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Advances in machine learning methods provide tools that have broad applicability in scientific
research. These techniques are being applied across the diversity of nuclear physics research
topics, leading to advances that will facilitate scientific discoveries and societal applications. This
Colloquium provides a snapshot of nuclear physics research, which has been transformed by
machine learning techniques.
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I. INTRODUCTION

This Colloquium represents an up-to-date summary of
work in the application of machine learning (ML) in nuclear
science, covering topics in nuclear theory, experimental
methods, accelerator technology, and nuclear data. An over-
view of the use of artificial intelligence (AI) techniques in
nuclear physics that aimed at identifying commonalities and
needs was provided by Bedaque et al. (2021).
Nuclear physics is a well-established field, with more than a

century of fundamental discoveries covering a large span of
degrees of freedom, energy scales, and length scales ranging
from our basic understanding of fundamental constituents
of matter to the structure of stars and the synthesis of the
elements in the cosmos; see Fig. 1. Experiments produce data
volumes that range in complexity and heterogeneity, thereby
posing enormous challenges to their design, their execution,
and the statistical data analysis.
Theoretical modeling of nuclear properties is, in most

physical cases of interest, limited by the large amount of
degrees of freedom in quantum-mechanical calculations. The
analysis of experimental data and the theoretical modeling of
nuclear systems aim, as is the case in all fields of physics,
at uncovering the basic laws of motion in order to make
predictions and estimations, as well as at finding correlations
and causations for strongly interacting matter. The broad aims
of nuclear physics as a field correspond to a highly distributed
scientific enterprise. Experimental efforts utilize many labo-
ratories worldwide, each with unique operation, data acquis-
ition, and analysis methods. Similarly, the scales of focus
spanned in theoretical nuclear physics lead to broad needs for
algorithmic methods and uncertainty quantification. These
efforts, utilizing arrays of data types across size and energy
scales, create an ideal environment for applications of ML
methods.

II. MACHINE LEARNING FOR NUCLEAR PHYSICS
IN BROAD STROKES

Statistics, data science, and ML form important fields of
research in modern science. They describe how to learn and
make predictions from data and enable the extraction of key
information about physical processes and the underlying
scientific laws based on large datasets. As such, recent
advances in ML capabilities are being applied to advance
scientific discoveries in the physical sciences (Carleo et al.,
2019; Deiana et al., 2021).
Ideally, ML represents the science of building models

to perform a task without the instructions being explicitly
programmed. This approach introduces in practice a
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hierarchy of mathematical operations that enable the com-
puter to learn complicated concepts by building them out of
simpler ones. In terms of a graphical representation, this can
be visualized as a deep network of training and learning
operations, often referred to simply as deep learning
(Goodfellow, Bengio, and Courville, 2016).
There are many ML approaches; they are often split into

two main categories, supervised and unsupervised. In
supervised learning, training data are labeled and one lets
a specific ML algorithm learn and deduce patterns in the
datasets.
This allows one to make predictions about future events

and/or data not included in the training set. On the other
hand, unsupervised learning is a method for finding patterns
and relationship in datasets without any prior knowledge of
the system. Many researchers also operate using a third
category called reinforcement learning. This is a paradigm
of learning inspired by behavioral psychology, where
actions are learned to maximize reward. One may encounter
reinforcement learning accompanied by supervised deep
learning methods such as deep artificial neural network
(ANN). Furthermore, what is often referred to as semi-
supervised learning entails the development of algorithms
that aim at learning from a dataset that includes both labeled
and unlabeled data.
Another way to categorize ML tasks is to consider the

desired output of a system. Some of the most common
tasks are as follows (Bishop, 2006; Hastie, Tibshirani, and
Friedman, 2009; Murphy, 2012; Goodfellow, Bengio, and
Courville, 2016; Mehta et al., 2019; Cranmer, Seljak,
and Terao, 2022).

Classification.—Outputs are divided into two or more
classes. The goal is to produce a model that assigns
inputs into one of these classes. An example is to

identify digits based on pictures of handwritten
numbers.

Regression.—Finding a functional relationship between
an input dataset and a reference dataset. The goal is to
construct a function that maps input data into con-
tinuous output values.

Clustering.—Data are divided into groups with certain
common traits without knowledge of the different
groups beforehand. This ML task falls under the
category of unsupervised learning.

Generation.—Building a model to generate data that
are akin to a training dataset in both examples and
distributions of examples. Most generative models are
types of unsupervised learning.

In Table I we list many of the methods encountered in this
Colloquium with their respective abbreviations.
The methods that we cover here have three central elements

in common, irrespective of whether we deal with supervised,
unsupervised, or semisupervised learning. The first element is
some dataset (which can be subdivided into training, vali-
dation, and test data), while the second element is a model,
which is normally a function of some parameters to be
determined by the chosen optimization process. The model
reflects our prior knowledge of the system (or a lack thereof).
As an example, if we know that our data show a behavior
similar to what would be predicted by a polynomial, fitting the
data to a polynomial of some degree would determine our
model. The last element is a so-called cost (or loss, error,
penalty, or risk) function that allows us to present an estimate
on how good our model is in reproducing the data that it is
supposed to train. This is the function that is optimized in
order to obtain the best prediction for the data under study.
The simplest cost function in a regression analysis (fitting a
continuous function to the data) is the so-called mean squared

FIG. 1. Schematic relationships between the topics discussed in this Colloquium. The diagram emphasizes the close connections
between theory, computations (both computational science and data science, as well as many elements from computer science), and
experiments.
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error function, while for a binary classification problem the
so-called cross entropy is widely used; see Bishop (2006),
Hastie, Tibshirani, and Friedman (2009), Murphy (2012), and
Goodfellow, Bengio, and Courville (2016) for more details.
We henceforth refer to this element as the assessment of a
given method.
Traditionally, the field of ML has mainly focused on

predictions and correlations. In ML and prediction-based
tasks, we are often interested in developing algorithms that
are capable of learning patterns from existing data in an
automated fashion, and then using these learned patterns to
make predictions or assessments of new data. In some cases,
our primary concern is the quality of the predictions or
assessments, with perhaps less focus on the underlying
patterns (and probability distributions) that were learned in
order to make these predictions. However, in many nuclear
physics studies, we are equally interested in being able to
estimate errors and find causations. In this Colloquium, we

emphasize the role of predictions and correlations as well as
error estimation and causations in statistical learning and ML.
For general references on these topics and discussions of
frequentist and Bayesian methodologies, see Bishop (2006),
Hastie, Tibshirani, and Friedman (2009), Murphy (2012),
Gelman et al. (2014), Goodfellow, Bengio, and Courville
(2016), and Myren and Lawrence (2021).
Since the aim of this Colloquium is to give an overview of

present usage and research of ML in nuclear physics, we
utilize material from several sources on the topic, such as the
previously mentioned textbooks and recent reviews (Carleo
et al., 2019; Mehta et al., 2019). We also mention the theory
of Bayesian experimental design (BED) (Chaloner and
Verdinelli, 1995; Liepe et al., 2013), a theory that is tailored
for making optimal decisions under uncertainty.
During the last few years there has been a surge of interest

in applying different ML and Bayesian methods in nuclear
physics. In particular, a Bayesian approach has gained large

TABLE I. Table of ML methods discussed in this Colloquium with an indication of the main type of learning (S, supervised; U, unsupervised;
semi-S, semisupervised).

Acronym Method Description Learning type

AE, VAE Autoencoders, Variational autoencoders ANN capable of learning efficient representations of the
input data without any supervision

U

ANN Artificial neural network Models for learning defined by connected units (or nodes)
and hidden layers with well-defined inputs and outputs

S

BED Bayesian experimental design Bayesian inference for experimental design S
BM Boltzmann machine Generative ANN that can learn a probability distribution

from sets of changing inputs
U

BMA, BMM Bayesian model averaging, Bayesian
model mixing

Bayesian inference applied to model selection or
the combined estimation, or performed over
a mixture model

S

BNN Bayesian neural network ANN where the parameters of the network are
represented by probabilities learned by Bayesian
inference

S

BO Bayesian optimization Optimization of functions without an a priori
knowledge of functional forms.

S and semi-S

CNN Convolutional neural network ANN where convolution is used to reduce
dimensionalities

S

EMB Ensemble methods and boosting Methods based on collections of decision trees as
simple learners

S

GAN Generative adversarial network System of two ANNs where a generative network
generates outputs while a discriminative network
evaluates them

U

GP Gaussian process Collection of random variables that have a joint Gaussian
distribution used in Bayesian inference

Semi-S

KNN k-nearest neighbors Nonparametric method where inputs consist of the k
closest training examples in a dataset

S

KR Kernel regression Extension of linear regression methods to include
nonlinear function kernels

S

LR Logistic regression Convex optimization method based on maximum
likelihood estimate for classification problems

S

LSTM Long short-term memory RNN capable of learning long-term dependencies S
PCA Principal component analysis Dimensionality reduction technique based on retaining

the largest eigenvalues of the covariance matrix
U

REG Linear regression Linear algebra methods used for modeling continuous
functions in terms of their explanatory variables

S

RL Reinforcement learning Learning achieved by trial and error of desired and
undesired events

Neither S nor U

RNN Recurrent neural network ANN where connections between nodes allow for
temporal dynamic behavior

S

SVM Support vector machine Convex optimization techniques with efficient ways to
distinguish features in datasets

S
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traction since an estimation of errors plays a major role
in theoretical studies, such as reliable determinations of
parameters entering models for nuclear forces and density
functionals. Similarly, in quantum-mechanical few- and
many-body studies, a number of research groups have
implemented ML-based techniques in order to handle com-
plicated correlations and exploding numbers of degrees of
freedom. These studies cover a large set of approaches,
ranging from applications of deep learning methods, such
as ANNs and restricted BMs for solving the many-particle
Schrödinger equation, to ANNs in many-body methods, with
the aim of learning many-body correlations. Similarly, there
have been several attempts to use ML approaches to extract
information about correlations in field theory and lattice
quantum chromodynamics (LQCD), ranging from attempts
to circumvent the fermion sign problem to learning fermion
propagators. For recent ML applications to nuclear theory,
see Sec. III.
In experimental nuclear physics, with increasing degrees

of freedom and complexity, one faces many of the same
challenges as in nuclear theory. As discussed in Sec. IV, ML
approaches offer a number of optimization strategies to handle
this surge in dimensionality. Many current nuclear physics
experiments produce large amounts of data in excess of
terabytes, requiring the use of fast algorithms for tractable
data collection and analysis. Machine learning methods such
as anomaly detection allow for an exploration of data for
unforeseen phenomena. Additionally, labeled data may not be
available, due to either an inability to label data or a lack of
knowledge of the types and behaviors of the reactions taking
place. The latter are normally needed in order to generate
simulated data that one can use in the training process.
Machine learning techniques play also a considerable role
in accelerator science and operations and nuclear data science;
see Secs. V and VI, respectively.
After these general remarks about ML in nuclear

physics, we move on to a description of ongoing and planned
research where many of these approaches are applied to
multidimensional problems, large datasets, detection and
prognostication, design optimization, and real-time opera-
tional control.

III. NUCLEAR THEORY

The aim of this section is to give the reader an overview
of recent progress and future research directions in ML
approaches and methods applied to nuclear theory. During
the last few years, ML methods have been applied to
essentially all length and energy scales of interest for nuclear
theory, spanning from theories for the strong force to the
equation of state for neutron stars. We start our discussion
with low-energy nuclear theory, moving up to medium
energies, and to high-energy nuclear theory and lattice
quantum chromodynamics.

A. Low-energy nuclear theory

1. Early applications of machine learning

In a pioneering paper, the St. Louis–Urbana Collaboration
(Gazula, Clark, and Bohr, 1992) successfully carried out

computer experiments based on ANNs to study global nuclear
properties across the nuclear landscape, including dripline
locations, atomic masses, separation energies, and location of
shell-stabilized superheavy nuclei. Their work recognized the
potential of using ML techniques to describe the variety of
nuclear behavior: “The field of nuclear physics, with a wealth
of data reflecting both the fundamental principles of quantum
mechanics and the behavior of strong, electromagnetic, and
weak interactions on the Fermi scale of distances, offers
especially fertile ground for testing and exploiting the new
concept of adaptive phenomenological analysis based on
neural networks.” They concluded that, “Significant predictive
ability is demonstrated, opening the prospect that neural
networks may provide a valuable new tool for computing
nuclear properties and, more broadly, for phenomenological
description of complex many-body systems.” Encouraged by
the ability of the ANNs to capture the patterns and irregu-
larities of nuclear observables, they extended their investiga-
tions to systematics of nuclear spins and parities (Gernoth
et al., 1993). The SVM study of nuclear masses, beta-decay
lifetimes, and spins and parities of nuclear ground states was
reported by Clark and Li (2006) and Costiris et al. (2008), and
the application of ANNs to beta decays was carried out by
Costiris et al. (2009).

