heterodyne detection
system gives access to the PSD shown as a function of ω ¼ ωi − ωf in (a). (f) The data can be used to extract the divergent density
fluctuations and the emerging density modulation. Inset: Density fluctuations shown on a double logarithmic scale, which allows the
critical exponents of 0.7ð1Þ and 1.1ð1Þ to be determined on the normal and self-organized sides, respectively. From Landig et al., 2015.
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the upper subpanel of Fig. 20(b). The initial state of the system
is the ground state at h ¼ hi ≫ 1, deep in the normal phase,
where mz ≈ 1. This initial state is evolved according to
the ferromagnetic Hamiltonian with h ¼ hf < 1. The explicit
description of the quench dynamics solution was given by
Defenu, Enss, and Halimeh (2019). Note that in the language
of Fermi quasiparticles the magnetization reads

mz ¼ 1 −
2

N

X
i

hc†i cii. ð112Þ

From the long-time dynamics of the observable in
Eq. (112), it is evident that the equilibration in the weak
long-range Kitaev chain [see the upper panel in Fig. 20(b)]
mimics the case of the long-range Ising model with α ¼ 2

[see the upper panel in Fig. 20(a)]. The initial value of the
observable rapidly equilibrates to a long-time expectation
that becomes time independent in the long-time limit. In other
words, any observable AðtÞ relaxes to equilibrium if it
approaches its Cesaro’s average

Ā ¼ lim
T→∞

hAiT; ð113Þ

with

h� � �iT ¼ 1

T

Z
T

0

� � � dt.

Moreover, the dynamical fluctuations, which are quantified by
the parameter

QAðTÞ ¼ hjAðtÞ − Āj2iT; ð114Þ

must disappear in the long-time limit

lim
T→∞

QAðTÞ ≈ 0: ð115Þ

Equation (115) is the conventional way to define equilibration
in closed quantum systems (Reimann, 2008; Linden et al.,
2009; Short, 2011; de Oliveira et al., 2018).
For α > d the result limT→∞ Qmz

ðTÞ ¼ 0 can be exactly
proven for most quadratic models as well as for the Ising
model for sudden quenches from hi ¼ þ∞ to hf ¼ 0 thanks
to the Riemann-Lebesgue lemma (Hughes-Hallett et al.,
2008). In other words, equilibration occurs in these systems
as the Poincaré recurrence times diverge for N → ∞. This
phenomenon is evident in the numerical computation of the
mz expectation value for both the Ising and the Kitaev chain
with α > 1; see the upper panels in Figs. 20(a) and 20(b).
This picture is radically altered in the α < 1 case; see the

bottom panels in Fig. 20(b). Indeed, the dynamical evolution
of the observable mz persists near its initial value for longer
times as the system size is increased, which is in agreement
with the τeq ∝ Nβ expectation coming from classical systems
(Campa, Dauxois, and Ruffo, 2009). The β ¼ 1=2 scaling
observed in the long-range Ising model appears to be related

FIG. 20. Evidence of QSSs in the long-range Ising chain, the Kitaev chain, and the one-dimensional spherical model, from left to right,
respectively. In each panel the top subpanel displays the case of weak long-range interactions α > 1, where roughly the same
equilibration properties of the nearest-neighbor case are found. Conversely, the bottom subpanels show the case of strong long-range
interactions α < d, where dynamical fluctuations survive in the t → ∞ limit. (a) Transverse magnetization of the long-range Ising model
[see the Hamiltonian (61)] after a quench from the fully paramagnetic state at h → ∞ deep into the ordered phase at h → 0. While the
observable expectation equilibrates at long times for α ¼ 2.0 (top subpanel), it persists in its initial value for increasingly long times as
the system size increases for α ¼ 0.5 (bottom subpanel); see the discussion given by Kastner (2011). A similar signature is noticed in the
case of the Hamiltonian (67), i.e., the Kitaev chain representation of the Ising model, where the dynamics can be exactly solved for any
global quench across the phase boundary. (b) Evolution of the spatial and quantum average of the σz in Eq. (62) for a long-range Kitaev
chain with α≳ 12 (top subpanel) and α ¼ 0.4 (bottom subpanel for hi ≫ 1 to hf ¼ 0.4). (c) Lack of equilibration also appears for
noncritical quenches, as shown for the potential energy U of a quantum spherical model with long-range interactions. Dynamical
fluctuations reduce as size increases for decay rates α > 1; see the upper subpanel, where the α≳ 12 case is shown for increasing system
sizes N ∈ ½29; 210; 211; 212� from bottom to top. Conversely, dynamical fluctuations tend to increase for α < 1, as shown in the lower
subpanel for α ¼ 0.2, again displayed from bottom to top; see Defenu (2021).
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with the scaling of Poincaré recurrence time due to the discrete
spectrum of long-range systems (Kastner, 2011; Defenu,
2021). Note also that the scaling of timescales in long-range
systems is influenced by the Kac rescaling, and that these
observations may be altered by modifying the regularization
procedures (Bachelard and Kastner, 2013).
While the phenomenologies of the Kitaev and Ising models

are analogous, the quantitative features of the dynamical
evolution display some peculiar differences. In particular,
in the long-range Ising model, no oscillatory fluctuations are
present, while they occur in the Kitaev chain. These
differences are probably due to the differing quench bounda-
ries between the two models. Despite these details, it is
evident that the curves in the lower panels of Figs. 20(a)
and 20(b) will both yield limT;N→∞ Qmz

ðTÞ ≠ 0.
The appearance of the QSSs has often been connected to the

scaling of equilibration times of critical observables such as
the magnetization (Antoni and Ruffo, 1995; Mukamel, Ruffo,
and Schreiber, 2005; Campa, Dauxois, and Ruffo, 2009).
However, signatures of persistent time fluctuations in classical
systems have also been found in generic thermodynamic
observables, as for the evolution of internal energy in systems
of particles with attractive power-law pair interactions
(Gabrielli, Joyce, and Marcos, 2010). The same picture can
also describe many-body quantum systems. Indeed, persistent
dynamical fluctuations are also observed for noncritical
quantities or quenches, as occurs for the internal energy of
the spherical model; see Fig. 20(c).

B. Lieb-Robinson bound

An understanding of the maximum speed at which infor-
mation propagates in many-body systems allows one to put
tight bounds on fundamental questions, such as how fast a
quantum system can thermalize (Calabrese and Cardy, 2006)
or how much quantum information can be transmitted through
a quantum channel (Bose, 2007). In short-range interacting
systems the Lieb-Robinson bound predicts a constant

maximal velocity that confines the information to a linear
effective light cone (Lieb and Robinson, 1972). Long-range
interactions substantially alter this picture since the traditional
definition of group velocity does not apply to their case.
Accordingly, the spreading of correlations, information, or
entanglement speeds up dramatically, leading to a wide range
of exotic dynamical properties, which may be exploited for
fast information transmission, improved quantum state prepa-
ration, and similar applications. Thus, it is not surprising that a
large body of theory work has emerged in recent years in order
to find tighter propagation bounds for different values of the
power-law exponent α (Hastings and Koma, 2006; Lashkari
et al., 2013; Eisert et al., 2013; Hauke and Tagliacozzo, 2013;
Hazzard et al., 2013; Schachenmayer et al., 2013; Gong et al.,
2014; Hazzard et al., 2014; Foss-Feig et al., 2015; Rajabpour
and Sotiriadis, 2015; Storch, van den Worm, and Kastner,
2015; Matsuta, Koma, and Nakamura, 2017; Chen and Lucas,
2019; Sweke, Eisert, and Kastner, 2019; Tran, Ehrenberg
et al., 2019; Tran, Guo et al., 2019; Else et al., 2020; Guo
et al., 2020; Hermes et al., 2020; Kuwahara and Saito, 2020;
Tran et al., 2020).
Most of the current understanding of correlations and

entanglement spreading in the presence of long-range inter-
actions was based on prototypical systems. In those systems,
the synergy between analytical and numerical investigations
has been particularly fruitful (Hauke and Tagliacozzo,
2013; Schachenmayer et al., 2013; Hazzard et al., 2014;
Nezhadhaghighi and Rajabpour, 2014; Rajabpour and
Sotiriadis, 2015; Schachenmayer, Pikovski, and Rey, 2015a,
2015b). The general understanding of propagation in long-
range systems is summarized in Fig. 21. This qualitative
picture applies almost regardless of the particular model, the
quantity, and the decay range α.
In analogy with other universal results in the short-range

regime, entanglement scaling in long-range models with
α ≫ 3 reproduces the well-known light-cone shape observed
for local systems (Lieb and Robinson, 1972); see Fig. 21,
right panel. For intermediate values of α (see the center panel

FIG. 21. Different models and physical quantities are shown in the different panels, but the overall picture remains the same. Left
panel: detection probability for a signal sent through a quantum channel between two sites at distance δ shown for the long-range Ising
chain (Eisert et al., 2013). The green dashed line displays the power law δ ∝ t1.7. Center panel: connected correlation functions between
two sites at distance δ in a long-range field theory; see the effective action in Eq. (36) with d ¼ 1 and α ¼ 4 (Rajabpour and Sotiriadis,
2015). The short-distance spreading resembles the conventional light cone observed with local interactions, while for larger distances
long-range effects appear, and power-law scaling is observed. The green dashed curve is a guide for the eye. Right panel: mutual
information between two lattice sites at distance δ in the Kitaev chain described by the Hamiltonian (49) with vanishing pairing and
long-range hopping (α ¼ 8). The decay rate is large enough that only the light cone is observed. From Storch, van den Worm, and
Kastner, 2015.
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in Fig. 21) cone-light propagation is observed at short
distances, while correlations between distant sites are heavily
influenced by the presence of the long-range terms.
Multispeed prethermalization for lattice spin models with
long-range interactions in the regime d < α < dþ 2 was
studied by Frérot, Naldesi, and Roscilde (2018). The behavior
of correlations at intermediate decay is akin to the one found
in the critical behavior of the long-range Kitaev chain in
Sec. IV.B.4, where long-range hopping amplitudes with
2 < α < 3 do not modify the universal scaling behavior,
but they alter the overall shape of excitations. However, in
the Kitaev chain long-range hopping influences the subcritical
behavior only for α < 3, while the light-cone bending is also
observed for α ¼ 4 (Rajabpour and Sotiriadis, 2015), as
discussed by Storch, van den Worm, and Kastner (2015).
Finally, at smaller α (Fig. 21, left panel) the universal

scaling is altered by long-range interactions and, accordingly,
the correlations propagate faster than any possible group
velocity, thereby disrupting the linear light-cone shape.
Analytical insight into information propagation in long-

range system may also be achieved by general Lieb-Robinson-
type bounds. A first contribution in this direction was given by
Hastings and Koma (2006), yielding for α > d

