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This is a review of the Sachdev-Ye-Kitaev (SYK) model of compressible quantum many-body
systems without quasiparticle excitations, and its connections to various theoretical studies of non-
Fermi liquids in condensed matter physics. The review is placed in the context of numerous
experimental observations on correlated electron materials. Strong correlations in metals are often
associated with their proximity to a Mott transition to an insulator created by the local Coulomb
repulsion between the electrons. The phase diagrams of a number of models of such a local electronic
correlation are explored, employing a dynamical mean-field theory in the presence of random spin
exchange interactions. Numerical analyses and analytical solutions, using renormalization group
methods and expansions in large spin degeneracy, lead to critical regions that display SYK physics.
The models studied include the single-band Hubbard model, the t-J model, and the two-band Kondo-
Heisenberg model in the presence of random spin exchange interactions. Also examined are non-
Fermi liquids obtained by considering each SYKmodel with random four-fermion interactions to be a
multiorbital atom, with the SYK atoms arranged in an infinite lattice. Connections are made to
theories of sharp Fermi surfaces without any low-energy quasiparticles in the absence of spatial
disorder, obtained by coupling a Fermi liquid to a gapless boson; a systematic large-N theory of such
a critical Fermi surface, with SYK characteristics, is obtained by averaging over an ensemble of
theories with random boson-fermion couplings. Finally, an overview of the links between the SYK
model and quantum gravity is presented, and the review ends with an outlook on open questions.
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I. INTRODUCTION

The discovery of high-temperature superconductivity in the
cuprate compounds in 1986 posed numerous challenges to
quantum theories of electronic matter. The greatest mystery, as
became evident early on, was the unusual metallic state of these
materials above the superconducting critical temperature. This
“strange metal,” as it has since come to be called, displayed
unusual temperature and frequency dependencies in its proper-
ties, which indicated that the strange metal was an entangled
many-body quantum state without “quasiparticles.” Almost all
of quantum condensed matter physics is built on the idea of
quasiparticles: this allows us to account for the Coulomb
interactions between electrons by assuming that their main
effect is to renormalize each electron with a cloud of electron-
hole pairs, after which we can treat each electron as a nearly
independent quasiparticle. This decomposition of the excita-
tions of a many-body system into a composite of simple
quasiparticle excitations is an assumption so deeply engrained
in the theoretical framework that it is usually left unstated.
The aim of this review is to present some recent advances in

describing quantum phases of matter that do not host any
quasiparticle excitations. Much has been understood theoreti-
cally in recent years about the properties of a solvable model
of a many-body quantum system without quasiparticle exci-
tations in the regime of strong interactions: the Sachdev-Ye-
Kitaev (SYK) model. We discuss some of these advances in
this review, along with a discussion of the application of these
advances to more realistic models of quantum matter without
quasiparticles.
The idea of employing a quasiparticle description of a

macroscopic many-particle system can be traced back to
Boltzmann (1872). Boltzmann was thinking of a dilute
classical gas of molecules, as that found in the atmosphere.
In 1872, he introduced an equation that described the time
evolution of the observable properties of a dilute gas in response
to external forces. He applied Newton’s laws of motion to
individual molecules and obtained an equation for fp, the
density of particles with momentum p. In a spatially uniform
situation, Boltzmann’s equation takes the following form:

∂fp
∂t

þ F · ∇pfp ¼ C½f�; ð1:1Þ

where t is the time and F is the external force. The left-hand
side of Eq. (1.1) is simply a restatement of Newton’s laws for
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individual molecules. Boltzmann’s innovation was the right-
hand side, which describes collisions between the molecules.
Boltzmann introduced the concept of “molecular chaos,”
which asserted that in a sufficiently dilute gas successive
collisions were statistically independent. With this assumption,
Boltzmann showed that

C½f� ∝ −
Z
p1;2;3

� � � ½fpfp1 − fp2fp3 � ð1:2Þ

for molecules with momenta p; p1 colliding to momenta p2; p3.
The statistical independence of collisions is reflected in the
products of the densities in Eq. (1.2), and the second term
represents the time-reversed collision.
The notable fact is that Boltzmann’s equation also applies,

with relatively minor modifications, to the dense quantum gas
of electrons found in ordinary metals, as was argued in
Landau’s Fermi-liquid theory (Landau, 1957). Individual
electrons move in Bloch waves (Bloch, 1929) characterized
by a crystal momentum p. Now collisions become rare
because of Pauli’s exclusion principle, and the statistical
independence of collisions is assumed to continue to apply.
The main modification is that the collision term in Eq. (1.2) is
replaced by

C½f� ∝ −
Z
p1;2;3

� � � ½fpfp1ð1 − fp2Þð1 − fp3Þ

− fp2fp3ð1 − fpÞð1 − fp1Þ�; ð1:3Þ

where the additional (1 − f) factors ensure that the final states
of collisions are not occupied. Now the fp measure the
distribution of electronic quasiparticles, and a cloud of
particle-hole pairs around each electron renormalizes only
the microscopic scattering cross section. Such a quantum
Boltzmann equation is the foundation of the quasiparticle
theory of the electron gas in metals, superconductors, semi-
conductors, and insulators, and indeed almost all of condensed
matter physics before the 1980s.
Our interest here is in quantum materials in which the

description in terms of a quasiparticle distribution function
fp obeying a quantum Boltzmann equation breaks down.
The time between collisions becomes so short that the
quantum interference between successive collisions cannot
be ignored, and the collisions cannot be treated as sta-
tistically independent. Landau’s Fermi-liquid theory has the
feature that the quasiparticles are essentially dressed elec-
trons, but there are situations in which the quasiparticles are
emergent excitations of the many-body system with no
simple relation to the bare electrons; such systems can be
treated by extensions of Landau’s approach, and these will
also not be of interest to us.
Given a quantum many-body system, how do we ascertain

the absence of low-energy quasiparticles in any basis and the
associated universal diagnostics (if any)? The simplest diag-
nostic we might consider for detecting the presence of
electronic quasiparticles is via poles in the single-particle
Green’s function (sharp peaks in the spectral function).
However, the existence of a broad electron spectral function

is, by itself, not sufficient to conclude that there are no
quasiparticle excitations. After all, interacting electrons in one
dimension have broad electron spectral functions (Giamarchi,
2003). This is understood in Luttinger-liquid theory using a
description in terms of a different set of quasiparticles: linearly
dispersing bosons associated with collective excitations. The
electron operator is an exponential of the boson operator, and
this leads to the broad spectral functions. The bosonic
quasiparticles describe all the many-body eigenstates, but
the electron operator has a complicated form in this repre-
sentation. Similarly, while the electron spectral function in
certain fractional quantum Hall phases and paramagnetic Mott
insulators (Broholm et al., 2020) can be complicated, at low
energies they might host emergent quasiparticle excitations
that are well defined but impossible to diagnose using a two-
point spectral function, as the latter quantity is not even a
gauge-invariant observable. These examples illustrate that the
electron spectral function is not a universal diagnostic for
detecting quasiparticles; it is useful when the overlap between
the wave function of the low-energy quasiparticle and the
physical electron is nonzero [as in a Landau-Fermi liquid
(Abrikosov, Gorkov, and Dzyaloshinskii, 1963)]. On the other
hand, when the two are orthogonal, as in the previously
highlighted examples, the diagnostic fails and the spectral
function is ill equipped to analyze the fate of the quasipar-
ticles. A further weakness in the spectral function diagnostic is
apparent when we consider disordered systems (such as even a
disordered Fermi liquid). Electronic quasiparticles are well
defined in such systems (Abrahams et al., 1981), but they are
not apparent in electronic spectral functions unless the spatial
form of the quasiparticle wave function is already known: they
are not plane waves, as in Fermi liquids in clean crystals.
These considerations make it clear that a system with

quasiparticle excitations is best characterized by an extension
of the original Landau perspective (Landau, 1957): the low-
energy states of a many-body system can be decomposed into
composites of single-quasiparticle states, and the energies of
these states are functionals of the densities of individual
quasiparticle states. In other words, quasiparticles are additive
excitations of a many-body system. Analyzing the spectrum of
low-lying eigenstates of a many-body quantum system for a
large but finite volume therefore provides a useful diagnostic
of the validity of a quasiparticle description or of its failure.
We use this “spectral fingerprint” in several places in this
review; see Sec. IV.B.
With this perspective, in a many-body quantum system

without quasiparticle excitations it is not possible to decompose
the low-lying states into any basis of quasiparticle excitations.
This is, however, a practical definition only when the full low-
lying spectrum is available. Furthermore, it may be possible to
exclude a candidate quasiparticle basis, but it is often difficult to
exclude them all. For a more positive and practical definition,
we consider the approach of a quantum many-body system to
local thermal equilibrium at a temperature T after the action of a
local perturbation. In a system with quasiparticle excitations
such as a Fermi liquid, the solution of the quantum Boltzmann
equation shows that this will happen in a time that is at least as
long as ∼1=T2 as T → 0. This long span of time is required for
individual quasiparticles to collide with each other. In a system
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without quasiparticles, we expect the length of time to be much
shorter. But how short can the local equilibration time get as
T → 0? Studies of numerous model systems without quasi-
particle excitations, some of which are described in this review,
show that the time is never shorter than a time of the order of the
“Planckian time” ℏ=kBT, i.e., the minimum time associated
with an energy of the order of kBT according to the Heisenberg
uncertainty principle. On the other hand, it is clear from a study
of systems with quasiparticles that such systems can never
equilibrate as quickly as the Planckian time as long as
quasiparticles are well defined. Thus, we reach the proposal
that many-body quantum systems without quasiparticles are
those that locally equilibrate in a time of the order of ℏ=kBT,
and no system can equilibrate any faster (Sachdev, 1999;
Hartnoll, Lucas, and Sachdev, 2016).
Our focus in this review is primarily on metallic quantum

many-body systems without quasiparticle excitations, i.e., non-
Fermi liquids. Section II presents a general perspective on non-
Fermi liquids, with a summary of some of their experimental
signatures and an overview of some theoretical ideas and their
relationship to the SYK models presented in this review. An
outline of the perspective of this review appears in Sec. II.C.
Readers wanting to focus on the SYK viewpoint can skip
directly ahead to Sec. II.C and then to Sec. IV. In Sec. III,
we qualitatively discuss the properties of “bad metals” and
“Planckian metals,” two forms of unconventional transport
often encountered in non-Fermi liquids. In Sec. IV, we first
review the random-matrix model for noninteracting fermions
that realizes a Fermi liquid with quasiparticles. The SYKmodel
system is introduced and reviewed in Sec. V. The insights
gained from this study are then applied to several extensions
thereof in Secs. VI, VII, VIII, X, and XI, with an eye toward
capturing certain universal phenomenological aspects of quan-
tum materials with strong electronic correlations. There are also
noteworthy connections between the SYK model and quantum
theories of Einstein gravity in black holes, and these are
reviewed in Sec. XII. In recent years, precise diagnostics of
a class of nonquasiparticle systems have appeared upon the
introduction of ideas from quantum chaos and quantum gravity
that are discussed in Sec. XII.E.

II. TYPOLOGY OF NON-FERMI LIQUIDS

Numerous strongly correlated systems, such asmaterials with
partially filled d- or f-shell orbitals and, more recently, in moiré
systems, display a phenomenology that, while metallic, can
drastically deviate from the predictions of the standard Fermi-
liquid (FL) theory of metals. These non-Fermi liquids (NFLs)
raise a series of central challenges in condensed matter physics,
both experimentally and theoretically. As they are defined by
what they are not, they constitute a rich and diverse family of
systems. Conceptually, they are not characterized by a few
universal experimental traits, unlike Fermi liquids. In practice,
they cannot always be clearly identified using simple response
functions, unlike other familiar phases of quantummatterwith or
without spontaneously broken symmetries (such as supercon-
ductors, antiferromagnets, and quantum Hall insulators).
The family of SYK models discussed in this review

constitute a solvable theoretical route to study a class of

NFL behavior, as they have some of the major characteristics of
NFL metals. In particular, we discuss their relation to Planckian
metals, characterized by a linear dependence of resistivity with
temperature and a characteristic scattering rate ∼kBT=ℏ. To set
the stage for this review, we therefore start by discussing a
selection of the most important NFL behavior encountered
experimentally (Sec. II.A). We then introduce the main theo-
retical routes that have been proposed to characterize and
explain them (Sec. II.B), along with their connections to the
aspects of SYK physics discussed in later sections. Finally, in
Sec. II.C, we present the general perspective of this review and
provide an outline. Readers wanting to go directly to the
theoretical models of this paper can skip ahead to Sec. II.C.

A. Experimental signatures of non-Fermi liquids

We start by discussing a few experimental signatures of
NFLs, based on a variety of spectroscopic and transport
measurements. Since dc transport can be difficult to interpret,
it is important not to rely only on it exclusively to characterize
NFL behavior. The various signatures include the following.

• “Short” single-particle lifetimes for excitations near the
Fermi surface, as deduced from spectroscopic measure-
ments such as angle-resolved photoemission spectroscopy
(ARPES) (Damascelli, Hussain, and Shen, 2003). In FL
metals, the inverse quasiparticle lifetime (i.e., the scatter-
ing rate) scales as Γsp ≡ g2WðkBT=E�

FÞ2, where g is a
dimensionless electron-electron interaction strength, W is
a bare electronic energy scale (bandwidth or hopping),
and E�

F is a characteristic energy scale below which
coherent long-lived quasiparticle excitations emerge. E�

F
can be viewed as a degeneracy scale for the Fermi gas
of quasiparticles. In contrast, a strong departure from
the previously mentioned form that persists over a large
range of energy scales is an indication of breakdown
of FL behavior. In a number of experimental systems
that display NFL behavior, Γspðω; TÞ ∼maxðω; kBT=ℏÞ
(Valla et al., 1999; Wang et al., 2004).

• A power-law temperature dependence of the dc resis-
tivity deviating from the expected FL form ∼T2 (due to
umklapp scattering) over a broad range of temperatures,
without any signs of crossovers or saturation. One of the
most commonly reported behaviors is ρ ¼ ρ0 þ AT, over
an extended range Tcoh < T < Tuv (Hartnoll and Mac-
Kenzie, 2021); see Sec. III.B. However, other power
laws Δρð≡ρ − ρ0Þ ∼ Tα have also been observed (Allen
et al., 1996; Lee et al., 2002). Identifying a material as a
NFL on the basis of an observation of T-linear resistivity
above Tcoh requires special care since electron-phonon
scattering in conventional metals leads to a trivial
example of the same (Ziman, 1960). However, T-linear
resistivity presents an indication of behavior at odds with
the Boltzmann theory of FL transport in examples where
Tcoh is significantly low compared to the Debye (or
Bloch-Grüneissen) scale, the linearity persists without
any crossovers across multiple phonon energy scales,
and there are no obvious collective modes to which a
similar phonon-type argument can be directly applied.
We return to a discussion of the physical significance of
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Tcoh in subsequent sections. Note that in some materials,
such as optimally doped cuprates (Giraldo-Gallo et al.,
2018), certain heavy-fermion materials (Stewart, 2001)
and twisted bilayer graphene (Jaoui et al., 2022), this
behavior persists down to a low Tcoh → 0.

• Bad-metallic behavior (Emery and Kivelson, 1995;
Gunnarsson, Calandra, and Han, 2003; Hussey,
Takenaka, and Takagi, 2004) with a resistivity that is
an increasing function of temperature with ρ≳ ρQ
(ρQ ¼ h=e2½a�d−2, where a is a microscopic length scale
and h=e2 ≃ 25.8 kΩ is the quantum of resistance) is also
indicative of NFL behavior. A majority of the systems of
interest to us are quasi two dimensional (with appreci-
able transport anisotropy in the a-b plane versus along
the c axis), and it is thus useful to quote the results for the
sheet resistivities in units of h=e2. While bad metals can
arise at high temperatures for simple reasons, the key
puzzle is often related to their smooth evolution into a
low-temperature regime without any characteristic cross-
overs, which defies Fermi-liquid behavior. In the liter-
ature, the expression bad, or strange, is often used to
refer to certain NFL metals. In this review, we reserve
the term bad metals to designate systems in which the
resistivity is larger than the Mott-Ioffe-Regel value and
strange metals to indicate materials with a resistivity
smaller than this value but displaying a set of behavior
incompatible with the quasiparticle-based framework of
Fermi-liquid theory. We discuss bad-metallic transport in
the high-temperature regime in more detail in Sec. III.A.

• An anomalous power-law dependence of the optical
conductivity σðωÞ ∼ 1=ωγ over an extended range of
frequencies, thus differing from conventional Drude
behavior. This is observed in cuprates (Schlesinger et al.,
1990; El Azrak et al., 1994; Baraduc, Azrak, and
Bontemps, 1996; van der Marel et al., 2003; Hwang,
Timusk, and Gu, 2007) and has also been reported in
other materials (Kostic et al., 1998; Schwartz et al.,
1998; Dodge et al., 2000; Mena et al., 2003; Limelette
et al., 2013; Phanindra, Agarwal, and Rana, 2018). This
is also often accompanied by ω=T scaling as a function
of temperature, i.e., σðω; TÞ ∼ 1=ωγFðω=TÞ (Lee et al.,
2002; van der Marel et al., 2003, 2006; Limelette et al.,
2013; Michon et al., 2022; van Heumen et al., 2022).
At higher energy or temperature, a transfer of spectral
weight over energy scales larger (sometimes much
larger) than kBT are also typically observed as temper-
ature is varied (Georges et al., 1996; Rozenberg, Kotliar,
and Kajueter, 1996; Basov et al., 2011). A simultaneous
analysis of both dc transport and optical conductivity (or
other frequency-dependent response functions) is often
crucial to reaching an understanding of the NFL phe-
nomenology in a specific material.

• An unconventional charge-density response exemplified
by a featureless continuum extending over a broad range
of energy scales, as measured in Raman scattering
experiments (Bozovic et al., 1987; Slakey et al., 1991).
Recent measurements using momentum-resolved elec-
tron energy-loss spectroscopy have further revealed a
featureless two-particle continuum and an overdamped

plasmon excitation (Mitrano et al., 2018; Husain et al.,
2019, 2020), which is at odds with the expectations for a
Fermi-liquid metal.

B. Theoretical models of non-Fermi liquids

Classifying insulating gapped phases of matter in terms of
their symmetry and topological properties using the lens of
many-body entanglement has been a highly successful venture
(Wen, 2017). On the other hand, classifying gapless phases of
matter, and non-Fermi liquids, in particular, remains an out-
standing challenge. We do not attempt to embark on such an
endeavor here. This review focuses on a few distinct classes of
NFLs without quasiparticles that can be described using various
generalizations of the solvable SYK model. We find it useful
nevertheless to first provide a broader overview of some of the
theoretical frameworks and routes that lead to examples of non-
Fermi liquids in clean crystalline systems without disorder.

• A class of models involves the quantum-critical
fluctuations of a bosonic degree of freedom coupled
to an electronic Fermi surface (Löhneysen et al.,
2007). These fluctuations are associatedwith the order
parameter corresponding to the spontaneous breaking
of a point-group (“nematic”), translational (spin-
density- or charge-density-wave), or spin-rotation
(ferromagnetism) symmetry. In the absence of any
other instability, such as pairing, the resulting ground
state is a NFL that controls the properties of the system
in a range of temperatures above the critical point. The
nature of the low-energy excitations near the Fermi
surface differs depending onwhether the order param-
eter carries zero or a finite center-of-mass momentum
Q. This framework of an electronic Fermi surface
coupled to the low-energy fluctuations of a Landau
order parameter often goes under the name of Hertz-
Millis-Moriya criticality (Moriya, 1985; Millis, 1993;
Sachdev, 1999). A critical bosonwithQ ¼ 0 (nematic
order) can destroy electronic quasiparticles around the
entire Fermi surface [Fig. 1(a)]. At the critical point,
the resulting state realizes a classic example of a
critical Fermi surface (Metlitski and Sachdev, 2010;
Mross et al., 2010) and provides an ideal setting for
studying the interplay of NFL physics and super-
conductivity (Metlitski et al., 2015;Wang et al., 2016;
Berg et al., 2019).The low-energy field theory for such
metallic criticality in 2þ 1 dimensions presents a
significant theoretical challenge (Lee, 2009). The
insights provided by the solvable SYK model into
such systems are reviewed in Sec. XI. A critical boson
with Q ≠ 0 (density-wave order) destroys electronic
quasiparticles near only certain special points on the
Fermi surface (“hot spots”) as it gets reconstructed into
pockets, while much of the Fermi surface continues to
host long-lived quasiparticles. See Lee (2018) and
Berg et al. (2019) for some recent complementary
theoretical progress in both classes of such order-
parameter-based metallic criticality.
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• A different form of quantum criticality leading to
NFL behavior is associated with the disappearance
of entire electronic Fermi surfaces (Coleman et al.,
2001). Prominent examples of such criticality in-
clude continuous metal-insulator transitions be-
tween a FL metal and a paramagnetic Mott
insulator at fixed density [Fig. 1(b)] (Florens and
Georges, 2004; Senthil, 2008a, 2008b); see also
Kotliar (1995) and a Kondo-breakdown transition
in a heavy Fermi liquid to a fractionalized FL
[Fig. 1(c)] (Schröder et al., 2000; Coleman et al.,
2001; Si et al., 2001, 2003; Burdin, Grempel, and
Georges, 2002; Senthil, Sachdev, and Vojta, 2003;
Senthil, Vojta, and Sachdev, 2004; Paul, Pépin, and
Norman, 2007, 2008, 2013). The critical point
across both of these transitions also hosts an elec-
tronic critical Fermi surface without low-energy

Landau quasiparticles (Senthil, Vojta, and Sachdev,
2004; Senthil, 2008a). All currently known low-
energy theories for describing such continuous
transitions involve fractionalized degrees of freedom
coupled to emergent dynamical gauge fields. Most
theoretical descriptions of these continuous transi-
tions have a remnant Fermi surface of the fraction-
alized degrees of freedom (and not of electrons)
coupled to dynamical gauge fields on one side of the
critical point; we continue to refer to these as critical
Fermi surfaces in this review. Continuous metal-
insulator transitions without any remnant Fermi
surface of even fractionalized degrees of freedom
provide examples of a new form of “deconfined”
metallic quantum criticality; see Zhang and Sachdev
(2020) and Zou and Chowdhury (2020) for recent
progress in describing such transitions. In particular,
all of these transitions fall beyond the previously
described order-parameter-based Hertz-Millis-
Moriya framework. Insights from a SY model with
random-exchange interactions in the presence of a
uniform Kondo exchange for two-orbital models are
applied to the study of a special case of such abrupt
Fermi volume changing transitions in Sec. VIII.

• In contrast to the previous examples that arise at
certain T ¼ 0 quantum-critical points, a NFL can
arise as a stable phase at zero temperature. One of
the most well-known examples of such NFL behav-
ior is found in a two-dimensional electron gas at a
high magnetic field at a filling factor ν ¼ 1=2. The
metallic NFL state is compressible and otherwise
known as the composite Fermi liquid (CFL); it hosts
a sharp Fermi surface on which the low-energy
excitations are not electrons but instead composite
fermions (CF) (Jain, 2007). The low-energy theory
for the CFL is described in terms of a CF Fermi sea
coupled to a dynamical gauge field (Halperin, Lee,
and Read, 1993; Son, 2015). Other examples of NFL
phases at T ¼ 0 have also been observed in numeri-
cal studies of lattice models (Jiang et al., 2013).
We note that there are insulating (and incom-

pressible) phases of matter that are expected to arise
in a class of paramagnetic Mott insulators, where
fractionalized degrees of freedom (such as spinons)
form a Fermi surface and are coupled minimally to
an emergent gauge field (Lee, 1989; Altshuler, Ioffe,
and Millis, 1994). The low-energy field theory for
such phases shares similarities with the theory for
the CFLs, but there are important conceptual
differences. A theoretical description of the low-
energy field theory for the Fermi surface of spinons
coupled to a dynamical gauge field suffers from the
same problem as was noted earlier (Lee, 2009); the
solvable SYK model of Sec. XI offers a controlled
complementary understanding of this problem.

• For sufficiently strong interactions and over a range
of intermediate temperatures, it is possible that NFL
behavior emerges generically and is not controlled

FIG. 1. (a) NFL obtained by coupling a critical boson (nematic
order with Q ¼ 0) to an electronic Fermi surface. (b) Bandwidth-
tuned metal to paramagnetic Mott insulator transition. The Mott
insulator hosts a neutral Fermi surface (dashed circle) of
fractionalized degrees of freedom coupled to an emergent gauge
field. (c) A Fermi volume changing transition between two
distinct metals across a “Kondo breakdown” quantum-critical
point. The quantum-critical point hosts a critical Fermi surface of
electrons in all the examples. The Mott insulator and the FL*
phases host a critical Fermi surface of “spinons” in (b) and (c),
respectively.
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by the proximity to a quantum-critical point (or
phase). Moreover, the NFL regime appears only as a
crossover regime at intermediate temperatures, while
the ground state is a conventional phase (a FL, a
superconductor, etc.). These NFL regimes can be
described as “infrared (IR) incomplete,” unlike the
examples described earlier, which are, in principle,
controlled by T ¼ 0 fixed points. Some prominent
and well understood examples of such IR-incom-
plete behavior include the classic electron-phonon
system above the Debye temperature (Ziman, 1960),
spin-incoherent Luttinger liquids (Fiete, 2007),
generic lattice models with a finite bandwidth at
high temperatures (Mukerjee, Oganesyan, and Huse,
2006) [see also Lindner and Auerbach (2010)], and
certain holographic non-Fermi liquids (Faulkner, Liu
et al., 2011; Liu, McGreevy, and Vegh, 2011).
A number of theoretical examples of such IR-
incomplete behavior are accompanied by an extensive
residual entropy that is obtained from an extrapolation
to the limit of T → 0; the excess entropy is then
relieved below the crossover to the conventional
phase. Our treatment of such systems appears in
the discussion on lattice models of one- and two-band
models of SYK atoms in Sec. X.

C. Perspective of this review

An important idea in our approach is that it is possible to
make progress on many intractable problems in the theory of
non-Fermi liquids by considering models with random inter-
actions. At first sight, this appears to be counterintuitive
because spatial randomness introduces new phenomena asso-
ciated with localization that are not of interest to us here.
However, most of the models considered here live on fully
connected lattices on which disorder-induced localization
cannot take place. Indeed, the local electronic properties
are strongly self-averaging, and the observable properties of
a single sample with disorder are indistinguishable from the
average of an ensemble of samples in the infinite-volume
limit. Furthermore, one could argue that the strong incoher-
ence associated with the absence of quasiparticles also
removes localization effects that require quantum coherence
and interference processes (Lee and Ramakrishnan, 1985).
A non-Fermi-liquid system without disorder thermalizes in the
shortest possible time, and this implies chaotic behavior in
which the memory of the initial conditions is rapidly lost.
Consequently, it is possible to view averaging over disorder as
a technical tool that allows access to the collective properties
of a system with strong many-body quantum chaos.
We can also restrict the disorder exclusively to a flavor

space, and thus study non-Fermi liquids with full translational
symmetry, as we do in Secs. X and XI. Here the idea is that,
after some renormalization group flow, a large set of theories
flow to the same universal low-energy behavior. And we find
that it is easier to access the universal theory by averaging over
a suitable set of microscopic couplings.
Indeed, the idea of using an average over random systems to

understand quantum chaos has long been present in the theory

of single-particle quantum chaos. We discuss this in Sec. IV,
where we review the random-matrix theory of noninteracting
fermions: this has been a successful model of the quantum
theory of particles whose classical dynamics is chaotic.
Section V introduces the SYK model of fermions with

random two-body interactions with N single-particle states. We
present the exact solution of the many-body system without
quasiparticle excitations obtained in the N → ∞ limit. Much is
also understood about the finite N fluctuations, including some
results with a noteworthy accuracy of expð−NÞ. This fluc-
tuation theory relies on a mapping to a low-energy effective
theory of time reparametrization fluctuations (which is also the
theory of a “boundary graviton” in the quantum theory of
certain black holes of Einstein-Maxwell theory of gravity and
electromagnetism, as discussed in Sec. XII).
Section VI turns to a quantum generalization of the thor-

oughly studied Sherrington-Kirkpatrick model of a classical
spin glass with Ising spins σi ¼ �1 (i ¼ 1;…; N → ∞) with
random and all-to-all interactions Jij with zero mean. The
quantummodel replaces σi with quantum S ¼ 1=2 SUð2Þ spins
Si, which have random Heisenberg interactions Jij. We review
a variety of studies of this model here involving numerical exact
diagonalization, renormalization group, and large-M expan-
sions of models with SUðMÞ spin symmetry. These results
show that the S ¼ 1=2 SUð2Þ model has spin-glass order
similar to that of the classical Sherrington-Kirkpatrick model.
However, the spin-glass order parameter is small, and for a wide
range of intermediate frequencies the dynamical spectrum
of the SUð2Þ model matches that of the SYK model (obtained
here in the large-M limit).
Sections VII and VIII discuss the familiar and intensively

studied single-band Hubbard and two-band Kondo-
Heisenberg models, respectively, of strong electronic corre-
lations. We consider models with an additional random
exchange interaction Jij that can be used to justify an
extended dynamic mean-field theory with self-consistency
conditions on both the single-electron and spin correlators.
Such theories also apply to models with nonrandom single-
particle dispersion, but it is useful to focus on a simplified
limit with a random and all-to-all single-electron hopping tij.
We use methods similar to those in Sec. VI to show that these
models exhibit quantum phase transitions between two
metals: a metallic spin glass and a Fermi liquid. In the
quantum-critical region, we find a non-Fermi liquid with
SYK-like correlations. Section IX presents an overview of
recent advances in the numerical methods employed for the
analyses in Secs. VII and VIII.
Section X presents a different approach toward generalizing

SYK models to lattice systems. We consider a lattice of “SYK
atoms,” where each lattice site has N orbitals and the intra-
atomic electronic interactions are assumed to have the random
SYK form. We consider the case where all SYK atoms are
identical (so that there is lattice translational symmetry) versus
the case where the interactions are different random instances
on each site, and then comment on their similarities and
differences. These models can be used to realize non-Fermi
liquids with a SYK character and no singular spatial corre-
lations, but with a bad-metallic resistivity. Generalizations
of these models to include additional orbitals, in the spirit of
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two-band models of heavy-fermion materials, lead to strange
metals with T-linear resistivity, critical Fermi surfaces, and a
marginal Fermi-liquid behavior (Varma et al., 1989).
Section XI returns to models of Fermi surfaces coupled to

critical bosons, which we introduced in Sec. II.B. We describe
how a systematic large-N theory of a class of non-Fermi
liquids can be obtained by applying SYK-like approaches to
these well-studied models. We generalize the models to ∼N
flavors of fermions and bosons, with a random Yukawa
coupling between the fermions and bosons. The randomness
can be independent of space so that the models have trans-
lational symmetry.
Section XII explores the connections between the SYK

model and the quantum theory of black holes. We highlight
some recent developments, particularly those that we think are
of interest to condensed matter physicists. We conclude with
an outlook on open questions in Sec. XIII.

III. BAD METALS AND PLANCKIAN METALS

As previously emphasized, a prime signature of NFL
behavior is unconventional transport. In this section, we
provide a qualitative discussion contrasting high-temperature
bad-metallic behavior with “Planckian transport” persisting
down to low-T. This review focuses mostly on solvable
models aiming at providing insight into the latter.

A. Bad metals: Mott-Ioffe-Regel criterion
and a high-temperature perspective

In considering transport in semiconductors, Ioffe and Regel
(1960) and Mott (1974) argued that metallic transport in the
conventional sense requires that the mean free path l of
quasiparticles should be longer than the typical lattice spacing
a. For a quasi-two-dimensional conductor with a single
parabolic band and a simple cylindrical Fermi surface of
radius kF, the Drude expression for conductivity σ ¼ ne2τ=m
can be rewritten as

σ ¼ e2

h
1

c
kFl; ð3:1Þ

where c is the interlayer distance. Hence, when the sheet
conductance becomes smaller than the conductance quantum
e2=h, the Mott-Ioffe-Regel (MIR) criterion is violated, which
suggests that a Drude-Boltzmann description of transport is no
longer valid. The criterion itself is not a quantitatively precise
one, depending on whether l is compared to a or the Fermi
wavelength λF ¼ 2π=kF.
“Good” metals typically have resistivities that are much

smaller than ρQ and, correspondingly, l ≫ a. In the context
of unconventional metallic transport, the physical signifi-
cance of the MIR criterion has been a confusing issue for
quite a while, as reviewed by Gunnarsson, Calandra, and Han
(2003) and Hussey, Takenaka, and Takagi (2004). Some
materials, such as A15 compounds (Fisk and Webb, 1976),
display a resistivity saturation as the MIR value is
approached, leading to the speculation that resistivity satu-
ration should perhaps be a general fact. Note that there is
no fundamental theoretical understanding for resistivity

saturation in metals.1 Moreover, a wealth of experimental
data collected on materials with strong electronic correla-
tions, most notably transition-metal oxides, came in to
contradict the notion of resistivity saturation. Indeed, resis-
tivity in many such materials can increase significantly above
the MIR value without any trend toward saturation or even
any characteristic feature signaling this crossover in the
temperature dependence of ρ. The term bad metal was coined
to highlight this behavior (Emery and Kivelson, 1995). A
material displaying bad-metallic behavior at a high temper-
ature can become a good Fermi liquid at a low temperature
with long-lived coherent quasiparticles, with a good example
being Sr2RuO4 (Tyler et al., 1998). Low-carrier density
materials such as doped SrTiO3 also have bad-metallic
behavior at high T (Collignon et al., 2020) while displaying
quantum oscillations and coherent transport at low T
(Collignon et al., 2019).
Recent studies (Deng et al., 2013, 2014) have considerably

clarified the physical significance of the MIR criterion. It is
now understood that the temperature TMIR at which the
resistivity becomes of the order of the MIR value corresponds
to the complete disappearance of quasiparticles. Typically, in
systems which become FL at low T, the scale T�

F below which
long-lived coherent Landau quasiparticles with Γsp ∼ T2 are
observed is significantly smaller than TMIR. In Sr2RuO4,
T�
F ≃ 30 K, while TMIR is several hundred kelvins. Studies of

the doped Hubbard model in the dynamical mean-field theory
(DMFT) framework documented this interpretation in a
precise manner. There TMIR was found to be of the order
of the Brinkman-Rice scale ∼pt (with p the doping level and t
the typical hopping or bare Fermi energy), while a much lower
scale is associated with T�

F. For a renormalization group
interpretation of that scale, see Held, Peters, and Toschi
(2013). It was shown that “resilient quasiparticles” exist in
the intermediate regime T�

F < T < TMIR: the spectral function
displays a broadened but well-defined peak and transport can
still be described in terms of these excitations, which is
reminiscent of the notions introduced (Prange and Kadanoff,
1964) for electron-phonon scattering. It was also shown
(Deng et al., 2014) that the quasiparticle lifetime follows a
1=T2 law up to a higher temperature than the transport
lifetime itself, and hence than the temperature at which the
resistivity deviates from T2.
Considerable insight in interpreting transport results can

be gained by simultaneously considering spectroscopy
experiments, most notably optical conductivity, and the
corresponding transfers of spectral weight upon changing
the temperature. In studies of the doped Hubbard model (Deng
et al., 2013), it was shown that these transfers are limited to
the low-energy region between the Drude peak and the
midinfrared range for T�

F < T < TMIR, while the MIR cross-
over is signaled by spectral weight transfers over a much
larger energy range, leading to a broad featureless optical
conductivity for T > TMIR.

1Recent work has analyzed resistivity saturation, and a lack
thereof, in solvable models of electrons coupled to a large number
of phonon modes (Werman and Berg, 2016; Werman, Kivelson, and
Berg, 2017).
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At temperatures exceeding the finite bandwidth for lattice
fermions, it is natural to find bad-metallic transport with a
resistivity scaling linearly with temperature. We review here
the physical nature of this high-T regime, which is now well
understood. One approach to this regime is to start with the
following Kubo formula for the optical conductivity:

σðω;TÞ¼π
1−e−βℏω

ωZ

X
n;m

e−βEn jJnmj2δðEn−Em−ℏωÞ; ð3:2Þ

where n and m label the eigenstates of the generic many-body
Hamiltonian with energies En and Em, respectively. The
matrix elements of the total current operator between
the two states are denoted as Jnm and Z ¼ P

n e
−βEn is the

partition function. When T is the largest energy scale in the
problem, this expression reduces to

σðω; TÞ ¼ π

kBT
1

Z

X
n;m

jJnmj2δðEn − Em − ℏωÞ: ð3:3Þ

For generic lattice models, and more generally any system for
which the sum is finite in the thermodynamic limit, Eq. (3.3)
implies that T-linear resistivity is expected in the high-T
regime; for generic nonintegrable models the matrix elements
Jnm are expected to have a “random-matrix” form even in the
absence of any randomness (Mukerjee, Oganesyan, and Huse,
2006). This analysis was recently extended to study several
interacting models over a wider range of temperatures (Patel
and Changlani, 2022). The expression for the conductivity in
Eq. (3.2) looks deceptively simple but usually presents a
significant computational challenge when evaluated for the
entire many-body spectrum.
The origin of T-linear resistivity (and deviations thereof at

lower T) can also be approached from a systematic high-T
expansion of the optical conductivity (Lindner and Auerbach,
2010; Perepelitsky et al., 2016). Computational investigations
of transport in two-dimensional Hubbard models in the high-T
regime have appeared recently, using quantum Monte Carlo
simulations (Huang et al., 2019) and the finite-temperature
Lanczos method (Vučičević et al., 2019; Vranić et al., 2020).
Complementary and model-independent insights into this

high-T regime can be obtained by considering the Einstein-
Sutherland relation relating the dc conductivity σdc, the charge
diffusion coefficient Dc, and the charge compressibility χc
(Gunnarsson, Calandra, and Han, 2003); see also Hartnoll
(2015) and Perepelitsky et al. (2016).
When thermoelectric effects can be neglected, this relation

reads

σdc ¼ χcDc; χc ¼
∂n
∂μ

; ð3:4Þ

with n the average density and μ the chemical potential. In the
high-temperature limit, where the gas of Fermi particles is
nondegenerate, the origin of σc ∼ 1=T is tied simply to the
thermodynamic property χc ∼ 1=T rather than the T depend-
ence of Dc (or, equivalently, of the scattering rate). Hence, in
that regime bad-metallic transport does correspond to a
saturation phenomenon, although not of the resistivity itself
but rather of the diffusion constant or scattering rate. Indeed,
in a lattice model it is natural that the minimum possible value

of the diffusion constant should be of the order ofDc ∼ a2=τ0,
with a the lattice spacing, and the microscopic timescale
τ0 ∼ ℏ=t, with t the bare hopping.
In the solid-state context, probing experimentally the

regime where T is comparable to the hopping amplitude is
challenging, except in flat-band materials, but is usually
complicated by the intervening role of phonons and other
remote dispersive bands. From that perspective, cold atomic
gases in optical lattices offer an ideal platform for studying
transport in “hot” or intermediate temperature regimes, as
documented by recent experimental investigations (Anderson
et al., 2019; Brown et al., 2019; Xu et al., 2019). Figures 2(a)
and 2(b) display the measured diffusion constant and com-
pressibility, and the “resistivity” calculated using the Einstein-
Sutherland relation for two-component fermions
in an optical lattice realizing a two-dimensional Hubbard
model, measured as a function of temperature in the range
T=t ¼ 0.3–8 (Brown et al., 2019). It is seen that the regime
dominated by thermodynamics χc ∼ 1=T, Dc ∼ const is
indeed observed at the highest temperatures, crossing over
into a regime at lower T in which both the diffusion constant
and the compressibility exhibit T-dependent crossovers.
Correspondingly, the resistivity as given by Eq. (3.4) becomes
smaller than the MIR value at the lowest temperature while
exhibiting a T-linear behavior without any noticeable feature
or change of slope across the crossover.
The high-T mechanism for T-linear bad-metallic transport

should be contrasted with the “Planckian regime” (Zaanen,
2004), discussed later in more detail, in which the diffusion
constant (or scattering time) is temperature dependent
(Dc ∼ a2ℏ=kBT), while the compressibility is temperature
independent (Hartnoll, 2015). In most of the low-temperature
NFLs exhibiting T-linear resistivity, it is widely believed that
it is the scattering rate that is temperature dependent and not
the compressibility. However, establishing this is in general
difficult in the solid-state setting. Recent experimental
progress has allowed for direct measurements of the electronic
compressibility in two-dimensional gate-tunable materials
(Zondiner et al., 2020), indeed demonstrating that the
Planckian regime of low-temperature transport in magic-angle
twisted bilayer graphene (Polshyn et al., 2019; Cao et al.,
2020; Jaoui et al., 2022) corresponds toDc ∼ 1=T (Park et al.,
2021). It should be noted that Planckian behavior and bad-
metallic behavior are not mutually exclusive: indeed, we
discuss in Secs. VII.D.1 and X models in which Dc ∼ 1=T,
while the resistivity is larger than the MIR value.
In the remainder of this review, we continue to refer to bad

metals as systems with a resistivity larger than the MIR value.
We reserve the term strange metal for systems or regimes
with a resistivity smaller than the MIR value but having an
unconventional power-law behavior at odds with expectations
in a Fermi liquid. This review devotes special attention to the
latter, only occasionally discussing bad metals when relevant.

B. Planckian relaxation: Unity in diversity?

Carrier numbers and effective masses may differ signifi-
cantly from one material to another, and thus it is often not a
meaningful exercise to compare the actual values of the
resistivity across different materials. Instead, comparing the
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relaxation timescales associated with transport can shed light
on the universal mechanisms that govern NFL properties.
Obtaining a transport lifetime from measurements of a dc
resistivity is not a straightforward exercise.
We focus here on instances in which a resistivity depending

linearly on temperature ρ ¼ ρ0 þ AT is observed; see Fig. 3
for some examples and Hussey (2008), Proust and Taillefer
(2019), Varma (2020), and Hartnoll andMacKenzie (2021) for
reviews. A particular procedure that has been adopted to
extract a temperature-dependent transport scattering rate Γdc
in such materials (Bruin et al., 2013) relies on a Drude fit,2

where one expresses ρ ¼ m�Γdc=nce2. Assuming that the
effective massm� and carrier concentration nc are temperature
independent, one writes

Γdc ≡ α
kBT
ℏ

; α ¼ ℏ
kB

e2nc
m� A: ð3:5Þ

In the experimental analysis, m� and nc are typically extracted
from low-temperature measurements [i.e., nc ≡ ncðT → 0Þ
and m� ≡m�ðT → 0Þ], which does not always coincide with
the regime in which the clearest signature of an extended
T-linear resistivity is observed. The previous analysis
becomes especially difficult in multiorbital systems and the
effective masses are often extracted from quantum oscillations
or specific heat; it is far from clear why this is a relevant
quantity that should determine the momentum relaxation rate
even within Drude theory.
Nevertheless, it is noteworthy that for a number of metals

exhibiting a broad regime of T-linear resistivity including
the cuprates, pnictides, ruthenates, organics, and rare-earth
element materials, the previously mentioned “operational”
definition of a scattering rate leads to α ≈ 1 (Bruin et al.,
2013). A similar analysis in magic-angle twisted bilayer

graphene near half filling of the electron and holelike flat
bands (Cao et al., 2020; Jaoui et al., 2022), in twisted
transition-metal dichalcogenides (Ghiotto et al., 2021),
several cuprates over an extended range of doping levels
(Legros et al., 2019) and a nonsuperconducting iron pnictide
(Nakajima et al., 2020) have also found indications of a
Planckian scattering rate with α ≈ 1. Recent measurements
of angle-dependent magnetoresistance (ADMR) near the
pseudogap critical point in Nd-LSCO also reveal a Fermi
surface with an isotropic Planckian scattering set at α ≈ 1
(Grissonnanche et al., 2021). Note that this conclusion holds
in the latter case provided that a T-independent effective mass
associated with intermediate energy scales (and consistent
with ARPES and ADMR) is used, rather than the thermody-
namic effective mass associated with specific heat, which
displays a logarithmic T dependence.
Note that a T-linear resistivity with a Planckian scattering

rate [Eq. (3.5)] is observed in conventional metals like copper
and gold. This is not a surprise and, as noted earlier, the
behavior is associated with electron-phonon scattering where
the phonons are in a classical equipartition regime. There
have been discussions (Sadovskii, 2020, 2021) of a possible
rationale for α ≃ 1 in regimes where electron-phonon and
electron-electron interactions contribute to T linearity on a
similar footing. However, Planckian scattering that persists
down to extremely low temperatures (Giraldo-Gallo et al.,
2018; Cao et al., 2020; Jaoui et al., 2022) in NFLs that are not
low-density materials, and where the behavior persists across
multiple phonon frequencies without any crossovers, presents
a challenge to theory. A more in-depth discussion of Planckian
timescales across solid-state materials appeared in a recent
review (Hartnoll and MacKenzie, 2021).
We end this section by noting that there is not a universal

definition of a “transport scattering rate,” making it difficult to
formulate a precise theoretical Planckian bound. Even exper-
imentally, as previously seen, the procedure used most often to
extract a scattering rate relies on a number of approximations.
In that sense, the use of the Einstein-Sutherland relation to

(a) (b)

FIG. 2. Measurement of (a) the diffusion constant and (inset) compressibility for a gas of ultracold 6Li atoms in an optical lattice, with a
two-dimensional Fermi-Hubbard model realized with U=t ≃ 7.5 at a density n ≃ 0.825. (b) Reconstructed resistivity using Einstein-
Sutherland relation. The gray horizontal dashed line represents the estimated MIR value. Theoretical calculations using DMFT (in
green) and the finite-T Lanczos method (in blue) are shown; the band representation indicates the estimated error bars. Adapted from
Brown et al., 2019.

