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Diffusion occurs in numerous physical systems throughout nature, drawing its generality from the
universality of the central limit theorem. Approximately a century ago it was realized that an
extension to this type of dynamics can be obtained in the form of “anomalous” diffusion, where
distributions are allowed to have heavy power-law tails. Owing to a unique feature of its momentum-
dependent dissipative friction force, laser-cooled atomic ensembles can be used as a test bed for such
dynamics. The interplay between laser cooling and anomalous dynamics bears deep predictive
implications for fundamental concepts in both equilibrium and nonequilibrium statistical physics. The
high degree of control available in cold-atom experiments allows for the parameters of the friction to
be tuned, revealing transitions in the dynamical properties of the system. Rare events in both the
momentum and spatial distributions are described by non-normalized states using tools adapted from
infinite ergodic theory. This leads to new experimental and theoretical results that illuminate the
various features of the system.
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I. INTRODUCTION

Diffusive processes such as Brownian motion are ubiqui-
tous in nature. In these the position coordinates of an ensemble

of noninteracting particles, all starting from a common origin,
are normally distributed. This is a manifestation of the central
limit theorem as the basic motion is composed of many
random, uncorrelated steps. Mathematically Brownian motion
can be described either using a stochastic differential equation
that models the trajectory of a single particle (Gardiner, 1985;
Van Kampen, 2007) or with the diffusion equation relating to
the description of the entire ensemble. The asymptotic time
dependence of the mean-squared displacement of such a
motion is characteristically given by hx2i ∼ t, where h� � �i
denotes an average over the ensemble.
It is now well established (Bouchaud and Georges, 1990;

Metzler and Klafter, 2000; Sokolov and Klafter, 2005) that
this is merely a particular case of a much richer set of
phenomena where the dynamics differs in general from the
“normal” behavior, and hx2i ∼ tβ, where the exponent β is not
necessarily unity. Studying the mathematical properties of an
extension to the standard central limit theorem, Lévy (1937)
considered the problem of the summation of a large number
of independent and identically distributed random variables
whose variance diverges (Sec. II.A). This arises when the
distribution of the random variables is heavy tailed and
decays as a sufficiently small power law. The resulting
family of distributions describing the sum are called stable
distributions, giving rise to the normal Gaussian as a special
(albeit important) case. Early physical manifestations of
these include canonical work on spectroscopy (Holtsmark,
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1919) and the study of the distribution of gravitational
forces acting on a tracer (Chandrasekhar, 1943). These
statistical laws are now widely used tools in many fields,
such as econophysics (Mantegna and Stanley, 1999),
soft matter and biophysics (Shusterman et al., 2004; Song
et al., 2018), dynamics of blinking quantum dots (Stefani,
Hoogenboom, and Barkai, 2009), and hydrodynamics (Kelly
and Meerschaert, 2019).
One simple model allowing access to the full richness of the

anomalous diffusion parameter space is a generalization of the
Lévy flight (Mandelbrot, 1982; Shlesinger, Zaslavsky, and
Frisch, 1995). In this random-walk model, a walker “jumps” a
certain distance and then dwells at the arrived location for a
certain time. Jump distances and dwell times are random
variables, both drawn from distributions that can in general be
heavy tailed or can have diverging moments (Scher and
Montroll, 1975). Intuitively it can be understood that if the
dwell time distribution has a heavy tail the dynamics can
become “subdiffusive” (β < 1), whereas if the moments of the
jump distances are allowed to diverge the dynamics may
become “superdiffusive” (β > 1). An important issue when
dealing with such power-law distributions is that jumps can
occur on many widely different scales. Since in physical
processes long jumps are expected to take longer than short
ones and since a truly diverging jump length can never
realistically be obtained, a modification to the original Lévy
approach was put forth. In the simplest version of this “Lévy
walk” model (Shlesinger, West, and Klafter, 1987; Zaburdaev,
Denisov, and Klafter, 2015), a fixed finite speed is prescribed,
ensuring that long jumps take longer than short ones. More
generally a power-law correlation between the distance
covered in a jump and the time duration of the jump was
considered (Shlesinger, West, and Klafter, 1987). Other gen-
eralizations of the Lévy walk have also been proposed and
analyzed as models of anomalous diffusion (Albers and
Radons, 2018; Bothe, Sagues, and Sokolov, 2019; Vezzani,
Barkai, and Burioni, 2020).
While much is known about the stochastic foundation of the

Lévy walk and its applications, a physical model that allows
control over the transition between the phases of the dynamics
could pave the way to deeper understanding. As originally
described by Marksteiner, Ellinger, and Zoller (1996), laser-
cooled atoms (in certain parts of parameter space) are ideal for
this purpose. This realization gave rise to a series of questions
regarding fundamental issues in statistical physics, such as the
non-Maxwellian nature of the velocity distribution, rare events
in heavy-tailed processes, calculation of anomalous transport
constants, and the ergodic properties of these nonequilibrium
processes (Bardou et al., 2002; Lutz and Renzoni, 2013). As a
concrete example of such a fundamental concept, consider the
two-time velocity autocorrelation function hvðt2Þvðt1Þi. For
Brownian motion and a vast number of other transport
systems, this quantity is stationary and depends only on the
time difference jt2 − t1j. This has many consequences, for
example, for the calculation of the diffusion constant using the
Einstein-Green-Kubo approach and also for the ergodic
properties of the system. Under certain conditions, however,
this stationarity property does not hold for laser-cooled atoms,
and instead the correlations exhibit scale invariance where the

ratio of the two times becomes important. This leads to new
ideas on transport and ergodicity.
Laser cooling is a well-established experimental technique

for obtaining extremely low temperatures of atomic ensem-
bles.1 A momentum-dependent friction force is generated by
external optical fields, reducing the atoms’ momentum
toward zero. The canonical example is that of Doppler
cooling (Hänsch and Schawlow, 1975; Wineland and
Dehmelt, 1975; Wineland, Drullinger, and Walls, 1978;
Phillips, 1998), where pairs of counterpropagating beams,
detuned from the relevant two-level atomic resonance,
selectively reduce the momentum of fast-moving atoms.
The associated minimal Doppler temperature TD, brought
about by the balance between the friction and random
emissions of photons jolting the atoms, is given by
kBTD ¼ ℏΓ=2, where Γ is the natural linewidth of the excited
state, kB is the Boltzmann constant, and ℏ is the reduced
Planck constant. This was originally thought to be a
fundamental limit for the ability to laser cool atomic systems,
and it therefore was a surprise when temperatures below the
Doppler limit were obtained experimentally (Chu, 1998;
Cohen-Tannoudji, 1998) via a process later called Sisyphus
cooling (Sec. II.B). The key to explaining this discovery was
the multilevel, degenerate nature of realistic atoms. The
random momentum recoils ℏk due to scattered photons give
rise to a second lower bound for the temperature, the recoil
limit kBTR=2 ¼ ℏ2k2=2M ¼ ER, where ER is the recoil
energy, M is the atomic mass, and k is the wave number.
Temperatures even lower than the recoil limit have been
achieved through other techniques such as subrecoil laser
cooling (Aspect et al., 1988; Bardou et al., 1994), Raman
and Raman-sideband cooling (Kasevich and Chu, 1992;
Vuletić et al., 1998), and evaporative cooling (Anderson
et al., 1995) relying on different physical mechanisms.
For Sisyphus cooling, the particular dependence of the

friction force on the atomic momentum leads to anomalous
kinetics. The phase-space trajectory of an atom in the semi-
classical approximation of the laser-cooling mechanism has
been analyzed theoretically with tools from quantum optics
and the theory of stochastic processes (Dalibard and Cohen-
Tannoudji, 1989; Marksteiner, Ellinger, and Zoller, 1996).
While anomalous dynamics can be found in many systems

within the context of ultracold atomic physics (Niedenzu,
Grießer, and Ritsch, 2011; Meir et al., 2016; Kindermann
et al., 2017; Zheng and Cooper, 2018; Dechant et al., 2019), in
this Colloquium we focus on recent developments in both the
theoretical and the experimental understanding of the anoma-
lous dynamics of atoms undergoing Sisyphus cooling. The
model presented departs from the standard descriptions of
Lévy walks, which are usually postulated ad hoc, and lays
bare the mechanism behind the non-normal kinetics. From an
experimental perspective, the model allows unique control of
the basic phenomenon enabling the transition between

1The temperature of standard gases is given by the width of the
stationary Gaussian momentum distribution. In the context of this
work, however, momentum distributions typically deviate from
Gaussianity, and hence the definition is more subtle. This definition
is discussed at the end of Sec. III.A.
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different phases of the dynamics. This is in stark contrast to
most superdiffusive systems, say, in the atmosphere or in the
context of cell biology, where there is little experimental
control over the basic features of the process. The main point
of view is to present the modifications of the basic Lévy walk
model that emerge and the consequences for basic concepts
of equilibrium and nonequilibrium physics hand in hand with
relevant experimental results. Among the topics discussed
are the power-law distributions in momentum and position as
well as their correlations (Sec. III) and the implications of
fundamental concepts in statistical physics such as the
Einstein-Green-Kubo relation, the breakdown of ergodicity
and energy equipartition, and the relation to infinite ergodic
theory (Sec. IV).

II. LÉVY DYNAMICS AND SISYPHUS COOLING

A. Lévy versus Gauss central limit theorem, Lévy flights, and
Lévy walks

The process of Brownian motion was modeled by
Einstein, Smoluchowski, and others (Kubo, 1957; Hnggi
and Marchesoni, 2005; Majumdar, 2007). It is natural that
the underlying random walk describing it is a Gaussian
process, as this is precisely what the central limit theorem
predicts for a process where the total displacement at long
times is a sum of many independent random displacements.
Deviations from normal, Gaussian, Brownian motion can be
parametrized using the random walk governed by Lévy laws.
Central limit theorems deal with the problem of summation

of a large number N of independent, identically distributed
random variables fχig. The sum S ¼ P

N
i¼1χi=N

1=μ scaled by
some power 1=μ of N is considered. The probability density
function (PDF) of S is given by the inverse Fourier transform
of its characteristic function,

hexpðikSÞi ¼
�
exp

�
ikχ1
N1=μ

��
� � �

�
exp

�
ikχN
N1=μ

��

¼
�
exp

�
ikχ

N1=μ

��
N
; ð1Þ

where on the left the average is taken over the random
variable S and on the right it is taken with respect to the
random variable χ. The result is a direct outcome of the
assumption that the random variables fχig are independent
and identically distributed, so the expectation value factorizes.
We assume here that the PDF of χ is symmetric so that its
mean is zero. Two examples are the Gaussian PDF PGðχÞ ¼
expð−χ2=2σ2Þ=

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
with a standard deviation σ and a

Lorentzian PDF PLðχÞ ¼ ½πð1þ χ2Þ�−1. The first is an exam-
ple of a distribution with finite moments, while the second has
a power-law tail, and its variance diverges. The characteristic
functions of the Gaussian and Lorentzian are P̃GðkÞ ¼
expð−k2σ2=2Þ and P̃LðkÞ ¼ expð−jkjÞ, respectively. Related
to the divergence of the variance, the characteristic function of
the Lorentzian exhibits nonanalytical behavior at k ¼ 0,
PLðkÞ ∼ 1 − jkj and the second derivative with respect to k
at this point diverges. More generally if PðχÞ ∼ jχj−ð1þνÞ for
large jχj and 0 < ν < 2, then for small k we have

P̃ðkÞ ∼ 1 − Ajkjν, where A is a scale parameter used as an
input for the theory (Bouchaud and Georges, 1990). For ν < 2
the variance of the summand diverges. On the other hand, for
any parent distribution of χ with a finite variance, we have
PðkÞ ∼ 1 − σ2k2=2, where the leading term reflects the fact
that PðχÞ is normalized. Using Eq. (1), two generic possibil-
ities are then found in the limit of N → ∞. If the variance of
PðχÞ is finite,

hexp ðikSÞi →
�
1 −

σ2k2

2N

�
N

¼ exp ð−σ2k2=2Þ; ð2Þ

where we choose μ ¼ 2 and use the definition of the
exponential limit. This implies a diffusive scaling for the
sum. It also means that the PDF of the scaled sum S is
Gaussian for any parent distribution with a finite variance σ. In
contrast, if PðχÞ exhibits power-law decay with ν < 2, then μ
is chosen2 such that μ ¼ ν, and

hexp ðikSÞi →
�
1 −

Ajkjν
N

�
N
¼ exp ð−AjkjνÞ: ð3Þ

In this case superdiffusive scaling emerges, as the sum of the
random variables grows as N1=ν.
To summarize, the sum of random variables is scaled with

N1=μ. Equation (2) implies that if the variance is finite, then
μ ¼ 2, while Eq. (3) together with the definition of the
exponential function results in μ ¼ ν if ν < 2 (and the
variance diverges). The inverse Fourier transform of Eq. (3)
is the PDF of the sum S and is also the well-known symmetric
stable density or Lévy density (Bouchaud and Georges, 1990;
Amir, 2020),

Lν;0ðSÞ ¼
1

2π

Z
∞

−∞
dk expðikS − jkjνÞ; ð4Þ

where the subscript 0 indicates symmetric functions and the
width scale A is set to unity. In particular, the case ν ¼ 1 is the
Lorentzian, and ν ¼ 2 is the Gaussian.
Two forms of central limit theorems now emerge: the first is

usually associated with Gauss3 [Eq. (2)], and the second is
associated with Lévy [Eq. (3)]. When a system exhibits
power-law statistics of the Lévy type, the largest summand
in the set fχig is of the order of the entire sum (Chistyakov,
1964; Vezzani, Barkai, and Burioni, 2019). The fact that the
variance diverges implies that the underlying random walk is a
fractal, also called a self-similar object. This is easily
visualized considering a 2D Lévy flight, as depicted in Fig. 1.
Specific examples of Lévy stable densities had already

emerged in physics, absent the general mathematical frame-
work, in the context of the summation of a large number of
forces or energies more than a century ago. In his line-shape

2Though a rigorous proof of the central limit theorem is beyond
the scope of this Colloquium, note that any other choice of ν ≠ μ
would not give a meaningful limit when N → ∞.

