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Gauge freedom in quantum electrodynamics (QED) outside of textbook regimes is reviewed. It is
emphasized that QED subsystems are defined relative to a choice of gauge. Each definition uses
different gauge-invariant observables. This relativity is eliminated only if a sufficient number of
Markovian and weak-coupling approximations are employed. All physical predictions are gauge
invariant, including subsystem properties such as photon number and entanglement. However,
subsystem properties naturally differ for different physical subsystems. Gauge ambiguities arise
not because it is unclear how to obtain gauge-invariant predictions, but because it is not always clear
which physical observables are the most operationally relevant. The gauge invariance of a prediction is
necessary but not sufficient to ensure its operational relevance. It is shown that, in controlling which
gauge-invariant observables are used to define amaterial system, the choice of gauge affects the balance
between the material system’s localization and its electromagnetic dressing. Various implications of
subsystem gauge relativity for deriving effective models, for describing time-dependent interactions,
for photodetection theory, and for describing matter within a cavity are reviewed.
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I. INTRODUCTION

Traditional regimes of light-matter physics involve rela-
tively small values of a ratio r that compares, in a qualitative
sense, the interaction strength to the energies characterizing
the bare light and matter subsystems (Devoret, Girvin, and
Schoelkopf, 2007). Over the past two decades, however, much
more extreme light-matter interaction regimes have become an
important topic in both applied and fundamental physics. In
the simplest case of a two-level emitter coupled to a single
photonic mode, the so-called ultrastrong-coupling regime
(r≳ 0.1) is typically taken as the point at which the rotat-
ing-wave approximation certainly breaks down, incurring a
departure from Jaynes-Cummings (Jaynes and Cummings,
1963) physics. This regime has now been realized in a
relatively large range of experimental platforms; recent
reviews were given by Forn-Díaz et al. (2019) and
Kockum et al. (2019). Even values r≳ 1, which define the
so-called deep-strong coupling regime, have now been real-
ized both in superconducting circuits (Yoshihara et al., 2017)
and via plasmonic nanoparticle crystals (Mueller et al., 2020).
Beyond those systems in which only a few photonic modes

dominate, there are now diverse multimode photonic systems
in which non-Markovian effects may become significant.
These platforms include materials within dielectric and
metallic environments, which may be uniform or nanostruc-
tured (Ma et al., 2021), superconducting circuits coupled to
transmission lines (Forn-Díaz et al., 2017), solid-state systems
(Nazir and McCutcheon, 2016; de Vega and Alonso, 2017),
and cavity-molecule systems that offer a promising means by
which to control chemical processes (Hertzog et al., 2019).
Experimental progress in ultrafast light-matter interactions is
also continuing steadily. Femtosecond laser pulses offer the
potential to control bare charges on ultrafast timescales
(Ciappina et al., 2017), while subcycle ultrastrong light-matter
interaction switching was achieved some time ago (Günter
et al., 2009).
Recent reviews (Forn-Díaz et al., 2019; Kockum et al.,

2019; Boité, 2020) of light-matter physics outside of

weak-coupling regimes have focused on effective models
and new theoretical methods, which are required because
standard weak-coupling quantum optics cannot be applied.
Despite new methods, our understanding continues to be
based on processes involving real and virtual bare quanta,
which can vary significantly with the form of the model
considered. Nonstandard regimes where weak-coupling
theory breaks down are precisely where effective models that
are only superficially motivated are liable to fall short. This
necessitates an appraisal of the fundamental physics from first
principles, as is the focus of this review. We focus specifically
on the implications of QED’s gauge-theoretic aspects.
Gauge freedom in ultrastrong-coupling and deep-strong-

coupling QED has recently been investigated in a number of
contexts, including the truncation of a material subsystem to a
finite number of energy levels (De Bernardis, Jaako, and Rabl,
2018; De Bernardis et al., 2018; Roth, Hassler, and
DiVincenzo, 2019; Stefano et al., 2019; Stokes and Nazir,
2019, 2020a, 2020b, 2021b; Garziano et al., 2020; Taylor
et al., 2020; Ashida, İmamoğlu, and Demler, 2021; Settineri
et al., 2021), time-dependent interactions (Stefano et al.,
2019; Settineri et al., 2021; Stokes and Nazir, 2021b), Dicke
model superradiance (De Bernardis, Jaako, and Rabl, 2018;
Garziano et al., 2020; Stokes and Nazir, 2020b), and photo-
detection theory (Settineri et al., 2021).
Gauge freedom in QED implies a relativity in the assign-

ment of physical meaning to the vectors and operators that
represent states and observables. This is akin to the relativity
encountered in theories of space and time. For example, the
time intervalΔtX between two events x and y as measured by a
clock at rest in frame X does not predict the outcome ΔtY of
measuring the time between x and y in a comoving frame Y.
We have ΔtX ≈ ΔtY only if the relativistic mixing incurred by
the Lorentz transformation from X to Y can be ignored.
Otherwise, we must recognize that we have two different
predictions ΔtX and ΔtY for two different experiments, one in
frame X and one in frame Y. We do know, however, which
prediction corresponds towhich experiment, that is, we always
know which prediction is relevant. This is determined by the
rest frame of the clock; i.e., it is determined by the apparatus.
In the same way that intervals in space and time can be

defined only relative to an inertial frame in Minkowski
spacetime, light and matter quantum subsystems can be
defined only relative to a gauge frame in Hilbert space.
Unlike in special relativity, where it is straightforward to
identify which predictions of space and time intervals are
relevant in which situations, in QED there are a number of
conceptual subtleties regarding the identification of the most
relevant theoretical subsystems. The problem is closely
related to the interpretation of virtual processes and particles,
an aspect of light-matter physics that already possesses a
long history of theoretical studies predominantly confined
thus far to the weak-coupling regime. Such studies
possess significant overlap with the quantum theory of
measurement (Dalibard, Dupont-Roc, and Cohen-
Tannoudji, 1982; Passante, Compagno, and Persico, 1985;
Drummond, 1987; Compagno, Passante, and Persico, 1988a,
1988b, 1990, 1991, 1995; Stokes, 2012) as well as with
the identification of local fields and causal signal propaga-
tion (Fermi, 1932; Cohen-Tannoudji, Dupont-Roc, and
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Grynberg, 1989; Biswas et al., 1990; Buchholz and
Yngvason, 1994; Milonni, James, and Fearn, 1995; Power
and Thirunamachandran, 1997, 1999a).
The primary purpose of this review is to identify what

gauge ambiguities occur beyond the regimes traditionally
considered in quantum optics and to clarify how they arise. In
Sec. II we begin with a pedagogical introduction to gauge
freedom. We then provide a rigorous derivation of arbitrary-
gauge (nonrelativistic) QED using the principles of modern
gauge-field theory, showing that the implications of gauge
freedom discussed in Sec. II.F onward are a fundamental
feature. They are not in any way an artifact of approximations
or simplifications. In particular, we emphasize that gauge
ambiguities arise not because it is unclear how to obtain
gauge-invariant predictions, but because it is not always clear
which gauge-invariant subsystems are operationally relevant.
In Sec. II.F we address a number of common pitfalls related to
gauge freedom in QED.
In Sec. III we introduce the notion of subsystem gauge

relativity. We explain its relation to gauge invariance, identify
the regimes within which it is important, and discuss its
implications. In Sec. IV we review the theoretical background
for the implementation of material level truncations (De
Bernardis et al., 2018; Roth, Hassler, and DiVincenzo,
2019; Stefano et al., 2019; Stokes and Nazir, 2019, 2020a,
2020b; Ashida, İmamoğlu, and Demler, 2021), noting that the
resulting gauge noninvariance is prosaic because it can always
be avoided by avoiding the truncation. We review various
proposals for obtaining two-level models, along with their
varying degrees of accuracy in different regimes, as well as
their significance for understanding gauge ambiguities.
In Sec. V we discuss time-dependent interactions. We first

review the QED S-matrix formalism. Here subsystem gauge
relativity does not occur, due to the condition of adiabatic
interaction switching, which implies strict conservation of the
bare energy h, whereH ¼ hþ V is the full Hamiltonian and V
is the interaction Hamiltonian. We directly show that conven-
tional weak-coupling and Markovian approximations mimic
the S matrix, enforcing the conservation of h and thereby
eliminating subsystem gauge relativity. In this sense, these
traditional regimes are gauge nonrelativistic. In contrast, it is
shown that when describing non-Markovian and strong-
coupling effects subsystem gauge relativity cannot be ignored.
In Sec. VI we consider photodetection theory. We empha-

size that gauge ambiguities arise because it is not always clear
that any one definition of photon is always the most
operationally relevant. For example, the Coulomb-gauge
definition has recently been preferred in the ultrastrong-
coupling light-matter physics literature (Stefano et al.,
2019; Settineri et al., 2021). However, as has been known
for some time, certain predictions, such as the natural line
shape of spontaneous emission, have been found to be closer
to experiment if photons are defined relative to the multipolar
gauge (Power and Zienau, 1959; Fried, 1973; Davidovich and
Nussenzveig, 1980; Milonni, Cook, and Ackerhalt, 1989;
Woolley, 2000; Stokes, 2013).
We identify how the definitions of the subsystems, as

controlled by the choice of gauge, are related to photo-
detection divergences (Drummond, 1987; Stokes et al.,
2012). We determine the relation between subsystem gauge

relativity and electromagnetic dressing. We extend these
considerations to cavity QED beyond standard regimes and
discuss how subsystem gauge relativity relates to weak
measurements of intracavity subsystems and to ground-state
superradiance. We mention our outlook for predictions
regarding extracavity fields. Finally, we summarize our work
in Sec. VIII.
Throughout this review we use natural units such that

ℏ ¼ c ¼ ϵ0 ¼ μ0 ¼ 1. The elementary electric charge is
e ¼ ffiffiffiffiffiffiffiffiffiffiffi

4παfs
p

, where αfs is the fine-structure constant. Unless
otherwise stated, latin characters (i; j; k;…) denote Cartesian
components of vectors whenever they appear as subscripts,
and we adopt the summation convention for repeated
Cartesian indices. The imaginary unit is also denoted as i
(not a subscript). We use the notation _fðtÞ as shorthand for the
total derivative dfðtÞ=dt.

II. GAUGE FREEDOM AND GAUGE FIXING

Quantum electrodynamics is the underpinning theory that
describes all physical interactions occurring from the atomic
scale upward, until gravitation becomes significant. Modern
light-matter physics encompasses an extremely broad and
diverse range of natural and artificial systems with numerous
interactions that span a large parameter space. Dividing
composite systems into quantum subsystems that emit,
absorb, and exchange photons remains the basic conceptual
framework used to understand light-matter physics, but
beyond traditional regimes new challenges arise, both con-
ceptual and technical. QED’s gauge freedom becomes impor-
tant because the choice of gauge controls the physical nature
of the adopted theoretical quantum subsystem decomposition.
Weak-coupling theory will typically break down when one

deals with complex or artificial systems of the type depicted in

Vibrations

Light-matter coupling

Losses

Driving

FIG. 1. Material systems, such as atoms or molecules, confined
within an electromagnetic cavity that enhances the light-matter
coupling. Internal vibrational interactions may also be strong and
non-Markovian. Driving via laser light may take many forms,
including the use of ultrafast and strong pulses. Losses within
such systems may be complex including direct emission to
external modes, as well as leakage through the cavity mirrors.
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Fig. 1. However, to identify and understand the challenges
faced in as simple a setting as possible, we begin by revisiting
the case of elementary charged particles in free space.
Although sound treatments can be found in various textbooks
(Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1989; Craig
and Thirunamachandran, 1998), the role and significance of
gauge freedom is less widely understood and has even
recently been debated (Rousseau and Felbacq, 2017, 2018;
Andrews et al., 2018; Vukics, Kónya, and Domokos, 2021).
This motivates a collation of present understanding and the
provision of a coherent overview. Section II.C summarizes
the results of a rigorous derivation of arbitrary-gauge non-
relativistic QED that uses the principles of modern gauge-
field theory, with further details given in note II of the
Supplemental Material (245). We define the gauge principle,
gauge freedom, gauge-symmetry transformations, gauge-
fixing transformations, and gauge invariance. We address
conceptual issues and common pitfalls.

A. A single stationary atom in standard gauges

Consider a single charge q with position r bound to a fixed
charge −q at the origin 0 of our chosen inertial frame. The
charge and current densities are

ρðxÞ ¼ −qδðxÞ þ qδðx − rÞ; ð1Þ

JðxÞ ¼ q
2
½_rδðx − rÞ þ δðx − rÞ_r�; ð2Þ

such that ∂tρ ¼ −∇ · J. Note that in quantum theory ½ri; _rj� ≠ 0,
so the expression for the current must be symmetrized. The
material fields ρ and J together with the electric and magnetic
fields E and B exhaustively assign material and electromag-
netic properties to each event x ¼ ðt;xÞ in spacetime. Gauge
freedom can be understood as a many-to-one correspondence
between auxiliary mathematical objects used to express the
theory and the physical observables ρ, J, E, and B. It is hailed
by the occurrence of nondynamical constraints ∇ ·B ¼ 0 and
∇ ·E ¼ ρ, which imply redundancy within the formalism. The
scalar and vector potentials A0 and A are defined as

E ¼ −∇A0 − ∂tA; ð3Þ

B ¼ ∇ ×A; ð4Þ

which imply that the homogeneous Maxwell equations
∇ ·B ¼ 0 and ∂tB ¼ −∇ × E are automatically satisfied.
The inhomogeneous constraint ∇ ·E ¼ ρ (Gauss’s law) must
be imposed within the theory, while the remaining inhomo-
geneous equation is dynamical (∂tE ¼ ∇ × B − J) (Maxwell-
Ampère’s law). This is an equation of motion that must be
produced by any satisfactory Lagrangian or Hamiltonian
description. The electric and magnetic fields are invariant
under the gauge transformation

A0 ¼ Aþ ∇χ; ð5Þ

A0
0 ¼ A0 − ∂tχ; ð6Þ

where χ is arbitrary.

An unconstrained Hamiltonian description in terms of
the potentials A0 and A requires elimination of gauge
redundancy. Recall that the Helmholtz decomposition of a
square-integrable vector field V into transverse and longi-
tudinal fields (V ¼ VT þ VL) is unique. The transverse and
longitudinal components satisfy ∇ · VT ¼ 0 and ∇ × VL ¼ 0.
Transverse and longitudinal delta functions (dyadics) are
defined by the nonlocal conditions

VL;TðxÞ ¼
Z

d3x0δL;Tðx − x0Þ · Vðx0Þ: ð7Þ

The process of gauge fixing eliminates the mathematical
redundancy within the formalism by specifying all freely
choosable objects as known functions of objects that cannot
be freely chosen (Fig. 2). Since the curl of the gradient is
identically zero, the transverse vector potential AT is gauge
invariant; that is, ifA0 ¼ Aþ ∇χ, thenA0

T ≡AT, which cannot
be freely chosen. Gauge freedom is therefore the freedom to
choose the longitudinal vector potential AL ¼ ∇χ, where
A ¼ AT þ ∇χ. In note I of the Supplemental Material (245),
this gauge freedom is related to theUð1Þ phase ofmaterial wave
functions and electromagnetic wave functionals.
One of the most commonly chosen gauges is the Coulomb

gauge defined by the choiceAL ¼ 0, such thatA ¼ AT. From
Gauss’s law ∇ · E ¼ ρ and Eq. (3), it follows that in the
Coulomb gauge the scalar potential A0 coincides with the
Coulomb potential defined by

ϕðxÞ ¼ −∇−2ρðxÞ ¼
Z

d3x0
ρðx0Þ

4πjx − x0j ; ð8Þ

where the kernel 1=4πjxj is the Green’s function for the
Laplacian; ∇2ð1=4πjxjÞ ¼ −δðxÞ. Specifying A ¼ AT and
A0 ¼ ϕ is an example of gauge fixing.

FIG. 2. Schematic representation of gauge redundancy in
electrodynamics. The central potential pair is ðϕ;ATÞ (Coulomb
gauge). The blue (shaded) band represents an uncountable
infinity of potential pairs, all of which produce the same physical
fields and all of which are related to each other by gauge
transformation. Gauge fixing can be achieved by setting the
redundancy that causes this many-to-one correspondence AL
equal to a known functional χ of the fixed and gauge-invariant
object AT ¼ ð∇×Þ−1B. Afterward, the map between the chosen
fixed potential pair and the physical fields is invertible (one to
one). The fixed potentials can be written as known functions of
ðρ; J;E;BÞ, while E and B are also known functions of the fixed
potentials [Eqs. (3) and (4)].
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The other commonly chosen gauge in nonrelativistic
electrodynamics is the Poincaré (multipolar) gauge defined
by x ·AðxÞ ¼ 0. This is the Coulomb-gauge condition
applied in reciprocal space. More generally, we may define
the arbitrary-gauge potential

AαðxÞ ¼ ATðxÞ − α∇
Z

1

0

dλx ·ATðλxÞ; ð9Þ

where the value of α selects the gauge by specifying AL. The
Coulomb and multipolar gauges are now simply special cases
given by α ¼ 0 and α ¼ 1, respectively (Stokes and Nazir,
2019, 2020b, 2021b). Equation (9) can be written as

Aα ¼ AT þ∇χα; ð10Þ

where

χαðxÞ ¼
Z

d3x0 gTαðx0; xÞ ·ATðx0Þ; ð11Þ

gTαðx0;xÞ ¼ −α
Z

1

0

dλx · δTðx0 − λxÞ: ð12Þ

For each value of α, all freely choosable objects are known
functions of objects that cannot be freely chosen. More
precisely, the theory has been expressed entirely in terms
of AT (Fig. 2), which serves as an elementary dynamical
coordinate. Different values of α provide different choices of
AL as different fixed functionals of the coordinate AT.
Parametrization via α in this way does not exhaust all possible
gauge choices. It does, however, allow us to provide clear
definitions of gauge invariance and gauge relativity, as is
done in Sec. III.B. In note II of the Supplemental Material
(245) we provide a more general encoding of gauge freedom,
and the results are summarized in Sec. II.C.
It is useful to define the polarization field P using the

equation −∇ · P ¼ ρ, which specifies PL uniquely but leaves
PT an essentially arbitrary transverse field. We are free to
define Pα ≔ PL þ PTα, where PTα is called the α-gauge
transverse polarization defined by the condition

Z
d3x ρðxÞχαðxÞ ¼ −

Z
d3xPTαðxÞ ·ATðxÞ: ð13Þ

It follows from Eqs. (11) and (12) that we may set

PTαðxÞ ¼ −
Z

d3x0 gTαðx; x0Þρðx0Þ

¼ αq
Z

1

0

dλ r · δTðx − λrÞ ¼ αPTðxÞ; ð14Þ

where PT ≔ PT1 is the multipolar transverse polarization.
According to these definitions, in the Coulomb gauge we have
PT0 ¼ 0, and therefore P0 ¼ PL. In the multipolar gauge
we have

P1ðxÞ ≔ PT1ðxÞ þ PLðxÞ ¼ q
Z

1

0

dλ rδðx − λrÞ: ð15Þ

This field specifies a straight line of singular dipole moment
density that stretches from the charge −q at 0 to the dynamical
charge q at r.
We now provide a canonical (Hamiltonian) quantum

description. Typically this would be derived from a suitable
Lagrangian and the gauge would be fixed from the outset.
However, our only requirement is that the theory produces the
correct Maxwell-Lorentz system of equations, and it can
therefore be obtained through a series of Ansätze. A rigorous
and more general derivation of arbitrary-gauge QED is given
using modern gauge-field theory in notes II–IV of the
Supplemental Material (245).
We proceed by writing the total energy of the system as a

sum of the kinetic and electromagnetic energies as follows:

E ¼ 1

2
m_r2 þ 1

2

Z
d3xðE2 þ B2Þ

¼ 1

2
m_r2 þ UðrÞ þ VselfðrÞ þ

1

2

Z
d3xðE2

T þ B2Þ; ð16Þ

where ET ¼ −∂tAT and

UðrÞ þ Vself ¼
1

2

Z
d3xE2

L ≡ 1

2

Z
d3xP2

L: ð17Þ

In Eqs. (16) and (17) UðrÞ ¼ −q2=4πjrj is the Coulomb
energy binding the charges q and −q, while Vself is the sum of
the infinite Coulomb self-energies of each individual charge.
Equation (17) is obtained by solving Gauss’s law ∇ ·E ¼ ρ,
which yields EL ¼ −PL ¼ −∇ϕ, with ϕ as defined in Eq. (8).
The canonical operators y ¼ fr;AT;p;Πg in terms of

which we express the theory satisfy

½ri; pj� ¼ iδij; ð18Þ

½AT;iðxÞ;ΠT;jðx0Þ� ¼ iδTijðx − x0Þ; ð19Þ

while all other commutators between canonical operators
vanish. Here we assume these commutators and show that
they yield the correct result. A systematic derivation is given
in note IX of the Supplemental Material (245). Since energy
generates translations in time, the Hamiltonian that we seek
must equal the total energy expressed in terms of the canonical
operators [HðyÞ ¼ E]. Given this constraint, we must now
make suitable Ansätze for the velocities _r≡ _rðyÞ and
∂tAT ≡ ∂tATðyÞ. We require that upon substitution into the
right-hand side of Eq. (16) our Ansätze define a Hamiltonian
HðyÞ, for which the Heisenberg equation ∂tO ¼ −i½O;H�
together with Eqs. (18) and (19) yields the correct Maxwell-
Lorentz equations.
Since we want to provide a Hamiltonian description in an

arbitrary gauge, we make the arbitrary-gauge minimal cou-
pling Ansätze

m_r ¼ p − qAαðrÞ; ð20Þ

∂tAT ¼ Πþ PTα: ð21Þ

Note that minimal coupling is not synonymous with any
one gauge and, in particular, it is not synonymous with the
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Coulomb gauge despite the fact that the Coulomb-gauge
Hamiltonian is often called the minimal coupling
Hamiltonian. This point is discussed in more detail in
Sec. II.F.6. From Eqs. (16), (20), and (21) we obtain

E ¼ 1

2m
½p − qAαðrÞ�2 þ UðrÞ þ Vself

þ 1

2

Z
d3x½ðΠþ PTαÞ2 þ ð∇ ×ATÞ2�≕HαðyÞ: ð22Þ

Equation (22) defines the arbitrary-gauge Hamiltonian Hα,
which coincides with the one derived by Stokes and Nazir
(2019, 2020b, 2021b). The canonical commutation relation
(CCR) algebra, Eqs. (18) and (19), yields

p − qAαðrÞ ¼ −im½r; Hα�; ð23Þ

ΠðxÞ þ PTαðxÞ ¼ −i½ATðxÞ; Hα�: ð24Þ

Equations (23) and (24) show that the Ansätze in Eqs. (20)
and (21) are self-consistent because they are reobtained using
the Heisenberg equation. It is a straightforward exercise to
verify that Hα does indeed yield the correct Maxwell-Lorentz
system of equations for any choice of gauge α.
It is readily verified that Hamiltonians of different fixed

gauges α and α0 are unitarily equivalent,

Hα0 ¼ Rαα0HαR
†
αα0 ; ð25Þ

where Rαα0 is called a gauge-fixing transformation and is
defined by (Lenz et al., 1994; Chernyak and Mukamel, 1995;
Stokes, 2012; Stokes and Nazir, 2019, 2020b)

Rαα0 ≔ exp

�
i
Z

d3x½PTαðxÞ − PTα0ðxÞ� ·ATðxÞ
�

¼ exp f−iq½χαðrÞ − χα0 ðrÞ�g; ð26Þ

in which the second equality follows from Eq. (13). We
emphasize that the definition of gauge freedom continues to
be the freedom to choose α, which specifies AL. It therefore
constitutes the freedom to transform between distinct minimal
coupling prescriptions as

Rαα0 ½p − qAαðrÞ�R†
αα0 ¼ p − qAα0 ðrÞ; ð27Þ

Rαα0 ðΠþ PTαÞR†
αα0 ¼ Πþ PTα0 ; ð28Þ

from which Eq. (25) follows. The effect of the transformation
has been the replacement ðAα;PTαÞ → ðAα0 ;PTα0 Þ, which
constitutes a gauge transformation from the fixed gauge α
to the fixed gauge α0. The reason that Eq. (28) occurs is that in
Eq. (9) we chose to fix the gauge AL as a functional of AT,
which generates translations in Π. The gauge freedom
inherent in the polarization is discussed further in note I.2
of the Supplemental Material (245). Note that since
UfðOÞU† ¼ fðUOU†Þ for any unitary transformation U,
suitably well-defined function f, and operator O, Eqs. (27)
and (28) are necessary and sufficient to define how arbitrary

functions of the canonical operators transform under a gauge
transformation.
For one to implement the gauge transformation

p − qAðrÞ → p − q½AðrÞ þ ∇χðrÞ�, the canonical momentum
must transform as eiqχðrÞpe−iqχðrÞ ¼ p − q∇χðrÞ, which states
that r generates translations in p. This property relies upon the
canonical commutation relation in Eq. (18). Equation (27), in
particular, features the gauge-fixing transformation Rαα0 ¼
e−iq½χαðrÞ−χα0 ðrÞ�. As recognized long ago byWeyl (Weyl, 1927),
the CCR algebra cannot be supported by a finite-dimensional
Hilbert space. Thus, retaining only a finite number of material
energy levels will ruin gauge invariance. Material truncation is
discussed in detail in Sec. IV.

B. Electric-dipole approximation

The electric-dipole approximation (EDA) of the theory
presented in Sec. II.A can be performed while preserving all
kinematic and algebraic relations of the theory such that gauge
invariance is also preserved. We define the Fourier transform
of a field f by f̃ðkÞ ≔ R

d3xfðxÞe−ik·x=
ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
. Considering

the charge and current densities in Eqs. (1) and (2), the EDA
(also known as the long-wavelength approximation) is defined
by retaining only the leading contributions after performing
the expansion e−ik·r ¼ 1− ik · rþ… . This gives ρ̃ðkÞ≈
−iqk · r=

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
, ρðxÞ ≈ −qr · ∇δðxÞ, JðxÞ ≈ q_rδðxÞ, and

ATðrÞ ≈ATð0Þ, and in turn

PTα;iðxÞ ≈ αqrjδTijðxÞ; ð29Þ

χαðrÞ ≈ −αr ·ATð0Þ; ð30Þ

AαðrÞ ≈ ð1 − αÞATð0Þ: ð31Þ

When Eqs. (29)–(31) are substituted into Eq. (22), the α-gauge
Hamiltonian in the EDA is obtained. Similarly, the unitary
gauge-fixing transformation Rαα0 in Eq. (26) becomes

Rαα0 ¼ exp ½iðα − α0Þqr ·ATð0Þ�: ð32Þ

Since unitarity is preserved, so too is gauge invariance; see
Sec. III.B. Hamiltonians belonging to different gauges con-
tinue to be unitarily equivalent, as in Eq. (25).
Certain nonfundamental properties hold within (and only

within) the EDA (Stokes and Nazir, 2020a). In particular, the
gauge function χα in Eq. (11) becomes that of Eq. (30), which
gives ∇χ1ðrÞ ¼ −ATð0Þ, such that p − qA1ðrÞ ≈ p. Thus,
letting α ¼ 1 on the left-hand side of Eq. (27), we obtain
R1αpR

†
1α ¼ p − qAα, where Aα ≔ ð1 − αÞATð0Þ is the EDA

of AαðrÞ. Within the full three-dimensional setting and
without the EDA, this is impossible because for any differ-
entiable function f we have e−ifðrÞpeifðrÞ ¼ pþ ∇fðrÞ. The
gradient ∇f is a longitudinal field such that we cannot
have ∇fðrÞ ¼ −qAðrÞ for all r, because ATðrÞ is nonvanish-
ing. The gauge transformation eiqfðrÞ½p − qAðrÞ�e−iqfðrÞ ¼
p − q½Aþ ∇fðrÞ� is fundamental and yields the result
R1αpR

†
1α ¼ p − qAα as an approximate special case in which

we let f ¼ χα − χ1 and perform the EDA.
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C. Generalizations and the gauge principle

Modern gauge-field theories are understood to result from
the gauge principle applied to a material field ψ . The principle
states the following.

• The form of electromagnetic and other interactions
should be invariant under the local action of a group
G on the matter field ψ , written as ψ 0ðxÞ ¼ gðxÞ · ψðxÞ. In
QED G ¼ Uð1Þ and ψ 0ðxÞ ¼ eiqχðxÞψðxÞ, where χ is
arbitrary.

In note I of the Supplemental Material (245), we review how
gauge invariance can be understood as Uð1Þ-phase invariance.
In notes II–Vof the Supplemental Material (245), we provide
a general derivation of arbitrary-gauge nonrelativistic QED
using the principles of modern gauge-field theory. The main
results are summarized later. A sufficiently general expression
of the theory that is suitable for our purposes results from
encoding gauge freedom into the arbitrary transverse compo-
nent gT of the Green’s function g for the divergence operator,

∇ · gðx;x0Þ≡ ∇ · gLðx;x0Þ ¼ δðx − x0Þ; ð33Þ

gLðx; x0Þ ¼ −∇
1

4πjx − x0j ; ð34Þ

such that gT ¼ g − gL is arbitrary.
We refer to the gauge specified by gT as the gauge g. The

associated vector potential and polarization are

AgðxÞ ¼ ATðxÞ þ ∇
Z

d3x0gðx0;xÞ ·ATðx0Þ

¼ ATðxÞ þ ∇χgðx; ½AT�Þ; ð35Þ

PgðxÞ ¼ −
Z

d3x0gðx;x0Þρðx0Þ; ð36Þ

where

χgðx; ½AT�Þ ¼
Z

d3x0gðx0;xÞ ·ATðx0Þ: ð37Þ

The Hamiltonian in gauge g is

Hg ¼ HðgTÞ ¼
1

2m
½p − qAgðrÞ�2 þ UðrÞ þ Vself

þ 1

2

Z
d3x½ðΠþ PTgÞ2 þ ð∇ ×ATÞ2�. ð38Þ

Hamiltonians Hg and H0
g are unitarily related by

Hg0 ¼ Ugg0HgU
†
gg0 ; ð39Þ

where

Ugg0 ≔ exp

�
−i

Z
d3x½χgðx;ATÞ − χg0 ðx;ATÞ�ρðxÞ

�

¼ exp

�
i
Z

d3x½PgðxÞ − Pg0 ðxÞ� ·ATðxÞ
�

ð40Þ

is a unitary gauge-fixing transformation from gauge g to
gauge g0.
The theory is simplified by restricting gT as in Eq. (12) in

terms of the gauge parameter α. The theory remains exact but
reduces to the form presented in Sec. II.A; see note V of the
Supplemental Material (245) for details. Gauge freedom
becomes the freedom to choose the parameter α, which
specifies PTα and Aα as in Eqs. (14) and (9), respectively
(Stokes and Nazir, 2019, 2020b, 2021b). The Hamiltonian Hg

in Eq. (38) becomes Hα as given in Eq. (22) and the gauge-
fixing transformation Ugg0 in Eq. (40) becomes Rαα0 in
Eq. (26). Hamiltonians belonging to different gauges are
unitarily related as in Eq. (25).
Finally, we remark that the primary use of nonrelativistic

QED lies in describing collections of charges partitioned into
certain groups that we call atoms and molecules. The
previously mentioned formalism describes a single hydrogen
atom in which the positive charge −q is assumed to be fixed
(nondynamical). This is equivalent to describing the system
using relative and center-of-mass coordinates instead of the
charge coordinates themselves and assuming that the center
of mass is fixed, with all center-of-mass couplings ignored.
In note VI of the Supplemental Material (245), we provide
the extension of this formalism to arbitrary charge distribu-
tions in the vicinity of fixed molecular centers (Craig and
Thirunamachandran, 1998). In note VII of the Supplemental
Material (245), we review the extension to linear dispersing
and absorbing (macroscopic) dielectric media, which is a
valuable tool in describing cavity QED systems (Knöll,
Vogel, and Welsch, 1991; Gruner and Welsch, 1996; Dung,
Knöll, and Welsch, 1998; Knoll, Scheel, and Welsch, 2003;
Viviescas and Hackenbroich, 2003; Khanbekyan et al.,
2005); see also note XVII of the Supplemental Material
(245). Concerning further extensions, we note that Wei, Shi-
Bing, and Wei (2009) considered an anisotropic medium,
and that Judge et al. (2013) considered a linear magneto-
electric medium. Finally, we note that the use of this
formalism in providing a microscopic description of elec-
trons in crystal lattices is given in note VIII of the
Supplemental Material (245).

D. Physical nature of the gauge function

We now seek to understand the ways in which different
fixed-gauge formulations of QED differ. The gauge is selected
by choosing χg. If χg is restricted in form as in Eq. (37), then
the gauge is selected by choosing a concrete transverse
function gT. The gauge choice directly specifies two basic
quantities Ag and PTg. This in turn specifies the physical
nature of the canonical momenta p andΠ, which together with
r and AT define the quantum subsystems conventionally
termed “matter” and “light.” The importance of this fact is
described in detail in Secs. II.E–III.C.

1. Path-dependent solution

The Green’s function g is defined by Eq. (33). We have seen
that the two most commonly chosen gauges of nonrelativistic
QED can be linearly interpolated between via a parameter α,
with α ¼ 1 specifying the multipolar gauge that possesses a
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straight line of singular polarization stretching between the
charges. This is a special case of the following more general
path- and origin-dependent solution discussed by Woolley
(1998, 2020):

gðx;x0Þ ¼ gLðx; oÞ −
Z
Cðo;x0Þ

dzδðz − xÞ; ð41Þ

where Cðo;x0Þ is any curve starting at the arbitrary origin o
and ending at x0. Verification of the solution is most
easily achieved in Fourier space, where Eq. (33) becomes
ik · g̃ðk;xÞ ¼ e−ik·x=

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
. Using Eq. (41), we obtain

independent of C and o

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

q
ik · g̃ðk;xÞ¼ e−ik·o− i

Z
k·x

k·o
due−iu ¼ e−ik·x; ð42Þ

as required.
Substituting Eq. (33) into Eq. (36), we obtain the following

g-gauge polarization field:

PgðxÞ¼−QgLðx;oÞþ
Z

d3x0
Z
Cðo;x0Þ

dzδðz−xÞρðx0Þ; ð43Þ

where the first term vanishes for a globally neutral system
defined by Q ¼ R

d3xρðxÞ ¼ 0. An important class of sol-
utions is given by the straight line Cðo;x0Þ ¼ fzðσÞ ¼
x0 þ σn̂∶zðσ0Þ ¼ og, which starts at the origin o specified
by value σ0, is directed along n̂ ¼ ½zðσÞ − x0�=σ, and ends at
x0. If we choose the origin o as the coordinate origin 0, which
in Eq. (1) is the position of the charge −q, then the associated
polarization field is

PðxÞ ¼ −q
Z

0

σ0

dσ
r
σ0

δ

�
x − r

�
1 −

σ

σ0

��

¼ q
Z

1

0

dλ rδðx − λrÞ; ð44Þ

which we recognize as the multipolar-gauge polarization.
Using Eq. (40), we can also express the Power-Zienau-
Woolley transformation as

U01 ¼ exp ½−iqΛC�; ð45Þ

where

ΛC ≔
Z
Cð0;rÞ

dz ·ATðzÞ ð46Þ

is a Wilson line operator (Wilson, 1974). Equation (46)
provides an analogy with quark confinement (Woolley,
2020). Specifically, Woolley (2020) found that for the
multipolar gauge choice of path, i.e., for the straight-line
path between two charges at r1 and r2, the polarization energy

EP ¼ 1

2

Z
d3xPgðxÞ2 ¼

q
2

Z
r2

r1

dz · PgðzÞ ð47Þ

possesses a contribution that increases with increasing sep-
aration. Analogously, in a state involving e−iqΛC as a phase

factor, the electric-field energy of two oppositely charged
quarks increases linearly with separation, which is interpreted
as the cause of confinement. The energy EP also includes a
delta-function contribution and a term that diverges as 1=a,
where a → 0 specifies the point-charge limit (Woolley, 2020).
We note that the polarization in Eq. (44) does not require one
to specify an arbitrary fixed center of the charge distribution.
As we describe in note VI.2 of the Supplemental Material
(245), it is possible to extend this treatment to arbitrary
numbers of charges, and this provides a description of atoms
and molecules that, unlike conventional molecular QED [see
Craig and Thirunamachandran (1998)], does not depend on
arbitrary fixed molecular centers.
Following the arguments of Belinfante (1962), one can use

the solution in Eq. (33) to provide a novel derivation of the
Coulomb-gauge polarization PL ¼ −EL. For concreteness,
we again consider the atomic charge density in Eq. (1). We
consider the straight line Cðo;xÞ and choose the origin o as a
point at spatial infinity, which yields the polarization

PðxÞ ¼ −q
Z

0

−∞
dσ n̂½δðσn̂ − xÞ − δðrþ σn̂ − xÞ�: ð48Þ

When one sets y ¼ −σn̂, with jyj ¼ −σ, and expresses the
associated volume element as d3y ¼ dydΩjyj2, the average of
Eq. (48) over all directions n̂ can be computed as

Z
dΩ
4π

PðxÞ ¼ −
q
4π

Z
d3y

y
jyj3 ½δðy þ xÞ − δðy − rþ xÞ�

¼ q
4π

�
x
jxj3 −

x − r
jx − rj3

�
¼ −ELðxÞ: ð49Þ

We see, therefore, that the Coulomb gauge specifies a
delocalized polarization, in which polarizations localized
along the straight line with direction n̂ stretching between
the charges and spatial infinity are then averaged over all
directions n̂.
The solution in Eq. (41) suggests an interpretation of the

paths on which the polarization field is localized as “lines of
force” in the sense of Faraday (1846). For a single charge at
position r, Dirac has interpreted the path Cðo; rÞ as a single
line of force between the charge and the origin o (Dirac,
1955). It has been suggested that a novel QED might be
constructed in which the paths on which the polarization field
is localized are themselves taken as the dynamical variables of
the theory. A suitable averaging procedure over all paths
would be required to eliminate the dependence on any choice
of path (Dirac, 1955; Woolley, 2020).