2The dc transport need not have a Drude-like form in generic NFL
metals.
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extract a diffusion constant, combined with the recent progress
in measuring the previously discussed electronic compress-
ibility, may be a safer route to follow whenever possible.
Optical spectroscopy measurements of the complex con-

ductivity are often parametrized in terms of a frequency
and temperature-dependent optical timescale and effective
mass enhancements as (Basov et al., 2011) 4πσðωÞ=ω2

p ¼
½1=τoptðωÞ − iωm�

optðωÞ=mÞ�−1, which can be directly deter-
mined from experimental data as 1=τopt ¼ ω2

p=4πRe½1=σ�,
m�

opt=m ¼ ω2
p=4πIm½1=σ� once a normalization of the spectral

weight ω2
p=4π has been chosen.

In a subset of the previously highlighted NFL metals,
including optimally doped cuprates (van der Marel et al.,
2003), the low-frequency limit of 1=τopt was also shown to
have a Planckian form and ω=T scaling was observed.
In later sections of this review, we will discuss a number

of recent studies that have demonstrated the existence of a
Planckian time-scale for transport in solvable models of
correlated electrons.

IV. RANDOM-MATRIX MODEL: FREE FERMIONS

In a study of charge transport in mesoscopic structures,
much experimental effort has focused on electrons moving
through “quantum dots” (Alhassid, 2000). We can idealize a
quantum dot as a “billiard,” a cavity with irregular walls. The
electrons scatter off the walls before eventually escaping
through the leads. If we treat the electron motion classically,
we can follow a chaotic trajectory of particles bouncing off the

walls of the billiard. Much mathematical effort has been
devoted to the semiclassical quantization of such noninteract-
ing particles: the “quantum billiard” problem. The Bohigas-
Giannoni-Schmit conjecture (Bohigas, Giannoni, and Schmit,
1984) states that many statistical properties of this quantum
billiard can be described using a model in which the electrons
hop on a random matrix; there has been recent progress
toward establishing this conjecture (Müller et al., 2009;
Anantharaman and Macia, 2011). We describe this random-
matrix problem in this section.
Many properties of the random-matrix model are similar to

a model of a disordered metal in which the electrons occupy
plane wave eigenstates that scatter off randomly placed
impurities with a short-range potential. However, unlike the
random impurity case, there is no regime in which the
eigenstates of a random matrix can be localized. As every
site is coupled to every other site, there is no sense of space or
distance along which the eigenstate can decay exponentially.
The absence of localization also extends to nonfully connected
lattices with infinite connectivity, such as a regular hybercubic
lattice in d dimensions in the d → ∞ limit. Indeed, it can be
shown that in this limit the local density of states self-averages
(see later discussion), which implies the absence of Anderson
localization (Dobrosavljević and Kotliar, 1997).

A. Green’s function

We consider electrons ci (assumed spinless for simplicity)
hopping between sites labeled i ¼ 1;…; N, with a hopping
matrix element tij=

ffiffiffiffi
N

p
:

(a) (b)

FIG. 3. Examples of T-linear resistivity extending over a wide range of temperature scales in (a) hole-doped La2−xSrxCuO4 (LSCO)
near optimal doping and (b) magic-angle twisted bilayer graphene (MATBG) near ν ≈ −2 relative to the charge neutrality ν ¼ 0. In
LSCO, Tcoh can be inferred to be much lower than any characteristic energy scales by turning on a magnetic field and accounting for the
finite magnetoresistance [(a)-top inset]; the variation of the slope (A) on hole-doping is shown in the bottom inset of (a). In MATBG, the
linearity for a range of dopings near ν ≈ −2 [inset of (b)] persists down to ∼40 mK. Both families of materials also display a Planckian
form of Γdc [Eq. (3.5)]. (a) Adapted from Giraldo-Gallo et al., 2018. (b) Adapted from Jaoui et al., 2022.
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H2 ¼
1

ðNÞ1=2
XN
i;j¼1

tijc
†
i cj − μ

X
i

c†i ci; ð4:1aÞ

cicj þ cjci ¼ 0; cic
†
j þ c†jci ¼ δij; ð4:1bÞ

1

N

�X
i

c†i ci

�
¼ Q: ð4:1cÞ

The tij are chosen to be independent random complex

numbers with tij ¼ t�ji, tij ¼ 0, and jtijj2 ¼ t2. The 1=
ffiffiffiffi
N

p
scaling of the hopping was chosen so that the bandwidth of the
single-electron eigenstates will be of the order of unity in the
N → ∞ limit, and therefore (as there are N eigenstates)
the spacing between the successive eigenvalues will be of
the order of 1=N. We also included a chemical potential so
that the average density of electrons on each site would be Q.
The subscript 2 in the Hamiltonian H2 denotes that it includes
only two electron operators.
For a given set of tij, one can numerically diagonalize the

N × N matrix tij to solve this problem. We denote by fjλi; ϵλg
the spectrum of eigenstates of the matrix tij for a given
realization.
However, in the limit of large N it turns out that certain

quantities are self-averaging. This means that, for a given
sample tij, their value converges with probability 1 in the
N → ∞ limit to their averaged value over all samples. We are
interested only in such observables here.
We define the single-particle Green’s function as usual as

GijðτÞ ¼ −hTτciðτÞc†jð0Þi; ð4:2Þ

with τ the imaginary time and Gijðτ þ βÞ ¼ −GijðτÞ. For a
given sample, we can expand this function in terms of the
one-particle eigenstates as

GijðzÞ ¼
1

N

X
λ

hijλi 1

zþ μ − ϵλ
hλjji; ð4:3Þ

where z denotes a complex frequency such as the Matsubara
frequencies ωn ¼ ð2nþ 1Þπ=β.
In the limit of large N for a given site i, the local Green’s

function self-averages as follows:

GiiðτÞ → GðτÞ; ð4:4Þ
with G ¼ ð1=NÞPiGii, which is also identical to the average
over all samples Gii. In contrast, Gi≠j is of the order of 1=

ffiffiffiffi
N

p
for a given pair of sites i and j and depends on the specific
sample.
The simplest way to establish this result consists of

evaluating averages of Gij order by order in a perturbation
theory in tij. At zeroth order, the Green’s function is simply

G0
ijðiωnÞ ¼

δij
iωn þ μ

: ð4:5Þ

The Feynman graph expansion consists of a single-particle
line, with an infinite set of possible products of G0

ij and tij.

We then average each graph over the distribution of tij. In the
N → ∞ limit, only a simple set of graphs survive (Fig. 4), and
the average Green’s function is a solution of the following set
of equations:

GðiωnÞ ¼
1

iωn þ μ − ΔðiωnÞ
; ð4:6aÞ

ΔðτÞ ¼ t2GðτÞ; ð4:6bÞ

Gðτ ¼ 0−Þ ¼ Q: ð4:6cÞ

The solution of Eq. (4.6b) reduces to solving a quadratic
equation for GðzÞ, and we thus obtain the following for a
complex frequency z:

GðzÞ ¼ 1

2t2

�
zþ μ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ μÞ2 − 4t2

q �
: ð4:7Þ

The sign in front of the square root (sgn½Imðzþ μÞ�) is chosen
such that GðzÞ has the following correct analytic properties.

• Gðjzj → ∞Þ ¼ 1=z.
• ImGðωþ i0þÞ < 0 for real ω.
• ImGðωþ i0−Þ > 0 for real ω.

All of these constraints can be obtained from the spectral
representation of the Green’s function. We can also define the
density of single-particle states as

ρðωÞ ¼ −
1

π
ImGðω − μþ i0þÞ ¼ 1

2πt2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 − ω2

p
ð4:8Þ

for ω ∈ ½−2t; 2t�, and as ρðωÞ ¼ 0 otherwise. This is the
Wigner semicircle density of states for the random matrix
(Mehta, 2004).
The chemical potential is fixed by requiring that Eq. (4.6c)

is satisfied and can be written as

Z
2t

−2t
dωρðωÞfðω − μÞ ¼ Q; ð4:9Þ

where fðεÞ ¼ 1=ðeε=T þ 1Þ is the Fermi function. Performing
a Sommerfeld expansion of the left-hand side for T ≪ t,
we obtain

Z
μ

−2t
dωρðωÞ þ π2T2

6
ρ0ðμÞ ¼ Q; ð4:10Þ

i j i

FIG. 4. Graph of the electron self-energy ΔðτÞ in Eq. (4.6b).
Solid lines denote fully dressed electron Green’s functions.
The dashed line represents the disorder averaging associated
with jtijj2.
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where ρ0ðωÞ ¼ dρ=dω. To satisfy this equation for all T in the
low-T regime, μ or, alternatively, Q must depend on T
(depending upon the particular ensemble). In particular, if
we keep Q fixed and vary T, then

μðTÞ ¼ μ0 −
ρ0ðμ0Þ
ρðμ0Þ

π2T2

6
; ð4:11Þ

where μ0 ¼ μðT ¼ 0Þ.
An alternative way to prove the self-averaging properties is

to use the “cavity” construction, which is also a useful method
to establish the local effective action associated with interact-
ing models considered later in this review. In a nutshell [see
Georges et al. (1996) for details], this consists of integrating
over all sites i ¼ 2;…; N except site i ¼ 1 and noting that the
term

P
i>1 c

†
i ðti1c1Þ can be viewed as a source term coupling

to c†i . Performing the integration over sites is a Gaussian
problem in this noninteracting case and leads to the following
effective action for site 1:

Z
dτ

Z
dτ0c†1ðτÞ½δðτ−τ0Þð∂τ−μÞþΔ1ðτ−τ0Þ�c1ðτ0Þ; ð4:12Þ

with

Δ1ðzÞ ¼
1

N

X
i≠1

t21iG
½1�
ii ðzÞ þ

1

N

X
i≠j;i;j>1

t1it1jG
½1�
ij ðzÞ: ð4:13Þ

In Eq. (4.13), G½1�
ij ðzÞ denotes the Green’s function of the

lattice with one fewer site (site 1 removed, N − 1 sites) and
also removing all connections to that site. We see that the sum
over i in the first term amounts to a statistical average as

N → ∞, and we note that G½1�
ii ðzÞ does not depend on t1i.

Hence, the two terms under the sum can be averaged
independently, yielding t2G. Similar reasoning shows that
the second term vanishes since the average of the tij’s is
zero. This proves the self-averaging of the local Green’s
function G11. Inverting the quadratic kernel leads us to
Eq. (4.6b), G−1ðzÞ ¼ zþ μ − t2GðzÞ. This also proves that
the local one-particle density of states for a given sample
ð1=NÞPλ jhijλij2δðϵ − ϵλÞ converges with probability 1 to the
Wigner semicircular law in the thermodynamic limit N → ∞.
For a given single-particle energy ϵ within this distribution,
one can consider the following energy-resolved Green’s
function:

Gðϵ; iωnÞ ¼
1

iωn þ μ − ϵ
; ð4:14Þ

which allows one to locate the position ϵ ¼ μ of the Fermi
energy of this random but self-averaging model and the
corresponding energy distribution of particles θðμ − ϵÞ
at T ¼ 0.

B. Many-body density of states

A quantity that plays an important role in our subsequent
discussion of the SYK model is the many-body density of

states N ðEÞ. Unlike the single-particle density of states ρðωÞ,
this is not an intensive quantity. However, it is typically
exponentially large in N because there is an exponentially
large number of ways of making states within a small window
of an energy E ∼ N. In the grand canonical ensemble, we can
relate the grand potential ΩðTÞ to N ðEÞ via the following
expression for the grand partition function:

Z ¼ exp

�
−
ΩðTÞ
T

�
¼

Z
∞

−∞
dEN ðEÞe−E=T: ð4:15Þ

Note that we have absorbed a contribution −μNQ into the
definition of the grand energy E, as is frequently done in
Fermi-liquid theory. Thus, we can obtain N ðEÞ by an inverse
Laplace transform of ΩðTÞ.
We first evaluate ΩðTÞ. Using the standard Sommerfeld

expansion for free fermions, we have

ΩðTÞ ¼ −NT
Z

2t

−2t
dωρðωÞ ln ð1þ e−ðω−μÞ=TÞ

¼ N
Z

μ

−2t
dωðω − μÞρðωÞ − Nπ2T2

6
ρðμÞ

≡ E0 −
Nπ2T2

6
ρðμÞ: ð4:16Þ

We now have to insert Eq. (4.16) into Eq. (4.15) and determine
N ðEÞ. Rather than perform the inverse Laplace transform, we
guess the form of N ðEÞ. First, it is not difficult to see that
N ðE < E0Þ ¼ 0. Second, we expect N ðEÞ to be exponen-
tially large in N when E − E0 ∼ N. Therefore, we make the
guess

N ðEÞ ∼ exp faN½ðE − E0Þ=N�bg; E > E0; ð4:17Þ

for the constants a and b. We then insert Eq. (4.17) into
Eq. (4.15) and perform the integral over E using the steepest
descent method in the large-N limit. Matching the result to the
left-hand side of Eq. (4.15), we obtain the following main
result of this section:

N ðEÞ ∼ exp½SðEÞ�;

SðEÞ ¼
�
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NρðμÞðE − E0Þ=3

p
; E > E0

0; E < E0

; ð4:18Þ

where SðEÞ is the entropy as a function of the energy.
Consideration of the derivation shows that this result is
valid for

1 ≪ ρðμÞðE − E0Þ ≪ N ð4:19Þ

in the limit of large N. Note that the entropy vanishes as
E ↘ E0 in Eq. (4.18). We show numerical results for N ðEÞ
for a closely related random Majorana fermion model in
Fig. 5. When E − E0 ∼ N, the entropy SðEÞ is extensive, the
energy level spacing is exponentially small (∼e−aN , with
a > 0), and N ðEÞ ∼ eaN is exponentially large. However,
when E − E0 ∼ 1=N, we expect the energy levels to be few
particle excitations with energies ∼1=NρðμÞ, and therefore
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N ðEÞ ∼ N. This rapid decrease of N ðEÞ near the bottom of
the band is evident in Fig. 5(a) from the “tails” in the density
of states. A more complete analysis of the finite-N corrections
is needed to understand the behavior of the N ðEÞ at low
energy, along the lines of recent analyses (Liao, Vikram, and
Galitski, 2020; Liao and Galitski, 2021).
We also show in Fig. 6 the corresponding results for the

Majorana SYK model. These results are discussed further in
Sec. V.F.2, but for now note the absence of the tails inN ðEÞ in
Fig. 6(a) relative to Fig. 5(a).

There is an interpretation of Eq. (4.18) that gives us some
insight into the structure of the random-matrix eigenenergies
and also highlights a key characteristic of many-body systems
with quasiparticle excitations. It is known that the eigenvalues
of a random matrix undergo level repulsion and that their
spacings obey Wigner-Dyson statistics (Mehta, 2004). For a
zeroth-order picture, we assume that the random-matrix
eigenvalues are rigidly equally spaced, with energy level
spacing (near the chemical potential) of 1=NρðμÞ. Now we ask
for the number of ways to create a many-body excitation with
energy E − E0. With the simplifying assumption that we made
on the one-particle spectrum, each many-body eigenstate can
be described using a unique set of particle-hole excitations,
each of which has an excitation energy that is an integer ni
times the level spacing 1=NρðμÞ. This mapping is the essence
of bosonization in one dimension; see Sachdev (1999) and
Giamarchi (2003). Hence, the excitation energy reads

NρðμÞðE − E0Þ ¼ n1 þ n2 þ n3 þ n4 þ � � � ; ð4:20Þ

where ni are the excitation numbers of the particle-hole
excitations. Thus, we estimate the number of such excitations
to be equal to the number of partitions of the integer
NρðμÞðE − E0Þ. Now we use the Hardy-Ramanujan result
that the number of partitions of an integer n is pðnÞ ∼
expðπ ffiffiffiffiffiffiffiffiffiffi

2n=3
p Þ at large n. This immediately yields

Eq. (4.18). Note that the special case with exactly equally
spaced quasiparticle levels (which is the case for the linearly
dispersing free Fermi gas in one dimension) has many-body
levels with a spacing ∼1=N but an exponentially large
degeneracy; in contrast, the generic random-matrix case has
no degeneracy but an exponentially small many-body level
spacing.
This argument highlights a key feature of the many-body

spectrum: it is just the sum of single-particle excitation
energies. We expect that if we add four-fermion interactions
to the random-matrix model, we will obtain quasiparticle
excitations in a Fermi-liquid state whose energies add to give
many-particle excitations. This can be checked for weak
interactions using a perturbative calculation in SYK models
with random hopping (Parcollet and Georges, 1999; Song,
Jian, and Balents, 2017), and also holds nonperturbatively, as
shown by dynamical mean-field theory (Georges et al., 1996),
which is exact for the random-matrix Hubbard model with a
local interaction. Therefore, we expect the general form of
Eq. (4.18) to continue to hold even with interactions.
However, we see at the end of Sec. V.F.2 that such a
decomposition into quasiparticle excitations does not hold
for the SYK model.
We can also estimate the lifetime of the quasiparticles at

weak coupling using a perturbative computation based on
Fermi’s golden rule: we obtain 1=τ ∼ U2T2=t3 at low T, with
U the strength of the local interaction. As this is parametrically
smaller than a thermal excitation energy ∼T, quasiparticles
remain well-defined excitations. The existence of such qua-
siparticles can be diagnosed from the poles of the energy-
resolved Green’s function to be presented in Eq. (7.8),
supplemented by the self-energy as defined in Sec. VII.A
to account for interactions, while the energy integrated local

FIG. 5. Display of 65 536 many-body eigenvalues of an N ¼ 32
Majorana matrix model with random q ¼ 2 fermion terms.N ðEÞ
is plotted in (a) and (b) in 200 and 100 bins, while (b) and (c) are
enlargements of the bottom of the band. Individual energy levels
are shown in (c) and are expected to have the spacing 1=NρðμÞ at
the bottom of the band as N → ∞.

FIG. 6. Display of 65 536 many-body eigenvalues of an N ¼ 32
Majorana SYK Hamiltonian with random q ¼ 4 fermion terms.
N ðEÞ is plotted in (a) and (b) in 200 and 100 bins, while (b) and
(c) are enlargements of the bottom of the band. Individual energy
levels are shown in (c) and are expected to have the spacing e−NS

at the bottom of the band as N → ∞. Compare this to Fig. 5 for
the random-matrix model, which has a much sparser spacing
∼1=N at the bottom of the band.
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Green’s function equation (4.7) yields the disorder-averaged
total density of states.

V. THE SYK MODEL

As in the random-matrix model, we consider electrons
(assumed to be spinless for simplicity) that occupy sites
labeled i ¼ 1; 2;…; N. However, instead of a random one-
particle hopping tij, we now have only the following random
two-particle interaction Uij;kl:

H4 ¼
1

ð2NÞ3=2
XN

ijkl¼1

Uij;klc
†
i c

†
jckcl − μ

X
i

c†i ci; ð5:1aÞ

cicj þ cjci ¼ 0; cic
†
j þ c†jci ¼ δij; ð5:1bÞ

Q ¼ 1

N

X
i

hc†i cii: ð5:1cÞ

We choose the couplings Uij;kl to be independent random
variables with zero mean Uij;kl ¼ 0, while satisfying Uij;kl ¼
−Uji;kl ¼ −Uij;lk ¼ U�

kl;ij. All the random variables have the

same variance jUij;klj2 ¼ U2.
A model similar toH4 appeared in nuclear physics, where it

was called the two-body random ensemble (Bohigas and
Flores, 1971; Brody et al., 1981) and studied numerically. The
existence and structure of the large-N limit was understood
(Sachdev and Ye, 1993; Parcollet and Georges, 1999;
Georges, Parcollet, and Sachdev, 2000, 2001) in the context
of a closely related model that we examine in Sec. VI. More
recently a Majorana version was introduced (Kitaev, 2015),
and the large-N limit of H4 was obtained (Sachdev, 2015).
The useful self-averaging properties of the random-matrix

model as N → ∞ also apply to the SYK model [Eq. (5.1a)].
Indeed, the self-averaging properties are much stronger, as the
average takes place over the many-body Hilbert space of size
eαN rather than the single-particle Hilbert space of size N.
Proceeding just as in the random-matrix model, we perform a
Feynman graph expansion inUij;kl and then average graph by
graph. In the large-N limit, only the so-called melon graphs
survive (Fig. 7), and the determination of the on-site Green’s
function reduces to the solution of the following equations:

GðiωnÞ ¼
1

iωn þ μ − ΣðiωnÞ
; ð5:2aÞ

ΣðτÞ ¼ −U2G2ðτÞGð−τÞ; ð5:2bÞ

Gðτ ¼ 0−Þ ¼ Q: ð5:2cÞ

Unlike the random-matrix equations, Eqs. (5.2a)–(5.2c) can-
not be solved analytically as a result of their nonlinearity, and
a full solution can be obtained only numerically. However, it is
possible to make significant analytic progress at frequencies
and temperatures much smaller than U, as we describe in
Secs. V.A–V.F.
Before embarking on a general low-energy solution of

Eqs. (5.2a)–(5.2c), we note a noteworthy feature that can be
deduced on general grounds (Sachdev and Ye, 1993): any
nontrivial solution (i.e., with Q ≠ 0; 1) must be gapless.
Suppose otherwise and assume that there is a gapped solution
with ImGðωÞ ¼ 0 for jωj < EG. By examining the spectral
decomposition of the equation for the self-energy in
Eq. (5.2b), we can then establish that ImΣðωÞ ¼ 0 for
jωj < 3EG. Inserting this back into Dyson’s equation (5.2a),
we obtain the contradictory result that ImGðωÞ ¼ 0 for
jωj < 3EG. Therefore, the only possible value is EG ¼ 0.

A. Low-energy solution at T = 0

Knowing that the solution must be gapless, we assume that
we have a power-law singularity at zero frequency. Thus, we
assume (Sachdev and Ye, 1993)

GðzÞ ¼ C
e−iðπΔþθÞ

z1−2Δ
; ImðzÞ > 0; jzj ≪ U: ð5:3Þ

We have a prefactor C > 0, a power-law singularity deter-
mined by the exponentΔ > 0, and a spectral asymmetry angle
θ that yields distinct density of states for particle and hole
excitations. We now have to insert the Ansatz (5.3) into
Eqs. (5.2a) and (5.2b) and find the values of C, Δ, and θ for
which there is a self-consistent solution. The solution also has
to satisfy the constraint arising from the spectral representa-
tion ImGðωþ i0þÞ < 0; for Eq. (5.3) this translates to

−πΔ < θ < πΔ: ð5:4Þ

We now want to obtain the Green’s function as a function
of imaginary time τ. For this purpose, we write the spectral
representation using the density of states ρðΩÞ ¼
−ð1=πÞImGðωþ i0þÞ > 0 so that

GðzÞ ¼
Z

∞

−∞
dΩ

ρðΩÞ
z − Ω

: ð5:5Þ

We can take a Fourier transform and obtain

GðτÞ ¼
(
−
R∞
0 dΩ ρðΩÞe−Ωτ for τ > 0;R

0
∞dΩ ρð−ΩÞeΩτ for τ < 0.

ð5:6Þ

Using Eq. (5.6) we obtain in τ space

FIG. 7. The “melon graph” for the electron self-energy ΣðτÞ in
Eq. (5.2b). Solid lines denote fully dressed electron Green’s
functions. The dashed line represents the disorder averaging
associated with the interaction vertices (denoted as solid
circles) jUij;klj2.
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GðτÞ ¼
(
−½CΓð2ΔÞ sinðπΔþ θÞ�=πjτj2Δ for τ ≫ 1=U;

½CΓð2ΔÞ sinðπΔ − θÞ�=πjτj2Δ for τ ≪ −1=U;

ð5:7Þ

corresponding to the following low-frequency behavior of the
spectral function:

ρðΩÞ ¼
�
sinðπΔþ θÞðC=πjΩj1−2ΔÞ for 0 < Ω ≪ U;

sinðπΔ − θÞðC=πjΩj1−2ΔÞ for − U ≪ Ω < 0.

ð5:8Þ

Equation (5.8) makes it clear that θ determines the particle-
hole asymmetry associated with the fermion propagation
forward and backward in time (positive and negative frequen-
cies). For our later purposes, it is also useful to parametrize the
asymmetry in terms of a real number −∞ < E < ∞ so that

GðτÞ ∼
�
−eπE=jτj2Δ for τ ≫ 1=U;

e−πE=jτj2Δ for τ ≪ −1=U;
ð5:9Þ

and we then have

e2πE ¼ sinðπΔþ θÞ
sinðπΔ − θÞ ; ð5:10Þ

and E ¼ θ ¼ 0 is the particle-hole symmetric case. This
spectral asymmetry plays a key role in the physics of the
complex SYK model, as well as in the large-M solution of
multichannel Kondo models (Parcollet et al., 1998), where the
notation α ¼ 2πE was used.
We also use the following spectral representation for the

self-energy:

ΣðzÞ ¼
Z

∞

−∞
dΩ

σðΩÞ
z − Ω

: ð5:11Þ

Using Eqs. (5.2b) and (5.7) to obtain ΣðτÞ and performing the
inverse Laplace transform as with GðτÞ, we obtain

σðΩÞ ¼

8>>><
>>>:

ϒðΔÞ½sinðπΔþ θÞ�2½sinðπΔ − θÞ�jΩj6Δ−1
for Ω > 0;

ϒðΔÞ½sinðπΔþ θÞ�½sinðπΔ − θÞ�2jΩj6Δ−1
for Ω < 0;

ð5:12Þ

where ϒðΔÞ ¼ ½U2=Γð6ΔÞ�½CΓð2ΔÞ=π�3. Finally, we insert
the ΣðiωnÞ obtained from Eqs. (5.11) and (5.12) back into
Eq. (5.2a). To understand the structure of the solution, we first
assume that 0 < 6Δ − 1 < 1; we soon find that this is indeed
the case and that no other solution is possible. As jωnj → 0,
the frequency dependence in ΣðiωnÞ is much larger than that
from the iωn term in Eq. (5.2a). In addition, we have
1 − 2Δ > 0, so GðzÞ in Eq. (5.3) diverges as jzj → 0. Thus,
we find that a solution of Eq. (5.2a) is possible only under the
following two conditions:

μ − Σð0Þ ¼ 0;

1 − 2Δ ¼ 6Δ − 1 ⇒ Δ ¼ 1
4
: ð5:13Þ

Matching the divergence in the coefficient of GðzÞ as z → 0,
we also obtain the following value of C:

C ¼
�

π

U2 cosð2θÞ
�

1=4
: ð5:14Þ

The value of the asymmetry angle θ remains undetermined
by the solutions of Eqs. (5.2a) and (5.2b). As we see in
Sec. V.B, the value of θ is fixed by a generalized Luttinger’s
theorem, which relates it to the value of the fermion densityQ
(Georges, Parcollet, and Sachdev, 2001). But without further
computation we can conclude that at the particle-hole sym-
metric point, with Q ¼ 1=2, we have E ¼ θ ¼ 0.
The main result of this section is therefore summarized in

Eq. (5.9). The fermion has “dimension” Δ ¼ 1=4, and its
two-point correlator decays as 1=

ffiffiffi
τ

p
; there is a particle-

hole asymmetry determined by E (which is unknown at this
stage but determined in Sec. V.B). Contrast this with the
corresponding features of the random-matrix model with a
Fermi-liquid ground state: the two-point fermion correlator
decays as 1=τ, and the leading decay is particle hole
symmetric.

B. Luttinger’s theorem

In Fermi-liquid theory, Luttinger’s theorem relates an equal
time property (the total electron density) to a low-energy
property, the Fermi wave vector that is the location of the zero
energy excitations. There turns out to be a similar low- to
high-energy mapping that can be made in a “generalized”
Luttinger theorem for the SYK model, relating the angle θ
characterizing the particle-hole asymmetry at long times in
Eq. (5.3) to the fermion density Q (Georges, Parcollet, and
Sachdev, 2001). As in the conventional Luttinger analysis, we
start by manipulating the expression for Q into two terms

Q − 1 ¼
Z

∞

−∞

dω
2π

GðiωÞe−iω0þ ¼ I1 þ I2;

I1 ¼ i
Z

∞

−∞

dω
2π

d
dω

ln ½GðiωÞ�e−iω0þ ;

I2 ¼ −i
Z

∞

−∞

dω
2π

GðiωÞ d
dω

ΣðiωÞe−iω0þ : ð5:15Þ

In Fermi-liquid theory, I2 vanishes because of the existence of
the Luttinger-Ward functional (Luttinger and Ward, 1960;
Abrikosov, Gorkov, and Dzyaloshinskii, 1963), while I1 is
easily evaluated because it is a total derivative, and this yields
the Luttinger theorem. The situation is more complicated for
the SYK model because of the singular nature of GðωÞ as
jωj → 0. Indeed, both I1 and I2 are logarithmically divergent
at small jωj, although their sum is well defined. Nevertheless,
the separation ofQ into I1 and I2 is useful because it allows us
to use the special properties of the Luttinger-Ward functional
to account for the unknown high-frequency behavior of
the Green’s function. We define I1;2 using a regularization
procedure, and it is important that the same regularization be
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used for both I1 and I2. We employ the symmetric principal
value, with

Z
∞

−∞
dω ⇒ lim

η→0

�Z
−η

−∞
dωþ

Z
∞

η
dω

	
: ð5:16Þ

We now evaluate I1 using the usual procedure: we distort
the contour of integration to the real-frequency axis and have
to evaluate

ilim
η→0

Z
∞

0

dω
2π

d
dω

ln

�
Gðωþ iηÞ
Gðω − iηÞ

	

¼ −
1

π
lim
η→0

½arg Gð∞þ iηÞ − arg GðiηÞ�: ð5:17Þ

In a Fermi liquid, this is the only contribution to I1 that
evaluates to unity outside the Fermi surface and vanishes
inside the Fermi surface. In this case, however, the imaginary
frequency integral (5.16) differs from the real-frequency
integral (5.17) because of the singularity at ω ¼ 0, for which
a small contour encircling the origin must be introduced,
finally leading via Eq. (5.3) to

I1 ¼ −
1

2
−
θ

π
: ð5:18Þ

Note that this yields a contribution 1=2 − θ=π to Q, which
obeys Q → 1 −Q under θ → −θ as dictated by particle-hole
symmetry but does not have the expected limits Q → 0; 1 as
θ → �π=4. This is already a hint that I2 must yield a nonzero
contribution.
In the evaluation of I2 we must substitute Eq. (5.2b) for Σ

into I2 because then we ensure cancellations at high frequen-
cies arising from the existence of the Luttinger-Ward func-
tional as follows:

ΦLW½G� ¼ −
U2

4

Z
dτG2ðτÞG2ð−τÞ: ð5:19Þ

Using Σ ¼ δΦLW=δG and ignoring the singularity at
ω ¼ 0, we obtain, as in Fermi-liquid theory, I2 ¼
−i

R
∞
−∞ dωðd=dωÞΦLW ¼ 0. Thus, the entire contribution to

I2 arises from the regularization of singularity near ω ¼ 0. We
can therefore evaluate I2 using Eq. (5.2b) for Σ, the regulari-
zation in Eq. (5.16), and the low-frequency spectral density in
Eq. (5.12). We ignore the high-frequency contribution to I2.
The explicit evaluation of the integral is somewhat involved
(Georges, Parcollet, and Sachdev, 2001; Gu et al., 2020). The
result can be guessed, however, from a heuristic argument
(Georges, Parcollet, and Sachdev, 2001), which can also be
generalized to the SYK model with q-fermion interactions
(Davison et al., 2017). The low-energy contribution to I2
involves a product of G and Σ and must be a homogeneous
polynomial of degree 4 in the two coefficients that enter the
low-energy behavior of G [Eq. (5.8)]. Using particle-hole
symmetry and imposing the absence of singularity as θ →
�π=4, one sees that only the combination C4½sin3ðπ=4þθÞ×
sinðπ=4−θÞ− sin3ðπ=4−θÞsinðπ=4þθÞ�∝ sin 2θ is allowed.
The proportionality coefficient is fixed by imposing the

condition that Q ¼ þ1 for θ ¼ −π=4 in Eq. (5.15). Indeed,
the explicit evaluation yields

I2 ¼ −
sinð2θÞ

4
: ð5:20Þ

Combining Eqs. (5.15), (5.18), and (5.20), we obtain our
generalized Luttinger theorem (Georges, Parcollet, and
Sachdev, 2001; Davison et al., 2017; Gu et al., 2020),

Q ¼ 1

2
−
θ

π
−
sinð2θÞ

4
: ð5:21Þ

Equation (5.21) evaluates to the limiting values Q ¼ 1; 0
for the limiting values of θ ¼ −π=4; π=4 in Eq. (5.4) and
decreases monotonically in between. Q is also a monotoni-
cally decreasing function between the limits of −∞ < E < ∞
via Eq. (5.10).
All our results thus far have been obtained by an analytic

analysis of the low-energy behavior. A numerical analysis
is needed to ensure that such low-energy solutions have
high-energy continuations that also obey Eqs. (5.2a)
and (5.2b). Such analyses show that complete solutions
exist only for a range of values around Q ¼ 1=2
(Azeyanagi, Ferrari, and Massolo, 2018); for values of
Q close to 0; 1, there is phase separation into the trivial
Q ¼ 0; 1 state and densities closer to half filling. However,
this conclusion is only for the specific microscopic
Hamiltonian in Eq. (5.1): other Hamiltonians, with addi-
tional q-fermion terms (see Appendix E) with q > 4, could
have solutions with the same low-energy behavior as
previously described for a wider range of Q because these
higher q terms are irrelevant at low energy.

C. Nonzero temperatures

It turns out to be possible to extend the solutions for the
T ¼ 0 Green’s functions obtained thus far to nonzero T ≪ U
by employing a subtle argument involving conformal invari-
ance. However, we first take a simple approach to look for a
solution directly from Eqs. (5.2a) and (5.2b) and show that we
can guess a solution.
We initially limit consideration to the particle-hole sym-

metric case with Q ¼ 1=2 and θ ¼ 0. We use the similarity
to multichannel Kondo problems (Parcollet et al., 1998)
to generalize the τ dependence of the Green’s function in
Eq. (5.7) to (Parcollet and Georges, 1999)

GðτÞ ¼ B sgnðτÞ




 πT
sinðπTτÞ





1=2; T; jτj−1 ≪ U; ð5:22Þ

where B is a T-independent constant. Making contact with the
notations of Sec. V.A, we have −B ¼ CΓð1=2Þ sinðπ=4Þ=π ¼
C=

ffiffiffiffiffi
2π

p
, with C4 ¼ π=U2 for this case with θ ¼ 0. Note that

Eq. (5.22) reduces to Eq. (5.7) for 1=U ≪ jτj ≪ 1=T. The
self-energy is then

ΣðτÞ ¼ U2B3sgnðτÞ




 πT
sinðπTτÞ





3=2; T; jτj−1 ≪ U:
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Taking Fourier transforms, we have the following as a
function of the Matsubara frequency ωn:

GðiωnÞ ¼ ½iB�T
−1=2Γð1=4þ ωn=2πTÞ
Γð3=4þ ωn=2πTÞ

; ð5:23aÞ

ΣsingðiωnÞ ¼ ½i4πU2B3�T
1=2Γð3=4þ ωn=2πTÞ
Γð1=4þ ωn=2πTÞ

; ð5:23bÞ

where we have subtracted Σðω ¼ 0; T ¼ 0Þ in ΣsingðiωnÞ.
Now the singular part of Dyson’s equation is

GðiωnÞΣsingðiωnÞ ¼ −1: ð5:24Þ

The Γ functions in Eqs. (5.23a) and (5.23b) appear with just
the right arguments so that they can obey Eq. (5.24) for all ωn,
and the amplitude indeed obeys 4πU2B4 ¼ 1.
A deeper understanding of the origin of Eq. (5.22) and its

generalization to the particle-hole asymmetric case can be
obtained by analyzing the low-energy limit of the original
saddle-point equations (5.2a) and (5.2b). These equations are
characterized by a large set of emergent symmetries, which we
describe in Appendix A. The final result for the Green’s
function in imaginary time away from the particle-hole
symmetric point is

GðτÞ ¼ −C
e−2πETτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−4πE

p �
T

sinðπTτÞ
�

1=2
ð5:25Þ

for 0 < τ < 1=T. Equation (5.25) can be extended to all
real τ using the Kubo-Martin-Schwinger (KMS) condition
[Eq. (A5)]. Performing a Fourier transform and analytically
continuing to real frequencies leads one as follows to the
Green’s function (Parcollet and Georges, 1999; Sachdev,
2015):

Gðωþ i0þÞ ¼ −iCe−iθ

ð2πTÞ1=2
Γð1=4þ iE − iω=2πTÞ
Γð3=4þ iE − iω=2πTÞ : ð5:26Þ

We show a plot of the imaginary part of the Green’s function
in Fig. 8.
For later comparison with other models, we note that these

results imply that the singular part of the electron self-energy
in Eq. (5.23b) obeys the scaling form

Σðω; TÞ ¼ U1=2T1=2Φ
�
ℏω
kBT

�
; ð5:27Þ

where Φ is a universal scaling function with a known
dependence on the particle-hole asymmetry parameter E.
The universal dependence of the self-energy on the

Planckian ratio (ℏω=kBT) implies the absence of electronic
quasiparticles (Sachdev, 1999): the characteristic lifetime of
the excitations ∼ℏ=kBT is of the same order as their energy
∼ℏω, so quasiparticles are not well defined. This behavior is
different from the random-matrix model studied in Sec. IV.B,
where the self-energy was negligible at low T.
A Planckian lifetime has also been obtained by nonequili-

brium studies of SYK models, which display a recovery of

thermal Green’s functions in a time that is independent of U
and proportional to the inverse final temperature (Eberlein
et al., 2017; Kourkoulou and Maldacena, 2017; Almheiri,
Milekhin, and Swingle, 2019; Bhattacharya, Jatkar, and
Sorokhaibam, 2019; Dhar et al., 2019; Zhang, 2019;
Rossini et al., 2020; Lensky and Qi, 2021; Samui and
Sorokhaibam, 2021). For closely related and complementary
insights, see Sonner and Vielma (2017), Haque and McClarty
(2019), Haldar et al. (2020), Kuhlenkamp and Knap (2020),
Bandyopadhyay et al. (2021), Cheipesh et al. (2021), and
Larzul and Schiró (2021).

D. Computation of the T → 0 entropy

We have now presented detailed information on the nature
of the Green’s function of the SYK model at low T. We
proceed to use this information to compute some key features
of the low-T thermodynamics.
We first establish some properties of the behavior of the

chemical potential, μ as T → 0 at a fixed Q. Recall that for
the random-matrix model, and more generally for any Fermi
liquid, there was a ∼T2 correction to the chemical potential
that depended upon the derivative of the density of single-
particle states. For the SYK model, the leading correction is
much stronger: the correction ∼T, which is universally related
to parameters in the Green’s function (Georges, Parcollet, and
Sachdev, 2001).
A simple way to determine the linear-T dependence of μ is

to examine the particle-hole asymmetry of the Green’s
function at T > 0. From Eqs. (5.9) and (5.25) we determine
that this is given by the ratio

lim
T→0

GðτÞ
Gð1=T − τÞ ¼ e2πE ; ð5:28Þ

where the limit is taken at a fixed τ ≫ 1=U. We now use a
crude picture of the low-energy physics and imagine that all
the low-energy degrees of freedom are essentially at zero
energy compared to U. Thus, we compare Eq. (5.28) to the
following corresponding ratio for a zero energy fermion
whose chemical potential has been shifted by δμ:

FIG. 8. Electron spectral density in the SYK model, obtained
from imaginary part of Eq. (5.26).
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G0ðτÞ
G0ð1=T − τÞ ¼ e−ðδμÞð1=T−2τÞ: ð5:29Þ

From this comparison, we conclude that there is a linear-in-T
dependence of the chemical potential that keeps the particle-
hole asymmetry fixed as T → 0:

μ − μ0 ¼ δμ ¼ −2πET þ terms vanishing as Tp with p > 1;

ð5:30Þ

with μ0 a nonuniversal constant. Note that the density of
the zero energy fermion ¼ 1=ðe−δμ=T þ 1Þ remains fixed as
T → 0, so Eq. (5.30) applies at fixed Q.
A more formal analysis (Parcollet et al., 1998; Georges,

Parcollet, and Sachdev, 2001; Sachdev, 2015) leading to the
same result for the T dependence of μ relates the long-time
conformal Green’s function (valid for τ ≫ 1=U) to its short-
time behavior. In particular, at jωnj ≫ U we have

GðiωnÞ ¼
1

iωn
−

μ

ðiωnÞ2
þ � � � ; ð5:31Þ

which implies the following for the spectral density of the
Green’s function ρðΩÞ:

μ ¼ −
Z

∞

−∞
dΩΩρðΩÞ; ð5:32Þ

which makes it evident that μ depends only upon the particle-
hole asymmetric part of the spectral density. Next, using
the spectral relations, we can relate the Ω integrals to the
derivative of the imaginary-time correlator

μ ¼ −∂τGðτ ¼ 0þÞ − ∂τG(τ ¼ ð1=TÞ−): ð5:33Þ

We pull out an explicitly particle-hole asymmetric part ofGðτÞ
by defining

GðτÞ≡ e−2πETτGcðτÞ; 0 < τ <
1

T
; ð5:34Þ

where Gc is given by a particle-hole symmetric conformal
form at low T and low ω. We then obtain

μ ¼ 2πETfGðτ ¼ 0þÞ þ G½τ ¼ ð1=TÞ−�g
þ terms dependent on Gc

¼ −2πET þ terms dependent onGc.

It can be shown that all the terms dependent upon Gc have a T
dependence that is weaker than linear in T provided that Q is
held fixed. Hence, we obtain Eq. (5.30).
Now we can deduce the T dependence of the entropy using

the Maxwell relation

�
∂μ

∂T

�
Q
¼ −

1

N

�
∂S
∂Q

�
T
; ð5:35Þ

where the 1=N term is needed because we define S to be the
total extensive entropy, so we must use the total numberNQ in
the Maxwell relation. Applying this to Eq. (5.30), we obtain

1

N

�
∂S
∂Q

�
T
¼ 2πE ≠ 0 as T → 0: ð5:36Þ

In Sec. V.B, we obtained an “extended” Luttinger relationship
between the density Q and the particle-hole asymmetry
parameter E. Assuming that S ¼ 0 at Q ¼ 0, we can now
integrate Eq. (5.36) to obtain for the entropy S as (Georges,
Parcollet, and Sachdev, 2001)

SðT → 0Þ ¼ NS; S ¼ 2π

Z
Q

0

dQ̃EðQ̃Þ: ð5:37Þ

Equation (5.37) can be rewritten using Eqs. (5.10) and (5.21)
in the following parametric form:

SðΘÞ ¼
Z

Θ

−π=4
dθ ln

sinðπ=4þ θÞ
sinðπ=4 − θÞ

∂Q
∂θ

; ð5:38Þ

QðΘÞ ¼ 1

2
−
Θ
π
−
sin 2Θ

4
. ð5:39Þ

Figure 9 displays the entropy density versus Q obtained
from Eq. (5.39).
The noteworthy feature of this result is that the entropy S

is extensive, i.e., proportional to N, as T → 0. Specifically,
we have

lim
T→0

lim
N→∞

S
N

≠ 0: ð5:40Þ

The order of limits is crucial here; the order of limits defines
the zero-temperature entropy density, in which the thermo-
dynamic limit is taken before the zero-temperature limit. If we
had taken the other order of limits, we would have obtained
the ground state entropy density, which does indeed vanish.

