
Nobel Lecture: Multiple equilibria*

Giorgio Parisi †
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This is an extended version of my Nobel Lecture, delivered on December 8, 2021. I will recall the
genesis of the concept of multiple equilibria in natural sciences. I will then describe my contribution
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I. THE INTERPLAY OF DISORDER AND
FLUCTUATIONS IN PHYSICAL SYSTEMS
FROM ATOMIC TO PLANETARY SCALES

The Nobel Prize in Physics 2021 was awarded for ground-
breaking contributions to our understanding of complex
physical systems with one half jointly to Syukuro Manabe
and Klaus Hasselmann for the physical modeling of Earth’s
climate, quantifying variability and reliably predicting global
warming and the other half to Giorgio Parisi for the discovery
of the interplay of disorder and fluctuations in physical
systems from atomic to planetary scales.
When I gave my 25 minutes Nobel lecture Mulitple

Equilibria I was unable to cover all the work that I have
done on systems from atomic to planetary scale. This
impossibility persists in this written version, also because I
would like to avoid adding too much material to the oral

version. For this reason, I will not mention many very
interesting subjects:

• Random field Ising model and dimensional reduction.
• Intermittency in turbulence and multifractals.
• Stochastic interfacial motion (i.e., the Kardar-Parisi-
Zhang equation).

• Stochastic quantization.
• The flight of starlings.
Other very important related topics I will briefly mention are
• Stochastic resonance.
• Nonequilibrium fluctuations.
• Granular matter (hard spheres).
• Random laser.
• Theoretical aspects of finite-dimensional spin glasses.
• Large-scale simulations of spin glasses.
• Optimization theory, constraint satisfaction problems:
3SAT, coloring, etc.

• Neural networks.
A review of various developments of these ideas is

contained in the 100 authors’ book Spin Glass Theory and
Far Beyond—Replica Symmetry Breaking after 40 Years
(Charbonneau et al., 2023).

II. THE ANTEFACT

In 1972 Niles Eldredge and Stephen Jay Gould proposed
the evolutionary theory of punctuated equilibria (Eldredge
and Gould, 1972). In a nutshell the evolution of the species is
not a continuous gradual process: there are long periods of
stasis with practically no changes in the morphology and these
periods are punctuated by rare bursts of evolutionary change.
The stability of a system composed of many random compo-
nents started to be an interesting mathematical issue (May,
1972) in the same years.
Many other different systems have long periods of equilib-

rium separated by fast transitions to a new equilibrium point.
This may happen, for example, in ecosystems, in climate
(glaciations), geological eras, and so on. In the original
stochastic resonance model for glaciations, the climate has
two equilibrium states.
Generally speaking, we could say that a complex system

can stay in many different equilibrium states, while a simple
system may stay only in one or a few equilibrium states. For
example, an animal like a dog can do many different actions
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(e.g., play, sleep, eat, hunt,…); an animal can switch from one
state to another state in a very short time as the effect of a small
perturbation, e.g., suddenly waking up after hearing a suspi-
cious noise.
Similar considerations can be done in Hebb’s theory (Hebb,

1949) of memory which was modelized with great success
first by Little (1974) and finally by Hopfield (1982) with his
very successful theory of associative neural networks. The
part of the brain that is responsible for memory may stay in an
extremely large number of different equilibrium states [attrac-
tors (Amit, 1989)], each corresponding to the recalling of a
different item: it may remain in that situation for a long period,
switching from one memory to the other as an effect of an
external perturbation. The extremely large number of items
that we can memorize and recall is related to the extremely
large number of possible equilibrium states.
Similar ideas have been put forward by Goldstein in 1969

(Goldstein, 1969) to understand the physics of standard
structural glasses (like window glass): as explained by
Cavagna (2009) Goldstein’s idea is that at low enough
temperatures, a supercooled liquid explores the phase space
mainly through activated jumps between different amorphous
minima, separated by potential energy barriers.
I notice en passant that “multiple equilibria” is a well-

known concept to economists: for example, in 1970 the Nobel
Laureate Gerard Debreu wrote the paper “Economies with a
Finite Set of Equilibria” (Debreu, 1970). The title of the Nobel
Lecture in economics of 2022 given by Philip Dybvig was
“Multiple equilibria”: the same title in two consecutive years
but in two different disciplines.

III. SPIN GLASSES: THE STARTING POINT

The concept of systems with many equilibrium points was
floating in different parts of science in the 1970s, including
physics. However, it was not clear how to attach the problem
using the standard tools of physics. The systems were rather
complex and so different from the others; people working in
glasses did not know the punctuated equilibra theory; more-
over, such a piece of knowledge would be useless: it would
have been too difficult to construct an appropriate model.
To make progress physicists need to find the simplest

problem, model it, and understand the properties of the model
in mathematical terms: only at a later stage, they can use the
acquired knowledge as a trampoline for other problems.
Things started to change unexpectedly in 1971. After a long

series of experiments, it was proved (Cannella, Mydosh, and
Budnick, 1971) that an alloy of gold with a few percent of iron
undergoes a phase transition: at a very small magnetic field,
the magnetic susceptibility had a sharp pick, indicating a
transition to some kind of antiferromagnetic order (see Fig. 1).
How do these materials behave? In standard ferromagnetic

systems, a pair of spins decrease its energy when the two spins
point in the same direction: this is what happens when two
iron atoms are in contact.
In the spin glass case, the iron atoms are in random

positions inside the gold matrix: at a low percentage of iron,
they are not in contact and the interaction is mediated by
the presence of the gold atoms. However, the sign of the
interactions depends on the distance of the atoms of iron:

sometimes the interaction wants to put a pair of spins in the
same direction, and sometimes in an opposite direction.
A triplet of spins is said to be frustrated if we cannot satisfy

all the requests: for example, if spin A wants to be in the same
direction as spin B, spin B wants to be in the same direction as
spin C, and spin Cwants to be in the opposite direction of spin
A, we cannot satisfy all the requirements simultaneously
because they are not compatible.
In the same way, if John and Fred want to sit at the same

table, Fred and Bob want to sit at the same table, but John and
Bob hate to sit at the same table (Mézard, Parisi, and Virasoro,
1987; Parisi, 1992) we have frustration as stressed by Toulouse
(1977) (and in real life a lot of discussions). Of course,
frustration, i.e., noncompatible requirements, is ubiquitous in
the real world, from Shakespeare’s tragedies to the problem of
putting pieces of baggage in the trunk. Disorder and frustration
are essential features of spin glasses.
Theorists started to work and models were constructed.

Edwards and Anderson (1975) arrived at the first simple
model: the spins (σi) are located on a D-dimensional lattice
(the index i denotes the lattice point): their number N is equal
to LD, L being the side of a D-dimensional cube. In the
simplest versions, the spins σ’s are Ising variables (they can
take the values �1).
The Hamiltonian of the system is

HJ½fσg� ¼ −1
2

X
i;k¼1;N

Ji;kσiσk þ h
X
i

σi; ð1Þ

where the couplings Ji;k are different from zero only if the
points i and k are nearest neighbors: they are independent
random variables [Gaussian distributed or binary (�1)] and
h is a constant magnetic field.

FIG. 1. The magnetic susceptibility of spin glasses: the results
for Au-Fe alloys in the region of low Fe concentration. From
Cannella, Mydosh, and Budnick, 1971.
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The paper is remarkable for very important progress:
• We expect that at low temperature spin glasses develop a
spontaneous magnetization: mi ≡ hσii, where h·i de-
notes the thermal expectation value. However, each
sample is characterized by different J’s and it will have
different values of the mi. We face the problem of
studying the statistical behavior of an ensemble of
different systems and new ideas were needed to reach
this goal.

Their great idea was to consider as an order parameter
the quantity qEA ≡ Avðm2

i Þ, where Av denotes the
average over the system [i.e., Avðm2

i Þ≡ N−1P
i¼1;Nm

2
i ].

In principle, qEA could depend on J but this possibility
was correctly disregarded. At zero magnetic field
(h ¼ 0), the order parameter qEA is zero at temperatures
above the critical temperature and it becomes positive at
temperatures below the critical temperature. Naively the
magnetic susceptibility χ is given by χ ¼ βð1 − qEAÞ, so
that the change of behavior in the magnetic susceptibility
at the critical point can be interpreted as the appearance
of a nonzero qEA.

• We face the problem of computing the average free
energy F. Let me write down a few definitions:

ZJðβ; NÞ ¼ 2−N
X
fσg

exp ð−HJ½fσg�Þ;

FðβÞ ¼ − lim
N→∞

log½ZJðβ; NÞ�
βN

; ð2Þ

where the overline denotes the average over the J. To
lighten the notation in the text we will not indicate the
obvious dependence on N and β of these two quantities.

The average over the J is rather complex: however, it
can be done in a simple way using an outrageous trick.

We first notice that Zn
J is the product of n factors ZJ. In

this way Zn
J is the partition function of a system with nN

spins: each system ofN spins is replicated n times. Using
this representation we can do the average over J and we
get formulas that involve the integral over nðn − 1Þ=2
variables.

