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A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short,
it states that quantum mechanics is in conflict with classical models in which the result of a
measurement does not depend on which other compatible measurements are jointly performed. Here
compatible measurements are those that can be implemented simultaneously or, more generally, those
that are jointly measurable. This conflict is generically called quantum contextuality. In this review, an
introduction to this subject and its current status is presented. Several proofs of the Kochen-Specker
theorem and different notions of contextuality are reviewed. How to experimentally test some of these
notions is explained, and connections between contextuality and nonlocality or graph theory are
discussed. Finally, some applications of contextuality in quantum information processing are
reviewed.
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I. INTRODUCTION

In the realm of classical physics, it is possible to consis-
tently assume the existence of values for intrinsic properties
(such as the length) of a physical object, and that non-
deterministic measurement outcomes are caused by imperfect
preparation or measurement procedures. Quantum theory
fundamentally challenges such a point of view: It admits
situations in which any assignment of a value to the result of
the measurement of a physical property must depend on the
measurement context, namely, on what other properties are
simultaneously measured with it. Quantum contextuality then,
as the name suggests, refers to the impossibility of such
context-independent classical descriptions of the predictions
of quantum theory, which originated in the work of Specker
(1960) and Kochen and Specker (1967).
Quantum contextuality is a phenomenon that combines

many of the interesting aspects of quantum theory in a single
framework, from measurement incompatibility, as the impos-
sibility of performing simultaneous measurements of arbitrary
observables, to Bell nonlocality and entanglement, when the
system examined is composed of several spatially separated
parts. The adopted perspective is that of observed statistics,
which allows for an analysis of the experimental results that is
independent of quantum mechanics. On the one hand, quantum
contextuality generated an intense debate on the foundations of
quantum mechanics and stimulated the search for physical
principles explaining why quantum theory is the way it is. On
the other hand, the nonclassical properties of contextual
correlations have been directly connected to quantum informa-
tion processing applications such as quantum computation.
The central role of quantum contextuality in quantum

theory, from both a fundamental and an applied perspective,
is what provided motivation for this review. The difficulty is
that there is a broad variety of perspectives from which to
approach quantum contextuality, ranging from physics to
mathematics, computer science, and philosophy, to mention
a few, and consequently a vast literature. It is impossible to
review all the literature and, at the same time, it would not be
useful for the reader. We are thus forced to make a selection of
topics to be presented. We decided to focus on Kochen-
Specker contextuality (Specker, 1960; Kochen and Specker,
1967), which we often refer to simply as contextuality. A
different notion of nonclassicality proposed by Spekkens
(2005) is only briefly covered to highlight the differences
with the notion of contextuality reviewed here.
Our goal with this review is to provide an introduction to

contextuality that covers all the most important topics. In
particular, we address the following questions:
(a) What is the structure of noncontextual hidden-variable

models?
(b) What are the physical assumptions involved in the

definition of contextuality and how to operationally
define contexts?

(c) How does one perform experimental tests? What are
the assumptions, the loopholes, and the methods to
deal with them?

(d) What are the applications of quantum contextuality in
quantum information processing?
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These can be summarized follows: What is quantum con-
textuality, how do we test it, what is it useful for, and what do
we learn from it?
This review aims to reach a broad audience, from people

with little or no experience with quantum contextuality to
experts working in the field, on both the theoretical and
experimental sides. As a consequence, it can be read in
different ways and some parts can be skipped by readers with
some experience in contextuality.
The content of this review can be outlined as follows.

Section II contains an introduction to the basic concepts
involved in quantum contextuality, such as compatible mea-
surements, contexts, and noncontextuality inequalities.
Section III contains the statement and proof of the original
Kochen-Specker theorem and further simplifications and
related arguments. Section IV addresses the main questions
of this review: What is the mathematical structure of non-
contextual hidden-variable theories, and how can we put these
theories to test in an experiment? This includes questions
such as the operational identification of contexts, the problem
involving imperfect experimental realizations, and experimen-
tal tests performed thus far. In Sec. V, we present a collection
of advanced topics associated with quantum contextuality,
from the definition of the noncontextuality polytope and the
computation of noncontextuality inequalities to the relations
between contextuality and graph theory and the connection
between quantum contextuality and Bell nonlocality. Finally,
in Sec. VI information-theoretical applications of quantum
contextuality, such as quantum computation and random
number generation, are discussed. The Appendix puts the
results presented in the review into a historical perspective.

II. QUANTUM CONTEXTUALITY IN A NUTSHELL

In this section, we explain the essence of the Kochen-
Specker theorem and the modern view on Kochen-Specker
contextuality. This is intended to be a simple explanation for
introducing the topic to readers with little or no experience in
the topic of quantum contextuality. Many of the subtleties and
open problems, particularly those connected to the definition
of contexts and compatible measurements, are discussed in
more detail in the subsequent sections.

A. A first example

Arguably the simplest example of Kochen-Specker con-
textuality, in which state preparation plays no role, is provided
by the so-called Peres-Mermin (PM) square (Mermin, 1990b,
1993; Peres, 1990, 1991, 1992, 1993), a construction of nine
measurements arranged in a square:

2
64
A B C

a b c

α β γ

3
75: ð1Þ

Each measurement is dichotomic; i.e., it has only two possible
outcomes, in this case labeled as þ1 and −1. If we think in
classical terms, there could be nine properties of an object and

performing a measurement reveals whether the property is
present (þ1) or absent (−1).
In the following, it is assumed that the three measurements

in each column and row form a “context,” i.e., a set of
measurements whose values could in principle be jointly
measured. We write ABC to denote the product of the values
of the measurements A, B, and C for a single object. Similarly,
we use abc, Aaα, etc. In a classical model describing the
object, each of the nine measurements has a definite value,
regardless of which context the measurement is contained in.
Such a value assignment is then said to be noncontextual.
Thus, for the set fABC; abc; αβγ; Aaα; Bbβ; Ccγg there can
be only an even number of products with the assigned value
þ1. This holds since assigning þ1 to all measurements gives
six positive products, and changing the value assigned to any
measurement changes the value of two of the products since
each measurement appears in two of them.
Defining the expectation value

hABCi≡ Prob½ABC ¼ þ1� − Prob½ABC ¼ −1�; ð2Þ

we have thus shown the validity of the inequality (Cabello,
2008)

hPMi≡ hABCi þ habci þ hαβγi þ hAaαi
þ hBbβi − hCcγi ≤ 4: ð3Þ

The significance of this inequality comes from the fact
that it can be violated by a quantum system. The quantum
example works for a system composed of two spin-1=2
particles. If we denote the Pauli operators as σx, σy, and
σz, the observables are

2
64
A B C

a b c

α β γ

3
75 ¼

2
64

σz ⊗ 1 1 ⊗ σz σz ⊗ σz

1 ⊗ σx σx ⊗ 1 σx ⊗ σx

σz ⊗ σx σx ⊗ σz σy ⊗ σy

3
75: ð4Þ

Notice that the observables within one row or one column
mutually commute, which allows one to simultaneously mea-
sure them and make sense of the expectation value for the
product of outcomes, e.g., ABC. One verifies that for a system
in the state jψi such an expectation value is given by
hABCi ¼ hψ jABCjψi. In fact, for the value of the terms in
hPMi the state jψi does not play any role, since ABC ¼ 1, and
we thus have hABCi ¼ þ1, and likewise for all products except
Ccγ ¼ −1, which gives hCcγi ¼ −1. Summing theseweobtain
hPMi ¼ 6, in clear contradiction to Eq. (3) (Cabello, 2008).
Sincewe derived Eq. (3) under the assumption that it is possible
to consistently assign a value to the nine observables of the
object, the violation of Eq. (3) implies either that there is no
value assignment or that the value assignment must depend on
which context the observable appears in. This phenomenon is
known as quantum contextuality.

B. A second look

At this point, we preview why quantum contextuality is a
more subtle topic than it may seem from the argument
presented thus far. As an entry point, one might wonder

Costantino Budroni et al.: Kochen-Specker contextuality

Rev. Mod. Phys., Vol. 94, No. 4, October–December 2022 045007-3



why we chose the particular form of the previously mentioned
inequality instead of a simpler form like

hABCabc αβγ AaαBbβCcγi ¼ þ1: ð5Þ

The reason is that in the quantum example, in order to violate
inequality (3), we have to choose the observables in such a
way that they are not all jointly measurable; i.e., they do not all
mutually commute as in the rhs of Eq. (4). In such a case,
according to quantum mechanics there is no measurement able
to reveal the value of those observables on the same object
consistently. For example, there is no common eigenstate
of the previously defined observables A and b. Hence, to
experimentally test Eq. (5), one would need to perform a joint
measurement of incompatible observables.
Another common misconception, associated with the par-

ticular realization of the PM square as two-qubit observables
in Eq. (5), is that the measurements of each observable in the
last row and last column can be performed as two single-qubit
local measurements (with four outcomes) instead of a global
(dichotomic) measurement. By doing so, however, one has in
the last row a measurement of six incompatible single-qubit
observables, which cannot form a context. The use of single-
qubit measurements, therefore, is at variance with the
assumption that the last row and last column form a context
and hence removes the contradiction. Performing coherent
global measurements on the two qubits can indeed be a crucial
challenge in experiments; see also Sec. IV.D.
A third source of confusion, diametrically opposed to the

previous one, is to consider the measurement of each row and
column as a single global and fundamentalmeasurement. In this
view, one has six measurements, corresponding to the three
rows and columns, that simulate the nine measurements
A;…; γ. Each of these six global measurements has four
outcomes corresponding to the outcomes of the three simulated
measurements, under the constraint that their product equalsþ1

(or −1 for the last column). Thus, one may be surprised that
none of the 29 joint assignments of outcomes to the measure-
ments A;…; γ are logically possible. For the original formu-
lation of the PM square, however, only the nine dichotomic
measurements A;…; γ are fundamental entities and an evalu-
ation of, for instance, hCcγi entails a product of three numbers,
which experimentally is by no means guaranteed to be −1; see
also Fig. 11 in Sec. IV.D. Interpreting the PM square in terms of
the six previously described global measurements, however, is
possible in the framework of Spekkens contextuality (Krishna,
Spekkens, and Wolfe, 2017); see also Sec. IV.E.
Finally, returning to the discussion after Eq. (5), we note

that incompatibility does not immediately rule out a
classical description: One can imagine a classical theory
where values of all physical properties are simultaneously
defined, but the classical measurement procedure of a
property introduces some disturbance in the system and
modifies the value of other physical properties. We revisit
this problem in Sec. IV.
There is a price that we have to pay to see a violation of

the inequality in Eq. (3). The current status of research is that it is
impossible to conceive of a quantum experiment featuring
contextual behavior without additional assumptions. The basic

reason is that we accepted that there are sets of observables, the
value of which cannot be revealed on the same object. But how
can we ensure that a specific measurement in two different
contexts does reveal the value of the same physical property?
This question brings us to the notion of compatibility.

Intuitively, this corresponds to some notion of simultaneous
measurability and nondisturbance among quantum measure-
ments. In textbook quantum mechanics, an observable corre-
sponds to an Hermitian operator, i.e., A ¼ A†, with outcomes
identified with its eigenvalues, i.e., A ¼ P

iλiPi, and the
spectral projections Pi identified with the measurement effects,
i.e., ProbðλiÞ ¼ trðρPiÞ. Two observablesA andB are said to be
compatible if they commute, i.e., ½A; B� ¼ 0. This type of
measurements is called projective, ideal, or sharp, depending on
which property one wants to emphasize. Commutativity is a
strong property that implies several other properties for these
measurements. In fact, if ½A; B� ¼ 0, then there is another
observable C such that the spectral projections of A and B are a
coarse graining of those ofC, and thus measuringC allows one
to infer the result of both A and B, a property called joint
measurability. At this point, we remark that joint measurability
is the minimal requirement to define some notion of a context.
Nevertheless, we highlight here some other properties of
commuting projective measurements that will turn out to
provide useful intuition for an operational definition of contexts
presented in Sec. IV.B and used to deal with imperfect
measurements in experimental tests of contextuality; see
Secs. IV.C and IV.D. More precisely, notice that from the
state-update rule ρ ↦ PiρPi, one can see that if ½A; B� ¼ 0, the
outcomes of A are not disturbed by a subsequent measurement
ofB and are repeated by a later measurement ofA, such as in the
sequence ABA. This is the property of outcome repeatability.
Conversely, projective measurements that satisfy one of the
previously mentioned properties are necessarily commuting
(Heinosaari and Wolf, 2010).
This is no longer true in the case of generalized measure-

ments, which may be nonprojective (or nonideal, unsharp). In
this case, notions such as commutativity, nondisturbance, and
joint measurability are no longer equivalent (Heinosaari and
Wolf, 2010), and the term “incompatibility” usually denotes
the lack of joint measurability (Heinosaari, Miyadera, and
Ziman, 2016). Different notions corresponding to stronger or
weaker assumptions are also possible.
For the moment, we do not enter into this problem.

Consider the case of ideal measurements, where these ambi-
guities do not arise and which were the focus of most
contextuality arguments until recent times (such as all argu-
ments based on the examples presented in Secs. III and IV.A).
Notice, however, that in this case the conclusions of the tests
of contextuality must take into account imperfections, and
techniques hence need to be developed for analyzing the
experimental data; see Secs. IV.C and IV.D).
A different notion of classicality for the case of nonideal

measurements is presented in Sec. IV.E, namely, Spekkens
contextuality (Spekkens, 2005). We provide an account of
Spekkens contextuality in Sec. IV.E in order to clarify the
distinctions between his approach and the one presented here.
Finally, there are two other related research directions that

introduce some notion of contextuality that we do not cover in
this review. One was developed by Auffèves and Grangier
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(2020, 2022) and Grangier (2021), and the other was
developed by Griffiths (2017, 2019, 2020). Despite the similar
terminology and motivation, i.e., the analysis of Bell- and
Kochen-Specker-type arguments and experiments, these
approaches discuss a different notion of contextuality with
respect to the one presented in this review. We refer the
interested reader to the corresponding literature.

III. THE KOCHEN-SPECKER THEOREM

This section is devoted to the Kochen-Specker theorem,
which can be considered the starting point of the research in
quantum contextuality. It states that noncontextual models
conflict with quantum theory. Understanding this theorem, as
well as the several variants presented in the following, is
important for understanding quantum contextuality and the
further developments in this research line.

A. Kochen-Specker sets

The example presented in Sec. II is based on the violation of
an inequality that is satisfied by any noncontextual value
assignment (or convex combinations thereof). This is a
“modern” tool to witness quantum contextuality. In contrast,
the original argument by Kochen and Specker (1967) was
designed as a logical impossibility proof for value assign-
ments. In the following, we explain the original argument and
some of its simplifications.
The Kochen-Specker (KS) theorem (Kochen and Specker,

1967) deals with assignments of truth values to potential
measurement results. In quantum mechanics, such measure-
ment results are, for ideal measurements, described by
projectors. Each projector defines a subspace of the Hilbert
space, namely, the subspace that is left invariant under the
action of the projector. If this subspace is one dimensional,
then this subspace is a ray spanned by a single vector. The KS
theorem can be seen as a statement about the impossibility of
certain assignments to sets of vectors or, equivalently, to sets
of rank-1 projectors.
We first fix the framework for the theorem. In a

d-dimensional Hilbert space H, consider d rank-1 projectors
P1; P2;…; Pd associated with d orthogonal vectors in H.
They satisfy the following relations:

(i) ðOÞ: PiPj ¼ 0 for any i ≠ j (orthogonality).
(ii) ðCÞ: P

d
i¼1Pi ¼ 1 or, equivalently, using ðOÞ,Q

d
i¼1ð1 − PiÞ ¼ 0 (completeness).

Such relations can be interpreted in terms of yes-no questions
(or true-false propositions) Q1;…; Qd as follows:

(i) ðO0Þ: Qi and Qj are exclusive; i.e., they cannot be
simultaneously “true” for i ≠ j.

(ii) ðC0Þ: Q1;…; Qd cannot be simultaneously “false”;
one of them has to be true.

Note that while the relation ðO0Þ was previously used by
Kochen and Specker (1967), use of the name exclusive is
modern; see Cabello, Severini, and Winter (2014) and Acín
et al. (2015).
For an arbitrary set of rank-1 of projectors in dimension d,

only certain subsets may obey conditions ðOÞ and ðCÞ and,
analogously, for an arbitrary set of propositions and a fixed d,
certain subsets can be subject to conditions ðO0Þ and ðC0Þ.

A set of dmutually exclusive propositions is a context. We use
two different graphical representations for the relations ðC0Þ,
ðO0Þ in a set of propositions, as in Figs. 1 and 2. In one
representation, sets of mutually exclusive propositions are
nodes in the same straight or smooth line; see Fig. 2(a), as well
as Figs. 1, 3, and 4. In the other representation in Fig. 2(b),
edges simply connect exclusive propositions; see also
Figs. 5 and 7. The constraints ðO0Þ and ðC0Þ can then be
translated into rules for coloring the vertices of the graph with
two colors (e.g., green for true and red for false), namely, such
that each two exclusive nodes cannot be both green and
condition ðO0Þ, and each set of d mutually exclusive prop-
ositions must contain a green node: condition ðC0Þ; see also
Fig. 5. The problem of finding a coloring with two colors
according to the previously stated rules is referred to as the KS
colorability problem (Belinfante, 1973). We see in Sec. IV.A.5
how the conditions ðO0Þ and ðC0Þ can be relaxed in modern
approaches to contextuality.
Kochen and Specker provided a physical interpretation

of certain rank-1 projectors in d ¼ 3 as spin operators for a

1

2

3

4

5

6

7

8

10

914

12

13

11

FIG. 1. The set in the original proof of KS has 117 vectors and
118 contexts. Each node represents a vector. Nodes in the same
straight line or circumference represent mutually orthogonal
vectors. The red node is orthogonal to all nodes connected to
the red edge. We proceed similarly with the green and yellow
nodes. A proof of the KS theorem can be obtained as follows.
One of the nodes 1, 2, and 11 has to be true. The symmetry of the
graph allows us to assume without loss of generality that it is
node 1. Therefore, node 9 must be false because of the “bug”
subgraph (see Fig. 2) between nodes 1 and 9. Thus, since nodes 2,
9, and 10 are mutually orthogonal and node 2 is connected to
node 1, node 10 must be true. Applying the same argument,
node 12 must be false and node 13 must be true since nodes 12,
13, and 2 form a basis. When this is repeated twice, node 14 must
be true. However, nodes 1 and 14 cannot both be true. This
concludes the proof. This figure improves the representation in
the work of Kochen and Specker (1967), where the 117 vectors
are represented by 120 nodes using two nodes each for 3 of the
117 vectors.
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spin-1 particle. More precisely, the spin operator along one
direction, say, Sx along the direction x in the Euclidean
three-dimensional space, has the eigenvalues −1, 0, and þ1.
Hence, the operator S2x is a projector on the two-dimensional
space corresponding to the eigenvalues �1. Moreover, such
spin operators have the property that for each triple of
orthogonal directions, say, x, y, and z, the operators
commute, i.e., ½S2x; S2y� ¼ ½S2x; S2z � ¼ ½S2y; S2z � ¼ 0. In this
way, directions in the Euclidean space correspond to spin
measurements and can be identified with directions in the
Hilbert space. For a given direction v⃗, the one-dimensional
projector Pv⃗ ¼ 1 − S2v⃗ can be interpreted as the measurement
outcome 0 of a spin measurement in direction v⃗. For this
reason, in the context of the KS theorem one often considers
vectors v⃗ ∈ R3 in the place of rank-1 projectors P in a three-
dimensional Hilbert space.
It is then straightforward to show that a joint measurement

of the dichotomic observables Pu⃗, Pv⃗, and Pw⃗ for three
orthogonal vectors u⃗, v⃗, and w⃗ can be obtained as a
single trichotomic measurement having as effects precisely
fPu⃗; Pv⃗; Pw⃗g, i.e., a measurement in a given orthogonal
basis. With the usual convention for truth assignments, i.e.,
1 for true and 0 for false, the previously mentioned assign-
ments can be formulated as a map from a finite set of vectors
S ⊂ R3 to 0 and 1 such that for any orthogonal basis
contained in the set S one and only one of the vectors is
mapped to the value 1. The set S consists of several bases,
possibly with intersection; i.e., one vector may be part of
several bases in S. Kochen and Specker then proved the
following:
Theorem (Kochen and Specker, 1967).—There is a finite

set S ⊂ R3 such that there is no function f∶S → f0; 1g
satisfying

fðu⃗Þ þ fðv⃗Þ þ fðw⃗Þ ¼ 1 ð6Þ

for all triples ðu⃗; v⃗; w⃗Þ of mutually orthogonal vectors in S.
In general, a KS set S in dimension d is defined as a set S of

vectors in a d-dimensional Hilbert space, with the property
that there is no map f∶S → f0; 1g satisfyingPjψi∈BfðjψiÞ ¼
1 for any subset B ⊂ S of d orthogonal vectors. Since any
such set provides a proof of the KS theorem in dimension d,
these sets are also called a “proof of the KS theorem.” That
there is no KS set for d ¼ 2 follows from the fact that one can
construct explicit noncontextual assignments for all projectors
in C2; see Kochen and Specker (1967).
The original proof of the KS theorem consists of a set of

117 vectors that realize the graph in Fig. 1 for which it is
impossible to assign values such that two adjacent nodes
cannot both be true [condition ðO0Þ], and each set of
three mutually exclusive nodes must contain a value true
[condition ðC0Þ]. For any two vectors that are orthogonal but
do not participate in a basis, one can readily add a vector to
complete the pair to a basis. This enlarges the 117 vectors to
192 vectors and those 192 vectors form then the set S in the
KS theorem.
The original KS proof is long and complicated given the

high number of vectors necessary to obtain a contradiction.
Some worked on the problem and simplified it by finding KS
sets with an increasingly small number of vectors in different
dimensions. For example, in dimension 3 (Belinfante, 1973;
Alda, 1980; Peres and Ron, 1988; de Obaldia, Shimony, and
Wittel, 1988; Peres, 1991, 1993; Bub, 1996; Conway and
Kochen, 2013), in dimension 4 (Peres, 1991; Zimba and
Penrose, 1993; Kernaghan, 1994; Cabello, Estebaranz, and
García-Alcaine, 1996a; Penrose, 2000), in dimension
6 (Lisoněk et al., 2014), and in dimension 8 (Kernaghan
and Peres, 1995; Toh, 2013a, 2013b). Subsequent works have
identified many other examples of KS sets in different
dimensions (Cabello, 1994; Aravind and Lee-Elkin, 1998;
Pavičić et al., 2005, 2011; Pavičić, 2006; Gould and Aravind,
2010; Waegell and Aravind, 2010; Arends, Ouaknine, and
Wampler, 2011; Megill et al., 2011; Waegell and Aravind,
2011a, 2011b, 2012, 2013b, 2015, 2017; Waegell et al., 2011;
Ruuge, 2012). The method used by Kochen and Specker
(1967) can be extended to construct KS sets in any dimension
d > 3 (Cabello and García-Alcaine, 1996). Other methods for
obtaining KS sets in d > 3 were proposed by Zimba and
Penrose (1993), Cabello, Estebaranz, and García-Alcaine
(2005), Pavičić et al. (2005), Matsuno (2007), and Ruuge
(2007). KS sets with a continuum of vectors in dimension 3
were presented by Galindo (1975) and Gill and Keane (1996).
A way to further reduce the number of vectors was discussed
by Cabello, Estebaranz, and García-Alcaine (1996b).
The smallest KS set in terms of vectors is the 18-vector

(nine-context) set in dimension 4 introduced by Cabello,
Estebaranz, and García-Alcaine (1996a) and shown in Fig. 3.
A proof of the minimality was presented by Xu, Chen, and
Gühne (2020). The impossibility of an assignment satisfying
the conditions ðOÞ and ðCÞ is proven by a parity argument:
since there are nine contexts, one must assign true exactly nine
times. However, this is not possible, since each vector appears
in two contexts.

(a) (b)

FIG. 2. Different representation of the same orthogonality
relations. (a) Vectors are represented by nodes, while contexts
are represented by straight lines (or, more generally, by smooth
lines). Three vectors in the same straight line are mutually
orthogonal. This graph is also called a Greechie diagram; see
Greechie (1971). (b) Vectors are represented by nodes, and
orthogonal vectors are connected by edges. In particular, triples
of mutually orthogonal vectors form triangles, e.g., nodes 2, 3,
and 4. An example of vectors realizing such relations is given by
v1 ¼ ð1;−1; 1Þ, v2 ¼ ð1; 1; 0Þ, v3 ¼ ð0; 0; 1Þ, v4 ¼ ð1;−1; 0Þ,
v5 ¼ ð1; 1;−1Þ, v6 ¼ ð1; 0; 1Þ, v7 ¼ ð0; 1; 0Þ, and v8 ¼
ð1; 0;−1Þ. This graph is called the bug (Specker, 1999) and it
has the property that, for d ¼ 3, an assignment of true to node 1
implies a false assignment for node 5. In fact, if nodes 1 and 5 are
both true, then nodes 2, 4, 6, and 8 must be false (they are
connected), which implies that nodes 3 and 7 are true (they are the
remaining nodes of two triples), which gives a contradiction since
nodes 3 and 7 are connected. As can be seen in Fig. 1, they are the
building blocks of the original proof of the KS theorem.
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The smallest KS set known in terms of contexts is the 21-
vector, seven-context set in dimension 6 introduced by
Lisoněk et al. (2014) and shown in Fig. 4. This KS set has
also been proven to be the one with the smallest number of
contexts, thereby allowing for a symmetric parity proof of the
KS theorem (Lisoněk et al., 2014).
The first step in the proof given by Kochen and Specker

(1967) consists of identifying a set of eight vectors whose
relations of orthogonality are represented by the eight-node
graph in Fig. 5. Specker called this graph the bug (Specker,
1999). It has the peculiarity that whenever A is true, then B
must be false. This is at the basis of several KS-type contra-
dictions, such as the ones by Stairs (1983) and Clifton (1993).
They provide a realization of the bug as orthogonality
relations of a set of rank-1 projectors PA;…; PB such that
PA ¼ jψihψ j, with hψ jPAjψi ¼ 1 and hψ jPBjψi > 0, which
contradict the KS assignment rules; see Fig. 2. The bug is the

simplest example (Cabello, Portillo et al., 2018) of other
“true-implies-false” structures; see Cabello and García-
Alcaine (1995). Hardy’s proof (Hardy, 1993) can be recast
as a true-implies-false one (Cabello, Estebaranz, and García-
Alcaine, 1996a) in which the initial truth corresponds to being
in a particular entangled state. Similarly, one can construct
proofs in which the initial and final propositions are product
states (Cabello, 1997).

B. Generalized Kochen-Specker-type arguments

A different approach to the Kochen-Specker contradiction
has been undertaken using other types of algebraic relations
instead of ðOÞ and ðCÞ. Important examples are the PM magic
square (Mermin, 1990b, 1993; Peres, 1990), the Mermin
magic pentagram, and the scenario of Yu and Oh (Bengtsson,

FIG. 3. Graphical representation of the 18-vector KS set by
Cabello, Estebaranz, and García-Alcaine (1996a). Each node
represents a vector. For simplicity, vectors are unnormalized.
Each smooth line, i.e., every straight line or ellipse, represents a
context. Vectors in each context are mutually orthogonal. Each
vector appears in exactly two contexts: v12 appears both in
context 1 and 2, etc. As a consequence, by assigning a non-
contextual true to some vectors, one obtains an even number of
true, whereas one should get exactly nine true propositions, one
for each context. Therefore, the set is not KS colorable. Notice
that there are additional relations of orthogonality not shown in
the graph and not used to prove the contradiction. Vectors are also
listed in the table, where each row represent a context. For
simplicity, we denote −1 as 1̄.

FIG. 4. Orthogonality relations between the vectors of the
21-vector, seven-context KS set given by Lisoněk et al.
(2014). Vectors are represented by nodes and contexts by straight
lines. 1010ab denotes the vector ð1;0;1;0;a;bÞ, where a ¼ e2πi=3

and b ¼ a2. For simplicity, normalization factors are omitted.
Contexts contain mutually orthogonal vectors. The set has 21
vectors, and each vector is in two contexts. To map one (and only
one) of the vectors in each context to 1 and preserve the latter
property, one would need to associate 1 with 21/2 vectors, which
is not an integer. This makes the mapping impossible and proves
that the set is a KS set.

FIG. 5. Subgraph of the Yu-Oh graph given by the vertices
A; B; 1; 2; 4; 5; 7; 8, corresponding to a basic block of the original
KS graph (the bug), with a valid coloring, i.e., green ¼ true,
red ¼ false. As discussed in Sec. III.A (Fig. 2), A and B must be
exclusive events.
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Blanchfield, and Cabello, 2012; Kleinmann et al., 2012; Yu
and Oh, 2012).

1. The magic square and the magic pentagram

The PM “magic” square (Mermin, 1990b, 1993; Peres,
1990) introduced in Sec. II is a proof of the Kochen-Specker
theorem even though it does not explicitly use a KS set of
vectors. The difference resides in the fact that instead of
imposing ðOÞ and ðCÞ relations on rank-1 projectors, they
impose analogous algebraic relations on �1 observables.
Consider again the square of observables

2
64
A B C

a b c

α β γ

3
75 ¼

2
64

σz ⊗ 1 1 ⊗ σz σz ⊗ σz

1 ⊗ σx σx ⊗ 1 σx ⊗ σx

σz ⊗ σx σx ⊗ σz σy ⊗ σy

3
75: ð7Þ

Each row and column contains a set of commuting observ-
ables. In addition, we have the product of observables along
the rows and column being þ1, with the exception of the last
column, where it is −1. The logical relations ðO0Þ and ðC0Þ are
substituted here with the algebraic relations

vðAÞvðBÞvðCÞ ¼ vðaÞvðbÞvðcÞ
¼ � � � ¼ −vðCÞvðcÞvðγÞ ¼ þ1; ð8Þ

where with vðAÞ we denoted the value �1 assigned to the
measurements A, etc. It is then clear that Eq. (8) can never be
satisfied, since it would imply

½vðAÞvðBÞvðCÞ�½vðaÞvðbÞvðcÞ� � � � ½vðCÞvðcÞvðγÞ�
¼ 1 × 1 × � � � × ð−1Þ ¼ −1: ð9Þ

But, on the other hand, as in Eq. (5),

vðAÞvðBÞvðCÞvðaÞvðbÞvðcÞ � � � vðCÞvðcÞvðγÞ
¼ vðAÞ2vðBÞ2vðCÞ2 � � � vðγÞ2 ¼ 1; ð10Þ

which gives a contradiction. The magic square can be
converted into a standard proof of the KS theorem with
vectors (Peres, 1991).
There is a similar compact proof of the KS theorem with

Pauli operators for three qubits found by Mermin (1990b,
1993). It is based on ten observables that can be arranged as
shown in Fig. 6(b), a construction that is sometimes called the
magic pentagram.
The PM magic square and Mermin’s magic pentagram have

the minimum number of Pauli observables required for
proving the KS theorem for two and three qubits, respectively.
There are several similar proofs of the KS theorem with Pauli
observables for more than three qubits (Planat, 2012, 2013;
Saniga and Planat, 2012; Waegell and Aravind, 2013a, 2013b;
Waegell, 2014). A result by Arkhipov (2012) showed that all
critical (i.e., the contradiction disappears by removing one
observable) parity proofs (i.e., based on a parity argument, as
described in Sec. III.A) of the KS theorem for more than three
qubits with Pauli observables, where each observable is in
exactly two contexts, can be reduced to the magic square or

the magic pentagram. This is not true if each observable is in
an even number of contexts larger than two (Trandafir,
Lisoněk, and Cabello, 2022).

2. Yu and Oh’s set

Yu and Oh’s argument (Yu and Oh, 2012) does not provide
a proof of the Kochen-Specker theorem. However, it fits in
the more general framework of state-independent contex-
tuality (SI-C),1 namely, it is a contextuality argument that
depends not on the choice of a particular quantum state but
rather on the properties of the observables alone. Like KS
proofs, Yu and Oh’s argument is based on a set of rank-1
projectors. However, contrary to KS proofs, the correspond-
ing vectors admit a value assignment that is consistent with
the conditions ðO0Þ and ðC0Þ. The contextuality argument
arises from the fact that every probability distribution that is
consistent with those assignments, i.e., that comes from a
convex mixture of them, is in contradiction with the
probabilities that can be obtained using the 13 projectors
for all quantum states.
The basic elements are 13 vectors inC3 (listed in Fig. 7) and

the corresponding set of projectors jvihvj. The orthogonality
relations of such vectors are depicted in Fig. 7. The projectors
associated with nodes A, B, C, and D sum to a multiple of the
identity, namely,

jvAihvAj þ jvBihvBj þ jvCihvCj þ jvDihvDj ¼ 4
3
1. ð11Þ

FIG. 6. (a) PM magic square and (b) Mermin’s magic penta-
gram. Each dot represents an observable with possible outcome
−1 or 1. Each line contains mutually compatible observables. For
each line, the product of the corresponding observables is the
identity, except for the bold lines, where it is minus the identity.
A possible choice of observables satisfying the conditions in (a) is
given in Eq. (7). A possible choice of observables satisfying the

conditions in (b) is the following: O1 ¼ σð1Þz ⊗ σð2Þx ⊗ σð3Þx ,

O2 ¼ σð1Þx ⊗ σð2Þz ⊗ σð3Þx , O3 ¼ σð1Þx ⊗ σð2Þx ⊗ σð3Þz , O4 ¼ σð1Þz ⊗
σð2Þz ⊗ σð3Þz , O12 ¼ σð3Þx , O13 ¼ σð2Þx , O14 ¼ σð1Þz , O24 ¼ σð2Þz ,

and O34 ¼ σð3Þz .

1The acronym SIC could generate some confusion, as it is often
used in the quantum foundations and information community to
denote symmetric, informationally complete sets. That is not the case
here. Following the notation of Cabello, Kleinmann, and Budroni
(2015), we use SI-C to denote state-independent contextuality and
distinguish it from symmetric informationally complete.
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Thus, for any quantum state the sum of their probabilities is
4=3 > 1. On the other hand, the orthogonality relations among
the vectors fvig, which correspond to the exclusivity of the
respective propositions, imply that the propositions associated
with nodes A, B, C, and D are also exclusive; i.e., they cannot
be simultaneously true. This exclusivity implies that the sum
of probabilities ProbðAÞþProbðBÞþProbðCÞþProbðDÞ≤1
in any noncontextual hidden-variable model.
This can be easily proven by identifying subgraphs

containing two of the vertices A, B, C, and D and two of
the triangles f1; 4; 7g, f2; 5; 8g, and f3; 6; 9g as the basic
blocks of the original KS proof, i.e., the bug depicted in
Fig. 2. For instance, the subgraph fA; B; 1; 2; 4; 5; 7; 8g
depicted in Fig. 5 implies that B and C are exclusive. By
symmetry the same argument applies to any two vertices in
A, B, C, and D.
To summarize, even if the nodes A, B, C, and D are not

connected in the graph in Fig. 7, their relations with other
compatible elements imply that such elements correspond to
exclusive propositions. Thus, the sum of their probabilities is
bounded by 1, whereas in quantum mechanics (QM) such a
bound can be violated. We see in Sec. IV.A.3 how one can
demonstrate this contradiction via a state-independent viola-
tion of a noncontextuality inequality. It has been proven that
the Yu-Oh set is the SI-C set with the smallest number
of vectors in any dimension (Cabello, Kleinmann, and
Portillo, 2016).

C. A special instance of Gleason’s theorem

In the following, we outline the connection between
Gleason’s theorem (Gleason, 1957) and the Kochen-
Specker theorem. It is helpful to recall the result underlying
Gleason’s theorem.
Theorem (Gleason, 1957).—Let f∶S2 → R be a non-

negative function on the real sphere S2 ⊂ R3, such that all
orthonormal bases ðu⃗; v⃗; w⃗Þ in S2 obey

fðu⃗Þ þ fðv⃗Þ þ fðw⃗Þ ¼ 1: ð12Þ

Thus, there is a positive semidefinite matrix R with trðRÞ ¼ 1,
such that

fðv⃗Þ ¼ v⃗⊤Rv⃗: ð13Þ

It is evident that an assignment of values 0; 1 according to
ðO0Þ to all the orthonormal bases in C3 satisfies the assump-
tions of the theorem; hence, it must be given by a density
matrix, according to Eq. (13). On the other hand, there is no
density matrix providing 0; 1 assignments to all orthonormal
bases in R3 (hence the contradiction) (Kochen and Specker,
1967). In contrast, Kochen and Specker obtain a contradiction
using only a finite set of vectors.
A similar argument connecting Gleason’s theorem to the

impossibility of a noncontextual hidden-variable assignment
was provided by Bell (1966). He showed that given a function
f satisfying Eq. (12), two vectors v⃗ and w⃗ such that fðv⃗Þ ¼ 1

and fðw⃗Þ ¼ 0 cannot be arbitrary close. This in turn is in
contradiction to the possibility of assigning 0; 1 values to
all orthonormal bases while obeying the rules in Eq. (12),
since there would be arbitrary close pairs with different
assignments. Such a minimal angle between vectors has
been quantified as tan−1ð1=2Þ ≈ 0.464, and the argument
was further refined by Mermin (1993), who noticed that
the previous reasoning can easily be extended to an argument
that uses only a finite set of vectors, such as the original KS
argument.