E. Corrections to scaling

All of our low-energy results for the SYK model thus far
have been obtained in a scaling limit in which the iωn term in
the Green’s function in Eq. (5.2a) was neglected, as discussed

FIG. 9. T ¼ 0 entropy density S vsQ. From Georges, Parcollet,
and Sachdev, 2001.

Chowdhury et al.: Sachdev-Ye-Kitaev models and beyond: Window into …

Rev. Mod. Phys., Vol. 94, No. 3, July–September 2022 035004-19



prior to Eq. (5.13). This section considers the structure of the
corrections that arise when this iωn term is included. We
emphasize that all of the computations here are in the N ¼ ∞
limit, and we are computing corrections to the low-energy
approximation to the saddle-point equations. A significant
result of our computations will be T-dependent corrections to
the entropy in Eq. (5.37); these will continue to be propor-
tional to N. We consider finite-N corrections to such saddle-
point results in Sec. V.F.
To understand the structure of the possible corrections, we

postulate that the low-energy corrections can be computed
from an effective action of the following form:

I ¼ I� þ
X
h

gh

Z
β

0

dτOhðτÞ; ð5:41Þ

whereOh are a set of scaling operators with scaling dimension
h. One of our tasks in this section is to determine the possible
values of h, and we accomplish this shortly. The term I� is
the leading critical theory that leads to the results described
thus far, in particular, to the Green’s function in Eqs. (5.3)
and (5.26) and the entropy in Eq. (5.37). We normalize the
perturbing operators using the two-point correlator

hOhðτÞOhð0Þi ¼
1

jτj2h . ð5:42Þ

The coefficient gh is then fully specified. In general, gh are a
set of nonuniversal numbers of the order of U1−h whose
precise values depend upon the details of the underlying
theory on possible higher-order fermion interaction terms that
we can add to the SYK Hamiltonian.
Given Eq. (5.41), we can easily estimate the form of the

corrections to the grand potential ΩðTÞ. We expect that

hOhiT� ¼ ΩhTh; ð5:43Þ

where the expectation value is evaluated at a temperature T in
I� and the T dependence follows from the scaling dimension
of Oh. Taking the expectation value of the action, we obtain

ΩðTÞ ¼ E0 − NST þ
X
h

ghΩhTh; ð5:44Þ

where E0 is the ground state energy, S is the entropy in
Eq. (5.37), and the set of coefficients Ωh were specified in
Eq. (5.43). Similarly, we can write the corrections to the
Green’s function in Eq. (5.7) from the Oh perturbations as

GðτÞ ¼ G�ðτÞ
�
1þ

X
h

ghαh
jτjh−1

�
; ð5:45Þ

where we now use G� to denote the leading-order result in
Eq. (5.22) and we have used dim½gh� ¼ 1 − h from Eq. (5.41).
Here we limit ourselves to the particle-hole symmetric case
with θ ¼ 0, μ ¼ 0, and E ¼ 0; see Tikhanovskaya et al.
(2021a) for the general case. The coefficients Ωh and αh
are universal dimensionless numbers.

Our remaining task is to determine the allowed values of h.
We consider only (Gross and Rosenhaus, 2017; Klebanov and
Tarnopolsky, 2017; Klebanov, Popov, and Tarnopolsky, 2018)
the “antisymmetric” operators Oh that are represented at short
times by Ohn ¼ c†i ∂

2nþ1
τ ci, with n ¼ 0; 1; 2;…. The needed

information is contained in the three-point functions

vhðτ1; τ2; τ0Þ ¼ hcðτ1Þc†ðτ2ÞOhðτ0Þi: ð5:46Þ

In the large-N limit, this three-point function obeys the
integral equation shown in Fig. 10. In the long-time scaling
limit, we can drop the bare first term on the right-hand side,
and Fig. 10 then reduces to the eigenvalue equation (Gross and
Rosenhaus, 2017)

kðhÞvðτ1; τ2; τ0Þ ¼
Z

dτ3dτ4Kðτ1; τ2; τ3; τ4Þvhðτ3; τ4; τ0Þ;

ð5:47Þ

where the kernel K is

Kðτ1; τ2; τ3; τ4Þ ¼ −3U2G�ðτ13ÞG�ðτ24ÞG�ðτ34Þ2; ð5:48Þ

with τij ≡ τi − τj, and we have introduced an eigenvalue kðhÞ
by hand that must obey

kðhÞ ¼ 1: ð5:49Þ

For our purposes, it is sufficient to solve Eq. (5.47) in the
limit τ0 → ∞. We can then use the operator product expansion
to write

cðτ1Þc†ðτ2Þ ∼ sgnðτ12Þ
X
h

ch
jτ12j1=2−h

Ohðτ1Þ þ � � � ð5:50Þ

for some constants ch, where the sum over h now includes
the identity operator with h ¼ 0. Inserting Eq. (5.50) into
Eq. (5.46), we conclude that v ∼ sgnðτ12Þ=jτ12j1=2−h as
τ0 → ∞. Equation (5.47) then yields the following eigenvalue:

kðhÞ ¼ −
3 tanðπh=2 − π=4Þ

2h − 1
: ð5:51Þ

FIG. 10. Large-N equation satisfied by the three-point correlator
in Eq. (5.46). The red circles represent the operator Oh.
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The solution of Eqs. (5.49) and (5.51) finally yields the
needed values of h. There are an infinite number of solutions,
and the lowest values are

h ¼ 2; 3.773 54…; 5.567 946…; 7.631 97…: ð5:52Þ

Only the lowest value h ¼ 2 is an integer, and all higher values
are irrational numbers.
We have a particular interest here in the h ¼ 2 operator.

This plays a special role in the finite-N fluctuations and
eventually leads to a violation of scaling, as discussed in
Sec. V.F. At N ¼ ∞, it is also the lowest dimension operator,
and thus yields the most important corrections to Eqs. (5.44)
and (5.45). For the entropy at a fixed Q, we can take a
derivative of Eq. (5.44) and write the correction to Eq. (5.37)
as (Maldacena and Stanford, 2016; Kitaev and Suh, 2018;
Gu et al., 2020)

SðT → 0;QÞ ¼ N½S þ γT�; ð5:53Þ

where γ ∼ 1=U is the nonuniversal coefficient of the linear-in-
T specific heat at a fixed Q, a quantity familiar from Fermi-
liquid theory. The SYK non-Fermi liquid has a similar specific
heat, but note the presence of the residual entropy S that
vanishes in a Fermi liquid. We see in Sec. V.F that γ also
appears to be the coefficient of the Schwarzian effective action
for finite-N fluctuations.

F. Finite-N fluctuations

This section turns to a theory of the fluctuations about the
previously examined large-N saddle point. We focus on the
corrections to the result for the entropy in Eqs. (5.37)
and (5.53). The dominant finite-N corrections arise from a
universal, exactly soluble theory for the low-energy fluctua-
tions about the large-N saddle point. Along the way, we also
obtain an example of the corrections discussed in Sec. V.E
associated with irrelevant operators in the N ¼ ∞ saddle-
point theory. This will lead to the T-dependent correction in
Eq. (5.53) and allow us to identify γ with a coupling in the
effective action.
We begin with a path-integral representation of the under-

lying SYK Hamiltonian (5.1a). To treat the random couplings,
we need to perform a quenched average using the replica
method. However, the strongly self-averaging properties that
we later compute do not depend upon the replica structure, so
we will simply ignore these technicalities and work directly
with the averaged theory. Thus, after averaging over the Uijkl

the path integral becomes

Z̄ ¼
Z

DciðτÞ exp
�
−
X
i

Z
β

0

dτ c†i

�
∂

∂τ
− μ

�
ci

þ U2

4N3

Z
β

0

dτ dτ0



X

i
c†i ðτÞciðτ0Þ




4	; ð5:54Þ

where β ¼ 1=T. We now introduce the following “trivial”
identity in the path integral,

1 ¼
Z

DGðτ1; τ2ÞDΣðτ1; τ2Þ

× exp

�
−N

Z
β

0

dτ1dτ2Σðτ1; τ2Þ
�
Gðτ2; τ1Þ

þ 1

N

X
i

ciðτ2Þc†i ðτ1Þ
�	

ð5:55Þ

and interchange the orders of integration. The partition
function can then be written as follows as a G − Σ theory,
a path integral with an action I½G;Σ� for the Green’s function,
and a self-energy analogous to a Luttinger-Ward functional
(Georges, Parcollet, and Sachdev, 2001; Maldacena and
Stanford, 2016; Kitaev and Suh, 2018):

Z̄ ¼
Z

DGðτ1; τ2ÞDΣðτ1; τ2Þ expð−NI½G;Σ�Þ

I½G;Σ� ¼ − ln det ½ð∂τ1 − μÞδðτ1 − τ2Þ þ Σðτ1; τ2Þ�

− TrðΣ · GÞ −U2

4
TrðG2 ·G2Þ: ð5:56Þ

We have integrated over the fermions to obtain the ln det
term. This is an exact representation of the averaged partition
function. Notice that it involves G and Σ as bilocal fields that
depend upon two times, and we have introduced the following
compact notation for such fields:

Trðf · gÞ≡
Z

dτ1dτ2fðτ2; τ1Þgðτ1; τ2Þ: ð5:57Þ

See Appendix A for a discussion of the symmetries of the
bilocal fields, where we also show that after ignoring the
explicit time derivative in Eq. (5.56) the action is invariant
under time reparametrization and gauge symmetries
[Eq. (A2c)].
The path integral in Eq. (5.56) is complicated to evaluate

in general. We now make a low-energy approximation by
integrating only along directions in the vast ðG;ΣÞ space
where the variation S½G;Σ� is small at low energies
(Maldacena and Stanford, 2016; Kitaev and Suh, 2018).
Given the unimportance of ∂τ in Eq. (5.56) and the resulting
symmetries of the action, a solid conclusion is that we need
only perform the path integral along trajectories where the
Green’s function obeys Eq. (B2) (and a similar approach for
the self-energy). In this manner, we formally convert the
G − Σ path integral into a path integral over the time
reparametrization fðτÞ and the gauge transformation ϕðτÞ
as follows (Maldacena and Stanford, 2016; Davison et al.,
2017; Kitaev and Suh, 2018; Gu et al., 2020):

Z̄ ≈ e−E0=TþNS

Z
DfðτÞDϕðτÞ exp ð−Ieff ½f;ϕ�Þ; ð5:58Þ

where E0 ∝ N is the ground state energy (including the
−μQN contribution). We soon deduce the form of Ieff ½f;ϕ�
from symmetry arguments. But before we turn to that, we note
that the combination of Eqs. (B2) and (5.58) also yield the
most important contributions to the fluctuation corrections to
the following Green’s function:
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Gðτ1 − τ2Þ ¼
e−E0=TþNS

Z̄

Z
DfðτÞDϕðτÞ

× exp ð−Ieff ½f;ϕ�Þ½f0ðτ1Þf0ðτ2Þ�1=4
×Gc(fðτ1Þ − fðτ2Þ)eiϕðτ1Þ−iϕðτ2Þ; ð5:59Þ

where the conformal saddle-point Green’s function GcðτÞ is
given by Eq. (5.25).
Now our task is to determine the action Ieff ½f;ϕ� and then

evaluate the path integrals in Eqs. (5.58) and (5.59). It turns
out that the partition function for the free energy in Eq. (5.58)
can be evaluated exactly. The consequences of the path
integral in Eq. (5.59) for the long-time behavior of GðτÞ
have also been investigated (Kitaev, 2015; Bagrets, Altland,
and Kamenev, 2016, 2017; Kitaev and Suh, 2018; Altland,
Bagrets, and Kamenev, 2019b; Kruchkov et al., 2020; Kobrin
et al., 2021): they lead to a violation of scaling at times of the
order of N=U, but we do not describe this further here.
The form of Ieff ½f;ϕ� is strongly constrained by the

requirement that I vanish for the case where fðτÞ and ϕðτÞ
are given by Eq. (B3). This follows immediately from the fact
that Eq. (B3) leads to no changes in the form of the saddle-
point Green’s function when it is inserted into Eq. (B2). As the
action was originally a functional of the Green’s function, it
can also not change. The action Ieff ½f;ϕ� with the smallest
number of derivatives that satisfies this requirement is
(Maldacena and Stanford, 2016; Davison et al., 2017;
Kitaev and Suh, 2018; Gu et al., 2020)

Ieff ½f;ϕ� ¼
NK
2

Z
β

0

dτ

�
∂ϕ

∂τ
þ ið2πETÞ ∂f

∂τ

�
2

−
Nγ

4π2

Z
β

0

dτftan½πTfðτÞ�; τg: ð5:60Þ

The curly brackets in Eq. (5.60) represent the following
Schwarzian derivative:

fg; τg≡ g000

g0
−
3

2

�
g00

g0

�
2

: ð5:61Þ

Equation (5.61) has the defining property that

�
aτ þ b
cτ þ d

; τ

�
¼ 0; ð5:62Þ

which ensures that Ieff ½f;ϕ� vanishes for Eq. (B3). [We note
that there are coupled SYK models that are not described by a
Schwarzian effective action (Maldacena, Stanford, and Yang,
2016; Milekhin, 2021).]
For the origin of fðτÞ and ϕðτÞ as time reparametrization

and gauge transformations of the Green’s function, we must
also place some constraints on the nature of the path integral
over them. The function fðτÞ must be monotonic and must
obey

fðτ þ βÞ ¼ fðτÞ þ β: ð5:63Þ

Moreover, we should sum over all possible phase windings
with

ϕðτ þ βÞ ¼ ϕðτÞ þ 2πn; ð5:64Þ

where n is an integer.
The action in Eq. (5.60) has two dimensionful coupling

constants K and γ. By dimensional analysis, we can see that
K ∼ γ ∼ 1=U, the only energy scale at T ¼ 0. Determining the
precise values of K and γ is not simple and requires a
numerical study of the higher energy properties of the SYK
model. We now relate the values of K and γ to thermodynamic
observables of the N ¼ ∞ theory, and a numerical compu-
tation of these observables is usually the simplest way to
determine K and γ.
At T ¼ 0, the action for ϕ represents the path integral of a

particle of mass NK moving on a ring of circumference 2π.
Thus, the energy levels are l2=2NK, where the integer l
measures the total fermion number. With a chemical potential
shift δμ, the energy levels will shift as l2=2NK − δμl. From
the optimum value of this function for different l, we
conclude that K is simply the compressibility

K ¼ dQ
dμ

; T ¼ 0: ð5:65Þ

Turning to the value of γ, note that the action Ieff ½f;ϕ�
does not vanish at the N ¼ ∞ saddle point fðτÞ ¼ τ.
Evaluating Eq. (5.60) for this value of fðτÞ and setting
ϕ ¼ 0, we obtain the following grand potential at N ¼ ∞
for small T > 0:

ΩðTÞ ¼ E0 − NST − 1
2
Nðγ þ 4π2E2KÞT2: ð5:66Þ

Taking the T derivative, we obtain the following leading low-
temperature correction to the entropy in Eq. (5.37):

SðT → 0; μÞ ¼ N½S þ ðγ þ 4π2E2KÞT�: ð5:67Þ

As previously denoted, Eq. (5.67) is the entropy at a fixed
chemical potential. We can use standard thermodynamic
relations to compute the entropy at fixed Q using the
thermodynamic relations (5.36) and (5.65) and obtain
Eq. (5.53). Indeed, the coefficient of the Schwarzian was
chosen so that the entropy would obey the form in Eq. (5.53).
The T-dependent corrections in Eqs. (5.67) and (5.53) are
proportional to N, and thus constitute corrections from
irrelevant operators that were studied in Sec. V.E, and identify
the Schwarzian as representing the corrections arising from
the h ¼ 2 operator.
In the remainder of our discussion of the SYK model, we

evaluate the path integral in Eq. (5.58), and thus obtain the
finite-N corrections to the free energy and entropy in
Eqs. (5.66) and (5.67). These results also allow us to compute
the many-particle density of states DðEÞ.
A key observation in the evaluation of Eq. (5.58) is that the

path integrals factorize. To establish this, we use the boundary
conditions in Eqs. (5.63) and (5.64) to parametrize

fðτÞ ¼ τ þ ϵðτÞ;
ϕðτÞ ¼ 2πnTτ þ ϕ̄ðτÞ; ð5:68Þ
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where the “winding number” n is an integer and ϵ and ϕ̄ are
periodic functions of τ with period β. In the first term in
Eq. (5.60), we can absorb ϵ with a shift in ϕ̄; the remaining
dependence on ϵ is then only in the Schwarzian. In this
manner, we can write Eq. (5.58) as (Gu et al., 2020)

Z̄ ¼ e−E0=TZQZSch. ð5:69Þ

We evaluate ZQ and ZSch in Secs. V.F.1 and V.F.2.

1. Rotor path integral

The partition function ZQ represents fluctuations in the
total charge on the SYK dot. It is expressed as follows as a
path integral over the coordinates of a particle moving on a
unit circle (a “rotor”):

ZQ ¼
� X∞

n¼−∞
exp ½−2π2NKTðnþ iEÞ2�

�

×
Z

Dϕ̄

Uð1Þ exp
�
−
NK
2

Z
β

0

dτ½ϕ̄0ðτÞ�2
	
: ð5:70Þ

The second term is simply the imaginary-time amplitude for a
“free particle” of mass NK to return to its starting point in a
time β divided by the volume (2π) of the Uð1Þ group [because
a τ-independent ϕ does not make any changes to the Green’s
function in Eq. (B2)]. Thus, we obtain the following expres-
sion for ZQ that is useful at temperatures T ≫ 1=NK:

ZQ ¼
� X∞

n¼−∞
exp ½−2π2NKTðnþ iEÞ2�

� ffiffiffiffiffiffiffiffiffiffiffi
NKT
2π

r
: ð5:71Þ

For lower temperatures (T ≪ 1=NK), we can apply the
Poisson summation formula to Eq. (5.71) and obtain

ZQ ¼ 1

2π

X∞
p¼−∞

exp

�
−

p2

2NKT
− 2πEp

	
: ð5:72Þ

We note, however, that both Eqs. (5.71) and (5.72) are
convergent and exact at all T (Gu et al., 2020).
The physical interpretation of Eq. (5.72) is especially

transparent. It describes a quantum dot with equilibrium
charge NQ, which has fluctuations to states with charge
NQþ p. The energy of a charge p fluctuation is determined
by a “capacitance” NK, and a temperature-dependent chemi-
cal potential −2πET. Note that the chemical potential shift is
exactly what appears in Eq. (5.30), and indeed the present
analysis can be viewed as another derivation of Eq. (5.30).
Recall that the key relation for the entropy in Eq. (5.59)
followed after the application of a Maxwell thermodynamic
relation to Eq. (5.30).
The previous physical interpretation also indicates that in a

fixedQ ensemble we should takeZQ ¼ 1. That turns out to be
not quite correct, and a more careful analysis of finite-N
corrections shows that ZQ ∼ 1=N2.

2. Schwarzian path integral

The other component of Eq. (5.69) is the Schwarzian path
integral

ZSch ¼ eNS

Z
DfðτÞ

SLð2;RÞ exp
�
Nγ

4π2

Z
β

0

dτftan½πTfðτÞ�; τg
	
.

ð5:73Þ

We have normalized the path integral by the infinite volume of
the noncompact group SLð2;RÞ because, as we argued earlier,
the action must vanish under SLð2;RÞ transformations. This
quotient will be crucial in obtaining a well-defined answer.
Stanford and Witten (2017) showed that the path integral in

Eq. (5.73) can be evaluated exactly. The key to their result is
the fact that a Gaussian approximation to the path integral is in
fact exact. We exploit this by simply evaluating Eq. (5.73) in
the Gaussian approximation.
To this end, we expand the Schwarzian action in dimen-

sional Fourier coefficients of ϵðτÞ in Eq. (5.68) as

ϵðτÞ ¼ 1

T

X∞
n¼−∞

ϵne−2πinTτ ð5:74Þ

and obtain

Ieff ½ϵ� ¼ −
NγT
2

þ 2π2NγT
X
n

n2ðn2 − 1Þjϵnj2: ð5:75Þ

Now notice that Ieff ½ϵ� vanishes for the three smallest
Matsubara frequencies ωn ¼ 0;�2πT. Indeed, the action
was designed to vanish for any time reparametrization that
belongs to SLð2;RÞ, a three-dimensional noncompact space.
And here we have discovered three Fourier components that
cause no variation in the action to second order: we can
identify the frequency components at n ¼ 0;�1 as the
infinitesimal limit of the SLð2;RÞ transformations. At
Gaussian order, the path integral over these action-free normal
modes therefore cancels against the volume of SLð2;RÞ in
Eq. (5.73). Actually, this cancellation also happens for large
SLð2;RÞ transformations, but we do not prove that here.
Performing the Gaussian integral over the remaining

modes, we obtain the following for the logarithm of the
partition function:

lnZSch¼NSþNγT
2

−
1

2

X
n≠0;�1

ln ½2π2NγTn2ðn2−1Þ�: ð5:76Þ

The sum over the Matsubara frequency ωn is divergent, and
should be cut off at a frequency jωnj ∼ U, above which our
low-energy Schwarzian theory does not apply. We describe
the regulation of the divergence in Appendix D. There is a
contribution ∼U=T, but this can be absorbed into a redefi-
nition of E0 in Eq. (5.69). The needed subleading term is
∼ lnðU=TÞ, and an important result is that the coefficient of
the lnðTÞ term is universal; we find, for T ≪ U (Maldacena
and Stanford, 2016; Stanford and Witten, 2017; Kitaev and
Suh, 2018),
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lnZSch ¼ NS þ NγT
2

−
3

2
ln

�
U
T

�
: ð5:77Þ

Apart from the finite-N corrections in the rotor components
(which had a simple physical interpretation), we have now
obtained our first nontrivial finite-N correction to the SYK
model: the −ð3=2Þ lnð1=TÞ correction to the logarithm of the
partition function. Note that the logarithm in Eq. (5.77)
becomes as large as the leading term only at an exponentially
low T ∼ Ue−N, below which the large-N theory does
not apply.
It is also useful to compare Eq. (5.77) to our earlier large-N

result for −T lnZ in the random-matrix model in Eq. (4.16).
That had a leading NγT=2 term, but there was no
T-independent term proportional to N, as the random-matrix
model does not have an extensive entropy in the zero-
temperature limit.
The −ð3=2Þ lnð1=TÞ correction to Eq. (5.77) has important

consequences for the many-body density of states N SchðEÞ.
We define this as

ZSchðTÞ ¼
Z

∞

0

dEN SchðEÞe−E=T: ð5:78Þ

As we have absorbed the ∼1=T term in Eq. (5.77) into a
redefinition of E0 in Eq. (5.69), we can assume in Eq. (5.78)
that N SchðEÞ vanishes for E < 0. It turns out to be possible to
determine N SchðEÞ by performing the inverse Laplace trans-
form exactly using the value in Eq. (5.77). This yields
(Bagrets, Altland, and Kamenev, 2017; Cotler et al., 2017;
García-García and Verbaarschot, 2017; Stanford and Witten,
2017; Kitaev and Suh, 2018)

N SchðEÞ ∝ eNS sinh
� ffiffiffiffiffiffiffiffiffiffiffiffi

2NγE
p 

: ð5:79Þ

It is easier to insert the resulting equation (5.79) into
Eq. (5.78), perform the E integral, and verify that we obtain
Eq. (5.77).
The resulting equation (5.79) is accurate for E ≪ NU, and

even down to E ∼ U=N. Near the lower bound it predicts a
many-body density of states ∼eNS , in sharp contrast to the
random-matrix model of Sec. IV, which did not have an
exponentially large density of states at such low energies. We
showed numerical plots of the many-body density of states
(Fu and Sachdev, 2016; Cotler et al., 2017; Gharibyan et al.,
2018) for the closely related Majorana fermion model in
Fig. 6. Notice the much larger density of states and much
smaller level spacing near the bottom of the band relative to
the free fermion random-matrix model in Fig. 5 of the same
size. This is also evident from a comparison of the Schwarzian
result in Eq. (5.79) to the free fermion result in Eq. (4.18): the
most important difference is the presence of the prefactor of
eNS in Eq. (5.79).
We now recall our discussion at the end of Sec. IV.B, where

we argued that the low-lying many-body eigenstates at
excitation energies of order 1=N could be interpreted as the
sums of quasiparticle energies. In the SYK model we have
order ∼eNS energy levels even within energy ∼1=N above the
many-body ground states. It is impossible to construct these

many-body eigenstates from order ∼N quasiparticle states.
This is therefore strong evidence that there is no quasiparticle
decomposition of the many-body eigenstates of the SYK
model. Note that the presence of an extensive entropy as
T → 0 (the nonzero value of S) is a sufficient but not
necessary condition for the absence of quasiparticles: the
models that we study in Sec. XI do not have quasiparticles but
also do not have an extensive entropy as T → 0, as described
in more detail in Sec. XI.A.3.
Finally, we combine the results for the rotor and Schwarzian

partition functions, and obtain corresponding results for the
SYK model (Gu et al., 2020). Using the n ¼ 0 term in
Eqs. (5.71) and (5.77) in Eq. (5.69), we obtain the following
for U=N ≪ T ≪ U:

Ω ¼ E0 − NST −
Nðγ þ 4π2E2KÞT2

2
þ 2T ln

�
U
T

�
þ � � � :

ð5:80Þ

Equation (5.80) contains the 1=N correction to the result
Eq. (5.66) for the grand partition function: the 2T lnð1=TÞ
term. As for the random-matrix model, we can invert
Eq. (5.80) as follows to obtain the many-body density of
states in the grand canonical ensemble for grand energies
U=N ≪ E ≪ NU:

N ðEÞ ∼ exp ½SðEÞ�;

SðEÞ ¼ NS þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nðγ þ 4π2E2KÞðE − E0Þ

q
ð5:81Þ

for E > E0, and SðEÞ ¼ 0 for E < E0. Comparing this to the
random-matrix model, we find that SðEÞ has a similar func-
tional form of E but without the leading NS term.

VI. RANDOM-EXCHANGE QUANTUM MAGNETS

The SYK model discussed thus far provides valuable
insight into quantum systems without quasiparticle excita-
tions. However, the microscopic Hamiltonian in Eq. (5.1a)
has a shortcoming, namely, that strong local (i.e., on-site)
interactions are absent. As a result, there are no Mott
insulating phases at any commensurate density in the
large-N limit. Such local correlations are important to
understanding the interplay of electron itinerancy and the
tendency for interaction-induced localization in numerous
correlated electron materials.
We now turn to a number of random and fully connected

models that restore “Mottness.” We use Mottness here as a
generic term to qualitatively indicate the tendency of electrons
to localize due to strong repulsive interactions in the vicinity
of a Mott transition. In this section we discuss the original SY
model (Sachdev and Ye, 1993), a pure spin model in which
explicit on-site charge fluctuations are absent. In Sec. VII, we
introduce charge fluctuations and consider itinerant electron
models with a strong, on-site repulsive interaction U. We find
substantial evidence that near critical points and/or over
significant intermediate energy scales, these correlated models
exhibit singular behavior that is connected to the critical
properties of the SYK model. Section VIII extends the present
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random quantum magnet in a different manner by adding a
second band of free electrons (similar to that in Sec. IV), and
thus describe a random-exchange Kondo-Heisenberg model.
Unlike the SYK model, the models introduced in this

section are not analytically solvable in the limit of a large
number of sites N. We follow two routes toward under-
standing their phase diagram. First, analytical results can be
obtained by extending the spin symmetry from SUð2Þ to
SUðMÞ and taking the large-M limit or, in the SUð2Þ case,
using renormalization group methods in the vicinity of
specific fixed points. Second, modern computational algo-
rithms now provide a controlled numerical solution of such
models in the SUð2Þ case directly, even close to quantum-
critical points. Some algorithms are reviewed in Sec. IX.
This section applies the previously mentioned approaches

to random-exchange quantum magnets. We consider insulat-
ing quantum magnets with a Hamiltonian of the form

HJ ¼
1ffiffiffiffi
N

p
X

1≤i<j≤N
JijSi · Sj; ð6:1Þ

where Si are quantum spin operators on site i and Jij are
independent random variables with vanishing mean and
variance J. In the most important case, the spins belong to
the SUð2Þ algebra and we have S ¼ 1=2 states on each site. As
previously noted, we also consider generalizations to SUðMÞ
spins here.
Models like Eq. (6.1) with classical spins have served as

the foundations of spin-glass theory, and more generally of
optimization problems and also neural networks (Mézard,
Parisi, and Virasoro, 1987). Here we see that such models are
also a valuable starting point for understanding correlated
electron systems without quasiparticle excitations.

A. SUðMÞ symmetry with M large

As previously stated, Eq. (6.1) is not analytically solvable in
the SUð2Þ case, even in the limit of N → ∞. We return to the
SUð2Þ case in Sec. VI.C, but here we consider the extension to
SUðMÞ spin symmetry, with M large, that was originally
examined by Sachdev and Ye (1993). We later see that the
limit N → ∞ followed by the limit M → ∞ leads to the same
saddle-point equations and G − Σ action as the SYK model
of Sec. V.
For the SUðMÞ case, we employ the representation of spin

using fermionic spinons fi;α, α ¼ 1;…;M. These fermions
obey the constraint

XM
α¼1

f†iαfiα ¼ κM ð6:2Þ

on each site i, where 0 < κ < 1. The SUð2Þ case corresponds
toM ¼ 2 and κ ¼ 1=2. We can then write the spin operators as
Si;αβ ¼ f†iαfiβ and generalize Eq. (6.1) as

HJ ¼
1ffiffiffiffiffiffiffiffi
NM

p
XM
α;β¼1

X
1≤i<j≤N

Jijf
†
iαfiβf

†
jβfjα: ð6:3Þ

This fermionic spinon representation has fractionalized
the spin operator, where the Uð1Þ gauge transformation
fiα → eiϕifiα leaves the spin operator invariant. We later
see that in the large-M limit fα form a SYK state: in the
context of the random quantum magnet, this state is a critical,
gapless, spin liquid. In the present large-N, large-M expan-
sion, the Lagrange multiplier λi (introduced later) plays the
role of an emergent gauge field in this spin liquid.
We proceed (Sachdev and Ye, 1993) with an analysis of

Eq. (6.3) similar to that presented for Eq. (5.1a). We average
over Jij, and obtain the following averaged partition function
analogous to Eq. (5.54):

Z̄ ¼
Z

DfiαðτÞDλiðτÞe−SB−SJ ;

SB ¼
X
i

Z
β

0

dτ

�
f†iα

�
∂

∂τ
þ iλ

�
fiα − iλκM

�
;

SJ ¼ −
J2

4NM

Z
β

0

dτdτ0



X

i
f†iαðτÞfiβðτÞf†iγðτ0Þfiδðτ0Þ




2:
ð6:4Þ

In the large-N limit we assume self-averaging among the sites,
and in the large-M limit we can replace the quartic operator of
fermions with the product of the Green’s functions of the f
fermions as follows:

f†αðτÞfβðτÞf†γðτ0Þfδðτ0Þ ¼ δαδδβγGðτ; τ0ÞGðτ0; τÞ: ð6:5Þ

The analysis then proceeds just as in the SYK model, and we
obtain an expression for the G − Σ action that is nearly
identical to that in Eq. (5.56), but with a prefactor of N
replaced by NM as follows:

I½G;Σ; λ� ¼ − ln detf½∂τ1 þ iλðτ1Þ�δðτ1 − τ2Þ þ Σðτ1; τ2Þg

− TrðΣ ·GÞ − J2

4
TrðG2 ·G2Þ − iκ

Z
β

0

dτ λðτÞ:

ð6:6Þ

Consequently, the subsequent results for the fermion
Green’s function and the large-NM thermodynamics are
identical to those in Sec. V after the replacements U → J
and Q → κ.
The local spin-spin correlation can also be obtained as

QðτÞ ¼ 1

M2
hf†αðτÞfβðτÞf†βðτ0Þfαðτ0Þi

¼ C2e−2πE

1þ e−4πE
T

sinðπTτÞ ; 0 < τ <
1

T
; ð6:7Þ

which has been obtained from Eq. (5.25). We can obtain the
spin spectral density ρQ using a Fourier transform that yields
(Parcollet and Georges, 1999)

ρQðωÞ ∼ tanh

�
ω

2T

�
: ð6:8Þ
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At T ¼ 0, this corresponds to a spin density of states ∼sgnðωÞ,
which is a starting assumption in the original theory of the
marginal Fermi liquid (Varma et al., 1989).
Recent work (Tikhanovskaya et al., 2021a) obtained

corrections to the correlators of the quantum magnet HJ from
perturbations of the critical theory by leading irrelevant
operators described in Sec. V.E. The most important correc-
tions arise from an operator with a scaling dimension h ¼ 2,
and as in Eqs. (5.44) and (5.45) we obtain

ρQðωÞ ∼ tanh

�
ω

2T

��
1 − Cγω tanh

�
ω

2T

�	
; ð6:9Þ

where γ ∼ 1=J is the coefficient of the Schwarzian in
Eq. (5.60), and also the linear-in-T coefficient of the specific
heat in Eq. (5.53). The dimensionless number C is universal,

C ¼ 24

π½2 cosð2θÞ þ 3π cos2ð2θÞ� : ð6:10Þ

In Eq. (6.10) θ is the spectral asymmetry angle that appeared
in Eq. (5.3) and that is related by the Luttinger theorem in
Eq. (5.21) to κ in Eq. (6.2). We compare Eq. (6.9) to numerical
studies of the SUð2Þ magnet in Sec. VI.B.

B. SUð2Þ model

We now return to the original model in Eq. (6.1) and
examine it for the physically important case with SUð2Þ
symmetry. We proceed as in the analyses of classical spin-
glass problems by introducing replicas and then averaging
over the replicated partition function. This yields a self-
consistent problem of a single quantum spin with replica
indices (Bray and Moore, 1980). The replica structure is
important for the spin-glass phase (Georges, Parcollet, and
Sachdev, 2000, 2001; Biroli and Parcollet, 2002), but in this
review we focus mostly on the disordered paramagnetic phase
above the spin-glass ordering temperature or on quantum-
critical points corresponding to the destruction of spin-glass
order at T ¼ 0 (Secs. VII.B and VII.C) In these cases, it is
permissible at large N to ignore the replica indices and
consider the following path integral for a single quantum
spin S ¼ 1=2:

ZJ ¼
Z

DSðτÞδðS2 − 1Þe−SB−SJ ;

SB ¼ i
2

Z
1

0

du
Z

dτ S ·

�
∂S
∂τ

×
∂S
∂u

�
;

SJ ¼ −
J2

2

Z
dτdτ0Qðτ − τ0ÞSðτÞ · Sðτ0Þ: ð6:11Þ

Equation (6.11) is a coherent state path integral and SB is the
geometric Berry phase, closely connected to the spin com-
mutation relations. The spin has a temporal self-interaction
with itself represented by the function QðτÞ. The value
of QðτÞ is to be determined self-consistently by computing
the correlator

Q̄ðτ − τ0Þ≡ 1
3
hSðτÞ · Sðτ0ÞiZJ

ð6:12Þ

and then imposing the self-consistency condition

QðτÞ ¼ Q̄ðτÞ: ð6:13Þ

A major difference with the SUðMÞ model in the fermionic
large-M limit is that the SUð2Þmodel has a spin-glass phase at
low temperatures. A semiclassical picture of this phase is that
of local moments pointing randomly in all directions so that
the global magnetization vanishes but the variance of the
distribution of local magnetizations ð1=NÞPim

2
i ¼ qEA is

nonzero. The latter is the Edwards-Anderson order parameter
of the spin-glass phase (Mézard, Parisi, and Virasoro, 1987).
A hallmark of the spin-glass phase is also that local quantities
(starting with the local magnetization itself) are no-longer self-
averaging.
The existence of a spin-glass phase in the SUð2Þ case can

be established in two ways. First, the replica diagonal
effective action [Eq. (6.11)] for the disorder-averaged
Green’s functions can be solved numerically exactly using
quantum Monte Carlo methods in the paramagnetic phase
(Grempel and Rozenberg, 1998). At low temperatures, the
spin-glass susceptibility diverges at T ¼ TSG ≈ 0.14J at the
boundary of the spin-glass phase.
Second, exact diagonalization of finite size systems have

been performed directly in the spin-glass phase for many
realizations (103 to 105) of the quenched disorder (Arrachea
and Rozenberg, 2002; Shackleton et al., 2021). The local
dynamical spin susceptibility χ00locðωÞwas computed from both
a full diagonalization of small systems at finite T and the
Lanczos method at T ¼ 0. From a finite size scaling analysis,
the T ¼ 0 disorder-averaged susceptibility in the thermody-
namic limit is of the form

χ00locðωÞ ¼ qEAπβωδðωÞ þ χ00regðωÞ; ð6:14Þ

where qEA ≈ 0.02 is the Edwards-Anderson parameter
(Shackleton et al., 2021) and χ00reg is the regular part.
Figure 11 presents numerical results for χ00locðωÞ for the t-J
model for various dopings p; this discussion is for p ¼ 0, and
the doped cases are discussed in Sec. VI.B. Apart from the
delta function spin-glass contribution at low frequencies, the
structure of χ00regðωÞ is notable. Specifically, the theory of
the gapless spin fluid phase studied in Sec. VI.A generally
predicts that

χ00regðωÞ ¼ C1sgnðωÞ½1 − C2jωj þ � � ��; T ¼ 0: ð6:15Þ

Formally, this result follows from taking the T → 0 limit of
the large-M result in Eq. (6.9). However, the structure of
Eq. (6.15) is much more general: sgnðωÞ is linked to the exact
SUð2Þ exponent that we obtain in Eq. (6.23). The jωj
correction term is similarly robust and is related to the
Schwarzian operator with h ¼ 2, as in Eq. (5.45) (in
Sec. XII.B, we relate this h ¼ 2 mode to the boundary
graviton in the holographic dual). As shown in Fig. 11, the
form in Eq. (6.15) provides a good fit to the numerical
susceptibility of the p ¼ 0 SUð2Þ model, apart from the
low-frequency peak associated with spin-glass order. We can
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therefore conclude that the spin-glass order q ≈ 0.02 is weak,
and there is evidence of the SY spin-liquid behavior at
intermediate energy scales in the SUð2Þ random-exchange
quantum magnet.
A theory for the quantum spin-glass state can be obtained

using bosonic spinons, and the spin-glass order appears
when the bosonic spinons condense (Georges, Parcollet,
and Sachdev, 2000, 2001). Such a theory is applicable when
qEA is large, and it yields χ00regðωÞ ∼ ω in Eq. (6.14) at small jωj
after an assumption of marginal stability in the replica
symmetry-breaking structure. More recently, the onset of
spin-glass order has been studied (Christos, Haehl, and
Sachdev, 2022) using the fermionic spinon large-M theory
of Sec. VI.A. Such a theory yields an estimate of the critical
temperature to spin-glass order

TSG ∼ J exp
�
−

ffiffiffiffiffiffiffi
Mπ

p 
ð6:16Þ

and also has χ00regðωÞ ∼ ω for jωj < ω�. The fermionic spinon
theory describes the crossover above the frequency ω� ¼
JqEA to the spin-liquid spectrum in Eq. (6.15) or (6.9). The
exponential factor in Eq. (6.16) is small even for M ¼ 2,

e−
ffiffiffiffi
2π

p
¼ 0.0815…, and this could be the justification for the

applicability of the large-M theory to the SUð2Þ case.

C. Renormalization group (RG) analysis of the SUð2Þ model

We now turn to an analytical study of the SUð2Þ model, as
this will help us understand the structure of nonzero frequency
spin susceptibility observed in the numerics, as described
in Eq. (6.15).
We present here a systematic RG procedure to analyze the

problem defined in Eqs. (6.11)–(6.13). We begin by assuming
that there is a critical solution in which QðτÞ has a power-law
decay in time. Notice that this is similar to the assumption

made for the SYK model in Eq. (5.3): in that case we were
able to solve the self-consistency problem exactly at low
energies. That is not possible here, and we therefore have
to introduce the ϵ expansion defined later. We assume the
power-law decay

QðτÞ ∼ γ2

jτjα ð6:17Þ

and postpone consideration of the self-consistency condition.
We then have to solve the well-defined problem of computing
Q̄ðτÞ from Eq. (6.12) given QðτÞ in Eq. (6.17).
This problem can be reduced to the solution of a quantum

impurity problem, sometimes called the Bose-Kondo problem
(Sengupta, 2000; Beccaria, Giombi, and Tseytlin, 2022;
Cuomo et al., 2022; Nahum, 2022; Weber and Vojta,
2022). We begin by decoupling the SðτÞ · Sð0Þ interaction
in Eq. (6.11) with a bosonic field ϕa; a ¼ 1;…; 3. We assume
that there is a bosonic “bath” field that lives in d spatial
dimensions ϕaðx; τÞ, and the decoupling field is ϕaðx ¼ 0; τÞ.
The path integral for ZJ in Eq. (6.11) then reduces to the
solution of the following Bose-Kondo Hamiltonian of an
S ¼ 1=2 spin Sa coupled to a bosonic scalar field ϕaðx; τÞ:

Himp ¼ γSaϕað0Þ þ
1

2

Z
ddx½π2a þ ð∂xϕaÞ2�: ð6:18Þ

In Eq. (6.18) πa is canonically conjugate to the field ϕa, and
ϕað0Þ≡ ϕaðx ¼ 0Þ. We identify QðτÞ with the temporal
correlator of ϕað0Þ, and from Eq. (6.17) we then conclude
that we need α ¼ d − 1.
We now determine the properties of the theory Himp in a

renormalized perturbation expansion in the coupling γ.
A simple determination of scaling dimensions at tree level
shows that γ has the scaling dimension ð3 − dÞ=2, so an
expansion in powers of γ is equivalent to a RG expansion in

ϵ ¼ 3 − d ¼ 2 − α: ð6:19Þ

Such a computation can be performed (Sachdev, Buragohain,
and Vojta, 1999; Smith and Si, 1999; Sengupta, 2000;
Sachdev, 2001; Beccaria, Giombi, and Tseytlin, 2022;
Cuomo et al., 2022; Nahum, 2022) while one imposes the
fermion constraint in Eq. (6.2) for SUð2Þ exactly, and it yields
the following two-loop β function:

βðγÞ ¼ −
ϵ

2
γ þ γ3 − γ5 þ � � � . ð6:20Þ

Equation (6.20) has a stable fixed point at γ�2 ¼ ϵ=2þ
ϵ2=4þ � � � that provides the needed critical theory of ZJ
with the interaction in Eq. (6.17).
To solve the self-consistent theory, we need to compute

Q̄ðτÞ in Eq. (6.12) at this fixed point. The scaling dimension of
the spin operator dim½S� can be computed using standard RG
methods order by order in ϵ, but we encounter an unexpected
simplification. Because of the quantized Berry phase (Wess-
Zumino-Witten) term, the renormalization of the coupling γ is
given only by the wave function renormalization, and this
fixes the scaling dimension of the spin operator at the

FIG. 11. Local spin response function for the spin-1=2 doped
random-exchange t-J model, as obtained by exact diagonaliza-
tion of an N ¼ 18 site cluster averaged over 100 disorder
realizations, for t ¼ J ¼ 1. n ¼ 1 − p is the particle density.
From Shackleton et al., 2021.
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nontrivial fixed point of the β function: we find that (Vojta,
Buragohain, and Sachdev, 2000; Sachdev, 2001)

dim½S� ¼ ϵ=2; ð6:21Þ

exact to all orders in ϵ. This implies the correlator

Q̄ðτÞ ¼ 1

3
hSðτÞ · Sð0Þi ∼ 1

jτj2−α : ð6:22Þ

Finally, we impose the self-consistency condition in
Eq. (6.13) at least at the level of the exponent. Comparing
Eqs. (6.17) and (6.22), we conclude that the self-consistent
value is α ¼ 1. Note that this value is well outside the domain
of applicability of the ϵ expansion given Eq. (6.19).
Nevertheless, given that Eq. (6.21) has been obtained to all
orders in ϵ, the only requirement for the validity of Eq. (6.22)
is the continued existence of the nontrivial fixed point of the β
function at ϵ of the order of unity. The self-consistent spin
correlator is therefore

hSðτÞ · Sð0Þi ∼ 1

jτj : ð6:23Þ

Comparing Eq. (6.23) with the large-M result in Eq. (6.7),
we find perfect agreement between the large-M and RG
exponents.
As discussed in Sec. VI.B, the ground state of Eq. (6.1) is

actually a spin glass for SUð2Þ spins. The analysis obtaining
the result in Eq. (6.22) is certainly correct for SUð2Þ and
applies exactly to the Bose-Kondo impurity model defined
in Eq. (6.18) for small ϵ. Recent studies showed (Beccaria,
Giombi, and Tseytlin, 2022; Cuomo et al., 2022; Nahum,
2022; Weber and Vojta, 2022) that the fixed point is not
present at large ϵ, and this is consistent with the appearance of
spin-glass order.
Despite the direct inapplicability of the RG to the SUð2Þ

model in Eq. (6.1), the analysis presented here turns out to be
useful. A closely related RG applies to the SUðMÞ generali-
zation considered in Sec. VI.A (Joshi et al., 2020), and from
this we can conclude that there are no corrections to the
exponent in Eq. (6.21) [which is related to the exponent in
Eq. (6.7)] at all orders in 1=M. Moreover, extensions of the
RG of the Bose-Kondo model obtained here apply to the
correlated electrons models considered in the following
sections: i.e., the superspin Bose-Fermi-Kondo model in
Sec. VII.D.3 and the Bose-Fermi-Kondo model in
Sec. VIII.D.