3Though in modern physics this is called a Gaussian (which dates
back to 1809), its roots precede Gauss and extend well into the 18th
century with Bernoulli, de-Moivre, and Laplace (Stigler, 1986).
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theory, Holtsmark (1919) considered the distribution of the
sum of many perturbations acting on an ion. A similar
problem was later discussed by Chandrasekhar (1943) in
an astrophysical context. The Holtsmark distribution is a
particular yet significant case of the Lévy stable distribution,
with ν ¼ d=n, where d ¼ 3 is the dimension of the system and
n ¼ 2 is the power of the spatial dependence of the interaction
potential, i.e., gravitational or Coulomb. It applies when
considering the force projected on one of the axes and when
the bath particles are uniformly distributed in space. In his
work on the energy transfer due to multiple scatterings in
ionization, Landau (1944) constructed what would become
known as the one-sided Lévy stable distribution. Similar ideas
and behaviors were found for single molecules in low
temperature glasses (Barkai, Silbey, and Zumofen, 2000;
Barkai et al., 2003) and in models of active dynamics
(Kanazawa et al., 2020).
The notion of a Lévy flight, where jump displacements are

drawn from a common PDF with a power-law tail and
summed, is problematic for a process describing spatial
dynamics, as larger jump distances in space are expected to
take longer. The power-law tail of the jump-size distribution
means that the mean-squared displacement (MSD) of the
Lévy flight is infinite, which is unphysical, as any real
system will have a maximal speed of propagation. To remedy
this, the concept of Lévy walks was introduced by Shlesinger,
West, and Klafter (1987) and Zaburdaev, Denisov, and
Klafter (2015).
The simplest (one-dimensional) version of the Lévy walk

considers a particle starting at the origin at t ¼ 0. A random-
walk-duration τ is drawn from a heavy-tailed PDF ψðτÞ. A
random velocity is also drawn, for example, �V0, each with
probability 1=2. During this interval the motion is ballistic,

reaching x ¼ �V0τ. The process is then repeated (“renewed”)
and a new pair of walk duration and velocity is drawn. The
position xðtÞ of the particle is limited by the ballistic light cone
−V0t < xðtÞ < V0t, and the moments of xðtÞ never diverge
for any finite t. If the distribution of walk durations does not
have power-law tails but is exponential, this model is
essentially the Drude model for transport of electrons in
metals, and the diffusion is normal. In the Lévy walk case, the
walk-duration PDF is heavy tailed, ψðτÞ ∼ τ−ð1þηÞ. Here if
1 < η < 2 the variance of the flight duration diverges, while if
0 < η < 1 the mean flight duration also diverges. This yields
three dynamical phases for the MSD (Zaburdaev, Denisov,
and Klafter, 2015),

hx2ðtÞi ∼

8>><
>>:

t2; 0 < η < 1;

t3−η; 1 < η < 2;

t; η > 2:

ð5Þ

When η < 1 the dynamics are ballistic, whereas for 1 < η < 2
the spreading is superdiffusive. When the first two moments of
the PDF of the jump duration are finite (η > 2), normal
diffusion is recovered. In the Lévy walk, therefore, a natural
cutoff is created by introducing the finite velocity, curing the
unphysical divergence of the variance of displacement in the
corresponding Lévy flight. Another major difference between
Lévy walks and Lévy flights is that in the latter the number of
stepsN is fixed, as in any other random-walk process, whereas
in the Lévy walk the number of renewals in the time interval
ð0; tÞ is itself a random variable (Godreche and Luck, 2001).
There are many physical applications of Lévy walks. For

example, blinking quantum dots (Brokmann et al., 2003;
Margolin and Barkai, 2005; Stefani, Hoogenboom, and
Barkai, 2009) work in the ballistic phase 0 < η < 1, where
the “effective velocity” is the intensity of emitted light that
jumps between dark and bright states with power-law-dis-
tributed sojourn times. The position of the random walker
corresponds to the total number of photon counts that exhibits
superdiffusive statistics, as seen in experiments (Margolin
et al., 2006). Lévy walks also appear in the motion of bacterial
colonies (Ariel et al., 2015) and in many other systems
(Zaburdaev, Denisov, and Klafter, 2015).

B. The basics of Sisyphus cooling

The mechanism by which anomalous diffusion is mani-
fested within the context of cold atomic ensembles in
dissipative optical lattices4 is related to the nonlinear nature
of the momentum-dependent optical friction force fðpÞ acting
on the atoms (Dalibard and Cohen-Tannoudji, 1989; Castin
and Molmer, 1990; Agarwal and Molmer, 1993; Marksteiner,
Ellinger, and Zoller, 1996). In the semiclassical approximation
and for a given set of damping strength A and momentum
capture range pc, it takes the form (Castin, Dalibard, and
Cohen-Tannoudji, 1991)

FIG. 1. Lévy flights are random-walk processes where the jump
distances are obtained from heavy-tailed power-law distributions
with infinite variance [Eq. (3)]. Depicted is an example of a two-
dimensional flight, with the horizontal and vertical axes repre-
senting spatial dimensions and a Lévy index ν ¼ 1.4. The
direction of a given jump is rotated from that of the previous
one by a random angle uniformly distributed between 0 and 2π.
Inset: depiction of the fractal, self-similar nature of the dynamics,
which is similarly characterized by a small number of long flights
and a large number of short ones.

4Not all atomic species trapped in near-resonant optical lattices
display such behavior. Bosonic Yb, for example, lacks the appro-
priate level structure and has no Sisyphus effect (Kostylev et al.,
2014).
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fðpÞ ¼ −
Ap

1þ ðp=pcÞ2
: ð6Þ

A and pc are functions of the experimental parameters of the
system. A slow atom with jpj=pc ≪ 1 will experience a
draglike force f ∼ −p similar to the Stokes friction acting on a
Brownian particle in fluid, whereas a fast atom instead feels
a weak force f ∼ −1=p. Intuitively, fast-moving atoms tend to
remain fast, leading to large flights in space and in turn to
anomalous Lévy-type motion.
To realize this friction (Chu, 1998; Cohen-Tannoudji, 1998;

Foot, 2005), consider the qualitative picture of an atom that
has a lower energy level with angular momentum J ¼ 1=2 and
an upper energy level with J0 ¼ 3=2 that moves through a
standing wave formed by two counterpropagating laser beams
with orthogonal linear polarizations (Fig. 2, top panel). The
resulting polarization depends on the relative phase of the two
laser beams and varies periodically with position x, changing
from linear at, say, x ¼ 0, to σ− at x ¼ λ=8 to orthogonal
linear at x ¼ 2λ=8 to σþ at x ¼ 3λ=8. λ, of the order of a few
hundreds of nanometers, is the wavelength of the lattice lasers.
This polarization lattice causes periodic modulation of the
states in the lower level manifold due to Stark shifts,
enhancing the probability of the downhill transitions when
the atom is at the top of the potential (and hence the term
Sisyphus from Greek mythology). The result is a net cooling
effect as the atom, on average, slows down. The energy drops
in Fig. 2 (bottom panel) correspond to the absorption-emission
events shown in the top panel. They are depicted as uneven to
reflect the fact that the process is probabilistic and does not
necessarily occur exactly at the peak.
Sisyphus cooling reaches a nonequilibrium steady state

where the friction force that biases the system toward zero
momentum is balanced with the fluctuations caused by
spontaneous emission. For “deep” lattices, where the potential
modulation depth U0 defined in Fig. 2 is large, the temper-
ature is proportional to and of the order of U0 (Cohen-
Tannoudji, 1998). This can be intuitively understood given
that once the energy of the atom is smaller than U0 it cannot
climb up the hill, and hence at this stage cooling is ineffective
(Fig. 2, bottom panel). As U0 is reduced, the temperature
reaches a minimum at some Umin

0 and then rises sharply upon
further reduction of U0 (“shallow” lattices). At this minimum,
to which typical experimental systems are tuned, hEki ∼ Umin

0 .
Sisyphus cooling was extensively studied experimentally

for a variety of atomic species. Typically pairs of counter-
propagation red-detuned laser beams are used to generate the
dissipative lattice, although three or four beams at proper
angles can also be used (Kerman et al., 2000), depending on
the dimensionality of the problem. The lattice depth is
controlled via the power and detuning of the cooling lasers,
and magnetic fields must be kept below a few tens of
milligauss to suppress shifts of the Zeeman levels that might
hinder the Sisyphus effect. Finally, additional lasers are
needed to “repump” the atoms into the cycling transition
levels, but their direct effect on the atomic motion is usually
negligible. In the deep-lattice regime, the temperature can be
determined by measuring the standard deviation of the
velocity distribution, a task performed mostly using the

time-of-flight technique, where a cloud of atoms is released
from all confining fields and is allowed to freely expand. This
generates a mapping of the atomic velocity distribution onto its
spatial distribution after the expansion (assuming sufficient
time elapses for the cloud to expand to a size much larger than
its original width). The density profile of the expanded atoms,
now describing their initial velocity distribution, is then
imaged using fluorescence or absorption imaging. Addi-
tional techniques to measure atomic velocity distributions
are based on velocity-selective Raman transitions (Moler et al.,

FIG. 2. Lévy dynamics can arise in the motion of atoms
undergoing Sisyphus cooling. Top panel: two counterpropagat-
ing, orthogonally linearly polarized laser beams generate a
periodic spatial modulation of the polarization. The atomic
ground state energy sublevels MJ ¼ þ1=2 and −1=2 are then
perturbed by the standing light wave such that the atom travels up
and down hills and valleys of potential energy. When the laser
frequency is tuned below the atomic resonance frequency, state-
changing photon scattering is more probable around the top of the
potential hills, where the spontaneously emitted photon has a
higher frequency than the absorbed one, illustrated as wiggly
and straight yellow lines, respectively. Bottom panel: as a result
an atom, moving from left to right in the depicted example
along the thicker orange line, loses energy on average due to
photon scattering, so cooling becomes efficient. The main
control parameter is the modulation depth of the lattice U0.
Inset: measurement of the temperature of Sisyphus-cooled 133Cs
atoms as the lattice depth is varied (Jersblad, Ellmann, and
Kastberg, 2000), demonstrating a sharp increase of temperature
when U0=ER decreases. Adapted from Castin, Dalibard, and
Cohen-Tannoudji, 1991.
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1992), on spatial correlation functions (Saubaméa et al., 1997),
or on measuring the survival probability after a sudden
decrease of the trap depth [applicable for single atoms
(Alt et al., 2003; Tuchendler et al., 2008)].
The inset of Fig. 2 shows the result of such a time-of-flight

temperature measurement after three-dimensional Sisyphus
cooling of 133Cs atoms (Jersblad, Ellmann, and Kastberg,
2000) as a function of the optical lattice depth U0. The results
show a minimal temperature at Umin

0 =ER ≈ 100. The distinc-
tion between shallow (U0 < Umin

0 ) versus deep lattices
(U0 > Umin

0 ), which will be shown to mark the transition
between different regimes in the dynamics, then naturally
follows.

