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Some measurements in quantum mechanics disturb each other. This has puzzled physicists since the
formulation of the theory, but only in recent decades has the incompatibility of measurements been
analyzed in depth and detail, using the notion of joint measurability of generalized measurements.
In this Colloquium joint measurability and incompatibility are reviewed from the perspective of quantum
information science.TheColloquiumstarts bydiscussing thebasic definitions andconcepts.Anoverview
on applications of incompatibility, such as in measurement uncertainty relations, the characterization
of quantum correlations, or information processing tasks like quantum state discrimination, is then
presented. Finally, emerging directions of research, such as a resource theory of incompatibility as well as
other concepts to grasp the nature of measurements in quantum mechanics, are discussed.
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I. INTRODUCTION

Measurements in quantum mechanics are different than
their classical counterparts. From today’s perspective this
statement may sometimes seem to be a truism or platitude,
but when quantum theory was developed the notion of
measurements and their relation to physical quantities was
indeed a major roadblock on the way to a better under-
standing. In 1925, Heisenberg noted that the product of
physical quantities in the theory of atoms may depend on
their order (Heisenberg, 1925). Directly thereafter, Born and
Jordan (1925) pointed out that the fundamental reason for this
is that physical quantities in quantum mechanics are described
by matrices. Matrix calculus was not common knowledge to
physicists in those times, so Born and Jordan found it
important to point out directly at the beginning of their paper
that for two general matrices A and B

AB ≠ BA ð1Þ

holds. But what is the physical relevance of this non-
commutativity?
In the following years, the fact that two observables do not

share common eigenstates attracted attention in the form
of uncertainty relations (Heisenberg, 1927; Kennard, 1927;
Robertson, 1929, 1934). Here the noncommutativity directly
plays a role, as in the Robertson relation

ΔðAÞΔðBÞ ≥ 1
2
jhψ j½A; B�jψij; ð2Þ

where ΔðAÞ denotes the standard deviation of the observable
A and ½A; B� ¼ AB − BA is the commutator. Owing to such
relations, noncommutativity of observables is sometimes seen
as a key phenomenon in quantum mechanics that already
contains most of the mysteries of quantum measurements.
It turned out, however, that the notion of observables

or Hermitian matrices is much too narrow to describe all
measurements in quantum mechanics (Davies, 1976;
Helstrom, 1976; Holevo, 1982; Ludwig, 1983; Prugovecki,
1992; Busch et al., 2016). Indeed, the textbook notion of
projective measurements can be extended to positive-operator-
valued measures (POVMs) [a short historical review was
given by Ali et al. (2009)]. POVMs can have more outcomes
and may be seen as measurements carried out with the help
of an additional quantum system. They are at the core of the
modern formulation of operational quantum mechanics and
provide an advantage in fundamental protocols of quantum
physics, such as the discrimination of quantum states. POVMs
are the most general description of the outcome statistics of
measurements, but if the postmeasurement state is taken into

account, one needs to further generalize them and consider so-
called quantum instruments, which were introduced by Davies
and Lewis (1970).
But what is the extension of the notion of noncommutativity

to POVMs? Here several notions have been introduced, but
their relation has often not been clear and a direct physical
interpretation has been missing. In recent years, however, the
situation has changed. The notion of joint measurability of
POVMs has turned out to be fundamentally related to several
other phenomena in quantum mechanics and quantum infor-
mation theory. Joint measurability is related to measurement
uncertainty relations as well as preparation noncontextuality.
Moreover, incompatibility (i.e., the absence of joint measur-
ability) is essential for the creation and exploitation of
quantum correlations, such as in the form of quantum steering.
In this Colloquium, we give an overview on joint meas-

urability from the perspective of quantum information theory.
Starting with the basic definitions and properties of joint
measurability and related concepts, we discuss their applica-
tions, such as in Bell nonlocality or protocols in quantum
information processing. Our aim is to present these concepts
in simple language in order to provide an introduction for
researchers from different backgrounds.
We note that there are several noteworthy works that cover

parts of the theory presented in our Colloquium. For instance,
incompatibility from an operational point of view was dis-
cussed by Heinosaari, Miyadera, and Ziman (2016), and
quantum measurement theory from a mathematical perspec-
tive was developed in depth by Busch et al. (2016). In
addition, joint measurability is connected to several topics
of quantum information theory, and interested readers can
find several detailed overview articles about them. These
topics include quantum correlations like Bell nonlocality
(Brunner et al., 2014) and quantum steering (Cavalcanti
and Skrzypczyk, 2017; Uola, Costa et al., 2020), and
phenomena and applications like uncertainty relations
(Busch, Lahti, and Werner, 2014a), quantum contextuality
(Liang, Spekkens, and Wiseman, 2011; Budroni et al., 2022),
and quantum state discrimination (Barnett and Croke, 2009).
This Colloquium is structured as follows. In Sec. II we

introduce and explain basic concepts to describe measure-
ments. These include the central notion of POVMs and their
joint measurability, as well as concepts like instruments and
the disturbance of measurements. Section III discusses
important results on joint measurability. We start with ana-
lytical results for qubit systems and then discuss measures of
incompatibility, including their numerical evaluation via
semidefinite programming and constructive methods to obtain
joint measurements. Section IV connects joint measurability
with different concepts in quantum information processing.
We describe intimate connections to various forms of quantum
correlations, to foundational effects such as contextuality and
macrorealism, and to information processing tasks like state
discrimination or random access codes. Finally, Sec. V
collects various extensions of the previously discussed con-
cepts, including resource theory aspects, other notions for
accessing the nonclassical behavior of quantum measure-
ments, and the incompatibility of quantum channels.
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II. CONCEPTS

Throughout this Colloquium, we use the measurement
theoretical formulation of quantum measurements; see Busch
et al. (2016). In this formulation, Hermitian operators are
generalized to positive-operator-valued measures, and the state
updates caused by measurements are described by quantum
instruments. The latter are objects generalizing the projection
postulate of the Hermitian formulation. This corresponds to the
most general model for quantum measurements and, of
relevance to this Colloquium, manages to describe the different
operational formulations of measurement incompatibility.

A. Measurements and instruments

A POVM is a collection of positive semidefinite matrices
fAag that normalizes to the identity operator, i.e.,

P
aAa ¼ 1.

The positivity and normalization requirements correspond to
the requirement on the related measurement outcome statistics
to form a probability distribution. In a quantum state ϱ, i.e., a
positive unit-trace operator, these probabilities are given by
pðajϱÞ ¼ tr½ϱAa�, where a is the outcome. Whenever Aa is a
projection for all a, i.e., A2

a ¼ Aa, the POVM is said to be
sharp or a projection-valued measure (PVM). The special case
of PVMs is in one-to-one correspondence with the Hermitian
formulation by the spectral theorem, i.e., any Hermitian
operator is of the form

P
aaPa for a unique PVM fPag.

Although POVMs are more general than PVMs, any POVM
can be seen as a PVM on a larger system through the Naimark
dilation; see Sec. III.C.3.
When we describe the entire measurement process, we have

to take into account how the state changes are conditioned on
registering an outcome. If an outcome a is obtained, the non-
normalized postmeasurement state is σa, and we assume that
the map ϱ ↦ σa is a linear (or rather affine) completely
positive map and the sum

P
aσa is a quantum state. Thus, a

measurement is associated with an instrument fIag that is a
collection of linear completely positive maps such that the
sum

P
aIa is a completely positive trace-preserving (CPTP)

map, i.e., a quantum channel. It is evident that the projection
postulate ϱ ↦ PaϱPa for a PVM fPag is an instance of a
quantum instrument. More generally, any instrument associ-
ated with a POVM fAag, i.e., any instrument with the property
tr½IaðϱÞ� ¼ tr½ϱAa� holding for all states ϱ, is of the form
IaðϱÞ ¼ Λað

ffiffiffiffiffiffi
Aa

p
ϱ

ffiffiffiffiffiffi
Aa

p Þ, where Λa is an outcome-dependent
quantum channel (from the input system to the output system)
(Pellonpää, 2013b). As an important special case, we highlight
the von Neumann–Lüders instrument IvN-L

a ðϱÞ ¼ ffiffiffiffiffiffi
Aa

p
ϱ

ffiffiffiffiffiffi
Aa

p
,

which is the most direct generalization of the projection
postulate and can be seen as the least disturbing implementa-
tion of the POVM fAag; see Sec. V.C.5. Quantum instruments
have been analyzed intensively in the literature; see (Davies
and Lewis (1970), Davies (1976), Cycon and Hellwig (1977),
Ozawa (1984), Holevo (1998), Pellonpää (2013a, 2013b),
Busch et al. (2016), and Haapasalo and Pellonpää (2017a).

B. Joint measurability

There are three natural distinctions between classical
and quantum properties of POVMs. They are given by

noncommutativity, inherent measurement disturbance, and
the impossibility of a simultaneous readout of the outcomes.
Of the three, the last one has found the most profound role in
quantum information theory, and consequently is our main
focus. We start with the general notion of joint measurabilility
and discuss the other two as special cases thereof.
The idea of joint measurability is to simulate the statistics of

a set of measurements using only one measurement apparatus.
This apparatus is described using a POVM fGλg, and its
statistics in a state ϱ read pðλjϱÞ ¼ tr½Gλϱ�. The set of
measurements that we aim to simulate is described by a set
of POVMs fAajxg. In this notation, x labels the choice of
the POVM and a denotes the corresponding outcome. The
simulation is done classically on the level of statistics and is
described by classical postprocessings, i.e., conditional
probabilities fpðajx; λÞg. The simulation is successful if
tr½Aajxϱ� ¼

P
λpðajx; λÞtr½Gλϱ� holds for any quantum state ϱ.

This leads to the formal definition of joint measurability:
A set of POVMs fAajxg is said to be jointly measurable or
compatible if there are a POVM fGλg and classical post-
processings, i.e., a set of conditional probabilities fpðajx; λÞg,
such that

Aajx ¼
X
λ

pðajx; λÞGλ: ð3Þ

In this case the POVM fGλg is called a joint or parent
measurement of the set fAajxg. Otherwise, the set fAajxg is
called not jointly measurable or incompatible.
We note that the previous definition is equivalent to the

existence of a POVM fMa⃗g, where a⃗ ¼ ða1;…; anÞ is a
vector of the outcomes with the subindex referring to the
measurement choice x, from which one gets the original
POVMs as margins. More formally, one has

Aajx ¼
X
a⃗∈Eajx

Ma⃗; ð4Þ

where the set Eajx consists of those outcomes a⃗ of the joint
measurement that include the outcome a of the measurement
x. As an example, in the case of two POVMs this reduces to
Aa1j1 ¼

P
a2Ma1;a2 for all outcomes a1 of the first measure-

ment and Aa2j2 ¼
P

a1 Ma1;a2 for all outcomes a2 of the
second measurement; see Fig. 1. In general, the measurement
fMa⃗g can be viewed as a simultaneous readout of all its

FIG. 1. Marginal form joint measurement of two POVMs.
The data of the joint measurement are presented as a grid from
which marginalization gives the data of the original pair of
measurements.
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components in the sense that neglecting the data of all but one
component gives the exact statistics of this component
POVM. To see the equivalence between Eqs. (3) and (4),
one notes that the marginal form is a special case of a
general postprocessing. For the other direction, one can set
Ma⃗ ≔

P
λ½Πxpðaxjx; λÞ�Gλ; cf. Ali et al. (2009).

The concept of joint measurability is easiest to illustrate
with an example. Consider two measurements acting on a
qubit system given by the POVM elements A�j1ðμÞ ¼
ð1=2Þð1� μσxÞ and A�j2ðμÞ ¼ ð1=2Þð1� μσzÞ. These are
noisy versions of the sharp spin measurements along the
directions x and z, with the parameter 1 − μ ∈ ½0; 1� describ-
ing the noise. An intuitive way to find a measurement with
correct margins is to choose measurement directions that are
between x and z (see also Sec. III.C.1), i.e., that define a
candidate joint measurement

Ma1;a2ðμÞ ¼ ð1=4Þ½1þ μða1σx þ a2σzÞ�: ð5Þ

Equation (5) has the correct margins, and for μ ∈ ½0; 1= ffiffiffi
2

p � it
is a POVM. Hence, the POVMs A�j1ðμÞ and A�j2ðμÞ are

jointly measurable whenever μ ∈ ½0; 1= ffiffiffi
2

p �. Moreover, when-
ever μ ∈ ð0; 1= ffiffiffi

2
p � the POVMs are noncommuting, but a

joint measurement nevertheless exists. It can be shown that
for μ > 1=

ffiffiffi
2

p
the POVMs are not jointly measurable; see

Sec. III.A. This is a simple example of a joint measurement,
but we note that in general their form can be complex and can
require an exponentially increasing number of outcomes
(Skrzypczyk et al., 2020).

C. Nondisturbance and commutativity

Joint measurability envelopes another central property of
quantum measurements, that is, the possibility of measuring
POVMs in a sequence without disturbance. A POVM fAa1j1g
is said to be nondisturbing with respect to another POVM
fAa2j2g if there is a sequential implementation in which
neglecting the outcome of the first measurement fAa1j1g does
not affect the statistics of the subsequent measurement
fAa2j2g. More precisely, one asks for the existence of
an instrument fIa1g associated with fAa1j1g such thatP

a1 tr½Ia1ðϱÞAa2j2� ¼ tr½ϱAa2j2� for all ϱ and a2. This notion
generalizes to more measurements straightforwardly.
Nondisturbance implies joint measurability by setting
tr½Ma1;a2ϱ� ≔ tr½Ia1ðϱÞAa2j2� for all ϱ. There are pairs of
jointly measurable POVMs that do not allow for a non-
disturbing sequential implementation (Heinosaari and Wolf,
2010). However, jointly measurable pairs can always be
measured in a sequence by performing a suitable instrument
fIa1g of fAa1j1g and a retrieving measurement fÃa2j2g after it,
i.e.,

P
a1 tr½Ia1ðϱÞÃa2j2� ¼ tr½ϱAa2j2�; see Sec. V.C.5 and

Heinosaari and Miyadera (2015) and Haapasalo and
Pellonpää (2017b). We note that in general the retrieving
measurement is different from the original and it can be
interpreted in two different ways. Either the measurement is a
purely mathematical construction that relies on additional
degrees of freedom on a larger Hilbert space or it is a physical
one, in which case one uses the output a1 of the first

measurement as an input for the second measurement.
These cases are explained in more detail in Sec. V.C.5.
A historically relevant special case of joint measurability is

that of commutativity. A set of POVMs fAajxg is said to be
commuting if ½Aajx; Abjy� ¼ 0 for all a, b, and x ≠ y. Such a
set allows a nondisturbing implementation by the use of the
von Neumann–Lüders instrument and is jointly measurable
with the product POVM Ma⃗ ≔ Aa1j1 � � �Aanjn, where a⃗ ¼
ða1;…; anÞ. However, the inverse implications do not hold
in general: As previously mentioned, there are noncommuting
POVMs that allow a joint measurement. Moreover, Heinosaari
and Wolf (2010) showed that when the Hilbert space dimen-
sion d is equal to 2, nondisturbance reduces to commutativity,
but in systems with d ¼ 3 this is no longer true.
Although noncommutativity lacks an operational mean-

ing in quantum measurement theory in general, with the
exception of two-outcome (also called binary) measurements
(Designolle, Uola et al., 2021), it has been central for the
development of quantum measurement theory. For example,
nondisturbance and joint measurability are equivalent to
commutativity in the case of PVMs (Hermitian operators).
In addition, a pair of POVMs is jointly measurable if and only
if they have a common Naimark dilation in which the
projective measurements on the dilation space commute;
see Sec. III.C.3.