IV. CONTEXTUALITY AS A PROPERTY OF NATURE

The Kochen-Specker theorem, originally presented as a
logical impossibility proof, did not involve any statistical
argument but rather was based on perfect assignments of 0
(false) or 1 (true) to a set of quantum propositions. This caused
a debate on the role of finite precision measurements (see
Sec. V.F) that also stimulated the development of statistical
versions of the Kochen-Specker contradiction. The results of
this effort were noncontextuality inequalities, which under
certain assumptions are able to experimentally detect the
phenomenon of quantum contextuality. In the following, we
introduce the basic notions and open problems associated
with noncontextuality inequalities and contextuality tests.
We present the definition of noncontextual hidden-variable
theories and noncontextuality inequalities in Sec. IV.A, the
operational definition of contexts in Sec. IV.B, the problem of
noise and imperfections in Sec. IV.C, and finally experimental
tests of contextuality in Sec. IV.D. In Sec. IV.E, we review a
different notion of contextuality introduced by Spekkens
(2005).

A. Noncontextuality inequalities

Noncontextuality inequalities provide bounds obeyed by
noncontextual hidden-variable models, in analogy with Bell
inequalities that provide bounds for local hidden-variable
models (Bell, 1964; Brunner et al., 2014). The first proposals
of Kochen-Specker-type inequalities were made by Simon,
Brukner, and Zeilinger (2001) and Larsson (2002), but these
require stronger assumptions than later noncontextuality

FIG. 7. Graph of orthogonality between the vectors of the Yu
and Oh set (Yu and Oh, 2012). Adjacent nodes represent
orthogonal vectors. For simplicity, the vectors are unnormalized.
See the text for further details.
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inequalities (Cabello, 2008; Klyachko et al., 2008), as we
later discuss.
We start by introducing the mathematical formulation

of noncontextual hidden-variable models. We then discuss
basic examples of noncontextuality inequalities such as the
Klyachko-Can-Binicioğlu-Shumovsky (KCBS) (Klyachko
et al., 2008) and the Yu-Oh inequalities (Yu and Oh,
2012), exhibiting, respectively, state-dependent and state-
independent quantum violations. Finally, we compare these
constructions with other related approaches to noncontextual
hidden-variable models.

1. Mathematical structure of noncontextual hidden-variable
models

Different definitions of noncontextual hidden-variable
(NCHV) models are present in the literature that, despite
their substantial equivalence, use different terminology and
different mathematical structures, from the marginal problem
definition in the work of KCBS (Klyachko et al., 2008;
Chaves and Fritz, 2012; Fritz and Chaves, 2013) to the
equivalent definition of the noncontextuality polytope
(Kleinmann et al., 2012), to the sheaf-theoretical approach
(Abramsky and Brandenburger, 2011), to the graph-theoreti-
cal approach of Cabello, Severini, and Winter (2014), and to
the hypergraph-theoretical approach of Acín et al. (2015); see
also Amaral and Terra Cunha (2018). Here we adopt what we
consider a minimal mathematical structure based on the
noncontextuality polytope and the marginal problem charac-
terization of NCHV. Further properties of NCHV models
related to graphs and hypergraphs are discussed in Sec. V.
Given a set of observables G ¼ A1;…; An, a collection of

contexts is a subsetM of the power set of G, i.e.,M ⊂ 2G;M
is sometimes called the marginal scenario (Chaves and Fritz,
2012). The idea behind this name is that the observed data
from measurements in each context arise as a marginal of a
global probability distribution on all observables. For each
context fAigi∈C ∈ M, i.e., with C ⊂ f1;…; ng, we have a
distribution pC of the outcomes over it. A necessary but not
sufficient condition for the existence of a global distribution is
for these marginals to be locally consistent. In other words, for
each C and C0 we have

pCjC∩C0 ¼ pC0 jC∩C0 ; ð14Þ

where jC ∩ C0 denotes the restriction of the distribution to
observables in the intersection of the two contexts, obtained
simply by marginalization, i.e., by summing over the variables
not in C ∩ C0. This consistency condition of the marginals is
sometimes called the sheaf condition (Abramsky and
Brandenburger, 2011), and in Bell scenarios it is equivalent
to the nonsignaling condition of Popescu and Rohrlich
(1994). In a contextuality scenario this condition on proba-
bility distributions has also been called nondisturbance
(Ramanathan et al., 2012).
In a NCHV model, we assume the existence of a hidden

variable that determines the outcomes of each observable
regardless of the context. For each context given by the
observables fAigi∈C and C ⊂ f1;…; ng and the outcomes
faigi∈C, this corresponds to

pCðfaigi∈CÞ ¼
X
λ

pðλÞ
Y
i∈C

pðaijλÞ; ð15Þ

with pðλÞ ≥ 0,
P

λpðλÞ ¼ 1, pðaijλÞ ≥ 0,
P

aipðaijλÞ ¼ 1 for
i ∈ C. Notice that the outcomes as are arbitrary at this level. In
most cases, we consider either as ∈ f0; 1g or as ∈ f−1; 1g.
Equation (15) implies that each outcome depends only

on the hidden variable λ, not on the specific context in which
the observable is measured. Given the factorization pro-
perties of the distribution in Eq. (15), i.e., in the marginal
problem approach, it can easily be proven that the response
functions pðasjλÞ that are not deterministic (i.e., ≠ 0; 1) can
always be transformed into deterministic functions of a new
hidden variable λ0. This is due to the fact that all probability
measures on a finite set of events (finite set of measurements
and outcomes) are convex mixtures of f0; 1g-valued mea-
sures, i.e., deterministic assignments. At the same time,
using that f0; 1g-valued measures are multiplicative, i.e.,
δðai; ajÞ ¼ δðaiÞδðajÞ, one finds that a global probability
distribution over all variables, which can be written as a
convex mixture of global deterministic assignments, factorizes
in a way similar to Eq. (15).
By further developing this intuition, one can show that

Eq. (15) is equivalent to the existence of a global probability
distribution over all observables A1;…; An, such that
Pðfaigi∈CÞ is obtained by summing over all possible out-
comes for the other observables, namely,

pCðfaigi∈CÞ ¼
X

as∶s∉C
pGða1;…; anÞ: ð16Þ

This general argument is known in the literature as Fine’s
theorem (Fine, 1982a), although Fine stated it only in the case
of the Clauser-Horne-Shimony-Holt (CHSH) (Clauser et al.,
1969) Bell scenario, and a complete proof appeared as a
straightforward corollary of the theorem of common causes by
Suppes and Zanotti (1981), which was published one year
earlier. Even though it must have been quite well known,
as it was used more or less explicitly in several works on
Bell inequalities [see the discussion by Froissart (1981)
following Eq. (2)], a proof in the language of contextuality
has appeared in the literature only relatively recently, in
connection with the sheaf-theoretical framework of Abramsky
and Brandenburger (2011).
Starting from the previously discussed definition, non-

contextuality inequalities can be derived with the same
methods used for Bell inequalities, namely, with the correla-
tion polytope method (Pitowsky, 1989). Like Bell inequalities,
noncontextuality inequalities are satisfied by NCHV models,
and their violation by data collected in a quantum experiment
demonstrates quantum contextuality. We discuss general
methods to derive them in Secs. V.A.1 and V.A.2.

2. State-dependent contextuality

We can now proceed to discuss noncontextuality inequal-
ities in the state-dependent scenario. The minimal dimension
to witness contextuality is d ¼ 3, and the KCBS scenario
(Klyachko et al., 2008) is the simplest scenario where
qutrits produce contextuality. The scenario is defined by five
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measurements A0;…; A4, with outcomes ai ∈ f−1; 1g such
that Ai and Aiþ1, with sum modulo 5, are compatible [i.e., they
have a marginal scenario M ¼ ðAi; Aiþ1Þ4i¼0]; see Fig. 8.
KCBS proposed the following inequality as being valid for
NCHV models:

hA0A1i þ hA1A2i þ hA2A3i þ hA3A4i þ hA4A0i ≥ −3; ð17Þ

where hAiAji ≔
P

ai;aj aiajpðai; ajÞ. According to the dis-

cussion in Sec. IV.A.1 and by convexity arguments, the
noncontextual bound −3 can be proven by trying all possible
�1 noncontextual assignments to the observables Ai. All
other noncontextuality inequalities for this scenario can
be obtained by relabeling the outcomes, i.e., by mapping
Ai ↦ −Ai. For instance, with the transformations A1 ↦ −A1

and A3 ↦ −A3, we obtain the inequality

hA0A1i þ hA1A2i þ hA2A3i þ hA3A4i − hA4A0i ≤ 3: ð18Þ

In contrast to Bell inequalities, here there is no bipartition of
the set of observables such that every observable in one part is
compatible with every observable of the other. Consequently,
Eq. (17) cannot be interpreted as a Bell inequality: The
measurements must be performed on a single system.
On a three-level system Eq. (17) can be violated up to

5 − 4
ffiffiffi
5

p
≈ −3.94 with the state jψi ¼ ð1; 0; 0Þ and measure-

ment settings Aj ¼ 2jvjihvjj − 1 and jvji ¼ ðcos θ;
sin θ cos½jπ4=5�; sin θ sin½jπ4=5�Þ, with cos2 θ ¼ cosðπ=5Þ=
½1þ cosðπ=5Þ�; see Fig. 8. One can straightforwardly verify
that hvijviþ1i ¼ 0, and thus ½Ai; Aiþ1� ¼ 0, where the sum is
mod 5. The KCBS inequality has been violated in several
experiments; see Sec. IV.D for more details.
The KCBS inequality, together with the inequality by

Clauser et al. (1969), is part of a general family of non-
contextuality inequalities associated with compatibility struc-
tures forming an n cycle for n ¼ 5 and 4, respectively. As a

result of Vorob’ev’s theorem (Vorob’ev, 1962) (see also the
discussion in Sec. V.B.2), cycles of length strictly greater than
3 are necessary to witness contextuality. Other types of cycle
inequalities were investigated by Bengtsson (2009) for n ¼ 7
and by Cabello, Severini, and Winter (2010) for arbitrary n.
The general form of the KCBS-like inequality for odd cycles
of length ≥ 5was introduced by Cabello, Severini, and Winter
(2010) and Liang, Spekkens, and Wiseman (2011) . The
n-cycle inequalities were proven to be tight (see Sec. V.A for a
formal definition) for any n-cycle contextuality scenario for
n ≥ 5 by Araújo et al. (2013). The case of n ¼ 4 (CHSH) was
already proven by Fine (1982a). More generally, for even n
with n > 4, the NC inequalities can also be interpreted as Bell
inequalities, the chained inequalities (Braunstein and Caves,
1990), but they are not tight in the Bell scenario.

3. State-independent contextuality

State-independent contextuality is directly related to proofs
of the KS theorem. In fact, Badziąg et al. (2009) proved that
each KS set can be converted into an inequality showing SI-C,
and Yu, Guo, and Tong (2015) developed a similar method for
proofs of the KS theorem based on more general algebraic
conditions, as is the case for the PM square.
Yu and Oh (2012) proved a stronger statement, which was

already partially discussed here. They provided a set of
projectors admitting a f0; 1g assignment according to the
constraints ðO0Þ and ðC0Þ that nevertheless demonstrates SI-C.
From the set of vectors fjviigi listed in Fig. 7, one constructs
the observables Ai ≡ 2jviihvij − 1. The compatibility rela-
tions among the observables Ai follow from the orthogonality
relations of the corresponding vectors and are again summa-
rized in the graph in Fig. 7. Each pair of observables AiAj such
that ði; jÞ is an edge of the graph is compatible. One can thus
write the following NC inequality:

X
i

hAii − 1
2

X
edges

hAiAji ≤ 8; ð19Þ

where the NCHV bound 8 is simply computed by trying all
possible 213 noncontextual value assignments for fAigi.
However, using the vectors in Fig. 7 one can easily compute
the quantum value for the operator

L ¼
X
i

Ai −
1

2

X
edges

AiAj ¼
25

3
1; ð20Þ

giving

hLiρ ¼ 25
3
> 8 ð21Þ

for any quantum state ρ. The inequality associated with the
Yu-Oh set has been further improved to maximize the gap
between NCHV and the quantum values (Kleinmann
et al., 2012).
Subsequently, several other SI-C sets that are not KS proofs

have been proposed (Bengtsson, Blanchfield, and Cabello,
2012; Xu, Chen, and Su, 2015) and a systematic construction
of state-independent contextuality inequalities based on anti-
distinguishable sets of vectors was proposed by Leifer and

FIG. 8. The set of vectors vj ∈ R3 giving the dichotomic
observables Aj ¼ 2jvjihvjj − 1 providing the maximum viola-
tion of the KCBS inequality form a regular pentagram, with
orthogonal vectors connected by a blue line. The state ψ is
directed along its symmetry axis. A realization is jψi ¼ ð1; 0; 0Þ⊤
and jvki ¼ ðcos θ; sin θ cosφk; sin θ sinφkÞ⊤, with cosθ¼1=

ffiffiffi
54

p
,

φk ¼ 2πk=5, and k ¼ ð2jþ 1Þ mod 5.
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Duarte (2020). Graph-theoretical methods allow for an
exhaustive search of SI-C sets (Ramanathan and Horodecki,
2014; Cabello, Kleinmann, and Budroni, 2015; Cabello,
Kleinmann, and Portillo, 2016) that is discussed in more
detail in Sec. V.B.

4. Logical and strong contextuality

In the previous discussion, we distinguished between two
types of statistical contextuality arguments: state dependent
and state independent. A different classification proposed by
Abramsky and Brandenburger (2011) was instead based on
the existence of an extension of certain classical models and
was independent of possible quantum violation of noncon-
textuality inequalities. More precisely, this classification adds
to the standard notion of contextuality two other, stronger
ones, namely, logical contextuality and strong contextuality.
The notion of contextuality coincides with the one previously
defined: the impossibility of a NCHV [see Eqs. (15) and (16)],
namely, the impossibility of interpreting a given set of
marginals in terms of a global distribution.
To define logical and strong contextuality, we need the notion

of possibilistic collapse of a probability distribution: Given a
probability distribution associated with a marginal scenario G,
we replace every nonzero entry by 1. In simple terms, a
possibilistic collapse only distinguishes between possible
(associated with 1) and impossible (associated with 0) events,
without assigning a probability to them. Still, one is able to
obtain contextuality for possibilistic models. A typical example
of this type of contradiction was given by Hardy (1993), who
obtained a contradiction between quantumpredictions and local
hidden-variable models by simply looking at possible and
impossible events. Abramsky and Brandenburger (2011)
defined this type of arguments logical contextuality and showed
that, in some sense, it is a stronger form of contextuality with
respect to the standard one. In fact, the impossibility of a
noncontextual description of a possibilistic assignment, in
particular, implies the impossibility of a noncontextual descrip-
tion of the original probabilistic assignment; see Abramsky and
Brandenburger, 2011, Proposition 4.4.
The possibilistic collapse of a distribution naturally intro-

duces the notion of support of a distribution, namely, the
possible events. Abramsky and Brandenburger (2011) defined
strong contextuality as the impossibility of any deterministic
assignment that is consistent with the support of a distribution.
To be more precise, by consistent we mean that whenever an
event is not in the support we assign the value 0 to it; when it is
in the support, we may assign 0 or 1. The simplest example of
strong contextuality is given by the Popescu-Rohrlich (PR)
box (Popescu and Rohrlich, 1994): a distribution between four
variables A1, A2, B1, and B2 in a Bell scenario, i.e., with
contexts fAi; Bjg, such that all pairs are perfectly correlated
except one that is perfectly anticorrelated, i.e., hA1B1i ¼
hA1B2i ¼ hA2B1i ¼ −hA2B2i ¼ 1. A perfect correlation
(anticorrelation) means that only the events for which ai ¼
bj (ai ≠ bj) are in the support of the distribution. It is then
clear that there is no deterministic assignment satisfying
these constraints. PR-box correlations are beyond what is
possible in quantum mechanics; however, for two parties with
three or more settings and for three or more parties, strong

contextuality is possible with correlation realized in quantum
mechanics. The latter is a case of a Greenberger, Horne,
and Zeilinger (GHZ)-type arguments (Greenberger, Horne,
and Zeilinger, 1989) and, more generally, the so-called
all-versus-nothing arguments (Mermin, 1990a; Cabello,
2001a, 2005).
Another notion, closely related but based on the convex

structure of noncontextual models, is that of maximal con-
textuality. Any probabilistic model p satisfying the non-
disturbance condition in Eq. (14) can be decomposed as

p ¼ αpNC þ ð1 − αÞpND ð22Þ

for some 0 ≤ α ≤ 1, where pNC is a noncontextual distribu-
tion, whereas pND is a generic nondisturbing one; see
Eq. (14). The maximal α such that this decomposition exists
is called the noncontextual fraction of p (Abramsky and
Brandenburger, 2011; Amselem et al., 2012), in analogy with
the local fraction in Bell nonlocality (Elitzur, Popescu, and
Rohrlich, 1992); see also Barrett, Kent, and Pironio (2006)
and Aolita et al. (2012). To a maximal α, i.e., the non-
contextual fraction, it corresponds a minimal 1 − α, which is
called the contextual fraction. A model is maximally con-
textual if α ¼ 0. Abramsky and Brandenburger (2011) showed
that a probabilistic model is strongly contextual if and only if
it is maximally contextual.
Note that a similar classification based on Hardy-type (or

“definite prediction sets”), GHZ-type (or “partially noncol-
orable sets”), and KS-type contextuality was introduced by
Cabello and García-Alcaine (1996) and used by Xu, Chen,
and Gühne (2020). This hierarchy presents some analogies
with the one by Abramsky and Brandenburger (2011). All
these classifications, however, can be considered in some
sense incomplete, as they take into account only classical
models, and thus fail to recognize the importance of con-
textuality arguments such as the one by Yu and Oh (2012).
We see in Sec. V.A how the contextual fraction is connected

to noncontextuality inequalities and the polytope description
of noncontextual correlations. Moreover, its connection to the
resource theory of contextuality and advantages in quantum
computation are discussed in Secs. V.E and VI.A, respectively.
Finally, we remark that the sheaf-theoretical approach of
Abramsky and Brandenburger (2011) has inspired several
lines of research connecting quantum contextuality to topo-
logical and algebraic topological methods (Abramsky,
Mansfield, and Barbosa, 2012; Abramsky et al., 2015;
Carù, 2017; Beer and Osborne, 2018; Raussendorf, 2019;
Okay and Raussendorf, 2020).

5. Other approaches to noncontextual hidden-variable models

The previously discussed definitions represent the minimal
requirements for a model where outcomes have a context-
independent assignment. Closer to the original formulation of
the KS theorem, one can add exclusivity, arising from the
condition ðO0Þ, or completeness, arising from the condition
ðC0Þ in Sec. III.A. Noncontextuality inequalities derived using
both these assumptions were usually called Kochen-Specker
inequalities by Larsson (2002), and a similar argument was
presented by Simon, Brukner, and Zeilinger (2001). More
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recent results do not use these extra conditions, but they often
appear in parallel with a derivation of general NC inequalities,
as given by KCBS (Klyachko et al., 2008) and Yu and Oh
(2012) and in several subsequent works. It is thus worth
mentioning such approaches to contextuality and emphasizing
the difference from and connection to the previously men-
tioned one.
A typical example is the following. Given a set of rank-1

projectors fjviihvijgi in dimension d, the relations of compat-
ibility (i.e., joint measurability) between the observables that
they represent in quantum mechanics correspond to ortho-
gonality relations; i.e., fjviihvij; 1 − jviihvijg is compatible
with fjvjihvjj; 1 − jvjihvjjg if and only if jhvijvjij ∈ 0; 1. If
we denote ai ¼ 1; 0 as the classical value associated with
the positive operator valued measure (POVM) fjviihvij;
1 − jviihvijg in the NCHV model, then the assumptions of
exclusivity and completeness correspond, respectively, to
pðai ¼ aj ¼ 1jλÞ ¼ 0 whenever hvijvji ¼ 0, and toP

i∈Ipðai ¼ 1jλÞ ¼ 1 whenever hvijvji ¼ 0 for all i; j ∈
I; i ≠ j and

P
i∈Ijviihvij ¼ 1.

Any inequality valid for a NCHV model is also valid for a
NCHV model with the previously mentioned extra assump-
tions. Conversely, an inequality valid for a NCHV model with
such extra assumptions can be transformed into an inequality
valid for NCHV models with the extra assumptions by adding
extra terms, as we discuss in the following for the case of the
extra assumption of exclusivity. A similar argument can be
constructed for the case in which the completeness condition
ðC0Þ is also assumed. However, this does not necessarily mean
that the bound is preserved. An example was provided by
Bengtsson, Blanchfield, and Cabello (2012), who presented a
noncontextuality inequality with a bound of 63=5 under the
assumption of noncontextuality, but only 61=5 if one adds the
requirements of exclusivity and completeness.
By assuming exclusivity, we obtain an inequality of the

form

X
i∈I

μipðai ¼ 1Þ ≤
NCHVþE

Ω; ð23Þ

with the superscript indicating that it holds when the extra
exclusivity assumption is made. We can then add on the lhs
pairwise correlation terms −μijpðai ¼ 1; aj ¼ 1Þ with appro-
priately chosen weights μij ≥ 0, such that the total value of the
expression decreases when the exclusivity condition is vio-
lated. For suitably chosen weights we have

X
i∈I

μipðai ¼ 1Þ −
X

ði;jÞ∈I 0
μijpðai ¼ 1; aj ¼ 1Þ ≤

NCHV
Ω; ð24Þ

making Eq. (24) valid also for general NCHV models.
It is straightforward to use this conversion in the KCBS

inequality (Klyachko et al., 2008),

X4
i¼0

pðai ¼ 1Þ ≤
NCHVþE

2; ð25Þ

transforming it into an inequality valid for general NCHV
models, namely,

X4
i¼0

pðai ¼ 1Þ −
X4
i¼0

pðai ¼ 1; aiþ1 ¼ 1Þ

¼
X4
i¼0

pðai ¼ 1; aiþ1 ¼ −1Þ ≤
NCHV

2; ð26Þ

where the sum in aiþ1 is modulo 5 and we simplify the
expression using the marginal condition in Eq. (16). Not
only does this transformation not change the classical bound,
it also does not modify the quantum value obtained from
the quantum observables Aj ¼ 2jvjihvjj − 1 discussed in
Sec. IV.A.2, since it satisfies by construction hvijviþ1i ¼ 0,
giving pðai ¼ 1; aiþ1 ¼ 1Þ ¼ 0. This idea was exploited in
several works (Yu and Oh, 2012; Asadian et al., 2015;
Cabello, Kleinmann, and Budroni, 2015), and a completely
general treatment of the problem was presented by Yu and
Tong (2014) and Cabello (2016). Experimental tests of
contextuality are challenging, so it is useful to reduce the
set of assumptions to an absolute minimum when designing
such tests. Finally, a construction of further noncontextuality
inequalities that use extra exclusivity assumptions can be
obtained using the graph-theoretical approach to quantum
contextuality; see Sec. V.B.

B. Operational definitions and physical assumptions:
Ideal measurements

In the previous sections, an abstract notion of a context was
enough to introduce the mathematical structures of NCHV
models and the Kochen-Specker theorem; only some intuition
on its physical meaning was provided. This is no longer
sufficient when discussing possible experimental tests. In
particular, the physical implications of a violation of a
noncontextuality inequality actually depend on the physical
assumptions at the basis of the chosen notions of context, the
type of measurements considered, the details of their exper-
imental implementation, etc. All these details must be verified
to check their consistency with the notion of the NCHV model
that one wants to test. Consider the CHSH inequality. If the
measurements appearing in it are performed on distant
particles such that the input generation on one side and the
outcome generation on the other side are spacelike separated
events, then one can interpret its violation as a disproof of
local hidden-variable models. In contrast, if the measurements
are performed on the same system, the interpretation of the
violation will have a different meaning, depending on the
notion of context chosen. Are the measurements sharp? Are
they commuting? These and similar questions must be
addressed and their answers motivated by the terms of the
actual experimental setup.
In the following, we address questions such as the follow-

ing: What assumptions must be fulfilled by this implementa-
tion in order to make an experiment a reasonable test of
contextual behavior? What models can be disproved by such
experiments? To achieve this, we proceed in two steps. First,
we need an operational definition of contexts that allows us to
identify them with certain experimental joint measurements.
More precisely, we focus on the notion of disturbance for
sequential measurements. This is done in the framework of
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ideal measurements, where properties such as perfect non-
disturbance are achievable. Second, we extend the notion of
noncontextuality to the case of nonideal measurements. We
show in Sec. IV.C how this can be achieved via an explicit
quantification of the disturbance.

1. Two perspectives: Observables and effects

To describe experimental realizations of contextuality tests,
we adopt as much as possible a “black-box” description of the
measurements. Such a description does not presuppose the
validity of quantum mechanics, even though the design of
the operations carried out to obtain the measurement results
(such as which laser pulses to use in ion experiments and where
to put beam splitters and polarizers in photonic experiments)
may be motivated by a quantum mechanical description. Each
measurement apparatus is seen as a box that takes as input a
physical system in a certain state and returns a classical output,
and possibly the physical system in a new state. We are not
interested in the details of the functioning of the apparatus;
however, we still need some physical assumptions on how to
combine the different experimental apparatuses to observe joint
probability distributions. In fact, a prerequisite for contextuality,
in the sense of the previously derived inequalities, is the
possibility of performing two or more measurements together,
corresponding to nontrivial marginal scenarios.
Note that different notions of contextuality exist in the

literature. To clarify the origin and relation between the
different notions of contextuality, it is helpful to return to
the original discussion by Kochen and Specker (1967). The
starting point of their argument is that it is always possible to
construct a hidden-variable model for a set of observables if
such a theory does not need to satisfy functional relations
among them. At the same time, they were dissatisfied by the
impossibility proof by von Neumann (1931, 1932), which
used linear relations among incompatible observables. In
contrast, they chose an intermediate perspective inspired by
Gleason’s approach (Gleason, 1957), where functional rela-
tions are assumed only among compatible measurements
since they can be experimentally tested in a joint measure-
ment. As a notion of compatibility, they defined the notion of
comeasurability, meaning that the statistics of a set of
observables fAigi can be recovered as a function of a single
measurement B. In particular, for ideal measurements, this
notion was shown to be equivalent to pairwise commutativity
(Kochen and Specker, 1967). Using more modern terminol-
ogy, we may identify this idea with the notion of joint
measurability (Busch, Lahti, and Mittelstaedt, 1996; Busch,
Lahti, and Werner, 2014; Busch et al., 2016), which is valid
for more general measurements. A generalized measurement
is represented by a POVM: a collection of effect operators
fEigi such that Ei ≥ 0 and

P
iEi ¼ 1 with the computation of

probabilities via ProbðiÞ ¼ trðρEiÞ, and quantum instruments
fI igi for the computation of the state-update rule, i.e.,
ρ ↦ I iðρÞ, where I i is a completely positive map. That is,
idCk ⊗ I i is a positive map for each k, where idCk is the
identity map on the Hilbert space Ck and

P
iI i is a trace-

preserving map, i.e., tr½PiI iðρÞ� ¼ trðρÞ for all ρ ≥ 0, also
known as a quantum channel; see Heinosaari and Ziman
(2012) for an introduction. Two POVMs A and B with effects

Ai and Bj are called jointly measureable if there is a third
POVM G with effects fGijgij such that Ai ¼

P
jGij and

Bj ¼
P

iGij. Equivalently, one can substitute the sum over
one index with a more general classical postprocessing (Ali
et al., 2009). The equivalence between joint measurability and
commutativity is no longer true for nonideal measurements:
this point plays an important role in the discussion of
experimental tests.
One may summarize here by saying that the basic elements

of the KS theorem are dichotomic observables, i.e., the fPigi
of Sec. III.A with values f0; 1g or ffalse; trueg, and contexts
are defined as sets of comeasurable observables. On the other
hand, as discussed by Kochen and Specker (1967), the
simplest way of performing a joint measurement of three
observables, belonging to a context, is given by a single
trichotomic measurement where the three orthogonal projec-
tors Pi, Pj, and Pk are interpreted as its effects. Thus, the KS
theorem can equivalently be analyzed as follows from the
observable perspective (OP) or the effect perspective (EP).

OP: The basic objects of contextuality are observables
and their compatibility (joint-measurability) relations.
A context is defined by a set of compatible observ-
ables. A noncontextual hidden-variable model is one
that assigns values to each observable regardless of
which joint measurement they appear in.

EP: The basic objects of contextuality are effects and
their relation of being part of the same generalized
measurement. A context is defined by a single
measurement. A noncontextual hidden-variable model
is one that assigns values to each effect regardless of
which measurement they appear in.

Note that this distinction between OP and EP has been
introduced here to clarify and separate different ideas and
different approaches to contextuality. In some older works on
contextuality this distinction was not as sharp and the two
perspectives were often interchanged. A typical example was
given by Klyachko et al. (2008), who derived noncontextual-
ity inequalities for both joint measurement and single effects.
Moreover, OP should not be confused with the observable-
based approach discussed by Acín et al. (2015).
If one wants to pass from the scenario with idealized

measurements to actual experimental tests, the two perspec-
tives present different challenges. Several questions arise,
such as, What happens if the measurements are noisy? How
can we operationally identify contexts in an experimental
scenario? Possible ways of generalizing these two different
perspectives to deal with actual experiments gave rise to
different notions of contextuality. The OP is the perspective
that we primarily consider in this review. The EP was the most
common in the initial works on the KS theorem; see the
discussion in Sec. III.A in terms of value assignments to
triples of orthogonal vectors. In more recent times, Spekkens
(2005, 2014) analyzed this approach to the Kochen-Specker
theorem and contextuality, challenging the assumption of
determinism and arguing against the possibility of applicabil-
ity of such notions to unsharp measurements. Such ideas
have led to, among other things, a definition of contextuality
and an approach to contextuality tests unlike the one presented
thus far.
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For completeness, we want to clarify the difference between
OP, the most common alternative EP, and the Spekkens
definition of contextuality in some detail. We discuss EP in
Sec. IV.B.3. In particular, we discuss Spekkens’s criticism of
the latter perspective. In Sec. IV.E, we provide a more detailed
discussion of Spekkens’s approach to contextuality.

2. Operational definitions of contexts: OP

Given the two discussed perspectives, a natural question is
how to translate such notions into experimental procedures in
the lab. For instance, an observable can be identified with an
experimental measurement procedure (such as a sequence of
laser pulses and detection for an ion-trap experiment or optical
elements and detection for a photonic one) and an effect can
be connected to the probability of a certain outcome in a
measurement. How can we say that we implement the “same
mathematical object” in “different experimental contexts”?
The mathematical object in question is an observable in OP or
an effect in EP.
We start with OP. In this case, it is easy to identify the basic

objects, i.e., the observables, whereas a harder task is to
identify contexts and compatible observables. The minimal
requirement for a context is to be given by a joint measure-
ment. In fact, a large fraction of theoretical works on
contextuality simply discuss joint measurements without
entering into the details of their experimental realization;
see Abramsky and Brandenburger (2011), Cabello, Severini,
and Winter (2014), and Acín et al. (2015). If one goes to the
lab and performs a test of contextuality, however, different
options arise. A possible way to perform joint measurements
is simply to perform the measurements in a sequence. This is
the perspective adopted in several contextuality experiments
(Amselem et al., 2009; Kirchmair et al., 2009; Łapkiewicz
et al., 2011), and the one we present in the following from a
theoretical point of view. An analysis of such experiments and
similar ones is presented in Sec. IV.D. Other approaches that
do not use sequential measurements are possible, including
that of Zhan et al. (2017), which we review in the following.
In a sequential implementation of a joint measurement, it is

clear how to identify the “same observable” in “different
contexts” since an observable is given by a specific set of
measurement procedures (laser pulses, beam splitters, etc.).
One simply has to repeat the same procedures in different
sequences. What, then, are the joint measurements in a
sequential implementation? The simple act of performing
one measurement after the other is not enough to consider it a
joint measurement. Intuitively, one would need some notion of
nondisturbance, in the sense that the physical property
revealed by a measurement B is not altered if A is measured
first, and the same if the order is exchanged. This intuition is
particularly clear when one considers a Bell scenario: the
choice of measurement performed by one party (say, Alice)
cannot have any influence on the measurement outcome of the
other party (say, Bob), since these events are assumed to
happen in spacelike separated regions. Special relativity
guarantees that no “influence” or “disturbance” could propa-
gate from one space-time region to the other. Bell nonlocality
can be considered a particular form of contextuality where the
assumption of context independence is identified with the

locality assumption; Alice’s outcome is independent of what
measurement Bob is performing. One may relax such a
constraint by assuming that two measurements are performed
on two systems few meters apart in the same lab and still do
not disturb each other, or even measurements on different
degrees of freedom on the same system, etc. This motivates us
to further develop this idea to identify contexts as sets of
measurements that are in some sense nondisturbing, and to
deal with experimental imperfection from this perspective, as
we discuss in Sec. IV.C. Similar ideas of classical hidden-
variable models based on the notion of nondisturbance among
measurements were developed by Leggett and Garg in the
category of macrorealist models (Leggett and Garg, 1985;
Emary, Lambert, and Nori, 2014).
Before defining a notion of nondisturbance, we clarify

which type of measurements are relevant. A wide range of
measurements are possible in quantum mechanics, from sharp
measurement to the trivial POVM f1=2; 1=2g, always giving
one of two outcomes with equal probability. We want the
observables to represent the measurement of a property rather
than a random coin flip. A possible condition is that of self-
repeatability: namely, if we perform the same measurement
twice, we obtain the same outcome. This is a prerequisite for
speaking about nondisturbance for single runs of an experi-
ment. In fact, if the outcome changes randomly when
repeating a measurement, as in the case of the previously
mentioned trivial POVM, it does not make sense to speak
about the outcome not being disturbed. Notice that this notion
of disturbance for POVMs, which was introduced by
Heinosaari and Wolf (2010), should not be confused with
the notion of disturbance at the level of the probability
distributions [see Ramanathan et al. (2012)], which does
not presuppose the sequential realization of the joint meas-
urement. To better understand this point, we consider the
notion of nondisturbance for quantum sequential measure-
ments (Heinosaari and Wolf, 2010): A does not disturb B if it
is impossible to detect through a measurement of B, whether
or not A was measured (and its outcome discarded) before B.
However, this property does not imply that A has no effect on
B. For instance, imagine that we perform the sequence of
measurements BAB. If we obtain the outcome þ1 for the first
measurement of B and −1 for the second, we may conclude
that A “disturbed” B. This notion makes sense only if B is self-
repeatable. A given set of observables fA; B; C;…g satisfy the
outcome repeatability property if for any sequence of them, in
any possible order and with each observable appearing
multiple times, the outcome of their first appearance is always
repeated in all subsequent measurements. Hence, in the
sequential measurement implementation of joint measure-
ments, a set of observables that satisfy outcome repeatability,
and in addition the statistical nondisturbance conditions of
Heinosaari and Wolf (2010) and their generalization to
arbitrary sequences [see Uola, Vitagliano, and Budroni
(2019)], is what we call a context (in OP).
The previous definition was inspired by the quantum

mechanical notion of projective measurements. In fact, for
projective measurements all properties capturing some idea of
simultaneous measurability, i.e., joint measurability, nondis-
turbance, outcome repeatability, etc., are equivalent to the
commutativity of observables. This notion is the basis of the
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NCHV models presented in Sec. IV.A.1, such as Eq. (15),
since one requires the single outcomes, i.e., the corresponding
deterministic response functions, not to be disturbed.
In summary, in OP, combined with the sequential realiza-

tion of joint measurements, observables are given by exper-
imental measurement procedures, contexts are defined by
sequential measurements of outcome-repeatable observables,
and each single-measurement procedure is repeated in an
identical way in each sequence of measurements. The differ-
ent steps in the realization of a contextuality test can be listed
as follows.
(S.1) Define experimental measurement procedures

and associate with each one a classical random
variable with the same values as the possible
outcomes.

(S.2) Identify contexts in terms of outcome-repeatable
and statistical-nondisturbing measurements.

(S.3) Perform measurements in different sequences,
according to the defined contexts. For each
measurement the same procedure is repeated in
different contexts.