2. Fourier transform

To further understand the significance of the freedom to
choose gT, it is convenient to introduce the unconstrained
function G, which is essentially completely arbitrary, as

g̃Tðk;xÞ ¼
X
σ

eσðkÞ½eσðkÞ · G̃ðk; xÞ�; ð50Þ

where eσðkÞ; σ ¼ 1; 2 are orthonormal vectors spanning the
plane orthogonal to k. Restricting our attention to the α
gauges of Sec. II.A amounts to restricting G as
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G̃αðk;xÞ ¼ α G̃1ðk;xÞ ¼ −
αxffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
Z

1

0

dλ e−ik·λx; ð51Þ

where now only α is freely choosable. The multipolar gauge
α ¼ 1 specifies polarization PT1, which is singular at the
origin and therefore often regularized at small distances
(Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1989;
Vukics, Grießer, and Domokos, 2015; Grießer, Vukics, and
Domokos, 2016). This is achieved through the introduction
of a form factor such as a Lorentzian with frequency cutoff
kM to give

G̃αMðk;xÞ ¼ −
αxffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p k2M
k2 þ k2M

Z
1

0

dλ e−ik·λx: ð52Þ

For kM finite the field PTα is no longer singular at 0. This
regularization of PTα actually constitutes a choice of gauge;
that is, we now have a two-parameter gauge function uniquely
specified by a gauge vector ðα; kMÞ. Only for α ¼ 0 do we
have PTα ¼ 0 and χ0 ¼ 0, such that regularization of PT has
no effect on the Hamiltonian. Note that if PL is similarly
regularized, then for α ¼ 1 the ensuing total polarization P1 is
no longer point localized, but instead exponentially localized.
Regularization of PL ¼ −∇−2ρ is not, however, a choice of
gauge. The procedure instead amounts to a relaxation of the
strict point-particle limit of ρðxÞ, given by kM → ∞.
More generally than in Eq. (52), we may let

G̃fαgðk;xÞ ¼ −
αðkÞ�xffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
Z

1

0

dλ e−ik·λx; ð53Þ

which from Eqs. (37) and (36) yields

χgðxÞ¼
Z

d3k
X
σ

αðkÞeσðkÞ · ÃTðkÞeσðkÞ · G̃1ðk;xÞ�; ð54Þ

P̃TgðkÞ� ¼ −
Z

d3x
X
σ

αðkÞeσðkÞeσðkÞ · G̃1ðk;xÞ�ρðxÞ;

ð55Þ

where G̃1 is as given in Eq. (51). The field χg depends on
photonic degrees of freedom through ÃT and couples to the
material momentum p within the Hamiltonian, while the
field P̃Tg depends on the material degrees of freedom through
ρ and couples to the photonic momentum Π̃ within the
Hamiltonian. Thus, Eq. (53) enables broad control over the
physical nature of the light-matter coupling because, while it
is restricted in its x dependence, αðkÞ ¼ αð−kÞ� is essen-
tially arbitrary. As an example, we see in Sec. VI that the
gauge αðkÞ ¼ ωm=ðωþ ωmÞ, where ωm is a material fre-
quency, is noteworthy. It can be interpreted as defining
a canonical harmonic dipole that automatically subsumes
the virtual photons dressing the system ground state
(Drummond, 1987; Stokes et al., 2012; Stokes and Nazir,
2019). The Green’s function gTðx;x0Þ may yet be more
general than the previously listed forms. In particular, the
specification of the previous fixed dependence on the second
argument x0 stems from the line-integral solution in Eq. (41),

which is not the most general form of gT, as shown by Healy
(1978). Furthermore, the gauge function χg need not even be
restricted as in Eq. (37). This broad generality warrants
further study but is not considered here.

E. Sharing out the constrained degrees of freedom:
Regularization and localization

The choice of G determines the physical meaning of the
canonical degrees of freedom. To see how, we focus on the
simple choices given by Eqs. (51) and (52). We begin by
considering the “unregularized” one-parameter gauges with
Gα defined by Eq. (51). We first consider the potential Aα and
the momentum p determined physically by Aα. According to
Eq. (9), Aα is a function of A0 ¼ AT ¼ ð∇×Þ−1B, so it can be
expressed as the following convex sum of the extremal
potentials A0 and A1:

AαðxÞ ¼ ð1 − αÞA0ðxÞ þ αA1ðxÞ

¼
Z

d3x0
ð1 − αÞ∇0 × Bðx0Þ

4πjx − x0j − α

Z
1

0

dλ λx × BðλxÞ:

ð56Þ

Equation (56) shows that the potential AαðrÞ, as it appears in
the Hamiltonian, is nonlocal in any gauge, but it is most
localized in the multipolar gauge (α ¼ 1) because all points x
for which A1ðrÞ depends on the local fieldBðxÞ are inside the
atom (jxj ≤ jrj). More precisely, A1ðrÞ depends on B only at
points on the straight line connecting 0 to r. The value
of α within the vector potential Aα dictates the balance
between this more localized contribution and the nonlocal
contribution ð1 − αÞA0 given by the x0 integral in Eq. (56).
The quantity qA0ðrÞ ¼ qATðrÞ is the momentum associated
with the longitudinal electric field of the charge q at r, viz.
(Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1989),

Klong ≔
Z

d3xELr × B ¼ qATðrÞ; ð57Þ

where ELrðxÞ ≔ −q∇ð4πjx − rjÞ−1, which is consistent
with Eq. (56).
To see how Aα determines the physical nature of p, which

defines the canonical atom, consider the EDA implemented as

G̃αðk; rÞ ≈ −
αrffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p ; ð58Þ

which implies

AαðrÞ ≔ ATðrÞ − α∇r

Z
1

0

dλ r ·ATðλrÞ

≈ ATð0Þ − α∇r½r ·ATð0Þ� ¼ ð1 − αÞATð0Þ: ð59Þ

According to Eq. (59), the multipolar vector potential at the
position of the dipole A1ð0Þ vanishes at dipole order. The
dipole canonical momentum is defined by p ¼ m_rþ qAαð0Þ,
where Aαð0Þ ¼ ð1 − αÞATð0Þ [Eq. (59)]. For α ¼ 1 we have
p ¼ m_r, such that EL makes no contribution to the canonical
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pair fr;pg, which is therefore “bare.” For α ¼ 0, the momen-
tum p ¼ m_rþKlong is fully dressed by ELr. Thus, the gauge
α controls the extent to which the canonical dipole is dressed
by the electrostatic field of the dynamical charge q at r.
We now repeat the previous analysis in the case of the

other quantity that is determined by the gauge α, namely,
PTα. We then see how this quantity determines the second
canonical momentum Π. The total α-gauge polarization is
Pα ¼ PL þ αPT1, where PL ¼ −EL ¼ P0 defines the non-
local Coulomb-gauge polarization and PT1 is the transverse
part of the multipolar polarization. The total multipolar
polarization P1 is given in Eq. (15), showing that it is a line
integral that vanishes at all points x that are not on the straight
line from 0 to r. Therefore, outside the atom (jxj > jrj) we
have PT1 ¼ −PL ¼ EL. The α-gauge polarization can be
written analogously to Eq. (56) as a convex sum of the
extremal polarizations P0 and P1,

Pα ¼ ð1 − αÞP0 þ αP1: ð60Þ

The polarization Pα is nonlocal in any gauge, but it is
most localized in the multipolar gauge α ¼ 1 because all
points x for which P1ðxÞ ≠ 0 are inside the atom (jxj ≤ jrj).
Within Pα, the value of α dictates the balance between
this more localized contribution and the nonlocal contribution
ð1 − αÞP0 ¼ −ð1 − αÞEL.
As before, we can approximate the stationary atom

as a dipole at the origin 0 using Eq. (58) to obtain
PT1ðxÞ ¼ qr · δTðxÞ, where qr is the dipole moment.
Within the fixed gauge α, the field canonical momentum
operator is defined by Π ¼ −ET − αPT1 ¼ −ET − αEL,
where the second equality holds for x ≠ 0. Thus, the value
of α controls the extent to which the canonical pair fAT;Πg
includes the electrostatic field EL ¼ E − ET. For α ¼ 0 we
have Π ¼ −ET, so EL is completely absent from the field
canonical degrees of freedom. For α ¼ 1we haveΠ ¼ −E for
x ≠ 0, so the situation is reversed; EL is fully included in the
field canonical degrees of freedom for all x ≠ 0. This holds
beyond the EDA, but the condition x ≠ 0 must be replaced by
jxj > jrj, specifying all points outside the atom. Gauss’s law
implies gauge redundancy by constraining E, and this lies at
the heart of gauge ambiguities in ultrastrong-coupling QED.
The gauge α controls the weight with which EL is shared
between the two canonical pairs fAT;Πg and fr;pg.
We can also consider the regularization of the previous

theory at short distances around the distribution center 0 using
GαM in Eq. (52), which within the EDA is

G̃αMðk; rÞ ≈ −
αrffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p k2M
k2 þ k2M

: ð61Þ

The transverse ðα; kMÞ-gauge polarization within the EDA is
therefore

PTαMðxÞ ¼ αqr · δTMðxÞ; ð62Þ

where δTMðxÞ denotes the regularized transverse delta function
(Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1989)

δTM;ijðxÞ ¼
2

3
δijδðxÞ −

βðxÞ
4πx3

ðδij − 3x̂ix̂jÞ; ð63Þ

βðxÞ ¼ 1 − ð1þ kMxþ 1
2
k2Mx

2Þe−kMx: ð64Þ

The function βðxÞ controls the singularity at 0 but is unity for
x ≫ 1=kM. The transverse delta function δTðxÞ is strictly
recovered in the limit kM → ∞. In the ðα; kMÞ gauge the
parameter α functions as before, while the additional
gauge parameter kM controls the rate of exponential locali-
zation of what was previously the singular pointlike multi-
polar dipole. It is now the case that only for x ≫ 1=kM do we
have P1ðxÞ ¼ 0. Thus, there are now many “multipolar
gauges” specified by the gauge vectors ð1; kMÞ, each of
which possesses a different degree of exponential dipolar
localization.
The ðα; kMÞ-gauge vector potential is within the EDA

AαMðrÞ ≈ATð0Þ − α

Z
d3kffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p k2M
k2 þ k2M

ÃTðkÞ; ð65Þ

such that A1ð0Þ ¼ 0 is recovered in the limit kM → ∞. More
generally, vanishing of A1MðrÞ to dipole order requires that
ÃTðkÞ ≈ 0 for k ≥ kM. For this to be the case, the modes
k ≥ kM must not be populated. This is the case if the bare atom
(as occurs in the free theory) is small compared to the
characteristic wavelengths of the populated modes. In other
words, the EDA places a lower bound on the cutoff kM in
order that gauges ð1; kMÞ possess the property A1Mð0Þ ¼ 0
that at dipole order characterizes the usual multipolar
gauge ðα; kMÞ ¼ ð1;∞Þ.

F. Discussion on gauge fixing, forms of rotation,
forms of coupling, and common pitfalls

1. Gauge freedom and gauge fixing

We have defined the gauge principle according to modern
gauge-field theory and we have given a formulation of
canonical (Hamiltonian) nonrelativistic QED in an arbitrary
gauge. One of the main objectives of this review is to clarify
what gauge freedom, gauge fixing, and gauge ambiguities are
within the following theory.

• Gauge freedom in electrodynamics is a freedom to
choose AL. Once AL is fixed, the scalar potential ϕAL

is also fixed up to a constant by −∇ϕAL
¼ EL þ ∂tAL.

Gauge fixing means specifying AL in terms of gauge-
invariant quantities.

We have provided a formulation of QED in which AL is fixed
by Eq. (37) [note II in the Supplemental Material (245)]
as ALðxÞ ¼ ∇χgðx;ATÞ, meaning that it is fixed up to a
choice of the non-operator-valued function gT. The corre-
sponding vector and scalar potentials are given in accordance
with their fundamental definitions by Ag ¼ AT þ∇χg and
ϕg ¼ ϕ − ∂tχg, where EL ¼ −∇ϕ.

2. Equality of multipolar and Poincaré gauges

QED in multipolar form and its relation to the Poincaré
gauge has been a recent topic of debate (Rousseau and
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Felbacq, 2017, 2018; Andrews et al., 2018; Vukics, Kónya,
and Domokos, 2021). Rousseau and Felbacq (2017)
employed Dirac’s constrained quantization procedure to
derive the nonrelativistic QED Hamiltonian in the Poincaré
gauge. They claimed that the multipolar Hamiltonian would
not produce the same results as the Coulomb-gauge
Hamiltonian and that it did not coincide with the correct
Poincaré gauge Hamiltonian. Andrews et al. (2018) and
Vukics, Kónya, and Domokos (2021) disputed this, conclud-
ing that criticisms of the multipolar framework given by
Rousseau and Felbacq (2017) are not valid. A reply to Vukics,
Kónya, and Domokos (2021) was offered by Rousseau and
Felbacq (2018), who argued that the conclusions of Vukics,
Kónya, and Domokos (2021) are not correct, maintaining their
conclusion that the Poincaré gauge Hamiltonian does not
coincide with the multipolar Hamiltonian.
We clarify the relation between the multipolar theory and

the Poincaré gauge in note VI of the Supplemental Material
(245). We show in notes II and IX of the Supplemental
Material (245) that Dirac’s quantization procedure does yield
the well-known multipolar theory. We also show that the latter
can be obtained via a gauge-fixing transformation from the
Coulomb gauge and that, even in the case of multiple charge
distributions, the multipolar theory is obtained by choosing
what we term ζ-Poincaré gauge-fixing conditions. Complete
reconciliation of our results with those of Rousseau and
Felbacq (2017, 2018), Andrews et al. (2018), and Vukics,
Kónya, and Domokos (2021) was provided by Stokes and
Nazir (2021a) and in note IX of the Supplemental Material
(245) through the construction of Dirac brackets within the
theory of a single electron atom. This reveals precisely where
misunderstanding has occurred, while also fully clarifying the
status of the multipolar (Poincaré gauge) theory.

3. Dipolar coupling

An aspect of light-matter interactions that is especially
poorly understood concerns the field that a dipole couples to
within the multipolar gauge. Common misidentifications are
exacerbated by the development of the theory via semi-
classical treatments, as features heavily in textbook quantum
optics (Scully and Zubairy, 1997; Schleich, 2001; Gerry
and Knight, 2004). In such treatments the gauge principle
implies that the EDA of the semiclassical Power-Zienau-
Woolley (PZW) transformation applied to p − qATð0Þwithin
the Scrödinger equation yields the bilinear coupling
−qr · ETð0Þ, where ET ¼ −∂tAT (Scully and Zubairy,
1997; Schleich, 2001; Gerry and Knight, 2004). However,
according to the fully quantum description the correct
bilinear component of the coupling is −qr ·DTð0Þ, where
DT ¼ ET þ PT. The field PT is singular at 0, so the fully
quantum description provides a coupling that is infinitely
different from the result of a semiclassical approach.
Nevertheless, the notation −qr ·ETð0Þ remains prevalent
even in textbooks that employ fully quantum treatments
(Loudon, 2000). Further confusion stems from the fact
that ET is often written simply as E even when EL ≠ 0,
such that the notation −qr ·Eð0Þ is also encountered
in textbooks (Agarwal, 2012) and, more recently, in the

ultrastrong-coupling light-matter physics literature (Settineri
et al., 2021).
Furthermore, it is not commonly recognized that within the

EDA DT ¼ E, but only for x ≠ 0; see Sec. II.E. The
interchanging of fields DT, ET, and E, which are related
but not equal, may lead to the misidentification of fields both
at and away from the dipole’s position. We emphasize that
neither −qr ·ETð0Þ nor −qr ·Eð0Þ is a correct interaction,
and neither is it true that ET ¼ E, whereas it is true that DT ¼
E at points x outside of the charge distribution, which within
the EDA means for x ≠ 0. In the weak-coupling regime one
can often afford to misidentify the physical fields involved in
light-matter interactions, but this may lead to erroneous results
in sufficiently strong-coupling regimes.
Similarly, confusion can arise in nonrelativistic QED due to

claims that a dipolar coupling such as −qr ·ETð0Þ may be
preferable to a Coulomb-gauge coupling because it is express-
ible solely in terms of a gauge-invariant electric field. Scully
and Zubairy (1997) provided a typical semiclassical derivation
of −qr ·ETð0Þ and referred to the semiclassical multipolar
gauge as the E gauge. They stated that the E-gauge interaction
is gauge invariant, in contrast to a linear p ·AT interaction
found in the Coulomb gauge. It was argued that only in the E
gauge is the unperturbed dipolar Hamiltonian

Hm ¼ p2

2m
þ VðrÞ; ð66Þ

a physical quantity. However, in the Coulomb gauge both
p ¼ m_rþKlong and AT are also gauge invariant. Indeed,
there is no means by which the requirement of gauge
invariance can be leveraged as an argument to prefer one
gauge over another. The theory in any gauge can be expressed
entirely in terms of gauge-invariant quantities by the definition
of gauge fixing, as explained in Sec. II.F.1.
We have already seen that the Hamiltonian always repre-

sents the total energy [Eq. (54) in note III of the Supplemental
Material (245) and Eq. (16)] (Stokes and Nazir, 2019). If one
prefers to eliminate only Aα from the expression for the
Hamiltonian but retain its explicit dependence on the canoni-
cal momenta, then this is easily achieved in any gauge α using
Eq. (56). In particular, the Coulomb-gauge theory for which
Π ¼ −ET can be expressed solely in terms of electric and
magnetic fields. The latter property is not unique to the
multipolar theory.

4. Active and passive perspectives of unitary rotations

A generic feature of linear spaces is that rotations therein
may be implemented in an active or passive way. A vector
v ¼ P

i viei within Hermitian inner-product space V may be
actively rotated using a unitary transformation R into a new
vector v0 ¼ Rv ¼ P

i v
0
iei. Expressed in the same basis feig,

the new vector has components v0i ¼
P

j Rijvj, where
Rij ¼ hei; Reji. Alternatively, the original vector v may
be expressed in a rotated basis fe0i ¼ R†eig to give
v ¼ P

i v
0
ie

0
i. In both cases the same numerical components

fv0ig are obtained from the rotation. Note that the passive
rotation R† of basis vectors ei is in the opposite direction of
the active rotation R of v.
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The same considerations apply when one unitarily rotates a
Hamiltonian expressed in a canonical operator “basis.” In
Sec. II.A and note III of the Supplemental Material (245), an
active perspective of unitary rotations has been adopted
whereby the canonical operators y ¼ ðψ ;ψ†;AT;ΠÞ are
viewed as fixed, while the Hamiltonian can be rotated
to a new but equivalent form using a gauge-fixing trans-
formation as Hg0 ðyÞ ¼ Ugg0HgðyÞU†

gg0 [in the particle-based
α-gauge formalism of Sec. II.A we instead have
y ¼ ðr;p;AT;ΠÞ and Hα0 ðyÞ ¼ Rαα0HαðyÞR†

αα0 ]. The trans-
formation of the Hamiltonian can be implemented via
transformation of the canonical operators in the sense
that Ugg0HgðyÞU†

gg0 ¼ HgðUgg0yU
†
gg0 Þ; cf. Eqs. (51) and (52)

in note III of the Supplemental Material (245) and also
Eqs. (27) and (28).
The active perspective is commonly found and was adopted

by Cohen-Tannoudji, Dupont-Roc, and Grynberg (1989).
From this point of view, any operator that does not commute
with gauge-fixing transformations, such as Π, will represent a
different physical observable before and after such a trans-
formation (Cohen-Tannoudji, Dupont-Roc, and Grynberg,
1989). Conversely, a given physical observable will be
represented by a different operator before and after trans-
formation. For example, the energy E is represented by HgðyÞ
in gauge g and byHg0 ðyÞ in gauge g0. The eigenvalue equation
HgðyÞjEn

gi ¼ EnjEn
gi implies that the vector jEn

gi represents,
within the gauge g, the physical state Sn in which the system
possesses energy En. Meanwhile, in the gauge g0 the same
state Sn is represented by a different vector jEn

g0 i ¼ Ugg0 jEn
gi

because the energy is represented by a different opera-
tor Hg0 ðyÞ.
Alternatively, a passive perspective of rotations may be

adopted whereby different canonical operators are associated
with different gauges as yg ¼ Ugg0yg0U

†
gg0 . Notice that the

rotation between canonical operators associated with different
gauges g and g0 is in the opposite direction of the rotation
between the Hamiltonians associated with g and g0 obtained
via the active perspective. Nevertheless, the same relationship
between Hamiltonian functions is obtained within the
passive viewpoint by noting that HgðygÞ¼HgðUgg0yg0U

†
gg0 Þ¼

Ugg0Hgðyg0 ÞU†
gg0 ¼Hg0 ðyg0 Þ. The passive perspective

is also commonly found in the literature (Power and
Thirunamachandran, 1983a, 1983b, 1983c, 1992, 1993,
1999a; Craig and Thirunamachandran, 1998). Therein, the
Hamiltonian HgðygÞ ¼ Hg0 ðyg0 Þ is unique and uniquely rep-
resents the energy E. Similarly, the eigenvector jEni uniquely
represents the physical state Sn of definite energy En.
Conversely, each set of canonical operators yg explicitly
represents a different set of physical observables. This again
contrasts the active perspective wherein the physical differ-
ence between the same canonical operators y in different
gauges was implicit.
Either an active or passive perspective can be chosen, but

the associations between operators and observables and
between vectors and states will generally depend on the
perspective adopted. The importance of such associations
and their relation to gauge freedom is discussed in Secs. III.A

and III.B. Here, unless otherwise stated, we adopt an active
perspective of unitary rotations.

5. Gauge-symmetry transformations versus gauge-fixing
transformations

Confusion can stem from the fact that the PZW trans-
formation R01 commutes with A0 ¼ ϕ and A0 ¼ AT, so it
cannot directly implement a gauge transformation
[cf. Eqs. (61) and (62) of note IV of the Supplemental
Material (245)] as noted by Andrews et al. (2018). The
situation becomes clear upon recognition that the PZW
transformation is not a gauge-symmetry transformation Sχ ,
but instead an example of a gauge-fixing transformation Ugg0 .
The distinction between these types of gauge transformation
was recognized some tine ago in relativistic physics (Lenz
et al., 1994), but it is perhaps less well known in quantum
optics and atomic physics. Within the final unconstrained
theory all gauge-symmetry transformations have been reduced
to the identity, expressing the fact that once the gauge has been
fixed there is no longer any redundancy within the state space
or operator algebra. The redundant degrees of freedom AL
have been fixed as known functions of the gauge-invariant
degrees of freedom. The gauge-fixing transformation Ugg0

transforms between alternative isomorphic realizations of the
physical state space that result from different choices of gauge
AL ¼ ∇χg and AL ¼ ∇χg0 .
AlthoughUgg0 cannot transform ðϕg;AgÞ directly, it does so

indirectly. To see this, note that HgðyÞ is shorthand for
HðgT; yÞ, where the function H is unique. The concrete
choice of function gT used to evaluate H is left open. In
other words, Hg0 ðyÞ defined by Hg0 ðyÞ ≔ Ugg0HgðyÞU†

gg0 is
given by Hg0 ðyÞ≡Hðg0

T; yÞ. By construction the functional
form of the Hamiltonian in terms of gT, as well as all resulting
dynamical equations written in terms of ðϕg;AgÞ, are the same
for every possible concrete choice of gT (gauge). Thus, the
following is true in the final unconstrained theory.

• Gauge freedom is the freedom to transform between
different Hamiltonians Hg and Hg0 resulting from differ-
ent fixed choices of gauge gT and g0

T.
Gauge invariance means that formulations corresponding to
different choices of gT must be physically equivalent. The
unitarity of gauge-fixing transformationsUgg0 ensures that this
is the case because the quantum-theoretic definition of
physical equivalence is unitary equivalence; cf. Sec. III.A.

6. Minimal coupling

A final common pitfall that we want to address concerns the
nature of the minimal coupling prescription and its relation to
the Coulomb gauge. In Sec. II.Awe saw that Rαα0 implements
a gauge change within the Hamiltonian by transforming
between distinct minimal coupling prescriptions [Eqs. (27)
and (28)]. This shows that the minimal coupling replacement
is not synonymous with the Coulomb gauge.
It is unfortunate that the term “minimal coupling” has so

often been reserved exclusively for the Coulomb-gauge
Hamiltonian H0 because this nomenclature is in direct
opposition to the fundamental meaning of minimal coupling.
The gauge principle implies the existence of a potential whose
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gauge AL can be chosen freely. Different fixed gauges
correspond to different fixed minimal coupling replacements,
as shown by Eqs. (22) and (27). This fact is obscured by
the almost universal practice of expressing the multipolar
potential A1 in terms of B within the Hamiltonian via
Eq. (56). It is then not obvious that the multipolar
Hamiltonian results from the minimal coupling replacement
p → p − qA1ðrÞ. Meanwhile, despite it being possible to
express the Coulomb-gauge potential A0 in terms of B, the
Coulomb-gaugeHamiltonian is nearly always left as a function
of A0. The minimal coupling prescription p → p − qA0ðrÞ is
therefore immediately apparent therein. The combined effect of
these conventions may be the false impression that only the
Coulomb-gauge Hamiltonian results from minimal coupling
replacement. In fact, in any gaugeα, theHamiltonian includes a
minimal coupling replacementp → p − qAαðrÞ and the poten-
tial Aα is expressible as a function of the magnetic field B.
Further obfuscation occurs within the EDA, which states

that ATðxÞ ≈ATð0Þ whenever jxj ≤ jrj. This implies that χα
in Eq. (11) is approximated as in Eq. (30). Thus, choosing
the multipolar gauge A1 means choosing AL ¼ ∇χ1 such
that ALðrÞ ¼ −ATðrÞ within the EDA, giving A1ðrÞ ≈ 0;
cf. Eq. (59). The position r is where the potential A1 is
evaluated within the Hamiltonian; cf. Eq. (22). Thus, the
dipole approximation of the kinetic energy part of the
multipolar-gauge Hamiltonian is independent of the potential
and the canonical momentum p becomes purely mechanical
(p ¼ m_r). This again may lead to the false impression
that the multipolar Hamiltonian is not a minimal coupling
Hamiltonian.
According to the gauge principle all Hamiltonians Hα are

equally valid, and any one of them can be taken as the starting
point for a canonical description of QED. It is not the case that
only one gauge’s Hamiltonian, such as H0, is compatible with
the gauge principle. Indeed, such a conclusion would contra-
dict the gauge principle. In particular, it is not the case that
H0ðtÞ is a fundamentally preferable starting point when one
considers time-dependent interactions and that any other
Hamiltonian must be obtained from it via a time-dependent
gauge transformation. This fact appears to contradict recent
articles (Stefano et al., 2019; Settineri et al., 2021). Time-
dependent interactions are discussed in detail in Sec. V.

III. SUBSYSTEM GAUGE RELATIVITY

Quantum theory provides postulates for the association of
physical states and observables with their mathematical
representations, and for the calculation of predictions of
observable properties. The notion of a quantum system
is an inherently relative one (Zanardi, 2001; Barnum et al.,
2004; Zanardi, Lidar, and Lloyd, 2004; Harshman and
Wickramasekara, 2007; Viola and Barnum, 2007;
Harshman and Ranade, 2011). Understanding quantum
subsystem properties in light of this remains a topic of
current interest (Cai et al., 2021; Hoehn et al., 2022). The
partition of a quantum system into subsystems is dictated by
the set of operationally accessible interactions and measure-
ments (Zanardi, Lidar, and Lloyd, 2004). The importance of
this fact in QED beyond traditional regimes is addressed in
this section.

A. Quantum subsystem relativity

We begin by examining fundamental concepts relating to
composite quantum systems and subsequently relate them to
gauge freedom. In quantum theory all predictions are obtained
from the inner product; therefore, the following associations,

physical stateS ↔ vector jψi;
physical observableO ↔ operatorO; ð67Þ

are equivalent to the associations

physical stateS ↔ vector jψ 0i ¼ Ujψi;
physical observableO ↔ operatorO0 ¼ UOU†; ð68Þ

whereU is any unitary operator (Isham, 1995). In other words,
the associations fstate ↔ vectorg and fobservable ↔
operatorg can be made only relative to a Hilbert space frame.
The unitary group is the symmetry group of the inner product
h·j·i defined over H, meaning that U transforms between two
distinct Hilbert space frames (bases). This is analogous to
moving between frames within Minkowski spacetime E1;3

using a Lorentz transformation Λ belonging to the Lorentz
group, which is the symmetry group of the (indefinite)
Minkowski inner product. The definition of a composite
quantum system uses the tensor product ⊗, which extends
the inner product in the way required in order that probabilities
associated with independent subsystems are statistically
independent. Specifically, ðhψAj ⊗ hψBjÞðjφAi ⊗ jφBiÞ≡
hψAjφAihψBjφBi.
To understand how the relativity of associations between

operators and observables affects the meaning of quantum
subsystems, we consider a composite system of two spins A
and B with Hilbert space H ¼ HA ⊗ HB. We denote spin
observables in some specified directions for A and B by OA
and OB, respectively, and we let these observables be
represented in frame X by operators σA ⊗ IB and IA ⊗ σB,
where IA and IB are identity operators over HA and HB,
respectively. For notational economy one often writes OA ⊗
IB (IA ⊗ OB) simply as OA (OB). Spin can take two values
denoted as s ¼ þ;−: The (eigen)state Ss is the physical state
in which the physical observables OA and OB simultaneously
possess value s. It is represented in frame X by the vector
jsAi ⊗ jsBi≕ jsA; sBi, where σZjsZi ¼ sjsZi with Z ¼ A;B.
Now consider the unitary transformation U for which

UjþA;þBi ¼
1ffiffiffi
2

p ðjþA;þBi þ j−A;−BiÞ; ð69Þ

which connects frame X to a new frame Y but does not have
the formUA ⊗ UB. In frame Y the observablesOA andOB are
represented by the operators σ0A ≔ UσAU† and σ0B ≔ UσBU†,
respectively, such that the state Ss is represented by the vector
UjsA; sBi. This ensures that the physical prediction hOZiSs

is
frame independent. The frame can therefore be chosen freely.
However, in frame Y the operator σZ ≠ σ0Z evidently does not
represent the observable OZ. It must therefore represent some
other physical observable, which we denote by OZ.
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We now define the subalgebrasAZ ≔ fOZ∶OZ Hermitiang
with Z ¼ A;B. The mathematical quantum subsystem
Z may be defined as the following pair: Z ¼ ðHZ;AZÞ.
Operationally, meanwhile, any physical system must be
specified through a collection of observable properties. And
yet, whether or not a given observable property belongs to the
set of observables that defines the quantum subsystem Z
depends on the Hilbert space frame. For example, the
observable OZ is represented by σz ∈ AZ in frame X and
by UσZU† ∉ AZ in frame Y, whereas the observable OZ is
represented by σZ ∈ AZ in frame Y and by U†σZU ∉ AZ in
frame X. It follows that Z ¼ ðHZ;AZÞ represents a distinct
collection of states and observables in the two different frames
X and Y.
Any question about the physics of the system must be posed

in terms of states and observables. For example, we can ask
the following question: Is the physical state Sþ an entangled
state? There are two answers: Yes, Sþ is entangled with
respect to the observables OA and OB, and no, Sþ is not
entangled with respect to the observables OA and OB. The
first answer is deduced using frame Y, where we have the
representations OZ ↔ σZ with Z ¼ A;B, and in terms of
the eigenvectors of σZ the state Sþ is represented by the
entangled vector ðjþA;þBiþ j−A;−BiÞ=

ffiffiffi
2

p
. The second

answer is deduced using frame X, where we have OZ↔σZ,
and in terms of the eigenvectors of σZ the state Sþ is
represented by the vector jþA;þBi.
Both answers to the question are physically meaningful,

and they are certainly compatible statements regarding states
and observables. The same physical state Sþ is simultane-
ously entangled and not entangled because the term “entan-
glement” is referring to different physical observable
properties in the two different answers to the question. We
can further ask whether the entanglement in the state Sþ is
physically relevant. The answer is yes if we are able to access
observables OA and OB, and the answer is no if we are able to
access only the observables OA and OB. This again is a
statement about physical states and observables, but it also
concerns which observables are actually measurable in a given
experiment.
In QED gauge-fixing transformations are unitary, so a

gauge can be understood as a frame within the Hilbert space.
We have seen that the choice of frame can be labeled with a
parameter α such that the Hilbert space has the form
H½α� ¼ Hmatter½α� ⊗ Hlight½α�. Gauge transformations mix
the matter and light canonical operators of the theory,
which possess the forms Omatter ⊗ Ilight ∈ Amatter½α� and
Imatter ⊗ Olight ∈ Alight½α�, respectively. Thus, the matter
and light mathematical subsystems defined as the pairs
ðHmatter½α�;Amatter½α�Þ and ðHlight½α�;Alight½α�Þ, respectively,
are defined using physically different collections of observ-
ables for each different gauge α. The matter subsystem
constitutes a different operational subsystem in each different
gauge, as does the light subsystem.

B. Gauge ambiguities and gauge invariance

Quantum theory provides predictions for observables, and
the unitarity of the gauge-fixing transformations Ugg0 (Rαα0 )

guarantees the gauge invariance of these predictions. We
define gauge invariance as follows.

• A prediction is gauge invariant if it is independent of the
gauge in which it is calculated. If all predictions
pertaining to an observable are gauge invariant, then
the observable is gauge invariant.