III. CHARACTERIZING JOINT MEASURABILITY

In this section, we present the basic techniques for char-
acterizing and quantifying incompatibility. First, we discuss
analytical criteria for the qubit case and the connection to
measurement uncertainty relations. Second, we explain the
connections between joint measurability and the optimization
method of semidefinite programming. This allows us to
introduce quantifiers of incompatibility. Third, we explain
general methods to construct parent measurements and discuss
connections with the Naimark extension of POVMs, which
allows us to formulate some results from a higher perspective.
Finally, we discuss algebraic characterizations of specific
highly incompatible measurements in arbitrary dimensions.

A. Criteria for joint measurability and measurement
uncertainty relations

Given the formal definition of joint measurability, one may
ask for analytical criteria to determine whether or not two
measurements are jointly measurable. In this section, we focus
on analytical criteria for measurements with two outcomes
on a single qubit. As it turns out, there is an interesting
connection to measurement uncertainty relations.
For the case of qubits, the effects (i.e., positive operators

bounded from above by 1) of all measurements may, up to
normalization, be viewed as vectors on the Bloch sphere.
Thus, for a two-outcome measurement fA�g we can write

A� ¼ 1
2
½ð1� γÞ1� m⃗ · σ⃗�; ð6Þ

with m⃗ · σ⃗ ¼ mxσx þmyσy þmzσz. Here γ is also called the
bias of the measurement, while km⃗k is called the sharpness
(Busch et al., 2016).
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The first result on joint measurability of such measurements
was obtained by Busch (1986). He considered the case of two
dichotomic measurements on a qubit, described by γi and m⃗i,
which are both unbiased (γ1 ¼ γ2 ¼ 0). He then showed that
these are jointly measurable if and only if

km⃗1 þ m⃗2k þ km⃗1 − m⃗2k ≤ 2: ð7Þ
Equation (7) has also been used to determine the probability
of random measurements to be incompatible (Zhang
et al., 2019).
For the case of two potentially biased measurements, this

problem was considered at the same time by Stano, Reitzner,
and Heinosaari (2008), Busch and Schmidt (2010), and Yu
et al. (2010). The resulting conditions are mathematically
equivalent, but the most compact form was derived by Yu
et al. (2010). For that, one defines the auxiliary quantities

Fi ¼ 1
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ γiÞ2 − km⃗ik2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − γiÞ2 − km⃗ik2

q �
ð8Þ

for i ¼ 1; 2. Thus, the measurements fA�j1g and fA�j2g are
jointly measurable if and only if

ð1 − F2
1 − F2

2Þ
�
1 −

γ21
F2
1

−
γ22
F2
2

�
≤ ðm⃗1 · m⃗2 − γ1γ2Þ2: ð9Þ

Finally, several works extended the condition in Eq. (7)
to three unbiased measurements. This was first done for
unbiased measurements in orthogonal directions (Busch,
1986; Brougham and Andersson, 2007) and for three meas-
urement directions in angles of 2π=3 in a plane (Liang,
Spekkens, and Wiseman, 2011). For three general measure-
ments a necessary condition was found by Pal and Ghosh
(2011), which was then shown to be sufficient for unbiased
measurements by Yu and Oh (2013). It reads as follows: For a
set of vectors fv⃗kg one defines the Fermat-Torricelli vector
v⃗FT as the vector minimizing the sum of the distancesP

k kv⃗ − v⃗kk. Therefore, three unbiased measurements on a
qubit are jointly measurable if and only if

X3
k¼0

kT⃗k − T⃗FTk ≤ 4; ð10Þ

where T⃗FT is the Fermat-Torricelli vector of the four vectors
T⃗0 ¼ m⃗1 þ m⃗2 þ m⃗3 and T⃗k ¼ 2m⃗k − T⃗0 for k ¼ 1; 2; 3.
Thus far we have discussed criteria of joint measurability

for pairs or triples of measurements. This leads to the
following question: Which joint-measurability structures in
a set of POVMs are possible? For instance, one may ask for a
triplet of measurements where each pair is jointly measurable
but all three are not jointly measurable. Such an example was
constructed by Heinosaari, Reitzner, and Stano (2008). In fact,
for large sets of measurements, arbitrary joint-measurability
structures can be realized (Kunjwal, Heunen, and Fritz, 2014;
Andrejic and Kunjwal, 2020).
The previous exact solutions of the joint-measurability

problem for certain instances not only are of mathematical
interest but also are relevant for deriving measurement

uncertainty relations. We saw in Eq. (2) that the commutator
of two projective measurements occurs naturally in the
formulation of the Robertson uncertainty relation. The
Robertson uncertainty relation is a preparation uncertainty
relation in the sense that it constrains the ability to prepare
states that are close to common eigenstates of the observables,
but this is not directly related to the measurement process of
the observables.
In recent years, the notion of measurement uncertainty

relations has been used to quantify potential constraints and
disturbances during the measurement process (Werner, 2004;
Busch, Lahti, and Werner, 2014a). We can use Eq. (7) to
explain this concept in a simple setting (Bullock and Busch,
2018). Assume that two projective measurements A and B on
a qubit shall be implemented simultaneously. Since they
may not be jointly measurable, one has to implement two
POVMs C and D as approximations of A and B, respectively,
where C and D are jointly measurable; see also Fig. 2.
This introduces an error that may be quantified by the
difference of the probabilities of one result D2ðA; CÞ ¼
4jpðA ¼ þÞ − pðC ¼ þÞj, which is a simple case of the
so-called Wasserstein distance between two probability dis-
tributions. If one considers the worst case and maximizes this
error over all quantum states, one finds

D2ðA; CÞ þD2ðB;DÞ ≥
ffiffiffi
2

p
ðka⃗þ b⃗k þ ka⃗ − b⃗k − 2Þ; ð11Þ

where a⃗ and b⃗ are the Bloch vectors of the measurements,
such as m⃗ in Eq. (6). This shows that Eq. (7) can result in
uncertainty relations similar to the commutator in Eq. (2).

B. Quantification of incompatibility

1. Joint measurability as a semidefinite program

Given a set of measurements, the existence of a joint
measurement can be decided through convex optimization
techniques that we explain in the following. It is instructive
to first consider the case of two arbitrary two-outcome

(a)

(b) (c)

FIG. 2. Schematic view of measurement uncertainty relations.
(a) For any quantum state ρ the measurement A yields results with
a probability distribution pðaÞ; similarly, B delivers a distribution
pðbÞ. (b) A possible way to study the disturbance of B through A
is to measure in sequence and compare the distributions p̃ðaÞ and
p̃ðbÞ to pðaÞ and pðbÞ. The reverse order of measurements can
also be considered. (c) Since the measurements in (b) give
probability distributions other than in (a), they can be described
by different POVMs C and D. But C and D are then jointly
measurable by construction. The question arises: What is the best
approximation of A and B by two jointly measurable POVMs C
and D?
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(or binary) POVMs (Wolf, Perez-Garcia, and Fernandez,
2009). Let A1 ¼ fAþj1; A−j1g and A2 ¼ fAþj2; A−j2g be two
POVMs in dimension d. They are jointly measurable if
there is a four-outcome measurement Ma1;a2 with a1; a2 ¼
� such that Mþþ þMþ− ¼ Aþj1 and Mþþ þM−þ ¼ Aþj2.
By writing the elements of the parent POVM in terms of A1

and A2, one realizes that their compatibility is equivalent to the
existence of a positive semidefinite operator Mþþ for which

Aþj1 þ Aþj2 − 1 ≤ Mþþ ≤ Aþjx ð12Þ

for x ¼ 1; 2. The problem of deciding if such an operator
exists can be cast as a semidefinite program (SDP) by
minimizing a real number γ subject to the constraints that
Aþj1 þ Aþj2 ≤ γ1þMþþ and 0 ≤ Mþþ ≤ Aþjx for x ¼ 1; 2.
If γ ¼ 1 can be reached, then the measurements A1 and A2 are
jointly measurable.
In its most general form, a SDP can be written as

max tr½AX� ð13Þ

subject to ΦðXÞ ¼ B; ð14Þ

X ≥ 0; ð15Þ

where A and B are Hermitian operators andΦ is a Hermiticity-
preserving linear map. Note that in the literature SDPs are
also frequently written as a maximization of the functionP

icixi over real variables xi, subject to the constraint that
F0 þ

P
ixiFi ≥ 0 is a positive semidefinite matrix and the Fi

are Hermitian matrices.
The theory of convex optimization and, in particular,

of semidefinite programming is well developed (Boyd and
Vandenberghe, 2004; Gärtner and Matoušek, 2012) and is a
frequently used tool in quantum information theory (Watrous,
2018). In fact, the previously mentioned optimization problem
can easily be solved using available software such as CVX

(Grant and Boyd, 2020) or MOSEK (ApS, 2021). SDPs enjoy
many properties that make them useful as a mathematical tool.
For instance, each SDP can be associated to its so-called dual
program, which reads

min tr½BY� ð16Þ

subject to Φ†ðYÞ ≥ A; ð17Þ

Y ¼ Y†; ð18Þ

where Φ† denotes the adjoint map of Φ defined by
tr½TΦðXÞ� ¼ tr½Φ†ðTÞX�. An important property of many
SDPs is known as strong duality, which refers to the fact
that under certain conditions known as Slater’s conditions the
optimal values of the primal and the dual problem coincide.
Concerning general POVMs, one can formulate the SDP

based on the following considerations. One first observes
that the classical postprocessing in Eq. (3) can be chosen as
deterministic; i.e., pðajx; λÞ ¼ Dðajx; λÞ takes only the values
0 and 1 (Ali et al., 2009). There is only a finite number of such
postprocessings. Thus, for a set fAajxg of POVMs the

following SDP decides whether or not they are jointly
measurable:

given fAajxga;x; fDðajx; λÞgλ ð19Þ

max
fGλg

μ ð20Þ

subject to
X
λ

Dðajx; λÞGλ ¼ Aajx ∀ a; x; ð21Þ

Gλ ≥ μ1;
X
λ

Gλ ¼ 1: ð22Þ

This optimization is performed for each fixed deterministic
postprocessing fDðajx; λÞgλ. If this optimization results in a
value of μ strictly less than zero, the positivity constraint on
the joint observable cannot be fulfilled, which proves incom-
patibility. Otherwise, a joint observable that proves joint
measurability is found.

2. Various quantifiers of incompatibility

Typically, one is interested not only in answering the
question as to whether a set of measurements is incompatible
but also in quantifying to what extent the measurements are
incompatible. Similarly, in entanglement theory not only does
one ask whether a state ϱ is entangled or separable, one is also
interested in how close a state is to being separable. This can
be done by adding a certain amount of noise until an entangled
state becomes separable. Different types of noise lead to
different quantifiers including the generalized entanglement
robustness (Vidal and Tarrach, 1999; Steiner, 2003; Brandão,
2005; Gühne and Tóth, 2009) or the best separable approxi-
mation introduced by Lewenstein and Sanpera (1998).
Similarly, for measurement incompatibility one can ask

how close a set of POVMs is to the set of compatible sets of
POVMs by means of adding a certain type of noise. Consider
a set of incompatible POVMs to which we add an amount
p ∈ ½0; 1� of classical noise. The resulting POVMs are thus

given by AðpÞ
ajx ¼ ð1 − pÞAajx þ p1=jaj, where jaj denotes the

number of outcomes and the quantity

Rn
incðAajxÞ ¼ inffpjAðpÞ

ajx are compatibleg ð23Þ

is called the incompatibility noise robustness [cf. Heinosaari,
Kiukas, and Reitzner (2015)], which is one minus the
incompatibility random robustness given by Designolle,
Farkas, and Kaniewski (2019). Heinosaari, Kiukas, and
Reitzner (2015) showed that this quantity is an incompatibility
monotone since it fulfills the following properties: (i) it
vanishes on compatible sets, (ii) it is symmetric under
exchange of measurements, and (iii) it does not increase
under preprocessing by a quantum channel.
When other types of noise are considered, one arrives at

similar quantities that all share similar properties; for instance,
they act as monotones under certain transformations. One
example is the incompatibility weight (Pusey, 2015), which is
analogous to the steering weight defined by Gallego and
Aolita (2015). The incompatibility weight of a set fAajxg of
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POVMs is the smallest value of ν for which the decomposition
Aajx ¼ νNajx þ ð1 − νÞOajx exists, where Najx is an arbitrary
“noise” POVM and fOajxg are jointly measurable. More
precisely,

WincðAajxÞ ¼ inf

�
ν ≥ 0

����Aajx − νNajx
1 − ν

¼ Oajx

	
: ð24Þ

In entanglement theory this quantity is known as the best
separable approximation (Lewenstein and Sanpera, 1998). It
was furthermore shown that the incompatibility weight is a
monotone when transformations more general than quantum
preprocessing are allowed (Pusey, 2015). More precisely, the
incompatibility weight is a monotone under compatibility
nondecreasing operations (CNDOs) that consist of prepro-
cessing by a quantum instrument and conditional classical
postprocessing.
A similar construction is the incompatibility robustness

(Haapasalo, 2015; Uola et al., 2015) defined by

RincðAajxÞ ¼ inf

�
t ≥ 0

����Aajx þ tNajx
1þ t

¼ Oajx

	
; ð25Þ

where fNajxg is any set of POVMs and fOajxg are jointly
measurable; see also Fig. 3. Like the incompatibility weight,
the incompatibility robustness is a monotone under CNDOs.
These quantifiers are all based on the convex distance of

incompatible POVMs to the set of jointly measurable ones
under the addition of different types of noise. In particular, all
these distances can be evaluated numerically, as they fall
under the framework of the previously explained SDPs.
For instance, it was shown following the construction of
the steering robustness (Piani and Watrous, 2015) that the
incompatibility robustness can be cast as the following
optimization problem (Uola et al., 2015):

min
1

d

X
λ

tr½Gλ� ð26Þ

subject to
X
λ

Dðajx; λÞGλ ≥ Aajx ∀ a; x; ð27Þ

Gλ ≥ 0; ð28Þ
X
λ

Gλ ¼
1
d

�X
λ

tr½Gλ�
�
: ð29Þ

A recent and more detailed review on the numerical evaluation
of robustness based incompatibility measures was given by
Cavalcanti and Skrzypczyk (2017).