k½OAðtÞ; OBð0Þ�k ≤ CkOAkkOBk
jAjjBjðevjtj − 1Þ
½dA;B þ 1�α : ð116Þ

The regions A and B are a disjunct subset of the d-dimensional
lattice. The generic operator expectations OA and OB receive
contributions only from Hilbert-space states whose support
lies in the spatial regions A and B, respectively. In Eq. (116)
k · k denotes the operator norm and dA;B is the distance
between the regions A and B. The importance of Eq. (116)
derives from its generality since it applies to a wide range of
observables, while it is straightforwardly extended also to
other nonlocal quantities, such as the equal time correlators
(Bravyi, Hastings, and Verstraete, 2006; Nachtergaele,
Ogata, and Sims, 2006). In its regime of validity α > d,
the bound in Eq. (116) qualitatively reproduces the shape in
the left panel of Fig. 21. However, the wave-front propaga-
tion obtained using Eq. (116) is logarithmic rather than
power law and thus does not faithfully describe larger α
values. Further insight into this problem was obtained by
Gong et al. (2014), where a more general bound was derived
that was capable of reproducing both the Lieb-Robinson
result in the local limit (α → ∞) and Eq. (116). Even this
general bound appears not to be tight on the entire α range
but rather to be more accurate at large α.
The extension of the previous picture to the strong long-

range regime needs to account for the influence of diverging
long-range interactions with α < d on the systems timescales.
In analogy with the equilibration rate of QSSs (see Sec. V.A),
the fastest propagation scale in strong long-range systems is
found to vanish as a power law approaching the thermody-
namic limit τfastest ∝ N−q with q > 0 (Bachelard and Kastner,
2013). Accordingly, signal propagation becomes increasingly
fast as the system approaches the thermodynamic limit and
hinders the traditional formulation of the Lieb-Robinson
bound. To circumvent such complications it is convenient

to introduce a rescaled time τ ¼ tNq. In terms of this “proper”
time variable, the bound for α < d takes the same form as in
the weak long-range regime, but with τ in spite of t on the rhs
of Eq. (116) (Storch, van den Worm, and Kastner, 2015).
The aforementioned results for α < d produce the shortest

signaling time tss between the edges of a system of size N to
scale as tss ≳ N2α=d−2 logN, which leads to the possibility of a
vanishing time for transmitting information between linearly
distant sites of a strong long-range system. However, such
fast signals have never been observed or described; instead,
a size-independent signaling time was evidenced in several
situations (Eisert et al., 2013; Hauke and Tagliacozzo, 2013;
Eldredge et al., 2017). Moreover, for specific initial states
strong long-range interactions may be inconsequential to
signal propagation due to the so-called shielding effect
(Santos, Borgonovi, and Celardo, 2016).
Focusing on quadratic Hamiltonians a much tighter

bound tss ≳ Nα=d−1=2 can be obtained, which is saturated
for α < d=2 by the quantum state transfer protocol described
by Guo et al. (2020). They also provided a stricter bound
for general interacting spin systems. Note that the Lieb-
Robinson bound can also be used to predict the velocity of
quantum information scrambling, whose importance lies
at the edge between high-energy and condensed matter
physics (Sekino and Susskind, 2008; Maldacena, Shenker,
and Stanford, 2016; Gärttner et al., 2017; Bentsen, Gu, and
Lucas, 2019). In this context, the role of long-range
interactions is particularly relevant due to their inclusion
in most quantum mechanical models of black holes, pos-
sibly making these systems the fastest information scram-
blers in nature (Lashkari et al., 2013).
Despite the fast propagation and scrambling of correlations

due to long-range interactions, the growth of entanglement
entropy after a sudden quench is strongly reduced. In
particular, in the strong long-range regime (α < d) it can
become as slow as the logarithmic regime, even in the absence
of disorder (Schachenmayer et al., 2013; Buyskikh et al.,
2016; Pappalardi et al., 2018). This peculiar phenomenon is
connected with a suppression of the quasiparticle contribution
to the von Neumann entanglement entropy, which is known
to be governed by collective spin excitations related to spin
squeezing (Sørensen and Mølmer, 2001; Tóth et al., 2007;
Pezzé and Smerzi, 2009). Extending to the dynamical case the
bosonization procedure outlined in Sec. IV.G.1 (Rückriegel,
Kreisel, and Kopietz, 2012; Lerose, Žunkovič, Marino et al.,
2019) made it possible to show that the rate of divergence of
semiclassical trajectories governs the transient growth of
entanglement. This provides a transparent and quantitative
relationship between entanglement propagation measures
(such as entropy, quantum Fisher information, and spin
squeezing) and chaos quantifiers (such as Lyapunov expo-
nents and out-of-time-order correlations) in the semiclassical
regime (Lerose and Pappalardi, 2020a, 2020b). Fast entangle-
ment growth is recovered only at criticality, corresponding to
an unstable separatrix terminating onto a saddle point in phase
space. Similarly, when the classical dynamics is chaotic (such
as for kicked or multispecies models), the growth is fast, with
a rate related to Lyapunov exponents. In addition, long-but-
finite-range interactions open up a finite layer of instability
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with fast entanglement growth due to the presence of a chaotic
dynamical phase (Lerose et al., 2018; Lerose, Žunkovič,
Marino et al., 2019). Correlation spreading with van der Waals
interactions and the presence of positional disorder in two
dimensions were investigated by Menu and Roscilde (2020).
Multifractality and localization of spin-wave excitations
above a ferromagnetic ground state are observed. In addition,
the spreading of entanglement and correlations starting with a
factorized state exhibits anomalous diffusion with a variable
dynamical exponent.

1. Experimental observation

The propagation of correlations and the violation of the
local Lieb-Robinson bound have been observed in trapped-
ion quantum simulators for 0.6≲ α≲ 1.2 (Jurcevic et al.,
2014; Richerme et al., 2014). Jurcevic et al. (2014) studied
the dynamics following either a global or a local quench of a
long-range XY Hamiltonian; see Eq. (9). The experimental
system consists of a 15 ion chain, prepared in a product
state where only the central spin is flipped with respect to
the rest of the system. In this system the global magneti-
zation Sz ¼

P
iσ

z
i is a conserved quantity; therefore, the

excitation can be described as a magnon quasiparticle that
propagates from the center throughout the system. After the
local quench, Jurcevic et al. (2014) observed that for α < 1

the light cone calculated considering only the nearest-
neighbor couplings did not capture the dynamics of the
system well; see Figs. 22(a)–22(c).

Richerme et al. (2014) performed a global quench under
both Ising [Eq. (6)] and XY [Eq. (9)] Hamiltonians, measuring
the evolution of the connected two-body correlations

C1;1þrðtÞ ¼ hσz1ðtÞσz1þrðtÞi − hσz1ðtÞihσz1þrðtÞi:

The light-cone boundary is extracted by measuring the time it
takes a correlation of fixed amplitude (Ci;j ∼ 0.1Cmax

i;j , where
Cmax
i;j is the largest connected correlation between two ions) to

travel an ion-ion separation distance r. For strongly long-
range interactions (α < 1), an accelerating information trans-
fer is observed through the chain. This fast propagation of
correlations is explained by the direct long-range coupling
between distant spins. The increased propagation velocities
quickly surpass the Lieb-Robinson velocity for a system with
equivalent nearest-neighbor-only interactions: v ¼ 12eJmax,
where e is Euler’s number and Jmax is the maximum Ising
coupling strength for a given spin-spin coupling matrix.

C. Kibble-Zurek mechanism

The correlation length of a quantum system diverges
approaching its quantum critical points, while the dynamical
gap vanishes. As a result, the dynamical scaling of the
observables when the system is driven across the transition
is reminiscent of the thermodynamic scaling at equilibrium.
Yet, for this scaling to be displayed the drive has to be slow
enough that the dynamical evolution occurs in the vicinity of
the equilibrium critical point.

(a)

(b)

(d)

(e) (f)

(c)

FIG. 22. Propagation of quantum information in long-range trapped-ion systems. (a) Single-site magnetization hσzi ðtÞi as a function of
time, following a quantum quench of the long-range XY Hamiltonian (9), with the central eighth ion initially flipped. The dashed red lines
are fits to the observed magnon arrival times [bottom of (b)]; dot-dashed white lines, light cone for averaged nearest-neighbor interactions;
orange dots, after renormalization by the algebraic tail. The white lines are in clear disagreement with the red lines. (b),(c) Gaussian fits of
magnon arrival time [the red lines in (a)] for ions 6 (dark blue on the left) and 13 (light blue on the right) with α ≈ 1.41 (top) and α ≈ 0.75
(bottom). A nearest-neighbor Lieb-Robinson bound captures most of the signal (shaded region) in the α ≈ 1.41 case and does not for
α ≈ 0.75. Adapted from Jurcevic et al., 2014. (d) Spatial and time-dependent correlations following a global quench of a long-range Ising
Hamiltonian (6) with α ¼ 0.63. (e) Correlation propagation velocity. (f) The curvature of the boundary shows an increasing propagation
velocity, quickly exceeding the short-range Lieb-Robinson velocity bound v (red dashed line). The solid lines give a power-law fit to the
data that depends slightly on the choice of fixed contour Ci;j. Adapted from Richerme et al., 2014.
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We now consider a critical system with an internal control
parameter λ such that a quantum critical point occurs at λc ¼ 0
(λ ¼ jT − Tcj=Tc for finite-temperature phase transitions).
Conventionally, any slow enough drive of internal parameters
λðtÞ ¼ δt will only produce adiabatic corrections ∼δ2 to the
observable expectations with respect to the equilibrium value,
as can be deduced using simple thermodynamic arguments
(Zwerger, 2008). However, when crossing an equilibrium
critical point, the traditional adiabatic picture breaks down and
the residual energy (heat) generated by the drive displays
nonanalytic behavior Eres ≈ δθ with θ < 2 (Zurek, 1996). In
most local systems such nonanalytic scaling emerges due to
the formation of topological defects according to the Kibble-
Zurek mechanism, as confirmed by several condensed matter
experiments; see del Campo and Zurek (2014) for a review.
In the quantum realm, the simplest example of defect

production is furnished by the Landau-Zener problem, which
describes a two-level system driven through an avoided level
crossing (Zener, 1932; Landau and Lifshitz, 1991; Damski,
2005), but actual Kibble-Zurek scaling is observed only in
quantum many-body systems in the thermodynamic limit
(Zurek, Dorner, and Zoller, 2005; Dziarmaga, 2010). The
heuristic scaling argument at the basis of the Kibble-Zurek
mechanism can be proven to exactly apply to the nearest-
neighbor Ising model, i.e., the Hamiltonian (61) in the α → ∞
limit, since that problem can be mapped to an infinite
ensemble of Landau-Zener transitions (Dziarmaga, 2005).
In a general system, the Kibble-Zurek argument relies on

the so-called adiabatic-impulse approximation, where in the
dynamical evolution of a system starting in its ordered ground
state a t ¼ −∞ is assumed to adiabatically follow the drive
until the so-called freezing time −t̂. Beyond the “freezing”
time the equilibration rate of the system becomes too small
with respect to the drive velocity and the system state cannot
follow the Hamiltonian modification as it is approaching the
quantum critical point at t ¼ 0. Therefore, the dynamics is
assumed to remain frozen at all times t > −t̂ up to the crossing
of the quantum critical point (at t ¼ 0) and after, until the
equilibration rate of the system grows back and the “unfreez-
ing” time t̂0, where adiabaticity is restored, is reached.
Once the system has unfrozen, the state evolution will

resume on the opposite side of the transition, where the
Hamiltonian ground state is supposed to break the
Hamiltonian symmetry. Thus, the dynamics will induce a
transition between the symmetric and a symmetry-broken
state. However, this transition will occur at a finite correlation
length ξ̂ since the process starts only at t ≥ t̂0 ¼ t̂, at least for a
symmetric transition. The dynamics has thus modified the
character of the continuous phase transition, making it similar
to a first-order one, and the system will likely form topological
defects whose size would be roughly proportional to the finite
correlation volume ξ̂d. Therefore, the total defect density
scales according to nexc ≈ ξ̂−d.
During the adiabatic stage of the dynamics, the system

observables acquire the equilibrium expectation of the instan-
taneous Hamiltonian, and so does the minimal gap of the
system ΔðtÞ ¼ Δ(λðtÞ). A proper estimation of the drive
strength on the system is _Δ=Δ, which has to be compared with
the equilibration time Δ−1, leading to the adiabatic condition

