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Quantum random sampling is the leading proposal for demonstrating a computational advantage
of quantum computers over classical computers. Recently the first large-scale implementations of
quantum random sampling have arguably surpassed the boundary of what can be simulated on
existing classical hardware. Here the theoretical underpinning of quantum random sampling is
comprehensively reviewed in terms of computational complexity and verifiability, as are the practical
aspects of its experimental implementation using superconducting and photonic devices and its
classical simulation. Open questions in the field are discussed, and perspectives for the road ahead,
including potential applications of quantum random sampling, are provided.
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I. INTRODUCTION

Dating back as far as the 1980s, researchers have been
thinking about what the computational power would be of
computers whose constituents follow not the laws of classical
physics but rather those of quantum physics (Benioff, 1980;
Feynman, 1982, 1985; Deutsch, 1985). Given that quantum
mechanical systems allow for superpositions and entangle-
ment, this might give rise to a distinct model of computation
compared to the paradigmatic Turing machine model that
captures classical computations.
Within the model of quantum computation (Deutsch, 1985;

Bernstein and Vazirani, 1997), certain computational tasks can
indeed be achieved much more efficiently than is possible
using classical computing devices. While for some problems
such as database search (Grover, 1996) quantum computation
offers polynomial speedups over classical algorithms, for
others such as factoring integer numbers (Shor, 1994, 1997)
and simulating quantum systems (Lloyd, 1996) it even offers
presumably exponential speedups.
Within the framework of computational complexity theory,

quantum computation has also been exponentially separated
from classical computation via so-called oracle separations
(Bernstein and Vazirani, 1993, 1997; Simon, 1994, 1997; Raz
and Tal, 2019; Yamakawa and Zhandry, 2022). The advent of
quantum error correction (Shor, 1996) and the threshold
theorem (Aharonov and Ben-Or, 2008) brought the notion
of quantum computation closer to reality, showing that (at
least in principle) errors can be corrected faster than they are
generated, provided that their rate is low enough.
Since these discoveries, the search for applications of

quantum computation has flourished (Montanaro, 2016;
Martyn et al., 2021). Quantum algorithms have been discov-
ered for solving “classical problems,” for instance, solving
structured linear equations (Harrow, Hassidim, and Lloyd,
2009), solving systems of nonlinear differential equations
(J.-P. Liu et al., 2021), and performing optimization tasks
(Farhi et al., 2000; Farhi, Goldstone, and Gutmann, 2014;
Brandão and Svore, 2017). More sophisticated methods
for quantum simulation have been devised, such as higher-
order Trotter formulas (Childs et al., 2021), qubitization (Low
and Chuang, 2019), and linear combination of unitaries
approaches (Childs and Wiebe, 2012), and we have a much
better understanding of computational primitives possible in
quantum computing in terms of the quantum singular-value
transform (Gilyén et al., 2019) as a general way to process
quantum signals (Low and Chuang, 2017, 2019).
There already is strong evidence that the dream of a

universal quantum computer may become a reality in the
not-too-distant future. Quantum devices have been developed
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in a plethora of experimental platforms, ranging from ultra-
cold atoms trapped in an optical-lattice potential (Bloch,
Dalibard, and Zwerger, 2008), Rydberg atoms in optical
tweezers (Bernien et al., 2017) and trapped ions (Blatt and
Roos, 2012) to superconducting qubits (Clarke and Wilhelm,
2008), photonic platforms (Kok et al., 2007; Bartolucci et al.,
2021), and silicon quantum dots (Zwanenburg et al., 2013).
For over a decade, special-purpose analog quantum simu-
lators have been able to qualitatively simulate variants of
the Hubbard model (Jaksch et al., 1998), the Heisenberg
model (Friis et al., 2018), and other classically intractable
Hamiltonians with high precision and tunability of parameters
at scales of up to tens of thousands of atoms (Trotzky et al.,
2010). While much smaller still, universal quantum devices
are advancing at a rapid pace. Moving beyond the proof-of-
principle demonstrations of quantum algorithms on small
scales (Vandersypen et al., 2000, 2001), first steps toward
error-corrected quantum devices are currently being made
(Ofek et al., 2016; Egan et al., 2021; Acharya et al., 2022;
Krinner et al., 2022; Ryan-Anderson et al., 2022). The quest
to actually build a universal, fault-tolerant quantum computer
has now also reached industry (Reagor et al., 2018; Arute
et al., 2019; Bartolucci et al., 2021; Jurcevic et al., 2021).
Quantum computing has thus expanded from an area of
primarily academic interest to the consistent subject of news
headlines around the world.
However, the devices available right now remain far from

the error-correctable regime in terms of both error rates and
the sheer number of qubits and quantum operations required
for quantum error correction (Häner, Roetteler, and Svore,
2017; O’Gorman and Campbell, 2017; Gheorghiu and Mosca,
2019; Gidney and Ekera, 2019). Available today are noisy
universal quantum devices with up to roughly 50 to 100
physical qubits (Arute et al., 2019; Zhu et al., 2022), as well as
special-purpose quantum simulators that allow for larger
system sizes but lack universal programmability. When
engineering those devices, one is faced with the challenge
of controlling individual quantum systems with a high degree
of accuracy over long times, making their improvement and
scaling a monumental challenge.
Given this profound challenge associated with building a

universal, fault-tolerant quantum computer, one may—and
should—ask whether we should even believe that quantum
computations that outperform classical computation are physi-
cally possible. This is the question at the heart of this review.
The so-called extended Church-Turing thesis states that any
physically implementable model of computation can be
efficiently simulated using a classical computer (Vergis,
Steiglitz, and Dickinson, 1986; Bernstein and Vazirani, 1997).
In particular, this thesis implies that quantum computers that
exponentially outperform classical computers should not be
possible. And indeed, in the entire history of computation, and
despite the significant evolution of computing devices, no
counterexample—other than quantum computing—has been
found, lending significant credibility to the thesis. Conversely,
the physical possibility of quantum computers challenges the
extended Church-Turing thesis.
We can think of the extended Church-Turing thesis as a

computational analog of the thesis that nature must have a
description in terms of a local and realistic theory (Einstein,

Podolsky, and Rosen, 1935). Bell’s inequalities (Bell, 1964)
quantitatively capture how quantum theory violates this thesis
and provide a concise experimental setting to test local
realism. The experimental violation of a Bell inequality
(Freedman and Clauser, 1972; Aspect, Dalibard, and Roger,
1982; Aspect, Grangier, and Roger, 1982) has once and for all
falsified this belief and fundamentally changed the way that
we think about the interactions between the local constituents
of our world. Reasonable skeptics will have been convinced of
this since the last closable loopholes have been closed
(Giustina et al., 2015; Hensen et al., 2015; Shalm et al., 2015).
An experimental violation of the extended Church-Turing

thesis, called quantum advantage or quantum supremacy
(Preskill, 2012), would mark a similar milestone for the field
of computing. From the perspective of computer science, it
would demonstrate the physical possibility of computations
that are not efficiently simulable in a classical Turing
machine model. From the perspective of physics, it would
demonstrate that quantum theory is applicable even in
regimes that are not accessible by means of the computation
that we currently have.
This gives rise to the question as to what a computational

analog of a Bell inequality as a means to test local realism is.
In other words, what is (i) a simple task that can be
performed on noisy and intermediate-scale quantum devices
that is at the same time computationally difficult to simulate
for classical computers both (ii) asymptotically and (iii) in
practice using available computing hardware? And what
could be (iv) a simple test that this task has been successfully
and unambiguously achieved so that a reasonable skeptic can
be convinced?
All of these requirements are extremely challenging at

different levels. The central complexity-theoretic challenge is
to prove an asymptotic speedup of quantum computers over
classical computers, a challenge that has remained elusive for
several decades now. Next, given the intrinsic complexity of
the task by the first requirement, a direct verification using
only classical computing resources seems impossible at first
sight. The final challenge is to actually build an intermediate-
scale quantum computer that is able to outperform the
classical supercomputers available today. At the same time,
it is a conceptual challenge to identify ways to fairly compare
near-term quantum and large-scale classical computations
solving the same task since their limitations are significantly
different in nature. Roughly speaking, near-term quantum
devices are limited by noise, while large-scale classical
devices are limited by the size of the available computers.
A conceptually simple way to achieve these theoretical

requirements is to make use of the quantum algorithm for
integer factoring. This is because factoring is believed to be a
problem for which no efficient classical algorithm exists. In
fact, a large part of the presently applied public-key cryptog-
raphy is based on the hardness of factoring. Factoring is
particularly suited to public-key cryptography because it is
believed to define a so-called one-way function, that is, a
function that can be computed easily (the product of two large
prime numbers) but that is extremely difficult to invert
(finding those numbers given their product). Conversely, this
means that verifying a successful implementation of Shor’s
algorithm is straightforward: One simply has to multiply the
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output and compare it to the input. While proof-of-principle
demonstrations of Shor’s algorithm have been achieved
(Vandersypen et al., 2001), factoring a large 2048 bit number
as is used for public-key encryption via the Rivest-Shamir-
Adleman (RSA) cryptosystem is estimated to require a large-
scale, error-corrected universal quantum computer using
roughly 2 × 107 physical qubits (Häner, Roetteler, and
Svore, 2017; O’Gorman and Campbell, 2017; Gheorghiu
and Mosca, 2019; Gidney and Ekera, 2019), thus placing
this algorithm outside the realm of what could realistically be
achieved in the near future. Hence, while impressive progress
is being made along these lines of thought (Barends et al.,
2014; Acharya et al., 2022; Ryan-Anderson et al., 2022),
factoring cannot serve as a simple and near-term test of the
computational advantage offered by quantum devices.
A particularly natural class of problems for quantum

computers are sampling problems. Indeed, any quantum
mechanical experiment can be seen as simply being a
sampling experiment: given an experimental prescription,
a repeated measurement will provide intrinsically random
measurement outcomes according to a probability distribu-
tion determined by the Born rule. Almost 20 years ago,
it was first observed that the patterns of measurement
outcomes resulting from certain quantum computations
could in fact be so complicated that classical computers
would not be able to reproduce them (Terhal and
DiVincenzo, 2004).
A simple class of computations to consider as a test of

quantum devices are random quantum computations. Such
computations are presumably not computations that solve a
relevant computational problem, but they may be useful in
themselves, serving at the same time as a benchmark of a
given computing device and as a test of quantum computa-
tional advantage. The task of sampling from the output
distribution of a random quantum computation is called
quantum random sampling.
In the past 20 years, significant evidence has accumulated

that for a large variety of computations, and particularly for
nonuniversal computations, this task is computationally intrac-
table for classical computers (Blais et al., 2004; Bremner, Jozsa,
and Shepherd, 2010; Aaronson and Arkhipov, 2013; Bremner,
Montanaro, and Shepherd, 2016; Fujii and Morimae, 2017;
Boixo et al., 2018; Björklund, Gupt, and Quesada, 2019;
Bouland et al., 2022; Kondo, Mori, and Movassagh, 2022;
Krovi, 2022). At the same time, there is significant evidence
that current-day supercomputers have a difficult time simulat-
ing this task even for small systems comprising roughly 50–100
subsystems (Neville et al., 2017; Markov et al., 2018; Huang
et al., 2020; Bulmer et al., 2022; Pan, Chen, and Zhang, 2022).
Recently quantum random sampling in a classically intractable
regime has been claimed to be achieved experimentally on a
universal quantum processor comprising 53 qubits (Arute et al.,
2019), or as many as 60 qubits (Wu et al., 2021; Zhu et al.,
2022), as well as using photonic systems (Zhong et al., 2020,
2021; Madsen et al., 2022).
In this review, we provide a detailed overview of quantum

random sampling as a test of the presumed exponential
computational advantage of quantum computers over classical
ones. We show in what precise way quantum random

sampling can be seen as a computation. We explain what
that computation solves, in what way it outperforms classical
computations, what methods of verification are available, and
what challenges arise in this context.
In Secs. II–V, we focus on the theoretical aspects of

quantum random sampling: the question of how to prove
an asymptotic quantum speedup, and the questions as to
whether and how quantum random sampling can be verified.
Here we explain how the key idea of Terhal and DiVincenzo
(2004) to relate the hardness of sampling to the hardness of
computing probabilities has been further developed in recent
years. Building on the idea to show a collapse of the so-called
polynomial hierarchy (Bremner, Jozsa, and Shepherd, 2010;
Aaronson and Arkhipov, 2013) based on the classical hard-
ness of computing quantum probabilities (Valiant, 1979; Fujii
and Morimae, 2017) and the assumed availability of an
efficient classical sampler, this idea has been further devel-
oped to allow for certain errors in implementation (Aaronson
and Arkhipov, 2013; Bremner, Montanaro, and Shepherd,
2016) and brought closer to experimental implementation
(Lund et al., 2014; Hamilton et al., 2017; Bermejo-Vega et al.,
2018; Boixo et al., 2018). The question of how to verify
quantum random sampling was first addressed by Shepherd
and Bremner (2009), and it has been pointed out that, in its
most restrictive forms, classical verification is unviable
(Gogolin et al., 2013; Aaronson and Arkhipov, 2014;
Hangleiter et al., 2019). This notwithstanding, weaker forms
of classical verification indeed turn out to be possible
(Aaronson and Arkhipov, 2014; Boixo et al., 2018; Arute
et al., 2019), albeit at a potentially prohibitive computational
cost (Arute et al., 2019).
In Secs. VI and VII, we discuss the practical aspects of

quantum random sampling, particularly experimental imple-
mentations and concrete classical simulation algorithms for
quantum random sampling. In the context of experimental
implementation, it is essential to fully understand and analyze
the noise that remains present on the device in order to devise
as-robust-as-possible schemes (Boixo et al., 2018; Arute et al.,
2019). Likewise, from the perspective of classical simulation a
central question is what features of a scheme obstruct classical
algorithms (Aaronson and Chen, 2017; Markov et al., 2018)
and, conversely, how best to exploit “weaknesses” of a scheme
or a verification method in order to devise faster simulation
algorithms (Clifford and Clifford, 2020; Gao et al., 2021;
Bulmer et al., 2022; Pan and Zhang, 2022).
We stress that the topic at hand is highly conceptual in

nature, so a precise understanding of the underlying premises
and an appreciation of the fine print that comes along are
essential. For this reason, we have made the deliberate choice
of keeping the exposition precise and accurate in most places,
sometimes using formal language, while at the same time
pedagogically introducing all required concepts.
What we do not discuss in this review are ways to

demonstrate a quantum advantage by other means.
Particularly prominent examples involve the discovery of
verifiable proofs of quantumness (Brakerski et al., 2018,
2020; Kahanamoku-Meyer et al., 2022), for which there are
recent proof-of-principle demonstrations (Zhu et al., 2021).
These schemes demonstrate access and control over a single
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qubit via a cryptographic encoding. Yamakawa and Zhandry
(2022) recently made great progress along these lines by
devising a verifiable proof of computational quantum advan-
tage based on certain random computations. In this sense, it is
at the interface of quantum random sampling and crypto-
graphic proofs of quantumness. Presumably, none of these
methods can be implemented at a scale required for a quantum
advantage in the intermediate term, however (Hirahara and
Le Gall, 2021; Zhu et al., 2021; Liu and Gheorghiu, 2022).
Before we start, we point the interested reader to more

concise reviews of quantum advantage (Harrow and
Montanaro, 2017), quantum random sampling (Lund,
Bremner, and Ralph, 2017), and implementations of boson
sampling (Brod et al., 2019) that may serve as starting points
in the literature. In addition, Nielsen and Chuang (2010)
covered the basics of quantum computing, which we do not
address here.
We begin this review by setting the stage and stating what a

quantum random sampling scheme is in the first place in
Sec. II. There we define universal circuit sampling, instanta-
neous quantum polynomial-time (IQP) circuit sampling,
boson sampling, and Gaussian boson sampling; we also hint
at other schemes. Section III explains the basics of computa-
tional complexity to the extent that they are needed in Sec. IV
to show the computational hardness of quantum random
sampling on classical computers. This discussion constitutes
the heart of the review: It is precisely this fine print that is
needed to appreciate the significance of experimental imple-
mentations of quantum random sampling. Section V is
concerned with the question of how to verify the correctness
of the implementation of a quantum random sampling scheme.
In Sec. VI, we detail the experimental implementations of
quantum random sampling to date. Section VII provides an
overview of methods of simulation run on classical super-
computers that aim to challenge quantum implementations in
their computational power. Finally, in Sec. VIII we put the
findings into perspective and discuss various open questions
as means of taking further steps, particularly toward explore
potential applications of quantum random sampling.

II. QUANTUM RANDOM SAMPLING SCHEMES

Every experiment in quantum physics can be viewed as a
sampling experiment: Measurement outcomes are intrinsically
random, sampled from a probability distribution determined
by the Born rule. Sampling problems are therefore natural
candidates exhibiting specifically quantum features. The most
prominent example of a quantum-classical divide is for a
specific quantum sampling problem that cannot be reproduced
classically under locality constraints: the violation of a Bell
inequality (Bell, 1964). Similarly, in terms of computational
complexity we expect it to be difficult to reproduce the
experimental outcomes of generic quantum computations.
Indeed, we can think of the corresponding experiments as
violating a computational equivalent of the Bell inequality.
The reasons why we expect generic computations to be hard
to simulate are manifold and not precisely understood; the
exponentially growing Hilbert space dimension, quantum
interference leading to nonpositive amplitudes, and entangle-
ment are some examples of distinctly quantum features

obstructing classical simulation algorithms. Roughly speak-
ing, generic quantum computations explore the entire state
space available, providing no structure that can be exploited
by a classical simulation algorithm. Consequently, by this
reasoning the run-time of such an algorithm must be deter-
mined by the exponential Hilbert space dimension.
To make the intuition rigorous that generic quantum

computations give rise to sampling problems that are classi-
cally intractable, the idea of quantum random sampling has
been introduced. In quantum random sampling problems, a
quantum computation is drawn at random according to some
specification. The task is then to sample from the Born rule
distribution generated by this random quantum computation.
There are now two notions of randomness at play: The first
notion is the randomness of the computation itself, which is
classical randomness used to draw the computation at random.
The second notion is the intrinsically quantum randomness of
individual outcomes sampled from the output distribution of
that computation. Not only are such quantum random sam-
pling schemes difficult to simulate using the known classical
simulation algorithms that are already at comparably small
scales, but we can also give complexity-theoretic evidence
for asymptotic intractability. This evidence is independent of
specific algorithms and regards the intrinsic complexity of the
problem by reducing it to a paradigmatic computational
problem that can be independently studied and is therefore
much stronger than merely the failure of our known simu-
lation algorithms. Quantum random sampling schemes are
particularly appealing for demonstrations of quantum advan-
tage because, as we later see, the complexity-theoretic argu-
ment applies even to certain nonuniversal computations that
may be comparably easy to experimentally implement.
A quantum random sampling scheme is defined by the

random choice of a quantum computation realized by a
quantum circuit. A quantum circuit describes an arrangement
of quantum gates from a certain gate set in some spatial and
temporal order, acting on a specific set of individual quantum
systems, here often taken to be qubits. In a random quantum
circuit individual quantum logic gates are chosen at random
from a given gate set and applied to input registers according
to a certain rule. For a fixed input size n, for instance, the
number of qubits in a random quantum circuit, this gives rise
to a family of computations, realized as a circuit family, that is
denoted by Cn. The classical sample space Ω comprises the
possible measurement outcomes.
Task 1 (Quantum random sampling).—Given as input

a problem size n and a circuit C chosen at random from a
family Cn, sample from the output distribution pðCÞ of the
circuit applied to a reference state1 j0i, with the probability of
an outcome S ∈ Ω given by

pSðCÞ ¼ jhSjCj0ij2: ð1Þ

Depending on whether the emphasis lies on the probability
distribution over the circuits C or on the outcomes S of a fixed

1Throughout this review, we use the term “state” both for density
operators ρ and for state vectors jψi in the underlying Hilbert space.
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circuit, we use pSðCÞ at times and use pCðSÞ at other times for
the outcome probabilities.
In the remainder of this section, we formally introduce the

most important schemes: universal circuit sampling, IQP circuit
sampling, and boson sampling. These schemes recurrently
appear over the course of this review, in which we discuss
their and similar schemes’ properties. This includes not only
their complexity-theoretic analysis (Sec. IV) and the question in
how far classical samples from their output distributions can be
verified (Sec. V) but also their experimental implementations
(Sec. VI) and specific classical simulation schemes (Sec. VII).

A. Universal circuit sampling

The most prominent example of a quantum random
sampling scheme, or rather family of random sampling
schemes, is universal circuit sampling. The rationale behind
universal circuit sampling is to explore the entire Hilbert space
available in small- or intermediate-scale experiments as
quickly as possible. This is why it is also a universal circuit
sampling scheme that was implemented to experimentally
demonstrate a computational quantum advantage for the first
time (Arute et al., 2019).
In universal circuit sampling, quantum gates are drawn from

a gate set that is universal for quantum computation: that is, any
quantum computation could be implemented with gates drawn
from this set. The gates are placed at certain positions in a
quantum circuit architecture, which might be fixed or random.
The circuit might also contain other nonrandom gates.
For example, in the experiment of Arute et al. (2019) a

specific type of random circuit is applied: in every layer of the
circuit random single-qubit gates are applied to every qubit,
and a specific two-qubit entangling gate is applied to each
edge of a square lattice in a particular sequence; see Fig. 1(a).
The single-qubit gates are drawn from the set f ffiffiffiffi

X
p

;
ffiffiffiffi
Y

p
;
ffiffiffiffiffi
W

p g
in such a way that the same single-qubit gate is not allowed to
sequentially repeat. Here

X ¼
�
0 1

1 0

�
; Y ¼

�
0 −i
i 0

�
; Z ¼

�
1 0

0 −1

�
ð2Þ

denote the Pauli matrices and W ¼ ðX þ YÞ= ffiffiffi
2

p
. The entan-

gling gates are given by the iSWAP-like gate

iSWAP� ¼

0BBB@
1 0 0 0

0 0 −i 0

0 −i 0 0

0 0 0 e−iπ=6

1CCCA: ð3Þ

As a theoretically appealing toy model of random uni-
versal circuits, consider a continuous gate set G ¼ Uð4Þ
comprising all two-qubit gates. In this model, a depth-N
random circuit C acting on n qubits is constructed by
choosing a uniformly random gate in G ∈ G according to
the Haar measure, and the pair of qubits it is applied
at random (Brandão, Harrow, and Horodecki, 2016).
Alternatively, we can apply the gates in a parallel architec-
ture in which each layer of the circuit comprises random
gates from G applied in parallel to all qubits.

B. IQP circuit sampling

A prominent family of random quantum sampling schemes
that uses restricted gate sets is given by so-called IQP circuits
(Shepherd and Bremner, 2009). An IQP circuit is a commut-
ing quantum circuit that is diagonal in the Hadamard basis.
Such a circuit can always be written asC ¼ H⊗nDH⊗n, where
D is diagonal in the computational basis and

H ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
ð4Þ

denotes the Hadamard gate. IQP circuits appear naturally in
the context of measurement-based quantum computation
(Raussendorf and Briegel, 2001). Instances of IQP circuit
families are defined by diagonal circuits comprising diagonal
two-qubit gates with arbitrary phases on the diagonal (Nakata,
Koashi, and Murao, 2014) and circuits of Z, controlled-Z (CZ),
and controlled-controlled-Z (CCZ) gates, which flip the phase
of the target qubit if and only if the control qubit (CZ) or qubits
(CCZ) are in the j1i state (Bremner, Montanaro, and Shepherd,
2016). But one can also phrase IQP circuits in the language
of Hamiltonian time evolution. In this language, an IQP circuit
is given by the constant-time evolution under an Ising
Hamiltonian with edge weights chosen in a specific way

(a) (b)

FIG. 1. Circuit diagrams for (a) random universal circuits as performed in the experiment by Arute et al. (2019) with random single-
qubit gates from the gate set comprising

ffiffiffiffi
X

p
;
ffiffiffiffi
Y

p
;
ffiffiffiffiffi
W

p
and fixed two-qubit entangling gates iSWAP

* at fixed positions in the circuit, and
(b) boson sampling, where passive linear optics comprising beam splitters and phase shifters are applied to a Fock input state j1ni and
then measured in the Fock basis with outcomes Si.
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(Bremner, Montanaro, and Shepherd, 2016). In this formu-
lation, one can generalize IQP circuits to arbitrary multiqubit
interactions: so-called X programs (Shepherd and Bremner,
2009). Another natural family of random computations in this
model of computation is given by preparing a so-called cluster
state (Raussendorf and Briegel, 2001; Raussendorf, Browne,
and Briegel, 2003) on a square lattice and performing random
local rotations around the Z axis (Haferkamp, Hangleiter,
Bouland et al., 2020). This model bridges a gap to quantum
simulation, as it can be implemented using translation-
invariant Hamiltonians (Gao, Wang, and Duan, 2017;
Bermejo-Vega et al., 2018).
Two specific examples of IQP circuit families that are

theoretically clean and help us to illustrate important concepts
in Secs. III–VIII were introduced by Bremner, Montanaro, and
Shepherd (2016). An instance Cf of the first family is defined
by a degree-3 Boolean polynomial f∶f0; 1gn → f0; 1g over
the field F2 ¼ ðf0; 1g;⊕; ·Þ as

fðxÞ ¼
X
i;j;k

αi;j;kxixjxk þ
X
i;j

βi;jxixj þ
X
i

γixi; ð5Þ

with Boolean coefficients αi;j;k; βi;j; γi ∈ f0; 1g denoting
whether or not CCZ, CZ, and Z gates are applied to qubits
ði; j; kÞ, ði; jÞ, and i, respectively.
An instance of the second family is defined by an adjacency

matrix w with entries chosen from a set of angles
A ¼ f0; π=4;…; 7π=4g as

Cw ¼ exp

�
i

�X
i<j

wi;jXiXj þ
X
i

wi;iXi

��
; ð6Þ

where Xi is the Pauli-X matrix acting on site i. In other words,
on every edge ði; jÞ of the complete graph on n qubits, a gate
expðiwi;jXiXjÞ with edge weight wi;j and on every vertex i,
a gate expðiwi;iXiÞ with vertex weight wi;i is performed.

C. Boson sampling

The boson-sampling scheme of Aaronson and Arkhipov
(2013) is one of the most prominent and historically earliest
quantum random sampling schemes. The conception of this
scheme has its origins in the computational difficulty of
computing the permanent of a matrix. The permanent
describes the output distributions of interfering free bosons,
such as single photons interfering on a beam splitter. The
complexity of computing the permanent has its correspon-
dence in a surprising physical effect: photon bunching. The
experimental observation of photon bunching in the famous
Hong-Ou-Mandel experiment (Hong, Ou, and Mandel, 1987)
is one of the landmark experiments of quantum optics, as it
was among the first experiments to experimentally confirm
quantum entanglement. In this experiment, two photons
interfere on a beam splitter and are measured in the photon-
number basis. However, for indistinguishable photons one
only ever observes zero or two photons in one of the modes,
never one photon in each mode.
The boson-sampling problem generalizes this experiment.

Next we increase the number of photons and let them interfere

in a complex network of beam splitters: n photons are injected
into the first n ofm ∈ polyðnÞmodes. Those photons interfere
in a linear-optical network comprising beam splitters and
phase shifters that is chosen in such a way that it gives rise to a
Haar-random unitary transformation of the input modes, given
by U ∈ UðmÞ. Finally, the m output modes of the network are
measured in the photon-number basis; see Fig. 1(b). As
unitary mode transformations conserve the total photon
number, the sample space of boson sampling is given by

Φm;n ¼
�
ðs1;…; smÞ∶

Xm
j¼1

sj ¼ n

�
; ð7Þ

i.e., the set of all sequences of non-negative integers of length
m that sum to n. Its output distribution is

pUðSÞ≡ Pbs;UðSÞ ¼ jhSjφðUÞj1nij2: ð8Þ

In Eq. (8) the state jSi is the Fock state corresponding to a
measurement outcome S ∈ Φm;n, j1ni is the initial state with
1n ¼ ð1;…; 1; 0;…; 0Þ, and φðUÞ is the Fock space repre-
sentation of the mode transformation U. To clearly distinguish
the boson-sampling protocol of Aaronson and Arkhipov
(2013) with output probabilities given by Eq. (8) from its
variants (discussed later) we henceforth refer to it as Fock
boson sampling.

D. Gaussian boson sampling

Variants of the boson-sampling protocol play with the input
state and measurement basis. Most importantly, so-called
Gaussian boson-sampling protocols start with a Gaussian
quantum state, where the input modes are prepared in single-
mode or two-mode squeezed states (Lund et al., 2014;
Rahimi-Keshari, Lund, and Ralph, 2015; Hamilton et al.,
2017; Kruse et al., 2019; Grier et al., 2022), or displaced
squeezed states (Huh et al., 2015; Quesada, 2019). The
distribution of outcomes S ∈ Φm is given analogously to
Eq. (8) by

PGBS;UðSÞ ¼ jhSjφðUÞjgij2; ð9Þ

where jgi is the initial Gaussian quantum state. Here the
sample space

Φm ¼ fðs1;…; smÞ ∈ Nm
0 g ð10Þ

reflects an unbounded photon number, as Gaussian states do
not feature a fixed photon number. We can also think of the
reverse, where a photon-number state is prepared in the input
and Gaussian measurements are performed (Chabaud et al.,
2017; Chakhmakhchyan and Cerf, 2017; Lund, Rahimi-
Keshari, and Ralph, 2017).
Gaussian boson-sampling protocols are appealing in com-

parison to the original proposal, as Gaussian states and
measurements are experimentally much easier to implement
than photon-number states and measurements. Indeed, it is in
those protocols that large-scale experiments have recently been
performed (Zhong et al., 2020, 2021; Madsen et al., 2022).
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E. Further schemes

Since the first quantum random sampling schemes [IQP
sampling (Bremner, Jozsa, and Shepherd, 2010) and boson
sampling (Aaronson and Arkhipov, 2013)] were conceived,
many more proposals for quantum random sampling schemes
have been put forward. A theoretically particularly clear
proposal is so-called Fourier sampling (Fefferman and
Umans, 2015), which is a qubit analog of boson sampling.
Another analog of boson sampling is fermion sampling
(Oszmaniec et al., 2022), for which so-called magic states
are required in the input, and the closely related matchgates
with magic-state inputs (Hebenstreit et al., 2019). The
fermionic schemes that make use of resource states as an
input find their qubit analog in Clifford circuits with magic-
state inputs (Hangleiter et al., 2018; Yoganathan, Jozsa, and
Strelchuk, 2019). The so-called one clean qubit (DQC1)
model is a model in which all but one qubit is initialized
in the maximally mixed state (Morimae, Fujii, and Fitzsimons,
2014; Morimae, 2017; Fujii et al., 2018). This model is
motivated by mixed-state quantum computations, which is a
suitable framework to capture, for instance, nuclear magnetic
resonance quantum processors (Negrevergne et al., 2005).
Other proposals include Clifford circuits that are conjugated
by arbitrary product unitaries (Bouland, Fitzsimons, and Koh,
2018) and permutations of distinguishable particles in specific
conditions (Aaronson et al., 2016). Finally, certain models
have also been proposed with the goal of closing loopholes
such as the necessity to certify the correct implementation
of a quantum supremacy experiment (Hangleiter et al., 2017;
Miller, Sanders, and Miyake, 2017), or to make such an
experiment more error tolerant (Fujii, 2016; Kapourniotis and
Datta, 2019).
In what follows, we discuss the properties of these schemes

with respect to the possibility of using them to demonstrate
a computational advantage over classical computations.
Before we commence with the main focus of this review,
the complexity-theoretic argument for the classical intrac-
tability of Task 1, we review some basics of computational
complexity theory in Sec. III.

III. COMPUTATIONAL COMPLEXITY OF SIMULATING
QUANTUM DEVICES

The previously introduced quantum random sampling
schemes were devised to show computational quantum
advantages of quantum devices over classical supercomputers.
There are two ways for us to understand this goal: First, we
can understand it in terms of the actual time required to
simulate an actual experiment performing quantum random
sampling. This is the realm of concrete algorithm develop-
ment, and a quantum advantage in this sense is reached as
soon as the available supercomputers running state-of-the-art
algorithms are no longer capable of providing samples from
the desired distribution. Second, we can understand it in terms
of the asymptotic scaling of the best possible classical
simulation algorithm. This is the realm of computational
complexity theory. Computational complexity theory
addresses classes of problems in terms of their intrinsic
complexity in an algorithm-agnostic way. We can therefore

supplement evidence toward the first type of quantum
advantage using computational complexity theory. This can
help us to hedge against a “lack of imagination” in classical
algorithm development.
Consider the related context of cryptography: for us

to be confident in the security of a certain cryptographic
scheme, it is essential that this scheme is not simply based
on some problem on which known algorithms do not
perform well. Rather, we collect additional evidence and,
ideally, underlying reasons that in fact no algorithm can
efficiently solve the problem on which the scheme is based.
It is such additional, independent evidence that computa-
tional complexity theory can contribute to quantum random
sampling.
Here we precisely explicate the available evidence for the

classical intractability of quantum random sampling, making
the intuition that quantum devices are more powerful than
classical ones more rigorous. We later see which ingredients
come together in a strategy to provide complexity-theoretic
evidence for the hardness of sampling from, or weakly
simulating, the previously defined sampling schemes. These
results will constitute the complexity-theoretic underpinning
of experimental prescriptions designed to demonstrate quan-
tum computational supremacy, that is, to experimentally
violate the extended Church-Turing thesis.
The argument is intricate, however, and builds on some

basic results about the computational complexity of approx-
imately computing the output probabilities of, or strongly
simulating, quantum circuits, and algorithms for this task. We
review those results in this section, then leverage them to weak
simulation in Sec. IV.

A. Basics of computational complexity theory

To provide theoretical evidence for quantum advantage, we
have to enter the realm of theoretical computer science. There
classes of problems, so-called complexity classes, are studied
with respect to their computational complexity, that is, the
resources that an algorithm designed to solve problems from
such a class would require in the worst case. In computational
complexity theory, we can discern distinct problem classes
defined by certain resource restrictions, most importantly
the run-time and the memory requirement of algorithms.
Understanding the relations between different complexity
classes, that is, separations and inclusions between them, is
the main subject of study in the theory of computational
complexity. For convenience, most often decision problems
are considered, where the task is to decide whether a given
string2 x ∈ f0; 1g� is in a so-called language L ⊂ f0; 1g�,
which is a set of bit strings. A machine that computes the
Boolean function fL∶ f0; 1g� → f0; 1g, which satisfies
fLðxÞ ¼ 1 ⇔ x ∈ L, decides L. For example, a language L
could be given by the set of all graphs for which there is a path
that visits each vertex once, in binary encoding, and a string
x ∈ L is the binary encoding of a particular graph instance.

2We write the set of all finite-length bit strings as f0; 1g� ¼
∪n∈N f0; 1gn.
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The central concept of computational complexity theory is
that of an algorithm. In a simplified picture, we can think of an
algorithm as computing a Boolean function f∶f0; 1g� →
f0; 1g for arbitrary-length inputs. Abstractly speaking, an
algorithm is a set of rules according to which a machine acts
on any given input. In the case of classical algorithms,
formalized as a Turing machine, those rules may involve
reading bits of the input or a scratch pad and writing bits to
that scratch pad, choosing a new rule according to which to
continue, or stopping and outputting either 0 or 1 (Arora and
Barak, 2009). We say that an algorithm is efficient if its
run-time scales polynomially in the input size, given by the
length jxj of x.
On an actual silicon-chip computer, those rules can be

implemented using certain elementary logic operations that
are applied sequentially (in parallel) to some of the input
registers (bits) at a time. The elementary logical operations
might act on a single register or bit such as the NOT operation,
on two such as OR and AND or even more registers. A set of
such operations is said to be universal if an arbitrary Boolean
function f∶f0; 1gn → f0; 1g can be expressed as a classical
circuit using polyðnÞ many input registers. A classical circuit
is a mathematical model of an arrangement of classical gates
implementing a logical operation that is chosen from a certain
set in some spatial and temporal order computing a Boolean
function. Examples of such universal sets of logical operations
are {AND, NOT} and the singleton {NAND}. Using a sequence
of universal logical operations, one can therefore express any
other elementary logical operation. A classical circuit Cn
effectively computes a function of the values of its n input
registers, potentially using additional auxiliary registers. On
input x ∈ f0; 1gn, its outcome CnðxÞ ∈ f0; 1g is given by its
value on a single—say, the first—output register. The size of a
circuit jCnj is given by the number of gates in it. We call the
model of computation in which we can execute classical
circuits the circuit model.
Notice that any given circuit takes inputs of a fixed size n,

while we demand that an algorithm work for any input size.
We can turn a family of circuits fCngn∈N into a meaningful
algorithm3 by supplementing it with an efficient instance-
generating procedure that, given the input size n, efficiently
produces a description of Cn, which is then run on the input
x ∈ f0; 1gn. We call circuit families for which such a
procedure is possible uniform circuit families. Uniform circuit
families are therefore a realization of an algorithm in the
circuit model.
The fundamental class of problems in computational

complexity theory is the class P, the class of problems that
can be solved efficiently on a deterministic classical computer.
Definition 2 (P).—A language L ⊂ f0; 1g� is in the class

P if there is a classical algorithm A that, given x ∈ f0; 1g� as
an input, decides whether x ∈ L in polynomial run-time in jxj:

x ∈ L ⇔ AðxÞ ¼ 1: ð11Þ

Relations between complexity classes are typically studied
with respect to polynomial reductions—so-called Cook
reductions—where access to a machine in P is granted. A
key problem in the theory of computational complexity is that
the relation between different complexity classes defined with
significantly different resource restrictions in mind is inher-
ently difficult to determine. For this reason, basic relations
between complexity classes are often conjectured merely
based on the available evidence. The most basic and at the
same time most fundamental separation in complexity theory
is the belief that P ≠ NP. While P is the class of problems that
can be efficiently computed on a classical computer, NP is the
class of problems that can be efficiently verified.
Definition 3 (NP).—A language L ⊂ f0; 1g� is in the class

NP if there is a polynomial p∶N → N and a polynomial-time
classical algorithm V (called the verifier for L) such that, for
every x ∈ f0; 1g�,

x ∈ L ⇔ ∃ y ∈ f0; 1gpðjxjÞ∶ Vðx; yÞ ¼ 1: ð12Þ

We call y the proof of x.
When gathering evidence for a separation between quan-

tum and classical computation and quantum and classical
sampling, in particular, we try to remain as close to
problems that have been well studied, such as the conjecture
P ≠ NP. The main challenge is that, at the same time, the
computational task must be such that it can realistically be
realized on near-term quantum devices in as easy and error
resilient a way as possible.

B. Where to look for a quantum-classical separation?

To better understand the complexity theory of quantum
computing, we compare it to its closest cousin, randomized
classical computation.4 We formalize randomized classical
and quantum computations in terms of decision problems as
complexity classes BPP and BQP.
Definition 4 (Classical and quantum computation).—BPP

(BQP) is the class of all languages L ⊂ f0; 1g� for which
there is a polynomial-time randomized classical (quantum)
algorithm with a uniform circuit family fCngn∈N such that,
for all n ∈ N and all inputs x ∈ f0; 1gn,

x ∈ L ⇒ Pr½CnðxÞ ¼ 1� ≥ 2=3; ð13Þ

x ∉ L ⇒ Pr½CnðxÞ ¼ 1� ≤ 1=3; ð14Þ

where the probability is taken over the internal randomness of
the algorithm.
Classical computations are modeled as intrinsically deter-

ministic; only by artificially introducing randomness into
the circuit do we construct a randomized classical algorithm
using elementary logic gates. A randomized algorithm for a
Boolean function f∶f0; 1gn × f0; 1gl → f0; 1g acts on both
the problem input x ∈ f0; 1gn and a uniformly random bit

3Indeed, if we merely ask for the existence of a circuit family as
opposed to an efficient algorithm, then this allows us to solve
undecidable problems using polynomial-size circuits.

4In this section, we follow a line of thought that to our knowledge
is from Scott Aaronson; see https://www.scottaaronson.com/blog/?
p=3427.
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string r ∈ f0; 1gl with l ∈ polyðnÞ. Randomized algorithms
are at least as powerful as deterministic ones; as such, a
function can simply disregard the random inputs, giving rise to
a deterministic algorithm. In many practical situations, ran-
domized algorithms turn out to be much more efficient than
deterministic algorithms, however.
While classical logical gates are not generally reversible in

that the mapping from input to output is injective, one can
implement any classical computation in a circuit that uses only
reversible operations (Toffoli, 1980; Fredkin and Toffoli,
1982). In other words, there are sets of reversible operations
such as the three-bit Toffoli (or controlled-controlled-NOT)
gate TOF (Toffoli, 1980) such that an arbitrary Boolean
function can be expressed using the outcome of a single
register in a computation involving only those operations.
By taking the leap to reversible classical computation,

we have already made it halfway to quantum computation.
Indeed, the question about the possibility of reversible
classical computation was originally motivated by the obser-
vation that the laws of physics are reversible (Fredkin and
Toffoli, 1982). Hence, the thinking is that a physical model of
computation should be too.
Quantum circuits are a generalization of reversible

classical circuits. A quantum circuit acts on qubits, the
state space of which is given by C2. The elementary
operations or quantum gates are unitary matrices acting
on a k-qubit input space ðC2Þ⊗k, where k is a small number;
typically k ¼ 2. A quantum circuit acting on m ∈ polyðnÞ
qubit registers produces not a single bit string as an output
but rather a quantum state in ðC2Þ⊗m that only upon a
quantum measurement in some basis—typically the stan-
dard basis—produces a bit string as an output. Indeed, we
notice that classical computation is a special case of
quantum computation: If we restrict to state preparations
and measurements in the standard basis and permutation
matrices in that basis (which are, in particular, unitary), then
we recover classical computation.
A quantum gate set G is said to be computationally

universal if an arbitrary quantum circuit acting on n qubits
and using t gates can be simulated by a circuit composed of
gates from G up to error ϵ with overhead polylogðn; t; 1=ϵÞ in
terms of the numbers of both registers and gates (Aharonov,
2003). With polynomial overhead in n and t, computational
universality therefore tolerates errors of the order of 2−polyðn;tÞ.
A computationally universal gate set that serves us well in
the review is the set {H, TOF} consisting of the Hadamard
and Toffoli gates. This gate set is universal for n-qubit
computations when nþ 1 many qubits are acted upon
(Aharonov, 2003).
In contrast to classical computations, quantum computa-

tions are intrinsically randomized: the probability that an
n-qubit quantum circuit Cn applied to an input state jxi ∈ Cn

results in a particular outcome y after a measurement is given
by the Born rule as jhyjCnjxij2. We also call these probabilities
the output probabilities of Cn. Indeed, it is presumably not
possible to separate out the randomness from the computation,
which is the case for classical computations.
An important but subtle difference between quantum

and randomized classical computations presents itself in the

guise of the probability that such computations accept. This
difference is a lever that allows us to separate the two types of
algorithms in terms of their computational power.

C. Computing acceptance probabilities
of randomized algorithms

1. Classical acceptance probabilities

We start by discussing acceptance probabilities of classical
randomized algorithms before turning to quantum algorithms.
The acceptance probability

Pr½CnðxÞ ¼ 1� ¼ 1

2pðjxjÞ
X

r∈f0;1gpðjxjÞ
fxðrÞ ð15Þ

of a classical randomized circuit CnðxÞ computing a Boolean
function fx is given by the fraction of accepting random inputs
r ∈ f0; 1gpðjxjÞ, where p∶N → N is a polynomial. Computing
the unnormalized acceptance probability of classical circuits is
therefore clearly a #P-complete problem.5

Definition 5 (#P) (Arora and Barak, 2009).—The function
class #P is the class of all functions f∶f0; 1g� → N for which
there is a polynomial-time classical algorithm C and a
polynomial p∶N → N such that

fðxÞ ¼ jfy ∈ f0; 1gpðjxjÞ∶ Cðx; yÞ ¼ 1gj: ð16Þ

In other words, #P functions, by definition, count the
number of accepting inputs to a polynomial-time computation
C. In contrast to BPP and BQP, which are classes of decision
problems, #P is therefore a class of counting problems. In
turn, we can view the decision class NP (Definition 3) as
asking to decide whether there exists any imput such that a
computation C is accepted.