C. Constructing joint measurements

1. Adaptive strategy

An intuitive way to build joint measurements for given
POVMs was presented by Uola et al. (2016). The idea is to
exploit classical randomness between measurements that are
in some sense similar to the original ones. In the simplest
case of two measurements fAajxg with x ¼ 1; 2, one can flip a
coin to decide which measurement to perform and assign an
outcome to the other measurement based on the gained
information, i.e., classically postprocess the outcome.
However, in many scenarios it is better to flip a coin between
some measurements other than the original pair.
To illustrate the technique, we define a pair of noisy spin

measurements as A�j1ðμÞ ¼ ð1=2Þð1� μσxÞ and A�j2ðλÞ ¼
ð1=2Þð1� λσzÞ. The auxiliary measurements are defined as
B�j1ðμ; λÞ ¼ ð1=2Þ½1� ðμσx þ λσzÞ=N� and B�j2ðμ; λÞ ¼
ð1=2Þ½1� ðμσx − λσzÞ=N�; see also Fig. 4 for the case

μ ¼ λ. Here N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ λ2

p
is the norm of the Bloch vector,

which guarantees the positivity of the effects of the auxiliary
measurements. Flipping a coin between these measurement
and making the obvious assignments of values leads to a
marginal form joint POVM with the effects

Mþþðμ; λÞ ¼ 1
2
Bþj1ðμ; λÞ; M−−ðμ; λÞ ¼ 1

2
B−j1ðμ; λÞ; ð30Þ

M−þðμ; λÞ ¼ 1
2
B−j2ðμ; λÞ; Mþ−ðμ; λÞ ¼ 1

2
Bþj2ðμ; λÞ: ð31Þ

FIG. 3. Illustration of the incompatibility robustness. JM,
compatible sets; INC, incompatible sets. The POVMs fAajxg
are mixed with arbitrary noise POVMs fNajxg such that their
mixture is compatible. The incompatibility robustness is the
smallest t that realizes such a decomposition; cf. Eq. (25).

FIG. 4. An equally weighted coin toss between the auxiliary
elements Bþj1ðλ; λÞ and Bþj2ðλ; λÞ with λ ¼ 1=

ffiffiffi
2

p
results in an

effect with the Bloch vector λa⃗2 ¼ λð0; 0; 1Þ ¼ ð0; 0; 1= ffiffiffi
2

p Þ.
Here b⃗1 and b⃗2 are the Bloch vectors of Bþj1ðλ; λÞ and
Bþj2ðλ; λÞ. The vectors a⃗1 and a⃗2 represent the directions of
the original measurements.
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More compactly, we have Mi;j¼ð1=4Þ½1þðiμσxþjλσzÞ=N�.
This joint measurement gives the noisy versions A�j1ðμ=NÞ
and A�j2ðλ=NÞ as marginals. For example, in the case of

μ ¼ λ ¼ 1=
ffiffiffi
2

p
we get N ¼ 1, which corresponds to the

optimal threshold in Eq. (7); cf. Fig. 4.
The previously mentioned approach for finding joint

measurements entitles an adaptive strategy (Uola et al.,
2016), as it uses the gained information to assign values to
other measurements. In principle, one can use unbiased coins
and a different number of auxiliary measurements, and every
such scenario will lead to a joint measurement of some
POVMs. Whereas random or uneducated guesses for the
auxiliary measurements are not guaranteed to give a good joint
measurement, optimal auxiliary measurements are rather
straightforward to find in scenarios with symmetry, such as
in the case of pairs of mutually unbiased bases (MUBs)
(Uola et al., 2016); see also Sec. III.D for explicit results on
symmetric measurement sets.

2. Operator measure with correct marginals

Jae et al. (2019) proposed building joint measurements for
pairs of measurements using a specific ansatz. For a pair of
POVMs fAag and fBbg that both have n values, they defined
a so-called W measure as

Wab ¼ Cab þ
1

n

�
Aa −

X
j

Caj

�
þ 1

n

�
Bb −

X
i

Cib

�
; ð32Þ

where fCabg is an arbitrary POVM. fWabg has the original
pair of POVMs as its marginals, but its elements are not
required to be positive semidefinite. Still, this ansatz already
allows a numerical treatment. If one takes fCabg to be the
parent POVM fMabg, then also fWabg ¼ fMabg. Thus,
Eq. (32) can be used to formulate an iteration with the desired
parent POVM as one fixed point.
Moreover, it is straightforward to show that instead of using

the POVM fCabg one can parametrize W measures as

Wab ¼
1

n
ðAa þ BbÞ − Ωab; ð33Þ

where fΩabg are Hermitian operators with the propertyP
aΩab ¼

P
bΩab ¼ 1=n. Jae et al. (2019) noted that the

original pair is jointly measurable if and only if there is a
collection fΩabg such that the corresponding collection
fWabg is positive semidefinite.
This allows one to introduce the negativity of a W measure

as N ≔ ð1=dÞPa;b;kðjλkabj − λkabÞ, where fλkabgk are the
eigenvalues of Wab. N ¼ 0 for some fΩabg if and only if
the POVMs are jointly measurable. Note that this enables one
to decide joint measurability using a direct minimization,
which may be solved analytically for special cases without
using SDPs.
Indeed, Jae et al. (2019) minimized N over all collections

fΩabg for two important cases, namely, general unbiased
qubit POVMs with two outcomes and special qubit so-called
trinary POVMs with three outcomes. The former results in the
known Busch criterion in Eq. (7), and the latter results in

N min ¼ max

�
1

9

X
a;b

km⃗a þ n⃗b − θ⃗abk − 1; 0

�
ð34Þ

for two trinary POVMs with the Bloch vectors fm⃗ag of the
POVM fAag and fn⃗bg of the POVM fBbg, where the three
effects for each of the measurements all lie in the same plane

of the Bloch sphere. Here θ⃗ab ¼ m⃗2ðaþbÞ þ n⃗2ðaþbÞ. This can
be translated into a condition on joint measurability reading

X
a;b

km⃗a þ n⃗b − θ⃗abk ≤ 9: ð35Þ

3. Naimark strategy

Here we review an analytical technique for characterizing
all possible parent POVMs related to a given measurement
(Pellonpää, 2014b; Haapasalo and Pellonpää, 2017b). This
relies on extending the POVMs to PVMs on a larger system
using the so-called Naimark extension. The method shows a
tight connection between joint measurability and commuta-
tivity in the extended Hilbert space picture. As a direct
consequence, the technique gives an important structural
result: All POVMs jointly measurable with a given rank-1
POVM are its postprocessings.
We first introduce the desired Naimark extension (Naimark,

1940; Peres, 1995). Let fAag be a POVM with n outcomes in
a d-dimensional system described by the Hilbert spaceH. We
can dilate fAag to a larger Hilbert space as follows: Each
effect of the POVM can be written as Aa ¼

Pma
k¼1jdakihdakj,

where the vectors jdaki ¼
ffiffiffiffiffiffi
λak

p jφaki for k ¼ 1;…; ma are the
unnormalized eigenvectors associated with the nonzero eigen-
values λak and ma is the rank of Aa. Consequently, fjφakigdk¼1

is an orthonormal eigenbasis of Aa.
To write the extension, let H⊕ be a (

P
ama)-dimensional

Hilbert space with an orthonormal basis fjeakiga;k and
consider the PVM Pa ¼

Pma
k¼1jeakiheakj with n outcomes

a. We can then define the map J ¼ P
n
a¼1

Pma
k¼1jeakihdakj,

which is an isometry since J†J ¼ 1 on H. Now Aa ¼ J†PaJ,
so the triplet ðH⊕; J; fPagÞ is a Naimark dilation of fAag.
This dilation is minimal, meaning that the set of vectors
fPaJjψija; jψig spansH⊕ (Pellonpää, 2014b; Haapasalo and
Pellonpää, 2017b). Note that fAag is sharp exactly when J is
unitary. In this case, we may identify fAag with fPag.
Based on this Naimark dilation, one can obtain several

structural insights. If fBbg is a POVM that is jointly
measurable with fAag, then any joint measurement fMabg
is of the form Mab ¼ J†PaB̃bJ, where fB̃bg is a unique
POVM of H⊕ that commutes with Pa, i.e., PaB̃b ¼ B̃bPa

(Pellonpää, 2014b; Haapasalo and Pellonpää, 2017b). The
uniqueness follows since the dilation is minimal. This gives an
effective method for constructing all POVMs to be jointly
measurable with fAag. They are of the form Bb ¼ J†B̃bJ.
We have two immediate special cases: If fAag is sharp

(i.e., J is unitary), thenMab ¼ J†PaJJ†B̃bJ ¼ AaBb ¼ BbAa,
so the POVMs must commute. If fAag is of rank 1 [i.e., any
ma ¼ 1, Aa ¼ jdaihdaj, and Pa ¼ jeaiheaj (Pellonpää,
2014a)], then each B̃b is diagonal in the basis fjeaig, so
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one can write B̃b ¼
P

apðbjaÞjeaiheaj. From this one obtains
Mab ¼ pðbjaÞAa, where pðbjaÞ is a conditional probability.
Thus, any POVM fBbg that is jointly measurable with fAag is
a classical postprocessing Bb ¼

P
apðbjaÞAa. Finally, we

note that if Mab ¼ J†PabJ is a Naimark dilation of a joint
POVM of fAag and fBbg, then we get a common Naimark
dilation for Aa ¼ J†ðPb PabÞJ and Bb ¼ J†ðPa PabÞJ where
the marginal PVMs commute.

D. High-dimensional measurements and symmetry

Thus far we have presented methods for the characteriza-
tion of joint measurability that are applicable mainly to low-
dimensional systems. The explicit criteria in Sec. III.A were
formulated for qubits, and the computational approaches in
Secs. III.B and III.C.2 are naturally restricted due to numerical
limitations. As we now explain, for high-dimensional systems
symmetries and algebraic relations can often be used to
characterize joint measurability.
To start, we consider the case of measurements in MUBs.

Two bases jψ ii and jϕji of a d-dimensional space are called
mutually unbiased if they obey

jhψ ijϕjij2 ¼
1

d
ð36Þ

for all i and j. As an example, the eigenstates of the three Pauli
matrices form a triplet of MUBs. In fact, MUBs can be seen as
a generalization of the Pauli matrices to higher dimensions,
and as such one may expect MUBs to correspond to highly
incompatible measurements. Regardless, MUBs are relevant
for various quantum information processing tasks like quan-
tum tomography or quantum key distribution. It is known that
for a given d maximally dþ 1 MUBs can exist, but whether
this bound can be reached is an open problem and, indeed, one
of the hard problems in quantum information theory; see also
Bengtsson (2007) and Horodecki, Rudnicki, and Życzkowski
(2020) for an overview.
To quantify the incompatibility of general MUBs,

Designolle et al. (2019) proceeded as follows. As a quantifier,
they used a variant of incompatibility noise robustness as
introduced in Eq. (23) by considering the noisy POVM Aη

ajx ¼
ηAajx þ ð1 − ηÞtrðAajxÞ1=d and asking for the maximal η�

such that the POVMs Aη
ajx were compatible. Such robustness

is also called the depolarizing or white noise robustness. The
optimal η� can be computed by a SDP. For deriving upper
bounds on η�, one can consider the dual optimization problem,
which is a minimization problem. Inserting a specific instance
of the dual variables results in an analytical upper bound on η�.
For instance, for k projective measurements where the
projectors are of rank 1, one finds that

η� ≤ ηup ¼
λ − k=d
k − k=d

; ð37Þ

where λ is the largest eigenvalue of an operator X that can be
obtained by selecting one outcome per measurement, that is,
X ¼ P

k
x¼1Ajxjx for some j⃗. A set of k MUBs can also be

viewed as measurements, and for prime power dimensions

there is an explicit construction of dþ 1MUBs due toWootters
and Fields (1989). It turns out that when taking k ¼ 2, k ¼ d, or
k ¼ dþ 1 of these MUBs, one finds that η� ¼ ηup; as a result,
in this case theseMUBs are maximally incompatible. We stress,
however, that in general two sets of MUBs can be inequivalent
(in the sense that they are not connected by a unitary trans-
formation or permutation), and in general MUBs do not reach
the bound in Eq. (37). Still, one can prove for general MUBs a
lower bound on η� (Designolle et al., 2019), as well as upper
and lower bounds for general measurements (Designolle,
Farkas, and Kaniewski, 2019).
This result begs the questionas to which measurements are

the most incompatible for a given quantifier of measurement
incompatibility. This was studied in detail by Bavaresco et al.
(2017) and Designolle, Farkas, and Kaniewski (2019). The
most incompatible pair of measurements depends on the
chosen quantifier, and sometimes other measurements besides
MUBs are the most incompatible ones.
Finally, one may ask how interesting sets of measurements,

such as those with a high incompatibility or other desirable
properties, can be identified from abstract principles. This
problem was addressed by Nguyen et al. (2020), who studied
sets of measurements from group theoretic perspectives. In
fact, starting with a complex reflection group G and with a
given representation, one can construct a measurement
assemblage (i.e., a set of measurements) with certain sym-
metries. These assemblages often have interesting physical
properties such as high incompatibility.

IV. INCOMPATIBILITY AND QUANTUM
INFORMATION PROCESSING

Measurement incompatibility is inherently linked to the
nonclassical character of quantum correlations. Indeed, for
many scenarios it is evident that incompatibility of the
performed measurements is necessary for displaying non-
classical correlations. Since such correlations are required for
tasks like quantum key distribution or quantum metrology,
these connections highlight the resource aspect of measure-
ment incompatibility. In this section, we describe different
forms of nonclassical correlations as well as other phenomena,
for which the incompatibility of measurements is essential.

A. Bell nonlocality

To start, we discuss the relation between joint measurability
and Bell nonlocality (Bell, 1964; Brunner et al., 2014). In this
scenario, one considers two parties Alice and Bob, and each
of them performs some measurements fAajxg and fBbjyg,
respectively; see also Fig. 5. The question then arises as to
whether or not the observed probabilities pða; bjx; yÞ of the
results a and b for the given inputs x and y can be explained by
a local hidden variable model. This means that they can be
written as

pða; bjx; yÞ ¼
Z

dλpðλÞχAðajx; λÞχBðbjy; λÞ; ð38Þ

where λ is the hidden variable occurring with probability pðλÞ
and χAðajx; λÞ and χBðbjy; λÞ are the response functions of
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Alice and Bob, respectively. Note that here no reference to
quantum mechanics is made and no knowledge about the
measurements on each side is assumed.
To start, we explain why jointly measurable observables on

Alice’s side can never lead to Bell nonlocality (Fine, 1982;
Wolf, Perez-Garcia, and Fernandez, 2009). For simplicity, we
consider two measurements for Alice, x ¼ 1; 2 with outcomes
a1 and a2, and analogously for Bob. Since Alice’s measure-
ments are jointly measurable, Alice may perform the parent
POVM and directly obtain the probability distribution
pða1; a2Þ. If Bob performs one measurement By simultane-
ously, one will observe the probability distribution pða1; a2;
byjByÞ. This has to obey pða1; a2Þ ¼

P
bypða1; a2; byjByÞ

regardless of y since the correlations obey the nonsignaling
condition; i.e., Bob cannot send information to Alice by
choosing his measurement. However, one may define a global
probability distribution as

pða1; a2; b1; b2Þ ¼
pða1; a2; b1jB1Þpða1; a2; b2jB2Þ

pða1; a2Þ
: ð39Þ

Indeed, one can directly verify that this obeys all the
properties of a probability distribution. The existence of
such a distribution, however, already implies that the condi-
tional distributions obey Eq. (38) since the global distribu-
tion can always be expressed as a probabilistic mixture of
deterministic assignments (Fine, 1982).
The question remains as to whether any set of incompatible

observables on Alice’s side can lead to Bell nonlocality if the
underlying quantum state and Bob’s measurements are prop-
erly chosen. For that, one needs to show that the correlations
violate some suitable Bell inequality, and connections
between violations of Bell inequalities and the degree of
incompatibility were soon observed (Andersson, Barnett, and
Aspect, 2005; Son et al., 2005).
For the simplest scenario in which Alice and Bob have two

measurements each with two possible outcomes �1, there is a
direct connection between incompatibility and Bell nonlocal-
ity. In this case, the only relevant Bell inequality is the one
by Clauser, Horne, Shimony, and Holt (CHSH) that reads
(Clauser et al., 1969, 1970)