_Δ ≪ Δ2: ð117Þ

The freezing time t̂ is defined by the breakdown of the
adiabatic condition _Δðt̂Þ ≃ Δðt̂Þ2. Applying the critical scaling
of the minimal gap with λ, one obtains the scaling of the
freezing time t̂ ≈ δ−zν=ð1þzνÞ and, accordingly, the freezing
length scaling ξ̂ ≈ δ−ν=ð1þzνÞ, which leads to the defect density
expression

nexc ≈ ξ̂−d ≈ δdν=ð1þzνÞ: ð118Þ

The application of the traditional Kibble-Zurek picture is
complicated by different effects, depending on the strong or
weak nature of the long-range interactions. In the former case,
the additional relevance of boundaries with respect to local
systems produces clear difficulties in the definition of the
topological defects. In the latter case, the presence of the
competing scaling contributions discussed in Sec. IV.B.4 leads
to novel scaling regimes that are not encompassed by the
traditional Kibble-Zurek framework.

1. Kitaev chain

The appearance of multiple scaling contributions to the
critical behavior of long-range quantum systems was exem-
plified in the study of the Kitaev chain in Sec. IV.B.4. In this
section, we consider the effect of such multiple scalings on the
universal dynamics.
The study of exactly solvable toy models is at the root of

the current understanding of Kibble-Zurek scaling in general
quantum systems. Indeed, the first studies of defect formation
in quantum systems were pursued on the nearest-neighbor
Ising model, where finite-size scaling arguments led to the
prediction

nfssexc ≈ δ1=2z; ð119Þ

which produces nexc ≈
ffiffiffi
δ

p
, in agreement with the Kibble-

Zurek prediction in Eq. (118), since z ¼ ν ¼ 1 in this case
(Zurek, Dorner, and Zoller, 2005). Soon after this seminal
investigation, an exact solution to the universal slow dynamics
of the Ising model has been provided by mapping it to an
infinite sum of Landau-Zener problems, each representing
the dynamics of a single fermionic quasiparticle excitation
(Dziarmaga, 2005).
Indeed, the dynamical evolution of quadratic fermions can

be described in terms of the Bogoliubov amplitudes via

iℏ
d
dt

�
uk
vk

�
¼

�
εαðk; tÞ ΔβðkÞ
−ΔβðkÞ εαðk; tÞ

��
uk
vk

�
; ð120Þ

which generically represents an ensemble of two-level sys-
tems whose energy and coupling are given by the momentum
space kinetic and pairing terms, respectively. Thus, the
Kibble-Zurek dynamics of the Kitaev chain can be studied
exactly and this solution is not limited to the nearest-neighbor
case, which represents the Ising model, but it can be extended
to any form of the long-range couplings.
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Consider a slow variation of the chemical potential h in
the Hamiltonian (45) with the usual slow drive form
hðtÞ ¼ hc þ δt, with the time spanning in the interval
t ∈ ½−hc=δ; hc=δ�. In the small δ limit, the system is adia-
batically ramped from a point deep in the topological phase
h ¼ 0 across the quantum phase transition and up into the
trivial phase h ¼ 2hc. In the following we focus on a ramp
across the quantum phase transition occurring at hc ¼ 1.
Within this dynamical protocol the dynamical system in

Eq. (120) reduces to the k-dependent Landau-Zener problem
(Landau and Lifshitz, 1969; Damski, 2005). Thus, the
excitation probability of each Bogoliubov quasiparticle can
be computed according to the Landau-Zener formula

hγ†kγki ¼ nexcðkÞ ¼ exp

�
−

π

δ2
ΔβðkÞ2

�
þO(δ2ΔβðkÞ4):

ð121Þ

Equation (121) explicitly reports only the leading term in the
k → 0 limit, which is the relevant one for the universal
behavior. However, when one considers a slow quench in a
finite time interval t ∈ ½−hc=δ; hc=δ�, the discontinuity in the
drive derivative at the borders of the interval induces δ2

corrections to the excitations probability (Dziarmaga, 2010;
Defenu et al., 2019).
The excitation probability in Eq. (121) depends only on

the pairing term in Hamiltonian (45), so the universal slow
dynamics is fully determined by the low-momentum scaling of
the pairing coupling. Accordingly, the excitation density can be
obtained by integrating Eq. (121) over the Brillouin zone

Z
nexcðkÞdk ≈ δ1=2zΔ ; ð122Þ

where we have defined zΔ from the scaling of the pairing
coupling limk→0 ΔβðkÞ ≈ kzΔ . The result in Eq. (122) has also
been employed to prove the validity of the Kibble-Zurek

argument in Kitaev chains with long-range pairing terms
(Dutta and Dutta, 2017) in addition to the purely local case
(Dziarmaga, 2005).
Apart from the aforementioned results, which expli-

citly refer to quadratic Fermi systems, the application of
adiabatic perturbation theory to slow quenches close to
quantum critical points predicts the scaling of the defect
density to agree with the Kibble-Zurek prediction θ ¼
dν=ð1þ zνÞ (Polkovnikov, 2005). This prediction comes
from the assumption that the scaling form of the critical
propagator reproduces the equilibrium critical exponents.
Since for 1D Fermi systems one has zν ¼ 1, the perturbative
argument yields dν=ðzνþ 1Þ ¼ 1=2z, which is in agreement
with the finite-size scaling argument in Eq. (119). However, it
was realized long ago (Dziarmaga, 2010) that the correspon-
dence between the exact scaling in Eq. (122) and the
perturbative prediction is tied to the relevance of the pairing
term with respect to the momentum term in the scaling of the
quasiparticle gap; see Eq. (55).
As outlined in Sec. IV.B.4, the presence of long-range

anisotropic couplings in 1D Fermi systems may produce
equilibrium scaling exponents dominated by the kinetic term
in the gap scaling [see Eq. (78)], unlike what occurs in short-
range systems. Similarly, the introduction of nonlocal finite-
range couplings in the Kitaev model has been known to
produce a modified equilibrium scaling with a kinetic domi-
nated dynamical critical exponent. The latter phenomenon is
found only near multicritical points, where finite-range non-
local couplings become relevant and are known to lead to a
violation of the Kibble-Zurek result (Deng, Ortiz, and Viola,
2009; Divakaran et al., 2009; Dziarmaga, 2010).
At variance, the anisotropic Kitaev model with weak long-

range couplings in the α < β regime already displays the
aforementioned kinetic dominated scaling at a second-order
quantum critical point (Defenu et al., 2019). In particular, its
dynamical phase diagram, which is depicted in Fig. 23,
contains four different regions. Two of them (the green and
white regions in Fig. 23) fulfill the Kibble-Zurek prediction,

FIG. 23. Kibble-Zurek mechanism in long-range Kitaev chains. (a) Dynamical phase diagram reporting the universal slow-dynamics
exponents of the anisotropic Kitaev chain in the ðα; βÞ plane. (b),(c) Numerical analysis of Eq. (120) compared with the analytic formula in
Eq. (121) for intermediate and small dynamical rates δ ¼ 0.5; 0.05. Each line represents a different value of β ¼ 1.25; 1.50; 1.75;∞, from
bottom to top at small k. Different values of α are displayed with different symbols; see the legend in (c). Adapted from Defenu et al., 2019.
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with the nearest-neighbor universal exponents (θ ¼ 1=2 in the
white region) and the pairing dominated critical exponents
[θ ¼ ð2β − 2Þ−1 in the green region]. The conventional
prediction θ ¼ zν=ð1þ zνÞ cannot be applied to the two
red regions in Fig. 23, where α < β, to the point that in the
upper portion of the red region the nearest-neighbor prediction
for the dynamics θ ¼ 1=2 remains valid deep in the regime
where the equilibrium universal behavior is dominated by
long-range interactions.
The absence of kinetic contributions to the critical dynam-

ics holds only in the strict δ → 0 limit. Therefore, nonuni-
versal corrections still carry a sizable contribution to the defect
density from the power law α as long as δ≲ 1, as shown in
Fig. 23(b), where a full numerical computation of the defect
density for various points in the ðα; βÞ plane (reported in
different colors and shapes; see the legends in Fig. 23) is
compared with the analytical prediction in Eq. (121) (dashed
lines). These nonuniversal corrections are rapidly washed out
in the slow drive limit; see Fig. 23(c), where the excitation
probability at different α but with the same β collapse on
each other.
Note that the agreement between the analytic prediction in

Eq. (120) and the numerical result shown in Fig. 23(b) is
limited by the δ2 contributions to the excitation probability,
which in turn are generated by the finite edge points of the
present dynamical protocol. Actually, for a slow linear quench
in the infinite interval t ∈ ½−∞;∞� the result in Eq. (120) will
remain valid independently on the δ value.
In summary, several diverse predictions exist for the defect

scaling after slow quenches in quantum many-body systems.
In particular, the finite-size scaling argument in Eq. (119) and
the traditional Kibble-Zurek result in Eq. (118) remain
consistent with each other and with the exact solution for
quadratic fermions as long as zν ¼ 1. The last condition
always holds for the fermionic system described in Sec. IV.B,
but this is not the case for the interacting field theories
described in Sec. IV.A, where the dynamical critical exponent
zν depends on the decay exponent; see Fig. 12. In particular,
the mean-field approximation produces the result zν ¼ 1=2
for rotor models, in agreement with the result observed in the
LMG model, which represents the α ¼ 0 limit of such
theories. In the following, we examine these extreme cases
in detail and show how the Kibble-Zurek mechanism is
modified by interactions in the strong long-range regime.