The second step is to use the formula

log½ZJðβ; NÞ� ¼ lim
n→0

ZJðβ; NÞn − 1

n
: ð3Þ

It is clear that we are cheating: at the beginning, the number
of factors (n) must be an integer (half a factor or π factors do
not make sense) and in the second step n is a real number.
However, physicists often do illegal manipulations, hoping
that in the end, the results remain correct.
This approach is called the replica method (or the replica

trick) because we consider the partition functions of n
identical replicas of the same systems.
Equivalently we can also define

FnðβÞ ¼ − lim
N→∞

ZJðβ; NÞn
βnN

; FðβÞ ¼ lim
n→0

FnðβÞ: ð4Þ

Once the free energy Fn is computed for integer n (in the
infinite N limit), we analytically continue Fn to n ¼ 0 in order
to get the average free energy F.
The function Fn is well defined for noninteger n, however,

this naive approach fails if the function Fn is not analytic in n
and it has a singularity (i.e., a point of nonanalyticity) for
noninteger n (e.g., for 0 < n < 1). Such a singularity can be
seen only in the infinite N limit.
A subsequent simplification was taken by Sherrington and

Kirkpatrick (1975): the Hamiltonian has the same form as
before with the difference that all pairs of the spins have a
direct interaction; the average of the couplings is given by

J2 ¼ 1=N, where N is the total number of spins.
According to the folklore in statistical mechanics, when all

the components have a direct infinitesimal interaction in the
limit N → ∞, each component feels only the collective
behavior of the system: physical space is no more present
and the correlations have an infinite range. Such a model
should be soluble, in the sense that one can arrive at a closed
set of equations in the infinite volume limit. However, the
solution is correct only if we have correctly identified the
collective behavior of the system.
The solution of the infinite range model should provide the

useful mean-field theory of the model: the large dimension
limit of the lattice-defined theory should be described by this
mean-field theory, as has been proved in many cases.
The paper by Sherrington and Kirkpatrick (1975) was a

turning point: the goal became to obtain the solution of the
Sherrington-Kirkpatrick (SK) model. The title Solvable model
of a spin-glass was correct, the model is actually solvable, but
the paper did not contain the correct solution because, as
stressed by the authors, the reported solution of the model
produced a negative value of the entropy at low temperature: it
was an internal contradiction because the entropy by defi-
nition is non-negative. Some subtle mistake was made.
The derivation of SK was simple. After some computations

based on Gaussian integrations, it was possible to write
exactly for a system of N spins:

ZJðβ; NÞn ¼
Z

dQ exp½−NβFnðQÞ� ≈ exp ½−NβFnðQ�
nÞ�;

ð5Þ

where Q denotes a symmetric n × n matrix that has diagonal
elements equal to zero; the integral runs over all these
matrices. The function FnðQÞ has an explicit form that is
not worthwhile to write here and Q�

n is the value of Q that
minimizes FnðQÞ. The simplest option for finding candidates
for a minimum is to look for the solutions of the stationary
point equation ∂FnðQÞ=∂Q ¼ 0.
Now Sherrington and Kirkpatrick worked directly at n ¼ 0;

they made also an extra innocent-looking assumption

Q�
a;b ¼ q; for a ≠ b: ð6Þ

This assumption was quite natural: both the integrand and the
integral in Eq. (5) are invariant under the reshuffling of the n
indices (i.e., the action of the permutation group of n elements,
Sn, called also the replica group).
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In a nutshell this symmetry stems from the commutativity
of the multiplication: when we write Zn

J as the product of n
factor ZJ, we attach a label a (a ¼ 1; n) to each of these
factors, but the order in which we perform the multiplication is
irrelevant. The matrix Q� in Eq. (6) is the only one that is
symmetric under the action of the replica group, so it is the
obvious choice.
After two years de Almeida and Thouless (1978) proved

that this innocent-looking assumption was wrong: the value of
Q� chosen by SK was not a minimum; more precisely the
replica symmetric matrix of Eq. (6) is a minimum for n > nc,
but no longer a minimum for n < nc, with 0 < nc < 1. So the
worst-case scenario of the nonanalyticity of the function Fn
was realized.
The reader should notice that the precise definition of

minimum is unclear in the context. However, everybody
agreed that a stationary point of the function F (i.e., a point
such that ∂F=∂Qa;b ¼ 0) is a candidate to be a minimum only
if the Hessian matrix of second derivatives

Ha;b;c;d ¼
∂
2F

∂Qa;b∂Qc;d
ð7Þ

is non-negative (i.e., its eigenvalues are non-negative). This
statement generalizes the well-known one-dimensional result
that if f0ðx�Þ ¼ 0 and f00ðx�Þ < 0 the function fðxÞ has a
maximum at x ¼ x�, certainly not a minimum.
The subtle mistake was found by de Almeida and Thouless,

but, unfortunately, these authors were not able to suggest
which form could have the minimum; it was clear the saddle-
point matrix Q� could not be left invariant by the action of the
replica group: the replica symmetry should be spontaneously
broken, but the space of nonsymmetric matrices is very,
very large.
A natural possibility was that the correct saddle-point

matrix Q� is symmetric under a subgroup of the replica group
Sn, but also the number of different subgroups is very large,
especially in the slippery limit n → 0. Another possibility was
to abandon the replica method but it was unclear what method
to use in place of the replica method.
A few attempts to find the correct minimum were done,

but they were unsuccessful (Blandin, 1978, Bray and Moore,
1978). Important progress on the physics of the problem was
made in a Thouless, Anderson, and Palmer (TAP) paper
( Thouless, Anderson, and Palmer, 1977), where it was shown
that the low-temperature behavior of the model was very
different from that of SK. More results in this direction were
contained in the very influential Les Houches lecture notes
by P. W. Anderson (Anderson, 1979).

IV. THE EXACT SOLUTION OF THE MODEL

The history of the solution of the model and the consequent
discovery of replica symmetry breaking is quite complex.
The interested reader can find a detailed exposition in the
monumental and choral work by Charbonneau (2022) and
Charbonneau and Zamponi (2022). Here I will expose mainly
the history from my personal viewpoint, which is exposed at
length in my interview in Charbonneau and Zamponi (2022).

My interest in the problem started at the end of 1978. I was
working with Sourlas and Drouffe on lattice QCD in high
dimensions (Drouffe, Parisi, and Sourlas, 1979). In our
formalism, the corrections to mean-field theory for lattice
gauge theories were related to the properties of interacting
branched polymers.
Looking at the literature in the library, I encountered the

replica method in the study of branched polymers (Lubensky
and Isaacson, 1978) and I learned that the replica method was
giving incorrect results in the case of the SK model. I
immediately wanted to understand why. I started to study,
to look for a different form of the matrix Q�, but none were
satisfactory.
After many trials I had an intuition: in other papers

(Blandin, 1978; Bray and Moore, 1978), the n indices were
divided into n=m groups of m elements each and the value of
the matrix elements of Q depends on the group. Everybody
was assuming that m was an integer: Blandin (1978) was
using m ¼ 2; De Dominicis and Garel (1979) generalized
this approach to a generic integer m and considered also the
m → ∞ limit: in this limit, the entropy problem was solved,
but other low-temperature properties were not in agreement
with the simulations either with the theoretical analysis
of TAP.
I made the bold assumption that m could be a noninteger

number, more precisely a number in the interval ½0-1�. For
example, I was dividing the n replicas into 2n groups of 1=2
replicas each. Of course, that is crazy, but my viewpoint was I
should first check if this crazy idea was leading to correct
results and postpone other questions to a later stage. It was
clear to me that also noninteger angular momentum is a crazy
idea, but this idea led to Regge poles.
This approximation is what is now called one-step replica

symmetry breaking. Everything was nearly perfect. The
theory predicted values of the specific heat and the energy
in agreement with the numerical simulations. The entropy
remained a problem, but instead of being −0.16 at zero
temperature, it was −0.01: still negative but quite near zero.
I wrote the results in a short note (Parisi, 1979a) that I
submitted to Physics Letters A.
At the end of the paper, I added the observation that one

could improve the theory by dividing the n=m groups into
ðn=mÞ=m1 groups of replicas, wherem1 was a new variational
parameter. I was also conjecturing the correct solution was
obtained when the procedure was repeated an infinite number
of times.
Some fancy group theory arguments also were added,

arguing the permutation group of zero objects is an infinite
group because it contains itself as a proper subgroup. Indeed
the subgroup of Sn that does not change the matrix Q� is the
semidirect product of the permutation group of n=m elements
(Sn=m) with the direct product of n=m copies of the permu-
tation group of m elements (Sm). For n ¼ 0 also n=m ¼ 0, so
that S0 contains as a subgroup the semidirect product of S0
with the direct product of zero factors Sm. This sentence looks
like a nonsensical text written by modern AI.
The response of the referee was remarkable. In a nutshell:

The approach does not make sense, but the numbers coming
from the formulae are reasonable, so it can be published.
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The last observation is not worth the paper on which it is
written and it should be removed.
I laughed because in the meanwhile I extended the

computation to an infinite number of subdivisions: I found
that I could associate a continuous function qðxÞ (where x
belongs to the interval ½0-1�) to the matrix Q when one repeats
the process of symmetry breaking an infinite number of times.
In other words, I arrived at the formula

F ¼ max
qðxÞ

F½qðxÞ�; ð8Þ

where F½qðxÞ� is a functional of the function qðxÞ. I first
computed it near the critical temperature (Parisi, 1979b) and
finally at all temperatures (Parisi, 1980).
At the end of 1979, I got the expression for the free energy

of the model. At zero magnetic field, we have

F½qðxÞ� ¼ −
β

4

�
1þ

Z
1

0

dxq2ðxÞ − 2qð1Þ
�
−
1

β
fð0; 0Þ; ð9Þ

where fðx; hÞ is an auxiliary function defined in the strip
0 ≤ x ≤ 1 and it is the solution to the nonlinear antiparabolic
equation

∂fðx; hÞ
∂x

¼ −
1

2

dq
dx

�
∂
2f
∂h2

þ x

�
∂f
∂h

�
2
�
; ð10Þ

with the initial condition fð1; hÞ ¼ ln½2 coshðβhÞ�. The zero
temperature entropy was zero, as it should be.
It is remarkable that in the final formula, the craziness

disappeared. We come back to respectable mathematics with
one big surprise: in all known mean-field theory the order
parameter was a number, here it is a function (Mézard, Parisi,
and Virasoro, 1987; Parisi, 1992).
But what is the physical meaning of the function qðxÞ? How

could we derive the relatively simple final formulas without
using the nonsensical mathematics described before? Most
importantly are the final formulas for the free energy correct?
At that time there was no suggestion of how this result

could be rigorously proved: the very existence of the free-
energy density in the large N limit was lacking rigorous proof.
The difficulty was to prove that all the random systems have
the same free-energy density when N goes to infinity: we
needed a clever generalization of the law of large numbers.
There were some hints on the meaning of having a non-

constant qðxÞ. If qðxÞ were constant, i.e., qðxÞ ¼ q, we would
recover the original SK solution. By an ingenious trick
(adding an infinitesimal term that breaks the replica sym-
metry) Blandin (1978) argued that when replica symmetry
was broken, qEA is given by the largest matrix element of the
matrix Q. In this context, this result leads to

qEA ¼ max
x

qðxÞ; χ ¼ β

Z
1

0

dx½1 − qðxÞ�: ð11Þ

Unfortunately, a back-of-the-envelope calculation gave χ ¼
βð1 − qEAÞ, which was not the right result. These formulas
and this discrepancy were suggesting something, but what?

