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Nanomechanics has brought mesoscopic physics into the world of vibrations. Because nano-
mechanical systems are small, fluctuations are significant, the vibrations already become nonlinear
for comparatively small amplitudes, and new mechanisms of dissipation come into play. At the same
time, the exquisite control of these systems makes them a platform for studying many problems of
classical and quantum physics far from thermal equilibrium in a well-characterized setting. This
review describes, at a conceptual level, basic theoretical ideas and explicative experiments pertaining
to mesoscopic physics of nanomechanical systems. Major applications of nanomechanics in science
and technology are also outlined. A broad range of phenomena related to the conservative as well as
dissipative nonlinearity and fluctuations are discussed within a unifying framework. They include the
linear response of single and coupled vibrational modes as well as nonlinear effects of periodic
driving. Such driving breaks the continuous time-translation symmetry and the detailed balance, with
conspicuous consequences for fluctuations, particularly in the presence of the driving-induced
bistability and multistability. Mathematical techniques are described in the appendixes to provide an
introduction to the theory. The goal of the review is to show the richness of the physics at work. The
continuous experimental and theoretical advances make nanomechanical systems a vibrant area of
research with many new phenomena to discover.
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I. INTRODUCTION

Studying vibrational motion has been one of the major areas
of physics at least since the time of Galileo. The advent of
nanomechanical vibrational systems (NVSs) has opened a
new direction in these studies. NVSs are resonators for
mechanical vibrations. As an example, one can consider a
string of a musical instrument downscaled to a diameter
≲100 nm and a submicron length. The vibration frequencies

range from kilohertz to gigahertz and can be tuned not
only through the dimensions and the shape of a device
but also in situ by electrostatic and optical means. In addi-
tion, the lifetime of vibrations has now been increased to
hundreds of seconds and more thanks to progress in
nanofabrication.
By their nature NVSs are mesoscopic. Because they are

small, they display many features of microscopic systems. At
the same time, they are sufficiently large to enable studying an
individual vibrational system rather than resorting to ensemble
measurements, as in conventional molecular or solid-state
vibrational spectroscopy.
NVSs were developed in the 1990s (Travis, 1994; Cleland

and Roukes, 1996, 1998) and quickly attracted interest. Their
vibrational eigenmodes display a rich dynamics that involves
a broad range of many-body effects stemming from the
coupling to electrons, propagating phonons, photons, and
two-level fluctuators. They are also of significant interest for
various applications that range from ultrasensitive mass,
charge, and force detection to clocks. For example, the
adsorption of mass onto a NVS can be detected with a
resolution approaching 1 yg, while a force can be resolved
with a sensitivity approaching 1 zN=Hz1=2. Over the years
different aspects of the studies of NVSs along with their
applications have been reviewed in a number of works
(Cleland, 2003; Ekinci and Roukes, 2005; Lifshitz and
Cross, 2008; Poot and Zant, 2012; Aspelmeyer,
Kippenberg, and Marquardt, 2014b; Schmid, Villanueva,
and Roukes, 2016; Steeneken et al., 2021).
In this review, we focus on the mesoscopic physics of NVSs,

including dissipation, fluctuations, and nonlinear and far from
thermal equilibrium phenomena in these systems. While these
basic physical phenomena have been intensely investigated
during the last few years, they have not yet been reviewed from
a general perspective. Our aim is to provide a coherent and
unifying description of the underlying concepts along with the
experimental and theoretical results and to put them into a
broad physics context. Details of the mathematical techniques
are provided in the appendixes.
We describe the dissipation and thermal fluctuations of

nanomechanical vibrations as resulting from the coupling to
a thermal reservoir of a general form. Such a description
applies to both flexural and localized compression- and
shear-type modes. It allows us to analyze various specific
dissipation mechanisms. They include the Landau-Rumer,
Akhiezer, and thermoelastic relaxation due to scattering by
propagating phonons and the phonon-induced clamping
losses, as well as relaxation associated with the electrons
in the nanoresonators and the leads and with the two-level
systems.
A consequence of the small size of NVSs expected from the

general arguments of statistical physics is the occurrence of
comparatively strong quantum and classical fluctuations. These
fluctuations play a significant role in the vibration dynamics.
Another important aspect of the dynamics is the vibration
nonlinearity. Because of the small system size, vibrations
with even comparatively small amplitudes become nonlinear.
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Not only does the restoring force display nonlinearity, but also
the rate of dissipative losses becomes amplitude dependent, a
phenomenon associated with nonlinear friction.
The exquisite control of the NVSs and their versatility make

them invaluable as a tool for studying the interplay of
nonlinearity and fluctuations. This interplay leads to a broad
range of phenomena that manifest themselves in different
settings, in both the classical and quantum domains. Revealing
and understanding them is an ongoing effort. We describe
several of these phenomena studied with the NVSs, including
the nondissipative broadening of the vibration spectra, non-
linear intermode energy exchange, and self-modulation and
cross modulation of the vibration frequencies.
We also describe how the nonlinearitymakesNVSvibrations

a testing ground for exploring nonequilibrium phenomena.
Several general types of such phenomena emerge where the
vibrations are driven by a resonant field. Because the decay rates
of the vibrations are usually small, even a weak field can lead to
a significantly nonequilibrium behavior, such as the occurrence
of bistability and multistability or chaos. Of particular interest,
which goes beyond NVSs as such, are fluctuation effects away
from thermal equilibrium. They range from noise-induced
switching between coexisting metastable vibrational states to
fluctuation squeezing. Since, on the one hand, driven nonlinear
vibrations lack detailed balance while, on the other hand, the
vibrations of NVSs are well characterized, these vibrations
provide a unique opportunity for addressing many generic
problems of quantum and classical statistical physics far from
thermal equilibrium.

II. NANORESONATORS AT A GLANCE

A. Phenomenological description of the dynamics of a linear
nanoresonator

We describe the dynamics of a NVS mode in terms of the
coordinate q and momentum p of an oscillator. The mechani-
cal displacement in the mode uðr; tÞ as a function of the
coordinate r has a spatial profile φðrÞ, whereas qðtÞ describes
how the displacement varies in time,

uðr; tÞ ¼ qðtÞφðrÞ;
Z

φ2ðrÞdr ¼ V; ð1Þ

where V is the volume of the resonator. The momentum
of the oscillator is p ¼ M _q, where M is the oscillator
mass, and M ¼ R

ρðrÞφ2ðrÞdr [ρðrÞ is the mass density].
Functions φðrÞ for different modes are orthogonal. We note
that in the analysis of the experimental data a different
normalization is sometimes used, i.e., max jφðrÞj ¼ 1. With
this normalization, the maximal value of qðtÞ is the dis-
placement amplitude.
The simplest theoretical model employed in the study of

nanomechanical modes is a classical harmonic oscillator that
performs Brownian motion (Risken, 1996), with a friction
force proportional to the velocity and with fluctuations due to
thermal noise. The noise is assumed to be Gaussian and δ
correlated in time. If the oscillator coordinate is q and the mass
is M, the motion is described by the Langevin equation

Mq̈þ 2MΓ _qþMω2
0q ¼ fTðtÞ;

hfTðtÞfTðt0Þi ¼ 4MΓkBTδðt − t0Þ: ð2Þ

In Eq. (2) ω0 is the mode eigenfrequency and Γ is the friction
coefficient, which determines the decay rate of the vibrations
in the absence of noise.
Without noise, the model of a damped oscillator has been

long used in physics; for example, it was used by Lorentz in
1878 to describe the polarizability of matter. Later it was
realized that with friction there comes noise. Both result from
the coupling of the oscillator to a thermal reservoir (thermal
bath); see Fig. 1. A microscopic analysis was started by
Einstein and Hopf (1910). A detailed classical study
was performed by Bogolyubov (1945), whereas the studies
of the quantum dynamics were started in the late 1950s–early
1960s; see Toda (1958), Krivoglaz (1961), Senitzky (1961),
Schwinger (1961), Ford, Kac, and Mazur (1965), Ullersma
(1966), and Louisell (1990). More references can be found in
the paper by Ford, Lewis, and O’Connell (1988). Many of
these papers used a model in which the thermal bath was
described by a set of harmonic oscillators and the coupling to
the considered oscillator was linear in q. Over the years, such
a model of the bath, often called a “bosonic bath,” has been
one of the most frequently used in the study of quantum
relaxation; cf. Feynman and Vernon (1963), Caldeira and
Leggett (1981), and Grabert, Schramm, and Ingold (1988).
NVSs are one of the best examples of systems where

dissipation described by the linear in q coupling to a bosonic
bath can play an important role. In this case, the bath is often
formed by phonons in the resonator and in its support.
Different mechanisms of the phonon-induced dissipation,

(a)

(b)

(c)

FIG. 1. (a) Mechanical oscillator coupled to a thermal bath. The
coupling is quantified by the rate Γ for an oscillator quantum to be
transferred into the bath. The parameter Γ enters both the friction
force and the noise intensity in Eq. (2). (b),(c) Time evolution of
the displacement and the momentum of the oscillator performing
Brownian motion. The characteristic correlation time of the
amplitude fluctuations is given by 1=Γ. One can measure Γ
using the spectral density of the displacement fluctuations: Γ is
the half width at half maximum of the spectral peak; see Eq. (5).
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such as clamping losses and thermoelastic, Landau-Rumer,
and Akhiezer dissipation, are discussed in Sec. V.A. Nonlinear
in q coupling to a bosonic bath can also play a major role in
the NVS dynamics.
The most common way of characterizing the dynamics of

NVSs is based on measuring either the spectral density of
fluctuations of the displacement,

SðωÞ ¼
Z

∞

−∞
dthqðtÞqð0Þi expðiωtÞ; ð3Þ

or the susceptibility χðωÞ, which characterizes the response to
an external force at frequency ω. It is defined by the relation
between the force-induced displacement δqðtÞ and the force
F expð−iωtÞ added to the right-hand side of Eq. (2) as

hδqðtÞi ¼ χðωÞF expð−iωtÞ: ð4Þ

The absolute value and the argument of hδqðtÞi define the
amplitude and the phase of the response.
The susceptibility and the spectral density of fluctuations

are related by the fluctuation-dissipation theorem (see
Sec. IV), with Im χðωÞ ¼ ðω=kBTÞSðωÞ in the classical limit.
In addition, the real and imaginary parts of the susceptibility
ReχðωÞ and Im χðωÞ are related by the Kramers-Kronig
relation (Landau and Lifshitz, 1980); ReχðωÞ and Im χðωÞ
determine, respectively, the in-phase and out-of-phase com-
ponents of the force-induced displacement, whereas jχðωÞj
determines the displacement amplitude.
Of particular interest for NVSs is the situation where the

oscillator decay rate Γ is small compared to the eigenfre-
quency ω0. In this case both SðωÞ and Im χðωÞ have sharp
resonant peaks at frequency ω0. From Eq. (2) we find that near
ω0 both functions have a Lorentzian peak,

SðωÞ ¼ kBT
Mω2

0

Γ
Γ2 þ ðω − ω0Þ2

;

χðωÞ ¼ i
2Mω0

½Γ − iðω − ω0Þ�−1; jω − ω0j ≪ ω0: ð5Þ

Measuring the position and the half-width of the peak of SðωÞ
and/or Im χðωÞ is commonly used to determine ω0 and Γ. It
thus enables finding the quality factor Q, which characterizes
the energy relaxation and is conventionally defined as the ratio
of the stored vibrational energy to the energy dissipated per
cycle multiplied by 2π,

Q ¼ 2π
stored energy

dissipated energy per cycle
→

ω0

2Γ
: ð6Þ

Equation (6) is independent of the vibration amplitude for a
linear mode.
A central role in the dynamics of NVS modes is played by

the fluctuations of the mode eigenfrequencies. Such fluctua-
tions can arise from the fluctuations of the resonator mass due
to attachment or detachment of molecules, fluctuations of
the spring constant due to charge and voltage fluctuations in
the system, or the interplay of the thermal fluctuations of the
amplitude and the vibration nonlinearities. These frequency

fluctuations increase the half-width of the spectral peak of
SðωÞ and Im χðωÞ and, in general, can change the shape of the
spectrum. Therefore, it is convenient to introduce an effective
quality factor

Qω ¼ ω0=2Δω: ð7Þ

The parameter Δω takes into account frequency fluctuations
and replaces the decay rate Γ in the standard expression (6).
We employ two different symbolsQ andQω to emphasize this
difference. The factor Qω does not describe energy relaxation
but refers to the results of spectroscopic measurements. To
draw a parallel to the description of the spin or qubit
relaxation, we note that 2Γ corresponds to 1=T1, whereas
Δω is an analog of 1=T2 in those systems. The physics behind
frequency fluctuations in nanomechanics is fairly different
and is discussed at length in the review. However, in this
section we do not separate the spectral broadening mecha-
nisms and setQ ¼ Qω. In Tables I–III we provide the reported
values of the quality factor in several types of nanomechanical
systems.

B. Most common types of nanomechanical resonators

The first practical nanomechanical system was based
on a silicon nanobeam (Cleland and Roukes, 1996, 1998).
Since then a variety of nanomechanical resonators have been
explored. Tables I and II summarize the characteristics of
resonators based on low-dimensional materials, such as
carbon nanotubes, semiconductor nanowires, graphene, semi-
conductor layered membranes, and levitating particles.
Table III summarizes those of resonators nanofabricated from
bulk material using the top-down approach. In many of these
examples the vibrational modes correspond to bending
(flexural) modes of the resonator, a microscopic analog of
the vibrations of a string or a membrane. Carbon nanotubes
are the narrowest resonators: their diameters typically range
from 1 to 3 nm. Graphene and semiconductor monolayers are
the thinnest membranes, as they are atomically thin. Other
types of vibrational modes have been investigated, such as
torsional modes in mechanically based torque resonators
(Hauer et al., 2013), the bulk Lamé modes in micromechanical
resonators (Chandorkar et al., 2008) and layered nanomaterial
resonators (Zalalutdinov et al., 2021), and the localized modes
in optomechanical crystals; see Eichenfield et al. (2009),
MacCabe et al. (2020), and references therein.
Advances in fabrication have led to a steady improvement

of the quality factor of the NVSs. Optimizing the surface of
resonators turned out to be central. The microscopic nature of
the dissipation due to surface defects is not clear, but it might
be related to additional relaxation channels that open due to
the surface contamination and the degradation of crystallinity
near the surface. In particular, the quality factor of mechanical
resonators based on nanotube and graphene becomes
extremely large at cryogenic temperatures (Hüttel et al.,
2009), reaching the range of 106 − 107 (Moser et al., 2014;
Güttinger et al., 2017; Urgell et al., 2020). The demonstration
of such large quality factors came as a surprise. For many
years, researchers observed that quality factors would
decrease with the volume of the resonator, and for this reason
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TABLE I. Figures of merit of mechanical resonators based on nanoscale systems.

Carbon nanotube
M (kg) k (N=m) ω0=2π (Hz) Q or Qω Description Reference

2.4 × 106 1.7 × 102 at 300 K Single-clamped multiwall Poncharal et al. (1999)
8.5 × 108 40 at 4 K Double-clamped single-wall bundle Reulet et al. (2000)

3.3 × 10−21 4 × 10−4 5.5 × 107 80 at 300 K Double-clamped single-wall nanotube Sazonova et al. (2004)
4.8 × 10−22 1 × 10−3 2.3 × 108 2 × 102 at 6 K Double-clamped single-wall nanotube Chiu et al. (2008)
5.3 × 10−21 2.7 × 10−2 3.6 × 108 1.2 × 105 at 20 mK Double-clamped single-wall nanotube Hüttel et al. (2009)

1.1 × 1010 4.2 × 102 at 4 K Double-clamped single-wall nanotube Chaste et al. (2011)
3.9 × 1010 3.3 × 104 at 0.1 K Double-clamped single-wall nanotube,

device produced once
Laird et al. (2012)

5 × 10−19 5.1 × 10−6 5.1 × 105 250 at 300 K Double-clamped single-wall bundle Stapfner et al. (2013)
4.4 × 10−21 5.2 × 10−4 5.5 × 107 4.8 × 106 at 30 mK Double-clamped single-wall nanotube Moser et al. (2014)
7.9 × 10−19 4.5 × 10−8 3.8 × 104 2.2 × 103 at 300 K Single-clamped single-wall nanotube Tavernarakis et al. (2018)
2.7 × 10−21 8.9 × 10−4 9.1 × 107 6.8 × 106 at 70 mK Double-clamped single-wall nanotube Urgell et al. (2020)

Semiconductor nanowire
M (kg) k (N=m) ω0=2π (Hz) Q or Qω Description Reference

2.3 × 10−17 6.0 8.0 × 107 1.3 × 104 at 300 K Double-clamped Si wire Feng et al. (2007)
1.6 × 10−17 4.6 × 10−2 8.5 × 106 1.0 × 103 at 300 K Single-clamped GaN wire Henry et al. (2007)
9.8 × 10−15 7.2 × 10−4 4.3 × 104 1.6 × 105 at 300 K Single-clamped SiC wire Perisanu et al. (2007)
1.6 × 10−17 2.8 × 10−5 2.1 × 105 1 × 104 at 300 K Single-clamped Si wire Nichol et al. (2008)
5.5 × 10−16 0.1 2.2 × 106 2 × 103 at 300 K Single-clamped Si wire Gil-Santos et al. (2010)
1.5 × 10−17 1 4.1 × 107 5 × 102 at 300 K Double-clamped Si wire Sansa et al. (2012)
3.5 × 10−16 1.5 × 10−4 1.1 × 105 2.9 × 103 at 300 K Single-clamped SiC wire Gloppe et al. (2014)
3.5 × 10−15 8.6 × 10−2 7.9 × 105 5.8 × 103 at 4.2 K Single-clamped

GaAs/AlGaAs wire
Montinaro et al. (2014)

1 × 10−16 14 5.9 × 107 2.8 × 103 at 16 K Double-clamped InAs wire Mathew et al. (2015)
5.9 × 10−17 6.8 × 10−5 1.7 × 105 5.9 × 104 at 4 K Single-clamped Si wire Sahafi et al. (2020)

TABLE II. Figures of merit of mechanical resonators based on nanoscale systems.

Graphene
M (kg) k (N=m) ω0=2π (Hz) Q or Qω Description Reference

1.4 × 10−18 0.3 7.0 × 107 78 at 300 K Double-clamped monolayer Bunch et al. (2007)

7.8 × 10−17 10 5.7 × 107 3 × 103 at 300 K Multilayer graphene oxide drum Robinson et al. (2008)

2.2 × 10−18 1.4 1.3 × 108 1.4 × 104 at 5 K Double-clamped monolayer Chen et al. (2009)

7.5 × 107 9 × 103 at 10 K Double-clamped monolayer van der Zande et al. (2010)

1.9 × 10−17 3 6.4 × 107 2.5 × 102 at 300 K Double-clamped monolayer Singh et al. (2010)

3.9 × 10−19 0.35 1.5 × 108 1.0 × 105 at 90 mK Double-clamped monolayer Eichler, Moser et al. (2011)

2.2 × 10−17 2.8 5.7 × 107 1.4 × 103 at 4.2 K Double-clamped monolayer Song et al. (2012)

2.7 × 10−16 14 3.6 × 107 2.2 × 105 at 14 mK Multilayer drum Singh et al. (2014)

7.9 × 10−16 6.5 × 10−2 1.4 × 106 8.2 × 102 at 300 K Monolayer drum Cole et al. (2015)

9.6 × 10−18 0.8 4.6 × 107 1.0 × 106 at 15 mK Multilayer drum Güttinger et al. (2017)

Semiconductor layer
M (kg) k (N=m) ω0=2π (Hz) Q or Qω Description Reference

2.6 × 107 1.1 × 102 at 300 K Monolayer MoS2 drum Castellanos-Gomez et al. (2013)

2.0 × 107 7.1 × 102 at 300 K Multilayer MoS2 drum Lee, Wang et al. (2013)

2.2 × 107 41 at 300 K Monolayer MoS2 drum van Leeuwen et al. (2014)

4.1 × 107 6.9 × 102 at 300 K Double-clamped MoS2 bilayer Samanta, Yasasvi Gangavarapu,
and Naik (2015)

2.3 × 10−17 2.9 5.7 × 107 4.7 × 104 at 3.5 K Monolayer WSe2 drum Morell et al. (2016)

(Table continued)
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it was unthinkable that nanotubes and graphene resonators
could exhibit such large quality factors. The large Q factors
reflect the high crystallinity of these nanoscale systems and
show that surface contamination is reduced to a minimal
amount.
Levitating particles feature large quality factors of up to 108

even at room temperature (Ricci et al., 2017). In many

experiments, the particles are trapped by a laser beam; the
resonant frequency is given by the optical gradient force.
Damping, which arises from collisions with the gas molecules
in the sample chamber, becomes low at high vacuum.
Recently particles have been levitated using new schemes,
including ferromagnetic particles in Meissner traps made
from superconducting materials (Gieseler et al., 2020;

TABLE II. (Continued)

Semiconductor layer
M (kg) k (N=m) ω0=2π (Hz) Q or Qω Description Reference

1.8 × 107 48 at 300 K Multilayer MoS2 drum Davidovikj et al. (2017)

8.4 × 106 2.1 × 102 at 300 K Multilayer black phosphorus drum Islam, van den Akker, and Feng (2018)

4.3 × 10−17 2.2 3.6 × 107 3.7 × 104 at 3 K Monolayer MoSe2 drum Morell et al. (2019)

Other layered crystals
M (kg) k (N=m) ω0=2π (Hz) Q or Qω Description Reference

1.8 × 10−15 41 2.4 × 107 2.1 × 102 at 10 K Double-clamped NbSe2 multilayer Sengupta et al. (2010)

3.7 × 10−17 4.0 5.2 × 107 2.4 × 105 at 15 mK NbSe2-graphene-NbSe2 drum Will et al. (2017)

1.5 × 107 690 at 300 K Graphene-MoSe2 drum Kim, Yu, and Zande (2018)

1.3 × 10−15 12 1.5 × 107 9.3 × 104 at 20 mK Bi2Sr2CaCu2O8þδ drum Sahu et al. (2022)

Levitating particles
M (kg) k (N=m) ω0=2π (Hz) Q or Qω Description Reference

3.1 × 10−14 1.1 × 10−4 9.7 × 103 2.1 × 104 at 300 K SiO2 particle in optical trap Li, Kheifets, and Raizen (2011)

3.1 × 10−18 1.7 × 10−7 3.7 × 104 1 × 107 at 300 K SiO2 particle in optical trap Gieseler et al. (2012)

8.3 × 10−17 1.1 × 10−6 1.8 × 104 1.8 × 104 at 300 K SiO2 particle in optical trap Millen et al. (2015)

∼1 × 10−18 ∼2 × 10−10 2.1 × 103 1.1 × 103 at 300 K Charged particle in Paul trap Conangla et al. (2018)

∼1 × 10−13 ∼7 × 10−7 4.1 × 102 9.2 × 101 at 542 K Diamagnetic particle in magnetic trap O’Brien et al. (2019)

∼6 × 10−10 ∼7 × 10−5 5.6 × 101 2.1 × 106 at 4.2 K Ferromagnetic particle in Meissner trap Vinante et al. (2020)

TABLE III. Figures of merit of mechanical resonators fabricated from bulk material with the top-down approach.

Top-down nanofabricated resonators
M (kg) k (N=m) ω0=2π (Hz) Q or Qω Description Reference

5.6 × 10−14 6.5 × 10−6 1.7 × 103 6.7 × 103 at 4.8 K Single-clamped Si beam Stowe et al. (1997)
3.4 × 10−17 1.3 × 103 1.0 × 109 5 × 102 at 4.2 K Double-clamped SiC beam Huang et al. (2003)
1.9 × 10−15 1.5 4.5 × 106 2.1 × 105 at 300 K Double-clamped Si3N4 beam Verbridge et al. (2006)
1.4 × 10−10 1 × 102 1.4 × 105 1.1 × 105 at 2.5 K Double-clamped GaAs/AlGaAs resonator Mahboob and

Yamaguchi (2008b)
3.3 × 10−16 6.3 × 104 2.2 × 109 2.7 × 103 at 300 K Optomechanical Si crystal Eichenfield et al. (2009)
7.7 × 10−15 1.2 × 108 2 × 1010 ∼1 × 103 at 300 K GaAs/AlAs microcavity Fainstein et al. (2013)
1.6 × 10−12 6.7 × 10−2 3.2 × 104 1.5 × 106 at 3 K Single-clamped diamond beam Tao et al. (2014)
4 × 10−12 3 × 10−1 4.1 × 104 4.5 × 107 at 300 K Si3N4 trampoline Reinhardt et al. (2016)

1.4 × 105 1 × 108 at 300 K Si3N4 tethered membrane Norte, Moura, and
Gröblacher (2016)

1.4 × 107 4.3 × 104 at 25 mK Torque Si resonator Kim et al. (2016)
1.6 × 10−11 3.7 × 102 7.7 × 105 2.1 × 108 at 300 K Si3N4 membrane with engineered mode Tsaturyan et al. (2017)
4.1 × 10−15 1.1 × 10−4 2.5 × 104 1.6 × 105 at 0.14 K Single-clamped diamond ladder Heritier et al. (2018)
∼5 × 10−15 ∼1 ∼2.5 × 106 ∼1 × 108 at 300 K Si3N4 nanobeam with engineered mode Ghadimi et al. (2018)

1.0 × 107 2.6 × 106 at 300 K Lamé-mode Si resonator Rodriguez et al. (2019)
1.3 × 10−16 1.5 × 105 5.3 × 109 4.9 × 1010 at 7 mK Optomechanical Si crystal MacCabe et al. (2020)
∼1 × 10−20 ∼3 3 × 109 1.2 × 103 at 20 mK Double-clamped Si beam Zhang, Hu et al. (2020)
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Vinante et al., 2020), diamagnetic particles in magnetic traps
(Hsu et al., 2016; O’Brien et al., 2019), and charged particles
in Paul traps (Alda et al., 2016; Delord et al., 2020).
High-stress silicon nitride is the material used by many

groups to produce top-down resonators endowed with high
quality factors (Kozinsky et al., 2006; Verbridge et al., 2006;
Unterreithmeier, Weig, and Kotthaus, 2009; Unterreithmeier,
Faust, and Kotthaus, 2010; Wilson-Rae et al., 2011; Maillet
et al., 2017; Zhou et al., 2019; Bothner et al., 2020).
Dissipation in the bulk of this high-stress material is notably
low. The quality factor can be further enhanced by structuring
high-stress silicon nitride films into trampoline geometries
(Norte, Moura, and Gröblacher, 2016; Reinhardt et al., 2016)
and nonuniform phononic crystal patterns (Tsaturyan et al.,
2017; Ghadimi et al., 2018). Engineering the shape of
mechanical eigenmodes enables a reduction of losses near
their supports. Quality factors as high as 8 × 108 can be
achieved at room temperature (Ghadimi et al., 2018) and
1.5 × 109 at 30 mK (Seis et al., 2022).
An important role in studying nonlinear phenomena and

the effects of mode coupling has been played by single and
coupled nanoresonators based on narrow nanowires grown
by electrodeposition (Kozinsky et al., 2007), thin nano-
fabricated structures (Defoort et al., 2015), and suspended
GaAs and AlN heterostructures that exploit the piezoelectric
effect to actuate and control the vibrations (Masmanidis
et al., 2007; Mahboob and Yamaguchi, 2008b; Karabalin,
Cross, and Roukes, 2009; Karabalin et al., 2009, 2011;
Yamaguchi, 2017).

C. Driving resonators

The most straightforward way to excite nanomechanical
resonators is by driving them with a directly applied force at
an angular frequency ωF close to the eigenfrequency ω0.
Owing to the nonlinearity of the system, such a direct drive
can also efficiently excite vibrations when ωF ≃ ω0N or ωF ≃
ω0=N with an integer N > 1, but their amplitude is usually
smaller for the same drive amplitude (Nayfeh and Mook,
2004). Another method that is often employed consists in
modulating the spring constant (Rugar and Grütter, 1991;
Turner et al., 1998). Such parametric driving is equivalent to
the modulation of the resonant frequency. It is most efficient
when the drive frequency is close to 2ω0. The vibration
amplitude is nonlinear in the amplitude of the parametric
drive. The amplitude remains small until the driving amplitude
reaches a threshold value, after which the resonator vibrates at
half the drive frequency. Still, even before the threshold is
reached, a resonator can amplify a probe drive at a frequency
close to half the drive frequency, and also at exactly half the
drive frequency (Rugar and Grütter, 1991; Eichler, Chaste
et al., 2011). A resonant probe field can be amplified by a
nanoresonator also if the drive frequency is ωF ≈ ω0 (Dykman
and Krivoglaz, 1979; Ochs et al., 2021b).
The actuation of a nanoscale resonator was achieved for the

first time with the magnetomotive drive [Fig. 2(a)] (Cleland
and Roukes, 1996, 1998). In this method, flexural vibrations
of a conducting nanobeam are excited by the Lorentz force,
which emerges when an alternating current is applied through
the nanowire placed in a perpendicular magnetic field. The

vibrations are detected by measuring the electromotive force
generated along the length of the nanobeam using a network
analyzer.
A widely used drive is the capacitive force; see Fig. 2(b)

(Rugar and Grütter, 1991). It is implemented by applying a
static voltage Vdc

g and an oscillating voltage with a compa-
ratively low amplitude δVac

g between the resonator and a
nearby gate electrode. The force is

Fac ¼ C0
gVdc

g δVac
g ; ð8Þ

where C0
g ≡ ∂Cg=∂q is the derivative of the gate-resonator

capacitance with respect to the mode displacement q. As a
rough estimate, C0

g is given by the ratio of the capacitance to
the characteristic distance between the resonator and the gate.
For simplicity, we omit the work function difference between
the resonator and the gate electrode in Eq. (8), which leads to
an offset in Vdc

g . This driving force is effective when the
resonator is an electrical conductor or is covered with a metal
plate. A resonator made of a dielectric material can be driven
by applying an electric field gradient between two electrodes
structured near the resonator [Fig. 2(c)] (Unterreithmeier,

(a) (b)

(d)

(e) (f)

FIG. 2. Excitation of flexural vibrations. (a) Magnetomotive
force, which is generated by a static magnetic field and an
alternating current along the mechanical beam (shown in green).
(b) Capacitive force, which is created by applying an oscillating
voltage between the bottom gate electrode and the mechanical
beam (green) that is conducting. (c) Dielectric force, which is
acting on a mechanical beam (green) made from a dielectric
material using a time-modulated electric field gradient. Depicted
is a cross section of the device (see the coordinate frame).
(d) Piezoelectric force, where the mechanical beam (green) is
actuated with a piezoelectric film (gray) sandwiched between
two metal electrodes. (e) Optical force, which is obtained by
modulating the intensity of the laser beam (red) focused on
the mechanical beam (green). (f) Magnetic force, where either the
magnetic moment of the mechanical beam (green) or the
magnetic field gradient is modulated (or both).
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Weig, and Kotthaus, 2009). A dielectric material in vacuum
moves toward the region with the highest electric field. This
dielectric force has the same origin as the capacitive force
since they are both related to the displacement-induced
electrostatic energy gain of a capacitor. When the resonator
is made of a piezoelectric material, a piezoelectric force is
created by applying an electric field between two electrodes
that are usually patterned on the resonator itself [Fig. 2(d)]
(Masmanidis et al., 2007; Mahboob and Yamaguchi, 2008b).
Optical drive is also frequently used [Fig. 2(e)].

Photothermal forces are straightforward to apply to nanoscale
resonators. One simply needs to modulate the intensity of the
laser focused on the resonator. Absorption-induced heating
displaces the resonator through thermal expansion (Bunch
et al., 2007). Care has to be taken if one wants to keep the
resonator temperature low. This requires weak absorption.
When the absorption is sufficiently suppressed, the force from
the heating is overcome by the force traditionally associated
with radiation pressure that comes from the reflection of
photons by the resonator. This force is often small, but it has
the advantage of not causing heating. It is used in quantum
optomechanics experiments where losses are detrimental to
the manipulation of quantum states (Aspelmeyer, Kippenberg,
and Marquardt, 2014b). Various available optical excitation
protocols now enable the driving of different types of NVS
vibrations, including the vibrations localized at defects in
phononic optomechanical crystals; see MacCabe et al. (2020)
and references therein.
Magnetic forces are usually used in magnetic resonance

force microscopy experiments to detect electron and nuclear
spins (Poggio and Degen, 2010). In some of these experi-
ments, the spins located on the mechanical resonators are
periodically flipped using magnetic resonance techniques.
The associated time-modulated magnetic moment together
with the magnetic field gradient of a nearby magnet results in
an oscillating force [Fig. 2(f)]. Alternatively, the magnet is
placed on the mechanical resonator and the spins on the
surface of a chip.

D. Frequency control

The eigenfrequency ω0 of a flexural mode of a NVS can be
tuned by direct forces in two different ways. The frequency
depends on the static gradient of the force. In the case of the
capacitive force, the shift of the spring constant is given by

Δk ¼ −
∂F
∂q

¼ −
1

2
C00
gðVdc

g Þ2: ð9Þ

Usually C00
g ≡ ∂

2Cg=∂q2 > 0 and a dc gate voltage directly
leads to an electrostatic softening of a resonator (Kozinsky
et al., 2006; Solanki et al., 2010; Eichler, Moser et al., 2011;
Wu and Zhong, 2011; Stiller et al., 2013).
In addition, the eigenfrequency can be tuned by the dc force

via the change of the equilibrium position and the associated
elongation of the resonator. Through nonlinear elasticity, such
a change modifies the mechanical tension in the resonator.
This effect leads to an increase in the frequency. The
mechanism is broadly used with the capacitive force for
frequency control in soft resonators such as carbon nanotubes

(Purcell et al., 2002; Sazonova et al., 2004; Rechnitz et al.,
2021). Overall, the effect of the gate voltage on the mode
eigenfrequency depends on the geometry and the mode
polarization (Kozinsky et al., 2006). Piezoelectric actuators
can also be used to tune ω0 by enhancing the separation
between the supports of a doubly clamped resonator. Using
this technique, the eigenfrequency of a carbon nanotube could
be increased by more than 20 times (Ning et al., 2014).
Time-dependent frequency control is important in various

applications, such as parametric drive. In the case of frequency
control with the capacitive force, the eigenfrequency can be
modulated in time using a combination of dc and ac gate
voltages (Rugar and Grütter, 1991). An alternative and highly
efficient approach is based on time-dependent piezoelectric
actuation (Yamaguchi, 2017).

E. Detection of displacement

The detection of motion becomes increasingly difficult
when resonators get smaller. A variety of methods have been
developed to address the problem. The most broadly used
methods are based on magnetomotive, capacitive, and optical
or microwave measurements. Other methods include piezo-
electric (Masmanidis et al., 2007; Mahboob and Yamaguchi,
2008b), piezoresistive (He et al., 2008; Lee, Truax et al.,
2013), scanning probe microscopy (Garcia-Sanchez et al.,
2007), scanning and transmission electron microscopy (Buks
and Roukes, 2001; Niguès, Siria, and Verlot, 2015; Tsioutsios
et al., 2017), and field-emission (Purcell et al., 2002)
measurements.
The capacitive method relies on the motion-induced

modulation of the capacitance δCg between a conducting
resonator and a nearby gate. Modulation of the capacitance
in the presence of a gate voltage Vdc

g leads to the charge
modulation δQ ¼ δCgVdc

g . Where the vibrating resonator
acts as a field-effect transistor, its conductance oscillates
as δG ¼ ð∂G=∂QÞδQ. This causes a change of the current
through the resonator δI ¼ δGδVsd in response to a voltage
δVsd applied across it. When δVsd is oscillating at frequency
ωsd close to ω0, the current can be conveniently measured at a
low frequency ≈jωsd − ω0j. This method was first applied to
a GaAs resonator supporting a single-electron transistor
made of aluminum (Knobel and Cleland, 2003) and to
nanotube resonators (Sazonova et al., 2004; Gouttenoire
et al., 2010). Yet another way to measure the oscillating
capacitance is based on embedding a conducting nano-
resonator in a superconducting cavity and measuring its
radio-frequency reflection and transmission (Teufel et al.,
2008; Rocheleau et al., 2010; Singh et al., 2014; Song
et al., 2014; Weber et al., 2014; Blien et al., 2020; Zhou
et al., 2021). A similar method can be used with a dielectric
resonator by integrating it with a nearby electric cavity
(Faust, Krenn et al., 2012).
In the optical frequency range, high-precision vibration

detection is often based on interferometry. Vibrations of a
nanoresonator embedded in an optical cavity can be detected
from the modulation of the resonant frequency of the cavity
measured by its transmission or reflection (Aspelmeyer,
Kippenberg, and Marquardt, 2014b). Another method is based
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on focusing a laser beam on the resonator and detecting the
modulation of the reflected or scattered light (Carr and
Craighead, 1997; Gloppe et al., 2014; Yeo et al., 2014).
Here we describe optical detection of the vibrations of
graphene-based resonators, a method used by many groups
to detect vibrations of monolayer and few-layer systems
(Barton et al., 2012; Reserbat-Plantey et al., 2012;
Castellanos-Gomez et al., 2013; Lee, Wang et al., 2013).
The laser beam illuminates a graphene membrane suspended
over a metal gate. When the graphene monolayer is covered
by an adsorbed contamination layer, an optical cavity is
created between the monolayer and the gate, and the
vibrations modulate this cavity. In contrast, in the case of
a clean monolayer, a standing wave is formed by the
interfering incident and reflected laser beams with the
reflection from the metal gate. A clean graphene monolayer
does not affect the standing wave much, since its reflection
coefficient is small. In contrast, the absorption coefficient of
graphene is about 0.02 for visible light, which is a notably
large value considering that the material is only one atom
thick. The displacement of the graphene layer changes the
absorbed intensity. Therefore, the motion of the graphene
resonator can be measured by recording the reflected light
intensity.
Optical detection of micromechanical systems has attracted

significant interest in the context of improving the sensitivity
of LIGO detectors of gravitational waves, as these detectors
are also based on vibrational systems. One of the important
challenges is reducing the photon counting noise and the
photon radiation pressure noise. It can be addressed using
squeezed states of light, and the experimental results on
measuring a micromechanical membrane with squeezed light
were recently reported (Kleybolte et al., 2020).

1. Quantum regime

Significant progress has been made in detecting small
displacements that occur where a nanoscale or microscale
vibrational system is in the quantum regime, in which case
the vibration amplitude is ∝ ℏ1=2. Detecting vibrations and
characterizing their energy distribution in this regime is one
of the central problems of quantum optomechanics. An
important approach is based on illuminating an optical or
microwave cavity that contains a nanoresonator and meas-
uring the spectrum of the emitted radiation. This spectrum
contains lines shifted from the incident light frequency by
the frequency of the vibrational mode. The ratio of the
intensities of the lower- and higher-frequency lines, i.e., of
the Stokes and anti-Stokes components, is determined by the
effective temperature of the mode (Kippenberg and Vahala,
2008; Aspelmeyer, Kippenberg, and Marquardt, 2014b;
Pfeifer et al., 2016; Riedinger et al., 2016; Clark et al.,
2017; Reed et al., 2017; Delić et al., 2020; Tebbenjohanns
et al., 2020). Detailed information about the vibrational
quantum state of mechanical modes can be obtained by
connecting these modes to a qubit (O’Connell et al., 2010;
Chu et al., 2018; Satzinger et al., 2018; Arrangoiz-Arriola
et al., 2019).
Mechanical resonators in the quantum regime open new

directions of research, including quantum squeezing of the

mechanical motion (Lecocq et al., 2015; Pirkkalainen,
Damskägg et al., 2015; Wollman et al., 2015), measure-
ment-based quantum control of mechanical motion (Wilson
et al., 2015; Rossi et al., 2018), quantum backaction evading
measurements (Suh et al., 2014; Ockeloen-Korppi et al.,
2016; Möller et al., 2017), entanglement between mechanical
resonators (Ockeloen-Korppi et al., 2018; Riedinger et al.,
2018; de Lépinay et al., 2021; Kotler et al., 2021; Wollack
et al., 2022), and fundamental measurements with levitating
particles cooled to the ground state (Delić et al., 2020; Magrini
et al., 2021; Tebbenjohanns et al., 2021).

F. Measurement of the spectral response

Measurement of the spectral response is the most common
method for studying mechanical resonators. This response
provides the important characteristics of a resonator. They
include the resonant frequencies of the eigenmodes, their
spectral bandwidth Δω, and the quality factor Qω introduced
in Eq. (7). There are two major approaches to measuring the
spectral response. One of them is based on applying an
oscillating force to the resonator, sweeping the frequency of
the force, and measuring the displacement of the resonator
with a lock-in amplifier. This gives the mechanical suscep-
tibility χðωÞ, as discussed in Sec. II.A.
The other approach is to measure the power spectrum SðωÞ,

i.e., to measure the spectrum of the displacement that results
from thermal and quantum fluctuations with no regular
external force applied. The power spectrum is measured by
simply feeding the output signal of the resonator detector into
a spectrum analyzer. In practice, the power spectrum is often
more difficult to measure than the spectrum of response to a
periodic drive, especially when no care is taken to reduce the
noise in the measurement circuit. Figure 3 shows the measured
power spectrum of a cantilever based on a SiC nanowire
featuring different eigenmodes.

FIG. 3. Power spectrum SðωÞ of a single-clamped resonator
based on a SiC nanowire measured optically at 300 K. The
spectrum formed by the three lowest-frequency eigenmode
“families” are shown. Each mode family is composed of two
peaks (see inset), which correspond to the two eigenmodes that
vibrate in perpendicular directions. The peaks allow one to
determine the mode eigenfrequencies and the Qω factors. The
noise floor of the spectrum quantifies the displacement sensitivity
of the detection. Adapted from Gloppe et al., 2014.
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III. SENSING AND CLOCKS

Nanomechanical resonators have attracted considerable
interest due to their remarkable sensing capabilities.
Because of their small mass, such resonators are exquisite
sensors of external forces and mass deposition. We describe
here the basics of sensing. Nanomechanical resonators are
also used as clocks in commercial products.

A. Force sensing

Force sensing consists in converting a weak force into a
displacement that is then measured by electrical or optical
means. The linear response of the displacement qðtÞ to an
external force F cos ωt is given by the mechanical suscep-
tibility χðωÞ. If the noise is disregarded, the force-induced
displacement increment is δqðtÞ ¼ Re½χðωÞF expð−iωtÞ�.
The detection of an oscillating force is optimized by matching
its frequency to the mechanical eigenfrequency, where jχðωÞj
is maximal.
The measured displacement is a superposition of the

displacement induced by the force and thermal vibrations,
i.e., a superposition of the signal and noise, respectively
[Fig. 4(a)]. The fundamental limit of force sensing is set by the
condition that the signal exceeds the thermal noise.
Quantitatively, this limit can be characterized by noting that,

by its meaning, the power spectrum of the mode SðωÞ is the
mean-square thermal displacement at frequency ω per unit
frequency. At the same time, it follows from the definition of
the susceptibility χðωÞ [Eq. (4)] that the squared displacement
induced by a regular force F cos ωt and averaged over the

force period is ðδqÞ2 ¼ jχðωÞj2F2=2. The ratio of these
displacements, which is determined by the function
SFðωÞ ¼ 2SðωÞ=jχðωÞj2, shows how strong the force should
be for it to be detected with a signal-to-noise ratio equal to 1.
The ratio SFðωÞ takes a particularly simple form in the

important case where the power spectrum of the vibrations has
a Lorentzian peak at the vibration eigenfrequency ω0 with
half-width Δω ≪ ω0; see Sec. IX.B. For such a spectrum, to
the leading order in Δω=ω0 the resonant susceptibility is
[cf. Eq. (5)]

χðωÞ¼ i
2Mω0

½Δω− iðω−ω0Þ�−1; Δω; jω−ω0j≪ω0. ð10Þ

In the same range jω − ω0j ≪ ω0,

SFðωÞ ≈ 8kBTMΔω≡ 4kBTMω0

Qω
: ð11Þ

The function SFðωÞ is independent of frequency over the
entire range of the peak in the spectrum of the resonator, that
is, beyond the region jω − ω0j≲ Δω. Such broadband force
sensing is somewhat nonintuitive given that the force response
of the displacement is strongly frequency dependent. We
emphasize that force sensing can be comparatively broadband
even for high-Q resonators. Forces with frequencies far from
other resonances can be detected provided that thermal noise
and imprecision noise in the displacement detection are low
enough.
Equation (11) suggests a strategy for detecting small

forces. The best force sensitivity has been achieved with
carbon nanotubes, which are the operating resonators with
the smallest mass [

ffiffiffiffiffiffi
SF

p ¼ ð4.3� 2.9Þ × 10−21 N=
ffiffiffiffiffiffi
Hz

p
]

(de Bonis et al., 2018). Resonators based on silicon carbide
nanowires can reach

ffiffiffiffiffiffi
SF

p ¼ 4.0 × 10−20 N=
ffiffiffiffiffiffi
Hz

p
(Fogliano

et al., 2021). Resonators microfabricated from bulk material
are often better to use as sensors; their sensitivity has reachedffiffiffiffiffiffi
SF

p ¼ ð1.9� 0.6Þ × 10−19 N=
ffiffiffiffiffiffi
Hz

p
(Heritier et al., 2018).

