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Interest in the multiple facets of optical vortices has flourished in the last three decades. This review
examines the basic research and applications of the interplay between optical vortices and
condensed-matter systems. This subfield of optical-vortex physics has rapidly developed in recent
years thanks to a vigorous synergy between theory and experiment. After presenting self-contained
and focused introductions to optical vortices and condensed-matter optics, theory and current
progress in the research on the interaction of condensed-matter systems and optical vortices are
examined. When one considers the interaction of optical vortices with condensed-matter systems,
many aspects of the standard theory of the interaction of matter with plane-wave light need to be
reformulated. In bulk, light-matter Hamiltonian matrix elements have to be recalculated and novel
selection rules are obtained, reflecting the conservation of total angular momentum. Orbital angular
momentum is transferred from the light beam to the photoexcited electrons, thereby generating
macroscopic currents. Semiconductor nanostructures add the complexity of their own spatial
inhomogeneity, which is handled adequately by the envelope-function approximation. Here again
modified matrix elements for light-matter interactions dictate the allowed and forbidden optical
transitions, which are distinct from those obtained in traditional optical excitation with smooth
fields. Quantum rings play a central role due to their specially adapted geometry to the cylindrical
nature of the optical-vortex beams. When the electron-electron interaction is taken into account, the
rich physics of excitons and exciton polaritons comes into play and is modified by the finite orbital
angular momentum of the structured light. Furthermore, the new features brought about by optical
vortices in plasmonics and in the optical excitation of two-dimensional materials are reviewed.
For all these systems theory and recent experiments are discussed. Finally, an overview of current
and prospective applications of the interaction of optical vortices with condensed-matter systems in
the fields of quantum technologies, communications, sensing, etc., is presented. Throughout this
review an attempt has been made to present not only a survey of the relevant literature but also a
perspective on the interesting and rapidly evolving field of optical-vortex–condensed-matter
interactions.
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I. INTRODUCTION

From early times we have sought to understand the inter-
play between light and matter (Cajori, 1899; Weiner and
Nunes, 2017). Clear evidence points to serious attempts to
learn about reflection, refraction, and vision before the
scientific revolution (16th and 17th centuries), a notable
example being the work by Ibn al-Haytham in the early
11th century, who is considered by some to be the father of
optics. Brilliant discoveries, most of which are familiar to us,
took place around the 17th century and helped to shape the
revolution. The law of refraction was enunciated in 1621 by
Snellius. Newton (1672) used refraction by a prism to show
the decomposition of white light into colors. Light projecting
out of the direct line of sight beyond objects was first
described by Grimaldi, who named the phenomenon diffrac-
tion. Huygens (1690) contributed the picture of secondary
waves in wave fronts, which together with Young’s interfer-
ence investigations around 1800 set the basis for Fresnel’s
work that explained diffraction and wrapped up optical
phenomena under a coherent wave interpretation of light.
Among several corroborations of Fresnel’s theory, the pre-
diction by Hamilton (1831) of conical refraction in anisotropic
biaxial crystals, experimentally verified soon thereafter using
aragonite mineral (Lloyd, 1833), stands out as a most notable
one. On the one hand, it is an early example of a theoretical
prediction guiding successful experiments and, on the other
hand, it is the earliest known report of a phenomenon
involving optical vortices, as we see in Sec. II.A. In parallel,
the study of electricity and magnetism matured to the point at
which Maxwell (1865) unified these phenomena with those of
light. Progress in pure optics continued, as attested by the
(here most relevant) work of Abbe (1874), who established the
resolution limit of optical systems; see Sec. VI. Though
diffraction, refraction, and reflection are indeed the result
of the interaction of light with objects, our modern splitting of
physics sets them under the umbrella of optics.

However, only a few years later it turned out that the nature
of light as an electromagnetic wave was not the entire truth.
Phenomena like the blackbody radiation or the photoelectric
effect could not be explained at this level. To overcome this
difficulty, Planck (1900) postulated the quantization of
energy and Einstein (1905) introduced the concept of light
quanta, now generally called photons. A quantum theory of
electrodynamics was formulated by Dirac (1927), and in the
1950s and early 1960s seminal papers by Mandel (1958),
Sudarshan (1963), and Glauber (1963) created the field of
quantum optics. A milestone with enormous impact in the
field of optics was the invention of the laser by Maiman
(1960), which, along with its many applications in everyday
life, is now the light source for the vast majority of optical
experiments.
From a current perspective, the study of light-matter

interactions relies strongly on advances in chemistry, quantum
mechanics, atomic physics, and solid-state physics. Back to
our timeline, modern chemistry (as opposed to alchemy)
developed in parallel to optics, from work by researchers
such as Boyle (1661), Lavoisier (De Morveau et al., 1787;
Lavoisier, 1793), Dalton (1808), and Mendeleev (1869), who
gave modern form to the notions of gases, atoms, and
chemical elements.
Milestones in atomic physics that provided greater insight

on light-matter interactions are well known to us, and we
recall only a few that are the most connected to the following
sections: in 1900, before quantum mechanics, Drude proposed
a model of free-electron motion in metals subjected to electric
and magnetic fields using the Lorentz force in a Newtonian
mechanics framework (Drude, 1900); later the model was
extended to bound electrons by Lorentz himself. The Drude-
Lorentz model has been amply used to explain plasmon
polaritons, which is the subject of Sec. IV.C. A more
sophisticated and modern way to deal with light-matter
interactions in classical terms is by employing Lagrangian
mechanics together with the Lorentz force. This leads to a
generalized potential in the Lagrangian that depends on the
scalar and vector potentials (and the velocity of the particle).
By shifting to Hamiltonian mechanics, one defines the well-
known minimal-coupling Hamiltonian. This can be quantized
for charged particles and/or fields. Historically, other crucial
developments have been the reformulation in terms of the
dipole approximation in the case of atoms by Göppert-Mayer
(1931) and the generalization in terms of the multipolar
expansion by Power and Zienau (1959) and Woolley
(1971) to describe the interaction of light with nonrelativistic
particles, which delineate the work regarding problems related
to gauge; see Sec. III.C.1.
Condensed-matter physics is currently a collage of various

subject matter. Originally, topics in condensed matter came
from its predecessor, solid-state physics, which dealt with
metals, semiconductors, and their applications. As told by
Martin (2019), “Even in the early days of solid-state physics,
the name was maligned because the field’s topics and
techniques were often equally relevant to liquids, molecules,
plasmas, and other nonsolids…. Critical phenomena such as
phase transitions, nonlinear dynamics of fluid systems, and
liquid helium research that had little or nothing to do with
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solids took center stage.” Condensed-matter physics now
encompasses the study of a variety of quantum states such
as exciton polaritons, two-dimensional electron gas, spin
lattices, superconductors, Bose-Einstein condensates, etc.,
most of which are supported in solid-state media and some
of which are also in other condensed phases.
The seminal paper by Bloch (1929) constitutes an early

milestone in the formulation of a quantum theory of crystal-
line solids. According to what is now called Bloch’s theorem,
the wave function of an electron in a crystal satisfying the
time-independent Schrödinger equation can be written as a
plane wave with a lattice-periodic modulation. The corre-
sponding energies εnk can be classified by the wave vector k
restricted to the first Brillouin zone and an additional integer
number n. They form the band structure in k space, with n
labeling the bands. Combining this band structure with the
Fermi statistics of electrons, one could distinguish between
metals, on the one hand, and semiconductors and insulators,
on the other hand. The wave vector of the electron provides a
natural interface for the coupling to light, which is typically
also expressed in terms of plane waves. In semiconductors and
insulators the coupling to light leads to the excitation of
electrons from an occupied band to an empty one or, in the
often convenient electron-hole picture, to the creation of
electron-hole pairs. However, it was soon realized that the
Coulomb interaction between the electrons may qualitatively
change this picture. Instead of a continuous absorption
spectrum in the region close to the band gap, discrete
absorption lines appeared. The electron and hole form a
new quasiparticle, the exciton, which was introduced by
Frenkel (1931) in the limit of strongly bound electron-hole
pairs and by Wannier (1937) for weakly bound pairs, the latter
realized in typical semiconductor materials. In metals the
Coulomb interaction leads to new quasiparticles called plas-
mons, which were introduced by Bohm and Pines (1953). In
the following years many other types of quasiparticles have
been introduced, such as polarons, polaritons, magnons, and
Cooper pairs (Haken, 1976; Kittel, 1987).
We have built up much of our theoretical knowledge in

optics from the concept of plane waves. Plane waves are a
perfect building block to represent more complex light beams
through Fourier analysis; however, they are often not well
suited to describing strongly inhomogeneous waves, which in
terms of plane waves correspond to a superposition involving
an extremely large number of wave vectors. Optical vortices
(OVs) are an example of such strongly space-varying light
fields (Allen, Padgett, and Babiker, 1999; Allen, Barnett, and
Padgett, 2003; Padgett, Courtial, and Allen, 2004; Torres and
Torner, 2011; Andrews and Babiker, 2012), as we see in
Sec. II.
Since the 1990s a variety of experimental techniques have

revealed new effects caused by OVs acting on matter (atoms,
molecules, and nanoparticles), which exceed our expectations
based on their interaction with plane waves. The most
prominent ones come from the fact that OVs may carry
orbital angular momentum (OAM) (Allen et al., 1992). More
recently researchers have started to predict and measure
effects coming from the interaction of OVs with con-
densed-matter systems, and possible applications to quantum
technology and materials science have been proposed.

This review outlines the physics of the interaction of OVs
and condensed-matter systems, providing both a cohesive
formulation of the theoretical basis and a comprehensive
review of current progress in the field. We start with a
description of fundamental elements of the theory of OVs
(Sec. II) and the theory of condensed-matter systems (Sec. III),
which are necessary to the development in Sec. IV of the
theory of the interaction of condensed matter and OVs.
Section IV also reviews the progress achieved in several
subfields, namely, in semiconductor and conductor bulk and
nanostructure physics, exciton-polariton physics, and plas-
monics, and in the physics of two-dimensional materials.
Progress toward applications, which is discussed in Sec. V, has
also been significant. Finally, after concluding remarks we
present our view on possible future directions for the research
of OV–condensed-matter interactions in Sec. VI.

II. OPTICAL VORTICES

Vortices are part of our daily lives. Some are evident, like
whirlpools, tornadoes, and hurricanes, through the quiet eye of
the storm; see Fig. 1. Other vortices pass unnoticed, such as
amphidromic points of tidal waves in the ocean, where the
height of the water remains the same, while it changes in their
surroundings (Whewell, 1836), or sound waves scattered out
of rough surfaces, whose wave fronts exhibit “dislocations”
similar to those found in crystals, in which the intensity
becomes zero (Nye and Berry, 1974). What do all these
phenomena have in common? A vector field such as the wind
velocity has null intensity at the vortex center and revolves
around it.
When it comes to optics, however, many may be reluctant

to accept that vortices happen naturally. After all, as young
students we were first taught that light is a bundle of rays
following broken paths of straight trajectories, only later to be
told that light is an undulatory phenomenon representable by
plane waves. After such insistent teachings, it is no surprise
that many extrapolate ideas and ended up believing that light
around us consists of waves with little spatial structure,
although we know about the principle of superposition. But
as happens with whirls in wind and water, optical vortices are
indeed ubiquitous phenomena in nature. They appear as a

FIG. 1. Satellite photograph of Hurricane Katrina on August 28,
2005, with a clear view of its eye. From National Oceanic and
Atmospheric Administration National Environmental Satellite,
Data, and Information Service.
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result of light scattering on rough surfaces (speckles) (Baranova
et al., 1981) and even from the simple superposition of a few
plane waves (Masajada and Dubik, 2001; O’Holleran, Padgett,
and Dennis, 2006). Optical vortices are worth studying to free
ourselves from previous prejudices, to expand our understand-
ing of electrodynamics, and for the possible advances that they
can introduce in current technologies.

A. History

A light phenomenon with vortex character was first
considered by Hamilton (1831) in his work on conical
refraction, and soon thereafter was experimentally verified
by Lloyd (1833). In conical refraction a Gaussian light beam
entering a biaxial crystal along the optical axis is refracted
inside it into a cone, emerging as a cylinder (Berry, 2004; Born
and Wolf, 2013; Turpin et al., 2016). The outgoing cylindrical
beam is a superposition of simpler fields, some of which have
vortex features. In fact, conical refraction is now used for the
generation of OVs from Gaussian beams (Berry, Jeffrey, and
Mansuripur, 2005; Phelan et al., 2009). Hamilton’s prediction
and its experimental corroboration by Lloyd were at the time a
major achievement; however, it is curious that it was only
much later that conical refraction was recognized as a
manifestation of vortical optics.
In modern research, examples of OVs appeared in a handful

of publications around 1950 (Dennis, O’Holleran, and
Padgett, 2009). Nevertheless, the first systematic study was
carried out by Nye and Berry (1974) on what they called
dislocations in sound (and applicable to general) waves
scattered from rough surfaces. For the scattered wave, they
found that screw dislocations can be expressed as an extra
complex phase in the field; as we see in Sec. II.B, this is the
signature of an optical vortex. The concept of OV was
formulated by Coullet, Gil, and Rocca (1989); see also
Shen et al. (2019).
A few years later Allen et al. (1992) published what is the

most influential article in the field. They showed that a
Laguerre-Gaussian (LG) beam of light (a particular OV)
carries a well-defined amount of OAM, as opposed to the
spin or intrinsic angular momentum (SAM) associated with
the polarization. Research in OVs accelerated and in a few
years many physics branches and other sciences picked up the
idea and applied it to their respective fields.
The concept of quantized vortices in condensed phases has

a long history. They have been studied in different systems,
such as superfluids (Feynman, 1955), type-II superconductors
(Abrikosov, 1957), and Bose-Einstein condensates (Matthews
et al., 1999). The spontaneous formation of optical vortices
has been observed in semiconductor microcavities forming a
surface-emitting vertical cavity laser (Scheuer and Orenstein,
1999) or hosting an exciton-polariton condensate (Lagoudakis
et al., 2008). The investigation of phenomena associated with
the excitation of a semiconductor by an OV started about a
decade ago. Two independent works provided theoretical
predictions (Quinteiro and Tamborenea, 2009c) and exper-
imental results (Ueno et al., 2009).
Optical vortices are famous for their OAM, which at

first sight is a surprising feature. However, Beth (1936)
demonstrated that circularly polarized light carries angular

momentum (AM) in units of ℏ, which can be transferred to
matter. In a quantum theory of light this AM corresponds to the
spin of the photon. Moreover, nuclear physics tells about
multipole transitions in spontaneous emission: One starts with
the classical electrodynamics theory in terms of a single-
frequency electric-current source and derives the average
energy flux (Poynting vector) of the radiation. Next one
quantizes the electric current to a linear-momentum operator
(gradient) and restates the classical single-frequency oscillating
state to a transition between the initial and final quantum states.
All along the calculation there is a phase factor exp ðik · rÞ that,
upon expansion and truncation (kr ≪ 1), yields thewell-known
electric dipole radiation exp ðik · rÞ ≃ 1, electric quadrupole
radiation ik · r, etc., as well as the magnetic 2n poles (Fermi,
1950; Schiff, 1955; Basdevant and Rich, 2005). Photons from
the 2n-pole radiation carry angular momentum equal to nℏ or
are superpositions of states with this angular momentum.
Finally, quoting Fermi (1950), “[I]tmay frequently be necessary
to go several terms down the expansion before finding a non-
zero term. The reason is that more than half of all conceivable
radiation processes are forbidden because of conservation of
angular momentum or because of parity considerations.”

B. Basic theory

Light fields can be represented using different basis
functions. Simplicity usually dictates the choice of one or
another. Thus, for light coming from a distant source such as a
star, the most appropriate representation is by plane waves. If
instead we analyze the field close to a point source, we would
likely decide in favor of spherical waves. In the case of a
cylindrical geometry, Bessel beams provide a basis exhibiting
a complete factorization in cylindrical coordinates that, how-
ever, decay rather slowly in the radial direction. Collimated
laser beams are often better described by Gaussian beam
profiles. To obtain a basis the Gaussian profile has to be
supplemented by a set of transverse mode functions.
Depending on the geometry, suitable bases are Hermite-
Gaussian functions (in Cartesian coordinates) or Laguerre-
Gaussian functions (in cylindrical coordinates).
Optical vortices, also referred to as “twisted light” and

“light carrying OAM,” are electromagnetic fields1 with single
or multiple points or lines in which the phase2 cannot be
defined, and therefore the amplitude vanishes. Figure 2 shows
exemplary electric-field profiles in planes perpendicular to the
propagation direction (z direction) at different z positions at a
fixed time or at different times at a given z position. The
Poynting vector swirls around these so-called singularitites,3

much like the wind does around the eye of a tropical
hurricane; see Fig. 1. The electric and magnetic fields may
also circulate the singularity,4 but then in general they alternate

1The phenomenon happens in the entire spectrum; thus, a more
appropriate name would possibly be “electromagnetic vortex” or
“twisted electromagnetic field.”

2Singularities can also exist in the polarization.
3Note that the term singularity does not refer here to mathematical

infinities.
4If not otherwise stated, singularity refers here to a phase

singularity.
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in time the sense of rotation, as seen in Fig. 2. The singularity
may exist in one or several components of the field and is
mathematically represented by a phase expðilφÞ in cylindrical
coordinates fr;φ; zg, with r ¼ 0 denoting the position of the
singularity and the integer l the so-called topological charge.
If not otherwise stated, in the following we consider beams
propagating in the z direction.
An OV is a curious object with features quite unlike plane

waves, as seen in Fig. 2. We first concentrate on the transverse
components of the field, i.e., the components ofE andB lying
in the x-y plane. Beams with a phase dependence ∼ expðilφÞ
in these components carry well-defined OAM in the propa-
gation direction related to the spatial (orbital) structure of the
beam through the topological charge l. Furthermore, they
may carry intrinsic AM related to the handedness of circular
polarization characterized by the parameter σ ¼ �1 referring
to the polarization vector eσ ¼ ðx̂þ iσŷÞ= ffiffiffi

2
p

, with x̂ and ŷ
denoting Cartesian unit vectors.
OVs are in fact a large family of fields, all exhibiting

singularities, that can be classified according to different
criteria. They naturally split into two topologically distinct
classes, according to whether the orbital and intrinsic AMs are

parallel or antiparallel to each other, i.e., when sgnðσÞ ¼
sgnðlÞ or sgnðσÞ ≠ sgnðlÞ, respectively. In terms of critical
points, the electric or magnetic vector field of antiparallel
beams at fixed z cycles in time (or along z for fixed time)
through sink, source, and center have a winding number 1,
while the vector field of parallel beams remains a saddle point
with a winding number −1, as seen in Figs. 2(b) and 2(c),
respectively. Out of these two classes, OVs of the antiparallel
set differ the most from plane waves, for they may exhibit a
magnetic field that dominates over the electric field and strong
longitudinal field components (Sec. II.C.2).
Another surprising feature is that an OV has a field

component along the propagation direction z. The truth is
that all real propagating beams (with finite lateral size) possess
such a component; otherwise, Maxwell’s equation ∇ ·E ¼ 0

could not be satisfied; see Chap. 3 of Novotny and Hecht
(2006). But in OVs the longitudinal component can be
significant, with an intensity overcoming that of the transverse
component. Moreover, an EzðrÞ=BzðrÞ component is required
if the light beam has OAM in z, as can easily be deduced from
the double vector product in the following formula for the
angular momentum L of the electromagnetic fields (Cohen-
Tannoudji, Dupont-Roc, and Grynberg, 1989; Jackson, 1999):

L ¼ 1

μ0c2

Z
r × ½Eðr; tÞ × Bðr; tÞ�dr; ð1Þ

using Système International units, with μ0 denoting the
vacuum permeability and c representing the vacuum speed
of light. After the work of Allen et al. (1992), OVs received
another distinctive name, twisted light, which makes reference
to the skrewlike form of the OV wave front. Note that this
surface of a constant phase helps us to visualize the unusual
space dependence of the Poynting vector S ¼ E ×H, which
seems to twist around the propagation axis. However, do not
relate the circulation of the transverse components of the
antiparallel field to the OAM associated with the beam, since
this circulation reverses sense for evolving time or z pro-
gression, as seen in Fig. 2(b). An alternative formulation for
the angular momenta of fields is possible if the Poynting
vector in Eq. (1) is replaced by the canonical momentum; this
change unveils interesting phenomena related to the transverse
component of the OAM and SAM, as described by Bliokh and
Nori (2015).
To formalize the previously mentioned ideas and arrive at

full expressions for the OV fields, we consider in cylindrical
(Sec. II.C) and other non-Cartesian coordinate systems
(Sec. II.D) Maxwell’s equations, their potentials, or the
corresponding wave equations in free space.
For electromagnetic fields in vacuum the wave equation

is easily derived from Maxwell’s equations. Take the curl
of Faraday’s law (∇ × E ¼ −∂tB), use Ampère’s law
(∇ ×B ¼ μ0ϵ0∂tE) to eliminate the magnetic field B, and
simplify the expression using the absence of sources
(∇ ·E ¼ 0 and ∇ ·B ¼ 0) together with the identity
∇ × ð∇ ×EÞ ¼ ∇ð∇ · EÞ − ∇2E. This leads to

∇2Eðr; tÞ − 1

c2
∂
2

∂t2
Eðr; tÞ ¼ 0; ð2Þ

(a)

(b) (c)

FIG. 2. Optical vortex, a highly inhomogeneous light field.
(a) Helical or skrewlike wave front for a circularly polarized OV
with topological charge l ¼ 1 propagating along z. Electric-field
components are shown, and the atypically strong longitudinal
component is indicated in red. Lower panel: snapshot succession
in time or z coordinate of electric-field maps (Ex and Ey) normal
to the propagation direction for (b) antiparallel-AM and (c) par-
allel-AM beams. Antiparallel-AM fields cycle in time or z
through sink, center, and source to finally reverse sense; what
flows in a definite direction around the vortex is in fact the energy
(Poynting vector) (Dennis, O’Holleran, and Padgett, 2009). On
the other hand, parallel-AM fields remain saddle critical points.

Quinteiro Rosen, Tamborenea, and Kuhn: Interplay between optical vortices …

Rev. Mod. Phys., Vol. 94, No. 3, July–September 2022 035003-5



with c2 ¼ ðμ0ϵ0Þ−1, ϵ0 the vacuum permittivity, and the same
equation for the magnetic field B. Because the equations are
linear (and thus the superposition of fields is possible), one
can look for harmonic solutions proportional to expð−iωtÞ;
alternatively, one can assume the separability of the space and
time dependence of the electric field and split Eq. (2). We then
arrive at the Helmholtz equation

∇2Eðr; tÞ þ k2Eðr; tÞ ¼ 0; ð3Þ

with k ¼ ω=c the absolute value of the wave vector. Like all
partial differential equations, the Helmholtz equation has a
variety of different solutions, reflecting different geometries
and boundary conditions.
We first concentrate on exact solutions of the Helmholtz

equation. We are interested in light fields propagating in the z
direction. Propagation-invariant fields (also called nondiffract-
ing beams) are then characterized using an electric field of the
form

Eðr; tÞ ¼ Ẽðr⊥Þeiðqzz−ωtÞ þ c.c.; ð4Þ

with r⊥ a position vector orthogonal to the propagation
direction, c.c. denoting the complex conjugate, and Ẽðr⊥Þ
satisfying a two-dimensional Helmholtz equation

∇2⊥Ẽðr⊥Þ þ ðk2 − q2zÞẼðr⊥Þ ¼ 0; ð5Þ

where ∇2⊥ is the transverse Laplacian operator. It is known that
this equation can be further separated in four different types of
coordinates: Cartesian, polar, parabolic, and elliptic ones,
leading to plane waves, Bessel beams, Weber beams, and
Mathieu beams, respectively. We later discuss, in particular,
polar coordinates (Bessel and LG beams) in more detail and
also comment on elliptical coordinates (Mathieu beams) in
Sec. II.D.
In addition to the Helmholtz equation, the electric field has

to satisfy the Maxwell equation ∇ ·E ¼ 0. As a consequence,
the transverse components Ẽ⊥ðr⊥Þ can be independently
chosen among the solutions of the Helmholtz equation. The
longitudinal component is then determined as

Ẽzðr⊥Þ ¼
i
qz

∇⊥ · Ẽ⊥ðr⊥Þ; ð6Þ

which again shows that a space dependence of the transverse
components in general is associated with a longitudinal
component.
Propagation-invariant beams have the advantage of being

exact solutions of the Helmholtz equation. However, they
have the practical drawback of exhibiting only a weak (as in
the case of Bessel beams) or even no (as in the case of plane
waves) lateral decay. Therefore, they are not normalized and
carry infinite energy. Consequently, they can only be approx-
imations to real light beams. Any light beam created in an
experiment has a finite lateral extent. Most prominent exam-
ples are Gaussian beams, which, however, are not propagation
invariant but experience diffraction. From Fraunhofer diffrac-
tion theory for a slit with width w0, it is known that the width

w of the central maximum (i.e., the distance between the first
diffraction minima) in the far field grows with distance z
according to w=w0 ¼ 2λz=w2

0 ¼ 4πz=kw2
0, with λ ¼ 2π=k the

wavelength. Thus, there is a characteristic length, the dif-
fraction length l ¼ kw2

0 (Lax, Louisell, and McKnight, 1975)
or the Rayleigh range zR ¼ ð1=2Þl (Loudon, 2003), which
describes the length scale on which a Gaussian beam with
minimal radius w0, called the beam waist, widens. The beam is
therefore characterized by three different length scales, the
wavelength λ, the beam waist w0, and the diffraction length l.
If a beam satisfies the condition w0 ≪ l, it is weakly divergent
or, in other words, it consists only of plane-wave components
with wave vectors close to the beam axis. Such beams are
called paraxial beams. Note that, according to the definition of
the diffraction length, the condition w0 ≪ l also implies
λ ≪ w0. To quantify the divergence of the beam, a paraxial
parameter f can be defined according to

f ¼ w0

l
¼ 1

w0k
: ð7Þ

Following Lax, Louisell, and McKnight (1975), one can use
this parameter as an expansion parameter for beams not
deviating too much from the paraxial limit. The electric field
is then written as

Eðr; tÞ ¼ ẼðrÞeiðkz−ωtÞ þ c.c. ð8Þ

Note the difference compared to the ansatz in Eq. (4) referring
to nondiffracting beams. Here ẼðrÞ depends on all three
coordinates and the propagation term has the full wave vector
k ¼ ω=c. Using the fact that in the transverse direction ẼðrÞ
varies on a length scale w0, while in the longitudinal direction
the respective length scale is l, the field can be expanded in a
power series in f. Separating the field envelope into transverse
(Ẽ⊥) and longitudinal (Ẽzẑ) parts, it can be shown that the
transverse (longitudinal) components of the field come only in
even (odd) powers of f (Lax, Louisell, and McKnight, 1975).
The zeroth-order term then corresponds to the extreme para-
xial approximation of a completely transverse beam satisfying
the paraxial wave equation

∇2⊥Ẽ⊥ðrÞ þ 2ik∂zẼ⊥ðrÞ ¼ 0: ð9Þ

Typical solutions of the paraxial wave equation are Hermite-
Gaussian beams, which factorize in Cartesian coordinates
(x; y), and Laguerre-Gaussian beams, which factorize in
cylindrical coordinates (r;φ). We later return, in particular,
to Laguerre-Gaussian modes.
The longitudinal component at first order of the paraxial

parameter is again obtained from the divergence equation for
the electric field, leading to

ẼzðrÞ ¼ ifw0∇⊥ · Ẽ⊥ðrÞ: ð10Þ

For the construction of higher-order terms, see Lax, Louisell,
and McKnight (1975).
In electrodynamics and optics it is often convenient to

introduce potentials because in this way the homogeneous
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Maxwell equations are automatically fulfilled. Electro-
magnetic potentials per se are ambiguous due to gauge
invariance (Jackson, 1999): a particular pair of electric field
E and magnetic field B relates to a family of pairs of vector
potential A and scalar potential Φ through

Eðr; tÞ ¼ −∂tAðr; tÞ − ∇Φðr; tÞ; ð11aÞ

Bðr; tÞ ¼ ∇ ×Aðr; tÞ: ð11bÞ

In addition to the standard scalar and vector potentials Hertz
vector potentials can also be used (Wang et al., 2016), but they
are less common and we do not discuss them further in the
review. Members of the family of potentials differ from each
other by scalar functions χ and, starting with an initial pair
(Að1Þ;Φð1Þ), another pair (Að2Þ;Φð2Þ) within the family is
obtained using the gauge transformation

Að2Þðr; tÞ ¼ Að1Þðr; tÞ þ ∇χðr; tÞ; ð12aÞ

Φð2Þðr; tÞ ¼ Φð1Þðr; tÞ − ∂tχðr; tÞ ð12bÞ

(the superscripts are omitted when the gauge is understood).
To work with potentials, one chooses a suitable gauge. The
two most commonly used ones, both of which fix the
divergence of the vector potential,5 are the Coulomb gauge

∇ ·Aðr; tÞ ¼ 0 ð13Þ

and the Lorenz gauge

∇ ·Aðr; tÞ þ 1

c2
∂Φðr; tÞ

∂t
¼ 0: ð14Þ

Far from sources, i.e., in the regime mostly studied here, in the
Coulomb gauge the scalar potential vanishes; the gauge is then
also called the radiation gauge. This is usually the starting
point for the quantization of electromagnetic fields in quantum
optics. In both gauges the potentials are still not completely
determined by the gauge conditions; see Chap. 6 of Jackson
(1999). In the Coulomb gauge any time-independent gauge
field χðrÞ satisfying the Laplace equation ∇2χðrÞ ¼ 0 again
leads to potentials satisfying the Coulomb gauge. In the
Lorenz gauge any gauge function χðr; tÞ satisfying the
homogeneous wave equation ð∇2 − c−2∂ttÞχðr; tÞ ¼ 0 leads
again to potentials satisfying the Lorenz gauge. In particular,
choosing a gauge function according to ∂tχðr; tÞ ¼ Φð1Þðr; tÞ
also leads in the Lorenz gauge to potentials satisfyingΦð2Þ ¼ 0

and ∇ ·Að2Þ ¼ 0, which agrees with the Coulomb gauge
condition. On the other hand, choosing a gauge function with

∂zχðr; tÞ ¼ −Að1Þ
z ðr; tÞ results in potentials with a vanishing

longitudinal component of the vector potential, i.e., Að2Þ
z ¼ 0.