2. Predicting missing data with ML

Oftentimes it is necessary to be able to accurately calculate
observables that have not been measured to supplement the
existing databases. To provide quantified interpolations and
extrapolations of nuclear data, nuclear models augmented by
modern ML techniques have been used. Examples include
studies of nuclear masses with EMB (Carnini and Pastore,
2020), KR (Wu and Zhao, 2020; Wu, Guo, and Zhao, 2021),
and ANNs (Yüksel, Soydaner, and Bahtiyar, 2021; Lovell
et al., 2022); calculations of the nuclear charge radii using
ANNs (Wu et al., 2020); estimation of α-decay rates using
EMB and ANNs (Saxena, Sharma, and Saxena, 2021);
estimation of fission yields using mixture-density ANNs
(Lovell et al., 2019; Lovell, Mohan, and Talou, 2020),
BNNs (Wang et al., 2019; Qiao et al., 2021; Wang and
Pei, 2021; Wang, Pei et al., 2021), and KNNs (Tong, He, and
Yan, 2021); estimation of the total fusion cross sections using
ANNs (Akkoyun, 2020); predictions for the isotopic cross
sections in proton-induced spallation reactions using BNNs
(Ma, Peng et al., 2020); and estimation of gamma strength
functions using BO (Heim et al., 2020).

3. Properties of heavy nuclei and nuclear density functional
theory

Kohn-Sham density functional theory (DFT) (Kohn and
Sham, 1965) is the basic computational approach to multi-
electron systems and there is a rich literature on ML
applications in the field of the electron DFT (Hautier et al.,
2010; Carleo et al., 2019; Ryczko, Strubbe, and Tamblyn,
2019; Schleder et al., 2019; Moreno, Carleo, and Georges,
2020; Nagai, Akashi, and Sugino, 2020). Nuclear DFT, rooted
in the self-consistent mean-field approach (Bender, Heenen,
and Reinhard, 2003; Schunck, 2019; Yang and Piekarewicz,
2020), is the basic computational framework for the global
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modeling of all nuclei, including complex exotic nuclei far
from stability. An effective interaction in DFT is given by the
energy density functional (EDF), whose parameters are
adjusted to experimental data. Over the past decade, better
and more refined EDFs have been developed with increas-
ingly complex and computationally expensive computer
models, often involving BO and ANN ML (Goriely and
Capote, 2014; Higdon et al., 2015; McDonnell et al., 2015;
Navarro Pérez et al., 2018; Kejzlar et al., 2020; Scamps et al.,
2020; Schunck et al., 2020; Bollapragada et al., 2021; Zhang,
Feng, and Chen, 2021). Figure 2 shows the posterior dis-
tributions for the parameters of the UNEDF1 EDF obtained by
McDonnell et al. (2015) by means of the Bayesian model
calibration. These distributions have been used to provide
uncertainty quantification (UQ) on UNEDF1 model predic-
tions, in particular, the r-process abundance pattern (Sprouse
et al., 2020), the nuclear matter equation of state (Du, Steiner,
and Holt, 2019), and neutron star properties (Al-Mamun
et al., 2021).
Since global DFT computations are expensive, a promising

avenue for ML applications is the emulation of DFT results
(Akkoyun et al., 2013; Lasseri et al., 2020; Schunck, Quinlan,
and Bernstein, 2020; Nandi et al., 2021). Figure 3 shows the
results of ANN calculations by Lasseri et al. (2020). A
committee of ANNs trained on a set of 210 nuclei is capable
of predicting the ground-state and excited-state energies of
more than 1800 atomic nuclei with significantly less computa-
tional cost than full DFT calculations.

4. Nuclear properties with ML

One can improve the predictive power of a given nuclear
model by comparing its predictions to existing data. Here a
powerful strategy is to estimate model residuals, i.e., devia-
tions between experimental and calculated observables,
by developing an emulator using a training set of observables
taken from experiment or other theory. An emulator

can be constructed by employing Bayesian approaches,
such as BNNs and GPs. Global surveys of nuclear observ-
ables employing such a strategy were published by Utama,
Piekarewicz, and Prosper (2016), Utama and Piekarewicz
(2017, 2018), Niu and Liang (2018), Niu, Fang, and Niu
(2019), Rodríguez et al. (2019b), Ma, Su et al. (2020),
Pastore et al. (2020), and Gao et al. (2021) (extrapolations of
nuclear masses with NNs); by Neufcourt et al. (2018) and
Shelley and Pastore (2021) (extrapolations of nuclear masses
with GPs); by Utama, Chen, and Piekarewicz (2016) and Wu
et al. (2020) (studies of nuclear radii); by Niu et al. (2019)
and Wu et al. (2021) (studies of beta-decay rates); and by
Rodríguez et al. (2019a) (studies of alpha-decay rates). See
also Liu et al. (2021) and Pastore and Carnini (2021) for
more discussions on ANN extrapolations.
By considering several global models and the most recent

data, one can apply the powerful techniques of Bayesian model
averaging (BMA) and Bayesian model mixing (BMM) to
assess model-related uncertainties in the multimodel context
(Phillips et al., 2021). Examples of recent model-mixed
predictions using BMA include analysis of the neutron dripline
in the Ca region (Neufcourt et al., 2019), studies of proton
dripline and proton radioactivity (Neufcourt et al., 2020a),
quantification of the particle stability of nuclei (Neufcourt et al.,
2020b), combination of models calibrated in different domains
(Kejzlar et al., 2020), and assessment of the puzzling mass of
80Zr (Hamaker et al., 2021). Figure 4 shows the posterior
probability of existence for all nuclei in the nuclear landscape
based on predictions of 11 global mass models, the most recent
data on nuclear existence and masses, and three model-
averaging strategies to compute the BMA weights.

5. Nuclear shell-model applications

Machine learning methods have been used to provide UQ of
shell-model (configuration interaction) calculations based on

FIG. 3. DFT emulator with ANNs. (a) Database nuclei (gray
region) as a function of N and Z. Nuclei included in the 10%
training dataset obtained by active learning are marked as dots.
(b) Root mean square deviation between the total energy for the
testing dataset calculated in DFT (EHFB) and with the committee
of ANNs. Adapted from Lasseri et al., 2020.

FIG. 2. Bayesian calibration of energy density functionals.
Univariate and bivariate marginal estimates of the posterior
distribution for the 12-dimensional parameter vector of the
UNEDF1 EDF. The upper triangle corresponds to the original
UNEDF1 dataset; the lower triangle shows the posterior distri-
bution found when the more recent mass measurements are
included. From McDonnell et al., 2015.
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phenomenological two-body matrix elements. Yoshida et al.
(2018) used Bayesian ML to compute marginal estimates of
the posterior distribution for the shell-model Hamiltonian in
the 0p space and uncertainty estimates on observables. A
similar analysis, but for effective Hamiltonians in the 1s0d
shell, was carried out by Fox, Johnson, and Perez (2020) and
Magilligan and Brown (2020) (using PCA) and Akkoyun,
Laouet, and Benrachi (2021) (using ANNs). Eigenvector
continuation (EC) was used by Yoshida and Shimizu
(2022) to construct an emulator of the shell-model calcula-
tions for a valence space, parameter optimization, and UQ.

6. Effective field theory and A-body systems

Bayesian ML, BO, and UQ in ab initio nuclear theory
were reviewed by Ekström et al. (2019) and Ekström (2020).
There have been several studies of nucleon-nucleon scattering
using Bayesian ML to estimate chiral effective field theory
(EFT) truncation errors and low-energy coupling constants
(Melendez, Wesolowski, and Furnstahl, 2017; Melendez et al.,
2019; Wesolowski et al., 2019; Svensson, Ekström, and
Forssén, 2022), and there have also been applications to
np → dγ (Acharya and Bacca, 2021). Furnstahl et al. (2020)
used eigenvector continuation (Frame et al., 2018) as an
emulator for scattering. The method was improved upon by
Drischler et al. (2021), who made use of different boundary
conditions. The application of EC as a fast emulator for UQ
for few- and many-body systems was first explored by König
et al. (2020) and adapted for coupled cluster calculations and a
global sensitivity analysis of 16O (Ekström and Hagen, 2019)
and, with Bayesian history matching (Vernon, Goldstein, and
Bower, 2014), for global properties of 208Pb (Hu et al., 2021).
Eigenvector continuation emulators have been used to put
rigorous constraints on low-energy constants for the three-
nucleon forces (Wesolowski et al., 2021) and to make
predictions for the binding of A ¼ 6 nuclei (Djärv et al.,
2022). For other applications of eigenvector continuation, see
Eklind (2021), Melendez, Drischler et al. (2021), Sarkar and
Lee (2021), and Zhang and Furnstahl (2021). Connell, Billig,
and Phillips (2021) addressed whether BMA improves the

extrapolation of polynomials, which are used as proxies for
fixed-order EFT calculations.
Using a scattering amplitude as input data (respecting

unitarity, Hermiticity, and analyticity), Sombillo et al. (2020,
2021a, 2021b) classified the nature of the poles near threshold
with multilayer ANNs. In particular, Sombillo et al. (2020)
applied the ANNs to predicting the correct nature of the poles
in the nucleon-nucleon scattering data from a partial wave
dataset. This is an example of a classification problem where
the aim is to classify whether the poles represent bound,
virtual, or resonant states. Kaspschak and Meißner (2021)
proposed an iterative ANN perturbation theory to study
s-wave scattering lengths for shallow potentials.
Navarro Pérez et al. (2015) propagated the statistical errors

in nucleon-nucleon scattering to calculations of light nuclei.
The radiative capture rates 7Beþ p →8Bþ γ (Zhang, Nollett,
and Phillips, 2015) and 3Heþ 4He → 7Beþ γ (Zhang, Nollett,
and Phillips, 2020) were estimated with BO. Bayesian ML has
been applied to neutron-α scattering in chiral EFT (Kravvaris
et al., 2020).
In other few-body calculations, ANNs were used to

determine the deuteron wave function using variational
optimization (Keeble and Rios, 2020). Three-body Efimov
bound states were studied using ANNs (Saito, 2018), and
CNNs were used to classify states of a three-body system
(Huber et al., 2021). Variational Monte Carlo calculations
optimized with ANNs have been performed for light nuclei
with up to six nucleons (Adams et al., 2021; Gnech et al.,
2022); see Fig. 5. The latter results are interesting since the
representation of the Jastrow factor in terms of ANNs has the
potential to introduce additional correlations. The universal
approximation theorem (Cybenko, 1989; Hornik, 1991) states
that ANNs can represent a wide variety of nonlinear functions
when given appropriate weights. Overall, using ANNs to
extract complicated correlations in many-body calculations
seems to be a promising approach, as recently shown by
Pescia et al. (2021). They used ANNs for the simulation of
strongly interacting systems in the presence of spatial perio-
dicity. This has potential applications for studies of infinite
nuclear matter, where periodic boundary conditions are often

FIG. 4. Bayesian extrapolation and model averaging. The quantified landscape of nuclear existence obtained in the BMA calculations
using 11 global mass models and three model-averaging strategies is shown. For every nucleus with Z;N ≥ 8 and Z ≤ 119, the
probability that the nucleus is bound with respect to proton and neutron decay is marked. The domains of nuclei that have been
experimentally observed and whose separation energies have been measured (and used for training) are indicated. Adapted from
Neufcourt et al., 2020b.
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imposed to extract the equation of state of dense fermionic
matter, as discussed later.
In larger A-body systems, the ANN extrapolation of nuclear

structure observables have been used for the no-core shell
model (Negoita et al., 2019), coupled cluster theory (Jiang,
Hagen, and Papenbrock, 2019), and configuration interaction
calculations (Yoshida, 2020). Artificial neural networks were
used to learn important configurations for symmetry-adapted
no-core shell-model calculations (Molchanov et al., 2021).
Similarly, ANNs have also been used to invert Laplace
transforms required to compute nuclear response functions
from Euclidean time Monte Carlo data (Raghavan et al.,
2021). Restricted BMs were used to represent many-body
contact interactions using auxiliary fields (Rrapaj and
Roggero, 2021). Ismail and Gezerlis (2021) used ML tech-
niques to study finite-size effects and extrapolate the unitary
gas to the thermodynamic limit at zero range.
Another topic that has great potential for applications to

studies of infinite matter and the equation of state (EOS) for
dense nuclear matter is the application of ML to many-body
methods like coupled cluster theory, Green’s function theo-
ries, in-medium similarity renormalization group methods; see
Hjorth-Jensen, Lombardo, and van Kolck (2017). Common to
these methods is that the underlying approximations can be
systematically expanded upon by including more complicated
correlations. Various approaches, like coupled cluster theory
(Hjorth-Jensen, Lombardo, and van Kolck, 2017), sum to
infinite order selected many-body contributions such as
so-called one-particle-one-hole and two-particle-two-hole
correlations. Including three-particle-three-hole correlations
is computationally much more involved. Here ML-based
methods can be extremely useful, particularly for studies of
nuclei from calcium and beyond and infinite matter. Recent
atomic and molecular physics studies (Margraf and Reuter,
2018; Wilkins et al., 2019; Townsend and Vogiatzis, 2020;
Agarawal et al., 2021) can easily be extended to finite nuclei
and infinite matter.