Fluctuations of the nanoresonator frequency worsen the
force sensitivity in Eq. (11), as they widen the mechanical
linewidth and decrease the associated quality factor Qω

(Moser et al., 2013).
The transduction of the mechanical vibrations into a

measurable electrical or optical output signal is challenging
with small resonators. The transduction can deteriorate the
force sensitivity by adding noise. This so-called imprecision
noise is quantified by the noise floor in the spectral meas-
urement of a resonator [Fig. 4(a)].
Figure 4(b) shows a force sensing experiment of nuclear

spins (Poggio et al., 2007). The nuclear spins of 19F atoms in a
CaF2 crystal are detected by attaching the crystal to a
microcantilever. The nuclear spins are flipped back and
forth at the mechanical resonant frequency. The associated
time-modulated magnetic moment together with an applied

(a)

(b)

FIG. 4. (a) Sensing of a coherent external force using spectral
measurements. The power spectrum has contributions from
driving-induced displacement, thermal vibrations, and the im-
precision in the vibration detection. The signal to be detected is
the narrow peak at the frequency of the external force. The
integration time τ required to resolve this peak can be obtained by
setting the resolution bandwidth ΔfRBW of the spectrum analyzer
such that the signal-to-noise ratio is 1 (τ ¼ 1=ΔfRBW). The peak
height of the coherent external force in the spectrum gets larger as
ΔfRBW is reduced. The effect of frequency noise is disregarded.
(b) Power spectrum of the vibrations of a microcantilever in the
force sensing of nuclear spin experiments. The signal induced by
the periodically driven spins is the narrow peak. The imprecision
in the vibration detection is negligible in this experiment.
Adapted from Poggio et al., 2007.
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magnetic field gradient creates a force that drives the micro-
cantilever. The measured power spectrum of the vibrations in
Fig. 4(b) shows a narrow peak associated with the spins on top
of the broad resonance of the thermal vibrations of the
microcantilever. The goal of such experiments is to achieve
magnetic resonance imaging with atomic resolution (Degen
et al., 2009; Nichol et al., 2013).
Force sensing has been used with great success in recent

advances in various fields. These include the Casimir force
(Chan et al., 2001, 2008; Klimchitskaya, Mohideen, and
Mostepanenko, 2009; Gong et al., 2021; Liu et al., 2021),
nanomagnetism (Forstner et al., 2012; Losby et al., 2015;
Rossi et al., 2019), scanning probe microscopy imaging of
vectorial forces (Li, Tang, and Roukes, 2007; de Lépinay
et al., 2017; Rossi et al., 2017), light-matter interaction
(Gloppe et al., 2014), persistent currents in normal metal
rings (Bleszynski-Jayich et al., 2009), and detection of a
phonon flux in superfluid 4He (Guénault et al., 2020).

B. Mass sensing

Mass sensing relies on monitoring how the eigenfrequency
of a nanomechanical resonator changes when an additional
mass is adsorbed onto its surface. Most experiments are done
with flexural modes (Ekinci, Yang, and Roukes, 2004; Yang,
Lian et al., 2006). If one assumes that this mass madd is
uniformly distributed over the resonator, that the resonator
itself is uniform, and that madd is small compared to the
resonator massMNVS, then the relative change of the resonator
eigenfrequency is

δω0=ω0 ¼ −madd=2MNVS: ð12Þ

As an example, Fig. 5(a) shows a series of downward shifts in
ω0 consistent with single adsorption events of naphthalene
molecules onto a nanotube resonator.
There are different methods of monitoring the eigen-

frequency. The simplest one relies on driving the resonator
slightly off resonance while recording the vibration
amplitude with a lock-in amplifier. A change in the eigen-
frequency results in a change in the displacement amplitudeA
[Fig. 5(b)]. The resonator settles to a new amplitude and phase
over the decay time. The frequency shift can be quantified
from the measured change of A using the slope of the
mechanical susceptibility at the drive frequency. Implied in
the analysis is that the adsorbedmass does not change over the
duration of the measurement, which itself exceeds the decay
time; however, the analysis can also be extended to the case
where adsorbates attach and detach with a rate comparable to
the relaxation rate (Dykman et al., 2010).
Phase-locked loop measurements are also often used to

track the resonant frequency in mass sensing experiments. The
method was first developed for high-Q cantilevers in atomic
force microscopy (Albrecht et al., 1991). It was used for faster
detection of the frequency shift than in the just-discussed
method. However, a phase-locked loop is efficient when the
imprecision noise in the detection of the displacement is small
compared to the driven vibration amplitude. This is often hard
to achieve for small resonators, such as nanotube resonators
measured capacitively.

Mass spectrometry of molecules and nanoparticles
requires one to overcome the assumption of the uniform
distribution of the adsorbed mass over the resonator. This can
be achieved by tracking the resonant frequency of several
flexural eigenmodes (Hanay et al., 2012, 2015). The method
utilizes the fact that the resonant frequency shift induced by
an adsorbed molecule depends on both its mass and its
position on the resonator. The frequency shift of an nth
eigenmode due to a particle attached to a point R on the
surface of a nanoresonator is

δωnðRÞ=ωn ¼ −maddφ2
nðRÞ=2MNVS: ð13Þ

Here φnðRÞ is the dimensionless displacement of the
resonator at the point R due to the nth eigenmode;
see Eq. (1).
The frequency shift is largest when the molecule is located

at the antinode of the eigenmode, where its vibration ampli-
tude is maximal, while it is equal to zero when the molecule
sits at a node. The more modes can be measured, the better the
resolution of the mass of the absorbed molecule and of its
location.
Figure 5(c) shows how the measured eigenfrequencies of a

microcantilever get reduced due to adsorption of 100 nm

(a) (b)

(c)

FIG. 5. (a) Sensing of the adsorption of naphthalene molecules
onto a nanotube resonator by monitoring the resonant frequency
as a function of time at 4.3 K. Each shift in the resonant frequency
is associated with adsorption of one molecule. The suspended
nanotube is ∼150 nm long, and its fundamental mode vibrates at
1.8 GHz. Adapted from Chaste et al., 2012. (b) Mass sensing
associated with one adsorption event. The resonator is driven at
the frequency ωF. The change in the resonant frequency due to
the adsorption event results in the increase of the driven vibration
amplitude. (c) Real-time record of the eigenfrequencies of the
first three flexural modes of the microcantilever exposed to a flux
of gold nanoparticles. Similar measurements were carried out
with protein macromolecules (Hanay et al., 2012) and E. coli
bacteria (Malvar et al., 2016). Adapted from Malvar et al., 2016.
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diameter gold nanoparticles (Malvar et al., 2016). Quasi-
instantaneous jumps are simultaneously observed in the
frequencies of the first three flexural modes when a single
nanoparticle is adsorbed. The frequency shift is different for
the three modes since it depends on the nanoparticle location.
The data analysis gives an average nanoparticle mass of
11.6� 3.8 fg.
The notable sensing capabilities of mechanical resonators

have enabled advances in many areas. These include char-
acterizations of analytes using mass spectrometry (Hanay
et al., 2015; Malvar et al., 2016; Sage et al., 2018),
the detection of large-mass biological particles that cannot
be probed with commercial mass spectrometers based on
mass-to-charge-ratio measurements (Dominguez-Medina
et al., 2018), weighing of biomolecules and single cells in
fluid using microchannels integrated in resonators
(Burg et al., 2007), gas chromatography (Li et al., 2010;
Venkatasubramanian et al., 2016), probing the density and
viscosity of liquids (Gil-Santos et al., 2015), the diffusion of
adsorbed atoms on the surface of a resonator (Yang et al.,
2011), the formation and transitions between solid- and
liquid-phase monolayers of adsorbed atoms (Wang et al.,
2010; Tavernarakis et al., 2014), properties of helium
superfluid thin films (Guénault et al., 2019; Noury et al.,
2019; Sachkou et al., 2019), and in situ nanofabrication
(Gruber et al., 2019).
The mass resolution of a resonator is limited by frequency

fluctuations. As we see in Sec. IX, there is a fundamental limit
on how small frequency fluctuations and the mass resolution
can be. This fundamental limit in the linear regime is related to
the thermal displacement noise. It was found that, for some
resonators, to improve mass sensing in a linear regime one
may want to decrease the Q factor (Roy et al., 2018). It was
proposed to further increase mass sensitivity by driving a
nanoresonator into a nonlinear regime and using the squeezing
of thermomechanical fluctuations (Buks and Yurke, 2006).
Mass sensing measurements in the nonlinear regime were
recently performed by Yuksel et al. (2019).
On the practical side, of particular importance are com-

paratively slow frequency fluctuations, with the correlation
time comparable to or exceeding the decay time. Identifying
the origin of such fluctuations is usually difficult. For instance,
they can arise from the diffusion of atoms over the resonator
surface (Atalaya, Isacsson, and Dykman, 2011a, 2011b; Yang
et al., 2011), the electrostatic interaction between the reso-
nator and trapped charges in the substrate (Siria et al., 2012),
and temperature drifts that modify the resonator stress. Slow
frequency fluctuations are usually quantified using the Allan
deviation. Their mechanisms and the Allan deviation are
discussed in Sec. IX. These frequency fluctuations can
be reduced, enabling one to reach a mass resolution of
ð1.7� 0.5Þ × 10−27 kg with a 2 s integration time. This has
been achieved with a nanotube thanks to its extremely small
mass (Chaste et al., 2012). This mass resolution is comparable
to the mass of one proton.

C. Photothermal-based sensing

Nanoresonators can be used for several kinds of sensing
based on light absorption. The experiments are done using

resonatorswith tensile stress. The underlying idea is that photon
absorption causes heating; the associated thermal expansion
reduces the stress, changing the mechanical frequency of the
resonator. Because the frequency can be detected with high
accuracy, these experiments are exquisitely sensitive, with the
sensitivity limited by frequency fluctuations, as in the case of
mass sensing. Such photothermal sensing enables optical
absorption spectroscopy of single particles and molecules
located on the resonator (Larsen et al., 2013), high-precision
single-molecule imaging (Chien et al., 2018), high-speed
detection of electromagnetic radiation with graphene nano-
mechanical bolometers (Blaikie, Miller, and Aleman, 2019),
and thermal transport measurements of phonons in MoSe2
monolayer drums through the detection of the thermal gradient
over these suspended devices (Morell et al., 2019).

D. Clocks and clock-based systems

Mechanical resonators are used with great success as
ultrastable timing references. Although these resonators
are produced mostly at the microscale, we mention them
since they have an important technological impact on our
society. The current generation of these devices utilizes
silicon technology with a wafer-encapsulation process to
keep the self-sustaining oscillators in vacuum (Kim et al.,
2007). They can now be found in nearly all mobile phones,
for example. One of the leading manufacturers, SiTime,
reports clocks for mobile and other battery powered devices
with �3 ppm frequency stability over the industrial temper-
ature range between −40 and þ85 °C, while the power
consumption is kept low (below 5 μW) (Zaliasl et al.,
2015). Telecommunication applications require still better
clocks, and a frequency stability of < �0.1 ppm and an
Allan deviation of about 8 × 10−11 at 1 s integration time in
the temperature range between −45 and þ105 °C have been
achieved (Roshan et al., 2016).
Nanoscale electromechanical resonators have also been

used as self-sustained oscillators. The challenge is to integrate
the device into an electrical circuit so that it produces a
continuous high-frequency signal when powered by a dc input
in the feedback loop. The vibrations are transduced into an
electrical signal that is amplified with an adjustable gain and
phase before being fed back to the resonator. The difficulty is
to obtain a sizable electrical signal with minimum imprecision
noise added by the transduction of the vibrations. A frequency
stability of �2 ppm was demonstrated in a single-crystal SiC
electromechanical resonator, albeit over a short test time, less
than 1000 s (Feng et al., 2008). Interesting approaches to
suppressing the noise that are based on using a resonator in the
nonlinear regime near bifurcation points of the response to an
external drive were proposed by Greywall et al. (1994), Yurke
et al. (1995), and Kenig et al. (2012, 2013), and the possibility
of going beyond the limit imposed by the thermomechanical
noise was demonstrated (Villanueva et al., 2013).

IV. FLUCTUATION-DISSIPATION THEOREM AND THE
REACTION FORCE FROM THE THERMAL BATH

A simple general model that leads to the Brownian
dynamics (2) is based on the assumption that the
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nanoresonator is an oscillator coupled to a thermal bath and
that the coupling is linear in the oscillator coordinate. In this
section we describe the connection between the phenom-
enological theory (2) and a microscopic theory. We specify
the conditions of applicability of the phenomenological
description, where the friction force is determined by the
instantaneous value of the velocity and where the noise can
be described as δ correlated in time (the Markovian approxi-
mation). We then show that for resonators with a high Q
factor, a significantly less restrictive formulation can be
developed if one is interested in the dynamics of the vibration
amplitude and the slow part of its phase. Such a dynamics is
Markovian on times that largely exceed the vibration period
even where the model (2) is inapplicable. The analysis
provides an expression for the decay rate Γ in terms of
the parameters of the thermal reservoir, and also shows that
the frequency of the mode is changed as a result of the
coupling and can become temperature dependent. The
formulation immediately extends to the case where the mode
dynamics is quantum.

A. Coupling of the oscillator to a thermal bath

The description of dissipation of the oscillator is based on
the picture in which the oscillator is coupled to a system with
many degrees of freedom. In particular, a nanomechanical
mode is coupled to phonons in the nanoresonator and in the
substrate that supports the nanoresonator, to the electronic
degrees of freedom, to an extended set of two-level fluctua-
tors, etc. The many-degree-of-freedom system coupled to
the oscillator can usually be thought of as a thermal bath. The
leading term in the expansion of the coupling energy in the
oscillator coordinate q is linear in q and can be written as

Hi ¼ qhb; ð14Þ

where hb depends on the dynamical variables of the bath only.
It gives the force Fb ≡ −hb that the bath exerts on the
oscillator. Because of the large number of dynamical varia-
bles, the excitation spectrum of the bath is (quasi)continuous.
The form of the function hb depends on the type of bath. For
example, if the bath is formed by phonons in the resonator or
the substrate, hb is typically a series in the phonon coordi-
nates. The nonlinear terms in this series are behind such
familiar mechanisms of dissipation of a nanomechanical mode
as the thermoelastic, Landau-Rumer, and Akhiezer relaxation;
see Sec. V.A.
To formally describe the dynamics of the mode and the

bath, we assume that for t → −∞ they are uncoupled and the
bath is in thermal equilibrium. Because the bath is “large,” it is
only weakly perturbed by the coupling once the latter is turned
on. The response of the bath can be then described using the
linear response theory (Landau and Lifshitz, 1980),

hbðtÞ ≈ hð0Þb ðtÞ þ δhbðtÞ: ð15Þ

In Eq. (15) hð0Þb ðtÞ is the function hb in the absence of the

coupling. The force −hð0Þb ðtÞ describes the effect of the
thermal fluctuations of the unperturbed bath on the oscillator.

It is a random force, and it can be chosen to have zero

mean, hhð0Þb ðtÞi ¼ 0.
The term δhbðtÞ is the perturbation caused by the coupling.

When averaged over the fluctuations of the bath, it can be
written as

hδhbðtÞi ¼ −
Z

∞

0

dt0Xbðt0Þqðt − t0Þ: ð16Þ

The function XbðtÞ is the generalized susceptibility of the bath
with respect to the oscillator coordinate q. Equation (16) is
simply an expression of the causality principle: the response
of the bath at time t depends on the values of q at earlier times.
Because the bath is in thermal equilibrium, its susceptibility

and fluctuations are related by the fluctuation-dissipation
theorem. This relation has the form

SbðωÞ ¼ 2ℏ½n̄ðωÞ þ 1�Im χbðωÞ; ð17Þ

where χbðωÞ is the Fourier transform of the susceptibility
XbðtÞ [see Eq. (A7)], SbðωÞ is the power spectrum of the bath
fluctuations,

SbðωÞ¼
Z

∞

−∞
dteiωtsbðtÞ; sbðtÞ¼ hhð0Þb ðtÞhð0Þb ð0Þi; ð18Þ

and n̄ðωÞ ¼ ½expðℏω=kBTÞ − 1�−1 is the thermal occupation
number of vibrations at frequency ω. The real and imaginary
parts of χbðωÞ are related by the Kramers-Kronig relation.
Therefore, Eq. (17) fully defines the bath susceptibility in
terms of the power spectrum SbðωÞ.
To the leading order in the coupling, one is tempted to

replace δhbðtÞ in Eq. (15) with hδhbðtÞi. The force from the
bath on the mode then takes the form

FbðtÞ ¼ FðrÞ
b ðtÞ − hð0Þb ðtÞ; FðrÞ

b ðtÞ≡ −hδhbðtÞi: ð19Þ

The term FðrÞ
b ðtÞ is the reaction force from the bath. It results,

as seen in Eq. (16), from the perturbation of the bath by the
oscillator and depends on the oscillator coordinate. The
reaction force is often called the backaction (Clerk and
Bennett, 2005; Kippenberg and Vahala, 2008; Clerk et al.,
2010). It is reminiscent of the backaction in the theory of
quantum measurements, which describes the effect of the
measuring apparatus on the measured quantum system and
comes from the interaction between the apparatus and the
system; cf. the Heisenberg microscope (Heisenberg, 1927).

We note that the force FðrÞ
b ðtÞ emerges not only in the quantum

but also in the classical description of the dynamics.

Equation (16) indicates that the force FðrÞ
b ðtÞ is retarded: it

depends on qðt0Þ with t0 ≤ t. One should keep in mind that

FðrÞ
b ðtÞ is an approximation of the reaction force. It relies on

the perturbation theory, and one should make sure that the
perturbation theory holds for long times on the order of the
lifetime of the considered vibrational mode.
In the classical theory, the previous approximation for the

reaction force applies in the important case where the power
spectrum SbðωÞ of the thermal noise is almost constant for
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frequencies ranging from much smaller to much larger
than ω0. When the power spectrum is flat, the noise corre-

lation function −hð0Þb ðtÞ is approximately a δ function

[hð0Þb ðtÞ∝ δðtÞ]. This means that the noise part of the force
from the bath Fb is white noise. One can show that the
backaction part of FbðtÞ has a term ∝ −dqðtÞ=dt; see
Appendix A.3. This maps the dynamics of the mode onto
the phenomenological equation of Brownian motion (2). In
the quantum theory, the case was studied by Caldeira and
Leggett (1981) for the bath being a set of harmonic oscillators
and hb being linear in the coordinates of these oscillators. This
is called Ohmic dissipation.

B. Brownian motion of the complex vibration amplitude

For a NVS mode, the analysis of the effect of coupling to a
thermal bath can be extended to a significantly broader
situation using the fact that the mode decay rate Γ is small
compared to the eigenfrequency ω0 or, equivalently, the Q
factor is large. The approach that we describe allows one to
also study nonlinear effects. In addition, it allows one to avoid
the assumptions of the Ohmic dissipation model. The under-
lying physics is that a mode with a largeQ factor is a “filter.” It
is sensitive primarily to perturbations in a narrow frequency
range around the eigenfrequency ω0. In particular, it is
sensitive to the bath fluctuations in this frequency range.
Of primary interest, therefore, is the amplitude and phase of
the mode.
A natural approach to the analysis of the dynamics

is offered by the Krylov-Bogoliubov method of avera-
ging (Kryloff and Bogoliubov, 1947; Bogoliubov and
Mitropolsky, 1961). Here the first step is to switch from
the fast-oscillating coordinate qðtÞ and momentum pðtÞ of
the mode to two new variables, the complex amplitude
u≡ uðtÞ and its conjugate,

qðtÞ ¼ uðtÞ expðiω0tÞ þ u�ðtÞ expð−iω0tÞ;
pðtÞ ¼ iMω0½uðtÞ expðiω0tÞ − u�ðtÞ expð−iω0tÞ�: ð20Þ

The real and imaginary parts of uðtÞ have a simple
physical meaning. They are simply the quadratures of
the vibrations: if we write the mode displacement as
qðtÞ¼AðtÞcos½ω0tþϕðtÞ�, then ReuðtÞ¼ð1=2ÞAðtÞcosϕðtÞ
and Im uðtÞ ¼ ð1=2ÞAðtÞ sinϕðtÞ.
In the absence of coupling to a thermal bath, the mode

oscillates at the frequency ω0 with constant amplitude and
phase, and then uðtÞ ¼ const. Because of the coupling, uðtÞ
will vary in time, but for weak coupling the change over the
vibration period 2π=ω0 will be small. This can be used to
show that, in “slow” time compared to 2π=ω0, one can
disregard retardation of the reaction force. This means that

the value of FðrÞ
b ðtÞ at time t is determined by the value of uðtÞ

at the same time t; see Eq. (A8). Taking into account the
explicit expressions for the reaction force (A8) and the thermal

noise hð0Þb ðtÞ, we then obtain (see Appendix A.2)

_u ¼ −ðΓ − iPÞuþ ξðtÞ: ð21Þ

In Eq. (21) the term ξðtÞ ¼ ði=2Mω0Þhð0Þb ðtÞ expð−iω0tÞ
describes the noise that comes from the fluctuations in the
thermal bath. The meaning of the parameters Γ and P is seen
from the solution of Eq. (21) for the regular part of the
complex amplitude huðtÞi ¼ huð0Þi exp½−ðΓ − iPÞt�. When
combined with Eq. (20), this shows that Γ is the decay rate of
the vibrations, whereas P is the change of their frequency due
to the coupling to the bath, ω0 → ω0 þ P, i.e., P is an analog
of the polaronic effect for a vibrational system. Both Γ and P
are expressed in terms of the bath susceptibility χbðωÞ at the
mode eigenfrequency (Appendix A.2),

Γ ¼ Im χbðω0Þ
2Mω0

; P ¼ −
Re χbðω0Þ
2Mω0

: ð22Þ

With an account taken of Eq. (17), the decay rate Γ is also
simply expressed in terms of the power spectrum Sbðω0Þ of
the random force exerted by the bath. In the classical limit
kBT ≫ ℏω0 we have

Γ ¼ ð4MkBTÞ−1Sbðω0Þ. ð23Þ

We later use Eq. (23) in the analysis of the decay of
nanomechanical modes due to their coupling to phonons,
two-level fluctuators, and electrons.
As seen in Eq. (22), both the decay rate Γ and the frequency

shift P depend on the temperature. The temperature depend-
ence of P is a simple microscopic mechanism of the temper-
ature dependence of the measured eigenfrequency of NVSs,
and this dependence can be determined from the experimen-
tally measured power spectrum or the response curves. For a
carbon nanotube, such measurements were reported by Tepsic
et al. (2021). In what follows, we incorporate P into the
definition of ω0; i.e., we replace ω0 → ω0 þ P.
The noise ξðtÞ in Eq. (21) is Gaussian and zero mean. It is δ

correlated in the slow time compared to the vibration period
2π=ω0 and the time over which bath correlations decay,

hξ�ðtÞξðt0Þi ≈ ðΓkBT=Mω2
0Þδðt − t0Þ; ð24Þ

whereas the correlator hξðtÞξðt0Þi and its complex conjugate
can be disregarded (Appendix A.2). It is seen from the
simple relations (21)–(24) between the decay rate of the
mode and the noise from the thermal bath that the stationary
distribution of the mode is the Boltzmann distribution
and hjuj2i ¼ kBT=2Mω2

0.
The time evolution of the complex oscillator amplitude

described by Eq. (21) is Markovian. There is no delay: the
response of the bath is instantaneous in slow time. The
corrections disregarded in Eqs. (21) and (24) are small if
the bath susceptibility χbðωÞ weakly varies with ω in a
comparatively narrow band centered at ω0. The width of this
band is determined by the time dependence of uðtÞ and is
∼Γ; jPj. It is small compared to ω0 and to the reciprocal
correlation time of fluctuations in the bath at frequency ∼ω0.
This is in contrast to the model of the Brownian motion
described by Eq. (2), which requires a near constancy of χbðωÞ
in the frequency band broader than ω0.
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We reiterate that the Markovian equation of motion (21) is
an approximation. Its applicability has to be checked and the
expressions for the decay rate and the polaronic frequency
shift have to be derived using a microscopic model of the bath
and the coupling.

C. Quantum description of the mode dynamics

The previous analysis can be extended to the quantum
regime. In quantum terms, the functions uðtÞ and u�ðtÞ
become operators, with u� understood as u†. They are simply
the operators ð1=2Þ½qðtÞ ∓ ipðtÞ=Mω0� exp½∓ iω0t� of a har-
monic oscillator in the Heisenberg representation and are
simply related to the ladder operators a† and a, with

uðtÞ ¼ ðℏ=2Mω0Þ1=2a†ðtÞe−iω0t;

½uðtÞ; u†ðtÞ� ¼ −ℏ=2Mω0: ð25Þ

The equation of motion for uðtÞ [Eq. (21)] is linear. It
applies not only in the classical case but also in the case where
uðtÞ is an operator, becoming a quantum Langevin equation.
The noise ξðtÞ in this formulation is an operator too, and the
operators ξðtÞ and ξ†ðtÞ do not commute (ξ† replaces ξ�). In
particular, with the account taken of Eq. (17) we have instead
of Eq. (24)

hξ†ðtÞξðt0Þi ≈ eℏω0=kBThξðtÞξ†ðt0Þi
≈ ½ℏðn̄þ 1ÞΓ=Mω0�δðt − t0Þ; ð26Þ

where n̄≡ n̄ðω0Þ is the thermal occupation number of
the mode.
The noncommutativity of ξðtÞ and ξ†ðtÞ is important.

Indeed, the mean values huðtÞi and hu†ðtÞi decay in time.
However, the commutation relation between uðtÞ and u†ðtÞ
should be independent of time. Using Eq. (26) for the noise
correlators, one immediately finds using Eq. (21) and the
conjugate equation for u† that h½uðtÞ; u†ðtÞ�i remains constant.
On the formal side, the approximations made in deriving the

equations of motion (21)–(26) and the equivalent master
equation (see Appendix B) correspond to the familiar ladder
approximation in the diagrammatic technique (Abrikosov,
Gorkov, and Dzyaloshinski, 1975). We note that a non-
Markovian quantum Langevin equation has been also dis-
cussed in the literature; it has been consistently derived
microscopically for the case of the coupling to a bath of
harmonic oscillators, with the coupling effectively bilinear in
the dynamical variables of the mode and the bath oscillators;
see Ford, Lewis, and O’Connell (1988) and references therein.
The decay rate Γ in the quantum theory is simply related to

the rate of transitions between the oscillator energy levels due
to the coupling to the bath. As shown in Appendix B, Γ is half
the rateW1→0 of transitions from the first excited to the ground
state of the mode due to the coupling to the bath for T ¼ 0.

1. The power spectrum and the susceptibility of a
weakly damped mode

The picture of the dynamics of the oscillator as vibrations at
frequency ω0 with slowly varying amplitude and phase

provides a physical insight into why the oscillator power
spectrum SðωÞ ¼ R

∞
−∞ dthqðtÞqð0Þi expðiωtÞ has a peak at

frequency ω close to ω0. Expressing the coordinate qðtÞ in
terms of the complex amplitude uðtÞ and its complex con-
jugate in the classical limit or the operators uðtÞ and u†ðtÞ, to
extend to the quantum description we find using Eq. (20) that,
for jω − ω0j ≪ ω0,

SðωÞ ≈ 2Re
Z

∞

0

dthu†ðtÞuð0Þieiωt: ð27Þ

From Eqs. (21) and (26), for the considered linear oscillator

SðωÞ ¼ ℏ
Mω0

ðn̄þ 1Þ Γ
Γ2 þ ðω − ω0Þ2

: ð28Þ

Equation (28) extends the result (5) to the quantum domain.
The frequency ω0 here incorporates the polaronic shift P, and
therefore the position of the maximum of SðωÞ is temperature
dependent. We note that the peak of the power spectrum of the
radiation emitted by a quantum oscillator is described by
Eq. (28), where the factor n̄þ 1 is replaced by the thermal
occupation number n̄.
The general expression for the oscillator susceptibility χðωÞ

in response to a weak drive at frequency ω near resonance
jω − ω0j ≪ ω0 reads

χðωÞ ¼ i
ℏðn̄þ 1Þ

Z
∞

0

dthu†ðtÞuð0Þieiωt: ð29Þ

For a linear oscillator the susceptibility is given by Eq. (5).
We emphasize that the general expressions (27) and (29) for

the power spectrum and the susceptibility are not limited to the
case of a linear oscillator. They describe the power spectrum
of a vibrational mode even where the vibrations are nonlinear
as long as the spectrum has a narrow peak with a width much
smaller than ω0 and the reciprocal correlation time of the
reservoir.
The quantum description becomes relevant for the experi-

ments where the mechanical mode is close to the quantum
ground state. This regime was first achieved in nanomechanics
by O’Connell et al. (2010). In this experiment a mechanical
breathing mode vibrating at 6 GHz was cryogenically cooled
using a dilution fridge at 25 mK, and a nonclassical state of
motion was created. Recently cryogenic cooling down to the
quantum regime was accomplished for a nanomembrane
flexural mode with ω0 ¼ 2π × 15.1 MHz by lowering its
temperature to 500 μK (Cattiaux et al., 2021). Mechanical
modes endowed with long lifetimes have been cooled down
into the quantum regime by coupling them to photon cavi-
ties and using parametric drive (Chan et al., 2011; Teufel
et al., 2011; Verhagen et al., 2012). This cooling was
discussed in the review by Aspelmeyer, Kippenberg, and
Marquardt (2014b).

V. RELAXATION MECHANISMS OF
NANOMECHANICAL RESONATORS

The general expression for the decay rate allows us
to consider various microscopic mechanisms of energy
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dissipation of low-frequency modes in NVSs. The major types
of the relevant thermal reservoirs are (i) phonons in the
substrate, (ii) thermal phonons in the nanoresonator,
(iii) electrons in the nanoresonator and in the leads, and
(iv) two-level systems. We use the term “phonon” somewhat
loosely, as the systems we are discussing do not necessarily
have translational symmetry, or even spatial uniformity.
However, the relevant eigenmodes, although not plane
waves, are spatially extended and have a quasicontinuous
frequency spectrum resembling phonons. In thin nanobeams
and membranes the spectrum consists of bands of modes
extended along the nanobeams or membranes and having
different transverse spatial structures. Generally, in disor-
dered systems there are also localized vibrational excita-
tions, which we do not discuss here.

A. Scattering by phonons

The problem of linear damping of low-frequency eigenm-
odes in nanoresonators due to phonon scattering overlaps
with the problem of sound absorption in dielectrics, which
has been intensely studied since the 1930s (Landau and
Rumer, 1937; Akhiezer, 1938); see Woodruff and
Ehrenreich (1961), Maris (1966), Gurevich (1988),
Garanin and Lutovinov (1992), Collins et al. (2013),
Lindenfeld and Lifshitz (2013), Feng, Qiu, and Ruan
(2015), and references therein. It is also closely related to
the problem of decay in low-frequency resonant modes
and gap modes in crystals with defects (Krivoglaz, 1961;
Brout and Visscher, 1962; Kagan and Ioselevskii, 1962;
Krivoglaz, 1964).

1. Clamping losses

The simplest decay mechanism of nanomechanical vibra-
tions is radiation of vibrational excitations (phonons) into the
supporting structure. This mechanism is an important con-
tributor to the so-called clamping losses. Vibrations of the
NVS create time-dependent strain and stress in the area where
the resonator is clamped. They serve as phonon-radiating
antennas. The supporting structure is much larger than the
resonator, and its phonons are a thermal bath for the resonator.
This picture of decay via phonon emission is common for
nanomechanical and micromechanical systems. In microme-
chanical systems the corresponding losses are often called
anchor losses.
The simplest model of the coupling to the bath of phonons

in the support is where the coupling is linear both in the
coordinate q of the NVS mode and in the phonon coordinates
qκ. The model is described by the Hamiltonian Hi ¼ qhb
[Eq. (14)], with

hb ¼
X
κ

Vκðbκ þ b†κÞ: ð30Þ

Here bκ and b†κ are the annihilation and creation operators of
the κth phonon, ωκ is the phonon frequency, and the index κ
includes the wave vector and the branch of the phonon. The

full Hamiltonian of the coupled NVS mode and the phononic
bath is

H ¼ H0 þHi þHb; H0 ¼ ℏω0a†a;

Hb ¼
X
k

ℏωκb
†
κbκ ð31Þ

[remember that the mode coordinate is q ¼
ðℏ=2Mω0Þ1=2ðaþ a†Þ].
The analysis in Sec. IV.B shows that, for the model (30), the

decay rate Γ and the shift of the eigenfrequency P of the NVS
mode have the form (Bogolyubov, 1945)

Γ ¼ π

4Mω2
0

gclðω0Þ; P ¼ 1

2Mω0

Z
�dω

gclðωÞ
ω2 − ω2

0

; ð32Þ

where gclðωÞ ¼ ð2ω=ℏÞPκ jVκj2δðω − ωκÞ is the phonon
density of states weighted with the interaction. The decay
rate (32) is independent of temperature; it cannot be elimi-
nated by cooling down the nanoresonator. However, it is small
for low-frequency NVS modes because the density of pho-
nons at frequency ω0 in a 3D support is ∝ ðω0=ωDÞ2 ≪ 1 (ωD
is the Debye frequency). Using Eq. (32), the decay rate can be
reduced by either decreasing the density of states of phonons
in the support or the coupling to these phonons.
The phonon-radiation decay of nanoresonators or micro-

resonators has been attracting significant attention both on the
theory side [see Angelescu, Cross, and Roukes (1998), Cross
and Lifshitz (2001), Park and Park (2004), Photiadis, Douglas
and Judge (2004), Bindel and Govindjee (2005), and Wilson-
Rae (2008)] and on the experimental side [see Yasumura
et al. (2000), Judge et al. (2007), Anetsberger et al.
(2008), Eichenfield et al. (2009), Pandey et al. (2009),
Unterreithmeier, Faust, and Kotthaus (2010), Schmid et al.
(2011), Cole et al. (2011), Wilson-Rae et al. (2011), Rieger
et al. (2014), Villanueva and Schmid (2014), Chakram et al.
(2014), Meenehan et al. (2014), Ghaffari and Kenny (2015),
Pfeifer et al. (2016), Norte, Moura, and Gröblacher (2016),
Tsaturyan et al. (2017), and Ghadimi et al. (2018), and
references therein]. Approximate expressions for the decay in
cantilevers and membranes were summarized by Schmid,
Villanueva, and Roukes (2016).
Separating radiation decay from other decay mechanisms is

not necessarily simple in an experiment; cf. Unterreithmeier,
Faust, and Kotthaus (2010), Yu, Purdy, and Regal (2012), and
Ghaffari and Kenny (2015). On the theory side, to find the
coupling parameters Vκ one has to find the force that the
resonator mode exerts on the phonons. For atomic displace-
ments in the contact area, a separation of the contributions
from vibrational modes of the resonator and of the support is
nontrivial. Formally, the resonator and the support are a single
system with a single set of eigenmodes. The resonator “mode”
considered is a superposition of the exact eigenmodes, which
have frequencies lying within a band centered at ω0 with a
width ∼Γ and have comparatively large amplitudes inside the
resonator. This picture is reminiscent of the theory of tunnel-
ing decay in quantum mechanics, with the NVS mode being
an analog of the state localized in a potential well and
decaying into extended states outside the well. The extended
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states are the analogs of the phonons of the support. Both
formulations have a counterpart in the analysis of resonant
vibrations in solids that are mostly localized on defects (Brout
and Visscher, 1962; Kagan and Ioselevskii, 1962); see Barker
and Sievers (1975).
One of the approaches to the problem of clamping losses is

based on calculating the transmission T of elastic waves
through the contact (the clamping area). Cross and Lifshitz
(2001) performed detailed calculations of the transmission for
the support and the resonator having the same thickness. They
used a scalar model of elastic waves and the stress-free
boundary conditions at the edges. The displacement field in
the contact area was expanded into a superposition of incident
and reflected waves on the resonator side and a propagating
wave in the support while keeping the field continuous on
both sides of the contact. Once T has been calculated, it is
easy to find the decay rate. For example, for an eigenmode of a
cantilever, which is a standing wave formed as a superposition
of two waves propagating in opposite directions, Γ ∼ vgT =L,
where vg is the group velocity of the wave and L is the length
of the cantilever.
Extensive calculations of the decay rate were done for

several types of modes in nanoresonators by conditionally
separating the displacement at the edge into that from the NVS
mode and the phonons in the support (Wilson-Rae, 2008).
This separation allowed Wilson-Rae to find the stress from the
resonator mode in the contact area and then the force this
mode exerts on the support modes, which gave the parameters
Vκ. The model was compared to measurements on high-stress
Si3N4 membranes with circular and square geometries
(Wilson-Rae et al., 2011) and AlGaAs suspended-plate
resonators (Cole et al., 2011).
Significant progress in reducing clamping losses in micro-

mechanical resonators has been made by creating gaps in the
phonon density of states in the contact area. If phonons with
frequencies close to ω0 are decoupled from the resonator
mode, the decay (32) is eliminated (in practice, suppressed).
Different means of creating spectral gaps have been developed
for micromechanical resonators; cf. Mohammadi et al. (2009),
Pandey et al. (2009), Ghaffari et al. (2013), Bahr, Marathe,
and Weinstein (2014), Yu et al. (2014), Gokhale and Gorman
(2017), and MacCabe et al. (2020). One of the most common
methods is based on the use of phononic crystals. This allows
one to create a mode localized mostly within an interior of a
membrane or a nanobeam near a “defect” of the phononic
crystal, with the frequency in the gap of the crystal excitation
spectrum; see Figs. 6(a) and 6(b). This significantly reduces
the coupling to the support phonons. These localized modes
are counterparts of the modes localized at defects in solids
(Lifshitz, 1942a, 1942b, 1942c), which have frequencies that
lie outside the phonon bands. Most of the studies of localized
modes in crystals with defects have been done using ensemble
measurements (Barker and Sievers, 1975), in contrast to
NVSs, where the modes are accessed individually.
The importance of clamping (anchor) losses has led to a

development of various numerical algorithms, some of which
have been incorporated into the standard software (COMSOL).
An example is the method of a perfectly matched layer, which
was first applied to the problem of anchor losses by Bindel and

Govindjee (2005). In this numerical method, to avoid reflec-
tion of the irradiated phonons back into the resonator a layer is
introduced adjacent to the boundary that truncates the
unbounded support. The elasticity equations are artificially
modified such that inside the layer the solution decays
exponentially, which is technically accomplished using a
complex-valued coordinate change in combination with a
finite element implementation. At the same time, the solution
in the region that includes the resonator is not changed (perfect
matching).

2. Anelastic relaxation and dissipation dilution for
flexural modes

At a phenomenological level, decay of vibrational modes in
microresonators and nanoresonators is often described by
anelastic relaxation. The term was introduced by Zener
(1948). Anelastic relaxation comes from thermal relaxation,
the motion of interstitial atoms, interstate transitions in two-
level systems, grain boundary relaxation, and other processes
(Zener, 1937, 1958; Nowick and Berry, 1972). In many cases
the losses are described by assuming that the Young modulus
has an imaginary part. One can think of this imaginary part as
a result of the delay of the elastic response (hence the term
“anelasticity”). Generally, the losses depend on the mode
frequency and often display a characteristic peak as a function

(b)

(a)

FIG. 6. (a) Engineered shape and support structure of the
mechanical eigenmode. The measured shape of the localized
flexural mode is indicated by the intensity of the yellow (light)
color in the right panel. The silicon nitride membrane under
tension is patterned with holes (shown in black) to (i) decrease
clamping losses thanks to the quasi–band gap created by the
phononic crystal in the membrane, and (ii) reduce dissipation
with “soft clamping” by avoiding areas with large curvature. The
membrane, which is about 100 nm thick, is supported by a silicon
frame (left panel). (b) Energy decay measurements of two
different modes at room temperature. Adapted from Tsaturyan
et al., 2017.
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of frequency (Zener, 1948). In this approach, a complex
Young modulus is a property of a material; cf. Saulson (1990).
However, the frequency dispersion of the complex Young
modulus is often disregarded for the low-frequency modes
studied in nanomechanical resonators, with the exception of
thermoelastic relaxation (discussed later). The decay rate and
the quality factor Q, which is defined by Eq. (6), are then
expressed in terms of the imaginary part of the Young
modulus.
To extend applications of nanomechanical and microme-

chanical systems, it is important to increase the quality factor.
It was shown in the context of interferometric detectors of
gravitational waves (González and Saulson, 1994) that, for
flexural modes of a suspended loaded wire, the quality factor
may become higher than the intrinsic Q of the material. This
effect has become known as dissipation dilution. The physics
of dissipation dilution is based on the fact that the elastic
energy of a flexural mode in a stretched wire or, more
generally, any stressed nanoresonator or microresonator
comes not only from the internal stress associated with the
strain but also from the externally applied tension, whereas the
losses are often due to the intrinsic properties of the material.
Detailed understanding of dissipation dilution requires a

careful analysis of the interplay between the tension and the
losses. It was first shown numerically by Unterreithmeier,
Faust, and Kotthaus (2010) that, in a multimode resonator, the
effect can be accounted for by taking into account the actual
shape of the flexural modes while assuming the complex
Young modulus to be frequency independent. The results were
successfully compared with their experimental data on up to
nine modes in SiN nanostrings. In this approximation, the
losses can be analyzed (Unterreithmeier, Faust, and Kotthaus,
2010; Schmid et al., 2011; Yu, Purdy, and Regal, 2012) by
writing the energy loss per vibrational cycle in the same form
as the stress-related elastic energy and replacing the real
Young modulus with its imaginary part E2. For example, in a
plate with a thickness h and a transverse displacement ζðx; yÞ
in the z direction, the density of losses per unit area is

Wanelast ¼
πh3

12ω0ð1 − ν2PÞ
E2fð∂2xζ þ ∂

2
yζÞ2

þ 2ð1 − νPÞ½ð∂x∂yζÞ2 − ∂
2
xζ∂

2
yζ�g; ð33Þ

where νP is the Poisson ratio. Yu, Purdy, and Regal (2012)
extended this expression to spatially nonuniform systems
[E2 → E2ðx; yÞ]. An explicit calculation for a nanobeam
was done by Schmid et al. (2011).
As seen in Eq. (33), a major contribution to losses comes

from the areas of the largest curvature. For clamped mem-
branes and nanobeams under tension, these areas are close to
the clamps. Therefore, one may expect to reduce the losses by
engineering flexural modes so that they are localized to the
central part of nanobeams or nanomembranes, i.e., away from
the clamps. Such “soft clamping” has been successfully
implemented using phononic crystals in multimode nano-
membranes [Figs. 6(a) and 6(b)] (Tsaturyan et al., 2017), as
well as in multimode nanobeams (Ghadimi et al., 2018). An
alternative strategy consists in clamping a vibrating structure
at the antinode of a perimeter mode (Bereyhi et al., 2022).

Record-high Q factors were obtained along with high
Q × f factors, which in long nanobeams were as large as
1.1×1015 Hz for f¼ 1.33MHz (Ghadimi et al., 2018) at
room temperature. Thus, isolating the modes inside suspended
structures can be advantageous not only for reducing phonon
emission into the substrate but also for reducing intrinsic
material losses.