III. ANOMALOUS STATISTICS AND INFINITE DENSITIES

A. Momentum space

We now turn to a quantitative description of the anomalous
dynamics of the momentum distribution for 1D motion in
the dissipative lattice after averaging over the lattice period
and using the semiclassical approximation. Generally this is
valid in the shallow-lattice regime and ignores trapping in the
wells of the optical lattice. More specifically it requires
the following: (i) The laser must be weak, meaning that the
saturation parameter s0 ≪ 1 [s0 is a measure of the occupation
of the excited state proportional to the laser intensity (Foot,
2005)]. (ii) The atomic kinetic energy must be large compared
to the lattice depth such that all positions along the lattice are
considered equiprobable allowing spatial averaging. (iii) The
atomic momentum change Δp ≫ ℏk, where k is the wave
number of the laser field (Lutz, 2003). The validity of the
semiclassical approximation has been tested using full quan-
tumMonte Carlo wave function simulations (Castin, Dalibard,
and Cohen-Tannoudji, 1991; Marksteiner, Ellinger, and
Zoller, 1996), and it has been shown to quantitatively hold
under the previously described conditions, assuming an ideal
atomic level structure of J ¼ 1=2 → J0 ¼ 3=2. For other level
structures the results show a qualitative agreement.
This semiclassical treatment is a useful approximation since

the long jumps giving rise to the Lévy diffusion are not
influenced by the trapping potential. The procedure of the
derivation of the Fokker-Planck equation involves a spatial
averaging over the wells, namely, it is assumed that spatial
modulation of the optical lattice has a marginal effect on the
anomalous statistics (Castin, Dalibard, and Cohen-Tannoudji,
1991; Marksteiner, Ellinger, and Zoller, 1996). In the opposite
limit of deep lattices, the spatial structure of the lattice and the
energy surfaces play an important role and cannot simply be
averaged out.
It has been shown (Castin, Dalibard, and Cohen-Tannoudji,

1991; Hodapp et al., 1995; Lutz, 2004) that the dynamics of
the momentum PDF Wðp; tÞ is governed by the following
Fokker-Planck equation5 :

∂W
∂t

¼ −
∂

∂p
½fðpÞW� þ ∂

∂p

�
DðpÞ ∂W

∂p

�
; ð7Þ

which is valid for shallow lattices. The diffusive term
DðpÞ ¼ D0 þD1=½1þ ðp=pcÞ2� describes stochastic fluctu-
ations of the momentum where D0 and D1 are functions of
the experimental parameters (Castin and Molmer, 1990;
Marksteiner, Ellinger, and Zoller, 1996). Unlike the friction
force that vanishes in the limit of large momentum, the
momentum diffusion becomes p independent in this limit
and DðpÞ → D0. The simple relation between friction
and dissipation, in the spirit of the Einstein relation, is
hence invalid.
The steady-state solution WðpÞ of Eq. (7) was derived by

Lutz (2003). Using the force given by Eq. (6) and the
previously discussed diffusive term, it reads

WðpÞ ∼
�
1þ D0

D0 þD1

�
p
pc

�
2
�
−Ũ0=2

: ð8Þ

The width of the momentum distribution is determined by pc,
and it has a power-law tail with an exponent expressed in
terms of Ũ0 as WðpÞ ∼ jpj−Ũ0 . Emerging from the Fokker-
Planck equation as an important dimensionless parameter in
the system, Ũ0 is defined in terms of the experimental
parameters as

Ũ0 ¼ A
p2
c

D0

¼ 1

C
Mδs0
ℏk2

¼ 1

C
U0

ER
: ð9Þ

In Eq. (9) δ is the detuning of the laser from the atomic
transition frequency. Different values are cited in the literature
for the proportionality constant C, reflecting the complexity of
experimental atomic systems beyond the simplified models
(Castin and Molmer, 1990; Marksteiner, Ellinger, and Zoller,
1996). The exact numerical value does not, however, have a
profound effect on the results presented here, and therefore it
is reasonable to treat C as a dimensionless fitting parameter.
Even though both the detuning of the laser from the atomic
resonance and its intensity affect the potential depth as well as
the photon scattering rate, the effective temperature and
indeed the anomalous dynamics depend only on the single
parameter Ũ0.
The second moment of the steady-state momentum hp2i,

usually considered a measure of the temperature, diverges
when Ũ0 < 3. Moreover, when Ũ0 < 1 the solution itself is no
longer normalizable and there is no steady state at all. The first
experimental verification of Eq. (8) was presented by
Douglas, Bergamini, and Renzoni (2006), where an ensemble
of 133Cs atoms was exposed to a 3D Sisyphus lattice of
variable depth.6 The atomic momentum distribution, mea-
sured by time of flight, is presented in Fig. 3. The results,
representing an average over 200 separate images where extra
care was taken to balance the radiation-pressure force from the
counterpropagating beam pairs, led Douglas, Bergamini, and5A first derivation of the Fokker-Planck equation for atoms in a

field of laser radiation pressure was given by Letokhov and Minogin
(1981). Equation (7) is derived in the semiclassical limit using an
expansion of the master equation in terms of the recoil velocity.

6Although Eq. (8) is derived for 1D cases, in isotropic cases it can
also apply to higher dimensions (Lutz, 2003).
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Renzoni (2006) to conclude that they represent a statistically
significant indication of the power-law tails of the momentum
distribution. This can be seen in the right panel of Fig. 3,
where the probability of an atom having a momentum larger
than some value p is shown to fit a power law over two
decades. The non-Gaussianity of the momentum distribution
of atoms in the deep-lattice regime was studied experimentally
by Jersblad et al. (2004) using 133Cs. They fitted time-of-flight
data to several test functions, including the power-law-type
distribution of Eq. (8) and a double Gaussian, and concluded
that a double Gaussian provides a better fit to the experimental
data. Bimodal distributions were also found by Dion
et al. (2016).
In analyzing the dynamics described in Eq. (7), it is

convenient to also consider the corresponding Langevin
equation representing the phase-space trajectory of a single
particle. There is a standard procedure for obtaining the
corresponding Langevin equation from a given Fokker-
Planck equation (Van Kampen, 2007), wherein the drift term
corresponds to an external force and the diffusion term arises
from the external noise. The analysis of trajectories is
extremely useful for a myriad of reasons, ranging from the
ease of simulations that allow insight into the nature of
individual trajectories to more subtle properties of the system
such as the analysis of time averages to tackle issues like
ergodicity (discussed in Sec. IV). For simplicity we set
D1 ¼ 0, since it modifies neither the asymptotic jpj → ∞
behavior of the diffusive term nor the cooling force, and
therefore does not affect the main conclusions. Transforming
to dimensionless time t → At, momentum p → p=pc, and

position x → xMA=pc, the Langevin equation, with ξðtÞ the
white Gaussian noise with zero mean and second moment
hξðtÞξðt0Þi ¼ δðt − t0Þ, reads (Barkai, Aghion, and Kessler,
2014)

dp
dt

¼ fðpÞ þ
ffiffiffiffiffiffi
2

Ũ0

s
ξðtÞ; dx

dt
¼ p; ð10Þ

where the dimensionless form of the force of Eq. (6)
is fðpÞ ¼ −p=ð1þ p2Þ.
The non-normalizability of the steady state for Ũ0 < 1

points to a dynamical transition. The time it takes a particle
with momentum p > 0 to cross p ¼ 0 is random and the PDF
of these times is described by a power law ψðτÞ ∼ τ−ð1þηÞ, with
0 < η ≤ 1 for Ũ0 ≤ 1 (Marksteiner, Ellinger, and Zoller,
1996; Barkai, Aghion, and Kessler, 2014). The non-
normalized steady state is thus related to the divergence of
the mean return time of the momentum. Even though the
energy cannot realistically diverge, measurements of the
ensemble-averaged kinetic energy hp2i=2M do exhibit a
sharp transition at a certain Ũ0 below which the energy
increases dramatically (Fig. 2, inset). The divergence of the
return time and the vanishing of the normalization of the
steady state are generic themes that often appear together in
other systems (Aghion, Kessler, and Barkai, 2019).
A theoretical challenge now arises. Assuming that the

Fokker-Planck equation is valid, is the associated steady state
WðpÞ a valid description over times that are long but finite? It
turns out that the steady state by itself does not yield a
complete description of the momentum distribution. In par-
ticular, all moments of the momentum distribution as specified
by the time-dependent Fokker-Planck equation are finite for
any finite measurement time, in contrast to the steady-state
prediction based on Eq. (8). To obtain these moments,
including the second moment (which as noted gives the
ensemble-averaged kinetic energy) for Ũ0 < 3, a new tool
is needed, called the infinite covariant density.
Infinite covariant density.—It has been shown that the time-

independent solution is not an adequate description of the
system, as it gives rise to infinite moments. The full time-
dependent solution gives physically meaningful answers for
all finite times; however, its exact form is not analytically
attainable. A useful approximate result can be obtained if the
problem is broken in two, with the regimes p ≪

ffiffi
t

p
and p ∼ffiffi

t
p

focused on separately. In the former case, the equilibrium
answer is a good approximation. In the latter case, however, a
new type of approximation is obtained that amounts to a non-
normalizable density. Such a seemingly paradoxical math-
ematical object has been given the name infinite density and
will be shown to be a crucial tool for correctly generating the
second and higher moments of the momentum distribution.
The dimensionless form of the steady-state momentum

distribution corresponding to Eq. (8) is

WðpÞ ¼ N ð1þ p2Þ−Ũ0=2 for Ũ0 > 1; ð11Þ

with N ¼ ΓðŨ0=2Þ=
ffiffiffi
π

p
Γ½ðŨ0 − 1Þ=2�. This describes the

steady state of the process defined in Eq. (10), with ΓðxÞ

FIG. 3. Analysis of the atomic dynamics under the unique
Sisyphus friction [Eq. (6)] predicts a non-Gaussian steady state in
momentum [Eq. (8)]. Left panel: results of a time-of-flight
measurement of the momentum distribution WðpÞ of an ensem-
ble of 133Cs atoms as a function of their momentum, rescaled by
the recoil momentum pR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2MER
p

. A deep lattice (small red
markers, almost coinciding with the thin red line) is compared
with a shallow lattice (large black circles). The solid lines
represent fits by Eq. (8), giving a Gaussian distribution for the
deep lattice (thin red line) and a power law for the shallow lattice
(thick black line). Right panel: integrated data from the left panel
describing the probability of the momentum being larger than
some value p. Plotted on a log-log scale, it reveals the power-law
nature of the distribution. Adapted from Douglas, Bergamini, and
Renzoni, 2006.
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the gamma function. As mentioned, for Ũ0 ≤ 1 the solution is
no longer normalizable. For Ũ0 > 1, the steady-state second
moment is

hp2i ¼
(
1=ðŨ0 − 3Þ for Ũ0 > 3;

∞ for Ũ0 < 3:
ð12Þ

The divergence of the steady-state kinetic energy hp2i as Ũ0

approaches the critical value 3 from above is the direct result
of the power-law tail of the momentum distribution, which in
turn is due to the weak friction force at large momentum
fðpÞ ∼ −1=p. The key insight is that for these types of
systems the difference between the steady-state distribution
and the distribution at a large but finite time is non-negligible,
in contradistinction to what happens for the standard fðpÞ ∼
−p friction force. While the bulk of the distribution is given
correctly by the steady-state solution, the power-law tail of the
time-dependent Wðp; tÞ does not extend to infinite momen-
tum. As in the case of free diffusion in momentum space
where the momentum rarely exceeds ∼

ffiffi
t

p
, so too here the

power-law tail is cut off at jpj ∼ ffiffi
t

p
. To see this, an analysis of

the dimensionless Fokker-Planck equation

∂W
∂t

¼
�

1

Ũ0

∂
2

∂p2
þ ∂

∂p
p

1þ p2

�
W ð13Þ

was presented by Levine, Mukamel, and Schütz (2005),
Kessler and Barkai (2010), and Dechant, Lutz, Barkai, and
Kessler (2011), who employed the scaling ansatz

Wðp; tÞ ∼ tqhðp= ffiffi
t

p Þ; ð14Þ

which holds for a large momentum and long times. Using the
diffusive scaling variable z ¼ p=

ffiffi
t

p
, the following equation is

found:

1

Ũ0

d2h
dz2

þ
�
1

z
þ z
2

�
dh
dz

−
�
qþ 1

z2

�
h ¼ 0: ð15Þ

Matching this solution to the steady-state solution that holds
for p ≪

ffiffi
t

p
gives q ¼ −Ũ0=2 and

hðzÞ ¼ N z−Ũ0

Γ½ðŨ0 þ 1Þ=2�Γ
�
1þ Ũ0

2
;
Ũ0z2

4

�
; ð16Þ

where Γða; xÞ is the incomplete gamma function. In the small
and large z limits,

hðzÞ ∼
(
N z−Ũ0 ; z ≪ 2=

ffiffiffiffiffiffi
Ũ0

p
;

fN ð4=Ũ0Þð1−Ũ0Þ=2=Γ½ðŨ0 þ 1Þ=2�gz−1e−Ũ0z2=4; z ≫ 2=
ffiffiffiffiffiffi
Ũ0

p
:

ð17Þ

The Gaussian factor found for large z stems from the
diffusion in momentum space as the force becomes
negligible for a large momentum p ≫

ffiffi
t

p
. The small-z

behavior is a power law that matches the large-p behavior
of the steady state of Eq. (11).
The solution hðzÞ is non-normalizable since hðzÞ ∼ z−Ũ0 for

small z. This type of solution is called an infinite covariant
density. It is covariant in the sense that z ¼ p=

ffiffi
t

p
; hence, p

must be scaled with the square root of time [namely, hðzÞ
remains unchanged as both

ffiffi
t

p
and p are modified,

keeping their ratio fixed], while the normalized steady
state [Eq. (8)] is time invariant. Note especially that the term
infinite refers to the non-normalizablibility of the solution.
Thus, hðzÞ, while remaining positive, is not a probability

density. Its statistical meaning can be understood following
the mathematical literature on infinite ergodic theory
(Aaronson, 1997). In a long-time, large momentum limit with
p=

ffiffi
t

p
fixed,

lim
p;t→∞

p=
ffi
t

p
fixed

tŨ0=2Wðp; tÞ ¼ hðp= ffiffi
t

p Þ: ð18Þ

The right-hand side of Eq. (18) is not normalized, since the
perfectly normalized PDF Wðp; tÞ is multiplied by tŨ0=2,
which diverges as t → ∞. The function hðzÞ can be used to
compute the moments of the process pðtÞ, namely, those that
diverge with respect to the integration over the steady state.
For example, the second moment is

hp2i ¼

8>><
>>:

1=ðŨ0 − 3Þ; Ũ0 > 3;

f14N =2Ũ0Γ½ðŨ0 þ 1Þ=2�g½1=ð2 − Ũ0Þ�ðt=Ũ0Þð3−Ũ0Þ=2; 1 < Ũ0 < 3;

2ð1 − Ũ0Þ=Ũ0t; Ũ0 < 1:

ð19Þ

For Ũ0 > 3 the kinetic energy is time independent, is
determined by the steady-state solution, and blows up as
Ũ0 → 3. For the intermediate range 1 < Ũ0 < 3, the

behavior is subdiffusive and the infinite density determines
the kinetic energy. Even though for Ũ0 < 1 the system is
actually heating linearly with time, the infinite kinetic
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energy of Eq. (12) is never obtained. At the critical value
Ũ0 ¼ 1 the system transitions to normal diffusive scaling of
the mean-squared momentum. Simulations and calcula-
tions taking account of the underlying lattice structure of
the laser field were performed by Holz, Dechant, and Lutz
(2015). These simulations solved the relevant set of
stochastic differential equations for shallow lattices,
thereby showing agreement with the infinite covariant
density of Eq. (16) and proving that the lattice structure
does not affect the scaling properties of the system.
Infinite densities are important in many applications beyond

Sisyphus cooling, in particular, in chaos theory (Akimoto,
2008; Korabel and Barkai, 2009). They have been studied
extensively in the context of infinite ergodic theory
(Aaronson, 1997) where the behavior of time averages is
important. For the system at hand, the steady-state solution
and the infinite covariant density are complementary tools, as
both are long-time solutions of the problem. Wðp; tÞ

converges toward the steady state as long as Ũ0 > 1.
Similarly, plotted in the scaling form the solution approaches
the non-normalized infinite density (Fig. 4). For 1 < Ũ0 < 3,
the steady-state solution predicts an infinite energy but a finite
normalization, and the infinite density gives a finite energy but
infinite normalization. Hence, both tools are required for a
complete description of the dynamics [Fig. 4 (bottom panel)].
Consider now the case of Ũ0 < 1. The steady state

[Eq. (11)] is not normalizable, an infinite invariant density
describes the momentum distribution in the inner region
p <

ffiffi
t

p
, and there is a limit

lim
t→∞

tð1−Ũ0Þ=2Wðp; tÞ ∼ ð1þ p2Þ−Ũ0=2: ð20Þ

The expression on the right-hand side of Eq. (20) is a non-
normalizable function since Ũ0 < 1; however, it still describes
a long-time limit of the density (Dechant, Lutz, Barkai, and
Kessler, 2011). The divergence emanates from the large-p
behavior. Since the right-hand side of Eq. (20) is time
independent, it is termed invariant and not covariant, as
was the case for Eq. (18). It is not a coincidence that this
is similar to the form found for the normalized steady state
[Eq. (11)]. Here infinite ergodic theory comes into play,
distinguishing between two types of observables: those that
are integrable with respect to the non-normalized density
[given by the time-independent right-hand side of Eq. (20)]
and those that are not.7

This is similar to the kinetic energy observable considered
for the case in which Ũ0 > 1, which, depending on the value
of Ũ0, may be either integrable or nonintegrable with respect
to the infinite covariant density. The fluctuation behavior of
the time averages of observables was studied by Aghion,
Kessler, and Barkai (2019). The mean of the time averages can
be evaluated from the non-normalized state, at least for
observables that are integrable with respect to the infinite
density. This is somewhat similar to the usual ergodic theory,
where time averages are calculated with ensemble averages;
however, now instead of using a normalized distribution in the
steady state, a non-normalizable function is used. When the
Darling-Kac theorem (Darling and Kac, 1957) and infinite
ergodic theory is employed, it is found that certain observ-
ables, when time averaged, have a universal distribution that in
turn is related to Lévy statistics (Aaronson, 1997; Aghion,
Kessler, and Barkai, 2019). The details of this, however,
extend beyond the scope of this Colloquium.
The regime Ũ0 < 1 is predicted to exhibit special features,

and experiments in this region are technically challenging due
to the fact that the system is actually being heated and atoms
are easily lost from the trap. The issue of heating and loss of
atoms can be partially mediated by use of elongated dipole
“tube” traps or blue-detuned optical box potentials (Sagi et al.,
2012; Afek et al., 2017, 2020; Navon, Smith, and Hadzibabic,

FIG. 4. Top panel: temporal dynamics of the momentum
distribution. The rescaled density of momentum vs p=t1=2

obtained from Langevin simulations [Eq. (10)] with Ũ0 ¼ 2
for rescaled times t ¼ t0 ≡ 76.3, t ¼ 4t0, and t ¼ 16t0, empha-
sizing the large momentum of the atom where the scaling is
effectively diffusive, as the friction is small. The theoretical curve
is the infinite covariant density of Eq. (16), a valid description in
the long-time limit. It exhibits a Gaussian-like cutoff that renders
the moments finite, unlike those of the formal steady state, which
diverge. Adapted from Kessler and Barkai, 2010. Bottom
panel: the qth moment of the momentum as a function of Ũ0,
showing the complementarity of the two densities in calculating
moments of the observables. The steady state [Eq. (11)] is termed
Boltzmann-Gibbs since it describes an effective motion in a
logarithmic potential (see the text). Adapted from Holz, Dechant,
and Lutz, 2015.

7To better understand the concept of integrability, consider a PDF
fðxÞ of a finite random variable x and an observable OðxÞ. If the
integral

R
∞
−∞OðxÞfðxÞdx is finite, then the observable OðxÞ is

integrable. A similar concept is used even when the system is
described by a non-normalized state.
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2021); however, to date there has been no clear-cut exper-
imental proof of Eq. (20).
The meaning of temperature.—When a gas is coupled to a

heat bath, its equilibrium temperature is proportional to the
variance of its momentum distribution, which is Gaussian.
How, then, does one define a temperature for the Sisyphus-
cooled system? One approach is that there is no temperature at
all since the system is in a nonequilibrium state. On a more
practical level, though, a temperature-like quantifier typically
used in experiments can be defined that is the full width at half
maximum (FWHM) of the momentum distribution. A third
option is to use the mean of the kinetic energy, which is
equivalent in equilibrium to the normal temperature. For
shallow lattices, this observable should be obtained from
the infinite invariant density and not from the steady state.
Furthermore, in the shallow-lattice regime the distribution can
have a narrow FWHM but also a variance that increases with
time. This means that one measure of the temperature
(FWHM) can indicate that the system is cold, while another
can indicate that it is hot.
Diffusion in a logarithmic potential.—The problem of

momentum dynamics of Sisyphus-cooled ultracold atoms is
related to the overdamped Langevin dynamics in a logarithmic
potential (Poland and Scheraga, 1966; Bray, 2000; Bar, Kafri,
and Mukamel, 2007; Fogedby and Metzler, 2007a, 2007b;
Bar, Kafri, and Mukamel, 2009; Dechant, Lutz, Kessler, and
Barkai, 2011; Hirschberg, Mukamel, and Schütz, 2011, 2012;
Ray and Reuveni, 2020). Intuitively, this connection stems
from the fact that the friction force fðpÞ ∼ −1=p at large p,
and hence asymptotically the effective potential in momentum
space is VðpÞ ¼ −

R
dpfðpÞ ∼ logðpÞ. More explicitly, con-

sider a Brownian particle in a potential VðxÞ ¼ V0 logð1þ x2Þ
in contact with a standard thermal heat bath with temperature
T. According to the Boltzmann-Gibbs framework, the density
in thermal equilibrium is Peq ¼ N ð1þ x2Þ−V0=kBT , bearing
the same structure of the steady-state equation (8) with
appropriate adjustments. The stochastic dynamics in a log
potential is important for several problems, like DNA looping
(Hanke and Metzler, 2003; Bar, Kafri, and Mukamel, 2007)
and Manning condensation (Manning, 1969).

B. Position space

An immediate consequence of the anomalous dynamics in
momentum space is nontrivial dynamics in position space.
Marksteiner, Ellinger, and Zoller (1996) theoretically studied
the spatial diffusion of atoms and revealed that below a critical
depth of the optical lattice there is a transition to Lévy-like
motion. To show this, certain modifications of the basic Lévy
walk are needed. Consider a long-time momentum-space
trajectory pðtÞ, crossing zero many times. Let τ be the random
interval of time between two successive such crossings, and let
χ be the random displacement for a given such interval
(schematically presented in Fig. 5). A process is generated
with a set of random jump durations fτig between zero
crossings and corresponding displacements fχig given by
χ1 ¼

R τ1
0 dtpðtÞ, χ2 ¼

R
τ1þτ2
τ1

dtpðtÞ, etc. For a particle starting
at the origin at t ¼ 0 with p ¼ 0, the sum of all the
displacements χi is the random position of the particle at

time t ¼ P
iτi, denoted xðtÞ, and the corresponding PDF is

Pðx; tÞ. Since the Langevin process [Eq. (10)] is driven by
white noise, defining zero crossings requires a more precise
treatment (Majumdar and Comtet, 2004, 2005; Kessler and
Barkai, 2012; Barkai, Aghion, and Kessler, 2014). We define
the random time τ as the time it takes the particle starting with
momentum p ¼ ϵ to reach p ¼ 0 for the first time.
The Langevin process of Eq. (10) is Markovian, so once the

particle crosses zero momentum a given interval τ is inde-
pendent of the previous one. This is simply a renewal process:
τi is drawn repeatedly from ψðτÞ, the crossing time PDF
computed using the Langevin equation (10), until the sum of
the times exceeds the measurement time. The distribution of
crossing times can be calculated using the tools of first-
passage theory (Redner, 2001; Miccichè, 2010; Martin, Behn,
and Germano, 2011). The marginal PDFs of step durations
and jump distances exhibit power-law behaviors (Marksteiner,
Ellinger, and Zoller, 1996; Barkai, Aghion, and Kessler,
2014),

ψðτÞ ∼ τ−ð3=2Þ−Ũ0=2; qðχÞ ∼ jχj−ð4=3Þ−Ũ0=3: ð21Þ

Equation (21) is the result of the weak friction found
at large momentum. In the limit Ũ0 ¼ 0, ψðτÞ ∼ τ−3=2, which
describes the distribution of first-passage times of a Brownian
particle in 1D searching for a target at the origin (Redner,
2001). This extremely shallow-lattice limit describes a pure
diffusive process in momentum space with no friction. Long
intervals are associated with large momenta, so the cooling
friction does not destroy the existence of power-law decay at
large τ, though it does change the actual exponent. The mean
of τ diverges when Ũ0 ≤ 1, and the mean first-passage time
for the momentum, namely, the time it takes the momentum to
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FIG. 5. The nature of the spatial diffusion is revealed by
numerical simulation of momentum zero-crossing dynamics.
The crossing of zero momentum defines the durations τi and
jump distances χi, enabling identification of the connection
between the continuous momentum trajectory of the atom and
the Lévy walk picture. The jump distances are the areas under the
stochastic momentum curve that starts and ends at zero momen-
tum and never crosses in between. The time periods between the
zero crossings are indicated by the black arrows at the top.
Adapted from Kessler and Barkai, 2012.
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cross the origin, becomes infinite when the steady state of the
momentum distribution equation (11) is no longer normalized.
These scaling results suggest a transition between a

standard, Gaussian, random-walk regime and a Lévy regime
as Ũ0 goes below 5. For Ũ0 > 5, the variance of χ is finite
[since qðχÞ ∼ jχj−3 when Ũ0 ¼ 5], so, based on the central
limit theorem argument presented in Sec. II.A, a Gaussian
position distribution of Pðx; tÞ is expected to be obtained in
the long-time limit. For Ũ0 < 5, on the other hand, the
variance of χ diverges, suggesting a Lévy flight scenario
(at least as long as Ũ0 > 1 and the mean flight duration τ is
finite). Pðx; tÞ attains the following self-similar scaling form:

Pðx; tÞ ∼ 1

ðKνtÞ1=ν
Lν;0

�
x

ðKνtÞ1=ν
�
: ð22Þ

In Eq. (22) Lν;0ðxÞ is the symmetric Lévy stable PDF of
Eq. (4). The transport coefficient Kν describes the width of the
packet and is given in terms of the microscopic parameters of
the model (Kessler and Barkai, 2012). The Lévy exponent
ν ¼ ðŨ0 þ 1Þ=3 is such that the solution approaches a
Gaussian when Ũ0 → 5. Kν vanishes as Ũ0 → 1 due to the
divergence of the average τ.
As discussed in Sec. II.A, power-law tails lead to infinite

moments, and hence the Lévy law in Eq. (22) as a stand-alone
solution is not valid for a large x and a finite time. The
resolution of this paradox lies in the fact that the random
variables τ and χ are in fact correlated since longer flight
durations lead to larger displacements. In fact, the largest jump
in the process pðtÞ cannot be much larger than a length scale
that increases as t3=2, beyond which the tails of the Lévy PDF
are naturally cut off. This is made evident by completely
neglecting the restoring friction force. The momentum then
undergoes pure diffusion, scaling like t1=2, and the jump size
scales accordingly as t3=2. This is a kind of Lévy walk rather
than a Lévy flight. It is unlike the original Lévy walk, where
the largest jump scales linearly with measurement time, since
there the velocity is constant between turning points, whereas
here the motion is stochastic between any two zero crossings.
This spatial regime, where the Lévy density [Eq. (22)] holds,
is therefore valid only up to a length scale that grows like t3=2.
This Lévy regime also shrinks as Ũ0 increases and vanishes as
Ũ0 → 5, beyond which only the Gaussian regime survives. To
handle these correlations, a tool called the Montroll-Weiss
equation (Montroll and Weiss, 1965) has to be employed
(Metzler and Klafter, 2000; Zaburdaev, Denisov, and Klafter,
2015). It relates the joint PDF of jump distances and waiting
times to the density of particles Pðx; tÞ using the convolution
theorem of the Laplace and Fourier transforms. Going through
the analysis of the Montroll-Weiss equation, it is indeed found
that Eq. (22) is valid in the central regime (Fig. 6).
An analysis of the far tail of Pðx; tÞ was carried out by

Aghion, Kessler, and Barkai (2017), who found a spatial
infinite (i.e., non-normalized) density. The analysis showed a
relation between the laser-cooling process and the problem of
the distribution of random areas under Langevin excursions
(Majumdar and Comtet, 2005; Barkai, Aghion, and Kessler,
2014; Agranov et al., 2020). The latter is a constrained

Langevin process starting and ending at p ¼ 0 that never
crosses the origin within a given time interval (Fig. 5). The
derived cutoff of Pðx; tÞ due to the aforementioned correla-
tions ending the power-law Lévy regime can be seen at the far
right edge of the bottom panel of Fig. 6 and is in accord with
direct simulations of the Langevin equation (10).
When Ũ0 < 1, the correlations between the walk duration

and distance can never be neglected and then Pðx; tÞ∼
ð1=t3=2Þgðx=t3=2Þ, where g is a scaling function. In this limit
of shallow lattices, the momentum performs a random
walk due to the random emission events, the friction is
negligible, and the momentum scales like

ffiffi
t

p
, as in

Eq. (19). Hence, as shown analytically by Barkai, Aghion,
and Kessler (2014), a cubic scaling of the MSD is obtained.
This type of Richardson-like behavior, measured originally
by Richardson (1926) following the distance between two
weather balloons in a turbulent atmosphere, was found by
Wickenbrock et al. (2012) using Monte Carlo simulations,
and the phase Ũ0 < 1 is called the Richardson phase.
Richardson’s law has thus far evaded measurement in atomic
systems but has been experimentally observed in other
contexts (Duplat et al., 2013).
The MSD therefore has three distinct phases, normal

diffusion, superdiffusion, and Richardson diffusion:

hx2i ∼

8>><
>>:

t; 5 < Ũ0;

tð7−Ũ0Þ=2; 1 < Ũ0 < 5;

t3; Ũ0 < 1:

ð23Þ
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FIG. 6. Langevin simulations of the spatial dynamics. Top
panel: results of numerical simulations of Eq. (10). Packets of
particles starting from a common origin converge in the long-time
limit to a self-similar Lévy density that is presented as a solid line
[Eq. (22); ν ¼ 7=6]. Bottom panel: the simulated distribution also
exhibits a second scaling, i.e., data collapse for several meas-
urement times. The convergence is faster for large x=t3=2, while
for small values deviations from the scaling are found. At large
distances the power-law decay of the Lévy density is cut off due
to finite time effects. Adapted from Kessler and Barkai, 2012.
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This behavior differs from the original Lévy walk picture
of Eq. (5), which exhibits at most ballistic spreading.
An intuitive argument for the behavior of the MSD in the
regime 1 < Ũ0 < 5 can be obtained by considering that the
Lévy distribution of Eq. (22) describes the central part of
the packet and that a cutoff exists at distances of the order of
t3=2 (Fig. 6). From the power-law tail of the distribution,
Pðx; tÞ ≃ tx−1−ν for x < t3=2 can be obtained. We then get
hx2i ≃ R

t3=2 dxx2Pðx; tÞ, and using ν ¼ ðŨ0 þ 1Þ=3 the result
of Eq. (23) is found. In short, the cutoff of the spatial Lévy
distribution gives the correct time dependence of the MSD,
but to calculate the MSD precisely, including prefactors, one
needs to resort to the scaling Green-Kubo theory investigated
in Sec. IV.A.
The transition from normal to anomalous diffusion was

observed experimentally by Katori, Schlipf, and Walther
(1997), where the axial motion of a single 24Mgþ ion trapped
in a quadrupole ring trap undergoing one-dimensional
Sisyphus cooling brought about by a pair of slightly red-
detuned counterpropagating laser beams was used to measure
the MSD. The position of the ion was continuously measured
by detecting its fluorescence photons through a high numeri-
cal aperture microscope objective to within a spatial resolution
of 3 μm and a temporal resolution of 10 ms. The scaling
exponent of the MSD was observed to rise above unity below
some threshold value of Ũ0, continuing to rise with decreasing
Ũ0. The rise was roughly linear with Ũ0, and the slope was
consistent with the theoretical prediction of unity. Figure 7
depicts the exponent of the MSD of the trapped ion, as well
as its time traces showing a clear transition from normal
statistics for deep lattices to rare-event dominated statistics for
shallow ones.

The spatial dynamics was further explored by Sagi et al.
(2012), where the 1D diffusion of cold 87Rb atoms undergoing
Sisyphus cooling was studied. Starting with a narrow, ther-
mally equilibrated atomic cloud,8 the particles were released
and their density profile absorption imaged. To enable long-
time measurements of the 1D dynamics and minimize the
escape of atoms into other orthogonal dimensions, a far-
detuned tube-dipole trap was used with a geometry that
generated strong confinement on the radial axes but a
negligible effect on the experimental axis as defined by the
Sisyphus lattice beams.
In qualitative agreement with theory, a transition from

normal to anomalous dynamics was observed and Lévy
distributions were found to fit well to the experimental data,
confirming the transition between the normal Gaussian
diffusion regime for deep enough lattices and the Lévy regime
below some critical Ũ0. Both the power-law scaling of the
MSD and the Lévy distribution of the displacement, with the
Lévy index changing with lattice depth, were observed, in
agreement with theory. The scaling collapse and the resultant
Lévy distributions are shown in the top panel of Fig. 8.

FIG. 7. Exponent of the MSD hx2i experimentally measured
using the dynamics of a weakly harmonically trapped single
24Mgþ ion in a Sisyphus lattice. For deep lattices, the dynamics is
diffusive and hx2i ∼ t. As the lattice becomes shallower, a steep
rise in the exponent is observed as the dynamics becomes
superdiffusive [Eq. (23)]. Inset: time traces of the potential
energy of the ion displayed as it moves in the trap. Large rare
events are visible in the shallow lattice (top) corresponding to the
heavy tails of the distributions, which are compared to the more
Gaussian behavior of the deep lattice data (bottom). Adapted
from Katori, Schlipf, and Walther, 1997.

FIG. 8. Self-similarity, Lévy distributions, and superdiffusion.
The temporal scaling of the spatial distribution is experimentally
measured in one dimension. Top panel: data collapse of the spatial
distributions as a function of time, indicated in different colors, for
the rescaling transformation x → x=t1=ν [Eq. (22) and Fig. 6], with
ν ¼ 1.25 in a U0=ER ¼ 4.8 lattice. Bottom panel: extracted ex-
ponent of the MSD hx2i. C of Eq. (9) is used as a fitting parameter
for Eq. (23), giving a value of 11� 1 for this measurement. The
experiment also observed the power-law tails of the spatial
distribution predicted by Eq. (22). Adapted from Sagi et al., 2012.

8This is achieved by allowing a long evaporation time where
collisions thermalize the atomic cloud. The momentum distributions
after the evaporation stage are verified to be Gaussian with a variance
corresponding to a temperature of 12 μK.
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The bottom panel shows the measured exponent of the time-
dependent MSD as a function of U0=ER. The superdiffusive
nature of the spatial spreading is also in agreement with the
theoretical expectations. In addition, the linear dependence of
the exponent with U0=ER is in agreement with Eq. (23).
This agreement between theory and experiment, while

encouraging, remains incomplete. In particular, exponents
above 2 and the saturation at a value of 3 associated with the
Richardson phase have yet to be observed. This is not totally
unexpected, since if the particles are moving superballistically
they will quickly leave the trap and may go undetected (Sagi
et al., 2012). A possible way to alleviate this may arise in
the form of optically engineered potentials that create strong
confinement as well as reflecting boundary conditions for
the atomic packet (Gaunt et al., 2013; Livneh, Afek, and
Davidson, 2018).

C. Position-momentum correlations

As both the momentum [Eq. (19)] and position [Eq. (23)]
dynamics are governed by power laws, the cross-correlation
Cxp between position and momentum may be expected to
behave in a similar way. Defined according to

CxpðtÞ ¼
hxðtÞpðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ðtÞihp2ðtÞi

p ; ð24Þ

this function asymptotically decays as 1=
ffiffi
t

p
for normal

diffusion (Gillespie and Seitaridou, 2012) and approaches
unity for ballistic motion. This observable is in general
challenging to access experimentally, as it requires knowledge
of the position of a group of atoms contained in a certain
narrow momentum bin.
Afek et al. (2017) derived a scaling relation describing the

asymptotic dynamics of Cxpðt → ∞Þ for the general case
where both the position and the momentum have power-law
long-time behavior: hx2ðtÞi ∼ t2αx and hp2ðtÞi ∼ t2αp . Here the
exponents αi describe anomalous processes in general.
Substituting them into Eq. (24), along with the fact that
hxpi ∼ dhx2i=dt ∼ t2αx−1, gives Cxp ∼ tαx−αp−1. In terms of
Ũ0, it should then scale as

CxpðtÞ ∼
8<
:

const; Ũ0 < 3;

tð3−Ũ0Þ=4; 3 < Ũ0 < 5;

t−1=2; Ũ0 > 5:

ð25Þ

As Ũ0 is varied, the behavior ranges from normal, a t−1=2

decay, to a constant. This has been numerically verified in an
analysis of the simulations performed by Afek et al. (2017)
and is shown in the bottom panel of Fig. 9.
The correlation function, however, is not merely a tool to

explore the long-time dynamics. Rather, it yields information
about the short-time behavior as well. An additional feature
discussed by Afek et al. (2017) relates to the short-time
dynamics of a system of particles released from a harmonic
trap and allowed to propagate in the Sisyphus lattice. At times
that are short compared to the oscillation period in the trap
before release (t < 1=ω), correlations build up linearly
regardless of the depth of the lattice, as the diffusive dynamics

do not yet affect the atoms (ω sets, in accordance with the
equipartition theorem, the ratio between the initial standard
deviation of the momentum distribution and that of the
position distribution). At longer times, diffusion kicks in
and the behavior of Eq. (25) is expected to take over.
A setup similar to that described by Sagi et al. (2012) was

used to generate the anomalous dynamics, and a method based
on velocity-selective two-photon Raman transitions (Moler
et al., 1992) was developed to tomographically image the
phase-space density distribution function. In this method,
atoms contained within a narrow velocity class are selectively
transferred from the jF ¼ 1i lower hyperfine state to the upper
jF ¼ 2i state using a Raman π pulse of a given detuning. The
center of the selected velocity class is scanned by varying the
two-photon detuning of the pulse, and the Rabi frequency sets
its width (Kasevich et al., 1991). The position of the selected
atoms is then directly imaged using state-selective absorption
imaging. This way, a direct measurement of the position-
momentum correlation function is enabled for different initial
conditions given by the Sisyphus lattice exposure. The two
right panels at the top of Fig. 9 are experimental reconstruc-
tions of the phase-space density distributions. The upper
panels reveal a high correlation corresponding to ballistic
expansion, while the lower panel shows the destruction of the
correlation by the diffusive dynamics.