Despite this hint, I had no sound idea of the meaning of
qðxÞ and I was unable to make further advances. At the end of
1979, I started to study other problems, waiting for inspiration
for further progress.
The belief in the correctness of the approach was strongly

reinforced by two papers. In the first paper (Thouless,
de Almeida, and Kosterlitz, 1980) it was shown that near
the critical temperature, the values of negative eigenvalues of
the Hessian in the one-step formulation were reduced by a
factor of 9 indicating that one was moving in the correct
direction. Finally in a later and conclusive paper (De
Dominicis and Kondor, 1983) it was shown that in the
formulation with an infinite number of replica symmetry
breaking, the negative eigenvalues of the Hessian are no more
present: one remains with a rather intricate structure of zero
modes and nearly zero modes.

V. THE DISCOVERY OF COMPLEXITY,
WITH THE HELP OF MY FRIENDS

In the summer of 1982, I lectured at the Les Houches
Summer School on spin glasses (Parisi, 1984) and in the fall I
went to Paris, at the IHES, for a two-month visit. I had many
discussions about spin glasses, which was a hot subject, and a
lot of progress was made. People had already realized that spin
glasses could be in many stationary states (Bray and Moore,
1980; De Dominicis et al., 1980), most of them having higher
free energy (i.e., metastable equilibrium states). However, the
connection of this fact with the replica symmetry-breaking
solution described above was not clear (De Dominicis and
Young, 1983).
In the end, I found that the replica symmetry-breaking

solution implies that a spin glass may have many equilibrium
states (Parisi, 1983), labeled by an index α (α ¼ 0; 1 � � �∞):
each of these states appears at equilibrium with a proba-
bility wα.
Each state is characterized by its own magnetizations mα

i .
One can define the matrix of overlaps

Qα;γ ¼
P

im
α
i m

γ
i

N
≡ Avðmα

i m
γ
i Þ: ð12Þ

The Edwards-Anderson order parameter (qEA) is given
by Qα;α.
Each sample has its own matrixQ and its own weights w. In

other words for each sample, we could define a descriptor DJ
that is formed by the matrix Q and the weights w.
To describe the connection with the function qðxÞ, it is

convenient to consider the probability of finding two states
with overlap q in a given sample: for very large, but finite,
N, it is given by

PJðqÞ ¼
X
α;γ

wαwγδðQα;γ − qÞ: ð13Þ

The function PJðqÞ depends on the system. The simplest
quantity to consider is its average over the samples:

PðqÞ ¼ PJðqÞ: ð14Þ
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The connection with my theory was surprising: if we define

xðqÞ ¼
Z

q

0

dq0Pðq0Þ; ð15Þ

one could prove that xðqÞ is the inverse of the function qðxÞ
that I introduced in the solution using replicas.
The interpretation of qðxÞwas now clear. The quantity x is a

probability: indeed it is the probability that two replicas of
the system have an overlap less than or equal to q. This
probabilistic interpretation of x explains why x is in the range
from 0 to 1.
The study of the statistical properties of the function PJðqÞ

and of the descriptor DJ were done together with very good
friends of mine (Mézard et al., 1984a, 1984b). The results
were so unexpected that when I saw the first results of our
computations, my first thought was my theory must be wrong
if it produces such nonsense.
After a lot of work, we realized that the predictions made a

lot of sense:
• The probability distribution of the overlap changes from
system to system also in the infinite volume limit. This is
quite amazing because usually intensive quantities do
not fluctuate. However, the self overlaps Qα;α do not
depend on α and on the system. It is possible to show
that Qα;α ¼ qEA.

• The probability distribution of the w’s follows simple
mathematical rules that I will not describe here.

• The number of equilibrium states is infinite. This was the
first case of an infinitely numerable number of different
equilibrium states. This is a quite strange situation
because it violates the Gibbs rule.

• The most surprising result was that in the presence of an
arbitrarily small nonzero magnetic field, the states
satisfied the ultrametricity property

dα;γ ≤ minðdα;β; dβ;γÞ ∀ β; ð16Þ

where the distance between two states is defined in a
natural way:

d2α;γ ¼ Qα;α þQγ;γ − 2Qα;γ ¼ Avðmα
i −mγ

i Þ2: ð17Þ

Without entering into the mathematical details, ultra-
metricity implies that the states can be assigned to the
leaves of a tree and that the distance between states is
proportional to the height you have to climb the tree for
going from one leaf to another leaf.

An explicit probabilistic construction of this tree was
given by Parisi, Ricci-Tersenghi, and Yllanes (2015),
while a rigorous construction of the tree was done by
Ruelle (1987). In Fig. 2 I show an example where only a
finite number of the branches are depicted, i.e., those
with higher probability.

A model that by inspection has the same distribution of
weights of the one-step replica broken case is the random
energy model of Derrida (1981) that generalizes to the
generalized random energy model model for more than
one-step replica symmetry breaking (Derrida, 1985).

Ultrametricity and taxonomy are essentially related: a
standard taxonomy, i.e., a hierarchical classification, is possible
only if the relevant properties have an ultrametric structure. In
the standard taxonomic classification of living beings, the
distance is related to the history of evolution. In spin glasses,
the taxonomy is intrinsic to the static equilibrium properties of
the system and it is not related to evolution in time.
In spin glasses and other systems, where the function qðxÞ

contains a continuous part with a nonzero derivative, the
function PðqÞ is nonzero in an interval. This situation is called
continuous replica symmetry breaking. Here the tree of the
states is branching at any level: in any height interval, there is an
infinite number of branches. It is an extremely complex
construction that appeared unexpectedly. The presence of such
construction for the probability of the descriptors PðDÞ reflects
the extreme complexity of the rugged landscape of spin glasses.
In other cases the function PðqÞ is the sum of two or more

delta functions: for example, if the function PðqÞ contains
only two delta functions, we have the so-called one-step
replica symmetry breaking, which was the first case we
considered. When there are three deltas, we have two-step
replica symmetry breaking (a very rare case). Finally, when
only one delta function is present we are in the usual case
where there is no replica symmetry breaking.
The crazy form of the Q matrix is equivalent to this

extremely complex probability distribution of the descriptor.
Indeed it was shown (Mézard, Parisi, and Virasoro, 1985)
that the formula for the free energy can be derived using
probabilistic arguments starting from the assumption that the
probability of the descriptors is just the one given by the
replica formula.

VI. MATHEMATICIANS COME TO THE RESCUE

At this stage, at the beginning of the 1990s, we faced an
impasse. Numerical simulations for the SK model were in
agreement with the predictions of the replica symmetry
broken approach (Binder and Young, 1986). However it
was possible that the correct form of the matrix Q was
different and more complex, and the correct form of the
probability of the descriptors [PðDÞ] was much more intri-
cate. It was difficult to conclude in a definite way.
A possible approach could be to consider a free energy that

depends on PðDÞ, i.e., F ½P�. We could conjecture that the
correct free energy is given by

F ¼ max
P

F½P�: ð18Þ

FIG. 2. An example of the tree of states in the case where the
overlap takes only three possible values. The reader should
notice that the tree is upside down: the root is at the top and the
leaves are at the bottom. From Parisi, Ricci-Tersenghi, and
Yllanes, 2015.
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Unfortunately, there was no idea of how to prove the previous
formula. Why “max” and not the usual “min”? How to justify
this strange choice?
Moreover, the space of the descriptors is infinite dimen-

sional and the space of possible functions on an infinite
dimension is extremely large. How can we explore such a big
space? The very complicated ultrametric PðDÞ of the replica
approach is just the simplest example of a very large family of
distributions.
In those years, I was very skeptical about the possibility of

finding proof that all the assumptions done were correct.
Fortunately, the situation changed rapidly.
In 2002 Guerra (Guerra and Toninelli, 2002) introduced a

new mathematical technique (Guerra interpolation) that
allowed him to prove that F ≥ FR, where FR is the free
energy computed via the replica formula (Guerra, 2003),
vindicating the use of “max.” A few months later Talagrand
(2003, 2006) beautifully twisted Guerra’s argument and he
proved that F ≤ FR, arriving at the conjectured result F ¼ FR.
Unfortunately, this sophisticated proof did not have direct

implications on the form of PðDÞ. The problem was solved
differently. It was shown that Eq. (18) has a precise math-
ematical meaning (Aizenman, Sims, and Starr, 2003).
Moreover Ghirlanda and Guerra (1998) proved some iden-
tities (the GG identities) that restricted very strongly the form
of PðDÞ [see also Aizenman and Contucci (1998)].
In a long-awaited paper after many partial results,

Panchenko (2013a) was able to show that the GG identities
implied ultrametricity. There is only one possible form of
PðDÞ that satisfies the GG identities and this form is para-
metrized as a functional of the function qðxÞ. Using the
Panchenko results one obtains directly a replica formula
after some now standard computations. This second proof
(Panchenko, 2012, 2013b) is more connected to physical
intuitions.
Unfortunately at the present moment, nobody is able to

transform the original approach with replicas into rigorous
proof. There are some ideas on a possible approach
(Campellone, Parisi, and Virasoro, 2010; Parisi, 2023a),
however, it is still not easy to transform these half-baked
ideas into a mathematical proof. It seems to me (Parisi, 2023a)
that there must be some relevant deep mathematical theorems
that have not yet been proven.
In a nutshell, the work of the mathematicians has been

fundamental to clarifying the physical hypothesis at the basis
of the replica approach and to eliminating any possible doubts
about the correctness of the results of this approach.