7. Nuclear reactions

Low-energy nuclear reaction models have a critical reliance
on a wide variety of parameters including nuclear masses,

nuclear level densities, transmission coefficients, and optical
model parameters. While nuclear masses were discussed
earlier, there have been some ML-based studies seeking
improved predictions of other parameters across the nuclear
chart; see Sec. VI. There are also numerous studies using BO
for UQ on reaction model parameters; some recent examples
include R-matrix analyses of cross sections (Odell, Brune, and
Phillips, 2021), optical model parameters (Lovell and Nunes,
2018; King et al., 2019; Yang et al., 2020; Lovell et al., 2021),
and sensitivity analyses (Catacora-Rios et al., 2019, 2020). In
the future, it is anticipated that ML will help identify those
measurements that most effectively constrain theoretical
models, optimize model parameters simultaneously across
multiple reaction channels for many isotopes, and provide
guidance to theory through global systematic studies that can
be efficiently executed with surrogate models.

8. Neutron star properties and nuclear matter equation of state

Studies of dense nuclear matter and its pertinent EOS, with
its strong implications for studies of neutron stars and studies
of supernovae, is a field that has seen considerable progress
during the last two decades. The increased wealth of data
related to cold dense matter, from laboratory experiments and
theoretical simulations to neutron star observations such as the
gravitational-wave events GW170817 and GW190814, pro-
vide a framework for constraining theoretically the EOS of
dense matter.
As an example, we present in Fig. 6 the results of a

Bayesian analysis by Miller, Chirenti, and Lamb (2020) based
on a posterior probability distribution. The figure displays the
mass-radius constraints that correspond to an EOS obtained
from Bayesian inference. Here a symmetry energy of S ¼
32� 2 MeV was adopted, together with the masses of the
three most massive neutron stars, the tidal deformability of
GW170817, hypothetical masses and radii to a precision of
5%, and similarly a hypothetical measurement of the moment
of inertia of a 1.338M⊙ star to 10% precision. Miller, Chirenti,

FIG. 6. Bayesian analysis of the mass-radius relation for neutron
stars. The Bayesian uncertainty reflects constraints on an equa-
tion of state. S, symmetry energy; Mmax, masses of three most
massive neutron stars; Λ, tidal deformability of GW170817;
ðM;RÞ, high-precision mass-radius measurement; I, moment of
inertia; E, baryonic rest mass of a star. From Miller, Chirenti, and
Lamb, 2020.

FIG. 5. Many-body variational calculations with ANNs. Point-
nucleon densities of 4He for the leading-order pionless-EFT
Hamiltonian. The solid points and the shaded area represent
the ANN and Green’s function Monte Carlo results, respectively.
From Adams et al., 2021.
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and Lamb showed that the resulting EOS is sensitive to the
symmetry energy below the saturation density.
In several studies, Bayesian inference, ML, and/or other

statistical approaches have been applied to constrain the EOS
and other properties pertaining to infinite matter studies.
Drischler, Furnstahl et al. (2020) and Drischler, Melendez
et al. (2020) carried out UQ of many-body calculations of the
EOS. In particular, Bayesian ML with GPs was employed to
propagate theoretical uncertainties using many-body pertur-
bation theory to fourth order with two- and three-body
interactions from chiral effective field theory. Gaussian
processes were also used by Essick et al. (2021) to constrain
the symmetry energy and its slope. Deep learning inference
for the EOS was recently studied by Fujimoto, Fukushima,
and Murase (2021) with the use of observational data on
masses and radii of known neutron stars. Several other
groups have used ML methods and/or Bayesian inference
to study the nuclear EOS with nuclear data and theoretical
calculations (Margueron, Casali, and Gulminelli, 2018a,
2018b; Xu, Xie, and Li, 2020; Newton and Crocombe,
2021), x-ray observations of neutron stars (Nättilä et al.,
2017), gravitational-wave data from neutron star mergers
(Lim and Holt, 2019; Capano et al., 2020; Dietrich et al.,
2020; Güven et al., 2020; Kunert et al., 2022), or both x-ray
and gravitational-wave data (Raaijmakers et al., 2020; Xie
and Li, 2020; Al-Mamun et al., 2021; Ayriyan et al., 2021;
Han et al., 2021). The properties of dense matter have
also been probed using heavy-ion collisions (Morfouace
et al., 2019; Xie and Li, 2021) as well as studies at
nonzero temperature (Wang et al., 2020). At intermediate
energies, CNNs were recently applied by Zhang et al.
(2021) to determine the impact parameters of heavy-ion
collisions at low to intermediate incident energies (up
to 100 MeV=nucleon).

B. Medium-energy nuclear theory

Nuclear femtography is an emerging field in nuclear
physics that aims to map out quantum correlation functions
(QCFs) that characterize the internal three-dimensional struc-
ture of nucleons and nuclei, as well as hadronization in high-
energy reactions, in terms of the quark and gluon (collectively
called partons) degrees of freedom of quantum chromody-
namics (QCD). In contrast to any system found in nature, the
partons of QCD are not detectable experimentally due to
confinement, which prevents direct access to the QCFs.
Nonetheless, certain classes of observables can be factorized
in terms of convolutions between short-distance physics
calculable in perturbative QCD and long-distance physics
that is nonperturbative and encoded in the formulation of
QCFs. However, to extract the latter, one faces an inverse
problem inherited from the mathematical relation between the
experimental observables and the QCFs stemming from the
inability to obtain closed form solutions for the QCFs.
Therefore, the only practical approach is to parametrize the
QCFs and calibrate them via BO or another method.

1. Bayesian inference

The traditional approach to implementing Bayesian infer-
ence involves the use of theory-inspired parametrizations for

the QCFs, tuned via maximum likelihood estimators (Bishop,
2006; Hastie, Tibshirani, and Friedman, 2009; Murphy, 2012),
along with an error analysis based on the Hessian matrix
optimization (Bishop, 2006; Murphy, 2012; Pumplin et al.,
2002). This approach was developed in the context of QCD
global analysis of parton distribution functions (PDFs), which
is a type of QCF describing the longitudinal momentum
fractions of partons inside nucleons. This approach has been
adopted by various groups around the world (Harland-Lang
et al., 2015; Accardi et al., 2016; Alekhin, Blümlein, and
Moch, 2018; Hou et al., 2021) and has found relatively good
success in describing a large bank of high-energy data that are
sensitive only to the one-dimensional degrees of freedom in
the nucleon.
In recent years, Monte Carlo–based methodologies for

Bayesian inference (Hastie, Tibshirani, and Friedman, 2009;
Murphy, 2012; Mehta et al., 2019) have gained traction,
providing a more reliable uncertainty quantification for QCFs
in the Bayesian framework. Ball et al. (2010) demonstrated
the feasibility of carrying out QCD global analysis by
sampling the Bayesian posterior distribution using the data
resampling technique. They also introduced ANN paramet-
rizations to extend the flexibility of the QCF modeling and
explore the degree of parametrization bias. For the case of
PDFs, one found that, in regions where the data maximally
constrain the PDFs, ANNs and traditional parametrizations
give qualitatively similar results, with the differences becom-
ing increasingly evident in extrapolated regions.

2. Simultaneus extraction paradigm

The Monte Carlo approach for Bayesian inference has also
recently been applied to a simultaneous extraction of a variety
of QCFs, including spin-dependent PDFs (Ethier, Sato, and
Melnitchouk, 2017), transverse momentum distributions
(Cammarota et al., 2020), and fragmentation functions
(Ethier, Sato, and Melnitchouk, 2017; Sato et al., 2020;
Moffat et al., 2021), thereby establishing a new paradigm
in nuclear femtography. The simultaneous approach is crucial
for solving the inverse problem for the QCFs, especially for
those quantities that rely on each other. An example of such a
situation is in semi-inclusive deep-inelastic scattering, where
the experimental observables are sensitive to QCFs describing
the internal structure of hadrons as well as QCFs that describe
the hadronization process. In principle, each of these types of
QCFs can be extracted independently from processes that
are solely sensitive to each type of QCFs. However, when
included within a global context, they require simultaneous
analysis in order to take into account the correlations induced
by uncertainties regarding the various interdependent QCFs
themselves.
Ethier, Sato, and Melnitchouk (2017) showed that the

strange polarization in the nucleon is mostly unconstrained
if one takes fully into account the uncertainties on the spin-
dependent PDFs and fragmentation functions. Sato et al.
(2020) and Moffat et al. (2021) found a suppression of
the unpolarized strange quark PDF relative to lighter quark
PDFs to be preferred by the simultaneous extraction of
spin-averaged PDFs and fragmentation functions when
they included the standard deep-inelastic scattering and
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semi-inclusive deep-inelastic scattering electromagnetic
observables, semi-inclusive annihilation in eþe− collisions,
and lepton-pair production in pp reactions. Cammarota et al.
(2020) performed the global analysis for all existing single-
spin asymmetries, providing the empirical demonstration that
the flavor-dependent nucleon tensor charges agree within
uncertainties with those computed directly in LQCD.

3. LQCD and experimental global analysis

Another new direction that has been recently explored is the
inclusion of LQCD data as Bayesian priors that can help
overcome the difficulties in deconvoluting QCFs from exper-
imental data. An advantage of this is that the lattice data can in
principle have access into domains of the QCFs that are
inaccessible experimentally or difficult to determine, particu-
larly processes and kinematics. Lin et al. (2018) used the
isovector tensor charge from LQCD as a Bayesian prior to
extract the nucleon transversity distribution. Similarly,
Bringewatt et al. (2021) carried out exploratory studies to
include off-the-light-cone matrix elements in a QCD global
analysis of spin-averaged and spin-dependent PDFs, thereby
demonstrating some level of success and/or tension depending
on the type of observables and the associated QCFs. For
other studies involving LQCD, see Karpie et al. (2019) and
Del Debbio et al. (2021) and Sec. III.C. The combination of
LQCD results and experimental data in the framework of
Bayesian inference provides new avenues for addressing the
challenges imposed by the inverse problem in QCFs and
facilitates reliable comparisons between data and theory.

C. Lattice QCD

Lattice field theory is the theoretical framework for under-
standing the properties of strongly interacting matter. The
fundamental theory of strong interactions is QCD, a quantum
field theory that requires nonperturbative computations to
address low-energy hadronic physics. Lattice QCD provides
both a rigorous definition of QCD and a powerful tool for
numerical computations. The basic computational task in
LQCD is a Monte Carlo evaluation of multidimensional
integrals that results in the lattice regularization of QCD.
Sophisticated and powerful QCD algorithms have been

developed to take advantage of modern-day supercomputers,
leading to many important results aiding experimental efforts
to understand the nature of strongly interacting matter.
However, despite impressive achievements, computations
close to the continuum limit that are required to reduce
systematic errors are still out of reach with today’s resources.
Machine learning methods offer a new avenue for improving
current computations as well as allowing for studies of
previously impossible questions. Typical LQCD calculations
proceed in two stages. An ensemble of gauge field configu-
rations is first generated. Subsequently, certain correlation
functions of the fundamental fields are computed by averaging
over the ensemble of gauge configurations. Finally, analyses
of these correlation functions lead to the desired physical
observables. Machine learning techniques are now applied to
all these stages of LQCD computations, thus promising to
enhance and extend the current state of the art.

1. The sign problem at nonzero density

Systems at nonzero density (as in nuclear or neutron matter)
or Minkowski time dynamics (parton distribution functions
and transport coefficients) cannot be studied with standard
Monte Carlo methods due to the fermion sign problem.
Recently, it has been shown that, by evaluating the relevant
path integral over a field manifold deformed into complex
space, the sign problem can be alleviated or even eliminated
(Cristoforetti, Di Renzo, and Scorzato, 2012; Cristoforetti
et al., 2014; Di Renzo and Eruzzi, 2015; Fujii, Kamata, and
Kikukawa, 2015; Fukushima and Tanizaki, 2015; Ulybyshev,
Winterowd, and Zafeiropoulos, 2020). To date the choice of
manifolds has been guided by either impossibly expensive
calculations or human insight into particular models. Machine
learning methods have begun to be applied in both supervised
and unsupervised learning modes (Alexandru et al., 2017;
Alexandru, Bedaque, Lamm, and Lawrence, 2018; Alexandru,
Bedaque, Lamm, Lawrence, and Warrington, 2018; Bursa and
Kroyter, 2018; Ohnishi, Mori, and Kashiwa, 2019; Wynen
et al., 2021) to discover the integration manifolds that alleviate
the sign problem and, in certain cases, allow for calculations
that previously were not possible. Refinement of these
methods opens a new avenue for understanding QCD at
nonzero density, as well as understanding the real-time
dynamics of strongly interacting matter. At nonzero temper-
ature the problem of reconstructing spectral functions from
Euclidean correlators arises. Recently both VAEs (Chen et al.,
2021) and GPs (Horak et al., 2021) have been used to solve
the associated inverse problem.