(S.4) Compare the observed statistics for contexts
(sequences) with the one predicted using the
NCHV for the corresponding classical variables.

This is the perspective explicitly adopted by Kirchmair et al.
(2009), Gühne et al. (2010), and Larsson et al. (2011), among
others. These steps are defined for ideal measurements. In
actual experiments, the outcome repeatability property is
never exactly satisfied due to unavoidable errors and impre-
cision in the experimental implementations. Nevertheless,
having this theoretical framework in mind, one can devise
practical methods to deal with experimental imperfections. In
real experiments, then, we need an additional step
(S.5) Perform additional experimental runs to quantify

deviations from ideal (outcome-repeatable and
nondisturbing) measurements and compare them
to the classical models accordingly.

See Fig. 9 for some examples of the different measurement
procedures. The problem of quantifying deviations from ideal
measurements and the comparison to the classical models is
discussed in Sec. IV.C.
Before concluding this section, we comment on the

possibility of simply using the notion of joint measurability,
as in the original work by Kochen and Specker (1967), by
extending it to nonideal measurements. Larsson et al. (2011)
extensively argued in favor of using sequential measurements
for contextuality tests. The main motivations can be summa-
rized as follows. For joint measurement devices, a change of
context corresponds to a physically entirely different setup
even if one of the settings within the context remains
unchanged. It is difficult to argue that the outcome of the
unchanged setting is unchanged from physical principles, as
noted by Bell (1966, 1982); see also the discussion by Cabello
(2009). In the previously outlined black-box scenario, one can
always decide whether one performs a measurement alone or
in sequence with other measurements. The existence of
“contextless” devices associated with the single-measurement
setting and then combined in the sequential measurement
setup is then the argument for noncontextual behavior. In a

sequential measurement one uses the same observables for
which one wants to verify the contextual behavior. This allows
for a direct identification of the single observables in each
context, and a change of the context occurs by substituting
only some observables in the sequence. This is in contrast to
the joint measurement scenario where the entire device
changes and other means of identifying observables have to
be applied. Still, it is possible to identify observables in a joint
measurement without sequential measurements in terms of
their statistics, namely, if they provide the same distribution of
outcomes for any state preparation. This approach presents
different challenges, such as making sense of the expression
“for any state preparation.” Further details are provided later.
Finally, an argument against the use of joint measurability

alone to define contexts for nonideal measurements can be
formulated by applying a construction by Fritz (2012) to the
contextuality scenario. Even though the original argument
dealt with a different problem related to nonlocality, one can
straightforwardly adapt it to contextuality. We present the
main idea in the following by considering the CHSH scenario
as a contextuality scenario. We denote the measurements

(a)

(b)

(c)

FIG. 9. Different experimental procedures in Bell and more
general noncontextuality scenarios. (a) Two contexts in Bell
scenario. The same measurement A1 is performed in two different
contexts, either with B1 or with B2. (b) Two contexts in the PM
scenario. The measurement of A is performed in two contexts,
either with B and C or with a and α. As in the Bell scenario, the
same measurement procedure, represented by the box with label
A, is repeated in different contexts. (c) Additional measurements
to quantify experimental imperfections. The measurement of A is
repeated alone or together with B. Subsequent measurements of A
must confirm the same outcome, represented by the yellow light
on the bottom of the device.
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effects as fAx
ag and fBy

bg, where a and b are the outputs and x
and y are the measurement settings, and define contexts as a
set of jointly measurable observables. In the CHSH scenario,
each context consists of a pair fAx; Byg. If we assume that
contexts are defined by jointly measurable observables, this
implies that there is a joint measurement Gxy

ab for each pair
of settings x and y. The joint-measurability conditions
amounts to

Ax
a ¼

X
b

Gxy
ab; By

b ¼
X
a

Gxy
ab; for all a; b; x; y: ð27Þ

Notice that such operators automatically give rise to a non-
signaling distribution pðabjxyÞ (Popescu and Rohrlich,
1994): namely, it satisfies

P
b pðabjxyÞ ¼

P
b pðabjxy0Þ

for all a; x; y; y0, and
P

a pðabjxyÞ ¼
P

a pðabjx0yÞ for all
b; x; x0; y. On the other hand, for any given nonsignaling
distribution fpðabjxyÞgabxy, we can construct such joint
measurements simply as

Gxy
ab≔pðabjxyÞ1; Ax

a≔
X
b

Gxy
ab; By

b≔
X
a

Gxy
ab: ð28Þ

Since all operators are a multiple of the identity, one can
simply take a one-dimensional Hilbert space. At the level of
correlations, the conditions of nonsignaling precisely amounts
to the condition of joint measurability for one-dimensional
quantum systems.
This construction implies that by defining contexts simply

in terms of jointly measurable observables all nonsignaling
correlations (Popescu and Rohrlich, 1994) can be obtained
using one-dimensional quantum systems. The argument
extends straightforwardly to any arbitrary contextuality sce-
nario, where the counterparts of the nonsignaling correlations
are the nondisturbing (Ramanathan et al., 2012) or the
nonsignaling-in-time (Kofler and Brukner, 2013) correlations.
In other words, by defining contexts simply in terms of
joint measurability all maximally contextual correlations,
defined as the extreme point of the nondisturbing polytope
(Ramanathan et al., 2012), can be reached using one-dimen-
sional (and hence classical simulable) quantum systems.
Intuitively, this argument shows that when one uses too

broad of a notion of contexts, i.e., joint-measurability alone,
contextuality becomes a trivial property. This is the necessary
conclusion if one adopts the definition of NCHV given in
Sec. IV.A, where Fine’s theorem allows any distribution to be
decomposed in terms of deterministic ones. For a different
perspective on the problem of trivial POVMs that does not
necessarily support the previous conclusions, see Henson and
Sainz (2015) and Kunjwal (2019).
This does not mean that the possibility of defining contexts

through joint measurability and applying this definition to
experimental implementations has not been explored and that
other approaches are not possible. For instance, the notion of
joint measurability was used as a definition of context for
nonideal measurements by Liang, Spekkens, and Wiseman
(2011). Notice that Liang, Spekkens, and Wiseman (2011)
discussed the frameworks of both Kochen-Specker and
Spekkens contextuality. They avoid the problem of trivial
POVMs by introducing a sharpness parameter and a

consequent modification of noncontextual bounds for corre-
lations. Observables proportional to the identity, as in the
example of Eq. (28), are then maximally unsharp, and the
modified bound of the considered noncontextuality inequality
then becomes the algebraic maximum (Liang, Spekkens, and
Wiseman, 2011). This approach was further investigated by
Kunjwal and Ghosh (2014) and Kunjwal (2015), and the
corresponding inequality was experimentally tested by Zhan
et al. (2017).

3. Operational definitions of contexts: EP

Different problems arise in the EP. Here a context is easily
identifiable operationally, as it consists simply of a single
measurement. The difficult part is to identify the same effect in
different measurements. A solution is an identification of
effects based on the observed statistics. As an example, we can
consider Spekkens’s approach, proposed in 2005 (Spekkens,
2005) and clarified in 2014 (Spekkens, 2014), which was
based on the notion of statistical indistinguishability. In simple
terms, one identifies the effect associated with the outcome k
of the measurement M with the effect associated with the
outcome k0 of the measurement M0 if

pðkjP;MÞ ¼ pðk0jP;M0Þ for all preparations P; ð29Þ

where pðkjP;MÞ denotes the probability of the outcome k of
the measurement M given the preparation P. This idea of
statistical identification of effects has appeared in the liter-
ature; see Fuchs (2002). Here, however, it is explicitly used to
constrain possible hidden-variable models. If two effects have
the same statistics, they must be represented by the same
mathematical object in the hidden-variable model.
In this framework, a hidden-variable model, or an onto-

logical model according to the terminology of Spekkens
(2005) [see also the extensive discussion by Harrigan and
Spekkens (2010)], describes the observed probabilities for a
given preparation P and measurementM with an outcome k as

pðkjP;MÞ ¼
X
λ

μPðλÞξM;kðλÞ; ð30Þ

where μPðλÞ represents the probability distribution of the
space of the hidden variable λ associated with the preparation
P, satisfying μPðλÞ ≥ 0 and

P
λ μPðλÞ ¼ 1, and ξM;kðλÞ

represents the response function associated with the outcome
k of the measurement M, satisfying ξM;kðλÞ ≥ 0 andP

k ξM;kðλÞ ¼ 1 for all λ. Noncontextuality, then, amounts
to the assumption that ξM;k ¼ ξM0;k0 if the condition (29) is
satisfied. One can then compare these assumptions with the
usual assumptions of the Kochen-Specker theorem (Spekkens,
2005; Leifer and Maroney, 2013; Kunjwal and Spekkens,
2015).
We saw in Sec. IV.A.1 [Eq. (15)] that the nondeterministic

response functions can always be transformed into determin-
istic ones by extending the space of the hidden variable.
However, if one assumes that two effects with the same
statistics are represented by the same object in the hidden-
variable model, one can no longer transform the nondeter-
ministic response functions ξM;kðλÞ into deterministic ones, if
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the measurement is not sharp. A proof of this fact was given
by Spekkens (2014). The intuition at the basis of the proof
could be summarized as follows. For a given effect E of an
unsharp measurement, take its spectral decompositionP

iλiΠi, which has all eigenvalues in ½0; 1�. The projectors
fΠigi then constitute a projective measurement that gives E
via some postprocessing. Since E is statistically indistinguish-
able from the previously constructed postprocessing of a
projective measurement, the corresponding response func-
tions in the ontological model must be identical. Hence, the
response function associated with E must also arise from the
same postprocessing; i.e., they are not deterministic.
This observation together with the practical impossibility of

obtaining perfect projective measurements in actual exper-
imental implementations led to the development of a different
notion of noncontextuality inequalities (Spekkens et al., 2009;
Kunjwal and Spekkens, 2015, 2018; Mazurek et al., 2016; Xu
et al., 2016; Krishna, Spekkens, and Wolfe, 2017; Pusey,
2018; Schmid, Spekkens, and Wolfe, 2018) based on the
identification of measurement effects according to Eq. (29)
and an analogous notion for preparations called preparation
noncontextuality (Spekkens, 2005). We review the approach
based on the latter perspective in Sec. IV.E.

C. Modeling experimental imperfections

Starting from the operational definition of contexts and
compatibility provided in Sec. IV.B.2 for ideal projective
measurements, we further develop these ideas in order to deal
with imperfect and noisy measurements typical of any
experimental implementation of a contextuality test. We
emphasize that there is no general recipe that can be applied
to all experiments. On the contrary, for every experimental
realization it is necessary to make some assumptions on the
hidden-variable model describing the type of noise present.
Typically, it is necessary to perform additional measurements
to quantify the amount of noise and check its consistency with
the previously mentioned assumptions, and possibly to
modify the noncontextuality inequality accordingly. Several
approaches have been proposed and implemented in exper-
imental tests of contextuality. In the following, we discuss the
theoretical work presented by Kirchmair et al. (2009) and
Gühne et al. (2010), by Szangolies, Kleinmann, and Gühne
(2013) and Szangolies (2015), and by Simon, Brukner, and
Zeilinger (2001), Larsson (2002), Winter (2014), and Kujala,
Dzhafarov, and Larsson (2015).

1. Quantifying disturbance in sequential measurements

To deal with actual experiments, we need to relax the
assumption of perfectly compatible measurements by admit-
ting measurements that produce a certain type of disturbance
on subsequent measurements, and then trying to quantify such
a disturbance. This was the approach proposed by Kirchmair
et al. (2009) and further developed by Gühne et al. (2010); we
mostly follow the latter. Such an approach can be summarized
as follows. Probabilities associated to perfectly compatible
measurements are still described by NCHV models; however,
we admit the possibility of incompatible measurements that
introduce disturbance and change the outcomes of subsequent

measurements in a sequence, giving rise to context-dependent
outcomes. The amount of disturbance is then estimated
experimentally under the physical assumption that the amount
of noise introduced by the measurements is cumulative; i.e., it
does not cancel out by performing more measurements.
To keep the notation simple, we consider only the case of

�1-valued observables, a generalization to arbitrary finite
outcomes is straightforward. Consider a hidden-variable
model describing the probabilities for all possible sequences
SAB ¼ fA; B; AA; AB; BA; BB; AAA;…g of two �1-valued
observables A and B. We denote the outcome probabilities for
single measurements as p½�jA�; p½�jB� and, similarly, for
sequences p½� � jAA�; p½� � jAB�;… for, respectively,
measurement of the sequence AA and AB, where the temporal
ordering of the sequence is from left to right. We admit the
possibility of a discarded outcome such as p½þ • −jBAB�,
which denotes the probability for the outcomes þ for the first
measurement of B, a discarded outcome (•) for the measure-
ment of A, and − for the final measurement of B.
As anticipated, our model departs from the NCHV model

discussed in Sec. IV.A.1. If A and B are compatible observ-
ables, it must necessarily be that p½þ • −jBAB� ¼ 0, as it
follows immediately from Eq. (15). Consider now the case
where A and B are not compatible. Terms that are not
experimentally accessible are still well defined in this model,
such as p½ðþjAÞ&ðþjBÞ�, namely, the probability that the first
measurement gives the outcome þ1, in the case both of a
measurement of A and of a measurement of B. However, the
outcome probability p½þ þ jAB� for their sequential measure-
ment does not correspond to the previously mentioned one, and
it is in fact not included in the description given by the NCHV
model. In this sense, the present discussion extends the NCHV
framework to a new hidden-variable model that includes the
description of sequences of incompatible measurements, and in
which certain outcomes are allowed to depend on the particular
sequence of measurements if such a sequence involves incom-
patible measurements. This is a central point common to all
analyses of experimental imperfections.
For measurements that are assumed to be compatible, say, A

and B, the hidden-variable model satisfies the usual non-
contextuality conditions:

vðA1jS1; λÞ ¼ vðA2jS2; λÞ; for all λ;

for sequences S1 ¼ fAg; S2 ¼ fBAg; ð31Þ

where vðAijS; λÞ denotes the value assigned by the hidden-
variable model to the observable A in position i in the
sequence S for a given λ. Notice that Eq. (31) is a condition
on the hidden-variable model that is not directly experimen-
tally testable; hence, it cannot be taken as an operational
definition of compatibility. How can we quantify the disturb-
ance introduced by a measurement in this model? The first
observation is that for this model the following inequality
holds:

p½ðþjAÞ&ðþjBÞ�≤p½þþjAB�þp½ðþjAÞ&ð•− jABÞ�: ð32Þ

Intuitively, given a specific value λ of the hidden variable such
that it contributes to the lhs, either the value of B stays the
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same (i.e., λ contributes to p½þ þ jAB�) or the value of B is
flipped by the measure of A (i.e., λ contributes to p½ðþjAÞ
and ð• − jABÞ�).
The correlator hABi ¼ P

ab¼�1abp½ðajAÞ&ðbjBÞ�, repre-
senting the correlation between A and B assigned by the
hidden-variable model, can be written as

hABi ¼ 1 − 2p½ðþjAÞ&ð−jBÞ� − 2p½ð−jAÞ&ðþjBÞ�: ð33Þ

In contrast, the correlation between A and B observed
in an experiment where we measure the sequence
S ¼ fABg denoted by hA1B2i is given by hA1B2i ¼P

ab¼�1abp½abjAB�. In general, hA1B2i ≠ hABi if A and B
are incompatible.
By definining pflip½AB� as the probability that the outcome

of B is flipped by the measurement of A, namely,

pflip½AB�≔p½ðþjBÞ&ð•− jABÞ�þp½ð−jBÞ&ð•þjABÞ�; ð34Þ

and using Eq. (32), we can bound hABi with the experimen-
tally observable correlator hA1B2i as follows:

hA1B2i − 2pflip½AB� ≤ hABi ≤ hA1B2i þ 2pflip½AB�: ð35Þ

From Eq. (31), pflip½AB� ¼ 0 for compatible measurements.
Applying this reasoning to the CHSH inequality (Clauser

et al., 1969),

hABi þ hBCi þ hCDi − hADi ≤ 2: ð36Þ

We have the corresponding expression for the case of
sequential measurements (Gühne et al., 2010)

hχseqCHSHi≔ hA1B2iþhC1B2iþhC1D2i−hA1D2i
≤2ð1þpflip½AB�þpflip½CB�þpflip½CD�þpflip½AD�Þ:

ð37Þ

What is left is to bound the unobservable quantity pflip. We
introduce

perr½BAB� ≔ p½þ • −jBAB� þ p½− •þjBAB�; ð38Þ

corresponding to the probability of flipping the value of B in a
sequence of three measurements with an intermediate meas-
urement of A. In contrast to pflip½AB�, perr½BAB� is experi-
mentally measurable.
At this point, one needs an assumption on the hidden-

variable (HV) model describing the experimental noise,
namely, the cumulative noise assumption:

p½ð�jBÞ and ð•∓ jABÞ� ≤ p½ð�jBÞ and ð�•∓ jBABÞ�
¼ p½�•∓ jBAB�: ð39Þ

Notice that Eq. (39) is not directly testable, as it contains some
inaccessible correlations that are defined only at the level of
the HV model. Nevertheless, one can have a physical intuition
of what this means. In fact, this assumption corresponds to the
idea of a cumulative noise, i.e., the noise always increases

with additional measurements. It is more likely to flip the
outcome of B if we perform a measurement of both B and A
than it is if we perform only a measurement of A. This seems
to be a reasonable assumption if we want to model exper-
imental imperfections, where the measurements are not
supposed to “collude” to cancel out the noise when arranged
in specific sequences. Similar ideas were explored by Wilde
and Mizel (2012) in their discussion of the so-called clumsi-
ness loophole for Leggett-Garg inequalities.
Equation (39) then directly implies pflip½AB� ≤ perr½BAB�

and allows us to rewrite Eq. (37) as

hχseqCHSHi − 2ðperr½BAB� þ perr½BCB�
þ perr½DCD� þ perr½DAD�Þ ≤ 2; ð40Þ

which involves only experimentally testable quantities.
Kirchmair et al. (2009) reported an experimental violation
of Eq. (40) for a sequential measurement of the CHSH
expression with the value

hχseqCHSHi − 2ðperr½BAB� þ perr½BCB� þ perr½DCD�
þ perr½DAD�Þ ¼ 2.23ð5Þ: ð41Þ

A similar analysis was performed in the experiment by Jerger
et al. (2016).

2. Context-independent time evolution

An implicit assumption hidden in the definition of the
previous model is that the hidden variable λ is static, i.e., not
evolving during the time passing between one measurement
and the subsequent one. Szangolies, Kleinmann, and Gühne
(2013) and Szangolies (2015) proposed a relaxation of such
conditions admitting a hidden variable changing in time, but
with an evolution that is still context independent, in the sense
that it does not depend on the specific measurements per-
formed. This investigation led to modified noncontextuality
inequalities satisfied by such an extended set of noncontextual
correlations, thus able to demonstrate quantum contextuality
in a broader framework.
The notion of noncontextual evolution has been formalized

as follows (Szangolies, 2015): The system evolves according
to a sequence of hidden-variable states λi → λj → λk → � � �
that is independent of the measurements performed. To
understand this notion, it is helpful to consider a simple
example of a noncontextuality inequality that can be maxi-
mally violated by such models. Consider the CHSH inequal-
ity, but now evaluated according to the following sequential
measurement scheme:

hA1B2i þ hB1C2i þ hC1D2i − hD1A2i ≤ 2; ð42Þ

where, as in Sec. IV.C.1, we denote via the symbol hA1B2i the
fact that we perform the measurement A first, then the
measurement B, and take the expectation value of the product
of their outcome. Szangolies, Kleinmann, and Gühne (2013)
constructed the following noncontextual model with evolu-
tion. The hidden variable λ evolves from an initial state λ1 to λ2
regardless of the measurement performed at the initial time.
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The measurements are chosen such that A, B, C, andD always
give the outcome þ1 on the state λ1, and likewise for λ2, with
the only exception being A, which gives the value −1 on λ2. It
is then straightforward to verify that Eq. (42) can be violated
up to the algebraic maximum 4. On the other hand, forcing the
measurements to always appear in the same order, namely,

hA1B2i þ hB1C2i þ hC1D2i − hA1D2i ≤ 2; ð43Þ

restores the classical bound 2. Intuitively, since observables
are forced to appear always in the same position in the
sequence, they are always drawn from the same distribution
for λ ¼ λ1 or λ2; hence, they are not affected by the evolution
of λ. This behavior is analogous to what happens in Leggett-
Garg tests (Leggett and Garg, 1985; Emary, Lambert, and
Nori, 2014), where the hidden variable λ is allowed to evolve
freely in time.
Analogous reasoning can be applied to different non-

contextuality inequalities (Szangolies, Kleinmann, and
Gühne, 2013), such as the PM inequality seen in Eq. (3),

hA1B2C3i þ hc1a2b3i þ hβ1γ2α3i þ hA1a2α3i
þ hβ1B2b3i − hc1γ2C3i ≤ 4; ð44Þ

where the observables are always forced to appear in the same
position in each sequence of measurements: A always appears
first, a always appears second, α always appears third, etc.
The same inequality has also been investigated from the
perspective of dimension witnesses based on quantum con-
textuality (Gühne et al., 2014) and for a comparision between
the spatial and temporal scenarios (Xu and Cabello, 2017).
Moreover, similar ideas can even be applied to noncon-

textuality inequalities where observables cannot be forced to
always be in the same position, such as the KCBS inequality
(Szangolies, Kleinmann, and Gühne, 2013) [cf. Eq. (17)]

hA1B2i þ hB1C2i þ hC1D2i þ hD1E2i
þ hE1A2i − hA1A2i ≥ −4; ð45Þ

where the extra term hA1A2i is designed to give a “penalty”
whenever the value A changes with a change in λ. In summary,
this approach provides a simple method of dealing with
context-independent time evolution of the hidden variable,
which can be easily combined with the one presented in
Sec. IV.C.1.

3. First proposals of experimentally testable inequalities

The first attempts to derive experimentally testable non-
contextuality inequalities were made in the early 2000s by
Simon, Brukner, and Zeilinger (2001) and Larsson (2002).
They relaxed Kochen-Specker assumptions by requiring that
the noncontextuality assumption and the completeness con-
dition ðC0Þ of Sec. III.A are only approximately satisfied.
More precisely, the model proposed by Simon, Brukner, and
Zeilinger (2001) considered a relaxation of ðC0Þ, whereas
Larsson (2002) considered a relaxation of both ðC0Þ and the
noncontexual value assignment. In the following, we discuss
the approach of Larsson (2002).

For any pair of intersecting contexts appearing in a KS set,
i.e., triples of vectors ða; b; cÞ and ða; b0; c0Þ, we make the
assumption that the value assignment is approximately context
independent, i.e.,

p½vða;b;cÞðaÞ ≠ vða;b0;c0ÞðaÞ� ≤ ε; ð46Þ

where vða;b;cÞðaÞ denotes the value assigned to a in the context
of ða; b; cÞ.
Models that obey the previous assumption were called

ε-ontologically faithful noncontextual (ε-ONC) models by
Winter (2014). A formal statement of the second assumption
is that the value assignments on any given context approx-
imately satisfy the condition ðC0Þ, i.e.,

p

� X
i¼a;b;c

vða;b;cÞðiÞ ≠ 1

�
≤ ε0: ð47Þ

We now write M for the number of interconnections between
contexts [such as M ¼ 1 for the single shared vector between
ða; b; cÞ and ða; b0; c0Þ] and N for the number of contexts. A
Kochen-Specker proof consists of a set of vectors for which it
is impossible to assign a noncontextual value satisfying all
logical relations. In the previous language, this implies the
impossibility of an assignment with ε ¼ ε0 ¼ 0. This is also
expected to hold for small disturbances. This intuition can be
made quantitative, with the following inequality derived by
Larsson (2002) from the previous assumptions:

Mεþ Nε0 ≥ 1; ð48Þ

implying that if the errors in the logical relations (ε0) are small,
noncontextuality must often fail (ε must be large). The
presence of the logical relations associated with the KS
theorem makes it a KS inequality such as those discussed
in Sec. IV.A.5.
Using experimental estimates of the probability of failure

of the logical relations, one can draw conclusions on how far
from noncontextual the data are. For the Kochen-Specker
proofs available at the time, the numbersM (interconnections)
and N (contexts) were high, so even small values of ε and ε0

would give a value on the left-hand side of Eq. (48) that is
larger than 1; see the numbers listed in Table I. An experiment
to violate one of these inequalities would be challenging given
that errors in the directions would translate to an increased
probability of failure of noncontextuality, and would therefore
lower the bound on ε0. However, there is no direct connection
between directional accuracy and ε, the probability of failure
of noncontextuality, and no immediate way to estimate this
failure probability from experimentally measurable quantities.

4. Approximate quantum models

An attempt to use the quantum description of the system
and measurements for the estimate of the failure probability of
Sec. IV.C.3 was presented by Winter (2014). Winter consid-
ered quantum effects Qi that are ε close in the operator norm
to the ideal projectors Pi associated with each direction i, such
that
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kQi − Pik ≤ ε: ð49Þ

In the review, this is given the name ε-precise quantum (ε-PQ)
model. Note that in principle ε can be estimated through a
tomographic characterization of the measurement. It is now
tempting to equate the ε from the ε-ONC model (as previously
defined) with the ε from the ε-precise quantum model, the
reason being that they each constitute a distance measure in
their respective realms. In the following, we review how this
identification can play a role in contextuality tests according to
Winter (2014).
We consider an ε-ONC model consisting of a set of f0; 1g-

valued classical random variables XC
i , each associated with a

rank-1 projector Pi and a context C such that

X
i∈C

Xi ≤ 1 for all contexts C;

ProbðXC
i ≠ XC0

i Þ ≤ ε for all i; C; C0; such that i ∈ C ∩ C0:

ð50Þ

In other words, the model is explicitly contextual; i.e., for each
i and each context C, we have a different random variable XC

i ,
but XC

i and XC0
i take different values at most with probability ε.

The case ε ¼ 0 clearly coincides with the usual NCHV model.
From the previously mentioned explicitly contextual model

one can define the context-independent variables Yi as

Yi ≔
Y
C

XC
i : ð51Þ

From Eq. (51) it is clear that the probability that Yi is different
from XC

i for some C is equal to the probability that XC
i are not

all equal for different C; hence, it is smaller than ðki − 1Þε,
where ki is the number of contexts in which i appears. We thus
have

hXC
i i ≤ hYii þ ðki − 1Þε; ð52Þ

which corresponds to the modified bound for ε-ONC models

X
i

λihPii ≤ βε-ONC ≔ β0-ONC þ ε
X
i

λiðki − 1Þ; ð53Þ

where β0-ONC denotes the usual NCHV bound and βε-ONC
represents the modified bound for a ε-ONC model.
For a given violation βq of the NCHV bound β0-ONC, we can

have a contradiction up to the precision ε0 ¼ ðβq − β0-ONCÞ=
½Piλiðki − 1Þ�, i.e., the violation cannot be explained using a
model with imprecision ε ≤ ε0. Winter (2014) also provided
some estimates of the ε0 associated with maximal quantum
violation of different noncontextuality inequalities, such as
the KCBS inequality with εKCBS0 < 0.047 and the PM-square
inequality with εPM0 < 0.0138.
By equating the ε of the ε-ONC model with the ε of the

ε-PQ model, e.g., with the latter extracted via a tomography of
the quantum effects, one could use the previous argument to
disprove noncontextuality for imprecise measurements.
However, there is no direct connection between the two, as
both definitions (of an approximate quantum model and of an
ontologically faithful noncontextual classical model) are
independent. In fact, the measures arise in different domains
and measure distances between different conceptual object
types: in one case the operator-norm distance between an
ideal measurement (Pi) and the realized effect (Qi), and in the
other case the statistical distance between an outcome assign-
ment in one context [vða;b;cÞðaÞ in the previous example]
and the corresponding outcome assignment in another con-
text [vða;b0;c0ÞðaÞ].

5. Maximally noncontextual models

Another approach to the quantification of measurement
disturbance in contextuality tests was proposed by Kujala,
Dzhafarov, and Larsson (2015) via the notion of maximal
noncontextuality. They relaxed the definition of a NCHV
model by allowing for some disturbance in the measurements,
not necessarily seen as sequential measurements, leading to
an apparent context dependence, namely, the observation of
different marginal distributions for the measurement of the
same observable in different contexts. In this way, they
obtained an explicitly contextual classical model in which
observables in different contexts were represented by different
classical random variables.
It is instructive to show a simple example. Consider the

KCBS scenario discussed in Sec. IV.A.2: five fþ1;−1g-
valued observables A0;…; A4 with compatible pairs Ai; Aiþ1,
with the sum modulo 5. Consider the following version of the
KCBS inequality:

TABLE I. Various Kochen-Specker proofs: the dimension d, the number of projectors n (the number inside parentheses
is the number used in the contradiction, while the number outside them counts all vectors when completing the bases), the
number of contextsN, and the number of context changesM. The final two columns are lower bounds for the probability of
failure of the logic relation ε0 given a noncontextual model (ε ¼ 0), and when there is a small probability of failure of
noncontextuality from experimental causes (such as ε ¼ 0.01).

Reference d n N M ε0 (ε ¼ 0) ε0 (ε ¼ 0.01)

Peres (1993) 3 57 (33) 40 96 0.0250 0.0010
Kochen and Conway (Peres, 1993) 3 51 (31) 37 91 0.0270 0.0024
Schütte (Bub, 1997) 3 49 (33) 36 87 0.0278 0.0036
Kernaghan and Peres (1995) 8 36 11 72 0.0909 0.0255
Kernaghan (1994) 4 20 11 30 0.0909 0.0636
Cabello, Estebaranz, and García-Alcaine (1996a) 4 18 9 18 0.1111 0.0911
Lisoněk et al. (2014) 6 21 7 21 0.1429 0.1129
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X3
i¼0

hAiAiþ1i − hA0A4i ≤ 3; ð54Þ

where addition in the indices is interpreted modulo 5. The
NCHV model was extended by Kujala, Dzhafarov, and
Larsson (2015) by taking a copy of each classical variable
for each context. In this case, there are five contexts fAi; Aiþ1g
for i ¼ 0;…; 4, and each Ai appears twice, i.e., in the ith and
the (iþ 1)th contexts. They constructed an explicitly con-

textual model by taking context-dependent copies, i.e., AðiÞ
i

and Aðiþ1Þ
i , where the superscript indicates the context. This

construction of a contextual model is similar to that discussed
in Sec. IV.C.1, where the value assignment of an observable
explicitly depends on the sequence that it appears in; see
Eq. (31). However, to facilitate an easier comparison with the
original paper, we follow the notation by Kujala, Dzhafarov,
and Larsson (2015).
As in the previous cases, in order to interpret experimental

results one needs to make an assumption regarding the type of
disturbance present. Kujala, Dzhafarov, and Larsson (2015)
chose to introduce the notion of a maximally noncontextual
model. A rigorous definition was provided by Kujala,
Dzhafarov, and Larsson. Here we may reformulate it in simple
terms as follows: variables representing observables in different
contexts are equal to each other with the maximum probability
allowed by the observed marginals. Intuitively, this notion
states that there is no disturbance other than that observed in the
marginals. In a manner similar to that discussed in Sec. IV.C.1,
it is reasonable to apply this model if the noise is supposed
to arise from some clumsiness of the measurements; i.e., the
measurement apparatuses are not colluding to cancel out the
noise when combined in a certain way.
Kujala, Dzhafarov, and Larsson derived a class of inequal-

ities valid for maximally noncontextual models, for what they
called cyclic systems, also referred to as the n-cycle scenario
(Araújo et al., 2013), namely, a collection of fþ1;−1g-valued
observables A0;…; An−1 with compatible pairs Ai; Aiþ1, with
the sum modulo n. This scenario includes the Leggett-Garg
inequality (Leggett and Garg, 1985), the CHSH inequality
(Clauser et al., 1969), and the KCBS inequality (Klyachko
et al., 2008), corresponding to, respectively, n ¼ 3; 4; 5. The
KCBS inequality in Eq. (54) becomes

X3
i¼0

hAðiÞ
i AðiÞ

iþ1i−hAð4Þ
0 Að4Þ

4 i−
X4
i¼0

jhAðiÞ
i i− hAði−1Þ

i ij≤3. ð55Þ

Such inequalities can be derived using methods similar to
those associated with standard noncontextuality inequalities
(cf. Sec. V.A): under the assumption of a joint probability

distribution over all variables fAðcÞ
i gi;c, one computes the

projection of the corresponding probability simplex onto
the space of observable marginals [in this case, the

correlators fhAðiÞ
i AðiÞ

iþ1igi and expectation values (marginals)

fhAðcÞ
i igi;c¼i;iþ1]. A rigorous derivation of Eq. (55) was given

by Kujala, Dzhafarov, and Larsson (2015).
In contrast to the proposal in Sec. IV.C.1, the present

method does not require one to perform additional

measurements, as the experimental data obtained for the usual
test of the KCBS inequality already contains all the informa-
tion necessary to evaluate the lhs of Eq. (55). In fact, Kujala,
Dzhafarov, and Larsson (2015) compared this expression
with the experimental results for the test of the KCBS
inequality given by Łapkiewicz et al. (2011) by computing
a 99.99999999% confidence interval for the lhs of Eq. (55)
and obtaining the interval ½3.127; 4.062�, thereby confirming a
violation of the inequality. This result can then be interpreted
as a disproof of maximally noncontextual models. Amaral,
Duarte, and Oliveira (2018) and Amaral and Duarte (2019)
investigated general methods to derive inequalities such as
Eq. (55) for arbitrary scenarios.

D. Experimental realizations

In this section, we discuss some experimental tests of
quantum contextuality. We cannot give a detailed description
of the experimental techniques. Instead, we explain some
typical experiments and their underlying assumptions.

1. Early experiments

We first mention some of the early experiments aiming
at a test of quantum contextuality (Michler, Weinfurter, and
Żukowski, 2000; Huang et al., 2003; Hasegawa et al., 2006;
Bartosik et al., 2009). These early experiments were charac-
terized by the fact that they did not measure one of the
contextuality inequalities from Sec. IV.A. Instead, some
predictions of quantum mechanics are assumed to be correct
in order to interpret the observations as a refutation of
noncontextuality.
As an example, we discuss the experiment by Bartosik et al.

(2009) in some detail. We consider the following six observ-
ables on a two-qubit system:

A ¼ σx ⊗ 1; B ¼ 1 ⊗ σx; a ¼ σy ⊗ 1;

b ¼ 1 ⊗ σy; G ¼ σx ⊗ σy; g ¼ σy ⊗ σx. ð56Þ

Thus, for any noncontextual model the inequality

hΘi ¼ −hABi − habi þ hGAbi þ hgaBi − hGgi ≤ 3 ð57Þ

holds. This can be directly checked by considering all the �1
assignments to the measurements. For a two-qubit Bell state in
an appropriate basis, one can reach the value hΘi ¼ 5, as the
Bell state can be a common eigenstate of G and g with
eigenvalue −1.
As our observables are defined locally, one can assume

the relation hGAbi ¼ hgaBi ¼ 1. Note, however, that this
assumption is justified only for the given definition of
observables: it does not necessarily hold if the measurements
are considered to be black boxes. But in that case the
inequality simplifies to

hθi ¼ −hABi − habi − hGgi ≤ 1: ð58Þ

For testing this inequality, Bartosik et al. (2009) used neutron
interferometry. Here the two qubits are represented by the spin
and the path of a neutron in an interferometer. These 2 degrees
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of freedom are independently accessible, and the terms hABi
and habi can be measured directly.
Under the assumption of the validity of quantum mechan-

ics, the term hGgi can be measured by performing a Bell
measurement (i.e., a measurement in the basis of all the four
Bell states) on the two qubits. This also allows one to
reconstruct the values of G and g separately. Typically, such
a Bell measurement is nonlocal and therefore difficult, but
since the two qubits are encoded on a single neutron, this is
feasible here. Finally, a value of hθi ¼ 2.291� 0.008 was
found, resulting in a clear violation of Eq. (58).

2. A test of the Peres-Mermin inequality with trapped ions

One of the first experiments testing contextuality inequal-
ities was performed with ion traps (Kirchmair et al., 2009),
and it can be considered the prototypical example from which
the general description in Sec. IV.B has been developed, as
well as the basis for many other subsequent experiments. This
experiment aimed at an implementation of the inequality
coming from the PM square; see Eq. (3).
We start by describing the experimental setup: A pair of

40Caþ ions in a Paul trap was used to model the four-
dimensional Hilbert space. For each ion, the qubit is repre-
sented by the states j1i ¼ jS1=2; mS ¼ 1=2i and j0i ¼ jD5=2;
mD ¼ 3=2i; see also Fig. 10. Manipulating and reading out
this single system can be done using laser pulses with high
fidelity. For performing nonlocal gates, a Mølmer-Sørensen
gate was used where both ions were illuminated with the same
laser. This allows one to perform nonlocal gates even if
the ion-crystal is not in the thermal ground state. This is
important, as the later measurements require state detection of
one ion, which can excite the motional quantum number.
A crucial point of the experiment is the appropriate

implementation of the measurements of the PM square.