VII. MARGINAL STABILITY

We have seen that the existence of multiple equilibrium
states is the distinctive hallmark of glassiness (Mézard, Parisi,
and Virasoro, 1987; Parisi, 1992). While at finite temperatures
these equilibrium states may be metastable (or maybe not,
depending on the system), the issue of metastability becomes
irrelevant in the zero temperature limit.
A crucial question is how these states differ one from

the other and how they are distributed in the phase space (the
phase space becomes an infinite-dimensional space in the
thermodynamic limit). Moreover, in this situation a small

perturbation produces a large rearrangement of the relative
free energy of the equilibrium states: after a perturbation, the
lowest equilibrium state may be quite different from the
previous one. The linear response theorem has to be modified
to take care of the existence of many equilibrium states.
Two main possible scenarios have very different properties

as discussed, for example, by Parisi (2017).
• Different equilibrium states are scattered in phase space
in a nearly random fashion: they stay at a fixed nonzero
distance from the others (Cavagna, Giardina, and Parisi,
1997a). In this situation, if you live inside one equi-
librium state, you do not feel the existence of other
equilibrium states: the barriers are very high (Mézard,
Parisi, and Virasoro, 1987). We can call this scenario
the stable glass: it corresponds to one-step replica
symmetry breaking. In mean-field theory the barriers
for going from one state to another are exponentially
large in the system size (Cavagna, Giardina, and Parisi,
1997b, 1998). Beyond mean-field theory they are
expected to be exponentially large in the appropriate
parameter.

• The distribution of equilibrium states in phase space is
very far from a random one. Each state is surrounded
by a large number of other equilibrium states that are
arbitrarily near to that given state:

min
γ≠α

dα;γ ¼ 0: ð19Þ

One could say the equilibrium states form a kind of
fractal set. The barriers for going from one state to
another are much smaller than in the previous case.

If you live in one equilibrium state, you feel that you
can move in many directions (typically in the direction of
nearby states) without increasing too much the free
energy: in other words, there are nearly flat directions
in the potential exactly like at a second order transition
critical point (Mézard, Parisi, and Virasoro, 1987).

The spectrum of small oscillations within an equilib-
rium state has an excess of low-frequency modes that
in some cases may dominate the one coming from other
more conventional sources (e.g., phonons or magnons).
The precise form of this anomalous low-frequency
spectrum and the localization properties of the eigen-
values crucially depend on the details of the theory.

These glassy systems are self-organized critical sys-
tems. We call this scenario the marginally stable glass
that corresponds to continuous replica symmetry break-
ing. [I notice en passant that expression marginal
stability was also used to characterize some off-equilib-
rium metastable states (Kirkpatrick and Thirumalai,
1987a, 1987b; Kirkpatrick, Thirumalai, and Wolynes,
1989, 2022) with a slightly different meaning.]

For reasons of space, I will consider here only the case of
the marginally stable glass.
A great step forward in the study of marginal stable glasses

was taken by De Dominicis and Kondor (1984). They
computed the matrix elements of the resolvent of the
Hessian [1=ðHþ λÞ]: in the framework of the mean-field
approximation, if we put λ ¼ p2, we obtain the correlation
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functions of the spins in momentum space. These correlations
(in position space) are defined as

hσaðxÞσbðxÞσcð0Þσdð0Þi≡ Ca;b;c;dðxÞ: ð20Þ

Unfortunately, they depend on four indices and this makes the
whole analysis quite complex.
In mean-field theory, when replica symmetry is broken

continuously these correlations are long-range with a power
law decay that has a very complex structure as a function of
the four replica indices. Depending on the replica indices, in
Fourier space we have the following possible singular behav-
ior at small momentum p:

A2=p2; A3=p3; A4=p4; ð21Þ

the A’s being constants that have been evaluated.
The existence of long-range correlations (although we do

not know the exponents outside mean-field theory) is one of
the fundamental predictions of continuous replica symmetry
breaking and marginal stability.
Fortunately, there are very clear experimental observations

of a large correlation length in spin glasses (Joh et al., 1999,
2000) that increases with the age of the system. These
experiments have also been reproduced in silico in great
detail (Banos et al., 2010a, 2010b; Baity-Jesi et al., 2017a,
2018).
TheDeDominicis–Kondor computation (a real tour de force)

was done in the framework of mean-field theory, but it
underlines a general relation: continuous replica symmetry
breaking implies marginal stability and power-decaying corre-
lations at large distances. The detailed results should be valid in
high dimensions. They clearly show the existence of long-range
correlations that decay at a large distance with a dimensional-
dependent exponent: the correlation length is infinite.
For not-too-high-dimensional spin glasses, the situation is

less clear, also because we have a limited command of the
perturbation theory around the mean-field theory. The com-
putations are technically very demanding: they have never
been done without approximations, but I hope that they will be
done in the future.
I believe that one should better understand Ward’s identities

related to replica symmetry breaking (De Dominicis,
Temesvari, and Kondor, 1998; Temesvári, Kondor, and De
Dominicis, 2000). Ward identities are the right tools to address
cancellations due to symmetries. The theoretical situation in a
magnetic field is still worse because we do not know the upper
critical dimension (Bray and Roberts, 1980), i.e., the dimen-
sion at which the exponents start to be nontrivial, although
there is a recent suggestion that the upper critical dimension
is 8 (Angelini et al., 2022).
The sad outcome is that we do not know at which

dimensions the spin glass phase disappears. We have exper-
imental and numerical evidence that there is a transition at
zero magnetic field in three dimensions and that the transition
is absent in two dimensions. It was suggested theoretically that
the transition temperature goes to zero in dimension Dc ¼ 2.5
(Franz, Parisi, and Virasoro, 1994). Obviously, we cannot (for
the moment) do numerical simulation in noninteger

dimensions, however, we can resort to extrapolation or
interpolation of critical quantities as a function of the
dimensions of the space.
The value Dc ¼ 2.5 is in very good agreement with

numerical interpolation of the zero temperature exponents
for the Edwards-Anderson model [the value Dc ¼ 2.4986 is
estimated in Boettcher (2005)] [a much less precise extrapo-
lation of the critical temperature (Parisi et al., 1997) gives
Dc ≈ 2.65]. Numerical estimations for the free-energy
barriers (Maiorano and Parisi, 2018) in dimension 3 are
in good agreement with the approximation that predicts
Dc ¼ 2.5.
When the magnetic field is zero, numerical experiments in

dimension 3 or higher are in very good and detailed agreement
with the qualitative predictions of mean-field theory. For
example, in finite dimensions marginal stability predicts the
existence of long-range correlations (De Dominicis and
Kondor, 1984) that are clearly observed in many simulations
[e.g., Banos et al. (2010a, 2010b)] together with many other
predictions (Marinari et al., 2000). One can also measure
numerically the correlation functions that are related to the
presence of ultrametricity in dimension 3 (Maiorano, Parisi,
and Yllanes, 2013).
More than ten years ago it was suggested that also in some

two- and three-dimensional structural glasses, in particular,
hard-sphere systems at infinite pressure (i.e., in the jamming
limit), are marginally stable, in the restricted sense that they
are unstable under an infinitesimal perturbation (Wyart et al.,
2005, 2012; Liu and Nagel, 2010; Lerner and Wyart, 2014).
Following an original idea of Kirkpatrick and Wolynes

(1987), quite recently (Parisi and Zamponi, 2010; Kurchan,
Parisi, and Zamponi, 2012; Kurchan et al., 2013;
Charbonneau et al., 2017; Parisi, Urbani, and Zamponi,
2020), as discussed in detail in the next section, a mean-field
model of hard spheres has been constructed and solved in the
infinite-dimensional limit (D → ∞, where D is the dimension
of the space where the spheres move). The model has many
features similar to the SK model: all the stigmata of marginal
stability are present here, suggesting that a similar situation
also holds for some finite-dimensional glasses.

VIII. SOME MORE EXPERIMENTAL AND NUMERICAL
CONFIRMATIONS

Although experiments are the ultimate source of confirma-
tion of a theory, numerical simulations have proven to be a
remarkable tool. They are crucial for studying quantities that
are not accessible experimentally and for quickly disproving
wrong theories.
Indeed the core prediction of the replica theory is the

existence of multiple equilibrium states that have the same
macroscopic properties but they differ microscopically.
Unfortunately at the present moment, it is impossible to
measure simultaneously the value of a large number of spins
in experiments, so this key property may be directly observed
only in simulations.
Another reason for the importance of simulations is the

possibility to explore the behavior of the system in a short time
window that is not accessible to experiments: in this way,
simulations are complementary to experiments.
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A. Spin glass susceptibilies

The magnetic susceptibility measures how the magnetiza-
tion changes by adding a magnetic field. However, in the low-
temperature region, the magnetization depends on the protocol
we use to thermalize the system and to add the magnetic field
(a form of hysteresis): consequently, we can define protocol-
dependent (or history-dependent) magnetization.
A clear prediction of the theory is the existence of two

susceptibilities in two extreme cases:
• When we add a small magnetic field and we force
the system to remain in the same state, we measure the
linear response susceptibility that is given by
χLR ¼ βð1 − qEAÞ.

