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The Helfrich-Hurault (HH) elastic instability is a well-known mechanism behind patterns that form as
a result of strain upon liquid crystal systems with periodic ground states. In the HH model, layered
structures undulate and buckle in response to local, geometric incompatibilities in order to maintain
the preferred layer spacing. Classic HH systems include cholesteric liquid crystals under electro-
magnetic field distortions and smectic liquid crystals under mechanical strains, where both materials
are confined between rigid substrates. However, richer phenomena are observed when undulation
instabilities occur in the presence of deformable interfaces and variable boundary conditions.
Understanding how the HH instability is affected by deformable surfaces is imperative for applying
the instability to a broader range of materials. In this review, the HH mechanism is reexamined and
special focus is given to how the boundary conditions influence the response of lamellar systems to
geometrical frustration. Lamellar liquid crystals confined within a spherical shell geometry are used
as the model system. Made possible by the relatively recent advances in microfluidics within the past
15 years, liquid crystal shells are composed entirely of fluid interfaces and have boundary conditions
that can be dynamically controlled at will. Past and recent work that exemplifies how topological
constraints, molecular anchoring conditions, and boundary curvature can trigger the HH mechanism
in liquid crystals with periodic ground states is examined. The review ends by identifying similar
phenomena across a wide variety of materials, both biological and synthetic. The fact that the HH
mechanism is a generic and often overlooked response of periodic materials to geometrical frustration
is highlighted.
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I. INTRODUCTION

Subjected to shear, solids strain but fluids flow: what else
can happen? Between solid and liquid lie the liquid crystalline
phases of matter: like a crystal, they transmit torque and
shear stresses but only in some directions and geometries. For
instance, the long-range orientational order of a nematic liquid
crystal, a phase where the rodlike constituents tend to point in
the same direction (the director), implies that if a rod is rotated
away from its preferred direction in one region, its surround-
ings will rotate with it. Nematics do not have translational
order, so they do not support shear stresses. However,
smectic and cholesteric liquid crystals do. Smectics break
translational symmetry by having the rodlike molecules sort
into layers, resulting in a density modulation in one direction.
Cholesterics form “pseudolayers,” maintaining a constant
density throughout the material, but break translational
symmetry due to a helical twisting of the director. The
thickness of a cholesteric pseudolayer is defined by a rotation
of the molecules by π, as represented in Fig. 1(a). Both
smectics and cholesterics have one-dimensional periodicity in
three-dimensional samples, like a messy stack of cards. When
extensional shear is applied to a structure with a preferred

layer spacing, the layers can undulate in order to maintain
their preferred distance. This sort of response was studied by
Helfrich and Hurault in the early 1970s within the context of
electromagnetic instabilities, depicted in Figs. 1(b) and 1(c)
for a cholesteric (Helfrich, 1971; Hurault, 1973). Today we
refer to all of these undulating responses in layered systems as
the Helfrich-Hurault (HH) mechanism.
The undulatory deformations of the HH instability are similar

in spirit to the martensitic patterns seen in crystals, where
changes in a crystal structure require accompanying volumetric
changes (Ball, James, and Smith, 1992). Indeed, smectic liquid
crystals have even been described as the “weirdest martensite”
(Liarte et al., 2016). Within a smectic, layers can break and
rejoin, creating topological defects (localized regions of dis-
order) such as dislocations and disclinations. In general,
topological defects result from system frustration that can arise
from either local or global geometrical effects.
For example, Frank-Kasper phases, which catalog the

numerous possible arrangements of atoms in complex alloys,
are a renowned, historical illustration of structure from
geometrical frustration (Frank and Kasper, 1958; Kleman
and Sadoc, 1979; Sadoc and Mosseri, 1999; Mosseri, 2008).
The most locally compact packing of four rigid, identical
spheres is tetrahedral, in which each corner of the tetrahedron
represents the center of each sphere. However, imperfections,
i.e., defects, occur when the tetrahedron is the unit structure
for tiling space. Geometrical frustration in Frank-Kasper
phases arises because tetrahedrons cannot fill space com-
pletely without distortion. Their symmetry conflicts with a
translation symmetric tessellation since the dihedral angle
of a tetrahedron is not commensurable with 2π (Kleman
and Sadoc, 1979; Kleman, 1989; Sadoc and Mosseri, 1999).
Defects are necessarily present in the system because the
packing is “limited” by the shape of the packing unit.
Although tetrahedrons are unable to fill space, the tetrahedral
packing actually has higher local densities and greater vibra-
tional entropy than face-centered-cubic or hexagonal close
packings do. This enables a wide array of possible configu-
rations that gives the packings of Frank-Kasper phases free-
dom to deform in order to accommodate neighboring atoms

(a)

(b) (c)

FIG. 1. (a) Schematic of the classic Helfrich-Hurault instability
in a cholesteric liquid crystal. The mesophase is confined
between solid substrates with planar anchoring and can be
described as a lamellar system of period P0=2. Undulation in
the periodic layers of the cholesteric along (b) a single or (c) two
perpendicular directions develops under an applied magnetic
field (H) of sufficient magnitude.
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(Kleman and Sadoc, 1979; Kleman, 1989). Frank-Kasper
phases demonstrate not only that defects are often necessary to
stabilize systems but that phases can also be constructed from
geometrical incompatibilities. The regular network of discli-
nations in Frank-Kasper phases requires only the tiling of
polytetrahedra to be constructed.
It is not a coincidence that Sir F. Charles Frank is the same

“Frank” of both Frank-Kasper phases and the Frank free
energy density of a liquid crystal: underlying both formula-
tions is the importance of geometry in the description of
material properties. Classic examples of geometrical frus-
tration in liquid crystals are blue phases: states that emerge
when it is favorable to introduce defects to minimize the chiral
elastic energy of the bulk (Saupe, 1969; Marcus, 1981). As is
the case for the network of defects in Frank-Kasper phases, the
defect networks in blue phases emerge from geometrical
frustration (Mosseri, 2008). Similar to how the imperfect
packing of pentagons on a plane can be made perfect when the
plane is curved into a spherical topology, the disclination line
networks of blue phases are removed from blue phases in the
curved space of S3 (the three-sphere). The defects in blue
phases can be thought of as the consequence of “folding out”
the three-sphere onto Euclidean space (Sethna, Wright, and
Mermin, 1983). The conflict between local and global order,
as demonstrated by Frank-Kasper and blue phases, is a
signature of geometrical frustration. For a thorough review
of blue phases, see Wright and Mermin (1989).
In these and countless other systems, local geometrical

frustration is often accompanied by global geometrical, i.e.,
topological, frustration, depending on the global structure of
the phase. Using the Gauss-Bonnet theorem, it is possible to
locally measure the Gaussian curvature of a patch of surface
simply by studying the curvature of closed loops. If you can
measure the curvature everywhere, it is then possible to
deduce the global topology of the surface, but only if the
boundary conditions are precisely defined. In some cases, the
boundary can be interpreted as yet another defect at infinity.
Setting aside considerations of the boundaries for now, the
important issue here is that local geometrical frustration
causes problems in your neighborhood: even if Earth were
a hemisphere that ended with a precipice at the equator, we
would still not be able to draw perfect polygons on it. One of
the following situations would have to occur: the angles would
not be quite right, the edge lengths would be unequal, or they
would not lie directly against Earth’s surface. This is geo-
metrical frustration: a fundamental incompatibility between
one set of shapes (the polygons) and the others (Earth’s
surface). Topological frustration needs to be solved some-
where; geometrical frustration has to be solved everywhere.
Liquid crystals are the ideal systems to differentiate local

from global geometrical frustration. Most liquid crystal
systems have open boundaries and the notion of global
topology is moot: defects can end on the interfaces between
phases or at the sample wall, and they can transform from bulk
defects to boundary defects. The frustration can come about
because the geometric parameters do not match, the shapes do
not match (square peg, round hole), or, as in the blue phase,
there is a local geometry (double twist) that cannot be
extended into the entire volume. The softness of liquid

crystals, the ability to control and monitor their boundary
conditions, and the relatively straightforward method of real-
space detection of defects allow us to explore both local and
global geometrical frustration.
As pointed out byAnderson, there aremany possible ordered

phases associated with the symmetry breaking of an isotropic
fluid phase, inducing a particular rigidity in the material as
characterized by an elastic energy that is written in terms of
gradients of an order parameter. The smectic and cholesteric
considered here are particularly complex ordered phases
(Anderson, 2005), as they contain both a nematic order and
a rigidity associatedwith the bending and compression of layers
or pseudolayers (but are otherwise free to slide among them-
selves). The corresponding elastic energies are discussed in
detail in Sec. II. We also consider these lamellar liquid crystals
in complex confinements,where geometrical frustration is often
relieved through the HH mechanism. This mechanism is
specific to layered systems, as it involves a trade-off between
the bending and compression of the layers under some applied
perturbation. This phenomenon is not possible in a conventional
crystal, which would always involve the breaking of bonds. To
apply the HH instability beyond the classical systems, we also
give additional scrutiny to boundary conditions.
In the first studies by Helfrich and Hurault in the 1970s, the

HH instability was examined in lamellar liquid crystals
confined between two solid substrates, with undulation in
the layers of liquid crystal induced by electromagnetic fields
(Helfrich, 1971; Hurault, 1973). In the 1990s, the develop-
ment of polymer dispersed liquid crystals (Doane, 1990,
1991), with applications in displays and privacy windows,
accelerated fundamental investigations of static configurations
in more complex geometries, such as within droplets and
pores (Crawford and Zumer, 1996; O. D. Lavrentovich, 1998).
With the advance of lithographic techniques in the late 1990s
and early 2000s (Xia and Whitesides, 1998), the confining
surfaces of liquid crystals could be further shaped into more
elaborate, three-dimensional architectures, thereby advancing
alignment patterning (Gupta and Abbott, 1997; Lee and Clark,
2001) and responsive liquid crystal technologies (Bukusoglu
et al., 2016). Emerging sensing applications also require
exposure of the liquid crystal to other fluid phases, resulting
in systems with deformable interfaces, further increasing the
complexity of boundary conditions (Carlton et al., 2013). The
investigation of liquid crystals in more intricate geometries
in recent decades has led to a resurgence of interest in the HH
instability as more researchers have applied these confine-
ments to lamellar liquid crystal systems.
Many contemporary liquid crystal studies explore the

ordering of living matter as well. These include systems
beyond those of the classic HH instability that undulate to
relieve geometrical frustration, including in the morphogen-
esis of biological liquid crystals. Living liquid crystals that
exhibit undulating layers are pervasive in nature, seen within a
wide array of biological materials ranging from plant cell
walls to arthropod cuticles (Bouligand, 1972b; Roland, Reis,
and Vian, 1992; Giraud-Guille, 1998; Sharma et al., 2009;
Rey, 2010; Mitov, 2017; Beliaev et al., 2021). These systems
not only are dynamic but also typically have deformable
boundaries at fluid interfaces. Elucidating the coupling
between deformable boundaries and bulk deformations is
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then necessary to apply the HH mechanism to a broader class
of materials.
To isolate the effects of a fluid boundary on liquid crystals

within the laboratory, a synthetic system must have both
deformable interfaces and tunable thicknesses to control the
balance between bulk and surface forces. An experimental
system ideal for this purpose is a liquid crystal shell, which
was made possible in 2005 by the seminal work of Utada et al.
(2005) on microfluidics. As first demonstrated by Fernandez-
Nieves et al. (2007), who used a liquid crystal as the middle
phase in the production of water-in-liquid-crystal-in-water
double emulsions, the liquid crystal can be shaped into a
spherical shell, making the system freestanding and stable.
With simple adjustments of flow rates and/or the addition of
solutes in the surrounding aqueous phases, both the thickness
of the liquid crystal shell and the molecular anchoring at the
shell interfaces can be dynamically varied at will. Liquid
crystal shells are then model systems for probing the role of
curved, deformable boundaries in both triggering the HH
instability and stabilizing the resultant defect structures.
The purpose of this review is twofold. First, the HH

instability is detailed as a mechanism of pattern formation
that results from frustration in lamellar liquid crystals, taking
special care to distinguish local versus global (topological)
geometrical frustration. Second, not only is the HH instability
historically reviewed, but recent work on cholesteric and
smectic liquid crystal shells is presented to illustrate the
mechanisms through which deformable boundaries can in-
fluence and trigger layer undulations.
In Sec. II, we review the elasticity of liquid crystals. In

Sec. III, we examine the history of the HH instability and
detail the classic HH systems, where lamellar liquid crystals
are confined between solid substrates. In Sec. IV, we consider
liquid crystals with deformable interfaces and describe our
model system: the liquid crystal shell. We then characterize
the HH instability in cholesteric shells in Sec. V, where
undulations can arise due to global geometrical (i.e., topo-
logical) frustration and surface anchoring. We then progress to
smectic shells in Sec. VI, where the HH instability is triggered
by local geometrical frustration due to boundary curvature.
We end by identifying the HH instability across a wide range
of elastic materials, both synthetic and biological.

II. THE DRAMATIS PERSONAE

Before plunging in, we pause to outline liquid crystal
elasticity. de Gennes and Prost (1993), Chaikin and Lubensky
(1995), and Kleman and O. D. Lavrentovich (2004) thor-
oughly covered this, but here we offer a highly abridged
review. The simplest of the liquid crystalline phases is the
nematic one. In this phase, a preferred, “long” axis of the
molecules aligns along a local direction, represented by a unit
vector n. At first glance this would appear to be equivalent to a
magnet where n would take the place of the local spin m, but
the nematic phase has an additional symmetry: n and −n
represent the same structure (the nematic is a line field, not a
vector field). According to Frank (1958), distortions away
from the uniform nematic phase are measured through four
geometric quantities that are invariant under the nematic

symmetry: S⃗¼nð∇ ·nÞ, T¼n ·ð∇×nÞ, B⃗¼ðn ·∇Þn, and

G¼∇ ·ðB⃗− S⃗Þ: splay, twist, bend, and saddle splay, respec-
tively. The Frank free energy density is a rotationally invariant

expression in terms of these two vectors (S⃗ and B⃗), the
pseudoscalar (T), and the scalar (G):

f ¼ 1
2
K1S⃗

2 þ 1
2
K2ðT þ q0Þ2 þ 1

2
K3B⃗

2 þ K24G: ð1Þ

We note that S⃗ · B⃗ ¼ 0, so there are no cross terms. This free
energy exhausts all the rotationally invariant groupings of
terms up to quadratic order in single gradients of n. The four
elastic constants inherit their names from the expressions
they multiply; for instance, K2 is the “twist” elastic constant.
Stability implies that K1, K2, and K3 are positive. Finally,
because T is a pseudoscalar, q0 must be as well, and the
existence of a pseudoscalar quantity would imply that the
material is chiral. To rationalize the names of these distortions,
one can evaluate the splay for the two-dimensional texture

n ¼ ρ̂ (S⃗ ¼ ρ̂=ρ) and evaluate the bend for the two-
dimensional texture n ¼ θ̂ (B⃗ ¼ −ρ̂=ρ), where ρ and θ are
the standard polar coordinates. Both twist and saddle
splay measure three-dimensional textures: if n ¼ ½cosðqzÞ;
sinðqzÞ; 0�, then T ¼ −q, while if n ¼ ½x;−y; 1�=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 þ y2

p
, then G ¼ 2=ð1þ x2 þ y2Þ2. The result for

G can be understood by viewing n as the unit normal to the
saddle surfaces of the surface family z ¼ ð1=2Þðy2 − x2Þ, and
then G is the negative of the Gaussian curvature at each point
(Kamien, 2002).
In the absence of boundaries, the saddle splay does not

contribute to the energy (via Stokes’s theorem). When q0 ¼ 0,
a ground state is n ¼ ½0; 0; 1�, while if q0 ≠ 0, then it is
straightforward to verify that nc ¼ ½cosðq0zÞ; sinðq0zÞ; 0� is a
ground state. We call this helically twisting ground state the
cholesteric or the chiral nematic, and in this case it has a pitch
axis along ẑ. By rotational invariance, these ground states can
be rotated in space, leading to an entire manifold of degenerate
ground states. The cholesteric ground state can then be viewed
in terms of pseudolayers of constant orientation. Moreover,
since a global rotation of n around the z axis by an angle ϕ
cannot change the energy, we know that at long length scales
this global symmetry is promoted to a Goldstone mode so that
small ground-state fluctuations can be viewed as deformations
of the pseudolayers. The HH effect distorts these pseudolayers
when the preferred spacing π=q0 differs from a spacing
imposed by fields or boundary conditions.
In the following, we also discuss smectic phases. In the

smectic phase, translational symmetry is broken and the
molecules arrange themselves into actual layers, creating a
one-dimensional density wave with the ground state consist-
ing of a set of uniformly spaced, flat layers. These layers
generate a field of unit layer normals N. Since the normals are
defined only up to sign, the symmetry of N is precisely that of
the previously discussed nematic director. We can thus create
an energy in complete analogy with the Frank free energy,
where we substitute n with N in the just-completed
discussion. However, note that twist necessarily vanishes if
N is normal to a surface from the Frobenius integrability
condition (Capasso, 2018). Yet there must also be an energy
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penalty for deformations away from the preferred spacing. To
measure this, we introduce a phonon field uðx; y; zÞ that
measures the deviation from uniformly spaced layers.1

Because the sign of u has the same u → −u ambiguity as
the vector n, we measure deviations of u here along N and
define the strain as e ¼ N · ∇u, which is invariant under
ðN; uÞ → −ðN; uÞ. The free energy density is

f ¼ 1
2
Be2 þ 1

2
K̄1S⃗

2
sm þ 1

2
K̄3B⃗

2
sm þ K̄24Gsm; ð2Þ

where the subscript sm refers to the quantities with n replaced
by N and where B is known as the bulk modulus (and
should not be confused with the bend vector B⃗). Since we
can parametrize the smectic layers as level sets of
ϕ ¼ z − uðx; y; zÞ, N ¼ ∇ϕ=j∇ϕj can be calculated from u.
For instance, N ≈ ð−∂xu;−∂yu; 1Þ to lowest order in gradients
of u. Because the phase is composed of nematogenic
molecules, we must also include the Frank free energy for
the nematic director and note that there is a coupling between
N and n. In the smectic-A phase, n prefers to align with N,
while in the smectic-C phase the layer normal and director
prefer a fixed, nonzero angle between them. This leads to yet
another directorlike field, which is the component of n
perpendicular to N: the c director.
An examination of Eqs. (1) and (2) reveals that the

deformations of the smectic-A layers and the cholesteric
pseudolayers are controlled by the same free energy density
(Kleman and Parodi, 1975; Oswald and Pieranski, 2005),

fe ¼
B
2

�
1 −

1

j∇ϕj
�

2

þ K
2
ð∇ · NÞ2; ð3Þ

where the first term accounts for relative dilation of the layers
and the second term is the curvature energy of the layers. The
values of the effective elastic moduli B and K will depend on
the particular system, as discussed in more detail in Secs. III.A
and III.B. In the long distance limit, several layers away from
the boundary, where the bulk layers are nearly flat and planar,
this free energy reduces to

fe ¼
B
2

�
∂u
∂z

�
2

þ K
2

�
∂
2u
∂x2

þ ∂
2u
∂y2

�
2

; ð4Þ

where the average layer normal (or the pitch axis) is along ẑ.
Note that in the smectic-A case the K̄3 and K̄24 contributions
are of a higher degree in a gradient expansion and are, in this
simplest case, neglected. In the case of the cholesteric, we
would replace u with the deviation of the angle of the director
field in the plane perpendicular to the pitch axis. This basic
free energy is the starting point for this review. Note that this
elastic free energy density applies to any system with one-
dimensional, periodic ground states. Without loss of general-
ity, the periodicity is along the ẑ direction, and we can write
the density (or pseudodensity) as

ρðxÞ ¼ ρ0 þ ρ1 cosfq½z − uðxÞ�g; ð5Þ

where q is the ground-state wave vector magnitude. The first
term in Eq. (4) measures the energy penalty for changing
the periodicity, while the second term measures the energy
cost of bending the “layers.” We now dive into the history of
the HH instability.