In general, an observable O is represented in the fixed
gauge α by a generally α-dependent function oα of the
canonical operators y ¼ fr;AT;p;Πg. A physical state S is
represented by an α-dependent vector jψαi. In the gauge α0,
the same observable O is represented by the operator
oαðRαα0yR

†
αα0 Þ≡ Rαα0oαðyÞR†

αα0 ≕ oα0 ðyÞ, and the same state
S is represented by the vector jψα0 i ¼ Rαα0 jψαi. The average
hOiS can be calculated in any gauge

hψαjoαðyÞjψαi ¼ hOiS ¼ hψα0 joα0 ðyÞjψα0 i: ð70Þ

This gauge invariance holds as a consequence of the unitarity
of gauge-fixing transformations, so it should be clear that it
will hold independently of any restriction on the form of the
gauge. An example of a gauge-invariant observable is the total
energy O ¼ E, which in the gauge α is represented by the
Hamiltonian HαðyÞ.
Although QED is fundamentally gauge invariant, the task

remains to decide which observables are relevant to us. For
example, consider the observablesET and PT, where hereafter
we use P ≔ P1 to denote the multipolar polarization. The
transformation Rαα0 commutes with PT, so this observable
possesses the same operator representation in every gauge
(Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1989). The
same is not true for ET. Consider the physical observable
O ≔ −ET − αPT, where α denotes a fixed real number. As a
fixed linear combination of gauge-invariant observables, O is
gauge invariant. If we now choose our gauge parameter to
have the same fixed value α, then the observable O is
represented by the operator Π.
We emphasize that gauge freedom is not a freedom to

define O. It is a freedom to decide whether the parameter that
fixes the redundancy AL within our description equals the
number α that defines O. If the gauge parameter is instead
chosen to have a value α0 ≠ α, then the observable O is
represented by the operator Π0¼Rαα0ΠR†

αα0 ¼Π−ðα−α0ÞPT.
The operator Π represents the different gauge-invariant physi-
cal observable O0 ≔ −ET − α0PT. A physical state S is
represented by the vectors jψi and jψ 0i ¼ Rαα0 jψi in the gauges
α and α0, respectively. Thus, the averages of O and O0 in the
state S are hOiS ¼ hψ jΠjψi and hO0iS ¼ hψ 0jΠjψ 0i. It is
important to recognize that both predictions satisfy gauge
invariance as defined in Eq. (70). The same operator Π
represents different observablesO andO0 in the two averages,
whereas different vectors represent the same physical state S.
For a fixed α the combination Π ¼ −ET − αPT is a gauge-

invariant observable, but by definition of Π, here α is the
gauge parameter. Thus, while it is true that in each gauge Π
represents a physical observable and it is also true that every
observable possesses unique physical predictions that can be
calculated in any gauge, it is not true that the operator Π
represents the same physical observable in any two different
gauges, and predictions pertaining to different observables are
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different: for example, two different observables will not
generally possess the same average value. As discussed
throughout this review, the task of determining which
gauge-invariant predictions are relevant in which situations
is not necessarily straightforward, because it depends on
the interpretation of virtual processes, dressing, and localiza-
tion. We therefore conclude the following (Stokes and
Nazir, 2021b).

• Gauge ambiguities arise not because it is unclear how to
obtain gauge-invariant predictions but because it is not
always clear which gauge-invariant observables are
operationally relevant. The gauge invariance of a pre-
diction is necessary but not sufficient to ensure its
operational relevance.

On a practical level, simply verifying the fundamental
gauge invariance of predictions does not imply that gauge
freedom can be ignored. For example, Settineri et al. (2021)
(Sec. V) noted that “of course detectable subsystem excita-
tions and correlations have to be gauge invariant, since the
results of experiments cannot depend on the gauge. On this
basis we can define gauge invariant excitations and qubit-field
entanglement.” We note, however, that providing gauge-
invariant definitions is straightforward and has never been a
problem. Indeed, given the unitarity of gauge-fixing trans-
formations, gauge invariance is automatic. “Ambiguities”
occur not because gauge invariance breaks down, but because
there are many different gauge-invariant definitions of exci-
tations and qubit-field entanglement. The latter can be defined
relative to any gauge; see Sec. III.C. Gauge invariance is
necessary, but it is not a sufficient basis for providing
physically relevant theoretical definitions. Any conceptual
ambiguities that result from the availability of many different
physical definitions can be called gauge ambiguities, but they
are not due to a breakdown of gauge invariance, which is a
fundamental requirement.

C. Definition of subsystem gauge relativity

We adopt the viewpoint that the relevant definition
of any system is determined by experimental capability.
Operationally, a system comprises a set of observable proper-
ties that can bemeasured. On the other hand, theoretically there
is a continuous infinity of different gauge-invariant transverse
fields, all of which are represented by the operator Π. Any of
these fields can be used to define a boson called a photon.
Mathematically, photons are defined directly in terms ofΠ via

aλðkÞ ≔
1ffiffiffiffiffiffi
2ω

p eλðkÞ · ½ωÃTðkÞ þ iΠ̃ðkÞ�; ð71Þ

where ω ≔ jkj and eλðkÞ is a unit polarization vector orthogo-
nal to k (Fourier transforms are denoted with a tilde). From
Π̃ ¼ −ẼT − αP̃T, it is clear that for each different fixed value of
α the photon number operator n ¼ P

kλ a
†
λðkÞaλðkÞ represents

a different gauge-invariant observable.
• Photons defined using the gauge-invariant observable
O ¼ −ET − αPT, which in the gauge α is represented by
the operator Π, are said to be defined relative to the
gauge α.

The eigenstates of the corresponding number operator n are a
basis for the light Hilbert space, which is therefore defined
relative to a choice of gauge. We can express this relativity
symbolically by writing the subsystem label “light” or “pho-
tons” as a function of the observable that defines it, for
instance, in the gauge α “light” ¼ lightðET þ αPTÞ≕ lightα
and “photons” ¼ photonsα. As an example, suppose that in a
given experiment the observable ET is measurable. In this
situation light0 is then a relevant mathematical subsystem. This
relativity for the case of photons applies to any subsystem
property defined in terms of the canonical momenta. To
summarize, according to the postulates of quantum theory,
QED subsystems are defined relative to the choice of gauge
(Stokes and Nazir, 2019).

D. Implications of subsystem gauge relativity

Predictions are necessarily gauge invariant when they
pertain entirely to gauge-invariant objects. An example is
the mechanical momentum m_r ¼ p − qAðrÞ, which is rep-
resented by the gauge-covariant derivative −i∇ − qAðrÞ
acting on position space wave functions. Scully and
Zubairy (1997) therefore argued that only this momentum
is physical, unlike the canonical momentum p. Similarly,
Schwinger (1951) favored the use of only gauge-covariant
quantities in the calculation of relativistic vacuum effects. Yet,
once the gauge has been fixed every operator within the theory
represents an observable that is a known function of mani-
festly gauge-invariant observables (Fig. 2). Physical predic-
tions will therefore be gauge invariant [cf. Eq. (70)] provided
that approximations that ruin gauge invariance are avoided
and that they are calculated properly. For example, when
dealing with time-dependent interactions one must take into
account the time dependence of gauge transformations, as
noted by Settineri et al. (2021) and Stokes and Nazir (2021b).
Subsystem gauge relativity means that the light and matter

quantum subsystems are defined by different gauge-invariant
observables in each different gauge. A subsystem property
such as the degree of light-matter entanglement constitutes
two different gauge-invariant physical predictions when

FIG. 3. The analogy between the relativity of space and time
when partitioning spacetime, and the relativity of QED sub-
systems when partitioning the QED Hilbert space. Left panel: the
Lorentz transformation Λ mixes spaceX and timeX in trans-
forming to the comoving frame Y. The relevant definition of time
for the prediction of time intervals measured by a clock at rest in
frame X is timeX. Right panel: the unitary gauge-fixing trans-
formation Rαα0 mixes matterα and lightα in moving to frame α0.
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calculated in two different gauges. This is a form of linear-
space relativity analogous to that encountered in theories of
space and time (Fig. 3).
Within sufficiently strong-coupling or non-Markovian

regimes, the relativity of light and matter quantum subsystems
cannot be ignored. Unlike in special relativity, determining
which theoretical definition of a photon is the most relevant
one for predicting experimental outcomes is not necessarily
straightforward, because the task is intimately related to the
interpretation of virtual processes and spacetime localization
properties. It is also far from clear that the most relevant
definition of photon is independent of the given experiment.
Settineri et al. (2021) assumed that a photodetector registers
photons defined by the gauge-invariant transverse electric
field ET. Given this assumption about which physical observ-
able is relevant, one can calculate the rate of photodetection as
a unique physical prediction in any gauge for both time-
dependent and time-independent interactions. In Glauber’s
original theory, however, the total electric field E ¼ ET þ EL
was used (Glauber, 1963; Milonni, James, and Fearn, 1995)
and this field is transverse only when there are no charges
present. Indeed, it has been argued that the transverse
displacement field DT ¼ ET þ PT provides a more relevant
definition because its source component equals the source
component of E away from the source, and it is therefore
local, unlike ET (Cohen-Tannoudji, Dupont-Roc, and
Grynberg, 1989; Biswas et al., 1990; Milonni, James, and
Fearn, 1995; Power and Thirunamachandran, 1997, 1999a,
1999b; Sabín et al., 2011). In particular, it has been known for
six decades that photons defined relative to the multipolar
gauge, i.e., in terms of DT, are able to provide a natural line
shape prediction that is in sufficient agreement with early
experiments to rule out the corresponding prediction for the
same experiments when photons are defined using ET (Power
and Zienau, 1959; Fried, 1973; Davidovich and Nussenzveig,
1980; Milonni, Cook, and Ackerhalt, 1989; Woolley, 2000;
Stokes, 2013). For these specific experiments the multipolar-
gauge subsystems are evidently more operationally relevant
than the Coulomb-gauge subsystems. Predictions of radiation
spectra are discussed further in Secs. VI.B and VII.D.
The multipolar gauge α ¼ 1 defines a dipole1 that is purely

mechanical, i.e., completely bare; see Sec. II.E. However, one
often views physical atoms as being dressed by virtual
photons, and this is more consistent with definitions provided
by α ≠ 1, where the dipole is instead a delocalized dressed
object. Only the localized dipole1 does not respond instanta-
neously to a test charge placed away from its center at 0
(Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1989; Biswas
et al., 1990; Milonni, James, and Fearn, 1995; Power and
Thirunamachandran, 1997, 1999a, 1999b; Sabín et al., 2011).
In gauges α ≠ 1, the extent of the apparently instantaneous but
typically small response of a test charge distribution to the
field of the α-gauge dipole could be interpreted as simply a
measure of the dressed dipole’s delocalization due to its own
virtual cloud of photons (Hegerfeldt, 1994). These points are
discussed in the context of photodetection theory in Sec. VI.
For given values of the remaining model parameters, it is

often possible to choose an intermediate value of α denoted as
αJC, which lies between 0 and 1, and for which ground-state
virtual photons are highly suppressed (Stokes and Nazir,

2019). This representation is defined in Secs. IV.F, V.C.1,
and VI.A.3, where the choice of notation αJC is explained. The
representation can be interpreted as one in which virtual
photons have been absorbed into the definitions of the
quantum subsystems. The physical meanings of the different
mathematical definitions of light and matter are evidently
closely related to virtual photons and processes.
Finally, we note that a prosaic implication of subsystem

gauge relativity is that approximations performed on the
subsystems can ruin the gauge invariance of the theory. A
well-known example is the truncation of the material system
to a finite number of levels (De Bernardis et al., 2018; Roth,
Hassler, and DiVincenzo, 2019; Stefano et al., 2019; Stokes
and Nazir, 2019). Because matter is defined differently in
different gauges, the truncation generally constitutes a sig-
nificantly different physical procedure in different gauges.
This is discussed in detail in Sec. IV.

E. Canonical transformations in quantum field theory and
unitary inequivalence

In the preceding development of nonrelativistic QED, the
gauge-fixing transformations Ugg0 defined in Eq. (40) possess
the form eiS, with S Hermitian, and one can verify that Ugg0

preserves the canonical commutation relations. However, the
gauge invariance identified in Sec. III.B comes with a certain
caveat, namely, that the transformation Ugg0 is unitary only in

form. By this we mean that although formally Ugg0U
†
gg0 ¼ I,

rigorously establishing the unitarity of canonical transforma-
tions in quantum field theory is nontrivial because one often
encounters generators S that are too poorly behaved to avoid
the occurrence of infinite terms during the course of formal
manipulations. This point is directly relevant when one
considers Ugg0 . Here we follow the intuitive heuristic dis-
cussion conducted by Umezawa (1995).
Consider the formally unitary transformation

U½θ� ¼ exp

�Z
d3k

X
λ

½θλðkÞ�aλðkÞ − θλðkÞa†λðkÞ�
�
; ð72Þ

where θ is an arbitrary function k → θðkÞ. If one assumes that
½θλðkÞ; θλ0 ðk0Þ� ¼ 0, then since a0λðkÞ ¼ U½θ�aλðkÞU½θ�† ¼
aλðkÞ þ θλðkÞ the transformation is canonical, that is,
½aλðkÞ;a†λðk0Þ�¼δλλ0δðk−k0Þ⇔½a0λðkÞ;a0†λðk0Þ�¼δλλ0δðk−k0Þ.
Denoting the vacuum annihilated by aλðkÞ by j0i and
assuming that h0j0i ¼ 1, we see that according to Eq. (72)
the vacuum j00i ¼ U½θ�j0i annihilated by a0ðkÞ is also
formally normalized (h00j00i ¼ 1). One finds in addition,
however, that

j00i ¼ τ exp

�
−
Z

d3k
X
λ

θλðkÞa†λðkÞ
�
j0i; ð73Þ

where

τ ¼ exp

�
−
1

2

Z
d3k

X
λ

jθλðkÞj2
�
; ð74Þ
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such that if
R
d3kjθλðkÞj2 ¼ ∞, then the prefactor τ ¼ h0j00i

is vanishingly small. It would then follow that hψ j00i ¼ 0,
where jψi is any Fock state generated by applying the
operators a†λðkÞ to the vacuum j0i. From this it would follow
that the vacuum j00i and the Fock states generated from it
using the operators a0†λðkÞ cannot be expressed as linear
combinations of the Fock states generated using a†λðkÞ and
j0i. The two bases are then said to be inequivalent
(Umezawa, 1995).
We now turn our attention to the PZW gauge-fixing

transformation R01, which can be written in the form of
Eq. (72) with θλðkÞ ¼ ieλðkÞ · P̃ðkÞ=

ffiffiffiffiffiffi
2ω

p
, where P̃ denotes

the Fourier transform of the multipolar polarization. In this
case

− ln τ ¼ 1

2
h00j

Z
d3k

X
λ

a†λðkÞaλðkÞj00i

¼
Z

d3kjP̃TðkÞj2=4ω ð75Þ

is half the average number of photons0 in the vacuum j00i.
Woolley (2020) found that for a two-charge system τ → 0 in
the point-charge limit; that is, the vacua of the Coulomb and
multipolar gauges do indeed become orthogonal. Physically,
the vacua of the Coulomb gauge (α ¼ 0) and the multipolar
gauge (α ¼ 1) must contain an infinite number of photons1
(multipolar photons) and photons0 (Coulomb-gauge photons),
respectively, so the two vacua cannot be simultaneously
meaningful. According to a simple second-order perturbation
theory calculation, the ground state of the Hamiltonian in
Eq. (22) contains both photons0 and photons1. Identifying the
ground state of the Hamiltonian as the physical vacuum is the
underlying idea of the Jaynes-Cummings (JC) gauge men-
tioned in Sec. III.D. This is discussed further in Secs. IV.F,
V.C.1, and VI.A.3.
Unitary inequivalence results from the singular nature of

PðxÞ within the PZW transformation. This localization of
PðxÞ¼ R

d3kP̃ðkÞeik·x=
ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
requires that all wave vectors

k are retained within the Fourier transformation. However, in
nonrelativistic QED one can argue a priori that relativistic
modes are not properly described (Cohen-Tannoudji, Dupont-
Roc, and Grynberg, 1989). The multiplication of P̃TðkÞ by a
form factor such as lMðkÞ¼ k2M=ðk2þk2mÞ, as described in
Secs. II.D.2 and II.E, removes the contributions of relativistic
wave vectors such that

R
d3kjP̃TðkÞj2 < ∞. Similarly, h0j00i

vanishes only in the point-charge limit (Woolley, 2020), yet
the elimination of relativistic wave vector contributions to the
point-charge density ρ is equivalent to considering extended
charge distributions, which yield a more rigorously well-
defined quantum theory (Spohn, 2004). In this review we
consider formally unitary gauge-fixing transformations and
assume that gauge invariance as defined in Sec. III.B holds,
but with the understanding that when dealing with quantum
fields strict unitarity may require one to invoke suitable
regularization procedures.
We note finally that although after a suitable regularization

that gives h0j00i ≠ 0 the vacua j0i and j00i contain only a finite
number of photons1 and photons0, respectively, the two vacua

remain physically distinct and it remains to determine which,
if either, is relevant in a given situation. As discussed in more
detail in Sec. V, the gauge nonrelativistic property of the QED
S matrix under only formally unitary gauge-fixing trans-
formations U ¼ eiS can be proved quite generally (Craig and
Thirunamachandran, 1998; Woolley, 2000). These points
demonstrate that while the occurrence of unitarily inequivalent
representations of the CCR algebra is of importance with
regard to the technical challenge of establishing the strict
gauge invariance of predictions, it is of far less importance
with regard to the occurrence or otherwise of gauge relativity.

F. Modal restrictions and transversality

Restrictions on the number of photonic modes are
extremely common in light-matter physics. However, retain-
ing all modes is necessary to maintain spacetime localization
and causal wave propagation. In particular, the Green’s
function for the wave operator receives contributions from
all k-space modes. A modal restriction should be understood
as a statement about which frequencies are dominant within a
given light-matter interaction Hamiltonian.

1. Significance of transversality

We begin by noting that the transversality of canonical
fields is closely related to gauge freedom. Only transverse
fields can be used to define unconstrained physical photons as
in Eq. (71). This feature is fundamental and persists in the
presence of background media [see note VII of the
Supplemental Material (245)], such as those relevant in
numerous artificial photonic systems that realize large cou-
pling strengths (Ciuti, Bastard, and Carusotto, 2005; Ciuti and
Carusotto, 2006; Todorov et al., 2010; Bamba and Ogawa,
2012, 2013, 2014a). Relativistic particles can be specified
via the unitary representations of the Poincaré group
(Bargmann and Wigner, 1948), which are labeled by two
numbers, “mass” m ≥ 0 and integer or half odd integer “spin”
s. Massless fields possess only two independent helicities
−s;þs obtained from the projection of the spin s onto the axis
of particle motion (Hassani, 2013). In particular, the massless
spin-1 Maxwell field supports the two independent polar-
izations of a photon. Scalar and longitudinal photons can also
be defined, as in the Lorenz gauge (Lorenz, 1867), but such
photons are not unconstrained. They satisfy a nondynamical
constraint (Lorenz subsidiary condition) whose derivative in
time is Gauss’s law (Cohen-Tannoudji, Dupont-Roc, and
Grynberg, 1989).
Gauss’s law generates gauge-symmetry transformations

and its derivative in time is the continuity equation for electric
charge, which is the conserved quantity associated with gauge
symmetry. It specifies EL as a function of ρ, telling us that
longitudinal photons are not independent. Specifically, an
analog of Eq. (71) may be written as

aLðkÞ ≔ −
iffiffiffiffiffiffi
2ω

p k̂ · ẼðkÞ ¼ −
ρ̃ðkÞffiffiffiffiffiffiffiffi
2ω3

p : ð76Þ

Although ET is the part of the electric field not constrained
by Gauss’s law, it is by fundamental assumption that the total
electric field E is local. It follows that the fields EL and,
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notably, ET ¼ E − EL are both nonlocal [cf. Eq. (7)], and
away from a localized source they respond instantaneously to
changes in the source (Cohen-Tannoudji, Dupont-Roc, and
Grynberg, 1989; Craig and Thirunamachandran, 1998). The
multipolar-gauge momentum Π ¼ −DT offers the best pos-
sible representation of the nontransverse local field E by an
unconstrained transverse field that can then be used to define
unconstrained photons (Cohen-Tannoudji, Dupont-Roc, and
Grynberg, 1989). Specifically, PL ¼ −EL implies that D ≔
Eþ P ¼ ðET þ ELÞ þ ðPT − ELÞ≡DT and since P van-
ishes outside of a charge distribution we have D≡ DT ¼ E
at all such points. It is not the case, however, that E ¼ ET or
that P ¼ PT.
In the case of a dipole at 0, the multipolar polarization is

P ¼ qrδðxÞ, whereas PTðxÞ ¼ qr · δTðxÞ. The transverse
dyadic δTðxÞ is not purely singular: rather, it decays as
1=x3 away from 0. From elementary electrostatics we know
that EL decays as 1=x3 away from a dipole at 0, and for a
dipole we do indeed have PT ¼ EL for x ≠ 0 [i.e., PðxÞ ¼
qrδðxÞ ¼ 0 for x ≠ 0]. For any α the fieldΠ can be expanded
in terms of photons using Eq. (71). However, for different α
these fields are related by the nonlocal field PT.
For a transverse field, the mode functions fλðk;xÞ ¼

eλðkÞeik·x=
ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
of a canonical mode expansion are not

complete with respect to the usual inner product in L2ðR3Þ,
because feλðkÞg is an orthonormal basis in the two-dimen-
sional plane orthogonal to k. They instead furnish the
following representation of the transverse delta function:

Z
d3k

X
λ¼1;2

fλðk;xÞ�fλðk;x0Þ ¼ δTðx − x0Þ: ð77Þ

To obtain a representation of δðx − x0Þ, one must include the
vector k̂ in Fourier space to obtain the three-dimensional basis
fk̂; eλðkÞg. If the longitudinal eigenfrequency is set to vanish
(ωL ≡ 0), then one can expand Π using the complete set of
mode functions. However, the operators aLðkÞ have com-
pletely arbitrary definitions and cannot contribute to physical
predictions.

2. Modal restriction

Ultrastrong coupling between light and matter arises in
artificial systems in which the set of photonic modes is altered
and often restricted. Theoretically, care must be taken when
carrying out such restrictions. To demonstrate this we
choose the multipolar gauge such that Π ¼ −DT, implying
that the Coulomb-gauge momentum −ET is represented by
the operator Π0 ¼ −ET ¼ R10ΠR†

10 ¼ Πþ PT. Coulomb
and multipolar-gauge transverse photonic operators a0λðkÞ
and aλðkÞ are defined as in Eq. (71) using Π0 ¼ −ET and
Π ¼ −DT, respectively. They are therefore related by

a0λðkÞ ¼ R10aλðkÞR†
10 ¼ aλðkÞ þ i

qr · fλðk; 0Þffiffiffiffiffiffiffiffi
2ωλ

p : ð78Þ

For the unphysical longitudinal mode operators any relation
can be specified. We note, however, that the right-hand side of
Eq. (78) would be undefined for λ ¼ L because ωL ≡ 0. The

total electric field is given by E ¼ DT − P ¼ −Π − P ¼
−Π0 − PL, and PðxÞ ¼ qrδðxÞ is fully localized. The electric
field E is completely independent of the aLðkÞ, as any
physical field must be.
When the modes are confined to a volume v with periodic

boundary conditions, the mode functions become discrete
[fλðk; xÞ → fkλðxÞ] such that factors of ð2πÞ3 are replaced by
v. For a field F the component associated with the wave
vector k or mode kλ can be read off by expressing F as
FðxÞ¼P

kFk ¼
P

kλFkλ. For the transverse and longitudinal
polarization fields we have PTkðxÞ¼ qekλ½ðekλ · rÞ=v�cosk ·x
and PLk ¼ −ELk ¼ qk̂½ðk̂ · rÞ=v� cosðk · xÞ, respectively,
such that the restricted total polarization is PkðxÞ ¼
ðqr=vÞ cosðk · xÞ. For the total electric field we have
EkðxÞ ¼ −ΠkðxÞ − PkðxÞ. These single-mode restrictions
can be implemented at the position 0 of a single dipole via
the α-gauge theory presented in Secs. II.B and III. Since all
algebraic and kinematic relations are preserved, so too is
gauge invariance. The dipole approximated fields in Eqs. (29)
and (31) are assumed to point in the direction ε of the mode
polarization and, in this direction, have the following com-
ponents (Stokes and Nazir, 2019, 2020b):

Aα ¼ ð1 − αÞA ¼ 1 − αffiffiffiffiffiffiffiffiffi
2ωv

p ða† þ aÞ; ð79Þ

PTα ¼
αqx
v

: ð80Þ

In Eqs. (79) and (80) x ¼ ε · r and A ¼ ε ·ATð0Þ, where ε is
the unit polarization vector of the single transverse mode
retained. The Hamiltonian reduces to a simple form that has
now been used in a number of works (Roth, Hassler, and
DiVincenzo, 2019; Stefano et al., 2019; Stokes and Nazir,
2019, 2020b, 2021b); cf. Sec. IV.A. The gauge-fixing trans-
formations in Eq. (32) remain unitary, becoming Rαα0 ¼
expði½α − α0�qxAÞ (Stokes and Nazir, 2019, 2021b).
The restriction to a finite number of modes within

the Hamiltonian of a light-matter system evidently must be
understood as an assumption about which modes are
dominant within the dipole-field interaction. This may be
valid at the position of the dipole center 0 in the form
Vð0Þ ¼ P

k Vkð0Þ ≈ Vkð0Þ. However, the dipole’s center 0
is also where the field cannot be measured by an external
detector. For any x the field Ek equals neither −ETk nor
−DTk. Because of Gauss’s law, the electric field, whether
restricted or not, cannot be expressed solely in terms of
physical transverse photons. In particular, since Πk is
orthogonal to k, one cannot obtain Ek by means of a unitary
operator acting on Πk.
The fully localized physical polarization PðxÞ ¼P
k PkðxÞ cannot be elicited in a restricted space of wave

vectors. A modal restriction at an arbitrary point x ≠ 0 will
therefore violate the property PT ¼ −PL of the full theory.
Naively restricting the polarization and electric fields to only
one transverse mode kλ means that PLkðxÞ≡ 0, and we
obtain EkðxÞ≡ −Π0

kλðxÞ ¼ −ΠkðxÞ − PTkðxÞ. This yields a
theory without EL, which can therefore be valid only in the far
field. In the far field whereEL ¼ PT vanishes, we have −Π0 ¼
ET ≈ E ¼ −Π whether or not the modes are restricted. If we
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instead use the fact that ΠðxÞ ¼ −EðxÞ for x ≠ 0 and then
restrict our attention to one transverse mode, we obtain the
differing result EkðxÞ≡ −ΠkðxÞ ¼ −Π0

kðxÞ þ PTkðxÞ. This
single-mode limit respects the equalities E ¼ −Π ¼ −Π0 þ
PT holding for x ≠ 0 in the unrestricted theory. Within the
light-matter interaction, Hamiltonian fields are evaluated at
x ¼ 0, so these considerations do not apply.
Evidently, different implementations of a modal restriction

can result in altogether different identifications of the same
physical field, so care must be taken. In the previously
mentioned case regarding the electric field E, we have
fundamentally that at all points x outside of a charge
distribution, which is where the field can be measured by
an external detector, the multipolar polarization vanishes,
implying that at such points ΠðxÞ ¼ −EðxÞ in and only in
the multipolar gauge. We should not expect a modal restriction
in which this is no longer the case to offer a generally robust
approximation of the unrestricted theory for describing
measurements involving EðxÞ. In particular, the Glauber
intensity at ðt;xÞ is given within the single-mode limit that
respects the fundamental equalities of the multimode theory as

hEð−Þ
kλ ðt;xÞ · EðþÞ

kλ ðt; xÞi ¼
ω

2v
ha†kλðtÞakλðtÞi; ð81Þ

where akλ is the multipolar-gauge photonic operator.
Irrespective of the modal restrictions, the Glauber intensity
is not proportional to the photon number operator defined
relative to the Coulomb gauge except in the far field, where
E ≈ET. Photodetection is discussed in more detail in Sec. V.

G. Simple extension to superconducting circuits

The arbitrary-gauge formalism is readily adapted to
describe circuit QED systems, which we now review. Vool
and Devoret (2017) provided an introductory review of circuit
QED, while a more recent review was given by Blais et al.
(2021). Conventional descriptions of superconducting
circuits employ the lumped-element model, which results
from Kirchoff’s assumptions applied to Maxwell theory.
Consider a node defined as the meeting point of N conducting
wire branches, outside of which there is no current. Bounding
the node is a closed surface S containing a region v with
outward normal n̂. The continuity equation ∂νjν ¼ 0 and the
divergence theorem yield

XN
μ¼1

IμðtÞ≡
XN
μ¼1

Z
Sμ

dSn̂ · Jðt;xÞ ¼ −
dQðtÞ
dt

; ð82Þ

QðtÞ ¼
Z
v
d3x ρðt;xÞ; ð83Þ

where Sμ is the subsurface of S intersecting the μth wire, Iμ is
the current entering v through the μth wire, and QðtÞ is the
total charge within the region v containing the node.
Equation (82) assumes that Jðt; xÞ ¼ 0 for all x ∈ S= ∪μ

Sμ (there is no current outside the conducting wires). Kirchoff
further assumed a local steady-state current condition within
v, namely, dQðtÞ=dt ¼ 0, yielding the current law

XN
μ¼1

IμðtÞ ¼ 0: ð84Þ

Arbitrary lumped-element circuits can be considered
collections of nodes joined by (super)conducting branches,
with Kirchoff’s law [Eq, (84)] satisfied at each node. As a
nontrivial example we consider the coupled LC-oscillator
circuit depicted in Fig. 4. As basic dynamical variables
we take the node fluxes denoted as ϕk. The current into node
k through a branch j → k with an inductor connecting
node k to node j is Ij→k ¼ ðϕk − ϕjÞ=L, where L is the
inductance of the inductor. The current into node k through a
branch j → k with a capacitor connecting node k to node j is
Ij→k ¼ Cðϕ̈k − ϕ̈jÞ, where C is the capacitance of the capaci-
tor. Since only flux differences are of importance, we can
specify the flux zero point arbitrarily. This is the so-called
ground flux such that ϕg ¼ 0. As special cases, we can choose
this flux zero point to be the flux of one of the circuit nodes
depicted in Fig. 4. Figures 4(a) and 4(b) give two different
specifications of which node possesses the ground flux.
In the circuit of Fig. 4(a) there are two nonground nodes

labeledm and c. Kirchoff’s law [Eq. (84)] yields the following
equations of motion:

0 ¼ Ig→m þ Ic→m ¼ Cmϕ̈m þ ϕm

Lm
þ ϕm − ϕc

Lc
; ð85Þ

0 ¼ Ig→c þ Im→c ¼ Ccϕ̈c þ
ϕc − ϕm

Lc
: ð86Þ

Equations (85) and (86) are obtained from the Lagrangian

L ¼ 1

2

�
Cm

_ϕ2
m −

ϕ2
m

Lm
þ Cc

_ϕ2
c −

ðϕc − ϕmÞ2
Lc

�
ð87Þ

or the corresponding Hamiltonian

H ¼ 1

2

�
q2m
Cm

þ ϕ2
m

Lm
þ q2c
Cc

þ ðϕc − ϕmÞ2
Lc

�
; ð88Þ

Cc

Lc

c

m

CmLm

g Cc

LcCmLm

m

c

g

(a) (b)

FIG. 4. Circuit diagram for a parallel LC oscillator coupled to a
series LC oscillator. There are three nodes within the circuit. The
two panels each provide a distinct labeling of the nodes
corresponding to different specifications of the ground flux.
As a result, they depict two different divisions of the circuit into
subsystems. Specifically, these are the two extreme cases of (a)
fully inductive coupling whereby the ground flux is specified as
the flux associated with the node that is labeled g and (b) fully
capacitive coupling whereby the ground flux is specified as the
flux associated with the node that is labeled g0.
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where qx ¼ ∂L=∂ _ϕx are the node charges conjugate to the ϕx,
with x ¼ m; c. A node flux and its conjugate charge satisfy a
canonical Lie bracket relation that generates the dynamics in
conjunction with the Hamiltonian. In particular, in the
quantum theory ½ϕx; qx0 � ¼ iδxx0.
We now consider the relabeling of the nodes depicted

in Fig. 4(b). The ground node has the flux ϕg0 ¼ 0, and
the nonground nodes m0 and c0 are now connected by the
capacitance Cc rather than by the inductance Lc. Since the
physical currents through the branches must stay the same, we
obtain the following coordinate relations:

ϕm0 ¼ −ϕm; ð89Þ

ϕc0 ¼ ϕc − ϕm: ð90Þ

Either ϕm or ϕm0 can be used as a coordinate with ϕc0 . We
choose ϕm. The sum of Eqs. (85) and (86) can be expressed as

0 ¼ Cmϕ̈m þ Ccðϕ̈m þ ϕ̈c0 Þ þ
ϕm

Lm
; ð91Þ

and this equation together with Eq. (86) is obtained from the
Lagrangian (87) or the Hamiltonian (88), with ϕm and ϕc0

taken as dynamical coordinates. At the Hamiltonian level the
primed and unprimed canonical operators are related by a
gauge-fixing transformation as

qm0 ¼ R10qmR
†
10; ð92Þ

ϕc0 ¼ R10ϕcR
†
10; ð93Þ

where R10 ≔ e−iqcϕm . This is analogous to the PZW trans-
formation between the charge (Coulomb) gauge and the flux
(multipolar) gauge.
Note that within the previous derivation we have adopted a

passive view of rotations within the operator algebra (see
Sec. II.F.4), by which we mean that the same Hamiltonian
has been expressed in terms of alternative canonical operators
that belong to different gauges. Equivalently, we may adopt
an active perspective as in previous sections, where the
Hamiltonian H is actively rotated using gauge-fixing trans-
formations, thereby yielding new Hamiltonians that are all
expressed in terms of the same canonical operators. The
extension to arbitrary gauges is straightforward via the gauge-
fixing transformation Rαα0 ≔ e−iðα−α0Þqcϕm . We note that
gauges specified by α ≠ 0; 1 do not correspond to a definite
specification of one of the nodes within Fig. 4 as possessing
the ground flux ϕg ¼ 0. Instead, the ground flux is specified
as some combination of the fluxes associated with the
three nodes.
The basic nonlinear element in superconducting circuits is

the Josephson junction (Josephson, 1962). These junctions are
typically realized using two conducting materials separated by
a thin insulator gap. Quantum mechanically, electron tunnel-
ing across the junction is possible, with the tunneling charge
flowing in units of Cooper pairs as Q ¼ 2qN, where N
denotes the number of Cooper pairs on one side of the
junction. The junction Hamiltonian is

HJ ¼ −
EJ

2

X
N

ðjNihN þ 1j þ jN þ 1ihNjÞ; ð94Þ

where the energy EJ determines the coupling strength
across the junction. Introducing the phase variable ϕm
conjugate to Q through Fourier transformation as
jϕmi ¼

P∞
N¼−∞ e2iqϕmN jNi, one can express the junction

Hamiltonian as HJ ¼ −EJ cos½2qϕm�.
The previous formalism is easily extended to arbitrary

circuits constructed from capacitors, inductors, and Josephson
junctions. For example, by adding a Josephson junction
connecting the ground node g to the node m in Fig. 4, one
obtains the light-matter Hamiltonian

H0 ¼ H − EJ cos½2qϕm�: ð95Þ

The Hamiltonian H0 possesses the same structure as the cavity
QED Hamiltonian considered in Sec. II.A in which the
material potential is arbitrary.
We have seen that the choice of gauge is determined by the

choice of ground flux, and that arbitrary choices of gauge
selected by a parameter α may be considered. Gauge-fixing
transformations are directly analogous to those encountered in
conventional QED, and as such they are nonlocal with respect
to Hilbert space tensor-product structure. A circuit may be
dividing into physically distinct canonical subcircuits arbi-
trarily, and this division is directly controlled by the choice
of gauge.

IV. MATERIAL TRUNCATION AND GAUGE
NONINVARIANCE

Material energy level truncation is a commonly adopted
procedure that nevertheless breaks the gauge invariance of
QED by fundamentally modifying the algebra of material
operators. This was discussed in the context of strong and
ultrastrong-coupling by De Bernardis, Jaako, and Rabl (2018),
De Bernardis et al. (2018), Roth, Hassler, and DiVincenzo
(2019), Stefano et al. (2019), Stokes and Nazir (2019, 2020a,
2020b, 2021b), Taylor et al. (2020), Ashida, İmamoğlu, and
Demler (2021), and Settineri et al. (2021). Here we review the
implications of the resulting gauge noninvariances, which as
explained in Sec. III.B are related to, but not synonymous
with, gauge ambiguities. We review various proposed theo-
retical approaches for obtaining truncated models.