The vector potential in the Coulomb and Lorenz gauges and
the scalar potential in the Lorenz gauge satisfy in free space
the same homogeneous wave equation (2) as the electric and
magnetic fields. Therefore, everything that was previously

stated about the electric field concerning exact and propaga-
tion-invariant solutions, as well as comments regarding the
paraxial approximation, also remains valid for the potentials.
In particular, for monochromatic potentials with time depend-
ence ∼ expð−iωtÞ in the zeroth order of the paraxial approxi-
mation, the transverse components of the vector potential, in
both Coulomb and Lorenz gauges, satisfy the paraxial wave
equation

∇2⊥Ã⊥ðrÞ þ 2ik∂zÃ⊥ðrÞ ¼ 0: ð15Þ

The longitudinal component Az (in the case of Φ ¼ 0) and the
scalar potential Φ (in the case of Az ¼ 0) are of first order in
the paraxial parameter and satisfy

ÃzðrÞ ¼ ifw0∇⊥ · Ã⊥ðrÞ if Φ ¼ 0; ð16aÞ

Φ̃ðrÞ ¼ −ifcw0∇⊥ · Ã⊥ðrÞ if Az ¼ 0: ð16bÞ

Owing to gauge invariance, there is no unique way to derive
OVs through the vector potential. When looking through the
literature, in paraxial optics one ismore likely to find derivations
in terms of the Lorenz gauge with vanishing Az (Allen et al.,
1992; Dávila Romero, Andrews, and Babiker, 2002; Loudon,
2003), while in nonparaxial optics it is more common to find
work using the Coulomb gauge with Φ ¼ 0 (Volke-Sepulveda
et al., 2002; Jáuregui, 2004; Matula et al., 2013).
Typically, the derivation starts with a guess about the form

of the transverse component A⊥ of the vector potential. The
remaining components (Φ in the case of Az ¼ 0 and Az in the
case of Φ ¼ 0) are then fixed either using the exact gauge
condition (in nonparaxial optics) or using Eq. (16) when
working in the paraxial approximation. A generalization
scheme inspired by the two aforementioned procedures was
developed by Quinteiro et al. (2019), and we discuss it further
in Sec. II.C.2 to derive general Bessel beams; a discussion on
Laguerre-Gaussian beams was given by Quinteiro et al.
(2019). Once scalar and vector potentials are obtained, electric
and magnetic fields result from Eqs. (11a) and (11b).
Thus far we have treated the electromagnetic field as a

classical quantity. A quantum point of view is indeed
necessary in specific problems with OV–condensed-matter
interactions, such as in polariton physics (Sec. IV.B) or if the
photon statistics comes into play. Quantization of the fields is
usually performed in the Coulomb gauge. Without going into
detail at this point of our discussion, it is worth recalling some
correspondence between the viewpoint of light waves and
photons that helps one navigate through the literature. A
circularly polarized field with handedness σ ¼ �1 is formed
out of photons with definite helicity σ ¼ �1 and SAM ℏσ
(sometimes called intrinsic AM). And a paraxial classical OV
with topological charge l is formed out of photons with OAM
ℏl, a fact that was verified in a number of experiments
(Courtial et al., 1997; Arnaut and Barbosa, 2000; Mair et al.,
2001) and is of most relevance in studies on single-photon
OV-matter interactions (Sec. IV).
Finally, OVs are not restricted to the visible region of the

electromagnetic spectrum, and interesting research and5The curl of the vector potential is already fixed by definition (11).
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applications have been done in other spectral regions; see
Secs. II.H and V.C.

C. Single-singularity fields

The family of OVs embraces all sorts of fields with single
and multiple phase singularities. Single-singularity fields have
been by far the most studied ones, and they also are the easiest
to analyze. In the following we describe the two most
important cases in cylindrical coordinates: (i) Laguerre-
Gaussian beams as solutions of the paraxial wave equation
and (ii) Bessel beams as solutions of the full wave equation,
but also solutions of the paraxial wave equation. Because of its
relevance in past and current research in general and singular
optics, we start with case (i), even though it describes an
approximate situation.

1. Laguerre-Gaussian beams

Beams with finite lateral extension are obtained as solutions
of the paraxial wave equation. In the lowest, i.e., zeroth, order
of the paraxial parameter f, electric and magnetic fields as
well as the vector potential are purely transverse and they are
described by the paraxial wave equation (9) or (15).
Introducing a scalar mode function uðrÞ, we can write

Aðr; tÞ ¼ A0uðrÞeiðkz−ωtÞ þ c.c. ð17Þ

with a two-dimensional constant vector A0. The important
case of a well-defined intrinsic (or spin) AM is realized for
circularly polarized beams with A0 ¼ A0eσ . The electric and
magnetic fields have the same structure, only withA0 replaced
by E0 ¼ iωA0 and B0 ¼ ikẑ ×A0 [note that the terms
resulting from ∂zuðrÞ are of higher order in the paraxial
parameter]. The mode function satisfies the paraxial wave
equation. A factorization in Cartesian coordinates ðx; yÞ leads
to the Hermite-Gaussian modes, while the factorization in
polar coordinates ðr;φÞ leads to the following Laguerre-
Gaussian modes (Barnett, Babiker, and Padgett, 2017):

uðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p!
πðpþ jljÞ!

s
1

wðzÞ
�
r

ffiffiffi
2

p

wðzÞ
�jlj

eilφeiψðzÞ

×Ljlj
p

�
2r2

w2ðzÞ
�
exp

�
−

r2

w2ðzÞ
�
exp

�
−ik

r2

2RðzÞ
�
; ð18Þ

where wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=zRÞ2

p
is the beam radius, RðzÞ ¼

z½1þ ðzR=zÞ2� is the radius of curvature of the wave front,
ψðzÞ ¼ −ðjlj þ 2pþ 1Þ arctanðz=zRÞ is the Gouy phase, and

Ljlj
p is a generalized Laguerre polynomial. The parameters w0

and zR ¼ ð1=2Þkw2
0 are the previously mentioned beam waist

and the Rayleigh range, respectively. This expression for the
mode function shows that LG beams are fields with a single
singularity located at r ¼ 0 and with topological charge l.
In the lowest order of the paraxial approximation, the fields

are completely transverse. This is nevertheless inconsistent
with real beams with finite width, whose rays travel (at least
slightly) at an angle. When a beam diverges or converges, a
longitudinal component of the field necessarily exists. This
component is restored in the first-order correction to the

paraxial beam according to Eqs. (16a) and (16b). Using the
Lorenz gauge with Az ¼ 0 (Loudon, 2003), one obtains a
scalar potential according to

Φðr; tÞ ¼ −ifcw0eiðkz−ωtÞA0 · ∇⊥uðrÞ; ð19Þ

leading to a longitudinal component of the electric field

Ezðr; tÞ ¼ −∂zΦðr; tÞ
¼ −ceiðkz−ωtÞA0 · ∇⊥uðrÞ; ð20Þ

where we use f ¼ ðw0kÞ−1; see Eq. (7).
A calculation based on the angular momentum density

(Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1989;
Jackson, 1999) of the field u0ðr; zÞeilφ reveals that the ratio
of AM in the z direction to the energy is Jz=W ¼ l=ωþ σ=ω.
The separation between spin and orbital AM and what it
suggests about the quantization of the OAM (take the energy
W as that of a photon ℏω) are delicate matters; see Sec. 2 of
Allen, Padgett, and Babiker (1999).

2. Bessel beams

The Helmholtz equation (3) written in cylindrical coordi-
nates is separable. The equations in the angle φ and longi-
tudinal z coordinates are simply solvable using complex
exponential functions; the equation for the radial r coordinate
is Bessel’s differential equation (Arfken and Weber, 2005), for
which the solutions and their properties have been extensively
studied (Korenev, 2002). Bessel beams (Durnin, Miceli, and
Eberly, 1987) have their own benefits. They (i) retain their
spatial profile on propagation and are therefore also called
nondiffracting beams, (ii) describe nonparaxial fields and are
therefore valid for any values of the beam parameters, (iii) are
mathematically simpler than LG beams, and (iv) have the
simplest modal decomposition (Sec. II.F). However, as
happens with plane waves, they are not realizable in the real
world, since they decay slowly in the radial direction and
therefore carry infinite energy.
We now derive Bessel beams using a scheme mentioned in

Sec. II.B that uses potentials (Quinteiro et al., 2019). We now
look for the solution of the Helmholtz equation for the
transverse component of the vector potential. If one assumes
a monochromatic field and circular polarization of the trans-
verse part, the solution reads

A⊥ðr; tÞ ¼ A0JlðqrrÞeilφeiðqzz−ωtÞeσ þ c.c.; ð21Þ
inwhich JlðqrrÞ is a Bessel function of the first kind of orderl,
with the latter denoting the topological charge,qr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − q2z

p
,

with the inverse q−1r related to the beam waist, and where eσ is
the circular polarization vector. As previously discussed, this
transverse part has to be complemented by a longitudinal
component and/or a scalar potential to satisfy the gauge
condition. Using the Lorenz condition, we get

∇⊥ ·A⊥ðr; tÞ þ ∂zAzðr; tÞ þ
1

c2
∂tΦðr; tÞ ¼ 0: ð22Þ

While in the previous discussions we have taken either Az orΦ
to be zero, a more general choice is
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∂zA
ðγÞ
z ðr; tÞ ¼ −γ∇⊥ ·A⊥ðr; tÞ; ð23aÞ

ΦðγÞðr; tÞ ¼ −ið1 − γÞ c
2

ω
∇⊥ ·A⊥ðr; tÞ; ð23bÞ

with a real parameter 0 ≤ γ ≤ 1. γ ¼ 1 and γ ¼ 0 restore the
aforementioned limiting cases of only Az or onlyΦ.∇⊥ ·A⊥ is
determined using Eq. (21). Finally, using Eqs. (11a) and (11b)
as well as the separation of the propagating part according to
Eq. (4), the electromagnetic fields are obtained as

ẼðγÞðrÞ ¼ iE0

�
JlðqrrÞeilφeσ −

1 − γ

2

�
qr
k

�
2

½JlðqrrÞeilφeσ − Jlþ2σðqrrÞeiðlþ2σÞφe−σ�

− iσ
qrðq2z þ γq2rÞffiffiffi

2
p

qzk2
JlþσðqrrÞeiðlþσÞφẑ

�
; ð24aÞ

B̃ðγÞðrÞ ¼ σB0

�
JlðqrrÞeilφeσ þ

γ

2

�
qr
qz

�
2

½JlðqrrÞeilφeσ þ Jlþ2σðqrrÞeiðlþ2σÞφe−σ �

− iσ
qrffiffiffi
2

p
qz

JlþσðqrrÞeiðlþσÞφẑ
�
; ð24bÞ

with E0 ¼ ωA0 and B0 ¼ qzA0. This is actually a family of
beams. Some interesting choices are (i) γ ¼ 1: Close to
r ¼ 0 for qr=qz ≃ 1 (i.e., in the strongly nonparaxial
regime), the magnetic field may surpass the electric field
(Sec. IV.A), while the transverse part of the electric field
has a well-defined circular polarization. (ii) γ ¼ 0: Now the
electric field dominates close to the beam center, while the
transverse part of the magnetic field has a well-defined
circular polarization. (iii) γ ¼ γs ¼ ð1þ k=qzÞ−1: The ratio
between the magnitudes of the electric and magnetic fields
resembles that of plane waves (Li, 2009; Bliokh et al.,
2010). Another family of beams related to Eqs. (24a)
and (24b) can be easily obtained from duality, i.e., the
replacements E → −cB and B → E=c (Anderson and
Arthurs, 1990; Mignaco, 2001).
Note that the potentials of Eq. (23) for different values of γ

are not related by a gauge transformation, as indicated by the
fact that the electric and magnetic fields depend on γ. For each
value of γ, gauge functions χ can be found that remove either
Φ or Az. This gauge transformation will then modify the
transverse componentsA⊥ of the vector potential [Eq. (21)] in
such a way that they also contain contributions of opposite
circular polarization ∼e−σ with different topological charges.
The fields of Eqs. (24a) and (24b) display a single

singularity at r ¼ 0 but have varying topological charges
for different parts and components. Several interesting fea-
tures of such fields, like the mixing of orbital and spin AM or
the appearance of longitudinal components, are discussed in
Sec. IV when needed; see Quinteiro, Reiter, and Kuhn (2015,
2017b) and Quinteiro et al. (2019) and references therein for
more details.

D. Multiple-singularity fields

Simple solutions to the paraxial or full wave equation are
LG and Bessel beams that present a single singularity at the
beam axis located at r ¼ 0. More complex fields can be built
using the superposition principle: for example, adding two LG

beams whose optical axes are parallel but displaced by a
distance such that there is essentially no overlap would result
in a two-singularity field. However, a different approach based
on the fact that, as previously mentioned, the wave equation is
also separable in coordinates other than Cartesian and cylin-
drical ones can be applied. In particular, the solution of the
wave equation, of both the exact and the paraxial one, in
elliptical coordinates ðξ; η; zÞ leads to yet another class of
elementary beams, among which there are beams that exhibit
multiple phase singularities (Mathieu, 1868; Gutiérrez-Vega,
Iturbe-Castillo, and Chávez-Cerda, 2000; Gutiérrez-Vega
et al., 2001; Alpmann et al., 2010; Hernández-Hernández
et al., 2010; Pabon et al., 2017; Shen et al., 2019).
Elliptical and Cartesian coordinates are related using the

transformation x ¼ h coshðξÞ cosðηÞ, y ¼ h sinhðξÞ sinðηÞ,
with 0 ≤ ξ < ∞, and 0 ≤ η < 2π, with the curves of constant
ξ ellipses. Owing to the separability of the Helmholtz
equation (5), solutions are given in the form of products of
radial and angular parts, i.e., Ẽðξ; ηÞ ¼ E0RðξÞΘðηÞ, with R
and Θ satisfying Mathieu differential equations

d2RðξÞ
dξ2

− ½a − 2b coshð2ξÞ�RðξÞ ¼ 0; ð25aÞ

d2ΘðηÞ
dη2

þ ½a − 2b cosð2ηÞ�ΘðηÞ ¼ 0: ð25bÞ

In Eqs. 25(a) and (25b), a is the separation constant and b is
proportional to the ellipticity. These solutions are called
Mathieu beams. They present a greater variety of situations,
from solutions with single singularities to solutions with
multiple singularities. Figure 3 compares a LG beam (single
singularity) with a particular Mathieu beam with two singu-
larities on the horizontal axis.

E. Paraxial versus nonparaxial beams

Propagation-invariant beams like plane waves, Bessel
beams, or Mathieu beams are solutions to both the exact
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and the paraxial wave equation. In contrast, LG beams as an
example of beams with a finite width have been obtained only
from the paraxial wave equation. In this section we take a
closer look at the relation between beams described by the full
Helmholtz equation and the paraxial wave equation. We
consider a generic transverse component of the electromag-
netic field or the vector potential with a harmonic time
dependence according to ψðrÞ expð−iωtÞ, where ψðrÞ
describes the spatial profile of the wave.
Normalized transverse eigenmodes vnðr⊥Þ of both the

Helmholtz and the paraxial wave equation are given by
solutions of the eigenvalue equation

−∇2⊥vnðr⊥Þ ¼ q2nvnðr⊥Þ ð26Þ

with eigenvalues q2n, where qn corresponds to a characteristic
transverse wave vector of the mode n. Depending on the
symmetry, the eigenfunctions can be plane waves in the
transverse directions, Bessel functions times expðilφÞ, prod-
ucts of Mathieu functions, or other functions that do not
factorize in the two transverse coordinates. Propagation-
invariant beams are characterized using a single transverse
eigenmode (or a superposition of degenerate eigenmodes),
which explains why they are solutions to both the Helmholtz
and the paraxial wave equation. The Bessel beam of Eq. (21),
for example, is a solution with qn ¼ qr.

The transverse modes have to be complemented by longi-
tudinal modes. Here the difference between the two types of
wave equations comes into play. Since the paraxial wave
equation is of first order in z, there is one longitudinal mode
∼ expðiqzzÞ for a given transverse mode. In contrast, the
Helmholtz equation is of second order in z, leading to two
modes ∼ expð�iqzzÞ.
Because of the orthogonality and completeness of the mode

functions, any solution can be expanded into a sum of these
modes. For waves satisfying the paraxial wave equation, this
leads to

ψðr⊥; zÞ ¼
X
n

Cnvnðr⊥Þeiðk−q2n=2kÞz: ð27Þ

[Note that when Eq. (27) is inserted into the paraxial wave
equation the factor expðikzÞ has to be omitted.] The expansion
coefficients Cn are obtained in the standard way from the
profile at a given z, e.g., z ¼ 0, according to

Cn ¼
Z

v�nðr⊥Þψðr⊥; 0Þdr⊥: ð28Þ

This analysis demonstrates that if the transverse profile at
z ¼ 0 is given by a transverse eigenmode, the shape remains
fixed and the beam is nondiffracting. On the other hand, we
can introduce a propagator Gðr⊥; z; r0⊥; z0Þ according to

ψðr⊥; zÞ ¼
Z

Gðr⊥; z; r0⊥; z0Þψðr0⊥; z0Þdr0⊥; ð29Þ

with

Gðr⊥; z; r0⊥; z0Þ ¼
X
n

v�nðr0⊥Þvnðr⊥Þeiðk−q
2
n=2kÞðz−z0Þ

¼ k
2πiðz − z0Þ e

ik½ðz−z0Þþjr⊥−r0⊥j2=2ðz−z0Þ�; ð30Þ

where Eq. (30) is most easily obtained using plane waves as
transverse eigenmodes. Replacing the longitudinal coordinate
z with time, this is exactly the propagator for the time-
dependent Schrödinger equation for a free particle, which
reflects the equivalence of the paraxial wave equation with the
time-dependent Schrödinger equation. The widening of a
Gaussian beam along z is thus completely equivalent to the
broadening of a Gaussian wave packet with increasing time in
quantum mechanics.
We now turn to the full Helmholtz equation. Here the

expansion of a wave in the eigenmodes reads

ψðr⊥; zÞ ¼
X
n

vnðr⊥Þ
�
Anei

ffiffiffiffiffiffiffiffiffi
k2−q2n

p
z þ Bne−i

ffiffiffiffiffiffiffiffiffi
k2−q2n

p
z

�
:

It is now no longer sufficient to know the wave at a given
longitudinal position z; instead, its derivative with respect to z
is also needed. The expansion coefficients are obtained from

An ¼
1

2

Z
v�nðr⊥Þ

�
ψðr⊥; 0Þ þ

∂zψðr⊥; 0Þ
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − q2n

p �
dr⊥; ð31aÞ

(a)

(b)

(c)

(d)

FIG. 3. LG and Mathieu beams. (a),(c) Numerical simulations
of (left image) LG and (right image) Mathieu beams. (a) Single
beam intensity and (c) interference pattern with a reference
Gaussian beam. (b),(d) Experimental results corresponding to
single beam intensity and interference with a Gaussian beam,
respectively. The single beam images show a single (LG) or
double (Mathieu) zero-intensity point, while the interference
images present the characteristic single (LG) or double (Mathieu)
forklike pattern. The first and fourth columns are enlargements of
(a) and (c). Adapted from Pabon et al., 2017.
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Bn ¼
1

2

Z
v�nðr⊥Þ

�
ψðr⊥; 0Þ −

∂zψðr⊥; 0Þ
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − q2n

p �
dr⊥: ð31bÞ

The decomposition with these coefficients is valid for
arbitrary beam profiles ψðr⊥; 0Þ and ∂zψðr⊥; 0Þ at a fixed
longitudinal position, here taken to be z ¼ 0. In particular, we
find that as soon as there is more than one transverse mode
contributing, the beam necessarily also has a counterpropa-
gating (∼Bn) part. We can now ask when this profile
corresponds to a paraxial beam. First, the z dependence
of a paraxial beam is dominated by eikz, leading to
∂zψðr⊥; 0Þ ≈ ikψðr⊥; 0Þ. Second, the transverse wave vector
is much smaller than the longitudinal one, i.e., qn ≪ k for all
modes appearing in the expansion. Under these conditions
Bn ≪ An and An ≈ Cn; i.e., the counterpropagating part
becomes negligible and the coefficient of the term propagating
in the positive z direction is essentially the same as in the case
of the paraxial wave equation. Furthermore, if we expand in

the exponent
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − q2n

p
≈ k − q2n=2k, we recover the solution,

and thus also the propagator, of the paraxial wave equation.
We summarize our understanding of paraxial and non-

paraxial solutions. A simplified picture relying solely on the
paraxial wave equation leads us to interpret paraxiality as a
binary property: either a field satisfies the equation or not; in
addition, the paraxial solution is disconnected from the exact
solution to the Helmholtz equation. Lax, Louisell, and
McKnight (1975) have already shown that paraxiality is
instead a feature that comes in degrees. In this section, we
have further demonstrated that simple approximations on a
nonparaxial solution smoothly reduce it to a paraxial solution,
thus completing the link between the two fields.

F. Representing optical vortices by plane waves

Bessel and Laguerre-Gaussian functions each form sets of
solutions that can be used to define more complicated fields
through superpositions. This is also the case for plane waves,
which are routinely used as a basis set to build up other
functions using Fourier analysis. For problems involving
simple OVs with approximately cylindrical symmetry, such
as single-singularity beams generated in the lab, a mathemati-
cal representation is easiest in terms of Bessel, LG, or other
cylindrical basis functions. However, there are important
situations in which a decomposition of the OV into a
plane-wave basis becomes necessary, such as in the study
of reflection and refraction. Fresnel coefficients relate the
amplitudes of incident, reflected, and refracted plane waves,
and thus are unsuitable for direct use with OVs. Furthermore,
this decomposition provides additional insight into the proper-
ties of OVs. The representation in terms of plane waves is
referred to as a modal decomposition or an angular spectrum
representation (Siegman, 1990; Novotny and Hecht, 2006;
Kaiser et al., 2009; Schmidt et al., 2011). Such a decom-
position is possible for all relevant fields,E,B,A, andΦ; here
we concentrate on the decomposition of the E field.
The starting point is the general representation of the spatial

part of a vector field as its plane-wave (or spatial Fourier)
components

EðrÞ ¼
Z

EðqÞeqσeiq·rdq; ð32Þ

where EðqÞ denotes the Fourier component of the field and eqσ
represents its polarization vector. Since we consider only
monochromatic waves, all plane waves must have the same
frequency. Therefore, the absolute value of q is fixed to
q ¼ k ¼ ω=c. Using spherical coordinates ðq; θq;φqÞ, only
the integrals over the angles θq and φq remain.
To be specific, we now concentrate in the following on

propagation-invariant beams traveling in the z direction.
These beams have a well-defined longitudinal wave vector
qz and thus, since cos θq ¼ qz=k, a well-defined θq, such that
only the integral over φq remains. Fixing θq also fixes the
perpendicular wave vector qr ¼ k sin θq. Using the cylindrical
coordinates ðqr;φq; qzÞ and ðr;φ; zÞ, we have

q · r ¼ qrrðcosφq cosφþ sinφq sinφÞ þ qzz

¼ qrr cosðφq − φÞ þ qzz; ð33Þ

leading to the decomposition of a propagation-invariant beam
according to

EðrÞ ¼ eiqzz
Z

2π

0

ẼðφqÞeqσeiqrr cosðφq−φÞdφq: ð34Þ

The beam therefore represents a superposition of plane waves
with wave vectors q lying on the surface of a cone around the
propagation direction ẑ. To specify the beam, we have to fix
the angle dependence ẼðφqÞ and the polarization vectors eqσ
of the plane-wave components.
As an example, we decompose the electric field of Eq. (24a)

into plane waves. The electric field has the general form

EðγÞðrÞ ¼ iE0eiqzz½cðγÞσ JlðqrrÞeilφeσ
þ cðγÞ−σJlþ2σðqrrÞeiðlþ2σÞφe−σ

− iσcðγÞz JlþσðqrrÞeiðlþσÞφẑ�; ð35Þ

with coefficients cðγÞσ , cðγÞ−σ , and cðγÞz , as can be deduced from
Eq. (24a). Using the Jacobi-Anger identity or the correspond-
ing integral representations of the Bessel functions (see also
their multiple uses in Sec. IV),

JmðqrrÞ ¼
1

2πim

Z
2π

0

eiqrr cos ηe−imηdη; ð36Þ

with η ¼ φq − φ, we can identify the integrand in Eq. (34) as

ẼðφqÞeqσ ¼
iE0

2πil
eiðlþσÞφq ½cðγÞσ e−iσφqeσ

þ i−2σcðγÞ−σeiσφqe−σ − iσi−σcðγÞz ẑ�: ð37Þ

Using the identities i−2σ ¼ −1 and i−σ ¼ −iσ, we thus obtain
the angle-dependent weight
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ẼðφqÞ ¼ ð−1Þlilþ1

ffiffiffiffi
N

p
E0

2π
eiðlþσÞφq ð38Þ

and the polarization vector

eqσ ¼
1ffiffiffiffi
N

p ½cðγÞσ e−iσφqeσ − cðγÞ−σeiσφqe−σ − cðγÞz ẑ�

¼ 1ffiffiffiffi
N

p
��

1 −
1 − γ

2

�
qr
k

�
2
�
e−iσφqeσ

−
1 − γ

2

�
qr
k

�
2

eiσφqe−σ −
qrðq2z þ γq2rÞffiffiffi

2
p

qzk2
ẑ

�
; ð39Þ

with N a normalization constant for the polarization vector. In
the latter form the explicit expressions for the coefficients
from Eq. (24a) have been inserted. According to Eq. (38),
plane waves with different angles in the x-y plane indeed
contribute with a weight given by a phase factor expðimφqÞ, as
might be expected for an OV. The polarization vector eqσ of
Eq. (39) of the plane-wave component traveling in the
direction q becomes more transparent when expressed in
terms of unit vectors in spherical coordinates ðq; θq;φqÞ,
which are given by

eq ¼ x̂ sin θq cosφq þ ŷ sin θq sinφq þ ẑ cos θq;

eθq ¼ x̂ cos θq cosφq þ ŷ cos θq sinφq − ẑ sin θq;

eφq
¼ −x̂ sinφq þ ŷ cosφq:

When one uses cos θq ¼ qz=k, sin θq ¼ qr=k, and

eσ ¼ ðx̂þ iσŷÞ= ffiffiffi
2

p
, the polarization vector (39) can be

rewritten as

eqσ ¼
1ffiffiffiffiffiffiffi
2N

p
�
cos2θq þ γsin2θq

cos θq
eθq þ iσeφq

�
: ð40Þ

We notice that, as it should be, all plane-wave components are
indeed transverse, i.e., they have no component along eq.
Furthermore, all components are in general elliptically polar-
ized. Looking at different values of γ, we find that (i) γ ¼ 1:
the major axis of the ellipse is along eθq ; (ii) γ ¼ 0: the major
axis of the ellipse is along eφq

; and (iii) γ ¼ γs ¼ cos θq=
ð1þ cos θqÞ: the beam is a superposition of circularly polar-
ized plane waves, as discussed by Jentschura and Serbo (2011)
and Matula et al. (2013). Figure 4 shows the modal recom-
position in action producing an OV that captures the quali-
tative features seen in Fig. 2, with a superposition of only four
plane waves (Dennis, O’Holleran, and Padgett, 2009).
Laguerre-Gauss modes are not propagation invariant and

thus not characterized by a well-defined qz. Therefore, their
decomposition requires the inclusion of varying qz (and also
qr), which corresponds to an angular weight function
Eðθq;φqÞ depending on both the polar and the azimuthal
angle (Barnett and Allen, 1994).
The modal decomposition offers an alternative way to study

the OV-matter interaction, based on the action of a multitude
of plane wave. An example is the treatment of the reflection
and refraction of a LG beam impinging at an angle on a

dielectric interface to understand the Goos-Hänchen and
Imbert-Fedorov effects of OVs (Lusk, Siemens, and
Quinteiro, 2019). Here a LG beam is numerically decomposed
into plane waves. The Fresnel coefficients then determine the
reflection and transmission of each plane wave, which are
finally summed up to yield the complete fields. Another
interesting example is that of the electronic excitation in bulk
semiconductors, in which one may choose to decompose the
OV into plane waves to match Bloch electron states, or
conversely to retain the simplest representation of an OV in
terms of Bessel functions and transform the electronic states to
cylindrical coordinates (Sec. IV.A.2).