2. Quantum acceptance probabilities

We say that a quantum computation with circuit Cn accepts
an input x if a measurement on Cnjxi results in one of a set of
accepting outcomes Γacc. The acceptance probability of the
computation is then given by

Pr½CnðxÞ ¼ 1� ¼
X
y∈Γacc

jhyjCnjxij2: ð17Þ

For the following argument, it is sufficient to consider the
set of accepting outcomes to be Γacc ¼ f0g, where 0≡ 0n

denotes the all-zero outcome string; see Fenner et al. (1999).
The acceptance probability of Cn is then given simply by a
single output probability Pr½CnðxÞ ¼ 1� ¼ jh0jCnjxij2.
We can express the acceptance probabilities of a poly-

nomial-size quantum circuit Cn on input x ∈ f0; 1gl via a

5Given a complexity class X, we say that a problem is X hard if it is
at least as hard as any problem in X in the sense that all problems in
the class are polynomial-time reducible to it. We say that it is X
complete if it is in X and X hard.
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function gx∶ f0; 1gpðlÞ → fþ1;−1g for some polynomial p
as (Dawson et al., 2005; Montanaro, 2017)6

Pr½CnðxÞ ¼ 1� ¼ 1

2pðlÞ
X

y∈f0;1gpðlÞ
gxðyÞ: ð18Þ

This is easily seen using the fact that the gate set comprising
the Hadamard and the Toffoli gate is universal for quantum
computing.7 In this gate set, we can express the all-zero
amplitude of an n-qubit computation Cn ¼ CðtÞ � � �Cð1Þ using
t quantum gates Cð1Þ;…; CðtÞ as (Dawson et al., 2005)

h0jCnjxi ¼
X

λ1;…;λt

h0jCðtÞjλ1i � � � hλtjCð1Þjxi ð19Þ

¼ 1ffiffiffiffiffi
2h

p
X
y

sxðyÞ ð20Þ

in terms of the number h of Hadamard gates and a signed
function sx, with the input space size given by the number of
paths leading from x to 0, which is bounded by 4t for a circuit
consisting of two-qubit gates, and hence for polynomial-size
circuits as 2polyðnÞ. This is because the matrix elements of the
Toffoli gate are binary and those of the Hadamard gate are
�1=

ffiffiffi
2

p
; therefore, each entry of the matrix product

CðtÞ � � �Cð1Þ is a sum of numbers ð�1Þ × 2−h=2. We thus obtain

jh0jCnjxij2 ¼
1

2h

				X
y

sxðyÞ
				2 ¼ 1

2h

X
y;z

gxðy; zÞ; ð21Þ

where gxðy; zÞ ¼ sxðyÞsxðzÞ.
Notice the subtle difference in the range of the function gx

versus the range of the function fx arising in classical compu-
tation: while fx is Boolean, gx takes values in fþ1;−1g.We can
view this difference between Boolean and signed functions as a
signature of quantum interference, as it allows for the possibility
of canceling paths that was demonstrated in the Hong-Ou-
Mandel experiment and discussed in Sec. I.
But we can easily translate back and forth between signed

and Boolean functions via the map g0xðyÞ ¼ ½gxðyÞ þ 1�=2 and
reexpressX
y∈f0;1gpðjxjÞ

gxðyÞ ¼ jfy∶g0xðyÞ ¼ 1gj − jfy∶g0xðyÞ ¼ 0gj: ð22Þ

Notice that g0x is again a Boolean #P function. The sum (18)
can be viewed as the difference between the accepting paths of
the function g0x and its rejecting paths or, in other words, the

gap of that function. For a Boolean function f∶f0; 1gn →
f0; 1g the gap is defined as

gapðfÞ ¼ jfy∶fðyÞ ¼ 1gj − jfy∶fðyÞ ¼ 0gj; ð23Þ
which we normalize to

ngapðfÞ ¼ 1

2n
gapðfÞ: ð24Þ

This is why computing functions whose values can be
written as the gaps of #P functions is complete for a class
called GapP.
Definition 6 (GapP) (Fenner, Fortnow, and Kurtz,

1994).—Define the function class GapP as the class of all
functions f∶f0; 1g� → Z for which there are g; h ∈ #P such
that f ¼ g − h.
Conversely, given a GapP function g∶f0; 1gl → f−2pðlÞ;

…; 2pðlÞg for a polynomial p, we can find an n-qubit quantum
circuit QgðxÞ with n ∈ polyðlÞ that has an acceptance
amplitude h0njQgðxÞj0ni ¼ gðxÞ=2n (Fenner et al., 1999;
Kondo, Mori, and Movassagh, 2022). To see this, we observe
that for every GapP function g there is a polynomial-
time computable function Gðx; yÞ such that gðxÞ ¼ jfy ∈
f0;1gpðjxjÞ∶ Gðx; yÞ ¼ 1gj− jfy ∈ f0;1gpðjxjÞ∶Gðx; yÞ ¼ 0gj.
With the diagonal polynomial-size circuit Dx ¼P

y∈f0;1gnð−1ÞGðx;yÞjyihyj, we then find that QgðxÞ ¼
H⊗nDxH⊗n has an acceptance amplitude gðxÞ=2n.
Altogether we have found that acceptance probabilities of a

classical circuit are given by the fraction of accepting paths of
#P functions, while the acceptance probabilities of a quantum
circuit Cn can be expressed as the absolute value of the
normalized gap of a #P function f0 as

jh0njCnj0nij2 ¼ jngapðf0Þj2: ð25Þ
How are GapP and #P related in terms of their computa-

tional complexity? We have already seen a simple mapping
between the two, which implies that computations of GapP
and #P functions are equivalent under Cook reductions8 that
we write as

PGapP ¼ P#P: ð26Þ
Therefore, in this sense the two classes are similar. But they
actually turn out to be distinct once we turn to the hardness of
approximating the respective sums (15) and (18) up to a
multiplicative error c.

D. Approximating GapP

Hereafter we distinguish the following notions of approxi-
mation: We say that for c ∈ ð0; 1� an estimator s provides a
c-multiplicative approximation of the value S if

cS ≤ s ≤ S=c: ð27Þ

6We recommend the introduction to Boolean functions and their
relation to quantum output probabilities given by Montanaro (2017).

7As discussed, since the Hadamard and Toffoli gates are computa-
tionally universal (Shi, 2002; Aharonov, 2003), the acceptance
probability of an arbitrary polynomial-size computation can be
expressed as the acceptance probability of such a circuit up to an
error ϵ with an overhead of polylogð1=ϵÞ. This means that we can
obtain an Oð2−polyðnÞÞ approximation of this acceptance probability.
We soon provide a more detailed discussion of such approximations
and the question as to how hard it is to compute them.

8We write a complexity class X in the exponent of another class Y
to mean that a machine in Y can call an oracle with access to a
machine solving arbitrary problems in the class X at unit time cost.
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We say that for r > 0 it is a r-relative approximation if

ð1 − rÞS ≤ s ≤ ð1þ rÞS; ð28Þ

and it is an ϵ-additive approximation for ϵ > 0 if

jS − sj ≤ ϵ: ð29Þ

To intuitively see why there might be a difference in
approximability, notice that a #P sum over m-bit strings takes
on values between 0 and 2m. Typically, the values are therefore
on the order of 2m, so a constant relative error is also of that
order. Conversely, GapP sums take on values between −2m
and þ2m, but as the corresponding #P function takes on an
exponentially large value, the value of the GapP function is
the difference between two such exponentially large numbers.
This difference will in general be much smaller than each
individual value so a relative error is too.
A relative-error approximation of a quantity is guaranteed

to have the correct sign. In contrast to relative-error approx-
imations of #P functions, which always have a positive sign,
relative-error approximations of GapP functions therefore
teach us nontrivial sign information. In fact, this information is
already sufficient to learn the exact value of any GapP
function up to arbitrary relative error.
Lemma 7 (Approximating GapP).—Let f be a #P

function. Approximating gapðfÞ up to any constant multipli-
cative error is then GapP hard.
A detailed proof of Lemma 7 is given, for instance, in

Chap. 2.2 of Hangleiter (2021). The basic idea is to use a
GapP oracle to iteratively compute the gap of a function fs,
which is shifted compared to the gap of f by s2n. We can then
compare the signs of the two gaps and vary the value of s to
perform a binary search.
For a function class X we define Apx·cX as the class of

problems that can be solved by approximating
P

xfðxÞ up to a
multiplicative error c for f ∈ X. We have now found that, for
any c ∈ ð0; 1Þ,

PApx·cGapP ¼ PGapP: ð30Þ

Notice that in our discussion of the hardness of approxi-
mating GapP using the sign information we have glossed
over the fact that acceptance probabilities of quantum circuits
are non-negative. And indeed it seems unlikely that those
acceptance probabilities are difficult to approximate up to any
constant multiplicative error.
Nevertheless, using a similar proof strategy one can prove

the GapP hardness of approximations for the square of
the output amplitudes of quantum circuits (Terhal and
DiVincenzo, 2004; Aaronson and Arkhipov, 2013; Fujii
and Morimae, 2017; Goldberg and Guo, 2017). This strategy
shows that multiplicative-error approximations not only get
the sign correct but also the instances in which the true value is
exactly zero. Additionally, there is a trivial additive-error
robustness given by the spacing of the values of a normalized
#P function.
Lemma 8 (Approximating the absolute value of ngap).—

Let f∶f0; 1gl be a #P function. Approximating ngapðfÞ2 up

to (a) any relative error ϵ < 1=2 or (b) additive error 1=22n

with n ∈ polyðlÞ is GapP hard.
Proof sketch.—For part (b) of the proof we note that the

additive-error robustness 1=22n is trivial since the spacing of
the function ngapðfÞ is given by 2=2n, i.e., twice the
normalization of gapðfÞ in the definition of ngapðfÞ.
For part (a) of the proof we proceed as in the proof of

Lemma 7, following Proposition 8 of Bremner, Montanaro,
and Shepherd (2016). The idea of the proof is to estimate
ngapðfÞ using the fact that, given a guess c, an algorithm that
outputs a relative-error approximation to jngapðfÞ − cj can
certify the correctness of c.
In the first step, we show that there is a polynomial-size

classical circuit C acting on pðlÞ þ lþ 1 registers for some
polynomial p∶N → N that computes a shifted function fc
such that ngapðfcÞ ¼ ½ngapðfÞ − c�=2 for some c ∈ ½−1; 1�
such that c ¼ 2k=2pðlÞ, with k ∈ N. To this end we make use
of the following: for any polynomial p∶N → N there is a
polynomial-size circuitDc acting on pðlÞ registers computing
a function g such that ngapðgÞ ¼ −c. Now consider the
polynomial-size circuit Qc acting on pðlÞ þ lþ 1 registers
that executes either C or Dc depending on the control register.
This circuit computes a function fc as desired.
Assume that we have an efficient algorithm A that given a

circuit C approximates ngapðfcÞ up to a relative error ϵ < 1.
On input Qc this machine can certify whether ngapðfÞ ¼ c.
We now employ A to estimate ngapðfÞ using a sequence
of guesses c0; c1;… for its value until we find its exact value.
At each step, we have a guess ci for c, starting with c0 ¼ 0.
We use A to output an estimate di to jngapðfÞ − cij
and then apply it again to output an estimate d�i of
jngapðfÞ − ðci � diÞj. Define ciþ1 ¼ ci þ di if d

þ
i ≤ d−i and

as ci − di otherwise.
The algorithm acts contractively: Assuming that c <

ngapðfÞ, we find that an estimate d ¼ ð1þ γÞjc − ngapðfÞj
for some jγj < ϵ satisfies

jcþd−ngapðfÞj¼ jγ½ngapðfÞ−c�j≤ ϵjc−ngapðfÞj; ð31Þ

and a similar inequality holds for c − d if c > ngapðfÞ.
Consequently, since ngapðfÞ is an integer multiple of 2=2n,
if the correct choice of c� d is made in each step, the
algorithm halts after OðnÞ many steps.
It remains to be shown that the algorithm indeed halts after

OðnÞ steps. This can be seen from the equivalence

ð1þ ϵÞjcþ d − ngapðfÞj < ð1 − ϵÞjc − d − ngapðfÞj
⇔ ð1þ ϵÞjγj < ð1 − ϵÞj2þ γj; ð32Þ

which holds for jγj ≤ ϵ < 1=2. The same argument immedi-
ately holds for jngapðfÞj, as we have not used the sign of
ngapðfÞ. ▪
Given the mapping of gaps to the previously described

output amplitudes of quantum circuits, it therefore follows
directly from Lemma 8 that approximating the output prob-
abilities of quantum circuits is GapP.
Corollary 9 (Approximating output probabilities of

quantum circuits).—Approximating the output probabilities
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jh0njCj0nij2 of an n-qubit quantum circuit comprisingm gates
is GapP complete up to (a) any relative error ϵ < 1=2 or
(b) the exponentially small additive error 1=22n.

E. Approximating #P: Stockmeyer’s algorithm

For many #P-complete problems, such as computing the
value of the permanent of a matrix taking values in f0; 1g,
there are efficient randomized approximation schemes, includ-
ing the so-called fully polynomial randomized approximation
scheme (FPRAS) (Jerrum, Sinclair, and Vigoda, 2004). Many
such algorithms for approximate counting are based on
Markov-chain Monte Carlo methods (Jerrum, Valiant, and
Vazirani, 1986; Jerrum and Sinclair, 1993). The property that
those algorithms exploit is the fact that each element of the
sum (15) is non-negative. Thus, the sum can be estimated by
importance sampling, that is, sampling its elements according
to their normalized weight in the sum. The intricate sign
structure of GapP functions is what makes their relative-error
approximation via such sampling algorithms difficult.
Going beyond specific algorithms, in this section we

introduce a powerful general result on the approximability
of such functions using a computationally restricted algorithm
with access to an NP oracle from Stockmeyer (1983).
Stockmeyer’s algorithm can approximately count the number
of accepting paths of #P functions up to small multiplicative
errors, even though it is not able to exactly compute this
number. It thus provides a rigorous foundation for the
distinction between the approximability of GapP and #P.
In Sec. IV, we leverage the power of this algorithm to derive
rigorous separations between classical and quantum sampling
algorithms.
Before we can make those statements precise, however, we

need to dive a little further into the depths of computational
complexity theory and define what is called the polynomial
hierarchy. Stockmeyer’s algorithm lies in the third level of
the polynomial hierarchy. This class is much more powerful
than NP, but much less powerful than #P.

1. The polynomial hierarchy

We have already seen the most important classes in the
theory of computational complexity, namely, P and NP. It is
no exaggeration to say that the conjecture that P ⊊ NP is
indeed one of the most tested and studied unproven statement
that scientists across a range of disciplines are confident about.
Among other things, this intuition rests on the presumed
existence of problems whose solutions are difficult to find but
easy to verify. In particular, the possibility of public-key
cryptography is based on the existence of such problems. It is
a generalization of this statement that forms the complexity-
theoretic grounding of claims to quantum supremacy. This
generalization posits that the levels of an infinite hierarchy of
complexity classes (the so-called polynomial hierarchy) are
strict subsets of one another. Considering hypothetical algo-
rithms within and outside of this hierarchy also allows us to
understand the computational complexity of approximating
#P functions.
Definition 10 (The polynomial hierarchy) (Arora and

Barak, 2009).—For i ∈ N0 a language L ⊂ f0; 1g� is in Σi if

there is a polynomial q and a uniform polynomial-time circuit
family fCngn≥1 such that x ∈ L if and only if

∃ u1 ∈ f0; 1gk ∀ u2 ∈ f0; 1gk � � �Qiui ∈ f0; 1gk∶
Cjxjðx; u1;…; uiÞ ¼ 1; ð33Þ

where k ¼ qðjxjÞ and Qi denotes a ∀ or ∃ quantifier
depending on whether i is even or odd, respectively. The
polynomial hierarchy PH is the set ∪i Σi.
Clearly Σi ⊂ Σiþ1. Notice that NP ¼ Σ1 since in

Definition 3 there is only a single ∃ quantifier. We can then
equally characterize Σi as ΣNP

i−1, so in each level an additional
NP oracle is added; see Fig. 2. Intuitively, as we add
alternating ∃ and ∀ quantifiers, the complexity of the
problems solved by the circuit family fCng strictly increases.
Conversely, if two levels of the hierarchy coincide, then so
will all other levels above them. Indeed, it is a central
conjecture that the polynomial hierarchy is infinite, i.e., that
every level strictly contains the previous levels. In other
words, the conjecture is that “the polynomial hierarchy does
not collapse.”

2. Stockmeyer’s approximate counting algorithm

Indeed, it is no surprise that, given access to NP oracles,
one can solve a rich class of computational problems.
Nevertheless, it is surprising that one can efficiently approxi-
mate exponentially large sums up to any inverse polynomial
multiplicative error. Stockmeyer’s approximate counting
algorithm (Stockmeyer, 1983) achieves this task in a low
level of the polynomial hierarchy, the third level. We are now
ready to state this result.
Theorem 11 (Stockmeyer, 1983; Aaronson and Arkhipov,

2013).—Given a Boolean function f∶f0; 1gn → f0; 1g, let

p ¼ Pr
x∈f0;1gn

½fðxÞ ¼ 1� ¼ 1

2n

X
x∈f0;1gn

fðxÞ: ð34Þ

FIG. 2. The polynomial hierarchy is a hierarchy of complexity
classes defined by adding consecutive NP oracles, where any
layer is presumed to strictly contain all lower-lying layers. Toda’s
theorem (Theorem 12) states that the polynomial hierarchy is
contained in P#P.
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Thus, for all c ≥ 1þ 1=polyðnÞ, there is an FBPPNP

machine9 that approximates p to within a multiplicative
factor of c.
See Trevisan (2008) and Hangleiter (2021) for a sketch

of the proof. Theorem 11 characterizes the complexity of
approximately counting up to an inverse polynomially small
multiplicative error: Since BPP ⊂ Σ2 (Lautemann, 1983), and
therefore BPPNP ⊂ Σ3, this task lies within the third level of
the polynomial hierarchy. But where does this complexity class
lie in relation to exactly computing a #P sum? For the answer,
we refer to a final fact in complexity theory, namely, that
exactly computing #P functions lets one solve any task in PH.
Theorem 12 (Toda’s theorem) (Toda, 1991).—

PH ⊂ P#P: ð35Þ

The complexity of counting #P sums is therefore significantly
easier when considering multiplicative approximations, as
opposed to exact computation. Conversely, we saw in Eq. (26)
and Lemma 7 that GapP does not change its complexity under
multiplicative approximations. Therefore, the inclusions

PApx·c#P ⊂ Σ3 ⊊ PH ⊂ PGapP ¼ PApx·cGapP ð36Þ

hold for any constant c > 0 since PGapP ¼ P#P ⊃ PH. The
separation Σ3 ⊊ PH marks the conjectured noncollapse of
the polynomial hierarchy to any finite level. The same inclusions
hold true when restricted toGapP functions with non-negative
gaps for values of c < 1=2.
We have now carved out a substantial difference in complex-

ity between quantum and randomized classical algorithms in
terms of the computational complexity of approximating the
respective acceptance probability to high precision. To describe
quantum acceptance probabilities, negative signs are required,
and hence they are GapP hard to approximate up to relative
error. Conversely, classical acceptance probabilities can be
expressed as sums over non-negative numbers, and hence
approximating them up to relative error is in the class Σ3.
We again emphasize that neither the quantum nor the classical
algorithm should be able to multiplicatively approximate the
respective acceptance probabilities, because the classes Σ3 and
GapP are not expected to be contained in BPP and BQP,
respectively. Nevertheless, this difference in complexity serves
as an important tool with which we can amplify harder-to-pin-
down differences in the run-time of actual classical and
quantum algorithms. Following this route, we eventually arrive
at a conditional exponential separation for sampling tasks.

IV. COMPUTATIONAL COMPLEXITY OF QUANTUM
RANDOM SAMPLING

A. Sampling versus approximating outcome probabilities

Our goal in this section is to prove not only that there is an
exponential quantum versus classical divide in approximating

output probabilities of computations but also that this divide
reappears when it actually comes to performing such
computations, that is, performing the corresponding sam-
pling. Randomized algorithms indeed seem to be the perfect
playground where we might see a quantum advantage, since
any quantum computation naturally produces random
samples from the distribution determined by the Born rule,
while classical randomized algorithms require external
randomness.
To make a rigorous statement about randomized compu-

tations, we consider the task of sampling from a given
distribution, not caring about specific outcomes of the
computation. To be able to apply the machinery of complexity
theory and Stockmeyer’s algorithm, in particular, it also
proves useful to consider the task of sampling from randomly
chosen quantum computations.
The key idea that we use to make a rigorous statement

about the complexity of classical and quantum sampling is
to relate the task of sampling from a distribution to
computing its output probabilities. In doing so, we leverage
the complexity-theoretic difference between computing
classical and quantum output probabilities to classical
and quantum sampling. The key technical ingredient
when doing so is Stockmeyer’s algorithm. We observe that
Stockmeyer’s counting theorem (Theorem 11) can be
directly applied to estimating the acceptance probability,
and in fact all output probabilities, of so-called derando-
mizable sampling algorithms, which are deterministic algo-
rithms with random inputs, as previously discussed; see
Definition 3.11 and the proof of Theorem 1.1 given by
Aaronson and Arkhipov (2013).
Definition 13 (Derandomizable sampling).—A derando-

mizable sampling algorithm is an algorithm A that takes
as an input a particular instance y ∈ f0; 1gn of a problem, as
well as a uniformly random string r ∈ f0; 1gpolyðjyjÞ and
outputs a random bit string x ¼ Aðy; rÞ that is distributed
according to

pyðxÞ ¼ Prr½Aðy; rÞ ¼ x�: ð37Þ

If A is such a derandomizable algorithm, we can use
Stockmeyer’s algorithm to estimate its output probabil-
ities (37). To do so, we define its input function as

fy∶ f0; 1gpolyðjyjÞ → f0; 1g;

r ↦

�
1 if Aðy; rÞ ¼ x;

0 otherwise.
ð38Þ

The output of Stockmeyer’s approximation algorithm will then
be a [1 − 1=polyðjyjÞ]-multiplicative approximation to the
probability pyðxÞ. This provides the sought-after connection
between sampling and approximation of probabilities that form
the basis of the forthcoming proofs of sampling hardness.

B. Strongly simulating quantum computations

For the specific schemes presented in Sec. II, approximat-
ing the output probabilities is in fact a GapP-hard task and

9FBPP is the function-class equivalent of the decision class BPP,
that is, the class of functions computable in probabilistic polynomial
time with bounded failure probability.
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thus just as hard as for arbitrary quantum computations.
Generally, and this is particularly true for universal random
circuits, the output probabilities of a circuit family C areGapP
hard to approximate if the circuit family generates the entirety
of BQP after so-called postselection (Fujii and Morimae,
2017). In a postselection argument we compare two probabi-
listic complexity classes by granting ourselves the ability to
restrict attention to a certain subset of desired outcomes even if
that subset has an exponentially small probability. A post-
selected class postA is defined as a class of decision problems
that we can solve using a computation within A and post-
selecting on certain outcomes with a bounded error (Fujii and
Morimae, 2017).
Definition 14 (Postselected class) (Fujii and Morimae,

2017).—A language L is in the class postA if there is a
uniform family of circuits fCxg associated with A for which
there are a single output register Ox and a polyðjxjÞ-size
postselection register Px such that (i) if x ∈ L, then
PrðOx ¼ 1jPx ¼ 00 � � � 0Þ ≥ 2=3, and (ii) if x ∉ L,
then PrðOx ¼ 1jPx ¼ 00 � � � 0Þ ≤ 1=3.
Aaronson (2005) showed that postBQP ¼ PP, where PP

is the decision-problem equivalent of #P that asks whether at
least half of the inputs are accepted. This implies that
PpostBQP ¼ PPP ¼ P#P ⊃ PH. Building on this result,
Fujii and Morimae (2017) demonstrated that if postA ¼
postBQP, then a machine that approximates the output
probabilities of circuits associated with A up to a multipli-
cative error 1=

ffiffiffi
2

p
< c < 1 can be used to decide any problem

in PP, and hence also any problem in GapP. This is because
the postA ¼ postBQP condition ensures that A is rich
enough to encode the output probabilities of arbitrary quan-
tum computations and hence gaps of #P functions.
Taking a different perspective, one can show that the output

probability of a universal quantum circuit can encode hard
instances of the Jones polynomial (Kuperberg, 2015;
Goldberg and Guo, 2017; Mann and Bremner, 2017) as well
as Tutte polynomials (Kuperberg, 2015; Goldberg and Guo,
2017) and certain Ising model partition functions (Bremner,
Montanaro, and Shepherd, 2016; Boixo et al., 2018). In
particular, estimating those quantities up to a relative error
1=4þ oð1Þ is #P hard.10 Expressing the output probabilities
in terms of such quantities, which have been studied in detail
in the literature, also proves to be extremely useful once we get
to approximate sampling hardness.
Similarly, the output probabilities of several restricted

quantum computational models, including the previously
discussed ones, can be expressed in terms of universal
quantities that are GapP hard to approximate (Fefferman
and Umans, 2015; Gao, Wang, and Duan, 2017; Miller,
Sanders, and Miyake, 2017; Morimae, 2017, Bermejo-Vega
et al., 2018; Bouland, Fitzsimons, and Koh, 2018; Fujii et al.,
2018). In the following, we illustrate how this is achieved
using the paradigmatic schemes introduced in Sec. II.

1. IQP circuits

As a particularly illustrative example of such reasoning, for
IQP circuits one finds11 that postIQP ¼ postBQP. In addi-
tion, for IQP circuits defined by a weighted adjacency matrix
W [see Eq. (6)] the output amplitude

h0jCW j0i ¼
1

2n
ZW ð39Þ

can be expressed as an imaginary-temperature partition
function of an Ising model (Bremner, Montanaro, and
Shepherd, 2016; Fujii and Morimae, 2017):

ZW ¼
X

z∈f�1gn
exp

�
i

�X
i<j

wi;jzizj þ
X
i

wi;izi

��
: ð40Þ

An analogous reduction can be made for the universal circuits
of Boixo et al. (2018) with CZ gates. The modulus square
jZW j2 of such partition functions has been shown to be GapP
hard to approximate up to a relative error 1=4þ oð1Þ (Fujii
and Morimae, 2017; Goldberg and Guo, 2017).
For an IQP circuit Cf defined by a Boolean degree-3

polynomial f with coefficient vectors α, β, and γ [see Eq. (5)],
one finds that the all-zero amplitude is given by the gap
of f as12

h0jH⊗nCfH⊗j0i ¼ 1

2n

X
x;y

hyjCfjxi

¼ 1

2n

X
x

ð−1ÞfðxÞ ¼ ngapðfÞ: ð44Þ

We have seen that approximating the gaps of arbitrary #P
functions f up to multiplicative errors 1=

ffiffiffi
2

p
is GapP

complete. This remains true when the function f is restricted
to a degree-3 Boolean polynomial over the field F2 since IQP
circuits are universal with postselection (Bremner, Montanaro,
and Shepherd, 2016).

2. Fock boson sampling

The output distribution Pbs;U of a Fock boson-sampling
experiment [see Eq. (8)] can be expressed as (Scheel, 2008)

10Notice that achieving a relative error 1=4þ oð1Þ is slightly more
demanding than a multiplicative error 1=

ffiffiffi
2

p
.

11This can be shown using a gadget to implement the Hadamard
gate via teleportation, the idea being that what IQP circuits lack in
universality is the possibility to switch between X and Z bases. By
measuring a single output line, one can teleport a Hadamard gate to
an arbitrary position in the circuit using gate teleportation (Bremner,
Montanaro, and Shepherd, 2016; Montanaro, 2017).

12To see this, note that

Zijxi ¼ ð−1Þxi ; ð41Þ

CZi;jjxi ¼ ð−1Þxixj ; ð42Þ

CCZi;j;kjxi ¼ ð−1Þxixjxk : ð43Þ
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Pbs;UðSÞ ¼
jPermðUS;1nÞj2Q

m
j¼1ðsj!Þ

ð45Þ

in terms of the permanent of the matrix US;1n ∈ Cn×n, which
can be obtained from U according to the following prescrip-
tion. Define the submatrix US;S0 with S; S0 ∈ Nm as follows:
for all j; k ∈ ½m� ¼ f1; 2;…; mg, keep a matrix comprising Sj
copies of the jth row of U and now write S0j copies of the kth
column of that matrix into US;S0 ; see Fig. 3(a). For so-called
collision-free outcomes S ∈ Φm;n, that is, outcomes with
entries given only by 0 or 1, US;1n is therefore a certain
submatrix of U. The permanent of a matrix X ¼ ðxj;kÞ ∈ Cn×n

is defined analogously to the determinant, but without the
negative signs, as

PermðXÞ ¼
X

τ∈Symn

Yn
j¼1

xj;τðjÞ; ð46Þ

where Symn labels all permutations of the set ½n� ¼
f1; 2;…; ng.
It is a well-known fact that computing the permanent of a

matrix is a problem that is #P hard even when one restricts to
binary matrices (Valiant, 1979). At the same time, its close
cousin the determinant can be exactly computed in poly-
nomial time. Theorem 4.3 of Aaronson and Arkhipov (2013)
extended the notable result of Valiant (1979) to approxima-
tions of the modulus squared of the permanent up to
multiplicative errors. More precisely, they showed that for
any c ∈ ½1=polyðnÞ; 1� approximating PermðXÞ2 up to multi-
plicative error c for X ∈ Rn×n remains GapP hard by a
reduction similar to that used to prove Lemma 7 on multi-
plicative-error GapP hardness of computing the modulus of
the gap of a #P function.

3. Gaussian boson sampling

Similarly, the output distribution of Gaussian boson sam-
pling [see Eq. (9)] can be expressed as (Hamilton et al., 2017;
Kruse et al., 2019)

PGBS;UðSÞ ¼ detðσQÞ−1=2
HafðMSÞQ

m
j¼1ðsj!Þ

; ð47Þ

in terms of the so-called Hafnian of a matrix MS that is
constructed as follows. Let σ ∈ C2m×2m be the covariance
matrix13 of the Gaussian state φðUÞjgi prior to the measure-
ment and σQ ¼ σ þ 12m=2. Set

M ¼
�
0m 1m
1m 0m

�
ð12m − σ−1Q Þ; ð48Þ

where 1m denotes the m ×m identity matrix. Analogously to
how we construct a submatrix US;S0 from U, we obtain the
submatrix MS of M as follows: for every j ∈ ½m�, MS
comprises Sj copies of the jth and (mþ j)th row and column
of M, respectively; see Fig. 3(b). Hence, if n ¼PjSj many
photons are detected, then MS is a symmetric 2n × 2n
complex matrix. Like the permanent, the Hafnian of a matrix
is a certain polynomial in its matrix entries and is defined for a
matrix A ∈ C2n×2n as

HafðAÞ ¼
X

σ∈PMPð2nÞ

Yn
j¼1

Aσð2j−1Þ;σð2jÞ; ð49Þ

where PMPð2nÞ is the set of all perfect matching permutations
of 2n elements, that is, permutations σ∶½2n� → ½2n� that for
every i satisfy σð2i − 1Þ < σð2iÞ and σð2i − 1Þ < σð2iþ 1Þ
(Barvinok, 2016a). In particular, the permanent of A can be
written as a special case of the Hafnian as

PermðAÞ ¼ Haf

�
0 A

AT 0

�
; ð50Þ

and hence approximating the Hafnian is at least as difficult
as approximating the permanent, namely, GapP hard, in the
worst case.
The output probabilities of Gaussian boson sampling take a

particularly simple form if the input state jgi is a product of
single-mode squeezed states with squeezing parameters ri,
which is the setting that has been studied in experiments
(Zhong et al., 2020, 2021). In this case, the covariance matrix
σ of the Gaussian state before detection can easily be derived
to be given as

σ ¼ 1

2

�
U 0

0 U�

�
ΣΣ†

�
U† 0

0 UT

�
; ð51Þ

with U ∈ UðmÞ the Haar-random unitary transformation of
the input modes, and

Σ ¼
�⊕m

i¼1 coshðriÞ ⊕m
i¼1 sinhðriÞ

⊕m
i¼1 sinhðriÞ ⊕m

i¼1 coshðriÞ

�
: ð52Þ

The output probabilities can then be written in terms of the
matrix A ¼ U½⊕m

i¼1 tanhðriÞ�UT as

PGBS;UðSÞ ¼
1Q

m
j¼1 coshðrjÞ

jHafðAS;SÞj2; ð53Þ

(a) (b)

FIG. 3. (a) The output probabilities of Fock boson sampling
[Eq. (45)] can be expressed as the modulus squared of the
permanent of a submatrix US;1n of the Haar-random unitary U
constructed by discarding rows and columns according to the
outcome and input registers jSi and j1ik. (b) Analogously, the
output probabilities of Gaussian boson sampling [Eq. (54)] with
squeezed state inputs on k modes are proportional to the modulus
squared of the Hafnian of US;1kU

T
S;1k

.

13See Kok and Lovett (2010) for an introduction to continuous-
variable quantum information processing.
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recalling the definition of AS;S0 from Sec. IV.B.2; see also
Fig. 3(b). These probabilities take a particularly simple form
whenever k out of the m modes are prepared in single-mode
squeezed states with a uniform squeezing parameter r and
the other m − k modes are prepared in the vacuum state.
In this case

PGBS;UðSÞ ¼
tanhkðrÞ
coshkðrÞ jHafðUS;1kU

T
S;1k

Þj2: ð54Þ

C. Hardness argument

We are now in a position to prove that under certain
conditions on the quantum circuit family C sampling from the
output distribution of a random instance C ∈ C cannot be done
in classical polynomial time in the size of C, i.e., polynomial
in the number of qubits. The idea of the proof is to exploit the
fact that approximating output probabilities of unitaries in C is
GapP hard. In contrast, if there was an efficient (derando-
mizable) sampling algorithm for a random C ∈ C, then we
could approximate its output probability using Stockmeyer’s
algorithm. But because Stockmeyer’s algorithm lies in the
third level of the polynomial hierarchy, the existence of such
an algorithm implies that Σ3 ⊃ PGapP ⊃ PH: the polynomial
hierarchy collapses to its third level. Assuming the generalized
P ≠ NP conjecture that the polynomial hierarchy is infinite,
this rules out the existence of an efficient sampling algorithm
for circuits from C. In the following we present this argument,
which was given in detail by Bremner, Jozsa, and Shepherd
(2010), Bremner, Montanaro, and Shepherd (2016), and
Aaronson and Arkhipov (2013).

1. Exact sampling and worst-case hardness

We formalize the previously sketched idea in the following
theorem.
Theorem 15 (Exact sampling hardness).—Let C be a

family of quantum circuits such that there is a constant
c ∈ ð0; 1� for which approximating the output probabilities
up to multiplicative error c is GapP hard. If there is an exact
derandomizable sampling algorithm for circuits in C, then the
polynomial hierarchy collapses to its third level Σ3.
Proof.—Suppose that there is a derandomizable sampling

algorithm A that, given as an input a description of a circuit
C ∈ C, could efficiently sample from its output distribution
pðCÞ as defined in Eq. (1). We can then apply Stockmeyer’s
algorithm (Theorem 11) to the function fC defined in Eq. (38).
In time polyð1=cÞ and within the third level Σ3 of the
polynomial hierarchy, the output of this procedure will
produce a multiplicative-error estimate q0ðCÞ of the output
probability p0ðCÞ that satisfies

p0ðCÞc ≤ q0ðCÞ ≤ p0ðCÞ=c: ð55Þ

But since approximating p0ðCÞ is a GapP-hard task by
assumption, this implies that the polynomial hierarchy col-
lapses to Σ3. ▪
Notice two important subtleties of the argument: To prove

exact sampling hardness, it is crucial that the output

probabilities are not only GapP hard to compute exactly
but even to approximate up to some constant relative error;
see Fig. 4. Meanwhile, it is sufficient for exact sampling
hardness that there is no algorithm that efficiently computes
all instances of the output probabilities. In other words, the
argument relies on worst-case hardness of approximating the
output probabilities since a single “hard instance” is sufficient
for it.
What happens, though, once the sampling algorithm is

allowed to make some error as compared to the ideal target
distribution? Indeed, while an ideal quantum device samples
from the ideal distribution, no such device can exist. Every
physical realization of the ideal model, be it in terms of a
classical simulation algorithm or a quantum implementation,
will inevitably lead to errors so that it is able to only
approximately sample from the target distribution. Such errors
may be due to finite-precision issues intrinsic to computation
or noise in the physical implementation of quantum random
sampling using near-term quantum devices.
Does hardness of sampling still hold in the presence of

errors on the sampled distribution? And if so, what types and
magnitudes of errors are tolerated?

2. Multiplicative-error sampling hardness

As a first step, the proof of sampling hardness can be
extended from exact sampling to sampling from a probability
distribution p that is multiplicatively close to the target
distribution pðCÞ in the sense that for some constant
d ∈ ð0; 1� each probability px satisfies

dpxðCÞ ≤ px ≤ pxðCÞ=d: ð56Þ

We can then easily amend the proof of Theorem 15 for this
case to prove multiplicative-error robustness.
Multiplicative-error robustness of Theorem 15.—Assume

that there is an efficient classical sampling algorithm A that
achieves the following task: Given as an input a description of
a circuit C ∈ C, produce a sample from a probability dis-
tribution p that approximates the distribution pðCÞ defined in
Eq. (1) up to a multiplicative error d as in Eq. (56). We can
then use Stockmeyer’s algorithm to generate an approxima-
tion q0 of the output probability p0 that is correct up to any
constant multiplicative error c:

cp0 ≤ q0 ≤ p0=c: ð57Þ

But the probability p was multiplicatively close to the ideal
output probability p0ðCÞ to begin with, so we obtain

cdp0ðCÞ ≤ cp0 ≤ q0 ≤ p0=c ≤ p0ðCÞ=ðcdÞ; ð58Þ

FIG. 4. In the proof of Theorem 15, the idea is to relate the
hardness of approximating the probabilities in a distribution to
the hardness of exactly sampling from that distribution.
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that is, an overall multiplicative-error approximation to the
probability p0ðCÞ with constant multiplicative error cd. If c
and d are chosen such that the probability p0ðCÞ is GapP
hard to approximate up to multiplicative error cd, the
existence of an efficient sampling algorithm with multipli-
cative-error guarantee cd implies the collapse of the poly-
nomial hierarchy. ▪

3. From multiplicative to additive errors

We saw in our discussion about the approximability of
GapP how extraordinarily demanding multiplicative errors
are in the guise of Lemma 7. There we used that such
approximations always preserve the sign of a quantity and,
moreover, attain 100% accuracy if the quantity is 0. Similarly,
for the sampling task, there is no difference in complexity
when one allows for constant multiplicative errors compared
to the exact case. And indeed, to satisfy such a notion of
approximation, an algorithm would need to account for the
size of all of the exponentially many probabilities, some of
which may be computer-precision close to zero to begin with.
While this notion of approximation may be achievable using a
fault-tolerant quantum device and a computation using ultra-
high precision that scales with the system size, this state of
affairs seems implausible in practice.
What is a more plausible notion of approximation then?

In the following, we consider approximations q to a target
distribution p in terms of the total-variation distance (TVD)

kp − qkTV ¼ 1
2

X
x

jpðxÞ − qðxÞj ð59Þ

between p and q. The TVD measures the maximal distin-
guishability of two probability distributions in terms of the
optimal distinguishing strategy (Watrous, 2018) and is there-
fore a natural measure of statistical distance. But why is the
TVD a sensible measure to consider when quantum advantage
via quantum random sampling is considered? While the
answer to this question is not entirely clear, there are several
arguments that one might make.

a. Why the total-variation distance?

The first argument comes from the perspective of classical
simulation algorithms. Indeed, a fundamental notion of
imprecision of a randomized algorithm such as a sampling
algorithm is given by additive errors. To see why, observe
that a classical computer makes use of a constant precision
representation of numbers. This gives rise to an additive
error on all computations that is exponentially small in the
number of digits of the representation. Going a step further,
imperfections in an algorithm often give rise to additive
errors on the result. One may therefore argue that the
precision that is achievable by classical algorithms is
fundamentally—and often in practice—simply an additive
error, and the TVD is a natural way of capturing this
error. At the same time, this line of reasoning implies that
the precision of computing individual probabilities in the
process of sampling needs to scale with the size of the
system; see Sec. IV.A for details.

The second argument comes from the perspective of the
noisy quantum device. This argument observes that any device
error is reflected in an additive error on the distribution. To see
this, we observe that for both coherent and incoherent errors
we can write an erroneously prepared quantum state ρϵ as a
convex mixture of the target state ρ ¼ Uj0ih0jU† and some
other quantum state σ orthogonal to it as

ρϵ ¼ ð1 − ϵÞUj0ih0jU† þ ϵσ: ð60Þ

Consequently, the output distributions of the noisy and ideal
states when measured in the standard basis pðρÞ and pðρϵÞ
satisfy

kpðρÞ − pðρϵÞkTV ¼ 1
2

X
x

jpxðρÞ − pxðρϵÞj ð61Þ

≤ 1
2
max
fMxgx

jTr½ðρ − ρϵÞMx� ð62Þ

¼ kρ − ρϵkTr ¼ ϵ; ð63Þ

where the maximization runs over arbitrary positive
operator-valued measures (POVMs) fMxgx. Here we have
defined the trace distance k · kTr, which is identical to the
TVD for diagonal quantum states. The trace distance,
analogously to the TVD, measures the maximal distin-
guishability of two quantum states in terms of the optimal
quantum distinguishing strategy (Watrous, 2018). Since
the trace distance maximizes over all possible measure-
ment strategies, it upper bounds the TVD between the
outcome distributions, which is given by fixing a meas-
urement basis.
However, it is important to note that trace or total-variation

distance are not good models of physically realistic errors
occurring on a noisy quantum device. These errors (like the
imprecision of classical computers) are independent of the
size of the system. Hence, as constant local gate errors occur
in a quantum circuit, the trace distance of its output state scales
linearly in the number of gates, which quickly increases to a
trivial value. To make the TVD meaningful from the per-
spective of a noisy quantum device, we thus need to scale
down the local errors as we scale up the circuit size.
Finally, as we later see, the TVD arises naturally when one

considers exact sampling algorithms that work only in the
average case. Since average-case algorithms are natural for
random quantum circuits, this provides further justification for
the TVD. Compared to other statistical distances such as the
Kullback-Leibler (KL) divergence, the TVD also turns out to
be the measure that is amenable to the proof technique that we
present in the following.
To summarize this discussion, the TVD is a notion of

robustness for both classical and near-term quantum algo-
rithms solving the sampling task. The smallest meaningful and
nontrivial notion of approximation may be to consider the task
of sampling up to constant TVD. This requires only relatively
mild error or precision scalings of the individual components
of the respective algorithms on the order of 1=m. Such scaling
of local algorithmic errors is already extremely demanding,
however.
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b. Showing TVD robustness

In the following, we consider the task of sampling from a
distribution q that is ϵ close to a target output distribution
pðCÞ of a quantum circuit C in the sense that

kpðCÞ − qkTV ≤ ϵ: ð64Þ

Our goal is to show that this task is hard for classical
computers. Compared to exact and multiplicative-error sam-
pling hardness, this endeavor is faced with the challenge that
as ϵ increases, so does the legroom for classical simulation:
to show hardness we have to prove that sampling from any
distribution within an ϵ TVD neighborhood of the target
distribution is classically intractable. We are faced with a
dramatically increased burden in the proof as hardness needs
to be shown for an entire volume of probability distributions
rather than a single point. As ϵ → 1, the output state of the
computation becomes classically simulable as the uniform
distribution, in particular, is always within this error bound of
the target distribution. But the uniform distribution is easy to
sample from even an exponentially large sample space by
repeated unbiased coin tosses.
Given what we have seen so far, there is a fundamental

discrepancy between how the proof of exact sampling hard-
ness can naturally be made robust to noise and the errors that
inherently occur in realistic settings. The discrepancy is one
between the utterly unrealistic notion of multiplicative errors
on all probabilities and the more realistic notion of additive
errors on the global outcome distribution. The question we
now focus on is whether we can overcome this hurdle.
In technical terms, what we now prove is that no efficient

classical algorithm A taking as an input an efficient descrip-
tion of C exists that samples from any distribution q such that
kq − pðCÞkTV ≤ ϵ for a constant ϵ > 0. Again we make use of
Stockmeyer’s approximate counting algorithm with a deran-
domizable sampling algorithm as an input in order to take the
step from hardness of approximating probabilities. How can
we take the leap from proving robust hardness-of-sampling
results for multiplicative errors to those for additive errors?
To approach an answer to this question, we conceive of the

sampling algorithm A as an adversarial party that, given U
as an input, tries to adversarially obstruct the approximate
counting algorithm in its goal of approximating specific
probabilities. The adversarially acting sampling algorithm
is, however, constrained to sample from a distribution satisfy-
ing the respective error bounds. The following observations
regarding the nature of additive errors in contrast to multi-
plicative ones are instructive.

(1) When the sampling algorithm is constrained to multi-
plicative errors on individual probabilities, the total
additive error it can make depends on the shape of the
distribution. In particular, every individual probability
will be correct up to an error that depends on its size.
In contrast, the additive-error constraint allows the
adversarial party much more flexibility. An additive
error can be viewed as a total error budget that may be
distributed across the individual probabilities at will.
In particular, a few probabilities can come with large

relative errors supposing that the other ones are correct
up to a small additive error.

(2) When proving multiplicative-error robustness, the
shape and volume of the region in the space of
probability distributions on a sample space Ω of which
hardness is proven depend heavily on the specific
shape of the distribution. In contrast, for additive-error
robustness the volume and shape of this region are
sensitive only to boundaries of Ω.

(3) Approximating output probabilities of quantum com-
putations up to an inverse polynomial additive error
does not remain hard for GapP but only for BQP; see
Theorem 3 of De las Cuevas et al. (2011). Only for
inverse, exponentially small additive errors �1=2n do
those approximations again become GapP hard. This
is easily seen using the fact that normalized gaps of
Boolean functions acting on f0; 1gn take on only
values that are integer multiples of 2=2n. Approxi-
mating those gaps up to an additive error < 1=2n is
therefore just as difficult as exactly computing them.14

What can we take away from these observations? Point (3)
implies that to prove a polynomial-hierarchy collapse via
Stockmeyer’s algorithm we must still rely on the hardness of
approximating output probabilities of circuit families up to
relative errors or exponentially small additive errors.
Points (1) and (2) shine light on two sides of the same coin.

In contrast to the case of multiplicative robustness, we cannot
rely on the hardness of estimating individual probabilities that
might be small. In particular, it cannot be the case that only
one of the circuits within C has a single output probability on
which all classical algorithms fail. Instead, we must rely on
circuit families for which not only are single outcome
probabilities of some members of the familydifficult to
compute but also a large—constant—fraction of all output
probabilities of the circuit family must be difficult to compute.
This idea is formalized within the notion of average-case
complexity: Approximating the outcome probabilities of
quantum circuits must be difficult for a large fraction of
the instances, where an instance is defined by a specific
quantum circuit.
In particular, average-case complexity therefore requires

that not all but instead few of those hard probabilities can be
small, i.e., smaller than, say, doubly exponentially small while
few large ones are easy to approximate. Indeed, if this were the
case, since small quantities have small relative errors, the
adversarially acting sampling algorithm could easily distribute
the better part of its constant error budget on the few large
probabilities while at the same time still passing the relative-
error threshold on the small probabilities. In this way they
would meet the constraint imposed by the global additive error
but not achieve a provably difficult task, as the error on the
computationally intractable probabilities would be too large.
Rather, there must be a large fraction of difficult instances
that are reasonably large, say, at least as large as uniform
probabilities ∼1=jΩj on the sample space Ω. This idea is
formalized within the notion of anticoncentration, which is a

14See also the Supplementary Material of Bremner, Montanaro,
and Shepherd (2016).
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condition on the probability that a randomly drawn problem
instance (again specified by a circuit and an outcome string)
is reasonably large. Anticoncentration constrains how the
adversarial player can distribute their error budget: they can
choose between getting many probabilities right with small
errors, but making larger errors on a few outcomes, say,
inverse polynomial errors on polynomially many probabil-
ities, or getting all probabilities right with reasonably small
inverse-exponential errors. These observations were made
by Aaronson and Arkhipov (2013), who observed that the
natural problem in boson sampling, namely, computing a
permanent, is an average-case hard problem.
In the previous discussion, we touched on a point that we

had glossed over in our discussion of exact sampling hardness:
it is key to random circuit sampling schemes that there are two
notions of probability at play. First, there is the random choice
of a circuit from the family C. Second, there is the random
choice of an outcome string S that is distributed according to
pðUÞ. Equally, there are two probability distributions: the
distribution according to which random circuits are drawn and
the outcome distribution of each such random circuit. These
notions are crucially distinct.
As we later see, the choice of random circuit instances is

essential to providing evidence for the additive-error robust
hardness of simulating quantum circuits. The second notion of
probability is intrinsic to our choice of problem. In the end, we
aim to prove the hardness of a sampling task. This is a task
requiring randomness: we want to obtain a random sample
from a distribution that we in turn chose at random from
another ensemble.

