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The Colloquium reviews recent progress in the effective description of strongly correlated phases of
matter with spontaneously broken translations, such as charge density waves or Wigner crystals. In
real materials, disorder is inevitable and pins the Goldstones of broken translations. The Colloquium
describes how pinning can be incorporated into the effective field theory at low energies without
making any assumptions on the presence of boost symmetry. The essential role played by gauge-
gravity duality models in establishing these effective field theories with only approximate symmetries
is reviewed. The Colloquium closes with a discussion on the relevance of these models
to the phenomenology of dc and ac transport in strongly correlated strange and bad metals, such
as high-temperature superconductors.
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I. INTRODUCTION

Strongly correlated states of matter present a serious
theoretical challenge, as perturbation theory typically fails
to describe them. High-critical-temperature (Tc) supercon-
ductors (Bednorz and Müller, 1986) constitute an archetypal
example and have resisted theoretical efforts to account for
their phenomenology since their discovery (Keimer et al.,

2015; Alexandradinata et al., 2020). The absence of long-
lived quasiparticles, as reported in photoemission experi-
ments, and their unconventional transport properties are
two signatures of their incompatibility with the Fermi liquid
paradigm (Lifshitz and Pitaevskii, 1980). The Hubbard model
(Arovas et al., 2022), marginal Fermi liquid theory (Varma
et al., 1989), and various field theories with a large (infinite)
number of degrees of freedom (Sachdev, 2011) aided by
random interactions (Chowdhury et al., 2021) all provide
some degree of insight into this problem.
Progress in understanding the physics at play in these

systems has been complicated by the variety of phases that
appear to be competing in (or working in concert with) different
regions of the phase diagram characterized by temperature,
doping, magnetic field, pressure, etc. Hydrodynamics and
effective field theory (EFT) methods (Kovtun, 2012; Nicolis
et al., 2015; Liu and Glorioso, 2018) offer a complementary
avenue by eschewing the microscopic details of strongly
correlated systems, as done in the cases of graphene (Lucas
and Fong, 2018) and bad metals (Hartnoll, 2015). The cost is
that the analysis is limited to low energies, late times, and long
distances and breaks down at low temperatures (particularly in
the vicinity of any quantum critical point where fluctuation
effects cannot be neglected). The effective frameworks also take
as input a number of parameters that are constrained by various
consistency requirements but whose values can be computed
only within a microscopic completion.
Gauge-gravity duality (also referred to as holography) maps

a strongly coupled, large N matrix model (where N is the rank
of the gauge group) to classical Einstein gravity coupled to a
set of matter fields (Maldacena, 1998). The application of this
set of techniques to strongly correlated condensed matter
systems has been intensively pursued in the past 15 years
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(Zaanen et al., 2015; Hartnoll, Lucas, and Sachdev, 2018).
The original duality (Maldacena, 1998) relates a specific
gauge theory to a specific string theory so that in principle
microscopic degrees of freedom on both sides of the duality
can be matched (in practice, this can be technically involved).
A more common approach in applied gauge-gravity duality
is the bottom-up one, where the dual field theory is not
known precisely, nor is it clear whether the classical gravity
dual can be promoted to a full quantum gravity. Assuming,
though, that such a dual field theory exists and within the
range of validity of the low-energy classical gravity theory,
the equation of state and transport coefficients of its classical
saddle point can be computed.
In applying these tools, identifying the right set of

symmetries is paramount, as this will dictate the starting
point of an effective approach. This does so by determining
the set of hydrodynamic conservation equations governing
the low-energy dynamics of the system in one case, or by
acting as a guiding principle to write the appropriate bulk
action in the second.
The aim of this Colloquium is to describe recent progress in

effective hydrodynamic and holographic theories of phases
with spontaneously broken translations, motivated by the
ubiquity of such phases in the phase diagram of strongly
correlated electron materials, in particular, cuprate- or iron-
based high-Tc superconductors, kagome materials, organic
conductors, transition metals, dichalcogenides, etc. While
translational “spin-charge stripe” order was long anticipated
on theoretical grounds to play an important role in underdoped
cuprates and other doped Mott insulators (Machida, 1989;
Poilblanc and Rice, 1989; Zaanen and Gunnarsson, 1989;
Kivelson, Fradkin, and Emery, 1998; Mross and Senthil,
2012a, 2012b; Beekman, Nissinen, Wu, Liu et al., 2017) and
was experimentally confirmed subsequently in most families
of underdoped cuprate materials (Frano et al., 2020) as well as
in numerical studies of the Hubbard model (Huang et al.,
2017; Zheng et al., 2017), recent experiments suggest that
charge density fluctuations (Kivelson et al., 2003) and short-
range charge density wave order are actually found across the
phase diagram (Peng et al., 2018; Arpaia et al., 2019; Lin
et al., 2020; Arpaia and Ghiringhelli, 2021; Kawasaki et al.,
2021; S. Lee et al., 2021; W. S. Lee et al., 2021; Ma et al.,
2021; Miao et al., 2021; Tam et al., 2022).1 These observa-
tions prompted a number of investigations of the impact of
such fluctuating charge order on transport and spectroscopic
experiments (Caprara et al., 2017; Delacrétaz et al., 2017a,
2017b; Amoretti et al., 2019b; Delacrétaz, Goutéraux, and
Ziogas, 2021; Seibold et al., 2021).
In seeking to apply effective field theory methods to this

problem, one is inevitably confronted with the impact of
disorder and other sources of explicit translation symmetry
breaking on the dynamics of the charge density wave, leading
to the phenomenon of pinning (Grüner, 1988). When the
explicit breaking is weak, the symmetry rules that usually
tightly constrain effective field theories are relaxed and it
becomes more arduous to develop a consistent double

expansion, in powers of the strength of the explicit breaking
and of the effective field theory cutoff. On the other hand,
gauge-gravity duality allows one to model such phases from
first principles and acts as a testing arena for effective field
theories with approximate symmetries.
Sections II and III give a review of hydrodynamics and of

holographic methods. In Sec. IV, we then describe recent
progress in incorporating background strain into the hydro-
dynamics of spontaneously broken translation phases, with-
out assuming any particular boost symmetry, and expand on
verifications of this theory using various holographic mod-
els. Next in Sec. V we turn to the physics of pseudosponta-
neous translation symmetry breaking in hydrodynamics and
in holography and discuss phenomenological implications.
We also comment on the role of topological defects and
magnetic fields.

II. HYDRODYNAMICS

Hydrodynamics (Kadanoff and Martin, 1963; Forster,
1975; Chaikin and Lubensky, 2000) is based on symmetries
and the conservation equations that derive from them.
Symmetries and their spontaneous breaking provide a natural
route to classifying states of matter, formalized by Landau’s
theory of second-order phase transitions (Landau and Lifshitz,
2013). This is an example of effective field theory, valid
around the critical temperature at which the phase transition
occurs, where the relevant degrees of freedom are only the
order parameter and its fluctuations.
Hydrodynamics and its extensions to nonliquid states of

matter (such as elasticity theory) (Chaikin and Lubensky,
2000) constitute another class of effective field theories that
describe the long-distance, late-time dynamics of the system.
Microscopic degrees of freedom are integrated out in this limit
and are reorganized into fast and slow degrees of freedom.
Fast degrees of freedom equilibrate on time and length
scales that are short compared to the local equilibration scales,
which are typically set by the temperature of the system.
Slow degrees of freedom are protected by symmetries and
need to be retained in the effective field theory: they are the
conserved densities of the system, such as energy, charge, and
momentum. Their evolution is described by conservation laws
descending from the previously mentioned symmetries. They
cannot decay locally and are transported away on scales that
are much larger than the local equilibration scales to other
regions of the system by hydrodynamic modes, such as sound
and diffusion.
More concretely, the equations of motion for the conserved

densities na take the form2

_naðt; xÞ þ∇ · jaðt; xÞ ¼ 0: ð1Þ

Upper dots stand for time derivatives (_≡ ∂=∂t). For a fluid
with a conserved Uð1Þ charge, the na’s are the set of energy ε,
momentum πi, and charge n densities. The spatial currents

1A recent numerical study of the Hubbard model also reported
fluctuating stripes across the phase diagram (Huang et al., 2022).

2To simplify the notation, we are not including spatial indices for
the moment; see Sec. IV.B for details.
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ja ¼ fjiε; τij; jig are generally not slow operators.3 They
decay locally in the thermal bath of conserved densities,
and therefore their expectation values over hydrodynamic
timescales are tied to their overlap with the conserved
densities via local expansions in terms of the densities and
external sources4:

hjai ¼ αð0Þab hnbi þ αð1Þab∇hnbi þ � � � . ð2Þ

The angular brackets in Eq. (2) denote a thermal average.

αð0Þ;ð1Þab are transport coefficient matrices, order by order in the
gradient expansion, with dots denoting higher-order terms.
Which of these coefficients are nonzero depends on the details
of the system and the symmetry-breaking pattern. The under-
lying reason why such expansions are possible is related to the
central assumption to hydrodynamics: all microscopic, high-
energy modes relax on short scales of the order of the
thermalization time or length and can be integrated out. At
longer scales, only hydrodynamic fields are retained, and they
are the sole source of nonanalyticities in the retarded Green’s
functions. In other words, in the hydrodynamic regime, the
retarded Green’s functions contain only the gapless hydro-
dynamic poles.
In this Colloquium, we limit ourselves to expansions to

first order in gradients. We also ignore the effects of
fluctuations (De Schepper, Van Beyeren, and Ernst, 1974;
Forster, Nelson, and Stephen, 1977), which generally spoil
the analyticity of retarded Green’s functions and of the
dispersion relations of the hydrodynamic modes beyond
first order in gradient terms. In gauge-gravity duality, these
fluctuations are suppressed by the N → þ∞ limit (Kovtun
and Yaffe, 2003).
Upon inserting Eq. (2) into Eq. (1), these become evolution

equations for the vacuum expectation values (VEVs) of the
conserved densities, which can now be solved. Taking a
spatial Fourier transform and dropping the angular brackets
for convenience, we obtain a set of dynamical equations
given by

_naðt; qÞ þMabðqÞnbðt; qÞ ¼ 0: ð3Þ

By construction, the matrixMabðqÞ ¼ M1qþM2q2 þ � � � has
a local expansion in powers of the wave vector q, with each
term suppressed by the cutoff length of hydrodynamics lth.

We now compute the retarded Green’s functions of the
system. As usual, this implies turning on a time-dependent
deformation of the Hamiltonian

Ho ↦ HðtÞ ¼ Ho −
Z

ddxnaðt; xÞδμe;aðt; xÞ ð4Þ

(with d the number of spatial dimensions), upon which the
equations of motion become (Kadanoff and Martin, 1963;
Chaikin and Lubensky, 2000)

_naðt; qÞ þMa
bðqÞ½nbðt; qÞ − χbcδμ

c
e� ¼ 0: ð5Þ

In Eq. (5) χ is the matrix of static susceptibilities obtained by
functional differentiation of the equilibrium free energy as

χabðx − x0Þ ¼ −
δ2W½μe�

δμaeðxÞδμbeðx0Þ
; ð6Þ

where W ¼ −T log Tre−βH. This matrix encodes the linear
response of the system to static perturbations δμeðxÞ. In the
static limit, from Eq. (5) na ¼ χabδμ

b
e , and thus χab is simply

the matrix of thermodynamic derivatives. It should be positive
definite in order for the system to be locally thermodynami-
cally stable.
Taking a Laplace transform of Eq. (5) [see Kovtun (2012)

for more details] leads to the retarded Green’s functions

GR
abðω; qÞ≡ δnaðω; qÞ

δμbeðω; qÞ
¼ −ðiω −MÞ−1Mχ; ð7Þ

where ω is the frequency. The hydrodynamic poles of the
system are found by solving detð−iωþMÞ ¼ 0. As a point
of reference, in the case of a single conserved Uð1Þ the
constitutive relation for the spatial current compatible with
invariance under parity and time reversal and with external
sources turned on is

ji ¼ −Dnð∇in − χnn∇iδμeÞ þ � � � ; i ¼ 1;…; d; ð8Þ

leading to a quadratically dispersing, diffusive mode ω ¼
−iDnq2 þ � � �. The diffusivity can be measured using the
following Kubo formula:

Dn ¼
1

χnn
lim
ω→0

lim
q→0

ω

q2
ImGR

nnðω; qÞ: ð9Þ

Instead, in the longitudinal sector a neutral fluid would have
two linearly dispersing sound modes ω ¼ �csq − iðΓ=2Þq2,
where the longitudinal sound velocity is determined by the
various static susceptibilities and the sound attenuation Γ is
determined by first-order-in-gradients dissipative corrections
to the constitutive relation of the energy current and stress
tensor; see Chaikin and Lubensky (2000).
Hydrodynamics gives access only to gapless poles with

a vanishing dispersion relation at zero wave vector
ωðq ¼ 0Þ ¼ 0, the hydrodynamic modes. Nonhydrodynamic
gapped modes of the system cannot reliably be included in
the hydrodynamics in general, except in certain special

3In special cases they can be. For example, in a system invariant
under Galilean boosts, the corresponding Ward identity gives an
operator equation between the charge current and momentum
operators, so the charge current is a slow operator in this case. In
a relativistic system, the Lorentz boost Ward identity equates the
momentum and energy current operators, so the energy current
becomes a slow operator as well.

4Throughout this Colloquium, we work in a hydrodynamic frame
where the time components of the conserved currents match the
microscopic conserved densities, and dissipative corrections enter
only with spatial gradients. Any time derivative correction can be
traded for spatial derivatives using the equations of motion and
constitutive relations at lower order in derivatives.