III. THE CLASSIC HELFRICH-HURAULT INSTABILITY

As evident from the success of liquid crystals in the display
industry, liquid crystal technology relies upon the material’s
interaction with external fields. Recall that the simplest liquid
crystalline phase, the nematic, is characterized by long-range
order of the orientation of anisotropic molecules with one
long axis and two equivalent “short” axes.2 These axes are
geometric, dielectric, and optical, leading to birefringent
optics. The dielectric anisotropy of liquid crystals enables their
manipulation with electromagnetic fields, and their birefrin-
gence renders optically detectable responses. Systematic inves-
tigations of liquid crystals under these external fields were of
special interest in the 1960s, the decade when liquid crystal
displays were first conceptually conceived, and regular textures
were soon experimentally observed and identified. Some
patterns were related to flows or other dynamical aspects, such
as electrohydrodynamic convection in nematics (Helfrich,
1969), but others, found especially in layered or quasilayered
systems, remained static and exhibited well-defined wave-
lengths that resulted from direct competition between liquid
crystal elasticity and its anisotropic, electromagnetic properties.
The possibility of such an instability with well-defined

wavelength was predicted by Helfrich in the case of choles-
terics, where the molecules have a tendency to twist in a
helical fashion, with the pitch defined as the distance required
for a 2π rotation of the molecule along the pitch axis (Fig. 1)
(Helfrich, 1970). Note again that cholesterics have a periodic
ground state, with no density modulation but rather a
modulation in orientation, and consequently one also in the
dielectric tensor. Because of this, the periodicity in the system
is often referred to as pseudolayers. Experimental data for the
instability in cholesterics emerged almost simultaneously in
the early 1970s (Helfrich, 1970) and were followed by two
successive theoretical papers, first by Helfrich in 1971 and
then a refinement by Hurault in 1973 (Helfrich, 1971; Hurault,
1973). Initially associated with the cholesteric phase, as
depicted in Fig. 1, the HH buckling instability was rapidly
identified as a generic mechanism to relieve stresses and
strains due to external stimuli in lamellar, periodic systems.

A. Cholesteric layer distortions from electric
and magnetic fields

The HH instability was first observed in cholesteric liquid
crystal cells (Gerritsma and Van Zanten, 1971a, 1971b) with
strong planar anchoring, where the director n of the molecules

1Unlike a crystal, however, uðx; y; zÞ only has one component
reflecting the one-dimensional density wave.

2These are the so-called calamitic nematics. Discotic phases are
also nematic, though they have one short axis and two equivalent
long axes.
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is aligned tangent to the top and bottom walls. In this
geometry, the cholesteric pitch axis perpendicular to the
nematic director n and along which the director twists has
a uniform orientation perpendicular to the parallel walls. The
application of an electric field (Gerritsma and Van Zanten,
1971b; Rondelez and Arnould, 1971) or a magnetic field
(Rondelez and Hulin, 1972; Scheffer, 1972) parallel to this
helix gives rise to square-grid patterns above a certain
threshold value (Fig. 2). Here the driving force of the
instability is a gain in dielectric or diamagnetic energy when
the cholesteric helix begins to distort. In this geometry, the
HH instability occurs only in materials with positive (nematic)
diamagnetic susceptibility anisotropy χa or dielectric
anisotropy ϵa, so the director aligns along the field, antago-
nizing the helix. The case of ac electric fields is, however,
more complex since the presence of conductivity and space
charges can also lead to frequency-dependent instabilities for
both signs of dielectric anisotropy ϵa (Rondelez, Arnould, and
Gerritsma, 1972; Hurault, 1973).

1. Original model

In the magnetic case, the threshold and the wavelength of
the patterns can be easily computed at the onset of undulations
with two assumptions: (1) the distortions are small and (2) the
instability wavelength is much larger than the cell thickness a,
which is itself much larger than the cholesteric pitch P0 ¼
2π=q0 (Ishikawa and O. D. Lavrentovich, 2001a). Recall that
the continuous twist of the director field is described as a
pseudolayered structure of P0=2 periodicity [Fig. 1(a)]. In the
Lubensky–de Gennes coarse-grained approach, the elastic free
energy density fe of a distortion from the planar texture
is related to the displacement uðxÞ of the pseudolayers along
the z axis corresponding to the direction of the initial helix

(Brand and Pleiner, 1981; de Gennes and Prost, 1993),
yielding a free energy density of the same form as Eq. (4),
but now with K rewritten as K̄ ¼ 3K3=8 and B rewritten as
B̄ ¼ K2q20. K̄ and B̄ are the effective elastic moduli related to
the Frank-Oseen elastic constants of twist K2 and bend K3 of
Eq. (1). In the cholesteric, a distortion uðxÞ leads to a tilt of the
pitch axis N from ẑ. To lowest order we get tan2θ ¼ ð∇⊥uÞ2,
where ∇⊥ ¼ x̂∂x þ ŷ∂y. For small distortions we have

θ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
∂u
∂x

�
2

þ
�
∂u
∂y

�
2

s
; ð6Þ

with a concomitant change in the magnetic energy density of

fm ¼ −1
2
μ0χ̄aH2θ2; ð7Þ

where μ0 is the vacuum permeability and χ̄a ¼ χa=2 accounts
for the continuous twist of the director over a pitch.
The HH model considers a simple undulation pattern along

one direction (x̂ here) and is compatible with infinitely strong
anchoring at the bounding surfaces z ¼ �a=2 [Fig. 1(b)]:

uðxÞ ¼ u0 cos

�
πz
a

�
sinðqxÞ: ð8Þ

The total free energy of such an undulation in a cell of volume
V can be computed from Eqs. (4) and (6)–(8),

Ft ¼
�
B̄π2

a2
þ K̄q4 − μ0χ̄aH2q2

�
V
8
u20: ð9Þ

At low fields, undulations are unfavored. An instability occurs
for a critical field Hc when the sign of the minimum of Ft
(with respect to q) changes from positive to negative:

H2
c ¼

2
ffiffiffiffiffiffiffiffi
K̄ B̄

p
π

aμ0χ̄a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6K2K3

p
πq0

aμ0χa
: ð10Þ

This first-order approach also allows us to compute the
wave vector amplitude qc at the threshold:

q2c ¼
π

a

ffiffiffiffi
B̄
K̄

r
¼ 2πq0

a

ffiffiffiffiffiffiffiffi
2K2

3K3

s
: ð11Þ

The main predictions of the wavelengths and the threshold
of the HH model were satisfactorily checked experimentally
soon after the development of the theory. However, the
original model was found to be limited for some experimental
situations, and thus was amended incrementally over time. In
the following, we show that this basic free energy balance is
recapitulated in layered systems subject to stresses that are
both internal and external. In so doing, we gather all of these
effects under the Helfrich-Hurault umbrella.

2. Further theoretical refinements and experiments

For simplicity, we have reported the initial approach of
Helfrich and Hurault, which was based on a simple one-
dimensional distortion of the layers. Even if this theory gave

FIG. 2. Left image: planar texture of a cholesteric phase
obtained from mixing 40-pentyl-4-biphenyl-carbonitrile (5CB)
and cholesteryl oleate in a planar-aligned cell. Grandjean zones
correspond to a slight gradient of thickness resulting in a discrete
change in the number of π rotations of the director. Right
image: under large enough ac voltages (∼1 kHz), typical
square-grid patterns are observed. Here a 9 V electric field is
applied across a 20-μm-thick cell. Images are captured with
polarizing optical microscopy under slightly uncrossed polar-
izers. The scale bar is 50 μm.
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the correct threshold field and instability wavelength, it did
not describe the geometry of the instability. The early
experimental examinations of the HH phenomenon showed
that undulations along a single direction were rarely observed
at the threshold, except in large pitch systems, where a ∼ P0

(Hervet, Hurault, and Rondelez, 1973). In most cases (large
a=P0 ratios) square-grid patterns are observed at the onset; see
Fig. 2. Delrieu (1974) generalized the HH theory and
considered a 2D Fourier expansion of the displacement u
of the layers. They showed that the square lattice sketched in
Fig. 1(c) was indeed the periodic 2D structure of lowest
energy at the onset for a field perpendicular to the layers.
They nevertheless also showed that the formation of one-
dimensional stripe patterns at the onset was possible in other
geometries. For instance, when the applied field is tilted, one
direction of the plane can be energetically favored over the
other. In this case, the square lattices appear above a second
threshold field.
The model outlined in Sec. III.A.1 is also too rough to

describe the evolution of the patterns above Hc. The total free
energy scales as the square of the undulation amplitude u20 in
Eq. (9). Therefore, it is necessary to compute Ft with higher-
order terms included in the strain to get a consistent undu-
lation amplitude. These terms provide a better description
of the compression term in Eq. (4), accounting for the tilt of
the pseudolayers. In terms of the phase field, a rotationally
invariant strain is e ¼ ½1 − ð∇ϕÞ2�=2 (Kamien et al., 2009). In
two dimensions this gives to next-to-leading order

fe ¼
B̄
2

�
∂u
∂z

−
1

2

�
∂u
∂x

�
2
�
2

þ K̄
2

�
∂
2u
∂x2

�
2

; ð12Þ

which yields, after minimization of the free energy Ft,

u0 ¼
8

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄
B̄

�
H2

H2
c
− 1

�s
: ð13Þ

The exact shape of the experimental patterns was not
scrutinized in the 1970s because of a lack of appropriate
experimental techniques. It was only later, in a different cell
geometry, that Ishikawa and O. D. Lavrentovich (2001b)
closely examined an undulation pattern developing along a
single direction. The two-dimensional system consisted of
cholesteric stripes formed in a cell with homeotropic
(perpendicular) anchoring of the liquid crystal director, gen-
erating a fingerprint texture. The periodic stripes were
horizontally sandwiched between parallel spacers in the cell,
and a magnetic field was applied in the plane of the cell,
perpendicular to the stripes, allowing direct examination of the
patterns above Hc. They emphasized the neglected role of
anchoring on the bounding substrates, where distortions could
still be observed. A finite anchoring yields amplitude undu-
lations much larger than the value predicted by Eq. (13), as
well as a reduced threshold value. This result was later
confirmed for the square lattice of the original geometry by
Senyuk, Smalyukh, and O. D. Lavrentovich (2006), who used
fluorescence confocal polarizing microscopy (FCPM) to
image in three-dimensions the distorted pseudolayers under

an electric field. We expound upon the influence of anchoring
and other surface energies on the HH mechanism when we
discuss liquid crystal shells.
The powerful FCPM technique was also employed to

analyze the evolution of the patterns generated by the HH
instability in detail and with increasing fields. It confirmed
that the hypothesis of a single Fourier mode in the plane
was valid only in a small range above the threshold. When
the field increased, the sinusoidal profile of the square-
grid pattern gradually changed to a sawtooth one, as pre-
dicted by Singer (1993, 2000). Senyuk, Smalyukh, and O. D.
Lavrentovich (2006) also showed that other thresholds were
present at higher fields. For instance, the two-dimensional,
square-grid pattern was destabilized in favor of a 1D
structure of parallel walls at about twice the first threshold.
The cholesteric mesophase is the system in which the HH

effect was first discovered and theorized. Later, cholesteric
systems also enabled subtle experiments for further funda-
mental studies of the instability. Indeed, the resulting patterns
have the advantages of being easily controlled with an external
field and of being regular and stable. The last point even
suggested possible applications of these systems, such as the
design of switchable two-dimensional, diffractive gratings
(Senyuk, Smalyukh, and O. D. Lavrentovich, 2005; Ryabchun
and Bobrovsky, 2018). However, a cholesteric phase strained
by a magnetic field is not the only scenario leading to a HH
instability. Any layered systems, such as smectic phases, are
expected to show HH instabilities under fields. Electric fields
are often easier to apply than magnetic fields, but their effects
are more complex to analyze; see Bevilacqua and Napoli
(2005). More importantly for this review, HH patterns can
also be observed even in the absence of external fields. In the
first studies, it was already noted that cholesterics exhibit
square-grid patterns transiently under temperature changes or
mechanical deformation (Gerritsma and Van Zanten, 1971b).
This mechanical-strain-induced HH instability is observed in
many other lamellar or columnar systems, including smectic
liquid crystals.

B. Mechanical layer strain in smectics

In smectics, molecules align and arrange into equally
spaced parallel planes, creating molecule-thick layers meas-
urable as a one-dimensional density modulation. The buckling
instability of smectic phases was identified shortly after
the HH effect was observed in cholesteric phases, but with
pseudolayers now replaced by actual layers. Unexpected laser
light scattering was observed in a smectic-A system, in which
the nematic director is parallel to the smectic layer normal.
The system was presumed to be well oriented, with the
smectic layers parallel to the bounding, homeotropic glass
substrates, where the molecules are anchored perpendicularly
to the bounding surfaces. Yet the scattered pattern observed
was well defined, indicating the presence of periodic struc-
tures in the cell. The intensity of the scattered light was
shown to be extremely sensitive to the strain of the sample,
strongly increasing with dilation but decreasing under com-
pression (Clark and Pershan, 1973; Delaye, Ribotta, and
Durand, 1973).
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1. Mechanically induced Helfrich-Hurault effect

The presence of a periodic pattern in strained smectic-A
samples was explained by considering displacements of layers
with ground-state spacing a of the form

uðx; zÞ ¼ αzþ u0 cos

�
πz
a

�
sinðqxÞ; ð14Þ

where α ¼ δa=a ≪ 1 is the global applied strain (Clark and
Meyer, 1973). Equation (12) still describes the elastic free
energy density of the smectic-A phase, where the modulus
K̄ ¼ K is now the splay modulus of the director and B̄ ¼ B is
the bulk compression modulus. Together they traditionally
define the smectic penetration depth λ ¼ ffiffiffiffiffiffiffiffiffiffi

K=B
p

, a length
usually comparable to the molecular size. Expanding in α
gives an expression similar to Eq. (9) for the total elastic
energy,

Ft ¼
�
Bπ2

a2
þ Kq4 − Bαq2

�
V
8
u20; ð15Þ

showing the formal analogy between a uniform strain in a
layered system and the application of an external field.
Following the analysis in Sec. III.A, α plays the role of
H2, so the threshold strain is αc ¼ 2πλ=a, above which
undulations ensue (Clark and Meyer, 1973; Singer, 1993,
2000; Napoli and Nobili, 2009). Note that α > 0 for the
analogy to hold: compression does not lead to buckling in this
system. Since λ is a molecular length scale, the instability
appears for small changes of spacing δa ≈ 2πλ and with a
wave vector amplitude q2c ¼ π=aλ, in concert with Eq. (11).
This analysis holds for lamellar phases under dilation,

including cholesterics, but a quantitative difference may be
present. A thermotropic smectic-A phase or a short-period,
lyotropic lamellar phase is a much stiffer material than
large pitched cholesteric phases, such as the ones studied
by Senyuk, Smalyukh, and O. D. Lavrentovich (2006) with
FCPM. This implies that, for sample cells of comparable
thicknesses, the pattern wavelengths are much smaller in a
short-period, lamellar phase, but also that the sinusoidal
profile of the undulation is rapidly destabilized above the
HH threshold. Indeed, smectic-A layers are often considered
to be almost incompressible (B → ∞), as shown by the
ubiquitous presence of topological defects called focal conic
domains in disordered samples (Friedel, 1922). These macro-
scopic structures consist of curved but parallel layers whose
common focal surfaces have degenerated into three-
dimensional curves, an ellipse and a conjugate hyperbola
(Bouligand, 1972a). Therefore, in experiments the dilation of
layers is expected to be confined to curves or, eventually,
surface discontinuities (Bidaux et al., 1973; Blanc and
Kleman, 1999).
Because of this, in smectic-A samples the simple undulation

pattern can be optically observed only just above αc, provided
that thick enough samples are used. Increasing the strain
slightly above ≈1.7αc induces focal lines (Rosenblatt et al.,
1977; Clark and Hurd, 1982). Rosenblatt et al. described an
ideal fourfold grid pattern in terms of ordered assemblies of
geometrical stacks of parallel layers, introducing parabolic

focal conic defects and their corresponding domains
(Rosenblatt et al., 1977). Such a structure almost satisfies
the homeotropic anchoring at the bounding plates, while the
distortions from dilation remain confined to the line defects.
While the ideal square-grid pattern is rarely obtained in
smectics with a simple strain (a polygonal structure is often
observed) (Rosenblatt et al., 1977), it should be noted that the
simultaneous application of a shear flow may promote the
formation of long-range, ordered square lattices of parabolic,
focal conic domains (Oswald and Ben-Abraham, 1982;
Chatterjee and Anna, 2012).

2. The role of dislocations and disclinations

Although these results all support the analogy between
electromagnetic-field-induced and mechanically induced
HH effects, a major difference exists in the temporal
evolution of the textures. Field-induced patterns are caused
by a gain in energy accompanying the reorientation of the
layers and are stable. On the contrary, after a uniform strain,
the planar texture remains most favorable and can be
achieved if layers can be added to the slab. Mechanically
induced textures are therefore transient or metastable, as
emphasized by Clark and Meyer (1973) and Delaye, Ribotta,
and Durand (1973). An efficient mechanism to relax the
strain was expected to be the climb of edge dislocations,
which are unavoidably present in a smectic slab (Bartolino
and Durand, 1977b; Ribotta and Durand, 1977). Note that a
smectic-A wedge cell with a small angle on the order of
10−3 rad already gives rise to a linear density of about one
dislocation per micron. This mechanism is difficult to
observe directly in smectic-A systems. It can, however, be
studied in the vicinity of the smectic-A to smectic-C
transition (Blanc et al., 2004) and is easily observed in
cholesteric phases due to their larger, micron-scale perio-
dicities, as shown in Fig. 3. We note that cholesterics
technically do not have dislocations but instead have χ
disclinations since they do not have a density modulation
(de Gennes and Prost, 1993). We discuss cholesteric defects
in greater detail in Sec. V.
Finally, we point out that buckling instabilities are found

not only in lamellar systems but also in other modulated
phases, such as columnar phases (Livolant and Bouligand,

0s 7s 14s

FIG. 3. Relaxation of a dilated region displaying the square-
grid pattern through the climb of an edge dislocation loop
during a compression-dilation sequence. The cholesteric
phase was obtained from mixing 5CB with the chiral dopant
(S)-4-cyano-40-(2-methylbutyl)biphenyl (CB15; 2.8 wt %). The
images were obtained from bright-field optical microscopy.
The scale bar is 200 μm.
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1986; Oswald et al., 1996). We expound more upon the HH
instability in a broad range of materials in Sec. IX.

