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This review describes the emerging field of waveguide quantum electrodynamics concerned with the
interaction of photons propagating in a waveguide with localized quantum emitters. The collective
emitter-photon interactions can lead to both enhanced and suppressed coupling compared to the case of
independent emitters. Here the focus is on guided photons and ordered emitter arrays, manifesting
superradiant and subradiant states, bound photon states, and quantum correlations with promising
quantum information applications. Recent groundbreaking experiments performed with different
quantum platforms, including cold atoms, superconducting qubits, semiconductor quantum dots, and
quantum solid-state defects, are highlighted. The review also provides a comprehensive introduction to
theoretical techniques to study the interactions and dynamics of these emitters and the photons in the
waveguide.
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I. INTRODUCTION

Atomic systems are well known to manifest collective
effects in their interaction with light (Guerin, Rouabah, and
Kaiser, 2017). If the light wavelength is much larger than
the interatomic distance, atoms can interact with light in a
coherent and collective way; i.e., emitted photons experience
interference that results in enhancement or suppression of the
spontaneous emission. This interference is manifested both in
a single-photon regime and in a nonlinear regime, when a
large number of atoms is excited. It is most easily understood
in the case of a single resonant excitation of N ¼ 2 closely
spaced atoms by one photon. Namely, the electromagnetic
field reradiated by one atom will act upon the other one. This
photon-mediated coupling results in the formation of two
collective atomic states: the superradiant one and the sub-
radiant one. The superradiant (symmetric) state corresponds to
in-phase oscillations of the two atomic dipole moments and
radiates twice as fast. Conversely, the subradiant (antisym-
metric) state has atomic dipole moments with opposite phases
and corresponds to the reduced emission rate. Such enhanced
and suppressed spontaneous emission for two ions in free
space was observed for the first time in 1996 (DeVoe and
Brewer, 1996).
A paradigmatic model for collective emission enhance-

ment, superradiance, is the Dicke model (Dicke, 1954), which
describes photon radiation from a cloud of initially fully
excited atoms when the cloud size is much smaller than the
photon wavelength. Because of collective effects, the excited
N-atom cloud emits light as a high intensity pulse with a
characteristic time shorter than that of an individual atom by a
factor of N and an intensity that is larger by a factor of ∼N2

(Dicke, 1954; Gross and Haroche, 1982; Benedict et al.,
2018). This is the essence of Dicke superradiance. Such
collective radiation is drastically different from the indepen-
dent behavior expected for a dilute ensemble of atoms, where
the spontaneous emission rate remains unchanged and the
intensity scales ∝ N.
However, in realistic atomic clouds collective effects are

hard to observe because of the disorder that leads to random
phases for propagating photons and masks the collective
interference. In this regard, ordered arrays are of special
interest. Recently the rapid development of quantum tech-
nologies (Hammerer, Sørensen, and Polzik, 2010; Chang,
Vuletić, and Lukin, 2014) has led to the emergence of novel
experimental platforms where regular arrays of various
emitters are controllably coupled to a few photons propagating
in a waveguide. These systems can be based on natural or
artificial atoms, such as superconducting qubits or solid-state
quantum dots and defects, and can employ different types of
optical and microwave waveguides (Lodahl, Mahmoodian,

and Stobbe, 2015; Nieddu, Gokhroo, and Chormaic, 2016;
Roy, Wilson, and Firstenberg, 2017; Chang et al., 2018). The
resulting emerging field of research is termed waveguide
quantum electrodynamics (WQED). It offers novel opportu-
nities both for fundamental physics and for quantum infor-
mation processing.
Since photons are confined within the waveguide, atom-

photon interactions become much stronger than in free space,
which is similar to the case of cavity QED. The WQED is also
closely linked to circuit QED, which studies networks of
coupled superconducting qubits interacting with microwave
photons (Gu et al., 2017; Carusotto et al., 2020; Blais et al.,
2021). The distinguishing feature of WQED is the coupling of
quantum emitters to only a single or several propagating
photon modes. This inherently one-dimensional geometry is
beneficial for the cascaded processing of photons, enabling an
efficient generation and detection of quantum states of light
(Prasad et al., 2020). From the fundamental side, WQED
systems can be viewed as artificial media with strong optical
nonlinearities at a single-photon level (Chang, Vuletić, and
Lukin, 2014). The combination of a strong atom-photon
interaction with the light-mediated coupling between atoms
at large distances also makes WQED setups unusual from the
point of view of condensed matter physics. They can act as
quantum simulators of many-body effects ranging from
superfluid–Mott insulator transitions (Shi et al., 2018) to
topological states of matter (Kim et al., 2021) and many-body
localization (Fayard et al., 2021).
There are already a number of topical reviews related to the

waveguide quantum electrodynamics (Roy, Wilson, and
Firstenberg, 2017; Chang et al., 2018; Türschmann et al.,
2019), quantum optics with atoms and fibers (Nieddu,
Gokhroo, and Chormaic, 2016), quantum light-matter inter-
faces (Hammerer, Sørensen, and Polzik, 2010; Lodahl,
Mahmoodian, and Stobbe, 2015), quantum simulations, and
many-body physics with light (Noh and Angelakis, 2017).
State-of-the-art structures for single-photon processing were
reviewed by Uppu et al. (2021). The goal of this review is
twofold. First, we discuss in detail several recent representa-
tive experiments in the WQED setups and beyond, including
demonstrations of tunable photon bunching and antibunching
from atomic arrays (Prasad et al., 2020), generation and
detection of collective entangled atom-photon states (Corzo
et al., 2019), and subradiant atom-made mirrors (Rui et al.,
2020). We also compare different state-of-the-art experimental
WQED platforms. Second, we provide a comprehensive
theoretical background on the cooperative emission effects
and photon-photon interactions for one-dimensional ordered
atomic arrays, starting with the basics and proceeding to
advanced theoretical techniques. Owing to certain similarities
between the Dicke model of quantum optics and the Kondo
model (Leggett et al., 1987), many techniques have been
adopted from condensed matter physics (the Bethe Ansatz)
and quantum field theory (the functional integral approach).
While the Dicke model for photons scattering on two-level
atoms located at exactly the same point can be solved with the
Bethe Ansatz (Rupasov and Yudson, 1984; Yudson, 1985), the
generalized case of nonzero interatomic spacing is still far
from completely understood despite significant recent
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theoretical progress. It manifests a plethora of phenomena
familiar from other fields, such as the formation of bound
photon states, the fermionization of photons, interaction-
induced topological states, and analogs of quantum Hall
phases.
We start in Sec. II.B with a comparison of various

experimental platforms for the waveguide quantum electro-
dynamics that differ according to the choice of natural or
artificial atoms and waveguide realizations. We take a uni-
versal perspective based on the typical numbers of emitters
and the light-matter coupling strength and also provide an
outlook by discussing emerging platforms in Sec. II.C.
Section III presents a detailed theoretical consideration of
hybridized atom-photon states (polaritonic states) in the
waveguide with periodic arrays of emitters. We discuss
collective superradiant and subradiant states and the resulting
correlations between photons scattered on such structures.
Several experimental demonstrations for different platforms
are reviewed in Sec. IV, where we emphasize the demon-
strations of superradiance (Sec. IV.A) and subradiance
(Sec. IV.D), the generation of quantum states of light
(Sec. IV.B), quantum memory applications (Sec. IV.C), and
the physics of Bragg-spaced atomic arrays (Sec. IV.E).
Finally, Sec. V presents the summary and outlook. To make
the main text more accessible, we reserve most of the
theoretical details for Appendixes A–J.

II. WAVEGUIDE-QED SYSTEMS

A. Tuning light-matter coupling in atomic arrays

In this section, we consider various WQED platforms that
have different advantages depending on the waveguide reali-
zation and the type of quantum emitter. For example, both
cold atom arrays and solid-state emitters can be used to
generate and detect quantum light. The former are especially
beneficial for quantum memory due to their high coherence.

Superconducting qubit structures operating in the micro-
wave spectral range have tremendous tunability that can be
exploited to process quantum states. Before proceeding to the
specifics, it is instructive to first discuss the general advan-
tages of waveguide coupling for a specific case of a cold atom
ensemble as compared to atoms in free space.
The main idea behind WQED is to controllably enhance or

suppress the light-matter interaction of an N-atom ensemble
with a given propagating photon mode. As such, the two most
important parameters are the number of atoms N and the
coupling efficiency β. We define the latter as the ratio of the
radiative decay rate of an individual emitter into the wave-
guide mode Γ1D to its total decay rate Γtot ¼ Γ1D þ Γnonrad þ
Γng (Arcari et al., 2014; Scarpelli et al., 2019),

β ¼ Γ1D

Γ1D þ Γng þ Γnonrad
: ð1Þ

In Eq. (1) Γng is the radiative decay rate into all other
electromagnetic modes (nonguided modes) and Γnonrad is
the homogeneous nonradiative decay rate. It is instructive
to discuss how the values of Γ1D and Γng can be tailored to
increase β.
We start with the beam propagation in a dilute disordered

atomic array in free space; see Fig. 1(a). In this case, the
efficiency of the light interaction with an atom can be
estimated as β ¼ σ0=A, where σ0 is the light scattering cross
section and A is the effective beam area. For an ideal two-level
atom at the electric dipole resonance, one has σ0 ¼ 3λ20=2π.
The area of A is limited from below by the diffraction limit or
the sample area, and it is typically much larger than λ20
(Hammerer, Sørensen, and Polzik, 2010). For instance, in a Cs
atom sample with a diameter of 60 μm, which was considered
by Windpassinger et al. (2008), the effective β factor was low,
on the order of 10−4. The crude estimation of the β factor as
β ¼ σ0=A indicates that it can be enhanced by reducing the
effective area of the photon mode A, which can be done by
confining photons to the waveguide; see Fig. 1(b). In realistic
atomic arrays near a fiber waveguide with a radius of 400 nm,
this factor is on the order of β ∼ 10−2, which is larger by 2
orders of magnitude than in free space.
One more important parameter that should be minimized to

increase the β factor is the decay rate of the nonguided modes
in the transverse direction Γng; see Fig. 1(b). In typical
disordered fiber-coupled arrays, this rate is on the order of
the spontaneous decay rate of a single atom in free space, the
decay rate of the atom in vacuum Γ0 (Le Kien et al., 2005), but
it can be optimized in ordered arrays. Namely, only the
collective modes that are inside the light cone, i.e., have a
wave vector k along an array smaller than ω0=c, can emit into
free space. The modes with jkj > ω0=c are evanescent in the
direction transverse to the array. Provided that the array
spacing is smaller than the light wavelength, most of the
modes will be guided ones.
Another crucial figure of merit for the light interaction

strength in the entire array is the resonant optical depth (OD)
given by OD ¼ − lnTðω0Þ ≈ 2NΓ1D=Γ0, where Tðω0Þ is
the transmission coefficient at the resonance frequency ω0.

FIG. 1. Schematic of light-matter interactions in various atomic
ensembles. (a) Light beam propagation and scattering in a
disordered dilute atomic array in free space. (b) Interaction of
an ordered atomic array with the guided photon mode. Subradiant
and bright collective array excitations that are out of phase and in
phase with the photon mode (blue, long-dashed wavy arrow) are
shown. (c) Interaction of an ordered atomic array with a photon
mode propagating through a waveguide in the transverse direc-
tion. As in (b), bright and dark collective excitations are shown.
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Note that the expression OD ¼ 2NΓ1D=Γ0 is valid only for
non-Bragg arrays; see Asenjo-Garcia, Hood et al. (2017). In
free space, if the atoms are far apart, the OD emerges from
forward propagation and can be expressed as OD ¼ 2nσ0L,
wheren ¼ N=A is the density of atoms in an ensemble of length
L. Increasing the OD is important for many quantum informa-
tion applications, such as quantum memory (Gorshkov et al.,
2007). However, achieving a high OD is challenging, and an
OD ∼ 10 for an atomic ensemble in free space requires ∼105 −
106 atoms (Windpassinger et al., 2008). In Eq. (1), one can see
that the optical depth can also be expressed as OD ¼ 2Nβ. As
previously mentioned, in realistic atomic arrays near a fiber
waveguide the β factor is on the order of β ∼ 10−2, whichmeans
that an OD ∼ 10 can already be reached forN ∼ 1000 of atoms,
which is smaller by 2 to 3 orders ofmagnitude than in free space
(Corzo et al., 2019).
At the same time the coupling between the emitters

mediated by the waveguide photons is enhanced and becomes
long-range. If the position of emitters along the waveguide can
be controlled, as in the case of solid-state quantum emitters
and superconducting qubits, the formation of collective
atomic excitations becomes important, and their interaction
with light can be further optimized. The basic idea is that only
the array excitations that are in phase with the guided wave
couple to light efficiently. For the rest modes, the interaction
is suppressed and they become subradiant, as illustrated in
Fig. 1(b). This allows one to increase the lifetime of a stored
quantum state that is beneficial for quantum information and,
in particular, quantum memory applications. In additional,
subradiant states have an enhanced sensitivity to external
fields and suppressed decoherence, making themselves impor-
tant in metrology. Note that OD ¼ 2Nβ in fact treats the
atomic array as a homogeneous medium: the entire role of
inhomogeneity is reduced to the scattering losses. The for-
mation of collective atomic excitations, which can have decay
rates different from the free-space atomic decay rate Γ0, is also
not captured by the concept of OD. However, in disordered
dilute arrays this effect is relatively unimportant (Andreoli
et al., 2021).
Since the concepts of waveguide-enhanced coupling, long-

range photon-mediated interactions, and collective superra-
diant and subradiant excitations are extensively used in the
rest of the review, in Table I we summarize how these
phenomena are manifested in various systems. Specifically,
collective excitations can already form for two atoms in free
space (DeVoe and Brewer, 1996; Guerin, Araújo, and Kaiser,

2016), but photon-mediated coupling between two atoms
decays with distance. On the other hand, if such a pair of
atoms is placed near a waveguide, the coupling between them
is enhanced and becomes long-range. The situation with a
dense atomic array near the waveguide is more subtle. If the
waveguide-enhanced β factor remains much smaller than
unity, the interaction of light with the atoms can still be
considered independently, as in 1D free space, and is
characterized by the concept of the OD. For a large OD
the transmission of photons between atoms on the opposite
sides of the array is suppressed, so the role of long-range
interaction and collective modes is less important. In another
words, most of the phenomena can still be described by
treating the array as an effective homogeneous resonant
optical medium. Thus, while long-range coupling is inherent
to this problem, it is not directly manifested in a dense array. A
more detailed discussion is given in Sec. III.A.2. For a large β
factor collective subradiant modes can form and can be
experimentally observed if the β factor is high; see
Sec. IV.D for details. The situation drastically changes in a
Bragg-spaced array, where a collective superradiant mode is
formed due to the waveguide-mediated interaction between all
the atoms. This is somewhat similar to the cavity-QED setup,
where collective states can also form, but the interaction is not
long-range. An ordered 2D array in free space presents one
more flexible setup [illustrated in Fig. 1(c)]. Depending on the
lattice period one can tune the strength of atom-photon
interactions for various collective modes of this array. This
is discussed in more detail in Sec. III.C.
Having stated these basic principles of light-matter cou-

pling engineering, we now present a more specific overview of
the different WQED platforms shown in Fig. 2. Typical values
of the parameters N, β, and others are listed in Table II. We
now discuss them in more detail.

B. Established platforms

We start with artificial atoms, semiconductor quantum dots
(QDs) (Versteegh et al., 2014; Thyrrestrup et al., 2018; Foster
et al., 2019; Le Jeannic et al., 2021), which operate in the
near-infrared or visible spectral range; see Fig. 2. The main
advantage of the QD platform is the fact that the dots are
incorporated into the bulk of the photonic structure, which
results in a relatively high coupling factor β of up to 99%
(Scarpelli et al., 2019). Precise control over the position of the
quantum dot within the photonic structure allows for a flexible

TABLE I. Light-matter coupling phenomena in various quantum optical systems.

Collective eigenmodes

System Enhanced interaction Long-range coupling Superradiant Subradiant Details

Two atoms in free space × × ✓ ✓ Section IV.A
Two atoms near a waveguide ✓ ✓ ✓ ✓ Section IV.A
Dense array near a waveguide ✓ × × × Sections III.A.2, IV.B, and IV.D
Bragg-spaced array near

the waveguide
✓ ✓ ✓ ✓ Section IV.E

Array in a cavity ✓ × ✓ ✓
Ordered 2D array in

free-space
✓ ✓ ✓ ✓ Section III.C
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tuning of the local field properties at the dot position that
facilitates effective Purcell factor engineering (Lodahl et al.,
2004; Liu et al., 2018). Foster et al. (2019) reported an
increase of the radiative decay rate for a quantum dot coupled
to a photonic crystal waveguide by a Purcell factor of 5.
Another interesting direction in quantum optics is the chiral
light-matter interaction. This can be realized by tuning the
polarization properties of the local electromagnetic field near
the quantum dot (Söllner et al., 2015; Coles et al., 2016;
Lodahl et al., 2017) and applying a static magnetic field or
inducing spin polarization (Javadi et al., 2018). This is
discussed in more detail in Sec. III.B. Quantum dots have
numerous decoherence mechanisms that are typical for a
solid-state system, including charge and spin fluctuations and
phonon-mediated decoherence. These factors lead to fluctua-
tions of the resonant frequency and, even when not affecting
the strength of the coupling to a given photon mode directly,
they limit the coherence of the system and the indistinguish-
ability of the emitted photons. In a crude approximation the
decoherence can be incorporated into the extra nonradiative
decay term Γnonrad in the denominator of the β factor in Eq. (1)
(Arcari et al., 2014). Thus, the β factor in Eq. (1) depends not
only on the electromagnetic properties of the environment but
also on the QD material properties and temperature. The
record value β ∼ 99% is reached at cryogenic temperatures
when Γnonrad is quenched (Scarpelli et al., 2019). While the
nonradiative decay and decoherence can be suppressed
relatively effectively using a combination of specific tech-
niques (Kuhlmann et al., 2015; Dreessen et al., 2018), the

main challenge for the scaling of the self-organized quantum
dot platform is the inhomogeneous broadening. WQED
structures with a large number of QDs do not seem feasible
because the strong inhomogeneous broadening typically
greatly exceeds the radiative linewidth.
An alternative solid-state platform is presented by solid-

state defects such as silicon vacancies (Sipahigil et al., 2016)
and germanium vacancies (Bhaskar et al., 2017); see Fig. 2(d).
In this case, defects can be selectively placed in diamond
waveguides using the focused ion beam implantation. This
results in enhancement of the light-matter interaction and a
Purcell factor Γ1D=Γ0 ∼ 2 to 3, as reported by Sipahigil et al.
(2016). Inhomogeneous broadening seems to be less of an
issue than in the quantum dot system: the generation of
entangled states of two excited qubits has already been
demonstrated (Sipahigil et al., 2016). However, the overall
coupling efficiency β is lower than it is for quantum dots. We
have estimated β ∼ 0.5 for Sipahigil et al. (2016) using the
experimentally reported cooperativity value C ∼ 1, which is
related to the β factor as C ¼ β=ð1 − βÞ (Arcari et al., 2014).
The reasons for a lower β factor may involve the complex
energy structure of an individual vacancy with many optical
transitions of close energies, as well as the interaction with
the phonon environment and nonradiative decay processes
(Becker and Becher, 2017).
Another interesting system is offered by organic molecules

such as dibenzoterrylene (DBT) (Faez et al., 2014) or
terrylene (Skoff et al., 2018) coupled to a waveguide. Like
quantum dots, molecular arrays exhibit strong inhomogeneous

Number of emitters

C
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g
 e

ff
ic

ie
n
cy

1 10 100 1000

 (e) cold atoms + nanofiber

(d) silicon vacancies

(b) superconducting qubits
superconducting
   qubits

cold atoms
+ nanofiber

defects,
molecules

QDs

(a)  (c) quantum dots (QDs)

cold atoms
+alligator
waveguide

(f) cold atoms + alligator waveguide

(g) "giant atom": 
superconducting qubit
+ waveguide

FIG. 2. (a) Comparison of a waveguide coupling efficiency β and number of emitters N for different platforms of waveguide quantum
electrodynamics. (b)–(e) Schematics of different platforms. More information is given in Table II. (b) From Mirhosseini et al., 2019.
(c) From Foster et al., 2019. (d) From Sipahigil et al., 2016. (e) From Corzo et al., 2019. (f) From Goban et al., 2015. (g) From Kannan
et al., 2020.

TABLE II. Parameters of different state-of-the-art WQED platforms. The indicated numerical values are approximate and were taken
from Corzo et al. (2016), Solano et al. (2017), Goban et al. (2015), Mirhosseini et al. (2019), Foster et al. (2019), Sipahigil et al. (2016), and
Faez et al. (2014), respectively.

Material system
Number of resonant

emitters N
Transition
energy ℏω0

Free-space radiative
linewidth Γ0=2π

Coupling
efficiency β

Cs atomsþ nanofiber 1…103 1.5 eV 5.2 MHz 10−2

Rb atomsþ nanofiber 1…6 1.6 eV 6.1 MHz 10−1

Cs atomsþ alligator waveguide 1…3 1.4 eV 4.6 MHz 0.5
Superconducting transmon qubits 10 0.03 meV (7 GHz) 10…100 MHz 0.999
Quantum dots 1 1.4 eV 0.2 GHz 0.99
Si vacancies in diamonds 2 1.7 eV 100 MHz ∼0.5
Organic molecules 1 1.6 eV 30 MHz 0.2
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broadening, which limits the scalability of the system. About
5000 spectral lines, corresponding to different molecules,
were revealed in the experiment described by Faez et al.
(2014), who put the DBT molecules in naphthalene, filling a
nanocapillary waveguide. Individual lines that demonstrate
relatively high coupling efficiency and strong antibunching
could be resolved spectrally. Apparently, the homogeneous
nonradiative decay Γnonrad is not an issue for molecules. The β
factor given by Faez et al. (2014) was determined solely by
electromagnetic properties, the competition of the emission
into the waveguide, and the emission into free space. The
maximum value β ¼ 0.18 has been reached for emitters
positioned in the center of the fiber and the optimal fiber
core radius was equal to 300 nm.
We now turn to superconducting transmon qubits operating

at microwave frequencies, which are shown in Fig. 2(b). In a
simplified description, such qubits each present a high-quality
transmission-line resonator with a Josephson junction provid-
ing strong nonlinearity on a single-photon level (Koch et al.,
2007; Jung, Ustinov, and Anlage, 2014). The typical reso-
nance frequency of the qubits is on the order of 5 − 10 GHz.
Thus, to suppress thermal noise they operate at low temper-
atures on the order of 10 mK. The first experimental
demonstrations of a single-photon scattering, Mollow triplet
formation, and generation of quantum states of microwave
photons were made over a decade ago (Astafiev, Zagoskin
et al., 2010; Hoi et al., 2011, 2012). Superconducting qubits
have become the leading architecture for quantum information
processing in circuit QED (Blais et al., 2021). Their main
advantage is the possibility of individual control of every
qubit. This also makes them suitable for quantum information
processing and quantum simulations in the waveguide QED,
where the waveguide coupling efficiencies β can exceed
99.9% (Mirhosseini et al., 2019). Most recent experimental
WQED studies with superconducting qubit arrays have
focused on the single-excited states (Mirhosseini et al.,
2019; Brehm et al., 2021; Kim et al., 2021). The reason
for this is that it is hard to selectively access higher-excited
quantum states using just a single waveguide mode. Moreover,
large amount of higher-excited states are strongly subradiant
(Zhang and Mølmer, 2019; Poshakinskiy et al., 2021) and
weakly coupled to the waveguide photons. To excite them
selectively, one could drive the qubits from the side of the
waveguide. This requires more complicated samples but is
technologically possible. Double-excited subradiant states in
the four-qubit array have recently been observed in such a way
(Zanner et al., 2022).
However, potential challenges limiting the performance of

state-of-the-art circuits include individual defects such as
charged two-level systems residing in the tunnel barrier of
the Josephson junction or weakly coupling defects on the
surfaces and interfaces of circuit electrodes (Barends et al.,
2013; Burnett et al., 2019; Bilmes et al., 2020). As a result, the
maximum coherence time of qubits is still on the order of
hundreds of microseconds (Rigetti et al., 2012; Bilmes
et al., 2020).
Another waveguide quantum electrodynamics platform is

presented by arrays of laser-cooled atoms of cesium (Vetsch
et al., 2010; Goban et al., 2012; Corzo et al., 2016; Sørensen
et al., 2016) or rubidium (Solano et al., 2017) that are trapped

near an optical nanofiber (Nieddu, Gokhroo, and Chormaic,
2016); see Fig. 2(e). The main idea is that the evanescent field
surrounding the fiber creates a trapping potential for atoms
near the fiber wall. The resulting values of the β factor and the
number of trapped atoms are sensitive to the specific trap
design. One of the designs includes two pairs of counter-
propagating beams in the fiber, one that is attractive red
detuned and another that is repulsive blue detuned, operating
at the specific wavelengths (Le Kien, Balykin, and Hakuta,
2004). The entire system overlaps with a magneto-optical trap.
When compared with the superconducting qubit platforms or
the solid-state structures, the waveguide coupling efficiency is
relatively low (β ∼ 1%). It is controlled by the competition of
the emission into free space Γng and into the waveguide Γ1D,
β ¼ Γ1D=ðΓ1D þ ΓngÞ, while the homogeneous broadening
Γnonrad is negligible. Access to individual atoms near the fiber
is challenging, which rules out many applications for quantum
information processing. On the positive side, the traps can
host thousands of atoms. The waveguide-mediated inter-
actions between atoms are much stronger than in free space
and involve all atoms in the array while coherence remains
high. The inhomogeneous broadening is weak, on the order of
the free-space atom linewidth Γ0 (Corzo et al., 2016). This
makes the fiber-coupled arrays beneficial for quantum
memory applications (Corzo et al., 2019) and for the gen-
eration and detection of quantum light (Prasad et al., 2020).
Another possibility, created when the external magnetic field
is applied, induces chiral one-way interactions between the
atoms. In this case, one can develop nonreciprocal devices and
deterministic light-matter interfaces that can be useful in
quantum communications (Lodahl et al., 2017).
The optical trapping scheme can be tailored to decrease the

distance from atoms to the nanofiber, which leads to larger
coupling efficiency β ¼ 0.13 (Solano et al., 2017). However,
the number of atoms studied in this experiment has been
considerably smaller, up to just N ¼ 6. The atom positions
have been random, so different collective superradiant or
subradiant states were observed for subsequent experimental
realizations. A more detailed calculation of the β factor for
realistic multilevel atoms, coupled to the fiber waveguide, is
presented in Sec. III.A.5. It shows that the maximum value
reached for atoms at the waveguide surface is β ∼ 0.3.
The β factor can be increased even further up to β ∼ 50% by

replacing a nanofiber with the alligator photonic crystal
waveguide illustrated in Fig. 2(f). The distinct near-field
maxima between the “alligator scales,” which are close to
the waveguide surface, enable an efficient trapping of atoms
with a high coupling efficiency. However, the delivery of
atoms to submicron-size optical traps of an alligator wave-
guide is even more challenging and requires a careful
engineering of the trapping beams (Béguin et al., 2020).
The number of trapped atoms realized in practice is small; for
example, Goban et al. (2014, 2015) reported an atomic
number of N ∼ 3 on average. In the parameter space of
Fig. 2(a), the alligator waveguide platform seems to be closer
to solid-state quantum emitters. The possibility of creating
photonic band gaps in the alligator waveguide also provides
more possibilities to tailor light-matter interactions and atom-
photon bound states; see Sec. II.C for a more detailed
discussion.
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One more interesting waveguide-QED platform is based on
giant atoms, i.e., atoms that are coupled to a waveguide at
multiple points that can be spaced by a wavelength distance or
more; see Fig. 2(g). The main advantage of such a system is
that multiple coupling points of giant atoms give rise to
interference effects that are not present in quantum optics with
pointlike atoms. These interference effects can lead to a
coherent exchange interaction between atoms mediated by
a waveguide, and it can result in suppression of relaxation of
one or more atoms into the waveguide (Frisk Kockum,
Delsing, and Johansson, 2014; Kockum, Johansson, and
Nori, 2018; Guo et al., 2020). Such systems can be imple-
mented with superconducting qubits coupled to either micro-
wave transmission lines (Kannan et al., 2020) or surface
acoustic waves (Gustafsson et al., 2014) [see Fig. 2(g)] and
cold atoms (Frisk Kockum, 2021). Specifically, the sponta-
neous decay rate for a superconducting qubit shown in
Fig. 2(g), which is linked to the waveguide in the two points,
is proportional to 1þ cos 2φ, where φ is a phase gained by
photons traveling between these points. Thus, by tuning the
phase φ (for example, by changing the qubit resonance
frequency) it is possible to control the decay rate. One can
also realize configurations with braided coupling between
giant atoms and the waveguide so that the atoms will be
coherently coupled to each other and, at the same time,
protected from spontaneous decay into the waveguide
(Kannan et al., 2020).
A generalization of the giant atom concept was put forward

by Karg et al. (2019), who showed that coherent light-
mediated coupling between two distant quantum systems
can be realized when light interacts twice with each quantum
system and the second interaction is the time reversal of the
first. A proof-of-concept experiment was reported by Karg
et al. (2020), where a mechanical oscillator was entangled
with atomic spins located at a 1 m distance due to the
interaction mediated by a laser beam in a loop geometry.
More details on specific experiments for different platforms
can be found in Sec. IV.

C. Emerging waveguide-QED platforms

Despite tremendous achievements in waveguide-QED tech-
nology, there is still a room for improvement. We illustrate
some of the emerging structures in Fig. 3.
As demonstrated by Fig. 2(a), there seems to be a trade-off

between the individual emitter coupling efficiency and the
number of emitters, so their product for state-of-the-art
structures is roughly the same (see the shaded region).
There is still a lack of structures with large number of resonant
emitters N ≳ 20 that have at the same time a high coupling
efficiency of the order of unity, so substantial progress can be
expected. One of the avenues to go in the large-N, large-β
direction could be offered by so-called Rydberg superatoms
(Paris-Mandoki et al., 2017; Stiesdal et al., 2018, 2021); see
Fig. 3(a). Each superatom is formed by a cloud of thousands
of individual atoms such as 87Rb. Owing to the Rydberg
blockade, every cloud can absorb only one photon in a
collective superradiant Dicke mode. Thus, the entire cloud
acts as an effective two-level system that demonstrates
characteristic two-photon (Paris-Mandoki et al., 2017) and

three-photon (Stiesdal et al., 2018) quantum correlations.
Cascaded coupling of light to three clouds of Rydberg atoms
was demonstrated by Stiesdal et al. (2021). At first glance,
these three coupled atomic clouds, which are illustrated in
Fig. 3(a), have nothing in common with WQED since they are
trapped in free space and there is no waveguide at all.
However, every cloud scatters almost all light in the forward
direction. Thus, it is preferentially coupled to only one photon
mode, and the scattering directionality, being larger than 0.85,
plays the role of an effective β factor. The structure given by
Stiesdal et al. (2021) was proposed for controllable sub-
straction of up to n ¼ 3 photons from the input light pulse.
The drawback of the setup is unwanted scattering from the
bright collective eigenstates of the cloud to its dark eigen-
states. This process is more efficient than the forward emission
by about an order of magnitude.
Another idea of a “waveguide QED without a waveguide”

could be offered by ordered two-dimensional atomic arrays
(Rui et al., 2020) in an optical lattice (Bloch, Dalibard, and
Nascimbène, 2012); see Fig. 3(b). If the spacing between
atoms is smaller than the light wavelength, the array scatters
light in the far field only in the forward or backward direction
and light diffraction is not possible. In this case, the entire
array can be viewed as an effective atom coupled to photons
propagating only in one dimension, perpendicular to the array
plane: a sort of an atom-array “antenna” (Shahmoon et al.,
2017). The parameters of such an effective atom can be
controlled by changing the lattice period. For example,
subradiant behavior of the planar array of 87Rb atoms with
the period ≈0.7λ0 was recently demonstrated by Rui et al.
(2020). The measured linewidth of an optical resonance

A A ABBB
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(d)

(c)

FIG. 3. Schematics of potential future platforms for WQED.
(a) Three clouds of Rydberg atoms in free space. From Stiesdal
et al., 2021. (b) Planar two-dimensional atomic array. From
Rui et al., 2020. (c) Top panel: array of superconducting LC
resonators with alternating short and long spacings. From Kim
et al., 2021. Bottom panel: schematics of the topologically
nontrivial Su-Schrieffer-Heeger model and the edge state realized
in this array. (d). Topologically nontrivial photonic state excited
by a quantum dot and propagating between two photonic crystals.
From Barik et al., 2018.
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depending on the filling factor of the lattice is shown in Fig. 4.
As the filling factor increases, the measured linewidth
becomes smaller and approaches the theoretical prediction
Γ2D ≈ 0.5Γ0 corresponding to this spacing; see also the
discussion in Sec. III.C.
Constructive interference between atoms in an array

enhances the coupling with light, which is beneficial for
quantum memory applications. According to Manzoni et al.
(2018), the memory storage error is determined by the
competition between the emission in the photonic mode
propagating perpendicular to the array plane and the undesired
diffraction, which is possible for finite-size arrays. It has been
predicted that the error is quickly suppressed with the number
of atoms N as ðlogNÞ2=N2, and an array of only N ¼ 4 × 4

atoms could have a storage error below 1%, which is
comparable to a disordered ensemble with an optical depth
of around 600.
Studies of two-dimensional atomic arrays are now rapidly

developing. It is technologically possible to assemble high-
quality defect-free atomic lattices in arrays of tweezer micro-
traps (Barredo et al., 2016; Ebadi et al., 2021; Scholl et al.,
2021) containing up to a few hundred atoms. The limitation of
this technique is that the lattice spacing cannot be subwave-
length but is on the order of several microns. Complicated
atomic arrangements have also been considered theoretically
(Alaee, Gurlek et al., 2020; Ballantine and Ruostekoski,
2020a). The unit cell with a quadrumer of atoms, each of
which has the electric dipole optical transition, exhibits both
electric and magnetic dipole responses (Ballantine and
Ruostekoski, 2020b). Interference of electric and magnetic
dipole emissions is constructive in the forward direction and
destructive in the backward direction. As a result, the bilayer
atomic array acts as a Huygens surface: it transmits light with
a phase shift of π while the light reflection is suppressed. The
directional forward or backward scattering by atomic arrays,
called the Kerker effect, was also considered by Alaee, Safari
et al. (2020). This research direction was inspired by the

recent significant progress in classical optics with conven-
tional metamaterials (Kivshar, 2018). The atomic arrays
feature high-quality resonances with vanishing inhomo-
geneous broadening and could be ideal for the realization
of complicated optical states. It may be only a matter of time
before optical bound states in continuum (Hsu et al., 2016) or
high-quality subradiant states (Koshelev et al., 2020) are
realized on the atomic platforms. Collective subradiant states
of the array have already been proposed to store and
manipulate quantum correlations (Facchinetti, Jenkins, and
Ruostekoski, 2016; Ballantine and Ruostekoski, 2020c)
and engineer entanglement (Guimond et al., 2019). Quantum
atom-made metasurfaces have been also proposed for the
generation of highly entangled photon states (Bekenstein
et al., 2020; Bettles et al., 2020), as discussed in more detail
in Sec. III.C.
Thus far we have considered arrays of emitters coupled to

conventional waveguides with linear light dispersion or to free-
space photons. However, emitters can be embedded in more
complicated photonic structures. For example, the development
of future WQED platforms could be inspired by topological
photonics (Khanikaev and Shvets, 2017; Ozawa et al., 2019);
we now review some of the considered systems.
First, it is possible to use the propagating topologically

protected edge states of the two-dimensional photonic structure
as the photonic modes, linking the quantum emitters (Barik
et al., 2020; Jalali Mehrabad et al., 2020; Mehrabad et al.,
2020). Since the propagation of topological edge states is
inherently unidirectional and robust against the backscattering
on the imperfections, such structures could be beneficial for
chiral quantumoptics. One of the important recentmilestones in
this field was the demonstration of on-chip coupling of a single
semiconductor quantum dot to the topological states propagat-
ing along the boundary between two photonic crystals (Barik
et al., 2018); see Fig. 3(c). The generation of entangled photon
pairs via spontaneous four-wavemixing in topological photonic
crystals made of coupled ring cavities and propagation of these
pairs along the structure edge was demonstrated by Mittal,
Goldschmidt, and Hafezi (2018). This could be potentially
useful to protect quantum correlations.
Second, it has been proposed to create topological edge

states from atom-photon interactions. For example, two-
dimensional atomic arrays subjected to a perpendicular
magnetic field were theoretically studied by Bettles et al.
(2017) and Perczel et al. (2017). Like the conventional
quantum Hall effect, the magnetic field leads to the formation
of single-photon topological edge states that propagate along
the edges of the array and that are protected against the
disorder. More recently Perczel et al. (2020) proposed con-
sidering a lattice of nonlinear quantum emitters embedded in a
photonic crystal slab. Again, this structure should feature band
gaps induced by magnetic field, robust edge states, and also a
nearly photonic flat band with a nonzero Chern number. This
flat band should be sensitive to interactions, and this proposal
could potentially be used to probe the many-body fractional
quantum Hall states in quantum optical setups.
In addition to atoms coupled by propagating edge states

of photons and propagating atom-photon edge states, one
can also study atoms embedded in the bulk of topological
photonic crystals (Song et al., 2018; Mirhosseini et al., 2019;