4. Additive-error sampling hardness

Given average-case hardness of approximating the output
probabilities, we can prove a hardness-of-sampling result that
is robust to constant additive errors. We proceed analogously
to the proof of multiplicative robustness, following the sketch
in Fig. 5.
Additive-error robustness of Theorem 15.—Assume that

there is an efficient, derandomizable classical algorithm that
takes as an input a description of a circuit instance C from a
family C and outputs samples distributed according to a
probability distribution p that satisfies

kp − pðCÞkTV ≤ ϵ: ð65Þ

In Eq. (65) pðCÞ is the ideal target distribution defined in
Eq. (1). We use this sampling algorithm in order to approxi-
mate a random problem instance as given by the output
probability p0ðCÞ ¼ jh0jCj0ij2 of C.
According to Task 1, random sampling, we generate an

instance by drawing C ∈ C at random. To estimate the value of
this instance, we use Stockmeyer’s approximate counting
algorithm with input given by the algorithm A, the circuit
instance C, and the outcome string 0n. Using access to its NP
oracle, Stockmeyer’s algorithm will output a multiplicative-
error approximation q0 of the noisy output probability p0

satisfying

jq0 − p0j ≤ cp0 ð66Þ

in time polyðn; 1=cÞ within the third level Σ3 of the poly-
nomial hierarchy.
Our goal is to bound the error

jq0 − p0ðCÞj ≤ jq0 − p0j þ jp0 − p0ðCÞj: ð67Þ

Equation (66) already provides the first half of this bound. For
the second bound we need to leverage the total-variation-
distance bound (65) on the global distributions p and pðCÞ to
an error bound on the individual probabilities p0 and p0ðCÞ.
To obtain such a bound, consider again the sampling

algorithm A. Remember that qua, as a derandomizable
algorithm on input U, r with a uniformly random r ∈
f0; 1gpolyðnÞ, will output a random sample from p such that

pxðCÞ ¼ Pr½C outputs x�; ð68Þ

px ¼ Pr
r
½A outputs x on inputC�: ð69Þ

Acting adversarially, the algorithm A wants to maximize the
error jp0 − p0ðCÞj. To do so, it needs to have some prior
information about which of the outcome strings are more
likely to be queried in Stockmeyer’s algorithm given a certain
input C so that it can distribute more of its constant error
budget on those outcomes. This information would manifest
itself in a distribution of outcomes x that is nonuniform (and in
fact concentrated on the single all-zero outcome) from the
perspective of A given C (Aaronson and Arkhipov, 2013).
This is because the all-zero outcome is always the one that we
are interested in. But if it were able to distribute all of its
constant error budget on this single outcome, then it would not

FIG. 5. Outline of the proof strategy for additive-error sampling
hardness. A derandomizable sampling algorithmA, given C as an
input, samples from a distribution p that is ϵ close in total-
variation distance (TVD) to the target distribution pðCÞ. Using
Markov’s inequality and the hiding property, this implies that the
output probability p0 of p is within additive error 2ϵ=2nδ of the
ideal output probability p0ðCÞ, with a probability of at least 1 − δ.
Given A as an input, Stockmeyer’s algorithm can infer a
[1=polyðnÞ]-multiplicative approximation q0 of the approximate
output probability p0 in the third level of the polynomial
hierarchy.
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be able to achieve a difficult task, which is what we are trying
to show.

a. Hiding problem instances

To see how we can achieve the result that this distribution
over outcomes is not biased toward a few outcomes but rather
uniform over all outcomes, consider the distribution over
circuits Cy obtained by drawing C ∈ C at random and then
appending X gates Xy1

1 · Xy2
2 � � �Xyn

n for uniformly random
y ∈ f0; 1gn to the end of the circuit (Bremner, Montanaro, and
Shepherd, 2016). We can then reexpress the outcome prob-
abilities of Cy as

pxðCyÞ ¼ jhxjCyj0ij2 ¼ jh0jCx⊕yj0ij2 ¼ p0ðCx⊕yÞ: ð70Þ

Consequently, the same problem instance C can equivalently
be obtained when one provides the adversary A with an
instance Cy for uniformly random y and then queries
Stockmeyer’s algorithm on the outcome y. When aiming to
estimate the problem instance p0ðCÞ, we can therefore hide
the instance C in the circuit Cy by randomly appending X
gates according to a uniformly random y and then querying
Stockmeyer’s algorithm on outcome y. But since y is hidden
fromA, the distribution over outcomes on which we are going
to query Stockmeyer’s algorithm to obtain the output prob-
ability is uniformly random, and it cannot bias its error toward
any given outcome.
For this to work, it is crucial that A cannot distinguish

whether we have directly generated a random problem
instance C for which we are directly interested in the all-zero
outcome, or whether we have first drawn a random C ∈ C and
then hidden this instance by constructing the unitary Cy with
uniformly random y and query on the outcome y (Aaronson
and Arkhipov, 2013). Hence, the probability of directly
drawing Cy must be the same as that of drawing C and then
appending uniformly random X gates according to y.
Generally, we therefore say that a circuit family C has the

hiding property if (a) there is an efficient instance-generating
procedure that converts a given problem instance C ∈ C and a
uniformly random outcome y into another problem instance
Cy, and (b) the distribution over circuits is invariant under this
procedure, i.e.,

Pr
Cy∼C

½Cy� ¼ Pr
C∼C;y∼f0;1gn

½Cy�: ð71Þ

The hiding property holds naturally for most random circuit
families, and, in particular, also for universal random circuits
where each gate is drawn from the Haar measure. This is
because the Haar measure is left and right invariant under
arbitrary unitaries and the Pauli-X gate is one such unitary.
If the hiding property holds, without loss of generality we

can therefore always query Stockmeyer’s algorithm on the all-
zero outcome of C, making use of the fact that this outcome is
indistinguishable from a uniformly random one from the
perspective of A. Conversely, we can conceive of the out-
comes of the circuits that we query Stockmeyer’s algorithm on
as being uniformly distributed from the perspective of A. In
this case, we can apply Markov’s inequality to obtain a bound

on the error for individual probabilities. For uniformly random
x we obtain that

Pr
x∈f0;1gn

�
jpx − pxðCÞj ≥

1

δ
E

x∈f0;1gn
½jpx − pxðCÞj�

�
¼ Pr

x∈f0;1gn

�
jpx − pxðCÞj ≤

2ϵ

δ2n

�
≤ δ ð72Þ

since

E
x∈f0;1gn

½jpx − pxðCÞj� ¼
1

2n

X
x∈f0;1gn

jpx − pxðCÞj

¼ 2

2n
kp − pðCÞkTV ¼ 2ϵ

2n
: ð73Þ

Combining Eqs. (67) and (72), we now find that, with a
probability of at least 1 − δ over the inputs, the error of the
estimate q0 output by Stockmeyer’s approximate counting
algorithm satisfies

jq0 − p0ðCÞj ≤
1

polyðnÞp0 þ
2ϵ

2nδ
ð74Þ

≤
1

polyðnÞp0ðCÞþ
2ϵ

2nδ

�
1þ 1

polyðnÞ
�
: ð75Þ

The bound in Eqs. (74) and (75) is a mixture of an
exponentially small additive and inverse polynomially small
multiplicative error. However, the error bound does not hold
for all possible inputs to Stockmeyer’s algorithm; it holds only
for a 1 − δ fraction of the inputs. By the hiding property this
corresponds to a 1 − δ fraction of the problem instances.

b. Approximate average-case hardness

To show the hardness of the sampling task, we need to show
that achieving this error on an arbitrary 1 − δ fraction of the
outputs is sufficient for a collapse of the polynomial hier-
archy.15 Indeed, our procedure involving Stockmeyer’s algo-
rithm is precisely such an algorithm (in the third level of the
polynomial hierarchy). A sufficient condition to show such a
polynomial-hierarchy collapse is then the following: The
problem of estimating the probabilities remains GapP hard
even when using a polynomial-time algorithm that succeeds
on only a constant fraction of the instances. In other words, an
algorithm solving the estimation problem for p0ðCÞ with
error (75) and the success probability given by the respective
fraction of the instances (i.e., 1 − δ) is as powerful as an
arbitrary GapP algorithm. This contrasts with the proof of
exact sampling, where it was merely required that the
estimation problem is GapP hard in the worst case, that is,
for a machine that is required to succeed on all instances.
Making this intuition rigorous is the idea of average-case

hardness.
Definition 16 (Approximate average-case hardness).—

Let Γ ∈ ð0; 1Þ and ε > 0. A function class F is average-case

15This is because Markov’s inequality does not control the
instances on which the bound fails.
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hard with constant Γ and error ε if approximating any Γ
fraction of the instances in F up to error ε is GapP hard.
If approximate average-case hardness holds with respect to

the error (75), the existence of an efficient sampling algorithm
A for the output distribution of a random instance C ∈ C
implies that we can approximate GapP-hard probabilities in
the third level of the polynomial hierarchy using Stockmeyer’s
algorithm. The polynomial hierarchy collapses.
We have proven approximate sampling hardness; see Fig. 6.
Theorem 17 (Additively robust sampling hardness).—

Consider a circuit family C that satisfies (1) the hiding
property and (2) approximate average-case hardness up to
error (75) on any 1 − δ fraction of the instances. Suppose that
there is an efficient classical sampling algorithm A that, given
C ∈ C drawn at random as an input with success probability
at least 1 − δ over C, outputs samples from an additive
approximation p to the outcome distribution pðCÞ satisfying
kp − pðCÞkTV ≤ ϵ. The polynomial hierarchy then collapses.
We have taken a long route from the complexity-theoretic

foundations of quantum speedups to rigorous and approxi-
mate hardness-of-sampling arguments relevant to near-term
quantum technology. The complexity-theoretic foundations of
quantum speedups manifested themselves in the GapP vs #P
dichotomy: while multiplicatively approximating the accep-
tance probabilities of classical circuits can be done on the third
level of the polynomial hierarchy, this task remains GapP
complete for certain quantum circuit families. We then saw
how the at-first-sight different tasks of sampling from a
probability distribution (weakly simulating it) and approxi-
mating its outcome probabilities (strongly simulating it) are
related on a rigorous level: Stockmeyer’s approximate count-
ing algorithm and the concept of the polynomial hierarchy
proved essential to this question. Building on those methods,
we could show that the task of sampling from the output
distribution of certain random quantum computations cannot
be achieved using an efficient classical algorithm. In a last
step, we aimed to make this result robust to realistic errors,
that is, additive errors in total-variation distance on the level of
the output distributions. Making this leap involved stronger
properties of the output distribution, however: approximate

average-case hardness and the hiding property. The way that
we have formulated Theorem 17 provides a general frame-
work for providing a hardness argument for approximately
sampling from the output distributions of quantum circuit
families. But in order to complete the proof the two properties
(hiding and approximate average-case hardness) need to be
shown for specific circuit families.
We hinted that the hiding property trivially holds for most

circuit families: to show this, we merely need to show that X
gates at the end of the circuit do not alter the circuit family.
The only instances of circuit families for which hiding is
nontrivial are boson-sampling protocols. We sketch the argu-
ment here.

c. Hiding in boson sampling

We saw in Sec. II that the output probabilities of Fock
boson sampling are given by permanents (45) of submatrices
of Haar-random unitaries. Conceivably, though, there is some
structure in such submatrices. To see this, consider the case in
which we obtain all bosons in a single mode as the outcome,
i.e., S ¼ ðn; 0; 0;…Þ. In this case, all columns of the sub-
matrix US;1n are equal, and this can plausibly be exploited to
approximate jPermðUS;1nÞj2. In other words, because of the
structure in the matrix, the specific outcome cannot be hidden.
However, Aaronson and Arkhipov (2013) showed that under
certain conditions hiding holds in Fock boson sampling in
virtue of the fact that the output probabilities of a random
boson-sampling instance are determined by permanents of
approximately Gauss-random, and therefore highly unstruc-
tured, matrices.
To achieve this, Aaronson and Arkhipov (2013) considered

the collision-free boson-sampling distribution P�
bs;U. The

distribution P�
bs;U is obtained from Pbs;U by discarding all

output sequences S with more than one boson per mode, i.e.,
all S that are not in the set of collision-free sequences

Φ�
m;n ¼ fS ∈ Φm;n∶ ∀ s ∈ S∶s ∈ f0; 1gg: ð76Þ

Why are collision-free outcomes advantageous when proving
hardness? Intuitively, this is because for collision-free out-
comes the submatrix US;1n has much less structure than for
outcomes with collisions because there are no repeated rows
or columns. If, moreover, the size of US;1n becomes suffi-
ciently small compared to the full size of U, neither does there
remain any of the structure in U stemming from the ortho-
gonality of its columns.
The hiding property then follows from two facts. First, we

need to justify that restricting our attention to collision-free
outcomes is valid. This is true if postselecting onto the
collision-free subspace can be done efficiently, in the sense
that its probability weight is at least a constant, and Aaronson
and Arkhipov proved that this is the case if m grows
sufficiently fast with n and at least as m ∈ Ωðn2Þ; see Jiang
(2006), Arkhipov and Kuperberg (2012), and Theorem 13.4 of
Aaronson and Arkhipov (2013). Second, Aaronson and
Arkhipov proved that if m grows even faster, namely, as
m ∈ Ω½n5 logðnÞ2�, the measure induced on U ∼ μH by taking
n × n submatrices of unitaries U ∈ UðmÞ chosen with respect

FIG. 6. While in the proof of exact sampling hardness it was
sufficient to build on the hardness of approximating the output
probabilities of quantum circuits, in order to prove hardness of
approximate sampling further properties of the circuit family C
are required: approximate average-case hardness of computing
the output probabilities and the hiding property.

Dominik Hangleiter and Jens Eisert: Computational advantage of quantum random …

Rev. Mod. Phys., Vol. 95, No. 3, July–September 2023 035001-22



to the Haar measure μH is close to the complex Gaussian
measure μGðσÞ with mean zero and a standard deviation
σ ¼ 1=

ffiffiffiffi
m

p
on n × n matrices. Consequently, regardless of

which submatrix we choose, i.e., which collision-free out-
come we obtain, the distribution of the submatrices is
approximately Gaussian.
Conversely, Aaronson and Arkhipov (2013) proved in

Lemma 5.8 that, given a Gauss-random instance X ∼ μGðσÞ
as input, there is a BPPNP algorithm16 that, given X, hides this
matrix in a large unitary matrix in the sense that it generates a
Haar-random U ∈ UðmÞ such that there is a uniformly
random S ∈ Φ�

m;n such that X ¼ US;1n . This provides the
instance-generating algorithm. Hiding a Gauss-random in-
stance X is therefore possible when constructing a larger
unitary matrix of which X is a uniformly random submatrix,
similar to how we hid a qubit circuit C by appending
uniformly random X gates to it.
A similar reasoning can be applied to Gaussian boson

sampling, albeit with a slightly different distribution
(Deshpande et al., 2022). Recall that the matrices of which
the Hafnian is computed in Gaussian boson sampling with k
single-mode squeezed inputs and n detected photons in m
modes are of the form US;1kU

T
S;1k

, which for collision-free
outcomes are outer products of random n × k submatrices of
the linear-optical unitary U. For those matrices, hiding
plausibly holds with respect to symmetric Gaussian matrices
XXT , where X ∼ Gn;kð0; 1=mÞ is an n × k matrix drawn from
the Gaussian distribution on n × k complex matrices. Indeed,
this is provably true in two regimes (Deshpande et al., 2022):
First, for m ∈ Oðk5log2kÞ and k ¼ n the submatrices are
individually Gaussian distributed by the result of Aaronson
and Arkhipov (2013), and hence we can also bound the
distance to the distribution of XXT . Second, for k ¼ m Jiang
(2009) showed that whenever n ∈ oð ffiffiffiffi

m
p

= logmÞ the distri-
bution of n × n submatrices of UUT for unitary U converges
asymptotically to the distribution of XXT , where X ∼
Gn;mð0; 1=mÞ is an n ×m complex Gaussian matrix. For
the intermediate regime m1=5 < k < m, there is numerical
evidence that the hiding property remains true (Deshpande
et al., 2022). The instance-generating algorithm of Aaronson
and Arkhipov (2013) in their Lemma 5.8 will also work for
this setting provided that the distributions of US;1kU

T
S;1k

for
unitary U and XXT for Gaussian X ∼ Gn;kð0; 1=mÞ are close
not only in TVD but also in a slightly stronger multiplicative
sense. This is because the instance-generating algorithm
simply postselects on the matrix XXT , appearing as a sub-
matrix of U1kUT by making use of the NP oracle.
An efficient way of constructing a Gaussian boson-

sampling scheme that comes without needing to scale m ∈
Ω½polyðnÞ� was discovered by Grier et al. (2022). They
observed that by programming a Gaussian boson-sampling
device in a bespoke way, it is possible to encode the permanent
of an arbitrary matrix in the output probabilities. Specifically,
they considered a bipartite system of 2m modes. The input
state is given by a product of two-mode squeezed states on

modes i and iþm for i ¼ 1;…; m with squeezing parameters
r1;…; rm. In other words, the two halves of a two-mode
squeezed state are associated with the two partitions. A
bipartite unitary mode transformation U ⊗ V is then applied
to the system, and all modes are measured in the Fock basis.
This gives rise to output probabilities that are proportional to a
function of a submatrix of a matrix C ¼ UdiagðrÞV†, where
r ¼ ðr1;…; rmÞ is the vector of squeezing values. Since this is
simply a singular-value decomposition, by choosing r, U, and
V bespokely, C can be programmed to be an arbitrary matrix,
and, in particular, a Gaussian one that satisfies the hiding
property by definition.
Proving approximate average-case hardness is an entirely

different story, however, and remains the central open theory
problem in the context of quantum random sampling.
However, much work has been put into gathering evidence
for the truth of approximate average-case hardness. In
Sec. IV.D, we discuss this evidence.

D. Approximate average-case hardness

To prove approximate average-case hardness, it is helpful to
simplify the rather baroque error mixture (75) on any 1 − δ
fraction to something more familiar: an exponentially small
additive or a constant multiplicative error. Indeed, for those
errors we already know the worst-case hardness of approxi-
mating the output probabilities, and hence a necessary con-
dition is true.

1. Reduction to additive or multiplicative average-case hardness

To achieve our goal, we begin by observing that, depending
on which one of the two terms in Eq. (75) is larger, the error
will be a relatively or exponentially small additive, respec-
tively. Hence, if we are able to determine the comparative size
of the two terms, we can reduce the error to a simpler form.
Specifically, if in the error bound (75) the probability p0ðCÞ is
smaller than α=2n for some constant α > 0, then Eq. (75) can
be upper bounded in terms of an additive error ½2ϵ=δþ αþ
oð1Þ�=2n if it is larger than α=2n. Equation (75) can therefore
be upper bounded in terms of a relative error 2ϵ=ðαδÞ þ oð1Þ.
To reduce the error (75) to an exponentially small additive

error, we can make use of the concentration of the proba-
bilities around their mean (given by 1=2n) using Markov’s
inequality

Pr
C∼C

�
p0ðCÞ ≥

1

2nα

�
≤ α; ð77Þ

where the probability is taken over the choice of problem
instances. Since the probability in Eq. (77) runs over the
choice of random circuit, while in Eq. (72) it runs only over
the uniformly random choice of outcome, the failure proba-
bilities are independent of one another. Hence, both bounds
are satisfied with probability ð1 − δÞð1 − αÞ, in which case
Eq. (75) is upper bounded by an exponentially small additive
error

jq0 − p0ðCÞj ≤
�
2ϵ

δ
þ 1

polyðnÞ
�
1þ 1

α

��
1

2n
: ð78Þ16Like Stockmeyer’s algorithm, this algorithm is therefore on the

third level of PH.
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To reduce the error (75) to the arguably more “natural” case
(Aaronson and Arkhipov, 2013) of a constant relative-error
approximation, we invoke the so-called anticoncentration
property introduced by Aaronson and Arkhipov (2013).
Definition 18 (Anticoncentration).—We say that a circuit

family C anticoncentrates if for a constant α > 0 there is a
γðαÞ > 0 independent of n such that

Pr
C∼C

�
p0ðCÞ ≥

α

2n

�
≥ γðαÞ: ð79Þ

Since the failure probabilities δ and γðαÞ are independent,
bounds (72) and (79) are both satisfied with a probability of at
least γðαÞð1 − δÞ, in which case we obtain the relative-error
bound

jq0 − p0ðCÞj ≤
�
2ϵ

δα
þ 1

polyðnÞ
�
p0ðCÞ: ð80Þ

For the relative-error case, we can set α ¼ 1=c, ϵ ¼ γðαÞ=4,
and δ ¼ γðαÞ=2 to obtain a c=2þ oð1Þ relative-error approxi-
mation of p0ðCÞ with a probability at least γð1 − γ=2Þ over the
choice of instances. For the additive-error case, we can set
2ϵ=δ ¼ κ=2 and α constant to obtain a ½κ=2þ oð1Þ�=2n
additive approximation of p0ðCÞ with a probability at least
4ϵα=κ over the choice of instances.
We have reduced approximate average-case hardness

(condition 2 of Theorem 17) to either (2a) additive approxi-
mate average-case hardness up to an exponentially small
additive error Oð2−nÞ on any γ fraction or (2b) relative
approximate average-case hardness up to a relative error
1=4 on any γð1 − γ=2Þ fraction and (2c) anticoncentration
for α ¼ 1 with constant γ ¼ γðαÞ.
To date no proof of additive or relative approximate

average-case hardness exists. But to see why a multiplicative-
error average-case hardness conjecture is plausibly true for
GapP functions, again consider the previous argument. For
typical #P functions the number of accepting paths is
exponentially large, and hence a multiplicative error is also
of the same order of magnitude. In contrast, for typical GapP
functions, as differences of #P functions, the number of
accepting paths is a difference between two exponentially
large numbers, which is often orders of magnitude smaller
than each such number. This is why for #P functions we often
do not expect approximate average-case hardness, while for
GapP functions this conjecture seems reasonable.
Another argument in favor of approximate average-case

hardness makes use of a universal quantity such as the Ising
partition function (40) (Bremner, Jozsa, and Shepherd, 2010;
Bremner, Montanaro, and Shepherd, 2016; Goldberg and
Guo, 2017; Boixo et al., 2018), the Tutte partition function
(Goldberg and Guo, 2017), or the Jones polynomial
(Kuperberg, 2015; Mann and Bremner, 2017). This argument
observes that as we draw random instances of an Ising
partition function ZW no additional structure is present, unlike
a worst-case instance, which a hypothetical approximation
algorithm might be able to exploit.
While one might argue that these arguments are relatively

weak, there have also not been counterexamples to

approximate average-case hardness in the standard settings.
In the following, we see further and more substantial technical
evidence of the additive average-case hardness conjecture.

2. Anticoncentration

We begin with the anticoncentration property
(Definition 18). The anticoncentration property allows us to
reduce the baroque error (75) to a relative error, arguably the
most natural error if we want to prove the hardness of
approximating the probabilities because GapP naturally
allows one to reduce relative errors to an exact computation.
But anticoncentration can also serve as evidence for the
additive approximate average-case hardness property to hold.
By ruling out that almost all outcome probabilities are less
than inverse exponentially small, anticoncentration rules out
that an inverse-exponential additive-error approximation is
trivial: we cannot simply guess 0 for all probabilities and be
almost always correct if anticoncentration holds.
In this sense, a certain degree of anticoncentration is required

to hold for approximate average-case hardness to be true. Note,
however, that anticoncentration is not a necessary property for
hardness of sampling to hold, and neither is approximate
average-case hardness. Both properties are merely used in
the proof strategy that we describe in this section. But while
approximate average-case hardness is sufficient for approxi-
mate hardness of sampling, anticoncentration is not.
Notice that to prove anticoncentration we merely need to

derive statistical properties of the respective random circuit
families. To see this, we make use of the Paley-Zygmund
inequality (Bremner, Montanaro, and Shepherd, 2016), a
lower-bound analog to Markov’s inequality, which states that,
for a random variable Z with 0 ≤ Z ≤ 1,

Pr [Z > αE½Z�] ≥ ð1 − αÞ2 E½Z�
2

E½Z2� : ð81Þ

Using the Paley-Zygmund inequality we can therefore reduce
the anticoncentration property to the value of the second
moments of the random circuit ensemble as

Pr

�
p0ðCÞ >

α

2n

�
≥ ð1 − αÞ2 2−2n

E½p0ðCÞ2�
: ð82Þ

The normalized second moment 2nE½p0ðCÞ2� is also often
referred to as the average collision probability.17 To prove
anticoncentration for quantum random sampling, it is there-
fore sufficient to bound this average collision probability
as Oð2−nÞ.
This scaling of the average collision probability as Oðd−1Þ

for quantum states in dimension d is precisely the scaling that
one obtains when drawing a quantum state jψi uniformly at
random on the complex unit sphere SðCdÞ and measuring it in
the computational basis. Equivalently, we can draw a unitary
U ∼UðdÞ uniformly at random and apply it to a reference
state as Uj0i, giving rise to a uniformly distributed quantum
state. The corresponding uniform measure USðCdÞ on the unit

17The collision probability of a distribution p is given by
P

xpðxÞ2.
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sphere is therefore invariant under the action of unitaries
UðdÞ. For this measure, we can compute the kth moment
projector as

Mk ¼
Z
SðCdÞ

ðjψihψ j⊗kÞdUSðCdÞðψÞ ¼
P½k�
D½k�

; ð83Þ

where P½k� is the projector on the symmetric subspace of k
tensor copies and D½k� ¼ ðdþk−1

k Þ is the dimension of that
subspace. See Kliesch and Roth (2021) for a pedagogical
introduction to random unitaries and states.
For uniformly random quantum states we can now compute

the second moments of the output probabilities jhxjψij2 as

E½jhxjψij4� ¼ E½hxj⊗2ðjψihψ jÞ⊗2jxi⊗2� ð84Þ

¼ hxj⊗2E½ðjψihψ jÞ⊗2�jxi⊗2 ð85Þ

¼ D−1
½2� hxj⊗2P½2�jxi⊗2 ð86Þ

¼ D−1
½2� ¼

2

ðdþ 1Þd ; ð87Þ

where we specify that jxi⊗2 is in the symmetric subspace such
that the projector P½2� ¼ ð1þ SÞ=2 with swap operator

S ¼
Xd2
i;j¼1

jiijjihjjhij ð88Þ

acts trivially on it.
For uniformly random quantum states, we therefore obtain

from Eq. (82) that the anticoncentration property holds with a
success probability of at least ð1 − α2Þ=2. Proving anticon-
centration of quantum circuit families can therefore be viewed
as proving that the output probabilities of these families
behave up to constant factors just like the output probabilities
of uniformly random quantum states in terms of their average
collision probability, their second moment. To prove bounds
on the average collision probability, one can now proceed in
various different ways. One can directly bound the average
collision probability, or one can show that the output states of
circuits drawn from the family already behave sufficiently
similarly to uniformly random states. We now sketch the
two most important ways via which anticoncentration can be
proven for random quantum circuits: the so-called design
property and statistical-mechanics mappings.

a. Anticoncentration via spherical designs

While the circuit families proposed for quantum random
sampling do not generate a uniformly random quantum state
Cj0i, several families have the strong property that they mimic
uniform randomness at the level of the second moment. A
family of vectors Ψ ¼ fjψiigi that mimics uniform random-
ness for the kth moments in the sense that

Mk
Ψ ¼ 1

jΨj
X
i

ðjψ iihψ ijÞ⊗k ¼ P½k�
D½k�

ð89Þ

forms a so-called complex (spherical) k-design. We can
slightly relax the notion of a k-design to approximations
thereof and say that a family Ψ is a relative ϵ-approximate
k-design if

ð1 − ϵÞMk
Ψ ≤

P½k�
D½k�

≤ ð1þ ϵÞMk
Ψ: ð90Þ

The proof of the following theorem then directly follows
Hangleiter et al. (2018).
Lemma 19 (Anticoncentration of 2-designs).—Let Ψ be a

relative ϵ-approximate 2-design on SðCdÞ. The output prob-
abilities jh0jψij2 of a randomly chosen jψi ∈ Ψ then anti-
concentrate in the sense that, for 0 ≤ α ≤ 1,

Pr
jψi∼Ψ

�
jh0jψij2 > αð1 − ϵÞ

d

�
≥
ð1 − αÞ2ð1 − ϵÞ2

2ð1þ ϵÞ : ð91Þ

Several circuit families considered for quantum random
sampling approximately exhibit the 2-design property when
applied to a reference state. This holds, in particular, for
universal random circuits in various settings. For random
circuits, one can even prove a stronger property, namely, that
they are unitary designs, mimicking uniform randomness on
the unitary group as opposed to the complex sphere. Unitary
designs by definition have the property that their columns
form spherical designs; hence, Lemma 19 applies to them.
Historically, the first proof of the 2-design property for
random circuits was from Harrow and Low (2009), albeit
for a weaker (additive) notion of approximation than is
required for the proof of anticoncentration.
Brandão, Harrow, and Horodecki (2016) proved the

stronger result that random circuits on n qubits arranged in
a linear chain form an ϵ-approximate unitary k-design if they
contain OfpolyðkÞn½nþ logð1=ϵÞ�g many gates. The circuits
that they considered are composed of two-qubit gates that are
applied either to random neighboring qubits or in an alter-
nating parallel “brickwork” configuration. The individual
gates may be drawn either from a universal gate set containing
its own inverses or uniformly (Haar) randomly. The key idea
of the proof of Brandão, Harrow, and Horodecki (2016) was to
map the design property to the gap of a local, frustration-free
Hamiltonian, the local terms of which correspond to the
individual two-qubit gates of the circuit and act on 4k many
qubits, using the so-called detectability lemma (Aharonov
et al., 2009; Anshu, Arad, and Vidick, 2016). The gap of this
Hamiltonian can then be bounded using the seminal result of
Nachtergaele (1996). Haferkamp (2022) recently improved this
result by showing a milder polynomial dependence in k,
thereby providing an improved bound on the spectral gap.
The same technique can also be applied to show the design
property for other circuit families that encode universal
quantum circuits, such as randommeasurement-based quantum
computations (Haferkamp, Hangleiter, Bouland et al., 2020).
Further examples of postselected-universal circuit families

that exhibit the 2-design property, and therefore anticoncentra-
tion, are conjugated Clifford circuits (Bouland, Fitzsimons,
and Koh, 2018), Clifford circuits with magic-state inputs
(Hangleiter et al., 2018; Yoganathan, Jozsa, and Strelchuk,
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2019), and diagonal quantum circuits applied to the state jþi⊗n

(Nakata, Koashi, and Murao, 2014; Hangleiter et al., 2018).
Improving the result of Brandão, Harrow, and Horodecki

(2016) to lattices of arbitrary dimension, Harrow and
Mehraban (2023) proved that random universal circuits
arranged on a lattice of dimension D generate an approximate
k-design using polyðkÞn1þ1=D many gates. This result reflects
the intuition that, due to the fact that correlations in a parallel
brickwork circuit spread ballistically, sufficiently random
quantum states can arise only in a depth that scales linearly
with the diameter of the system, and hence as n1=D.

b. Anticoncentration via computing the collision probability

While this intuition is presumably true for the design
property of random circuits, it was recently proven that
anticoncentration already arises in logarithmic depth for
nearest-neighbor random circuits in one dimension with
uniformly random two-qubit gates (Barak, Chou, and Gao,
2021). To prove this result, Barak, Chou, and Gao (2021)
directly bounded the average collision probability, that is, the
second moment 2nE½p0ðCÞ2�, using a mapping to a statistical-
mechanics model of Zhou and Nahum (2019). Dalzell,
Hunter-Jones, and Brandão (2022) showed that this result
is tight by complementing it with anO(n logðnÞ) lower bound
on the circuit size that holds for arbitrary geometries. For
architectures with arbitrary connectivity, they further showed
that 5n logðnÞ=6 many gates are necessary and sufficient (up
to subleading corrections) for exponentially small collision
probabilities. This in fact also holds directly for the anti-
concentration property (Deshpande, Niroula et al., 2022).
We now sketch the idea of these proofs, following Hunter-

Jones (2019). The idea is to again exploit the properties
of the moment operator, albeit now at the level of the
individual quantum gates in the random circuit. For uniformly
Haar-random unitaries, we can, analogously to Eq. (83), define
a moment operator Mk

H on UðdÞ. This moment operator is
characterized by so-called Weingarten functions (Wg) as
(Brouwer and Beenakker, 1996; Hunter-Jones, 2019)

Mk
H ¼ E

U∼μH
½U⊗k ⊗ Ū⊗k� ¼

X
σ;π∈Sk

Wgðσ−1π; dÞjσihπj: ð92Þ

In Eq. (92) jσi ¼ ½1 ⊗ rðσÞ�jΩi, where r is the representation
of the symmetric group Sk on ðCdÞ⊗k that permutes the vectors
in the tensor product and jΩi ¼Pdt

j¼1jjijji is the maximally
entangled state up to normalization. To evaluate formulas
involving the moment operator (92), it is useful to develop a
graphical language for the moment operator. In this language,
we can express the identity and the swap operator on two tensor
copies, as well as the corresponding maximally entangled state,
as rewirings of single-copy identities as follows18 :

ð93Þ

Hence, we can write

ð94Þ

For quantum circuits composed of Haar-random two-qubit
unitaries, we can now evaluate the expectation value locally,
and the global moment operator is given by

E
U1;…;Um∼Uð4Þ

½U⊗2⊗ Ū⊗2�¼
Ym
i¼1



E

Ui∼Uð4Þ
½U⊗2

i ⊗ Ū⊗2
i �
�
; ð95Þ

where U ¼Qi Ui. In an abuse of notation, we take the
expectation over the individual quantum gates at their respec-
tive locations in the quantum circuit. Using Weingarten
calculus, we can now evaluate the Weingarten formula for
k ¼ 2, obtaining the result in graphical representation as

ð96Þ

We can view the expectation value of a single two-qubit gate as
an effective vertex

ð97Þ

where the vertices can take one of two values 1 or S
(corresponding to a spin up or down) that tell us how to
contract each of the incoming or outgoing edges, and the
curly edge between the vertices corresponds to a weight that
is given by −1=d=ðd2 − 1Þ for the configurations hSj1i and
h1jSi, and by 1=ðd2 − 1Þ otherwise. The contractions
themselves will pick up different values; for example, for
a single contraction we obtain hSj1i ¼ h1jSi ¼ d and
h1j1i ¼ hSjSi ¼ d2. Computing the second moment
EUjhxjUj0ij4 now corresponds to computing a partition
function over all local “spin” (also known as permutation)
configurations, with the corresponding weights and boun-
dary conditions determined by jxi and j0i:

ð98Þ

18See Bridgeman and Chubb (2017) for an introduction to the
graphical representation.
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One can now sum over the pink vertices, giving rise to a new
statistical mechanical model. This model is defined by terms
acting on the plaquettes of a triangular lattice:

ð99Þ

The plaquette terms are now just functions of permutations
of the local spins with dimension k, which are nonzero only
if the product of the permutations on a plaquette is the
identity. For k ¼ 2, this allows one to perform simple
domain-wall counting arguments in order to bound the
value of the average collision probability.

c. Further proofs of anticoncentration

An example of computing the second moments that makes
use of the expression of the circuit amplitudes as a partition
function is given by IQP circuits. For those circuits it is
possible to directly compute the average collision probability,
making use of the simple structure of the output probabilities
as an Ising partition function (Bremner, Montanaro, and
Shepherd, 2016); see Eq. (40). There is also a direct proof
of anticoncentration that does not rely on bounding second
moments for the DQC1 model (Morimae, 2017).
The most important schemes for which anticoncentration

has remained elusive are boson-sampling protocols. For Fock
boson sampling, one can also compute the second moment of
the output probabilities by making use of the hiding property
such that the well-studied properties of Gaussian matrices
can be exploited to compute EX∼G½jPermðXÞj2� ¼ n! and
EX∼G½jPermðXÞj4�=ðn!Þ2 ¼ nþ 1 (Aaronson and Arkhipov,
2013). The value of the second moments translates to a
bound on the anticoncentration probability γ in Eq. (79) given
by 1=ðnþ 1Þ (Aaronson and Arkhipov, 2013). While numeri-
cal evidence suggests that anticoncentration is true for Fock
boson sampling (Aaronson and Arkhipov, 2013), second
moments are therefore not sufficient to prove this.
Improving this bound, Tao and Vu (2009) proved that the
permanent of n × n Bernoulli matrices is of the order of
nnð1=2−ϵÞ with probability 1 − n−0.1, while a bound of the order
of nnf1=2−O( logðnÞ)g with inverse polynomial failure probability
would be required for anticoncentration (Aaronson and
Arkhipov, 2013). While this result may be extended to
Gaussian distributions over C, it is unclear how to further
improve it (Tao and Vu, 2009). As a way around this, one
might try to use higher moments of the Fock boson-sampling
distribution in order to obtain tighter bounds than are provided
by the Paley-Zygmund inequality. First steps in this direction
were taken by Nezami (2021), who characterized all moments
of the distribution of Gaussian permanents and computed the
lower ones but concluded that a closed formula for all
moments may be sufficient to prove anticoncentration. For
Gaussian boson sampling the situation remains even more
elusive, as here the distribution over which moments of the
Hafnian (9) need to be computed is the so-called circular

orthogonal ensemble (COE), which is given by symmetric
Gaussian matrices of the form XXT with X ∼ G; see
Sec. IV.C.4.c.
Remember that anticoncentration is merely a necessary

condition for additively approximate average-case hardness,
and a means to reduce this to relative-error approximations.
It remains to prove the approximate average-case hardness
conjecture in either its additive or its relative-error version.
This is the focus of Sec. IV.D.3.

3. Average-case hardness: An overview

Generally speaking average-case complexity is a crucial
question in cryptography and comes with a number of
interesting peculiarities. However, we have few handles on
average-case complexity and proofs of average-case hardness
are possible for only a few complexity classes. The question of
average-case hardness was first posed by Levin (1986) as a
means to narrow down problem classes in which one can hope
for simulation algorithms that work on average. What is the
complexity of an instance drawn at random from some
distribution μ over all possible problems? An important
question in the context of average-case complexity is one that
was posed by Levin (1986): How does the average-case
complexity of a problem class depend on the distribution? If
one defines a probability measure to be supported on hard
problem instances only, average-case complexity equals worst-
case complexity. There even exists a single so-called universal
distribution for which the average-case complexity of any
algorithm equals its worst-case complexity (Li and Vitányi,
1992). The strong dependence on the distribution is part of the
reason why average-case complexity under natural measures
such as the uniform measure has remained largely elusive.
Results that characterize average-case complexity of certain

problems are known only for counting problems. The key
conceptual idea underlying proofs of average-case hardness
for such problems is the notion of random self-reducibility.
We say that a computational problem is randomly self-
reducible if we can polynomially reduce the problem of
evaluating any fixed instance x to evaluating random instances
y1;…; yk with a bounded probability that is independent of the
input. Random self-reducibility is therefore a particular type
of worst-to-average-case reduction: We assume that there is a
machine that solves random instances with probability
bounded away from 1 over a given distribution and then
use this machine to try to efficiently solve an arbitrary fixed
instance. If this is possible, then such a machine allows us to
solve any instance in a time that is polynomially equivalent to
the time it takes to solve a random instance. Hence, the
problem must be as hard on average over this distribution as in
the worst case.
A first step toward proving approximate average-case

hardness of quantum output probabilities (that also constitutes
a necessary condition) is to prove average-case hardness of
near-exactly computing those output probabilities for the
respective circuit family. Average-case complexity for near-
exact computation was pioneered by Lipton (1991) for the
permanent as it prominently features in boson sampling
(Aaronson and Arkhipov, 2013). The key idea of Lipton’s
method is to use polynomial interpolation in order to
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interpolate from certain judiciously chosen random instances
to an arbitrary, fixed instance. This method is possible if the
quantity in question can be written as a polynomial in the input
parameters. While random quantum circuits lack this struc-
ture, the polynomial interpolation method of Lipton’s can in
fact be adapted to a broad class of quantum random sampling
schemes (Movassagh, 2018, 2020; Bouland et al., 2019, 2022;
Kondo, Mori, and Movassagh, 2022; Krovi, 2022). In the
following, we introduce and discuss these methods, which
eventually come close to proving approximate average-case
hardness in that they tolerate an additive error of Oð2−OðmÞÞ
for random universal circuits, where m is the number of gates
in the circuit (Krovi, 2022). However, the step to inverse
exponential Oð2−nÞ or relative-error average-case complexity
remains wide open, and indeed remains the central open
question in the field of quantum supremacy from a complex-
ity-theoretic viewpoint.

4. Random self-reducibility of the permanent

We start with the simplest and historically original proof of
average-case hardness for #P-random self-reducibility of the
permanent over a finite field F with respect to the uniform
distribution over that field. Recall the following definition of
the permanent of an n × n matrix X over F [Eq. (46)]:

PermðXÞ ¼
X
σ∈Sn

Yn
j¼1

xj;σðjÞ: ð100Þ

The underlying structure in which the proof of random self-
reducibility for the permanent is rooted is the algebraic fact
that it is a degree-n polynomial in the matrix entries of X
[and a degree-2n polynomial in the case of jPermðXÞj2].
Concretely, the idea is the following: Given an arbitrary
instance A ∈ Fn×n, draw a uniformly random matrix B and
for t ∈ F define the matrix

EðtÞ ¼ Aþ tB ð101Þ

for t ∈ F. We think of A as a hard instance. Notice that, for any
fixed value of t ≠ 0, EðtÞ is distributed uniformly over F. This
is in spite of the fact that EðtÞ and Eðt0Þ are correlated for
values t; t0 ∈ F . As the permanent is a degree-n polynomial in
the matrix entries of an n × n matrix, the permanent of the
matrix EðtÞ is a degree-n polynomial qðtÞ ¼ Perm½EðtÞ� in t.
We now assume that there is an efficient machine O that

computes PermðXÞ for uniformly random instances X with
failure probability δ. This algorithm, while it may fail to
evaluate qð0Þ≡ PermðAÞ, will by assumption likely evaluate
qðtiÞ correctly for some choice of evaluation points ti. The
idea is to infer qð0Þ from the values of q at the points ftigi
using polynomial interpolation; see Fig. 7(a).
We can now query O on nþ 1 distinct points

t1;…; tnþ1 ≠ 0, obtaining the values qðtiÞ.19 Applying a union
bound, the probability that all of those values are correct is
lower bounded by 1 − ðnþ 1Þδ. Setting δ ¼ 1=3n, we thus
obtain nþ 1 correct pairs f(ti; qðtiÞ); i ∈ ½nþ 1�g with a
probability of at least 2=3 − 1=3n. But q is a degree-n
polynomial, and hence those points uniquely determine q.
We can now solve a linear system of equations to interpolate
the polynomial q and compute qð0Þ ¼ PermðAÞ. Hence, an
algorithm that solves random instances with a probability of at
least 1 − 1=3n is able to solve arbitrary instances and
computing the permanent over finite fields is average-case
hard on any 1 − 1=3n fraction of the instances.

a. Improving the success probability

Being correct on any 1 − 1=ð3nÞ fraction of the instances is
a strong requirement on the evaluation algorithm, however,
and by contraposition requires only that at most a 1=3n
fraction of the instances indeed need to be #P hard to
compute. It is desirable to lower this requirement as far as

(a) (b) (c) (d)

FIG. 7. (a) From at least rþ 1 interpolation points (ti; qðtiÞ) one can efficiently interpolate a polynomial qðtÞ of degree r. (b) Using the
Berlekamp-Welch decoding algorithm (Welch and Berlekamp, 1986) for the Solomon-Reed code, one can reconstruct a degree-r
polynomial from k points ðti; yiÞ if at least ðkþ rÞ=2 of those points are correct. (c) When drawing instances from a distribution on the
infinite field C as opposed to the uniform measure over a finite field, the interpolation points are chosen from the interval ½0; ϵ� for
ϵ ¼ 1=polyðnÞ so that the distribution of GðtÞ in Eq. (108) does not deviate too far from the original distribution. (d) Using the result of
Theorem 23 by Rakhmanov (2007), one can bound the interpolation error of a degree-r polynomial in the interval ð−ϵ; ϵÞ when given
evaluation points that are correct up to an error Δ (with inverse polynomial failure probability). Using the Lemma 22 of Paturi (1992),
one can then bound the extrapolation error when extrapolating to the hard problem instance at t ¼ 1.