Here it is important that these are global measurements on
a four-dimensional system with only two outcomes (�1). This
means that a measurement like C ¼ σz ⊗ σz cannot be
implemented by measuring σz on both particles separately,
as this would give four different results and destroy the
coherence in the subspaces corresponding to the eigenvalues
of σz ⊗ σz, as discussed in our first presentation of the PM
square in Sec. II. To circumvent this, one can write C and any
other observable in the PM square as

C ¼ σz ⊗ σz ¼ U†
C½σz ⊗ 1�UC; ð59Þ

where UC is some nonlocal unitary gate. Physically, this
allows one to implement C by first applying the UC to the
state, then reading out only the first ion, and finally undoing
the transformation UC again. In the experiment, the internal
state of the second ion was in addition transferred to a different
level during the readout of the first ion in order to protect it
from fluorescence light during the detection process.
In this way, all the nonlocal measurements on the PM

square can be implemented, but note that the measurement of
the third row and the third column requires the implementation
of six nonlocal gates within the sequence. Consequently,
the fidelity of a single nonlocal gate must be high (in the
experiment, it was around 98%) in order to observe the desired
results. For the interpretation of the experiment, the details of
the decomposition of C ¼ U†

C½σz ⊗ 1�UC are not relevant: A
measurement like C is seen as a black box, where a state is
subjected to certain measurement procedures and a result �1

is obtained. The details of the decomposition are inside the
black box; see also Fig. 10. One has to determine in the
experiment whether these black boxes represent repeatable
and nondisturbing measurements; this has also been done, as
later discussed.
With these measurements, one can start to test the non-

contextuality inequality. Performing a sequence of measure-
ments, one obtains eight possible results since any of the
measurements results in a �1 outcome; see also Fig. 11.
Multiplying the results gives the total value, which is then
used for computing the total expectation value of an inequal-
ity. As a first result, if one takes a two-qubit singlet state as an
input state, a violation of

hPMi ¼ 5.46� 0.04 > 4 ð60Þ

has been found, displaying a clear violation. A further central
prediction of quantum mechanics is the state independence of
the violation. For that, ten different states have been tested,
including mixed states and separable states. In all cases, a
violation has been found with values of hPMi ranging from
5.23� 0.05 to 5.46� 0.04.
For it to be a complete contextuality test, some more issues

have to be discussed. One first has to test and quantify the
degree to which the implemented measurements are indeed
compatible. Closely related to that is the question as to why
the observed violation was not the one expected from quantum
mechanics. All this allows one to finally exclude hidden-
variable models, albeit with additional assumptions besides
noncontextuality.

FIG. 10. Upper panel: level scheme of a single 40Caþ ion,
highlighting the electronic levels used for the qubit. Lower
panel: implementation of the measurement sequence of one
column or row. To retrieve only 1 bit of information, a
measurement is implemented by first performing a nonlocal
unitary transformation, then only one qubit is read out, and finally
the unitary transformation is reversed. From Gühne et al., 2010.
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Concerning the compatibility of the measurements within
one row or column, the experiment by Kirchmair et al. (2009)
made several tests. First, for compatible measurements the
order of the measurements within one row or column should
not matter. This was tested (see Fig. 11) and confirmed.
Second, for compatible measurements the values within a
sequence of measurements should not change. For that, one
can consider the measurement A ¼ σz ⊗ 1 and a sequence of
measurements A1A2A3 � � � of it, where we again use the
notation of Sec. IV.C.1, with Ai denoting the measurement
of A in the sequence position i (to avoid confusion, this
notation is not used in the following sections). The question is
whether the results of Ai and Aj are the same; this can be
quantified by the mean value hAiAji. Here values from
hA1A2i ¼ 0.97� 0.01 to hA1A5i ¼ 0.95� 0.01 have been
reported (Gühne et al., 2010). For a nonlocal measurement
such as c ¼ σx ⊗ σx the imperfections are larger and one
finds, for instance, hc1c3i ¼ 0.88� 0.01. In addition,
measurement sequences like c1C2c3 can be tested in order
to test the compatibility of C and c. Here values of hc1c3i ¼
0.83� 0.02 have been found.
The observations confirm that the implemented mea-

surements are to a certain extent repeatable and compatible.
The question remains as to whether this is sufficient to rule
out hidden-variable models with some extra assumptions.

For that, Kirchmair et al. (2009) used a model where certain
error probabilities for short sequences are assumed to be
bounded by the error probabilities of longer sequences; see
Sec. IV.C.1 and Gühne et al. (2010) for detailed discussions.
With that, the inequality

hχi ¼ hBCi þ hbci þ hBbi − hCci − 2perr½CBC�
− 2perr½cbc� − 2perr½bBb� − 2perr½cCc� ≤ 2 ð61Þ

can be derived. In Eq. (61) perr½CBC� denotes the probability
that the value of C is flipped if the sequence C1B2C3 is
measured. Experimentally, a value of hχi ¼ 2.23� 0.05 was
found, ruling out this type of hidden-variable model.

3. A test of the Peres-Mermin inequality with photons

A further test of the PM square was performed with photons
(Amselem et al., 2009). A single photon was used there to
carry two qubits: One qubit was encoded in the polarization,
and a second one was encoded in the path of the photon; see
also Fig. 12.
Given this two-qubit system, one has to implement the nine

measurements A;…; γ from the PM square. Note that a
standard measurement of the polarization or path with photon
detectors is not suitable, as then the photon is absorbed and no
further sequence of measurements can be carried out.
Amselem et al. (2009) did this by constructing an interfero-
metric setup for each measurement where the result of the
measurement was encoded in the output port of the interfer-
ometer; see Fig. 12(c). For instance, A ¼ σsz on the spatial
qubit is effectively an empty interferometer: the photon leaves
the setup in direct correspondence to the input. The polari-
zation measurement B ¼ σpz can be implemented with a
polarizing beam splitter, which makes the output port depen-
dent on the input polarization. These are only simple exam-
ples; certain other measurements essentially require an
entangled Bell measurement for their implementation.
For measuring a sequence like CAB, one has to concatenate

these interferometers; see Fig. 12(b). Here one needs to build 2
times the setup for measuring A, one for each possible output
port of C. Moreover, one needs 4 times the setup for B, as CA
can have four possible results, i.e., the photon may be in four
different paths. Finally, the result of the entire sequence is
measured by a click in one of eight detectors. The inequality
was checked for 20 different input states. On average, a
value of

hPMi ¼ 5.4550� 0.0006 > 4 ð62Þ

was found.

4. A test of the KCBS inequality with photons

The KCBS inequality from Sec. IV.A was first tested in
an experiment using photons (Łapkiewicz et al., 2011).
Here the three basis states of the Hilbert space were given
by three possible paths of a photon in an interferometer; see
also Fig. 13.
A single photon is first coherently distributed over the

three paths via beam splitters, thus preparing the initial state.
A measurement is done by detection in a possible path

FIG. 11. Upper panel: measurement correlations for a sequence
of measurements for a partially entangled input state. The color
choice indicates whether the product of the three results gives þ1
(yellow) or −1 (red). The volume of a sphere is proportional to the
likelihood of finding the corresponding measurement outcome.
Lower panel: permutations of the observables within the rows and
columns can serve as a test of the compatibility of the measure-
ments. The measured absolute values of the products of the
observables for all six possible permutations are shown. For each
permutation, 1100 copies of the singlet state were used. From
Kirchmair et al., 2009.
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(result −1), and if no photon is detected the measured value
is þ1. A pair of observables from the KCBS inequality is
measured simultaneously by marking two paths. If the photon
is in such a path, the product is assigned the value −1; no

detection corresponds to the value þ1. For example, A1A2 can
be directly be measured [Fig. 13(b)], but for the next term
in the inequality optical elements are used to manipulate the
two paths, which are not needed for the measurement of A2.

FIG. 12. (a) Encoding of two qubits in one photon. A tunable polarizing beam splitter distributes the photon over two spatial modes,
resulting in the spatial qubit. The polarization qubit is adjusted by half- and quarter-wave plates. (b) A row or column of the PM square is
measured by a sequence of interferometers. After the sequence, the photon can be in one of eight different outputs, representing the eight
outcomes of the sequence of measurements. (c) Detailed interferometric setups for all nine measurements in the PM square. From
Amselem et al., 2009.

FIG. 13. Left panels: setup for the measurement of the correlations hAiAji in the KCBS inequality in Eq. (63). The measurement Ai has
the result −1 if the corresponding detector clicks; otherwise, the value þ1 is assigned. Consequently, the product AiAj has the value þ1

if both or no detectors register a photon; otherwise, the value is −1. Right panels: concrete experimental setup. The transformations Ti
are implemented via insertion of the half-wave plates WPi, which in combination with polarizing beam splitters distribute the photons
across the modes. From Łapkiewicz et al., 2011.
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The two paths are then used for A3 and the next term in the
inequality [Fig. 13(c)].
The setup has to ensure, for instance, that the observable A2

that is measured both in the term A1A2 and in the term A2A3

corresponds exactly to the same experimental setup. In the
experiment this problem was solved by a careful design of a
measurement sequence; see the right-hand side of Fig. 13.
However, in the last correlation one does not measure A5A1,
but instead A5A0

1, where A0
1 has a different structure than the

measurement A1 in the correlation A1A2. One can, however,
compare the properties of A1 and A0

1 and then argue that it is
effectively the same measurement. In the experiment there
was a small deviation between A1 and A0

1, but it was suggested
to take this into account with a correction term in the
KCBS inequality, leading to a modified classical bound of
−3.081� 0.002. For the KCBS correlation, there is a value of

hA1A2i þ hA2A3i þ hA3A4i þ hA4A5i
þhA5A0

1i ¼ −3.893� 0.006; ð63Þ

which violates the contextuality inequality by 120 standard
deviations.

5. Final considerations on KS contextuality experiments

To conclude this section, we first mention some other
experimental tests of contextuality inequalities. The contex-
tuality inequality from the PM square has also been tested
using nuclear magnetic resonance (Moussa et al., 2010), with
photons in its entropic version (Qu et al., 2020), a similar
inequality has been tested with photons (Liu et al., 2009), and
the Mermin star inequality has been tested with nitrogen-
vacancy centers in diamond (van Dam et al., 2019). The
KCBS inequality and its generalizations have been tested with
superconducting qubits (Jerger et al., 2016), photons (Borges
et al., 2014; Arias et al., 2015), and ions (Malinowski et al.,
2018), and Um et al. (2013, 2020) explored the connection to
randomness generation.
The inequality of Yu and Oh was first tested with photons

by Zu et al. (2012); see also the discussions given by
Amselem et al. (2013) and Zu et al. (2013). Further tests
have been implemented with a single trapped ion (Zhang
et al., 2013) and nitrogen-vacancy centers in diamond (Kong
et al., 2012, 2016). In a more recent experiment with a trapped
ion, the compatibility relations of the observables were studied
in detail (Leupold et al., 2018). Finally, there are experimental
works that aim at an observation of contextuality effects in
classical systems (Frustaglia et al., 2016; Li et al., 2017;
Zhang et al., 2019); see also the discussion given by
Markiewicz et al. (2019).
In all the previously listed experiments, several different

approaches have been proposed to test contextuality. It is
important to separate them into three different main catego-
ries. In Secs. IV.B and IV.C, we argued in favor of the use of
sequential measurements, such as the experiments by
Kirchmair et al. (2009) discussed in this section. The alter-
native is that of joint measurements. Some experiments
adopted this approach, such as the one by Łapkiewicz et al.
(2011) described in this section. Even in the joint measure-
ment approach, effort has been put into the identification of

which part of the device corresponds to each single meas-
urement, as well as the quantification of experimental imper-
fections and their consequences on the noncontextual bound,
in a similar spirit to the approaches discussed in Sec. IV.C.
Finally, there are other experiments where the single mea-
surements in each context are not as well characterized and are
sometimes even implemented in different ways in different
contexts, making the experimental procedure itself context
dependent. This can lead to discussions about the interpre-
tation of the experiment (Zu et al., 2012, 2013; Amselem
et al., 2013).
The experiments chosen as examples are simply represent-

atives of a broad range of different experiments with analogies
and differences. The variability of the different approaches
is arguably due to the lack of a clear and comprehensive
theoretical description of a quantum contextuality experiment.
This review aims to fill the gap.
Finally, there are two types of experiments we have not

mentioned thus far, namely, experiments of Spekkens’s
contextuality, which are covered in Sec. IV.E, and the
Liang-Spekkens-Wiseman approach (Liang, Spekkens, and
Wiseman, 2011), which was tested by Zhan et al. (2017) and
which we do not cover in this review.

E. A different notion of contextuality: Spekkens’s approach

1. Spekkens’s definition of noncontextuality

A different notion of contextuality was introduced by
Spekkens (2005) and further explored and developed in
subsequent papers (Spekkens, 2014; Kunjwal and Spekkens,
2015, 2018; Mazurek et al., 2016; Xu et al., 2016; Pusey,
2018; Schmid, Spekkens, and Wolfe, 2018; Schmid et al.,
2020, 2021; Kunjwal, 2020). The starting point is an
operational interpretation of a physical theory, namely, a
construction where the primitive elements are preparation,
transformation, and measurement procedures. Such proce-
dures are intended as a list of instructions for “operations” that
can be performed in a laboratory. For the case of a prepare-
and-measure scenario (i.e., ignoring for the moment trans-
formation procedures), the basic elements are preparations
and measurement effects together with rules for calculating
probabilities [i.e., pðkjP;MÞ], representing the probability of
obtaining the outcome k for the measurement M given the
preparation procedure P.
The notion of a noncontextual operational theory is based

on the idea of the statistical indistinguishability of procedures.
In simple terms, one may call operationally equivalent those
procedures that give rise to the same statistics and may require
that they should be represented by the same elements of the
theory. Consequently, Spekkens defines equivalence classes
of preparations and measurements as follows:

P ∼ P0 ⇔ pðkjP;MÞ ¼ pðkjP0;MÞ
for all measurements and outcomes k;M; ð64Þ

ðM; kÞ ∼ ðM0; k0Þ ⇔ pðkjP;MÞ ¼ pðk0jP;M0Þ;
for all preparations P; ð65Þ
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where the symbol ∼ denotes operational equivalence. If one
applies the equivalence in Eq. (64) to experimental procedures
described according to quantum mechanics, one obtains that
each equivalence class ½P� is associated with a quantum state ρ
since there is no way to distinguish via a quantum measure-
ment two preparations that give rise to the same state ρ.
A typical example is that of a spin-1=2 particle: it is not
possible to distinguish the preparation of an equal mixture of
states polarized along z, corresponding to the quantum state
ρ ¼ ðj0ih0j þ j1ih1jÞ=2, from the preparation of an equal
mixture of states polarized along x, corresponding to the
quantum state ρ ¼ ðjþihþj þ j−ih−jÞ=2. Similarly, for
Eq. (65) each measurement M is associated with a POVM
fEkgk and each outcome k is associated with a single element
Ek, with Ek ≥ 0 and

P
kEk ¼ 1, regardless of the particulars

of the experimental implementations of the measurement.
A hidden-variable description of preparations and meas-

urement procedures is given by an ontological model that
plays a role similar to that of a NCHV in Sec. IV.A.1. A crucial
difference, however, is that such procedures involve only a
preparation and a measurement. In fact, we restrict ourselves
to the prepare-and-measure scenario to keep the presentation
simple and concise. Notice, however, that the original for-
mulation of Spekkens (2005) also considered transformations
and that recent developments of Spekkens contextuality also
included the case of sequential measurements, or more
complex compositions of operations (Schmid, Selby, and
Spekkens, 2020). An ontological model for the probability
pðkjP;MÞ is then given by

pðkjP;MÞ ¼
Z

dλμPðλÞξM;kðλÞ; ð66Þ

where μP∶Ω→ ½0;1� is the probability density associated with
the preparation procedure P, i.e.,

R
dλμPðλÞ¼1, and ξM;k∶Ω →

½0; 1� represents the indicator function associated with the
outcome k of M, satisfying

P
kξM;kðλÞ ¼ 1 for all λ ∈ Ω.

Equation (66) is reminiscent of the expression for joint
measurements or local hidden state models arising in the
context of quantum steering (Uola et al., 2020). In fact, some
formal equivalence between Spekkens’s preparation contex-
tuality and these two phenomena has been shown (Tavakoli
and Uola, 2020). This is no longer true if the set of states under
consideration does not include all quantum states or if one also
considers measurement noncontextuality, in addition to prepa-
ration noncontextuality; see Selby et al. (2021) for further
details. Finally, we recall that another notion of steering, based
on the original argument by Schrödinger (1935), was shown
by Spekkens (2007) to hold for a Spekkens-noncontextual toy
theory. This notion of steering, however, does not coincide
with the one introduced by Wiseman, Jones, and Doherty
(2007) and used by Tavakoli and Uola (2020).
The condition of noncontextuality, then, amounts to the

requirement that the same description in the ontological model
corresponds to each equivalence class in the operational
model. In other words, if P ∼ P0, then μP ¼ μP0 (condition
of preparation noncontextuality) and if ðM; kÞ ∼ ðM0; k0Þ, then
ξM;k ¼ ξM0;k0 (condition of measurement noncontextuality).
It is then possible to obtain a contradiction between the

previously stated assumptions and the predictions of quantum
mechanics, hence showing the impossibility of a noncontex-
tual ontological model.
In the simplest example of the impossibility of a prepara-

tion-noncontextual ontological model, Spekkens (2005) wrote
the maximally mixed state of a qubit, i.e., 1=2, as a convex
combination of different rank-1 projectors, namely,

1
2
¼ 1

2
ðjψaihψaj þ jψAihψAjÞ

¼ 1
2
ðjψbihψbj þ jψBihψBjÞ

¼ 1
2
ðjψcihψcj þ jψCihψCjÞ

¼ 1
3
ðjψaihψaj þ jψbihψbj þ jψcihψcjÞ

¼ 1
3
ðjψAihψAj þ jψBihψBj þ jψCihψCjÞ; ð67Þ

where the vectors (depicted in Fig. 14 in the Bloch repre-
sentation) are defined as

jψai ¼ ð1; 0Þ; jψAi ¼ ð0; 1Þ;
jψbi ¼ 1

2
ð1;

ffiffiffi
3

p
Þ; jψBi ¼ 1

2
ð

ffiffiffi
3

p
;−1Þ;

jψci ¼ 1
2
ð1;−

ffiffiffi
3

p
Þ; jψCi ¼ 1

2
ð

ffiffiffi
3

p
; 1Þ: ð68Þ

Under the assumption of preparation noncontextuality, the
corresponding probability measures in the ontological models
must coincide,

μaðλÞþμAðλÞ
2

¼μbðλÞþμBðλÞ
2

¼μcðλÞþμCðλÞ
2

¼μaðλÞþμbðλÞþμcðλÞ
3

¼μAðλÞþμBðλÞþμCðλÞ
3

: ð69Þ

FIG. 14. Different decompositions of the maximally mixed state
1=2, represented in the ðx; zÞ plane of the Bloch sphere, in terms
of the pairs along opposite lines, (such as jψai; jψAi) or triples in
the same triangle (such as jψai; jψbi; jψci).
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Moreover, owing to the orthogonality conditions, i.e.,
hψajψAi ¼ hψbjψBi ¼ hψcjψCi ¼ 0, the corresponding dis-
tributions in the ontological model should not overlap,
namely,

μaðλÞμAðλÞ ¼ μbðλÞμBðλÞ ¼ μcðλÞμCðλÞ ¼ 0 for all λ; ð70Þ
since they can be distinguished with certainty with a single-
shot measurement. By checking all possible assignments of
null values according to the previously mentioned product
conditions, one immediately realizes that the only possible
solution to Eqs. (69) and (70) is μaðλÞ ¼ μAðλÞ ¼ μbðλÞ ¼
μBðλÞ ¼ μcðλÞ ¼ μCðλÞ ¼ 0. The same argument can be
extended to show preparation contextuality of any mixed
state (Banik et al., 2014). These ideas have been further
elaborated on to devise experimental tests of Spekkens’s
contextuality, as we discuss in Sec. IV.E.2.

2. Inequalities for Spekkens’s noncontextuality

Spekkens’s notion of noncontextuality was tested exper-
imentally by Spekkens et al. (2009), Mazurek et al. (2016),
Hameedi et al. (2017), and Anwer et al. (2019). To do so, it is
first necessary to derive noncontextuality inequalities that are
testable against the observed statistics. This was done in
several works (Spekkens et al., 2009; Kunjwal and Spekkens,
2015, 2018; Mazurek et al., 2016; Xu et al., 2016; Krishna,
Spekkens, and Wolfe, 2017; Pusey, 2018; Schmid, Spekkens,
and Wolfe, 2018). In the following, we present the results
by Mazurek et al. (2016), on both the theoretical and
experimental sides, as they managed to overcome some
difficulties present in the first experiment (Spekkens et al.,
2009), particularly in relation to the operational equivalence
of preparations and measurements. The noncontextuality
inequality byMazurek et al. (2016), based on both preparation
and measurement noncontextuality, is presented in the follow-
ing. One first needs to introduce six preparations Pt;b, for
t ¼ 1; 2; 3 and b ¼ 0; 1, such that

P� ≔ 1
2
ðPt;0 þ Pt;1Þ ¼ 1

2
ðPt0;0 þ Pt0;1Þ for all t; t0 ¼ 1; 2; 3;

ð71Þ
and three dichotomic measurements Mt for t ¼ 1; 2; 3, such
that the average measurement is the “fair coin flip” measure-
ment, i.e.,

M� ≔
1

3

X
t

Mt; with

pðbjM�; PÞ ¼
1

2
∀ P; and b ¼ 0; 1; ð72Þ

where, as usual, pðbjM;PÞ denotes the probability of an
output b given the preparation P and the measurementM. The
noncontextuality inequality then reads

A ¼ 1

6

X
t¼1;2;3

X
b¼0;1

pðbjMt; Pt;bÞ ≤
5

6
: ð73Þ

This upper bound can be computed in terms of the ontological
model as follows:

1

6

X
t¼1;2;3

X
b¼0;1

X
λ

ξðbjMt; λÞμðλjPt;bÞ

≤
1

3

X
t¼1;2;3

X
λ

ηðMt; λÞ
�
1

2

X
b¼0;1

μðλjPt;bÞ
�

¼
X
λ

μðλjP�Þ
�
1

3

X
t¼1;2;3

ηðMt; λÞ
�

≤ max
λ

�
1

3

X
t¼1;2;3

ηðMt; λÞ
�
; ð74Þ

where ηðMt; λÞ ≔ maxb¼0;1 ξðbjMt; λÞ. The assumption that
M� is the fair coin flip implies that ð1=3ÞPtξðbjMt;λÞ¼
ξðbjM�;λÞ¼1=2 for b ¼ 0; 1, which constrains the three-
dimensional vector (ξð0jMt; λÞ)t¼1;2;3 on a two-dimensional
polytope inside the ½0; 1�3 cube whose extremal points are
given by ð1; 1=2; 0Þ and the coordinate permutations. Taking
the outcome maximization defining η, i.e., flipping one or
more outcomes, one obtains at most the assignments
ð1; 1=2; 1Þ and their permutations, which give the upper
bound 5=6. Notice that the derivation of Eq. (73) uses both
preparation noncontextuality [

P
bμðλjPt;bÞ=2 ¼ μðλjP�Þ]

and measurement noncontextuality [
P

tξðbjMt; λÞ=3 ¼
ξðbjM�; λÞ]. In fact, the inequality can be violated by models
that violate at least one of the constraints, as shown by
Mazurek et al. (2016). Moreover, quantum theory can violate
it up to the algebraic maximum 1. This is done using as Pt;b

the six preparations in Fig. 14, with the pairs b ¼ 0; 1 for fixed
t, associated with antipodal points (i.e., jψai; jψAi, etc.), and
as measurements the three Mt projective measurements with
two outcomes, rotated by 2π=3 on the Bloch sphere (where the
three effects, each for the 0 outcome ofMt for t ¼ 1; 2; 3, form
the triangle jψai; jψbi; jψci). General methods for computing
maximal violations of such noncontextuality inequalities
have been developed (Chaturvedi, Farkas, and Wright,
2020; Tavakoli et al., 2021).

3. Experimental tests of Spekkens’s contextuality

In the derivation of Eq. (73), the assumptions of both
preparation and measurement noncontextuality enter. Notice
that, without further assumptions, to infer operationally
indistinguishability one needs to perform all possible mea-
surements as in Eq. (65). To avoid this problem, a minimal set
of measurements is assumed to be necessary to infer that two
preparation procedures are operationally indistinguishable.
This minimal set is said to be tomographically complete.
Similarly, a tomographically complete set of preparations is
assumed to exist, in order to infer that two measurements are
operationally indistinguishable. To characterize this with
minimal assumptions, Mazurek et al. (2016) first analyzed
the dimension needed to describe the state preparations and
measurements of a single polarized photon. In the experiment,
four measurements on eight input states were performed, but
then it was found that the experimental data can be described
by assuming three independent measurements and a state
space given by a four-dimensional hyperplane, in the sense
that assuming more independent parameters does not allow
for a more accurate description of the experimental data.
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Given this observation, one can avoid testing the operational
equivalence over infinitely many preparations and measure-
ments. The observed numbers of parameters are the same that
quantum mechanics uses to describe qubit systems.
A second problem arises, namely, that, due to experimental

imperfections, it is not possible to find pairs of preparations
fPt;bgb with the same average preparation P� and a triple of
measurements with the same average measurement M�
corresponding to a fair coin flip. This problem was addressed
by Mazurek et al. (2016) by constructing the so-called
secondary preparations and measurements as convex mixtures
of the primary ones (eight state preparations and four
measurements), which were those directly implemented in
the experiment. In other words, from the primary preparations
and measurements performed, one can infer what would have
been the value of their convex combinations. Among the
secondary operations, one can select those that are the closest
to the primary ones and at the same time satisfy exactly the
conditions in Eqs. (71) and (72). To avoid any reference to
quantum theory, secondary preparations and measurements
are described in terms of a generalized probability theory, with
the previously mentioned assumption of tomographical com-
pleteness for three measurements and four preparations. The
experiment was performed by preparing and measuring the
polarization degree of freedom of a single photon, as depicted
in Fig. 15. An experimental value of A ¼ 0.997 09� 0.000 07
for the parameter A in Eq. (73) is then observed, based on the
inferred values of the secondary preparations and measure-
ments, violating the noncontextual bound 5=6.

4. Relation with different notions of hidden-variable models

In Spekkens’s notion of contextuality, a fundamental role is
played by two properties, namely, the existence of a non-
unique decomposition of quantum mechanical mixed states
into pure states and the requirement that the indistinguish-
ability present at the operational level, identified here
with quantum mechanical predictions, is satisfied at the level
of the ontological model. In contrast, if one assumes a
classical model (specifically, a measurement contextual

hidden-variable model), then each mixed state is a probability
distribution and hence has a unique convex decomposition
into determinisitic assigments, which take here the role of pure
states. It follows that hidden-variable models for two-level
quantum systems, such as the models by Bell (1966) and
Kochen and Specker (1967), turn out to be preparation
contextual (Leifer and Maroney, 2013). In these models, in
fact, if we were able to directly measure the hidden variable λ,
we could distinguish between an equal mixture of j0i and j1i
and an equal mixture of jþi and j−i, even though both
mixtures give rise to the same quantum state ρ ¼ 1=2. This is
an explicit example of preparation contextuality. According to
the hidden-variable model, such preparations are indeed
different, even though the theory does not contain measure-
ments that are able to distinguish them.
Spekkens (2005) defined a noncontextual ontological

model of an operational theory as one where any two
procedures that are operationally equivalent (in the theory)
have identical representations in the ontological model. This
definition is defended by appealing to a methodological
principle, referred to as Leibniz’s principle of the ontological
identity of empirical indiscernibles (Spekkens, 2019), which
can be stated as follows: If an operational theory predicts
that two procedures are indistinguishable but, in the theory,
they have distinct representations, then the theory should be
discarded and replaced by a new theory relative to which the
two procedures have identical representation.
For a defense of this methodological principle for construct-

ing physical theories, see Spekkens (2019). For a discussion of
how this methodological principle is used to motivate the
notion of noncontextual ontological model, see Spekkens
(2005). The program of hidden-variable theories for quantum
mechanics (Belinfante, 1973) provides examples of theories
that do not adhere to this methodological principle. Note that it
is still under debate as to whether some proposed hidden-
variable theories predict deviations from quantum mechanics
and, if they do, whether these deviations are observable. The
former is an open problem in Bohmian mechanics in relation to
Bell experiments (Correggi and Morchio, 2002; Kiukas and
Werner, 2010) and tunneling times (Hauge and Støvneng, 1989;
Landauer and Martin, 1994; Stomphorst, 2002) and in some
classes of hidden-variable theories analyzed from a thermody-
namical perspective (Cabello et al., 2016), whereas the latter
is an open problem in collapse models (Bassi et al., 2013).
For a criticism of the notion of preparation contextuality, see
Ballentine (2014).

V. ADVANCED TOPICS AND METHODS

In this section, we discuss more advanced topics and
methods associated with quantum contextuality. We address
questions such as how to compute noncontextuality inequal-
ities for a given scenario, what the corresponding maximal
quantum violation is, which scenarios give rise to contex-
tuality and to state-independent contextuality, how contex-
tuality is related to nonlocality, etc.
Here, since we discuss mostly theoretical results where no

direct connection with experimental procedures is made, no
additional assumptions on the measurements, such as non-
disturbance and repeatability, are necessary. In most cases, it is

FIG. 15. Experimental setup used by Mazurek et al. (2016). The
quantum system consists of a single photon in which a specific
polarization is prepared via a polarizer and two wave plates
(preparation Pt;b) and then measured via two wave plates, a
polarized beam splitter, and two detectors (measurement Mt).
From Mazurek et al., 2016.
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enough to think about collections of joint measurements,
regardless of the way they may be implemented in the lab.
Similarly, the distinction between the OP and the EP is
mostly irrelevant here, and we often shift between the two
points of view, sometimes privileging observables and some-
times privileging effects. Finally, in some sections, such as
Secs. V.B.3, V.B.5, V.C, and V.F, we explicitly consider
projective measurements.
The section is organized as follows. In Sec. V.A, we

introduce the noncontextuality polytope, which describes
noncontextual correlations associated with a given scenario,
i.e., a fixed set of measurements and contexts, and allows one
to compute noncontextuality inequalities. In Sec. V.B, we
discuss the connection between graph theory and noncontex-
tuality: since contexts can be represented as graphs (or more
generally hypergraphs), several properties of contextuality
scenarios can be investigated in terms of graph-theoretical
properties. In Sec. V.C, we discuss the connection between
Bell nonlocality and contextuality. In Sec. V.D, we discuss
different approaches to the classical simulation of contextual
correlations. In Sec. V.F, we present the debate on the
nullification of the KS theorem.

A. The noncontextuality polytope

The set of correlations that can be achieved within a
noncontextual theory forms a polytope in the space of
probability assignments. Analogously to the case of Bell
nonlocality, the study of these polytopes plays a fundamental
role in the investigation of noncontextuality inequalities. We
introduce the basic notions and discuss some results that have
been achieved using this approach. Correlation polytopes
were introduced in the study of Bell inequalities by Froissart
(1981), Garg and Mermin (1984), and Pitowsky (1986); see
also Pitowsky (1989), which has been the most widely used
reference. Horn and Tarski (1948) had already provided a
solution to the marginal problem many years earlier, which
turned out to be equivalent to the correlation polytope
approach; see De Simone and Pták (2015). In the context
of noncontextuality inequalities, the first researchers to
systematically use these notions were Klyachko et al.
(2008) and Kleinmann et al. (2012).

1. The simplest example

In this section, we introduce, in basic terms and by means of
the simplest example, the notion of the correlation polytope.
In Sec. V.A.2, we discuss their basic mathematical properties.
In the case of a finite number of measurement settings and

outcomes, a probability distribution is described by some
positive numbers pi ≥ 0, i ¼ 1;…; n, such that

P
i pi ¼ 1.

We can interpret them geometrically as the set Sn ¼
fp ∈ Rnjpi ≥ 0;

P
ipi ¼ 1g, also known as a simplex: an

(n − 1)-dimensional polyhedron with n facets and n extremal
points, i.e., the generalization of the triangle, tetrahedron, etc.
Equivalently, it can be seen as the set of convex combinations
of the elements of the canonical basis of Rn, feigni¼1,
namely, Sn ¼ fPipieijpi ≥ 0;

P
ipi ¼ 1g≕ convðfeigiÞ.

Each extremal point ei can be interpreted as a probability
assignment of 1 to the ith event, and 0 to the others.

Ultimately, we want to represent probabilities of outcomes
for a certain set of measurements; hence, each single event i is
associated with a specific sequence of outcomes. For instance,
we may have the case of two measurements A1 and A2 with
values 0 or 1. We then define events as f00; 01; 10; 11g and
their probabilities as p00 ≔ ProbðA1 ¼ 0; A2 ¼ 0Þ, p01 ≔
ProbðA1 ¼ 0; A2 ¼ 1Þ, p10 ≔ ProbðA1 ¼ 1; A2 ¼ 0Þ, and
p11 ≔ ProbðA1 ¼ 1; A2 ¼ 1Þ. It is straightforward to verify
that the corresponding polytope has dimension 3 since there is
an equality constraint (normalization of probability). We can
then perform a linear transformation ðp00; p01; p10; p00Þ ↦
ðp1; p2; p12Þ by computing the marginals, i.e., as pi ¼
ProbðAi ¼ 1Þ and p12 ¼ ProbðA1 ¼ A2 ¼ 1Þ. The four verti-
ces of the polytope are the four vectors p ¼ ðε1; ε2; ε1ε2Þ for
ε1; ε2 ¼ 0; 1 corresponding to the deterministic assignments
of values to A1 and A2. These vectors form the tetrahedron
plotted in Fig. 16. It is straightforward to verify that the faces
of the tetrahedron are given by the following inequalities:

p12 ≥ 0;

p1 − p12 ≥ 0;

p2 − p12 ≥ 0;

1 − p1 − p2 þ p12 ≥ 0; ð75Þ

which simply represent the constraints of positivity of the four
probabilities ProbðA1 ¼ x; A2 ¼ yÞ for x; y ¼ 0; 1 rewritten in
terms of the marginals p1, p2, and p12.

2. Basics of convex polytopes, affine geometry, and linear
programming

The general case of an arbitrary number of events is not far
from the previous simple one. Before proceeding, we first
recall some basic notions about convex polytopes; for a more

FIG. 16. Polytope associated with two measurements A1 and A2.
The four vertices are the deterministic assignments, with the
corresponding coordinate labeling. Equations (75) are associated
with the four faces of the tetrahedron; for instance, p12 ¼ 0 is the
plane tangent to vertices ð0; 0; 0Þ, ð1; 0; 0Þ, ð0; 1; 0Þ, etc.
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detailed exposition, see Grünbaum (2003). A convex polytope
can be defined in two different ways. In the vertex repre-
sentation, one specifies the extremal points of the polytope,
i.e., the vertices. If the set of vertices is finite, then the convex
hull of those points is a convex polytope. The other way to
specify a polytope is as the intersection of a finite family of
closed half-spacesHi ¼ fxjmi · x ≤ big. If the resulting set is
bounded, it is also a convex polytope; otherwise, it is simply
called a polyhedron, or a polyhedral set. An intersection of a
polytope with an affine subspace (a section) and the image of a
polytope under an affine map (such as a projection) both again
yield a polytope.
A family of vectors ðx1;x2;…Þ is affinely independent if

there is only a trivial solution to the equations
P

kλkxk ¼ 0
and

P
kλk ¼ 1. Accordingly, the affine dimension of a

family of vectors is d ¼ n − 1 if n is the maximal number
of affinely independent vectors from the family. A facet F of
a d-dimensional polytope is the intersection of an affine
(d − 1)-dimensional hyperplane with the polytope, so one of
the open half-spaces defined by the hyperplane does not
contain any part of the polytope. If the polytope is specified by
a minimal set of closed half-spaces fHigi, then these hyper-
planes are Hi ∩ −Hi. A facet is a d − 1 polytope, and the
extremal points of the facet are exactly those extremal points
of the polytope that belong to the facet. Pitowsky’s con-
struction (Pitowsky, 1989) makes use of these facts: The
intersection of a half-space H with a d polytope P is a facet of
that polytope if and only if the extremal points of P within H
span a (d − 1)-dimensional affine subspace.
For the theory of Bell inequalities or noncontextuality

inequalities the theory of linear optimization is central. A
linear program (LP) is an optimization problem of the type
“minimize c · x over x ∈ K,” where c is a constant vector and
K is a polyhedral set, i.e., a finite intersection of closed half-
spaces. The set of optimal solutions again forms a polyhedral
set or, if the set K is a polytope, is again a polytope. If K is
specified by the vertices, then solving the program is simple
since the optimum is attained at one of the vertices. The most
important insight about linear programs is that, even if K is
specified as an intersection of half-spaces, the optimization
can be solved by numerical means efficiently and with a
certificate of optimality (Boyd and Vandenberghe, 2004).