FIG. 4. Linewidth of the optical resonance of the atomic array
with the period a=λ0 ≈ 0.7 depending on the array filling fraction.
Decrease of the linewidth with the filling fraction indicates a
collective subradiant response. From Rui et al., 2020.
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G.-Z. Song et al., 2019; Kim et al., 2021). If the energy of
quantumemitters is in the band of propagating states, subradiant
and superradiant states can form, as in a conventional wave-
guide. On the other hand, if the emitter energy falls into the
photonic band gap of the array, it can act as a defect that leads
to the formation of a localized photonic state bound to the
emitter. This was experimentally observed for a superconduct-
ing qubit coupled to a microwave metamaterial waveguide by
Mirhosseini et al. (2018).
The situation becomes even more interesting when the

emitter is embedded in a topologically nontrivial structure
such as the Su-Schrieffer-Heeger array of coupled cavities
A-B ¼ A-B ¼ A-B… (Bello et al., 2019), which is shown in
Fig. 3(d). The resulting bound states inherit the topological
features of the underlying array. First, they are directional (i.e.,
they decay to either the left or the right from the emitter,
depending on the sublattice that the emitter is coupled to); see
Fig. 5(a). Second, the localized states have nonzero photon
amplitudes at only one of the sublattices. The formation of
photonic states bound to the emitters has recently been
understood as a general feature of many topological photonic
structures (Leonforte, Carollo, and Ciccarello, 2021). They
have been termed vacancylike states due to the following
unifying feature: the photon amplitude is zero at the site and is
directly coupled to the emitter.
If the two emitters are coupled to different sublattices, the

corresponding topological localized states can overlap and
mediate their interaction, and the coupling will be directional
as well. The proposal by Bello et al. (2019) was recently
realized in the array of coupled superconducting qubits (Kim
et al., 2021). Figure 5(b) shows the experimentally measured
directional coupling depending on the relative position of the
two qubits in the array i − j. The coupling is zero when i > j,
and the coupling decays exponentially for i < j. The range of
the interaction depends on the width of the band gap of the
lattice, which is controlled by the differences between the
strong and weak couplings of the two qubits in the array.
The smaller the band gap is, the longer the interaction range.
Thus, one can also expect interesting physics for the 2D setup
when the emitter is resonant with the photonic Dirac point.
Indeed, unusual quantum optical features have been pre-

dicted for an emitter embedded in a honeycomb lattice of
coupled cavities in the tight-binding model (González-Tudela
and Cirac, 2018). This structure features Dirac dispersion like
that in graphene; see Fig. 5(c). Novel effects appear even for
such simple problems as spontaneous emission when the
emitter is resonant with the Dirac point. Owing to the
vanishing density of photonic states at the Dirac point, within
the Fermi golden rule approximation the emitter does not
spontaneously decay at all. As a result, the non-Markovian
effects start playing a decisive role in the spontaneous decay
and the decay kinetics remains slow, and in the infinite system
the emitter population decays with time t as ∝ 1= ln2 t
(González-Tudela and Cirac, 2018). When two emitters are
resonant with the Dirac point, their interaction becomes
strongly sensitive to the sublattices they are coupled to; see
Fig. 5(d). If emitters are coupled to the same sublattice, the
interaction is dissipative and collective subradiant states can
form. If they are coupled to different sublattices, as in the case

shown in Fig. 5(a), the coupling becomes coherent and can be
long-range. The results for the discrete tight-binding model
given by González-Tudela and Cirac (2018) were recently also
confirmed for a photonic crystal structure by Perczel and
Lukin (2020). It has been predicted that such a system should
feature long-range coherent light-mediated interactions
between the emitters, which are essential for exploring exotic
many-body phases (Richerme et al., 2014).
Thus far most of the studies of the topological photonic

structures have focused on a single-photon regime. However,
Bello et al. (2019) considered many-body spin quantum phases
emerging for an array of emitters coupled to the Su-Schrieffer-
Heeger array. Recently it was predicted that hybridization of
chiral photons in a topological two-dimensional cavity array
with quantum emitters results in an entire zoo of interacting
magnetic lattice models (De Bernardis et al., 2021).

III. LIGHT-MATTER INTERACTIONS IN A WAVEGUIDE

In this section, we present a general overview of light-
matter interactions in a waveguide setup. We start our
consideration in Sec. III.A with regular periodic arrays of
atoms that are symmetrically coupled to a waveguide. In
Appendix A, we present the effective Hamiltonian of the
problem. In Sec. III.A.2, we discuss single-photon scattering
and collective single-excited states of the atomic array arising
from waveguide-mediated interactions. Special attention is
paid to long-living collective subradiant states in closely
spaced atomic arrays and to Bragg-spaced atomic arrays,
where the period is an integer multiple of half light wave-
length at the atomic resonance. When measuring the reflected

(b)(a)

(c)

coherent
 coupling

dissipative
 coupling

(d)

1 2

AB

FIG. 5. (a) Schematics of two quantum emitters interacting via
directional bound states in a Su-Schrieffer-Heeger lattice of
coupled cavities. Vertical bars show the amplitudes of the photon
wave function. (b) Measured directional coupling between two
emitters in the topological Su-Schrieffer-Heeger superconducting
qubit array. From Kim et al., 2021. (c),(d) Schematics of two
emitters coupled via the photonic graphene bath and tuned to the
Dirac point. Depending on whether emitters are in the same
sublattice or a different sublattice, the coupling is either dis-
sipative or long-range coherent. From González-Tudela and
Cirac, 2018.
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and transmitted intensities for low input power, the results are
similar to those in the regime of linear classical optics. The
reason is that the quantum correlations are not directly probed
by intensity measurements. More precisely, the quantum
scattering theory in a single-photon regime yields results
identical to those for a classical light scattered from a
semiconductor quantum well (Ivchenko, Nesvizhskii, and
Jorda, 1994a) or a resonator coupled to a waveguide (Fan,
2002). One more relevant but more exotic experimental
realization is offered by arrays of Mössbauer nuclei such as
57Fe, with sharp scattering resonances in the 10 keV spectral
range (Röhlsberger et al., 2010); see Lentrodt et al. (2020)
for theoretical details on quantum optics with nuclei and
Röhlsberger and Evers (2021) for a recent dedicated review.
Thus, the results in Sec. III.A.2 for single-photon scattering
spectra and eigenstates of waveguide-coupled atomic arrays
could be applied to different setups with resonant scatterers
coupled via a propagating photonic mode.
Light-matter interactions become especially interestingwhen

more than one photon is present in thewaveguide. Since a single
atom cannot resonantly absorb two identical photons at the
same time due to the strong anharmonicity of the atomic
potential, there appears to be an effective photon-photon
repulsion. This leads to nontrivial quantum correlations in
the scattered light, photon bunching and antibunching. This
is discussed in Sec. III.A.3. We present a comprehensive
overview of different theoretical techniques while considering
two-photon scattering. There has also been significant progress
in theoretical studies of two-photon states in atomic arrays in
recent years, including the structure of two-photon subradiant
states (Albrecht et al., 2019; Zhang andMølmer, 2019) and the
existence of bound two-photon states (Zhang, Yu, andMølmer,
2020); we try to put these results in a universal perspective. We
also examine the ultrastrong coupling regime in Sec. III.A.4. In
addition to the simplifiedmodel of the idealized two-level atom,
in Sec. III.A.5we consider amore realistic situation in which an
atom has a multilevel structure.
In most of this section, we discuss reciprocal symmetric

waveguides, in which the atom is equally coupled to forward-
and backward-propagating photons. However, it is possible to
make coupling to forward- and backward-propagating pho-
tons asymmetric by breaking the electromagnetic reciprocity
(by means of applying an external magnetic field, spin
polarizing the atoms, or using the nonlinearity). This special
chiral regime is reviewed in Sec. III.B, where we proceed from
the basics of chiral coupling (Secs. III.B.1 and III.B.2) to the
collective polariton eigenstates (Sec. III.B.3) to the advanced
experiments on tunable photon bunching and antibunching in
this setup (Sec. III.B.4).
Section III.C considers a new promising platform of regular

two-dimensional atomic arrays in the free space (Rui et al.,
2020) that, as discussed in Sec. II, shares many similar
concepts with the waveguide quantum electrodynamics.

A. Arrays with symmetric coupling

1. General formalism

We start this section with a general model for light
interaction with an array of atoms that is embedded in an

arbitrary structure with the dielectric permittivity εðr;ωÞ,
where ω is the light frequency and r is the radius vector.
The linear electromagnetic properties of the dielectric envi-
ronment can be characterized by the Green’s function satisfy-
ing the equation

∇r × ∇r ×Gðr; r0;ωÞ ¼
�
ω

c

�
2

εðr;ωÞGðr; r0;ωÞ þ δðr − r0Þ:

ð2Þ
In vacuum, when ε ¼ 1 the Green’s function is given by
Gðr; r0Þ ¼ Gð0Þðr − r0Þ, where

Gð0Þ
μν ðr;ωÞ ¼

�
δμν þ

�
c
ω

�
2 ∂

2

∂xμ∂xν

�
eiωr=c

4πr
; ð3Þ

where μ; ν ¼ x; y; z. For a waveguide, the Green’s function
can be separated into two parts,

G ¼ GðguidÞ þGðleakyÞ; ð4Þ

corresponding to the interaction with guided and leaky modes.
In particular, because of the translational symmetry, the wave
vector along the waveguide axis kz is a good quantum number.
Depending on whether jkzj is smaller or larger than ω=c, either
the mode can leak into free space or it is evanescent in the
direction transverse to the waveguide corresponding to the two
terms in Eq. (4). We now consider the interaction of light with
an array of two-level atoms located at points rm and having
the same resonant frequency ω0. The light-atom coupling
is treated in the dipole approximation. It is described by a
Hamiltonian −d̂ · EðrmÞ, where EðrmÞ is the electric field
at the atom and d̂ is the dipole momentum operator,
d̂ ¼ dσ þ d�σ†, with d the matrix element of electric dipole
momentum between the ground and excited states of the atom.
Here and in the rest of the review we consider a pointlike
atom, where this dipole approximation is reasonable. There
are also “giant atoms” based on superconducting qubits that
are connected to the waveguide in multiple distant points; see
Frisk Kockum (2021) and Karg et al. (2019). We also assume
the Markovian approximation, which means that the photon
degrees of freedom are fast and can be traced out. The
effective Hamiltonian of the atomic array assumes the form

Heff ¼
XN
m¼1

ω0σ
†
mσm þ

XN
m;n¼1

σ†mσnVmn: ð5Þ

We use the units with ℏ ¼ 1 and the Gaussian units system.
The operator σ†m describes excitation of the atom m and
σm ≡ jemihgmj, where jgmi and jemi are the ground and
excited states of atom m and

Vmn ¼ −4π
ω2
0

c2
d�m ·Gðrm; rn;ω0Þdn: ð6Þ

The derivation of Eq. (6) and details of Green’s tensor
calculations for atoms near a realistic nanofiber waveguide
can be found in the work of Kornovan, Sheremet, and Petrov
(2016) and Pivovarov et al. (2018). The Hamiltonian (5)
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describes the interactions between the atoms mediated by
photons. It also assumes the rotating wave approximation,
which holds provided that the array is excited resonantly and
the atom-photon coupling is reasonably weak. An ultrastrong
coupling regime in which the effective light-atom coupling
constant is on the order of ω0 and the counterrotating terms
cannot be ignored is considered in Sec. III.A.4.
The Hamiltonian (5) assumes an especially simple form in

the fully one-dimensional case when the leaky part of the
Green’s function is neglected and only one guided mode with
the wave vector kz along the waveguide is taken into account
in the guided part. The guided term can be then presented as
(Saravi et al., 2017)

GðguidÞ
αβ ðr; r0Þ ¼ ig0 ×

�
EαðρÞEβðρ0Þeikzðz−z0Þ; z > z0;

EαðρÞEβðρ0Þe−ikzðz−z0Þ; z < z0:
ð7Þ

where EðρÞ is the electric field of the guided mode depending
on the transverse coordinates ρ ¼ ðx; yÞ and g0 is a constant
factor. As a result, Eq. (5) reduces to

Heff ¼
XN
m¼1

ω0σ
†
mσm − iγ1D

XN
m;n¼1

σ†mσneikzjzm−znj; ð8Þ

where

γ1D ¼ 4π

�
ω0

c

�
2

Im½d� ·GðguidÞðr; r;ω0Þd�≡ g0jd · EðρÞj2.

ð9Þ
See Gruner andWelsch (1996) and Asenjo-Garcia, Hood et al.
(2017) for more details. The non-Hermitian part of this
Hamiltonian describes spontaneous decay due to the emission
into the waveguide, and γ1D is the spontaneous emission
rate of an atom into the guided mode. Here and in the rest
of the review we use lowercase γ letters for contributions to
the imaginary part of complex eigenfrequencies, and capital
letters for the corresponding decay rates (Γ ¼ 2γ), i.e.,
γ1D ≡ Γ1D=2, etc.
In this section, we consider the case of a nonchiral light-

atom interaction, where emission to the left and to the right has
the same probability. The chiral scenario is analyzed in
Sec. III.B. The Hamiltonian in Eq. (8) explicitly demonstrates
distant long-range couplings between the atoms mediated by
the waveguide mode. The non-Hermitian Hamiltonians (5)
and (8) are useful for understanding collective quasistationary
eigenstates of the atomic array with one or two excitations,
which are considered in Secs. III.A.2 and III.A.3. These
eigenstates can be probed as resonances for the incident
photons. The problem of photon scattering on the atomic array
can be considered using the general input-output formalism;
see Lalumière et al. (2013), Caneva et al. (2015), and Das
et al. (2018). In this case, instead of using the non-Hermitian
Hamiltonian, one can directly solve the Heisenberg equations
for the atomic operators σn or the master equation for the
density matrix of the atomic array. In particular, Das et al.
(2018) addressed the linear optical response in a general
situation of multilevel atoms in an arbitrary dielectric envi-
ronment. Note that in this review we focus on the case of

continuous input. We refer the interested reader to Kiilerich
and Mølmer (2019, 2020) and references therein for an
application of cascaded quantum theory (Gardiner, 1993) to
the study of the interaction of quantum systems with the
pulses of radiation.
In a case with many excitations, the eigenproblem and

scattering problem are difficult due to the large size of the
Hilbert space. In a few particular cases (for example, when all
the atoms are located in one point), the scattering problem can
be solved analytically, as discussed in Sec. III.A.3. A more
general case can be considered using the matrix product state
(MPS) approach, which is an established and powerful
method for many-body effects in one-dimensional condensed
matter systems (Schollwöck, 2011; Orús, 2014). The MPS
technique is based on the following representation of the wave
function of the many-body quantum state as a product of the
auxiliary matrices A:

ψðs1; s2; s3;…Þ ¼ Aα0α1ðs1ÞAα1α2ðs2ÞAα2α3ðs3Þ…; ð10Þ

where the indices α run in a finite range, α ¼ 1;…;M, and the
indices s1; s2;… describe quantum states of different particles
1; 2;…. In the case in which M ¼ 1, the wave function
factorizes, which means that the particles are independent. In
the case in which M > 1, the quantum states of different
particles become entangled with each other. It has been proven
that the Ansatz (10) quickly convergences in the nondegen-
erate ground state of quantum systems with nearest-neighbor
interactions such as spin chains (Orús, 2014). The Markovian
MPS technique has been successfully applied to model atomic
interactions in waveguides formed by coupled cavities
(Manzoni, Mathey, and Chang, 2017). Photon scattering on
an atomic array with the Langevin-MPS formalism was
considered by Manasi and Roy (2018). To go beyond the
Markovian regime and take into account retarded long-range
interactions, it was proposed to discretize the problem in space
and time (Grimsmo, 2015; Pichler and Zoller, 2016). The MPS
technique can also be applied in the ultrastrong coupling regime
(Peropadre et al., 2013); see Sec. III.A.4 for more details. A
detailed recent comparison of the MPS approach with another
powerful technique, quantum trajectoriesmethod, was given by
Arranz Regidor et al. (2021). This area is now rapidly devel-
oping, and we expect further powerful and practical calculation
tools to soon become available.

2. Single-excited states

a. Polariton eigenstates

The effective Hamiltonian (5) commutes with the total
number of excitation operators

P
N
m¼1σ

†
mσm. Thus, subspaces

with different excitation numbers can be analyzed separately.
In this section, we consider single-excited eigenstates. They
can be found by projecting the full Hamiltonian (5) onto the
states σnj0i; Hmn ¼ hmjHjni. In Fig. 6, we present the real
and imaginary parts of the eigenfrequencies ω found by
diagonalizing the matrix Hmn; see Kornovan, Sheremet, and
Petrov (2016). Figure 6(a) corresponds to an array with 40
atoms in free space, Fig. 6(b) refers to the same array
interacting only via the waveguide mode, with collective
coupling with the free space neglected, and Fig. 6(c)
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represents a full calculation for an array located close to the
dielectric fiber waveguide. The parameters of the calculation
follow Asenjo-Garcia, Moreno-Cardoner et al. (2017): the
fiber permittivity is 4, ω0d=c ¼ π=2, ω0R=c ¼ 1.2, where d
and R are the array period and the waveguide radius, the
distance of the array from the fiber center is ρ ¼ 1.5R, and
kz ≈ 1.56ω0=c is the guided mode wave vector. We now
discuss these results in more detail.
The calculation in Fig. 6(a) was performed including

only the free-space Green’s function (3) in Eq. (6), thereby
determining the effective Hamiltonian. The distribution of the
real parts of the eigenfrequencies can be understood by
comparing them to the eigenfrequencies for an infinite array,
where the eigenstates are characterized with the wave vector
KðωÞ and can be sought in the form

P
ne

iKnσ†nj0i. Their
eigenfrequencies are well described by the following analyti-
cal expression (Asenjo-Garcia, Moreno-Cardoner et al.,
2017), which is shown as a black solid curve in Fig. 6(a):

ReωðKÞ ¼ ω0 þ
3γ0

4ðω0d=cÞ3
Re
X
σ¼�

½Li3ðξσÞ

− iðω0d=cÞLi2ðξσÞ þ ðω0d=cÞ2 lnð1 − ξσÞ�; ð11Þ

where ξ� ¼ exp½iðω0d=cÞ � iKd=c� and Li are the polylo-
garithm functions.
The radiative decay rate of the eigenmodes, denoted in

color in Fig. 6(a), strongly depends on the polariton wave
vector along the array K. Namely, the emission in the direction
transverse to the array is suppressed when jKj > ω0=c, which
is outside the light cone. In the infinite array, the decay rate for
jKj > ω0=c would have been exactly zero. In the finite array,
emission is still possible at the array edge in the longitudinal
direction, but the eigenstates are strongly subradiant. The
most subradiant eigenstates are close to the Brillouin zone
edge (jKj ≈�π=d). The spontaneous emission rate quickly
decreases with the array size as −Imω ∝ Γ0=N3 (Zhang and
Mølmer, 2020). Moreover, Zhang and Mølmer (2020) proved
that this decay law is universal. If the dispersion law close to
the band edge behaves as ωðKÞ − ωðπ=dÞ ∝ ðK − π=dÞs, the
emission rate decreases as 1=Nsþ1. This result has a trans-
parent interpretation: the larger the power s is, the “heavier”
the polaritons and the harder it is for them to escape the array
(Figotin and Vitebskiy, 2011; Poddubny, 2020).
We now take the interaction with the guided mode into

account. To elucidate the role of the guided mode, we first use
a simplified Hamiltonian

Heff þ ðδω − iγÞ
XN
n¼1

σ†nσn;

where Heff is given by Eq. (8) and the δω − iγ term descri-
bes the shift of the individual atom resonance and the
modification of its decay rate due to the interaction with
the nonguided mode. In other words, this model takes into
account the Purcell factor for individual atoms and their
collective coupling through the waveguide mode but ignores
the collective emission into free space. The real part of the
eigenfrequencies is well described by the dispersion law
(Mahan and Obermair, 1969)

ω − ω0 − δωþ iγ ¼ γ1D
sinφ

cosKd − cosφ
; ð12Þ

where φ ¼ kzd is determined by the wave vector of the guided
mode. Equation (12) is relatively easy to obtain by looking for
the eigenstates of Eq. (8) in the form

P
ne

iKnσ†nj0i. The
infinite sum over n can be split into two parts, with n < m or
n ≥ m, and each part is simply a geometric series. In the case
in which the period of the atomic array is much smaller than
the wavelength (ωd=c ≪ 1), Eq. (12) can be written as
K2 ¼ ðω=cÞ2εðωÞ, where (Ivchenko, 1991)

εðωÞ ¼ 1þ 2γ1D
φðω0 þ δω − ω − iγÞ ð13Þ

is the effective permittivity. The more dense the array is, the
smaller φ and the stronger the resonance in the permittivity.
We note that while the permittivity equation (13) captures
the enhancement of the light-matter interaction due to the
waveguide, it is a local characteristic. Therefore, the long-
range waveguide-mediated interactions, while inherent to the
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FIG. 6. Real and imaginary parts of the eigenmodes calculated
for (a) an atomic array in free space, (b) an atomic array near the
fiber waveguide, with collective emission into the free space
neglected, and (c) the full model. The vertical dotted lines in (a)
and (c) show the light cone boundaries (K ¼ �ω=c). The vertical
solid blue lines in (b) and (c) show the guided mode wave vector
�β. The black solid curves in (a) and (b) show the analytical
results of Eqs. (11) and (12) for an infinite array. The eigenmodes
have been calculated for N ¼ 40 atoms perpendicularly polarized
to the fiber. The polariton wave vector has been extracted from
the Fourier transform of the eigenmodes. The other parameters
are given in the text.

Alexandra S. Sheremet et al.: Waveguide quantum electrodynamics …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 015002-12



Hamiltonian (8), are not directly manifested in the dense
arrays; see also the previous discussion of Table I.
The dispersion curve manifests a characteristic avoided

crossing of the free light dispersion K ¼ ω=c with the
atomic resonance. The polaritonic band gap is located in
the frequency range

ω0 þ δω − γ1D tan
φ

2
< ω < ω0 þ δω − γ1D cot

φ

2
: ð14Þ

The radiative decay rate dependence on K is significantly
different than the free-space case. The largest decay rate
corresponds to the states with jKj ≈ kz, which are in phase
with the guided mode. We note that the eigenstates of the
sole guided Hamiltonian (8) are also strongly subradiant for
K ≈�π=d and obey the same universal −Imω ∝ 1=N3 scaling
with the array size. The only reason the decay rates are not
small in Fig. 6(b) is the presence of the constant free-space
emission term γ.
In fact, as pointed out by Asenjo-Garcia, Moreno-Cardoner

et al. (2017), using the constant term to describe interaction
with free-space photons is only a crude approximation. The
results of the full calculation, including exactly both free-
space and guided modes and following Kornovan, Sheremet,
and Petrov (2016) and Asenjo-Garcia, Moreno-Cardoner et al.
(2017), are presented in Fig. 6(c). The result inherits the
features of both Figs. 6(a) and 6(b). Inside the light cone the
dispersion of the eigenmodes is mostly due to free-space
interactions and the spontaneous decay rate is large. There
also is a resonant feature at the guided mode wave vector,
shown as a thin vertical blue line in Fig. 6(c). It is absent for an
array in free space and stems from the long-range waveguide-
mediated couplings between the atoms. Close to the Brillouin
zone edges (K ≈�π=d), the modes are strongly subradiant.
As suggested by Asenjo-Garcia, Moreno-Cardoner et al.
(2017) and Kornovan et al. (2019), these strongly subradiant
modes could be relevant for quantum memory applications.
While the decay modes obey the usual 1=N3 scaling for the
parameters of Asenjo-Garcia, Moreno-Cardoner et al. (2017),
the previously mentioned general results of Zhang and
Mølmer (2020) suggest that by engineering the polariton

dispersion it should be possible to further suppress the decay
rate. For example, it was numerically found by Kornovan et al.
(2019) that the collective emission rate can be strongly
suppressed for a certain lattice period d=λ0 ≈ 0.24 ×
2πc=ω0 and a specific fiber permittivity. The scaling
∼1=N8 has been extracted from the results of numerical
calculation. By varying the lattice period d, one can achieve
the degenerate band edge condition. Namely, the dispersion
curve at the band edge appears to have quartic rather than
quadratic dependence on the wave vector (Figotin and
Vitebskiy, 2011; Zhang and Mølmer, 2020), resulting in a
1=N5 scaling. Moreover, by further tuning of the distance
parameter dðNÞ for each array size N, even stronger sup-
pression of radiation can be observed due to the destructive
interference of the two band edge modes (Kornovan et al.,
2021). However, once the atoms are distributed in a non-
periodic manner, even exponential decays of the emission rate
become possible by forming the Bragg-mirror atomic cavities
(Asenjo-Garcia, Moreno-Cardoner et al., 2017).
Note that even a small disorder in the atomic array leads to a

significant modification of the collective decay rate. As shown
by Kornovan et al. (2019), the disorder ∼10−3λ0 modifies the
collective decay rate scaling to 1=N3.7.

b. Eigenmodes mediated by the interaction via the waveguide

We now consider in more detail the case in which the
interaction with free-space modes can be totally neglected and
the coupling between the atoms in the array is fully deter-
mined by the interaction with the guided mode. We also
assume for simplicity that the wave vector of the guided mode
is given by kz ¼ ω=c. The effective Hamiltonian (8) in the
subspace of single-excited states σ†nj0i, where j0i≡ jgg…gi is
the ground state of all the atoms, is then reduced to the
following matrix (Ivchenko, 2005; Caneva et al., 2015):

Hmn ¼ ω0δmn − iγ1Deiφjm−nj; ð15Þ

where φ ¼ ω0d=c. This simplified model allows many
instructive analytical solutions. It is also directly applicable
to arrays of superconducting qubits, where the β factor is close
to unity and interactions with free-space modes can be
ignored.
We start our analysis of the waveguide-mediated coupling

with the illustrative case of N ¼ 2 qubits, where the
matrix (15) assumes the form

H ¼
�
ω0 − iðγ1D þ γÞ −iγ1Deiφ

−iγ1Deiφ ω0 − iðγ1D þ γÞ

�
: ð16Þ

The eigenfrequencies are given by

ω� ¼ ω0 − iγ − iðγ1D � γ1DeiφÞ; ð17Þ

and the eigenvectors correspond to symmetric and antisym-
metric excitation (½1;�1�= ffiffiffi

2
p

). The splitting between the
eigenfrequencies of the qubit array (17) can be observed
experimentally by measuring the reflection spectra. This was
first done for two [3λðω0Þ=4]-spaced superconducting qubits,

FIG. 7. Spectrum of light reflection from two superconducting
qubits with the spacing 3λðω0Þ=4 coupled to the waveguide
depending on the driving. The driving strength is characterized by
the Rabi frequencies ΩR, shown in the graph; larger reflection
corresponds to larger driving. From van Loo et al., 2013.
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coupled to a waveguide, by van Loo et al. (2013); see the
illustration in Fig. 7.
The dependence of the real and imaginary parts of the

eigenfrequencies ων for N ¼ 10 qubits on the array period d is
shown in Fig. 8. The real parts of theN ¼ 10 eigenfrequencies
in Fig. 8(b) periodically depend on d and concentrate near the
two band gap edges given by Eq. (14) for δω ¼ γ ¼ 0 and
kzd ¼ φ. The matrix Hmn is non-Hermitian but symmetric,
which leads to the nonconjugated orthogonality conditionP

N
n¼1P

ν
nP

μ
n ¼ δν;μ for the eigenvectors Pν

n. There is an exact
analytical representation of the eigenvectors as a superposition
of two-polariton Bloch waves (Voronov et al., 2007),

Pn ∝ ρeiKn þ e−iKn ∝ eiKðn−N−1Þ þ ρe−iKðn−N−1Þ; ð18Þ

where ρ ¼ −ð1 − eiðφ−KÞÞ=ð1 − eiðφþKÞÞ is the reflection coef-
ficient of polaritons from the internal boundary of the array
and K is the polariton eigenvector found in Eq. (12) with
δω ¼ γ ¼ 0 and kzd ¼ φ. The two representations in Eq. (18)
are equivalent because an analog of the Fabry-Perot condition
ρ2e2iKðNþ1Þ ¼ 1 holds at the eigenfrequencies ων.
The eigenfrequencies ων are complex, and the decay rate of

the corresponding modes is equal to −2Imων. The center of
mass of the eigenmodes does not depend on the spacing and is
equal to ω0 − iγ1D (Vladimirova, Ivchenko, and Kavokin,
1998). In the limiting case where d → 0, we obtain a single
superradiant mode with PSR;n ¼ 1=

ffiffiffiffi
N

p
and the eigenfre-

quency ωSR ¼ ω0 − iNγ1D. All other N − 1 modes are degen-
erate for d ¼ 0with the eigenfrequencyω0. Their eigenvectors
are found using the condition

P
N
n¼1Pn ¼ 0, and all these

modes are dark; i.e., they cannot be excited by the waveguide
mode. When the spacing between atoms increases (d ≠ 0),
the dark modes stop being degenerate and acquire a finite
radiative lifetime, as seen in Fig. 8(a). When d ≪ λ (φ ≪ 1),

the radiative decay rate of the darkest subradiant modes is
given by

−Imων ¼ γ1D
π2φ2ν2

8N3
; ν ¼ 1; 2;… ≪ N. ð19Þ

See Vladimirova, Ivchenko, and Kavokin (1998) and Zhang
and Mølmer (2019). Hence, the radiative decay rate is sup-
pressed by a factor of the order of φ2 ∼ ½d=λðω0Þ�2. Moreover,
when the array size increases, the radiative decay rate further
decreases as 1=N3 (Albrecht et al., 2019; Zhang and Mølmer,
2020), as discussed previously in this section. For any given
value of d=λ, most of the ten points in Fig. 8(a) are condensed
near the abscissa axis and merge with each other, correspond-
ing to strongly subradiant modes. The eigenvectors of sub-
radiant modes can be found in Eq. (18) as

Pn ≈ ð−1Þn
ffiffiffiffi
2

N

r
sin

�
ðπ − kÞ

�
n −

1

2

��
; n ¼ 1; 2;…; N;

ð20Þ

where k ¼ π − π=N; π − 2π=N;…. They are standing waves
with the wave vectors close to the edge of the Brillouin zone.
The lifetimes of the eigenmodes depend periodically on the
array period, as shown in Fig. 8. The situation with one
superradiant mode and N − 1 dark modes is also realized for
the Bragg-spaced arrays with 2d=λ0 ¼ 1; 2;…. In this case,
the polariton band gap is enhanced but should be calculated
beyond the Markovian approximation. The physics of Bragg-
spaced arrays is discussed in more detail later in this section.
It is instructive to note that the inverse to the shifted

matrix (15) is a tridiagonal one (Poddubny, 2020),

H̃ ≡ ðH − ω0Þ−1

¼ 1

γ1D

0
BBBBBBBBBBBB@

− 1
2
cotφþ i

2
1

2 sinφ 0 …

1
2 sinφ − cotφ 1

2 sinφ …

0 1
2 sinφ − cotφ 1

2 sinφ…

. .
.

