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A complete understanding of the brain requires an integrated description of the numerous scales and
levels of neural organization. This means studying the interplay of genes and synapses, but also the
relation between the structure and dynamics of the whole brain, which ultimately leads to different
types of behavior, from perception to action, while asleep or awake. Yet multiscale brain modeling is
challenging, in part because of the difficulty to simultaneously access information from multiple
scales and levels. While some insight has been gained on the role of specific microcircuits on the
generation of macroscale brain activity, a comprehensive characterization of how changes occurring
at one scale or level can have an impact on other ones remains poorly understood. Recent efforts to
address this gap include the development of new frameworks originating mostly from network
science and complex systems theory. These theoretical contributions provide a powerful framework to
analyze and model interconnected systems exhibiting interactions within and between different layers
of information. Recent advances for the characterization of the multiscale brain organization in terms
of structure-function, oscillation frequencies, and temporal evolution are presented. Efforts are
reviewed on the multilayer network properties underlying the physics of higher-order organization of
neuronal assemblies, as well as on the identification of multimodal network-based biomarkers of
brain pathologies such as Alzheimer’s disease. This Colloquium concludes with a perspective
discussion of how recent results from multilayer network theory, involving generative modeling,
controllability, and machine learning, could be adopted to address new questions in modern physics
and neuroscience.
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I. INTRODUCTION

The brain is a formidable complex system exhibiting a wide
repertoire of emergent phenomena, such as criticality, that
ultimately rule the behavior of many living beings (Beggs and
Plenz, 2003; de Arcangelis, Perrone-Capano, and Herrmann,
2006; Chialvo, 2010; Fontenele et al., 2019; Wilting and
Priesemann, 2019). These phenomena involve multiple spatial
scales, from molecules to the whole brain, and stem from
multiple temporal scales, from submilliseconds to the entire
lifespan (Robinson et al., 2005). More broadly, scales can
refer to other types of dimensions or levels (Brooks, DiFrisco,
and Wimsatt, 2021), such as complementary phenomenologi-
cal information captured by different experimental technolo-
gies (such as magnetic resonance imaging, electrophysiology,
and genetics) or neuronal interactions at multiple topological
levels (Betzel and Bassett, 2017b; Bazinet et al., 2021)
(Fig. 1).
Disentangling such organizational complexity, and inves-

tigating how the relationships between the system’s parts give
rise to its collective behavior, is crucial to understanding basic
neural functioning (Turkheimer et al., 2021) and, eventually,
curing brain diseases (Cutsuridis, 2019). Modeling multiscale
brain organization is indeed one of the most important*fabrizio.de-vico-fallani@inria.fr
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challenges of our century. The number of flagship initiatives
funding large projects that aim to reproduce multiscale brain
behavior has significantly increased in the last two decades;
the Human Brain Project,1 the Brain Initiative,2 and the China
Brain Project (Poo et al., 2016) represent just a few examples.
While at present there is no comprehensive theory of how to

bridge multiple scales and levels, the pursuit of such a theory
remains critically important. Several recent models propose
new ways to model neural activity within and between
multiple scales, and further provide mechanistic insights into
the structure and dynamics of brain organization. Hence, it is
timely to discuss these emerging developments, and to seek to
tie them together into a meaningful theoretical field that
tackles current open questions in multiscale neuroscience and
medicine from a system perspective.
Research in the field has progressively acknowledged the

importance of considering brain organization from a holistic
perspective and not from a reductionist angle (Deco, Jirsa,
and McIntosh, 2011; Breakspear, 2017; Engel, Schlvinck, and
Lewis, 2021). This is somewhat implicit in the term organi-
zation itself, which stems from the medieval Latin organ-
izatio, i.e., the arrangement of parts in an organic whole.
Accumulating evidence indicates that modeling how different
brain components interact is often more realistic and effective
in terms of behavior prediction than simply considering their
activity in isolation (Scannell et al., 1999; Friston, 2011).
Graphs or networks have progressively emerged as a natural

way to describe heterogeneous connectivity diagrams at single
scales or levels (Jouve, Rosenstiehl, and Imbert, 1998; Sporns,
Tononi, and Edelman, 2000; Hilgetag and Kaiser, 2004; Stam
and Reijneveld, 2007; Park and Friston, 2013). According to
this framework, the nodes of a network correspond to different
brain sites, such as neurons, neuronal ensembles, or even
larger areas, but also to electric or optical sensors. The edges,

or links, of the network represent either anatomical (structural)
connections or functional (dynamical) interactions between
the nodes. While the best practices for establishing the
links between brain nodes are still evolving, the type of
connectivity basically depends on the experimental technol-
ogy. Anatomical brain networks are often derived from
postmortem tract tracing or in vivo or in vitro structural
imaging [such as diffusion tensor imaging (DTI)] (Rubinov
and Sporns, 2010). Dynamical brain networks are instead
mostly obtained from in vivo and in vitro functional imaging,
such as optical imaging, electrophysiology [ electroencepha-
lography (EEG), magnetoencephalography (MEG), etc.], or
functional magnetic resonance imaging (fMRI) (De Vico
Fallani et al., 2014).
The use of a network formalism to study the structure and