3. Noncontextuality inequalities

In the following, we present an explicit construction of the
correlation polytope based on the work of Pitowsky (1989).
Different, but ultimately equivalent, constructions are pos-
sible; see Abramsky, Mansfield, and Barbosa (2012) and Acín
et al. (2015). Given a set of observables Ai

N
i¼1, we denote

their possible value assignments as V ¼ V1 × V2 × � � � × VN ,
where Vk is the set of possible values that the observable Ak
can assume; for instance, V1 ¼ 0; 1 when A1 is a dichotomic
observable. The corresponding probability simplex is the
convex hull of all assignments on the set V, i.e.,
fp ∈ RjVjjpv ≥ 0;

P
vpv ¼ 1g, where v ¼ ðv1;…; vnÞ ∈ V

and pv ¼ ProbðA1 ¼ v1;…; An ¼ vnÞ.
The set of all possible contexts of Ai

N
i¼1 defines the marginal

scenario M, i.e., the set of marginals that can be experimen-
tally accessible, such as the pairs fAi; Aiþ1g in the KCBS

scenario (Klyachko et al., 2008). The correlation polytope,
therefore, is the projection of the probability simplex onto the
coordinates corresponding to observable probabilities. To do
so, we first need a change of coordinates. The new coordinates
are obtained by considering the marginals PðA1 ¼ v1Þ;…;
PðAi ¼ vi; Aj ¼ vjÞ;…. Alternatively, one can choose any
affine transformation (such as representations in terms of
expectation values, correlators, etc.). An invertible affine
transformation guarantees that the obtained conditions are
still necessary and sufficient for a probability vector to have a
noncontextual hidden-variable model. If the transformation
is not invertible, one obtains only necessary conditions.
Notice that not all coordinates of p are independent, due to
normalization (

P
vpv ¼ 1) and nondisturbing conditions

(Ramanathan et al., 2012); hence, invertibility must be
checked with respect to this subspace. Moreover, such linear
constraints, together with the positivity of probability pv ≥ 0

for all v, define a new polytope called the nondisturbing
polytope (Ramanathan et al., 2012), which contains the
noncontextuality polytope.
For instance, in the case of Vi ¼ f0; 1g for all i, the

correlation polytope associated with a marginal scenario M
is the convex hull of vectors

uε ¼ ðε1;…; εN;…; εiεj;…; εi1εi2 � � � εim ;…Þ; ð76Þ

where ε ¼ ðε1;…; εnÞ ∈ f0; 1gN and εi represents a f0; 1g-
valued assignment to pðAiÞ ≔ ProbðAi ¼ 1Þ, and the margin-
als pðAi; AjÞ;… are those appearing in the marginal scenario
M. These extreme points are precisely the projection of the
extreme points of the simplex onto the subspace of observable
probabilities.
Once these extreme points are defined, the corresponding

noncontextuality inequalities can be obtained by computing
the half-space representation of the polytope. There are several
algorithms for performing this transformation and several
implementations of them, such as those given by Christof and
Loebel (2015), Lörwald and Reinelt (2015), Avis (2018), and
Fukuda (2018).
A noncontextuality inequality is of the form λ · p ≤ η,

where the inequality holds true for any p in the noncontex-
tuality polytope. That is, a noncontextuality inequality is a
half-space containing the noncontextuality polytope. This
inequality is useful only if it can be violated by a quantum
system. We write Π for the vector of projectors Π≔ ðP1;…;
PN;…;PiPj;…;Pi1Pi2 � � �Pim ;…Þ, in analogy with Eq. (76),
such that the ith entry of the probability vector p can be
computed from the ith entry of Π as pi ¼ trðϱΠiÞ. In
particular, this analogy requires that each projector (or product
of projectors) is associated with an observable (or set of
compatible observables) such that the structure of compati-
bility relations defined by the marginal scenario is reproduced
by the projectors P1;…; PN . For a nontrival noncontextuality
inequality we have λ · trðϱΠÞ > η.
The violation of an inequality for a fixed Π is defined as

ΓðλÞ ¼ maxfλ · trðϱΠÞjϱ quantum stateg
maxfλ · pjp in NC polytopeg − 1: ð77Þ
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Hence, Γ ¼ 0 corresponds to the situation where the inequal-
ity does not have a violation for the projectors Π. Note that
both maximizations may be restricted to the extremal points
(i.e., the maximization for the quantum value can be per-
formed over the pure states), while for the noncontextuality
polytope it is sufficient to consider all extremal points of the
polytope. As a consequence, the validity of a noncontextuality
inequality m · x ≤ b can be checked by verifying that it is
not violated by any vertex of the polytope for the vertex
representation convðv1;…; vkÞ, and by linear programming if
the description of the polytope is given in terms of half-spaces
fxjAx ≤ bg, i.e., as maxx m · x subject to Ax ≤ b.
Similarly, given a probability vector p, one can check to

see if it belongs to a given noncontextuality polytope via a
LP. If not, this LP provides, via its dual formulation, a
noncontextuality inequality violated by p. One example of
this is given by the contextual fraction (CF) LP (Abramsky
and Brandenburger, 2011; Amselem et al., 2012; Abramsky,
Barbosa, and Mansfield, 2017), which we encountered in
Sec. IV.A.4 in connection with the notion of strong con-
textuality. It is instructive to repeat its definition here in
order to directly connect it to the noncontextual polytope. In
simple terms, the noncontextual fraction (NCF ¼ 1 − CF) is
the maximum α ∈ ½0; 1� such that p can be decomposed as
p ¼ αpNC þ ð1 − αÞpC, where pNC is a vector belonging to
the noncontextuality polytope and pC is a vector belonging
to the nondisturbing polytope. Since both pNC and pC can be
characterized in terms of LP, the noncontextual fraction can
be computed as a LP. The contextual fraction can also be
interpreted as a geometric quantification of contextuality.
In Sec. V.E, we discuss its role in the resource theory of
contextuality. Several related questions are addressed in the
following sections, such as the identification of the inter-
esting contextuality scenarios, i.e., giving rise to some
Γ > 0, or even SI-C scenarios, the computation of quantum
bounds, etc.
An analogous approach, based on ideas on convex opti-

mization, polyhedral sets, and linear programming, can
be developed for the analysis of entropy rather than proba-
bility. Following the idea initially developed by Braunstein
and Caves (1988), Chaves and Fritz (2012), Kurzyński,
Ramanathan, and Kaszlikowski (2012), Chaves (2013),
Fritz and Chaves (2013), Raeisi, Kurzyński, and
Kaszlikowski (2015), and Durucan and Grinbaum (2020)
investigated entropic noncontextuality inequalities. In particu-
lar, Chaves and Fritz (2012) and Fritz and Chaves (2013)
developed a systematic method to derive noncontextuality
inequalities for an arbitrary marginal scenario, which can be
described as follows. In the entropic approach, one can derive
the entropic inequalities by projecting the entropic cone,
describing the joint entropies over all variables, onto the
variables corresponding to the observed marginals, in analogy
with the projection of the previously described probability
simplex. A complete characterization of the entropy cone is
not known for more than three variables. However, an outer
approximation in terms of the so-called Shannon inequalities
is known; see Yeung, 2008 for an introduction. In contrast to
the probability case, entropic inequalities provide only a
necessary condition for noncontextuality, except in some
special cases (Chaves, 2013).

Finally, a case not covered in the correlation polytope
approach is the continuous-variable (CV) case. The first
proposal of a CV contextuality test was presented by
Plastino and Cabello (2010) for a CV version of the PM
square based on modular variables. The argument was further
improved by Asadian et al. (2015), removing one assumption
from the NCHV model (classical complex variables of
modulo 1). The same scenario was further explored by
Laversanne-Finot et al. (2017), who considered more general
observables. More recently Soares Barbosa et al. (2019)
presented a general framework for the investigation of CV
contextuality.

B. Graph theory and contextuality

Since the original paper of Kochen and Specker (1967),
graphs have played a central role in contextuality arguments.
In the following, we discuss the connection between con-
textuality and graph theory, with particular emphasis on two
types of graphs, namely, compatibility graphs and exclusivity
graphs. We review several problems that can be formulated
in terms of graph properties and graph-theoretical results. This
comprises the following questions: Which compatibility
structures always admit a noncontextual hidden-variable
model? Or, equivalently, which structures are interesting for
contextuality? How can we derive noncontextuality inequal-
ities and compute the corresponding quantum bound effi-
ciently? Which scenarios give rise to state-independent
contextuality?

1. Basic notions

We start by introducing basic notions and definitions in
graph theory. Extensive discussions of this topic were given
by Beeri et al. (1983), Lauritzen (1996), Bretto (2013), and
Diestel (2018). A graph is a pair G ¼ ðV; EÞ, where V is the
set of vertices, or nodes, and E is the set of edges, i.e.,
unordered pairs ði; jÞ for some i; j ∈ V. Two vertices i; j ∈ V
of a graph are adjacent, or connected, if ði; jÞ ∈ E. A set of
mutually connected vertices is called a clique of the graph. A
set of vertices such that no two of them are connected is called
an independent set. A path is a sequence of distinct vertices
v0;…; vn such that vi is connected to viþ1 for i ¼ 0;…; n − 1.
A cycle is defined in the same way, but with v0 ¼ vn. A graph
is an acyclic (or a tree) graph, if it contains no cycle. A graph is
triangulated, or chordal, if every cycle of length n ≥ 4
contains a chord, i.e., an edge connecting ðvi; viþ2Þ. The
complement of a graph G ¼ ðV; EÞ is a graph Ḡ ¼ ðV; ĒÞ
where Ē ¼ fði; jÞji; j ∈ VgnE; i.e., every pair of connected
vertices in G is disconnected in Ḡ, and vice versa.
A hypergraph is a generalization of the previous idea

obtained by allowing edges to connect more than two vertices,
namely, a pairH ¼ ðV; EÞ, where V is the set vertices and E is
the set of hyperedges, i.e., E ⊂ 2V , with 2V the power set of V.
Hypergraphs can also arise from graphs; for instance, the
clique hypergraphH of a graphG is defined by the same set of
vertices and has as hyperedges the cliques of G. If a hyper-
graph contains only maximal hyperedges, i.e., for each
hyperedge E there is no hyperedge E0 such that E0 ⊂ E,
the graph is said to be reduced. Given a hypergraph H, we say
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thatH0 is the reduced hypergraph ofH if it is obtained fromH
by removing all nonmaximal hyperedges.
As opposed to the case of graphs, different notions of

acyclicity are possible for hypergraphs. The relevant one for
us is given by the following two equivalent definitions. First, a
graph is acyclic if it has the running intersection property,
i.e., if there exists an ordering of the hyperedges, E1;…; En,
such that

Ei ∩ ðE1 ∪ � � �∪Ei−1Þ⊂Ej; with j< i; for all i. ð78Þ

Namely, there exists an ordering such that the intersection
with any new hyperedge is completely contained in one of the
previous hyperedges. Second, an equivalent definition is that a
graph is acyclic if it is the clique graph of a triangulated graph.
Their equivalence is not obvious [cf. Beeri et al. (1983) and

Lauritzen (1996)]; however, one can easily verify that these
definitions coincide in the case of hyperedges of cardinality 2
with that of trees for graphs. We see here that the running
intersection property plays a central role in the construction of
NCHV models.
This notion is usually called α acyclicity in the literature

(Beeri et al., 1983; Lauritzen, 1996). In the following, we refer
to it simply as acyclicity.

2. Graphs, hypergraphs, and marginal scenarios

In the abstract formulation of NCHV in Sec. IV.A.1, we
defined a marginal scenario M as the set of all contexts for a
given set of measurements A1;…; An. A natural representation
of a marginal scenario is given by a hypergraph H: vertices
represent measurements, whereas hyperedges represent
contexts; see also Acín et al. (2015) and Amaral and Terra
Cunha (2018). Here we consider the most general structure
possible without entering into the details of the specific way of
realizing such contexts in practice, as discussed in Sec. IV.B.
Given its relevance, we often discuss the specific case of sharp
measurements. For sharp measurements in quantum mechan-
ics, Specker’s principle applies (Specker, 1960; Kochen and
Specker, 1967; Cabello, 2012), namely, that pairwise compat-
ibility is equivalent to global compatibility. For this reason for
sharp measurements it is enough to represent the marginal
scenario as a graph, interpreting edges as pairwise compat-
ibility relations and cliques as contexts. For the case of sharp
measurements, we call such graphs compatibility graphs. It is
interesting to notice that any graph can be interpreted as such a
compatibility graph for sharp measurements, in the sense that
these compatibility relations can be realized by a set of sharp
observables on a Hilbert space (Heunen, Fritz, and Reyes,
2014). Similarly, if one considers contexts simply as sets of
jointly measurable observables, then every hypergraph can be
interpreted as a set of joint-measurability relations for a given
set of POVMs (Kunjwal, Heunen, and Fritz, 2014). We recall
that we discussed in Sec. IV.B the problems associated
with possible definitions of contexts requiring joint-
measurability alone.
Notice that the previous notion of compatibility hyper-

graphs should not be confused with the hypergraph approach
of Acín et al. (2015), who instead represent effects as nodes
and some results, such as the identification of cliques with

contexts in the case of sharp measurements, do not hold. An
example of a compatibility graph is given in Fig. 17 for
the KCBS scenario. Each vertex represents a measurement
setting A0;…; A4, and edges connect vertices corresponding
to two joint measurement hAiAiþ1i appearing in the KCBS
inequality (Klyachko et al., 2008).
Budroni and Morchio (2010), Kurzyński, Ramanathan, and

Kaszlikowski (2012), and Ramanathan et al. (2012) inves-
tigated graph-theoretical properties of the marginal-scenario
hypergraph (or the compatibility graph for sharp measure-
ments) that directly imply the existence of a NCHV regardless
of the value of the observed correlations. These repre-
sent special cases of a general result for marginal-scenario
hypergraphs that follows from a theorem by Vorob’ev (or
Vorob’yev, depending on the transliteration from the Cyrillic
alphabet used), which can be stated in our terminology as
follows.
Theorem (Vorob’ev, 1962).—Any marginal scenario rep-

resented by an acyclic hypergraph admits a joint probability
distribution.
The theorem was originally stated by Vorob’ev (1959)

[translated into English translation as Vorob’yev (1967)] and
later proven by Vorob’ev (1962); see also Vorob’ev (1963).
The same result was independently proven by Kellerer (1964a,
1964b) and Malvestuto (1988).
The Vorob’ev theorem says that, given a set of probabilities

associated with a marginal scenario and coinciding on their
intersection, if their structure is represented by an acyclic
hypergraph, then there is always a probability distribution for
which they are the marginals. Intuitively, Vorob’ev’s result can
be understood as the construction of a global probability by
“gluing together” probability distributions on their intersec-
tion, a notion referred to as “adhesivity” (Matúš, 2007a).
The acyclicity property of hypergraphs, particularly the
running intersection property, guarantees that such a con-
struction can always be made in a consistent way. It is
instructive to illustrate this idea with the simplest example,

FIG. 17. Compatibility graph associated with the observables of
the KCBS scenario corresponding to the marginal scenario
fðAi; Aiþ1Þg4i¼0. This graph can also be used to illustrate the
basic notions of paths, cycles, and independent sets. A path is
given by any sequence of sequentially connected vertices, such as
ðAi; Aiþ1; Aiþ2Þ, for any i and with sum modulo 5. A cycle is a
closed path such as ðA0; A1;…; A4; A0Þ. An independent set is a
set of disconnected vertices such as ðAi; Aiþ2Þ. The pentagon
contains independent sets of at most size 2. One can easily show
that the complement of a pentagon is again a pentagon with edges
ðAi; Aiþ2Þ for i ¼ 0;…; 4 and sum modulo 5.
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which follows. Consider three variables A, B, and C and two
distributions p1ða; bÞ and p2ðb; cÞ, such that

P
ap1ða; bÞ ¼P

cp2ðb; cÞ≕pðbÞ. This corresponds to a marginal scenario
described by a line graph A − B − C, which is acyclic. One
can explicitly construct a joint distribution on A, B, and C by
“gluing” the distributions on their intersection, namely,

pða; b; cÞ ≔ p1ða; bÞp2ðb; cÞ
pðbÞ ¼ p1ðajbÞp2ðcjbÞpðbÞ; ð79Þ

with the convention that pða; b; cÞ ≔ 0 if pðbÞ ¼ 0. This is
precisely the construction used by Fine (1982a) to prove that
CHSH inequalities are necessary and sufficient conditions for
the existence of local hidden-variable models in the case of
two inputs and two outputs.
Vorob’ev’s result has been discussed in relation to con-

textuality (Soares Barbosa, 2014, 2015; Xu and Cabello,
2019) and causal discovery methods (Budroni, Miklin, and
Chaves, 2016). This result has implications for the compu-
tation of correlation polytopes and entropic cones associated
with noncontextuality scenarios (Budroni and Cabello, 2012;
Araújo et al., 2013; Kujala, Dzhafarov, and Larsson, 2015)
and more general causal structures (Chaves, Luft, and Gross,
2014; Budroni, Miklin, and Chaves, 2016). Notice that such a
result is also at the basis of the derivation of non-Shannon
inequalities in classical information theory (Zhang, 2003;
Matúš, 2007b).
For the case of compatibility graphs, it is sufficient to verify

that the graph is triangulated since the corresponding hyper-
graph of contexts, the clique hypergraph, is acyclic according
to the previous definition; see the discussion given by Xu and
Cabello (2019) for additional details. The previous result
has allowed for the identification of the simplest noncontex-
tuality scenarios. The argument presented by Kurzyński,
Ramanathan, and Kaszlikowski (2012) can be summarized
as follows. The simplest compatibility graph giving rise to
contextual correlations must contain a cycle with a length
larger than 3; i.e., it is a square corresponding to the CHSH
scenario (Clauser et al., 1969). For sharp measurements, such
a graph can be obtained only in dimension d ¼ 4. For d ¼ 3,
one needs at least a pentagon, which precisely corresponds to
the KCBS scenario (Klyachko et al., 2008). This can be seen
as follows: A nontrivial sharp measurement in d ¼ 3 is
represented by the POVM fjvihvj; 1 − jvihvjg since it cannot
be the identity and it cannot be nondegenerate; otherwise,
compatibility becomes a transitive relation (Correggi and
Morchio, 2002), giving rise only to a collection of fully
connected graphs, hence always admitting a NCHV. The
compatibility of two measurements, with associated rank-1
projectors jvihvj and jwihwj, corresponds to hvjwi ¼ 0. Since
two nonorthogonal vectors in d ¼ 3 have a unique orthogonal
subspace, it is impossible to get a square compatibility graph
with four different measurements.

3. Exclusivity graphs and their independence, Lovász, and
fractional packing numbers

In this section, we introduce the notion of an exclusivity
graph (namely, a graph where connected vertices represent
mutually exclusive events), and discuss the significance of

associated graph-theoretical quantities such as the independ-
ence number, Lovász number, and fractional packing number,
following the discussion presented by Cabello, Severini, and
Winter (2014) (CSW).
Given a measurement context denoted by compatible

settings ðs1;…; snÞ, an event corresponds to a given set of
joint outcomes ðo1;…; onjs1;…; snÞ. Two events ðo1;…; onj
s1;…; snÞ and ðo01;…; o0njs01;…; s0nÞ are said to be exclusive if
there are i and j such that si ¼ s0j but oi ≠ o0j. In other words,
two events are exclusive if at least one pair of measurement
settings coincides but they have different outcomes.
It is helpful to consider in detail a simple example given by

the graph in Fig. 18: each vertex represents two possible
outcomes for two settings, and two vertices are connected by
an edge if the corresponding events are mutually exclusive.
Such a graph represents a version of the KCBS noncontex-
tuality, namely, Eq. (26) (discussed in Sec. IV.A.5),

SKCBS ¼
X4
i¼0

pð−1;þ1ji; iþ 1Þ ≤
NCHV

2; ð80Þ

where pð−1;þ1ji; iþ 1Þ≡ ProbðAi ¼ −1; Aiþ1 ¼ 1Þ and the
sum is taken modulo 5.
For the specific choice of quantum observables in the

KCBS scenario discussed in Sec. IV.A.2, such events are
represented by projectors, such as ð−1;þ1ji; iþ 1Þ ↦ Qi and
pð−1;þ1ji; iþ 1Þ ¼ trðρQiÞ, where Qi ≔ Πþ

i Π−
iþ1 and Π�

i is
the projector associated with the outcome �1 of Ai. Mutually
exclusive events correspond to orthogonal projectors such
as QiQiþ1 ¼ ðΠþ

i Π−
iþ1ÞðΠþ

iþ1Π−
iþ2Þ ¼ 0.

Cabello, Severini, and Winter (2014) noticed the similarity
between Eq. (80) and the definition of the Lovász number of a
graph. The Lovász number was introduced by Lovász (1979)
as an upper bound on the Shannon capacity of a graph
(Shannon, 1956). It is a well-studied object in graph theory,
and it can be efficiently computed via semidefinite program-
ming (SDP) (Lovász, 2009). For a graph G ¼ ðV; EÞ, its
Lovász number ϑ is given by

ϑðGÞ ¼ max
vi;ψ

X
i∈V

jhψ jviij2; ð81Þ

FIG. 18. Exclusivity graph associated with the five events
appearing in the inequality (80). The notation ð−1;þ1j0; 1Þ
refers to the event of outcome −1 for the measurement of A0

and outcome þ1 for the measurement of A1, etc.
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where the maximum is take over all vectors jψi and over
all vectors jvii such that hvijvji ¼ 0 whenever i; j ∈ V are
adjacent vertices. This set of vectors is also called an
orthogonal representation (OR) of Ḡ, the complement of G.
Notice that the OR of a graph is defined by the fact that
nonadjacent nodes are associated with vectors that are
orthogonal (Lovász, 2009), which is why we consider the
complement graph Ḡ to define the OR entering Eq. (81). This
seemingly counterintuitive convention might be due to the
original definition of Shannon capacity of a confusability
graph (Shannon, 1956) (see Sec. VI.D.1 for more details),
where nodes represent symbols of an alphabet and edges their
“confusability,” whereas in our case edges represent exclu-
sivity. For this reason, some researchers instead prefer to work
directly with the complement graph, i.e., the nonorthogonality
graph (Acín et al., 2015).
The maximum of the expression SKCBS in QM can in fact be

written as

max
ρ;Qi

X
i

trðρQiÞ ¼ max
vi;ψ

X
i∈V

jhψ jviij2 ¼ ϑðGÞ; ð82Þ

where each vertex of the graph G ¼ ðV; EÞ corresponds to a
projector appearing on the lhs of Eq. (82) and two vertices
are adjacent if the corresponding projectors are orthogonal.
Notice that with the previous definition of the Lovász
number the quantum maximum of SKCBS is given by the
Lovász number of the exclusivity graph. Moreover, the
use of a pure state jψi instead of ρ is no restriction since,
by a convexity argument, the maximum of SKCBS is
always achieved by pure states. Similarly, the use of one-
dimensional projectors jviihvij is no restriction since, for
an arbitrary projector Qi, we have hψ jQijψi ¼ jhψ jviij2,
where jvii ≔ Qijψi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihψ jQijψi
p

.
In addition to the Lovász number, two other graph-

theoretical quantities are central to the discussion on corre-
lation bounds in different theories: the independence number
α and the fractional packing number α�. The former is defined
as the cardinality of the maximal independent set of a graph,
which can be interpreted as the maximum number of 1’s, i.e.,
as logically true, that can be assigned to a set of vertices
without violating the exclusivity condition, namely,

αðGÞ ¼ max
ci

X
i∈V

ci;

such that ci ¼ 0; 1; cicj ¼ 0 if ði; jÞ ∈ E: ð83Þ

In terms of the NCHV models with additional exclusivity
constraints (NCHV+E) discussed in Sec. IV.A.5, α can be
interpreted as the maximum of deterministic assignments that
respects the exclusivity condition, namely, that two adjacent
vertices cannot both be assigned the value 1.
The fractional packing number is a linear program

relaxation of the independence number, namely, the maxi-
mum sum of weights such that in every clique the sum of
weights is 1,

α�ðGÞ ¼ max
pi

X
i∈V

pi; such that pi ≥ 0;

and
X
i∈C

pi ≤ 1 for all cliques C: ð84Þ

The interpretation is as follows. Probabilities for single events
are identified regardless of the context, and the sum of
probabilities of exclusive events within each context is less
than or equal to 1. This can be interpreted as a bound for
generalized probability theories (GPTs) that still respects
some notion of exclusivity within each context, i.e., a sum
of probabilities below 1. We return to this notion of exclu-
sivity later.
In summary, the different graph-theoretical quantities, i.e.,

α, ϑ, and α�, provide information on the bounds on correla-
tions for different theories: classical, quantum, and general-
ized probability theories, respectively. For the expression
SKCBS in Eq. (80), we know that the Lovász number provides
a tight bound; i.e., it can be achieved in quantum mechanics.
More precisely, in the KCBS case there are sharp measure-
ments A0;…; A4, with Ai ¼ fΠþ

i ;Π−
i g, such that the events

ðþ1;−1ji; iþ 1Þ are exclusive and the rank-1 projectors
jviihvij maximizing Eq. (81) are given by jviihvij ¼
Πþ

i Π−
iþ1, as discussed in Sec. IV.A.2.

Depending on the specific assumptions on the measurement
scenario, however, the bounds obtained by the Lovász number
may not be tight. A typical example is the pentagon (Sadiq
et al., 2013), which is interpreted as the exclusivity graph of a
subset of events in the CHSH scenario, i.e., of the form
ða; bjx; yÞ, with x the setting of Alice and y that of Bob. The
reason why this bound is not tight is that, in order to interpret
these events in the CHSH scenario, we need additional
compatibility constraints on the measurements in order for
them to be distributed between two parties. In other words,
Alice’s observables are compatible with Bob’s, a condition
that is not encoded in the exclusivity graph. A possible
extension of the exclusivity graph approach to nonlocality
scenarios via multigraphs, encoding the separation into differ-
ent parties, was proposed by Rabelo et al. (2014).
This situation, however, is not specific to Bell scenarios but

happens also for contextuality scenarios if additional assump-
tions on the compatibility relations among measurements are
made. In other words, the situation occurs if one wants to
reconstruct not only the effect operators but also the original
observables and their compatibility relations. This is similar to
what happens in the Navascués-Pironio-Acín (NPA) charac-
terization of multipartite quantum correlations (Navascués,
Pironio, and Acín, 2007, 2008), and the reason why is that one
needs to define a hierarchy of SDP conditions rather than a
single one. In fact, even if the single operators jviihvij can be
reconstructed by the Lovász number SDP, it is not clear that
one can reconstruct the observables, such as fAajxga;x and
fBbjygb;y, associated with the events ða; bjx; yÞ in a Bell
scenario, of which they are assumed to be effects, with the
correct compatibility (in this case, commutativity) relations
among them.
An alternative approach involves taking the notion of

observables and contexts as our starting point and developing
from there the exclusivity relations. Given the observables
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fAojsgo;s, one constructs all possible events, i.e., for each
contextC all the events pðo1;…; ojCjjs1;…; sjCjÞ, constituting
the nodes of the hypergraph, whereas the hyperedges are
defined using the previously mentioned exclusivity relations
(at least two identical settings with different associated out-
comes). The hypergraph-theoretical approach to contextuality
introduced and extensively investigated by Acín et al. (2015)
(AFLS) describes sets of exclusive events precisely keeping
track of this structure. More precisely, in the AFLS approach,
the hypergraph of effects (nodes) and exclusivity relations
(hyperedges) keeps information on which collection of effects
correspond to the measurements performed in the specific
physical situation considered. In contrast, in the CSW
approach one starts from the effects (nodes) and their
exclusivity relations (edges) and tries to construct a general
noncontextuality inequality, as we later explain.
We now discuss how one can find noncontextuality inequal-

ities in the graph approach. Here one starts from an exclusivity
graph, such as one for which it is known that αðGÞ < ϑðGÞ,
and interprets it as a compatibility graph, i.e., promotes each
single event to a measurement. An associated noncontextual-
ity inequality can be constructed such that the classical and
quantum bounds correspond to the independence and Lovász
numbers, respectively. A general method was presented by
Cabello, Severini, and Winter (2014); however, here we
discuss a slightly different (and arguably simpler) approach
since we already encountered it in the KCBS example in
Sec. IV.A.5. This approach is based on a general method to
transform KS inequalities into NC inequalities; see Yu and
Tong (2014) and Cabello (2016) for additional details.
We assume that we have a graph G such that αðGÞ < ϑðGÞ

and want to construct a noncontextuality inequality and
provide a state and sharp quantum observables, with the
correct compatibility relations, able to show a violation of the
inequality. To construct the NC model, with each node of
the graph G ¼ ðV; EÞ we associate a classical variable Pi with
values in 0; 1. We write ProbðPi ¼ 1Þ≕ hPii and the joint
probability ProbðPi ¼ 1; Pj ¼ 1Þ≕ hPiPji. From the inde-
pendence number we can derive the following bound for
NCHV models with the additional exclusivity assumption
among connected events (see Sec. IV.A.5), namely,

X
i∈V

hPii ≤
NCHVþE

αðGÞ: ð85Þ

The meaning of Eq. (85) is that the bound of αðGÞ is valid only
in NCHV models where events satisfy additional exclusivity
relations, corresponding to those encoded in the graph G;
namely, connected nodes cannot both be assigned the value 1.
Following the discussion in Sec. IV.A.5, we transform
Eq. (85) into a general noncontextuality inequality as follows:

X
i∈V

hPii −
X

ði;jÞ∈E
hPiPji ≤

NCHV
αðGÞ: ð86Þ

Intuitively, whenever the noncontextual assignments do not
respect the exclusivity condition, the lhs gets a penalty
that keeps the noncontextual bound the same. We denote
by A ⊂ fPigi the subset of variable to which 1 is assigned.

It can be divided into an assignment to a maximal independent
set I plus some extra variables E, i.e., A ¼ I ∪ E. Each
variable Pi ∈ E, however, must violate at least one exclusivity
constraint involving an element of I since I is a maximal
independent set by definition, thus giving a factor þ1 for the
first term and a factor ≤ −1 for the second term on the lhs of
Eq. (86). The quantum model can be constructed from the OR
of Ḡ as in Eq. (81), namely, vectors fjviigi and a state jψi
such that hvijvji ¼ 0 if ði; jÞ ∈ E and

X
i

jhψ jviij2 ¼ ϑðGÞ: ð87Þ

By constructing the POVMs P̃i ¼ fjviihvij; 1 − jviihvijg and
considering the initial state ρ ¼ jψihψ j, one obtains hP̃iiρ ¼
jhψ jviij2 and hP̃iP̃jiρ ¼ hψ jP̃iP̃jjψi ¼ 0 whenever ði; jÞ ∈ E.
As a consequence, one obtains

X
i∈V

hP̃ii−
X

ði;jÞ∈E
hP̃iP̃jiρ¼

X
i

jhψ jviij2¼ϑðGÞ>αðGÞ; ð88Þ

giving a violation of the noncontextuality inequality in
Eq. (86).
In addition to classical, quantum, and GPT bounds for a

given expression, the exclusivity graph approach also allows
for the definition of the set of their correlations through the
notions of stable set polytope STABðGÞ, theta body THðGÞ,
and clique constrained stable set polytope QSTABðGÞ of a
given exclusivity graph G; see Cabello, Severini, and Winter
(2014) and Amaral and Terra Cunha (2018) for detailed
discussions. These sets are closely related to the previously
defined quantities α, ϑ, and α�:

STABðGÞ ¼ convfx ∈ f0; 1gjVjjxixj ¼ 0 if ði; jÞ ∈ Eg;
THðGÞ ¼ fp ∈ RjVj

þ jpi ¼ jhψ jviij2; fjviigi ORof Ḡg;

QSTABðGÞ ¼
�
p ∈ RjVj

þ j
X
i∈C

pi ≤ 1 ∀ cliques C

�
: ð89Þ

In other words, STABðGÞ is given by the probability vectors
in the convex hull of the deterministic assignments respecting
exclusivity, i.e., of 1 to all the elements of an independent (or
stable) set and 0 to the other elements, as in Eq. (83); THðGÞ is
given by the assignment coming from a vector jψi and the
vectors of an orthogonal representation of Ḡ, as in Eq. (81);
and QSTABðGÞ is the set of probability assignments such that
the sum of probability on each clique is bounded by 1 as in
Eq. (84). These sets can also be characterized in terms of the
quantities α, ϑ, and α�, but in reverse order with respect
to what we have seen (Acín et al., 2015), arising from a
dual approach in their description (Grötschel, Lovász, and
Schrijver, 1993; Knuth, 1994).
The notion of the stable set polytope STABðGÞ and the

theta body THðGÞ also allowed the minimal Greenberger-
Horne-Zeilinger-like proof of contextuality to be found. This
was then shown to imply that the 18 vectors found by Cabello,
Estebaranz, and García-Alcaine (1996a) (see also Fig. 3) is the
minimal Kochen-Specker set (Xu, Chen, and Gühne, 2020).
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The set QSTABðGÞ encodes the condition that the prob-
ability of mutually exclusive events (represented by a clique
in G) is bounded by 1, a condition that was introduced under
the name consistent exclusivity principle for contextuality
(Cabello, 2012) [see also Henson (2012) and Acín et al.
(2015)], or E-principle (Cabello, 2013), and local orthogon-
ality for Bell nonlocality (Fritz et al., 2013). This condition
has been extensively investigated as a possible principle that
bounds contextual and nonlocal correlations in QM (Cabello,
2013, 2015; Fritz et al., 2013; Yan, 2013; Amaral, Terra
Cunha, and Cabello, 2014; Acín et al., 2015; Henson, 2015).
In the hypergraph approach, Acín et al. (2015) showed that

consistent exclusivity cannot bound the set of quantum
correlations, even in the limit of an infinite number of copies
of the original hypergraph, with the following argument.
They showed that the set of probability vectors, i.e., with the
normalization condition

P
ipi ¼ 1, obtained in this limit

is the one characterized to the Shannon capacity of a
graph (Shannon, 1956), which includes the set THðGÞ ∩
fPipi ¼ 1g, i.e., the theta body with extra normalization
constraints. As discussed for the CHSH case, when the
scenario constraints are imposed, i.e., each event is associated
with a collection of outcomes for a joint measurement, the
Lovász number provides only an upper bound to quantum
correlations. Moreover, Acín et al. (2015) showed that the
set THðGÞ ∩ fPipi ¼ 1g corresponds to the first level of a
NPA-type hierarchy associated with the hypergraph; see also
Navascués et al. (2015).
By not fixing the measurement scenario and simply dis-

cussing events and their exclusivity relations, the graph
approach provides a different perspective on the derivation
of quantum bounds on correlations. The results of this
research direction are summarized in Sec. V.B.4.