FIG. 9. Anomalous dynamics in momentum and position leads
to interesting position-momentum correlations. Top panels: ex-
perimental results for the position-momentum correlations as a
function of lattice exposure time and lattice depth U0=ER. At
short times the correlations build up and are later quenched at
varying rates, depending on the anomalous dynamics. The
images on the right are the tomographically measured phase-
space probability densities for ballistic expansion (upper panel)
and U0=ER ¼ 5.5 (lower panel), at a lattice exposure time of
4.1 ms, showing the effect of the lattice on the development of the
correlations. Bottom panel: Langevin simulation (circles) vali-
dating the prediction of Eq. (25) depicted as a solid line. Adapted
from Afek et al., 2017.
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Figure 9 (top panels) shows the dynamics of these corre-
lations as an atomic cloud evolves in lattices of different Ũ0.
The initial buildup of the correlation is evident for all lattice
depths considered, as well as the following decay. The Ũ0 ¼ 0
dataset is expected (and shown) to be ballistic.
The various aspects discussed in this section can be

summarized in the form of a “phase diagram.” Figure 10
presents the dependence of the momentum [Eq. (19)] and
spatial dynamics [Eq. (23)] on the lattice depth parameter Ũ0

defined in Eq. (9), as well as changes in the statistical
properties of momentum zero-crossing times and jump dis-
tances [Eq. (21)] and even the position-momentum correlation
[Eq. (25)]. All of these display sharp transitions between
various regimes as Ũ0 is scanned.

IV. IMPLICATIONS FOR FUNDAMENTAL CONCEPTS IN
STATISTICAL PHYSICS

A. Scaling Green-Kubo relation

As mentioned in Sec. I, the Green-Kubo relation,
which was first discussed by Taylor (1922) in the context
of diffusion in a turbulent medium, relates the diffusion
constant of a particle D ¼ hx2ðtÞi=2t to an integral over
the stationary time correlation function of the momentum
Cpðt; tþ τÞ ¼ hpðtÞpðtþ τÞi (Green, 1954; Kubo, 1957).
For a particle with mass M,

D ¼ 1

M2

Z∞
0

dτCpðt; tþ τÞ: ð26Þ

In the case of a Brownian particle with a Stokes friction
coefficient γs, the momentum correlation function Cpðt; tþ
τÞ ¼ kBTMe−γsτ is exponential. The Green-Kubo formula
gives the Einstein relation D ¼ kBT=Mγs linking the diffu-
sivity and the friction coefficient via the temperature T. In the
Sisyphus-cooled atomic system at hand, for Ũ0 > 3 this
standard Green-Kubo relation applies. For Ũ0 < 3, however,
it breaks down for one of two reasons: either the correlation
function is not stationary or, alternatively, while the correlation
function is stationary, its time integral diverges. Depending on
the value of Ũ0, either scenario can occur, and in both cases
Eq. (26) needs to be generalized. This is done following
Dechant et al. (2014).
Consider the general momentum correlation function

Cpðt2; t1Þ¼
Z∞
−∞

dp2

Z∞
−∞

dp1p2p1Pðp2; t2jp1; t1ÞPðp1; t1j0;0Þ;

ð27Þ
where Pðp2; t2jp1; t1Þ is the probability of the particle having
momentum p2 at time t2 given that it had momentum p1 at
time t1. The notation Pðp2; t2jp1; t1Þ is used here, as opposed
to the Wðp; tÞ used earlier, to explicitly indicate the depend-
ence on the initial momentum and time. hx2ðtÞi can then be
calculated from Cpðt2; t1Þ. In the case where the process
is stationary at long times, such that the stationary momentum
distribution (denoted by the subscript s) exists and is
given by limt1→∞ Pðp1; t1j0; 0Þ ¼ Wsðp1Þ, then Cpðt2; t1Þ ¼
Cp;sðjt2 − t1jÞ depends only on the time lag τ ¼ t2 − t1,

Cp;sðτÞ ¼
Z∞
−∞

dp2

Z∞
−∞

dp1p2p1Pðp2; τjp1; 0ÞWsðp1Þ. ð28Þ

Since xðtÞ is the time integral of pðtÞ=M,

hx2ðtÞi ¼ 1

M2

Zt
0

dt2

Zt
0

dt1Cp;sðjt2 − t1jÞ

¼ 2t
M2

Z∞
0

dτCp;sðτÞ; ð29Þ

fromwhich follows the standardGreen-Kubo formula [Eq. (26)].
What then is the form of the momentum correlator

Cpðt2; t1Þ in the Sisyphus system? Turning to the definition
of Eq. (27), we have already seen how to calculate from
the Fokker-Planck equation (7) the factor Wðp1; t1Þ. For large
p1, this decays as a power law with a Gaussian falloff at
p1 ∼Oð ffiffiffiffi

t1
p Þ [Eqs. (14), (16), and (17)]. The calculation of the

other factor Pðp2; p1; t2 − t1Þ is similar and behaves similarly
for large p2 as long as p1 is not too large, which is the relevant
regime since the Pðp1; t1j0; 0Þ factor in Eq. (27) cuts it off. A
detailed calculation (Dechant, Lutz, Kessler, and Barkai,
2011; Dechant et al., 2012) revealed that the correlator has
the following form:

FIG. 10. Recap of the dynamical phases for various observables.
Varying the experimentally accessible control parameter Ũ0

defined in Eq. (9) and Fig. 2 reveals transitions in the statistical
properties of the system discussed in Sec. III. Momentum,
position, and position-momentum correlations all display sharp
transitions between different regimes. Nonphysical divergences
are resolved when moments are calculated using the formalism of
the infinite covariant density.
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Cpðt2; t1Þ ≈
(
Cα>1t2−α1 gα>1½ðt2 − t1Þ=t1�; α > 1;

Cα<1t1gα<1½ðt2 − t1Þ=t1�; α < 1;
ð30Þ

where α≡ ðŨ0 þ 1Þ=2 and

Cα>1 ¼
N ð4D0=pcÞ2−α

ffiffiffi
π

p
Γðαþ 1ÞΓðαÞ=pc

;

Cα<1 ¼
4D0

ffiffiffi
π

p
Γðαþ 1ÞΓð1 − αÞ ;

gα>1ðsÞ ¼ s2−α
Z∞
0

dyy2e−y
2

1F1ð32; αþ 1; y2ÞΓðα; y2sÞ;

gα<1ðsÞ ¼ s
Z∞
0

dyy2e−y
2

1F1ð32; αþ 1; y2Þe−y2s: ð31Þ

1F1 is the confluent hypergeometric function, and N is
the normalization factor given after Eq. (11). The correlation
function is in general nonstationary. The dependence of the
correlator on the relative time s ¼ ðt2 − t1Þ=t1 is called aging.
Normally the aging correlator has the form hCpðt2; t1Þi ∼
hp2ieqgðsÞ (Bouchaud, 1992; Margolin and Barkai, 2004;
Burov, Metzler, and Barkai, 2010); however, here it takes the
form

Cpðt2; t1Þ ∼ tϕ1gðsÞ ∼ hp2ðt1ÞigðsÞ; ð32Þ

where ϕ ¼ minð2 − α; 1Þ and gðsÞ is either gα>1 or gα<1,
depending on whether α is greater or smaller than unity. To
mark this added dependence on t1 due to the growth of
hp2ðt1Þi with time, this phenomenon is termed superaging.
We now consider the limit t2 − t1 ≪ t1,

Cpðt2; t1Þ ≈

8>><
>>:

½πΓðα − 2Þ=4NΓ2ðα − 1=2Þ�½4D0ðt2 − t1Þ�2−α; α > 2;

½1=NΓðαÞΓð2 − αÞ�ð4D0t1Þ2−α; 1 < α < 2;

ð1 − αÞ4D0t1; α < 1.

ð33Þ

For α > 2, ϕ ¼ 2 − α and the tϕ1 factor cancels against
the t1 factor in gðsÞ, leaving the correlation function
stationary in this limit, a fact that is important for the
discussion of ergodicity breaking in Sec. IV.B. For α < 2,
on the other hand, even the limiting correlation function is
nonstationary and dominated by the growth in time of
hp2ðt1Þi, leading to superaging.
The superaging of the correlation function [Eq. (32)] has

some interesting consequences for the MSD (Dechant et al.,
2014). For t ≫ 1,

hx2ðtÞi ≃ 2Cf
M2

Zt
0

dt2

Zt2
0

dt1t
ϕ
1g

�
t2 − t1
t1

�

≃
2Cf
M2

Zt
0

dt2t
ϕþ1
2

Z∞
0

dsðsþ 1Þ−ϕ−2gðsÞ

≃ 2Dϕtϕþ2; ð34Þ

with

Dϕ ≡ Cf
M2ðϕþ 2Þ

Z∞
0

dsðsþ 1Þ−ϕ−2gðsÞ: ð35Þ

In Eq. (35) Cf is either Cα>1 or Cα<1, as appropriate. This
reproduces the scaling behavior of Eq. (23) on general
grounds from the Lévy scaling and the cutoff, adding to it
the calculation of Dϕ.
Equation (34) is the scaling form of the Green-Kubo

relation. It is applicable for ϕ > −1, which corresponds to
superdiffusion. The usual diffusion coefficient in Eq. (26) is

then ill defined and replaced by the anomalous diffusion
coefficient Dϕ. As with the original Green-Kubo formula, Dϕ

is given in terms of an integral over a function of a single
variable. Determining the diffusive behavior of a system from
its correlation function thus amounts to determining the
exponent ϕ and the scaling function gðsÞ. While Eq. (34)
was derived in terms of the momentum and position, it holds
for any two quantities where one is up to a constant factor the
time integral of the other. One example of such an analogy
(between frequency and phase) is given in Sec. V.A.
The different scaling regimes for the MSD for the Sisyphus

problem are thus seen to be related to the properties of the
correlator. For α > 3 (Ũ0 > 5), the correlator is stationary, the
integral in the standard Green-Kubo formula converges, and
the diffusion is normal. The spatial diffusion constant diverges
as α → 3 from above due to the factor s2−α in g, signaling the
breakdown of normal diffusion. For 1 < α < 3 (1 < Ũ0 < 5),
the standard Green-Kubo formula breaks down and the
exponent ϕ ¼ 2 − α. The MSD then scales as t4−α and the
dynamics are superdiffusive, with an anomalous diffusion
constant (plugging in the value of N ) given by

Dϕ¼
ð4D0Þ2−αp2α−2

c Γðα−1=2Þðα−1Þ
Γ3ðαÞαð4−αÞM2

Z∞
0

dsðsþ1Þα−4gα>1ðsÞ:

ð36Þ

This vanishes at α ¼ 1 (Ũ0 ¼ 1) and, due to the factor s2−α in
gα>1ðsÞ, diverges as α → 3.
For α < 1 (Ũ0 < 1) the anomalous diffusion exponent

saturates at a value of 3, corresponding to Richardson
diffusion. The anomalous diffusion constant in this regime is
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Dϕ ¼ 4D0

ffiffiffi
π

p
3ΓðαÞΓð1 − αÞM2

Z∞
0

dsðsþ 1Þ−3gα<1ðsÞ: ð37Þ

The momentum correlation function can be directly mea-
sured using existing experimental techniques similar to those
described in Sec. III.C. For example, an extremely narrow
atomic momentum distribution centered around a specifically
targeted momentum p0 can be prepared using two-photon
momentum-selective Raman transition with two counterpro-
pagating, far-detuned laser beams (Kasevich et al., 1991) and
then exposed to Sisyphus cooling for a variable amount of
time t1. The resulting momentum distribution PðpÞ can then
be measured again after an additional time t2 with high
resolution using the same Raman momentum selection
method, directly yielding the correlation function Cpðt2; t1Þ,
and through it the Green-Kubo relation.

B. Breakdown of ergodicity

Systems in equilibrium visit all of phase space, with
the average relative frequency of visiting any certain point
given by the Boltzmann-Gibbs distribution. Thus, over long
enough observation times, the time averages of observables
correspond to the equilibrium ensemble averages. In systems
with anomalous diffusion, however, this is no longer neces-
sarily the case (Metzler et al., 2014). The time average, even in
the infinite time limit, varies from realization to realization.
This was studied in the context of subrecoil laser cooling
(Saubaméa, Leduc, and Cohen-Tannoudji, 1999), fluores-
cence intermittency in quantum dots (Brokmann et al.,
2003), and single-atom motion in nondissipative optical
lattices (Kindermann et al., 2017). Ergodicity breaking in
Sisyphus cooling was first theoretically investigated by Lutz
(2004). An alternative analysis taking into account the
essential time dependence of the momentum distribution at
large momenta was given by Dechant, Lutz, Kessler, and
Barkai (2011) and Dechant et al. (2012).
To probe the possibility of ergodicity breaking for the

momentum, consider the ensemble variance of the difference
between the time average p̄ and the ensemble average hpi for
a particle that starts with momentum p ¼ 0 at t ¼ 0.
Ergodicity is broken when p̄ − hpi, which reduces to

hp̄2i ¼ lim
t→∞

1

t2
hx2i ð38Þ

for symmetric distributions, deviates from zero. Given
Eq. (23) describing the spatial MSD, we find that (Dechant
et al., 2012)

hp̄2i ∼

8><
>:

t−1; α > 3;

t2−α; 1 < α < 3;

t; α < 1:

ð39Þ

The 1=t behavior seen for α > 3 (Ũ0 > 5) is the normal
behavior. For 2 < α < 3 ergodicity is achieved, albeit anoma-
lously slower. For α < 2, hp̄2i does not vanish as t → ∞ and
ergodicity is broken.