Matteo Baggioli and Blaise Goutéraux: Colloquium: Hydrodynamics and holography …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 011001-3



circumstances, for instance, when the gap is generated by
breaking weakly one of the symmetries of the system (Davison
and Goutéraux, 2015b; Grozdanov, Lucas, and Poovuttikul,
2019). One of the goals of this Colloquium is to explain how
to incorporate such weakly gapped degrees of freedom in the
low-energy effective field theory. Generic gapped modes
that do not fall under the previous category typically signal
the breakdown of the effective field theory description
(Withers, 2018; Grozdanov et al., 2019) and can be accounted
for only by supplementing hydrodynamics with a microscopic
completion.5

III. HOLOGRAPHIC METHODS

The hydrodynamic construction outlined in Sec. II can
be systematically carried out order by order in the gradient
expansion. The procedure quickly becomes intractable ana-
lytically due to the proliferation of terms to be considered
(Grozdanov and Kaplis, 2016). The equation of state and each
transport coefficient needs to be measured experimentally or
computed in a microscopic model.
Most microscopic models, nevertheless, face serious diffi-

culties whenever the system under investigation is strongly
interacting, made up of a large number of constituents, placed
at finite chemical potential, or placed at finite temperature,
or when its real-time dynamics is considered. Under these
circumstances, the AdS/CFT correspondence6 provides a self-
consistent framework to attack these problems and guide new
interdisciplinary explorations. Holography posits a duality
between a large class of quantum field theories with a gauge
group of dimension N and higher-dimensional gravitational
theories; see Aharony et al. (2000), Ammon and Erdmenger
(2015), Nastase (2015), Natsuume (2015), Zaanen et al.
(2015), and Baggioli (2019) for details. The duality was
discovered in the context of string theory (Gubser, Klebanov,
and Polyakov, 1998; Maldacena, 1998; Witten, 1998), which
provides a precise formulation of the conjecture between a
supersymmetric gauge theory [N ¼ 4 super Yang-Mills
theory with gauge group SUðNÞ] and a string theory (type-
IIB string theory on AdS5 × S5), now widely accepted as
proven. The simplifying limit of classical gravity without
extended objects corresponds to considering a dual field
theory in the regime of strong coupling and in the large N
limit7 and is known as the bottom-up approach. Bottom-up
holographic methods have been applied in several directions,
such as quantum chromodynamics (QCD) and heavy ion

collisions (Casalderrey-Solana et al., 2014; Berges et al.,
2021), condensed matter many-body systems, and quantum
information (Zaanen et al., 2015; Rangamani and Takayanagi,
2017; Hartnoll, Lucas, and Sachdev, 2018; Liu and Sonner,
2020a, 2020b).
From a formal point of view, the duality is built on the

identification of the field theory generating functional W with
the gravitational on-shell path integral. The field theory
operators and sources are given by the specific coefficients
of the asymptotic expansion of dynamical fields living in the
curved, higher-dimensional bulk spacetime. Thermal, finite
density states in the dual field theory are captured by
gravitational charged black hole solutions in the bulk, with
the field theory temperature given by the Hawking temper-
ature at the event horizon and the chemical potential given
by the boundary value of the bulk gauge field. From this
gravitational background, all thermodynamic quantities can
be computed, as well as the static susceptibilities. Linear
perturbations of the gravitational solution together with
opportune boundary conditions for the bulk fields (Son and
Starinets, 2002) yield the real-time, space-dependent retarded
Green’s functions, the poles of which are given by the
quasinormal modes of the black hole solution. This linear
analysis also gives access to all linear transport coefficients
through the appropriate Kubo formulas. This way one can
obtain the dispersion relations of the low-energy excitations in
the dual field theory as well as those of the nonhydrodynamic
modes of the system, going far beyond the hydrodynamic
regime (Kovtun and Starinets, 2005; Berti, Cardoso, and
Starinets, 2009). Holographic results have been successfully
matched to the predictions of charged, relativistic linearized
hydrodynamics (Policastro, Son, and Starinets, 2002a, 2002b;
Baier et al., 2008; Erdmenger et al., 2009; Banerjee et al.,
2011).8 Besides providing a concrete test bed for hydro-
dynamics, holography is a microscopically complete frame-
work that allows one to compute all transport coefficients,
from which important lessons on strongly coupled dynamics
can be extracted. A case in point is the noted viscosity-
entropy-ratio bound (Policastro, Son, and Starinets, 2001;
Cremonini, 2011).
As in the case of hydrodynamics, and more often in general

effective field theories, bottom-up holography is based and
built on symmetries as guiding principles. Using the well-
established holographic dictionary, one maps local sym-
metries in the bulk onto global symmetries of the boundary
field theory. Any combination of explicit or spontaneous
symmetry breaking can be considered. Explicit breaking
corresponds to the presence of a source in the dual field
theory that appears in Ward identities and spoils conservation
equations; spontaneous breaking, on the contrary, is charac-
terized by the appearance of a nontrivial vacuum expectation
value for an operator (the condensate) that breaks a subset
of the symmetries of the action from which it is derived
(Beekman, Rademaker, and Wezel, 2019). Finally, the pseu-
dospontaneous regime appears when a small (as quantified

5When the gradient expansion can be systematically computed in a
microscopically complete framework, the dispersion relation of
gapped modes can be obtained by resumming the hydrodynamic
series (Withers, 2018).

6The acronyms stand for anti–de Sitter spacetime (Gibbons, 2000)
and conformal field theory (Ginsparg, 1990), the two end points of
the original string-inspired holographic duality. We ignore more
general situations in which the UV fixed point of the dual field theory
is not a Lorentz-invariant conformal field theory.

7Here N is the rank of the dual gauge field theory (’t Hooft, 2002).
In the absence of a precisely identified dual field theory, this limit has
to be understood as a large number of degrees of freedom. See
Zaanen et al. (2015) for a discussion on this point.

8The full nonlinear structure of the hydrodynamic theory can also
be derived from the gravitational equations using the fluid-gravity
correspondence (Rangamani, 2009).
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more precisely later) source is added on top of a purely
spontaneous state (Weinberg, 1972; Burgess, 2000). From the
bulk point of view, this distinction is encoded in the asymp-
totic behavior of the field responsible for the symmetry
breaking close to the boundary of the AdS spacetime
(Skenderis, 2002). The corresponding boundary Ward iden-
tities can be computed directly from the bulk as well; see
Argurio et al. (2016) for the simplest case of a global Uð1Þ
symmetry.
The holographic description of broken-symmetry, strongly

coupled phases of matter with an eye toward condensed matter
was initiated by Hartnoll, Herzog, and Horowitz (2008a,
2008b) and Gubser (2008), who considered the spontaneous
breaking of a global Uð1Þ symmetry: a superfluid state.
Superfluid hydrodynamics correctly predicts the low-energy
dynamics of holographic superfluids (Herzog, Kovtun, and
Son, 2009; Sonner and Withers, 2010; Bhattacharya,
Bhattacharyya, and Minwalla, 2011; Herzog et al., 2011;
Bhattacharya et al., 2014; Arean et al., 2021).
Holographic lattices explicitly breaking translations were

constructed numerically a few years later by Horowitz, Santos,
and Tong (2012a, 2012b).9 While the significance of explicit
translation symmetry breaking was recognized early on in the
holographic community (Hartnoll et al., 2007; Hartnoll and
Herzog, 2008), full holographic realizations had to tackle with
the technical challenge related to solving inhomogeneous
space-dependent Einstein’s equations (Dias, Santos, and Way,
2016; Andrade, 2017; Krikun, 2018b). A change of paradigm
happened with the discovery of the so-called homogeneous
models, holographic setups in which translations are
broken but the background metric and the dual stress tensor
remain homogeneous (regardless of the spatial coordinates).
This property is due to the existence of specific global
structures that mix with spacetime symmetries, leading to a
simplification in the computations of physical observables.
The homogeneous models fall into different classes: (I) de
Rham–Gabadadze–Tolley (dRGT) massive gravity theory
(Vegh, 2013),10 (II) “axion” models (Andrade and Withers,
2014; Donos and Gauntlett, 2014b; Goutéraux, 2014b; Taylor
and Woodhead, 2014; Baggioli and Pujolas, 2015; Baggioli,
Cisterna, and Pallikaris, 2021) [see Baggioli et al. (2021) for a
review], (III) Q-lattices (Donos and Gauntlett, 2014a), (IV)
higher-form models (Grozdanov and Poovuttikul, 2018),11

(V) helical lattices (Nakamura, Ooguri, and Park, 2010;
Iizuka et al., 2012; Donos and Hartnoll, 2013; Donos,
Goutéraux, and Kiritsis, 2014), and (VI) “solidon” models
(Esposito et al., 2017). Irrespective of the specific holographic
model employed, in the regime of weak explicit breaking, the
low-energy dynamics matches well with the field theory
expectations for a metallic phase with slowly relaxing
momentum (Hartnoll et al., 2007; Hartnoll and Herzog, 2008;
Davison, 2013; Davison and Goutéraux, 2015b; Lucas,
Sachdev, and Schalm, 2014; Lucas and Sachdev, 2015). A
common feature of all holographic models is that the graviton
acquires a mass (Alberte et al., 2016; Vegh, 2013; Blake,
Tong, and Vegh, 2014).12

Closely following the global Uð1Þ case, instabilities toward
holographic spatially modulated phases breaking translations
spontaneously were investigated as well (Nakamura, Ooguri,
and Park, 2010; Donos and Gauntlett, 2011b; Donos,
Gauntlett, and Pantelidou, 2012; Alsup et al., 2013;
Cremonini and Sinkovics, 2014). In those studies, one looked
for a spatially modulated, normalizable bulk mode (i.e., one
without a source at the boundary) in the translation-invariant,
homogeneous bulk geometry. The outcome of this analysis is
an instability curve displaying the maximum temperature at
which the mode can be found versus the wave vector of the
modulation (see Fig. 1), i.e., the onset of the instability. The
apex of this curve gives the thermodynamically preferred
wave vector with the highest critical temperature, below which
fully backreacted, spatially modulated phase breaking trans-
lations can spontaneously be expected to be found. As such,
when the preferred trajectory within the instability curve is
followed (red bullets in Fig. 1), these phases are true global
minima of the thermodynamic free energy (Donos and
Gauntlett, 2013b). The breaking of parity and time reversal
through Chern-Simons couplings in the bulk and/or an
external magnetic field originally played an important
role to generate the instabilities but is not always necessary

FIG. 1. The typical curve describing the onset of the instability
toward a holographic phase breaking translations spontaneously.
Insets: spatial profiles of the charge density n in the broken and
normal phases. Adapted from Cai et al., 2017.

9See Chesler, Lucas, and Sachdev (2014), Donos and Gauntlett
(2015), Langley, Vanacore, and Phillips (2015), and Rangamani,
Rozali, and Smyth (2015) for further numerical constructions of
holographic lattices.

10dRGT corresponds to a precise fine-tuned choice of more
general Lorentz-violating massive gravity theories built in terms
of Stückelberg fields (Dubovsky, 2004). This fine tuning is not
necessary around Lorentz-violating vacua. In this sense, the axion
models in item (II) are not different from the dRGT model, which
ultimately represents only an infinitesimal subclass of them. See
Alberte et al. (2016) for a more detailed discussion of this point in the
context of holographic models.

11Before being analyzed from a holographic point of view, static
black hole solutions including matter in the form of free scalar
and p-form fields were constructed by Bardoux, Caldarelli, and
Charmousis (2012).

12See Zaanen, Balm, and Beekman (2021) for a discussion on the
connections between elasticity theory and massive gravity.
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(Donos and Gauntlett, 2013a). The original works focused on
inhomogeneous instabilities, but helical phases proved easier
to construct at first (Donos and Gauntlett, 2011a, 2012a,
2012b). Backreacted inhomogeneous phases spatially modu-
lated along one direction were constructed by Donos (2013),
Rozali et al. (2013), and Withers (2013), who bore on the
expertise developed to construct explicit holographic lattices.
Generalizations to two-dimensional, checkerboard, or triangu-
lar patterns were given by Donos and Gauntlett (2016) and
Withers (2014), with the triangular lattice providing the
minimum free energy state. These phases all include circulat-
ing current loops together with spontaneous parity breaking,
which is reminiscent of the loop current order proposed to
underlie the pseudogap phase of underdoped cuprate high-Tc
superconductors (Varma, 1999). This phenomenology is a
direct consequence of the bulk Chern-Simons term.
Probe brane constructions can also display spatially

modulated instabilities (Jokela, Jarvinen, and Lippert,
2013, 2014, 2017a). Being top-down models descending
from specific string theory realizations, they have the
advantage of offering a more precise field theory interpre-
tation. On the other hand, it is not clear how one should
interpret the spontaneous spatial modulation of charge and
current densities, since in these setups momentum and
temperature fluctuations are frozen.
Phases in which the breaking of translations and of a

global Uð1Þ are intertwined are of interest to model pair
density wave phases (Fradkin, Kivelson, and Tranquada,
2015), which are thought to play an important role in the
phase diagram of underdoped cuprate high-Tc superconduc-
tors. They have been argued to be the mother phase from
which daughter charge density wave and superconducting
phases emerge. Holographic realizations of these phases were
given by Cai et al. (2017) and Cremonini, Li, and Ren (2017a,
2017b). These constructions rely on a combination of bulk
Chern-Simons terms and the introduction of Stückelberg
scalars, which give rise to pair density wave phases where
the condensate is spatially modulated with a zero average and
periodicity that is twice that of the charge density wave.13

Natural next steps were to combine all of these strands
together by considering holographic phase breaking trans-
lations pseudospontaneously and how their low-energy
dynamics match to field theory expectations. The purpose
of this Colloquium is to summarize the progress in these
directions over the last few years. These developments came
about from the intersection between various pieces of work:
the spontaneous incorporation of the physics of explicit
symmetry breaking in the hydrodynamics of phase breaking
translations (Delacrétaz et al., 2017a, 2017b; Armas, Jain, and
Lier, 2021; Delacrétaz, Goutéraux, and Ziogas, 2021); the
construction of simpler homogeneous holographic models for
(pseudo)spontaneously breaking translations (Andrade and
Krikun, 2016; Amoretti et al., 2017, 2018b, 2019b; Alberte,
Ammon, Baggioli et al., 2018; Alberte, Ammon, Jiménez-
Alba et al., 2018; Andrade, Baggioli et al., 2018; Ammon,

Baggioli, and Jiménez-Alba, 2019; Ammon et al., 2019;
Donos et al., 2020), which provided a far more tractable
platform to compare with hydrodynamic predictions; a
thorough analysis of how background strain and external
sources enter into the hydrodynamic theory (Armas and Jain,
2020a, 2020b); and a subsequent comparison with holo-
graphic constructions (Ammon et al., 2020).

IV. HYDRODYNAMICS OF PHASES WITH BROKEN
TRANSLATIONS

Continuous, global symmetries can be spontaneously bro-
ken in the ground state; see Beekman, Rademaker, and Wezel
(2019) for an introduction. Formally, this means that the
ground state is invariant under a smaller set of symmetries
than the Hamiltonian of the system. A corresponding number
of gapless modes, the Goldstone bosons, appear in the
spectrum. In the simplest case of an internal symmetry and
when the broken generators commute, the number of
Goldstones is given by the number of broken generators. In
other cases, such as that of spacetime symmetries (Low and
Manohar, 2002), the counting rule is more complicated; see
Watanabe (2020) for a review.
Hydrodynamics can be advantageously extended to sys-

tems with spontaneously broken symmetries, like superfluid
helium or crystalline solids (Chaikin and Lubensky, 2000).
The set of slow degrees of freedom is enlarged to include the
Goldstone modes, the dynamical evolution of which is
described by so-called Josephson equations (historically,
the Josephson equation has described the phase difference
in a superconductor in the presence of an external voltage).
In this Colloquium, we focus on cases of broken trans-

lations, such as crystalline solids, charge density waves, and
Wigner crystals. We incorporate the effects of background
strain, which proves important to match to existing holo-
graphic studies. Moreover, strain or pressure is also a common
experimental tool in the investigation of broken translation
phases in strongly correlated materials and has a strong effect
on the onset of the charge density wave and superconducting
phases (Hicks et al., 2014; Kim et al., 2018). We also do not
assume any particular boost symmetry.14

A. Thermodynamics

For simplicity, we assume that the system is two dimen-
sional (d ¼ 2), that it is isotropic, and that translations are
spontaneously broken in all spatial directions: extensions to
anisotropic or higher-dimensional crystals are conceptually
straightforward but technically tedious due to more compli-
cated tensor structures and a larger number of transport
coefficients. Here we do not consider the coupling to back-
ground sources, which can be realized along the lines followed
by Armas and Jain (2020a, 2020b).

13See also Baggioli and Frangi (2022) for a homogeneous model
realizing the concomitant spontaneous breaking of translations
together with a global Uð1Þ symmetry, a supersolid phase.