G. Generation and measurement

Optical vortices are now routinely created in many labs.
Various techniques to produce such beams are available. They
work mostly by converting a laser output beam into an OV, but
there are also ways to directly generate a coherent OV beam
(Yin, Gao, and Zhu, 2003; Seghilani et al., 2016; Forbes,
2017; Pan et al., 2020).
A spiral phase plate is the most intuitive converter (Kotlyar

et al., 2005). It is a transparent cylinder with one of its bases
carved into a spiral. A conventional (Gaussian or the like) light
beam incident on a base emerges as an OV: geometrically, a
ray impinging at a particular position along the surface arc
traverses a different optical path than other rays and thus picks
a relative phase.
The use of diffraction gratings with dislocations, typically

having the shape of a fork, is widely spread (Carpentier et al.,
2008). In simple terms, the fringes’ design is the pattern
resulting from the interference between a plane wave and an
OVand printed on a transparent glass; upon illumination by a
plane wave (Gaussian beam), different OV beams (orders) are
transmitted, with varying topological charge. Fork gratings
can also be made to work in reflection. Moreover, a spatial
light modulator based on high-resolution liquid crystal dis-
plays can be used to modulate the beam in real time.
Other alternative techniques are available. A Q plate is a

birefringent liquid crystal that converts SAM into OAM.
Some of its advantages are the high conversion efficiency,

FIG. 4. Vector fields resulting from the sum of four plane waves,
each traveling in a direction q lying on the surface of the same
cone but differing in its relative phase. All four plane waves share
the same phase l ¼ 1, but the polarization is σ ¼ þ1 on the left
and σ ¼ −1 on the right. The composite fields are in perfect
qualitative agreement with those calculated from Eq. (21) and
shown in Fig. 2.
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the easy alignment, and the Q plate’s possible use in a wide
range of frequencies (Rubano et al., 2019). As anticipated in
Sec. II.A, conical diffraction can be used to generate OV
beams (Berry, Jeffrey, and Mansuripur, 2005; Phelan et al.,
2009; Turpin et al., 2016); here the cylindrical beam coming
out of the biaxial crystal is a superposition of fields with and
without OAM that can be separated. Another way is to convert
Hermite-Gaussian beams into LG beams with cylindrical
lenses (Padgett and Allen, 2002). Metamaterials are also
employed to shape beams (Chen et al., 2020; Zhang, Wang
et al., 2020). Well suited for photonic applications are
microring resonators (Cai et al., 2012; Zhu et al., 2013)
and micrometer-size lasers that can emit OVs with control-
lable topological charge and polarization (Miao et al., 2016;
Zhang et al., 2020).
Lastly, we mention that the aforementioned methods focus

on creating phase singularities on input beams. The radial
profile (LG, Bessel, Mathieu, etc.) has to be further considered
and introduced. For example, Bessel beams can be generated
using axicons, conical optical elements that transform the
beam into a ring by mapping each source point onto the
optical axis (Kazak, Khilo, and Ryzhevich, 1999; Arlt and
Dholakia, 2000; Jaroszewicz, Burvall, and Friberg, 2005;
Bock, Jahns, and Grunwald, 2012).
The same ideas and methods as just described can be used

to measure the topological charge of an unknown field (Chen
et al., 2020). The most basic fact to learn is whether or not the
unknown beam is an OV. This one is determined by making
the beam interfere with another one, either a plane wave
(Gaussian) or a spherical wave. With the former (latter) the
interference pattern of an OV is that of a fork (spiral)
(Carpentier et al., 2008). If the beam is indeed an OV, one
can infer the topological charge from the number of bifurca-
tions (arms). As expected, this rudimentary method has been
by now much improved by more delicate techniques using a
single cylindrical lens to measure fractional OAM (Alperin
et al., 2016) and spectra of OAM (Volyar et al., 2019), sets of
spatial light modulators for real-time measurements (Berkhout
et al., 2010), etc.

H. Optical vortices in physics, chemistry, and biology

After the work of Allen et al. (1992), the subject of OVs
blossomed, especially in optics with research on basic theory,
generation, and measurement (Allen, Barnett, and Padgett,
2003; Andrews, 2008). In only a few years it had expanded
into other areas of physics.
The interaction of OVs with atoms started with theoretical

studies on their motion under the torque exerted by LG beams
and the transfer of OAM (Van Enk, 1994; Allen et al., 1996;
Andrews, 2008), and experimental work on the interaction of
an OV with an ensemble of cold cesium atoms (Tabosa and
Petrov, 1999). Several other studies followed, deepening the
understanding on the basics of absorption of OVs and
exploring other properties, such as the exchange of OAM
in the interaction with molecules and the role of the dipole-
moment approximation (Babiker et al., 2002), the generation
of currents (Köksal and Berakdar, 2012), interaction in an
atomic Bose-Einstein condensate (Mondal, Deb, and
Majumder, 2014; Bhowmik et al., 2016), the photoexcitation

of many-electron atoms (Scholz-Marggraf et al., 2014;
Surzhykov et al., 2015), and the photoionization of Hþ

2

(Peshkov, Fritzsche, and Surzhykov, 2015). These and other
works pointed to the expected transfer of OAM to atoms
(internal and center-of-mass degrees of freedom) and to the
existence of higher than dipolar electronic transitions
(Sec. II.A). Schmiegelow et al. (2016) provided a direct
experimental demonstration of the transfer of OAM to a single
trapped ion, with implications for the importance of the
longitudinal component of the field (Quinteiro, Schmidt-
Kaler, and Schmiegelow, 2017) (Sec. II.C), the alignment
of the beam axis with the atom (Quinteiro, Lucero, and
Tamborenea, 2010; Peshkov et al., 2017; Afanasev et al.,
2018) (Sec. IV.A.3.b), and the characteristic length scale
associated with the singularity (Sec. VI.B.1). Theoretical
work continues describing subwavelength trapping (Schulze
et al., 2017), interaction with Rydberg atoms (Mukherjee
et al., 2018), the scattering by hydrogenic ions (Peshkov et al.,
2018), resonant scattering by fast ions (Serbo, Surzhykov, and
Volotka, 2022), multipolar transitions (Solyanik-Gorgone
et al., 2019), Bose-Einstein condensates (Das et al., 2020;
Ghosh Dastidar et al., 2022), trapping by counterpropagating
beams (Koksal et al., 2019, 2020), etc. (Franke-Arnold, 2017;
Babiker, Andrews, and Lembessis, 2019).
Studies of atom-OV interactions have been accompanied by

studies of molecules. A primary concern has been to establish
whether the OAM of light plays a role in chiral molecule-light
interactions, as is well known with spin AM. Studies pointing
in the positive direction (OAM does affect chiral matter)
(Rosales Guzmán, 2015; Brullot et al., 2016; Forbes and
Andrews, 2018b; Woźniak et al., 2019; Ye et al., 2019) and
negative direction (Babiker et al., 2002; Andrews, Dávila
Romero, and Babiker, 2004; Araoka et al., 2005; Löffler,
Broer, and Woerdman, 2011; Mathevet et al., 2013;
Giammanco et al., 2017) exist, and the accumulated evidence
thus far indicates that the effect does take place at the
quadrupole electronic transition level (Sec. III.C.1) and can
be induced using Bessel beams or tight focusing mixing
orbital and spin AMs (Zhao et al., 2007; Monteiro, Neto, and
Nussenzveig, 2009) (Sec. II.C.2). Other research into more
general properties of OV-molecule interactions were con-
ducted on the photoinduced currents and magnetic fields in
ring-shaped molecules (Köksal and Koç, 2017a) and nano-
cages (Köksal and Koç, 2017b), and twisted excitons in
molecules (Zang and Lusk, 2017).
Other fields also profit from OVs. The propagation proper-

ties of OVs in a plasma were investigated by Nobahar,
Hajisharifi, and Mehdian (2019), and Zhang et al. (2021)
proposed the generation of high-order OV harmonics by
irradiating a plasma with a circularly polarized Gaussian
beam. Optical vortices out of the visible spectrum have also
been investigated. In the ultraviolet regime, they can improve
lithography and ablation techniques (Hernández-García et al.,
2017; Pabon et al., 2017). Metalenses can generate OVs in
microwaves (Zhang et al., 2018) and V-shaped antennas can
generate OVs in the terahertz range (He et al., 2013). In the
radio frequency regime corresponding studies were conducted
(Thidé et al., 2007, 2014; Mohammadi et al., 2010). In
astronomy, the so-called vortex coronograph technique can be
used to improve the imaging of exoplanets (Foo, Palacios, and
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Swartzlander, 2005; Serabyn, Mawet, and Burruss, 2010), and
there are methods to determine the OAM of light from
astronomical sources (Berkhout and Beijersbergen, 2008)
or the rotation of these sources (Tamburini et al., 2011;
Lavery et al., 2013). In biology, Shi et al. (2017) studied the
transmission of LG beams through mouse brain tissue to
explore possible uses of OVs for imaging purposes. Optical
tweezers with OVs can help manipulate biological molecules
and structures (Grier, 2003; Otte and Denz, 2020). In addition,
single-cell nanosurgery using OVs is reported to produce less
damage in organelles than conventional optical tweezers
(Jeffries et al., 2007). Finally, OVs can significantly improve
microscopy, such as in biology and nanotechnology, by
stimulated emission depletion (STED) (Keller, Schönle, and
Hell, 2007) and other techniques (Ritsch-Marte, 2017).

III. CONDENSED-MATTER BASICS

Condensed-matter physics encompasses a vast collection of
phenomena in different materials, from liquids to crystalline
solids. This review focuses on the interaction of OVs with
bulk solids and structured systems like quantum rings, a two-
dimensional electron gas either in a quantum well or in
modern two-dimensional (2D) materials, quantum dots, semi-
conductor microcavities, dielectric-metal interfaces, and topo-
logical insulators. In this section, we discuss the basic physics
behind crystals in the bulk and nanostructure forms, their
excitations, such as single-particle excitations, excitons, exci-
ton polaritons, and plasmon polaritons, and condensed-matter
optics including the topics of gauge invariance, the vertical-
transition approximation, and the dynamics of the material
excitations.

A. Crystalline solids

A crystal is a solid with well-ordered elementary units,
either atoms or collections of atoms, forming a lattice. This
periodicity determines much of the electronic structure and
single-particle excitations, as well as the dynamics of their
collective excitations (excitons, plasmons, phonons, and
magnons) (Ashcroft and Mermin, 1976; Kittel, 1987; Ibach
and Lüth, 2013).
A classification criterion advantageous to discuss optical

processes is to separate the set of crystalline solids into
insulators, semiconductors, and metals, i.e., by their electrical
conductivity. The description of electron dynamics in solids
was continuously improved in successive steps. Drude (1900)
postulated his model for conduction in metals, in which
electrons move according to Newton’s laws including the
Lorentz force, bounce on fixed and randomly located ions, and
thermalize to a classical Maxwell-Boltzmann velocity distri-
bution. The Drude model explained the Hall effect, and
combined with experiments it predicted electron relaxation
times and mean free paths in metals. It is still a ubiquitous tool
in research and plays an important role in the theory of surface
plasmon polaritons (Sec. IV.C). Sommerfeld (1928) intro-
duced the Fermi-Dirac distribution and the wave nature of
electrons through the free-electron wave functions expðik · rÞ
with the quasimomentum k. A significant improvement
comes from incorporating the periodicity of the ionic

arrangement (Bragg and Bragg, 1913). The general form of
the electron wave function in a periodic potential is given by
the Bloch theorem (Bloch, 1929), which states that the single-
particle wave function ψbkðrÞ can be written as

ψbkðrÞ ¼
1ffiffiffiffi
V

p eik·rubkðrÞ; ð41Þ

with the quasimomentum k,6 the band index b, and a
normalization volume V. The microscopic function ubkðrÞ
has the periodicity of the lattice and satisfies the following
orthogonality relation:

1

v

Z
v
dr u�b0kðrÞubkðrÞ ¼ δbb0 ; ð42Þ

where the integral runs over a single unit cell with volume v.
The electron states are grouped in energy bands with the
energy εbk (Ashcroft and Mermin, 1976). The Bloch descrip-
tion together with the Fermi-Dirac statistics of the electrons
finally achieves a microscopic description of metals, semi-
conductors, and insulators. In conductors, the electronic
ground state is characterized by partially filled energy bands.
In contrast, semiconductors and insulators have at zero
temperature fully occupied energy bands separated by a band
gap from empty energy bands; see Fig. 5.
In contrast to the fairly simple solution for energy bands

and wave function found in the Bloch model, the many-body
problem of electron-electron interactions is of such complex-
ity that no single solution is known. Instead, approximations
to specific situations are applied. Ab initio calculations of the
electronic structure of solids are most often based on the
density-functional theory and its variants (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965). In the optical excitation
of a direct band-gap semiconductor (such as GaAs; see Fig. 5),
the absorption of light induces the transition of electrons
between the valence and conduction bands. The mutual
interaction between electrons and holes gives rise to quasi-
particles called excitons (Frenkel, 1931; Wannier, 1937).
Here the essential physics is captured by the dynamical

Bloch

Lattice

FIG. 5. In the independent-electron approximation, the single
electron states are grouped into energy bands due to their
interaction with the lattice. Left panel: schematic plot of the
Bloch wave functions. Right panel: band structure of GaAs.
Adapted from Cohen and Chelikowsky, 2012.

6Rigorously speaking, the quasimomentum of the electron is ℏk.
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Hartree-Fock approximation, a mean-field approach leading
to the semiconductor Bloch equations (Lindberg and Koch,
1988; Rossi and Kuhn, 2002; Haug and Koch, 2009). An
alternative approach is based on the Bethe-Salpeter equation
for the two-particle correlation function (Strinati, 1988;
Albrecht et al., 1998; Rohlfing and Louie, 1998; Onida,
Reining, and Rubio, 2002; Drueppel et al., 2018).
A lattice made out of static ions is unrealistic; not only

temperature but also quantum fluctuations cause the ions to
move. At low temperatures, every ion undergoes small
oscillations around its equilibrium position (lattice site) that
lead to the normal modes of vibrations, with the dispersion
relation ωsðkÞ for branch s and wave vector k. A quantum
description yields the picture of phonons as the quanta of
crystal vibrations, which are analogous to photons in quantum
electrodynamics (Ashcroft and Mermin, 1976; Ibach and
Lüth, 2013).
The spin degree of freedom of electrons and ions plays an

important role in optical selection rules and a variety of
magnetic phenomena. We discuss its relevance to OV-crystal
interactions in Sec. IV.A.3.a.
The evolution in our understanding of electronic excitations

is an example of how particles are to be thought of in solid-
state physics. In Drude’s and Sommerfeld’s models electrons
are individual particles randomly scattering from individual
ions. Incorporating the effect of the entire lattice potential
leads to “dressed” states and the corresponding quasiparticles,
the Bloch electrons. Incorporating the electron-electron inter-
action leads to Landau’s quasiparticles (Abrikosov, Gorkov,
and Dzyaloshinski, 2012) in metals and excitons in semi-
conductors (Dexter and Knox, 1965).
This process of hybridization of correlated excitations

yielding new quasiparticles goes on: including light as a
degree of freedom, one finds exciton (Sec. IV.B) and plasmon
(Sec. IV.C) polaritons or, including phonons, one finds
polarons. A description based on collective excitations is a
clever way to deal with the complexity found in condensed
matter and also hints at the interconnectedness of idealized
individual physical units (such as the Sommerfeld electron).

B. Structured systems

Modern technology and condensed-matter physics are inex-
tricably intertwined. The electronic industry based on the solid
state has constantly sought device miniaturization, since the
invention of the transistor in the late 1940s or even earlier (Mills,
2011), and it has driven intense basic research on small
semiconductor, metal, and hybrid structures; see Fig. 6.
The theory of nanoscale (10−9–10−8 m) systems is built

upon that of the bulk crystal and is discussed in Secs. III.C.3
and IV.A.1. However, nanostructures exhibit new effects due
to their reduced dimensionality, the number of excitations
involved, the existence of interfaces, the combination of
different materials, etc., that require a reexamination of bulk
models. Are the classical and semiclassical (e.g., Drude)
models applicable? Can one use thermodynamics for a system
with few particles? What assumptions are not valid for optics
at the nanoscale? The result of almost half a century of
research is a well-developed understanding of nanostructures
that deserves dedicated attention (Bastard, 1988; Ihn, 2010).

Section IV discusses in depth the interaction of OVs with
structured systems.

C. Condensed-matter optics

Among crystals, semiconductors exhibit the richest
response to light in the visible range of the electromagnetic
spectrum. Halfway between metals and insulators, the elec-
tronic ground state has a completely filled valence (highest
occupied energy) band separated from a completely empty
conduction (lowest unoccupied energy) band by a few
electron volts. Light in the visible range therefore carries
the necessary amount of energy to induce electronic interband
transitions between the valence and conduction bands. Metals
with the Fermi energy lying inside the conduction band and
metallic-dielectric hybrid systems also present interesting
features. Their interaction with light is to a large extent
understandable in terms of the Drude model for electrons
in a single band (Sec. IV.C).
The general formulation of the light-matter interaction is

based on the minimal-coupling Hamiltonian, in which the
electromagnetic field is described in terms of potentials
instead of fields. As discussed in Sec. II.B, potentials are
not uniquely defined by the fields; instead, different gauges
can be chosen. In an analysis of light-matter interactions, the
consideration of the problem of gauge invariance is therefore
important, particularly in the case of extended systems (solid-
state bulk materials or nanostructures) and/or strongly varying
electromagnetic fields (Sec. III.C.1). Owing to the phase
singularities, OVs are indeed strongly varying fields; more-
over, under certain experimental conditions the spatial varia-
tion can be further enhanced by tight focusing of a free
propagating beam or by near-field techniques (Sec. IV.C).
A prevailing model of the interband optical excitation is that

of vertical transitions, in which the photon’s linear momentum
is neglected. However, the vertical-transition approximation is
incompatible with strongly inhomogeneous light beams such
as OVs, and thus must be revisited (Sec. III.C.2).
Finally, the modeling of the dynamics of the optical

excitation and the subsequent relaxation and dephasing

FIG. 6. Comparison of structures of different types and sizes.
From Maragò et al., 2013.
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processes of the generated electronic excitations are discussed
in Sec. III.C.3.

1. Gauge invariance

As a starting point for a theoretical description of the light-
matter interaction (Cohen-Tannoudji, Dupont-Roc, and
Grynberg, 1989), it is convenient to take the following
Lagrangian L for a particle of charge q and mass m0 in the
presence of electromagnetic fields represented by scalar (Φ)
and vector (A) potentials [see Chap. 1 of Goldstein (1980)]:

L ¼ 1
2
m0 _r2 − VðrÞ þ q_r ·Aðr; tÞ − qΦðr; tÞ; ð43Þ

with the electrostatic potential energy V due to the lattice and
possibly other static sources and the canonical momentum

p ¼ ∂L
∂_r

¼ m0 _rþ qAðr; tÞ: ð44Þ

Using a Legendre transformation h ¼ p · _r − L the so-called
minimal-coupling Hamiltonian is obtained as

h ¼ 1

2m0

½p − qAðr; tÞ�2 þ VðrÞ þ qΦðr; tÞ; ð45Þ

which is the key quantity for the transition to a quantum
mechanical description. The Hamiltonian is likewise
expressed in terms of the electromagnetic potentials instead
of the fields. This can be a source of trouble in calculations
and the interpretation of results, particularly if approximations
like the truncation of a basis are performed.
Electromagnetic potentials are auxiliary functions that

assist us in the calculations involving the physically real
and measurable electric and magnetic fields. Gauge trans-
formations do not change the fields (Sec. II.B): The values of
measurable electromagnetic quantities and their dynamics
(governed by Maxwell’s equations) are unaffected.
When charges enter the picture, one expects to have

corresponding invariant equations of motion (EOMs) and
quantities. The Schrödinger equation for the minimal-cou-
pling Hamiltonian is preserved under a gauge transformation
if the wave function undergoes a local phase transformation7

ψ ð2Þ ¼ Tχψ
ð1Þ ¼ expðiqχ=ℏÞψ ð1Þ. The Hamiltonian trans-

forms concomitantly by8 hð2Þ ¼ Tχhð1ÞT
†
χ − q∂tχ. All other

operators transform according to Oð2Þ ¼ TχOð1ÞT†
χ , which

ensures that matrix elements and mean values of operators
are invariant: hψ ð1ÞjOð1Þjφð1Þi ¼ hψ ð2ÞjOð2Þjφð2Þi. Note the
special transformation rules that obey h (the operator driving
the system’s dynamics) and the scalar and vector potentials
[Eqs. (12a) and (12b)]. A physically meaningful quantity O
should have gauge-invariant eigenvalues of its operator O,
and it should retain its functional form upon transformation:
Oð2Þ ¼ Oð1ÞðAð2Þ;Φð2ÞÞ (Scully and Zubairy, 1997). Examples
of physical and nonphysical quantites are the mechanical

(π ¼ p − qA) and canonical (p ¼ −iℏ∇) momenta, respec-
tively. Evidently the Hamiltonian (45) is not a physical
operator, but by excluding the scalar potential one gets a
physical operator called the instantaneous energy (Yang,
1976). Nor is h0 ¼ p2=ð2m0Þ þ V a physical operator
if A ≠ 0.
In addition to eigenvalues and expectation values of oper-

ators, one is concerned with the transition probabilities (Yang,
1976; Ballentine, 2014) induced by the optical field. These
transition rates are usually calculated in the framework of time-
dependent perturbation theory. For this purpose the minimal-
coupling Hamiltonian is split into an unperturbed part

h0 ¼
p2

2m0

þ VðrÞ

in the absence of electromagnetic fields and a perturbation that
depends on scalar and/or vector potentials such as

hI ¼ −
q

2m0

½p ·Aðr; tÞ þAðr; tÞ · p� þ qΦðr; tÞ; ð46Þ

in which the quadratic term in A has been neglected.
Perturbation theory then predicts transition rates between
eigenvectors jηii of h0, satisfying the eigenvalue equation
h0jηii ¼ εijηii. In most cases one is interested in the transition
rates for monochromatic fields with frequency ω, for which the
interaction Hamiltonian (like the potentials and fields) can be
split into a positive and a negative frequency part according to

hI ¼ hðþÞ
I e−iωt þ hð−ÞI eiωt: ð47Þ

Transition rates in first-order perturbation theory (describing
single-photon absorption or emission processes) are then given
as follows by Fermi’s golden rule:

Γfi ¼
2π

ℏ
½jhηfjhðþÞ

I jηiij2δðεf − εi − ℏωÞ

þ jhηfjhð−ÞI jηiij2δðεf − εi þ ℏωÞ�: ð48Þ

Using higher-order perturbation theory, transition rates for
multiphoton absorption and emission processes can be
obtained.
These transition rates involve gauge-dependent quantities.

Therefore, the following question arises: Do the transition
rates change if the potentials are transformed by a gauge
function χ according to Eqs. (12a) and (12b), leading to a

modified interaction Hamiltonian hð2ÞI ¼ hð1ÞI þ ΔhIχ , where
hð1ÞI refers to the interaction Hamiltonian in the original
gauge? Using the fact that χ has a harmonic time dependence
and can be separated into positive and negative frequency
components, the correction terms are given by

Δhð�Þ
Iχ ¼ −

q
2m0

½p · ∇χð�ÞðrÞ þ ∇χð�ÞðrÞ · p� � iωqχð�ÞðrÞ:

ð49Þ

As can be easily checked, the gauge field satisfies the
commutation relation

7This is also the case in relativistic quantum mechanics with the
Dirac equation.

8The transformed Hamiltonian can also be written by replacing old
potentials by new potentials.
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½h0; χð�ÞðrÞ� ¼ ℏ
2m0i

½p · ∇χð�ÞðrÞ þ ∇χð�ÞðrÞ · p�: ð50Þ

Using this relation, the matrix elements of the correction terms
to the interaction Hamiltonian are given by

hηfjΔhð�Þ
Iχ jηii ¼ −

iq
ℏ
ðεf − εi ∓ ℏωÞhηfjχð�ÞðrÞjηii: ð51Þ

These matrix elements therefore vanish when the energies
satisfy the energy selection rules in Eq. (48). We can draw
several conclusions from this result: (i) transition rates for
resonant transitions, as described by Fermi’s golden rule, are
unchanged and are therefore gauge invariant; (ii) this no
longer holds if approximate eigenfunctions of h0, such as
those from a variational calculation, are used for the rate
calculation (Dalgarno and Lewis, 1956); and (iii) transitions in
the case of a decaying states may also depend on the gauge
(Fried, 1973; Lamb, Schlicher, and Scully, 1987). This is
again related to the fact that h0 does not completely describe
the unperturbed system, but there are other parts, such as
electron-phonon interactions or radiative decay due to the
coupling to the photon vacuum, which lead to dephasing and a
finite lifetime of the excited state.
For two-photon transitions, where the rate involves the

summation of intermediate states, it has been shown that the
exact result from second-order perturbation theory is inde-
pendent of the gauge, while a truncation of the basis of the
intermediate states can lead to strongly gauge-dependent
results, and the convergence behavior with an increasing
number of basis functions may strongly depend on the gauge
(Bassani, Forney, and Quattropani, 1977). Furthermore, non-
resonant two-photon transitions in the case of a broadened line
may also depend on the gauge (Kobe, 1978). However, for
broadenings that are not too large this gauge dependence will
be weak because the deviations of the energy from the
resonance condition are small.
To avoid such possible gauge dependencies one may try to

find a formulation of the coupling only in terms of measurable
fields. The dipole-moment approximation for the coupling of
light to atoms (or other sufficiently localized structures)
accomplishes this. We assume that a smooth external electro-
magnetic field with wavelength much larger than the spatial
extent of the electron wave function is impinging on an atom
centered at r ¼ 0. If the sources of the field are far away,
Φð1Þ ≃ 0 can be assumed and Að1Þðr; tÞ can be approximated
as Að1Þð0; tÞ. The Hamiltonian in the Coulomb gauge then
reads hð1Þ ¼ ½p − qAð1Þð0; tÞ�2=2m0 þ VðrÞ. The Göppert-
Mayer (1931) gauge transformation χ ¼ −r ·Að1Þð0; tÞ pro-
duces new potentials Að2Þ ¼ 0 and Φð2Þ ¼ −r ·Eð0; tÞ, and
consequently hð2Þ ¼ p2=2m0 þ VðrÞ − qr ·Eð0; tÞ, i.e., a
Hamiltonian completely described in terms of the electric
field.
We note, however, that the Hamiltonian with the electric

dipole coupling is only an approximation. The exact gauge
transformation results in a vector potential Að2Þðr; tÞ ¼
Að1Þðr; tÞ −Að1Þð0; tÞ, which vanishes only in the case of a
homogeneous electromagnetic field, i.e., in the limit of an
infinite wavelength. Moreover, even in the case of a system

much smaller than the wavelength one can find a gauge
transformation to a null vector potential only in the cases in
which the coupling to the magnetic field is negligible. If there
is a non-negligible magnetic coupling, A ≠ 0 in all gauges.
In general, the dipole-moment approximation fails to

describe extended matter states and/or highly inhomogeneous
light fields. In the case of the coupling to a crystalline solid,
however, a formulation in terms of dipole moments remains
possible due to the Bloch theorem and the shortness of the
length of the unit cell compared to the wavelength. The dipole
moment then refers to a single unit cell. In other cases it can be
improved by other gauge transformations (Cohen-Tannoudji,
Dupont-Roc, andGrynberg, 1989; Quinteiro, Reiter, andKuhn,
2015, 2017b) or by formally extending the dipole-moment
Hamiltonian to hI ¼ −qr ·Eðr; tÞ (Kira et al., 1999). All these
transformations share the fact that they retain some spatial
dependence of the potentials and fields; see Sec. IV.A.2.

2. Vertical-transition approximation

Awidely used approximation in semiconductor optics is that
of vertical transitions (Dresselhaus, 2001). The excitation of an
electron from the valence to the conduction band annihilates a
photon with energy around that of the semiconductor band gap.
We exemplify this for the excitation of a GaAs bulk crystal
(band-gap energy Eg ¼ 1.44 eV at 300 K). The corresponding
photon’s linear momentum9 is q ≃ 8 × 10−3 nm−1. The quasi-
momentum k of the electron is restricted to the first Brillouin
zone with maximum value kmax ¼ π=a ≃ 6 nm−1, where a is
the linear size of the unit cell. By arguing that q ≪ kmax, one
often neglects q. This is equivalent to neglecting the spatial
variation of the light field over a unit cell. Futhermore,
neglecting the spatial variation of the light field over the entire
system leads to the vertical-transition approximation. In the
electron-hole or exciton picture a vertical transition corresponds
to the generation of an electron-hole pair or an exciton with
vanishing center-of-mass momentum.
This vertical-transition approximation has proven to be

useful. However, the conservation of linear momentum in
light-matter interactions must be taken into account in some
cases of historical and current interest. In the late 1950s
Hopfield (1958) developed the theory of hybrid exciton-
photon quasiparticles, known as exciton polaritons, a topic
that has attracted renewed interest in recent years, particularly
in the field of semiconductor nanostructures, and is currently
being extensively explored in theory, experiments, and appli-
cations (Sec. IV.B). A decade later and almost simultaneously,
Gibson, Kimmitt, and Walker (1970), and Grinberg (1970)
investigated the photon-drag effect (Gibson andWalker, 1971;
Cameron et al., 1975). In Grinberg’s words, “In the absorption
of light by free carriers, the momentum of the electromagnetic
wave is absorbed together with its energy. Consequently, the
electron system can acquire a translational motion that is
manifest in the form of a current or a voltage.” The effect
is currently being used in commercial detectors. If the light is
circularly polarized, carriers may pick both the photon’s linear
momentum and the spin AM, resulting in the generation of a
spin-dependent electric current (Shalygin et al., 2007).

9Rigorously speaking, the photon’s linear momentum is ℏq.
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Taking into account the linear momentum of the photon, the
transitions are no longer vertical. Nevertheless, there is still a
well-defined momentum transfer. In the electron-hole picture
the generated electron-hole pair has a center-of-mass momen-
tum given by the photon’s momentum. In contrast, for
strongly inhomogeneous light fields the photon no longer
has a well-defined momentum, which leads to a broadening of
the transitions in k space and thus to an uncertainty in the
center-of-mass momentum of the generated exciton or elec-
tron-hole pair (Hess and Kuhn, 1996; Rossi and Kuhn, 2002;
Herbst et al., 2003).
In structures with cylindrical symmetry it is often conven-

ient to characterize the electronic state not by the linear
momentum k but by its OAM with respect to the symmetry
axis, which is specified by a quantum number m. Here a light
field that can be assumed to be spatially homogeneous over
the structure leads to “vertical” transitions in the sense that the
quantum numbers m of the initial and final states in an
absorption or emission process are the same.
To describe the interaction of OVs with condensed matter,

the assumption of a slowly varying field is violated, particu-
larly in the region around the phase singularity, and therefore
has to be abandoned. Here the transfer of OAM has to be
incorporated into the models in a similar way as the linear
momentum in the case of polaritons or the photon-drag effect.
In fact, based on such an approach circular photocurrents in
bulk materials (Quinteiro and Tamborenea, 2009c) and nano-
structures (Quinteiro and Berakdar, 2009) have been pre-
dicted. Recent measurements have confirmed this effect
(Ge, 2020; Ji et al., 2020).