3. Landau-Rumer relaxation

At the microscopic level, a major intrinsic contribution to
decay of low-frequency micromechanical and nanomechan-
ical modes comes from their nonlinear coupling to other
vibrational modes. The usually studied NVS modes have
small frequencies compared to the Debye frequency ωD.
Therefore, the density of states of higher-frequency modes is
usually much larger than the density of states at ω0, and it is
the coupling to such modes that leads to decay of the low-
frequency modes. This decay is somewhat reminiscent of
sound absorption in dielectrics, which has been intensely
studied since the 1930s (Landau and Rumer, 1937; Akhiezer,
1938); see Maris (1966), Gurevich (1988), Garanin and
Lutovinov (1992), Collins et al. (2013), Lindenfeld and
Lifshitz (2013), Feng, Qiu, and Ruan (2015), and references
therein. The relevant lowest-order nonlinearity is cubic. It
leads to processes in which three vibrational modes are
involved.
For cubic nonlinearity, the coupling (14) is described using

the Hamiltonian Hi ¼ qhb with

hb ≡ hð3Þb ¼
X
κκ0

0Vκκ0b
†
κbκ0 þ

X
κκ0

ðV 0
κκ0b

†
κb

†
κ0 þ H:c:Þ ð34Þ

(the prime over the sum indicates that κ ≠ κ0). In Eq. (34) bκ
and b†κ are the annihilation and creation operators, with κ now
enumerating the modes localized mostly inside the resonator.
Coupling to such modes is often stronger than it is to the
modes in the support, and they serve as a thermal bath for the
considered low-frequency mode. To simplify the language and
to distinguish them from the considered mode, we call these
high-frequency modes phonons.
Generally, because of the possible ripples and other

inhomogeneities of the nanoresonator, the modes of the
quasicontinuous frequency spectrum are not standard plane
waves. This is why we use κ rather than the wave vector to
enumerate them. The nanomechanical modes we are inter-
ested in are also not plane waves, whether these are flexural
modes or modes localized near defects of a phononic crystal.
Therefore, in distinction from the sound absorption problem,
in the scattering described by the coupling qhb the momentum
is not conserved. This makes the problem similar to that of
dissipation of modes localized on defects in disordered solids.
Such a problem for the coupling Hamiltonian (34) was
considered by Krivoglaz (1961, 1964).
The coupling parameters Vκκ0 have to be calculated with

the account taken of the actual structure of the involved
modes; cf. Atalaya et al. (2016), Iyer and Candler (2016), and
MacCabe et al. (2020). The nonlinear coupling of the
considered NVS modes to the modes in the support and
the corresponding nonlinear clamping losses may also be
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important because of the same density of states argument. This
coupling is described by the Hamiltonian (34), with κ referring
to the modes primarily localized in the support. To our
knowledge, this coupling has not yet been studied for nano-
resonators either theoretically or in experiment.
The term ∝ V 0

κκ0 in Eq. (34) describes a decay process where
one quantum of the NVS mode disappears and two quanta of
the thermal bath (two phonons) emerge with the total energy
ℏω0; see Fig. 7(a). The rate of such scattering is small for low-
frequency NVS modes because of the low density of states of
the relevant phonons. For ℏω0 ≪ kBT, the process where a
phonon is inelastically scattered off the considered NVS mode
into another phonon is of a much higher probability; for
example, a phonon κ is scattered into a phonon κ0 and the
energy difference ℏωκ0 − ℏωκ is equal to ℏω0. This Raman-
type scattering is sketched in Fig. 7(b). The coupling leading
to this process is given by Vκκ0 in Eq. (34). The scattering
probability is comparatively large when the thermal occupa-
tion numbers of the modes κ; κ0 are large and their density of
states is large too. This means that kBT ≫ ℏω0, a condition
met in most experiments, with a few exceptions; see
O’Connell et al. (2010), Chu et al. (2017, 2018), Satzinger
et al. (2018), Arrangoiz-Arriola et al. (2019), MacCabe et al.
(2020), Cattiaux et al. (2021), and Wollack et al. (2022), and
references therein.
The phonons κ and κ0 involved in the scattering shown in

Fig. 7(b) are themselves experiencing decay. The rate of the
decay of the considered low-frequency mode Γ strongly
depends on the interrelation between the phonon relaxation
time τκ and the vibration period of the considered mode
2π=ω0. If ω0τκ ≫ 1, we can disregard the decay of high-
frequency phonons. Using Eqs. (23) and (34) we find that

Γ¼ΓLR ¼ π

2Mℏω0

X
κ;κ0

jVκκ0 j2½n̄ðωκÞ− n̄ðωκ0 Þ�δðωκþω0−ωκ0 Þ:

ð35Þ

Equation (35) has the same form as the expression for the
decay rate of a mode localized on a defect (Krivoglaz, 1961,
1964) and is similar to the expression given by Landau and
Rumer (1937) for the sound absorption coefficient in solids.
An analysis of this expression in the case of a breathing mode
in a nanobeam phononic crystal (MacCabe et al., 2020)
showed that the corresponding decay rate is much smaller
than the observed value (which itself was extremely small,
with the Q factor reaching 5 × 1010). Note that the density of
states arguments and the symmetry arguments may lead to a
four-quantum decay process having a higher rate than the
three-quantum one (Landau and Khalatnikov, 1949a, 1949b;
De Martino, Egger, and Gogolin, 2009).

4. Thermoelastic and Akhiezer relaxation

Of primary interest for nanomechanical and micromechan-
ical resonators is the situation where the decay rate of high-
frequency phonons exceeds the frequencies of the considered
modes. Phonon decay significantly complicates the calcula-
tion of the power spectrum of hð3Þb , which gives the decay rate
Γ; see Eq. (23). In such a calculation the interaction between
the phonons should be explicitly taken into account. This
interaction comes from the nonlinearity of the crystalline
lattice, which is described by nonlinear terms in the phonon
Hamiltonian, i.e., the bath Hamiltonian. To the lowest order in
the bath nonlinearity, one has to replace the bath Hamiltonian

Hb given by Eq. (31) with Hb þHð3Þ
b ,

Hð3Þ
b ¼ 1

2

X
κ1κ2κ3

Vκ1κ2κ3b
†
κ1b

†
κ2bκ3 þ H:c: ð36Þ

The Hamiltonian (36) describes processes where one phonon
decays into two other phonons or, vice versa, two phonons
annihilate and one phonon emerges such that the overall
phonon energy is conserved, ωκ1 þ ωκ2 ¼ ωκ3 . Other cubic in

bκ; b
†
κ terms have been dropped in Eq. (36), as they do not

describe phonon decay, to the leading order.
In Appendix G we outline a way to calculate the decay rate

of the low-frequency NVS mode using the general formu-
lation of Sec. IV, with account taken of the nonlinear mode
couplings (34) and (36). The calculation is somewhat
involved. Here we give a qualitative phenomenological picture
of two important limiting cases. We note, however, that both
cases follow from the same general analysis.
The thermoelastic relaxation (TER) case is where the

eigenfrequency ω0 is so small that, because of the cou-
pling (36), the high-frequency vibrations have time to come
to thermal equilibrium locally in different parts of the
vibrating nanoresonator. One can then introduce a local
position-dependent temperature TðrÞ inside the nanoresona-
tor. For flexural modes, this implies that the mean free path of
thermal phonons lT , which is determined by the coupling (36),
is small compared to all dimensions, including the transverse
dimension of the resonator.
The TER mechanism was proposed by Zener (1938). A

detailed analysis of the TER for flexural modes was given by
Lifshitz and Roukes (2000). The underlying physics can be
understood (Landau and Lifshitz, 1986) if one thinks of

(a) (b)

(c) (d)

FIG. 7. Scattering of a considered NVS mode due to its
nonlinear coupling to phonons. ω0 is the NVS mode frequency,
and ωκ and ωκ0 are the frequencies of the phonons with quantum
numbers κ and κ0. (a) Decay into two phonons. (b) Landau-Rumer
mechanism: anti-Stokes scattering of a phonon κ into a phonon κ0
by the NVS mode. (c) Scattering of two quanta of the NVS mode
into a phonon, a process leading to nonlinear friction. (d) Analog
of the Landau-Rumer scattering that leads to nonlinear friction.
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thermal expansion and of generating heat by bending a beam
or a membrane. For a small temperature change δT, thermal
expansion is proportional to δT; that is, the relative change of
the volume is δV=V ¼ 3αTδT, where αT is the linear thermal
expansion coefficient, which is determined by the coupling
parameters (34); see the discussion after Eq. (39). On the other
hand, it follows from the thermodynamics that there is an
inverse process. Changing the volume leads to heating or
cooling. The heat produced by a small volume increment δV is
T∂TFV−T, where FV−T is the free energy density associated
with thermal expansion: FV−T ¼ −EαTδTδV=ð1 − 2νPÞV.
In flexural vibrations one part of the nanoresonator is

periodically squeezed (δV < 0), whereas the other part is
stretched in the counterphase. Therefore, a temperature
gradient emerges across the resonator. It dissipates via thermal
conductivity, which leads to vibration decay.
If the thickness of the nanoresonator in the bending

direction is l⊥, the characteristic time of thermal diffusion
across it is

τZ ¼ Cρl2⊥=π2κT; ð37Þ

where C is the specific heat per unit mass and κT is the thermal
conductivity (Zener, 1938). If this time is small compared to
the vibration period, the nanoresonator is essentially iso-
thermal and TER is not efficient. In the opposite limit ω0τZ ≫
1 TER is not efficient either, since the heat does not have time
to propagate across the resonator over the vibration period and
is locally averaged out over the compression-extension cycle.
An intuitive approximation for the decay rate is provided by
the Zener expression (Zener, 1938)

ΓTER ¼ Eα2TTω0

2Cρ
ω0τZ

1þ ðω0τZÞ2
: ð38Þ

In agreement with the previous qualitative arguments, the
decay rate becomes small in the cases both where ω0τZ is large
and where it is small.
A quantitative analysis of the dynamics of a flexural mode

in a nanobeam can be done by writing the equation of motion
for the displacement in the bending direction that, along with
the elastic force, takes into account the force from the thermal
expansion. This equation and the thermal diffusion equation
form a system of two coupled linear equations. The complex
eigenvalues of these equations describe the decay rate and the
frequency shift of the flexural mode due to the thermoelastic
effect (Lifshitz and Roukes, 2000).
On the experimental side, TER has been seen in both

micromechanical and nanomechanical resonators at room
temperature; see Roszhart (1990), Yasumura et al. (2000),
Verbridge et al. (2006), Chandorkar et al. (2009), and Ghaffari
and Kenny (2015). As the temperature is decreased, the decay
rate (38) also decreases, and other decay mechanisms come
into play. In addition, the mean free path of thermal phonons
in nanoresonators can become larger than the resonator
thickness such that the system is no longer in the TER regime.
Akhiezer damping.—The expression for the decay rate

changes if ω0 largely exceeds the rate of heat diffusion across
the resonator (ω0 ≫ τ−1Z ), even though it can still be small or

comparable to the relaxation rate of thermal phonons. The
phonons then do not have time to equilibrate locally to different
temperatures in different parts of the resonator. The decay
mechanism in this case was discussed by Akhiezer (1938) in
the context of ultrasound absorption in solids. The correspond-
ing mechanism of ultrasound absorption is called Akhiezer
damping. It has been attracting significant attention and has
been studied for various models of the phonon-phonon
coupling; cf. Woodruff and Ehrenreich (1961), Maris
(1966), Gurevich and Shklovskii (1968), Maris (1968), and
Garanin and Lutovinov (1992), and references therein.
The concept of Akhiezer damping directly extends to the

decay of low-frequency vibrational modes in nanomechanical
and micromechanical systems. In this context it was analyzed
in various papers (Kiselev and Iafrate, 2008; Kunal and Aluru,
2014; Atalaya et al., 2016; Iyer and Candler, 2016; Hamoumi
et al., 2018). A detailed experimental study of the temperature
dependence of Akhiezer damping in Si micromechanical
resonator was described by Rodriguez et al. (2019); see also
Ghaffari et al. (2013) for a review of the earlier work.
To give an idea of the mechanism, we consider the coupling

of a low-frequency mode to high-frequency phonons in the
deformation potential approximation (Gurevich, 1988). This
approximation corresponds to the choice of the coupling
parameters Vκκ0 in Eq. (34) based on the picture (Akhiezer,
1938) in which a low-frequency mode, with a spatially smooth
displacement field uðrÞ, weakly locally distorts the crystal.
The distortion leads to coordinate-dependent changes δωκ of
the frequencies ωκ of high-frequency modes [remember that
φðrÞ is the dimensionless local displacement due to the
considered low-frequency mode],

δωκ ¼ −ωκγ
ðGÞ
κ ∇u; uðrÞ ¼ qφðrÞ. ð39Þ

The parameter γðGÞκ determines the coupling constants

Vκ1κ2 in Eq. (34). The average of γðGÞκ over the phonons with
the weight given by the phonon heat capacities gives the
Grüneisen parameter γðGÞ. This parameter is immediately
related to the thermal expansion coefficient αT , i.e.,
γðGÞ ¼ EαT=Cρð1 − 2νPÞ. The approximation (39) is often
generalized by replacing ∇u with the strain tensor associated

with qφðrÞ, in which case γðGÞκ also becomes a tensor.
Finding the Akhiezer damping rate in nanomechanics

requires, as a first step, solving the full quantum kinetic
equation for the two-phonon correlation function of thermal
phonons; see Appendix G. This equation goes beyond the
conventional kinetic equation for the occupation numbers of
phonons (Atalaya et al., 2016). However, to see the Akhiezer
effect qualitatively, one can start with Eq. (35), which
describes phonon scattering off the low-frequency mode.
Since high-frequency phonons have finite lifetimes, their
energies are uncertain, and in Eq. (35) the δ function of the
energy conservation law δðωκ − ωκ0 þ ω0Þ can be replaced by
a Lorentzian with a half-width given by a phonon decay rate
1=τph. This rate is the characteristic value of the decay rate τ−1κ
of the thermal phonons, which is quadratic in the parameters
of the phonon-phonon coupling Vκ1κ2κ3 . From Eqs. (35)
and (39), we then have
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ΓAkh ¼ aAkhCðγðGÞÞ2 ω0τph
1þ ðω0τphÞ2

: ð40Þ

The lifting of the energy conservation constraint described
by Eq. (40) leads to an increase of the decay rates of low-
frequency NVS modes compared to the Landau-Rumer
theory (35). It also leads to a specific temperature dependence
of the decay rate. If the mean free path of the thermal phonons
is small compared to the size of the resonator, this dependence
is similar to the temperature dependence of ultrasound
absorption. The parameter aAkh in the latter case was found
by Woodruff and Ehrenreich (1961) for a simple model of
the coupling to acoustic phonons and for the ultrasound
frequency ω0 ≪ τ−1ph , in which case aAkh ¼ ω0T=3ρv2s , where

vs is the average speed of sound. In this regime ΓAkh weakly
depends on temperature provided that T exceeds the Debye
temperature. This is because the phonon scattering rate
is proportional to the phonon occupation number, i.e.,
τ−1ph ∝ T (Gurevich, 1988), whereas C is independent of T.
For temperatures that are low compared to the Debye temper-
ature, on the other hand, ΓAkh ∝ T−1 in clean systems,
where τph ∝ T−5.
The decay rate (40) displays a pronounced dependence on

the mode eigenfrequency ω0. It is small both for ω0τph ≪ 1
and in the opposite limit ω0τph ≫ 1, where the decay is
described by the Landau-Rumer–type theory.
The low-temperature behavior of ΓAkh changes in thin

nanoresonators. When the wavelength of thermal phonons
becomes comparable to one of the dimensions of a resonator,
the phonon spectrum is quantized and the density of states of
the phonons is changed. This leads to a change of both the
specific heat and the phonon decay rate. Moreover, nano-
resonators can be (and often are) inhomogeneous on the scale
of the phonon mean free path because of bending, twisting,
ripples, etc., which requires a modification of the theory
(Atalaya et al., 2016). On the experimental side, in contrast to
micromechanical resonators (Rodriguez et al., 2019), the
study of Akhiezer damping and the accompanying frequency
shift in nanoresonators is at an early stage (Tepsic et al., 2021).
To relate this to the previous discussion, we note that the

decay of thermal phonons that underlies the Akhiezer relax-
ation is one of the microscopic mechanisms of the anelastic
relaxation described by a complex Young modulus; see
Sec. V.A.2.

B. Losses due to surface effects and two-level systems

Nanomechanical resonators are characterized by a large
surface-to-volume ratio. Therefore, surface scattering and the
defects associated with surfaces may be an important source of
mode relaxation; cf. Yasumura et al. (2000), Ekinci and
Roukes (2005), Unterreithmeier, Faust, and Kotthaus
(2010), Yu, Purdy, and Regal (2012), Faust et al. (2014),
Villanueva and Schmid (2014), Hamoumi et al. (2018), and
references therein. In particular, Villanueva and Schmid
(2014) performed detailed measurements of surface losses
in SiN membranes at room temperature as a function of the
thickness and also compared different data in the literature;
they concluded that the Q factor linearly increases with

increasing thickness. This is expected for surface losses if
one thinks of the Q factor as the ratio of the energy stored,
which is proportional to the volume, to the energy losses,
which linearly increase with the surface area.
Generally, one can think of the surface losses as resulting

from “static” and “dynamical” effects. A simple static effect
comes from the static disorder, which leads to scattering of the
thermal phonons. The effect is particularly strong where the
phonon mean free path becomes comparable to the thickness.
The disorder-induced scattering relaxes the momentum con-
servation law in phonon-phonon scattering, and thus decreases
the lifetime of thermal phonons. This leads to a decrease of the
relaxation rate of the low-frequency NVS modes in the
Akhiezer regime for ω0τph < 1, as seen from Eq. (40) (De,
Kunal, and Aluru, 2016). However, as previously mentioned,
one can also think of thermal phonons somewhat differently
by associating them with the exact vibrational excitations of
the disordered system in the harmonic approximation. The
coupling of such thermal excitations to the low-frequency
NVS modes is different than in a system with no disorder;
cf. Atalaya et al. (2016). This can increase the Landau-Rumer
and Akhiezer relaxation rates compared to those calculated in
the absence of disorder.
The dynamical effects of surface disorder come from the

defects with internal degrees of freedom, which can absorb
energy from the low-frequency NVS modes. The best-known
type of such defects are two-level systems (TLSs), which were
introduced by Anderson, Halperin, and Varma (1972) and
Phillips (1972) to explain the anomalous heat capacity and
thermal conductivity of glasses at low temperatures. TLSs
exist not only on surfaces but also in the bulk. Their density of
states may be higher than the density of states of thermal
phonons for low temperatures. For higher temperatures, where
the density of states of thermal phonons is higher, the TLSs
can “mediate” energy transfer from the low-frequency NVS
modes to thermal phonons.
TLSs with level spacing that significantly exceeds ℏω0 are

believed to be important for the relaxation of low-frequency
modes in nanoresonators. The relaxation is due not to resonant
interlevel transitions of the TLSs, but instead to nonresonant
processes. It has been discussed for a broad range of nano-
resonators, such as gold (Venkatesan et al., 2010), polycrystal-
line aluminum (Hoehne et al., 2010), silica (Riviere et al.,
2011), aluminum covered silicon (Lulla et al., 2013), SiN
(Faust et al., 2014) and GaAs (Hamoumi et al., 2018)
nanobeams as well as graphene-based heterostructure mem-
branes (Will et al., 2017), half-ring crystalline Si resonators
(Hauer et al., 2018), and phononic crystals (MacCabe et al.,
2020); see also Imboden and Mohanty (2014) for a review of
early work.
The dominant mechanism of nonresonant coupling to a

TLS is the modulation of the level spacing by the strain from
the vibrational mode. This coupling is often called dispersive.
It is easy to visualize if one thinks of the TLS states as
intrawell states of a particle in a double-well potential, which
are hybridized by interwell tunneling. The strain modulates
the wells differently, which leads to a change of their relative
depths, and thus to a change of the level spacing. The
Hamiltonian of the coupling reads
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HTLS ¼ CTLSqðn̂2 − n̂1Þ; ð41Þ

where n̂i is the operator of the occupation of the ith state of the
TLS (i ¼ 1; 2), q is the NVS mode coordinate, and CTLS is the
coupling constant.
Relaxation of the mode results from the finite lifetime of the

TLS states. By periodically modulating the TLS level spacing,
the mode modulates the state populations with a delay
determined by the interrelation between ω0 and the interstate
switching rate τ−1TLS. This delay leads to the absorption of the
mode energy, i.e., to the mode relaxation. If ω0 ≪ τ−1TLS, the
TLS adiabatically follows the mode-induced strain, with
essentially no absorption. In the opposite limit (ω0 ≫ τ−1TLS)
the TLS averages out the mode-induced strain, again with
little absorption. Overall, the absorption coefficient ΓTLS as a
function of the mode eigenfrequency ω0 is described by the
so-called Debye peak, which was found by Debye (1929) in
an analysis of the dielectric response due to a reorientation of
polar molecules in crystals,

ΓTLS ∝ C2
TLSðkBTÞ−1

ω0τTLS
1þ ω2

0τ
2
TLS

: ð42Þ

Equation (42) can be immediately derived from the general
formulation (17).
The TLS relaxation rate τ−1TLS is determined by the coupling

to phonons (or electrons). Generally, this rate depends on the
geometry of the nanoresonator and the associated change of
the phonon spectrum (Behunin, Intravaia, and Rakich, 2016).
At low temperatures, it is dominated by interstate tunneling
and single-phonon processes, with τ−1TLS ∝ cothðE=2kBTÞ,
where E is the level spacing. At higher temperatures phonon
scattering off TLSs comes into play. When the results are
extended to still higher temperatures, TLSs are often thought
of as particles in a double-well potential, with τ−1TLS deter-
mined by the rate of activated interwell switching,
τ−1TLS ∝ expð−ΔU=kBTÞ, where ΔU is the barrier height;
see Enss and Hunklinger (2005).
The overall temperature dependence of the decay rate of the

low-frequency NVS modes is obtained by summing the
contributions ΓTLS for different TLSs. At low temperatures
(T ≲ 1–3 K), it is often described by a power law (Venkatesan
et al., 2010; Lulla et al., 2013), as expected for some models
of the TLSs (Seoánez, Guinea, and Castro Neto, 2008). For
higher temperatures, because of the exponential falloff of τTLS
with the increasing temperature, ΓTLS may display a peak as a
function of temperature where ω0τTLS ¼ 1 (Faust et al., 2014).
The overall behavior of the decay rate with temperature
depends on whether there are various types of TLSs or, as
in the case of certain surface defects, the distribution of the
TLS parameters is narrow; cf. Faust et al. (2014) and
Hamoumi et al. (2018).
Generally, resonant absorption by low-energy TLSs with

the level spacing ℏω0 can also contribute to the mode decay
(Remus, Blencowe, and Tanaka, 2009). It would be charac-
terized by absorption saturation and the associated decrease of
the decay rate with the increasing mode amplitude, which is
similar to ultrasound absorption (Golding et al., 1973) and the
absorption of microwave radiation in superconducting cavities

(Gao et al., 2007). However, this behavior is most clearly
manifested for ℏω0 ≳ kBT, a demanding condition in
nanomechanics.

C. Electronic relaxation

The thermal bath can be the electrons flowing through the
resonator. It can also be the conducting electrons in a device
capacitively coupled to the resonator. Both layouts are similar.
Electron transport is used in many resonators to transduce
mechanical vibrations into a measurable signal and to drive
the motion via the capacitive force, i.e., by modulating the
potential Vg between the gate electrode and the nanoresonator,
as discussed in Sec. II. Conversely, the coupling to the
electron system leads to the relaxation of mechanical vibra-
tions via electrical dissipation.
The simplest relaxation mechanism is Ohmic losses in the

electronic circuit. To illustrate this mechanism, we consider a
mechanical resonator based on a suspended wire coupled to
the gate electrode that, along with the elements of the
electronic circuit, serves as the thermal reservoir; see Fig. 8(a).
The coupling to the electronic degrees of freedom comes
from the potential Vg in Fig. 8(b) that fluctuates due to the
noise in the electron system. The coupling is described by the
Hamiltonian

Hi ¼ qhb; hb ¼ −C0
gV̄gδVg. ð43Þ

We assume in Eq. (43) that the fluctuations of the potential
δVg are small compared to its mean value V̄g ≡ Vdc

g ;
cf. Eq. (8). From the general expression (22), the contribution
Γe of the coupling (43) to the decay rate Γ of the resonator in
the classical case kBT ≫ ℏω0 is

Γe ¼ ð4MkBTÞ−1ðC0
gVdc

g Þ2
Z

∞

−∞
dteiω0thδVgðtÞδVgð0Þi: ð44Þ

The power spectrum of the voltage fluctuations has a simple
form for the Ohmic resistance in the device shown in Fig. 8(a),
where we disregard the Coulomb interaction between the
electrons as well as phase-coherent effects. For simplicity, we
assume that the impedance of the circuit at the frequency ω0 is
given by large resistances Rc1 and Rc2 at the interface between
the wire and the electrical leads. The corresponding resistors
are connected in parallel to the ground [see Fig. 8(b)] such
that the total resistance is Reff ¼ Rc1Rc2=ðRc1 þ Rc2Þ.

(b)(b)(a)

FIG. 8. (a) Schematic and (b) equivalent circuit of a suspended
wire capacitively coupled to the gate electrode G and electrically
contacted to the electrodes S and D. The resistances at the
interface between the wire and the electrodes are Rc1 and Rc2.
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The correlator of δVg is then determined simply by the
Johnson-Nyquist noise, resulting in

Γe ¼ ðC0
gVdc

g Þ2Reff=2M: ð45Þ

We note that Eq. (45) can be obtained directly from Eq. (43)
by noting that the force on the resonator is C0

gV̄gδVg.
The motion of the resonator modulates the charge on it,
leading to a current ≈ C0

gVdc
g _q. As a result, the potential δVg is

modulated. If the vibration frequency ω0 is small compared to
the relaxation rate of the circuit ðReffCgÞ−1, then δVg follows
_qðtÞ adiabatically such that the corresponding part of δVg has
the form ½δVg�q ¼ −ReffC0

gVdc
g _q. By substituting this expres-

sion into the force on the resonator, we obtain the friction
force −2MΓe _q. An alternative derivation based on calculating
the energy loss due to the resistance of the nanoresonator was
given by Song et al. (2012).
The electronic relaxation has been measured in resonators

based on two-dimensional systems, such as graphene, WSe2
monolayers, and van der Waals stacks (Song et al., 2012;
Morell et al., 2016; Will et al., 2017). The measured
mechanical dissipation rate increases quadratically with
Vdc
g , in agreement with Eq. (45). The electrical resistance

obtained from the mechanical dissipation is in reasonably
good agreement with the resistance of the device. A quanti-
tative comparison is often challenging, especially when the
spatial flow of the vibration-induced current is not precisely
known due to the geometry of the device.
The electron-electron interaction can strongly modify the

relaxation rate of a nanoresonator. The effect has been studied
in several theoretical papers for low-resistive nanoresonators
capacitively coupled to stationary normal and superconduct-
ing single-electron transistors (SETs) and in the layout where
the nanoresonator itself is a SET that is capacitively coupled to
an immobile gate electrode (Armour, Blencowe, and Zhang,
2004; Mozyrsky, Martin, and Hastings, 2004; Blencowe,
Imbers, and Armour, 2005; Clerk and Bennett, 2005;
Bennett and Clerk, 2006; Pistolesi and Labarthe, 2007;
Micchi, Avriller, and Pistolesi, 2015). The underlying physics
is related to the dependence of the potential of the SET island,
and thus the tunneling rate, on the position of the nano-
resonator. Experiments were carried out on SETs (Woodside
and McEuen, 2002; Knobel and Cleland, 2003; Stomp et al.,
2005; Zhu, Brink, and McEuen, 2005; Lassagne et al., 2009;
Steele et al., 2009; Bennett et al., 2010; Ganzhorn and
Wernsdorfer, 2012; Meerwaldt et al., 2012; Benyamini et al.,
2014; Ares et al., 2016; Deng et al., 2016; Okazaki et al.,
2016; Willick, Tang, and Baugh, 2017; Blien et al., 2020;
Urgell et al., 2020; Wen et al., 2020; Vigneau et al., 2021),
superconducting SETs (LaHaye et al., 2004, 2009; Naik et al.,
2006; Pirkkalainen, Cho et al., 2015), and double-quantum
dots (Benyamini et al., 2014; Khivrich, Clerk, and Ilani,
2019).
The theory takes advantage of the fact that the response of a

SET to the position is usually fast on the timescale of the
vibration period; i.e., ω0 is small compared to the tunneling
rate. The analysis can be formulated in terms of the linear
response of the SET to the vibrations; cf. Sec. IV.
Measurements have shown that the coupling can dramatically

increase the mechanical dissipation (Naik et al., 2006;
Lassagne et al., 2009; Steele et al., 2009). When the voltage
applied between the source and the drain electrodes of the
SET is larger than kBT=e, the electronic bath is no longer in
equilibrium and it can cool the thermal vibrations (Clerk and
Bennett, 2005). In addition, such an out-of-equilibium elec-
tronic bath in a SET can suppress the total dissipation rate of
the mechanical resonator to zero, leading to self-oscillation
(Usmani, Blanter, and Nazarov, 2007; Wen et al., 2020).
Cooling and self-oscillations can also be produced by an
electrothermal reaction force associated with the electrical
power dissipated in SETs (Urgell et al., 2020).
The so-called electron shuttles (Gorelik et al., 1998; Erbe

et al., 2001; Fedorets et al., 2004; Koenig andWeig, 2012) can
be operated in the self-oscillation regime too. These are
devices where the metal island of the SET placed on a
nanocantilever or microcantilever is oscillating between the
source and drain leads (in each oscillation period, the island
mechanically transfers a quantized number of electrons from
one lead to the other).
The interplay of the NVS dynamics with other many-

electron effects and the effects of the topology and coherence
of the electron system has also been investigated. They
include the Kondo (Götz et al., 2018) and the quantum
Hall effects (Singh et al., 2012; Chen, Deshpande et al.,
2016), the electronic Fabry-Perot interference in a nano-
resonator (Moser et al., 2014), and the effect of Aharonov-
Bohm oscillations in a topologically nontrivial nanowire (Kim
et al., 2019). Other manifestations of the coupling of the NVS
modes and the electron subsystems were studied in ballistic
p-n junctions (Jung et al., 2019), field-effect transistors
(Sazonova et al., 2004), and quantum-point-contact devices
(Poggio et al., 2008).

VI. CONSERVATIVE AND DISSIPATIVE NONLINEARITY

Vibration nonlinearity is one of the most important and
interesting features of the NVS modes. As previously men-
tioned, since nanomechanical resonators are small, vibration
nonlinearity already comes into play for small vibration
amplitudes. Sometimes even thermal fluctuations can be
sufficiently large to take the vibrations to a nonlinear regime.
This regime is also reached with a modest resonant driving if
the quality factor is high. In fact, for high-Q modes care must
be taken to stay in the linear regime.
Nonlinear effects are usually separated into conservative

and dissipative categories. Conservative nonlinearity corre-
sponds to the restoring force being a nonlinear function of the
mode coordinate q or, equivalently, to the potential energy of
the mode UðqÞ differing from Mω2

0q
2=2. If UðqÞ has

inversion symmetry, UðqÞ ¼ Uð−qÞ, as for bending modes
in a straight nanotube or a flat membrane the leading non-
parabolic term in UðqÞ is quartic in q. The potential energy of
the mode then has the form

UðqÞ ¼ 1
2
Mω2

0q
2 þ 1

4
Mγq4: ð46Þ

This nonlinearity is often called the Duffing nonlinearity or, in
terms of nonlinear optics, the Kerr nonlinearity. It has been
seen in the majority of NVSs; cf. Aldridge and Cleland
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(2005), Kozinsky et al. (2006), Feng et al. (2007),
Castellanos-Gomez et al. (2013), and Yang et al. (2019).
In nonlinear dynamics the nonlinearity is conventionally

considered to be strong where the nonparabolic part of the
potential becomes of the same order of magnitude as the
parabolic part (Arnold, 1989). In nanomechanics, in most
studies the conservative nonlinearity of NVSs is weak in this
sense,

jγjhq4i ≪ ω2
0hq2i: ð47Þ

However, even where the condition (47) holds, the effect of
the nonlinearity on the dynamics can be strong provided that
the decay rate of the mode is small, i.e., Q ≫ 1. This is clear
from the following argument. The nonlinear part of the
restoring force −Mγq3 shows that the effective “spring
constant” gets effectively either stronger or softer with the
increasing vibration amplitude, depending on whether γ > 0
or γ < 0, respectively. Therefore, the resonant frequency
becomes dependent on the vibration amplitude A. For weak
nonlinearity, the shift in ω0 is quadratic in A (see
Appendix A.1),

δω0 ¼
3

8

γ

ω0

A2: ð48Þ

The Duffing nonlinearity becomes important once this fre-
quency shift becomes comparable to the frequency uncertainty
associated with the decay rate Γ. In quantum terms, the energy
levels of the mode become nonequidistant, and the non-
linearity becomes important once this nonequidistance
becomes comparable to the level width ∝ ℏΓ; see Appendix E.
Dissipative nonlinearity corresponds, in the phenomeno-

logical description, to the friction force being a nonlinear
function of the velocity and coordinate. This function changes
sign upon time reversal analogously to the linear friction force
−2MΓ _q. In its simplest form, the nonlinear friction force is
∝ q2 _q (van der Pol, 1926) or ∝ _q3 (Rayleigh, 1945). As with
the conservative nonlinearity, for weakly damped modes the
nonlinear dissipative force is important where it is comparable
to the linear friction force −2MΓ _q, which is much weaker than
the restoring harmonic force −Mω2

0q. In this section we
discuss the mechanisms of nonlinearity and some of the key
manifestations of nonlinearities in mechanical resonators.
Nonlinear resonant phenomena are discussed in Sec. VII.

A. Mechanisms of conservative nonlinearity

There are several mechanisms of nonlinearity for the
restoring force in nanomechanics. The simplest of them is
the nonlinear dependence of the stress (tension) on the
displacement field of the mode. A familiar example is
provided by a doubly clamped prestressed thin beam
(Landau and Lifshitz, 1986). The change ΔL of the length
L of the beam due to the transverse displacement Xðz; tÞ in a
flexural vibrational mode is ΔL ≈

R
L
0 dzð∂X=∂zÞ2=2 for small

jdX=dzj (z is the coordinate along the beam). The elongation
leads to the tension ESΔL=L, where S is the area of the beam
cross section. This tension adds to the tension T inside the
beam such that the overall restoring force due to the tension is

FTðzÞ ≈
�
T þ ðES=2LÞ

Z
dzð∂X=∂zÞ2

�
∂
2X=∂z2: ð49Þ

One can now substitute Xðz; tÞ ¼ qðtÞφ̃ðzÞ, where φ̃ðzÞ is the
spatial profile of the mode (which is sinusoidal for strong
tension). The cubic in the Xðz; tÞ term then leads to the
force −γMq3 in the equation of motion for qðtÞ [Eq. (2)],
with γ ¼ −ðE=2LρÞ½R dzðdφ̃=dzÞ2�2½R dzφ̃ðzÞ2�−1 (Lifshitz
and Cross, 2008).
Nonlinear terms in the restoring force can also come from

other sources. In particular, they can come from the nonlinear
dependence of the resonator-to-gate capacitance Cg on the
displacement of the resonator. As discussed in Sec. II.D, for a
given mode the second derivative of Cg over the displacement
associated with the mode leads to the change of the mode
frequency. The higher-order derivatives of Cg lead to a force
that is quadratic or cubic in the displacement, i.e., has the form
−Mβq2 −Mγq3; cf. Kozinsky et al. (2006), Chan, Dykman,
and Stambaugh (2008a), Eichler, Moser et al. (2011),
Meerwaldt, Steele, and Zant (2012), and Eichler et al.
(2013). The parameters β and γ, which are proportional to
the third and fourth derivatives of Cg, respectively, are
quadratic in the gate voltage; cf. Eq. (9). They scale approx-
imately as the cube and the fourth power of the ratio of the
displacement amplitude to the distance between the resonator
and the relevant electrodes.
The nonlinearity can also result from electron-vibrational

coupling (Lassagne et al., 2009; Steele et al., 2009; Meerwaldt
et al., 2012; Yang et al., 2016; Moskovtsev and Dykman,
2017). Measurements on nanomechanical and micromechan-
ical systems showed that the dependence of the vibration
frequency on the amplitude, the so-called backbone curve, can
be more complicated than Eq. (48) (Kacem and Hentz, 2009;
Polunin et al., 2016; Samanta, Arora, and Naik, 2018; Huang
et al., 2019; Ochs et al., 2021a). This indicates that, in
some cases, the restoring force can be proportional to
higher powers of the displacement. The backbone curve
can become nonmonotonic. At the extrema the vibration
frequency is independent of the amplitude, leading to the so-
called zero-dispersion phenomena (Soskin, Mannella, and
McClintock, 2003).
The backbone curve of weakly damped modes, i.e.,

the relation between the frequency of the mode and the
vibration amplitude, can be measured directly in the ringdown
measurement. It is based on exciting vibrations to a com-
paratively large amplitude and measuring their frequency and
amplitude as functions of time as the amplitude decays; see
Figs. 9(a)–9(c) (Londoño, Neild, and Cooper, 2015; Polunin
et al., 2016; Güttinger et al., 2017). This method applies
where the nonlinearity is comparatively strong, so the overall
frequency change is much larger than the decay rate.
Nanomechanical resonators usually have several well-

resolved low-frequency eigenmodes at a time. They can be
flexural or torsional modes or standing acoustic waves (Westra
et al., 2010; Barnard et al., 2012; Castellanos-Gomez et al.,
2012; Eichler et al., 2012; Mahboob et al., 2013; Matheny
et al., 2013; Yamaguchi and Mahboob, 2013; Hanay et al.,
2015; Mathew et al., 2016). They are nonlinearly coupled.
The nonlinearity of the elasticity and of the capacitance are the
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leading sources of this coupling. For flexural modes this is
seen in Eq. (49) if one takes into account the fact that XðzÞ is a
sum of the displacements of different modes. In the case of
nanobeams one should also take into account that nonlinear
tension comes from modes that involve displacements in
different directions. This is done by adding ð∂Y=∂zÞ2 to
ð∂X=∂zÞ2 in Eq. (49) (Landau and Lifshitz, 1986).
Similarly, the capacitance of the circuit that incorporates a
resonator depends on different contributions to the displace-
ment that come from different modes, leading to the mode
coupling. A broad range of experiments have also been done
on the modes in coupled nanoresonators (Buks and Roukes,
2002; Mahboob and Yamaguchi, 2008a; Karabalin, Cross, and
Roukes, 2009; Okamoto et al., 2009; Karabalin et al., 2011;
Mahboob, Mounaix et al., 2014; Deng et al., 2016; Dong,
Dykman, and Chan, 2018).
The nonlinear part of the energy of the multimode nano-

resonator is

Unlðq1;q2;…Þ¼ 1
3
M

X
βn1n2n3qn1qn2qn3

þ 1
4
M

X
γn1n2n3n4qn1qn2qn3qn4 þ�� � ; ð50Þ

where the subscripts n1;2;3;4 enumerate the modes and sum-
mation over these subscripts is implied. The mass M here is

chosen as an effective mass of one of the modes; cf. the
discussion following Eq. (1).
For comparatively weak nonlinearity, the major effects of

the nonlinear mode coupling can be conditionally separated
into resonant and dispersive. Nonlinear resonant effects occur
where a linear combination of the frequencies of several
modes or their overtones is equal or close to the frequency of
another mode or its overtone (Antonio, Zanette, and Lopez,
2012; Eichler et al., 2012; Samanta, Yasasvi Gangavarapu,
and Naik, 2015; De Alba et al., 2016; Güttinger et al., 2017;
Czaplewski et al., 2018; Houri et al., 2019). The manifes-
tations of the resonant couplings are discussed in Sec. VIII.
The dispersive coupling is important, on the other hand,

where the mode frequencies are different and resonant
conditions do not hold. The primary consequence of such
coupling is the dependence of the vibration frequency of one
mode on the amplitudes of other modes or, in quantum terms,
the dependence of the spacing between the energy levels of
one mode on the occupation numbers of the other modes
(Ivanov, Kvashnina, and Krivoglaz, 1965; Dykman and
Krivoglaz, 1971, 1973; Santamore, Doherty, and Cross,
2004; Westra et al., 2010; Matheny et al., 2013; Gloppe
et al., 2014; Miao et al., 2014; Sun et al., 2016; Gokhale and
Gorman, 2017; Maillet et al., 2017; Ari et al., 2018; Gisler
et al., 2021). As in Eq. (48), if the amplitudes of the modes are
Am, the change δωn of the frequency of the mode n due to the
dispersive coupling described by the quartic in qni terms in
Eq. (50) is

δωn ¼
3

4ωn

X0

m

γnnmmA2
m; ð51Þ

where the prime indicates that m ≠ n in the sum over m.
Figure 10 shows measurements on two coupled NVS

modes featuring the characteristic quadratic dependence of
the shift of the eigenfrequency of one mode on the amplitude
of the other mode. Dispersive coupling can also be measured

(a)

(b)

(c)

FIG. 9. Duffing backbone curve measured in a multilayer
graphene drum. (a) Ringdown measurement. At time t ¼ 0,
the mechanical driving force is switched off and the vibrational
amplitude starts to decay. (b) Time dependence of the short-time
Fourier transform of the vibrations during the ringdown meas-
urement. (c) Frequency shift as a function of vibrational ampli-
tude. The solid red line is the quadratic dependence expected
from Eq. (48). Adapted from Güttinger et al., 2017.

(a) (b)

FIG. 10. Quadratic dependence of the shift of the mode
frequency on the amplitude of another mode. The quadratic
dependence indicates the dispersive mode coupling expected in
Eq. (51). The resonator made of polycrystalline silicon consists of
a plate supported on its opposite sides by two beams. Mode 1
involves the translational motion of the plate with both beams
bending in the same direction, whereas only one of the beams
vibrates in mode 2. Insets: spectra of the linear response of modes
1 and 2 upon increasing A2

2 and A2
1 (from left to right),

respectively. Note the strong difference in the mode eigenfre-
quencies and decay rates. Adapted from Sun et al., 2016.
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between modes of different natures, such as the flexural mode
of a graphene drum and its optical phonon modes (Zhang,
Makles et al., 2020).
We note that the parameters γnnmm here have corrections

∝ β2nmk due to the cubic in qni terms in Eq. (50), and also due
to nonlinear coupling to phonons (Dykman and Krivoglaz,
1971, 1973). These are the renormalized parameters γnnmm
that are accessible to the experiment, which are akin to the
electron g factor renormalized due to the coupling to the
electromagnetic field.