14In this Colloquium, we do not consider equilibrium states with a
background fluid velocity and thus work only at linear order in the
fluid velocity. See de Boer et al. (2018a, 2018b, 2020), Novak,
Sonner, and Withers (2020), Poovuttikul and Sybesma (2020), and
Armas and Jain (2021) for fully nonlinear treatments of fluid
hydrodynamics without boosts.
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Since spatial translations are spontaneously broken in all
directions, we expect as many Goldstone modes as there are
broken translations.15 The Goldstone modes of broken trans-
lations are often called phonons and are related to the
displacements of the underlying crystal structure, which we
denote as ui. They transform nonlinearly under spatial trans-
lations xi → xi þ ai as

ui → ui þ ai: ð10Þ

The free energy of the system must be invariant under these
shifts, and therefore the displacements can appear therein only
with derivatives. From a Lagrangian perspective,16 we define
the nonlinear, Lagrange strain tensor uij as

dx02 − dx2 ≡ 2uijdxidxj: ð11Þ

In Eq. (11) x0ðxÞ ¼ xþ uðxÞ is the new location of the point
originally at x after u is deformed by a small displacement.
Writing that dx0 ¼ x0ðxþ dxÞ − x0ðxÞ, the nonlinear strain is
then given in terms of the displacements as (Chaikin and
Lubensky, 2000)

uij ¼ ∇ðiujÞ þ 1
2
∇iuk∇juk: ð12Þ

The free energy depends only on uij. Lowercase latin indices
i; j;… are raised and lowered with the Kronecker delta δij and
run over spatial dimensions.
The elastic part of the equilibrium free energy density of the

system is then, by isotropy,

fel ¼
BoðX; YÞ

2
X2 þ GoðX; YÞY; ð13Þ

where we have defined X ≡ uii and Y ≡ uijuij − ð1=2ÞðuiiÞ
and suppressed the dependence on temperature and chemical
potential for now.17 The first parameter X corresponds to a
purely volumetric deformation ΔV=V ¼ X, while the second
parameter Y corresponds to a deviatoric deformation that
modifies the shape of the material but not its total volume.
Accordingly, the coefficients Bo and Go are the bare nonlinear
bulk and the shear moduli, respectively. If translations are
broken in one dimension only, there is only a bulk modulus.
Both quantities are nonlinear functions of the deformation

parameters X and Y and, in what follows, of the temperature
and chemical potential as well.
Since we want to compute the linear response of the system

to external perturbations, the first step is to determine the static
susceptibilities. To this end, we expand the static free energy
to quadratic order in fluctuations using18

ui ¼ mxi þ ð1þmÞδϕiðxÞ; i ¼ fx; yg; ð14Þ
where m is a real parameter and we have assumed for
simplicity that the linear perturbations δϕi depend on only
one spatial dimension.
The first term mxi in Eq. (14) can be thought as the

additional displacement from the would-be static equilibrium
configuration m ¼ 0 to the actual configuration with isotropic
background strain19 m ≠ 0:

X ¼ ull ¼ uo þOð∇Þ; uo ≡mðmþ 2Þ: ð15Þ
For this state, Y ¼ Oð∇2Þ. In this configuration, the equilib-
rium free energy density fel and the bare elastic moduli Bo and
Go are functions of uo. As we soon see, δϕi are the Goldstone
modes of the system around the configuration with back-
ground strain uo.
Plugging Eq. (14) into the elastic free energy (13) and

expanding to quadratic order in fluctuations, we obtain

fel ¼
u2o
2
Bo − pelλk þ

G
2
ðλ⊥Þ2 þ

1

2
ðBþ GÞðλkÞ2; ð16Þ

where it is convenient to define the longitudinal and transverse
Goldstone modes λk ¼ ∇ · δϕ and λ⊥ ¼ ∇ × δϕ. In the
presence of nonzero background strain uo, the free energy
has a term that is linear in λk that defines the background
elastic pressure pel ¼ −ð1þ uoÞ∂uoðu2oBoÞ=2. It is manifest
that the configuration with zero strain minimizes the free
energy, so states with finite background strain must be sourced
by nontrivial boundary conditions. The bulk and shear moduli
also pick up the new contributions

B≡ 1
2
ð1þ uoÞ2∂2uoðu2oBoÞ;

G≡ ð1þ uoÞ2Go þ
u2o
2
ð1þ uoÞ2∂YBo − pel: ð17Þ

In the limit of zero strain, we recover Bðuo ¼ 0Þ ¼ Bo
and Gðuo ¼ 0Þ ¼ Go.
The free energy in Eq. (16) now displays a linear term in

δϕx with the coefficient
20 pel. This linear term implies that the

15Rotations are also spontaneously broken but do not have
independent Goldstone modes, per the Goldstone counting theorems
for broken spacetime symmetries (Low and Manohar, 2002). The
underlying reason is that translations and rotations are not indepen-
dent local transformations.

16This assumption is important only at the nonlinear level since all
different definitions agree with each other at the linear one (Ogden,
1985).

17One could equivalently define a generic function felðX; YÞ.
Our parametrization makes the linear limit X; Y → 0 and the limit of
zero background strain clearer. In d > 2, this function would depend
on d independent scalars (Nicolis, Penco, and Rosen, 2014; Esposito
et al., 2017).

18This maps to the formulation of Armas and Jain (2020b) as
follows: ui ↔ ΦI − xI , uij ↔ hIJ − δIJ , and m ¼ 1=α − 1.

19Anisotropic strains can easily be considered by allowing for
additional off-diagonal terms of the type ui ∼ xj; see Baggioli,
Castillo, and Pujolas (2020).

20This term also appears in the relativistic treatment given by
Armas and Jain (2020b). Here we generate it by expanding around
the state with background strain in Eq. (14). Armas and Jain (2020b)
directly introduced pel as a force contribution to the free energy. They
assumed that the reference contribution did not minimize the free
energy. After matching the conventions, both approaches gave the
same results.
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system is not in mechanical equilibrium whenever m is
nonzero: a background strain is applied to the system through
nontrivial boundary conditions, and the resulting sum of
external forces does not vanish. Instead, in mechanical
equilibrium there is no background displacement, m ¼ 0,
and pel ¼ 0. The standard treatment of elasticity theory [see
Chaikin and Lubensky (2000)] assumes that the reference
configuration, the choice of which is arbitrary, corresponds
with the state of mechanical equilibrium. Nevertheless, this
new term might be relevant for many experiments that study
phases with broken translations under the application of
pressure. It appears as well in the viscoelastic description
of prestrained materials (Birch, 1938; Biot, 1940, 1965; Hayes
and Rivlin, 1969; Destrade and Saccomandi, 2007; Destrade,
Ogden, and Saccomandi, 2009; Berjamin and Pascalis, 2021),
and it was recently considered in the relativistic viscoelastic
framework given by Armas and Jain (2020b) under the name
of crystal or lattice pressure.
Turning on background external sources f ↦ f − skλk −

s⊥λ⊥, we obtain the Goldstone static susceptibilities after
integrating out the Goldstone modes21:

χλkλk ≡ −
∂
ð2Þfel
∂sk2

¼ 1

Bþ G
;

χλ⊥λ⊥ ≡ −
∂
ð2Þfel
∂s⊥2

¼ 1

G
: ð18Þ

Bþ G and G should both be positive definite in order for the
phase to be locally thermodynamically stable, which follows
from the usual requirement that the determinant of the Hessian
of the free energy be positive definite. We later see that this
ensures that sound modes will have a positive velocity
squared. Through Eq. (17), we observe that both the bulk
and shear moduli have a nontrivial dependence on background
strain. Varying the background strain may lead to thermody-
namic instabilities, signaled by divergences in the static
susceptibilities (18) when G or Bþ G changes sign.
Determining whether these instabilities are actually present
requires one to know their functional dependence on uo and is
beyond the effective field theory approach.
By their properties under parity transformations x ↦ −x,

we also expect the longitudinal phonon λk to couple to entropy
and charge. To this end, we include temperature and chemical
potential dependence in the bare moduli Boðuii; T; μÞ and
Goðuii; T; μÞ in Eq. (13). Linearizing around Eq. (14) together
with fT; μg ¼ fTo; μog þ fδT; δμg allows one to identify the
off-diagonal susceptibilities

χnλk ≡ −
∂
ð2Þfel
∂sk∂μ

¼ ∂μpel

Bþ G
;

χsλk ≡ −
∂
ð2Þfel
∂sk∂T

¼ ∂Tpel

Bþ G
: ð19Þ

They are nonzero even in the absence of background strain
and correspond physically to the chemical and thermal
expansion of the system under strain.
The full longitudinal static susceptibility matrix reads

χo;k ¼

0
BBBBB@

χnn χnε 0 χnλk
χnε χεε 0 χελk
0 0 χππ 0

χnλk χελk 0 χλkλk

1
CCCCCA: ð20Þ

The equality of off-diagonal components follows from invari-
ance under PT symmetry.
In the transverse sector, the susceptibility matrix χo;⊥ is

diagonal with the two nonzero elements χλ⊥λ⊥ , which is given
by Eq. (18), and χπ⊥π⊥ ¼ χππ , by isotropy.

B. Dynamics

We are now ready to state the equations that govern the
dynamics of the system in the hydrodynamic regime.
Assuming rotation, translation, and Uð1Þ symmetry, these
are the conservation of energy, charge, and momentum density

_εþ ∇ · jε ¼ 0; _nþ∇ · j ¼ 0; _πi þ∇jτ
ji ¼ 0; ð21Þ

together with the Josephson equation for the dynamic evo-
lution of the Goldstone modes,

d
dt

ui ¼ −vi þ � � � : ð22Þ

In Eq. (22) vi is the velocity field conjugate to the momentum
πi, d=dt≡ ∂t þ vi∇i stands for the material derivative, and the
dots represent dissipative corrections to this relation.
We can derive the nondissipative terms in Eq. (22) in the

following way. The Goldstone fields are canonically con-
jugate to the momentum density, i.e., the conserved charge
that generates the broken symmetry,

i½πiðxÞ; ujðx0Þ� ¼ −δð2Þðx − x0Þðδij þ∇iujÞ: ð23Þ

We then deform the Hamiltonian using an external velocity
source Ho ↦ H ¼ Ho −

R
d2xπivie and use the Schrödinger

equation to compute the time evolution of the displacement,

_ui ¼ i½H; ui� ¼ vie þ vje∇jui: ð24Þ

Since ui must be time independent in thermodynamic equi-
librium (vi ¼ vie), this means that the Josephson relation must
take the form

_ui ¼ ðvje − vjÞðδij þ∇juiÞ þ ũi; ð25Þ

in agreement with Eq. (5). Taking a divergence or a curl of
Eq. (25) with sources off leads to Eq. (22). We have allowed
for a possible dissipative correction ũi.
In our thermodynamic ensemble, the first law of thermo-

dynamics is21This leads to s⊥ ¼ Gλ⊥ and sk ¼ ðGþ BÞλk.
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df ¼ −sdT − ndμþ hijdð∇iujÞ; ð26Þ

where hij ≡ ∂f=∂ð∇iujÞ is

hij ¼
�
XBo þ

X2

2
∂XBo þ Y∂XGo

�
Xij

þ
�
2Go þ Y∂YGo þ

X2

2
∂YBo

�
Yij; ð27Þ

with

Xij ¼ ∂X
∂∇iuj

¼ δij þ∇iuj;

Yij ¼ ∂Y
∂∇iuj

¼ 2ðuij þ uik∇kujÞ − XXij: ð28Þ

Using the condition that the entropy density must be con-
served _sþ ∇iðsvi þ j̃iq=TÞ ¼ 0 in the absence of dissipative
(gradient) corrections, the ideal constitutive relations are
found to be

jiε ¼ ðεþ pÞvi þ hijvj þ hilvj∇jul þ j̃iε; ð29Þ

τij ¼ pδij þ hij þ hil∇jul þ viπj þ τ̃ij; ð30Þ

ji ¼ nvi þ j̃i: ð31Þ

In Eqs. (29)–(31) p is the thermodynamic pressure, which
verifies that p ¼ −f ¼ −εþ sT þ nμþ vkπk. It is straight-
forward to verify that the stress tensor τji is symmetric by
substituting the expression for hij in terms of uij into Eq. (29).
j̃iq, j̃iε, τ̃ji, and j̃i all stand for dissipative corrections that are
at least first order in gradients.
The form of dissipative corrections are determined by

a well-known algorithm. We start by allowing all possible
terms that are spatial derivatives of the fields (the conserved
densities and the Goldstone modes) consistent with the
symmetries; for instance, we do not allow terms that violate
parity. We then require that these terms do not lead to
nonlocalities in the equations of motion. Finally, we verify
that the entropy current is positive definite while also impos-
ing Onsager relations. The outcome of this procedure, which
we detail in the Appendix, leads to the following constitutive
relations:

j̃i ¼ −σijo∇jμ − αijo∇jT − 1
2
ξijμ∇khkj;

j̃iq
T

¼ −αijo∇jμ −
κ̄ijo
T
∇jT −

1

2
ξijT∇khkj;

τ̃ij ¼ −ηijkl∇ðkvlÞ;

ũi ¼ ξijμ∇jμþ ξijT∇jT þ ξijh∇khkj;

j̃iε ¼ j̃iq þ μj̃i − hijũj þ vjτ̃ij: ð32Þ

In the absence of background strain and to linear order in the
fluid velocity, all the transport matrices would have a trivial
index structure and depend on temperature and chemical

potential only, for instance, σijo ¼σðoÞðT;μÞδij or ηijkl∇ðkvlÞ ¼
−ησij − ð2=dÞζ∂kvkδij, where we have defined the shear rate
tensor σij ¼ ∇ðivjÞ − ð2=dÞ∇kvkδij.
In the presence of background strain, the strain tensor uij

provides an independent rank-2 tensor. This gives rise to
new terms in the transport matrices that all take the form22

σijo ¼ σðoÞðT; μ; uoÞδij þ σðuÞðT; μ; uoÞuij in d ¼ 2, with some
arbitrary dependence on uo (since X ¼ uo and Y ¼ 0), when
evaluated on the background (14). There is more freedom in
the viscosity rank-4 tensor, which takes the general form

ηijkl ¼ 2ηð0Þðδikδjl − 1
2
δijδklÞ þ ζð0Þδijδkl

þ 2ηðuÞðδikujl − 1
2
δijukl − 1

2
uijδkl þ 1

4
ummδijδklÞ

þ 2ðζðuÞ þ ζ̄ðuÞÞδijuhkli þ 2ðζðuÞ − ζ̄ðuÞÞuhijiδkl; ð33Þ

where the angular brackets stand for the transverse, traceless
part of the tensor.

C. Linear response

With the constitutive relations in hand, we can now
investigate the linear response of the system about the
equilibrium state (denoted with an o subscript). Making
use of the underlying translation invariance of the system
to decompose the linear perturbations in the plane waves,
we take na ¼ nao þ δnae−iωtþiqx and μa ¼ μao þ δμae−iωtþiqx,
where na are the various conserved densities and μa are their
conjugate sources. We do not consider a background fluid
velocity in this Colloquium.
We start with the transverse sector. In contrast to the fluid

case discussed at the end of Sec. II [see also Kovtun (2012)],
the transverse Goldstone field mixes with the transverse
momentum to form a pair of sound modes propagating in
opposite directions:

ω ¼ �q

ffiffiffiffiffiffiffi
G
χππ

s
−
i
2

�
η

χππ
þ Gξ

�
q2 þOðq3Þ: ð34Þ

Equation (34) is the noted shear sound mode of crystalline
solids. Its velocity is real provided that the matrix of static
susceptibility is positive definite, which implies that G > 0
and χππ > 0. The sound attenuation receives two contributions

η≡ ηð0Þ þ uo
2
ηðuÞ; ξ≡ 1

1þ u0

�
ξð0Þh þ u0

2
ξðuÞh

�
: ð35Þ

In Eq. (35), as in the longitudinal sector, we find that the effect
of the extra terms in the constitutive relations due to back-
ground strain can be hidden away in a redefinition of the
transport coefficients contributing to the linear response. This
is advantageous, as it means that there is no proliferation of
transport coefficients. For instance, the shear Kubo formula
that usually measures the shear viscosity for a fluid becomes

22In d > 2, additional tensor structures such as uiku
kj would enter.