3. Dynamics under light excitation

In a nutshell, a light beam creates an out-of-equilibrium
many-electron state by altering the populations of conduction
and valence bands as well as the quantum coherences within
and between bands (Rossi and Kuhn, 2002). With no further
energy input, the overall state eventually relaxes and loses
quantum coherence through different channels, most notably
electron-phonon and electron-electron scattering and radiative
recombination. Many tools have been developed to measure
and model the generation of a nonequilibrium state in matter
by means of an optical excitation and the subsequent relax-
ation and dephasing back to the equilibrium state.
The dynamics of optically excited semiconductors are

described starting from a second quantization picture with
creation (annihilation) operators a†bα (abα) denoting the
creation (annihilation) of an electron in the state ψbαðrÞ in
band bwith quantum number α. In bulk material α is the three-
dimensional wave vector k of the Bloch electron, and the
Bloch function ψbkðrÞ is given by Eq. (41). In a spatially
confined system αmay be a purely discrete (multi)index (as in
the case of a quantum dot) or a combination of a discrete and a
continuous index (such as a subband index and a two-
dimensional wave vector in the case of a quantum well).
The states in such systems are often well described in terms of
the envelope-function approximation (Bastard, 1988; Ihn,
2010) by a wave function

ψbαðrÞ ¼ EbαðrÞubðrÞ; ð52Þ

for a state with energy εbα. Here EbαðrÞ denotes the envelope
function and the k dependence of the lattice-periodic
Bloch function is neglected; i.e., ubkðrÞ is replaced by the
function at the band edge ubk0

ðrÞ ¼ ubðrÞ (Bastard, 1988).
The Hamiltonian of the noninteracting electrons then reads

H0 ¼
X
bα

εbαa
†
bαabα; ð53Þ

while the coupling to a light field in any gauge has the general
structure

HI ¼
X
b0α0;bα

hIb0α0;bαa
†
b0α0abα; ð54Þ

with hIb0α0;bα ¼ hb0α0jhIjbαi and the interaction Hamiltonian
hI , as in Eq. (46).
The expectation value of any single-particle operator of the

electrons can be calculated from the single-particle density
matrix

ρb0α0;bαðtÞ ¼ ha†b0α0 ðtÞabαðtÞi; ð55Þ

which satisfies the equation of motion

iℏ
d
dt

ρb0α0;bα ¼ h½a†b0α0abα; H0 þHI�i
¼ ðεbα − εb0α0 Þρb0α0;bα
þ
X
b00α00

ðhIbα;b00α00ρb0α0;b00α00 − hIb00α00;b0α0ρb00α00;bαÞ:

ð56Þ

Note that while in Eq. (56) we have explicitly used the
Heisenberg picture, ρb0α0;bαðtÞ as an expectation value is
independent of the picture and the same Eq. (56) could be
obtained using the Liouville–von Neumann equation in the
Schrödinger picture. When dealing with the dynamics of
optically excited semiconductors, it is often sufficient to
restrict the model to two bands, the valence band (v) and
the conduction band (c). The system is then described using
three single-particle density matrices, the intraband coher-
ences ρv;α0α ≡ ρvα0;vα and ρc;α0α ≡ ρcα0;cα (including occupa-
tions for α ¼ α0), and the interband coherence ρvc;α0α ≡ ρvα0;cα.
We return to these equations for various types of structures
later in the review. As a reference for the description of solid-
state systems driven by OVs, here we give an overview of the
theoretical background for the standard case of a bulk semi-
conductor excited by a homogeneous light field.
In the case of a homogeneous excitation of a bulk semi-

conductor, the single-particle density matrices are diagonal in
the wave vector k and the dynamical variables reduce to the
electron occupations in the valence and conduction bands ρv;k
and ρc;k, as well as the interband coherence (also called the
interband polarization) ρvc;k. The coupling to the light field is
treated in terms of the vertical-transition approximation. The
interaction matrix elements in the electric-field gauge then
reduce to hIck;vk ¼ −dcv ·EðtÞ with the interband dipole
matrix element
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dcv ¼
q
v

Z
v
u�cðrÞruvðrÞdr: ð57Þ

A more detailed discussion of the coupling to the light field
including intraband and interband processes as well as
spatially inhomogeneous light fields is given in Sec. IV.A.1.
In the simplest case the optical excitation is described in

terms of a generation rate gk according to

d
dt

ρc;k ¼ −
d
dt

ρv;k ¼ gk; ð58Þ

where gk is obtained from Fermi’s golden rule and reads, for a
spatially homogeneous light field E with frequency ω,

gk ¼ 2π

ℏ2
jdcv ·Ej2ðρv;k − ρc;kÞδðωk − ωÞ; ð59Þ

with ℏωk ¼ εck − εvk. In the case of excitation by a short
laser pulse, the δ function is replaced by the spectral shape of
the pulse.
The coupling to the light field, however, not only generates

populations of electrons and holes, it also creates an interband
coherence ρvc;k between the light-coupled states. In the
present case of noninteracting electrons, a closed set of
EOMs for the occupations and the interband coherence is
obtained as

d
dt

ρc;k ¼ −
d
dt

ρv;k ¼ −
2

ℏ
Im½dcv ·EðtÞρ�vc;k�; ð60aÞ

d
dt

ρvc;k ¼ −iωkρvc;k þ i
ℏ
dcv ·EðtÞðρv;k − ρc;kÞ; ð60bÞ

with Im½� � �� denoting the imaginary part. Each optically
coupled pair of valence- and conduction-band states repre-
sents a two-level system and Eqs. (60a) and (60b) correspond
to a set of optical Bloch equations (OBEs) for these two-level
systems (Haug and Koch, 2009). An extension including
intraband terms of the electric field was given by Rossi and
Kuhn (2002). Generalizations of the OBEs to the case of
excitation of semiconductor bulk and various elementary
nanostructures are discussed in Secs. IV and V.
The EOMs (60a) and (60b) were derived in the electron

picture. Alternatively, one may work in the electron-hole
picture, in which the annihilation of an electron with the wave
vector k in the valence band is replaced by the generation of a
hole with the wave vector −k. Instead of the occupation of the
valence-band states, one then uses the occupation of the hole
states given by ρh;−k ¼ 1 − ρv;k; the other two variables
remain the same. The excitation of an electron from the
valence to the conduction band is then interpreted as the
generation of an electron-hole pair, where the electron and
the hole have opposite momenta. An advantage of the
electron-hole picture is the fact that before the optical
excitation the system is in a well-defined vacuum state with
all dynamical variables being zero. In this review, however, we
mainly use the equally valid electron picture because it
provides more compact notation, especially in systems with

more than two bands or when intraband processes are
included.
In a real semiconductor, particularly in the case of excita-

tion close to the band gap, the many-body nature of the
electronic system cannot be neglected. The attractive
Coulomb interaction between the electron and the hole leads
to the formation of bound exciton states that manifest
themselves in discrete absorption lines below the band gap.
The general structure of the electron-electron interaction
Hamiltonian in a multiband model is given by

Hee ¼
1

2

X
ijkl

hijjheejklia†i a†jalak; ð61Þ

in which the latin characters represent band and envelope
indices (for example, i ¼ biαi) and

hee ¼
q2

4πϵ0ϵsjr − r0j ;

with the static dielectric constant ϵs. For the two-band bulk
system of Bloch states, this leads to

Hee ¼
1

2

X
kk0g≠0

Vgð2a†ckþga
†
vk0−gavk0ack

þ a†vkþga
†
vk0−gavk0avk þ a†ckþga

†
ck0−gack0ackÞ;

with Vg ¼ q2=Vϵ0ϵsg2, where we have neglected terms that
do not conserve the number of particles in each band as well as
the interband exchange term (Fetter and Walecka, 2012).
Those terms are of a short-range nature and are therefore often
of minor importance. To obtain the contribution from the
electron-electron interaction to the EOMs of the single-
particle density matrices, we need the commutators of
a†b0k0abk with Hee. For the interband operator a†vk0ack this
leads to

½a†vk0ack;Hee�¼
X

k1;g≠0
Vgða†vk0a†vk1þgavk1

ackþg

−a†vk0þga
†
ck1−gack1

ackþa†vk0a†ck1þgack1
ackþg

−a†vk0þga
†
vk1−gavk1

ackÞ: ð62Þ

Analogous equations are obtained for the intraband operators.
When taking the expectation value of Eq. (62), we observe

that we get expectation values of four operators. Thus, instead
of our getting a closed set of EOMs, this constitutes the
starting point of an infinite hierarchy of equations for expect-
ation values of an increasing number of operators, much like
the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of
statistical thermodynamics (Huang, 1963).
A variety of techniques have been developed to treat such

many-body systems. In a correlation expansion approach
(Rossi and Kuhn, 2002) [also called the cumulant or cluster
expansion approach (Kira et al., 1999; Florian et al., 2013)],
one starts again with the single-particle density matrices ρc,
ρv, and ρvc. The expectation values of four operators appear-
ing in their EOMs, which represent two-particle density
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matrices, are then separated into a sum over all possible
factorizations into single-particle density matrices and the rest
containing two-particle correlations. The same factorization
scheme is applied to higher-order density matrices, leading to
correlations among an increasing number of particles. Setting
up EOMs for these higher correlations leads to an infinite set
of equations of motion that need to be truncated by an
approximation in order to become closed.
On the lowest order, all correlations are neglected, which

leads to the time-dependent Hartree-Fock approximation.
When a spatially homogeneous system is again considered,
only single-particle density matrices that are diagonal in k are
nonzero. Reordering the operators in Eq. (62) such that the
creation and annihilation operators in a factorization are next
to each other leads to

h½a†vkack; Hee�i ¼ −
X
g≠0

Vg½ρvc;kþgðρv;k − ρc;kÞ

− ρvc;kðρv;kþg − ρc;kþgÞ�: ð63Þ

Note that the restriction of the summation to g ≠ 0 in Eq. (63),
which reflects the total charge neutrality, eliminates all
Hartree-type factorizations.
Adding the contributions from the electron-electron inter-

action to the OBEs (60) leads to the semiconductor Bloch
equations (SBEs) (Lindberg and Koch, 1988). They have the
same structure as the OBEs, but with renormalized energies
and field couplings:

d
dt

ρc;k ¼ −
d
dt

ρv;k ¼ −2Im½Ω̃kðtÞρ�vc;k�; ð64aÞ

d
dt

ρvc;k ¼ −iω̃kρvc;k þ iΩ̃kðtÞðρv;k − ρc;kÞ: ð64bÞ

The external light field is complemented with an internal
field resulting from the interband term of the Coulomb
interaction, leading to an effective Rabi frequency Ω̃kðtÞ
according to

ℏΩ̃kðtÞ ¼ dcv ·EðtÞ þ
X
g≠0

Vgρvc;kþg: ð65Þ

The energies of the electrons in the valence and con-
duction bands are renormalized by the intraband Coulomb
terms, leading to the effective transition frequency
ℏω̃k ¼ ðε̃ck − ε̃vkÞ. For the conduction-band states this
leads to

ε̃ck ¼ εck −
X
g≠0

Vgρc;kþg: ð66Þ

For the valence-band states the derivation produces the
analogous result. However, the single-particle energy usually
is defined in such a way that it already includes the energy
renormalization of the completely filled valence band.
Therefore, only the missing electrons in the valence band,
i.e., the holes, contribute to the renormalization, and we have

ε̃vk ¼ εvk þ
X
g≠0

Vgð1 − ρv;kþgÞ: ð67Þ

This result is indeed directly obtained if the calculations are
performed in the electron-hole picture. The internal field
gives rise to the appearance of exciton lines in the absorption
spectrum, while the energy renormalizations lead to a
density-dependent reduction of the band gap. In the linear
response regime the occupations in the valence and con-
duction bands are replaced by their equilibrium values and
Eq. (64b) can be written in the form of a Wannier equation
driven by a homogeneous light field, reflecting the excitation
of excitons with vanishing center-of-mass motion. In
Sec. IV.A.2 the Wannier equation for the case of excitation
of a bulk semiconductor by a Bessel-type OV is derived and
we see that under these conditions excitons with a non-
vanishing center-of-mass momentum are generated.
Going beyond the level of the SBEs and including

correlation effects, either due to the Coulomb interaction or
due to the electron-phonon interaction, one obtains scattering
and dephasing contributions that lead to a redistribution of the
carriers in the bands and a loss of interband coherence.
Keeping correlations up to only a given level, one can solve
the equations for these correlations numerically, which cor-
responds to a quantum kinetic description of the scattering and
dephasing processes (Schilp, Kuhn, and Mahler, 1994).
Alternatively, they can be formally solved by performing a
Markov approximation, which leads to scattering contribu-
tions to the SBEs similar to those found in a Boltzmann
equation (Rossi and Kuhn, 2002).
For inhomogeneous optical excitation, the vertical-transi-

tion approximation fails, and electron states with different
initial and final quasimomenta are coupled; here off-diagonal
variables such as ρc;k0kðtÞ, ρv;k0kðtÞ, and ρvc;k0kðtÞ are rel-
evant. The off-diagonal terms contain the information on
the space dependence and the EOMs then also describe
spatial transport phenomena. The factorization of the
Coulomb contributions to the EOM [Eq. (62) and the
corresponding equations for the intraband variables] now also
involves Hartree-like factorizations describing the self-
consistent electric field caused by the inhomogeneous charge
distribution. While the spatial information is rather hidden in
this nondiagonal momentum representation, a more intuitive
interpretation is provided by a Wigner function representation
in terms of functions ρc;Kðr; tÞ, ρv;Kðr; tÞ, and ρvc;Kðr; tÞ,
where K ¼ ð1=2Þðkþ k0Þ and the r dependence is obtained
from a Fourier transformation with respect to k − k0 (Rossi
and Kuhn, 2002). We return to the Wigner and other mixed
momentum-position representations when discussing the
excitation of a bulk semiconductor by OVs in Sec. IV.A.2.
Nonlinear scattering and dephasing terms in the EOMs of
single-particle density matrices for inhomogeneous systems
have also been derived by employing Lindblad-type super-
operators (Rosati et al., 2014).
Another widely used approach to describe optically induced

dynamics in many-body systems is based on nonequilibrium
Green’s functions (Haug and Jauho, 2008; Balzer and Bonitz,
2013). The main difference compared to density matrix-based
approaches is the fact that the basic variables, the single-particle
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Green’s functions, are two-time functions. The theory was
developed in the 1960s by Kadanoff and Baym (1962) and
Keldysh (1964) as a generalization of the equilibrium Green’s
function approach.While in the equilibriumcase a single type of
Green’s function contains the full information about the system,
out of equilibrium in general four different functions are needed.
The information on the dynamics of occupations and coher-
ences is obtained from the “less” and “greater” Green’s
functions G< and G>, respectively, while spectral information
is provided by the retarded and advanced Green’s functions Gr

and Ga, respectively. For electrons in the general multiband
system G< and Gr are defined as

G<
bα;b0α0 ðt1; t2Þ ¼ −iha†b0α0 ðt2Þabαðt1Þi;

Gr
bα;b0α0 ðt1; t2Þ ¼ −iΘðt1 − t2Þh½abαðt1Þ; a†b0α0 ðt2Þ�þi;

with ΘðxÞ denoting the Heaviside step function and ½� � � ; � � ��þ
the anticommutator.G> andGa are defined analogously. On the
level of time-dependent Hartree-Fock theory, this approach
again leads for the equal timevariables to the SBEs.Many-body
effects like scattering and dephasing can then be described in
terms of a generalized Dyson equation, which can be treated
within a diagrammatic expansion using Feynman diagrams.
Nonequilibrium Green’s functions have been used to study the
effects of OV pulses on the disordered surface of a topological
insulator, as discussed in Sec. IV.A.3.d.
Yet another popular approach is the use of the Liouville–

von Neumann equation (Rossi, 2011) for the dynamics of the
density operators ρðtÞ by the equation iℏdρ=dt ¼ −½ρ; H�
(note the difference in sign compared to the Heisenberg
equation of motion). Here expectation values result from
hOiðtÞ ¼ Tr½OρðtÞ�. This approach is particularly useful in
the case of systems with a discrete spectrum, such as atoms or
semiconductor nanostructures like quantum dots, interacting
with a bath. Relaxation and dephasing processes are often
described in terms of a Lindblad superoperator (Lindblad,
1976) acting on ρ, which leads to a nonunitary time evolution
but preserves basic properties of the density operator like
Hermiticity and positivity (Breuer and Petruccione, 2002). For
important special cases (a prototypical example being the
coupling of a semiconductor quantum dot to acoustic pho-
nons), a numerically exact solution of the optically driven
many-body problem can be obtained in the framework of a
real-time path integral approach (Vagov et al., 2011).
The experimental exploration of the crystal’s excited states

and their evolution is done with linear and nonlinear optical
techniques (Shah, 1999; Axt and Kuhn, 2004; Lu and Fu,
2018; Kalt and Klingshirn, 2019; Shree et al., 2021). In
photoluminescence spectroscopy the sample is excited at a
fixed high energy, and the resulting photons emitted by the
electrons undergoing radiative decay are recorded as a
function of frequency; in a variant of that, photoluminescence
excitation, the system is excited at varying energies, and the
resulting emission is measured at a fixed frequency. Nonlinear
spectroscopic techniques (Cundiff, 2008; Boyd, 2020) rely on
the fact that the polarization of the system responds to a strong
electric field in nonlinear ways P ∝ χðnÞEn, with χðnÞ an nth-
order susceptibility. They are more powerful than linear
methods because they can probe a variety of processes, such

as the decay of populations and dephasing of coherences. In a
typical experiment a sequence of laser pulses is used to
“pump” the crystal creating the out-of-equilibrium state and to
“probe” the state of the system after some delay. Specific
techniques are pump-probe spectroscopy, which measures the
dynamics of populations generated by the pump beam, but
also time-dependent energy shifts, intraband coherences, or a
perturbed free-induction decay (Koch, Peyghambarian, and
Lindberg, 1988; Joschko et al., 1997; Krügel et al., 2007),
Faraday and Kerr rotation that measures the spin dynamics
and spin decoherence (Kikkawa and Awschalom, 1999;
Kugler et al., 2011), and four-wave mixing as well as 2D
spectroscopy (Cundiff and Mukamel, 2013), which, depend-
ing on the pulse sequence and the extraction of the signal, can
measure both interband coherence and population dynamics
and allows for the separation of homogeneous and inhomo-
geneous broadening (Honold et al., 1988; Lindberg, Binder,
and Koch, 1992; Koch et al., 1993). Pump-probe and four-
wave-mixing spectroscopy on bulk semiconductors using OV
pulses is discussed in Sec. IV.A.2.
When it comes to measuring nanostructures, bulk tech-

niques can probe only an ensemble of particles, missing
important properties of individual particles that are blurred by
inhomogeneous broadening. Single-nanostructure measure-
ments are better suited for this task. One can use emission or
extinction (absorption) spectroscopy (Chatterjee et al., 2018).
In the latter the extinction of light going through the nano-
structure at different frequencies is measured, yielding a
spectrum that reveals large portions of the energy level
structure. In contrast, typically emission spectroscopy relies
on the emission of light from the lowest excited energy states.
In addition, pump-probe (Sotier et al., 2009; Henzler et al.,
2021) or four-wave-mixing (Patton et al., 2006; Wigger et al.,
2020) techniques are currently sensitive enough to be applied
to single nanostructures.
In all the cases discussed thus far the coupling to light is

used as an excitation and/or measurement tool with the goal to
obtain information on the spectral and/or dynamical properties
of the material system. In some situations, however, when the
coupling is sufficiently strong, the light becomes part of the
system and one can no longer separate the system and the light
dynamics. Instead, the coupling of electronic excitations and
light leads to the emergence of new quasiparticles, such as
different types of polaritons. Prominent examples are exciton
polaritons in semiconductor microcavities, which have been
extensively studied in recent years (Weisbuch et al., 1992;
Deng, Haug, and Yamamoto, 2010; Kavokin et al., 2017).
Their generation and dynamics were modeled based on the
Heisenberg equation of motion (Ciuti, Schwendimann, and
Quattropani, 2001; Portolan et al., 2008; Shelykh et al., 2010;
Quinteiro, Dmitruk, and Aligia, 2012; Vasilieva, Zingan, and
Khadzhi, 2018), one-particle Green’s functions (Citrin, 1994;
Savona et al., 1997, 1999; Quinteiro, Fernández-Rossier, and
Piermarocchi, 2006; Quinteiro, 2008), and the Liouville
equation (Quinteiro and Piermarocchi, 2005; Shelykh,
Kavokin, and Malpuech, 2005). In addition, the Gross-
Pitaevskii equation, the bosonic version of the Hartree-
Fock equation, has been used for the quasibosonic polaritons
to account for their interaction and the excitation by a source
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field (Shelykh et al., 2006; Gippius et al., 2007; Liew and
Shelykh, 2009).
In metallic nanostructures the light couples to the electron

plasma. Close to surfaces of the metal or interfaces between
the metal and a dielectric environment, this gives rise to the
formation of surface plasmon polaritons, which are another
example of quasiparticles that treat light and matter on an
equal footing. Simple models of plasmonics combine the
Drude model for electrons in metals and Maxwell’s equations
of electrodynamics (Maier, 2007). Here the Drude model
provides a dielectric function for the response of the electron
plasma in the metal to an external perturbation. This and the
dielectric constant of the dielectric material are plugged into
the Helmholtz equation for the propagation of the electro-
magnetic field; the solutions are the plasmon polaritons. For
plasmon polaritons in the subwavelength scale, a quasistatic
approximation for the fields can be used in a small metallic
sphere surrounded by a dielectric. For larger particles for
which the quasistatic approximation fails, one can resort to
Mie theory (Mie, 1908). The imaging of plasmon polaritons
can be done using different techniques, and near-field micros-
copy stands among them as a powerful one. In photon
scanning tunneling microscopy a metallic tip is brought close
to the surface so that it couples to the evanescent field; this
makes the collection of photons out of the surface and their
measurement possible (Maier, 2007).

IV. OPTICAL VORTICES MEET CONDENSED MATTER

About a decade ago, two independent works addressed the
topic of the excitation of condensed-matter systems by OVs.
One of them provided theoretical predictions (Quinteiro and
Tamborenea, 2009c) and the other experimental results (Ueno
et al., 2009). The former predicted the generation of circular
electric currents in bulk semiconductors, a new type of “circular
photon-drag” effect. The latter demonstrated, using four-wave-
mixing techniques, the transfer of OAM to excitons in GaN
semiconductors. Since then, many groups have contributed to
the advancement of the subject by investigating the interaction
of OVs with bulk semiconductors, nanostructures, metals,
metal-dielectric interfaces, microcavities, etc. In this section

we review the basic tools to study the interaction of light beams
having phase singularities with condensed-matter systems, and
in so doing we report on what has been learned thus far about
each system from theory and experiments.

A. Semiconductor optics and the silent assumptions

Two pervasive assumptions must be abandoned before
theoretical progress and real understanding in OV-
semiconductor physics can be made, and other assumptions
must also be reexamined in the broader interface between
condensed matter and OVs; see Table I. The first one is the
vertical-transition approximation (Sec. III.C.2), in which the
momentum of the photon is neglected, which eliminates from
the start the most important effects of OV-semiconductor
interactions, such as the generation of electric currents in bulk
or the excitation of normally inaccessible states in quantum
dots. The second one is the dipole-moment approximation
(Sec. III.C.1) that assumes a constant electric field at the
position of the matter system; if the system is localized at
the optical phase singularity (intensity zero point), then the
dipole-moment approximation fails completely to account for
the interaction. We note that these two assumptions are
related. They are most detrimental, and their reevaluation,
as conducted earlier and in this and the following sections,
shows that they can (and indeed must) be safely dropped. The
reexamination of other well-entrenched (although not
extremely harmful) assumptions widens our understanding
of the topic and provides extra tools to model particular
problems.
The dipolelike interaction Hamiltonian hI ¼ −d ·Eðr; tÞ

with d ¼ qr has proven useful in treating the interaction of
semiconductors with inhomogeneous fields, such as account-
ing for the transfer of linear momentum in exciton-polariton
physics [see Khitrova et al. (1999), Appendix A.2]. However,
Quinteiro, Reiter, and Kuhn (2015) recognized that the proper
electric interaction Hamiltonian for parallel momenta OVs is
different and must be derived by manner of a new twisted-light
gauge transformation, leading to the interaction Hamiltonian
hI ¼ −½1=ðlþ 1Þ�d⊥ ·Eðr; tÞ for flat structures, which was
further generalized to include the interaction with antiparallel

TABLE I. Silent assumptions based on quasihomogeneous beams (plane waves, Gaussian beams, etc.) mainly used in
condensed-matter optics, and their applicability for describing the interaction with OVs.

Silent Assumptions
Beams

Feature Quasihomogeneous Optical vortex

Coupling Dipole moment or dipolelike
electric interaction

Nondipole

k-space transition Vertical Tilted
Interaction field E E and B
Interaction with field component Transverse Transverse and longitudinal
Convenient representation Plane waves Bessel, LG, Mathieu, and other functions
Archetypical system Bulk Quantum ring
Effects on optical-to-structure axis

displacement
Transition amplitudes Transition amplitudes and selection rules
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momenta OVs using the Poincaré gauge with interaction
Hamiltonian hI ¼ −d · Eeffðr; tÞ −mB ·Beffðr; tÞ, withmB ¼
−ðq=2mÞðp × rÞ and effective fields of the form Eeff ¼
fE⊥ðlÞE⊥ðr; tÞ þ fEzðlÞEzðr; tÞ and correspondingly for
Beff (Quinteiro, Reiter, and Kuhn, 2017b).
Bulk is the archetypical system to theoretically study the

interaction of condensed matter with spatially uniform light
(typified by plane waves), providing the simplest approach
and the clearest results and interpretation. This is due mostly
to the fact that both the envelope part of the Bloch electronic
wave function and plane waves are usually treated in Cartesian
coordinates. However, for OVs the situation is different:
vortices are written most easily in cylindrical coordinates,
and the analytical treatment of their interaction with bulk
systems is thus cumbersome (Sec. IV.A.2).
Fourier analysis and plane waves are widespread tools for

understanding wave optics and quantum mechanics, and it is
easy to oversee that other bases are good representations as
well. In fact, a light field with a single singularity is much
more easily represented by a single Bessel or LG function.
The research on the effects produced by uniform light

brings about another prejudice. Light at the optical frequen-
cies predominantly interacts with matter via its electric field.
However, some OVs present an especially intense magnetic
field that makes the magnetic interaction dominant [consider
Eq. (24b) for fσ ¼ �1;l ¼∓ 2; γ ¼ 1g; for details see
Quinteiro et al. (2019)].
The widespread use of plane waves may lead us to disregard

the longitudinal component of the beam in the light-matter
interaction. OVs present significant components in the direc-
tion of propagation; see Eqs. (24a) and (24b). The presence of
a field component Ez does not contradict the transversality of
the field, for each plane wave composing the beam is trans-
verse to its propagation direction or, in other words,∇ ·E ¼ 0
is satisfied (Sec. II.F).
Finally, the relative position of the vortex optical axis and

nanostructure symmetry axis has a direct influence on optical
selection rules, in stark contrast to the interaction with plane
waves that presents no optical axis whatsoever, and their
positioning with respect to the system is irrelevant. The
subject of displaced optical axes brings about the topic of
intrinsic and extrinsic AM, as discussed by Bliokh and
Nori (2015).