S ¼ hA1B1i þ hA1B2i þ hA2B1i − hA2B2i ≤ 2: ð40Þ

In Eq. (40) hAxByi ¼ pðþ; þjx; yÞ − pðþ; −jx; yÞ −
pð−; þjx; yÞ þ pð−; −jx; yÞ denotes the expectation value
of a correlation measurement.
The connection established by Wolf, Perez-Garcia, and

Fernandez (2009) uses the SDP formulation of joint measur-
ability. As shown in Sec. III.B, for two measurements fAajxg
with x ¼ 1; 2 the existence of a parent POVM fM��g with
four outcomes can be rephrased as a search for an effect Mþþ
obeying Aþj1 þ Aþj2 − 1 ≤ Mþþ ≤ Aþjx for x ¼ 1; 2; see also
Eq. (12). As mentioned, the search for such an effectMþþ can
be formulated as a simple SDP considered as a feasibility
problem.
Given the SDP formulation in Eq. (12), one can consider

the dual SDP. As it turns out, this is directly linked to the
CHSH inequality: The additional variables of the dual
problem can be viewed as a quantum state, and measurements
on Bob’s side and the CHSH inequality can be violated if and
only if the SDP defined by Eq. (12) is unfeasible or, in other
words, the measurements fAajxg are incompatible.
For general scenarios the connection is, however, not as

strict anymore. More explicitly, Bene and Vértesi (2018)
presented a set of three measurements with two outcomes on a
qubit that are pairwise jointly measurable, but there is no
common parent POVM for the entire set, so the triplet is
incompatible. It is then shown for all quantum states and
measurements on Bob’s side that the resulting correlations are
local in the sense of Eq. (38). This result holds for an arbitrary
number of POVMs on Bob’s side. Note that for the special
case of dichotomic measurements on Bob’s side an analogous
result was previously shown by Quintino et al. (2016), and the
case of an infinite number of measurements on Alice’s side
was considered by Hirsch, Quintino, and Brunner (2018).

B. Quantum steering

As mentioned in Sec. IV.A, there are nonjointly measurable
sets that cannot break any Bell inequalities for any quantum
state. Here we review the results of Quintino, Vértesi, and
Brunner (2014), Uola, Moroder, and Gühne (2014), Uola et al.
(2015), and Kiukas et al. (2017) showing that for a slightly
weaker form of correlations the so-called quantum steering
incompatibility exactly characterizes the sets of measurements
that allow for the relevant nonlocal effect, which may be
considered a spooky action at a distance (Uola, Costa
et al., 2020).
The modern formulation of quantum steering came from

Wiseman, Jones, and Doherty (2007). In this formulation one
party, say, Alice, performs measurements fAajxg in her local
laboratory on a bipartite quantum state ϱAB. When asked to
perform measurement x, she announces an output a, and the
postmeasurement state in Bob’s laboratory is given by

σajx ¼ trA½ðAajx ⊗ 1ÞϱAB�: ð41Þ

Assuming that the experiment is repeated many times and
that Bob has access to a tomographically complete set of
measurements, he can reconstruct these unnormalized states,
also called an assemblage fσajxg. It is straightforward to verify
that the assemblage fulfills the condition of nonsignaling;

FIG. 5. Schematic of the Bell scenario. A source distributes two
particles to two parties named Alice and Bob. They perform
measurements on it, and the questions arises as to whether or not
the observed probability distribution can be described by a local
hidden variable model.
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i.e., the operator
P

aσajx ≔ σB ¼ trA½ϱAB� is independent of
the input x.
The unsteerability of such an assemblage is associated with

the existence of a local hidden state model. This is a model
consisting of a local ensemble of states fpðλÞϱBλ g on Bob’s
side whose priors pðλÞ are updated upon learning the classical
information ða; xÞ. In other words, an assemblage σajx is
unsteerable if

σajx ¼ pðajxÞ
X
λ

pðλja; xÞϱBλ ¼
X
λ

pðλÞpðajx; λÞϱBλ ; ð42Þ

and steerable otherwise. In Eq. (42) pðajxÞ ¼ tr½σajx�, and the
last equality follows from the fact that the hidden states are
independent of the measurement choice, i.e., pðx; λÞ ¼
pðxÞpðλÞ; see Uola, Costa et al. (2020) for a detailed
interpretation of such models.
From Eq. (42) we see that separable states ϱsepAB ¼P
λpðλÞϱAλ ⊗ ϱBλ cannot lead to steerable assemblages. It is

well known, however, that entanglement is not sufficient for
quantum steering (Wiseman, Jones, and Doherty, 2007;
Quintino et al., 2015). For example, the Werner states
(Werner, 1989) and the isotropic states within a certain
parameter regime provide examples of entangled states that
have a local hidden state model for all measurements on
Alice’s side (Werner, 1989; Barrett, 2002; Almeida et al.,
2007; Wiseman, Jones, and Doherty, 2007; Nguyen and
Gühne, 2020a, 2020b).
Despite recent progress (Nguyen, Nguyen, and Gühne,

2019), the problem of deciding steerability of generic quan-
tum states remains open. Still, a complete characterization of
the measurements that lead to steering is known (Quintino,
Vértesi, and Brunner, 2014; Uola, Moroder, and Gühne,
2014). The first observation is that the joint measurability
of Alice’s measurements leads to an unsteerable assemblage
for any shared state. To see this, one can simply plug Eq. (3)
into Eq. (41). Conversely, use of the maximally entangled
state jψþi ¼ ð1= ffiffiffi

d
p ÞPd

n¼1jni ⊗ jni yields σajx ¼ ð1=dÞAT
ajx,

where T denotes the transpose in the computational basis
fjnig. Comparing Eq. (42) to Eq. (3) shows that a local hidden
state model for fσajxg can be converted into a joint meas-
urement of fAajxg by denotingGλ ¼ pðλÞdðϱBλ ÞT . We arrive at
the following result.
Observation.—Joint measurability of Alice’s measure-

ments leads to unsteerable assemblages for any shared
quantum state. Conversely, for any set of incompatible
measurements there is a shared state for which these mea-
surements lead to steering.
The previous connection can be used to translate results on

joint measurability to steering, and vice versa (Uola, Moroder,
and Gühne, 2014; Cavalcanti and Skrzypczyk, 2016; Chen
et al., 2016). For example, the incompatibility robustness of
Alice’s measurements is known to be lower bounded by the
so-called steering robustness of the corresponding assemblage
(Cavalcanti and Skrzypczyk, 2016; Chen et al., 2016). As
steering verification does not assume Alice’s measurements
to be trusted, such lower bounds constitute semidevice
independent bounds on measurement incompatibility; see

also Chen et al. (2021) for further quantification techniques
in the device-independent setting. Moreover, Uola, Moroder,
and Gühne (2014) showed that the characterization of steer-
ability of the isotropic state (Wiseman, Jones, and Doherty,
2007) translates into a characterization of the white noise
robustness of all projective measurements in a given
dimension.
There are also two broader connections between the

concepts of joint measurability and steering. The first con-
nection is that the previous result relies on the use of a pure
maximally entangled state. To relax this, Uola et al. (2015)
showed that the unsteerability of an assemblage fσajxg is
equivalent to the joint measurability of the corresponding
square root or “pretty good measurements.” These are
measurements that are known to give a good, but not always
optimal, performance in discriminating among the corre-
sponding sets of states (Hausladen and Wootters, 1994),
and they are known to be related to the information capacity
of quantum measurements (Dall’Arno, D’Ariano, and Sacchi,
2011; Holevo, 2012). They are given by σ−1=2B σajxσ

−1=2
B , where

σB ¼ P
aσajx and a pseudoinverse is used when necessary.

To see the more general connection between steering and
measurement incompatibility, one can simply sandwich a
local hidden state model in Eq. (42) with σ−1=2B , or sandwich a

joint measurement in Eq. (3) with σ1=2B . We summarize this in
the following.
Observation.—A state assemblage fσajxg is steerable if and

only if the corresponding pretty good measurements

Bajx ≔ σ−1=2B σajxσ
−1=2
B ð43Þ

are incompatible.
This result gives a direct link between steering criteria and

incompatibility conditions. For example, the incompatibility
criteria of Sec. III.A were used to fully characterize the
steerability of two-input two-output qubit assemblages
(Uola et al., 2015) [cf. Chen, Ye, and Fei (2017) for a detailed
analysis], and it was shown that the incompatibility robustness
of fBajxg can be used to witness the entanglement dimen-
sionality of the underlying bipartite state (Designolle,
Srivastav et al., 2021). Another application of the connection
was demonstrated by Uola et al. (2021), who used steerable
states with a positive partial transpose (Moroder et al., 2014)
to construct incompatible qutrit measurements that are com-
patible in every qubit subspace. We note that similar results on
incompatibility in subspaces were obtained by Loulidi and
Nechita (2021) using different techniques. Furthermore, the
connection can be generalized for characterizing so-called
channel steering (Piani, 2015) via measurement incompati-
bility (Uola et al., 2018).
Going one step further, Kiukas et al. (2017) showed that

one can reformulate the steering problem of a state ϱAB in the
Choi picture. This gives a map between Alice’s POVMs and
the pretty good measurements on Bob’s side. The channel
associated with a shared state ϱAB is given in the Heisenberg
picture as

Λ†
ϱABðAajxÞ ¼ σ−1=2B trA½ðAajx ⊗ 1ÞϱAB�Tσ−1=2B ¼ BT

ajx; ð44Þ
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where the transpose is in the eigenbasis of σB. We note that a
generalization of the textbook Choi isomorphism is used here
in which the fixed reduced state is σB instead of the canonical
maximally mixed state (Kiukas et al., 2017). It is straight-
forward to see that the state ϱAB is steerable if and only if the
corresponding channel Λ†

ϱAB does not break the incompati-
bility of some set of measurements.
The advantage of the channel approach is that it extends the

connection between steering and nonjoint measurability of
Alice’s measurements to the infinite-dimensional case and to
POVMs with nondiscrete outcome sets, and that it can unify
seemingly different steering problems, such as the steerability
of NOON states subjected to photon loss and steerability in
systems that have amplitude damping dynamics (Kiukas et al.,
2017). Furthermore, a map similar to that in Eq. (44) was used
in the solution of the steering problem for two qubits (Nguyen,
Nguyen, and Gühne, 2019).

C. Quantum contextuality

Quantum contextuality refers to the fact that the predictions
of quantum mechanics cannot be explained by hidden variable
models, which are noncontextual for compatible measure-
ments (Kochen and Specker, 1967). In simple terms, mea-
surements are compatible if they can be measured
simultaneously or in sequence without disturbance, and non-
contextuality means that the model assigns values to a
measurement regardless of the context; see also Budroni et al.
(2022) for a recent review on the topic.
A noteworthy fact is that contextuality can be proven

regardless of the preparation of the quantum system.
Therefore, the connection between properties of quantum
measurements and nonclassical behavior can be extremely
strong in various scenarios. This is in stark contrast to
distributed scenarios, where a properly chosen entangled state
is required as a catalyst to harness the nonclassical behavior of
the measurements. We review here the formal connection
between the concept of joint measurability and contextuality
for two different notions of contextuality.

1. Kochen-Specker contextuality

In the Kochen-Specker setup, the context is defined as a set
of projective measurements that can be performed simulta-
neously. One then asks whether a hidden variable model could
explain the outcome statistics of all measurements while
assuming that the hidden variable assigns values regardless
of the context. This assumption leads to various contradictions
to quantum mechanics, such as in the so-called Peres-Mermin
square (Mermin, 1990; Peres, 1990).
Kochen-Specker contextuality can be proven in a state-

independent manner (Cabello, 2008; Yu and Oh, 2012).
Hence, contextuality is a statement about measurements.
The phenomenon of Kochen-Specker contextuality is based
on the properties of the Hilbert space projections and it is
indeed formulated for PVMs. On this level, the notions of joint
measurability and nondisturbance reduce to commutativity. It
is hence expected that noncommutativity will be essential for
the violations of the relevant classical models. However, as
one also needs context for measurements, which requires

compatibility, one needs to find the exact interplay between
compatibility and incompatibility in order to reveal violations
of Kochen-Specker noncontextuality. This structure was
characterized by Xu and Cabello (2019) using graphs to
represent the possible contextuality scenarios. In their graph
representation, adjacent vertices represent compatible PVMs.
The main result reads as follows.
Observation.—For a given graph, there is a quantum

realization with PVMs producing contextuality if and only
if the graph is not chordal.
Here chordality means that the graph does not contain

induced cycles with a size larger than 3. Induced cycles are
subgraphs with a set of vertices S and edges E such that the
vertices S are connected in a closed chain, and furthermore
every edge of the original graph that has both ends in S is part
of the subgraph. This specifically implies that the simplest
contextuality scenario requires four measurements.

2. Spekkens contextuality

The notion of operational noncontextuality asks whether
one’s measurement statistics can be reproduced by means of
an ontological model. Such a model assigns a distribution
of ontological states λ onto each preparation procedure. This
distribution is then classically postprocessed. In short, for a
preparation P and a measurement M with outcomes fag, an
ontological model reads

pðajP;MÞ ¼
X
λ

pðλjPÞpðajM; λÞ; ð45Þ

where p represents a probability distribution.
For quantum theory, where preparations are presented as

density matrices and measurements as POVMs, such models
can be constructed in many ways. For example, (a) one can
identify the space of ontological states as that of all mixed
quantum states and define pðλjPÞ as the point measure
concentrated on P. Similarly, (b) one can define a point
measure on pure states and extend it to mixed states in a
nonunique manner (Beltrametti and Bugajski, 1995). In
addition, (c) one can identify quantum states with their
eigendecompositions and choose pðλjPÞ to be eigenvalues
and λ to be the corresponding eigenprojectors.
To find contradictions with quantum theory, one needs to

seek for meaningful restrictions of the ontological model
(Spekkens, 2005). One possible restriction is to demand that
operationally indistinguishable preparations be represented by
the same distribution of ontological states. That is, if P1

cannot be distinguished from P2, then pðλjP1Þ ¼ pðλjP2Þ.
This assumption is called preparation noncontextuality
(Spekkens, 2005). An additional feature of these models
is convex linearity: p(λjμP1 þ ð1 − μÞP2) ¼ μpðλjP1Þ þ
ð1 − μÞpðλjP2Þ. Setting a similar restriction on indistinguish-
able measurements leads to the notion of measurement non-
contextuality. Note, however, that these assumptions are not
obeyed by several known hidden variable models (Belinfante,
1973), and their physical relevance has been debated
(Ballentine, 2014).
The previous model examples fit to these restrictions

as follows. The models (a) and (c) are measurement
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noncontextual, but they break preparation noncontextuality in
the sense that they are not convex linear. The model (b) is
measurement noncontextual but breaks preparation noncon-
textuality in the sense that mixed states do not have a unique
decomposition into pure states. Hence, measurement non-
contextuality is not sufficient for contradicting quantum
theory (Spekkens, 2005). Later we review the results of
Tavakoli and Uola (2019), showing that when all quantum
state preparations are allowed, the notion of preparation
noncontextuality together with its convex linearity are equiv-
alent to joint measurability.
In the case of quantum theory, indistinguishable prepara-

tions are presented by the set of density matrices. Hence, the
assumption of preparation noncontextuality restricts one to
ontological models that depend only on the density matrix ϱ
and not on the way that P is prepared, i.e., pðλjPÞ ¼ pðλjϱÞ.
The assumption of convex linearity implies that for each λ the
map pλðϱÞ ≔ pðλjϱÞ extends to a linear map from trace-class
operators to complex numbers. As the dual of the trace class is
the set of bounded operators (Busch et al., 2016), one gets
pλðϱÞ ¼ tr½ϱGλ� for all states ϱ and for some positive operator
Gλ. Noting that

P
λpðλjϱÞ ¼ 1 for each state, fGλg forms a

POVM. We summarize this in the following (Tavakoli and
Uola, 2019).
Observation.—Any jointly measurable set of POVMs leads

to preparation noncontextual correlations for all input states.
Conversely, the existence of a preparation noncontextual
model for all quantum states implies joint measurability of
the involved measurements.
As a direct application, one sees that bounds on preparation

contextuality translate to incompatibility criteria. For the
explicit form of such witnesses, see Tavakoli and Uola (2019).
We stress that in the previous result all quantum states are

considered. In the experimental setting one does not have
access to all possible states, and hence the set of considered
preparations is finite. In such a scenario with a fixed set of
states, there is no guarantee that an incompatible set of
measurements would lead to preparation contextual correla-
tions (Selby et al., 2021). It was further noted by Selby et al.
(2021) that setting the additional restriction of measurement
noncontextuality corresponds to a class of models that can be
violated even when using compatible measurements.