… 1
2 sinφ − cotφ 1

2 sinφ

… 0 1
2 sinφ − 1

2
cotφþ i

2

1
CCCCCCCCCCCCA
:

ð21Þ

Equation (21) allows one to reduce the infinite-range
Hamiltonian (15) to the usual tight-binding Hamiltonian H̃
with the nearest-neighbor couplings and the eigenvalues
1=ðω − ω0Þ. While Eq. (21) is not obvious, it can be easily
verified that it is compatible to the polariton dispersion law
ωðKÞ equation (12) in the infinite structure (for δω ¼ γ ¼ 0).
Namely, according to Eq. (12), 1=½ωðKÞ − ω0� is proportional
to cosK − cosφ. The cosK dispersion law corresponds
to a tight-binding model with nearest-neighbor couplings
(Bernevig and Hughes, 2013), which is exactly Eq. (21).
Therefore, the infinite-range Hamiltonian (15) could be
viewed as the tight-binding Hamiltonian (21) in disguise.

subradiant
Superradiant

(a)

(b)

FIG. 8. (a) Imaginary and (b) real parts of the complex
eigenfrequencies of the array of N ¼ 10 atoms coupled to a
waveguide depending on the period of the array d. The shaded
areas in (b) show the edges of the polariton band gaps, calculated
using a diagonalization of the Hamiltonian (15) for the vanishing
nonradiative decay rate Γ. Each value of d=λ corresponds to
N ¼ 10 eigenvalues.
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The distinction between long-range and tight-binding situa-
tions becomes more clear in the Bragg structure, with
sinφ ¼ 0, where Eq. (21) is not applicable. Thus, the
Bragg-spaced array seems to present the clearest manifesta-
tion of the long-range interaction.
The only nonzero imaginary elements of the matrix (21) are

at the corners, for n ¼ m ¼ 1 and n ¼ m ¼ N. This is why the
radiative decay rate vanishes for an infinite array: radiative
losses are only through the array edges. It can be seen in
Eq. (20) that the edge values of the wave function are on the
order of P1 ¼ PN ∝ N−3=2. The radiative decay rate is
obtained in the first order of perturbation theory in the
imaginary matrix elements ImH̃n;m of Eq. (21). Namely, it
is proportional to ImH̃1;1P2

1 ∝ N−3. This is an alternative way
to obtain the ∼N−3 scaling of the radiative decay rate.
The approach based on the non-Hermitian Hamiltonian (15)

can also be generalized to the non-Markovian case. To this end
the phases φjm − nj≡ ω0jzm − znj=c should be replaced by
ωjzm − znj=c. Physically, the Markovian approximation
assumes that the light flight time is much smaller than all
the other relevant timescales in the system. Therefore, it is
typically valid for photon scattering on a single atom or on an
array of closely spaced atoms. However, non-Markovian
effects are still possible in this case. For example, they arise
due to the finite bandwidth of the infinite photon wave packet,
as studied by Fang, Ciccarello, and Baranger (2018).

c. Bragg-spaced arrays

The situation in which the atomic resonance frequency and
array period d satisfy the resonant Bragg condition

d ¼ m
2
λðω0Þ; m ¼ 1; 2;…; ð22Þ

deserves special attention. In this case, the incident wave
exhibits not only resonant reflection from each individual
atom but also the Bragg diffraction: waves reflected from
different atoms interfere constructively. The calculation in
Fig. 8(b) indicates that the width of the polariton band gap
increases when the array period approaches the resonant
Bragg condition (22).
Bragg diffraction in arrays of resonant scatterers has been

studied in substantially different setups. Historically, the first
platform was probably presented by natural crystals, such as
iron, where sharp resonances with the widths on the order of a
meV exist for γ rays (ℏω ≈ 14 keV) exhibiting Mössbauer
scattering on the nuclei. These crystals have been experi-
mentally studied since the 1960s; see Hannon and Trammell
(1999) and Kagan (1999). Artificial Bragg lattices for γ rays
made from alternating layers of different isotopes have
also been considered (Chumakov et al., 1993). Significant
progress has recently been made in this field (Röhlsberger
et al., 2010, 2012; Haber et al., 2017, 2019) with the advent
of high-brilliance synchrotron radiation sources; see also
Röhlsberger and Evers (2021). While initially the researchers
studied mainly the angular dependence of the reflectivity
instead of its spectral properties (Chumakov et al., 1993),
modern technologies have enabled high-resolution spectro-
scopic demonstration of Bragg reflection from nuclear

multilayers (Haber et al., 2016). In the 1990s, it has been
independently proposed to use Bragg-spaced lattices of semi-
conductor quantum wells (Ivchenko, Nesvizhskii, and Jorda,
1994a, 1994b) and optical lattices of cold atoms (Deutsch
et al., 1995) for light. Some other examples of Bragg-spaced
lattices with resonant scatterers include ring resonators (Yanik
et al., 2004), metallic gratings with plasmonic resonances
(Taubert et al., 2012), and dielectric cylinders with Mie
resonances (Rybin et al., 2015). A detailed comparison among
cold atom systems, semiconductor lattices, and Mössbauer
isotopes was given by Poddubny and Ivchenko (2013). It has
also been theoretically suggested to consider Bragg lattices
of atoms (Haakh, Faez, and Sandoghdar, 2016) and super-
conducting qubits coupled to the waveguide (Greenberg,
Shtygashev, and Moiseev, 2021). The modification of
Bragg conditions for the scattering of light from an array
of atoms into the guided modes of a waveguide was analyzed
by Olmos et al. (2021). Large Bragg reflection from atomic
arrays trapped near a one-dimensional waveguide had already
been demonstrated experimentally by Corzo et al. (2016) and
Sørensen et al. (2016). These experiments are reviewed in
more detail in Sec. IV.E.
We examine the polariton dispersion law in the close-to-

Bragg regime in Fig. 9. Figure 9(c) presents the polariton
dispersion law ωðKÞ calculated for the periods close to the
Bragg value for m ¼ 1. Figure 9(a) corresponds to the
situation in which the period is smaller than the Bragg value.
The dispersion features two band gaps: the polariton band gap
in Eq. (14) below the atomic resonance and the usual photonic
band gap at the frequency satisfying the Bragg condition
ωd=c ¼ π. Figure 9(c) presents the opposite scenario where
the Bragg band gap is located below the polariton one. In the

Bragg gap

Bragg gap

Polariton gap

Polariton gap

Bragg gap

Polariton

 gap Bragg gap

Polariton

 gap
Bragg polariton

gap

(a) (b) (c)

(d)

FIG. 9. Polariton dispersion in the atomic arrays with different
periods. (a)–(c) Three different values of d=dBragg, with the values
as indicated. Bragg and polariton band gaps are provided.
(d) Dependence of the band gap positions on the period of
the array. The calculation was performed for γ1D=ω0 ¼ 0.03
and γ ¼ 0.
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Bragg case illustrated in Fig. 9(b), the two band gaps fuse with
each other and form a wide Bragg polariton band gap around
the atomic resonance. The polariton dispersion law in Eq. (12)
near the resonance can be described using the following
equation:

Kd
π

− 1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω − ω0

ω0

�
2

−
�
ΔBragg

ω0

�
2

s
; ð23Þ

where the half-width of the polariton band gap is

ΔBragg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ1Dω0

π

r
: ð24Þ

The gap half-width ΔBragg exceeds the radiative linewidth of

the atomic resonance of γ1D by a large factor of ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0=γ1D

p
.

Hence, the light incident upon the Bragg-spaced array
will exhibit a strong reflection in the wide spectral range
ω0 − ΔBragg < ω < ω0 þ ΔBragg. However, this Bragg band
gap will be manifested in reflection only if the number of
atoms of the array is large enough, namely, exceeding

N� ∼
1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0=γ1D

p
: ð25Þ

Indeed, the phase gained by light between two atoms in the
Bragg-spaced array is an integer multiple of π. Thus, at first
glance the distance does not matter and the Bragg-spaced
array is equivalent to the array with d ¼ 0. However, this
analysis assumes the validity of the Markovian approximation
when the time of flight of the photons through the array Nd=c
is smaller than the inverse lifetime of the superradiant mode
1=ðNγ1DÞ. When the total length of the structure exceeds the
wavelength ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0=γ1D

p
=m times, as specified by Eq. (25), the

time of flight of the photons can no longer be ignored
(Poshakinskiy, Poddubny, and Tarasenko, 2012) and the
waveguide-mediated interaction between the atoms stops
being instantaneous. Namely, for N ≫ 1=m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0=γ1D

p
the

reflection coefficient is close to unity inside the Bragg band
gap and quickly decays outside the gap.
In general, the previously considered collective eigenmodes

can be observed as resonances in the reflection and trans-
mission spectra. The amplitude reflection coefficient can be
determined from the Hamiltonian (15) as

r ¼ −iγ1D
XN
m;n¼1

GmnðωÞeiωðznþzmÞ=c; ð26Þ

and the transmission coefficient t is obtained by replacing
zm in Eq. (26) with −zm and adding unity. In Eq. (26) G≡
½ω −H�−1 is the matrix Green’s function of the atomic
excitations. This follows from Eqs. (A13) and (A14) in
Appendix A in the low excitation regime, where the nonlinear
terms in Eq. (A9) can be ignored. An explicit solution for the
Green’s function of the finite periodic array was given by
Voronov et al. (2007). The Green’s function can be presented
as the following expansion over the eigenmodes,

Gmn ¼
XN
ν¼1

ψν
mψ

ν
n

ω − ων ; ð27Þ

and has resonances at the eigenfrequencies ων. An equivalent
way to calculate the reflection and transmission coefficients
using the transfer matrix method is presented in Appendix B.
We present in Fig. 10 the dependence of the reflection,

transmission, and absorption spectra on the period of the ten-
atom array. The spectral features reflect the eigenfrequencies
of the array (previously shown in Fig. 8): the positions of the

(a) (b) (c)

(d) (e) (f)

FIG. 10. (a),(d) Transmission, (b),(e) reflection, and (c),(f) absorption spectra of the array of N ¼ 10 atoms coupled to a waveguide,
depending on the period of the array d. The bottom panels are calculated for four specific periods, indicated by corresponding dashes in
the upper panels. The thin white lines in (a)–(c) show the real parts of the polaritonic eigenfrequencies ων. The calculation was
performed for γ ¼ 0.1γ1D and γ1D=ω0 ¼ 10−3. The value of the parameter d=λ0 used for the calculations in (d)–(f) is indicated for
each curve.
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features correspond to the real parts of the eigenfrequencies,
which are shown as thin white lines in Fig. 10. The spectral
widths of the features correspond to the imaginary part.
When the distance between atoms is much smaller than

the light wavelength or equal to a Bragg value (22), the
reflection and transmission coefficients assume an especially
simple form,

rN ¼ iNγ1D
ω0 − ω − iðγ þ Nγ1DÞ

;

tN ¼ 1þ rN ¼ ω0 − ω − iγ
ω0 − ω − iðγ þ Nγ1DÞ

: ð28Þ

The transmission and reflection spectra have a symmetric
Lorentzian shape. The half width at half maximum of the
transmission dip (reflection peak) is equal to γ þ Nγ1D, and it
scales linearly with the number of atoms N. This is the
manifestation of the radiative decay rate of the collective
Dicke superradiant state where the atoms are excited sym-
metrically. We stress here that the resonant transmission
coefficient through the Bragg-spaced array jtNðω0Þj2 is given
by γ2=ðγ þ Nγ1DÞ2. This nonexponential dependence occurs
because of the formation of the collective superradiant state.
It cannot be captured by a concept of OD that assumes
an independent light interaction with all atoms. However,
Eqs. (28) for the Bragg-spaced array are valid in the
Markovian approximation for N ≪ N� while in long arrays
and when the Lorentzian spectrum is saturated.
Detuning of the spacing from zero or a Bragg value leads to

suppression of the reflection, and the optical spectra acquire
narrow resonant features corresponding to the excitation of
the subradiant modes. The reflection is at a minimum at the
anti-Bragg condition d ¼ λðω0Þ=4, when the interference
between waves reflected from different atoms is destructive.
Suppression of the reflection can be used for the selective
radiance (Asenjo-Garcia, Moreno-Cardoner et al., 2017).
Another important effect to mention here is disorder.

Indeed, introducing small disorder in the Bragg array leads
to the disturbance of the Bragg condition (22) suppresses the
reflection and modifies the transmission. For strong disorder,
collective effects are quenched. The coupling efficiency β and
the OD become the main constituents of the transmission.

3. Two-photon scattering

a. Model and historical overview

We start with a general discussion of a quantum problem
with two or more photons scattering on an ensemble of atoms
coupled to a waveguide. Since a single two-level atom cannot
be excited by two identical photons at the same time, the
photon-photon interactions become crucial. This problem has
become a perfect testing ground for different theoretical
techniques, and we now review the development.
The study of photon-photon interactions and nonlinearity of

the Maxwell’s equations in vacuum due to the excitation of
virtual electron-positron pairs is a cornerstone problem of
quantum electrodynamics; see Liang and Czarnecki (2012).
However, in relativistic quantum electrodynamics the solution
is obtained perturbatively since the electron-photon interac-
tion constant α ¼ e2=ℏc ≈ 1=137 is a small parameter. On the

other hand, in the nonrelativistic quantum optical problem
there is an exact analytical solution in all orders in the light-
atom coupling parameter g, provided that the rotating wave
approximation remains valid, that the array has zero spacing
(d ¼ 0), and that the free-space dipole-dipole coupling is
neglected. One of the reasons why this is possible is that
when atoms are located in the same point light excites only
symmetric Dicke states of types

1

N

X
m

σ†j j0i;
1

N2

X
m;n

σ†jσ
†
mj0i; etc: ð29Þ

Historically, the quantum Dicke model in the rotating wave
approximation was first diagonalized exactly by Rupasov and
Yudson in 1984 using the Bethe Ansatz technique, which was
initially developed in the context of condensed matter physics
(Rupasov and Yudson, 1984; Yudson, 1985; Yudson and
Reineker, 2008). Rupasov and Yudson noticed the similarity
between the Dicke problem and the Kondo problem of
electrons, with linear dispersion interacting with a single
impurity. This was independently solved in the same year by
Andrei (1980) and Vigman (1980) using the Bethe Ansatz.
The Kondo model in turn has certain similarities to a model of
one-dimensional boson gas with contact interactions that was
solved by Lieb and Liniger in 1963 using an analogous Bethe
Ansatz approach (Lieb and Liniger, 1963); see also the reviews
of the Bethe Ansatz given by Batchelor (2007) and Faddeev
(2013). The Kondo model with linear dispersion is also related
to the spin-boson model (Leggett et al., 1987), which is in turn
equivalent to the problem involving a two-level system
interacting with photons without the rotating wave approxi-
mation; see also Sec. III.A.4 for a discussion of the ultrastrong
coupling regime. The details on the Bethe Ansatz used by
Rupasov and Yudson (1984) are given in Appendix F. Much
later the same answer as given by Rupasov and Yudson (1984)
and Yudson (1985) was obtained by Shen and Fan (2007a,
2007b) for the particular case of two-photon scattering. Shen
and Fan solved the Schrödinger equation directly in the
Hilbert subspace with only two excitations. We present an
analogous derivation in Appendix C. Next Liao and Law
(2010) considered a related system with a two-level atom
replaced by a nonlinear cavity. This approach was later
extended to several photons using the path integral formalism
(Shi and Sun, 2009; Shi, Fan, and Sun, 2011; Shi, Chang, and
Cirac, 2015), which is discussed in Appendix E. The scatter-
ing has also been analyzed using the conventional input-
output theory of quantum optics (Lalumière et al., 2013;
Caneva et al., 2015). In both approaches (Shi and Sun, 2009;
Shi, Fan, and Sun, 2011; Caneva et al., 2015), the photon
degrees of freedom are effectively traced out and the problem
is solved in the atomic subspace of the full Hilbert space. The
disadvantage of such a technique is that it is valid only in the
Markovian approximation. This approximation seems reason-
able for closely spaced atoms but can fail in a large array.
Namely, the Markovian approximation sets all the phases
gained by light when traveling the distance d between any
two atoms ωkd=c to ω0d=c, and the introduced phase
error jωk − ω0jd=c can become important for a large spacing
(Zheng andBaranger, 2013; Fang, Zheng, andBaranger, 2014).
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However, the path integral formalism also allows one to
take the non-Markovian effects into account (Shi, Chang,
and Cirac, 2015).
The photon scattering problem on an atomic array has also

been solved using the diagrammatic Green’s function tech-
niques (Pletyukhov and Gritsev, 2012; Zheng and Baranger,
2013; Fang, Zheng, and Baranger, 2014; Laakso and
Pletyukhov, 2014; Kocabaş, 2016; Schneider et al., 2016).
These can be separated into two types. The first type is based
on the electron representation, which was inspired by the
original Feynman approach to quantum electrodynamics. In
this technique, photon absorption is viewed as the transition of
an electron from the lower atomic state j1i to the upper one
j2i, as described using a Hamiltonian of the following type:
akc

†
2c1 þ H.c., where c1 and c2 are the corresponding electron

creation operators. The perturbation series for N closely
spaced atoms can be summed exactly, and the original answer
by Rupasov and Yudson can be recovered; see Appendix F.
However, this approach fails for spatially separated atoms due
to the appearance of extra diagrams (Kocabaş, 2016) and a
closed-form solution cannot be obtained. In our opinion,
the Green’s function approach in the exciton representation
developed by Zheng and Baranger (2013) and Fang, Zheng,
and Baranger (2014) is currently the most practical technique.
In this representation, the absorption of a photon by an atom
leads to the creation of an exciton. It can work for both closely
spaced and spatially separated atoms and is not restricted by
the Markovian approximation. Another advantage is that it
naturally handles multilevel atoms, and the two-level atom
case is recovered as a particularly limiting case. Recently the
Green’s function technique was generalized to multiphoton
scattering (Piasotski and Pletyukhov, 2021). The model with a
multilevel atom strongly coupled to the waveguide photons is
similar to the so-called irreversible quantum graph model,
where a propagating wave is coupled to an oscillator
(Smilansky, 2004; Gnutzmann and Smilansky, 2006).

b. Photon-photon correlations for d ¼ 0

When the atomic array has zero spacing (d ¼ 0), the two-
photon scattering problem can be solved exactly; see
Appendixes C–G for different equivalent derivations. We
consider a coherent state of light expð−α2=2þ αa†ε=cÞj0i
incident from the left upon the atomic ensemble. Here ε is
the frequency and we assume that the excitation amplitude is
weak (α ≪ 1). The scattered two-photon state can then be
given as (Poshakinskiy and Poddubny, 2016)

ψ scat ¼ e−α
2=2

�
j0i þ αtðεÞa†ε=cj0i þ αrðεÞa†−ε=cj0i

þ α2

2
½t2ðεÞa†;2ε=c þ r2ðεÞa†;2−ε=c þ 2rðεÞtðεÞa†ε=ca†−ε=c�j0i

þ iα2

4

Z
∞

−∞

dω
2π

Mðε − ω; εþ ω ← ε; εÞ

× ða†ðεþωÞ=c þ a†−ðεþωÞ=cÞða†ðε−ωÞ=c þ a†−ðε−ωÞ=cÞj0i
�
:

ð30Þ

In Eq. (30) we use the notation Mðω0
1;ω

0
2 ← ω1;ω2Þ for the

matrix element describing the incoherent scattering process
where the two incident photons have the frequencies ω1 and
ω2, and the two scattered photons have the frequencies ω0

1 and
ω0
2. The first line of Eq. (30) describes the superposition of the

vacuum state and the states where a single photon is either
reflected or transmitted. The second line describes indepen-
dent coherent scattering of the two photons. The last two lines
in Eq. (30) describe their correlated incoherent scattering. One
of the two scattered photons has the frequency ε − ω, and the
other one has εþ ω. The total energy 2ε is conserved and
equal to that of the incident photon pair. This process is
characterized by the following scattering matrix, which is
derived in Appendix D:

Mðω0
1;ω

0
2 ← ω1;ω2Þ

¼ 4Nγ21Dsðω1Þsðω2Þsðω0
1Þsðω0

2Þ

×
ðε − ω0 þ iγÞ½ε − ω0 þ iðNγ1D þ γÞ�

ε − ω0 þ iðN − 1Þγ1D þ iγ
; ð31Þ

where sðωÞ ¼ 1=½ω0 − ω − iðγ þ Nγ1DÞ�. The four s factors
on the first line of Eq. (31) describe the resonances of incident
and scattered photons with the single-excited superradiant
Dicke state at ω ¼ ω0 − iðγ þ Nγ1DÞ. The factor on the
second line describes the two-photon resonance when the
average energy of two incident (or two scattered) photons is
equal to the double-excited Dicke state in Eq. (29),
ε ¼ ω0 − iγ − iðN − 1Þγ1D. Since double-excited states are
present only for N > 1 atoms, this two-photon resonance in
Eq. (31) cancels out with the corresponding term in the
numerator for N ¼ 1. Equation (31) also shows that incoher-
ent scattering is partially suppressed when the array is excited
exactly at the atomic resonance, so the absolute value of the
factor ε − ω0 þ iðγ þ Nγ1DÞ in the numerator is at a mini-
mum. This suppression can be qualitatively understood by
analyzing the destructive interference of two different quan-
tum pathways for a related process, the absorption of two
photons by two different atoms (Muthukrishnan, Agarwal,
and Scully, 2004), which is illustrated in Fig. 11. The process
goes through an intermediate virtual state where only one of
the two atoms is excited, either the first one or the second one.
The sum of the matrix elements of these two processes is
proportional to

1

ω1 − ω0

þ 1

ω2 − ω0

and vanishes for ðω1 þ ω2Þ=2≡ ε ¼ ω0.
The wave function in Eq. (30) allows one to calculate

coherent photon reflection and transmission coefficients up to
the linear order in the incident light power ∼cα2=L. The
transmission coefficient is given by

Tcoh ¼ jtj2 − cα2

L
Im½Mðε; ε ← ε; εÞt�ðt� þ r�Þ�; ð32Þ

where t and r are coherent single-photon amplitudes of the
transmission and reflection coefficients, respectively. The
coherent reflection coefficient Rcoh is obtained by replacing
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t with r in Eq. (32). One can verify that, in the case of
vanishing nonradiative decay, the energy flux conservation
holds (Rcoh þ Tcoh þ Iincoh ¼ 1), where

Iincoh ¼
cα2

L

Z
∞

−∞

dω
2π

jMðε − ω; εþ ω ← ε; εÞj2 ð33Þ

is the total incoherent scattering rate.
Insight into the two-photon scattering process can be

obtained from the time-dependent, second-order photon-
photon correlation functions

gð2Þν ðτÞ ¼ ha†νð0Þa†νðτÞaνðτÞaνð0Þi
jha†νð0Þaνð0Þij2

; ð34Þ

where ν ¼→;←. Zero-time correlation functions gð2Þν ð0Þ
are equal to the ratio of the probability of two photons
being emitted together to the probability of their inde-
pendent emission and thus determine the emission statistics.
Calculating the expectation values with the help of Eq. (30),
we find that

gð2Þ→ ðτÞ ¼
				1þ i

2t2ðεÞ
Z

∞

−∞

dω
2π

e−iωτMðε − ω; εþ ω ← ε; εÞ
				2

ð35Þ

in transmission geometry. The correlation function gð2Þ← ðτÞ for
reflected photons is obtained by replacing tðεÞ with rðεÞ in
Eq. (35). The integrals can be straightforwardly evaluated
analytically using the Cauchy theorem.
The calculation results are most easily interpreted when

only an N ¼ 1 atom is excited at the resonance (ε ¼ ω0). It is

then straightforward to show from Eq. (35) that gð2Þ→ ð0Þ is

diverging (photon bunching) and gð2Þ← ð0Þ ¼ 0 (antibunching).
The bunching occurs because the atom becomes transparent
after having absorbed a photon. Thus, a single photon cannot
pass through the atom, while a pair of photons can. The
antibunching in reflection geometry stems from the fact that a
single two-level atom cannot accommodate two photons at the
same time and hence cannot emit two photons simultaneously.
The scattering of a single photon and two photons on an atom
is illustrated in Fig. 12, where we show an incident state, an
intermediate virtual state after one of the photons has been
absorbed, and output states. The two-photon output state
given by Eq. (30) is an entangled state of two photons

propagating to the right and two photons propagating in
opposite directions.
It is instructive to analyze the equal-time photon-photon

correlation function gð2Þð0Þ, depending on the number of
atoms in the array. For resonant excitation (ε ¼ ω0) this is
given by

gð2Þ← ð0Þ ¼
�

1 − 1=N
1 − γ1D=ðγ þ Nγ1DÞ

�
2

;

gð2Þ→ ð0Þ ¼
�

1 − γ1D=γ
1 − γ1D=ðγ þ Nγ1DÞ

�
2

: ð36Þ

The dependence of the photon-photon correlation func-
tions (36) on the atom number N and the ratio of the decay
rates is plotted in Fig. 13. One atom in reflection geometry

demonstrates full antibunching gð2Þ← ð0Þ ¼ 0 for any value of
Γ > 0 [see Fig. 13(a)] since it cannot host two photons.
However, this antibunching is already fully suppressed for

N ¼ 2 atoms [gð2Þ← ð0Þ ≈ 1]. The naive physical explanation is
simple: the array of N > 1 atoms can host two photons, so the
photon blockade is not manifested. In transmission geometry
the dependence on N is weak. The transmitted photons are
bunched (antibunched) for small (large) values of γ ≪ γ1D;
see Fig. 13(b).

FIG. 11. Two destructively interfering pathways for the absorp-
tion of two photons by two different atoms.

FIG. 12. Schematics of single- and two-photon scattering on a
two-level atom under resonant excitation.
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FIG. 13. Dependence of the photon-photon correlation function
gð2Þð0Þ on the number of atoms N and on the ratio of nonradiative
and radiative damping rates γ=γ1D calculated with Eq. (36). (a),
(b) Reflection and transmission geometries, respectively, calcu-
lated for the light incident at the resonant frequency ε ¼ ω0 of the
two-level atoms (U → ∞).

Alexandra S. Sheremet et al.: Waveguide quantum electrodynamics …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 015002-19



c. Array with nonzero spacing, d > 0

In the case of nonzero spacing, it is not possible to write an
explicit analytical solution of the type of Eq. (31), but the
scattering can be considered using the generalization of the
Green’s function method (Zheng and Baranger, 2013) that is
described in detail in Appendix G. The two-photon wave
function is obtained by replacing the last term in Eq. (30) with

X
μ;ν¼�

Z
∞

−∞

dω
2π

Mμνðω; 2ε − ω ← ε; εÞa†μω=ca†μð2ε−ωÞ=cj0i; ð37Þ

where the scattering kernel is given by

Mμνðω0
1;ω

0
2Þ ¼ −2iγ21D

XN
m;n¼1

sμnðω0
1Þsνnðω0

2ÞQnmsþmðεÞsþmðεÞ;

ð38Þ

with s�mðωÞ ¼
P

mGmnðωÞe�iðω=cÞzn and

Q ¼ Σ−1; Σnm ¼
Z

∞

−∞

dω
2π

GnmðωÞGnmð2ε − ωÞ: ð39Þ

Equation (38) is valid beyond the Markovian approximation.
However, in the Markovian approximation it can be further
simplified. Specifically, the poles ε of the matrix Q in Eq. (39)
correspond to the complex energies of the double-excited
states

jψi ¼
XN
m;n¼1

ψmnσ
†
mσ

†
nj0i ð40Þ

(ψmn ¼ ψnm) of the effective non-Hermitian atomic
Hamiltonian (8). The corresponding two-photon Schrödinger
equation for the amplitude ψnm can be obtained by substituting
the Ansatz (40) into the general Schrödinger equation
Heff jψi ¼ 2εjψi. More details are presented in Appendix G.
We now discuss the spatial structure of the double-excited

states, which is surprisingly diverse. On the applied side, these
are the states responsible for spatial and time dependence of
the two-photon correlations and spatial entanglement. For
example, recently observed tunable bunching and antibunch-
ing (Prasad et al., 2020) are enabled by the correlated double-
excited states; see also Sec. III.B.4. On the more fundamental
side, we now show that the double-excited states uncover
drastically different regimes of particle-particle interaction.
Namely, eigenstates of the same array of atoms in a waveguide
manifest at the same time fermionization, interaction-induced
localization, quantum Hall phases with topological edge
states, Hofstadter’s butterfly, and quantum chaos. The main
reason why this seemingly simple two-body problem is so
rich is the strongly nonlinear and nonparabolic polariton
dispersion shown in Fig. 6, with the slow polariton group
velocity decreasing near the resonance frequency. The inter-
actions between the particles with the polaritonic dispersion
differ significantly from the more commonly studied parabolic
dispersion case (Girardeau, 1960; Lieb and Liniger, 1963).

We present in Fig. 14 a general simplified phase diagram
distinguishing among domains of different double-excited
states depending on their radiative lifetime and on the array
length. Figure 15 shows the characteristic wave functions of
these states. The real-space joint two-polariton probabilities
jψnmj2 are shown in the top row. The second row presents
the Fourier transforms jψðkÞ2j≡PN

m¼1jψmðkÞj2=N, where
ψmðkÞ ¼

P
N
n¼1ψmneikn, and the bottom row illustrates these

Fourier transforms schematically. We now discuss these states
in detail.
As with the single-photon states, if the distance between

atoms is vanishing, the only double-excited state probed by
light is the symmetric superradiant state (top left corner of
Fig. 14). The wave function ψnm for this state is constant if
n ≠ m and ψnn ¼ 0 due to the photon blockade, as can be seen
in Fig. 15(a). The double-excited superradiant state has the
complex eigenfrequency ε ¼ ω0 − iðN − 1Þγ1D − iγ, which
can also be found from the resonance of Eq. (31).
When the distance between atoms becomes nonzero,

other states with more interesting spatial profiles become
accessible by light. The simplest one is the scattering state
of two polaritons shown in Fig. 15(b). Typically, scattering
states are realized when the wave vectors of both polaritons
k are much smaller than the edge of the Brillouin zone π;
see the bottom panel of Fig. 15(b). In this case, both
polaritons have relatively high group velocity, so the role of
their interaction is weak. These two polaritons can be
thought of as quasi-independent. The wave function of a
single-polariton state in a finite array is a standing wave

PðξÞ
n ∝ cos½kξðn − 1=2Þ�. Hence, the wave function of the

two-polariton scattering state is approximately described by
a symmetrized product of two standing waves, slightly
modified by the interaction that sets ψnn ¼ 0, namely,

ψmn ≈
1ffiffiffi
2

p ðPðξÞ
m Pðξ0Þ

n þ Pðξ0Þ
m PðξÞ

n Þð1 − δmnÞ: ð41Þ

For example, the state in Fig. 15(b) corresponds
to kξ ¼ kξ0 ¼ π=N.

Bound states

Scattering states (bosonic)

Subradiant states (fermionic)

Superradiant

Dark

Interaction

-induced

localization

FIG. 14. Schematic phase diagram showing different possible
types of two-polariton states in an array of atoms coupled to a
waveguide, depending on their radiative decay rate and the ratio
of the array length Nd to the wavelength at the atom frequency.
Wave functions for these states are shown in Fig. 15.
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In the case of zero spacing between atoms d ¼ 0, all states
except the superradiant one are fully dark and degenerate
(ε ¼ ω0 − iγ) (bottom left corner of Fig. 14), and they become
subradiant for d > 0. Contrary to well-known single-excited
subradiant states, the spatial structure of double-excited
subradiant states has only recently been revealed (Albrecht
et al., 2019; Zhang and Mølmer, 2019). Remember that
single-excited subradiant states are just standing waves
with the wave vectors k close to the edge of the Brillouin
zone; see Eq. (20). The polaritonic dispersion law given
by Eq. (12) near the Brillouin zone edge is parabolic,
ωðkÞ − ωðπÞ ≈ −φγ1Dðk − πÞ2=8, with φ ¼ ω0d=c; see also
Fig. 6. The two polaritonic excitations described by the
Schrödinger equation (G15) exhibit contact repulsion due
to the photon blockade. The problem of interacting bosons
with parabolic dispersion and contact repulsion is well known
in the condensed matter physics and was solved by Lieb and
Liniger (1963) by means of the Bethe Ansatz. It has been
shown that strong repulsion between bosons emulates the
Pauli exclusion principle. Specifically, the two-particle wave
function is proportional to the antisymmetric combination of
two single-particle wave functions, i.e.,

ψmn ∝
1ffiffiffi
2

p ×

(
PðξÞ
m Pðξ0Þ

n − Pðξ0Þ
m PðξÞ

n ðm ≥ nÞ;
−ðPðξ0Þ

m PðξÞ
n − PðξÞ

m Pðξ0Þ
n Þ ðn ≤ mÞ

ð42Þ

[compare with the scattering state (41)]. While the wave
function (42) still has bosonic symmetry (ψnm ¼ ψmn), the
corresponding probability distribution jψnmj2 in the real space
is the same as it is for noninteracting spinless fermions. This is
called fermionization. The top panel of Fig. 15(c) shows the
probability distribution for the most subradiant state calcu-
lated numerically in the array of N ¼ 51 qubits. Its spatial

structure is well captured by the Ansatz (42) with kξ ¼ π −
π=N and kξ0 ¼ π − 2π=N. The bottom panel of Fig. 15(c)
illustrates the origin of this fermionic state as a result of
interaction of two polaritons with the wave vectors close to the
edge of the Brillouin zone.
There is also an interesting mesoscopic regime when

the length of the array is of the order of its wavelength
Nω0d=c ∼ 1. It has been predicted that the interaction
between the two polaritons can make one of them localized,
even though all single-polariton states are delocalized and the
structure has no disorder (Zhong et al., 2020). Specifically, the
first polariton forms a standing wave that drives localization of
the second polariton in the node (or in the antinode) of this
wave. Since the two polaritons are indistinguishable, at the
same time the second polariton drives localization of the first
one, and the two-polariton wave function can be approxi-
mately described by the Ansatz

ψmn ∝ ψ locðnÞψ freeðmÞ þ ψ locðmÞψ freeðnÞ: ð43Þ

In Eq. (43) the state ψ locðnÞ is localized at several atoms and
the state ψ freeðnÞ is a standing wave. The localization is so
strong because of the low group velocity at large wave vectors.
In another words, polaritons with k ≫ ω0=c have a large
effective mass and are easily localized through interactions;
see Zhong et al. (2020) for more details. The situation
becomes even more interesting when the standing wave has
multiple nodes. In this case the first polariton experiences both
the lattice potential and the periodic standing wave potential,
induced by the interaction with the second polariton and
determined by jψ freeðnÞ2j. The one-dimensional problem of
the particle in this potential with two periods is similar to the
Aubry-André-Harper model that can in turn be mapped to

0
0

0.5

(a) Superradiant state (b) Scattering state (c) Fermionic state (d) Interaction-induced
      localization

(e) Bound photon pair

0

FIG. 15. Examples of different double-excited states in the finite array of N ¼ 51 two-level atoms coupled to a nonchiral waveguide.
Top row: real-space two-polariton wave functions jψnmj2. Second row: Fourier transforms jψðkÞj2. (b)–(e) Bottom panels: wave vectors
of two polaritons corresponding to the two-polariton wave functions in the upper panels (not in scale). The calculation was performed
for the array periods (a),(b),(d) ω0d=c ¼ 0.01 and (c),(e) ω0d=c ¼ 0.4. The complex energies of the displayed states are
ðε − ω0Þ=γ1D ¼ 8.4 − 48.9i, −5.0 − 1.0i,−0.2 − 4 × 10−6i, and 1.9 − 2 × 10−6i for (a)–(e), respectively.

Alexandra S. Sheremet et al.: Waveguide quantum electrodynamics …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 015002-21



the two-dimensional quantum Hall problem on a lattice
(Kraus et al., 2012; Poshakinskiy et al., 2014). Thus, it turns
out that the WQED setup hosts an analog of the topological
quantum Hall phase, which arises solely due to the inter-
actions without any applied magnetic field. This phase
manifests an analog to Hofstadter’s butterfly and also topo-
logical two-polariton edge states, when one of the polaritons is
localized at the edge of the structure and another one forms a
standing wave (Poshakinskiy et al., 2021).
Yet another type of two-polariton states realized in rela-

tively long structures with the thickness of many wavelengths
is a state where two polaritons form a bound pair that can
propagate as a whole and is characterized by a certain center-
of-mass momentum K. In the finite array, this pair forms a
standing wave

ψmn ≈ cos

�
K
mþ n

2

�
ψboundðjm − njÞ; ð44Þ

where the relative motion wave function ψboundðjm − njÞ
decays exponentially with distance. An example of this state
is shown in Fig. 15(e). There are two types of bound two-
photon states (Zhang, Yu, and Mølmer, 2020). The first type
corresponds to one of the two polaritons in the upper
polaritonic branch and one in the lower polaritonic branch,
as shown in the lower panel of Fig. 15(e). Its center-of-mass
dispersion is sensitive to the ratio of the array period to the
light wavelength at the atomic resonance d=λðω0Þ. Namely,
there is a “magic value” d ¼ λðω0Þ=12 where the center-of-
mass dispersion depends on the wave vector near the edge of
the Brillouin zone as ðK − πÞ4 and the quadratic term vanishes
(Poddubny, 2020). This means that the bound pair acquires
infinite mass and that it is hard for photons to escape the array,
so their radiative lifetime increases dramatically (Zhang, Yu,
and Mølmer, 2020). Another type of bound pair states is
formed by both polaritons in the upper branch. A generalization
of two-photon states shown in Fig. 15 for the three-photon case
was recently given by Zhong and Poddubny (2021).
We also note that the considered two-body problem is

generally not integrable, which means, in particular, that none
of the simple Ansätze (41)–(44) are exact. The intermediate
regime, where none of these Ansätze hold, corresponds to an
interaction-induced quantum chaos (Poshakinskiy, Zhong,
and Poddubny, 2021). By this we mean that the two-polariton
wave function becomes highly irregular in the real space and
also occupies a large region of the reciprocal space.