C. Violation of the equipartition theorem

Up to this point we have focused on free, untrapped systems
[with the exception of the trapped ion system of Fig. 7 (Katori,
Schlipf, and Walther, 1997)]. We now address the effect of an
external binding potential whose scale is much larger than the
wavelength of the Sisyphus lattice and hence is not averaged
out in the semiclassical treatment. Generally a violation of
equipartition in this inherently nonequilibrium system might
be expected. The question that then arises is as follows: Can
the effect be quantified? In this case, instead of simply
searching for an expected violation of equipartition, the issue
becomes one of determining the relation between moments of
position and momentum for the nonlinear friction under study.
These have been studied theoretically, both in the simple
context of a harmonic well (Dechant, Kessler, and Barkai,
2015; Dechant et al., 2016) and recently in a more general
context (Falasco, Barkai, and Baiesi, 2022). These works
focused on the steady-state phase-space distribution of the
particles and, in particular, the breakdown of equipartition and
the virial theorem. The dynamics and violation of the
equipartition of the energy in the system were also probed
experimentally by Afek et al. (2020).
Deviations from equipartition in a harmonic potential can

be parametrized using the equipartition parameter, the square
root of the ratio of the expectation value of the kinetic energy
Ek to that of the potential energy Ep,

χH ¼
ffiffiffiffiffiffi
Ek

Ep

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp2i
ω2hx2i

s
: ð40Þ

The relevant parameters for the description of the system are
the strength of the linear friction A, the momentum scale for
the onset of the nonlinear friction [Eq. (6)] pc, the diffusion
constant D0, and the harmonic oscillation frequency of the
atoms in the trap ω. All but the last parameter depend
experimentally on the detuning and intensity of the
Sisyphus lasers. Consider the scaled coordinates x →
Mωx=pc and p → p=pc. There are now two dimensionless
parameters that characterize the dynamics, the by now familiar
Ũ0 relevant to the potential-free problem and a new parameter
controlling the strength of the harmonic trap Ω ¼ ω=A. The
Fokker-Planck equation is modified to a Kramers-Fokker-
Planck (KFP) equation for the phase-space density, which in
these scaled coordinates reads

∂

∂t
Pðx;p;tÞ¼

�
Ω
�
−p

∂

∂x
þx

∂

∂p

�
þ ∂

∂p

�
p

1þp2
þ 1

Ũ0

∂

∂p

��
×Pðx;p;tÞ: ð41Þ

The theoretical analysis focuses on the properties of the
steady-state solution, which breaks down for shallow lattices
such that a steady-state momentum distribution does not exist.
An analysis of the time-dependent problem that is required to
treat Ũ0 < 1 has not yet been performed.
The steady state of the KFP equation is not exactly solvable,

and hence the analysis is restricted to various limits and
numerics (Dechant, Kessler, and Barkai, 2015; Dechant et al.,
2016). In short, the numerics predict that χH decreases for
increasing lattice depth Ũ0, dropping to a minimum value that
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depends on Ω. This is followed by an asymptotic ascent back
to unity as the lattice depth increases.
Experimentally observing such a violation of equipartition

requires the ability to measure hx2i, hp2i, and ω according to
Eq. (40). Afek et al. (2020) used a setup similar to that
described by Afek et al. (2017) in conjunction with a super-
imposed crossed-optical dipole trap providing the confining
potential. The atoms were coupled to a 1D dissipative
Sisyphus lattice for a given amount of time, after which their
spatial and momentum distributions were imaged using direct
absorption imaging and time of flight, respectively. Imaging
the atomic density profile in situ is susceptible to imaging
errors arising from the high density of the trapped atoms, and
avoiding this required the researchers to homogeneously
excite a controlled fraction of the atoms to the upper hyperfine
state using a variable-length microwave pulse and selectively
image this transferred population. This provided a knob for
scanning the density of the atoms and a way of extrapolating it
down to zero giving the true size of the atomic cloud in an
aberration-free way. The oscillation frequency was measured
independently by applying a perturbation to the trapped cloud
and observing its sloshing oscillations in the trap.
The measured steady-state values of χH are shown in

Fig. 11. They display a monotonic decrease in χH as the
lattice depth increases, perhaps hinting at the shallow-lattice
behavior numerically observed by Dechant et al. (2016). The
work carried out by Afek et al. (2020) suffered greatly from
the anharmonicity of the optical trapping potential. This
necessitated the use of several nontrivial experimental meth-
ods to extract the harmonic χH.
To summarize, both theory and experiment exhibit violation

of the equipartition theorem. More refined experiments and
possibly an extension of the semiclassical approach are
needed to quantify the effects more precisely.

V. LÉVY STATISTICS AND POWER LAWS IN OTHER
ATOMIC SYSTEMS

The generality of the framework presented in this
Colloquium can be appreciated by observing other atomic
systems, even when instead of momentum and position one

considers a different pair of variables, for instance, phase and
frequency. This has profound implications for coherence times
of quantum memories. Furthermore, the question of the
relation of infinite ergodic theory with other laser-cooling
mechanisms is also addressed.

A. Motional broadening in two-level system ensembles with a
heavy-tailed frequency distribution

Consider an oscillator whose frequency has some anoma-
lous stochastic dynamics. This fluctuating frequency together
with its time integral, namely, the phase ϕ of the oscillator, is
analogous to the momentum and position whose dynamics
were discussed earlier. The distribution of phases of an
ensemble of oscillators spreads similarly to the spatial spread-
ing of the particle packet, leading to decoherence, which is a
limiting factor in many applications, such as atomic clocks
and quantum memories based on two-level systems (Ludlow
et al., 2015; Heshami et al., 2016). In the typical case in which
the instantaneous fluctuating frequency distribution of the
ensemble has finite moments, stochastic fluctuations cause the
phase to spread diffusively (Δϕ ∼ t1=2), as compared to a
ballistic spread Δϕ ∼ t for a static frequency inhomogeneity
(Sagi, Almog, and Davidson, 2010). This slower diffusive
spread induces the well-known effect of motional narrowing
of the power spectrum, which also lengthens ensemble
coherence times (Bloembergen, Purcell, and Pound, 1948;
Romer and Dicke, 1955). When the instantaneous frequency
distribution of the ensemble is heavy tailed, however, the
picture is different. The stochastic phase dynamics becomes
anomalous, the phase spread grows superdiffusively, and
motional narrowing is hindered (Sagi et al., 2011). In
particular, when the first moment of the frequency distribution
diverges, the stochastic frequency fluctuations can lead to
broadening of the spectrum (motional broadening), surpris-
ingly shortening the coherence time as the rate of fluctuations
increases (Burnstein, 1981; Sagi et al., 2011). For a frequency
distribution following Lévy statistics ∼ exp ð−AjκjνÞ as in
Eq. (3), the transition between motional narrowing and
motional broadening occurs at ν ¼ 1, which corresponds
to the Lorenzian spectrum. The coherence time of the
ensemble decays as τν−1c (Sagi et al., 2011), with τc the
correlation time of the fluctuating frequency. This slowing
down or acceleration of the ensemble coherence decay,
depending on the value of ν, is a particularly striking feature.
In this respect, the fluctuations act as resetting events making
motional narrowing analogous to the Zeno effect (Milburn,
1988), in which certain events, such as measurements, delay
the decay of a system. By the same token, motional broad-
ening is analogous to the anti-Zeno effect (Sagi et al., 2011),
where the opposite occurs.
It has been theorized (Poletti et al., 2012, 2013), and

recently verified experimentally (Bouganne et al., 2020) with
ultracold atoms in optical lattices, that strong interactions in a
many-body system can also generate an anomalous decay of
the coherence of the ensemble. Long-range interactions in ion
chains have recently been used to probe the assumption that
classical hydrodynamics can emerge universally for any
complex quantum system, due to mixing of local degrees
of freedom through Ising interactions with an engineered
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FIG. 11. Fundamental concepts such as the equipartition theo-
rem are shown to be violated. Steady-state values of the
equipartition parameter χH [Eq. (40)] experimentally measured
for a trapped cloud of 87Rb atoms (rescaled by its thermal
value, which is < 1 due to trap anharmonicity), quantifying
a nonmonotonic deviation from equipartition. Adapted
Afek et al., 2020.
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power-law decay (Joshi et al., 2022). Power-law spectral line
shapes can naturally emerge in NMR due to dipolar inter-
actions (Klauder and Anderson, 1962), long-range inter-
actions (Holtsmark, 1919), spread in activation energies
(Yue, Mkhitaryan, and Raikh, 2016) or hopping distances
(Paladino et al., 2014), and various other homogeneous
imperfections (Stoneham, 1969). They are also related to
ergodicity breaking in blinking quantum dots (Margolin and
Barkai, 2005) and to the dynamics of photons in warm atomic
vapor (Mercadier et al., 2009; Baudouin et al., 2014).

B. Lévy dynamics in subrecoil laser cooling

Subrecoil laser cooling (Aspect et al., 1988; Kasevich and
Chu, 1992) relies on a totally different mechanism than that of
the sub-Doppler cooling presented in Sec. II.B, and still some
of the general insights gained by analyzing one can be applied
to the other, showing the generality of the toolbox presented in
this Colloquium. In particular, Lévy laws are known to govern
the statistical aspects of the problem, an issue previously
analyzed extensively by Bardou et al. (2002). However,
the role of infinite ergodic theory and its associated non-
normalized state was only recently connected to this system
(Barkai, Radons, and Akimoto, 2021). The new analysis
shows that in subrecoil laser cooling there is a non-normalized
state describing some of the coldest atoms that is comple-
mentary to the standard description (Bardou et al., 1994).
Subrecoil laser cooling is based on carefully engineering

the photon scattering rate of an atomic ensemble in such a way
that slow (cold) atoms have a smaller chance of absorbing a
photon from the laser than hot ones. In other words, the
photon scattering rate RðpÞ → 0 as the momentum p → 0. An
atom will diffuse due to random kicks from photon recoil
events until its momentum becomes small enough that the
scattering rate diminishes significantly, and it will linger for a
lengthy period of time at low momentum and remain cold
(Fig. 12). The characteristic evolution time of an atom in such
a laser field is R−1ðpÞ, which diverges as p approaches zero.
Depending on the small-p behavior of the scattering rate, the
distribution of these waiting times may have heavy tails and
even diverging moments, a signature of anomalous, Lévy-type
dynamics.
The rate RðpÞ ∼ jpjζ and ζ can be controlled experi-

mentally (Bardou et al., 1994; Reichel et al., 1995; Cohen-
Tannoudji and Guèry-Odelin, 2011), and one finds a
non-normalized state that is controlled by the value of ζ. In
particular, subrecoil laser cooling works best when the mean
time the atom spends with momentum in a small interval close
to zero diverges; thus, states with momentum close to the
minimum of RðpÞ plotted in Fig. 12 are extremely long lived.
This means that there are long stagnation times during which
the speeds are close to zero, which is the goal of cooling, but at
the same time indicates the violation of the basic postulates of
statistical physics.
The theoretical challenge is therefore to construct a stat-

istical theory to replace ordinary ergodic theory based on
infinite ergodic theory (Aaronson, 1997; Barkai, Radons, and
Akimoto, 2021). Consider the energy of the system, which in
the absence of interactions is purely kinetic. For normal gases
this is usually kBT=2 per degree of freedom and one uses a

perfectly normalized density to compute it, namely, the
Maxwell-Boltzmann momentum distribution. Here one needs
to use a non-normalized state with an important caveat: only
when the kinetic energy is integrable with respect to the non-
normalizable state is this strategy valid.
More specifically, just as for the usual ensemble averages

of physical observables, which are obtained by integrating
over the steady-state densities, here the non-normalized state
is used, and if the result of the integration is finite the
observable is classified as “integrable.” This in turn means
that observables like the energy of the system go through
an ergodic transition as they switch from being integrable
to being nonintegrable, which is similar to the Sisyphus
cooling case described by Eq. (19), where the kinetic energy
is calculated from a non-normalized state only when
1 < Ũ0 < 3. However, for subrecoil laser-cooled gases,
the infinite density is not a description of the large momen-
tum tail of the distribution, but rather it is relevant when the
system is in the coldest state possible. This is vastly different
from the Sisyphus system, and for sub-Doppler cooling the
anomalous statistics is found for shallow optical lattices, and
far from the ideal cooling scheme.