2. Ensemble generation

Generating gauge configuration ensembles close to the
continuum limit has also proved to be a daunting computa-
tional task (Schaefer, Sommer, and Virotta, 2011). Present-day
computations with lattice spacing below 0.05 fm are severely
limited due to a critical slowing down, i.e., large autocorre-
lation times in the Markov chain used to generate the gauge
configuration ensemble. The idea of trivializing maps
(Lüscher, 2010) was introduced several years ago as a possible
solution to this problem. It relied on an analytically deter-
mined map that can be used to change variables in the path
integral, resulting in a trivial integration weight. Lüscher, 2010
showed that such maps exist and can be constructed as
solutions to a gradient flow equation whose generator can
be set up perturbatively in the flow time. However, practical
constructions of such maps have not been carried out even
for simple models (Engel and Schaefer, 2011). A successful
application of this program was done in the context of
stochastic perturbation theory (Lüscher, 2015), which is used
to perform high-order perturbative computations in QCD.
Machine learning methods provide a new approach to dis-
covering these maps. In fact, the idea of remapping variables
with complex probability distributions to trivially distributed
variables is something that is commonly done in ML. In that
sense, adaptation of these methods in the context of Markov
chain Monte Carlo (MCMC) approaches to lattice field theory
is an interesting idea with enormous potential for solving the
critical slowing down problem in LQCD.
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Applications of ML methods to lattice field theory calcu-
lations have already emerged. The scalar ϕ4 theory in two
dimensions is one of the first models studied, where GANs
were used to reduce autocorrelation times (Pawlowski and
Urban, 2020). Albergo, Kanwar, and Shanahan (2019) and
Medvidovic et al. (2020) showed that normalizing flows
constructed via ANNs can indeed be trained to effectively
sample the configuration space of two-dimensional scalar ϕ4

theory up to lattice sizes of 142. In addition, Hackett et al.
(2021) used flow-based methods to sample from multimodal
distributions. Nicoli et al. (2021) studied thermodynamic
properties of scalar ϕ4 theory in two dimensions using
normalizing flows to generate field configurations, thus
confirming the efficacy of this approach. These works
demonstrated that critical slowing down may be eliminated
in MCMC simulations for scalar ϕ4 theory. However, further
studies and improvements of the approach (Del Debbio,
Marsh Rossney, and Wilson, 2021) demonstrated that the
training cost of the flow-based models scales badly as the
critical point is approached and the correlation length and
lattice size grow, indicating that further refinements of the
approach are needed for the elimination of critical slowing
down. The flow-based methods for Monte Carlo sampling
have already been extended to gauge theories (Favoni et al.,
2020; Kanwar et al., 2020; Luo et al., 2020, 2021; Boyda,
Kanwar et al., 2021; Tomiya and Nagai, 2021), fermionic
theories (Albergo et al., 2021), and theories with a sign
problem (Lawrence and Yamauchi, 2021). Note that an
entirely different approach in using ML methods for optimiz-
ing MCMC simulations is the so-called L2HMC approach
[see Levy, Hoffman, and Sohl-Dickstein (2018)], which was
recently applied to the Uð1Þ gauge theory with fermions by
Foreman, Jin, and Osborn (2021). In this approach, ML
methods are used to construct a new flow-based map that
replaces the Hamiltonian evolution in Hamiltonian
Monte Carlo (Bishop, 2006; Murphy, 2012; Li, Dong et al.,
2020). This is a promising idea that could have an impact in
realistic MCMC calculations in lattice field theory.

3. Correlation function estimators

Calculations of observables in LQCD require the compu-
tation of quark propagators in the background of a large
number of gauge configurations. Quark propagators are
computed by solving a linear system of equations with a
large and sparse coefficient matrix. Machine learning methods
are used (Pederiva and Shindler, 2020) to obtain low-precision
solutions in order to construct approximate observables from
which full precision results are obtained via the so-called all-
mode-averaging technique (Shintani et al., 2015), resulting in
an enormous increase in computational efficiency. Along
similar lines, boosted decision trees were used as approximate
estimators of two- and three-point correlation functions used
in calculations of nucleon charges and of the phase acquired
by the neutron mass with a small parity violation (Yoon,
Bhattacharya, and Gupta, 2019). The same methodology was
also employed for correlators used in parton distribution
function calculations (Zhang et al., 2020). In addition, GPs
were employed in predicting the long-distance behavior of
matrix elements in PDF computations in LQCD (Alexandrou

et al., 2020). An interesting new idea was introduced by
Detmold et al. (2021), who used ML methods to find
deformations of the fields in the path integral such that the
variance of observables was reduced.

4. Miscellany

Finally, there is a large body of work in which ML methods
are used to understand properties of lattice field theories.
These works include the prediction of lattice action parameters
from field configurations (Shanahan, Trewartha, and Detmold,
2018; Blücher et al., 2020), discoveries of the holographic
geometry in AdS=CFT descriptions of field theories
(Hashimoto et al., 2018a, 2018b; You, Yang, and Qi, 2018;
Hashimoto, 2019; Hashimoto, Hu, and You, 2021), and an
understanding of the nature of phase transitions (Wetzel and
Scherzer, 2017; Bachtis, Aarts, and Lucini, 2020; Blücher
et al., 2020; Chernodub et al., 2020; Boyda, Chernodub et al.,
2021). A discussion of ML applications to LQCD can also be
found in a recent Snowmass report (Blum et al., 2021).

D. High-energy nuclear theory

At extremely high temperature or density, quarks and
gluons are deconfined from nucleons to form a new state
of nuclear matter, the quark gluon plasma (QGP). In the early
Universe, this state of matter existed for about a few
microseconds after the big bang and might also be at the
core of some neutron stars or created during violent neutron
star mergers. The field of high-energy nuclear physics aims to
search for its formation, the phase transition between normal
nuclear matter and QGP, locate the critical point(s), and
determine the deconfinement temperature in high-energy
heavy-ion collisions (HICs). Many properties of QGP, such
as shear and bulk viscosity, conductivity, and jet transport
coefficient, can be extracted from experimental data using soft
and hard probes.

1. Bayesian inference

Since the lifetime of QGP in a HIC is short (about 10−23 s),
experiments detect the relics of QGP: hadrons, photons,
leptons, and their momentum distributions and correlations.
The properties of QGP can only be extracted indirectly
through theoretical models. In practice, each observable in
experimental data is entangled to many model parameters.
This entanglement hinders the determination of a specific
model parameter. Even worse, sometimes different combina-
tions of model parameters produce degenerate outputs when
the data are projected into lower dimensions.
Two promising ML tools emerge to solve this seemingly ill-

defined inverse problem. The first tool is BO, which tends to
fit all model parameters at the same time using all available
data. During this global fitting, if several groups of model
parameters generate the same output, then the probability of
the real model to be one of them decreases. On the contrary, if
only one group of model parameters describes the data and a
change of parameters leads to large model-data differences,
then the posterior distribution peaks at the optimal parameter
value with small width, thereby indicating a small model
uncertainty.
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Bayesian optimization is widely used in high-energy
nuclear physics to constrain the QCD equation of state
(Pratt et al., 2015), the QGP transport coefficients
(Bernhard et al., 2016; Bernhard, Moreland, and Bass, 2019;
Paquet, 2021), the fluctuation and correlation (Yousefnia
et al., 2021), the heavy quark diffusion coefficient (Xu et al.,
2018), the jet transport coefficient (Cao et al., 2021), and the
jet energy loss distributions (He, Pang, and Wang, 2019). In
many applications, other ML tools are used to assist the
Bayesian analysis. For example, the relativistic fluid dynamics
simulations of HICs are time consuming, which prevents a fast
MCMC random walk in the parameter space. Emulators based
on the theory of GPs are employed to approximate model
outputs using efficient interpolations with much fewer design
points in the parameter space. Since data obtained this way are
redundant and correlated, PCA is used to compress data to
lower dimensions.
The observables used in Bayesian inference are high-level

features designed with personal experience. However, feature
engineering is known to be incomplete, insufficient, and
sometimes misleading, which may cause important correla-
tions hidden in high-dimensional data to be lost. This is
unavoidable due to the high-dimensional character of the
experimental data. It is difficult to recognize from exotic low-
level features the nonlinearly correlated patterns that are
unique and robust for determining a specific model parameter.

2. Inversion problems with ML

Deep neural networks are promising ML tools for tackling
the difficult inverse problem in HIC. If low-dimensional
projections of model outputs are degenerate in the seemingly
ill-defined inverse problem, one would expect differences to
still exist in high dimensions or in nonlinear correlations
between different dimensions. The universal approximation
theorem (Cybenko, 1989; Hornik, 1991) ensures that ANNs
have enough representation capability to map low-level
features to some given model parameters in supervised
learning. If information gets totally lost in the dynamical
evolution of HICs because of entropy production, the network
can never succeed in building this map. If the information of
one specific model parameter survives the dynamical evolu-
tion and exists in the final output of HICs, the network has a
better chance to build this map. In this sense, if the network
provides high accuracy predictions in a supervised learning
scenario, it indicates that the signal encodes in the complex
final state output and the network helps to decode this
information. On the other hand, if the network fails, this
indicates that either the information on the physical signal gets
totally lost or the used network does not have enough
representation power. For the latter, it is still possible with
a deeper, wider, or more suitable network.
The type of nuclear phase transition is an important input to

relativistic hydrodynamic simulations of HIC. At high ener-
gies, LQCD predicts that the transition between QGP and
hadron resonance gas is a smooth crossover. At intermediate
beam energies, it is conjectured to be a first-order phase
transition. Different phase transitions lead to different pressure
gradients around the transition temperature that drives the
QGP expansion (it also depends on the shear and bulk

viscosity). In this inverse problem, one can determine the
phase transition type during the dynamical evolution using
final state output. Supervised CNNs (Pang et al., 2018; Du
et al., 2020), point cloud networks (Steinheimer et al., 2019),
and unsupervised AEs (Wang et al., 2020) are trained to
identify the QCD phase transition types using the final state
hadrons. It is verified that signals of the phase transition
survive the dynamical evolution, and deep learning succeeds
in decoding this information from the final hadron distribu-
tion. To avoid overfitting to given model parameters, different
parameter combinations are used to form a diverse training
dataset. Prediction difference analysis is used to interpret
which region in the momentum space is most important for the
networks to make their decisions.
Data produced in high-energy HIC are lists of particles with

their four-momenta and quantum numbers. Early studies used
histograms to convert this information into images that were
required by two-dimensional CNNs. It was later found that
the point cloud network is suitable for this data structure
(Steinheimer et al., 2019). To enhance the representation
power, a dynamical edge-convolution network followed by a
point cloud net is used to identify self-similarity and critical
fluctuations in HICs (Huang et al., 2021). Figure 7 shows the
architecture of the dynamical edge-convolution network. The
input to the network is a list of hadrons. The output has two
branches: one for event classification and the other for particle
tagging. The KNN algorithm finds the k-nearest neighbors of
each particle in both momentum space and feature space.
Repeating the KNN and edge-convolution blocks twice helps
one to find long-range multiparticle correlations that are the
key to searching for critical fluctuations.
The impact parameter is the transverse distance between

colliding nuclei, whose precise determination helps many
downstream tasks. It is not possible to measure impact
parameters directly through experiment. Several different

FIG. 7. Dynamical edge-convolution neural network used for
event classification and particle tagging in heavy-ion collisions.
From Huang et al., 2021.
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ML tools are used to determine the impact parameters of
HICs, including shallow neural networks (Bass et al., 1996),
ANNs (Omana Kuttan et al., 2020, 2021), SVMs (De Sanctis
et al., 2009), and EMB (Li, Wang et al., 2020, 2021; Mallick
et al., 2021). In this inverse problem, data from Monte Carlo
simulations are used to map the final state output to the impact
parameter. The traditional method uses a single observable
(the particle multiplicity) to determine the impact parameter.
Machine learning methods using high-dimensional data result
in much smaller uncertainties.
Another inverse problem associated with initial states is

linked with the given nuclear structure, which in turn affects in
many ways the final state outputs of the HICs. In a prototype
inverse problem, a 34-layer residual neural network is used to
predict the deformation parameters of the involved nuclei
(Pang, Zhou, and Wang, 2019). Using the simulation data, the
network succeeds in extracting the magnitude of the nuclear
deformation but fails to extract the sign. The failure denotes a
degeneracy raised in the dynamical process of high-energy
collisions. In another inverse problem, Bayesian CNNs are
employed to identify the 3 − α and 4 − α structures in the
colliding light nucleus, from the final output of simulated
heavy-ion collisions (He et al., 2021). The overall classifica-
tion accuracy reaches 95% for 12C=16Oþ 197Au collisions.