D. Macrorealism

The notion of macrorealism challenges classical intuition
by asking the following question: Can one perform measure-
ments in a way that does not disturb the subsequent evolution
of the system? To formalize the concept, Leggett and Garg
(1985) suggested probing hidden variable theories that fulfill
the assumptions of macroscopic realism and noninvasive
measurability. In short, the first assumption amounts to the
existence of a hidden variable λ that carries the information
about all measurements (whether or not they were performed),
and the second assumption states that one can measure the
system without disturbing the distribution of hidden variables.
Note that the second assumption is problematic, as it is not
verifiable in the experimental setting. This is sometimes
referred to as the clumsiness loophole of macrorealism, and
there are various proposals for getting around it (Leggett and

Garg, 1985; Knee et al., 2012, 2016; Li et al., 2012; Wilde and
Mizel, 2012; George et al., 2013; Emary, Lambert, and Nori,
2014; Budroni et al., 2015; Robens et al., 2015; Emary, 2017;
Huffman and Mizel, 2017; Ku et al., 2020). For this
Colloquium, a central take on the problem is given by the
measurement theoretical approach of Uola, Vitagliano, and
Budroni (2019), which we explain in the following.
In a typical setting, one has n time steps. At each step, one

chooses either to perform or not to perform a measurement
designated for that time step. Here we concentrate exclusively
on such scenarios. In this case, the assumptions of Leggett and
Garg are equivalent to the fact that the resulting probability
distributions are no signaling in both directions (Clemente and
Kofler, 2016). In other words, all sequences of measuring and
not measuring are compatible with one another under the act
of marginalizing. As an example, consider the case n ¼ 2.
Labeling the probability distributions as pi for a single
measurement at time step i ¼ 1; 2 and p12 for the sequence,
no signaling in both directions requires

X
a

p12ða; bÞ ¼ p2ðbÞ; ð46Þ

X
b

p12ða; bÞ ¼ p1ðaÞ ð47Þ

for all outcomes a and b.
The second condition is satisfied by any physical distri-

bution. However, requiring the first condition for all input
states implies measurement compatibility in the form of
nondisturbance. The notion of nondisturbance involves the
optimization over all possible ways of performing the first
measurement, i.e., optimization over all instruments. This
raises the following observation (Uola, Vitagliano, and
Budroni, 2019); see also Clemente and Kofler (2015), who
discussed a connection between measurement compatibility
and no-signaling conditions was discussed.
Observation.—When all clumsiness caused by the lack of

capability of the observer is removed, measurement incom-
patibility in the form of inherent measurement disturbance is
the property that allows one to distinguish quantum theory
from macrorealistic ones.
For longer sequences of measurements, requiring the no-

signaling constraints for all input states generates a more
involved structure of nondisturbance relations. For example,
in the case of three time steps one requires nondisturbance in
all pairs (in time order) and from the first measurement to the
rest of the sequence. Note that one has to use the same
instrument for a given time step in all conditions (Uola,
Vitagliano, and Budroni, 2019). In other words, the first
measurement has to be nondisturbing with respect to the
second, the third, and the nondisturbing sequence of
the second and the third all with the same instrument. The
structure arising from this generalized notion of nondisturb-
ance was analyzed in more detail by Uola, Vitagliano, and
Budroni (2019), who also discussed a resource theoretical take
on the topic.
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E. Prepare-and-measure scenarios

In this section we discuss the relevance of incompatible
measurements in prepare-and-measure scenarios. More pre-
cisely, we first review the advantage that incompatible
measurements provide over compatible ones in state-
discrimination and state exclusion tasks. We then discuss the
necessity of performing incompatible measurements in quan-
tum random access codes, which is required to gain an
advantage over classical random access codes. Last, we review
the role of incompatibility in distributed sampling scenarios.

1. State discrimination and exclusion

A task that is important to quantum information theory, and
particularly to quantum communication (Helstrom, 1969;
Holevo, 1982) and quantum cryptography (Gisin et al.,
2002; Bennett and Brassard, 2014), is minimum-error state
discrimination (Helstrom, 1976; Barnett and Croke, 2009);
see Fig. 6(a). There one aims to correctly guess the label
of a state ϱa that is randomly drawn from an ensemble
E ¼ fpa; ϱaga∈I with the known probability pa. To be more
precise, upon receiving a state we perform a measurement
of a POVM fAag and guess the state to be ϱa whenever we
observe the outcome a. The success in correctly guessing
the label a can be quantified by the probability of success
pguessðE; fAagÞ ¼

P
apatr½Aaϱa�. The maximum probability

of success is obtained by simply maximizing over all
measurements pguessðEÞ ¼ maxfAag pguessðE; fAagÞ. We
emphasize that this task differs from unambigous state
discrimination, where one is not allowed to make a wrong
guess but is allowed to pass and not give an answer at all
(Helstrom, 1976; Barnett and Croke, 2009).

A similar but slightly different task is called minimum-error
state discrimination with postmeasurement information
(Ballester, Wehner, and Winter, 2008; Gopal and Wehner,
2010); see Fig. 6(b). Suppose that the index set I of the
ensemble E is partitioned into nonempty disjoint sets Ix such
that ∪x Ix ¼ I and that the label x is revealed after the
measurement of fAag has been performed. This information
cannot decrease the probability of correctly guessing the label
a. However, the probability of success can increase if the label
x is revealed prior to the measurement since one can tailor a
separate measurement to each label x individually; see
Fig. 6(c). Thus, one arrives at the conclusion that
pguessðEÞ ≤ ppost

guessðEÞ ≤ pprior
guessðEÞ. Carmeli, Heinosaari, and

Toigo (2018) proved that pguessðEÞ ¼ ppost
guessðEÞ ¼ pprior

guessðEÞ
if and only if the measurements that maximize the probability
of success pguessðEÞ for each x are jointly measurable. This
also shows that joint measurability can be understood in terms
of state-discrimination games; namely, if the two scenarios in
Figs. 6(b) and 6(c) are indistinguishable, measurements are
compatible.
The relation between incompatible measurements and state-

discrimination tasks can be made more precise by showing
that whenever a set of measurements is incompatible, there is
an instance of a state-discrimination task with prior informa-
tion in which this set of measurements performs strictly better
than any compatible one (Carmeli, Heinosaari, and Toigo,
2019; Oszmaniec and Biswas, 2019; Skrzypczyk, Šupić, and
Cavalcanti, 2019; Uola et al., 2019; Buscemi, Chitambar,
and Zhou, 2020). More precisely, for any set of incompatible
POVMs fAajxg, there is a state-discrimination task in which
this set strictly outperforms any set of compatible measure-
ments. The outperformance can be quantified by the incom-
patibility robustness RincðAajxÞ, and we have

sup
E

psuccðAajx; EÞ
maxOajx∈JMpsuccðOajx; EÞ

¼ 1þ RincðAajxÞ: ð48Þ

The state-discrimination task can be derived from the optimal
solution of the incompatibility robustness SDP in Eq. (26).
The connection between state-discrimination games and the
incompatibility robustness has been used to experimentally
verify the incompatibility of two-qubit measurements given
by Smirne et al. (2022). We note that a similar result was
already shown in the case of steering (Piani and Watrous,
2015). Here it was known that any steerable assemblage leads
to a better performance in a suitably chosen subchannel
discrimination task than in any unsteerable assemblage.
Comparing Eqs. (24) and (25), one sees that the incom-

patibility robustness and the incompatibility weight are similar
by their definition. Therefore, it is natural to ask whether the
incompatibility weight has a similar interpretation in terms
of state-discrimination tasks. To that end, one first needs to
define minimum-error state exclusion tasks with prior infor-
mation, also known as antidistinguishability (Heinosaari
and Kerppo, 2018). Such tasks were first formalized by
Bandyopadhyay et al. (2014) and in the context of the
Pusey-Barrett-Rudolph argument against a naive statistical

(a)

(b)

(c)

FIG. 6. Quantum state discrimination in different scenarios.
(a) In minimum-error state discrimination the task is to guess the
correct input label of the state with high probability. (b) In state
discrimination with postinformation, the label x is reviled after
the measurement. Here the additional information can be used
only to postprocess the classical measurement result. (c) In state
discrimination with prior information, the partition x of the label
is received before the state, and hence a different measurement
can be tailored to each subset x of the labels. Adapted from
Carmeli, Heinosaari, and Toigo, 2018.
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interpretation of the wave function (Pusey, Barrett, and
Rudolph, 2012).
The scenario in this task is similar to that in minimum-error

state discrimination, with the difference being that one aims to
maximize the probability of guessing a state that was not sent,
that is, one minimizes the probability psuccðAajx; EÞ of guessing
the state correctly. One then finds that (Uola, Bullock et al.,
2020) [see also Ducuara and Skrzypczyk (2020)]

inf
E

psuccðAajx; EÞ
minOajx∈JMpsuccðOajx; EÞ

¼ 1 −WincðAajxÞ; ð49Þ

where the optimization is performed over those sets fOajxg for
which the left-hand side is finite. Finally, we note that the role
of minimum-error state discrimination as a resource monotone
and its connection to the robustness measure extends to the
resource theory of single measurements; cf. Skrzypczyk and
Linden (2019) and Guff et al. (2021).

2. Quantum random access codes

Random access codes (RACs) are an important class of
classical communication tasks in which one party encodes a
string of n classical bits x ¼ ðx1;…; xnÞ intom < n bits using
some encoding strategy. Subsequently, the m bits are com-
municated to a receiver. The task of the receiver is then to
recover, with a high probability of success, a randomly chosen
bit xj of the original string x using some decoding strategy.
This is strongly related to the concept of information causality
(Pawłowski et al., 2009), which plays an important role in the
foundations of quantum theory and in the problem of singling
out quantum correlations from more general nonsignaling
correlations; cf. Gallego et al. (2011).
The idea of sending quantum states instead of classical

information goes back to the work of Wiesner (1983), who
discussed it under the name of conjugate coding, and was later
rediscovered by Ambainis et al. (2002) in the field of quantum
finite automata. In quantum random access codes (QRACs)
the sender encodes the string of n classical bits into a single
d-level system using a CPTP map EðxÞ, which is then called
an ðn; dÞ QRAC. The decoding is done by performing a
measurement fAxjjjg that depends on which bit xj was chosen
to be recovered; see also Fig. 7. The decoding was successful
if the outcome is equal to the value of xj. The average success
probability is then given by

PQRACðA1;…; AnÞ ¼
1

ndn
X
x

tr½EðxÞðAx1j1 þ � � � þ AxnjnÞ�;

ð50Þ

where EðxÞ is the encoding map and Axjjj are the measurement
effects. When optimized over states, the optimal average
success probability is given by P̄QRACðA1;…; AnÞ ¼
ð1=ndnÞPxkðAx1j1 þ � � � þ AxnjnÞk∞, where k · k∞ denotes
the operator norm and the measurements are useful if the
average success probability exceeds the classical bound, i.e.,
if P̄QRACðA1;…; AnÞ > Pn;d

RAC.
Carmeli, Heinosaari, and Toigo (2020) showed that a

QRAC performs better than its classical counterpart only
when incompatible measurements are used in the decoding
step; see also Frenkel and Weiner (2015). For n ¼ 2 the
following results are known (Carmeli, Heinosaari, and
Toigo, 2020).

(1) For any compatible pair of d-outcome measurements
A1 and A2, it holds that P̄QRACðA1; A2Þ ≤ P2;d

RAC. The
upper bound is tight.

This raises the question as to whether all incom-
patible measurements provide an advantage in
QRACs. While this turns out not to be true in general,
it is true in the following two instances.

(2) Let A1 and A2 be two sharp d-outcome measurements.
P̄QRACðA1; A2Þ ≥ P2;d

RAC, with equality attained if and
only if A1 and A2 are compatible.

(3) Two unbiased qubit measurements A1 and A2 are
incompatible if and only if they are useful for ð2; 2Þ
QRAC.

In the third case, the result follows directly from the fact that
the average success probability is a function of the Busch
criterion in Eq. (7). Furthermore, it was shown that there
are pairs of biased qubit observables that are incompatible
but nevertheless have P̄QRACðA1; A2Þ < P2;2

RAC, and thus do not
provide an advantage over classical RACs.
Anwer et al. (2020) experimentally demonstrated quantum

RACs to quantify the degree of incompatibility; see Busch,
Lahti, and Werner (2014b). Another experimental implemen-
tation was reported by Foletto et al. (2020).

3. Distributed sampling

Going beyond the state-discrimination scenario in the
Sec. IV.E.1, other scenarios have been identified where
incompatible measurements play an important role.
Distributed sampling refers to the task of Alice and Bob
being able to sample from the probability distributions
trðϱxBbjyÞb;x;y, where ϱx is a quantum input of Alice and y

is a classical input of Bob (Guerini, Quintino, and Aolita,
2019). If they share a perfect quantum communication
channel, Alice could send her input state to Bob, who can
then perfectly sample from the desired probability distribu-
tion. When Alice’s communication to Bob is restricted to
classical information, the most general strategy is that Alice
performs a measurement fAag on her input state ϱx and sends
her result to Bob. Bob then outputs a classical variable b
according to some response function fðbjy; aÞ. More pre-
cisely, the distributions that Alice and Bob can sample
from are of the form Pðbjϱx; yÞ ¼

P
tr½ϱxAa�fðbjy; aÞ. One

of the results of Guerini, Quintino, and Aolita (2019) was
that a set of measurements is compatible if and only if
the behavior ftr½ϱxBbjy�g admits a distributed sampling

FIG. 7. Schematic of quantum random access codes. A sender
holds n bits of information x and encodes it into a single qudit
via the quantum channel EðxÞ. The receiver wants to recover a
random bit xj from x by performing a measurement fAxjjjg on
the qudit.
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realization. Moreover, such a sampling task can be used to
obtain lower bounds to the incompatibility robustness, and
thus quantify the degree of incompatibility of the implemented
measurements.