• When we add a magnetic field and we allow the system
to jump to the thermodynamically favored state, we
measure the thermodynamic susceptibility that is given
by χeq ¼ β

R
dx½1 − qðxÞ�.

The two susceptibilities have been measured experimen-
tally in spin glasses and depicted in Figs. 3 and 4 (mean-field
theory and experiments, respectively).
The experimental protocols we consider are the following:
• The linear response susceptibility (χLR) is measured by
adding a very small magnetic field when the system is
already at the final low temperature. This extra field
should be small enough to neglect nonlinear effects. In
this situation, when we change the magnetic field, the
system remains inside a given state and is not forced to
jump from one state to another state: this is the zero-
field-cooled (ZFC) susceptibility, which corresponds
to χLR.

• The second susceptibility (χeq) can be approximately
measured by cooling the system in the presence of a
small magnetic field and comparing the observed mag-
netization with the one measured without this small
magnetic field. In this case, the system has the ability to
choose the state that is most appropriate in the presence
of the applied field. This susceptibility, the so-called

field-cooled (FC) susceptibility, is experimentally nearly
independent from the cooling rate. The quasi-independ-
ence of the field-cooled magnetization on the cooling
rate confirms that the field-cooled magnetization is near
the equilibrium one: it is considered to be a good proxy
of χeq.

Summarizing, one can identify χLR and χeq with the ZFC
susceptibility and with the FC susceptibility, respectively.
The theoretical plot of the two susceptibilities is shown in

Fig. 3. As we discussed above

χLR ¼ βð1 − qEAÞ; χeq ¼ β

Z
dx½1 − qðxÞ�: ð22Þ

The experimental plot of the two susceptibilities is shown in
Fig. 4. They are equal in the high-temperature phase while
they differ in the low-temperature phase.
The experimental data are in clear qualitative agreement

with the theoretical predictions, especially if we consider that
some of the data are also in the critical region, where the
critical exponents are far from those of mean-field theory.
I think that these data provide a quite conclusive argument for
the relevance of mean-field theory for the experiments.

B. Spin glass simulations

How to measure directly qðxÞ in simulations?
This can be done by measuring the probability distribution

of the overlap:

PðqÞ ¼ PJðqÞ; ð23Þ

where the overline denotes the average over the different
instances of the system. To this end, we can introduce two
clones of the same system that we call σ and τ.
Let us consider a system of size equal to V ¼ LD (with D

being the dimensions of the space) that we can thermalize by
numerical simulations. We can measure the probability

FIG. 3. The analytic results of the mean-field approximation for
the linear response susceptibility (χLR, lower curve) and the field-
cooled susceptibility (χeq, upper curve). They coincide in the
high-temperature region.
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FIG. 4. The linear response susceptibility (χLR, lower curve)
and the field-cooled susceptibility (χeq, upper curve). The
experimental results are taken from Djurberg, Jonason, and
Nordblad (1999).
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distribution of the clones of the same system. We define the
instantaneous overlap of the two clones as

q ¼
P

iσiτi
V

: ð24Þ

For each sample J we can measure the probability distribution
PJðqÞ. We finally have

xJðqÞ ¼
Z

q

0

dq0PJðq0Þ; xJðqÞ ¼ xðqÞ: ð25Þ

In other words, the probability distribution of q for a given
system gives the function PJðqÞ. We must now average the
function PJðqÞ over a large number of instances of the systems
(at least 1000 if we want not too large errors) to get the average
probability PðqÞ.
The computations are numerically hard because the com-

puter time needed for thermalization increases very fast with
the side of the system L. For example, in three dimensions
(D ¼ 3) in the low-temperature phase, the thermalization time
increases like Lz with z ≈ 12 (Billoire et al., 2018) if we use
the parallel tempering algorithm. Using standard Monte Carlo
simulations the thermalization time would be exponentially
large in L to some power, yet to be determined.
The signature of replica symmetry breaking is that in the

infinite volume limit the function PðqÞ is different from two
delta functions at q ¼ �qEA. In Fig. 5 we show the results
for the average function PðqÞ from the Janus Collaboration
(Banos et al., 2010a, 2010b) in three dimensions for L ¼ 8,
16, 24, 32: the plateaux at q ¼ 0 has no tendency to disappear
by increasing L. These smooth curves are the average of
PJðqÞ functions that are very different from one another (see
Fig. 6): each sample has its own PJðqÞ function. The sample-
to-sample fluctuations of PJðqÞ follow very well the theo-
retical prediction as shown by Banos et al. (2011). A
comparison of finite-dimensional numerical simulations with
the infinite range model (Aspelmeier et al., 2008) was done by
Billoire et al. (2013, 2014).
Unfortunately, I cannot present more results on large-scale

simulations of spin glasses. I have worked on this problem

for more than 20 years: I consider numerical simulations to
have the same cognitive value as experiments. Unfortunately,
a detailed presentation of the many results would be too
involved.

C. Fluctuation-dissipation relations

We can also define and measure experimentally suscep-
tibilities that interpolate between χLR and χeq: they can be
directly related to the function qðxÞ.
The definition is simple: we add a small magnetic field

and we impose that the perturbed system remains at an overlap
greater than or equal to q from the original one: the
corresponding susceptibility (Franz and Kurchan, 2023) is
given by

χðqÞ ¼ β

Z
1

q
dq0xðq0Þ. ð26Þ

This formula reproduces the values of the two previously
defined susceptibilities (χLR and χeq) if we set q ¼ qEA and
q ¼ 0, respectively:

χLR ¼ χðqEAÞ ¼ βð1 − qEAÞ;

χeq ¼ χð0Þ ¼ β

Z
dx½1 − qðxÞ�: ð27Þ

The experimental measure of χðqÞ can be done in an off-
equilibrium setting and using generalized fluctuation-
dissipation relations (Cugliandolo and Kurchan, 1993, 1994).
I present here a very schematic version of the Cugliandolo-

Kurchan theory (Cugliandolo and Kurchan, 1993, 1994; Franz
et al., 1998, 1999).
Let us consider a system that has been carried to the

final temperature at time 0. We wait a time tW before the
measurements start. If the waiting time tW is large but finite,

FIG. 5. The results from the Janus Collaboration (Banos et al.,
2010a, 2010b) for the average function PðQÞ in three dimensions
for L ¼ 8, 12, 16, 24, 32 in the low-temperature regions.

FIG. 6. Four different examples of the PJðqÞ function in three
dimensions for L ¼ 32 corresponding to different samples in the
low-temperature region (Banos et al., 2010a, 2010b). The
average over 1000 different samples gives the smooth function
PðqÞ of Fig. 5.
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the system is slightly off equilibrium. We can look at the
magnetic response at a large time t after tW.
Both times are macroscopic, much larger than the character-

istic microscopic time: in the experiments, they could range
from a few seconds to a few hours.
We define the correlation:

Cðt; tWÞ ¼ Av½σiðtWÞσiðtW þ tÞ�: ð28Þ

For large times we have the modified fluctuation-dissipation
relations (Cugliandolo and Kurchan, 1993, 1994; Franz et al.,
1998, 1999):

dχðtW; tÞ
dt

¼ −βX½CðtW; tÞ�
dCðtW; tÞ

dt
; ð29Þ

where χðtW; tÞ is the response function at the time tW þ t after
that an infinitesimal magnetic field has been introduced at
time tW .
We can eliminate the time parametrically and consider

χðtW; CÞ. For very large waiting time tW we should have

dχðtW; CÞ
dC

¼ −βXðCÞ: ð30Þ

In other words, we find that when tW → ∞ the quantity
dχðtW; CÞ=dC has a well-defined limit that is equal to XðCÞ.
At the end of the day, one finds that this dynamically

introduced quantity XðCÞ must be equal to the equilibrium
xðqÞ, which has the meaning of a probability:

χðCÞ ¼ χðqÞjq¼C: ð31Þ

The interpretation of these results in terms of a modified
Onsager postulate has been done by Franz and Virasoro
(2000).
These results are very important as they open an experimental

window on the determination of the function qðxÞ and give a
theoretical framework to study the off-equilibrium behavior.
The theory has been confirmed in a beautiful experiment

(Hérisson and Ocio, 2002) that was done 20 years ago: the
main results for the response function versus correlation is
depicted in Fig. 7. It would be extremely interesting to repeat
the experiment with modern and accurate technologies, taking
advantage of the progress that has been done in the theory and
in numerical simulations.
Similar results have been obtained in very careful numeri-

cal simulations, where a direct comparison with the theory is
possible because the function PðqÞ is known from equilib-
rium simulations (see Fig. 5). The very large time span (12
orders of magnitude) helps to put under control (Baity-Jesi
et al., 2017b) systematic errors related to the infinite time
extrapolation.
Other impressive off-equilibrium phenomena in spin glass

are memory and rejuvenation (Jonason et al., 1998), unfortu-
nately, I cannot discuss due to a lack of space. Fortunately,
also these effects have been partially reproduced in accurate
simulations (Baity-Jesi et al., 2021, 2022) where one can
obtain much more accurate information using a very wide
range of waiting times.