3. Other applications of ML methods

High-energy jets lose energy when they traverse through
hot deconfined nuclear matter. In the inverse problem, CNNs
are employed to predict the energy loss ratio from final
state hadrons inside a jet cone (Du, Pablos, and Tywoniuk,
2021a, 2021b), which allows one to study the jets based on
the initial energy.
The chiral magnetic effect was expected to arise from

possible parity violation of strong interactions. However, all
previously proposed observables suffer from large back-
ground contamination in heavy-ion collisions. Deep CNNs
are used to identify the charge separation associated with the
chiral magnetic effect (Zhao et al., 2021). The network is
robust to diverse conditions including different collision
energies, centralities, and elliptic flow backgrounds.
The interaction between bottom and antibottom quarks in

QGP is modeled as a heavy quark potential, whose variational
function form is represented by deep neural networks (Shi
et al., 2022). The inputs to the networks are the temperature of
the QGP and the quark antiquark separation r. The output is
the heavy quark potential. Solving the pertinent differential
equations numerically with this potential gives mass spectra
whose difference from LQCD calculations defines the cost
function. Optimizing this cost function gives one the param-
eters of the model.
Finally, Mroczek et al. (2022) used active learning (Cohen,

2018) to reduce sampling requirements for training classifiers
in searches for acceptable EOS parameters.

IV. EXPERIMENTAL METHODS

The aim of this section is to give the reader an overview
of recent progress and future research directions in
ML approaches and methods applied to nuclear physics

experiments. During the last few years, ML methods have
been applied to the full chain of experimentation, including
the design of experiments, the acquisition of data, the
processing chain of converting detector information into
observables, and physics analysis.

A. Streaming detector readout

In triggerless or streaming readout data acquisition systems,
detector data are read out in continuous parallel streams that
are encoded with information about when and where the data
were taken. This simplifies the readout as no custom trigger
hardware and firmware is needed and is beneficial for
experiments that are limited by event-pileup or overlapping
signals from different events. Streaming readout also gives
one an opportunity to streamline workflows for on-line and
off-line data processing and allows one to take advantage of
ML approaches.
The LHCb experiment at CERN has pioneered the idea of

seamless data processing from the readout to the analysis,
using software stages at early stages of the event selection.
Part of this system is a custom boosted decision tree algorithm
for the reconstruction of decay products of b hadrons
(Gligorov and Williams, 2013; Likhomanenko et al., 2015).
Progress in novel boosted decision tree algorithms allow
improvements in the efficiency of decay classifications by up
to 80% for high-rate events.
The CLAS12 experiment at Jefferson Lab tested a proto-

type streaming readout system successfully under beam
conditions. The test was limited to the measurement of
inclusive electroproduction of neutral pions in a lead tungstate
calorimeter and a hodoscope. An unsupervised hierarchical
cluster algorithm was utilized in real time with real data taken
in streaming readout mode to combine the time, position, and
energy information at the hit level, and associate each hit with
a cluster membership and an outlier score (Ameli et al., 2021).
The implementation (McInnes, Healy, and Astels, 2017)
allows one to successfully reject noise hits and to identify
clusters for diverse topologies and large hit multiplicities.

B. Reconstruction and analysis

1. Charged particle tracking

Deep learning approaches using neural networks have the
advantage of a high level of flexibility and robustness with a
minimum of assumptions about the data. This offers an
effective solution to the challenges of charged particle tracking
at high luminosity. At high luminosity, tracking suffers from
track candidates that share hits (combinatorials). This results
in hits wrongly identified as “on track” and produces ghost
tracks. In high-luminosity environments, the largest fraction
of CPU time in tracking in a traditional analysis is spent on
setting up various Kalman filters (Grewal and Andrews, 2014)
at each measurement site. These are affine operations
involving CPU and memory intensive matrix-matrix multi-
plications and matrix-vector multiplications. Therefore, the
improvement in track seeding resulting from using ANNs and
deep learning methods yields substantially faster track
reconstruction speed. In addition, the selection of the correct
seed results in improved tracking efficiency (Guest, Cranmer,
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and Whiteson, 2018; Gavalian et al., 2020). Furthermore,
noise rejection algorithms have an impact in selecting the right
combinations of hits in seeding (Komiske et al., 2017).
One of the most common deep learning algorithms

employed for tracking pattern recognition are CNNs. The
CNN features are generally representations of the detector
geometry. Machine learning algorithms used for background
rejection involve topological properties of tracks to isolate
signal from background (Kramárik, 2020). Outlier detection
methods are used to remove noise uncorrelated hits and to
classify tracks including pileup (Ayyad et al., 2018).
Large liquid scintillator detectors can hold a large target

mass for neutrino detection in solar and reactor neutrino
experiments. Machine learning can benefit pure liquid scin-
tillator detectors in event position and energy reconstruction
(Qian et al., 2021). Similarly, neutron detectors such as
NeuLAND track both charged and neutral particles. Simple
neural network architectures have been shown to efficiently
assist in tracking (Mayer et al., 2021).

2. Calorimetry

The GlueX experiment at Jefferson Lab used ANNs to
reduce the background in the GlueX forward calorimeter
for the detection of photons produced in the decays of
hadrons (Barsotti and Shepherd, 2020). Energy deposition
characteristics in the calorimeter such as shapes, size, and
distribution were employed to discriminate between the signal
and background, where the background originates mostly
from hadronic interactions that can be difficult to distinguish
from low-energy photon interactions. The training was done
on data using ω-meson decays. The ANN-based algorithm
proved to be a powerful tool to reconstruct neutral particles
with high efficiency and to provide substantial background
rejection capability.

3. Particle identification

Particle identification (PID) is done with dedicated detec-
tors capable of identifying certain particle types. For example,
Cherenkov detectors are largely used in modern nuclear
experiments for identifying charged particles like pions,
kaons, and protons corresponding to a wide range in momen-
tum. Cherenkov detectors are typically endowed with single
photon detectors and the particle type can be recognized by
classifying the corresponding detected hit pattern (Fanelli,
2020). DeepRICH (Fanelli and Pomponi, 2020) is a recently
developed custom architecture that combines VAEs, CNNs,
and ANNs. The reconstruction performance is close to that
of other established methods like FastDIRC (Hardin and
Williams, 2016) with fast reconstruction times due to its
implementation on graphics processing units that allow for
parallel processing of batches of particles during the infer-
ence phase.
Derkach et al. (2020) used GANs to simulate the

Cherenkov detector response. This architecture predicts the
multidimensional distribution of the likelihood for particle
identification produced by FastDIRC bypassing low-level
details. GANs were used by Maevskiy et al. (2020) for a
fast and accurate simulation of a Cherenkov detector; these

have been trained using real data samples collected by the
LHCb Collaboration.
The utilization of jets produced by the hadronization of a

quark or gluon in heavy-ion experiments or future electron ion
colliders for nuclear physics such as the Electron-Ion Collider
(EIC) can be functional for a variety of fundamental topics
(Page, Chu, and Aschenauer, 2020). Machine learning has
been applied to design experimental observables that are
sensitive to jet quenching and parton splitting (Lai et al., 2020,
2021). Chien (2019) showed that a deep CNN trained on jet
images allows the study of jet quenching utilizing quark and
gluon jet substructures. Moreover, CNNs were used to
discriminate between quark and gluon jets by Komiske,
Metodiev, and Schwartz (2017). Different deep architectures
(CNN, dense ANN, and RNN) were studied by Apolinário
et al. (2021) for the classification of quenched jets and, in
particular, to discriminate between mediumlike and vacuum-
like jets. Identification of jets as originating from light-flavor
or heavy-flavor quarks is an important aspect in inferring the
nature of the particles produced in high-energy collisions.
Much progress has been made in recent years on heavy-

flavor tagging, with custom architectures like DeepJet (Bols
et al., 2020) and JetVLAD (Bielčíková et al., 2021), and on
strange jet tagging (Erdmann, 2020; Nakai, Shih, and Thomas,
2020). Hadronic jets feature multiple tracks and extended
energy deposition in both electromagnetic and hadronic
calorimeters and can represent a primary source of back-
grounds for electrons. Recent studies based on CNNs showed
the advantage of using low-level calorimeter data represented
as images in identifying electrons (Collado et al., 2021).
Electromagnetic showers have been classified using computer
vision techniques that take advantage of lower level detector
information (De Oliveira, Nachman, and Paganini, 2020).
Finally, BNNs have been used for pion, kaon, and proton
identification, with tests done on data generated for the BES II
experiment (Ye, Jian, and Kai-En, 2008), combining multiple
features from different detectors like the drift chamber, time of
flight, and shower counter.

4. Event and signal classification

In collision-based experiments, events are often categorized
by event type for analysis. Although selection algorithms
differ across experiments, the selection is typically computa-
tionally expensive in traditional analyses. In high-luminosity
experiments, real-time triggers are deployed to decide which
events to store for analysis. For such algorithms, fast inference
speed is required. In low-energy, low-luminosity collisions,
such as those at rare isotope facilities, event selection post
trigger is a computational bottleneck for large data detectors
such as time projection chambers (Adamson et al., 2016;
Bradt, 2017).
A common task in scintillator detectors in low-energy

experiments is to discriminate between the neutron and γ
signals. Neural network analyses of pulse shapes have been
shown to effectively discriminate between these signals
(Doucet et al., 2020).
In postexperiment analyses, deep ANNs and CNNs

(Kuchera et al., 2019; Gavalian et al., 2020; Solli et al.,
2021) were used to classify events. Seeding networks with
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pretrained architectures designed for image classification
allow for fast training when events can be structured similar
to images. Additionally, hierarchical clustering (Dalitz et al.,
2019) is used for track finding in time projection cham-
bers (TPCs).
In low-energy neutrino experiments, ML techniques are

typically used to differentiate different physics signal types or
signals from backgrounds. One of the earliest uses of ANN to
discern neutral-current from charged-current solar neutrino
interactions in a heavy-water-Cherenkov detector was per-
formed by the Sudbury Neutrino Observatory experiment
(Brice, 1996).
Direct kinematic measurements of tritium β decays

have historically been the most sensitive to investigate the
neutrino mass scale (Formaggio, de Gouvêa, and Robertson,
2021). The next-generation tritium β-decay experiment
Project 8 plans to measure the β-electron energy spectrum
via cyclotron radiation emission spectroscopy (CRES)
(Monreal and Formaggio, 2009). The geometry of the
detector and its electromagnetic field configuration, as well
as the dynamics of the β electrons, would give rise to
different variations of the CRES signals. The Project 8
Collaboration is developing machine learning techniques
to analyze and improve reconstructions of these CRES
events (Ashtari Esfahani et al., 2020).
To answer the question of whether neutrinos are their own

antiparticles, i.e., Majorana fermions, there are recently
completed, operating, and planned experiments to search
for neutrinoless double-beta (0νββ) decays in 76Ge (Alvis
et al., 2019; Agostini et al., 2020; Abgrall et al., 2021), 100Mo
(Armstrong et al., 2019), 130Te (Artusa et al., 2015; Anderson
et al., 2021; Adams et al., 2022), 136Xe (Gomez-Cadenas
et al., 2014; Gando et al., 2016; Al Kharusi et al., 2018; Anton
et al., 2019), and other isotopes. The observation of this
lepton-number-violating decay mode, in which two electrons
but no neutrinos are emitted, is evidence that neutrinos are
Majorana fermions. As the current limit of this decay mode is
on the order of 1026 yr, experiments (whether they are large-
scale liquid scintillator detectors, semiconductor ionization
detectors, cryogenic bolometers, or liquid cryogenic or high-
pressure gaseous TPCs) are deploying machine learning
techniques to distinguish and remove backgrounds in the
signal search region. The “single-site” signature of a 0νββ
decay signal is the simultaneous appearance from the same
origin of two electrons whose energies add up to the decay’sQ
value. Backgrounds tend to have “multisite” characteristics, as
with external gamma rays that Compton scatter at multiple
locations in the detector’s active volume. For comprehensive
reviews of 0νββ decays, see Dolinski, Poon, and Rodejohann
(2019) and Agostini et al. (2022).
The use of high-purity germanium (HPGe) detectors

enriched in 76Ge in 0νββ-decay searches has a long history
(Avignone and Elliott, 2019). The GERDA experiment
pioneered using ANNs to identify single-site events in
semicoaxial high-purity germanium detectors (Agostini
et al., 2013, 2019). The use of ANNs to differentiate
single-site and multisite events in HPGe detectors was also
developed by Caldwell et al. (2015), Holl et al. (2019), and
Jany et al. (2021).

The NEXT experiment exploits the topological difference
between a 0νββ-decay event signal and backgrounds in its
136Xe high-pressure gas TPC using deep neural networks
(Renner et al., 2017), and specifically CNNs (Kekic et al.,
2021), for the identification of an event topology similar to
that of a signal event. The ML tools developed by NEXT have
also been adapted in the conceptual design of a 82SeF6 TPC for
a 0νββ-decay study (Nygren et al., 2018).
In 0νββ-decay experiments, an ample amount of the target

isotope can be loaded in the scintillator, but the detector
energy resolution is typically worse there than in other types
of detectors. The KamLAND-ZEN experiment developed
CNNs and RNNs to identify 10C from cosmic-ray spallation
in the liquid scintillator loaded with 136Xe (Hayashida, 2019;
Li et al., 2019). Efforts in developing liquid scintillators that
allow the separation of the Cherenkov light and the scintilla-
tion will facilitate ML to perform signal-background differ-
entiation in 0νββ-decay experiments or other multipurpose
detectors (Fraker, 2018; Gruszko, 2018; Askins et al., 2020).
Large water-Cherenkov detectors could also benefit from
gadolinium loading to enhance their neutron detection
capability for supernova detection and searches of the diffuse
supernova neutrino background. The use of ML for back-
ground discrimination in such a detector has been studied
(Maksimović, Nieslony, and Wurm, 2021).