V. FURTHER TOPICS AND APPLICATIONS

In this section we describe various topics related to quantum
incompatibility. We start with the potential resource theory
of incompatibility. We then review various other notions of
incompatibility, such as the incompatibility of channels or
other notions for measurements, such as complementarity or
coexistence. Finally, we comment on the problem of joint
measurability for the infinite-dimensional case, which is
important for understanding the incompatibility of position
and momentum.

A. Resource theory of incompatibility

Resource theories formalize the idea that certain operations
or preparations require fewer resources than others. For
instance, the preparation of separable states does not require
any nonlocal operations, as local operations and classical
communication (LOCC) are sufficient for their preparation.
This is in stark contrast to entangled states, which require
global operations for their preparation (Gühne and Tóth, 2009;
Horodecki et al., 2009). Parts of entanglement theory may be
seen as an example of a resource theory in which separable
states are deemed free, whereas entangled states are resource-
ful. A resource theory would then ask for sets of physically
motivated monotones that decide whether or not a trans-
formation between two resourceful states is possible, such as
the transformation of resources by free operations like LOCC
or the distillation of highly resourceful states. The resourceful
states can be used to accomplish some task; for instance, they
can be used for teleportation or quantum key distribution.
In the case of measurement incompatibility, the compatible

sets of POVMs are deemed resourceless and the resourceful
measurements are the incompatible sets. To define meaningful
resource monotones one first needs to establish a notion of
free operations. Heinosaari, Kiukas, and Reitzner (2015)
considered as free operations preprocessing by quantum
channels; i.e., every incompatibility monotone I needs to
satisfy I½ΛðA1Þ;ΛðA2Þ� ≤ I½A1; A2� for all unital CPTP maps
Λ. It was shown that in such a scenario a scaled violation of
the CHSH inequality (Wolf, Perez-Garcia, and Fernandez,
2009) and the noise robustness are such monotones. Guerini
et al. (2017) and Skrzypczyk, Šupić, and Cavalcanti (2019)
considered classical postprocessing as a free operation. In that
case, the relevant monotones need to be nonincreasing under
classical postprocessing. Skrzypczyk, Šupić, and Cavalcanti
(2019) showed that the incompatibility robustness fulfills this
property. Moreover, it was shown that state-discrimination
games with postmeasurement information forms a complete
set of operationally meaningful monotones, in the sense that
a set of measurements fAajxg can be transformed into a
set fÃajxg by classical postprocessing if and only if

PguessðAajx; EÞ ≥ PguessðÃajx; EÞ for all state-discrimination
games E.

From a physical point of view one is not necessarily
constrained to choose between either preprocessing or post-
processing. Pusey (2015) considered CNDO operations as
free operations, and it was shown that for two binary
projective measurements fBajxg and fB̃ajxg the first one
can be converted to the second one by CNDO if and only
if they are unitary equivalent. Buscemi, Chitambar, and Zhou
(2020) considered both quantum preprocessing and condi-
tional classical postprocessing. It was shown that fAajxg can
be transformed to fÃajxg via these operations if and only if
fAajxg performs at least as well as fÃajxg in all discrimination
games with postinformation.
Finally, Styliaris and Zanardi (2019) studied the resource

theory of measurement incompatibility relative to a basis.
Here probabilities arise from measurements on states that are
diagonal in a fixed basis, and one asks whether the resulting
probability distributions can be converted by classical post-
processing. A connection between resource monotones and
multivariate majorization conditions is shown.

B. Channel incompatibility

Incompatibility can also be formulated for quantum objects
other than measurements, especially for channels, i.e., com-
pletely positive trace-preserving maps. We say that a set of
quantum measurement devices (i.e., a set of POVMs and a set
of channels) is compatible if there is a single joint measure-
ment process (represented by an instrument) that simulta-
neously realizes all the POVMs as well as all the channels in
the set. These definitions follow the model setup given by
Heinosaari and Miyadera (2017); note that there the compat-
ibility of a mixed set of POVMs and channels is seen as the
compatibility of channels where the POVMs are replaced with
appropriate measure-and-prepare channels. This generalizes
the definition of joint measurability, as we later see. In the
following, we first give a precise definition of channel
incompatibility, then discuss two applications, the quantum
marginal problem and the information-disturbance trade-off.

1. Formal definition of channel incompatibility

To formalize the previous idea, consider a set fAajxg of
POVMs on a system A and a set of channels Λy with the
shared input system A and the possibly varying output systems
By. Besides this, there are no further constraints on the relation
between the set of POVMs and the set of channels.
Imagine an instrument I ¼ fI a⃗g whose input system is A

and output system is the composition of the systems By. Here
a⃗ denotes the vector ðaxÞx that can encode all the outcomes of
the POVMs fAajxg. Furthermore, we can denote by Eajx the
set of all such vectors where the xth component is fixed at a.
This instrument can then be related to the previously discussed
set of POVMs and set of channels in the following manner.
First, it may reproduce the POVMs if tr½ϱAajx� ¼P
a⃗∈Eajx tr½I a⃗ðϱÞ� holds for all input states ϱ, all indices x,

and all values a of the xth POVM. Second, it may reproduce
the channels in the sense that ΛyðϱÞ ¼

P
a⃗trBc

y
½I a⃗ðϱÞ� for all

input states ϱ and output labels y. Here Bc
y is the composition

of all systems By0 , where y0 ≠ y. If such an instrument I
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exists, then we can say that the POVMs fAajxg and the
channels Λy are contained in a single measurement setting.
One can then also say that the POVMs and channels are
compatible; otherwise, they are incompatible. Similar defi-
nitions were introduced by Heinosaari, Miyadera, and
Reitzner (2014).
One can immediately see that if the set of the output labels y

is empty (i.e., no channels are considered), then this definition
corresponds to the joint measurability of fAajxg with the joint
POVM fMa⃗g defined through tr½ϱMa⃗� ¼ tr½I a⃗ðϱÞ� for all ϱ.
On the other hand, if no POVMs are considered, i.e., the set of
labels x is empty, the compatibility of channels Λy is
equivalent to the existence of a broadcasting channel (or joint
channel) Γ with the input system A, and whose output system
is the composition of the systems By such that ΛyðϱÞ ¼
trBc

y
½ΓðϱÞ� for all ϱ and y. This definition coincides then with

those given by Heinosaari and Miyadera (2017) and
Haapasalo (2019). This notion of channel compatibility can
also be generalized to channels that may share the input
system only partly and also have overlapping output systems
(Hsieh, Lostaglio, and Acin, 2021).

2. Quantum marginal problem

Marginal problems are compatibility problems of quantum
states: Starting at given states in different subsystems, one
has to determine whether there is a global state from which
all the subsystem states can be obtained as reduced states.
This problem is also known as the N-representability
problem (Coleman, 1963; Ruskai, 1969), and it remains a
major problem in quantum chemistry (National Research
Council, 1995).
In mathematical terms, one has a collectionA ≔ fAjgj∈J of

quantum systems where some subsets Xi ⊆ A with i ∈ I are
considered as subsystems. For each i ∈ I, there is a state ϱi
given on the system Xi. The marginal problem associated with
this setting asks whether there is a global state ϱ of the entire
system A such that ϱi is the reduced state of ϱ for each i ∈ I,
i.e., ϱi ¼ trXc

i
½ϱ�. In principle, this problem can be formulated

as a SDP, but one often has additional constraints; for instance,
the global state ϱ ¼ jψihψ j is required to be pure or bosonic or
fermionic symmetries must be respected. In this case, sys-
tematic approaches using algebraic geometry (Klyachko,
2004, 2006), generalized Pauli constraints (Castillo et al.,
2021), or hierarchies of SDPs (Yu et al., 2021) have been
developed; nevertheless, the problem remains difficult.
The central result of Haapasalo et al. (2021) was that

marginal problems and compatibility questions can be iden-
tified with each other through the generalized channel-state
dualism defined by the fixed margin ϱA; see Sec. IV.B and
Eq. (44) for the exact form of the map. See also Proposition 12
of Plávala (2017) for the case of the canonical Choi map; i.e.,
the one where ϱA is in the maximally mixed state. In other
words, one can devise the following formulation: A collection
of A → Bi channels Λi is compatible if and only if the
marginal problem involving the corresponding Choi states
has a solution.
More explicitly, a tuple Λ⃗ ¼ ðΛiÞni¼1 of channels is com-

patible if and only if, for a full-rank state ϱA that can be freely

chosen, the marginal problem involving the Choi states
SϱAðΛiÞ of the channels has a solution. On the other hand,
the marginal problem involving a given tuple ϱ⃗ ¼ ðϱiÞni¼1 of
states on systems A and Bi with the fixed A margins trB½ϱi� ¼
ðϱiÞA ¼ ϱA has a solution if and only if the channels Λi from A
to Bi such that ϱi ¼ SϱAðΛiÞ are compatible. Technically, for
this direction we need ϱA to be invertible but, as pointed out by
Haapasalo et al. (2021), we are free to suitably restrict system
A to make ϱA invertible simultaneously, thereby not effec-
tively altering the original marginal problem, so this is not a
real restriction. See also Girard, Plávala, and Sikora (2021) for
details on similar results.
The previous result enables the translation of results

between the fields of compatibility and marginal problems.
This was demonstrated by Haapasalo et al. (2021), who
translated entropic conditions for the solvability of the
marginal problem (Carlen, Lebowitz, and Lieb, 2013) to
necessary conditions for the compatibility of channels.
Moreover, known conditions for the compatibility of channels
(Haapasalo, 2019) were used to characterize the solvability of
marginal problems involving Bell-diagonal states. Solvability
conditions for problems involving higher-dimensional qudit
states with depolarizing noise were also obtained, and the
quantitative perspective of the connection was discussed.
Since measurements can be seen as quantum-to-classical

channels, joint-measurability questions can be recast as
quantum marginal problems too. Indeed, measurements
fAajxga can be identified with a measure-and-prepare channel
Λx, ΛxðϱÞ ¼

P
atr½ϱAajx�jaihaj, where the output system is a

register with the orthonormal basis fjaiga. It is evident that
such measurements are jointly measurable if and only if the
corresponding channels Λx are compatible (Heinosaari and
Miyadera, 2017). Moreover, a quick calculation shows that
for a full-rank input state in its spectral decomposition
ϱA ¼ P

mλmjmihmj one finds the Choi states

SϱAðΛxÞ ¼
X
a

ϱ1=2A AT
ajxϱ

1=2
A ⊗ jaihaj; ð51Þ

where the transpose is taken with respect to the eigenbasis
fjmigm of ϱA. Thus, joint-measurability questions can be
identified with marginal problems involving block-diagonal
states.

3. Information-disturbance trade-off relations

Here we discuss how the incompatibility between a single
measurement and a specific quantum channel leads to an
information-disturbance trade-off relation. Namely, we review
the connection between the information gained in a meas-
urement procedure and the inherent disturbance that it causes
to the system (Heinosaari and Miyadera, 2013).
We now study the POVM fAaga. To describe all the

measurement processes describing this POVM, i.e., all the
instruments fIag such that tr½IaðϱÞ� ¼ tr½ϱAa� for all input
states ϱ, we fix a minimal Naimark dilation Δ for this POVM;
see also Sec. III.C.3. This consists of an isometry J of the
input system to a larger dilation system and a PVM fPaga on
the larger system, such that Aa ¼ J†PaJ. It can be shown that
any instrument fIag measuring fAag is of the form IaðϱÞ ¼
ΦðJϱJ†PaÞ for some channel Φ from the dilation system to
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the physical postmeasurement system, where Φ has to obey
the additional constraint ΦðJϱJ†PaÞ ¼ ΦðPaJϱJ†Þ for all
input states ϱ and outcomes a (Haapasalo, Heinosaari, and
Pellonpää, 2014). Using the condition on the channel Φ, it
follows that one can freely replace Φwith Φ∘LΔ, where LΔ is
the Lüders channel LΔðσÞ ¼

P
aPaσPa. Recalling the defi-

nition of compatibility of POVMs and channels given in
Sec. V.B.1, this means that any channel Λ compatible with the
single measurement fAag is of the form Λ ¼ Φ∘ΛΔ for some
channel Φ from the dilation system to the intended post-
measurement system, where ΛΔ is the “maximal” channel
ΛΔðϱÞ ¼ LΔðJϱJ†Þ. This fact should be compared with the
characterization given in Sec. III.C.3 for the POVMs com-
patible with a given POVM that is completely analogical.
Thus, the setCA of channels compatible with a fixed POVM

A ¼ fAag has a simple structure: these channels are all
obtained by concatenating any channels to the maximal
channel ΛΔ determined by any Naimark dilation Δ of A.
Using the assumption that any dilation can be connected to a
minimal one with an isometry (see the construction of
Sec. V.C.5 for this well-known fact), it easily follows that,
for any other dilation Δ0, ΛΔ and ΛΔ0 are equivalent in the
sense that they are obtained from each other by channel
concatenation. Thus, we may forget about the specific dilation
and write ΛΔ ≕ΛA.
Using this simple structure of channels compatible with a

fixed POVM, Heinosaari and Miyadera (2013) proved a
qualitative noise-disturbance trade-off relation: the noisier
that the POVM A ¼ fAag is, the larger the set CA of channels
compatible with A is. Specifically, given two POVMs
A ¼ fAag and B ¼ fBbg on the same system, there is a
postprocessing pðbjaÞ such that Bb ¼

P
apðbjaÞAa if and

only if CA ⊆ CB.
Owing to the simple structure of CA and CB, the latter

condition is equivalent to the existence of a channel Φ such
that ΛA ¼ Φ∘ΛB. Since a channel Λ ∈ CA describes the
overall state transformation of the measurement of A, the
larger the set CA (i.e., the “higher” the maximal channel ΛA)
is, the less the measurements of A can potentially disturb the
system.
Thus, we can interpret the previous noise-disturbance

relation in the following form: the more informative (i.e.,
less noisy) the measurement is, the more the measurement
disturbs the system. An extreme example is provided by the
trivial POVMs where Aa are all multiples of the identity
operator whence CA is the set of all channels with the fixed
input system, allowing complete nondisturbance. These
POVMs provide absolutely no information on the system
being measured. Another example is the case of rank-1
POVMs where Aa ¼ jφaihφaj. As these POVMs are maximal
in the postprocessing order, the sets CA are minimal. In fact,
CA consists in this case of the measure-and-prepare channels
of the form ΛðϱÞ ¼ P

atr½ϱAa�σa for some postmeasurement
states σa.

C. Further features of quantum measurements

Joint measurability is the main measurement theoretical
notion in this Colloquium due to its various applications
in quantum information science. Here we discuss related

concepts that have been used to grasp the counterintuive
nature of quantum measurements.