VI. DISCUSSION AND SUMMARY

This Colloquium highlights the unique statistical properties
of atoms undergoing Sisyphus cooling. The advantage of this
system is twofold: its controllability, rarely found in exper-
imental systems exhibiting anomalous stochastic behavior,
allows for a single control parameter (the depth of the optical
lattice) to control the various phases of the dynamics (Fig. 10).
The analysis of the scale-free process is made possible with a
relatively simple tool, a Fokker-Planck equation, without
invoking fractional derivatives or other ad hoc assumptions
with regard to the power-law statistics of waiting times and

FIG. 12. Lévy statistics and power-law distributions have
meaningful consequences for other atomic systems. One such
system is subrecoil laser cooling. Top panel: the fluorescence rate
RðpÞ vanishes for p → 0. Bottom panel: the atoms perform a
random walk in momentum space and accumulate in a small
interval around p ¼ 0, where they remain trapped. Adapted from
Bardou et al., 2002.
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jump distances. This relates to the second striking feature of
this system, which is its broad relevance. It was shown that the
momentum distribution exhibits power-law statistics and a
stable Lévy distribution describes the spatial spreading of the
packet of particles. Though such statistics appear in many
systems, physically these power laws cannot extend to
infinity, as, for example, the energy of the system is always
bounded.
We have shown how to employ the concept of infinite

densities to describe the far tails of the corresponding densities.
These non-normalized states are time-dependent solutions
that match the heavy-tailed distributions and render finite
otherwise infinite moments, like the energy or the mean-
squared displacement. Treated for many years by mathema-
ticians as a pure abstract theory, this infinite ergodic theory is
linked here to an actual physical system. The relevance of these
concepts extends beyond the cold atomic system and into the
mathematical field of infinite ergodic theory, subrecoil laser
cooling (Sec. V.B), properties of 1=f noise (Fox, Barkai, and
Krapf, 2021), weak chaos, and stochastic renewal processes
(Akimoto, Barkai, and Radons, 2020; Xu, Metzler, and
Wang, 2022).
In addition, and extending beyond the scope of this

Colloquium, the moments of the spreading particles exhibit
a biscaling behavior termed strong anomalous diffusion
(Castiglione et al., 1999; Aghion, Kessler, and Barkai,
2017). This means that the moments of some observable
oðtÞ obey hoqi ∼ tqνðqÞ, where νðqÞ is a piecewise linear
function with a single jump in slope. This behavior was
experimentally observed in the context of cellular dynamics
by Gal and Weihs (2010) and theorized to occur in systems
such as hydrodynamics, infinite horizon Lorentz gases, and
Sinai billiards.
We have seen how fundamental concepts, rooted deeply in

our understanding of statistical physics, are violated in this
system. Among them was the Einstein-Green-Kubo formal-
ism (typically relating the diffusivity to a stationary correlation
function), which needed to be replaced with one that takes into
account the aging of the correlation function in this system.
This results in the ability to calculate transport constants
previously predicted to be infinite. This aging of the corre-
lation function is generally related to the 1=f noise spectrum
[for example, in the context of protein diffusion on the cell
membrane (Fox, Barkai, and Krapf, 2021)], as well as to
glassy systems, where magnetization correlation functions
exhibit similar aging (Bouchaud, 1992). Other fundamental
implications reviewed were deviations from the Boltzmann-
Gibbs equilibrium state and the equipartition theorem, as well
as the application of infinite ergodic theory to an exploration
of the breakdown of ergodicity.
Looking forward to the missing pieces of the puzzle,

another laser-cooling scheme emerges as both a theoretical
and an experimental candidate for anomalous dynamics—that
of Raman-sideband cooling (Vuletić et al., 1998; Kerman
et al., 2000; Hu et al., 2017; Zohar et al., 2022). In this
scheme, atoms are trapped in the potential wells of a far-
detuned standing wave. The trapping beams induce Raman
transitions and remove vibrational quanta, cooling the trapped
atoms to the lowest vibrational state. Optical pumping needed

to close the cooling cycle involves spontaneous Raman
scattering that may change the vibrational state, and thus
heat the atoms. For low vibrational states, such heating is
minimized by the Lamb-Dicke effect (Vuletić et al., 1998),
thereby yielding efficient cooling. However, at high vibra-
tional states optical pumping results in excessive heating
where nonstandard statistics may become plausible. As it is
typically preceded by precooling into the Lamb-Dicke regime
by other cooling methods, such anomalous statistics have not
been observed thus far. Equipartition violations in transient
states have been observed and even used in the context of this
scheme to optimize the cooling (Hu et al., 2017; Mayer
et al., 2020).
Another relevant aspect may be the effects of many-body

physics on the anomalous statistics. How will atom-atom
interactions drive the system to thermal equilibrium? Will this
depend on the depth of the optical lattice, and if so, how?
Another unexplored aspect of the problem relates to the
Green-Kubo formalism. In transport theory, the relation
between the responses to a linear external weak field, namely,
the calculation of the mobility of the system, is a standard
problem. Further exploration into this issue could serve a
wider audience interested in anomalous response functions.
The study of the dynamics of the relaxation of the system to

its steady state, explored theoretically by Hirschberg,
Mukamel, and Schütz (2011, 2012), requires temporal control
over the lattice parameters, a feature inherently available in
ultracold atomic experiments. By “quenching” the power of
the lattice lasers from different initial conditions to different
final states, one can explore how the system approaches the
steady state (Afek, 2019). An ac temporal modulation of the
lattice depth was performed by Wickenbrock et al. (2012).
This renormalizes Ũ0 and may allow access to an effective
shallow-lattice regime, thus revealing the elusive Richardson
phase of Eq. (23) (Barkai, Aghion, and Kessler, 2014).
Furthermore, one can consider two new experimental

frontiers: the first statistics focused and the second single-
particle focused, each with its own advantages. The former is
rooted in the fact that rare events and heavy tails require
many decades of signal to noise to be resolved properly,
whereas the latter is appealing in the sense that direct
observations of trajectories can yield insights into the under-
lying processes that are washed out in the measurements of a
large ensemble of particles. In particular, with single-particle
trajectories one can in principle analyze the time averages
computed from long trajectories and see how they are related
to ensemble averages. This will promote a better under-
standing of the ergodic hypothesis in systems with scale-free
dynamics. Modification of the external confining potential is
also expected to lead to intricate behaviors that have yet to be
fully explored. A third, crossover regime is now slowly being
made accessible through recent advances in the trapping of
large arrays of single atoms (Morgado and Whitlock, 2021)
and ions (Joshi et al., 2022) combining single-particle
control with relatively large statistics.
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Hänsch, T., and A. Schawlow, 1975, Opt. Commun. 13, 68.

Afek et al.: Colloquium: Anomalous statistics of laser-cooled …

Rev. Mod. Phys., Vol. 95, No. 3, July–September 2023 031003-20

https://doi.org/10.1103/PhysRevA.101.042123
https://doi.org/10.1103/PhysRevA.101.042123
https://doi.org/10.1103/PhysRevLett.119.060602
https://doi.org/10.1103/PhysRevA.47.5158
https://doi.org/10.1103/PhysRevLett.118.260601
https://doi.org/10.1103/PhysRevLett.118.260601
https://doi.org/10.1103/PhysRevLett.122.010601
https://doi.org/10.1103/PhysRevLett.122.010601
https://doi.org/10.1103/PhysRevResearch.2.013174
https://doi.org/10.1007/s10955-008-9544-9
https://doi.org/10.1103/PhysRevE.101.052112
https://doi.org/10.1103/PhysRevE.101.052112
https://doi.org/10.1103/PhysRevLett.120.104501
https://doi.org/10.1103/PhysRevA.67.033403
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1038/ncomms9396
https://doi.org/10.1103/PhysRevLett.61.826
https://doi.org/10.1103/PhysRevLett.98.038103
https://doi.org/10.1103/PhysRevLett.98.038103
https://doi.org/10.1088/0953-8984/21/3/034110
https://doi.org/10.1088/0953-8984/21/3/034110
https://doi.org/10.1103/PhysRevLett.72.203
https://doi.org/10.1103/PhysRevX.4.021036
https://doi.org/10.1103/PhysRevLett.91.075502
https://doi.org/10.1103/PhysRevLett.127.140605
https://doi.org/10.1103/PhysRevLett.127.140605
https://doi.org/10.1103/PhysRevLett.84.5339
https://doi.org/10.1103/PhysRevLett.84.5339
https://doi.org/10.1103/PhysRevE.90.052114
https://doi.org/10.1103/PhysRevE.90.052114
https://doi.org/10.1103/PhysRev.73.679
https://doi.org/10.1103/PhysRev.73.679
https://doi.org/10.1103/PhysRevE.100.012117
https://doi.org/10.1103/PhysRevE.100.012117
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1038/s41567-019-0678-2
https://doi.org/10.1103/PhysRevE.62.103
https://doi.org/10.1103/PhysRevLett.90.120601
https://doi.org/10.1016/0009-2614(81)85475-9
https://doi.org/10.1073/pnas.1003693107
https://doi.org/10.1073/pnas.1003693107
https://doi.org/10.1016/S0167-2789(99)00031-7
https://doi.org/10.1088/0953-4075/23/22/012
https://doi.org/10.1103/RevModPhys.15.1
https://doi.org/10.1137/1109088
https://doi.org/10.1103/RevModPhys.70.685
https://doi.org/10.1103/RevModPhys.70.707
https://doi.org/10.1364/JOSAB.6.002023
https://doi.org/10.1364/JOSAB.6.002023
https://doi.org/10.1090/S0002-9947-1957-0084222-7
https://doi.org/10.1103/PhysRevLett.115.173006
https://doi.org/10.1103/PhysRevLett.115.173006
https://doi.org/10.1103/PhysRevLett.123.070602
https://doi.org/10.1103/PhysRevLett.123.070602
https://doi.org/10.1007/s10955-011-0363-z
https://doi.org/10.1007/s10955-011-0363-z
https://doi.org/10.1103/PhysRevLett.107.240603
https://doi.org/10.1103/PhysRevLett.107.240603
https://doi.org/10.1103/PhysRevE.85.051124
https://doi.org/10.1103/PhysRevE.85.051124
https://doi.org/10.1103/PhysRevX.4.011022
https://doi.org/10.1103/PhysRevX.4.011022
https://doi.org/10.1103/PhysRevE.94.022151
https://doi.org/10.1103/PhysRevE.94.022151
https://doi.org/10.1103/PhysRevA.93.053416
https://doi.org/10.1103/PhysRevA.93.053416
https://doi.org/10.1103/PhysRevLett.96.110601
https://doi.org/10.1103/PhysRevLett.96.110601
https://doi.org/10.1103/PhysRevE.87.020105
https://doi.org/10.1103/PhysRevE.105.024143
https://doi.org/10.1103/PhysRevE.105.024143
https://doi.org/10.1103/PhysRevLett.98.070601
https://doi.org/10.1103/PhysRevE.76.061915
https://doi.org/10.1038/s41467-021-26465-8
https://doi.org/10.1103/PhysRevE.81.020903
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1023/A:1010364003250
https://doi.org/10.1063/1.1740082
https://doi.org/10.1088/0305-4470/36/36/101
https://doi.org/10.1016/0030-4018(75)90159-5


Heshami, K., D. G. England, P. C. Humphreys, P. J. Bustard, V. M.
Acosta, J. Nunn, and B. J. Sussman, 2016, J. Mod. Opt. 63, 2005.

Hirschberg, O., D. Mukamel, and G. M. Schütz, 2011, Phys. Rev. E
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Lévy, P., 1937, Monographies des Probabilités, Vol. 1 (Gauthier-
Villars, Paris).

Livneh, O., G. Afek, and N. Davidson, 2018, Appl. Opt. 57, 3205.
Ludlow, A. D., M.M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, 2015,
Rev. Mod. Phys. 87, 637.

Lutz, E., 2003, Phys. Rev. A 67, 051402.
Lutz, E., 2004, Phys. Rev. Lett. 93, 190602.
Lutz, E., and F. Renzoni, 2013, Nat. Phys. 9, 615.
Majumdar, S., 2007, in The Legacy of Albert Einstein: A Collection
of Essays in Celebration of the Year of Physics (World Scientific,
Singapore), pp. 93–129.

Majumdar, S. N., and A. Comtet, 2004, Phys. Rev. Lett. 92,
225501.

Majumdar, S. N., and A. Comtet, 2005, J. Stat. Phys. 119, 777.
Mandelbrot, B. B., 1982, The Fractal Geometry of Nature, Vol. 1
(W. H. Freeman, New York).

Manning, G. S., 1969, J. Chem. Phys. 51, 924.

Mantegna, R. N., and H. E. Stanley, 1999, Introduction to Econo-
physics: Correlations and Complexity in Finance (Cambridge
University Press, Cambridge, England).

Margolin, G., and E. Barkai, 2004, J. Chem. Phys. 121, 1566.
Margolin, G., and E. Barkai, 2005, Phys. Rev. Lett. 94, 080601.
Margolin, G., V. Protasenko, M. Kuno, and E. Barkai, 2006, J. Phys.
Chem. B 110, 19053.

Marksteiner, S., K. Ellinger, and P. Zoller, 1996, Phys. Rev. A 53,
3409.

Martin, E., U. Behn, and G. Germano, 2011, Phys. Rev. E 83,
051115.

Mayer, D., F. Schmidt, S. Haupt, Q. Bouton, D. Adam, T. Lausch, E.
Lutz, and A. Widera, 2020, Phys. Rev. Res. 2, 023245.

Meir, Z., T. Sikorsky, R. Ben-shlomi, N. Akerman, Y. Dallal, and R.
Ozeri, 2016, Phys. Rev. Lett. 117, 243401.

Mercadier, N., W. Guerin, M. Chevrollier, and R. Kaiser, 2009, Nat.
Phys. 5, 602.

Metzler, R., J.-H. Jeon, A. G. Cherstvy, and E. Barkai, 2014, Phys.
Chem. Chem. Phys. 16, 24128.

Metzler, R., and J. Klafter, 2000, Phys. Rep. 339, 1.
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