To map to the formulation of Armas and Jain (2020b), higher-order
terms in their strain uIJ need to be considered.
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ηð0Þ þ uo
2
ηðuÞ ≡ η ¼ −lim

ω→0

1

ω
ImGR

τxyτxyðω; q ¼ 0Þ; ð36Þ

and it is the linear combination (35) that appears, not the
individual transport coefficients ηð0Þ and ηðuÞ.
There is a similar Kubo formula for ξμ,

ξμ ¼ −lim
ω→0

1

ω
ImGR

j _uðω; q ¼ 0Þ; ð37Þ

and for ξ,

ξ ¼ −lim
ω→0

1

ω
ImGR

_u _uðω; q ¼ 0Þ; ð38Þ

which as we later see defines the Goldstone diffusivity.
In the longitudinal sector, there are four modes: two sound

modes propagating in opposite directions and two diffusive
modes. Their expressions are in general quite complicated, so
we report them only for a neutral, relativistic system (in which
one of the diffusive modes disappears),23

ω ¼ �ckq −
i
2
Γkq2; ω ¼ −iDkq2;

ck2 ¼
Bþ G
χππ

þ T2ðso − χshk Þ2

χππχ
ðλkÞ
εε

;

Γk ¼
ηþ ζ

χππ
þ ξχππ

ck2

�
ck2 −

Tðso − χshk Þ
χ
ðλkÞ
εε

�2

;

Dk ¼
ðBþ GÞχππξ

ck2χ
ðλkÞ
εε

: ð39Þ

In Eq. (39) χshk ¼ ∂s=∂λk ¼ −∂pel=∂T0, and similarly χ
ðλkÞ
εε ¼

cvT0 (with cv the heat capacity), which is computed fixing λk.
As in the transverse sector, only certain linear combinations of

transport coefficients appear (such as ξ instead of both ξð0Þh and

ξðuÞh ). After matching conventions, these expressions agree
with Armas and Jain (2020a, 2020b). The modes can be
worked out in full generality (absence of boost symmetry,
finite density, nonzero background strain) but become rather
complicated. The appearance of instabilities related to a
change of sign of Bþ G is manifest in the expression for
Dk, as the corresponding purely imaginary mode would then
cross to the upper half complex frequency plane.
At low temperatures, we expect the sound modes to be

carried mostly by the Goldstone field and the longitudinal
momentum density, while the diffusive mode corresponds to
thermal diffusion. At temperatures close to the critical temper-
ature, the sound modes are carried by thermal and momentum
fluctuations, while the diffusive mode is carried predomi-
nantly by the Goldstone mode.24

D. Holography

Elastic properties in holographic models with broken
translations have been investigated for some time (Alberte,
Baggioli, and Pujolas, 2016; Alberte et al., 2016). While
hydrodynamics for Galilean-invariant phases with broken
translations is an old subject (Martin, Parodi, and Pershan,
1972; Enz, 1974; Fleming and Cohen, 1976; Chaikin and
Lubensky, 2000), it was revisited by Delacrétaz et al. (2017b),
who incorporated phase relaxation by defects and pinning by
disorder in a hydrodynamic framework without assuming
Galilean invariance. This led to a flurry of activity in the
holographic community intent on verifying the match between
the holographic and hydrodynamic approaches (Alberte,
Ammon, Jiménez-Alba et al., 2018; Amoretti et al., 2018a,
2019a; Ammon et al., 2019, 2020; Baggioli and Grieninger,
2019; Armas and Jain, 2020b, 2020a; Baggioli, Grieninger,
and Li, 2020). Ultimately, this lead to a consistent hydro-
dynamic construction with nonzero background strain
and with coupling to external sources (Armas and Jain,
2020a, 2020b).
The presence of an isotropic background strain (equiva-

lently, a background elastic pressure pel) is a common feature
of homogeneous holographic models based on massive
gravity or Q-lattices,25 which at an operational level can be
directly observed by identifying an extra contribution pel to
the relativistic momentum susceptibility χππ ¼ εþ p − pel.
This implies that the states considered in these models are not
global (or even local) minima of the holographic thermody-
namic free energy (Donos and Gauntlett, 2013b, 2016) (when
the free energy is minimized, pel ¼ 0). In spite of this, they are
locally thermodynamically stable, with a positive definite
static susceptibility matrix. Accordingly, they do not have
poles in the upper half complex frequency plane. The low-
energy dynamics of these holographic models is also precisely
given by the effective theory developed in Secs. IV.A–IV.C
(Ammon et al., 2020).
Helical homogeneous or inhomogeneous models do not

require background strain, as the free energy can be mini-
mized nontrivially as a function of the modulation wave vector
(Donos and Gauntlett, 2011a, 2012a, 2012b, 2016; Donos,
2013; Rozali et al., 2013; Withers, 2013, 2014), but are
technically more challenging to work with.
The underlying conformal invariance of holographic mod-

els places a number of constraints on the equation of state and
transport coefficients since the stress-energy tensor is now
traceless (Tμ

μ ¼ 0). For instance, the transverse and longi-
tudinal speeds of sound obey the following simple relation
(Esposito et al., 2017; Armas and Jain, 2020b):

23See the Appendix for details on how to take this limit. See also
Armas and Jain (2020a) for the complete expressions at finite density.

24This could be verified explicitly by deriving the fluctuation
eigenvectors of the hydrodynamics equations and also those from the
holographic computation of quasinormal modes, as Arean et al.
(2021) did for a superfluid.

25The reason for this is clear: in the bulk, the fluctuations of the
massless scalars are dual to the Goldstone modes (Ammon et al.,
2019; Amoretti et al., 2019a; Donos and Pantelidou, 2019), and their
background ansatz is chosen to be ϕiðr; xiÞ ¼ mxi in order for
homogeneity to be preserved. Their action is a bulk version of the
EFT elastic free energy (13) (Nicolis, Penco, and Rosen, 2014;
Nicolis et al., 2015), and the bulk ansatz can be directly compared to
Eq. (14), leading to a nonzero background strain. If the bulk
parameter m is set to zero, translations are no longer broken in
any way.
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ck2 ¼
1

d − 1
þ 2

d − 2

d − 1
c⊥2: ð40Þ

Increasing the background strain gives additional contri-
butions to the effective elastic moduli through Eq. (17).
Depending on the specific functional dependence on strain,
this may lead to thermodynamic instabilities if the effective
elastic moduli vanish [this leads in turn to a divergence of the
corresponding susceptibilities (18)]. These thermodynamic
instabilities have dynamical counterparts, as the transverse
sound velocity [Eq. (34)] becomes complex or the longi-
tudinal diffusive mode Dk [Eq. (39)] crosses to the upper half
plane. The conjectured end point of this instability is the
nucleation of topological defects, which relaxes the back-
ground strain and probably leads to plastic behavior and the
failure of the rigidity of the system.26 Viscoelasticity with
background strain (or, equivalently, stress) was discussed in
multiple engineering-oriented works (Birch, 1938; Biot, 1940,
1965; Hayes and Rivlin, 1969; Destrade and Saccomandi,
2007; Destrade, Ogden, and Saccomandi, 2009; Berjamin and
Pascalis, 2021). The onset of instability in the dispersion
relation of low-energy modes was experimentally observed by
Clatterbuck et al. (2003) and Isaacs and Marianetti (2014) and
recently reformulated in the context of relativistic effective
field theories (Alberte et al., 2019; Pan et al., 2022). These
instabilities have not yet been investigated by holographic
methods, although Baggioli, Castillo, and Pujolas (2020) took
the first steps with a pure shear strain.
In holographic systems, the black hole horizon provides a

large bath of OðN2Þ degrees of freedom. It follows that the
Goldstone mode can relax into this bath. This is embodied by
a modernized version of the “membrane paradigm” (Thorne,
Price, and MacDonald, 1986; Damour and Lilley, 2008),
whereby transport coefficients characterizing linear response
are expressed in terms of the background solution evaluated
on the black hole horizon through the construction of radially
conserved bulk fluxes (Iqbal and Liu, 2009; Donos and
Gauntlett, 2014c, 2015).
This was used to compute the linear, relativistic transport

coefficients (32) in holographic models of spontaneously
broken translations that are either homogeneous (Amoretti
et al., 2018a, 2019a) or inhomogeneous (Donos et al., 2018;
Goutéraux, Jokela, and Pönni, 2018). In homogeneous holo-
graphic models, it is well understood how to encode quantum
critical infrared fixed points with broken translations (Donos,
Goutéraux, and Kiritsis, 2014; Goutéraux, 2014b). Near such
critical phases, it was observed (Amoretti et al., 2019a) that
some of the transport coefficients are not independent and
saturate a bound originating from the positivity of the entropy
production [Eq. (A9)],

ξμ ¼ −
�

μ

χπjq

�
σo; ξ ¼

�
μ

χπjq

�
2

σo; ð41Þ

where for relativistic phases χπjq ¼ soTo − pel. Effectively,
the Goldstone relaxation processes are governed by the
incoherent (i.e., without momentum drag) diffusivity σo,
which also controls the thermal diffusivity with open circuit
boundary conditions (Davison, Gentle, and Goutéraux, 2019a;
Davison, Goutéraux, and Hartnoll, 2015).
This can be understood as arising from the dominance of

the following effective interaction between the momentum
and the heat current jiq in the infrared Hamiltonian:

ΔH ¼ 1

χπjq

Z
ddxπijiq: ð42Þ

This in turn implies that

_ui ¼ i½H; ui� ¼ jiq
χπjq

: ð43Þ

Plugging Eq. (43) into the Kubo formulas for ξμ and ξ
[Eqs. (37) and (38)] and evaluating them leads to Eq. (41).
One may wonder why the specific coupling (42) appears

rather than some arbitrary linear combination of the electric
and heat currents. It is plausible that this is an artifact of
the homogeneous holographic Q-lattice and massive gravity
models, where the heat current plays a distinguished role in
relaxation processes (Blake, 2015; Donos et al., 2020).
Whether this remains true in homogeneous helical models
(Donos and Gauntlett, 2012a; Andrade, Baggioli et al., 2018)
or in inhomogeneous models (Donos, 2013; Rozali et al.,
2013; Withers, 2013) is an open question, although the recent
numerical results of Andrade and Krikun (2022) tend to
indicate a negative answer. The difference between these
models is the Chern-Simons bulk term and the associated
breaking of parity, as well as the absence of background
strain. A complete match between the hydrodynamics of
Secs. IV.A–IV.C and those models is also yet to appear.27

E. Emergent higher-form symmetries and topological defects

Ordinary, zero-form symmetries [such as a global Uð1Þ]
give rise to conserved, one-form currents (for instance,
∇μJμ ¼ 0 in relativistic notation). The associated conserved
charges are pointlike objects. Gaiotto et al. (2015) pointed out
the existence of more general symmetries associated with
differential forms of a higher rank. A prototypical example is
the Uð1Þ of electromagnetism in four spacetime dimensions.
There the Bianchi identity can be reformulated as the con-
servation equation of a magnetic Uð1Þ symmetry by Hodge
dualizing the Maxwell field strength Jμν ¼ ð1=2ÞϵμνρσFρσ .
The charge Q ¼ R

Σ⋆J counts the number of magnetic lines
across a codimension-2 surface Σ, and its associated

26In this sense, this mechanism shares several commonalities with
the Landau instability for superfluids triggered by a background
superfluid velocity (Lifshitz and Pitaevskii, 1980) and has already
been observed in bottom-up holographic models (Amado et al.,
2014; Lan et al., 2020).

27Probe brane models can also display spontaneous breaking of
translations (Jokela, Jarvinen, and Lippert, 2014, 2017a). Because of
the presence of an additional long-lived mode (Karch, Son, and
Starinets, 2009; Nickel and Son, 2011; Davison and Starinets, 2012;
Chen and Lucas, 2017), the hydrodynamics presented does not apply
directly to these holographic models.
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conserved current is now a two-form ∇μJμν ¼ 0. Among
various applications, this provides a starting point for
a consistent formulation of magnetohydrodynamics
(Grozdanov, Hofman, and Iqbal, 2017).
A similar treatment can be applied to phases with a

spontaneously broken global Uð1Þ symmetry (superfluids).
Keeping to relativistic notation, the absence of topological
defects (vortices) implies that derivatives commute,
∇½μ∇ν�ϕ ¼ 0, where ϕ here is the superfluid phase. In
2þ 1 dimensions, defining Jμν ¼ ϵμνρ∇ρϕ leads to an emer-
gent conservation equation for the higher-form symmetry
Uð1Þw associated with the conservation of winding planes
∇μJμν ¼ 0 (Delacrétaz, Hofman, and Mathys, 2020). This
emergent symmetry is broken when the theory is coupled to a
background gauge field for the microscopic Uð1Þ. Indeed, the
background gauge field appears as a mixed ’t Hooft anomaly
on the right-hand side of the conservation of Uð1Þw,∇μJμν ¼ −qϵνκλFκλ, where Fκλ ¼ ∇½κAλ� and the anomaly
coefficient q is the charge of the condensate.
Emergent symmetries are often anomalous, and their

higher-form generalizations are no exception (Gaiotto et al.,
2015; Landry, 2021). Such anomalies give rise to anomaly
matching conditions, which put strong constraints on the
hydrodynamic gradient expansion. Ultimately, for superfluids
they are responsible for the emergence of second sound,
whose velocity is proportional to the anomaly coefficient
(Delacrétaz, Hofman, and Mathys, 2020), and give rise to
dissipationless transport (Else and Senthil, 2021). Preliminary
investigations of the higher-form symmetry formulation28 of
phases with spontaneously broken translations were con-
ducted by Armas and Jain (2020b) and Grozdanov, Lucas,
and Poovuttikul (2019) but do not include any mixed ’t Hooft
anomaly. Whether the anomaly-based mechanism for sound
modes and dissipationless transport also operates for space-
time symmetries remains to be determined.
In the condensed phase, the winding operators

Wij ¼
R
d2x∇iuj are conserved and measure elastic

deformations of the crystal or density wave. They lead to
undamped propagation of uniform bulk and shear strains,
for example,29

ηðωÞ≡ i
ω
GR

τxyτxyðω; q ¼ 0Þ ¼ ηþ G
i
ω
: ð44Þ

This infinite dc “shear conductivity” is the analog of dis-
sipationless charge transport in superfluids.
At finite temperatures, bound pairs of defects or anti-

defects (dislocations or disclinations) nucleate. Above the
Berezinskii-Kosterlitz-Thouless (BKT) temperature, thermal
fluctuations lead to their unbinding and they become mobile:
the BKT phase transition (Kosterlitz and Thouless, 1973;
Halperin and Nelson, 1978; Nelson and Halperin, 1979;

Zippelius, Halperin, and Nelson, 1980).30 Mobile defects
relax the windings, and the corresponding emergent symmetry
Uð1Þw is explicitly broken.31 This leads to relaxation of the
longitudinal and transverse phonons,

_λk;⊥ ¼ −Ωk;⊥λk;⊥ þ � � � . ð45Þ

Equation (45) is valid when the anisotropic rates Ωk and Ω⊥
are small, close to the BKT phase transition. The phase
relaxation rates are set by the viscosities of the normal phase
and the density of free defects nf, such as Ω⊥ ∼ nf=ηnormal

(Zippelius, Halperin, and Nelson, 1980).32 “Climb” motion of
dislocations is usually suppressed compared to “glide,” i.e.,
Ωk ≪ Ω⊥. In the language of higher-form symmetries, the
emergent higher-form symmetry counting winding planes is
broken by irrelevant operators (the defects) (Delacrétaz,
Hofman, and Mathys, 2020). When Eq. (44) is evaluated
again, the viscosities of the condensed phase are finite but
large: ηðω ¼ 0Þ ¼ ηþ G=Ω⊥.