A. Single dipole interacting with a single cavity mode

The EDA and single-mode approximation can be per-
formed while preserving all algebraic properties of the theory,
thereby preserving gauge invariance (Stokes and Nazir, 2019,
2020b, 2021b). The dipole is assumed to be located at the
origin 0 and for simplicity the canonical operators are
assumed to point in the direction ε of polarization of the
single mode. We define x ¼ ε · r and A ¼ ε ·AT and denote
by p and Π the corresponding dipole and cavity canonical
momenta, such that ½x; p� ¼ i and ½A;Π� ¼ i=v, with v the
cavity volume. Details of the EDA and single-mode restriction
are given in Secs. II.B and III.F.2, respectively.
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The α gauge continues to be specified by its vector potential
Aα ¼ εAα and material polarization PTα ¼ εPTα, which are
given by Eqs. (79) and (80), respectively. The definition of
gauge freedom given by Eqs. (27) and (28) now reads

Rαα0pR
†
αα0 ¼ p − ðα − α0ÞqA; ð96Þ

Rαα0ΠR
†
αα0 ¼ Π − ðα − α0Þ qx

v
: ð97Þ

Since gauge-fixing transformations remain unitary, the gauge
invariance of the theory is preserved. The Hamiltonian is as
always the total energy (Stokes and Nazir, 2019, 2021b),

Hα ¼ HmðAαÞ þHph;α; ð98Þ

HmðAαÞ ≔
1

2
m_x2 þ VðxÞ ¼ 1

2m
ðp − qAαÞ2 þ VðxÞ; ð99Þ

Hph;α ≔
v
2
ðE2

T þ ωA2Þ ¼ v
2
½ðΠþ PTαÞ2 þ ω2A2�; ð100Þ

where _x ¼ −i½x;Hα� and ET ¼ − _AT ¼ i½AT; Hα�. All three
energies are gauge invariant,

Xα0 ¼ Rαα0XαR
†
αα0 ; ð101Þ

where Xα ¼ Hα;HmðAαÞ;Hph;α. Note also that, as discussed
in Sec. II.B, within (and only within) the EDA the α-gauge
mechanical momentum may be obtained from the canonical
momentum p using R1α. For α ¼ 1, Eq. (101) with X ¼
HmðAαÞ then has the following appearance of a unitary
transformation applied to the free material Hamiltonian
[Eq. (66)] (Stefano et al., 2019):

HmðAαÞ ¼ R1αHmR
†
1α: ð102Þ

Equation (102) holds in and only in the EDA.
The transverse electromagnetic energy can be

similarly written as Hph;α ¼R0αHphR
†
0α, where Hph ¼Hph;0 ¼

ðv=2ÞðΠ2þω2A2Þ. We see therefore that within the present
simplified setting the Hamiltonian can be written as

Hα ¼ R1αHmR
†
1α þ R0αHphR

†
0α: ð103Þ

Equation (103) is an approximate special case of the more
general and fundamental expression

Hα ¼ Rα0αHmðAα0 ÞR†
α0α þ Rα00αHph;α00R

†
α00α; ð104Þ

which follows immediately from Eqs. (27) and (28).
Equation (104) reduces to Eq. (103) when we choose α0 ¼
1 and α00 ¼ 0, and we make use of Hph;0 ¼ Hph and
HmðA1Þ ¼ Hm, which holds only because of the approxima-
tions and simplifying assumptions made. Note that without the
latter the derivation of HmðAαÞ via the unitary transformation
of Hm is impossible.

B. Material truncation

We now consider truncating the material Hilbert space (De
Bernardis, Jaako, and Rabl, 2018; De Bernardis et al., 2018;
Roth, Hassler, and DiVincenzo, 2019; Stefano et al., 2019;
Stokes and Nazir, 2019, 2020a; Settineri et al., 2021). Since
the canonical momentum p represents a different physical
observable for each different value of α, the same is true of
Hm. Therefore, projecting onto a finite number of eigenstates
of Hm is a gauge-dependent procedure. Eigenvalues of Hm
are denoted as ϵn. The projection P onto the first two levels
jϵ0i and jϵ1i of Hm gives PHmP ¼ ωmσ

þσ− þ ϵ0 and
PqxP ¼ dσx, where σþ ¼ jϵ1ihϵ0j, σ− ¼ jϵ0ihϵ1j, and
σx ¼ σþ þ σ−. The first transition energy is denoted as
ωm ¼ ϵ1 − ϵ0, and the transition dipole moment d ¼
hϵ0jqxjϵ1i is assumed to be real. More generally, P may
project onto any finite number of levels.
There are many ways to define two-level models. In

general, a truncation of Hα is a P-dependent map MP∶Hα →
MPðHαÞ, such that MPðHαÞ∶PH → PH is an Hermitian
operator on PH (Stokes and Nazir, 2020a). If, unlike the
Hα’s, the MPðHαÞ’s are not equivalent for different α’s, then
truncation has broken the gauge invariance of the theory. To
obtain what we refer to as the standard α-gauge two-level
model, one replaces x and p with their projected counterparts
PxP and PpP to obtain

MPðHαÞ¼H2
α ¼PHmPþPHphPþVαðPxP;PpPÞ; ð105Þ

where Vαðx; pÞ ¼ Hα −Hm −Hph is the interaction
Hamiltonian. The terminology “standard” is used because
this definition of MP is capable of yielding the standard
quantum Rabi model (QRM) that is ubiquitous in light-
matter physics. Specifically, a standard QRM is obtained by
choosing α ¼ 1 in Eq. (105). More generally, for distinct
values of α the Hamiltonians H2

α are not equivalent to each
other (De Bernardis et al., 2018; Stokes and Nazir, 2019,
2021b), because P represents a different physical projection
in each gauge.
Of importance when defining two-level models is the

recognition that for an Hermitian operator O, projection
P ≠ I, and nonlinear function f we have

PfðOÞP ≠ fðPOPÞ: ð106Þ

Thus, for a general material operator Oðx; pÞ we have
POðx; pÞP ≠ OðPxP; PpPÞ. This becomes an equality if
and only if O is linear in x and p (Stokes and Nazir,
2019). As a result, various alternative truncating maps have
been identified in the literature (De Bernardis, Jaako, and
Rabl, 2018; De Bernardis et al., 2018; Stefano et al., 2019;
Stokes and Nazir, 2019, 2020a; Taylor et al., 2020; Settineri
et al., 2021).
Two further methods were proposed by Stefano et al.

(2019); see also Taylor et al. (2020). Both methods require the
EDA and involve replacing the unitary transformation Rαα0 in
Eq. (103) with a two-level model counterpart. There are two
different two-level model versions of Rαα0∶H → H, which are
defined as
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Gαα0 ¼ PRαα0P ¼ P exp½iqðα − α0ÞxA�P; ð107Þ

T αα0 ¼ exp½iqðα − α0ÞPxPA� ≠ Gαα0 ; ð108Þ

where the final inequality holds because ePxP ≠ PexP;
cf. Eq. (106). Moreover, we cannot expect this inequality
to become an approximate equality even for highly anhar-
monic material systems. An arbitrary operator O that is not
necessarily diagonal in momentum space is defined by

½Oψ �ðp; AÞ ¼
Z

dp0dA0Oðp; p0; A; A0Þψðp0; A0Þ; ð109Þ

where ψ is the wave function of the composite system
represented in momentum space for the matter subsystem
and in position space (A space) for the photonic mode. It is
straightforward to show that Rαα0 enacts a gauge transforma-
tion of the momentum arguments of O as

½Rαα0OR†
αα0ψ �ðp; AÞ ¼

Z
dp0dA0Oðp − q½α − α0�A; p0

− q½α − α0�A0; A; A0Þψðp0; A0Þ.
ð110Þ

We may write this more succinctly using the shorthand
notation Rαα0OðpÞR†

αα0 ¼ Oðp − q½α − α0�AÞ, in which it is
to be understood that the gauge transformation applies to both
momentum arguments of a generally nondiagonal operator.
Since here both O and ψ are arbitrary, these results apply in
particular to a projected operator F ¼ POP and a projected
vector Pψ. Furthermore, since Gαα0 ¼ PRαα0P and P ¼ P2, it
follows again using shorthand notation that

Gαα0FðpÞG†
αα0 ¼ PFðp − q½α − α0�AÞP. ð111Þ

Therefore, Gαα0 implements a gauge transformation [as defined
by Eqs. (96) and (97)] within a projected operator and then
reprojects the result. By replacing Rαα0 in Eq. (103) [or
Eq. (104)] with Gαα0 , one obtains the following new kind
of two-level model:

H̃2
α ¼ G1αPHmPG

†
1α þ G0αPHphPG

†
0α: ð112Þ

These models are not equivalent for different α.
The other two-level model transformation T αα0 , which is

given in Eq. (108), is unitary (unlike Gαα0 ), but it does not
implement a gauge change [in the sense of Eqs. (96) and (97)],
even when one considers a projected operator POP ¼ F in the
sense previously described, that is,

T αα0FðpÞT αα0 ≠ PF½p − ðα − α0ÞqA�P: ð113Þ

A two-level model unitary transformation cannot implement
the minimal coupling replacement p → p − qA, because the
required operator algebra cannot be supported by the truncated
space (Weyl, 1927). In general, the transformations Rαα0 ,
PRαα0 , Gαα0 , and T αα0 trivially coincide in (and only in) the
limit P → I, which is the limit of no truncation.
By replacing Rαα0 in Eq. (103) [or Eq. (104)] with T αα0 , one

obtains the two-level models

h21ðαÞ ¼ T 1αPHmPT
†
1α þ T 0αPHphPT

†
0α ¼ T 1αH2

1T
†
1α;

ð114Þ

where the second equality shows that these models are
equivalent to the standard multipolar-gauge QRM H2

1. In
particular, h21ð1Þ ¼ H2

1. We note that the entire class fh21ðαÞg
results from truncation within the multipolar gauge (Stokes
and Nazir, 2020a) (see also Sec. IV.C), so we refer to this class
as a multipolar-gauge equivalence class. As discussed in
Sec. IV.C, the transformations T αα0 refer to a phase-invariance
principle defined entirely within a truncated space in terms
of xP ¼ PxP ≠ x.
Although it is clear that T αα0 ≠ Gαα0 , it is instructive to

consider how the associated two-level models in Eqs. (112)
and (114) differ. When the dimensionless coupling parameter
is defined as η ¼ d=

ffiffiffiffiffiffiffiffiffi
2ωv

p
and x̄ ¼ hϵ0jxjϵ1i ¼ d=q, if

we assume that PxQ ≪ PxP, where Q ¼ I − P, and we
neglect the terms PxQ and QxP in the exponent of R10, we
obtain

G10 ≈ P exp ½iηðσx þQxQ=x̄Þða† þ aÞ�P
¼ P exp ½iησxða† þ aÞ�P ¼ T 10. ð115Þ

However, as already noted, such a naive approximation
cannot be justified, even for a sufficiently anharmonic
material system. To see this, note that by employing this
approximation and then following exactly the same steps as
previously detailed one obtains T αα0 ≈ PRαα0 . From this one
obtains H2

0 ≈ h21ð0Þ, where the left-hand side is the standard
Coulomb-gauge Rabi model and the right-hand side is
equivalent to the standard multipolar-gauge Rabi model
H2

1. Since it is known that the spectra of H2
0 and H2

1 are
markedly different (De Bernardis et al., 2018; Stefano et al.,
2019; Stokes and Nazir, 2019), it follows that in general one
cannot neglect terms PxQ and QxP in the exponent of Rαα0

even for highly anharmonic material systems. The multipo-
lar-gauge models h21ðαÞ are indeed significantly different
than H̃2

0, exemplifying the importance of inequality (106)
(Stokes and Nazir, 2020a).
The approximate equality T αα0 ≈ Gαα0 does result if the

exponentials on both sides are expanded to linear order in q. In
this case the two-level models H̃2

α are then the same as the
models h21ðαÞ and they must be equivalent to each other for
different α. However, a first-order expansion of the model
h21ðαÞ simply gives back the standard two-level modelH2

α with
quadratic terms neglected. It follows that in the weak-coupling
regime all two-level models are the same H̃2

α ¼ h21ðαÞ ¼ H2
α.

This is the only regime in which such an equivalence can
generally be obtained. As the coupling strength increases, the
first-order expansion in q becomes progressively worse, so
T αα0 and Gαα0 become progressively different. Thus, if a
gauge’s truncation were found to be accurate for a particular
observable in a particular situation, then as the coupling
strength increases, truncation in any other gauge could be
expected to become progressively less accurate by compari-
son. The relative optimality of different two-level models is
discussed in Sec. IV.F.
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C. Phase invariance with respect to truncated position

The Supplemental Material of Stefano et al. (2019) (note 1)
provided an alternative derivation of the multipolar equiv-
alence class fh21ðαÞg via the imposition of a phase-invariance
principle defined using the truncated operator xP ≔ PxP.
More generally, as shown by Stokes and Nazir (2020a), this
principle can be applied in any gauge α, and it yields an
equivalence class fh2αðα0Þg.
In the first quantized setting the gauge principle asserts that

the mechanical energy HmðAαÞ in Eq. (99) satisfies local
phase invariance (gauge invariance),

hψ jHmðAαÞjψi ¼ hψ 0jHmðA0
αÞjψ 0i; ð116Þ

where jψ 0i ¼ eiqχ jψi and A0
α ¼ Aα þ∇χ. In particular, the

equality hψαjHmðAαÞjψαi ¼ hψα0 jHmðAα0 Þjψα0 i, in which
jψα0 i ¼ Rαα0 jψαi, expresses gauge invariance within the
α-gauge framework and is a special case of Eq. (116) obtained
by letting χ ¼ χα0 − χα.
To define the class fh21ðαÞg, the gauge-fixing transforma-

tion R1α was replaced by T 1α in Eq. (102), and the multipolar-
gauge mechanical energy HmðA1Þ ¼ Hm was replaced by its
projection PHmðA1ÞP. More generally, however, Eqs. (102)
and HmðA1Þ ¼ Hm are special cases of Eqs. (101) and (99),
respectively. If we replace Rαα0 with T αα0 and Hm;αðAÞ with
H2

mðAαÞ ≔ PHmðAαÞP on the right-hand side of Eq. (101),
we obtain the following truncated α0-“gauge” mechanical
energy:

H2
m;αðAα0 Þ ≔ T αα0H2

mðAαÞT †
αα0 : ð117Þ

This truncated energy satisfies a form of phase invariance
analogous to Eq. (116) but defined with respect to the
truncated position operator xP ≔ PxP. The phase transforma-
tion is defined by

UxP ¼ eiqχðxPÞ ¼ eiβeidΛσ
x
; ð118Þ

where β and Λ are constants depending on the choice of
function χ. The global phase eiβ can be ignored. Letting
jψ2i ¼ Pjψi denote an arbitrary truncated state, we have

hψ2jH2
m;αðAα0 Þjψ2i ¼ hψ 0

2jH2
m;αðA0

α0 Þjψ 0
2i; ð119Þ

where A0
α0 ¼ Aα0 þ ∂xPχðxPÞ ¼ Aα0 þ Λ and jψ 0

2i ¼ UxP jψ2i.
Thus, we see thatH2

m;αðAα0 Þ is the mechanical energy of the α0

gauge, where here the term gauge does not possess the same
meaning as in the nontruncated theory but instead refers to xP-
phase invariance within the α-gauge truncated mechanical
energy. Subsequently, a gauge transformation of Aα0 under this
principle is A0

α0 ¼ Aα0 þ Λ.
To obtain the complete α0-dependent Hamiltonian, one adds

the transverse electromagnetic energyHph;α0, which is defined
in Eq. (100), to the mechanical energy. This gives the total
energy. Noting that ET ¼ −Π − α0dσx=v ¼ −Π − PTα0 is the
transverse electric field after truncation, the truncated trans-
verse electromagnetic energy H2

ph;α0 may be defined as

H2
ph;α0 ≔

v
2

��
Πþ α0dσx

v

�
2

þ ω2A2

�

¼ T αα0H2
ph;αT

†
αα0 ¼ T 0α0HphT

†
0α0 : ð120Þ

The second equality in Eq. (120) follows because truncation
does not alter the algebra of photonic operators, such that T αα0

transforms Π in the same manner as a gauge transformation.
Equations (117) and (120) yield the full α0-dependent two-
level model as the total energy

h2αðα0Þ ¼ H2
m;αðAα0 Þ þH2

ph;α0 ¼ T αα0H2
αT

†
αα0 : ð121Þ

Thus, the equivalence class fh2αðα0Þg can be obtained as the
class of Hamiltonians satisfying xP-phase invariance after
truncation within the α gauge. The class fh21ðαÞg derived by
Stefano et al. (2019), Taylor et al. (2020), and Settineri et al.
(2021) is the special case resulting from the application
of the xP-phase-invariance principle to the multipolar-gauge
truncated theory. This has the appearance of an application
to the free theory only due to approximations that have
implied that A1 ≡ 0 such that p − qA1 ¼ p, and therefore
that HmðAαÞ≡ R1αHmðA1ÞR†

1α ¼ R1αHmR
†
1α.

D. Relating models belonging to different equivalence classes

Further insight into the nature of the models h2αðα0Þ may be
obtained by asking how any given standard two-level model
must be modified in order that it coincides with the standard
two-level model found using a different gauge. For example,
we consider the term q2A2=2m of the Coulomb-gauge
Hamiltonian. The coefficient q2=2m satisfies the Thomas-
Reiche-Kuhn sum rule

X
n

ωnldinld
j
ln ¼ i

q2

2m
hϵlj½pi; rj�jϵli ¼ δij

q2

2m
: ð122Þ

Equation (122) rests directly on the CCR algebra, which as
already noted can be supported only in an infinite-dimensional
Hilbert space. Equation (122) is independent of the level l
appearing on the left-hand side. However, if on the left-hand
side we restrict ourselves to two levels n; l ¼ 0; 1 with energy
difference ωm, then for l ¼ 1 Eq. (122) reads

X
n

ωn1din1d
j
1n ¼ −ωmdi10d

j
01; ð123Þ

whereas for l ¼ 0 Eq. (122) reads

X
n

ωn0din0d
j
0n ¼ þωmdi10d

j
01: ð124Þ

The result obtained now depends on whether l is the ground or
the excited state. As first noted by Stokes and Nazir (2018,
2019), if one takes the two-level projection of the Coulomb-
gauge self-energy term, namely, q2A2ðjϵ0ihϵ0jþjϵ1ihϵ1jÞ=
2m, and one applies Eqs. (123) and (124) to the excited-state
projection q2jϵ1ihϵ1j=2m and the ground-state projection
q2jϵ0ihϵ0j=2m, respectively, then one arrives at the following
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modified term, which now constitutes a nontrivial light-matter
interaction:

q2

2m
A2 ↔ −ωmðd ·AÞ2σz; ð125Þ

where d ≔ d10 and σz ¼ jϵ1ihϵ1j − jϵ0ihϵ0j. As noted by
Stefano et al. (2019) the modification (125) is ad hoc. It
results in a model that no longer has the interaction of the
Coulomb gauge. However, to second order in q the model
obtained coincides with the multipolar-gauge model h21ð0Þ
(Stefano et al., 2019). In this sense the truncated gauge
principle can reveal what nonunitary modifications are
required in order to relate nonequivalent truncated theories.
As already noted, to first order in q all two-level models are

equivalent without any modification. To second order in q,
forcing equivalence requires a nonunitary modification of at
least one of the models involved. The modification (125)
suffices to give the Coulomb-gauge model H2

0 from the model
h21ð0Þ if and only if all higher-order terms in the expansion of
h21ð0Þ in powers of the coupling strength are neglected. This
shows that as the coupling strength increases, increasingly
drastic nonunitary modifications will be needed to transform a
given model into one that belongs to a different equivalence
class. This perspective is another way to understand the
increasing differencewith increasing coupling strength between
the transformations PRαα0 and Gαα0 and the rotation T αα0 .

E. Representing observables after truncation

It has been argued in the literature that the transformation
T 10 constitutes a two-level model gauge transformation, and
that, since T 10 is unitary, this resolves any gauge noninvariance
due to truncation (Stefano et al., 2019; Taylor et al., 2020;
Settineri et al., 2021). However, the inequality (113) states that
T 1α does not generally implement a gauge change, as defined
by Eqs. (96) and (97). The action of T αα0 coincides with that
of the gauge transformation Rαα0 followed by projection
P only when acting on operators that commute with Rαα0

(functions of x and A) and linear functions of Π, for which
PRαα0ΠR

†
αα0P ¼ T αα0ΠT

†
αα0 . As first shown by Stokes and

Nazir (2020a) (reviewed in Sec. IV.C), the invariance of the
models related by T αα0 is xP-phase invariance [as defined by
Eq. (116)] rather than gauge invariance [as defined byEq. (70)].
This is not merely a matter of semantics but an important
mathematical distinction.
According to the general quantum postulates given in

Sec. III.A for the identification of states and observables with
vectors and operators, different gauges constitute different
such associations within the starting theory (pretruncation). If
we assume that in gauges α and α0, the observable O is
represented by operators oα and oα0 , and if we assume that
after truncation O is represented by MPðoαÞ and MPðoα0 Þ,
then these truncated representations ofO are not connected by
a unitary operator in general (Fig. 5). A truncating map MP
does not preserve the algebra of material operators, and thus it
cannot preserve the unitary relation between distinct associ-
ations of operators with observables (gauges) made within the
starting theory.

The word or words used to label the freedom to choose
among unitarily equivalent representations of an observable
within quantum theory is immaterial. In particular, the label
gauge freedom has been used for this purpose within truncated
theories (Stefano et al., 2019; Settineri et al., 2021).
Specifically, within a starting theory the different representa-
tions of observable O that compose the equivalence class

CðOÞ ¼ fROR†∶R unitaryg ð126Þ
can be referred to as different gauges, and similarly, in a
truncated theory subsequently obtained using a map MP, the
truncated representations of O belonging to

C2ðMP;OÞ¼ fU2O2ðU2Þ†∶O2 ¼MPðOÞ and U2 unitaryg
ð127Þ

could also be referred to as different gauges. However, given a
rotation U2 within the truncated space, in general we have

U2MPðOÞðU2Þ† ≠ MPðROR†Þ ð128Þ

for any rotation R. In other words,

MP(CðOÞ) ≠ C2ðMP;OÞ: ð129Þ

This proves that identifying the equivalences that occur within
the truncated and nontruncated theories would be erroneous.
Specifically, one must not surreptitiously and incorrectly
equate the left- and right-hand sides of inequality (129) simply
because one has chosen to refer to both the elements of CðOÞ
and the elements of C2ðMP;OÞ using the same label (gauges).
The definition of the class C2ðMP;OÞ relies upon an

accurate truncation O2 ¼ MPðOÞ having first been found;
that is, C2ðMP;OÞ cannot be defined until a map MP has first
been applied to one of the elements of CðOÞ to give O2. Yet,
applying MP to different elements of CðOÞ will give different

FIG. 5. Breakdown of gauge invariance under a truncating map
MP. The equivalent representations O and O0 of the same
observable O are not equivalent after the application of MP. A
two-level unitary such as T αα0 cannot produce from the truncated
α-gauge theory the same observable ↔ operator association as
defined by a distinct gauge α0. The “correct” associationO ↔ O2

after truncation can be defined only by identifying a gauge in
which the truncation O2 is accurate. Subsequently, any two-level
unitary operator can be used to define an equivalent truncated
representation.
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(nonequivalent) operators O2; that is, the left-hand side of
inequality (129) is not a unitary equivalence class. Thus, given
a map MP, every different (but equivalent) element of CðOÞ
defines a different equivalence class C2ðMP;OÞ. These differ-
ent equivalence classes are not equivalent, which constitutes
gauge noninvariance. The fact that each C2ðMP;OÞ is an
equivalence class constitutes xP-phase invariance. Within
C2ðMP;OÞ any two elements are connected by an xP-phase
transformation. Thus, gauge noninvariance and xP-phase
invariance are necessarily simultaneously satisfied by trun-
cated models. It follows that the two invariances cannot
coincide and exhibiting one of these invariances cannot
resolve a breakdown of the other. We note that, although
we have focused on two-level truncations, the preceding
general analysis holds for any P ≠ I.
In summary, the possibility of applying unitary rotations

after truncation does not eliminate the problem of first
determining a gauge and a map MP that combined provide
an accurate representation O2 of the observable of interest O.
This problem arises because a truncating map MP breaks
gauge invariance.

F. Optimality of truncations

We now discuss which two-level models are known to be
accurate in which situations. Subsequently, we discuss the
importance of two-level model predictions for gauge ambi-
guities. Material truncation should be expected to offer a
robust approximation when the material system is sufficiently
anharmonic that the orthogonal subspace QH is well sepa-
rated from PH, where PH ⊕ QH ¼ H is the full Hilbert
space. Such regimes may or may not be of experimental
importance when one considers specific implementations of
light-matter physics models.
We first suppose we have a highly anharmonic system at

arbitrary coupling strength and only a single radiation mode.
The Coulomb-gauge coupling involves the canonical momen-
tum p, which possesses matrix elements in the material basis
fjϵnig that scale with material transition frequencies as

qpnl ¼ imωnldnl: ð130Þ

As first explained by De Bernardis et al. (2018), transitions to
higher states are not suppressed within the Coulomb gauge,
because the increasing energy gap is compensated for by an
increasing coupling matrix element. In contrast, the multipolar
coupling involves only the dipole moment. Therefore, for
sufficiently strong coupling where two-level models are not
equivalent, the Coulomb-gauge truncation will generally
perform poorly in comparison to the multipolar-gauge trun-
cation as a general approximation of the nontruncated theory.
These points were also elaborated on by Stokes and Nazir
(2019) via a Schrieffer-Wolff-type analysis. As an illustrative
example, we take a double-well dipole with potential
Vðθ;ϕÞ ¼ −θr2=2þ ϕr4=4, where θ and ϕ control the shape
of the double well (De Bernardis et al., 2018; Stefano et al.,
2019; Stokes and Nazir, 2020b). The material Hamiltonian is
therefore (De Bernardis et al., 2018)

Hα
m ¼ E

2

�
−∂2ζ − βζ2 þ ζ4

2

�
; ð131Þ

where we have defined the dimensionless variable ζ ¼ r=r0
with r0 ¼ ð1=½mϕ�Þ1=6, along with E ¼ 1=mr20 and β ¼ θmr40.
We first consider the case of resonance δ ¼ ω=ωm ¼ 1

together with a high anharmonicity μ ¼ ðω21 − ωmÞ=ωm of
μ ¼ 70. We compare the unique spectrum of the nontruncated
Hamiltonian Hα to the different approximations given by the
QRMs H2

1 and H2
0, as well as with the nonstandard Coulomb-

gauge model H̃2
0 defined by Eq. (112). We note that for each α

the standard two-level model H2
α can be selected as the

representative of its unitary equivalence class fh2αðα0Þg with-
out loss of generality. As shown in Fig. 6, the multipolar-
gauge QRM H2

1 is accurate for predicting transition spectra in
this regime while the Coulomb-gauge models H2

0 and H̃2
0 are

qualitatively similar and inaccurate for strong enough cou-
plings. There are a number of factors determining the
optimality of a truncation.
For example, when the detuning δ ¼ ω=ω is large (small)

the Coulomb-gauge two-level model coupling η0 ¼
ðωm=ωÞd=

ffiffiffiffiffiffiffiffiffi
2ωv

p
is weaker (stronger) than the corresponding

multipolar-gauge coupling η ¼ d=
ffiffiffiffiffiffiffiffiffi
2ωv

p ¼ δη0. The two-level
model Hamiltonian PHαP constitutes the first-order (in Vα)
contribution to a more general effective Hamiltonian defined
over the two-level subspace PH (Wilson and Hubac, 2010). If
the model PHαP is found to be inaccurate, then higher-order
corrections can be calculated perturbatively using various
forms of perturbation theory (Wilson and Hubac, 2010). In
particular, the second-order contribution is straightforwardly
obtainable for a two-level system and single mode and should
yield a two-level model with improved accuracy. In a single-
mode theory, such higher-order contributions will tend to be
larger toward the Coulomb-gauge value α ¼ 0 because as
noted the energy gap to the orthogonal subspace QH is
compensated for by the form of the Coulomb-gauge coupling.

FIG. 6. Transition spectra (relative to the ground energy G)
of two-level models are compared to the exact transition
spectrum (points), assuming a material anharmonicity of μ ≔
ðω21 − ωmÞ=ωm ¼ 70 and a resonance δ ≔ ω=ωm ¼ 1. The
multipolar-gauge QRM (black curves) is generally accurate in
this regime, in the sense that one must go to high energy levels
before discrepancies with the exact spectrum are found. The two
Coulomb-gauge two-level models H2

0 (lighter curves) and H̃2
0

(dashed curves) are generally inaccurate and are qualitatively
similar.
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When more radiation modes are considered, the optimal
gauge may often be shifted away from the multipolar gauge
toward the Coulomb gauge (Roth, Hassler, and DiVincenzo,
2019). The multipolar and Coulomb-gauge linear interactions
scale as

ffiffiffiffi
ω

p
and 1=

ffiffiffiffi
ω

p
, respectively. The introduction of more

radiation modes causes the multipolar-gauge truncation to
become suboptimal because the effects of nonresonant modes
are more pronounced in this gauge, as further discussed in
Sec. VI.A. Results illustrating this effect within the strong-
coupling regime were given by Roth, Hassler, and DiVincenzo
(2019). When more dipoles are considered but only a single
radiation mode is retained, the multipolar-gauge truncation is
again typically optimal at sufficiently large anharmonicity,
and accuracy increases with the number of dipoles considered
(Stokes and Nazir, 2020b).
Rouse et al. (2021) addressed the issue of gauge non-

invariance due to truncation using a novel description in terms
of dual coordinates. This is reviewed in note X of the
Supplemental Material (245). It was found that approxima-
tions within the multipolar gauge (α ¼ 1) will typically most
accurately represent the physics of small, bound dipoles
interacting with a single mode. A wide range of system types
are considered along with the effects of both material
truncation and the EDA.
Ashida, İmamoğlu, and Demler (2021) identified a Pauli-

Fierz-type representation obtained from the Coulomb gauge
by unitary transformation. For a one-dimensional material
system coupled to a single cavity mode with frequency ω, the
transformation is defined by U ¼ e−iξgpπ. Here π ¼ iðc† − cÞ,
with c a renormalized cavity annihilation operator for a

photon with frequency ω̃, where ω̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ g2

p
and xω̃g is

a bare coupling strength defined using the Coulomb-gauge
Hamiltonian with xω̃ ¼ 1=

ffiffiffiffiffiffiffi
mω̃

p
. The renormalized coupling

ξg ≔ gxω̃=ω̃ is a nonconstant function of the bare coupling
parameter g with a maximum value close to g ¼ 1.
The idea of the Pauli-Fierz representation is to eliminate

the component of the transverse field tied to material
charges (Cohen-Tannoudji, Dupont-Roc, and Grynberg,
2010). The Hamiltonian within the transformed frame is
HU ¼Hmðp;rþξgπÞþ ω̃c†c, where Hmðp;rÞ≔p2=2meff þ
VðrÞ and the effective mass is defined by meff ¼
m½1þ 2ðg=ωÞ2�. For an increasing g the renormalized fre-
quency ω̃ is increasingly dominant, while the coupling ξg
eventually begins to decrease. For sufficiently large g the
eigenvectors of HU become approximately separable despite
remaining highly entangled in the Coulomb gauge.
If V has local minima near which it can be expanded as

δV ∝ r2, then since meff increases quadratically with g the
eigenfunctions of Hmðp; rÞ are increasingly localized around
the potential minima and the low-lying spectrum of HU is
that of a harmonic oscillator with narrowing level spacing
δE ∝ 1=g. Ashida, İmamoğlu, and Demler (2021) further
argued that truncation is increasingly well justified within
HU at larger g due to increased localization of the eigenstates
of Hmðp; rÞ that results from the dependence on meff . Ashida,
İmamoğlu, and Demler (2021) studied a double-well dipole as
an application example. They found that for a shallow double
well even the multipolar-gauge truncation fails quite severely
at extreme-coupling strengths, and even in the case of only a

single mode, whereas truncation in the Pauli-Fierz frame
remains accurate. Ashida, İmamoğlu, and Demler (2021) also
provided a multimode generalization of their Pauli-Fierz-type
transformation.
The relative accuracy of material truncations performed in

different regimes and gauges is now well understood, at least
for simple light-matter systems. In particular, truncation will
break down as a general approximation for sufficiently
harmonic material systems. However, in simple models the
accuracy of a given truncation is of limited importance
because the truncation is straightforwardly avoidable.
Truncation is most significant in its capacity to reveal

important qualitative physical implications. In particular, the
onset of ultrastrong coupling (USC) has often been identified
through a departure from Jaynes-Cummings physics due to
the breakdown of the rotating-wave approximation (RWA). In
the USC regime the qualitative low-energy physics of the
Jaynes-Cummings model (JCM) is markedly different
than that of the QRM. For example, the JCM predicts no
ground-state entanglement and no ground-state photon popu-
lation for all coupling strengths. The contrary predictions of
the QRM have previously been regarded as defining
ultrastrong-coupling phenomenology. However, Stokes and
Nazir (2019) showed that there is a gauge choice that yields a
Jaynes-Cummings model without performing the RWA. The
corresponding gauge parameter αJC varies with the coupling
and detuning parameters of the theory, but this is certainly
permissible. It simply amounts to choosing a nonconstant
gauge function; see Sec. II.D.
For a material harmonic oscillator two-level truncation is

essentially as poor a general approximation as it can ever be,
yet for this system the ground state of the truncated model is
exact in the JC gauge (PjGJCi ¼ jGJCi); see Sec. V.C.1. As a
result, there are gauges α ≠ 1 in which the two-level trunca-
tion of material systems with low anharmonicity remains
accurate for low-energy states, despite truncation in any gauge
generally breaking down for higher levels. Stokes and Nazir
(2019) exemplified an experimentally realistic regime of a
fluxonium LC-oscillator system with anharmonicity μ ≈ 3.15,
such that two-level models remain accurate for predictions up
to the first excited state and for which the JC-gauge two-level

FIG. 7. First transition energies of the two-level models H2
1

(lower curve) and H2
JC (upper curve) compared to the exact

transition energy (middle curve), assuming a material anharmo-
nicity of μ ≈ 3 and a resonance δ ¼ 1. The αJC-gauge two-level
model can be more accurate than the multipolar-gauge QRM in
the ultrastrong-coupling regime.
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model is usually more accurate. It follows that low-energy
weak-coupling phenomenology can persist even within the
USC regime, such that the phenomenology previously viewed
as definitive in the USC regime need not hold even within
gauge-invariant nontruncated models. Essentially the same
findings are obtained for a double-well dipole, as illustrated
in Fig. 7.
We now turn our attention to photon number observables.