VII. RANDOM-EXCHANGE t-U-J HUBBARD MODELS

In the following, we consider models of itinerant electrons
on a fully connected lattice with a strong local interaction and
random-exchange constants. One such example is the “t-U-J”
model, in which random Jij’s are added to the Hubbard model
with random hoppings as follows:

HtUJ ¼−
1ffiffiffiffi
N

p
XN
i;j¼1

XM
α¼1

tijc
†
iαcjα−μ

X
iα

c†iαciα

þU
2

X�
i

X
α

c†iαciα−M=2

�
2

þ 1ffiffiffiffi
N

p
X

1≤i<j≤N
JijSi ·Sj:

ð7:1Þ

In Eq. (7.1), we introduce M “colors” of fermions so that the
model has UðMÞ ¼ Uð1Þ × SUðMÞ symmetry corresponding
to an extension of the spin symmetry to SUðMÞ. The usual
SUð2Þ, S ¼ 1=2 Hubbard model corresponds to M ¼ 2

(α¼↑;↓). The electron spin operators Si¼
P

αβc
†
αðσαβ=2Þcβ,

with σ=2 the M2 − 1 generators of SUðMÞ (σ are the Pauli
matrices for M ¼ 2). As before, the tij’s and Jij’s are drawn

from distributions with zero mean and variances t2ij ¼ t2 and

J2ij ¼ J2; however, as we later note, closely related results
also apply to the case where the tij are nonrandom and lead to
an electronic dispersion ϵk. Note a change in notation from
the previously mentioned SYK model: U designates here the
on-site repulsion, while the variance J of the random bonds is
more directly analogous to the variance of the random SYK
interactions. Note also that the chemical potential μ is
defined with reference to the half-filled case (M=2 electrons
per site).
We can also consider the t-J limit of this model (Parcollet

and Georges, 1999), which reads

HtJ ¼ −
1ffiffiffiffi
N

p
XN
i;j¼1

X
α

tijPc
†
iαcjαP − μ

X
iα

c†iαciα

þ 1ffiffiffiffi
N

p
X

1≤i<j≤N
JijSi · Sj; ð7:2Þ

in which the operator P enforces the following Gutzwiller-
type projection such that the total number of fermions on each
site is at most M=2:

X
α

c†iαciα ≤
M
2

∀ i: ð7:3Þ

At half filling (μ ¼ 0) this reduces to the random-bond
Heisenberg (SY) model of Sec. VI.

A. Effective local action

In the thermodynamic limit N → ∞, the calculation of the
single-particle Green’s function and self-energy of this model,
as well as that of the local spin-spin correlator, reduces to a
local effective action subject to a self-consistency condition.
This corresponds to the extended dynamical mean-field
theory construction (EDMFT) (Sengupta and Georges,
1995; Georges et al., 1996; Si and Lleweilun Smith, 1996;
Chitra and Kotliar, 2000; Smith and Si, 2000), which is exact
for these random fully connected models. The term
“extended” is commonly used to indicate that the mapping
involves a self-consistency over both single-particle and two-
particle correlation functions. When one considers the system
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outside the spin-glass phase, all local correlators are self-
averaging and this mapping is most easily derived following
the cavity construction, as in Sec. IV. We skip the details here
since the reasoning is completely analogous to that in Sec. IV.
One obtains the single-site effective action

StUJ ¼
Z

dτ
X
α

c†αðτÞ
�
∂

∂τ
− μ

�
cαðτÞ

þ U
2

Z
dτ

�X
α

c†αcα −M=2

�
2

þ
Z

dτdτ0Δðτ − τ0Þ
X
α

c†αðτÞcαðτ0Þ

−
1

2

Z
dτdτ0J ðτ − τ0ÞSðτÞ · Sðτ0Þ: ð7:4Þ

From Eq. (7.4) we have to determine the Green’s function and
spin correlator as follows:

Gðτ − τ0Þ≡ −
1

M

X
α

hcαðτÞc†αðτ0ÞiStUJ
;

χðτ − τ0Þ≡ 1

M2 − 1
hSðτÞ · Sðτ0ÞiStUJ

; ð7:5Þ

and impose the following self-consistency condition that
results from the cavity construction:

ΔðτÞ ¼ t2GðτÞ; J ðτÞ ¼ J2χðτÞ: ð7:6Þ

The electronic self-energy can be defined by referring to the
noninteracting system U ¼ J ¼ 0 (the random-matrix model
of Sec. IV) as G−1

ij ðiωnÞ ¼ iωn þ μ − tij − Σij for a given
sample ftijg. In the infinite-volume limit N → ∞, the self-
energy becomes local (Σij ¼ Σiiδij) and self-averaging when
not in the spin-glass phase. The local Green’s function Gii is
also self-averaging and is related to Σ by

GiiðiωnÞ ¼
X
λ

jhijλij2Gðiωn; ελÞ

→
Z

ρ0ðεÞGðiωn; εÞ ¼ GðiωnÞ; ð7:7Þ

with ρ0 the semicircular density of states defined in Sec. IV
and where

Gðiωn; εÞ ¼
1

iωn þ μ − ε − ΣðiωnÞ
ð7:8Þ

is the Green’s function in the basis of the single-particle states
of the free system at an energy ε. The self-energy Σ coincides
with that of the effective action [Eq. (7.4)] and hence reads

ΣðiωnÞ ¼ iωn þ μ − t2ΔðiωnÞ −G−1ðiωnÞ: ð7:9Þ

Substituting Eq. (7.9) into Eq. (7.8) and performing the
Hilbert transform of ρ0, one recovers the self-consistency
condition Δ ¼ t2G (Georges et al., 1996).

When a spin-glass phase exists, self-averaging of the local
observables does not hold inside the ordered phase. A
mapping onto a local effective action still applies, however,
after one introduces n replicas and performs the average of
ðZn − 1Þ=n over the tij and Jij random variables. The n → 0

limit must then also be taken, allowing for the possibility of
replica symmetry breaking. We do not write these equations in
detail here, and instead refer the interested reader to Georges,
Parcollet, and Sachdev (2000, 2001).
To make contact with the (E)DMFT literature, we use in

this section notations that are rather standard in the field.
In particular, ΔðτÞ is the dynamical mean field (quantum
generalization of the Weiss field) describing the hybridization
between a local site and its self-consistent bath. In the
following, we often use a somewhat different notation that
is more commonly used in the SY and SYK literature, such as
Δ → t2R̄, G → R̄, J → J2Q, and χ → Q̄.
We also note that the single-site effective action permits

a spin-glass phase after we include replica off-diagonal
components of the correlators (Georges, Parcollet, and
Sachdev, 2000, 2001). In the replica diagonal components
J ðτ → ∞Þ ≠ 0 at zero temperature. Naively, such a nonzero
limit signals a problem in the replica diagonal action in
Eq. (7.4), as the expectation value of the last term in the action
diverges as ∼β2 as β → ∞, implying a divergent ground state
energy. However, this problem is cured upon including the
replica off-diagonal components and taking the replica n → 0

limit (Read, Sachdev, and Ye, 1995). This issue highlights
the difficulty in interpreting the EDMFT framework in the
magnetically ordered phase for nonrandom systems (Si et al.,
2001, 2003; Pankov, Kotliar, and Motome, 2002; Kirchner
et al., 2020).

B. SUð2Þ Hubbard model at half filling

The SUð2Þ t-U-J model in Eq. (7.1) was previously studied
at half filling in the EDMFT framework (Cha, Wentzell et al.,
2020). Earlier work studied this in the large-M limit (Florens
et al., 2013). The phase diagram is reproduced in Fig. 12 as a
function of t=U and temperature, as obtained by a quantum
Monte Carlo solution of the EDMFT equations; see Sec. IX.
A quantum-critical point (QCP) at U ¼ Uc separates a Fermi-
liquid phase at smallU from an insulator at largeU that orders
into a spin-glass phase at low temperatures. At the quantum-
critical point, the spin correlation decays as χðτÞ ∼ 1=τ, as in
the large-M limit of the SY model, while it is the expected
χðτÞ ∼ 1=τ2 in the Fermi-liquid phase.
The electronic self-energy Σ is strongly affected by the

QCP. While it takes its regular form in the Fermi liquid, the
coherence temperature vanishes at the QCP, where a linear
temperature behavior ImΣðω ¼ 0; TÞ ∝ T is found numeri-
cally. As detailed in Sec. VII.E, this behavior leads at the
QCP to a T-linear dependence of the resistivity that is smaller
than the MIR value. Furthermore, in the accessible range of
temperatures, the frequency dependence of the self-energy is
compatible with a marginal Fermi-liquid form. Finally, we
note a theoretical study (Tarnopolsky et al., 2020) analyzing
the metal-insulator transition at half filling, related to the finite
doping theoretical models that are described in Sec. VII.D.
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C. SUð2Þ Hubbard model away from half filling

Section VII.B showed that the Hubbard model exhibits a
novel phase transition at half filling: between a Fermi liquid
at small U=t and a metallic spin glass at large U=t. Next we
turn to the case with hole doping p away from half filling.
Here we assume throughout that U=t is large so that at p ¼ 0

we obtain the insulating spin-glass phase described in
Sec. VI.B. We review numerical studies (Otsuki and
Vollhardt, 2013; Shackleton et al., 2021; Dumitrescu et al.,
2022) showing that the spin-glass order survives in a metallic
state up to a critical doping p ¼ pc, and that there is a Fermi
liquid for p > pc. [We note an exact diagonalization study
(Kumar, Sachdev, and Tripathi, 2021) that presents evidence
for the spin-glass transition from quasiparticle spectra.]
The critical point at p ¼ pc displays a SYK-like criticality,
with some similarities to the U ¼ Uc critical point at p ¼ 0

described in Sec. VII.B. Analytical analyses of the p > 0

Hubbard model appear afterward in Sec. VII.D.
A recent study (Shackleton et al., 2021) approached the

large-U and p ≥ 0 Hubbard model in the t-J model frame-
work by performing exact diagonalizations of fully connected
clusters ofN sites, up to N ¼ 18, for a fixed sample of random
hopping amplitudes and exchange constants, then taking
averages or histograms over the samples. Shackleton et al.
confirmed the existence of a spin-glass phase at low doping,
which survives up to pc ≃ 0.3 [in agreement with earlier
analytic arguments (Joshi et al., 2020) presented in
Secs. VII.D.2 and VII.D.3]. Their result for the local spin
response function χ00ðωÞ is displayed in Fig. 11. The spin-
glass phase is signaled by a sharp low-frequency peak in
χ00ðωÞ that is absent for p > pc, and the spin-fluctuation

spectrum close to the critical point is seen to be well
approximated by the large-M SYK theory of Sec. VI.A.
They also computed thermodynamic properties (entropy,
specific heat, and entanglement entropy) as a function of
temperature and found that the specific-heat coefficient
γ ¼ C=T displays a maximum as a function of doping
for p ≃ pc.
A different and complementary approach (Otsuki and

Vollhardt, 2013) was used recently (Dumitrescu et al.,
2022). The EDMFT equations of Sec. VII.D were solved
using the quantum Monte Carlo algorithms reviewed in
Sec. IX and correspond to a direct solution in the thermody-
namic limit N ¼ ∞ for disorder-averaged observables. The
model considered (Dumitrescu et al., 2022) is actually a finite-
U random-exchange model, with U=t large enough that the
physics of a doped Mott insulating spin glass is captured. The
phase diagram obtained in that study is displayed in Fig. 13.
The spin-glass phase itself (requiring replica off-diagonal
terms) was not studied in that work, but the location of the
critical boundary in the T-U plane was identified from the
criterion Jχloc ¼ 1. The T ¼ 0 critical doping was found to be
at pc ≃ 0.17 for the finite value of U=t studied, in contrast to
the higher value pc ≃ 0.3 for the U ¼ ∞ model. Accordant
with the exact diagonalization study (Shackleton et al., 2021),
the local spin dynamics at the critical point is of the SYK type
with χðτÞ ∝ 1=τ. The self-energy obeys interesting scaling
properties near the critical point: the imaginary-time data for
different temperatures can be collapsed onto

ΣðτÞ
Σðβ=2Þ ¼

e2πEðτ=β−1=2Þ

ðsin πτ=βÞν ; ð7:10Þ

which corresponds to the following conformally invariant
scaling form for the real-frequency scattering rate:

FIG. 13. Phase diagram (Dumitrescu et al., 2022) of the spin-
1=2 doped random-exchange t-U-J model as obtained using a
quantum Monte Carlo solution of the EDMFT equations. FL,
Fermi liquid; SG, metallic spin glass for p ≠ 0. The background
color corresponds to the fitted power-law exponent of the local
spin correlation function χðτÞ ∼ 1=τ2Δ (color scale on the right).
Along the dashed gray line, SYK behavior 2Δ ≃ 1 is found. A
linear-in-T resistivity is obtained in the quantum-critical region
with a resistivity that becomes lower than the MIR resistivity.
Inset: Enlargement close to the quantum-critical point.

FIG. 12. Phase diagram of the spin-1=2, half-filled, random-
exchange t-J-U model. At low temperatures, a quantum-critical
point separates the spin-glass (SG) phase from a Fermi-liquid
(FL) phase. The background color corresponds to the fitted
power-law exponent of the local spin correlation function
χðτÞ ∼ 1=τ2Δ, with 2Δ ≃ 1 in the quantum-critical metal
(QCM) (red) and Δ ¼ 1 in the Fermi liquid (blue). At high
temperatures and U, one obtains a Mott insulator. From Cha,
Wentzell et al., 2020.
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1

π
ImΣðωþ i0þÞ ¼ λTνΦν;E

�
ω
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�
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2
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2π
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2: ð7:11Þ

The exponent ν at criticality was estimated to be in the range
ν ≃ 0.6–0.8. Note that a value of ν smaller than unity implies
that the lifetime of single-electron excitations (inverse width
of the spectral function) satisfies Planckian T-linear behavior
as follows:

1

τ�
≡ −ZImΣði0þÞ ¼ c

ℏ
kBT

. ð7:12Þ

This is the case since, as detailed in Sec. VII.E, Z ¼
½1 − ∂ReΣðωÞ=∂ωÞjω¼0�−1 vanishes as Z ∝ λT1−ν at low T.
The overall coupling constant λ cancels in the expression of τ�

to dominant order; hence, the prefactor c is generically of the
order of unity. This quantity is displayed in Fig. 14. The
spectral asymmetry E was found to be nonzero but temper-
ature dependent over some extended range of T. Whether
there is an intrinsic particle-hole asymmetry of the scaling
function at criticality down to T ¼ 0 is an open question.
The metallic state is a Fermi liquid for p > pc, which

satisfies the Luttinger theorem with a large Fermi energy
associated with a fermion density of 1 − p; see Sec. VIII.C for
a discussion of the Luttinger theorem in disordered systems.
For the present system, it is expressed using the relation
μ − ReΣð0Þ ¼ εF at T ¼ 0, with εF the Fermi energy of the
noninteracting system (random-matrix model) for a density
n ¼ 1 − p. When one solves the EDMFT equations without
allowing for spin-glass ordering, a sudden breakdown of this
relation is found for p < pc (Otsuki and Vollhardt, 2013;
Dumitrescu et al., 2022), thereby signaling a breakdown of
the Luttinger theorem. These solutions correspond to a
metastable state with unquenched local magnetic moments.
These local moments order into a spin glass that is the actual
stable phase. The finite size exact diagonalization results
(Shackleton et al., 2021) suggest that the Fermi energy may
collapse to a small one of volume p in this metallic spin-glass

phase. This interesting possibility awaits confirmation from an
infinite-volume solution of the EDMFT equations inside the
spin-glass phase.

D. Doped t − J model: Analytical insights

We now extend the analytic considerations of Secs. VI.A
and VI.C from the undoped quantum magnet at p ¼ 0 to the
nonzero doping t-J model with p ≠ 0. This provides insight
into the numerical results presented in Sec. VII.C for the
doped Hubbard model. This analysis is carried out in the
U → ∞ limit, employing the t-J model in Eq. (7.2).
In the SUð2Þ (M ¼ 2) case, the Hilbert space of the t-J

model on each site consists of the following three states:

j0i; c†↑j0i; c†↓j0i: ð7:13Þ

We treat these three states in close analogy to the two spin
states of the random magnet in Eq. (6.1) (Fritz and Vojta,
2004; Vojta and Fritz, 2004). Apart from the increase in the
number of states, a crucial difference is the Fermi statistics
of the electron operator, which requires the three states to be
components of a superspin. However, there remains a choice
on whether the spinful or spinless component of the superspin
is fermionic. In an exact treatment of the problem, either
choice is permitted and should lead to equivalent results.
However, in approximate treatments one choice or the other
may be superior, and it is often useful to exploit this freedom.
For now, we present our discussion by representing the
superspin as follows as a spinless boson b (the holon) and
a spinful fermion fα (the spinon):

j0i ⇒ b†jvi; c†αj0i ⇒ f†αjvi: ð7:14Þ

The physical states are obtained when the constraint

f†αfα þ b†b ¼ 1 ð7:15Þ

is obeyed [we implicitly sum over SUð2Þ indices in this
discussion forM ¼ 2]. Hence, the physical states are invariant
under the Uð1Þ gauge transformation that generalizes the one
in Sec. VI.A (fα → fαeiϕ, b → beiϕ), while individual spinon
and holon excitations carry Uð1Þ gauge charges. At the
moment, the fractionalized representation (and the associated
emergent gauge symmetry) is simply a convenient exact
description of the Hilbert space. But we see later in
Secs. VII.D.2 and VII.D.3 that the fractionalized operators
yield a simple way to understand the exponents at a non-
Fermi-liquid critical point as a realization of a critical doped
spin liquid.
The following physical electron (cα) and spin (S) operators

can be viewed as rotation operators of the superspin:

cα ¼ b†fα; S ¼ 1
2
f†ασαβfβ: ð7:16Þ

If we combine these operators with an operator V that
measures the electron density

FIG. 14. Inverse single-electron excitations lifetime 1=τ� as a
function of temperature T in the spin-1=2 doped random-exchange
t-U-J model for different doping p. A Planckian behavior
[Eq. (7.12)] is observed close to the quantum-critical point.
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V ¼ b†bþ 1
2
f†αfα

¼ 1 − 1
2
c†αcα; ð7:17Þ

we obtain all the generators of the supergroup SUð1j2Þ. The
notation indicates that this group acts on a superspin with
one bosonic component b†jvi and two fermionic components
f†αjvi. These generators realize the superalgebra SUð1j2Þ,
which is

½Sa; Sb� ¼ iϵabcSc; ð7:18aÞ

fcα; cβg ¼ 0; ð7:18bÞ

fcα; c†βg ¼ δαβV þ σaαβS
a; ð7:18cÞ

½Sa; cα� ¼ −1
2
σaαβcβ; ð7:18dÞ

½Sa; V� ¼ 0; ð7:18eÞ

½V; cα� ¼ 1
2
cα. ð7:18fÞ

If we had made the opposite choice and used spinful bosonic
spinons and spinless fermionic holons, we would have
obtained the superalgebra SUð2j1Þ, which is isomorphic
to SUð1j2Þ.
The effective local action associated with this model along

the lines of Sec. VII.A can be viewed as that of a single
SUð1j2Þ superspin, which is in complete analogy with
Eqs. (6.11)–(6.13) for the self-consistent dynamics of a single
SUð2Þ spin. The local effective action can be written in terms
of the spinon and holon fields as

ZtJ ¼
Z

DfαðτÞDbðτÞDλðτÞe−SB−StJ ;

SB ¼
Z

dτ

�
f†αðτÞ

�
∂

∂τ
þ iλ

�
fαðτÞ

þ b†ðτÞ
�
∂

∂τ
þ iλ

�
bðτÞ − iλ

	
;

StJ ¼ s0

Z
dτ f†αfα −

J2

2

Z
dτdτ0Qðτ − τ0ÞSðτÞ · Sðτ0Þ

− t2
Z

dτdτ0Rðτ − τ0Þf†αðτÞbðτÞb†ðτ0Þfαðτ0Þ þ H:c:

ð7:19Þ
The action SB is the Berry phase of an SUð1j2Þ superspin,
which we have expressed as the path integral over canonical
bosonic and fermionic fields while imposing the constraint
Eq. (7.15) with the field λðτÞ. The chemical potential μ of the
t-J Hamiltonian is now represented by the coupling s0. From
this action we have to determine the correlators

R̄ðτ − τ0Þ ¼ −1
2
hcαðτÞc†αðτ0ÞiZtJ

;

Q̄ðτ − τ0Þ ¼ 1
3
hSðτÞ · Sðτ0ÞiZtJ

; ð7:20Þ

in a manner analogous to Eq. (6.12). And then we impose the
self-consistency conditions in Eqs. (7.5) and (7.6), which take
the form

RðτÞ ¼ R̄ðτÞ; QðτÞ ¼ Q̄ðτÞ; ð7:21Þ

in a manner analogous to Eq. (6.13).
It is not possible to solve exactly the quantum problem

defined by Eqs. (7.19)–(7.21). Sections VII.D.1–VII.D.3
describe various theoretical expansions and numerical results,
in a matter analogous to the discussion in Sec. VI for the
random quantum magnet.

1. SUðMÞ symmetry: The Fermi-liquid large-M limit

A first approach (Parcollet and Georges, 1999) is to extend
the SUðMÞ large-M model of Sec. VI.A using fermionic
spinons fα with an index α ¼ 1;…;M, while the bosonic
holons b have no index. In this case, the constraints [Eqs. (6.2)
and (7.15)] become

XM
α¼1

f†iαfiα þ b†i bi ¼
M
2

ð7:22Þ

on each site i; we are restricting to the case with self-conjugate
representations of SUðMÞ at half filling, with κ ¼ 1=2. We
also fix the doping density p by

1

N

X
i

b†i bi ¼
Mp
2

: ð7:23Þ

This large-M limit is similar to that employed for non-
random t-J models (Kotliar, 1995; Lee, Nagaosa, and Wen,
2006) and has the crucial feature that the bosonic holons are
strongly condensed at T ¼ 0. Indeed, in the large-M limit, we
may replace the boson with a number bi ¼

ffiffiffiffiffiffiffiffi
Mp

p
obtained

from the constraint in Eq. (7.23). The fermions fα then have
the same quantum numbers as an electron, with spin S ¼ 1=2
and charge −1. The effective theory of these electrons is a sum
of the random-matrix Hamiltonian H2 in Eq. (4.1a), and the
SYK Hamiltonian H4 in Eq. (5.1a). We discuss similar
Hamiltonians in a different context in Sec. X and defer a
complete discussion until then.
For now, we note a few important features of this large-M

limit. The phase diagram (Parcollet and Georges, 1999) is
displayed in Fig. 15. At p ¼ 0, we have the SYK spin-liquid
state described in Sec. VI. At any nonzero p, because of the
condensation of the holons b we obtain a disordered Fermi-
liquid ground state, with quasiparticles moving with an
effective hopping tp. These quasiparticles are present at a
large Fermi energy below which there are states of ð1 − pÞ=2
electrons per spin. There is a characteristic doping p� ∼ J=t
that separates two different regimes with a distinct doping
dependence of the effective mass enhancement and spectral
weight Z of these quasiparticles. For p > p�, the usual
Brinkman-Rice (Brinkman and Rice, 1970) behaviorm�=m ¼
1=Z ∝ 1=p is recovered, as in the absence of random-
exchange couplings. In contrast, for p < p� much heavier
quasiparticles are found with m�=m ¼ 1=Z ∝ ðp�=pÞ2.
Correspondingly, the Fermi-liquid coherence scale is Tcoh ∼
ðptÞ2=J in this regime. Hence, the random exchanges strongly
modify the usual Brinkman-Rice behavior of the doped Mott
insulator at low doping. For p < p�, there is an interesting
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crossover at T ≳ Tcoh, above which non-Fermi-liquid behav-
ior with spin-liquid local correlations of the SYK type are
recovered (Fig. 15). This regime corresponds to a bad metal
with a resistivity larger than the MIR limit and depending
linearly on temperature; see Sec. VII.E for a discussion of
related models for which we define a proper notion of
transport. The mechanism for this T-linear dependence is
unusual. Indeed, in this regime the single-particle scattering
rate has the ImΣ ∝

ffiffiffiffi
ω

p
;

ffiffiffiffi
T

p
dependence of the spinon self-

energy characteristic of the SYK regime. Despite this, the
resistivity is found to be linear in T because the dispersion of
the quasiparticles is negligible compared to this large scatter-
ing rate, so the conductivity as obtained from the Kubo
formula is proportional to 1=ðImΣÞ2 ∝ 1=T.
These conclusions can be drawn by examining the large-M

equation for the spinon Green’s function Gf, which reads
(Parcollet and Georges, 1999)

G−1
f ¼ iωn þ μ − λ̄ − ðptÞ2Gf − ΣfðiωnÞ; ð7:24Þ

where iλ ¼ λ̄ at the saddle point and ΣfðτÞ ¼
−J2G2

fðτÞGfð−τÞ as in the large-M SY model. The doping-

induced term ðptÞ2Gf is a singular perturbation that cuts off the

SYK behavior. Indeed, substituting Σf ∝
ffiffiffiffiffiffi
Jω

p
into Eq. (7.24),

which corresponds to Gf ∝ 1=
ffiffiffiffiffiffi
Jω

p
, we see that a stable

solution of this type can exist only for ðptÞ2= ffiffiffiffiffiffi
Jω

p ≲ ffiffiffiffiffiffi
Jω

p
,

which yields ω≳ ðptÞ2=J ∼ Tcoh, which corresponds to the
previously described crossover regime. For T;ω≲ Tcoh, the
consistent solution of Eq. (7.24) is a Fermi liquid.

2. SUðMÞ symmetry: Non-Fermi-liquid large-M limit

We know from the numerical studies of the random
quantum magnet discussed in Sec. VI.B that the actual ground
state of the undoped model (p ¼ 0) is a spin glass, in contrast
to the spin liquid appearing in Sec. VII.D.1. It is reasonable to
expect that this spin-glass state survives for a range of nonzero

p, and this has been confirmed by the numerical studies
discussed in Sec. VII.C. In the large-M method of
Sec. VII.D.1 the boson b condenses at any nonzero doping,
so the correlated spin liquid (or its associated spin-glass state)
is absent at T ¼ 0 away from the insulator. In this section, we
discuss an alternative large-M approach in which the boson
need not condense at nonzero doping and can instead form a
SYK-like critical state.
We consider a large-M theory of an SUðM0jMÞ superspin in

which large-M and large-M0 limits are taken with k ¼ M0=M
fixed (Joshi et al., 2020; Tikhanovskaya et al., 2021b). This
requires a theory of fermionic spinons fα; α ¼ 1;…; M, just
as in Sec. VII.D.1. However, the bosonic holons bl now have
an additional “orbital” index l ¼ 1;…; M0. The electrons clα
have an additional orbital index l and are related to the
spinons fα and holons bl by

clα ¼ fαb
†
l;XM

α¼1

f†αfα þ
XM0

l¼1

b†lbl ¼ M
2
: ð7:25Þ

The doping density p is given by

1

N

X
il

b†ilbil ¼ M0p. ð7:26Þ

The physical case corresponds toM¼2,M0 ¼1, and k ¼ 1=2.
We can now take the large-M limit in a manner that closely

parallels Sec. VI. We then obtain the following SYK-like
equations for the boson and fermion Green’s functions, now
describing a critical doped spin liquid:

GbðiωnÞ ¼
1

iωn þ μb − ΣbðiωnÞ
;

ΣbðτÞ ¼ −t2GfðτÞGfð−τÞGbðτÞ;

GfðiωnÞ ¼
1

iωn þ μf − ΣfðiωnÞ
;

ΣfðτÞ ¼ −J2G2
fðτÞGfð−τÞ þ kt2GfðτÞGbðτÞGbð−τÞ:

ð7:27Þ

Equations (7.27) share some similarities with those introduced
in a study (Haule et al., 2002) of the nonrandom t-J model
using the noncrossing approximation in the EDMFT frame-
work. They can be obtained from a G − Σ action that
generalizes those in Eqs. (5.56), (6.6), and (8.8) as follows:

I½G;Σ� ¼ − ln det ½ð∂τ − μfÞδðτ1 − τ2Þ þ Σfðτ1; τ2Þ�
þ k ln det ½ð∂τ − μbÞδðτ1 − τ2Þ þ Σbðτ1; τ2Þ�

þ kTrðΣb ·GbÞ þ
kt2

2
Trð½GfGb� · ½GfGb�Þ

− TrðΣf · GfÞ −
J2

4
TrðG2

f ·G
2
fÞ: ð7:28Þ

In Eq. (7.28) μf and μb are chemical potentials chosen to
satisfy

FIG. 15. Phase diagram (Parcollet and Georges, 1999) of the
doped t-J model in the large-M limit with a condensed bosonic
holon b. The SY spin liquid (incoherent metal) displays linear-in-
T resistivity with a large bad metal resistivity.
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hf†fi ¼ 1
2
− kp; hb†bi ¼ p: ð7:29Þ

As for the SYK model, we search for solutions of Eq. (7.27)
with the following low-energy critical behavior:

GfðzÞ ¼ Cf
e−iðπΔfþθfÞ

z1−2Δf
; ImðzÞ > 0;

GbðzÞ ¼ Cb
e−iðπΔbþθbÞ

z1−2Δb
; ImðzÞ > 0;

θf
π
þ
�
1

2
− Δf

�
sinð2θfÞ
sinð2πΔfÞ

¼ kp;

θb
π
þ
�
1

2
− Δb

�
sinð2θbÞ
sinð2πΔbÞ

¼ 1

2
þ p: ð7:30Þ

The last two equations of Eqs. (7.30) follow from Luttinger
theorems similar to those discussed in Sec. V.B (Georges,
Parcollet, and Sachdev, 2001; Gu et al., 2020). Inserting this
Ansatz into Eq. (7.27), we find that self-consistency of the
terms involving the hopping t leads to the following constraint
on the scaling dimensions of the fermion (Δf) and boson (Δb):

Δf þ Δb ¼ 1
2
: ð7:31Þ

Inserting the Ansätze for Gb and Gf into the correlation
functions for the electron and spin operators [as in Eq. (6.7)],
we obtain for the gauge-invariant observables

hcαðτÞc†αð0Þi ∼
�
Aþ=jτj; τ > 0;

−ðA−=jτjÞ; τ < 0;

hSðτÞ · Sð0Þi ∼ 1

jτj4Δf
: ð7:32Þ

The electron Green’s function is similar to that of a Fermi
liquid, with the difference that the present large-M limit allows
for solutions with a particle-hole asymmetry with Aþ ≠ A−,
whereas a Fermi liquid always has Aþ ¼ A−. We note that this
is an unusual situation in which the T ¼ 0 spectral function
is discontinuous at ω ¼ 0; the electron Green’s function
obtained from the RG analysis presented in Sec. VII.D.3
does not share this feature. A Fermi liquid would also have a
spin correlation function with a 1=τ2 decay, which is poten-
tially different from the previously discussed 1=jτj4Δf decay.
Our discussion thus far has been general, but the nature of

the state obtained strongly depends on the values of the
exponents Δf and Δb. Determining their values requires
further analysis of Eq. (7.27), and we now describe the three
distinct possibilities.

a. Δb ¼ Δf ¼ 1=4: Doped SY spin liquid

In such a solution, the J terms in Eq. (7.27) also contribute
to determining the parameters in the scaling Ansatz in
Eq. (7.30). The scaling dimension of the spinons and the
spin operator are the same as those in the insulating SY spin
liquid described in Sec. VI.A. Numerical analyses of
Eq. (7.27) at all energies (Tikhanovskaya et al., 2021b) show
that such solutions do indeed exist, but only at small values of
the doping p.

b. Δb ¼ 0, Δf ¼ 1=2: Disordered Fermi liquid

This state is the same as that obtained in the large-M limit of
Sec. VII.D.1, but it turns out not to be a valid solution of the
saddle-point equations in Eq. (7.27) of the present large-M
limit (Christos et al., 2022). If Δb ¼ 0, we have a b
condensate with hbðτ → ∞Þb†ð0Þi ≠ 0 at T ¼ 0. Inserting
this condensate into the equation for Σb in Eq. (7.27), we find
a contribution ΣbðωÞ ∼ jωj from the fermion polarizability,
which leads to a lnð1=τÞ contribution to GbðτÞ, which is
inconsistent with the presence of a b condensate.

c. 0 < Δb < 1=4, Δf ¼ 1=2 − Δb: Critical metal

Numerical analysis (Christos et al., 2022) of Eq. (7.27)
shows that this is indeed a valid solution for a wide range of
doping p. The J terms in Eq. (7.27) are subdominant to the
critical Ansatz at low energies, but they do contribute at higher
energies. The exponents in this critical metal vary continu-
ously as a function of the doping and J=t and can be
determined by demanding numerically that Eq. (7.27) apply
at all energies. For finite M, the critical metal can be stable to
spin-glass order at T ¼ 0 for Δf < 1=4, unlike the finite-T
instability in Eq. (6.16) for the SY spin liquid. There can be an
instability to a metallic spin glass below a critical doping pc
(Christos et al., 2022), and this is indicated in the schematic
phase diagram in Fig. 16. This spin-glass phase can be
described (Christos et al., 2022) using a theory of bosonic
spinons bα similar to that used for the insulating spin glass
(Georges, Parcollet, and Sachdev, 2000, 2001) in a related
large-M limit of an SUðMjM0Þ superspin (Tikhanovskaya
et al., 2021b), as indicated in Fig. 16.

3. RG analysis for SUð2Þ symmetry

This section returns to the original t-J model with SUð2Þ
spin symmetry, as defined by Eqs. (7.19)–(7.21). We describe
here a RG treatment similar to that for the insulating quantum
magnet presented in Sec. VI.C. The RG finds a critical point
with one relevant direction, which is naturally identified
with the deviation of the doping density p from the critical

FIG. 16. Schematic phase diagram of the t-J model in the non-
Fermi-liquidM limit of Sec. VII.D.2 (Christos et al., 2022). In the
critical metal phase, the exponents obey 0 < Δb < 1=4 and
Δf ¼ 1=2 − Δb, and Δb decreases monotonically toward 0
(the Fermi-liquid value) with increasing p.
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density pc. Moreover, the theory of this critical point turns out
to be similar to the large-M theory described in Sec. VII.D.2.
We proceed (Joshi et al., 2020) in a manner that parallels

Sec. VI.C. We first assume power-law decays for the corre-
lators in the action in Eq. (7.19),

QðτÞ ∼ 1

jτjd−1 ; RðτÞ ∼ sgnðτÞ
jτjrþ1

; ð7:33Þ

and ignore the self-consistency condition [Eq. (7.21)] to begin
with. We decouple the J2 and t2 terms in the action by
introducing bosonic (ϕa; a ¼ 1;…; 3) and fermionic (ψα)
baths. The problem then reduces to the following solution
of the impurity Hamiltonian:

Himp ¼ ðs0 þ λÞf†αfα þ λb†bþ g0½f†αbψαð0Þ þ H:c:�

þ γ0f
†
α

σaαβ
2

fβϕað0Þ þ
Z

jkjrdk kψ†
kαψkα

þ 1

2

Z
ddx ½π2a þ ð∂xϕaÞ2�; ð7:34Þ

where the constraint in Eq. (7.15) is imposed exactly by taking
λ → ∞ (Fritz and Vojta, 2004), a ¼ ðx; y; zÞ, σa are Pauli
matrices, πa is canonically conjugate to the field ϕa,
ϕað0Þ≡ ϕaðx ¼ 0Þ, and ψαð0Þ≡ R jkjrdkψkα. We identify
QðτÞ with the temporal correlator of ϕað0Þ and identify RðτÞ
with the temporal correlator of ψαð0Þ, and it can be verified
that these correlators decay as in Eq. (7.33).
Therefore, we have reduced the problem to an impurity

Hamiltonian of a SUð1j2Þ superspin interacting with separate
bosonic and fermionic baths. By analogy with the Bose-
Kondo model in Eq. (6.18), we can identify it as a superspin
Bose-Fermi-Kondo model where both the fermionic and
bosonic baths have to be determined self-consistently. Such
a model can be analyzed using a RG computation that
performs the exact path integral over the superspin space,
i.e., imposes the constraint in Eq. (7.15) exactly. The methods
are similar to those used for the insulating spin problem
that was employed to obtain Eq. (6.20), which ultimately
depended only upon the spin commutation relations. In a
similar manner, the RG results follow from the SUð1j2Þ
commutation relations in Eq. (7.18a). We also note that the
same RG equations would have been obtained from the
commutation relations of the isomorphic SUð2j1Þ algebra;
i.e., we get the same results from the formulation in terms of
either the bosonic spinons or the fermionic spinons.
The impurity has three coupling constants, and we represent

their renormalized values by γ, g, and s. The coupling γ
measures the coupling to the bosonic bath, just as in
Eq. (6.18). Similarly, g is the coupling to the fermionic bath.
We see shortly that g and γ can be chosen to be nearly
marginal with appropriate choices of the exponents in
Eq. (7.33). The coupling s tunes the relative energies of
the spin and holon states, as is clear in Eq. (7.34). This is the
relevant perturbation mentioned at the start of this section, and
its flow leads to the phase diagram in Fig. 17. For s → þ∞,
the energy of the holon is much lower and we expect the holon
b to condense, leading to a disordered Fermi liquid.

Conversely, for s → −∞ the spinons will condense [in the
SUð2j1Þ formulation, as in Fig. 17], leading to a spin glass.
And in between, at some s ¼ sc we will have the fixed point
that describes the critical theory we are interested in. To zeroth
order in g and γ, the critical point is at sc ¼ 0: this corresponds
a threefold degeneracy in the three states of the superspin (see
Fig. 17) and a doping density pc ¼ 1=3. Therefore, we have
the prediction that the critical doping density of the fully
connected random t-J model is close to p ¼ 1=3, a result that
is indeed supported by the numerical results (Shackleton et al.,
2021) reviewed in Sec. VII.C.
The one-loop RG equations are (Joshi et al., 2020)

βðgÞ ¼ −r̄gþ 3
2
g3 þ 3

8
gγ2;

βðγÞ ¼ −
ϵ

2
γ þ γ3 þ g2γ;

βðsÞ ¼ −sþ 3g2s − g2 þ 3
4
γ2: ð7:35Þ

We have introduced the variables

ϵ ¼ 3 − d; r̄ ¼ ð1 − rÞ=2; ð7:36Þ

and it is clear from Eq. (7.35) that the fixed points at small ϵ
and r̄ are under perturbative control in powers of ϵ and r̄. The
RG flows in the g-γ plane are shown in Fig. 18: there is a fixed
point in this plane at g�2, γ�2 of the order of ϵ; r̄. The relevant
perturbation s induces flows away from this fixed point in a
direction that is predominantly transverse to the g-γ plane.
There are also fixed points in Fig. 18 along the g ¼ 0 line,
corresponding to the fixed point of the insulating magnet in
Eq. (6.20), and along the γ ¼ 0 line, corresponding to the
fixed point of the asymmetric pseudogap Anderson impurity
(Fritz and Vojta, 2004; Vojta and Fritz, 2004), and has
properties similar to the large-M critical metal solution of
Sec. VII.D.2 in Fig. 16.
Finally, we can compute the scaling dimensions of the

electron and spin operators at the red fixed point in Fig. 18. As
in Sec. VI.C, these scaling dimensions are protected by the

FIG. 17. Schematic phase diagram of the RG analysis of the
random, fully connected t − J model. The spinon and holon
states are nearly degenerate in the critical spin-liquid theory,
while the holon (spinon) states have lower energy for p > pc
(p < pc). From Joshi et al., 2020.
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Berry phase term in Eq. (7.19) that imposes the SUð1j2Þ
commutation relations at any fixed point at nonzero g� and γ�.
Therefore, we are able to compute the exponents in Eq. (7.20)
to all loop order; we find that

hcαðτÞc†αð0Þi ∼
sgnðτÞ
jτj1−r ;

hSðτÞ · Sð0Þi ∼ 1

jτj3−d : ð7:37Þ

We now restore the self-consistency condition in Eq. (7.21)
and find the self-consistent values r ¼ 0 and d ¼ 2. These
self-consistent exponents are the same as those obtained for
the doped SY spin-liquid case in the large-M computation of
Eq. (7.32). There is, however, an interesting difference that
merits further study: the electron correlator in Eq. (7.32) is
allowed to have particle-hole asymmetry with Aþ ≠ A−, but
that is not the case for the present RG analysis.

E. Transport in random-exchange t-U-J models

Discussing conductivity requires a slightly different setup
than a fully connected lattice in order to properly define
transport and the current operator. One possibility is to
consider the model on the Bethe lattice with nonrandom
hopping amplitudes tij ¼ t=

ffiffiffi
z

p
, with z the connectivity of the

lattice. In the limit z → ∞, the self-energy and the local
Green’s function obey the same equations as the model with
random tij (Georges et al., 1996). Another possibility is to
consider a translationally invariant lattice of fully connected
dots, as in Sec. X.

The conductivity is given as follows by the Kubo formula:

σdc ¼
2πe2

ℏ

Z
dω

β

4cosh2ðβω=2Þ
Z

dϵ ϕðϵÞAðϵ;ωÞ2: ð7:38Þ

In Eq. (7.38), ϵ is the energy of a bare single-particle state
within the band and Aðϵ;ωÞ ¼ −ð1=πÞImGRðϵ;ωÞ is the
energy- (momentum-) resolved spectral function. The trans-
port function ϕðϵÞ is defined on a Bravais lattice by

ϕðϵÞ ¼
Z

ddk
ð2πÞd v

2
kxδðϵ − ϵkÞ; ð7:39Þ

in which vkx ¼ ð∇kϵkÞx=ℏ is the velocity in the considered
direction. On the infinite-connectivity Bethe lattice ϕðϵÞ ¼
ϕð0Þ½1 − ðϵ=2tÞ2�3=2 (Georges et al., 1996). Here we have
assumed that the self-energy as well as the two-particle vertex
function depends only on frequency. As a result, because the
current vertex is odd in momentum, vertex corrections to the
conductivity vanish and the full Kubo formula reduces to
the fermionic bubble in Eq. (7.38) (Khurana, 1990). Note that
this is not the case for other correlation functions that are even
parity (such as charge or spin) (Georges et al., 1996).
We now discuss the behavior of the resistivity following

from Eq. (7.38) in two different situations. We first consider a
case in which ImΣ is much larger than the dispersion of the
band itself (i.e., the range over which ϵ varies in the integral).
The dispersion can then be entirely neglected and we obtain
σdc ∝

R
dωfβ=½4cosh2ðβω=2Þ�gðIm 1=ΣÞ2. This applies to the

large-M limit of the random-exchange t-J model discussed in
Sec. VII.D.1 in the SYK regime where T > Tcoh. In that case,
ImΣ ∝

ffiffiffiffiffiffi
JT

p
fðω=TÞ, where fð� � �Þ is a scaling function.