1. Basics

Among several approaches to model the light-matter inter-
action, such as the Gross-Pitaevski equation for exciton polar-
itons in microcavities or nonequilibrium Green’s functions, the
method involving reduced density matrices has found the most
widespread applications in the study of OV-semiconductor
interactions. As anticipated in Sec. III.C.3, the basic variables
are the intraband (b ¼ b0) and interband (b ≠ b0) single-particle
density matrices ρb0α0;bαðtÞ ¼ ha†b0α0 ðtÞabαðtÞi, with the oper-

ators a†bα (abα) denoting the creation (annihilation) of an
electron in the state ψbα [Eq. (52)] in the band b with
envelope-function quantum number α. The equations of motion
for ρb0α0;bαðtÞ are most conveniently obtained using the
Heisenberg EOM for the operators. When many-body inter-
actions, such as theCoulomb interaction or the electron-phonon

interaction, are involved, higher-order density matrices involv-
ingmore than one creation and one annihilation operator appear
in the EOM of the single-particle density matrices, and the
resulting hierarchy of equations has to be truncated at a
certain level.
An essential building block is the matrix element of the

light-matter interaction Hamiltonian hI , which enters the
derivation of the EOM through its second quantization form
HI ¼

P
bb0αα0 hb0α0jhIjbαia†b0α0abα. The matrix element is also

featured in other common calculations, such as in Fermi’s
golden rule to calculate transition rates, as shown in Eq. (59)
for the homogeneous case. In the following we first present
the matrix element for an arbitrary basis and then present the
EOM; in doing so we comment on the silent assumptions and
their incompatibility with a sound description of OV-matter
interactions.
We model a direct band-gap semiconductor with wave

functions ψbαðrÞ that can represent either a Bloch state for
bulk [see Eq. (41)] or the state of a nanostructure in the
envelope-function approximation [see Eq. (52)] excited by an
OV. Following the standard practice, only states close to the
band edges (with the approximation for the microscopic wave
function ubk → ubk0

≐ ub, with k0 the wave vector at the
corresponding band edge) are used, so ψbαðrÞ ¼ EbαðrÞubðrÞ
[Eq. (52)]. For bulk, according to Bloch’s theorem, the
envelope function is given by a plane-wave EkðrÞ ¼ expðik ·
rÞ= ffiffiffiffi

V
p

[Eq. (41)]. The electron spin (or in the presence of
spin-orbit coupling the z component of the total angular
momentum) can be included in either the band index b or the
state index α. Since the interaction Hamiltonian depends only
on spatial coordinates, the corresponding matrix elements are
diagonal in spin, but not in the total angular momentum.
Therefore, the interaction selects the spin and angular
momentum projections that are excited [the so-called optical
orientation Meier and Zakharchenya (2012)] through the
polarization of light and the microscopic wave function ub
(Bastard, 1988). In Sec. IV.A.3 we return to the spin-orbit
interaction and discuss this point in more detail.
The OV-matter interaction Hamiltonian in its general form

reads [see Eq. (46)]

hOV ¼ −
q

2m0

½p ·Aðr; tÞ þAðr; tÞ · p� þ qΦðr; tÞ

¼ −
q
m0

Aðr; tÞ · pþ qΦ0ðr; tÞ; ð68Þ

with Φ0ðr; tÞ ¼ Φðr; tÞ − ðℏ=2m0iÞ½∇ ·Aðr; tÞ� and the A2

term being neglected. Different gauges are considered in
special cases, as they may require specific approximations
(Sec. IV.A.3).
The matrix element is handled by recognizing that the

periodicity in the unit cell [ubðrþRÞ ¼ ubðrÞ] allows one to
do an additional simplification (Haug and Koch, 2009). The
integral over the entire crystal is separated into integrals over
the unit cell and a summation over all the unit cells in the
volume V ¼ Nv, with v the volume of the unit cell and N the
number of unit cells. Thus, with r → xþR (see Fig. 7)
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hb0α0jhðAÞ
OV jbαi ¼ hb0α0jhðA1Þ

OV jbαi þ hb0α0jhðA2Þ
OV jbαi

¼ −
q
m0

v
X
R

E�
b0α0 ðRÞAðR; tÞ ·

�
EbαðRÞ 1

v
z
Z
v
dx u�b0 ðxÞpubðxÞ

− iℏ∇EbαðRÞ
1

v

Z
v
dx u�b0 ðxÞubðxÞ

�
; ð69aÞ

hb0α0jhðΦÞ
OV jbαi ¼ hb0α0jhðΦ1Þ

OV jbαi þ hb0α0jhðΦ2Þ
OV jbαi

¼ qv
X
R

E�
b0α0 ðRÞEbαðRÞ

�
∇Φ0ðR; tÞ · 1

v

Z
v
dx u�b0 ðxÞxubðxÞ

þΦ0ðR; tÞ 1
v

Z
v
dx u�b0 ðxÞubðxÞ

�
: ð69bÞ

Here we assume that the envelope functions and the
potentials vary slowly over a unit cell and keep only the
lowest orders. The two terms in Eq. (69a) arise from the action
of the momentum operator p ¼ −iℏ∇ on the lattice-periodic
part and the envelope part of the wave function, respectively,
while the two terms in Eq. (69) reflect the lowest orders in the
expansion of Φ0.
The microscopic wave functions ubk0

at a fixed k0

form a complete orthonormal system in a unit cell; thus,
v−1

R
v dx u

�
b0 ðxÞubðxÞ ¼ δbb0 . Therefore, the second terms on

the right-hand side of Eqs. (69a) and (69b) give rise to
intraband processes. When v

P
R is replaced by the integralR

dR over the entire system, these processes are described
using the matrix elements

hbα0jhð2ÞOVjbαi ¼
Z

dRE�
bα0 ðRÞ

�
iℏq
m0

AðR; tÞ · ∇

þ qΦ0ðR; tÞ
�
EbαðRÞ: ð70Þ

If the microscopic wave functions ub have a well-defined
parity, the first terms on the right-hand side of Eqs. (69a)
and (69b) give rise to purely interband processes because the

operators p and x both have odd parity. In many typical
semiconductors the parities of ub are different in the valence
band (v) and the conduction band (c); these terms then induce
dipolar transitions between the valence and conduction bands.
With b0 ¼ c and b ¼ v and introducing the momentum and
dipole matrix elements pcv ¼ v−1

R
v dx u

�
cðxÞpuvðxÞ and

dcv ¼ qv−1
R
v dx u

�
cðxÞxuvðxÞ [see Eq. (57)], respectively,

we obtain for the interband-transition matrix element

hcα0jhð1ÞOVjvαi ¼
Z

dR E�
cα0 ðRÞ

�
−

q
m0

AðR; tÞ · pcv

þ ∇Φ0ðR; tÞ · dcv

�
EvαðRÞ: ð71Þ

Assuming a bulk semiconductor with plane-wave envelope
functions and a spatially homogeneous electric field EðtÞ,
we recover the vertical-transition approximation, either
in the Coulomb gauge with AðtÞ ¼ −

R
t
t0
Eðt0Þdt0 and Φ ¼

0 or in the dipole (Göppert-Mayer) gauge with A ¼ 0 and
Φ0 ¼ Φ ¼ −r ·EðtÞ, which leads to ∇Φ0ðR; tÞ ¼ −EðtÞ
(Sec. III.C.3). In some semiconductors, with a prototype
being cuprous oxide (Cu2O), the parities of the valence-
and conduction-band states at the band extrema are the same.
In this case one has to take into account the linear order in k in
the expansion of the microscopic wave functions ubk around
the band extrema, which leads to weaker, so-called second
class transitions (Elliott, 1957; Nikitine, 1969).
The rotating wave approximation (RWA) further simplifies

the coupling Hamiltonian. Recalling that all fields are real
quantities, we separate the potentials into the positive and
negative frequency components A ¼ AðþÞ þAð−Þ, with
Að�Þ ∝ expð∓ iωtÞ, and proceed correspondingly for Φ.
The RWA stipulates that in a frame rotating with the light
field only slowly varying terms are to be retained. For a light
field resonant or near resonant to an interband transition AðþÞ

and ΦðþÞ (Að−Þ and Φð−Þ) account for the absorption (emis-
sion) of light by the material system. On the other hand, a
matrix element hb0α0jhOVjbαi implies the transition
bα → b0α0. Therefore, matrix elements compatible with
the RWA are (i) a transition from the valence band to the
conduction band induced by AðþÞ, (ii) a transition from the

FIG. 7. Representation of a crystal with the change of variables
to calculate the interaction Hamiltonian matrix element
r → xþR, in which R points to unit cells and x maps the
points within a unit cell.
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conduction band to the valence band induced by Að−Þ (Scully
and Zubairy, 1997; Cohen-Tannoudji, Dupont-Roc, and
Grynberg, 1998). For light fields in the optical frequency
range, intraband terms are far off resonant and are therefore
neglected in the RWA. They are usually important if there is
(either alone or in addition to the optical field) a static or low-
frequency electromagnetic field leading to intraband transport
terms (Rossi and Kuhn, 2002) or phenomena like the static or
dynamical Franz-Keldysh effect (Franz, 1958; Keldysh, 1958;
Jauho and Johnsen, 1996). Furthermore, they become impor-
tant in the case of strongly off-resonant or extremely strong
light fields, where the RWA is not applicable, such as when
dealing with two-photon transitions (Duc, Meier, and Koch,
2005) or high-harmonics generation (Golde, Meier, and Koch,
2008). If not explicitly otherwise stated, in the following we
assume that the RWA is applicable and we neglect the

intraband matrix elements hð2ÞOV.
To describe the interaction with OVs, one has to depart from

traditional semiconductor optics by keeping the spatial struc-
ture of the beam at the level of the entire system in Eq. (71).10

From a different standpoint, one is abandoning the vertical-
transition and dipole-moment approximations, at least in their
most strict senses. A strict dipole-moment approximation
requires a spatially uniform vector potential A and a scalar
potential Φ linear in r, that bring the integrals in the case of
bulk Bloch functions, where α corresponds to the wave vector

k, into δkk0 or, in the case of angular momentum eigenstates,
where α comprises an angular momentum quantum number
m, into a δmm0 . In contrast to smooth fields, OVs have a spatial
structure that strongly varies on the scale of the semiconduc-
tor. For example, a monochromatic Bessel beam with angular
frequency ω, single topological charge l, and polarization σ
for general γ [Eq. (23)] reads

Ãðr; tÞ ¼ A0JlðqrrÞeilφeσ
− iγσ

qr
qz

A0ffiffiffi
2

p JlþσðqrrÞeiðlþσÞφez; ð72aÞ

Φ̃ðr; tÞ ¼ ið1 − γÞσ c
2

ω

A0ffiffiffi
2

p qrJlþσðqrrÞeiðlþσÞφ; ð72bÞ

with amplitude A0. The space dependence of the potentials
precludes the simplification of Eq. (71), leading to vertical
transitions in k orm or, more generally, diagonal transitions in
α. Note that the dipole-moment approximation at the level of
the microscopic wave function is, however, retained; there-
fore, multipolar transitions are possible only between
envelope states; for further discussion see Sec. VI.B.3.
Using the interband matrix elements of the interaction

Hamiltonian according to Eq. (71), we can now specify the
general EOM (56) to the two-band case, leading to

iℏ
d
dt

ρvc;αα0 ¼ Δcα0;vαρvc;αα0 þ
X
β

ðhcα0jhð1ÞOVjvβiρv;αβ − hcβjhð1ÞOVjvαiρc;βα0 Þ; ð73aÞ

iℏ
d
dt

ρv;αα0 ¼ Δv;α0αρv;αα0 þ
X
β

ðhvα0jhð1ÞOVjcβiρvc;αβ − hcβjhð1ÞOVjvαiρcv;βα0 Þ; ð73bÞ

iℏ
d
dt

ρc;αα0 ¼ Δc;α0αρc;αα0 þ
X
β

ðhcα0jhð1ÞOVjvβiρcv;αβ − hvβjhð1ÞOVjcαiρvc;βα0 Þ; ð73cÞ

with Δcα0;vα ¼ εcα0 − εvα, and Δb;α0α ¼ ðεbα0 − εbαÞ for
b ∈ fc; vg. The contributions of the Coulomb interaction
are not included here. As discussed in Sec. III.C.3, they
involve two-particle density matrices (i.e., expectation values
of four operators) that after factorization give rise to renorm-
alizations of energies and light field similar to the homo-
geneous bulk case [Eq. (64)]. In Sec. IV.A.2 the Coulomb term
is considered during a discussion of excitonic effects asso-
ciated with the excitation of bulk semiconductors by an OV.
In the case of a homogeneous bulk semiconductor, the

single-particle density matrices are diagonal in k. With the
interaction matrix elements for a homogeneous electric field,
Eqs. (73a)–(73c) immediately reduce to Eqs. (60a) and (60b),
thereby implying vertical transitions.

In general, however, owing to the nondiagonal character of
the interaction matrix elements even a density matrix that is
initially diagonal in α will not remain diagonal over the course
of time. Assuming at a given time the single-particle density
matrices to be diagonal in α, according to the EOM (73) in the
next time step the density matrix elements with all combina-
tions ðαα0Þ, for which also the interband matrix element

hcα0jhð1ÞOVjvαi is nonzero, will be nonzero.
Owing to the lack of a diagonal (or vertical) nature of the

light-induced transitions, the EOMs are considerably more
complicated than Eqs. (60a) and (60b) for the homogeneous
bulk system, for they couple in principle all possible values of
the quantum number α in each band, even without taking into
account the many-body effects. If one is not interested only in
the carrier generation process itself, typically the EOMs have
to be complemented by some relaxation terms. In the simplest
case one can simply include phenomenological interband and
intraband relaxation times. A more microscopic description of
scattering, relaxation, and recombination processes can be

10This is not to be confused with a “parametrical” dependence, in
which R is a constant indicating the position of a nanostructure and
no integration is performed on R.
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obtained by adding Boltzmann-like scattering terms, which
can be formally derived using a correlation expansion of the
terms induced by the coupling of the electrons to phonons, to
other electrons, or to the photon vacuum (Rossi and
Kuhn, 2002).
Besides a full numerical solution of the system of equations

involving a suitable restriction of the set of quantum numbers
or a suitable discretization in the case of (quasi)continuous
quantum numbers, general approaches to solve this system of
equations under specific conditions exist and provide further
insight into the optical properties and dynamics induced by the
excitation with OVs. Under low-excitation conditions, a
perturbative, iterative approach in terms of the amplitude of
the driving field (or its potentials) provides approximate
solutions for interband and intraband density matrices for a
system initially in its electronic ground state. To lowest order,
i.e., without electromagnetic fields, the only nonzero matrix
elements are the valence-band populations ρð0Þv;αα0 ¼ δαα0 , while

ρð0Þc;αα0 ¼ ρð0Þvc;αα0 ¼ 0 (the superscript indicates the order). The
only nonzero source term then appears in interband coher-
ences ρvc;αα0 ; thus, the lowest-order interband coherence

ρð1Þvc;αα0 is linear in the driving amplitude A0; see Eq. (72).
This in turn induces a second-order term in the intraband
coherences and occupations. Following this iterative process,
it is seen that interband (intraband) coherences come only in
odd (even) powers of the amplitude. Keeping in mind that the
interband density matrix elements oscillate with the frequency
of the band gap while the intraband coherences oscillate with
frequencies corresponding to energy differences in the bands,
the transfer of OAM from light to electrons can thus be
separated into fast (odd) and slow (even) contributions.
However, this separation into fast and slow variables is
possible only if the RWA is applicable. Non-RWA contribu-
tions in the interband matrix elements of the interaction
Hamiltonian lead to additional fast contributions in the
intraband density matrices. When intraband matrix elements
according to Eq. (70) are included, interband and intraband
coherences as well as occupations appear in all orders of
the field.
A different approach based on a quasiequilibrium approxi-

mation relies on the difference in timescales of scattering-
induced relaxation and light-induced excitation processes. For
sufficiently strong scattering the intraband populations can be
approximated by quasiequilibrium distributions with a given
temperature and chemical potential, allowing for a solution of
the interband coherence that feeds slowly varying EOMs for
intraband coherences or populations (Chow and Koch, 1999).
In this way, absorption spectra of highly excited semicon-
ductors can be obtained.

2. Bulk

Bloch states are the natural representation of electrons in a
bulk crystal; although not especially well suited to describe
the interaction with OVs, they still shed light on interesting
features that complement those learned from a representation
of electrons in cylindrical states and connect well to what we
learned about the modal decomposition of OVs in Sec. II.F.

In semiconductor optics, one is concerned mostly with
interband processes, in which an electron undergoes transi-
tions between the valence and conduction bands, separated
from each other by the band gap Eg. The transition is induced
by resonant or nearly resonant light ℏω ≃ Eg. The simplest
theoretical model is that of a two-band semiconductor excited
by a monochromatic single-singularity OV. Working in the
Coulomb and radiation gauge, the scalar potential vanishes
and the relevant light-matter interaction matrix element
[Eq. (71)] between the Bloch states ψbαðrÞ ¼ expðik ·
rÞubðrÞ=

ffiffiffiffi
V

p
is given by

hck0jhð1ÞOVjvki ¼ −
q
m0

pcv ·
1

V

Z
dRe−iðk0−kÞ·RAðR; tÞ.

That is, it involves the Fourier transform of the beam profile.
Irrespective of the particular form of the single-singularity OV
being considered (see Sec. II.C), the vector potential has in the
component j the form

Ajðr; tÞ ¼ A0jðrÞeinjφeiðqzz−ωtÞ þ c.c.; ð74Þ

with nj ¼ l;lþ σ;… and A0jðrÞ the space- and nj-depen-
dent amplitude. We handle the calculation of the matrix
elements in the following way. Because of the symmetry of
the light field we use a normalization volume of the Bloch
functions in the form of a cylinder with radius R0 and height
L. We split the integral into one in-plane integral and one in
the z direction and use the vectors κ ¼ k0 − k and R in the
cylindrical coordinates fκr;φκ; κzg and fR;φ; Zg, respectively,
leading to κ ·R ¼ κrR cosðφκ − φÞ þ κzZ; see Eq. (33). The z
integral simply reduces to

R
dZ eiðqz−κzÞz ¼ Lδqz;κz . To simplify

the in-plane integral, we introduce the Jacobi-Anger identity
eiucosη ¼P

t i
tJtðuÞeiηt (Korenev, 2002); compare this to

Eq. (36). The resulting matrix element is

hck0jhð1ÞOVjvkijj ¼ −
q
m0

pcv;jð−iÞnjδqz;κze−iωteinjφκ

×
2

R2
0

Z
dRRJnjðκrRÞA0jðRÞ;

where we have taken into account the fact that due to the RWA
only the positive frequency component AðþÞ of the potential
contributes to the matrix element describing a transition from
the valence band to the conduction band.
A simplification of the last integral is possible if we specify

the radial profile of the beam. If the beam profile is of the
Bessel type [A0jðRÞ ¼ A0jJnjðqrRÞ], we use the orthogonalityR
∞
0 RJαðκrRÞJαðqrRÞdR ¼ δðκr − qrÞ=qr and replace the
delta function δðqr − κrÞ with ðR0=πÞδqr;κr , which is appro-
priate for the cylindrical normalization volume with radius R0.
The contribution of the jth component of the vector potential
to the matrix element then reads

hck0jhð1ÞOVjvkijj ¼ −ð−iÞnjpcv;jA0j
2q

πm0qrR0

× δqr;κrδqz;κze
injφκe−iωt: ð75Þ
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The factor δqz;κz imposes conservation of the linear momentum
in the z direction, while the factor δqr;κr fixes the in-plane
distance of the vectors k0 and k. However, there is no explicit
expression signaling the conservation of OAM, which is due
to the fact that Bloch states are not eigenstates of the angular
momentum operator.
We can get additional insight by looking at the infinitesimal

time evolution of an electron initially in the Bloch state
ψvkðrÞ. Realizing that the evolution operator for a single-
particle state in the interaction picture for short times δt is
given by U ¼ 1 − ðiδt=ℏÞhOV leads one to ψðr; δtÞ ¼
ψðr; 0Þ − ðiδt=ℏÞδψðrÞ. Initially assuming an electron in
the Bloch state ψvkðrÞ, we obtain

δψðrÞ ¼
X
k0

ψck0 hck0jhð1ÞOVjvki

¼ −
2q

πm0qrR0

e−iωδt
X
j

ð−iÞnjpcv;jA0j

×
Z

dφκeinjφκψckþκ̄ðrÞ

¼ fðrÞψckðrÞ; ð76Þ

in which the action of δκ;qr and δqz;κz has been incorporated by
defining κ̄ ¼ ðqr;φκ; qzÞ. The second form stresses the fact
that the new wave function is not an eigenstate of the crystal
Hamiltonian (Quinteiro and Tamborenea, 2009c). Pictorially,
the excitation looks like a cone in momentum space with a
fixed aperture qr; see Fig. 8. The final superposition is formed
by states lying on the curve resulting from the intersection of
the cone and the conduction band, with each state having a
particular phase expðinjφκÞ. The existence of a conelike
excitation is not surprising: According to Sec. II.F the OV
can be decomposed into a superposition of plane waves with
wave vectors lying on the surface of a cone and varying
phases. In the picture of plane waves, each component induces
a one-k-state-to-one-k-state electronic transition, with con-
servation of its linear momentum; the entire excitation is,
however, one k state to a superposition of many k states.
The expectation value of the OAM picked by

electrons and the concomitant electric-current density j ¼
ðqℏ=m0ÞIm½ψ�∇ψ � − ðq2=m0ÞRe½ψ�Aψ � can be studied in

powers of A0 (Quinteiro and Tamborenea, 2009a). The first-
order (∝ A1

0) current is of microscopic origin and analogous to
the optical polarization induced by plane waves. The vector
potential imprints its spatial and temporal pattern onto the
electronic state (see Fig. 9), and a net circulation of around r ¼ 0
is observed only for fl ¼ �1; σ ¼∓ 1g, but with a zero time
average. The second-order (∝ A2

0) current is macroscopic and
produces a net circulation with a nonzero average. The circular
electric current generated byOVs in a semiconductor represents
a new example of photon-drag effects that has recently been
observed in experiments (Ge, 2020; Ji et al., 2020).
Extensions to the previously explained simple model have

been done thus far in two directions. On the one hand, a model
still without electron-electron interactions was used to predict
electronic transitions, OAM transfer, and electric currents using
a more suitable representation of electrons by envelope states
factorizing in cylindrical coordinates instead of the plane-wave
envelope ofBloch states (Quinteiro andTamborenea, 2010). On
the other hand, the EOMs relevant to excitons and derived
quantities were deduced using Bloch states and including
electron-electron interactions (Quinteiro, 2010).
The symmetry mismatch between OVs and Bloch states led

to a complex model of the optical excitation in bulk that
ultimately required the transformation of Bloch states into a
cylindrical representation using the Jacobi-Anger identity. One
can directly face the OV-bulk problem instead using cylindrical
coordinates. For a large system and in the presence of the
envelope-function approximation, bulk properties are indepen-
dent of the chosen boundary, whether it be a cubic box or a
cylinder. Since the optical excitation takes place at the band
edges, the envelope-function approximation is applicable and
one can describe electron states using [see also Eq. (52)]

FIG. 8. Representation of the electronic excitation of a bulk
semiconductor in the Bloch electron representation. An electron
in the valence band is promoted to a superposition state in the
conduction band. From Quinteiro and Tamborenea, 2009c.

FIG. 9. First-order electric current in bulk for l ¼ 1;…; 4 and
the fixed polarization σ ¼ −1. The current cycles in time and z
following the electric field, as shown in Fig. 2. From Quinteiro
and Tamborenea, 2009c.
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ψbkmðrÞ ¼ NJmðkrrÞeimφeikzzubðrÞ;

which is defined inside a large cylinder of height L, radius R0,
quasimomenta kz, kr, and OAM ℏm. The electron wave
function with the normalization constant N is expressed
by the cylindrical coordinates fr;φ; zg (Quinteiro and
Tamborenea, 2010). From the strong similarities between the
representation of a typical single-singularity OV [Eq. (72)] and
electron states in a cylinder, we foresee that the light-matter
matrix element will be simpler than in the case of Bloch states
based on planewaves. The interbandmatrix elementwith vector
potential according to Eq. (74) having A0jðrÞ ¼ A0jJnjðqrrÞ
reads in the basis of the cylinder functions

hc; k0r; m0; k0zjhð1ÞOVjv; kr; m; kzi
¼ −

q
m0

pcv;jA0jNN0δk0z;kzþqzδm0;mþnj

×
Z

dRRJm0 ðk0rRÞJnjðqrRÞJmðkrRÞ: ð77Þ

In fact, when the final values m0 and k0z are fixed, the matrix
element reflects the conservation of the orbital quantumnumber
m and the linear quasimomentum kz, and only the radial
quantum numbers k0r and kr are coupled by an integral over
theBessel functions of the beam and the initial and final electron
states. We thus obtain a complementary situation compared to
the calculation in the Bloch state basis. Whereas there the
transfer in the radial component of theBlochwavevector κr was
fixed while the angle was continuous, now the change of the
angle dependence, characterized by the quantum numbers m0

and m, is fixed and the radial quantum number in the Bessel
function changes continuously.
It is instructive to look at the lowest-order results of

interband and intraband variables obtained for a monochro-
matic Bessel beam. When one assumes a sufficiently small
paraxiality parameter qr=qz, the longitudinal field component
can be neglected, and we assume a transverse vector potential
amplitude A0 and a beam with a given topological charge l.
The zeroth order is given by a completely filled valence band,

i.e., ρð0Þv;αα0 ¼ δαα0 with α ¼ ðkr; m; kzÞ, and all other density
matrices vanish.
At first order we obtain from Eqs. (73a)–(73c) an interband

coherence according to

ρð1Þvc;αα0 ¼ −hcα0jhð1ÞOVjvαi
1 − e−iðεcα0−εvα−ℏωÞt=ℏ

εcα0 − εvα − ℏω
: ð78Þ

Inserting the matrix element from Eq. (77), we thus find that
the OV excites interband coherences with m0 −m ¼ l,
k0z − kz ¼ qz, and in general arbitrary k0r and kr.
At second order Eqs. (73a)–(73c) give rise to intraband

coherences and, as a special case, the populations in the
conduction band and the valence band. For the populations of
the conduction-band states, one gets

ρð2Þc;α0α0 ¼ 4
X
α

jhcα0jhð1ÞOVjvαij2
ðεcα0 − εvα − ℏωÞ2

× sin2
�ðεcα0 − εvα − ℏωÞt

2ℏ

�
: ð79Þ

While the populations start to grow quadratically in t, for
longer times the growth is linear, with the growth rate given by
Fermi’s golden rule, as expected for transitions in a continuous
spectrum.
Important observables that one can calculate from the

coherence are the OAM and the electric current in the
electronic system. Gauge invariance imposes the need to
appropriately express the quantities for which expectation
values are to be calculated. In the Coulomb gauge, as is the
case here, the OAM and electric current depend on the
mechanical momentum of electrons p − qA; the first (second)
term gives rise to the so-called paramagnetic (diamagnetic)
contributions. A detailed calculation of the OAM and electric
current was done by Quinteiro and Tamborenea (2010). The
results, which are in agreement with those from the simple
model for Bloch states, show that the interband coherence
produces a fast oscillation of the OAM and a current with zero
average, while the occupations and intraband coherences
induce a permanent transfer of the OAM from the light to
the electrons that generate a slow electric current with a
nonzero mean value. The latter can be seen as the consequence
of tilted transitions when one plots the energies of the valence-
and conduction-band states versus their angular momentum
quantum number m, a feature that is later discussed in more
detail in the context of the excitation of quantum rings
(Sec. IV.A.3.a). Note that the OAM associated with the beam
is also proportional to the square of the field amplitude, as
seen in Eq. (1).
Yet another extension to the simple single-particle bulk

model is the inclusion of the Coulomb interaction, which
allows for the description of excitons. Excitonic effects are
important for a correct description of a light-matter interaction
close to the band edge, particularly at low excitation densities,
because they qualitatively modify the absorption spectrum
leading to discrete lines below the band-to-band continuum. In
fact, excitonic effects already appear at the lowest order in the
field amplitude, i.e., when one considers the EOM for the
interband coherence alone (Haug and Koch, 2009). Quinteiro
(2010) considered the excitation of a bulk semiconductor with
two energy bands by a monochromatic and transverse OV in a
Bloch state representation. The nonvertical nature of optical
transitions induced by OVs makes it convenient to work in a
mixed representation of momentum and space coordinates, in
analogy with the general approach based on Wigner functions
discussed by Rossi and Kuhn (2002).
The derivation of the contributions to the EOM of the single-

particle density matrix elements due to the electron-electron
interactionHamiltonian [Eq. (62)]was discussed in Sec. III.C.3,
and the results on the level of the time-dependent Hartree-Fock
theory was given for the case of a homogeneous two-band
semiconductor in Eqs. (64)–(67). The excitation by an inho-
mogeneous light field, particularly by an OV, leads to inhomo-
geneous excitations, which are described by nondiagonal
density matrices ρvc;kk0 , ρv;kk0 , and ρc;kk0 . The derivation of
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the EOM proceeds in the same way as for a homogeneous
system, only in the factorization of four-operator terms as in
Eq. (63) off-diagonal terms also have to be kept. This has two
consequences: (i) The renormalizations of the field and the
energies [see Eqs. (65)–(67)] become nondiagonal in k and k0

and (ii) the renormalizations of the energies get additional
contributions from Hartree terms, which vanish in the homo-
geneous case due to charge neutrality. The full off-diagonal
terms (in an electron-hole representation) were given by Rossi
andKuhn (2002). Herewe restrict ourselves to the lowest order,
i.e., to the linear response of the semiconductor to the excitation
with an OV.
From the previous discussion we recall that interband

density matrices appear in odd orders of the field and
intraband density matrices in even orders. Restricting our-
selves to the linear order therefore implies setting ρv;kk0 ¼
δkk0 and ρc;kk0 ¼ 0. Since the renormalizations of the energies
are caused by deviations of the intraband density matrices
from their equilibrium value, they do not contribute to the
first-order response. The equation of motion for the interband
density matrix then reads

iℏ
d
dt

ρvc;kk0 ¼ Δck0;vkρvc;kk0 þ hck0jhOVjvki
−
X
g≠0

Vgρvc;k−gk0−g; ð80Þ

with Δck0;vk ¼ εck0 − εv;k.
The evolution of the coherence is driven by the OV-matter

matrix element [Eq. (75)], which in the case of excitation by a
Bessel beam can be translated into a nonvanishing matrix
element hckþ κ̄jhOVjvki, with κ̄ ¼ qr cosφκx̂þ qr sinφκ ŷþ
qzẑ, in which qr and qz are fixed by the corresponding
parameters of the beam and φκ is variable. Once again we find
the connection to the modal decomposition and the solution of
the bulk problem in Bloch states: the matrix element gives rise
to a nonvanishing contribution for each plane wave on a cone.
Instead of using a nondiagonal k representation of the

density matrix elements, it can be useful to employ various
types of mixed ðk; rÞ representations. The starting point is
typically a transformation from the wave vectors k, k0 to some
relative and center-of-mass wave vectors according to k ¼
K − ηκ and k0 ¼ Kþ η0κ, with ηþ η0 ¼ 1. A spatial variable
is then obtained by Fourier transformation with respect to one
of the wave vectors. Choosing η ¼ η0 ¼ 1=2 and Fourier
transforming with respect to κ leads to an interband Wigner
function [and correspondingly to intraband Wigner functions
when one transforms the intraband density matrices (Rossi
and Kuhn, 2002)]. Especially for the interband variable in the
case of parabolic bands with εck ¼Egþℏ2k2=2mc and εvk ¼
−ℏ2k2=2mv with conduction-band and valence-band masses
mc and mv, respectively, and band gap Eg, the choice η0 ¼
mc=M and η ¼ mv=M, with M ¼ mc þmv, can be more
convenient because it leads to Δck0;vk ¼ ℏ2K2=2μþ
ℏ2κ2=2M þ Eg, with μ−1 ¼ m−1

c þm−1
v . In contrast to

Fourier transforming with respect to κ, as in the case of
the Wigner function, here it is more useful to perform a
Fourier transform with respect toK. When a temporal Fourier
transform is performed, the function ρ̃κðω; rÞ is defined as

ρ̃κðω; rÞ ¼
1

2π

X
K

Z
dtρvc;Kþmv

M κ;K−mc
M κðtÞeiðK·rþωtÞ; ð81Þ

which satisfies the equation of motion

�
ℏω − Eg −

ℏ2κ2

2M
þ ℏ2

2μ
∇2 þ VðrÞ

�
ρ̃κðω; rÞ

¼ VδðrÞ
	
c;
mc

M
κjhOVjv;−

mv

M
κ



¼ −VδðrÞ 2q
πm0qrR0

ð−iÞlpcv ·A0δqr;κrδqz;κze
ilφκ ; ð82Þ

where we have used the identity
P

K expðiK · rÞ ¼ VδðrÞ and
assumed an excitation by a transverse Bessel beam with the
topological charge l and the longitudinal (transverse) wave
vector qz (qr).
The homogeneous part of Eq. (82) takes the form of a

Wannier equation for a quasiparticle with mass M and center-
of-mass momentum ℏκ. The relative motion of the electron
and hole reflects the motion of a particle with the reduced
mass μ in the Coulomb potential VðrÞ. The right-hand side is
the source term that describes the excitation by the OV.
Equation (82) is solved using a composition ρ̃κ̄ ¼ P

ν bνψν of
solutions ψν to the homogeneous equation [see Chap. 10 of
Haug and Koch (2009)], where ν summarizes the quantum
numbers for both the relative and the center-of-mass motion.
Because of the function δðrÞ in the source term, we notice

that in the case of excitation by an OVonly excitons with an s-
type wave function of the relative motion can be excited. As a
consequence of the factors δqr;κrδqz;κz , a superposition of
excitons with nonvanishing center-of-mass wave vector in
the longitudinal and radial directions, determined by the
correspondingwavevector components of the beam, is excited,
with the relative phases determined by the topological chargel.
By an inverse Fourier transform, the coherence in momen-

tum space is recovered and can be used to derive the local
polarization of the system, and from it the susceptibility and
optical response. The spectrum presents a small shift com-
pared to the conventional exciton theory due to the center-of-
mass motion.
Thus far we have discussed dipole-allowed excitonic tran-

sitions, as they appear inmany III-Vor II-VI semiconductors. In
some materials the microscopic dipole (dcv) or momentum
(pcv) matrix element between the band edge states vanishes for
symmetry reasons, and one has to go to the next order in the
expansion of the microscopic wave function with respect to k
(Elliott, 1957). This is the case in bulk Cu2O, a material that
has recently attracted a lot of attention because of the
observation of Rydberg excitons with quantum numbers up
to ∼26 (Kazimierczuk et al., 2014). In this material selection
rules differing from the typical zinc blende semiconductors
hold. Using group theoretical methods, Konzelmann, Krüger,
and Giessen (2019) analyzed the selection rules for the
excitation of large (about 400 nm radius) Rydberg excitons
in bulk Cu2O by OVs and concluded that usually dipole
forbidden s and d envelope-function excitons can be driven
not only by the quadrupole field of even topological charge
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l ¼ 0; 2; 4 but also by dipole transitions with odd topological
charge l ¼ 1; 3.
A number of experiments have been performed on bulk

semiconductors that shed light on the excitation by OVs of
bulk systems. Ueno et al. (2009) performed a four-wave-
mixing (FWM) experiment in bulk GaN using a pair of LG
beams to study the coherent dynamics of excitons. The FWM
signal was measured to predominantly carry the topological
charge 2l2 − l1, which is the expected value for excitons
picking the OAM of pump and probe pulses with l1 and l2,
respectively. Shigematsu et al. (2016) extended these studies
by analyzing the transfer of OAMs to values other than the
expected one of 2l2 − l1. In fact, additional values of OAMs
are carried by the signal, as shown in Fig. 10. According to
Shigematsu et al.’s theoretical analysis, this can be attributed to
a space-dependent dephasing that generates a distribution of l
in the OAM spectrum even in the case of excitation with beams
with well-defined OAMs. The dephasing was analyzed by
comparing experiments, theory, and numerical simulations.
From the experimental data they extracted a decay of the degree
of OAMs, with a decay time of 88� 3 ps that happens to be
much longer than the exciton dephasing time T2 ¼ 1.9 ps,
suggesting that the OAM of the excitons is more robust than its
phase coherence. Numerical simulations also show the detri-
mental effect of a defect on the OAM spectrum, supporting the
hypothesis that space-dependent dephasing causes a broad-
ening of the OAM signal. Four-wave-mixing experiments with
OVs have also been performed on quantumwells (Persuy et al.,
2015), and they are discussed in Sec. IV.A.3.d.
In a different type of experiment Noyan and Kikkawa

(2015) studied the dynamics of OAM transfer to the electronic
degrees of freedom in doped and undoped bulk GaAs. Using
time-resolved pump-probe spectroscopy and concentrating on
the incoherent regime, they extended the results on the exciton
dynamics beyond the coherent regime addressed in four-
wave-mixing spectroscopy. The results show an unusually
long decay time (picoseconds to nanoseconds) of the time-
resolved OAM dichroism that can be explained neither by the
typical decay times associated with momentum scattering nor
by the effect of transfer of OAM from the electronic spatial to
the spin degree of freedom.