D. Granular material and hard spheres

Classical granular matter (Wyart et al., 2005, 2012; Liu and
Nagel, 2010; Lerner and Wyart, 2014; Behringer and
Chakraborty, 2019) is a problem of high interest in exper-
imental and theoretical physics. If we neglect friction and the
objects are spherical it reduces to the hard-sphere model,
which has been extensively studied. It was well known that by
increasing the density (or the pressure) one enters a glassy
phase, where nothing was supposed to happen by subsequent
compression. This phenomenon corresponds to the appear-
ance of a one-step replica symmetry breaking.
It was a real surprise when it was discovered that the

analytic solution of the hard-sphere thermodynamics in the
mean-field approximation (Kurchan, Parisi, and Zamponi,
2012; Kurchan et al., 2013; Charbonneau et al., 2014a, 2014b,
2017; Parisi, Urbani, and Zamponi, 2020) predicts the
existence at high pressure of a transition (the Gardner
transition) to a marginal stable phase from inside the region
where one replica symmetry was broken at one step according
to Kirkpatrick and Thirumalai (1987a, 1987b) and
Kirkpatrick, Thirumalai, and Wolynes (1989, 2022).
Approaching this transition by increasing the pressure leads

to a divergent correlation time and to a divergent correlation
length. This possibility of a transition from one-step replica
symmetry breaking to a continuous replica symmetry break-
ing, with the consequent appearance of a marginal stable
phase was first discussed by Gross, Kanter, and Sompolinsky
(1985) in the framework of a spin glass type model, but the
transition was identified by Gardner (1985), who computed its
properties. When we cool a glass, it enters a nonequilibrium
region and the possibility of a transition to continuous replica
symmetry breaking in this off-equilibrium region was first
discussed by Barrat, Franz, and Parisi (1997) and Montanari
and Ricci-Tersenghi (2003).

FIG. 7. Experimental raw results (full symbols) and extrapola-
tions to the infinite time limit (open symbols) for the response
function [defined in Eq. (30)] vs the correlation [defined in
Eq. (29)]. The different curves span the waiting times studied:
tw ¼ 100 s, tw ¼ 200 s, tw ¼ 500 s, tw¼1000 s, tw ¼ 2000 s.
From Hérisson and Ocio, 2002.
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This unexpected prediction was confirmed in detailed
numerical analyses (Berthier et al., 2016; Hammond and
Corwin, 2020). This marginal phase predicted by the replica
theory of glasses has been directly observed experimentally in
a slowly densifying colloidal glass (Wang et al., 2022; Xiao,
Liu, and Durian, 2022) and in two-dimensional hard disks
(Seguin and Dauchot, 2016; Liao and Berthier, 2019).
A spectacular result was the computation of the mean-field

exponents for the jamming transition (Kurchan, Parisi, and
Zamponi, 2012; Kurchan et al., 2013; Charbonneau et al.,
2014a, 2014b, 2017; Parisi, Urbani, and Zamponi, 2020) that
happens in the phase where replica symmetry is spontaneously
broken. For example, in the mean-field approximation at
jamming the correction function gðrÞ of hard spheres of
diameter 1, at distance r slightly greater than 1, behaves as

gðrÞ ∝ 1

ðr − 1Þγ ; γ ¼ 0.41269…; ð32Þ

where the value of γ is obtained by solving nonlinear differ-
ential equations of eigenvalue type.
This prediction is correct not only in high dimensions (as it

should be), but has been verified also in three and quite likely
in two dimensions where some logarithmic corrections may be
present (Charbonneau et al., 2021).

E. Random laser

The theoretical interest in random lasers in connection with
replica symmetry breaking started in 2006 (Angelani et al.,
2006). Fortunately, experimental evidence of replica sym-
metry breaking has been provided (Ghofraniha et al., 2015;
Gomes, Raposo et al., 2016; Sarkar, Bhaktha, and Andreasen,
2020). In random lasers it is possible to observe directly the
occupancy of different harmonic modes and therefore one can
measure directly the PJðqÞ function.
Many different kinds of lasers have since been studied: not

only the standard solid disordered lasers but also random fiber
lasers (Gomes, Lima et al., 2016; Gomes et al., 2021), random
laser suspensions in very viscous liquids (Pincheira et al.,
2016), and heterogeneous random lasers in highly porous
fibers (Massaro et al., 2021).
Remarkably, similar phenomena are present also in non-

linear optical propagation through photorefractive disordered
waveguides Pierangeli et al. (2017).

IX. THE SPIN GLASS CORNUCOPIA

In 1988 P.W. Anderson published seven columns in
Physics Today discussing various issues on spin glasses. In
one of the columns he described spin glasses as an amazing
cornucopia (Anderson, 1989): To me, the key result here is the
beautiful revelation of the structure of the randomly “rugged
landscape” that underlies many complex optimization prob-
lems. (…) Physical spin glasses and the SK model are only a
jumping-off point for an amazing cornucopia of wide-ranging
applications of the same kind of thinking.
Anderson was right. Here I will try to sketch some of them.
We have seen many developments in physics. I will

mention here only a few examples.

• Structural glasses: replica symmetry breaking is relevant
for the study of the glass transition.

A very important step forward was done in the 1980s
using the mode-coupling theories (Götze, 2009). How-
ever, it was realized that the same kind of equations can be
obtained in the framework of generalized spin glass
models (Kirkpatrick and Thirumalai, 1987a, 1987b; Kirk-
patrick, Thirumalai, andWolynes, 1989, 2022; Bouchaud
and Biroli, 2004). This new approach was complemented
by the discovery of the new replica-based thermodynam-
ical potentials (Franz and Parisi, 1995). In this way, it
was possible to identify the mode-coupling transition as a
dynamic transition, where the correlation time goes to
infinity without any thermodynamics counterpart, and to
understand the behavior at low temperatures.

It was immediately clear that, in reality, a sharp
dynamical transition is an artifact of mean-field theory
and it is a crossover region. In this framework, one can
see the emergence of a large dynamical correlation
length (Franz and Parisi, 1998) that has an experimental
counterpart in the large nonlinear susceptibility (Albert
et al., 2016).

The discovery of nearly analytically soluble non-
disordered models, where replica computations could
be successfully done (Marinari, Parisi, and Ritort,
1994a, 1994b), was very important (at least to me)
for showing the relevance of the replica approach to
structural glasses. Finally, first principle computations
of the glass transition and the glassy properties in the
low-temperature region have been successfully done
(Coluzzi et al., 1999; Mézard and Parisi, 1999).

Saddle points in the free-energy landscape control the
tunneling among different minima of the potentials,
as can be seen also in mean-field models (Cavagna,
Giardina, and Parisi, 1999).

Beyond mean-field theory, the dynamic transition
corresponds to a crossover from dynamics dominated
by narrow flat directions to dynamics dominated by
barriers. It was also possible to simplify the theory in
such a way as to compute the critical exponents in high
dimensions (Franz et al., 2011).

• Very important progress has been made in off-
equilibrium theory; the approach is quite complex
because we lack a Boltzmann-Gibbs equilibrium prob-
ability distribution. As stressed in many papers [e.g., by
Cugliandolo, Kurchan, and Peliti (1997)], the situation is
different for systems that are only slightly out of
equilibrium. For example, there are systems that within
the experimental timescale cannot reach equilibrium
because of high free-energy barriers (that may be of
an energetic or entropic nature): this situation typically
applies to disordered systems, such as spin glasses and
structural glasses.

These systems approach equilibrium slowly, by jump-
ing from one metastable state to another, and they remain
out of equilibrium forever if continually perturbed by a
slowly changing external field.

In these systems, we can expect a separation, by many
orders of magnitude, between the microscopic timescale
of the system (for example, that represented by the
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vibrations of individual atoms) and the macroscopic time
needed to cross the barrier (for example, changes in the
structure of the system itself).

The systems can then be considered to be essentially
thermalized inside a metastable state, and so fluctuation-
dissipation ideas can still be applied: the slowly changing
overall state of the system is considered to be a small
perturbation. As we have seen the standard fluctuation
theorem cannot be applied to jumps from one equilib-
rium state to the other and we have to use the modified
fluctuation-dissipation relations.

The extremely long time needed to thermalize a glassy
system induced great interest in off-equilibrium phe-
nomena like aging and many new ideas have been
introduced. Maybe the most significant advance on
conceptual grounds was the introduction of the modified
fluctuation-dissipation relation on long timescales for
quasiadiabatic dynamics, whose application to spin
glasses I have discussed in the previous section (Cu-
gliandolo and Kurchan, 1993, 1994). A general theory of
off-equilibrium quasiadiabatic dynamics has also been
proposed (Franz and Parisi, 2013).

We have also seen many developments outside physics. I
will mention only a few examples.

• Optimization theory was strongly affected. The replica
approach enables scientists to compute analytically the
properties of the optimal solution for large random
instances. This was done for many problems: e.g., the
random traveling salesman problem or the assignment
problem. In this last problem, we have a set of N cities
and N wells. The cost of connecting a city to a well is a
random number in the interval ½0-1�. One could show that
the cost of the globally optimal solution in the large N
limit is π2=6 plus computable 1=N corrections (Mézard
and Parisi, 1987; Parisi and Ratiéville, 2002; Lucibello,
Parisi, and Sicuro, 2017).

• Similar arguments (Mézard and Parisi, 2001, 2003)
allow scientists to study constraint satisfaction problems
where the task is to find a configuration that satisfies all
the randomly chosen constraints: the most simple task to
visualize is to color a graph with M colors in such way
that two nodes with the same color are not in contact.
One question is how many colors are needed for a large
random graph depending on the statistical properties of
the graph (Mulet et al., 2002).

The most spectacular results are the results of the
random 3SAT problem, i.e., a satisfaction problem with
random clauses with three elements (Monasson and
Zecchina, 1996; Monasson et al., 1999; Mézard, Parisi,
and Zecchina, 2002). The 3SAT problem is the arche-
typical NP-complete problem.