4. The graph approach and the quest for a principle
for quantum correlations

In the context of the program initiated by Cirel’son (1980)
[or Tsirelson, depending on the transliteration; see also
Tsirelson (1993)] for finding simple characterizations of the
sets of quantum correlations for Bell scenarios, Popescu and
Rohrlich (1994) asked the following question: Why are
correlations in nature not more nonlocal? Principles such as
nontrivial communication complexity (van Dam, 1999),
information causality (Pawłowski et al., 2009), macroscopic
locality (Navascués and Wunderlich, 2010), and local ortho-
gonality (Fritz et al., 2013) managed to exclude some non-
quantum nonlocal correlations. However, none of them
managed to single out even the set of quantum correlations
for the simplest Bell scenario (Navascués et al., 2015).
A different approach to the problem of finding a principle

for quantum correlations is the observation that quantum
theory, understood as the abstract probability theory behind
quantum mechanics by Hardy (2001), Chiribella, D’Ariano,
and Perinotti (2010), and Masanes and Müller (2011), can be
seen as a probability theory for events produced by ideal
measurements. This follows from two observations.
On the one hand, not only is a self-adjoint operator a tool to

compute the probabilities of an observable, it also represents
an ideal measurement of the observable, i.e., a measurement

that does not disturb any compatible observable and yields the
same result when repeated (Chiribella and Yuan, 2014, 2016;
Kleinmann, 2014).
On the other hand, Naimark’s (or Neumark’s, depending

on the transliteration) dilation theorem (Neumark, 1940a,
1940b, 1943) shows that any POVM can be obtained from
a projective measurement on a larger Hilbert space. This
implies that in a Bell scenario nonideal measurements can-
not produce correlations that cannot be attained with ideal
measurements.
The first observation points out the special role of ideal

measurements in quantum theory. The second observation
suggests that, to find a principle for quantum correlations (in
Bell scenarios and, in the process, in KS scenarios with ideal
measurements), an interesting question is as follows: Why are
correlations between ideal measurements in nature not more
contextual (Cabello, Severini, and Winter, 2010)?
The graph-theoretical approach introduced by Cabello,

Severini, and Winter (2010, 2014) substantially departs from
previous approaches to principles for quantum correlations.
While the standard approach investigates principles explain-
ing correlations once the measurement scenario is fixed, the
graph-theoretical approach addresses the question of princi-
ples able to explain correlations once the graph of exclusivity
relations is fixed.
Given n events fejgnj¼1 produced by a set of measure-

ments fMig (that also defines a measurement scenario) and
an initial state ρ, one can represent the relations of mutual
exclusivity between these events by an n-vertex graph in
which each event is represented by a vertex (node) and
mutually exclusive events are connected by an edge. Recall
that two events are mutually exclusive if there is a meas-
urement that produces both of them, with each associated
with a different outcome.
Given an n-vertex graph G, there are infinitely many

measurement scenarios producing events whose graph of
exclusivity is G. We consider all pairs ðρ; fMigÞ, where ρ
is an initial state and fMig is a set of ideal measurements,
that produce n events fejgnj¼1 whose graph of exclusivity isG.
For each pair, there is a set of probabilities fpðejÞgnj¼1. We
denote by PðGÞ the set of all sets fpðejÞgnj¼1.
Cabello, Severini, and Winter (2014) showed that, for

any G, in quantum mechanics PðGÞ ¼ THðGÞ. The fact that
this physical set has a simple mathematical characterization
suggests the following question: Why in quantum theory does
PðGÞ ¼ THðGÞ for any G?
We define ideal measurements as those that (i) yield the

same result when repeated, (ii) do not disturb any compatible
observable, and (iii) can be implemented with all its coarse
grainings satisfying (i) and (ii). The events produced by ideal
measurements then satisfy the exclusivity principle. Given a
set of events such that every pair of them is mutually
exclusive, the sum of the probabilities of all of them is
bounded by 1 (Chiribella and Yuan, 2014; Cabello, 2019b;
Chiribella et al., 2020).
For theories allowing for statistically independent copies

of any set fpðejÞgnj¼1 and events satisfying the exclusivity
principle (as those originated from ideal measurements), the
largest possible PðGÞ is THðGÞ for any G (Cabello, 2019b).
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Given a Bell or KS scenario with ideal measurements with
G as the graph of exclusivity, the set PðGÞ ¼ THðGÞ is not the
set of quantum correlations for this scenario. However, the
subset of THðGÞ obtained after applying the constraints
associated with that scenario is the quantum set of correlations
for that scenario (Cabello, 2019b). These constraints are
normalization, nondisturbance, and the requirement that the
probability of each event must only be a function of the state
and measurement outcomes that define it. Cabello (2019a)
argued that this suggests a principle for quantum correlations:
the totalitarian principle stating that anything not forbidden is
compulsory, which is related to the principle of plenitude
(Lovejoy, 1936), according to which the Universe should
contain all possible forms of existence.

5. Chromatic and fractional chromatic numbers

The chromatic and fractional chromatic numbers of a graph
are also graph-theoretical quantities that play an important role
in quantum contextuality, more precisely in SI-C. In the
following, we recall their definition and discuss their relation
with contextuality, following the work of Cabello (2011),
Ramanathan and Horodecki (2014), and Cabello, Kleinmann,
and Budroni (2015). A k coloring of a graph G is an
assignment of one out of k colors to each vertex of a graph,
such that adjacent vertices are assigned different colors. The
minimal number k such that this coloring is possible is called
the chromatic number of the graph and is denoted as χðGÞ.
Equivalently, the chromatic number can be understood as the
minimal number of partitions of the graph into independent
sets. Similarly, the fractional chromatic number χfðGÞ is the
minimum of a=b such that vertices have b associated colors,
out of a colors, where again vertices connected by an edge
have associated disjoint sets of colors. As a consequence,
we have χfðGÞ ≤ χðGÞ. A simple example of chromatic
and fractional chromatic number for the pentagon is given
in Fig. 19.
The chromatic number of a graph is in general a difficult

quantity to compute. It is nondeterministic polynomial-time
complete to decide whether a graph admits at k coloring,
except for k ¼ 0; 1; 2 and it is NP hard to compute the
chromatic number (Garey and Johnson, 2002). The fractional
chromatic number can be defined as a LP relaxation of the

chromatic number; hence, it may seem easier to compute.
However, computing the fractional chromatic number of a
graph is NP hard (Lund and Yannakakis, 1994). Intuitively,
this comes from the fact that the LP definition of the fractional
chromatic number involves the knowledge of all independent
sets of a graph, i.e., all sets of mutually disconnected vertices.
To discuss the connection between SI-C and the chromatic

and fractional chromatic numbers, we first need to recall some
basic definitions. We call a state-independent noncontextual-
ity (SI-NC) inequality an inequality that, for a fixed set of
measurements, is violated by any initial state. A set of
elementary tests that can be used to violate such inequality
is called a SI-C set. A typical example is the Yu-Oh inequality
in Eq. (19) and the Yu-Oh set in Fig. 7. A related notion is that
of SI-C graph introduced by Ramanathan and Horodecki
(2014). A SI-C graph is a graph that for any fixed quantum
state has a realization in terms of orthogonal projectors; i.e., a
projector is associated with each vertex and two projectors are
orthogonal if the corresponding vertices in the graph are
connected, such that the given state violates a NC inequality.
A SI-C set gives rise to a SI-C graph, but the converse is not
always true. A typical example (Cabello, Kleinmann, and
Budroni, 2015) is obtained from the Yu-Oh set by increasing
the dimension by 1, i.e., vi ↦ ðvi; 0Þ, and adding an extra
vector orthogonally to all the others, i.e., vE ¼ ð0; 0; 0; 1Þ. The
set is no longer a SI-C set, since by preparing the initial state
jvEi one would obtain a noncontextual value assignment to all
variables, namely, all zero except jvEihvEj. On the other hand,
for any pure initial state jψi, one can find a realization of the
graph such that the Yu-Oh NC inequality of Eq. (19) is
violated. It is sufficient to choose a realization for which
hψ jvEi ¼ 0. According to Ramanathan and Horodecki (2014),
a realization can also be found for any mixed state.
The connection between graph coloring and SI-C has

been discussed in the specific case of rank-1 projectors
fΠig with corresponding dichotomic measurements given
by fΠi; 1 − Πig. The compatibility graph and the exclusivity
graph then coincide, i.e., the projectors are compatible if and
only if they are orthogonal, ignoring the trivial case of
identical projectors. One can call the corresponding graph
the orthogonality graph of fΠig. We then have the following
results proven by (i) Ramanathan and Horodecki (2014) and
(ii) Cabello (2011).
Theorem (Cabello, 2011; Ramanathan and Horodecki,

2014; Cabello, Kleinmann, and Budroni, 2015).—For a set
of rank-1 projectors fΠig in dimension d, the conditions
(i) χfðGÞ > d and (ii) χðGÞ > d for the orthogonality graph G
are necessary for SI-C.
Notice that since χfðGÞ ≤ χðGÞ, condition (ii) is actually

weaker than condition (i). However, condition (ii) has the
advantage of being solvable exactly by simple integer arith-
metic, while condition (i) is the solution to a linear program.
The condition χðGÞ > d can be intuitively understood as

necessary since any coloring of the graph with d different
colors assigns different values to each set of d orthogonal
rank-1 projectors (forming a basis in dimension d); in
particular, it is a consistent assignment of 0 and 1. The
appearance of the fractional chromatic number is more
puzzling, but it can be more or less straightforwardly derived

(a) (b) (c)

FIG. 19. Different a∶b coloring of the pentagon, i.e., b colors
associated with each vertex out of a total colors. (a) 3∶1 coloring
of the pentagon, i.e., three colors, one for each vertex, giving a
chromatic number χ ¼ 3. (b) 6∶2 coloring of the pentagon
obtained by doubling the colors for each vertex. (c) One color
from the 6∶2 coloring can be removed, giving a 5∶2 coloring
corresponding to a fractional chromatic number χf ¼ 5=2 for the
pentagon.
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by transforming the SDP, a defining SI-C set S ¼ fΠigi (for
rank-1 projectors), into a LP by fixing the quantum state to be
the maximally mixed one (Cabello, Kleinmann, and Budroni,
2015). From this LP, one can extract the weights w and
construct the following SI-NC inequality:

X
i

wihΠiiρ −
X
i

wi

X
j∈N ðiÞ

hΠiΠjiρ ≤
NCHV

1; ð90Þ

which has the property that the maximal NCHVassignment is
one respecting exclusivity relations and is violated by the
maximally mixed state with a value χfðGÞ=d > 1.
Notwithstanding the computational complexity of such

problems, explicit calculations are still possible for small
enough graphs. Using this result, it has been proven that
Yu-Oh set is the minimal SI-C set in d ¼ 3 (Cabello,
Kleinmann, and Budroni, 2015), namely, that there are no
other SI-C graphs with fewer than 13 vertices in dimension 3.
This result was further extended by proving that any SI-C set
must contain at least 13 projectors, regardless of the dimen-
sion (Cabello, Kleinmann, and Portillo, 2016). The previous
results are valid under the assumption of rank-1 projectors;
however, they were extended to the case of uniform (i.e., all
projectors of the same rank) rank 2 and rank 3 by Xu, Yu, and
Kleinmann (2021), who were also able to exclude the case of
eight arbitrary projectors or fewer.

C. Connections between the Kochen-Specker
and Bell’s theorems

The connection between the proofs of the KS theorem and
Bell nonlocality arguments has been extensively investigated
since the 1970s (Stairs, 1978, 1983; Krips, 1987; Redhead,
1987; Brown and Svetlichny, 1990; Elby, 1990a, 1990b;
Mermin, 1990b; Elby and Jones, 1992; Clifton, 1993;
Kernaghan and Peres, 1995). On the one hand, any Bell
inequality can be interpreted as a noncontextuality inequality,
and there are methods to convert some noncontextuality
inequalities into Bell inequalities violated by quantum theory;
see Aolita et al. (2012) and Cabello et al. (2012).
Historically, the first results related to this question are

those on the so-called KS with locality theorem (Kochen,
1970; Heywood and Redhead, 1983; Stairs, 1983; Redhead,
1987; Brown and Svetlichny, 1990), which later gave rise to
the so-called free will theorem (Conway and Kochen, 2006,
2009). Common to all these results is that the KS proof for a
single spin-1 particle is expanded into a related algebraic proof
involving the KS set and a maximally entangled state of two
spin-1 particles.
The second wave of results connecting the KS and Bell’s

proofs were motivated by the GHZ proof of Bell’s theorem
(Greenberger, Horne, and Zeilinger, 1989). First, it is
Mermin’s observation that GHZ can be converted into a
tripartite Bell inequality (Mermin, 1990a) and a state-inde-
pendent proof of the KS theorem (Mermin, 1990b, 1993).
Second, the observation that Hardy’s proof of Bell’s theorem
(Hardy, 1992, 1993) can be seen as a state-dependent version
of a KS proof (Cabello, Estebaranz, and García-Alcaine,
1996a). Finally, it is the GHZ-like proof for two parties

sharing qubits (Cabello, 2001b), which can be seen as
originating from the PM KS proof (Mermin, 1990b; Peres,
1990) and which can be converted into a bipartite Bell
inequality (Cabello, 2001a), as explained later. Around all
these tools, there is an extensive literature adopting different
perspectives and names: “all-versus-nothing” proofs (Cabello,
2001a), “nonlocal games” (Cleve et al., 2004), and “quantum
pseudotelepathy” (Renner and Wolf, 2004; Brassard,
Broadbent, and Tapp, 2005).
More recently other methods have been introduced to

transform inequalities associated with SI-C scenarios to Bell
inequalities (Aolita et al., 2012; Cabello et al., 2012;
Cabello, 2021). The simplest approach to the problem is
arguably to map single measurements and two-time sequen-
tial measurements on a single system into bipartite mea-
surements on a maximally entangled state. Here we
approximately follow the discussion given by Cabello
(2021) but with a different class of NC inequalities, namely,
those discussed in Sec. V.B.5. To understand this method, we
start with the basic observation that, for the state
jΨi ¼ ð1= ffiffiffi

d
p ÞPkjkki,

hΨjA ⊗ BtjΨi ¼ trðABÞ=d; ð91Þ

where the superscript t represents the transposition with
respect to the basis fjkigk. In other words, expectation values
of bipartite operators on the maximally entangled state are
equal (up to a transposition) to the expectation value of their
product on the maximally mixed (one party) state 1=d. Using
the fact that in any SI-C scenario the noncontextuality
inequality is violated even by the maximally mixed state,
we can transform the SI-C scenario into a bipartite Bell
inequality. This idea is general and can be applied to a wide
variety of scenarios and inequalities. To make a concrete
example, we discuss the specific case of noncontextuality
inequalities arising from the fractional chromatic number
of a SI-C graph from Sec. V.B.5. Given a SI-C set fΠigi, we
consider the associated SI-NC inequality presented in
Eq. (90),

X
i

wipðΠi ¼ 1Þ −
X
i

wi

X
j∈N ðiÞ

pðΠi ¼ Πj ¼ 1Þ ≤ 1; ð92Þ

such that the optimal classical assignment corresponds to
one satisfying the exclusivity relations, and violated by the
maximally mixed state, with a value χfðGÞ=d > 1. This
inequality can be transformed into the Bell inequality

X
i

wipðΠA
i ¼ ΠB

i ¼ 1Þ − 1

2

X
i

wi

×
X

j∈N ðiÞ
½pðΠA

i ¼ ΠB
j ¼ 1Þ þ pðΠB

i ¼ ΠA
j ¼ 1Þ� ≤ 1 ð93Þ

by distributing a copy of all projectors fΠigi to both Alice
and Bob, i.e., ΠA

i ¼ Πi and ΠB
i ¼ Πt

i, where on Bob’s
projectors the previously mentioned transposition has been
applied.
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By Eq. (91), we have the value on jΨi,

hψ jΠi ⊗ Πt
ijψi ¼ trðΠiΠiÞ=d ¼ trðΠiÞ=d;

hψ jΠi ⊗ Πt
jjψi ¼ trðΠiΠjÞ=d ¼ 0; ð94Þ

if i and j appear as a correlator in Eq. (92), is the same as that
of the lhs of Eq. (92) on the maximally mixed state 1=d,
namely, χfðGÞ=d > 1.
For the local hidden-variable bound, one can have an

argument similar to that presented by Cabello, Kleinmann,
and Budroni (2015) for Eq. (92). The main idea is that the
weights wi are chosen such that the maximum deterministic
value assignment is one that respects the orthogonality
conditions among the projectors, i.e., if ΠiΠj ¼ 0, to the
corresponding classical variables. We denote them by πi and
πj, which are assigned one 0 and one 1. Every time that we
violate one of these constraints for just one of the parties, say,
on Alice’s side, by flipping the value of ΠA

i we get a factor
−wi=2

P
j∈N ðiÞπBj , which decreases the total value (assuming

that we are violating an orthogonality constraint such that
at least one of the πBj is not 0). Similarly, if we violate
one orthogonality for both ΠA

i and ΠB
i , we get a factor

wi − wi=2
P

j∈N ðiÞðπAj þ πBj Þ, which is again negative. We
therefore find that optimal classical assignments are those
respecting the orthogonality relations on both Alice’s and
Bob’s sides.
The previous construction is a simple one, but other

constructions are possible (see the aforementioned corre-
sponding references). In particular, we highlight the fact that
some of these constructions, such as that of Aolita et al.
(2012), also enable one to construct Bell inequalities where
the quantum and nonsignaling bounds coincide.
The first experiments on what is now called the PM Bell’s

inequality were based on the encoding proposed by Chen et al.
(2003), carried out by Cinelli et al. (2005) and Yang et al.
(2005), and subsequently repeated by the group in Rome,
Italy, to improve the violation and fix a conceptual problem
with the first experiment (Barbieri et al., 2005, 2007). Aolita
et al. (2012) also reported the results of an improved experi-
ment in Rome. On the basis of the proposal made by Cabello
(2010), an experiment with sequential measurements on
entangled photons was performed (Liu et al., 2016).

D. Classical simulation of quantum contextuality

The fact that quantum mechanics results in different
predictions than noncontextual theories leads to the question
regarding which contextual theories can simulate the quantum
mechanical behavior. More precisely, one can ask which
classical resources are needed in order to classically simulate
the quantum behavior in a contextuality experiment.
This question has some precedent in the analysis of Bell

scenarios. There one may ask how much communication
between the two parties is needed in order achieve a maximal
violation of a Bell inequality. For the case of the simplest
Clauser-Horne-Shimony-Holt inequality, this has been dis-
cussed in detail and optimized simulation schemes have been
designed (Toner and Bacon, 2003; Cerf et al., 2005).

Concerning contextuality, several contextual models have
been designed, such as the PM square (La Cour, 2009;
Blasiak, 2015). In addition, there are general approaches
for simulating quantum mechanics with classical models,
including contextuality (Spekkens, 2007; van Enk, 2007;
Larsson, 2012). These models, however, were not constructed
to be resource efficient, and they do not allow for a clear
estimate of the minimal necessary classical resources.
In the following, we discuss models to simulate quantum

contextuality in sequential measurements. Such contextual
models require some memory to work: For instance, for
obtaining the maximal value hPMi ¼ 6 in Eq. (3) one needs to
remember the previous measurements in the measurement
sequence. Thus, the question arises as to what minimal
memory is needed for the simulation. This depends on the
underlying computational model and the quantum mechanical
correlations that should be simulated. In the following, we first
discuss two concrete models and then mention some more
general approaches for simulating temporal correlations.

1. Simulation with Mealy machines

A simple attempt to simulate contextual behavior in
sequential measurements is the following (Kleinmann et al.,
2011). One assumes a classical automaton with k internal
states. For a given internal state one can ask a certain question
(or, in physical terms, perform a certain measurement) and
obtains an answer (or result). After providing the result,
the automaton changes its internal state, depending on the
measurement that was performed. Therefore, in this model
each internal state is characterized by two discrete functions:
One function determines the output, depending on the
measurement, and the other function determines the update
of the internal state, again in dependence on the measurement.
Such a model is called a Mealy machine (Mealy, 1955).

Given this class of models, one can easily define the memory
cost required for a simulation as the minimal number of
internal states that is required for a simulation.
This concept is best explained with an example. We focus

on the PM square as in Eq. (1). For a simulation, we assume
that the automaton has three internal states S1, S2, and S3. For
each state, we define the automaton via the tables

S1∶

2
64
þ þ ðþ; 2Þ
þ þ ðþ; 3Þ
þ þ þ

3
75; S2∶

2
64
þ ðþ; 1Þ þ
− þ −
− ð−; 3Þ þ

3
75;

S3∶

2
64

þ − −
ðþ; 1Þ þ þ
ð−; 2Þ − þ

3
75: ð95Þ

This defines the automaton as follows: Assume that the Mealy
machine is in state S1, and we measure the observable γ of
Eq. (1). We then consider the first table at the position of γ
(i.e., the last entry in the third row). The simple plus sign
at this position indicates that the measurement result will
be þ1, while the system stays in state S1. If we continue
and measure C, we encounter the entry ðþ; 2Þ, which indicates
the measurement result þ1 and a subsequent change to the
internal state S2. Being in state S2, the second table defines the
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behavior for the next measurement: For instance, a measure-
ment of c now yields the result −1, and the system stays in
state S2.
Thus, starting in S1 the measurement results for the

sequence γCc are þ1;þ1;−1, so the product is −1, in
accordance with the quantum prediction. It is straightforward
to verify that this model yields hPMi ¼ 6. In addition, the
observables within each context (defined by a column or row)
are compatible in the sense that in sequences of the form A1A2,
A1B2A3, or A1α2a3A4 (here the subindices indicate the
temporal ordering in the measurement sequence) the first
and last measurements of A yield the same output.
One can show that this automaton is the smallest automa-

tion to reproduce these predictions; that is, Mealy machines
with two internal states cannot do that (Kleinmann et al.,
2011). In this example, however, one has to be careful about
the correlations that one wants to simulate. For instance, while
the previously mentioned Mealy machine reaches hPMi ¼ 6,
it does not reproduce all deterministic quantum predictions.
Starting in S1, the sequence B1C2β3B4 yields the sequence of
results ðþ1;þ1;−1;−1Þ; i.e., B changes its value. This is in
contrast to quantum mechanics since C and β are both
compatible with B. Thus, while this machine reproduces
compatibility constraints within one column or row, it does
not reproduce all compatibility conditions. For incorporating
more compatibility constraints one needs four internal states
(Kleinmann et al., 2011).
In this example, Mealy machines were used only to

simulate some outcomes of quantum mechanics in a deter-
ministic manner. However, no quantum state gives determin-
istic outcomes for all measurements of the PM square. For
this, one can consider probabilistic mixtures of different
Mealy machines. For instance, Fagundes and Kleinmann
(2017) considered a class of variations of the automaton in
Eq. (95), and then probabilistic mixtures of these. They then
showed that the predictions for any quantum state can be
reproduced as long as only compatibility relations within the
columns and rows are considered. In an extension of this
research line, it was also shown that a Mealy-type machine
with a single qubit cannot simulate contextual correlations
(Budroni, Fagundes, and Kleinmann, 2019). In a significantly
different approach, the problem of determining the initial state
of a Mealy or More machine was connected to quantum logic
(Dvurečenskij, Pulmannová, and Svozil, 1995; Schaller and
Svozil, 1996).

2. Simulation with ε transducers

A different approach to simulate contextuality or temporal
correlations comes from the analysis of time series and can
also be used to quantify the memory needed for a simulation.
Before starting the explanation of ε transducers, it is useful
to recall the notions of hidden Markov models (HMMs)
(Rabiner, 1989) and ε machines (Crutchfield, 1994).
HMMs are probabilistic automata to simulate time series.

The automaton contains a set of internal states Sk, and for each
internal state there is a probability distribution Pk of the
outcomes and a probability distribution Tk of the transitions. If
the automaton is in a given state Sk, it will output an outcome
drawn from Pk and move to another state, chosen according to

Tk. For a description of a given time series the HMM does not
have to be in a definite state: instead, one has a probability
distribution over all internal states. Two examples of HMMs
are given in Fig. 20.
ε machines can be seen as a special instance of HMMs.

Consider an infinite time series X
↔

¼ f…; X−2; X−1; X0;
X1; X2;…g where the Xi are random variables over some
alphabet. One can split it into a past and a future,

X⃖ ¼ f…; X−3; X−2; X−1g;
X⃗ ¼ fX0; X1; X2;…g: ð96Þ

One can then define an equivalence relation on the set of all
possible pasts by calling two pasts equivalent if they both
predict the same future. Mathematically, one defines x⃖ ∼ x⃖0 if
and only if PðX⃗ jx⃖Þ ¼ PðX⃗ jx⃖0Þ. The equivalence classes of this
relation are then called the causal states fSkg. The causal state
contains all information from the past that is relevant for the
future; knowledge of the precise history does not add anything
to it.
Given a causal state, one obtains a x0 as a new output. This

additional output defines a new history, belonging to a
potentially different causal state and, consequently, the output
x0 defines a transition to a new causal state. Note that
in a general HMM the output does not determine the transition.
Finally, one can consider the probability distribution of the
causal states and its entropy H ¼ −

P
kpðSkÞ log½pðSkÞ�. This

is the statistical complexity of the process, and it can be used to

FIG. 20. Examples of a HMM and an ε machine for the
simulation of a biased coin flip (also called a perturbed coin).
The process is given by a coin, which flips with a certain
probability, as given by Pðxi ¼ HÞ ¼ Pðxi ¼ TÞ ¼ 1=2 and
Pðxi ¼ Tjxi−1 ¼ HÞ ¼ 1=2 − δ and Pðxi ¼ Hjxi−1 ¼ TÞ ¼
1=2 − δ. This can be seen as a fair coin (δ ¼ 0) that is disturbed
toward a constant process. Detailed descriptions of this and the
following models were given by Löhr and Ay (2009). (a) A
general HMM could simulate this with three internal states,
corresponding to a fair coin and two maximally biased coins,
which always give heads or tails. The fact that the biased coin flip
tends to reproduce the previous result is modeled by the rule that
the automaton acts most of the time as a fair coin, but sometimes
this is replaced by a deterministic coin. (b) When constructing the
ε machine, one first observes that only the last output matters, so
this defines the causal states. Since the two outputs are equally
probable, the statistical entropy of the process is 1 bit. The HMM
in (a) requires less memory, but it contains oracular information.
If one knows that the automaton is in a state corresponding to a
maximally biased coin, the next output is foreseeable.
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quantify the memory needed for a simulation. Recently it was
shown that in this context quantum mechanics can help to
reduce the memory required for a simulation of a time series
(Gu et al., 2012; Palsson et al., 2017).
Before discussing the application to contextuality, it is

useful to explain in more detail the difference between an ε
machine and general HMMs. In a HMM (or a Mealy machine)
the simulation automaton may contain information about the
future that cannot be derived from the past. Consider Alice
and Bob, where Alice knows only the current internal state of
the automaton and Bob knows only the past sequence of
results. If the simulation works properly, Alice can predict the
future as well as Bob. It is possible, however, that Alice could
predict the future better than Bob, such as if the given internal
state Sk predicts a deterministic outcome for the next meas-
urement that cannot be deduced from the past. This difference
is also illustrated in Fig. 20. Physically, such general HMMs
with oracular information may be excluded due to the demand
that only past observations be used for simulating the future.
This then leads to ε machines.
For simulating contextuality, one still has to extend the

scheme a bit, as different measurements in each time step are
possible. This, however, can easily be done by combining the

sequence of measurement choices Q
↔

and the sequence of

results A
↔

to a single variable X
↔

¼ ðQ
↔
;A
↔
Þ. The corresponding

ε machine is then called the ε transducer (Barnett and
Crutchfield, 2015).
The simulation of the PM square with ε transducers was

considered by Cabello, Gu et al. (2018), who found that
the causal states are effectively the 24 eigenstates occurring
in the observables of the square. They occur with equal
probability, so the required memory is H ¼ logð24Þ≈
4.585 bits. For the Yu and Oh scenario, the causal states
are more difficult to identify, but at least H ≈ 5.740 bits are
required for a simulation. Although the Yu-Oh scenario is
more difficult to simulate, the scenario has a smaller degree of
contextuality according to several contextuality measures
(Abramsky and Brandenburger, 2011; Kleinmann et al.,
2012; Grudka et al., 2014).

3. Other related results

Contextuality is relevant for quantum computation (see also
Sec. VI.A), so the simulation of both phenomena is connected.
In quantum computation, the so-called stabilizer operations
contain an important class that is, however, not sufficient
for universal computation. Recently Hindlycke and Larsson
(2022) provided a model where the correlations of all Pauli-
stabilizer states, Clifford transformations, and Pauli-tensor-
product measurements can be simulated in time and space
quadratic in the number of qubits. Thus, this contextual
hidden-variable model gives an efficient simulation of the
stabilizer subtheory of quantum mechanics including its
complete contextual behavior.
For making stabilizer operations universal, so-called magic

states need to be added, and an explicitly contextual (but not
efficient) hidden-variable model for these was found by Zurel,
Okay, and Raussendorf (2020). Similarly, explicitly contex-
tual classical models that simulate quantum contextuality were

investigated by Bravyi, Gosset, and König (2018) and Bravyi
et al. (2020). In this case, the cost of the classical simulation of
contextual correlations is quantified in terms of the circuit
depth, which increases with the input size for classical models
that use gates with bounded fan-in but remains constant for
any input size for quantum models.
The previous results lead to the question as to how general

temporal quantum correlations can be simulated in a classical
manner. If the dimension of the underlying quantum system is
not bounded, the space of all correlations forms a polytope
(Abbott et al., 2016; Hoffmann et al., 2018), while the
correlation space becomes nonconvex for a fixed dimension
(Mao et al., 2020). Mealy machines have been used to
characterize the memory cost for simulating correlations
(Budroni, Fagundes, and Kleinmann, 2019; Budroni,
Vitagliano, and Woods, 2021; Vieira and Budroni, 2022),
and the minimal dimensions for reaching certain correlations
have been characterized (Mao et al., 2020; Spee, Budroni, and
Gühne, 2020).

E. Resource theory of contextuality

The connection between quantum contextuality and prac-
tical applications in quantum information processing, most
notably quantum computation (see Sec. VI), stimulated the
development of various proposals for a resource theory of
quantum contextuality, which we review in the following. In
simple terms, the basic elements of a resource theory are the
resourceful and resourceless objects, as well as the operations
that do not increase the resource, i.e., the free operations, and
finally a quantifier of the resource, which should be mono-
tonic with respect to the free operations (Coecke, Fritz, and
Spekkens, 2016). The first works in this area were the one by
Grudka et al. (2014) and the follow-up paper by Horodecki
et al. (2015). They proposed a measure of contextuality, called
relative entropy of contextuality, together with an abstract
characterization of the axiomatic structure of the resource
theory. The monotonicity of their measure, however, was
proven only for a restricted set of operations, while a general
characterization of the free operations was not provided.
This gap was filled by Amaral et al. (2018), who provided
a characterization of free operations (the so-called noncon-
textual wirings) and showed that the relative entropy of
contextuality is indeed a monotone. In simple terms, non-
contextual wirings can be understood as a preprocessing and
postprocessing of each joint measurement associated with a
context, regardless of the particulars of its experimental
implementation (such as the joint or sequential measurement).
The preprocessing affects the choice of the inputs, i.e., the
sequence to be measured, whereas the postprocessing, which
may also depend on the preprocessing operation, affects the
measurement outputs. Preprocessing and postprocessing can-
not be arbitrary, but they obey constraints that make their
application consistent: restricting the measurements only to
contexts, etc.
Similarly, Abramsky, Barbosa, and Mansfield (2017)

explored the properties’ contextual fraction, which was
introduced by Abramsky and Brandenburger (2011) and
Amselem et al. (2012)) as a contextuality monotone.
There, however, they proved the monotonicity with respect
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to a restricted set of operations, namely, a translation of
measurements and coarse graining of outcomes. This work
was then further expanded by Abramsky et al. (2019) and
Soares Barbosa, Karvonen, and Mansfield (2021). In particu-
lar, Abramsky et al. (2019) introduced a new operation in
the resource theory called conditioning on a measurement,
namely, the possibility of choosing the current measurement
to perform in a temporal sequence on the basis of the
outcomes of the previously performed (compatible) mea-
surements [i.e., a measurement protocol according to the
definition of Acín et al. (2015)]. The contextual fraction has
been proven to be a monotone both for this extended set of
operations (Abramsky et al., 2019) and for the noncontextual
wirings (Amaral et al., 2018). One can show that the extended
set of operations given by Abramsky et al. (2019) is strictly
larger than the noncontextual wirings of Amaral et al. (2018).
This is achieved (Karvonen, 2022) by showing that any
noncontextual wiring can be reproduced by the operations
of Abramsky et al. (2019) and then providing a transforma-
tion, protocol 1 of Barrett et al. (2005), that can be expressed
in the resource theory of Abramsky et al. (2019), but not as a
noncontextual wiring.
Finally, within the framework of Abramsky et al. (2019),

Karvonen (2021) proved that the resource theory of con-
textuality does not admit catalysis, meaning that there are
no resources (in this case, correlations) that can enable an
otherwise impossible resource conversion and still be recov-
ered afterward.

F. The so-called nullifications of the Kochen-Specker theorem

The KS theorem was developed in the framework of ideal
measurements and, as we saw in Secs. IV.B and IV.C, several
problems arise when one tries to map those ideal mea-
surements to actual experimental implementations. Some of
the first criticisms regarding the physical implications of the
KS theorem precisely involved this transition from ideal to
actual measurements, in particular, the impossibility of arbi-
trarily precise measurements, and were raised by Meyer
(1999), Kent (1999), Clifton and Kent (2000), and Barrett
and Kent (2004). These works played a fundamental role in
the development of the modern approach to contextuality by
stimulating the extension of the KS notion of contextuality
from a logical to a probabilistic framework. In fact, they
motivated the derivation of the KS inequalities, which
appeared in those years (Simon, Brukner, and Zeilinger,
2001; Larsson, 2002). This transition from the logical to
the probabilistic perspective in Kochen-Specker’s contextual-
ity, and, in particular, the subsequent theoretical and exper-
imental effort in testing contextuality on physical systems, is
the most interesting outcome of this debate. Notwithstanding
the value of both the criticisms of Meyer, Kent, Clifton, and
Barrett and the responses that they received (Leggett and
Garg, 1985; Cabello, 1999; Mermin, 1999; Appleby, 2000,
2001, 2002, 2005; Havlicek et al., 2001; Larsson, 2002; Peres,
2003), we decided in the interest of brevity not to present them
in detail here.
Instead, after presenting the arguments by Meyer (1999)

and Kent (1999) and the one by Clifton and Kent (2000), we
compare them to the broader perspective of probabilistic

approaches to contextuality discussed in previous sections
and, in particular, the problem of designing and implementing
valid experimental tests of contextuality (Secs. IV.B
and IV.C). These results provide the strongest argument
against any possible claim of “nullification” of Kochen and
Specker’s contextuality.

1. Meyer’s nullification of the KS theorem

What if not all sharp measurements are physically realiz-
able? Meyer (1999) suggested an explicit way in which this
can happen while being undetectable due to the unavoidable
finite precision of actual measurements. Each direction in the
three-dimensional Euclidean space can be represented by a
unit vector

hvjj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2j þ y2j þ z2j
q ðxj; yj; zjÞ; ð97Þ

with

xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2j þ y2j þ z2j

q ;
yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2j þ y2j þ z2j
q ;

zjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2j þ y2j þ z2j

q ∈ R. ð98Þ

According to quantum theory, each direction in the three-
dimensional Euclidean space corresponds to a sharp meas-
urement on a three-dimensional quantum system. The
corresponding �1-valued observable is represented in quan-
tum theory by the self-adjoint operator constructed from

Aj ¼ 2jvjihvjj − 1; ð99Þ

where 1 is the 3 × 3 identity matrix. The possible outcomes
are the eigenvalues of Aj: −1 (doubly degenerate) and 1
(nondegenerate).
If all directions jvji correspond to physically realizable

sharp measurements, then at least four colors are needed to
color every jvji respecting that orthogonal jvji’s are colored
differently (Hales and Straus, 1982). However, if

xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2j þy2j þ z2j

q ;
yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2j þy2j þ z2j
q ;

zjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2j þy2j þ z2j

q ∈Q; ð100Þ

then only three colors are needed (Godsil and Zaks, 1988).
This implies that noncontextual assignments of −1 and 1
respecting the fact that, for each orthogonal trio, 1 is assigned
to only one vector are possible (Meyer, 1999). In fact, it is
enough to take the three colors and assign the value 0 to two
of them and the value 1 to the remaining one to obtain a valid
KS assignment. Moreover, the rational unit sphere is dense
in the real unit sphere, and thus there is no experimental way
to distinguish between the two spheres. This result was
derived by Pitowsky (1985) several years earlier. Using just
the continuum hypothesis, but a version with a weaker
assumption (Martin’s axiom), Pitowsky provided an assign-
ment s of values f−1; 0; 1g to all triples of orthogonal vectors
in the unit sphere S2 such that the condition s2ðxÞ þ s2ðyÞ þ
s2ðzÞ ¼ 2 is satisfied by all orthogonal triples x, y, and z
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except for a countable number of them. In other words,
Pitowsky found a valid value assignment for almost all triples
of orthogonal vectors in S2; see also the discussion given by
Fuchs (2011) on p. 503.
According to Meyer, this shows that, despite the KS

theorem, NCHV models can simulate the predictions of
quantum theory within any fixed finite experimental precision.
Kent (1999) generalized Meyer’s result and showed a con-
struction of KS-colorable dense sets of projectors onto vectors
with rational components in complex Hilbert spaces of
arbitrary finite dimension. Kent (1999) claimed that this
shows that “noncontextual hidden variable theories cannot
be excluded by theoretical arguments of the KS type once the
imprecision in real world experiments is taken into account.”
A simple counterargument to Meyer’s and Kent’s NCHV

models is given by the fact that their models cannot reproduce
the probabilistic predictions of quantum theory. The following
example is taken from Cabello and Larsson (2010). Consider
d ¼ 3 and the initial state

hψ j ¼ 1

527
ð354; 357;−158Þ ð101Þ

and the sharp measurements associated with

hv1j ¼ ð1; 0; 0Þ; ð102aÞ

hv2j ¼ ð0; 1; 0Þ; ð102bÞ

hv3j ¼
1

73
ð48; 0;−55Þ; ð102cÞ

hv4j ¼
1

3277
ð1925; 2052; 1680Þ; ð102dÞ

hv5j ¼
1

221
ð0; 140;−171Þ: ð102eÞ

This state and all these ideal measurements are allowed,
according to Meyer. For this state and these measurements,
quantum theory predicts

κ ¼ 3.941 ð103Þ

for

κ ¼ −hA1A2i − hA2A3i − hA3A4i − hA4A5i − hA5A1i: ð104Þ

However, for any NCHV model (Klyachko, 2007; Klyachko
et al., 2008)

κ ≤ 3: ð105Þ

Therefore, Meyer’s NCHV models fail to simulate the
predictions of quantum theory. Notice that the set of inequal-
ities of the form of Eq. (105) with κ of the form of Eq. (104)
with an odd number of minus signs [such as Eq. (104),which
has five minus signs] provides a necessary and sufficient
condition for the existence of a NCHV model (Araújo
et al., 2013).