5. Event reconstruction

For the precise knowledge of the kinematic variables of the
deep-inelastic scattering process, various reconstruction meth-
ods are combined in collider experiments. Each method is
using partial information from the scattered lepton and/or
the hadronic final state of deep-inelastic scattering and has its
own limitations. Recently it was shown in the H1 and ZEUS
collider experiments as well as in simulations of a possible
EIC detector that deep learning techniques to reconstruct the
kinematic variables can serve as a rigorous method to combine
and outperform existing reconstruction methods (Diefenthaler
et al., 2021; Arratia et al., 2022).

6. Spectroscopy

Gamma-ray spectra may be used for isotope identification
and fundamental nuclear structure studies. Timing resolution
in high-purity germanium detectors has been optimized by
fully connected CNN architectures (Gladen et al., 2020).
Deep, fully connected neural network architectures have been
shown to successfully identify isotopes (Abdel-Aal and Al-
Haddad, 1997; Medhat, 2012; Kamuda, Stinnett, and Sullivan,
2017; Jhung et al., 2020) and fit peaks (Abdel-Aal, 2002) in
gamma spectra. Machine learning has also been shown to
estimate activity levels in spectra from gamma-emitting
samples (Vigneron et al., 1996; Abdel-Aal and Al-Haddad,
1997; Kamuda and Sullivan, 2019). Convolutional neural
networks have demonstrated robustness to spectra with
unidentified background channels and calibration drifts in
the detectors (Kamuda, Zhao, and Huff, 2020). In addition,
charged particle detection is routinely used for spectroscopy.
For example, Bailey et al. (2021) used ML to analyze signals
from double-sided silicon strip detectors to determine α
clustering.
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C. Experimental design

1. Design for detector systems

Physics and detector simulations are critical for both the
initial design and the optimization of complex subdetector
systems in nuclear physics experiments. These systems are
usually characterized by multiple parameters capable of
tuning the mechanics, the geometry, and the optics of each
component.
Traditionally the global design is studied and characterized

after the subsystem prototypes are ready. In the subdetector
design phase, constraints from the baseline full detector are
taken into account. A well-known phenomenon observed in
optimization problems with high-dimensional spaces is the so-
called curse of dimensionality (Houle et al., 2010), which
corresponds to a combinatorial explosion of possible values to
search. Indeed, the detector design optimization can be a large
combinatorial problem characterized by accurate and compu-
tationally expensive simulations performed in Geant4
(Agostinelli et al., 2003). In this context, ML offers different
optimization strategies spanning from reinforcement learning
(Sutton and Barto, 2018) to evolutionary algorithms (Deb,
2001). These new approaches can potentially “revolutionize
the way experimental nuclear physics is currently done”
(Stevens et al., 2020). Among these approaches, BO
(Jones, Schonlau, and Welch, 1998; Snoek, Larochelle, and
Adams, 2012) has gained popularity in detector design
because it offers a derivative-free, principled approach to
global optimization of noisy and computationally expensive
black-box functions. An automated, highly parallelized, and
self-consistent procedure has been developed and tested for
a dual-radiator ring imaging Cherenkov (dRICH) design
(Cisbani et al., 2020), which has been considered as a case
study. Eight main design parameters have been considered to
improve the PID performance of the dRICH detector.
Examples of design parameters are the refractive index and
thickness of the aerogel radiator, the focusing mirror radius, its
longitudinal and radial positions, and the three-dimensional

shifts of the photon sensor tiles with respect to the mirror
center on a spherical surface.
Gaussian processes have been used for regression, and a

surrogate model has been reconstructed as shown in Fig. 8.
These studies not only resulted in a statistically significant
improvement in the PID performance compared to an existing
baseline design, they also shed light on the relevance of
different features of the detector for the overall performance.
The future EIC is looking at systematically exploiting AI-

based optimization strategies during the design and research
and development (R&D) phase of the EIC detector (Khalek
et al., 2021).
A pipeline based on machine learning for the LHCb

electromagnetic calorimeter R&D optimization has been
proposed (Boldyrev et al., 2020, 2021) to evaluate its opera-
tional characteristics and determine an optimal configuration
with a gain in computational time. Different cell sizes have
been considered to characterize the calorimeter granularity.
Signal energy deposits in the calorimeter have been studied
for different background conditions by changing the number
of primary vertices. Energy and spatial reconstruction were
based on gradient-boosted decision trees (Chen and Guestrin,
2016), with the regressor trained to minimize the difference
between reconstructed and generated observables. Machine
learning methods inside this pipeline are used to fine-tune
the parameters of both simulations and reconstructions. The
application of tools based on deep neural networks and
modern automatic differentiation techniques to implement a
full modeling of an experimental design (in order to achieve
an end-to-end optimization) was described by Baydin
et al. (2021).

2. Interface with theory

Bayesian experimental design provides a general frame-
work to maximize the success of an experiment based on the
best information available on the existing data, experimental
conditions (including the amount of beam time available,
the experimental setup, and the budgetary constraints), and

FIG. 8. Left panels: Geant4 model of the dRICH detector. The full 3D (left panel) downstream and (right panel) upstream views of
the dRICH detector. The BO strategy involves tuning eight main design parameters characterizing the geometry and the optical
properties. Right panel: π=K separation power. The π=K separation as a number of σ is given as a function of the charged particle
momentum. The improvement in the separation power with the approach is compared to the legacy baseline design. The curves are
drawn with 68% confidence interval bands that are barely visible in the log plot. From Cisbani et al., 2020.
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theoretical models used to process and interpret the data. The
goal of BED is to maximize the expected utility of the
outcome. Formally this is done by introducing the utility
function that is designed by taking into account all costs and
benefits (Phillips et al., 2021). Recent applications of BED
were detailed by Giuliani and Piekarewicz (2021) and
Melendez, Furnstahl et al. (2021). Figure 9 shows the utility
function for a proton Compton scattering experiment inter-
preted using chiral EFT. As discussed by Melendez, Furnstahl
et al. (2021), the effect of including EFT truncation errors is
significant: it shifts the region of optimal utility to lower
energies. Giuliani and Piekarewicz (2021) used the transfer
function formalism in BED of experiments, aiming at the
extraction of neutron densities.

V. ACCELERATOR SCIENCE AND OPERATIONS

Research in modern ML techniques for accelerators is
relatively new; however, it is an active cross-cutting effort
among data scientists, computer scientists, control experts,
and accelerator physicists. Machine learning applications are
poised to play an important role in accelerator facilities by
providing data-driven digital models (twins) for anomaly
detection and prognostication, design optimization tools,
and real-time operational control (tuning). There have been
previous efforts to document opportunities (Edelen et al.,
2018) and advanced control (Scheinker, Emma et al., 2020) in
ML for accelerators. The following is an overview of some of
these activities and new advancements since those works.

A. ML-based surrogate models for accelerator models

Particle accelerators are complex nonlinear systems that
require sophisticated simulation software to capture this
dynamic. Owing to their complexity and evolving conditions,
it is natural to explore modern data science techniques to

provide surrogate models and/or a fully realized digital twin
(Grieves and Vickers, 2017; Fuller et al., 2020). By devel-
oping digital models, researchers are able to conduct explor-
atory research without impacting the physical system. The
use of ML to develop these digital models provides the
ability to capture nonlinear complex dynamics using tech-
niques such as GP regression (Williams and Rasmussen,
1996), quantile regression models (Koenker and Bassett,
1978), and RNNs (Rumelhart, Hinton, and Williams, 1986).
These techniques can also be used to predict the future
condition of the accelerator system and study anomalies, and
to forecast component fatigue and failures.
For simulation studies, surrogate models are the most

popular examples of ML methods used in the accelerator
community to map between various accelerator parameters
and beam properties at speeds that are orders of magnitude
faster than computationally expensive physics models and
for optimization studies (Emma et al., 2018; Li et al., 2018;
Edelen et al., 2020; Scheinker, Gessner et al., 2020; Hanuka
et al., 2021; Kranjčević et al., 2021; Zhu et al., 2021).
Additionally, purely data-driven approaches have been
explored to model accelerator components, such as the
Fermi National Accelerator Laboratory booster system
(John et al., 2021; Kafkes and Schram, 2021).

B. Anomaly detection and classification

There is a growing amount of research using ML to improve
accelerator operations by detecting anomalies and classifying
them. These studies explore several techniques that identify
and elucidate the source of the anomalies and ultimately
prevent them altogether in the future. Although it can be
relatively easy to avoid these failures when they are actually
happening, it would be far better to avoid them all together.
Forecasting these failures can be difficult to predict accurately
with an acceptable false positive rate. Predictive diagnostics
are important for improving operational efficiency; however,
they can also serve as actionable precursors to control
systems. There is a growing body of research in this domain;
as such, we present a select few recent results.
Machine learning models were used to classify cavity

faults in the Continuous Electron Beam Accelerator Facility
(CEBAF) (Solopova et al., 2019; Tennant et al., 2020).
Traditionally, accelerator operators are able to analyze time
series data, identify which cavities faulted, and then classify
the fault type; however, manually labeling the data is laborious
and time consuming. To accelerate the process, Tennant et al.
(2020) developed ML models to identify the faulty cavity and
classification fault type. The results showed that the cavity
identification and fault classification models have accuracies
of 84.9% and 78.2%, respectively.
Rescic, Seviour, and Blokland (2020) used several machine

learning techniques to predict machine failures at the
Spallation Neutron Source facility of Oak Ridge National
Laboratory using beam current measurements before the faults
actually occurred. They evaluated these pulses using a
common set of ML-based classification techniques and
showed that they could identify accelerator failures prior to
actually failing with almost 80% accuracy. The results were
further improved by tuning the classifier parameters and using

FIG. 9. BED of a proton Compton scattering experiment.
Shown is the expected utility of proton differential cross section
measurements defined as the gain in Shannon information
based on the experiment. Chiral EFT has been used to predict
the functional form of the scattering amplitude. Left panel mea-
surements that do not include EFT truncation estimates. Right
panel measurements that include the EFT uncertainty. The
interior box marks the experimentally accessible regime. The
vertical line marks the cusp at the pion-production threshold.
The white circles show the optimal five-point design kinematics.
Adapted from Melendez, Furnstahl et al., 2021.
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pulse properties for refining datasets, leading to nearly 92%
accuracy in the classification of bad pulses.
Li, Zacharias et al. (2021) examined the potential to

predict interlocks (reflecting beam shutoff) using multiple
measurements along the accelerator. Recurrence-plot-based
CNNs (RPCNNs) were used to convert the measurements
into time recurrence plots that are used as inputs to CNNs for
classification. Comparisons with EMB methods like random
forests indicate that the performance of the random forests
and RPCNNs are comparable; however, the RPCNNs are
more successful at identifying anomalies that evolve
over time.
A novel uncertainty-aware Siamese model to predict

upcoming faults (Blokland et al., 2021) that combines the
use of uncertainty quantification and a deep Siamese archi-
tecture was developed to predict the similarity between beam
pulses and provide an uncertainty that includes out of domain
errors. The results show that this model outperforms previous
results by 4 times in operational regions of interest.
Additionally, the model performed better than previous results
even for anomalies it had not encountered before. The
inclusion of uncertainty quantification is an important step
toward having robust and safe machine learning models for
operational facilities.