4. Ultrastrong coupling regime

While in the majority of cases the rotating wave approxi-
mation is justified (i.e., the characteristic energy of the qubit-
photon interaction g is much less than the qubit transition
frequency ω0), the breakdown of this approximation was
recently demonstrated in the circuit QED systems based
on superconducting qubits (Niemczyk et al., 2010; Forn-
Díaz et al., 2017), where g=ω0 > 0.1 was demonstrated.
From the theory side, departure from the rotating wave
approximation (A4) leads to the Hamiltonian

H ¼
X
m

ω0σ
ðmÞ
z þ 1ffiffiffiffi

L
p

X
k

ωka
†
kak þ

X
m;k

gkσ
ðmÞ
x ðak þ a†kÞ;

ð45Þ

where σðmÞ
x ¼ σm þ σ†m. The account for the antiresonant

terms σðmÞak; σ†ðmÞa†k lifts the conservation of the total number
of excitations. Thus, the Hilbert space of the solutions can no
longer be factorized to the blocks with the fixed number of
excitations. The analytical solution has been obtained only for
the simplest case with a single qubit and a single photonic
mode, which is known as the Rabi model (Braak, 2011). The
ground state of the Rabi model is a squeezed vacuum state
comprising multiple photonic Fock states. The modification of
the ground state is the distinct feature of the ultrastrong
coupling regime that persists in the multimode and multispin
case and may lead to the cavity-mediated phase transitions
(Ashida et al., 2020). Note that the Hamiltonian (45) is not
gauge invariant. To restore the gauge invariance, an additional
term corresponding to the photon occupation number and
coupling strength should be added (Kockum et al., 2019).
While this term can be neglected at moderate coupling
strengths, its omission in the ultrastrong coupling regime
can lead to unphysical phase transitions.
In the multimode case, the system resembles the spin-boson

model (Leggett et al., 1987) and its multiple spin counterparts.
The central quantity in the spin-boson model is the spectral
distribution of the coupling strength J:

JðωÞ ¼ 2πffiffiffiffi
L

p
X
k

jgkj2δðω − ωkÞ. ð46Þ

The specific shape of the spectral distribution function JðωÞ
depends on a specific geometry of the waveguide. One
particularly explored case corresponds to the so-called
Ohmic bath JðωÞ ¼ αωfðω=ωcÞ, where fðxÞ is the cutoff
function that decays quickly as x > 1, ωc is the cutoff
frequency usually defined by the waveguide bandwidth,
and α is the dimensionless coupling constant. It has been
discussed that the spin-boson model supports various quantum
phase transitions as a function of the coupling strength (Le
Hur, 2010). Moreover, for certain waveguide dispersions and
coupling coefficients gk, the model can be directly mapped to
the Kondo problem (Blume, Emery, and Luther, 1970) having
an exact analytical solution. We note that the applicability of
the two-level model for superconducting qubits remains a
subject of discussion. For example, Kaur et al. (2021)
predicted that the intrinsic multilevel structure of the qubits
drastically restricts the validity of the spin-boson paradigm.
The properties of the spin-boson model become especially

interesting in the presence of disorder. In the absence
of disorder at the threshold, when atom-photon coupling
strength exceeds a certain threshold, all spins become aligned,
forming a ferromagnetic phase while being an analog of the
paramagnetic phase below threshold. The disordered multi-
mode Dicke model also features a quantum spin-glass phase
where a random linear combination of the cavity modes
becomes superradiant (Gopalakrishnan, Lev, and Goldbart,
2011; Strack and Sachdev, 2011; Rotondo, Cosentino
Lagomarsino, and Viola, 2015).
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There are two general approaches to the theoretical treat-
ment of the WQED regime. Within the first approach, the
waveguide Hamiltonian is written in the real-space represen-
tation, with a subsequent application of the matrix product
states to find the eigenspectrum of the system (Peropadre
et al., 2013; Sánchez-Burillo et al., 2014; Wall, Safavi-Naini,
and Rey, 2016; Mahmoodian, 2019). Alternatively, one may
introduce the unitary transformation, which asymptotically
transforms the Hamiltonian to that with a conserved number
of excitations (Shi, Chang, and García-Ripoll, 2018; Sánchez-
Burillo et al., 2019; Ashida, İmamoğlu, and Demler, 2022).
This resembles the polaron transformation widely used in the
theoretical treatment of electron-phonon interactions in con-
densed matter (Silbey and Harris, 1984). For a single-qubit
case of the Hamiltonian (45), the transformation operation
Up reads

Up ¼ exp

�
−σx

X
k

ðfka†k − f�kakÞ
�
: ð47Þ

Under the transformation, the ground state transforms to
jGSi ¼ Upj0i, where j0i is the vacuum state. The parameters
fk are obtained using the minimization of the ground state
energy yielding the equations

fk ¼
1ffiffiffiffi
L

p gk
Δr þ ωk

; Δr ¼ ω0e
−2
P

jfkj2 . ð48Þ

The transformed Hamiltonian reads

H0 ¼ Δrσz þ
X
k

a†kak − 2ΔrðσÂ† þ σ†ÂÞ

− 2ΔrσzÂ
†Âþ E0 þOðf3Þ; ð49Þ

where Â ¼P fkak. Up to the terms that are quadratic in the
coupling constant, the transformed Hamiltonian conserves
the number of excitations. Therefore, this Hamiltonian can be
treated using projection to the subspace with a fixed number
of excitations, similar to the case of WQED in the rotating
wave approximation. The polaron picture described by the
Hamiltonian (49) is particularly useful to gain physical insight
on the origin of the peculiar effects occurring in the ultrastrong
regime. Since the ground state jGSi comprises the Fock states
with nonzero photon occupation, the system hosts virtual
photonic excitations even in the ground state. These can be
realized by the nonadiabatic change of the coupling constant,
resulting in photon emission from the vacuum state in the
ultrastrong coupling regime (Sánchez-Burillo et al., 2019).
Moreover, the ultrastrong coupling leads to the inelastic
Raman scattering of the single photons from the WQED
system (Sánchez-Burillo et al., 2014), and even conversion of
the single incoming photon to multiple photons of lower
energy (Belyansky et al., 2021). Elastic scattering also gets
substantially modified in the ultrastrong coupling regime. Shi,
Chang, and García-Ripoll (2018) obtained the following
expressions for the coherent elastic reflection and transmis-
sion coefficients rk and tk:

tk ¼ 1þ rk; rk ¼
iðωk þΔrÞImΣðωkÞ

ðωk −ΔrÞΔr − ðωk þΔrÞΣðωkÞ
: ð50Þ

The self-energy ΣðωÞ ¼ δLðωÞ − iγ1DðωÞ includes the Lamb
shift δLðωÞ and the renormalized decay rate γ1DðωÞ given by

δLðωÞ ¼ 2Δ2
rP
Z

dk
2π

f2k
ω − ωk

; ð51Þ

γ1DðωÞ ¼ Δ2
rf2k0 j∂ωk=∂kj−1k¼k0 : ð52Þ

In the weak coupling limit, δL ≈ 0 and γ1DðωÞ ≈
γ1Dðω0Þ≡ γ1D. Thus, Eqs. (50) reduce to the conventional
expressions for the qubit reflection and transmission
[Eqs. (28) for N ¼ 1].

5. Multilevel atoms

Thus far we have considered an idealized situation of a two-
level atom coupled to a single propagating waveguide mode.
The two-level approximation is reasonable for superconduct-
ing qubits, but many modern WQED experiments are realized
with 133Cs or 87Rb atoms, which have a complex degenerate
multilevel structure.
In this section, we consider a cesium atom initially prepared

at its hyperfine structure level Fg ¼ 4 of the ground state; see
Fig. 16(a). We assume a single photon propagating through
the nanofiber with a frequencyω close to the atomic resonance
frequency ω0 of the transition jFg ¼ 4i → jFe ¼ 5i in the D2

line. Here Fg and Fe are the total angular moments of the
6S1=2 ground state and the 6P3=2 excited state, respectively.
Consideration of the chosen transition allows one to avoid
any additional influence of the hyperfine structure of the
excited state due to the selection rules. Therefore, the
magnetic sublevels eM0 and gM of the hyperfine excited
Fe ¼ 5 and the ground Fg ¼ 4 states form a closed set.
However, experimentally, the multilevel system shown in
Fig. 16(a) can still be reduced to a two-level system. This can
first be done by applying a magnetic field that leads to the
splitting of Zeeman sublevels along the magnetic field
direction; see Sayrin et al. (2015). In this case, all transitions
have different frequencies; see Fig. 16(b). As a result, a
propagating photon is resonant to only one transition. Another
way to reduce the number of considered levels in the atomic
system is based on the optical trapping technique; see
Scheucher et al. (2016). In this case, one can transfer atoms
from all Zeeman sublevels to one (an edge one where
gM ¼ −4 and gM ¼ 4 or a middle one gM ¼ 0); see Fig. 16(c).
For each possible photon polarization, the atom can then be
considered as a two-level one.
The case in which no magnetic field is applied and the

optical trapping technique is not used is more involved. For
the first time, spontaneous emission of a multilevel atom near
an optical waveguide was calculated by Le Kien et al. (2005).
It was shown that the multilevel structure of a real atom
modifies its decay rate. Here we summarize the results of
that paper.
The total decay rate of one Zeeman sublevel of the excited

state is given by the sum Γtot
ee0 ¼ Γ1D

ee0 þ Γrad
ee0 , where Γ1D

ee0 and
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Γrad
ee0 describe spontaneous emission into the guided and

radiation modes, respectively. In Fig. 16(d), one can see
the spatial dependence of the spontaneous emission rates for
various magnetic sublevels jei ¼ j6P3=2F0 ¼ 5i in the guided
modes, radiation modes, and both types of modes. The
calculation demonstrates that the efficiency of the emission
into the waveguide mode quickly decays with the distance
from the atoms to the waveguide surface. For the atoms
located exactly at the surface, the total spontaneous decay rate
increases by the Purcell factor ∼1.5 with respect to the free-
space value Γ0, and the fraction of emission into the wave-
guide mode is about β ∼ 0.3. When the distance from the
atoms to the surface becomes larger than the fiber radius, the

total decay rate is not much different from that in free space,
and the β factor drops below 10%.
The presence of off-diagonal elements such as Γtot

ee0 , with
e ≠ e0, is a characteristic difference from the case of two-level
atoms. They describe the decay rate of the cross-level
coherence and arise only in the framework of a multilevel
atom model. Knowledge of both diagonal and off-diagonal
types of decay characteristics is important for the study of
absorption and emission properties of the multilevel atom.
Despite the simplicity and versatility of a two-level approxi-

mation, some quantum information applications, such as
quantum memory, slow light, and quantum computing, can
be realized only inmultilevel atomic schemes. To describe these
processes, one needs to go beyond a two-level approximation.
We consider as an example an array ofΛ-type three-level atoms
trapped along an optical nanofiber; see Fig. 17. We assume that
only one ground state jgi is populated. Thus, adding only one
additional level to the ground state jsi changes the collective
decay rate into the waveguide. Indeed, for two-level atoms
trapped near a waveguide with a spacing between atoms
d ¼ λ0=2, the collective decay rate can be determined as
Γþ NΓ1D; see Eq. (28). However, forΛ-type three-level atoms,
the collective decay rate readsΓþ NΓ1D=2. Here the factor 1=2

FIG. 16. (a)–(c) Schematics of the j6S1=2F ¼ 4i → j6P3=2F ¼
5i transition in the D2 line of a 133Cs atom. (b) Level structure of
the jFg ¼ 4i → jFe ¼ 5i transition of 133Cs in a magnetic field.
(c) Atoms trapped in the edge state jFg ¼ 4; gM ¼ 4i. (d) Sponta-
neous emission rates for various magnetic sublevels of the excited
state j6P3=2F0 ¼ 5i of a 133Cs atom. Blue dashed, green dash-
dotted, and red solid lines show the rates of emission into guided
modes, radiation modes, and total decay rates as functions of the
atom distance from the fiber center. Different lines of each plot
correspond to different Zeeman sublevels of the excited state.
The fiber radius was chosen as a ¼ 200 nm. The wavelength of
the D2 line of 133Cs is λ0 ¼ 852 nm. The refractive indexes of the
fiber and the vacuum clad are n1 ¼ 1.45 and n2 ¼ 1, respectively.
The decay rates are normalized to the free-space decay rate Γ0.
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FIG. 17. (a) Schematics of the electromagnetically induced
transparency effect. The transition jgi → jei is coupled to the
guided photon mode, and the transition jsi → jei is driven by a
classical strong control field with a Rabi frequency Ωc that is
external to the nanofiber. (b) Calculated transmission spectrum
jtN j2 with the characteristic transparency window. The number of
atoms is N ¼ 5, the lattice period is d ¼ λp=4 (where λp is the
wavelength of the probe photon and the control field Ωc ¼ 2Γ),
and the guided decay rate γ1D ¼ 0.5γ. From Asenjo-Garcia, Hood
et al., 2017
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comes from the presence of two channels of decay in the fiber
mode for Λ-configured atoms; see Pivovarov et al. (2021).
In the rest of this section, we discuss the propagation of

guided light under the condition of electromagnetically
induced transparency (EIT), described by Asenjo-Garcia,
Hood et al. (2017). We assume that the transition jei → jgi
is coupled to the guided mode and that the orthogonal
transition jei → jsi is excited externally to the nanofiber,
classical, and uniform control field with the Rabi frequency
Ωc ¼ 2desEc=ℏ. Here des is the dipole moment of the
transition jei → jsi and Ec is the control field amplitude.
The applied control field transfers the guided photon from the
ground state jgi to a superposition of states jgi and jsi and
forms a so-called dark state. The guided photon transfer to the
dark state leads to two main consequences that are important
in quantum communications. First, it prevents the photon
losses due to the long lifetime of the state jsi. Second, it results
in reduction of the group velocity and the possibility of
slowing down the light.
When the control field is present, the interaction part of the

atom-photon coupling Hamiltonian (A4) should be modified
as follows:

Hatom-phot ¼
XN
i¼1

�
1ffiffiffiffi
L

p
X
k

gke−ikzia
†
kσ

ðiÞ
ge þ Ωc

2
σðiÞse þ H.c.

�
:

ð53Þ
The energy shift and the dissipation stemming from a coherent
interaction between the atoms i and j of the array can be
found using the Hamiltonian (15) and correspond to
−γ1D sinðk1Djzi − zjjÞ and γ1D cosðk1Djzi − zjjÞ, respectively.
The transmission coefficient of the atomic array affected by
the external control field can be found as

tN ¼
YN
ξ

ΔðΔþ iγÞ − Ω2
c=4

ΔðΔþ iγ þ λξÞ −Ω2
c=4

; ð54Þ

where Δ ¼ ω − ω0 is the detuning of the guided photon
frequency ω from the atomic resonance ω0 and λξ ¼
Δξ þ iγðξÞ1D, with Δξ and γðξÞ1D corresponding to the energy shift
and decay into the waveguide of the eigenstate ξ. Figure 17
shows the transmittance spectrum of the array of N ¼ 5 atoms
separated by a distance d ¼ λp=4, where λp is the wavelength
of the guided probe photon. One can see an appearance of the
characteristic transparency window around the atomic tran-
sition frequency.
Using Eq. (54), one can find an effective wave vector of the

polaritonic excitation. Indeed, after the propagation of the
light through the array of N atoms, the transmission coef-
ficient acquires the phase factor tN ∝ eikeffNd, where keff is a
complex number that characterizes both transmission and
absorption. An expansion of Eq. (54) in series over Δ gives

keff ¼ −
i
Nd

XN
ξ

4λξ
Ω2

c

�
Δþ 4Δ2

Ω2
c
ðλξ þ 2iγÞ þ � � �

�
: ð55Þ

Equation (55) is valid for any linear and isotropic quasi-1D
structure. Almost all configurations have N eigenstates λξ that

make the calculation of keff nontrivial. Therefore, for a chain
of atoms near a waveguide the effective polaritonic wave
vector scales differently with the number of atoms and
depends on the interatomic distance. However, as Asenjo-
Garcia, Hood et al. (2017) showed, the group velocity
at the atomic resonance vgðΔ ¼ 0Þ ¼ ðdkeff=dΔÞ−1jΔ¼0 ¼
Ω2

cd=4γ1D is not affected by a specific atomic configuration.
More details on light propagation through an array of atoms
with a complex-multilevel structure under the EIT condition
and in the presence of undirectional coupling were given by
Le Kien and Rauschenbeutel (2015).
Three-level atoms driven by two light beams also enable

amplification (Astafiev, Abdumalikov et al., 2010) and cross-
Kerr nonlinearity (Hoi et al., 2013); see Vinu and Roy (2020)
for the theoretical details.

B. Chiral atomic arrays

Thus far we have considered a situation where an atom is
symmetrically coupled to forward- and backward-propagating
photons in the waveguide. However, the complex structure of
light polarization near a waveguide interface results, under an
applied transverse magnetic field, in the chiral (directional)
coupling. Namely, the strength of an atom interaction with
forward- and backward-propagating photons changes, which
provides the grounds for novel nonreciprocal (Scheucher
et al., 2016) and cascaded quantum systems (Carmichael,
1993; Stannigel, Rabl, and Zoller, 2012). The systems with
broken forward-backward propagation symmetry are now
actively studied in the domain of chiral quantum optics
(Lodahl et al., 2017). We start by discussing the microscopic
origins of the spin-momentum locking in the nanophotonic
waveguide in Sec. III.B.1. Next we consider directional
coupling of a single atom to the waveguide mode in
Sec. III.B.2. Section III.B.3 is devoted to the polariton
excitations in the array of chirally coupled emitters. To
conclude this section, we discuss recent experiments on
tunable photon bunching and antibunching in the chiral setup
in Sec. III.B.4.

1. Spin-momentum locking

Nanophotonic waveguides provide a unique platform for
reaching the directional emission of photons due to the spin-
momentum locking effect, thus realizing the one-way inter-
actions between the quantum emitters. Spin-momentum lock-
ing can be understood by analyzing the coupling of a
circularly polarized optical transition to the guided mode
of the planar waveguide, as shown in Fig. 18. The main
observation is that the polarization of the guided mode is
generally elliptical. Indeed, the electric field E outside the
waveguide is a transverse plane wave, i.e., k · E ¼ 0, where
k ¼ kxex þ kzez is the wave vector. Since the guided wave is
by definition evanescent outside the waveguide, the wave
vector component kx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω=cÞ2 − k2z

p
transverse to the wave-

guide surface is purely imaginary (kx ¼ iκ). Thus, the guided
wave assumes the form Eðx; zÞ ∼ exp ð−κxÞ exp ðikzzÞ. The
polarization state of the field is fully defined by the dispersion
of the mode kzðωÞ and varies from linear polarization close to
a light line kz ¼ ω=c to circular polarization for strongly
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evanescent waves when kz → ∞; see Fig. 18(b). We can
introduce the polarization parameter s ∈ ½0; 1� such that
Eðx; zÞ ¼ ðE0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p
Þðex − isezÞeikzz, with s ¼ 0 and

s ¼ 1 corresponding to the linear and circularly polarized
fields, respectively. The sign of circular polarization is
determined by the sign of the wave vector kz; it is the
opposite for forward- and backward-going waves,
s ∝ sgnkz. This spin-momentum locking is a universal feature
of guided and surface waves (Sinev et al., 2017). It exists for
planar waveguides, nanofibers, and surface plasmon polar-
itons (Rodriguez-Fortuno et al., 2013; Spitzer et al., 2018);
see also the reviews on chiral quantum optics (Lodahl et al.,
2017) and spin-momentum locking (Aiello et al., 2015).
Intuitively, spin-momentum locking can be understood as a
“photonic wheel” effect (Aiello et al., 2015). The wheel
rotation (light circular polarization) leads to the translational
motion along the surface under the wheel (wave vector kz),
and oppositely rotating wheels travel in opposite directions.
More general considerations show that the intrinsic origin of
the directional excitation of the guided mode is related to the
transverse angular momentum of the photon emitted by the
atom (Mitsch et al., 2014; Lamprianidis et al., 2022) rather
than its helicity.

2. Directional atom-waveguide coupling

The spin-momentum locking drives asymmetric coupling
of transverse circularly polarized emitters with the dipole
matrix elements d∓ ¼ ðd0=

ffiffiffi
2

p Þðex ∓ iezÞ to the waveguide
mode. Microscopically, circularly polarized emitters can be
realized by applying a magnetic field, which leads to Zeeman
splitting of the optical transitions and changes the selection
rules. The emitters can be natural atoms (see also Sec. III.A.5)
or solid-state emitters, quantum dots (Söllner et al., 2015), or
quantum wells (Spitzer et al., 2018). An alternative approach
is based on charged quantum dots. There the spin of an extra
electron can control the circular polarization of the charged
exciton transition (Yılmaz, Fallahi, and Imamoğlu, 2010;
Javadi et al., 2018).
In the fully chiral setup (jsj ¼ 1), the circularly polarized

emitter is coupled only to either forward- or backward-
propagating waves. In the case of general elliptic polarization,
the couplings can be characterized by emission rates of
forward-propagating (Γ→ ≡ 2γ→) and backward-propagating
(Γ← ≡ 2γ←) photons that are proportional to jE�ðkzÞ · dj2 and
jE�ð−kzÞ · dj2, respectively. Explicitly, the emission rates are
given by (Gruner and Welsch, 1996; Asenjo-Garcia, Hood
et al., 2017)

γ→ ¼ γ1D
ð1� jsjÞ2
s2 þ 1

; γ← ¼ γ1D
ð1 ∓ jsjÞ2
s2 þ 1

; ð56Þ

where the total decay rate γ1D ¼ γ→ þ γ← is found using the
Green’s function; see Eq. (9). If one takes into account only
one circularly polarized mode with s ¼ 1 and uses Eq. (7) for
the guided part of the Green’s function, one can find that the
rate γ→ (γ←) is equal to zero for d− (dþ), which indicates fully
chiral one-way coupling. We also introduce the interaction
asymmetry parameter ξ ¼ γ←=γ→ ¼ ð1 ∓ jsjÞ2=ð1� jsjÞ2,
which varies from 0 to infinity for the ideal right or left
coupling, respectively. From now on, we assume that the
Zeeman splitting is large enough that left and right circularly
polarized transitions can be spectrally separated. We restrict
the consideration to left circularly polarized transitions, and
the asymmetry parameter will thus vary from ξ ¼ 1 for
symmetric coupling to ξ ¼ 0 for fully asymmetric (chiral)
coupling.
The realistic experimental values of the asymmetry param-

eter vary depending on the quantum platform. Ramos et al.
(2014) provided estimations of the asymmetry parameter for
Rb atoms near the fiber, obtaining the limits of 10−3 < ξ < 1.
Mitsch et al. (2014) and Corzo et al. (2016) determined
the estimated levels of asymmetry extracted from the exper-
imental spectra to be ξ ¼ 0.083 and 0.087, respectively.
Alternatively, the asymmetry of Rydberg atom spin states
coupling with a phonon mode was estimated as ξ ∼ 1=400 by
Vermersch et al. (2016). The recently proposed experimental
concept of directional coupling in superconducting circuits
(Guimond et al., 2020) provided a directional β factor of
more than 99%, which corresponds to a ξ parameter of at
least ∼1=100.
Consider the scattering of guided photons on the asym-

metrically coupled atom. The scattering is characterized by the
amplitude reflection coefficient r and forward and backward

(a)

(c)
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FIG. 18. (a) Evanescent field at a waveguide interface. (b) Sche-
matics of the waveguide mode dispersion with different electric
field polarization states. (c) Directional coupling of the emission
for right and left circularly polarized atomic dipole transitions.
(d) Polariton dispersion in a chiral waveguide depending on the
coupling asymmetry ξ. The calculation was performed following
Eq. (59) for a regular array of circularly polarized d− atoms and
separated with the phase φ ¼ ω0d=c ¼ π=2.
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amplitude transmission coefficients t→;← given by (Lodahl
et al., 2017)

r ¼ 2i
ffiffiffiffiffiffiffiffiffiffiffi
γ→γ←

p
ω0 − ω − iðγ þ γ1DÞ

;

t→=← ¼ 1þ 2iγ→=←

ω0 − ω − iðγ þ γ1DÞ
; ð57Þ

where the constant γ describes all other decay channels. The
absolute values of the transmission coefficients t→ and t← are
the same, and for vanishing losses γ ¼ 0 we obtain the energy
conservation law jrj2 þ jt→=←j2 ¼ 1. In the symmetric case,
when γ→ ¼ γ← ¼ γ1D=2 the reflection and transmission coef-
ficients in Eq. (57) reduce to Eqs. (28) with N ¼ 1. In the fully
chiral setup γ← ¼ 0 and for vanishing losses γ ¼ 0, the
reflection coefficient vanishes and the transmission coefficient
is equal to 1 by the absolute value. At the resonance, we obtain
t→ ¼ −1, so light obtains a π phase shift when resonantly
passing an atom.
There are other possibilities to realize directional atom-

waveguide interactions that do not rely on spin-momentum
locking. Instead, one could use nonlinearity that breaks time-
reversal symmetry and leads to nonreciprocal photon trans-
mission (Roy, 2010, Roy, 2013a, 2017; Shi, Yu, and Fan,
2015). To this end, the nonlinear structure also needs to lack
the z → −z mirror symmetry. The quantum nonreciprocity for
two superconducting qubits coupled to a waveguide was
recently demonstrated by Rosario Hamann et al. (2018).
While at lower power the structure has behaved reciprocally,
an increase in power has led to nonreciprocal transmission
driven by quantum nonlinearity. At even larger power, the
reciprocity has been restored due to the saturation of the qubit
transitions. Moreover, there are structures that, while recip-
rocal in the single-photon regime and not directly belonging to
the traditional domain of chiral quantum optics, also rely on
unidirectional atom-photon interactions. Specifically, one can
have jt←j2 ¼ jt→j2 ¼ 1 and r ¼ 0 such that the atom scatters
only in the forward direction. This system was considered by
Gheeraert, Kono, and Nakamura (2020) and Guimond et al.
(2020), where each effective atom was formed by two
identical waveguide-coupled qubits spaced by a quarter of
the wavelength. Because of this λ=4 spacing, the photons
reflected from the first and second qubits interfere destruc-
tively and the backscattering is suppressed. The array of these
qubit dimers illustrated in Fig. 19(a) was proposed by
Guimond et al. (2020) for the generation of complex quantum
states such as the Greenberger-Horne-Zeilinger (GHZ) state
and the 1D cluster state. The structures under consideration
consist of the qubit dimers (dark yellow rectangles) coupled to
two waveguides (shown in blue). Each dimer also interacts
with an additional stationary qubit (shown in green). When the
stationary qubit is in its ground state, the dimer transmits a
photon with a π-phase shift, and when the stationary qubit is
excited the phase shift is equal to zero. Judiciously linking the
waveguides with beam splitters and using photons in the
waveguides as “flying qubits,” one can then realize complex
quantum states in the stationary qubit array.
For example, the proposed protocol to generate the GHZ

state shown in Fig. 19(a) starts by initialization of the

stationary qubits in the product state jþi1 ⊗ jþi2…, where
jþin is the Hadamard state, j�i≡ ðj1i � j0iÞ= ffiffiffi

2
p

, and
sending one photon in the lower waveguide. As described
in more detail in Appendix H, upon the conditional detection
of the transmitted photon in one of the waveguides, the
stationary qubit array ends in one of the GHZ states:
jþi1 ⊗ jþi2…� j−i1 ⊗ j−i2…. The slightly more compli-
cated protocol with three beam splitters shown in Fig. 19(b)
enables an arbitrary quantum state jψqi of qubit 1 to be
transferred to qubit 2. In this case, photon scattering realizes
an effective controlled-Z gate between the distant qubits,
thereby enabling universal quantum computation. A larger
array with more dimers, separated by the beam splitters,
allows one to generate a one-dimensional photon cluster state.
A concept based on unidirectional scattering can be

implemented even in free space without any waveguide.
Namely, it was proposed by Grankin et al. (2018) to couple
an atom to an auxiliary two-dimensional bilayer atomic array
that acts as a “quantum antenna” providing unidirectional
photon emission. A related experimental demonstration was
made by Stiesdal et al. (2021) for three clouds of Rydberg
87Rb atoms. Each cloud has preferentially scattered photons in
the forward direction, thereby realizing cascaded coupling.

3. Arrays of chirally coupled emitters

Waveguide-mediated chiral coupling between emitters can
be considered using an effective non-HermitianHamiltonian (6)
with a traced out electromagnetic field. Combining Eqs. (7)
and (56), we obtain

Vmn ¼ −iγ1Dδmn þ
�
−iγ→eiωðzm−znÞ=c for zm > zn;

−iγ←eiωðzn−zmÞ=c for zm < zn;
ð58Þ

where zm and zn are emitter coordinates along the waveguide.
Using this Hamiltonian, one can obtain the dispersion of
polaritonic Bloch waves ψm ∝ eiKzm in a periodic array of
atoms with a spacing d (Calajó and Chang, 2022; Fedorovich
et al., 2022):

ω − ω0 ¼
γ1D
1þ ξ

�
cot

�
Kzd − φ

2

�
þ ξ cot

�
Kzdþ φ

2

��
; ð59Þ

where φ ¼ ω=c. The two terms in the square brackets of
Eq. (59) describe the avoided crossing of forward- and back-
ward-propagating photon dispersionwith the atomic resonance.
For a purely symmetric coupling ξ ¼ 1, the dispersion relation
transforms into Eq. (12). The dependence of dispersion on the
asymmetry parameter ξ is plotted in Fig. 18, and it demonstrates
a strongly unidirectional character of polariton propagation for
ξ → 0, that is, ωðKzÞ ≠ ωð−KzÞ.
The effects of chiral coupling can also be observed in the

spectrum of eigenmodes of the finite atomic array. Figure 20
compares polariton energy spectra calculated by numerically
diagonalizing the Hamiltonian (58) for the fully chirally
coupled arrays of N ¼ 400 atoms given by Fedorovich et al.
(2022). As discussed in Sec. III.A.2, the eigenstates are simply
standing waves with frequencies satisfying the dispersion law
for the infinite structure in Eq. (59). Hence, the calculated
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eigenfrequencies for the finite structure lie on the dispersion
curve for the infinite structure, which is strongly asymmetric
in the chiral case. As in the symmetric case of Fig. 6, the
radiative decay rate is at maximum for the eigenstates with
the wave vector Kz closest to the wave vector of light
�ω0=c, and when the polariton wave vector is strongly
detuned from the light wave vector, the polariton states
become subradiant. See Jones et al. (2020) for a detailed
theoretical analysis of superradiant chiral emission from
atomic arrays into the nanofiber. Jones et al. predicted that
near-perfect chirality can already be achieved for arrays
containing 10–15 atoms by phase matching a superradiant
collective guided emission mode via an external laser field.

4. Photon bunching and antibunching in a chiral waveguide

Here we examine the correlations between photons in a
waveguide chirally coupled to an array of closely spaced
atoms. We consider a fully chiral setup ξ ¼ γ← ¼ 0. In this
case, the photons are transmitted by atoms one by one. The
reflection is absent and the transmission coefficient through N
atoms is simply a product of the transmission coefficients of
individual atoms:

tN ¼ tN1 ; t1 ¼ 1þ 2iγ→

ω0 − ε − iðγ þ γ→Þ : ð60Þ

In Eq. (60) the radiative decay rate γ→ is linked to the matrix
element of the atom coupling to the right-going photon mode
g as γ→ ¼ g2=2c.
The photon-photon correlation function for a single reso-

nantly excited two-level atom chirally coupled to the wave-
guide is given by

gð2Þ1 ð0Þ ¼ ðγ þ γ→Þ2ðγ − 3γ→Þ2
ðγ − γ→Þ4 : ð61Þ

Equation (61) can be obtained by standard input-output
techniques of quantum optics (Kojima et al., 2003;
Koshino and Ishihara, 2004). The problem is similar to
photon reflection from a one-sided cavity (Rice and
Carmichael, 1988).
Equation (61) demonstrates that the photon-photon corre-

lations are sensitive to the ratio of the decay rates γ and γ→ and
that it is possible to realize both bunching and antibunching.

Specifically, for γ ¼ 0 one has gð2Þ1 ð0Þ ¼ 9. Increasing the
value of γ leads to an even stronger bunching. The value of
γ ¼ γ→ when the single-photon transmission is suppressed

(t1 ¼ 0) corresponds to a perfect bunching, gð2Þ1 ð0Þ ¼ ∞. A
further increase of γ leads to perfect antibunching at γ ¼ 3γ→.
However, in practice the coupling of a single natural atom to a
waveguide is weak: γ→=γ ∼ 1%. This means that photons
transmitted through one atom are almost uncorrelated. The
correlations can be enhanced either by putting an atom in
cavity (Dayan et al., 2008; Aoki et al., 2009; Scheucher et al.,
2016) or by increasing the number of atoms N (Prasad et al.,
2020). For artificial atoms such as superconducting qubits or
quantum dots, the coupling can be much stronger; see Fig. 2.
Before proceeding to the results of the experiment (Prasad

et al., 2020), we first discuss the theoretical problem of photon
pair scattering in the chiral setup. The most interesting effects
occur when the number of atoms reaches N ∼ γ=γ→ ∼ 100, but
the calculations are significantly more involved than those
used for the nonchiral Dicke problem (Rupasov and Yudson,
1984), which is discussed in Sec. III.A.3, even when the
interatomic spacing is zero. The reason for this is that the
atoms in the nonchiral problem are equivalent to each other,
while in the chiral case they are ordered from left to right and
hence are not equivalent. However, the problem can be still
solved exactly by means of the Bethe Ansatz (Ringel,
Pletyukhov, and Gritsev, 2014; Mahmoodian et al., 2018).

1 2

(a)

(b)

FIG. 19. Illustration of the protocol proposed by Guimond et al.
(2020) for generation of (a) a GHZ state and (b) a quantum state
transfer with an array of superconducting qubits coupled to two
waveguides. The bottom panel in (b), which shows the quantum
circuit, is described in Appendix H.