The dipole-cavity Hamiltonian in Eq. (98) possesses a cavity
self-energy term q2A2

α=2m that vanishes only for α ¼ 1

(A1 ¼ 0). Since it acts nontrivially only within the photonic
Hilbert space, this term is unaffected by material truncation. It
can be absorbed into the cavity Hamiltonian using a local
Bogoliubov transformation. Thus, each gauge α ≠ 1 possesses
two possible definitions of photon number that do and do not
include this renormalization, respectively. In the JC gauge the
renormalized photon number predicted by the JC-gauge two-
level model is identically zero in the ground state because, in
terms of the corresponding photonic operators, the JC-gauge

two-levelmodel takes the Jaynes-Cummings form.On the other
hand, the ground-state average of the bare JC-gauge photon
number (which does not include the A2

JC term) can possess
nonzero values for sufficiently large coupling strengths, even
when the average is found using the JC-gauge truncatedmodel.
Moreover, when the two-level truncation is avoided, both
renormalized and nonrenormalized (bare) JC-gauge photon
numbers can be nonzero in the ground state due to counter-
rotating terms connecting to dipole levels above the first.
Figures 8 and 9 show the exact, i.e., nontruncated, ground-

state bare photon numbers defined relative to the multipolar
(flux), Coulomb (charge), and JC gauges for fluxonium and
double-well dipole systems, respectively. In the cases of the
Coulomb and JC gauges these photon numbers do not include
in their definitions the A2

α-type terms. In particular, for
sufficiently large coupling strengths, the predicted JC-gauge
photon number average is nonzero due to both the A2

JC term
and counterrotating terms to higher dipolar levels. To illustrate
different regimes of anharmonicity, we have assumed that μ ≈
3 for the fluxonium system and μ ≈ 70 for the double-well
dipole. In both cases the ground-state photonJC population is
highly suppressed when compared to the ground-state photon0
and photon1 populations. All of these predictions are gauge
invariant, having been obtained from the nontruncated theory.

V. TIME-DEPENDENT INTERACTIONS AND
ADIABATIC SWITCHING

Time-dependent interactions arise in a number of contexts
in light-matter physics. Here the notion of a process in which
material charges exchange photons is elementary. The concept
arises from scattering theory wherein the interaction
V ¼ H − h, where h is called the unperturbed Hamiltonian,
is adiabatically switched on and off over an infinite duration.
Such an idealization may not, however, be applicable in
extreme light-matter interaction regimes. Gauge freedom in
scattering theory has been discussed extensively in the context
of atomic line shape and level-shift phenomena (Lamb, 1952;
Low, 1952; Power and Zienau, 1959; Fried, 1973; Bassani,
Forney, and Quattropani, 1977; Kobe, 1978; Cohen-
Tannoudji, Dupont-Roc, and Grynberg, 1989; Baxter,
Babiker, and Loudon, 1990; Woolley, 1998, 2000; Stokes,
2013). We explain why subsystem gauge relativity can be
ignored in calculating the S matrix (Cohen-Tannoudji,
Dupont-Roc, and Grynberg, 1989). We then directly demon-
strate that conventional quantum optical approximations
mimic the S matrix, and thereby eliminate subsystem gauge
relativity. Only within such approximations do atoms and
photons defined as quantum subsystems become ostensibly
unique concepts for a given definition of h. It should also be
noted, however, that different definitions of h are available and
might be considered. We also discuss nonadiabatic switching
of ultrastrong couplings whereby subsystem gauge relativity
becomes important generally.

A. Adiabatic switching and a unique invariance
property of the S matrix

As explained in Secs. III.B–III.D, the task we are faced with
is the determination of which gauge-invariant subsystem

FIG. 8. The exact ground-state average numbers of flux-gauge
(upper curve) and JC-gauge (lower curve) photons with coupling
strength η for a fluxonium system assuming an anharmonicity of
μ ≈ 3 and a resonance of δ ¼ 1. The number of JC-gauge photons
is much lower than the number of flux-gauge photons. An
appreciable JC-gauge photon population occurs only for large
couplings approaching the deep-strong limit η ¼ 1.

FIG. 9. The exact ground-state average numbers of multipolar-
gauge (upper curve), Coulomb-gauge (middle curve), and JC-
gauge (lower curve) photons for a double-well dipolar system
assuming an anharmonicity of μ ≈ 70 and a resonance of δ ¼ 1.
The number of JC-gauge photons is appreciable only well into the
USC regime η > 1=2.
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definitions are relevant in any given situation. However, if the
S matrix is applicable in providing all physical predictions,
we are able to completely ignore this question. The sub-
systems become ostensibly unique within scattering theory
because of the adiabatic interaction-switching condition
therein. Feynman diagrams can be used as a mnemonic when
calculating the terms in a perturbative expansion of the
Hamiltonian resolvent used to define the S matrix, which is
the primary source of predictions in particle physics. This
gives rise to the notions of “real” and “virtual” processes.
The α-gauge Hamiltonian can be partitioned as

Hα ¼ hþ Vα, where h ¼ Hm þHph is the unperturbed
Hamiltonian and Vα is the interaction. The unperturbed energy
eigenvalues and eigenvectors are defined by hjϵni ¼ ϵnjϵni.
The vectors fjϵnig are each a tensor product of an eigenvector
of Hm and an eigenvector of Hph (photon number state).
Suppose that physical states Sn and Sm are represented in
gauge α by vectors jϵni and jϵmi. The same states are
represented in gauge α0 by vectors jϵ0ni ¼ Rαα0 jϵni and
jϵ0mi ¼ Rαα0 jϵmi, respectively; therefore, the bare eigenvectors
of h represent different physical states in each gauge (sub-
systems are gauge relative). The evolution operator generated
by Hα between times ti and tf is denoted Uαðti; tfÞ.
Evolutions in different gauges are related by Uα0 ðti; tfÞ ¼
Rαα0Uαðti; tfÞR†

αα0 . The probability amplitude AðSn; tf;Sm; tiÞ
to find the system at time tf in state Sn given that at time ti
its state was Sm is given by the corresponding evolution
operator matrix element and is the following gauge-invariant
prediction:

AðSn; tf;Sm;tiÞ¼ hϵnjUαðti; tfÞjϵmi
¼ hϵ0njUα0 ðti; tfÞjϵ0mi ðgauge invarianceÞ.

ð132Þ

It is equally clear that for α ≠ α0 we have

hϵnjUαðti; tfÞjϵmi ≠ hϵnjUα0 ðti; tfÞjϵmi ðgauge relativityÞ.
ð133Þ

Inequality (133) simply exemplifies the expected result that an
eigenvector of h represents a different physical state in each
different gauge. The left-hand side is α dependent, while the
right-hand side is α0 dependent, but both predictions are
gauge-invariant amplitudes of the form specified by Eq. (132).
We refer to this α dependence despite the gauge-invariance of
both predictions as gauge relativity.
In scattering theory it is assumed that Vα ¼ 0 in the remote

past and distant future t ¼ �∞, such that at these times
H ¼ h, so the unperturbed energy eigenvectors uniquely
represent the total energy eigenstates. It is then assumed that
the interaction is switched on and off adiabatically between
t ¼ �∞. Subsequently, the S matrix is formally defined by
(Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1989;
Weinberg, 2005)

Snm ¼ lim
t→∞

hϵnjUαIð−t; tÞjϵmi; ð134Þ

whereUαI denotes the corresponding evolution operator in the
interaction picture defined by h. In contrast to inequality (133),
the S matrix possesses the noteworthy property that it is
independent of α despite being defined in terms of the same
unperturbed vectors for every α. In other words, a special
property of the S matrix is that it is gauge nonrelative. In
calculating Snm, we do not have to transform the eigenvectors
of h in order to ensure that we are using the same physical
states in each gauge, as in Eq. (132) (Cohen-Tannoudji,
Dupont-Roc, and Grynberg, 1989). “Photonic” and “material”
excitations represented by the eigenstates of h become (at least
ostensibly) unique in scattering theory, so we do not have to
confront the question of which subsystem definitions are the
most relevant.
A general proof of this unique invariance property of the S

matrix was given for nonrelativistic QED by Woolley (1998,
2000). Essential for the proof is that the unperturbed operator
h is kept the same in each gauge. The S matrix can also be
expressed in the following form (Woolley, 1998, 2000;
Cohen-Tannoudji, Dupont-Roc, and Grynberg, 2010):

Snm ¼ δnm − 2πiTnmδðϵn − ϵmÞ; ð135Þ

where T is called the transition matrix, whose elements in
the unperturbed basis naturally depend on α. However, when it
is evaluated on energy shell as expressed by the delta function
in the S-matrix element Snm, all α dependence drops out
(Woolley, 1998, 2000). This bare-energy conservation prop-
erty is thereby seen as crucial in ensuring that the gauge
relativity of the subsystems can be ignored when one
calculates the S matrix.
We can define any process that conserves h as real. Avirtual

process is then one that is not real. In the S matrix, the latter
can occur only as intermediate processes constituting part of a
real process. More generally, however, the S matrix can be
understood as an infinite-time limit of the more general matrix
given by (Cohen-Tannoudji, Dupont-Roc, and Grynberg,
2010)

SðτÞnm ¼ δnm − 2πiTnmδ
ðτÞðϵn − ϵmÞ. ð136Þ

The function δðτÞðϵn − ϵmÞ has a peak at ϵn ¼ ϵm with a width
of the order of 1=τ, which is often taken as expressing the
conservation of bare energy to within 1=τ (Cohen-Tannoudji,
Dupont-Roc, and Grynberg, 2010). This is the heuristic
energy-time uncertainty relation, which it should be noted
is significantly different than the rigorous Heisenberg uncer-
tainty relation for conjugate operators.
The processes described by the matrix SðτÞ are not purely

real (zero energy uncertainty) unless τ → ∞. It is widely
regarded that physical processes are real. However, although
the total energy E represented by the operator Hα is auto-
matically conserved, there is nothing in quantum or classical
theory that requires a physical process to conserve only part of
this energy, such as the part represented by h. This is required
and occurs in the S matrix only because Hα ¼ h at the
beginning and the end of a scattering process. Yet, the limit of
infinite times with adiabatic switching is an idealization, such
that purely real processes cannot truly occur. In this sense the
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term real is a misnomer. Further still, only when a process is
real (i.e., it is a scattering process) can the gauge relativity of
the subsystems necessarily be ignored. In other words,
scattering theory is gauge nonrelativistic.
All predictions are fundamentally gauge invariant in the

sense of Eq. (132). Thus, both sides of inequality (133) are
gauge-invariant predictions, but beyond scattering theory, i.e.,
over finite times, we must recognize that they are different
gauge-invariant predictions. We are then confronted with the
task of determining which (if either) is more relevant.

B. Partitioning the Hamiltonian

Although the Smatrix is gauge nonrelative in the previously
defined sense, it can be defined only relative to a partition of
the Hamiltonian into unperturbed and interacting parts as
H ¼ hþ V, which is nonunique. Naively, one might attempt
to define V and h as the components that, respectively, do and
do not depend on a “coupling” parameter, of which the only
obvious choice is the electric charge q. According to this
definition, h would consist of the free photonic Hamiltonian
Hph ¼

R
d3k

P
λ ω½a†λðkÞaλðkÞ þ 1=2� together with particle

energies Hm ¼ P
charges p

2=ð2mÞ. The unperturbed vectors
would therefore be incapable of representing bound material
states. This definition would be of little use in applications of
QED at low energies whereby a separation of near-field
interactions is advantageous in allowing bound charge sys-
tems to emerge as the constituents of “unperturbed” stable
matter. In particular, the most commonly used definition of h
in nonrelativistic QED, namely, the definition suggested by
the Coulomb gauge that reads

h ¼
X
charges

p2

2m
þ VCoul þHph; ð137Þ

where VCoul ¼
R
d3xE2

L=2 is the Coulomb energy, would be
ruled out because VCoul depends on q.
A different criterion to define V would be that it must not

include any terms that act exclusively within the matter
Hilbert space or exclusively within the photonic Hilbert
space. In particular, V must not include any “self-interaction”
terms, which although dependent on q are of the form Om ⊗
Iph or Im ⊗ Oph. In the Coulomb gauge this criterion does
indeed lead to the commonly used definition of h given in
Eq. (137), and therefore to the familiar Coulomb-gauge
interaction Hamiltonian of the form −qp ·ATðrÞ=mþ
q2ATðrÞ2=2m for each charge q.
However, this method does not in general yield the same

definition of h when it is applied in other gauges. In the gauge
g, the material Hamiltonian Hm would include the total
polarization energy

R
d3xP2

g=2, which in addition to VCoul

includes the transverse polarization “self-term”
R
d3xP2

gT=2.
In the multipolar gauge this additional term is divergent. It
cannot contribute to processes in which the number of photons
change, and otherwise it is often ignored until such a point that
its contributions can be “renormalized out” of final predic-
tions. This is how on-energy-shell T-matrix elements for
bound-state level shifts are typically calculated using the

multipolar gauge (Craig and Thirunamachandran, 1998).
Predictions obtained in this way are identical to those found
using the Coulomb gauge because they result from having
employed the same definition of h.
If the multipolar transverse polarization is instead regular-

ized, as described in Secs. II.D.2 and II.E, then
R
d3xP2

gT=2 is
finite but its relative magnitude depends on the cutoff kM. It
can be considered a weak perturbation of VCoul provided that
kM is chosen appropriately (Vukics, Grießer, and Domokos,
2015). In this case, and more generally whenever Hm includes
terms other than VCoul, a different S matrix is obtained than
when h is used in Eq. (137).
One might also consider relative magnitudes to be a guide

in determining appropriate definitions of h and V. In order for
weak-coupling methods to be applicable, the interaction V
must be a weak perturbation of h. For example, when
considering multiple systems of interest within a common
reservoir, if direct intersystem interactions are sufficiently
strong, then they should be included within h rather than
within the system-reservoir interaction V (Santos and Semião,
2014; Stokes and Nazir, 2018). Subsequently applying weak-
coupling theory yields a reduced description in the form of a
Lindblad master equation whose coefficients are S-matrix
elements. An example of this is given in Sec. V.C.2, but it
should be noted that the S matrix obtained is specific to
whatever definition of h is adopted. Similarly, when one deals
with strong system-reservoir couplings analytic methods such
as polaron transformations (Pollock et al., 2013; Nazir and
McCutcheon, 2016) and Hamiltonian mapping techniques
(Iles-Smith, Lambert, and Nazir, 2014; Strasberg et al., 2016)
work by redrawing the system-reservoir boundary so as to
obtain a weak perturbation V.
Physically, when subsystem interactions are strong it is

unclear to what extent the subsystems should be considered
operationally accessible. A given experiment may (or may not)
be capable of granting access to only a dressed composite rather
than the individual subsystems that compose it. The balance
between localization and dressing within the context of non-
relativistic QED is discussed throughout Sec. VI. In the context
of open quantum systems theory, this topic is closely related to
the distinction between local and global approaches to deriving
reduced descriptions, which is discussed in Sec. VII.C.
In conclusion, we note that while the S matrix is gauge

nonrelative in the sense defined in Sec. V.A, this property does
not necessarily circumvent the challenge of determining a
gauge relative to which one is to obtain physical predictions,
even within scattering theory itself. Indeed, the myriad
existing scattering-theoretic predictions of nonrelativistic
QED found using low-order perturbation theory rely on the
specific definition of h given in Eq. (137). The prospect of
deriving alternative QED S matrices that result from different
definitions of h, for example, those that include a “weak” self-
term

R
d3xP2

gT=2, warrants further study.

C. Quantum optical approximations: Mimicking the S matrix

We now directly show that subsystem gauge relativity can
be eliminated after a sufficient number of weak-coupling
approximations are performed.
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1. Toy model: Material oscillator and a single mode

We begin by again considering a simple toy model consis-
ting of a material harmonic oscillator and a single radiation
mode, such that Eqs. (14) and (9) become

PTα ¼
αqx
v

; ð138Þ

Aα ¼ ð1 − αÞA; ð139Þ

where v is the cavity volume. The cavity canonical operators
are A ¼ ða† þ aÞ= ffiffiffiffiffiffiffiffiffi

2ωv
p

and Π ¼ i
ffiffiffiffiffiffiffiffiffiffiffi
ω=2v

p ða† − aÞ, such
that ½A;Π� ¼ i=v. We assume that the material oscillator
points in the same direction as the mode. The theory is gauge
invariant because the gauge-fixing transformations remain
unitary (Rαα0 ¼ eiqðα−α0ÞrA).
The α-gauge Hamiltonian in Eq. (22) can be written as

Hα ¼ hþ Vα, where h ¼ ωða†aþ 1=2Þ þ ωmðb†bþ 1=2Þ
and

Vα ¼ η2ω

4
½ð1 − αÞ2ða† þ aÞ2 þ δα2ðb† þ bÞ2�

þ iu−α ðab† − a†bÞ þ iuþα ða†b† − abÞ; ð140Þ

with η ¼ −q=ω
ffiffiffiffiffiffiffi
mv

p
a dimensionless coupling parameter,

δ ¼ ω=ωm, and

u�α ¼ ηωm

2

ffiffiffi
δ

p
½ð1 − αÞ ∓ δα�: ð141Þ

The value of α, which determines the physical definitions of
the two oscillator subsystems, can have a profound effect on
the form of Vα. This is completely eliminated, however, if we
assume weakly coupled nearly resonant oscillators. We can
then let ωm ¼ ω and neglect terms quadratic in η. We can also
perform the rotating-wave approximation by setting uþα ¼ 0.
The final result is the α-independent Hamiltonian H ¼ hþ V,
where h ¼ ωða†aþ b†bþ 1Þ and

Vα ¼ V ¼ i
2
ωηðab† − a†bÞ: ð142Þ

This Hamiltonian satisfies bare-energy conservation,

½h;H� ¼ 0; ð143Þ

which we saw, in the context of the S matrix, was crucial
in eliminating subsystem gauge relativity. We have obtained
the same result here in a direct manner. We can now
pretend that the two oscillators represent unique physical
subsystems.
Outside of the regime of validity of weak-coupling approx-

imations, it is typically thought that one cannot let uþα ≈ 0. In
general, this is true, by which we mean that one can use this
approximation independent of the value of α only in the weak-
coupling regime. However, whether Vα includes counter-
rotating terms depends on the value of α, so there is a range
of values for which the rotating-wave approximation will
remain valid well into the ultrastrong-coupling regime. For a
specific choice of α the rotating-wave approximation is exact

(Drummond, 1987; Stokes et al., 2012; Stokes and Nazir,
2018, 2019, 2021b). Specifically, by choosing

αðωÞ ¼ αJCðωÞ ≔
ωm

ωm þ ω
ð144Þ

we obtain uþα ≡ 0, so the counterrotating terms in the bilinear
component of Vα in Eq. (140) are automatically eliminated.
As before, by performing nonmixing Bogoliubov transforma-
tions within the separate lightJC and matterJC Hilbert spaces,
we can eliminate terms quadratic in η via modes c and d
such that

p2

2m
þmω2

m

2
x2 þ q2

2v
α2JCr

2 ¼ ω̃m

�
d†dþ 1

2

�
; ð145Þ

v
2
ðΠ2 þ ω2A2Þ þ q2

2m
ð1 − αJCÞ2A2 ¼ ω̃

�
c†cþ 1

2

�
; ð146Þ

where ω̃2
m ¼ ω2

mμ and ω̃2 ¼ ω2μ, in which μ ¼
1þ ½ηω=ðωm þ ωÞ�2. In the single-mode case this elimination
of self-energy terms is exact. It follows that αJC can be written
as αJC ¼ ω̃m=ðω̃þ ω̃mÞ. The corresponding Hamiltonian is

HJC ¼ ω̃mðd†dþ 1
2
Þ þ ω̃ðc†cþ 1

2
Þ

− iq

ffiffiffiffiffiffiffiffiffiffi
ωωm

mv

r
1

ωm þ ω
ðd†c − dc†Þ: ð147Þ

The ground state is represented by the vacuum of the c and d
modes (jGJCi ¼ j0d; 0ci). We emphasize that at no point have
we made use of any approximations or assumptions that ruin
the gauge invariance of the theory. Nor, however, have we
performed a diagonalizing transformation of the Hamiltonian.
We have simply considered a definition of the subsystems
specified by a value αJC between the commonly chosen
values α ¼ 0 and 1, and within this gauge we have only
performed nonmixing Bogoliubov transformations of the
form Um ⊗ Uph. Whether or not the latter transformations
are employed, counterrotating terms in the linear interaction
are absent because uþJC ≡ 0. Thus, we make the following
statement.

• It is premature to define the paradigm of extreme-
coupling light-matter physics through properties such
as high levels of ground-state light-matter entanglement
and photon population, which result from terms appear-
ing in commonly chosen gauges but which are not
necessarily present.

There are no ground-state virtual excitations in the modes c
and d when they are defined relative to the gauge αJC. We see
in Sec. VI.C [see also note XIII of the Supplemental Material
(245)] that as a result matter cannot be fully localized in this
gauge. Finally, we remark that although in this example a
projection P ¼ j0dih0dj þ j1dih1dj onto the first two levels of
the material oscillator is as ill justified as it can ever be as
an approximation (because the matter system is harmonic),
such a projection nevertheless yields the exact ground state
(PjGJCi ¼ jGJCi). This fact is relevant to our discussion of
material truncation in Sec. IV.
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2. Quantum optical master equation

We now turn our attention to a more realistic setting by
deriving the quantum optical master equation for the dipoleα,
which can be viewed as a detector for the corresponding
α-gauge radiation field. We show that the weak-coupling
approximations comprising the traditional quantum-optics
paradigm have the effect of mimicking the S matrix, and
they thereby cause all α dependence to drop out of the final
result. More precisely, they ensure that all master equation
coefficients are well-known second-order QED matrix ele-
ments. A similar demonstration was given for a pair of two-
level dipoles by Stokes and Nazir (2018). Here we consider
only one dipole (the detector), but we do not restrict our
attention to only two dipolar energy levels. The Hamiltonian
reads

H ¼ hþ Vα
1 þ Vα

2; ð148Þ

h ¼
X
n

ϵnjϵnihϵnj þ
Z

d3k
X
λ

ω

�
a†λðkÞaλðkÞ þ

1

2

�
; ð149Þ

Vα
1 ¼ −ð1 − αÞ q

m
p ·ATð0Þ þ αqr ·Πð0Þ; ð150Þ

Vα
2 ¼ ð1 − αÞ2 q2

2m
ATð0Þ2 þ

α2q2

2
r · δTð0Þ · r; ð151Þ

where h, Vα
1 , and Vα

2 are zeroth, first, and second order,
respectively, in q.
We make the following weak-coupling approximations

concerning the state of the detectorα represented by the
density operator ρðtÞ in a suitable interaction picture:

(1) Born approximation.—The dipole and reservoir are
uncorrelated over the relevant timescale.

(2) Second-order perturbation theory.—The coupling is
much smaller than the unperturbed energies.

(3) Markov approximation A.—The system dynamics are
memoryless. ρðsÞ ≈ ρðtÞ for all s ∈ ½0; t�.

(4) Markov approximation B.—The temporal limit of the
integrated von Neumann equation is t ≈∞.

(5) Secular (rotating-wave) approximation.—Rapidly
oscillating contributions are negligible.

The Markov approximations mimic the adiabatic switching
condition of the S matrix, and together with the secular
approximation they enforce bare-energy conservation.
The derivation of the quantum optical master equation is

well known (Breuer and Petruccione, 2007), but we repeat it in
note XI of the Supplemental Material (245) using an arbitrary
gauge α in order to show how approximations (1)–(5) cause all
α dependence to drop out. Specifically, approximation (1)
ensures that the master equation coefficients can be calculated
using the photonic vacuum at any time t. Approximation (2)
ensures that they are second order in q. Approximation (3)
ensures that they can be calculated independent of ρ.
Approximation (4) ensures that the expected energy denom-
inators are obtained as in the T matrix, and approximation (5)
ensures that they are evaluated on energy shell. By reducing
all master equation coefficients to well-known QED matrix
elements, approximations (1)–(5) ensure α independence.

In the Schrödinger picture the final result reads

_ρ¼ i½ρ; H̄m�þ
X
n;m
n>m

Γnm

�
LnmρL

†
nm−

1

2
fL†

nmLnm;ρg
�
; ð152Þ

where H̄m ¼ Hm þ Δ and where Δ and Γnm are α-indepen-
dent QED matrix elements, namely, the Lamb shift and the
Fermi-golden-rule spontaneous emission rate, respectively;
see note XI of the Supplemental Material (245). The Lindblad
operators are Lnm ¼ jϵmihϵnj. The master equation (152) is
readily extended to a finite temperature reservoir (Breuer and
Petruccione, 2007). The following is evident.

• The reduced description of the detectorα is α indepen-
dent within approximations (1)–(5), such that “detector”
becomes an ostensibly unique theoretical concept.

The stationary state ρ0 of this detector is the bare ground state
ρ0 ¼ jϵ0ihϵ0j, according to which the probability of excitation
of the detector initially in the ground state isPd;0ðtÞ ¼ 0 for all
t. Within the approximations made, photon emission requires
a downward dipolar transition and absorption requires an
upward one. Furthermore, the energies of any photons
involved must be exactly equal to the energies of the
corresponding dipolar transitions involved. The processes
captured by the master equation (152) are precisely those
captured by the S matrix where h is strictly conserved.
Outside of approximations (1)–(5) emission and absorption

can occur without preserving the number of bare quanta, but
evidently such virtual processes are not perfectly bare energy
conserving and they are nonsecular and/or non-Markovian
inasmuch as they are eliminated only when both Markov and
secular approximations are performed. These processes are
allowed (not only as intermediates) by the more general matrix
SðτÞ defined in Eq. (136) and, although they are viewed as
unphysical in scattering theory (except as intermediates), in
open quantum systems theory the opposite is true: they are
allowed unless they have been suppressed by approximations
whose avoidance must provide a more accurate description.
Moreover, these approximations have a relatively narrow
regime of validity (Breuer and Petruccione, 2007). There is
presently considerable interest within open quantum systems
theory in understanding strong-coupling and non-Markovian
effects using both numerical and analytical methods (Ishizaki
et al., 2010; Breuer et al., 2016; Nazir andMcCutcheon, 2016;
de Vega and Alonso, 2017; Nazir and Schaller, 2018). From
this perspective, when approximations (1)–(5) break down,
the idealizations used to define the S matrix must be
interpreted as no longer realistic.

D. Time-dependent interactions and ground-state photons

We now turn our attention to nonadiabatic interaction
switching whereby the gauge relativity of subsystems cannot
be ignored. It is sometimes argued that the Coulomb gauge
must be used to describe the residual photon population left
after a sufficiently fast interaction switch off (Stefano et al.,
2019; Settineri et al., 2021). In fact, the correct description
depends on the experimental context (Stokes and Nazir,
2021b), as later discussed in detail.
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The ground state of a light-matter system is gauge invariant,
but its representation using a vector differs between gauges;
see Sec. III.B. This gives rise to different photon number
predictions, all of which are physical. The differing predic-
tions within one and the same physical state correspond to
different gauge-invariant definitions of a photon. The task
remains to determine which prediction is most relevant in a
given situation. For our purposes it is sufficient to consider the
simple α-gauge framework, but it should be borne in mind that
the gauge function is completely arbitrary and the following
considerations apply generally.
For each fixed α the Hamiltonian operatorHα represents the

same total energy observable E. The total energy eigenvectors
are defined by HαjEn

αi ¼ EnjEn
αi, where the eigenvalues En

are manifestly α independent (unitary transformations are
isospectral). According to the postulates of quantum theory,
the vector jEn

αi represents, within the gauge α, the unique
physical state in which the system definitely possesses the
energy En. Consider now the average

Nα ¼ hGαj
X
kλ

a†λðkÞaλðkÞjGαi ¼ hGαjnjGαi; ð153Þ

where the vector jGαi ¼ jE0
αi represents the ground state in

the gauge α and aλðkÞ is as defined in Eq. (71). At first glance
it seems that the predicted photon number Nα is fundamen-
tally gauge noninvariant, and that this is because jGαi depends
on α, but this is not the case. Rather, the operator n represents
the gauge-invariant number of photons defined relative to the
gauge α. In the gauge α0 the same observable is represented by
n0 ¼ Rαα0nR

†
αα0 and the physical ground state is represented by

the vector jGα0 i ¼ Rαα0 jGαi. Thus, Nα is gauge invariant
(Nα ¼ hGαjnjGαi ¼ hGα0 jn0jGα0 i). For each different fixed
value of α the average Nα is that of a different physical
observable, and it is therefore a different gauge-invariant
prediction. The subscript α labels which gauge-invariant
definition of photon is being considered. A special case is
the number of ET-type photons given by N0 ≕NET

because
Π̃ðkÞ ¼ −ẼTðkÞ when α ¼ 0. Another special case is the
number of DT-type photons, which is given by N1 ≕NDT

,
because Π̃ðkÞ ¼ −D̃TðkÞ when α ¼ 1.
We now consider a system prepared in the ground state

before we suddenly switch off the interaction. When the
interaction vanishes, photons are defined as in Eq. (71), but
this definition is now unique because the noninteracting
canonical momentum is unique (Π ¼ −DT ¼ −ET ¼ −E).
We can therefore ask how many of these unique photons are
present for times t > tf if the interaction is suddenly switched
off at t ¼ tf. Modeling this situation using a time-dependent
coupling in the gauge α gives the Hamiltonian

HαðtÞ ¼ Hm þHph þ θðt − tfÞVαðηÞ; ð154Þ

where θ is the Heaviside step function and η is a coupling
parameter such that Vαð0Þ ¼ 0. These HαðtÞ are not equiv-
alent to each other for different α (Stokes and Nazir, 2021b).
This is unsurprising because for α ≠ α0, HαðtÞ and Hα0 ðtÞ
model two different experiments in which Vα and Vα0 are
suddenly switched off, respectively. For each α the evolution

generated by HαðtÞ from time t ¼ 0 consists of sequential
evolutions [UαðtÞ ¼ e−iðHmþHphÞðt−tfÞe−iHαtf ]. It follows that
the gauge-invariant physical prediction Nα ≕NETþαPT

gives
the number of photons left over in an experiment realizing a
sudden switch off of the α-gauge interaction. Settineri et al.
(2021) noted that the prediction N0 ¼ NET

is gauge invariant,
but as we have shown more generally the same is true for any
of the predictions Nα.
There is a famous set of experiments for which it is well

known that the sudden switching condition appears to be ill
justified in the Coulomb gauge compared to the multipolar
gauge, namely, the early experiments of Lamb (Lamb, 1952;
Power and Zienau, 1959; Fried, 1973; Davidovich and
Nussenzveig, 1980; Milonni, Cook, and Ackerhalt, 1989;
Woolley, 2000; Stokes, 2013). The natural line shape pre-
diction can be obtained by assuming the atom to initially be in
a bare excited state with no photons. This amounts to a sudden
switch on of the interaction (Milonni, Cook, and Ackerhalt,
1989). Within the multipolar gauge the prediction is suffi-
ciently close to the experimental result to rule out the
corresponding Coulomb-gauge prediction (Power and
Zienau, 1959; Fried, 1973; Davidovich and Nussenzveig,
1980; Milonni, Cook, and Ackerhalt, 1989; Woolley, 2000;
Stokes, 2013). In other words, the multipolar-gauge subsys-
tems are more relevant for the description of this experiment.
The natural line shape of spontaneous emission is discussed in
detail in Sec. VI.B.
One can consider more general time-dependent interactions

and the same considerations will apply. The generalization can
be achieved by letting

HαðtÞ ¼ Hm þHph þ Vα(ημðtÞ) ð155Þ
where μðtÞ is an arbitrary coupling envelope that vanishes
smoothly after some time tf. We assume, as Stokes and Nazir
(2021b) did, that μðtÞ vanishes before some time ti, so the
system can be prepared at t ¼ 0 < ti in the ground state
represented by eigenvector jgi of h ¼ Hm þHph. The total
number of photons at a time t > tf is

NαðtÞ ¼ hgjUαðtÞnUαðtÞ†jgi; ð156Þ

where UαðtÞ is the evolution operator generated by HαðtÞ. To
prove the gauge invariance of NαðtÞ, one must take
into account that gauge transformations are now time depen-
dent because they depend on the coupling parameter
(Rαα0 ½ημðtÞ�≡ Rαα0 ðtÞ). The vector jgαðtÞi ¼ UαðtÞjgi repre-
sents the Schrödinger-picture state at the time t in the gauge α.
The same physical state is represented in the gauge α0 by the
vector jgα0α ðtÞi ¼ Rαα0 ðtÞjgαðtÞi. The physical observable rep-
resented by n in the Schrödinger picture in the gauge α is
represented by nα

0 ðtÞ ¼ Rαα0 ðtÞnRαα0 ðtÞ† in the gauge α0. We
see therefore that NαðtÞ is a gauge-invariant prediction.
The two different vector representations jgαðtÞi and

jgα0α ðtÞi of the state at t satisfy the Schrödinger equations
idjgαðtÞi=dt¼HαðtÞjgαðtÞi and idjgα0α ðtÞi=dt¼Hα0

α ðtÞjgα0α ðtÞi.
The Hamiltonians Hα0

α ðtÞ and HαðtÞ are easily related via
direct differentiation of the expression jgα0α ðtÞi¼Rαα0 ðtÞjgαðtÞi,
which implies that
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Hα0
α ðtÞ ¼ Rαα0 ðtÞHαðtÞRαα0 ðtÞ† þ i _Rαα0 ðtÞRαα0 ðtÞ†: ð157Þ

It is a trivial matter to generate an equivalent model to any one
of the HαðtÞ by properly accounting for the time dependence
of gauge transformations.
The Hamiltonian Hα0

α ðtÞ depends on two parameters α and
α0 that have different roles. The parameter α selects the gauge
within which the time-dependent coupling assumption
e → eðtÞ has been made, whereas the parameter α0 selects
the choice of gauge used for calculations after this assumption
has been made. The nonequivalence of the HαðtÞ for different
α shows that e → eðtÞ constitutes a different physical
assumption in different gauges. In other words, gauge ambi-
guities arise because eachHαðtÞ generates its own equivalence
class Sα ¼ fHα0

α ðtÞ∶α0 ∈ Rg, and distinct classes describe
different experiments. The prediction NαðtÞ is relevant if
the experimental protocol modeled happens to realize a switch
on and switch off of the interaction Vα. For example, if the
experimental arrangement considered is somehow capable of
effectively manipulating the gauge-invariant bare dipole
moment qr, then the multipolar-gauge interaction might be
controlled.
These points were directly demonstrated by Stokes and

Nazir (2021b), who considered the concrete setup of a dipole
uniformly moving in and out of a Gaussian cavity mode, as
depicted in Fig. 10. This situation can be modeled using a
Gaussian envelope μðtÞ. In addition to the nonequivalent
models HαðtÞ, a more complete description H̃αðtÞ is provided
by retaining an explicit model for the control system, which in
this example is the center-of-mass motion of the dipole.
Unlike HαðtÞ, the more complete descriptions H̃αðtÞ are
equivalent to each other for different α. In this way, the
procedure of using a time-dependent coupling ημðtÞ can be
viewed as an approximation. The value of α such that H̃αðtÞ ¼
HαðtÞ is then the correct value to choose when describing the
experiment using the result of this approximation HαðtÞ.

Stokes and Nazir (2021b) showed that if there is a value α
for which H̃αðtÞ ¼ HαðtÞ, then the value strongly depends on
the experimental protocol. The prediction NαðtÞ obtained
using HαðtÞ is correct if and only if the dipole moment is
aligned with the mode polarization and these vectors make an
angle θ with the direction of the center-of-mass motion such
that cos2 θ ¼ α. The result demonstrates that in general which
prediction NαðtÞ is the correct (relevant) one strongly depends
on the experimental context. It is not the case that the
Coulomb-gauge prediction N0ðtÞ is always correct. This result
further illustrates why there are indeed gauge ambiguities. To
find which of the predictions NαðtÞ may be relevant for
describing a concrete setup and experimental protocol, Stokes
and Nazir (2021b) resorted to invoking an explicit model of
the control system. The result obtained could not be antici-
pated without such a description, yet such descriptions are
available in only the simplest of cases where the control
system accommodates tractable modeling.