B. Mechanisms of nonlinear friction

A basic microscopic mechanism of nonlinear friction in
mesoscopic vibrational systems is a decay process in which
two quanta of the considered mode scatter into excitations of a
thermal reservoir (Dykman and Krivoglaz, 1975). The corre-
sponding process is sketched in Figs. 7(c) and 7(d) [see also
Fig. 32(b)]. An important contribution to nonlinear friction of
low-frequency nanomechanical modes can come from the
processes described using the quartic nonlinearity. In such
processes, a thermal phonon with frequency ωκ ≫ 2ω0 is
scattered off the considered nanomechanical mode with
frequency ω0 into another high-frequency phonon; see
Fig. 7(d). Since the density of states of thermal phonons is
often much higher than of the phonons with frequencies ≈ω0,
these processes may be the leading cause of nonlinear friction.
The frequency difference 2ω0 between the involved thermal
phonons can be smaller than their decay rate. This complicates
the analysis and makes it similar, to some extent, to the
analysis of the thermoelastic or Akhiezer relaxation for linear
friction (Atalaya et al., 2016). Another contribution to non-
linear friction was discussed for nonlinear leakage of the
flexural modes into bulk acoustic modes (Croy et al., 2012),
the nonlinear friction analog of standard clamping losses.
A general formulation of the theory of nonlinear friction is

similar to that of the linear friction in Sec. IV (Dykman and
Krivoglaz, 1975). The relevant Hamiltonian of the coupling of
the mode to a thermal bath is quadratic in the mode coordinate
to allow for processes where two vibrational quanta of the
mode are created or annihilated,

HðnlÞ
i ¼ q2hðnlÞb : ð52Þ

Here hðnlÞb depends on the dynamical variables of the bath. As
in the analysis of linear friction, one can express the
coefficient of nonlinear friction ΓðnlÞ in terms of the suscep-

tibility of the bath with respect to the mode χðnlÞb ðωÞ,

ΓðnlÞ ¼ ℏ−1q40Im χðnlÞb ð2ω0Þ; q0 ¼ ðℏ=2Mω0Þ1=2: ð53Þ

The susceptibility χðnlÞb ðωÞ is related by the fluctuation-

dissipation relation (17) to the power spectrum SðnlÞb ðωÞ of

the coupling hðnlÞb calculated while disregarding the effect of
the mode on the bath,

SðnlÞb ðωÞ ¼
Z

∞

−∞
dteiωthhðnlÞb ðtÞhðnlÞb ð0Þi:

If the fluctuation spectrum SðnlÞb ðωÞ is flat over a broad
frequency range that significantly exceeds 2ω0, the classical
dynamics of the mode is the Brownian motion described by
Eq. (2) with an additional term of the van der Pol friction force

fvdP ¼ −4MΓðnlÞðq=q0Þ2 _q: ð54Þ

In the classical temperature range kBT ≫ ℏω0 from Eq. (53),
ΓðnlÞ ∝ q40=ℏ ∝ ℏ, and therefore ℏ drops out of the nonlinear
friction coefficient ΓðnlÞ=q20. Important for a phenomenologi-
cal description of nonlinear friction is that the thermal noise
that comes along with the friction force fvdP in Eq. (2)
depends on the mode coordinate.
In the case of weakly damped modes, which is of interest

for nanomechanics, the dynamics can be understood without
requiring SðnlÞb ðωÞ to be flat over the range from ω ¼ 0 to

ω ≫ 2ω0. It suffices that SðnlÞb ðωÞ is smooth in the range
centered at 2ω0 with a width that largely exceeds Γ;ΓðnlÞ. The
classical motion can be described using the slowly varying
complex amplitude uðtÞ [Eq. (20)]; again, here we assume that
the polaronic frequency shift has been incorporated into ω0.
Instead of Eq. (21), the equation for uðtÞ now reads (Dykman
and Krivoglaz, 1984)

_u ¼ −Γu −
�
2ΓðnlÞ

q20
− i

3γ

2ω0

�
ujuj2 þ ξðtÞ þ u�ξðnlÞðtÞ; ð55Þ

where ξðnlÞðtÞ is white Gaussian noise, hξðnlÞðtÞ½ξðnlÞðt0Þ��i ¼
ð4ΓðnlÞkBT=ℏω0Þδðt − t0Þ [we use the Stratonovich convention
(Risken, 1996) for the multiplicative noise u�ðtÞξðnlÞðtÞ]. The
nonlinear friction term in Eq. (55) has the same form for both
the van der Pol and Rayleigh phenomenological nonlinear
friction forces. We emphasize that if the nonlinear friction
comes from the coupling to a thermal reservoir, the associated
noise term necessarily depends on the dynamical variables of
the mode, as seen in the last term in Eq. (55).
Along with the nonlinear friction, we have included the

Duffing nonlinearity in Eq. (55); cf. Appendix A.1. The
coupling to the bath of the form of Eq. (52) leads to a
renormalization of the Duffing parameter γ (Dykman and
Krivoglaz, 1975), which we assume to have been done.
Nonlinear friction in nanomechanical resonators was first

measured in driven spectra by exciting the system to a
comparatively large vibration amplitude (Eichler, Moser et al.,
2011; Zaitsev et al., 2012). This friction notably results in a
mechanical linewidth that changes as the vibration amplitude
is increased. It can also be observed in ringdown measure-
ments (Polunin et al., 2016), where the decay rate varies as the
vibration amplitude gets lower. The systems featuring non-
linear friction include carbon nanotubes as well as single-layer
and multilayer graphene resonators (Eichler, Moser et al.,
2011; Miao et al., 2014; Singh et al., 2016; Güttinger et al.,
2017; Dolleman et al., 2018; Keşkekler et al., 2021), PdAu
nanobeams (Zaitsev et al., 2012), silicon MEMS (Nabholz
et al., 2018), and Si3N4 membranes with engineered modes
(Catalini et al., 2021). A strong nonlinear friction was
observed in a micromechanical resonator submerged into
liquid helium at ultralow temperatures; it was related to the
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amplitude-dependent attachment of vortices and provided a
probe of quantized vorticity (Barquist et al., 2020). Nonlinear
friction plays an important role in the dynamics of coupled
resonators when they are driven into the regime of self-
sustained vibrations (Mahboob et al., 2015, 2016). It also
strongly affects parametric resonance (Lin, Nakamura, and
Dykman, 2015), and related features can be used to develop
new types of phase-locked loops (Miller et al., 2019). Another
application demonstrated by Chen, Zanette et al. (2016) is
self-sustained micromechanical vibrations in a system with
linear feedback.
As seen in Eq. (53), nonlinear friction is comparatively

large if the power spectrum of the thermal bath, and thus the

susceptibility Im χðnlÞb ðωÞ ∝ SðnlÞb ðωÞ, is large for ω ≈ 2ω0. This
happens if the considered mode is coupled to a mode with
frequency close to 2ω0 and a relaxation rate much higher than
Γ;ΓðnlÞ. The nonlinear friction in this case corresponds to a
process where two quanta of the considered mode scatter into
a quantum of the second mode.
Figure 11 shows an experiment demonstrating the effect

(Keşkekler et al., 2021). The effective nonlinear friction of the
parametrically driven lowest mode of a graphene nanodrum is
seen to strongly increase with the drive amplitude, and thus
with the vibration amplitude, where the drive frequency ωp ≈
2ω0 was close to the eigenfrequency of the next lowest drum
modes. In this system the inequality between the relaxation
rates was not sufficiently strong, and to describe the obser-
vations it was necessary to go beyond the approximation of
linear response of the higher-frequency mode underlying
Eq. (53). This explains the behavior of the effective nonlinear
damping in Fig. 11.
Nonlinear friction can be engineered by parametrically

driving coupled mechanical modes at proper combination
frequencies. The friction coefficient can be made not only
positive but also negative, depending on the drive frequency
(Dong, Dykman, and Chan, 2018). In microwave electromag-
netic cavities, a positive nonlinear friction was engineered in
order to create long-lived coherent quantum states, including
cat states that can encode qubit states (Leghtas et al., 2015;
Touzard et al., 2018).

C. Effect of the nonlinearity on the spectra

As previously indicated, for underdamped vibrational
systems the effects of the vibration nonlinearity become
pronounced where the nonlinear part of the restoring or
dissipative force is comparable to the linear friction force,
while all these forces are much smaller than the linear
restoring force −Mω2

0q. The vibrations remain close to
sinusoidal. However, the change of the dynamics can be
dramatic. It is determined by the nontrivial interplay of the
nonlinearity and linear damping.

1. Spectral effects of the Duffing nonlinearity

For vibration amplitudes that are not too large, the primary
effect of the conservative nonlinearity is the dependence of the
vibration frequency on the mode amplitude [Eq. (48)] or mode
amplitudes for coupled modes [Eq. (51)]. Owing to this
dependence, the amplitude fluctuations of the mode (or, in
quantum terms, fluctuations of the state populations) are
converted into eigenfrequency fluctuations. This leads to
spectral broadening and the overall change of the shape of
the spectra, making the spectra profoundly non-Lorentzian.
The theory of the spectra was first considered in several
limiting cases in the quantum regime by Ivanov et al. (1966).
Later a full classical and quantum theory was developed by
Dykman and Krivoglaz (1971, 1973). Experimentally, the
Duffing nonlinearity-induced evolution of the spectra with the
varying fluctuation intensity was explored in different types of
systems, such as silicon nitride nanobeams (Maillet et al.,
2017), levitated silica nanoparticles (Gieseler, Novotny, and
Quidant, 2013; Amarouchene et al., 2019), and a micro-
mechanical trampoline resonator (Huang et al., 2019). Maillet
et al. (2017) studied not only the evolution of the power
spectrum of nanoelectromechanical systems (NEMS) with
varying noise intensity but also the in-phase and quadrature
components of forced vibrations, which give the imaginary
and real parts of the susceptibility of a mode with Duffing
nonlinearity.
The classical physics of the effect can be readily understood

(Dykman and Krivoglaz, 1971) by noting that the vibration
amplitude fluctuates. In the harmonic approximation, the
energy of the mode is Mω2

0A
2=2, where A is the vibration

amplitude. The mean-square amplitude in thermal equilibrium
is hA2i ¼ 2kBT=Mω2

0. The amplitude fluctuations lead to the
spread of the vibration frequency. From Eq. (48), we deter-
mine that this spread, i.e., the characteristic magnitude of the
frequency fluctuations, is ¯δω0 ¼ 3jγjhA2i=8ω0. A critically
important parameter is the relation between ¯δω0 and the decay
rate Γ, i.e., the parameter

α0 ¼ δω0=2Γ ¼ 3γkBT=8Mω3
0Γ: ð56Þ

Equation (56) can be called the motional narrowing parameter
to draw a similarity (although somewhat indirect) to the
motional narrowing effect in nuclear magnetic resonance
(Anderson, 1954; Kubo, 1954).
Indeed, the parameter Γ−1 is the correlation time of the

amplitude fluctuations in the absence of nonlinear friction
[cf. Eqs. (21) and (55)], and thus the correlation time of the

FIG. 11. Effective nonlinear damping coefficient of a para-
metrically driven mode when its vibration frequency is close to
half the eigenfrequency of a second mode, i.e., near the 2∶1
internal resonance (IR). Adapted from Keşkekler et al., 2021.
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frequency fluctuations due to the Duffing nonlinearity. For
jα0j ≪ 1 the correlation time is small compared to the time
ð ¯δω0Þ−1. The frequency fluctuations are then averaged out and
¯δω0 gives a characteristic shift of the mode frequency, while

the width of the spectrum is determined primarily by the decay
rate Γ. This is similar to the fast averaging of fluctuations that
underlies nuclear magnetic resonance in liquids.
On the other hand, for jα0j ≫ 1 the spectrum of the

oscillator can be thought of as a superposition of “partial
spectra” centered at the frequencies ω0 þ δω0 that depend on
the instantaneous value of the amplitude A. The multitude of
the frequencies is an analog of the inhomogeneous broadening
in solid-state spectroscopy. The contribution of a partial
spectrum at frequency ω0 þ δω0 to the entire spectrum is
determined by the probability density of having a given δω0,
which is determined by the Boltzmann distribution over
δω0 ∝ A2. The overall width of the spectrum is ∼ ¯δω0 ≫ Γ;
i.e., the spectral width is determined by the nonlinearity, not
the decay, and the spectrum is strongly non-Lorentzian and
asymmetric. The quantum picture is discussed in Appendix E.
The intermediate range jα0j ∼ 1 is the most interesting

theoretically, as it shows how the partial spectra of the limit
jα0j ≫ 1 shrink and deform with the decreasing nonlinearity
or fluctuation intensity. Somewhat surprisingly, the spectrum
is nevertheless described using a simple explicit expression in
both the classical and quantum domains (Dykman and
Krivoglaz, 1971, 1973); see Appendix E. Figure 35 shows
the evolution of the spectrum with the varying α0.
Dispersive nonlinear coupling between themodes affects the

spectrum in a similar way (Dykman and Krivoglaz, 1971,
1973). As seen in Eq. (51), the typical spread of the frequency
of mode n ¼ 0 due to fluctuations of the amplitude of mode
m > 0 is δω0 ¼ 3jγ00mmjhA2

mi=4ωm. The correlation time of
the relevant fluctuations is the reciprocal decay rate Γ−1

m of the
mode m. Therefore, for δω0 ≳ Γm the spectrum is broadened
and becomes non-Lorentzian; see Appendix E. The corre-
sponding spectral broadening has been suggested as a major
broadeningmechanism for flexural modes in carbon nanotubes
(Barnard et al., 2012), graphene sheets (Miao et al., 2014),
doubly clamped beams (Venstra, Leeuwen, and Zant, 2012;
Matheny et al., 2013), and microcantilevers (Vinante, 2014).
Figure 12 presents experimental results, which show

how the power spectrum and the real and imaginary parts
of the susceptibility are changed with the varying noise
intensity. Figure 12(a) refers to the case where the dispersive
coupling to other modes is small. The spectrum is deter-
mined by the internal mode nonlinearity and its shape
evolves from a Lorentzian to a strongly asymmetric peak
with the increasing α0. Figure 12(b), on the other hand,
illustrates the effect of nonlinear dispersive mode coupling.
The internal Duffing nonlinearity could be disregarded. The
shape of the spectrum depends on the scaled coupling
parameter α1 ¼ 3γ0011kBT=4Mω0ω

2
1Γ1.

Interesting behavior occurs where the number of modes
dispersively coupled to the considered mode is large, even
though the coupling to each mode taken separately is small. In
this case the power spectrum SðωÞ may become Gaussian in
its central part (Zhang and Dykman, 2015), as first found
numerically by Barnard et al. (2012); see Appendix E.4.

Dispersive coupling could be used for quantum nondemo-
lition measurements of phonons (Santamore et al., 2004). In
such a measurement, the number of phonons of one mode
would be continuously measured by recording the resonant
frequency of the second mode. A realization of such an
experiment in nanomechanics is challenging since it requires
strong dispersive coupling compared to the decay rates of
the modes.

2. Dispersive coupling of a nanomechanical mode to a qubit

A promising direction of nanomechanics is the study of the
effects of coupling of nanomechanical vibrations to control-
lable two-level systems, qubits. The involved physics is
closely related to the physics of the electronic states of defects
coupled to phonons in solids (Stoneham, 2001), with N-V

(a)

(b)

FIG. 12. (a) Evolution of the spectrum of a micromechanical
trampoline resonator with the Duffing nonlinearity (46) upon
increasing the effective temperature determined by the applied
broadband noise. When the noise intensity is small, the spectrum
is Lorentzian. At large noise intensity, the spectrum becomes
highly asymmetric due to the interplay between the noise and the
Duffing nonlinearity. At still larger noise intensities it was
necessary to take into account higher-order nonlinearity. The
solid lines correspond to the spectra expected without any free
parameters. Adapted from Huang et al., 2019. (b) In-phase and
quadrature components of a weakly driven nanomechanical mode
dispersively coupled to a fluctuating mode m ¼ 2 for different
values of the mean-square displacement Δq2. The displacement
fluctuations of the m ¼ 2 mode are driven by electric noise.
When these fluctuations are small, the response of the measured
mode (gray data points) is symmetric with respect to the resonant
frequency (vertical dashed line). For large fluctuations, the
response becomes asymmetric. Adapted from Maillet et al.,
2017. The solid lines in (a) and (b) are calculations with no
free parameters.
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centers being one of the defects of utmost current interest.
Coupling nanomechanical modes to qubits opens a path
toward studying the electron-phonon effects with unprec-
edented control. It also provides new means to manipulate and
measure the quantum states of mechanical resonators operat-
ing in the gigahertz range (O’Connell et al., 2010; Gustafsson
et al., 2014; Chu et al., 2018; Satzinger et al., 2018; Bienfait
et al., 2019). Compared to superconducting resonators, giga-
hertz mechanical resonators can have longer lifetimes
(MacCabe et al., 2020) and are usually much more compact
(Safavi-Naeini et al., 2019). These systems hold promise for
scalable qubit architectures where quantum information is
stored in bosonic systems (Ofek et al., 2016; Hann et al.,
2019; Lescanne et al., 2020).
In the systems studied thus far, the qubit-mode coupling

energy was smaller than the mode level spacing ℏω0. In this
case, if the level spacing of the qubit ℏωqbt is significantly
different than ℏω0, of primary interest is the study of the
dispersive coupling. This coupling has attracted significant
attention in solid-state physics (Sild and Kristjan, 1988). If the
qubit is described as a spin-1=2 system with the Hamiltonian
Hqbt ¼ ℏωqbtσz=2, where σz is the Pauli matrix, the dispersive
coupling to the nanomechanical mode has the form

Hqbt
i ¼ 1

2
ℏγqbtσzq2; ð57Þ

where γqbt determines the coupling energy.
The ensuing physics is similar to the physics of dispersively

coupled vibrational modes. Thinking of the mode vibrations
classically, one can see that the coupling-induced change of
the qubit transition frequency is determined by the vibration
amplitude A,

δωqbt ¼ 1
2
γqbtA2:

In the classical limit kBT ≫ ℏω0, the shape of the qubit
spectrum is determined by the ratio of the characteristic value
of the frequency shift δωqbt ¼ γqbtkBT=Mω2

0 to the reciprocal
correlation time of the frequency fluctuations Γ, going from
the “motional narrowing” regime where this ratio is small to
the “inhomogeneous broadening” regime where it is large.
In the quantum regime, δωqbt takes on discrete values that

correspond to different occupation numbers n0 of the vibra-
tional mode,

δωqbtðn0Þ ¼ ðℏγqbt=Mω0Þðn0 þ 1=2Þ: ð58Þ

If ℏγqbt=Mω0 ≫ Γð2n̄þ 1Þ, the lines at ωqbt þ δωqbtðn0Þ with
different n0 weakly overlap. This leads to a fine structure of
the qubit spectrum and enables one to identify the population
of the mode Fock states jn0i. The shape of the lines of the fine
structure is close to Lorentzian, with a half-width Γqbt þ
2Γ½n̄ð2n0 þ 1Þ þ n0� that linearly increases with n0, which is
similar to the case of dispersively coupled modes;
cf. Eqs. (E4)–(E7). Here Γqbt is the half-width of the qubit
spectral line in the absence of coupling to the mode. This
regime is an analog of the inhomogeneous broadening.
If ℏγqbt=Mω0 ≲ Γð2n̄þ 1Þ, the lines with different n0

overlap. In this case quantum mechanics does not allow

one to identify individual Fock states from the spectrum.
As explained in Appendix E, the amplitudes of the transitions
with different n0 are coupled. The overall qubit spectrum
shrinks with a decreasing ℏγqbt=Mω0Γ. When this parameter
is small the contribution of the dispersive coupling to the half-
width of the qubit spectrum is ðℏγqbt=Mω0ΓÞ2Γn̄ðn̄þ 1Þ=2
(Krivoglaz, 1965). For systems in thermal equilibrium, the
spectrum for an arbitrary ℏγqbt=Mω0Γ was described by

(a)

(b)

FIG. 13. (a) Spectroscopy of the qubit coupled to the micro-
mechanical oscillator (at thermal equilibrium) in a dilution fridge.
The qubit excited state probability is measured as a function of
frequency of a weak microwave drive. The asymmetry of the peak
indicates an oscillator occupation number that is low but
significantly larger than 1. The oscillator vibrates at 25 MHz,
whereas the qubit frequency is 3.82 GHz. The coupling parameter
γqbt is positive. Inset: phonon populations extracted from the
spectrum with a fit assuming a thermal distribution (dashed line)
or with a Bayesian-based deconvolution algorithm (full line).
Adapted from Viennot, Ma, and Lehnert, 2018. (b) Pump-probe
measurement consisting of a short phonon excitation pulse
followed by a longer qubit spectroscopy pulse. The detuning
on the horizontal axis is relative to the qubit frequency ωqbt ¼
2.317 GHz in the absence of a phonon excitation pulse; the
mechanical oscillator vibrates at 2.405 GHz. The coupling
parameter γqbt is negative. The initial phonon populations are
prepared by the pulse decay over the course of the measurement
but are nevertheless visible as individual peaks separated by
ℏγqbt=Mω0. The blue points are data and the solid lines are a fit
using numerical master-equation simulations. Adapted from
Arrangoiz-Arriola et al., 2019.
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Dykman and Krivoglaz (1987). Using a qubit to study the
vibration-number statistics in the case of a driven mode was
considered by Clerk and Utami (2007).
In Fig. 13 we present the results of the measurements of the

spectrum of Josephson junction qubits coupled to a membrane
resonator (Viennot, Ma, and Lehnert, 2018) and to a high-
frequency phononic crystal defect (Arrangoiz-Arriola et al.,
2019). In the first system the regime was studied where a large
number of vibrational states was occupied, whereas in the
second system it was possible to reach small occupation
numbers and resolve the fine structure of the spectrum.
Note that the experiments by Arrangoiz-Arriola et al.

(2019) and some of the experiments by Viennot, Ma, and
Lehnert (2018) were performed when the vibrational system
was away from thermal equilibrium. A full analysis of the
spectrum in this case requires one to take into account the
coupling of the complex amplitudes of transitions between
the states of the mode in the transient regime (Dykman, 1975;
Zhang and Dykman, 2017).

3. Broadening of the power spectrum due to nonlinear friction

Like conservative nonlinearity, nonlinear friction also leads
to a broadening and a change of the shape of the oscillator
power spectrum (Dykman and Krivoglaz, 1975). The effect
depends on temperature even when the nonlinear friction
coefficient ΓðnlÞ defined by Eq. (53) is temperature indepen-
dent. In the classical limit, this is already clear from Eq. (55).
Indeed, the nonlinear friction force increases with an increas-
ing vibration amplitude. Therefore, as the mean-square
amplitude increases with an increasing temperature, so does
the nonlinear friction force.
Equation (55) shows that, since in thermal equilibrium

hjuj2i ¼ kBT=2Mω2
0, the characteristic parameter of nonlinear

friction in the classical theory is 2ΓðnlÞkBT=ℏω0. The evolu-
tion of the spectrum with the varying ratio γðnlÞ ≡
2ΓðnlÞkBT=ℏω0Γ is shown in Fig. 36. If the vibration fre-
quency does not depend on the amplitude, the spectrum
remains symmetric, but it becomes profoundly non-
Lorentzian. Its width increases with increasing nonlinear
friction, and thus with increasing temperature.
Generally, both nonlinear friction and conservative non-

linearity are present in NEMS and MEMS. Their interplay
leads to characteristic features in the spectrum that should
allow one to identify the presence of both mechanisms
(Dykman and Krivoglaz, 1975). An important indicator of
the effect of the conservative nonlinearity that has been seen in
experiments is an asymmetry of the spectrum. We are not
aware of experiments where a change of the spectrum due to
nonlinear friction would have been established. Contrast this
with the observation of nonlinear friction in strongly driven
systems described in Sec. VI.B.

VII. NONLINEAR RESONANT PHENOMENA: A
LABORATORY FOR STUDYING PHYSICS FAR FROM
THERMAL EQUILIBRIUM

Nonlinear resonant response of vibrational modes to an
external drive leads to several groups of phenomena,
which are of interest in nanomechanics but also make

nanomechanics a testing ground for such diverse areas as
statistical physics far from thermal equilibrium, nonlinear
dynamics, and quantum cavity or circuit electrodynamics.
This is because, for the characteristic small damping, the
response already becomes nonlinear for comparatively weak
resonant driving. This allows one to study nonlinear effects in
a well-controlled fashion over a broad parameter range.

A. Bistability of resonantly excited vibrations

One of the simplest yet richest nonlinear effects studied in
nanomechanics is hysteresis of the vibrations excited by
applying a close to resonant driving force. The hysteresis
emerges when the frequency ωF or the amplitude F of a
moderately strong drive is swept across a certain range. The
onset of hysteresis is a consequence of coexistence of two
stable vibrational states of the nonlinear mode, i.e., of the
mode bistability (Landau and Lifshitz, 2004). This hysteresis
was observed in nanomechanical systems early on (Husain
et al., 2003). In most cases it is already well described
using the simplest model of vibration nonlinearity, the
Duffing model introduced in Sec. VI. In this section we
concentrate on the nonlinear resonant response described
using this model.
A phenomenological equation of motion (2) extended to

include the close to resonance driving F cos ωFt and the
Duffing nonlinearity reads

Mq̈þ 2MΓ _qþMω2
0qþMγq3

¼ F cos ωFtþ fTðtÞ; jωF − ω0j ≪ ω0: ð59Þ

Qualitatively, the occurrence of two stable vibrational states in
the absence of noise can be inferred in the following way;
cf. Fig. 14. Suppose the drive frequency ωF is close to the
eigenfrequency ω0 but the detuning jωF − ω0j considerably
exceeds the decay rate. One may then expect the amplitude of
the forced vibrations to be comparatively small. It is given by
the value A1 in Fig. 14. However, the nonlinearity leads to a

FIG. 14. Dependence of the vibration frequency on the vibration
amplitude A for a comparatively small nonlinearity. Equation (48)
indicates that the frequency linearly depends on A2, and
for the Duffing model ωðA2Þ − ωð0Þ ≈ 3γA2=8ωð0Þ [note that
ωð0Þ≡ ω0]. When the mode is driven by a field at the frequency
ωF, it can have stable vibrational states with comparatively small
and comparatively large amplitudes A1 and A2, for which ωðA2Þ
is farther away from or closer to ωF.
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change of the mode frequency δω0 with the mode amplitude,
as described by Eq. (48). If the vibration amplitude is
sufficiently large and takes on the value A2 in Fig. 14, the
shifted frequency ω0 þ δω0 can become close to ωF such that
there is strong resonance. This resonance will make vibrations
with the corresponding large amplitude self-consistent. This
leads to two stable states: Forced vibrations can either have
large amplitudes and be at good resonance or have small
amplitudes and be detuned from the resonance.
Semiquantitatively, the onset of bistability can be under-

stood using the susceptibility of the oscillator χðωÞ. By the
definition of the susceptibility, the squared amplitude of the
forced vibrations is A2 ¼ jχðωFÞj2F2. If we now use for χðωÞ
the familiar expression (5) for the susceptibility of a harmonic
oscillator but replace the eigenfrequency ω0 → ω0 þ δω0 with
δω0 given by Eq. (48), the resulting equation for the squared
amplitude reads

A2 ¼ F2

ð2Mω0Þ2
�
Γ2 þ

�
ωF − ω0 −

3γA2

8ω0

�
2
�−1

: ð60Þ

Equation (60) describes the previous qualitative arguments of
“tuning” the mode in and out of good resonance, i.e., varying
the detuning ωF − ω0 − 3γA2=8ω0 by changing A. Formally,
Eq. (60) is a cubic equation for A2, and it can have three
solutions. The solutions with the smallest and the largest A2

can be shown to be stable (Landau and Lifshitz, 2004). The
characteristic dependence of the amplitude A on the drive
frequency detuning ωF − ω0 for a nanowire measured by
Kozinsky et al. (2007) is shown in Fig. 15(a).
The dynamics of a resonantly driven mode is convention-

ally described in terms of the in-phase and quadrature
components Q and P, respectively. They correspond to the
coordinate and momentum of the mode in the rotating frame,

qðtÞ ¼ Q cos ωFtþ P sin ωFt;

pðtÞ ¼ MωFð−Q sin ωFtþ P cos ωFtÞ: ð61Þ

The dynamical variables Q and P are advantageous from the
point of view of the experiment, as they can be directly
measured with a lock-in amplifier by setting its frequency to
ωF. We note that ðQ − iPÞ=2 has the same form as the
complex amplitude uðtÞ introduced in Eq. (20) except that the
frequency ω0 in Eq. (20) is replaced by ωF. In terms of Q and
P, the vibration amplitude is ðQ2 þ P2Þ1=2 and the phase is
− arctanðP=QÞ. In a quantum description, Q and P are
operators, with ½Q;P� ¼ iℏ=MωF.
The transient dynamics of the mode can be pictured in

terms of the motion on the ðQ;PÞ plane, which is the phase
plane in the rotating frame; see Appendix D.1. The time
evolution of Q and P is slow compared to the fast oscillations
at frequency ωF. The stationary values ofQ and P describe the
stationary states of vibrations at frequency ωF in the labo-
ratory frame, as seen in Eq. (61). These values correspond to
points on the ðQ;PÞ plane. If the mode has one stable
vibrational state, there is one such point. In the range of
bistability, there are three stationary states on the ðQ;PÞ plane.
Two of them correspond to the stable vibrational states with
different amplitudes and phases, and the third one corresponds

to an unstable state (a saddle point). The entire ðQ;PÞ plane is
divided into two regions: if prepared initially in one region, the
mode evolves toward one stable state, whereas from the other
region it evolves to the other stable state.
Kozinsky et al. (2007) directly mapped the ðQ;PÞ plane

of a driven nonlinear mode and identified the basins of
attraction to different stable states using the vibrations of a
doubly clamped platinum nanowire, which were actuated

(a) (b)

(c)

FIG. 15. (a) Vibration amplitude A of a resonantly driven
platinum nanowire vs frequency for various driving powers,
showing the onset of bistability. The curves refer to the drive
amplitudes F=Fc ¼ 0.249, 0.443, 0.788, 1.401, 2.492. The
amplitudes A and F are normalized by their values Ac and Fc
at the critical point in (b). (b) Bifurcation diagram of a resonantly
driven Duffing oscillator; the scaled amplitude of the drive is
F̃ ¼ ð3γ=32ω3

FΓ3Þ1=2F. The bistability occurs in the interior of
the region limited by the bifurcation curves F̃B1;2ðωFÞ given by
Eq. (D5). At the critical point F̃B1 ¼ F̃B2 ¼ F̃c the three sta-
tionary vibrational states (two stable and one unstable) merge
[F̃c ¼ ð8= ffiffiffiffiffi

27
p Þ1=2]. (c) Basins of attraction of the platinum

nanowire resonator at ðωF − ω0Þ=Γ ¼ 4.26 for increasing drive
values: F=Fc ¼ð1Þ1.867;ð2Þ2.049;ð3Þ2.237;ð4Þ2.434;ð5Þ2.640;
ð6Þ2.741. The variables X and Y are the scaled in-phase and
quadrature components of the vibrationsQ and P [Eq. (61)]. Blue
and yellow regions indicate the initial states in which the system
is prepared by driving it at the frequency ωF with a certain
amplitude F. The amplitude is then switched to a value above
F=Fc and the drive phase is adjusted. After that, the system goes
to the final high- or low-amplitude stable state, depending on
where it was prepared. The theoretical positions of the stable
states and the saddle point and the separatrix curve are indicated
by the black points, the black cross, and the dashed black curve,
respectively. From Kozinsky et al., 2007.
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and detected magnetomotively. The results are shown in
Figs. 15(a) and 15(c).
The number of stable vibrational states changes at the

bifurcation parameter values, i.e., at the bifurcation points.
These points lie on the lines in the space of the parameters of
the driving force ðF;ωFÞ, as illustrated in Fig. 15(b). On the
upper (black) line the small-amplitude state merges with the
unstable state. The experimental results (Kozinsky et al.,
2007) in Fig. 15(c) show how, with an increasing driving
amplitude, the small-amplitude state (state 1) approaches the
unstable state (panels 1–5). Ultimately both of these states
disappear (panel 6) and the mode has only one stable vibra-
tional state.
A resonantly driven mode can display bistability if, in

addition to conservative nonlinearity, the friction force is also
nonlinear. In the presence of nonlinear friction, the decay rate
is amplitude dependent. This can be described by replacing
Γ → Γþ ΓðnlÞA2=2q20 in Eq. (60). The dynamics of the mode
in this case was studied by Buks and Yurke (2006).

B. Parametric excitation

Vibrations of nanomechanical systems can also be reso-
nantly excited using parametric pumping. The corresponding
pumping can be described as the modulation of the vibration
eigenfrequency ω0 at a frequency ωp close to 2ω0. If the
modulation is weak (it does not excite vibrations), the
equilibrium state q ¼ p ¼ 0 is stable. However, a sufficiently
strong modulation can make this state unstable. It leads to an
onset of two stable vibrational states. In each of these states
the system vibrates at the frequency ωp=2. The phases of the
vibrations are fixed by the modulation parameters and differ
by π in the different states. In optics terms, the system is
sometimes called a degenerate parametric oscillator to empha-
size that the vibration frequencies are the same in both states.
Such parametrically excited vibrations arguably provide the
simplest example of the onset of period doubling in a
nonlinear system since their period is twice the period of
the driving.
The condition for the onset of period-2 vibrations and their

amplitude can be obtained using the same naive arguments
that led to Eq. (60). Indeed, the simplest phenomenological
equation of motion that describes parametric resonance reads

Mq̈þ 2MΓ _qþMω2
0qþMγq3

¼ qFp cos ωptþ fTðtÞ; jωp − 2ω0j ≪ ω0: ð62Þ

One can again relate the vibration amplitude to the force
using the resonant susceptibility χðωp=2Þ. However, the
resonant force now has to be written with account taken
of the fact that we are seeking vibrations of the form
qðtÞ ¼ A cos½ðωpt=2Þ þ ϕ�, and therefore the resonant part
of the force qFp cos ωpt is ðAFp=2Þ cos½ðωpt=2Þ − ϕ� (the
phase ϕ has to be found separately). Substituting this
expression for the force into the equation for the amplitude
gives A2 ¼ jχðωp=2Þj2ðAFp=2Þ2. Using the same expression
as in Eq. (60) for the susceptibility, we obtain that either
A ¼ 0 (i.e., there are no vibrations) or

Fp
2

ð4Mω0Þ2
�
Γ2þ

�
δωp−

3γA2

8ω0

�
2
�−1

¼1; δωp¼ðωp=2Þ−ω0:

ð63Þ

Equation (63) shows, in particular, that vibrations
at the frequency ωp=2 are excited provided that the modu-
lation is sufficiently strong to overcome the dissipation
(jFpj=4Mω0 > Γ). As in the case of the resonant driving
discussed in Sec. VII.A, in the presence of nonlinear friction
one should replace in Eq. (63) Γ → Γþ ΓðnlÞA2=2q20.
Equation (63) is a quadratic equation for A2. It shows that,

besides the zero-amplitude state where A ¼ 0, the modulated
mode can have either one or two pairs of period-2 states,
depending on whether Eq. (63) has one or two positive roots
A2 > 0. The stability of these states and the overall dynamics
of a parametrically modulated mode can be conveni-
ently described by changing from qðtÞ, pðtÞ to the quadratures
QðtÞ, PðtÞ. The corresponding transformation is similar to
Eq. (61),

qþ ip=ðMωp=2Þ ¼ ðQþ iPÞ expð−iωpt=2Þ:

The equations for the quadratures Q, P are given in
Appendix D.2. The stable period-2 states correspond to the
symmetrically located fixed points on the phase plane ðQ;PÞ.
The parameter ranges where a parametrically modulated

mode has different numbers of coexisting states are separated
by the bifurcation lines shown in Figs. 16(a) and 16(b). An
example of the hysteretic behavior of parametrically modu-
lated nanoresonators is shown in Fig. 16(c). The experimental
data by Karabalin, Masmanidis, and Roukes (2010) shown in
the figure were obtained using doubly clamped piezoelectri-
cally controlled nanobeams. In the simplest case, the occur-
rence of the hysteresis is a consequence of nonlinear friction.
As seen in Fig. 16(b), if one increases the frequency (the
parameter μp) starting with the negative value, there are
excited period-2 vibrations once the solid blue line μB1 is
crossed. These vibrational states disappear once the higher
(green) dashed line is crossed. On the other hand, if one
starts from above the green dashed line and decreases the
frequency, the zero-amplitude state remains stable until the
lower (magenta) dashed line μB2 is crossed. It is possible to
break the symmetry between the two parametrically driven
states that differ by π in the phase by applying a force
at ωp=2 (Ryvkine and Dykman, 2006), as measured by
Mahboob, Froitier, and Yamaguchi (2010) and Leuch
et al. (2016).

C. Fluctuations of driven modes

An important aspect of researching resonantly driven or
parametrically modulated nanomechanical systems is the
possibility to use them for studying fluctuation phenomena
far from thermal equilibrium. Because nanomechanical sys-
tems are well characterized, they are well suited to such
studies. We later discuss several features of fluctuations in
driven NVSs.
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1. Fluctuation squeezing

An important generic feature of fluctuations of a periodi-
cally driven mode follows from the fact that the driving breaks
the continuous time-translation symmetry of the mode dynam-
ics. An immediate consequence of the symmetry breaking is
the possibility of fluctuation squeezing. In squeezing, fluctu-
ations of one of the vibrational components (quadratures) are
reduced below their level in the absence of driving, whereas
fluctuations of the other component are increased. In the
absence of driving, the quadratures are the vibration compo-
nents that oscillate as cos ω0t and sin ω0t. If the system has a
continuous symmetry, the origin of time can be shifted. A shift
in time by π=2ω0 results in an interchange of the quadratures.
This shows that the variances of their fluctuations should be
equal. A periodically driven system, in contrast, has a discrete
time-translation symmetry. It is symmetric only with respect
to changing time by the period of the drive. Therefore, the
quadratures may no longer be interchanged and their variances
are generally different.
Historically, squeezing was first detected in quantum optics

(Slusher et al., 1985). It attracted significant attention since it
can reduce fluctuations of a quadrature below their level in the

quantum ground state of the mode and thus enable high-
precision measurements (Caves, 1981). The technique has
been implemented in laser interferometers for gravitational
wave detection (Acernese et al., 2019; Tse et al., 2019). In
nanomechanical and micromechanical systems, squeezing in
the quantum regime was demonstrated using the techniques of
cavity optomechanics (Lecocq et al., 2015; Pirkkalainen, Cho
et al., 2015; Wollman et al., 2015).
However, the concept of fluctuation squeezing in vibra-

tional systems equally applies to the classical regime. The
squeezing of thermal fluctuations of nanomechanical systems
has been achieved in several experiments using parametric
pumping (Rugar and Grütter, 1991; Mahboob et al., 2010;
Suh et al., 2010). The squeezing is obtained with a com-
paratively weak pumping below the threshold for exciting
period-2 vibrations. For weak noise, it can be described while
disregarding the mode nonlinearity; see Appendix D.2.
Figure 17(a) shows the measurements of the thermal

vibration noise represented in the ðQ;PÞ-phase plane (Poot,
Fong, and Tang, 2015). The quadratures are measured with a
lock-in amplifier by setting its frequency to ω0. Without a
pump, the variances of both quadratures are the same, as
expected for the continuous time symmetry of the problem.
When the resonator is parametrically driven at 2ω0, the
variances are no longer equal, pointing to time-translation
symmetry breaking. The variance of the Q quadrature is
squeezed by the parametric drive. The strongest squeezing
corresponds to 3 dB variance suppression, which is reached
when the P quadrature diverges [Fig. 17(b)].
With feedback control (Szorkovszky et al., 2013; Vinante

and Falferi, 2013; Poot, Fong, and Tang, 2014; Sonar et al.,
2018) it was possible to achieve squeezing by 15.1 dB

(a) (b)

(c)

FIG. 16. The bifurcation diagrams of a parametrically modu-
lated mode (a) without and (b) with nonlinear friction. The scaled
modulation parameters are μp¼ðδωp=ΓÞsgnγ and fp ¼
Fp=2MΓωp. (a) With no nonlinear friction, the period-2 states
are stable for fp > 1 and for μp > μB1 ¼ −ðf2p − 1Þ1=2. For μp >
μB2 ¼ −μB1 the zero-amplitude state also becomes stable, leading
to three stable states in the region delimited by the magenta and
green dashed lines. (b) In the presence of nonlinear friction the
three stable states coexist in the region bound by the line μB2ðfpÞ
and the green (upper) dashed line; cf. Lin, Nakamura, and
Dykman (2015). (c) Hysteresis of the response of a modulated
nanoresonator for two values of the amplitude of the parametric
drive (Karabalin, Masmanidis, and Roukes, 2010). The vibration
frequency is ωp=2. “Upwards” and “downwards” refer to the
frequency being increased and decreased, respectively, with the
resonator initially in the zero-amplitude state. The switching from
the upward branch, which refers to the driving amplitude 690 mV,
occurs outside of the shown frequency range.

(a)

(b)

FIG. 17. (a) Thermal vibration noise plotted in the ðQ;PÞ-phase
plane and measured with the pump turned off (thermal equilib-
rium, pump power VP ¼ 0 mV) and the pump turned on (non-
zero VP). (b) Variance of the Q and P quadratures for increasing
pump power normalized by the variance at zero pump power. The
dashed line indicates the 3 dB limit for parametric squeezing
(Poot, Fong, and Tang, 2015).
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(Poot, Fong, and Tang, 2015), well above the conventional
3 dB limit for parametric pumping of a linear mode;
cf. Eq. (D14). Classical two-mode squeezing in mechanical
resonators by nondegenerate parametric amplification has also
been reported (Mahboob, Mounaix et al., 2014; Patil et al.,
2015; Pontin et al., 2016), as has the possibility of obtaining
squeezing in a two-mode system using postselection (Asano
et al., 2019). Classical squeezing was proposed as a way to
reduce heating in computers (Klaers, 2019); it also represents
an important asset for high-precision sensing (DiFilippo et al.,
1992; Natarajan, DiFilippo, and Pritchard, 1995; Mahboob
et al., 2010; Szorkovszky et al., 2013), and thus may lead to a
new generation of nanomechanical detectors.
Much less attention has been paid to the squeezing of mode

fluctuations due to a resonant coordinate-independent force;
cf. Eq. (59). The general argument regarding the broken time-
translation symmetry applies in this case too. However, for a
driven linear mode forced vibrations are simply linearly
superimposed on thermal vibrations, and therefore there is
no squeezing. The situation changes in the nonlinear regime.
Here the fluctuations are affected by the driving and the effect
can be resonantly strong.
For weak noise, a resonantly driven mode primarily

fluctuates about its state of forced vibrations. These are the
fluctuations of the deviations of the quadratures δQ; δP from
their values in the stable state that become squeezed in the
nonlinear regime. The occurrence of the squeezing could be
inferred from the strongly asymmetric phase trajectories in the
rotating frame in the neglect of dissipation in Fig. 33(b), which
were already discussed in an early work on a resonantly driven
Duffing oscillator (Dykman and Krivoglaz, 1979; Dmitriev
and Dyakonov, 1986); cf. also Siddiqi et al. (2004). A theory
of squeezing was developed by Buks and Yurke (2006).
A strong suppression of a spectral component of a quadrature
was observed in a nanomechanical Duffing resonator by
Almog et al. (2007a) in a narrow parameter range near the
critical point in Fig. 15(b) using conventional homodyne
detection.
Homodyne measurements are strongly impeded by fre-

quency fluctuations, which play an important role in nano-
mechanical systems; see Sec. IX. The limitations are
particularly pronounced in systems with small damping,
where the noise in the in-phase component increases with
increasing drive strength (Fong, Pernice, and Tang, 2012); see
Fig. 30. However, it appears that for underdamped vibrational
modes squeezing can be found by measuring the spectrum of
their response to an additional weak probe field (Ochs et al.,
2021b) or, for classical fluctuations, by measuring the power
spectrum (Huber et al., 2020).
Spectral measurements of squeezing exploit the nature of

the dynamics of a driven strongly underdamped mode. When
viewed in the rotating frame, this dynamics involves weakly
damped oscillations about a stable state of forced vibrations,
as described in Appendix D.2.b. The frequency of these
oscillations ωrot is much smaller than the strong-drive fre-
quency ωF. When viewed in the laboratory frame, the
oscillations at frequency ωrot lead to peaks in the power
spectrum at frequencies ωF � ωrot.
Figure 18 shows the power spectrum of fluctuations of a

resonantly driven NVS mode with clearly resolved peaks at

ωF � ωrot (Huber et al., 2020). The peaks have profoundly
different intensities, which is a direct consequence of
squeezing.
The peaks at ωF � ωrot also emerge in the spectrum of the

response to an additional weak probe field. The ratio of the
areas A� of these spectral peaks gives the squeezing para-
meter ϕ (Dykman, Marthaler, and Peano, 2011; Dykman,
2012; Ochs et al., 2021a),

hδQ2i
hδP2i ¼ e−4ϕ; coth4ϕ ¼ Aþ

A− : ð64Þ

Equation (64) holds for thermal and quantum fluctuations
about the larger-amplitude vibrational state in the range of
bistability; cf. Fig. 15(b). For the smaller-amplitude state one
should replace coth ϕ → tanh ϕ.
One of the peaks of the response spectrum corresponds to

amplification of the probe field by the strong driving field
(Dykman and Krivoglaz, 1979; Ochs et al., 2021a). A
distinctly double-peak structure of the response spectrum in
a suspended nanomembrane was seen by Antoni et al. (2012).

D. Rare large fluctuations far from thermal equilibrium

Classical and quantum fluctuations in driven nanomechan-
ical systems are not described by the statistical physics of
systems in thermal equilibrium, and their probabilities are not
determined by the thermodynamic potentials. Revealing gen-
eral features of such fluctuations is both challenging and
important. To a large extent, these features are related to the
absence of detailed balance. Detailed balance requires that,
in the stationary regime, the probabilities of transitions
between the states of a system be balanced pairwise. This
means that the probability of a transition A → B between
arbitrary states A and B is equal to the probability of the
transition B̄ → Ā. Here the overline indicates that, in the
corresponding states, the signs of odd in time variables have
been reversed (Lifshitz and Pitaevskii, 1981); we assume that

(a) (b)

FIG. 18. (a) Power spectrum of a resonantly driven nano-
mechanical mode as a function of the frequency f for
ωF ≡ 2πfF ¼ ω0. The line at f − fF ¼ 0 is plotted with
reduced brightness to improve the visibility of the satellites,
which are due to fluctuations about the stable state of forced
vibrations. (b) Variance of the scaled in-phase and quadrature
fluctuations hδQ2i and hδP2i as a function of the detuning
ðωF − ω0Þ=2π. The horizontal (black) line indicates thermo-
mechanical fluctuations at 293 K in the absence of the drive,
and the upper and lower (red) lines indicate the theory for the
driven mode. Adapted from Huber et al., 2020.
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there is no magnetic field. For a classical vibrational mode,
one can associate the mode states with small areas in phase
space; for states A and B these areas are centered at the points
qA, pA and qB, pB, whereas Ā and B̄ are centered at qA;−pA
and qB;−pB, respectively.
Detailed balance is a requisite of thermal equilibrium. It

differs from the stationarity condition that the probability to go
from A to B, C, etc., is equal to the total probability to come to
A from B, C, etc. Driven nonlinear modes do not have detailed
balance as a rule; cf. Roberts, Lingenfelter, and Clerk (2021).
They have proved to be invaluable as a means of studying
statistical physics with no detailed balance because, on the one
hand, they are comparatively simple while, on the other hand,
they display a nontrivial behavior.