FIG. 20. The frequencies and radiative rates of polariton
eigenstates of a finite chain of regularly spaced atoms chirally
coupled through a waveguide mode with ξ ¼ 2 × 10−5, depend-
ing on the corresponding Bloch wave vector. The radiative decay
rate, indicated by the color of the dots, is normalized to the decay
rate of the individual atom γ1D. The calculation was performed for
N ¼ 400 atoms and the anti-Bragg spacing φ ¼ ω0d=c ¼ π=2.
From Fedorovich et al., 2022.
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An important milestone in theoretical research was achieved
by Mahmoodian et al. (2020), who considered the Dicke
problem for a chiral waveguide with multiple photons and
multiple atoms. It was demonstrated that the pulse trans-
mission through the atomic array can be satisfactorily
described by taking into account only relatively simple bound
eigenstates states of the Bethe Ansatz (Rupasov and Yudson,
1984; Yudson, 1985), and the connection to solitons in the
classical optics regime with large photon numbers has been
made. More recently Calajó and Chang (2022) numerically
analyzed the transition from the quantum to the classical
nonlinear optics regime for both nonchiral and chiral struc-
tures. In Appendix I, we present an alternative equivalent
derivation using the Green’s function technique employed by
Zheng and Baranger (2013), Fang, Zheng, and Baranger
(2014), and Poshakinskiy and Poddubny (2016). In the case
in which γ ≫ γ→, the photon-photon correlation function is
well described by the approximate equation

gð2ÞN ð0Þ ≈
�
1 −

ffiffiffi
2

p
γ→

2γ
exp

�
4Nγ→

γ

��2
; ð62Þ

and its dependence on the number of atoms N and on the
decay rate γ is shown in Fig. 21. This result is more notable
than that of the nonchiral situation; compare Figs. 21 and 13.
Specifically, the dependence of the correlation function on the
number of atoms is nonmonotonic: increase of N leads first to
the antibunching and then to the bunching. The bunching
threshold corresponds to N� ∼ γ=γ→ or, more precisely, one

has gð2ÞN�ð0Þ ¼ 1 at

N�ðγÞ ≈ γ

8γ→

�
3 ln 2þ 2 ln

γ

γ→

�
ð63Þ

(black curve in Fig. 21). Qualitatively, the nonmonotonic
behavior of the correlation function is caused by the

interference of two contributions to the photon pair trans-
mission coefficient [the first and second terms in Eq. (62)].
The two terms corresponding to an independent transmission
of two photons and the transmission of the correlated photon
pair are of opposite signs. The correlated contribution
becomes dominant at larger N, when the single-photon
transmission is suppressed, leading to photon bunching.
The transition from independent photon propagation to anti-
bunching to bunching with an increase in the atom number
was first observed by Prasad et al. (2020). The experimental

dependence gð2ÞN ð0Þ on N given by Prasad et al. (2020) is
presented in Fig. 22. The measured value of the correlation
function has been tuned from gð2Þð0Þ ≈ 0.37� 0.12 for N ≈
160 atoms to gð2Þð0Þ ≈ 24� 7 for N ≈ 200 atoms. In the
experiment, the antibunching was not perfect, due to the
fluctuations of the optical density resulting from the uncer-
tainty in the preparation of an atomic ensemble and from the
photon shot noise. This can be seen by comparing the green
and orange curves in Fig. 22. While the dash-dotted green
curve had been calculated by Prasad et al. (2020) for an
idealized situation and corresponds to Eq. (62), the solid
orange curve takes the uncertainties into account and
describes the experiment quantitatively.
The correlated photon transport has been also studied for

arrays of three-level atoms coupled to a symmetric (Roy,
2011; Roy and Bondyopadhaya, 2014; Song et al., 2017)
and a chiral waveguide (Iversen and Pohl, 2021). For the
chiral waveguide, it has been predicted that in conditions of
EIT of the three-level medium, a high degree of antibunch-
ing and photon transmission can be maintained in the
presence of moderate losses (Iversen and Pohl, 2021).
While in this section we focus on a fully chiral setup,
the behavior of quantum photon-photon correlations in the
case of general asymmetric coupling is a long-standing
problem, despite some recent progress in the field
(Jen, 2021).
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FIG. 21. Dependence of the photon-photon correlation function
gð2Þð0Þ in a chiral waveguide on the number of atoms N and on
the ratio of nonradiative and radiative damping rates γ=γ→. The
black curve shows the threshold value N�ðγÞ given by Eq. (63)

when gð2ÞN�ð0Þ ¼ 1. The calculation was performed using Eq. (I7)
for light incident at the resonant frequency ε ¼ ω0 at the two-
level atoms (U → ∞).

FIG. 22. Experimentally measured (crosses) and calculated
(lines) photon-photon correlation functions depending on the
number of atoms in the array and optical density. Solid orange
and dash-dotted green curves were calculated without and with
the experimental uncertainty in the optical density. The param-
eters of the experiment correspond to γ=γ→ ≈ 130. From Prasad
et al., 2020.
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C. Two-dimensional atomic arrays

As mentioned in Sec. II, an ordered two-dimensional
atomic array with a small lattice period scatters incident light
in the far field only in a certain direction, determined by the in-
plane light wave vector, because diffraction is not possible.
Thus, the problem involving photon interaction with the array
is quasi-one-dimensional and similar to a typical WQED
problem, with the entire array playing the role of an effective
atom (Rui et al., 2020). In this section, we discuss light
reflection from such an effective atom in more detail.
Reflection of light from the planar array of scatterers is a

well-known problem in classical optics (de Vries, van
Coevorden, and Lagendijk, 1998; Khitrova and Gibbs,
2007; Gippius and Tikhodeev, 2009). More recently it has
been extensively studied in the field of metasurfaces, artificial
two-dimensional arrays of resonant scatterers with a spacing
smaller than the light wavelength. These scatterers can be
metallic nanoparticles with plasmonic resonances (Decker
et al., 2011): dielectric and semiconductor particles, such as
those made of silicon, that have Mie optical resonances
(Kuznetsov et al., 2016; Kivshar, 2018). The two-dimensional
atomic arrays could be viewed as quantum metasurfaces
with strong optical nonlinearities at the single-quantum level
(Bekenstein et al., 2020; Bettles et al., 2020; Moreno-
Cardoner, Goncalves, and Chang, 2021; Solomons and
Shahmoon, 2021; Zhang et al., 2022).
Reflection and transmission coefficients for a single pho-

ton, normally incident upon the array, can be presented in
the form

r ¼ iγ2D
ω̃0 − ω − iðγ þ γ2DÞ

; t ¼ ω̃0 − ω − iγ
ω̃0 − ω − iðγ þ γ2DÞ

;

ð64Þ

which is reminiscent of the reflection and transmission
coefficients in Eq. (28) of one atom coupled to a waveguide.
In Eq. (64) γ2D is the collective radiative decay rate of the
atomic array and ω̃0 is the resonance frequency modified by
the collective coupling with light (which can be viewed as the
cooperative Lamb shift) given by

ω̃0 ¼ ω0 −
3γ0λ

3
0

16π3
ReC; γ2D ¼ γ0 þ

3γ0λ
3
0

16π3
ImC; ð65Þ

where γ0 ¼ 2Γ0 is the spontaneous decay rate of a single atom
in free space and C is the so-called interaction constant
(Simovski, Belov, and Kondratjev, 1999; Belov and Simovski,
2005). The explicit expression for C and the derivation details
are presented in Appendix J; see, in particular, Eq. (J5). In the
limit in which the spacing between the atoms is much smaller
than the light wavelength, one can show that

C ≈
2πiω
ca2

þ Sþ ðω=cÞ2S0
2

; ð66Þ

where S ≈ 9.03=a3 and S0 ≈ −3.90=a. Substituting Eq. (66)
into Eq. (65), we find that (Ivchenko and Kavokin, 1992;
Ivchenko et al., 1992)

γ2D ¼ γ0
3λ2

4πa2
: ð67Þ

Hence, as in the classical Dicke formula for the dense three-
dimensional cloud, where the collective decay rate scales as
γ3D ∼ γ0ðλ=aÞ3, the decay rate of the two-dimensional array
exhibits cooperative enhancement with the factor of the order
of the number of atoms per wavelength square. Figure 23(a)
shows the dependence of the collective radiative decay rate
γ2D on the ratio of the array period to the light wavelength
a=λ0. For a short period, the array exhibits a superradiant
behavior (γ2D > γ0), but the radiative linewidth quickly
decays with the growth of lattice spacing, and for a=λ0 >ffiffiffiffiffiffiffiffiffiffi
3=4π

p
≈ 0.5 the structure becomes a subradiant one

(γ2D < γ0). This enhancement has been observed experimen-
tally for quantum wire arrays (Ivchenko et al., 1992) and
quantum dot arrays (Khitrova and Gibbs, 2007), but detailed
studies of collective light-matter coupling have been pre-
vented by the strong inhomogeneous broadening. Much more
experimental progress has been made for metamaterials, and
recently for optical lattices (Rui et al., 2020).
Figure 23(b) presents the reflection spectrum depending

on the array period [we have recalculated it following
Shahmoon et al. (2017)]. While the linewidth of the reflection
resonance decreases monotonically for larger spacing follow-
ing Fig. 23(a), the behavior of the resonance frequency ω̃0 is
more subtle and nonmonotonic, as shown by the thick black
line in Fig. 23(b). For small spacings, the cooperative Lamb
shift diverges for a → 0 as ω̃0 − ω0 ∝ −γ1Dðλ0=aÞ3, as fol-
lows from Eq. (66), the thin red line in Fig. 23(b).
Qualitatively, the Lamb shift is determined by the near-field

FIG. 23. (a) Collective radiative decay rate of an atomic array
depending on the ratio of the array period a to the light
wavelength at the atomic resonance λ0. (b) Light reflection
spectra depending on the ratio a=λ0. The thick black line shows
the collective resonance frequency ω̃0 [Eq. (65)] and the thin red
line shows the analytical solution found using Eq. (66), calculated
while neglecting the nonradiative decay rate Γ for the state with
the zero in-plane wave vector.
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dipole-dipole interactions between atoms. However, the value
of the Lamb shift crosses zero for a ≈ 0.2λ0 due to the
destructive interference of the two terms S and S0ðω=cÞ2 in
Eq. (66). This point corresponds to the perfect reflection when
jrðω0Þj ¼ 1. Another special point at which the Lamb shift
vanishes and jrðω0Þj ¼ 1 is a ≈ 0.8λ0 (Bettles, Gardiner, and
Adams, 2016; Shahmoon et al., 2017).
We now discuss in more detail a recent theoretical proposal

of atom-made metasurfaces for the generation of highly
entangled photon states (Bekenstein et al., 2020); see
Srakaew et al. (2023) for experimental verification. The
generation and manipulation of Schrödinger cat states were
recently demonstrated experimentally in Rydberg atom arrays
(Omran et al., 2019) and superconducting qubit arrays
(C. Song et al., 2019). Atom-made metasurfaces present a
natural further step in this direction. The proposal of
Bekenstein et al. (2020) was based on the placement of a
single ancillary atom near the metasurface. Next, by changing
the quantum state of the ancillary atom, one can control via the
Rydberg interactions whether the photons will be fully
reflected or fully transmitted by the metasurface. This is
because even a single atomic layer with subwavelength
spacing can realize perfect reflection, thus enhancing the
coupling of the ancillary atom with the photons. Specifically,
it is proposed to coherently drive a 2D array of three-level
atoms in the EIT regime (Fleischhauer, Imamoglu, and
Marangos, 2005). The EIT condition is also modified by
the Rydberg interactions. If the ancillary atom is in the ground
state jg0i, the metasurface is in the jUi state, uncoupled from
the incident light. When the atom is in its Rydberg state jr0i,
the metasurface is detuned from the EIT condition to the state
jCi and fully reflects light. One starts by preparing the
ancillary atom in the state ψ ¼ ð1= ffiffiffi

2
p Þðjg0i þ jr0iÞ so that

the full system of atom and metasurface is in the state
ð1= ffiffiffi

2
p Þðjg0ijUi þ jr0ijCiÞ. Next one sends N initially unen-

tangled photons to different points in the array plane and
performs the projective measurement of the ancillary atom in
the basis ð1= ffiffiffi

2
p Þðjg0i � jr0iÞ. As a result, the scattered light is

in the GHZ photonic state ð1= ffiffiffi
2

p Þðj0i⊗N þ j1i⊗NÞ, where the
states j0i and j1i correspond to transmitted and reflected
photons. Such quantum scattering corresponds to a controlled-
NOT gate for photons that processes photons in parallel due to
the planar array geometry. The process efficiency is limited by
the finite range of the Rydberg interactions controlling the EIT
condition. The GHZ state fidelity also depends on the number
of atoms. According to the calculation, a fidelity of over 90%
requires arrays with more than 20 × 20 atoms. This protocol
can be further developed to realize more complex quantum
states (Bekenstein et al., 2020). For example, changing the
ancillary atom state between the photon scattering processes
should lead to the generation of photon cluster states. Highly
entangled free-space photon states could be realized by
coupling several ancillary atoms to the metasurface.

IV. EXPERIMENTAL DEMONSTRATIONS

We now discuss experimental demonstrations, highlighting
potential applications of the waveguide quantum electrody-
namics platform. Since this field is rapidly evolving, covering

all relevant works does not seem feasible. Instead, we consider
in detail several experiments representing major research
directions. We start in Sec. IV.A by discussing superradiance
in the waveguide-coupled atomic arrays measured by Solano
et al. (2017) and proceed to the generation of collective atomic
excitations and quantum light in this setup (Sec. IV.B),
focusing on the experiment by Corzo et al. (2019). Next
we consider the slow-light effect under the conditions of
electromagnetically induced transparency reported by
Gouraud et al. (2015) and Sayrin et al. (2015) and the
potential applications for quantum memory discussed in
Sec. IV.C. Section IV.D is devoted to the demonstration of
the subradiant modes in the transmon qubit array reported by
Brehm et al. (2021). Section IV.E presents experimental
results (Corzo et al., 2016) for the Bragg-spaced atomic
arrays with both unidirectional and chiral interactions.
An important comment should be made regarding disorder

in the atomic Bragg arrays, which is inevitably present at the
current level of experimental technologies. The achievable
filling factor is ∼0.5 − 0.8 with random occupation of the
lattice sites by the atoms (Goban et al., 2012; Corzo et al.,
2016; Prasad et al., 2020). At the same time, the disorder in
the atomic system may harm quantum states such as sub-
radiant states, leading to nonhomogeneous broadening, as
shown in Fig. 4 for 2D atomic array systems. In 1D systems,
the effects of disorder have been extensively studied theo-
retically in the case of achiral (Haakh, Faez, and Sandoghdar,
2016; Kornovan et al., 2019) and chiral (Mirza, Hoskins, and
Schotland, 2017; Mirza and Schotland, 2018; Jen, 2020;
Fedorovich et al., 2022) interactions. Alternatively, the
influence of disorder on spectral properties of semiconductor
polaritonic lattices has been also been previously studied
(Malpuech and Kavokin, 1999; Kosobukin, 2003; Kosobukin
and Poddubny, 2007).

A. Superradiance and subradiance in waveguide-coupled
atomic arrays

While collective superradiant coupling can be observed for
atoms in free space (DeVoe and Brewer, 1996; Guerin, Araújo,
and Kaiser, 2016), waveguides offer new opportunities to
control the interactions between atoms. It is potentially
possible to place atoms far enough apart so that the dipole-
dipole interaction becomes irrelevant and to realize collective
superradiant or subradiant states mediated by long-range
waveguide-mediated coupling (Gonzalez-Tudela et al.,
2011; Shahmoon and Kurizki, 2013). An important milestone
was reported by Goban et al. (2014, 2015) for cesium atoms
near an alligator photonic crystal waveguide; see Sec. II for
more details on this structure. The total spontaneous emission
rate was found to scale linearly with the number of trapped
atoms. However, the number of atoms was relatively small
(N ∼ 1 − 3, and their distance along the waveguide was on the
order of 10 μm and not controllable. Thus, observing the
controllable superradiant coupling between distant clouds of
atoms, separated by about 0.3 mm along the waveguide, was
an important step (Solano et al., 2017). The main experimental
results of this work are reproduced in Fig. 24. Instead of the
alligator photonic crystal utilized by Goban et al. (2014,
2015), Solano et al. used an optical nanofiber overlap

Alexandra S. Sheremet et al.: Waveguide quantum electrodynamics …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 015002-31



magneto-optical trap that contained 87Rb atoms. Figure 24(a)
shows an example of measured spontaneous emission kinetics
for an atomic cloud after the initial excitation probe has
been turned off. The average number of atoms for this
realization was N ¼ 6, with the optical density ≈0.7. The
initial faster component of the signal has been fitted as an
exponential decay (red dashed line). The dependence of this
decay constant on the array geometry, which is presented in
Fig. 24(b), depends on the number of atoms in the system. All
the measured decay rates scale linearly with the number of
atoms, which is a manifestation of the superradiant collective
behavior. The blue circles in Fig. 24(b) correspond to a single

atomic cloud, and the solid red square corresponds to atoms
split into two clouds separated by about 400 wavelengths.
This measurement satisfies the same linear scaling law and
provides an unambiguous proof of long-range waveguide-
mediated interactions for distant clouds. We note, however,
that the overall modification of the radiative decay rate
compared to that of a single atom in vacuum is not large,
on the order of 10%. This modification has been limited by the
coupling efficiency of atomic emission into the waveguide
mode, which has been estimated as β ≈ 13%. Figure 24(a) also
reveals a more slowly decaying tail attributed to subradiant
modes of the cloud.
We have focused here only on single-photon superradiance

that is resolved in the weak excitation regime. There is also the
opposite regime, considered in the original Dicke proposal, in
which all atoms of the array are initially in the excited state
and then rapidly emit light. We refer the interested reader to
the recent theoretical work of Masson et al. (2020) studying
many-body signatures of collective decay in atomic arrays,
and references therein for more details on this regime. The
phenomenon of superradiance can also be studied theoreti-
cally in more complicated setups. For example, Wang et al.
(2020) theoretically considered quantum emitters coupled to a
waveguide formed by an array of coupled cavities. Wang et al.
(2015) formulated an interesting proposal of superradiant
lattices in reciprocal momentum space that was realized for an
array of three-level atoms coupled to an external wave. This
concept might be useful as a simulator of solid-state physics in
a quantum optical setup.

B. Generation of collective excitations of an atomic array

The generation of collective quantum states of atoms
coupled to light presents one of the main potential applications
of the WQED platform. In Sec. III.B.4 we described how
arrays of atoms weakly chirally coupled to the waveguide
have been used to experimentally demonstrate either photon
bunching or antibunching, depending on the photon number
(Prasad et al., 2020). There have also been preliminary reports
on the two-photon entanglement and squeezing from the same
setup (Hinney et al., 2021). Schrödinger cat states were
recently realized in an array of atoms coupled to an optical
waveguide (Leong et al., 2020).
We now discuss in more detail another important exper-

imental demonstration (Corzo et al., 2019). A collective
atomic excitation in an atomic array has been prepared and
then read out with an external laser pulse leading to single-
photon emission into the guided mode using the Duan-Lukin-
Cirac-Zoller (DLCZ) protocol (Duan et al., 2001). To imple-
ment this protocol, 2000 atoms of 133Cs were initially prepared
in the ground state jgi ¼ j6S1=2; F ¼ 4i and trapped along the
optical nanofiber; see the top panel of Fig. 25. Specifically, a
weak pulse in y polarization and detuned by Δ ¼ −10 MHz
from the jgi → jei atomic transition creates a single collective
excitation in an array. This excitation was heralded by
detecting a single-photon guided mode of the nanofiber,
quasilinearly polarized along the x axis (the field-1 mode).
After a programmable delay, an external read pulse resonant
with the jsi → jei atomic transition was sent to the ensemble.
The read pulse maps the collective excitation into a field-2
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FIG. 24. (a) Experimental spontaneous emission kinetics of
photons in a nanofiber. Time is normalized to the natural atom
lifetime (τ0 ¼ 1=Γ0 ¼ 26.24 ns). Inset: illustrated setup andwave-
guide-mediated coupling between distant atoms. (b) Dependence
of the spontaneous decay rate on the average number of atoms and
the corresponding OD for two distant atomic clouds. The blue
circles, dotted dark green diamonds, and solid red square corre-
spond to the right atomic cloud, left atomic cloud, and a
combination of the two clouds, respectively. The red dashed line
is the theoretical prediction. From Solano et al. (2017).
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photon that escapes the atomic ensemble and propagates in the
opposite direction of field-1 photon. The field-2 mode is also a
guided one, but it has a quasilinear polarization along the y
axis. The readout process benefits from the enhanced atom
interaction with the guided mode. Namely, the single-atom
coupling has been around β ¼ Γ1D=Γ ≈ 10−2, where Γ1D and
Γ are the radiative decay rates into the guided mode and into
free space. As described in Sec. II.A, this has allowed OD
equal to 300 for 2000 atoms to be achieved, which means that
the atom-waveguide interaction is enhanced by about 2 orders
of magnitude compared to the effective free-space interaction.
The one-dimensional geometry of the problem presents
another advantage over the 3D free-space setup. Namely,
since the initial pulse is incident from the side of the array and
is external to the nanofiber, it is possible to collectively excite
the atoms with the same amplitude.
After the implementation of the DLCZ protocol, the non-

classical correlations between field 1 and field 2 should be
characterized. This can be done with the normalized cross-
correlation function g12 ¼ p12=p1p2, where p12 is the joint
probability of detecting a pair of photons and p1 and p2 are the
probabilities of detecting a photon in fields 1 and 2. The
dependence of g12 on the probability p1 is shown in Fig. 25(a).
One can see that the value of g12 increases when the excitation
probability is reduced. For efficient retrieval of the stored
collective excitation, the conditional retrieval efficiency is a
crucial parameter. It can be found via a measurement of the
conditional probability of detecting a guided photon in field 2
after retrieval (pc ¼ p12=p1). Memory efficiency can be
found as a ratio qc ¼ pc=η2, with η2 the overall detection
efficiency. Figure 25(b) displays the retrieval efficiency as a
function of p1. One can observe three different regimes. In the
first region, characterized by the large value of p1, qc
increases with p1 and corresponds to a multiexcitation process
in the write field. The second region with a plateau in
the qc corresponds to a single-excitation regime. And the
third region corresponds to low excitation probability, where
the noise background causes false heralding events to become
predominant.
Finally, a single-photon character of the heralded excita-

tion can be confirmed by measuring the degree of suppres-
sion w of the two-photon component of the retrieved field 2
compared to a coherent state. This value can be found from
the ratio W ¼ p1p1;2a;2b=p1;2ap1;2b, where p1;2a;2b indicates
the probability for triple coincidences and p1;2a and p1;2b

are probabilities for coincidences between detectors. In
Fig. 25(c), one can see the antibunching value w as a
function of the cross-correlated parameter g12. The temporal
mode of the guided single photon is given in the inset of
Fig. 25(c). These experimental achievements demonstrate
that the collective quantum state can be characterized by the
subsequent on-demand emission of a guided single photon,
and that this nonclassical state can be preferentially coupled
to a waveguide.

C. Slow guided light and quantum memory

Interfacing guided light with an atomic array has been
foreseen as a promising alternative, enabling longer inter-
action length and large optical depth, which are crucial for

quantum memory applications (Gorshkov et al., 2007). In an
optical nanofiber, a propagating single-mode field experiences
a dispersion due to the dispersive material contents of the core
and clad. The group velocity of the envelope of such a
propagating fiber mode is vg ¼ dω=dk1D, with k1D the
propagation constant of the fiber mode. The group velocity
of the fiber mode can be significantly reduced under con-
ditions of EIT. The light delay propagating in an optical
nanofiber was theoretically studied by Patnaik, Liang, and
Hakuta (2002) and Song et al. (2017), and the first exper-
imental demonstrations were done by Gouraud et al. (2015)
and Sayrin et al. (2015). The main difference between these
two experiments consists in prepared atomic systems. Thus, in
the work of Gouraud et al. (2015) a cloud of laser-cooled
atoms overlapped with a nanofiber, while in the work of
Sayrin et al. (2015) laser-cooled cesium atoms were confined

FIG. 25. Waveguide-coupled collective excitation of an atomic
array. Top panel: DLCZ scheme (Duan et al., 2001). One single-
flip excitation is created in a chain of N atoms trapped near an
optical nanofiber by an external optical pulse that is detuned from
the atomic jgi → jei transition. This process is heralded by the
detection of a photon in the guided field-1 mode. Later, a read
pulse resonant to the jsi → jei atomic transition converts the
excitation into a single photon in the guided field-2 mode. Lower
panel: characterization of the collective excitation. (a) Normalized
cross-correlation function g12 between field 1 and field 2.
(b) Conditional retrieval efficiency qc as a function of the
probability p1 for detecting a heralding photon in field 1.
(c) Suppression of the two-photon component of field 2. From
Corzo et al., 2019.
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to a one-dimensional optical lattice realized in an evanescent
field surrounding an optical nanofiber.
Guided light propagating through an optical nanofiber

has a complex polarization pattern, including a significant
nontransverse component. The transmission coefficient of
weak intensity light propagating through a dilute atomic
cloud with an OD has an exponential dependence
∼ expf−OD=½1þ ð2Δ=ΓtotÞ2�g, whereΔ and Γtot are detuning
from the atomic resonance and the total decay rate of the
atomic excited state. The transmission coefficient of the
guided light in a nanofiber-mediated atomic cloud is displayed
in blue in Fig. 26(d).
The fitting of the experimental data with the exponential

profile yielded OD ¼ 3 and Γtot=2π ¼ 6.8 MHz. Notice that
this value is 30% larger than the natural linewidth in free space
Γ0=2π ¼ 5.2 MHz resulting from the finite temperature, sur-
face interactions, and modification of the spontaneous emis-
sion rate near the fiber. Sayrin et al. (2015) obtained OD ¼ 6

and Γtot=2π ¼ 6.4 MHz with a similar fitting.
It is well known that a strong control field changes the

transmission characteristics of the probe field. Figure 26(d)
shows an example of the transmission profiles of the signal as
a function of its spectral detuning δ from the resonance of the
atomic transition jgi → jei for different values of the control
field power from Gouraud et al. (2015). When the control field
is applied, a transparency window appears, providing a first
signature of EIT in this evanescent-field configuration.
Transparency close to 80% was achieved in both experiments.
After having EIT transparency, the slow-light effect resulting
from the guided light propagation under the EIT condition can
be measured. As a signal pulse, a weak laser pulse at a single-
photon level was used. The results for the light delay are
demonstrated in Fig. 26(b) for the work of Gouraud et al.
(2015) and in Fig. 27(a) for the work of Sayrin et al. (2015).
Larger delays are obtained when the control field is decreased
due to the narrower transparency window. For a 0.5 mW
control field power, a light delay of 60 ns was observed by
Gouraud et al. (2015) and a light delay of 5 μs was achieved
with a control field power 0.7 pW by Sayrin et al. (2015).
In addition, the storage of the guided light can be demon-

strated by switching off the control field. This corresponds to
an implementation of the dynamical EIT protocol. While the
light is slowed down, the control is ramped down to zero and
the signal pulse is converted into a collective atomic excita-
tion. After a controllable delay, the control field can be
switched on again and the light can be retrieved in a well-
defined spatiotemporal mode due to the collective enhance-
ment provided by the atomic ensemble. Figures 26(c)
and 27(b) demonstrate the storage results for a signal with
mean photon numbers per pulse equal to 0.6 and 0.8,
respectively. Owing to the limited delay, the pulse cannot
be contained entirely in the ensemble, and leakage is observed
before the control pulse is switched off. The crucial parameter
characterizing the memory is its efficiency, which can be
defined as a ratio of the photodetection events in the retrieved
pulse to the ones in the reference. Efficiencies of η ¼ 10% and
3% were obtained in these experiments. These efficiencies are
compatible with the limited OD used in the experiments.
These two experiments demonstrated that the interaction of

the evanescent field propagating through an optical nanofiber
with the surrounding atoms provides an intrinsically fibered
memory that has potential applications.

D. Subradiant excitations in the qubit array

Thus far we have considered experiments probing sym-
metric superradiant modes of the atomic array. However, as
previously discussed in the context of Fig. 10, there are also
subradiant modes with a strongly suppressed radiative decay
compared to a single atom. The lifetime of the darkest
subradiant modes tends to increase with the number of atoms
N, as either N3 [Eq. (19) (Zhang and Mølmer, 2020)] or even
faster (Kornovan et al., 2019).
However, the large radiative lifetime also means that it is

hard to address subradiant states in experiments. We illustrate
this by discussing the state-of-the-art experiment by Brehm
et al. (2021) for an array of artificial atoms, superconducting
qubits, coupled to the waveguide. The structure consisted of
eight transmon qubits, as illustrated in Fig. 28(a). The spacing
of the qubits was approximately 40 times smaller than
the electromagnetic wavelength at the qubit resonance, so
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FIG. 26. (a) Nanofiber with a diameter 400 nm overlapped with
an ensemble of cold atoms of 133Cs. The signal pulse is a guided
mode field, and the control pulse is external to the nanofiber.
(b) Transmitted pulses for different control powers. The reference
is measured without atoms. (c) Storage and retrieval of the
guided light with an exponentially rising profile with a full width
at half maximum of 60 ns. In the absence of a control field, the
blue circles and purple triangles give the transmitted pulse
without and with atoms. The red squares correspond to the
memory sequence, showing leakage and retrieval. The solid black
line indicates the control timing. (d) EIT for the guided light. The
control field is on resonance with the jsi → jei transition, while
the signal is detuned by Δ from the jgi → jei atomic resonance.
From Gouraud et al., 2015.
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the array can be viewed as a quantum metamaterial. In the
experiment, the amplitude transmission coefficient of the
electromagnetic wave through the metamaterial S21 ≡ tðωÞ
has been measured. The setup allows one to tune the resonant
frequencies of the qubits independently by applying an
external voltage. Thus, by tuning a given number of the
consecutive qubits N ≤ 8 to the resonance and detuning
the remaining qubits, it has been possible to study the
dependence of the transmission spectra on N. The experi-
mental results are presented in Fig. 28(b). The experiment
has been performed for low excitation powers. For N ¼ 1,
the transmission spectrum has a dip at the qubit resonance
frequency. In contrast to the theoretically predicted
Lorentzian, the experimental spectrum is slightly asymmetric.
This Fano-like asymmetry originates from the interference
between the resonant scattering on the qubit and the multiple
reflections from the edges of the waveguide. Figure 28(b)
demonstrates that an increase of the number of qubits leads to
suppression of the transmission around the qubit resonance.
This reflects the formation of the polariton band gap for the
coupled photon-qubit excitations. At the same time, additional
peaks appear with an increase of N below the qubit resonance.

These peaks correspond to subradiant excitations of the array
(discussed in Sec. III.A.2). Namely, they can be obtained by
diagonalizing the effective Hamiltonian matrix (15). However,
only up to two brightest subradiant modes have been resolved
in the experiment. This is due to the quality of the sample: the
ratio of nonradiative to radiative decay rates γ=γ1D was on the
order of 10%. Thus, the darkest subradiant modes decay
mostly nonradiatively and are not resolved in transmission
spectra. The experiment of Brehm et al. (2021) reveals the
potential of the superconducting qubit arrays. A natural
extension of this work would be to demonstrate the slow-
light effect due to a lower group velocity of polaritons near the
resonance. It is also potentially possible to further increase
both the quality and the number of qubits, which will enable
slowing and storing microwave pulses propagating through
the array (Leung and Sanders, 2012).
Another application of the subradiant states with super-

conducting qubits could be related to the quantum measure-
ments. Quantum nondemolition single-microwave photon
detector remains a challenge (Royer et al., 2018; Blais et al.,
2021; Grimsmo et al., 2021). The proposal of Royer et al.
(2018) is based on a signal waveguide photon being absorbed
by an array of superconducting qubits. Next the absorption of

(a)

(b)

FIG. 27. (a) Slow guided light. A light delay with respect to a
reference pulse (indicated as “input”) is visible. The solid lines
correspond to Gaussian fits of the experimental data at different
powers, which are indicated near the curves. (b) Storage of light
in a nanofiber-trapped ensemble of cold atoms. A pulse duration
of τ ¼ 0.2 μs contains 0.8 photon on average.The storage time
was chosen as 1 μs. The data corresponding to a green area with a
slanted pattern represent the reference recorded without atoms.
The black solid line is the simulated time trace. The homo-
geneous magnetic field is Boff ¼ 15 G. From Sayrin et al., 2015.
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FIG. 28. (a) Optical micrograph of the eight-qubit metamaterial
composed of superconducting transmon qubits capacitively
coupled to a coplanar waveguide. Local flux-bias lines provide
individual qubit frequency control in the range of 3–8 GHz.
(b) Transmission spectra jS21j for different numbersN of resonant
qubits with the resonant frequency f ¼ 7.898 GHz and low drive
powers. With an increasing N, the emergence of subradiant states
(visible as peaks in transmission) can be observed. The black
dotted lines are fits to the expected transmission using a transfer
matrix calculation. Black vertical arrows indicate the calculated
frequencies of the two brightest subradiant states forN ¼ 8. From
Brehm et al., 2021.
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photon by the array leads to coherent state displacement in an
additional harmonic mode that is detected using homodyne
measurement. The essence of the proposal is the engineering
of the system in such a way that a signal photon is absorbed
into the bright state of the qubit array, transferred to a long-
lived subradiant state, and, after some time, returns to the
bright state, where it is reemitted. The measurement efficiency
is enhanced due to the long lifetime of the collective
subradiant state.

E. Bragg-spaced arrays

In this section, we discuss in more detail the experimental
results of Corzo et al. (2016) for a waveguide-coupled atomic
array. The theoretical background for Bragg structures was
presented in Sec. III.A.2. In this experiment, the array of
N ¼ 2000 trapped atoms of 133Cs was prepared in the
evanescent field of a 400 nm diameter nanofiber with a lattice
constant d close to λ0=2, where λ0 is the wavelength of the
atomic transition. For this array of N ¼ 2000 atoms, the
reflection up to 75% was achieved. For comparison, the 80%
reflection was achieved in a free-space experiment with 107

atoms (Schilke et al., 2011). While we considered a symmetric
nonchiral situation previously in this section, the experiment
of Corzo et al. (2016) also demonstrated the effect of the
waveguide chirality arising from the complex polarization
pattern. Namely, each atom exhibits the radiative decay rates
γ→ and γ← into the right- and left-propagating modes,
respectively, and γ ∼ γ0 into all other modes, with γ0 the free-
space radiative decay rate; see Fig. 29(a). For a guided
probe field quasilinearly polarized along the y direction,
the two decay rates are equal: γ→ ¼ γ← ¼ γ1D=2. In contrast,
for an orientation along the x direction the couplings to the
waveguide become strongly asymmetric (Le Kien and
Rauschenbeutel, 2014). In the case of asymmetric coupling,
the forward decay rate is increased sixfold, while the back-
ward decay rate is suppressed by about 1 order of magnitude.
To examine the effect of asymmetric coupling in experiment,
one can compare the light reflection spectra in x and y
polarizations.
Figures 29(c) and 29(d) provide theoretical reflection

spectra calculated for different small detunings Δλ of the
trap wavelength to atomic resonance and for the two orthogo-
nal polarizations. The calculations are performed using the
transfer matrix formalism discussed in Appendix B. For atoms
separated by exactly λ0=2, the reflection spectrum has a
broadened Lorentzian profile in the symmetric coupling case,
while the reflectance is strongly suppressed in the chiral case.
Indeed, the amount of chirality and the number of atoms result
in a finite bandwidth around resonance where reflection is
suppressed. One can see that close to the commensurate array
the Bragg condition is fulfilled out of resonance. This leads to
a maximum reflectance shifted to the blue but also results in
an increased reflectance for the chiral case. Large reflectance
values can then be obtained for both polarizations, as the
single-atom reflection coefficients are similar in the chosen
configuration.
Themeasured reflection spectra for both x- and y-polarization

profiles are shown in Fig. 30(a). The achievable filling factor is
around 0.5, with random occupation of the lattice sites by the

atoms. In Fig. 30, the estimated filling factor was around 0.3;
nevertheless, one can observe the pronounced Bragg peak in the
reflection spectrum averaged over multiple realizations. One of
the possiblemechanisms of this tolerance is related to directional
interaction with the waveguide mode and suppressed reflection.
The trap detuning was fixed atΔλ ¼ 0.2 nm, which adds slight
disorder in the atomic array. However, one can see that the
reflection spectrum is significantly shifted and broadened in the
asymmetric case of x polarization (red curves). These features
are compelling signatures of the chiral character of the wave-
guide on the reflection, as confirmed by the associated simu-
lations shown in Fig. 30(b). Notice that the maximal observed
reflectance of 0.75� 0.06 was obtained in the asymmetric case
at a probe detuning of 25 MHz. Beyond their fundamental
significance, observation of the chiral character of the nanofiber
demonstrates key ingredients for the exploration of a variety of
emerging and potentially rich protocols based on 1D reservoirs
coupled to atoms.