V. PSEUDOSPONTANEOUS BREAKING OF
TRANSLATIONS

The total momentum of the full system is always con-
served due to the translation invariance of the ambient
spacetime in which the crystal lives. Thus, the emergent
continuous translation symmetry at long distances in crys-
talline solids cannot be explicitly broken. In systems at finite
density such as metals, the conduction electrons (or more
generally the charge carriers at strong coupling) can be
considered in some regimes (typically, low enough temper-
atures) to be weakly coupled to lattice degrees of freedom
and other sources of inelastic scattering. The electron
momentum then becomes approximately conserved, with
an emergent electronic translation symmetry in the infrared
broken by irrelevant operators (such as umklapp). Disorder
gives rise to elastic scattering and to a residual zero-
temperature resistivity, and thus should be weak in order
for momentum to remain approximately conserved. In an
electronic charge density wave or Wigner crystal phase,
electronic translations are spontaneously broken and give
rise to a spatially modulated electronic density of states;
see Grüner (1988) for a review. New Goldstone degrees of
freedom emerge, called phasons, or sometimes phonons by
an abuse of terminology (not to be confused with the
phonons of the underlying lattice).
It then becomes interesting to study how the previously

mentioned weak explicit breaking affects the dynamics of

28This differs from the dual formulations of Beekman, Nissinen,
Wu, Liu et al. (2017) and Beekman, Nissinen, Wu, and Zaanen
(2017).

29Notice the difference with the Kubo formula in Eq. (36), in
which the divergent 1=ω term would not appear.

30See Kivelson, Fradkin, and Emery (1998), Mross and Senthil
(2012a, 2012b), Beekman, Nissinen, Wu, Liu et al. (2017), and
Beekman, Nissinen, Wu, and Zaanen (2017) for the quantum case.

31The explicit breaking of higher-form symmetries was considered
using effective field theory methods by Baggioli, Landry, and
Zaccone (2022).

32See Delacrétaz et al. (2017b) for a memory matrix calculation of
these rates.
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the Goldstone modes. These acquire both a small mass33 qo
and a damping Ω, leading to a nonzero real and imaginary
part in their q ¼ 0 dispersion relation, respectively.
Phenomenologically, the spontaneous, spatially modulated
phase is no longer free to slide and is pinned at a frequency
ωo ∼ csqo that is proportional to the mass of the Goldstone
mode, which now has a finite correlation length.
Correspondingly, there is a gap in the real part of the
frequency-dependent conductivity with a peak at a
frequency ω ∼ ωo, representing the energy cost to depin the
density wave.34

The pinning of charge density waves is an old subject
(Fukuyama and Lee, 1978a; Lee, Rice, and Anderson, 1993)
and was confirmed in many experiments on quasi-one-
dimensional materials (Grüner, 1988). It was revived in recent
years, motivated by a combination of mounting experimental
evidence on the role of charge density wave phases or
fluctuations across the phase diagram of cuprate high-Tc
superconductors (Peng et al., 2018; Arpaia et al., 2019; Lin
et al., 2020; Kawasaki et al., 2021; S. Lee et al., 2021; W. S.
Lee et al., 2021; Ma et al., 2021; Miao et al., 2021; Tam et al.,
2022) [see Arpaia and Ghiringhelli (2021) for a review],
theoretical developments on the application of hydrodynamics
and related effective field theoretic descriptions of transport to
strongly correlated electronic materials (Hartnoll, 2015; Lucas
and Sachdev, 2015; Levitov and Falkovich, 2016; Zaanen,
2019), and the development of holographic methods for
phases with broken translations.
Following the initial work of Delacrétaz et al. (2017b), who

incorporated pinning by explicit breaking of translations and
damping by defects into a hydrodynamic framework, a number
of groups set out to investigate these phases using holographic
methods. The original expectation was that these systems
would display a pinning frequency ωo and a momentum
relaxation rate Γ but no phase relaxation rate Ω, as none of
these holographic models included mobile elastic defects.35 It
then initially came as a surprise when it was recognized that
they exhibited a finite phase relaxation rate governed by the
pseudo-Goldstone mass and diffusivity Ω ¼ Gq2oξ (Amoretti
et al., 2019b; Donos et al., 2019), with further confirmations
given by Ammon, Baggioli, and Jiménez-Alba (2019),
Andrade and Krikun (2019), Baggioli and Grieninger
(2019), Amoretti, Areán et al. (2020), Andrade, Baggioli,
and Krikun (2020), and Donos et al. (2020).
Note that the assumption of hydrodynamics is not necessary

to the existence of a phase relaxation rate Ω ∼ ω2
o in the

presence of weakly broken translations. A memory matrix
approach [see Forster (1975) and Hartnoll, Lucas, and
Sachdev (2018) for reviews] suffices (Delacrétaz et al.,
2017b). Where hydrodynamics enters is in the determination

of the relevant memory matrix element in terms of a diffusive
transport coefficient ξ. This belongs to the same class of
hydrodynamic relaxation mechanisms giving rise to flux-flow
resistance in phase-relaxed superconductors (Bardeen and
Stephen, 1965; Davison, Richard et al., 2016) or minimal
viscosity scenarios for cuprate strange metals (Davison,
Schalm, and Zaanen, 2014; Zaanen, 2019). As we soon
elaborate upon, Ω captures the contribution of ungapped
excitations to the dc resistivity.
The main theoretical achievement of this collective effort is

the construction of a hydrodynamic theory of pseudosponta-
neously broken translations (Armas, Jain, and Lier, 2021;
Delacrétaz, Goutéraux, and Ziogas, 2021), which explains
the previous observations and which we now describe. For
simplicity, we consider states without background strain
throughout this section, but this can be incorporated straight-
forwardly (Armas, Jain, and Lier, 2021).

A. Hydrodynamics

When translations are weakly broken explicitly, the free
energy at quadratic order in fluctuations now includes the
following mass term for the Goldstone modes36:

δfð2Þ ¼ Bþ G
2

ð∇iδϕiÞ2 þ
G
2
ð∇ × δϕÞ2 þ Gq2o

2
δϕiδϕ

i;

ð46Þ

which shifts the unpinned static susceptibility matrices χo;k
and χo;⊥ as

χ−1o ↦ χ−1 ¼ χ−1o þ Δχ−1; ð47Þ

where Δχ−1 is a matrix whose only nonzero elements are
ðΔχ−1Þλkλk ¼ ðΔχ−1Þλ⊥λ⊥ ¼ Gq2o=q2. As a result, the static

susceptibility matrix χ becomes nonlocal.
The charge and energy conservation equations in Eqs. (21)

remain unchanged. On the other hand, since translations are
broken explicitly, momentum is no longer conserved:

_πi þ ∇jτ
ji ¼ −Γπi −Gq2oδϕi: ð48Þ

The Γ term in Eq. (48) is allowed on general grounds and
captures momentum relaxation, while the second term enc-
odes the effects of the mass of the Goldstone mode and can
be derived by computing _πi ¼ i½H; πi�, including a mass
deformation (46) in the Hamiltonian H and using the
commutator (23).
The constitutive relations and the Josephson equation can

all contain terms linear in ϕi without any spatial gradient since
the shift symmetry is broken. These terms are constrained by
locality and Onsager relations. After imposing these con-
straints, the constitutive relations and the Josephson equation
read

33By a similar mechanism that leads to the Gell-Mann–Oakes–
Renner (GMOR) relation (Gell-Mann, Oakes, and Renner, 1968) for
pion masses in QCD.

34If disorder or lattice effects are strong, the density wave is
strongly pinned and locked at impurity sites.

35Though see Andrade, Krikun et al. (2018) and Krikun (2018a)
for a holographic construction of phases with static discommensura-
tions.

36The mass term can be thought to originate from expanding a
cos ui deformation of the Hamiltonian of the system to quadratic
order in fluctuations, so the ui are still compact scalars.
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ji ¼ −σo∇iμ − αo∇iT þ ξμhi;

j̃iq
T

¼ −αo∇iμ −
κ̄o
T
∇iT þ ξThi;

τij ¼ −ησij − ζ∇ · vδij;

_ϕi ¼ vi þ ξμ∇iμþ ξT∇iT − ξhi; ð49Þ

where hi ¼ ∂f=∂ϕi ¼ Gq2oδϕi −∇jhji and where in the
absence of background strain the transport coefficients are
no longer matrices. These dissipative corrections ensure that
the equations of motion remain local (Delacrétaz, Goutéraux,
and Ziogas, 2021) and that the divergence of the entropy
current is positive (Armas, Jain, and Lier, 2021). Translating
the hi terms to fields ϕi generates new relaxation terms in the
constitutive relations and Josephson equations proportional to
q2o and various dissipative transport coefficients: ξμ, ξT , and ξ.
For instance, the Josephson equations take the form

_δϕi ¼ −Ωδϕi þOð∇iÞ; ð50Þ

where the damping term Ω,

Ω ¼ Gq2oξ; ð51Þ

is universally determined by the Goldstone mass and ξ. The
parameter ξ is a diffusive transport coefficient of the trans-
lation-invariant theory that enters into the attenuation of sound
and diffusive modes of Sec. IV and encodes dissipation of the
Goldstone mode in the thermal bath over long distances.
In the framework of effective hydrodynamic theories,

Eq. (51) is a direct consequence of locality (Delacrétaz,
Goutéraux, and Ziogas, 2021) or the second law of thermo-
dynamics (Armas, Jain, and Lier, 2021) with external
sources on.37

The damping term Ω is allowed on general grounds, since
the shift symmetry of the Goldstone modes is broken by the
explicit breaking of translations, without having to assume a
hydrodynamic regime. A memory matrix analysis (Delacrétaz
et al., 2017b) shows that it is given by the following Kubo
formula:

Ω ¼ Gq2o lim
ω→0

1

ω
ImGR

∂tϕ
i
∂tϕ

iðω; k ¼ 0Þ. ð52Þ

In this approach, the retarded Green’s function on the right-
hand side of Eq. (52)should be evaluated in the purely
spontaneous theory. Using the hydrodynamic form of the
retarded Green’s function gives back Eq. (51).
In the presence of explicit breaking, Ω captures the

relaxation of the pseudo-Goldstone mode in the surrounding
bath of thermal excitations. Andrade, Baggioli, and Krikun
(2020) showed that in the absence of a gap the time-dependent

Ginzburg-Landau equation gives a good account of the
dynamics of these systems near Tc. For one-dimensional
systems with quasiperfect nesting of the modulation wave
vector and gapping of the Fermi surface, the charge density
wave formation is described by the Peierls instability (Grüner,
1988). The gap equation is BCS-like, and the density of
uncondensed electrons is exponentially suppressed at low
temperatures. In this case, there are few thermal excitations
that the pseudo-Goldstone mode can relax into and we expect
the damping Ω to be suppressed, which explains why it has
not been discussed in previous literature (Grüner, 1988). In
other words, in the absence of a thermal bath the Goldstone
mode is gapped and cannot “leak” to arbitrarily low energies.
Pinning also introduces new relaxation parameters in the

constitutive relations for the currents

ji ¼ nvi þ Ωnδϕ
i þOð∇Þ; jiq

T
¼ svi þ Ωsδϕ

i þOð∇Þ;
ð53Þ

with

Ωn ¼ Gq2oξμ; Ωs ¼ Gq2oξT: ð54Þ

With translations explicitly weakly broken, the quasinormal
modes of the system have both an imaginary and a real gap

ω� ¼ �
ffiffiffiffiffiffiffi
G
χππ

s
qo −

i
2
ðΓþ Gq2oξÞ þOðq2; g3Þ: ð55Þ

In Eq. (55), we have assumed the scaling qo ∼ g and Γ ∼ g2,
where g is the source of the microscopic operator breaking
translations explicitly. This assumption can be lifted, and the
dispersion relation then takes a more complicated form.
Equation (55) makes manifest the damped oscillator behavior
of the system, with a pinning frequency ωo ≡ qo

ffiffiffiffiffiffiffiffiffiffiffiffiffi
G=χππ

p
, and

two contributions to the damping rate: Gq2oξ takes a universal
form in terms of the parameters of the effective field theory,
while Γ does not. The only gapless modes left are two
diffusive modes transporting charge and thermal fluctuations.
Their expressions, as well as the leading q dependence of the
gapped modes, can easily be computed with Eq. (49) in hand,
but their expressions are not particularly illuminating, and we
leave it to the interested reader to write them down.
Armas, Jain, and Lier (2021) reported extra coefficients

when coupling to external sources. Since these terms originate
from extra freedom in how currents are coupled to external
sources when symmetries are explicitly broken, they appear
only in the numerator of retarded Green’s functions and do not
affect the poles. In particular, they do not affect Eqs. (51)
and (54). It is also not currently known how they affect the
electric conductivity, which is our primary focus in Sec. V.B.
For simplicity, we omit these terms here and refer
the interested reader to Armas, Jain, and Lier (2021) for
details. This is justified to some extent by the fact that these
terms are either absent from or can be redefined away in the
holographic models with pseudospontaneous breaking inves-
tigated thus far (Ammon, Baggioli, and Jiménez-Alba, 2019;

37Analogous relations apply for other symmetry-broken phases,
such as superfluids (Ammon et al., 2021; Armas, Jain, and Lier,
2021; Delacrétaz, Goutéraux, and Ziogas, 2021), QCD in the chiral
limit (Grossi et al., 2020; Grossi et al., 2021), nematic phases,
(anti)ferromagnets (Delacrétaz, Goutéraux, and Ziogas, 2021), and
quasicrystals (Baggioli, 2020; Baggioli and Landry, 2020).
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Amoretti et al., 2019b; Donos and Pantelidou, 2019; Donos
et al., 2019, 2020; Ammon et al., 2021).