19Notice that this requires the size of F to be at least nþ 2, and
hence Lipton’s proof does not work for the field F 2. Indeed, in this
case there are also known approximation schemes for the permanent
(Jerrum, Sinclair, and Vigoda, 2004).
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possible to make stronger statements and assess average-case
hardness as well as possible.
Indeed, we can bring down the requirement on O to work

correctly only for a constant 1=2þ 1=polyðnÞ fraction of
the instances (Gemmell et al., 1991; Gemmell and Sudan,
1992); see also Arora and Barak (2009). The idea is to use
error-correction techniques for polynomial codes such as
the Reed-Solomon one (Reed and Solomon, 1960), where a
string of n symbols is identified with the coefficients of a
degree-(n − 1) polynomial. Decoding algorithms for such
codes output the correct polynomial even in the presence of
some amount of errors.
An error-correction algorithm for Reed-Solomon codes that

will be extremely useful for our purposes is the algorithm by
Welch and Berlekamp (1986), as it works over arbitrary fields
and can even be extended to rational-function interpolation
(Movassagh, 2018, 2020).
Theorem 20 (Unique decoding for Reed-Solomon codes)

(Welch and Berlekamp, 1986).—Let q be a degree-r poly-
nomial over any field F . Suppose that we are given k pairs of
elements fðti; yigÞi∈½k� with all ti distinct, with the condition
that yi ¼ qðtiÞ for at least max (rþ 1; ðkþ rÞ=2) points. One
can then uniquely recover q exactly in polyðk; rÞ determin-
istic time.
We illustrate decoding with errors in Fig. 7(b). Notice that

for polynomially large k the Berlekamp-Welch decoding
algorithm tolerates an error rate that is arbitrarily close to
half. The Berlekamp-Welch algorithm is thus optimal in that,
as soon as less than half of the points are correct, no unique
solution is guaranteed to exist.
This issue is addressed by so-called list-decoding algo-

rithms, which output a list of compatible solutions, given the
observation that there cannot be too many such solutions
(Arora and Barak, 2009). These algorithms were developed
(Beaver and Feigenbaum, 1990; Lipton, 1991) for so-called
Reed-Muller codes (Muller, 1954; Reed, 1954) over finite
fields of which the Reed-Solomon one is a special case
(Sudan, 1997). Using list-decoding algorithms, average-case
hardness of the permanent over sufficiently large finite fields
has even been shown for any inverse polynomial fraction
of correct points (Cai, Pavan, and Sivakumar, 1999); see
Guruswami (2006) for an overview of such approaches.
We now illustrate the use of the Berlekamp-Welch algo-

rithm to prove average-case hardness given by Gemmell et al.
(1991): Using the Berlekamp-Welch algorithm, we can query
the oracle O a number of times given by k > 2ðnþ 1Þ at
distinct points ti, obtaining pairs (ti;OðtiÞ). We can then
upper bound the probability that less than ðkþ nÞ=2 of the
obtained data points are correct, as

Pr

�
jfi;OðtiÞ ≠ qðtiÞgj > k −

kþ n
2

�
<

2δk
k − n

ð102Þ

using Markov’s inequality. This probability is at most 1=2 if
the failure probability of O satisfies

δ <
1

4

�
1 −

k
n

�
: ð103Þ

Hence, the decoding procedure succeeds using k samples as
long as O works on a 3=4þ k=ð4nÞ ¼ 3=4þ 1=polyðnÞ
fraction of the instances. Using an interpolation path
to A, which is a polynomial in k, Gemmell and Sudan
(1992) showed that this can be further improved to a
1=2þ 1=polyðnÞ fraction.

b. Distributions over infinite fields: The case of F ¼ C

When considering the output probabilities of Fock boson
sampling [Eq. (8)] and Gaussian boson sampling [Eq. (9)],
and also looking ahead of quantum circuits, the matrices in
question have entries in not a finite but rather an infinite
field, the complex numbers F ¼ C. In this case, we are faced
with two additional technical difficulties: First, there is no
uniform or translation-invariant measure over the complex
numbers. This means that when we construct the random
matrix EðtÞ as in Eq. (101) by drawing a random matrix B
from some distribution μ, then EðtÞ will be distributed
according to some distribution μ0 depending on the value
of t and the hard instance A. Second, assuming that we have
found a solution to this problem, the previously used
polynomial interpolation and error-correction techniques
for the case of finite fields fail if we only have a finite
approximation of the values of qðtiÞ. Numerically dealing
with real numbers will, however, inevitably lead to finite-
precision errors on the order of 2−polyðnÞ.
We can circumvent the first problem by choosing values

of t that are small such that the difference between μ0 and μ
in total-variation distance is small. As the total-variation
distance upper bounds the difference in probability that the
two distributions assign to a specific event, this difference
translates to an additional contribution to the failure prob-
ability of O.
The natural distribution overC that also appears in the Fock

boson-sampling problem is the complex normal distribution
N Cðμ; σÞ with mean μ and variance σ2. The following lemma,
a variation of Lemma 7.4 of Aaronson and Arkhipov (2013),
bounds the total-variation distance between slightly shifted
and squashed product Gaussian distributions with products of
the standard distribution.
Lemma 21 (Autocorrelation of Gaussian distributions).—

For the distributions

D1 ¼ N C(0; ð1 − ϵ2Þσ)M; ð104Þ

D2 ¼
YM
i¼1

N Cðvi; σÞ; ð105Þ

with v ¼ ðv1; v2;…; vMÞ ∈ CM and ϵ; σ > 0, it holds that

kD1 −N Cð0; σÞMkTV ≤ 2Mϵ; ð106Þ

kD2 −N Cð0; σÞMkTV ≤
1

σ
kvkl1

: ð107Þ

The same result holds for the uniform distribution UCðμ; σÞ
centered around μ with cutoff σ.
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For an arbitrary matrix A ¼ ðai;jÞi;j we now define the
family of matrices

GðtÞ ¼ tAþ ð1 − tÞB ð108Þ

similarly by drawing standard normal distributed instances
B ∈ Cn×n. The matrix EðtÞ is then distributed according to the
new distribution

D ¼
Yn
i;j¼1

N C(tai;j; ð1 − tÞ2): ð109Þ

Choosing equidistant values of ti in the interval ð0; ϵ� for some
cutoff ϵ > 0 will then result in a success probability of the
algorithm O that has a failure probability δ that is given by

Pr ½OðtiÞ ¼ qðtiÞ� ≥ 1 − δ − kD − GCð0; 1Þn2kTV ð110Þ

≥ 1 − δ − 6n2ϵ: ð111Þ

The remainder of the argument follows analogously by
choosing ϵ ¼ δ=6n2. We illustrate the procedure in Fig. 7(c).

c. Robustness to finite-precision errors

The finite-precision problem requires somewhat more
powerful machinery: using bounds on the stable extrapolation
and interpolation of polynomials, we can recover the original
proof using polynomial interpolation. This comes at a cost,
however: we cannot make use of the error-correction techniques
of Berlekamp and Welch anymore, because those techniques
require that some of the points are evaluated exactly.
The two results that have been identified as being helpful to

this effort by Aaronson and Arkhipov (2013) are a lemma by
Paturi (1992) and a theorem by Rakhmanov (2007).
Lemma 22 (Stable extrapolation) (Paturi, 1992).—Let

p∶R → R be a polynomial of degree r, and suppose that
jpðxÞj≤Δ for all x such that jxj≤ ϵ. Thus, jpð1Þj≤Δe2rð1þ1=ϵÞ.
Theorem 23 (Stable interpolation) (Rakhmanov, 2007).—

Let Ek denote the set of k equidistant points in ð−1; 1Þ. For a
polynomial p∶R → R of degree r such that jpðxÞj ≤ 1 for all
x ∈ Ek, it then holds that

jpðxÞj ≤ C log

 
π

arctan½ðk=rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x2

p
�

!
ð112Þ

for jxj ≤ R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2=k2

p
.

We can now apply these results to the polynomial
pðtÞ ¼ qðtÞ − q0ðtÞ, where q0ðtÞ is the polynomial defined
by the slightly erroneous values q0ðtiÞ of qðtiÞ satisfying
jq0ðtiÞ − qðtiÞj ≤ 2−OðncÞ for a sufficiently large c. Using the
result of Rakhmanov (2007), we can bound the error between
q and q0 between the evaluation points. Using Paturi’s lemma
(Paturi, 1992), we can then bound the error tolerance when
extrapolating to qð1Þ; see Fig. 7(d).
Note that exactly the same arguments apply to the output

probabilities of Gaussian boson sampling, which are given by
the squared Hafnian jHafðXXTÞj2 for Gaussian X ∈ C2n×2k;

recall Eq. (47). The squared Hafnian is a degree-2n poly-
nomial in its matrix entries [recall its relation Eq. (50) to the
permanent], and hence a degree-4n polynomial in the matrix
entries of the Gaussian-distributed matrix X.

5. Average-case hardness of quantum output probabilities

We now turn to average-case hardness of the output
probabilities of quantum circuits. We first observe that there
is a natural polynomial structure on the success probabilities
of quantum circuits. For a quantum circuit C ¼ Cm � � �C2C1

comprising m gates Ci acting on n qubits, the output
amplitudes can be expressed in terms of the following path
integral:

h0jCj0i ¼
X

λ1;…;λm−1∈f0;1gn
h0jCmjλm−1i � � � hλ2jC2jλ1ihC1jj0i:

ð113Þ

Consider that C is drawn from some measure μC that defines a
circuit family C. Some of the gates in C might be randomly
drawn from a gate set G, while others might be fixed across
all C ∈ C.
Now we are faced with a severe issue when trying to

instantiate the idea of Lipton (1991), however: when trying to
construct an equivalent of EðtÞ by choosing random instances
B for a fixed worst-case circuit A, the matrix given by Aþ tB
will not be unitary for t ≠ 0, and therefore does not define a
valid problem instance. This is because the unitary matrices
form a group with respect not to addition but to multiplication.
How then can we perform a worst-to-average-case reduction?
A natural idea is to make use of the group structure by
multiplying A and B in a gatewise fashion in a way that is
polynomial in an interpolation parameter and then showing
that the distribution of the resulting instances does not deviate
too much from the distribution of B. We can do so in
different ways.

a. Local Taylor-series truncation

On a high level, the first approach saves the polynomial
structure of Eq. (101) by making use of a Taylor expansion.
We interpolate between a hard and a random instance as
follows. For a hard instance of a circuit C with random gates
C1;…; Cm drawn uniformly from a continuous subgroup G of
the corresponding unitary groupUðdÞ, we define a new circuit
by setting each gate

CiðtÞ ¼ CiHie−ithi ; ð114Þ

where Hi is Haar random in G and hi ¼ −i logHi is its
generator. If the resulting circuit is denoted as C∘HðtÞ, Cið0Þ
is Haar random in G, while for t ¼ 1 we recover the original
gate Ci. As with average-case hardness of Gauss-random
permanents, for small t the gate Hie−ithi looks almost Haar
random. One therefore wants to follow the same previously
given procedure to extrapolate to t ¼ 1, given values
of jh0jC∘Htj0ij2.
However, the gates CiðtÞ, and hence the output probability

jh0jC∘Htj0ij2, are not low-degree polynomials in t; thus,
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polynomial interpolation cannot be applied. An easy way to
circumvent this problem is to consider Taylor approximations
of the deformed gates CiðtÞ. We define the ðt; KÞ-truncated
and perturbed Haar measure on the circuit family C by
replacing each Haar-random gate Hi in a circuit C with

Gi ¼ Hi

 XK
k¼0

ð−ihitÞk
k!

!
: ð115Þ

We can now use the standard Suzuki bound on Taylor
truncations

jhψ jCiGi − CiHie−ithi jψij ≤
κ

K!
ð116Þ

for a constant κ > 0, set K ∈ polyðnÞ, use an analog of
Lemma 21 to complete a worst-to-average-case reduction for
exactly computing the probabilities on any 3=4þ 1=polyðnÞ
fraction of the instances. Alternatively, as discussed, we can
apply the stability results by Paturi (1992) and Rakhmanov
(2007) to achieve robustness to additive errors 2−polyðnÞ on a
1 − 1=polyðnÞ fraction of the instances; see also Bouland
et al. (2019).
A notable caveat of this approach is that in the reduction the

unitary group remains since the Taylor truncation of e−ithi is
nonunitary. This means that average-case hardness is achieved
not for exactly evaluating the circuit success probabilities
but only for exactly evaluating numbers p0ðCÞ0, which are
2−polyðnÞ-additive approximations thereof and which do not
correspond to success probabilities of valid quantum circuits.
Nevertheless, average-case hardness of those numbers is a
necessary requirement for the additive approximate average-
case hardness property and hence serves as evidence for the
conjecture. In addition, the additive approximate average-case
hardness conjecture of the truncated distribution is equivalent
to the additive approximate average-case hardness conjecture
of the nontruncated distribution (Bouland et al., 2019). For a
more detailed discussion of this caveat, see Movassagh (2020)
and Napp et al. (2022).

b. Rational-function interpolation

A more natural interpolation that remains within the
unitary group and is much more error robust makes use of
the Cayley function

fðxÞ ¼ 1þ ix
1 − ix

ð117Þ

for x ∈ R, defining fð−∞Þ ¼ −1. The Cayley function is a
bijection between R ∪ f−∞g and the complex unit circle.
Observing that unitary matrices have eigenvalues on the
complex unit circle, a Haar random unitary matrix H ∈
UðdÞ can therefore be uniquely represented as

H ¼ fðhÞ; h ¼ h†; ð118Þ

and H† ¼ fð−hÞ. For each quantum gate Ci ∈ UðdÞ we can
then construct the path

CiðtÞ ¼ CifðthiÞ; ð119Þ

with hi ¼ f−1ðC†
i HiÞ for Haar-random Hi such that Cið0Þ ¼

Ci and Cið1Þ ¼ Hi. The interpolated gate (119) can be
expressed as a fraction of two degree-d polynomials using
the spectral decomposition of h ¼Pd

α¼1hi;αjψ i;αihψ i;αj as

CiðtÞ ¼
1

qkðtÞ
Xd
α¼1

pi;αðtÞCijψ i;αihψ i;αj; ð120Þ

with

qiðtÞ ¼
Yd
α¼1

ð1þ ithi;αÞ; ð121Þ

pi;αðtÞ ¼ fðhi;αÞð1 − thi;αÞ
Y

β∈½d�nα
ð1þ ithi;βÞ: ð122Þ

Denote the circuit resulting from this interpolation as C⋆HðtÞ
Now one can bound the total-variation distance for the
distribution Dϵ on the circuit obtained when choosing
t ¼ 1 − ϵ as OðmϵÞ (Movassagh, 2020).
However, while the techniques we have used thus far were

useful for polynomial interpolation, we now need to extrapo-
late a rational function. As a first step, one can generalize the
Berlekamp-Welch algorithm to rational functions with degrees
k1 and k2 in the numerator and denominator, respectively
(Gemmell and Sudan, 1992; Movassagh, 2018). This algo-
rithm requires the number of evaluation points ti to be at least
k1 þ k2 þ 2e, where e is the number of errors made by the
evaluation algorithm O.
A barrier to making this result robust lies in the fact that

the results on stable interpolation (Rakhmanov, 2007) and
extrapolation (Paturi, 1992) of low-degree polynomials do not
apply to rational functions. Movassagh (2020) observed,
however, that the output probabilities of the interpolated
circuit can be reduced to a polynomial. To see this, observe
that the output probabilities can be written as the following
fraction of two polynomials QðtÞ ¼ Qm

i¼1qiðtÞ and
PðtÞ ¼Qm

i¼1

P
αpi;αðtÞCijψ i;αihψ i;αj:

jh0jC⋆HðtÞj0ij2 ¼ jh0jPðtÞj0ij2
jQðtÞj2 : ð123Þ

But as we can compute QðtÞ exactly in time ΘðmÞ, we can
reduce the rational function to a polynomial function by
multiplying jh0jC⋆HðtÞj0ij2 by jQðtÞj2. Now one can show
that jQðtÞj2 ≤ 1þOðmϵÞ, so when choosing ϵ ¼ 1=m the
additional error incurred due to this multiplication is a
multiplicative Oð1Þ error. The scaling of the extrapolation
error in jh0jC⋆HðtÞj0ij2 is therefore not disturbed when
interpolating jQðtÞj2jh0jC⋆HðtÞj0ij2 instead.
Now we can again resort to Lemma 22 and Theorem 23 in

order to compute the robustness as 2−Oðm=ϵÞ ¼ 2−Oðm2Þ on any
1 − 1=polyðnÞ fraction of the instances (Movassagh, 2020)
where ð0; ϵ� defines the interval on which the success
probabilities of CðtÞ are evaluated. Kondo, Mori, and
Movassagh (2022) observed that this can be further improved
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using the same strategy if Lagrange polynomials are used for
the interpolation. For those polynomials, they found results
analogous to Lemma 22 of Paturi (1992), and Theorem 23 of
Rakhmanov (2007) to obtain a robustness of 2−Oðm logmÞ on
any 1 − 1=OðmÞ fraction of the instances.
The limitation of this approach, however, is that there is no

error-correction procedure such that all results of the oracle
need to be correct, giving rise to a small tolerated failure
probability because a union bound needs to be applied.
Aiming to circumvent this issue, Bouland et al. (2022)
observed that the failure probability can further be improved
to 3=4þ 1=polyðnÞ while retaining the same error scaling
2−Oðm logmÞ by making use of an NP oracle. They achieve this
by constructing a more robust Berlekamp-Welch algorithm
for polynomial interpolation over the real numbers. This
algorithm makes use of the NP oracle in addition to
randomness, and is therefore in the third level of the
polynomial hierarchy.

c. Global Taylor-series truncation

Krovi (2022) recently observed that, rather than performing
a Taylor-series truncation on the level of individual gates, one
can perform such a truncation on the level of the global output
distribution. The key observation of Krovi (2022) is that the
output probabilities of circuits interpolated via Eq. (114) can
be expressed as a path integral

pðtÞ ¼
X
r

e−iðt=mÞΔϕrAr ð124Þ

in terms of the 42m paths r; jArj ≤ 1 and jΔϕrj=m ∈ Oð1Þ.
Here the coefficients Ar can be thought of as the path weights
and Δϕr can be considered their phases. Performing an
appropriately chosen Taylor-series truncation of pðtÞ, one
finds that a degree–Oðm=logmÞ polynomial is sufficient to
achieve error robustness 2−OðmÞ for circuits with Haar-random
two-qubit gates and in fact robustness 2−OðnÞ for IQP circuits.
This result thus reduces the gap to the required robustness of
2−n to constants in the exponent. By making use of recent
results in polynomial interpolation that use specifically chosen
points (Kane, Karmalkar, and Price, 2017), one can further
improve the success probability of the interpolation to a
constant without the need for an NP oracle, as shown by
Bouland et al. (2022).

We summarize the various average-case hardness results20

just discussed in Table I.

d. From continuous to discrete subgroups

A key issue to note in the worst-to-average-case reductions
on the unitary group is that the random gates in the circuit
families need to be drawn from continuous subgroups of the
unitary group. Only if this is the case can one choose values of
the interpolation parameter t that are small enough that the
measure on the gate set is not perturbed too much in the
interpolation step. In particular, this implies that the reduction
does not apply to discrete gate sets, and for some architectures
the choice of random gates must be modified for the reduction
to apply. For instance, to apply the average-case hardness
results to the IQP circuit family defined in Eq. (6), we need to
choose the edge weights wi;j uniformly from the unit circle S1

rather than from a discrete set of angles; see also Haferkamp,
Hangleiter, Eisert, and Gluza (2020).
One step in the direction of achieving an exact average-case

hardness reduction for a discrete gate set was taken by Dalzell
et al. (2020) with their Theorem 6. They considered the
discrete family of IQP circuits whose output amplitudes are
given by gaps of degree-3 Boolean polynomials; see Eqs. (5)
and (44). Specifically, they showed a recursive reduction from
the gap of a degree-3 polynomial with random degree-1 terms
(but fixed degree-2 and degree-3 terms) to the gap of a worst-
case polynomial (with the same degree-2 and degree-3 terms).
This translates to an exact average-case hardness result over a
certain discrete family of IQP circuits. There are two problems
with this approach, however. First, the family is specific since
it depends explicitly on the degree-2 and degree-3 terms of a
worst-case instance. Second, it does not work for the output
probabilities, since these no longer contain sign information
about the gap, which is crucial for the reduction; compare
also the proof of approximate worst-case hardness of GapP
discussed in Sec. III.D. This strategy is still worth noting,
however, since it is intrinsically distinct from the previously
discussed polynomial interpolation approaches and might
yield another path to proving approximate average-case
hardness.

TABLE I. Comparison of the average-case hardness results for random quantum circuits on n qubits with m gates.

Reference Path Interpolation method Robustness Instance fraction

Bouland et al. (2019)a Truncated local Taylor series Berlekamp-Welch (BW) Exact 3=4þ 1=polyðnÞ
Truncated local Taylor series Paturiþ Rakhmanov 2−polyðnÞ 1 − 1=polyðnÞ

Movassagh (2018) Cayley paths Rational BW Exact 3=4þ 1=polyðnÞ
Movassagh (2020) Cayley paths Paturiþ Rakhmanov 2−Oðm3Þ 1 − 1=polyðnÞ
Bouland et al. (2022) Cayley paths Robust BW in BPPNP

2−Oðm logmÞ 3=4þ 1=polyðnÞ
Kondo, Mori,

and Movassagh (2022)
Cayley paths Lagrange interpolationþ error bounds 2−Oðm logmÞ 1 − 1=OðmÞ

Krovi (2022) Truncated global Taylor series Robust BW in BPP 2−OðmÞ > 3=4

aNote that Bouland et al. (2019) proved average-case hardness for a nonunitary circuit whose output probabilities were 2−polyðnÞ close
to the ideal output probabilities. The robustness that we reference is with respect to this nonunitary circuit; see the main text for a
discussion of this point.

20We also note that a formulation of the aforementioned proof
strategy using the language of representations of Lie groups is
provided by Oszmaniec et al. (2022).
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6. Discussion

Using the previously discussed techniques, we are currently
able to prove approximate average-case hardness for universal
random circuits with robustness 2−OðmÞ, where m is the
number of gates in the circuit. This is further improved for
IQP circuits to 2−OðnÞ, where n is the number of qubits. To
prove the approximate average-case hardness conjecture, we
would need to improve this to Oð2−nÞ, however. Can we hope
to prove such a result? The key technical obstacle on the way
to addressing this question is the instability of polynomials
with respect to variations in the interpolation points. Indeed,
we saw in Paturi’s lemma (Lemma 22) that the extrapolation
error of a bounded error polynomial scales exponentially in
the degree r and size of the interval ϵ on which the bound
holds, and the version used by Kondo, Mori, and Movassagh
(2022) scales as an order-d Chebyshev polynomial in ϵ. As we
have to make this interval inverse polynomially small to
maintain closeness of the probability distributions, it results in
a strong increase of the Paturi bound that can be counter-
weighted only by an inversely scaling error bound on the
interval ð−ϵ; ϵÞ. Small variations of a polynomial at a few
points can thus lead to large variations far from those points.
Random self-reducibility thus seems doomed when it

comes to additive robustness of success probabilities on the
order of 2−n, as would be necessary for the quantum
supremacy conjecture. Indeed, Aaronson and Arkhipov
(2013) argued that polynomial interpolation faces a significant
barrier. They claimed that—in the presence of anticoncentra-
tion—the fact that polynomial interpolation is linear in the
coefficients and hence linear with respect to additive errors
prohibits it from allowing approximate average-case hardness
to be proven. Roughly speaking, this is because even if two
polynomials agree up to exponentially small error in an
interval, they may exponentially disagree outside of that
interval, while at the same time the target value of the
polynomial might not be exponentially larger. Hence, constant
relative-error approximations in the evaluation interval could
translate to exponentially larger relative-error approximations
at the target point. The suggestion of Aaronson and Arkhipov
(2013) was then to make use of a restricted class of poly-
nomials that are not closed under addition, but that are at the
same time able to capture the quantity of interest.
Making this argument somewhat quantitative, Bouland

et al. (2022) investigated the applicability of random self-
reducibility in the context of noisy circuits with error
detection; see also Aaronson and Arkhipov (2013). They
showed that even noisy, error-detectable probabilities that are
conjectured to be 2−OðmÞ close to uniform (Boixo et al., 2018)
remain #P hard to compute up to error 2−16m logm−OðmÞ in the
average case via random self-reducibility. But they argue that
this implies that the average-case robustness of 2−Oðm logmÞ is
essentially optimal for this technique up to log factors in the
exponent. The result of Krovi (2022) has further removed the
log factors in the exponent, providing a matching 2−OðmÞ

scaling of the robustness for universal random circuits and
2−OðnÞ for IQP circuits. Similarly, for the case of Fock boson
sampling on m ¼ OðncÞ many modes, they were able to show
an even tighter error bound of e−ðcþ4Þn log n−OðnÞ, which is only

constant factors in the exponent away from the e−n log n

robustness required to prove the approximate average-case
hardness conjecture.
Note that, while the scaling conjecture of Boixo et al.

(2018) was recently shown in the low-noise limit (Dalzell,
Hunter-Jones, and Brandão, 2021), at high-noise strengths
Deshpande, Niroula et al. (2022) proved the expected
convergence of the probabilities to uniform as 2−n−OðdÞ

(Deshpande, Niroula et al., 2022); see Sec. IV.F.1 for a
discussion of these results. The latter result may signifi-
cantly lower the barrier for random circuits.
As another piece of evidence complicating a proof of

approximate average-case hardness, for a somewhat baroque
constant-depth universal circuit architecture in two dimen-
sions, Napp et al. (2022) proved that no approximate worst-to-
average-case reduction that enables the Stockmeyer argument
is possible. Rather, this architecture admits algorithms for both
strong and weak simulation that are efficient in large fractions
of instances. But for the same architecture strong simulation is
classically intractable in the worst case unless GapP admits a
polynomial-time algorithm and the polynomial hierarchy
collapses to its third level, respectively. Moreover, they
provided numerical evidence that random constant-depth
universal circuits in two dimensions are efficiently simulable
on average in practice. Strengthening this point, Deshpande,
Niroula et al. (2022) showed that at sublogarithmic depth
almost all probabilities are subexponentially small for random
universal circuits, so anticoncentration does not hold. This
implies that the trivial algorithm that always outputs 0 is a
good additive approximate average-case strong simulator for
this case. Note, however, that this does not imply an average-
case approximate sampling algorithm. Technically speaking,
the upshot of these results is that any technique to prove
approximate average-case hardness must be sensitive to the
depth of the circuit since we do not expect any technique to
work at low depth. Moreover, while hardness of approximate
sampling might hold for certain sublogarithmic depths, we are
barred from proving it via the Stockmeyer argument.
For an approximate worst-to-average-case reduction we

would require, it seems, quantum success probabilities that are
extremely robust to noise in generic instances. Techniques
such as quantum error correction (Raussendorf, Harrington,
and Goyal, 2006) might at first sight seem ideally suited for
this task, but in such approaches errors need to be actively
corrected. While in the framework of quantum sampling
active correction can be bypassed using postselection
(Fujii, 2016; Kapourniotis and Datta, 2019), this means that
only those probabilities corresponding to specific measure-
ment outcomes on subsystems will be protected against errors.
Since the postselection registers comprise at least a constant
fraction of all registers, the protected probabilities comprise
only a 2−ΩðnÞ fraction of the instances. But by the hiding
property every outcome probability is in one-to-one corre-
spondence with the acceptance probability of a circuit from
the family. Thus, postselected fault tolerance seems to be in
conflict with average-case hardness.
To summarize, as it stands we have strong complexity-

theoretic evidence of the hardness of exact sampling from the
output distributions of quantum random sampling schemes.
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This evidence is provided by the conjectured noncollapse of
the polynomial hierarchy, which is a direct generalization of
the unanimously believed P ≠ NP conjecture, whose failure
would have extreme consequences on our widely tested view
of the computational complexity of many different problems.
Conversely, the evidence for the hardness of approximate
sampling is substantially weaker since it is based only on the
approximate average-case hardness conjecture. The failure of
this conjecture, while presumably unlikely, would not result
in any meaningful consequences in complexity theory. But
while, as sketched in this section, there remain significant
hurdles, proving this conjecture might still be possible in the
not-too-distant future.

E. Fine-grained results

The previously discussed complexity-theoretic arguments
rule out an efficient classical simulation algorithm under the
assumption of the noncollapse of the polynomial hierarchy
and approximate average-case hardness of computing the
respective output probabilities. However, they do not, and
cannot, make any quantitative statements about lower bounds
on the run-time of any classical simulation algorithm. But a
convincing demonstration of quantum advantage requires
relying not only on asymptotic complexity-theoretic state-
ments but also on evidence that, for the given finite size of the
experiment, there is no classical algorithm that can solve the
problem using a reasonable amount of resources.
This is the point at which so-called fine-grained complexity

results continue to try to provide lower bounds on the run-time
of classical simulation algorithms. The key idea in such results
is to leverage versions of the so-called strong exponential-time
hypothesis (SETH), which states that certain NP-complete
problems cannot be solved in time faster than 2an in the input
size n for some constant a, depending on the type of problem.
These conjectures may then be leveraged to conjecture a fine-
grained version of the collapse of the polynomial hierarchy.
We now discuss this idea more concretely using the example

of IQP circuits with output probabilities given by the squared
gap of degree-3 polynomials; see Eqs. (5) and (44). Dalzell
et al. (2020) provided a fine-grained hardness argument for this
circuit family via a closely related problem that they call
poly3-NONBALANCED. The input to this problem is a
degree-3 Boolean polynomial f, and the task is to decide
whether gapðfÞ ≠ 0, i.e., whether the function f has a different
number of 0 and 1 outputs. Since computing the gap of degree-
3 Boolean polynomials is #P complete (Montanaro, 2017), this
problem is complete for a complexity class called coC¼P. A
language L is contained in coC¼P if there exists a polynomial-
time algorithm M such that, for all x ∈ f0; 1g�,

x ∈ L ⇔ gap(Mðx; ·Þ) ≠ 0; ð125Þ

and is therefore closely related to the class PP where the
condition is

x ∈ L ⇔ gap(Mðx; ·Þ) < 0: ð126Þ

coC¼P is analogous to PP and #P in that an oracle to coC¼P
is sufficient to solve any problem in the polynomial hierarchy

(Toda and Ogiwara, 1992) and, conversely, an efficient algo-
rithm for coC¼P within the polynomial hierarchy would imply
a collapse of PH.
The idea of fine-grained supremacy results is now analo-

gous to the Stockmeyer argument to assume the existence of
an efficient classical derandomizable sampling algorithm for
the output distribution of an n-qubit IQP circuit Cf up to a
multiplicative error, using gðnÞ gates and tðnÞ time steps. This
algorithm gives rise to a nondeterministic algorithm for
poly3-NONBALANCED running in sðnÞ steps, in the sense
that it accepts if and only if there is at least one computational
path (i.e., input of randomness) giving rise to the all-zero
sample. The fine-grained advantage result now relies on the
following conjecture (Dalzell et al., 2020).
Conjecture 24 [poly3-NSETH(a)].—Any nondeter-

ministic classical algorithm that solves poly3-
NONBALANCED requires in the worst case 2an−1 time steps,
where n is the number of variables in the poly3-
NONBALANCED instance.
This conjecture directly yields a lower bound on the time

complexity of the assumed classical sampling algorithm as
tðnÞ ≥ 2an−1. Omitting some fine print about the computa-
tional model in which this conjecture is phrased here,21 the
best known limit on a is given by a < 0.9965 (Lokshtanov
et al., 2017).
Analogously to the proof of additive-error sampling hard-

ness via Stockmeyer’s algorithm, fine-grained statements can
be made for additive errors assuming an average-case lower
bound on the run-time of a classical algorithm. From this it is
possible to estimate the number of qubits required to show a
quantum advantage such that no classical computer will be
able to reproduce the task. Dalzell et al. (2020) estimated that
IQP circuit sampling on roughly 200 qubits and 106 gates
would require at least a century using a classical simulation
algorithm running on state-of-the-art supercomputers.
Furthermore, statements can be made for different models

by relating their simulation to well-studied problems such as
poly3-NONBALANCED. In particular, this has been done for
boson sampling (Dalzell et al., 2020), as well as in the DQC1
model and Cliffordþ T universal circuit sampling (Morimae
and Tamaki, 2019).
Huang, Newman, and Szegedy (2020) pursued a comple-

mentary approach on fine-grained results by considering
strong simulation of quantum circuits via certain simulation
algorithms. Specifically, they considered a subclass of
classical simulation algorithms, which they called monotone
simulators. Roughly speaking, a monotone simulator is one
that does not explicitly make use of the specific values of the
nonzero matrix entries of the gates. A counterexample to a
monotone method is therefore the simulator of Bravyi and
Gosset (2016), which explicitly uses the number of T gates in
the circuit. Note, however, that a T gate does not differ from
a simulable Z or S gate in terms of the locations of the non-
zero matrix entries. Nonetheless, most tensor-network-based

21Since fine-grained complexity is about the concrete run-time,
one has to fix the computational model. Typically, fine-grained
complexity results are stated in terms of the so-called word RAM
model (Williams, 2015).
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methods (see Sec. VII for details) are well captured by the
monotone framework. They show an explicit lower bound
of Õð2n−3Þ on the run-time of such monotone simulators.
Furthermore, invoking the exponential-time hypothesis they
provide a 2n−oðnÞ lower bound on strong simulations of
quantum circuits.

F. Complexity of sampling in the presence of noise

The complexity-theoretic analysis we have seen thus far
pertains to constant total-variation-distance errors. While this
is a meaningful notion of robustness, it is extremely chal-
lenging to achieve such errors in a scalable way: doing so
requires local gate errors to scale at most inversely with the
circuit size. Since local gate errors are the experimental
bottleneck in any implementation of quantum random sam-
pling, it is therefore natural to ask whether the sampling task
remains hard in the presence of constant local gate errors.
Constant gate errors tend to give rise to a TVD between the
experimental output distribution and the target distribution
that deviates from unity only by an inverse exponential. But it
might still be the case that the sampling task remains difficult
for a classical computer.
There are at least two ways of approaching this question.

First, we can ask the following: Given certain local errors in a
quantum random sampling scheme, what is the complexity of
sampling from the output distribution? Second, we can ask
whether it is possible to design a quantum random sampling
scheme that is robust to constant local errors. While the first
question requires an analysis of the noisy output distribution
from the perspective of computational complexity, the second
question might be solved by encoding a random sampling
scheme in a fault-tolerant way. We sketch some results in these
areas in the following.

1. Noisy output distributions

A natural noise model in the context of universal random
circuits is given by single-qubit noise channels after each two-
qubit gate in the circuit, since the fidelity of two-qubit gates is
typically much worse than the single-qubit fidelity (Arute
et al., 2019). Assume for simplicity that the noise channel is
gate independent, or that all two-qubit gates and the associated
noise channel are the same, and that its average gate fidelity is
given by 1 − ϵ. This model was analyzed by Dalzell, Hunter-
Jones, and Brandão (2021) and Deshpande, Niroula et al.
(2022) in different regimes of the parameter ϵ.
Dalzell, Hunter-Jones, and Brandão (2021) compared the

output distribution of the noisy circuit pnoisy to the “white-
noise distribution” with respect to an ideal distribution pideal.
Given a fidelity F, the white-noise distribution is defined as

pwn ¼ Fpideal þ ð1 − FÞpunif ; ð127Þ

where punif is the uniform distribution. Approximately sam-
pling from the white-noise distribution pwn with inverse
polynomial fidelity F within TVD error ϵF is just as difficult
as approximately sampling from the ideal distribution pideal
within TVD error ϵ, given that pideal anticoncentrates in the
sense that it has exponentially small second moments; see

Theorem 4 of Dalzell, Hunter-Jones, and Brandão (2021).
Notice that achieving an inverse polynomial fidelity would
still require a local error rate of Θð1=nÞ for circuits of a size
O(n logðnÞ), which is the minimal size required for anti-
concentration to hold; see Sec. IV.D.2.
Dalzell, Hunter-Jones, and Brandão (2021) showed that the

distance of the noisy distribution approaches the uniform
distribution as e−2mϵþOðmϵ2Þ, i.e., exponentially in the circuit
size. At the same time, the distance to the white-noise
distribution with fidelity parameter F ¼ e−2mϵ�Oðmϵ2Þ scales
as OðFϵ ffiffiffiffi

m
p Þ in the regime in which the noise parameter

is small in the sense that ϵn logðnÞ ≪ 1 and the circuit
family satisfies the anticoncentration property, requiring m ∈
Ω½n logðnÞ�. Since the distance to the white-noise distribution
scales as a square root in the circuit size, their result showed a
quadratic improvement in the required noise level for random
quantum circuits as compared to the worst case for which the
error would grow as OðϵmÞ. To summarize, the average
fidelity decay is exponential in m, and the typical distance to
the corresponding white-noise distribution grows slower than
the worst case. Consequently, there is now an optimal scaling
of m with n that achieves the minimal error to an appropriate
white-noise distribution in terms of the circuit size. It is in this
regime that the cross-entropy benchmarking (XEB) fidelity
translates to a TVD bound and provides the best measure of
quantum advantage; see also the discussion in Sec. V.B.3.
Meanwhile, Deshpande, Niroula et al. (2022) showed that

in the regime of large noise ϵ ∈ Oð1Þ the expected total-
variation distance to the uniform distribution is lower bounded
by exp½−OðdÞ�, where d is the depth of the circuit. In certain
regimes this result also holds for typical instances. In light of
the result of Dalzell, Hunter-Jones, and Brandão (2021) that
showed a fidelity decay in the circuit size m ¼ nd, this is a
surprisingly slow decay.
Notice that the respective bounds translate to a concen-

tration bound on the distance of the individual probabilities to
uniform as 2−OðmÞ−n and 2−OðdÞ−n, respectively, by a Markov
bound on the TVD. We also stress that the two results consider
complementary regimes and that their respective proof tech-
niques fail beyond the considered regime. It remains an
interesting open problem to analyze the entire distribution
of the TVD between the noisy distribution and the uniform
distribution as well as its noise dependence in more detail.

2. Fault-tolerant random sampling

As an alternative approach, one can consider the possibility
of embedding quantum random sampling in a fault-tolerant
encoding wherein error syndrome measurements are part of
the sampling scheme. Fujii (2016) observed that sampling
from the entire distribution of such an encoding remains
worst-case hard in the presence of noise. This is because one
may postselect on the syndrome measurements returning the
no-error outcomes. In this case the conditional distribution on
the sampling measurements is given simply by the ideal
distribution, provided that the corresponding postselection
probability is nonzero. Consequently, exact simulation of the
noisy distribution remains computationally intractable in
the worst case, provided that the local error rates are below
the threshold for the encoding used.
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Kapourniotis and Datta (2019) provided an explicit exam-
ple of such an encoding in the measurement-based model of
quantum computing, which also allows for an efficient
verification scheme. However, it is unclear to what extent
the approximate average-case hardness conjecture required for
this scheme is plausible, since it is based on the postselected
success of magic-state distillation. Building on the ideas of
Bravyi et al. (2020), Mezher et al. (2020) developed high-
dimensional and interactive measurement-based protocols in
which this is achieved for every instance by appropriate
classical postselection.

V. VERIFICATION

In Sec. IV, we discussed the complexity-theoretic evidence
for the classical intractability of quantum random sampling.
But in order to demonstrate a quantum advantage via quantum
random sampling the quantum implementation must be
sufficiently accurate. It is therefore essential to verify that a
claimed implementation of quantum random sampling in fact
achieves the purported task.
The verification task is extremely challenging, however.

This is due to the difficulty of verifying sampling tasks in
general, as well as the impossibility of efficiently simulating a
sufficiently accurate implementation of quantum random
sampling or computing the corresponding output probabil-
ities. In this section, we review different approaches to the
verification problem, both inefficient and efficient ones.
Clarifying the verification problem somewhat more for-

mally is a first nontrivial task since there are various distinct
settings in which we can conceive of verification—we might
allow for interaction between a skeptic and a quantum device
that is claimed to produce samples from the correct distribu-
tion, or merely claimed to perform a task that is classically not
efficiently solvable. We might ask to verify the device just
from the samples it produces, or we might allow access to the
quantum state of the device, i.e., by performing measurements
in different bases.
We begin by reviewing the reason why naive verification

from samples alone is impossible in the absence of assump-
tions on the device simply because too many samples from the
device would be required in Sec. V.A. We then move on to
sample-efficient but computationally inefficient protocols for
different verification settings that simply use samples from the
device in Sec. V.B. Given the previous result, such protocols
require assumptions on the device, or verify a weaker state-
ment than the correctness of the samples. In Sec. V.C, we then
consider the setting in which we have direct access to the
output state Cj0i of the computation. This allows fully
efficient and yet rigorous certification protocols for quantum
sampling schemes that assume accurate quantum measure-
ments in certain restricted bases. Finally, we discuss verifi-
cation schemes that involve several rounds of interaction
between a skeptic verifier and the quantum device under
investigation in Sec. V.D.

A. Hardness of verification from classical samples

In this section, we discuss a simple argument for why
verifying the samples from quantum random sampling

schemes typically requires exponentially many samples and
is therefore infeasible—the quantum device would need to be
run exponentially many times. To this end, one can invoke
the result by Valiant and Valiant (2017) on optimal identity
testing and properties of the output probability distribution of
quantum random sampling (Hangleiter et al., 2019).
Theorem 25 (Optimal identity testing) (Valiant and

Valiant, 2017).—There are constants c1; c2 > 0 such that
for any ϵ > 0 and any target distribution P there is a test
that, given samples from a distribution Q, distinguishes
whether P ¼ Q or kP −QkTV > ϵ, when promised that one
is the case, given

c1 max

�
1

ϵ
;
1

ϵ2
kP−max

−ϵ=16kl2=3

�
ð128Þ

many samples. On the other hand, there is no such test from
fewer than

c2 max

�
1

ϵ
;
1

ϵ2
kP−max

−2ϵ kl2=3

�
ð129Þ

samples.
For a vector of non-negative numbers P we define P−max to

be the vector obtained from P by setting the largest
entry to zero, and P−ϵ to be the vector obtained from P by
setting all of the smallest entries to zero such that the sum
of the removed entries is less than ϵ. Moreover, kPkl2=3

¼
ðPxp

2=3
x Þ3=2. The l2=3 norm of P−max

−ϵ therefore completely
characterizes the asymptotic complexity of identity testing up
to constant factors in ϵ. The intuition behind the result of
Valiant and Valiant (2017) is that the largest probability and
the tail of the distribution are easily detected in an identity test
because a constant deviation in these parts of the distribution
will be visible in the samples obtained with high probability.
An important corollary of their result, which was known prior
to it [see Goldreich (2017)], is that the complexity of testing
against the uniform distribution on a sample space Ω requires
Oð ffiffiffiffiffiffiffijΩjp Þ samples, while verification requires fewer samples
for more peaked distributions.
Lower bounds on the certifiability of quantum random

sampling, intuitively speaking, follow from the fact that the
output distributions of the schemes are extremely flat with
high probability. Technically speaking, we obtain the lower
bounds from bounding the l2=3 norm. The second moments
that were used to prove anticoncentration are sufficient for
that. To see this, following Hangleiter et al. (2019), we first
observe that the l2=3 norm can be lower bounded in terms of
the largest probability p0 of a distribution P as

kP−max
−ϵ kl2=3

≥ p−1=2
0 ð1 − ϵ − p0Þ3=2: ð130Þ

We then observe that the Rényi-2 entropy H2ðpÞ ¼
− log

P
xp

2
x upper bounds the largest probability as

logp0 ≤ −1
2
H2ðPÞ: ð131Þ

But now we can use the fact that most quantum random
sampling schemes given by a circuit family C have bounded
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average collision probabilities (see Sec. IV.D.2) and that they
concentrate around the mean by Markov’s inequality asX

x

E
C∼C

½pxðCÞ2� ≤ Oð2−n=δÞ; ð132Þ

with a probability of at least 1 − δ. This implies that the
Rényi-2 entropy is bounded as H2ðPCÞ ≥ nþ log½OðδÞ�.
Consequently, the largest probability is exponentially small
with high probability, i.e., logp0 ≤ −fnþ log½OðδÞ�g=2. The
sample complexity of certifying quantum random sampling
from samples scales at least as Ωð2n=4þOðδÞÞ with a probability
of 1 − δ over the choice of circuit instance. Note that even
though the second moments of the boson-sampling proba-
bilities are not sufficiently small to prove anticoncentration,
they are small enough to prohibit sample-efficient verification
(Gogolin et al., 2013; Hangleiter et al., 2019).
While one might think that this result is actually not too bad

in that few enough samples may be required for intermediate-
scale instances of quantum random sampling, the optimal
identity test of Valiant and Valiant (2017), which employs a
variant of the χ2 test, is highly impractical in that the constants
involved are much too large. In addition, the problem becomes
more challenging when the test is also required to accept
distributions that are not too far away from the ideal
distribution. This is because this requirement poses an addi-
tional constraint on the testing protocol.

B. Sample-efficient classical verification
via cross-entropy benchmarking

To overcome the obstacle of exponential sample complex-
ity, one may consider a weaker requirement than verifying the
full total-variation distance. The most prominent approach that
achieves this is a family of tests, which we label cross-entropy
benchmarking. These tests were introduced in a series of
works (Aaronson and Chen, 2017; Boixo et al., 2018; Neill
et al., 2018; Arute et al., 2019). The central idea is to use
multiplicative measures of similarity between the imple-
mented “noisy” distribution Q and the ideal target distribution
PC that measure the correlation between the two distributions.
We can express those measures as follows.
Definition 26 (Cross-entropy measures).—Let f∶½0; 1� →

R be a monotonically increasing function. Define

FfðQ;PCÞ ¼
X

x∈f0;1gn
QðxÞf(PCðxÞ) ð133Þ

as the cross-entropy measure corresponding to f.
The first observation that we can make is that by a Chernoff

bound the cross-entropy measures Ff can be sample effi-
ciently estimated from a number of samples that depends on
the variance of f(PCðxÞ) over x and scales as 1=ϵ2 in the
estimation error. For exponentially small values of FfðQ;PCÞ
the error ϵ needs to scale inverse exponentially too. Hence,
sample efficiency is lost in that case.
The second observation is that estimating cross-entropy

measures is computationally inefficient for quantum advan-
tage schemes since the probabilities PCðxÞ of the ideal
distribution (or a function thereof) need to be computed for

the observed outcomes. As we later see, this constitutes an
important obstacle to their practical usage in verifying
quantum random sampling in the quantum advantage regime.
While different variants of the measure are interpreted

differently, the intuition underlying all such measures is the
following: those distributions that get the heavy outcomes of a
quantum computation correct will score well on cross-entropy
measures because these outcomes dominate the measure
(Aaronson and Chen, 2017). One can characterize heavy
outcomes as those bit strings x ∈ f0; 1gn for which the
probability PCðxÞ of obtaining x is large, for example, larger
than the median of PC; see Fig. 8.
Before we introduce the most important measures (heavy-

outcome generation, cross-entropy difference, and cross-
entropy benchmarking fidelity), we discuss in more detail
the shape of the outcome distribution of random quantum
circuits. Consider the success probability pUð0Þ ¼ jh0jUj0ij2
of a Haar-random unitary U ∈ UðdÞ. The distribution of
p ¼ pUð0Þ over the choice of U is given by the so-called
Porter-Thomas distribution (Porter and Thomas, 1956), which
is asymptotically exponentially distributed as22

PPTðpÞ ¼ ðd − 1Þð1 − pÞd ⟶
d≫1

d expð−dpÞ: ð134Þ

For d ≫ 1 one can now invoke Levy’s lemma23 (Ledoux,
2005) to see that the finite distribution of outcome

FIG. 8. In the task heavy-outcome generation (HOG) one is
asked to output a list of strings fx1;…; xkg for which PCðxiÞ ≥
medðPCÞ.