1. Dynamics of nonequilibrium systems in rare large fluctuations

Of special interest in terms of their generic features are
nonequilibrium phenomena related to comparatively rare large
fluctuations away from a stable state and switching between
coexisting stable states. These phenomena encompass chemi-
cal and biological reactions as well as switching in lasers,
driven nanomagnets, and other systems of current interest.
Even though much work has been done on the theory of
switching in systems lacking detailed balance, to our knowl-
edge vibrational systems have been the only ones in which the
theory could be quantitatively tested in the experiment.
Moreover, with these systems the qualitative features of large
rare fluctuations, including the involved scaling behavior,
have been studied.
For weak on average fluctuations, most of the time the

system performs small-amplitude fluctuations about its stable
state (or one of its dynamically stable states). Still, occasion-
ally large fluctuations occur in which the system moves far
away from this state in phase space. They may result in
switching to another stable state.
A key idea behind the understanding of large rare fluctua-

tions was put forward by Onsager and Machlup (1953) and
Machlup and Onsager (1953) in the analysis of linear thermal
equilibrium systems. They counterintuitively showed that, in a
large fluctuation to a given point in phase space, even though
the motion is random a system most likely moves along a
certain trajectory. Moreover, for an overdamped system this
trajectory is the time-reversed trajectory of moving back to the
stable state from this point in the absence of fluctuations.
The concept of the corresponding most probable trajectory

of a rare fluctuation extends to nonlinear systems and to
nonequilibrium systems. However, in systems lacking detailed
balance finding such a trajectory is a far from trivial problem,
and the topology of such trajectories is also far from trivial
(Dykman, Millonas, and Smelyanskiy, 1994). This problem is
fundamental in the theory of nonequilibrium systems ranging
from physics to biology. It has attracted significant attention
over the years (Kamenev, 2011).
A direct experimental observation of the most probable

trajectory in a system lacking detailed balance was made with
a micromechanical system (Chan, Dykman, and Stambaugh,
2008a, 2008b); see Fig. 19(a). The system was parametrically
driven into the range where it had two stable vibrational states
A1 and A2; see Sec. D.2. A comparatively weak noise caused

mostly small-amplitude fluctuations about the states but
occasionally also led to interstate switching. In the experi-
ment, the system was prepared in the state A1 and its trajectory
was recorded. After it was found in the vicinity of the state A2,
a portion of the trajectory in the region between the blue lines
in Fig. 19(b) was saved and the experiment was repeated. The
distribution p12 of the paths followed in switching was
obtained by superposing the saved portions of the trajectories.
The sharp peak of the distribution in Fig. 19(a) shows that,

indeed, in switching the system is most likely to move along a
certain path, the most probable switching path (MPSP).
Except for the vicinity of the saddle point Q ¼ P ¼ 0, the
distribution of the trajectories about the MPSP was Gaussian
and was in full agreement with the theory, which extended the
previously developed approach (Dykman et al., 1992;
Luchinsky and McClintock, 1997) to the problem of switch-
ing. For switching from the zero-amplitude state of a

FIG. 19. (a) Probability distribution of the switching paths of a
torsional microelectromechanical resonator parametrically driven
into bistability. The distribution p12ðQ;PÞ is measured for
switching out of stable state A1 into state A2 in the rotating
frame; Q and P are the quadratures, which are measured in units
of the rotation angle of the resonator. (b) Peak locations of the
distribution plotted as black circles and the theoretically most
probable switching path indicated by a thin red line. All
trajectories originate from within the thick green circle in the
vicinity of A1 and later arrive at the thick green circle around A2.
The radii of the green circles give the typical fluctuation
amplitude. The portion of the distribution outside the straight
blue lines is omitted. (c) Comparison of the most probable
switching path (MPSP) and the noise-free trajectory; Q0 and P0
are the rescaled dimensionless quadratures Q and P. The noise-
free trajectories from the saddle point S to the stable states
are shown as thin (magenta) solid lines. The thick red line shows
the first portion of the MPSP from A1 to S, where the system is
driven by noise. The MPSP as a whole comprises this trajectory
and the noise-free trajectory from S to A2. The green dashed line
shows the separatrix. Adapted from Chan, Dykman, and
Stambaugh, 2008a, 2008b.
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parametrically excited microcantilever, an observation of
switching paths was reported by Michael and Turner (2007).
Figure 19(c) compares the uphill portion of the MPSP

(red line) with the noise-free trajectory (magenta line) along
which the system would move from the saddle point to state
A1. It shows that these trajectories do not have time-reversal
symmetry, which would be the symmetry ðQ;PÞ → ðQ;−PÞ.
This is an unambiguous indication of the lack of detailed
balance.
The form of the MPSP depends not only on the dynamics of

the system in the absence of fluctuations but also on the source
of the fluctuations, that is, on the properties of the noise,
including its spectrum and statistics. The results in Fig. 19
refer to the case where the noise is thermal [cf. Eq. (62)], and
therefore is Gaussian and white in slow time; see Sec. IV.

2. Scaling behavior of the rates of switching between stable
vibrational states

Generally, for a Gaussian and not necessarily white noise
the rate of switching between coexisting stable states scales
with the noise intensity D as (Dykman, 1990)

Wsw ¼ Csw expð−R=DÞ: ð65Þ

Equation (65) is similar to the expression given by Kramers
(1940) for the escape rate of a Brownian particle from a
potential well. For the Brownian particle the noise intensity is
kBT and R ¼ ΔU, where ΔU is the height of the potential
barrier to be overcome in escape. In analogy with the
Arrhenius law, R is often called the effective activation energy.
To our knowledge, a vibrational mode resonantly driven into
bistability was the first physical system with no detailed
balance where R was calculated (Dykman and Krivoglaz,
1979). Both R and the prefactor Csw in Eq. (65) are
independent of the noise intensity.
The activation dependence of the switching rate on the

noise intensity was demonstrated for a parametrically excited
vibrational mode of a single electron in a Penning trap
(Lapidus, Enzer, and Gabrielse, 1999). It has been observed
in various types of nanomechanical and micromechanical
resonators driven into bistability by either a resonant driving
force or parametric driving close to twice the mode eigen-
frequency; see Aldridge and Cleland (2005), Stambaugh and
Chan (2006a), Chan and Stambaugh (2007), Venstra, Westra,
and van der Zant (2013), Defoort et al. (2015), and Dolleman
et al. (2019), and references therein. An example is shown in
Fig. 20(a).
Another feature of switching in nonequilibrium systems is

the scaling behavior of the switching rates, where the activation
energy R ∝ j ln Wswj scales as a power law of the parameters.
For equilibrium systems, where R corresponds to the barrier
height ΔU, this scaling was predicted for Josephson junctions
(Kurkijärvi, 1972) for the regime in which a junction is not
driven by an ac field and is in a quasiequilibrium state. This
scaling has been broadly used to determine the junction
parameters (Fulton and Dunkelberger, 1974).
Generally, the scaling emerges close to bifurcation points

where the stable state from which the system is switching
disappears (Dykman and Krivoglaz, 1979, 1980; Knobloch
and Wiesenfeld, 1983; Graham and Tél, 1987; Dykman et al.,

1998). For resonantly and parametrically driven nonlinear
modes, these bifurcation points lie on the lines shown in
Figs. 15(b), 16(a), and 16(b). The scaling of Wsw near
bifurcation points was seen in a number of experiments,
including those with resonantly driven (Stambaugh and Chan,
2006a; Defoort et al., 2015; Dolleman et al., 2019) and
parametrically modulated (Chan and Stambaugh, 2007)
micromechanical and nanomechanical modes, parametrically
modulated atomic vibrations in a magneto-optical trap (Kim
et al., 2005), and resonantly driven vibrations of Josephson
junctions (Siddiqi et al., 2006; Vijay, Devoret, and Siddiqi,
2009). The scaling exponents differ in the cases of resonant
and parametric driving. Remarkably, not only does the
effective activation energy R scale as the power law of the
distance to the bifurcation point (see Appendix D.1.a), but so
does the prefactor Csw in Eq. (65), with a different exponent
(Dykman and Krivoglaz, 1980).
The high degree of control of nanomechanical systems has

enabled the scaling exponents not only of R but also of Csw to

(a)

(b)

FIG. 20. (a) Activation dependence of the switching rate of a
resonantly driven nanomechanical mode Wsw on the noise
intensity D for different detunings of the drive frequency from
its bifurcational value. (b) Effective activation energy R of the
switching rate as a function of the distance from the bifurcational
value of the drive frequency; Ω ¼ jωF − ω0j=Γ, and ΩB is the
value of Ω at the bifurcation point. The filled circles indicate the
experimental points, the empty (blue) triangles give the predic-
tion of the full numerical simulation, the (red) solid lines provide
the linear fit to the data, and the dashed (blue) lines give the
prediction of the asymptotic theory (Dykman and Krivoglaz,
1980). Inset: scaling with the parameter ΩB. Adapted from
Defoort et al., 2015.
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be measured. Figure 20(b) shows the scaling behavior of R for
a resonantly driven nanomechanical system (Defoort et al.,
2015). The data were obtained for different points on the
bifurcation line FB1 in Fig. 15(b). It was demonstrated that

R ∝ jωF − ðωFÞBj3=2; Csw ∝ jωF − ðωFÞBj1=2;

where ðωFÞB is the bifurcational value of the drive frequency
ωF. In agreement with the numerical analysis (Kogan, 2008;
Defoort et al., 2015), the scaling holds in an unexpectedly
broad range.
The overall change of the effective activation energies of

interstate switching with the varying frequency and amplitude
of the driving resonant force for a nonlinear nanomechanical
beam is shown in Fig. 21(a). Besides the previously discussed
bifurcation points, the switching rates display a universal
dependence on the parameters near the critical point Fc in
Fig. 15(b) where the two stable vibrational states merge. One
can tune the drive amplitude and the frequency in such a way
that the rates of switching between the states are equal; see
Appendix D.1.a. In this case the activation energy R is
expected to depend on the distance to the critical frequency
as ½ωF − ðωFÞc�2 (Dykman and Krivoglaz, 1979, 1980). This
scaling behavior of log Wsw was demonstrated in the experi-
ment, with R varying over more than two decades; see
Fig. 21(b).

3. A kinetic phase transition

Bistable vibrational systems allow one to study another
fairly general group of nonequilibrium phenomena. They
occur in the parameter range where the rates W12 and W21

of switching between the stable states 1 → 2 and 2 → 1 are
close to each other. For concreteness, we use 1 and 2 to label
the states of a resonantly driven mode with larger and smaller
vibration amplitudes, respectively. For weak noise, this

happens where the effective activation energies R1 and R2

for switching 1 → 2 and 2 → 1 are equal or almost equal
[we use that Wij ∝ expð−Ri=DÞ]. In this range the stationary
populations w1;2 of the states are also close to each other, as
seen in the balance equation w1=w2 ¼ W21=W12. As the
system parameters move away from this range, R1 and R2

differ, and the populations quickly become exponentially
different. This range was studied by Aldridge and Cleland
(2005) close to the critical point.
The range where R1 ≈ R2 is similar to a smeared first-order

phase transition in an equilibrium system. Indeed, in such a
phase transition the free energies of the phases are equal,
according to the Ehrenfest classification, and the phases (such
as liquid and vapor) have comparable volumes (populations).
One can conditionally associate the large- and small-ampli-
tude vibrational states with different phases of matter. In this
context, the analogs of pressure and temperature in the liquid-
vapor transition, i.e., the control parameters, are the amplitude
F and frequency ωF of the driving field. For a certain relation
between F and ωF we have R1 ¼ R2, which can be called a
kinetic phase transition. The data in Fig. 21(b) are obtained by
moving along the corresponding line on the ðF;ωFÞ plane.
The critical point ½Fc; ðωFÞc� (see Figs. 15 and 21) is a
counterpart of the critical point on the phase transition line.
The kinetic phase transition in a driven mode is accom-

panied by the onset of extremely narrow peaks in the power
spectrum and the spectrum of the response to a probe field
(Dykman and Krivoglaz, 1979; Dykman et al., 1994). The
peaks are located at the driving frequency. They result from
the change of the state populations w1 and w2 induced by
fluctuations or by the probe field. Such a change leads to the
change of the vibration amplitude and phase between their
values in the large- and small-amplitude states. The rates at
which the populations change, and thus the widths of the
peaks, are ∼W12 ≈W21. They are exponentially smaller than
the mode decay rate. Therefore, the spectra are extremely
sensitive to the parameters of the system, which is similar to
the parameter sensitivity at the phase transition in an extended
system.
A number of effects related to the kinetic phase transition,

including the extremely narrow spectral peaks, have been
observed in different types of resonantly driven microme-
chanical and nanomechanical systems (Chan and Stambaugh,
2006; Stambaugh and Chan, 2006b; Almog et al., 2007b;
Venstra, Westra, and van der Zant, 2013; Chowdhury et al.,
2017; Dolleman et al., 2019; Huber et al., 2020). Early on it
was shown (Cleland, 2005) that these effects enable a 100-fold
improvement in frequency resolution compared to a conven-
tional resonant-response-based measurement.
We now discuss the fluctuation-induced response to the

probe field and its relation to stochastic resonance. If the
probe-field frequency ωpr is close to the strong-drive fre-
quency ωF, the probe field can be thought of as a modulation
of the strong field amplitude, and hence of the activation
energies R1;2, at frequency jωpr − ωFj. As seen in Eq. (65),
modulation of Ri results in an exponentially enhanced
modulation of Wij for weak noise. However, if it is too fast,
the populations of the states w1;2 cannot “adjust” to the probe
field. Therefore, if the noise intensity D is small, such that

(a) (b)

FIG. 21. Measured activation energies of switching between the
coexisting large- and small-amplitude states of a resonantly
driven nanoresonator. The switching is induced by an externally
applied noise that mimics thermal noise. (a) Activation energies
as functions of the drive frequency ν ¼ ωF=2π for different
values of the resonant force amplitude F. The activation energy
for switching from the large-amplitude state monotonically
decreases with an increasing drive frequency, whereas that from
the small-amplitude state monotonically increases. (b) Log-log
plot showing R as a function of the difference between ν and its
critical value νc. The amplitude of the force F is close to the
critical amplitude and is adjusted to keep the rates of switching
between the stable states equal. Adapted from Aldridge and
Cleland, 2005.
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Wij ≪ jωpr − ωFj, the response is weak. It exponentially
strongly increases with an increasing D as the rates Wij

approach ∼jωpr − ωFj. For large D, on the other hand, the
sensitivity to themodulation ofR1;2 falls off. Thus, the response
displays a peak as a function of D. This is reminiscent of
stochastic resonance in systems fluctuating in a static double-
well potential. This high-frequency stochastic resonance was
observed in micromechanical and nanomechanical systems, as
Fig. 22 illustrates, and several applications of this effect for
sensing were discussed by Chan and Stambaugh (2006),
Almog et al. (2007b), Venstra, Westra, and van der Zant
(2013), and Chowdhury et al. (2017).
In the case of resonant parametric excitation at a frequency

ωp ≈ 2ω0, a mode is “automatically tuned” into the kinetic
phase transition. Indeed, the period-2 vibrational states have
the same amplitude and differ only by phase. Noise-induced
interstate transitions are phase-flip transitions, and the sta-
tionary populations of the states are equal by symmetry.
However, an additional resonant additive drive at a frequency
ωp=2 lifts this symmetry. As a result, the stationary popula-
tions become different. They depend on the phase of the extra
drive with respect to the phase of the strong parametric
modulation (Ryvkine and Dykman, 2006). This already
happens with a weak extra drive, where both states are stable.
Such symmetry lifting was observed by Mahboob, Froitier,
and Yamaguchi (2010) in a GaAs/AlGaAs–based microme-
chanical resonator. The corresponding symmetry-breaking
detector can resolve frequency shifts δω0=ω0 ∼ 10−7 in a
single-shot measurement.
Fluctuation-mediated symmetry lifting has important con-

sequences for coupled parametrically modulated modes. If a

mode vibrates at a frequency ωp=2 and is in a state with a
given phase, it exerts a symmetry-lifting force on the mode (or
modes) that it is coupled to. As a result, depending on the
coupling this second mode is biased toward the state with the
same or the opposite phase as the primary mode. The modes
are on equal footing: they affect each other so as to have the
same or opposite phases, and the effect comes through the
fluctuations.
The effect of phase ordering in coupled parametrically

excited modes was demonstrated by Karabalin et al. (2011). In
the experiment two almost identical gated nanobeams were
driven across the parametric instability. Depending on the sign
of the coupling, the mode that experienced the instability later
predominantly had the same or the opposite phase as the one
that went through the instability first. The coupling could be
controlled by the gate voltage, which provided a highly
sensitive way of detecting this voltage.
The phase correlations between coupled parametric oscil-

lators mediated by noise were used by Mahboob, Okamoto,
and Yamaguchi (2016) to mimic the Ising dynamics of
coupled spins with two modes. The two different phases of
a parametrically pumped micromechanical mode were asso-
ciated with two spin projections. Implementations of quantum
computation (Goto, 2016, 2019) and Boltzmann sampling
(Goto, Lin, and Nakamura, 2018) with coupled nonlinear
parametrically excited modes have also been discussed. Of
significant importance in this respect is that switching
between the period-2 states of a parametrically excited mode
can be induced by not only classical but also quantum
fluctuations, even for T ¼ 0 (Marthaler and Dykman,
2006). For modulated coupled nanomechanical modes this
opens a way of studying quantum phase transitions far from
thermal equilibrium, in particular, a transition to a Floquet
time-crystalline state (Dykman et al., 2018) in a well-char-
acterized environment.

VIII. RESONANT MODE COUPLING

A mechanical resonator has a large number of mechanical
eigenmodes. These eigenmodes can couple with each other.
This leads to a rich variety of different phenomena. We
discussed in Sec. VI some of these phenomena, particularly
those related to dispersive coupling. Such coupling is impor-
tant where the modes are far from resonance, but the
frequency of a mode depends on the vibration amplitudes
of other modes. Here we discuss phenomena originating from
resonant linear and nonlinear coupling as well as some
resonant multimode effects of an external drive.

A. Linear resonant coupling

A hallmark of nanoscale mechanical resonators is the wide
tunability of their resonance frequencies by electrostatic
means. This allows one to bring nanomechanical vibrational
modes in and out of linear resonance. Strictly speaking,
eigenmodes are defined by diagonalizing the part of the
system Hamiltonian that is quadratic in the displacements
and momenta. When the resonator modes have significantly
different eigenfrequencies, one can speak of approximate
modes and disregard the bilinear in the displacements part

FIG. 22. Noise-enhanced measurement with a nanomechanical
cantilever. The cantilever with geometric and inertial nonlinearity
is driven into bistability of forced vibrations by a comparatively
strong resonant drive. In addition, a broadband noise that
emulates thermal noise is applied. The drive is tuned to the
kinetic phase transition. The amplitude of the drive is then slowly
modulated, mimicking a signal at frequencies equal to the sum
and difference of the modulation and drive frequencies. Main
panel: signal-to-noise ratio (SNR) as a function of the effective
noise temperature. Inset: top row shows the excitation signal in
the time (left) and frequency (right) domains. Adapted from
Venstra, Westra, and van der Zant, 2013.
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of the potential energy that couples them. However, when the
eigenfrequencies are tuned close to resonance, this part
becomes substantial.
In the harmonic approximation, the potential energy of two

modes can then be written as

U12ðq1;q2Þ¼ 1
2
M1ω

2
1ðtÞq21þ 1

2
M2ω

2
2ðtÞq22þMΔ12q1q2; ð66Þ

where qi is the displacement of the mode i (i ¼ 1, 2),Mi is its
effective mass, ωi is its eigenfrequency, and MΔ12 character-
izes the coupling strength. If the mode frequencies ωiðtÞ vary
in time in such a way that they go through resonance, the
anticrossing shown in Fig. 23(a) occurs. It can be observed
while measuring the resonant frequencies of the resonator as
functions of the gate voltage that tunes the frequencies (Faust,
Rieger et al., 2012; Deng et al., 2016). This anticrossing is
similar to the anticrossing of energy levels of a quantum
system driven through resonance, even though the considered
system is purely classical.
Faust, Rieger et al. (2012) also reported observations of a

classical analog of the Landau-Zener transition [Fig. 23(b)].

The two-mode system is first prepared by detuning the mode
eigenfrequencies by a large amount compared to the coupling.
Energy is injected in mode 1, point I in Fig. 23(a). The system
is then swept with the gate voltage to the final state where the
modes are again practically independent of each other (points
A and D). As the modes go through resonance, the energy
initially injected in mode 1 gets distributed between
the two modes. The distribution depends on the ramp time
of the gate voltage [Fig. 23(b)].
An important problem in the Landau-Zener tunneling is

the effect of dissipation and noise on the transition; cf. Ao
and Rammer (1989), Quintana et al. (2013), and Malla,
Mishchenko, and Raikh (2017), and references therein. The
results by Faust, Rieger et al. (2012) suggest that nano-
mechanical modes can be used to study these effects in a well-
controlled experimental setting.
The response of coupled modes to pulses of resonant drive

was studied in other experiments with nanomechanical modes
(Faust et al., 2013; Okamoto et al., 2013; Zhang et al., 2020).
The results allowed Rabi oscillations to be emulated in a
classical system.
The reason for the similarity of the classical dynamics of

nanomechanical modes and the quantum dynamics of a two-
level system is that the interference of linear modes has much
in common with the interference of wave functions. We
emphasize, however, that nanoresonators and quantum two-
state systems such as qubits are entirely different by nature, as
seen in the dimensions of their Hilbert spaces, in particular.
Coupled classical linear modes may not be used as qubits,
since it is the strong nonlinearity of qubits that underlies their
application in quantum computing.
Nanomechanical resonators with a symmetric cross section,

like cylindrical wires, have degenerate flexural eigenmodes,
which are orthogonal. Such modes are highly sensitive to
perturbations that cause symmetry lifting. Consider a reso-
nator with degenerate modes polarized in the perpendicular
directions r̂1 and r̂2. We now place the resonator in an
inhomogeneous force field with components Fi (i ¼ 1, 2).
The partial derivatives of the force components ∂Fi=∂ri shift
the resonance frequencies of the eigenmodes. In contrast, the
cross-derivatives ∂Fi=∂rj, with i ≠ j, couple the eigenmodes.
As a result, the new eigenmodes have different frequencies
and are polarized in different directions. This eigenmode
rotation has been directly measured (Gloppe et al., 2014;
de Lépinay et al., 2017; Rossi et al., 2017).
The force that drives a nanowire can be nonpotential in

nature (∂F1=∂r2 ≠ ∂F2=∂r1). Such a force can come if a laser-
driven nanowire is placed away from the waist of a focused
laser beam. The eigenmodes are then no longer pointing in
orthogonal directions. It has been experimentally shown that
the angle between them can be reduced to zero (de Lépinay
et al., 2018). The power spectra of the modes were found to
deviate from the conventional Lorentzian form.
Examples of other effects of resonant coupling of a

few NVS modes include the generation of circularly
polarized mechanical oscillations using modes polarized in
perpendicular directions (Conley et al., 2008; Perisanu et al.,
2010) and resonant coupling of an optomechanical resonator
and a single bacterium (Gil-Santos et al., 2020). A significant

(a)

(b)

FIG. 23. Resonant mode coupling. (a) Resonant frequencies of
two nanomechanical modes as functions of the gate voltage. The
two modes hybridize at the anticrossing. (b) Classical analog of
the Landau-Zener transition. The high-frequency mode is initially
excited [point I in (a)], and the modes are then swept through
resonance over time τ, which leads to an energy exchange. The
data (triangles and dots) show the signal power at points A and D
in (a), respectively, as a function of τ. The dashed line represents
the decay probability of the total energy. From Faust, Rieger
et al., 2012.
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group of resonant-coupling effects concerns one- and two-
dimensional arrays of resonators; in such arrays many modes
are brought into resonance. Arrays of NVSs can display
various types of topological effects (Peano et al., 2015; Cha,
Kim, and Daraio, 2018; Ren et al., 2020; Lin et al., 2021;
Yamaguchi and Houri, 2021), as well as dynamical phase
transitions and symmetry-breaking effects (Dykman et al.,
2018; Heugel et al., 2019; Matheny et al., 2019), and can be
used as tunable phononic waveguides (Hatanaka, Bachtold,
and Yamaguchi, 2019; Kirchhof et al., 2021; Zhang
et al., 2021).

B. Nonlinear resonant coupling

The study of nonlinear resonance has been attracting
significant attention and has a long history in quantum and
classical mechanics, which goes back at least to Laplace and
Poincaré on the classical side and to the Fermi resonance on
the quantum side (Fermi, 1931; Arnold, 1989). For two
modes, nonlinear resonant mode coupling occurs where the
ratio of their eigenfrequencies ω2=ω1 is close to a rational
number n=m. In nonlinear resonance, modes can exchange
energy with each other in a manner similar to linear resonance.
The coupling that leads to this exchange comes from the
modes nonlinearity and therefore is unavoidable. Generally, it
falls off with the increasing order of the resonance, i.e., for two
modes, with the increasing n and m in the ratio n=m.
Classically, multiple nonlinear resonances pave the road to
chaos in conservative systems, a profound understanding that
emerged in the 20th century.
A system of coupled nanomechanical modes provides a

playground for studying nonlinear resonant effects. One can
study them in a well-controlled setting in the regimes of strong
to weak dissipation and explore a broad range of phenomena,
from the aforementioned resonant energy exchange to various
types of dynamical bifurcations, different scenarios for the
onset of dynamical chaos, resonant nonlinear friction, etc.
For a two-mode system with the resonant condition

nω1 ≈mω2, the simplest term in the potential energy that
directly accounts for the resonant energy exchange in non-
linear resonance has the form

Ures
nl ¼ MΔðnmÞ

12 qn1q
m
2 ; ð67Þ

where ΔðnmÞ
12 is the coupling parameter. The importance of the

coupling Ures
nl is clear from the following argument. If q1 and

q2 oscillate at frequencies ω1 and ω2, respectively, Ures
nl

contains a nonoscillating part. This is the “normal form”
term (Guckenheimer and Holmes, 1997): it is of the lowest
order in nonlinearity that has a nonoscillating part, drawing
the similarity with the harmonic part of the Hamiltonian,
which is independent of time.
The effect of the coupling (67) on the energy exchange

between the modes is easy to understand in quantum terms.
We write the displacement operator of an ith mode (i ¼ 1, 2)
in Eq. (67) as qi ¼ ðℏ=2MωiÞ1=2ðai þ a†i Þ, where a†i and ai
are the raising and lowering operators. Therefore, Ures

nl con-
tains terms ða†1Þnam2 þ ða†2Þman1 . They describe processes in
which mode 1 goes up by n energy levels while mode 2 goes

down by m levels, or vice versa, mode 1 goes down by n
energy levels while mode 2 goes up by m levels. For exact
nonlinear resonance, in such processes the modes exchange
energy ℏnω1 ¼ ℏmω2, but the total energy of the modes is not
changed. This is illustrated in Fig. 24 for n ¼ 3 and m ¼ 1. If
one of the modes is excited, the energy exchange happens
periodically in time, as in the case of linear resonance. The

energy-exchange frequency is ∝ jΔðnmÞ
12 j and depends on the

mode amplitudes [in fact, one has to take into account that,
because of the mode nonlinearity, the frequencies ωi depend
on the mode amplitudes Ai, and a more accurate form of the
resonance condition is nω1ðA1Þ ¼ mω2ðA2Þ]. In quantum
terms, the resonating energy levels are split, with the splitting
ℏδωnl that depends on the level numbers.
The onset of resonant nonlinear effects does not require

an exact resonance. It suffices for the frequency detuning
jnω1 −mω2j to be smaller or on the order of the sum of the
decay rates of the modes or the properly scaled maximal
energy-exchange frequency. We also note that the symmetry
of the modes may impose restrictions on the coupling: for
example, in a uniform straight nanobeam the fundamental
flexural mode is not coupled to odd powers of the first excited
flexural mode. Selection rules also apply to other types of
modes, and therefore in a number of cases special design was
implemented to observe particular types of nonlinear reso-
nance (Asadi, Yeom, and Cho, 2021).
An important asset for studying various aspects of nonlinear

resonant effects with the NVSs is their tunability. The modes
can be tuned in and out of resonance by sweeping their
eigenfrequencies with the voltage applied to the gate electrode
(Eichler et al., 2012) or by dynamically shifting the frequency
of one of the modes by driving it into the nonlinear Duffing
regime, where the vibration frequency depends on the vibra-
tion amplitude [cf. Eq. (48)]; see Antonio, Zanette, and Lopez
(2012), Samanta, Yasasvi Gangavarapu, and Naik (2015),
Mangussi and Zanette (2016), Chen et al. (2017), Hajjaj,
Alfosail, and Younis (2018), Asadi, Yu, and Cho (2018),

(a)

(b)

FIG. 24. Nonlinear resonant coupling. (a) Spatial profile of two
eigenmodes with resonance frequencies ω1;2. (b) Energy diagram
showing an energy-exchange process between two harmonic
oscillators with ω2=ω1 ≃ 3. The process simultaneously annihi-
lates n ¼ 3 quanta in mode 1 and creates m ¼ 1 quantum
in mode 2.
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Houri et al. (2019), Asadi, Yeom, and Cho (2021), Luo, Gao,
and Liu (2021), Shoshani and Shaw (2021), and Arora and
Naik (2022), and references therein. The latter dependence
also leads to the possibility of going through resonance during
decay of the mode amplitude after the mode was initially
excited.
In nanomechanical systems the nonlinear mode coupling is

comparatively weak. It becomes stronger with an increasing
mode amplitude, as seen in Eq. (67). Therefore, almost all
observations in the classical domain refer to the case where
one of the resonating vibrational modes is sufficiently strongly
driven or is allowed to decay after being sufficiently strongly
excited.
The amplitude dependence of both the mode frequencies

and the effective coupling strength makes the nonlinear
resonance dynamics much richer than in the case of linear
resonance. Several types of ensuing behaviors have been seen
in micromechanical and nanomechanical systems. Most
observations refer to the cases where a low-frequency mode
was driven close to resonance with a high-frequency mode
with the frequency ratio 2∶1 or 3∶1.

For a micromechanical system that displays a 3∶1 reso-
nance, it was found (Antonio, Zanette, and Lopez, 2012) that
for the low-frequency mode the Duffing response curve
shown in Fig. 15(a) changes due to the nonlinear resonance.
As seen in Fig. 25(a), starting with a sufficiently strong
driving amplitude, the frequency at which the mode switches
from the large- to the small-amplitude branch becomes
independent of the drive amplitude. This frequency is
determined by the coupling to a mode with a 3 times higher
frequency. This coupling opens a new channel of energy
relaxation, thereby limiting the increase in the amplitude. On
a similar device it was found (Czaplewski et al., 2018) that in
the comparatively strong-drive regime the system may dis-
play slow and strongly nonsinusoidal vibrations, thus pro-
ducing a frequency comb with the spectral line spacing
smaller than the mode eigenfrequency by a factor approach-
ing 105 and spanning a bandwidth larger than the mode
decay rate by a factor ∼102; see Fig. 25(e). This effect was
related to a special type of saddle-node bifurcation
(cf. Appendix D.1.a), which in this case occurs on an
invariant circle (Shoshani and Shaw, 2021). When the system

(a) (b)

(c) (d) (e)

FIG. 25. Experiments and theoretical predictions showing the effects of nonlinear resonant coupling for 1∶3 resonance. (a) Nonlinear
response of a resonantly driven lower-frequency micromechanical mode as a function of the drive frequency. The mode switches from
the large- to the small-amplitude branch at the frequencies that depend on the value of the drive amplitude indicated next to the vertical
lines. Adapted from Antonio, Zanette, and Lopez, 2012. (b) Nonlinear response of a multilayer graphene nanoresonator where the
nonlinear resonance with a higher-frequency mode results in a plateau. Adapted from Güttinger et al., 2017. (c) Nonexponential energy
decay in the same system as in (b) and in a similar system, device B. The drive is switched off at t ¼ 0. The resonators were measured at
different gate voltages Vg to tune the resonance frequencies of the modes. The two upper traces refer to device B, whereas the two lower
traces refer to device A. (d) Decay of the scaled squared amplitude of the lower-frequency mode. Calculations show that as the mode
goes through the nonlinear resonance the decay is accompanied by oscillations for the coupling larger than the decay rates. Inset: data on
a linear scale; τ is the scaled time. Adapted from Shoshani, Shaw, and Dykman, 2017. (e) Temporal amplitude of the lower-frequency
(blue upper trace) and higher-frequency (red lower trace) responses of the micromechanical resonator showing the bursting behavior as
the system is driven close to the saddle-node bifurcation on the invariant cycle. Adapted from Czaplewski et al., 2018.
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is near such a bifurcation point, its trajectory in the rotating
frame is of the burst type.
In a nanomechanical resonator studied by Güttinger et al.

(2017), it was possible to tune the modes into a 3∶1 resonance
not only by varying the parameters of the drive but also by
changing the eigenfrequencies using a gate voltage. It was
observed that, when the low-frequency mode was driven
sufficiently strongly, the dependence of its amplitude on the
drive frequency displayed a plateaulike region; see Fig. 25(b).
Numerical simulations suggest that in this region the dynam-
ics in the rotating frame becomes chaotic. The simulations
took into account the nonlinear resonant coupling of the form
of Eq. (67) and successfully described switching between
different vibrational branches of the coupled driven nonlinear
modes. Limit cycles and period doubling for 3∶1 resonance in
a MEMS resonator were observed by Houri et al. (2019).
The results (Chen et al., 2017; Güttinger et al., 2017) also

revealed a strongly nonexponential decay of the resonating
modes after the low-frequency mode was excited to a large
amplitude and the driving was switched off. This can be
understood since, during decay, the modes exchange energy
with not only the thermal reservoir but also each other. Such
an exchange is efficient while the modes are in resonance and
the effective coupling strength is larger than the decay rates.
This leads to a peculiar form of the time dependence of the
amplitude shown in Fig. 25(c), which is in good agreement
with the simulations (Güttinger et al., 2017).
Analytically, the time dependence of the mode amplitude

has been described in two limiting cases. In the first case, the
high-frequency mode has a large decay rate compared to the
decay rate of the low-frequency mode and the appropriately
scaled coupling, whereas in the second case the decay rates of
both modes are small on the coupling scale (Shoshani, Shaw,
and Dykman, 2017). In the first case, the high-frequency
mode serves as a thermal reservoir that is switched on and off
as the amplitude of the low-frequency mode changes, a direct
analog of the nonlinear friction discussed in Sec. VI.B;
cf. Fig. 11. In the second case, on the other hand, the mode
decay is accompanied by strong amplitude oscillations. These
oscillations are followed by a steep drop when the system goes
through a saddle point of the conservative motion and comes
out of resonance, as seen in Fig. 25(d). In both limiting cases,
for small amplitudes, where the modes are away from the
resonance, the decay becomes exponential.
Besides nonlinear resonance of two modes, nanomechan-

ical and micromechanical systems allow one to study multi-
ple-mode resonance (Mahboob et al., 2013; Luo, Gao, and
Liu, 2021). Mahboob et al. (2013) observed in a nano-
mechanical system a resonance of three modes in which ω1 þ
ω2 ≈ ω3 and ω1 ≪ ω2;3. The relevant resonant nonlinear
coupling in this case has the form Ures

nl ¼ MΔ123q1q2q3.
The resonance was achieved by tuning mode 1 with a
piezoelectric transducer. It was shown that resonant driving
of the high-frequency mode leads to excitation of coherent
self-sustained vibrations of modes 1 and 2, the effect called
phonon lasing. A multiple-mode resonance was also studied in
a cascade of beams with the frequencies of the successive
beams decreasing by a factor of 2 (Qalandar et al., 2014). In
this system the energy transfer to a mode with frequency

smaller by a factor of 4 than the excitation frequency was
demonstrated.

C. Parametrically induced resonant coupling

A noteworthy feature of mechanical resonators is that it is
possible to resonantly couple two vibrational modes using a
parametric drive without any restriction on the ratio of their
resonance frequencies ω2=ω1. A simple way to achieve such
coupling is based on driving a resonator at a frequency ωp

equal to either the sum or the difference of the mode
eigenfrequencies (ω1 þ ω2 or jω1 − ω2j) such that the drive
resonantly modulates the coupling strength Δpump

12 ðtÞ in the
potential energy

Upump
12 ¼ MΔpump

12 ðtÞq1q2: ð68Þ

The parametric drive is often implemented by modulating the
stress in the resonator using an electrostatic or piezoelectric
force. The coupling (68) may also result from driving one of
the modes at the combination frequency jω1 � ω2j in the
presence of nonlinear mode-mode coupling (Dykman, 1978;
Sun et al., 2016). The effect of the coupling (68) is similar to
what happens in optomechanical systems (Aspelmeyer,
Kippenberg, and Marquardt, 2014b), where the parametric
coupling is used to cool and heat mechanical vibrations,
realize optomechanically induced transparency in photon
cavities, and hybridize mechanical vibrations with the optical
field.
If the drive frequency is ωp ¼ jω1 − ω2j, the driving leads

to an energy exchange between the modes. A simple way to
understand this is suggested by Fig. 26(a) if one thinks of the
driving as an electromagnetic field. In these terms, the
interaction (68) describes a process in which a photon with
energy ℏωp and a quantum of the lower-frequency mode
[mode 1 in Fig. 26(a)] are annihilated and a quantum of the
higher-frequency mode is created or, vice versa, a quantum of
a higher-frequency mode decays into a photon and a quantum
of the lower-frequency mode. For ω1 < ω2 the energy con-
servation condition is ℏωp þ ℏω1 ¼ ℏω2.
In other words, if one notices that the mode coordinates q1

and q2 oscillate at frequencies ω1 and ω2, respectively,
whereas Δpump

12 ðtÞ oscillates at the frequency ωp ¼ jω1−ω2j,
in Upump

12 there is a term that is independent of time. In the
rotating wave approximation it has the same form as the static
linear resonant mode-mode coupling discussed in Sec. VIII.A.
In terms of the modes’ ladder operators, the coupling energy is
∝ a†1a2 þ a†2a1. Therefore, the energy exchange is similar to
what was considered in Sec. VIII.A.
An important feature of the drive at jω1 − ω2j is that it

makes it possible to cool down the low-frequency mode
[mode 1 in Fig. 26(a)], given that its relaxation rate is smaller
than the relaxation rate of the high-frequency mode (Dykman,
1978). The driving “extracts” the energy from the low-
frequency mode and “dumps” it into the high-frequency
mode, which then quickly further dumps it into the thermal
reservoir coupled to this mode. Thus, the high-frequency
mode in this case serves as an effective thermal reservoir for
the low-frequency mode.
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If the relaxation rate of the low-frequency mode is domi-
nated by the energy exchange with the high-frequency mode,
in the stationary state the populations of the excited states of
the modes should be equal. The occupation of the first excited
energy level of the high-frequency mode (mode 2) is
∝ expð−ℏω2=kBTÞ. The previous argument suggests that
the occupation of the first excited state of the low-frequency
mode (mode 1) should be ∝ expð−ℏω1=kBTeffÞ, with
Teff ¼ Tω1=ω2. This means that the effective temperature
of mode 1 is significantly lower than T. Surprisingly, the entire
distribution over the excited states of mode 1 is of the
Boltzmann form with temperature Teff in the absence of
nonlinear friction (Dykman, 1978). In the opposite case where
the relaxation rate of mode 1 is much higher than that of mode
2, the effective temperature of mode 2 becomes Tω2=ω1 (i.e.,
mode heating occurs); see Appendix C.
Mode cooling in coupled mechanical modes was experi-

mentally demonstrated by Mahboob et al. (2012) and De Alba
et al. (2016). The cooling is modest compared to what is
achieved with optomechanical devices (Chan et al., 2011;
Teufel et al., 2011; Verhagen et al., 2012), where the ratio of
the mode frequencies can be much larger.

A profound effect of the driving-induced resonant coupling
is seen in the response to a weak probe drive. This response
displays Fano resonance. For a not too strong driving-induced
coupling and for the driving frequency ωp ≈ jω2 − ω1j, the
amplitude of the response of a faster-decaying mode [mode 2
in Fig. 26(c)] to a probe field displays a narrow dip at a
frequency ≈ωp þ ω1. The dip results from the interference of
the direct resonant response of mode 2 and of the response of
mode 1 “uplifted” by the drive (68) to the frequency
ωp þ ω1 ≈ ω2. This is an analog of the optomechanically
induced transparency in photon cavities (Weis et al., 2010;
Safavi-Naeini et al., 2011; Qu and Agarwal, 2013).
For a stronger driving Δpump

12 ðtÞ [Eq. (68)], where the rate of
the driving-induced energy exchange between the modes
becomes larger than their relaxation rates, the behavior of
the modes is reminiscent of that at the mode anticrossing
discussed in Sec. VIII.A. The resonance now is between ω2

and ω1 þ ωp. As previously mentioned, the coupling
Hamiltonians have the same form in the rotating wave
approximation. The modes are strongly hybridized in this
regime.
Experimentally, the Fano resonance and the mode hybridi-

zation in micromechanics and nanomechanics were first
demonstrated in GaAs-based semiconductor resonators
(Mahboob et al., 2012; Okamoto et al., 2013). In the response
of the mode to a weak probe field shown in Fig. 26(c), the dip
associated with the Fano resonance becomes more prominent
with the increasing drive Δpump

12 ðtÞ. The response for the
largest drive is nearly split into two peaks, the analog of
anticrossing in Fig. 23(a), indicating a significant mode
hybridization. It is comparatively simpler to reach this
hybridization regime (also called the strong coupling regime)
in resonators based on nanoscale materials, such as graphene
and nanotubes, because the stress can be modulated by a larger
amount (Liu, Kim, and Lauhon, 2015; De Alba et al., 2016;
Mathew et al., 2016; Zhu et al., 2017; Luo et al., 2018; Prasad,
Arora, and Naik, 2019).
Parametric drive at the frequency ωp ≈ ω1 þ ω2 leads to the

heating of the Brownian motion of both modes 1 and 2. In the
rotating wave approximation, in terms of the modes’ ladder
operators the coupling energy is ∝ a†1a

†
2 þ a1a2. The effect of

the parametric drive can be thought of as a decay of a drive
photon with creation of a quantum of mode 1 and a quantum
of mode 2; cf. Fig. 26(b). This excitation corresponds to
“negative damping” and is associated with a decrease of the
dissipation rates of the modes. If in the absence of the driving
one mode is decaying much faster than the other, the effect is
described as the decrease of the linear friction coefficient and
the increase of the effective temperature of the slower-
decaying mode. When the dissipation rate is positive, this
mode (mode 1, for concreteness) can amplify an externally
applied weak drive at the frequency ωp − ω1. When its
dissipation rate goes through zero, the mode switches to
the regime of self-sustained vibrations (Dykman, 1978).
Amplification of a weak radiation by a nanomechanical

mode coupled to an optical cavity mode was observed by
Massel et al. (2011). For coupled micromechanical modes,
both the resonant parametric heating and the onset of
oscillations were observed by Mahboob, Okamoto et al.

(b)(a)

(c) (d)

FIG. 26. Resonant mode coupling using a parametric drive.
(a),(b) Energy levels when the parametric drive frequency ωp is
set at ω2 − ω1 in (a) and ω1 þ ω2 in (b). (c) Driven response of
the displacement of mode 2 to a weak probe field for different
parametric drive powers with ωp ¼ ω2 − ω1. The splitting
of the peak at high parametric drive power indicates that modes
1 and 2 are significantly hybridized. (d) Correlations between
modes 1 and 2 in the ðQ1; P2Þ and ðQ2; P1Þ phase spaces for
ωp ¼ ω2 þ ω1 for several parametric drive amplitudes. (c),
(d) Adapted from Mahboob et al., 2012, and Mahboob,
Okamoto et al., 2014.
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(2014). In the parametric heating regime, a correlation in the
displacement noise of the two modes was measured and two-
mode squeezing was found; see Fig. 26(d).
An interesting regime arises when both modes are pumped

into the regime of self-sustained vibrations (Sun et al., 2016).
The measurements show that the phase fluctuations of the two
modes feature near-perfect anticorrelation, so the sum of the
phases ϕ1ðtÞ þ ϕ2ðtÞ remains nearly constant. Such anticor-
relation is a consequence of the discrete time-translation
symmetry imposed by the periodic drive. This regime has
not been accessed with the optomechanical systems fabricated
thus far, since the dissipation rate of the optical cavity could
not be driven to zero.
Parametric drive of the mode coupling can also be used to

generate nonlinear friction in a controlled way. Pumping at
ω2 − 2ω1 leads to positive nonlinear friction in mode 1 if the
damping rate of mode 2 is large enough that any additional
energy arriving from mode 1 is rapidly transferred to the
environment. This results in a relaxation process where two
quanta of mode 1 are simultaneously extracted and transferred
to mode 2 along with a drive photon, in contrast to the
previously discussed linear friction that involves a transfer of
one quantum of mode 1. Energy decay measurements of this
nonlinear friction show that the vibrational amplitude
decreases the fastest at high amplitude (red data in Fig. 27)
(Dong, Dykman, and Chan, 2018). Pumping at ω2 þ 2ω1

generates negative nonlinear friction, where the measured
decay is the slowest at high amplitude (blue data in Fig. 27).
Ultimately, such negative nonlinear friction leads to the
possibility of self-sustained vibrations in the system of
coupled modes.