B. Charge transport in pinned crystals

In a translation-invariant system at nonzero density, the
electric conductivity is infinite in the dc limit σdc ≡ σðω ¼ 0Þ.
This is because at nonzero density the electric current, which
is a fast mode, overlaps with the electronic momentum
density, which is conserved. This is manifested in a nonzero
cross susceptibility χJP between the charge and momentum
operators. Hence, the electric current cannot relax, which
manifests itself as a divergence of the zero frequency
conductivity. This can be proven rigorously on general
grounds using the memory matrix formalism; see Hartnoll,
Lucas, and Sachdev (2018). This continues to be true when
translations are spontaneously broken (such as for an elec-
tronic charge density wave in a clean system). Using the
hydrodynamics equations of Secs. IV.A–IV.C, the conduc-
tivity can be obtained from the Ward identity for charge
conservation,38

σðωÞ≡ i
ω
GR

jjðω; q ¼ 0Þ ¼ i
ω
lim
q→0

ω2

q2
GR

nnðω; qÞ; ð56Þ

and is found to be

σðωÞ ¼ σo þ
n2o
χππ

i
ω
: ð57Þ

The ω ¼ 0 pole in the imaginary part is physical and cannot
be removed by contact terms. As discussed, its residue is
directly proportional to the off-diagonal susceptibility
χJP ¼ no, which is identified as the charge density of the
system. It gives rise to a delta function in the real part through
Kramers-Krönig relations. There is also a finite contribution to
the real part, captured by the transport coefficient σo. It is
always nonzero except in a Galilean-invariant system, where it
vanishes as a consequence of the Ward identity for Galilean
boosts, ji ¼ πi (where for simplicity we set the electric charge
and particle mass to unity in this formula). Intuitively, it is the
contribution to electric transport of “incoherent” processes
(meaning those that do not give rise to dissipationless current)
(Davison, Goutéraux, and Hartnoll, 2015). It has no equivalent
in a simple quasiparticle picture, which is intrisically Galilean
invariant. It can be generated in Boltzmann transport by
including terms breaking Galilean invariance; see Huang and
Lucas (2021). It would also be present in a translation-
invariant fluid without Galilean boosts, and there it transports
fluctuations of entropy per unit charge δðn=sÞ diffusively
(Hartnoll, Lucas, and Sachdev, 2018). (When translations are
spontaneously broken, the eigenmode is more complicated
due to the coupling to the longitudinal Goldstone mode.)

When translations are explicitly broken, the electronic
momentum is no longer conserved. In the regime where it
relaxes slowly enough to be kept in the effective field theory as
a light mode, the conductivity is strongly modified. It is
helpful to first consider the case without spontaneous breaking
(Hartnoll et al., 2007). The only relaxation parameter is the
momentum relaxation rate Γ, and the electric conductivity
becomes39

σðωÞ ¼ σo þ
n2o
χππ

1

Γ − iω
þOðΓ0Þ: ð58Þ

The ω ¼ 0 pole is now located at ω ¼ −iΓ and is identified
with slowly relaxing momentum. In real space, we expect
hπiðtÞi ∼ πi0e

−Γt. The real part of the conductivity shows a
sharp peak centered at zero frequency (the Drude peak), of
width Γ and weight n2o=χππΓ. In the weakly relaxing regime
Γ ≪ Λ (with Λ the thermalization scale), the dc conductivity
σdc ¼ σo þ n2o=χππΓ ≃ n2o=χππΓ is large and completely domi-
nated by this “Drude” contribution. The system is a hydro-
dynamic metal where the electronic momentum relaxes by
inelastic scattering off impurities or by umklapp processes.
By contrast, when translations are pseudospontaneously

broken, the frequency-dependent conductivity becomes

σðωÞ¼σoþ
ðn2o=χππÞðiω−ΩÞþ2noΩnþðΩ2

n=ω2
oÞðΓ− iωÞ

ðωþ iΓÞðωþ iΩÞ−ω2
o

:

ð59Þ

Compared to the case without a spontaneous breaking of
translations, we observe new contributions to inelastic scatter-
ing that are proportional to q2o and contained in the ωo, Ω, and
Ωn terms. The line shape interpolates between a Lorentzian
centered at ωo when Ω and Ωn can be neglected [matching
previous hydrodynamic treatments of the collective zero mode
(Grüner, 1988)] and a Drude-like peak centered at ω ¼ 0

when the damping rates become more important, as illustrated
in Fig. 2; for the original argument see Delacrétaz et al.
(2017a). In the work of Grüner (1988) and experimental
references therein, the focus was on low temperatures. It
would be interesting to examine Eq. (59) to experimental data
at higher temperatures, where ungapped degrees of freedom
become non-negligible.
The dc conductivity

σdc ¼ σo þ
ðn20=χππÞΩ − 2noΩn − ðΩ2

n=ω2
oÞΓ

ΓΩþ ω2
o

ð60Þ

is nonvanishing due to the nonzero symmetry-breaking terms
Ω and Ωn and to the “non-Galilean” transport coefficient σo.
Previous hydrodynamic treatments [see Grüner (1988)] usu-
ally assume the Galilean limit, where the coefficients σo, ξμ,
and consequently Ωn would be zero, but did not account for Ω

38While in hydrodynamics the continuity equation is a dynamical
equation for the time evolution of VEVs of operators, the Ward
identity is a consequence of the Uð1Þ symmetry and is more
fundamental. It is an operator equation that can be used in Green’s
functions.

39Equation (58) is really correct only to order Oð1=ΓÞ. Generally,
susceptibilities will receiveOðΓÞ corrections that need to be included
in order to consistently describe the dc conductivity to order OðΓ0Þ
(Davison and Goutéraux, 2015a).
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in the dynamics of the collective mode. Here in the Galilean
limit (setting no ¼ ne and χππ ¼ mn, where e is the electron
unit charge, n is the density, and m is the mass), the resistivity
ρ≡ 1=σ ðω ¼ 0Þ is

ρGalilean ¼
m
ne2

Γþ 1

ðneÞ2ξ : ð61Þ

In other words, we do not expect a translation-broken phase
such as a charge density wave to be necessarily insulating: the
inelastic scattering of the Goldstone mode into the bath of
thermal excitations provides a conduction channel. In elec-
tronic charge density wave materials, such as those reviewed
by Grüner (1988), the Fermi surface may only be partially
gapped in the charge density wave phase. The second term in
Eq. (61) captures the inelastic scattering of the Goldstone
mode into these uncondensed electrons. Instead, if the Fermi
surface is fully gapped, Ω ¼ 0 and the collective mode does
not contribute to dc transport, as found by Grüner (1988). In
other words, in the absence of gapless thermal excitations,
there is a finite energy cost to make the density wave slide.
The resistivity (61) takes a Drude-like form with a “trans-

port scattering rate”

1

τtr
¼ Γþ 1

ðmnÞξ : ð62Þ

In general, this picture is misleading, as there is no single pole
located at ω ¼ −i=τtr as in the Drude model (58). Rather, both
poles in Eq. (55) give important contributions to the line
shape. When the Goldstone damping rate is large compared to
Γ and ωo, the poles are located at

ω− ¼ −i
�
Ω −

ω2
o

Ω
þ � � �

�
; ωþ ¼ −i

�
Γþ ω2

o

Ω
þ � � �

�
;

ð63Þ

where the ellipses denote subleading 1=Ω corrections. The ω−
pole recedes deeply into the lower half plane and drops out of

the effective theory, while the ωþ pole remains long-lived.
Accordingly, the ac conductivity becomes Drude-like, as
along the blue solid line in Fig. 2. Amoretti et al. (2019b)
determined that this process takes place at low temperatures.
Above Tc, we also expect to recover a Drude-like conduc-

tivity, as in Eq. (58), that is dominated by a single pole
ω ≃ −iΓ. Andrade, Baggioli, and Krikun (2020) showed that
this occurs through a vanishing of the residue of the ω− pole,
whileΩ remains finite through the phase transition. Above Tc,
there is no condensate but Ω captures the fluctuations of the
order parameter.
Moving away once again from the Galilean limit, the dc

conductivity (60) no longer depends on the explicit symmetry-
breaking parameter qo after inserting Eqs. (51) and (54).
At low temperatures, inelastic scattering off impurities is
expected to dominate the momentum relaxation rate and does
not contribute any temperature dependence Γ ∼ T0. The
primary temperature dependence of the resistivity then orig-
inates from incoherent scattering processes encapsulated in
the diffusive transport coefficients σo, ξμ, and ξ, in sharp
contrast to metallic phases. In a metal, extrinsic processes
dominate the resistivity through the scattering rate (ρdc ∼ Γ),
while when translations are pseudospontaneously broken,
intrinsic ones dominate.

C. Holography

Pseudospontaneous breaking of translation symmetry has
been implemented in several holographic models in recent
years (Ling et al., 2014; Amoretti et al., 2017; 2019b; Jokela,
Jarvinen, and Lippert, 2017b; Alberte, Ammon, Baggioli
et al., 2018; Andrade, Baggioli et al., 2018; Andrade,
Krikun et al., 2018; Ammon, Baggioli, and Jiménez-Alba,
2019; Andrade and Krikun, 2019; Baggioli and Grieninger,
2019; Donos and Pantelidou, 2019; Li and Wu, 2019;
Amoretti, Areán et al., 2020; Andrade, Baggioli, and
Krikun, 2020; Donos et al., 2020). Regardless of the concrete
model at hand, this limit is always achieved by introducing on
top of the purely spontaneous state a small space-dependent
source for a boundary operator that is therefore responsible for
the explicit translation symmetry breaking.40

This body of work firmly established the validity of the
previously presented hydrodynamic theory of pseudopho-
nons,41 and more specifically of Eq. (51). Recent works
(Armas, Jain, and Lier, 2021; Delacrétaz, Goutéraux, and
Ziogas, 2021) further confirmed that this relation is not an
artifact either of the homogeneity of the holographic models
used or of the large N limit inherent in the holographic
approach. Various works also established a GMOR-like
relation between the mass of the pseudo-Goldstone mode,
the condensate, and the source of explicit breaking (Andrade,
Baggioli et al., 2018; Ammon, Baggioli, and Jiménez-Alba,
2019; Amoretti et al., 2019b; Andrade and Krikun, 2019;

FIG. 2. Schematic representation of the ac conductivity (59) in
the Galilean limit whenΩ is dialed from large (solid line) to small
(bullets), keeping all other parameters fixed. The transfer of
spectral weight from the zero frequency Drude-like peak to the
off-axis peak is evident.

40In some of the examples, this boundary operator is the same one
that breaks translations spontaneously.

41For the reasons mentioned in footnote 27, the hydrodynamics of
probe brane setups are of a different nature.

Matteo Baggioli and Blaise Goutéraux: Colloquium: Hydrodynamics and holography …

Rev. Mod. Phys., Vol. 95, No. 1, January–March 2023 011001-16



Baggioli and Grieninger, 2019; Li and Wu, 2019; Andrade,
Baggioli, and Krikun, 2020; Wang and Li, 2021).42

Holographic models can easily account for phases that
are either insulating, where the resistivity diverges toward
low temperatures (Andrade, Baggioli et al., 2018; Andrade,
Krikun et al., 2018), or metallic (Amoretti et al., 2019b), with
a vanishing resistivity at low temperatures. The former case is
in some respects more similar to conventional charge density
wave systems, in the sense that a gap forms and the damping
rate Ω does not make a large contribution to the dc conduc-
tivity, as evidenced by the negligible value of the dc
conductivity compared to the height of the off-axis peak in
the ac conductivity (Andrade and Krikun, 2019). An impor-
tant difference is that the gap is algebraic, and the resistivity
diverges like a power law. In the helical, homogeneous setup
of Andrade and Krikun (2019), this scaling is rooted in the
critical behavior of the infrared geometry in the near-horizon,
near-extremal limit. Indeed, as is well known in holographic
models, such critical geometries leave a strong imprint on
the scaling of transport observables at low temperatures
(Donos, Goutéraux, and Kiritsis, 2014; Goutéraux, 2014b).
It is surprising then that the resistivity continues to scale in the
inhomogeneous construction of Andrade, Krikun et al. (2018)
even though there is no evidence thus far of scaling behavior
in the geometry. A better understanding of this result remains
unobtained.
In the metallic case, an inverse transfer of spectral weight is

observed (Amoretti et al., 2019b) as the off-axis peak in the ac
conductivity smoothly interpolates back to a Drude-like peak
at zero frequency upon lowering the temperature, as depicted
in Fig. 2. This is accompanied by a nontrivial motion of the
poles in the lower half complex frequency plane. At low
enough temperature, the poles are once again purely imagi-
nary and the width of the Drude-like peak is controlled by the
pole closest to the real axis. Its partner quickly recedes down
the axis and becomes incoherent. Whether this behavior can
be reproduced in a more realistic, inhomogeneous state is not
known. Nonetheless, it bears resemblance to what is observed
experimentally in cuprate high-Tc superconductors and many
other strongly correlated materials, as described in Sec. VII.
Given that Ω ¼ Gq2oξ and Ωn ¼ Gq2oξμ, the same effective

interaction as we described in Sec. IV.D around Eq. (42)
operates near homogeneous holographic quantum critical
phases with pseudospontaneously broken translations. This
further implies that the low-temperature resistivity is con-
trolled by a single diffusive transport coefficient σo of the
clean state, with subleading contributions from explicit
symmetry breaking (assuming disorder and umklapp proc-
esses to be irrelevant and/or to contribute no significant
temperature dependence to the momentum relaxation rate),
ρdc ≃ ðsT=μnoÞ2=σo þ μΓ=no. As the transport coefficient σo
can be computed in terms of data at the black hole horizon, it
is sensitive to the scaling properties of the low-temperature
critical phase, and hence so is the resistivity. This does not

suffice to explain the results of Andrade, Krikun et al. (2018)
but resonates with the scaling form of the low-temperature
resistivity uncovered there.
Recently Andrade and Krikun (2022) numerically inves-

tigated the thermoelectric ac conductivities in helical and
inhomogeneous models and found that the numerical data can
be well fitted to the hydrodynamic formulas. Their fit allowed
them to determine the transport coefficients σo, ξμ, and ξ,
which they found do not obey Eqs. (41). The models that they
used break parity due to the presence of Chern-Simons terms
in the bulk, and their ground states had different critical
properties than homogeneous Q-lattices as well as no back-
ground strain. The essential feature giving rise to Eqs. (41)
remains an open question, especially since similar relations
appear to hold in experimental realizations of Wigner solids;
see Sec. VI.
In underdoped cuprates, the Hall (the dc electric transverse

response in a magnetic field) and Seebeck coefficients (the dc
electric response to a temperature gradient) change sign at low
temperatures (Badoux et al., 2016; Collignon et al., 2021),
which is usually attributed to the reconstruction from a large,
holelike Fermi surface to small, electronlike pockets (Doiron-
Leyraud et al., 2007; Vignolle et al., 2008; Yelland et al.,
2008) due to the formation of a charge density wave (CDW).
An important outcome of the analysis given by Andrade and
Krikun (2022) is that the Seebeck coefficient changes sign at
low temperatures, without the presence of a Fermi surface or a
reconstruction thereof.
When the spontaneous spatially modulated structure is

coupled to an explicit lattice, one would expect their perio-
dicities to become commensurate for a sufficiently large lattice
strength. This phenomenon is beyond homogeneous con-
structions (Andrade and Krikun, 2016). Instead, more realistic
inhomogeneous constructions display commensurability
effects (Andrade and Krikun, 2017). The black hole horizon
is strongly spatially modulated by the spontaneous structure,
which is weak in the ultraviolet near the boundary (since it is
not sourced) but important in the infrared. The explicit lattice
is strong in the ultraviolet but irrelevant (weak) in the infrared.
The commensurability that develops between these two
structures is a reflection of a strong UV-IR mixing upon
increasing the UV lattice strength and turns the system into a
Mott insulator (Andrade, Krikun et al., 2018), albeit with an
algebraic rather than exponential gap and reminiscent of
underdoped cuprates.