2. Clifton and Kent’s nullification of the KS theorem

Clifton and Kent (2000), starting with similar ideas,
adopted a different approach. They asked the following
question: What if every sharp measurement belongs to only
one context? They showed that there is a set of directions in
the three-dimensional Euclidean space that is dense in the real
unit sphere and consists of directions such that none of them
are orthogonal to any of the others. Therefore, one can assign
any predetermined outcome to any of these directions (Clifton
and Kent, 2000). In other words, they substituted the mea-
surements defining the set of contexts (compatible ideal
measurements) with other measurements for which contexts
consist of a single measurement; i.e., all measurements are
mutually incompatible. In this way, as noted by Kochen and
Specker (1967), no constraint is imposed on the NCHV model
except for the reproduction of single-measurement marginals;
hence, a NCHV model can be constructed as a product of all
single-measurement distributions.
This can be formulated as a problem of imperfect compat-

ibility, in analogy with the one addressed by Larsson (2002),
Winter (2014), and Kujala, Dzhafarov, and Larsson (2015).
Possible solutions to this problem within the probabilistic
framework of contextuality and involving modifications to the
standard NC inequalities were extensively discussed in
Sec. IV.C; see that section for further details.
We now comment upon the relation among Bell non-

locality, contextuality, and imperfect compatibility. It is true,
as Barrett and Kent (2004) claimed, that the original KS
contextuality and Bell nonlocality are logically independent
concepts. However, in the probabilistic framework for con-
textuality, developed precisely after the entire nullification
debate, Bell nonlocality can be seen as an special case of
contextuality. We have a notion of contexts, compatible
measurements, and the goal of reproducing observed corre-
lations, associated with single contexts, from a global prob-
ability distribution; see Sec. IV.B. In a Bell scenario, however,
perfect compatibility is always guaranteed by the spacelike
separation of measurement events. Hence, by the locality
condition of special relativity no disturbance is allowed
between them. Moreover, imperfect measurements can always
be “dilated” to projective measurements using Neumark’s
theorem (Neumark, 1940a, 1940b, 1943; Holevo, 1982; Peres,
1993).
Finally, imperfect measurements seem to forbid contex-

tuality by another mechanism, namely, the transformation of
degenerate observables into nondegenerate ones. The degen-
eracy property of quantum observables is fundamental in
creating a nontrivial structure of measurement contexts; see
the discussion of Vorob’ev’s theorem in Sec. V.B. In fact,
for nondegenerate observables commutativity becomes a
transitive property (i.e., ½A; B� ¼ ½B;C� ¼ 0 implies that
½A;C� ¼ 0), which guarantees the existence of a NCHV
model (Correggi and Morchio, 2002). In our jargon, the
compatibility graph is a collection of disconnected cliques;
cf. Sec. V.B. For physically relevant observables of a single
system, the degeneracy is a consequence of some symmetry
of the system (consider the rotational symmetry of the
hydrogen atom) that is removed when the symmetry is no
longer exact (consider the level splitting due to a small electric
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or magnetic field). Arguably, this is the case of imperfect
experimental realization (for instance, it is impossible to
completely remove any electric and magnetic field). In
contrast, the symmetries related to the space-time structure
are robust, i.e., never removed by small imperfections, and
thus preserve the degeneracy of the relevant physical observ-
ables (for instance, consider observables of the form Ax ⊗ 1
and 1 ⊗ By for a bipartite system). This problem can be
analyzed from the perspective of experimental imperfections
presented in Sec. IV.B.

VI. APPLICATIONS OF QUANTUM CONTEXTUALITY

Since contextuality is a fundamental phenomenon of quan-
tum mechanics, it is not surprising that some studied its
applications and its relevance to quantum information process-
ing. In the following, we discuss three examples: First, the role
of contextuality in quantum computation; second, potential
applications in quantum cryptography; and third, an application
of contextuality in randomness generation. Finally, we mention
some further connections to information processing.

A. Contextuality and quantum computation

The first works to investigate the relation between quantum
contextuality and computation appeared in the framework
of measurement-based quantum computation (MBQC)
(Raussendorf and Briegel, 2001; Briegel et al., 2009), where
computation is performed by adaptively measuring single
qubits prepared in a large entangled state. Thus, in each
experimental run a set of compatible measurements (i.e.,
measurements on different qubits) are performed. It is natural
to interpret the entire experiment as a contextuality experiment
(notice that it cannot be interpreted as a Bell experiment since
the systems are not far apart) and ask whether the computa-
tional power arises as a consequence of quantum contextual-
ity. The first result in this direction was presented by Anders
and Browne (2009), who showed that GHZ-type correlations
enable the deterministic computation of the NAND gate,
effectively promoting a classical parity computer into a
universal (classical) one; see also the nonadaptive case given
by Hoban et al. (2011). Starting with this observation,
Raussendorf (2013) proved that all MBQCs with mod 2 linear
classical processing that compute a nonlinear Boolean function
with a sufficiently high success probability are contextual.
Raussendorf’s result was then further generalized. Specifically,
Abramsky, Barbosa, andMansfield (2017) provided an explicit
lower bound to the failure probability in terms of the non-
contextual fraction and the distance from the set of linear
functions. Oestereich and Galvão (2017) extended the result to
include reliable computations, i.e., with a success probability
strictly greater than 1=2; and Frembs, Roberts, and Bartlett
(2018) considered the case beyond qubits.
A fundamental result showing a strong interplay between

contextuality and computation was that of Howard et al.
(2014). More precisely, the result connected contextuality in
the framework of NCHV models with additional exclusivity
(see Sec. IV.A.5), and quantum computation in the framework
of quantum computation via magic state distillation for qudit
systems with d as an odd prime number. Finally, another

important result is the one obtained by Bravyi, Gosset, and
König (2018) and Bravyi et al. (2020), who showed an example
of a problem that can be solved with quantum circuits of
constant depth, regardless of the input size (shallow circuits),
but requires classical circuits to increase in depth logarithmi-
cally with the input size. This result can be directly connected to
the problem of classical simulation of contextual correlations.
Given the relevance of such results in the quantum

information community and their direct connection with
topics discussed in this review, namely, the graph-theoretical
approach to contextuality presented in Sec. V.B.3 for Howard
et al. (2014) and the cost of classical simulation of con-
textuality presented in Sec. V.D for Bravyi, Gosset, and König
(2018) and Bravyi et al. (2020), we summarize these two
results in the following.

1. Contextuality and magic states

One of the basic building blocks of the paradigm of
computation via magic state distillation is stabilizer codes,
which provide a fault-tolerant implementation of a subset of
preparations, measurements, and unitary transformations.
This subset of operations, however, is not only not universal
for computation but also efficiently classical simulable, as
shown by the Gottesman-Knill theorem (Gottesman, 1997).
An additional resource that provides universal quantum
computation is nonstabilizer states, called magic states,
possibly provided in a noisy form but distillable to some
target magic state (Bravyi and Kitaev, 2005). With these states
non-Clifford gates, such as the π=8 gate or its qudit gener-
alization, can be implemented, thus promoting stabilizer
computation to universal quantum computation. Not all magic
states are useful, as a large class of them cannot be distilled to
pure states and some can even be efficiently classically
simulable (Aaronson and Gottesman, 2004; Mari and
Eisert, 2012; Veitch et al., 2012, 2014).
Howard et al. (2014) showed that a state is contextual with

respect to stabilizer measurements if and only if the state is
outside the polytope of efficiently simulable states Psim. They
proved the statement for qudits with d being an odd prime
and for the special case of qubits. This result identified
contextuality as a necessary condition for universal quantum
computation via magic state distillation. The proof of the
sufficiency requires one to show that any state ρ ∉ Psim can be
distilled to a sufficiently pure magic state.
In the following, we explain the stabilizer formalism and

how the set of efficiently simulable states can be identified
with the noncontextual states with respect to stabilizer
measurements, defined as all projective measurements con-
sisting of rank-1 projectors onto stabilizer states. We consider
a system of dimension p, where p is an odd prime. The qubit
case was discussed by Howard et al. (2014).
We first recall the following definition of the displacement

operators in the discrete phase space (Gibbons, Hoffman, and
Wootters, 2004; Vourdas, 2004; Gross, 2006):

Dl;m ≔ ω2−1lmXlZm; ð106Þ

where the generalized X and Z are defined in the computa-
tional basis by Zjki ¼ ωkjki, Xjki ¼ jkþ 1i, and ω ≔ ei2π=p,
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and 2−1 is the multiplicative inverse of 2 in the field Zp,

i.e., ω2−1 ¼ eiπ=p.
In analogy with the continuous-variable case, the discrete

Wigner function of a state ρ can then be defined as the
expectation values of displacement operators on it. Since the
dimension is finite and some of the displacement operators
commute (since Dl;mDl0;m0 ¼ ω2−1ðlm0−l0mÞDlþl0;mþm0 ), it is
sufficient to consider only pþ 1 of them, for instance,
L ¼ fD0;1; D1;0; D1;1; D1;2;…; D1;p−1g, as their eigenvectors
form a complete set of mutually unbiased bases (Appleby,
Bengtsson, and Chaturvedi, 2008). Now denote by Πqj

j the
projector onto the eigenvector with eigenvalue ωqj for the
jth operator in L. For a vector q ∈ Zpþ1

p define the operator
Aq ≔ −1þPpþ1

j¼1Π
qj
j and finally the discrete Wigner function

as (Gibbons, Hoffman, and Wootters, 2004; Gross, 2006)

WρðqÞ ¼ trðρAqÞ: ð107Þ

Following Mari and Eisert (2012) and Veitch et al. (2012),
the efficently simulable states are identified with those with a
positive Wigner function, namely,

Psim ≔ fρjtrðρAxaþzbÞ ≥ 0; x; z ∈ Zpg; ð108Þ

with a ≔ ð1; 0; 1;…; p − 1Þ and b ≔ −ð0; 1; 1;…; 1Þ. The
connection between simulability and contextuality was then
obtained by associating an exclusivity graph to a collection of
projectors [specifically, those entering into the definition of
Axaþzb in Eq. (108)], computing its independence number
(i.e., the noncontextual bound), and showing that the con-
dition trðρAxaþzbÞ < 0 amounts to a violation of the non-
contextual bound. More precisely, for a two-qudit system with
the appropriately chosen set of projectors fΠsj

j g and their sum
Σr, they showed that

tr½Σrðρ ⊗ σÞ� ≤ p3 ⇔ trðρArÞ ≥ 0 ð109Þ

for any state σ on the second qudit. Finally, the bound p3 was
proven to be the independence number of the graph Γr

associated with the set of projectors appearing in Σr, i.e.,
αðΓrÞ ¼ p3, showing that the contextual states (ρ ⊗ σ for all
σ) are precisely those associated with a negative Wigner
function for ρ. This connection between contextual states and
the negativity of their Wigner function has been proven to be
general (Delfosse et al., 2017) for n-qudit systems with n > 1

and d an odd prime, without requiring the construction of the
tensor product ρ ⊗ σ as in Eq. (109).
The result obtained by Howard et al. (2014) was then

extended to rebits, i.e., a restriction of qubits to real-valued
density matrices and operators (Delfosse et al., 2015), and
finally to qubits (Bermejo-Vega et al., 2017; Raussendorf
et al., 2017). A different notion of contextuality called
sequential contextuality has been investigated from the per-
spective of computation (Mansfield and Kashefi, 2018) and
quantum information processing tasks such as quantum
random access codes for systems with bounded memory
(Emeriau, Howard, and Mansfield, 2020).

2. Contextuality and shallow quantum circuits

The name shallow circuit refers to circuits that are of
constant depth, regardless of the input size. Constant depth
implies that the corresponding operations can be run in a
constant time, as operations on different sets of qubits can be
run in parallel.
As a starting point, Bravyi, Gosset, and König (2018)

showed that there are problems that can be solved by a
quantum algorithm with certainty and in constant time for
any input size, i.e., with a shallow circuit, but require a time
logarithmic in the length of the input for any classical circuit
that solves them with a sufficiently high probability. This
work was further extended (Bravyi et al., 2020) to account
for what happens if noise is explicitly modeled. Bravyi et al.
(2020) presented an alternative, and simpler, argument to
show the gap between quantum and classical shallow
circuits.
Note that the arguments presented by Bravyi, Gosset, and

König (2018) and Bravyi et al. (2020) do not use the oracular
paradigm. This is important since a speedup proven in the
oracular paradigm may not translate into a real-world advan-
tage, as a classical algorithm may take advantage of the
internal structure of the oracle to solve the problem more
efficiently (Johansson and Larsson, 2017, 2019).
Two different arguments were presented by Bravyi, Gosset,

and König (2018) and Bravyi et al. (2020), but they are based
on similar reasoning. An intuitive understanding of them
based on nonlocal games can be obtained as follows. We first
consider the case of a circuit that is fed with a fixed entangled
state plus classical bits as input but implements only local
(such as single-qubit) operations. This means that each gate
has only a wire coming in and one coming out. Recall that the
number of wires coming in each gate, not necessarily among
nearest neighbors, is called the degree or fan-in of the gate.
If the input-output relation of the circuit is modeled after that
of a nonlocal game, then the observation of a probability of
success for the correct output above a certain threshold can
be interpreted as the violation of a Bell inequality. Now
imagine we allow for fan-in 2 with nearest-neighbor inter-
actions. Thus, in the analogy of the nonlocal game, any two
parties can collaborate to win, but only if their distance is
less than 2D, where D is the circuit depth. To visualize this,
one can imagine that each output of the circuit has some
“past light cone” indicating the initial inputs that could have
influenced it.
The number of parties in the game corresponds to the input

size of the circuit; hence, to allow for a collaboration among
distant parties, the depth of the circuit must grow logarithmi-
cally with the input size. In other words, to win with the
aforementioned classical communication strategy, the depth of
the circuit must grow (logarithmically) with the input size. The
argument is then extended to the case of gates of fan-in K,
with K arbitrary but fixed for all possible input sizes and the
condition of a nearest-neighbor interaction removed. Finally,
the nonlocal game is chosen such that it can be won by
quantum players without any communication, corresponding
to a fixed depth circuit necessary to prepare the correct initial
entangled state. Notice that even if the number of operations
needed for preparing this entangled state grows with the input,

Costantino Budroni et al.: Kochen-Specker contextuality

Rev. Mod. Phys., Vol. 94, No. 4, October–December 2022 045007-46



they can be performed in parallel; hence, the depth of the
circuit remains constant.
A more detailed description can be provided by explicitly

considering the game given by Bravyi et al. (2020), which is
based on thePM-square (Mermin, 1990b; Peres, 1990) nonlocal
game (Cabello, 2001a; Aravind, 2004; Cleve et al., 2004) and
called the 1Dmagic square problem. Bravyi, Gosset, andKönig
(2018) used a similar game based on a GHZ-type contradiction,
but the proof is more elaborate, as the game is based on a two-
dimensional qubit architecture. Bravyi et al. (2020) had the N
input wires of the circuit represent theN players, and additional
classical inputs were provided to specify the game. In each
round, only two of them play the PM-square game, whereas the
other players collaborate to create the right correlations. The
different roles are assigned at random at the beginning of each
round, such that a perfect winning (classical) strategy would
necessarily require a collaboration between any pair of players.
The nonlocal game can be straightforwardly translated into

an abstract relation problem: a relation is simply a set of valid
input-output pairs ðzin; zoutÞ defined by a function Rðzin; zoutÞ
taking value 0 or 1. A circuit is said to solve the relation
problem R if for each input zin it produces an output zout such
that Rðzin; zoutÞ equals 1. The pairs ðzin; zoutÞ can then be
derived from the input-output pairs of the nonlocal game. The
problem is said to have n input-output bits if jzinj þ jzoutj ¼ n.
We can then summarize the result by Bravyi et al. (2020) as

follows. They showed that for each n there is a relation
problem R with n input-output bits and a set of inputs S,
with jSj ¼ polyðnÞ such that (i) R can be solved for all inputs
with a constant-depth quantum circuit and (ii) any classical
circuit with constant fan-in that solves R with probability
psuccess ≥ 90%, for S uniformly distributed, has a depth
growing at least as fast as logðnÞ.
Bravyi et al. (2020) generalized the result to the case of

quantum circuits with local stochastic noise, namely, a random
Pauli error is applied at each time step to the ideal quantum
circuit. More precisely, they showed that a constant-depth
noisy quantum circuit, this time with a 3D geometric structure,
can solve the n-bit problem R with high probability
(psuccess ≥ 99%), whereas any classical noiseless circuit that
solves it with psuccess ≥ 90% has a depth growing at least as
fast as logðnÞ=log½logðnÞ�.
Beyond the technical details of the results and from a

contextuality perspective, an interesting observation is the
following. The quantum circuit can solve the problem with a
constant depth due to its ability to generate contextual
correlations. In fact, any classical simulation of these con-
textual correlations requires communication among the par-
ties, which in turn requires the depth of the circuit to grow
with the number of parties (or inputs of the game). The results
obtained by Bravyi, Gosset, and König (2018) and Bravyi
et al. (2020) can therefore be interpreted in the framework
of memory cost (or communication cost) for the classical
simulation of quantum contextuality; see Sec. V.D. Finally,
notice that even if we are discussing nonlocal games and Bell
inequalities, in any realization of the considered circuit the
single measurements are not far apart. It is therefore more
appropriate to identify the corresponding phenomenon as
quantum contextuality than as Bell nonlocality.

B. Contextuality and quantum cryptography

1. Svozil’s quantum key distribution protocol

The possibilities of contextuality for quantum key distri-
bution (QKD) were first devised by Bechmann-Pasquinucci
and Peres (2000). Here we review a QKD scheme introduced
by Svozil (2010), which provides a good example of how
contextuality adds features beyond those provided by meas-
urement incompatibility. Specifically, it shows how contex-
tuality can be used to counteract a possible attack [described
by Svozil (2006)] that may be used to attack the standard
BB84 QKD protocol (Bennett and Brassard, 1984).
Recall how the BB84 protocol works. There are two

separate parties Alice and Bob who want to obtain a shared
secret key (i.e., a sequence of bits known only to them). For
that, they send physical systems from Alice to Bob and share
classical information over a public channel. The protocol goes
as follows: (i) Alice randomly picks one from two basis of
qubit states (the computational basis and the Hadamard basis)
and sends Bob over a public and authenticated quantum
channel a randomly chosen state of that basis. (ii) Bob picks a
basis at random from the two and measures in this basis the
system received from Alice. (iii) Over a public channel, Bob
announces his bases and Alice announces those events in
which the state sent belongs to the measured basis. (iv) Alice
and Bob repeat steps (i)–(iii) many times and, from the bits
where both Alice and Bob used the same basis, Alice
randomly chooses half of them and discloses her choices
over the public channel. Both Alice and Bob announce these
bits publicly and run a check to see whether more than a
certain number of them agree. If this check passes, then Alice
and Bob use the remaining undisclosed bits to create a shared
secret key via additional techniques like error correction and
privacy amplification.
We now describe Svozil’s attack to the BB84 protocol

(Svozil, 2006). The adversary replaces the preparations and
measurements of quantum states by classical preparations and
measurements. Thus, in step (i) Alice is actually picking one
of two differently colored eyeglasses (instead of one of the
two bases) and picking a ball from an urn (instead of picking
one quantum state) with two color symbols in it (correspond-
ing to the basis that the state belongs to). Each one of the two
differently colored eyeglasses allows her to see only one of the
two colors. Svozil observed that the adversary can mimic the
quantum predictions if (a) each of the balls has one symbol
Si ∈ f0; 1g written in two different colors chosen from the
two possible pairs. Her choice of eyeglasses decides which
symbols Alice can see. (b) All colors are equally probable, and
for a given color the two symbols are equally probable.
Therefore, in step (ii) Bob is actually picking one of two
differently colored eyeglasses and reading the corresponding
symbol. Since the requirements (a) and (b) can be satisfied
simultaneously, the strategy can successfully imitate the
quantum statistics of the BB84 protocol. Therefore, if the
replacement remains unnoticed to Alice and Bob, just by
checking the statistics they cannot realize that the adversary
may have full knowledge of their “secret” key.
However, Svozil (2010) also noticed that if one replaces the

quantum states and basis of the BB84 protocol by those used
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in a proof of the KS theorem, then in the classical attack
requirements (a) and (b) cannot be satisfied simultaneously
and the adversary cannot simulate the quantum statistics.
Specifically, Svozil’s protocol uses the nine-basis, 18-state
KS proof in dimension 4 in Fig. 3. In step (i), Alice
randomly picks a basis from the nine bases in Fig. 3 and
sends Bob a randomly chosen state of that basis. (ii) Bob
picks a basis at random from the nine and measures the
system received from Alice. The remaining steps are as in
BB84, but one notices that each measurement now has four
outcomes (rather than two).

2. Contextuality offers device-independent security

The core idea behind BB84 is that information gain for
one quantum observable must cause a disturbance to another
incompatible observable. This does not require entanglement
or composite systems. However, there is a second generation
of QKD protocols, offering much higher levels of security,
that relies on nonlocality. These protocols were initiated by
Ekert (1991), were advanced through the work of Barrett,
Hardy, and Kent (2005), and lead to the schemes for device-
independent QKD (Acín et al., 2007). Security in the proto-
cols is verified solely through the statistics of the measurement
outcomes, with no assumptions about the inner working of
the devices (except those that are standard in cryptography).
Since nonlocality can be seen as contextuality produced by
local measurements on composite systems, all these schemes
may be considered as applications of contextuality. However,
in most of them the exact role of contextuality is difficult
to follow.
Here we review a result and a corresponding QKD scheme

presented by Horodecki et al. (2010), in which local con-
textuality plays a crucial role. The result can be summarized as
follows: if two parties share systems that, locally, show a KS
contradiction and, in addition, exhibit perfect correlations,
then they can use them to extract a secure key in a device-
independent manner. As an application, they introduced a
QKD protocol exploiting the properties of the PM magic
square; see Sec. III.B.1. Here we do not provide the details of
the QKD protocol: we instead simply describe the resources
used and the steps to prove device-independent security.
A distributed PM box (shared by Alice and Bob) is defined

as follows (Cabello, 2001a; Aravind, 2004; Cleve et al.,
2004). Both Alice and Bob have a PM set of observables.
Alice measures columns of the PM magic square, while Bob
measures rows, as first proposed by Cabello (2001a). That is, a
distributed PM box is a set of nine conditional distributions
pða; bjx; yÞ, where x labels the columns of the PM table, y
labels the rows, and a ¼ ða1; a2; a3Þ and b ¼ ðb1; b2; b3Þ
are the outcomes of the joint measurement of the three
observables in the respective column or row, where
ai; bj ∈ fþ1;−1g. The outcomes are assumed to satisfy the
corresponding quantum predictions. That is, a1a2a3 ¼ þ1 for
all columns of the PM table except the last one (for which
a1a2a3 ¼ −1), and b1b2b3 ¼ þ1 for all rows. In addition,
there are perfect correlations between the outcomes of the
same observables on Alice’s side and Bob’s side. Finally,
nonsignaling holds. That is, Alice’s (Bob’s) local distributions
do not depend on the choice of measurement by Bob (Alice).

In quantum mechanics, such a distributed PM box can be
realized if both parties share two singlet states.
Consider a PM distributed box such that the parties do not

know how it is implemented, i.e., what observables are
measured and in which quantum state. However, if they
assume the validity of quantum mechanics, as is usually done
in the device-independent paradigm (Acín et al., 2007), it can
be shown (Horodecki et al., 2010) that the outcomes of a fixed
row or column possess about 0.44 bits of intrinsic random-
ness, and hence that the correlations offer security. It can also
be proven (Horodecki et al., 2010) that a secure key can be
obtained both in the noiseless case and when assuming a small
amount of noise in the state.

C. Random number generation

The inherent randomness of quantum mechanics together
with the impossibility of a classical simulation of some of its
aspects suggests the possibility of using it for the generation
of random numbers. For instance, protocols of randomness
expansion based on Bell nonlocality and with minimal
assumptions on the measuring devices have been proposed
(Colbeck, 2006).
In the following, we review a protocol of randomness

generation based on quantum contextuality proposed by
Abbott et al. (2012). The main idea is to exploit a Kochen-
Specker-type contradiction, namely, the impossibility of a
preassigned value for certain quantum properties of a system
to claim that the outcomes generated by the measurement of
such properties are genuinely random. In contrast to previous
approaches, Abbott et al. (2012) not only used the impos-
sibility of a simultaneous assignment to all variables (NCHV)
but also precisely localized which variable cannot have a
definite value. The intuition is similar to the one at the basis of
the bug graph in Fig. 5: if A is assigned the value 1, then B
must be assigned the value 0. Abbott et al. (2012) extended
this idea by proving a stronger result: they found a graph in
d ¼ 3 such that, whenever A is assigned the value 1, the
assignments B ¼ 0 and B ¼ 1 both generate some contra-
dictions. In this case B is said to be value indefinite. Moreover,
they showed that this graph can be constructed for any
two projectors PA ¼ jaihaj and PB ¼ jbihbj such thatffiffiffiffiffiffiffiffiffiffi
5=14

p
≤ jhajbij ≤ 3=

ffiffiffiffiffi
14

p
. These numbers were sub-

sequently improved by Abbott, Calude, and Svozil (2015)
to the general condition 0 < jhajbij < 1. This construction
relies on the assumption that value assignments respect QM
predictions for one-dimensional projectors, particularly ortho-
gonality ðO0Þ and completeness ðC0Þ for an orthogonal basis;
see Sec. III.A. Moreover, the assumption of a definite value for
PA is translated, through the eigenstate assumption (Abbott
et al., 2012), to the assumption of the preparation of an
eigenstate of PA.
This argument can be translated to a practical random

number generation protocol that consists of preparing a three-
level quantum system in the pure state jψi and then measuring
it in a basis containing vectors jϕþi; jϕ−i such that
0 < jhψ jϕ�ij < 1. An explicit implementation is given in
terms of the spin operators for a spin-1 system with jψi ¼
jSz ¼ 0i and jϕ�i ¼ jSx ¼ �1i. In other words, the system is
prepared in the eigenstate associated with 0 for the spin along
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the z direction, and a measurement in the Sx basis is
performed. By the geometry of the problem hSz ¼ 0jSx ¼
0i ¼ 0 and hSz ¼ 0jSx ¼ �1i ¼ 1=

ffiffiffi
2

p
, which implies that

the outcome 0 never appears in the measurement of Sx and that
the two value indefinite outcomes �1 appear with equal
probability. In addition to the realization with spin-1 systems,
Abbott et al. discussed an implementation based on photon
interferometry.
This approach was explored experimentally by Kulikov

et al. (2017), and the quality of the randomness produced in
the experiment was further analyzed by Abbott et al. (2019).
See also Abbott, Calude, and Svozil (2014) and Agüero Trejo
and Calude (2021) for more recent theoretical developments.
Experimental random number generation based on contex-
tuality was also explored by Um et al. (2013, 2020), but not in
the framework developed by Abbott et al. (2012).

D. Further applications

Finally, we want to mention some other applications where
contextuality has proven useful.

1. Zero-error channel capacities

In general, a classical channel N transforms inputs x ∈ X
on Alice’s side to outputs y ∈ Y on Bob’s side, so it can be
considered a conditional probability distribution pðyjxÞ. If
only a single use of the channel is allowed, Bob may not be
able to uniquely determine Alice’s input from his output. One
may therefore ask what the largest subset of inputs is that can
be perfectly distinguished. This is also called the one-shot,
zero-error capacity c0ðN Þ of the channel.
This quantity can be interpreted in a graph-theoretical

manner using the so-called confusability graph GðN Þ. The
vertices of this graph are the input symbols x ∈ X, and two
vertices x1 and x2 are connected if and only if the probability
distributions pðyjx1Þ and pðyjx2Þ overlap. This means that
there is a possible output y that may originate from the two xi,
so these two inputs are confusable. In other words, the one-
shot, zero-error capacity c0ðN Þ corresponds to the maximum
independent set of the confusability graph. In this jargon,
Bob’s perspective can be described as follows: He receives an
output y that may originate from several xi. Any two of these
xi are confusable, so the possible inputs xi form a clique in the
confusability graph.
How does the capacity of a channel change if Alice and Bob

also have some access to additional resources such as shared
randomness or entangled states? Cubitt et al. (2010, 2011)
showed that from any Kochen-Specker set of vectors one can
construct an example of a channel, where the one-shot, zero-
error capacity in the presence of a shared entangled state,
denoted by cEðN Þ, is strictly larger than the capacity without
shared entanglement c0ðN Þ.
This connection is best explained with an example.

Consider the nine orthogonal bases in four-dimensional space,
which came out of the 18-vector proof in Fig. 3 in Sec. III.A.
The 36 overall vectors can be organized in a 9 × 4 array jψ iji,
and the indices ðijÞ constitute the input space X of the channel
N . One then constructs the channel such that two inputs ðijÞ
and ðklÞ are confusable if the vectors jψ iji and jψkli are

orthogonal. This can be achieved in different ways: for
instance, one can simply take Y ¼ X as an output space
and start with pðyjxÞ ¼ δxy. Small disturbances are then added
in order to build the desired confusability graph.
The resulting channel has c0ðN Þ ≤ 8. To see this, assume

that c0ðN Þ ¼ 9 (or larger). The nine distinguishable xm have
to belong to the nine different bases (or rows in the array)
since inputs within a row are by construction not perfectly
distinguishable by Bob. Moreover, if the same vector appears
on two positions in the array (jψ iji ¼ jψkli) and ðijÞ belongs
to the set fxmg, then ðklÞ also belongs to the set since jψ iji is
orthogonal to all other vectors in the row k. Therefore, one
arrives at an assignment of values to the 36 vectors that obeys
the rules of noncontextuality, and this is by construction not
possible.
On the other hand, it is evident that with the help of

entanglement cEðN Þ ≥ 9. Assume that Alice and Bob share a
maximally entangled state in a 4 × 4 system. To send the row
index i to Bob, Alice then simply performs a projective
measurement of the corresponding basis on her part of the
state. She obtains the random result j and sends ðijÞ through
the channel. From the channel output y, Bob can identify a
clique of four possible inputs ðklÞ. The corresponding states
jψkli are orthogonal, so he can identify Alice’s input by
performing a projective measurement on his reduced state,
which is given by jψ iji.

2. Dimension witnesses

As mentioned in Sec. III.A, the Kochen-Specker theorem
requires at least a three-dimensional Hilbert space. It is
therefore natural to connect the violation of contextuality
inequalities to the dimension.
For the case of the PM square, this was done by Gühne et al.

(2014). They considered the contextuality inequality found in
Eq. (43) and studied how the violation depends on the
underlying dimension. It has been shown that

hPMi ≤
2D;com

2 ≤
3D;com

4ð
ffiffiffi
5

p
− 1Þ ≈ 4.94; ð110Þ

where the bounds hold for the respective dimensions under the
assumption that the measurements are projective and obey the
compatibility (or commutation) relations of the PM square.
These bounds can be generalized to certain POVMs and also
to the KCBS inequality (Gühne et al., 2014). More recently a
general method on dimension witnesses using the graph-
theoretical approach was introduced (Ray et al., 2021).

3. Self-testing

Quantum self-testing (Mayers and Yao, 2004) is the art of
certifying quantum states, quantum measurements, and other
quantum features from the input-output statistics of measure-
ment experiments and some minimal assumptions, which do
not include assumptions about the quantum system. The
method is based on the observation that some input-output
statistics corresponding to extremal points in the correspond-
ing sets of quantum correlations can be achieved, up to
isometries, only with specific states and measurements. The
idea was initially used for self-testing quantum states and
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measurements in Bell scenarios (Mayers and Yao, 2004), then
extended to other features and scenarios. Here we review its
application for self-testing states and measurements in con-
textuality experiments with sequences of ideal measurements
(Bharti, Ray, Varvitsiotis, Cabello, and Kwek, 2019; Bharti,
Ray, Varvitsiotis, Warsi et al., 2019) and for self-testing states
and measurements in Bell scenarios by exploiting the con-
nection between quantum contextuality and graph invariants
(Bharti et al., 2021).
In the first case, the distinctive assumption is that mea-

surements are ideal. Under this assumption, it was proven
(Bharti, Ray, Varvitsiotis, Warsi et al., 2019) that the quantum
violations of the KCBS inequality and all the tight inequalities
for the odd n-cycle scenarios (with n ≥ 5) (Araújo et al.,
2013) allow for self-testing. It was also proven (Bharti, Ray,
Varvitsiotis, Cabello, and Kwek, 2019) that the quantum
violations of the antihole noncontextuality inequalities
(Cabello et al., 2013) allow for self-testing. The interest
in the latter result relies on the fact that it allows for self-
testing quantum states and measurements of any odd dimen-
sion d ≥ 3.
Bharti et al. (2021) showed that the connection between

quantum contextuality and graph invariants permits one to
simplify the proofs of self-testability of certain Bell nonlocal
correlations that were known to allow for self-testing, identify
new Bell nonlocal correlations that allow for self-testing, and
prove a conjecture about the closed form expression of the
Lovász theta number for a family of graphs.

4. Applications of Spekkens’s contextuality

Parity-oblivious multiplexing.—This is an information
processing task for two parties where preparation contextual-
ity, as explained in Sec. IV.E, is useful (Spekkens et al., 2009).
We first describe the problem. Consider a two-party system
where Alice receives a bit string x ∈ f0; 1gn of length n. Bob
receives a number y ∈ f1;…; ng and has to predict the bit xy
of Alice’s string. To succeed, Alice can send Bob some
information about her string. Thus far, this is a general
scenario that also occurs in random access codes (Ambainis
et al., 2002). The interesting point is to put constraints on the
information Alice is allowed to send to Bob and then
investigate the physical consequences.
In the scenario considered by Spekkens et al. (2009) one

adds the constraint that the information that Alice is allowed to
send to Bob should not give any information about the parity
of her string on any subset containing two or more bits. Using
a mathematical formulation, let s ∈ f0; 1gn be an arbitrary bit
string with at least two entries 1. No information on

P
i xisi

should then be revealed, where addition is modulo 2. This
constraint makes the information transmission from Alice to
Bob “parity oblivious.”
One can first ask what the optimal classical success

probability is for this game. In a classical system, the
constraint effectively ensures that Alice can transfer only
one single bit of the string x; without losing generality one can
assume that this is the first bit. Bob can then predict the bit
correctly for y ¼ 1, and he has to guess for all other values
of y. This leads to a success probability of pðb ¼ xyÞ ¼
1=nþ 1=2 × ðn − 1Þ=n ¼ ðnþ 1Þ=2n. In ontological models

obeying the constraint of preparation contextuality, one also
cannot exceed this value. The reason is that in these models
parity obliviousness at the level of Alice’s preparations and
Bob’s measurements already implies the parity obliviousness
at the level of hidden variables; see Spekkens et al. (2009) for
a detailed argumentation.
In quantum mechanics, however, this bound does not hold.