IV. LIQUID CRYSTAL SHELLS

In Sec. III, we reviewed the history of the HH instability in
both cholesteric and smectic liquid crystals confined between
glass plates. All of the previous examples have been in
systems with solid boundaries. However, in sensing applica-
tions and in biomaterials, liquid crystal systems with periodic
ground states are often in contact with fluid (liquid or gas)
phases. The boundary conditions are then deformable, result-
ing in an interplay between bulk and surface energies that
gives rise to more complex dynamics and ground states.
Liquid crystal shells are attractive systems for investigating

the effect of fluid interfaces on the HH instability due to shell
thickness tunability and fine control over the system’s
boundary conditions through a wide array of techniques,
ranging from adjusting the system temperature to altering the
system chemistry (Fernandez-Nieves et al., 2007; Lopez-Leon
and Fernandez-Nieves, 2009, 2011; Liang et al., 2011, 2012,
2013; Lopez-Leon, Fernandez-Nieves et al., 2011; Lopez-
Leon, Koning et al., 2011; Lopez-Leon, Bates, and

Fernandez-Nieves, 2012; Lopez-Leon et al., 2012; Seč,
Lopez-Leon et al., 2012; Koning et al., 2013; Darmon,
Benzaquen, Čopar et al., 2016; Darmon, Benzaquen, Seč
et al., 2016; Darmon, Dauchot et al., 2016; Zhou et al., 2016;
Tran et al., 2017; Noh et al., 2020). Shells are water-in-liquid-
crystal-in-water double emulsions, where a thin liquid crystal
layer is confined between an inner water droplet and an outer
continuous water phase, produced in microfluidic devices
made of nested glass capillaries [Fig. 4(a)]. In these devices, a
water-in-liquid-crystal compound jet is sheared by an outer
aqueous solution [Fig. 4(c)], leading to its breakup into water
droplets that are encapsulated by liquid crystal [Fig. 4(b)]
(Utada et al., 2005; Fernandez-Nieves et al., 2007). This
technique enables both the production of highly monodisperse
samples and independent control over the size of the inner and
outer diameters. The thickness and curvature of the shells
can be selected by adjusting flow rates during microfluidic
production [Fig. 4(c)]. The shell thickness can also be varied
through differences in density between the inner phase and
the liquid crystal [Fig. 4(b), bottom right panel], as well as
through osmotic swelling or deswelling, postproduction.
Tuning the shell thickness with osmotic pressure is accom-
plished by changing the concentration of a solute, such as salt

FIG. 4. (a) Schematic of a microfluidic device for nested glass capillaries used for producing liquid crystal shells. (b) Schematic of a
liquid crystal shell. If there is a density mismatch between the inner phase and the liquid crystal, then one side of the shell will be thin
from buoyancy effects. The scenario for a denser liquid crystal phase is shown at the bottom right. (c) Microphotographs of capillary
devices used to produce shells. The two photographs show the typical (left) maximal and (right) minimal sizes that one can attain with a
given device geometry. Scale bar, 200 μm. (d) Schematics for techniques used to change the anchoring at a water/liquid crystal interface
[enlargement of the shell schematic in (b)]. Left panel: in the presence of PVA, the anchoring is strongly planar. Center panel: the system
transitions to a perpendicular (homeotropic) orientation when its temperature is brought a couple tenths of a degree celsius below the
clearing point of the bulk 5CB resulting from the presence of an interfacial melted layer of 5CB and PVA. Right panel: homeotropic
anchoring can also be regulated by adding surfactants to the aqueous phase. The amount of adsorbed surfactant to the water–liquid
crystal interface determines the homeotropic anchoring strength.
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or sugar, in the surrounding aqueous solutions (Lopez-Leon,
Koning et al., 2011; Seč, Lopez-Leon et al., 2012; Tu and Lee,
2012; Darmon, Benzaquen, Seč et al., 2016; Tran et al.,
2017). Osmotically swelling the liquid crystal shells is useful
for observing the temporal evolution of thickness- or curva-
ture-dependent phenomena (Lopez-Leon, Koning et al., 2011;
Darmon, Benzaquen, Seč et al., 2016; Urbanski et al., 2017;
Durey et al., 2020; Tran and Bishop, 2020).
Furthermore, the anchoring at the inner and outer water-

liquid crystal interfaces of the shell can be set independently.
In the simplest case, shells of 40-pentyl-4-biphenyl-
carbonitrile (5CB) in contact with pure water have matching
planar boundary conditions on both the inner and outer shell
surfaces. The planar anchoring is degenerate, which means
that the director is free to rotate on the surfaces. The planar
anchoring strength can be increased with the introduction of
polyvinyl alcohol (PVA) in the aqueous phases. This polymer
surfactant also increases the shell stability by decreasing
the water–liquid crystal interfacial tension and inducing a
repulsive force (a disjoining pressure) when the inner and
outer interfaces get closer together [Fig. 4(d), left panel]. The
increased shell stability allows for the shell anchoring con-
ditions to be dynamically and gradually tuned with simple
modifications to the system, mainly through two mechanisms.
The first method involves quasistatically bringing the

system temperature a few tenths of a degree celsius below
the clearing point of the bulk 5CB. With slow ramps in the
temperature, the shells can undergo a series of anchoring
transitions where the alignment of mesogens with respect to
the interface changes, either from planar to homeotropic for
increasing temperature or vice versa for decreasing temper-
ature. In a shell where the temperature is slowly increased, the
anchoring shifts from matching planar anchoring on the inner
and outer shell surfaces, to hybrid anchoring, and then to
matching homeotropic anchoring before fully transitioning to
the isotropic phase (Durey, Ishii, and Lopez-Leon, 2020). This
behavior has been linked to the PVA polymer at the shell
interfaces, which renders the liquid crystal more disordered
near the interfaces than in the bulk. The shell interfaces then
favor the nucleation of the isotropic phase. The melted layer
and the bulk nematic create a new, low-anchoring-strength
interface accounting for the changes in anchoring observed in
the shell with increasing temperature [Fig. 4(d), middle panel].
The second technique relies on the dissolution of surfac-

tants in the water phases. As small amphiphilic molecules
adsorb on the shells’ interfaces, their aliphatic tails force
the liquid crystal molecules to reorient perpendicular to the
boundary, as illustrated in the rightmost panel of Fig. 4(d)
(Drzaic and Scheffer, 1997; Poulin and Weitz, 1998; Noh,
Reguengo De Sousa, and Lagerwall, 2016; Sharma and
Lagerwall, 2018). This yields homeotropic boundary con-
ditions with a tunable anchoring strength that increases with
the surfactant surface coverage (Brake and Abbott, 2002;
Brake, Mezera, and Abbott, 2003a, 2003b; Lockwood, Gupta,
and Abbott, 2008; Carlton et al., 2012; Ramezani-Dakhel
et al., 2018). For a cholesteric twisting along a water–liquid
crystal interface, it has been shown that surfactants localize
in the homeotropic regions and are excluded from planar
regions (Fig. 5) (Tran et al., 2018). This cross communication
between the bulk and the surface results in patterned chemical

heterogeneity at the cholesteric interface and could manifest
in other liquid crystal phases in which the bulk competes
with the surface anchoring. Responsive surfactants enable
further control of surfactant adsorption and conformation
at the interface with means beyond the surfactant concen-
tration, such as through temperature, pH, and UV light
intensity (Kwon, Khan, and Park, 2016; Dogishi et al.,
2018; Sakai, Sohn, and Katayama, 2019; Sharma, Jampani,
and Lagerwall, 2019).
The flexibility of the shell system thus lends itself to

helping study the role of surface tension, anchoring, and
boundary curvature on the HH instability. In Secs. V and VI,
the outlined techniques are employed to investigate undulating
instabilities in cholesteric and smectic shells.

V. CHOLESTERIC SHELLS

Since the classic HH instability was first discovered in
cholesterics, we begin by examining cholesteric shells made
of 5CB doped with a chiral dopant, (S)-4-cyano-40-(2-
methylbutyl)biphenyl (CB15). In the following, we review
how undulations can develop in the cholesteric pseudolayers
in response to global geometrical, i.e., topological, frustration,
as well as changes in the mesogen anchoring. We also review
how undulations occur not only within the bulk but also at
the interface itself. Cholesteric shells demonstrate how fluid
boundaries play a significant role in the HH instability while
also illustrating that the instability is, at its core, a response to
local geometrical frustration.

A. Planar cholesteric shells

Planar anchoring in cholesteric shells frustrates the bulk
ordering and induces structures that can be seen as a
manifestation of the HH instability, broadly construed.
Why is there frustration when the pitch axis does not lie in

FIG. 5. Laser scanning confocal micrographs of the lipid
surfactant 1,2-dilauroyl-sn-glycero-3-phosphocholin (DLPC), la-
beled with 1 mol % Texas Red 1,2-dihexadecanoyl-sn-glycero-3-
phosphoethanolamine, triethylammonium salt demonstrates the
cross communication of the liquid crystal and the adsorbed
surfactant on a cholesteric-water interface of a flat film within a
TEM grid. The surfactant causes homeotropic anchoring, which
induces stripe patterns in the cholesteric. The cholesteric sub-
sequently patterns the surfactant, causing it to segregate into
stripes at the cholesteric-water interface. As the surfactant
concentration increases from (i) to (iii), (ii) surface stripes
become wider and more disordered (iii) until regions where
the cholesteric twist violates the homeotropic anchoring con-
dition are forced away from the surface as a result of the lipids
saturating the interface. Adapted from Tran et al., 2018.
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the tangent plane of the shell? The answer is the global
geometry (the topology) of the system. Since it is the director
that lies in the planar shell’s tangent plane, the Poincaré-
Brouwer-Hopf theorem requires the sum of the indices of the
zeros of a line field to be equal to the Euler character of the
shell (Poincaré, 1885; Brouwer, 1911; Hopf, 1927). Zeros of
the line field are topological defects (places where the local
orientation is undefined), while the index of the zero is its
signed winding. For a sphere, the Euler character is 2, so the
net winding of the defects on the shell surface must be 2 × 2π,
manifesting as four þ1=2 defects, two þ1 defects or one þ2

defect; two þ1=2 defects and a þ1 defect, three þ1 defects
and one −1 defect, etc. Although the necessity of a minimum
number of defects can be thought of as topological frustration
that arises from the system’s global curvature, the defects can
also be viewed as manifesting from local incompatibilities,
i.e., as local geometrical frustration.
We begin by considering the simplest case of nematic

defects, i.e., defects in the director field. Moving inward from
the shell surface along its normal is equivalent to moving
along the cholesteric pitch axis, by definition. Thus, there is a
slightly smaller sphere just below the outer surface, which also
has planar anchoring and thereby must also have these defects
(note that the global rotation of the director field does not
contribute to the defect charge). If the pitch axis remains radial
from the outer to the inner surface of the shell, then the shell
would consist of a series of concentric spheres, each with
two-dimensional defects.
From the three-dimensional perspective, these defects are

not independent and would connect up into line defects with
net winding 4π. This is seen in planar nematic shells, where
the shell thickness controls the amount and winding number
of defects (Vitelli and Nelson, 2006; Fernandez-Nieves et al.,
2007; Lopez-Leon, Koning et al., 2011; Koning et al., 2013,
2016). Recall, however, that for a nematic in three dimensions,
integer-winding defect lines are not topologically stable:
they can “escape into the third dimension” (Meyer, 1973).
This deformation has an associated bend energy (and possibly
twist), so for thin nematic shells this does not happen.
However, as the shells thicken, the director goes smoothly
from being horizontal (parallel to the tangent plane of the
sphere) in the periphery of the defect to vertical at the
core. The only singularities left in the system after this
escape are point defects, or “boojums,” that have been pushed
away to the shell surfaces (Volovik and O. D. Lavrentovich,
1983; O. D. Lavrentovich, 1998).
However, cholesteric defects are considerably more com-

plex than nematic defects. While a nematic is characterized
by a single director field n, an unfrustrated cholesteric is
properly described at large scales by three mutually orthogo-
nal line fields: the director n, the pitch axis P̂, and their cross
product =n≡ n × P̂. Winding defects are now characterized
by both their strength and the axis around which they rotate.
When one adopts the notation of Friedel and Kleman (1970),
defects where the pitch axis and =n rotate around the director
are labeled λ. On the other hand, defects where =n and the
director axis rotate around the pitch axis are labeled χ .
Finally, defects in both the director and the pitch axis, where
the two rotate about =n, are labeled τ. Examples of each of

these defects are illustrated in Fig. 6(a). Although these
defects are similar in their algebra to defects in biaxial
nematics (Mermin, 1979), the existence of pseudolayers
spoils a precise correspondence (Beller et al., 2014).
However, as in biaxial nematics, defects cannot escape into
the third dimension: as a defect in the director attempts
to escape, a new defect in either P̂ or =n appears. In the naive
mapping between cholesteric pseudolayers and smectics,
the χ defects correspond to dislocations, while the λ and τ
defects are the standard disclinations. Note that while the λ
defects do not have a singularity in the director field,
they have one in the cholesteric structure since the pitch
axis is undefined.
To illustrate a χ defect, it is useful to view them as line

disclinations within a three-dimensional nematic, but with an
added modulation along their length due to the cholesteric
twist. Consider any point defect with m ≠ 1 in a two-
dimensional nematic: locally rotating the director by a con-
stant angle at every point of the plane will simply induce a
global rotation of the defect. Thus, a χ line disclination with
m ≠ 1 in a cholesteric can be pictured as a two-dimensional

(b)(a)

(c) (d)

FIG. 6. The χþ1 disclination line in a planar cholesteric shell:
experiment and simulation. (a) Schematics of χþ1, τ−1=2, and
λþ1=2 disclinations in cholesterics. (b) Simulated cross section of
an m ¼ þ1 defect. The blue and yellow regions, respectively,
indicate zones of high splay and bend distortion; red indicates
director singularities. (c) Micrographs showing a side view of a
shell with two m ¼ þ1 defects between crossed polarizers
revealing a visible nonuniform structure of the defect core, which
is enlarged in (d). Scale bar is 20 μm. Adapted from Darmon,
Benzaquen, Čopar et al., 2016.

Christophe Blanc et al.: Helfrich-Hurault elastic instabilities …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 015004-11



point defect extended in the third direction, which is then
smoothly twisted [Fig. 7(a)].
However, we see the possibility of a more complex χ defect

within a cholesteric shell that has degenerate planar anchoring
on the inner and outer boundaries. A cross-polarized micro-
graph of a shell with this morphology is shown in Fig. 6(c).
The pseudolayers form concentric spheres, with the smallest
and largest corresponding to the shell boundaries. The
signature of the pseudolayers is visible as a series of con-
centric dark rings, spaced apart by half of the pitch [Fig. 6(d)].
The twist axis lies along the radial direction since it is
perpendicular to those layers. One can posit that defects in
cholesteric shells are radially oriented, singular lines spanning
the shell thickness. Structures that seem to be radial lines are
visible in Fig. 6(c). However, at higher resolution, the defects
appear to be more complex than a simple line, with periodic
distortions along their length. We can see the defect within the
shell as a charge χþ1 disclination running from the inner to the
outer surface [locally depicted in Figs. 7(b)(i)]. Compared to χ
disclinations with m ≠ 1, rotating the director of a χþ1

disclination produces an alternating pattern of pure splay
and pure bend defects separated by a quarter pitch. Were we to
trace out a surface of constant director orientation, we would
find something with the topology of a helicoid, a dislocation
in the pseudolayers, as promised. However, the defects
deform: in the plane perpendicular to the disclination, the
director field attempts to unwind.
Although in the nematic escaping into the third dimension

could lower the amount of elastic distortion in the system and
remove any singularities in the director, this is not possible in a
cholesteric. The cholesteric’s triad of line fields prevents a full

escape of the line singularity. The singularity can escape only
in alternating regions with a periodicity set by the pitch.
Regions of high splay retain director discontinuities at their
centers, while the regions of high bend in between are
escaped. By escaping, these bend regions become λþ1 defects.
At the core of a λþ1 defect, the director is vertical (i.e., radial
in the reference frame of the shell), and moving away from the
core the director twists smoothly in all directions, becoming
points of double twist. On both interfaces of the shell, the
semiescaped χþ1 line terminates with a boojum as in the
nematic. This semiescaped χþ1 line is shown in Fig. 7(b)(ii).
Moreover, the singularity in Fig. 7(b)(ii) can relax further

into the structure in Fig. 7(b)(iii) to reduce the overall amount
of elastic distortion. þ1 splay defects can open up into looped
þ1=2 disclinations. Inside those defect rings, the director
field is uniformly vertical. The vertically oriented director
field at the core of the λþ1 defects similarly expands. The line
singularity in Fig. 7(b)(i) is replaced by a vertically aligned
director field (i.e., radially aligned in the reference frame of
the shell), as depicted in Fig. 6(b) (Seč, Porenta et al., 2012;
Darmon, Benzaquen, Čopar et al., 2016; Darmon, Benzaquen,
Seč et al., 2016).
With the singularity in Fig. 7(b)(iii) being the most

energetically favorable, we can see how the defects form in
experimental systems. Looking at a vertical cross section of
the relaxed, semiescaped χþ1 line, there is an incompatibility
in the director orientation between the center of the singularity
and the director field far away from it. To connect the vertical
director lines at the center of the relaxed, semiescaped χþ1

line with the concentric planar layers that constitute the
rest of the shell, undulations along the singularity can result

FIG. 7. (a) Schematic of the structure of a χþ1=2 line that consists of a smoothly twisted m ¼ þ1=2 defect line. The red line denotes
the singularity, and the red dots mark the intersection of that line with the represented cross sections of the director field. The blue
lines at the right edge of the cross sections are drawn as a guide for the eye toward the rotation of the m ¼ þ1=2 defects.
(b) Schematics of the χþ1 line. (i) “Textbook” version of the χþ1 line seen as alternating bend and splay m ¼ þ1 director
defects along a vertical singular line. (ii) Semiescaped version of (i) in which the line singularity “escapes” in between the splay
defects, transforming regions of high bend into λþ1 defects. (iii) The line in (ii) is further relaxed. Left panel: the m ¼ þ1 splay
point defects are relaxed into m ¼ þ1=2 loops, and the core of the λþ1 defects also expand. This relaxation creates a column of
vertically aligned nematic in the center of the defect. This is apparent in the right panel. Right panel: depiction of the director as
black lines within a vertical cross section. Connecting the horizontal layers of the far field with the vertical layers in the center
frustrates the system, generating undulations reminiscent of the Helfrich-Hurault instability. The undulations produce periodic
defects, which are highlighted by dashed boxes (top box, λþ1=2; bottom box, τ−1=2).
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[Fig. 7(b)(iii), right panel]. The “crests” of the undulations can
generate λþ1=2 disclinations, while the “valleys” can create
τ−1=2 disclinations, which is reminiscent of alternating λ�1=2

defects often seen in cholesterics (Beller et al., 2014). As this
system has rotational invariance around the axis of the original
χþ1 line, τ−1=2 and λþ1=2 are looped defects, as illustrated in
the left panels of Fig. 7(b) (Seč, Porenta et al., 2012; Darmon,
Benzaquen, Čopar et al., 2016; Darmon, Benzaquen, Seč
et al., 2016).
The semiescaped singularities in cholesteric shells can be

viewed through the lens of the HH mechanism: The mismatch
between the vertical director field lines and the far-field,
horizontal layers embodies geometrical frustration that is
topologically induced by the global curvature of the shell.
As in the classical HH systems, the frustration is relieved
through periodic elastic distortions that can generate a regular
array of defects. However, unlike the original HH analysis, the
undulation wavelength in planar cholesteric shells is set by the
pitch: the pseudolayer periodicity. This difference arises from
how the geometrical frustration in planar cholesteric shells is
induced by the system’s global curvature, rather than by an
external field. Defects in planar cholesteric shells reveal how
topology, i.e., global curvature, can give rise to local geo-
metrical frustration in layered liquid crystal systems. That the
frustration in planar cholesteric shells is relieved through
periodic distortions demonstrates the ubiquity of the HH
instability, interpreted in this broad sense of relieving layer
strain through an undulation with its own periodicity. In this
case, the “undulation” is a periodic array of defects.

B. Homeotropic cholesteric shells

Beyond applied external fields and topological frustration,
the competition between the interface and the bulk can also
trigger the HH instability, exemplified by cholesteric shells
with homeotropic anchoring, shown in Fig. 8. Homeotropic
anchoring conditions are particularly frustrating for choles-
terics, as the anchoring always favors an untwisted configu-
ration of molecules and is incompatible with the pseudolayer
structure preferred by the bulk. This incompatibility induces
defect structures (arrays of disclination lines), much like the

ones shown in Fig. 7. However, unlike the case of planar
anchoring discussed in Sec. V.A, the homeotropic cholesteric
shell typically has defects tiling the entire surface, not at just a
few topologically required points, evidenced by the micro-
graph in Fig. 8(a). Indeed, the anchoring incompatibility is an
example of local frustration. Additionally, the interface itself
may locally undulate and deform in response to these defects
to further accommodate the anchoring conditions, which are
shown in the scanning electron micrograph in Fig. 8(b). In this
case, the surface tension σ must necessarily play a role in
establishing the shape of the fluid interface.
Consider the energy contributions of the boundary. A fluid

interface introduces both an anchoring energy and a surface
tension σ that will generally compete with the bulk free
energy. These boundary effects may be significant, distorting
the interface and modulating the ordering within the layered
system (Meister, Dumoulin et al., 1996). If one assumes
a simple model of the interface as a height field3 h≡ hðx; yÞ,
a general surface energy at a fluid interface would have
the form

fs ¼
Z

d2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∇hÞ2

q
½σ þ Aðν̂; nÞ�; ð16Þ

where σ is the surface tension and Aðν̂; nÞ is an anchoring
strength that will depend on the orientation between the
interface normal ν̂ and the nematic director n at the surface.
The director n is perpendicular to the pseudolayer normal N in
cholesteric phases, but Eq. (16) generally holds for all lamellar
liquid crystals (n can be parallel or at an angle to N for
smectic-A or other smectic phases, respectively).
The anchoring term must be invariant under n → −n, so we

can write Aðν̂; nÞ ¼ W½1 − ðν̂ · nÞ2�=2, with an anchoring
strength W > 0 for homeotropic alignment and W < 0 for
degenerate planar alignment (Rapini and Papoular, 1969).
Note that this anchoring energy can compete with the periodic
ordering of the bulk. This is necessarily the case for choles-
terics (Meister, Dumoulin et al., 1996): if the cholesteric
pitch axis is oriented in any direction away from the surface
normal, the twist of the cholesteric competes with the
boundary condition of that surface, whether it is planar or
homeotropic. Indeed, when W > 0, there is no configuration
that is compatible with a periodic cholesteric and the surface
would tend to unwind the cholesteric, competing against the
ground-state pitch. The anchoring therefore takes the role
of an applied electromagnetic field, but the reorientation of
the director occurs only at the surface, not throughout the
entire system. As in the classic system presented in Sec. III,
anchoring can also trigger the HH instability, inducing
undulations in the cholesteric pseudolayers. These reorienta-
tions undulate the layers just underneath the cholesteric
surface, as indicated by the orange line in Fig. 9.
The onset of undulations is not surprising when the

magnitudes of anchoring, surface tension, and bulk elastic

(a) (b)

FIG. 8. (a) Polarizing micrograph of a cholesteric shell with
homeotropic anchoring due to the presence of a surfactant in the
surrounding aqueous solution. (b) A polymerized and dried
cholesteric shell with homeotropic anchoring accentuates inter-
facial deformations due to the underlying focal conic domains.
The scanning electron micrographs are courtesy of Daeseok Kim.