VI. MAGNETIC FIELDS

External magnetic fields are a valuable experimental
probe in the study of strongly correlated electronic phases
of matter. They are particularly important in the context of
two-dimensional systems in which they produce new physical
phenomena (Chen, 2005). Moreover, the interplay between
translational symmetry breaking and the presence of an
external magnetic field results in a complex structure of
low-energy excitations, including the appearance of a
type-II Goldstone boson with quadratic dispersion
ReðωÞ ∼ k2: the magnetophonon. This mode arises from
the hybridization of the original longitudinal and transverse
phonons into a gapless magnetophonon and a gapped

42The GMOR relation itself was shown to hold in holographic
QCD models [see Erlich et al. (2005)] and in holographic models
where a Uð1Þ global symmetry is pseudospontaneously broken
(Argurio et al., 2016).
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magnetoplasmon, which is now allowed because of the time-
reversal symmetry breaking induced by the magnetic field
(Watanabe and Murayama, 2014). As a consequence, the
original Goldstone modes are no longer independent:
½ϕi;ϕj� ≠ 0. Following the Watanabe-Brauner argument
(Watanabe and Brauner, 2011; Watanabe and Murayama,
2012; Hidaka, 2013), the number of Goldstone modes is
reduced and their dispersion converted into a quadratic type.
Early accounts of the dynamics of two-dimensional pinned

charge density waves in the presence of an external magnetic
field were given by Fukuyama and Lee (1978b) and Normand,
Littlewood, and Millis (1992). Their hydrodynamics were
recently revisited by Delacrétaz et al. (2019), Amoretti, Arean,
Brattan, and Magnoli (2021), and Delacrétaz, Goutéraux, and
Ziogas (2021). In the presence of pinning and a magnetic
field, new relations of the type of Eq. (51) arise.
Delacrétaz et al. (2019) considered the match between the

hydrodynamic ac conductivity and an experimental measure-
ment in GaAs heterojunctions (Chen, 2005; Chen et al., 2006,
2007), in which Wigner crystallization occurred at large
enough magnetic fields in between quantum Hall plateaux.43

The conductivity is characterized by the peak frequency ωpk,
the magnetophonon damping rate Ω, and an extra asymmetry
parameter a compared to the case without a magnetic
field. Topological defects and pinning are expected to give
independent contributions to the magnetophonon damping
rate Ω. These rates can be computed using the memory
matrix formalism. For a defect-dominated phase the ratio
Ω=ωpka ¼ 2, while for a disorder-dominated phase where the
magnetophonon predominantly relaxes into the electric cur-
rent the ratio Ω=ωpka ¼ 1. These values seem to account well
for fits to the experimental results at low temperatures or with
strong magnetic fields. In the disorder-dominated case, the
relaxation mechanism into a hydrodynamic current is remi-
niscent of the analogous mechanism in holographic systems
discussed in Secs. IV.D and V.C.
From the holographic perspective, the introduction of an

external magnetic field in homogeneous models with broken
translations was considered by Baggioli, Grieninger, and Li
(2020), Amoretti, Arean, Brattan, and Martinoia (2021), and
Donos, Pantelidou, and Ziogas (2021). A full holographic
calculation of all linear transport coefficients combined with
matching to the hydrodynamic dispersion relation for the
modes has not yet been performed.

VII. TRANSPORT IN STRANGE METALS AND
PSEUDOSPONTANEOUS BREAKING OF TRANSLATIONS

Can the physics of pseudospontaneous breaking of trans-
lations shed light on the phenomenology of high-Tc super-
conductors, in particular, on their strange metallic phase?
Transport experiments famously measure a resistivity linear in

temperature (Gurvitch and Fiory, 1987) that extends for
optimally doped samples from above room temperature to
the lowest temperatures experimentally available when a
magnetic field suppresses superconductivity. This observation
brings two important puzzles. The absence of resistivity
saturation at high temperatures violates the Mott-Ioffe-
Regel bound (Gunnarsson, Calandra, and Han, 2003; Hussey,
Takenaka, and Takagi, 2004) and precludes any notion of
quasiparticle-based transport, calling for other descriptions of
transport in systems with short-lived excitations (Hartnoll,
2015). Charge transport in conventional metals with long-
lived quasiparticles is often analyzed with the Drude model.
Applying this framework to the resistivity of strange metals
identifies a “Planckian” scattering rate (Bruin et al., 2013),
which on theoretical grounds can be argued to be the shortest
relaxation timescale consistent with Heisenberg’s uncertainty
principle (Zaanen, 2004; Sachdev, 2011); see Hartnoll and
Mackenzie (2021) for a recent review on Planckian dissipation
in metals and bounds on transport.
At low temperatures, the persistence of a T-linear compo-

nent to the resistivity over a range of dopings (Cooper et al.,
2009; Hussey et al., 2011, 2013; Legros et al., 2019; Putzke
et al., 2021) clashes both with Fermi liquid predictions of a T2

resistivity, which is only fully recovered beyond the super-
conducting dome for overdoped samples, and with conven-
tional expectations of transport in the vicinity of a quantum
critical point (Sachdev, 2011), where quantum critical behav-
ior is not expected outside the quantum critical cone.
The slope of the T-linear resistivity appears to be of the

same order of magnitude across different materials (Legros
et al., 2019), which hints at a universal mechanism under-
pinning this phenomenon. Extrapolations of the resistivity to
zero temperature show that the disorder of the sample does not
play an important role, with values of the residual resistivity
sometimes varying over an order of magnitude or more across
materials. Further evidence of disorder independence comes
from ion-irradiation experiments (Rullier-Albenque et al.,
1995, 1997; 2000; Rullier-Albenque, Alloul, and Tourbot,
2003), which show that resistivity curves simply shift upward
when disorder is increased without any change in the slope of
the T-linear component.
Transport experiments also report a T2 cotangent of the Hall

angle (Chien, Wang, and Ong, 1991) and a magnetoresistance
linear in the magnetic field at large field over a range of
dopings (Hayes et al., 2016; Giraldo-Gallo et al., 2018; Ayres
et al., 2021). This is once again at odds with quasiparticle-
based transport and the Boltzmann equation, which predicts
that the resistivity and the Hall angle are controlled by the
same transport timescale, and that the magnetoresistance is
quadratic in field. Instead, the different temperature depend-
encies of the resistivity and Hall angle are often interpreted
in a two-timescale scenario (Anderson, 1991; Coleman,
Schofield, and Tsvelik, 1996a, 1996b). More generally there
is some experimental support for two sectors contributing to
transport, one coherent and the other incoherent (Licciardello
et al., 2019; Ayres et al., 2021; Culo et al., 2021). Transport
experiments in overdoped cuprates are often analyzed using
the Boltzmann equation. Angle-dependent magnetoresistance
experiments allow one to infer the quasiparticle scattering

43One may question whether these systems are truly in a hydro-
dynamic regime. Here we observe that in fact a memory matrix
analysis is enough to establish the expressions for the ac conductiv-
ities (Delacrétaz et al., 2017b), so the hydrodynamic assumption is
not in the narrow sense needed; it is required only that translations are
explicitly weakly broken.
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rates [with qualitatively different results for different materials
(Abdel-Jawad et al., 2006; Grissonnanche et al., 2021)] but do
not always allow one to reproduce in-plane transport experi-
ments (Ayres et al., 2021). Thus, even on the overdoped side,
the validity of Boltzmann transport is not entirely obvious.
Turning to optics, the ac in-plane conductivity in the strange

metal regime above the temperature at which superconduc-
tivity sets in is Drude-like, with a peak centered at zero
frequency and a width of the order of T. At higher temper-
atures, a number of compounds reveal a transfer of spectral
weight and the zero frequency peak moves off axis to a
nonzero frequency (Hussey, Takenaka, and Takagi, 2004;
Delacrétaz et al., 2017a). The ac conductivity also features an
infrared contribution (Uchida et al., 1991; Quijada et al.,
1995, 1999) extending beyond the peak, which scales as
jσðωÞj ∼ ω−2=3 (van der Marel et al., 2003; Hwang, Timusk,
and Gu, 2007). This is weaker than the expected Drude scaling
jσðωÞj ∼ ω−1. This resonates with the two-component analysis
of transport. However, fits to optics data typically assume
that the dc conductivity solely originates from the Drude
component, ascribing a frequency dependence to the infrared
component that vanishes as ω → 0. Recently van Heumen
et al. (2022) vindicated this picture in a careful study of optics
across a range of dopings in single-layer bismuth strontium
calcium copper oxide. From a theoretical perspective, there is
tension between assuming a gapless, scaling contribution
decaying as some power of frequency for frequencies
ω≳ T but that would not produce a corresponding decaying
power of temperature in the regime ω≲ T, as ω=T scaling
would dictate and as seems to hold well experimentally
(Michon et al., 2022; van Heumen et al., 2022). It would
be interesting to investigate to what extent this constraint in
fitting optics can be relaxed and cross-referenced to dc
transport data.
These experimental facts pose an immediate conundrum

when one attempts to interpret them in the framework of a
metal with slowly relaxing momentum. The ac conductivity at
not too high temperatures suggests that a Drude analysis may
work but fails to account for the appearance of an off-axis
peak at higher temperatures or for the infrared non-Drude
contribution. The ac conductivity of a slowly relaxing metal is
given in Eq. (58). If momentum relaxes weakly, Γ is small
compared to some parameter determining the scale at which
other degrees of freedom start to be important, usually
temperature. But this theoretical assumption contradicts the
experimental observation that Γ ∼OðTÞ. The dc conductivity
should be dominated by the “coherent” contribution from the
Drude peak σcoh ∼ n2o=χππΓþOðΓ0Þ. Γ strongly depends on
disorder strength (Hartnoll, Lucas, and Sachdev, 2018), which
contradicts the experiments where disorder is varied by ion
irradiation that was just referred to.
While experimentally difficult to establish, the notion of

coherent and incoherent charge transport in a slowly relaxing
metal is easy to understand from a theoretical standpoint. All
that is required is to give up Galilean invariance, which
imposes that the electric current is equal to the momentum
density, thereby killing any incoherent contribution to trans-
port. Doing so, new processes are allowed that conduct charge
but do not drag momentum and are encapsulated in the

appearance of the transport coefficient σo in the dc conduc-
tivity (58). These processes naturally appear in hydrodynam-
ics (Davison, Goutéraux, and Hartnoll, 2015), memory matrix
approaches (Lucas and Sachdev, 2015; Hartnoll, Lucas,
and Sachdev, 2018), and holographic models (Davison and
Goutéraux, 2015a).
Relaxing Galilean invariance is not enough, though, as in a

metal with slowly relaxing momentum such incoherent
processes inevitably give contributions to transport (of the
order of Γ0) that are subleading compared to the coherent
contribution (of the order of 1=Γ). There are several avenues
one can think of to suppress the coherent contribution to
transport.

(i) Suppress the Drude weight through some emergent
particle-hole symmetry that would effectively set
no ¼ 0.

(ii) Assume strong explicit breaking of translations.
(iii) More radically, require that χππ → þ∞ (Else and

Senthil, 2021).
(iv) Short-circuit the large contribution from slowly

relaxing momentum by assuming that translations
are spontaneously broken (Delacrétaz et al., 2017a).

Strange metals arise in doped Mott insulators, which leads
one to disregard (i) (in contrast to the example of graphene
near the charge neutrality point). The ability to synthesize
clean samples with a low residual resistivity (Giraldo-Gallo
et al., 2018) also works against (ii). (iii) was recently
considered by Else and Senthil (2021), who argued that
strange metals arise in the vicinity of an ordered phase where
the order parameter has the same symmetries as the loop
currents (Varma, 1999, 2006) and that this would lead to the
divergence of all susceptibilities in the same symmetry sector.
Note that holographic checkerboards (Withers, 2014; Donos
and Gauntlett, 2016; Cai et al., 2017) naturally feature such
current loops intertwined with translation symmetry breaking
thanks to the bulk Chern-Simons terms. Here we note that
fluctuations of the loop current order parameter have been put
forward as the origin of the T-linear resistivity in the strange
metallic phase (Varma, 2020), as fermions scattering off them
have a marginal Fermi-liquid-like self-energy (Varma et al.,
1989). The Sachdev-Ye-Kitaev model (Chowdhury et al.,
2021), where a large number of species N of fermions is
introduced together with random interactions, provides a
consistent theoretical framework realizing the marginal
Fermi liquid self-energy. The flavor randomness and large
N limit make the computation of transport properties tractable.
In its simplest incarnation, the T-linear term in the resistivity is
perturbatively small; see also previous works on non-Fermi
liquids without flavor randomness (Hartnoll et al., 2014; Patel
and Sachdev, 2014). Recently random (in flavor and real
space) Yukawa-type couplings to a gapless boson44 were
shown to give rise to a T-linear term that is Oð1Þ in the
strength of spatial disorder (Patel et al., 2022). The gapless
boson represents the fluctuations of an order parameter at zero
or nonzero wave vector. This suggests that the interplay
between disorder and order parameter fluctuations might play

44Theories of non-Fermi liquids where fermions couple to a
gapless boson have a long history; see Lee (2018) for a review.
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an important role in understanding strange metals. Whether
this T-linear component can arise over a range of dopings
remains an open question.
We now consider (iv) how pseudospontaneous translation

symmetry breaking may shed light on transport in strange
metals. Further motivation for this was found in recent x-ray
scattering reports of charge density fluctuations across the
phase diagram (Peng et al., 2018; Arpaia et al., 2019; Lin
et al., 2020; Arpaia and Ghiringhelli, 2021; Kawasaki et al.,
2021; S. Lee et al., 2021; W. S. Lee et al., 2021; Ma et al.,
2021; Miao et al., 2021; Tam et al., 2022), rather than
restricted to the underdoped regime as previous experiments
suggested (Keimer et al., 2015). Besides charge density
fluctuations at high temperatures, long-range, or at least
longer-ranged than their underdoped counterparts, CDWs
have now been reported on three different materials (Peng
et al., 2018; Miao et al., 2021; Tam et al., 2022). Thus, the
strange metallic phase at optimal doping appears to be the
only region where static CDW order has not yet been
discovered. The ubiquitousness of high-temperature charge
modulations is backed up by numerical (determinant quantum
Monte Carlo) studies of the Hubbard model that also report
intertwined charge and spin stripes at optimal doping and
in the overdoped regime (Huang et al., 2022). Theoretical
arguments on the impact of fluctuating charge density wave
order on strange metal transport were given by Caprara et al.
(2017), Delacrétaz et al. (2017a, 2017b), Amoretti et al.
(2019b), Delacrétaz, Goutéraux, and Ziogas (2021), and
Seibold et al. (2021); see also Kivelson, Fradkin, and
Emery (1998), Taillefer (2010), Mross and Senthil (2012a,
2012b), where the emphasis is more on the underdoped range.
We first discuss the ac conductivity in a pinned crystal

[Eq. (59)]. It is straightforward to see that the frequency
dependence deriving from Eq. (59) interpolates between a
Drude-like peak centered at ω ¼ 0, if pinning qo is suffi-
ciently weak compared to the typical frequency scales set by Γ
and Ω, and an off-axis peak once pinning becomes stronger. A
precise inequality can be derived from Eq. (59), asking when
all maxima in ReσðωÞ are for ω ¼ 0 or complex frequencies.
This is as far as effective approaches can take us since to
determine how the frequency dependence of the conductivity
varies in any given system requires a microscopic calculation
or an experimental measurement. In gauge-gravity duality
models, the peak can remain off axis at all temperatures in the
ordered phase (Andrade, Baggioli et al., 2018; Andrade,
Krikun et al., 2018; Andrade and Krikun, 2019; Andrade,
Baggioli, and Krikun, 2020), or interpolate between being
on axis and off axis (Amoretti et al., 2019b; Donos and
Pantelidou, 2019). In spectroscopic experiments, whether an
off-axis peak develops at high temperatures seems material
dependent; materials where this behavior is seen have been
compiled by Delacrétaz et al. (2017a). In YBa2Cu4O8, the ac
conductivity interpolates from Drude-like to an off-axis peak
upon Zn disordering (Basov, Dabrowski, and Timusk, 1998).
This is in qualitative agreement with charge transport in the
pseudospontaneous regime since stronger disorder will lead
to an increase in the pseudo-Goldstone mass qo and in the
pinning frequency ωo. It would be interesting to better
understand the effects of Zn doping on pinning charge density
wave fluctuations in scattering experiments (Suchaneck et al.,

2010; Guguchia et al., 2017; Lozano et al., 2021), especially
in light of the results given by Arpaia et al. (2019).
Turning now to dc transport, by looking at the dc conduc-

tivity of a pinned crystal [Eq. (60)] alone it is hard to
disentangle the individual contributions of various scattering
processes.45 This said, we can distinguish between two types
of processes.