dynamics of interconnected brain systems has a rich and
pervasive heritage in seminal works at the intersection
between physics and neuroscience. Studies on single-scale
brain networks produced major results and provided structure
around concepts and languages inspired by statistical physics
and complex systems theory. Like other real interconnected
systems, brain networks tend to exhibit an optimal balance
between integration and segregation within their connectivity
structure (Bassett and Bullmore, 2017). This peculiar struc-
ture, also known as small world, is topologically characterized
by the co-occurrence of short paths and abundant clustering
links between nodes (Watts and Strogatz, 1998). Small-world
networks ensure efficient communication between the nodes
and favor global synchronization of oscillatory dynamics
(Lago-Fernández et al., 2000; Latora and Marchiori, 2001).
Brain networks also exhibit other important topological

properties, such as mesoscale modular organization as well as
the presence of core hubs passing information between
peripheral distant brain areas (Bullmore and Sporns, 2009;
Zamora-López, Zhou, and Kurths, 2010; van den Heuvel
and Sporns, 2011; Markov et al., 2013). In addition, being
embedded in space, brain networks are economic as they tend
to minimize the energetic cost (such as the metabolic cost)
associated with the presence of long-range connections
(Bullmore and Sporns, 2012).
At this stage it is important to remember that the brain is a

flexible system and that its organization can adapt to the
external environment, endogenous and exogenous inputs, as
well as brain diseases or after damage. As a consequence,
topological properties of brain networks can exhibit shifts
from normative physiological values and those deviations
constitute the basis for the identification of new organizational
mechanisms and biomarkers in both cognitive and clinical
neuroscience (Stam, 2014; Zalesky et al., 2014; Fornito,
Zalesky, and Breakspear, 2015; Medaglia, Lynall, and
Bassett, 2015; Fornito, 2021).
All the aforementioned findings refer to brain networks

obtained separately from different levels of information. Here
we expand the link between physics and neuroscience by
building a unifying framework to analyze and model neural
organization across multiple scales and/or dimensions from a
network perspective. Specifically, we focus on approaches
based on multilayer network theory, a recent field connected
to physics through nontrivial results related to structure,
dynamics, criticality, and resilience (De Domenico et al.,

FIG. 1. Multiscale brain organization. The different organiza-
tional aspects of the brain system are represented over a
multidimensional manifold. Three type of dimensions, or levels,
are illustrated here, i.e., time, space, and topology. From the top to
the bottom of the manifold, the scales of each organizational level
go from micro to macro. From Thibault Rolland.

1See https://www.humanbrainproject.eu/.
2See https://braininitiative.nih.gov/.
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2013; Boccaletti et al., 2014; Radicchi, 2014; Nicosia et al.,
2017; Aleta and Moreno, 2019; Della Rossa et al., 2020;
Danziger and Barabási, 2022).
In addition, network models based on hyperbolic geometry

were recently introduced to reproduce brain networks at
different coarse-grained spatial resolutions, providing new
insights on brain self-similarity and criticality (Allard and
Ángeles Serrano, 2020; Zheng et al., 2020). More tradition-
ally, multiscale brain modeling can be performed by designing
biophysical models of single-scale dynamics and simulating
simple interlayer connectivity schemes (Siettos and Starke,
2016; Lytton et al., 2017; Cutsuridis, 2019). Interested readers
should consult the previously mentioned references for more
information about these alternative approaches.
The remainder of this Colloquium is organized as follows.

In Sec. II, we illustrate the rationale of multiscale brain
modeling and review the main research lines and challenges.
These arguments allow the introduction of multilayer network
theory to characterize brain network organization across
multiple scales and levels. In Sec. III, we present the multi-
layer network formalism by providing basic notions and
definitions. We then introduce ways of characterizing multi-
layer network properties that have been extended to network
neuroscience. Section IV describes the different types of
multilayer brain networks that have been investigated thus
far. Emphasis is given to the relevance of multilayer modeling
as compared to single-layer alternatives and to the current
practices to infer them from experimental data. We next give
in Sec. V a few examples showing how multilayer network
theory has been used to characterize and understand brain
structure and function in physiological conditions. In Sec. VI,
we then describe which multilayer network properties deviate
from normative values in the presence of brain diseases, and
how to derive predictive biomarkers of network reorganization
associated with clinical outcomes. We close in Sec. VII by
outlining the emerging frontiers of multilayer network theory
that can be developed to advance multiscale brain modeling.
Except when otherwise stated, brain networks refer here to
connectivity graphs obtained with neuroimaging techniques
in humans. Nonetheless, the presented formalism is broadly
relevant and applicable to other animal species (primates and
nonprimates), data modalities (in vitro and in vivo), and
simulated neural models (in silico).
By reviewing the research endeavors on multilayer network

theory to study the brain, we aim to stimulate a discussion and
reflection on the exciting opportunity that it constitutes for
multiscale neural modeling. To this end, we keep jargon to a
minimum and adopt an accessible language to reach the
broadest possible multidisciplinary science community.