22See Chap. 4.9 of Haake (2010) for the derivation.
23Levy’s lemma (Ledoux, 2005) can be stated as follows. Given a

function f∶ SD → R defined on the D-dimensional hypersphere SD

with zero mean and an x ∈ SD chosen uniformly at random,

Pr½jfðxÞj ≥ ε� ≤ 2 exp

�
−
2CðDþ 1Þε2

η2

�
; ð135Þ

where η > 0 is the Lipschitz constant of f and C > 0 is a constant.
For normalized quantum state vectors of a complex vector space of
dimension d, D ¼ 2d − 1. The heuristic intuition developed here is
that for random processes with an approximately constant Lipschitz
constant, one would expect the fluctuation to scale approximately as
the inverse square root of the dimension d ¼ 2n of the underlying
Hilbert space.
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probabilities of a fixed, Haar-randomly drawn unitary is
expected to be Oð1= ffiffiffi

d
p Þ close to the Porter-Thomas distri-

bution. While exactly implementing Haar-random unitaries
via a quantum circuit requires exponentially many gates, it
was numerically shown by Boixo et al. (2018) that the output
distribution of universal random circuits quickly tends toward
the Porter-Thomas distribution in terms of the lower moments
of the distribution. This evidence serves as justification for
the use of properties of the Porter-Thomas distribution, as
opposed to merely the second moments of the distribution, in
the analysis of cross-entropy measures.

1. Heavy-outcome generation

The most basic cross-entropy measure that serves as
intuition for the more involved measures that we later
discuss is based on the so-called heavy-outcome generation
(HOG) task, which was introduced by Aaronson and
Chen (2017).
Problem 27 (HOG) (Aaronson and Chen, 2017).—Given

as input a random quantum circuit C ∈ C from a family C,
generate distinct output strings x1;…; xk, at least a 2=3
fraction of which have a probability greater than the median
of PC med½PC�.
HOG is equivalent to achieving a nonzero score in the HOG

fidelity

FHOGðQ;PCÞ

¼ 2

ln 2

X
x∈f0;1gn

QðxÞ½θ(PCðxÞ −med½PC�) − 1
2
�; ð136Þ

defined in terms of the step function θ∶R → f0; 1g, which is 0
for x < 0 and 1 otherwise.
Because it is defined in terms of the bias of the target

distribution, FHOG can be sample efficiently estimated. The
median can be estimated efficiently up to a small error from
few samples. Given k samples fx0;…; xkg from a noisy
distribution Q, we then need to compute the probabilities
PCðxiÞ and compare them to the median. By Hoeffding’s
inequality this can be achieved with error Oð1= ffiffiffi

k
p Þ with

exponentially small failure probability.
We now discuss the properties of FHOG. If Q is maximally

noisy (that is, the uniform distribution), then

FHOGðQ;PCÞ

¼ 2

ln 2

�
1

2n
jfx∶PCðxÞ ≥ med½PC�gj −

1

2

�
¼ 0; ð137Þ

as the median is defined as the largest number such that the
sum of the output probabilities of C exceeding that number is
at least 1=2. On the other hand, in an ideal implementation for
which Q ¼ PC, FHOGðQ;PCÞ > 0 so long as PC is nonuni-
form. This is because, by definition, the probabilities above
the median are larger than those below the median, and hence
the probability weight above the median is at least 1=2. More
specifically, if the outcome probabilities PCðxÞ are Porter-
Thomas distributed, then FHOGðPC; PCÞ ¼ 1. To see this,
observe that the median of the exponential distribution is

given by ln 2=2n and the total probability weight of PC above
the median is then given by24X

x∈f0;1gn
PCðxÞθ(PCðxÞ − ln 2=2n)

≈
Z

∞

ln 2=2n
2ne−2

npdp ¼ 1þ ln 2
2

: ð138Þ

More generally, a distribution that scores well in terms of
FHOG will therefore tend to be closer to an ideal implementa-
tion of PC in terms of total-variation distance. This is
rigorously true if the noisy distribution is a convex mixture

QλðxÞ ¼ ð1 − λÞPCðxÞ þ λ
1

2n
ð139Þ

of the ideal target distribution and the uniform distribution
with λ ∈ ½0; 1�.
There are also distributions, however, which score well on

the HOG fidelity but are far away from PC. To see this, take
the distribution that is supported on fx∶PCðxÞ ≥ med½PC�jg.
This distribution will have a HOG fidelity of 1= ln 2 > 1

even though its total-variation distance to PC is at least
ð1 − ln 2Þ=2.

a. Computational hardness of HOG

It is presumably difficult to find a distribution that has high
support on the heavy outcomes of the target distribution
though. Scoring well on FHOG may thus be computationally
hard even though it is a strictly easier task than approximately
sampling from the target distribution. To see this, observe that
the ability to sample from the correct distribution implies the
ability to score well on FHOG, but not vice versa since FHOG
does not quantify the TVD. Aaronson and Chen (2017)
conjectured precisely that HOG is computationally intractable
for random quantum circuits. To support this conjecture, they
reduced it to the hardness of deciding whether jh0jCj0ij2 is
larger than med½PC�, with a probability of at least 1=2þ
Ωð2−nÞ over the choice of C. The quantum threshold
assumption (QUATH) states that this task is computationally
intractable for classical computers. To reduce QUATH to
HOG, we simply assume that there is an efficient routine
solving HOG. Given a quantum circuit C, we can run that
routine on the circuit C0 ¼QiX

zi
i , where z is a uniformly

random string. If z is contained in the k output samples, then
we output YES; otherwise, we output YES with probability
1=2 and NO otherwise. This procedure decides whether z is a
heavy string for C0 or, equivalently, whether 0n is heavy for C,
with success a probability of at least 1=2þ Ωð1=2nÞ since z is
uniformly random.
Conversely, HOG can be solved by a quantum algorithm for

circuits with a probability weight above the median greater
than 2=3 with a probability of at least 1 − exp½−ΩðkÞ�.
Aaronson and Chen (2017) provided a proof that this is
indeed the case with high probability by showing in their

24See also Aaronson and Chen (2017), footnote 3.
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Lemma 8 that in expectation the probability weight above the
median is lower bounded by 5=8.
The HOG test and the HOG fidelity FHOG can therefore be

considered benchmarks for quantum random sampling based
on evidence independent of the argument presented in Sec. IV.
While HOG and QUATH may be plausible conjectures;
however, the level of complexity-theoretic evidence for both
QUATH and the intractability of HOG is extremely weak.
This occurs because we have no independent underpinning of
those conjectures such as the noncollapse of the polynomial
hierarchy, which is independently grounded in significant
evidence.

b. Fine-graining HOG: Binned outcome generation

A natural way to connect the properties of the HOG fidelity
with the TVD is to bin probabilities in a more fine-grained
fashion (Bouland et al., 2019). This retains the complexity-
theoretic intuition behind HOG that producing outcomes that
are correlated with the ideal distribution is hard, and is also
more directly supported by evidence for the intractability of
simulating quantum random sampling within a constant TVD.
A natural starting point for such a more fine-grained measure
is to observe that HOG effectively divides the probabilities
into two bins: those that are larger than the median and those
that are smaller. The HOG benchmark is then obtained from
testing whether the empirically obtained samples satisfy
certain properties expected from ideally distributed samples
on the respective bins. The sample efficiency of computing
this benchmark can be retained even when generalizing it to
polynomially many bins and comparing the number of
observed outcomes per bin with the number of expected
outcomes.
Given that the distribution of outcome probabilities is

expected to be an exponential distribution, the natural way
to bin is to choose a larger number of bins. Concretely, we can
choose m equifilled bins ½pi; pi þ 1Þ satisfyingZ

piþ1

pi

2ne−2
npdp ¼ 1

m
ð140Þ

for i ¼ 1;…; m, p0 ¼ 0, and pm ¼ 1. Define Ω ¼
f½pi; pi þ 1Þgi∈½m�. The task of binned outcome generation
(BOG) (Bouland et al., 2019) is to obtain a good, i.e., low,
value of the binned distance

dBOGðQ;PCÞ

¼
X
X∈Ω

				 12n X
x∈f0;1gn

½QðxÞ − PCðxÞ�δ(PCðxÞ ∈ X)

				 ð141Þ

¼
X
X∈Ω

				 12n X
x∈f0;1gn

QðxÞδ(PCðxÞ ∈ X) −
1

m

				; ð142Þ

where Eq. (142) is true if PC is Porter-Thomas distributed.
This is a discretized estimator of the total-variation distance
of the outcome distribution and can be estimated from
polynomially many samples; see Fig. 9. Indeed, for Q ¼ PC
this measure is 0, while for any Q ≠ PC it converges to

kQ − PCkTV as m → ∞. Canonne and Wimmer (2020)
proved that such binned identity testing with k bins up to
error ϵ is possible usingOðk=ϵ2Þmany samples, and moreover
that this is asymptotically optimal.

2. Cross-entropy difference

While HOG and its variants are conceptually intuitive, in
practice we want to capture as much about the distribution as
possible given the available samples. To capture correlations
between the distribution Q and PC as well as possible, an
appealing measure is the cross entropy (Boixo et al., 2018)

CEðQ;PCÞ ¼ −
X
x

QðxÞ logPCðxÞ: ð143Þ

The cross entropy is a well-known statistical measure of
similarity between two distributions and measures correlations
between the two distributions (Murphy, 2012). It also gives
rise to a distance measure between Q and PC, known as the
cross-entropy difference25

dCEðQ;PCÞ ¼ CEðQ;PCÞ −HðPCÞ ð145Þ

¼
X

x∈f0;1gn
½QðxÞ − PCðxÞ� log

1

PCðxÞ
; ð146Þ

where H denotes the Shannon entropy.

FIG. 9. The fine-grained generalization of heavy-outcome gen-
eration is to bin the samples x1;…; xk from the noisy distribution
Q according to the probabilities PCðxiÞ. This constitutes a coarse-
grained estimator of the total-variation distance between Q
and PC. Since PC is nearly exponentially distributed for random
circuits, a suitable choice ofm bins ½pi; piþ1Þ is such that they are
equifilled with a 1=m fraction of the ideal samples. This is shown
for a noisy exponential distribution on an (n ¼ 3)-qubit sample
space, with m ¼ 12 bins and k ¼ 100 samples.

25Note that Boixo et al. (2018) defined the cross-entropy differ-
ence in terms of Eq. (133) as the deviation of cross entropy between
Q and PC from the cross entropy between the uniform distribution
and PC,

FXEðQ;PCÞ ¼ CEð1=2n; PCÞ − CEðQ;PCÞ: ð144Þ
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But how does the cross-entropy difference fare when
applied to the task of verifying quantum supremacy distribu-
tions? Using the assumption that the ideal probabilities are
exponentially distributed, we observe that it constitutes a good
measure for distributions of the form Qλ in Eq. (139) (Boixo
et al., 2018):

dCEðQλ;PCÞ¼ð1−λÞdCEðPC;PCÞþλdCEð1=2n;PCÞ ð147Þ

≈ ð1 − λÞ0þ λ1 ¼ λ: ð148Þ

To see why this is the case, we can compute the expectation
value of HðPCÞ over the random choice of C as (Boixo et al.,
2018)

E
C
½HðPCÞ� ¼ −

X
x

E
C
½PCðxÞ logPCðxÞ� ð149Þ

¼ −2n
Z

∞

0

2ne−2
npp logpdp ð150Þ

¼ n − 1þ γ; ð151Þ

where γ ≈ 0.5774 is the Euler constant. Likewise, the cross
entropy between PC and the uniform distribution is in
expectation given by

E
C
½CEð1=2n; PCÞ� ¼ −

1

2n

X
x∈f0;1gn

E
C
½logPCðxÞ� ð152Þ

¼ −
Z

∞

0

2ne−2
np logpdp ð153Þ

¼ nþ γ: ð154Þ

From this we obtain EC½dCEð1=2n; PCÞ� ¼ 1.
By the previous argument that the probabilities PCðxÞ for a

given Haar-random and large enough unitary C are pairwise
independently identically distributed according to the Porter-
Thomas distribution, with high probability over the choice
of C, dCEð1=2n; PCÞ ¼ 1 for a fixed circuit. Conversely, as the
cross entropy reduces to the Shannon entropy for Q ¼ PC we
trivially have dCEðPC; PCÞ ¼ 0. To summarize, the cross-
entropy difference attains the value 1 for the uniform dis-
tribution and vanishes for the ideal distribution, giving rise to
linear interpolation (147) for states of the form Qλ. Notice that
this is equally true for any noisy distribution

Q0
λ ¼ ð1 − λÞPC þ λQ0; ð155Þ

in which the uniform distribution is replaced by a distribution
Q0 that is uncorrelated with PC, i.e., EC½CEðQ0; PCÞ� ¼
−
P

xQ
0ðxÞEC½logPCðxÞ�.

Under certain conditions the cross-entropy difference in
fact bounds the total-variation distance (Bouland et al., 2019).
To see this, notice that the definition of the cross-entropy
difference is similar to that of the Kullback-Leibler divergence

DKLðQkPCÞ ¼ CEðQ;PCÞ −HðQÞ; ð156Þ

which bounds the total-variation distance by Pinsker’s
inequality as

kQ − PCkTV ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DKLðQkPCÞ=2

p
: ð157Þ

Hence, if the cross-entropy difference satisfies dCEðQ;PCÞ ≤
ε and the noise is entropy increasing such that HðQÞ ≥
HðPCÞ, we have

kQ − PCkTV ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DKLðQkPCÞ=2

p
ð158Þ

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dCEðQ;PCÞ=2

p
≤

ffiffiffiffiffiffiffi
ϵ=2

p
: ð159Þ

The condition HðQÞ ≥ HðPCÞ is a fairly general condition
on the type of noise under which the total-variation distance
bound (158) holds. But it is also a condition that cannot be
checked from fewer than exponentially many samples fromQ.
Moreover, one can easily construct examples of distributions
that violate the inequality (158) (Bouland et al., 2019). Those
examples fare well on the cross-entropy difference but are far
from the ideal target distribution.
The cross-entropy difference can be efficiently estimated up

to accuracy ϵ with failure probability α from

m ≥
½nþOðlog nÞ�2

2ϵ2
logð2=αÞ ð160Þ

many independently identically distributed (iid) samples
from Q. To derive Eq. (160), we apply Hoeffding’s inequality
and assume that the probabilities PCðxÞ are Porter-Thomas
distributed. We obtain that, with a probability of at least
1 − 1=fðnÞ over the choice of U, the probabilities PCðxÞ
satisfy

2−2n=fðnÞ ≤ PCðxÞ ≤ ½nþ log fðnÞ�2−n; ð161Þ

such that their logarithms logPCðxÞ differ only by a constant
factor of ∼(2þO½logðfðnÞ�) from −n.

3. Linear cross-entropy benchmarking fidelity

The most widely used cross-entropy benchmark is the
XEB fidelity introduced by Arute et al. (2019). This measure
simply chooses f to be the identity function, up to rescaling
and shifting, fXEBðxÞ ¼ 2nx − 1, such that

FXEBðQ;PCÞ ¼
X

x∈f0;1gn
QðxÞ½2nPCðxÞ − 1�: ð162Þ

The XEB fidelity has the virtue that it can be meaningfully
applied in two variants: in the first variant, it is a variant of a
randomized-benchmarking protocol with the goal of obtaining
a fidelity measure averaged over random sequences of
quantum gates. This variant is a special instance of random-
ized benchmarking (Helsen et al., 2019, 2022; Y. Liu et al.,
2021) and can be applied to gates acting on a few qubits
(Arute et al., 2019). In its second reading, it can be used as a
verification protocol for single instances of quantum random
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sampling. By making use of a typicality argument based on
Levy’s lemma, guarantees for the average randomized-bench-
marking behavior can be transferred to the single-instance
application. Therefore, the XEB fidelity unifies the idea of
benchmarking a quantum processor by running random
computations on it with the idea of demonstrating a quantum
advantage via sampling from the output distribution of such
circuits.
Even though it may serve as a measure of the fidelity of a

single circuit instance for a large number of qubits, the XEB
fidelity is intrinsically an average-case measure, and its ability
to verify single instances is derived merely from the fact that
these instances are typical. Given the choice of rescaling and
shifting, the average XEB fidelity for a family of quantum
circuits C that gives rise to a spherical 2-design (recall
Sec. IV.D.2) indeed gives rise to a meaningful measure of
quantum advantage in the sense that

E
C∼C

½FXEBðQC; PCÞ�

¼
(P

x 2
nEC½PCðxÞ2� − 1 ≈ 1 QC ¼ PC;P

x PCðxÞ − 1 ¼ 0 QC ¼ 1=2n
ð163Þ

in the extreme cases in which, for every C, QC is the ideal
target distribution and the uniform distribution, respectively.
In the following, we discuss in more detail these interpreta-
tions of the XEB fidelity, and the extent to which the XEB
provides a meaningful measure of quantum advantage.

a. Sample complexity of estimating the XEB fidelity

For Haar-random unitaries, FXEB can be estimated up to
error ϵ with a probability of at least 1 − δ from

l ≥
e2

2ϵ2
ln2
�
2

2d

�
ln

�
2

δ

�
ð164Þ

many samples (Hangleiter, 2021; Kliesch and Roth, 2021).
Moreover, using the bounds (161) on the size of the prob-
abilities PCðxÞ, we can estimate the average XEB fidelity
EC½FXEBðQ;PCÞ� up to error 2ϵwith failure probability δ from

lC ≥
1

2ϵ2
log

2

δ
ð165Þ

many distinct random circuits and

l ≥
½nþOðlog nÞ�2

2ϵ2=l2
C

logð2=δÞ ð166Þ

many samples per circuit (Hangleiter, 2021). In fact, an Oð1Þ
bound on the variance of E½FXEB� is true even if only the third
moments of the circuit are close to the Haar-random value and
the noise is gate independent (Helsen et al., 2022).

b. Benchmarking via XEB fidelity

We now sketch how XEB can be used to benchmark a
quantum device. For instance, Arute et al. (2019) analyzed
how to estimate the depolarization error pc per cycle of the

computation using the XEB fidelity. We now follow their
argument. Consider the noisy quantum state

ρC ¼ ϵdCj0ih0jC† þ ð1 − ϵdÞχC ð167Þ
after applying a random circuit C with d gate layers; see
Eq. (75). In Eq. (167) ϵd describes the effect of errors on
the state and in the case of χC ¼ 1=2n is interpreted as
the depolarization fidelity. We assume now that the
erroneous state χC is uncorrelated with C in the sense
that the probabilities of a computational-basis measurement
are uncorrelated as EC½hxjχCjxihxjCj0ih0jC†jxi� ¼
EC½hxjχCjxi�EC½hxjCj0ih0jC†jxi�.
When averaging or “twirling” over random unitaries that

form a unitary design, we would then expect to obtain a fully
mixed state

E
C
½C†χCC� ¼

1
2n

ð168Þ

such that one might expect

E
C
½C†ρCC� ¼ ϵdj0ih0j þ ð1 − ϵdÞ

1
2n

; ð169Þ

where ϵd denotes the average of the individual values of ϵd
over the random choice of unitaries. Equation (169) precisely
describes the effect of a depolarizing channel acting in each
cycle of the computation with depolarization fidelity pc such
that pd

c ¼ ϵd.
We obtain an expression of the circuit-averaged XEB

fidelity in terms of the depolarization fidelity

EC½FXEBðQ;PCÞ� ¼ pd
c

�
2n
X
x

E
C
½PCðxÞ2� − 1

�
; ð170Þ

whereQ is the output distribution of the noisy state ρC and PC
is as usual the output distribution of Cj0i. We can now use
Eq. (170) in order to estimate pc from FXEBðQ;PCÞ. To do
this, we classically estimate the quantity in brackets in
Eq. (170) and obtain

pd
c ≂

dFXEBðQ;PCÞ
2n
P
x
EU½PCðxÞ2� − 1

; ð171Þ

where dFXEBðQ;PCÞ denotes the empirical estimate of
FXEBðQ;PCÞ for a fixed circuit and FXEBðQ;PCÞ denotes
the empirical average over random circuits. From an exponen-
tial fit of pd

c for various values of d one can now estimate pc.
Notice that in writing Eq. (169), we have used the average

XEB fidelity FXEB as a proxy for the average fidelity F̄ of the
quantum state. Arguments for why the assumption that the
noise is uncorrelated from the circuit should be true are
essential for substantiating that connection.
Y. Liu et al. (2021) provided further credence to the

connection between average fidelity and average XEB fidelity
by performing numerical simulations. They also further
substantiated the claim that the model of Arute et al.
(2019) is valid, even in certain cases in which their
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uncorrelated noise assumption does not hold. To this end, they
considered “random circuit sampling benchmarking” in the
spirit of randomized benchmarking. Specifically, they formal-
ized the protocol of Arute et al. (2019) by estimating the
average quantum fidelity Fd of quantum circuits of increasing
depth d ¼ 1;…; D, and finally performing an exponential fit
F ¼ Ae−λd. If (a) the average fidelity is in fact well fitted by a
single exponential decay and (b) the average XEB fidelity
is a good proxy of the average quantum fidelity, then this
model matches XEB benchmarking as performed by Arute
et al. (2019).
Y. Liu et al. (2021) made the connection (a) by proving the

following: Consider random circuits that comprise layers of
arbitrary non-Clifford gates (say, the two-qubit iSWAP

* gates)
and single-qubit Haar-random gates.26 Now suppose that
every layer of non-Clifford (two-qubit) gates comes with a
Pauli noise channel N ðρÞ ¼Pα∈f0;1;2;3gnpασαρσα, where σα
denote the n-qubit Pauli matrices and pα are their coefficients.
The average fidelity EFd of depth-d circuits does in fact decay
exponentially in the total error λ ¼Pα≠0pα in the sense that
e−λd ≤ EFd ≤ e−λdð1þ KλÞ for d ≪ 2n up to a first-order
approximation in λ; see also the related discussion of Helsen
et al. (2022).
For the second connection (b), they performed numerical

simulations for various noise models. To this end, they made
use of a somewhat more versatile fidelity estimator that is
closely related to the XEB fidelity that was introduced by
Rinott, Shoham, and Kalai (2022).27 Intuitively speaking, in
this “unbiased XEB” estimator, instead of multiplying the
ideal probability by 1=2n, one multiplies it by the inverse
second moments of the ideal output distributions

FXEB;uðQ;PCÞ ¼
FXEBðQ;PCÞ

EC½FXEBðQ;PCÞ�
: ð172Þ

This means that it is normalized on average to unity not only
for deep quantum circuits that have designlike moments
[recall Eq. (163)] but also for more shallow circuits with
differing second moments. Y. Liu et al. (2021) found good
agreement between the fidelity and their unbiased XEB
fidelity for various correlated noise models and, moreover,
showed that the variance of the XEB fidelity scales as
O½1=lþ λ2ðEFÞ2� in the number of samples l collected
per circuit. The unbiased estimator (172) was recently tested
as a measure of fidelity in small instances of measurement-
based quantum random sampling (Ringbauer et al., 2022).
Note also that the maximum-likelihood estimator (MLE)

for the fidelity was analyzed by Rinott, Shoham, and Kalai
(2022). They found that the MLE had a smaller bias and
variance than the linear XEB estimator and, like the unbiased
XEB estimator, was therefore a better fidelity estimator. They
also found—as noted by Arute et al. (2019)—that, in the
regime of small depolarization fidelity ϵd ≪ 1, the XEB
fidelity estimator converged to the MLE of the fidelity.

c. Single-instance verification

When the number of qubits is large and the unitary C is
drawn Haar randomly, Levy’s lemma implies that the fluctua-
tions around the expectation value over C [Eq. (163)] are
expected to be Oð1= ffiffiffiffiffi

2n
p Þ. Consequently, for a large number

of qubits, the fidelity concentrates around its expected value
over the choice of random circuits (Arute et al., 2019).
For a large number of qubits, following Arute et al. (2019)

we again write the noisy implementation of the quantum state
Cj0i as

ρC ¼ FCj0ih0jC† þ ð1 − FÞχC; ð173Þ

where the mixed state χC describes the effect of noise and
F ¼ h0jC†ρCCj0i is the fidelity of ρC and the target state Cj0i.
We can now make the assumption that χC is uncorrelated from
Cj0i in the sense that (Arute et al., 2019)

X
x

hxjχCjxif(pCðxÞ) ¼
1

2n

X
x

f(pCðxÞ)þ ϵ ð174Þ

for ϵ ≪ F. By the Levy’s lemma argument, Arute et al. (2019)
expected a typical fluctuation ϵ ∈ Oð1= ffiffiffiffiffi

2n
p Þ.

Large parts of the analysis of the theoretical proposal of
random circuit sampling (Boixo et al., 2018) and the exper-
imental realization thereof (Arute et al., 2019) are indeed
dedicated to validating the assumption of uncorrelated noise.
This can be done by numerically studying realistic error
models such as random Pauli errors. To summarize, given that
the previously sketched arguments hold, the XEB fidelity
quantifies the fidelity FXEBðQ;PCÞ ¼ F up to a deviation of
the order of 1=

ffiffiffiffiffi
2n

p
.

d. Difficulty of achieving a nontrivial XEB fidelity

As with HOG, we expect that achieving an exponentially
small score in the XEB fidelity b=2n for constant b > 1,
formalized as the task XHOG, is computationally hard. This is
because intuitively XHOG is a refined version of HOG in
which the outcomes have to be produced according to their
actual weight. Analogously to the argument reducing HOG to
QUATH (Aaronson and Chen, 2017), XHOG can be reduced
to an analogous conjecture XQUATH (Aaronson and Gunn,
2019). XQUATH states that given a circuit C ∼ C, there is no
efficient classical algorithm that produces an estimate p of
pCð0Þ such that

Ef½pCð0Þ − p�2g ¼ Ef½pCð0Þ − 2−n�2g − Ωð2−3nÞ; ð175Þ

where the expectation is taken over the choice of random
circuit and the algorithm’s internal randomness.

e. Spoofing the linear XEB fidelity

To summarize the previous discussion, the XEB fidelity
serves two distinct functions (Gao et al., 2021). First, the
argument of Aaronson and Gunn (2019) suggested that
achieving a nontrivial XEB value is a computationally
intractable task for random quantum circuits. Second, the

26This is the setup of a cycle benchmarking protocol (Erhard et al.,
2019).

27Unbiased estimators for other scenarios were discussed by Y. Liu
et al. (2021) and Choi et al. (2023).
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XEB fidelity serves as a proxy for the quantum fidelity (Arute
et al., 2019; Y. Liu et al., 2021; Choi et al., 2023).
Zhou, Stoudenmire, and Waintal (2020) and Gao et al.

(2021) observed, however, that the XEB fidelity in fact
overestimates the quantum fidelity in certain settings, leading
to weaknesses that can be exploited by an adversarial classical
simulator. More concretely, Gao et al. (2021) characterized the
conditions under which the XEB fidelity serves as a good
proxy of the quantum fidelity when comparing a noisy
quantum device to an ideal circuit. Based on these conditions,
they demonstrated that the XEB fidelity is not a reliable
measure of quantum advantage in an “adversarial setting” in
which these conditions can be violated.28 The explicit argu-
ment of Zhou, Stoudenmire, andWaintal (2020) and Gao et al.
(2021) was based on three properties of the XEB fidelity that
make it distinct from the fidelity.
First, the fidelity and the XEB fidelity exhibit different

scaling behavior as multiple quantum systems are combined
into a larger one: whereas the quantum fidelity generally
decreases exponentially in the number of combined systems,
the XEB fidelity generally increases. To see this, consider k
disjoint n-qubit quantum systems with XEB fidelity values
χi ¼ 2n

P
xqiðxÞpiðxÞ − 1 and fidelities Fi for i ¼ 1;…; k,

where qi and pi are the output probabilities corresponding to
the respective noisy and ideal circuits. The fidelity then scales
multiplicatively as F ¼QiFi, whereas the total XEB fidelity
scales as

χ ¼ 2kn
X
xi

Y
i

piðxÞqiðxÞ − 1 ð176Þ

¼
Y
i

ðχi þ 1Þ − 1 ≈
X
i

χi; ð177Þ

assuming that χi ≪ 1. This difference in scaling behavior is
fundamental to the fact that the first term of the XEB fidelity
tends toward a nonzero value (namely, unity) as p and q
become uncorrelated from one another, which is explicitly
subtracted.
Second, their values may be distinct for highly correlated

errors. To see this intuitively, consider a noisy quantum circuit
with m gates and independently and homogeneously distrib-
uted random errors across the circuit at rate ϵ. The probability
that no error occurs is then given by ð1 − ϵÞm. If the presence
of one or more errors leads to vanishing contributions to the
XEB or the fidelity, then both will be equal to ð1 − ϵÞm.
However, outside of some limiting cases, there are nonzero
correction terms for finite-size systems. Consider a single bit-
flip error at depth t in a 1D random circuit. In the Heisenberg
picture, we can propagate XðtÞ backward in time and consider
its effect on the initial state j0ni. If the dynamics are chaotic,
then XðtÞ becomes a linear combination of 4jsj Pauli strings,
the support of which grows linearly as jsj ≈ 2ct with an
effective “scrambling velocity” c. But out of those operators
∼2jsj are products of 1 and Z, and hence they do not cause an
error on the input state j0ni. Consequently, a single error

contributes Oð2−2ctÞ to the XEB fidelity and quantum fidelity
alike. Conversely, we can forward propagate the error, but
now the argument holds only for the XEB fidelity because
measurements are performed in the Z basis, while all terms
contribute to the quantum fidelity, leading to a distinct
behavior. Gao et al. (2021) further argued that this difference
can be amplified when considering specific spatial error
patterns and provided a lower bound on the total correction.
In the complementary “benign setting” of errors distributed

independently and homogeneously across the system, they
found necessary and sufficient conditions for the XEB fidelity
and the quantum fidelity to agree, namely, that nϵfðcÞ ≪ 1,
where fðcÞ ∈ Oð1Þ is a decreasing function depending on the
architecture details. Via a mapping to a statistical-mechanics
model analogous to the one introduced in Sec. IV.D.2, they
derived a diffusion-reaction for how errors evolve in the circuit
and analyzed it for different ensembles of random gates. Using
this model, they explored the intuition just described quanti-
tatively, finding that the XEB fidelity starts to deviate from the
fidelity for strong noise.
Third, because the XEB fidelity quantifies the correlations

between the distribution q and p, complete knowledge of p
allows one to amplify those correlations by choosing q
adversarially.
Building on those insights as well as a spoofing algorithm

of the XEB fidelity for low-depth quantum circuits (Barak,
Chou, and Gao, 2021), Gao et al. (2021) constructed an
algorithm that achieves high scores for large quantum circuits.
The key idea of this algorithm is to approximate the ideal
circuit with a circuit that is given by a product over smaller
subsystems, each of which can be simulated on a classical
computer. To achieve this, given a number of subsystems to
divide the circuit in, they removed entangling gates between
those subsystems. Using the algorithm, they achieved a score
of 1.85 × 10−4 in 0.6 s on a single graphics processing unit
(GPU), while the experiment at Google by Arute et al. (2019)
achieved 2.24 × 10−3, and a similar ratio for the larger follow-
up experiments was attained at USTC (Wu et al., 2021; Zhu
et al., 2022). They found, however, that for small system sizes
the ratio between the performance of their algorithm and
the experimental score increases and conjectured that their
algorithm will achieve an advantage over the quantum value
of the XEB fidelity. Relating to the hardness argument of
Aaronson and Gunn (2019), their algorithm seems to refute
the XQUATH conjecture. More concretely, Gao et al. (2021)
showed that for 1D circuits their algorithm achieves a XEB
fidelity that scales inversely exponentially e−OðdÞ in the circuit
depth.29 On the other hand, they showed that the XEB score of
a variant of their algorithm precisely reflects the statement of
the XQUATH conjecture in terms of probability estimation on
average. Consequently, their results refute the XQUATH
conjecture for circuits of sublinear depth d ∈ oðnÞ.
Given this discussion, achieving a quantum advantage in

terms of cross-entropy benchmarking via quantum random
sampling boils down to the question as to whether the inverse-
exponential scaling of the quantum score of the linear XEB
fidelity can be beaten by another inverse-exponential scaling

28A similar overestimation of the fidelity has also been observed in
the literature on randomized benchmarking (Boone et al., 2019). 29A slightly weaker statement also holds for 2D circuits.
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of a classical algorithm. And it seems that it can. A different
way of benchmarking quantum advantage experiments from
the linear XEB fidelity thus seems to be necessary to
demonstrate that quantum devices are in fact able to scalably
outperform classical algorithms in an adversarial setting. To
this end, note that the spoofing algorithm of Zhou,
Stoudenmire, and Waintal (2020) and Gao et al. (2021)
presumably do not work for the cross-entropy difference as
it intrinsically builds on the linearity of the linear XEB fidelity.
In spite of the results for the linear XEB, the cross-entropy
difference remains a potentially valid means of benchmarking
quantum advantage.
We again stress, however, that while XEB measures may be

estimated from a few samples, all variants of XEB suffer from
the problem that their evaluation is computationally ineffi-
cient. This limits their practical usage to a regime just below
the quantum advantage threshold in which classically com-
puting the output probabilities is still possible, but at a high
cost. Alternatively, as we see in Sec. VI, other quantities might
be used in order to feasibly obtain an estimate of XEB
measures. In the following, we discuss an alternative approach
that does not suffer from the conceptual—in terms of
quantifying quantum advantage—or computational—in terms
of its efficient evaluation—disadvantages of XEB.

C. Efficient quantum verification

An approach that is both natural in an experimental
setting and a direct follow-up of the previous discussion
regarding the relation between XEB fidelity and quantum
fidelity is to verify the sampling task directly on the level of
the quantum state. This is reasonable: In an experimental
setting, we know that there is a quantum state on which
measurements are performed. Therefore, we can exploit
access to that quantum state in order to circumvent the no-go
result of Sec. V.A and potentially achieve fully efficient
verification of the TVD between the experimental and the
target distribution, assuming that the measurements are
carried out correctly.
Verification of a quantum state is possible if we have access

to an ideal state preparation via a swap test, or by verification
protocols that use measurements along the direction of the
target state (Pallister, Linden, and Montanaro, 2018). But,
assuming that this capacity would already assume the ability
to prepare the ideal target state, a reasonable quantum protocol
for verifying quantum random sampling schemes should
therefore make use of restricted quantum capacities only,
such as the ability to implement single-qubit measurements or
to prepare single-qubit states reliably. Experimentally, such
assumptions are extremely well justified: in most platforms
single-qubit gate fidelities are orders of magnitude better than
entangling-gate fidelities. It is also entirely different in kind
when compared to assumptions on the global effect of the
noise on the outcome probability distribution PC such as the
assumption HðQÞ ≥ HðPCÞ that was necessary for a cross-
entropy-based test to yield bounds on the total-variation
distance: it is an assumption on single-qubit measurements
and therefore local. This means that it can be verified to the
same degree that one can characterize those measurement
apparatuses. For single- or two-qubit measurements this is

possible using a tool such as gate set tomography (Blume-
Kohout et al., 2013, 2017; Merkel et al., 2013; Greenbaum,
2015; Cerfontaine, Otten, and Bluhm, 2020; Helsen et al.,
2021; Brieger, Roth, and Kliesch, 2023) or the device-
independent verification of quantum processes and instru-
ments (Sekatski et al., 2018).
In contrast to classical verification from samples where we

were given classical samples from an a priori untrusted
device, we can conceptualize quantum verification as the
task to verify the preparation of a certain quantum state with a
deep circuit using components of the device that are well
characterized and known to work correctly.
In the following we see protocols that are able to verify or

estimate the quantum fidelity between two quantum states σ
and jψihψ j,

Fðσ; jψihψ jÞ ¼ hψ jσjψi: ð178Þ

Via the Fuchs–van de Graaf inequality, the fidelity bounds the
TVD via the trace distance

kpσ−pψkTV≤kσ− jψihψ jkTr ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Fðσ; jψihψ jÞ

p
; ð179Þ

where pσ and pψ are the output distributions of σ and jψihψ j
in the standard basis, respectively.
Generally, we can think about such protocols in terms of

their information gain versus their complexity in terms of
number of measurements and distinct measurement settings
as well as assumptions made in the derivation of the protocol
(Eisert et al., 2020). While protocols with low complexity
tend to yield little information about an underlying quantum
state, protocols with higher complexity can reveal more
information about that state. In the following, we discuss
two types of protocols to verify the output states of quantum
random sampling via the fidelity: fidelity witnessing and
fidelity estimation.

1. Fidelity witnessing

We call an observable W a fidelity witness for a target state
ρ if (Gluza et al., 2018) (i) Tr½σW� ¼ 1 iff ρ ¼ σ and
(ii) Tr½σW� ≤ Fðρ; σÞ. Conceptually speaking, fidelity wit-
nesses are much like entanglement witnesses (Gühne and
Tóth, 2009) in that they cut a hyperplane through quantum
state space, which detects a property of quantum states: Those
states that lie on the left of the hyperplane defined by
Tr½Wσ� ≥ FT are guaranteed to have a high fidelity of at
least FT since Tr½Wσ� lower bounds Fðρ; σÞ. For those states
on the right of the hyperplane (satisfying Tr½Wσ� < FT ) we
cannot make a statement about their fidelity. Conversely,
though, all states σ with low fidelity Fðρ;σÞ≤FT are guar-
anteed to lie to the right of the hyperplane as Tr½Wσ� ≤
Fðρ; σÞ ≤ FT . We illustrate the idea of a fidelity witness
in Fig. 10.

a. Fidelity witnessing via parent Hamiltonians

A simple fidelity witness WH ¼ 1 −H=Δ can be con-
structed for the ground state of a Hamiltonian H with gap Δ
(Cramer et al., 2010; Hangleiter et al., 2017). To see this, one
can simply expand the Hamiltonian with ground state energy
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set to 0 in its eigenbasis jii with eigenvalues λi in order to
bound the fidelity between the ground state j0ih0j and a state
preparation ρ using

TrðHσÞ ¼
Xd
i¼1

λiTrðjiihijσÞ ≥ Δ
Xd
i¼1

TrðjiihijσÞ

¼ Δ½1 − Trðj0ih0jσÞ� ¼ Δ½1 − Fðj0ih0j; σÞ�: ð180Þ

To apply this witness, it is required to have knowledge of both
the ground state energy and the gap of the Hamiltonian in
question. Applying this fidelity witness to quantum random
sampling, Hangleiter et al. (2017) observed that arbitrary
quantum computations and, in particular, those required for
quantum random sampling can be embedded in the ground
state of a frustration-free, local Hamiltonian via the Feynman-
Kitaev history state construction. This protocol finds a
particularly natural application in the measurement-based
model of quantum computation, which is universal for
quantum computation (Raussendorf and Briegel, 2001;
Raussendorf, Browne, and Briegel, 2003). Since the prepared
quantum state in measurement-based quantum computing is a
stabilizer state, it is the ground state of a local, commuting
Hamiltonian with gap 2 comprising the stabilizers, which are
product operators. The state preparations of quantum random
sampling schemes in the measurement-based model can
therefore be verified via fidelity witnessing using only trusted
single-qubit measurements (Gao, Wang, and Duan, 2017;
Bermejo-Vega et al., 2018).
We now illustrate this point and define the cluster state onN

qubits on a lattice as

jCSi ¼
�Y

hi;ji
CZi;j

�
H⊗N j0Ni; ð181Þ

where the symbol hi; ji denotes nearest neighbors on a lattice.
Arbitrary quantum computations can be driven by single-qubit

operations on that state: adaptive measurements at the correct
angles in the x-y plane (multiples of π=8 suffice) (Mantri,
Demarie, and Fitzsimons, 2017). Assuming highly accurate
single-qubit operations and measurements, we can now use
the fidelity witness in order to verify the premeasurement
quantum state jCSi.
To do so, we need to derive a “parent Hamiltonian” that has

jCSi as its ground state. This can be easily done by observing
that the diagonal Hamiltonian

H0 ¼ −
XN
i¼1

Zi ð182Þ

has the all-zero state j0Ni as its ground state with ground state
energy E0 ¼ −N and gap Δ ¼ 2. Our strategy to derive a
parent Hamiltonian H of jCSi is based on the observation
that conjugation by unitary transformations U preserves the
eigenvalues such that Uj0Ni is a ground state of UH0U† with
ground state energy E0 and gap Δ. Inserting U ¼
ðQhi;jiCZi;jÞH⊗N and using the relation CZðX ⊗ 1ÞCZ ¼
X ⊗ Z, we obtain that the Hamiltonian

H ¼ −
XN
i¼1

�
Xi

Y
j∈∂i

Zj

�
¼ −

XN
i¼1

Si ð183Þ

is a parent of jCSi with ground state energy E0 ¼ −N and gap
Δ ¼ 2. In Eq. (183) ∂i ¼ fj ∈ V∶ði; jÞ ∈ Eg denotes the
neighborhood of site i on a graph G ¼ ðV; EÞ. The operators
Si ¼ Xi

P
j∈∂iZj are often called stabilizers of jCSi. The same

applies if we rotate the cluster state locally prior to a
computational-basis measurement.
The fidelity witness has also been applied to the verification

of IQP circuits the diagonal part of which comprises Z, CZ,
and the non-Clifford CCZ gate defined in Eq. (5) (Miller,
Sanders, and Miyake, 2017). While the resulting nonlocal
stabilizers hi are not directly products of Pauli operators in the
same way as we obtained CZðX ⊗ 1ÞCZ ¼ X ⊗ Z, Miller,
Sanders, and Miyake (2017) showed that single-qubit
Pauli-X and Pauli-Z measurements suffice to measure those
stabilizers. More precisely, a measurement of the stabilizer hi
can be achieved by measuring Xi

Q
j≠iZj with outcome

v ¼ ðv1;…; vnÞ and returning ð−1Þ∂ifðvÞþvi , where
∂ifðxÞ ¼ fðx1;…; xi þ 1;…; xnÞ − fðx1;…; xi;…; xnÞ.

b. Fidelity witnesses for weighted graph states

Efficient fidelity estimation protocols for arbitrary weighted
graph states as they are generated by the IQP circuit CW with
arbitrary weights wi;j were developed by Morimae, Takeuchi,
and Hayashi (2017), Hayashi and Takeuchi (2019), and Zhu
and Hayashi (2019). Those circuits have been seen to give rise
to graph states in which not only vertices (as in the previous
example) but also edges have arbitrary weights, so-called
weighted graph states.

c. Fidelity witnesses for quantum optical states

Another approach to constructing fidelity witnesses was
discovered by Chabaud, Grosshans et al. (2021) in the context

FIG. 10. Given a target state ρ ¼ jψihψ j, a fidelity witnessW for
ρ provides a lower bound on the fidelity Fðρ; σÞ ≥ Tr½Wσ� so
that, in particular, all states σ such that Fðρ; σÞ ≤ FT , it also holds
that Tr½Wσ� ≤ FT . Conversely, all states σ satisfying Tr½Wσ� ≥
FT will also satisfy Fðρ; σÞ ≥ FT. There is a gap δ ≥ 1 − FT such
that all states σ with fidelity Fðρ; σÞ ≥ FT þ δ lie on the left side
of the witness.
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of linear-optical state preparations as a means to verify the
output state of the boson-sampling protocol given by
φðUÞj1ni [Eq. (8)], where U is a Haar-random linear-optical
unitary. They observed that if certain Gaussian measurements
are performed on the state φðUÞj1ni, then one can efficiently
simulate the effect of the linear-optical unitary in the post-
processing. Specifically, consider a single-mode heterodyne
measurement with POVM elements jαihαj, where jαiα ¼
eαa

†−αaj0i is a coherent state. The effect of a linear-optical
unitary multimode heterodyne POVM element π−m

Q
ijαiihαij

is to transform it into another element π−m
Q

i jβiihβij, where
φðUÞQijαii ¼

Q
ijβii and the values of βi are efficiently

computable. This idea can be used to verify a noisy state
preparation σ of φðUÞj1ni by performing heterodyne mea-
surements, obtaining outcomes αi and reinterpreting the
outcomes as βi. Now we observe that the fidelity of the
quantum state σ with a pure product state ψ ¼Qijψ iihψ ij can
be bounded as

Fðψ ; σÞ ≥ 1 −
Xm
i¼1

½1 − Fðψ i; σiÞ� ≥ 1 −m½1 − Fðψ ; σÞ�;

ð184Þ

where ρi ¼ Tr1;…;mnfigρ is the reduced state of ρ on the ith
mode. This reduces the verification problem to estimating the
single-mode fidelities Fðψ i; σiÞ. Chabaud, Grosshans et al.
(2021) showed that this is possible using only heterodyne
measurements on the state σi if ψ i has bounded support in the
Fock basis. The second inequality in Eq. (184), moreover,
shows that the witness has a certain robustness to noise.
A similar protocol for Gaussian states, and hence Gaussian

boson sampling, was developed by Aolita et al. (2015). In this
protocol, a witness is constructed directly on the level of the
m-mode quantum state preparation σp, again observing that
the time evolution can be inverted classically for Gaussian
measurements. More precisely, observe that

W ¼ 1 −
Xm
i¼1

ni ð185Þ

witnesses the vacuum state j0mi, and hence W̃ ¼ 1 −
P

iñi,
with ñi ¼ UniU†, witnesses the state Uj0mi. Since the
number operator can be measured using homodyne (x and p)
measurements that can be seen through the equality ni ¼
x2i þ p2

i − 1=2, and since the action of a Gaussian unitary U
on those operators can be computed efficiently, defining
r2i−1 ¼ xi and r2i ¼ pi, the vector r is transformed as

U†rU ¼ Srþ d ¼ r̃; ð186Þ

where S is a symplectic matrix corresponding to U and
d ∈ R2m. Measuring all elements of r̃2, i.e., certain linear
combinations of xipj; xixj and pipj, thus allows one to
estimate

P
iñi and hence the witness of Uj0mi for any

Gaussian state.
All of the fidelity witnesses in this section can be written in

the form W ¼ 1 −
P

k
i¼1wi with operators wi that we need to

measure in an experiment. The sample complexity to achieve
an overall estimation error ϵ thus scales as O(kðϵ=kÞ−2) ¼
Oðk3=ϵ2Þ since the error of every individual term needs to
scale as ϵ=k.
A downside of fidelity witnesses is that while they provide a

bound on the fidelity and are therefore well suited to verify
state preparations that are close to the ideal target state, the
bound provided by the witness typically becomes loose rather
quickly, and hence the value of the witness becomes trivial
even while the fidelity is still reasonably high. This motivates
one to directly estimate the fidelity, which, while potentially
more difficult, yields much more detailed information regard-
ing the state preparation.