IX. FREQUENCY FLUCTUATIONS

Frequency fluctuations are one of the least understood
chapters of the dynamics of nanomechanical systems. In a
way, even the word “frequency” has been used somewhat
ambivalently. Strictly speaking, the angular frequency is equal
to 2π divided by the vibration period. It is thus associated with
a discrete time interval. However, in classical vibrational

systems there is also considered an “instantaneous” frequency
that continuously depends on time and is given by the
derivative of the vibration phase φðtÞ over time. For perfect
sinusoidal vibrations the two definitions of the frequency
coincide, but in the presence of fluctuations they generally
differ. Frequency fluctuations in NVSs have attracted signifi-
cant attention, as they often impose a limit on mass sensitivity
(Cleland, 2005; Ekinci and Roukes, 2005; Yang, Callegari
et al., 2006; Naik et al., 2009; Chaste et al., 2012) and other
applications in sensing, like force and force gradient mea-
surements (Weber et al., 2016; Braakman and Poggio, 2019);
they are also a major limiting factor in the application of
micromechanical systems such as clocks, gyroscopes, and
other devices (Ng et al., 2013; Zaliasl et al., 2015; Miller
et al., 2018).
For an isolated linear mode, the displacement can be

written as

qðtÞ ¼ A cos φðtÞ; φðtÞ ¼ ω0tþ ϕ:

Here ω0 is the mode eigenfrequency, i.e., a parameter of the
system, whereas ϕ and the amplitude A are determined by the
initial conditions. Coupling of the mode to the environment
causes fluctuations of both ϕ and ω0, as well as amplitude
fluctuations, making all these parameters time dependent. The
fluctuations of ϕ and ω0, which are of primary interest in this
section, come from physically different sources and are called,
respectively, phase and eigenfrequency fluctuations. Both of
them contribute to fluctuations in the full vibrational phase,
which can be now written as

φðtÞ ¼
Z

t

0

ω0ðt0Þdt0 þ ϕðtÞ: ð69Þ

The time-dependent phase ϕðtÞ is also often called the phase
in the rotating frame. In high-Q systems, of relevance are
fluctuations of ϕ and ω0 that are slow on the timescale ω−1

0 .
Fluctuations of ϕðtÞ have been studied broadly, initially in

various systems of self-sustained vibrations. These studies can
be traced back to the 1930s–1950s (Berstein, 1938; Rytov,
1956a, 1956b). They were later carried out for lasers [see Lax
(1967), and Lax and Yuen (1968), and references therein] and
for time metrology (Allan, 1966; Allan et al., 1988). A major
feature of self-sustained vibrations is that the phase ϕ is
arbitrary unless the vibrations are synchronized using an
external source. Therefore, phase fluctuations can accumulate
in time. Generally, this leads to phase diffusion on a long
timescale that is independent of the nature of the vibrational
system.
In micromechanical and nanomechanical systems, an

unavoidable source of phase fluctuations is the thermal
(thermomechanical) noise. It comes along with friction from
the coupling to a thermal reservoir and is described by the
force fTðtÞ in Eq. (2) (Cleland and Roukes, 2002; Schmid,
Villanueva, and Roukes, 2016). It sets the so-called noise floor
and thus imposes a fundamental limit on the precision with
which the full phase φðtÞ, and thus the frequency _φðtÞ, can be
determined; cf. Fig. 28.

FIG. 27. Tailoring nonlinear friction with parametrically modu-
lated mode coupling. The vibration amplitude of mode 1 is shown
as a function of time in a ringdown measurement. The middle
(black) curve corresponds to linear friction. The lowest (red) and
highest (blue) curves correspond to positive and negative non-
linear fiction when the device is pumped at ω2 ∓ 2ω1, respec-
tively. Adapted from Dong, Dykman, and Chan, 2018.
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Fluctuations of the vibration eigenfrequency are a different
source of fluctuations of the overall phase φðtÞ. A simple
mechanism of such fluctuations is random attachment and
detachment of molecules and the associated change of the
mass, and thus the eigenfrequency of a nanoresonator (Yong
and Vig, 1989; Cleland and Roukes, 2002; Ekinci, Yang, and
Roukes, 2004; Dykman et al., 2010; Yang et al., 2011).
Understanding frequency fluctuations requires one to sep-

arate the fluctuations of the eigenfrequency and of the slow
part ϕ of the phase and to characterize both the spectra and the
statistics of these fluctuations. In turn, this characterization
provides a means of identifying the fluctuation sources. We
concentrate here primarily on “open-loop” measurements
done to this end. These measurements are performed with
no feedback loop. They are therefore free from the effect of the
noise that comes from the feedback. In studying nanome-
chanical and micromechanical systems, feedback-based
methods are also often employed, including those utilizing
self-sustained vibrations (Feng et al., 2008) as well as the
phase-locked loop method (Albrecht et al., 1991; Naik et al.,
2009; Hanay et al., 2012; Olcum et al., 2015); see Schmid,
Villanueva, and Roukes (2016), and Demir (2021), and
references therein.
We note that in quantum terms frequency fluctuations are

usually associated with decoherence. A familiar source of
decoherence in quantum systems is fluctuations of the level
spacing, i.e., of the transition frequencies. The thermome-
chanical noise described by Eq. (2) does not lead to fluctua-
tions of the level spacing of a quantum oscillator in the
absence of nonlinearity. In that sense, there is a significant
difference between the quantum and classical pictures of
frequency fluctuations. The pictures can be reconciled,
though, by realizing that, because of dissipation, for a nonzero
temperature a quantum oscillator makes transitions between
its energy levels. The transitions happen at random, and this is
a quantum analog of the effect of thermal noise. The power
spectra of quantum and classical linear oscillators have the
same shape; see Sec. IV.C.

A. Allan variance

The most broadly used method of characterizing frequency
fluctuations is based on measuring the Allan variance. To find
it, following the original approach (Allan, 1966) one has to
measure the average frequency f̄ðτÞ over time τ and compare
the values of this frequency obtained as the system evolves.
Specifically, an mth value of the average frequency f̄m ≡
f̄mðτÞ is determined by the increment of the overall vibration
phase φ over the time from tm to tm þ τ, and then
f̄m ¼ ½φðtm þ τÞ − φðtmÞ�=2πτ. If f0 ¼ ω0=2π is the mean
value of f̄m, the Allan variance found from N measurements is
defined as

σ2AðτÞ ¼
1

2ðN − 1Þf20
XN−1

m¼1

ðf̄mþ1 − f̄mÞ2: ð70Þ

The Allan variance can be expressed in terms of the power
spectrum of the full phase φ. This gives σ2AðτÞ in a simple
explicit form for several types of noise and for a different
relation between τ and the mode relaxation time Γ−1, in the
closed-loop and open-loop measurements; see Appendix H.
The Allan variance as defined by Eq. (70) does not distinguish
between fluctuations of the eigenfrequency and the rotating-
frame phase ϕ. It also does not provide information about the
statistics of the fluctuations.
Figure 29 shows the measurements of the Allan deviation

σA in a single-crystal Si nanoresonator based on the described
approach (Sansa et al., 2016). The studied nanoresonators had
Q in the range ð5 − 7Þ × 103 and the experiments were done at
room temperature. It is seen that the experimentally observed
noise can be several orders of magnitude higher than the one
expected from thermal fluctuations of the phase ϕ and
described by

FIG. 28. Effect of thermal phase noise. The noise is sketched as
a smearing of the values of the quadratures Q and P of the mode.
The uncertainty in the phase δφ depends on the vibration
amplitude. For a small amplitude its value δφ1 is larger than
the value δφ2 for a larger amplitude.

FIG. 29. Allan deviation as a function of integration time, from
1 ms to 100 s, for different amplitudes of the resonant drive Vdrive.
The curves are numbered from top to bottom in order of
decreasing Vdrive. Dashed lines indicate the expected stability
from the output signal at each drive voltage and the total additive
noise in the system, including thermal and measurement-related
noises. The lowest solid line is a visual guide highlighting the
experimentally measured lower bound for frequency stability.
Adapted from Sansa et al., 2016.
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σ2AðτÞ ¼ ð2ΓkBT=ω4
0A

2Þτ−1; ð71Þ

cf. Eq. (H3). A significantly larger Allan deviation than what
would be expected from thermal noise has been reported for
essentially all nanomechanical systems studied thus far. These
observations suggest that a major contribution to σA comes
from other noise sources. Fluctuations of the mode eigenfre-
quency are of particular importance in this respect.

B. Eigenfrequency fluctuations

Several mechanisms of eigenfrequency fluctuations of
nanoresonators have been discussed in the literature.
Besides the fluctuations due to the mode nonlinearity and
nonlinear mode coupling discussed in Sec. VI.C.1, they
include the aforementioned noise due to the random attach-
ment and detachment of molecules, molecule diffusion along
the resonator (Atalaya, Isacsson, and Dykman, 2011b; Yang
et al., 2011; Schwender et al., 2018), tension fluctuations due
to temperature fluctuations, defect motion, transitions
between the states of two-level systems within a material
or on the surface (Fong, Pernice, and Tang, 2012; Hamoumi
et al., 2018; MacCabe et al., 2020), and local charge
fluctuations (Yazdanian et al., 2009; Siria et al., 2012;
Miao et al., 2014; Dash et al., 2021).
Different fluctuation mechanisms lead to eigenfrequency

fluctuations with different timescales, i.e., with different
correlation times tc. The fluctuation statistics is also different.
Often several fluctuation mechanisms with different tc and
different statistics jointly affect the mode dynamics.
The presence of eigenfrequency fluctuations can be

revealed by comparing the power spectrum of a mode or
the spectrum of its response to a resonant drive with the results
of a ringdown measurement where the decay of initially
excited vibrations is studied. In the absence of nonlinear
friction the decay is exponential in time, with the decrement
given by the friction coefficient Γ, as seen in Eq. (21). If there
are no eigenfrequency fluctuations, Γ is also the half-width of
the power spectrum SðωÞ; cf. Eq. (5). However, the shape of
the spectrum often deviates from the Lorentzian and the half-
width Δω exceeds Γ even when the vibrations are linear
(Schneider et al., 2014; Güttinger et al., 2017; MacCabe et al.,
2020). This is a consequence of eigenfrequency fluctuations.
An advantageous approach to separating and characterizing

eigenfrequency fluctuations is based on studying the mode
dynamics in the presence of a close to resonance drive
(Maizelis, Roukes, and Dykman, 2011; Fong, Pernice, and
Tang, 2012; Gavartin, Verlot, and Kippenberg, 2013; Zhang
et al., 2014; Sun et al., 2015; Zhang and Dykman, 2015;
Kalaee et al., 2019). The drive breaks the time-translation
symmetry of the system; cf. Sec. VII.C. As a result, fluctua-
tions of the in-phase and quadrature vibration components
become different, which leads to several observable
consequences.
One of these consequences is pronounced in the corre-

lators huðt1Þ…uðtnÞi of the complex amplitude of the driven
mode

uðtÞ ¼ ð2MωFÞ−1½MωFqðtÞ − ipðtÞ� expð−iωFtÞ;

where ωF is the drive frequency; cf. Eq. (H4). These
correlators are nonzero only because of the broken time-
translation symmetry, and it follows from the time-symmetry
arguments that for a linear mode they do not depend on
thermal noise and the corresponding phase fluctuations.
However, they explicitly depend on fluctuations δω0ðtÞ of
the eigenfrequency. Studying these correlators provides
a direct way to characterize the spectrum and statistics of
the eigenfrequency fluctuations and enables one to measure
the correlators hδω0ðt1Þ…δω0ðtnÞi (Maizelis, Roukes, and
Dykman, 2011). The ratio hu2i=hui2 was used by Gavartin,
Verlot, and Kippenberg (2013) to characterize eigenfrequency
fluctuations in a nanomechnical beam; they also showed that
the fluctuations can be suppressed with a feedback using a
second mechanical mode as a frequency noise detector. The
experiment on a micromechanical resonator in which the
eigenfrequency was modulated by telegraph noise (Sun et al.,
2015) demonstrated the possibility of revealing the noise
statistics by measuring the moments huni.
The role of eigenfrequency fluctuations is seen in Fig. 30,

which shows fluctuations of the quadrature and in-phase
components of a driven high-Q nanomechanical resonator
(Fong, Pernice, and Tang, 2012). Whereas the fluctuational
spread of the quadrature component is essentially independent
of the amplitude of forced vibrations A, the spread of the in-
phase component increases with an increasing amplitude. The
observed spread of the vibration phase counted off from ωFt
(ωF is the drive frequency), φðtÞ − ωFt, is practically inde-
pendent of A at low temperatures. For the thermomechanical
noise, on the other hand, it would fall off with an increasing A,
σ2A ∝ A−2; cf. Eq. (71) and Appendix H. The observed phase
spread is a direct consequence of the fluctuations of ω0, with
the phase deviation

δϕðtÞ ≈
Z

t

−∞
dt0 exp½−Γðt − t0Þ�δω0ðt0Þ

for a weak eigenfrequency noise. The data allowed Fong,
Pernice, and Tang (2012) to study the low-frequency part of
the spectrum of the fluctuations δω0ðtÞ. It was found to be of

(a) (b)

FIG. 30. Fluctuations of the in-phase and quadrature compo-
nents of a resonantly driven SiN nanoresonator. The black circles
show the driven response when the driving frequency ωF is swept
across the resonance. (a) Increase of the fluctuations with
increasing temperature. (b) Dependence on the driving amplitude.
With no driving the mode fluctuates about zero (the data points at
the top). Adapted from Fong, Pernice, and Tang, 2012.
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the 1=f type and was related to reorienting two-state elastic
dipoles.
The power spectrum of the eigenfrequency fluctuations

in a broad frequency range can be extracted directly from
the power spectrum of a driven mode SðωÞ (Zhang et al.,
2014; Zhang and Dykman, 2015). For a linear mode this
can be qualitatively explained as follows. With no noise, a
resonant force F cos ωFt leads to the mode displacement
(cf. Sec. VII.A)

qðtÞ ¼ F
2MωF

Re
i expð−iωFtÞ
Γ − iðωF − ω0Þ

. ð72Þ

If in Eq. (72) ω0 is fluctuating [that is, if ω0 is formally
replaced by ω0 þ δω0ðtÞ], the displacement qðtÞ is also
fluctuating. This should lead to an extra peak in the power
spectrum of the mode. The form of this peak strongly depends
on the interrelation between the correlation time tc of the
fluctuations δω0ðtÞ and the relaxation time of the mode Γ−1.
Since the power spectrum is quadratic in qðtÞ, it is clear from
Eq. (72) that the peak is proportional to F2, which allows one
to identify it and separate it from other spectral features.
The replacement of ω0 with ω0 þ δω0ðtÞ in Eq. (72) is

applicable if the correlation time of the eigenfrequency
fluctuations tc is large compared to the mode relaxation time
Γ−1, so the mode adiabatically follows these fluctuations. The
fluctuation-induced slow time variation of the amplitude and
phase of the forced vibrations at frequencyωF lead to a narrow
spectral peak that is centered at ωF. The width of this peak is
∼t−1c . For small jδω0ðtÞj the peak is proportional to the power
spectral density Sδω0

ðω − ωFÞ of δω0ðtÞ. Therefore, the shape
of the peak allows one to directly read off this spectral density.
In an experiment on a carbon nanotube resonator (Zhang
et al., 2014) carried out at T ¼ 1.2 K, the spectral density of
the eigenfrequency fluctuations was found to be Sδω0

ðωÞ ∝
ω−α for small ω, with α ≈ 0.5. A similar measurement was
done for a silicon nanobeam, where such 1=f-type scaling was
also observed, with the exponent α ≈ 0.7 (Sun et al., 2016).
Slow eigenfrequency fluctuations determine the long-term

stability of devices based on nanoresonators and microreso-
nators, including clocks. However, they do not lead to a
broadening of the spectral response in the absence of the drive
if the response is measured over a short time compared to tc.
The position of the spectral peak shifts from measurement to
measurement in this case. If the duration of a measurement is
≳tc and hδω2

0i≳ Γ2, the spectrum is broadened. This is an
analog of the inhomogeneous spectral broadening. The effect
was observed for a nanotube resonator (Moser et al., 2014)
and for a breathing mode in a phononic crystal (MacCabe
et al., 2020).
The opposite limit of comparatively fast eigenfrequency

fluctuations (tc ≪ Γ−1) is not directly described by Eq. (72). A
qualitative picture is somewhat more involved (Zhang et al.,
2014), but, roughly, one can consider the major spectral effect
of the drive in this case as coming from the effective heating of
the mode, with δT ∝ F2.
Fast fluctuations δω0ðtÞ lead to a broadening of the power

spectrum of a mode SðωÞ in the absence of driving. The power
spectrum and the mode susceptibility have a Lorentzian shape

with a half-width Δω, which is the sum of Γ and the
characteristic intensity of the eigenfrequency fluctuations.
This feature holds regardless of the statistics of the fluctua-
tions provided that Δω ≪ ω0. It has often been used to
describe experiments; cf. Eq. (10).
Studying the spectrum in the presence of driving allows one

to separate the contribution of fast frequency fluctuations. The
corresponding driving-induced part of the spectrum SFðωÞ can
be written as

SFðωÞ ≈ CFF2
ðΔω − ΓÞ=Γ

Δω2 þ ðωF − ω0Þ2
SðωÞ
kBT

: ð73Þ

Here, strictly speaking, ω0 is also renormalized by the
frequency fluctuations if they are non-Gaussian; the explicit
form of CF depends on the statistics of the fluctuations δω0ðtÞ
(Zhang et al., 2014). The spectrum SFðωÞ has the same shape
SðωÞ as in the absence of driving but is proportional to the
squared driving amplitude. It is also proportional to the
difference between the fluctuation- and decay-induced broad-
ening Δω − Γ.
In Fig. 31 we show the results of two experiments (Zhang

et al., 2014; Kalaee et al., 2019) that demonstrate how the
interplay of the driving and the eigenfrequency fluctuations

(a)

(b)

FIG. 31. Power spectra of driven modes with fluctuating
eigenfrequencies. (a) Flexural mode of a carbon nanotube with
the eigenfrequency ω0=2π ¼ 6.3 MHz (Zhang et al., 2014).
(b) Breathing mode of a nanobeam phononic crystal with the
eigenfrequency ω0=2π ≈ 425 MHz (Kalaee et al., 2019). The
lowest (blue) curves show the thermal power spectra without
drive [multiplied by 40 in (b)]. The regions marked as Abb and Anb
indicate the driving-induced parts of the power spectrum, which
are due to the fast (broadband) and slow (narrowband) eigen-
frequency fluctuations. The narrow peaks are centered at the drive
frequencies.
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affects the power spectrum. Even though the studied systems
were significantly different, the observations show the occur-
rence of a narrow peak centered at the drive frequency and a
broad spectrum with a shape similar to that in the absence of
driving. Comparing the areas of the peaks with and without
driving allowed the contribution of the fast eigenfrequency
fluctuations to the observed spectral broadening Δω to be
estimated. In both experiments this contribution was ≳50%.

X. OUTLOOK AND CHALLENGES

The goal of this review is to demonstrate the nontrivial
physics of nanomechanical systems and the possibility of
using them as a platform for studying a broad range of
nonlinear and nonequilibrium phenomena in a controlled
setting, and also to indicate their numerous applications.
These intertwined aspects of nanomechanics make it a fairly
unique interdisciplinary area of research and underlie the
growing interest in NVSs. The interest is further stimulated by
the rapid progress in nanotechnology, which allows existing
types of NVSs to be improved and qualitatively new NVSs to
be made. In closing the review, we present some of the nascent
directions for research in the field. Unavoidably, such a list
will be incomplete, particularly given the high rate at which
new results are obtained.
An important aspect of the mesoscopic dynamics of NVSs

are coherent effects. Among them, of significant current
interest are the effects of coupling nanomechanical modes
to qubits (Lee et al., 2017; Arrangoiz-Arriola et al., 2019) (see
also Sec. VI.C.2), as well as the use of qubits to entangle
different mesoscopic modes (Wollack et al., 2022). Related is
a significant effort to develop nanomechanical resonators with
high-Q modes with microwave frequencies (MacCabe et al.,
2020; Wollack et al., 2022). These modes can be brought to
the ground quantum state for temperatures ≲0.1 K without
sideband or active feedback cooling (that reduces theQ factor)
and can be in resonance with superconducting qubits
(Mirhosseini et al., 2020). Vibrations localized around engi-
neered defects in phononic crystals with frequencies in the gap
of the spectrum of propagating modes are an important type of
these modes.
A promising direction in the context of quantum informa-

tion and coherent effects in nanomechanics is developing
qubits based on the NVSs. This requires vibration nonlinearity
that remains large compared to the decay rate down to the
quantum regime. Resonant driving at the frequency of the
transition from the ground to the first excited vibrational state
does not lead to transitions to higher-energy states, similar to
the case of superconducting qubits. The corresponding non-
linearity can be achieved by coupling mechanical vibrations to
the charge states of a double-quantum dot. For a qubit based
on a carbon nanotube resonator, the coherence time is
predicted to be particularly long (Pistolesi, Cleland, and
Bachtold, 2021). A strong nonlinearity can also be achieved
near a bifurcation point where a nanotube or a nanomembrane
is close to collapse due to the strong gate voltage and can
tunnel into the collapsed state (Sillanpää et al., 2011).
Topological effects form another group of coherent

phenomena that attract current attention. The possibility
of observing such effects in phononic crystals in an

optomechanical setting was indicated by Peano et al.
(2015), and thermal phonons traveling along a topological
edge channel with weak backscattering have been observed
in an array of over 800 submicron silicon membranes, the
largest optomechanical array thus far (Ren et al., 2020). A
two-dimensional metamaterial made out of submicron SiN
membranes, which has time-reversal symmetry, has been
demonstrated to have pseudospin-type edge states, which
are robust to waveguide distortion (Cha, Kim, and Daraio,
2018). The possibility to control the phononic band structure
electrostatically makes nanoresonator-based metamaterials
interesting even where they are topologically trivial. Such
control can be used for dynamical tuning of acoustic trans-
parency and waveform engineering in phononic waveguides
(Cha and Daraio, 2018; Kurosu et al., 2018; Hatanaka,
Bachtold, and Yamaguchi, 2019).
Yet another group of coherent effects is related to the

dynamics of NVSs in a driving field with frequency ωF close
to an overtone of the mode eigenfrequency ωF ≈ nω0. This
drive can resonantly excite vibrational states at a frequency
ωF=n, with n > 1. The case of n ¼ 2 corresponds to the
parametric excitation discussed for a single mode in
Sec. VII.B. For coupled NVSs, the interaction between driven
modes may lead to formation of time crystals where the
discrete time-translation symmetry imposed by the periodic
drive is broken; i.e., phase-matched vibrations occur at a
frequency ωF=n ≈ ω0 (Dykman et al., 2018). The properties
of such dissipation-free Floquet time crystals are strongly
affected by the nontrivial geometric phase (Lörch et al., 2019)
that emerges for n ≥ 3 (Guo, Marthaler, and Schön, 2013;
Zhang et al., 2017). The resonant-driving-induced time
crystals are expected to take an exponentially long time until
they are heated up and ultimately melted by the drive.
The “incoherent” side of the dynamics of coupled NVSs,

i.e., the dynamics in the presence of relaxation and thermal
fluctuations, is closely connected to the “coherent” side.
Arrays of dissipative resonantly driven NVSs can display
time-crystalline behavior (Dykman et al., 2018; Heugel et al.,
2019), which in this case can have features related to the
breaking of the detailed balance. These arrays should enable,
in particular, study of the effects of disorder in the eigen-
frequencies and the coupling on the quantum and classical
time-symmetry-breaking transitions. Coupled NVSs can also
display topological solitons (Lin et al., 2021; Yamaguchi and
Houri, 2021). Topologically nontrivial dissipative networks
with interesting dynamics can also be created by driving
coupled resonators with radiation modulated at the difference
of their frequencies (del Pino, Slim, and Verhagen, 2021).
Challenging observations of broken-symmetry states with
complex dynamics have been reported for networks of
NVSs that display self-sustained vibrations (Matheny et al.,
2019). Overall, the dynamics of coupled NVSs, which has
been attracting attention for a long time (Buks and Roukes,
2002; Lifshitz and Cross, 2003, 2008; Cross and Greenside,
2009; Karabalin, Cross, and Roukes, 2009), is significantly
enriched by the topological and Floquet aspects.
NVSs are playing an increasingly important role in study-

ing condensed-matter systems. One of the pursued directions
is to establish microscopic mechanisms of energy relaxation in
vibrational modes. A significant effort has recently been put
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into identifying Landau-Rumer and Akhiezer relaxation, with
experiments covering a range from ultralow temperatures to
room temperature (Rodriguez et al., 2019; MacCabe et al.,
2020; Tepsic et al., 2021). Understanding nonlinear damping
and its dependence on the material, geometry, and temperature
is on the horizon (Atalaya et al., 2016; Steeneken et al., 2021),
as is the origin of the low quality factor of graphene, carbon
nanotubes, and MoS2 resonators at room temperature
(Sazonova et al., 2004; Bunch et al., 2007; Castellanos-
Gomez et al., 2013). Another direction involves thermal
effects in nanostructures. Heat transfer has been measured
in graphene and MoSe2 monolayers down to cryogenic
temperatures, and slow equilibration between different vibra-
tional branches of graphene has been established using
photothermal response (Morell et al., 2019; Dolleman et al.,
2020); see also Sullivan et al. (2017). The mechanical
detection and control of magnetic states and magnetic phase
transitions in two-dimensional layered antiferromagnetic CrI3
and FePS3 materials have been demonstrated down to two
layers (Jiang et al., 2020; Šiškins et al., 2020). The charge
density wave transition has also been measured in 2H-TaS2
and 2H-TaSe2 layered materials (Lee et al., 2021). Regarding
electron-vibrational coupling, it has been shown using carbon
nanotubes that where the coupling is sufficiently strong it
results in controlled vibration cooling or excitation of self-
sustained vibrations in response to source-drain voltage
(Urgell et al., 2020; Wen et al., 2020).
Substantial work is being done to characterize two-

level fluctuators with NVSs. A promising direction is opened
by passively cooling NVSs down to low temperatures
(MacCabe et al., 2020; Maillet et al., 2020; Gisler et al.,
2021; Kamppinen, Mäkinen, and Eltsov, 2022), including
submillikelvin temperatures, where even megahertz-range
modes are close to the quantum ground state (Cattiaux et al.,
2021). The characteristic temperature dependencies of the
decay rate and the frequency shift of the NVS modes found
using the ringdown measurements and the measurements
of the response and fluctuation spectra provide an insight
into the relaxation mechanisms of two-level systems in
nanostructures.
NVSs have demonstrated superior sensitivity and spatial

resolution in the study of superfluid 3He and 4He. They have
been used to detect Cooper pair breaking in 3He (Defoort
et al., 2016), as well as to measure helium viscosity, detect
modulated “phonon wind” (Guénault et al., 2019, 2020), trap
a single vortex (Guthrie et al., 2021), and study new effects of
quantum turbulence at ultralow temperatures (Barquist et al.,
2020, 2021) in 4He. A series of first-order layering transitions
of liquid helium on a carbon nanotube observed by Noury
et al. (2019) suggested the possibility of new types of phase
transitions on smooth defect-free cylindrical surfaces.
Nanomechanics has essentially opened up the field of

experimental studies of nonlinear dynamics of fluctuating
vibrational systems. The field is vibrant. Fluctuations can now
be measured in real time. For a carbon nanotube, such
measurements have revealed a weakly chaotic regime in
which, at room temperature, the energy concentrates in
low-frequency modes, disperses into higher-frequency
modes, and then returns (Barnard et al., 2019), reminiscent
of the Fermi-Pasta-Ulam-Tsingou behavior. The interplay of

fluctuations and nonlinearity leads to rich dynamics in
systems with a few or even one vibrational mode away from
thermal equilibrium, which is related to the breaking of the
detailed balance (Roberts, Lingenfelter, and Clerk, 2021), see
Sec. VII.C. This includes the scaling behavior of fluctuations
near various types of bifurcation points (Jessop, Li, and
Armour, 2020; Tadokoro, Tanaka, and Dykman, 2020), the
onset of chaos in the rotating frame (Güttinger et al., 2017;
Houri, Asano et al., 2020), and new types of fluctuation
squeezing in driven systems in the nonlinear regime (Huber
et al., 2020; Yang et al., 2021). Noise squeezing in a nonlinear
regime may improve measurement sensitivity, particularly for
phase-based measurements (see Sec. IX), by reducing the
detrimental effect of thermal noise. Reducing measurement
noise is also on the agenda, and to this end new detection
methods are explored, such as focused electron beams (Pairis
et al., 2019).
Among various nonlinear resonant phenomena that can be

accessed with NVSs, of increasing interest are nanomechan-
ical frequency combs. These combs have been generated in
coupled modes that display nonlinear resonance or in a single
mode using feedback control (Houri et al., 2019, 2021; Houri,
Hatanaka et al., 2020; Singh et al., 2020). A large number of
spectral lines have been observed in nanomechanical systems
with coupled modes displaying a saddle node on an invariant
circle bifurcation (Czaplewski et al., 2018) (see Sec. VIII.B),
or by parametrically inducing resonant mode coupling (Chiout
et al., 2021). However, driven nonlinear NVSs are expected to
display a multipleline comb even when there is only a single
mode involved but the dissipation is nonlinear (Dykman et al.,
2019). An observation of such a comb was recently reported
by Ochs et al. (2022).
The high sensitivity of the NVSs provides a means for

addressing fundamental physics problems. Some of these
problems are related to the Casimir force at small distances
and its dependence on the material properties and the
geometry, as well as thermal and nonequilibrium effects
(Tang et al., 2017; Gong et al., 2021; Liu et al., 2021;
Wang et al., 2021). The possibility of studying the interplay of
quantum mechanics and gravity (Schmöle et al., 2016; Liu,
Mummery, and Sillanpää, 2021) is being explored. The study
of non-Newtonian gravity and even physics beyond the
standard model, particularly with levitated particles (which
can now be cooled down to their ground quantum state), is
also being discussed (Gonzalez-Ballestero et al., 2021; Moore
and Geraci, 2021). Slowly decaying vibrations (with a decay
rate < 100 μHz) of levitated nanoparticles are being consid-
ered in a somewhat exotic context of the wave-function
collapse (Pontin et al., 2020).
Various coherent quantum effects in coupled NVSs have

attracted substantial attention (Ockeloen-Korppi et al., 2018;
de Lépinay et al., 2021; Kotler et al., 2021). These and a
number of other quantum effects, such as the cooling of
vibrations to their ground state by coupling them to an
electromagnetic cavity (see Sec. VIII.C), using NVSs to
convert microwave-frequency excitation of a superconducting
qubit into an optical photon (Mirhosseini et al., 2020), or
optically reading out a transmon qubit (Delaney et al., 2022),
are often studied in the context of optomechanics, a bur-
geoning area borne out of nanomechanics (Aspelmeyer,
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Kippenberg, and Marquardt, 2014b). Recent improvements of
nanofabricated NVSs (MacCabe et al., 2020; Beccari et al.,
2022; Seis et al., 2022) will lead to further advances in
optomechanics.
One of the most important applications of NVSs is the

emerging technology of single-molecule mass spectrometry
with potentially high throughput. It will take advantage of
NVS-based inertial imaging (Hanay et al., 2015; Sage et al.,
2018). Nanowires and nanotubes hold promise as cantilevers
for the next-generation scanning probe microscopes. By
utilizing the fundamental modes polarized in perpendicular
directions, these cantilevers enable direct imaging of the
components of the force fields and allow one to establish
whether the field is a potential field (de Lépinay et al., 2017;
Rossi et al., 2017). Cantilevers functionalized with a magnetic
material at their free end (Rossi et al., 2019) hold promise for
imaging a large range of physical phenomena, such as
skyrmions, superconducting vortices, and current-carrying
edge states in two-dimensional systems (Braakman and
Poggio, 2019). Magnetic resonance force microscopy with
single nuclear spin sensitivity is another direction of great
interest (Rose et al., 2018; Grob et al., 2019).

LIST OF SYMBOLS AND ABBREVIATIONS

q mode coordinate; it is proportional to
the displacement at the antinode of
the mode

p momentum conjugate to the
coordinate q

M effective mass of the mode
u complex vibration amplitude

SðωÞ spectral density of fluctuations of q at
frequency ω

χðωÞ susceptibility of the coordinate at
frequency ω

ω0 ¼ 2πf0 eigenfrequency of the mode
γ parameter of the Duffing, or Kerr,

nonlinearity
Γ linear friction coefficient; decay rate

of the vibration amplitude in the linear
regime

Q ¼ ω0=2Γ quality factor from energy decay
measurements

Δω spectral bandwidth of mechanical
resonance; half width at half maxi-
mum of the resonant peak in SðωÞ

Qω ¼ ω0=2Δω quality factor from spectral measure-
ments

ωF angular frequency of a resonant driv-
ing force
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APPENDIX A: METHOD OF AVERAGING: WEAK
NONLINEARITY AND WEAK DAMPING

1. Nonlinear vibrations with no damping

The Bogoliubov-Krylov method of averaging used to
derive the equation of motion for the complex amplitude of
the mode is similar to the rotating wave approximation (RWA)
in quantum mechanics. One thinks of the mode dynamics as
vibrations at the mode frequency ω0 with an amplitude AðtÞ
and a phase ϕðtÞ that slowly vary on the timescale of the
vibration period 2π=ω0; that is, the mode coordinate is
qðtÞ ¼ AðtÞ cos½ω0tþ ϕðtÞ�. We note that ϕðtÞ here is the
“reduced” phase: it does not contain the term ω0t. The
complex slow variable uðtÞ (the complex amplitude) defined
by Eq. (20) is simply related to A and ϕ,

uðtÞ ¼ 1

2

�
q − i

p
Mω0

�
e−iω0t ¼ 1

2
AðtÞ exp½iϕðtÞ�: ðA1Þ

For a harmonic mode that is not coupled to a bath, A and ϕ are
independent of time and uðtÞ ¼ const. A more general form of
the averaging method is discussed in Appendix F.
In this section we show how the dynamics is modified by

the weak nonlinearity of the mode. To simplify the reading we
repeat some equations from the main text. We illustrate the
Bogoliubov-Krylov method by applying it to the Duffing
oscillator. The goal is to describe the dynamics on times that
largely exceed the vibration period 2π=ω0. A direct perturba-
tion theory in the nonlinearity does not apply, as it leads to a
secular (∝ t) correction to the oscillator displacement. Instead,
one should use the asymptotic perturbation theory.
The Hamiltonian of a nonlinear mode is

H0 ¼
1

2M
p2 þ UðqÞ: ðA2Þ

For the Duffing model the potential energy is

UðqÞ ¼ 1
2
Mω2

0q
2 þ 1

4
Mγq4;

cf. Eq. (46).
With account taken of the relation p ¼ M _q, we

obtain from the definition of uðtÞ [Eq. (A1)]
_u expðiω0tÞ þ _u� expð−iω0tÞ ¼ 0. Therefore,
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q̈þ ω2
0q ¼ 2iω0 _ueiω0t ¼ −2iω0 _u�e−iω0t; ðA3Þ

and the Hamiltonian equation of motion for uðtÞ reads

_u ¼ i
γ

2ω0

ðueiω0t þ u�e−iω0tÞ3e−iω0t: ðA4Þ

The timescale on which uðtÞ varies because of the non-
linearity is seen from Eq. (A4) to be ∼ω0=jγjjuj2 ≫ ω−1

0 . The
right-hand side of Eq. (A4) contains the smooth term ∝ ujuj2,
which is a constant for a time δt ≪ ω0=jγjjuj2 [since practi-
cally uðtÞ does not change over this time] and the terms that
oscillate as expð�2iω0tÞ and expð−4iω0tÞ. All these terms are
of the same order of magnitude. However, if we now integrate
them over time δt ≫ ω−1

0 , the contribution of the smooth term
will be ∝ δt, whereas the contribution of the fast-oscillating
terms will be ∝ ω−1

0 ≪ δt. Therefore, to describe the dynam-
ics of the oscillator on times ≫ ω−1

0 the fast-oscillating terms
can be disregarded and the equation of motion becomes

_u ≈ 3iγujuj2=2ω0; uðtÞ ≈ uð0Þe3iγjuj2t=2ω0 : ðA5Þ

In this approximation juðtÞj does not change in time, i.e., the
vibration amplitude A ≈ ð4juj2Þ1=2 does not change. However,
the vibration phase acquires an extra term 3γjuj2t=2ω0.
Comparing Eq. (A5) to the expression qðtÞ ¼ uðtÞ expðiω0tÞþ
c:c: [cf. Eq. (A1)], one can see that it corresponds to the change
of the oscillator frequency (48),

ω0 → ω0 þ 3γjuj2=2ω0 ¼ ω0 þ 3γA2=8ω0:

2. Effect of the coupling to a bath

We now extend the Bogoliubov-Krylov method to describe
the dynamics of the mode where it is weakly coupled to a
thermal reservoir. There are two parts to this description that
are closely intertwined. One part is the evaluation of the
average reaction force from the bath in slow time compared to
ω−1
0 . The second part refers to the random part of the force

from the bath, the noise in the equations of motion for uðtÞ,
and its properties in slow time. In the ensuing approximation,
the mode dynamics in slow time is Markovian.
For the coupling to the bath of the form Hi ¼ qhb, the part

of the force from the bath that describes the reaction of the
bath to the mode (the backaction) is [cf. Eq. (16)]

FðrÞ
b ðtÞ ¼ −δhbðtÞ ≈ −hδhbðtÞi

≈
Z

∞

0

Xbðt0Þ½uðt − t0Þeiω0ðt−t0Þ þ c:c:�. ðA6Þ

Here XbðtÞ is the time-dependent bath susceptibility.
Remember that Eq. (A6) is an approximation, as we have
replaced the full reaction force δhbðtÞ with its ensemble-
averaged value hδhbðtÞi and kept in the latter only the lowest-
order term, which describes the linear response of the bath to
the bath-mode coupling.

We now expand uðt − t0Þ ¼ uðtÞ − t0 _uðtÞ þ � � � and keep
only the first term in this expansion (Dykman and Krivoglaz,
1971), relying on the smoothness of uðtÞ (discussed later).
Using the definition of the Fourier transform of the bath
susceptibility

χbðωÞ ¼
Z

∞

0

dt expðiωtÞXbðtÞ ðA7Þ

and taking into account that χbðωÞ ¼ χ�bð−ωÞ (Landau and
Lifshitz, 1980), we obtain for the reaction force

FðrÞ
b ðtÞ ≈ χ�bðω0ÞuðtÞeiω0t þ c:c: ðA8Þ

This force is determined by the instantaneous value of uðtÞ
rather than the evolution of uðt0Þ for t0 ≤ t.
Substituting the force (A8) into the full equation of motion

for the mode coordinate qðtÞ and using Eq. (A3), we obtain
the equation of motion (21) for uðtÞ, which we reproduce here
for completeness,

_u ¼ −ðΓ − iPÞuþ ξðtÞ; Γ ¼ Im χbðω0Þ=2Mω0;

P ¼ −Re χbðω0Þ=2Mω0. ðA9Þ

Here the term ξðtÞ describes the noise; it does not come from

FðrÞ
b and is discussed later. In Eq. (A9) we assumed that Γ ≪

ω0 and, in the spirit of the averaging method, disregarded the
fast-oscillating term ∝ Γu� expð−2iω0tÞ compared with Γu.
In deriving Eqs. (A8) and (A9), we further assumed that the

bath susceptibility χbðωÞ weakly varies with ω in a band of
width ∼Γ; jPj ≪ ω0 centered at ω0. It is this assumption that
justifies disregarding the term t0 _uðtÞ and higher-order deriv-
atives of uðtÞ in the expansion of uðt − t0Þ in Eq. (A6). In
particular, the term t0 _u gives the correction

∼jðdχb=dωÞω¼ω0
_uj ∼ Γjuðdχb=dωÞω¼ω0

j;

which is assumed to be small compared to the term
∼jχbðω0Þuj kept in Eq. (A9). The assumption holds for
jd log χb=dωj ≪ 1. The higher derivatives of χb are assumed
to be relatively small near ω0 as well. The typical frequency on
which χbðωÞ changes provides the other reciprocal “fast” time
of the modeþ bath system, in addition to ω−1

0 . It is sometimes
called the correlation time of the thermal reservoir tcorr; note,
however, that χbðωÞ characterizes not only the reservoir but
also the coupling of the oscillator to the reservoir.
The approximation (A9) is a Markovian approximation in

slow time. It holds if the response of the bath to the oscillator
remains essentially unchanged where the oscillator frequency
is changed not only by Γ but also by the polaronic frequency
shift P. In our analysis of the nonlinear oscillator we further
assume that the response of the bath does not change due to
the change of the oscillator frequency caused by the depend-
ence of this frequency on the vibration amplitude.
The Bogoliubov-Krylov method of averaging can also be

applied to the analysis of the effect of the thermal noise on the
slow variables. The noise in Eq. (A9) is
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ξðtÞ ¼ ði=2Mω0Þhð0Þb ðtÞ expð−iω0tÞ;

where −hð0Þb ðtÞ is the force on the oscillator from the bath
calculated by disregarding the reaction of the bath to the
oscillator. The noise correlator is simply expressed in terms of
the bath power spectrum

SbðωÞ ¼
Z

∞

−∞
dteiωthhð0Þb ðtÞhð0Þb ð0Þi: ðA10Þ

Clearly, hξ�ðtÞξðt0Þi∝R
dωSbðωÞexp½−iðω−ω0Þðt−t0Þ�. We

note that SbðωÞ also defines the bath susceptibility, and thus
the mode decay rate, via the fluctuation-dissipation theorem
(cf. Sec. IV),

Im χbðωÞ ¼ SbðωÞ=2ℏ½n̄ðωÞ þ 1�:

If we replace SbðωÞ → Sbðω0Þ and use the relation (A9)
between Γ and χbðω0Þ, we obtain

hξ�ðtÞξðt0Þi ¼ ðΓkBT=Mω2
0Þδðt − t0Þ:

As indicated in Sec. IV.B, the δ function here is not a true δ
function but, effectively, a δ function on the timescale
≫ ω−1

0 ; tcorr. By expanding SbðωÞ in a series about ω0, we
find that hξ�ðtÞξðt0Þi has a peak at t ¼ t0 with width
jt − t0j≲ jS−1b d2Sb=dω2j1=2 ¼ tcorr, where the derivative of
Sb is calculated for ω ¼ ω0; this expression may be consid-
ered a definition of tcorr. The width tcorr is much smaller then
Γ−1 for SbðωÞ smooth near ω0. The argument here coincides
with the argument used in disregarding delay in Eq. (A8).
The correlator hξ�ðtÞξ�ðt0Þi has an extra factor exp½iω0ðtþ

t0Þ� compared to the correlator hξ�ðtÞξðt0Þi. This fast-oscillat-
ing factor averages out to zero on a timescale that is large
compared to ω−1

0 . Therefore, in an analysis of the evolution of
the slow variables uðtÞ and u�ðtÞ, one can set hξ�ðtÞξ�ðt0Þi ¼
0. The analysis of the higher-order correlators shows that the
noise ξðtÞ is approximately Gaussian on a timescale that is
large compared to ω−1

0 ; tcorr. For a bath modeled by a set of
harmonic oscillators with the coupling hb nonlinear in the
coordinates of these oscillators, this was shown by Dykman
and Krivoglaz (1971, 1973). This analysis applies to both
classical and quantum cases. We note that a similar analysis
has to be carried out to justify the expression for the reaction
force in terms of the linear response of the bath to the mode.