II. MULTISCALE BRAIN MODELING

The goal of multiscale modeling is to describe a system’s
behavior by simultaneously considering multiple features, or
mechanisms, taking place and interacting on different levels of
information. These levels may represent phenomena of differ-
ent nature, such as in continuum mechanics and molecular
dynamics, or at different spatiotemporal resolution, i.e., from
microscale to macroscale. Multiscale modeling is therefore

central for an integrated understanding of a complex system
and for a prediction of its emergent properties. Since most
real-life phenomena involve a broad range of spatial or
temporal scales, as well as the interaction between different
processes, multiscale modeling has been widely adopted in
several disciplines, ranging from material science and algo-
rithmics to biology and engineering (Weinan, 2011).
In neuroscience, multiscale modeling has historically con-

sidered multiple levels ranging from microscopic single
neuron activity to macroscopic behavior of collective dynam-
ics. This is achieved by bridging biophysical mechanistic
models of neuron dynamics and experimental neuroimaging
data (Gerstner, Sprekeler, and Deco, 2012). This bottom-up
approach allows one to predict macroscopic observables by
integrating information at smaller scales, typically under the
assumption of mean-field approximations (Breakspear and
Stam, 2005; Siettos and Starke, 2016; Goldman et al., 2019).
This means that the neuronal ensembles’ dynamics are
progressively averaged across scales leading to a characteristic
hierarchical nested structure where multiple units at finer-
grained levels map onto a new entity at coarser-grained ones
[Fig. 2(a)] (Freeman, 1975; Kozma and Freeman, 2003;
Chialvo, 2010; Expert et al., 2011).
The thalamocortical model is perhaps one of the simplest

examples that can reproduce disparate physiological and
pathological conditions, from Parkinson’s disease to epileptic
seizures (Lopes da Silva et al., 1974; Jirsa and Haken, 1996;
Sherman and Guillery, 1996; Bhattacharya, Coyle, and
Maguire, 2011; Bonjean et al., 2012; Sohanian Haghighi
and Markazi, 2017). In this model, both basic microscopic
neurophysiology (such as synaptic and dendritic dynamics)
and mesoscale brain anatomy (such as corticocortical and
corticothalamic pathways) are progressively incorporated to
predict large-scale brain electrical activity [Fig. 2(b)].
With the advent of new technologies and tools that

allow more precise experimental data and efficient processing
to be gathered, multiscale brain modeling has witnessed a
significant transformation in the last decade. Increasingly
sophisticated and accurate models have been proposed,
including large-scale anatomical and functional brain con-
nectivity (Deco et al., 2008; Deco, Jirsa, and McIntosh, 2011).
However, for one to fully understand a multiscale system,
models at different scales must be coupled together to produce
integrated models across multiple levels. Indeed, global brain
dynamics are strongly dependent on the interaction of several
interconnected subnetworks that contribute differently to
generate them. Thus, the study of how intrascale and interscale
interactions give rise to collective behavior and to relation-
ships with their environment is a central theme of modern
multiscale brain modeling. Because of the substantial lack of
biological evidence, especially concerning interscale connec-
tivity, large parts of studies have focused on analytical and
numerical approaches (Dada and Mendes, 2011). For exam-
ple, intrascale interactions have been simulated adopting
cellular automata perspectives (Kozma et al., 2004), while
interscale connectivity has been established using wavelet
transformations (Breakspear and Stam, 2005).
The use of top-down approaches, which start with the

observation of biological characteristics in the intact system
and then construct theories that would explain the observed
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behaviors, offers complementary solutions. In particular, data-
driven methods based on statistical processing of neuroimag-
ing data allow one to infer network representations of the brain
at both anatomical and functional levels. Anatomical brain
networks, also known as structural networks, are typically
derived from 3D modeling techniques that identify nerve
tracts using data collected by diffusion MRIs (Basser et al.,
2000). Functional brain networks, sometimes referred to as
dynamical networks, are instead estimated by computing
similarities between the activity signals generated in different
brain sites. To this end, related measures such as Pearson
correlation or Granger causality can be used, depending on the
nature of the experiment and the type of scientific question
(De Vico Fallani et al., 2014). The use of cross-frequency
coupling represents a promising approach to derive interscale
interactions across multiple signal oscillation frequencies
(Jirsa and Müller, 2013). Thus, while multiscale modeling
in neuroscience has historically had a strong spatial conno-
tation, it currently spans disparate levels of information, from
structure and function to multiple oscillatory regimes and
temporal evolution. Top-down approaches can therefore be
used to generate richer and more realistic models reproducing
real brain connectivity schemes and not just simulated ones
(Siettos and Starke, 2016).
However, richer information and more accurate models also

mean higher complexity and harder interpretation. These are
both typical characteristics of multiscale problems that require
the use of efficient algorithms to simulate the fully integrated
model and appropriate ways of analyzing and interpreting
them (Chi, 2016). This is one of the main challenges of large
research projects supported by funding agencies around the
world, such as the European Human Brain Project3 and the