1. Simulability of measurements

There are various operationally motivated ways to relax the
notion of joint measurability. One possible generalization is to
drop the assumption of having only one joint measurement. In
other words, one can ask whether there is a simulation scheme
that produces the statistics of n measurements from m < n
POVMs. For instance, Oszmaniec et al. (2017) defined the
notion of measurement simulability as the existence of
classical postprocessings pðajx; y; λÞ and preprocessings (or
classical randomness) pðyjxÞ such that

Aajx ¼
X
λ;y

pðyjxÞpðajx; y; λÞGλjy; ð52Þ

where x ∈ f1;…; ng and y ∈ f1;…; mg. Joint measurability
corresponds to simulability with one POVM, i.e., m ¼ 1. This
notion also has other interesting special cases, such as
measurements simulable with PVMs (Oszmaniec et al.,
2017), measurements simulable with POVMs with a fixed
number of outcomes (Kleinmann and Cabello, 2016; Guerini
et al., 2017; Shi and Tang, 2020), and sets of measurements
simulable with a given number of POVMs (Guerini
et al., 2017).
Hirsch et al. (2017) and Oszmaniec et al. (2017) used

projective simulability to improve the known noise thresholds
for the locality of a two-qubit Werner state. They then showed
that any truly nonprojective measurement (i.e., a measurement
not simulable with PVMs) provides an advantage in some
minimum-error state-discrimination task over all projective
simulable ones (Oszmaniec and Biswas, 2019; Uola et al.,
2019). Finally, similar results for state discrimination with
POVMs that cannot be simulated with measurements having
a fixed number of outcomes were reported by Shi and
Tang (2020).

2. Joint measurability on many copies

Another extension of joint measurability may be introduced
using many copies of the given state (Carmeli et al., 2016). If
one has two copies and two measurements, one can reproduce
the statistics. In the simplest nontrivial scenario that deviates
from joint measurability, one has a set of three POVMs fAajxg
and one is asked for a joint measurement on two copies of the
original system together with postprocessings for which

tr½Aajxϱ� ¼
X
λ

pðajx; λÞtr½ðϱ ⊗ ϱÞGλ� ð53Þ

holds for all quantum states ϱ. As an example, it was shown
by Carmeli et al. (2016) that three orthogonal noisy qubit
measurements A�jiðμÞ ¼ ð1=2Þð1� μσiÞ with i ¼ x; y; z have
a joint measurement on two copies if and only if
0 ≤ μ ≤

ffiffiffi
3

p
=2. In other words, there are triplets with a

two-copy joint measurement, although each involved pair
of measurements is incompatible. The structure of the incom-
patibility structures arising from compatibility on many copies
have also been analyzed in detail (Carmeli et al., 2016).
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3. Compatibility of coarse-grained
measurements and coexistence

Here we review special instances of incompatibility that
arise from coarse graining of measurements and discuss their
relation to complementarity. Coarse graining of a POVM
corresponds intuitively to combining various POVM elements
into a new one. More precisely, for a POVM fAag we can
consider disjoint subsets Ei of the set of outcomes and define
the effects AðEiÞ ¼

P
a∈Ei

Aa and the coarse-grained POVM
fAðEiÞgsi¼1. Specifically, when s ¼ 2, the coarse-grained two-
outcome POVM fAðEÞ; 1 − AðEÞg is called a binarization
of fAag.
A first notion of compatibility of coarse grainings is that of

coexistence. This asks whether all yes-no questions, i.e., the
set of all possible binarizations fAxðExÞ; 1 − AxðExÞg of given
POVMs fAajxg, are jointly measurable with a single joint
measurement. Here Ex runs over all subsets of outcomes of the
input x. Note that for nonbinary measurements, the set of all
binarizations consists of more POVMs than the original set.
This question can equivalently be reformulated as follows:
For any POVM fAag one can define the range as the set of
possible effects AðEÞ in the previously mentioned notation.
For a set of POVMs fAajxg one can then ask whether the union
of their ranges is contained in the range of a single POVM
fGλg (Ludwig, 1983; Lahti, 2003; Busch et al., 2016);
compare to Haapasalo, Pellonpää, and Uola (2015). Indeed,
if AxðExÞ ¼

P
λ∈FGλ, then AxðExÞ ¼

P
λpðyesjx; Ex; λÞGλ,

where pðyesjx; Ex; λÞ ¼ 1 when λ ∈ F and pðyesjx; Ex; λÞ ¼
0 otherwise. Note that joint measurability implies coexistence,
but the inverse implication does not hold in general (Reeb,
Reitzner, and Wolf, 2013; Pellonpää, 2014b; Uola et al.,
2021). Similar notions can also be defined for more general
coarse grainings, but they have not been considered in the
literature.
A closely related concept was proposed by Saha et al.

(2020) as the notion of full complementarity. This requires an
incompatible pair fAag and fBbg of POVMs to remain
incompatible after arbitrary (nontrivial) coarse grainings.
They also defined the more general single-outcome comple-
mentarity by demanding that for each pair ða; bÞ the POVMs
fAa; 1 − Aag and fBb; 1 − Bbg are incompatible. Notably
here one is interested in the incompatibility of each coarse-
grained pair separately. This is in contrast to coexistence.
Note that if one would ask incompatibility of all single-

outcome binarizations at once, i.e., with a single joint
measurement, one would get a scenario that can be relevant
for correlation experiments in which one constructs multi-
outcome measurements from two-outcome ones. Albeit
important, this last concept has not been analyzed in the
literature from a measurement theoretical perspective.

4. Complementarity

Complementarity was defined to be equivalent to nonjoint
measurability in the previously mentioned works (Saha et al.,
2020), of which the notions of single-outcome complemen-
tarity and full complementarity are special cases. We note,
however, that nonjoint measurability is not the standard
notion of complementarity; see Kiukas et al. (2019).

Traditionally, a pair of POVMs fAag and fBbg is called
complementary if all their measurements are mutually exclu-
sive. Suppose that, for some outcomes a and b, there is a
positive operator O such that

tr½ϱO� ≤ tr½ϱAa�; tr½ϱO� ≤ tr½ϱBb� ð54Þ

for all states ϱ. If O ≠ 0, then one gets nontrivial information
on the measurement probabilities tr½ϱAa� and tr½ϱBb� in each
state ϱ for which the probability tr½ϱO� of the two-outcome
measurement fO; 1 −Og is not zero. Hence, the minimal
requirement for complementarity is for Eq. (54) to yield
O ¼ 0 for all a and b.
Complementary POVMs are incompatible since, for jointly

measurable POVMs fAag and fBbg with a joint POVM
fMabg, Eq. (54) holds for O ¼ Mab, which is nonzero for
some a and b. Furthermore, the PVMs Aa ¼ jψaihψaj and
Bb ¼ jφbihφbj related to mutually unbiased bases satisfy the
minimal requirement. However, it is easy to see in the qubit
case that after applying an arbitrarily small amount of white
noise the criterion is not fulfilled. Note that such measure-
ments could still be complementary in the sense defined by
Saha et al. (2020).
One can pose stronger conditions on complementarity by

writing the condition (54) for general outcome sets E and F
with effects AðEÞ ¼ P

a∈EAa and BðFÞ ¼ P
b∈F Bb instead

of only singletons fag and fbg. We must assume that the sets
are such that AðEÞ ≠ 1 ≠ BðFÞ. In this way, one gets many
different definitions of complementarity related to different
choices of the sets in Eq. (54). This works especially well for
continuous POVMs in infinite dimensions. For example, the
following pairs of POVMs related to the harmonic oscillator
are complementary in the traditional sense: position momen-
tum, position energy, momentum energy, number phase, and
energy time (which is essentially the number-phase pair)
(Kiukas et al., 2019).

5. Retrieving measurements in the sequential scenario

As discussed in Sec. II.B, joint measurability and non-
disturbance are not equivalent notions. However, jointly
measurable pairs of POVMs allow a sequential measurement
scenario that recovers the data of both POVMs. Namely,
instead of measuring a POVM fAag (fBbg) on the first
(second) time step, one can measure fAag on the first step and
a retrieving measurement fB̃bg on the second step; see Fig. 8.
In general, the retrieving measurement acts on a larger Hilbert
space. It is also possible to remain in the original Hilbert space
if one is allowed to choose the second measurement, depend-
ing on the outcome of the first; i.e., one uses the output a of
the first measurement as an input for the second one.
For a detailed description, recall the notation from

Sec. III.C.3 where a POVM fAag was considered with effects
Aa ¼

Pma
k¼1jdakihdakj. Instead of the additive Naimark exten-

sion in Sec. III.C.3, we now consider a product or auxiliary
form Naimark dilation (Preskill, 1998) by choosing Hilbert
spaces Hn and Hm with bases feagna¼1 and ffkgmk¼1,
m ≥ maxfmag, taking the tensor product Hn ⊗ Hm (instead
of H⊕), the projection operators P0

a ¼ jeaiheaj ⊗ 1, and the
isometry J0 ¼ P

n
a¼1

Pma
k¼1jea ⊗ fkihdakj (Haapasalo and
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Pellonpää, 2017b). Note that by defining an isometry W ≔P
a;kjea ⊗ fkiheakj we get WJ ¼ J0 and WPa ¼ P0

aW, and
the resulting Naimark extension ðHn ⊗ Hm; J0; fP0

agÞ is
typically not minimal (in which case, J should be unitary
and nm ¼ P

ama, i.e., ma ≡m). However, for any joint
measurement fMabg of fAag and fBbg there is a possibly
nonunique POVM fB̃bg of Hm such that Mab ¼
J0†ðjeaiheaj ⊗ B̃bÞJ0 (Haapasalo and Pellonpää, 2017b).
Specifically, we obtain the sequential measurement
interpretation of the joint measurement. We can write
tr½Mabϱ� ¼ tr½IaðϱÞB̃b�, where we have expressed an instru-
ment fIag in the following Stinespring form:
IaðϱÞ ≔ trHn

½J0ϱJ0†ðjeaiheaj ⊗ 1Þ�.
If we choose m ≥ d and define the isometries

Ja ≔
P

d
k¼1jea ⊗ fkihφakj, we obtain an alternative form

IaðϱÞ ¼ Λað
ffiffiffiffiffiffi
Aa

p
ϱ

ffiffiffiffiffiffi
Aa

p Þ, where ΛaðϱÞ ≔ trHn
½JaϱJa†� is a

quantum channel. From here one can find the retrieving
measurements on the original system by setting B̃bja ≔
Λ†
aðB̃bÞ. For each a this forms a POVM. One further sees

that the Lüders instrument is the least disturbing in the sense
that after it the data of any POVM jointly measurable with
fAag can be retrieved. This fact was also found by Heinosaari
and Miyadera (2015), who associated the minimal disturbance
property, also called the universality, with the channel ΛA of
Sec. V.B.3.
For a further physical interpretation, consider the case

m ¼ d; see Fig. 9. We can then identify the system’s
Hilbert space with Hm and “extend” the isometry J0 to a
unitary operator U on Hn ⊗ Hm via Uðjξ0i ⊗ jψiÞ ≔ J0jψi
for jψi ∈ Hm, where jξ0i ∈ Hn is some fixed ancilla’s unit
vector (the so-called ready state). Now hHn; fZaga; jξ0i; Ui is
called a measurement scheme (or measurement model) of
fAag. Specifically, fZag, Za ¼ jeaiheaj, is the pointer PVM;
see Busch, Lahti, and Mittelstaedt (1996).
This has a distinct physical meaning: Before the measure-

ment, the initial state of the compound system is jξ0ihξ0j ⊗ ϱ
since one assumes that the probe (ancilla) and system are
dynamically and probabilistically independent of each other.
The measurement coupling U transforms the initial state into
the final (entangled) state Sϱ ≔ Uðjξ0ihξ0j ⊗ ϱÞU† ¼ J0ϱJ0†

that determines the subsystems’ final states trHm
½Sϱ� and

trHn
½Sϱ�.

The probability reproducibility condition tr½ϱAa� ¼
tr½SϱðZa ⊗ 1Þ� ¼ heajtrHm

½Sϱ�jeai guarantees that the meas-
urement outcome probabilities are reproduced in the distri-
bution of the pointer values in the final probe state. The state
Saϱ ≔ tr½ϱAa�−1ðZa ⊗ 1ÞSϱðZa ⊗ 1Þ can be interpreted as a
conditional state under the condition jeaiheaj ⊗ 1 (Cassinelli
and Zanghì, 1983). One obtains the subsystem states ϱa ≔
trHn

½Saϱ� and jeaiheaj, where the latter is the state of the probe
after the interaction on condition Za. The sequential inter-
pretation of the joint probability distribution,

tr½Mabϱ� ¼ tr½SϱðZa ⊗ B̃bÞ� ¼ tr½ϱAa�tr½ϱaB̃b�; ð55Þ

shows that the states ϱa give the probabilities for any
subsequent measurement on the system. In addition, any joint
POVM can be expressed in tensor product form.

D. Compatibility of continuous POVMs

Thus far we have explained the notions of incompatibility
for the case of POVMs in finite-dimensional spaces with a
finite set of outcomes. But, as mentioned in the Introduction,
in the entire research program the case of position and
momentum observables played a substantial role (Born
and Jordan, 1925; Heisenberg, 1925). We now finally explain
some basic facts about joint measurability for the case of
“continuous” POVMs to demonstrate that most of the ques-
tions studied in this Colloquium are also relevant in the
continuous case. However, as the continuous case is
not our main focus, we merely outline how compatibility is
defined in this setting and mention some generalizations of the
previously presented results.
We now study a set fAxg of POVMs labeled by x, where

each POVM has a continuous value space Ωx. Here the
allowed events or outcomes are measurable subsets of Ωx.
These POVMs operate in a possibly infinite-dimensional
Hilbert spaceH. We say that the set fAxg is jointly measurable
if and only if there is a POVM G and conditional probability
measures pð·jx; λÞ for which

AxðEÞ ¼
Z

pðEjx; λÞdGðλÞ ð56Þ

FIG. 8. Illustration for a joint measurement (a parent measure-
ment) for the target POVMs A and B. As long as A and B are
jointly measurable, by first performing the Lüders measurement
of A and then, conditioned by the outcome a obtained in the A
measurement, measuring a conditional POVM fB̃bjagb after the A
measurement, this sequential scheme realizes a joint measure-
ment of A and B.