The experimental work by Noyan and Kikkawa (2015) and
Shigematsu et al. (2016) agrees on the fact that the decay time
of the OAM signal is longer than expected from traditional
arguments in similar systems excited by nonvortex light. One
may try to explain from topology these long-lived OAM
states. We have previously shown that the electric-field pattern
is imprinted in the electronic state polarization. As its name
suggests, every OV carries a different topological charge l
and imprints a particular pattern on matter. A change to the
topologically distinct electronic polarization therefore implies
a global change that is unlikely to occur by local interactions.
The impact of OAMs on the spin polarization of photo-

electrons in unstrained GaAs excited by LG beams was
experimentally studied by Clayburn et al. (2013), who found
no supporting evidence that the OAM of light is transferred to
the spin of photoexcited electrons. Later Solyanik-Gorgone
and Afanasev (2019) studied the photoionization of electrons
using a theoretical model with near and remote basis func-
tions, allowing for a calculation of selection rules using the
Wigner-Eckart theorem. Their results agree with those of
Clayburn et al. (2013) after they are averaged over space;
however, their model provides insight into the spatial depend-
ence of the optical orientation, which is not available in the
experiment and would be relevant to the photoexcitation of
small semiconductor systems. Cygorek, Tamborenea, and Axt
(2015) showed that the spin-orbit interaction in extended
systems fails to transfer orbital-to-spin angular momentum of
the photoexcited electron, thus complementing the theoretical
explanation of the null experimental result of Clayburn et al.
Another argument for understanding the null experimental

results is that the OV acts on the envelope part of the wave
function [Eq. (69)], and thus does not affect the optical
orientation, which is dictated only by the polarization (spin
AM) of the light. On the other hand, a recent experiment
showed a measurable effect on the polarized photocurrent
generated by LG beams on GaAs photocathodes (Sordillo
et al., 2019). The seemingly different results from different
experimental setups, and what theory explains, reflect a
controversy that calls for more research on the subject.

3. Semiconductor elementary nanostructures

Material, geometry, and dimensionality strongly influence
the properties of elementary nanostructures. Those based on
semiconductor materials are among the most studied ones, and
they are building blocks for more complex structures, for
instance, microcavities (Sec. IV.B). They are quantum dots
[zero dimensional (0D)] (Reimann and Manninen, 2002;
Biasiol and Heun, 2011; Jacak, Hawrylak, and Wojs,
2013), quantum rings [one dimensional (1D)] (Biasiol and
Heun, 2011; Fomin, 2014), quantum wires (1D) (Zhang et al.,
2017; Barrigón et al., 2019), and quantum wells (Kelly and
Nicholas, 1985; Weber et al., 1999; Rosencher, Vinter, and
Levine, 2012). Other systems with reduced dimensionality,
which have become highly topical in the past decade, are
atomically thin (2D) materials (or van der Waals materials)
with the prototype graphene (Novoselov, 2011) and the class
of transition metal dichalcogenides (TMDs) (Mak et al., 2010;
Splendiani et al., 2010), which, when rolled up into nano-
tubes, can again form 1D systems (Fig. 6). Here 0D, 1D, and

FIG. 10. Experimental evidence of OAM transfer to excitons in
bulk GaN. Shown are the OAM spectrum and intensity profile
(insets) of the FWM signal produced by pump with l1 ¼ −2 and
probe with l2 ¼ 1 after a delay τ giving rise to a signal with
l ¼ 4, which is in agreement with theory. Adapted from
Shigematsu et al., 2016.

Quinteiro Rosen, Tamborenea, and Kuhn: Interplay between optical vortices …

Rev. Mod. Phys., Vol. 94, No. 3, July–September 2022 035003-30



2D refer to systems where the dimensionality reflects the
number of spatial dimensions with a continuous spectrum.
Nanostructures can be fabricated by molecular beam epitaxy,
chemical vapor deposition, self-assembly, catalytic growth,
exfoliation, etc. (Moriarty, 2001; Ihn, 2010).
The analytical description of their electronic properties

often uses the envelope-function approximation with the
resulting electron wave function ψbαðrÞ ¼ EbαðrÞubðrÞ [see
Eq. (52)], where ubðrÞ is the microscopic Bloch wave function
at the band edge and EbαðrÞ is the envelope wave function,
with α denoting the necessary quantum numbers for the
specific structure under consideration. As an example, the
envelope wave function for a one-dimensional quantum ring is
EbmðrÞ ¼ N expðimφÞRbðrÞZbðzÞ, with the normalization N
and the OAM (or magnetic) quantum number m. The
restriction to one-dimensional motion implies fixed radial
(Rb) and height (Zb) wave functions that, however, may be
different for different bands.
Two main distinctions in the OV-matter interaction arise

when the size of the material system is reduced below the
characteristic size of the beam. On the one hand, studies on
bulk semiconductors (Sec. IV.A.2) have been done exclusively
in terms of vector and scalar potentials because the approx-
imations involved in the use of other gauges that set up the
interaction in terms of fields often create difficulties when
applied to extended systems. However, other gauges are often
useful in treating the OV-nanostructure interaction; these are
the twisted-light gauge (Quinteiro, Reiter, and Kuhn, 2015),
the Poincaré gauge (Cohen-Tannoudji, Dupont-Roc, and
Grynberg, 1989; Quinteiro, Reiter, and Kuhn, 2017b), the
electric-field or dipolelike coupling gauge (Khitrova et al.,
1999; Rossi and Kuhn, 2002; Herbst et al., 2003; Reiter et al.,
2006, 2007), and the Power-Zienau-Woolley gauge (Cohen-
Tannoudji, Dupont-Roc, and Grynberg, 1989). We exclude the
dipole-moment approximation or Göppert-Mayer transforma-
tion because when the space dependence of the field is
completely neglected it misses the characteristics of OVs.
We discuss different gauges, summarized in Table II, at the

appropriate point in the following. On the other hand, to
observe new effects related to OVs the electron’s wave
function should span the phase singularity. The new effects
are strongest when the nanostructure is fully centered with the
singularity; this is discussed first, and only later is the
dependence of the light-matter interaction and selection rules
on the lateral displacement of the nanostructure and OV
singularity axes reviewed.

a. The paradigmatic case of the quantum ring

As the name suggests, quantum rings (QRs) are structures
that confine electrons and holes to an annular region, which
can be 1D if only a single transverse wave function in each
band is involved, or 2D or 3D if several subbands contribute.
Quantum rings of high quality have been fabricated by
molecular beam epitaxy in GaAs (Tong, Yoon, and Wang,
2012) and GaSb (Kobayashi et al., 2004), and in Si by
chemical vapor deposition (Yu et al., 2007). They are among
the basic semiconductor nanostructures that have been exten-
sively studied in the past few decades, for they help us to
understand basic principles [such as the Aharonov-Bohm
effect and persistent currents (Kleemans et al., 2007; Bluhm
et al., 2009; Schwiete and Oreg, 2009)], and because they
promise various uses in nanotechnology, such as the control of
spin states near the ring (Räsänen et al., 2007) or the
possibility to build lasers out of a stack of rings (Suárez
et al., 2004). Quantum rings represent the archetypical system
to theoretically study OV-semiconductor interactions. This is
simply due to the fact that both QR states and OVs are most
naturally represented in cylindrical coordinates.
A model that captures the kinematics of electrons in a 1D

QR including two bands without Coulomb interaction reveals
interesting features. Quinteiro and Berakdar (2009) consid-
ered, in a second quantization formalism, interband transitions
induced by the transverse component of the vector potential in
the Coulomb gauge [γ ¼ 1 in Eq. (72)] with centered OVand
QR axes. The OV-QR interaction matrix element [Eq. (71)]

TABLE II. Light-matter interaction Hamiltonians and their uses with an optical vortex. The fourth column refers to Hamiltonians applicable to
nanostructures (Nanostr.).

Light-Matter Interaction Hamiltonians

Applicable to
Hamiltonian Bulk Nanostr. Note(s) Reference(s)

Minimal coupling ½p − qAðr; tÞ�2=2mþ qΦðr; tÞ ✓ ✓ Difficult to interpret and
compare to experiments.

Cohen-Tannoudji, Dupont-Roc,
and Grynberg (1989)

Dipole moment −d · EðtÞ ✗ ✗ Completely ignores the phase
singularity. Applicable only
to a component of the
OV with no singularity.

Göppert-Mayer (1931) and
Cohen-Tannoudji, Dupont-Roc,
and Grynberg (1989)

Dipolelike electric −d ·Eðr; tÞ ✗ ✗ Does not properly capture
phase singularity. Applicable
only to a component of
the OV with no singularity.

Khitrova et al. (1999), Rossi
and Kuhn (2002),
Herbst et al. (2003), and
Reiter et al. (2006, 2007)

Twisted light −½ð1=ðlþ 1Þ�d⊥ · Eðr; tÞ ✗ ✓ Applicable to flat structures
z ≪ r⊥.

Quinteiro, Reiter, and Kuhn (2015)

Poincaré −d ·Eeffðr; tÞ −mB · Beffðr; tÞ ✗ ✓ Applicable to all OVs. Cohen-Tannoudji, Dupont-Roc, and
Grynberg (1989) and Quinteiro,
Reiter, and Kuhn (2017b)
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between wave functions with the envelope EmðrÞ ¼
N expðimφÞRðrÞZðzÞ having fixed radial and longitudinal
wave functions yields the simplest possible result in the

RWA hcm0jhð1ÞOVjvmi ∝ δm0;mþl. The EOMs (73a)–(73c)
become

ℏ
d
dt

ρv;mm ¼ 2Im½ξ�ρ̃vc;mmþl�;

ℏ
d
dt

ρc;mþlmþl ¼ −2Im½ξ�ρ̃vc;mmþl�;

iℏ
d
dt

ρ̃vc;mmþl ¼ Δ̃cmþl;vmρ̃vcmmþl þ ξðρv;mm − ρc;mþlmþlÞ;
ð83Þ

with Δ̃cmþl;vm ¼ εcmþl − εvm − ℏω and ξ ¼ −ðq=m0Þpvc·
A0 expðiqzz0Þ, where equal envelope functions in the con-
duction and valence bands have been assumed. The equations
are written in the rotating frame ρvc;mn ¼ ρ̃vc;mn expð−iωtÞ.
As in the case of the semiconductor Bloch equations for
noninteracting electrons in a homogeneous bulk system
[Eq. (64)], the EOMs are completely decoupled and electrons
undergo one-to-one transitions, but tilted in m space, see
Fig. 11. The clearest description of an optical excitation
process with an OV is thus achieved with 1D QRs, which in
that sense are to OVs what bulk is to plane waves.
From the EOMs (83), in complete analogy with what was

done for bulk one calculates the OAM transfer to electrons
that contains “interband” coherence and “intraband” popula-
tion contributions; see Fig. 12. The latter can be increased by
increasing jlj, has a nonzero mean value, and follows the Rabi
oscillations between bands. In the low-excitation regime and
for short times, the z component of the angular momentum is

given by LðpopÞ
z ¼ ð2nþ 1ÞℏlðR0tÞ2, with R0 the Rabi

frequency, t the time, and 2nþ 1 the number of transition
channels coupled by the light field (assuming that the OV has
a spectral width, as shown in Fig. 11). It can be put to use by

shaping the pulse duration to set permanent electric currents
and generate magnetic fields (Sec. V).
The intraband transitions in QRs also deserve attention. The

theoretical simplicity exhibited by the 1D QR calls for further
studies, in particular, to unveil the possible long-sought
coupling of light’s orbital and matter spin AM, with direct
implications to technology, such as the generation of photo-
electrons from bulk; see Sec. IV.A.2. To this end, a QR with a
Rashba spin-orbit interaction was theoretically considered
(Quinteiro, Tamborenea, and Berakdar, 2011) in a one-band
model with intraband processes induced by the transverse
component of a single-singularity centered OV. The problem
requires the inclusion of the spin degree of freedom, trans-
forming wave functions to spinors. The Rashba Hamiltonian
reads hSOI ¼ ðαR=ℏÞðσ × πÞz, in which αR is the Rashba
constant, σ is the vector of Pauli matrices, and π is the
mechanical momentum containing the vector potential
(Sec. III.C.1). The full Hamiltonian is

h ¼ p2

2mc
þ VðrÞ þ αR

ℏ
ðσ × pÞz

−
q
mc

Aðr; tÞ · p −
qαR
ℏ

½σ ×Aðr; tÞ�z; ð84Þ

where mc is the effective mass in the considered band and the
Coulomb and radiation gauge have been assumed. An
analytical solution is possible by separating h0 from the
perturbation [second line of Eq. (84)]. The expectation is
that the term containing the product of Pauli matrices and OV
vector potential may lead to coupling between the light’s
orbital and matter spin AM. From time-dependent perturba-
tion theory without the RWA, Quinteiro, Tamborenea, and
Berakdar (2011) concluded that the rate of spin conversion is
not proportional to l, which is in contrast to the original
expectation. In addition, they found that antiparallel momenta
beams produce unusual situations, an interesting finding given
that other later reports also pointed to the fact that the
interaction of antiparallel OV beams with matter present
uncommon features (Quinteiro and Kuhn, 2014; Quinteiro,
Reiter, and Kuhn, 2015; Quinteiro, Schmidt-Kaler, and
Schmiegelow, 2017; Quinteiro et al., 2019); see Fig. 14.

FIG. 12. OAMs of electrons in a QR. Interband (solid red curve)
and intraband (l ¼ 1 in dotted blue and l ¼ 5 in dashed black)
contributions. A similar plot holds for the electric current,
calculated from a simple argument based on an electric-current
loop. From Quinteiro and Berakdar, 2009.

FIG. 11. Representation of tilted transitions in a QR by a finite-
width (2δ) OV with a center frequency ω. For an easier under-
standing of the revelant process, we have realistically approxi-
mated the valence band as flat; the inclusion of the finite mass of
holes is straightforward. The optical excitation generates a
population imbalance, in the valence band in this simplified
example, that brings about electric currents.
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Mike, Szabó, and Földi (2018) studied a 2D QR using
numerical calculations and described selection rules for the
intraband transitions induced by OVs. The emission of light
from OV-excited 2D QRs was numerically studied by Kraus,
Wätzel, and Berakdar (2018). A few-picosecond light pulse
induces rapid intraband transitions, and the subsequent
dynamics under the action of electron-phonon relaxation
emits light at different frequencies whose time dependence
can also be analyzed. Particularly interesting is the influence
of the external OV topological charge on the spectrum of
short-lived high-harmonics emitted light.
A different photovoltaic effect was studied in a 2D QR

using numerical simulations by Wätzel and Berakdar (2016)
and Wätzel, Barth, and Berakdar (2017). They investigated in
detail a centrifugal-type generation of electric currents in
which the electrons separate in the radial direction due to their
OAM and are collected by a ring or wire electrode.
A preliminary microphotoluminescence experiment using

OVs with l ¼ 1 on an ensemble of GaAs QRs yielded
negative results (Johnson et al., 2017). Johnson et al. specu-
lated that the lack of observable effects was due to problems
related to ensemble measurements (Sec. IV.A.3.b).

b. Excitation of quantum rings with tilted and/or displaced optical-
vortex beams

On nanostructures smaller than the characteristic size of the
beam, the relative position of the electron wave function to the
optical axis matters; in fact, this also applies to atoms (Afanasev
et al., 2018; Quinteiro, Grinberg, and Schmiegelow, 2019), to
trapped excitons, to impurities or defects in bulk (Shigematsu
et al., 2016), etc. The effects of OVs are indeed strongest when
the electron cloud is centered with respect to the beam axis and
excited at normal incidence. The dependence of the light-matter
interaction and selection rule on the lateral displacement and tilt
of field axis and nanostructure clarifies the outcome and
precautions of experiments on a single nanostructure and an
ensemble of nanostructures.
A reasonable strategy to cope with tilted and/or displaced

beams is to use what we learned about head-on excitation.
Thus, we must convert the incoming beam to a superposition
of normal-incident OVs referred to the reference frame
centered on the nanostructure. To reorient the incoming field
one simultaneously transforms coordinates and rotates polari-
zation vectors. Once the beam is transformed to a super-
position of OVs at normal incidence, we rewrite each one as a
superposition of OVs centered at the nanostructure. The
composition of rotation and parallel transport of a single-
singularity beam leads to a superposition of multiple single-
singularity beams seen as impinging on the nanostructure
head on. Every one of these OVs (with various topological
charges) produces an optical transition on its own.
Alternatively, one may state that from the reference frame
attached to the nanostructure the displaced beam exhibits an
extrinsic OAM (Bliokh and Nori, 2015) that can be converted,
by translation, to a multitude of beams with intrinsic OAM.
A simpler scenario is that of a normal-incident OV, whose

optical axis is displaced by a distance D from the nano-
structure (Quinteiro, Lucero, and Tamborenea, 2010), as
schematically shown in Fig. 13. Consider the transverse

component of its vector potential Aðy; tÞ [Eqs. (4)
and (21)] with a topological charge l and a profile Ãðy⊥Þ ¼
A0Flðy⊥Þ ¼ A0JlðqryÞ expðilφyÞ, for which the coordinate y
is measured from the optical axis located at D from the
nanostructure reference frame; see Fig. 13. Using the identity
(Korenev, 2002)

JlðqryÞeilψ ¼
X∞
s¼−∞

JlþsðqrDÞJsðqrrÞeisϕ; ð85Þ

one obtains

Flðy⊥Þ ¼
X∞
s¼−∞

JlþsðqrDÞJsðqrrÞeisϕeilðφy−ψÞ

¼
X∞
s¼−∞

ð−1ÞsJl−sðqrDÞJsðqrrÞe−isϕeilðπþϕþφÞ

¼
X∞
s¼−∞

ð−1Þl−sFl−sðDÞFsðr⊥Þ; ð86Þ

and the azimuthal angles with respect to a fixed axis are
related by φy ¼ π þ ψ þ ϕþ φ and φD ¼ ϕþ φ; see Fig. 13.
Thus, Aðy; tÞ can be written as a superposition of vector
potentials Aðr; tÞ with a topological charge s. The weight
Fl−sðDÞ of each component in the superposition depends on
l − s, qrD, and the angle ϕ. Therefore, the interaction with a
QR produces one-m-to-many-m transitions induced by

FIG. 13. Excitation of nanostructures by a displaced normal-
incidence OV. Upper left panel: representation of the nano-
structure (QR) and a displaced beam located at a distance D.
Upper right panel: weights of the decomposition into vector
potentials centered at the nanostructure; see Eq. (87). Lower
panels: allowed optical interband transitions in a QR with
magnetic quantum number m, examples for an OV with
l ¼ 1. Lower left panel: head-on excitation (D ¼ 0). A pure
one-to-one transition is predicted (Sec. IV.A.3.a). Lower right
panel: once the field is displaced, transitions with other values of
OAM transfer are possible. Adapted from Quinteiro, Lucero, and
Tamborenea, 2010.
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hðþÞ ¼
X∞
s¼−∞

ð−1Þl−sFl−sðDÞ
�
−

q
m0

AðþÞ
s · p

�
; ð87Þ

as shown in Fig. 13.
Even nonvortex fields such as Gaussian beams exhibit the

same behavior. When the optical axis is displaced and the
beam width is of the same order or smaller than the size of
the nanostructure, nonvertical transitions are allowed.
Somewhat connected to this discussion is the study of the

interband transitions in a QR induced by inclined plane waves
by Vänskä et al. (2011). They found that the tilt of the beam
with respect to the QR axis results in new selection rules such
that the OAM of the electrons’ envelope (ℏm) is not
conserved. Moreover, by expressing the plane wave in terms
of Bessel functions they concluded that the original beam can
be seen as a superposition of OVs with various topological
charges.
Finally, the preceding discussion clarifies a possible strat-

egy to cope with a multiple-singularity field interaction, such
as a superposition of displaced single-singularity beams,
Mathieu beams, etc. (Sec. II.D). If multiple singularities shine
on a coherent electronic excitation (such as in a mesoscopic
QR), each one of them can be converted to OVs centered on
the excitation [Eq. (86)]. The total interaction is then given by
the sum of interaction terms as in Eq. (87), which translates
into a sum of the responses in the regime of linear optics.

c. Quantum dots

Within the class of man-made nanostructures, quantum dots
(QDs) are certainly among the most prominent ones. From a
theoretical point of view, they are especially interesting since
they present a discrete set of energy levels, much like atoms.
This makes them particularly interesting candidates for
applications in the field of quantum information technology,
such as emitters of single photons (Michler et al., 2000;
Dusanowski et al., 2019) or pairs of entangled photons
(Stevenson et al., 2006; Schimpf et al., 2021). They are
fabricated in a variety of different materials and shapes. Those
fabricated from semiconductors inherit the band structure of
the bulk material, and the discrete energy levels are grouped in
shells, making them sensible to excitation by light.
Before engaging on the OV-QD interaction, we remind the

reader that within the envelope-function approximation the
wave function of electrons in a cylindrically symmetric
nanostructure is given by Eq. (52) with the envelope function
Ebmn ¼ N expðimφÞRbmnðrÞZbðzÞ with angular momentum
(m) and radial (n) quantum numbers (Jacak, Hawrylak, and
Wojs, 2013). Here a factorization of in-plane and out-of-plane
directions has been assumed and the thickness has been taken
to be so small that only a single function Zb contributes. The
spin or (in the presence of spin-orbit coupling) the total
angular momentum of the microscopic Bloch states can be
included in the band index b. In addition to the envelope OAM
ℏm, the electron (or hole) has band and spin contributions to
the AM. From the functional form of EbmnðrÞ, one immedi-
ately realizes that there will be a selection rule for the envelope
AM, but as happened in bulk for cylindrical wave functions, a
multitude of radial states are excited by an OV with a single
topological charge.

Geometry dictates to a large extent the complexity of the
interaction with light; we have seen that the simplest structure
for an OV-nanostructure interaction is the QR. Therefore, our
discussion focuses mainly on lens-shaped, cylindrically sym-
metric self-assembled QDs; however, we also comment here
on the effects due to reduced symmetry, as in elongated QDs.
Self-assembled QDs are routinely fabricated in laboratories
around the world, and the theoretical and experimental
knowledge is vast. In the early times of QD research experi-
ments were commonly performed on ensembles of QDs
exhibiting a distribution of sizes and, thus, of transition
energies and dipole matrix elements; as a result of highly
refined sample fabrication and detection efficiencies, current
measurements on single QDs with good precision in the
positioning of light beams with respect to the QD are routinely
performed.
We now reexamine the generic Bessel-type OVs of

Eqs. (21)–(24). From a viewpoint of control, these fields
are highly tunable by changing the topological charge l, the
circular polarization σ, the relative OAM to SAM direction,
the degree of paraxiality expressed by the ratio qr=qz, and the
type of beam as determined by γ. The freedom in shaping the
beam allows one to envisage different sorts of excitation
modes; see Fig. 14 for three examples. One foresees that OVs
have potential for applications that are considered in Sec. V.
Here we concentrate on basic properties that are associated
with the excitation of QDs by OVs with different parameter
values. In addition to the standard case of excitation by a plane
wave illustrated in Fig. 14(a), we discuss three modes of
excitation of a cylindrically symmetric QD treated in an
effectively six-band model [conduction, heavy-hole (HH), and
light-hole (LH) bands, each with two orientations of the
intrinsic angular momentum] without taking into account two-
particle interactions. In the s-type conduction band the band
and spin angular momentum consists only of a spin part with
Jz ¼ �1=2; in the p-type valence bands the heavy-hole band
is characterized by Jz ¼ �3=2 and the light-hole band is
characterized by Jz ¼ �1=2.
The first mode [Fig. 14(b)] makes use of the OV parameters

l ¼ �n, σ ¼ �1 (parallel momenta beam), and qr=qz ≪ 1;
for any value of γ, the transverse field component dominates
the interaction (see Table III), connecting the usual heavy-
hole band states Jz ¼∓ 3=2 to the conduction-band states
Jz ¼ ∓1=2 transferring the OAM and producing nonvertical
transitions in the envelope quantum number m. Note that in
this review we use the electron picture; the angular momenta
of the valence-band states therefore have the opposite sign of
the corresponding valence-band hole. A detailed study based
on Fermi’s golden rule (Quinteiro and Tamborenea, 2009b)
concluded in addition that the strength of the excitation
depends on the ratio ζ (typically small) of QD to beam sizes,
and it compares to the strength of excitation by plane waves
[mode (a)] as

jhOVj2
jhPWj2

≃ ζl: ð88Þ

Moreover, the absorption spectrum for different types of OVs
can be predicted (Kuhn, Reiter, and Quinteiro, 2015).
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The second mode (c) of excitation relies on antiparallel spin
and orbital momenta with l ¼ �1, σ ¼∓ 1, a high non-
paraxiality degree qr=qz ≃ 1, and again an arbitrary γ
(Quinteiro and Kuhn, 2014). For these sets of values, the
interaction is dominated by an essentially homogeneous
electric field in the longitudinal direction, a curious feature
of OVs anticipated in Sec. IV.A. The interaction matrix
element can be conveniently calculated using the dipole-
moment approximation expressing the Hamiltonian in terms
of fields; the lack of spatial dependence of the longitudinal
component over the region of the QD enables one to use this
approximation despite the fact that other components exhibit a
phase singularity. If the frequency of the beam is tuned to
excite electrons from the light-hole band with the Bloch
microscopic part u�ðrÞ ¼ hrjJ; Jzi (Bastard, 1988), where
jJ; Jzi is

j3=2;þ1=2i ¼ −
1ffiffiffi
6

p ½ðjpxi þ ijpyiÞ↓ − 2jpzi ↑�;

j3=2;−1=2i ¼ −
1ffiffiffi
6

p ½ðjpxi − ijpyiÞ ↑ þ2jpzi↓�; ð89Þ

with the atomic orbitals jpji and the spin orientation indicated
by the arrows. The Ez component couples to the pz orbital,
producing electron-hole pairs with total (envelopeþ bandþ
spin) angular momentum equal to zero. Moreover, the strength
of the interaction is, in contrast to the previous mode of
excitation, comparable to that of irradiation by plane waves;
this is due to the fact that EzðtÞ is approximately homogeneous
over the extension of the QD.
In the third example (d), the beam is tuned to l ¼ �2,

σ ¼∓ 1, a high nonparaxiality degree qr=qz ≃ 1, and γ ¼ 1

(Quinteiro and Kuhn, 2014; Quinteiro, Reiter, and Kuhn,
2017a). The dominant contribution to the interaction comes
from the in-plane components of the magnetic field
that, close to the phase singularity, can be approximated
by a constant. Once again, as anticipated in Sec. IV.A, this
is an unusual behavior of OVs as it is a magnetic interaction
at optical (ultrahigh) frequencies. The interaction can be
expressed in terms of fields, although the use of the dipole-
moment approximation is inappropriate. A correct and
general theoretical description of the interaction with anti-
parallel momenta beams is provided by the Poincaré gauge
(Quinteiro, Reiter, and Kuhn, 2017a) that results in the
Hamiltonian

(a) (c)

(b) (d)

FIG. 14. Three possible modes of excitation of a lens-shaped semiconductor QD created by varying the OV beam parameters l, σ, γ,
and qr=qz. For comparison, (a) presents the usual excitation by a plane wave. (b)–(d) Representations of the field, the material system,
and the modes of excitation; see Table III. Center panel: single-particle QD energy levels and characteristic transitions induced by the
corresponding beam in each panel.