U.S. BRAIN Initiative.4 The increasing number of open-
source tools that can be freely accessed and customized to
enrich multiscale brain models simply confirms how broad
and multidisciplinary the community effort is (Hines and
Carnevale, 2001; Eppler et al., 2009; Sanz Leon et al., 2013;
Dura-Bernal et al., 2019).
In all this turmoil, questions like the following appear to be

essential for advancing multiscale models: how to model
within-level and between-level relationships, how to charac-
terize the resulting higher-order network properties, and what
the critical phenomena emerging from the interaction of
multiple levels are. These questions and associated notions
motivate the construction of a theory that explicitly builds on
the capability to simultaneously characterize intralayer and
interlayer connectivity. In Sec. III, we introduce the meth-
odological framework of multilayer network theory, which is
at the basis of recent developments in multiscale modeling of
neural functioning.

III. MULTILAYER NETWORK FORMALISM

A. Mathematical definition of multilayer networks

The need to investigate complex systems with multiple
types of connectivity has emerged, almost independently,
from different disciplines including social science, engineer-
ing, and computer science (Wasserman and Faust, 1994;
Little, 2002; Dunlavy, Kolda, and Kegelmeyer, 2011).
More recently the physics community also produced pioneer-
ing works on notions such as networks of networks (Zhou
et al., 2006, 2007), node-colored networks (Newman, 2003;
Vazquez, 2006), interdependent networks (Buldyrev et al.,

FIG. 2. Bottom-up hierarchical modeling. (a) The so-called K-set hierarchy showing the model progression from cell level to entire brain.
K0 is a noninteracting collection of neurons. KI corresponds to a cortical column with sufficient functional connection density. KII
represents a collection of excitatory and inhibitory populations. KIII is formed by the interaction of several KII sets and simulates the
known dynamics of sensory areas with 1=f spectra; see the inset in (b). KIV is formed by the interaction of three KIII sets that models the
genesis of simple forms of intentional behaviors. Adapted from Kozma et al., 2007. (b) Schematic view of major components involved in
thalamocortical interactions. Different shading patterns code for different zones of the system, i.e., from micro [relay nuclei, thalamic
reticular nuclei (TRN)] to macro scales (cortex). As indicated by the key, all connections shown are excitatory except for the connection
from the reticular cell to the relay cell, which is inhibitory. Adapted from Sherman and Guillery, 1996. Inset from Robinson et al., 2005.

3See https://humanbrainproject.eu/. 4See https://braininitiative.nih.gov/.
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2010; Gao et al., 2012), and multilayer networks (Jo, Baek,
and Moon, 2006; Kurant and Thiran, 2006). As a conse-
quence, different terms have been introduced and adopted,
thus producing a lack of a consensus set of terminology and
mathematical formulation. Only in the last decade have we
witnessed the dawning of general frameworks compatible
with tools from complex systems and network science
(Boccaletti et al., 2014; Kivelä et al., 2014), or based on
tensorial formalisms (De Domenico, 2017).
Formally, a multilayer network is defined as M ¼ ðG; CÞ,

where G is a set of graphs and C is a set of edges connecting the
nodes of the different graphs (Boccaletti et al., 2014). More
precisely, G ¼ fGαjα ∈ Ng, with Gα ¼ ðVα; EαÞ a graph at
layer α. Vα is the set of nodes of Gα and Eα is the set of its
edges, with Eα ⊆ Vα × Vα. The set of edges between the
nodes of the graphs at different layers α and β is denoted
by C ¼ fEαβ ⊆ Vα × Vβjα ≠ βg.
An equivalent but less formal convenient representation of a

multilayer network is given by the so-called supra-adjacency
matrix A ¼ faαβij g. Here the element aαβij represents the link
between node i in layer α and node j in layer β. Hence, given
M layers in the graph, A will result in a matrix with M blocks
on the main diagonal, accounting for the connections within
layers, andMðM − 1Þ off-diagonal blocks describing the links
between different layers [Eq. (1)].
The previous definitions are general and allow one to

describe complex systems exhibiting different numbers of
nodes in each layer or scale, directed or undirected inter-
actions, and weighted or unweighted connectivity. Based on
state-of-the-art studies (Bianconi, 2018), we consider here
multilayer networks composed of replica nodes. That means
that all the layers will have the same number of nodes
representing the same units of the system across different
scales. Note that this is a specific condition that, however,
matches the nature of data presented in a large segment of
the studies conducted thus far. In this configuration Vα ¼
V; α ∈ f1;…; Mg, and only connectivity within and between
layers is allowed to change [Fig. 3(a)]. In the following, we
refer to these general configurations as to full multilayer
networks. The supra-adjacency matrix of full multilayer
networks has the following form:

A ¼

0
BBBBB@

E11 E12 … E1M

E21 E22 … E2M

..