3Note that hðx; yÞ is a Lagrangian displacement variable of the
surface, while uðx; y; zÞ is the Eulerian displacement of the layers.
The difference matters at nonlinear order, in principle (Kamien and
Lubensky, 1999).
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energies of typical systems are considered. For example,
in common cyanobiphenyl-type liquid crystals with chiral
dopants that induce micron-scale pitches, the nematic-
isotropic or aqueous interface has an anchoring strength
W ∼ ð102–105ÞkT=μm2 (Faetti and Palleschi, 1984) and sur-
face tension σ ∼ ð105–106ÞkT=μm2 (Kim et al., 2004). The
bulk elasticity terms have magnitudes K1;2;3 ∼ 103kT=μm
(Bradshaw et al., 1985). Thus, when the liquid crystal is
forced to have defects (with cores on the scale of 1–10 nm)
to accommodate a frustrating boundary condition, the
defects can contribute energy per unit area on the order of
Ki=ð10 nmÞ ∼ 105kT=μm2. Therefore, for the cholesterics
considered here, all of these energetic contributions can
compete with one another.
Note that these surface instabilities differ in some ways

from the HH instability induced by a bulk field. In a nematic, a
boundary condition may reorient the nematic order throughout
the bulk, as in a liquid crystal display cell. Thus, boundary
conditions serve to orient the nematic order just as in a bulk
field. In a layered system, however, deformations may be
confined to a region around the boundary with a characteristic
size equal to the penetration depth λ ≈

ffiffiffiffiffiffiffiffiffiffi
K=B

p
[see Eq. (3)],

which was previously analyzed in detail for cholesterics with a
free interface (Meister, Dumoulin et al., 1996). These local-
ized deformations are also observed in simulations, as shown
in Fig. 10. Note that both a bulk field and a surface anchoring
term will introduce a quadratic term proportional to ðx̂ · nÞ2 or
ðx̂ · NÞ2, with x̂ the direction of either the surface normal or
the applied field. For a cholesteric, note the similarity between
the surface energy in Eq. (16) containing the term Aðν̂; nÞ ¼
W½1 − ðν̂ · nÞ2�=2 and an electric field contribution fe ¼
−ð1=2ÞΔϵϵ0ðE · nÞ2, with Δϵ the dielectric anisotropy (Yu,
Yang, and Yang, 2017). Both of these terms may reorient the
layered structure and create the proper conditions for the HH

mechanism. We explore the mechanism in the context of
anchoring transitions in more detail in Sec. V.C.
In cholesterics, the ratio σ=W between the interface surface

tension σ and the homeotropic anchoring strength W deter-
mines whether one finds a smooth (σ=W ≫ 1) or cusped
(σ=W ≪ 1) interface shape (Meister, Dumoulin et al., 1996).
Moreover, depending on how the cholesteric rearranges near
the interface, the interface shape will change to accommodate
any defect structures. These considerations also come up near
the interface between a cholesteric and an isotropic phase,
which favors homeotropic alignment, as discussed in Sec. IV
(Silvestre et al., 2016; Durey, Ishii, and Lopez-Leon, 2020).
When bulk layer distortions become large and one is far

above the threshold for undulations, more complex states
emerge. Secondary instabilities, where undulations develop
on top of the original undulations, are possible. For choles-
terics, layers may undulate in two orthogonal directions,
creating an array of focal conic domains (Meister, Hallé et al.,
1996; Senyuk, Smalyukh, and O. D. Lavrentovich, 2006) that
is also seen in the classic smectic system detailed in Sec. III.B.
In extreme cases, such as those with strong incompatible
anchoring, the layer structure will strongly distort or break up
entirely, yielding intricate defect structures (Yada, Yamamoto,
and Yokoyama, 2003; Seč, Čopar, and Žumer, 2014).
Simulation methods are often employed to capture the

interplay among the anchoring energy, the bulk elasticity, and
the interfacial surface energy (Rofouie, Pasini, and Rey, 2015;
Tran et al., 2017; M. O. Lavrentovich and Tran, 2020). An
example is shown in Fig. 10. We simulate a cholesteric liquid
crystal near coexistence between a cholesteric phase (with a
pitch P0) and an isotropic phase. By initializing a shell of the
cholesteric inside a bulk isotropic phase, it is possible to
generate isotropic-cholesteric fluid interfaces. As mentioned
in Sec. IV, these interfaces have a weakly homeotropic
anchoring for the cholesteric, creating an anchoring incom-
patible with the concentric spherical layer arrangement in the
droplet bulk. We see in Fig. 10 that there is layer reorientation
and formation of focal conic domain hills at the shell surface.
The parameters and details of the simulation were described

FIG. 9. An undulated cholesteric fluid interface imaged via
atomic force microscopy (AFM), optical microscopy (OM),
scanning electron microscopy (SEM), and transmission electron
microscopy (TEM). The incompatible homeotropic anchoring at
the surface forces the bulk layers to undulate (orange line) and
turn upward, forming focal conic domain “hills.” From Agez,
Bitar, and Mitov, 2011.

FIG. 10. (a) Cross section through a simulated cholesteric shell
with an isotropic-cholesteric interface. The layers are distorted near
the boundary and concentric in the bulk. Arrows indicate hills
formed by focal conic domains. The color indicates the director n
orientation relative to the radial direction r̂. The pitch P0 to shell
thickness t ratio is t=P0 ≈ 2. (b) The distorted outer interface is
shown, with the director distribution just underneath the surface
colored by jn · r̂j. From M. O. Lavrentovich and Tran, 2020.
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by M. O. Lavrentovich and Tran (2020). These focal conic
domain hills are also visible in the cholesteric surface relief
shown in Fig. 9. Accounting for a deformable boundary and
surface tension in the HH instability allows us to capture the
interfacial deformations seen in homeotropic cholesteric
shells.

C. Anchoring transitions

The HH instability can also describe transient states that
arise from transitions between the planar and homeotropic
structures detailed in Secs. V.A and V.B. The changing
anchoring is analogous to the application of an external field
but with molecular realignment occurring only at the confin-
ing surfaces. As in the classical HH instability, transitioning
from one type of anchoring to another at an interface causes
the cholesteric pseudolayers to reorganize in order to accom-
modate the new boundary condition, leading to frustration in
the system. As described in Sec. V.B, the frustration in the
layers can be relieved by a HH-like mechanism, as illustrated
for a cholesteric shell in Fig. 11 (M. O. Lavrentovich and
Tran, 2020). In this section, we focus on modeling the onset
of the HH instability triggered by changes in anchoring
conditions.
As detailed in Sec. IV, the anchoring on a cholesteric shell

can be tuned experimentally by the addition or removal of
surfactant in the surrounding aqueous phases. For the planar to
homeotropic anchoring transition, in which surfactant is added
to the outer aqueous solution, stripes with a 2P0 periodicity
cover the cholesteric shell surface without forming a distin-
guishable pattern (Fig. 12). Defects in the nematic director are
still present in the system but do not influence the conforma-
tion of the stripes beyond their termination at said defects, as
seen in Fig. 12(a)(ii). Similar stripe patterns are captured in
Landau–de Gennes simulations of an initially planar choles-
teric shell set to minimize under homeotropic anchoring
conditions [Fig. 12(b)]. Large transient stripes are formed
on the simulated shell surfaces at the beginning of the
minimization, which is similar to experimental observations.
Cross sections of the simulated shell reveal that the origin of
the large stripes are undulations of the initially concentric,
cholesteric pseudolayers [Fig. 12(b)(ii)]. Furthermore, layer
undulations are greatest in cross sections that intersect with the

radial director defect, indicating that defects are energetically
preferred sites for pitch axis and, consequently, cholesteric
layer rearrangement.
The transition to planar anchoring similarly produces

large surface stripes, where the surfactant is removed from
the outer aqueous solution. However, unlike for the tran-
sition to homeotropic anchoring, the composition of stripe
instabilities for planar transitions is dictated by the initial
shell patterning shown in Fig. 13(a). As the surfactant leaves
the interface, weakening the homeotropic anchoring, the
planar stripes of the focal conic domain widen until they
reach a width ∼2P0, after which the planar stripes are filled
by orthogonal stripes that have a 2P0 periodicity. The overall
double spiraled structure of the initial focal conic domain is
preserved [Fig. 13(a)(iv)].
Note that the curvature and composition of the orthogonal

stripes in the planar transition is reminiscent of Bouligand
arches [illustrated in Fig. 14(a)]. Awork on the chromosomes
of dinoflagellates by Bouligand, Soyer, and Puiseux-Dao
(1968) attributed bands of bow-shaped lines found in thin
sections of chromosomes to the chiral ordering of filaments in
the chromosomes. The arches that fill in the striped texture of
chromosomes are a result of viewing them on a surface that
cuts the cholesteric at an angle from the pitch axis.
Indeed, anchoring transitions force the pitch axis to tilt at an

angle to the interface, as illustrated in Fig. 11. It is therefore

FIG. 11. Schematic of a cholesteric liquid crystal (CLC) shell.
Right panels: insets illustrating how changing the anchoring at
the shell interface alters the pitch axis orientation, which can lead
to a HH-like instability in the bulk (bottom right panel). From
M. O. Lavrentovich and Tran, 2020.

FIG. 12. (a) Cross-polarized images of an initially planar
cholesteric shell (i) that has four topological defects with charges
totaling þ2. After the shell is introduced to a solution including
10 mM sodium dodecyl sulfate, the anchoring at the outer shell
surface transitions from planar to homeotropic, tilting the pitch
axis away from the radial direction. (ii) Large stripes are
generated at the shell interface with a periodicity of around
10 μm, which is twice the pitch. Arrows indicate defect locations.
(b) Simulations of (i) an initially planar cholesteric shell with a
1.2 μm pitch, a 6.6 μm diameter, and a 2.1 μm thickness is
minimized under moderate homeotropic anchoring conditions
(∼2 × 10−4 J=m2). (ii) After t ¼ 5000 minimization steps, the
cholesteric pseudolayers undulate and generate stripes (shown in
the inset). Adapted from M. O. Lavrentovich and Tran, 2020.
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plausible that the structure of the stripe instability is influ-
enced by Bouligand’s geometrical arguments. Specifically, the
micrograph of Fig. 13(a)(iv) is evocative of the 1984 study by
Bouligand and Livolant of cholesteric spherulites (Bouligand
and Livolant, 1984). Figure 14 reproduces their illustration
describing the origin of double spiraled structures seen in their
experiments. A cholesteric with a vertical, unfrustrated pitch
axis is drawn with an angled view in Fig. 14(b) and is cut into
the shape of a hill. Viewing this hill from the top [Fig. 14(b),
top images] uncovers a double spiraled pattern that is filled in
with Bouligand arches.
Although this geometrical model hints at the bulk choles-

teric arrangement, this description does not account for the
periodicity of the orthogonal stripes, which appear to follow
an archlike pattern. As with the homeotropic transition, the
organization of the cholesteric layers can also be examined
through Landau–de Gennes simulations (M. O. Lavrentovich
and Tran, 2020). Figure 13(b) depicts a cholesteric shell with a
pitch axis oriented along the z axis. The focal conic domains
are slightly stretched at the poles along the z axis, resulting
in greater regions of planar anchoring that are marked in
blue by the n · r̂ color map. Minimizing this shell under
planar anchoring conditions causes the stretched focal conic
domains to unwind, generating undulating stripes [blue areas
in Fig. 13(b)(ii)] in regions where the planar anchoring is
increased, similar to experimental observations shown in
Fig. 13(a). Cross sections of the shell after minimization
[Fig. 13(b)(ii)] reveal that the orthogonal stripes arise from
undulation of the underlying cholesteric layers.

We can build a HH-type model of the planar anchoring
transition in cholesteric shells by estimating the energy scales
associated with imposing an anchoring that induces a tilt in
the existing cholesteric pseudolayers on a local patch of the
emulsion surface. As detailed by M. O. Lavrentovich and Tran
(2020), the free energy of the cholesteric pseudolayers
in a small, flat area of the shell surface can be written in the
form given by Eq. (12). Any antagonistic anchoring would tend
to reorient the pseudolayers. The associated anchoring energy
would have the form of Eq. (16). This anchoring energy induces
an undulatory instability (a modulation of u in a direction
perpendicular to the layers) whenever the anchoring strength

jWj > π
ffiffiffiffiffiffiffiffi
K̄ B̄

p
; see Eq. (12). Moreover, the wave vector

associated with the modulation is qc ¼ ðB̄=K̄Þ1=4ðπ=2lÞ1=2,
withl the size of the deformation region near the droplet surface
(typically on the order of the pitch). For the cholesteric shells
shown in Fig. 13(a), these heuristic arguments give reason-
able estimates for both the critical anchoring strength
(jWj ≈ 10−5 J=m2) and the modulation wavelengths (2π=qc∼
10 μm) (M. O. Lavrentovich and Tran, 2020).
For both the planar and homeotropic transitions, the

anchoring-induced HH instability arises from local geomet-
rical frustration between the bulk layer arrangement and the
prescribed molecular orientation at the interface. Yet the
conformation of the resultant stripes differs between the two
anchoring transitions. For the transition to homeotropic
anchoring, the nucleation of undulated stripes gives a
random patterning, with the topologically required nematic
defects serving as favorable sites for the initial pitch axis

FIG. 13. (a) Cross-polarized micrographs of a thick cholesteric shell in an aqueous solution with 7 mM sodium dodecyl sulfate,
1 wt % polyvinyl alcohol, and 0.1 M sodium chloride that has a focal conic domain texture initially. The pitch is 5 μm.
(i)–(iv) The shell is transferred to another similar aqueous solution, but without sodium dodecyl sulfate, and the texture evolves
over time. (i),(ii) As the outer interface loses homeotropic anchoring strength with surfactant removal to the surrounding
solution, the planar anchoring stripes widen. When the stripes widen to the point of becoming greater than around twice the
pitch (∼10 μm), the planar stripes fill in with perpendicular stripes of a second periodicity that is also around twice the pitch.
Scale bars are 25 μm. (b)(i) Simulations of an initially homeotropic cholesteric shell with a 0.18 μm pitch, a 0.84 μm diameter,
and a 0.18 μm thickness that has a pitch axis oriented along the ẑ axis. (ii) The shell is minimized under planar anchoring
conditions (∼2 × 10−4 J=m2), resulting in a local energy minimum in which the stripes are partially unwound, with a side view
on the left and a top view on the right. Undulations are visible at the poles, where the stripes have unwound. Adapted from
M. O. Lavrentovich and Tran, 2020.
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reorientation. Thus, for the homeotropic transition the pitch
axis is initially radial and tilts to become tangent to the
interface. Since all directions away from radial are equivalent,
the onset of the stripe instability, i.e., the stripe nucleation, is
disordered. For planar transitions, pitch axis reorientation
occurs first at the pitch defects, evidenced by the unwinding of
focal conic domains, where the pitch axis begins to tilt toward
radial. Pitch axis reorientation here is more constrained than
for the homeotropic transition. The shortest path for the
initially tangent pitch axis to tilt is along the plane orthogonal
to the interface that includes the pitch axis. This constraint
results in the onset of stripes being perpendicular to, and
thus ordered by, the starting stripe pattern set by the initially
tangent pitch axis. Note that the presence of topological
defects is not necessary for the anchoring-induced instability
to occur. Although the defects generated by topological
frustration influence the conformation of the stripe instability,
the root cause of the stripe instability remains a local
geometrical incompatibility between the bulk cholesteric
layers and the anchoring condition.

VI. SMECTIC SHELLS

In Sec. V, we introduced the concept of the HH instability in
the context of cholesteric shells, where the instability arises as

a way of reconciling antagonistic boundary conditions. This is
one of the multiple ways in which geometrical frustration can
perturb the structure of a layered system embedded in a
spherical shell. Local curvature and global topological con-
straints can also induce strain in the layers and set off an
undulating response, exemplified by smectic shells with
planar boundary conditions.

A. Planar smectic shells in experiments

The first study of smectic shells involved bringing
40-octyl-4-biphenylcarbonitrile (8CB) in a planar, spherical
shell close to the nematic-smectic phase transition temper-
ature, where the elastic ratio K3=K1 diverges (Lopez-Leon,
Fernandez-Nieves et al., 2011; Liang et al., 2012). This
operation entails the formation of a bend-free state in which
the nematic defects relocate to the equator. At the transition, a
periodic pattern forms on the shell surface. In Figs. 15(a)
and 15(b) we show cross-polarized micrographs of the lower
and upper hemispheres of the same shell. We see four þ1=2
defects required by topology and inherited from the nematic
state, as described in Sec. V.A. Here the four defects are
equally spaced along the equator. Additionally, two sets of
longitudinal stripes divide the shell into crescent domains. The
first set of stripes connects defects ③ and ④ with semicircles
that run along the upper hemisphere of the shell, while the
second set of stripes connects defects ① and ② with semi-
circles that run along the lower hemisphere of the shell. The
first set of stripes is visible on the upper hemisphere; see the
highlighted crescent domain in Fig. 15(b). The second set of
stripes is also visible in Fig. 15(a), especially in the top half
of the photograph; see the inset in Fig. 15(a). This second set
of stripes is faint because the bottom part of the shell is thinner
than the top. The two sets of lines in each hemisphere are
orthogonal to each other.
This stripe texture results from an intricate interplay of the

curvature of the shell, the local energetic constraint of equally
spaced layers, global topological constraints, and anchoring
conditions. To understand this, first consider the limit of
vanishing shell thickness where there is no frustration of the
smectic layers between the inner and outer surfaces,
as shown in Fig. 15(c). The condition of equal spacing results
in the layers becoming lines of latitude (Blanc and Kleman,
2001). The director aligns along the lines of longitude, tracing
out geodesics [depicted as dashed lines in Figs. 15(c)–15(f)]
(Santangelo et al., 2007; Kamien et al., 2009). In this
situation, there are two þ1 defects at the two poles.
However, each þ1 defect can be split in half, and the upper
and lower hemispheres can be rotated independently, as
shown in Figs. 15(c) and 15(d) (Blanc and Kleman, 2001;
Bates, 2008; Shin, Bowick, and Xing, 2008). The four þ1=2
defects resulting from this simple surgery sit on a great circle
of the sphere [Fig. 15(e)]. The energy difference between the
state with two þ1 defects and those with four þ1=2 defects
comes from the defect core energies and is negligible for large
system sizes. While there is a single state for two þ1 defects,
there is an infinite number of states with four þ1=2 defects.
Thus, generically we expect to see four þ1=2 defects in the
smectic shell, lying along a great circle. Further minimization
of the director energy yields a rotation angle of π=2,

(a) (b)

FIG. 14. (a) Schematic of a cholesteric liquid crystal, with its
pitch axis oriented vertically. Planes S1 and S2 slice into the
cholesteric at an angle to the pitch axis. A curving periodic
texture, called Bouligand arches, is apparent on the surfaces of
the planes. Plane S01 simplifies the pattern on plane S1, high-
lighting how Bouligand arches reveal cholesteric ordering of the
sliced material. Adapted from Bouligand, Soyer, and Puiseux-
Dao, 1968. (b) Schematic of a cholesteric with a vertical pitch
axis is cut into a hill-like shape (side view). Viewing the hill from
the top reveals Bouligand arches that follow a double spiraled
pattern (top view). The double spiraled pattern is emphasized by
black lines. Adapted from Bouligand and Livolant, 1984.
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as depicted in Fig. 15(d). This configuration maximizes the
distances between the þ1=2 defects.
In experiments, however, the shells are three dimensional

and have a thickness that leads to a frustration between the
surface anchoring and the layer spacing. This frustration
involves creating dislocations, layer dilation, or anchoring
violation due to the different curvatures of the inner and outer
boundaries (Lopez-Leon et al., 2012). In a configuration
without dislocations, imposing planar anchoring at the

boundaries necessarily implies layer dilation. Again, this
frustration is precisely the type that leads to the HH mecha-
nism: the smooth texture sketched in Fig. 15(e) is disturbed by
the presence of a set of periodic lines and the rapid variation of
n across these lines. By examining the birefringent texture of
the experimental shells under rotation, it has been observed
that n is tilted by an almost constant angle �β [by a few
degrees for the shell in Fig. 15(a)] with respect to the two-
dimensional director field sketched in Fig. 15(e). Since n is
tilted in opposite directions in two adjacent crescent domains,
the visible lines that separate them roughly correspond to
symmetric curvature walls (Blanc and Kleman, 1999). The
sawtooth periodic undulation of the smectic layers schemati-
cally represented in Fig. 15(f) is yet another HH mechanism
pattern observed at large strains and is connected to the three-
dimensional nature of the shells.
A zero-strain, smectic texture is possible in thick smectic

shells provided that the director tilts away from the outer shell
surface, incurring an anchoring penalty; see Lopez-Leon et al.
(2012). A first approach to relax this additional surface energy
was developed by Manyuhina and Bowick (2015). They
examined the influence of a finite anchoring strength W on
a nematic shell texture with large bending modulus K3 ≫ K1

that is expected to mimic the smectic behavior. Within the
frame of nematic elasticity, they adopted a perturbative
approach for thick shells, starting with the ideal two-dimen-
sional structure in Fig. 15(d), while imposing infinitely strong
anchoring at the shell’s inner surface, as well as allowing
the director to tilt with respect to the tangent plane and to
vary along the shell thickness. Manyuhina and Bowick
proposed a plausible criterion for the onset of director tilting,
which should occur when the shell’s mean curvature κ ¼ 1=R
becomes larger than W=K3. Moreover, they showed that the
axisymmetric texture is unstable beyond this same threshold,
where a spontaneous herringbone texture develops.
This first approach can be complemented with geometrical

considerations based on the elasticity of smectic layers, which
is more in line with the HH model. Indeed, the experimental
results suggest that, in shells with strong planar anchoring, the
strain associated to layer dilation γ is released by undulations
of the smectic layers related to a mechanical HH mechanism
(Lopez-Leon, Fernandez-Nieves et al., 2011).