3. Ohmic dissipation

Here for completeness we describe the effect of coupling to
the bath in a more restrictive but important case where the
power spectrum SbðωÞ is flat in a broad range from ω ≪ ω0 to
ω ≫ ω0. The scale of the flatness is now ω0, not Γ; jPj. For a
flat SbðωÞ, in the classical limit we can approximate the
correlation function sbðtÞ by a δ function,

sbðtÞ≡ hhð0Þb ðtÞhð0Þb ð0Þi ¼ 4MΓkBTδðtÞ: ðA11Þ

Equation (A11) is essentially the definition of the parameter Γ
in terms of the correlator sbðtÞ, temperature, and the mode
mass M for the case considered in this section.
Taking into account that, for a classical bath, XbðtÞ ¼

−ðkBTÞ−1dsb=dt, one obtains from Eq. (A6) the reaction force
in the form

FðrÞ
b ðtÞ ¼ sbð0Þ

kBT
qðtÞ −

Z
∞

0

dt0
sbðt0Þ
kBT

dqðt − t0Þ
dt

: ðA12Þ

For the δ-correlated noise (A11), the last term in Eq. (A12)
gives the friction force −2MΓ _q in the equation of motion (2).
Thus, the reaction of the bath leads to viscous friction, with the
friction force proportional to the mode velocity. With account
taken of Eq. (A11), the overall dynamics of the mode is
mapped on Brownian motion.
The first term on the right-hand side of Eq. (A12) renorm-

alizes the mode frequency ω2
0 → ω2

0 − sbð0Þ=MkBT. This is a
classical polaronic effect. In calculating sbð0Þ one should keep
in mind that the power spectrum SbðωÞ falls off for high
frequencies, which makes sbð0Þ finite.
To our knowledge, for a classical oscillator the frequency

shift was first found by Bogolyubov (1945) for a model
where the bath is a set of harmonic oscillators and hb is linear
in the coordinates qk of these oscillators. The corresponding
Hamiltonian of the bath Hb reads

Hb ¼
1

2

X
k

ðp2
k þ ω2

kq
2
kÞ; ðA13Þ

whereas the coupling Hamiltonian is qhb ¼
P

k ϵkqqk. The
coupling was weak and the dynamics was Markovian only in
the rotating frame.
In quantum theory, the constraint on the coupling param-

eters in the model (A13) that leads to a viscous friction force in
the laboratory frame was found by Caldeira and Leggett
(1981). The expression for the friction coefficient Γ comes out
if one assumes that the density of states of the bath weighted
with the interaction has the form

X
k

ðϵ2k=ωkÞδðω − ωkÞ ¼ ð4=πÞMΓω:

APPENDIX B: OSCILLATOR DECAY RATE IN THE
BORN APPROXIMATION AND THE QUANTUM KINETIC
EQUATION

Equation (A9) for the oscillator decay rate Γ can also be
easily obtained from a slightly different point of view. We first
recall that the coordinate and momentum of the oscillator are
expressed in terms of the ladder operators a and a† as q ¼
ðℏ=2Mω0Þ1=2ðaþ a†Þ and p ¼ −iðℏMω0=2Þ1=2ða − a†Þ. In
an analysis of the quantum dynamics it is convenient to use the
eigenfunctions jki of the occupation number operator a†a.
The energy of the isolated harmonic oscillator in a state jki
is ℏω0ðkþ 1=2Þ.
The coupling qhb of the quantum oscillator to a thermal

bath leads to transitions between the nearest oscillator energy
levels in Fig. 32(a). The matrix elements of the coordinate q
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are hkjqjk − ni ¼ ½ℏk=2Mω0�1=2δn;1 for n ≥ 0. Therefore, to
the leading order the linear in q coupling to the bath leads to
transitions only between neighboring levels. From the Fermi
golden rule, the rate Wkþ1→k of the transition jkþ 1i → jki
averaged over the states of the thermal bath is

Wkþ1→k ¼ð2π=ℏÞ½ℏðkþ1Þ=2Mω0�

×

�X
νb

jhνbjhbjμbij2δðEμb −Eνb þℏω0Þ
�

μb

; ðB1Þ

where μb and νb enumerate the bath states, Eμb and Eνb
are the energies of these states, and h·iμb indicates thermal
averaging over the states μb, i.e., a summation with the
weight ∝ expð−Eμb=kBTÞ.
We now relate Eq. (B1) to the power spectrum SbðωÞ of the

operator hb, which determines the coupling of the bath to the
oscillator,

SbðωÞ ¼
Z

∞

−∞
dteiωthhbðtÞhbð0Þi ¼ 2πℏZ−1

b

×
X
νb

jhνbjhbjμbij2δðEμb − Eνb þ ℏωÞe−Eμb
=kBT;

ðB2Þ

where Zb is the bath partition function. In Eq. (A10) and the

main text we used hð0Þb instead of hb in the definition of SbðωÞ
to emphasize that we are calculating the power spectrum in the
absence of coupling to the oscillator.
Combining Eqs. (A9) and (B2), we obtain

Wkþ1→k ¼ 2Γðkþ 1Þðn̄þ 1Þ;
Γ ¼ Sbðω0Þ=4ℏMω0ðn̄þ 1Þ ðB3Þ

[we recall that n̄≡ n̄ðω0Þ]. Equation (B3) shows that Γ
determines the rate of the transitions between the states of
a quantum oscillator due to its coupling to a thermal bath. In
particular, Γ ¼ ½W1→0=2�n̄¼0. The transition rates (B1) linearly
increase with the level number.

1. Master equation

In slow time compared to ω−1
0 ; tcorr, quantum dynamics of

the oscillator coupled to a bath can be described using a master
equation for the oscillator density matrix in the rotating frame
ρ ¼ U†

0ðtÞρ0U0ðtÞ, where ρ0 is the density matrix in the
laboratory frame and U0ðtÞ ¼ expð−ia†aω0tÞ. For a linear
oscillator with a coupling to the bath of the form of Hi ¼ qhb,
this equation was derived from the microscopic theory and
discussed by Schwinger (1961); see also Senitzky (1961). An
extension to weakly nonlinear oscillators was done by
Dykman and Krivoglaz (1973). Where the conditions of
the Markovian approximation discussed in Sec. A.2 hold,
the master equation is Markovian in slow time and can be
written in the form of a Lindblad equation,

_ρ¼ 2Γfðn̄þ1ÞD½a�ρþ n̄D½a†�ρg− iP½a†a;ρ�− iℏ−1½Hnl;ρ�;
ðB4Þ

where

D½L�ρ ¼ LρL† − ðL†Lρþ ρL†LÞ=2 ðB5Þ

and Hnl describes nonlinear terms of the oscillator
Hamiltonian; for example, for the Duffing nonlinearity of
the oscillator potential energy, which in the coordinate
representation is described byMγq4=4 [cf. Eq. (46)], we have

Hnl ¼ 3ℏ2γa†aða†aþ 1Þ=8Mω2
0:

The term ∝ P describes the polaronic effect of the shift of the
oscillator frequency due to the coupling to a thermal bath.
Equation (B4) corresponds to a linear friction force −2MΓ _q

in the phenomenological theory, as discussed in Appendix A,
and in the microscopic theory comes from the bath-induced
transitions between neighboring energy levels of the oscillator.
In contrast, the phenomenological nonlinear friction force

fvdP ¼ −4MΓðnlÞðq=q0Þ2 _q; q0 ¼ ðℏ=2Mω0Þ1=2;

corresponds, in the microscopic theory, to the bath-induced
transitions over two energy levels of the oscillator; see
Fig. 32(b). It comes from the interaction with the bath with

energy q2hðnlÞb [see Eq. (52)], and specifically from the terms
a2 and a†2 in q2. In the master equation the nonlinear friction
is described by the term (Dykman and Krivoglaz, 1975)

ð_ρÞnl ¼ 2ΓðnlÞf½n̄ð2ω0Þ þ 1�D½a2�ρþn̄ð2ω0ÞD½a†2�ρg: ðB6Þ

The nonlinear friction coefficient ΓðnlÞ is [cf. Eq. (53)]

ΓðnlÞ ¼ q40
2ℏ2½n̄ð2ω0Þ þ 1� S

ðnlÞ
b ð2ω0Þ;

SðnlÞb ðωÞ ¼
Z

∞

−∞
dteiωthhðnlÞb ðtÞhðnlÞb ð0Þi: ðB7Þ

In the classical limit kBT ≫ ℏω0, Eq. (B4) goes into the
Fokker-Planck equation for the probability distribution of a

(a) (b)

FIG. 32. Transitions between the oscillator energy levels with
emission of excitations into a thermal bath. (a) Transitions
between nearest levels lead, in the classical description, to a
linear friction force proportional to the oscillator velocity.
(b) Transitions between next-nearest levels lead, in the classical
description, to a nonlinear friction force proportional to the
oscillator velocity multiplied by the squared coordinate (in the
van der Pol model) or by the squared velocity (in the Rayleigh
model).
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nonlinear oscillator, which corresponds to the stochastic
classical equation of motion (55). Among other things,
Eqs. (B4) and (B6) allow one to calculate the power spectrum
of a nonlinear oscillator. The results on the spectra are
discussed in the main text and in Appendix E.
The master equation is easily extended to describe resonant

and parametric driving. It allows studying the stationary
probability distribution of a driven nonlinear oscillator, as
well as various transient quantum phenomena.

APPENDIX C: DRIVING-INDUCED COOLING AND
HEATING FOR COUPLED MODES

The possibility to cool a mechanical mode using a
driving that resonantly couples it to a high-frequency optical
mode in a cavity plays a fundamental role in optomechanics
(Aspelmeyer, Kippenberg, and Marquardt, 2014b). However,
a mechanical mode can also be cooled down or heated up by
coupling it to another mechanical mode or a mode of a
different physical nature or simply a thermal reservoir. An
interesting and not a priori obvious part of the effect is that the
stationary distribution of the driven mode is of the Boltzmann
form with an effective temperature. This happens if there is no
nonlinear friction and the relaxation rate of the considered
mode is much smaller than the relaxation rate of the mode it is
coupled to (Dykman, 1978).
Formally, we consider two modes with eigenfrequencies ω1

and ω2 and the pumping (modulation) of the form of Eq. (68),
with energy

Upump
12 ¼ Mq1q2Δ̄12 cos ωpt.

This corresponds to setting Δpump
12 ðtÞ ¼ Δ̄12 cos ωpt in

Eq. (68). For brevity we set the effective masses of the modes
to be equal to the same value M. The modulation frequency
ωp is close to either jω1 − ω2j or ω1 þ ω2. In what follows we
assume for concreteness that ω1 < ω2. We introduce ϵp ¼ �1

such that ωp is close to ω2 − ϵpω1, i.e., either to ω2 − ω1 or
to ω2 þ ω1.
In writing the master equation for the modes we assume that

each mode is coupled to its thermal reservoir and, in the
absence of driving, the mode decay rates are Γ1 and Γ2. We
further assume that the decay rates do not change if the mode
eigenfrequencies are slightly changed, for example, if ω2 is
changed to ωp þ ϵpω1; for the considered resonant pumping
jωp þ ϵpω1 − ω2j ≪ ω1;2; t−1corr. We write the master equation

using the ladder operators a1; a
†
1 and a2; a

†
2 for modes 1 and 2,

similar to how it was done in Appendix B for a single mode.
We also switch to the rotating frame and use the rotating
wave approximation. A unitary transformation to the rotating
frame is

UðtÞ ¼ exp½−iω1ta
†
1a1 − iðωp þ ϵpω1Þta†2a2�:

In the rotating wave approximation, the master equation for
the density matrix ρ of the coupled modes reads

_ρ ¼
X
j

Γ̂jρþ iδωp½a†2a2; ρ� − i½ĥ12; ρ�;

Γ̂jρ ¼ 2Γj½ðn̄j þ 1ÞD½aj�ρþ n̄jD½a†j �ρ�;
δωp ¼ ωp þ ϵpω1 − ω2; ðC1Þ

where n̄k ¼ n̄ðωkÞ (k ¼ 1, 2). The Lindblad superoperators
D½L� are defined in Eq. (B5). Compared to Eq. (B4), in
Eq. (C1) we have disregarded the nonlinearity of the modes
and their eigenfrequency shifts due to the coupling to the
thermal reservoirs.
The operator ĥ12 describes the resonantly induced mode

coupling,

ĥ12 ¼ Δ12ða†1a2 þ a†2a1Þ; ωp ≈ ω2 − ω1;

ĥ12 ¼ Δ12ða1a2 þ a†1a
†
2Þ; ωp ≈ ω2 þ ω1; ðC2Þ

where Δ12 ¼ Δ̄12=4
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p
. This parameter is of central

importance, as it characterizes the coupling strength.
The physical picture of the mode dynamics is simplified in

the case where the relaxation rates Γ1 and Γ2 are significantly
different. For concreteness, we assume that

Γ2 ≫ Γ1:

In this case mode 2 adiabatically follows mode 1. If the
coupling is sufficiently weak (jΔ12j ≪ Γ2), one can consider
the linear response of mode 2 to the state of mode 1. This
response is formed over time ∼1=Γ2, whereas the state of
mode 1 varies over a significantly longer time.
In the adiabatic approximation the dynamics of mode 1 can

be described by tracing out mode 2. We introduce the
following density matrix of mode 1: ρ1 ¼ Tr2 ρ, where Tr2
denotes the trace over the states of mode 2. Similarly, ha2i2 ¼
Tr2ða2ρÞ and ha†2i2 ¼ Tr2ða†2ρÞ. We emphasize that these
averages over the states of mode 2 are operators with respect
to mode 1.
By taking the trace over mode 2 in Eq. (C1), we obtain for

ϵp ¼ 1

_ρ1 ¼ Γ̂1ρ1 − iΔ12ð½a†1; ha2i2� þ ½a1; ha†2i2�Þ: ðC3Þ

For ϵp ¼ −1 one should interchange in this equation a1 and

a†1. The equation for ha2i2 has the form

d
dt

ha2i2 ¼ Γ̂1ha2i2 − ðΓ2 − iδωpÞha2i2
− iTr2ða2½ĥ12; ρ�Þ: ðC4Þ

In the considered regime of the fast relaxation rate Γ2, we can
look for the quasistationary solution of Eq. (C4). Respectively,
we disregard dha2i2=dt. We also disregard the term ∝ Γ1

compared to the term ∝ Γ2. To describe the linear response of
mode 2 to the coupling, we calculate the last term in Eq. (C4)
to the lowest order in the coupling, i.e., we set ha†2a2i2 ≈ n̄2ρ1,
whereas the term ha22i2 is disregarded. This gives for ϵp ¼ 1

ha2i2 ≈ −i
Δ12

Γ2 − iδωp
½ðn̄2 þ 1Þa1ρ1 − n̄2ρ1a1�:
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For ϵp ¼ −1 one should replace here a1 with a†1. Substituting

ha2i2 and the similar expression for ha†2i2 into Eq. (C3), we
obtain

_ρ1 ¼ −Γefffðn̄eff þ 1ÞD½a1�ρ1 þ n̄effD½a†1�ρ1g
− iPeff ½a†1a1; ρ1�; ðC5Þ

where

Γeff ¼ Γ1 þ ϵpΓ2

Δ2
12

Γ2
2 þ δω2

p
;

n̄eff ¼ Γ−1
eff

�
Γ1n̄1 þ Γ2

Δ2
12

Γ2
2 þ δω2

p

�
n̄2 −

ϵp − 1

2

��
ðC6Þ

and Peff ¼ δωpΔ2
12=ðΓ2

2 þ δω2
pÞ.

Remarkably, Eq. (C5) maps the dynamics of the driven
slowly decaying mode (mode 1) onto the dynamics of an
undriven mode with an effective decay rate Γeff and an
effective mean occupation number n̄eff (Dykman, 1978). As
seen from Eq. (C5), Γeff exceeds Γ1 for ω2 ≈ ωp þ ω1 and is
smaller than Γ1 for ω2 þ ω1 ≈ ωp. At the same time, the
effective occupation number n̄eff is smaller or larger than n̄1.
In the stationary regime the effective temperature of the mode
kBTeff ¼ ℏω1= ln½ðn̄eff þ 1Þ=n̄eff � is lower or higher than the
temperature of the thermal reservoir. This describes the
sideband cooling for ω2 ≈ ωp þ ω1 by “superposing” onto
a low-frequency mode the distribution over the states of a
higher-frequency mode. On the other hand, a sufficiently
strong drive with ωp ≈ ω2 þ ω1 leads to Γeff becoming equal
to zero, which manifests an instability of the system.

APPENDIX D: FORCED VIBRATIONS

1. Resonant driving

A classical Duffing oscillator driven by a resonant force
F cos ωFt experiences the same friction force and the same
noise from the thermal bath as in the absence of driving,
provided that the detuning of the drive frequency from the
eigenfrequency jωF − ω0j is small compared to the reciprocal
correlation time of the bath t−1corr. We assume that the driving is
not extremely strong so that the amplitudes of the vibration
overtones remain small compared to the amplitude of the main
tone. It is then convenient to describe the dynamics by
switching to the rotating frame and using the real variables
Q and P, which are related to the coordinate and momentum
of the driven oscillator by the expression

Qþ iP ¼ ½qþ iðp=MωFÞ� expðiωFtÞ ðD1Þ

[cf. Eq. (61)]. These variables are similar to (twice) the real
and imaginary parts of the complex amplitude in the absence
of driving u�ðtÞ [Eq. (A1)], except that for a driven oscillator it
is more convenient to change to the frame oscillating at
frequency ωF rather than ω0.
The equations for Q and P are derived similarly to the

equation for uðtÞ. Disregarding small corrections to Q and P
that oscillate at frequency ωF and its overtones, we obtain

_Q ¼ ∂PgrðQ;PÞ − ΓQþ ξQðtÞ;
_P ¼ −∂QgrðQ;PÞ − ΓPþ ξPðtÞ; ðD2Þ

where

gr ¼
3γ

32ωF
ðQ2 þ P2Þ2 − 1

2
δωðQ2 þ P2Þ − F

2MωF
Q;

δω ¼ ωF − ω0; jδωj ≪ ωF ðD3Þ

(the subscript r here stands for “resonant”). The major
difference from Eq. (A9) is that Eqs. (D2) are written in real
variables and include the Duffing nonlinearity ∝ γ and the
driving force ∝ F; the bath-induced frequency shift has been
incorporated into ω0.
The variables Q and P and the time can be rescaled so that

the equations of motion contain only two parameters in the
absence of noise (Dykman, 2012). The noise components
ξQðtÞ and ξPðtÞ are independent δ-correlated Gaussian noises
with the same intensity as in the absence of the driving,

hξQðtÞξQð0Þi ¼ hξPðtÞξPð0Þi ¼ ð2ΓkBT=Mω2
0ÞδðtÞ: ðD4Þ

If the decay and the noise are disregarded, Eqs. (D2)
become Hamiltonian equations for the coordinate Q and
momentum P of the oscillator in the rotating frame (the in-
phase and quadrature components). The function grðQ;PÞ is
the Floquet Hamiltonian. In the parameter range where the
oscillator is bistable in the presence of weak dissipation, it has
the form of a tilted Mexican hat; see Fig. 33(a). The cross
sections of the surface grðQ;PÞ in Fig. 33(b) show the
oscillator trajectories (D2) in the rotating frame in the limit
of zero dissipation. Note the strong asymmetry (a horseshoe-
like shape) of the trajectories that go around the minimum
of grðQ;PÞ.
In the absence of noise, Eqs. (D2) have three stationary

solutions in the region inside the “curvilinear triangle” on the
ðF;ωFÞ plane in Fig. 15(b). The solutions with the largest
and smallest values of Q2 þ P2 are stable, and the solution
with the intermediate Q2 þ P2 is the saddle point. In the limit
Γ → 0 these states correspond, respectively, to the local
minimum and maximum of the function grðQ;PÞ and to its
saddle point; see Fig. 33(a). Near the saddle point grðQ;PÞ
has the shape of a hyperboloid. Through this point goes the
separatrix that separates the basins of attraction of the stable
states for a finite damping. The phase portrait of the system in
the range of bistability is shown in Fig. 33(c), which comple-
ments Fig. 15(c).
The boundaries of the range of the bistability, i.e., the sides

of the curvilinear triangle in Fig. 15(b), are the bifurcation
lines. On the line with smaller F the stable state with the larger
amplitude merges with the saddle point, whereas on the line
with larger F it is the smaller-amplitude state that merges with
the saddle point. The bifurcational values FB1;2 ≡ FB1;2ðΩrÞ
of the drive amplitude as a function of the drive frequency are
given by the expression
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F̃2
B1;2 ¼

2

27
½Ω3

r þ 9Ωr ∓ ðΩ2
r − 3Þ3=2�;

F̃ ¼ ð3γ=32ω3
FΓ3Þ1=2F; Ωr ¼ ðωF − ω0Þ=Γ: ðD5Þ

Equation (D5) is written for the Duffing nonlinearity
parameter γ > 0; for γ < 0 one should replace γ → jγj in
the expression for F̃B1;2 and δω≡ ωF − ω0 → −δω in the
expression for the scaled frequency detuning Ωr.

a. Universality of fluctuations near a bifurcation point

The dynamics and fluctuations display universal features
near bifurcation points. These features are characteristic, in
particular, for merging of a stable state with a saddle point
[called the saddle-node bifurcation (Guckenheimer and
Holmes, 1997)]. The equations of motion (D2) are simplified
where the states are close to each other in phase space. The
rates at which the dynamical variables Q and P approach their
stable values become significantly different. The relaxation
rate of the in-phase component Q is ≈2Γ, whereas the
relaxation rate of the quadrature component P goes to zero
at the bifurcation parameter value; thus P is a slow variable
near the bifurcation point. This variable is an analog of a soft
mode in phase transition theory. Its fluctuations can be
analyzed in the adiabatic approximation, assuming that the
component QðtÞ adiabatically follows PðtÞ. As a result, the
equation for the time evolution of PðtÞ takes the form

_P ¼ −∂PUBðPÞ þ ξPðtÞ;
UBðPÞ ¼ −αB1½F − FBðΩrÞ�ðP − PBÞ þ αB2ðP − PBÞ3:

ðD6Þ

The explicit form of the parameters αB1;2 and the value PB of
the quadrature at the bifurcation point depend on Ωr (Dykman
and Krivoglaz, 1980).
For αB1αB2ðF − FBÞ > 0 the potential UB has a minimum

and a maximum, with the minimum corresponding to the
stable state of the mode and the maximum corresponding
to the saddle point. The relaxation rate near the stable state
scales with the distance to the bifurcation point F − FBðΩrÞ
as f12αB1αB2½F − FBðΩrÞ�g1=2.
The “softening” of the potential UBðPÞ near the bifurcation

point leads to an increase in fluctuations. Of particular interest
is the effect of the fluctuation-induced switching from the
dynamically stable vibrational state to the coexisting state with
a strongly different amplitude. Equation (D6) reduces the
problem of the switching rate to the problem of escape from a
potential well for a static cubic-parabola potential UBðPÞ in a
system with no inertia. The rate of escape for this problem is
well known (Kramers, 1940),

Wsw ∝ expð−Mω2
0ΔUB=2ΓkBTÞ;

where ΔU is the height of the potential barrier around the
stable state,

ΔUB ¼ 4jαB2j½αB1ðF − FBÞ=3αB2�3=2: ðD7Þ

This barrier height scales as the distance to the bifur-
cation point to the power 3=2. Such scaling has been seen
in micromechanical and nanomechanical vibrational systems
as well as in Josephson junction–based systems (Stambaugh
and Chan, 2006a; Siddiqi et al., 2006; Vijay, Devoret, and
Siddiqi, 2009; Defoort et al., 2015). We note that, since
FB ≡ FBðΩrÞ, the bifurcation point can be approached by
varying the drive amplitude, the drive frequency, or both.
The values of the driving amplitude and frequency where

FB1 ¼ FB2 give the critical point in Fig. 15. Near this point the

(f)

(a)

(b)

(c)

(d)

(e)

FIG. 33. Left and right columns refer to the resonantly
driven and parametrically driven modes in the range of
their bistability. The variables Q̃ and P̃ for the resonantly
driven mode are, respectively, the in-phase and quadrature
components Q and P multiplied by ½8ωFðωF − ω0Þ=3γ�1=2.
For the parametrically driven mode, Q̃ and P̃ are the quadratures
Q and P scaled by the factor j2Fp=3γMj1=2. (a),(b) Effective
Hamiltonian in the rotating frame for the resonantly driven
mode gr [Eq. (D3)] and its cross- sections (the phase trajectories
in the absence of decay) for the scaled driving field intensity
β ¼ 3γF2=32M2ω3

FðδωÞ3 ¼ 0.01. (c) Phase portrait in the pres-
ence of dissipation for β ¼ 1=27 and scaled decay rate
Γ=jδωj ¼ 0.15. The phase plane is separated into two parts
by the separatrix, which goes through the saddle points S. The
trajectories on the opposite sides of the separatrix approach the
stable states a1 and a2. As the decay rate goes to zero, the stable
states a2 and a1 move toward the minimum and the maximumof
gr, respectively. (d) Effective Hamiltonian in the rotating frame gp
[Eq. (D11)] and (e) its cross sections (phase trajectories in the
absence of dissipation) for the scaled frequency detuning μp ¼
−0.1 defined in Eq. (D12). (f) Phase portrait in the presence of
dissipation for μp ¼ 0.2;2MωpΓ=Fp ¼ 0.3. As the decay
rate goes to zero, the stable states a1 and a2 move toward
the minima of gp.
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variables Q and P also separate into comparatively fast and
slow ones, with the equation for the slow variable P having the
form of Eq. (D6), except that the effective potentialUBðPÞ has
to be replaced by the potential UcðPÞ,
UcðPÞ ¼ αc1ðP − PcÞ4 − αc2½ωF − ðωFÞc�ðP − PcÞ2

þ fα0c3½ωF − ðωFÞc� þ α00c3ðF − FcÞgðP − PcÞ;
ðD8Þ

where Pc, ðωFÞc, and Fc are the values of P, ωF, and F at the
critical point. These values as well as the parameters αc1;c2;c3
are easy to find using Eqs. (D2) and (D3) (Dykman and
Krivoglaz, 1980).
The critical point on the ðF;ωFÞ plane is reminiscent of the

critical point on the line of the first-order phase transition.
Fluctuations become strong and their correlation time diverges
as the oscillator approaches this point. In the range of
bistability, as determined by the interrelation between F −
Fc and ωF − ðωFÞc, the potential UcðPÞ has two minima. It
becomes symmetric on the line on the ðF;ωFÞ plane where
the coefficient at the linear in the P − Pc term is zero. On
this line the switching rates between the two minima are
equal to each other and the barrier height between the minima
is α2c2½ωF − ðωFÞc�2=4αc1. This barrier height as determined
from the switching rate allows the eigenfrequency and the
nonlinearity parameter of a nanomechanical mode to be found
with extremely high precision (Aldridge and Cleland, 2005).

2. Parametrically excited vibrations

Parametric modulation of an oscillator can be
described by incorporating the term −ðFpq2=2Þ cosωpt into
its Hamiltonian. The phenomenological equation of motion
then takes the form of Eq. (62). For the modulation at
frequency ωp close to 2ω0, it is convenient to analyze the
dynamics by switching to the quadraturesQ and P that remain
almost constant on the timescale 1=ωp. The transformation is
similar to that for the resonant drive,

Qþ iP ¼
�
qþ i

p
Mωp=2

�
expðiωpt=2Þ. ðD9Þ

As in Eq. (D1), Q and P in Eq. (D9) are real. In the rotating
wave approximation the equations for Q and P have the same
form as Eq. (D2), but the function gr now has to be replaced
with the function gp,

_Q ¼ ∂PgpðQ;PÞ − ΓQþ ξQðtÞ;
_P ¼ −∂QgpðQ;PÞ − ΓPþ ξPðtÞ; ðD10Þ

where

gp ¼ 3γ

16ωp
ðQ2 þ P2Þ2 − 1

2
δωpðQ2 þ P2Þ;

þ Fp

4Mωp
ðP2 −Q2Þ; δωp ¼ ωp

2
− ω0: ðD11Þ

Equations (D10) and (D11) apply provided jδωpj ≪ ωp.

If the decay and the noise are disregarded, Eqs. (D10)
become Hamiltonian equations for the coordinate Q and
momentum P in the rotating frame. The function gpðQ;PÞ
is the Hamiltonian; we note that this is not a Floquet
Hamiltonian: this is the Hamiltonian in the frame oscillating
at frequency ωp=2. In the parameter range where the oscillator
has two stable states (in the presence of weak dissipation), it
has the form of a symmetric double-well surface; see
Fig. 33(d). The cross sections of the surface shown in
Fig. 33(e) illustrate the phase trajectories in the rotating frame
in the limit of zero dissipation.
The symmetry is a feature of the parametric resonance.

Indeed, incrementing the time by the modulation period
2π=ωp does not change the equation of motion in the
laboratory frame [Eq. (62)]. Yet, as seen in Eq. (D9), it leads
to the change Q → −Q;P → −P.
The phase portrait in the presence of dissipation is shown in

Fig. 33(f), which refers to the parameter range where only two
vibrational states are stable. As expected from the previous
arguments, the phase portrait has inversion symmetry. Similar
to the case of a resonantly driven mode, the regions of
attraction to the stable states a1 and a2 are separated by
the separatrix that goes through the saddle point S.
The variables Q and P and the time can be rescaled such

that, in the absence of noise, the dynamics is described by two
dimensionless parameters μp and fp,

μp ¼ ðδωp=ΓÞsgn γ; fp ¼ Fp=2MΓωp: ðD12Þ

Figure 16(a) shows the regions of the ðfp; μpÞ plane where
there are different numbers of vibrational and steady states in
the absence of nonlinear friction. The bifurcation lines μB1;2
(the bifurcational values of μp as functions of fp) are given by

μB1;2 ¼∓ ðf2p − 1Þ1=2: ðD13Þ

For weak modulation or large −μp the mode is not excited: the
vibration amplitude is zero. At μp ¼ μB1 the zero-amplitude
state becomes unstable, and in the range μB2 > μp > μB1 the
system has two stable vibrational states; these are period-2
states with the opposite phases. For μp > μB2 and fp > 1 the
zero-amplitude state is also stable; the mode has three stable
states and also two unstable period-2 states. On the line
fp ¼ 1, μp > 0 the stable period-2 states merge with the
unstable period-2 states and disappear. At the critical point
μp ¼ 0, fp ¼ 1, all five stationary states merge.
Near the bifurcation lines (D13), the dynamics and fluc-

tuations of the nascent states are controlled by a slow
dynamical variable, as in the case of a resonantly driven
mode. This variable is a linear combination of Q and P. A
theory of fluctuations and the scaling of the rates of interstate
switching in this parameter range was discussed by Dykman
et al. (1998) and Lin, Nakamura, and Dykman (2015).
The nonlinear friction significantly modifies the bifurca-

tion diagram, as seen in Fig. 16(b). The line on which the
stable and unstable period-2 states merge is tilted, and the
critical point shifts. A profound consequence of this change
is the hysteresis with the varying modulation frequency, as
described in Sec. VII.B.
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a. Fluctuation squeezing in the linear regime

Parametric modulation is often used as a way to squeeze
fluctuations of one of the quadratures. The squeezing does not
require exciting period-2 vibrations: it occurs already
for a weak modulation. This can be seen from Eqs. (D10)
and (D11) if one sets γ ¼ 0. In the absence of modulation
(Fp ¼ 0), one has from these equations hQ2i ¼ hP2i ¼
kBT=Mω2

0 in the case where the noise ξQðtÞ; ξPðtÞ is thermal.
The stationary probability distribution ρðQ;PÞ is Gaussian,
ρðQ;PÞ¼Z−1 exp½−Mω2

0ðQ2þP2Þ=2kBT�; it is a Boltzmann
distribution of a harmonic oscillator, Z ¼ Mω2

0=2πkBT.
In the presence of the modulation but below the

excitation threshold (f2p < 1þ μ2p), the stationary
probability distribution in the rotating frame ρðQ;PÞ is still
Gaussian: if one disregards the nonlinearity ρðQ;PÞ¼
Z−1 expð−P

Aijxixj=2Þ. Here i; j ¼ 1; 2 and we use x1≡
Q; x2 ≡ P; the normalization factor is Z ¼ 2π=ðdet ÂÞ1=2.
The matrix Â can easily be found using the Fokker-Planck
equation that corresponds to Eq. (D10) [in terms of the
theory of stochastic processes, the latter is the Langevin
equation for the fluctuating variables QðtÞ and PðtÞ; see
Risken (1996)]. We can make a unitary transformation from
Q, P to Q0; P0 so as to diagonalize the matrix Â. The
variances hQ02i and hP02i are given, respectively, by A−1þ
and A−1

− , where A−1þ and A−1
− are the largest and smallest

eigenvalues of Â−1,

A−1
� ¼ kBT

Mω2
0

1þ μ2p � jfpjð1þ μ2pÞ1=2
1þ μ2p − f2p

: ðD14Þ

One can easily see that A−1
− < kBT=Mω2

0 for f
2
p < 1þ μ2p,

which shows that the variance hP02i ¼ A−1
− is smaller than the

variance of the quadratures in the absence of driving. This
demonstrates squeezing of classical fluctuations. The squeez-
ing becomes more pronounced as the scaled modulation
amplitude jfpj approaches the critical value ð1þ μ2pÞ1=2 where
period-2 vibrations are excited. Close to the critical jfpj, the
eigenvalue A−1

− is 1=2 of its value in the absence of
modulation. This is known as the 3 dB limit of squeezing.
While A− decreases, fluctuations of the other quadrature
increase, hQ02i ¼ A−1þ > kBT=Mω2

0. The difference between
the variances was clearly demonstrated already in the first
experiment on squeezing in nanomechanical systems (Rugar
and Grütter, 1991).

b. Squeezing of fluctuations about the state of resonantly or
parametrically excited vibrations

Here we expand the discussion in Sec. VII.C to describe
what underlies the power spectrum–based detection of fluc-
tuation squeezing in driven underdamped nonlinear modes.
The detection exploits the fact that the spectrum of fluctua-
tions about a stable state of forced vibrations of a nonlinear
mode is double peaked. The peaks are resolved for sufficiently
weak damping. Their occurrence can be understood using the
equations of motion for the quadratures of a driven mode (D2)
and (D10).

In the limit of zero damping and in the absence of noise, the
stationary states of the mode in the rotating frame lie at
∂Pg ¼ ∂Qg ¼ 0, where g ¼ gr and g ¼ gp for the resonant and
parametric modulations, respectively. The functions gr and gp
are effective Hamiltonians in the rotating frame, and their
extrema play the same role in the dynamics as the minima of
the Hamiltonian function P2=2M þ UðQÞ of a classical
particle with coordinate Q and momentum P in a potential
UðQÞ, except that gr and gp do not have the form of a sum of
the kinetic and potential energies. An important characteristic
of the motion near an extremum of gr and gp is the frequency

ωrot ¼ ð∂2Pg∂2QgÞ1=2: ðD15Þ

For a particle with the Hamiltonian P2=2M þ UðQÞ,
Eq. (D15) goes into the familiar expression for the vibration
frequency near a potential minimum ð∂2QU=MÞ1=2.
In the presence of weak damping and weak noise, after a

transient the periodically driven mode approaches one of the
stable states, depending on where it was initially prepared (the
stable states are slightly shifted from the extrema of gr, gp for
weak damping). This is again similar to a particle in a potential
well, including the case of a double-well potential. The mode
then fluctuates about this state for a long time compared to the
relaxation time ∼1=Γ; see Sec. VII.D. These fluctuations
correspond to random vibrations of QðtÞ and PðtÞ at fre-
quency ωrot, as seen when Eqs. (D2) and (D10) are linearized
about a stable state. Again, the random vibrations of QðtÞ and
PðtÞ are similar to thermal vibrations of a particle in a
potential well. However, they occur in the rotating frame.
As seen inEqs. (D1) and (D9), vibrationsofQ,Pmodulate the

forced vibrations of the coordinate andmomentum of the driven
mode in the laboratory frame qðtÞ, pðtÞ. Therefore, the power
spectrum of fluctuations of the mode measured in
the laboratory frame has peaks at frequencies ωF � ωrot or
ωp=2� ωrot for resonant and parametric modulations, respec-
tively (Drummond and Walls, 1980; Dykman et al., 1994;
Dykman,Marthaler, andPeano, 2011).These peaks are “fluctua-
tional analogs” of the peaks in the spectra of the response to an
additional weak probe field (Dykman and Krivoglaz, 1979).
On the experimental side, the double-peak spectrum of

fluctuations about a stable vibrational state of a resonantly
driven MEMS was observed by Stambaugh and Chan
(2006b), but in this experiment the spectral peaks significantly
overlapped. In the experiment (Huber et al., 2020) the
damping was small and the peaks were well resolved.
As seen in Figs. 33(b) and 33(e), the orbits of motion on the

ðQ;PÞ plane with a given g are strongly noncircular for both
resonant and parametric driving. Therefore, the variances of
the quadratures Q and P are different, which indicates
squeezing. If we disregard dissipation,

hðδQÞ2i ¼ kBT
2Mω2

0

ð1þ e−4φ� Þ; hP2i ¼ kBT
2Mω2

0

ð1þ e4φ� Þ;

expð2φ�Þ ¼ j∂2Qgj1=2=j∂2Pgj1=2: ðD16Þ

Here δQ ¼ Q −Q0, where Q0 is the value of Q at the
considered extremum of g and the second derivatives of g
are calculated at the extremum, with g being gr or gp for the
resonant and parametric modulations, respectively.
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Along with the squeezing comes the difference in the
areas of the spectral peaks at the frequencies ωF þ ωrot and
ωF − ωrot for a resonantly driven mode, as well as the peaks at
ð1=2Þωp þ ωrot and ð1=2Þωp − ωrot for a parametrically
modulated mode. The difference in the areas is directly related
to the squeezing parameter (Dykman, 2012; Huber et al.,
2020). The ratio Rpeak of the areas of the peaks is

Rpeaks ¼ tanh2φ�:

Depending on the parameters and on whether the mode is in
the larger- or smaller-amplitude state, for resonant driving, the
larger-area peak is on the higher- or lower-frequency side of
ωF or ωp=2.
The expression forRpeak also applies to the ratio of the areas

of the peaks in the imaginary parts of the susceptibility of a
strongly driven, strongly underdamped mode (Ochs et al.,
2021b). Such susceptibility describes the response to a weak
probe force at frequencyωpr close to resonance. The peaks have
opposite signs. The peak that corresponds to resonant ampli-
fication of the force always has a smaller area than the one that
corresponds to the absorption (Dykman and Krivoglaz, 1979).
We note that the expression for the ratio of the areas of the
susceptibility peaks also applies in the quantum regime.

APPENDIX E: SPECTRA OF NONLINEAR
UNDERDAMPED VIBRATIONAL MODES: QUANTUM
AND CLASSICAL

The spectra of nonlinear modes (oscillators) are determined
by two processes. One is decay of the vibration amplitude.
This decay makes the vibrations nonsinusoidal and thus leads
to a frequency “uncertainty” and to a spectral broadening. The
other is frequency fluctuations. Here we consider the fre-
quency fluctuations that come from the interplay of the
dependence of the vibration frequency on the amplitude
and the amplitude fluctuations due to thermal noise or a
broadband noise from other sources. The two mechanisms of
the spectral broadening are not simply superposed but com-
pete, in some sense, because the decay rate of the amplitude Γ
is also the reciprocal correlation time of the frequency
fluctuations, as explained in Sec. VI.C. Therefore, the shape
of the spectrum is determined by the ratio of the fluctuational
frequency spread δω0 to Γ.
The broadening of the spectrum of an oscillator due to the

nonlinearity was first discussed for a quantum oscillator
(Ivanov, Kvashnina, and Krivoglaz, 1965). The analysis was
done for the limiting cases δω0 ≪ Γ and Γ → 0. A complete
solution of the problem that showed the evolution of the
spectrum with the varying δω0=Γ was first obtained in the
classical theory (Dykman and Krivoglaz, 1971) and then in the
quantum theory (Dykman and Krivoglaz, 1973). It described
the interplay of the nonlinearity and decay and offered insight
into the paradox of the harmonic oscillator (discussed in
Appendix E.1).
In the quantum analysis, it is necessary to take into

consideration that the energy levels of a nonlinear oscillator
are nonequidistant. In the Duffing model (46), the energy of
the kth level is

Ek ¼ ℏk½ω0 þ V0ðkþ 1Þ=2�; V0 ¼ 3ℏγ=4Mω2
0

for jV0jk ≪ ω0. The transition frequencies ðEk − Ek−1Þ=ℏ
are shown in Fig. 34. They depend on the level number k,
that is, on the energy Ek. This is the quantum analog of the
energy dependence of the oscillator vibration frequency in
the classical limit. The parameter V0 is proportional to the
Duffing nonlinearity parameter γ. It is the discreteness of
the transition frequencies that determines the quantum
effects of the nonlinearity on the susceptibility and the
power spectrum.
Thus far in nanomechanical systems studied in the quantum

regime (O’Connell et al., 2010; Chu et al., 2018; Satzinger
et al., 2018; Arrangoiz-Arriola et al., 2019; Wang et al., 2019;
MacCabe et al., 2020; Cattiaux et al., 2021), including the
systems studied in quantum optomechanics (Aspelmeyer,
Kippenberg, and Marquardt, 2014a, 2014b; de Lépinay et al.,
2021; Kotler et al., 2021), the Duffing nonlinearity jV0j was
small compared to the decay rate Γ. This impeded an
observation of quantum effects of the nonlinearity in the
spectra. However, quantum effects can be pronounced for
electromagnetic modes in nonlinear microwave cavities and
for Josephson junction–based systems; cf. Schuster et al.
(2007) and Bertet et al. (2012). They underlie the operation of
the transmon qubit (Koch et al., 2007), which is the basic
element of the current superconducting quantum computers.
A quantum picture of the nonlinearity-induced spectral

change is in some sense more intuitive than the classical, and
the classical results follow from the quantum results as a
limiting case. Therefore, we present this picture first.

1. “Paradox” of the quantum harmonic oscillator

The oscillator susceptibility χðωÞ near resonance (ω ≈ ω0)
is formed by the transitions between neighboring levels. A
naive way to describe this is to think of the oscillator as a set of
two-level systems formed by the pairs of neighboring states
jk − 1i; jki with k ¼ 1; 2;…. Each such system makes a
partial contribution to the resonant susceptibility, which is
described by a function ϕðk;ωÞ. The overall susceptibility of

(a) (b)

FIG. 34. (a) Transitions between the energy levels of the
Duffing oscillator. The difference between the neighboring
transition frequencies is V0 ¼ 3ℏγ=4Mω2

0. (b) Fine structure of
the imaginary part of the oscillator susceptibility [the power
spectrum is SðωÞ ∝ ðn̄þ 1ÞIm χðωÞ]. The plot refers to the ratio
of the nonlinearity parameter V0 to the decay rate V0=Γ ¼ 30.
The curves from top to bottom at the first maximum
(ω − ω0 ≈ V0) correspond to n̄ ¼ 1=3; 2=3, and 1. For n̄ → 0
the spectrum becomes a Lorentzian curve, 2Mω0ImχðωÞ ¼
Γ=½Γ2 þ ðω − ω0Þ2�.
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the oscillator can then be sought in the form of a sum of such
partial susceptibilities,

χðωÞ ¼ ð2Mω0Þ−1
X
k¼1

ϕðk;ωÞ: ðE1Þ

One might further assume that a partial susceptibility ϕðk;ωÞ
is given by the familiar expression for the susceptibility of a
two-level system (Weisskopf and Wigner, 1930a)

ϕWðk;ωÞ ¼
k

n̄þ 1

ρk−1
ΓWðkÞ − iðω − ω0 − V0kÞ

;

ΓWðkÞ ¼ Γ½2kð2n̄þ 1Þ − 1�: ðE2Þ
Here ω0 þ V0k is the transition frequency of the jk − 1i → jki
transition, as seen in Fig. 34(a). The parameter ΓWðkÞ is given
by the half sum of the reciprocal lifetimes of the states jk − 1i
and jki. In calculating it we took the reciprocal lifetime
of a state jki to be Wk→kþ1 þWk→k−1, where the transi-
tion rates Wk→k�1 are given by Eq. (B1), and we also
took into account that Wk→kþ1=Wkþ1→k ¼ n̄=ðn̄þ 1Þ [the
Einstein relation (Landau and Lifshitz, 1980)], with n̄ ¼
½expðℏω0=kBTÞ − 1�−1. Further along the lines of the
Weisskopf-Wigner theory, in Eq. (E2) the coefficient ρk−1
is the population of the state k − 1 from which the system
makes a transition, ρk ¼ expð−ℏkω0=kBTÞ=ðn̄þ 1Þ. The
function Im ϕWðk;ωÞ has the familiar form of a Lorentzian
centered at the transition frequency ω0 þ V0k and having the
half-width ΓWðkÞ.
An obvious flaw of this picture, already noticed by

Weisskopf and Wigner (1930b), is that it does not describe
the susceptibility of a harmonic oscillator in the limit V0 ¼ 0.
In this limit the functions ImϕWðk;ωÞ are Lorentzians
centered at the same frequency, but their half-widths ΓWðkÞ
are different, so the entire spectrum is not Lorentzian. This has
become known as the paradox of the harmonic oscillator
(Belavin et al., 1969; Zeldovich, Perelomov, and Popov,
1969). Weisskopf and Wigner (1930b) studied the effect
for a three-state system with equal transition frequencies
and showed that, indeed, such a system is not described by
a set of two independent two-level systems.
The breakdown of the approximation (E2) with decreasing

jV0j=Γ is a characteristic quantum effect. The transition
frequencies ω0 þ V0k with different k are close to each other,
and to distinguish the partial spectra ϕWðk;ωÞ one has to wait
for a time t ≫ jV0j−1. However, because of the coupling to a
thermal bath, the oscillator stays in a state k for a time
∼Γ−1

W ðkÞ. If this time is less than jV0j−1, the partial spectra
may not be distinguished.
The time Γ−1

W ðkÞ can be thought of as the time it takes to
“switch” from one two-level system to another. The switching
couples the partial spectra with different k to each other. This
coupling is described by a system of linear equations
(Dykman and Krivoglaz, 1984) that can be obtained from
the quantum master equation for the oscillator density matrix
ρ [Eq. (B4)].
Following the standard Kubo formula, we relate the sus-

ceptibility of the oscillator to the Fourier transform of
the correlator haðtÞa†ð0Þi¼Tr½aexpð−iHtÞa†ρfull expðiHtÞ�,
where ρfull is the density matrix of the system and the bath.