• First are extrinsic processes encapsulated in the momen-
tum relaxation rate Γ. It is through this relaxation
coefficient that disorder or umklapp processes feed in
the dc conductivity. Their scaling is expected to be
sensitive to irrelevant deformations and to the details of
the disorder distribution, leading to scattering rates
Γext ∼ Tðg=TΔgÞ2 ≪ T (Hartnoll and Hofman, 2012;
Lucas, Sachdev, and Schalm, 2014; Davison, Gentle,
and Goutéraux, 2019b). For this reason, it is unlikely that
they are the origin of the T-linear resistivity.

• Second are intrinsic processes, coming from dissipation
into the bath of thermal, critical excitations, that are
encapsulated in transport coefficients such as σo, ξμ,
and ξ.

These are much stronger candidates as the source of
T-linear resistivity. Gauge-gravity duality allows one to
easily calculate these transport coefficients and verify
that their temperature dependence indeed reflects the
scaling properties of the underlying critical phase
(Davison, Goutéraux, and Hartnoll, 2015; Davison,
Gentle, and Goutéraux, 2019a, 2019b). These results
have inspired scaling theories to explain transport data in
cuprates, such as those given by Hartnoll and Karch
(2015) and Karch, Limtragool, and Phillips (2016). A
crucial extra ingredient compared to previous attempts
at a scaling theory (Phillips and Chamon, 2005) is the
introduction of anomalous scaling dimensions for the
charge density at the critical point (Goutéraux, 2014a,
2014b; Karch, 2014; La Nave, Limtragool, and Phillips,
2019).46

As emphasized in Sec. V.B, introducing pseudospontane-
ous breaking of translations short-circuits the extrinsic con-
tribution to the resistivity, which is now ρdc ∼OðΓ0Þ rather
than Oð1=ΓÞ in a metal. The order OðΓ0Þ terms are deter-
mined by σo, ξμ, and ξ, are intrinsic, and are dominant against

45See Amoretti, Meinero et al. (2020) for an attempt at fitting the
hydrodynamic theory of pinned charge density waves in a magnetic
field to magnetotransport data in a cuprate. While this analysis has
the merit of fitting a consistent set of data on a single material, the set
of data used does not allow one to unambiguously determine all the
parameters in the effective theory.

46Holographic models combining explicit breaking of translations
and these new scaling laws met with difficulties (Davison, Schalm,
and Zaanen, 2014; Blake and Donos, 2015; Amoretti et al., 2016;
Blauvelt et al., 2018), including matching all scaling laws and/or
suppressing the coherent, extrinsic contribution to the conductivity
from momentum without resorting to strong explicit breaking. This
task is made harder by the experimental hurdle of producing
thermoelectric transport data displaying clean scaling laws over
sufficiently large ranges of temperature. How such scaling theories
extend to pseudospontaneously broken translations has not been
investigated.
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the extrinsicOðΓÞ terms. From Eqs. (59) and (60), it is evident
that they contribute both to the coherent (the peak) and to
the incoherent (the infrared band) parts of the conductivity.
This gives one further motivation to revisit the two-component
analysis of ac conductivity data, which customarily assumes
that the infrared band does not contribute to the dc
conductivity.
Heavily overdoped, nonsuperconducting cuprates feature a

purely T2 resistivity, while the T-linear component turns on at
the onset of superconductivity, turning gradually stronger until
the critical doping where the resistivity is purely T linear.
CDW order has not been reported for nonsuperconducting
samples and thus far does not extend all the way to the edge
of the superconducting dome for all superconducting over-
doped samples (Tam et al., 2022). Plots of the derivative of
the resistivity with respect to temperature in overdoped
La2−xSrxCuO4 and Tl2201 show a gradual change of slope
below about 250 K from a high-temperature, T-linear inco-
herent bad metallic behavior to a low-temperature T þ T2

behavior (Hussey et al., 2011, 2013; Putzke et al., 2021) for
all overdoped samples, including those where x-ray experi-
ments do not find a static CDW (Tam et al., 2022). Whether
the change in the resistivity slope can be more precisely
connected to the onset of charge density fluctuations and static
CDW order at lower temperatures remains to be determined.
Bearing this caveat in mind, we can assume that the

temperature dependence of Γ ∼ γ0 þ γ2T2 þ � � �, originating
from disorder (the zero-temperature residual resistivity) and
umklapp (the Fermi-liquid-like behavior recovered outside the
superconducting dome). On the other hand, intrinsic processes
controlling the CDW contribution relaxation to the resistivity
might be responsible for the disorder-independent, T-linear
component at low temperatures. The magnitude of this
contribution is naturally proportional to the elastic modulus
and would be expected to become stronger as temperature is
decreased and the CDWorder sets in, which is consistent with
the increase in the onset temperature of the linear component
as doping decreases.
Why should those intrinsic processes carry a T-linear

dependence? This is a difficult question barring a concrete
microscopic model of cuprates. The holography-inspired
scaling theories alluded to previously give one possible
answer but have not yet been extended to the pseudosponta-
neous case.
An alternative relies on theoretical arguments by which

diffusivitiesD in strongly correlated systems tend to saturate a
Planckian bound (Hartnoll, 2015),

D ≳ v2τPl; τPl ¼
ℏ

kBT
: ð64Þ

In Eq. (64) v is the characteristic velocity, which is sometimes
argued to be the Fermi velocity, the Lieb-Robinson velocity, or
the butterfly velocity; see Blake (2016). Through this general
mechanism, which is applied to the diffusive transport
coefficients σo, ξμ, and ξ, we may expect various disorder-
independent, T-linear contributions to the resistivity, split
between the coherent and incoherent terms. This resonates
with the analysis of the magnetoresistance data given by Ayres

et al. (2021), who found it necessary to include a T-linear
component in both coherent and incoherent contributions.
The diffusivity σo is directly related to the thermal dif-

fusivity (Davison, Gentle, and Goutéraux, 2019b). Energy
diffusion is likely to be universal in a critical phase. Indeed,
measurements of this observable in hole-doped (Zhang et al.,
2017) and electron-doped cuprates (Zhang et al., 2019), as
well as in crystalline insulators (Behnia and Kapitulnik, 2019;
Mousatov and Hartnoll, 2020). All suggest that the thermal
diffusivity in these materials is close to a Planckian bound.
One may legitimately wonder why the same ought to hold

for the Goldstone diffusive coefficient ξ. The Goldstone
modes are weakly coupled in the low-energy effective field
theory (Son, 2002; Nicolis, Penco, and Rosen, 2014; Nicolis
et al., 2015), meaning that it does not naturally follow that
they relax on Planckian scales (the attenuation of superfluid
phonons being a case in point). On the other hand, in
Secs. IV.D, V.C, and VI, we have highlighted a dissipation
mechanism in hydrodynamic currents at play both in holo-
graphic systems and in 2D electron gases hosting Wigner
crystal phases. This mechanism links the Goldstone diffu-
sivity ξ to the thermal diffusivity, which itself is likely to be
close to a Planckian bound in a strongly correlated system.
At the critical doping, the resistivity is purely T linear with

an Oð1Þ coefficient. At this doping, quasiparticles are com-
pletely lost due to strong correlations (He et al., 2018), thus
vindicating the applicability of quantum bounds on transport
of the kind of Eq. (64). In the absence of quasiparticles, the
Goldstone sound velocity is a plausible candidate to enter into
the bound, in which case the factors of the elastic moduli
cancel out from the resistivity, yielding an Oð1Þ prefactor for
the T-linear resistivity.
On the other hand, if the strange metal regime near critical

doping is related to a kind of CDW critical point dominated by
charge density fluctuations, then fluctuations of the amplitude
of the order parameter ought to be included in the effective
description, not just its phase (Hohenberg and Halperin, 1977)
[see Grossi et al. (2021) for a recent application to QCD in the
chiral limit], bringing us back to the arguments developed by
Patel et al. (2022) for the origin of the T-linear resistivity at
critical doping. Holography will also certainly be a valuable
tool to construct such EFTs augmented with order parameter
fluctuations (Herzog, 2010; Donos and Pantelidou, 2022).
Pseudospontaneous breaking of translations thus appears

to be a promising avenue to understand various features
of strange and bad metals. While it is difficult to be more
conclusive at this stage, further analyses of experimental data,
revolving around the influence of disorder on charge density
fluctuations, a systematic analysis of charge, heat, and
magnetotransport data on the same compound, and a refine-
ment of the two-component analysis of optics data may give
further support to this hypothesis or disprove it.
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APPENDIX: POSITIVITY OF ENTROPY PRODUCTION

In this appendix, we give more details on the steps leading
to the Lorentz-invariant constitutive relations (32). Using
Eq. (31) together with the first law of thermodynamics

Tds ¼ dε − μdn − vidπi − hijdð∇iujÞ ðA1Þ

as well as the equations of motion, the divergence of the
entropy current is found to be

T _sþ T∇i

�
jiq
T

�
¼ ũjðKj þ ∇ihijÞ

− j̃iq
∇iT
T

− j̃i∇iμ − τ̃ij∇ivj; ðA2Þ

with

jiq ¼ Tsvi þ j̃iq; j̃iq ¼ j̃iε − μj̃i þ hijũj − vjτ̃ij: ðA3Þ

In Eq. (A3) we have turned on an external source for ui,
fel ↦ fel − Kiui, which we take to be first order in gra-
dients Ki ∼Oð∇Þ.
The right-hand side of Eq. (A3) must be positive so that

entropy is not destroyed by dissipative processes. This con-
strains the constitutive relations to take the following form47:

j̃i ¼ −σijo∇jμ − αijo∇jT − γijμ ðKj þ∇khkjÞ;
j̃iq
T

¼ −ᾱijo∇jμ −
κ̄ijo
T

∇jT − γijT ðKj þ∇khkjÞ;
τ̃ij ¼ −ηijkl∇ðkvlÞ;

ũi ¼ ξijμ∇jμþ ξijT∇jT þ ξijh ðKj þ∇khkjÞ: ðA4Þ

Turning on the external sourceKj is necessary to remove terms
like ∇jhkk, which otherwise would appear to be allowed. In the
main text and in the remainder of this appendix, we turn off the
external sources.
The Onsager relations can be imposed either on the matrix

of the retarded Green’s function

S½GRðω;−qÞ�T ¼ GRðω; qÞS ðA5Þ

or, as is often simpler, directly on the Mχ matrix

S½Mð−qÞχ�T ¼ MðqÞχS; ðA6Þ

where M is defined from the equations of motion and S is the
matrix of time-reversal eigenvalues of the corresponding fields
ðn; ε; πk; λk; π⊥; λ⊥Þ. Here S ¼ diagð1; 1;−1; 1;−1; 1Þ.
The M · χ matrix reads

Mχ ¼

0
BBBBBBBBB@

σ0q2 α0q2 iqn γμq2 0 0

ᾱ0q2 ðκ̄0=TÞq2 iqs γTq2 0 0

iqn iqs ðζ þ ηÞq2 −iq 0 0

ξμq2 ξTq2 −iq ξq2 0 0

0 0 0 0 ηq2 −iq
0 0 0 0 −iq ξq2

1
CCCCCCCCCA
:

ðA7Þ

The Onsager relations further fix

γμ ¼ ξμ; γT ¼ ξT . ðA8Þ

Recall that all the transport coefficient matrices and tensors are
decomposed as σijo ¼ σðoÞδij þ σðuÞuij, and the final coeffi-
cient appearing in Eq. (A7) is a linear combination of σðoÞ and
σðuÞsuch as σo ¼ σðoÞ þ ðuo=2ÞσðuÞ.
At linearized level, it is enough for us to impose positivity

of Eq. (A7), but in general one should instead require the
quadratic form on the right-hand side of Eq. (A2) to be
positive definite. Positivity of Eq. (A7) follows if all eigen-
values are positive, which in turn is equivalent to all principal
minors of this matrix being positive. The following constraints
are sufficient to that effect:

σo; κ̄o; η; ζ þ η ≥ 0;

σoκ̄o ≥ Tα2o; σoξ ≥ ξ2μ; κ̄oξ ≥ Tξ2T: ðA9Þ

The Lorentz boost Ward identity implies that jiε ¼ πi. At the
ideal level, using Eq. (29) this fixes

χππ ¼ εþ p − pel; ðA10Þ

while at first order in gradients, from Eqs. (A4) and (A8),
the following relations between the longitudinal transport
coefficients

47The ideal equations of motion are used to remove all time
derivatives in the constitutive relations, and we choose a frame such
that the conserved densities are not corrected at first order in
gradients. See Kovtun (2012, 2019) for discussions on the role of
frames in relativistic hydrodynamics and de Boer et al. (2018a,
2018b), de Boer et al. (2020), Novak, Sonner, and Withers, 2020,
Poovuttikul and Sybesma (2020), and Armas and Jain (2021) for
discussions on hydrodynamics without boosts.
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TξT þ μξμ − pelξ ¼ 0;

Tαo þ μσo − pelξμ ¼ 0;

μαo þ κ̄o − pelξT ¼ 0; ðA11Þ

or in matrix form

αijo þ μ

T
σijo þ 1

T
hikξ

kj
μ ¼ 0;

κijo þ μ

T
αijo þ 1

T
hikξ

kj
T ¼ 0;

ξijT þ μ

T
ξijμ þ 1

T
hikξ

kj
h ¼ 0: ðA12Þ

The constitutive relations then become

j̃i ¼ −Tσijo∇j
μ

T
− γijμ∇khkj;

j̃iq
T

¼ ðμσijo þ hilξljμ Þ∇j
μ

T
− ðμξijμ þ hilξ

lj
h Þ∇k hkj

T
;

τ̃ij ¼ −ηijkl∇ðkvlÞ;

ũi ¼ Tξijμ∇j
μ

T
þ ξijh∇k hkj

T
: ðA13Þ

In the Galilean limit, the Galilean boost Ward identity
enforces ji ∝ πi and instead

σijo ¼ 0; αijo ¼ 0; ξijμ ¼ 0: ðA14Þ

REFERENCES

Abdel-Jawad, M., M. P. Kennett, L. Balicas, A. Carrington, A. P.
Mackenzie, R. H. McKenzie, and N. E. Hussey, 2006, “Anisotropic
scattering and anomalous normal-state transport in a high-
temperature superconductor,” Nat. Phys. 2, 821–825.

Aharony, Ofer, Steven S. Gubser, Juan Martin Maldacena, Hirosi
Ooguri, and Yaron Oz, 2000, “Large N field theories, string theory
and gravity,” Phys. Rep. 323, 183–386.

Alberte, Lasma, Martin Ammon, Matteo Baggioli, Amadeo Jiménez,
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