VI. MEASUREMENTS AND VIRTUAL PHOTONS

We now turn to the topic of subsystem measurements. Their
description when dealing with virtual processes within the
weak-coupling regime was considered some time ago via
simple models (Compagno, Passante, and Persico, 1988a,
1988b, 1990, 1991, 1995). The topic was recently addressed
during discussions of ultrastrong interactions (Di Stefano et al.,
2018; Settineri et al., 2021).We focus on a system consisting of
a source and/or a detector within a single photonic environ-
ment. This situation is distinguished from the case of a source
and a detector occupying different environments that are
modeled separately, such as a source within a cavity with a
detector external to the cavity. The outlook for the latter
situation is discussed beginning in Sec. VII.C.
The natural starting point for our considerations is

Glauber’s photodetection theory (Glauber, 1963, 2007). We
review aspects of photodetection that are important beyond the
standard quantum-optics paradigm, including how photo-
detection divergences are related to virtual excitations. We
consider the gauge relativity of the predicted natural line shape
of spontaneous emission and determine the relation between
subsystem gauge relativity, locality, and dressing.
The main conclusion of this section is that, outside of

conventional weak-coupling and Markovian regimes, there is
necessarily a trade-off between defining material systems as
localized objects and avoiding virtual vacuum excitations. In
the multipolar gauge material systems are the most localized.
We see in Sec. VI.C that if such a detector is deemed
accessible and therefore prepared in its lowest energetic state,
then under the influence of the interaction it will necessarily
become excited even within the corresponding photonic
vacuum because this state is not the ground state of the
interacting composite. These virtual excitations are not
encountered if one instead defines physical subsystem exci-
tations relative to the true ground state. This, however,
constitutes a definition of the physical subsystems relative
to an unconventional gauge (neither Coulomb nor multipolar).
Material systems defined in this way are necessarily delocal-
ized to some extent. Thus, while in practice a detection
process necessarily possesses a finite extent in space and time,

FIG. 10. Cavity of length L supporting standing waves in the z
direction and a Gaussian perpendicular mode profile with waist
wc, along with a dipole −er oscillating with the frequency ωm. At
t ¼ 0 the cavity and dipole are noninteracting. The dipole follows
a classical trajectory RðtÞ through the cavity, entering the cavity
at t0 and exiting at t0 þ τ.
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theoretically some degree of spatial localization of a detector
must be sacrificed if one wants to eliminate the prediction of
its virtual excitation.

A. Conventional photodetection theory and its limitations

Glauber photodetection theory (Glauber, 1963, 2007) has
been a major workhorse in weak-coupling quantum optics
and constitutes a natural starting point. Here we review this
theory and its limitations. Photodetection in the context of
ultrastrongly coupled light-matter systems is discussed in
Secs. VII.C and VII.D.

1. Real excitations

Typical photodetectors work by amplifying photon ioniza-
tion to produce a macroscopic current. As such they are
substantial objects consisting of photoconductive electrons
over a cross-sectional area S that is correlated with detection
efficiency. In addition to being large, such detectors are also
typically slow to respond, at least compared to the correlation
times of the photonic reservoirs that they monitor. Thus, actual
photon measurements are not restricted to individual points in
spacetime, and this fact is certainly relevant outside of weak-
coupling regimes. However, as a model for dealing with
weakly coupled detectors, we may consider a localized
detector dipole d ¼ qr fixed at the origin 0. The charge q
is a suitable perturbation parameter (with the fine-structure
constant being q2=4π).
In each gauge the unperturbed eigenvectors of h ¼ Hα −

Vα represent different physical states. Photons are by defi-
nition quanta of the light subsystem and a detector is a
material subsystem. A photodetection process therefore
involves an energetic change of the material system, usually
accompanied by a change in the number of photons; i.e., it is a
process between unperturbed states. In general these states do
not coincide with well-defined states of energy of the light-
matter composite, and thus they are not stationary. An
examination of photodetection probabilities in a gauge α
provides insight into the physical natures of the light and
matter subsystems defined relative to the gauge α.
In conventional treatments (Glauber, 2007) a linear dipolar

form of coupling is adopted, as occurs in the multipolar
gauge. This is often written as either V1 ¼ −d ·ETð0Þ or
V1 ¼ −d · Eð0Þ. Neither expression is correct. As noted in
Sec. II.F, the correct linear part of the multipolar interaction in
the EDA is V1 ¼ −d ·DTð0Þ. Two further common miscon-
ceptions are that the Coulomb gauge defines photons using the
electric field, and that this is the basic field that first enters into
Glauber’s photodetection theory (Settineri et al., 2021). In
fact, the Coulomb gauge defines photons using ET ≠ E and,
at the dipole’s position 0, the relevant fieldDT is also infinitely
different from Eð0Þ ¼ DTð0Þ − qrδð0Þ. However, the infinite
term P1ðxÞ ¼ qrδð0Þ is a difference in the source components
of the two fields, which are at least first order in q. Since the
detector’s dipole moment is first order in q, only the free
component of DTð0Þ contributes to detection probabilities to
second order in q for an initially unperturbed state, and it may
be taken to coincide with the free component of Eð0Þ.

We begin by following conventional treatments, which
define the subsystems photonsα and detectorα relative
to the multipolar gauge α ¼ 1, then employ perturbation
theory to second order in q. The probability of finding the
detector1 excited into the nth level at time t, given the initial
detector-phonon state jϵm;ψphi with a fixed number of
photons1 and with m < n, is

Pnm
d ðtÞ ¼ dnm;idmn;j

Z
t

0

ds
Z

t

0

ds0eiωnmðs0−sÞGijðs; s0Þ; ð158Þ

where repeated indices are summed and

Gijðs; s0Þ ¼ hψphjEvac;iðs; 0ÞEvac;jðs0; 0Þjψphi; ð159Þ

in which

Evacðt;xÞ ¼ −i
Z

d3k
X
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω

2ð2πÞ3
r

eλðkÞ

× ½a†λð0;kÞeiωt−ik·x − aλð0;kÞe−iωtþik·x� ð160Þ

denotes the free component of DTðt;xÞ. Since ωnm > 0, the
antinormally ordered contribution in Eq. (158) is taken to be
rapidly oscillating and is neglected in a RWA such that we
may let

Gijðs; s0Þ ¼ hψphjEð−Þ
vac;iðs; 0ÞEðþÞ

vac;jðs0; 0Þjψphi; ð161Þ

where

EðþÞ
vac ðt; 0Þ ¼ i

Z
d3k

X
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω

2ð2πÞ3
r

eλðkÞaλð0;kÞe−iωt;

Eð−Þ ¼ ðEðþÞÞ†: ð162Þ

We see that normal ordering occurs as an approximation
based on the detector1 excitation process having a suppos-
edly dominant contribution coming from photon1 absorp-
tion. The neglected contribution is virtual, i.e., number
nonconserving, and corresponds to detector1 excitation with
emission of a photon1.
The detector1 level n typically belongs to the ionization

continuum, and after excitation a number of physical
processes must occur for a detection event to actually be
registered. The description of these processes is subsumed
into a classical epistemic probabilityDn for a detection event
given excitation to the level n. The total probability of
detection is therefore

Pm
d ðtÞ ¼

X
n

DnPnm
d ðtÞ; ð163Þ

where formally the summation over n is understood to
include integration over continuum levels. Defining the
spectral density (sensitivity)

SijðωÞ ¼ 2π
X
n

dnm;idmn;jDnδðω − ωnmÞ ð164Þ
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enables one to model different detection schemes by assum-
ing different forms of SijðωÞ. The photon1 counting rate is

dPnm
d

dt
¼ 2Re

Z
∞

−∞

dω
2π

SijðωÞGijðω; tÞ; ð165Þ

where

Gijðω; tÞ ¼
Z

t

0

ds eiωðt−sÞGijðs; tÞ; ð166Þ

whose Fourier transform is

Gijðs; tÞ ¼
Z

dω
2π

eiωsGijðω; tÞ

¼ θðsÞθðt − sÞGijðt − s; tÞ; ð167Þ

which vanishes unless 0 ≤ s ≤ t. Since photodetectors are
slow, the measurement time t is typically much longer than
the reservoir correlation time Tc ¼ 1=ΔωG, where ΔωG is
the bandwidth of the correlation function Gij. Therefore, the
s width of Gijðs; tÞ is approximately Tc.
Glauber (2007) defined an ideal broadband detector as one

with a flat spectral density SijðωÞ ¼ Sij. This requires that the
width of the sensitivity function must be much larger than
ΔωG ¼ 1=Tc, such that Gijðω; tÞ is sharply peaked as a
function of ω when compared to SijðωÞ. The photon counting
rate is then simply SijGijðt; tÞ, such that if Sij ∼ δij, then the
rate is proportional to the Glauber intensity

IGðtÞ ¼ hEð−Þ
vacðt; 0Þ ·EðþÞ

vac ðt; 0Þi: ð168Þ
2. Virtual excitations

As in the textbook by Mandel and Wolf (1995), the actual
field involved in photodetection theory can be left open by
defining

FðþÞðt; xÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p X
λ

eλðkÞβðωÞaλðt;kÞeik·x; ð169Þ

where a number of noteworthy choices of βðωÞ can be made.
For example, if βðωÞ ¼ i

ffiffiffiffi
ω

p
, then F ¼ DT. If βðωÞ ¼ 1=

ffiffiffiffi
ω

p
,

then F ¼ AT. If βðωÞ ¼ 1, then FðþÞ defines a direct inverse
Fourier transform of

P
λ eλðkÞaλðkÞ=

ffiffiffi
2

p
. This last choice of β

is noteworthy for the reason that, although it is impossible to
define a local number operator for relativistic quanta (Fulling,
1989; Mandel and Wolf, 1995; Haag, 1996), the operator
Fð−ÞðxÞ · FðþÞðxÞ can be interpreted as a real-space number
density of photons that is approximately localized on a scale
much larger than the corresponding wavelengths (Mandel and
Wolf, 1995); see also note XII of the Supplemental Material
(245). As it is local in k space, the relation between fields
corresponding to different βðωÞ in Eq. (169) is highly nonlocal
in spacetime. This point is relevant to understanding the
interplay between electromagnetic dressing and localization
and is discussed further in note XIII of the Supplemental
Material (245).

To understand the limitations of conventional photodetec-
tion theory, we return to Eq. (158). If we assume the vacuum
state jψphi ¼ j0i and we allow the levels m and n to be
arbitrary, then evaluating the polarization summation and
angular integrals gives

Pnm
d;vacðtÞ ¼

jdnmj2
3π

Z
∞

0

dωω3
sin2½ðωmn − ωÞt=2�
πðωmn − ωÞ2=2 : ð170Þ

If m > n, the process described is spontaneous emission. If
n > m, then the process described is virtual. The dominant
peak of the integrand then lies outside of the domain of
integration and is oscillatory for positive frequencies. The
amplitude of the oscillations in the integrand grows with ω
due to the prefactor of ω3. This behavior is bounded only by
an ultraviolet cutoff ωM, and the integral is in fact quadrati-
cally divergent with ωM. The divergence is relatively severe,
such that Pnm

d;vacðtÞ is non-negligible even for realistic yet
modest values of ωM that are consistent with the EDA and
the nonrelativistic treatment (Drummond, 1987; Stokes
et al., 2012).
If we repeat the derivation of the detector excitation rate for

a detector0, i.e., for a detector defined relative to the Coulomb
gauge, then the field entering into the theory is now ATð0Þ,
which amounts to letting βðωÞ ¼ 1=

ffiffiffiffi
ω

p
in Eq. (169). In place

of Eq. (170), we obtain

Pnm
d;vacðtÞ ¼

jdnmj2
3π

Z
∞

0

dωωω2
mn

sin2½ðωmn − ωÞt=2�
πðωmn − ωÞ2=2 : ð171Þ

When n > m, the probability is in this case only logarithmi-
cally divergent. This is a direct consequence of the k-space
normalization of the field AT, which varies as 1=

ffiffiffiffi
ω

p
.

The probability Pnm
d;vacðtÞ is generally nonzero because the

initial unperturbed state consisting of no photons and m
excitations of the detector is not an eigenstate of the
Hamiltonian and, in particular, it is not the ground state even
if m is the lowest dipolar level. If this final result is deemed
unphysical, then we must conclude that the assumed physical
states are not operationally relevant in the description of
photodetection. In particular, if the physical detector is not the
localized detector1, then it must be delocalized to some extent.
The interplay between localization and dressing is discussed
beginning in Sec. VI.C.
The virtual detection probability Pnm

d;vacðtÞ, with n > m, was
removed in the progression from Eq. (158) to Eq. (165) using
the RWA. The counting rate dPnm

d;vac=dt without the RWA can
be found by direct differentiation of Eq. (170) and can again
be reduced to the gauge nonrelative Fermi-golden-rule rate

dPnm
d;vac

dt
¼

�
ω3
mnjdnmj2=3π≕Γmn; n < m;

0; n > m;
ð172Þ

in three different ways, all of which amount to imposing strict
bare-energy conservation as in the S matrix.

(1) Differentiation of Eq. (170) yields the frequency
integrand ω3 sin½ðωmn − ωÞt�=ðωmn − ωÞ, which ex-
presses a bare-energy-time uncertainty constraint.
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Taking the infinite-time limit limt→∞ sinðωtÞ=πω ¼
δðωÞ gives Eq. (172).

(2) Defining the counting rate as the difference
quotient ½Pnm

d;vacðtÞ−Pnm
d;vacð0Þ�=t¼Pnm

d;vacðtÞ=t yields via
Eq. (170) the frequency integrand ω3sin2½ðωmn−ωÞt�=
ð½ωmn−ω�2t=2Þ. In the limit t → ∞ one obtains the
right-hand side of Eq. (172) using limt→∞sin2ðωt=2Þ=
ðπω2t=2Þ ¼ δðωÞ. Meanwhile, the derivative
dPnm

d;vac=dt on the left-hand side of Eq. (172) is
recovered in the limit t → 0. This shows that the
procedure for obtaining Eq. (172) constitutes a form of
Markov approximation that requires a clear separation
of timescales as specified by the Markovian regime
1=ωmn ≪ t ≪ 1=Γmn. The final result is valid pro-
vided that matrix elements of the interaction Hamil-
tonian between initial and final unperturbed states are
sufficiently small and slowly varying, as demonstrated
in method (3).

(3) Evaluating the prefactor ω3 in Eq. (170) at resonance
(ω ¼ ωmn) is valid if it can be considered sufficiently
slowly varying compared to the peak in sin2½ðωmn −
ωÞt�=ð½ωmn − ω�2t=2Þ near ωmn. One may then extend
the lower integration limit to −∞ by supposing that the
integrand is dominated by this peak for sufficiently
long times (ωMt ≫ 1). This again yields Eq. (172).

It is not clear that any of the procedures (1), (2), or (3) can
be justified for virtual excitation with n > m, because as
already noted the dominant peak in sin2½ðωmn − ωÞt�=ð½ωmn −
ω�2t=2Þ then lies outside of the range of integration and the
integral diverges quadratically with ωM. In this sense virtual
contributions are non-Markovian.
Both of the predictions in Eqs. (170) and (171) are gauge

invariant in the sense of Eq. (132), but without use of the
Markovian approximation they are clearly different. This is an
example of the gauge relativity expressed by inequality (133),
which as noted in Sec. V.A becomes important outside of
Markovian regimes. We note that, in any gauge, if the RWA is
avoided and the broadband limit is taken, then the photon
counting rate is SijGijðt; tÞ with Gijðt; tÞ given by Eq. (161)
rather than Eq. (166). Thus, a generally large virtual con-
tribution occurs. However, the broadband limit is inapplicable
to this contribution because the vacuum has infinite band-
width. Thus, the significance of such contributions is in
general dependent on the measurement schemes available.
In comparing the different predictions given by Eqs. (170)

and (171), Power and Thirunamachandran (1999a, 1999b)
noted that which one is the more accurate will depend on
which set of distinct physical states represented by the same
unperturbed vectors within the two gauges is closer to the
states actually realized in the considered experiment. Power
and Thirunamachandran also noted that experiments could be
used to determine which descriptions are most appropriate.
Spectroscopic experimental signatures, in particular, are dis-
cussed in Secs. VI.B and VII.D.
The elimination of divergent contributions requires

“renormalization” of the bare dipole by defining the “physi-
cal” dipole relative to the appropriate gauge, as recognized
some time ago by Drummond (1987). One can use the
elimination of virtual excitations as a criterion by which to

select the most operationally relevant subsystem definitions,
that is, to select the most appropriate gauge relative to which
the dipole is to be defined in the context of photodetection. To
this end we consider a one-dimensional dipole harmonically
quantized in the direction û with the canonical operators r ¼
ûðb† þ bÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mωm
p

and p ¼ iûðb† − bÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mωm=2

p
. From

early on purely bosonic models of this kind have been
relevant to ultrastrong coupling in polaritonic systems with
quantum wells and microcavities (Ciuti, Bastard, and
Carusotto, 2005; Ciuti and Carusotto, 2006; Todorov et al.,
2010; Bamba and Ogawa, 2012).
We consider gauges of the form specified in Eq. (53) while

assuming that αðkÞ ¼ αðωÞ is real and depends only on the
magnitude of k. We discretize the Fourier modes within a
volume v and combine wave vector and polarization
indices into a single-mode label, writing αðωÞ ¼ αk. The
polarization self-energy term

R
d3xP2

Tg=2 can be absorbed via
new material modes such that r ¼ ûðd† þ dÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mω̃m
p

and
p ¼ iû

ffiffiffiffiffiffiffiffiffiffi
mω̃m

p ðd† − dÞ= ffiffiffi
2

p
, where

ω̃2
m ¼ ω2

m þ q2

mv

X
k

ðek · ûÞ2α2k: ð173Þ

Similarly, to second order in q the field self-energy term
q2ðAEDA

g Þ2=2m can be absorbed via radiative mode operators
ck such that

ak ¼
X
j

ð½cosh θ�kjcj þ ½sinh θ�kjc†jÞ

≈ ck þ
X
j

θkjc
†
j ; ð174Þ

where the approximate equality holds to second order in q and

θkj ¼ −
q2

2mv

ek · ejð1 − αkÞð1 − αjÞffiffiffiffiffiffiffiffiffiffiffi
ωkωj

p ðωk þ ωjÞ
: ð175Þ

The arbitrary-gauge Hamiltonian can now be written
correct to second order in q as

Hg ¼ ω̃m

�
d†dþ 1

2

�
þ
X
k;j

ωkj

�
c†kcj þ

δkj
2

�

−
q
m
p · Ãgð0Þ þ qr · Π̃gð0Þ; ð176Þ

where ωkj ¼ ωkδkj þ ðωk þ ωjÞθkj and

Ãgð0Þ ≔
X
k;j

ekffiffiffiffiffiffiffiffiffiffiffi
2ωkv

p ð1 − αkÞ½eθ�kjðc†j þ cjÞ; ð177Þ

Π̃gð0Þ ≔ i
X
k;j

ek

ffiffiffiffiffiffi
ωk

2v

r
αk½e−θ�kjðc†j − cjÞ: ð178Þ

Since the linear interaction components in Eq. (176) contain a
prefactor of q, we may let ½eθ�kj ¼ δkj in the mode expan-
sions (177) and (178) to obtain results correct to second order
in q. This amounts to making the straightforward replacement
ak → ck within the interaction Hamiltonian. Similarly, when
it is used within the interaction Hamiltonian, we may let
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ω̃m ¼ ωm within the expressions for r and p in terms of the
material ladder operators, amounting to the replacement
b → d. The renormalization of self-terms is consistent with
an interpretation in which bare frequencies are not viewed as
physical. The renormalization does not affect the choice of
gauge or the subsystem partition.
Assuming the initial state j0d; 0ci with no photons and no

initial detector excitation, we calculate the average detector
population as

hd†ðtÞdðtÞi0d;0c
¼ 2Γ

π

Z
∞

0

dω

�
ωuþðωÞ sin ½ðωm þ ωÞt�

ωmðωm þ ωÞ
�
2

; ð179Þ

where Γ ¼ q2ω2
m=6mπ is the total oscillator spontaneous

emission rate into the ground state and

uþðωÞ ¼
ffiffiffiffiffiffiffi
ωm

ω

r �
½1 − αðωÞ� − ω

ωm
αðωÞ

�
: ð180Þ

The multipolar- and Coulomb-gauge results are obtained
by letting αðωÞ ¼ 1 and 0, respectively, and are consistent
with Eqs. (170) and (171), respectively. The rate
dhd†ðtÞdðtÞi0d;0c=dt is highly oscillatory. These oscillations
can be removed by taking the time average over an interval
T ≫ 1=ωm defined by

R ¼ 1

T

Z
T

0

dt
d
dt

hd†ðtÞdðtÞi0d;0c ¼
1

T
hd†ðtÞdðtÞi0d;0c

¼ Γ
πT

Z
∞

0

dω

�
ωuþðωÞ

ωmðωm þ ωÞ
�
2

; ð181Þ

where we have replaced sin2 ½ðωm þ ωÞT=2� in Eq. (179) with
its average 1=2 for ωmT ≫ 1. The Coulomb- and multipolar-
gauge time-averaged rates are plotted in Fig. 11. The
multipolar rate, in particular, is quadratically divergent with
ωM and is unphysical for values of ωM that are consistent with
the EDA. However, if we choose α ¼ ωm=ðωm þ ωkÞ
[cf. Eq. (144)], then we obtain the Hamiltonian [cf. Eq. (147)]

HJC ¼ ω̃m

�
d†dþ 1

2

�
þ
X
k;j

ωkj

�
c†kcj þ

δkj
2

�

− iq
X
k

ffiffiffiffiffiffiffiffiffiffiffiffi
ωkωm

mv

r
1

ωm þ ωk
ðd†ck − dc†kÞ: ð182Þ

In this gauge the ground state is represented by the vector
j0d; 0ci annihilated by d and ck. It is easy to verify that the
ground energy eigenvalue of HJC produces the expected
order q2 ground-state Lamb shift (Drummond, 1987). In
this gauge the detector excitation rate is identically zero
because uþðωÞ≡ 0.

3. Dressing transformation for an arbitrary multilevel dipole

The idea of the JC gauge can be extended beyond the
previously considered simple systems through a systematic
approach to defining and understanding the concept of
dressing. The task was undertaken relatively early on by
van Hove (1955), who understood dressing in terms of the
Hamiltonian resolvent GðzÞ ¼ 1=ðz −HÞ, z ∈ C. Let LðzÞ be
the part of GðzÞ that is diagonal in the eigenstates of
h ¼ H − V, and let the subscript i refer to any state repre-
sented by an eigenvector of h. We express the eigenvalues of
LðzÞ in the following form:

LiðzÞ ¼
1

z − ωi − ΔiðzÞ þ ði=2ÞΓiðzÞ
; ð183Þ

where ΔiðzÞ and ΓiðzÞ are real. One can characterize states
in terms of these quantities (van Hove, 1955; Davidovich
and Nussenzveig, 1980; Cohen-Tannoudji, Dupont-Roc, and
Grynberg, 2010).
Following Davidovich and Nussenzveig (1980), we assume

that the equation ω − ωi − ΔiðωÞ ¼ 0 has only one real root.
There are then three further possible cases.

(1) ΓiðωiÞ ≠ 0.
(2) ΓiðωÞ ¼ 0 ∀ ω ∈ R.
(3) ΓiðωiÞ ¼ 0, but ΓiðωÞ ≠ 0 for some ω ∈ R.

In case (1), ωi lies on a cut of LiðzÞ, and the state i is said to be
dissipative because it will typically decay in the presence of
the interaction. The quantities ΓiðωÞ and ΔiðωÞ are the
associated linewidth and level shift, respectively; see
Sec. VI.B. An example is the state represented by the
eigenvector jϵe; 0i of h in Eq. (148), in which the dipole
has been excited to a level e and there are no photons (this
state will be considered as an initial state in Sec. VI.B). In case
(2), LiðωÞ has a simple pole at ωi. The state i is said to be
asymptotically stationary because asymptotically it is unaf-
fected by the interaction V. The interaction produces only
transient effects, and the S-matrix elements between such
states are given by Eq. (135) without the need to invoke the
condition of adiabatic interaction switching. Case (3) lies
between cases (1) and (2). The state i is not asymptotically
stationary, but it is also distinguished from a dissipative state.
In this case the interaction is said to give rise to persistent
perturbation effects. Physically, this can be thought of as
dressing by a virtual “cloud” of quanta. The ground state of h
represented by the vector jϵ0; 0i is an example.

FIG. 11. The time-averaged detector excitation rate R is plotted
as a function of the cutoff ωM=ωm in the Coulomb gauge and the
multipolar gauge, assuming that ωmT ¼ 104. The multipolar rate,
in particular, is severely divergent with ωM, whereas the
Coulomb-gauge rate is logarithmically divergent.
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The JC gauge can be defined as a representation in
which the ground state of H is represented by the ground
eigenvector of h, removing the effects of persistent perturba-
tions. Physically, this means absorbing virtual dressing
excitations, such that subsystem excitations are defined
relative to the true ground state of the composite. To show
how such a representation can be derived systematically,
Davidovich and Nussenzveig (1980) let H ¼ hþ qV and
H0 ¼ eiS½hþ qV�e−iS ¼ hþ qV 0, where q is a small param-
eter. Writing S ¼ P∞

n¼1 q
nSn and V 0 ¼ P∞

n¼1 q
nV 0

n and
equating coefficients in powers of q, we have

V 0
1 ¼ V þ i½S; h�; ð184Þ

V 0
2 ¼ i½S1; V1� þ i½S2; h� − 1

2[S1; ½S1; h�];
V 0
3 ¼ � � � . ð185Þ

One now chooses S such that in V 0 the component of V that is
responsible for persistent perturbation effects is canceled out
to the required order in q.
We consider the example of the dipole-field HamiltonianHα

in Eq. (148). To illustrate the procedure, we eliminate the cause
of persistent perturbations up to first order in q, which is often
sufficient for applications within the weak-coupling regime.
We begin in the Coulomb gauge α ¼ 0. The order q part of the
interaction Hamiltonian can be partitioned into rotating-wave
and counterrotating parts as V0

1 ¼ V0
1;rot þ V0

1;counter, where
V0
1;rot ≔

P
n;p
n>p

rnp þ H.c. and V0
1;counter ≔

P
n;p
n<p

rnp þ H.c.,

with rnp ≔ −
P

kλiωnpgk½dnp · ekλ�akλjϵnihϵpj. Here H.c.
stands for Hermitian conjugate. The term V0

1;rot satisfies
V0
1;rotjϵ0; 0i ¼ 0, whereas the term V0

1;counter is responsible
for persistent perturbation effects. We define the generalized
gauge-fixing transformation as (Stokes, 2013)

R0fαg ≔ eiSfαg ; ð186Þ

Sfαg ≔ −
X
kλ

X
n;p

gkðekλ · dnpÞαk;npjϵnihϵpjða†kλ þ akλÞ;

ð187Þ

which reduces to R0α if αk;np ¼ α. It is easily verified that if

αk;np ¼
8<
:

ωnp

ωnpþωk
; n > p

ωnp

ωnp−ωk
; n < p

¼ jωnpj
jωnpj þ ωk

; ð188Þ

then the interaction within the transformed representation

Vfαg ¼ R0fαgH0R
†
0fαg − h satisfies Vfαg

1 jϵ0; 0i ¼ 0 and thus

contains no persistent perturbation contributions of first order
in q (Stokes, 2013).
This choice of αk;np generalizes the JC gauge defined by

Eq. (144), which applies to a two-level or harmonic dipole.
Bear in mind, however, that in general, i.e., for an arbitrary
anharmonic multilevel dipole, the choice in Eq. (188) results

in the sought after cancellation only up to first order in q. The
resulting interaction Hamiltonian correct to first order in q is
(Stokes, 2013)

VfαJCg
1 ¼−i

X
kλ

X
n;p
n>p

ffiffiffiffiffiffi
ωk

2v

r
2ωnp

ωnpþωk
dnp ·ekλjϵnihϵpjakλþH.c.;

ð189Þ

which allows photon annihilation (creation) if and only if the
dipole transitions to a higher (lower) level. In particular,

Hfαg ¼ hþ Vfαg
1 possesses the same ground state as h and the

model possesses additional symmetry that allows the Hilbert
space to be split into sectors. These are the prototypical
properties of the JC model.

B. Natural line shape

We now discuss the natural line shape of spontaneous
emission, which can be calculated using techniques similar to
those reviewed previously. Lamb noted in 1952 that two
different expressions can be obtained for the natural line
shape, depending on whether Coulomb-gauge coupling or
dipolar coupling is assumed. The prediction is a simple
example of an experimentally testable signature of subsystem
gauge relativity.

1. Gauge relativity of the prediction

Excited atoms decay via spontaneous emission. The line
shape is defined as the frequency distribution (spectrum) of
the emitted photons. Let the initial state of a dipole-field
system be represented by jϵe; 0i, where jϵei represents an
excited dipolar level and j0i denotes the photonic vacuum.
The average number of photons kλ at time t is given by

Nαðkλ; tÞ ¼ ha†kλðtÞakλðtÞie0
¼

X
m

X
nkλ

nkλjhϵm; nkλjUαðt; 0Þjϵe; 0ij2; ð190Þ

where jnkλi denotes the nkλ-photon Fock state. For each
different α, the quantity Nαðkλ; tÞ is gauge invariant and
gauge relative; cf. Secs. III.C and V.D. The distinction
between gauge invariance and gauge relativity [Eqs. (132)
and (133)] is important, but there appears to have been a lack
of recognition of this distinction in the literature on the natural
line shape, as further discussed in Sec. VI.B.3.
The line shape may be defined in the mode continuum limit

ωk → ω by

SαðωÞ ¼
v

ð2πÞ3 ρðωÞ
Z

dΩ
X
λ

lim
t→∞

Nαðkλ; tÞ; ð191Þ

where ω ¼ jkj and ρðωÞ is the density of modes [ρðωÞ ¼ ω2

in free space], the summation is over the polarizations
λ ¼ 1; 2, and the integration is over all directions for k. We
have assumed photonic modes confined to a volume v.
Power and Thirunamachandran (1999a) calculated

Coulomb- and multipolar-gauge photon number averages
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and atomic populations up to second order in the dipole
moment, such that the gauge relativity of these quantities can
be seen explicitly; see also Sec. VI.A for a discussion of the
case of atomic populations. Damping is then described by
adding explicit exponential temporal decay of the dipole
moment operator, such that the gauge relativity of the
spectrum is also confirmed through the attainment of
different results for the α ¼ 0 and 1 cases. Power and
Thirunamachandran (1999a) remarked that in principle such
differences should be possible to test experimentally.
The multipolar prediction, which when one ignores details

of the dipole’s excitation is S1ðωÞ, appeared to be in better
agreement with the experiments of Lamb (1952) than the
Coulomb-gauge prediction (Power and Zienau, 1959; Fried,
1973; Milonni, Cook, and Ackerhalt, 1989; Woolley, 2000;
Stokes, 2013). Power and Zienau explained this using what is
now known as the PZW transformation to remove “static
precursor” contributions that occur in the Coulomb gauge
(Power and Zienau, 1959). In other words, passage to the
multipolar gauge removes the electrostatic field that is implicit
in the definition of the Coulomb-gauge dipole [cf. Secs. II.E
and VI.C.1], which Power and Zienau deemed to be unphys-
ical, at least within the context of the natural line shape
prediction. This amounts to the stipulation that the multipolar
subsystems are more operationally relevant than the corre-
sponding Coulomb-gauge ones, as appears to have been borne
out by the experiments.
The prediction S1ðωÞ is gauge invariant and can therefore

be calculated in any gauge; cf. Eq. (132). Milonni, Cook, and
Ackerhalt (1989) provided a derivation of the line shape S1ðωÞ
using the Coulomb gauge. This works by neglecting the
difference between the source components of the Coulomb-
gauge and multipolar-gauge photonic operators as follows.
For a dipole at the origin, the integrated equation of motion for
the α-gauge annihilation operator is found using Eq. (148) and
possesses the source term

akλ;sðtÞ ¼ i
Z

t

0

dt0
e−iωkðt−t0Þffiffiffiffiffiffiffiffiffiffiffi

2ωkv
p ekλ · ½ið1 − αÞ _dðt0Þ þ αωkdðt0Þ�

¼ ið1 − αÞffiffiffiffiffiffiffiffiffiffiffi
2ωkv

p ekλ · ½dð0Þe−iωkt − dðtÞ�

þ
Z

t

0

dt0
ffiffiffiffiffiffi
ωk

2v

r
ekλ · dðt0Þe−iωkðt−t0Þ; ð192Þ

where the second equality follows from an integration by
parts. Neglecting the boundary term ∼dð0Þe−iωkt − dðtÞ gives
the source part of the integrated equation of motion for the
multipolar-gauge annihilation operator, which in turn yields
the spectrum S1ðωÞ. Milonni, Cook, and Ackerhalt (1989)
argued that ignoring this term can be justified based on a
sensible choice of boundary conditions. Specifically, expo-
nential decay implies that the contribution from dðtÞ will
vanish in the longtime limit t ≫ 1=Γe;Γe ¼

P
m<e Γem, while

the term depending on dð0Þ may be set to zero provided that
the motion of the bare mechanical dipole (as defined relative
to the multipolar gauge) is assumed to start after t ¼ 0. This is
another way to understand the procedure of removing static
precursor contributions found in the Coulomb gauge, but more

generally the argument can be applied for any α ≠ 1.
Equivalently, it can be understood as a method of implement-
ing the sudden switch on of the multipolar-gauge interaction
within the α gauge. Again, these arguments essentially amount
to the submission that the subsystems defined relative to the
multipolar gauge are more physically relevant.

2. Radiation damping

There are different methods available to move beyond a
second-order phenomenological calculation. These include
Hamiltonian resolvent and projection operator techniques
(Davidovich and Nussenzveig, 1980; Cohen-Tannoudji,
Dupont-Roc, and Grynberg, 2010). An exact derivation of
the line shape is found using the formal theory of radiation
damping, which goes back to the early work of Heitler (2003).
Details are given in note XV of the Supplemental Material
(245). To calculate the line shape one assumes a dipole
initially in an excited state with no photons present and then
calculates the longtime probability [jbnkλ;e0ð∞Þj2] that a
transition has occurred into a state with the dipole in level
n and with one photon kλ present. The frequency spectrum is
defined by

SðωÞ ¼ v
ð2πÞ3 ω

2

Z
dΩ

X
λ

lim
t→∞

jbnkλ;e0ðtÞj2: ð193Þ

Note that one could assume that the dipole is excited
adiabatically starting in the distant past, and that the inter-
action is switched off adiabatically such that bnkλ;e0ð∞Þ
becomes an S-matrix element and therefore is no longer
gauge relative; see Sec. V.A and the discussion in Sec. VI.B.3.
This assumption may or may not be realistic when one models
an experiment.
For a Hamiltonian H ¼ hþ V, the longtime probability for

the transition from an initial (t ¼ 0) state i represented by an
eigenvector of h to a final state f represented by a different
eigenvector of h is given by

jbfð∞Þj2 ¼ jRfiðωfÞj2
½ωfi − ΔiðωfÞ�2 þ ½ΓiðωfÞ=2�2

; ð194Þ

where

ΓiðωÞ ¼ 2π
X
m≠i

jRmiðωÞj2δðω − ωmÞ; ð195Þ

ΔiðωÞ ¼ Vii þ P
X
m≠i

jRmiðωmÞj2
ω − ωm

; ð196Þ

and

RniðωÞ¼Vniþ
X
m≠i

VnmRmiðωÞζðω−ωmÞ; n≠ i; ð197Þ

in which

ζðxÞ ≔ P
1

x
− iπδðxÞ: ð198Þ
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Note that bfð∞Þ can be written as RfiðωfÞLiðωfÞ, where
LiðzÞ is as defined in Eq. (183).
Now consider the case in which V ¼ Vα ¼ Vα

1 þ Vα
2 is the

α-gauge interaction Hamiltonian for a dipole-field system in
Eq. (148), while jii ¼ jϵe; 0i and jfi ¼ jϵn;kλi. The matrix
elements RmiðωmÞ are in general gauge relative (α dependent),
as is jbfð∞Þj2. This gauge relativity can, however, be
eliminated by invoking gauge nonrelativistic approximations.
Specifically, if bare-energy conservation ωf ¼ ωi is imposed
(from outside the theory), then the quantities in Eq. (194) are
evaluated at ωi (on energy shell) and are then α independent
(Woolley, 2000). This exemplifies the general result discussed
in Sec. V.A, namely, that strict bare-energy conservation is
required to eliminate subsystem gauge relativity within
probability amplitudes connecting bare states.
To make contact with the Markovian approximations

used in Sec. VI.A, we now look more closely at the quantities
in Eq. (194). To lowest order in V, Eq. (197) gives
RmiðωÞ ¼ Vmi, which we can use to find ΓiðωfÞ and
ΔiðfÞ as

ΓiðωfÞ ¼ 2π
X
m

X
k0λ0

j½Vα
1�mk0λ0;e0j2δðωk þ ωnm − ωk0 Þ; ð199Þ

ΔiðωfÞ ¼ ½Vα
2�e0;e0 þ P

X
m

X
k0λ0

j½Vα
1�mk0λ0;e0j2

ωk þ ωnm − ωk0
: ð200Þ

If we evaluate ½Vα
1�mkλ;e0 at ωf ¼ ωi, that is, at ωk ¼ ωen, then

ΓiðωfÞ ¼ Γe and ΔiðωfÞ ¼ Δe, where Γe ¼
P

m<e Γem and
Δe are the total spontaneous emission rate and on-energy-shell
Lamb shift associated with the dipole level e, as calculated
using Fermi’s golden rule and second-order perturbation
theory, respectively. Both quantities are α independent.
An on-energy-shell evaluation may be justified within the

quantity LiðωÞ defined in Eq. (183) and is known as the pole
approximation, which is commonly employed in the calcu-
lation of Lorentzian spectra (Barnett, Radmore, and Barnett,
1997). Specifically, it is justified in the Markovian regime
(Γemt ≫ 1) provided that ΓiðωÞ and ΔiðωÞ are sufficiently
slowly varying near ωi because then LiðωÞ has a pole near ωi
such that it may with sufficient accuracy be approximated by
Liðωi þ iηÞ with η → 0þ. In a similar fashion, Markovian
approximations were used in Sec. VI.A to derive the gauge-
nonrelative rate Γ from either of the gauge-relative expres-
sions (170) or (171). Applying the pole approximation to
LiðωfÞ within bfð∞Þ ¼ RfiðωfÞLiðωfÞ yields the final result

SαðωÞ ¼
Γen

2π

ðω=ω3
enÞ½ð1 − αÞωen þ αω�2

ðω − ω̃enÞ2 þ ðΓe=2Þ2
; ð201Þ

where ω̃en ¼ ωen þ Δe. Further evaluating the numerator on
energy shell implies that all remaining α dependence drops out
and we obtain the pure Lorentzian

SðωÞ ¼ Γen

2π

1

ðω − ω̃enÞ2 þ ðΓen=2Þ2
: ð202Þ

Note that away from resonance (ω ¼ ωen) this is significantly
different from the line shape S1ðωÞ, but it should also be noted

that a description of the dipole’s excitation has not been
included. This is important when describing the Lamb experi-
ments. Nevertheless, even if an on-energy-shell evaluation
of the line shape denominator can be justified, the same
procedure applied to the numerator may be difficult to justify
because the numerator may not be sufficiently slowly varying
compared with the denominator.