C. Control optimization

Like the efforts in the areas of anomaly detection and
classification, the field of accelerator optimization has recently
seen advancements through the application of techniques such
as BO, genetic algorithms, particle swarm, and reinforcement
learning. By utilizing online data from existing fast diagnos-
tics such as beam position monitors, beam loss monitors, and
radio-frequency cavity signals, an effort has been made to
develop ML-based controllers. Recent demonstrations include
BO, RL, and GPs for accelerator tuning (McIntire et al., 2016;
Hao et al., 2019; Li, Rainer, and Cheng, 2019; Duris et al.,
2020; Shalloo et al., 2020; Miskovich et al., 2021; Roussel
and Edelen, 2021; Wang, Bagri et al., 2021) and polynomial
chaos expansion–based surrogate models for uncertainty
quantification (Adelmann, 2019). Particle swarm techniques
have been evaluated to optimize the tuning of aperiodic ion
transport lines and for advanced particle separators (Amthor
et al., 2018). The use of multiobjective genetic algorithm–
(MOGA-) based optimization was used to minimize compet-
ing objectives steering operations of CEBAF linear particle
accelerators (linacs) (Terzić et al., 2014) and showed that the
dynamic heat load can be reduced by over 20% while keeping
the same trip rate. Additional studies using MOGA for
accelerator optimization were conducted by Li et al. (2018)
and Neveu et al. (2019). Reinforcement learning tools have
also been developed to optimize various elements of the
accelerator system (Gao et al., 2019; Bruchon et al., 2020;
Hirlaender and Bruchon, 2020; Kain et al., 2020; O’Shea,
Bruchon, and Gaio, 2020; John et al., 2021). Additionally,
there is new research on transferring the RL policy models to a
field-programmable gate array to provide a low latency
control response time (John et al., 2021). The accuracy of
the previously described ML methods for accelerators quickly
degrades for systems that change with time, for which

previously collected training data are no longer accurate. A
major open problem faced by the ML community is the
challenge of developing ML tools for complex systems
where the underlying dynamics is evolving (Shimodaira,
2000; Sugiyama and Kawanabe, 2012; Kurle et al., 2020;
Dramsch, Lüthje, and Christensen, 2021). For systems that
change slowly with time and for which gathering large
amounts of new data are feasible without interrupting oper-
ations, it is possible to utilize transfer learning techniques
(Goodfellow, Bengio, and Courville, 2016).
The most common transfer learning technique is to update

or partially retrain the model using new data (Calandra et al.,
2012; Koesdwiady et al., 2018; Kurle et al., 2020). Another
transfer learning approach is domain transform, in which
smaller neural networks are developed using experimental
data and used as the input layer of trained ANNs (Zeiler et al.,
2010). These transfer learning techniques can be applied to
GP-based algorithms in which the prior and parameter
correlations are first estimated using simulation studies and
then fine-tuned with experimental data. Such transfer learning
techniques have been demonstrated on a wide range of
systems, including cross-modal implementations (Castrejón
et al., 2016) and for electron backscatter diffraction (Shen
et al., 2019).

D. Adaptive ML for nonstationary systems

For accelerators, new data can be acquired in many cases in
real time and used to quickly update or retrain specific layers
of neural networks. However, in other cases repetitive retrain-
ing is not always an option. For example, if beam or
accelerator characteristics change significantly, diagnostics
such as quadrupole magnet scan–based emittance measure-
ments or wire-scan beam profile measurements can be a time-
consuming procedure that can interrupt operations. For
quickly time-varying systems adaptive feedback techniques
exist that are model independent and automatically compen-
sate for nonmodeled disturbances and changes. Novel
adaptive feedback algorithms have been developed to tune
large groups of parameters based on noisy scalar measure-
ments with analytic proofs of convergence and analytically
known guarantees for parameter update rates, making them
especially well suited for particle accelerator problems
(Scheinker, 2013; Scheinker and Krstić, 2017). Adaptive
methods have been applied in real time to changing accel-
erators to maximize the free electron laser output power
(Scheinker et al., 2019) for real-time on-line multiobjective
optimization (Scheinker, Hirlaender et al., 2020), for non-
invasive diagnostics (Scheinker and Gessner, 2015), and for
on-line RL to learn optimal feedback control policies directly
from data (Scheinker and Scheinker, 2021). A limitation of
local adaptive methods is getting stuck in local minima in
high-dimensional parameter spaces.
Adaptive ML and continuous learning is an area of active

research combining the robustness of model-independent
algorithms with the global properties of ML tools such as
CNNs. The latter have been combined with adaptive feedback
for fast automatic longitudinal phase space control of time-
varying electron beams (Scheinker et al., 2018). Such adaptive
ML tools have the potential to enable truly autonomous
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accelerator controls and diagnostics that automatically
respond to nonmodeled changes and disturbances in real time
and thereby keep the accelerator performance (beam energy
and energy spread, beam loss, phase space quality, etc.) at a
global optimal.

VI. NUCLEAR DATA

The “nuclear data pipeline” represents the interconnected
steps wherein data are compiled, evaluated, processed, and
validated for end-user applications (Romano et al., 2020).
Evaluations, the most labor-intensive step in the pipeline,
provide a recommended “best” data value (Capote, Smith, and
Trkov, 2010) by combining new measurements, previous
measurements, and nuclear model predictions. In some cases,
it can take several years for data to pass fully through the
pipeline, limited by manpower and, in some cases, outdated
methodology. Machine learning has the potential to signifi-
cantly improve each step of the pipeline (compilation,
evaluation, processing, validation, and dissemination), which
may notably reduce the time lag from data measurement to
incorporation into standardized databases [like the Evaluated
Nuclear Data File (ENDF) (Brown et al., 2018)] that are
critical for basic and applied research. Machine learning can
also facilitate the creation of surrogate models or emulators
that may improve the extraction of physics information from
data measurements, as well as improving the predictability of
evaluation models.

A. Overhauling the nuclear data pipeline

Creating a new ENDF release is a time-consuming and
complex process whereby the latest experimental reaction
measurements, theoretical reaction calculations, theory-gen-
erated reference parameter sets, and integral and benchmark
experiments are combined and adjusted in an iterative manner
for optimum consistency. An effort is under way (Schnabel
et al., 2020, 2021) to build software “containers” to hold all of
these components, as well as the current evaluations of
individual reactions. By appropriately nesting and interlinking
these containers to mimic portions of the nuclear data pipeline
(e.g., cross section measurements and models are linked
together to produce an evaluation of one reaction, which is
linked to other reactions to produce an evaluated library), they
can be treated as interlinked nodes in a Bayesian network
(BN). GPs can then be used to automatically and self-
consistently update the BN components (including the output
of a new ENDF reaction data library) when any of the
components are updated. The test cases to date have utilized
a sparse GP construction integrated into the BN framework to
enable modeling of energy-dependent cross sections, physics
model deficiencies, and energy-dependent systematic exper-
imental errors. This would be a completely new approach to
update the ENDF, and one that could be quickly adapted to
incorporate new benchmark experiment types, new theory
codes, and new techniques to evaluate individual reactions.
When completed, this approach could be modified for use in
other fields that closely interlink experiment, theory, and
benchmarks.

B. Improving compilations and evaluations

One utilization of ML to improve evaluations is through a
robust identification of outlying data points and problematic
datasets. A recent example (Neudecker et al., 2020) was the
identification of a problematic 19F neutron inelastic cross
section in the ENDF database via the use of EMB-like random
forest regression combined with a Shapley additive explan-
ations (SHAP) feature importance metric (Lundberg and Lee,
2017) of predicted effective neutron multiplication factor keff
of critical assemblies. The ML approach identified this
problematic cross section, which was missed with traditional
validation methods; this technique may be applicable for
validating other data libraries against particular features
of an end-user application. Another recent study (Whewell,
Grosskopf, and Neudecker, 2020) focused on utilizing a
variety of ML approaches, including SVMs, LR, and EMB,
to find relationships between outlying measurements and
underlying details of the experiments used in an evaluation
(backgrounds, sample backing and impurities, detector type,
incident beam type, etc.). Such an approach, which provides a
robust method to reject outlying measurements and guide
future experiments, was used in this specific case to improve
the evaluation of the 239Puðn; fÞ reaction. Random forests
were also used (Neudecker et al., 2021) to combine differ-
ential data (differential cross sections), application-specific
integral data (keff and neutron-leakage spectra from pulsed-
sphere experiments), and nuclear theory to isolate likely root
causes of disagreements between integral data and predictions
using differential data, to select preferred differential datasets
that give better agreement with integral measurements, and to
specify which differential or theory developments can best
reproduce integral results.
Machine learning can be used to provide quantified

interpolations and extrapolations of nuclear data; see the
discussion on ML for data mining in Sec. III.A. A good
example is offered by the study of giant dipole resonances
(GDRs) (Bai et al., 2021). ANNs were first used to classify
nuclei into groups with one or two GDR peaks, then two
multitask learning neural nets (Zhang and Yang, 2021) were
used to learn both GDR energies and widths. The multitask
learning approach enables multiple related tasks to be learned
simultaneously in a way that optimally utilizes the data for
each task. As a result, the accuracy of predictions for
measured nuclei was doubled compared to other approaches,
and then the unmeasured properties of GDRs of nuclei near
the β-stability line were predicted. Another study (Nobre
et al., 2021) used ten different ML classifiers with a SHAP
metric to automate and correct the assignment of spins to
neutron resonances, a critical input to BO used in evaluations.
As discussed in Sec. III.A, UQ in evaluations have also

been improved by learning discrepancies from existing
theoretical models. Moreover, ML can be used to design
experiments that address nuclear data gaps for particular
applications [such as criticality experiments (Michaud et al.,
2019)]. The new data obtained can be essential for validation
efforts in the pipeline, which can provide critical adjustments
of evaluations.
Machine learning is also being used to help extract knowl-

edge from published documents. Here CNNs, combined with
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edge detection techniques, are beginning to automate the
extraction of data (tables, plots, and numbers) from publica-
tions (Soto, 2019). Natural language processing (NLP),
widely used to process text, is a ML-enhanced textual
analytics approach that is now a central ingredient in efforts
to revamp numerous standardized databases; this includes
extracting keywords from documents as needed for the
Nuclear Science References bibliographic database
(Pritychenko et al., 2011). The next steps in NLP utilization
in nuclear data may focus on the extraction of meaning (i.e.,
semantics) from documents. In this approach, data and
concepts could be characterized as “high value,” and certain
theoretical and experimental investigations could be recom-
mended based on latent knowledge in the literature (Tshitoyan
et al., 2019).

C. Building emulators and surrogate models

Phenomenological models form the foundation of many
evaluation approaches because they are computationally
inexpensive and often require few input parameters. As a
result, the power to extrapolate evaluations to unmeasured
nuclei, to perform self-consistency checks across the nuclear
chart, and to accurately capture the correlations between
different nuclear properties is limited. Machine learning has
the potential to dramatically improve this by creating emu-
lators or surrogate models that require similar computational
resources as phenomenological models but capture the phys-
ics of full models. A recent example from reactor physics
(Radaideh and Kozlowski, 2020) may provide a blueprint for
similar advances in nuclear data. Here deep learning ANNs
were used to perform UQ, sensitivity analyses, and uncer-
tainty propagation for nuclear reactors by replacing high-
fidelity reactor simulations with surrogate models.

VII. SUMMARY AND PERSPECTIVES

In recent years, ML techniques have gained considerable
traction in scientific discovery. In particular, applications and
techniques for so-called fast ML, i.e., high-performance ML
methods applied to real-time experimental data processing,
hold great promise for enhancing scientific discoveries in
many different disciplines (Deiana et al., 2021). These
developments cover a broad mix of rapidly evolving fields,
from the development of ML techniques to computer and
hardware architectures. For a field like nuclear physics, which
covers a large range of energy and length scales, spanning
from the smallest constituents of matter to the physics of dense
astronomical objects such as neutron stars, AI and ML
techniques offer possibilities for new discoveries and deeper
insights.
This Colloquium has summarized present and planned

applications of ML techniques in experimental and theoretical
nuclear physics research. The vast range of scales is also
indicated by new and planned nuclear physics facilities
worldwide, where opportunities to incorporate ML methods
are expected to play an important role in the justification and
design of experiments, and during operations. In our overview,
we have presented several recent experimental developments,
including detector control, experimental design simulations,

and accelerator operations. Furthermore, ML techniques play
a central role in theoretical nuclear physics and a growing role
in the evaluation of nuclear data. Nuclear theory, in particular,
has seen an explosion in the application of ML methods in the
last few years. Note, however, that this Colloquium presents
just a snapshot of ML in nuclear physics as of today. New ML
approaches are continually being introduced at a pace that is
difficult to keep up with. We thus expect that over the next
decades ML will play a significant role in leveraging tech-
nologies that are at the frontier of computational science and
data science.
Owing to the broad range of scales, nuclear physics is a

field where the dimensions of the problems studied quickly
exceed the capabilities of traditional computational methods.
Machine learning techniques offer promising paths to dimen-
sion reductions. Traditionally, many of the standard ML
methods have focused on making predictions and finding
correlations in the datasets. However, as presented in this
Colloquium, to quantify errors and find causations also
requires the possibility of being able to determine models
for probability distributions. In both experiment and theory
there are clear indications that statistical learning methods
offer new perspectives for future research directions. Research
in statistical learning techniques for both supervised and
unsupervised learning, combined with fast ML methods
and similar developments, has the potential to change the
landscape of nuclear physics.
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Nättilä, J., M. C. Miller, A.W. Steiner, J. J. E. Kajava, V. F.
Suleimanov, and J. Poutanen, 2017, “Neutron star mass and radius
measurements from atmospheric model fits to x-ray burst cooling
tail spectra,” Astron. Astrophys. 608, A31.
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Vigneron, V., J. Morel, M. Lépy, and J. Martinez, 1996, “Statistical
modelling of neural networks in γ-spectrometry,” Nucl. Instrum.
Methods Phys. Res., Sect. A 369, 642–647.