Consider the case n ¼ 2. The four possible strings for Alice
can be encoded in four single-qubit states with the Bloch
vectors lying in the x−y plane via r⃗x1;x2 ¼ (ð−1Þx1 ;
ð−1Þx2 ;0)= ffiffiffi

2
p

, and the states are ϱx1;x2 ¼ ð1þ r⃗x1;x2 σ⃗Þ=2.
Since ϱ11 þ ϱ00 ¼ ϱ10 þ ϱ01, no quantum measurement can
give information on the parity of x. If Bob wants to know x1 he
measures σx, and for predicting x2 he measures σy. This gives
the right bit with probability cos2ðπ=8Þ ≈ 0.8536, which is
larger than the classical optimum of 3=4.
The choice of the signal states is closely related to the

examples of inequalities for preparation noncontextuality;
see Eq. (67) in Sec. IV.E. The connection of parity-oblivious
communication with preparation contextuality has been further
generalized in several directions (Banik et al., 2015; Chailloux
et al., 2016; Hameedi et al., 2017; Ghorai and Pan, 2018;
Ambainis et al., 2019; Saha and Chaturvedi, 2019; Saha,
Horodecki, and Pawłowski, 2019).
State discrimination.—The task of minimum error state

discrimination has been a well-studied problem since the early
days of quantum information processing; see Barnett and
Croke (2009) for review. In the simplest scenario, two non-
orthogonal states jψi and jϕi are given with equal probability.
The task is then to make a measurement and identify the state.
As the states are nonorthogonal, this cannot be done perfectly,
so the task is to minimize the error probability of the guess.
Note that there is also a different notion of unambiguous state
discrimination in which no error is allowed, but it is possible
to pass as a third option.
This can be connected to preparation noncontextuality, as

shown by Schmid and Spekkens (2018). Consider two single-
qubit states jψi and jϕi with overlap c ¼ jhψ jϕij2. We can
assume without losing generality that their Bloch vectors are
of the form r⃗ψ=ϕ ¼ ( cosðαÞ; 0;� sinðαÞ). The optimal meas-
urement is then given by σz, leading to a success probability of
s ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffi

1 − c
p Þ=2. One can consider in addition the

orthogonal vectors jψ⊥i and jϕ⊥i with the Bloch vectors
r⃗ψ⊥=ϕ⊥ ¼ ( − cosðαÞ; 0;∓ sinðαÞ). They lead to essentially
the same state discrimination problem, with the same success
probability.
From the perspective of preparation contextuality it is

important that jψihψ j þ jψ⊥ihψ⊥j ¼ jϕihϕj þ jϕ⊥ihϕ⊥j ¼ 1.
This puts constraints on the hidden-variable distributions
describing these four states in preparation-noncontextual
theories; see also Eqs. (67) and (69). Under these constraints
and under the assumption that the relations and symmetries
between the four states are preserved, one can prove that the
success probability for the two-state problem given by jψi and
jϕi is bounded by s ≤ 1 − c=2. For any c this is strictly lower
than the previously provided quantum mechanical value
(Schmid and Spekkens, 2018). This result can also be shown
to hold for states affected by noise.
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5. Further applications on the horizon

Recently other works considered potential applications of
contextuality, but it is currently difficult to predict the future
impact of these research lines. The novel applications contain
machine learning (Gao et al., 2022), postselected metrology
(Arvidsson-Shukur et al., 2020), and state-dependent cloning
(Lostaglio and Senno, 2020).

VII. SUMMARY AND OUTLOOK

Since the discovery of quantum contextuality more than
50 years ago, the topic has received increasing attention, with
the largest number of significant contributions occurring only
during the last decade. This development parallels the
increased interest in Bell nonlocality and has been partially
driven by the fast-growing community of quantum informa-
tion scientists. A key breakthrough for quantum contextuality
was the transformation of the logical contradiction that
underlies the original theorem by Kochen and Specker
(1967) to experimentally accessible noncontextuality inequal-
ities; see Sec. IV. A recent key development has been the
establishment of the connection between computational
resources and the presence of contextuality; see Sec. VI.
As the field of quantum contextuality is evolving faster then
ever before, we identify three key topics that are essential for
the consolidation of our current understanding of quantum
contextuality and the further development of the field.
First, the mathematical structure of quantum contextuality

has not yet been fully revealed, despite the numerous seminal
results. For example, the smallest scenario for state-indepen-
dent contextuality is not known. It is likely that it will be the
scenario by Yu and Oh (2012), but a conclusive proof has not
yet been provided. In addition, scenarios that are maximally
contextual in certain ways have yet to be identified. For
example, it is known (Amaral, Terra Cunha, and Cabello,
2015) that the quotient ϑðGÞ=αðGÞ for an exclusivity graph G
tends to the number of vertices of G, but a family of graphs
with this property is not yet known.
Second, although there are a large number of convincing

experiments that have confirmed quantum contextuality in
physical systems (see Sec. IV.D), the handling of experimental
imperfections, or “loopholes,” has not reached the thorough-
ness that has been achieved for Bell nonlocality (Brunner
et al., 2014; Larsson, 2014). There are several (partially
competing) methods to handle experimental imperfections
(see Sec. IV.C), but a comprehensive description in a unified
framework is missing. Even if a truly loophole-free experi-
ment might be fundamentally impossible, this does not lessen
the need for comprehensive treatment. Some of these diffi-
culties can be traced back to the fact that quantum contex-
tuality (with the notable exception of Spekkens’s notion of
contextuality, see Sec. IV.E) is based on the notion of ideal
measurements and, in the case of implementations with
sequential measurements, on the role of Lüders rule for ideal
measurements. Our understanding of both concepts within the
foundations of quantum theory is not fully developed and
might be a source of our struggle with the design of loophole-
free contextuality experiments. See Wang et al. (2022) for
recent developments in this direction.

Finally, we mention the role of contextuality in quantum
computation and communication; see also Sec. VI. There
are still no strong methods that would allow one to quantify
the memory cost of quantum contextuality. Specifically, it is
not known whether there is a quantum advantage regarding
the cost when simulating a sequential implementation of
quantum contextuality by means of a classical finite state
machine. Current affirmative results (see Sec. IV.B) are
based on sequences of incompatible observables, which is
an alien concept to quantum contextuality. Much broader
and more general questions regard whether and how quan-
tum contextuality plays a role in universal quantum com-
putation. To date this has been answered in the cases of
measurement-based quantum computation, quantum com-
putation via magic states, and shallow quantum circuits; see
Sec. VI.A. But whether and in what sense contextuality
plays a role in the circuit model are widely open questions.
Besides those more specific questions, we expect various
new key applications of contextuality in quantum informa-
tion science to emerge in the near future.
In conclusion, quantum contextuality plays a central role

in quantum theory, encompassing both measurement incom-
patibility at a fundamental level and Bell nonlocality and
entanglement when subsystems are spatially separated. It is
also strongly connected to new developments in quantum
technology. Quantum contextuality is at the heart of the
matter, more so than quantum uncertainty or quantum
interference. Both of them could in principle be present in
a classical model, whereas quantum contextuality cannot, as
shown by Kochen and Specker (1967). Paraphrasing their
conclusion, “This way of viewing the results [presented here]
seems to us to display a new feature of quantum mechanics in
its departure from classical mechanics.” Quantum contextual-
ity is what makes quantum theory fundamentally nonclassical,
and will indubitably play an important role in future develop-
ments of quantum physics.
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José P. Baltanás, Johanna F. Barra, Hannes Bartosik, Ingemar
Bengtsson, Marco Bentivegna, Kishor Bharti, Kate
Blanchfield, Rainer Blatt, Naresh Goud Boddu, Gilberto
Borges, Mohamed Bourennane, Harvey Brown, Časlav
Brukner, Jeffrey Bub, Gustavo Cañas, Jaime Cariñe,
Gonzalo Carvacho, Marcos Carvalho, Daniel Cavalcanti,
Rafel Chaves, Jiang-Shan Chen, Jing-Ling Chen, Giulio
Chiribella, Andrea Chiuri, Sujit K. Choudhary, Rob
Clifton, Andrea Crespi, Jin-Ming Cui, Vincenzo
D’Ambrosio, Lars E. Danielsen, Pierre-Louis de Assis,
Dong-Ling Deng, Ehtibar Dhzafarov, Cristhiano Duarte,
Joseph Emerson, Paul Erker, José M. Estebaranz, Sebastián
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Claus Schmitzer, Fabio Sciarrino, Simone Severini, Abner
Shimony, Rui Soares Barbosa, Alberto Solís, Adrian Specker,
Ernst Specker, Susan Specker, Rob Spekkens, Stephan
Sponar, Allen Stairs, Hong-Yi Su, Kai Sun, Karl Svozil,
Jochen Szangolies, Marcelo Terra Cunha, Stefan Trandafir,
Giuseppe Vallone, Antonios Varvitsiotis, María C. Velázquez
Ahumada, Giuseppe Vitagliano, Mordecai Waegell, Naqueeb
Ahmad Warsi, Harald Weinfurter, Marcin Wieśniak, Andreas
Winter, Elie Wolfe, Chunfeng Wu, Guilherme B. Xavier, Ya
Xiao, Jin-Shi Xu, Zhen-Peng Xu, Bin Yan, Sheng Ye, Sixia
Yu, Xiao-Dong Yu, Florian Zähringer, Anton Zeilinger, Chi
Zhang, Jie Zhou, Zong-Quan Zhou, Marek Żukowski, and
Wojciech Żurek for interesting discussions on quantum
contextuality over the years. We also thank Alastair Abbott,
Manik Banik, Kishor Bharti, Cris Calude, Hyppolite
Dourdent, Pierre-Emmanuel Emeriau, Robert B. Griffiths,
Alexei Grinbaum, Martti Karvonen, Zheng-Hao Liu, Shane
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APPENDIX: QUANTUM CONTEXTUALITY FROM A
HISTORICAL PERSPECTIVE

Here we present a historical introduction to quantum
contextuality from its origins to the time when the basis for
experimentally testing Kochen-Specker contextuality was
settled. The aim of this section is to frame the results presented
in the review within a historical context and trace the
connections between them that may help us to understand
the evolution and ramifications of the field.

1. The problem of hidden variables

The discussion in the late 1920s of whether quantum
mechanics can be supplemented by “hidden variables” was
motivated by two results: Born’s probabilistic interpretation of
Schrödinger’s wave function (Born, 1926a, 1926b), which
expresses the fundamentally probabilistic character of the
predictions of quantum mechanics, and Heisenberg’s uncer-
tainty principle (Heisenberg, 1927), which asserts a funda-
mental limit to the precision with which the values of position
and momentum can be predicted in quantum mechanics.
While Heisenberg, Born, Pauli, and, notably, Bohr made
strong claims that quantum mechanics provides a complete
framework for physics and manifested their skepticism about
the possibility of completing it with hidden variables,
Schrödinger, de Broglie, and especially Einstein hoped to
recover quantum mechanics from a deeper nonprobabilistic
theory and viewed the quantum state as an incomplete
description in need of supplementation by hidden variables
(Lorentz, 1928; Fine, 1990).
At the Solvay Conference in 1927, de Broglie presented an

explicit hidden-variable theory (Lorentz, 1928). However, the
criticisms received, particularly those from Pauli (Lorentz,
1928), persuaded de Broglie to abandon his theory.
In 1931, the skepticism of Bohr received support from a

proof of impossibility of hidden variables presented by von
Neumann (1931) and included in his book (von Neumann,
1932, Sec. IV.2). This proof was soon shown to be incon-
clusive by Hermann (1935, 2019), but her work was mostly
ignored for many years (Mermin and Schack, 2018). The
influence of von Neumann’s book, then, strongly discouraged
any discussion of hidden-variable theories for decades.
Paradoxically, at that time Wigner (1932) found something

that could have been used against hidden variables: when
attempting to link Schrödinger’s wave function to a distribution
on phase space (which would be the analog in quantum
mechanics to the distribution function of classical statistical
mechanics), Wigner found that such a distribution has negative
values and cannot be made non-negative. The importance of
this discovery was not recognized until much later.
Einstein, Podolsky, and Rosen (1935) showed that quantum

mechanics is incomplete, in the sense that it does not assign
definite outcomes to measurements whose results can be
predicted with certainty from the outcomes of spacelike
separated measurements. Decades later Bell (1964) showed
that Einstein, Podolsky, and Rosen’s (EPR’s) hidden-variable
theories collide with quantum mechanics, but at that time the
EPR argument reinforced the resistence of Einstein (and many
others) toward accepting quantum mechanics as a final theory.

Costantino Budroni et al.: Kochen-Specker contextuality

Rev. Mod. Phys., Vol. 94, No. 4, October–December 2022 045007-52



Meanwhile, von Neumann observed that the two-valued
observables, represented in quantum mechanics by projection
operators, constitute a sort of “logic” of experimental prop-
ositions and, together with Birkhoff (Birkhoff and von
Neumann, 1936), developed a “quantum logic,” a set of
algebraic rules governing operations to combine, and pred-
icates to relate propositions associated with physical events.
This logic would eventually provide a new basis for discussing
the problem of hidden variables.
In 1952, Bohm (1952a, 1952b) presented a hidden-variable

theory that is a further elaboration of de Broglie’s theory of
1927. Bohm’s theory is deterministic and explicitly nonlocal
at the level of hidden variables.
In parallel, Mackey (1957) asked whether every measure on

the lattice of projections of a Hilbert space can be defined by a
positive operator with unit trace. A positive answer would
show that the Born rule follows from a particular set of
axioms (framing a generalized probability theory) for quan-
tum mechanics (Mackey, 1957, 1963). Although Kadison
(Chernoff, 2009) [and later Bell (1966) and Kochen and
Specker (1967)] proved that this was false for two-
dimensional Hilbert spaces, Gleason (1957) showed it to be
true for higher dimensions. Gleason’s theorem is going to play
a crucial role in the discussion of hidden variables. Mackey’s
program (Mackey, 1957) was further developed in several
directions by Ludwig (1964, 1967, 1968, 1972), Piron (1964,
1976), Randall and Foulis (1970, 1973), and Foulis and
Randall (1972, 1974). All these works provided the basis
of what is now called the framework of generalized probabi-
listic theories; see Hardy (2001) and Chiribella, D’Ariano, and
Perinotti (2010), which views quantum probability theory as
one possibility in a landscape of probability theories and asks
what is special about it.

2. The Kochen-Specker theorem

Specker (1960), a mathematician with theological concerns
who was inspired by “the question whether the omniscience
of God also extends to events that would have occurred in case
something would have happened that did not happen”
(Specker, 1960) and by the logic of Birkhoff and von
Neumann, reformulated the question of hidden variables
as follows: “Is it possible to extend the description of a
quantum mechanical system through the introduction of
supplementary—fictitious—propositions in such a way that
in the extended domain the classical propositional logic
holds?” Specker found that “the answer to this question is
negative, except in the case of Hilbert spaces of dimension
1 and 2” as “an elementary geometrical argument shows”
(Specker, 1960) [quotation taken from the English translation
of Seevinck (2011)].
In fact, according to Specker (Meon, 1990), “the basic

theorem of the paper was proved shortly [after a seminar on
the foundations of quantum theory],” a seminar that probably
took place during the summer semester of 1948; see Enz,
Glaus, and Oberkofler (1997). The geometrical argument was
not fully presented until the collaborative paper of 1967 with
Kochen (Kochen and Specker, 1967), although the funda-
mental building block for it was discussed by Kochen and
Specker (1965b) (Fig. 1); see also Kochen and Specker

(1965a). The KS theorem shows the incompatibility between
some predictions of quantum mechanics and a type of hidden
variables that later came to be called noncontextual.
In 1963 (although it was not published until 1966), Bell

developed a similar geometrical argument but one using a
more complex building block (Bell, 1966). Bell also used an
infinite set of quantum observables. In contrast, Kochen and
Specker managed to prove their theorem using 117 observ-
ables by concatenating their building block 15 times. In his
paper, Bell seemed to have found this geometrical argument
after Jauch draw his attention to the consequences of
Gleason’s theorem to the problem of hidden variables
(Bell, 1966). In fact, Bell later referred to this proof as
“observed by Jauch” (Bell, 1971) and “subsequently set out by
S. Kochen and E. P. Specker” (Bell, 1971), and even later Bell
wrote that he “was told of it by J. M. Jauch in 1963” (Bell,
1982) and that “the idea was later rediscovered by Kochen and
Specker” (Bell, 1982). As we pointed out, the idea was already
in print in 1960.
Notably, Bell was not convinced that the proof was

compelling. His source of discomfort was the observation
that measuring the same observable in different contexts
“require[s] different experimental arrangements; [and thus]
there is no a priori reason to believe that the results… should
be the same” (Bell, 1966). Bell added, “The result of
observation may reasonably depend not only on the state
of the system (including hidden variables) but also on the
complete disposition of the apparatus” (Bell, 1966). Both
Kochen and Specker (1967) and (Bell (1966) seemed to
believe that the only way to measure the same observable in
two contexts is by measuring two maximal (and incompatible)
quantum observables, one for each context. They did not
consider the possibility, also offered by quantum mechanics,
of measuring each observable using the same apparatus such
that in each context one measures sequentially the observables
of the context, as is done in modern sequential contextuality
experiments (Kirchmair et al., 2009).
In addition, Bell noticed the nonlocality in Bohm’s theory

of 1952 [he writes, “[I]n this theory an explicitly causal
mechanism exists whereby the disposition of one piece of
apparatus affects the results obtained with a distant piece”
(Bell, 1966)] and how this is an unwanted feature, as it solves
the EPR paradox “in the way Einstein would have liked least”
(Bell, 1966). Finally, Bell pointed out that “there is no proof
that any hidden variable account of quantum mechanics
must have this extraordinary character. It would therefore
be interesting… to pursue some further ‘impossibility proofs,’
replacing the arbitrary axioms objected to above by some
condition of locality, or separability, of distant systems” (Bell,
1966). This led to Bell’s famous proof of impossibility of
“local” hidden variables (Bell, 1964).

3. The origin of the word contextuality

The term contextuality in association with quantum
mechanics derives (Shimony, 2009; Jaeger, 2019) from the
term introduced by Shimony (Shimony, 1971) to designate the
hidden-variable theories “in which the value of an observable
O is allowed to depend not only upon the hidden state λ, but
also upon the set C of compatible observables measured along
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with O” (Shimony, 1971). Shimony called them “contextual-
istic” hidden-variable theories. The shortening to “contextual”
was made by Beltrametti and Cassinelli (1981) and then
adopted by Shimony and others. In the 1990s, “Contextuality”
became the title of a chapter of Peres’s influential book on
quantum theory (Peres, 1993).

4. The relation between the KS and Bell’s theorems and the need
for a theory-independent notion of noncontextuality

While Bell’s theorem gained prominence among physicists
and the general public after the experiments of Freedman and
Clauser (1972), Clauser (1976a, 1976b), Aspect, Dalibard,
and Roger (1982), and others and its applications to cryp-
tography (Ekert, 1991) and quantum information, the KS
theorem was for a long time a subject that interested primarily
philosophers of science and a few physicists concerned about
the foundations of quantum mechanics.
The situation began to change in the 1990s. On the one

hand, Peres (1990, 1991, 1992, 1993) and Mermin (1990b,
1993) simplified the proof of the KS theorem using a small
number of two- and three-qubit observables, making the KS
theorem accessible to a wider audience. On the other hand,
Mermin’s Bell inequality (Mermin, 1990a) and his “unified
form for the major no-hidden-variables theorems” (Mermin,
1990b, 1993) connected the proof of Greenberger, Horne, and
Zeilinger (1989) to the Bell inequalities and the KS theorem,
respectively. Similar connections between the Bell and KS
theorems had been found before by Kochen in a private
communication with Shimony (Heywood and Redhead, 1983;
Stairs, 1983), Stairs (1983), to whom Mermin acknowledges
input (Mermin, 1993), and Heywood and Redhead (1983); see
also Brown and Svetlichny (1990).
There was still something that blocked unification of the KS

theorem and Bell’s theorem of impossibility of local hidden-
variable theories. While Bell’s theorem leads to experimental
tests of whether the world can be explained with theories that
can be defined without any reference to quantum mechanics,
the KS theorem is deeply attached to quantum mechanics.
This attachment is triple.
First, the KS theorem does not refer to general measure-

ments, but to those that are represented in quantum mechanics
by the spectral projectors of a self-adjoint operator. What
does this restriction mean from a theory-independent point of
view? Moreover, in quantum mechanics there are measure-
ments that are not represented by projective measurements but
by POVMs.
Second, the proof of the KS theorem includes constraints

that are specific to quantum systems. Examples of these
constraints are that the values of the squared spin components
of spin-1 particles for any orthogonal triad fx; y; zg should
satisfy the equation vðS2xÞ þ vðS2yÞ þ vðS2zÞ ¼ 2 (Kochen and
Specker, 1967) and that the values for the Pauli observables
of two spin-1=2 particles should satisfy the equation

vðσð1Þx Þvðσð2Þx Þvðσð1Þx ⊗σð2Þx Þ¼1 (Mermin, 1990b; Peres,
1990). Third, the experimental translation of the KS theorem
(as proposed by KS and Bell) assumes quantum mechanics, as
it is assumed that coarse grainings of two different (and
incompatible) measurements represent the same observable

based on the fact that in quantum mechanics both yield the
same outcome statistics.
Therefore, the problem was how to translate the KS

theorem into experimental tests of contextuality in nature
(Cabello and García-Alcaine, 1998). For that, what was
needed was a theory-independent notion of contextuality that
removes all the quantum constraints, includes a theory-
independent definition of the type of measurements for which
the assumption of outcome noncontextuality is made (similar
to Bell’s theorem’s focus on local measurements), of the sets
of measurements (contexts) whose correlations are considered
(similar to Bell’s theorem’s focus on spatially separated local
measurements), and a physical motivation for assuming out-
come noncontextuality for these measurements and contexts
(that plays the same role as the impossibility of communica-
tion between spacelike separated events in Bell’s theorem).
Nevertheless, the lack of such a formal framework did

not impede experimental progress and the first “experiments
towards falsification of noncontextual hidden variable
theories” on single systems (Michler, Weinfurter, and
Żukowski, 2000), which took advantage of the analogy
between two two-dimensional separated subsystems and 2
dichotomic degrees of freedom of a single photon and tested
the violation of the single-particle equivalent of the Clauser-
Horne-Shimony-Holt extension of the Bell inequality
(Clauser et al., 1969); see also Hasegawa et al. (2003)
for a similar experiment with neutrons.
However, it was the criticisms of Kent (1999), Meyer

(1999), and Clifton and Kent (2000) toward the idea of giving
the KS theorem a similar experimental status as Bell’s theorem
(Cabello and García-Alcaine, 1998) that gave a definitive push
to the transformation of contextuality into an experimentally
testable property with no reference to quantum mechanics.
These criticisms boosted vivid discussions (Leggett and Garg,
1985; Cabello, 1999, 2002; Mermin, 1999; Appleby, 2000,
2001, 2002, 2005; Havlicek et al., 2001; Barrett and Kent,
2004) and stimulated new developments. On the one hand,
they stimulated the attempt to obtain experimentally testable
“KS inequalities” (Simon, Brukner, and Zeilinger, 2001;
Larsson, 2002). However, these first inequalities still made
assumptions that hold only in quantum mechanics.
On the other hand, they stimulated a new notion of

noncontextuality (Spekkens, 2005). This notion implicitly
assumes that the hidden variables (or ontological models)
merely provide a classical description of the same operations
as those allowed in quantum mechanics, without any pos-
sibility of predictions deviating from those of quantum
mechanics, or even redundancy in the description, i.e., a
different description at the level of the formalism for physi-
cally equivalent situations, as happens for gauge symmetries.

5. Noncontextuality for ideal measurements

The final boost for a general theory-independent framework
for contextuality rooted in the notion of noncontextuality used
by KS (but free of the assumptions that hold only in quantum
mechanics) was the discovery of the quantum violation of the
KCBS inequality (Klyachko et al., 2008) by single qutrits in a
specific quantum state, followed by the discovery of similar
inequalities that are violated by any quantum state (of a
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given dimension) (Cabello, 2008; Badziąg et al., 2009).
Unlike previous inequalities, the bounds of these inequalities
are derived only from the assumption of outcome noncon-
textuality, without extra constraints inspired by quantum
mechanics.
The KCBS inequality was introduced in an earlier paper

(Klyachko, 2007) as a way of showing that single spin-1
particles can exhibit a form of “single-particle entanglement,”
defined as maximal uncertainty of a set of observables
associated with a Lie algebra. This led to the following
question: For what type of measurements and contexts is there
an “a priori reason to believe that the results for should be the
same” (Bell, 1966)? One possible answer is, for those mea-
surements that yield the same result when performed repeatedly
on the same physical system and do not produce any change in
the outcomes of any jointly measurable observable, and for
contexts made of compatible sets of them. These measurements
are called ideal (Cabello, 2019b) or sharp (Chiribella and Yuan,
2016). Intuitively, ideal measurements reveal preexisting con-
text-independent “properties” of the measured system that are
preserved after the act of measuring. However, in general, this
may not be the case.
The focus on contexts made of compatible ideal measure-

ments allows us to formulate a notion of contextuality in the
operational framework of generalized probabilistic theories
without any reference to quantum mechanics. This theory-
independent notion of contextuality is referred to as con-
textuality for ideal measurements or KS contextuality, as it is
inspired by the work of Kochen and Specker. This notion
allows us to replace or remove the two assumptions of the KS
theorem that refer to quantum mechanics. Namely, (I) that
measurements represented in quantum theory by self-adjoint
operators reveal preexisting values that are independent of the
“context,” where context meant set of measurements repre-
sented by mutually commuting self-adjoint operators, and
(II) that measurement outcomes must satisfy the same func-
tional relations that quantum mechanics predicts for commut-
ing measurements on quantum systems of a given dimension.
Instead of that, in KS contextuality (I) is replaced by the
assumption of outcome noncontextuality for ideal measure-
ments and (II) is completely removed. Notably, the new
notion provides a basis for experimentally testing KS con-
textuality in nature.

6. The hidden history of noncontextuality inequalities

The mathematical tools needed for studying contextuality
were developed independently of physics and long before
quantum mechanics. We call a contextuality scenario a set of
abstract ideal measurements, each of them having a number
of possible outcomes, and their relations of compatibility.
For example, the scenario considered by KCBS (Klyachko
et al., 2008) has five measurements Mi, i ¼ 0;…; 4, each of
which has two possible outcomes and such that Mi andMiþ1

(with the sum modulo 5) are compatible. Therefore, in the
KCBS contextuality scenario there are five contexts. For
each contextuality scenario, a “matrix of correlation,”
“behavior,” or simply “correlation” is a set of probabilities
for all possible combination of outcomes in each of the
contexts. One obtains one of these correlations using a

specific initial state and measurements. Probabilities have
to satisfy the corresponding normalization and nondisturb-
ance (or nonsignaling) constraints.
Like what happens in Bell scenarios (Froissart, 1981;

Suppes and Zanotti, 1981; Fine, 1982a, 1982b; Garg and
Mermin, 1984; Pitowsky, 1986, 1989, 1991), in any KS
scenario the set of correlations satisfying outcome noncon-
textuality is a polytope. Here it is called the noncontextual
polytope of the scenario. Correlations outside this set are
contextual and violate one of the linear inequalities (in the
probabilities) that define the facets of the noncontextuality
polytope. Each of these facets corresponds to an inequality
that is necessary for noncontextuality and is called a tight
noncontextuality inequality. These inequalities were intro-
duced long before quantum mechanics.
In 1990, during a symposium in Jerusalem and Tel Aviv

coincidentally entitled “Einstein in context,” Pitowsky dis-
tributed among the participants a draft [later published
(Pitowsky, 1994)] where he pointed out that Boole (1862),
one of the fathers of modern logic, had developed a set of
equalities and inequalities he called “conditions of possible
experience” (Boole, 1862) and that the Bell inequalities
violated by quantum mechanics were a subset of them.
This observation leads to the following questions: (i) Which

of Boole’s inequalities can be violated? (ii) What is the largest
set of correlations possible for a given scenario? (iii) How
does this set compare to the one in quantum theory?
Answering these questions would have helped to answer
the central question that Pitowsky asked: “WHY is [it] that
microphysical phenomena and classical phenomena differ in
the way they do?” (Pitowsky, 1994).
The answer to question (i) was known in the 1960s. A

theorem introduced by Vorob’ev (1959, 1962, 1967) showed
that a violation of Boole’s inequalities can occur only for
scenarios in which the graph of compatibility contains an
induced cyclic path with a size larger than 3 (i.e., following the
path along some edges of the graph one obtains a square, a
pentagon, a hexagon, etc.). The graph of compatibility is the
one in which compatible measurements are represented by
adjacent vertices. Otherwise, there is always a joint probability
distribution, and therefore a noncontextual model. Bell
inequalities violated by quantum mechanics correspond to
scenarios with this property.
The CHSH scenario (Clauser et al., 1970), with four

dichotomic measurements whose graph of compatibility is
a square, is therefore the one with the smallest number of ideal
measurements that allow for contextual correlations. In fact,
the CHSH inequality is the only nontrivial tight noncontex-
tuality inequality for the CHSH scenario (Fine, 1982a, 1982b).
Both Bell (1966) and Kochen and Specker (1967) noticed

that the statistics of ideal measurements on a two-dimensional
quantum system (or qubit) can be reproduced with non-
contextual models. Therefore, interesting questions are as
follows: In which scenario does a three-dimensional quantum
system (or qutrit) violate noncontextuality inequalities with
ideal measurements? What are these inequalities? The answer
to the first question is the KCBS scenario (Klyachko et al.,
2008). The KCBS inquality is the only tight noncontextuality
inequality for the KCBS scenario (Araújo et al., 2013). The
KCBS scenario, which was previously considered in some
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papers on quantum logic (Gerelle, Greechie, and Miller, 1974;
Wright, 1978), is also the scenario with the smallest number of
ideal measurements whose relations of compatibility (and
incompatibility) cannot occur in a Bell scenario. All these
features made the KCBS inequality a key to the world of KS
contextuality.
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Zaragoza, Spain), pp. 3–9.

Gao, X., E. R. Anschuetz, S.-T. Wang, J. I. Cirac, and M. D. Lukin,
2022, Phys. Rev. X 12, 021037.

Garey, M. R., and D. S. Johnson, 2002, Computers and Intractability,
Series of Books in the Mathematical Sciences Vol. 29 (W. H.
Freeman, New York).

Garg, A., and N. D. Mermin, 1984, Found. Phys. 14, 1.
Gerelle, E. R., R. J. Greechie, and F. R. Miller, 1974, in Physical
Reality & Mathematical Description, edited by C. P. Enz and J.
Mehra (Reidel, Dordrecht), pp. 169–192.

Ghorai, S., and A. K. Pan, 2018, Phys. Rev. A 98, 032110.
Gibbons, K. S., M. J. Hoffman, andW. K. Wootters, 2004, Phys. Rev.
A 70, 062101.

Gill, R. D., and M. Keane, 1996, J. Phys. A 29, L289.
Gleason, A. M., 1957, J. Math. Mech. 6, 885.
Godsil, C. D., and J. Zaks, 1988, University of Waterloo Research
Report No. CORR 88-12 [arXiv:1201.0486].

Costantino Budroni et al.: Kochen-Specker contextuality

Rev. Mod. Phys., Vol. 94, No. 4, October–December 2022 045007-58

https://doi.org/10.1016/j.physleta.2010.10.061
https://doi.org/10.1103/PhysRevA.98.012106
https://doi.org/10.1103/PhysRevA.98.012106
https://arXiv.org/abs/1010.2163
https://doi.org/10.1103/PhysRevLett.112.040401
https://doi.org/10.1103/PhysRevLett.112.040401
https://doi.org/10.4204/EPTCS.236
https://doi.org/10.4204/EPTCS.236
https://doi.org/10.1103/PhysRevLett.94.220403
https://doi.org/10.1103/PhysRevLett.94.220403
https://doi.org/10.1088/1367-2630/18/4/045003
https://doi.org/10.1088/1367-2630/18/4/045003
https://arXiv.org/abs/2010.05853
https://doi.org/10.1103/PhysRevA.87.022102
https://doi.org/10.1103/PhysRevA.85.032113
https://doi.org/10.1088/1367-2630/16/4/043001
https://doi.org/10.1103/PhysRevLett.90.160408
https://www.ams.org/notices/200910/rtx091001236p.pdf
https://www.ams.org/notices/200910/rtx091001236p.pdf
https://www.ams.org/notices/200910/rtx091001236p.pdf
https://www.ams.org/notices/200910/rtx091001236p.pdf
https://www.ams.org/notices/200910/rtx091001236p.pdf
https://doi.org/10.1103/PhysRevResearch.2.042001
https://doi.org/10.1103/PhysRevA.81.062348
https://doi.org/10.1103/PhysRevA.81.062348
https://arXiv.org/abs/1404.3348
https://doi.org/10.1016/j.ic.2016.02.006
http://porta.zib.de/
http://porta.zib.de/
http://porta.zib.de/
https://doi.org/10.1103/PhysRevLett.95.240405
https://doi.org/10.1007/BF00417500
https://doi.org/10.1103/PhysRevLett.36.1223
https://doi.org/10.1007/BF02723902
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.24.549
https://doi.org/10.1103/PhysRevLett.24.549
https://doi.org/10.1119/1.17239
https://doi.org/10.1098/rspa.2000.0604
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1016/j.ic.2016.02.008
https://arXiv.org/abs/0911.3814
https://arXiv.org/abs/0911.3814
https://doi.org/10.1007/s10701-006-9068-6
https://www.ams.org/notices/200902/rtx090200226p.pdf
https://www.ams.org/notices/200902/rtx090200226p.pdf
https://www.ams.org/notices/200902/rtx090200226p.pdf
https://www.ams.org/notices/200902/rtx090200226p.pdf
https://doi.org/10.1006/aphy.2002.6236
https://doi.org/10.1006/aphy.2002.6236
https://doi.org/10.1016/0167-2789(94)90273-9
https://doi.org/10.1103/PhysRevLett.104.230503
https://doi.org/10.1103/PhysRevLett.104.230503
https://doi.org/10.1109/TIT.2011.2159047
https://doi.org/10.1109/TIT.2011.2159047
https://doi.org/10.1103/PhysRevX.5.021003
https://doi.org/10.1088/1367-2630/aa8fe3
https://doi.org/10.1007/BF01909936
https://doi.org/10.1007/BF01909936
https://doi.org/10.1016/j.laa.2015.05.002
https://arXiv.org/abs/2007.03450
https://doi.org/10.5169/seals-116747
https://doi.org/10.5169/seals-116747
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1007/BF01883493
https://doi.org/10.1007/BF00666014
https://doi.org/10.1016/0375-9601(92)90123-4
https://doi.org/10.1016/0375-9601(92)90952-I
https://doi.org/10.1016/0375-9601(92)90952-I
https://doi.org/10.1088/0034-4885/77/1/016001
https://doi.org/10.1088/0034-4885/77/1/016001
https://arXiv.org/abs/2007.15643
https://arXiv.org/abs/2007.15643
https://doi.org/10.1088/1751-8121/aa7ab3
https://doi.org/10.1103/PhysRevLett.48.291
https://doi.org/10.1063/1.525514
https://doi.org/10.1007/BF00738375
https://doi.org/10.1063/1.1665890
https://doi.org/10.1007/BF00484953
https://doi.org/10.1103/PhysRevLett.28.938
https://doi.org/10.1088/1367-2630/aae3ad
https://doi.org/10.1088/1367-2630/aae3ad
https://doi.org/10.1142/S0129055X12500122
https://doi.org/10.1109/TIT.2012.2222863
https://doi.org/10.1038/ncomms3263
https://doi.org/10.1007/BF02903286
https://doi.org/10.1103/PhysRevLett.116.250404
https://arXiv.org/abs/quant-ph/0205039
https://people.inf.ethz.ch/fukudak/cdd_home/
https://people.inf.ethz.ch/fukudak/cdd_home/
https://people.inf.ethz.ch/fukudak/cdd_home/
https://people.inf.ethz.ch/fukudak/cdd_home/
https://doi.org/10.1103/PhysRevX.12.021037
https://doi.org/10.1007/BF00741645
https://doi.org/10.1103/PhysRevA.98.032110
https://doi.org/10.1103/PhysRevA.70.062101
https://doi.org/10.1103/PhysRevA.70.062101
https://doi.org/10.1088/0305-4470/29/12/001
https://doi.org/10.1512/iumj.1957.6.56050
https://arXiv.org/abs/1201.0486


Gottesman, D., 1997, Ph.D. thesis (California Institute of
Technology) [arXiv:quant-ph/9705052].

Gould, E., and P. K. Aravind, 2010, Found. Phys. 40, 1096.
Grangier, P., 2021, Entropy 23, 1660.
Greechie, R. J., 1971, J. Comb. Theory Ser. A 10, 119.
Greenberger, D. M., M. A. Horne, and A. Zeilinger, 1989, in Bell’s
Theorem, Quantum Theory and Conceptions of the Universe,
Fundamental Theories of Physics Vol. 37, edited by M. Kafatos
(Springer, New York), pp. 69–72.

Griffiths, R. B., 2017, Phys. Rev. A 96, 032110.
Griffiths, R. B., 2019, Phil. Trans. R. Soc. A 377, 20190033.
Griffiths, R. B., 2020, Phys. Rev. A 101, 022117.
Gross, D., 2006, J. Math. Phys. (N.Y.) 47, 122107.
Grötschel, M., L. Lovász, and A. Schrijver, 1993, Geometric
Algorithms and Combinatorial Optimization, Algorithms and
Combinatorics Vol. 2 (Springer-Verlag, Berlin).

Grudka, A., K. Horodecki, M. Horodecki, P. Horodecki, R.
Horodecki, P. Joshi, W. Kłobus, and A. Wójcik, 2014, Phys.
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