FIG. 9. The “auxiliary” Naimark dilation has a particular form
that enables the following physical interpretation of an instrument
I measuring the target POVM A (Ozawa, 1984). The system state
is coupled with a probe (the auxiliary system in the dilation) in
the initial state jξ0ihξ0j. A unitary evolution mediated by the
unitary U then takes place followed by a sharp pointer meas-
urement Z of the probe, after which the probe is detached from
the system.
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for all measurable E ⊆ Ωx. Note that in Eq. (57) we present
for anyAx a densitywith respect to a probabilitymeasure, giving
a concrete way of evaluating the previously mentioned operator
integral. Joint measurability can be equivalently defined by
requiring there to be a parent POVM M from which Ax can be
obtained as margins just as in the discrete case.
In addition, in the continuous case PVMs are jointly

measurable only if they commute. From this we immediately
see that the canonical position and momentum are not jointly
measurable; see also our subsequent discussion on the quad-
rature observables. Position and momentum are also maximally
incompatible in the sense that the addition of the maximum
amount of trivial noise is required to make them compatible
(Heinosaari et al., 2014). This quantification of incompatibility
is similar to the incompatibility random robustness with the
addition that the noise can consist of any POVMs whose effects
are multiples of the identity operator.
In our previous discussions, such as those in Secs. III.C.3

and V.C.5, the Naimark extension played an important role, so
we now also explain this for the continuous case. To begin, a
general POVM A of the possibly infinite-dimensional Hilbert
space H with a basis fjnig can be written as

AðEÞ ¼
Z
E

Xma

k¼1

jdakihdakjdμðaÞ; ð57Þ

where E is a measurable subset of outcomes, μ is a probability
(or positive) distribution on the outcome space, the integral
runs over all a ∈ E, and the jdaki’s are generalized vectors
(Hytönen, Pellonpää, and Ylinen, 2007). By defining
H-valued wave functions jψni as maps a ↦ jψnðaÞi ¼Pma

k¼1hdakjnijki and an isometry J ¼ P
njψnihnj, one obtains

a minimal Naimark dilation

AðEÞ ¼ J†PðEÞJ
¼

X
m;n

hψmjPðEÞjψnijmihnj

¼
X
m;n

Z
E
hψmðaÞjψnðaÞidμðaÞjmihnj; ð58Þ

where P is the “generalized position PVM” of the wave
function space (a direct integral) defined via ½PðEÞψ �ðaÞ ¼
ψðaÞ when a ∈ E, and 0 otherwise.
If a POVM B is jointly measurable with A, then

BðFÞ ¼ J†B̃ðFÞJ, where the POVM B̃ commutes with P;
i.e., it is of the form ½B̃ðFÞψ �ðaÞ ¼ B̃aðFÞψðaÞ, where B̃a
is a POVM acting in the ma-dimensional subspace of H
(Pellonpää, 2014b). Specifically, if each multiplicity is given
by ma ¼ 1, meaning that A is of rank 1 (Pellonpää, 2014a),
then the operators B̃aðFÞ are conditional probabilities, say,
pðFjaÞ, and we have BðFÞ ¼ R

pðFjaÞdAðaÞ, showing that B
is a classical postprocessing or smearing of A. This is in line
with the finite-dimensional result in Sec. III.C.3. Indeed, in
the discrete case μ is the counting measure such that all
integrals reduce to sums: AðEÞ ¼ P

a∈EAa, where Aa ¼Pma
k¼1jdakihdakj ¼

P
m;nhψmjPajψnijmihnj ¼ P

m;nhψmðaÞ
jψnðaÞijmihnj and Pa ¼ jeaiheaj ⊗ 1, ψn ¼

P
ajea ⊗

ψnðaÞi ¼
P

a;kjeai ⊗ hdakjnijki. Now the wave function

space is simply a direct sum H⊕ ¼ ⨁
a
Ha where each Ha

is spanned by the vectors jeai ⊗ jki, k ¼ 1; 2;…; ma.
Furthermore, the previous operators B̃ðFÞ are of the “diagonal
block form”; i.e., any B̃aðFÞ is an operator of Ha.
For example, in the case of a covariant phase POVM

(Holevo, 1982; Busch et al., 2016)

ΦðEÞ¼
X∞
m;n¼0

hηmjηni
Z
E
eiðm−nÞθ dθ

2π
jmihnj; E⊆ ½0;2πÞ; ð59Þ

where the jηni’s are unit vectors that span a d-dimensional
space, one sees that mθ ¼ d, jψnðθÞi ¼ jηnie−inθ, and any
jointly measurable POVM of Φ can be written as

BðFÞ ¼
X∞
m;n¼0

Z
2π

0

hηmjB̃θðFÞjηnieiðm−nÞθ dθ
2π

jmihnj: ð60Þ

For instance, if B̃θ ¼ B̃ does not depend on θ, we get a
smeared number observable BðFÞ ¼ P∞

n¼0hηnjB̃ðFÞjηni×
jnihnj. Or, if Φ is the rank-1 canonical phase (Lahti and
Pellonpää, 2000), i.e., any jηni ¼ j0i and d ¼ 1, Eq. (60)
reduces to BðFÞ ¼ pðFÞ1, with pðFÞ ¼ h0jB̃ðFÞj0i, which is
a trivial smearing of both the canonical phase and the sharp
number. In conclusion, one cannot measure the canonical
phase and the number together [actually, they are comple-
mentary observables (Lahti, Pellonpää, and Schultz, 2017)],
but after suitable smearings they become compatible.
Similarly, the rotated quadratures Qθ ¼ Q cos θ þ P sin θ

are of rank 1, so they are not jointly measurable [here
ðQψÞðxÞ ¼ xψðxÞ and ðPψÞðxÞ ¼ −iℏdψðxÞ=dx or, in
Dirac’s notation, hxjQjψi ¼ xhxjψi and hxjPjψi ¼
−iℏ∂xhxjψi, are the position and momentum operators].
However, their smeared versions have joint measurements;
see Busch et al. (2016).
Finally, many of the results and interpretations of joint

measurability presented in this Colloquium generalize to the
continuous setting. For example, the results of Sec. IV.E.1 on
the advantage that incompatible measurements provide in
state-discrimination tasks can be generalized to the continuous
variable setting, as done by Kuramochi (2020), who found that
the incompatibility robustness still quantifies the advantage.
Here we note that the discrete version of the result relies on the
SDP formulation of joint measurability, but such a formulation
does not exist for the continuous case. This leads to the use
of more involved techniques through limit procedures; see
Kuramochi (2020) for details. Moreover, the connection
between steering and measurement incompatibility detailed
in Sec. IV.B is generalized to continuous measurements and
infinite-dimensional Hilbert spaces by Kiukas et al. (2017).
Furthermore, theW measure of Sec. III.C.2 bears similarity to
the continuous variable s parametrized quasiprobability dis-
tributions (Cahill and Glauber, 1969). The connection
between these distributions and joint measurability was
studied by Pellonpää (2001) and Rahimi-Keshari et al.
(2021). Pellonpää (2001) showed that between the Wigner
and theQ function these distributions relate to operator-valued
measures with possibly nonpositive semidefinite elements,
whose marginals are the smeared position and momentum

Otfried Gühne et al.: Colloquium: Incompatible measurements in …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 011003-21



measurements. In the special case of theQ function, one gets a
joint measurement for noisy position and momentum mea-
surements. However, not all of the results obtained for discrete
POVMs can be extended to the continuous setting. For
example, the fact that for discrete POVMs A and B we find
that A is a postprocessing of B if and only if any channel
compatible with B is also compatible with A has not yet been
established in the continuous case, although it makes opera-
tional sense as the core of the information-disturbance trade-
off presented in Sec. V.B.3.

E. Glossary

A glossary summarizing different types of measurements
and their definitions can be found in Table I.

VI. CONCLUSION

The puzzling properties of quantum measurements have
sparked intense discussions among scientists for nearly
100 years. This has led to many interesting research results,
and it has taken some time for key concepts of quantum
measurement theory, such as the notion of POVMs and the
notion of joint measurability, to emerge and find widespread
applications. In this Colloquium, we explained the incompat-
ibility of measurements, highlighting the connections to
information processing.
One may desire concepts like POVMs, instruments, and

joint measurability to become standard knowledge on quan-
tum mechanics in the physics community in the future. This is
motivated by the fact that an operational view on quantum
mechanics combined with elements of information theory is
becoming more and more standard in physics. For instance,
many new textbooks and university courses favor this view-
point, showing that the method of teaching and understanding
quantum mechanics is changing. In addition, novel applica-
tions of joint measurability may be found.
There are several interesting open problems connected with

the incompatibility and joint measurability of generalized
measurements. The following list provides a small selection.

• It has been shown that not all incompatible measure-
ments can lead to Bell nonlocality. Which additional
properties of measurements are required for this?

• As we have seen, incompatibility can be quantified by
different figures of merit. The following questions arise:
Which are the most incompatible measurements, and
what are they useful for?

• There are other concepts to grasp the nature of meas-
urement in quantum mechanics, such as coexistence and
unbiasedness. What are their applications in quantum
information processing?

• Some incompatible measurements do not provide an
advantage in QRACs, so is there a stronger form
of incompatibility that is necessary and sufficient
for QRACs?

• Another open problem is to clarify the role of incom-
patible measurements in quantum metrology, where
measurements are used to characterize one or more
parameters of a quantum state with high precision.

• One open direction is to investigate the incompatibility
properties of quantum measurements that act on many
particles, such as on two or more qubits. In general, it
would be interesting to characterize the measurement
resources that are needed for generating nonclassical
effects in quantum networks.

In addition, with the progress of experimental techniques,
complex measurements with interesting incompatibility fea-
tures may also become an available resource in practical
implementations. This will finally lead to further applications
of the theory presented in this Colloquium.
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TABLE I. Glossary summarizing different types of measurements that were discussed in this Colloquium.

Term Definition

Compatible measurements Can be simultaneously classically postprocessed from a single measurement; see Eq. (3).
Incompatible measurements Measurements that are not compatible.
Joint measurement The measurement from which compatible ones can be post-processed via Eq. (3).
Parent (or mother) POVM A joint measurement that is of the marginal form in Eq. (4).
Complementary

measurements
Two POVMs are complementary if sufficiently many pairs of their effects are mutually exclusive.

Unbiased measurement Produces a uniform probability distribution when measured on the maximally mixed state.
Nondisturbing measurements A POVM is said to be nondisturbing with respect to another POVM if there exists a sequential implementation

in which neglecting the outcome of the first measurement does not affect the statistics of the second
measurement.

Pretty good measurement Performs fairly well (but not optimally) in state-discrimination tasks where states are roughly of equal
probability and almost orthogonal.

Retrieving measurement A measurement that is used to implement compatible POVMs in a sequential order; see Sec. V.C.5.
Simulable measurements Generalized notion of measurement compatibility where statistics of measurements are simulated by fewer

measurements; see Sec. V.C.1.
Coarse-grained measurement Any measurement that is obtained by binning the outcomes of a measurement.
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Sébastien Designolle, Huan-Yu Ku, Peter Morgan, Martin
Plávala, Marco Túlio Quintino, and three anonymous referees
on an earlier version of the manuscript. This work was
supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation; Projects No. 447948357 and
No. 440958198), the Sino-German Center for Research
Promotion (Project No. M-0294), the ERC (Consolidator
Grant No. 683107/TempoQ), the DAAD, the Austrian
Science Fund (FWF; Grant No. P 32273-N27), and the
Swiss National Science Foundation (NCCR, SwissMAP, and
Ambizione Grant No. PZ00P2-202179). This research is
supported by the National Research Foundation, Singapore
and A*STAR under its CQT bridging grant.

REFERENCES

Ali, S. T., C. Carmeli, T. Heinosaari, and A. Toigo, 2009, Found.
Phys. 39, 593.

Almeida, M. L., S. Pionio, J. Barrett, G. Tóth, and A. Acín, 2007,
Phys. Rev. Lett. 99, 040403.

Ambainis, A., A. Nayak, A. Ta-Shma, and U. Vazirani, 2002, J. ACM
49, 496.

Andersson, E., S. M. Barnett, and A. Aspect, 2005, Phys. Rev. A 72,
042104.

Andrejic, N., and R. Kunjwal, 2020, Phys. Rev. Res. 2, 043147.
Anwer, H., S. Muhammad, W. Cherifi, N. Miklin, A. Tavakoli, and
M. Bourennane, 2020, Phys. Rev. Lett. 125, 080403.

ApS, M., 2021, computer code MOSEK, version 9.3.
Ballentine, L., 2014, arXiv:1402.5689.
Ballester, M. A., S. Wehner, and A. Winter, 2008, IEEE Trans. Inf.
Theory 54, 4183.

Bandyopadhyay, S., R. Jain, J. Oppenheim, and C. Perry, 2014, Phys.
Rev. A 89, 022336.

Barnett, S. M., and S. Croke, 2009, Adv. Opt. Photonics 1, 238.
Barrett, J., 2002, Phys. Rev. A 65, 042302.
Bavaresco, J., M. T. Quintino, L. Guerini, T. O. Maciel, D.
Cavalcanti, and M. T. Cunha, 2017, Phys. Rev. A 96, 022110.

Belinfante, F. J., 1973, A Survey of Hidden-Variables Theories,
1st ed., Monographs in Natural Philosophy (Elsevier, New York).

Bell, J. S., 1964, Physics 1, 195.
Beltrametti, E. G., and S. Bugajski, 1995, J. Phys. A 28, 3329.
Bene, E., and T. Vértesi, 2018, New J. Phys. 20, 013021.
Bengtsson, I., 2007, AIP Conf. Proc. 889, 40.
Bennett, C. H., and G. Brassard, 2014, Theor. Comput. Sci. 560, 7.
Born, M., and P. Jordan, 1925, Z. Phys. 34, 858.
Boyd, S., and L. Vandenberghe, 2004, Convex Optimization
(Cambridge University Press, Cambridge, England).

Brandão, F. G. S. L., 2005, Phys. Rev. A 72, 022310.
Brougham, T., and E. Andersson, 2007, Phys. Rev. A 76,
052313.

Brunner, N., D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner,
2014, Rev. Mod. Phys. 86, 419.

Budroni, C., A. Cabello, O. Gühne, M. Kleinmann, and J.-Å.
Larsson, 2022, Rev. Mod. Phys. 94, 045007.

Budroni, C., G. Vitagliano, G. Colangelo, R. J. Sewell, O. Gühne, G.
Tóth, and M.W. Mitchell, 2015, Phys. Rev. Lett. 115, 200403.

Bullock, T., and P. Busch, 2018, J. Phys. A 51, 283001.
Buscemi, F., E. Chitambar, and W. Zhou, 2020, Phys. Rev. Lett. 124,
120401.

Busch, P., 1986, Phys. Rev. D 33, 2253.
Busch, P., P. Lahti, and P. Mittelstaedt, 1996, The Quantum Theory of
Measurement, Lecture Notes in Physics Monographs Vol. 2
(Springer, New York).

Busch, P., P. Lahti, J.-P. Pellonpää, and K.Ylinen, 2016, Quantum
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Gärtner, B., and J. Matoušek, 2012, Approximation Algorithms and
Semidefinite Programming (Springer-Verlag, Berlin).

George, R. E., L. M. Robledo, O. J. E. Maroney, M. S. Blok, H.
Bernien, M. L. Markham, D. J. Twitchen, J. J. L. Morton, G. A. D.
Briggs, and R. Hanson, 2013, Proc. Natl. Acad. Sci. U.S.A. 110,
3777.

Girard, M., M. Plávala, and J. Sikora, 2021, Nat. Commun. 12,
2129.

Gisin, N., G. Ribordy, W. Tittel, and H. Zbinden, 2002, Rev. Mod.
Phys. 74, 145.

Gopal, D., and S. Wehner, 2010, Phys. Rev. A 82, 022326.
Grant, M., and S. Boyd, 2020, computer code CVX, version 2.2,
http://cvxr.com/cvx.

Guerini, L., J. Bavaresco, M. Terra Cunha, and A. Acín, 2017,
J. Math. Phys. (N.Y.) 58, 092102.

Guerini, L., M. T. Quintino, and L. Aolita, 2019, Phys. Rev. A 100,
042308.

Guff, T., N. A. McMahon, Y. R. Sanders, and A. Gilchrist, 2021,
J. Phys. A 54, 225301.

Gühne, O., and G. Tóth, 2009, Phys. Rep. 474, 1.
Haapasalo, E., 2015, J. Phys. A 48, 255303.
Haapasalo, E., 2019, Ann. Inst. Henri Poincaré 20, 3163.
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