. . .
. ..

. ..
.

EM1 EM2 … EMM

1
CCCCCA; ð1Þ

where Eαβ contains interlayer links when α ≠ β and intralayer
links when α ¼ β.
Specific cases of full multilayer networks are the so-called

multiplex networks. In multiplex networks, interlayer con-
nections are not present, apart from those between replica
nodes [Fig. 3(b)]. These links inform the model of the existing
nodal correspondences across layers. Hence, in a multiplex
Vα¼V;α∈f1;…;Mg and C¼fEαβ ⊆fðv;vÞjv∈Vgjα≠βg.
The associated supra-adjacency matrix becomes

A ¼

0
BBBBB@

E11 I … I

I E22 … I

..

. . .
. ..

. ..
.

I I … EMM

1
CCCCCA; ð2Þ

where I is the N × N identity matrix.
Based on the previous configurations, many types of

multiscale interconnected systems (spatial, temporal, multi-
modal, etc.) can be represented and investigated. For example,
temporal networks are represented by a particular type of
multiplex, where only replica nodes between adjacent layers
are interconnected, and the blocks after the first diagonals in
Eq. (2) become zero matrices [Fig. 3(c)]. We notice that in
general the information contained in multilayer networks can
be obtained neither from equivalent aggregated versions (such
as when links are averaged across layers) nor from standard
network metrics and tools (Zanin, 2015). For this reason, it is
crucial to derive new concepts and methods to quantify the
higher-order topological properties emerging from multilayer
networks. In Sec. III.B, we introduce some of the metrics and
tools that have been developed thus far, as well as those that
have been adopted in neuroscience. For simplicity, we focus

FIG. 3. Main configurations of multilayer networks. (a) Full multilayer network. Both within- and between-layer connections are
allowed with no specific restrictions. This configuration is typically adopted to model multifrequency brain networks; see Sec. IV.A.
(b) Multiplex network. Only interlayer connections between the replica nodes are allowed. There are no restrictions on connections
within layers. This configuration is typically used to model multimodal brain networks; see Sec. IV.A. (c) Temporal network. Interlayer
connections are allowed only between adjacent layers. There are no restrictions on connections within layers. This configuration is
typically adopted to model time-varying brain networks; see Sec. IV.A. From Thibault Rolland.
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here on unweighted and undirected multilayer networks. For a
more complete picture of multilayer network theory, see the
reviews by Boccaletti et al. (2014) and Bianconi (2018).

B. Analytical tools for multilayer networks

In the following, we present some of the multilayer methods
that have been used most frequently in neuroscience. We
categorize them according to the topological scale that they
characterize, i.e., from nodes (microscale) to the entire net-
work (macroscale) passing by groups of nodes (mesoscale).
Remember that the entry aαβij ¼ aαβji of the supra-adjacency
matrix A describes the interaction of node i in layer α to node j
in layer β of a given multilayer network. Since A is binary, aαβij
has a value of either 1 (presence of a link) or 0 (absence of a
link). Note that aαij represents intralayer interactions in layer α.
For simplicity, we do not consider here self-loops, i.e.,
aαii ¼ 0. Finally, we denote the number of layers as M and
the number of replica nodes in each layer as N.

1. Microscale topology

The most intuitive nodal metric in classical network theory
is the node degree, which measures the actual number of links
that a node shares with the others. The equivalent measure in
multiplex networks is the so-called overlapping degree or
strength oi, which simply sums the weighted degrees of node i
across all layers.
Another popular metric for measuring how the degrees of

node i are arranged across all layers is the multiplex partici-
pation coefficient (Battiston, Nicosia, and Latora, 2014):

pi ¼
M

M − 1

�
1 −

XM
α

�
kαi
oi

�
2
�
; ð3Þ

where kαi is the degree of node i at layer α. When pi ¼ 0, the
links of the node are concentrated in one layer; when pi ¼ 1,
they are uniformly distributed across layers.
Triads of interconnected nodes, also called triangles, are

simple configurations supporting transitivity, clustering, and
information segregation in the network (Newman, 2010).
Locally, this tendency is quantified via the clustering coef-
ficient, which measures the proportion of nodes linked to a
given node that are also linked together (Watts and Strogatz,
1998). A relatively straightforward extension is the multiplex
clustering coefficient (Cozzo et al., 2015)