V. SUMMARY AND OUTLOOK

In this review, we provided an introduction in the emerging
field of waveguide quantum electrodynamics. We consi-
dered various experimental platforms and described in detail
several recent groundbreaking experiments devoted to light-
matter interactions in the quantum regime, including tunable
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FIG. 29. Bragg reflection from atoms coupled to a one-dimen-
sional waveguide. (a) N atoms trapped near a waveguide and
exhibiting radiative decay rates γ→ ¼ γ← into the right- and left-
propagating modes, respectively, and γ ∼ γ0 into all other modes.
(b) Electric field distribution in the transverse plane of a nanofiber
for a guided probe field with a quasilinear polarization (indicated
by the arrow). Theoretical reflection spectra for a probe quasi-
linearly polarized (c) along the y direction (symmetric decay
rates) and (d) along x direction (asymmetric decay rates). The
spectra are given for different distances between the atoms,
with values close to the commensurate case. Δλ stands for the
trap detuning from the resonance, with d ¼ λ0=2þ Δλ=2.
The calculation parameters are N ¼ 2000, γ1D=γ0 ¼ 0.007,
γ→ ¼ 2.8γ1D, and γ→=γ← ¼ 12. From Corzo et al., 2016.
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bunching and antibunching of emission due to the formation
of bound photon states, resonant light reflection from atom-
made quantum metasurfaces, and topological quantum optics.
We also provided a detailed introduction into various theo-
retical techniques useful in quantum optics consisting of
ordered one-dimensional atomic arrays in the waveguide.
Given the advances in the WQED field in the last five to

ten years, it is difficult to predict specific directions of
future development, but substantial progress can certainly
be expected. Not only will the current WQED platforms
continue to develop but new types of structures could also
become prominent, such as those based on Rydberg supera-
toms, topologically nontrivial waveguides, or even Mössbauer
nuclei (Röhlsberger and Evers, 2021); see the discussion in
Sec. II.C. We can also envisage the arrival of hybrid quantum
systems involving interacting excitations of different origins.
For example, one could think of tripartite systems with
interacting atomic excitations, photons, and atomic vibrations
in the quantum regime. There have already been a number
of relevant experimental demonstrations (Lecocq et al.,
2016; Bothner, Rodrigues, and Steele, 2021) and theoretical
predictions (Chang, Cirac, and Kimble, 2013; Iorsh,
Poshakinskiy, and Poddubny, 2020; Sedov, Kozin, and
Iorsh, 2020), and the field of WQED may soon be comple-
mented by waveguide quantum optomechanics. Another type
of quasiparticle that can be interfaced with superconducting
circuits is offered by collective spin excitations in ferromag-
netic crystals; see Lachance-Quirion et al. (2019). The photon
excitations can also be substituted for atomic waves in an
optical lattice, giving rise to matter-wave polaritons (Kwon
et al., 2022). The entire concept of WQED might evolve, fuse
with circuit QED, and include structures with two-dimen-
sional arrays of waveguides (Marques, Shelykh, and Iorsh,
2021), or even more complicated topologies.
The focus of research will probably shift from pioneering

demonstrations of cooperative light-matter interactions, such
as generation of superradiant and subradiant states, to the
studies of advanced highly excited and highly entangled
quantum states of atoms and photons. Different protocols
are currently under development that explore both the pos-
sibility of cascaded photon processing in one-dimensional

structures (Guimond et al., 2020) and the possibility of
two-dimensional arrays to parallelize photon processing
(Bekenstein et al., 2020; Bettles et al., 2020) for the
generation of photon cluster states and cat states. In addition
to potential applications for quantum information processing,
WQED systems can act as quantum simulators useful for
fundamental problems from many-body and condensed matter
physics. Some examples include topological quantum Hall
phases induced by interactions (Poshakinskiy et al., 2021) or
an external magnetic field (De Bernardis et al., 2021). An
advantage of the optical setup over the more conventional
condensed matter ones is the possibility to visualize interest-
ing quantum states, such as the fractional quantum Hall phase
(Perczel et al., 2020). Recently self-ordering of photons in the
WQED setup with three-level atoms with Laughlin-like
photon states was predicted by Iversen and Pohl (2022).
The situation becomes interesting when disorder is taken into
account. Single-photon properties of disordered arrays have
already been studied (Haakh, Faez, and Sandoghdar, 2016;
Mahmoodian et al., 2018; Song et al., 2021; Fedorovich et al.,
2022), but the many-body problem of photons interacting with
atoms in the disordered structure is especially interesting. For
example, recent numerical calculations indicate that the
WQED system exhibits many-body localization instead of
conventional thermalization (Fayard et al., 2021). The locali-
zation phase occurs, provided that the excitation filling factor
in the array of two-level atoms is less than 1=2. At larger
filling factors, the states are delocalized, which may be related
to saturation of the optical transitions. The filling factor of 1=2
seems to be a special value because subradiant states in the
subwavelength array also disappear above this threshold
(Poshakinskiy and Poddubny, 2021). The interplay of disorder
and dissipation in this system certainly merits future study.
Another interesting type of many-body phases in the Dicke
model is related to spin glasses (Gopalakrishnan, Lev, and
Goldbart, 2011; Strack and Sachdev, 2011; Rotondo,
Cosentino Lagomarsino, and Viola, 2015). Specifically, cav-
ity-mediated coupling between the atoms can be mapped to
the effective long-range spin-spin interactions. One of the
interesting features of the spin-glass model is the similarity to
the Hopfield associative memory. Thus, certain elements of
“machine learning behavior” emerge in the strongly coupled
multimode Dicke model (Fiorelli et al., 2020). Namely, the
atomic array behaves as a basic associative memory with
stationary states corresponding to the retrieval phase of the
Hopfield neural network (Hopfield, 1982), characterized by
the ability to recall previously stored information. To our
knowledge, the spin-glass behavior has thus far been theo-
retically studied only for atomic arrays in a cavity, and it is not
yet clear what would happen in a strongly dissipative wave-
guide setup. Progress in artificial intelligence and machine
learning will probably also inspire many studies in the
realm of WQED. One can not only seek analogies between
processes in quantum systems and neural networks but also
apply machine learning approaches to better understand the
results of numerical calculations (Che et al., 2020) and
experiments (Ahmed et al., 2021). Thus far we have discussed
stationary many-body phases. It would also be interesting
to examine how the so-called time-crystal phases that
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FIG. 30. Effect of the chiral character of the waveguide on the
Bragg reflection. (a) Measured reflection spectra for x and y
quasilinear polarizations, with Δλ ¼ 0.2 nm. (b) Theoretical
simulations done with N¼2000, γ1D=γ0¼0.007, γ→=γ←¼12,
and f ¼ 0.3.
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break time-translation symmetry (Carollo, Brandner, and
Lesanovsky, 2020) are manifested in the WQED setup.
To summarize, the possibility of tuning energies and

interactions of atoms and of probing the wave functions
at individual atoms is unprecedented for conventional solid-
state systems and will inspire many interesting experiments.
We refer the interested reader to recent reviews by Noh and
Angelakis (2017) and Chang et al. (2018) and original
theoretical works on quantum simulators based on the atomic
arrays by Douglas et al. (2015), González-Tudela et al.
(2015), and Hung et al. (2016). We hope that all these
intriguing predictions will soon inspire new theoretical con-
cepts, experimental demonstrations, and eventually practical
applications for quantum technologies.
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APPENDIX A: INPUT-OUTPUT FORMALISM

Here we outline the input-output formalism (Gardiner and
Collett, 1985; Walls and Milburn, 2007) for an ensemble of
two-level atoms interacting with a single mode of photons
with linear dispersion, propagating in a waveguide, and
discuss its limitations. The derivation mostly follows
Caneva et al. (2015).
The system under consideration is described by the follow-

ing sum of a photon Hamiltonian Hphot, an atom Hamiltonian
Hatom, and an atom-photon interaction Hamiltonian Hatom-phot:

H ¼ Hphot þHatom þHatom-phot;

Hphot ¼
X
k

ωka
†
kak; Hatom ¼ ω0

XN
m¼1

σ†mσm; ðA1Þ

Hatom-phot ¼ −
XN
m¼1

d̂ ·Êðz ¼ zmÞ. ðA2Þ

In Eqs. (A1) and (A2) we set ℏ ¼ 1, ωk ¼ cjkj is the
frequency of the photonic mode with the wave vector k, c
is the light speed in the waveguide, and

P
k ≡ L

R
∞
−∞dk=2π,

where L is the normalization length. The bosonic operators a†k
and b† describe the creation of the photon in the waveguide
and the excitation of the atom, and σ ≡ jeihgj, where jgi and

jei are the ground and excited atom states. The light-atom
coupling is treated in the dipole approximation with the dipole
momentum operator d̂ ¼ dbþ d�b†, where d is the matrix
element of the electric dipole momentum between ground and
excited states of the pointlike atom. The quantized electro-
magnetic field operator reads

Eðz; tÞ ¼
X
k

ffiffiffiffiffiffiffiffiffiffiffi
2πωk

LA

r
eikzekakðtÞ þ H:c:; ðA3Þ

where A is the normalization area (the effective cross section
of the waveguide), ek is the unit photon polarization wave
vector, and we use the Gaussian units system. In this
appendix, we consider a resonant rotating wave approxima-
tion in which the Hamiltonian Hatom-phot can be reduced to

Hatom-phot ¼
1ffiffiffiffi
L

p
XN
m¼1

X
k

ðgke−ikzma†kσmþ g�ke
ikzmakσ

†
mÞ; ðA4Þ

with gk ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πωk=A

p
d · e�k. This rotatingwave approximation

holds provided that the array is excited resonantly and that the
atom-photon coupling is reasonablyweak (jgkj=

ffiffiffiffi
L

p
≪ ω0). An

ultrastrong coupling regime in which g=
ffiffiffiffi
L

p
∼ ω0 and the

counterrotating terms cannot be ignored was considered in
Sec. III.A.4. In the same Markovian approximation, the
dependence of g on the light wave vector k can be simplified
to gk ¼ gω0=c ≡ gþ for k > 0 and gk ¼ g−ω0=c ≡ g− for k > 0.
We also introduce annihilation operators corresponding to
forward- and backward-propagating photons,

a→ðz; tÞ ¼
X
k>0

akðtÞeikz; a←ðz; tÞ ¼
X
k<0

akðtÞeikz: ðA5Þ

The Heisenberg equations for these operators read (Caneva
et al., 2015)

a→ðz; tÞ ¼ ain;→ðt − z=cÞ

−
igþ

ffiffiffiffi
L

p

c

XN
m¼1

θðz − zjÞσmðt − jz − zmj=cÞ; ðA6Þ

where the operator ain;→ðt − z=cÞ describes the field that
is incident from the left. For backward-propagating opera-
tors, θðz − zmÞ in Eq. (A6) is to be replaced by θðzm − zÞ,
ain;→ðt − z=cÞ is replaced by the backward-propagating input
field ain;←ðtþ z=cÞ, and gþ is replaced by g−. The equation of
motion for the atomic operators is (Caneva et al., 2015)

dσm
dt

¼ −iω0σm −
ið1 − 2σ†mσmÞffiffiffiffi

L
p ½g�þain;→ðtÞ þ g�−ain;←ðtÞ�

− γ1D
XN
n¼1

σnðt − jzm − znj=cÞ; ðA7Þ

where we have introduced the rate of spontaneous emission
into the waveguide: γ1D ¼ jg2þj=c ¼ jg2−j=c. From now on, we
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consider a situation in which jgþj ¼ jg−j; a more general case
with chiral coupling was discussed in Sec. III.B.
We now use the Markovian approximation

σnðt − jzm − znj=cÞ ≈ σnðtÞeiω0jzm−znj=c ðA8Þ

provided that the structure is not too long. A more general,
non-Markovian input-output approach was given by Fang,
Ciccarello, and Baranger (2018). Equation (A7) then reduces to

dσm
dt

¼ i½Heff ; σm� −
ið1 − 2σ†mσmÞffiffiffiffi

L
p ½g�þain;→ðtÞ þ g�−ain;←ðtÞ�;

ðA9Þ
and

Heff ¼
XN
m¼1

ω0σ
†
mσn − iγ1D

XN
m;n¼1

σ†mσneiω0jzm−znj=c ðA10Þ

is the effective atomic Hamiltonian with traced out photonic
degrees of freedom. This is equivalent to Eq. (8) if the
replacement kz → ω0=c is made.
The treatment becomes simpler when the input field is in

the coherent state. In this case, it is convenient to determine
the system density matrix ρ from the master equation ∂tρ ¼
i½ρ;H� þ Lρ and then to find the scattered light. Specifically,
we consider the case in which the structure is driven from the
left by a coherent field at frequency ω. The Hamiltonian H
entering the master equation then reads

H ¼ Ω
2

XN
m¼1

ðeiωðzm=c−tÞσ†m þ H.c:Þ þHeff þH†
eff

2
; ðA11Þ

where Ω is the Rabi frequency. The Hamiltonian (A11)
includes the Hermitian part of the effective Hamiltonian (8).
The non-Hermitian part describing the decay processes is
incorporated into the Lindblad operator

Lρ ¼
XN
m;n¼1

�
γ1D cos

ω0ðzm − znÞ
c

þ δm;nγ

�

× ð2σmρσ†n − σ†mσnρ − ρσ†mσnÞ: ðA12Þ

We have also added nonradiative damping term γ to the
Lindblad operator. Once the density matrix has been found,
the coherent reflection coefficient is given by

r ¼ 2iγ1D
Ω

XN
m¼1

eiω0zm=chσmðtÞieiωt; ðA13Þ

and the coherent transmission coefficient reads

t ¼ 1þ 2iγ1D
Ω

XN
m¼1

e−iω0zm=chσmðtÞieiωt: ðA14Þ

More details on the input-output formalism in theWQED setup
were given by Lalumière et al. (2013) and Das et al. (2018).

APPENDIX B: THE TRANSFER MATRIX METHOD

The easiest way to calculate single-photon reflection and
transmission coefficients for an arbitrarily spaced atomic array
coupled to the waveguide is offered by the transfer matrix
method (Corzo et al., 2016). The electric field to the left and
right of an atom located at the point z ¼ 0 is given as

EðzÞ ¼
�
E→
L e

iωz=c þ E←
L e

−iωz=c ðz < 0Þ;
E→
R e

iωz=c þ E←
R e

−iωz=c ðz > 0Þ; ðB1Þ

where we assume an e−iωt time dependence. The fields to the
left and right of the atom are linked,

�
E→
R

E←
R

�
¼ Matom

�
E→
L

E←
L

�
; ðB2Þ

by the transfer matrix

Matom ¼ 1

t←

�
t→t← − r2 r

−r 1

�
; ðB3Þ

which is expressed via the reflection and transmission
coefficients r and t→=← given by Eqs. (57). Equation (B3)
is written for the case of general chiral coupling, where
forward (t→) and backward (t←) transmission coefficients can
differ; see Eqs. (57). The transfer matrix through the free part
of the waveguide with length d can be given as

Md ¼
�
eiωd=c 0

0 e−iωd=c

�
: ðB4Þ

By multiplying these matrices, we obtain the following total
transfer matrix through an array of N atoms with period d:

MN ¼ ðMdMatomÞN; ðB5Þ

which allows one to find the reflection and transmission
coefficients

r←N ¼ −
½MN �2;1
½MN �2;2

; t→N ¼ detMN

½MN �2;2
: ðB6Þ

In a case of symmetric coupling in which t→ ¼ t← ¼ t, it is
also possible to obtain analytical expressions for Eqs. (B6)
that read (Ivchenko, 2005)

r←N ¼ r̃ sinNKd
sinNKd − t̃ sinðN − 1ÞKd ; t→N ¼ t̃ sinKd

r̃ sinNKd
r←N ;

ðB7Þ

where t̃ ¼ teiωd=c and r̃ ¼ reiωd=c are the transmission and
reflection coefficients through one period of the array.
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APPENDIX C: PHOTON PAIR SCATTERING
FROM A SINGLE ATOM

Here we solve the problem regarding photon pair scattering
on a single atom. A general diagrammatic Green’s function
approach to solve a more general problem for N atoms is
discussed in Appendix G. The goal of this appendix is to
present a more straightforward technique that does not require
prior knowledge of Green’s function theory. Instead of solving
the real-space differential equations for the two-photon wave
function, as done by Shen and Fan (2007a, 2007b), we solve
the Schrödinger equation directly in the double-excited sub-
space of the Hilbert space. The procedure can be viewed as a
“poor man’s” version of the Bethe Ansatz technique, which is
discussed in Appendix D. We start with the Hamiltonian

H ¼ Hphot þHatom þHatom-phot

¼
X
k

ωka
†
kak þ ω0b†bþ U

2
b†bðb†b − 1Þ

þ gffiffiffiffi
L

p
X
k

ða†kbþ akb†Þ: ðC1Þ

The wave function is sought in the form

jψi ¼
X
k

X
k0

Ekk0
a†ka

†
k0

2
j0i þ

X
k

Pka
†
kb

†j0i þQ
b†;2

2
j0i:

ðC2Þ
In Eq. (C2) j0i is a state with zero photons and the atom in its
ground state. Equation (C2) contains all possible combina-
tions of the double-excited states, namely, the states with two
photons, the states with one photon absorbed and the atom in
the double-excited state, and the state with a double-excited
atom. The Schrödinger equation for the double-excited states
reads

Ekk0ωk þ ωk0 þ
gffiffiffiffi
L

p ðPk þ Pk0 Þ ¼ 2εEkk0 ; ðC3Þ

where 2ε is the total energy. However, we need to take into
account the fact that the structure is excited from the left by the
two photons with the energy ε and the wave vector k ¼ ε=c.
To describe this, we add an inhomogeneous term to Eq. (C3),
corresponding to the excitation so that, in the absence of
atoms, one has Ekk0 ¼ δk;ε=cδk0;ε=c. The result is

Ekk0 þ
g=

ffiffiffiffi
L

p

ωk þ ωk0 − 2ε − i0
ðPk þ Pk0 Þ ¼ δk;ε=cδk0;ε=c: ðC4Þ

In Eq. (C4) the term −i0 in the denominator represents an
infinitely small imaginary part that has been added for
regularization purposes. The Schrödinger equation for the
states, where one photon has been absorbed, reads

ðωk þ ω0 − 2εÞPk þ
gffiffiffiffi
L

p
X
k0
ðEkk0 þ Ek0kÞ þ

gffiffiffiffi
L

p ffiffiffi
2

p
Q ¼ 0.

ðC5Þ

Expressing the electric field in Eq. (C4) and substituting it into
Eq. (C6), we find that

ðωk þ ω0 − 2εÞPk ¼
g2

L
Pk

X
k0

1

ωk þ ωk0 − 2ω − i0

þ g2

L

X
k0

1

ωk þ ωk0 − 2ω − i0
Pk0

− g

ffiffiffiffi
2

L

r
Qþ 2gffiffiffiffi

L
p δk;ε=c: ðC6Þ

This summation can be carried out exactly in the rotating wave
approximation,

Z
∞

−∞

dk
2π

1

ωk − ω
≈ 2lim

δ→0

Z
∞

−∞

dk
2π

1

ck − iδ − ω
¼ i

c
: ðC7Þ

In Eq. (C7) we split the integration into two parts,R∞
−∞dk ¼ R∞0 dkþ R 0−∞dk, and then each of the two resulting

integrals are extended back to the full axis, which results in the
prefactor of 2. The result reads

ðωk þ ω0 − 2ε − iγ1DÞPk ¼
g2

L

X
k0

1

ωk þ ωk0 − i0 − 2ε
Pk0

− g

ffiffiffiffi
2

L

r
Qþ 2gffiffiffiffi

L
p δk;ε=c: ðC8Þ

The term −iγ1DPk on the left-hand side of Eq. (C8) describes
the spontaneous decay of the “propagating photon and excited
atom” state into the state with two propagating photons. We
now divide both parts of Eq. (C8) by ωk þ ω0 − 2ε and sum
over k to find

X
k

Pk ¼
2g=

ffiffiffiffi
L

p

ω0 − ε − iγ1D
−
ig
c

ffiffiffiffiffiffi
2L

p
Q; ðC9Þ

where we have again used Eq. (C7). The sum stemming from
the first term on the right-hand side of Eq. (C4) is zero,

X
k

1

ðωk þ ω0 − 2ε − i0Þðωk þ ωk0 − 2ω − i0Þ ¼ 0: ðC10Þ

The Schrödinger equation for the double-excited state is

ð2ω0 þ U − 2εÞQþ g

ffiffiffiffi
2

L

r X
k

Pk ¼ 0: ðC11Þ

Combining Eqs. (C11) and (C8), we find the amplitude of the
double-excited state

Q ¼ −
2
ffiffiffi
2

p
g2=L

ðω0 þ U=2 − ε − iγ1DÞðω0 − ε − iγ1DÞ
: ðC12Þ

We now solve Eq. (C8) for Pk. This can be done iteratively by
treating the first term on the right-hand side as a perturbation:
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Pk ¼ Pð0Þ
k þ Pð1Þ

k þ P̃ð1Þ
k ; ðC13Þ

where

Pð0Þ
k ¼ 2gffiffiffiffi

L
p δk;ε=c

ω0 − ε − iγ1D
; ðC14Þ

Pð1Þ
k ¼ g2

L

X
k0

1

ωk þ ωk0 − 2ε
Pð0Þ
k0 ¼ 2g3

L3=2

×
1

ðωk þ ω0 − 2ε − iγ1DÞðωk − ε − i0Þðω0 − ε − iγ1DÞ
;

ðC15Þ

and

P̃ð1Þ
k ¼ −g

ffiffiffiffi
2

L

r
Q

ωk þ ω0 − 2ε − iγ1D

¼ Pð1Þ
k

ωk − ε

ω0 þ U=2 − ε − iγ1D
: ðC16Þ

The key observation is that the solution in Eq. (C13) is
actually exact, and the higher-order terms are zero.
Mathematically, the reason for the cancellation is the same
as it is in Eq. (C10).
We are now in a position to find the amplitude of the

incoherent two-photon scattering process. To this end, we

substitute the solution (C13) into Eq. (C4). The terms ∝ Pð0Þ
k

describe the incoherent scattering. The amplitude of the
scattering matrix for the incoherent scattering process is
given by

Sðωk;ωk0 ← ε; εÞ ¼ 2πiδðωk þ ωk0 − 2εÞMðωk;ωk0 ← ε; εÞ;
ðC17Þ

where

Mðωk;ωk0 ← ε; εÞ ¼ L2

c2
gffiffiffiffi
L

p ðPð1Þ
k þ P̃ð1Þ

k þ Pð1Þ
k0 þ P̃ð1Þ

k0 Þ;

ðC18Þ

withωk0 þ ωk ¼ 2ε. Performing the summation of four terms in
Eq. (C18), we obtain

Mðωk;ωk0 ← ε; εÞ ¼ −
4Uγ21DsðωkÞsðεÞsðω0

kÞ
2ω0 þ U − 2ε − 2iγ1D

; ðC19Þ

where sðωÞ ¼ 1=ðω0 − ω − iγ1DÞ. In the limit of a two-level
atom U → ∞, Eq. (C19) exactly matches the general result in
Eq. (31) for an N ¼ 1 atom.
The previous derivation becomes especially simple for a

two-level atom, where U → ∞, so Q ¼ 0 and the terms P̃ð1Þ

can be neglected. It also explains how the incoherent scatter-
ing vanishes for a harmonic atom U ¼ 0. In this case, the

terms Pð1Þ
k þ Pð1Þ

k0 and P̃k0 þ P̃ð1Þ
k0 resulting from the single-

excited and double-excited states cancel each other exactly.

APPENDIX D: PHOTON PAIR SCATTERING:
THE BETHE ANSATZ

In this appendix, we consider the Dicke problem of photons
interacting with an array of N identical two-level atoms. The
derivation mostly follows the Bethe Ansatz approach by
Rupasov and Yudson (1984), Shen and Fan (2007b),
Yudson and Reineker (2008), and Roy (2013b).
We start by rewriting the Hamiltonian (C1) in real space as

H ¼ −ic
Z

dx½a†→ðxÞ∂xa→ðxÞ − a†←ðxÞ∂xa←ðxÞ�

þ
X

ν¼→;←

[g½a†νð0Þσ þ aνð0Þσ†�]: ðD1Þ

In Eq. (D1) we assume that the two-level atoms with the
excitations characterized by the destruction operators σj,

σ ¼PN
j¼1σj, and a

†
ν are the creation operators for right-going

(ν ¼→) and left-going (ν ¼←) photons: ½a†νðxÞ; aνðx0Þ� ¼
δðx − x0Þ. We also assume the rotating wave approximation
measuring the energies from the atomic resonance ω0 and set
the normalization length L to unity in this appendix.
Owing to the mirror reflection symmetry x → −x, the

problem described by the Hamiltonian (D1) can be solved
separately in even- and odd-scattering channels. Namely, if the
new operators aðxÞ and a0ðxÞ are introduced as

aðxÞ ¼ a→ðxÞ þ a←ð−xÞffiffiffi
2

p ; a0ðxÞ ¼
a→ðxÞ − a←ð−xÞffiffiffi

2
p ;

ðD2Þ

the Hamiltonian (D1) is separated as H ¼ Heven þHodd,
where

Heven ¼ −ic
Z

dxa†ðxÞ∂xaðxÞ þ g̃½a†ð0Þσ þ að0Þσ†�; ðD3Þ

with g̃ ¼ ffiffiffiffiffi
2g

p
. In the odd-scattering channel, the photons do

not interact with atoms at all, Hodd ¼ −ic
R
dxa†0ðxÞ∂xa0ðxÞ,

and the problem is trivial. We now focus on the scattering
problem in the even channel.
The single-excited eigenstates of Eq. (D1) can be written as

the following superposition of the states with one photon and
the states with zero photons and atoms excited to a symmetric
Dicke state:

jki ¼
Z

dxEðxÞa†ðxÞj0i þ Pσ†j0i: ðD4Þ

The Schrödinger equation reads

−ic∂xEþ g̃δðxÞP ¼ εE;

Ng̃Eð0Þ ¼ εP ðD5Þ

and has eigenstates with the energy ε ¼ ck and

EkðxÞ ¼ θð−xÞeikx þ θðxÞtevenk eikx; ðD6Þ
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where tevenk ¼ ðck − iNγ1DÞ=ðckþ iNγ1DÞ is the transmission
coefficient in the even channel and γ1D ¼ g̃2=2c≡ g2=c is
the radiative decay rate. We note that the reflection and
transmission coefficients for one atom can be given as r ¼
ð1 − tevenk Þ=2 and t ¼ ð1þ tevenk Þ=2 when ε ¼ ω − ω0 is taken
into account. The eigenstate (D4) can be written in a compact
way as

jki ¼
Z

dxr†kðxÞj0i; r†kðxÞ≡ EkðxÞa†ðxÞ þ PδðxÞσ†:

ðD7Þ

We now proceed to the double-excited states having the
energy 2ε and described by the Ansatz

ZZ
dxdyEðx; yÞa†ðxÞa†ðyÞj0i þ

Z
dxPðxÞa†ðxÞσ†j0i

þQ
2

X
j≠j0

σ†jσ
†
j0 j0i; ðD8Þ

which is equivalent to Eq. (C2). The last term in Eq. (D8)
accounts for the double-excited atomic array and is present
only for N > 1. Instead of Eqs. (D5), we obtain

− ið∂x þ ∂yÞEþ g̃
2
½δðxÞPðyÞ þ δðyÞPðxÞ� ¼ 2εE;

− i∂xPþ Ng̃½Eðx; 0Þ þ Eð0; xÞ� þ ðN − 1Þg̃δðxÞQ ¼ 2εP;

2g̃P ¼ 2εQ: ðD9Þ

In Eq. (D9) we assume the bosonic symmetry Eðx; yÞ ¼
Eðy; xÞ and also define the electric field at the singular lines
x ¼ 0 or y ¼ 0 as

Eðx; 0þÞ þ Eðx; 0−Þ
2

≡ lim
δ→0

Eðx;−δÞ þ Eðx;þδÞ
2

:

The essence of the Bethe Ansatz approach is the representation
of the amplitude Eðx; yÞ as a sum of free-space plane wave
solutions outside the singular lines where x ¼ 0 or y ¼ 0,

Eðx; yÞ ¼

8>><
>>:

Aeikxþipy þ Beikyþipx; region I;

Atevenk eikxþipy þ Btevenp eikyþipx; region II;

tevenk tevenp ðAeikxþipy þ BeikyþipxÞ; region III;

ðD10Þ

where regions I–III are as indicated in Fig. 32. The states (D9)
have the energy 2ε ¼ cðkþ pÞ. The amplitude PðxÞ is found
using the first of Eqs. (D9) to be

PðxÞ ¼ 2i
g̃
×

�
Eðx; 0þÞ − Eðx; 0−Þ; x < 0;

Eð0þ; xÞ − Eð0−; xÞ; x > 0:
ðD11Þ

The second and third of Eqs. (D9) yield the continuity
condition

Pð0þÞ − Pð0−Þ ¼ −
iðN − 1Þg̃2

2ε
½Pð0þÞ þ Pð0−Þ�: ðD12Þ

From Eqs. (D12) and (D11), we find the following relation-
ship between the amplitudes A and B:

A
B
¼ −

ig̃2 þ ck − cp
ig̃2 − ckþ cp

: ðD13Þ

Taking into account that Eðx; yÞ ¼ Eðy; xÞ, we rewrite the
amplitude in the region where x; y < 0 as

Eðx; yÞ ¼ θðx− yÞ½Aeikxþipy þBeikyþipx�
þ θðy− xÞ½Aeikyþipx þBeikxþipy�

¼ AþB
2

eikxþipy

�
1þ sgnðx− yÞA−B

AþB

�
þ ðk↔ pÞ:

ðD14Þ

Since ðA − BÞ=ðAþ BÞ ¼ ig̃2=ðck − cpÞ, the eigenstate (D8)
can be presented in the following form:

jk; pi ¼ C
ZZ

dxdy

�
1þ iðg̃2=cÞsgnðx − yÞ

k − p

�

× r†kðxÞr†pðyÞj0i; ðD15Þ

FIG. 32. Illustration of the Bethe Ansatz (D10) for the two-
photon states depending on the first and second coordinates x and
y. Region I corresponds to the incident state. In regions II and II0
either the first or second photon is scattered on the atom. In
regions III and III0 both photons have scattered.

FIG. 31. Schematics of the separation in Eq. (D2) of the
problem with left- and right-propagating photons into two
problems with even and odd symmetry.
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where C is the normalization factor. The factorization
of Eq. (D15) in products of single-excited eigenstates
r†kðxÞr†pðxÞj0i is the central result of this appendix and means
that the problem is solvable using the Bethe Ansatz. In the
Bethe Ansatz formalism, the wave vectors k and p are called
rapidities (Tsvelick and Wiegmann, 1983). For two-photon
states with real-valued energies 2ε ¼ cðkþ pÞ, the rapidities
either can both real or can correspond to complex conjugated
pairs k ¼ p� that are called strings; see Fig. 33. Of special
interest are the strings

k ¼ εþ iNγ1D
c

; p ¼ ε − iNγ1D
c

; ðD16Þ

which correspond to the bound two-photon states. Speci-
fically, if k and p are given by Eqs. (D16), we determine from
Eq. (D13) that B ¼ 0 and the two-photon state (D10) is then
simplified as

Eðx; yÞ ¼ eiεðxþyÞ=ce−Njx−yjγ1D=c ×

8>><
>>:

1; x; y < 0;

tk; x; y < 0;

tktp; x; y > 0:

ðD17Þ

The wave function amplitude for the bound state decays
exponentially with an increase in the distance between the two
photons jx − yj.
Rupasov and Yudson (1984) proved that the Bethe Ansatz

holds for an arbitrary number of excitations M ¼ 1; 2; 3;…;
i.e., the quantum Dicke problem is integrable. The eigenstate
characterized by the so-called rapidities k1 � � � kM has the form

jki ¼ C
ZZ

dMx
Y
m<n

�
1þ ig̃2sgnðxm − xnÞ

cðkm − knÞ
�YM

n¼1

r†knðxnÞj0i

ðD18Þ

with the energy ε ¼ c
P

M
m¼1km.

To solve a scattering problem, whenM photons are incident
at the atoms from the left (x → −∞), one more step is
required. Namely, the incident photon wave function has to
be expanded over the Bethe eigenstates. This can be done in
two ways. One is the “brute-force” approach, when the input
eigenstate is presented as a superposition of the states (D15)
with real rapidities k and p and the bound state (D17).
Shen and Fan (2007b) proved that this set is complete and

allows one to find the full scattering matrix of the problem.
To perform this expansion, the eigenstates (D15) and (D17)
have to be properly normalized.
There is an alternative approach that circumvents the

expansion of the input state over the Bethe eigenstates and
directly provides the scattered eigenstate (Yudson, 1985). Its
particular application to the two-photon scattering problem
was discussed in detail by Yudson and Reineker (2008). The
two-photon amplitude is expressed as

Eðx1; x2; tÞ ¼
Z
C1

dk1
2π

Z
C2

dk2
2π

�
1 −

2iðg̃2=cÞθðx2 − x1Þ
k1 − k2 þ ig̃2=c

�

× eik1ðx1−x
ð0Þ
1
−ctÞeik2ðx2−x

ð0Þ
2
−ctÞEk1ðx1ÞEk2ðx2Þ;

ðD19Þ
where the integration over the rapidities k1 and k2 is
performed along the contours C1 and C2 in the complex plane

shown in Fig. 34. In Eq. (D19) xð0Þ2 < xð0Þ1 < 0 are the
coordinates of two incident photons at t ¼ 0 when the input

state is a†ðxð0Þ1 Þa†ðxð0Þ2 Þj0i. The advantage of the approach in
Eq. (D19) is that it can be generalized for an arbitrary number
of incident photons. To this end, the integration contours
should satisfy the relation (Yudson and Reineker, 2008)

Imknþ1 − Imkn >
2γ1D
c

; Imk1 > −
Nγ1D
c

: ðD20Þ

Performing the integration in Eq. (D19), we obtain

Eðx1; x2; tÞ ¼ Φðx1; xð0Þ1 þ ctÞΦðx2; xð0Þ2 þ ctÞ
þΦcðx1; x2; xð0Þ1 þ ct; xð0Þ2 þ ctÞ: ðD21Þ

In Eq. (D21)

Φðx; xð0Þ þ ctÞ ¼ δðx − xð0Þ − ctÞ
− 2γ1DNθð0 < x < xð0Þ þ ctÞeγ1DNðx−xð0Þ−ctÞ

ðD22Þ
is the solution of the scattering problem for the input state
a†ðxð0ÞÞj0i with one photon at t ¼ 0. Hence, the first term in
Eq. (D21) describes the independent scattering of two photons
on the array of atoms. The second term describes the
interaction between the photons and reads

FIG. 33. Illustration of the so-called string between two rap-
idities, describing the bound two-photon state (D17) in the Bethe
Ansatz.