2. Fidelity estimation

In certain settings, fidelity estimation is possible with a
constant number of samples via the so-called direct fidelity
estimation protocol of Flammia and Liu (2011), and similar to
the protocols proposed by Bourennane et al. (2004), Kiesel
et al. (2005), Tóth and Gühne (2005), and Pallister, Linden,
and Montanaro (2018). Using direct fidelity estimation, we
can estimate the fidelity of imperfect state preparations σ with
pure target states of the form

ρ ¼
X
λ∈Λ

pλAλ ð187Þ

in terms of normal operators fAλgλ∈Λ weighted by proba-
bilities pλ.
The idea is the following: Decompose Aλ ¼

P
a∈specðAλÞaπ

a
λ

in terms of its eigenprojectors πaλ . The fidelity can then be
written as

Fðρ; σÞ ¼
X
λ

X
a∈specðAλÞ

pλTr½πaλσ�a; ð188Þ

and hence it can be estimated by sampling λ ← pλ and
measuring Aλ on the state preparation σ, obtaining outcome
a with probability Tr½σπaλ �. Given k samples ai obtained in
this way, the fidelity can then be estimated as F̂ðρ; σÞ ¼
ð1=mÞPm

i¼1ai with error ϵ using Oð1=ϵ2Þ many samples.
For the protocol to be efficiently possible in practice, the

following requirements are necessary.
(i) For each λ ∈ Λ, Aλ can be efficiently measured. In

particular, this is the case if Aλ ¼ Aλ1 ⊗ � � � ⊗ Aλn ,
with λ ¼ ðλ1;…; λnÞ, is a product of single-qubit
operators Aλi .

(ii) For each λ ∈ Λ, specðAλÞ ⊂ ½aλ; bλ� for constants
aλ; bλ ∈ R.

(iii) The probability distribution p ¼ ðpλÞλ∈Λ can be
efficiently classically sampled.

A particularly simple application of the protocol is its
application to stabilizer states such as the locally rotated
cluster state jCSi, since such a state is in the joint þ1

eigenspace of the stabilizer operators (Flammia and Liu,
2011). A state jψi stabilized by n operators Si with eigen-
values �1 can therefore be expressed as jψihψ j ¼Q

ið1 − SiÞ=2 ¼ 2−n
P

λ∈Ssλ, where S denotes the stabilizer
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group of jψi that is generated by the n operators Si. Thus, it
can be efficiently applied to quantum random sampling
architectures that are based on state preparations that are
locally equivalent to stabilizer states, particularly ones based
on measurement-based computations (Hangleiter, 2021;
Ringbauer et al., 2022). Notice, though, that universal random
circuits are not of this type.
A potential drawback of the direct fidelity estimation

protocol as opposed to fidelity witnesses is that in principle
it requires a different measurement setting in each run of the
experiment. In contrast, to evaluate the fidelity witness only
two distinct measurement settings are repeated many times.
Thus, while the overall quantum sample complexity is
dramatically reduced from Oðn3Þ to Oð1Þ in the number of
qubits, the measurement setting complexity is increased from
Oð1Þ to Oð1=ϵ2Þ in the estimation error. Depending on the
experimental setting at hand there may well be a trade-off
between the time required to switch between settings and the
time required for many repetitions of the same measurement
setting; see Ringbauer et al. (2022). It has also been noted
that, when restricting the operators Aλ to Pauli operators, the
sample complexity of verification scales exponentially in the
number of non-Clifford gates in the circuit (Leone, Oliviero,
and Hamma, 2023).
A closely related fidelity estimation protocol is the

so-called shadow fidelity estimation (Huang, Kueng, and
Preskill, 2020). In this protocol, measurements are per-
formed in a random Clifford basis; see Kliesch and Roth
(2021) for an explanation. The sample complexity of
shadow fidelity is also constant, but it is computationally
inefficient for non-Clifford states since overlaps between the
target state and an arbitrary stabilizer state need to be
computed. Another fidelity estimation protocol that can
be applied to quantum random sampling schemes is the
adaptive protocol of Bennink (2021), which requires two
auxiliary qubits and entangling gates between the unknown
state preparation and those auxiliary qubits and on-the-fly
classical computation. This scheme is sample efficient
precisely for anticoncentrating distributions with exponen-
tially small collision probability. To even further reduce the
experimental effort of verification as compared to direct
fidelity estimation, one would need to improve the scaling in
the tolerated estimation error ϵ. For stabilizer states this was
studied by Kalev, Kyrillidis, and Linke (2019).

D. Efficient classical verification

Thus far we have seen, on the one hand, classical
verification methods that are sample efficient in that they
require only a few (polynomially many) samples from the
quantum device but require exponential computational run-
time. On the other hand, we have seen quantum verification
tools that are fully efficient but require trust in an exper-
imental quantum measurement and are experimentally more
demanding since they require measurements in different
local bases. We conclude our discussion of verification
protocols with classical verification protocols that are fully
efficient but make other types of assumptions than exper-
imental ones, or yield less information about the imple-
mented distribution.

1. State discrimination

Rather than trying to certify the full target distribution in the
TVD, we can alternatively discriminate the experimentally
implemented distribution from our best guess of what a noisy
distribution or a nearby classically simulable distribution
could be. One can see the full verification task in this mindset
as distinguishing the imperfect preparation against all possible
distributions that are at least ϵ far from the target distribution.
The discrimination task was considered by Gogolin et al.

(2013) in a setting of a highly restricted client aiming to verify
a boson sampler just from the histogram of outcomes without
using the information about which outcome has been
obtained. They showed that in this setting a boson-sampling
distribution cannot be distinguished from a uniform one and
prompted the development of a fully efficient and simple state
discrimination test that makes use of the actual outcomes
(Aaronson and Arkhipov, 2014). To date state discrimination
remains the most convincing way to validate boson-sampling
experiments, as it is unclear whether the XEB fidelity yields a
meaningful benchmark of boson-sampling experiments.
We illustrate the idea by means of the test of Aaronson and

Arkhipov (2014) for discriminating the Fock boson-sampling
distribution from the uniform distribution. The idea is to use
the so-called row-norm estimator for a matrix X ∈ Cðn × nÞ,

R�ðXÞ ¼ 1

nn
Yn
i¼1

RiðXÞ; ð189Þ

where RiðXÞ ¼ kxik22 ¼ jxi;1j2 þ � � � þ jxi;nj2 is the norm
squared of the ith row of X. Indeed, for a Gaussian normal
matrix X ∼N ≡N Cð0; 1Þn×n one expects EX∼N ½R�ðXÞ� ¼ 1.
The fluctuations around this value depend on whether
experimental samples are chosen from the boson-sampling
distribution or a uniform distribution and can be exploited to
discriminate a device from uniform. To discriminate a
distribution from uniform, we compute R�ðUS;1nÞ for a
few samples S and compare the outcome to one’s expect-
ation. To see why this achieves the task, we let H be the
distribution N with distribution function pN ðXÞ scaled by
the probability of obtaining the corresponding outcome, i.e.,
pHðXÞ ¼ pN ðXÞPðXÞ. When specializing to boson sam-
pling, the matrix X will be an approximately Gaussian-
distributed submatrix US;1n of the linear-optical unitary U.
Remember that the probability of obtaining this matrix,
which corresponds to the outcome S, is given by
PUðSÞ ¼ jPermðUS;1nÞj2=n!; see Eq. (45). One finds that
(Aaronson and Arkhipov, 2014)

Pr
H
½R� ≥ 1� − Pr

N
½R� ≥ 1�

¼ 1

2
E
N
½jR� − 1j� ≥ 0.146 −O

�
1ffiffiffi
n

p
�
: ð190Þ

In other words, the row-norm estimator R�ðXÞ is slightly
correlated with PermðXÞ. An intuitive reason for this is that
multiplying every row of X by the same scalar c also
multiplies PermðXÞ by c (Aaronson and Arkhipov, 2014).
At the same time, it can be computed in time Oðn2Þ.
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To discriminate a boson sampler from the uniform distri-
bution, one therefore needs to simply collect k samples
S1;…; Sk from a device claimed to realize a boson sampler
and compute ð1=kÞPk

i¼1jR�ðUSkÞ − 1j up to sufficiently high
precision so as to confidently distinguish the resulting value
from 0.30

In the same framework, one can distinguish a boson
sampler against other, somewhat more informed distributions
such as a distribution of distinguishable particles that are sent
through the linear-optical network (Carolan et al., 2014;
Spagnolo et al., 2014). In the experiments of Zhong et al.
(2020, 2021), the output distribution was additionally dis-
tinguished from a thermal distribution. To distinguish from
any classically efficient distribution, they used the Bayesian
likelihood ratio estimator

c ¼ Prðfx1;…; xSgjP0Þ
Prðfx1;…; xSgjP0Þ þ Prðfx1;…; xSgjQÞ ; ð191Þ

where the likelihood of obtaining the experimental samples
x1;…; xS is evaluated with respect to both the ideal target
distribution P0 and a distributionQ that wewant to distinguish
from P0.
An additional experimentally motivated test ruling out

spoofing distributions that makes use of low-order mar-
ginal probabilities (Villalonga et al., 2021) performed by
Zhong et al. (2021) is to measure these marginals. One
can then compare them to the theoretical predictions,
thereby ruling out the possibility that a distribution that
agrees only on the first two or three marginals is a good
spoofing distribution.
The efficient state discrimination tests for boson sampling

highlight a key difference between the output distributions
of variants of boson sampling and universal circuit sam-
pling: for universal circuit sampling we expect the output
distribution to not even to be efficiently distinguishable
from the uniform distribution. This expectation can be
understood in various readings. It can first be viewed from
the perspective of HOG-like tests since high performance
on a HOG-like test serves as a discriminator against the
uniform distribution. Conversely, if HOG is indeed a
computationally difficult task, then this provides evidence
that discriminating against uniform is also a difficult task.
Indeed, it is difficult to imagine a way of discriminating
against uniform that does not make use of a HOG-like
estimator. Stilck França and García-Patrón (2022) made this
intuition more rigorous. They showed that if there are
functions defining a cross-entropy measure (133) that gives
rise to a sample-efficient state discrimination test, then full
verification of the total-variation distance will be sample-
efficiently possible in a multiround scheme. Since we do not
believe the latter to be possible, the result of Stilck França
and García-Patrón (2022) serves as more formal evidence
against the possibility of efficient state discrimination for
random quantum circuits.

2. Cryptographic tests

A completely orthogonal but promising avenue of veri-
fying sampling schemes was pioneered by Shepherd and
Bremner (2009): By allowing the certifier to choose the
classical input to the sampling device rather than drawing it
fully at random, it may be possible to efficiently certify that
a quantum device has performed a task that no classical
device could have solved under cryptographic assumptions
on the hardness of certain tasks. This could be facilitated
by checking a previously hidden bias in the obtained
samples for a certain family of IQP circuits (Shepherd
and Bremner, 2009).
It is instructive to understand the idea behind such a test

of computational quantumness. The protocol of Shepherd
and Bremner (2009) was formulated for a certain family of
IQP circuits called X programs. An X program acting on n
qubits is defined by a list of pairs ðθp; pÞ ∈ ½0; 2π� × f0; 1gn
and acts as

j0i ↦ exp

�
i
X
p

θp
Yn
j¼1

X
pj

j

�
j0i: ð192Þ

For the purposes of the quantumness test it is sufficient to
choose a constant value of θ that is the same for every
nonvanishing term in the Hamiltonian. In this case, an X
program with k nonvanishing Hamiltonian terms acting on n
qubits can be represented by a 0=1matrix P ∈ f0; 1gk×n. Each
row of this matrix specifies a Hamiltonian term, and it is easy
to see that the output distribution of such an X program is
given by

PPðxÞ ¼
				 X
a∈f0;1gk∶ PTa¼x

cosðθÞk−wtðaÞ sinðθÞwtðaÞ
			2; ð193Þ

where wtðaÞ ¼ jfl ∈ ½k�∶al ¼ 1gj is the Hamming weight of
the binary string a ∈ f0; 1gk.
For a random variable X taking values in f0; 1gn and

s ∈ f0; 1gn, the bias of X in the direction of s is simply the
probability that a sample x ∼ PP is orthogonal to s, i.e., that
xTs ¼ 0. The key idea of the test of computational quantum-
ness is to hide a string s, the output probability distribution of
an X program, in such a way that this string s cannot be
determined efficiently. At the same time, however, the bias of
the output distribution of the X program in direction s is
significantly larger than the bias of any cheating distribution
that can be efficiently obtained using classical computing
resources. In particular, the bias of the output distribution PP

of the X program defined by a matrix P ∈ f0; 1gk×n and angle
θ is given by

Pr
x∼PP

½xTs ¼ 0� ¼
X

x∶xTs¼0

PPðxÞ: ð194Þ

To achieve this, Shepherd and Bremner (2009) noticed that
the matrix P can be viewed as the generator matrix of a
linear code. That is, the columns of P span the code space
C ¼ fPd∶d ∈ f0; 1gng. If we let Ps be the ns × n submatrix

30This may be done in a Bayesian framework (Carolan et al.,
2014).
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of P obtained by deleting all rows p for which pTs ¼ 0
31 and

we let Cs be the code generated by Ps, then we can rewrite the
bias (194) of Pp as (Shepherd and Bremner, 2009)

Prx∼PP
½xTs ¼ 0� ¼ Ec∼Csfcos2½θðns − 2wtðcÞ�g: ð195Þ

We can now set a quantum challenge that is intrinsically
verifiable in the following way. We choose a code Cs and a
value of θ in such a way that both the bias (195) is strictly larger
than 1=2 and any classical strategy can achieve only a bias that
is significantly lower, say, by a constant. We then choose a
generating matrix Ps for Cs such that s is not orthogonal to any
of the rows of Ps. Finally, we obfuscate this matrix by adding
rows that are orthogonal to s, permuting all rows and potentially
performing reversible column operations, giving rise to a
matrix P. Given samples from the distribution PP, we can
now distinguish the hypothesis that the sampling device has
quantum capacities from the hypothesis that it is cheating to
compare the frequencies of outcomes that are orthogonal to the
hidden string s. Notice that this protocol does not certify that
the samples are distributed according to the correct distribution.
Therefore, it does not constitute a work-around to the no-go
theorem of Sec. V.A based on cryptographic assumptions. Like
the HOG test (Problem 27), this cryptographic test of quantum-
ness merely certifies that the device has the capacity to do
something that presumably (under assumptions) no classical
computing device could have achieved.
The suggestion of Shepherd and Bremner (2009) is to use

quadratic residue codes and a obfuscation procedure that
exploits specific properties of these codes (such as that the
full-weight vector is always a code word). They conjectured
that recovering the matrix Ps from the obfuscated matrix P is
NP complete. Choosing θ ¼ π=8, this construction gives rise
to a bias that serendipitously matches that of the Bell
inequality: cos2ðπ=8Þ ≈ 0.854 for the quantum value, and
3=4 for the best classical strategy discussed by Bremner,
Jozsa, and Shepherd (2010).32

Note also that besides the security assumption on the
obfuscation procedure, additional conjectures need to be made
(Shepherd and Bremner, 2009) for such a test to achieve its goal:
First, the distribution PP of a randomly selected X program with
a constant θ ¼ π=8 should be hard to sample from, so only a
quantum device can perform this task. Second, the output
distribution should be sufficiently flat in the sense that its Rényi
2-entropy or collision entropy is close to maximal, i.e.,
H2ðPPÞ ¼ ΩðnÞ, so cheating becomes more difficult.
Iterating the importance of extensively testing crypto-

graphic assumptions for their security, Kahanamoku-Meyer
(2019) developed a classical cheating strategy for the protocol
proposed by Shepherd and Bremner (2009). Given a descrip-
tion of an X program in the form of the matrix P, one finds that
the cheating strategy extracts the secret vector s with prob-
ability arbitrarily close to unity in an empirically observed
average run-time of Oðn3Þ.
In a similar mindset, albeit without restricting to sampling

tasks for which there is strong complexity-theoretic evidence

for hardness, cryptographic tests of quantumness were devised
by Brakerski et al. (2018, 2020). They made use of so-called
trapdoor claw-free functions to delegate a simple task that no
classical device can efficiently solve, but a quantum device
succeeds with a higher probability. A trapdoor claw-free
function is a two-to-one efficiently computable function f
such that it is difficult to find a claw x; x0 for which
fðxÞ ¼ fðx0Þ, but it becomes easy when given access to the
trapdoor. Thus, while a classical algorithm can only ever hold
y ¼ fðxÞ and x, but not at the same time x0, a quantum
algorithm can compute f in superposition and therefore hold y
as well as a superposition jxi þ jx0i. The idea of the proof is to
exploit this superposition: we can ask the device to perform a
measurement in the computational basis, obtaining x or x0, or
in the Hadamard basis obtaining d for which dðx ⊕ x0Þ ¼ 0.
This reveals some information about x and x0 that is not
accessible to a classical device. Such protocols were recently
improved into much simpler functions (Kahanamoku-Meyer
et al., 2022) and low-depth implementations (Hirahara and Le
Gall, 2021; Liu and Gheorghiu, 2022), bringing their exper-
imental demonstration within closer reach (Zhu et al., 2021).
Using such trapdoor claw-free functions, it is also possible

to classically delegate a BQP computation to a fully untrusted
quantum server (Mahadev, 2018), and even to verify sampling
problems (Chung et al., 2020). A drawback of the protocol of
Chung et al. (2020), however, is that it has only inverse
polynomially large soundness, so it cannot be used as a
subroutine in secure computation problems. More severely,
for an application to verifying quantum random sampling, the
overhead is unfeasibly large.

E. Further approaches to the verification of quantum samplers

Another approach to verification of quantum states from
measurements, blind verified quantum computation, was
developed by Broadbent, Fitzsimons, and Kashefi (2009)
and Fitzsimons and Kashefi (2017). While the protocols
discussed in Sec. V.C.1 make use of the ability of the
experimenter to measure single qubits with high fidelity,
blind verified quantum computing presupposes the ability to
accurately prepare single qubits. And indeed, blind verified
quantum computing also applies measurement-based com-
putation using cluster states, thereby exploiting the property
that single-qubit phase gates commute through the state
preparation. While in our approaches the imperfect state
preparation is directly verified, in verified blind quantum
computing so-called trap qubits are employed. The outcome
of measurements on those qubits is deterministic and can
thus be checked to build confidence in the correct function-
ing of an untrusted quantum server. By turning blind
quantum computing upside down, a “post hoc verification
protocol” for quantum computations was developed by
Fitzsimons, Hajdusek, and Morimae (2018).
To build trust in the correct functioning of a sampling

device, one can also resort to weaker types of verification than
direct verification of the quantum state or output distribution.
For instance, instead of directly running a randomly chosen
unitary circuit, one can run specific computations on the
device, the output distribution of which is highly structured,
such as the quantum Fourier transform (Tichy et al., 2014).

31This leaves only rows for which pTs ¼ 1.
32There is no proof that this 3=4 is the optimal classical value.
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Finally, one can build trust in the device from certain
efficiently computable benchmarks such as two-point corre-
lation functions (Phillips et al., 2019), higher correlation
functions (Zhong et al., 2021), the click-number distribution
in boson sampling with threshold detection (Drummond et al.,
2022), and comparisons to a coarse-grained distribution
(Wang and Duan, 2016).
Note also that, with the exception of the classical verifi-

cation protocol due to Mahadev (2018) and Chung et al.
(2020), most of the verification protocols considered here
require iid state preparations, which is an additional
assumption (albeit a realistic one). To relax this assumption
to the non-iid case, one can make use of de Finetti arguments
(de Finetti, 1937; Hudson and Moody, 1976; Caves, Fuchs,
and Schack, 2002; König and Renner, 2005). This was done
by Takeuchi and Morimae (2018), optimized to graph states
by Takeuchi et al. (2019) and Markham and Krause (2020),
and optimized to bosonic states by Chabaud et al. (2020) and
Chabaud, Grosshans et al. (2021).

VI. EXPERIMENTAL IMPLEMENTATIONS

It is the comparative simplicity of quantum random
sampling schemes that renders them particularly compelling
for an implementation on current-day devices. In contrast to
other proposals for quantum advantage, they do not precisely
require interactive or multiround feedback. Moreover, com-
parably small circuit sizes are required such that it might be
possible to implement the circuits with non-negligible fidelity
without full-fledged quantum error correction. This makes
quantum random sampling schemes attractive as proofs of
quantum advantage from an experimental point of view.
Experimental implementations of quantum random sampling
start with the first proof-of-principle demonstrations of boson
sampling (Broome et al., 2013; Crespi et al., 2013; Spring
et al., 2013; Tillmann et al., 2013) and universal circuit
sampling (Neill et al., 2018) and culminate in recent large-
scale implementations of universal circuit sampling (Arute
et al., 2019; Wu et al., 2021; Zhu et al., 2022) and Gaussian
boson sampling (Zhong et al., 2020, 2021; Madsen et al.,
2022), which are arguably in the classically intractable regime.
In this section, we summarize important technological devel-
opments and experimental subtleties of quantum random
sampling implementations, with a focus on universal circuit
sampling.

A. Universal circuit sampling with superconducting circuits

At the current state of the art, universal circuit sampling is
most feasibly implemented using superconducting transmon
devices. The first large-scale experiment aimed at reaching a
quantum advantage was performed in such an architecture
(Arute et al., 2019). This experiment is a landmark experi-
ment that arguably first reached the regime of a quantum
advantage over the capabilities of classical supercomputers,
and hence the “quantum supremacy” regime. We therefore
provide more detail to the discussion of this experiment, as
an exemplary discussion pars pro toto. The experiment
implemented a random circuit consisting of up to 20 layers

of the universal random circuits introduced in Sec. II.A
acting on 53 qubits.

1. Design of the experiment

The experiment of Arute et al. (2019) was performed on a
transmon superconducting chip referred to as the Sycamore
chip. Transmons are superconducting charge qubits that
have been designed to be less sensitive to charge noise than
is common in other settings, a feature that renders them
particularly attractive for use in quantum computational
schemes. Generally speaking, in a superconducting circuit
currents and voltages behave quantum mechanically, as
conduction electrons condense into a macroscopic quantum
state. For this to be possible and to ensure that the ambient
thermal energy is reduced to well below the native energy
scales of the qubits, cryogenic temperatures are required.
The extremely low temperatures of ∼20 mK required for the
experiments are currently accessible only in dilution refrig-
erators. Each of the qubits can be seen as a nonlinear
superconducting resonator operating at 5–7 GHz. These
qubits can be tuned by resorting to 2 degrees of freedom. On
the one hand, there is a microwave drive that allows one to
drive Rabi oscillations of the qubit. On the other hand, there
is a magnetic flux control that allows one to tune the
frequency.
During a quantum circuit, the qubits are tuned to three

different frequencies: First, there is the qubit idle frequency at
which single-qubit gates are performed. Second, there is an
interaction frequency to which neighboring qubits are tuned in
order to interact. The idle frequency is chosen such that there
is as little crosstalk as possible during single-qubit gates, while
at the same time the frequency distance required for inter-
action with its neighbors is minimized. Finally, the qubits are
tuned to a readout frequency. When one selects those
frequencies, there are trade-offs to be accounted for between
energy relaxation, dephasing, leakage, and control imperfec-
tions (Arute et al., 2019). At the idle frequency, single-qubit
gates are implemented by driving the qubits with 25 ns
microwave pulses.
In the Sycamore superconducting-qubit architecture, two-

qubit gates are implemented using adjustable couplers. Since
the qubits are arranged in a planar two-dimensional archi-
tecture, these couplers are naturally placed between nearest
neighbors on a lattice.33 The couplers allow one to quickly
switch on and off a coupling of up to 40 MHz by tuning the
frequency of the coupler qubits. Specifically, the coupling is
achieved by tuning neighboring qubits’ frequencies on reso-
nance and turning on a 20 MHz coupling for 12 ns. The
coupling in the system natively gives rise to the two-qubit gate

fSimðθ;ϕÞ ¼

0BBB@
1 0 0 0

0 cosðθÞ −i sinðθÞ 0

0 −i sinðθÞ cosðθÞ 0

0 0 0 e−iϕ

1CCCA; ð196Þ

33This architecture has also been chosen to be forward compatible
with the realization of a surface code for quantum error correction.
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with tunable angles θ and ϕ. In Eq. (196) the angle θ is
interpreted as the swap angle and the angle ϕ is a conditional
phase. The fSim gate captures a wide range of entangling
gates, including the iSWAP gate with θ ¼ π=2 and ϕ ¼ 0, as
well as the CZ gate with θ ¼ 0 and ϕ ¼ π.
In the experiment of Arute et al. (2019), iSWAP-like fSim

gates close to iSWAP
* (3) with θ ≈ π=2 and a conditional

phase ϕ ≈ π=6 were performed. The specific phases of each
two-qubit gate corresponding to a particular physical cou-
pler between two qubits varied around their ideal values.
Arute et al. (2019) were able to measure the precise angle,
thus ensuring a higher accuracy of the resulting computa-
tional task. The uncertainty in the actual angles imple-
mented in the circuit can be viewed as limited
programmability of the device: some parameters of the
circuit are determined only contingently on the specific
physical implementation. More recently progress has been
made toward achieving full programmability of the angles in
the fSim gate (Foxen et al., 2020).
Every qubit can be read out by means of a linear resonator.

To this end, the qubit frequency is tuned to its readout value
and coupled to a far-detuned resonator via a neighboring
coupler (Blais et al., 2004; Gambetta et al., 2006; Bultink
et al., 2018). As the qubit state changes from j0i to j1i, there is
a frequency shift in the resonator that can be read out via the
phase shift incurred by a microwave probe signal applied to
the resonator (Arute et al., 2019). On the chip, the qubits are
divided into groups of six qubits that are each coupled to their
own resonator, but resonators within a group are simulta-
neously read out via frequency multiplexing. Overall, the
architecture consists of 53 such transmon qubits, each of
which is connected to a readout device, with 86 couplers
connecting nearest-neighbor qubits.

2. Benchmarking of the components

Substantial efforts have been made to carefully benchmark
the experiment.

a. Benchmarking of single-qubit gates

At the lowest level, benchmarking of the experiment was
performed on the level of the individual components of the
device. For the individual components, the single-qubit oper-
ations, the entangling gates, and the readout were benchmarked
individually. For both single-qubit gates and two-qubit gates as
well as the benchmarking of the entire device, Arute et al.
(2019) made use of linear XEB. Here we return to the line of
thought developed in Sec. V.B.3 and put it into the context of
experimental findings. As developed there, XEB provides a
unified picture for average-case benchmarking of small-scale
operations in the sense of randomized benchmarking, on the
one hand (Arute et al., 2019; Y. Liu et al., 2021), and single-
instance benchmarking of typical large-scale quantum states, on
the other hand (Arute et al., 2019). The use of linear XEB is
attractive in this context, as this procedure does not require the
classical computation of all possible events, but classical
simulations need only to compute the likelihood of the set
of bit strings obtained in an experiment.
For the benchmarking of single-qubit gates, linear XEB

benchmarking has been used to estimate the probability of an

error occurring on the single-qubit level. For each qubit, a
sequence of a variable number of randomly selected gates is
applied and FXEBðQ;PCÞ, as defined in Eq. (162) and
discussed in Sec. V.B.3, is estimated. The resulting scheme
can be seen as a randomized-benchmarking protocol (Helsen
et al., 2021; Y. Liu et al., 2021). One finds a decay of the
signal in the length l of the sequence that is well described by
an exponential dependence of the form ð1 − 3e1=4Þl, where
e1 ∈ ½0; 1� is the single-qubit Pauli error probability. The
single-qubit error e1 over the various qubits follows a
distribution that is estimated by suitable histograms. From
these histograms, one can then estimate an average of about
e1 ¼ 0.16% in simultaneous operation of the qubits on
the chip.

b. Benchmarking of two-qubit gates

For the linear XEB benchmarking of the two-qubit gates, as
in the single-qubit case, sequences of cycles are employed.
Now, each cycle consists of randomly chosen single-qubit
gates followed by the iSWAP

* two-qubit gate. This gives rise to
an interleaved randomized-benchmarking scheme (Arute
et al., 2019) in which the same logic as for single-qubit gate
benchmarking is applied: an exponential curve is fitted to the
decay, and one can estimate the two-qubit error rate e2 by
subtracting the single-qubit error rate e1. After appropriate
corrections for dispersive shifts and crosstalk, an average of
about e2 ¼ 0.62% is found when gates are operated simulta-
neously on the chip. Finally, the combined single- and two-
qubit error rate e2C, which characterizes a single layer of a gate
cycle, is measured to be e2C ¼ 0.93% on average.

c. Characterization of single-qubit measurements

Measurement errors of single-qubit readout are obtained by
preparing j0i and j1i and performing a measurement of the
state. The identification error is taken to be the probability that
the qubit was read out in a state other than that intended,
giving rise to a median identification error of 0.97% for the j0i
state and 4.5% for the j1i state (Arute et al., 2019). The fact
that the state-preparation fidelity is much higher than the
measurement fidelity justifies this procedure.
In a second step, multiqubit readout is characterized by

preparing and measuring 150 random classical bit strings with
53 qubits and repeating each measurement 3000 times,
resulting in a 13.6% probability of correctly identifying the
state. This can be decomposed to a median error for the
simultaneous single-qubit readout of 1.8% for j0i and 5.1%
for j1i, giving an overall simultaneous readout error of
about 3.8%.

3. Verifying the sampling task

The entire setup of the experiment has been tailored to
achieve a quantum computational advantage. Benchmarking
the individual components builds trust in the functioning of
the 53-qubit device as a whole, but does not yet constitute a
test of quantum advantage, as outlined in Sec. I. In light of the
hardness of rigorous verification of the sampling task using
the samples as explained in Sec. V.A, the entire scheme has
been benchmarked via linear XEB but is now applied to
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typical instances of high-dimensional quantum states, as
discussed in Sec. V.B.3. As noted there, while the linear
XEB fidelity does not yield a rigorous certificate for the
sampling task, achieving a nontrivial XEB value might be a
computationally difficult task in itself. Having said that, the
claim of Arute et al. (2019) is indeed to have performed the
sampling task to nontrivial precision.
To estimate the XEB fidelity, the probability of each bit

string obtained in the experiment needs to be computed. As
further detailed in Sec. VII, for the full random quantum
circuit this is beyond the reach of classical computers. This is
why proxy methods need to be used in order to reduce the
complexity of computing the output probabilities of the
implemented quantum circuits. Specifically, Arute et al.
(2019) made use of three different simulation strategies.
In a full circuit simulation, the exact output probabilities

of a given quantum circuit are computed. In “patch circuits”
one removes all two-qubit gates along a slice through the 2D
qubit array such that the circuit is split into two unconnected
parts and the overall fidelity is simply the product of two
fidelities. In “elided circuits” one removes a fraction of
two-qubit gates between the two partitions of the qubits
such that the parts are coupled, but less entanglement is
being generated.
To benchmark the patch circuit and elided circuit method

against the full circuit method as a means to estimate the
XEB fidelity, Arute et al. (2019) performed what they called
verification circuits. The circuits were chosen in such a way
that a full circuit simulation was still possible. Specifically,

two-qubit gates were arranged in a simplifiable tiling so that
circuits with exactly the same gate count as in the full
experiment were easier to classically simulate. For circuits
with 14 cycles on up to 53 qubits, this allowed for the
comparison of the three different methods of estimating the
XEB fidelity [see Fig. 11(a)], showing that all methods yield
roughly the same value for the XEB fidelity.
For full circuit simulation of up to 43 qubits, a

“Schrödinger-type” simulation algorithm is run for the sim-
ulation of the full quantum state, making use of 100 000 cores
and a 250 terabyte memory. For larger qubit sizes, a hybrid
“Schrödinger-Heisenberg-type” simulation algorithm is run.
Offering further justification, Arute et al. (2019) provided a

model for how the XEB fidelity FXEBðQ;PCÞ scales given the
errors obtained for the individual circuit components, yielding
good agreement with the predictions obtained via the various
simulation methods. Altogether these tests constitute justifi-
cation for the use of the “elided” and “patch” methods as a
substitute of full circuit simulation when computing the XEB
benchmark.
In the supremacy regime of 53 qubits and a depth

of 20, elided and patch circuit methods remain close to the
error model (Fig. 11), yielding a value of FXEBðQ;PCÞ ≈
ð2.24� 0.21Þ × 10−3 averaged over ten circuit instances.
Here the error bar is a σ interval, where σ combines statistical
errors of the finite-sample XEB benchmark and systematic
errors due to the elided simulation method. This shows that the
XEB value is larger than 10−3 with 5σ significance. Since the
XEB fidelity scales inverse exponentially, the number of

(a) (b)

FIG. 11. (a) To build trust in the proxy methods (elided and patch circuits) for full circuit simulation used to estimate the XEB fidelity,
sampling on the quantum processor is performed using circuits with the same gate count as the “supremacy circuits,” but in a
simplifiable pattern and with a depth of 14. Each data point is an average of the XEB fidelity of ten circuit instances with ð0.5–2.5Þ × 106

many samples per instance. The solid line represents the predicted value of the XEB fidelity given the error model. (b) In the “supremacy
regime” of 53 qubits and a depth of up to 20, the elided and patch methods are used to estimate the XEB fidelity and the classical
simulation time for verification and sampling is extrapolated. From Arute et al., 2019.
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samples required to obtain the required significance scales
exponentially.
To further substantiate the claim that, on the quantum

device, the sampling task has in fact been achieved to
nontrivial accuracy, Arute et al. (2019) performed further
tests. First, they compared the values of the linear XEB with
the logarithmic XEB or cross-entropy difference (145); see
Sec. V.B.2 for a discussion. This measure is expected to have
a larger variance than the linear XEB fidelity, as it puts more
weight on the tail of the distribution but at the same time
relates more closely to the actual total-variation distance
(Bouland et al., 2019). Arute et al. (2019) argued that both
measures can serve as a proxy for the quantum fidelity, as
discussed in Sec. V.B.3. Second, they analyzed in more detail
the distribution of bit string probabilities obtained in the
experiment. They found an excellent fit with the expected
Porter-Thomas distribution of the outcome probabilities and
performed hypothesis tests to reject the hypothesis that the
samples stemmed from a uniform distribution.
The claim of having achieved quantum computational

advantage in a practical sense is substantiated by extrapo-
lating the computational effort to estimate the computational
cost of the quantum advantage circuits to larger system sizes.
Arute et al. (2019) estimated that for n ¼ 53 and d ¼ 14,
sampling of 3 × 106 bit strings with 0.01 fidelity would
take about a year. By extrapolation, they then argued that
for the full n ¼ 53 and d ¼ 20 obtaining 106 samples on the
quantum processor takes about 200 s, while sampling to a
comparable fidelity classically would take 10 000 yr on 106

cores, and the verification of the fidelity would require
millions of years. These claims have naturally been chal-
lenged by the new, improved classical simulation methods
explained in Sec. VII.

4. Follow-up work

Wu et al. (2021) and Zhu et al. (2022) followed up on the
landmark experiment of Arute et al. (2019) by presenting
comprehensive and qualitatively similar data from a super-
conducting platform, but with a larger number of qubits and
larger circuit sizes. The superconducting processor of Wu
et al. (2021) and Zhu et al. (2022) of n ¼ 66 transmon qubits,
which are coupled by 110 tunable nearest-neighbor couplers.
However, quantitatively the experiment improved in several

ways on the experiment of Arute et al. (2019). Wu et al.
(2021) benchmarked the device using 56-qubit, depth-20
random Sycamore circuits [i.e., in the same scheme as
Arute et al., 2019] and achieved comparable error rates.
They found a XEB fidelity of 0.0662% for roughly 107 bit
strings observed in the experiment. Zhu et al. (2022) improved
upon this and measured a XEB fidelity of 0.0758% for
60-qubit, 22-cycle circuits, and ð3.66� 0.345Þ × 10−4 for
60-qubit, 24-cycle circuits. Their experiment improved on that
of Arute et al. (2019), especially when it came to readout
fidelity, for which they achieved an average fidelity of 2.26%.
Zhu et al. (2022) estimated that the sampling task would
require about 4 orders of magnitude more resources than the
sampling task considered by Arute et al. (2019).
To summarize this discussion, Arute et al. (2019), Wu et al.

(2021), and Zhu et al. (2022) all claimed a significant

advantage for their respective quantum devices over all
possible classical algorithms applied to the same task. In a
nutshell, the advantage claim of those experiments is based on
a placeholder for the linear XEB fidelity that can be computed
in the advantage regime, as well as empirical and numerical
evidence for the validity of this estimator. In Sec. VII, we
discuss how and to what extent this quantum advantage claim
is challenged by tailored classical simulation algorithms,
as well as how the particular choice of benchmark affects
the claim.

B. Photonic implementations

Historically preceding implementations using supercon-
ducting quantum circuits, photonic implementations of var-
iants of boson sampling have developed significantly over the
past decade. These fall under implementations of the original
proposal of Aaronson and Arkhipov (2013) to make use of
initial Fock state preparations, as well as implementations of
the Gaussian boson-sampling protocol initially proposed by
Lund et al. (2014) and refined by Hamilton et al. (2017) and
Kruse et al. (2019).

1. Fock boson sampling

Soon after the proposal of boson sampling became available
(Aaronson and Arkhipov, 2013), the first experiments with
photonic systems were conducted, all at around the same time
(Broome et al., 2013; Crespi et al., 2013; Spring et al., 2013;
Tillmann et al., 2013). These first implementations involved a
comparably small number of modes and photons, even though
these early experiments were often performed on photonic
chips in integrated optics. Spring et al. (2013) presented data
from an experiment involving m ¼ 6 modes and n ¼ 3 and 4
photons, resorting to silica-on-silicon integrated waveguide
circuits. In such waveguide circuits fabricated by ultraviolet
writing, evanescent waves overlap, giving rise to effective
beam-splitter arrays. In this experiment, two parametric down-
conversion pair sources are used to inject up to four photons
into a photonic circuit. In other words, the sources are not used
in a heralded mode, where one port provides a classical signal
for the presence of a photon in the other port, but both output
ports of the sources are fed into the device. The dominant
sources of inaccuracy in this type of sampling are conse-
quently multiphoton emission, as well as the partial distin-
guishability of our photon sources.
In fact, limitations of single-photon sources to date

still constitute a key limitation in the way of large-scale
implementations of Fock boson-sampling experiments.
Postselection is used to ensure that higher photon numbers
that are intrinsically also produced in the process do not
substantially contribute. To build trust in the functioning of
the device, the measured relative frequencies of outcomes
in which the photons are detected in distinct modes are
compared with the expected numbers. This is possible since,
up to these system sizes, the relevant probabilities can still
be classically computed.
The experiment of Crespi et al. (2013) also showed three-

photon interference in an integrated interferometer involving
m ¼ 5 optical modes. Similarly, Tillmann et al. (2013)
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presented data from three photons in am ¼ 5mode integrated
optical interferometer. In each case, single photons were
created using parametric down-conversion. Broome et al.
(2013) performed boson sampling in a tunable architecture on
m ¼ 6 modes with n ¼ 2 and 3 photons. Here polarization
controllers at the inputs and outputs can be used to perform
different unitary evolutions.
The next step in implementation sized up the instances

slightly to n ¼ 3 photons in m ¼ 9 modes (Carolan et al.,
2014; Spagnolo et al., 2014). More significantly, both Carolan
et al. (2014) and Spagnolo et al. (2014) performed the
efficient state discrimination test proposed by Aaronson
and Arkhipov (2014) in order to distinguish the experimental
samples from a uniform distribution. Carolan et al. (2014)
furthermore distinguished the samples from a distribution
obtained if the bosons were distinguishable, making use of a
technique called bosonic clouding. More recently Giordani
et al. (2018) experimentally demonstrated a way to efficiently
witness multiphoton interference in an n ¼ 3 photon experi-
ment, following a proposal of Walschaers et al. (2016).
These small-scale experimental results were more recently

brought to a new level in terms of large-scale photonic
implementations. This advance was made possible by sub-
stantial technological development (Loredo et al., 2017; Wang
et al., 2017). On the one hand, solid-state sources of highly
efficient, pure, and indistinguishable single photons have been
developed. Such quantum dot-micropillar systems allow for
the deterministic generation of indistinguishable single pho-
tons with a high sample rate. On the other hand, the trans-
missivity of linear-optical circuits has been dramatically
improved with the development of ultralow-loss optical
circuits. These developments allowed Wang et al. (2017) to
implement a n ¼ 5-photon, m ¼ 9-mode boson sampler with
a high sample rate. Improving those components even further
by integrating the optical circuit in a three-dimensional
architecture, Wang et al. (2019) performed a boson-sampling
experiment with n ¼ 20 photons and m ¼ 60 modes: the
largest implementation of Fock boson sampling to date. For a
detailed discussion of the early photonic implementations of
boson sampling, see the review by Brod et al. (2019).

2. Gaussian boson sampling

Gaussian boson sampling allows for even larger system
sizes, given the comparably easy availability of suitable
sources. Recall that in Gaussian boson sampling single-mode
squeezed states are prepared at the input, whereas in Fock
boson sampling single-qubit Fock states need to be prepared, a
much more challenging task.
After early demonstrations of the so-called scattershot

boson-sampling variant of Gaussian boson sampling (GBS)
(Bentivegna et al., 2015; Zhong et al., 2018; Paesani et al.,
2019), Zhong et al. (2020) performed a large-scale GBS
experiment that involved 50 input single-mode squeezed
states featuring high indistinguishability and squeezing
parameters. The resource states are fed into a large-scale bulk
optical (and hence not integrated) interferometer with full
connectivity among m ¼ 100 modes that implements a
random transformation with low loss. Some randomness in
this interferometer is physical: the interferometer is fabricated

to implement a certain unitary transformation, but imperfec-
tions of the process alter the targeted unitary. To obtain an
accurate description of the unitary, the interferometer is
characterized post hoc via tomography. Strictly speaking,
the boson-sampling device used in this and all previous
experiments is therefore not a programmable device.
Rather, it is designed to implement a specific transformation
that is slightly altered in the fabrication process. The output of
the interferometer is then sampled from making use of high-
efficiency single-photon detectors. In this experiment, up to
n ¼ 76 output photon clicks have been detected.
This scheme was improved by Zhong et al. (2021) in two

ways. First, a restricted programmability of the boson-
sampling device was achieved by making use of the capacity
to vary the phase of the input squeezed states. This can also be
viewed as introducing programmable phases in the random
unitary transformation. Second, the experiment was pushed
further to detecting n ¼ 113 photon events at the output of a
photonic circuit comprising m ¼ 144 optical modes. Key to
the latter improvement is the availability of a high-brightness
and scalable quantum light source that was developed for this
purpose. This source builds on methods of the stimulated
emission of squeezed photons, which are improved to achieve
near-unity purity and high efficiency.
In principle, these experiments can be efficiently verified in

their functioning using quantum measurements (Chabaud,
Grosshans et al., 2021); see Sec. V.C.1. While such tests were
performed in this experiment, subsystem properties (namely,
low-order mode marginals) were used by Zhong et al. (2021)
to efficiently distinguish them from classically simulable
distributions such as distinguishable photons and thermal
states; see Sec. V.D.1. To this end, they used a variant of
Bayesian likelihood ratio estimators, which can be recast as a
ratio of cross-entropy scores. In a similar vein, Drummond
et al. (2022) found good agreement between the distribution
of the total number of clicks of the threshold detectors
observed by Zhong et al. (2021) with the theoretical click-
number distribution, including some decoherence effects.
Recently Madsen et al. (2022) performed Gaussian boson

sampling using time multiplexing in order to implement
low-depth but high-dimensional unitary mode transforma-
tions, as proposed by Deshpande et al. (2022). The lower
depth of the unitary transformation allows larger system sizes
to be reached since the loss does not contribute as much. At
the same time, classical simulation may become easier, but
Deshpande et al. (2022) provided numerical evidence that
low-depth, high-dimensional transformations remain compu-
tationally intractable in practice. The experiment used
m ¼ 216 single-mode squeezed input states, a linear-optical
transformation with three-dimensional connectivity, and
photon-number-resolving detectors. The average number of
detected photons is 125. To benchmark the experiment,
Madsen et al. (2022) applied a number of tests. For the
events with a low photon number of n ≤ 6 and m ¼ 16, they
computed the TVD between the experimental and the target
distribution. In the intermediate regime of photon numbers
n ≤ 26 and m ¼ 216 modes, they estimated the cross-entropy
difference as well as the Bayesian estimator of Zhong et al.
(2021) in order to compare them to the potential classical
spoofing algorithms discussed in Sec. V.D.1. Finally, in the
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classically intractable regime, they computed first- and
second-order cumulants of the experimental distribution.
We close this section by mentioning that a variant of the

original scheme of Gaussian boson sampling was imple-
mented by Thekkadath et al. (2022) on an interferometer
comprising m ¼ 15 modes. This scheme allows for shifts of
the input squeezed states in phase space. Such displacements
are useful when anticipating applications of Gaussian boson
sampling, as sketched in Sec. VIII. A direct implementation
of a scheme of approximating vibronic spectroscopy with
imperfect quantum optics as a variant of boson sampling was
reported by Clements et al. (2018).