ci ¼
P

α

P
β≠α

P
j≠i;m≠i a

α
ija

β
jma

α
mi

ðM − 1ÞPα

P
j≠i;m≠i a

α
ija

α
mi

; ð4Þ

which takes into account the possibility of forming triangles
by means of links belonging to two different layers.
These metrics determine which nodes are the most central

in the network. In general there are many ways of defining the
centrality of a node. For example, based on the computation of
the shortest paths, the betweenness of a node measures its
tendency to topologically connect distant parts of the network
(Freeman, 1977). The extension to multiplex networks is
the so-called overlapping betweenness centrality, which reads
(Yu et al., 2017a)

bi ¼
1

ðN − 1ÞðN − 2Þ
X
α

X
s;s≠t

X
t;t≠i

σαstðiÞ
σαst

; ð5Þ

where σαstðiÞ is the number of shortest paths from nodes s to t
passing through node i in layer α and σαst is the total number of
shortest paths between nodes s and t in layer α.
Another well-known centrality measure is the PageRank

centrality, which was initially used in Google Web search
engines (Brin and Page, 1998). PageRank centrality can be
thought of as roughly the fraction of time a random walker
spends visiting a node traveling through the links of the
network. In multiplex networks, random walkers have the
possibility of jumping to adjacent nodes and teleporting to
nodes in other layers, according to a modified version of
the transition probability; see Halu et al. (2013) and De
Domenico, Solé-Ribalta et al. (2015) for more details.

2. Mesoscale topology

Network motifs are recurrent connection patterns involving
few nodes, which makes them easily interpretable. They
constitute the basic building blocks of a complex system
architecture coding for essential biological functions such as
autoregulation, cascades, and feed-forward loops (Milo et al.,
2002; Sporns and Kötter, 2004; De Vico Fallani, Latora
et al., 2008).
When dealing with multiplex networks, motifs can be

formed by edges belonging to different layers (Battiston et al.,
2017). Hence, the total number of possible configurations
depends not only on the number of layers but also on the type
of interaction, negative or positive. In these cases, Z scores are
typically used to determine the statistical abundance of a
multiplex motif G according to the following formula:

ZðGÞ ¼ FðGÞ − F̄RðGÞ
SRðGÞ

; ð6Þ

where F is the occurrence frequency of a given multiplex
motif, while F̄RðGÞ and SRðGÞ are, respectively, the mean
frequency and its standard deviation obtained from a set of
equivalent random multiplex graphs R. Alternatively, fre-
quency coherent subgraphs can also be extracted by counting
their abundance in a set of multiplex brain networks corre-
sponding to different individuals (Huang et al., 2020).
The tendency of a network to form distinct groups, or

clusters, of many nodes is an important prerequisite for the
modularity of the system and its ability to process information
in a segregated manner (Fortunato, 2010). The detection of
these groups, which are also known as communities, is
nontrivial, as one has to find an optimal separation that
maximizes the number of links within groups and minimizes
the between-group connection density (Newman, 2006).
In the case of multiplex networks, the definition of

modularity incorporates the relation between different layers
and partitions all the layers simultaneously (Mucha et al.,
2010):

Q ¼ 1

2l

X
ijαβ

��
aαij − γα

kαi k
α
j

2lα

�
δαβ þ δijHijβ

�
ðδgiα;gjβÞ; ð7Þ
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where l is the total number of links in the multilayer, γα sets the
granularity of the community structure in each layer, lα is the
total number of edges in layer α, Hijβ is a parameter that tunes
the consistency of communities across layers, and δgiα;gjβ ¼ 1

when node i in layer α and node j in layer β belong to the same
community, and 0 otherwise. Maximization of Q is finally
obtained via heuristic methods and gives an optimal network
partition for each layer (Blondel et al., 2008).
In temporal networks, nodal metrics reflecting mesoscale

network properties can be defined by measuring, for example,
the node flexibility, i.e., the average number of times that a
node changes community assignment across layers (Bassett
et al., 2011). A peculiar network partition consists of
separating the network in a core of tightly connected nodes,
and a periphery made by the remaining weakly connected
nodes Borgatti and Everett (2000). As in a rich club (Colizza
et al., 2006), the presence of a core is crucial for the efficient
integration of information between remote parts of the net-
work (Csermely et al., 2013; Rombach et al., 2014; Zhang,
Martin, and Newman, 2015; Verma et al., 2016).
Battiston et al. (2018) introduced a fast core-periphery

detection algorithm for multiplex networks. Based on local
information (Ma and Mondragón, 2015), the method first
defines a multiplex richness of a node by combining its
degrees in each layer. Nodes are then ranked according to their
multiplex richness values, and the core-periphery separation is
given by the following optimal rank (Gonzalez-Astudillo
et al., 2021):

r� ¼ argmaxðμþr Þr; ð8Þ

where μþr is the richness obtained when one considers only the
links of the node ranked in position r toward nodes with
higher ranks. In the case of weighted multiplexes, the coreness
of a node is given by the number of times that it belongs to the
core after filtering the network with a range of different
threshold values.