Inserting this into the previous expression leads one to
ρðTÞ=ρQ ∝ T=Tcoh, i.e., a resistivity that is T linear but larger
than the MIR value (introduced in Sec. III). This bad-metallic
behavior corresponds, however, to a Planckian regime with a
diffusion constant ∝ 1=T since the compressibility is temper-
ature independent. The conductivity is proportional to
the square of the transport scattering rate in this regime;
the latter is T linear while the single-particle scattering rate is
∝

ffiffiffiffiffiffi
JT

p
. This mechanism for a Planckian bad metal with

T-linear resistivity was first discussed by Parcollet and
Georges (1999).
In the second case ImΣ is, in contrast, smaller than the

band dispersion. This applies in the low-T limit of most of
the models discussed in this review. The integral in Eq. (7.38)
can then be approximated as

R
dϵ ϕðϵÞAðϵ;ωÞ2 ∼ ϕ½ωþ μ−

ReΣðωÞ�=½2πjImΣðωÞj�. Owing to the derivative of the Fermi
function, one can set ω ¼ 0 in the numerator. Defining the
renormalized Fermi level as ϵF ¼ μ − ReΣð0; 0Þ (which
coincides with the bare Fermi energy when Luttinger’s
theorem is satisfied), one obtains

σdc ≃
e2ϕðϵFÞ

ℏ

Z
dω

β

4cosh2ðβω=2Þ
1

jImΣðω; TÞj : ð7:40Þ

Equation (7.40) is similar to Drude-Boltzmann theory, but we
emphasize that it is valid even when the scattering rate has a

FIG. 18. RG flow of Eq. (7.35) in the γ-g plane plotted for ϵ ¼ 1
and r̄ ¼ 0.5. The red circle is the stable fixed point in this plane,
which is unstable only to flows predominantly in the s direction
out of the plane; this fixed point describes the p ¼ pc critical
state in Fig. 17, and p − pc tunes the coefficient of the relevant
perturbation (not shown), which presumably drives the system
into the p > pc and p < pc phases shown in Fig. 17. From Joshi
et al., 2020.
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non-Fermi-liquid form. For example, when ImΣ¼Tνfðω=TÞ,
we obtain ρ ∝ Tν; ν ¼ 1 corresponds to a Planckian metal.
Evidence for such NFL behavior of the scattering rate was
previously discussed for the quantum-critical regime of the
random bond t-J and Hubbard models (Cha, Wentzell et al.,
2020; Dumitrescu et al., 2022). We emphasize that, as is well
known from transport theory, the wave function normalization
ZðTÞ ∝ ½1 − ∂ReΣðω; TÞ=∂ωjω¼0�−1 does not enter the
expression of the conductivity, in contrast to the width of
the one-electron spectral function, which is ∝ ZjImΣj (and
can be interpreted as the inverse of the quasiparticle lifetime in
a Fermi liquid). Note that, for a NFL with ImΣ ∝ Tν and
ν < 1, the latter always displays Planckian behavior ∝ T,
regardless of the value of the exponent ν, since ZðT;ω ¼ 0Þ
vanishes as ZðTÞ ∝ T1−ν. Indeed, the real part of the self-
energy is related to the imaginary part by ReΣðωÞ¼
−
R
dω0½ImΣðω0Þ=π�=ðω−ω0Þ, from which it follows for ν < 1

that ReΣðωÞ¼Tνf̃ðω=TÞ, and hence 1=Z¼1−∂ωReΣ¼
1−Tν−1f̃0ðω=TÞ; see Georges and Mravlje (2021) for details.
We note that Eq. (7.38) also applies to nonrandom models

in the DMFT limit of infinite connectivity. An interesting
connection was recently noted (Cha, Patel et al., 2020)
between the T-linear behavior of the resistivity in such models
in the high-T bad metal regime (Pálsson and Kotliar, 1998;
Perepelitsky et al., 2016) discussed in Sec. III.A and the SYK
equations for the self-energy. Whether such a connection also
exists in the lower temperature regime is an interesting open
question; for a recent study of T-linear resistivity in the
nonrandom Hubbard model using cluster extensions of
DMFT, see Wu, Wang, and Tremblay (2021). Possible
connections between the SYK model and NFL regimes of
nonrandom multiorbital models have also been pointed
out (Werner, Kim, and Hoshino, 2018; Tsuji and Werner,
2019). Relevance of SYK criticality to possible instabilities
of “Luttinger surfaces” has also been discussed (Setty,
2020, 2021).
Thermoelectric transport has also been analyzed in random-

exchange and SYK models. It was pointed out (Davison et al.,
2017; Kruchkov et al., 2020) that the thermopower of a lattice
of SYK islands is directly related to the spectral asymmetry
parameter E introduced in Eq. (5.25), and hence offers a
possible probe of the residual T ¼ 0 entropy. That relation
may be more involved in general, however (Kruchkov et al.,
2020; Pavlov and Kiselev, 2021). Recently Georges and
Mravlje (2021) emphasized that the intrinsic particle-hole
asymmetry of the ω=T scaling function in Eq. (7.11), which is
characteristic of “skewed” Planckian (or sub-Planckian)
metals, has noteworthy consequences for the sign and T
dependence of the thermopower down to low T, even in the
presence of additional elastic scattering. The possible rel-
evance to Seebeck measurements on cuprate superconductors
has been explored (Gourgout et al., 2021).

F. General mechanism for T-linear resistivity
as T → 0 from time reparametrization

The quantum-critical T-linear resistivity computed numeri-
cally in Sec. VII.C (and also in Sec. VII.B) is somewhat
mysterious when compared with the analytical results. Recall

that we found a leading Fermi-liquid-like behavior in the
electron Green’s function at the quantum-critical point in the
non-Fermi-liquid large-M limit in Eq. (7.32), and also in
the RG analysis forM ¼ 2 in Eq. (7.37). The RG analysis also
makes clear that this Fermi-liquid exponent for the electron
operator is likely to be exact to all orders in 1=M. Inserting
such an electron spectral density into Eq. (7.38), we obtain
temperature-independent residual resistivity as T → 0; ρð0Þ.
We note that this large residual resistivity, present even for a
large dimension lattice without hopping disorder, appears to
be an artifact of the non-Fermi-liquid large-M limit of
Sec. VII.D.2 (Guo, Gu, and Sachdev, 2020). The Fermi-liquid
large-M limit of Sec. VII.D.1 has vanishing residual resistivity
(Parcollet and Georges, 1999), and this also appears to be the
case in the numerical study in the SUð2Þ limit (Dumitrescu
et al., 2022). It is possible that the non-Fermi-liquid large-M
limit of Sec. VII.D.2 has a crossover in the residual resistivity
at a frequency that vanishes as M becomes large.
We obtain a T dependence to the resistivity as T → 0 by

considering corrections to scaling for the electron operator in
the N ¼ ∞ theory. The structure of these corrections can be
easily deduced from the theory described in Sec. V.E, which
generalizes directly to the t-J model (Tikhanovskaya et al.,
2021b). As for the entropy in Eq. (5.53) and the spin spectral
density in Eq. (6.9), we consider the corrections due to the
h ¼ 2 operator. The scaling dimension of this operator is also
“protected” at h ¼ 2, given its connection to the Schwarzian
theory in Sec. V.F; i.e., it is the “time reparametrization”
operator, and the “boundary graviton” in the holographic
theory to be discussed in Sec. XII.B. Therefore, we do not
expect the h ¼ 2 scaling dimensions to acquire any 1=M
corrections. By the same arguments that lead to Eq. (6.9) for
the spin spectral density, we now obtain for the temperature
dependence for the resistivity (Guo, Gu, and Sachdev, 2020)

ρðTÞ ¼ ρð0Þ½1þ CργT þ � � ��: ð7:41Þ

The linear-T dependence is the power Th−1, which is related to
that in Eq. (5.45), for the time reparametrization mode with
h ¼ 2. The parameter γ is the same as that in the entropy in
Eq. (5.53), and Cρ is a dimensionless universal number similar
to C in Eq. (6.9). The value of Cρ can be computed in the large-
M limit of the t-J model (Guo, Gu, and Sachdev, 2020). While
the coefficient of linear-T resistivity is controlled by the
residual resistivity in this large-M computation, that is not the
case for the numerical SUð2Þ computation in Fig. 14, with
the corresponding phase diagram given in Fig. 13 (Dumitrescu
et al., 2022). We also note that the large-M theory of the doped
t-J model has operators with h < 2. However, the scaling
dimension of these operators is not protected, and their
contribution to the resistivity is numerically small in the
large-M theory (Tikhanovskaya et al., 2021b).

G. Experimental relevance

The models described in this section are not meant to be
microscopically realistic models of materials displaying NFL
behavior, such as the cuprate strange metal. Nonetheless, as
we now discuss, the physics of the doped Hubbard and t-J
models with the previously addressed random-exchange
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couplings present rather striking similarities to some of the
salient phenomenology of the cuprates and can serve as a
building block for capturing certain universal aspects of NFL
behavior in general. We recall two of the most fundamentally
interesting phenomena observed in these materials.

• The appearance of a pseudogap regime below a critical
doping (p < p�). At low T and high fields, quantum
oscillations have revealed the existence of pocket Fermi
surfaces (Doiron-Leyraud et al., 2007; Proust and
Taillefer, 2019). These oscillations appear in a regime
with long-range charge-density-wave order, but a simple
model of reconstruction of the large Fermi surface by the
charge-density-wave order cannot explain the details
of the quantum oscillations. At higher T or at dopings
pCDW < p < p� (where pCDW is the doping below
which there is charge-density-wave order), there is no
known long-range order, and there is clear experimental
evidence that the electronic spectrum cannot be ex-
plained by the large Fermi surface. The observations
include angle-dependent magnetoresistance (Fang et al.,
2022) and the “Fermi arcs” in ARPES (Damascelli,
Hussain, and Shen, 2003).

• Near p�, several properties are evocative of quantum
criticality, most notably (i) T-linear resistivity with a
transport scattering time obeying Planckian behavior
τ ≃ αℏ=kBT down to low temperatures (Homes et al.,
2004; Zaanen, 2004; Hussey, 2008; Bruin et al., 2013;
Legros et al., 2019; Varma, 2020; Grissonnanche et al.,
2021); (ii) ω=T scaling observed in several spectros-
copies, such as optical conductivity (van der Marel et al.,
2003; Michon et al., 2022; van Heumen et al., 2022)
and ARPES (Reber et al., 2019); and (iii) a diverging
specific-heat coefficient near p�, with logarithmic
dependence of C=T upon T at p ¼ p� (Michon
et al., 2019).

Seen in this perspective, the previously described doped
random-exchange models offer a simple platform in which to
study some of these phenomena. We have reviewed the
findings that they display a critical point upon doping at
which quantum-critical scaling is observed, and that the
Luttinger theorem breaks down at this critical doping. We
find clear evidence of the Luttinger breakdown in the value of
the chemical potential at temperatures above the spin-glass
transition for p < pc in the Monte Carlo study (Dumitrescu
et al., 2022) and at zero temperature within the metallic spin
glass in the exact diagonalization study (Shackleton et al.,
2021). The precise nature of the Fermi surface reconstruction,
and possible volume collapse, is still to be investigated in the
low-T metallic spin-glass phase for p < pc and is one of the
interesting open questions in the field.
Most notably, these doped random-exchange and SYK

models are among the few theoretical models in which
Planckian behavior of transport (Zaanen, 2004) in the absence
of coherent quasiparticles can be studied in a controlled
manner [we note that this issue has been investigated in the
marginal Fermi-liquid context (Varma et al., 1989; Varma,
2016, 2020)]. The randomness of the exchange constants
helps introduce “frustration” and is, at the theoretical level, a
simple way to account for the fact that the physics of short-
range spin correlations is important in the pseudogap phase,

but without true long-range order. One can also argue, as
emphasized early on (Parcollet and Georges, 1999), that
randomness of the exchange constants can be motivated at
a more microscopic level. In this respect, recent nuclear
magnetic resonance and ultrasound measurements have
revealed that the spin-glass phase extends up to p ¼ p� for
La2−xSrxCuO4 subject to a high magnetic field (Frachet et al.,
2020). The critical theory of the random-exchange models is
not particle hole symmetric, and the possible relevance of the
intrinsic particle-hole asymmetry of the ω=T scaling function
associated with the scattering rate has recently been empha-
sized for the interpretation of Seebeck measurements on the
cuprates (Georges and Mravlje, 2021; Gourgout et al., 2021).
Another indication of Planckian behavior is the anomalous

continuum observed in dynamic charge response measure-
ments (Mitrano et al., 2018; Husain et al., 2019) on optimally
doped Bi2.1Sr1.9Ca1.0Cu2.0O8þx using momentum-resolved
electron energy-loss spectroscopy. This has been studied in
a model with additional random density-density interactions
(Joshi and Sachdev, 2020).

VIII. RANDOM-EXCHANGE KONDO-HEISENBERG
MODEL

This section will combine the random-matrix model of
mobile electrons of Sec. IV with the random quantum magnet
of Sec. VI and couple them with a nonrandom, antiferro-
magnetic Kondo exchange coupling JK . Thus, we have the
Kondo-Heisenberg Hamiltonian

HKH¼
1

ðNÞ1=2
XN
i;j¼1

tijc
†
iαcjα−μ

X
i

c†iαciα

þ 1ffiffiffiffi
N

p
X

1≤i<j≤N
JijSi ·Sjþ

JK
2

X
i

Si ·ðc†iασαβciβÞ; ð8:1Þ

which has been used extensively as a theory of numerous rare-
earth intermetallics (usually in the absence of random
exchange), the so-called heavy-fermion compounds. This
model exhibits a “heavy Fermi-liquid” (HFL) ground state,
which is a Fermi liquid with electronlike quasiparticle excita-
tions with a large effective mass for models with nonrandom tij.
Moreover, the Fermi energy is large because the occupied states
count both the conduction electrons ciα and the spins Si.
The fully connected random model also has such a heavy
Fermi-liquid phase that obeys a Luttinger theorem with this
large Fermi energy (Burdin, Grempel, and Georges, 2002;
Nikolaenko et al., 2021), as we discuss further in Sec. VIII.C.
Our interest here is in other possible phases of the Kondo-

Heisenberg lattice model, and on the quantum-critical points
to these phases starting from the HFL. A possibility of
particular interest is the fractionalized Fermi liquid (FL*)
(Burdin, Grempel, and Georges, 2002; Senthil, Sachdev, and
Vojta, 2003; Paramekanti and Vishwanath, 2004; Senthil,
Vojta, and Sachdev, 2004), in which the Fermi surface is
“small” and includes only the volume of the conduction
electrons. The spins Si form a spin-liquid state with fraction-
alized excitations, and the fractionalized excitations are
required to exist to allow deviation of the Fermi surface
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volume from the Luttinger value (Paramekanti and
Vishwanath, 2004; Senthil, Vojta, and Sachdev, 2004;
Bonderson et al., 2016; Else, Thorngren, and Senthil,
2021); we also make note of other discussions of FL* and
related states (Andrei and Coleman, 1989; Coleman, Marston,
and Schofield, 2005; Paul, Pépin, and Norman, 2007, 2008,
2013; Pixley, Yu, and Si, 2014; Chowdhury, Sodemann, and
Senthil, 2018; Si, 2010; Paschen and Si, 2021). In the random
fully connected model, the Si spins form the SYK spin liquid
of Sec. VI in the large-M limit, as we describe in Sec. VIII.B.
A number of recent experiments have reported the existence of
a paramagnetic metallic phase with a Fermi surface volume
that does not appear to include the local moment electrons in
YbRh2ðSi0∶95Ge0∶05Þ2 (Custers et al., 2003, 2010), CePdAl
(Zhao et al., 2019), and CeCoIn5 (Maksimovic et al., 2022),
which resembles some aspects of the FL* phase.
A third possible phase of the Kondo-Heisenberg lattice

model has broken spin rotation symmetry and associated
magnetic order. For the random fully connected model in
Eq. (8.1) with SUð2Þ spin symmetry, this is likely realized as a
spin-glass phase. We discuss a RG analysis of the SUð2Þ
model in Sec. VIII.D, and this has a fixed point that is
expected to describe the transition from the spin glass to the
HFL. There have been a number of experimental studies of
such a transition (Seaman et al., 1991; Aronson et al., 1995;
Schröder et al., 1998; Soldevilla et al., 2000; Vollmer et al.,
2000; Theumann and Coqblin, 2004; Shimizu et al., 2012;
Gannon et al., 2018; Zapf et al., 2001) in the heavy-fermion
compounds. Other reviews (Stewart, 2001; Kirchner et al.,
2020) further discuss the connections between the Kondo-
Heisenberg model and experiments on the heavy-fermion
compounds.

A. Effective local action

We begin our analysis, as in Sec. VII.A, by averaging over
disorder and formulating the problem in terms of a self-
consistent single-site problem. We average over tij and Jij in
Eq. (8.1), and in the large-N limit we obtain the following
single-site averaged partition function:

Z̄KH ¼
Z

DcαðτÞDSðτÞδðS2 − 1Þe−SB−SKH ;

SB ¼ i
2

Z
1

0

du
Z

dτS ·

�
∂S
∂τ

×
∂S
∂u

�
þ
Z

dτ

�
c†α

∂cα
∂τ

	
;

SKH ¼
Z

dτ

�
−μc†αcα þ

JK
2
S · ðc†ασαβcβÞ

	

−
J2

2

Z
dτdτ0Qðτ − τ0ÞSðτÞ · Sðτ0Þ

− t2
Z

dτdτ0Rðτ − τ0Þc†αðτÞcαðτ0Þ þ H.c. ð8:2Þ

From this action we determine the correlators

R̄ðτ − τ0Þ ¼ −1
2
hcαðτÞc†αðτ0ÞiZKH

;

Q̄ðτ − τ0Þ ¼ 1
3
hSðτÞ · Sðτ0ÞiZKH

; ð8:3Þ

and finally impose the self-consistency conditions

RðτÞ ¼ R̄ðτÞ; QðτÞ ¼ Q̄ðτÞ: ð8:4Þ

As was the case in the t-J model in Sec. VII.D, closely related
equations can also be obtained in the case of nonrandom tij
involving an electron dispersion ϵk.
Note the difference between the single-site self-consistency

problem for the t-J model of Sec. VII.D and the present
Kondo-Heisenberg model. The Berry phase term SB reflects
the different quantum degrees of freedom on the site: (i) For
the t-J model we have the three states of the previously
described SUð1j2Þ superspin. (ii) For the Kondo-Heisenberg
model we have the two states of the SUð2Þ spin-1=2 S and the
four states of the electron cα, for a total of eight states. The two
models have similar bosonic and fermionic baths but differ
in the on-site Hamiltonian: the present model has a Kondo
coupling JK .
The self-consistent single-site quantum problem defined by

Eqs. (8.2)–(8.4) cannot be solved exactly, and we address it in
the remainder of Sec. VIII with the same methods as used
earlier for the random quantum magnet problem defined in
Eqs. (6.11)–(6.13) and the Hubbard model problem defined in
Eqs. (7.4)–(7.6).

B. SUðMÞ symmetry with M large

The large-M analysis of the fully connected Kondo-
Heisenberg model (Burdin, Grempel, and Georges, 2002)
proceeds by generalizing the model in Eqs. (8.2)–(8.4) to
SUðMÞ symmetry just as in Sec. VI.A for the random quantum
magnet. We introduce fermionic spinons fα; α ¼ 1;…;M,
treat the random Jij exchange as in Sec. VI.A, and decouple

the JK exchange by a bosonic field PðτÞ ∼ c†αðτÞfαðτÞ. Note
that because the JK exchange is nonrandom, this decoupling
variable is not bilocal in time.
In this manner, Eqs. (8.2)–(8.4) reduce to the following

equations for the fermion Green’s functions, self-energies,
and time-independent saddle-point values iλðτÞ ¼ λ̄ and
PðτÞ ¼ P̄. The Green’s function acquires “band” indices
associated with the f and c fermions, so Dyson’s equation
has a matrix form

�
GfðiωnÞ GfcðiωnÞ
GcfðiωnÞ GcðiωnÞ

�−1

¼
�
iωn − λ̄ − ΣfðiωnÞ −P̄

−P̄ iωn þ μ − ΔðiωnÞ

�
: ð8:5Þ

The f fermion self-energy Σf is the same as that used for the
random magnet in Sec. VI.A, and the dynamical mean-field Δ
is the same as that of the random-matrix model in Eq. (4.6b):

ΣfðτÞ ¼ −J2G2
fðτÞGfð−τÞ;

ΔðτÞ ¼ t2GcðτÞ: ð8:6Þ

Finally, the hybridization parameter P̄ is determined by the
self-consistency equation
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P̄ ¼ JKGfcðτ ¼ 0−Þ: ð8:7Þ

Equations (8.5)–(8.7) can be obtained as follows from a G-Σ
action analogous to Eqs. (5.56) and (6.6):

I½G;Σ;Δ;λ;P� ¼
Z

β

0

dτ

�jPðτÞj2
JK

−
iλðτÞ
2

	

− ln det

� ½∂τ1 þ iλðτ1Þ�δðτ1 − τ2ÞþΣfðτ1;τ2Þ
−P�ðτ1Þδðτ1 − τ2Þ

−Pðτ1Þδðτ1 − τ2Þ
ð∂τ1 −μÞδðτ1 − τ2ÞþΔðτ1;τ2Þ

	

−TrðΔ ·GcÞþ
t2

2
TrðGf ·GfÞ

−TrðΣf ·GfÞ−
J2

4
TrðG2

f ·G
2
fÞ: ð8:8Þ

A complete solution of Eqs. (8.5)–(8.7) requires a numeri-
cal analysis, but much can be understood from a low-
frequency analysis similar to that in Sec. VII.D.2 (Burdin,
Grempel, and Georges, 2002). The phase diagram as a
function of T and J is shown in Fig. 19. A key determinant
of the phase structure is the value of P̄. We have P̄ ≠ 0 below
the line labeled TK in Fig. 19: this line approaches the single-
site Kondo temperature in the limit J → 0. In this regime we
have the HFL phase, in which both the spins and the electrons
are part of the Fermi volume, as described in more detail in
Sec. VIII.C. The transition across the line where P̄ vanishes is
expected to turn into a smooth crossover once 1=M correc-
tions have been included, as there is no underlying order in the
HFL phase at T > 0. However, the situation is different at
T ¼ 0: P̄ vanishes at the red circle in Fig. 19, which denotes a

quantum-critical point between the HFL and FL* phases: this
point is expected to survive 1=M corrections because of the
discontinuous change in the Fermi volume described in
Sec. VIII.C. Moreover, the critical theory has P̄ ¼ 0, so the
critical point has a small Fermi energy, in contrast to that for
the t-J model, as we discuss at the end of Sec. VIII.D.
Despite the absence of a sharp phase transition between

them, there is a qualitative difference between the observable
properties of the HFL and FL* phases at T > 0. In the HFL
phase, the nonzero P̄ quenches the singular SYK behavior of
the spins at low frequency, just as in Sec. VII.D.1; conse-
quently, we expect Fermi-liquid-like behavior of the quasi-
particles at nonzero T around a large Fermi energy. In
particular, the resistivity ∼T2 and the associated carrier
density will include both the conduction electrons and the
spins. In contrast, while the FL* is also a metal, the carrier
density is small and includes only the conduction electrons.
Moreover, in the present fully connected model, the singular
SYK behavior of the spins survives. In the large-M limit, the
spins are decoupled from the conduction electrons when
P̄ ¼ 0, but there will be a coupling at higher orders in
1=M. Therefore, although Σc ¼ 0 at M ¼ ∞, the leading
correction to the imaginary part of the self-energy is (Burdin,
Grempel, and Georges, 2002)

ImΣcðω ¼ 0Þ ∼
�
JK
M

�
2
Z

∞

0

dΩ
sinhðβΩÞ

ρQðΩÞ
t

; ð8:9Þ

where ρQðΩÞ is the SYK spin spectral density obtained in
Eq. (6.8). This leads to marginal Fermi-liquid behavior
(Varma et al., 1989) for the small density of conduction
electrons, with ImΣcðω ¼ 0Þ ∼ T and a linear-in-T resistivity,
using transport computations as defined in Sec. VII.E.
This mechanism for the linear-in-T resistivity in the Kondo

lattice model is distinct from that for the t-J model in
Sec. VII.F. Here the carrier density at the critical point is
small, i.e., it does not involve the spins due to the breakdown
of the Kondo effect. In contrast, the carrier density in
Sec. VII.F was large and involved all the electrons.
Moreover, here the linear-in-T resistivity already arose in
the leading scaling results for the SYK model, while those in
Sec. VII.F required corrections to scaling.

C. Luttinger theorem

The Luttinger theorem is normally applied to metallic
phases of electrons, and we obtained an instance of this in
Sec. VII.D.1 for the Fermi-liquid phase of the t-J model. But
we also saw a modified Luttinger theorem in Sec. VI.A
for spins in an insulating Kondo magnet. The Kondo
Hamiltonian (8.1) has both spins and mobile electrons, and
there now are distinct realizations of the Luttinger theorem in
the HFL and FL* phases (Senthil, Sachdev, and Vojta, 2003;
Senthil, Vojta, and Sachdev, 2004).
It is convenient to present the discussion in the large-M

formulation of the theory in Sec. VIII.B, although all state-
ments in Sec. VIII.C hold to all orders in 1=M. When
expressed in terms of the spinons fα, the theory in
Eq. (8.2) has a Uð1Þ gauge symmetry along with global

FIG. 19. Phase diagram of the large-M Kondo lattice with
random exchange. The dashed lines are crossovers, but the T ¼ 0
filled circle marks a quantum phase transition. The FL* phase and
the quantum-critical point exhibit linear-in-T resistivity with the
small carrier density of the conduction electrons. The HFL
exhibits Fermi-liquid T2 resistivity with a large carrier density
of both the conduction electrons and the local moments. The
critical theory of the HFL-FL* transition at T ¼ 0 has also been
discussed for models with full translational symmetry (Senthil,
Sachdev, and Vojta, 2003; Senthil, Vojta, and Sachdev, 2004).
From Burdin, Grempel, and Georges, 2002.
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Uð1Þ symmetries associated with the total charge of the cα
electrons, ðM=2Þp, and the total spin Sz. In principle, all three
Uð1Þ symmetries will lead to their own and distinct Luttinger
constraints, unless there are condensates of bosons carrying
Uð1Þ charges (Coleman, Paul, and Rech, 2005; Powell,
Sachdev, and Büchler, 2005) [we review this connection
between Uð1Þ symmetries and the Luttinger constraints at
the end of Sec. XI.A.2]. In our discussion, the relevant boson
is the hybridization P ∼ c†αfα, and this is a Higgs boson
because it carries a Uð1Þ gauge charge.

1. FL* phase

In the FL* phase, there is no Higgs condensate hPi ¼ 0, so
all three Luttinger constraints apply. An important property of
this phase is that the off-diagonal Green’s function vanishes at
all frequencies Gfc ¼ 0. Consequently, the constraints arising
from the gauge Uð1Þ and Sz symmetries are essentially
identical to those considered for insulating quantum magnets
in Sec. VI.A, which are in turn related to the discussion in
Sec. V.B. Thus, we need only consider the constraint
associated with the cα fermion charge, which is

Gcðτ ¼ 0−Þ ¼ p
2
: ð8:10Þ

We can write Gc in the FL* phase in the general form

GcðiωnÞ ¼
1

iωn þ μ − t2GcðiωnÞ − ΣcðiωnÞ
. ð8:11Þ

We have now included a self-energy ΣcðiωnÞ that arises from
the 1=M corrections. This obeys ImΣcði0þÞ ¼ 0 at T ¼ 0,
and that is not the case for ΔðωÞ in Eq. (8.6). Another
important point is that the 1=M contributions to ΣcðiωnÞ can
be obtained from a Luttinger-Ward functional, and the
Luttinger constraint will then follow straightforwardly. We
first solve Eq. (8.11) to write

GcðiωnÞ ¼
Z

∞

−∞
dΩ

ρðΩÞ
iωn þ μ − ΣcðiωnÞ − Ω

; ð8:12Þ

where ρðΩÞ is the single-particle density of states of the
random-matrix model in Eq. (4.8). We now proceed with an
analysis of the Luttinger constraint as in Sec. V.B: we expect
the contribution from the frequency derivative of the self-
energy to vanish (I2 ¼ 0), and such an analysis then shows
that Eq. (8.10) implies

Z
EF

−2t
dΩ ρðΩÞ ¼ p

2
; ð8:13Þ

where the Fermi energy is

EF ¼ μ − Σcð0Þ: ð8:14Þ

We note that the analog of the previous analysis also applies to
the disordered Fermi-liquid phase of Sec. VII.D.1 (Parcollet
and Georges, 1999).

2. HFL phase

In the HFL phase of the Kondo-Heisenberg lattice, we do
have a Higgs condensate hPi ≠ 0, so there is no separate
Luttinger constraint from the Uð1Þ gauge symmetry. The
analysis of the Luttinger constraint (Burdin, Georges, and
Grempel, 2000) with the conservation of the electron charge
then leads to a large Fermi energy of size ð1þ pÞ=2 per spin
[for the particle-hole symmetric value κ ¼ 1=2 in Eq. (6.2) for
the SUðMÞ spins].
We begin by writing Dyson’s equation in Eq. (8.5) in a

general form valid beyond the large-M limit. We define an
auxiliary matrix Green’s function as

½Gðiωn;ΩÞ�−1¼
�
iωn− λ̄ 0

0 iωnþμ−Ω

�
−ΣðiωnÞ; ð8:15Þ

where ΣðiωnÞ is the matrix self-energy that obeys
ImΣði0þÞ ¼ 0 at T ¼ 0. As in Eq. (8.12), we have replaced
the t2GcðiωnÞ in Eqs. (8.5) and (8.6) with Ω. The presence of
the Higgs condensate in the HFL phase requires that the off-
diagonal matrix elements of ΣðiωnÞ are nonzero, and this is
crucial for the Luttinger constraint here.
We now state a useful identity, which can be verified by

explicit computation, for the following trace of the matrix
Green’s function GðiωÞ (which counts both the fα and cα
fermions):

TrGðiωÞ ¼
Z

∞

−∞
dΩρðΩÞ

�
i
d
dω

ln det½Gðiω;ΩÞ�

− iTr

�
Gðiω;ΩÞ d

dω
ΣðiωÞ

�	
: ð8:16Þ

Notice the similarity of Eq. (8.16) to the identity used for the
SYK model in Eq. (5.15). The subsequent analysis proceeds
as it does there. In this situation, the I2 contribution of the
second term in Eq. (8.16) vanishes from the usual Luttinger-
Ward functional argument because we are in a Fermi-liquid
phase and there is no anomaly at ω ¼ 0. For p < 1, the first
term in Eq. (8.16) yields the Luttinger constraint (Burdin,
Georges, and Grempel, 2000; Nikolaenko et al., 2021)Z

EF

−2t
dΩ ρðΩÞ ¼ 1þ p

2
; ð8:17Þ

which, unlike Eq. (8.13), counts both the cα electrons and the
spins. The expression for the Fermi energy in Eq. (8.14) is
now replaced by

det ½Gð0; EFÞ�−1 ¼ 0: ð8:18Þ

D. RG analysis for SUð2Þ symmetry

We now analyze Z̄KH in Eq. (8.2) by combining the RG
analysis of Sec. VI.C with the “poor-man’s scaling” RG of the
Kondo problem.
This analysis will be carried out perturbatively in JK , as in

the poor-man’s scaling (Hewson, 1997). At leading order, with
JK ¼ 0 but the mean-square hopping t arbitrary, the equations
for the cα Green’s function reduce precisely to those solved
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earlier in Sec. IV for the random-matrix problem. These yield
a fermion Green’s function with a constant density of states at
the Fermi level ∼1=t, as in Eq. (4.8). Note that this is a Fermi
level only of the c electrons, and thus is a small Fermi surface:
therefore, the present RG analysis is an expansion about the
small Fermi surface. After a Fourier transform, the constant
density of states implies that GðτÞ ∼ 1=tτ at large jτj. We
therefore replace the fermion cα with a bath fermion ψα, which
is the analog of the bosonic field ϕa that we introduced in
Sec. VI.C for the random quantum magnet. Similarly, we
endow ψα with a momentum and a dispersion, with the
dispersion chosen such that ψαðx ¼ 0Þ has the same temporal
correlator as cα. In this manner, we can express the problem
as follows in terms of an impurity Hamiltonian of a single
S ¼ 1=2 spin coupled to fermionic and bosonic baths
(Sengupta, 2000):

Himp ¼ γS · ϕð0Þ þ JK
2
S · ½ψ†

αð0Þσαβψβð0Þ�

þ
Z

dk kψ†
kαψkα þ

1

2

Z
ddx½π2a þ ð∂xϕaÞ2�: ð8:19Þ

The bath correlators are

QðτÞ ∼ 1

jτjd−1 ; RðτÞ ∼ sgnðτÞ
jτj ; ð8:20Þ

and the value of d is to be determined by solving the self-
consistency condition for Q in Eq. (8.4). We have argued
that the self-consistency condition for R is satisfied by a
Fermi-liquid constant density of states (of the small Fermi
surface) at the Fermi level, and that dictated the RðτÞ
in Eq. (8.20).
The impurity Hamiltonian in Eq. (8.19) has two couplings

JK and γ, and their RG flow equations can be computed by
combining the analyses of the usual Kondo model (Hewson,
1997) and those for the random quantum magnet in Eq. (6.20).
This analysis is perturbative in JK and ϵ ¼ 3 − d, and the one-
loop RG equations are (Smith and Si, 1999; Sengupta, 2000;
Zhu and Si, 2002)

βðγÞ ¼ −
ϵ

2
γ þ γ3;

βðJKÞ ¼ γ2JK − J2K: ð8:21Þ

The resulting RG flow is plotted in Fig. 20. The random
quantum magnet fixed point of Sec. VI.C is stable to turning
on a small JK , implying the stability of a small Fermi surface
phase. For SUð2Þ, this small Fermi surface phase has spin-
glass order; but more generally, in models which are not fully
connected, it could be a spin liquid, leading to a FL* state as in
Sec. VIII.B. For larger JK, there is an unstable fixed point
beyond which the flow is toward JK → ∞, presumably to a
large Fermi surface HFL. We label this fixed point as the
“Kondo breakdown’” (Sengupta, 2000; Si et al., 2001;
Burdin, Grempel, and Georges, 2002; Senthil, Sachdev, and
Vojta, 2003; Si et al., 2003; Senthil, Vojta, and Sachdev, 2004)
because it separates the HFL phase with Kondo screening
from the small Fermi surface without Kondo screening.

It remains to solve the self-consistency equation in Eq. (8.4)
to determine the value of ϵ. As in Secs. VI.C and VII.D.3, the
scaling dimension of the spin operator can be determined
(Zhu and Si, 2002) to all orders at a fixed point γ� ≠ 0, and we
find the same result as in Eq. (7.37). The self-consistent value
is again ϵ ¼ 1, d ¼ 2, as in the t-J model.
Compare the RG flow diagram for the Kondo-Heisenberg

model in Fig. 20 to that for the t-J model in Fig. 18. In both
cases, we have a critical fixed point with one relevant
direction, and similar critical correlators for the electron
and spin operators: a Fermi-liquid-like critical electron corre-
lator, and a SYK-like critical spin correlator, as in Eq. (7.37)
for d ¼ 2 and r ¼ 0. However, the density of electrons
participating in the electron correlator in Eq. (7.37) is different
in the two cases: at the Kondo-breakdown fixed point the
density of electrons is small and does not count the spins (as is
clear in Sec. VIII.C for P̄ ¼ 0, and in the large-M analysis in
Sec. VIII.B), while in the t-J model fixed point the density of
electrons is large and counts all electrons.

E. Numerical analysis

A complete numerical analysis of the single-site, self-
consistent quantum problem defined by Eqs. (8.2)–(8.4) with
SUð2Þ symmetry has not yet been carried out. However, there
have been a number of studies of related models, motivated by
an uncontrolled EDMFT analysis of low-dimensional models
with nonrandom exchange (Si et al., 2001, 2003; Kirchner
et al., 2020), and a self-consistency condition of the spin
correlator that differs from that in Eq. (8.4). The self-consis-
tency in spin correlators has been systematically justified only
in models with random exchange, like those considered earlier,
as we noted at the end of Sec. VII.A. The numerical analyses
were carried out for Ising spin symmetry (Grempel and Si,

FIG. 20. RG flow of Eq. (8.21) for ϵ ¼ 1. The γ ¼ 0 axis
corresponds to the usual Kondo RG flow (Hewson, 1997). The
Kondo-breakdown fixed point has one relevant direction and
describes a phase transition between a small Fermi surface phase
[likely with magnetic order for SUð2Þ] associated with the
random quantum magnet fixed point of Sec. VI.C, and a large
Fermi surface HFL at large JK . Compare this to Fig. 18 for the
random t-J model. From Sengupta, 2000.
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2003; Zhu, Grempel, and Si, 2003; Glossop and Ingersent,
2007; Zhu et al., 2007), although recent works have also
examined SUð2Þ spin symmetry (Cai et al., 2020; Hu, Cai, and
Si, 2020). Aspects of these studies are similar to the RG results
described in Sec. VIII.D, with a SYK-like spin spectral density
[i.e., spin correlations similar to Eq. (6.23)] at a critical point
between a Fermi-liquid phase and another phase that is
presumed to break spin symmetry.

IX. OVERVIEW OF NUMERICAL ALGORITHMS FOR
FULLY CONNECTED SUð2Þ MODELS

In the large-M limit, the action in Eq. (7.4) is solved using a
saddle-point technique that reduces to nonlinear integral
equations for the Green’s function G as in Eq. (5.2) and a
simple expression of higher correlators in terms of G using
Wick’s theorem. The SUð2Þ case is more complex. The action
in Eq. (7.4) is still a local quantum many-body problem (at
J ¼ 0, it is the Anderson quantum impurity model), and more
advanced algorithms are required to solve it.
In this section, we provide an introduction for nonexperts to

the algorithms used to solve the previously addressed SUð2Þ
models and discuss their strengths and limitations. The goal is
to solve the local action in Eq. (7.4) for fixed bath Δ and
retarded spin-spin interaction J . The self-consistency con-
dition on Δ and J is then solved with an iterative technique
(Georges et al., 1996). Note, however, that the self-
consistency can generate a nontrivial frequency dependence
for the bath Δ and the interaction J , respectively, which
complicates the solution. For example, any technique based on
a flat bath spectral function with a large high energy cut-off,
such as integrability, is inoperable in this context.
Significant progress has been made in the last two decades

on numerical algorithms to solve such quantum impurity
models with complex baths and interactions in the context of
DMFTand its extensions (Gull et al., 2011). Several classes of
algorithms are available, in particular, action-based quantum
Monte Carlo– (QMC-) or Hamiltonian-based methods (exact
diagonalization, numerical renormalization group, density
matrix renormalization group, and tensor network methods).
The QMC ones are the methods of choice here due to the
retarded spin-spin interaction term in Eq. (7.4).
The SUð2Þ insulating case was first studied in the para-

magnetic phase using an auxiliary field QMC technique
(Grempel and Rozenberg, 1998) with a sampling method
of the auxiliary field in the Matsubara frequency space. Local
moment solutions were obtained at low temperatures as
discussed in Sec. VI.B (Grempel and Rozenberg, 1998;
Dumitrescu et al., 2022).
Recent works, however, have used the continuous time

QMC (CTQMC) family of algorithms for quantum impurity
models. The central idea is to perform an expansion of the
partition function Z either in powers of the interaction U and
J around the noninteracting limit [CT-INT (Rubtsov, Savkin,
and Lichtenstein, 2005) or CT-AUX (Gull et al., 2008)
algorithms] or in powers of the bath hybridization Δ around
the atomic limit [CT-HYB algorithm (Werner et al., 2006)].
We first consider the CT-INT algorithm used in Secs. VII.B

and VII.C (Cha, Wentzell et al., 2020; Dumitrescu et al.,
2022). The partition function Z,

Z≡
Z

Dc†σðτÞDcσðτÞe−StUJ(c
†
σðτÞ;cσðτÞ); ð9:1Þ

is expanded in both U and J to any order as

Z ¼
X
n≥0

X
p≥0

ð−UÞn
n!p!2p

Z
β

0

Yn
i¼1

dτi
Yp
j¼1

dτ0jdτ
00
jJ ðτ0j − τ00j Þ

×
X

aj¼x;y;z

�
T τ

Yn
i¼1

n↑ðτiÞn↓ðτiÞSajðτ0jÞSajðτ00j Þ
�

0

: ð9:2Þ

The average is taken in the noninteracting model and, via
Wick’s theorem, can be expressed as a determinant in terms of
the noninteracting impurity Green’s function.
The principle of the CTQMC is to sample Z stochastically

with a Metropolis Monte Carlo algorithm, computing integrals
of various dimensions simultaneously. A Monte Carlo algo-
rithm is defined by its configuration space and the elementary
steps constituting the Markov chain in this space. When the
integrals with a Riemann sum on a regular grid of step δτ are
discretized, the configurations C are simply given by the
orders n and p and the set of τi, τ0i, and τ00j . Formally, Z can
then be written as

Z ¼
X
n≥0

X
p≥0

X
Cnp

ðδτÞnþ2pfCnpðτi; τ0i; τ00j Þ; ð9:3Þ

where fCnp is given by the time-ordered correlator in Eq. (9.2).

The weight of a configuration Cnp is wCnp ¼ ðδτÞnþ2pjfCnp j.
The MC Markov chain consists of elementary steps in adding
or removing one (or two) vertices at some randomly chosen
times, sampling all the integrals simultaneously. The various
correlation functions are then computed from this Markov
chain, as their expansions are similar (Gull et al., 2011). The
typical order of the expansion explored by the algorithm can
be shown to be proportional to β, and in practice can go up to
several hundred. In this model, CT-INT can develop a sign
problem at low temperatures in some parameter regimes due
to the J term. In practice, however, it can often be strongly
reduced using Gaussian counterterms added to both the bare
action and the U interaction term (Rubtsov, Savkin, and
Lichtenstein, 2005; Dumitrescu et al., 2022).
The CT-HYB algorithm is similar to CT-INT but is

based on a double expansion around the atomic limit, i.e.,
in powers of ΔðτÞ, and J ⊥, where the retarded spin-spin
interaction is rewritten as J SðτÞ · Sðτ0Þ ¼ J kSzðτÞSzðτ0Þþ
J ⊥

P
a¼� SaðτÞS−aðτ0Þ. Expanding Eq. (9.1) in Δ and J ⊥

and using the antisymmetric property of time-ordered fer-
mionic correlators, the partition function Z reads

Z ¼
X
n≥0

X
p≥0

1

2pp!n!2

Z
β

0

Yn
i¼1

dτidτ0i
Yp
j¼1

dτ̄jdτ̄0j

×
Yp
j¼1

J ⊥ðτ̄j − τ̄0jÞ
X

σi¼↑;↓

X
aj¼�

det
1≤i;j≤n

½Δσiðτi − τ0jÞ�

×

�
T τ

Yn
i¼1

c†σiðτiÞcσiðτ0iÞ
Yp
j¼1

Sajðτ̄jÞS−ajðτ̄0jÞ
�

atomic
;

ð9:4Þ
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where the atomic correlators are taken in the isolated atom,
i.e., Δ ¼ 0 and J ⊥ ¼ 0. The CT-HYB algorithm was intro-
duced in the DMFT case J ¼ 0 (Werner et al., 2006) and later
extended to the EDMFT case J ≠ 0 (Otsuki, 2013; Otsuki
and Vollhardt, 2013). The J k component of the retarded spin-
spin interaction can be taken into account exactly in the atomic
correlator. The second expansion in J ⊥, however, is neces-
sary since no efficient algorithm is known to compute the
atomic correlators in the presence of a retarded non-Abelian
spin-spin interaction term.
The CTQMC algorithms provide an exact solution in

Matsubara time. The main advantages over the previous
generation of QMC impurity solvers (Hirsch and Fye,
1986) are the ability to treat general atomic interactions
(including retarded interactions) and the absence of time
discretization, as the algorithm can be performed directly in
the continuous time limit δτ → 0 (hence its name). The last
point can be illustrated easily on a CT-INT. We consider a
Monte Carlo step from a configuration C of the order of ðn; pÞ
to a configuration C0 of the order of ðnþ 1; pÞ. Their weights
wC and wC0 are proportional to ðδτÞnþ2p and ðδτÞnþ1þ2p,
respectively, as seen in Eq. (9.3). However, the Markov chain
steps can be chosen such that the Metropolis ratio

RC→C0 ¼
TC0→CwC0

TC→C0wC
ð9:5Þ

(where TC→C0 is the proposition probability of the step) is finite
for δτ → 0. Indeed, TC→C0 ¼ δτ=β (the probability to ran-
domly pick up one new time on the imaginary axis) and
TC0→C ¼ 1=ðnþ 1Þ (the probability to randomly select one
time to remove from the configuration C0). As R controls the
Metropolis algorithm, its finite limit ensures the continuous
time limit of the algorithm even though the weights them-
selves vanish at δτ → 0. The absence of time grid extrapo-
lation is a great advantage in practice at low temperatures
(Gull et al., 2011).
The main limitations of the CTQMC algorithms include

some sign problem (depending on the exact algorithm and the
parameter regime), a poor scaling with temperature (like β3),
and most importantly their restriction to imaginary time. Some
delicate analytical continuation are required to access real-
frequency correlations. Note that a third generation of QMC
methods for impurity problems that work directly in real time
has recently appeared (Cohen et al., 2015; Profumo et al.,
2015; Maček et al., 2020). They are based on diagrammatic
computations of physical quantities rather than the partition
function. It is an open question whether these new approaches,
when properly generalized to handle the retarded spin-spin
interaction, will allow us to solve some of the remaining
challenges presented by these systems, including the low-
temperature behavior.