2. Lipkin-Meshkov-Glick model

In the following, the difficulty to reconcile the finite-size
scaling prediction in Eq. (119) with the perturbative result
θ ¼ dν=ð1þ zνÞ (Polkovnikov, 2005) is exemplified by a
study of the flat interaction case α ¼ 0 such as that involving
the LMGmodel, whose equilibrium behavior was described in
Sec. IV.G. Apart from its prototypical role, the interest in the
LMG model is motivated by the possibility to experimentally
study slow dynamics in this system thanks to cold atoms in
cavity experiments (Brennecke et al., 2013), cold atoms in
spin-1 ferromagnetic BECs (Saito, Kawaguchi, and Ueda,
2007; Anquez et al., 2016; Hoang et al., 2016; Xue, Yin, and
You, 2018), and its relation to the BCS model (Dusuel and
Vidal, 2005b).

The first numerical results on the scaling of the defect
density after an adiabatic ramp crossing the quantum critical
point of the LMG model could not be reproduced using
the Kibble-Zurek formula in Eq. (118), but they displayed
qualitative agreement with the finite-size scaling prediction
in Eq. (119) (Caneva, Fazio, and Santoro, 2008). Yet, more
intensive numerical studies unveiled a more complicated
landscape where the adiabatic crossing of the equilibrium
quantum critical point displays no actual Kibble-Zurek scal-
ing, but rather a universal behavior as a function of the scaled
variable Λ ¼ Nδ (Acevedo et al., 2014), while nonanalytic
corrections for the defect scaling were found for quenches up
to the critical point (Hwang, Puebla, and Plenio, 2015).
This scenario can be safely reconstructed by the study of

the effective critical theory depicted in Sec. IV.G.1. However,
since the effective harmonic theory, which describes the fully
connected problem at the order 1=N, was obtained at equilib-
rium, it is first convenient to generalize the treatment to the
dynamical case. Our goal is to consider the LMG problem with
time-dependent coupling hðtÞ, with the system initially pre-
pared at equilibrium at any initial time ti and then manipulated
across the quantum critical point. Thus, during the time
evolution the average expectation value of the global spin will
change as the order parameter is modified by the dynamics as
soon as hðtÞ < hc. As a consequence, the assumption of small
quantum depletion of the classical equilibrium expectation hSi,
which is at the basis of the Holstein-Primakov expansion in
Eqs. (105)–(107), is dynamically disrupted by the macroscopic
change in the order parameter.
A simple solution to this difficulty is obtained by consi-

dering a time-dependent classical magnetization for the
Holstein-Primakov expansion via the time-dependent spin-
wave approximation introduced by Rückriegel, Kreisel, and
Kopietz (2012). This solution strategy for the time-dependent,
fully connected problem has already been employed to
characterize the chaotic dynamical phase that emerges upon
the inclusion of additional nearest-neighbor couplings on top
of the LMG Hamiltonian (Lerose et al., 2018; Lerose,
Žunkovič, Marino et al., 2019).
At the leading order 1=N this procedure effectively decou-

ples the classical evolution of the order parameter from the
quantum fluctuations. Ramping the magnetic field slowly
across the critical point hðtÞ ¼ hc − δt for t ∈ ½−1=δ; 1=δ� is
equivalent to dynamically modifying the frequency of both
the classical field and the quantum fluctuations according to
the equilibrium equations (110) and (103). In principle, an
accurate description of the ramp dynamics at finite δ would
need the description of the backaction of the displacement of
the classical observable from its equilibrium configuration
into the dynamics of the quantum mode.
However, in the adiabatic limit δ → 0 we can employ the

classical adiabatic theorem (Landau and Lifshitz, 1976) to
conclude that the classical trajectory will remain close to the
instantaneous solution θðtÞ − θeq ≈ δ2 and φðtÞ − φeq ≈ δ2,
where the equilibrium contributions are φeq ¼ 0 and θeq, as
given in Eq. (102). Yet, based on the previous discussion the
classical δ2 correction is going to be superseded by that arising
from quantum fluctuations. Indeed, quantum fluctuations in
the LMG problem are effectively described by a single
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harmonic mode adiabatically ramped across its fully degen-
erate quantum critical point.
None of the results on defect scaling presented at the

beginning of Sec. V.C apply to this problem since the general
result derived by dynamical perturbation theory does not
apply to Bose quasiparticles (de Grandi and Polkovnikov,
2010). In fact, it was first noticed through asymptotic
expansion that a quasistatic transformation of a harmonic
oscillator with a linear time scaling of its frequency across the
fully degenerate point ωðtÞ2 ≈ ðδtÞ2 produces nonadiabatic
corrections that do not vanish in the δ → 0 limit (Bachmann,
Fraas, and Graf, 2017). This result does not directly apply to
the LMG case, since for a linear scaling of the control
parameter λðtÞ ¼ hðtÞ − hc ¼ δt the dynamical frequency
for the spin-wave model reads

ωðtÞ2 ≈ δjtj ð123Þ

at leading order in the small-time δ expansion. Based on the
conventional adiabatic argument _ωðtÞ ≪ ωðtÞ2, the faster the
drive vanishes across the fully degenerate point, the stronger
nonadiabatic effects are. Therefore, one may in principle
expect the linear drive in Eq. (123) to be more adiabatic than
the ∼t2 case studied by Bachmann, Fraas, and Graf (2017) and
to present a different nonadiabatic scaling.
In general, the characterization of slow dynamics for

different kinds of excitations and dynamical scaling is
relevant to the problem of long-range interactions. Indeed,
we showed that the quantum long-range Ising model in
Eq. (61) varies as a function of α from a critical point with
Fermi quasiparticles (α > α�) to a purely bosonic effective
field theory [α < ð5=3Þd]. In the first case (α > α�), the
validity of the Kibble-Zurek argument follows from the
derivation of Dziarmaga (2005), which generally applies to
critical systems with Fermi quasiparticles. In the inter-
mediate case [α� > α > ð5=3Þd] nonanalytic scaling ∼δθ
follow from the dynamical perturbation theory result of
Polkovnikov (2005). However, this picture cannot be applied
to Bose quasiparticles, whose large occupation numbers
hinder the applicability of adiabatic perturbation theory
(de Grandi and Polkovnikov, 2010).
Thus, the Kibble-Zurek scaling of mean-field systems, such

as the LMG, whose excitation spectrum is described by free
bosons, needs a tailored framework to be understood (Defenu
et al., 2018). In this perspective, one can consider a single
dynamically driven Harmonic mode with a Hamiltonian

HðtÞ ¼ 1
2
½p2 þ ωðtÞ2x2�; ð124Þ

which faithfully describes the dynamics in Eq. (97), when
adiabatic δ2 corrections coming from the classical dynamics
of the order parameter are neglected (Defenu et al., 2018);
see also Eq. (97).
For any time-dependent frequency a complete set of time-

dependent states ψnðx; tÞ can be constructed whose occupa-
tion is conserved by the dynamics (Lewis, 1967, 1968; Lewis
and Riesenfeld, 1969). To determine the excitation density and
the ground-state fidelity with respect to the instantaneous
equilibrium solution of the problem, we define the adiabatic

basis ψ ad
n ðx; tÞ, which is obtained taking the conventional

time-independent Harmonic oscillator eigenstates and replac-
ing the constant frequency with the time-dependent one
(Dabrowski and Dunne, 2016). Accordingly, one can expand
the exact time-dependent state in terms of the adiabatic basis
ψðx; tÞ ¼ P

cnðtÞψad
n ðx; tÞ, leading to the excitation density

nexcðtÞ ¼
P

n∈2Nnjcnj2, the adiabatic ground-state fidelity
fðtÞ ¼ jc0j2, and the residual heat QðtÞ ¼ ωðtÞnexcðtÞ
expressions.
According to the behavior of these observables in the

adiabatic limit δ → 0 the dynamical evolution described by
Eq. (124) presents the following three regimes:

(1) Perturbative regime (Q ∼ δ2).
(2) Kibble-Zurek regime (Q ∼ δzν=ð1þzνÞ, half ramp).
(3) Nonadiabatic regime [Q ∼Oð1Þ, full ramp].

Regime (1) occurs for a finite minimal frequency at the critical
point limt→0 ωðtÞ ¼ ω0 ≠ 0: there the adiabatic perturbation
theory result produces the analytic δ2 corrections predicted by
dynamical perturbation theory. Regime (2) is realized in a
dynamics terminating at the quantum critical point ω0 ¼ 0,
where nonanalytic corrections appear that are encompassed by
the Kibble-Zurek argument. The actual crossing of the quantum
critical point occurs only in regime (3) and the actual non-
adiabatic regime is realized, leading to rate-independent cor-
rections to the adiabatic observables, as seen in the following.
For a finite thermodynamic system, we expect the dynami-

cal gap not to completely vanish at the critical point but to
present a finite correction vanishing according to a finite-size
scaling ω2

0 ≈ N−1=ν� , where ν� ¼ 3=2 according to Eq. (111).
After the scaling transformation discussed by Defenu et al.
(2018), the residual scaled frequency therefore depends only
on the parameter combination Λ ¼ Nδ. Then, since the
minimal scaled frequency reads ω̃2ð0Þ ≈ Λ−2=3, it follows
that the thermodynamic limit (N → ∞) and the adiabatic one
(δ → 0) do not commute. Rather, the same dynamical evo-
lution for thermodynamical observables occurs for different
sizes and drive rates as long as the combination Λ remains
fixed. The universal behavior evidenced for this harmonic
effective model faithfully reproduces exact numerical com-
putations. Indeed, a comparison between the analytic and
numerical analyses of the LMG model is shown in Fig. 24
proving that the “anomalous” scaling described by Acevedo
et al. (2014) is perfectly justified by the effective model
studied here and introduced by Defenu et al. (2018).

3. Structural transitions

Ion crystals and, in general, structural transitions occurring
in nonlocal systems with competing interactions first triggered
theoretical interest in the Kibble-Zurek scaling of nonhomo-
geneous systems (Zurek, 2009; Chiara et al., 2010; del Campo
et al., 2010). In the presence of inhomogeneity, the critical
point occurs at different moments in the different regions of
the system, restoring adiabaticity for a dynamical transition
where critical excitations propagate faster than the phase
boundaries. An argument straightforward enough to justify the
previous picture is found by generalizing the scaling theory
outlined at the beginning of Sec. V.C in the nonhomogene-
ous case.
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We consider a both spatial and time-dependent control
parameter λðx; tÞ such that the critical front occurs at
λðx; tÞ ≈ 0, while in general one has

λðx; tÞ ¼ αðx − vptÞ; ð125Þ

where vp > 0 is the velocity of the phase front. Locally, the
inhomogeneous control parameter in Eq. (125) resembles a
homogeneous case with ramp rate δ ¼ αvp. Accordingly,
all the locations of the systems where λðx; tÞ < 0 already
lie in the symmetry-broken phase, and they can then com-
municate the orientation of the order parameter across the
phase boundary at λðx; tÞ ≈ 0 toward the symmetric regions of
the system where λðx; tÞ > 0. The maximal velocity v̂p at
which this communication occurs can be found via the relation
v̂p ¼ ξ̂=t̂. As long as vp ≫ v̂p inhomogeneity is not relevant,
since the regions on the opposite side of the phase front are
effectively decoupled. On the contrary, defect formation is
suppressed for vp ≪ v̂p due to the symmetry-broken regions
of the system coordinating with the ones at λðx; tÞ > 0.