B. Strain from boundary curvature

Before delving into the specifics of the HH mechanism in
smectic shells, we take a step back and consider more
generally how boundary curvature can strain smectic layers.
Consider an interface with some spatially varying surface
normal ν̂≡ ν̂ðx; yÞ, written in terms of the height field h as
ν̂ ¼ ð−∂xh;−∂yh; 1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∇hÞ2

p
, as depicted schematically

in Fig. 16. For illustrative purposes, consider a simple surface
shape hðx; yÞ ¼ dþ ð2κÞ−1½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2κyÞ2

p
− 1�, where κ is the

mean curvature of the surface and d is the film thickness
at y ¼ 0. For jyj ≪ 1=κ the surface has a parabolic profile
h ≈ d − κy2 along the y direction. Therefore, near the maxi-
mum of the parabola we expand in powers of y and consider
the interaction between the surface and the smectic layers in
the bulk.

(a) (b) 

(c) (d) 

(e) (f) 

FIG. 15. Cross-polarized images of a smectic shell of radius
R ¼ 98 μm and mean thickness h ¼ 1.96 μm. (a) The birefrin-
gent texture at the bottom of the shell is different from (b) the
birefringent texture at the top of the shell due to the different
thickness of these two regions from a density mismatch between
the inner water phase and the smectic. Inset: stripes on the lower
hemisphere after image enhancement. Two stripes are outlined at
the bottom of the inset as a guide for the eye. (c) Schematic of
director arrangements in a two-dimensional smectic shell. Theory
predicts a configuration with two s ¼ þ1 defects organized in a
bipolar fashion. (d) This configuration is energetically equivalent
to any other one that results from splitting the bipolar shell into
two halves using a plane Π that contains the two s ¼ þ1 defects
and then rotating one half with respect to the other one by an
angle that can have any value. (e) All the configurations resulting
from this transformation have four s ¼ þ1=2 defects lying on a
great circle. (f) This smooth texture is only a first-order
description of the configuration observed experimentally, where
a periodic modulation of the smectic layers is observed.
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Using the phase field ϕ≡ ϕðxÞ, the layered structure is
recovered by solving ϕ ¼ na for x, where n ∈ Z labels the
layer and a is the layer spacing; see Fig. 16. Suppose that in an
unperturbed configuration the layers are stacked along the
y direction such that ϕ ¼ y. The layer normal is therefore
N ¼ ∇ϕ=jj∇ϕjj ¼ ŷ. If we have perturbations in the layer
spacing, this may be captured by a small deformation:
ϕ ¼ yþ δϕ. In this case, the layers are still roughly stacked
along the y direction (as sketched in Fig. 16), but with
deviations described by δϕ. Assuming planar boundary
conditions at the interface that prefer an orientation N⊥ν̂,
the surface free energy fs at the interface for small δϕ and
small ∇h is given by

fs ≈
W
2

Z
dx dy ðν̂ · NÞ2jz¼d

≈
W
2

Z
dx dy ½∂zðδϕÞ − ∂yh�2jz¼d; ð17Þ

where W is the anchoring strength. We have substituted
ν̂ ≈ ẑ − ∇h for the interface normal and N ≈ ŷ þ ∇ðδϕÞ for
the layer normal. This surface free energy is minimized for
δϕðy; zÞ ¼ −2κyz, representing a layer dilation with increas-
ing z. Therefore, at the top edge of the film, the layer spacing
experiences a dilating strain γ ≈ 2κd (relative to the spacing on
the bottom of the film), with d the film thickness at y ¼ 0.
This dilation will be energetically costly due to the bulk layer
compression elasticity. The system may relieve this energetic
cost in a variety of ways, including disrupting the layer
structure via dislocations or developing layer undulations, as
illustrated for a generic curved surface in Fig. 16. There one
sees layers mostly stacked along the ŷ direction, but undulat-
ing along x̂ to relieve the strain imposed by the curvature of
the interface.
The details of the layer relaxation are generally complex

since the undulations will coexist with defects and the details
of their interactions are subtle. Analogous issues are seen in

smectic systems confined to wedge geometries (Bartolino and
Durand, 1977a). Yet we can make a basic estimate of the
critical strain γ� (applied along the layer normal N) required to
induce an undulation.
First, note that the layer compression and bending moduliK

and B, respectively, combine to yield a characteristic length
λ ¼ ffiffiffiffiffiffiffiffiffiffi

K=B
p

, which governs the size of the deformations.
This length scale is again the smectic penetration depth,
first introduced in Sec. III.B. Second, the undulation insta-
bility occurs when the layer strain γ exceeds a critical value
γ� ≈ 2πλ=l (or, equivalently, if the layer stress exceeds Bγ�),
with l a characteristic sample size in the direction of the
applied strain. In the case of our simple example of an
interface hðx; yÞ ≈ d − κy2 with the layer normals along the
ŷ direction and the dilation induced by an interface curvature,
l would be the extent of the bent region in the ŷ direction.
However, the critical strain would also depend on the
anchoring strengthW and would generally have a complicated
form. Alternatively, if the layers are arranged such that Nkν̂
and are dilated by a strain along that same direction (similar
to the classic instability shown in Fig. 1), then l would be the
film thickness d and γ� ¼ 2πλ=d, as expected. Furthermore,
depending on the nature of the mechanical deformation, there
may be some modifications to γ� (Napoli and Nobili, 2009).
For instance, the surface tension at a fluid interface may
modify λ, introducing an additional length λ → λþ λs,
with λs ∼ σ=B and σ the surface tension (Williams, 1995).
Nevertheless, the basic scaling γ� ∼ λ=l is predictive in a
wide range of cases in which this mechanical instability is
observed.
Note that the critical strain γ� may be connected to the usual

HH critical field Hc since the strain γ introduces an energy
penalty due to the compression term being proportional to B.
The coefficient jχajH2 is completely analogous to the stress
γB (Delaye, Ribotta, and Durand, 1973; Fukuda and Onuki,
1995). The critical field then is directly related to γ� as

jχajH2
c ¼ γ�B ¼ 2πK

λl
; ð18Þ

which reduces to the γ� ¼ 2πλ=l result. The connection to
the usual HH scenario (described in Sec. III.A.1) also allows
us to extract the characteristic wavelength λ� of the undu-
lations, given by

λ� ¼ 2
ffiffiffiffiffiffiffiffi
πλl

p
; ð19Þ

which is consistent with Eq. (11). The mechanism has the
same character in smectics and cholesterics (Clark and Meyer,
1973), and the discussion in Sec. III.A.1 can be directly
mapped to these strain-induced undulations.
The strain γ may be imposed externally due to a particular

confinement, applied force, or thermal expansion. If the strain
occurs near a curved interface, the interface geometry will
modify the character of the undulations. For instance, in a
smectic with concentric cylindrical layers, a layer dilation
induces an undulation along the cylinder axis. Unlike a flat
geometry, the curvature makes the onset of the undulations

FIG. 16. A schematic of an interface-induced instability in
which a curved, deformable interface (orange) described by a
height field hðx; yÞ induces undulations with a characteristic
wavelength λ� in the blue layered system. At the interface, the
layer normals N prefer to be perpendicular to the interface normal
ν̂. As described in the main text, a curved interface like this will
dilate or compress the layers relative to their preferred spacing t.
The resultant strain may be relieved via layer buckling in a
perpendicular direction.
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more complex, with the shape of the layer playing an
important role (de Gennes and Pincus, 1976).
Now that we understand how boundary curvature can strain

smectic layers enough to trigger the HHmechanism, we return
to smectics in a shell geometry. In the following, we consider
the simpler case of a cylindrical shell and build on that to
interpret the spherical shell data.

C. Cylindrical smectic shells

Consider a smectic slab confined between two cylinders
of radii R and R0 ¼ Rþ h, with h ≪ R and strong planar
anchoring; i.e., n lies parallel to the inner and outer cylinders
along êθ [Fig. 17(a)]. The equilibrium layer thickness is a, and
the appropriate smectic free energy is given by Eq. (3), with N
the layer normal, which maps to n for smectic-A phases,
and 1 − j∇ϕj−1 ¼ 1 − d=a, where d is the actual layer thick-
ness. If the layers were dilated but not curved [∇ · n ¼ 0,
as schematically represented in Fig. 17(a)], their thickness
would increase as dðrÞ ¼ rcRa=R, where cRa is the layer
thickness at the inner boundary. Note that the constant cR is
close to 1 and can be chosen to minimize the energy for the
bend-free state derived from Eq. (3). For h ≪ R, we have
cR ≈ 1 − h=2R, with a smectic free energy per unit length
of fe ≈ πBh3=12R.
Even with an infinite anchoring strength, the elastic energy

decreases when we consider a more general scenario, where
the smectic layers are allowed to curve into an S shape to
maintain the layer spacing, as depicted in Fig. 17(b). Treating
the system as two dimensional with no variation along the
cylinder, we consider the axially symmetric director field
nðr; θÞ ¼ cos ϑðrÞêr þ sin ϑðrÞêθ, where ϑðrÞ is the tilt of the
director and the normal of the layers with respect to the
unit radial vector êr [Fig. 17(b)]. The width of the layers is
dðrÞ ¼ sin ϑðrÞrcRa=R [Fig. 17(b)], and the free energy per
unit length is

fe ¼
B
2

�
1 −

cRr sin ϑðrÞ
R

�
2

þ K
2
ð∇ · nÞ2: ð20Þ

To solve for the tilt angle, ϑ, we write the Euler-Lagrange
equation, which reads

d2ϑ
dr2

¼ c2Rr
4 − R2λ2 − cRr3R= sin ϑ

r2R2λ2 tanϑ
−
dϑ
dr

�
1

r
þ dϑ

dr
1

tan ϑ

�
;

ð21Þ

where we impose the boundary conditions ϑðRÞ¼ϑðRþhÞ¼
π=2 and λ is again the smectic penetration depth λ ¼ ffiffiffiffiffiffiffiffiffiffi

K=B
p

.
The tilt angle ϑðrÞ and the shape of layers can then be obtained
by numerically solving Eq. (21) using standard two point
boundary value methods and optimizing the resulting elastic
energy feðcRÞ as a function of cR. Figure 18(a) shows the
numerical solution ϑðrÞ for R ¼ 100 μm and h ¼ 2 μm,
which are typical values for the shell radius and thickness
of the experimental shells. The relative dilation of the layers
d=a and the free energy density feðrÞ of the ground-state
configuration are shown in Fig. 18. Three different regions
can be distinguished: the layers are slightly compressed in the
thin inner region (highlighted in blue), while dilation is
mostly confined to the outer surface (highlighted in red).
The dilation nearly vanishes in the yellow region between the
two boundary layers.
The fact that dilation is expelled from the bulk is a well-

known phenomenon for layered systems (Blanc and Kleman,
1999). Indeed, comparing the two terms of Eq. (3) reveals that
dilation can be present only in regions where the curvature of
the layers (∇ · n) is of the order of λ−1, i.e., where the layers
rapidly reorient, or near the common focal surfaces of a set
of equidistant layers. That is why the macroscopic textures
of layered systems can be described by an extended geomet-
rical description based on a combination of domains with

(a) (b)

FIG. 17. Schematics of a smectic confined between two
cylinders of radii R and Rþ h. The anchoring is planar on the
confining boundaries. (a) In the absence of dislocations, a radial
texture necessarily induces some dilation in the thickness of a
smectic layer (gray shaded region). (b) The absence of dilation
in the bulk implies that the “orthoradial” thickness of a layer d
varies with the radial coordinate r. However, some dilation is
necessarily ejected to the outer surface.

FIG. 18. (a) Tilt, (b) relative dilation, and (c) free energy
density of a smectic layer as a function of the radial coordinate
r for a shell of 2 μm thickness and inner radius R ¼ 100 μm,
using λ ¼ 3 nm.
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equidistant layers separated by curvature walls of varying
shapes, as illustrated in Fig. 19 (Blanc and Kleman, 1999). If
the “misorientation” angle 2ω of a curvature wall is not too
high, the layers remain continuous. The width of a wall is
thereby 2λ=ω, and its free energy per unit area is

fw ≈
2K
λ

ðtanω − ωÞ ≈ 2Kω3

3λ
: ð22Þ

In Eq. (22) the geometrical construction driven by a strong
planar anchoring at the inner surface yields sin ϑðrÞ ¼ R=r
in the bulk and a tilt ω0 ¼ π=2 − ϑðRþ hÞ ≈ ffiffiffiffiffiffiffiffiffiffiffi

2h=R
p

at the
outer cylinder. The dilation is thus expelled in a curvature wall
that contains most of the elastic energy per unit length,

fe ¼
4Kπh
3λ

ffiffiffiffiffiffi
2h
R

r
: ð23Þ

With this two-dimensional approach, dilation is confined
to the neighborhood of the outer cylinder. However, three-
dimensional distortions of the director field are expected to
further lower the resulting elastic energy. For example, with
degenerate planar anchoring on both cylinders, the elastic
energy can be entirely relaxed when the director is oriented
along the other principal curvature direction, where curvature
is null (Fig. 20).

D. Spherical smectic shells

Geometrical frustration is even more evident in spherical
smectic shells of finite thickness. Contrary to the cylindrical
case considered in Sec. VI.C, the elastic energy cannot be
globally relaxed in a spherical shell. Unlike on a cylinder,
which bends in only one direction, the two principal curva-
tures on a sphere are nonvanishing (and equal). Thus, the
geometrical strain remains, regardless of the layer orientation
with respect to the surface.
We first examine the vanishing thickness limit shown in

Fig. 15(c). Such an ideal smectic sphere has two þ1 defects
located at the north and south poles, and the surface director is
given by n ¼ êθ, written with the usual spherical coordinates
r; θ, and φ and the corresponding unit vectors êr; êθ, and êφ.
As in the cylindrical case shown in Fig. 17(b), a geometrical
construction from the inner sphere of radius R for shells
with finite thickness is also possible, giving rise to a director
field n ¼ sin ϑðrÞêθ � cos ϑðrÞêr, where sin ϑðrÞ ¼ R=r.
The resulting angular misfit of the smectic layer tilt at
the outer surface of a shell of thickness h is still ω0 ¼
arccosR=ðRþ hÞ ≈ ffiffiffiffiffiffiffiffiffiffiffi

2h=R
p

, as it was in the cylindrical shell.
Therefore, the resulting half-curvature wall located at the outer
sphere has an elastic energy

Fe ≈
4πðRþ hÞ2K

3λ
ω3
0: ð24Þ

However, this azimuthally homogeneous geometry is not
optimal, since it still has significant elastic distortion with
high energetic costs. Taking inspiration from the experimental
images of Figs. 15(a) and 15(b), we now consider other
textures where the smectic layers are no longer rotationally
invariant around the z axis. These textures can be geometri-
cally constructed, and we show here that they have lower
elastic energies than in the homogeneous case.
Consider the texture sketched in Fig. 21(a). This texture is

one of the simplest geometric constructions that shares several
features with the experimental shells shown in Fig. 15. It
consists of pairs of crescent domains repeated along the
azimuthal angle φ with a period Δφ ¼ 4χ. The crescent
domains are separated by π=χ curvature walls, denoted as
Πχ in Fig. 21(c), which account for the layers roughly tilted by
an angle β with respect to the latitude lines. The elementary
texture in −χ ≤ φ ≤ χ is issued from a director field defined
at φ ¼ 0 (arbitrarily chosen) for R ≤ r ≤ Rþ h:

nðr; θ;φ ¼ 0Þ ¼ R cos β
r

êθ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

R2cos2β
r2

r
êφ: ð25Þ

This field shows several attractive features at φ ¼ 0. (See
the Appendix for additional details.) First, this construction
exactly ensures planar anchoring on the inner and outer
spheres. Second, the director field’s dependence on r main-
tains that the smectic layers are fully perpendicular to the
spherical shell’s surfaces (Lopez-Leon et al., 2012) at the
φ ¼ 0 meridian. The cross-section width w of the smectic
layers in the plane φ ¼ 0 increases with r [Fig. 21(c), blue
plane], which is similar to Fig. 17(a) for the cylindrical case.

FIG. 19. Schematic of smectic layers with curvature walls
separating domains in which n displays opposite orientations
�ω. If ω is not too high, the smectic layers undergo a continuous
bend across the wall.

(a) (b)

FIG. 20. Schematic of smectic layer arrangements in a cylin-
drical shell. In three dimensions, the distortion of the smectic
layers is efficiently relaxed by an overall rotation of the layers,
which is allowable when the anchoring is planar degenerate.
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Yet the actual thickness of the layers wêθ · n is constant with r.
(See Fig. 37 in the Appendix.)
Is a neighboring set of parallel layers compatible with the

smectic-A elastic field in a spherical shell? How far can the
layers extend along φ without defects? To answer these
questions, first note that the director field unambiguously
defines straight lines made of the smectic layer normals in a
neighborhood of φ ¼ 0, as long as β ≠ 0; see the Appendix.
These lines defining the smectic layer normals can remain
straight in a significant part of the shell thickness, but not
within a region above the inner sphere, beyond some critical
rc and φc. In this subregion, to accommodate the spherical
curvature the set of straight layer normals has to be adjusted to
follow tangents of great circles in the sphere. These tangent
lines are the ones issued from ðR; θ; 0Þ, tangent to the director
nðR; θ; 0Þ; see Fig. 21(b). Since great circles are geodesics of
the sphere, this construction ensures that the corresponding
layers remain parallel to each other while being perpendicular
to the inner sphere (Blanc and Kleman, 2001).
The field defined from φ ¼ 0 depends solely on the angle β.