3. The 2s1=2 → 1s1=2 transition in hydrogen

We now more closely consider the experiments of Lamb
(1952), which probed the 2s1=2 → 1s1=2 transition in hydro-
gen. The atoms start in the metastable state 2s1=2. They are
irradiated with a microwave frequency ω close to the
frequency ω0 of the 2s1=2 → 2p1=2 transition. The microwave
resonance ω − ω0 is detected by photons spontaneously
emitted in the 2p1=2 → 1s1=2 transition.
A main goal of previous studies (Fried, 1973; Bassani,

Forney, and Quattropani, 1977; Davidovich and Nussenzveig,
1980; Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1989;
Woolley, 2000) was to eliminate the α dependence of the line
shape prediction, which has been viewed as a paradoxical
property (gauge noninvariance). However, we have provided a
precise mathematical definition of gauge invariance [Eq. (70)]
according to which the α dependence of the line shape
prediction does not constitute gauge noninvariance.
Equation (194), in particular, is exact, but for each different
value of α the labels i and f therein refer to different physical
states. The result is therefore gauge relative, which is not
paradoxical and is simply an example of the expected
inequality (133). Each of the predictions is certainly gauge
invariant in the sense of Eq. (132).
While the prediction is fundamentally gauge relative, use

of the S matrix will circumvent this relativity; see Sec. V.A.
However, subsequent approximations of the S matrix may
in turn eliminate this special property. We must distinguish
the simplifying assumptions that eliminate α dependence
by defining the S matrix from subsequent approximations
of the S matrix that may then eliminate its α independence.
Previous studies have identified which approximations of
relevant S-matrix elements must be avoided in order for
them to be α independent (gauge nonrelative). In particu-
lar, full sets of intermediate states must be retained in
calculations (Bassani, Forney, and Quattropani, 1977;
Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1989),
despite the apparent dominance of the intermediate state
2p1=2 (Power and Zienau, 1959). As we saw in Sec. IV, the
significance of higher dipole levels is greater in the Coulomb
gauge, such that summation over these levels converges
much more quickly in the multipolar gauge. In the context
of calculating two-photon transition matrix elements, this
has been understood for some time (Bassani, Forney, and
Quattropani, 1977; Cohen-Tannoudji, Dupont-Roc, and
Grynberg, 1989).
The Smatrix is perturbative, essentially by definition [the T

matrix in Eq. (135) is expanded iteratively in powers of V],
making it difficult to obtain an expression for the line shape
with a finite width corresponding to exponential decay.
However, damping can be included by alteration of the
two-photon on-energy-shell (Kramers-Heisenberg) transition

Adam Stokes and Ahsan Nazir: Implications of gauge freedom …

Rev. Mod. Phys., Vol. 94, No. 4, October–December 2022 045003-40



matrix element describing the process (Power and Zienau,
1959; Fried, 1973; Davidovich and Nussenzveig, 1980;
Stokes, 2013). Fried showed using a semiclassical treatment
(Fried, 1973) that when damping is included in this way, and
“nonresonant background” terms that are present within the
modified matrix element are not ignored, the Coulomb-
gauge and multipolar-gauge predictions can be brought into
significantly closer agreement. The situation in which
excitation occurs via a tunable microwave field and an
alternative situation of a fixed microwave field with an
applied magnetic field are both considered. This method was
extended to a full quantum treatment by Davidovich and
Nussenzveig (1980).
Nevertheless, if an exact radiation damping treatment is

adopted [Eq. (194)], then the prediction will be α dependent
(gauge relative). As a somewhat extreme position, one
might reject outright the validity of treating eigenvectors
of h as physically meaningful outside of scattering theory.
Either one would be confined to the use of scattering theory
or alternative physical states would have to be identified.
Over finite times without adiabatic switching, the eigen-
vectors of Hα ¼ hþ Vα uniquely represent fully dressed
physical states. However, these states are stationary, such
that a rejection of initial and final states that are not
eigenstates of H appears to preclude the possibility of
studying nontrivial dynamics. One could instead consider
the ground state of Hα as the initial state that is then
subjected to a time-dependent external perturbation, but in
this case a microscopic description would entail identifying
a gauge relative to which the time-dependent interaction is
to be defined, such that the prediction again becomes gauge
relative; cf. Sec. V.D.
A criterion by which the most meaningful physical states

can be identified was suggested in Sec. VI. Specifically, one
may attempt to define physical light and matter excitations
relative to the ground state of Hα. The virtual admixtures
otherwise present in the ground state have therefore been
absorbed into the subsystem definitions. This “JC gauge”
for an arbitrary multilevel dipole was discussed in
Sec. VI.A.3 and was discussed in the context of the line
shape by Davidovich and Nussenzveig (1980) and Stokes
(2013). Stokes (2013) adopted a radiation damping treat-
ment under the assumption that excitation of the dipole to
the state 2s1=2 occurs through absorption of photons with a
spectrum much sharper than the emitted spectrum.
Excitation via continuous laser irradiation prior to emission
is also considered. The fluorescence rates found using
different gauges have Lorentzian forms with LiðωfÞ evalu-
ated on energy shell, but with differing numerators. The
associated line shapes are compared for the Coulomb gauge,
multipolar gauge, and JC gauge. The multipolar prediction
is closest to a bare Lorentzian curve. As expected, the JC
gauge curve interpolates between this curve and the
Coulomb-gauge result. Differences are increasingly con-
spicuous farther away from resonance (ωf ¼ ωi). We note
finally that in the weak-coupling regime differences between
gauge-relative predictions such as emission line shapes will
typically be small. Spectroscopic experimental signatures
outside of this regime are discussed in Sec. VII.D.

C. Localization and causality

1. Electromagnetic source fields in an arbitrary gauge

To understand the balance between localization and dress-
ing, it is necessary to determine the electromagnetic fields
generated by a source in an arbitrary gauge. In particular, if we
consider a system consisting of both a source s and a detector
d, then the total electric field is a superposition of the vacuum,
source, and detector fields,

E ¼ Evac þ Es þ Ed: ð203Þ

A full description of the source-detector-field system is given
in Sec. VI.C.2. We first note that due to subsystem gauge
relativity the partitioning of a gauge-invariant field into
vacuum, source, and detector components is gauge relative
(Power and Thirunamachandran, 1999a, 1999b). In other
words, while the left-hand side of Eq. (203) is unique, the
individual components on the right-hand side represent differ-
ent physical fields in different gauges. We therefore start by
considering only one material system: a point dipole fixed at 0
and with dipole moment qr. For simplicity, we again restrict
our attention to the one-parameter α-gauge framework.
We now consider the canonical field Π at an arbitrary point

x ≠ 0, which can be partitioned as

Πðt;xÞ ¼ −ETðt;xÞ − αELðt;xÞ
¼ Πα

vacðt;xÞ þΠα
s ðt;xÞ: ð204Þ

In the gauge α the vacuum and source components Πα
vacðt;xÞ

and Πα
s ðt; xÞ are defined as the components whose dynamics

are generated byHph and Vα, respectively. The vacuum field is
defined by the right-hand side of Eq. (160). Since the photons
defined by aλð0;kÞ are physically distinct for each α, the
vacuum field depends on α. The source field also depends on
α, and the dynamics generated by Hα ¼ Hm þHph þ Vα

yields

Πα
s ðt;xÞ ¼ −θðtrÞXTðtr;xÞ

þ ð1 − αÞ½PTðt; xÞ − θð−trÞPTð0;xÞ�; ð205Þ

where tr ¼ t − x is the retarded time (in units with c ¼ 1) in
which x ¼ jxj is the distance from the dipole source at 0 and
where, for x ≠ 0,

XT;iðt; xÞ ¼ ð−∂2δij þ ∂i∂jÞ
qrjðtrÞ
4πx

: ð206Þ

Note that the derivative operators in Eq. (206) act on tr as well
as on 1=x. Only the top line on the right-hand side of Eq. (205)
is causal, by which we mean vanishing for tr < 0, and the
second line vanishes only for α ¼ 1.
Using the fact that the aλð0;kÞ of different gauges are

related by Rαα0, one finds that the different vacuum compo-
nents Πα

vac are related by

Πα
vacðt;xÞ ¼ Πα0

vacðt; xÞ − ðα − α0Þθð−trÞPTð0;xÞ: ð207Þ
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It follows that the combination Πα
vacðt;xÞ þ αθð−trÞPTð0;xÞ

is actually α independent. We see also that for different α the
vacuum components Πα

vac differ by an α − α0 weighted factor
of PT ¼ EL evaluated at t ¼ 0, and that this contribution is
restricted to the complement of the interior light cone of the
origin ð0; 0Þ of the dipole’s rest frame.
It is instructive to consider some specific physical fields.

For example, ET ¼ −Πjα¼0, for which Eα
T;s ¼ −Πα

s − αPT
and Eα

T;vac ¼ −Πα
vac. Although the free and source compo-

nents are different in different gauges, their sum is

ETðt;xÞ ¼ θðtrÞXTðt; xÞ þ θð−trÞPTð0;xÞ − PTðt;xÞ
−Πα

vacðt; xÞ − αθð−trÞPTð0;xÞ; ð208Þ

which upon taking into account Eq. (207) is seen to be unique
(α independent), as required. The total electric field is for
x ≠ 0 given by E ¼ DT ¼ −Πjα¼1 ¼ ET þ PT, which can be
read off immediately from Eq. (208) as

Eðt; xÞ ¼ DTðt;xÞ ¼ θðtrÞXTðt;xÞ þ θð−trÞPTð0;xÞ
−Πα

vacðt;xÞ − αθð−trÞPTð0;xÞ: ð209Þ

As in Sec. II.E, the previous results demonstrate that what
differs for different choices of α is the localization properties
of the source. For tr > 0, we have Esðt;xÞ ¼ DT;sðt;xÞ ¼
XTðt;xÞ and ET;sðt;xÞ ¼ XTðt;xÞ − PTðt; xÞ for all α. In
words, at all points x that can be connected to the source’s
center by a light signal emitted a time x earlier, each physical
field’s source component is independent of the source’s
definition. In contrast, for tr < 0 the source-vacuum parti-
tioning of a given physical field differs among different
gauges α.
As explained in Sec. II.E, within the EDA the gauge

controls the extent to which the instantaneous field ELðxÞ ¼
PTðxÞ (where x ≠ 0) is included within the source’s defini-
tion. The gauges α ¼ 0 and α ¼ 1 are extremal cases where
EL is fully included and completely absent, respectively.
For this reason, the source component of the field
Π ¼ −ET − α0PT, when partitioned according to the gauge
α to give Πα

s ¼ −Eα
T;s − α0PT, is causal (meaning vanishing

for tr < 0) if and only if α ¼ 1 and α0 ¼ 1. The latter equality
specifies that the physical field under consideration is E,
which is a local field, and the former equality (α ¼ 1) specifies
that the source producing this field is defined relative to the
multipolar gauge, and is therefore itself also local. It is easy to
show that, unlike E, the magnetic field B ¼ Bvac þ Bs has
unique vacuum and source components and that Bs is causal
(Power and Thirunamachandran, 1999a).
These results generalize those of Power and

Thirunamachandran (1999a) by giving vacuum-source parti-
tions of the physically arbitrary field Π, using an arbitrary
gauge α. For any given physical field the relative magnitude of
the nonlocal contributions occurring for tr < 0 vary with α
and provide a measure of the delocalization of the source, as
elaborated on later and in note XIII of the Supplemental
Material (245).

2. Source-detector-field system

We now consider the tripartite source-detector-field system.
If we require the detector dipole to be fully localized at x and a
source dipole to be fully localized at 0, then matter must be
defined relative to the multipolar gauge. From the results of
Sec. VI.C.1 it is also clear that the response of the detector1 to
the source1 is causal, as required (Cohen-Tannoudji, Dupont-
Roc, and Grynberg, 1989; Biswas et al., 1990; Milonni,
James, and Fearn, 1995; Power and Thirunamachandran,
1997, 1999a, 1999b; Sabín et al., 2011). In any other gauge
where α ≠ 1, matter is dressed by αEL and thus is not fully
localized. However, questions regarding the causal nature of
an interaction are well posed only for separated localized
objects. The instantaneous response of a delocalized detector
to a delocalized source will vary with α and can be taken as a
measure of the overlap of the source and detector, and hence
as a measure of the delocalization of matter as defined within
the gauge α.
To make these statements concrete, we consider a system of

two identical dipoles labeled s (source) and d (detector) at
positions Rs ¼ 0 and Rd, respectively. To quantify the
response of the detector to the source it suffices to consider
the rate of change of the detector’s energy. Excitation
probabilities such as those considered in Sec. VI.A are
determined from the spectral projections of the detector’s
energy. The multipolar Hamiltonian can be partitioned as

H1 ¼ H̃d þ H̃s þ Ṽd þ Ṽs þHph; ð210Þ

where μ ¼ s; d,

H̃μ ¼
p2
μ

2m
þ VðrμÞ þ Sμ; Ṽμ ¼ qrμ ·ΠðRμÞ; ð211Þ

in which the term Sμ≔ð1=2ÞR d3xP2
T;μ, with PT;μðxÞ ≔

qrμ · δTðx −RμÞ, has not been placed in the interaction
Hamiltonian. The rate of change of H̃d is

_̃HdðtÞ ¼ −q_rdðtÞ ·Πðt;RdÞ ¼ q_rdðtÞ · DTðt;RdÞ: ð212Þ

If one instead considers Hd ¼ H̃d − Sd, then the rate of
change includes an additional self-term that depends only
on the detector, which does not affect its response to the
source. The total displacement field atRd can be partitioned as
in Eq. (203). We therefore obtain an expression of Poynting’s
theorem for the detector1 in the presence of the external field
E1

s ðt;RdÞ. Specifically, the rate at which work is done by E1
s

on the detector1 in the volume V is (Jackson, 1998; Griffiths,
2017)

Z
V
d3xJdðt;xÞ ·E1

s ðt; xÞ ¼ q_rdðtÞ ·E1
s ðt;RdÞ≕ _̃Hd;sðtÞ;

ð213Þ

where Jdðt; xÞ ¼ q_rdðtÞδðx −RdÞ is the detector current in

the EDA. The detector1 response rate _̃HdðtÞ can be decom-

posed in its eigenbasis as _̃HdðtÞ ¼
P

nϵ
n
d
_Pn
dðtÞ, where Pn

dðtÞ is
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the projection onto the nth level at time t. For a two-level
detector1, as is typically considered (Fermi, 1932; Biswas
et al., 1990; Milonni, James, and Fearn, 1995; Power and
Thirunamachandran, 1997; Sabín et al., 2011; Stokes, 2012),
the rate of excitation into the excited state _P1

dðtÞ is easily found
to be _P1

dðtÞ ¼ _̃HdðtÞ=ωm, where ωm ¼ ϵ1d − ϵ0d is the two-level
detector1 transition frequency. The source-dependent compo-

nent is therefore _P1
d;sðtÞ ¼ _̃Hd;sðtÞ=ωm.

3. Discussion on localization and dressing

For fully localized and hence bare multipolar dipoles the
detector’s response to the source is causal because
E1

s ðt;RdÞ ¼ 0 for t < tr, where tr ¼ t − Rd. It follows that
each of the spectral projections Pn

dðtÞ must also depend
causally on s, and therefore that the probability of finding
the bare detector1 in an excited state causally depends on s.

There is also a nonzero component of _̃HdðtÞ that is indepen-
dent of the source1, namely, _Hd;0ðtÞ ¼ _̃HdðtÞ − _̃Hd;sðtÞ. In
fact, such a contribution must exist if the response of the
detector1 to the source1 is to be causal. This follows from
Hegerfeldt’s theorem, which is a general mathematical result
that assumes that (i) the energy is bounded from below, (ii) the
source and detector are initially localized in disjoint regions,
and (iii) the initial state consists of the source excited and
the detector in its ground state with no photons present
(Hegerfeldt, 1994). Hegerfeldt showed that under these
assumptions the total probability of excitation of the detector
[Pe

dðtÞ ¼ Pe
d;0ðtÞ þ Pe

d;sðtÞ] is necessarily either nonzero for
times tr < 0 or identically zero for all times. It follows that, for
an initial state represented by the vector jϵns ; ϵ0d; 0i in the
multipolar gauge, if Pe

d;0ðtÞ were to vanish, then Pe
d;sðtÞ would

be nonzero for tr < 0, and this would violate Einstein
causality because the multipolar-gauge dipoles are localized
and spacelike separated.
Hegerfeldt (1994) concluded that the two-atom system

(source and detector) engenders a conflict with Einstein
causality modulo some ways out that he listed. The claimed
violation was contested by Buchholz and Yngvason (1994),
Milonni, James, and Fearn (1995), and Power and
Thirunamachandran (1997), with the recognition that the
possible ways out listed by Hegerfeldt are not mere technical-
ities and have to be taken seriously. In particular, removing the
virtual excitations of a localized material system means
absorbing the cloud of virtual particles around it (Buchholz
and Yngvason, 1994; Hegerfeldt, 1994) such that states in
which there are no such excitations are not ones in which the
atoms are strictly localized. States in which the atoms are
localized in disjoint regions (and which therefore permit well-
posed questions regarding signal propagation) will contain
virtual photons (Buchholz and Yngvason, 1994; Milonni,
James, and Fearn, 1995).
By assuming the initial state jϵns ; ϵ0d; 0i in the multipolar

gauge, one is assuming that the bare multipolar-gauge
dipoles are those that are operationally relevant at the
preparation stage, but since jϵ0d; 0i is not the ground state
of the detector-field system, this leads to the immediate
virtual excitation of the detector for t > 0. We have seen that

this virtual excitation is actually necessary to preserve
Einstein causality. However, like a violation of Einstein
causality, such virtual spontaneous excitations are them-
selves conceptually problematic and are essentially what one
seeks to eliminate within a successfully renormalized theory.
Indeed, we saw in Sec. VI.A that the multipolar dipole’s
virtual excitation was particularly unphysical and we iden-
tified a different gauge within which such excitations were
eliminated. In any such theory the detector responds to the
source for times tr < 0. To avoid a conflict with Einstein
causality, one must interpret the renormalized source and
detector as objects that are delocalized around their centers at
0 and Rd, respectively.
The representation in which virtual excitations are removed

is one in which the initial state of the detector and field
subsystems coincides with the detector-field ground state,
which might be considered a more realistic initial state (see
Sec. VI.A.3), but this state is not one that specifies definite
energy of a localized detector. Since preparation and meas-
urement procedures necessarily possess finite extents in space-
time, there is a balance to be struck between dressing and
localization. The parameterα affects this balance by controlling
the extent to which bare matter is dressed by EL, which in turn
affects the value of _Pd;0 resulting from the ground-state virtual
photons surrounding the bare detector1. It is therefore sensible
to conclude that the value of α that specifies the most relevant
subsystemswill depend on coupling strengths, as well as on the
experimental protocols for preparation and measurement,
including their spatial and temporal properties.
These questions can essentially be ignored within the

traditional quantum optical regime because, as shown in
Sec. V.C.2, the reduced description of the detector is indepen-
dent of the gauge relative towhich it is defined and its stationary
state is jϵ0di. This is also the regime in which the fieldsE1ð�Þ

s are
approximately causal (Milonni, James, and Fearn, 1995;
Stokes, 2018). Thus, in this regime it is possible to define
the detector dipole as a localized system while also retaining a
fully causal response to the source, but without spontaneous
vacuum excitation. This combination of properties is forbidden
by Hegerfeldt’s theorem and must therefore be the culmination
of weak-coupling approximations. In sufficiently strong-cou-
pling regimes one or more of these properties must be
sacrificed. The gauge α relative towhich the detector is defined
will affect which properties of its weak-coupling counterpart it
continues to possess. The multipolar gauge continues to define
localized dipoles with causal interactions, but withPd;0ðtÞ ≉ 0.
On the other hand, values α ≠ 1 define dipoles that are
delocalized to some extent, but which may retain the property
Pd;0ðtÞ ≈ 0 even outside of the weak-coupling regime. In note
XIII of the Supplemental Material (245), we review concrete
demonstrations of this by considering the average electromag-
netic energy-momentum in the vicinity of a dipole.

VII. MEASUREMENTS AND CAVITY QED BEYOND
WEAK-COUPLING APPROXIMATIONS

We now turn our attention to understanding photonic fields
confined to a cavity where weak-coupling theory is generally
inapplicable and subsystem gauge relativity is expected to be
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important. We first provide a simple but arbitrary-gauge
description of the field inside a cavity containing a two-level
dipole. This extends the results of Sánchez Muñoz, Nori, and
De Liberato (2018), which identify the field bound to the
dipole1, as distinguished from the propagating field. The
results can also be thought of as a simplified extension of
the results for a dipole in free space presented in note XIII
of the Supplemental Material (245). An early attempt to relate
the dressing of a two-level dipole to weak measurement
protocols through the explicit modeling of a pointer system
is detailed in note XVI of the Supplemental Material (245).
We discuss the topic of ground-state photon condensation in
cavity QED systems, which is of considerable current interest
but also strongly gauge relative. Finally, we discuss extrac-
avity fields, including a review of simple models describing
associated measurement signals.

A. Simple model of intracavity fields

We first consider a simple analysis of intracavity fields
produced by a dipole at the cavity center. This closely mirrors
the analysis in note XIII of the Supplemental Material (245)
for free space. An early step toward evaluating the Glauber
intensity within a cavity in the ultrastrong-coupling regime
was given by Sánchez Muñoz, Nori, and De Liberato (2018).
They placed emphasis upon the need for a multimode theory
in accommodating the requisite spatiotemporal structure to
elicit signal propagation. We consider a similar analysis in an
arbitrary gauge.
We model the cavity as a one-dimensional field in the x

direction with periodic boundary conditions at x ¼ �L=2,
where L is the cavity length. The allowed wave numbers are
k ¼ 2πn=L, n ∈ Z. The canonical fields are assumed to point
in the z direction and have bosonic mode expansions

Aðt;xÞ ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
2ωkv

p ½a†kðtÞe−ikx þ akðtÞeikx�; ð214Þ

Πðt;xÞ ¼ i
X
k

ffiffiffiffiffiffi
ωk

2v

r
½a†kðtÞe−ikx − akðtÞeikx�; ð215Þ

where v is the cavity volume. The cross-sectional area is
therefore v=L. As usual, we have ½ak; a†k0 � ¼ δkk0 and ωk ¼ jkj.
To be consistent with the assumed expressions for AT and Π,
we assume that the transverse polarization PTα points in the
z direction.
We assume that the dipole within the cavity is sufficiently

anharmonic so that we can expect a two-level truncation in the
multipolar gauge to generally be robust; see Fig. 6 in
Sec. IV.F. Bear in mind that, for a less anharmonic dipole,
truncation may remain accurate for predicting the low-energy
properties that we consider later, but the optimal gauge for
truncation may no longer be the multipolar gauge. It is also
important to note that while the procedure of two-level
truncation is performed in the multipolar gauge, this does
not restrict our attention to subsystems defined relative to the
multipolar gauge. It is straightforward to identify the observ-
ables that define the α-gauge subsystems within the multipolar
gauge, where the truncation of these observables may

then be performed. In particular, we are free to consider
the canonical field Π defined relative to an arbitrary gauge α.
The physical observable represented by the momentum Π in
the gauge α is denoted Oα. The notation Π is reserved for
the multipolar-gauge canonical momentum −DT; therefore,
Oα ¼ Πþ PT1 − PTα. Here the α-gauge polarization is within
the multipolar-gauge truncation given by

PTαðt; xÞ ¼
X
k

d
v
σxðtÞα cos½kx�; ð216Þ

where d ¼ ẑ · d is the two-level transition dipole moment in
the z direction. In fact, since PTα commutes with gauge-fixing
transformations, Eq. (216) is an example of a truncated
expression that is actually independent of the gauge within
which truncation is performed.
To obtain the Hamiltonian, truncation within the multipolar

gauge gives the following multipolar-gauge multimode QRM:

H2
1 ¼ ω̃mσ

þσ− þ
X
k

ωk

�
a†kak þ

1

2

�

þ i
X
k

gkða†k − akÞσx; ð217Þ

where gk ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk=2v

p
and we have absorbed the multipolar-

gauge polarization self-energy term into a renormalization of
the two-level transition frequency denoted ω̃m. Sánchez
Muñoz, Nori, and De Liberato (2018) [see also Casanova
et al. (2010)] demonstrated via a comparison with numerical
results utilizing matrix product states that, for sufficiently
large coupling strengths and numbers of modes, the two-level
system frequency ω̃m may be neglected in Eq. (217), resulting
in the following independent-boson model:

H2
1 ≈

X
k

ωk

�
a†kak þ

1

2

�
þ i

X
k

gkða†k − akÞσx: ð218Þ

Since σx is now a symmetry, the Hamiltonian is easily
diagonalized using a polaron transformation,

T 10 ¼ exp

�
i
X
k

gk
ωk

ða†k þ akÞσx
�
: ð219Þ

Equation (219) is the type of transformation that was
encountered in Sec. IV. Although it is not in general a gauge
transformation [as defined by Eqs. (96) and (97)], we noted in
Sec. IV.E that when acting on the canonical momentum Π this
transformation has the same effect as the projected PZW
gauge-fixing transformation PR10.
The dynamics of the observables Oα closely mirror those

found for free space in Sec. VI.C.1. Using Eq. (218), we
obtain

akðtÞ ¼ ake−iωkt þ gk

Z
t

0

ds e−iωkðt−sÞσxðsÞ

≡ ak;vacðtÞ þ ak;sðtÞ: ð220Þ

Note that here the vacuum-source partitioning is that given by
the multipolar gauge. This is the most convenient partitioning
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if we want to determine averages when assuming an initial
bare state in the multipolar gauge, which corresponds to
assuming a well-defined state of energy of a fully localized
dipole. The operator σxðsÞ ¼ σxð0Þ ¼ σx is time independent
since the two-level dipole energy has been neglected. As a
result the temporal integral in Eq. (220) can be evaluated
immediately and, since σx is stationary, so too is the
electrostatic field PTαðt;xÞ¼PTαð0;xÞ defined in Eq. (216).
The negative frequency fields are found to be

Oð−Þ
α ðt; xÞ ¼ Πð−Þ

vacðt; xÞ þOð−Þ
α;s ðt; xÞ;

Oð−Þ
α;s ðt; xÞ ¼ Πð−Þ

s ðt; xÞ þ Pð−Þ
T1 ðt; xÞ − Pð−Þ

Tα ðt; xÞ

¼ d
2v

σxð1 − αÞ þ
XN
k>0

d
v
σxðeiωkt − αÞ cos½kx�;

Pð−Þ
Tα ≔

X
k

d
2v

σxαe−ikx ¼ 1

2
PTα; ð221Þ

where the integer N sets the total number of modes
retained within the model. Positive frequency components
are obtained by Hermitian conjugation, and the sum of
positive and negative frequency parts of a field gives the
total field. By construction, these expressions yield

Oα ¼ Oð−Þ
α þOðþÞ

α for any α. Choosing α ¼ 1 gives the case
O1 ¼ Π ¼ −DT ¼ −ET − PT1.
It is now possible to evaluate the average of arbitrary

functions of Oα, O
ð−Þ
α , and OðþÞ

α using any initial state. We use
both the initial multipolar bare state jϵ1; 0i and the ground
state, which is represented by the vector jϵ0; 0i in the polaron
frame. Since we have neglected the dipole energy and the
polaron transformation coincides with the projected
PZW transformation when acting on Π (though not more
generally), for the purpose of finding the dynamics of Oα the
polaron frame is simply the Coulomb gauge. Specifically, we
have T 10ΠT

†
10 ¼ Π − PT1 and T 10OαT

†
10 ¼ Π − PTα. Since

the operator T 10ΠT
†
10 represents the observable −DT in the

polaron frame, the operator Π represents the observable
−DT þ PT1 ¼ −ET, as in the Coulomb gauge. In this gauge
the electrostatic field is absorbed into the definition
of the dipole. Further still, within the approximations
made the Coulomb gauge coincides with the JC gauge
[αJC ¼ ω̃m=ðω̃m þ ωkÞ ≈ 0]. Thus, the simple treatment in
which the free dipole Hamiltonian has been neglected is
unable to distinguish between electrostatic and virtual-pho-
tonic bound fields. Note XIII of the Supplemental Material
(245) indicates that this distinction is also obscured when
considering the near-field limit of the ground-state energy
density in free space, where the total electric energy density
becomes approximately purely electrostatic, as shown in
Eq. (213) in note XIV of the Supplemental Material (245).
We emphasize that the coincidence of the Coulomb gauge, the
JC gauge, and the polaron frame for calculating averages of
functions of Π does not occur without the simplifications
made. In general, these representations are distinct.
We now calculate various quadratic energy densities as in

note XIII of the Supplemental Material (245). For the initial
state jϵ1; 0i we obtain

hOαðt; xÞ2i − Evac ¼
�X

k

d
v
ðcos½kx − ωkt� − α cos½kx�Þ

�
2

;

ð222Þ

hOð−Þ
α ðt;xÞOðþÞ

α ðt;xÞi¼
���� d2vð1−αÞþ

XN
k>0

d
v
ðeiωkt−αÞcos½kx�

����
2

;

ð223Þ
where Evac ¼

P
k ωk=2v is an energy density of the vacuum.

For α ¼ 1 (multipolar gauge), Eq. (223) reduces to the result
obtained by Sánchez Muñoz, Nori, and De Liberato (2018).
Ground-state averages are obtained using the polaron frame
and are found to be hOαðt; xÞ2iG − Evac ¼ hPTαðt; xÞ2iG, and
hOð−Þ

α ðt; xÞOðþÞ
α ðt; xÞiG ¼ ð1=4ÞhPTαðt; xÞ2iG, where

hPTαðt; xÞ2iG ¼
�X
k≠0

d
v
α cos½kx�

�
2

: ð224Þ

Equation (224) confirms that, within the approximations
made, the bound field tied to the α-gauge dipole is
simply the electrostatic field PTα. In the Coulomb
gauge this field is fully included within the definition of
the dipole, so hO0ðt; xÞ2iG − Evac ¼ 0. Figure 12 shows

FIG. 12. Averages (a) hDð−Þ
T ðt; xÞDðþÞ

T ðt; xÞi and

(b) hEð−Þ
T ðt; xÞEðþÞ

T ðt; xÞi plotted with space and time, showing
the presence and absence of a bound field around the multipolar-
and Coulomb-gauge dipoles, respectively. Essentially the same
propagating field is obtained in both cases. We have assumed
N ¼ 50 and normalized both densities via the maximum value
attained when the propagating field is coincident with the dipole
[ðt; xÞ ¼ ðnL; 0Þ, n ∈ Z].
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hOð−Þ
α ðt; xÞOðþÞ

α ðt; xÞi given in Eq. (223) for the Coulomb and
multipolar gauges α ¼ 0 and 1, respectively. It can be seen
that all gauges possess essentially the same propagating fields.
In contrast the ground-state bound-field energy has the weight
α2 within the gauge α and is evidently highly localized at the
position of the dipole within the one-dimensional model
employed.
Sánchez Muñoz, Nori, and De Liberato (2018) proposed

that the initial multipolar bare state jϵ1; 0i could be prepared
by controlling the interaction. However, given the level of
localization of the bound field, it is far from clear that the latter
could ever be separated from the dipole allowing the corre-
sponding interaction to be controlled. A possible exception
may be to quickly move the dipole in and out of the cavity. As
described in Sec. V.D, in this case the relevant gauge for
modeling the interaction using a time-dependent coupling will
strongly depend on the microscopic details of the system.
The treatment of this section is highly idealized. The

cavity is taken as one dimensional, the two-level truncation
has also been made, and the dipole moment dynamics have
been taken to be approximately stationary. The extension of
these results using more realistic treatments warrants further
investigation, including a more physical model for the cavity
and a more sophisticated method of solution, for example,
via a variational polaron Ansatz (Díaz-Camacho, Bermudez,
and García-Ripoll, 2016).
Evidently, the physical nature of the internal cavity field

strongly depends on the gauge relative to which it is defined.
As we have emphasized, gauge ambiguities arise because it is
not always clear which subsystems should be considered
operationally addressable. In particular, the interaction
between the system of interest and the apparatus used in
preparation and measurement must be defined relative to the
choice of gauge. Simple gedanken experiments for the weak
measurement of intracavity subsystems within the weak-
coupling regime were introduced some time ago by
Compagno, Passante, and Persico, 1988a, 1988b, 1990,
1991, 1995). We discuss these models in note XVI of the
Supplemental Material (245).

B. Ground-state superradiance

Here we exemplify the importance of the preceding
discussions concerning intracavity fields and subsystem
gauge relativity by reviewing the phenomenon of ground-
state superradiance [also called photon condensation by
Andolina et al. (2019, 2020)].