3. Macroscale topology

Large-scale properties of complex networks are often
derived by aggregating information at smaller topological
scales. For example, the global efficiency of a network, which
is derived from the length of its shortest paths, quantifies the
ability to integrate information from topologically distant
nodes by means of a scalar number (Latora and Marchiori,
2001). In a multiplex network, a straightforward extension
consists of computing the shortest paths across layers.
Based on topological distances, one can also quantify the

global tendency of a multiplex network to form highly
clustered and efficient groups as follows via the overlapping
local efficiency (Latora and Marchiori, 2001; Yu et al.,
2017b):

Eloc ¼
1

NðN − 1Þ
X
α

X
i;i≠j∈Gi

1

kαi ðkαi − 1Þ
1

dαði; jÞ ; ð9Þ

where Gi is a subgraph containing the neighbors of node i and
dαði; jÞ is the length of the shortest path between nodes i and j
at layer α.

Tang et al. (2010) extended the concept of topological
distance to temporal networks by introducing the character-
istic temporal path length L, which measures the formation of
shortest paths across consecutive layers. They also introduced
a metric to quantify the probability that the neighbor set of a
node that is present at time t is also present at time tþ 1. By
averaging over all the nodes, they eventually defined the
temporal-correlation coefficient C as

C ¼ 1

NðM − 1Þ
XN
i¼1

XM−1

t¼1

P
ja

t
ija

tþ1
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPja
t
ijÞð

P
ja

tþ1
ij Þ

q . ð10Þ

Together the last two global metrics measure how the system
information is, respectively, integrated and segregated over
time and can be used to assess the small-world properties of
time-varying networks (Tang et al., 2010).
In graph theory, the Laplacian matrix has many useful

implications in real networks, from denoising to low-
dimensional embedding (Merris, 1994). The second smallest
eigenvalue of the Laplacian, also called algebraic connectivity
(λ2), plays an important role since it informs several important
properties of a network, such as community structure, syn-
chronization, diffusion, and resilience (Fortunato, 2010).
In a full multilayer network, λ2 is calculated from the as-

sociated supra-Laplacian matrix, whose elements are defined as

Lαβ
ij ¼

(
μαi ; if i ¼ j; α ¼ β;
−aαβij ; otherwise;

ð11Þ

where μαi is the total number of links (from any layer) incoming
to node i at layer α.
In multilayer networks, λ2 is sensitive to the amount of

intralayer and interlayer connectivity and typically quantifies
the integration-segregation balance among layers from a
dynamical perspective (Gómez et al., 2013; Radicchi and
Arenas, 2013). λ2 exhibits a phase transition when the
interlayer connection intensity is increased from layers being
independent and segregated to a high overall dependence and
integration (Radicchi and Arenas, 2013).

IV. MULTILAYER BRAIN NETWORKS

A. Common types of multilayer brain networks

Up-to-date multilayer brain networks have been derived
mostly from experimental neuroimaging data in humans, with
nodes representing the same entities, i.e., brain areas across
layers (Vaiana and Muldoon, 2020). Multiplex networks
represent the easiest way to bridge brain connectivity at
different levels, as one does not have to explicitly infer
interlayer connections. In this situation, interlayer links
connect the replica nodes only virtually and the associated
meaning is basically the one of identity between the same
nodes across layers [Fig. 3(b)] (Battiston, Nicosia, and
Latora, 2014).
This type of representation has been used largely to

describe multimodal brain networks, whose various layers
may contain structural and functional connectivity (Simas
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et al., 2015; Battiston et al., 2018; Lim et al., 2019), as well as
interactions at different signal frequencies (De Domenico,
Sasai, and Arenas, 2016; Guillon et al., 2017; Yu et al.,
2017a). A common situation with multimodal networks is that
the nodes might not correspond to the same entity in their
native space. This is the case for brain networks derived from
fMRI and EEG signals, where nodes correspond to image
voxels and scalp sensors, respectively. To overcome this issue,
advanced image and signal processing tools are used before-
hand for projecting the native signals into the nodes of a
common anatomical brain space, typically extracted from the
structural MRIs of a subject’s head (Baillet, Mosher, and
Leahy, 2001; Michel et al., 2004; Grech et al., 2008). Multi-
plex networks have also been adopted to describe temporal
brain networks, i.e., networks whose topology is changing
over time (Bassett et al., 2011; Braun et al., 2015; Pedersen
et al., 2018). In this case, each layer corresponds to a specific
point (or instance) in time, and only the replica nodes of
temporally adjacent layers are interconnected according to a
Markovian rule [Fig. 3(c)]. Unlike multimodal brain net-
works, the layers of a time-varying brain network do not
correspond to different spatial or temporal-frequency scales, but
they typically capture the dynamic network evolution within a
fixed time resolution. This is typically of the order of millisec-
onds for motor behavior, minutes to hours for human learning, or
years for aging as well as for neurodegenerative diseases.
Full multilayer network representations, containing both