FIG. 34. Integration contours for the rapidities k1 and k2 used to
calculate the two-photon scattering problem in Eq. (D19).

Alexandra S. Sheremet et al.: Waveguide quantum electrodynamics …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 015002-43



Φcðx1; x2; xð0Þ1 þ ct; xð0Þ2 þ ctÞ

¼ −
2Ng̃4

c2
θð0 < x1 < x2 < xð0Þ2 þ ct < xð0Þ1 þ ctÞ

× eNγ1Dðx1þx2−x
ð0Þ
1
−xð0Þ

2
−2ctÞ

× ½N − ðN − 1Þe2γ1Dðxð0Þ2
þct−x2Þ�: ðD23Þ

In Eq. (23) the notation θð0 < x1 < x2 < � � �Þ represents the
product of the corresponding Heaviside step functions that is
unity if 0 < x1 < x2, and zero otherwise. The second term in
square brackets in Eq. (D23) describes the contribution of
photon scattering by an atomic system already excited to the
Dicke state b†j0i. This term is absent for the single-atom case
when N ¼ 1.
The scattering of two photons with certain incident

energies ck1 and ck2 (ck1 þ ck2 ¼ 2ε) can be considered
by performing a Fourier transform of Eq. (D23). We write the
input state as

jini ¼
ZZ

dxð0Þ1 dxð0Þ2 θðxð0Þ2 < xð0Þ1 Þeik1xð0Þ1
þik2x

ð0Þ
2

× a†→ðxð0Þ1 Þa†→ðxð0Þ2 Þj0i þ ðk1 ↔ k2Þ:

The scattered state is obtained by separating the odd- and
even-scattering channels and applying Eq. (D23) in the even
channel; see Fig. 31 and Eq. (D2). The scattered state for
x2; x1 > 0 (the transmission channel) can be presented as

jouti ¼
ZZ

dx1dx2tðx1; x2Þa†ðxð0Þ1 Þa†ðxð0Þ2 Þj0i; ðD24Þ

where

tðx1; x2Þ ¼ tðx2; x1Þ
¼ 1

2
½eik1x1þk2x2 þ ðk1 ↔ k2Þ�tNðck1ÞtNðck2Þ

þ 1
8

Z
∞

x2

dxð0Þ2

Z
∞

xð0Þ
2

dxð0Þ1 Φcðx1; x2; xð0Þ1 ; xð0Þ2 Þ

× ½eik1xð0Þ1
þik2x

ð0Þ
2 þ ðk1 ↔ k2Þ�; ðD25Þ

and

tNðckÞ ¼
1þ tevenk

2
¼ −ck

ckþ iNγ1D

is the transmission coefficient through N atoms [equivalent to
Eqs. (28)]. The first part of Eq. (D25) describes the indepen-
dent transmission of two photons, and the second part results
from their interaction with each other. The prefactor 1=8
comes from the conversion from the symmetric to the chiral
problem and back (∝ 1=22) and also from the symmetrization
of the transmission amplitude with respect to the permutations
of x1 and x2. Performing the integration, we obtain (Yudson
and Reineker, 2008)

tðx1; x2Þ
¼ 1

2
½eik1x1þk2x2 þ ðk1 ↔ k2Þ�tNðck1ÞtNðck2Þ

þ eiεðx1þx2Þ Nεγ21De
ðiε−Nγ1DÞjx1−x2j=c

½εþ iðN − 1Þγ1D�ðck1 þ iNγ1DÞðck2 þ iNγ1DÞ
:

ðD26Þ
Finally, the transmitted state for two incident photons having
incident energies ω1;2 ¼ ck1;2 is given by

jouti ¼ 1

2

Z
dω0

1dω
0
2

ð2πÞ2 Sðω0
1;ω

0
2 ← ω1;ω2Þa†ω0

1
=ca

†
ω0
2
=cj0i;

where

Sðω0
1;ω

0
2 ← ω1;ω2Þ

¼ ð2πÞ2½δðω1 − ω0
1Þδðω2 − ω0

2Þ þ ðω1 ↔ ω2Þ�tNðω1ÞtNðω2Þ
þ 2πiMðω0

1;ω
0
2 ← ω1;ω2Þδðω1 þ ω2 − ω0

1 − ω0
2Þ; ðD27Þ

Mðω0
1;ω

0
2 ← ω1;ω2Þ ¼ 4γ21Dsðω1Þsðω2Þsðω0

1Þsðω0
2Þ

×
Nðε − ω0Þðε − ω0 þ iNγ1DÞ

ε − ω0 þ iðN − 1Þγ1D
;

ðD28Þ

and sðωÞ ¼ 1=ðω − ω0 þ iNγ1DÞ. Here we have restored the
atomic resonance frequency ω0 to underline the resonant
character of the scattering and introduced the frequencies of
the scattered photons ω0

1;2.

APPENDIX E: FUNCTIONAL INTEGRAL APPROACH

Here we show how the photonic degree of freedom can be
integrated out to obtain the effective non-Hermitian
Hamiltonian for the atomic system (Shi and Sun, 2009; Xu
and Fan, 2015). We start with the full Lagrangian of the
system L ¼ Latoms þ Lphot þ Latom-phot, where

Lphot ¼
X
k

�
ia†k

dak
dt

− ωka
†
kak

�
;

Latom-phot ¼ −
gffiffiffiffi
L

p
X
k

XN
j¼1

ðakb†jeikzj þ a†kbje
−ikzjÞ; ðE1Þ

and Latoms ¼ i
P

jb
†
jðdbj=dtÞ −Hatoms is the Lagrangian of

the atoms that depends on bj and b†j only. The Green’s
functions of the atomic subsystem can be described by the
generating functional, which is readily given by the functional
integral

Z½ζ�1ðtÞ;…; ζ�NðtÞ; ζ1ðtÞ;…; ζNðtÞ�

¼
Z

ei
R
½Lþ
P

j
ðζ�j bjþζjb

†
j Þ�dt
Y
j

D½bj�D½b†j �
Y
k

D½ak�D½a†k�:

ðE2Þ
In particular, the single-excitation Green’s function is given by
the functional derivative
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Gjlðt; t0Þ ¼ −
δ2 lnZ

δζ�jðtÞδζlðt0Þ
				
ζ;ζ�¼0

: ðE3Þ

We now perform integration over D½ak� and D½a†k� in
Eq. (E2). To this end, we separate the part that depends on
the photonic operators and switch from temporal representa-
tion to the frequency domain, i.e., from akðtÞ and a†kðtÞ to their
Fourier transforms akðωÞ and a†kðωÞ:Z

ðLphot þ Latom-photÞdt

¼
X
k

Z
fðω − ωkÞa†kðωÞakðωÞ

− g
X
j

½akðωÞb†jðωÞeikzj þ a†kðωÞbjðωÞe−ikzj �gdω:

The previous expression is quadratic in akðωÞ and a†kðωÞ.
Therefore, the corresponding functional integral is Gaussian
and can be easily evaluated,Z

ei
R
ðLphotþLatom-photÞdtY

k

D½ak�D½a†k� ¼ CeiδS; ðE4Þ

where C is a constant and

δS ¼ −
Z

dω
X
k

g2

ω − ωk þ i0

X
j;l

b†jble
ikðzj−zlÞ: ðE5Þ

Calculating the sum over k separately for k > 0 and k < 0, we
obtain

δS ¼ iγ1D

Z
dω
X
j;l

b†jðωÞblðωÞeiωjzj−zlj=c; ðE6Þ

where γ1D ¼ g2=c≡ Γ1D=2.
Returning to the generating functional equation (E2), we

can now present it in the following form:

Z ¼
Z

ei
R
½Leff

atomsþ
P

jðζ�j bjþζjb
†
j Þ�dt
Y
j

D½bj�D½b†j �; ðE7Þ

where
R
Leff
atomsdt ¼

R
Latomsdtþ δS is the effective action

of the atomic system that accounts for photon-mediated
interatomic interactions. Equivalently, we can introduce
the effective Hamiltonian

R
Leff
atomsdt ¼ i

P
jb

†
jðdbj=dtÞ−

Heff
atomsðtÞ, where

Heff
atomsðtÞ ¼ HatomsðtÞ − iγ1D

X
j;l

b†jðtÞblðt − jzj − zlj=cÞ ðE8Þ

andHatomsðtÞ ¼ ω0

P
jb

†
jðtÞbjðtÞ. We note the two key features

of the effective atomic Hamiltonian: it is non-Hermitian and
non-Markovian. In the case of excitation by monochromatic
light at frequency ω, we can use blðt − τÞ ¼ ble−iωτ. The
effective Hamiltonian then assumes the form

Heff
atoms ¼

X
j;l

HjlðωÞb†jbl; ðE9Þ

where the matrix

HjlðωÞ ¼ ω0δjl − iγ1Deiωjzj−zlj=c ðE10Þ

agrees with Eq. (15).

APPENDIX F: PHOTON PAIR SCATTERING:
THE GREEN’S FUNCTION SOLUTION
IN AN ELECTRON REPRESENTATION

Here we show how the two-photon scattering matrix for a
single two-level atom (qubit) can be calculated using the
Green’s function technique. We first introduce the bare
(disregarding the light-qubit interaction) Green’s function
of the qubit in its ground and excited states,

G0;gðxÞðεÞ ¼
1

ε − εgðeÞ þ i0
; ðF1Þ

where εgðeÞ is the energy of the qubit’s ground (excited) state,
εe − εg ¼ ω0. The Green’s function of the waveguide photon
with the wave vector k reads

DkðωÞ ¼
1

ω − ωk þ i0
; ðF2Þ

where ωk ¼ cjkj is the photon dispersion.
The interaction with light does not affect the ground state of

the qubit, since it cannot emit a photon, while the excited state
gets dressed. The dressing occurs due to the processes when
the qubit in the excited state emits a photon and then reabsorbs
it, as depicted in Fig. 35(a). There the solid lines denote the
Green’s functions of the qubit in its ground or excited state,
and wavy lines stand for the photon’s Green’s function. The
vertex represents the process of photon absorption or emission
by the atom and corresponds to the amplitude gk=

ffiffiffiffi
L

p
, where

gk is the interaction constant and L is the normalization length.
The excited state self-energy corresponding to Fig. 35(a) reads

ΣðεÞ ¼ −i
X
k

Z
dε0

2π

�
igkffiffiffiffi
L

p
�

2

G0;gðε0ÞDkðε − ε0Þ ðF3Þ

¼ −i
Z

dk
2π

g2k
ε − εg − ωk þ i0

: ðF4Þ

We separate the real and imaginary parts of Σ using the
Sochocki formula (Σ ¼ Σ0 þ iΣ00),

Σ0ðεÞ ¼ P
Z

dk
2π

g2k
ε − εg − ωk

; ðF5Þ

Σ00ðεÞ ¼ −
Z

dk
2π

g2kπδðε − εg − ωkÞ ¼ −
g2k0
vk0

¼ −γ1D: ðF6Þ

In Eq. (F6) the real part Σ0 describes the radiative correction to
the energy of the excited state (the Lamb shift), while the
imaginary part Σ00 corresponds to the lifetime of the excited
state, as previously calculated. Note that if we ignore the
dependence of gk on k and linearize the photon dispersion near

Alexandra S. Sheremet et al.: Waveguide quantum electrodynamics …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 015002-45



k0 ¼ ω0=c and ωk ≈ ωk0 þ vðk − k0Þ, the Σ0 part vanishes,
while Σ00 is constant.
The dressed Green’s function of the excited state is readily

expressed via the self-energy Σ as

GeðεÞ ¼
1

G−1
0;eðεÞ − ΣðεÞ ¼

1

ε − ε0 þ iγ1D
: ðF7Þ

The single-photon reflection coefficient is shown in Fig. 35
(b), where the bold line denotes the dressed Green’s function
of the excited state, which yields

rðωkÞ ¼ −iγ1DGeðεg þ ωkÞ ¼ −
iγ1D

ωk − ω0 þ iγ1D
: ðF8Þ

A diagram describing the simultaneous reflection of two
photons is shown in Fig. 35(c). The scattering occurs at fourth
order in the interaction constant. The higher-order contributions
are easily taken into account using the dressed Green’s function
of the atom in the excited state (the bold solid line). The
scattering matrix element corresponding to the diagram reads

S1 ¼ −
ig4

L2
Geðεg þ ωk1ÞG0;gðεg þ ωk1 − ωk0

1
ÞiGeðεg þ ωk0

2
Þ

× 2πδðωk1 þ ωk2 − ωk0
1
− ωk0

2
Þ

¼ −ig4=L2

ðωk1 − ω0 þ iγ1DÞðωk1 − ωk0
1
þ i0Þðωk0

2
− ω0 þ iγ1DÞ

× 2πδðωk1 þ ωk2 − ωk0
1
− ωk0

2
Þ; ðF9Þ

where we assume that gk is k independent, gk ¼ g. Using the
Sochocki formula, we decompose the result into two terms,

S1 ¼ SðcohÞ1 þ SðincohÞ1 ; ðF10Þ

SðcohÞ1 ¼ −g4=L2

ðωk1 − ω0 þ iγ1DÞðωk0
2
− ω0 þ iγ1DÞ

πδðωk1 − ωk0
1
Þ;

× 2πδðωk1 þ ωk2 − ωk0
1
− ωk0

2
Þ

¼ 1
2
rðωk1Þrðωk2Þδjk1j;jk01jδjk2j;jk02j; ðF11Þ

SðincohÞ1 ¼ −ig4=L2

ðωk1 − ω0 þ iγ1DÞðωk0
2
− ω0 þ iγ1DÞðωk1 − ωk0

1
Þ

× 2πδðωk1 þ ωk2 − ωk0
1
− ωk0

2
Þ: ðF12Þ

SðcohÞ1 describes the process where photons are reflected inde-
pendently, each of them conserving its frequency. The ampli-
tude of this process is given by the product of the single-photon
reflection coefficients rðωÞ for the two photons. In contrast,

SðincohÞ1 describes the process where the photons interact and the
energy is redistributed between them.
Apart from the contribution S1, the scattering matrix

features three more,

S ¼ S1 þ S2 þ S3 þ S4; ðF13Þ

that are obtained by permutations: S2 by k1 ↔ k2, S3 by
k01 ↔ k02, and S4 by both k1 ↔ k2 and k01 ↔ k02. The calcu-
lation yields for the coherent term

SðcohÞ ¼ rðωk1Þrðωk2Þ½δjk1j;jk01jδjk2j;jk02j þ δjk1j;jk02jδjk2j;jk01j�: ðF14Þ

For the incoherent term, after somewhat cumbersome algebra
we obtain

SðincohÞ ¼ 2ig4

L2

ωk1 þ ωk2 − 2ω0 þ 2iγ1D
ðωk1 − ω0 þ iγ1DÞðωk2 − ω0 þ iγ1DÞ

×
2πδðw1 þ w2 − w0

1 − w0
2Þ

ðωk0
1
− ω0 þ iγ1DÞðωk0

2
− ω0 þ iγ1DÞ

: ðF15Þ

The previous results for the two-photon scattering matrix for a
single atom coincide with those obtained by other methods.
However, this approach does not allow a direct generalization
to the case of many atoms (Kocabaş, 2016).

APPENDIX G: PHOTON PAIR SCATTERING:
THE GREEN’S FUNCTION SOLUTION
IN AN EXCITON REPRESENTATION

Here we describe the Green’s function technique for
calculation of the scattering matrix of an atomic array that
is based on excitonic representation of the atomic Hamiltonian
in Eq. (A1). We start with the bare Green’s functions of the
atomic excitations and waveguide photons,

G0ðωÞ ¼
1

ω − ω0 þ i0
; ðG1Þ

DkðωÞ ¼
1

ω − ωk þ i0
: ðG2Þ

FIG. 35. (a) Diagrammatic representation of the self-energy
correction for the excited atomic state. The straight line is the bare
Green’s function of the atom, while the wavy line is the photon’s
Green’s function. (b) Diagram representing the single-photon
reflection from an atom. The bold straight line represents the
dressed Green’s function of the atom in the excited state.
(c) Diagrammatic representation of the two-photon scattering
by an atom.
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As in the approach taken in Appendix F, we start by dressing
the atomic excitations by photons. The dressed exciton
Green’s function GijðωÞ can be calculated from the Dyson-
like equation depicted in Fig. 36(a), which yields

GijðωÞ ¼ G0;ijðωÞ

þ 1

L

X
k

g2k
X
l;m

G0;ilðωÞeikzlDkðωÞe−ikzmGmjðωÞ:

ðG3Þ
Summation over k can be easily performed, assuming the
linear dispersion ωk ¼ cjkj and constant gk ¼ g,

1

L

X
k

g2ke
ikðzl−zmÞ

ω − ωk þ i0
¼ −i

g2

c
eiωjzl−zmj=c. ðG4Þ

See also Eq. (C7). Equation (G3) then assumes the form

ðω − ω0ÞGijðωÞ þ iγ1D
X
m

eiðω=cÞjzi−zmjGmjðωÞ ¼ δij; ðG5Þ

where γ1D ¼ g2=c. In other words, the exciton Green’s
function can be found by inverting the matrix as

½G−1ðωÞ�ij ¼ ðω − ω0Þδij þ iγ1Deiðω=cÞjzi−zjj: ðG6Þ

The amplitude of the photon reflection from the left is
shown in Fig. 36(b). It reads

r ¼ −iγ1D
X
ij

Gijeiðω=cÞðzjþziÞ; ðG7Þ

where we replace the 2πδð0Þ term with the time T ¼ L=c. The
result can be simplified by the use of the relations following
from Eq. (G5),

sþi ðωÞ≡
X
j

Gijeiðω=cÞzj

¼ eiðω=cÞzmin

iγ1D
½δi;imin

− ðω − ω0ÞGi;imin
�; ðG8Þ

s−i ðωÞ≡
X
j

Gije−iðω=cÞzj

¼ e−iðω=cÞzmax

iγ1D
½δi;imax

− ðω − ω0ÞGi;imax
�; ðG9Þ

where imaxðminÞ are the indices of the atoms with the maximal
(minimal) z-coordinate value zmax (zmin). We then obtain

r ¼ e2iðω=cÞzmin

iγ1D
½ðω − ω0 − iγ1DÞ − ðω − ω0Þ2Gimin;imin

�: ðG10Þ

A similar calculation gives the transmission coefficient

t ¼ 1 − iγ1D
X
ij

Gijeiðω=cÞðzj−ziÞ

¼ ðω − ω0Þ
iγ1D

½δimax;imin
− ðω − ω0ÞGimax;imin

�: ðG11Þ

Diagrams corresponding to the two-photon scattering
are shown in Fig. 36(c). There bold solid lines represent
the exciton Green’s function and the dots stand for the
exciton-exciton interaction with the amplitude U. The scat-
tering matrix element is given by the geometric series
(Poshakinskiy and Poddubny, 2016)

Sincohðω0
1;ω

0
2;ω1;ω2Þ

¼ 2g4

L2

XN
i;j¼1

s−i ðω0
1Þs−i ðω0

2Þ½−iUδij þ U2Σij þ � � ��

× sþj ðω1Þsþj ðω2Þ2πδðω1 þ ω2 − ω0
1 − ω0

2Þ

¼ 2πiM

�
c
L

�
2

δðω1 þ ω2 − ω0
1 − ω0

2Þ;

where s�i ðωÞ is defined by Eqs. (G8) and (G9),

M ¼ −2i
g4

c2
XN
i;j¼1

s−i ðω0
1Þs−i ðω0

2ÞQijs
þ
j ðω1Þsþj ðω2Þ ðG12Þ

is the two-exciton self-energy, and the matrix Q is given by
Q ¼ −iUð1 − iUΣÞ−1, and the matrix Σ has the elements

ΣijðεÞ ¼
Z

GijðωÞGijð2ε − ωÞ dω
2π

; ðG13Þ

with ε ¼ ðω1 þ ω2Þ=2. In the case of a two-level atom
U → ∞, we get Q ¼ Σ−1.
It is instructive to compare the resonances of the scattering

matrix Σ with the eigenstates of the two-photon Schrödinger
equation. To this end, we substitute the double-excited states
in the form

P
N
m;n¼1ψmnb

†
mb

†
nj0i into the effective Hamiltonian

Hatoms ¼
X
mn

Hmnb
†
mbn þ

U
2

XN
m¼1

b†mbmðb†mbm − 1Þ; ðG14Þ

with Hmn given by Eq. (15) evaluated at ω ¼ ω0, and obtain
(Ke et al., 2019)

FIG. 36. (a) Dyson-like equation for the dressed exciton Green’s
function (thick straight line). The thin straight and wavy lines
represent bare exciton and bare photon Green’s functions.
(b) Diagram representing single-photon reflection. (c) Series
corresponding to the two-photon scattering. The bold dots
indicate the exciton-exciton interaction U.
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XN
m0n0¼1

ðHþ UÞmn;m0n0ψm0n0 ¼ 2εψmn; ðG15Þ

with Hmn;m0n0 ¼ δmm0Hnn0 þ δnn0Hmm0 and Umn;m0n0 ¼
δmnδmm0δnn0U. We now note that the integral in Eq. (G13)
can be presented as

Z
dω
2π

GijðωÞGklð2ε − ωÞ ¼
Z

dω
2π

�
1

H − ω

�
ij

�
1

H þ ω − 2ε

�
kl

¼
�

i
H ⊗ 1þ 1 ⊗ H − 2ε

�
ik;jl

:

ðG16Þ

Hence,

Σmn ¼
�

i
H − 2ε

�
mm;nn

; Qmn ¼ iU

�
2ε −H

Hþ U − 2ε

�
mm;nn

:

ðG17Þ
Thus, the two-photon scattering matrix indeed has resonances
when the sum of the energies of two incident photons 2ε
matches the energy of the double-excited state (G15). In the
limit of U → ∞ Eq. (G17) can be further simplified to

Qmn ¼ 2ðiε − γ1DÞδmn þ
XNðN−1Þ=2

ν¼1

2idνmdνn
εν − ε

; ðG18Þ

where εν are the two-photon state energies found in Eq. (G15)
and dνm ¼ Hmm;m0n0ψ

ν
m0n0 , with the normalization condition for

two-photon states being
P

m0n0 ðψν
m0n0 Þ2 ¼ 1.

APPENDIX H: GENERATION OF THE GHZ STATE
AND THE QUANTUM STATE TRANSFER

In this appendix, we provide more details on the protocols
of the generation of the GHZ state and the quantum state
transfer, which were proposed by Guimond et al. (2020) and
illustrated in Fig. 19. The proposed quantum protocol works
in the regime in which the interaction of a waveguide photon
through a given dimer is described by the operator

jphoti → ½j1qih1qji − j0qih0qj�jphoti≡ −σz;qjphoti; ðH1Þ

where j0q=1qi are the ground and excited states of the
stationary qubit coupled to the dimer. This can be realized
by choosing the energy of the incoming photon between the
bare dimer qubit resonance and the dimer qubit resonance
shifted by the excitation with the stationary qubit (Guimond
et al., 2020). We also introduce the Hadamard states of the
stationary qubits and photons

j�i ¼ ðj1i � j0iÞ=
ffiffiffi
2

p
:

In the Hadamard basis, the photon transmission is described
by the Pauli matrix σx, which corresponds to transitions
jþi → j−i and j−i → jþi.

The Hadamard gate acting on the qubit n is defined as
Ĥn ¼ jþinh0jn þ j−inh1jn.The photons in the upper and
lower waveguides shown in Fig. 19 play the role of flying
qubits. The waveguides can be linked by beam splitters that
act as Hadamard gates for the photons. The only difference is
that the basis of the states j0i and j1i is replaced by jdi and
jui, which correspond to the photons in the upper and lower
waveguides. Specifically, a photon entering the lower arm is
transformed into ðjdi þ juiÞ= ffiffiffi

2
p

, and a photon entering the
lower arm is transformed into ðjdi − juiÞ= ffiffiffi

2
p

.
We now illustrate the protocol to generate the GHZ state for

the simplest case of N ¼ 2 qubits. The system is initialized
as ψ in ¼ jþi1jþi2jdi; i.e., the stationary qubits are in the
product state and one photon is incident in the lower wave-
guide. The cascaded photon processing in the array is detailed
as follows:

First beam splitter∶ jþi1jþi2
jdi þ juiffiffiffi

2
p ;

after qubit 1∶
1ffiffiffi
2

p j−i1jþi2jui þ
1ffiffiffi
2

p jþi1jþi2jdi;

after qubit 2∶
1ffiffiffi
2

p j−i1j−i2jui þ
1ffiffiffi
2

p jþi1jþi2jdi;

Second beam splitter∶ 1
2
jdiðjþi1jþi2 − j−i1j−i2Þ

þ 1
2
juiðjþi1jþi2 þ j−i1j−i2Þ: ðH2Þ

Hence, after projecting the output on the state jdi or jui
(performing the measuring), one arrives at the qubit array in
the GHZ state.
A similar approach canbe used for the quantum state transfer;

see Fig. 19(b). We start with the first qubit in an arbitrary
quantum state and one photon in the lower waveguide,

ψ in ¼ ðcþjþi1 þ c−j−i1Þjþi2jdi; ðH3Þ

with jcþj2 þ jc−j2 ¼ 1. Using the previous logic, we find that
the output state after the third beam splitter is

jψ1i ¼ −
ffiffiffi
2

p

4
f½ðcþ þ c−Þj−i2 þ ðcþ − c−Þjþi2�j−i1

þ ½ðcþ þ c−Þj−i2 − ðcþ − c−Þjþi2�jþi1gjdi þ ð� � �Þjui:

Wenow start to perform the quantummeasurements.We project
the state jψ1i onto the state jdi, apply theσz;1matrix, andproject
the first qubit in the j−i1 state:

ψ2¼hdjh−j1σz;1jψ1i¼−
ffiffiffi
2

p

4
½ðc−þcþÞj−i2þðcþ−c−Þjþi2�:

We now apply the Hadamard transformation followed by the
σz;2 operation to the second qubit:

2σzĤψ2 ¼ cþjþi2 þ c−j−i2:

Thus, the quantum state has been transferred to the sec-
ond qubit.
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The setup of Fig. 19 can be easily tailored to construct
arbitrary matrix product states (10) of the stationary qubits,
with the rank of the A matrix equal to 2. Even more
complicated states could be generated by adding waveguides
to the system (Guimond et al., 2020).

APPENDIX I: PHOTON PAIR SCATTERING
FROM A CHIRAL ATOMIC ARRAY

Here we generalize the technique discussed in Appendix G
to the case of photon pair scattering from a chiral array
of two-level atoms. The problem is still described by the
Hamiltonians (A1)–(A4), but the summation over k is carried
out only over the right-going photon states, where k > 0. The
effective Hamiltonian describing a light-mediated interaction
between single-excited atomic states is

Hnm ¼
8<
:

ω0 − iðγ→ þ γÞ; n ¼ m;

−2iγ→; n > m;

0; n < m;

ðI1Þ

where γ→ ¼ g2=2c is the radiative decay rate of a single atom
and γ is the nonradiative decay rate. This Hamiltonian is
similar to the Hamiltonian (15) for a nonchiral waveguide, but
now the atoms with n < m are not coupled to each other
by light.
The Green’s function for single-excited states is given by

G ¼ ðω −HÞ−1. Since the atoms with n < m are decoupled,
the Green’s function can be found recursively as

G11 ¼
1

ω − ω̃0

ðI2Þ

(ω̃0 ¼ ω0 − iγ→ − iγ) and

Gnm ¼ G11 þ 2iγ→
Xn−1
m0¼0

Gnm0 ; Gnm ¼ 0 for m > n: ðI3Þ

Using Eqs. (G13), we now find the two-photon scattering
kernel

ΣnmðεÞ≡
Z

GnmðωÞGnmð2ε − ωÞ dω
2π

¼ iγ→δnm
ω̃0 − ε

: ðI4Þ

The scattering matrix is given by Eq. (G12) and reads

Mðω; 2ε − ω ← ε; εÞ

¼ 4g2

c
1

ðε − ω̃0Þðω − ω̃0Þð2ε − ω − ω̃0Þ
t2Nε tNω t2ε−ω − 1

t2εtωt2ε−ω − 1
;

ðI5Þ

where

tω ¼ ω0 − ωþ iγ→ − iγ
ω0 − ω − iγ→ − iγ

ðI6Þ

is the single-photon transmission coefficient of one atom. The
photon-photon correlation function is found in Eq. (35) and is

determined by the residue of Nth order at ω ¼ ω̃0, which can
be calculated as

gð2ÞN ð0Þ ¼
�
1þ dN−1

dxN−1 Mjx¼0

�
2

; ðI7Þ

with

M ¼ ð1þ γ→=γÞ½ð1 − xÞðx − γ=γ→Þ=ðγ=γ→ þ 1 − xÞ�N
1=2 − ð1=2þ γ=2γ→ − xÞ2 þ ðγ=γ→Þ2 :

ðI8Þ

For relatively small values of N ≲ 100, the residue can be
readily calculated by expanding the products in Eq. (I8) in the
binomial series (Mahmoodian et al., 2018). For large values of
γ=γ→, it is possible to use a simple asymptotic expression (62)
that is valid for an arbitrarily largeN. To derive this expression,
we rewrite the residue in Eq. (I7) as a contour integral,

dN−1

dxN−1 Mjx¼0 ¼
1

2πi

I
x¼R

Mdx: ðI9Þ

For γ ≫ γ→, the value of the integral is determined mostly by a
simple pole at x ¼ x�, where

x� ¼ γ

γ→
þ 1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
γ

γ→

�
2

þ 1

2

s
ðI10Þ

is a zero of the denominator that results in Eq. (62).

APPENDIX J: PHOTON REFLECTION
FROM A PLANAR ATOMIC ARRAY

In this appendix, we outline the calculation of the light
reflection from a two-dimensional atomic array that was
considered in Sec. III.C. The light-array interaction can
be treated in the following discrete dipole approximation
(Draine and Flatau, 1994):

pj ¼ α

�
E0ðrjÞ þ

X
j0≠j

Gðrj0 − rjÞpj0
�
; ðJ1Þ

where pj is the electric dipole moment of the atom number j
and

α ¼ 3ic3

2ω3
0

γ0
ω0 − ω − iðγ0 þ γÞ ðJ2Þ

is the single-atom polarizability characterized by the reso-
nance frequency ω0, a radiative decay rate γ0 ≡ Γ0=2, and a
nonradiative decay rate γ ≡ Γ=2. In Eq. (J1) E0 is the electric
field of the incident wave and

Gμνðr;ωÞ ¼
�
δμν þ

�
c
ω

�
2 ∂

2

∂xμ∂xν

�
eiωr=c

4πr
ðJ3Þ

is the electromagnetic tensor of the Green’s function
at the frequency ω satisfying the equation rot rotG ¼
ðω=cÞ2Gþ δðrÞ. The first term in Eq. (J1) describes the
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polarizability of the atom by the incident wave, and the second
term accounts for the sum of electric fields emitted by all other
atoms. We consider for simplicity the case in which light is
incident in the normal direction, such that E0ðrjÞ≡ E0 and
pj ¼ p. In this case Eq. (J1) is readily solved, yielding

p ¼ α̃E0; α̃ ¼ α

1 − Cα
; ðJ4Þ

where

C ¼ 4π

�
ω

c

�
2X
r≠0

GxxðrÞ ðJ5Þ

is the so-called interaction constant describing light-induced
coupling between a given atom and all other atoms in the
array. Hence, the coefficient α̃ in Eq. (J4) is the polarizability
renormalized by collective coupling between the atoms. The
amplitude light reflection and transmission coefficients from
the array r and t can be found by summing the field emitted
from all the dipoles in the normal direction. The results read
(Ivchenko, Fu, and Willander, 2000; Yugova et al., 2009)

r ¼ 2πiω
ca2

α̃; t ¼ 1þ r: ðJ6Þ

We consider an array with a < λ when all the diffracted waves
are evanescent. In this case, the reflection and transmission
coefficients reduce to Eqs. (64).
The sum in Eq. (J5) for arrays with tens of atoms, which

occurs in practice (Rui et al., 2020), can be readily and
directly evaluated. In the theoretical limit of an infinite array
the convergence of the sum is slow due to far-field inter-
actions. The commonly used approach to evaluate the lattice
sum is the Ewald summation, which is based on splitting the
sum into two parts. The first part corresponding to smaller
values of r in the near-field zone is evaluated in real space, and
the second part corresponding to the far-field zone r≳ c=ω is
Fourier transformed into reciprocal space using the identity

eiωr=c

r
¼
X
b

2πi
kba2

eikbjzjþib·ρ; ðJ7Þ

where r ¼ ðr; zÞ and the reciprocal lattice vectors b form a
square lattice with the spacing 2π=a and kb ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω=cÞ2 − b2

p
.

More details on the Ewald summation were given by Kambe
(1967). Another efficient summation technique, which in our
experience is even more efficient, is the Floquet summation
technique developed by Belov and Simovski (2005).
Specifically, the sum is given as Eq. (A37) by Belov and
Simovski (2005), which has to be complex conjugated and
also multiplied by 4π to take into account the time dependence
convention ejωt and the differing definition of the Green’s
function by Belov and Simovski (2005).
We now discuss how to obtain the approximate expression

for the lattice constant given by Eq. (66). The first term
2πiω=ca2 is given by the term with b ¼ 0 in Eq. (J7)
multiplied by ðω=cÞ2. It describes the radiative decay due
to the emission of the waves propagating normally to the array,

where b ¼ 0, or, in another words, results from far-field
radiative coupling between the atoms. The term S=2 is given
by the near field and can be obtained by setting ω in Eq. (J5) to
zero:

S
2
¼
X
r≠0

∂
2

∂x2
1

r
≡X

r≠0

3x2 − r2

r5

¼ 1

2

XX
r≠0

1

r3
≈
9.03
2a3

: ðJ8Þ

The sum for the square lattice converges rapidly enough and
can be calculated directly. The term S0ðω=cÞ2=2 resulting from
the field in Eq. (J5) in the intermediate zone between the far
field and the near field reads

S0ðω=cÞ2
2

¼
X
r≠0

1 − ðx=rÞ2
r

eib·rþiωr=c

r
: ðJ9Þ

The term 1 − ðx=rÞ2 for the square lattice can be replaced by
1=2, and we can write it as

S0 ¼ lim
z→0

lim
ω→0

 
Re
X
r

eiω
ffiffiffiffiffiffiffiffiffi
r2þz2

p
=cffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2
p −

eiωjzj=c

jzj

!
: ðJ10Þ

Taking the Fourier transformation of the first term with the
help of Eq. (J7), we find that

S0 ¼ lim
z→0

lim
ω→0

 
2πi
a

X
b

ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω=cÞ2−b2

p
jzjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðω=cÞ2 − b2
p −

eiωjzj=c

jzj

!