X. LATTICE MODELS OF SYK ATOMS

This section returns to the SYKmodel of Sec. Vand follows
a different strategy toward connecting it to the physics of
quantum matter. In Secs. VI–VIII we imposed Mottness on the
SYK model by adding an on-site repulsion on each site i; this
approach then connected naturally to dynamical mean-field

theories of correlated materials. This section examines an
alternative approach in which the SYK model is viewed as a
multiorbital atom, and i labels the orbitals on such an atom.
We then examine a lattice of such “SYK atoms” and find that
such models can also exhibit regimes of non-Fermi-liquid
behavior with linear-in-T resistivity. For models with a single
band of SYK atoms, these non-Fermi liquids are invariably
bad metals at temperatures higher than the renormalized
bandwidth, in that the resistivity exceeds the MIR resistivity,
where the quantum of resistance is redefined as h=Ne2 for the
N-orbital atom. This is in contrast to the non-Fermi liquids
obtained using a two-band generalization of these models in
Sec. X.B and those introduced in Sec. VII, which display
resistivities smaller than the MIR resistivity.
The models described in this section characterize the

anomalous transport properties of non-Fermi-liquid metals
with short-range interactions in crystalline settings. We
address the fate of the electronic Fermi surface in the regime
of strong interactions when there are no long-lived low-energy
quasiparticles. Therefore, it is natural to address the extent to
which the models introduced thus far can serve as elementary
building blocks for addressing these fundamental questions in
a controlled setting. In Secs. X.A–X.D, we discuss properties
of a number of different variants of the SYK models.

A. Breakdown of a heavy Fermi liquid

We begin by writing a model for electrons with orbital
labels i ¼ 1; 2;…; N and hopping on the sites r of a
d-dimensional hypercubic lattice (Fig. 21). The
Hamiltonian Hc ¼ Hkin þHint is given by

Hkin ¼ −
X
r;r0

trr0c
†
ricr0i − μ

X
i

c†ricri; ð10:1aÞ

Hint ¼
1

ð2NÞ3=2
X
r

XN
ijkl¼1

Uij;klc
†
ric

†
rjcrkcrl: ð10:1bÞ

Equations (10.1a) and (10.1b) are thus a generalization
of a completely (0þ 1)-dimensional model H2 þH4, as

FIG. 21. Basic building block for studying translationally
invariant lattice models constructed out of SYK atoms with N
orbitals per site. The different sites are coupled together by
single-electron hopping terms.
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introduced in Eqs. (4.1a) and (5.1a), respectively. The simplest
choice for the hopping and interaction parameters is to make
them both random variables (Song, Jian, and Balents, 2017).
Alternatively, the hopping parameters can be made transla-
tionally invariant such that they depend only on the spatial
separation jr − r0j (Zhang, 2017; Haldar, Banerjee, and
Shenoy, 2018). Of special interest is the situation where
additionally the interaction termsUij;kl are also assumed to be
independent of the site label r (Chowdhury et al., 2018). Hint
is then constructed as a repeated array of the H4 term in
Eq. (5.1) for every site r and Uij;kl are identical at every site,
thereby preserving an exact (instead of statistical) translational
invariance. The couplings are still chosen from a Gaussian
random distribution with zero mean Uij;kl ¼ 0 and variance

jUij;klj2 ¼ U2. Appealing to the self-averaging properties of
the SYK model in the large-N limit, we can compute
correlation functions of a typical translationally invariant
realization (where crystalline momentum is a good quantum
number) by averaging over the disorder realizations. The
chemical potential μ allows us to tune the electron density Q.
Variants of the one-band lattice model without any hopping
terms (i.e., trr0 ¼ 0) and with only four-fermion interactions
that couple together different sites have also been studied
(Davison et al., 2017; Gu, Qi, and Stanford, 2017), with
properties that are vastly different from what we discuss later.
A different family of lattice SYK models defined in terms of
Majorana fermions has been used to study insulating tran-
sitions out of a diffusive metal (Jian, Bi, and Xu, 2017; Jian
and Yao, 2017) and the effects of longer-range correlated
couplings on diffusive transport (Khveshchenko, 2018b).
In the large-N limit, once again only the melon graphs

survive (Fig. 7), but the Green’s function now includes an
additional contribution due toHkin and takes a more nontrivial
form than Eqs. (5.2a) and (5.2b):

Gðiωn; kÞ ¼
1

iωn − εk − Σðiωn; kÞ
;

Σðiωn; kÞ ¼ −U2T
X
iΩn

Z
k1

GðiΩn; k1ÞΠðiωn þ iΩn; kþ k1Þ;

ð10:2aÞ

ΠðiΩn; qÞ ¼ T
X
iω0

n

Z
k0
Gðiω0

n; k0ÞGðiω0
n þ iΩn; k0 þ qÞ;

ð10:2bÞ

where
R
k ≡

R
ddk=ð2πÞd and εk is the electron dispersion.

Equations (10.2a) and (10.2b) are reminiscent of the usual
DMFT equations, but where the electron self-energy is
allowed to be momentum dependent. As we later discuss,
in the strong-coupling limit, the momentum dependence
becomes parametrically weaker than the frequency-dependent
renormalization, stemming from the local SYK physics
(Chowdhury et al., 2018).
Equations (10.2a) and (10.2b) are in general difficult to

solve analytically as a function of frequency and momenta; the
full solution can be obtained numerically across the entire
Brillouin zone. However, significant insights can be gained

analytically by starting with a low-energy guess for a self-
consistent solution. Recall that in the limit where the sites are
all decoupled, at energies ω ≪ U for H4 in Eq. (5.1), the
electron scaling dimension Δ ¼ 1=4. By simple power count-
ing arguments, Hkin is a relevant perturbation; as a result, the
power-law solution for the Green’s function obtained earlier
cannot survive down to the lowest energies and there will be a
crossover to a regime dominated by Hkin that can nevertheless
be strongly renormalized due to interactions (Parcollet and
Georges, 1999; Song, Jian, and Balents, 2017).
At the lowest energies, we assume the self-energy to take

the following Fermi-liquid form:

Σðiωn; kÞ ¼ −iðZ−1 − 1Þωn þ Δεk; ð10:3Þ
where Z is the quasiparticle residue and Δεk is the renorm-
alization associated with the dispersion, which is to be
determined self-consistently. As a further simplification,
zooming in on the near vicinity of the Fermi surface, we
can parametrize Δεk ¼ ðΔvFÞk, where ΔvF is the Fermi
velocity renormalization and k is measured relative to the
Fermi surface. The self-consistency condition then reduces to

Z−1 − 1 ¼ ν20U
2Z; ð10:4aÞ

ΔvF
vF

∼ ν20U
2Z2; ð10:4bÞ

where ν0 is the bare density of states at the Fermi energy. In
the strong-coupling limit U ≫ W, where W is the unrenor-
malized single-particle bandwidth, we immediately obtain
Z ∼ 1=ν0U and ΔvF=vF ∼ Oð1Þ. Thus, the dominant self-
energy renormalization in Eq. (10.3) is frequency dependent,
with a much weaker momentum dependence. As a result, we
also immediately infer the effective mass renormalization
(m�=m ¼ 1=Z). The ground state is thus a heavy Fermi liquid
with a sharp Fermi surface at any strength of interaction.
This picture of a Fermi liquid breaks down as a function of

increasing energy. Naively, one would expect this to occur
for energies comparable to W; this is incorrect, and the
crossover instead occurs at a much reduced scale of
W� ∼W2=U, which also serves as the renormalized band-
width of the heavy Fermi liquid. Consider the following
coherent part of the Green’s function:

Gðiω;kÞ¼ Z
iω−Zε̄kþ iαν20Ujωj2 lnðW�=jωjÞsgnðωÞ ; ð10:5Þ

where ε̄k ¼ εk þ Δεk and α ∼ Oð1Þ is constant; the lnð� � �Þ
term is specific to d ¼ 2. After analytically continuing to real
frequencies, the imaginary part of the self-energy in Eq. (10.5)
becomes Σ00ðωÞ ∼ ω2=W�, such that Σ00ðW�Þ ∼W�. Thus, at
energies approaching W� the scattering rate of the quasipar-
ticles becomes comparable to the renormalized bandwidth.
This is a sign that the quasiparticle picture and the sharp Fermi
surface associated with the low-energy Fermi liquid are
breaking down.
We can instead approach the problem from higher energy

scales. Forω ≫ W�, it is appropriate to start with the solutions
to Eqs. (10.2a) and (10.2b) in the decoupled limit and treat the
hopping perturbatively (i.e., in powers of εk). In this limit, we
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reproduce the completely local form of the electron Green’s
function obtained earlier in Eq. (5.3). The leading momentum
dependence can be obtained in the strong-coupling regime as
follows by expanding in powers of εk:

Gðiω;kÞ¼ isgnðωÞffiffiffiffiffiffiffiffiffiffi
Ujωjp −BðωÞ εk

Ujωj ðW�≪ jωj≪UÞ; ð10:6Þ

where BðωÞ is a frequency-independent constant whose value
depends on the sign of ω and descends from the spectral
asymmetry discussed in Sec. V. This is an incoherent regime
where the electronic quasiparticles are not well defined. Note
that the momentum-dependent correction becomes compa-
rable to the local term at ω ∼W�.
The previous description leads to a simple picture for the

properties of the model in Eqs. (10.1a) and (10.1b). At the
lowest energy scales, the system is a heavy Fermi liquid with
a sharp Fermi surface satisfying Luttinger’s theorem. All
interaction-induced corrections are predominantly frequency
dependent, with a weak residual momentum dependence. The
DMFT-like behavior is linked to the properties of the single
SYK cluster. As a function of increasing energy, the quasi-
particle scattering rate increases until they are no longer well
defined; at scales approaching the renormalized bandwidth
W�, the Fermi surface and the quasiparticles are completely
destroyed. Starting at higher energies, W� also marks the
crossover where the completely local picture of the decoupled
SYK dots with perturbative spatial corrections breaks down
and is accompanied by the incipient formation of a Fermi
surface. Going beyond the large-N results discussed here, the
fate of the low-temperature phase can be vastly different
(Altland, Bagrets, and Kamenev, 2019a).
Wenote that if themodel inEqs. (10.1a) and (10.1b) is defined

with a random trr0 and an uncorrelated Uij;kl at different sites
(Song, Jian, and Balents, 2017), the properties of the previously
discussed incoherent regime remain unchanged since the
spatial correlations are completely local. The low-energy dis-
ordered FL regime is similar in many aspects to the previously
discussed FL but is notably different in the presence of the sharp
Fermi surface. We return to some of the consequences of this
subtle difference when we discuss transport in Sec. X.C.
Finally, we note a model (Patel and Sachdev, 2019) in

which the random interactions are restricted to be “resonant”:
this has W� → 0, and the Planckian behavior holds down to
zero temperature. The rationale for such a model is that the
nonresonant interactions have already been absorbed in
effective trr0 for the quasiparticles. The resonance condition
can be interpreted in terms of a scalar field needed to impose
the constraints, and this indicates that Planckian behavior
should appear more readily and naturally in Yukawa-SYK
models of fermions and bosons with random Yukawa cou-
plings: we consider such models in Sec. XI.

B. Marginal Fermi liquid and critical Fermi surface from
incoherent “flavor” fluctuations

Our theoretical discussion of the metallic non-Fermi
liquids discussed in this review thus far has lacked any
interesting spatial structure. Even for the lattice model
considered in Sec. X.A, the incoherent regime had no singular

momentum-dependent features. However, it is possible to
add additional electronic degrees of freedom to the model
introduced in Eqs. (10.1a) and (10.1b) and engineer a critical
Fermi surface (a sharp electronic Fermi surface without any
low-energy electronic quasiparticles) over a wide range of
energy scales. These additional electronic degrees of free-
dom realize a “marginal” Fermi liquid where the single-
particle lifetime Γsp ∼maxðω; TÞ (Chowdhury et al., 2018;
Patel et al., 2018).
Consider an additional band of electrons dri defined on

the sites of the same hypercubic lattice with orbital labels
i ¼ 1;…; N, with a separately conserved density Qd. We are
interested in Hamiltonians of the form

H ¼ Hc þHd; ð10:7aÞ

Hd¼
X
k;i

ϵkd
†
kidkiþ

1

N3=2

X
r

XN
ijkl¼1

Vij;klc
†
rid

†
rjdrkcrl; ð10:7bÞ

where ϵk is the dispersion for d electrons (including the
respective chemical potential) and Hc continues to be defined
by Eqs. (10.1a) and (10.1b). The Vij;kl are assumed to be
identical at every site, thereby preserving translational sym-
metry, and chosen from a Gaussian random distribution with

Vij;kl ¼ 0 and variance jVij;klj2 ¼ V2. We are particularly
interested in the regime where the bandwidth for d electrons
Wd far exceeds the c-electron bandwidthW. The setup here is
reminiscent of the periodic Anderson model for an itinerant
“conduction” electron band coupled to a strongly interacting,
narrow band (Hewson, 1997), except that the interaction terms
now are chosen to have a purely SYK form. A different variant
of the two-band model involving an interband hybridization
that conserves only the total density has also been analyzed
(Ben-Zion and McGreevy, 2018).
In the large-N limit, only the following set of coupled

melon graphs survive for the Green’s function corresponding
to both c and d electrons (Fig. 22):

(a)

(b)

FIG. 22. Melon graphs for the model in Eq. (10.7) for the
electron self-energies for (a) c and (b) d electrons, respec-
tively. Solid black (red) lines denote fully dressed c (d)
Green’s functions. The dashed (dotted) line represents the
disorder averaging associated with the interaction vertex
jUij;klj2 (jVij;klj2).
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Gðiωn; kÞ ¼
1

iωn − εk − Σðiωn; kÞ − Σ0
dðiωn; kÞ

; ð10:8aÞ

Gdðiωn; kÞ ¼
1

iωn − ϵk − Σdðiωn; kÞ
; ð10:8bÞ

Σ0
dðiωn; kÞ ¼ −V2T

X
iΩn

Z
k1

GðiΩn; k1ÞΠdðiωn þ iΩn; kþ k1Þ;

ð10:8cÞ

Σdðiωn; kÞ ¼ −V2T
X
iΩn

Z
k1

GdðiΩn; k1ÞΠðiωn þ iΩn; kþ k1Þ;

ð10:8dÞ

ΠdðiΩn; qÞ ¼ T
X
iω0

n

Z
k0
Gdðiω0

n; k0ÞGdðiω0
n þ iΩn; k0 þ qÞ;

ð10:8eÞ

where Σðiωn; kÞ and ΠðiΩn; qÞ are as previously defined in
Eq. (10.2b).
Over an energy window W� ≪ ω ðor TÞ ≪ minðWd;UÞ,

when the d electrons scatter off the incoherent fluctuations
associated with the c electrons, their self-energy is given by

ΣdðiωÞ ∼ −iω log

�
U
jωj

�
; ð10:9Þ

which has the marginal Fermi-liquid (MFL) form. We
emphasize here that the MFL regime in this setup is generated
self-consistently, even after including its feedback on the c
electrons, without having to postulate the existence of a
featureless bath (Varma et al., 1989).
In the translationally invariant setting discussed here, the d

electrons have a sharp Fermi surface. To make this precise, we
can take the limit ofW� → 0 at T ¼ 0 and identify the location
of the Fermi surface from the solution to G−1

d ð0; kÞ ¼ 0. The
critical Fermi surface satisfies Luttinger’s theorem, where its
size is now determined solely by Qd, i.e., the density of c
electrons is not included in the size as anticipated and can
therefore be characterized as small. The proof of Luttinger’s
theorem for the critical Fermi surface follows the standard
treatment in Fermi liquids (Abrikosov, Gorkov, and
Dzyaloshinskii, 1963) and is based on the Luttinger-Ward
functional. The two-particle correlators (as in the density
response) near the 2kF wave vector have a singular depend-
ence as a function of energy. Note that the singular form of the
self-energy in Eq. (10.9) is momentum independent and not
tied to the vicinity of the Fermi surface.
This construction leads to a concrete realization of a small

critical Fermi surface with marginally defined excitations.
However, the critical Fermi surface obtained here is neces-
sarily accompanied by a finite extensive entropy extrapolated
to T → 0, which originates from the usual entropy associated
with the incoherent regime of the local SYK islands of c
electrons. In Sec. XI, we discuss a different class of models
where the critical Fermi surface is large (i.e., the size is

determined by the total electronic density) and can arise
without an extensive entropy in the T → 0 limit.

C. Thermodynamics and transport

For the single-band model in Eqs. (10.1a) and (10.1b), the
Fermi liquid at T ≪ W� has an entropy density s ∼ γFLT,
where γFL ∝ m� ∼ 1=W�. In the incoherent regime for
T ≫ W�, the entropy density is given by that of a single
SYK dot [Eq. (5.53)] with weak perturbative corrections of the
order of ðW=UÞ2; the extrapolated entropy in the limit of
T → 0 from this regime is finite (Georges, Parcollet, and
Sachdev, 2001), but the excess entropy is relieved at
T ∼W� across the crossover into the Fermi liquid (Song,
Jian, and Balents, 2017). At T ≫ W�, electrical transport
occurs as a result of the perturbative electron hops between
SYK dots. Starting from the Kubo formula for the conduc-
tivity and given the completely local form of the single-
electron Green’s functions, the current-current correlation
function reduces simply to a convolution of two spectral
functions, much like standard computations of transport
within DMFT. This leads to

σðω; TÞ ¼ Ne2

h
W�

T
F

�
ω

T

�
; ð10:10Þ

where Fð� � �Þ is a universal scaling function of ω=T. This
immediately leads to a bad metal T-linear resistivity (and
scattering rate) with values that can far exceed ρQ ¼ h=Ne2

over a range of temperatures (W� ≪ T ≪ U). In the Fermi-
liquid regime at T ≪ W�, the resistivity crosses over into a
conventional regime with ρ ¼ BT2 as long as the Fermi
surface is large enough and electron-electron umklapp scatter-
ing is allowed. The coefficient (B) of the T2 term satisfies the
Kadowaki-Woods scaling (Kadowaki and Woods, 1986), as
can be verified simply by demanding that there is a smooth
crossover at T ∼W� between the two different metallic
regimes. We note that the resonant model (Patel and
Sachdev, 2019) has W� ¼ 0, and it exhibits strange metal
linear T resistivity with values well below ρQ.
In the MFL regime of the two-band model introduced in

Eq. (10.7), the critical Fermi surface associated with the d
electrons gives rise to a singular specific heat C ∼ T lnð1=TÞ at
low temperatures, in addition to the usual contribution from
the SYK dot associated with the c electrons. Once again, given
the local form of the single-particle self-energy in the MFL
regime, transport simplifies considerably, leading to the
following T-linear resistivity associated with the d electrons:

ρdðTÞ ∼
h

Ne2

�
V2

W2
dU

�
T: ð10:11Þ

In the translationally invariant setting of Eq. (10.7a), the finite
resistivity arises as a result of momentum relaxation to the
bath formed by the local c electrons at every site (Chowdhury
et al., 2018).
We end this section by noting that the extrapolated zero-

temperature entropy from the strange metal regime of the
cuprates vanishes (Loram et al., 1994), unlike the residual
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extensive entropy in the limit of T → 0 associated with the
models considered here displaying SYK-like critical correla-
tions at large N. There are a number of other materials
displaying NFL behavior over intermediate energy scales
where the extrapolated entropy is also known to be extensive
and finite but relieved below a certain low-temperature
coherence scale (Allen et al., 1996; Brühwiler et al., 2006).

D. Superconductivity

Conventional Fermi-liquid metals, even with purely repul-
sive interactions (i.e., in the absence of phonon-mediated
attraction), are unstable to superconductivity at extremely low
temperatures. This Kohn-Luttinger mechanism (Kohn and
Luttinger, 1965) relies on an effective attraction that is
generated in a non-s-wave angular momentum channel at
higher orders in the interaction strength. An analogous general
statement cannot be made about the non-Fermi-liquid metals
introduced in this review and their pairing instabilities, if any,
have to be analyzed on an individual basis.
The models introduced thus far in this section do not have

any pairing instabilities. By extending these models to include
spinful fermions, a number of routes have been used to
generate attraction via pair-hopping interactions (Patel,
Lawler, and Kim, 2018; Wu et al., 2018), a random
Yukawa interaction to a bosonic field (such as a phonon
field) (Esterlis and Schmalian, 2019; Wang, 2020; Classen
and Chubukov, 2021), and the introduction of additional
correlations between the interaction matrix elements Uij;kl

(Chowdhury and Berg, 2020a). At large N, all of these models
have a mean-field-like transition to superconductivity where
Eliashberg theory becomes asymptotically exact. However,
the instability is not tied to the usual “Cooper logarithm”
(Abrikosov, Gorkov, and Dzyaloshinskii, 1963) associated
with an underlying Fermi surface and the ratio of gap
magnitude to transition temperature is enhanced above the
standard mean-field value. When supplemented by an on-site
attractive Hubbard interaction, the previously mentioned
models display a fluctuation regime resembling a “pseudo-
gap” (Wang et al., 2020) before the superconducting tran-
sition. Certain tensor models (Kim et al., 2019) and
generalized SYK-type models (Bi et al., 2017; Luo et al.,
2019) defined in terms of real fermions have also been studied
and were found to exhibit spontaneous symmetry breaking
analogous to pairing.
Intrinsic superconducting instabilities of the previously

introduced non-Fermi liquids and their analogy with the
Kohn-Luttinger mechanism can be seen by introducing a
spin label σ ¼↑;↓, modifying Eq. (10.1b) to

Hint →
1

4N3=2

X
r

X
σ¼↑;↓

XN
ijkl¼1

Uij;klc
†
riσc

†
rjσ0crkσ0crlσ; ð10:12Þ

and including additional correlations between the interaction
matrix elements as Uij;kl ¼ �Uik;jl. The physics is qualita-
tively different depending on the � sign here, as can be seen
most directly by writing the Bethe-Salpeter equation (Fig. 23)
for the intraorbital, spin-singlet vertex in the pairing channel
as follows: Φlðr − r0Þ≡ ϵσσ0crlσcr0lσ0 .

At zero external center-of-mass momentum, the linearized
equation for Φl becomes

Φlðω; kÞ ¼ ∓U2T
X
Ω

Z
q
ΦiðΩ; qÞGðiω; qÞGð−iω;−qÞ

× Πðiω − iΩ; k − qÞ; ð10:13Þ

where Gðiω; qÞ and Πðiω; qÞ are as introduced earlier in
Eqs. (10.2a) and (10.2b). Introducing the additional spin label
and the matrix correlations Uij;kl ¼ �Uik;jl does not change
the asymptotic nature of the single-electron Green’s functions
but can lead to preemptive instabilities to superconductivity
depending on the � sign (Chowdhury and Berg, 2020a). For
the model with Uij;kl ¼ Uik;jl, the eigenvalue problem in
Eq. (10.13) has a nontrivial solution with a superconducting
Tc ∼ U. Superconductivity preempts the crossover into the
heavy Fermi liquid and arises at the level of a single site due to
effectively attractive interactions that are generated at OðU2Þ;
the superfluid stiffness is nevertheless finite and given by
NW� ≫ Tc. On the other hand, for the model with
Uij;kl ¼ −Uik;jl, there is no instability at the level of a single
site and, while the pairing susceptibility is enhanced when
T ∼W� is approached from above, the non-Fermi liquid is
stable against pairing. However, across the crossover into the
heavy Fermi-liquid regime, the momentum dependence in
ΠðqÞ can drive a pairing transition, much like the Kohn-
Luttinger mechanism but where Tc is now set by the only
relevant scale in the problem W�. Similar generalizations can
also be constructed for the two-band models in Sec. X.B, to
analyze the intrinsic pairing instabilities of the marginal Fermi
liquid with a critical Fermi surface (Chowdhury and Berg,
2020b). We end by noting that for a variety of non-Fermi
liquids involving quantum-critical degrees of freedom, the
Eliashberg equations share a similar structure (Abanov and
Chubukov, 2020; Wu et al., 2020).

XI. FERMI SURFACES COUPLED TO GAPLESS BOSONS

This section will turn to a different, and extensively studied,
approach to non-Fermi liquids in clean metals. We begin
with a Fermi liquid with a well-defined Fermi surface and
long-lived quasiparticles and examine the breakdown of

FIG. 23. Bethe-Salpeter equation for the intraorbital pairing
vertex Φ in the large-N limit.
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quasiparticles due to scattering from a gapless boson: this
gapless boson can be associated with either an order parameter
near a symmetry-breaking transition or an emergent excitation
associated with fractionalization. Note, however, that the
Fermi surface remains sharp in momentum space even though
the quasiparticles are not well defined and the spectra are
broad in energy space: a “critical Fermi surface” is realized, as
discussed in Sec. II.B.
As we later describe, there are difficulties (Lee, 2009) in

applying conventional large-N methods to the critical Fermi
surface problem. However, progress has recently become
possible (Esterlis et al., 2021) with the incorporation of
insights from a class of Yukawa-SYK models describing
fermions and bosons with a three-body Yukawa coupling (Fu
et al., 2017; Murugan, Stanford, and Witten, 2017; Patel and
Sachdev, 2018; Esterlis and Schmalian, 2019; Marcus and
Vandoren, 2019; Aldape et al., 2020; Wang, 2020; Wang
and Chubukov, 2020; Esterlis et al., 2021; Kim, Altman, and
Cao, 2021; Wang et al., 2021). These methods provide a
systematic treatment of such critical Fermi surfaces and also
expose similarities to SYK non-Fermi liquids. The new
approach shows that the required large-N limit can be
obtained provided that we allow random coupling constants,
as in the Yukawa-SYK models. In this situation, the couplings
can be spatially uniform, so translational invariance is main-
tained (Aldape et al., 2020; Esterlis et al., 2021). Despite the
presence of random couplings, many properties self-average
in the large-N limit, just as in the Yukawa-SYK models. The
central idea is that in a given finite-N system, with a fixed set
of coupling constants, there is a RG flow to a common
universal low-energy theory. Assuming the existence of such a
theory, we attempt to access the universal low-energy physics
simply by averaging over couplings. Upon carrying out this
procedure, we find that only certain averages over the
couplings matter, and the values of these averages cancel
out in the low-energy theory, thus supporting the existence of
a universal theory. We note that the idea of simplification
realized by an average over similar strongly coupled theories
has also played an important role in recent investigations in
quantum gravity and averages over random matrices or
conformal field theories yield systematic large-N holographic
realizations of the path integral of simple theories of gravity
(Stanford and Witten, 2019; Afkhami-Jeddi et al., 2020;
Maloney and Witten, 2020; Pérez and Troncoso, 2020;
Chen, Czech, and Wang, 2021; Cotler and Jensen, 2021;
Engelhardt, Fischetti, and Maloney, 2021; Datta et al., 2022).
We now consider a specific model of a critical Fermi

surface: fermions coupled to an emergent Uð1Þ gauge field.
As outlined in Sec. II.B, such a theory arises in a number
of different physical contexts, including spin-liquid Mott
insulators with a gapless Fermi surface of spinons (Lee,
1989; Altshuler, Ioffe, and Millis, 1994; Polchinski, 1994)
and the compressible quantum Hall state in the half-filled
Landau level with a gapless Fermi surface of composite
fermions (Halperin, Lee, and Read, 1993). The formalism is
also easily extended to a number of other examples involv-
ing the onset of broken symmetries, identified by order
parameters with vanishing lattice momentum, in a metal
[such as Ising-nematic order in a Fermi liquid (Metlitski and
Sachdev, 2010)].

A. Fermi surface coupled to a dynamical Uð1Þ gauge field

Consider a nonzero density of fermions coupled to an
emergent Uð1Þ gauge field Aμ. In the presence of a Fermi
surface, the longitudinal components of Aμ are screened just as
in an ordinary metal with Coulomb interactions. However, there
is no screening in the transverse sector, so we focus only on the
transverse spatial components Ax;y. We can schematically write
the theory by generalizing the action for the Fermi liquid to

ScA ¼
Z

dτ

�Z
ddk
ð2πÞd c

†
ka

�
∂

∂τ
þ εð−i∇ − AÞ

�
cka

þ NK
2

Z
d2xð∇ × AÞ2

	
: ð11:1Þ

We have not included an explicit time derivative term for A,
because it will turn to be subdominant to the frequency
dependence induced by the Fermi surface. The coefficient of
the Maxwell term ð∇ × AÞ2 is determined by short distance
physics, and we have included a prefactor of N for future
convenience; the gauge-coupling is denoted as K−1. We have
restricted our considerations to spatial dimension d ¼ 2, where
the frequency dependence for the self-energy will be most
singular and is also the dimension of most physical applications.
We now proceed with a perturbative but self-consistent

analysis of ScA in a “patch” theory: we focus on the vicinity of
the point k0 on the Fermi surface, as in Fig. 24. For the gauge
field A, it turns out that we need include only components of
their momenta that are tangent to the Fermi surface, closely
connected to the following 1=jqyj dependence of the fermion
polarizability that is obtained as in Fermi-liquid theory:

Πðq; iωnÞ ¼ −
jωnj

4πvFκjqyj
: ð11:2Þ

Recalling that we are focusing only on transverse gauge-field
fluctuations, we may replace the gauge field with a single
scalar field ϕ ¼ Ax. In this manner, the patch theory limit of
Eq. (11.1) is

Sψϕ ¼
Z

dτdxdy

�
ψ†
a

�
∂

∂τ
− ivF

∂

∂x
−
κ

2

∂
2

∂y2

�
ψa

þ NK
2

�
∂ϕ

∂y

�
2

− vFϕψ
†
aψa

	
; ð11:3Þ

FIG. 24. Extended patch of the Fermi surface with momenta
expanded about the point k0 on the Fermi surface. This yields a
theory of two-dimensional fermions ψ in Eq. (11.3).
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where, for now, we are considering the case with a ¼ 1;…; N
fermion flavors. This patch theory also applies to the other
cases with order parameters, which were identified just
before Sec. XI.A.
The fermion polarizability will now appear as a self-energy

for the ϕ field, so we can write the ϕ propagator Dðq; iΩnÞ as

Dðq; iΩnÞ ¼
1

N½Kq2y − v2FΠðq; iΩnÞ�
; ð11:4Þ

where Π is given by Eq. (11.2). The fermion Green’s function
is expressed as follows in the usual way:

Gðk; iωnÞ ¼
1

iωn − εk − Σðk; iωÞ ; ð11:5Þ

where now

εk ¼ vFkx þ κ
k2y
2
: ð11:6Þ

The self-energy, as a result of scattering off the fluctuations
of ϕ, can be evaluated as

Σðk; iωnÞ ¼ v2F

Z
d2q
ð2πÞ2 T

X
Ωn≠0

Dðq; iΩnÞGðkþ q; iΩn þ iωnÞ

¼ −i
v2F
2N

Z
dqy
2π

T
X
Ωn≠0

sgnðωn þ ΩnÞ
Kq2y þ jΩnj=4πvFκjqyj

¼ −i
v2F

3
ffiffiffi
3

p
NK2=3

ð4πvFκKÞ1=3T
X
Ωn≠0

sgnðωn þ ΩnÞ
jΩnj1=3

:

ð11:7Þ

We dropped the gauge fluctuations at Ωn ¼ 0 because they
require special treatment: this is likely an artifact of the
fermion not being gauge invariant. The singularity at Ωn ¼ 0
in Eq. (11.7) will likely drop out of gauge-invariant observ-
ables. In any case, there are no issues at T ¼ 0, in which case
we find the non-Fermi-liquid self-energy ΣðωÞ ∼ ω2=3. At
T > 0, the resulting equation (11.7) obeys the following
scaling form, which is similar to that of the SYK model in
Eq. (5.27) (Lee, 1989):

Σðk;ω; TÞ ∝ T2=3Φ
�
ℏω
kBT

�
: ð11:8Þ

This is much larger than the bare ω term in the inverse Green’s
function and leads to the absence of a quasiparticle pole at
the Fermi surface, where the latter is defined as the location
where G−1ðkF;ω ¼ 0; T ¼ 0Þ ¼ 0.

1. Large-N limit

As we emphasized earlier, our apparent perturbative com-
putations of the fermion Green’s function are actually fully

self-consistent in the self-energies of both the gauge field and
the fermion. In this sense, the equations have a structure
similar to that of the SYK models. Thus, as in the Yukawa-
SYK models, we ask whether there is a systemic large-N
approach in which these results can be obtained as the saddle
point of an action. This will ensure that the solutions are
locally stable against all perturbations, determine conditions
under which superconducting or other instabilities could exist,
and also allow a systematic treatment of corrections.
Despite numerous attempts, a systematic and satisfactory

treatment that relies only on a naive large-N expansion has
been lacking in the literature. The difficulty is apparent from
an examination of Eqs. (11.5) and (11.7). In a model with N
fermion flavors, the singular self-energy in Eq. (11.7) has a
prefactor of 1=N, and therefore is formally smaller than the
bare dispersion vFkx þ κk2y=2. However, the self-energy has to
be matched with the bare dispersion to obtain the physical
excitations, and thus a power of N is unavoidable in the
dispersion of the renormalized excitations. This implies that
higher-order Feynman graphs can be enhanced by powers of
N not associated with the symmetry factors of the graphs,
leading to a breakdown of the 1=N expansion; this is indeed
what happens (Lee, 2009). Various work-arounds have been
attempted (Fitzpatrick et al., 2013, 2014; Damia et al., 2019),
but none have been entirely successful because they include
N-dependent energy scales.
As noted earlier, recent studies (Aldape et al., 2020;

Esterlis et al., 2021) have shown that a systematic large-N
theory of the critical Fermi surface can be obtained in a
theory with couplings that are random in flavor space but
translationally invariant. We now show how such a theory
leads to a G-Σ formulation for the critical Fermi surface. We
start with the theory Eq. (11.3), promoting the scalar ϕ to
now acquire N indices, ϕa, and introduce a set of couplings
gabc that are random in flavor space but spatially uniform;
we also set vF ¼ 1 and κ ¼ 2. The required theory is then
(Esterlis et al., 2021)

Sψϕ ¼
Z

dτdxdy

�
ψ†
a

�
∂

∂τ
− i

∂

∂x
−

∂
2

∂y2

�
ψa

þ K
2

�
∂ϕa

∂y

�
2

−
gabc
N

ϕaψ
†
bψc

	
: ð11:9Þ

The key new feature is the set of space-independent random
complex Yukawa couplings gabc that have zero mean and
variance g2.
We can now proceed just as in the Yukawa-SYK models:

we obtain a theory for Green’s functions that are bilocal in
both space and time. Using the spacetime coordinate
X ≡ ðτ; x; yÞ, we can write the averaged partition function

Z̄ψϕ ¼
Z

DGðX1; X2ÞDΣðX1; X2ÞDDðX1; X2Þ

×DΠðX1; X2Þ exp ½−NIðG;Σ; D;ΠÞ�: ð11:10Þ

The G-Σ-D-Π action is now
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IðG;Σ; D;ΠÞ

¼ g2

2
TrðG · ½GD�Þ − TrðG · ΣÞ þ 1

2
TrðD · ΠÞ

− ln det ½ð∂τ1 − i∂x1 − ∂
2
y1ÞδðX1 − X2Þ þ ΣðX1; X2Þ�

þ 1

2
ln det ½ð−K∂2y1ÞδðX1 − X2Þ − ΠðX1; X2Þ�; ð11:11Þ

where we introduced notation analogous to that in Eq. (5.57),

Trðf · gÞ≡
Z

dX1dX2fðX2; X1ÞgðX1; X2Þ: ð11:12Þ

Note the crucial prefactor of N before I in the path integral.
The large-N saddle-point equations of this action are

precisely the self-consistent equations that we already solved,
apart from differences in factors of N. Assuming that all
saddle-point Green’s functions depend only upon spacetime
differences, we can write them as

Gðk; iωnÞ ¼
1

iωn − kx − k2y − Σðk; iωnÞ
;

Dðq; iΩnÞ ¼
1

Kq2y − Πðq;ΩnÞ
;

ΣðXÞ ¼ g2DðXÞGðXÞ;
ΠðXÞ ¼ −g2GðXÞGð−XÞ: ð11:13Þ

From the previous analysis, we can write the solution to these
equations as

Πðq; iΩnÞ ¼ −
g2

8π

jΩnj
jqyj

;

Σðk; iωnÞ ¼ −2i
g4=3π1=3

K1=3

T

3
ffiffiffi
3

p
X
Ωn≠0

sgnðωn þ ΩnÞ
jΩnj1=3

: ð11:14Þ

Note that N does not appear in these saddle-point equations,
unlike that in the self-energy in Eq. (11.7).

2. Luttinger’s theorem

Despite the absence of a quasiparticle pole, Luttinger’s
theorem still applies to the critical Fermi surface with
essentially no modifications. On general grounds we can
expect that, at T ¼ 0, ImG−1ðk; iηÞ ¼ 0 at all k, where η is a
positive infinitesimal, and this is obeyed by Eq. (11.7).
As in Fermi-liquid theory, the Fermi surface is then defined
as ReG−1ðkF; iηÞ ¼ 0, with particlelike excitations for
ReG−1ðkF; iηÞ < 0 and holelike excitations for
ReG−1ðkF; iηÞ > 0. We proceed as in Sec. V.B and decom-
pose the expression for the charge density per flavor index Q
into the following two terms:

Q ¼
Z
k

Z
∞

−∞

dω
2π

Gðk; iωÞe−iω0− ¼ I1 þ I2;

I1 ¼ i
Z
k

Z
∞

−∞

dω
2π

d
dω

ln ½Gðk; iωÞ�e−iω0− ;

I2 ¼ −i
Z
k

Z
∞

−∞

dω
2π

Gðk; iωÞ d
dω

Σðk; iωÞe−iω0− ; ð11:15Þ

where
R
k ≡

R
ddk=ð2πÞd. We evaluate I1 as in Eq. (5.17) and

obtain

I1 ¼ ilim
η→0

Z
k

Z
0

−∞

dω
2π

d
dω

ln

�
G−1ðk;ωþ iηÞ
G−1ðk;ω − iηÞ

	

¼ −
1

π
lim
η→0

Z
k
½arg G−1ðk; iηÞ − arg G−1ðk;−∞þ iηÞ�:

ð11:16Þ

The momentum integrand evaluates to −π for
ReG−1ðkF; iηÞ > 0, and 0 otherwise, and hence I1 evaluates
the momentum space volume enclosed by the Fermi surface
divided by ð2πÞd.
It now remains to establish that I2 ¼ 0 for the critical Fermi

surface case, unlike the SYK model results in Sec. V.B. The
self-energy of the critical Fermi surface in Eq. (11.8) is
singular at ω ¼ 0, just like the self-energy of the SYK model
in Eq. (5.27). Therefore, we might worry that there is an
anomalous contribution to I2 from the singularity at ω ¼ 0,
as there was in Sec. V.B. However, that is not the case here
because the singularity of the Green’s function is much
weaker as a result of its momentum dependence; now the
low-energy Green’s function is

G−1ðk;ωÞ ¼ −vFkx −
κ

2
k2y − ΣðωÞ; ð11:17Þ

and this diverges at ω ¼ 0 only on the Fermi surface
vFkx þ κk2y=2 ¼ 0. Indeed, with this form the local density
of states is a constant at the Fermi level. Consequently, there is
no anomaly at T ¼ 0, and I2 ¼ 0 from the Luttinger-Ward
functional analysis. Incidentally, we note that the Luttinger-
Ward functional in the large-N limit is simply the first term in
the action I in Eq. (11.11), which is similar to the SYK model.
To complete this discussion, we add a few remarks on the

structure of the Luttinger-Ward functional, and its connection
to global Uð1Þ symmetries (Coleman, Paul, and Rech, 2005;
Powell, Sachdev, and Büchler, 2005). Consider the general
case where were are multiple Green’s functions (of bosons or
fermions) Gαðkα;ωαÞ. Let the αth particle have a charge qα
under a global Uð1Þ symmetry. For each such Uð1Þ symmetry,
the Luttinger-Ward functional will then obey the identity

ΦLW½Gαðkα;ωαÞ� ¼ ΦLW½Gαðkα;ωα þ qαΩÞ�: ð11:18Þ

In Eq. (11.18) we regard ΦLW as a functional of two distinct
sets of functions f1;2αðωαÞ, with f1αðωαÞ≡Gαðkα;ωαþqαΩÞ
and f2αðωÞ≡Gαðkα;ωαÞ, and ΦLW evaluates to the same
value for these two sets of functions. Expanding Eq. (11.18) to
first order in Ω and integrating by parts, we establish the
corresponding I2 ¼ 0.
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3. Thermodynamics

The grand potential can be computed by evaluating
Eq. (11.10) for the saddle point in Eq. (11.14). Such a
computation (Halperin, Lee, and Read, 1993) shows that
the entropy density is given by

s ∼ T2=3: ð11:19Þ

It is useful to give a scaling interpretation of Eq. (11.19)
(Eberlein, Mandal, and Sachdev, 2016). In a critical theory
with the dynamic critical exponent z in the spatial dimension
d, we expect s ∼ Td=z. In our case, we have fermionic

excitations that disperse as ω ∼ k3=2x , so we identify
z ¼ 3=2. In this case, Eq. (11.19) matches the scaling expect-
ations in d ¼ 1 dimension. Evidently, the free energy is
similar to that of chiral fermions dispersing normal to the
Fermi surface, and the integral along ky only determines the
prefactor in Eq. (11.19) that is related to the area of the Fermi
surface. In scaling terms, it is conventional to denote such a
dimensional transmutation in terms of a violation of the
hyperscaling exponent θ such that the entropy density scales
as s ∼ Tðd−θÞ=z. Equation (11.19) then corresponds to d ¼ 2,
θ ¼ 1, and z ¼ 3=2.
We now extend these scaling arguments to a finite system

volume V and compare the behavior to that of the random-
matrix model in Sec. IV.B, and that of the SYK model in
Sec. V.F.2. Following these earlier treatments, we deal with
extensive quantities such as the total entropy S ¼ sV. We
expect the scaling V ∼ T−d=z, and thus S ∼ T−θ=z. Similarly,
we have for the energy density e ∼ Ts ∼ Tðdþz−θÞ=z, and the
total energy E ¼ eV ∼ Tðz−θÞ=z. Collecting these scaling
forms, we express the following total entropy S as a function
of the total energy E and the volume V, as in Secs. IV.B
and V.F.2:

SðEÞ ¼ Vθ=dΦSðEVðz−θÞ=dÞ; ð11:20Þ

where ΦSðyÞ is a scaling function. As V → ∞, we expect the
relationship to involve only intensive quantities, and therefore
S=V should be a function only of E=V. This is achieved if

ΦSðy → ∞Þ ∼ yðd−θÞ=ðd−θþzÞ: ð11:21Þ

The scaling results in Eqs. (11.20) and (11.21) are easily
seen to be obeyed by both the random-matrix and SYK
models. In these models, we identify the system size N with
the volume V, but we cannot accord much meaning to the
values of the exponents, because there is no true sense of
space. In the random-matrix model, the result in Eq. (4.18)
is of the form of Eq. (11.21), with the scaling function
ΦSðyÞ ∼ ffiffiffi

y
p

and θ ¼ d − z. In the SYK model, the result in
Eq. (5.81) corresponds to ΦSðyÞ ¼ c1 þ c2

ffiffiffi
y

p
, for some

constants c1;2 and the exponents θ ¼ d and z ¼ 0.
For the critical Fermi surface, the important open question

is the behavior of ΦSðy → 0Þ. A reasonable conjecture is that
ΦSðy → 0Þ is a nonzero constant. In this case, the total entropy
in the T → 0 or E → 0 limit is S ∼ Vθ=d ¼ ffiffiffiffi

V
p

. Note that this
differs from the behavior of the entropy for the critical Fermi

surface state obtained in Sec. X.B. In other words, the entropy
of the critical Fermi surface here is subextensive at low
energies, a behavior intermediate between the random-matrix
[which has SðE → 0Þ ∼ V0] and SYK [which has
SðE → 0Þ ∼ V] models. The many-body density of states
would then behave as N ðE → 0Þ ∼ expð ffiffiffiffi

V
p Þ, although as

in all systems N ðEÞ ∼ expðVÞ when E is extensive.