C. Further implementations of quantum random sampling

The previously discussed schemes of quantum random
sampling are by far the most common schemes that have been
implemented experimentally. That said, platforms aside from
superconducting and photonic architectures have also been
considered, sometimes even leading to an actual experimental
realization. Wang et al. (2020) suggested overcoming the
challenge of preparing and detecting bosonic quantum states
in photonic implementations and implemented a boson-
sampling protocol in a two-mode superconducting device,
thereby deviating from the common implementations of boson
sampling on photonic platforms. This is used for simulating
molecular vibronic spectra, as suggested by Huh et al. (2015).
Quantum random sampling in the measurement-based

model of quantum computing was recently demonstrated
on small scales by Ringbauer et al. (2022). The advantage
of this approach over gate-based circuits is that, in principle,
significantly less device control is required. This is because all
entangling gates are fixed and can be applied in a single layer,
and only a single layer of random Z-type rotations are required
(Bermejo-Vega et al., 2018; Haferkamp, Hangleiter, Bouland
et al., 2020). The trade-off of this approach compared to a
gate-based one is therefore one between depth of the circuit
and space: in order to achieve a hard-to-simulate circuit
comparable to that of Arute et al. (2019), 2500–10 000 qubits
are presumably required. Ringbauer et al. (2022) made this
trade-off explicit: By “recycling”—i.e., measuring and
repreparing—certain qubits during the computation while
keeping the remaining qubits coherent, depth of the physically
implemented circuit can be traded with the number of qubits
available in the device. A major advantage of the measure-
ment-based approach to quantum random sampling is that it is
possible to efficiently witness and measure the quantum
fidelity using single-qubit measurements, as discussed in
Secs. V.C.1 and V.C.2 (Hangleiter et al., 2017; Bermejo-
Vega et al., 2018; Hangleiter, 2021). This allows one to
perform the benchmarking and verification methods discussed
in Sec. V.B.3 using the quantum fidelity, and thereby circum-
vent important caveats of the XEB fidelity.
Along similar lines, to lessen the burden of actually

explicitly implementing random circuits in a gate-based
approach, a number of schemes have been suggested
that would in effect give rise to such circuits, but they are
based on physical interaction mechanisms. For example,
Muraleedharan, Miyake, and Deutsch (2019) considered the
complexity of a probability distribution associated with an

ensemble of noninteracting massive bosons undergoing a
quantum random walk on a one-dimensional lattice. These
settings are potentially more feasible to implement in cold
atomic systems. In fact, the coherent cold collisions that have
already been experimentally implemented (Mandel et al.,
2003) in systems of neutral ultracold atoms in optical lattices
gives rise to precisely the interaction required for the
implementation of the schemes of Bermejo-Vega et al.
(2018) and Haferkamp, Hangleiter, Bouland et al. (2020),
which allows for efficient quantum verification.

VII. CLASSICALLY SIMULATING QUANTUM RANDOM
SAMPLING SCHEMES

Random quantum sampling schemes are set up to show-
case the computational power of quantum devices to dem-
onstrate that there are computational advantages of
paradigmatic quantum computers over classical computers.
The rigorous statements discussed in Sec. IV always involve
a separation in the scaling of classical versus quantum
computations. Such statements show that as systems are
scaled up the speed of the respective quantum computations
will at some point certainly surpass that of every classical
algorithm. But how large does one actually have to make a
quantum sampler such that it cannot be simulated classi-
cally? In other words, what is the finite-size behavior of the
complexity of simulating quantum random sampling?
This question be explicitly answered only for specific

classical algorithms at a time.34 The effort to devise such
specific algorithms constitutes a crucial part in the quest of
demonstrating a quantum advantage and thereby violating the
extended Church-Turing thesis: One has to demonstrate not
only that the scaling is possible in principle but also that the
frontier determined by the best available classical algorithm
run on the fastest available supercomputers can be surpassed
using actual quantum devices.
We can conceive of this situation as a competition between

classical algorithms with an unfavorable scaling of the com-
plexity, but run on extremely large supercomputers, and small
but extremely noisy quantum devices. In the absence of
quantum error correction, both competitors will hit a ceiling
sooner or later, and the competition between classical and
quantum devices is determined by which ceiling is more
favorable: Roughly speaking, the quantum device, which is
constrained by the noise present in current-day experiments,
will hit the simulation barrier as the circuit size reaches the
tolerated error divided by the local gate error. Conversely, the
classical algorithm, which is constrained by the scaling of
the simulation task, will hit a barrier once the time or space
complexity reaches the tolerable limit determined by the speed
and memory size of current-day supercomputers.
What is and what is not possible in this situation depends

heavily on the precise setting considered: Is the goal to exactly
simulate the sampling task, to sample from a distribution close
in the TVD, or to simulate a quantum experiment while
including realistic amounts and sources of noise? Or is it to

34Alternatively, one can invoke fine-grained complexity assump-
tions, as discussed in Sec. IV.E.
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score at least as high as the quantum device on a given
benchmark, potentially via a means other than simulating the
sampling task? Depending on the task at hand, a classical
simulation algorithm may be able to exploit weaknesses in the
benchmark, or optimally exploit the available time and space
resources to beat the performance of a noisy quantum device.35

In this section, we provide an overview of classical
simulation algorithms for different tasks related to quantum
random sampling. We categorize those tasks into two catego-
ries: first, computing the output probabilities, a task that
inevitably requires exponential precision for random
instances, as almost all probabilities are exponentially small
(recall Sec. V.A), and second, simulating the sampling task.
Computing the output probabilities is first and foremost
required as a subroutine of most sampling algorithms, and
also for the estimation of the XEB fidelity of an experimental
system. In contrast, the goals of simulating the sampling task
are manifold: the goal can be to sample from the ideal output
distribution or a distribution close to it, it can be to simulate a
noisy quantum experiment as well as possible, or it can be to
achieve high scores on a given quantum advantage benchmark
such as the XEB fidelity.

A. Sampling versus computing output probabilities

Computing the output probabilities of a random quantum
computation, or strongly simulating it, involves computing
the output amplitudes of a quantum circuit. On a high level,
most classical algorithms for computing probabilities can be
broadly categorized into Feynman-type algorithms and
Schrödinger-type algorithms (Aaronson and Chen, 2017).
Consider a quantum circuit with m gates acting on n qubits.
A Schrödinger algorithm stores and consecutively updates the
entire state using ∼2n space and ∼m2n time. A Feynman
algorithm, in contrast, makes use of a path-integral formu-
lation of the output amplitudes [recall Eq. (19)] that expresses
them as a sum of ∼4m many products of m matrix entries of
the quantum gates in the circuit. Such an algorithm computes
each term and sums all terms up consecutively, therefore
requiring merely ∼mþ n space. In fact, Aaronson and Chen
(2017) showed that Feynman algorithms can have a much
reduced run-time for local circuits that can be decomposed
into d layers of m=d gates by recursively computing sums
over paths over portions of the circuit. This gives rise to a run-
time scaling of O(nð2dÞnþ1) for general circuits and 2Oðd ffiffinp Þ

for circuits on a two-dimensional grid, while the space
consumption scales as n log n. Typically m ≫ n and hence,
depending on the setting at hand, space or time may be the
limiting factor and determine the choice of simulation
algorithm.
In practice, more intricate algorithms are used, but the basic

idea often remains the same. For qubit-based architectures,
most importantly universal random circuits, hybrid
Schrödinger-Feynman-type algorithms turn out to be the most
efficient in practice. The most important tool here is so-called

tensor-network algorithms [see Bridgeman and Chubb (2017)
for an introduction], which allow the exploitation of locality
structure in quantum circuits. For boson-sampling schemes,
Feynman algorithms are natural since the output probabilities
are expressed in terms of matrix polynomials in the entries of
an n × n linear-optical unitary, albeit with exponentially many
terms. Locality cannot in most instances be meaningfully
exploited for those systems.
We now turn to the task of sampling from the output

distribution of a quantum circuit, or weakly simulating it.
Computing the probabilities is not sufficient for sampling
from a given distribution, and in fact is not even necessary,
however. Having said that, computing the output probabilities
is often the key subroutine of sampling algorithms, and all
methods of sampling that we are aware of make use of that
subroutine. We sketch the most important ideas for how to
sample from a given distribution that are used in simulations
of quantum random sampling.
First, there are ancestral sampling techniques. Here the idea

is that in order to sample from a multivariate distribution [say,
a distribution p over length-n bit strings with probabilities
pðx1;…; xnÞ], we can iteratively sample from the marginal
distributions of larger and larger portions of the bit string. In
the first step of such an algorithm, we sample a bit y1 from the
marginal distribution p1 ¼

P
x2;…;xn pð·; x2;…; xnÞ, in the

second step we sample from the conditional distribution
pð·jy1Þ, etc. The key obstacle to notice in this approach is
that it requires an algorithm not only for individual proba-
bilities but also for all marginals of the distribution, a
potentially considerably more difficult task, as it naively
requires summing over exponentially many probabilities.
Second, there are rejection-sampling techniques. The idea

of rejection sampling is to generate a sample y from a
distribution q, as well as a uniformly random number u ∈
½0; 1� in the first step. The distribution q should be such that we
can efficiently sample from it and it must satisfy pðxÞ ≤ cqðxÞ
for some number c and all x. In the second step, the sample x
is accepted if ucqðxÞ ≤ pðxÞ and rejected otherwise. If it is
rejected, the procedure is repeated. The expected number of
probabilities that need to be computed per sample is given by
c. Rejection sampling has a natural geometrical intuition:
Suppose that q is the uniform distribution over length-n bit
strings and c ¼ 2n. We then sample uniformly random points
in the rectangle f0; 1gn × ½0; 1� and accept a sample if it lies
within the histogram of the distribution p.
There are also so-called Markov-chain Monte Carlo tech-

niques. Here the idea is to set up a Markov chain of bit strings
x1 → x2 → � � � → xm that converges to the target distribution
p as its stationary distribution. This Markov chain is specified
by the probability PtðxÞ of being in state x at time step t
and rates Wx→x0 for the transition x → x0 that determine the
probability of moving from state x to state x0. The overall idea
is to construct the Markov chain based on a proposal
distribution q. The proposal distribution determines the
probability qðx0jxÞ of moving to state x0 given that the
Markov chain is in state x. The transition probabilities are
then given by

Wx→x0 ¼ Pr½acceptjðx0jxÞ�qðx0jxÞ: ð197Þ

35A quantitative analysis of the competing scalings for the task of
sampling from the exact or noisy distribution as measured by the
linear XEB fidelity was made by Zlokapa, Boixo, and Lidar (2023).
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A simple choice of the acceptance probability is the
Metropolis choice,

Pr½acceptjðx0jxÞ� ¼ min

�
pðx0Þqðxjx0Þ
pðxÞqðx0jxÞ ; 1

�
: ð198Þ

Equation (198) has a favorable property in that it depends only
on the ratio pðx0Þ=pðxÞ. This means that one need not be able
to compute those probabilities directly, but rather only a
function f ∝ p.

B. Simulating universal circuit sampling

The best studied family of quantum circuits is universal
random circuits, particularly the circuits implemented by
Arute et al. (2019) and, subsequently, Wu et al. (2021) and
Zhu et al. (2022). Recall that these circuits comprise
single-qubit gates

ffiffiffiffi
X

p
;
ffiffiffiffi
Y

p
;
ffiffiffiffiffi
W

p
and the two-qubit gate

iSWAP� ¼ fSimðπ=2; π=6Þ. The goal of large-scale simula-
tions performed for this task has been to compare the
performance of inefficient classical algorithms, potentially
including approximations and the noisy quantum devices in
the lab. The methods devised for this task have similar
complexity for the task of computing the probabilities and
simulating the experiment since amplitude estimation domi-
nates the computational cost. Nonetheless, the number of
amplitudes required for sampling typically scales linearly in
the number of samples, and hence producing millions of
samples can be prohibitively costly, while computing a single
amplitude is achievable.
The figure of merit in terms of which the success of these

simulations is measured is either the fidelity of the classical
representation of an approximate quantum state in cases in
which such a representation exists or the XEB fidelity of the
produced classical samples as a classical benchmark that acts
as a placeholder for the circuit fidelity.

1. Using tensor networks to simulate quantum circuits

The most important tool for the simulation of universal
random circuits is tensor networks (Markov and Shi, 2008;
Boixo et al., 2017). The basic idea of a tensor network is to
express a quantity of interest in terms of a network of multi-
index tensors in which the edges correspond to a prescription
to sum over the corresponding index. Amplitudes of quantum
circuits are therefore naturally tensor networks since two-
qubit gates are rank-4 tensors, single-qubit gates are rank-2
tensors, and a product state is simply a product of vectors
(rank-1 tensors). The circuit description is merely a rule
specifying how to connect those tensors. To compute the
quantity of interest, one then needs to contract the tensors
across their edges, i.e., perform tensor multiplication by
summing over the corresponding index; see Fig. 12. The
contraction complexity is determined by the largest dimension
of an index that appears in a particular contraction scheme,
which is roughly determined by the tree width of the under-
lying graph (Markov and Shi, 2008).
While the properties of one-dimensional efficient tensor

networks can be computed efficiently in the dimensions and
size of the tensor network, this no longer generally holds true

for higher-dimensional geometries that do not admit a linear
contraction scheme (Schuch et al., 2007; Haferkamp,
Hangleiter, Eisert, and Gluza, 2020). Nonetheless, it often
remains possible to find contraction schemes that scale much
better than the worst-case run-time in practice.
Tensor networks admit various sampling algorithms. One

can make use of ancestral sampling because the data structure
of a tensor network naturally admits the computation of
marginals at a cost that is similar to the cost of computing
an individual output amplitude (Ferris and Vidal, 2012). Still,
this method is costly since every sample requires n different
contractions of the circuit tensor network.
For the output distributions of random universal circuits,

variants of rejection sampling are much more efficient,
however. This is because the output distribution of random
universal circuits is exponentially (or Porter-Thomas) distrib-
uted, which implies that the largest probability is exponen-
tially small with inverse polynomial failure probability over
the choice of the random circuit [recall Eq. (161)]. Choosing
the uniform proposal distribution and the bound c ¼
logð2n=ϵÞ in the rejection-sampling algorithm (see
Sec. VII.A), one can therefore simulate Porter-Thomas-dis-
tributed probability distributions for n ¼ 49 up to error ϵ ¼
10−3 using 41 probabilities per bit string on average (Markov
et al., 2018). Further improving on this, Markov et al. (2018)
introduced a “frugal” sampling scheme that reduces the
fraction of rejected strings. To do so, frugal rejection sampling
chooses c such that the upper tail of the distribution with
probabilities > c=2n has a fixed weight ϵ and accepts all
proposed strings xj with unit probability if their probability is
larger than 2npðxjÞ=c; see Fig. 13. This effectively reduces the
probability of such outcomes to c=2n while improving the
average number of probabilities required per sample and
making them independent of n. At the same time, it introduces
an error of the sampled distribution compared to the target
distribution. Quantitatively, this error is given by
2 exp½−c=ð1 − e−cÞ� as measured by the TVD of the sampled
distribution to the ideal one assuming exponentially distrib-
uted probabilities. For instance, for c ¼ 10 it is given
by ∼10−4.

FIG. 12. In a tensor network every edge corresponds to a rule to
sum over the corresponding index of the neighboring tensors. In a
quantum circuit two-qubit gates are represented as four-index
tensors (boxes) and single-qubit computational-basis states (ver-
tices) are single index tensors or vectors. Contracting an edge
with a neighboring computational-basis state (indices i and j)
corresponds to selecting a slice of the neighboring tensor.
Contracting an edge between two arbitrary tensors (index l)
corresponds to summing over the entries of the neighboring
tensors over that index, resulting in a new, larger tensor.
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A further important advantage of rejection sampling over
ancestral sampling is that all probabilities can be precom-
puted. This is crucial because it allows a more efficient use of
the contractions of a tensor network. Instead of contracting a
new tensor network for each amplitude, the desired output
strings are stored in a large tensor such that only a single
(albeit slightly more complex) contraction is required for the
entire batch. For instance, in the algorithm of Markov et al.
(2018) saving 107 amplitudes instead of a single one leads to
only a 2.76-fold slowdown of the simulation.

2. Simulation of random quantum circuits

The question of how to approximately simulate random
quantum circuits thus boils down to the question of how to
best contract the tensor network representing the quantum
circuit. In the following, we further discuss various techniques
for doing so.

a. State-vector simulation

The simplest algorithms in some sense for the simulation
of quantum circuits merely store the entire quantum state
and time evolve that state (De Raedt et al., 2007, 2019;
Smelyanskiy, Sawaya, and Aspuru-Guzik, 2016; Häner and
Steiger, 2017; Pednault et al., 2019). Here a key challenge is
to exploit all the available storage on a large computer. For
this, the state-vector simulation needs to be distributed among
the different parts of the storage. To our knowledge, the largest
such simulation runs on 49 (7 × 7) qubits (Pednault et al.,
2017; Li et al., 2018).
An alternative and arguably more natural way of storing

multipartite quantum states is given by a tensor network, as
previously discussed. To compute all amplitudes of the output
state of the quantum circuit, one can contract the tensor
network along the time dimension, giving rise to a tensor-
network representation of the output state. The description
complexity of a tensor-network state is bounded by ∼n2n,
while the simulation time scales as ∼m2n in the worst case.
This approach has been pursued in a number of works
(McCaskey et al., 2018; Guo et al., 2019; Pan et al., 2020;

Zhou, Stoudenmire, and Waintal, 2020), building on work in
the simulation of quantum many-body systems (Schollwöck,
2005; Verstraete, Cirac, and Murg, 2008). While tensor
networks can efficiently approximate states with low entan-
glement (Schollwöck, 2005), this is not the case for random
quantum circuits that have high entanglement by construction.
Indeed, an important feature of tensor-network algorithms

is that they allow for a natural way of relaxing the precision of
the simulation. When a two-qubit gate is contracted into a
two-site tensor network, the dimension of the tensors are
multiplied. To keep the storage effort constant, the usual
approach is to perform a singular-value decomposition of the
new, larger tensor and to then truncate the smallest singular
values. Thus, the tensor size is kept fixed. For quantum states
with low entanglement the singular-value distribution will be
nontrivial, allowing for an efficient approximation scheme.
For random quantum circuits, however, the singular-value
distribution tends to be flat, so a reduction of the bond
dimension results in large errors (Markov and Shi, 2008; Guo
et al., 2019).
The introduced error rate due to such truncation can be

viewed as analogous to a finite gate fidelity in a real quantum
circuit. Such a sequential compression was pursued for one-
and two-dimensional quantum circuits by Zhou, Stoudenmire,
and Waintal (2020). Using this approach, fidelities of the
output state on the same order of magnitude as seen in the
experiment by Arute et al. (2019) can be reached for a two-
dimensional circuit with CZ entangling gates acting on
54 qubits. These simulations could be carried out on a laptop
computer in a few hours. For 20 qubits, the linear XEB fidelity
of the resulting state classically can be computed using the
exact probabilities that are obtained from an untruncated
tensor-network contraction. Note that this approach does not
yet achieve the advantage regime of FXEB ≈ 0.002 for the
iSWAP

* entangling gate, which is considerably more difficult
to simulate. Zhou, Stoudenmire, and Waintal (2020) estimated
that this would require a bond dimension of roughly 104,
which is an order of magnitude above what is needed for
the CZ gate.
Even for algorithms that do not involve approximations, a

clever choice of contraction order can yield better run times,
however. For instance, Guo et al. (2019) provided a simu-
lator for quantum circuits acting on a two-dimensional lattice
based on specific contraction strategies of the tensor-network
representation of the quantum state after the circuit has been
applied. For a lattice of side length L and a circuit of depth d,
their most generic contraction scheme achieved space and
time complexities of the resulting algorithm that scale as
2dðLþ1Þ=8 and L22dðLþ1Þ=8, respectively. This allowed for the
computation of a single output probability of a random
quantum circuit with CZ entangling gates of depth 26 on
10 × 10 qubits on a supercomputer in 9 min and a circuit of
depth 40 on 7 × 7 qubits in 31 min and 92.51 terabytes
memory usage.

b. Hybrid algorithms

Implementing the idea of Aaronson and Chen (2017) to
balance memory consumption and computation time in a
Schrödinger-Feynman hybrid algorithm, Chen, Zhang et al.

FIG. 13. In frugal rejection sampling, we sample a point ðx; uÞ
uniformly at random over the area f0; 1gn × ½0; c=2n�. A sample
is accepted if u ≤ pðxÞ (green area) and rejected otherwise.
For Porter-Thomas exponentially distributed outcome probabil-
ities (solid green line), this will result in a TVD error ϵ ¼
2 exp½−c=ð1 − e−cÞ� of the actually sampled distribution (dashed
pink line) compared to the target distribution.
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(2018), Chen, Zhou et al. (2018), and Li et al. (2018)
introduced “slicing algorithms” in which the system is sliced
into smaller subcircuits that are independently simulated.
Every time an entangling gate occurs between those sub-
circuits, the number of independent circuits to be simulated is
multiplied by the Schmidt product rank of the entangling gate.
By judiciously choosing the slices, one can thus optimally
balance the memory consumption and computation time.
All of the previously mentioned simulations used CZ

entangling gates. In the universal circuit sampling experiments
(Arute et al., 2019; Wu et al., 2021; Zhu et al., 2022), the
entangling gates are ones that are close to the iSWAP

* gate,
however. This gate is significantly more challenging to
simulate. This is because while the CZ gate can be decomposed
into a sum of two equally weighted product operators as
CZ ¼ j0ih0j ⊗ 1þ j1ih1j ⊗ Z, the iSWAP

* gate saturates the
decomposition rank of 4 with equal magnitude weights as

iSWAP� ¼ j0ih0j ⊗ j0ih0j þ e−iπ=6j1ih1j ⊗ j1ih1j
− ij0ih1j ⊗ j1ih0j − ij1ih0j ⊗ j0ih1j: ð199Þ

Roughly speaking, the effort of simulating circuits including
iSWAP-like gates will therefore be quadratically larger in the
number of gates across partitions of the circuit compared to
circuits with CZ entangling operations.
Markov et al. (2018) exploited such a decomposition to

match a given fidelity in a classical simulation. They made use
of the observation that all two-qubit gate paths have equal
weight in absolute value, while the remainder of the circuit is
chaotic, meaning that different paths contribute roughly
equally to the final amplitude (Villalonga et al., 2020).
This implies that one may estimate an output probability to
a given fidelity by simply summing over a fraction of the paths
given by the fidelity. This allows the simulator to produce a
(correlated) sample ofM bit strings with target fidelity f at the
same cost as computing fM noiseless amplitudes.
Villalonga et al. (2019) further showed that even faster

sampling can be achieved by recycling an initial tensor
contraction to obtain contractions for nearby bit strings.
The resulting simulation algorithm has been executed on
one of the fastest supercomputers available to simulate with
fidelity 0.5% depth-40 7 × 7 random circuits with CZ entan-
gling gates in 2.44 h, and depth-24 11 × 11 circuits in 0.28 h
(Villalonga et al., 2020).
A number of works have aimed at finding the optimal way

of contracting the corresponding tensor networks by finding
good contraction paths that keep the tensors relatively small
(Chen, Zhang et al., 2018; Chen, Zhou et al., 2018; Guo et al.,
2019; Huang et al., 2020; Pan et al., 2020; Schutski et al.,
2020; Gray and Kourtis, 2021; Guo, Zhao, and Huang, 2021).
An approach that is closely related to tensor-network con-
traction was introduced by Boixo et al. (2017). This approach
makes use of undirected graphical models that are probabi-
listic models for which a graph expresses the conditional
dependence structure between random variables (Barber,
2012).36 The key idea of this approach is the following:

When representing the quantum circuit by a product of unitary
matrices acting at different clock cycles, expressions for
probabilities can be viewed as a path integral with individual
paths formed by a sequence of the computational-basis states.
The dependencies can then be cast into the form of a
probabilistic graphical model, except that in contrast to actual
probabilistic models, the factors in general take complex
values. To evaluate the resulting expressions, a new variant of
a variable elimination algorithm (Murphy, 2012) has been
suggested. This algorithm allows one to sample from the
output distribution of circuits featuring a sufficiently small tree
width, as well as to estimate the XEB benchmark. Chen,
Zhang et al. (2018) and C. Huang et al. (2021) further
improved upon this approach and combined it with tensor-
network contraction techniques for an application in a
parallelized architecture.
Other interesting variants of circuit contraction schemes

were proposed by Chen et al. (2020), inspired by quantum
teleportation, to swap space and time in order to take
advantage of low-depth quantum circuits. Finally, Kalachev,
Panteleev, and Yung (2021) devised a “multitensor-
contraction scheme” in which the tensor-network contraction
is performed by assigning a so-called contraction tree with a
recursive relation. In this relation, certain precomputed sub-
expressions are reused as often as possible to speed up the
overall computation. In this way, they are able to compute
individual probabilities of Sycamore circuits with a depth of
up to 16.

c. Simulating the experiment of Arute et al.

The previously mentioned methods have been used to
approximately simulate different random circuits or different
sizes than those performed by Arute et al. (2019), Wu et al.
(2021), and Zhu et al. (2022). To fairly compare the noisy
experiment with a classical algorithm, it is necessary to
perform the same task (or at least fairly comparable tasks)
in the first place, however. It is not fully clear what exactly that
task should be. Ideally, the task on which we compare
quantum and classical algorithms is to produce samples from
the correct probability distribution. However, this point of
view has the issue that it is not possible to verify the
distribution. Arute et al. (2019) seemed to have precisely
this in mind when they argued that the linear XEB fidelity is a
placeholder for the quantum fidelity and performed further
tests to corroborate this, such as computing the logarithmic
cross entropy and estimating the entropy of the sampled
distribution. Alternatively, we could think that the task on
which the experiment has to be beaten is merely to score high
on the XEB benchmark. This interpretation has the advantage
that there is a clear-cut benchmark, which, while not effi-
ciently computable, can at least be sample-efficiently esti-
mated (see Sec. V.B.3) and is well defined.
The latter approach was taken by Pan and Zhang (2022).

They devised a tensor-contraction method that allowed them
to exactly compute a certain subset of the probabilities. The
basic idea of their “big head” algorithm is to identify a
bottleneck in the contraction of the tensor network and split
the tensor network into two parts across that edge, which is
close to the output. This gives rise to a large “head part” of the

36As such, they are closely related to tensor networks (Glasser
et al., 2019).
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network and a “tail part” of the network. The output qubits in
the head part of the network are projected onto a fixed bit
string s1 ¼ ð0;…; 0Þ. The tail part of the network is much
smaller than the head part and contains a subset of the output
qubits. Thus, the head part of the network need only be
contracted once, while the output amplitude of a bit string
ðs1; s2Þ can be computed as the inner product of the vectors
corresponding to the contractions of the head and tail parts.
In this way, Pan and Zhang (2022) were able to obtain 221

correlated bit strings, and postselecting onto the 106 largest
ones gave a XEB score of 0.736. The probabilities computed
by the algorithm are exact. Y. A. Liu et al. (2021) reduced the
run-time of the algorithm to a few minutes by making use of a
large supercomputer.
Now this method arguably does not produce uncorrelated

or independent samples from the correct distribution and
does therefore not achieve the sampling task associated with
the universal circuit. X. Liu et al. (2021) made use of the
algorithm of Pan and Zhang (2022) in order to produce
perfect samples from the target distribution. To this end, they
left fewer legs of the tensor network open (6 instead of 21)
and used the outcomes to produce a single perfect sample of
depth-20 circuits in 276 s on a supercomputer. To produce
many samples with smaller XEB fidelity, these perfect
samples can be diluted by uniform samples, as proposed
by Huang et al. (2020). Producing 106 samples with a XEB
fidelity of 0.2% is therefore equivalent to producing 2000
perfect samples.
Pan, Chen, and Zhang (2022) pursued a different strategy

and achieved the approximate sampling task by artificially
introducing approximations, and using a sparse representa-
tion of the output state. First, they “drilled holes” into the
tensor network by judiciously removing a few of its edges at
various positions in the circuit. To achieve this, they removed
k pairs of edges of the iSWAP

* gate, which allows them to
significantly reduce the complexity while decreasing the
fidelity of the state by roughly a factor of 2−2k. Second,
they computed the output probabilities associated with L
uniformly random groups of l correlated bit strings. By
removing 2k ¼ 8 edges from the tensor network they were
able to compute 226 uncorrelated batches of correlated
probabilities. Using those they obtained 220 independent
samples from a state with a fidelity or, equivalently, XEB
fidelity of ≈0.37%. The simulation has a cost of about 15 h
on a small cluster of 512 GPUs. The samples produced in this
way passed the same tests that were performed by Arute et al.
(2019) to validate the experimental samples.

An analogous approach was pursued by Kalachev et al.
(2021), who devised a slicing procedure based on maximizing
the norm of partially summed slices to match a targeted
fidelity. As with the approach of Pan, Chen, and Zhang
(2022), this gives rise to batches of correlated probabilities.
Kalachev et al. (2021) further provided an optimized sampling
procedure that minimized the sampling overhead in terms of
how many probabilities needed to be computed to a factor of
2. They estimated that this would allow them to sample from a
distribution with a fidelity of 0.2% using 15 months time on a
single GPU. By postselecting on the largest amplitudes in a
number of batches, they were able to spoof the linear XEB
benchmark with a value of 0.47% in 4 h on a single GPU.
In a similar spirit, and as previously discussed in more

detail, Zhou, Stoudenmire, and Waintal (2020), Barak, Chou,
and Gao (2021), and Gao et al. (2021) provided evidence that
weaknesses in the linear XEB fidelity can be exploited in
order to devise classical algorithms with a score comparable to
that of noisy quantum devices. Specifically, the algorithm of
Gao et al. (2021) scored only 1 order of magnitude below the
experiment of Arute et al. (2019) using a laptop computer. It is
projected to keep roughly constant score for larger circuits,
while the experimental score is expected to further decrease
exponentially. At the same time, the quantum fidelity of the
quantum state from which those samples were produced is
presumably exponentially small. It may therefore remain
difficult to sample from the output distribution of a state
with comparably high fidelity.
In Table II we compare the most advanced algorithms for

approximately computing the output probabilities of Sycamore
circuits. These algorithms are used as crucial subroutines in
algorithms that approximately sample from the output distri-
bution of those circuits, and algorithms that perform the weaker
task of outputting samples with a high XEB score.
Summarizing the previous discussion, it is fair to say that

the experiment of Arute et al. (2019) has been simulated on
conventional computers, probably most convincingly by Pan,
Chen, and Zhang (2022). However, all of the simulation
methods mentioned here fail already for the slightly larger
implementation of universal circuit sampling by Zhu et al.
(2022). We stress that our discussion once again highlights
how difficult it is to fairly compare different spoofing
strategies to experimental samples, either of which can be
validated only by incomplete methods such as cross-entropy
benchmarking. For example, one can argue that the bit strings
produced by Pan and Zhang (2022) have already outper-
formed the experimental samples in terms of the relevant

TABLE II. Comparison of the time and space complexity of computing bit string probabilities of Sycamore circuits with 53 qubits for selected
simulation schemes in terms of the total number of floating point operations (FLOPs). Data from Kalachev, Panteleev, and Yung (2021),
Kalachev et al. (2021), Pan, Chen, and Zhang (2022), and Pan and Zhang (2022).

Reference Depth Bit strings Time complexity (FLOPs) Space complexity

Kalachev, Panteleev, and Yung (2021) 16 2 × 106 Uncorrelated 1.1 × 1019 ?
Gray and Kourtis (2021) 20 1 Uncorrelated 3.1 × 1022 227

Huang et al. (2020) 20 64 Uncorrelated 6.7 × 1018 229

Pan and Zhang (2022) 20 2 × 106 Correlated 4.5 × 1018 230

Pan, Chen, and Zhang (2022) 20 226 Uncorrelated and correlated 3.5 × 1018 230

Kalachev et al. (2021) 20 225 Correlated 6.9 × 1018 ?
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benchmark, the XEB fidelity, since this is the benchmark that
Arute et al. (2019) have decided on as the central quantity
characterizing the quality of their experiment (granting that
they did perform further benchmarks). But one could equally
well argue that the samples of Arute et al. (2019) are actually
approximately sampled from the targeted distribution. In this
reading, a high XEB fidelity is one of many features that
those samples should have. In addition, they should be
independent samples, should have a high entropy, and could
even be sampled from the output distribution of a quantum
state that has high fidelity with the ideal target state.
Evidence for all of those features was collected in the
experiment of Arute et al. (2019) by means of various tests.
In this reading only the samples of Pan, Chen, and Zhang
(2022) can actually be said to “reproduce” the experiment, as
viewed through those tests. This discussion highlights the
importance of clearly identifying and stating reproducible
criteria under which we will consider quantum random
sampling to be successfully achieved, on a classical or a
quantum computer and in the absence of an unambiguous
and efficient means of verifying samples.

d. Efficient algorithms

While the previous simulation algorithms have exponential
run times or result in large errors, Napp et al. (2022) provided
both numerical and analytical evidence that shallow (depth-3)
universal circuits in a two-dimensional brickwork architecture
can be strongly simulated as well as efficiently weakly
simulated within a constant total-variation distance error.
They did so in a twofold approach: They first numerically
demonstrated approximate simulation of random universal
circuits in a 400 × 400 brickwork architecture using a tensor-
network algorithm (which is worst-case hard to simulate
strongly). They then provided analytical evidence for easiness
using a mapping to a recently developed model consisting of
alternating rounds of random unitaries and weak measure-
ments (Bao, Choi, and Altman, 2020; Jian et al., 2020); see
also Sec. IV.D.6.

e. Alternative simulation schemes

Yet another approach, of an entirely different type, is to
make use of the so-called stabilizer decomposition of quantum
states. This method is based on the observation that stabilizer
states, that is, states generated by Clifford circuits can be
efficiently simulated both weakly and strongly (Gottesman,
1997). Circuits that comprise additional non-Clifford gates
can then be expressed as linear combinations of Clifford
circuits (Aaronson and Gottesman, 2004; Bravyi and Gosset,
2016; Bennink et al., 2017; Qassim, Pashayan, and Gosset,
2021). The complexity of this scheme grows exponentially in
the stabilizer rank χ of a quantum state, that is, the number of
stabilizer states in this decomposition. Since the number of
non-Clifford gates typically grows much faster than the
number of qubits, this approach is currently not practically
useful, however.
To summarize the previously mentioned efforts, we con-

clude that, using sophisticated classical algorithms, modern
supercomputers can keep track of existing experimental
schemes of universal circuit sampling.

3. Analysis of noise

Intuitively speaking, noise should render the simulation of
quantum random sampling schemes less computationally
demanding. In an idealized scenario, if local depolarizing
noise with constant strength is applied at the end of a quantum
circuit, the output distribution will be close to the uniform
distribution. However, often it is a priori unclear how to
exploit specific types of noise in a particular simulation
algorithm and, more specifically, which noise levels will be
classically simulable. It has therefore been a subject of some
research to delineate regions—determined by the type and
strength of noise—in which quantum random sampling
schemes are efficiently simulable via classical algorithms.
Conversely, one can ask whether it is possible to mitigate
certain forms of noise without resorting to quantum error-
correction techniques.
Early on Aharonov and Ben-Or (1996) had already con-

sidered the effect of depolarizing noise on the complexity of
quantum circuit simulation. They found a polynomial-time
algorithm for noisy circuits whenever the depolarizing fidelity
is higher than some threshold. More specifically to the case
of quantum random sampling, Bremner, Montanaro, and
Shepherd (2017) showed that IQP circuits subject to local
depolarizing noise at the end of the circuit are classically
simulable for any constant noise strength, provided the ideal
distribution in question is sufficiently anticoncentrated. The
key idea of their simulation scheme is to make use of a
simulation algorithm based on a sparse Fourier representation
of the output distribution for sufficiently anticoncentrated IQP
distributions (Kushilevitz and Mansour, 1993; Schwarz and
van den Nest, 2013). For measurement depolarizing noise
with strength ϵ and distributions with collision probability
≤ α=2n, their algorithm runs in time Oðnlogðα=δÞ=ϵÞ to sample
from the target distribution up to TVD δ. This simulation
scheme can be further extended to universal circuits (Yung and
Gao, 2017) using a measurement-based embedding (Gao,
Wang, and Duan, 2017) and then exploiting the algorithm of
Bremner, Montanaro, and Shepherd (2017) on individual
branches of that embedding. It may not be clear, however,
to what extent the considered type of noise channel (local
depolarizing noise at the end of the circuit) is actually realistic
and reflective of common physical sources of quantum noise
(Boixo, Smelyanskiy, and Neven, 2017; Boixo et al., 2018).
It has also been noted that, asymptotically, such Fourier-
based simulation algorithms are no more efficient than
trivial algorithms (Boixo, Smelyanskiy, and Neven, 2017).
Nonetheless, there may well be an intermediate regime in
which an advantage can be gained by exploiting the specific
structure of the Fourier coefficients.
Following up on this, Gao and Duan (2018) proved

convergence to the uniform distribution for local Pauli noise
associated with single-qubit gates. This convergence result
was recently refined by Dalzell, Hunter-Jones, and Brandão
(2021) and Deshpande, Niroula et al. (2022), who further
delineated the regime in which we expect classical simulation
algorithms to be feasible; recall Sec. IV.F.1. From the result of
Deshpande, Niroula et al. (2022), it follows that random
circuits with a constant amount of noise are efficiently
simulatable up to inverse polynomial TVD (by the trivial
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algorithm that simply outputs uniform samples) whenever the
depth grows as ωðlog nÞ, since in this case the TVD between
the noisy output distribution and the uniform distribution is
smaller than any inverse polynomial.
Gao and Duan (2018) made a significant step forward

from this and gave an average-case simulation algorithm for
the output distributions of universal quantum circuits with a
noiseless Clifford part and Pauli noise on non-Clifford
gates with noise strength η. The output distribution of these
noisy circuits is nontrivial in that it is far from uniform yet
simulable up to TVD error ϵ with a run-time of nOðlog 1=ϵÞ=η,
and hence efficient for constant ϵ; η > 0. This algorithm runs
in quasipolynomial time only if the goal is to simulate the
noisy circuit up to inverse polynomial TVD. This regime is
significant since an algorithm that can simulate a noisy
experimental circuit only up to constant TVD can be
efficiently distinguished from the actual noisy experiment
at polynomial overhead. Building on this algorithm of Gao
and Duan (2018), Aharonov et al. (2022) closed this gap and
found an algorithm that can efficiently simulate a noisy
universal random circuit with constant local depolarizing
noise after every gate up to any inverse polynomial TVD
whenever the output distribution anticoncentrates. Since
anticoncentration requires at least logarithmic depth
(Dalzell, Hunter-Jones, and Brandão, 2022), the algorithm
of Aharonov et al. (2022) is therefore nontrivial precisely in
the regime of logarithmic depth. Given previous results, this
is the regime in which one might hope for an asymptotic
quantum advantage even for quantum circuits with a constant
amount of noise (Deshpande, Niroula et al., 2022); see our
discussion of these results in Sec. IV.F.1. These results
hence show that random quantum circuits of logarithmic
depth do not offer a “sweet spot” at which anticoncentration
already sets in, and yet constant noise levels are not yet
overwhelming.
We now sketch the idea of the algorithm of Gao and

Duan (2018) and Aharonov et al. (2022), which draws its
key ideas from the work of Bremner, Montanaro, and
Shepherd (2017). The starting observation of the algorithm
is that the ideal output distribution of a quantum circuit
C ¼ UdUd−1 � � �U1 can be expressed as a Pauli path
integral

PCðxÞ ¼
X

s0;…;sd∈Pn

Tr½jxihxjsd�Tr½sdUdsd−1U
†
d� � � �

Tr½s1U1s0U
†
1�Tr½s0j0nih0nj� ð200Þ

≕
X

s∈Pdþ1
n

fðC; s; xÞ; ð201Þ

where Pn is the n-qubit Pauli group. This can be easily seen
from the fact that the Pauli matrices form a complete operator
basis, and therefore Tr½UρU†s� ¼Pt∈Pn

Tr½UtU†s�Tr½ρt�.
We can also think of the Pauli path integral as a Fourier
decomposition of the output probabilities.
In the Fourier representation, the effect of local depolarizing

noise can be easily analyzed since it acts simply as
EðρÞ ¼ ð1 − ϵÞρþ ϵTr½ρ�1=2n. The contribution of a Pauli
path of a noisy quantum circuit to the total output probability

thus decays with the number of nonidentity Pauli operators in
it (the Hamming weight of s) as37

p̃CðxÞ ¼
X

s∈Pdþ1
n

ð1 − ϵÞjsjfðC; s; xÞ: ð202Þ

Aharonov et al. (2022) showed that the sum can be approxi-
mated by including only path weights fðC; s; xÞ with
Hamming weight jsj ≤ l incurring a TVD error on the order
of 2−ΩðlÞ on average. They then showed that the truncated sum
can be calculated efficiently using the knowledge that the low-
weight Pauli paths are sparse in that most of them actually
have weight 0, using ideas similar to those of Kushilevitz
and Mansour (1993) and Bremner, Montanaro, and Shepherd
(2017) on computing quantities with a sparse Fourier spec-
trum. This completes an algorithm for an approximate strong
simulation. The algorithm for approximating the probabilities
can be straightforwardly extended to an algorithm that also
approximates all marginals (over bits of the measurement
outcome x) of the truncated noisy distribution. Consequently,
the marginal sampling algorithm can be used to sample from
the output distribution up to TVD 2−ΩðlÞ in time 2OðlÞ.
For IQP circuits it has also been shown that it is possible to

classically protect against noise (Bremner, Montanaro, and
Shepherd, 2017): Using classical coding techniques, one can
encode a smaller IQP circuit C redundantly in a larger one C0
such that, even if local depolarizing noise is applied to the
output of C0, one can sample efficiently from a distribution
arbitrarily close to the ideal output distribution of C. It is not at
all clear, however, how these coding techniques (which are
similar to the concepts employed in the idea to use cryptog-
raphy to verify IQP circuits discussed in Sec. V.D.2) can be
extended beyond IQP circuits.

C. Simulating boson-sampling protocols

Classical simulation methods for boson-sampling naturally
exploit the expression of the output probabilities in terms of
the permanent or related matrix polynomials. The individual
terms in those polynomials can be viewed as the weights
of a Feynman path-integral expansion of the polynomial, and
hence Feynman-type algorithms are natural candidates for the
simulation of those schemes.

1. Computing probabilities: Permanents and Hafnians

Computing the output probabilities of boson sampling
amounts to computing the permanent (46) for Fock input
states and the Hafnian (49) for Gaussian input states. The
naive run-time of computing the permanent of an n × n
matrix scales linearly in the number of all permutations of n
elements, given by n!, multiplied by the complexity of
computing the product of n numbers, given by n2, while
the space complexity is given by OðnÞ. Similarly, we can
express the Hafnian as a sum over all perfect matching
permutations of 2n elements, and hence the worst-case run-
time is given by n2 times the number of perfect matching

37This reflects an analogous expression derived by Bremner,
Montanaro, and Shepherd (2017) for noisy IQP circuits.
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permutations jPMPð2nÞj ¼ ð2n − 1Þ!! ¼ 1 × 3 × 5 × � � � ×
ð2n − 1Þ (Gupt, Izaac, and Quesada, 2019).
These worst-case estimates can be significantly improved,

however, via reexpressions of the permanent and the Hafnian,
respectively. Indeed, Ryser (1963) found a way to reexpress
the permanent via the principle of inclusion and exclusion as a
sum of 2n terms, and hence the complexity of computing the
permanent is reduced to Oðn22nÞ and further to Oðn2nÞ using
Gray codes. Alternative expressions for the permanent with
the same number of terms, and hence the same complexity,
were found by Glynn (2010) using the polarization identity for
symmetric tensors and making use of partial derivatives.38

Similarly, the Hafnian of a n × n matrix can also be computed
in time Oðn32n=2Þ (Björklund, 2012). The Ryser formula for
the permanent can be further reduced to incorporate collision
events, thereby reducing the number of terms from Oðn2nÞ toQ

iðni þ 1Þ, where ni is the number of photons observed in the
mode i (Shchesnovich, 2013; Tichy, 2014; Chin and Huh,
2018). Algorithms based on these reexpressions remain fastest
for permanents and Hafnians (Wu et al., 2018; Björklund,
Gupt, and Quesada, 2019; Gupt, Izaac, and Quesada, 2019),
allowing for the computation of matrix permanents of sizes up
to 54 × 54 (Lundow and Markström, 2022). Their run times
can also be further improved by exploiting specific structures
such as the sparsity or the matrix bandwidth (Lundow and
Markström, 2022).
A natural way to exploit path-integral expressions for an

approximate computation of permanents and Hafnians is to
randomly sample out paths and sum up their weights to
construct a randomized estimator of the permanent or Hafnian.
Gurvits (2003) did precisely that, making use of Ryser’s or
Glynn’s formula to obtain an algorithm that takes time
Oðn2=ϵ2Þ to achieve an additive error �ϵkAkn estimate of
the permanent of A. Aaronson and Hance (2012) generalized
the algorithm, obtaining an improved run-time for permanents
with repeated rows and columns, corresponding to bunching
events, and derandomizing the algorithm for non-negative
matrices. Furthermore, it can be extended to arbitrary input
states (Yung, Gao, and Huh, 2019).
In specific instances one can also obtain multiplicative-error

approximations in subexponential or even polynomial time.
Such results delineate regimes in which the permanent is in
fact not #P hard to approximate, and hence the sampling task
will not be intractable either. Specifically, for non-negative
matrices Jerrum, Sinclair, and Vigoda (2004) gave a Markov-
chain Monte Carlo–based randomized algorithm that was
able to approximate the permanent up to multiplicative
error ϵ in time polyðn; 1=ϵÞ while, deterministically, only
an approximation factor of 2n is currently achievable (Linial,
Samorodnitsky, and Wigderson, 1998; Barvinok, 1999;
Gurvits and Samorodnitsky, 2002). Using a method based
on a Taylor-series approximation of the complex polynomial
fðzÞ ¼ lnfPerm½J þ zðA − JÞ�g, where z ∈ C and J is the
matrix filled with ones, Barvinok identified certain regimes for
which quasipolynomial relative-error approximations of the
permanent and the Hafnian are possible. This is the case if the

function fðzÞ is holomorphic on the unit disk for matrices with
entries ai;j satisfying jai;j − 1j ≤ 0.19 (Barvinok, 2016b),
matrices with entries satisfying δ < ai;j ≤ 1 (Barvinok,
2017), and diagonally dominant matrices (Barvinok, 2019).
An interesting case is that of positive semidefinite matrices, as
it has been shown that exactly computing the permanent of
such matrices remains #P hard (Grier and Schaeffer, 2018),
but multiplicative-error approximation algorithms in BPPNP

(Rahimi-Keshari, Lund, and Ralph, 2015) and with quasipo-
lynomial run times (Anari et al., 2017; Barvinok, 2020) exist
in some circumstances. Building on the approach of Barvinok,
Eldar and Mehraban (2018) showed that for random Gaussian
matrices with nonzero but vanishing mean there is a quasi-
polynomial-time algorithm that approximates the permanent
to within a multiplicative error.
Physically interesting cases include the case of low-rank

matrices since such matrices determine the probabilities of
outcomes with collisions: for constant rank, the corresponding
permanents can be computed efficiently in the matrix dimen-
sion (Barvinok, 1996). Quesada (2019) and Quesada et al.
(2019) analyzed the complexity of computing the output
probabilities of Gaussian states with finite displacement. In
this case, the probabilities correspond to so-called loop
Hafnians (Björklund, Gupt, and Quesada, 2019), which can
be viewed as counting the perfect matching of a graph with
self-loops. Using similar techniques, Chabaud, Ferrini et al.
(2021) and Chabaud and Walschaers (2022) found efficient
algorithms for states with polynomial stellar rank and poly-
nomial support over the Fock basis. Another physically
relevant simplifying modification is to analyze the complexity
of computing the outcome probabilities if the detectors can
only distinguish between 0 and at least 1 photon, so-called
threshold detectors. In this case, the output probabilities can
be expressed in terms of what Quesada, Arrazola, and Killoran
(2018) called the Torontonian. The complexity of directly
computing the Torontonian is given by Oðn32nÞ, which is
equivalent to the complexity of directly computing the
Hafnian. It remains an open question whether threshold
detectors significantly reduce the complexity of simulating
Gaussian boson-sampling experiments. Furthermore, the out-
put probabilities of Gaussian boson sampling with local and
shallow linear-optical circuits can be efficiently computed by
making use of the banded structure of the adjacency matrix
(Qi, Cifuentes et al., 2020).
Exploiting the fact that for realistic experiments the number

of modes is not much larger than the number of observed
photons as required by the proofs of hardness (see
Sec. IV.C.4.c) and the fact that threshold detectors are used
that distinguish only between 0 and ≥ 1 photons, Popova and
Rubtsov (2021) introduced an iterative series of approxima-
tions to the ideal outcome probabilities. To this end, they
exploited the finding that low-order moments

P
kk

jpnðkÞ can
be efficiently computed with the complexity scaling expo-
nential in j. Here pnðkÞ is the probability that photons have
been detected in k of m detectors, conditioned on a total
number n of photons. They then solved an inverse-moment
problem to estimate pnðkÞ, projecting that, up to j ¼ 4th
order, probabilities of a m ¼ 100 mode device can be
estimated with 50% relative accuracy.