• There have been many applications of these ideas in a
biological context. Let me mention only the folding of
heteropolymers of biological interest [proteins (Mezard
and Parisi, 1991; Onuchic and Wolynes, 2004; Shakh-
novich, 2006), ribonucleic acid (Pagnani, Parisi, and
Ricci-Tersenghi, 2000)] and the study of the many
equilibria of ecological environments where many com-
peting species coexist in a sometimes fragile equilibrium

(Biscari and Parisi, 1995; Biroli, Bunin, and Cammarota,
2018; Altieri et al., 2021).

• These ideas helped scientists to develop new algorithms.
The most famous one is the simulated annealing model
of Kirkpatrick (the “K” of SK), Gelatt, and Vecchi
(Kirkpatrick, Gelatt, and Vecchi, 1983). This algorithm
evolved into the simulated tempering (Marinari and
Parisi, 1992) and the parallel tempering (Hukushima
and Nemoto, 1996), which is the state-of-the-art algo-
rithm in many simulation problems.

Among algorithms in many different contexts (e.g.,
3SAT) let me mention the survey propagating algorithm
(Mézard, Parisi, and Zecchina, 2002) and the back-
tracking survey propagation (Marino, Parisi, and Ricci-
Tersenghi, 2016). The same ideas have been applied to
many others problems [e.g., compressed sensing (Krza-
kala et al., 2012), matrix factorization (Kabashima et al.,
2016), …].

• We have seen that the ideas of Hebb on memory did
materialize into a concrete model in the seminal model of
Hopfield (Hopfield, 1982). In two fundamental papers
Amit, Gutfreund, and Sompolinsky (1985a, 1985b)
applied spin glass theoretical tools to derive analytically
the properties of the Hopfield model.

These papers were extremely important because they
showed that the Hopfield model could be completely
understood analytically: they were the trampoline for the
analytic study of more complex and more realistic
variations of the Hopfield model.

Bringing neural network theory closer to biological
realism was a major drive in the subsequent work of the
late Daniel Amit, who wrote a very influential book:
Modeling Brain Function: The World of Attractor Neural
Networks (Amit, 1989). This was the starting point of
many other analytic studies also intending to produce
more realistic models relevant to actual brain behavior and
neurobiology (Mattia and Del Giudice, 2002).

This intellectual milieu was the origin of deep learning,
which now dominates artificial intelligence.

• At the same time, there were many developments in the
statistical mechanics of learning on different types of
architecture. Remarkable results were the upper bounds
of learning abilities: among them, I would like to recall
the capacity of the standard perceptron (Gardner, 1987),
of the binary perceptron (Krauth and Mézard, 1989), of
recurrent neural networks (Gardner and Derrida, 1988),
and of feed-forward neural networks (Franz, Hwang, and
Urbani, 2019).

It is interesting to note that in the more complex cases,
there is a region where replica symmetry is broken near
the transition point from perfect to partial learning. This
transition has many points in common with the jamming
of hard spheres and in some cases, it is characterized by
the same exponents (Franz, Hwang, and Urbani, 2019).

X. ON COMPLEXITY

As we have seen multiple equilibria are at the root of my
studies of complex systems. Complex systems theory has thus
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been applied to various systems; the most interesting feature
of complex systems is the existence of a large number of
different equilibrium states.
In a nutshell what does not change over time (or changes

irreversibly) is not complex, while a system that can take
many different forms or behaviors certainly is. If we look
around, look at ourselves, animals, ecosystems, Earth, and the
climate: we have complexity all around us. One of the most
interesting outputs of my work was to find some of the
physical tools needed to deal with complexity in the frame-
work of systems with an energy function where the
Boltzmann-Gibbs statistical mechanics does not apply.
In many cases frustration is crucial: when frustration is

present a given actor receives contradictory requests from the
other actors that cannot be simultaneously satisfied so that
many compromises are possible and consequently many
different equilibrium states (Parisi, 2023b). When we look
at real complex systems, such as a living cell, a brain, a
society, or a complete living being such as an animal, we
always see that in these systems there is constant competition
(frustration), but also cooperation between a very large
number of elements that (depending on the case) can be
proteins, neurons, or people. These systems are never in
equilibrium, but they oscillate and fluctuate around some
defined state of equilibrium (Kondor, 2021).
In this situation the system is flexible and malleable; it can

adapt to changes in the environment by transitioning between
various possible states without thereby losing identity: in other
words, we sleep, wake up, etc., but we do not change identity.
Switching among many different equilibrium states gives a
living being the possibility of tuning his behavior in such a
way as to adapt itself to the changing needs of a fluctuating
environment.
Systems, to remain complex, must have an internal balance,

and frustration should be high enough to avoid the formation
of a ferromagnetic order. However, as stressed by Kondor
(2021), it is possible that this delicate mechanism of co-
operation, competition, stimulation, and inhibition is violated:
in that case frustration decreases, the global behavior of it is
that the system changes, the correlations between the sub-
systems change, the overall system begins to be no longer
complex, and something abnormal happens. Examples are a
tumor in the cell, a disease in the nervous system, and a
dictatorship in society. At this point, the complexity of the
system degrades and the functioning of the system, as a whole,
is severely damaged or even eliminated.
So I would like to conclude with a quote from my friend

Imre Kondor, who asserts that the loss of complexity is
dangerous, and recall the warning attributed to a great 19th-
century historian, Jacob Burckhardt, who studied political and
social processes in depth: The denial of complexity is the
essence of tyranny (Kondor, 2021).
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Tersenghi, Juan-Jesus Ruiz-Lorenzo, and Francesco

Zamponi for reading the manuscript and for the many useful
suggestions.

APPENDIX: ON THE EARLY HISTORY OF THE
REPLICA METHOD

Nicola d’Oresme was a great scientist of the 14th century:
he discovered, among many other things, what we call now
Galilean invariance, i.e., the impossibility of detecting motion
with local measurements. In other words, he stated that there
are no absolute velocities, but only relative velocities, hence
nothing contradicts Earth’s motion around the Sun.
Around 1355 he discovered that

ffiffiffi
x

p ¼ x1=2: ðA1Þ

If we define the xn as the multiplication of n factors x, x1=2

does not make sense. However, if we want to define xn for
noninteger n, we can assume that the equation

ðxnÞm ¼ xðnmÞ ðA2Þ

is valid also for noninteger n. In this way, we can compute xn

for any rational n. Indeed if we put n ¼ 1=2 and m ¼ 2, we
get

ðx1=2Þ2 ¼ xð1=2·2Þ ¼ x: ðA3Þ

This is the definition of the square root.
In modern times the first use of replicas was done by Robert

Brout in 1959 (Brout, 1959). He aimed to treat the quenched
disorder and to compute the average (over the disorder) of the
free energy, exactly the task we face in spin glasses. He wrote
the equivalent of Eq. (2).
He used the replica method for simplifying the diagram-

matics without discussing too much about the meaning of
taking n ¼ 0. Indeed, he worked in a perturbative setting. At
each order of perturbation theory, the results are polynomials
in n: he showed that the term proportional to n0, i.e., the limit
at n ¼ 0 of the polynomial, gives the needed result, i.e., the
average over the disorder. The results could also be obtained
by explicit computations. For him, replicas were only a tool
for organizing a complex combinatorial problem.
In 1972 de Gennes used replicas for self-avoiding polymers

(de Gennes, 1972) extending the OðnÞ-symmetric gϕ4 to
n ¼ 0. In this way, he was able to compute the critical
exponents for polymers using the standard renormalization
group. Also de Gennes used replicas in perturbation theory:
the whole computation could have been done using the
standard perturbative expansions for polymers. However, in
the replica approach, it was possible to use immediately all the
results of field theory. In this case, the replica group is OðnÞ;
we have seen in the general case the replica group is SðnÞ,
which is a subgroup of OðnÞ.
The idea of developing a OðnÞ symmetric gϕ4 field theory

in terms of closed trajectories (polymers) is also contained in a
1969 paper by Symanzik in a completely different context
(Symanzik, 1969; Parisi, 1988).
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The same theory (gϕ4 at n ¼ 0) can be also formulated as a
Laplacian plus a random (imaginary) potential model; for
negative g this theory corresponds to Anderson’s theory for
random potentials. The same approach can be applied to
study localization, where the replica group is the noncompact
group Oðn; nÞ (Parisi, 1981). As is well known from Parisi
and Sourlas (1979), we can reformulate the theory intro-
ducing fermions and this leads to the use of the Oð2=2Þ
fermionic group (Efetov, 1983) instead of the undefined
Oð0Þ group.
de Gennes’s method was generalized in the 1970s to the

study of many other problems [e.g., polymers (Lubensky and
Isaacson, 1978)]. This activity was done in a perturbative
framework: all the computations could be done without
replicas, but in a more cumbersome, error-prone way.
It is remarkable that in those years the idea of analytic

continuation from integers appeared inmany different contexts:
• In 1959 Tullio Regge (Regge, 1959) introduced complex
angular momentum. Here, Carlson’s theorem was crucial
to prove the uniqueness of the analytic continuation.

• In 1972 Fortuin and Kasteleyn (1972) introduced the
random cluster model for the q state Potts model: in the
limit q ¼ 1 one obtains lattice percolation.

• In the same year (1972) Bollini and Giambiagi (1972)
and ’t Hooft and Veltman (1972) introduced dimensional
regularization (noninteger dimensional spaces).

The idea of spaces with noninteger dimension was
independently at the basis of the very successful ϵ
expansion for the critical exponents in the 4 − ϵ ex-
pansion (Wilson and Fisher, 1972) in the framework of
Wilson’s renormalization group. Ken Wilson obtained
the Nobel Prize a few years later.

A rigorous definition of rotationally invariant Euclid-
ean space is lacking; some suggestions have been made
by Parisi (2003).