TABLE III. Dominant fields for the three modes of excitations of a
self-assembled quantum dot, complemented by the case of excitation
by a plane wave as mode (a). The symbol k refers to the relative
orientation of SAM and OAM, with P denoting parallel and AP
antiparallel orientations; arb. refers to an arbitrary value of γ. For
comparison, we also present the excitation mode of a plane wave.

Excitation Modes of a Quantum Dot
Mode γ σ l qr=qz k Dominant field

(a) � � � �1 0 0 � � � Eð̃rÞ ¼ E0e�
(b) arb. �1 �n ≪ 1 P ẼðrÞ ¼ E0nðqrrÞne�inφe�
(c) arb. ∓ 1 �1 ≃1 AP ẼðrÞ ¼∓ E0ðqr=qzÞez
(d) 1 ∓ 1 �2 ≃1 AP B̃ðrÞ ¼∓ B0ðqr=qzÞ2e�
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hOV ¼ −
q

2m0

B⊥ðr; tÞ · ðr × pÞ;

which resembles the well-known magnetic-dipole interac-
tion but with a space-dependent field. When resonant with
the transitions from light-hole bands [Eq. (89)], the OV
induces a nonvertical transition in m with zero bandþ spin
angular momentum.
The previously mentioned studies expose the unlocking of

new selection rules in QDs, i.e., transitions with changes in the
envelope as well as the microscopic parts of the wave
function. Most notable is the excitation of electron-hole pairs
with an unusual AM, which results from the combination of a
longitudinal electric field or a transverse magnetic field with
light-hole states; the action of these OV components on bulk
has not yet been reported (Sec. VI).
A more realistic model of a QD includes two-particle

interactions and other effects. Such a model serves to verify or
falsify the findings of the aforementioned simple model, can
be used to predict new effects, and, most importantly, is useful
to compare predictions to experiments. Holtkemper et al.
(2020, 2021) included the Coulomb interaction, valence-band
mixing, and the effects of QD asymmetry using a configu-
ration-interaction approach. Figure 15 compares the spectra of
a single-particle (reduced) model to the spectra of the full
model with interactions.
The full model reproduces important features of the

simplified model, for instance, the important predicted zero
total AM e-LH pair S → sLH� 0 (for nomenclature see the
caption of Fig. 15). In addition, we learn that this e-h pair
strongly mixes with the d → sHH� 2 pair. Moreover, using a
longitudinal electric field one can excite high-energy dark
excitons, such as d → sHH� 2ðþS → sLH� 0Þ. Note that
the state with bandþ spin AM zero is not completely dark, as
it can radiate into a field that propagates in the in-plane
direction with an electric field in the z direction. In contrast,
the exciton with a bandþ spin AM equal to 2 is truly dark.
The full model awaits for experiments, especially on sin-
gle QDs.
Quantum dot ensembles are a common and easy to prepare

and measure experimental system. Though tempting for the
study of OV-QD interaction, the analysis of signals obtained
from such measurements presents a significant challenge.
In Sec. IV.A.3.b we saw that nanostructures illuminated
by tilted and/or displaced single-singularity OVs exhibit
complex excitation paths that would result in complex spectra.
Different QDs will react according to where the optical axis of
the single-l OV impinges the ensemble. An extinction experi-
ment on an ensemble of QDs could record the intensity of the
light passing through the sample as a function of the energy in
a range that spans a number of QD levels. Simulated spectra
are shown in Fig. 16. A simple or reduced model (see Figs. 15
and 14), as shown in the upper panel of Fig. 16, is used. We
compare, for two values of the topological charge, the
absorption spectra of an ensemble of QDs and a single
centered QD. The ensemble spectra reveal no qualitative
difference for the l ¼ 0 (Gaussian) or l ¼ 1 (OV) beams
and would make the interpretation of measurements difficult.
On the contrary, the single-QD spectra show clear differences;
most notably, the peak at Eg þ ℏωc is seen only for l ¼ 1.

d. Other nanostructures

The peculiarities of OVs also result in interesting new
effects in nanostructures besides QRs and QDs. This is the
case for two-dimensional systems and nanoparticles.
In a combined theoretical and experimental work Persuy

et al. (2015) analyzed the OAM contributions to different
diffraction orders of wave-mixing experiments. By perform-
ing four-wave-mixing spectroscopy with LG beams on a CdTe
quantum well sample, they demonstrated that the selectivity of
the OAM transfer can be used to extract a four-wave-mixing
signal even in the case of collinear pump and probe beams,
which suggests the possibility of enhanced spatial resolution
by excitation through a microscope objective.
The action of a longitudinal electric-field component in the

excitation of a quantum well was investigated theoretically by
Sbierski, Quinteiro, and Tamborenea (2013). They considered
an excitation in the infrared range to induce intersubband
transitions, using OVs with different topological charges that
impinge on the sample at normal incidence. As is the case for
interactions with QDs (Secs. IV.A.3.c and V), the claim is that
the excitation by an Ez component is experimentally easiest if

FIG. 15. Calculated spectra for a QD excited by the transverse
and longitudinal components of an OV. (a) Single-particle
picture. Lines correspond to electron-hole pairs. (b) Model
including Coulomb interaction and valence-band mixing. Lines
correspond to excitons. Each line is named according to its
“envelope-hole → envelope-electron” pair, with the additional
information of its light-hole (LH) or heavy-hole (HH) character
and the microscopic (bandþ spin) angular momentum. The
energy levels are grouped in shells s; p; d;… for electrons and
heavy holes and S; P;D;… for light holes. In the full model,
exciton states are superpositions of noninteracting pairs. When
the superposition is dominated by more than one e-h pair,
the second contribution appears in parenthesis: for example,
d → sHH� 2ðþS → sLH� 0Þ is a high-energy exciton with an
admixture of HH-e and LH-e pairs in which the holes are in
different shells (d and s). From Holtkemper et al., 2021.
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done at normal incidence because it does not require cleaving
of the sample.
Cygorek, Tamborenea, and Axt (2015) theoretically studied

QWs (and QDs) with Rashba interactions in order to explore
the possibility of transferring angular momentum from an OV
to the spin of electrons via the spin-orbit interaction. It was
found that spin-orbit interactions at the level of the effective
mass approximation are unable to produce the desired net
transfer in large systems (thermodynamic limit), leaving
quantum disks or dots and rings as the only possible scenarios
for significant OAM to SAM transfer.
Tikhonova and Voronina (2022) analyzed the interband

transitions in a semiconductor quantum well (disk) induced by
a quantum nonclassical OV field, revealing a transfer of
correlations to the electronic system.
The selection rules, transfer of OAM, and induced photo-

currents in a two-dimensional electron gas were theoretically
studied by Takahashi, Proskurin, and Kishine (2018, 2019).
They found that the current in bulk is canceled out, but there
remains a current that flows along the edge of the system,
thereby inducing magnetization.
The electronic wave function kinematics in a macroscopic

stripe of GaAs was numerically simulated using Schrödinger’s
equation (Wätzel, Moskalenko, and Berakdar, 2012). The

deflection of the wave package occurs in the region where the
OV intensity is significant; moreover, the report shows that
even the use of OVs with random additional phases, simulat-
ing natural light, produces deviations of the electron’s
trajectory.
In a report combining experiments and Mie theory,

Nechayev et al. (2019) considered the inverse problem of
orbital-to-spin AM conversion. They showed that a linearly
polarized OV focused on a silicon nanoparticle results in
circularly polarized scattered light.
Using a time-dependent Keldysh–Green’s function method,

Shintani et al. (2016) considered the effects of OV pulses on
the disordered surface of a three-dimensional doped topo-
logical insulator; see Fig. 17. They determined the local
charge and spin densities, showed that the inhomogeneous
nature of the field plays an important role, and demonstrated
that the OV imprints its polarization pattern on the charge
densities, in agreement with what was found in Sec. IV.A.2 for
bulk and is later seen in Sec. IV.B in the case of microcavities.
Most interesting is that, owing to the locking between electron
spin and momentum, the optical polarization pattern deter-
mines a spatially structured spin density. The momentum-spin
locking might be an indirect way to control the spin using
OVs. The imprinting of the spatial pattern of the OV field was
also predicted in the excitation of two-dimensional chiral
ferromagnets, leading to the formation of skyrmions (Fujita
and Sato, 2017).

B. Microcavity exciton polaritons

Atoms, molecules, and nanostructures placed inside optical
cavities display a variety of new phenomena (Yamamoto,
Tassone, and Cao, 2000). A prominent example is the
inhibition or enhancement of spontaneous emission due to
the Purcell effect (Purcell, 1946), but there is much more.
Inside a cavity, photons and matter excitations can be strongly
or weakly coupled, depending on the experimental conditions.
In the weak-coupling regime, the coupling between photons
and matter excitations is smaller than the individual decay
rates. As a result the particles retain their individual character,
and the phenomena observed resemble that of free (off cavity)
light-matter interactions. However, the matter-light interaction
can be strongly reduced or enhanced depending on, for
instance, the position of the active structure in the cavity.
Under strong coupling, photons and matter states hybridize,
and extraordinary effects take place.
In a cavity containing a semiconductor structure, photons

couple to excitons and, in the strong-coupling regime, form
exciton-polariton quasiparticles that for not too high densities
follow Bose-Einstein statistics. A semiclassical model of
exciton polaritons is deduced in a similarway to that of plasmon
polaritons (Sec. IV.C): From quantummechanics one calculates
an exciton dielectric function that is used in the wave equation
for electromagnetic fields. For a fully quantum mechanical
treatment, one quantizes the electromagnetic field and writes a
Hamiltonian for excitons, photons, and the mutual coupling
(Khitrova et al., 1999; Haug and Koch, 2009).
An extensively investigated system is that of a quantum

well microcavity. The system is fabricated using on each side
of the quantum well a set of thin layers of alternating refractive

m

FIG. 16. Simulated extinction experiment on a single centered
and an ensemble of QDs. Upper panel: single-particle energy
levels of a QD in a reduced model, with m the envelope OAM,
and in parenthesis the radial quantum number (Quinteiro and
Tamborenea, 2009b). Lower panel: extinction spectra using
beams with l ¼ 0 (Gaussian) and l ¼ 1 (LG). The light
frequency ω ¼ ðEg þ δEÞ=ℏ scans the energy levels within the
blue dashed box (upper panel). The absorption manifests as dips
in the extinction spectra. No qualitative difference exists between
the Gaussian and LG excitation for the ensemble measurement;
in contrast, clear differences appear for an experiment on a
single QD.

Quinteiro Rosen, Tamborenea, and Kuhn: Interplay between optical vortices …

Rev. Mod. Phys., Vol. 94, No. 3, July–September 2022 035003-37



indices that act as mirrors, called distributed Bragg reflectors.
By optically exciting the system from the outside, exciton-
photon pairs or polaritons are formed. Many interesting
phenomena have been reported. For a low polariton loss and
low density of polaritons, thermalization produces a large
population of zero-momentum polaritons that under suitable
conditions form a Bose-Einstein condensate (Kasprzak et al.,
2006; Wertz et al., 2010) that may lead to lasing (Deng et al.,
2003; Tsintzos et al., 2008; Deng, Haug, and Yamamoto, 2010;
Schneider et al., 2013). Under strong excitation and in the
strong-coupling regime, polaritons are seen to interact forming a
liquid and to exhibit superfluidity (Lerario et al., 2017).
Before examining the research in OV-microcavity physics,

we recall that we have thus far considered only the action of
external and fixed OVs on matter. Nevertheless, owing to the
strong coupling of excitons and photons inside a microcavity,
there is a mutual interaction between these constitutive
particles. Thus, exciton-polariton vortices (called quantized
vortices) can be observed without the need of pumping the
microcavity with an external OV, as indeed reported by
Lagoudakis et al. (2008). The spontaneous formation of vortical
structures in a polariton fluid in aCdTemicrocavitywas inferred
from forklike patterns in the interference of the luminescence
signal coming out of the cavity; see Fig. 18. The exciton-
polaritonvortices are speculated to form out of a combination of
system inhomogeneities and continuous (nonsingular) pump-
ing. Theoretical modeling using the Gross-Pitaevskii equation
supports the experimental findings (Lagoudakis et al., 2008;
Sigurdsson et al., 2014; Abdalla et al., 2018).
Further experimental investigations have revealed the

existence of half-integer vortices in planar (Lagoudakis et al.,
2009) and ring (Liu et al., 2015) cavities, which were first
predicted in exciton-polariton systems by Rubo (2007). Half-
integer vortices are known to occur in other systems such as
He3 (Salomaa and Volovik, 1987) and result from the two-
component nature of polariton condensates (Toledo-Solano
et al., 2014).

Microcavities can be pumped using OVs. An experiment
conducted by Kwon et al. (2019) demonstrated, again using
interferometric techniques on the condensate luminescence,
that a nonresonant LG pulse can inject quantized exciton-
polariton vortices into planar GaAsmicrocavities. Furthermore,
Kwon et al. showed that the chirality of the exciton-polariton
vortex is highly controllable by the external field, which led
them to conclude that the OAMof the pump beam is transferred
to the exciton-polariton condensate.
A noteworthy procedure to inject quantized vortices is that

of Boulier et al. (2016), in which four tilted and nonoverlap-
ping Gaussian beams excite the microcavity in such a way as
to produce exciton polaritons with appropriate linear momen-
tum that convey OAM to the entire condensate. We note that
the similarity to the modal decomposition of Sec. II.F is only
apparent since the four Gaussian beams neither overlap to
interfere nor have the appropriate phase difference.

C. Plasmonics

When light propagates inside a metal or a structured
material containing metal-dielectric interfaces, the electro-
magnetic field interacts with conduction electrons, thereby
producing quasiparticles called plasmon polaritons (Kawata,
Ohtsu, and Irie, 2001; Novotny and Hecht, 2006; Maier,
2007). They exhibit notable effects, such as the confinement
of the electromagnetic field to sizes of the order of a wave-
length or less, and strong field enhancement. Plasmon polar-
itons exist in bulk and lower-dimensional systems. They are
called surface plasmon polaritons (SPPs) when they are
confined to a metal-dielectric interface and are called localized
plasmon polaritons (LPPs) if further confined to, for instance,
a small metallic sphere.
Surface plasmon polaritons are excitations that propagate

along dielectric-metal interfaces but are bound in the
perpendicular direction, with a corresponding evanescent field
decaying in both directions from the surface. The SPP
dispersion relation deviates significantly from that of light
in dielectric media. For a single-interface ideal-conductor
system (the paradigmatic case) the dispersion relation exhibits

FIG. 18. Interferogram and extracted phase. The forklike dis-
location can be seen within the red circle. Adapted from
Lagoudakis et al., 2008.

FIG. 17. Spin density induced by the electric field of an optical
vortex. Left (right) panels: local (nonlocal) spin density. The
color map and the direction of the arrow show the magnitude and
direction of the spin density, respectively. σzL ¼ �1 and mz

L are
the spin and orbital AMs of the beam, respectively. Adapted from
Shintani et al., 2016.
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a gap and a region where the in-plane wave vector can assume
larger values than in dieletrics without appreciable changes in
the frequency.
Owing to the spatial confinement in all directions, LPPs in

plasmonic structures exhibit and are characterized by reso-
nances in their response to external fields, such as resonance
in polarizability. The resonance in polarizability results in a
field enhancement, one of the main features exploited in
applications. From the theory of the archetypical metallic
subwavelength sphere in a dielectric medium, an understand-
ing of other structures (such as ellipsoids and rods) can be
built in which other phenomena occur, like multiple reso-
nances, response dependent on the polarization of the exci-
tation field, etc.
The textbook SPP is an object represented in Cartesian

coordinates propagating in a uniform 2D system. As plane
waves in free space, the object is a suitable building block for
other, more complex excitations. But, as previously discussed,
other geometries are more suitable in problems related to OVs.
Liu et al. (2005) experimentally demonstrated SPPs in a
circular system that result in the focusing of light at the center.
The edge can be viewed as a set of pointlike sources (Ren
et al., 2011), with each emitting waves that converge inward.
Pointlike sources are also building blocks that help one

understand, by the superposition principle, the SPP field of
other plasmonic structures. A pointlike source on a metal-
dielectric interface produces cylindrical waves of SPPs
describable in terms of Hankel functions (Hecht et al.,
1996; Yin et al., 2004; Chang, Gray, and Schatz, 2005;
Nerkararyan et al., 2010; Lee and Mok, 2016).
The natural next step toward the study of singular SPPs is to

consider a spiral or an array of spirals (also called an
Archimedean structure) milled on the metal-dielectric system.
Excited from outside by a plane wave, the structure produces a
vortex field around its center. The phenomenon is easy to
understand: Regard the spiral as a set of pointlike sources,
each emitting a secondary cylindrical wave as a result of the
excitation at normal incidence by a circularly polarized plane
wave of handedness σ. Their superposition at the spiral center
produce a vortex, as next explained.
The field of a point source at the origin of coordinates is

dominated by the electric-field z component, which in a
medium with the evanescent constant χ reads, in analogy with
Eq. (4), EzðrÞ ¼ Ẽzðr⊥Þ expð−χz − iωtÞ þ c.c.,

Ẽzðr⊥Þ ¼ E0eiσϕH
ð1Þ
1 ðkρÞ;

with Hð1Þ
1 a Hankel function of the first kind (outward

propagation) of order 1, r ¼ ðρ;ϕ; zÞ, and k the plasmon
wave vector; we disregard in-plane attenuation. For
observation points far from the source, kρ ≫ 1 and

Hð1Þ
1 ðkρÞ ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2=πkρ
p

exp½iðkρ − 3π=4Þ�; we then have

Ẽzðr⊥Þ ¼ E0
0e

iσϕ

ffiffiffiffiffi
1

kρ

s
eikρ;

with E0
0 ¼ E0 expð−i3π=4Þ

ffiffiffiffiffiffiffiffi
2=π

p
.

We imagine the spiral as a set of infinitesimal segments,
with each acting as a pointlike source. To calculate the
outgoing field of each, we displace Ez to the corresponding
position R ¼ (RðΘÞ;Θ; z) on the spiral with jmj turns,
parametrized by RðΘÞ ¼ R0 þmΘ=k; see Fig. 19. The
observation point is now indicated by r ¼ ðr;φ; zÞ. We
approximated the distance ρ¼ jR− rj≃RðΘÞ− rcosðΘ−φÞ
for the exponential factor, ρ ¼ jR − rj ≃ R0 for the denom-
inator factor (as customary), and ϕ ≃ Θþ π,

Ẽzðr⊥Þ ¼ −E0
0e

iσΘ

ffiffiffiffiffiffiffiffi
1

kR0

s
eik½RðΘÞ−r cosðΘ−φÞ�.

The contribution of all point sources on the spiral to the field
in the region close to the center is

ẼzðrÞ ¼ −E0
0

eikR0ffiffiffiffiffiffiffiffi
kR0

p
�
R0

Z
2π

0

dΘe−ikr cosðΘ−φÞeiðmþσÞΘ
�
.

Changing the variables to η ¼ Θ − φ, the integral becomes of
the form of Eq. (36), and finally

Ezðr; tÞ ¼ E00
0e

iðmþσÞφJmþσðkrÞe−χz−iωt þ c.c.; ð90Þ

with E00
0 ¼ −E0

0ð−iÞmþσ2π
ffiffiffiffiffiffiffiffiffiffi
R0=k

p
expðikR0Þ. Note the simi-

larities to the modal decomposition of Bessel beams in free
space (Sec. II.F). Therefore, the superposed field close to the
center presents a phase singularity. Figure 20 shows the
numerical calculations of the field produced by 20 pointlike
sources located on a single-turn spiral. We also show fitting
curves comparing Bessel functions and numerical data. One
notes that, given a spiral with a particular sense of rotation, the
field at the origin has a dramatic change for each polarization
of the light exciting the structure (Yang et al., 2009). This is
why the system is also referred to as a plasmonic lens, and the
effect as a spin-orbit interaction or spin-to-orbital AM con-
version. The generation of plasmons by such structures has
been well documented in theoretical and experimental reports
(Ohno and Miyanishi, 2006; Gorodetski et al., 2008; Yang
et al., 2009; Kim et al., 2010; Boriskina and Zheludev, 2014;
Guo et al., 2017; Spektor et al., 2017). Plasmonic vortices

FIG. 19. Schematic of the coordinate transformation of a
pointlike source that is used to generate the field of spirals.
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yield naturally subwavelength fields, achieving a lateral size
of λ=6, with λ the wavelength of the incident external light
(Spektor et al., 2017). This is one of the most important
features, as it allows one to explore a regime not accessible
with far-field OVs that are limited by the diffraction limit.
Other plasmonic systems can generate singular fields, as

demonstrated by Tsesses et al. (2019) using hexagonal
structures. These act as sources of surface plane waves whose
interference pattern produces a lattice of topological defects.
We recall that the superposition of three or more plane waves
results in singularities; see Fig. 2 and Dennis et al. (2010).
Interesting physics also occurs when one excites plasmonic

structures with OVs. Sakai et al. (2016) numerically showed
the creation of multipole LPPs in an air-suspended nanodisk
(400 nm in diameter, 30 nm high) by studying the plasmon
resonance and field maps as a function of topological charge
and polarization of an incident OV. Kerber et al. (2018)
explored the generation of plasmonic vortices in Archimedean
structures by OV excitation. Their numerical results reinforce
the notion that the OAM of the plasmonic vortex arises from a
combination of OV parameters (topological charge and
polarization) and the chirality of the plasmonic structure
(Forbes and Andrews, 2018a). Through theory and numerical
simulations Cao, Fu et al. (2021) showed that a metallic
cylinder with a patterned surface reacts to incident OVs with
positive and negative topological charge by either converting
the incoming OAM or absorbing it.

D. Two-dimensional materials

A single layer of carbon atoms in a honeycomb lattice,
known as graphene, displays striking features (Castro Neto
et al., 2009). It is best known for the Dirac-like behavior of
electrons close to special points in k space, where no band gap

exists, and the sublattice of graphene plays the role of
(pseudo)spin. The seminal work of Novoselov et al. (2004)
in graphene boosted the research on a variety of 2D materials
(Novoselov, 2011), together with their applications (Fiori
et al., 2014; Zeng et al., 2021).
Two-dimensional TMDs (a combination of a transition

metal such as Mo or W and a chalcogen like S, Se, or Te) are
complex systems of single or multiple layers of atomically
thin covalently bound ions stacked and bound together by van
der Waals forces (Miró, Audiffred, and Heine, 2014; Das
et al., 2015; Berkelbach and Reichman, 2018; Parvez, 2019;
Shinde and Singh, 2019). In contrast to their bulk counter-
parts, they are direct band-gap semiconductors. A monolayer
TMD shares with graphene the Dirac-like states; however, the
electronic states in this case correspond to massive particles in
a gapped two-band system. As in any semiconductor, exciton
states are possible; in multiple layer structures excitons can be
either spatially direct, with an electron and a hole in the same
layer, or spatially indirect, with an electron and a hole in
different layers. Compared to other semiconductor materials,
TMDs are characterized by large exciton binding energies of
the order of 500 meV, which is due mainly to the effectively
strongly reduced screening in layers of these materials.
A first study of the interaction of graphene with OVs was

conducted by Farias, Quinteiro, and Tamborenea (2013). They
theoretically considered the interaction with the transverse
component of an OV beam, which is described by the
Hamiltonian

h ¼ ℏvFðασxkx − σykyÞ
þ evF½ασxAxðr; tÞ − σyAyðr; tÞ�; ð91Þ

with α ¼ �1 designating each Dirac point and σi a Pauli
matrix. Note the similarities with the Rashba Hamiltonian (84)
for a QR: once again there is a term coupling the (pseudo)spin
to the vector potential, thus suggesting the possible exchange
of OAM and pseudo-SAM. Using the EOM, the evolution of
the angular momentum and the induced current were calcu-
lated, reflecting the analog behavior of other systems excited
by OVs in the intraband regime. New in the case of graphene
is the fact that the light-matter interaction exchanges the
pseudospin of the electrons, moving them from one sublattice
to the other when the rotating wave approximation is invoked;
however, this effect is not exclusive to OVs. Inglot et al.
(2018) included a Rashba interaction and a static magnetic
field and found no effect of the topological charge of the light
field on the electron spin dynamics.
In their theoretical investigation Cao, Grass et al. (2021)

considered the excitation by an OV of a graphene ring
(Corbino disk) in the quantum Hall regime. The electric
current between the inner and outer contacts was studied
under disorder, and it was found that the current results from
the transfer of OAM from light to electron states.
Simbulan et al. (2021) performed photoluminescence

experiments in monolayer and bilayer MoS2 excited with
OVs, together with theoretical modeling and numerical
simulations. They found a clear dependence of the energy
shift on the OV topological charge that can be interpreted as

FIG. 20. Numerical calculations for a discrete single-turn spiral
with N ¼ 20 point sources and m ¼ −1. Top row: Intensity
maps. At r ¼ 0 with σ ¼ 1 there is a bright spot, while for
σ ¼ −1 there is a dark spot. Bottom row: For fixed y ¼ 0 and as a
function of x, numerical field amplitudes (solid blue lines) are
fitted by a Bessel function J0 (σ ¼ 1) and J−2 (σ ¼ −1) (dotted
lines), showing a good match at short distances from the center
and confirming the validity of the theoretical model [Eq. (90)].
Quantities are given in arbitrary units.
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resulting from the transfer of OAM to valley A excitons;
see Fig. 21.
Transition metal dichalcogenides can easily be combined

with other materials (Krasnok, Lepeshov, and Alú, 2018). Guo
et al. (2020) implemented a hybrid system consisting of a
TMD WS2 on top of a plasmonic spiral structure on
aluminum. The plasmonic vortex conveys its chirality to
the achiral C excitons in WS2, with a resulting second-
harmonic generation emission that depends on the sense of
circular polarization of the light exciting the plasmonic
structure. Li et al. (2017) explored the coupling between
MoS2 excitons and plasmons from spirals using spectroscopy
and numerical simulations and showed the enhancement of the
photoluminescence signal for a particular state of polarization
of the external light; see Fig. 22. These spin-dependent effects

are directly related to the spin-to-orbital AM conversion
discussed in Sec. IV.C.

V. APPLICATIONS

Condensed-matter physics deals with basic physical phe-
nomena as well as their applications. After having reviewed in
Sec. IV the basic properties of OV–condensed-matter inter-
actions, we now turn our attention to actual and prospective
technologies.
Electronics, a vital technology based on semiconductors,

relies exclusively on the charge of electrons. To keep up with
technological progress, spintronics seeks to control the spin of
electrons in nanostructured systems. A set of discoveries in the
1980s increased interest in applications based on spin, mainly
giant magnetoresistance (Baibich et al., 1988; Binasch et al.,
1989) but also the injection of spin-polarized electrons (Wolf
et al., 2001). Spintronics promises faster data processing,
lower energy consumption, and higher miniaturization (Ahn,
2020; Hirohata et al., 2020).
At around the same time Feynman (1982) proposed the

concept of quantum computing for simulations of hard-to-
solve many-body quantum systems. The new computer, based
entirely on the principles of quantum mechanics, may out-
perform any conceivable classical computer (Steane, 1998;
Galindo and Martin-Delgado, 2002). Basic elements of a
quantum computer are according to the following five criteria
formulated by DiVincenzo (2000): (i) a scalable system with
logical units for storing and performing operations, the qubits;
(ii) a procedure to prepare the set of qubits to a given initial
state; (iii) long relevant decoherence times, much longer than
the gate operation times; (iv) a “universal” set of quantum
gates, which control the system dynamics via unitary trans-
formations on qubits and thus implement the algorithms; and
(v) a procedure to measure the final state of specific qubits, by
reading the output of the computation.
The field of quantum technology is an expansive endeavor

to outperform classical counterparts. Another example is the
use of quantum light in quantum communication (Al-Amri,
Andrews, and Babiker, 2021) for secure data transmission
beyond classical protocols (Gisin and Thew, 2007; Liao et al.,
2018). Quantum computing, quantum communication, and
spintronics have only recently become a reality, boosting the
further exploration of diverse platforms and tools to imple-
ment their components and operations in more effective ways.
A key feature for quantum technologies is entanglement. In
fact, the entanglement of photons in OAM states has been
observed in various experiments (Arnaut and Barbosa, 2000;
Mair et al., 2001; Franke-Arnold et al., 2002; Krenn et al.,
2017), making OVs a valuable resource for applications in
this field.
Solid-state physics has been an essential part of materials

science, which aims to develop new fabrication and process-
ing techniques for materials, including metals and semi-
conductors in various forms, in all sorts of applications.
And material processing is starting to benefit from the use
of OVs.
In the following, we classify applications by the area in

which they were proposed or reported. This scheme is
arbitrary since a proposed idea may serve several fields well

FIG. 22. Photoluminescence spectra of a MoS2 monolayer with
and without spiral structures under the excitation by light with
different circular polarizations at 633 nm and laser power at
2.1 mW. Inset: Cross section view of 2-turn spiral structure (scale
bar is 400 nm). From Li et al., 2017.