However, the field cannot be extended to the entire shell
without additional defects. The closest singularity point in
the azimuthal direction can be analytically determined; see

the Appendix. It has the following spherical coordinates: rc,
π=2, and φc, with rc ¼ R= cos β and sinφc ¼ sin2 β. The bulk
elastic energy diverges at such singularities. These singular-
ities can only be safely neglected if the crescent angle χ is
upper bounded by φc.
Taking this constraint into account, we consider the energy

of this entire geometric construction as a function of two
free parameters β and χ. The total energy FT accounts for the
half-curvature walls present at the outer sphere, as well as for
the Πχ walls between the crescent domains. FT can be
computed using the values of both the misfit angles at the
outer shell surface and the angles of the Πχ walls using
Eq. (22). The tilt of the layers ωe at the outer surface is zero at
φ ¼ 0 (by construction) and increases with φ. This construc-
tion thereby favors low values of χ, resulting in narrow
crescent domains. However, narrow crescent domains also
require an increasing number of Πχ walls (whose misfit
angle ωχ ∼ β depends only weakly on χ). At a given β value,
the total energy FT therefore decreases with χ, which tends to
favor χ ∼ φc.
For the experimental values R and h of the shells that

we examined, the minimization of FTðβ; χÞ shows a large
reduction in the elastic energy compared to Eq. (24); see
Fig. 40 in the Appendix. Moreover, we can obtain from our
experiments the period and amplitude of the smectic texture,
which are highly dependent on the shell thickness. As the
shell becomes thicker, the angular period decreases and the
wavelength of the undulations increases, resulting in fewer
crescent domains. This effect can be qualitatively seen in
Figs. 22(a)–22(c), where the number of crescent domains
dividing a shell decreases as the normalized thickness h=R
increases. Additionally, the tilt angle β inside the domains
concomitantly increases with the thickness. Figure 22(d)
shows the evolution of these parameters as a function of
the normalized thickness h=R. The experimental measure-
ments compare well with the numerical values obtained by the
minimization of FTðβ; χÞ.
Note finally that these geometric considerations are appro-

priate for studying the ground state of a thick smectic shell for
which h=R > γ� is much above the critical strain to induce the
initial mechanical HH instability. It would also be interesting
to study thin shells and to observe the onset of the instability.
The wavelength λ� of the initial instability should be given by
Eq. (19). For example, at the equator the relevant length scale
over which the mechanical deformation occurs is simply the
shell circumference 2πR, so we would expect λ� ≈ 5 μm for
the λ ≈ 30 Å layer spacing of 8CB confined to a shell with
radius R ¼ 100 μm, for example. This is consistent with the
spacing of the initial curvature walls; see Fig. 22(a).
In addition to the quantitative changes observed for the

amplitude and period of the instability, a further increase of the
shell thickness entails deeper structural changes. In thin shells,
only the primary curvature walls previously considered can
be distinguished, and the modulation is simple [Fig. 22(a)].
However, in thicker shells primary curvature walls with a large
tilt angle (β > 10°) are filled in with secondary curvature walls
having a few degrees of tilt to form a herringbone texture
[Fig. 22(b)], and the secondary curvature walls can be further
patterned by tertiary curvature walls with increasing shell

(a)

(c)
(b)

FIG. 21. (a) Spherical coordinates used to describe the smectic
textures of a shell. (b) The director field nðr; θ;φ ¼ 0Þ defined on
the φ ¼ 0 plane is used to construct the director field in its
vicinity (blue lines). The region of the shell near the inner surface
is complemented with a set of lines (yellow) tangent to each great
circle (denoted as a green line) issued from nðr ¼ R; θ;φ ¼ 0Þ.
For clarity, the same construction is later shown for an oversized
shell. (c) The field of normals thus constructed defines parallel
smectic layers (green surfaces) that are devoid of defects in a
limited neighborhood −χ < φ < χ, but the process can be
iterated periodically along the azimuthal direction (shown here
for the region −3χ < φ < −χ) at the cost of additional curvature
walls Πχ of tilt misorientation ωχ . The latter tilt misorientation
remains close to β in following our experimental conditions.
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thickness [Fig. 22(c)]. Observations of the light extinction
between crossed polarizers show that each set of walls is
roughly perpendicular to the average orientation of the
modulated layers. In thick shells, this hierarchical organiza-
tion is broken and is replaced by a complex texture made of
focal conic domains [Fig. 22(c)(ii)] reminiscent of the ones
observed in large single spherical droplets with planar
anchoring (Fournier and Durand, 1991; Blanc, 2001; Blanc
and Kleman, 2001).
The appearance of the secondary and tertiary patterns in

thick shells can be qualitatively understood in the previously
discussed geometrical framework. After the first instability,
the tilt ωe of the layers at the outer spheres has strongly
decreased but is almost nowhere null. The layers are roughly
tilted with an angle �β1 with respect to the latitude lines.
Iterating the process with smaller angles β2 allows for the
decrease of ωe once again, at the cost of additional curvature
walls of smaller energy. The dilation that was localized only at
the outer sphere in the rotational invariant construction is then
strongly reduced, while a part of it is redistributed in the entire
shell in the form of misorientation walls.
The smectic layers, antagonized by the system’s spherical

geometry, form periodic structures to maintain their preferred
spacing, patterning the shell with curvature walls. The wave-
length of these structures increases, and they are filled in by
hierarchical patterns with increasing shell thickness, similar in
spirit to the undulations observed in planar anchoring tran-
sitions of cholesteric shells. The incompatibility of the shell
curvature with the smectic layers and the emergent, periodic
textures that result exemplify how geometrical frustration is at
the core of the HH mechanism.

VII. OTHER CAUSES OF THE HH MECHANISM

The liquid crystal shells examined in this review underwent
the HH instability due to frustration from topological con-
straints, changes in anchoring conditions, and boundary

curvature. Other systems have also been found to demonstrate
different sources of frustration, including layer spacing
changes due to phase transitions and sample thickness
incompatibility with the layer spacing, which can be described
by the classic strain response of HH. Before reviewing other
phenomena that fall into the HH umbrella, we note that there
are other possible contributions to the HH mechanism in
lamellar systems.
A prominent example is the work of Loudet et al. (2011) on

smectic-C� films. Recall that, unlike the smectic-A phase,
a smectic-C phase has its nematic director canted at a nonzero
angle with the layer normal, and the projection of the director
onto the plane of the layers is referred to as the c director.
Finally, a smectic-C� phase has the same geometry as smectic-
C on each layer, but because of intrinsic chirality the c director
rotates from layer to layer. The period of the c rotation is
typically much longer than the period of the smectic layers
and will not alter the ensuing discussion (Meyer et al., 1975;
Selmi et al., 2017). A geometrical mismatch occurs at the
smectic-A to smectic-C transition, where the molecules tilt
relative to the smectic layer normal, thereby decreasing the
layer thickness. Indeed, in thin films of the smectic-C phase,
the meniscus exhibited stripes that appeared to correlate to the
interface shape, and Loudet et al. (2011) hypothesized that
these structures were the result of the HH instability. The
bright-field image in Fig. 23(a) shows the meniscus of a
compound in the smectic-C� phase (SCE-9, fromMerck in the
UK, at 25 °C). Here the stripes are attributed to splay
deformations of the c director induced by frustration from
the surface (Meyer and Pershan, 1973). Note that particles
within smectic-C thin films are also found to induce similar
structures due to thickness gradients created by wetting of the
inclusions (Conradi et al., 2006; Harth and Stannarius, 2009;
Gharbi et al., 2018).
Another factor that can affect the HH mechanism is saddle

splay. Saddle splay is an oft-neglected term in the Frank
free energy because it is a total derivative that, by Stokes’s

FIG. 22. Effect of the shell thickness in the smectic texture. (a)–(c) Cross-polarized images of smectic shells with a normalized mean
thickness h=R ¼ 0.020, 0.036, and 0.145, respectively. The focus is set on the top of the shell (the thickest region). The insets highlight
(a) primary curvature walls (h=R ¼ 0.020), (b) secondary curvature walls (h=R ¼ 0.036), (c)(i) tertiary curvature walls (h=R ¼ 0.145),
and (c)(ii) focal conics (h=R ≈ 1) in smectic shells. (d) Evolution of the angular width of the crescent domains 2χ and the tilt of the layers
β of a smectic shell as a function of its relative thickness h=R. The experimental points (filled circles) are compared to the results of the
minimization of FTðβ; χÞ (empty squares).

Christophe Blanc et al.: Helfrich-Hurault elastic instabilities …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 015004-23



theorem, contributes at the system’s surface. However, when
topological defects form, they also provide additional boun-
daries in the sample between the defect core and the ordered
surrounding. Classic studies of the saddle-splay term in
nematics use thin nematic films with hybrid anchoring, where
there are homeotropic and degenerate planar conditions on
the two confining surfaces. In this case, the saddle splay
contributes to a stripe instability (Sparavigna et al., 1992;
Sparavigna, O. D. Lavrentovich, and Strigazzi, 1994). We
would expect analogous contributions at, say, the interface of
a cholesteric if the interface prefers a different orientation of
the layers than the bulk. The saddle-splay contribution in the
case of uniformly spaced smectic layers is proportional to the
Gaussian curvature of the layers and, according to the Gauss-
Bonnet theorem, becomes a purely topological contribution.
As such, we do not expect it to be pertinent for small
undulation instabilities (Ishikawa and O. D. Lavrentovich,
2001a), but it certainly contributes when the layered system
develops cusps and folds (DiDonna and Kamien, 2003). The
saddle-splay term also plays a role if the nematic order is
distorted at a fluid interface. For instance, in the case of thin
nematic films with deformable boundaries, the saddle splay is
also involved in the onset of stripe instabilities, which have
been of continued interest since the early 1990s (Sparavigna,
O. D. Lavrentovich, and Strigazzi, 1994; Delabre et al., 2008;

Manyuhina, Cazabat, and Ben Amar, 2010; Manyuhina and
Ben Amar, 2013; Barbero and Lelidis, 2015).
Finally, an incompatibility between the layer number

and the sample thickness can also trigger undulations. The
boundary condition may force the system to have an integer
number of layers between the top and bottom of a film. This
creates an intrinsic strain on the layers if the film thickness d is
not an integer multiple of the preferred layer size t. If the
sample has a deformable surface, the surface itself will
undulate and the surface tension σ will play a role in
determining the onset of the instability, as shown in a study
of a block copolymer system by Williams (1995). Layer strain
induced by the incompatibility of the system thickness with
the number of layers was also simulated in cholesterics
(Machon, 2017). The induced corrugations on the interface
from undulation instabilities are ubiquitous across systems
with periodic ground states.
In summary, the interface plays an essential role in the

undulation of layered systems, as it provides a mechanism for
applying strains to the system through anchoring conditions,
surface tension, and boundary curvature, among other sources.
The HH mechanism in turn typically modulates the shape of a
deformable interface, thereby introducing corrugations. These
features may be understood by taking into account the basic
elastic properties of the layered system (i.e., layer bending and
compression), along with the anchoring energy and surface
tension at the interface. In any individual case, the energetic
contributions from the anchoring conditions, the surface
tension, and the bulk elasticity must be accounted for. The
complex interplay between the various contributions generates
a great number of variations on this theme of geometrical-
frustration-induced undulations.

VIII. HELFRICH-HURAULT MECHANISM:
HERE, THERE, AND EVERYWHERE

As seen in the systems we have reviewed thus far,
undulations in smectics and cholesterics are induced by
geometrical frustration, with important and often neglected
contributions from deformable boundaries, interfacial curva-
ture, and surface anchoring conditions. However, similar
responses to bulk and surface incompatibilities are also
prevalent in other materials with periodic ground states.
The same mechanisms can be extended to account for
phenomena seen in both biological and other synthetic
systems. We now demonstrate the ubiquity and utility of
the HH mechanism by reviewing undulating responses across
a wide array of materials that extends beyond the traditional
smectic and cholesteric phases.

A. Twist-bend nematic phases

Liquid crystal phases formed by banana-shaped, bent-core
mesogens undergo the HH instability through undulation of
their structures in response to mechanical stress, such as the
application of electric and magnetic fields or a reduction in
layer spacing with decreasing temperature. Depending upon
their rigidity and the presence of system chirality, bent-core
molecules can form more than 50 types of liquid crystal
phases, including a wide range of layered liquid crystals,

(a) (b)

(d) (e)

(c)

FIG. 23. (a) Bright-field (transmitted light) optical micrographs
of the meniscus of a smectic-C� film (compound SCE-9,
T ¼ 25 °C). (b) Interferogram of the sample at the same location
as in (a). Obtained using phase shifting interferometry, it reveals
distorted interference fringes. (c) Superposition of the micro-
graphs in (a) and (b) showing how the c-director splay distortions
seen in the bright field correspond to the interface undulations
captured by the interferogram. (d) Polarized micrograph of the
smectic-C� meniscus reveals two regions: region 1 exhibits radial
stripes that are also shown in (a), and region 2 shows a two-
dimensional structure of focal conic domains. (e) Schematic
depicting the HH instability as a possible origin of smectic layer
undulations from the smectic-A–smectic-C phase transition (left-
panel, before the transition; right panel, after the transition). After
the phase transition, the director tilts with an angle θ, causing the
natural layer spacing of a0 to reduce to a0 cos θ. Although the
phase transition causes a decrease in the natural layer thickness,
the gradient in meniscus thickness fixes in a certain number of
dislocations in the system, thereby fixing in a certain number of
layers and the thickness. A mechanical stress analogous to a
dilation of the smectic-C layers results from this incompatibility,
triggering undulations to accommodate the director tilt. Adapted
from Selmi et al., 2017.
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among them smectic and cholesteric phases (Fig. 24) (Jákli,
O. D. Lavrentovich, and Selinger, 2018). Strains on the
periodic structure of these smectic and cholesteric phases
will undergo the HH mechanism, similar to the previously
discussed systems. However, banana-shaped molecules can
also form a twist-bend nematic phase [Fig. 24(b)] in which the
director follows a helicoid at a constant oblique angle with
respect to the helical axis, resulting in twist and bend
deformations throughout the system. Twist-bend nematics
have a nanoscopic, molecular-scaled pitch but can create
periodic textures on the micron scale, depending on the
system thickness. We focus here on the HH mechanism
exhibited in twist-bend nematics.
The model bent-core molecule first studied is 100; 700-bis(4-

cyanobiphenyl-40-yl)heptane (CB7CB). CB7CB within a
glass cell treated for planar anchoring can form focal conic
domains that are reminiscent of those observed in smectic
phases [depicted in Fig. 25(b)]. Friedel and Grandjean (1910)
established that the presence of focal conic domains represents
a phase with one-dimensional positional ordering. However,
x-ray diffraction and deuterium magnetic resonance measure-
ments of CB7CB reveal no density modulation while sug-
gesting some form of chirality in the system (Cestari et al.,
2011). These findings led Cestari et al. to be the first to
conclude that CB7CB is a twist-bend nematic. Like choles-
terics, twist-bend nematics can form a pseudolayer structure
defined by the pitch [Figs. 24(b) and 24(c)].
Both CB7CB and KAð0.2Þ [another twist-bend nematic

material, composed of 20 mol % 100; 900-bis(4-cyano-20-
fluorobiphenyl-40-yl)nonane added to a mixture of five odd-
membered liquid crystal dimers with ether linkages containing
substituted biphenyl mesogenic groups (Adlem et al., 2013)]
can generate optically detectable stripes within planar glass
cells [Fig. 25(a)]. The stripe periodicity is micron scaled, at
least an order of magnitude larger than the measured pitch
of the twist-bend nematic’s conical helix. The stripe perio-
dicity also depends on the system thickness, and the stripes are
not thermodynamically stable. For samples with nonzero
dielectric anisotropy, the stripes could be eliminated by
applying an electric or magnetic field. Only upon decreasing
the temperature of the system afterward would the stripes
return (Borshch et al., 2013; Challa et al., 2014). That this
periodicity is larger than the phase’s intrinsic periodicity and
that the stripes are not thermodynamically stable are both

properties reminiscent of the HH instability in smectics and
cholesterics.
Stripes and focal conic domains dependent upon system

thickness or process history are signatures of the HH insta-
bility, as exemplified by the previously discussed smectic and
cholesteric shells. Challa et al. (2014) used a coarse-grained
model of twist-bend phases to describe the optical stripes seen
for both CB7CB and KAð0.2Þ. The framework of the HH
instability is then applied [Fig. 25(c)] to capture the critical
magnetic field strength necessary for stripe elimination and to
estimate the elastic properties of CB7CB and KAð0.2Þ (Challa
et al., 2014). Notably, the undulations in twist-bend phases are
hypothesized to be created by the shrinking of pseudolayers
from decreasing the system temperature, reminiscent of the
stripe formation in smectic-C menisci.
Last, we note that twist-bend nematics are also the first

example of a fluid with local polar order without density
modulation, and measurements on structures generated by the
HH mechanism confirm this. Pardaev et al. (2016) performed
light scattering on a twist-bend nematic sample exhibiting
parabolic focal conic domains that nucleated from the HH
instability to detect the existence of this local polar order,
evidenced by a second harmonic signal that is absent in the
parabolic focal conic domains of smectic-A phases. Again
structures attributed to the HH instability since the 1970s, such
as parabolic focal conic domains in smectics and cholesterics,

(a) (b) (c)

FIG. 24. Schematics of bent-core molecules (leftmost) forming
(a) a nematic, uniaxial liquid crystal (N), (b) a twist-bend nematic
with an oblique helicoid (Ntb), and (c) a cholesteric (chiral
nematic N�) liquid crystal with a right helicoid. The pitch for Ntb
phases is typically on the order of 10 nm. Adapted from
Mandle, 2016.

(c)

(a) (b)

FIG. 25. (a),(b) Micrographs and (c) schematic of stripes formed
by bent-core molecules in the nematic twist-bend phase, sand-
wiched between a 10-μm-thick planar cell. The micrographs in
(a) and (b) are KAð0.2Þ and CB7CB, respectively. (a) KAð0.2Þ
has stripes shown through cross-polarized light microscopy that
are also distinguishable by the diffraction pattern in the top inset.
The white arrow indicates the direction of rubbing. Bottom
inset: modulation of the helical axis of KAð0.2Þ, which is
enlarged in (c). (b) The stripes in CB7CB are more complex,
generating arrays of focal conic domains. The period of stripes
in (a) and (b) are proportional to the cell thickness. (c) The
thickness-dependent stripes in twist-bend phases are well cap-
tured by the HH model illustrated in the schematic. The thickness
of the pseudolayer p is the pitch of the conical helix. The
direction of the heliconical axes (short lines) undulate in the x
direction, with a period l. Adapted from Challa et al., 2014.
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are being found in recent phases, like the twist-bend nematic
phase, illustrating the pervasiveness and relevance of this
mechanism in partially ordered systems.