• I remember that in the spring of 1978 I was playing with
the idea of noninteger order of perturbation theory: I still
have somewhere a handwritten unpublished manuscript
on the subject.

It is remarkable how many Nobel laureates contributed to
the replica method for statistical mechanics; the method was
introduced by Roger Brout, who died before receiving the
Nobel Prize together with Englert and Higgs; four Nobel
laureates (de Gennes, Anderson, Thouless, and Kosterlitz)
gave fundamental contributions to the development of the
method.
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Charbonneau, P., M. Mézard, E. Marinari, F. Ricci-Tersenghi, G.
Sicuro, and F. Zamponi, 2023, Eds., Spin Glass Theory and Far
Beyond—Replica Symmetry Breaking after 40 Years (World
Scientific, Singapore).

Charbonneau, P., and F. Zamponi, 2022, https://caphes.ens.fr/history-
of-replica-symmetry-breaking-in-physics/.
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Mézard, M., G. Parisi, and M. A. Virasoro, 1985, J. Phys. Lett. 46,
217.
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Parisi, G., and M. Ratiéville, 2002, Eur. Phys. J. B 29, 457.
Parisi, G., F. Ricci-Tersenghi, and D. Yllanes, 2015, J. Stat. Mech.
P05002.

Parisi, G., and N. Sourlas, 1979, Phys. Rev. Lett. 43, 744.
Parisi, G., P. Urbani, and F. Zamponi, 2020, Theory of Simple
Glasses: Exact Solutions in Infinite Dimensions (Cambridge Uni-
versity Press, Cambridge, England).

Parisi, G., and F. Zamponi, 2010, Rev. Mod. Phys. 82, 789.
Pierangeli, D., A. Tavani, F. Di Mei, A. J. Agranat, C. Conti, and E.
DelRe, 2017, Nat. Commun. 8, 1501.

Pincheira, P. I. R., A. F. Silva, S. I. Fewo, S. J. M. Carreño, A. L.
Moura, E. P. Raposo, A. S. L. Gomes, and C. B. de Araujo, 2016,
Opt. Lett. 41, 3459.

Regge, T., 1959, Nuovo Cimento 14, 951.
Ruelle, D., 1987, Commun. Math. Phys. 108, 225.
Sarkar, A., Shivakiran Bhaktha, and B. N. Andreasen, 2020, Sci.
Rep. 10, 2628.

Seguin, A., and Olivier Dauchot, 2016, Phys. Rev. Lett. 117, 228001.
Shakhnovich, E., 2006, Chem. Rev. 106, 1559.
Sherrington, D., and S. Kirkpatrick, 1975, Phys. Rev. Lett. 35,
1792.

Symanzik, K., 1969, in Local Quantum Theory, edited by R. Jost
(Academic Press, New York).

Talagrand, M., 2003, C.R. Seances Acad. Sci. Ser. 1 337, 111, https://
www.infona.pl/resource/bwmeta1.element.elsevier-53d9612e-
ab91-36a7-a453-4b4eb4bdfda7.

Talagrand, M., 2006, Ann. Math. 163, 221.
Temesvári, T., I. Kondor, and C. De Dominicis, 2000, Eur. Phys. J. B
18, 493.

Thouless, D. J., J. R. L. de Almeida, and J. M. Kosterlitz, 1980,
J. Phys. C 13, 3271.

Thouless, J., P. W. Anderson, and R. G. Palmer, 1977, Philos. Mag.
35, 137.

Toulouse, G., 1977, Commun. Phys. 2, 115.
Wang, Y., J. Shang, Y. Jin, and J. Zhang, 2022, Proc. Natl. Acad. Sci.
U.S.A. 119, e2204879119.

Wilson, K. G., and M. E. Fisher, 1972, Phys. Rev. Lett. 28, 240.
Wyart, M., 2012, Phys. Rev. Lett. 109, 125502.
Wyart, M., L. E. Silbert, S. R. Nagel, and T. A. Witten, 2005, Phys.
Rev. E 72, 051306.

Xiao, H., A. J. Liu, and D. J. Durian, 2022, Phys. Rev. Lett. 128,
248001.

Giorgio Parisi: Nobel Lecture: Multiple equilibria

Rev. Mod. Phys., Vol. 95, No. 3, July–September 2023 030501-17

https://doi.org/10.1103/PhysRevE.95.012302
https://doi.org/10.1103/PhysRevE.95.012302
https://doi.org/10.1073/pnas.1720832115
https://doi.org/10.1073/pnas.1720832115
https://arXiv.org/abs/1312.2790
https://doi.org/10.1209/0295-5075/19/6/002
https://doi.org/10.1023/A:1018607809852
https://doi.org/10.1088/0305-4470/27/23/010
https://doi.org/10.1088/0305-4470/27/23/011
https://doi.org/10.1038/ncomms12996
https://doi.org/10.1038/ncomms12996
https://doi.org/10.1021/acsphotonics.0c01803
https://doi.org/10.1021/acsphotonics.0c01803
https://doi.org/10.1103/PhysRevE.66.051917
https://doi.org/10.1038/238413a0
https://hal.science/file/index/docid/246372/filename/ajp-jp1v1p809.pdf
https://hal.science/file/index/docid/246372/filename/ajp-jp1v1p809.pdf
https://hal.science/file/index/docid/246372/filename/ajp-jp1v1p809.pdf
https://hal.science/file/index/docid/246372/filename/ajp-jp1v1p809.pdf
https://doi.org/10.1051/jphys:019870048090145100
https://doi.org/10.1063/1.479193
https://doi.org/10.1007/PL00011099
https://doi.org/10.1023/A:1022221005097
https://doi.org/10.1103/PhysRevLett.52.1156
https://hal.science/jpa-00209816/file/ajp-jphys_1984_45_5_843_0.pdf
https://hal.science/jpa-00209816/file/ajp-jphys_1984_45_5_843_0.pdf
https://hal.science/jpa-00209816/file/ajp-jphys_1984_45_5_843_0.pdf
https://hal.science/jpa-00209816/file/ajp-jphys_1984_45_5_843_0.pdf
https://doi.org/10.1051/jphyslet:01985004606021700
https://doi.org/10.1051/jphyslet:01985004606021700
https://doi.org/10.1126/science.1073287
https://doi.org/10.1103/PhysRevLett.76.3881
https://doi.org/10.1038/22055
https://doi.org/10.1140/epjb/e2003-00174-7
https://doi.org/10.1103/PhysRevLett.89.268701
https://doi.org/10.1103/PhysRevLett.89.268701
https://doi.org/10.1016/j.sbi.2004.01.009
https://doi.org/10.1016/j.sbi.2004.01.009
https://doi.org/10.1103/PhysRevLett.84.2026
https://doi.org/10.1103/PhysRevLett.84.2026
https://doi.org/10.1007/s10955-012-0586-7
https://doi.org/10.4007/annals.2013.177.1.8
https://doi.org/10.1016/0375-9601(79)90708-4
https://doi.org/10.1103/PhysRevLett.43.1754
https://doi.org/10.1088/0305-4470/13/4/009
https://doi.org/10.1088/0305-4470/14/3/020
https://doi.org/10.1103/PhysRevLett.50.1946
https://doi.org/10.2178/bsl/1052669288
https://doi.org/10.1007/s10955-017-1724-z
https://doi.org/10.1088/0305-4470/30/20/015
https://doi.org/10.1140/epjb/e2002-00326-3
https://doi.org/10.1088/1742-5468/2015/05/P05002
https://doi.org/10.1088/1742-5468/2015/05/P05002
https://doi.org/10.1103/PhysRevLett.43.744
https://doi.org/10.1103/RevModPhys.82.789
https://doi.org/10.1038/s41467-017-01612-2
https://doi.org/10.1364/OL.41.003459
https://doi.org/10.1007/BF02728177
https://doi.org/10.1007/BF01210613
https://doi.org/10.1038/s41598-020-59575-2
https://doi.org/10.1038/s41598-020-59575-2
https://doi.org/10.1103/PhysRevLett.117.228001
https://doi.org/10.1021/cr040425u
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://www.infona.pl/resource/bwmeta1.element.elsevier-53d9612e-ab91-36a7-a453-4b4eb4bdfda7
https://www.infona.pl/resource/bwmeta1.element.elsevier-53d9612e-ab91-36a7-a453-4b4eb4bdfda7
https://www.infona.pl/resource/bwmeta1.element.elsevier-53d9612e-ab91-36a7-a453-4b4eb4bdfda7
https://www.infona.pl/resource/bwmeta1.element.elsevier-53d9612e-ab91-36a7-a453-4b4eb4bdfda7
https://www.infona.pl/resource/bwmeta1.element.elsevier-53d9612e-ab91-36a7-a453-4b4eb4bdfda7
https://www.infona.pl/resource/bwmeta1.element.elsevier-53d9612e-ab91-36a7-a453-4b4eb4bdfda7
https://www.infona.pl/resource/bwmeta1.element.elsevier-53d9612e-ab91-36a7-a453-4b4eb4bdfda7
https://doi.org/10.4007/annals.2006.163.221
https://doi.org/10.1007/s100510070038
https://doi.org/10.1007/s100510070038
https://doi.org/10.1088/0022-3719/13/17/017
https://doi.org/10.1080/14786437708235992
https://doi.org/10.1080/14786437708235992
https://doi.org/10.1073/pnas.2204879119
https://doi.org/10.1073/pnas.2204879119
https://doi.org/10.1103/PhysRevLett.28.240
https://doi.org/10.1103/PhysRevLett.109.125502
https://doi.org/10.1103/PhysRevE.72.051306
https://doi.org/10.1103/PhysRevE.72.051306
https://doi.org/10.1103/PhysRevLett.128.248001
https://doi.org/10.1103/PhysRevLett.128.248001