FIG. 21. Exciton energy shift for an uncapped MoS2 sample at
two different temperatures. The MoS2 sample consists of one
layer of MoS2, one layer of h-BN, and SiO2=Si. Adapted from
Simbulan et al., 2021.
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now or in the future; an example is the use of OVs in materials
science [specifically in metal ablation, as reported by
Hamazaki et al. (2010)], which may in the future become
applicable in medicine for surgery (Jeffries et al., 2007).

A. Semiconductor elementary nanostructures

Quantum dots are a platform for quantum technologies.
Impurities or additional electrons charging the dot implement
qubits via their spin. In quantum computing, one requires the
control of single qubits and pairs of qubits as building blocks
of more complex operations and, ultimately, algorithms. The
operations on qubits can be done by optical means, improving
speed and avoiding noise from electrical contacts. The single
qubit operation requires the ability to control the spin direction
at will. Many protocols have been devised to manipulate the
in-plane (perpendicular to the nanostructure’s z growth
direction) spin component (Wolf et al., 2001; Kroutvar et al.,
2004; Quinteiro, Dmitruk, and Aligia, 2012). However, it is
challenging to control the longitudinal component necessary
for completing all possible one-qubit operations. Quinteiro
and Kuhn (2014, 2015) proposed the use of a sequence of
three light pulses (Pl;σ) in the subpicosecond timescale to
achieve full inversion of the spin z component of an extra
electron charging a self-assembled semiconductor QD. The
pulse sequence is independent of the initial spin state of the
extra electron and works by inducing an e-LH pair with zero
total AM (second excitation method of Fig. 14) in the QD.
Figure 23 shows the results from numerical simulations of
the density matrix ρij using the master-equation formalism
within a four-level system i¼f1∶j↑ 00i;2∶j↓00i;3∶j↑↓⇑i;
4∶j↑↓⇓ig, with a single (double) arrow for the electron
(hole). Note that the addition of electron-electron interactions
does not affect the proposal significantly. As seen in

Sec. IV.A.3.c, the full model still presents the most important
ingredient of the proposal: the state s → sLH� 0, which is
essential to the spin inversion.
In fact, the s → sLH� 0 transitions in QDs may prove

useful in quantum storage, as shown by Holtkemper et al.
(2021). The Coulomb interaction produces an admixture of
high-energy dark and optically active e-h pairs. In particular,
as seen in Fig. 15, the e-HH pair d → sHH� 2mixes with the
e-LH pair s → sLH� 0, thereby forming an exciton that can
be excited by the longitudinal component of the antiparallel
l ¼ �1, σ ¼∓ 1 OV (the second excitation method of
Fig. 14). After the light pulse is turned off, the system decays
to its ground state; thus, the excited exciton relaxes, mainly by
electron-phonon scattering without spin flip to the almost
unmixed s → sHH� 2 state. This is optically forbidden,
and thus robust against radiative recombination. The states
s → sHHþ 2 and s → sHH − 2 can be generated at will and
represent qubits of information.
Yet another application of QDs is their use for the

conversion of light’s orbital AM to electronic spin AM,
and vice versa. The device consists of a photonic crystal
coupled to a QD, and it can work as an emitter or receiver for
quantum communications (Fong et al., 2018). For instance, in
the emitter mode the spin state of the excited electron in the
QD emits, upon recombination, light with a particular circular
polarization. This drives a combination of quadrupole modes
in the photonic crystal, which in turn is capable of emitting
light with OAM; see Fig. 24.

FIG. 23. Numerical simulations of the master equation for the
extra electron plus e-LH system in a negatively charged QD, for
the case in which the initial spin states of the extra electron is a
superposition of up and down sz. After the application of three
normal-incident pulses (one an OV), full inversion is achieved on
a subpicosecond timescale. Adapted from Quinteiro and Kuhn,
2014.

FIG. 24. Light’s OAM to and from an electron spin AM
conversion. Top panel: Device consisting of a photonic nano-
cavity with an embedded QD. Lower panels: Schematics of the
conversion process. From left to right, the light emission of a
spin-polarized electron drives the rotation of nanocavity modes,
resulting in the nanocavity emitting an OV. From right to left, an
OV drives the rotating modes, which in turn generates an electron
spin in the QD. Adapted from Fong et al., 2018.
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Structured light, including OVs, can extract the spatial
phase information of the excitonic wave functions in QDs.
Holtkemper et al. (2020) proposed repeated absorption
measurements of the state under investigation using complex
fields formed out of a superposition of structured beams. A
particular set of superposition coefficients will maximize the
absorption. These coefficients can be directly related to the
expansion coefficients of the exciton wave function in a given
basis; in this way one deduces the complete exciton wave
function, including the relative phases.
The transfer of OAM to nanostructures sets up an electric

current that can be used in electronics, spintronics, and
communications. One such application is the generation of
magnetic fields in nanostructures, such as a QR (Kraus,Wätzel,
and Berakdar, 2018) or bulk (Quinteiro and Tamborenea,
2009c) to control the spin state of a nearby impurity, QD,
etc. Ji et al. (2020) demonstrated that the circular photon drag
can serve to detect the OAM of light impinging a U-shaped
device on WTe2 for use in OAM-based communications.
The invention of new devices to generate OVs is an active

field of research for possible use in comunications, sensing, and
other applications (Kerridge-Johns, 2018). Semiconductor
technology plays an important role in innovations in the field,
especially in lasers that can create vortex fields from within the
cavity; see also Sec. II.G. A good example is the vertical cavity
surface-emitting laser (known as VCSEL) or the vertical
external cavity surface-emitting laser (known as VECSEL)
formed out of one or several semiconductor quantum wells
coupled to additional intracavity devices; see Fig. 25. Examples
of intracavity devices are metasurfaces (Seghilani et al., 2016;
Xie et al., 2020) and spiral phase plates (Li et al., 2015) that
shape the beam to an OV. Micrometer-sized whispering gallery
modes on solid-state systems can generate OVs with control-
lable topological charge and polarization state (Miao et al.,
2016; Zhang et al., 2020; Chen et al., 2021) and microlasers
producing fractional OAM that can be controlled at gigahertz
frequencies were reported by Zhang, Zhao et al. (2020).
STEDmicroscopy, a technique that makes use of doughnut-

shaped beams including OVs (Keller, Schönle, and Hell,
2007), can be used to read and control quantum states in

nanostructures. Arroyo-Camejo et al. (2013) showed that
individual nitrogen-vacancy (N-V) color centers can be
resolved with STED microscopy up to 15 nm. A similar
technique, so-called charge-state depletion microscopy was
used by Chen et al. (2015) to detect and manipulate the state
of N-V centers in diamond, with applications to sensing and
quantum computation. The manipulation procedure combines
Gaussian and doughnut-shaped beams to produce space-
dependent changes in the populations of N-V0 and N-V−

states, and they demonstrated subdiffraction manipulation of
the order of a few nanometers.

B. Exciton polaritons

Exciton-polariton vortices (or quantum vortices) driven by
external optical perturbation have been shown to be robust
entities against changes in the power, shape, and size of the
pump (Borgh et al., 2012; Sigurdsson et al., 2014; Kwon
et al., 2019; Ma et al., 2020). Ma et al. (2020) demonstrated
control and switching of the vortex topological charge in a few
hundred picoseconds at nonresonant excitation. In their
experiment a GaAs microcavity is excited by a ring-shaped
cw field that creates a vortex exciton-polariton condensate
rotating in a random sense. The topological charge is con-
trolled and switched by an additional Gaussian laser beam that
breaks cylindrical symmetry. In addition, Ma et al. showed
robustness against the system’s disorder and imperfection.
Quantum vortices can also be trapped, moved, and mutually
scattered, as shown by Pigeon, Carusotto, and Ciuti (2011),
Sanvitto et al. (2011), and Dominici et al. (2015, 2018).
Motivated by possible applications to quantum technology in
information transfer and storage, Sigurdsson et al. (2014)
considered in detail the switching and copying of quantum
vortices of topological charge l ¼ �1 from one vortex to a
second one created at a distance of tens of micrometers;
see Fig. 26.

C. Plasmonics

Light in general, and OVs in particular, is used to trap and
manipulate particles (Grier, 2003; Jones, Marago, and Volpe,
2015), and recent studies have suggested that the localization
and enhancement of fields provided by plasmonics may
improve optical tweezers. Liu et al. (2020) studied by
numerical means plasmonic structures containing a spiral
and a tip to trap or push away particles, depending on the
topological charge of the plasmonic vortex. Hoshina, Yokoshi,
and Ishihara (2020) compared two scenarios to rotate a
particle using light: The first makes direct use of a LG beam,
which can rotate the particle on only a macroscopic scale due
to its large doughnut shape. The second employs the spin-to-
orbital AM conversion by plasmon polaritons (Sec. IV.C): a
circularly polarized light excites a nanostructure, consisting of
four rectangular-shaped metallic pieces, that creates localized
plasmonic vortices that rotate the particle on the nanome-
ter scale.
The squeezing of fields by plasmonic structures was also

exploited by Heeres and Zwiller (2014), who showed by
numerical simulations that a set of nanoantennas can focus an
incident OV to a subwavelength lateral size, thereby eluding

FIG. 25. Schematic of the metasurface-VCSEL system. The
standard VCSEL structure and the beam-shaping metasurface
integrated on the backside of the substrate. From Xie et al., 2020.
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the diffraction limit, and thus enhancing the light intensity
close to the phase singularity. Large field intensities reduce the
excitation time, improving the quantum operation speed and
diminishing the importance of the decay or decoherence of
states. Later Arikawa, Morimoto, and Tanaka (2017) demon-
strated similar concepts in an experiment using terahertz OVs.
They illuminated an array of eight antennas with an OV beam
of ring diameter 310 μm and found within the array system
that the OV was reduced to a ring diameter of 90 μm, a factor
of 3.4 smaller; see Fig. 27.
Much work has been devoted to the exploitation of the

additional degree of freedom of OAM (l) for communication
purposes, and high transfer rates have been achieved through
fiber (Bozinovic et al., 2013) and wireless (Wang et al., 2012)
channels by multiplexing with OAM states of light.
Communication requires channels (Chen et al., 2018), emit-
ters (Jiang, Cao, and Feng, 2020), and receivers. Garoli et al.
(2016) demonstrated an OV emitter. They designed a

plasmonic device consisting of a plasmonic lens (spiral
structure) with a hole in its center and illuminated it with
circularly polarized light. The plasmonic lens converts the
nonsingular field, via the spin-to-orbital AM conversion
effect, to a plasmonic vortex that upon interaction with the
milled hole propagates an OV to the far field; see Fig. 28.

D. Materials science

A first use of OVs is to employ the doughnut shape of the
beam, which can generate a different pattern than that of
conventional Gaussian beams (Nolte et al., 1997). Ablation in
copper by OVs was demonstrated by Anoop et al. (2014), who
showed the formations of annular structures of different
characters depending on the values of light fluence and the
number of pulses employed. Further investigation on the
ablation dynamics of copper was conducted by Tsakiris et al.
(2014) through experiments and numerical simulations.
Optical vortices were reported to improve ablation on Ta
plates by creating with a lower ablation fluence clearer and
smoother ablated zones and less debris (Hamazaki et al.,

FIG. 27. Near-field distribution around the circular array an-
tenna illuminated by a vortex beam with ring diameter 310 μm.
Intensity (left image) and phase (right image) showing an
intensity null at the center (white cross) and the 2π phase
rotation. Adapted from Arikawa, Morimoto, and Tanaka, 2017.

FIG. 28. Schematic illustration of the plasmonic structure
emitter used to convert circularly polarized light into far-field
OVs. Adapted from Garoli et al., 2016.

FIG. 26. Copying exciton-polariton vortices. Left column: den-
sity plots of the copier process (same topological charge). The
yellow dashed lines show the edges of the guide. At t ¼ 300 ps
the transfer is complete, and at t ¼ 1000 ps the state is nearly
stationary. Right column: the inverter process (opposite topo-
logical charge). At t ¼ 400 ps the transfer is complete, and at
t ¼ 1000 ps the state is nearly stationary. Bottom panels: phase
profiles at t ¼ 1000 ps. Adapted from Sigurdsson et al., 2014.
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2010). Oosterbeek et al. (2018) extended the diagonal-scan
method (Samad, Baldochi, and Vieira, 2008), which is used to
determine the ablation threshold fluence, to weakly focused
OVs and tested the method by measuring the ablation on
silicon and quartz. In their inverse work, Nivas et al. (2015)
sought to understand how an OV could be investigated via the
ablation spots that it produces. They found that spot features
such as the surface texture and the size of the annulus depend
on the local fluence, number of pulses, and polarization
(radial, azimuthal, or circular).
Optical vortices can do more than ablate structures in

annular shapes, and the formation of chiral structures has been
demonstrated by several groups. Such chiral nanostructures
may help us to further probe the interaction of light with chiral
matter, study the optical activity and chirality of molecules,
and create new devices for quantum information purposes
(Omatsu et al., 2019). Chiral microstructures such as needles
and fibers result from the direct illumination of intense OVs on
metals (Omatsu et al., 2010; Toyoda et al., 2012; Syubaev
et al., 2017, 2019), silicon (Ablez et al., 2020), azo-polymers
(Ambrosio et al., 2012; Juman et al., 2014), isotropic
polymers (Ni et al., 2017), and photopolymerized resins
(Lee et al., 2018). Laser parameters control the formation
of the structures, and most notably the helicity of the structure
results from a combination of the light’s OAM and SAM;
see Fig. 29.

VI. CONCLUSIONS AND OUTLOOK

The early 1990s witnessed a breakthrough in optics with
the development of techniques to generate coherent beams of
highly inhomogeneous light known as OVs or twisted light.
These objects exhibit unique features (most notably phase
singularities and OAM) that challenge our intuition based on
plane waves and Gaussian beams. These properties are more
than a curiosity and bring about a new physics in their
interaction with matter, with important implications for
technology.
This review has addressed the physics of the interaction of

OVs with condensed-matter systems, providing the theoreti-
cal basis and a detailed account of current progress in
theoretical and experimental research as well as in applica-
tions to the field. In Sec. VI.A we summarize the main
aspects discussed thus far. We then finish this review with an
account of our perspective on the future directions that

research on OV-condensed-matter interactions may take to
unfold new physics and applications and on challenges
associated with these developments. These are by no means
exhaustive: they are meant to spark the reader’s curiosity and
to help one discover their own research line.

A. Concluding remarks

A historical account of discoveries leading to the under-
standing of light and its interaction with matter introduced the
theoretical description of OVs. We surveyed their most
curious and relevant properties. A key concept in the classi-
fication of optical beams is the paraxial approximation, which
has been the basis for the majority of theoretical and
experimental studies on optical beams either with or without
singularities. Beams in this regime are characterized by purely
transverse electric and magnetic fields, and OVs may exhibit a
well-defined topological charge and circular polarization. The
paraxial regime is limited to beams with characteristic lateral
dimensions much larger than the wavelength. Going beyond
this limit, the beams may exhibit interesting new phenomena
such as a strong component in the propagation direction or a
dominant magnetic field close to the singularity, and in
general there are components with different topological
charges. These features create new possibilities, for instance,
for the optical control of nanostructures. We provided a
detailed discussion and comparison of paraxial and full
solutions of the Helmholtz equation, exemplified by the
well-known Laguerre-Gauss and Bessel beams, respectively.
Other solutions were mentioned, thus emphasizing the exist-
ence of OVs with multiple singularities. We discussed the
derivation of OVs from potentials and the role of the gauge,
particularly in the nonparaxial regime, as well as the repre-
sentation of OVs in terms of plane waves, aspects of
generation and measurement of the OAM content, and the
impact that the subject has on physics, chemistry, and biology.
The field of OV–condensed-matter interactions builds on a

long history of condensed-matter physics, particularly in
solid-state physics and condensed-matter optics. To provide
the necessary background, we offered a focused overview of
the basic concepts of solid-state physics relevant to the field. A
recount of the crystalline state reminded the reader of the
electronic state of semiconductors and metals that form the
basis of simple and complex systems. Bulk materials and
the relevant nanostructures, like quantum wells, dots, and
rings, together with the modern two-dimensional materials,
were introduced. Motivated by the subject of the review, we
focused on condensed-matter optics. The issues of gauge
choice and invariance were carefully examined, and the usual
approximation of vertical optical transitions for plane-wave-
like or weakly inhomogeneous light fields was then revisited.
A theoretical toolbox to treat the dynamics of condensed-
matter systems under light excitation was presented in detail.
The formalism most often applied in the field of OV–
condensed-matter interactions is based on the equations of
motion for the single-particle density matrices and aptly
accommodates both light-matter and electron-electron inter-
actions. However, other approaches like nonequilibrium
Green’s functions have also been used and are therefore
reviewed.

FIG. 29. Microneedles in tantalum fabricated by an optical
vortex with a total AM of J ¼ 2. Left image: 25° view. Right
image: side view. Adapted from Toyoda et al., 2012.
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Early sections of the review paved the way to the main part
of the article: an analysis of the fundamental theory of the
interaction of OVs with condensed-matter systems alongside a
review of the current literature in the field. Standard semi-
conductor optics is a rich discipline despite the fact that it is
based on strong simplifying assumptions regarding the light-
matter interaction. We pointed out that these customary and
almost silent assumptions are the first conceptual sacrifices
needed to describe the effects of structured light on matter.
The main misleading assumptions that must be abandoned are
vertical-transition and dipole-moment approximations. And
other notions that hinder a sound understanding of this new
field are the beliefs that light beams interact with matter
mostly (or only) via their transverse electric field, that bulk
semiconductors represent the simplest model to understand
the OV-matter interaction, and that light is always well
represented by plane waves. Stripped away from notions that
could lead us off track, we studied the theory of crystal-OV
interactions that constitutes a building block to tackle phe-
nomena taking place in many systems.
In bulk semiconductors, the light-matter Hamiltonian matrix

elements in the case of strongly inhomogeneous light fields
have to be recalculated and novel selection rules based on the
conservation of total angular momentum are obtained. The
OAM is transferred from the light beam to the photoexcited
electrons, thereby generatingmacroscopic currents and ultrafast
local magnetic fields. Various experiments have indeed con-
firmed this transfer of AM. When the electron-electron inter-
action is taken into account, the rich physics of excitons comes
into play, modified by the finite OAM of the structured light,
which results in the creation of excitons in a superposition of
states with nonzero center-of-mass momentum.
Semiconductor nanostructures add the complexity of their

own spatial inhomogeneity, which is typically handled using
the envelope-function approximation. Here again novel matrix
elements for the light-matter interaction dictate the allowed
and forbidden optical transitions, which are distinct from
those obtained in traditional optical excitation with plane
waves. Quantum rings play a central role due to their specially
adapted geometry to the cylindrical nature of the twisted
light beams.
In semiconductor microcavities the strong coupling

between excitons and light gives rise to the formation of
exciton polaritons. Here vortical structures in the polariton
fluid can also form spontaneously without the need of
pumping by an OV. Analogously, in metallic nanostructures
the light-matter coupling leads to plasmon polaritons, which
again provide new features when one studies their interplay
with OVs. Of particular interest are spiral geometries, which
already provide a singularity in their structure and thus may
create OVs from excitation by plane waves. Angular momen-
tum transfer has also been observed for the OV excitation of
two-dimensional materials. For all these systems theory and
recent experiments have been reviewed.
The peculiarities of the interaction of OVs with condensed

matter resulted in many theoretically proposed or already
experimentally realized applications relevant to fields such as
quantum technologies, communications, sensing, and materi-
als science. They rely on the precise control and transfer of
AM, the conversion of spin and orbital AMs, the switching

and copying of quantum vortices, the squeezing of OVs to
subwavelength lateral size, the creation of annular structures
by ablation, etc. Other applications can be envisaged. In
Sec. VII.B we finish this review with our views on possible
future directions in the field.

B. Current limitations and future perspectives

In a little more than a decade, research on OV–condensed-
matter interactions has covered a large number of topics;
nevertheless, it is safe to say that the topic is far from being
exhausted. A better understanding of basic principles on
explored topics (such as bulk semiconductors) is still hindered
by several factors, while other topics have been only super-
ficially studied. These include two-dimensional and other van
der Waals materials, superconductors, skyrmions, localized
plasmon polaritons, color centers, and nonlinear effects in
solids. In the following we discuss limitations in our present
knowledge together with possible future directions to over-
come these limitations.

1. Inhomogeneity and excitation strength

Inhomogeneity has been a central point throughout this
review; we argued that when matter fields (wave functions)
are subjected to spatial variations in light’s amplitude and
phase, curious effects take place. Optical vortices are special
objects, as they have an unavoidable phase inhomogeneity at
the singularity. Irrespective of the extent of the matter field, the
vortex causes unexpected effects, as demonstrated by the
excitation of a single Ca ion by far-field OVs (Schmiegelow
et al., 2016; Quinteiro, Schmidt-Kaler, and Schmiegelow,
2017; Afanasev et al., 2018). However, this strong spatial
phase variation comes at a cost: the amplitude in its vicinity is
small. Optical transitions are orders of magnitude weaker than
their counterparts induced by nonsingular beams [see
Eq. (88)], with detrimental consequences to applications that
require ultrafast transitions to improve speed operation and
avoid data-destroying decay or dephasing processes.
One can speak of near-field versus far-field optics, and far-

field beams can be further split into collimated or paraxial and
strongly focused or nonparaxial ones. Loosely speaking, the
degree of field inhomogeneity can be pushed furthest in near-
field optics, for which the diffraction limit does not apply. In
contrast, strongly focused (nonparaxial) far fields are limited
to the order of the wavelength.
Most of our knowledge regards the action of far-field OVs

in typical semiconductors, such as GaAs, for which optical
transitions are weak. With applications in mind, it is then a
must to improve fluence around the vortex.
Far-field optics with OVs can benefit from the use of high

focusing techniques and materials with large band gaps.
Abbe’s diffraction-limit law states that the minimum reso-
lution d is given by d ¼ λ=2NA, with NA≲ 1.4 (Chen et al.,
2017; Wang et al., 2017) the numerical aperture of the optical
system; the resolution is a measure of the beam’s lateral size.
High focusing is achieved by increasing the NA to decrease
the lateral size of the beam. Alternatively, a change in the
wavelength will compress the minimally achievable lateral
size too. In interband optical transitions, the size of the band
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gap determines the photon’s wavelength. Semiconductors
with larger band gaps (Andreev and O’Reilly, 2000; Ranjan
et al., 2003; Kako et al., 2004; Arakawa and Kako, 2006;
Jarjour, Oliver, and Taylor, 2007) are excited at shorter
wavelength; thus, the lower bound d decreases. The inter-
action of highly focused OVs with large band-gap semi-
conductors is worth exploring.
An alternative is near-field optics. Little work has been

done thus far, but the experimental report by Arikawa,
Morimoto, and Tanaka (2017) shows that the radius of the
ring exhibiting the maximum intensity of the OV can be
decreased by a factor of n ≃ 4 (Sec. V.C); considering
Eq. (88), the relative interaction strength would increase by
a factor of nl in QDs. More enthusiastic theoretical estimates
promise an enhancement of the interaction by orders of
magnitude (Heeres and Zwiller, 2014).
Another route for overcoming weak excitation is to con-

sider more extended quantum systems. A notable case central
to this review is that of electronic excitations in bulk semi-
conductors, 1D and 2D nanostructures; nevertheless, real
solids have defects and impurities that effectively reduce
the span of the wave function (Takagahara, 1989; Martelli
et al., 1996; Leosson et al., 2000), making the pursuit of more
pure systems important. Yet, other quantum states of matter
exhibit macroscopic wave functions : superconducting cir-
cuits, superfluids, condensates, etc. (Wan, 2006).

2. Experiments

Experimental work reveals unexpected effects, and con-
firms or disproves theoretical predictions. The experiments in
bulk by Noyan and Kikkawa (2015) and Shigematsu et al.
(2016) indeed confirmed the transfer of OAM to free carriers
and excitons, while at the same time it showed the unexpect-
edly long lifetimes of OAM excitations.
There is an imbalance between theoretical and experimental

work. While many theoretical predictions have been reported,
only scarce experimental research was conducted, especially
on elementary nanostructures. An exception is the field of
microcavity exciton polaritons, where experimental and theo-
retical work seems to be well balanced.
Experiments with OVs and 0D nanostructures are indeed

challenging. Two main obstacles hinder their realization.
First, many experiments rely on ensemble measurements,
which are easy to carry out but troublesome to interpret.
Often the growth process (such as self-assembly) forms
nanostructures of slightly different sizes and shapes, result-
ing in large inhomogeneous broadening on closely spaced
(few meV) energy levels, which causes difficulties in the
extraction of information from experiments with homo-
geneous light. For excitations by OVs, an additional diffi-
culty arises from the fact that the majority of nanostructures
will be located off the optical axis, which causes on them
multiple optical transitions, as explained in Sec. IV.A.3.b,
and spoils many of the clear signatures of OVexcitation seen
in the ideal centered case. Second, single-nanostructure
measurements require more sophisticated techniques that,
though available with current technology, face additional
challenges when it comes to the excitation by OVs; these
include the tight focusing and precise positioning of the

beam to irradiate a single nanostructure out of an ensemble
and align the singularity of the beam with the structure, and
the readout of low signals obtained from nanostructures
positioned close to the singularity.

3. Analytical models and numerical simulations

From a theoretician’s point of view, common sense dictates
that a new field should be explored from basic phenomena,
which can be addressed by relatively simple analytical and
numerical models. We have now reached a good under-
standing of particular systems, namely, bulk semiconductors,
quantum rings, quantum dots, and microcavities; in other
systems, our theoretical understanding is rudimentary. Many
important ingredients that would render a more complete
picture of the system under scrutiny are still to be incorpo-
rated. Sophisticated analytical and numerical models are
necessary to guide experimental work and propose future
applications.
Essential elements of material systems that have been

considered in only a few cases are (i) the electron-electron
interaction responsible for the formation of excitons and
thus exciton polaritons, but also higher excitonic complexes
such as biexcitons and trions; (ii) the electron-phonon
interaction that drives relaxation and dephasing of electron
populations and coherences but also creates new and effi-
cient ways of excitation of nanostructures, such as by
employing phonon-assisted transitions; (iii) phenomena
related to impurities and crystal defects, which cause a loss
of spatial coherence and a localization of electronic states but
also provide new functionalities like single-photon emission;
and (iv) the influence of temperature, which plays a key role
in applications.
Specific to nanostructures, we are in need of a description

beyond the envelope-function approximation. An assumption
that underlies all our treatment is that of constant light field
within the crystal unit cell [Eqs. (69a) and (69b)], an
assumption supported by the order of magnitude difference
in length scales of unit cell and far-field optical wavelengths.
However, in Sec. VI.B.1 we argued that the phase singularity
is an unavoidable inhomogeneity at all scales. Therefore, one
wonders what would result from lifting the restriction imposed
by Eqs. (69a) and (69b). This is indeed a search worth
pursuing, although one not devoid of difficulties. The main
one is the fact that the envelope-function approximation is an
assumption of a similar sort: the so-called envelope part of the
wave function is a constant within the unit cell. An additional
complication is that the variation of fields on the subnan-
ometer scales would render the basic assumption of macro-
scopic electromagnetic fields in media invalid (Jackson,
1999). Thus, a reexamination of the validity of Eqs. (69a)
and (69b) requires a concomitant reexamination of the
envelope-function approximation and macroscopic fields in
the media.
Another possible improvement concerns a better descrip-

tion of the nanostructure geometry by including interfaces.
The external OV driving field goes through layers of different
geometries and compounds that perturb it to some extent
before it reaches the active region, where the optical excitation
of interest takes place. In addition to possibly unimportant
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attenuation by other partially active layers, reflection and
refraction of OVs result in distortion and displacement of the
field by complex mechanisms such as the Goos-Hänchen and
Imbert-Fedorov shifts (Novitsky and Barkovsky, 2008; Okuda
and Sasada, 2008; Bliokh, Shadrivov, and Kivshar, 2009;
Lusk, Siemens, and Quinteiro, 2019).
One can also improve the description of the driving

field. This includes replacing the ideal Bessel beams with
Bessel-Gaussian beams (Gori, Guattari, and Padovani,
1987; Li, Lee, and Wolf, 2004), accounting for the imper-
fections introduced by the experimental generation of
beams [such as producing beams with unintended multi-
ple-singularity components (Heckenberg et al., 1992;
Karimi et al., 2007; Bekshaev and Karamoch, 2008)] or
the use of multiple pulses. The addition of the interaction
with the bath modes in the weak- and strong-coupling
regimes reflects not only relaxation processes in matter
(radiative recombination) but also the leakage of relevant
modes outside cavities, etc.
The physics of optical vortices in microcavities treats fully

quantum mechanically matter and light on an equal footing
(Sec. IV.B). Somewhat similarly but in a semiclassical
fashion, excitations in metal-dielectric interfaces solves
the coupled dynamics of matter and electromagnetic fields
(Sec. IV.C). For other systems, an extension to a description
of the self-consistent problem of the mutual light-matter
interaction is in order in systems embedded in cavities under
the strong-coupling regime. In addition, a quantum mechani-
cal description of light is also desirable, such as in situations
with low fluence (a few photon case).

4. Structured light beyond Laguerre-Gauss and Bessel beams

Little is known about the interaction of condensed-matter
systems with multiple-singularity OVs, and more general
structured beams. Holtkemper et al. (2020) demonstrated
theoretically that structured light can unveil details of the
exciton wave function in QDs (Sec. IV.A.3.b). This work
shows that new physics and applications can be expected out
of the simplest case of single-singularity OVs. In particular,
we expect that interesting research could arise from the study
of Mathieu beams (Sec. II.D). We recall that these are the
solutions of the Helmholtz equation in elliptical coordinates;
Bessel beams are in a sense a particular case in which the
ellipse collapses to a circle. Mathieu beams exhibit one or
several singularities, whose location, number, and topological
charge can be manipulated by adjusting the beam’s param-
eters; see Fig. 3.
All these examples show that the topic of OV–condensed-

matter interactions is open in many directions and a variety of
interesting results can be expected from future experimental
and theoretical work in the field.
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