Following the previous discussion, one can use the conven-
tional scaling relations for the homogeneous Kibble-Zurek
mechanism to obtain v̂p ∼ δðz−1Þν=ðzνþ1Þ ∼ αðz−1Þν=ðνþ1Þ, which
in turn leads to the “critical” ramp rate

δ̂ ∼ αðzνþ1Þ=ð1þνÞ: ð126Þ

At rates δ ≫ δ̂ the system effectively behaves homogeneously
and the traditional results for the excitations density are
retrieved. Conversely, in the slow drive limit δ ≪ δ̂ inhomo-
geneity becomes relevant and can alter the universal Kibble-
Zurek scaling. Accordingly, in the homogeneous limit the
critical rate vanishes limα→0 δ̂ ¼ 0. Several examples of
nonhomogeneous Kibble-Zurek mechanism can be found in
the literature (Schaller, 2008; Zurek and Dorner, 2008; Collura
and Karevski, 2010; Dziarmaga and Rams, 2010).
Thanks to their tunability (Lemmer et al., 2015), trapped-

ion platforms have played a crucial role in both the theoretical
and experimental investigations of defects formation in the
nonhomogeneous realm (Schneider, Porras, and Schaetz,
2012; Lemmer et al., 2015). By adiabatically altering the
trapping parameters, it is possible to drive the system across
the structural transition that was outlined in Sec. IV.F
(Baltrusch, Cormick, and Morigi, 2012). However, this
procedure will naturally generate localized defects, which is
in agreement with the Kibble-Zurek theory (Schneider, Porras,
and Schaetz, 2012). A similar phenomenology is also expec-
ted for sudden quenches across the boundary of the structural
transition (del Campo et al., 2010; Landa et al., 2010).
Moreover, the dynamics of local defects in Coulomb crystals
have been proposed to realize the Frenkel-Kontorova model
(Pruttivarasin et al., 2011; Cormick and Morigi, 2012).
The experimental exploration of the quantum dynamics and

formation of kinks in Coulomb crystals (Pyka et al., 2013;
Ulm et al., 2013) have shown good agreement with the theory
expectation (Landa et al., 2010), providing a flexible tool to
investigate defect formation according to the inhomogenous
Kibble-Zurek mechanism (Chiara et al., 2010; del Campo
et al., 2010).

4. Cavity systems

Quench experiments based on quantum gases in optical
cavities (Baumann et al., 2011; Klinder, Keßler, Wolke et al.,
2015) have also been interpreted within the framework of
the Kibble-Zurek mechanism (Kibble, 1976; Zurek, 1985;
del Campo and Zurek, 2014). The global character of the
cavity-mediated interaction inhibits the formation of domains,
and thus also of defects during the crossing of this second-
order phase transition. However, remnants of the Kibble-
Zurek mechanism can be found in hysteretic behavior and the
symmetry breaking itself.
In the case of a retarded cavity-mediated interaction,

i.e., where the cavity linewidth κ is comparable to the recoil
frequency ωr, pronounced dynamical hysteresis has been
observed when the self-organization phase transition is
crossed (Klinder, Keßler, Wolke et al., 2015); see Fig. 25.
The intracavity light field corresponding to the order param-
eter shows a hysteresis loop that encloses an area exhibiting a

FIG. 24. Universal slow dynamics of the LMG model. Heat
curves obtained via the effective model in Eq. (124) (upper panel)
and via a full numerical solution of the time-dependent LMG
model in Eq. (97) (lower panel) with a time-dependent coupling
J ¼ hc − δt performed by Acevedo et al. (2014). Each color
represents a value of Λ ¼ Nδ ¼ 15, 3.75, 0.94, progressing from
top to bottom, withN ¼ 29 andN ¼ 211 (dashed and solid lines in
the upper panel). Both the heat and time variables were rescaled
following the notation of Acevedo et al. (2014). As expected, the
curves at different sizes but the sameΛ collapse both in theory and
in the exact simulations. Moreover, the similarity between the
theoretical model and the numerics is noteworthy. Despite the fact
that the model in Eq. (124) is simply an effective model that does
not account for the mean-field energy shift, it captures quantitative
features such as the initial smooth increase and the oscillations of
the residual energy. The numerical data displayed in the lower
panel are courtesy of Acevedo et al. (2014).
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power-law dependence upon the duration of the quench
across the phase transition. Real-time observation of the
intracavity field thus allows one to identify at which coupling
strength the system effectively freezes its dynamics, depend-
ing on the quench rate. A simple power-law model allows
dynamical exponents zν to be extracted. However, a deeper
interpretation would require a comprehensive extension of the
study of universality to driven-dissipative systems (Sieberer
et al., 2013; Klinder, Keßler, Wolke et al., 2015). In particular,
note that these experimental observations appear not to follow
the theoretical predictions outlined in Sec. V.C.2 and by
Acevedo et al. (2014) and Defenu et al. (2018) for isolated
quantum systems.
In the limit of large cavity linewidth with respect to the

atomic recoil frequency (Baumann et al., 2011), the hysteresis
loop is vanishing (Klinder, Keßler, Wolke et al., 2015), but the
effect of the quench rate can be observed in the discrete
symmetry breaking described in Sec. IV.G.3. The finite size of
the system naturally leads to a small symmetry-breaking field,
thereby completely dominating the symmetry-breaking

process in the limit of adiabatically crossing the phase
transition. However, for a finite quench rate, the approach
to the phase transition can again be divided into a quasiadia-
batic regime where the system follows the control parameter
and an impulse regime where the system is effectively frozen.
For increasing quench rates of the transverse pump power, the
coupling strength separating these two regimes is decreasing,
as captured by Zurek’s equation (Zurek, Dorner, and Zoller,
2005) j_ζ=ζj ¼ Δ=ℏ, with ζ ¼ ðΛc − ΛÞ=Λc describing the
distance to the critical point (see also Sec. II.B.3) and the
energy gap between the ground and first excited state

Δ ¼ ℏω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ2=Λ2

c

p
. Accordingly, in the experiments the

symmetry breaking for large quench rates becomes dominated
by quantum fluctuations and increasingly independent of
the symmetry-breaking field. A quantitative agreement of
the observations with the model was found (Baumann
et al., 2011).

D. Dynamical phase transitions

One of the most relevant scaling phenomena in the far-
out-of-equilibrium realm is provided by dynamical phase
transitions (Zvyagin, 2016; Mori et al., 2018). In particular,
after the sudden quench of a control parameter dynamical
phase transitions may be classified into two main families.
The first family displays a possibly local order parameter
AðtÞ, whose long-time Cesaro’s average Ā, defined accord-
ing to Eq. (113), characterizes different steady states
(Eckstein and Kollar, 2008; Moeckel and Kehrein, 2008;
Eckstein, Kollar, and Werner, 2009; Sciolla and Biroli,
2010; Halimeh et al., 2017; Lang, Frank, and Halimeh,
2018). While this phenomenon is naturally observed for
quenches across equilibrium symmetry-breaking transi-
tions, diverse dynamical phases may also arise in quantum
systems, which do not possess any finite-temperature phase
transition. There, following a sudden quench, the order
parameter AðtÞ always equilibrates to its normal phase
expectation in the long-time limit (Ā ¼ 0 for ferromagnetic
systems), but the dynamical phase transition can be
observed in a sudden change in the scaling approach to
equilibrium (Altman and Auerbach, 2002; Barmettler et al.,
2009; Heyl, 2014; Lang, Frank, and Halimeh, 2018).
Experimental evidence of this first kind of dynamical

transitions has been found in a linear chain of trapped
171Ybþ ion spins stored in a Paul trap (Zhang, Pagano et al.,
2017). The system was initialized in the ferromagnetic
product state jψ0i ¼ j↓↓↓ � � �↓ix and then evolved according
to the long-range Ising Hamiltonian (61). The dynamical
quantum phase transition occurs when the ratio h=J0 ∼ 1,
where J0 is the strength of long-range interactions
(Vr ∝ J0=rα) and the order parameter changes abruptly from
ferromagnetic to paramagnetic order. The observation of the
dynamical transition has been obtained by measuring the late
time average of the two-body correlator defined as

C2 ¼
1

N2

X
ij

hσxi σxji ð127Þ

after the quantum quench.

FIG. 25. Dynamical critical behavior at the self-organization
phase transition. (a) Intracavity intensity while the transverse
pump lattice depth ϵp ramped up (blue) and down (red) in ramps
of 1.5 ms each. Shown beneath the panel are momentum spectra
(1)–(5), recorded at increasing times during the ϵp ramp,
indicated by the numbered arrows in (a). (b) Mean-field calcu-
lation according to (a) neglecting collisional interactions and
assuming an infinite system. The points ϵp;1 and ϵp;2 indicate the
upper and lower critical lattice depths. (c) Mean-field calculations
of ϵp;1 and ϵp;2 as a function of quench time, resulting in
exponents of ðn1; n2Þ ¼ ð−0.57; 0.85Þ for power-law fits. (d),
(e) Experimentally determined dependence of the upper and
lower critical lattice depths on the quench time, together with
solid lines reproducing the power-law dependences of (c). From
Klinder, Keßler, Wolke et al., 2015.
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The measured late time correlator C2 features a dip at the
critical point that sharpens scaling up the system sizeN up to 53
171Ybþ qubits, as shown in Fig. 26(c). Additional evidence of
the occurrence of the dynamical phase transition can also be
observed in higher-order correlations, such as the distribution
of domain sizes throughout the entire chain, as shown in
Fig. 26(d). The occurrence of the dynamical phase transition is
observed in the decreased probabilities of observing long
strings of aligned ions at the critical point h=J0 ∼ 1. This is
shown by measuring the mean largest domain size as a
function of the transverse-field strength, for late times and
repeated experimental shots, which feature a sharp transition
at the critical point. Another recent experimental realization
of dynamical phase transitions within the LMG model was
reported byMuniz et al. (2020). The experiment was performed
with large ensembles of 88Sr atoms in an optical cavity where
magnetic interactions can be accurately tuned (Norcia et al.,
2018) and reported the observation of distinct dynamical phases
of matter in this system. A similar setup has also been proposed
for the observation of dynamical phases of the BCS model in
superconductivity as a function of system parameters and the
prepared initial states (Lewis-Swan et al., 2021).
The second family of dynamical phase transitions features