B. Lyotropic liquid crystals

A significant class of materials that also exhibits spatially
modulated phases including cylindrical, layered, and foamlike
configurations is lyotropic liquid crystals, which are collec-
tions of amphiphilic molecules in a solvent. The mixtures can
involve multiple components but often include surfactant
molecules and a solvent mixture that may contain salts or
organic compounds, such as cyclohexane or alcohols. The
thermodynamic phase of these materials is controlled by the
concentration of the solute (typically the surfactant molecule),
along with the temperature. A good phase diagram is shown
in Fig. 26. Note that at sufficiently low temperatures T we
transition between a series of various ordered phases as we
increase the concentration ϕ of the amphiphile in solution.
The typical sequence of phases starts with a dilute micellar
solution at low concentrations transitioning to a hexagonal
arrangement of micellar cylinders at higher concentrations,
then to a lamellar arrangement (or a bicontinuous phase Q,
shown in Fig. 26), until finally transitioning to an inverted
micellar cylinder phase at high concentrations. All of these
ordered phases are spatially modulated structures with some
characteristic length of spacing λ. As such, frustration
imposed on the system that competes with the spacing λ
may lead to undulation instabilities.
The aqueous nature of lyotropics allows one to strain the

system in myriad ways, including via shear flows and doping
with nanoparticles, which may in turn be controlled with
electric or magnetic fields. Many of these perturbations result
in the HH mechanism because the lamellar phase (Lα in
Fig. 26) is for all intents and purposes equivalent to the
previously described layered smectics and cholesterics. For
the lyotropic lamellae, shear flow may be applied to induce
layer undulations (Diat, Roux, and Nallet, 1993; Marlow and

Olmsted, 2002). At small shear rates, the buckling instability
may be directly related to an undulation produced by a dilative
strain, with a characteristic length given by λc ∼

ffiffiffiffiffi
λl

p
, where λ

is the lamellar spacing and l is the sample thickness (Zilman
and Granek, 1999). It is also possible to induce undulations in
these smecticlike states via confinement that is incompatible
with a particular number of layers, which then reduces the
problem to essentially an identical analysis as a smectic liquid
crystal in a cell (MacKintosh, 1994).
Under larger flows, the lamellar phase may break up into a

packing of multilamellar vesicles (Diat, Roux, and Nallet,
1993; Gulik-Krzywicki et al., 1996; Sierro and Roux, 1997)
or analogs of focal conic domains (Pommella, Caserta, and
Guido, 2013). An example of the resultant structure is shown
in Fig. 27(a). Under these more extreme shear conditions,
interesting intermediate phases may also form, including a
phase in which multilamellar cylinders orient along the shear
direction (Zipfel et al., 2001). These multilamellar cylindrical
structures may in turn also exhibit undulations via, for
example, the alteration of the spacing between lamellae or
an induced curvature (Santangelo and Pincus, 2002).
The cylindrical phases (HI and HII in Fig. 26) also have

interesting ground states that can undergo the HH mechanism.
The characteristic size λ between adjacent pairs of cylinders
may be frustrated by an applied strain or cylinder reorienta-
tions under flow or applied fields. The cylinders may
accommodate these strains by undulating or buckling. It is
also possible to induce undulatory instabilities in the cylin-
drical phases by, for example, doping the phase with magnetic
particles and then reorienting the phases with an applied
magnetic field. At high fields, a herringbone structure is
observed, as shown in Fig. 27(b) (Ramos, Fabre, and Fruchter,
1999), that is reminiscent of the herringbone structures we see
in smectic shells (described in Sec. VI.A).
Given the multicomponent mixtures involved in forming

the lyotropic phases and the complex set of interactions in
forming the ground states with an associated characteristic
length λ, it is difficult to model these systems without resorting

FIG. 26. Mean-field phase diagram of amphiphillic molecules in
solution. The various ordered phases are indicated. The dark
regions have two-phase coexistence. We focus particularly on
undulations in the Lα lamellar phase and in the hexagonal
columnar phase HI. Adapted from Gompper and Klein, 1992.

FIG. 27. (a) Freeze fracture electron microscopy section of a
lyotropic lamellar phase after an applied shear. The lamellae turn
into a dense packing of multilamellar “vesicles.” Adapted from
Gulik-Krzywicki et al., 1996. (b) Polarized microscopy image of
a lyotropic columnar phase (HI in Fig. 26) undergoing an
instability to a herringbone pattern. This is achieved by doping
the material with magnetic nanoparticles and applying a field B
(blue arrow) that acts to reorient the cylinders. Adapted from
Ramos, Fabre, and Fruchter, 1999.
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to a phenomenological description. One possibility is to use
molecular dynamics simulations. However, even simple,
single lipid bilayers present challenges, even with the rapid
advancements in computational tools (Moradi, Nowroozi, and
Shahlaei, 2019). To our knowledge, there are no existing
detailed microscopic models of these HH-like responses in
lyotropic materials.

C. Diblock copolymers, polymer bundles, and sheets

Block copolymers also exhibit ordered lamellar phases
similar to lyotropic liquid crystals (Fig. 26). However, unlike
lyotropics, block copolymers typically have a fixed density.
Therefore, tuning between different ordered phases is
achieved by changing the structure of the constituent polymers
themselves instead of varying the concentrations of system
components, as is typically done for lyotropic systems. Here
we focus primarily on diblock copolymers, where two
polymers of A- and B-type monomers are grafted together.
The two A and B segments of the copolymer typically have

some incompatibility, which is captured via a Flory-Huggins
term in the free energy χ

R
ψAðrÞψBðrÞdr, where ψA;B are the

local volume fractions of A- and B-type monomers [taken
to satisfy ψAðrÞ þ ψBðrÞ ¼ 1]. A self-consistent mean-field
analysis of the total free energy does a reasonable job in
predicting the observed phases of these materials, which
include a lamellar phase, a hexagonally packed cylinder
phase, and gyroid phases, among others (Bates and
Fredrickson, 1990; Mai and Eisenberg, 2012). In the weak-
segregation limit, where the A and B portions only weakly
demix, the system is effectively described by a Brazovskii-
type free energy (Brazovskiı̆, 1975; Fredrickson and Helfand,
1987)

fcp ¼
1

2

Z
½rþ ðq − q�Þ2�½ψðqÞ�2dqþ μ

6

Z
½ψðxÞ�3dx

þ u
24

Z
½ψðxÞ�4dx; ð26Þ

where ψðxÞ [as well as its Fourier transform ψðqÞ] describes
the deviation of the relative A=B monomer density from the
well-mixed disordered phase. The unstable mode q� is related
to the wavelength λ� of the AB domains via q� ¼ 2π=λ�. In the
strong-segregation limit, the ðq − q�Þ2 term has to be replaced
with an appropriate interaction term that couples the Fourier
transformed fields ψðqÞ at different modes q (Kawasaki and
Kawakatsu, 1990).
The phases of block copolymers are analogous to the

lyotropic phases highlighted in Fig. 26. Although the lyo-
tropics typically have more dilute phases, such as a suspension
of spherical vesicles, these phases are not achievable in a
block copolymer. The major difference between the two
systems is that the amphiphile concentration ϕ is replaced
by the relative density of the A and B monomers ψ , which
always has some molecular variation due to the block
copolymer molecular structure. We focus primarily on the
lamellar and cylindrical phases to examine the HH instability
in diblock copolymers. For these phases, perturbations of the

system away from the ground state can be examined in both
the weak- and strong-segregation limits.
The lamellar phases of diblock copolymers exhibit the same

undulatory instabilities as discussed for the other lamellar
phases. Uniaxial strain applied perpendicular to the lamellae
leads to the HH instability similar to that found in the classic
smectic and cholesteric systems (Wang, 1994). At large
strains, the copolymer can develop a herringbone structure
reminiscent of that observed in the smectic shells of Sec. VI.D
(Cohen et al., 2000). An important difference is that the
phases of diblock copolymers depend on an interaction
parameter χ and can exhibit a strong-segregation regime
when the A and B portions of the copolymer are highly
repulsive, or a weak-segregation regime when χ is small. Yet
it is possible to perform a perturbative analysis to examine
the HH instability in both regimes. In the strong-segregation
limit, the approach is the same as for magnetic systems,
which we detail later in this section (Sornette, 1987;
Asciutto, Roland, and Sagui, 2005). In the weak-segregation
limit, a smecticlike free energy can be derived by perturbing
away from a uniform stripe phase ψðxÞ ¼ A cosð2πd̂ · x=λÞ,
with d̂ the direction of the stripes or lamellae. The details of
this analysis were given by Matsumoto et al. (2015). It is
also possible to model the HH instability by simulating the
relaxation of a system with the free energy in Eq. (26) under
an appropriate perturbation.
For diblock copolymers, a possible perturbation that indu-

ces an undulation is a strain from an electric field applied
normal to the lamellae. Since the lamellae prefer to lie along
the field, the applied field rotates them. The resultant
undulations may be phenomenologically described by a
smecticlike free energy with an associated HH-like instability
(Onuki and Fukuda, 1995). We note that such a phenomeno-
logical theory has some deviations that are better captured by a
self-consistent field theory treatment (Matsen, 2005; Matsen,
2006), where the basic prediction λ� ∼

ffiffiffiffiffi
λl

p
holds (Matsen,

2006) under certain conditions. However, it is also possible for
the block copolymers to develop an instability at a wavelength
that is close to the lamellar spacing itself (λ� ∼ λ). The
undulations may also occur in two dimensions, creating a
square lattice of deformations that are reminiscent of the
parabolic focal conic domains detailed in Sec. III.B (Xu et al.,
2005; Tsori and Andelman, 2008).
In general, the layer reorientation mechanism of diblock

copolymer systems under an applied field is complex, and
there is a sustained interest in elucidating all of the possible
regimes (Orizaga and Glasner, 2016). One may observe some
of the subtleties in Fig. 28(b), where three different regions are
identified in a single sample, under the same applied field.
Despite the variety in the morphology of the instability, in all
cases we observe a frustration between some applied strain
and the equal layer spacing of the ground state, as with the
other systems considered in this review.
The columnar, or hexagonal, phases of diblock copolymers

also exhibit HH-like instabilities. Applying a uniaxial strain
perpendicularly to the length of the cylinders may induce
undulations as the cylinders try to maintain the same spacing
under strain [Fig. 29(a)]. The resultant instability in the
cylinders, which is illustrated schematically in Fig. 29(b),

Christophe Blanc et al.: Helfrich-Hurault elastic instabilities …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 015004-27



may be analyzed in the same fashion as the lamellar system
(Hamley, 1994; Pereira, 2002).
A related instability is also found in bundles of elastic

filaments (Bruss and Grason, 2018). The instability arises
there when one has a defect in the hexagonal packing of fibers.
The packing defect, a disclination, is incompatible with the
equal spacing of the cylinders in the packing. The cylinders
then buckle to relieve this frustration (Bruss and Grason,
2018). Depending on the type of disclination, one can
find various deformation modes, two of which are shown

in Fig. 29(b). This is yet another example where geometrical
frustration leads to a spatial modulation, the central theme of
this review.
The Helfrich-Hurault mechanism can also be seen in thin

polymeric sheets, with undulations shown in Fig. 30. The
interfacial undulations of lamellar elastic fluids, detailed in
Sec. VI.B, can be generalized to include the wrinkling of an
elastic sheet. For a polymeric sheet to have undulations, the
single layer of length l is stretched, creating wrinkles in
the material with a characteristic size λ� ≈ 2

ffiffiffiffiffiffiffiffi
πλl

p
that is

similar in form to Eq. (19) (Cerda and Mahadevan, 2003).
While the undeformed system in this case is isotropic, there
is still the characteristic length scale λ ∼ ðB=TÞ1=2 provided
by the bending stiffness B of the sheet and the applied
tension T. In contrast to lamellar liquid crystals, the source
of this length scale is not inherent to the material and
requires external forces (Cerda and Mahadevan, 2003) or
geometrical frustration (King et al., 2012; Paulsen et al.,
2016; Aharoni et al., 2017; Tovkach et al., 2020) to arise.
Despite these differences, the characteristic length in
stretched polymeric sheets is analogous to the characteristic
wavelength in Eq. (11) for either the cholesteric or the
smectic penetration depth. The HH mechanism can thereby
occur in both systems, resulting in corresponding undu-
lation wavelengths.
After these wrinkles form in a single sheet, it is possible

to get secondary undulations. Indeed, the original, primary
wrinkles can be likened to a two-dimensional smectic. The
wrinkles resist deformation and can be mapped to a smectic
liquid crystal energy (Aharoni et al., 2017; Tovkach et al.,
2020). If they are subjected to additional forces or boundary
frustration, these wrinkles can themselves undergo the HH
mechanism in response to strain in the preferred wrinkle
spacing. These secondary undulations would be reminiscent
of those detailed in Secs. V.C and VI.D for cholesteric and
smectic shells, respectively. The diversity of polymeric
systems highlighted in this section demonstrate how the
HH model applies to systems across length scales. Strain
and geometrical incompatibilities can generate spatial modu-
lations in systems varying in size from hundreds of nano-
meters to the centimeter scale.

FIG. 29. Schematics of diblock copolymers under strain.
(a) Uniaxial strain γ applied perpendicularly to the cylinders
in a hexagonal phase of the diblock copolymer results in a HH
undulatory instability of the cylinders, which is similar to that
shown in (b) for bundles of elastic fibers. The bundles exhibit
undulation instabilities as in the columnar phases of the diblock
copolymer (and discotic liquid crystals). The buckling in the fiber
bundles, with characteristic size λ�, comes from geometrical
frustration resulting from the incompatibility of disclinations in
the cylindrical packing and the equal cylinder spacing. Adapted
from Bruss and Grason, 2018.

FIG. 30. Photographs of wrinkles in a stretched elastic sheet
having a characteristic periodicity given by λ� ≈ 2

ffiffiffiffiffiffiffiffi
πλl

p
, with l

the film length and λ ∼ ðB=TÞ1=2 an elastic characteristic length
scale, where B is the bending stiffness and T is the tension in the
film. Note how similar this wavelength is to the classic Helfrich-
Hurault instability size given in Eq. (19). Adapted from Cerda
and Mahadevan, 2003.

FIG. 28. (a) TEM micrograph of a diblock copolymer under a
large uniaxial strain (300%) exhibiting a characteristic herring-
bone structure. This structure may develop from a HH mecha-
nism. Adapted from Cohen et al., 2000. (b) Two snapshots of a
diblock copolymer lamellar phase shown after the indicated
number of minutes under an applied electric fieldE. The lamellae
are initially oriented horizontally, and the applied field reorients
the layers. Three regions are indicated that have different
reorientation behaviors, including an undulationlike mode, but
with a sharp kink that is on the order of the lamellar spacing.
Adapted from Liedel et al., 2015.
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D. Columnar liquid crystals

The HH instability has also been postulated as the striation
mechanism for columnar phases. Cagnon, Gharbia, and
Durand (1984) and Gharbia, Cagnon, and Durand (1985)
were the first to observe an undulation instability in columns
of a thermotropic, discotic liquid crystal forming stripes under
both compression and dilation of the system, reminiscent of
the HH instability of smectics under dilation. They used the
HH model to discover that the curvature elastic modulus
of thermotropic, columnar liquid crystals can be 6 orders of
magnitude larger than that of thermotropic smectics and
nematics, possibly due to column entanglements.
A decade after the work of Cagnon, Gharbia, and Durand,

Oswald et al. (1996) observed similar undulatory behavior in
hexagonal, lyotropic liquid crystals, with strain introduced by
a directional growth apparatus, in which the sample, sand-
wiched between two glass plates, is pulled across a pair of hot
and cold ovens. Compared to the dilation experiments, the
lyotropic system of Oswald et al. underwent undulatory
instabilities due to thermal effects, thereby experiencing
mechanical stress in both vertical and in-plane directions.
Their measurements and calculations further indicated that
the columns in their system are not correlated at large
distances. However, whether that conclusion can be drawn
for thermotropic systems remains unknown due to experi-
mental difficulty in obtaining thermally induced striations in
thermotropic, discotic liquid crystals. Furthermore, isolating
the formation of stripes through macroscopic dilation of
lyotropic systems is challenging because of difficulties in
mitigating water evaporation.
Water evaporation has been suggested as a source of

frustration that could induce undulatory instabilities for
lyotropic systems in more recent experiments. Kaznatcheev
et al., 2007 studied a lyotropic liquid crystal that forms
columns in the chromonic phase. Lyotropic chromonic
mesophases are typically formed by planklike molecules
with aromatic cores surrounded by polar groups that can also
form columns. In water, the molecules form charged columns
by stacking face to face in order to hide their aromatic cores.
Because the interdisk association is through weak, non-
covalent interactions, the assembled columns are polydis-
perse, with their average lengths dependent upon the
disk molecular concentration, the disk ionic strength, the
depletant concentration, and the temperature (Tortora and
O. D. Lavrentovich, 2011).
Kaznatcheev et al. (2007) used a sulfonated benzo[de]

benzo[4,5]imidazo[2,1-a]isoquinoline[7,1] dye as the lyo-
tropic, chromonic liquid crystal and observed stripes appear-
ing after film deposition, exposed to air. The stripe direction
was perpendicular to the column direction, indicating that
the stripes resulted from buckling of the columns. They
described the striations with a HH model, hypothesizing that
the evaporation of water creates mechanical stress in the
system by decreasing the separation between adjacent col-
umns. The excess space caused by the evaporation must be
filled by either adding new columns or tilting the columns.
Creating new columns would generate dislocations that then
propagate throughout the system, which is energetically costly
and slow. However, tilting of the columns could occur rapidly

and thus would be more favorable, which is again reminiscent
of the classic HH instability.
Investigating lyotropic, chromonic systems with gradients

of concentration from water evaporation is desirable to better
validate the HH model as the mechanism of stripe formation.
The so-called coffee ring effect achieves this, in which a
sessile droplet of a particle suspension has an evaporation rate
dependent upon the radial distance to the center of the droplet,
with the highest evaporation rate at the droplet’s contact line
[Fig. 31(a), inset]. This evaporation gradient drives particles
toward the droplet’s outermost rim, subsequently generating a
radial concentration gradient of particles. A sessile droplet of
the lyotropic, chromonic dye, Sunset Yellow, undergoing
the coffee ring effect exhibits a concentration gradient of
the mesogen, resulting in the coexistence of phases within the
droplet [Fig. 31(a), bottom panel]. The columnar phase near
the contact line has radially aligned stripes. Davidson et al.
(2017) measured the light adsorption due to linear dichroism,
revealing that the average director orientation is parallel to the
contact line [Fig. 31(b), right panel]. Domain walls of the
columnar phase are also visible in the left panel of Fig. 31(b),
indicating the presence of undulations that bend the columns
during the evaporation process.
The evaporation of water can be slowed by replacing the

surrounding air with oil. This is accomplished by introducing
a nonionic triblock polymer surfactant with hydrophilic
polyethylene oxide in the ends and a hydrophobic polypro-
pylene oxide in the center, such as Pluronic 31R1. The
surfactant aids the wetting of the aqueous Sunset Yellow
droplet on glass within hexadecane. By slowing the water

(a) (c) (d)

(b)

FIG. 31. (a) Schematic of the evaporation of a particle suspen-
sion within a sessile droplet occurs more rapidly at the droplet
edges, driving particles to the contact line, resulting in the “coffee
ring” effect. The coffee ring effect for an aqueous solution of
Sunset Yellow results in phase coexistence, isotropic (I) near the
center, then nematic (N), and finally columnar (C) when moving
radially outward (bottom). Inset adapted from Larson, 2017.
(b) Domain walls are formed, visible under polarizing micros-
copy (left image), resulting from the buckling of columns (yellow
line, right schematic). Adapted from Davidson et al., 2017.
(c) The coffee ring effect is slowed when the droplet is immersed
in oil instead of air, resulting in the columns forming a neat
nematic phase. (d) Further evaporation leads to a controlled
herringbone texture from the buckling of columns. Bottom
schematics adapted from Lydon, 2010. Cross-polarized micro-
graphs courtesy of Kunyun He.
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evaporation rate, a smooth nematic phase of the columns can be
obtained [Fig. 31(c)]. Further evaporation then generates a
uniform herringbone texture in the droplet [Fig. 31(d)]. As the
solution is progressively concentrated, the existing columns are
extended, creating a differential strain in the mesophase that
results in undulations and buckling of the columns [illustrated
at the bottom of Fig. 31(d)]. The fracturing of the columns is
likely a consequence of bend deformations being more ener-
getically costly than discontinuities, suggesting stronger inter-
columnar association at high dye concentrations.
The herringbone texture can also be found in phases of

more complex molecules like biological polymers, including
DNA. The polarized optical micrographs of condensed
xanthan, poly(γ-benzyl-l-glutamate) (PBLG), and DNA were
investigated by Livolant and Bouligand (1986), who observed
the transition from undulations to a herringbone pattern
(shown for PBLG in Fig. 32). The formation of secondary
domains of periodicity within the herringbone pattern

described by Livolant and Bouligand is evocative of the
formation of secondary domains within smectic shells detailed
in Sec. VI.A. Condensed DNA also exhibits the herringbone
texture (Livolant et al., 1989). Livolant et al. confirmed with
electron microscopy and x-ray diffraction that highly con-
centrated, 50 nm DNA molecules have columnar longitudinal
order and hexagonal lateral order and can also form undulat-
ing patterns (Livolant and Leforestier, 1996). Studies of the
evaporation of DNA suspensions exemplified by Smalyukh
et al. (2006) and Cha and Yoon (2017) produced DNA
textures that should also be describable with the HH model.
The HH instability is prevalent even in aqueous liquid crystals.