1. Dicke models

Ground-state superradiance was first predicted in the Dicke
model (Dicke, 1954; Hepp and Lieb, 1973; Wang and Hioe,
1973). There is now an extensive literature on this topic
including extended Dicke models (Carmichael, Gardiner, and
Walls, 1973; Hioe, 1973; Pimentel and Zimerman, 1975;
Emeljanov and Klimontovich, 1976; Sung and Bowden,
1979), connections with quantum chaos (Holstein and
Primakoff, 1940; Emary and Brandes, 2003a, 2003b), driven
and open systems (Grimsmo and Parkins, 2013; Klinder et al.,
2015; Gegg et al., 2018; Kirton and Keeling, 2018; Peng

et al., 2019), and artificial systems (Yamanoi, 1979; Haug and
Koch, 1994; Lee and Johnson, 2004; Nataf and Ciuti, 2010;
Viehmann, von Delft, and Marquardt, 2011; Todorov and
Sirtori, 2012; Bamba and Ogawa, 2014b; Leib and Hartmann,
2014; Bamba, Inomata, and Nakamura, 2016; Jaako et al.,
2016; Bamba and Imoto, 2017; De Bernardis, Jaako, and
Rabl, 2018). The topic has received renewed interest in light
of rapid progress in magnonic systems and in controlling
correlated electron systems inside cavities (Andolina et al.,
2019, 2020; Mazza and Georges, 2019; Nataf et al., 2019;
Guerci, Simon, and Mora, 2020; Bamba et al., 2022).
Despite this, whether or not a phase transition does indeed

occur and its precise nature have remained open questions.
This is due to the existence of so-called no-go theorems,
which prohibit a superradiant phase and which have been
proven in the Coulomb gauge (Rzazewski, Wódkiewicz, and
Zakowicz, 1975). Further variants of this theorem have
subsequently been both refuted and confirmed (Kudenko,
Slivinsky, and Zaslavsky, 1975; Emeljanov and Klimontovich,
1976; Rzazewski, Wódkiewicz, and Zakowicz, 1976;
Knight, Aharonov, and Hsieh, 1978; Bialynicki-Birula and
Rzazewski, 1979; Sung and Bowden, 1979; Yamanoi, 1979;
Rzazewski and Wódkiewicz, 1991; Keeling, 2007; Nataf and
Ciuti, 2010; Vukics and Domokos, 2012; Bamba and Ogawa,
2014b; Vukics, Grießer, and Domokos, 2014; Tufarelli et al.,
2015; Grießer, Vukics, and Domokos, 2016; Bamba and
Imoto, 2017; Andolina et al., 2019, 2020).
Keeling (2007) noted that, since the radiation modes are

distinct in the Coulomb and multipolar gauges, a ground-state
phase transition may possess different characterizations and
showed that a ferroelectric phase transition occurs within the
Coulomb gauge at the same point in parameter space as the
superradiant phase transition of the conventional Dicke
model. More recently, Stokes and Nazir (2020b) showed that
a unique (gauge-invariant) phase transition can be supported
within cavity QED systems using the one-parameter α-gauge
framework. It was further shown that the macroscopic
manifestation is gauge invariant, but that the classification
of the phase transition depends on the gauge relative to which
the quantum subsystems are defined.
For a cavity containing N dipoles labeled by μ ¼ 1;…; N,

with dipole moments dμ and fixed positions Rμ, the α-
dependent canonical momenta are found to be (Stokes and
Nazir, 2020b)

pμ ¼ m_rμ − eð1 − αÞAðRμÞ; ð225Þ

ΠðxÞ ¼ −ETðxÞ − PTαðxÞ. ð226Þ

The Hamiltonian is the total energy (Stokes and Nazir, 2020b)
wherein the total electrostatic energy can be split into an
atomic binding energy for each dipole V and an interdipole
electrostatic coupling Vdip (dipole-dipole interaction).
Assuming that the dipole moments d ¼ d · e point in the

direction of the cavity polarization e, the single-mode
approximation is performed in such a way as to preserve
gauge invariance; see Secs. II.B and III.F.2. This eliminates
the need to regularize PT (Vukics, Grießer, and Domokos,
2015) and ensures that the transverse commutation relation for
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the canonical fields is preserved. The fundamental kinematic
relations given by Eqs. (225) and (226) are therefore also
preserved. To obtain a Dicke Hamiltonian the limit of closely
spaced dipoles around the origin (Rμ ≈ 0) is taken, and the
dipoles are approximated as two-level systems. The following
collective operators are then introduced: Jiα ¼

P
N
μ¼1 σ

i
μα,

i ¼ �; z, where σ�μα are the raising and lowering operators
of the μth two-level dipole and σzμα ¼ ½σþμα; σ−μα�=2.
Although the nontruncated Hamiltonian H is unique, we

now have a continuous infinity of Dicke Hamiltonians
Hα;2 such that Hα;2 and Hα0;2 are not equal when α ≠ α0

(De Bernardis et al., 2018; Roth, Hassler, and DiVincenzo,
2019; Stefano et al., 2019; Stokes and Nazir, 2019). The
breaking of gauge invariance due to truncation turns out not to
be a barrier in eliminating all ambiguities regarding the
occurrence and nature of a quantum phase transition.
The thermodynamic limit is defined by N → ∞, V → ∞,

with ρ ¼ N=V constant. In this limit the Holstein-Primakoff

map defined by Jzα ¼ b†αbα − N=2, Jþα ¼ b†α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − b†αbα

q
, and

J−α ¼ ðJþα Þ†, where ½bα; b†α� ¼ 1, is used (Holstein and
Primakoff, 1940; Emary and Brandes, 2003a, 2003b). The
Hamiltonian obtained by substituting these expressions into
Hα;2 is denoted as Hα;2

th .
The Hamiltonian is found to support two distinct phases

and reads (Stokes and Nazir, 2020b)

Hα;2;i
th ¼Ei

αþfiα†fiαþEi
α−ciα†ciαþ 1

2
ðEi

αþþEi
α−ÞþCi; ð227Þ

where the superscript i is either i ¼ n for normal phase or
i ¼ a for abnormal phase. The polariton operators fiα; ciα are
bosonic ones satisfying ½fiα; fiα†� ¼ 1 ¼ ½ciα; ciα†�, with all
other commutators vanishing. The polariton energies Ei

α�
and constant Ci are known functions of the couplings and
frequencies appearing in the Hamiltonian Hα;2. It can be
shown that the lower polariton energy En

− is real provided that

τ ≔
ωm

2ρd2
≥ 1; ð228Þ

while the lower polariton energy Ea
− is real provided that

τ ≤ 1: ð229Þ

It can also be shown that Hα;2;n
th ¼ Hα;2;a

th for τ ¼ 1. As ρd2 is
increased, a unique phase transition is predicted to occur at the
critical point τ ¼ 1 in parameter space, beyond which the
normal-phase Hamiltonian Hα;2;n

th breaks down and the abnor-
mal-phase Hamiltonian Hα;2;a

th takes over. This prediction is
gauge invariant.
It remains only to determine the nature of the unique

phase transition predicted. To demonstrate equivalence
between all gauges, the α-gauge transverse polarization PTα ¼
αe · PT ¼ αðΠ0 − Π1Þ is calculated. In the normal phase the
thermodynamic limit of this quantity, denoted as PTα;th,
vanishes, whereas in the abnormal phase it is found to be

Pa
Tα;th ¼ −αρd

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
. It can be further shown that in the

thermodynamic limit one obtains Πa
th ¼ −Pa

Tα;th, such that

choosing α ¼ 0 we have −Ea
T;th ¼ Πa

th ¼ 0, thereby verifying
the fundamental kinematic relation (226). This establishes
consistency between all gauges. The onset of the abnormal
phase manifests in the form of a macroscopic value of the
gauge-invariant field PT;

Pa
T;th ¼ Pa

T1;th ¼ −ρd
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
: ð230Þ

Previous no-go and counter–no-go results can be reconciled
by noting that radiation is gauge relative. In the Coulomb
gauge radiation is defined by Π ¼ −ET such that the phase
transition does not appear superradiant in character and only
the material subsystem acquires a macroscopic population.
This constitutes a “no-go theorem” for superradiance defined
relative to the Coulomb gauge. In the multipolar gauge
radiation is defined by Π ¼ −ET − PT such that both the
material and radiative subsystems acquire a macroscopic
population in the abnormal phase. This constitutes a
“counter–no-go theorem” for superradiance defined relative
to the multipolar gauge. These results are not in contra-
diction, because they are referring to different definitions of
radiation. Indeed, the results demonstrate that they are in fact
equivalent (Stokes and Nazir, 2020b). More generally, since
Π ¼ −ET − PTα, the degree to which the unique phase
transition is classed as superradiant is directly determined
by the value of α.
As we have seen, α controls the balance between locali-

zation and dressing in defining the quantum subsystem called
matter. In Sec. VII.A we observed that the field PT is highly
localized at the position of the dipole within the approxima-
tions made and the one-dimensional model adopted. As
discussed in Sec. VII.A and note XVI of the Supplemental
Material (245), which predictions are most relevant depends
on which observables are accessible via the available prepa-
ration and measurement protocols.

2. Condensed matter systems in the Coulomb gauge

The superradiant phase transition has been discussed
predominantly in the context of Dicke-type models.
The gauge invariance of the predicted instability and the
gauge invariance of its manifestation are now established.
However, there remains a question as to whether such
simplified models can realistically describe actual physical
systems; see Grießer, Vukics, and Domokos (2016) for a
discussion. Recent work by Andolina et al. (2019, 2020),
Mazza and Georges (2019), Nataf et al. (2019), Guerci,
Simon, and Mora (2020), Bamba et al. (2022), and Rouse,
Stokes, and Nazir (2022) moved beyond simplified Dicke
model–type treatments. Strongly correlated electron sys-
tems of the type encountered in condensed matter theory are
considered rather than the gas of dipoles occurring in the
Dicke model.
Andolina et al. (2019) showed that ground-state photon

condensation cannot occur in strongly correlated electron
systems including an arbitrary electron-electron interaction
potential, but considering only a single cavity mode and only
photons defined relative to the Coulomb gauge. Andolina
et al. (2020) advanced these findings by considering a three-
dimensional electron system (3DES) in an inhomogeneous
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cavity field, i.e., one that varies in space. Again, only photons
defined relative to the Coulomb gauge are considered, but in
this case it is found that photon condensation can occur if

χorbðkÞ >
1

4π
; ð231Þ

where χorbðkÞ is the k-space nonlocal orbital magnetic
susceptibility of the 3DES (Giuliani and Vignale, 2005). If
the model is extended to include the spin of electrons, this
condition becomes χorbðkÞ þ χspinðkÞ > 1=4π, where χspinðkÞ
is the spin magnetic susceptibility.
This transition to photon condensation possesses a simple

interpretation as a magnetic instability (Andolina et al., 2020).
Specifically, Andolina et al. (2020) defined the magnetic
energy of a material subject to a magnetic field B as
EM ¼ R

d3xH ·B, where H ¼ B −M and M is the orbital
magnetization of the material, which is traditionally inter-
preted as describing the response of the material to the applied
field. Assuming linear response theory in which M is a linear
functional of B and χorb, one then finds that EM can be written
(Andolina et al., 2020)

EM ¼ −2π
Z

d3x
Z

d3x0δðx − x0Þχorbðjx − x0jÞBðxÞ ·Bðx0Þ:

ð232Þ

An instability occurs if EM < 0. Upon Fourier transforming
EM in Eq. (232), this inequality gives inequality (231), which
is the condition for photon condensation. Note that relative to
gauge α photons are defined by Π ¼ −ET − αPT and thus,
upon noting the traditional interpretation of P as describing
the response of a material to an electric field, one might expect
condensation of photonsα to be related to electric instability
for any α ≠ 0. This was confirmed by Rouse, Stokes, and
Nazir (2022) for the case of a jellium source within a cavity.
Mazza and Georges (2019) considered strongly correlated

electrons coupled to a single cavity mode in the Coulomb
gauge and affirmed the no-go theorem for condensation of
these photons. However, it was reported that the situation
changes when electronic interactions and delocalization are
taken into account. It was found that in a two-band model of
interacting electrons a phase supporting condensation of
excitons and photons can occur, even when one considers
only one cavity mode.
Guerci, Simon, and Mora (2020) considered one- and two-

dimensional strongly correlated electron systems coupled to a
cavity field in the Coulomb gauge. The no-go theorem is again
affirmed for the case of a single-mode homogeneous field,
while photon condensation is found to be possible for a
nonuniform field. Nataf et al. (2019) also considered an
inhomogeneous cavity field coupled to a two-dimensional
electron system in the Coulomb gauge, including spin-orbit
coupling and a perpendicular applied magnetic field. It was
found that a superradiant phase transition can occur. We
conclude this section by remarking that the investigation of
strongly correlated electron cavity QED systems beyond a
restriction to the Coulomb gauge, as initially undertaken by
Rouse, Stokes, and Nazir (2022), warrants further study.

C. Extracavity fields: Overview

The description of external coupling to the cavity has
received considerable attention. We provide an overview here
before discussing specific simple models in subsequent
sections. We are again faced with two problems outside of
traditional regimes. The first concerns the determination of
which approximations might be applied and when, and the
second concerns the determination of which physical states
and observables are relevant in preparation and measurement.
Although the two problems are not unrelated, we consider

the first problem first. For weakly coupled subsystems
dissipation and decoherence can be modeled via separate
loss mechanisms as though the subsystems were uncoupled.
This constitutes the so-called local approach to deriving a
master equation for the matter-cavity system. For example, the
stationary state of a qubit in a cavity described by the local
master equation

_ρ¼−i½H;ρ�þΓ
2
ð2σ−ρσþ−fσþσ−;ρgÞþ κ

2
ð2aρa†−fa†a;ρgÞ

ð233Þ

is simply jϵg; 0i. In Eq. (233) σþ ¼ jϵeihϵgj is the qubit raising
operator, σ− ¼ ðσþÞ†, and a is the annihilation operator for the
cavity. Dissipation is described via separate Lindblad tails
corresponding to the qubit and mode. In the so-called global
approach dissipation is instead described in the dressed basis
of the light-matter system.
The difference between local and global approaches has

been discussed extensively and in various contexts (Walls,
1970; Schwendimann, 1972; Carmichael and Walls, 1973;
Scala, Militello, Messina, Maniscalco et al., 2007; Scala,
Militello, Messina, Piilo, and Maniscalco, 2007; Joshi et al.,
2014; Santos and Semião, 2014; Manrique et al., 2015;
Purkayastha, Dhar, and Kulkarni, 2016; Santos and Landi,
2016; Deçordi and Vidiella-Barranco, 2017; González et al.,
2017; Stockburger and Motz, 2017; Chiara et al., 2018;
Hamedani Raja et al., 2018; Hewgill, Ferraro, and De
Chiara, 2018; Mitchison and Plenio, 2018; Naseem,
Xuereb, and Müstecaplıoğlu, 2018; Seah, Nimmrichter, and
Scarani, 2018; Stokes and Nazir, 2018; Cattaneo et al., 2019;
Maguire, Iles-Smith, and Nazir, 2019). Cresser noted early on
that the local master equation could apparently break down
when describing a lossy Jaynes-Cummings model (Cresser,
1992). Hofer et al. (2017) found by comparison with exact
predictions that the local equation may perform better in the
weak-coupling regime, while the global master equation is
generally better in the strong-coupling regime. However, the
relative validity of the two approaches depends on the form of
secular approximation used. Cattaneo et al. (2019) showed
that the global master equation with partial secular approxi-
mation is always most accurate when Born-Markov approx-
imations are also valid. The local approach is often claimed to
fail (Santos and Semião, 2014; Manrique et al., 2015; Deçordi
and Vidiella-Barranco, 2017), but it has been shown to be
thermodynamically consistent for fairly large ranges of
coupling strengths (González et al., 2017; Hofer et al., 2017).
Here we note that, since the gauge parameter α selects the

form of the interaction, one would not expect the relative
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applicability of local versus global master equations to be
independent of α. In general, the losses in a light-matter
system will depend on how it couples to the external system or
environment (Bamba and Ogawa, 2013, 2014a). For example,
Ciuti and Carusotto (2006) applied input-output theory to
quantum wells within a microcavity such that the cavity
coupled to external photonic modes via a number-conserving
interaction, while the electronic system similarly couples to
another bosonic environment. With this treatment it is
predicted that ground-state virtual cavity and electronic
excitations cannot leak out of the cavity. In contrast, De
Liberato et al. (2009) used a form of a non-Markovian master
equation to describe a two-level system coupled to radiation
while assuming fast modulation of the vacuum Rabi fre-
quency. It was predicted that extra cavity quantum vacuum
radiation would occur for state-of-the-art circuit cavity QED
systems.
Predictions such as those by Ciuti and Carusotto (2006) and

De Liberato et al. (2009) are in general specific to the forms of
coupling adopted; i.e., they are specific to the physical
subsystems considered. Indeed, as we have noted the second
task that we are faced with is identifying which states and
observables are relevant. If counterrotating terms are non-
negligible in the interaction of a light-matter system, then the
local master equation description of its losses will result in
photon generation in the environmental vacuum (Werlang
et al., 2008). This would typically be taken as indicating the
onset of the regime in which the bare states are no longer
meaningful, such that one should switch to a global descrip-
tion in which dissipation is described holistically using the
dressed states of the full light-matter Hamiltonian (Beaudoin,
Gambetta, and Blais, 2011; Bamba and Ogawa, 2013, 2014a;
Boité, 2020). Similarly, a coarse-grained projection onto the
vacuum state, as in the Born approximation, will induce
apparently paradoxical spontaneous excitations in polaritonic
systems. The paradox is resolved by accounting for correla-
tions between the dressed ground state of the system and the
environmental vacuum within the reservoir correlation func-
tions of the master equation (Bamba and Ogawa, 2012).
If we are interested in determining measurement signals

from a source, then the generic problem consists of two
multilevel systems, a source and a detector, coupled to a
common reservoir (as was considered in Sec. VI.C.2).
However, the multilevel source need not be elementary. In
particular, it could be an ultrastrongly coupled light-matter
composite. In a “global approach,” the light-matter composite
is diagonalized and then weakly coupled to whatever is
external (Bamba and Ogawa, 2013, 2014a; Di Stefano et al.,
2018; Boité, 2020; Salmon et al., 2022). In particular, Di
Stefano et al. (2018) adopted precisely this strategy as a means
by which to apply Glauber photodetection theory when
dealing with an ultrastrongly coupled light-matter composite
that is weakly coupled to a photon absorber. The same method
was applied by Salmon et al. (2022) for an understanding of
cavity leakage using a simple semiphenomenological
approach, which is reviewed in Sec. VII.D. In this case all
weak-coupling results for loss and detection are recovered,
with the only difference being that the eigenstates of the
source are the dressed states of a composite. As previously
discussed, in this context there is a balance to be struck

between electromagnetic dressing and localization in space-
time. This balance is affected by the choice of gauge.
In note XVII of the Supplemental Material (245), we review

microscopic descriptions of cavity QED systems, including a
perfect cavity containing matter and an imperfect empty
cavity. The task of describing leakage from an imperfect
cavity containing matter is more involved. A phenomeno-
logical approach consists of matter coupled linearly to the
cavity, which in turn couples linearly to an environment, with
reasonable coupling functions being chosen. This is the
approach employed by Ciuti and Carusotto (2006) that was
already discussed.
A promising means by which to provide a description from

first principles is to use the theory of QED within absorbing
and dispersing media, as reviewed in note VII of the
Supplemental Material (245). Bamba and Ogawa (2013)
[see also Bamba and Ogawa (2012)] used this theory in
conjunction with Maxwell boundary conditions to describe
dissipation from a cavity containing bosonic matter (a
polaritonic system) while considering the good-cavity limit.
It was found that external modes couple linearly to polaritonic
raising and lowering operators via number-conserving form.
Since these operators are linear combinations of the cavity and
matter subsystem raising and lowering operators, we note that
this global description differs from a phenomenological local
description via a Gardiner-Collett model (Gardiner and
Collett, 1985).
Bamba and Ogawa (2014a) considered the coupling to

external modes of an ultrastrongly coupled light-matter
system. Both cavity and circuit QED implementations are
considered. It is again noted that the phenomenological
Gardiner-Collett Hamiltonian will break down. We also
emphasize that in this situation the form of the system-
environment interaction Hamiltonian will become significant,
as was noted in Sec. VII.C. Two forms of interaction
Hamiltonian are considered. One in which the cavity couples
to external modes via the position quadrature ∼a† þ a (this is
referred to as magnetic or inductive coupling), and one in
which the coupling instead occurs through the momentum
quadrature ∼iða† − aÞ (this is referred to as electric or
capacitive coupling). Both coupling forms can be derived
from an underlying Lagrangian. Note that in the absence of a
dissipative transmission line the inductive and capacitively
coupled light-matter system Hamiltonians are unitarily equiv-
alent, but this is no longer the case for the full Hamiltonians
that include coupling of the system to a transmission line. This
is similar to the situation encountered in Sec. VII.C, where
coupling to external modes was defined relative to different
gauges, which resulted in different reduced descriptions that
corresponded to physically distinct reduced systems of inter-
est. Bamba and Ogawa (2014a) noted that the difference in
results obtained from different coupling forms can be ignored
in sufficiently weak-coupling regimes, as well as in the good-
cavity limit, which is effectively defined by the applicability of
certain Markovian approximations.
Khanbekyan et al. (2005) also employed the theory of

absorbing and dispersing dielectrics reviewed in note VII of
the Supplemental Material (245). Choosing the multipolar
gauge, they considered leakage from a one-dimensional
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high-Q cavity consisting of one perfect and one imperfect
mirror and containing a dipole, in both the weak- and strong-
coupling regimes. It was found that on timescales that are
large compared to the inverse separation of neighboring
cavity resonances, the internal cavity field may be expressed
in terms of internal bosonic mode operators that obey
quantum Langevin equations. Radiative input-output
coupling and absorption losses can then be viewed as
independent, with each possessing a damping rate and
corresponding Langevin noise force. Thus, in the regime
considered the phenomenological Gardiner-Collett approach
(Gardiner and Collett, 1985) is valid, inasmuch as the
description of absorption losses requires only that the model
is supplemented with bilinear interaction Hamiltonians
between the cavity modes and appropriately chosen bosonic
loss channels.
Franke et al. (2019) similarly used the dielectric theory

reviewed in note VII of the Supplemental Material (245)
applied to a single dipole within the multipolar-gauge and
weak-coupling regime. Their approach was to approximate
the Green’s function defined by Eq. (92) in note VII.1 of the
Supplemental Material (245) using an expansion in mode
functions corresponding to only a few resonant modes
that are assumed to be dominant: so-called quasinormal
modes (QNMs). The internal field to which the dipole
couples is expressed in terms of the QNM functions
and global bosonic mode operators, while the external
field is similarly described but with the QNM functions
replaced by regularized counterparts. The use of only
one or two QNMs has been found to be accurate within
weak-coupling regimes (Kamandar Dezfouli, Gordon, and
Hughes, 2017).
The extension of the descriptions given by Khanbekyan

et al. (2005) and Franke et al. (2019) to ultrastrongly
coupled light-matter systems within an arbitrary gauge
warrants further study. Note, however, that a plausible
physical model for the description of a lossy cavity con-
taining atomic systems can already be proposed by combin-
ing insights from the case of a perfect cavity containing
atomic systems [see note XVII.1 of the Supplemental
Material (245)] with insights from the case of an imperfect
but empty cavity [see note XVII.2 of the Supplemental
Material (245)]. Specifically, in note XVII.2 of the
Supplemental Material (245) it is shown that for a high-Q
cavity a linear-coupling model between the cavity and
external modes can be justified, while in note XVII.1 of
the Supplemental Material (245) it is shown that a localized
polarization that vanishes at the cavity boundary implies that
the light-matter interaction is mediated entirely by the local
cavity field evaluated at the positions of the atoms. Such
local light-matter coupling away from the boundary should
not affect the form of the coupling between the cavity and
external modes at the boundary. Thus, within a gauge in
which the atomic systems are highly localized, such as the
multipolar gauge, a model in which atomic dipoles couple
linearly to a cavity field that in turn couples linearly to
external modes, would appear to be physically reasonable. In
Sec. we review a spectroscopic signature of gauge relativity
(Salmon et al., 2022) that uses such a model and leads to the
final master equation given in Eq. (239).

D. Spectroscopic signatures of gauge relativity via a simple model

An early attempt at modeling cavity leakage from an
ultrastrongly coupled dipole-cavity system using different
gauges was recently given by Salmon et al. (2022). They
considered the simplest toy model system of a two-level
dipole coupled to a single cavity mode with volume v and
frequency ω in one spatial dimension, described by the
multipolar-gauge QRM H2

1 that is defined by the α ¼ 1 case
of Eq. (105). Up to a constant this model reads

H2
1 ¼ ωmσ

þσ− þ ωa†aþ igða† − aÞðσþ þ σ−Þ; ð234Þ

where σ� are the raising and lowering operators for the two-
level dipole with transition frequency ωm, a and a† are the
cavity annihilation and creation operators for photons
defined relative to the multipolar gauge, and g ¼ d

ffiffiffiffiffiffiffiffiffiffiffi
ω=2v

p
is the coupling strength. A dimensionless coupling strength
is defined by η ¼ g=ω. Recall that the multipolar-gauge two-
level truncation of the dipole is expected to be accurate for a
sufficiently anharmonic dipole; see Sec. IV.F. Leakage at a
rate κ to external environmental modes k described by
bosonic operators bk; b

†
k can be described in the gauge α

using a linear weak-coupling Hamiltonian Vα
cav-ext ¼ π ⊗P

k gkðbk þ b†kÞ, where π ≔
ffiffiffiffiffiffiffiffiffiffiffi
2v=ω

p
Π is the cavity canonical

momentum quadrature. This operator represents a different
physical observable in each different gauge α.
Since the light-matter system is ultrastrongly coupled,

Salmon et al. (2022) assumed a global approach in which
dissipation is described using the dressed states of the light-
matter composite. If one applies the standard derivation of the
Lindblad master equation (cf. Sec. V.C.2) with the reduced
system of interest being the dipole-cavity system described by
the dressed states of the QRMH2

1 and with the coupling to the
bath Vα

cav-ext, then one obtains

_ρ ¼ i½ρ; H2
1� þ Lðρ; xÞ; ð235Þ

Lðρ; xÞ ¼ κðxρx† − 1
2
fx†x; ρgÞ; ð236Þ

where ρ is the density operator describing the dipole-cavity
system, H2

1 is the multipolar-gauge QRM, and x is a Lindblad
operator obtained by expressing the α-gauge canonical
momentum quadrature π in the eigenbasis fjiig of the
QRM H2

1 as

π ¼ xþ x†; ð237Þ

x ¼
X
i;j
i<j

hijπjjijiihjj: ð238Þ

Equation (235) constitutes a different physical description
of cavity leakage for each different physical definition of
π¼ ffiffiffiffiffiffiffiffiffiffiffi

2v=ω
p

Π. In the multipolar gauge itself we have

Π¼−DT ¼ i
ffiffiffiffiffiffiffiffiffiffiffi
ω=2v

p ða†−aÞ, where a and a† are the same
(multipolar-gauge) operators that appear in Eq. (234). Thus,
for α ¼ 1 we have π ¼ π1, where π1 ≔ iða† − aÞ, yielding the
corresponding master equation
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_ρ ¼ i½ρ; H2
1� þ L1ðρ; xÞ; ð239Þ

L1ðρ; xÞ ¼ κðxρx† − 1
2
fx†x; ρgÞ; ð240Þ

x ¼
X
i;j
i<j

hijπ1jjijiihjj: ð241Þ

Salmon et al. (2022) referred to this result as the “dipole-
gauge” master equation.
However, Salmon et al. (2022) assumed that the correct

description is provided when the cavity couples to external
modes via the transverse electric field ET, which equals −Π in
the Coulomb gauge. The multipolar-gauge two-level trunca-
tion of the observable

ffiffiffiffiffiffiffiffiffiffiffi
2v=ω

p
ET is −π1 − 2ησx, where

π1 ≔ iða† − aÞ. The resulting master equation is therefore

_ρ ¼ i½ρ; H2
1� þ L0ðρ; xÞ; ð242Þ

L0ðρ; xÞ ¼ κðxρx† − 1
2
fx†x; ρgÞ; ð243Þ

x ¼
X
i;j
i<j

hijðπ1 þ 2ησxÞjjijiihjj: ð244Þ

Salmon et al. (2022) referred to this master equation as the
“dipole-gauge-fixed” master equation, which is clearly differ-
ent from Eq. (239). Note that this master equation is obtained
by assuming a coupling between the cavity and external
modes using the Coulomb-gauge cavity canonical momentum
ET, but the two-level truncation of the dipole has been
performed within the multipolar gauge, where, unlike in
the Coulomb gauge, it is expected to be generally accurate
for an anharmonic dipole; see Sec. IV.F. The observable ET
has therefore been expressed in terms of the multipolar-gauge
operators σx and a; a†.
More generally, in the gauge α we have Π ¼ −ET − αPT,

where PT ¼ dσx=v. The multipolar-gauge two-level trunca-
tion of the observable −

ffiffiffiffiffiffiffiffiffiffiffi
2v=ω

p ðET þ αPTÞ is represented by
the operator π1 þ 2ð1 − αÞησx, which results in the master
equation

_ρ ¼ i½ρ; H2
1� þ Lαðρ; xÞ; ð245Þ

Lαðρ; xÞ ¼ κðxρx† − 1
2
fx†x; ρgÞ; ð246Þ

x ¼
X
i;j
i<j

hij½π1 þ 2ð1 − αÞησx�jjijiihjj: ð247Þ

Equations (239) and (242) are the particular cases given by
α ¼ 1 and 0, respectively. For each α the general master
equation (245) constitutes a different physical model of cavity
leakage in which the cavity is assumed to couple to external
modes linearly through its canonical momentum Π, which
represents the observable −ET − αPT. In other words, cavity
leakage is described relative to a choice of gauge.
The cavity emission spectrum is defined as the spectrum of

the average external mode number operator hb†kbki and is
given using Vα

cav-ext as (Salmon et al., 2022)

SαðΩÞ ∝ Re

�Z
∞

0

dτeiΩτhx†ð0ÞxðτÞiss
�
; ð248Þ

where the conventional weak-coupling approximations have
been applied in the dressed basis of the QRM and we consider
the long-time limit. Like the master equation, the physical
meaning of the spectrum is determined by the value of α,
which specifies the physical observable in terms of which x is
defined in Eq. (247). Salmon et al. (2022) considered the cases
α ¼ 0 and 1, which define x in terms of ET and DT,
respectively. Incoherent excitation of the dipole and coherent
excitation under semiclassical driving are both considered. For
incoherent driving Salmon et al. (2022) considered a phe-
nomenological pump term, for which the master equa-
tion (245) becomes

_ρ ¼ i½ρ; H2
1� þ Lαðρ; xÞ þ Linc

α ðρ; xÞ; ð249Þ

Linc
α ðρ; xÞ ¼ Pincðx†ρx − 1

2
fxx†; ρgÞ: ð250Þ

Sample results for ultrastrong light-matter coupling and weak
incoherent pumping are plotted in Fig. 13. They are markedly
different for the two different gauges α ¼ 0 and 1 for ultra-
strong light-matter coupling, as well as for the JC gauge,
which lies between the two. Note that Salmon et al. (2022)
considered a larger value of the cavity leakage rate (κ ¼ g=4),
for which one again sees clear qualitative differences between
the spectra corresponding to different α, and one thus draws
the same qualitative conclusions.
Salmon et al. (2022) assumed that the Coulomb-gauge

model in Eq. (242) and the associated spectrum are “correct.”
Accordingly the multipolar-gauge model in Eq. (239) and the
associated spectrum are deemed to “fail.” Note that the
Coulomb-gauge result can be transformed using the xP-
phase transformation T 10 to give the following equivalent
expression:

FIG. 13. Cavity emission spectra using the multipolar-gauge
(α ¼ 1; darker curve), Coulomb-gauge (α ¼ 0; lighter curve),
and Jaynes-Cummings-gauge (α ¼ αJC ¼ 0.335 115; dashed
curve) definitions of x for ultrastrong light-matter coupling η ¼
g=ω ¼ 0.5 and weak incoherent pumping Pinc ¼ 0.01g. The
spectra are normalized to the multipolar maximum and αJC is
determined for the same highly anharmonic double-well dipole as
is considered in Sec. IV.F. Other parameters are κ ¼ 0.05g and
δ ¼ ω=ωm ¼ 1.
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_ρ ¼ i½ρ; h21ð0Þ� þ L0ðρ; xÞ; ð251Þ
L0ðρ; xÞ ¼ κðxρx† − 1

2
fx†x; ρgÞ; ð252Þ

x ¼
X
i;j
i<j

hijπ1jjijiihjj. ð253Þ

Here h21ð0Þ ¼ T 10H2
1T 01 is the two-level model encountered

in Sec. IV.C, the jii denote its eigenvectors, and ρ denotes the
density operator in the rotated frame. More generally, any
two-level model unitary operator U2 can be applied to any
one of the master equations (245) corresponding to a fixed
value of α, and this will result in an equivalent expression of
the given master equation. Note that in all of these equations
two-level truncation has been performed in the multipolar
gauge and thus, provided that this truncation is accurate,
each of the equations is an accurate approximation of a
gauge-invariant equation. However, the master equa-
tions (245) corresponding to different α are not equivalent,
because each one constitutes a different physical model of
cavity leakage where the cavity couples to external modes
via a different physical field.
The correct master equation can be determined only

through the provision of a physical argument to prefer one
of the results over another. As previously noted, Salmon et al.
(2022) assumed that the α ¼ 0 result was correct based on the
assumption that the cavity should couple to external modes via
the transverse electric field ET, which was referred to simply
as the electric field by Salmon et al. (2022). The emission
spectrum is then found using the same interaction Hamiltonian
and is therefore given in terms of the same physical field.
However, as described in Sec. VI, conventional photodetec-
tion theory uses the total electric field, which is equal to the
field DT at all points away from the source dipole itself.
Moreover, boundary conditions defining an electromagnetic
cavity are typically specified in terms of the local total electric
field. A perfect conductor satisfies n̂ × EðxÞ ¼ 0 for x on the
boundary with unit normal vector n̂. Since x is not a point
inside the source, we have EðxÞ ¼ DTðxÞ. Thus, in the
simplified toy model discussed in this section, leakage to
external modes through the field DT seems to offer a more
physically sensible description than leakage through ET.
According to these arguments, the specification by Salmon
et al. (2022) of which result is correct and of which result fails
should actually be reversed.
Regardless, these results demonstrate that the prediction of

cavity leakage is strongly gauge relative because coupling of
the cavity to external modes must be defined relative to a
choice of gauge. The relativity becomes significant for
sufficiently large values of the light-matter coupling strength
even though the coupling Vα

cav-ext is weak.

VIII. CONCLUSIONS

In this review we have focused on the implications of gauge
freedom for QED beyond conventional weak-coupling and
Markovian regimes. We have shown that subsystems in QED
are fundamentally gauge relative, meaning that in each gauge
they are defined in terms of different physical observables.
The fundamental condition known as gauge invariance states
that the predictions for any physical observable must always

be the same when found in different gauges. This is guaran-
teed by the unitarity of gauge-fixing transformations.
However, if we compare predictions coming from different
gauges of quantum subsystem properties such as photon
number or light-matter entanglement, then we are comparing
predictions for different physical observables, which are
necessarily different. This is not a violation of gauge invari-
ance. It is analogous to the fact that an interval in space or time
between two events possesses a different value in different
inertial frames even though the same labels “space” and
“time” are used in every inertial frame.
Subsystem gauge relativity can be ignored within the

idealized setting of scattering theory, beyond which it can
be eliminated only when using various weak-coupling and
Markovian approximations. It is therefore an important
fundamental feature whenever such approximations cannot
be employed, i.e., outside of gauge-nonrelativistic regimes.
We have provided descriptions of a number of simple

systems, showing that subsystem gauge relativity is significant
in the description of so-called virtual processes. It thereby
affects the balance between localization and electromagnetic
dressing. This has nontrivial implications for modeling
controllable interactions, for photodetection theory, and for
cavity QED. In all instances, the quantum subsystems,
including reservoirs and measurement devices, must be
defined relative to a choice of gauge. Beyond conventional
weak-coupling and Markovian regimes, the physical predic-
tions for subsystems defined relative to different gauges can be
markedly different.
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