periodic nonanalyticities in the Loschmidt return rate (Heyl,
Polkovnikov, and Kehrein, 2013). It is convenient to define

the return probability to the initial state jψ0i after a quantum
quench under the Hamiltonian H as GðtÞ ¼ hψ0je−iHtjψ0i.
This quantity exhibits nonanalycities that are formally analo-
gous to those of the partition function of the corresponding
equilibrium system, which is defined as Z ¼ Trðe−H=kBTÞ
(Heyl, Polkovnikov, and Kehrein, 2013). Along this analogy,
the complex counterpart of the thermodynamic free-energy
density f ¼ −N−1kBT logðZÞ is the rate function λðtÞ ¼
−N−1 log½GðtÞ�. In the thermodynamic limit, this quantity
exhibits dynamical real-time nonanalyticities that play a role
as the nonanalytic behavior analogous to the free-energy
density of a thermodynamic system at equilibrium.
As a consequence of these statements, the nonanalyticities

in the return rate signal the occurrence of dynamical quantum
phase transitions at certain critical evolution times after the
sudden quench. These phenomena have generated a high
degree of interest from both the theoretical (Heyl, 2018; Mori
et al., 2018) and experimental communities (Jurcevic et al.,
2017; Fläschner et al., 2018). The first theoretical description
of dynamical phase transitions in return rates has been shown
in the case of the nearest-neighbor transverse-field Ising chain.
There nonanalytic cusps in the return rate could be observed
only after a sudden quench across the equilibrium critical
point. It was shown by several subsequent examples that
dynamical crossing of an equilibrium phase boundary may not

(a)

(b)

(c)

(d)

FIG. 26. (a),(b) Type-I and (c),(d) type-II dynamical phase transitions. (a) Measured rate function λ for three different system sizes
at h=J0 ≈ 2.38, with τ ¼ th the dimensionless time. The kinks in the evolution become sharper for larger N. Here the rate function
is defined based on the return probability to the ground-state manifold, namely, λðtÞ ¼ N−1 logðPjψ0i þ Pj−ψ0iÞ, where j − ψ0i ¼
j↑↑↑ � � �↑ix. (b) Comparison between the rate function λðtÞ and the magnetization evolution mxðtÞ. The inversion of the magnetization
sign corresponds to the nonanalyticity of the rate function λðtÞ. The solid lines are exact numerical predictions based on the experimental
parameters (h=J0 ¼ 2). Adapted from Jurcevic et al., 2017. (c) Long-time averaged values of the two-body correlations C2 for different
numbers of spins in the chain. The solid lines are exact numerical solutions to the Schrödinger equation, and the shaded regions take into
account uncertainties from experimental Stark shift calibration errors. The dashed lines forN ¼ 12; 16 are calculations using a canonical
(thermal) ensemble with an effective temperature corresponding to the initial energy density. (d) Domain statistics and reconstructed
single-shot images of 53 spins. Top and bottom images: reconstructed images based on binary detection of the spin state. The top image
shows a chain of 53 ions in bright spin states. The other three images show 53 ions in combinations of bright and dark spin states. Center
panel: statistics of the sizes of domains for three different values of h=J0 plotted on a logarithmic scale. The dashed lines are fits to the
exponential functions that are expected for an infinite-temperature thermal state. Long tails of deviations are clearly visible and vary
depending on h=J0. Right panel: mean of the largest domain sizes in every experimental shot. The dashed lines represent a piecewise
linear fit used to extract the transition point. The green, yellow, and red data points correspond to the transverse fields shown in the
domain statistics data in the center panel on the left. Adapted from Zhang, Pagano et al., 2017.
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produce the aforementioned cusps in the return rates, while
sudden quenches within the same phase may produce the so-
called type-II dynamical phase transitions (Andraschko and
Sirker, 2014; Vajna and Dóra, 2014).
Therefore, the dynamical critical point for the appearance of

type-II dynamical phase transitions does not need to coincide
with the quantum critical point of the system at equilibrium.
Further proof of this distinction comes from the strong
dependence of the dynamical critical point on the initial state
of the system (Halimeh et al., 2017; Lang, Frank, and
Halimeh, 2018). In this perspective, long-range interactions
have been shown to produce several additional dynamical
phases with respect to the simple nearest-neighbor case
(Halimeh and Zauner-Stauber, 2017; Homrighausen et al.,
2017; Defenu, Enss, and Halimeh, 2019; Uhrich et al., 2020).
It is thus not surprising that the first observation of type-II
dynamical phase transitions has been detected in a trapped-ion
simulation of the long-range Ising Hamiltonian (61).
The simulation was performed with a linear chain of

trapped 40Caþ ion spins (Jurcevic et al., 2017). The system
is prepared in the classical eigenstate, which minimizes the
ferromagnetic interactions jψ0i ¼ j↓↓↓ � � �↓ix. A finite trans-
verse field is suddenly switched on (quenched) such that the
Hamiltonian (61) lies in h > J0, with J0 the average nearest-
neighbor spin-spin coupling. Figure 26 displays the return
rate λ, which exhibits clear nonanalyticities at the critical
times tc. As expected, the Loschmidt echo cusps also
correspond to the zero crossings of the order parameter at
the critical times tc; see Fig. 26(b).
The correspondence between the zero crossings of the order

parameter and the cusps of the return rate λðtÞ is not the only
relation between the two families of dynamical phase tran-
sitions. Indeed, the dynamical critical points for type-I and
type-II transitions were shown to coincide (Halimeh et al.,
2017; Žunkovič et al., 2018). More generally, the fundamental
relations between thermodynamic equilibrium phases and
their dynamical counterparts has been extensively explored
not only in terms of order parameters (Ajisaka, Barra, and
Žunkovič, 2014; Heyl, 2018; Žunkovič et al., 2018; Titum
et al., 2019) but also with respect to scaling and universality
(Heyl, 2015), discrete or continuous symmetry breaking
(Žunkovič, Silva, and Fabrizio, 2016; Weidinger et al.,
2017; Huang, Banerjee, and Heyl, 2019), and the nature of
the quasiparticles (Syed, Enss, and Defenu, 2021).
Free-fermionic systems, which are described by the Kitaev

Hamiltonians studied in Sec. IV.B, played a prominent role in
both the experimental and the theoretical study of dynamical
phase transitions. Indeed, despite the absence of a local order
parameter in the equilibrium topological phase transition of
the Kitaev chain, dynamical phase transitions also occur in
these models (Vajna and Dóra, 2015; Budich and Heyl, 2016;
Bhattacharya and Dutta, 2017a, 2017b), where they have been
experimentally observed (Fläschner et al., 2018). The pos-
sibility of also analytically solving free-fermionic models in
the presence of long-range hopping or pairing produced a
comprehensive understanding of how additional dynamical
phases can be influenced by corrections to scaling in the
spectrum, as well as its relation to the results for the Ising
model (Defenu, Enss, and Halimeh, 2019). Despite the

absence of any local order parameter in free Fermi systems,
a relation exists between the occurrence of cusps in the
Loschmidt echo and the zero crossings of the nonlocal string
order parameter (Uhrich et al., 2020).
Despite its close relation to the Kitaev chain (see Sec. IV.B.3),

the long-range Ising model presents a more complex phenom-
enologywith respect to theKitaev chain. Indeed, the Isingmodel
supports the appearance of domain-wall confinement due to
long-range interactions (Liu et al., 2019). These confined
excitations behave like Stark-localized particles in an effective
confining potential (Lerose et al., 2020); see also Sec. V.E.
This domain-wall coupling was found to be the reason for
the appearance of anomalous cusps in quantum quenches at
sufficiently small transverse-field strengths (Halimeh and
Zauner-Stauber, 2017; Halimeh et al., 2020), while the absence
of quasiparticles coupling in the Kitaev chain disrupts the
anomalous phase (Defenu, Enss, and Halimeh, 2019).
Critical quenches where the postquench Hamiltonian is

critical are known to yield long-time universal scaling
behavior following the mechanism of aging (Chiocchetta
et al., 2017). These kinds of phenomena are strongly influ-
enced by long-range interactions, as studied by Halimeh and
Maghrebi (2021). In particular, in the LMG model, depending
on the type of quench, three behaviors where both the short-
time dynamics and the stationary state at long times are
effectively thermal, quantum, and genuinely nonequilibrium
were identified. Each stationary state is characterized by
distinct static and dynamical critical exponents (Titum and
Maghrebi, 2020).

E. Confinement

As shown in Sec. V.B, long-range interactions can give rise
to the fast spreading of correlations. However, while focusing
on trapped-ion systems in this section we review a different
regime in which long-range interactions allow the observation
of confinement.
In general, spin models can be engineered to exhibit

confinement of correlations and meson production. Kormos
et al. (2017) studied the case of a global quench with the
nearest-neighbor Ising Hamiltonian

H ¼ −J
X
i

σxi σ
x
iþ1 þ hz

X
σzi þ hx

X
σxi ; ð128Þ

with both transverse field hz and longitudinal field hx. In this
case, the dynamics produces confinement of quasiparticles and
magnetization oscillations with frequencies related to the mass
and energy differences between the bound states most involved
in the dynamics. In this setting, the quasiparticle excitation is
mapped to domain walls whose separation is energetically
suppressed by the longitudinal field, which causes the appear-
ance of a ladder of discrete meson states in the low-energy
spectrum of the system (James, Konik, and Robinson, 2019).
After a quantum quench in this system, both correlation
spreading and energy flow (Mazza et al., 2019) are suppressed,
even if the system is nonintegrable and nondisordered.
A similar phenomenology can also be observed in

long-range spin systems described by Hamiltonian (61), as
theorized by Liu et al. (2019) for low-energy states and α < 3
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[see Figs. 27(b) and 27(c)] and by Lerose, Žunkovič, Silva,
and Gambassi (2019) for highly excited states with α < 2 [see
Fig. 27(d)]. The confining potential induced by the long-range
tail of the interaction on the domain walls acts, to a first
approximation, as an effective longitudinal field that con-
strains the evolution of the spin excitations; see Fig. 27(a).
Therefore, in the regime in which the transverse field hz is
smaller than the spin-spin interaction J0, long-range inter-
actions cause a phenomenology analogous to that found
in the Hamiltonian (128): the presence of bound states
results in magnetization oscillations and a slow spread of
correlations.
Magnetization oscillations have been observed experimen-

tally for a chain of up to 38 ions (Tan et al., 2021), showing a
mass scaling that is in agreement with theory in the low-energy
part of the spectrum. Tan et al. (2021) used a smaller chain of
11 ions to probe the first few bound states by preparing different
initial product states andmeasuring the magnetization hσzi ðtÞi at
the center of the chain (for zero initial domain walls) or
next to the boundaries of the initial domain (for two initial
domain walls). The initial states have been chosen to
maximize the matrix elements of the magnetization between
the prepared state i and the adjacent higher-energy bound
state iþ 1, allowing the energy gap between these two states
to be extracted; see Fig. 27(d). Similarly, a slow spread of
correlations has been observed by measuring two-body

correlations of the central spin with the rest of the system,
resulting in a much slower correlation spread than in the
nearest-neighbor Ising chain; see Fig. 27(e).
The possibility of engineering mesons in long-range inter-

acting spin systems has sparked an increasing body of
theoretical works on the existence of string breaking in a
specific range of parameters (Verdel et al., 2020) and meson
collisions (Karpov et al., 2020; Surace and Lerose, 2021).