Tracing out the bath and switching to the rotating frame, we
reduce the trace to that over the states of the oscillator, with the
density matrix satisfying Eq. (B4) with the initial condition

ρð0Þ ¼ a† expð−ℏω0a†a=kBTÞ=ðn̄þ 1Þ:

The Fourier transform of the latter trace, i.e., of the trace over
the oscillator states jki, is a sumover k of the Fourier transforms
of the corresponding matrix elements

ϕðk;ωÞ ¼
Z

∞

0

dt exp½ðiω − ω0Þt�k1=2hkjρðtÞjk − 1i:

From Eq. (B4) we obtain a system of equations for ϕðk;ωÞ. It
reads

½ΓWðkÞ − iðω − ω0 − V0kÞ�ϕðk;ωÞ − 2Γk½n̄ϕðk − 1;ωÞ
þ ðn̄þ 1Þϕðkþ 1;ωÞ�

¼ kρk−1=ðn̄þ 1Þ: ðE3Þ

Equation (E3) shows that, for jV0j ≫ ΓWðkÞ, the partial spectra
ϕðk;ωÞ near their maxima are indeed given by Eq. (E2).
However, one can easily verify that, for a harmonic oscillator,
V0 ¼ 0, the solution is

ϕðk;ωÞ ¼ k
n̄þ 1

ρk−1
Γ − iðω − ω0Þ

ðV0 ¼ 0Þ:

In other words, all partial spectra have the same spectral shape,
a profound quantum effect. With the account taken of Eq. (E1),
this expression gives the familiar expression (5) for the
susceptibility of a harmonic oscillator.

2. The susceptibility in the explicit form

Equation (E3) can be solved and the expression for the
susceptibility χðωÞ can be obtained in the form of an integral
of an elementary function (Dykman and Krivoglaz, 1973),

χðωÞ ¼
Z

∞

0

dteiωtXðtÞ; XðtÞ ¼ i
2Mω0

e−iω0teΓtψ−2
00 ðtÞ;

ψ00ðtÞ ¼ coshðℵ0ΓtÞ þ Λ0 sinhðℵ0ΓtÞ;

ℵ0 ¼
�
1þ i

V0

Γ
ð2n̄þ 1Þ − V2

0

4Γ2

�
1=2

ðReℵ0 > 0Þ;

Λ0 ¼ ℵ−1
0

�
1þ i

V0

2Γ
ð2n̄þ 1Þ

�
: ðE4Þ

The explicit expression (E4) shows that the susceptibility of
a quantum Duffing oscillator is determined by two dimension-
less parameters: the ratio V0=Γ of the difference of the
transition frequencies [cf. Fig. 34(a)] to the decay rate and
the oscillator thermal occupation number n̄. The power
spectrum SðωÞ ∝ Im χðωÞ has a peak near ω ¼ ω0 that not
only is non-Lorentzian but is actually asymmetric, in contrast
to the case of a harmonic oscillator. For jV0j ≫ Γð2n̄þ 1Þ the
power spectrum can have a fine structure, with the spectral
peaks centered at frequencies ≈ω0 þ kV0; cf. Eq. (E2). This
fine structure is illustrated in Fig. 34(b). It exists in a
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temperature range limited from above and below. On the one
hand, the temperature should be sufficiently high that the
excited states of the oscillator are populated. On the other hand,
the fine structure smears out with the increasing temperature, as
the linewidths 2ΓWðkÞ increase and the condition jV0j ≫
ΓWðkÞ ceases to hold for smaller and smaller k.

3. Dispersively coupled vibrational modes

A similar effect on the susceptibility of the considered mode
n ¼ 0 comes from its dispersive coupling to other modes. The
energy of the dispersive coupling is

Udisp ¼
3

4
M

X
n1≠n2

γn1n1n2n2q
2
n1q

2
n2 ;

where the subscripts n1;2 enumerate the modes. This is part of
the total energy of the nonlinear mode coupling described
by Eq. (50).
Because of the dispersive coupling, the frequency ω0 of the

mode n ¼ 0 becomes dependent on the states jkni of other
modes,

ω0 → ω0fkng ¼ ω0 þ
X
n>0

Vn½kn þ ð1=2Þ�;

Vn ¼
3ℏ
2Mn

γ00nn
ω0ωn

: ðE5Þ

In Eq. (E5) we assume that the coupling parameters γn1n1n2n2
have been renormalized to allow for the cubic in the mode
coordinate terms in the potential energy of the modes
[cf. Eq. (50)]; Mn is the effective mass of mode n > 0

(M0 ≡M). Equation (E5) is the quantum analog of Eq. (51)
for the frequency shift in terms of the mode amplitudes.
The frequencies ω0fkng form a ladder for each n in a

manner similar to the frequency ladder in Fig. 34. As in the
case of the internal mode nonlinearity, the susceptibility of
the mode n ¼ 0 is affected by the coupling of the transition
amplitudes for different kn. The overall expression for the
susceptibility of the mode n ¼ 0 can be written in the same
form as Eq. (E4) provided that one replaces (Dykman and
Krivoglaz, 1973)

eΓtψ−2
00 ðtÞ → ψ−1

00 ðtÞ
Y
n

eΓntψ−1
0n ðtÞ;

ψ0nðtÞ ¼ coshðℵnΓntÞ þ Λn sinhðℵnΓntÞ: ðE6Þ

Here the parameters ℵn and Λn are again given by Eq. (E4)
with the replacement

V0 → Vn; Γ → Γn; n̄ → n̄n ¼ ½expðℏωn=kBTÞ − 1�−1.
ðE7Þ

In Eqs. (E6) and (E7) Γn is the decay rate of mode n and n̄n is
its thermal occupation number. We also use Γ0 ≡ Γ
and n̄0 ≡ n̄.
Where the difference in the frequencies of transitions with

different kn is large compared to the decay rates of the

involved modes [jVnj ≫ Γnð2n̄n þ 1Þ], the susceptibility
given by Eqs. (E4)–(E7) becomes a sum of partial suscep-
tibilities for the transitions where modes n are in different
Fock states jkni, as in Eq. (E2). On the other hand, the modes
with jVnjð2n̄n þ 1Þ ≪ Γn, i.e., the modes that are weakly
dispersively coupled to the considered mode n ¼ 0 compared
to their decay rates, only slightly perturb χðωÞ.

4. Classical limit

The expressions for the susceptibility simplify in the
classical limit. In this limit, the thermal occupation numbers
of the modes are n̄n ≈ kBT=ℏωn. Since the nonlinearity
parameters Vn, which are explicitly related to the discreteness
of the modes energy spectra, are ∝ ℏ, they can enter only in
combination with n̄n. Respectively, in the classical limit we
have in Eqs. (E4)–(E7)

ℵn → ð1þ 4iαnÞ1=2; Λn → ℵ−1
n ð1þ 2iαnÞ;

αn ¼ 3γ00nnkBTð2 − δn;0Þ=8Mnω0ω
2
nΓn: ðE8Þ

In the classical limit, the susceptibility does not have a fine
structure. However, it is significantly different from the simple
Lorentzian limit (10). The power spectrum SðωÞ ∝ Im χðωÞ
becomes asymmetric with an increasing jαnj, because of both
the internal nonlinearity and the dispersive coupling to
fluctuating modes (Dykman and Krivoglaz, 1971).
The evolution of the spectrum of a single mode n ¼ 0 with

the varying single parameter of the internal nonlinearity
α0 is shown in Fig. 35. The width of the spectrum increases
with an increasing α0. We note that α0 ∝ T if the decay rate is
independent of temperature. For α0 ¼ 0 the spectrum is
Lorentzian, whereas for jα0j ≫ 1 the spectrum near the
maximum has the form SðωÞ ∝ jω − ω0j exp½−ðω −
ω0Þ=2α0Γ� for α0ðω − ω0Þ > 0. The expression for the power
spectrum of a classical oscillator that coincides with the
presented result was given by Renz (1985).
For comparison, we show in Fig. 36 the effect of nonlinear

friction on the susceptibility spectrum in the absence of
conservative nonlinearity. The spectrum remains symmetric
in this case but is strongly non-Lorentzian. The deviation from
the Lorentzian form is a signature of the vibration nonlinearity,

FIG. 35. Imaginary part of the susceptibility of the classical
Duffing oscillator Im χðωÞ ∝ SðωÞ. The shape of the spectrum is
determined by the single parameter α0 [Eq. (E8)]. The curves
from top to bottom at the maximum refer to α0 ¼ 0 (a Lorentzian
spectrum with half-width Γ), α0 ¼ 0.5, 1, 1.5, 2.
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while the symmetry of the spectrum enables the effects of
conservative and dissipative nonlinearity to be distinguished.
An interesting behavior occurs when the number of the

modes N dispersively coupled to the considered mode is large
even while the coupling to each mode is small. One would
expect some version of the central limit theorem to apply in
this case, leading to a Gaussian power spectrum SðωÞ
(Barnard et al., 2012). This is indeed the case (Zhang and
Dykman, 2015). A Gaussian spectrum emerges if jαnj ≪ 1 for
all n, but

P
n α

2
n ≫ 1 and

P
n α

2
nΓ2

n ≫ Γ2
m ð∀mÞ. In this case

SðωÞ ∝ exp½−ðω − ω̃0Þ2=2σ2�, with ω̃0 ¼ ω0 þ 2
P

n αnΓn
and σ2 ¼ 4

P
n α

2
nΓ2

n.
To conclude this section, we note that the coupling

of interstate transitions and the related distortion of the spectral
lines is a generic property of systems with close transition
frequencies. Such coupling occurs in different types of systems.
Besides various vibrational systems, like Josephson-junction-
based systems, microwave cavities, and NVSs, examples range
from the cyclotron resonance in semiconductors to electron spin
resonance in strong magnetic fields in systems with S > 1=2.
The coupling of transitions is also important for classical
vibrational systems with fluctuating frequency. An example
is provided by nanomechanical andmicromechanical resonators
with a fluctuating number and/or positions of attached mole-
cules (Vig and Kim, 1999; Yang et al., 2011). The spectra of
such systems can also be asymmetric and can display a fine
structure (Dykman et al., 2010). On the formal side, for different
physical mechanisms the full spectra can often be described by
linear equations for coupled partial spectra. These equations are
convenient for a numerical analysis.

APPENDIX F: THE ACTION-ANGLE VARIABLES

The Duffing model has been successful in describing many
observations of nanomechanical systems, and in the majority
of cases the analysis was based on the Bogoliubov-Krylov
method of averaging outlined in Appendix A.1. As previously
indicated, this method is similar to the RWA and is used
throughout this review. However, we note that it may become
inapplicable even when the nonlinearity is still comparatively
weak, that is, the nonparabolic in q terms in the potential

energy of a vibrational mode UðqÞ are still small compared to
Mω2

0q
2=2. A simple example is provided by a mode with a

broken inversion symmetry. In this case, in the nonlinear part
of the potential one has to keep the cubic in q term
[cf. Eq. (50)],

UðqÞ ¼ 1
2
Mω2

0q
2 þ 1

3
Mβq3 þ 1

4
Mγq4.

Such modes have been extensively studied in the literature;
see Kozinsky et al. (2006), Chan, Dykman, and Stambaugh
(2008a), Eichler, Moser et al. (2011), Meerwaldt et al. (2012),
Eichler et al. (2013), Huang et al. (2019), and Ochs et al.
(2021a). In fact, the lack of inversion symmetry is fairly
generic for flexural nanomechanical modes, as it comes, for
example, whenever a gate voltage is applied and a nano-
resonator is bent or simply from the capacitive part of the
potential energy ∝ ð∂3Cg=∂q3ÞðVdc

g Þ2; cf. Eq. (9).
Cubic nonlinearity leads to several effects, including

vibrations at the second overtone of the eigenfrequency,
i.e., at the frequency ≈2ω0, and the change of the dependence
of the vibration frequency on the amplitude. In the RWA, the
latter is described by the renormalization of the Duffing
parameter (Landau and Lifshitz, 2004),

γ → γeff ¼ γ −
10β2

9ω2
0

ðF1Þ

[see Eichler et al. (2013) and Huang et al. (2019) for some
other effects].
It is immediately seen in Eq. (F1) that the term ∝ β2 can

significantly change the character of the amplitude depend-
ence of the mode frequency (48). Indeed, if γ > 0 but γeff < 0,
even the sign of the slope dω=dA2 of the frequency depend-
ence on the amplitude changes. However, it is clear that for
large amplitudes the term ∝ q4 in UðqÞ becomes more
important than the term ∝ q3. Simple dimensional arguments
show that for the amplitudes A2 ≳ ω2

0γeff=γ
2 the conventional

RWA approximation (F1) becomes inapplicable. For small
γeff=γ this happens when the nonlinear part of the energy
∼MγA4 is still small compared to the harmonic part ∼Mω2

0A
2.

Therefore, it is necessary to find an alternative approach that
would not rely on the conventional RWA.
An appropriate analysis of the mode dynamics is simplified

in the case of weak damping, where the decay rate Γ ≪ ω0.
Here it is convenient to use the method of averaging in the
form developed in the dynamics of Hamiltonian systems
(Arnold, 1989). In this method one changes from the
coordinate and momentum of the mode to its action-angle
variables. This is a canonical transformation of variables. The
coordinate and momentum are functions of the action I and
the phase (angle) φ and are periodic in φ,

qðI;φþ 2πÞ ¼ qðI;φÞ; pðI;φþ 2πÞ ¼ pðI;φÞ:

The action and phase variables of the Hamiltonian system are
defined as (Landau and Lifshitz, 2004)

I ¼ ð2πÞ−1
I

pdq; φ ¼ ∂

∂I

Z
pdq.

FIG. 36. Imaginary part of the susceptibility of an oscillator with
nonlinear friction in the absence of the dependence of the
vibration frequency on the amplitude. The dynamics is described
by Eqs. (B4)–(B7) in the classical limit [cf. Eq. (55)] with the
Duffing nonlinearity parameter γ ¼ 0. The spectra from top to
bottom at the maximum correspond to the scaled nonlinear
friction coefficient γðnlÞ ≡ 2ΓðnlÞkBT=ℏω0Γ ¼ 0, 0.5, 1, and
1.5. The nonlinear friction parameter ΓðnlÞ is defined in Eq. (B7).
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The vibration frequency of the mode is a function of I or,
equivalently, of the mode energy E,

ωðIÞ ¼ ð∂I=∂EÞ−1

and ωðIÞ∂φq ¼ p=M, whereas ωðIÞ∂φp ¼ −∂qUðqÞ.
To describe the mode dynamics in the presence of a friction

force −2Γp and a driving force F cos ωFt, one can change the
variables from ðq; pÞ to ðI;φÞ. The resulting equations for I
and φ read

_I ¼ R∂φq; _φ ¼ ωðIÞ − R∂Iq;

R ¼ −2Γpþ F cos ωFt: ðF2Þ

The key observation that underlies the averaging principle is
that the action varies in time only because of the friction and
the driving, which are assumed to be small. In contrast, the
phase accumulates at frequency ωðIÞ, which is assumed to be
large. Therefore, the time evolution of q and p is fast
oscillations with a slowly varying in time action I. The
contribution of fast oscillations to _I does not accumulate in
time. Therefore, on a timescale that is large compared to
ω−1
F ;ω−1ðIÞ, the motion can be described by averaging over

the fast oscillations for a given action.
The effect of the driving is most pronounced (see

Appendix D.1) when the driving is resonant. This means that
the vibrations occur at frequencies ωðIÞ close to ωF, that is,
jωðIÞ − ωFj ≪ ωF (the analysis of parametric driving can be
done similarly). We can then write

φ ¼ ωFtþ φ0ðtÞ; _φ0 ¼ ωðIÞ − ωF − R∂Iq: ðF3Þ

The phase φ0 is also a slow variable. For a given φ0 the
functions qðI;φÞ; pðI;φÞ are periodic in ωFt.
It follows from the previous arguments that the equations

for I;φ0 can be obtained by averaging the full equations (F2)
over fast oscillations,

_I ¼ R∂φq; _φ0 ¼ ωðIÞ − ωF − R∂Iq: ðF4Þ

In Eqs. (F4)

LðI;φÞ ¼ ð2πÞ−1
Z

2π

0

dθLðI; θ þ φ0Þ;

where L is an arbitrary function of I;φ that is periodic in φ (in
R we replace F cos ωFt with F cos θ; in fact, the averaging is
done over the period 2π=ωF for fixed I;φ0).
Stationary states of forced vibrations are given by Eq. (F4),

in which one sets _I ¼ _φ0 ¼ 0. One can see that, to the leading
order in the Duffing nonlinearity, one obtains the same result
for the vibration amplitude and phase as Eqs. (D2) and (D3)
or, equivalently, Eq. (60) by assuming I to be small and
keeping a linear in I term in the expansion of ωðIÞ.
One can go beyond the conventional analysis of the

resonant nonlinear response described in Appendix D while
still staying in the region of comparatively weak nonlinearity.
This is particularly important for small γeff=γ or for γeff < 0
and γ > 0, in which case one may have to keep a quadratic in I
term in the expansion of ωðIÞ; i.e., one can write (Ochs et al.,
2022)

ωðIÞ ¼ ω0 þ α1I þ α2I2.

Here α1 ∝ γeff . The parameters α1;2 include all relevant
renormalizations and the terms in the mode potential up to
the sixth order in the coordinate q. The parameters α1;2
are essentially the only parameters accessible to the experi-
ment on resonant weakly damped dynamics. They can
describe a nonmonotonic backbone curve. Moreover, in an
analysis of the mode dynamics one can approximate q ≈
ð2I=Mω0Þ1=2 cosϕ in Eq. (F4), which significantly simplifies
the analysis.
However, the action-angle formulation allows one to go

beyond the weak-nonlinearity range (Dykman et al., 1990;
Soskin, Mannella, and McClintock, 2003; Shoshani, Shaw,
and Dykman, 2017; Huang et al., 2019; Miller, Shaw, and
Dykman, 2021; Ochs et al., 2021a). We note that if the
involved characteristic frequencies ωðIÞ become significantly
different from ω0, the approximation of the frequency-
independent coefficients of linear and nonlinear friction
may become inapplicable. A more general approach to
describing dissipation may be necessary in this case.

APPENDIX G: THERMOELASTIC AND AKHIEZER
RELAXATION

In this section we consider the mechanisms of Akhiezer and
thermoelastic relaxation of NVS modes. These mechanisms
have a common origin and can be described within the same
general framework, as indicated in Sec. IV. In both mecha-
nisms, relaxation comes from inelastic scattering of thermal
phonons off the low-frequency NVS mode. The process is
sketched in Fig. 37. The mechanisms are particularly impor-
tant if the mode eigenfrequency ω0 is small compared to the
temperature in frequency units, ℏω0 ≪ kBT. To find the mode
decay rate Γ in this case it is usually necessary to take into
consideration the fact that thermal phonons are scattered off
each other, and their scattering rate can be comparable to ω0.
The coupling Hamiltonian that describes the scattering of

thermal phonons off the low-frequency NVS mode has the
form

FIG. 37. Feynman diagram showing the scattering of phonon κ
off the NVS mode into phonon κ0. The phonons κ and κ0
themselves are scattered off other phonons, and the diagram
provides an example of such scattering. The resulting lifetime of
the involved phonons can be smaller than the reciprocal eigen-
frequency ω−1

0 of the NVS mode.
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Hi ¼ qhscattb ; hscattb ¼
X0

κ;κ0
Vκκ0b

†
κbκ0 ; ðG1Þ

where bκ and b†κ are annihilation and creation operators of the
vibrational modes coupled to the NVS, cf. Eq. (34). These
modes provide a thermal reservoir. We call them phonons and
assume that their frequencies ωκ have a quasicontinuous
spectrum.
It follows from the results of Sec. IV, see also Eqs. (A9)

and (A10), that, to the leading order inHi, the decay rate of the
considered low-frequency mode can be expressed in terms of
the power spectrum of the operator hscattb . It is convenient to
write this expression as

Γ ¼ −
ℏ

2MkBT
Im

X
κ;κ0

V�
κ0κ

Z
∞

0

dteiω0t−εtϕκκ0 ðtÞ;

ϕκκ0 ðtÞ ¼
−i
ℏ

X
κ0;κ00

Vκ0
0
κ0hb†κðtÞbκ0 ðtÞb†κ0

0
ð0Þbκ0ð0Þi; ðG2Þ

where ε → þ0. The function ϕκκ0 ðtÞ is a two-phonon corre-
lation function.
Equation (G2) immediately gives the Landau-Rumer-

Krivoglaz-type result (35) if one disregards the interaction
between the high-frequency phonons, in which case ϕκκ0 ðtÞ¼
ð−i=ℏÞVκ0κn̄ðωκÞ½n̄ðωκ0 Þþ1�exp½iðωκ −ωκ0 Þt�.
The interaction between the phonons can be taken into

account by deriving a quantum kinetic equation for ϕκκ0. The
modes κ can be well defined and the calculation can be done in
a fairly general case where the resonator is spatially nonuni-
form, but the nonuniformity is smooth on the wavelength of
thermal phonons λT (Atalaya et al., 2016). This means, for
example, that the size of the ripples on a nanomembrane or the
scale of nanotube bending or twisting largely exceed λT .
Here we outline an analysis of the phonon-phonon scatter-

ing for a simple case where the resonator is spatially uniform.
In a uniform system, thermal phonons are characterized by
their wave vector k and the branch α, i.e., the phonon label κ is
κ ≡ ðk; αÞ. For thin resonators, α includes the number of the
quantized state of motion in the direction of the confinement.
The strain of the considered low-frequency mode varies on the
length L that largely exceeds the thermal wavelength of
phonons λT ; for a flexural mode, L is the length of the
resonator. Therefore, the modes κ and κ0 coupled to it have
close wave vectors, jk − k0j ≪ jkj ∼ 1=λT . For thermal
modes to resonantly scatter off the low-frequency mode, their
frequencies should also be close, jωκ − ωκ0 j ∼ τ−1κ ;ω0 ≪ ωκ,
where τκ is the relaxation time of mode κ. The conditions on
the wave vectors and the mode frequencies are usually met in a
sufficiently broad range of k if the modes κ; κ0 belong to the
same branch α [the situation may be more complicated in
anisotropic systems (Herring, 1954)]. Here we consider
coupling to modes of the same branch.
Given the difference in the spatial scales L and λT , it is

convenient to switch from ϕκκ0 to its Wigner transform. For a
spatially uniform system [κ ≡ ðk; αÞ; κ0 ≡ ðk0αÞ] it has the
form

Φαðr;k; tÞ ¼
V

ð2πÞd
Z

dk1dk0
1e

iðk0
1
−k1Þ·rϕk1αk0

1
αðtÞ

× δ

�
k1 þ k0

1

2
− k

�
; ðG3Þ

where d is the dimensionality of thermal phonons and V is the
volume, area, or length of the resonator, depending on the
dimensionality. The function Φαðr;k; tÞ is the two-phonon
correlation function for the branch α.
One can also introduce the coefficient Vαðr;kÞ, which is

given by the same expression as Φα, except that ϕk1αk0
1
αðtÞ

is replaced by Vk0
1
αk1α. The decay rate (G2) can then be

written as

Γ ¼ −
ℏ

2MkBT
Im

Z
drdk
ð2πÞd

X
α

V�
αðr;kÞ

×
Z

∞

0

dtΦαðr;k; tÞ expðiω0t − εtÞ: ðG4Þ

Equation (G4) presents the decay rate as an integral of the
local (for a given r) decay rate “density.”
The parameters Vαðr;kÞ take a simple form for the

deformation potential coupling of the considered mode to
phonons (Gurevich, 1988). The deformation potential model
assumes that the phonon wavelengths are much smaller than
the length over which the mode-induced displacement field
qφðrÞ varies. In the model the change of the phonon
frequency δωκ is proportional to the divergence of the
displacement field, cf. Eq. (39),

δωκ ¼ −ωκγ
ðGÞ
κ q∇φðrÞ. ðG5Þ

From Eq. (G5) and from Eq. (G3) written for Vαðr;kÞ we can
directly express the coupling parameters in terms of the

Grüneisen parameters γðGÞkα ,

Vαðr;kÞ ¼ −ℏωkαγ
ðGÞ
kα ∇φðrÞ: ðG6Þ

Equations (G4) and (G6) reduce the problem of finding the
decay rate of a low-frequency mode to calculating the
correlation function Φα of thermal phonons in the Wigner
representation. We note that it is not assumed that the mode is
described by a plane wave, as in the Akhiezer theory of
ultrasound absorption (Akhiezer, 1938). The following analy-
sis does not use the model (G5).

1. Kinetic equation

Time evolution of the function Φαðr;k; tÞ is determined by
phonon-phonon scattering. If the phonon-phonon coupling
and the disorder are weak, one can sum the perturbation series
for the functions ϕκκ0 (Atalaya et al., 2016) and obtain a
Markov kinetic equation for Φα (strictly speaking, with a
renormalized phonon spectrum),

∂tΦα þ vkα∂rΦα ¼ St½Φα�; Φα ≡Φαðr;k; tÞ: ðG7Þ

Here vkα is the group velocity of the phonon of the branch α
with the wave vector k and St is the collision integral. The
initial condition follows from Eq. (G2),
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Φαðr;k; 0Þ ¼ −iℏ−1Vαðr;kÞn̄kαðn̄kα þ 1Þ; ðG8Þ

where n̄kα ≡ n̄ðωkαÞ is the phonon thermal occupation
number.
The typical momentum exchange in a phonon-phonon

collision or a collision with a short-range scatterer is
∼ℏ=λT . Therefore, the collision rate is independent of r
and the collision integral is local,

St½Φαðr;k; t� ¼
V

ð2πÞd
X
α0

Z
dk0L

k0α0
kα Φα0ðr;k0; tÞ: ðG9Þ

For phonon-phonon scattering, the coefficients Lk0α0
kα are

quadratic in the parameters of the cubic anharmonicity
Vκ1κ2κ3 introduced in Eq. (36); they are real and are given

by the expression for Λ̃k0α0
kα by Atalaya et al. (2016). The

locality of the collision integral also holds in the presence of a
smooth disorder, where thermal phonons are no longer
plane waves.
An analysis of the dynamics of thermal phonons and

ultimately of the decay of the low-frequency mode can be
done in terms of the right and left eigenmodes of the collision
integral ψνðk; αÞ and Ψνðk; αÞ,

St½ψνðk; αÞ� ¼ −ενψνðk; αÞ;

½V=ð2πÞd�
X
α

Z
dkΨν0 ðk; αÞψνðk; αÞ ¼ δν;ν0 : ðG10Þ

Since the coefficients Lk0α0
kα are real, the functions ψν and Ψν

and the eigenvalues εν are real or form complex-conjugate
pairs, with Re εν ≥ 0. The real parts of the eigenvalues
determine the decay rates of the two-phonon correlation
functions. The zeroth eigenvalue, ν ¼ 0, is ε0 ¼ 0. It corre-
sponds to the stationary value of the two-phonon correlator,

ψ0ðk; αÞ ¼ ℏωkαn̄kαðn̄kα þ 1Þ; Ψ0ðk; αÞ ¼
ℏωkα

kBT2CρV

(we recall that C is the specific heat per unit mass). The
eigenfunctions and eigenvalues with ν > 0 can be found using
the explicit form of the collision operator.
Except for special fine-tuned cases, the eigenfunctions ψν

form a complete set. One can then seek the solution of the
kinetic equation in the form

Φαðr;k; tÞ ¼
X
ν

Tνðr; tÞψνðk; αÞ: ðG11Þ

The functions Tν describe the spatial structure of the correlator
Φαðr;k; tÞ. The equation for these functions reads

∂tTνðr; tÞ þ
X
ν0
vνν0∂rTν0 ðr; tÞ ¼ −ενTνðr; tÞ;

vνν0 ¼
V

ð2πÞd
X
α

Z
dkΨνðk; αÞvkαψν0 ðk; αÞ: ðG12Þ

We now outline the solution of this equation in the limiting
cases of the thermoelastic and Akhiezer relaxation.

a. Thermoelastic relaxation

The decay rate Γ of the low-frequency mode is determined
by the evolution of Φαðr;k; tÞ on the timescale ≲ω−1

0 , as seen
from Eq. (G4). We start with the case where ω−1

0 is large
compared to the relaxation time of thermal phonons
τph ¼ max½Re ε−1ν>0�. As seen from Eq. (G12), τph determines
the long-time decay of the functions Tν>0. The decay of T0

can be slower, and this is the case that we now consider.
The slow evolution of T0ðr; tÞ can be described in the

adiabatic approximation in which the functions Tν>0 adia-
batically follow T0. We then have Tνðr; tÞ ≈ −ε−1ν vν0∂rT0ðr; tÞ
for ν > 0 and t ≫ τph. Equation (G12) for T0 then takes the
form

∂tT0ðr; tÞ ¼
X
ij

Dij∂ri∂rjT0ðr; tÞ;

Dij ¼
X
ν>0

ðv0νÞiðvν0Þj=εν: ðG13Þ

Using the explicit form of Φαðr;k; tÞ and ψ0ðk; αÞ, one
can show that iT0ðr; tÞ can be interpreted as the scaled
coordinate-dependent increment of the temperature of high-
frequency phonons compared to the ambient temperature.
Respectively, Eq. (G13) has the form of the standard equation
of thermal diffusion. Using the completeness of the set of the
eigenfunctions ψν, one can further show that the expression
for Dij coincides with the standard expression (Lifshitz and
Pitaevskii, 1981) for thermal diffusivity. In an isotropic
medium Dij ¼ Dδij. In terms of the thermal conductivity
and the specific heat, D ¼ κT=Cρ.
The boundary conditions for the function T0ðr; tÞ follow

from its proportionality to the temperature increment. At a free
side of a nanoresonator there is no heat flux in the direction n̂
normal to the side, and then n̂∂rT0 ¼ 0. This boundary
condition on the temperature increment was used in the
analysis of thermoelastic relaxation by Lifshitz and Roukes
(2000). On the other hand, at the surfaces where the resonator
is clamped the temperature may be equal to the ambient
temperature, and then T0 ¼ 0 (but the clamping area can also
have a thermal contact resistance).
A convenient strategy is to find the eigenvalues μn and

eigenfunctions T0nðrÞ of the diffusion equation (G13), express
T0ðr; tÞ as a sum of T0n expð−μntÞ, and then find the decay
rate of the low-frequency mode from Eqs. (G4) and (G11), in
which we keep only the term with ν ¼ 0 (Atalaya et al., 2016).
We illustrate this strategy for an important type of NVS
(Zener, 1938; Landau and Lifshitz, 1986; Lifshitz and Roukes,
2000), a long and thin rectangular nanobeam. We assume
that the beam is clamped at x ¼ 0 and x ¼ L, has width W in
the y direction and thickness l⊥ in the z direction, with the
length L ≫ W; l⊥ and with W; l⊥ ≫ lT (lT is the phonon
mean free path). The beam bends in the z direction. Therefore,
the temperature is nonuniform in the z direction, but it can be
uniform in the y direction. Since l⊥ ≪ L, the low-lying
eigenvalues of the diffusion equation (G13) correspond to
the eigenmode ∝ sinðπz=l⊥Þ. If we choose T0 ¼ 0 at
x ¼ 0 and x ¼ L, the eigenmodes of Eq. (G13) are T0nðrÞ ¼
ð2= ffiffiffiffi

V
p Þ sinðπz=l⊥Þ sinðnπx=LÞ, and the corresponding
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eigenvalues are μn ¼ π2Dðl−2⊥ þ n2L−2Þ. For small n, where
the term ∝ L−2 in μn can be disregarded, μn ≈ τ−1Z ¼
Dðπ=l⊥Þ2. This expression coincides with the Zener relaxa-
tion rate τ−1Z used in the equation for the thermoelastic decay
rate (38).
The phenomenological analysis of the thermoelastic relax-

ation corresponds to the assumption that the Grüneisen param-

eter is the same for all phonons: γðGÞkα ≡γðGÞ¼EαT=Cρð1−2νPÞ,
whereαT is the linear thermal expansion coefficient and νP is the
Poisson ratio. From Eqs. (G6), (G8), and (G11), with the
account taken of the explicit form of ψ0ðk; αÞ, we have

T0ðr; 0Þ ¼ iℏ−1γðGÞ∇φ:

To find T0ðr; tÞ one should expand T0ðr; 0Þ in the eigenmodes
T0nðrÞ. Integration over time in Eq. (G4) then gives the decay
rate Γ of the NVS mode in the form

Γ ¼ E2α2TT
2MCρð1 − 2νPÞ2

X
n

μ−1n
1þ ðω0=μnÞ2

				
Z

dr∇φT0nðrÞ
				
2

:

ðG14Þ

The eigenfunctions of the thermal diffusion equation were also
used by Zener (1938) in the analysis of theQ factor of the beam
vibrations based on the coupled equations of motion of a slow
mode and temperature. These equations were derived from
thermodynamic arguments and only diffusion transverse to the
beam was considered.
For a flexural mode we have

∇φ ¼ −ð1 − 2νPÞL1=2z∂2xζ

�Z
ζ2dx

�
−1=2

;

where ζðxÞ is the displacement of the central plane in the z
direction (Landau and Lifshitz, 1986). Using the explicit form
of ζðxÞ for the lowest flexural mode and the expression for the
mode eigenfrequency ω0 ≈ 6.5ðl⊥=L2ÞðE=ρÞ1=2, and setting
μn ≈ μ0, from Eq. (G14) we obtain

Γ ¼ ΓTER ≈ 0.98
Eα2TTω0

2Cρ
ω0τZ

1þ ðω0τZÞ2
; ðG15Þ

which essentially coincides with Eq. (38).
We note that it is necessary to keep several terms in the sum

over the eigenmodes T0n in Eq. (G14) [Eq. (G15) includes the
entire sum]. If the aspect ratio L=l⊥ is not large, one should
take the dependence of the relaxation times of the thermal
modes μ−1n on the mode number into account. The described
method applies to any geometry. It also allows one to take the
difference between the values of the Grüneisen parameter for
different phonons into account and, moreover, to go beyond
the deformation potential approximation (G5) altogether.

b. Akhiezer relaxation

When the mode eigenfrequency significantly exceeds the
rate of thermal diffusion, ω0 ≫ τ−1Z , one should take into
account a finite time it takes for the phonons to locally
equilibrate. The corresponding mechanism is the extension to

a resonator mode of the Akhiezer mechanism of decay of
ultrasound (Akhiezer, 1938).
In terms of the formalism described here, the Akhiezer

damping is determined by the evolution of the function
Tνðr; tÞ over the phonon relaxation time τph ≪ τZ. On this
timescale one can disregard the drift term in Eq. (G12).
Indeed, this term comes from the spatial nonuniformity of the
phonon distribution. The characteristic scale of the nonun-
iformity is the size of the system, which largely exceeds the
phonon mean free path ∼vphτph (vph is the characteristic
phonon velocity), so that jvph∂rTνj ≪ jTνj=τph. The functions
Tνðr; tÞ then exponentially decay in time as expð−ενtÞ
for ν > 0.
From Eqs. (G4) and (G11), the Akhiezer decay rate of the

considered low-frequency mode Γ≡ ΓAkh is

ΓAkh ¼ 1

2MkBT
V

ð2πÞ2d Re
X
α;α0

Z
drdkdk0V�

αðr;kÞ

×
X
ν>0

ψνðk; αÞΨνðk0; α0Þ
εν − iω0

Vα0 ðr;k0Þn̄k0α0 ðn̄k0α0 þ 1Þ:

ðG16Þ

The term ν ¼ 0, which describes thermal diffusion, does not
contribute to the Akhiezer relaxation.
In deriving Eq. (G16) no assumptions have been made

about the structure of the considered low-frequency mode and
the symmetry of the medium. It is important, though, that if
we describe the coupling to phonons by the deformation
potential (G6) and assume that the coupling parameters γðGÞkα
are the same for all phonons, it follows from Eq. (G10) that
ΓAkh ¼ 0. This means that to describe the Akhiezer relaxation

it is necessary to allow for the dependence of γðGÞkα on the
phonon quantum numbers k and α.
In the analysis of the Akhiezer relaxation the phonon decay

rates Re εν are often replaced by a characteristic parameter
τ−1ph ; see Maris (1968), Iyer and Candler (2016), and references
therein. In this approximation we can simplify Eq. (G16)
using the completeness of the eigenfunctions ψν,P

ν>0ψνðk;αÞΨνðk0;α0Þ¼½ð2πÞd=V �δðk−k0Þδαα0−ψ0ðk;αÞ×
Ψ0ðk0;α0Þ. If we denote the averaging over phonons by an
overline,

Bαðr;kÞ ¼
ℏ2

ð2πÞdCρkBT2

X
α

Z
dkBαðr;kÞω2

kαnkαðn̄kα þ 1Þ

ðG17Þ
[here Bαðr;kÞ is an arbitrary function of r, k, and α], we can
rewrite Eq. (G16) as

ΓAkh ¼ q20
ℏ
CρT

ω0τph
1þ ω2

0τ
2
ph

×
Z

dr½jvαðr;kÞj2 − jvαðr;kÞj2�; ðG18Þ

where vαðr;kÞ ¼ Vαðr;kÞ=ℏωkα and q0 ¼ ðℏ=2Mω0Þ1=2.
Equation (G18) explicitly shows that, to describe the
Akhiezer relaxation, one has to take into account the
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dependence of the parameters γðGÞkα on k, α. From this point of
view, it may be more appropriate to interpret the parameter
ðγðGÞÞ2 in Eq. (40) as the variance rather than the squared mean

value of γðGÞkα .
An advantageous feature of the presented technique is that

it allows one to consider an intermediate parameter range
between the limits of the thermoelastic and Akhiezer relax-
ation. It immediately applies to microresonators and nano-
resonators of an arbitrary geometry and various boundary
conditions.

APPENDIX H: ALLAN VARIANCE IN THE
LIMITING CASES

As indicated in Sec. IX, the most common way to
characterize frequency fluctuations is based on the Allan
variance σ2AðτÞ. It is defined in terms of the frequencies fm
measured from the increments of the full vibrational phase φ
over the time intervals ðtm; tm þ τÞ as

σ2AðτÞ ¼
1

2ðN − 1Þf20
XN−1

m¼1

ðf̄mþ1 − f̄mÞ2; ðH1Þ

where f0 is the mean value of f̄m; cf. Eq. (70). We recall that
φðtÞ determines the displacement in the laboratory frame,
which is ∝ cos½φðtÞ�; it should not be confused with the phase
ϕðtÞ in the rotating frame, which is counted off from 2πf0t.
If the dead time between the successive measurements is

zero, tmþ1 − tm ¼ τ, the Allan variance can be simply
expressed in terms of the power spectrum SφðωÞ of the
fluctuations of the full vibrational phase,

σ2AðτÞ ¼
8

πω2
0τ

2

Z
∞

0

dω sin4ðωτ=2ÞSφðωÞ: ðH2Þ

Allan variance is used particularly broadly to characterize
noise of self-sustained vibrations in systems with feedback. In
such systems the vibration amplitude A is kept almost constant
by the feedback loop, but the phase is not fixed (unless the
vibrations are synchronized by an external source). Noise
causes phase fluctuations, which accumulate in time. If the
noise is thermal (thermomechanical), as in the equation of
Brownian motion (2) or in Eq. (A9), the phase is diffusing
(Berstein, 1938). Then, from the previous equations and
Eq. (H2), σ2AðτÞ displays a characteristic dependence on τ
and A,

σ2AðτÞ ¼ ð2ΓkBT=Mω4
0A

2Þτ−1: ðH3Þ

In the range where τ is small compared to the decay time of
the oscillator Γ−1, Eq. (H3) also applies to a mode driven by a
sufficiently strong resonant force F cos ωFt with no feedback
loop. For a strong drive the amplitude of forced vibrations
largely exceeds the thermal displacement ðkBT=Mω2

0Þ1=2, and
thus amplitude fluctuations are relatively small. Fluctuations
in this case can be analyzed using the equation of motion for
the complex amplitude uðtÞ of a driven linear mode

_u ¼ −½Γþ iðωF − ω0Þ�uðtÞ − i
F

4MωF
þ ξðtÞ;

uðtÞ ¼ 1

2MωF
½MωFqðtÞ − ipðtÞ� expð−iωFtÞ; ðH4Þ

where ξðtÞ is thermal noise with the correlator (24);
cf. Sec. D.1.
In the absence of noise and in the stationary regime, the

vibration amplitude is Ast≈2justj ¼ ðF=2MωFÞ½ðωF−ω0Þ2þ
Γ2�−1=2. The vibration phase ϕst as counted off from the drive
phase is

ϕst ¼ − 1
2
π − arctan½ðωF − ω0Þ=Γ�: ðH5Þ

For weak thermal noise the vibration phase ϕðtÞ ¼ φðtÞ − ωFt
fluctuates about ϕst. This behavior is significantly different
from the phase diffusion for self-sustained vibrations.
Interestingly, it follows from Eq. (H4) that the dependence
σ2A ∝ τ−1 has the same form in both cases provided Γτ ≪ 1. It
is this characteristic dependence that gives the so-called noise
floor for thermal-noise-dominated fluctuations in nanome-
chanical systems; cf. Cleland and Roukes (2002), Ekinci,
Yang, and Roukes (2004), Sansa et al. (2016), Sadeghi et al.
(2020), and references therein.
For a resonantly driven mode subject to thermal noise and

in the absence of a feedback loop, Eq. (H4) allows one also to
find a simple expression for the Allan variance in the opposite
limit of a long time τ, where Γτ ≫ 1,

σ2AðτÞ ¼ ð3kBT=Mω4
0A

2Þτ−2: ðH6Þ

Of significant importance is a different regime where the
Allan variance is dominated not by thermal fluctuations of the
slow part of the phase but rather by eigenfrequency fluctua-
tions. These fluctuations often have a 1=f-type component
(the flicker noise). In this case it follows from Eq. (69) that
SφðνÞ ∝ ν−3 for small ν. Then from Eq. (H2) we have
σ2A ∝ τ−4. As mentioned in Sec. IX, the Allan variance does
not distinguish between the eigenfrequency fluctuations and
the fluctuations of the rotating-frame phase ϕ.
A convenient approach to an open-loop measurement of the

Allan variance is based on measuring the ratio of the
quadrature and in-phase components of the vibrations of a
driven mode. This ratio gives tanϕðtÞ. In the measurement,
the drive frequency ωF is often chosen to be maximally close
to the mean measured mode eigenfrequency ωmeas

0 . The
relation between the phase fluctuation ΔϕðtÞ and the fluc-
tuation Δωmeas

0 in this case can be obtained using Eq. (H5). To
do this one should replace ω0 in this equation with ωmeas

0 and
the stationary phase ϕst with the time-dependent phase ϕ. One
then findsΔωmeas

0 ≈ ΓΔϕ. The relation applies in the adiabatic
limit, where the change ΔϕðtÞ is slow compared to the
oscillator relaxation time Γ−1 and is small.
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Auffèves, and Natalia Ares, 2021, “Ultrastrong coupling between
electron tunneling and mechanical motion,” arXiv:2103.15219.

Vijay, R., M. H. Devoret, and I. Siddiqi, 2009, “The Josephson
bifurcation amplifier,” Rev. Sci. Instrum. 80, 111101.

Villanueva, L. G., E. Kenig, R. B. Karabalin, M. H. Matheny, Ron
Lifshitz, M. C. Cross, and M. L. Roukes, 2013, “Surpassing
Fundamental Limits of Oscillators Using Nonlinear Resonators,”
Phys. Rev. Lett. 110, 177208.

Villanueva, L. G., and S. Schmid, 2014, “Evidence of Surface Loss as
Ubiquitous Limiting Damping Mechanism in SiN Micro- and
Nanomechanical Resonators,” Phys. Rev. Lett. 113, 227201.

Vinante, A., 2014, “Thermal frequency noise in micromechanical
resonators due to nonlinear mode coupling,” Phys. Rev. B 90,
024308.

Vinante, A., and P. Falferi, 2013, “Feedback-Enhanced Parametric
Squeezing of Mechanical Motion,” Phys. Rev. Lett. 111,
207203.

Vinante, A., P. Falferi, G. Gasbarri, A. Setter, C. Timberlake, and H.
Ulbricht, 2020, “Ultralow Mechanical Damping with Meissner-
Levitated Ferromagnetic Microparticles,” Phys. Rev. Appl. 13,
064027.

Wang, Mingkang, L. Tang, C. Y. Ng, Riccardo Messina, Brahim
Guizal, J. A. Crosse, Mauro Antezza, C. T. Chan, and H. B. Chan,

2021, “Strong geometry dependence of the Casimir force between
interpenetrated rectangular gratings,” Nat. Commun. 12, 600.

Wang, Zenghui, Jiang Wei, Peter Morse, J. Gregory Dash, Oscar E.
Vilches, and David H. Cobden, 2010, “Phase transitions of
adsorbed atoms on the surface of a carbon nanotube,” Science
327, 552–555.

Wang, Zhaoyou, Marek Pechal, E. Alex Wollack, Patricio Arrangoiz-
Arriola, Maodong Gao, Nathan R. Lee, and Amir H. Safavi-Naeini,
2019, “Quantum Dynamics of a Few-Photon Parametric Oscilla-
tor,” Phys. Rev. X 9, 021049.

Weber, P., J. Güttinger, A. Noury, J. Vergara-Cruz, and A. Bachtold,
2016, “Force sensitivity of multilayer graphene optomechanical
devices,” Nat. Commun. 7, 12496.

Weber, P., J. Güttinger, I. Tsioutsios, D. E. Chang, and A. Bachtold,
2014, “Coupling graphene mechanical resonators to superconduct-
ing microwave cavities,” Nano Lett. 14, 2854–2860.
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