4. Transport

We now couple the fermions on the critical Fermi surface to
an external Uð1Þ gauge field [distinct from A in Eq. (11.1)]
and discuss the structure of the associated conductivity. The
highly singular self-energy in Eq. (11.8) suggests that there
will be a strong scattering of charge carriers, and hence a low-
T resistivity that is larger than the ∼T2 resistivity of a Fermi
liquid. Indeed, it was argued in an early work (Lee, 1989) that
the resistivity is ∼T4=3; this is weaker than Σ ∼ T2=3 because
of the 1 − cosðθÞ factor in the transport scattering time, for
scattering by an angle θ, and the dominance of forward
scattering.
However, this argument ignores the strong constraints

placed by momentum conservation (Hartnoll et al., 2007;
Maslov, Yudson, and Chubukov, 2011; Hartnoll et al., 2014;
Eberlein, Mandal, and Sachdev, 2016; Hartnoll, Lucas, and
Sachdev, 2016) in a theory of critical fluctuations that is
described using a translationally invariant continuum field
theory such as that given by Eq. (11.3). If we set up an initial
state at t ¼ 0 with a nonzero current, such a state necessarily
has a nonzero momentum, which will remain the same for
t > 0. The current will decay to a nonzero value that max-
imizes the entropy subject to the constraint of a nonzero
momentum. This nonzero current as t → ∞ implies that the
dc conductivity is actually infinite. These considerations are
similar to those of “phonon drag” (Peierls, 1930, 1932)
leading to the absence of resistivity from electron-phonon
scattering. In practice, phonon drag is observed only in clean
samples (Hicks et al., 2012) because otherwise the phonons
rapidly lose their momentum to impurities. But the electron-
phonon coupling is weak, allowing for phonon-impurity
interactions before there are multiple electron-phonon inter-
actions. In contrast, for the critical Fermi surface, the fermion-
boson coupling is essentially infinite because it leads to the
breakdown of electronic quasiparticles. Therefore, the critical
Fermi surface must be studied in the limit of strong drag, with
vanishing dc resistivity in the critical theory.
Mechanisms extrinsic to the theory in Eq. (11.3) are

required to relax the current and obtain a finite dc conduc-
tivity. In a system with strong interactions, such processes are
most conveniently addressed by a “memory matrix” approach
that has been reviewed elsewhere (Hartnoll, Lucas, and
Sachdev, 2016); this approach also has close connections to
holographic approaches (Lucas, 2015; Lucas and Sachdev,
2015). Various mechanisms have been considered (Maslov,
Yudson, and Chubukov, 2011; Hartnoll et al., 2014; Patel and
Sachdev, 2014; Wang and Berg, 2019; Else and Senthil, 2021;
Lee, 2021) involving spatial disorder or umklapp processes,
and these do lead to a singular resistivity at low T.
The behavior of the conductivity σ at a nonzero frequencyω

has been argued to be more universal, where the effects of total
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momentum conservation are not as singular. In a quantum-
critical system, the naive scaling dimension is d − 2, and thus
we expect σðωÞ ∼ ωðd−2Þ=z, which is frequency independent in
d ¼ 2. However, we have noted violation of hyperscaling in
the free energy in Sec. XI.A.3, and a first guess would be that
there is a similar violation of hyperscaling in the conductivity,
with σðωÞ ∼ ωðd−2−θÞ=z. Using the values of θ and z, we can
write the scaling form as (Eberlein, Mandal, and Sachdev,
2016)

Re σðω ≠ 0; TÞ ¼ ω−2=3Φσ

�
ω

T

�
. ð11:22Þ

This scaling form is consistent with explicit computations of
the frequency-dependent conductivity (Kim et al., 1994; Kim,
Lee, and Wen, 1995; Eberlein, Mandal, and Sachdev, 2016;
Chubukov and Maslov, 2017) but has been questioned in
recent analyses working directly with a Fermi surface in d ¼ 2
(Darius Shi et al., 2022; Guo et al., 2022).
In a system with momentum conservation, we can define

the shear viscosity η in the continuum field theory. This has
been computed (Eberlein, Patel, and Sachdev, 2017), and its
hyperscaling violation turns out to be different from that of the
entropy and the conductivity. The ratio η=s, where s is the
entropy density, diverges as T−2=z, a result that is consistent
with the minimum viscosity conjecture (Kovtun, Son, and
Starinets, 2005).

5. Pairing instability

As written in Eq. (11.1), the gauge field mediates a
repulsive interaction between antipodal points on the Fermi
surface, and thus does not lead to a Cooper pairing instability.
However, we can consider closely related problems, either
with critical order parameters or with fermions with multiple
gauge charges, where the interactions between antipodal
fermions is attractive (Metlitski et al., 2015). In the context
of the large-N limit of Sec. XI.A.1, the equations determining
the pairing instability reduce (Esterlis et al., 2021) to precisely
those associated with pairing instabilities of the SYK model
(Kim et al., 2019; Klebanov et al., 2020). The pairing vertex
ΦðiΩÞ obeys following the integral equation (Esterlis et al.,
2021):

EΦðiΩÞ ¼ K
3

Z
dω
2π

2πΦðiωÞ
jωj2=3jω − Ωj1=3 ; ð11:23Þ

where ω and Ω are imaginary frequencies and K is a
dimensionless number that can be determined from the
structure of the critical Fermi surface problem being consid-
ered. Given the scale-invariant structure of Eq. (11.23), we
search for solutions with

ΦðiΩÞ ¼ 1

jΩjα ; ð11:24Þ

and the physical solutions are those values of α for which the
eigenvalue E ¼ 1. The pairing problem so defined appeared in
the context of SYK models (Kim et al., 2019; Klebanov et al.,
2020), but also in earlier studies of the quantum-critical

pairing of Fermi surfaces (Moon and Chubukov, 2010;
Chubukov and Abanov, 2021). A solution with a real
0 < α < 1=3 implies that the critical Fermi surface state is
stable, and the value of α determines the exponent of critical
correlations of the pairing operator (Esterlis et al., 2021).
Otherwise, there are solutions with complex α, and these
imply a pairing instability. The critical temperature toward
pairing is determined by solving a generalization of
Eq. (11.23) at nonzero T and examining the T at which the
complex solution first appears.

B. Adding spatial disorder

Given the singular transport properties of the critical Fermi
surface described in Sec. XI.A.4, it is valuable to have the
corresponding large-N analysis of a model that includes the
self-consistent influence of weak disorder on the critical Fermi
surface, beyond the perturbative analysis provided by the
memory function approach (Hartnoll, Lucas, and Sachdev,
2016). The simplest spatial disorder we can add to Eq. (11.9)
is potential disorder, which is similar in spirit to that in
Sec. IV: this is a term vabðxÞψ†

aðxÞψbðxÞ=
ffiffiffiffi
N

p
, in which vab is

a random matrix uncorrelated at different points in space
such that

vabðxÞv�cdðx0Þ ¼ v2δacδbdδdðx − x0Þ: ð11:25Þ

Equation (11.25) leads to an additional term in the large-N
action in Eq. (11.11). The solution of the saddle-point
equations in the theory with both g and v nonzero shows
(Guo et al., 2022) that the boson polarizability in Eq. (11.14)
is replaced by

Πðq; iΩnÞ ∼ −
g2

v2
jΩnj; ð11:26Þ

which leads to z ¼ 2 behavior in the boson propagator.
The corresponding fermion self-energy has a familiar elastic
impurity scattering contribution Σv, along with an inelastic
term Σg (Guo et al., 2022) with the following “marginal
Fermi-liquid” form (Varma et al., 1989):

ΣvðiωnÞ ∼ −iv2sgnðωnÞ; ΣgðiωnÞ ∼ −
g2

v2
ωn lnð1=jωnjÞ:

ð11:27Þ

Despite the singularity in Σg, Eq. (11.27) does not translate
(Guo et al., 2022) into interesting behavior in the transport:
the scattering is mostly forward, and the resistivity is Fermi-
liquid-like with ρðTÞ ¼ ρð0Þ þ AT2.
While the effect of potential scattering of fermions is weak,

a related estimation of the effects of a spatially random ϕ2

term (i.e., a random scalar mass allowed when ϕ represents a
symmetry-breaking order parameter) turns out to be strong
(Patel and Sachdev, 2014). It has been argued (Patel et al.,
2022) that such disorder should be absorbed by transforming
to eigenmodes of the quadratic ϕ action, at the price of
introducing spatial randomness into the Yukawa coupling g. A
theory with spatial randomness in the boson-fermion Yukawa
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coupling included at the outset leads to physical effects that
are just right in the large-N limit. We add to the spatially
independent Yukawa couplings gabc in Eq. (11.9) a second
coupling g0abcðxÞ that has both spatial and flavor randomness
with a vanishing first moment and a second moment

g0abcðxÞg0�a0b0c0 ðx0Þ ¼ g02δdðx − x0Þδaa0δbb0δcc0 . ð11:28Þ

Along with Eqs. (11.26) and (11.27), we obtain the following
additional contributions to the boson and fermion self-
energies (Patel et al., 2022):

Πg0 ðq; iΩnÞ ∼ −g02jΩnj; Σg0 ðiωnÞ ∼ −ig02ωn lnð1=jωnjÞ:
ð11:29Þ

The marginal Fermi-liquid self-energy now contributes sig-
nificantly to transport (Patel et al., 2022), with a linear-T
resistivity ∼g02T, while the residual resistivity is determined
primarily by v. It is notable that it is the disorder in the
interactions that determines the slope of the linear-T resis-
tivity, while it is the potential scattering disorder that deter-
mines the residual resistivity.
We also want to examine this theory for Planckian dis-

sipation (Legros et al., 2019; Cao et al., 2020; Nakajima et al.,
2020; Grissonnanche et al., 2021; Jaoui et al., 2022; Taupin
and Paschen, 2022). This requires one to write the conduc-
tivity in the form

σ ¼ ne2τ�tr
m� ; ð11:30Þ

where the effective mass m� is computed from the fermion
self-energy in a Fermi-liquid state proximate to the critical
theory. For g0 ≫ g, the transport scattering time is found to be
(Aldape et al., 2020; Esterlis et al., 2021)

1

τ�tr
≈
π

2

kBT
ℏ

; ð11:31Þ

along with factors that are slow logarithmic functions of
temperature. However, for smaller values of g0=g there is a
significant decrease from the value in Eq. (11.31) (Patel et al.,
2022; Taupin and Paschen, 2022).

XII. CONNECTIONS TO QUANTUM GRAVITY

We saw in Sec. V.F that the finite-N fluctuations of the
SYK model were described using a path integral over time
reparametrizations. This suggests a connection to a theory of
quantum gravity. By the holographic principle (’t Hooft,
2001), we expect the gravity theory to acquire an emergent
spatial direction. As the SYK path integral is over 0þ 1
dimensions, we anticipate a connection to quantum gravity in
1þ 1 dimensions. However, Einstein gravity in 1þ 1 dimen-
sions has no dynamical modes and thus cannot serve as a
holographic partner to the SYK model. As we see in
Sec. XII.B, the appropriate theory is a class of (1þ 1)-
dimensional theories known as Jackiw-Teitelboim (JT) grav-
ity, which has an additional scalar field Φ. This gravity theory

is most naturally obtained by dimensional reduction from a
charged black hole of Einstein gravity in dþ 2 spacetime
dimensions (d ≥ 2). Such a black hole has a AdS2 × Sd near-
horizon geometry; the JT-gravity theory resides on AdS2, and
fluctuations of Φ represent the quantum fluctuations in the
radius of Sd. The connection between the SYK model and
charged black holes was first noted (Sachdev, 2010) by
matching characteristics of the N ¼ ∞ SYK theory and the
classical gravity solution of charged black holes in Einstein
gravity. It was later pointed out (Kitaev, 2015) that the
connection was stronger and also held for a low-energy sector
of the fluctuations.
The AdS2 near-horizon sector of charged black holes leads

to a nonvanishing entropy as T → 0, a key characteristic such
black holes share with the SYK model (Sachdev, 2010).
Neutral black holes, such as the common Schwarzschild
solution of Einstein gravity, do not have AdS2 horizons
and have vanishing entropy as T → 0. Such black holes
display a Hawking-Page transition at a nonzero T and have
a distinct low-T behavior that we do not further discuss
(Schlenker and Witten, 2022).
We proceed by reviewing the quantum theory of charged

black holes in dþ 2 spacetime dimensions. We then discuss
its low-temperature limit and show, using the previously
outlined dimensional reduction, that this yields a version of
JT gravity that is in turn equivalent to the Schwarzian theory
of the SYK model in Sec. V.F.
There is another, closely related connection between SYK

models and black holes that we now mention. Our previous
and later discussions focus on the equilibrium thermody-
namic properties. In dynamic properties, SYK models are
characterized by Planckian time dynamics (Sachdev, 1999),
as we discussed in Sec. V.C; other metallic systems have a
similar dynamics in theory and experiment, as noted in
Secs. XI.B and III.B. Einstein gravity also displays
Planckian time dynamics for black holes responding to
external perturbations. This is evident in computations of
the damping rate of black hole quasinormal modes
(Vishveshwara, 1970; Hod, 2007): this purely classical
gravity rate is ∼ℏ=kBTH, where TH is the Hawking temper-
ature of the black hole (the ℏ in the Planckian time formula
cancels with the ℏ in TH). A recent analysis of LIGO data
(Carullo et al., 2021) has confirmed this universality in black
hole quasinormal modes.
The quantum fluctuations of gravity and electromagnetism

are formally defined by the following path integral:

ZEM ¼
Z

DgDA expð−IEMÞ; ð12:1Þ

where IEM is the Einstein-Maxwell action (which we write
later) and the path integral is over the metric g of spacetime
and the electromagnetic vector potential A. It is almost
certainly true that Eq. (12.1) does not make sense as it stands,
because of numerous ultraviolet divergencies and gauge-
fixing issues. Nevertheless, it turns out to be possible to
make sense of Eq. (12.1) in certain limits. For black hole
saddle-point solutions of IEM, it was shown (Gibbons and
Hawking, 1977) that the evaluation of IEM at the saddle
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point in a Euclidean geometry, with a thermal circle of
circumference ℏ=kBT along the temporal direction, gave a
consistent description of the quantum thermodynamics of
black holes. It is only via the ℏ dependence of this circum-
ference that Planck’s constant appears in such computations:
there is no ℏ in IEM, the classical Einstein-Maxwell action. We
set ℏ ¼ kB ¼ 1 in the remainder of our discussion.
We review the Gibbons-Hawking description of a charged

black hole (Chamblin et al., 1999) in Sec. XII.A. There turn
out to be precise quantitative connections to the thermody-
namics of the SYK model (Sachdev, 2010, 2015).
Fluctuation corrections to the Gibbons-Hawking thermo-

dynamics were computed only recently in the low-T limit
for charged holes. In principle, these corrections could have
been computed decades ago, but the computations were
undertaken only after the connection to the SYK model
showed the route that was needed. These computations are
reviewed in Sec. XII.B, which shows that the low-energy
theory of charged black holes reduces to an effective theory
that is identical to the theory in Eqs. (5.58) and (5.60) obtained
for the SYK model of complex fermions.
Section XII.C surveys rapid recent developments on

coupled SYK models in and out of equilibrium, which are
holographically realized by solitons or instantons known as
wormholes.
Section XII.D discusses approaches to the theory of strange

metals using the AdS=CFT correspondence of supersymmet-
ric Yang-Mills theory (Hartnoll, Lucas, and Sachdev, 2016)
and connects these to the SYK model by placing the Yang-
Mills theory on a finite sphere.

A. Charged black holes: Einstein-Maxwell theory

We consider the case of spherical black holes in dþ 2
spacetime dimensions; we assume that d ≥ 2 in all of the
following discussions of quantum gravity. The Einstein-
Maxwell theory has the following Euclidean action:

IEM ¼
Z

ddþ2x
ffiffiffi
g

p �
−

1

2κ2

�
Rdþ2 þ

dðdþ 1Þ
L2

�
þ 1

4g2F
F2

	
;

ð12:2Þ

where κ2 ¼ 8πGN is the gravitational constant, Rdþ2 is the
Ricci scalar, F ¼ dA is the electromagnetic flux, and gF is a
Uð1Þ gauge-coupling constant. We have also included a
negative cosmological constant term such that the spacetime
at asymptotic infinity is AdSdþ2 with a radius L; the limit of
large L can be taken at the end to obtain the Minkowski
spacetime at infinity.
We now describe the spherical charged black hole saddle

point of IEM. There is a two parameter family of such
solutions, which we specify as the temperature T and the
chemical potential μ. All other properties of the black hole
saddle point are determined by T, μ, and the constants of
nature in IEM: this includes the spacetime metric, the Uð1Þ
gauge field, the radius of the horizon r0, the total charge in the
black hole Q, and the black hole entropy S.
The classical Einstein-Maxwell equations yield the follow-

ing expression for the metric expressed in terms of the

imaginary time τ, the radial coordinate r, and dΩ2
d, the metric

of the d sphere (Chamblin et al., 1999):

ds2 ¼ VðrÞdτ2 þ r2dΩ2
d þ

dr2

VðrÞ ; ð12:3Þ

where

VðrÞ ¼ 1þ r2

L2
þ Θ2

r2d−2
−

M
rd−1

: ð12:4Þ

As r → ∞, the metric in Eq. (12.3) is AdSdþ2. The radius of
the horizon is determined by Vðr0Þ ¼ 0, which we write as

M ¼ rd−10

�
1þ r20

L2
þ Θ2

r2d−20

�
: ð12:5Þ

The gauge-field solution has the form

A ¼ iμ

�
1 −

rd−10

rd−1

�
dτ: ð12:6Þ

The value of the gauge field at the anti–de Sitter (AdS)
boundary defines the chemical potential μ provided that r0
is the horizon. The Einstein-Maxwell equations applied to
Eqs. (12.3) and (12.6) also yield the condition

Θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þ

d

r
κrd−10

gF
μ: ð12:7Þ

Thus far, our analysis has been entirely classical. As
previously stated, quantum mechanics enters the picture only
by the condition that the solution in Eq. (12.3) yields a
spacetime that is periodic as a function of τ with the period
1=T. We can impose periodicity as a function of τ by fiat but
have to ensure that there is no singularity at the horizon r0,
where Vðr0Þ ¼ 0. We change radial coordinates to y, where
r ¼ r0 þ y2. Near the horizon, the ðr; τÞ components of
Eq. (12.3) then become

ds2 ¼ 4

V 0ðr0Þ
�½V 0ðr0Þ�2

4
y2dτ2 þ dy2

	
: ð12:8Þ

Notice that the expression in large square brackets in
Eq. (12.8) is precisely the metric of the flat plane in polar
coordinates, with the radial coordinate y and the angular
coordinate θ ¼ V 0ðr0Þτ=2. For there to be no real singularity at
the origin of polar coordinates, only a coordinate singularity,
we must have periodicity in θ with period 2π. Matching this to
the period 1=T in τ, we determine the Hawking temperature of
the black hole as follows:

4πT ¼ V 0ðr0Þ: ð12:9Þ

Equations (12.5), (12.7), and (12.9) determine all the
parameters Θ, M, and r0 in terms of μ and T. Therefore,
we have specified a black hole solution in terms of the
independent thermodynamic parameters μ and T.
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We now quote the free energy and entropy of this black
hole, obtained through the evaluation of IEM at the previously
mentioned saddle point. The action has to be supplemented by
a Gibbons-Hawking boundary term that is required to obtain
the classical Einstein-Maxwell equations as saddle-point
equations of IEM. Such an evaluation of IEM yields the
following grand potential (Chamblin et al., 1999):

ΩðT; μÞ ¼ sd½r0ðT; μÞ�d−1
2κ2

�
1 −

½r0ðT; μÞ�2
L2

�

−
sdðd − 1Þμ2½r0ðT; μÞ�d−1

2dg2F
; ð12:10Þ

where sd ≡ 2πðdþ1Þ=2=Γ(ðdþ 1Þ=2) is the area of Sd with unit
radius. We can evaluate the total charge by taking the μ
derivative of Ω as follows:

QðT; μÞ ¼ sdðd − 1Þμ½r0ðT; μÞ�d−1
g2F

. ð12:11Þ

Equation (12.11) can also be obtained from Gauss’s law
evaluated as r → ∞. Similarly, the entropy is determined by
taking the temperature derivative of Ω to obtain

SðT; μÞ ¼ 2πsd
κ2

½r0ðT; μÞ�d; ð12:12Þ

which is precisely the expression expected from Hawking’s
result A=4GN : A ¼ sdrd0 is the area of the horizon. The
universality of the Hawking area result can be understood
from the fact that the only explicit dependence of the action on
T arises from the identification in Eq. (12.9) leading to a
circumference 1=T on the time circle; the T derivative of Ω
can then be shown to arise only from the vicinity of the
horizon at r ¼ r0, where the integral over the angular
coordinates yields the area (Ross, 2005).
We now take the T → 0 limit of all the previous results

while keeping the charge Q fixed. The horizon radius
r0 → Rh, where

Q ¼ sdRd−1
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d½ðdþ 1ÞR2

h þ ðd − 1ÞL2�
p

LκgF
: ð12:13Þ

We are interested in the structure of the metric near the horizon
at T ¼ 0. For this purpose, we transform to near-horizon
coordinates, by changing the radial coordinate from r to the
coordinate ζ, where

r ¼ Rh þ
R2
2

ζ
. ð12:14Þ

In these coordinates, the T ¼ 0 horizon is at ζ ¼ ∞; see
Fig. 25. We chose the length scale R2 to be

R2 ¼
LRhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðdþ 1ÞR2
h þ ðd − 1Þ2L2

p : ð12:15Þ

As T → 0, the metric in Eq. (12.3) for ζ ≫ Rh [region (A) in
Fig. 25] becomes

ds2 ¼ R2
2

ζ2
½dτ2 þ dζ2� þ R2

hdΩ2
d: ð12:16Þ

The metric on the ðτ; ζÞ spacetime is AdS2, and the complete
metric is AdS2 × Sd. In the same coordinate system, the Uð1Þ
gauge field becomes

A ¼ i
E
ζ
dτ; ð12:17Þ

where the dimensionless prefactor

E ¼ gFRhL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d½ðdþ 1ÞR2

h þ ðd − 1ÞL2�
p

κ½dðdþ 1ÞR2
h þ ðd − 1Þ2L2� ð12:18Þ

is a measure of the electric field on the horizon of the black
hole. We have chosen the same symbol E for this prefactor as
that appearing in characterizing the particle-hole asymmetry
of the SYKmodel in Eqs. (5.9) and (5.26). This is not arbitrary
(Sachdev, 2010, 2015): computations (Faulkner, Liu et al.,
2011) of the Green’s function of a fermion moving in the
background specified by Eqs. (12.16) and (12.17) yield
precisely the same result as in Eq. (5.26).
We now turn to a computation of the entropy, where we

find noteworthy connections to the SYK model. We write
SðT → 0Þ ¼ S, and then from Eq. (12.12) get

S ¼ 2πsd
κ2

Rd
h. ð12:19Þ

Thus, we obtain a nonvanishing entropy in the zero-
temperature limit similar to that in the SYK model
(Sachdev, 2010). Furthermore, by eliminating Rh between
Eqs. (12.13) and (12.19) and using Eq. (12.18), we find that

�
∂S
∂Q

�
T→0

¼ 2πE; ð12:20Þ

which is exactly the same as the relation in Eq. (5.36) obtained
for the SYK model (Sachdev, 2015). We can also compute
the low-T dependence of μ and verify that the Maxwell
relation (5.35) is satisfied. Furthermore, the T dependence of

FIG. 25. Spatial crossover boundaries outside a black hole of
chargeQ. The value of Rh is determined from Q via Eq. (12.13),
and we describe T ≪ 1=Rh at a fixedQ and R2 ∼ Rh. We indicate
contributions to the entropy ΔS from regions (A) and (B).
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entropy computed from Eq. (12.19) is linear in T at low T and
fixed Q,

SðT → 0;QÞ ¼ S þ γT; ð12:21Þ

where

γ ¼ 4π2dsdR2
2R

d−1
h

κ2
: ð12:22Þ

This is as in the SYK model in Eq. (5.53), where the value of γ
was related to the coefficient of a Schwarzian action, and we
do the same for the charged black hole in Sec. XII.B.
The appearance of the fundamental relation (12.20) of the

SYK model in the theory of a charged black hole may appear
to be a coincidence here, but it is not. In fact, Eq. (12.20) is a
general property of black holes with AdS2 horizons and
follows from careful consideration of their symmetries (Sen,
2005, 2008). These symmetries are similar to those described
in Appendix B for the SYK model, which were exploited in
Sec. V.D to obtain Eq. (5.36) (Sachdev, 2015; Davison et al.,
2017; Gu et al., 2020).

1. Charged black branes

This section notes the limit of the previously mentioned
spherical solution when the black hole becomes an infinite,
flat charged “black brane,” with a near-horizon geometry of
AdS2 × Rd, in contrast to the near-horizon AdS2 × Sd con-
sidered thus far. These results are helpful in Sec. XII.D, where
we discuss the connection to the AdS=CFT correspondence.
This limit is obtained by taking Rh ≫ L for our results thus
far. We introduce the following charge and entropy densities:

Q≡ Q
sdLd ; S ≡ S

sdLd : ð12:23Þ

We then have from Eq. (12.13)

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðdþ 1Þp
LκgF

�
Rh

L

�
d
: ð12:24Þ

Similarly, the T → 0 entropy in Eq. (12.21) becomes the
Hawking entropy density

S ðT → 0;QÞ ¼ 2π

κ2

�
Rh

L

�
d
�
1þ 2πL2T

ðdþ 1ÞRh

	
: ð12:25Þ

These results for the densities correspond exactly to those
obtained earlier (Faulkner, Liu et al., 2011) from a direct
solution of the flat black-brane geometry.

B. Charged black holes: Quantum fluctuations

This section examines quantum fluctuations about the
saddle-point solution of Einstein-Maxwell theory described
in Sec. XII.A. In the “extremal” limit T ≪ 1=Rh, the theory of
these fluctuations coincides with those of the theory described
in Eqs. (5.58) and (5.60) obtained from the SYK model
(Nayak et al., 2018; Moitra, Trivedi, and Vishal, 2019;

Sachdev, 2019; Gaikwad et al., 2020; Heydeman et al.,
2020; Iliesiu and Turiaci, 2020; Boruch et al., 2022). We
now outline how this theory may be obtained starting
with Eq. (12.1). A more detailed review of these fluctuation
computations was presented elsewhere (Sachdev, 2019), but
we highlight the key steps here.

(1) Reduce the dþ 2 spacetime dimensional theory in IEM
to a (1þ 1)-dimensional theory IEM;2 by taking all
fields dependent only upon the radial coordinate r and
the imaginary time τ.

(2) Take the low-energy limit of IEM;2 by mapping it to a
near-horizon theory IJT in a (1þ 1)-dimensional
spacetime with a boundary. Therefore, we integrate
out region (C) in Fig. 25 and obtain an effective theory
in regions (A) and (B). In these regions, the near-
horizon AdS2 saddle point in Eqs. (12.16) and (12.17)
is an exact saddle point of IJT. Outside the boundary,
there is a crossover to the full solution of IEM in
Eqs. (12.3) and (12.6) to region (C), where the
spacetime does not factorize into AdS2 × Sd.

(3) Compute fluctuations about the AdS2 saddle point
of IJT. Einstein gravity in 1þ 1 dimensions has no
graviton and is “pure gauge.” In the JT-gravity theory
with boundary, there is a remnant degree of freedom
that is a boundary graviton. The action for this
boundary graviton is precisely the same as the
Schwarzian theory in Eqs. (5.58) and (5.60).

We outline these steps for the gravity sector in Secs. XII.B.1–
XII.B.3. The electromagnetic sector produces the action for
the phase field ϕ in the Schwarzian theory, as discussed
elsewhere (Sachdev, 2019).

1. Dimensional reduction from d + 2 to 1 + 1

We write the (dþ 2)-dimensional metric g of IEM in
Eq. (12.2) as follows in terms of a two-dimensional metric
h and a scalar field Φ (Davison et al., 2017; Nayak et al.,
2018):

ds2 ¼ ds22
Φd−1 þΦ2dΩ2

d: ð12:26Þ

Both h and Φ, as well as the gauge field A, are allowed
to be general functions of the two-dimensional coordinates ζ
and τ [recall Eq. (12.14) for the definition of the radial
coordinate ζ]. Note that the scalar field Φ represents radial
fluctuations in the size of the black hole. Equation (12.2) and
an associated Gibbons-Hawking boundary term then reduce
to [x≡ ðτ; ζÞ]

IEM;2 ¼
Z

d2x
ffiffiffi
h

p �
−

sd
2κ2

ΦdR2 þ UðΦÞ þ ZðΦÞ
4g2F

F2

	
;

IGH ¼ −
sd
κ2

Z
∂

dx
ffiffiffiffiffi
hb

p
ΦdK1; ð12:27Þ

along with an additional term not displayed that cancels in
IEM;2 þ IGH (Nayak et al., 2018). The Gibbons-Hawking term
is to be evaluated at the boundary at ζ → 0 or r → ∞. In
Eq. (12.27) R2 is the two-dimensional Ricci scalar and the
second integral is over a one-dimensional boundary with
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metric hb and extrinsic curvatureK1. The explicit forms of the
potentials UðΦÞ and ZðΦÞ are

UðΦÞ ¼ −
sd
2κ2

�
dðd − 1Þ

Φ
þ dðdþ 1ÞΦ

L2

�
;

ZðΦÞ ¼ sdΦ2d−1: ð12:28Þ

The (1þ 1)-dimensional action in Eqs. (12.27) and (12.28)
has exactly the same saddle-point solution as that of
the (dþ 2)-dimensional action in Eq. (12.2). The (1þ 1)-
dimensional theory IEM;2 now involves a metric h and a scalar
field Φ, and in terms of the new variables the solution is given
by matching Eq. (12.3) with the Ansatz in Eq. (12.27). In this
manner, it is easy to see that the exact solution for the scalar
field is

ΦðζÞ ¼ Rh þ
R2
2

ζ
: ð12:29Þ

2. JT gravity in the near-horizon limit

Note that the T ¼ 0 horizon is obtained as ζ → ∞, and
the factorization of the metric to AdS2 × Sd fails for ζ ≲ Rh.
Thus, we reduce the theory to the near-horizon spatial region
ζ > ζb, with

Rh ≪ ζb ≪
1

T
; ð12:30Þ

which applies in regions (A) and (B) of Fig. 25. The low-
energy limit of the (1þ 1)-dimensional theory of step 1 to
ζ > ζb was argued (Almheiri and Polchinski, 2015;
Maldacena, Stanford, and Yang, 2016) to be the JT-gravity
theory (Teitelboim, 1983; Jackiw, 1985) of a metric h and a
scalar field Φ1 given by

IJT ¼ −S þ
Z

d2x
ffiffiffi
h

p �
−

sd
2κ2

Φ1

�
R2 þ

2

Hb

�	
;

IGH ¼ −
sd
κ2

Z
∂

dx
ffiffiffiffiffi
hb

p
Φ1K1; ð12:31Þ

where S is as defined in Eq. (12.19). We also have the
boundary conditions

hττðζ ↘ ζbÞ ¼
Hb

ζ2
;

Φ1ðζ ↘ ζbÞ ¼
Φb

ζ
: ð12:32Þ

This theory depends upon two constants Hb and Φb, and we
can obtain their values by matching to the solution for the
two-dimensional metric h and scalar field Φ obtained in
step 1, which was valid at all ζ. The boundary condition
on hττ is obtained by comparing Eq. (12.26) with Eq. (12.16).
Using the leading term in Eq. (12.29) for large ζ
we obtain

Hb ¼ R2
2R

d−1
h : ð12:33Þ

The subleading term in Eq. (12.29) contributes to the
coefficient of R2 in Eqs. (12.27) and (12.31), which from
Eq. (12.29) yields

lim
ζ→∞

½ΦðζÞ�d ¼ Rd
h þΦ1ðζÞ þ � � � . ð12:34Þ

The boundary value of Φ1 in Eq. (12.32) then determines

Φb ¼ dRd−1
h R2

2: ð12:35Þ

The saddle-point solution of the JT-gravity theory in
Eqs. (12.31) and (12.32) coincides with the metric (12.16),
which we now generalize to T > 0 as follows:

ds22 ¼
R2
2R

d−1
h

ζ2

�
ð1 − 4π2T2ζ2Þdτ2 þ dζ2

1 − 4π2T2ζ2

	
;

Φ1ðζÞ ¼
Φb

ζ
: ð12:36Þ

Note that the boundary form of Φ1 in Eq. (12.32) holds for all
ζ in the regime of validity of the JT theory, a result that is also
evident in Eq. (12.34). The horizon is at ζ ¼ 1=2πT, and one
can verify that the analog of Eq. (12.9) for the Hawking
temperature is satisfied here.

3. From JT gravity to the Schwarzian

We address fluctuations about the saddle-point solution in
Eq. (12.36) of the JT-gravity theory defined by Eqs. (12.31)
and (12.32). The effective theory now has a simple enough
form that these fluctuations can be evaluated reliably
(Maldacena, Stanford, and Yang, 2016). The integral over
Φ1 in Eq. (12.31) can be evaluated exactly and yields a
constraint on the bulk metric, and the only dynamical degree
of freedom in JT gravity is a time reparametrization along the
boundary τ → fðτÞ. To ensure that the bulk metric obeys
the boundary condition in Eq. (12.32), we also have to make
the spatial coordinate ζ a function of τ, so we map
ðτ; ζÞ → (fðτÞ; ζðτÞ). The boundary metric induced by
Eq. (12.36) then equals the value in Eq. (12.32) provided
that ζðτÞ is related to fðτÞ by

ζðτÞ ¼ ζbf0ðτÞ þ ζ3b

�½f00ðτÞ�2
2f0ðτÞ − 2π2T2½f0ðτÞ�3

�
þOðζ4bÞ:

ð12:37Þ

Finally, we evaluate IGH in Eq. (12.31) along this boundary
curve (the bulk contribution IJT vanishes from the equation of
motion of Φ1, which is R2 þ 2=Hb ¼ 0). In this manner we
obtain the action (Maldacena, Stanford, and Yang, 2016;
Sachdev, 2019) I1;eff ¼ −S þ Ieff with

Ieff ½f� ¼ −
sdΦb

κ2

Z
1=T

0

dτ(ffðτÞ; τg þ 2π2T2½f0ðτÞ�2)

¼ −
sdΦb

κ2

Z
1=T

0

dτftan½πTfðτÞ�; τg: ð12:38Þ
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Notice that the arbitrary value of ζb has been canceled out, and
this is an important consistency check on our steps. We have
obtained the Schwarzian action, which was found earlier for
the SYK model. Here its presence is a consequence of the
SLð2;RÞ symmetry of pure AdS2 discussed in Appendix C,
which requires the action to vanish for fðτÞ, which are
isometries of AdS2. The action for other fðτÞ appears from
the “boundary graviton” (Maldacena, Stanford, and Yang,
2016) obtained by embedding AdS2 in the (dþ 2)-dimen-
sional geometry of a charged black hole.
Comparing the action (12.38) to the action for the SYK

model in Eq. (5.60), we obtain from the coefficient of the
Schwarzian [ignoring the N prefactor in Eq. (5.60)]

γ ¼ 4π2sdΦb

κ2
: ð12:39Þ

After using the value of Φb in Eq. (12.35), we find that this
value of γ is in precise agreement with the value in Eq. (12.22),
which was computed with the T dependence of the entropy in
Eq. (12.12) for the full (dþ 2)-dimensional theory. Thus, the γ
coefficients of both charged black holes and the SYK model
[in Eq. (5.53)] are given by the coefficient of the Schwarzian
effective action.
Finally, we can combine the Schwarzian fluctuation

contribution to the entropy in Eq. (5.77) with the leading
Bekenstein-Hawking entropy in Eqs. (12.12), (12.15),
(12.21), and (12.22) to obtain the universal, leading, low-T
form of the entropy of charged black holes when the AdSdþ2

radius is much larger than the size of the black hole (L ≫ Rh)
(Sachdev, 2019; Iliesiu and Turiaci, 2020),

SðTÞ ¼ 1

GN

�
A0

4
þ πdAðdþ1Þ=d

0

2ðd − 1Þ2s1=dd

T

	
−
3

2
ln

�
U
T

�
; ð12:40Þ

where A0 ¼ sdRd
h is the horizon area at T ¼ 0 and the factor

in square brackets accounts for the change in the horizon area
with increasing T at fixedQ. The nonuniversal energy scaleU
is now presumably a Planck scale energy, but the 3=2
coefficient of the logarithm is independent of the nature of
the high-energy cutoff. The Schwarzian fluctuation correction
to the entropy becomes of the order of the Bekenstein-
Hawking term only at an exponentially low temperature T ∼
U expð−A0=6GNÞ when the theory breaks down, and the
discrete level spacing of the black hole has to be accounted
for: the path integral over the Einstein-Maxwell theoretical
equation (12.2) has information only on the density of states
coarse grained over the exponentially small level spacing.
Determining the precise energy levels requires embedding
Eq. (12.2) in a higher energy theory like string theory. As in
Sec. V.F.2, the logarithmic correction to the entropy in
Eq. (12.40) translates to the coarse-grained density of
many-body states in Eq. (5.79); for a charged black hole in
(dþ 2)-dimensional Minkowski spacetime with L ≫ Rh, the
density of states takes the following form (Sachdev, 2022):

DðEÞ ∼ exp

�
A0c3

4ℏGN

�
sinh

��
πdAðdþ1Þ=d

0

ðd − 1Þ2s1=dd

c3

ℏG
E
ℏc

	1=2�

ð12:41Þ

after restoring factors of ℏ and c. Equation (12.41) is a rare
formula that combines Planck’s constant ℏ with Newton’s
gravitational constant GN : the exponential prefactor was
obtained by Hawking, and the sinh term follows from
developments ensuing from the solution of the SYK model.
Both terms depend only upon the T ¼ 0 area of the black
hole horizon A0 and fundamental constants of nature. Note
also that there is no dependence upon the electromagnetic
coupling gF.
We note that the previously obtained black hole density of

states is significantly different from that obtained in super-
symmetric SYK models and black hole solutions of string
theory (Fu et al., 2017; Heydeman et al., 2020; Boruch et al.,
2022): the latter have an exponentially large exact degeneracy
of ground states with multiplicity ∼ expðA0=4GNÞ and a

gap ∼1=A1=d
0 to the first excited state. Contrast this with the

generic nonsupersymmetric situation with an exponentially
small level spacing down to the ground state illustrated in
Fig. 6. Indeed, it was the determination of the density of states
of the SYK model that led to the understanding that black
holes with AdS2 horizons and no low-energy supersymmetry
do not have ground states with an exponentially large
degeneracy.

C. Wormholes

Thus far we have considered a single SYKmodel in thermal
equilibrium and have argued that it is equivalent to a charged
black hole, also in thermal equilibrium. The past few years
have seen rapid developments in the theory of more complex
configurations of SYK models and black holes, including
noteworthy progress in resolving Hawking’s quantum infor-
mation paradox on evaporating black holes. A common thread
in these developments have been wormholes, which are the
analogs of solitons or instanton tunneling events in quantum
gravity.
Consider a pair of identical coupled SYK models, i.e., a

homonuclear diatomic SYK molecule, with the Hamiltonian
(Sahoo et al., 2020)

H ¼
X
ij;kl

Uij;kl

X
a¼1;2

c†iac
†
jackacla − μ

X
i;a

c†iacia

þ
X
i

κðc†i1ci2 þ c†i2ci1Þ: ð12:42Þ

In Eq. (12.42) a ¼ 1; 2 labels the two SYK atoms, and κ is the
tunneling amplitude between them. Notice that the random
interactions Uij;kl are the same on both SYK atoms. This two-
atom model is similar to the lattices of SYK atoms considered
in Sec. X.A. At half filling, this model can acquire a gapped
ground state when the fermions occupy only the lower
energy “bonding” orbitals that are eigenstates of the κ term.
Holographically, this gapped state corresponds to an eternal
wormhole between two black holes with AdS2 horizons, as
has been discussed in many recent works (Maldacena and Qi,
2018; García-García et al., 2019; Gao and Jafferis, 2021;
Plugge, Lantagne-Hurtubise, and Franz, 2020; Sahoo et al.,
2020; Zhou and Zhang, 2020; Nikolaenko et al., 2021; Zhang,
2021, 2022; Zhou et al., 2021).
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Next consider a single Majorana q ¼ 4 SYK model of N
sites (as in Sec. V) coupled to a Majorana q ¼ 2 random-
matrix model ofM sites (as in Sec. IV), withM ≫ N. This is a
heteronuclear diatomic SYK molecule with one atom much
larger than the other and is described using the Hamiltonian
(Su, Zhang, and Zhai, 2021; Zhang, 2022)

H ¼
X

i<j<k<l

US
ijklψ iψ jψkψl þ i

X
a<b

UE
abχaχb þ i

X
i;a

Viaψ iχa:

ð12:43Þ

In Eq. (12.43) i; j; k;l ¼ 1;…; N and a; b ¼ 1;…;M. (The
same considerations apply to models of complex fermions, but
Majorana fermions were chosen for simplicity.) The SYK
atom of ψ fermions models a black hole, and we consider a
situation in which it is in some pure excited state with energy
E at time t ¼ 0. The χ free fermions represent the environment
into which the black hole is going to radiate its energy, and
thus this setup models an evaporating black hole. At the initial
time, the black hole is presumed to be decoupled from the
environment, so the entanglement entropy between the black
hole and the environment vanishes. In the early stages of the
evaporation, the energy E will radiate out into the environ-
ment, so the entanglement entropy will increase with time.
However, we can also see that as t → ∞ the energy E will all
essentially be absorbed by the environment (becauseM ≫ N),
so the SYK model will be in a low-energy state with small
entanglement with the environment. This time evolution of the
entanglement is a model of the black hole Page curve (Su,
Zhang, and Zhai, 2021; Zhang, 2022). In the holographic
representation, the computation of such a Page curve involves
spacetime wormholes (Penington et al., 2019; Saad, Shenker,
and Stanford, 2019; Almheiri et al., 2020, 2021; Chen, Qi, and
Zhang, 2020; Chen, Czech, and Wang, 2021). These works
have led to the realization (Bousso et al., 2022) that, upon
including wormhole contributions, the path integrals over
Einstein-Maxwell theories like Eq. (12.2) are also able to
properly compute the time evolution of entanglement entropy
in black hole evaporation, along with the density of states
noted at the end of Sec. XII.B.3, despite their lack of
knowledge of the precise black hole energy levels.

D. AdS=CFT correspondence

An alternative route to a connection between strange metals
and quantum gravity uses the AdS=CFT correspondence of
string theory. This is a correspondence between a conformal
field theory (CFT) in flat d-dimensional space and gravity
on a AdSdþ2 spacetime (Maldacena, 1998; Witten, 1998). The
canonical example in spatial dimension d ¼ 3 is SUðNYMÞ
Yang-Mills gauge theory with N ¼ 4 supersymmetry
(Maldacena, 1998) and in spatial dimension d ¼ 2 is
SUðNYMÞ Yang-Mills gauge theory with N ¼ 8 supersym-
metry (Aharony et al., 2008). Both theories are conformally
invariant and map to neutralQ ¼ 0 black hole solutions of the
action (12.2), with coupling constants

κ ¼ κ̄N−a
YML

d=2; gF ¼ ḡFN−a
YML

ðd−2Þ=2; ð12:44Þ

where κ̄ and ḡF are dimensionless constants of the order of
unity, a ¼ 1 for d ¼ 3, and a ¼ 3=4 for d ¼ 2.
To obtain a connection to strange metals, we have to dope

these CFTs; i.e., we have to place them in a chemical potential
coupling to a global Uð1Þ symmetry, which induces a
conjugate charge density N2a

YMQYM (Hartnoll et al., 2007).
In the gravity theory, this doped CFT maps to the same
charged black hole solutions that we considered for the SYK
model, with the important difference that the relevant sol-
utions are the flat black-brane solutions in Sec. XII.A.1, which
describe the strange metals produced by doped supersym-
metric Yang-Mills theory in infinite d-dimensional space in
the limit of large NYM. We note that the doping breaks the
supersymmetry, so the low-energy theory has no supersym-
metry. The nonzero charge density in the supersymmetric
Yang-Mills theory introduces a length scale of the order of
½QYM�−1=d, and we are interested in physics at longer length
scales. At these length scales, the black-brane solutions
described in Sec. XII.A.1 have a AdS2 × Rd geometry
(Faulkner, Liu et al., 2011). The doped Yang-Mills theories
are described using continuum Lagrangians similar to the
disorder-free models of non-Fermi liquids that we considered
in Sec. XI (Huijse and Sachdev, 2011; Huijse, Sachdev, and
Swingle, 2012). The holographic flow of the doped Yang-
Mills theory to a AdS2 geometry is therefore evidence that
models in the class of Sec. XI could have an intermediate
energy range over which their physics is described using the
SYK-like local criticality. While the SYK-critical state of
Sec. VII is unstable to spin-glass order at the lowest temper-
atures, there could be a crossover from local criticality to the
momentum-dependent Fermi surface physics at the lowest
energies for the models of Sec. XI. This is in contrast to
the supersymmetric doped Yang-Mills theories, for which the
AdS2 geometry is stable down to zero temperature in the
large-NYM limit. We note another discussion (Iqbal, Liu, and
Mezei, 2011, 2012) with a related point of view.
Some studies of the AdS2 × Rd black-brane solutions

have focused on their response to additional probe fermions
(Cubrovic, Zaanen, and Schalm, 2009, 2011; Faulkner, Iqbal
et al., 2011; Faulkner, Liu et al., 2011; Liu, McGreevy, and
Vegh, 2011). In particular, it was shown that probe fermions
in such a geometry acquired a Fermi surface and a self-
energy with some similarities to the critical Fermi surface
described in Sec. XI.A, with a self-energy that obeyed a
scaling form similar to Eq. (11.8). But there were also
significant differences from the microscopic critical Fermi
surface theory of Sec. XI.A: (i) the self-energy of the probe
fermions had an exponent that varied with momentum across
the Fermi surface and (ii) the size of the Fermi surface of the
probe fermions was determined by the density of the probe
fermions and did not include the large density N2a

YMQYM of
the Yang-Mills theory itself. There is expected to be a
separate Fermi surface of the latter background fermions
upon including finite-NYM corrections (Sachdev, 2012;
Faulkner and Iqbal, 2013). These features imply that the
probe fermion black-brane strange metal is really a descrip-
tion of a spectator band of fermions (Sachdev, 2010; Huijse
and Sachdev, 2011; Huijse, Sachdev, and Swingle, 2012)
scattering off a background that has a large density of
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low-energy excitations, and the source of the breakdown of
the quasiparticles does not arise from interactions between
the putative quasiparticles themselves.