Wang, D. Y., H. Bagri, C. Macdonald, S. Kiy, P. Jung, O. Shelbaya, T.
Planche, W. Fedorko, R. Baartman, and O. Kester, 2021a, “Accel-
erator tuning with deep reinforcement learning,” in Proceedings of
the 35th Annual Conference on Neural Information Processing
Systems, 2021, https://ml4physicalsciences.github.io/2021/files/
NeurIPS_ML4PS_2021_125.pdf.

Wang, R., Y.-G. Ma, R. Wada, L.-W. Chen, W.-B. He, H.-L. Liu, and
K.-J. Sun, 2020, “Nuclear liquid-gas phase transition with machine
learning,” Phys. Rev. Research 2, 043202.

Wang, Z. A., J. C. Pei, Y. J. Chen, C. Y. Qiao, F. R. Xu, Z. G. Ge, and
N. C. Shu, 2021, “Bayesian data fusion of imperfect fission yields
for augmented evaluations,” arXiv:2111.14102.

Wang, Z.-A., and J. Pei, 2021, “Optimizing multilayer Bayesian
neural networks for evaluation of fission yields,” Phys. Rev. C 104,
064608.

Wang, Z.-A., J. Pei, Y. Liu, and Y. Qiang, 2019, “Bayesian Evaluation
of Incomplete Fission Yields,” Phys. Rev. Lett. 123, 122501.

Wesolowski, S., R. J. Furnstahl, J. A. Melendez, and D. R. Phillips,
2019, “Exploring Bayesian parameter estimation for chiral effective
field theory using nucleon-nucleon phase shifts,” J. Phys. G 46,
045102.

Wesolowski, S., I. Svensson, A. Ekström, C. Forssén, R. J. Furnstahl,
J. A. Melendez, and D. R. Phillips, 2021, “Rigorous constraints on
three-nucleon forces in chiral effective field theory from fast and
accurate calculations of few-body observables,” Phys. Rev. C 104,
064001.

Wetzel, S. J., and M. Scherzer, 2017, “Machine learning of explicit
order parameters: From the Ising model to SUð2Þ lattice gauge
theory,” Phys. Rev. B 96, 184410.

Whewell, B., M. Grosskopf, and D. Neudecker, 2020, “Evaluating
239Puðn; fÞ cross sections via machine learning using experimental
data, covariances, and measurement features,” Nucl. Instrum.
Methods Phys. Res., Sect. A 978, 164305.

Wilkins, D. M., A. Grisafi, Y. Yang, K. U. Lao, R. A. DiStasio, and
M. Ceriotti, 2019, “Accurate molecular polarizabilities with

coupled cluster theory and machine learning,” Proc. Natl. Acad.
Sci. U.S.A. 116, 3401–3406.

Williams, C., and C. Rasmussen, 1996, “Gaussian processes for
regression,” in Advances in Neural Information Processing Sys-
tems, Vol. 8, edited by D. Touretzky, M. C. Mozer, and M.
Hasselmo (MIT Press, Cambridge, MA).

Wu, D., C. L. Bai, H. Sagawa, S. Nishimura, and H. Q. Zhang, 2021,
“β-delayed one-neutron emission probabilities within a neural
network model,” Phys. Rev. C 104, 054303.

Wu, D., C. L. Bai, H. Sagawa, and H. Q. Zhang, 2020, “Calculation
of nuclear charge radii with a trained feed-forward neural network,”
Phys. Rev. C 102, 054323.

Wu, X. H., L. H. Guo, and P.W. Zhao, 2021, “Nuclear masses in
extended kernel ridge regression with odd-even effects,” Phys. Lett.
B 819, 136387.

Wu, X. H., and P.W. Zhao, 2020, “Predicting nuclear masses with the
kernel ridge regression,” Phys. Rev. C 101, 051301.

Wynen, J.-L., E. Berkowitz, S. Krieg, T. Luu, and J. Ostmeyer, 2021,
“Machine learning to alleviate Hubbard-model sign problems,”
Phys. Rev. B 103, 125153.

Xie, W.-J., and B.-A. Li, 2020, “Bayesian inference of the symmetry
energy of superdense neutron-rich matter from future radius
measurements of massive neutron stars,” Astron. J. 899, 4.

Xie, W.-J., and B.-A. Li, 2021, “Bayesian inference of the incom-
pressibility, skewness and kurtosis of nuclear matter from empirical
pressures in relativistic heavy-ion collisions,” J. Phys. G 48,
025110.

Xu, J., W.-J. Xie, and B.-A. Li, 2020, “Bayesian inference of nuclear
symmetry energy from measured and imagined neutron skin
thickness in 116;118;120;122;124;130;132Sn, 208Pb, and 48Ca,” Phys.
Rev. C 102, 044316.

Xu, Y., J. E. Bernhard, S. A. Bass, M. Nahrgang, and S. Cao, 2018,
“Data-driven analysis for the temperature and momentum depend-
ence of the heavy-quark diffusion coefficient in relativistic heavy-
ion collisions,” Phys. Rev. C 97, 014907.

Yang, J., and J. Piekarewicz, 2020, “Covariant density functional
theory in nuclear physics and astrophysics,” Annu. Rev. Nucl. Part.
Sci. 70, 21–41.

Yang, L., et al., 2020, “Bayesian analysis on interactions of exotic
nuclear systems,” Phys. Lett. B 807, 135540.

Ye, X., H. Jian, and Z. Kai-En, 2008, “Applying Bayesian neural
networks to identify pion, kaon and proton in BESII, Chin. Phys. C
32, 201–204.

Yoon, B., T. Bhattacharya, and R. Gupta, 2019, “Machine
learning estimators for lattice QCD observables,” Phys. Rev. D
100, 014504.

Yoshida, S., 2020, “Nonparametric Bayesian approach to extrapo-
lation problems in configuration interaction methods,” Phys. Rev. C
102, 024305.

Yoshida, S., and N. Shimizu, 2022, “Constructing approximate shell-
model wavefunctions by eigenvector continuation,” Prog. Theor.
Exp. Phys. 053D02.

Yoshida, S., N. Shimizu, T. Togashi, and T. Otsuka, 2018, “Un-
certainty quantification in the nuclear shell model,” Phys. Rev. C
98, 061301.

You, Y.-Z., Z. Yang, and X.-L. Qi, 2018, “Machine learning
spatial geometry from entanglement features,” Phys. Rev. B 97,
045153.

Yousefnia, K. V., A. Kotibhaskar, R. Bhalerao, and J.-Y. Ollitrault,
2021, “Bayesian approach to long-range correlations and
multiplicity fluctuations in nucleus-nucleus collisions,” arXiv:2108
.03471.

Amber Boehnlein et al.: Colloquium: Machine learning in nuclear physics

Rev. Mod. Phys., Vol. 94, No. 3, July–September 2022 031003-31

https://doi.org/10.1021/acs.jctc.0c00927
https://doi.org/10.1021/acs.jctc.0c00927
https://doi.org/10.1038/s41586-019-1335-8
https://doi.org/10.1103/PhysRevD.101.014508
https://doi.org/10.1088/0954-3899/43/11/114002
https://doi.org/10.1103/PhysRevC.96.044308
https://doi.org/10.1103/PhysRevC.97.014306
https://doi.org/10.1103/PhysRevC.93.014311
https://doi.org/10.1214/12-STS412
https://doi.org/10.1214/12-STS412
https://doi.org/10.1016/S0168-9002(96)80068-4
https://doi.org/10.1016/S0168-9002(96)80068-4
https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_125.pdf
https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_125.pdf
https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_125.pdf
https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_125.pdf
https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_125.pdf
https://doi.org/10.1103/PhysRevResearch.2.043202
https://arXiv.org/abs/2111.14102
https://doi.org/10.1103/PhysRevC.104.064608
https://doi.org/10.1103/PhysRevC.104.064608
https://doi.org/10.1103/PhysRevLett.123.122501
https://doi.org/10.1088/1361-6471/aaf5fc
https://doi.org/10.1088/1361-6471/aaf5fc
https://doi.org/10.1103/PhysRevC.104.064001
https://doi.org/10.1103/PhysRevC.104.064001
https://doi.org/10.1103/PhysRevB.96.184410
https://doi.org/10.1016/j.nima.2020.164305
https://doi.org/10.1016/j.nima.2020.164305
https://doi.org/10.1073/pnas.1816132116
https://doi.org/10.1073/pnas.1816132116
https://doi.org/10.1103/PhysRevC.104.054303
https://doi.org/10.1103/PhysRevC.102.054323
https://doi.org/10.1016/j.physletb.2021.136387
https://doi.org/10.1016/j.physletb.2021.136387
https://doi.org/10.1103/PhysRevC.101.051301
https://doi.org/10.1103/PhysRevB.103.125153
https://doi.org/10.3847/1538-4357/aba271
https://doi.org/10.1088/1361-6471/abd25a
https://doi.org/10.1088/1361-6471/abd25a
https://doi.org/10.1103/PhysRevC.102.044316
https://doi.org/10.1103/PhysRevC.102.044316
https://doi.org/10.1103/PhysRevC.97.014907
https://doi.org/10.1146/annurev-nucl-101918-023608
https://doi.org/10.1146/annurev-nucl-101918-023608
https://doi.org/10.1016/j.physletb.2020.135540
https://doi.org/10.1088/1674-1137/32/3/008
https://doi.org/10.1088/1674-1137/32/3/008
https://doi.org/10.1103/PhysRevD.100.014504
https://doi.org/10.1103/PhysRevD.100.014504
https://doi.org/10.1103/PhysRevC.102.024305
https://doi.org/10.1103/PhysRevC.102.024305
https://doi.org/10.1093/ptep/ptac057
https://doi.org/10.1093/ptep/ptac057
https://doi.org/10.1103/PhysRevC.98.061301
https://doi.org/10.1103/PhysRevC.98.061301
https://doi.org/10.1103/PhysRevB.97.045153
https://doi.org/10.1103/PhysRevB.97.045153
https://arXiv.org/abs/2108.03471
https://arXiv.org/abs/2108.03471


Yüksel, E., D. Soydaner, and H. Bahtiyar, 2021, “Nuclear binding
energy predictions using neural networks: Application of the
multilayer perceptron,” Int. J. Mod. Phys. E 30, 2150017.

Zeiler, M. D., D. Krishnan, G.W. Taylor, and R. Fergus, 2010,
“Deconvolutional networks,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition,
San Francisco, 2010 (IEEE, New York), pp. 2528–2535, https://
ieeexplore.ieee.org/document/5539957.

Zhang, R., Z. Fan, R. Li, H.-W. Lin, and B. Yoon, 2020, “Machine-
learning prediction for quasiparton distribution function matrix
elements,” Phys. Rev. D 101, 034516.

Zhang, X., and R. J. Furnstahl, 2021, “Fast emulation of quantum
three-body scattering,” arXiv:2110.04269.

Zhang, X., K. M. Nollett, and D. R. Phillips, 2015, “Halo effective
field theory constrains the solar 7Beþ p → 8Bþ γ rate,” Phys.
Lett. B 751, 535–540.

Zhang, X., K. M. Nollett, and D. R. Phillips, 2020, “S-factor and
scattering-parameter extractions from 3Heþ 4He → 7Beþ γ,”
J. Phys. G 47, 054002.

Zhang, X., et al., 2021, “Determining impact parameters of heavy-
ion collisions at low-intermediate incident energies using deep
learning with convolutional neural network,” arXiv:2111.06597.

Zhang, Y., and Q. Yang, 2021, “A survey on multi-task learning,”
arXiv:1707.08114.

Zhang, Z., X.-B. Feng, and L.-W. Chen, 2021, “Bayesian inference
on isospin splitting of nucleon effective mass from giant resonances
in 208Pb,” Chin. Phys. C 45, 064104.

Zhao, Y.-S., L. Wang, K. Zhou, and X.-G. Huang, 2021, “Detecting
chiral magnetic effect via deep learning,” arXiv:2105.13761.

Zhu, J., Y. Chen, F. Brinker, W. Decking, S. Tomin, and H. Schlarb,
2021, “Deep learning-based autoencoder for data-driven modeling
of an RF photoinjector,” arXiv:2101.10437.

Amber Boehnlein et al.: Colloquium: Machine learning in nuclear physics

Rev. Mod. Phys., Vol. 94, No. 3, July–September 2022 031003-32

https://doi.org/10.1142/S0218301321500178
https://ieeexplore.ieee.org/document/5539957
https://ieeexplore.ieee.org/document/5539957
https://ieeexplore.ieee.org/document/5539957
https://ieeexplore.ieee.org/document/5539957
https://doi.org/10.1103/PhysRevD.101.034516
https://arXiv.org/abs/2110.04269
https://doi.org/10.1016/j.physletb.2015.11.005
https://doi.org/10.1016/j.physletb.2015.11.005
https://doi.org/10.1088/1361-6471/ab6a71
https://arXiv.org/abs/2111.06597
https://arXiv.org/abs/1707.08114
https://doi.org/10.1088/1674-1137/abf428
https://arXiv.org/abs/2105.13761
https://arXiv.org/abs/2101.10437