38See Huh (2022) for a use of the Glynn formula in a quantum
algorithm for permanent estimation.
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2. Simulating the sampling task

Given the entirely different structure of the circuits in
variants of boson-sampling schemes, the sampling algorithms
used also differ in type from simulations of universal circuit
sampling. An important further distinction in the quantitative
comparison of classical simulation algorithms to actual
experiments is the lack of a simple benchmark analogous
to the XEB fidelity. As discussed in Sec. V.D, the most
important way to verify boson-sampling experiments is state
discrimination schemes, as well as certain efficiently com-
putable quantities such as low-order correlations of the
respective distributions. Consequently, in boson-sampling
experiments it is also much less clear at which point quantum
advantage has been reached experimentally.
The first competitive classical simulation algorithm for

Fock state boson sampling used the previously described
Markov-chain Monte Carlo method, giving rise to a much
better run-time than the naive worst-case complexity (Neville
et al., 2017). This algorithm takes into account noise in actual
devices, in particular, photon loss, which is the dominant
source of errors. This approximate sampling algorithm was
vastly improved by Clifford and Clifford (2018), who pro-
vided an exact boson-sampling algorithm with the same
improved run-time of O(n2n þ polyðm; nÞ) as compared to
the worst-case run-time of O(ðmþn−1

n Þn2n), where n corre-
sponds to the number of photons and m is the number of
output modes. In follow-up work by Clifford and Clifford
(2020), this algorithm was further improved, achieving an
average-case time complexity that is much lower when m is
proportional to n. When m ¼ n specifically, the algorithm
runs in time approximately Oðn1.69nÞ on average. The
sampling algorithms by Clifford and Clifford are based on
ancestral or marginal sampling. The key insight of their
algorithms is an expression of the low-order photon marginals
in terms of permanents of smaller and smaller matrices, so the
run-time of the algorithm is dominated by the final marginal,
where a single permanent of the full n × n matrix needs to be
computed that in the worst case is given by Oðn2nÞ.
Altogether, these results indicate that Fock boson samplers
require at least ∼40 photons before one can hope to surpass
the capabilities of currently available classical computers.
An exact algorithm for Gaussian boson sampling with

threshold detectors (Quesada, Arrazola, and Killoran, 2018)
that was implemented by Gupt et al. (2020) requires expo-
nential space since the entire probability distribution needs to
be saved. Quesada and Arrazola (2020) improved on this and
devised an exponential-time exact sampling algorithm that
uses only polynomial space and has a run-time Oðn32nÞ for
generating a single sample with n photons. To achieve a run-
time scaling proportional to the run-time required for a single
Hafnian computation, Bulmer et al. (2022) and Quesada et al.
(2022) gave algorithms with a further quadratic improvement,
achieving a run-time Oðn32n=2Þ. The key idea of Quesada
et al. (2022) was to first perform a virtual heterodyne
measurement in all modes. Such a measurement can be
efficiently simulated. One can iteratively replace the hetero-
dyne outcomes with photon-number measurements and
sample from the photon-number distribution conditioned on
the heterodyne outcomes in the remaining modes. These

probabilities are described by loop Hafnians of matrices with
increasing size, similar to how the algorithm of Clifford and
Clifford (2020) expressed probabilities in terms of smaller
permanents for standard boson sampling. The idea of an
algorithm for Gaussian boson sampling with threshold detec-
tors by Bulmer et al. (2022) is to simulate a photon-number-
resolving measurement and then set all nonzero photon
numbers in a sample to 1. In the dilute regime, this reduces
the computation to a loop Hafnian of size n × n containing
2n=2 terms. Bulmer et al. (2022) then provided a construction
that reduces sampling in the nondilute regime to sampling in
the dilute regime by artificially introducing “submodes” for
each detector.
Bulmer et al. (2022) also presented the most advanced

implementation of near-exact sampling algorithms for Gaussian
boson sampling with photon-number-resolving detectors.
To this end, they implemented the ancestral sampling algorithm
of Quesada et al. (2022) with a variety of improvements.
Specifically, they reduced the run-time of computing loop
Hafnians by making use of an inclusion-exclusion principle on
pairs of photons and using a so-called finite difference sieve
analogous to Glynn’s formula. Furthermore, they exploited
threshold detectors explicitly in their sampling algorithm.
For low photon density, simulating photon-number-resolving
detectors and reducing collisions subsequently are advanta-
geous for computing the Torontonians that exactly describe the
output distribution with threshold detectors. Running on an
∼100 000 core supercomputer, they were able to simulate
m ¼ 60 modes with up to 80 photons observed by photon-
number-resolving detectors with a mean time per sample of 3 s,
and m ¼ 100 modes with up to 60 click events with a mean
time per sample of 8.4 s. Finally, they generated a single
92-photon event in m ¼ 100 modes and photon-number-
resolving detectors in 82 min.
A complementary approach was pursued by Villalonga

et al. (2021). The idea is to sample from a distribution that
reproduces the low-order mode marginals of the ideal target
distribution. These low-order marginals can indeed be clas-
sically efficiently calculated since they are determined simply
by a submatrix of the covariance matrix. The practical
challenge is to efficiently sample from a distribution with
the correct marginals. Villalonga et al. (2021) presented two
heuristic approaches that were able to achieve this. The first
heuristic employs a maximum-entropy principle that corre-
sponds to a Boltzmann machine, i.e., a distribution of the form
pðzÞ ¼ ð1=ZÞ expðPiλizi þ

P
i<jλi;jzizj þ � � �Þ, where Z is

the partition function that normalizes the distribution. To find
the correct parameters λi; λi;j;…, a mean-field approximation
is used for the second order and costly log-likelihood
minimization is employed for higher orders. Another method
makes use of a greedy algorithm to generate samples with the
correct low-order marginals with a cost exponential in the
order of the marginal. Villalonga et al. (2021) implemented
their sampler using the ideal second- and third-order margin-
als and compared it to the experiment of Zhong et al. (2021)
using m ¼ 144 modes and squeezing values that give rise to
an average photon number of up to 66.9. The total-variation
distance of the low-order marginal distributions of up to
14 modes compared to the corresponding ideal distribution is
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lower than that of the experimental distribution. In a similar
vein, first steps toward an approach analogous to that of
Clifford and Clifford were taken by Renema (2020a), who
computed low-order marginals in terms of photons rather
than modes, potentially offering a better approximation of
the ideal distribution.
Another variant of a spoofing algorithm for Gaussian boson

sampling was recently proposed by Martínez-Cifuentes,
Fonseca-Romero, and Quesada (2022) and exploited the fact
that the quantum device is noisy. The idea is to replace the input
squeezed states with so-called squashed states, that is, coherent
states with vacuum fluctuations in one quadrature and larger
fluctuations in the other. Linearly transformed squashed states
are classical Gaussian states in that a photon-number meas-
urement can be efficiently simulated classically. The definition
of squashed states is motivated by the fact that loss in the
network can be incorporated by replacing the initial squeezed
states with squeezed thermal states. Squashed states are indeed
those Gaussian states that best approximate squeezed thermal
states and are at the same time classically simulable in the
photon-number basis. Martínez-Cifuentes, Fonseca-Romero,
and Quesada (2022) found that while the experiment of
Zhong et al. (2020) can be spoofed by squashed-state
Gaussian boson sampling in the sense that the correlations
in the distribution match the ideal correlations better than the
experiment, the more recent experiment of Zhong et al. (2021)
cannot. However, these approaches cannot be applied to
universal circuit sampling, because the approximation that
reproduces marginals and correlations up to a constant order
would be exponentially close to the uniform distribution due to
the highly entangled nature of the output distribution.
Note also that the complexity of Fock boson sampling has

been considered under locality constraints (Deshpande et al.,
2018; Maskara et al., 2022). In a certain setting, this structure
renders the classical simulation of boson sampling efficient.
Oh, Lim, Fefferman, and Jiang (2022) followed up on these
results and derived general algorithms for Fock boson
sampling and Gaussian boson sampling that exploit the graph
structure of a linear-optical circuit. For a sufficiently small tree
width of the interaction graph, i.e., in particular, for low-depth,
geometrically local linear-optical circuits, this exact sampling
is efficient.

3. Analysis of noise

In boson-sampling experiments with photons, the dominant
sources of noise are losses of photons due to finite trans-
mittivity of waveguides and other optical elements, finite
distinguishability of the photons due to imperfect time or
frequency synchronization between the single-photon sources,
so-called mode mismatch. The asymptotic effects of these
noise types has been studied extensively for photon loss and
detector noise (dark counts) (Rahimi-Keshari, Ralph, and
Caves, 2016; Oszmaniec and Brod, 2018; García-Patrón,
Renema, and Shchesnovich, 2019; Moylett et al., 2019;
Renema, Shchesnovich, and García-Patrón, 2019; Qi, Brod
et al., 2020; Oh et al., 2021) and partial distinguishability of
the photons (Shchesnovich, 2014; Tichy, 2015; Rahimi-
Keshari, Ralph, and Caves, 2016; Renema et al., 2018;
Moylett et al., 2019; Renema, 2020b). The overall observation

of these studies is that already comparably low noise levels
drive the output probability distribution closer to distributions
that are simulable with less effort.
An interesting “toy” noise model for boson sampling was

considered by Kalai and Kindler (2014). In this model,
additive Gaussian noise is applied to the random Gaussian
submatrix of which the permanent is taken to compute the
outcome probabilities of boson sampling; see Eq. (45). Kalai
and Kindler (2014) showed that the collision-free output
probabilities of boson sampling with a constant amount of
such Gaussian noise can be approximated by sparse low-
degree polynomials. This gives an efficient approximation
algorithm for the noisy output probabilities with constant
precision. This noise model turns out to be appealing: on the
one hand, it “preserves the mathematical connection to
random Gaussian matrices, used to establish hardness of
boson sampling” (Shchesnovich, 2019). As Shchesnovich
(2019) showed, on the other hand, this noise model is closely
related to experimentally more relevant noise sources: it is
equivalent to photon loss at the input of the interferometer and
dark counts in the measurement that exactly compensate for
the lost photons, as well as partial distinguishability of bosons.
While Kalai and Kindler (2014) did not provide a total-

variation-distance bound on the approximate noisy distributions
(with approximations given by the low-degree polynomial),
Shchesnovich (2019) provided such a bound and showed that it
can be made inverse polynomially small at a polynomial cost in
the time it takes to compute the corresponding probabilities.
Analogously to Renema et al. (2018) and Renema (2020b),
they then argued that a Metropolis Markov-chain Monte Carlo
algorithm can be used to efficiently sample from this distribu-
tion.39 The result of Shchesnovich (2019) can thus be viewed as
unifying several more specific previous results (Arkhipov,
2015; Leverrier and García-Patrón, 2015; Aaronson and
Brod, 2016; Oszmaniec and Brod, 2018; Renema et al.,
2018; García-Patrón, Renema, and Shchesnovich, 2019;
Renema, Shchesnovich, and García-Patrón, 2019) on the easi-
ness and hardness of noisy boson sampling in certain noise
regimes [see Table I of Shchesnovich (2019) for an overview]
and gives rise to the following heuristic picture: Boson
sampling with noise strength on the order of Ωð1Þ can be
simulated classically to total-variation-distance error ϵ with
polynomial effort in n and 1=ϵ. Conversely, for a noise strength
scaling as Oð1=nÞ the simulation complexity remains the same
as that of ideal boson sampling. In other words, constant local
noise renders boson sampling classically simulatable, while
local noise scaling inversely with the number of photons
presumably remains classically intractable, with the intermedi-
ate regime remaining open.
With the Fourier picture of Bremner, Montanaro, and

Shepherd (2017), Gao and Duan (2018), and Aharonov et al.
(2022) in mind, Oh, Jiang, and Fefferman (2023) built upon
those prior works and provided a fully provable algorithm for
sampling from the output distribution of Fock boson sampling
with Gaussian noise according to the model of Kalai and

39Notice, though, that this falls short of an efficiency proof since
none of those works actually bounds the mixing time of the
corresponding Markov chain.
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Kindler (2014). Their sampling algorithm is based on the low-
degree polynomial decomposition of Kalai and Kindler
(2014), which they showed also works for the marginals of
Fock boson sampling written in first quantization. This
allowed them to compute all marginals of the low-degree
approximation to the noisy probabilities and hence provides
an approximate sampling algorithm for the noisy distribution.
At a constant noise rate, the total run-time of the algorithm is
quasipolynomial and given by nO( log n;logð1=ϵÞ;logð1=δÞ) per
sample to within a total-variation distance ϵ > 0 for a
proportion 1 − δ of Haar-random unitaries, assuming the
hiding condition m ∈ ωðn5Þ.40 It is unclear whether this
algorithm extends to natural noise sources such as photon
loss and distinguishability, however.
A compelling physical picture for why noise renders

classical simulations tractable was developed by Renema,
Shchesnovich, and García-Patrón (2019) and Renema
(2020b), who conceived of the boson-sampling distribution
as arising from interference processes with increasing order.
The effect of physical noise, including, in particular, photon
loss and photon distinguishability, in a precise way results in
higher-order interference terms to contribute exponentially
less. This gives rise to a distribution that just arises from low-
order interference. The resulting distribution can therefore be
classically simulated efficiently. A similar intuition, albeit on
the level of individual modes, is followed using the simulation
algorithm of Villalonga et al. (2021). Shchesnovich (2021,
2022) showed, however, that the output data from classical
simulation methods based on lower-order multiboson inter-
ferences can be efficiently distinguished from a noisy boson-
sampling distribution since the higher-order correlations
remain sufficiently significant. This matches the observation
of Zhong et al. (2021), who found that higher-order corre-
lations remain present in experimental data.
To conclude, the fact that noise renders the classical

simulation of imperfect devices less computationally demand-
ing adds a challenge to the experimental realization of
quantum random sampling schemes that show an unambigu-
ous quantum advantage.

VIII. PERSPECTIVES

The field of quantum random sampling has now reached a
state in which the theoretical foundations are thoroughly
explored, and important but extremely difficult open questions
have been identified. It has reached a state in which we have
seen first demonstrations on the verge of classical intractabil-
ity and first pushbacks from classical algorithms. In this
review, we have discussed these theoretical and practical
aspects of quantum random sampling.
But what is the road ahead? Some features of this road

are clear; important technical questions such as approximate

average-case hardness remain to be tackled, and quantum
devices and classical algorithms alike are going to be further
improved. At the same time, the leap from demonstrations of
quantum computational advantage via quantum random sam-
pling or other means of achieving a practically useful task with
a quantum advantage seems large.
This section is more than an outlook. While we summarize

the key open question, we also provide summaries of ideas to
highlight interesting future directions of the field. We start by
summarizing the key open questions in the field of quantum
random sampling, most of which appeared in previous
sections. We then take a broader perspective on the field of
quantum advantages in general and quantum random sam-
pling schemes in particular to see what questions have already
been comprehensively settled, what is ahead, and what are
reasonable next steps. In particular, we begin our outlook by
drawing connections between quantum random sampling and
other fields, such as quantum simulation. Finally, we sketch
some ideas that have been developed with the goal of practical
applications of quantum random sampling in mind. These
applications make direct use of either the randomness of
quantum random sampling or the programmability of a
quantum random sampler in order to solve a specific task.

A. Open questions on quantum random sampling

Throughout this review, we have highlighted important
open technical questions regarding our understanding of
quantum random sampling. We summarize some of the most
important ones here.

1. Understanding random quantum circuits better

From the perspective of the computational complexity of
quantum random sampling, the key open question is to prove
approximate average-case hardness, as discussed in Secs. IV.D.5
and IV.D.6. Currently approximate average-case hardness is a
conjecture that is based solely on the lack of efficient classical
simulation algorithms and the observation that random instances
do not offer any additional structure that a classical simulation
algorithm might be exploited to perform better than in the worst
case. While we have progressively moved forward on this
question by making polynomial interpolation techniques more
robust (Bouland, Fitzsimons, andKoh, 2018;Movassagh, 2020;
Bouland et al., 2022; Kondo, Mori, and Movassagh, 2022;
Krovi, 2022), there remain fundamental barriers to improving
this result to the required robustness Oð2−nÞ, as discussed in
Sec. IV.D.6. It seems that, from this point onward, polynomial
interpolation alone will not be able to help us solve the question
of approximate average-case hardness, and new proof ideas will
be required. The development of new methods, while most
pressing, is also elusive and constitutes a major challenge that
reaches beyond the field of quantum random sampling schemes
all the way into the midst of computational complexity theory.
For example, Aaronson andArkhipov (2013) suggestedmaking
use of a restricted class of polynomials not closed under addition
that are at the same time able to capture the quantity of interest.
We now zoom out from the details of the proof of robust

sampling hardness and consider the task of sampling from
the output distribution of a random quantum circuit up to a

40To achieve a provable polynomial-time algorithm as with
universal circuits, the total noise rate has to scale like 1 − xγ , with
γ ¼ Ωðlog nÞ and a constant x ∈ ½0; 1Þ. Kalai and Kindler (2014)
argued that this is also the fair comparison since a constant noise rate
per gate results in an overall noise that scales with the number of
gates.
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constant total-variation-distance error. For such an overall
constant additive error on the global distribution to be
achieved, the gate errors need to scale inversely as
1=ðmþ 2nÞ with the total number m of gate applications
and n single-qubit state preparations and measurements. But
in experiments the gate application, state-preparation, and
measurement errors typically do not scale in the size of the
system, or circuit, but rather are fixed using physical details.
This raises the question of what the optimal trade-off for
achieving a quantum advantage is in terms of circuit depth and
system size. While random short depth circuits might be easy
to sample from with a global error budget (Napp et al., 2022),
too large of a circuit will incur a large amount of errors that
renders classical simulation trivial. This is why the detailed
study of noise in random circuits and its effect on the output
distribution is paramount to better understanding the computa-
tionally most difficult regimes. First steps toward this were
recently taken by the complementing approaches of Dalzell,
Hunter-Jones, and Brandão (2021) and Deshpande, Niroula
et al. (2022). These two works study the convergence to the
white-noise or uniform distribution in the regimes of low gate
noise ϵ ∈ Õð1=nÞ or constant gate noise, respectively. A better
understanding of how different types of experimentally
relevant noise affect the output distribution of typical random
quantum circuits is thus paramount to optimizing the param-
eters in a demonstration of quantum advantage.

2. Verification beyond XEB

The issue of noise in random quantum circuits directly leads
to the next open question. In Sec. V, we discussed in what
sense samples from random quantum circuits can be verified.
The standard measure of quantum advantage as of today is the
linear XEB fidelity (162). On the one hand, this is because it
offers the best available compromise between being practi-
cally viable and providing a meaningful benchmark for
achieving a nontrivial task on the quantum device. On the
other hand, it is because it provides a unified view for the use
of quantum random sampling as a benchmark of a quantum
device and as a means to demonstrate a computational
advantage. However, neither interpretation of XEB fidelity
is fully understood.
Coming from the perspective of quantum advantage dem-

onstrations, there is the question under which circumstances
cross-entropy type measures (and particularly the XEB
fidelity) can yield certificates for the global distribution.
The logarithmic XEB fidelity, for instance, provides rigorous
bounds on the total-variation distance only if the noise in the
device is such that it increases the entropy of the ideal
distribution (Bouland et al., 2019). But estimating the entropy
of the noisy distribution is an infeasible task in itself.
Coming from a practical perspective of device develop-

ment and characterization, the question remains to identify in
which settings random quantum circuits can be used to
benchmark noise in the quantum circuit. As discussed in
Sec. V.B.3, Y. Liu et al. (2021c) made some first steps toward
understanding how a noise parameter can be extracted from
the XEB fidelity for the case of global Pauli noise via a
perturbative analysis in the noise parameter. Going beyond
perturbative methods, further steps in this direction might

make use of the framework of Fourier analysis for random-
ized benchmarking (Helsen et al., 2022). Ultimately, one
wants to analyze gate-dependent noise channels in a local
quantum circuit.
Finally, we mention that the most important problem with

the use of XEB to verify quantum random sampling is the fact
that evaluating XEB-like measures, while sample efficient,
incurs the exponential computational cost of estimating some
of the target probabilities. Going beyond XEB, an interesting
open problem is whether the no-go result prohibiting sample-
efficient verification of flat distributions discussed in Sec. V.A
can be circumvented in random sampling schemes with larger
second moments. Is there any “room in the middle” between
exponentially flat distributions that are hard to verify but
anticoncentrate and polynomially concentrated distributions
that do not anticoncentrate but are sample-efficiently verifi-
able? If there is, then distributions could exist that we can
sample-efficiently verify from classical samples and that we
can sample from efficiently on a quantum computer but cannot
efficiently sample from on a classical computer; see also
Hangleiter et al. (2019). Works such as the one by Morimae
(2017) proving anticoncentration of the DQC1 model without
resorting to a second-moment bound might yield some leeway
in this direction.
But one may also ask whether there are fully efficient ways

of verifying that a classically intractable task has been
achieved via quantum random sampling without resorting
to directly verifying the total-variation distance. We have
mentioned ideas for the verification of quantum samplers that
make use of cryptographic secret hiding (Shepherd and
Bremner, 2009) in a delegated scheme. But such ideas remain
prone to classical attacks (Kahanamoku-Meyer, 2019) or
remain orthogonal to the spirit of quantum random sampling
as a specifically simple, unstructured task that is executed on a
given quantum device. That said, for simple tasks, proofs of
quantumness that might not be too far from the realm of
practical feasibility can be devised using such ideas (Hirahara
and Le Gall, 2021; Zhu et al., 2021; Kahanamoku-Meyer
et al., 2022; Liu and Gheorghiu, 2022). Interesting progress in
the direction of merging these worlds with public verifiability
of NP problems such as factoring was recently made by
Yamakawa and Zhandry (2022). It remains an interesting
question to further explore the possibility of verifying quan-
tum random sampling efficiently.

B. Developing novel schemes

Moving beyond better understanding the current schemes,
there is the overarching question of how quantum random
sampling schemes can be extended beyond their current realm
of applicability. This both regards the extension from digital
quantum devices to analog ones and leads to a larger error
resilience.

1. Improving error resilience

Given all the strengths of the various approaches to
quantum random sampling, it is also limited in its capacity
to demonstrate quantum speedups. This is because these
schemes do not allow for any type of error correction, making
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a region that is nontrivially accessible with finite errors
limited. Going from relative to additive errors has been a
tremendous technical achievement, matching complexity-
theoretic arguments more closely with experimental desider-
ata, but it still falls short of capturing fully realistic errors. The
central challenge one has to overcome when realizing quan-
tum supremacy is thus to bring this barrier down as far as
possible such that the computing capabilities of classical
computers can be surpassed before the barrier is hit.
Ultimately, one wants to make the hardness of quantum

sampling robust to constant local errors. This can indeed be
achieved for universal computations using quantum error-
correction codes. However, quantum error correction is
intrinsically based on the continuous measurement of error
syndromes, giving information about which errors have
occurred during one cycle of the computation. Those errors
then need to be actively corrected, requiring an elaborate
machinery that is again well outside the realm of what we
envision the context of quantum random sampling to be. In
addition, from a conceptual point of view quantum random
sampling is intrinsically based on a global property of the
outcome state, namely, the full probability distribution. To
make this global property robust to constant local errors will
therefore likely require one to invoke a global error-detection
machinery such as that of Bremner, Montanaro, and
Shepherd (2017).
One might think that coherent errors do not constitute a

specifically grave problem for quantum random sampling
schemes since, say, Pauli errors can often simply be absorbed
in the random ensemble, giving rise to a different computation
distributed according to the same ensemble. We stress,
however, that to maintain hardness of sampling we actually
need to know how the circuit has changed due to the errors. In
other words, the errors need to be “heralded.” But continuous
measurements of syndromes complicate the computation
significantly. Conversely, if the ongoing computation is not
continuously measured in every gate cycle, it is not clear under
which circumstances such a “heralded noise model” is
actually realistic. Finding a way around this obstacle, possibly
using error detection and post hoc corrections, is the major
challenge in making quantum random sampling schemes
robust to physical noise and thus scalable.
Further intuition on the resilience of quantum circuits to

local errors is also provided by the analysis of constant-depth
quantum circuits: Bravyi, Gosset, and König (2018) showed
that constant-depth quantum circuits are more powerful than
their classical counterparts. Any classical probabilistic cir-
cuit composed of bounded fan-in gates that solves what
Bravyi, Gosset, and König (2018) called the two-
dimensional hidden linear function problem with high
probability must have a depth that is at least logarithmic
in the system size. In contrast, the same problem can be
solved with certainty by a constant-depth quantum circuit
that is composed of one- and two-qubit quantum gates that
act on a two-dimensional lattice. This scheme is robust to
noise in that the aforementioned separation in computational
power persists even when the shallow quantum circuits are
restricted to three dimensions and are corrupted by noise
(Bravyi et al., 2020). Technically, the argument supporting
this conclusion is rooted in ideas on the generation of a

long-range entanglement in noisy three-dimensional cluster
states (Raussendorf, Bravyi, and Harrington, 2005).
In a similar spirit, the first ideas for using nonadaptive error

correction by embedding a computation in an error-correction
code have been made (Fujii, 2016; Kapourniotis and Datta,
2019) and, indeed, if experimental errors remain within the
specific error model considered, sampling hardness remains.
However, robustness may be lost since the distribution for
which an approximate average-case hardness conjecture for
the outcome probabilities holds has significantly changed
compared to the non-error-corrected distribution.

2. Relation to analog quantum simulation

Aside from the largely technical open questions discussed
thus far, another avenue for making progress en route to
larger-scale implementations of quantum random sampling is
to connect it to the setting of analog quantum simulators. Such
devices offer a limited amount of control, but often a large
number of coherently and highly accurately controlled quan-
tum degrees of freedom, which in several instances cannot be
simulated by even the best classical algorithms (Trotzky et al.,
2012; Braun et al., 2015; Choi et al., 2016; Debnath et al.,
2016; Ebadi et al., 2021).
Along these lines a reasonable goal would be to prove a

rigorous complexity-theoretic separation for a task that is
natural in a physics mindset in general, and quantum simu-
lations in particular. Quantities that first come to mind here are
measurements of k-point correlation functions of the type
hb†i bji. First steps toward this were taken by Novo, Bermejo-
Vega, and García-Patrón (2021), who showed that one can run
a Stockmeyer argument for the task of reproducing the
statistics of an energy measurement of a local Hamiltonian.
Deviating from the mindset of quantum random sampling,
Baez et al. (2020) showed a quantum advantage for the
estimation of dynamical structure factors, providing the
insight that performing measurements on quantum states
arising from time evolution under local Hamiltonians is
BQP complete (Nagaj and Wocjan, 2008; Vollbrecht and
Cirac, 2008; Nagaj, 2012) closer to experimental reality.
These works are based simply on the assumption that

quantum computers are more powerful than classical com-
puters and therefore do not offer independent evidence for
this separation. In technical terms, they show a much weaker
complexity-theoretic consequence than a collapse of the
polynomial hierarchy, namely, that BPP ¼ BQP. Coming
from a complexity-theoretical perspective, they are thus
begging the question as, from this perspective, one would
like to precisely collect evidence that BPP ≠ BQP. Accepting
this, it is still not obvious whether one would expect average-
case hardness of the respective tasks for problems in BQP.
When one comes from a more practically minded perspective,
accepting BQP ⊊ BPP is a fair assumption. Such ideas may
thus help to demonstrate quantum advantages for tasks that are
more useful than sampling alone. From a technological
perspective, it is interesting to see whether one can reach
the regime in which quantum advantages in this sense are
conceivable.
Another interesting perspective that has been considered in

this context is the relation of sampling hardness to physical
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phenomena. For instance, phase transitions in sampling
complexity of two-dimensional bosonic lattice systems were
considered by Deshpande et al. (2018) and Maskara et al.
(2022). Here the idea is to vary a physical parameter of the
system, in this case, the spacing between bosons in the initial
state, and to consider the complexity as a function of time
when evolving the system. In a similar vein, Ehrenberg et al.
(2022) studied transitions in the complexity of sampling from
the output distribution of many-body-localizing time evolu-
tion. In such approaches, the hope is to narrow down and
better understand the physical mechanisms underlying sam-
pling complexity.

C. Toward applications of quantum random sampling

What is next? On the road toward practically useful
quantum computers, quantum random sampling schemes
are an important stepping stone. But quantum random
sampling has been conceived as a proof-of-principle task to
show that quantum devices have the capability to computa-
tionally outperform classical computers and nothing more. It
is therefore not set up to realize practically interesting
applications in their own right. However, a natural next
question is whether one can exploit the provable speedup
over classical sampling algorithms on the specific random
sampling task for relevant practically motivated applications.
Here we discuss some of these first steps at identifying
applications of quantum random sampling.
Roughly speaking, these applications of quantum random

sampling fall into two categories. On the one hand, there are
applications that exploit the intrinsic quantum randomness of
typical quantum circuits. Such applications make use of the
fact that the output distributions of random quantum circuits
are highly unstructured or, in technical terms, have a high min-
entropy bound, as explained in Sec. V.A. On the other hand,
there are applications that take programmable quantum
random sampling devices as their starting point and ask the
following question: What applications can those devices be
used for? In such applications, the structure of the output
distributions is explicitly exploited to solve a computational
task or to serve as a subroutine in an algorithm solving such a
task. In the following we explain some of the ideas in this
mindset with the goal of giving the interested reader a concrete
idea about potentially engaging directions of study.

1. Exploiting randomness

One of the most promising near-term applications of
quantum devices is the generation of certified random num-
bers. In the classical world, bits that are perfectly random in
that they are unpredictable not only to the user of the device
but to any observer cannot be realized in principle, because the
laws of classical physics are deterministic. In practice one has
to therefore rely on (albeit possibly extremely weak and
plausible) hypotheses to design pseudorandom-number gen-
erators. Going beyond this, so-called true random-number
generators exploit physical processes from the realm of
classical physics that are hard to predict. Quantum random-
number generators make use of the intrinsic randomness
offered by quantum mechanics. The possibility of harnessing

this randomness makes quantum technologies attractive as a
means of generating certified random numbers (Acín and
Masanes, 2016) that cannot be predicted by any adversary.
Given that the output distributions of random quantum

circuits have a high min-entropy, statistically verified quantum
random sampling would naturally give rise to a large number
of intrinsically random bits. In the absence of such statistical
tests, Aaronson (2018, 2019) proposed protocols for certified
randomness that use universal circuit sampling and the XEB
benchmark. The proof of security of the proposed protocols is
based on a strong and highly nonstandard complexity-
theoretic conjecture on the hardness of what Aaronson (2019)
called the long list quantum sample verification (LLQSV)
problem. This problem asks one to distinguish exponentially
many output bit strings from a quantum random sampler, given
by an oracle, from uniformly random numbers. More specifi-
cally, the conjecture is that LLQSV is not in a complexity class
called QCAM which contains AM, BQP, etc.
Bassirian et al. (2021) provided complexity-theoretic evi-

dence in support of the classical intractability of this problem.
This support holds to the same standard as the evidence for
computational hardness of achieving a high XEB score via
XHOG and HOG. They prove two statements regarding the
hardness of LLQSV or, in other words, the hardness of
distinguishing the high min-entropy samples from the quantum
device from uniformly random samples. They do so in the
black-box model in which query access to a random Boolean
function is granted, instead of a random circuit. First, Bassirian
et al. (2021) proved an average-case linear min-entropy bound
for quantum algorithms that pass a XEB-like test. Second, they
showed that no BQP or PH algorithm can solve the LLQSV
problem, thereby individually showing separations from major
classes contained in QCAM. To do so, they reduced it to a
variant of the so-called forrelation problem introduced by
Aaronson (2010). These results imply that if one believes that
quantum circuits viewed as random functions are sufficiently
unstructured, then quantum random sampling can generate
random samples that are certified by a XEB-like test.
In a different vein, the fact that quantum states prepared by

random quantum circuits are highly entangled might be useful
in quantum metrology. In this context, it is not the flatness of
the classical output distribution that is exploited, but rather the
full quantum state. Along these lines, Oszmaniec et al. (2016)
studied how useful random bosonic states are for quantum
metrology. They indeed found that a close to optimal
Heisenberg scaling is typically achieved. Valido and García-
Ripoll (2021) explored the phase sensitivity of generic linear
interferometric schemes using Gaussian resources and mea-
surements in what could be called boson-sampling-inspired
strategies. Multimode metrology via a variant of Gaussian
boson sampling was studied by Guanzon, Lund, and Ralph
(2021). Finally, it has been suggested that the high min-
entropy bound of the output distributions can be exploited to
devise cryptographic schemes (Nikolopoulos, 2019; Huang,
Kok, and Lupo, 2021; Z. Huang et al., 2021).

2. Exploiting structure

Rather than exploiting the randomness of quantum random
samplers, one may alternatively program such devices in a
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bespoke way in order to solve computational problems. Such
applications make use of the structure in the output probability
distributions, an idea which has been most developed to date
for variants of Gaussian boson sampling. We now give two
examples that argue along these lines. While the first example
makes specific use of samples, the second example uses
samples in order to estimate probabilities.

a. Using samples to solve graph problems

A natural class of problems that can be studied in the
context of Gaussian boson sampling is graph problems. This is
because the Hafnian (49) of an adjacency matrix of a graph
equals the number of perfect matchings of that graph, that is,
the number of disjoint sets of edges in which every vertex of
the graph is connected to exactly one edge.
As an example, consider the so-called densest k-subgraph

problem (Arrazola and Bromley, 2018). This problem asks
one, given a graph Gwith n vertices, to find the subgraph with
k < n vertices that has the largest number of edges. Recall that
the probability PGBS;UðSÞ [Eq. (47)] of obtaining a collision-
free output pattern S in Gaussian boson sampling is deter-
mined by the Hafnian of a submatrixMS of a certain matrixM
[Eq. (48)] that depends on the covariance matrix of the input
state. Given the adjacency matrix A ∈ f0; 1gm×m of G, we can
now choose the squeezing parameters and linear-optical
unitary in order to “program” that matrix to be

M ¼ cðA ⊕ AÞ; ð203Þ

where c < λ−1 and λ is the largest eigenvalue of A. The
corresponding Gaussian state is pure and hence is a valid state
that can be prepared in Gaussian boson sampling. The output
probabilities postselected on the collision-free subspace will
then be proportional to jHafðASÞj2, where AS is a submatrix of
A determined by the outcome S or, equivalently, the adjacency
matrix of a subgraph of G with vertices selected by S. Since
the Hafnian of an adjacency matrix equals the number of
perfect matchings of the corresponding graph, the larger the
number of perfect matchings in a subgraph, the more likely its
corresponding sample is obtained as an output in Gaussian
boson sampling.
The next step is to establish a connection between the

number of perfect matchings in a graph and its density. On an
intuitive level, the number of perfect matchings corresponds to
the density of a graph since a graph with many perfect
matchings will have many edges. Indeed, the number of perfect
matchings provides a lower bound to the number of edges in the
graph (Aaghabali et al., 2015). Consequently, by programming
the quantum device in an appropriate way, one can sample
from a distribution that has a bias in favor of dense subgraphs.
For this reason, stochastic algorithms (Lee et al., 2010) for the
densest k-subgraph problem that make use of uniform random-
ness can be enhanced by having access to samples drawn from
the output distribution of Gaussian boson sampling. This was
recently demonstrated in a proof-of-principle experiment using
time-bin-encoded GBS (Sempere-Llagostera et al., 2022).
Arrazola, Bromley, and Rebentrost (2018) followed a

similar line of thought upon introducing an NP-hard problem
referred to as Max-Haf. They showed that access to samples

from the Gaussian boson-sampling distribution defined by the
probabilities PGBS;UðSÞ of obtaining the output pattern S can
enhance classical stochastic algorithms for this problem. They
not only presented the idea and compared the performance of
this algorithm with classical algorithms based on uniform
randomness but also reviewed numerical data from use cases.
Brádler et al. (2018) discussed the problem of actually finding
perfect matchings of arbitrary graphs enhanced by having
access to samples from Gaussian boson sampling.
Coming from a perspective of quantum machine learning,

Jahangiri et al. (2020) proposed an application of quantum
random sampling to statistical modeling. Havlíček et al.
(2019) showed how minimally enhanced IQP circuits might
be used to enhance the feature space of machine-learning
algorithms for supervised learning. More concretely, samples
from Gaussian boson samplers can be utilized to construct
feature vectors of graphs that give rise a natural measure of
similarity between graphs (Schuld et al., 2020). The con-
nection to quantum-enhanced machine learning was made
even more explicit by Banchi, Quesada, and Arrazola (2020),
who showed how Gaussian boson-sampling devices can be
trained in the following sense: Analytical gradient formulas
for the GBS distribution can be exploited when training
devices using gradient-descent-based methods. Finally,
Chabaud, Markham, and Sohbi (2021) studied supervised
learning using minimal extensions of Fock boson sampling.

b. Estimating physical quantities using Gaussian boson samplers

Using the samples from a quantum device in order to
estimate outcome probabilities is the basis of a line of thought
initiated by Huh et al. (2015). When preparing displaced
squeezed states at the input of a linear-optical device, the
output probabilities of a Gaussian boson sampler can be used
to estimate so-called Franck-Condon factors, which represent
the transition frequencies of molecular vibronic spectra. This
is a problem for which no efficient classical algorithm is
currently known. In this way, Franck-Condon factors can be
estimated from Gaussian boson-sampling data. Following up
on this, Jnane et al. (2021) suggested an analog quantum
simulation of molecular vibronic spectra based on boson-
sampling-like schemes, incorporating the non-Condon scat-
tering operation with a quadratically small truncation error.
Pursuing a similar aim, molecular docking was studied by
Banchi et al. (2020), who suggested that Gaussian boson
samplers provide insights into molecular docking configura-
tions, which are spatial orientations that molecules assume
when they bind to larger proteins. Connecting these ideas to
the loop Hafnian picture of the output probabilities, Quesada
(2019) suggested estimating Franck-Condon factors by count-
ing perfect matchings of graphs with loops. To this end, he
showed that the Franck-Condon factor associated with a
transition between initial and final vibrational states in two
different potential energy surfaces can be reduced to the
number of perfect matchings of a suitable weighted graph with
loops. Clements et al. (2018) explored the impact of exper-
imental imperfections on the performance of the protocol of
Huh et al. (2015) for performing quantum simulations of
vibronic spectroscopy, providing stringent benchmarks that
have to be met by experiments. This work also discussed
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practically meaningful examples such as Franck-Condon
factors for vibronic transitions in molecules such as tropolone.
Departing from the previously mentioned prescriptions in a
different way, Wang et al. (2020) implemented a small-scale
instance of the protocol of Huh et al. (2015) in a two-mode
superconducting device.
Known classical simulation methods for boson sampling

with sparse outputs, as presented by Roga and Takeoka (2020)
and Oh, Lim, Fefferman, and Jiang (2022), have challenged
these results in that it was argued that the instances considered
when sampling from Franck-Condon factors is often sparse in
the appropriate sense. Technically, this work demonstrated
that the computationally costly support detection step, i.e., the
localization of the largest element from a long list, can be
reduced to solving an Ising model that can be solved in
polynomial time under suitable conditions. Oh, Lim, Wong
et al. (2022) followed up on this line of thought by presenting
a quantum-inspired classical algorithm for molecular vibronic
spectra. Technically, they found an exact solution of the
Fourier components of molecular vibronic spectra at zero
temperature using a positive P-representation method. The
resulting algorithm resembles that of Baiardi, Bloino, and
Barone (2013).
Both of these lines of work are contributions that show the

potential of achieving computational advantages in practically
motivated problems using Gaussian boson-sampling devices.
At the same time, as the classical algorithms by Roga and
Takeoka (2020), Oh, Lim, Fefferman, and Jiang (2022), and
Oh, Lim, Wong et al. (2022) showed, it may be possible to
find classical algorithms that are efficient for those instances
of Gaussian boson sampling that are used to solve a specific
computational problem. For these instances there is no
complexity-theoretic reason analogous to the polynomial-
hierarchy collapse to believe in a quantum speedup. Rather,
we are now moving into the realm of comparing quantum
algorithms with the best classical algorithm for specific
problems, as one would also expect when considering practi-
cally relevant problems.

D. Conclusions

In this review, we have provided a comprehensive overview
of the efforts aimed at understanding in theory and demon-
strating in practice the computational advantage of quantum
random sampling over classical computation. Quantum ran-
dom sampling schemes are particularly attractive, as they are
simple conceptually and have comparably small experimental
desiderata. On the highest level, there seem to be two main
lessons that can be drawn from the research efforts that are the
focus of this review.
One of those lessons is of a foundational nature.

Ultimately, the questions asked in endeavors to show quantum
advantages with quantum random sampling schemes follow
up on the thoughts of Turing about the intertwinement of the
complexity of processes in nature and about what can be
computed using the mechanisms allowed by natural laws.
Boldly stated, the question on the desk is as follows: What is,
after all, the computational nature of nature? In more elaborate
words, can all naturally feasible computations be efficiently
described within a classical Turing machine model? The

extended Church-Turing thesis asserts that this is indeed
the case, but it is challenged by the onset of physical
quantum computers. We have walked a long route along this
path, starting with theoretical arguments against the validity
of the extended Church-Turing thesis and progressing to the
question of how to verify those claims experimentally.
Further efforts in realizing sampling schemes will shine
light onto this matter.
The other lesson relates to technological issues. Present

efforts toward realizing quantum advantage schemes cannot
be underestimated in their importance of providing guidance
for the next steps to be taken in the development of quantum
technologies. The experimental demonstration of quantum
random sampling schemes provides an impetus for achieving
unprecedented control in experiments and for pursuing large-
scale quantum computations. The next steps are to pursue
practically motivated quantum algorithms on such quantum
devices, a process that is well under way. Some schemes
can be seen as variations of quantum random sampling
schemes that address pragmatically motivated questions.
This applies to photonic experiments that explore vibronic
spectra (Clements et al., 2018; Wang et al., 2020), implement
variational schemes (Peruzzo et al., 2014), or examine
quantum simulations of processes in statistical physics
(Somhorst et al., 2023). The layout of the superconducting
quantum advantage experiment of Arute et al. (2019) has been
made forward compatible with a realization of the surface
code (Satzinger et al., 2021). Indeed, arguably the most
substantial next step will be to achieve fault tolerance in
quantum computing, a step that may still be relatively far off.
The efforts on quantum random sampling schemes can be seen
as a first milestone in this direction.
In a similar way, the questions of “what next” apply to

theoretical research. Steps have been taken toward developing
protocols that show a more practically minded quantum
advantage. Quantum approximate optimization algorithms
in their various variants suggest addressing questions of
combinatoric optimization (Farhi, Goldstone, and Gutmann,
2014; Zhou et al., 2020), and variational quantum eigensolv-
ers may solve variational principles beyond the capabilities of
classical efficient variational methods (McClean et al., 2016).
These applications are thought to be pursued without quantum
error correction, but the key question remains open as to what
noise levels quantum devices may ultimately tolerate while
maintaining a quantum advantage (Stilck França and García-
Patrón, 2021). The efforts toward achieving quantum advan-
tages can be seen as a first stepping stone en route to building
useful quantum computers and an invitation to master the next
hurdle along that route.
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