1. Connection to the SYK model

The SYK model mapping of Sec. XII.B appeared for a
spherical black hole horizon of radius Rh, which at temper-
atures T ≪ 1=Rh mapped onto the SYK model at T ≪ U. We
can also place the supersymmetric Yang-Mills theory on a
sphere of radius RYM, and this supersymmetric Yang-Mills
theories is then connected to the Schwarzian path integral in
Eqs. (5.60) and (12.38), as we now discuss.
The Yang-Mills theory is characterized by two length scales

(RYM and ½QYM�−1=d) and the charged black hole solution
of Secs. XII.A and XII.B, with a near-horizon AdS2 × Sd

geometry, provides a complete holographic description as 1=T
is varied across these length scales. To make this correspon-
dence precise, we have to relate RYM and ½QYM�−1=d to the
length scales in the black hole solution, which are Rh, L, and
R2. The connection between the total charge and the charge
density in Eq. (12.23) immediately implies

L ¼ RYM; ð12:45Þ

while the total charge of the black hole solution in Eq. (12.13)
leads to

QYM ¼ Rd−1
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d½ðdþ 1ÞR2

h þ ðd − 1ÞL2�
p

L2dκ̄ḡF
: ð12:46Þ

The value of R2 remains connected to Rh and L as in
Eq. (12.15).
Finally, we connect to the low-energy Schwarzian approxi-

mation of the charged black hole. The charge density breaks
the supersymmetry of the Yang-Mills theory, so we do not
need to consider the super-Schwarzian theories that are
needed for supersymmetric SYK models and supersymmetric
black holes (Fu et al., 2017; Stanford and Witten, 2017;
Heydeman et al., 2020; Boruch et al., 2022). If we are at low
temperatures such that the thermal length is larger than the
charge length T ≪ ½QYM�1=d, and also such that fluctuations
of nonconstant horizon modes can be neglected T ≪ 1=Rh,
we can map these values L, Rh, and R2 to obtain the
dimensionless coupling constant gSch (Stanford and Witten,
2017) of the low-energy Schwarzian theory as follows from
Eq. (12.39):

π

g2Sch
¼ γT ¼ 4π2dsdN2a

YM

κ̄2
R2
2R

d−1
h T
Ld : ð12:47Þ

The ratio of length scales R2
2R

d−1
h =Ld is to be determined as a

function of the length scales RYM and ½QYM�−1=d by solving
Eqs. (12.45), (12.46), and (12.15). Thus, Eq. (12.47) is the
main result of this section, determining the Schwarzian
coupling gSch as a function of the parameters of the Yang-
Mills theory, which are the temperature T, the radius of the

sphere RYM, and the charge density N2a
YMQYM. Note that the

coupling g becomes small in the limit of large NYM.
We now examine the value of gSch in the limiting regime

when the size of the sphere of the Yang-Mills theory is
much larger than the size set by the charge density
RYM ≫ ½QYM�−1=d. We then find that Rh ≫ L, with

Rh ∼ RYM½QYMRd
YM�1=d; R2 ∼ RYM; ð12:48Þ

such that

1

g2Sch
∼ N2a

YM½QYMRd
YM�ðd−1Þ=dRYMT: ð12:49Þ

We observe that g2Sch ∼ ½RYM�−d, so the coupling becomes
weak in the limit of a large sphere. As always, we have to
maintain T ≪ 1=Rh to apply the Schwarzian theory, so the
minimum possible value of the Schwarzian coupling is

g2Sch;min ∼ N−2a
YM ½QYMRd

YM�ð2−dÞ=d: ð12:50Þ

E. Out-of-time-order correlations

The connections to quantum gravity have also introduced a
new diagnostic, the out-of-time-order correlator, for detecting
how quickly local perturbations become entangled with a
macroscopic number of degrees of freedom in quantum many-
body systems evolving under their own unitary dynamics.
Out-of-time-order correlations (OTOCs) were studied a long
time ago (Larkin and Ovchinnikov, 1969) as an approach to
diagnosing the semiclassical consequences of classical chaos
in a quantum system. The modern incarnation of OTOCs
appeared (Shenker and Stanford, 2014) in the study of shock
waves in black holes (Dray and ’t Hooft, 1985), where they
were proposed as a signature of intrinsically quantum chaos
in a strongly interacting many-body system. Shenker and
Stanford argued that any strongly interacting quantum system,
which is holographically dual to a black hole described using a
theory containing Einstein gravity, has an OTOC of local
operators V and W that has an exponential growth at early
times,

hWðtÞVð0ÞWðtÞVð0Þi ∼ expðλLtÞ; ð12:51Þ

and the Lyapunov growth rate exponent is given by

λL ¼ 2πT: ð12:52Þ

This value of λL is a direct consequence of Einstein gravity
and the circumference of the Euclidean temporal circle being
equal to ℏ=kBT. This exponential growth was argued to be
related to a rapid loss of memory of the initial perturbations
with time, a characteristic also expected from the absence
of quasiparticle excitations. It was subsequently argued
(Maldacena, Shenker, and Stanford, 2016), without the use
of a holographic connection, that the inequality λL ≤ 2πT
must apply to all strongly interacting quantum systems. The
bound has also been shown to follow directly from the
structure of generic operators that satisfy the eigenstate
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thermalization hypothesis (Murthy and Srednicki, 2019). A
complementary bound has also been proposed on a closely
related quantity that diagnoses operator growth (Parker et al.,
2019). However, none of these statements suggest that generic
quantum many-body systems necessarily display an expo-
nential growth of the OTOC.
The OTOC ideas have found a precise realization in the

SYK model. For the model of Sec. V, we define the OTOC as

OTOCðt1; t3; ; t2; t4Þ

¼ 1

N2

X
i;j

hc†i ðt1Þcjðt3Þciðt2Þc†jðt4Þiconn. ð12:53Þ

We examine the real time regime with t1 ≈ t2 ≫ 1=T and
t3 ≈ t4 and define the “center-of-mass” time separation as

t ¼ 1
2
ðt1 þ t2 − t3 − t4Þ. ð12:54Þ

The OTOC of the SYK model can be computed by general-
izing the expression Eq. (5.59) for Schwarzian fluctuations
corrections from two-point to four-point correlators. In imagi-
nary time, we have the four-point correlator

F ðτ1; τ3; τ2; τ4Þ ¼ h½f0ðτ1Þf0ðτ2Þf0ðτ3Þf0ðτ4Þ�1=4
× Gc½fðτ1Þ − fðτ2Þ�Gc½fðτ3Þ − fðτ4Þ�iZ̄ ;

ð12:55Þ

where the average is over the Schwarzian path integral in
Eq. (5.58) (we have omitted the unimportant fluctuations of ϕ)
and the conformal saddle-point Green’s function GcðτÞ is
given by Eq. (5.25). After the careful analytic continuation of
this correlator to real times, it was found that in the time range
1≲ Tt ≪ ln N there is the following exponential growth of
the OTOC (Kitaev, 2015; Maldacena and Stanford, 2016;
Kitaev and Suh, 2018):

OTOCðt1; t3; ; t2; t4Þ ∝
1

N
expð2πTtÞ. ð12:56Þ

Therefore, the chaos inequality (Maldacena, Shenker, and
Stanford, 2016) is saturated by the SYK model, which has the
same chaos growth rate as systems that are holographically
dual to Einstein gravity.
The spatial structure associated with the OTOC is equally

interesting and directly diagnoses operator growth. In
Eq. (12.51), if the operators are spatially separated
[Wðt; rÞ; Vð0; 0Þ], the OTOC exhibits a ballistic wave front
associated with the growing operators as a function of
ðt − jrj=vBÞ. The “butterfly velocity” vB is an intrinsic speed
associated with the quantum many-body state and can, in
principle, be parametrically smaller than the microscopic
scales associated with the Hamiltonian (Swingle and
Chowdhury, 2017).
OTOCs have been studied in a variety of models, including

the critical Fermi surface model of Sec. XI.A (Patel and
Sachdev, 2017; Tikhanovskaya, Sachdev, and Patel, 2022), the
lattice models related to those of Sec. X (Gu, Lucas, and Qi,
2017; Gu and Kitaev, 2019; Guo, Gu, and Sachdev, 2019),

disordered metals (Patel et al., 2017), and conformal field
theories (Stanford, 2016; Chowdhury and Swingle, 2017;
Grozdanov, Schalm, and Scopelliti, 2019; Steinberg and
Swingle, 2019; Kim, Altman, and Cao, 2021), and all find
a regime of exponential growth with a λL that obeys the chaos
bound, accompanied by a sharp ballistic wave front. All of
these settings involve a large-N or a weak-coupling semi-
classical limit. Direct numerical studies of realistic lattice
models in one dimension (Bohrdt et al., 2017; Luitz and
Lev, 2017; Xu and Swingle, 2020) have revealed a ballistic
growth of operators but no indication of a well-defined (i.e.,
position- and velocity-independent) Lyapunov exponent and a
sharp front.
There have also been studies involving random unitary

circuits with a finite-dimensional local Hilbert space and no
semiclassical limit that observed a behavior of the OTOC that
is qualitatively distinct from the previously mentioned models
(Khemani, Huse, and Nahum, 2018; Nahum, Vijay, and Haah,
2018; von Keyserlingk et al., 2018; Xu and Swingle, 2019);
the growth is not identified by a well-defined λL, and the
ballistic wave front is not sharp. However, these models do not
have a conserved energy and an associated notion of temper-
ature, thereby making a direct comparison to the chaos bound
far from clear. A recent study (Keselman, Nie, and Berg,
2021) demonstrated a way to access a regime of exponential
growth of the OTOC even in random unitary circuits by
effectively tuning vB ≫ λL × ðmicroscopic length scaleÞ,
thereby presenting evidence that a finite Hilbert space can
have an exponential growth of the OTOC.
The relevance of λL and vB for measurable transport

quantities has been scrutinized in a number of works.
Bounds on transport quantities, such as the viscosity
(Kovtun, Son, and Starinets, 2005) and charge diffusion
coefficient (Hartnoll, 2015), have been suggested to hold
for strongly interacting phases without quasiparticle excita-
tions. Both of these bounds can be interpreted in terms of a
bound on the diffusion coefficient D ∼ ℏv2=kBT, where v is a
characteristic (but unknown) velocity scale in the problem.
The statement of the bound was sharpened with the propo-
sition (Blake, 2016) that the relevant velocity scale is set by
v ¼ vB. While there are a number of holographic examples
where these bounds have been shown to apply and even
be saturated (Gu, Qi, and Stanford, 2017), there are explicit
counterexamples where the proposed bounds are violated
(Lucas and Steinberg, 2016; Gu, Lucas, and Qi, 2017).
Stepping away from concrete models, a hydrodynamic under-
standing of some aspects of operator growth and chaos has
also been developed in situations where the exponential
regime exists (Blake, Lee, and Liu, 2018).
In general, the relation between diffusive spreading of

conserved charges and ballistic growth of nonconserved
operators is complicated. For a class of generic random
unitary circuits with conserved charges, it was shown that a
spreading operator consists of a conserved part spreading
diffusively, which acts as a source of nonconserved operators
and leads to dissipation at a rate set by the local diffusion
current (Khemani, Vishwanath, and Huse, 2018). The non-
conserved operators spread ballistically at a butterfly speed,
becoming increasingly entangled with a macroscopic number
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of degrees of freedom in the system and acting as a dissipative
bath. Therefore, in this random unitary circuit approach, the
diffusion coefficient need not be related to any of the metrics
associated with the OTOCs.
However, a close relationship has been found between the

OTOC λL and the thermal diffusivity in computations for the
critical Fermi surface (Patel and Sachdev, 2017), and in a wide
class of holographic models (Blake, Davison, and Sachdev,
2017). The relationship between the thermal diffusivity and
v2B=λL has also been analyzed in a family of strongly
interacting bosonic variants of the SYK model (Tulipman
and Berg, 2021), which are more closely related to the
quantum spherical p-spin-glass model (Cugliandolo,
Grempel, and Santos, 2001), which was inspired by the
observation of Planckian diffusivities in a class of complex
insulators (Zhang et al., 2019; Mousatov and Hartnoll, 2020).
A simplified interpretation is that both quantum chaos and
thermal diffusivity are related to a loss of phase coherence.
The time derivative of a local phase is the local energy density,
and the fluctuation-dissipation theorem relates energy fluctu-
ations to thermal transport.
The exact relation between OTOCs and universal aspects

of transport remains unclear. Inspired by the universality
of scattering rates across distinct materials displaying non-
Fermi-liquid properties, it has been conjectured (Chowdhury
et al., 2018) that there is an emergent length scale
l ≫ a ð≡ lattice spacingÞ that is characterized by maximal
chaos with a Lyapunov exponent λL ¼ 2πT at low temper-
atures (i.e., as either T → 0 or T > W� but still small
compared to microscopic energy scales) and effectively
reaches local thermal equilibrium in a time of the order of
1=T (Sachdev, 1999). The universal coarse-grained descrip-
tion for the non-Fermi liquids can then possibly be built by
coupling the islands of typical size l. This does not imply that
the system is necessarily maximally chaotic at the scale of the
system size. In contrast, in a system with quasiparticles that
does not display any non-Fermi-liquid behavior, we expect
λL ≪ T as T → 0.
We end by noting that a different diagnostic of quantum

chaos that measures the correlations between energy levels
and diagnoses the spectral “rigidity” is the spectral form factor
(SFF). The SFF has been analyzed in the past in the context of
mesoscopic physics and random-matrix theory (Altshuler and
Shklovskii, 1986). The ramp-plateau form of the SFF beyond
the Thouless time signifies the onset of chaotic random-
matrix-like behavior and has been analyzed for the SYK
model using a variety of different methods (Cotler et al., 2017;
García-García and Verbaarschot, 2017; Altland and Bagrets,
2018; Gharibyan et al., 2018; Saad, Shenker, and Stanford,
2018; Liao, Vikram, and Galitski, 2020; Winer, Jian, and
Swingle, 2020; Altland et al., 2021).

XIII. OUTLOOK

Finding models of interacting electrons that can be solved
reliably in the regime of strong interactions and at finite
temperatures, without making uncontrolled approximations,
remains a key challenge in quantum many-body physics. The
family of models studied in this review offer a useful starting
point for describing compressible metallic phases without any

Landau quasiparticles at strong interactions. Furthermore,
they naturally lead to NFL regimes exhibiting electronic
interaction-induced T-linear resistivity and Planckian behav-
ior over a wide range of energy scales and are accompanied by
ω=T scaling. The theoretical results reviewed here are con-
sistent with much of the universal experimental NFL phe-
nomenology across numerous distinct microscopic materials.
Therefore, it is natural to consider the possibility that a large
class of strongly interacting microscopic models describing
real materials flow (in a RG sense) to the different families of
models considered in this review over a significant inter-
mediate energy range. Proving this remains a challenge.
A notable recent result in the study of non-Fermi liquids

is the phase diagram of Fig. 13 (Shackleton et al., 2021;
Dumitrescu et al., 2022). This presents the results of a
numerical study of the doped random-exchange t-U-J
Hubbard model. Many features of the phase diagram are
reminiscent of the observations in the hole-doped cuprates,
as discussed in Sec. VII.G. These include a doping-induced
transition from a disordered Fermi liquid satisfying
Luttinger’s theorem for p > pc to a low-temperature metallic
spin glass for p < pc. At higher temperatures, the latter has a
small carrier density and violates Luttinger’s theorem. The
quantum-critical metal near p ¼ pc exhibits a single-particle
lifetime that has a Planckian form (see Fig. 14) with an Oð1Þ
coefficient; in the low-temperature limit the inferred resistivity
is significantly below the MIR value. The quantum-critical
spin correlations are given by those of the SY spin liquid.
At first sight, this concordance is noteworthy and puzzling:

the theory relies on a random-exchange coupling with zero
mean, which is far from the physical situation in the cuprates.
We can take the concordance as an indication that AdS2=SYK
local criticality has a robustness and can be present in models
over a significant intermediate energy range. We make note
of the renormalization group arguments (Patel and Sachdev,
2019) that enhancement of resonant scattering can lead to the
emergence of local SYK criticality. We also discussed holo-
graphic evidence of such a crossover (Iqbal, Liu, and Mezei,
2011, 2012; Liu and Sonner, 2020) in disorder-free non-Fermi
liquids of Fermi surfaces coupled to gauge fields in
Sec. XII.D. See also Khveshchenko (2018a, 2022) for other
thoughts on the emergence of SYK local criticality.
The universality of the models studied is also encoded in

their notable maximal many-body chaos, as diagnosed using
the OTOC. Whether this aspect also indirectly controls the
universality of Planckian transport scattering rates across
distinct NFL materials is an important and nontrivial theoretical
question. A recent work has highlighted some of the funda-
mental differences between the growth of operators in max-
imally chaotic versus nonmaximally chaotic quantum systems
(Blake and Liu, 2021), which could be of some relevance to
understanding transport in NFL without quasiparticles.
For the disordered models considered in Sec. VII, the SY

spin-liquid behavior (Joshi et al., 2020) cannot extend down to
T ¼ 0, because of the divergence of the spin-glass suscep-
tibility (Georges, Parcollet, and Sachdev, 2000, 2001)
(although this instability is not visible over the accessible
temperature range in the Planckian behavior in Fig. 14). Thus,
we expect the eventual appearance of a metallic spin glass or a
disordered Fermi liquid in which the zero-temperature entropy
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is quenched, with the SY spin liquid surviving at T ¼ 0 only
at the “spinoidal” critical point where the Fermi-liquid
solution disappears. In more realistic models with weak
disorder, we can expect the pseudogap to acquire the topo-
logical order of a fractionalized Fermi liquid or have spin or
charge-density wave order. The critical theory asymptotically
close to the pseudogap critical point will also be different: for
the models of Sec. VII, we can expect a transition from a
disordered Fermi liquid to a metallic spin glass, as described
in theories without fractionalization (Sachdev, Read, and
Oppermann, 1995; Sengupta and Georges, 1995). Another
possibility, present in the non-Fermi-liquid large-M limit of
Sec. VII.D.2, is that the entire overdoped regime is a critical
metal with linear-T resistivity (Christos et al., 2022), and the
critical point is then also a deconfined theory. The connections
between the previously outlined transition and “deconfined”
metallic criticality (Zhang and Sachdev, 2020; Zou and
Chowdhury, 2020) associated with abrupt Fermi surface
changing transitions in clean systems, and in the absence
of fractionalization in the adjacent phase, remain an interest-
ing open problem.
A consequence of models with Jij having zero mean is that

there is no superconductivity. Adding a nonzero mean Jij or
another attractive interaction should lead to superconductivity
(Patel, Lawler, and Kim, 2018; Esterlis and Schmalian, 2019;
Chowdhury and Berg, 2020a; Hauck et al., 2020; Wang, 2020;
Wang et al., 2020), and a theory is needed for the onset
of superconductivity from the Planckian metal phase of
Figs. 13 and 14.
We discussed theories of non-Fermi liquids with critical

Fermi surfaces in Sec. XI. Without disorder, such theories
have zero resistivity in the absence of exponentially weak
umklapp scattering, and thus cannot produce linear-in-T
resistivity at low T. Adding potential scattering disorder to
such a critical Fermi surface does produce a nonzero residual
resistivity, but the temperature dependence of the resistivity is
Fermi-liquid-like, even though there is marginal Fermi-liquid
behavior in the fermion self-energy (Patel et al., 2022). An
interesting recent observation (Patel et al., 2022) is that spatial
disorder in the interaction strength does indeed produce a
linear-T resistivity [along with a T lnð1=TÞ specific heat].
Two different types of disorder are therefore responsible for
the residual resistivity and the slope of the linear-T resis-
tivity: the former arises from potential disorder and the latter
results from interaction disorder. This feature has promise
in explaining observations, and a better understanding is
needed of the strengths of these disorders in the context of
microscopic models.
An emerging application of the SYK model is to meso-

scopic systems, and this was not covered in our review. In this
context, the behavior of the SYK model at finite N is
important, and we have to reverse the orders of limit of
N → ∞ (which we generally have taken first) and a long-time
t → ∞. The SYK model has a new emergent criticality for
t > N=U, some aspects of which were covered in Sec. V.F.
Note that even for finite but large N we do not immediately
have a crossover to a regime where the discreteness of the
energy spectrum is important; in a many-body system, the

energy level spacing ∼ expð−αNÞ, and therefore even for
t > N=U we deal with an effectively continuous spectrum.
See the literature (Franz and Rozali, 2018) for studies of
applications to quantum dots and graphene flakes (Pikulin
and Franz, 2017; Gnezdilov, Hutasoit, and Beenakker,
2018; Altland, Bagrets, and Kamenev, 2019a, 2019b;
Micklitz, Monteiro, and Altland, 2019; Khveshchenko,
2020a; Kruchkov et al., 2020; Kobrin et al., 2021), lattices
of quantum dots (Altland, Bagrets, and Kamenev, 2019a;
Khveshchenko, 2020b), Majorana fermions (Chew, Essin, and
Alicea, 2017; Chen et al., 2018), ultracold atoms (Danshita,
Hanada, and Tezuka, 2017; Wei and Sedrakyan, 2021), and
quantum simulation (García-Álvarez et al., 2017; Luo et al.,
2019). These works keep N finite, and therefore differ from
the models in Sec. X, which take the N → ∞ first. In
Secs. VI–VIII, our interest was in dynamical mean-field
theories of lattice systems in the thermodynamic limit, so it
was appropriate to take the N → ∞ limit first.
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APPENDIX A: TIME REPARAMETRIZATION AND
GAUGE SYMMETRIES OF THE SYK MODEL

In this appendix, we elaborate on the origin of Eq. (5.22)
from a more fundamental basis and generalize it to the
particle-hole asymmetric case. We return to the original
equations (5.2a) and (5.2b) and simplify them in the low-
energy limit. As we saw in Eq. (5.13), at frequencies≪ U the
iωþ μ term can be dropped because μ − Σð0Þ ¼ 0 and the iωn
term is smaller than the singular frequency dependence in
ΣðiωnÞ. After Fourier transforming to the time domain, we can
rewrite the original saddle-point equations as

Z
β

0

dτ2Σsingðτ1; τ2ÞGðτ2; τ3Þ ¼ −δðτ1 − τ3Þ; ðA1aÞ

Σsingðτ1; τ2Þ ¼ −U2G2ðτ1; τ2ÞGðτ2; τ1Þ; ðA1bÞ

where Σsing is the singular part of Σ. In addition, the saddle-
point Green’s functions and self-energies are functions only of
time differences, like τ1 − τ2. Nevertheless, we have written
them as a function of two independent times because the
fluctuations about the saddle point will involve the bilocal
fields, as we later see. Moreover, the symmetries are more
transparent in the bilocal formulation.
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It is now not difficult to verify that Eqs. (A1a) and (A1b) are
invariant under the following transformation:

τ ¼ fðσÞ; ðA2aÞ

Gðτ1; τ2Þ ¼ ½f0ðσ1Þf0ðσ2Þ�−1=4
gðσ1Þ
gðσ2Þ

G̃ðσ1; σ2Þ; ðA2bÞ

Σðτ1; τ2Þ ¼ ½f0ðσ1Þf0ðσ2Þ�−3=4
gðσ1Þ
gðσ2Þ

Σ̃ðσ1; σ2Þ; ðA2cÞ

wherefðσÞ andgðσÞ are arbitrary functions. InEqs. (A2a)–(A2c)
fðσÞ is a time reparametrization and gðσÞ is a Uð1Þ gauge
transformation in imaginary time. These are emergent sym-
metries because the form of the equations obeyed by
G̃ðσ1; σ2Þ and Σ̃ðσ1; σ2Þ is the same as Eqs. (A1a) and (A1b)
obeyed by Gðτ1; τ2Þ and Σðτ1; τ2Þ.
We obtain the nonzero temperature solution by choosing

the time reparametrization in Eq. (A2a) as the conformal map

τ ¼ 1

πT
tanðπTσÞ; ðA3Þ

where σ is the periodic imaginary time coordinate with period
1=T. Applying this map to Eq. (5.7), we obtain

Gð�σÞ ¼∓ Cgð�σÞ sinðπ=4þ θÞ
�

T
sinðπTσÞ

�
1=2

ðA4Þ

for 0 < �σ < 1=T. The function gðσÞ is currently undeter-
mined apart from a normalization choice gð0Þ ¼ 1. We can
now determine gðσÞ by imposing the KMS condition

Gðσ þ 1=TÞ ¼ −GðσÞ; ðA5Þ

which implies

gðσÞ ¼ tanðπ=4þ θÞgðσ þ 1=TÞ: ðA6Þ

The solution is

gðσÞ ¼ e−2πETσ; ðA7Þ

where the new parameter E and the angle θ are related as in
Eq. (5.10). This yields the final expression for GðσÞ in
Eq. (5.25).

APPENDIX B: SYMMETRIES OF THE SYK SADDLE
POINT

We showed in Appendix A that the low-energy limit of the
saddle-point equations (A1a) and (A1b) have a large set of
symmetries when expressed in terms of bilocal correlators
of 2 times. However, the actual solution of the saddle-point
equations (5.25) is a function only of time differences. Here
we ask a somewhat different question: What subgroup of the
symmetries in Appendix A applies to the thermal solution in
Eq. (5.25)? In other words, how are the emergent low-energy
time reparametrization and gauge symmetries broken by the
low-T thermal state?

We first consider the simplest case with particle-hole
symmetry at T ¼ 0, when we can schematically represent
the large-N solutions in Sec. V.A as

Gcðτ1 − τ2Þ ∼ ðτ1 − τ2Þ−1=2;
Σcðτ1 − τ2Þ ∼ ðτ1 − τ2Þ−3=2:

The saddle point will be invariant under a reparametrization
fðτÞ when choosing Gðτ1; τ2Þ ¼ Gcðτ1 − τ2Þ leads to a trans-
formed G̃ðσ1; σ2Þ ¼ Gcðσ1 − σ2Þ (and a similar process
for Σ). It turns out that this is true only for the SLð2; RÞ
transformations under which

fðτÞ ¼ aτ þ b
cτ þ d

; ad − bc ¼ 1: ðB1Þ

Therefore, the approximate reparametrization symmetry is
spontaneously broken down to SLð2; RÞ by the saddle point.
We now consider the most general case with T > 0 and no

particle-hole symmetry. We write Eq. (A2c) as

Gðτ1; τ2Þ ¼ ½f0ðτ1Þf0ðτ2Þ�1=4
×Gc½fðτ1Þ − fðτ2Þ�eiϕðτ1Þ−iϕðτ2Þ; ðB2Þ

where GcðτÞ is the conformal saddle-point solution given in
Eq. (5.25). Here we have parametrized gðτÞ ¼ e−iϕðτÞ in terms
of a phase field ϕ; we soon see that the derivative of ϕ is
conjugate to density fluctuations.
It can now be checked that the Gðτ1; τ2Þ obtained from

Eq. (B2) equals Gcðτ1 − τ2Þ only if the transformations fðτÞ
and ϕðτÞ satisfy

tan½πTfðτÞ�
πT

¼ a½tanðπTτÞ=πT� þ b
c½tanðπTτÞ=πT� þ d

; ad − bc ¼ 1;

−iϕðτÞ ¼ −iϕ0 þ 2πET½τ − fðτÞ�. ðB3Þ

The transformation of fðτÞ looks mysterious, but we can
simplify it. We define

z ¼ e2πiTτ; zf ¼ e2πiTfðτÞ ðB4Þ

and the transformation in Eq. (B3) is then between unimodular
complex numbers representing the thermal circle

zf ¼ w1zþ w2

w�
2zþ w�

1

; jw1j2 − jw2j2 ¼ 1; ðB5Þ

where w1;2 are complex numbers. In this form, we have an
SUð1; 1Þ transformation, a group that is isomorphic
to SLð2;RÞ.
The symmetries in Eqs. (B3) and (B5) are crucial to

determining the structure of the low-energy action for
fluctuations.
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APPENDIX C: SYMMETRIES OF AdS2

This appendix notes that the AdS2 metric

ds2 ¼ dτ2 þ dζ2

ζ2
ðC1Þ

is invariant under isometries that are SLð2;RÞ transforma-
tions, as in Eq. (B1). It is easy to verify that the coordinate
change

τ0 þ iζ0 ¼ aðτ þ iζÞ þ b
cðτ þ iζÞ þ d

; ad − bc ¼ 1; ðC2Þ

with a, b, c, and d real, leaves the metric (C1) invariant.

APPENDIX D: SCHWARZIAN DETERMINANT

This appendix evaluates a quadratic fluctuation correction
to the free energy of the SYK model in Eq. (5.76) arising from
the time reparametrization mode in Eq. (5.74). The formal
expression for this correction is

I ¼ 1

2

X
n≠0;�1

ln ½2π2NγTn2ðn2 − 1Þ�: ðD1Þ

Equation (D1) is divergent, and we have to regulate it by
finding the proper measure over the path integral of the ϵn in
Eq. (5.74) (Maldacena, Stanford, and Yang, 2016; Stanford
and Witten, 2017). For simplicity, we consider only the
particle-hole symmetric case μ ¼ 0 in the forthcoming dis-
cussion, but the final result is more general.
We regulate the divergence in Eq. (D1) by returning to

the original G-Σ path integral in Eq. (5.56), to which the
Schwarzian path integral in Eq. (5.73) is a low-energy
approximation. The saddle-point equations (5.56) are simply
the original SYK equations (5.2a) and (5.2b). Denoting the
exact saddle-point solution of the latter as Ḡ and Σ̄, we can
write the fluctuations as

G ¼ Ḡþ δG; Σ ¼ Σ̄þ δΣ: ðD2Þ

We then expand the action in Eq. (5.56) to quadratic order and
find that the needed eigenmodes of the quadratic fluctuations
are eigenmodes of the kernels (Gu et al., 2020; Tikhanovskaya
et al., 2021a) that generalize the action in Eq. (5.48) as

KA=Sðτ1; τ2; τ3; τ4Þ

¼ −
�
q
2
�
�
q
2
− 1

�	
U2Ḡðτ13ÞḠðτ24ÞḠðτ34Þq−2: ðD3Þ

We are considering the general case of SYK model with q
fermion terms and τij ≡ τi − τj. The eigenmodes are defined
by the following equations [which generalize Eq. (5.47)]:

kA=SðhÞvA=Sh ðτ1; τ2; τ0Þ

¼
Z

dτ3dτ4KA=Sðτ1; τ2; τ3; τ4ÞvA=Sh ðτ3; τ4; τ0Þ; ðD4Þ

with dimensionless eigenvalue kA=SðhÞ. For kA=SðhÞ ¼ 1 we
obtain the scaling dimension h of composite operators
associated with the fermion bilinears in the conformal limit
theory. Our overall task is to expand δG and δΣ in terms of the
eigenmodes ofKA=S, each of which will also be eigenmodes of
the quadratic fluctuation of the action in Eq. (5.56).
The Schwarzian fluctuation focuses on a specific eigen-

mode vA2 , which is associated with time reparametrization
symmetry. The infinitesimal version of the time reparame-
trizaton in Eq. (B2), using Eq. (5.68), is

δGðτ1; τ2Þ ¼ ½Δϵ0ðτ1Þ þ Δϵ0ðτ2Þ þ ϵðτ1Þ∂τ1
þ ϵðτ2Þ∂τ2 �Ḡðτ1 − τ2Þ: ðD5Þ

For the conformal limit result Ḡ ¼ Gc in Eq. (5.25), and also
for the conformal Green’s functions in Eq. (D3), δG in
Eq. (D5) is indeed an eigenmode vA2 of Eq. (D4) with
kAð2Þ ¼ 1, as can be verified by explicit evaluation.
We now have all the ingredients necessary to expand the

time reparametrization eigenmode of KA in terms of the
eigenmodes ϵn in Eq. (5.74). One needed technical step is that

we multiply the KA eigenmode by Gðq−2Þ=2
c to make the kernel

in Eq. (D3) a Hermitian operator. We then write

½Gcðτ1; τ2Þ�ðq−2Þ=2δGðτ1; τ2Þ
¼

X
n

ϵnfnð2πT½τ1 − τ2�Þe−iπnTðτ1þτ2Þ: ðD6Þ

We can easily obtain the explicit form of the coefficients fnðθÞ
in Eq. (D6) as follows using Eqs. (5.25), (5.74), and (D5):

fnðθÞ ¼
sinðnθ=2Þ cosðθ=2Þ

sin2ðθ=2Þ − n
cosðnθ=2Þ
sinðθ=2Þ : ðD7Þ

Recall that we are working at μ ¼ E ¼ 0, and we have
dropped an unimportant n-independent prefactor in Eq. (D7).
The functions fnðθÞ are analogs for SLð2;RÞ of the Legendre
polynomials for SOð3Þ. As expected, they vanish identically
for n ¼ 0;�1 because Gc is invariant under SLð2;RÞ trans-
formations. The property that we need here is the n depend-
ence of their normalization,

Z
2π

0

dθ
2π

½fnðθÞ�2 ¼
jnjðn2 − 1Þ

3
: ðD8Þ

When one uses the eigenmodes of Eq. (D3), the Gaussian
fluctuation contribution to the free energy from the G-Σ
path integral in Eq. (5.56) can be written schematically as
(Maldacena, Stanford, and Yang, 2016)

IG-Σ ¼ 1

2

X
ln

�
1

kA=SðhÞ
− 1

�
: ðD9Þ

We now compare thisG-Σ form of the fluctuation contribution
to the ϵn fluctuation contribution in Eq. (D1). Given the
transformation between the eigenmodes in Eq. (D6) and the
normalization in Eq. (D8), we conclude that the n2ðn2 − 1Þ
factor in Eq. (D1) should be identified with the product of an
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jnjðn2 − 1Þ factor from Eq. (D8) and a 1 − kAð2Þ ∼ Tjnj=U
factor. The deviation of kAð2Þ from unity arises from con-
formal corrections to the saddle point Ḡ −Gc, and arguments
have been made (Maldacena, Stanford, and Yang, 2016) for
their jnj dependence.
With this corrected measure for ϵn fluctuations, we conclude

that the properly regulated form of Eq. (D1) is that deduced
from Eq. (D9) (Maldacena, Stanford, and Yang, 2016),

Ĩ ¼ 1

2

Xjnj<c1U=T

jnj≠0;�1

ln

�
Tjnj
U

�
; ðD10Þ

where we have dropped T-independent constants and c1 is a
nonuniversal number determining the high-energy cutoff. We
can now apply the ζ function theory result

Xm
n¼1

ln ðanÞ ¼ m lnðamÞ −mþ lnð2πmÞ
2

þO
�
1

m

�
ðD11Þ

to Eq. (D10), and we obtain Eq. (5.77). Note that the 3=2
coefficient of the logarithm in Eq. (5.77) is independent of c1; it
is the sum of the 1=2 coefficient in Eq. (D11) and the omitted
n ¼ �1 contributions in Eq. (D10).

APPENDIX E: GENERALIZATION TO THE SYKq

MODEL

Much of our discussion of the SYK model has focused on
the physically motivated problem with four-fermion inter-
actions. However, the model can be readily generalized to
q ≥ 4 fermion interactions (Gross and Rosenhaus, 2017),
otherwise referred to as the SYKq model. We review here the
low-energy properties of a local SYKq model and the effect of
perturbing it by a quadratic hopping term. The interaction
Hamiltonian for electrons occupying orbitals labeled il ¼
1;…; N is given by

Hq ¼
ðq=2Þ!
Nðq−1Þ=2

X
filg

Ui1i2…iq ½c†i1c†i2 � � � c†iq=2ciq=2þ1
� � � ciq−1ciq �

− μ
X
il

c†ilcil ; ðE1Þ

where as before we choose the couplings Ui1i2…iq to be

independent random variables with Ui1i2…iq ¼ 0 and

ðUi1i2…iqÞ2 ¼ U2. The density Q can be tuned by an external
chemical potential μ.
In the large-N limit, once again only the melon graphs

survive, but the number of internal legs is now q − 1. The on-
site Green’s function reduces to the solution of the following
equations:

GðiωnÞ ¼
1

iωn þ μ − ΣðiωnÞ
; ðE2aÞ

ΣðτÞ ¼ −U2½GðτÞ�q=2½Gð−τÞ�q=2−1; ðE2bÞ

Gðτ ¼ 0−Þ ¼ Q: ðE2cÞ

Following the analysis in Sec. V.A, we can obtain the low-
energy solution at T ¼ 0 for the electron Green’s function.
The power-law singularity at low frequencies is now deter-
mined by the dimension Δ ¼ 1=q such that the Green’s
function has the form

GðτÞ ∼ sgnðτÞ
ðUjτjÞ2=q ; jτj ≫ 1=U; ðE3aÞ

GðiωÞ ∼ isgnðωÞ
U2=qjωj1−2=q ; jωj ≪ U: ðE3bÞ

For simplicity, we chose the density to be at half filling,
where the spectral asymmetry vanishes. In spite of the
different scaling dimensions, the finite compressibility and
residual entropy (including the T-linear correction) have
the same qualitative behavior as the model with q ¼ 4.
Generalizations to two-band models involving distinct q-body
interactions have also been studied (Haldar and Shenoy,
2018).
We now consider a lattice generalization of the model

similar to that in Sec. X, where the local interaction at every
site is given by Hq and the sites are coupled together via
uniform translationally invariant hopping terms Hkin; see
Eq. (10.1a). The hopping term is a relevant perturbation,
and the gapless scale invariant solutions cannot survive down
to the lowest energies. Starting with the decoupled limit, one
finds that the coherence scale is given by

W�
q ∼ t

�
t
U

�
2=ðq−2Þ

; ðE4Þ

below which the hopping terms can no longer be treated
perturbatively and the ground state is a Fermi liquid. In spite
of the similarities in the thermodynamic properties with the
q ¼ 4 model, charge transport is dramatically different for
T ≫ W�

q. The electrical resistivity in the incoherent regime is
now given by

ρdc ∼
h

Ne2

�
T
W�

q

�
2−4=q

: ðE5Þ

For q ≠ 4 the resistivity scales faster than T (but slower
than T2) with increasing temperature. The T linearity of the
resistivity is tied to the electron scaling dimension of Δ ¼ 1=4
for q ¼ 4.
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and Kamran Behnia, 2019, “Metallicity and superconductivity
in doped strontium titanate,” Annu. Rev. Condens. Matter Phys.
10, 25–44.

Chowdhury et al.: Sachdev-Ye-Kitaev models and beyond: Window into …

Rev. Mod. Phys., Vol. 94, No. 3, July–September 2022 035004-69

https://arXiv.org/abs/2201.03096
https://doi.org/10.1103/PhysRevLett.59.2219
https://doi.org/10.1103/PhysRevLett.59.2219
https://doi.org/10.1088/0022-3719/13/24/005
https://doi.org/10.1103/PhysRevB.2.4302
https://doi.org/10.1103/PhysRevB.2.4302
https://doi.org/10.1103/RevModPhys.53.385
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1126/science.aat4134
https://doi.org/10.1016/j.physb.2006.01.422
https://doi.org/10.1016/j.physb.2006.01.422
https://doi.org/10.1126/science.1227612
https://doi.org/10.1103/PhysRevLett.85.1048
https://doi.org/10.1103/PhysRevB.66.045111
https://doi.org/10.1103/PhysRevLett.124.027205
https://doi.org/10.1103/PhysRevLett.124.027205
https://doi.org/10.1103/PhysRevLett.124.076801
https://doi.org/10.1103/PhysRevLett.124.076801
https://doi.org/10.1103/PhysRevLett.126.161102
https://doi.org/10.1103/PhysRevResearch.2.033434
https://doi.org/10.1073/pnas.2003179117
https://doi.org/10.1073/pnas.2003179117
https://doi.org/10.1103/PhysRevD.60.064018
https://doi.org/10.1103/PhysRevB.104.115134
https://doi.org/10.1103/PhysRevLett.121.036403
https://arXiv.org/abs/2108.09188
https://doi.org/10.1007/JHEP06(2020)121
https://doi.org/10.1103/PhysRevB.96.121119
https://doi.org/10.1103/PhysRevB.96.121119
https://doi.org/10.1103/PhysRevLett.84.3678
https://doi.org/10.1103/PhysRevLett.84.3678
https://doi.org/10.1103/PhysRevResearch.2.013301
https://doi.org/10.1016/j.aop.2020.168125
https://doi.org/10.1038/s41467-018-04163-2
https://doi.org/10.1038/s41467-018-04163-2
https://doi.org/10.1103/PhysRevD.96.065005
https://doi.org/10.1103/PhysRevX.8.031024
https://doi.org/10.1103/PhysRevB.105.085120
https://doi.org/10.1073/pnas.2206921119
https://doi.org/10.1134/S1063776121040051
https://doi.org/10.1103/PhysRevB.96.205136
https://doi.org/10.1103/PhysRevB.96.205136
https://doi.org/10.1103/PhysRevB.104.125120
https://doi.org/10.1103/PhysRevLett.115.266802
https://doi.org/10.1103/PhysRevLett.115.266802
https://doi.org/10.1103/PhysRevB.72.245111
https://doi.org/10.1103/PhysRevB.72.094430
https://doi.org/10.1088/0953-8984/13/35/202
https://doi.org/10.1088/0953-8984/13/35/202
https://doi.org/10.1103/PhysRevX.10.031025
https://doi.org/10.1146/annurev-conmatphys-031218-013144
https://doi.org/10.1146/annurev-conmatphys-031218-013144


Cotler, Jordan, and Kristan Jensen, 2021, “AdS3 gravity and random
CFT,” J. High Energy Phys. 04, 033.

Cotler, Jordan S., Guy Gur-Ari, Masanori Hanada, Joseph
Polchinski, Phil Saad, Stephen H. Shenker, Douglas Stanford,
Alexandre Streicher, and Masaki Tezuka, 2017, “Black holes and
random matrices,” J. High Energy Phys. 05, 118.

Cubrovic, Mihailo, Jan Zaanen, and Koenraad Schalm, 2009, “String
theory, quantum phase transitions and the emergent Fermi liquid,”
Science 325, 439–444.

Cubrovic, Mihailo, Jan Zaanen, and Koenraad Schalm, 2011,
“Constructing the AdS dual of a Fermi liquid: AdS black holes
with Dirac hair,” J. High Energy Phys. 10, 017.

Cugliandolo, Leticia F., D. R. Grempel, and Constantino A. da Silva
Santos, 2001, “Imaginary-time replica formalism study of a
quantum spherical p-spin-glass model,” Phys. Rev. B 64, 014403.

Cuomo, Gabriel, Zohar Komargodski, Márk Mezei, and Avia Raviv-
Moshe, 2022, “Spin impurities, Wilson lines and semiclassics,”
arXiv:2202.00040.

Custers, J., P. Gegenwart, C. Geibel, F. Steglich, P. Coleman, and
S. Paschen, 2010, “Evidence for a Non-Fermi-Liquid Phase in
Ge-Substituted YbRh2Si2,” Phys. Rev. Lett. 104, 186402.

Custers, J., P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O.
Trovarelli, C. Geibel, F. Steglich, C. Pépin, and P. Coleman, 2003,
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