E. Biological materials

Undulation instabilities can also be seen in biological
systems at intermediate length scales, such as within systems
of particlelike fibrils like chitin, found in the exoskeletons of
beetles and crustaceans, and cellulose, found within plants.
Both chitin and cellulose, as with the majority of biological
materials, have chiral building blocks. When concentrated
beyond a threshold value, these biopolymers can form
particles that self-assemble into colloidal, cholesteric liquid
crystals (Bouligand, 1972b; Rey, Herrera-Valencia, and
Murugesan, 2014). The cholesteric pseudolayer reorientation
and focal conic domain formation at a curved interface were
seen on the surface of jeweled beetle shells due to the
cholesteric ordering of the constituent chitin, which provides
a mechanism for their structural coloring and optical response
(Sharma et al., 2009; Rey, Herrera-Valencia, and Murugesan,
2014). Cellulose nanocrystals, derivable via acid hydrolysis
from bacteria, cotton, wood, tunicate, etc., can also be
concentrated to form a cholesteric phase (Lagerwall et al.,
2014). Colloidal suspensions of cellulose nanocrystals can be
spread and evaporated to form a solid, dry film with photonic
properties, forming a polydomain, cholesteric structure with a
pitch in the visible wavelength range. Parabolic focal conic
domains reminiscent of those seen in smectics under mechani-
cal strain have been observed in cellulose nanocrystal films
[Sec. III.B (Roman and Gray, 2005; Parker et al., 2018)].
Large magnetic fields can be used during evaporation to form
a single domain with the pitch aligned along the direction of
the magnetic field, as shown in Fig. 33 (Frka-Petesic et al.,
2017). When Frka-Petesic et al. applied a horizontal magnetic
field during drying, with the cholesteric helix aligned per-
pendicularly to the plane of evaporation, they found a zigzag
pattern in the film [Fig. 33(b)]. Although mechanical stress in
the system is applied parallel to the layers in this case, the
zigzag pattern can also be thought of as the result of a HH-type
mechanism. Evaporation during the processing of cellulose
nanocrystal films could further introduce hydrodynamic
stresses that can undulate and strain the cholesteric pseudo-
layers (Chu et al., 2018; Chan et al., 2019), as with the
lyotropic systems of Sec. VIII.B. Cellulose nanocrystals can
additionally be evaporated within spherical confinement,
resulting in HH-like buckling (Parker et al., 2016, 2022).
Generally, biological systems are not only often chiral but

also active, and therefore out of equilibrium (Bouligand,
1972b; Roland, Reis, and Vian, 1992; Sharma et al., 2009;
Rey, 2010; Mitov, 2017; Beliaev et al., 2021). Undulations

(a) (b)

FIG. 32. (a) Textures of the hexagonal columnar phase of PBLG
are shown in polarizing optical micrographs at 120 times
magnification. (i)–(iii) Depiction of evolving texture from un-
dulations to a herringbone pattern. In (ii), regions of maximum
curvature of the PGLA become walls of discontinuity and new
undulations appear within elongated domains. (b) Illustration of
the textural transformation from (i) an undulating pattern to (iv) a
herringbone pattern. Molecular orientations are represented by
solid thin lines, walls of bend deformations (L) are indicated
by dashed lines, and walls of discontinuity (W) are drawn as
thick lines. Bend walls L1 transform into domain wallsW1 as the
molecular concentration increases. The process is repeated
to form secondary domains, where bend walls L2 transform
into secondary discontinuities W2. Adapted from Livolant and
Bouligand, 1986.
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seen in the development of the primary cell walls of plants is
a striking example of a dynamic HH mechanism (shown in
Fig. 34). Activity, including forces generated during growth
processes, introduces hydrodynamic stresses that strain the
chiral ordering of the system [Fig. 35(a)]. Whitfield et al.
(2017) investigated cholesterics from the framework of
active liquid crystals, integrating force-dipole stresses into
a passive, chiral nematic formulation. They found that
extensile stresses can trigger HH layer undulations in
cholesterics. The steady state director fields and their

corresponding velocity fields for varying extensile activity
levels are plotted in Fig. 35(b). Both director fields exhibit
pairs of λ� pitch defects that are reminiscent of defects in
cholesterics shells. Pairs of λ� defects often result from the
HH instability in cholesterics, as detailed in Sec. V. Kole
et al. (2021) advanced this work by showing how active
stresses in cholesterics couple uniquely to the chirality of
the material, thereby generating elastic forces tangent to
the layers. This “odder than odd” elasticity from chiral
activity leads to HH-like undulations that produce a two-
dimensional array of hydrodynamic vortices. Whether
passive or active, the HH mechanism is a viable mechanism
of pattern formation in biological materials.

F. Magnetic systems

Thin magnetic films present an interesting two-dimensional
version of the HH instability. These films can be fabricated
from epitaxial garnet or a thin cobalt slice (Demand et al.,

FIG. 34. Transmission electron micrograph of the elongating
zone of mung bean seedlings (Vigna radiata). The cholesteric
pseudolayers of the cell wall, which are visible through the
Bouligand arches of the cross section, undulate near the interface
where growth of the cell wall takes place (bottom). From Roland,
Reis, and Vian, 1992.

(a)

(b)

FIG. 35. (a) Sketch of the HH mechanism in extensile, active
cholesterics. The black lines show the projection of the director
field onto the plane, while the red lines represent the splayed
pitch axis. The blue arrows show the active flow direction,
which increases the distortion and drives the undulation
instability. (b) Simulation results for an extensile, active
cholesteric confined in a quasi-two-dimensional geometry with
flat walls. Homogeneous planar anchoring is set for both the
top and bottom surfaces. The right column plots projections of
the director field onto the plane, and the left column plots the
corresponding velocity fields. Here ζ is proportional to the
concentration of active particles and is positive for extensile
materials and negative in contractile ones. For both ζ ¼ 0.001
and 0.0025, the profiles are steady states of the system. Adapted
from Whitfield et al., 2017.

FIG. 33. Scanning electron micrographs of cross sections
from evaporated cellulose nanocrystal films. (a) Applying a
vertical magnetic field (indicated by H) upon drying yields a
single-domain, homogeneous cellulose nanocrystal film,
with the pitch axis parallel to the magnetic field direction.
(b) Applying a magnetic field to align the pitch axis hori-
zontally generates a zigzag pattern after evaporation, thereby
indicating buckling of the cholesteric pseudolayers. Adapted
from Frka-Petesic et al., 2017.
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2002). In certain cases, these films have magnetic domains in
the form of stripes or hexagonal arrays of bubbles with a
characteristic size λ that is analogous to the smectic layer
spacing or the spacing between cylinders in a hexagonal phase
of a block copolymer. These domains form when long-range
dipolar magnetic interactions, which favor antiparallel align-
ment of magnetic spins, compete with the usual short-range
ferromagnetic interaction, which tends to align neighboring
spins. This is a typical scenario of short-range attractive and
long-range repulsive interactions necessary to form systems that
exhibit modulated phases. The spatial modulations may then
take the form of stripes, with properties analogous to smectic
liquid crystals or block copolymers.As previously summarized,
such modulated phases exist in a wide range of systems
including phase-segregating lipids, block copolymers, and
ferrofluids (Seul and Andelman, 1995; Andelman and
Rosensweig, 2009).
To understand the instability in a ferromagnetic film,

consider a coarse-grained magnetization field MðxÞ describ-
ing the magnetization in the thin film at some spatial
coordinate x ¼ ðx; yÞ. The free energy for MðxÞ will have
the general form

fM ¼
Z

d2x

�
D
2
j∇Mj2 þ r

2
M2 þ u

4
M4

þ μ

Z
d2x0MðxÞgðx − x0ÞMðx0Þ

�
; ð27Þ

where gðx − x0Þ is a Green’s function for the dipolar inter-
actions and D, r, u, and μ are phenomenological constants
related to the material properties. We generally expect its
Fourier transform to be gðqÞ ≈ −g1jqj, which gives us the
necessary instability for the formation of a modulated phase
with a characteristic wavelength t ¼ 2π=q� ≈ 16π3D=g1μ
(Andelman and Rosensweig, 2009). In general, there are
two types of patterns: an array of circular domains and

uniform stripes. In the case of the stripe ground state, the
free energy in Eq. (27) can be shown to be equivalent to the
smectic free energy in two dimensions (Sornette, 1987;
Asciutto, Roland, and Sagui, 2005). There is then an analog
of the HH mechanism when a magnetic field is applied since a
magnetic field has the tendency to change the characteristic
size t of the domains. Cycling this field or heating the system
has the same dilational effect as a mechanical strain in a
smectic system (reviewed in Sec. III.B). Thus, the HH
instability can also be realized in thin magnetic films.
Examples of the domain shapes that one finds under such
perturbations are shown in Fig. 36.

IX. CONCLUSION

In this review, we spotlight the applicability of the HH
mechanism to a broad range of materials with periodic ground
states. By surveying phenomena in cholesteric and smectic
liquid crystals, we illustrate geometrical frustration in lamellar
systems as a result of sources ranging from applied fields to
boundary conditions. The frustration is then relieved by the
HH mechanism, where undulations produce periodic struc-
tures with wavelengths orthogonal to and larger than that of
the ground state.
By considering examples of cholesteric and smectic shells,

where the liquid crystal is confined between two concentric
and spherical fluid interfaces, we highlight the role of
topological constraints, anchoring conditions, boundary
deformability, and curvature. These factors can both trigger
the HH mechanism and shape the resulting patterns. While
topological frustration necessitates the existence of disconti-
nuities from the global curvature, the HH mechanism cares
only about how the system looks locally. Topological con-
straints can dictate that a frustration exists, but the exact
reaction to the frustration is a question of energetics and local
geometrical incompatibilities. The HH mechanism is then, in
its nature, a response to local geometrical frustration.
The generality of the HH mechanism is evident from

undulation instabilities appearing in periodic systems beyond
the classic thermotropic lamellar phases. These include twist-
bend nematics, lyotropic liquid crystals, and polymers, as well
as biological and magnetic materials. After accounting for
fluid boundaries, the HH mechanism can also describe
phenomena in living matter, where fluid interfaces are
pervasive and activity can strain lamellar structures.
We anticipate that the HH mechanism will become increas-

ingly valuable for understanding the organization of layered
materials. The phases formed by bent-core rods are an enduring
area of investigation, newly invigorated by the experimental
realizations of the splay-bend nematic (Fernández-Rico et al.,
2020; Meyer et al., 2020; Chiappini and Dijkstra, 2021). Future
studies on the structures formed by these spatially modulated
phases will almost certainly rely upon the HH model, as
exemplified by the striations of twist-bend nematics. Moreover,
as the field of active liquid crystals progresses, experimental
realizations of active cholesterics and active smectics will
emerge. The latest theoretical frameworks already invoke the
HH mechanism to characterize lamellar distortions from active
stresses (Whitfield et al., 2017; Kole et al., 2021). Furthermore,
cholesteric liquid crystals remain widely employed in optical

FIG. 36. (a) Micrographs of undulating magnetic domains under
the influence of a cycled magnetic field (top two panels) and a
temperature change (bottom panel). Changing the field or the
temperature effectively dilates the magnetic stripe domains, induc-
ing aHH-like instability. Top two panels fromDemand et al., 2002.
Bottom panel from Seul and Wolfe, 1992. (b) Simulations of thin
ferromagnetic films and two-dimensional block copolymers with
an analogous free energy. Left three panels from Asciutto, Roland,
and Sagui, 2005. Right three panels from Kodama and Doi, 1996.
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and elastomeric materials. With undulations common in the
dynamics of cholesterics, the HH mechanism has the potential
to be leveraged for tunable properties in advanced technologies.
Indeed, recent work has exploited the field-induced undulations
of cholesterics to develop dynamic and switchable diffraction
gratings and surface coatings (Ryabchun et al., 2015, 2019;
Ryabchun and Bobrovsky, 2018; Ryabchun, Lancia, and
Katsonis, 2021). The HH mechanism is a generic but often
overlooked method of pattern formation that has been and will
continue to be integral to the structuring of periodic systems.
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APPENDIX: SPHERICAL SMECTIC SHELLS:
FURTHER DETAILS

In this appendix, we discuss a few additional points and
provide further details on the geometrical and energetic
properties of the smectic textures considered in Sec. VI.D.

1. Construction of the layers

In this section, we derive the parametrization of a smectic
texture that is fully perpendicular to the inner and outer
surfaces of the smectic shell in the plane φ ¼ 0. In this
plane, the geometry of the smectic layers have cross sections
that are shown as blue regions or lines in Fig. 37. As
illustrated in this sketch, the uniform thickness of the layers
constrains the form of the orthoradial director n0 defined at
the points Pðr; θÞ of the region V of the shell
(R ≤ r ≤ Rþ h, 0 ≤ θ ≤ π, and φ ¼ 0, with the same nota-
tions as in Fig. 21):

n0ðr; θÞ ¼
R cos β

r
êθ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

R2 cos2 β
r2

r
êφ: ðA1Þ

The director n0 at φ ¼ 0 also defines the field n in a
neighborhood since the normals of smectic layers are straight
lines. This constructs a two-parameter family Lr;θ of lines

issued from the points Pðr; θÞ and of equations in Cartesian
coordinates,

Xr;θðkÞ ¼ r sin θ þ k
R cos β

r
cos θ;

Yr;θðkÞ ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

R2cos2β
r2

r
;

Zr;θðkÞ ¼ r cos θ − k
R cos β

r
sin θ; ðA2Þ

where k ∈ R, which can be used to parametrize the region
around φ ¼ 0.
The straight lines of the family Lr;θ are the normals of a

one-parameter family Sθ0 of parallel surfaces that can be
written as

Xθ0ðr; θÞ ¼ r sin θ þ R2cos2β
r

ðθ0 − θÞ cos θ;

Yθ0ðr; θÞ ¼ R cos βðθ0 − θÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

R2cos2β
r2

r
;

Zθ0ðr; θÞ ¼ r cos θ −
R2cos2β

r
ðθ0 − θÞ sin θ. ðA3Þ

Each surface is indexed by θ0, which is also the zenithal
angle at which each surface intersects V (the blue lines in
Fig. 37). It is straightforward to verify that the normals of
these surfaces are indeed given by the director field n and that
the equations can be obtained by considering the surfaces
as level sets of Ψ ¼ θR cos β þ k in the parametrization
of Eq. (A2).

2. Extension of the smectic texture along the azimuthal direction

When two straight lines of Lr;θ intersect, the director is not
defined (i.e., defects are present). When β ¼ 0, defects are
already present at V since the lines issued from the points
PðR; θÞ are all contained in V (which is not compatible with
the definition of n0 when r > R). On the other hand, when
β ≠ 0 this is not the case, and a smectic region around φ ¼ 0 is

FIG. 37. Left graphic: cross section of a smectic shell in the
plane φ ¼ 0. We consider layers (in blue) that are perpendicular
to the inner and outer spheres (located at r ¼ R and r ¼ Rþ h,
respectively). The apparent thickness of the layers in plane w
linearly increases with the radius r. Right graphic: because the
actual thickness of the layers wêθ · n is uniform, this constrains
the form of the director to Eq. (A1).
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well defined and devoid of defects. How far can this defectless
region extend? For this, we consider a point M of the
shell of coordinates X, Y, and Z and of radial distance
H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
with R ≤ H ≤ Rþ h, and we look

for the lines of Lr;θ to which it belongs. Equation (A2) gives

r2 þ k2 ¼ X2 þ Y2 þ Z2;

k ¼ Y=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

R2cos2β
r2

r
;

Z ¼ r cos θ − k
R cos β

r
sin θ. ðA4Þ

This yields the quadratic equation (in r2)

r4 − ðX2 þ Z2 þ cos2βR2Þr2 þ cos2βR2H2 ¼ 0; ðA5Þ
which gives two distinct solutions r� when the discrimi-
nant Δ ¼ ðX2 þ Z2 þ cos2 βR2Þ2 − 4 cos2 βR2H2 is positive.
However, it is only when both solutions are in ½R; Rþ h� that
two actual lines issued from the two points Pðrþ; θþÞ and
Pðr−; θ−Þ intersect at M.
For simplicity and without losing generality, we consider

from now on points located at Z ¼ 0, where X ¼ H cosφ and
Y ¼ H sinφ. When φ is small, only the largest value rþ is in
½R; Rþ h�, which defines the director at M. For example,
for φ ¼ 0 we find Δ ¼ ðH2 − cos2 βR2Þ2, the trivial value
rþ ¼ H, and the other value r− ¼ R cos β, which is strictly
less than R. On the other hand, these solutions no longer hold
when φ is large, above some critical value: two lines
emanating from different points of V can intersect at M.
The smallest value of φ, i.e., φc, where this situation occurs
corresponds to the limiting case of a double root (Δ ¼ 0) with
rþ ¼ r− ¼ R. Equation (A4) then yields

H
R

¼ 1

cos β
;

sinφc ¼ sin2β: ðA6Þ
The smectic texture originating from Eq. (A1), therefore,

shows some prohibitive defects beyond φc in thick shells, and

φc is an upper bound value for the parameter χ (which defines
the size of the crescent domains). The presence of Πχ walls is
energetically costly, but such a texture greatly decreases the
tilt angle ωe of the smectic layers at the outer sphere of the
shell; see Fig. 38.
Finally, note that if the straight lines of Lr;θ issued from n0

are sufficient to compute ωe everywhere, they span only the
upper part of the shell when departing from φ ¼ 0 (since
H2 ¼ r2 þ k2 [Eq. (A4)] and r ≥ R). However, the director in
the lower region of the shell is also imposed by n0ðr ¼ R; θÞ
when the condition that the smectic layers must be perpendi-
cular to the inner spherical shell surface is maintained.
Geodesics on a sphere indeed play the same role for the
inner surface as straight lines in Euclidean space. The director
then has to lie on the great circles issued from n0ðR; θÞ; see
Fig. 39. Thus completed, the director field nðr; θ;φÞ and the
corresponding smectic layers can be computed everywhere in

FIG. 38. Computation of the tilt angle ωeðθ;φÞ of the layers at
the external sphere of a shell (inner radius R ¼ 100 μm, thickness
h ¼ 5 μm, and β ¼ 20°) near φ ¼ 0. The tilt angle ω0 of the
rotationally invariant texture is also given for comparison. See the
main text for additional context.

FIG. 39. Smectic layers perpendicular to the inner sphere define
2D smectic bands on this surface. The director has to follow the
geodesics of the sphere (i.e., great circles).

FIG. 40. Comparison of the energy Fe of the rotationally
invariant texture [see Eq. (24)] with the minimization of the
energy FT for a shell of inner radius R ¼ 100 μm and increasing
thickness h.
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the shell for a given pair of values ðβ; χÞ. The tilt angles of the
layers ωeðθ;φÞ and ωχðr; θÞ are respectively obtained from

sinωeðθ;φÞ ¼ jnðr ¼ Rþ h; θ;φÞ · êrj;
sinωχðr; θÞ ¼ jnðr; θ;φ ¼ χÞ · êφj; ðA7Þ

and the total energy FTðβ; χÞ is obtained by integrating
fe ¼ Kω3

e=3λ on the outer sphere and fχ ¼ 2Kω3
χ=3λ at

the Πχ walls. Figure 40 shows that the minimized value
of this energy is much smaller than the energy Fe of the
rotationally invariant shell [Eq. (24)]. The corresponding
ðβ; χÞ parameters are given in Fig. 22(d).
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Meister, R., M.-A. Hallé, H. Dumoulin, and P. Pieranski, 1996,
Phys. Rev. E 54, 3771.

Mermin, N. D., 1979, Rev. Mod. Phys. 51, 591.
Meyer, C., C. Blanc, G. R. Luckhurst, P. Davidson, and I. Dozov,
2020, Sci. Adv. 6, eabb8212.

Meyer, R. B., 1973, Philos. Mag. 27, 405.
Meyer, R. B., L. Liebert, L. Strzelecki, and P. Keller, 1975, J. Phys.
(Paris), Lett. 36, 69.

Meyer, R. B., and P. S. Pershan, 1973, Solid State Commun. 13, 989.
Mitov, M., 2017, Soft Matter 13, 4176.
Moradi, S., A. Nowroozi, and M. Shahlaei, 2019, RSC Adv. 9, 7687.
Mosseri, R., 2008, C.R. Chim. 11, 192.
Napoli, G., and A. Nobili, 2009, Phys. Rev. E 80, 031710.
Noh, J., K. Reguengo De Sousa, and J. P. F. Lagerwall, 2016,
Soft Matter 12, 367.

Noh, J., Y. Wang, H.-L. Liang, V. S. R. Jampani, A. Majumdar, and
J. P. F. Lagerwall, 2020, Phys. Rev. Res. 2, 033160.

Onuki, A., and J.-i. Fukuda, 1995, Macromolecules 28, 8788.
Orizaga, S., and K. Glasner, 2016, Phys. Rev. E 93, 052504.
Oswald, P., and S. Ben-Abraham, 1982, J. Phys. (Paris) 43, 1193.
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