F. Other dynamical phenomena

1. Many-body localization

Long-range interacting quantum systems have also been
explored in different settings, including disordered fields or
interactions or in a Floquet setting, where the system is
subjected to a periodic drive. In the presence of disorder, long-
range interacting quantum systems can exhibit many-body
localization (MBL), where the system fails to thermalize at
long times owing to the existence of an extensive set of
quasilocal integrals of motion (Nandkishore and Huse, 2015;
Abanin et al., 2019). However, sufficiently long-range inter-
actions can destroy many-body localization, as shown by
Pino (2014) and Yao et al. (2014). In this perspective, as
occurred for the XXZ model in Secs. IV.C and IV.D, it is
important to differentiate between the case of long-range
exchange couplings, i.e., hopping terms in the Hubbard model

(a)

(c)

(b) (d)

(e)

FIG. 27. Confinement in long-range spin systems. (a) Magnetic domain walls in Ising spin chains can experience an effective confining
potential that increases with distance analogously to the strong nuclear force. This potential results in mesonlike domain-wall bound states
(labeled E1 toE3) that influence the postquench dynamics. Adapted from Tan et al., 2021. (b) Magnetization oscillation hσzðtÞi (black line)
vs time after quenching to α ¼ 2.3 and Bz ¼ 0.27J0 for N ¼ 20. The dashed green lines show the magnetization for the transverse-field
Ising model with nearest-neighbor interactions only. The numerical calculations were adapted from Liu et al. (2019). (c) Left
panel: confinement of correlation in long-range systems for α ¼ 2.3 starting with the polarized state j↓↓ � � �↓i. Adapted from Liu et al.,
2019. Right panel: confinement of correlation in long-range systems for α ¼ 1.25 starting with the highly excited state j↓↓ � � �↓↑↑ � � �↑i.
Adapted from Lerose, Žunkovič, Silva, and Gambassi, 2019. (d) Magnetization oscillations (α ∼ 1.1) starting with low-energy product
states to probe the first three meson masses. Adapted from Tan et al., 2021. (e) Confinement dynamics at Bz=J0 ≈ 0.75; L ¼ 11; α ∼ 1.1.
Top row: absolute value of experimental center-connected correlations jCx

i;6ðtÞj averaged over 2000 experiments. Middle row: jCx
i;6ðtÞj,

calculated by solving the Schrödinger equation. The dashed white lines show correlation propagation bounds (light cones) in the limit
α → ∞ (nearest-neighbor interactions). Bottom row: measured individual-spin magnetizations along their initialization axes hσzi ðtÞi
averaged over 2000 experiments. The symbols represent magnetization data, and the solid colored curves represent theoretical
magnetizations calculated by solving the Schrödinger equation. Purple (green) dashed lines represent thermal expectation values
calculated from a canonical (microcanonical) ensemble averaged over the three displayed spins. Adapted from Tan et al., 2021.
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representation, and long-range density-density interactions,
i.e., Ising interactions in the spin formalism.
In particular, for long-range hopping terms, analytical

arguments have been used to predict the boundary α <
3d=2 (Burin, 2015a) as a condition for delocalization in
long-range spin systems governed by an XY Hamiltonian,
while in the case of long-range Ising interactions the boundary
value has been found to be α� ¼ 2d (Burin, 2015b). Within
this framework, the relaxation rates of local excitations in
dipolar disordered systems were studied in two and three
dimensions by Nandkishore and Gopalakrishnan (2021) as a
function of frequency and temperature. In the case of a long-
range spin exchange, Safavi-Naini et al. (2019) showed
numerical evidence indicating that an XY model is delocalized
for α < 1 in one dimension, in contrast with the α� ¼ 1.5
result of Burin (2015a). This other prediction might be due to
how dominant finite-size effects are for system sizes that
can be simulated exactly. In this respect, Maksymov and
Burin (2020) studied the scaling with the size of the critical
disorder for α < ð3=2Þd. Nandkishore and Sondhi (2017) used
bosonization arguments to show that MBL can arise in one-
dimensional systems with ∼r interactions and speculate
that MBL can be observed in two-dimensional systems with
logðrÞ interactions, and in three-dimensional systems with 1=r
interactions. MBL has been predicted with a mean-field
analysis (Roy and Logan, 2019) on the disordered XXZ
model with different power-law exponents for β < 1=2 and
β < α, where α is the decay exponent long-range exchange
couplings and β that of long-range Ising interactions. MBL
has also been found numerically in all-to-all systems (Sierant
et al., 2019) and fermionic system with long-range hopping
(Nag and Garg, 2019).
An important feature of MBL in the presence of long-range

density-density interactions is algebraic localization of the
quasilocal integrals of motion (LIOMs) that characterize the
MBL phase (Pino, 2014; De Tomasi, 2019). Conversely, in
short-range interacting systems LIOMs are exponentially
localized and entanglement entropy grows logarithmically.
However, since in MBL long-range systems LIOMs are
algebraically localized, one would expect entanglement
entropy to grow polynomially (Safavi-Naini et al., 2019).
In particular, Deng et al. (2020) showed that in a variety
of models (the XY, XXZ, and extended Hubbard models)
with power-law interactions there is a universal power-law
growth of the entanglement entropy at the MBL transition.
Experimental signatures of many-body localization in long-
range systems, such as memory of the initial states (Smith
et al., 2016), confirmed numerically by Wu and Das Sarma
(2016), and slow growth of the second-order Renyi entropy
(Brydges et al., 2019), have been observed in trapped-ion
chains of up to 20 qubits.
More recently disorder-free, “stark” MBL (Schulz et al.,

2019; van Nieuwenburg, Baum, and Refael, 2019) has been
predicted to be more resilient than “standard” MBL to long-
range exchange couplings (Bhakuni and Sharma, 2020). This
phenomenon was later connected to the Hilbert-space shatter-
ing caused by conservation laws (Khemani, Hermele, and
Nandkishore, 2020; Moudgalya et al., 2021). Signatures of
this type of disorder-free MBL have been observed in a
trapped-ion chain of up to 25 qubits with long-range

interactions decaying with α ∼ 1.3 and a strong effective
magnetic field gradient (Morong et al., 2021). As mentioned
in Sec. II.A.1, a large magnetic field makes the Ising model an
effective XY model with long-range exchange couplings, and in
this case the LIOMs are given by the Wannier-Stark states.
Conversely, in the case of long-range density-density inter-
actions, one expects Hilbert-space fragmentation, which has
also been studied in short-range interacting disordered spinless
fermions (Bar Lev, Cohen, and Reichman, 2015; De Tomasi
et al., 2019). In particular, in Hubbard models with polar
interactions and nearest-neighbor hoppings (Li, Deng, and
Santos, 2021) the power-law tail plays a crucial role because
it induces Hilbert-space shattering andMBL-like localization in
the absence of any disorder, even for moderate ratios of the
polar interactions versus hopping. This is not the case for
models with both nearest-neighbor hopping and density-density
interactions, where Hilbert-space fragmentation does not lead to
disorder-free MBL (De Tomasi et al., 2019).

2. Periodic drive

Quantum many-body systems with both disorder and
interactions have recently been used to observe new phases
of matter in periodically driven Floquet systems (Else, Bauer,
and Nayak, 2016; Khemani et al., 2016; von Keyserlingk,
Khemani, and Sondhi, 2016; Yao and Nayak, 2018) in which
discrete-time translational symmetry is spontaneously broken.
The observation of time-crystalline behavior has been
achieved in a periodically driven 1D trapped-ion chain with
on-site static disorder (Zhang et al., 2017) and a 3D disordered
sample of nitrogen-vacancy (N-V) centers with a dipolar
interaction (Choi et al., 2017). However, it was later shown
numerically (Khemani, Moessner, and Sondhi, 2019) that
neither realization realizes a genuine discrete time crystal
where MBL prevents the system from heating to infinite
temperature, instead promoting a prethermal (trapped ions)
and critical (N-V centers) time crystal. Recently genuine MBL
time crystals have been realized in systems with disordered
interactions in a system of nine 13C nuclear spins coupled to a
single N-V center (Randall et al., 2021) and in the Google
quantum computer (Mi et al., 2022) using 20 superconducting
qubits with fully programmable interactions. In the same
spirit, quasiperiodic Floquet drives have been predicted
(Friedman et al., 2022) to realize an emergent dynamical
symmetry-protected topological phase that was experimen-
tally realized with ten atomic ions by Dumitrescu et al. (2022).
Long-range interactions play a special role in the case of

prethermal discrete time crystals, where the temporal and
spatial long-range order is exhibited only for low-energy
initial states (Machado et al., 2020). A prethermal discrete
time crystal has been observed and characterized experimen-
tally in a trapped-ion chain of up to 25 spins (Kyprianidis
et al., 2021). Limit cycles and time-crystalline behavior have
also been predicted and experimentally observed in periodi-
cally driven many-body cavity QED systems (Cosme et al.,
2018; Keßler et al., 2019, 2020; Georges et al., 2021). In
addition, even without providing a time-dependent external
drive, many-body cavity QED systems can feature nonsta-
tionary periodically evolving states that emerge due to the
competition between dissipative and coherent processes in
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long-range interacting systems, as has been recently exper-
imentally observed (Dogra et al., 2019) and theoreti-
cally analyzed (Buča and Jaksch, 2019; Chiacchio and
Nunnenkamp, 2019).
Time crystals and, in general, Floquet dynamics has also

been found to be a source of dynamical phase transitions
(Kosior and Sacha, 2018; Yang et al., 2019). Indeed, novel
dynamical transitions can be engineered by periodic driving.
In the particular case of the long-range Ising model, the
periodic drive can stabilize phases, called Kapitza phases,
with magnetic ordering without an equilibrium counterpart
(Lerose, Marino et al., 2019). Moreover, in the study of the
quantum Ising chain, long-range interactions have been shown
to induce a large variety of different “higher-order” discrete
time crystal phases, where the periodicity of the response is a
multiple nT of the external drive period T (Collura et al.,
2021; Pizzi, Knolle, and Nunnenkamp, 2021; Giachetti,
Solfanelli et al., 2022). Note that a similar structure of the
time crystal phases has also been predicted to occur in
periodically driven BCS superconductors (Ojeda Collado
et al., 2021).