¼ lim
z→0

�
2π

a

X
b

e−bjzj

b
−

1

jzj
�
: ðJ11Þ

We first check the cancellation of the singular diverging terms
∝ 1=z in Eq. (J11). To do this, we can replace the summation
by integration:

2π

a

X
b

e−bz

b
≈
Z

∞

0

bdb
e−bjzj

b
¼ 1

jzj : ðJ12Þ

Thus, the 1=z terms cancel each other out and Eq. (J11) has a
finite limit of the order of 1=a. Numerical calculation for a
square lattice yields

S0 ¼ lim
z→0

�
2π

a

X
b

e−bjzj

b
−

1

jzj
�

¼ −
3.90
a

: ðJ13Þ
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Gorshkov, A. V., A. André, M. Fleischhauer, A. S. Sørensen, and
M. D. Lukin, 2007, “Universal Approach to Optimal Photon
Storage in Atomic Media,” Phys. Rev. Lett. 98, 123601.

Gouraud, B., D. Maxein, A. Nicolas, O. Morin, and J. Laurat, 2015,
“Demonstration of a Memory for Tightly Guided Light in an
Optical Nanofiber,” Phys. Rev. Lett. 114, 180503.

Grankin, A., P. O. Guimond, D. V. Vasilyev, B. Vermersch, and P.
Zoller, 2018, “Free-space photonic quantum link and chiral
quantum optics,” Phys. Rev. A 98, 043825.

Greenberg, Y. S., A. A. Shtygashev, and A. G. Moiseev, 2021,
“Waveguide band-gap n-qubit array with a tunable transparency
resonance,” Phys. Rev. A 103, 023508.

Grimsmo, A. L., 2015, “Time-Delayed Quantum Feedback Control,”
Phys. Rev. Lett. 115, 060402.

Grimsmo, A. L., B. Royer, J. M. Kreikebaum, Y. Ye, K. O’Brien,
I. Siddiqi, and A. Blais, 2021, “Quantum Metamaterial for

Broadband Detection of Single Microwave Photons,” Phys. Rev.
Appl. 15, 034074.

Gross, M., and S. Haroche, 1982, “Superradiance: An essay on
the theory of collective spontaneous emission,” Phys. Rep. 93,
301–396.

Gruner, T., and D.-G. Welsch, 1996, “Green-function approach
to the radiation-field quantization for homogeneous and
inhomogeneous Kramers-Kronig dielectrics,” Phys. Rev. A 53,
1818–1829.

Gu, X., A. F. Kockum, A. Miranowicz, Y. xi Liu, and F. Nori, 2017,
“Microwave photonics with superconducting quantum circuits,”
Phys. Rep. 718–719, 1–102.

Guerin, W., M. O. Araújo, and R. Kaiser, 2016, “Subradiance in a
Large Cloud of Cold Atoms,” Phys. Rev. Lett. 116, 083601.

Guerin, W., M. Rouabah, and R. Kaiser, 2017, “Light interacting with
atomic ensembles: Collective, cooperative and mesoscopic effects,”
J. Mod. Opt. 64, 895–907.

Guimond, P.-O., A. Grankin, D. V. Vasilyev, B. Vermersch, and P.
Zoller, 2019, “Subradiant Bell States in Distant Atomic Arrays,”
Phys. Rev. Lett. 122, 093601.

Guimond, P.-O., B. Vermersch, M. L. Juan, A. Sharafiev, G.
Kirchmair, and P. Zoller, 2020, “A unidirectional on-chip photonic
interface for superconducting circuits,” npj Quantum Inf. 6, 32.

Guo, L., A. F. Kockum, F. Marquardt, and G. Johansson, 2020,
“Oscillating bound states for a giant atom,” Phys. Rev. Res. 2,
043014.

Gustafsson, M. V., T. Aref, A. F. Kockum, M. K. Ekström, G.
Johansson, and P. Delsing, 2014, “Propagating phonons coupled
to an artificial atom,” Science 346, 207–211.

Haakh, H. R., S. Faez, and V. Sandoghdar, 2016, “Polaritonic
normal-mode splitting and light localization in a one-dimensional
nanoguide,” Phys. Rev. A 94, 053840.

Haber, J., J. Gollwitzer, S. Francoual, M. Tolkiehn, J. Strempfer,
and R. Röhlsberger, 2019, “Spectral Control of an X-Ray l-Edge
Transition via a Thin-Film Cavity,” Phys. Rev. Lett. 122, 123608.

Haber, J., X. Kong, C. Strohm, S. Willing, J. Gollwitzer, L. Bocklage,
R. Rüffer, A. Pálffy, and R. Röhlsberger, 2017, “Rabi oscillations of
x-ray radiation between two nuclear ensembles,”Nat. Photonics 11,
720–725.

Haber, J., et al., 2016, “Collective strong coupling of x-rays and
nuclei in a nuclear optical lattice,” Nat. Photonics 10, 445–449.

Hammerer, K., A. S. Sørensen, and E. S. Polzik, 2010, “Quantum
interface between light and atomic ensembles,” Rev. Mod. Phys.
82, 1041–1093.

Hannon, J., and G. Trammell, 1999, “Coherent γ-ray optics,”
Hyperfine Interact. 123, 127–274.

Hinney, J., A. S. Prasad, S. Mahmoodian, K. Hammerer, A.
Rauschenbeutel, P. Schneeweiss, J. Volz, and M. Schemmer,
2021, “Unraveling Two-Photon Entanglement via the Squeezing
Spectrum of Light Traveling through Nanofiber-Coupled Atoms,”
Phys. Rev. Lett. 127, 123602.

Hoi, I.-C., A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, L.
Tornberg, S. R. Sathyamoorthy, G. Johansson, P. Delsing, and
C. M. Wilson, 2013, “Giant Cross–Kerr Effect for Propagating
Microwaves Induced by an Artificial Atom,” Phys. Rev. Lett. 111,
053601.

Hoi, I.-C., T. Palomaki, J. Lindkvist, G. Johansson, P. Delsing, and
C. M.Wilson, 2012, “Generation of Nonclassical Microwave States
Using an Artificial Atom in 1D Open Space,” Phys. Rev. Lett. 108,
263601.

Hoi, I.-C., C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre,
and P. Delsing, 2011, “Demonstration of a Single-Photon Router in
the Microwave Regime,” Phys. Rev. Lett. 107, 073601.

Alexandra S. Sheremet et al.: Waveguide quantum electrodynamics …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 015002-53

https://doi.org/10.1103/PhysRevA.90.013837
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevLett.70.2269
https://doi.org/10.1103/PhysRevLett.70.2269
https://doi.org/10.1103/PhysRevA.102.053720
https://doi.org/10.3367/UFNe.0179.200909l.1027
https://doi.org/10.1063/1.1703687
https://doi.org/10.1063/1.1703687
https://doi.org/10.1080/00018730600908042
https://doi.org/10.1103/PhysRevLett.109.033603
https://doi.org/10.1103/PhysRevLett.115.063601
https://doi.org/10.1038/ncomms4808
https://doi.org/10.1103/PhysRevLett.106.020501
https://doi.org/10.1103/PhysRevA.97.043831
https://doi.org/10.1038/nphoton.2015.54
https://doi.org/10.1038/nphoton.2015.54
https://doi.org/10.1103/PhysRevLett.107.277201
https://doi.org/10.1103/PhysRevLett.98.123601
https://doi.org/10.1103/PhysRevLett.114.180503
https://doi.org/10.1103/PhysRevA.98.043825
https://doi.org/10.1103/PhysRevA.103.023508
https://doi.org/10.1103/PhysRevLett.115.060402
https://doi.org/10.1103/PhysRevApplied.15.034074
https://doi.org/10.1103/PhysRevApplied.15.034074
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1103/PhysRevA.53.1818
https://doi.org/10.1103/PhysRevA.53.1818
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1103/PhysRevLett.116.083601
https://doi.org/10.1080/09500340.2016.1215564
https://doi.org/10.1103/PhysRevLett.122.093601
https://doi.org/10.1038/s41534-020-0261-9
https://doi.org/10.1103/PhysRevResearch.2.043014
https://doi.org/10.1103/PhysRevResearch.2.043014
https://doi.org/10.1126/science.1257219
https://doi.org/10.1103/PhysRevA.94.053840
https://doi.org/10.1103/PhysRevLett.122.123608
https://doi.org/10.1038/s41566-017-0013-3
https://doi.org/10.1038/s41566-017-0013-3
https://doi.org/10.1038/nphoton.2016.77
https://doi.org/10.1103/RevModPhys.82.1041
https://doi.org/10.1103/RevModPhys.82.1041
https://doi.org/10.1023/A:1017011621007
https://doi.org/10.1103/PhysRevLett.127.123602
https://doi.org/10.1103/PhysRevLett.111.053601
https://doi.org/10.1103/PhysRevLett.111.053601
https://doi.org/10.1103/PhysRevLett.108.263601
https://doi.org/10.1103/PhysRevLett.108.263601
https://doi.org/10.1103/PhysRevLett.107.073601


Hopfield, J. J., 1982, “Neural networks and physical systems with
emergent collective computational abilities,” Proc. Natl. Acad. Sci.
U.S.A. 79, 2554–2558.

Hsu, C. W., B. Zhen, A. D. Stone, J. D. Joannopoulos, and M.
Soljačić, 2016, “Bound states in the continuum,” Nat. Rev. Mater.
1, 16048.

Hung, C.-L., A. González-Tudela, J. I. Cirac, and H. J. Kimble,
2016, “Quantum spin dynamics with pairwise-tunable, long-
range interactions,” Proc. Natl. Acad. Sci. U.S.A. 113, E4946–
E4955.

Iorsh, I., A. Poshakinskiy, and A. Poddubny, 2020, “Waveguide
Quantum Optomechanics: Parity-Time Phase Transitions in Ultra-
strong Coupling Regime,” Phys. Rev. Lett. 125, 183601.

Ivchenko, E., A. Kavokin, V. Kochereshko, P. Kop’ev, and N.
Ledentsov, 1992, “Exciton resonance reflection from quantum
well, quantum wire and quantum dot structures,” Superlattices
Microstruct. 12, 317–320.

Ivchenko, E. L., 1991, “Excitonic polaritons in periodic quantum-
well structures,” Sov. Phys. Solid State 33, 1344–1346, https://
www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ftt&
paperid=7009&option_lang=eng.

Ivchenko, E. L., 2005, Optical Spectroscopy of Semiconductor
Nanostructures (Alpha Science International, Harrow, England).

Ivchenko, E. L., Y. Fu, and M. Willander, 2000, “Exciton polaritons
in quantum-dot photonic crystals,” Phys. Solid State 42, 1756–
1765.

Ivchenko, E. L., and A. V. Kavokin, 1992, “Light reflection from
quantum well, quantum wire and quantum dot structures,” Sov.
Phys. Solid State 34, 968–971, https://www.mathnet.ru/php/archive
.phtml?wshow=paper&jrnid=ftt&paperid=7554&option_lang=en.

Ivchenko, E. L., A. I. Nesvizhskii, and S. Jorda, 1994a, “Resonant
Bragg reflection from quantum-well structures,” Superlattices
Microstruct. 16, 17–20.

Ivchenko, E. L., A. I. Nesvizhskii, and S. Jorda, 1994b, “Bragg
reflection of light from quantum-well structures,” Phys. Solid State
36, 1156–1161, https://journals.ioffe.ru/articles/16569.

Iversen, O., and T. Pohl, 2021, “Strongly Correlated States of Light
and Repulsive Photons in Chiral Chains of Three-Level Quantum
Emitters,” Phys. Rev. Lett. 126, 083605, https://journals.ioffe.ru/
articles/16569.

Iversen, O. A., and T. Pohl, 2022, “Self-ordering of individual
photons in waveguide QED and Rydberg atom arrays,” Phys.
Rev. Res. 4, 023002.

Jalali Mehrabad, M., A. P. Foster, R. Dost, E. Clarke, P. K. Patil, I.
Farrer, J. Heffernan, M. S. Skolnick, and L. R. Wilson, 2020, “A
semiconductor topological photonic ring resonator,” Appl. Phys.
Lett. 116, 061102.

Javadi, A., et al., 2018, “Spin-photon interface and spin-controlled
photon switching in a nanobeam waveguide,” Nat. Nanotechnol.
13, 398–403.

Jen, H. H., 2020, “Disorder-assisted excitation localization in chirally
coupled quantum emitters,” Phys. Rev. A 102, 043525.

Jen, H. H., 2021, “Bound and subradiant multiatom excitations in an
atomic array with nonreciprocal couplings,” Phys. Rev. A 103,
063711.

Jones, R., G. Buonaiuto, B. Lang, I. Lesanovsky, and B. Olmos,
2020, “Collectively Enhanced Chiral Photon Emission from an
Atomic Array near a Nanofiber,” Phys. Rev. Lett. 124, 093601.

Jung, P., A. V. Ustinov, and S. M. Anlage, 2014, “Progress in
superconducting metamaterials,” Supercond. Sci. Technol. 27,
073001.

Kagan, Y., 1999, “Theory of coherent phenomena and fundamentals
in nuclear resonant scattering,” Hyperfine Interact. 123, 83–126.

Kambe, K., 1967, “Theory of low-energy electron diffraction. I.
Application of the cellular method of monatomic layers,”
Z. Naturforsch. Teil A 22, 322.

Kannan, B., et al., 2020, “Waveguide quantum electrodynamics
with superconducting artificial giant atoms,” Nature (London) 583,
775–779.

Karg, T. M., B. Gouraud, C. T. Ngai, G.-L. Schmid, K. Hammerer,
and P. Treutlein, 2020, “Light-mediated strong coupling between a
mechanical oscillator and atomic spins 1 meter apart,” Science 369,
174–179.

Karg, T. M., B. Gouraud, P. Treutlein, and K. Hammerer, 2019,
“Remote Hamiltonian interactions mediated by light,” Phys. Rev. A
99, 063829.

Kaur, K., T. Sépulcre, N. Roch, I. Snyman, S. Florens, and S. Bera,
2021, “Spin-Boson Quantum Phase Transition in Multilevel Super-
conducting Qubits,” Phys. Rev. Lett. 127, 237702.

Ke, Y., A. V. Poshakinskiy, C. Lee, Y. S. Kivshar, and A. N.
Poddubny, 2019, “Inelastic Scattering of Photon Pairs in Qubit
Arrays with Subradiant States,” Phys. Rev. Lett. 123, 253601.

Khanikaev, A. B., and G. Shvets, 2017, “Two-dimensional topologi-
cal photonics,” Nat. Photonics 11, 763–773.

Khitrova, G., and H. M. Gibbs, 2007, “Quantum dots: Collective
radiance,” Nat. Phys. 3, 84–86.

Kiilerich, A. H., and K. Mølmer, 2019, “Input-Output Theory with
Quantum Pulses,” Phys. Rev. Lett. 123, 123604.

Kiilerich, A. H., and K. Mølmer, 2020, “Quantum interactions with
pulses of radiation,” Phys. Rev. A 102, 023717.

Kim, E., X. Zhang, V. S. Ferreira, J. Banker, J. K. Iverson, A.
Sipahigil, M. Bello, A. González-Tudela, M. Mirhosseini, and
O. Painter, 2021, “Quantum Electrodynamics in a Topological
Waveguide,” Phys. Rev. X 11, 011015.

Kivshar, Y., 2018, “All-dielectric meta-optics and non-linear nano-
photonics,” Natl. Sci. Rev. 5, 144–158.

Kocabaş, Ş. E., 2016, “Effects of modal dispersion on few-photon–
qubit scattering in one-dimensional waveguides,” Phys. Rev. A 93,
033829.

Koch, J., T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J.
Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf,
2007, “Charge-insensitive qubit design derived from the Cooper
pair box,” Phys. Rev. A 76, 042319.

Kockum, A. F., G. Johansson, and F. Nori, 2018, “Decoherence-Free
Interaction between Giant Atoms in Waveguide Quantum Electro-
dynamics,” Phys. Rev. Lett. 120, 140404.

Kockum, A. F., A. Miranowicz, S. D. Liberato, S. Savasta, and
F. Nori, 2019, “Ultrastrong coupling between light and matter,”
Nat. Rev. Phys. 1, 19–40.

Kojima, K., H. F. Hofmann, S. Takeuchi, and K. Sasaki, 2003,
“Nonlinear interaction of two photons with a one-dimensional
atom: Spatiotemporal quantum coherence in the emitted field,”
Phys. Rev. A 68, 013803.

Kornovan, D., R. Savelev, Y. Kivshar, and M. Petrov, 2021, “High-Q
localized states in finite arrays of subwavelength resonators,”
ACS Photonics 8, 3627–3632.

Kornovan, D. F., N. V. Corzo, J. Laurat, and A. S. Sheremet, 2019,
“Extremely subradiant states in a periodic one-dimensional atomic
array,” Phys. Rev. A 100, 063832.

Kornovan, D. F., A. S. Sheremet, and M. I. Petrov, 2016, “Collective
polaritonic modes in an array of two-level quantum emitters
coupled to an optical nanofiber,” Phys. Rev. B 94, 245416.

Koshelev, K., S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A.
Bogdanov, H.-G. Park, and Y. Kivshar, 2020, “Subwavelength
dielectric resonators for nonlinear nanophotonics,” Science 367,
288–292.

Alexandra S. Sheremet et al.: Waveguide quantum electrodynamics …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 015002-54

https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1073/pnas.1603777113
https://doi.org/10.1073/pnas.1603777113
https://doi.org/10.1103/PhysRevLett.125.183601
https://doi.org/10.1016/0749-6036(92)90272-7
https://doi.org/10.1016/0749-6036(92)90272-7
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ftt&paperid=7009&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ftt&paperid=7009&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ftt&paperid=7009&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ftt&paperid=7009&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ftt&paperid=7009&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ftt&paperid=7009&option_lang=eng
https://doi.org/10.1134/1.1309465
https://doi.org/10.1134/1.1309465
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ftt&paperid=7554&option_lang=en
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ftt&paperid=7554&option_lang=en
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ftt&paperid=7554&option_lang=en
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ftt&paperid=7554&option_lang=en
https://doi.org/10.1006/spmi.1994.1101
https://doi.org/10.1006/spmi.1994.1101
https://journals.ioffe.ru/articles/16569
https://journals.ioffe.ru/articles/16569
https://journals.ioffe.ru/articles/16569
https://journals.ioffe.ru/articles/16569
https://journals.ioffe.ru/articles/16569
https://journals.ioffe.ru/articles/16569
https://doi.org/10.1103/PhysRevLett.126.083605
https://doi.org/10.1103/PhysRevResearch.4.023002
https://doi.org/10.1103/PhysRevResearch.4.023002
https://doi.org/10.1063/1.5131846
https://doi.org/10.1063/1.5131846
https://doi.org/10.1038/s41565-018-0091-5
https://doi.org/10.1038/s41565-018-0091-5
https://doi.org/10.1103/PhysRevA.102.043525
https://doi.org/10.1103/PhysRevA.103.063711
https://doi.org/10.1103/PhysRevA.103.063711
https://doi.org/10.1103/PhysRevLett.124.093601
https://doi.org/10.1088/0953-2048/27/7/073001
https://doi.org/10.1088/0953-2048/27/7/073001
https://doi.org/10.1023/A:1017059504169
https://doi.org/10.1515/zna-1967-0305
https://doi.org/10.1038/s41586-020-2529-9
https://doi.org/10.1038/s41586-020-2529-9
https://doi.org/10.1126/science.abb0328
https://doi.org/10.1126/science.abb0328
https://doi.org/10.1103/PhysRevA.99.063829
https://doi.org/10.1103/PhysRevA.99.063829
https://doi.org/10.1103/PhysRevLett.127.237702
https://doi.org/10.1103/PhysRevLett.123.253601
https://doi.org/10.1038/s41566-017-0048-5
https://doi.org/10.1038/nphys532
https://doi.org/10.1103/PhysRevLett.123.123604
https://doi.org/10.1103/PhysRevA.102.023717
https://doi.org/10.1103/PhysRevX.11.011015
https://doi.org/10.1093/nsr/nwy017
https://doi.org/10.1103/PhysRevA.93.033829
https://doi.org/10.1103/PhysRevA.93.033829
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevLett.120.140404
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1103/PhysRevA.68.013803
https://doi.org/10.1021/acsphotonics.1c01262
https://doi.org/10.1103/PhysRevA.100.063832
https://doi.org/10.1103/PhysRevB.94.245416
https://doi.org/10.1126/science.aaz3985
https://doi.org/10.1126/science.aaz3985


Koshino, K., and H. Ishihara, 2004, “Evaluation of Two-Photon
Nonlinearity by a Semiclassical Method,” Phys. Rev. Lett. 93,
173601.

Kosobukin, V. A., 2003, “Exciton polaritons and their one-dimen-
sional localization in disordered quantum-well structures,” Phys.
Solid State 45, 1145–1153.

Kosobukin, V. A., and A. N. Poddubny, 2007, “Exciton-polariton
absorption in periodic and disordered quantum-well chains,” Phys.
Solid State 49, 1977–1987.

Kraus, Y. E., Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg,
2012, “Topological States and Adiabatic Pumping in Quasicrys-
tals,” Phys. Rev. Lett. 109, 106402.

Kuhlmann, A. V., J. H. Prechtel, J. Houel, A. Ludwig, D. Reuter,
A. D. Wieck, and R. J. Warburton, 2015, “Transform-limited single
photons from a single quantum dot,” Nat. Commun. 6, 8204.

Kuznetsov, A. I., A. E. Miroshnichenko, M. L. Brongersma, Y. S.
Kivshar, and B. Luk’yanchuk, 2016, “Optically resonant dielectric
nanostructures,” Science 354, 2472.

Kwon, J., Y. Kim, A. Lanuza, and D. Schneble, 2022, “Formation of
matter-wave polaritons in an optical lattice,” Nat. Phys. 18, 657–
661.

Laakso, M., and M. Pletyukhov, 2014, “Scattering of Two Photons
from Two Distant Qubits: Exact Solution,” Phys. Rev. Lett. 113,
183601.

Lachance-Quirion, D., Y. Tabuchi, A. Gloppe, K. Usami, and Y.
Nakamura, 2019, “Hybrid quantum systems based on magnonics,”
Appl. Phys. Express 12, 070101.

Lalumière, K., B. C. Sanders, A. F. van Loo, A. Fedorov, A. Wallraff,
and A. Blais, 2013, “Input-output theory for waveguide QED with
an ensemble of inhomogeneous atoms,” Phys. Rev. A 88, 043806.

Lamprianidis, A. G., X. Zambrana-Puyalto, C. Rockstuhl, and I.
Fernandez-Corbaton, 2022, “Directional coupling of emitters into
waveguides: A symmetry perspective,” Laser Photonics Rev. 16,
2000516.

Lecocq, F., J. B. Clark, R. W. Simmonds, J. Aumentado, and J. D.
Teufel, 2016, “Mechanically Mediated Microwave Frequency
Conversion in the Quantum Regime,” Phys. Rev. Lett. 116, 043601.

Leggett, A. J., S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg,
and W. Zwerger, 1987, “Dynamics of the dissipative two-state
system,” Rev. Mod. Phys. 59, 1–85.

Le Hur, K., 2010, Understanding Quantum Phase Transitions (CRC
Press, Boca Raton).

Le Jeannic, H., et al., 2021, “Experimental Reconstruction of the
Few-Photon Nonlinear Scattering Matrix from a Single Quantum
Dot in a Nanophotonic Waveguide,” Phys. Rev. Lett. 126, 023603.

Le Kien, F., V. I. Balykin, and K. Hakuta, 2004, “Atom trap and
waveguide using a two-color evanescent light field around a
subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403.

Le Kien, F., S. Dutta Gupta, V. I. Balykin, and K. Hakuta, 2005,
“Spontaneous emission of a cesium atom near a nanofiber: Efficient
coupling of light to guided modes,” Phys. Rev. A 72, 032509.

Le Kien, F., and A. Rauschenbeutel, 2014, “Propagation of nano-
fiber-guided light through an array of atoms,” Phys. Rev. A 90,
063816.

Le Kien, F., and A. Rauschenbeutel, 2015, “Electromagnetically
induced transparency for guided light in an atomic array outside an
optical nanofiber,” Phys. Rev. A 91, 053847.

Lentrodt, D., K. P. Heeg, C. H. Keitel, and J. Evers, 2020, “Ab initio
quantum models for thin-film x-ray cavity QED,” Phys. Rev. Res.
2, 023396.

Leonforte, L., A. Carollo, and F. Ciccarello, 2021, “Vacancy-like
Dressed States in Topological Waveguide QED,” Phys. Rev. Lett.
126, 063601.

Leong, W. S., M. Xin, Z. Chen, S. Chai, Y. Wang, and S.-Y. Lan,
2020, “Large array of Schrödinger cat states facilitated by an
optical waveguide,” Nat. Commun. 11, 5295.

Leung, P. M., and B. C. Sanders, 2012, “Coherent Control of
Microwave Pulse Storage in Superconducting Circuits,” Phys.
Rev. Lett. 109, 253603.

Liang, Y., and A. Czarnecki, 2012, “Photon-photon scattering: A
tutorial,” Can. J. Phys. 90, 11.

Liao, J.-Q., and C. K. Law, 2010, “Correlated two-photon transport in
a one-dimensional waveguide side-coupled to a nonlinear cavity,”
Phys. Rev. A 82, 053836.

Lieb, E. H., and W. Liniger, 1963, “Exact analysis of an interacting
Bose gas. I. The general solution and the ground state,” Phys. Rev.
130, 1605–1616.

Liu, F., et al., 2018, “High Purcell factor generation of indistinguish-
able on-chip single photons,” Nat. Nanotechnol. 13, 835–840.

Lodahl, P., S. Mahmoodian, and S. Stobbe, 2015, “Interfacing single
photons and single quantum dots with photonic nanostructures,”
Rev. Mod. Phys. 87, 347.

Lodahl, P., S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P.
Schneeweiss, J. Volz, H. Pichler, and P. Zoller, 2017, “Chiral
quantum optics,” Nature (London) 541, 473–480.

Lodahl, P., A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D.
Vanmaekelbergh, and W. L. Vos, 2004, “Controlling the dynamics
of spontaneous emission from quantum dots by photonic crystals,”
Nature (London) 430, 654–657.

Mahan, G. D., and G. Obermair, 1969, “Polaritons at surfaces,”
Phys. Rev. 183, 834–841.

Mahmoodian, S., 2019, “Chiral Light-Matter Interaction beyond the
Rotating-Wave Approximation,” Phys. Rev. Lett. 123, 133603.

Mahmoodian, S., G. Calajó, D. E. Chang, K. Hammerer, and A. S.
Sørensen, 2020, “Dynamics of Many-Body Photon Bound States in
Chiral Waveguide QED,” Phys. Rev. X 10, 031011.

Mahmoodian, S., M. Čepulkovskis, S. Das, P. Lodahl, K. Hammerer,
and A. S. Sørensen, 2018, “Strongly Correlated Photon Transport
in Waveguide Quantum Electrodynamics with Weakly Coupled
Emitters,” Phys. Rev. Lett. 121, 143601.

Malpuech, G., and A. Kavokin, 1999, “Absorption of light
by inhomogeneously broadened excitons in quantum wells,”
Semicond. Sci. Technol. 14, 1031–1033.

Manasi, P., and D. Roy, 2018, “Light propagation through one-
dimensional interacting open quantum systems,” Phys. Rev. A 98,
023802.

Manzoni, M. T., L. Mathey, and D. E. Chang, 2017, “Designing
exotic many-body states of atomic spin and motion in photonic
crystals,” Nat. Commun. 8, 14696.

Manzoni, M. T., M. Moreno-Cardoner, A. Asenjo-Garcia, J. V. Porto,
A. V. Gorshkov, and D. E. Chang, 2018, “Optimization of photon
storage fidelity in ordered atomic arrays,”New J. Phys. 20, 083048.

Marques, Y., I. A. Shelykh, and I. V. Iorsh, 2021, “Two-dimensional
chiral-waveguide quantum electrodynamics: Long-range qubit
correlations and flat-band dark polaritons,” Phys. Rev. A 103,
033702.

Masson, S. J., I. Ferrier-Barbut, L. A. Orozco, A. Browaeys, and A.
Asenjo-Garcia, 2020, “Many-Body Signatures of Collective Decay
in Atomic Chains,” Phys. Rev. Lett. 125, 263601.

Mehrabad, M. J., A. P. Foster, R. Dost, E. Clarke, P. K. Patil,
A. M. Fox, M. S. Skolnick, and L. R. Wilson, 2020, “Chiral
topological photonics with an embedded quantum emitter,” Optica
7, 1690–1696.

Mirhosseini, M., E. Kim, V. S. Ferreira, M. Kalaee, A. Sipahigil, A. J.
Keller, and O. Painter, 2018, “Superconducting metamaterials for
waveguide quantum electrodynamics,” Nat. Commun. 9, 3706.

Alexandra S. Sheremet et al.: Waveguide quantum electrodynamics …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 015002-55

https://doi.org/10.1103/PhysRevLett.93.173601
https://doi.org/10.1103/PhysRevLett.93.173601
https://doi.org/10.1134/1.1583806
https://doi.org/10.1134/1.1583806
https://doi.org/10.1134/S1063783407100289
https://doi.org/10.1134/S1063783407100289
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1038/ncomms9204
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1038/s41567-022-01565-4
https://doi.org/10.1038/s41567-022-01565-4
https://doi.org/10.1103/PhysRevLett.113.183601
https://doi.org/10.1103/PhysRevLett.113.183601
https://doi.org/10.7567/1882-0786/ab248d
https://doi.org/10.1103/PhysRevA.88.043806
https://doi.org/10.1002/lpor.202000516
https://doi.org/10.1002/lpor.202000516
https://doi.org/10.1103/PhysRevLett.116.043601
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/PhysRevLett.126.023603
https://doi.org/10.1103/PhysRevA.70.063403
https://doi.org/10.1103/PhysRevA.72.032509
https://doi.org/10.1103/PhysRevA.90.063816
https://doi.org/10.1103/PhysRevA.90.063816
https://doi.org/10.1103/PhysRevA.91.053847
https://doi.org/10.1103/PhysRevResearch.2.023396
https://doi.org/10.1103/PhysRevResearch.2.023396
https://doi.org/10.1103/PhysRevLett.126.063601
https://doi.org/10.1103/PhysRevLett.126.063601
https://doi.org/10.1038/s41467-020-19030-2
https://doi.org/10.1103/PhysRevLett.109.253603
https://doi.org/10.1103/PhysRevLett.109.253603
https://doi.org/10.1139/p11-144
https://doi.org/10.1103/PhysRevA.82.053836
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1038/s41565-018-0188-x
https://doi.org/10.1103/RevModPhys.87.347
https://doi.org/10.1038/nature21037
https://doi.org/10.1038/nature02772
https://doi.org/10.1103/PhysRev.183.834
https://doi.org/10.1103/PhysRevLett.123.133603
https://doi.org/10.1103/PhysRevX.10.031011
https://doi.org/10.1103/PhysRevLett.121.143601
https://doi.org/10.1088/0268-1242/14/12/303
https://doi.org/10.1103/PhysRevA.98.023802
https://doi.org/10.1103/PhysRevA.98.023802
https://doi.org/10.1038/ncomms14696
https://doi.org/10.1088/1367-2630/aadb74
https://doi.org/10.1103/PhysRevA.103.033702
https://doi.org/10.1103/PhysRevA.103.033702
https://doi.org/10.1103/PhysRevLett.125.263601
https://doi.org/10.1364/OPTICA.393035
https://doi.org/10.1364/OPTICA.393035
https://doi.org/10.1038/s41467-018-06142-z


Mirhosseini, M., E. Kim, X. Zhang, A. Sipahigil, P. B. Dieterle, A. J.
Keller, A. Asenjo-Garcia, D. E. Chang, and O. Painter, 2019,
“Cavity quantum electrodynamics with atom-like mirrors,” Nature
(London) 569, 692–697.

Mirza, I. M., J. G. Hoskins, and J. C. Schotland, 2017, “Chirality,
band structure, and localization in waveguide quantum electrody-
namics,” Phys. Rev. A 96, 053804.

Mirza, I. M., and J. C. Schotland, 2018, “Influence of disorder on
electromagnetically induced transparency in chiral waveguide
quantum electrodynamics,” J. Opt. Soc. Am. B 35, 1149.

Mitsch, R., C. Sayrin, B. Albrecht, P. Schneeweiss, and A.
Rauschenbeutel, 2014, “Quantum state-controlled directional
spontaneous emission of photons into a nanophotonic waveguide,”
Nat. Commun. 5, 5713.

Mittal, S., E. A. Goldschmidt, and M. Hafezi, 2018, “A topological
source of quantum light,” Nature (London) 561, 502–506.

Moreno-Cardoner, M., D. Goncalves, and D. E. Chang, 2021,
“Quantum Nonlinear Optics Based on Two-Dimensional Rydberg
Atom Arrays,” Phys. Rev. Lett. 127, 263602.

Muthukrishnan, A., G. S. Agarwal, and M. O. Scully, 2004, “Induc-
ing Disallowed Two-Atom Transitions with Temporally Entangled
Photons,” Phys. Rev. Lett. 93, 093002.

Nieddu, T., V. Gokhroo, and S. N. Chormaic, 2016, “Optical nano-
fibres and neutral atoms,” J. Opt. 18, 053001.

Niemczyk, T., et al., 2010, “Circuit quantum electrodynamics in the
ultrastrong-coupling regime,” Nat. Phys. 6, 772–776.

Noh, C., and D. G. Angelakis, 2017, “Quantum simulations and
many-body physics with light,” Rep. Prog. Phys. 80, 016401.

Olmos, B., C. Liedl, I. Lesanovsky, and P. Schneeweiss, 2021,
“Bragg condition for scattering into a guided optical mode,” Phys.
Rev. A 104, 043517.

Omran, A., et al., 2019, “Generation and manipulation of
Schrödinger cat states in Rydberg atom arrays,” Science 365,
570–574.

Orús, R., 2014, “A practical introduction to tensor networks: Matrix
product states and projected entangled pair states,” Ann. Phys.
(Amsterdam) 349, 117–158.

Ozawa, T., et al., 2019, “Topological photonics,”Rev. Mod. Phys. 91,
015006.

Paris-Mandoki, A., C. Braun, J. Kumlin, C. Tresp, I. Mirgorodskiy, F.
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H. P. Büchler, and S. Hofferberth, 2021, “Controlled multi-photon
subtraction with cascaded Rydberg superatoms as single-photon
absorbers,” Nat. Commun. 12, 4328.

Stiesdal, N., J. Kumlin, K. Kleinbeck, P. Lunt, C. Braun, A. Paris-
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