VI. CONCLUSION AND OUTLOOK

In this review, we have discussed the main AMO systems in
which long-range interactions are naturally present, and we
have also emphasized the fact that in many such systems the
range of the interaction can be controlled and varied, giving
rise to tunable values of α. This can be seen in the spirit of
quantum simulations, where one has a high degree of control
over the system and on its crucial properties.
We have discussed most of the quantum models that are

currently possible to simulate, focusing, in particular, on
lattice and spin models. A variety of spin models, such as
quantum Ising, XX, and XXZmodels (and their variants), with
tunable long-range interactions can be implemented. These
spin models alongside bosonic and fermionic models with
long-range density-density interactions provide an ample
arena of models in which the long rangedness of the
interactions plays a key role. While substantial progress has
been made in the simulations of quantum long-range lattice
models, many more models have yet to find their way, such
as bosonic and fermionic models with long-range hopping
(a task presently hard to be implemented) and long-range
multibody and multispin terms (Andrade et al., 2021).
In experiments, the main challenges are centered on gaining

more tunability of the spin-spin interactions through individ-
ual atom control. For example, trapped-ion systems are
routinely used as quantum computing platforms (Bruzewicz
et al., 2019; Wright et al., 2019; Pino et al., 2021) where
individual qubit control and detection are necessary ingre-
dients to exploit the long-range connectivity of pairwise
quantum logic gate operations. Leveraging the same techno-
logical advances, trapped-ion simulators are posed to explore
a wider range of physical models where long-range inter-
actions and high connectivity play crucial roles, ranging
from high-energy physics (Martinez et al., 2016; Muschik
et al., 2017) to spin-boson models (Gorman et al., 2018;
Safavi-Naini et al., 2018) and quantum glasses (Rademaker
and Abanin, 2020).

In addition, many-body cavity QED systems have demon-
strated the first results on tuning the interaction range. In the
next step, the resulting many-body phases, phase transitions,
and associated phenomena including the Brazovskii transi-
tion, glassiness, or frustration have to be explored. Having
these tunable-range interactions compete with short-range
collisional interactions will allow strongly correlated regimes
to be accessed and the rich universe of extended Hubbard
models to be explored.
Long-range couplings induce a dispersion relation ∝ kσ as

opposed to the standard relation ∝ k2 in short-range systems.
Given the nature of the dispersion relation in long-range
systems, one can expect (and find in some cases with
microscopic calculations) that the effective low-energy model
features fractional derivatives (or fractional Laplacians) alter-
ing the scaling of the observables in the system. While this
modified scaling is at least partially understood for OðN Þ
systems (Defenu et al., 2020), its counterpart in interacting
lattice systems remains to be thoroughly investigated (Lepori
et al., 2016; Iglói et al., 2018; Ferraretto and Salasnich, 2019;
Botzung et al., 2021).
Relevant nonanalytic momentum terms in quantum long-

range models induce an universal behavior that effectively
corresponds to that of a classical model in the fractional dþ z
dimension, with z < 1 (Defenu, Trombettoni, and Ruffo,
2017). For this reason, the spatial dimensionality does not
appear to play as crucial a role in long-range systems as it does
in the local case, since long-range couplings alter the spectral
dimension of the bare theory (Leuzzi et al., 2008; Millán et al.,
2021). A similar effect may also be expected in the strong
long-range regime, where the spectral dimension is not
defined, but the spectral properties are still expected to rule
the universal behavior both at and out of equilibrium.
Nevertheless, the connection between those spectral proper-
ties and universal aspects of celebrated phenomena such as
ensemble inequivalence, negative specific heats, and quasista-
tionary states largely remain to be explored and exploited
(Kastner, 2010; Defenu, 2021).
Several recent results not fully established in the long-range

literature have not been discussed in details. The choice of
topics has been motivated by the goal to advocate for the
inclusion of long-range physics, and quantum long-range
systems, particularly in university-taught courses. The inex-
haustive list of topics we did not discuss includes the well
established interplay between long-range couplings and dis-
order (Kotliar, Anderson, and Stein, 1983; Leuzzi et al., 2008;
Katzgraber, Larson, and Young, 2009), recently studied in
the context of long-range interactions (Millán et al., 2021).
In addition, the presence of long-range correlated noise in
quantum computing devices (Aharonov, Kitaev, and Preskill,
2006) has been reconsidered in the context of studies on long-
range systems (Biella et al., 2013; Chávez et al., 2019;
Seetharam et al., 2022). Finally, examples of quantum
circuits, where long-range couplings or disorder generates a
peculiar scaling of entanglement (Block et al., 2022; Minato
et al., 2022; Xu, 2022), promising to induce further excite-
ment on applications of long-range interactions, were not
substantially covered in our review. Nevertheless, a careful
reading of the literature shows that the information provided
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in this review should put the interested reader in a position to
fully understand the phenomena typically discussed in such
recent areas of research.
The analysis of the different systems presented in this

review ultimately shows that long-range interactions provide
an ingredient that we can control and use for different
purposes. On the one hand, they can be exploited to control
the stationary states and the thermalization properties. On the
other hand, they may affect the phase diagram and the
universality properties. Additionally, they can be a resource
in the quantum control of the system, providing a useful knob
to control the dynamics and the implementation of quantum
information tasks, where they can be used to improve the
efficiency of control gates and the unitary dynamics needed to
modify in the desired way the quantum state of the system.
Long-range properties can also be exploited in typical

quantum simulation contexts, as highlighted in the simulation
of dynamical gauge field theory with AMO systems (Bañuls
et al., 2020; Davoudi et al., 2020; Davoudi, Linke, and
Pagano, 2021), where suitably tailored long-range interactions
can be used to simulate the effect of dynamical gauge fields.
Similarly, they can play a role in the study of quantum devices
and the thermodynamic aspects of quantum registers.
The study of the possible uses of long-range interactions in

quantum simulators and devices is only at the beginning and
will benefit from (and motivate in turn) progress in systems in
which the long-range nature of the interactions can be
controlled, as in the mode control of interactions with trapped
ions. Several systems in which long-range interactions may
play a crucial role remain to be fully investigated, such as
ultracold fermionic gases. We envision a significant interplay
between the study of new equilibrium phases and dynamical
regimes in quantum long-range systems and their focused
embodiment in quantum devices and simulators. We hope that
this review triggers such combined studies to fully exploit the
richness of quantum long-range systems.
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Poincaré 18, 1755.

Baillie, D., and P. B. Blakie, 2018, Phys. Rev. Lett. 121, 195301.
Baillie, D., R. M. Wilson, R. N. Bisset, and P. B. Blakie, 2016, Phys.
Rev. A 94, 021602.

Baillie, D., R. M. Wilson, and P. B. Blakie, 2017, Phys. Rev. Lett.
119, 255302.

Bakhtiari, M. R., A. Hemmerich, H. Ritsch, and M. Thorwart, 2015,
Phys. Rev. Lett. 114, 123601.

Balewski, J. B., A. T. Krupp, A. Gaj, S. Hofferberth, R. Löw, and
T. Pfau, 2014, New J. Phys. 16, 063012.

Balog, I., G. Tarjus, and M. Tissier, 2014, J. Stat. Mech. P10017.
Baltrusch, J. D., C. Cormick, and G. Morigi, 2012, Phys. Rev. A 86,
032104.

Bañuls, M. C., et al., 2020, Eur. Phys. J. D 74, 165.
Bapst, V., and G. Semerjian, 2012, J. Stat. Mech. P06007.
Baranov, M. A., M. Dalmonte, G. Pupillo, and P. Zoller, 2012, Chem.
Rev. 112, 5012.

Barci, D. G., L. Ribeiro, and D. A. Stariolo, 2013, Phys. Rev. E 87,
062119.

Barci, D. G., and D. A. Stariolo, 2007, Phys. Rev. Lett. 98, 200604.
Barci, D. G., and D. A. Stariolo, 2009, Phys. Rev. B 79, 075437.
Barci, D. G., and D. A. Stariolo, 2011, Phys. Rev. B 84, 094439.
Bar Lev, Y., G. Cohen, and D. R. Reichman, 2015, Phys. Rev. Lett.
114, 100601.

Barmettler, P., M. Punk, V. Gritsev, E. Demler, and E. Altman, 2009,
Phys. Rev. Lett. 102, 130603.
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Béguin, L., A. Vernier, R. Chicireanu, T. Lahaye, and A. Browaeys,
2013, Phys. Rev. Lett. 110, 263201.

Behan, C., L. Rastelli, S. Rychkov, and B. Zan, 2017, Phys. Rev.
Lett. 118, 241601.

Benatti, F., and R. Floreanini, 2005, Int. J. Mod. Phys. A 19, 3063.
Bentsen, G., Y. Gu, and A. Lucas, 2019, Proc. Natl. Acad. Sci.
U.S.A. 116, 6689.

Bentsen, G., T. Hashizume, A. S. Buyskikh, E. J. Davis, A. J. Daley,
S. S. Gubser, and M. Schleier-Smith, 2019, Phys. Rev. Lett. 123,
130601.

Berganza, M. I., and L. Leuzzi, 2013, Phys. Rev. B 88, 144104.
Berges, J., N. Tetradis, and C. Wetterich, 2002, Phys. Rep. 363, 223.
Bermudez, A., and M. B. Plenio, 2012, Phys. Rev. Lett. 109, 010501.
Bermudez, A., L. Tagliacozzo, G. Sierra, and P. Richerme, 2017,
Phys. Rev. B 95, 024431.

Bernien, H., et al., 2017, Nature (London) 551, 579.
Bhakuni, D. S., and A. Sharma, 2020, Phys. Rev. B 102, 085133.
Bhattacharya, U., and A. Dutta, 2017a, Phys. Rev. B 96, 014302.
Bhattacharya, U., and A. Dutta, 2017b, Phys. Rev. B 95, 184307.
Biella, A., F. Borgonovi, R. Kaiser, and G. L. Celardo, 2013,
Europhys. Lett. 103, 57009.

Bienias, P., et al., 2020, Phys. Rev. Res. 2, 033049.
Bighin, G., N. Defenu, I. Nándori, L. Salasnich, and A. Trombettoni,
2019, Phys. Rev. Lett. 123, 100601.

Binder, K., 1985, Z. Phys. B 61, 13.
Birkl, G., S. Kassner, and H. Walther, 1992, Nature (London)
357, 310.

Bismut, G., B. Laburthe-Tolra, E. Maréchal, P. Pedri, O. Gorceix, and
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Latella, I., A. Pérez-Madrid, A. Campa, L. Casetti, and S. Ruffo,
2015, Phys. Rev. Lett. 114, 230601.
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