intralayer and interlayer nontrivial connectivity, have been
adopted mostly to characterize brain signal interactions within
and between different oscillation frequencies [Fig. 3(a)]
(Tewarie et al., 2016, 2021; Buldú and Porter, 2018). This
representation is particularly useful for functional brain net-
works with a broad frequency content, such as in those
obtained from electrophysiology, EEG, or MEG signals.
Although less frequent than multiplex networks, this type
of representation has great potential for characterizing whole
brain cross-frequency coupling, which was recently shown to
be crucial for many cognitive and pathological mental states
(Jirsa and Müller, 2013).
Finally, we stress that, regardless of the type of construc-

tion, the resulting multilayer networks (either multiplex or
full) generally exhibit higher-order properties that cannot be
captured or resumed by simply aggregating information from
different layers (Boccaletti et al., 2014; Kivelä et al., 2014).

B. Multilayer brain networks are more than the sum
of their layers

Multilayer networks give richer descriptions than standard
network approaches, but do they really represent a step
forward into the modeling of brain organization? Why is
aggregating layers not enough? Are all layers necessary to
capture the main organizational properties? De Domenico,
Nicosia et al. (2015) addressed these questions by introducing
a structural reducibility approach to maximize the quantity of
nonredundant topological information between the layers of a
multiplex network with respect to its aggregated counterpart
[Fig. 4(a)]. For a large spectrum of networks, from protein-
protein interactions to social networks, structural reducibility
showed that the best configuration in terms of

distinguishability is not necessarily the one with the highest
number of layers (De Domenico, Nicosia et al., 2015). On the
contrary, De Domenico, Sasai, and Arenas (2016) showed that
multifrequency brain networks derived from fMRI signals
were not easily reducible since all the layers brought some
nonredundant topological information [Fig. 4(b)]. This result
implies that even if fMRI oscillations are underrepresented at
higher frequencies, their broad interaction remains crucial for
correct brain functioning. We later show that this result
extends generally and can be used to better diagnose brain
diseases; see Secs. V and VI.
While most research has focused on multiplex brain net-

works, a better understanding of the emerging properties in
full multilayer brain networks still remains to be elucidated.
Buldú and Porter (2018) addressed these aspects by studying
the difference between frequency-based multiplexes and full
multilayers derived from MEG brain signals [Fig. 5(a)]. By
evaluating the algebraic connectivity λ2 (see Sec. III.B), they
showed that full multilayer brain networks are close to the
optimal transition point between the integration and segrega-
tion of the layers. The layers in the equivalent multiplex

FIG. 4. Structural reducibility of multifrequency brain networks.
(a) For each combination of layers a quality function measures the
amount of new information added with respect to an equivalent
single-layer model. (b) Median values of a quality function
obtained from fMRI multifrequency brain networks in healthy
subjects. Shaded areas indicate the standard deviation around each
value. Adapted from De Domenico, Sasai, and Arenas, 2016.

FIG. 5. Emergent properties in full multilayer brain networks.
(a) Intralayer and interlayer edges in the multifrequency MEG
network. 1-edge between regions at the same frequency. 2-edge
of the same area between different frequency bands. 3-edge
between different nodes at different frequency bands. (b) Alge-
braic connectivity λ2 as a function of the total interlayer
connectivity (Sp). The vertical solid line corresponds to the
actual value of the interlayer connectivity, i.e., without modifying
their weights. Adapted from Buldú and Porter, 2018.
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configurations were instead more segregated and then far from
this transition point (Radicchi and Arenas, 2013). These
results were also confirmed by extensive numerical simula-
tions and explained using the intrinsic lower interlayer
connection density of the multiplexes [Fig. 5(b)]. The full
multilayer λ2 values were associated with the phase-amplitude
coupling of gamma (30–40 Hz) and theta (4–7 Hz) brain
frequency bands, confirming the crucial role of cross-
frequency coupling in the study of complex brain function
and dysfunction (Canolty et al., 2006; Aru et al., 2015). These
findings indicate the importance of considering previously
unappreciated cross-layer interactions to explain the emergent
properties of brain organization.

C. Filtering spurious links in multilayer brain networks

Remember that brain connectivity networks are estimated
from experimental data. This necessarily implies the presence
of spurious connections, often among the weakest ones, due to
the statistical uncertainty associated with the connectivity
estimator and/or due to the presence of signal artifacts during
the experiment (De Vico Fallani et al., 2014; Korhonen,
Zanin, and Papo, 2021). For example, head motions are
known to abnormally increase short-range connectivity, thus
altering the original topology of the network as well as its
connection intensity, i.e., the sum of the actual links’ weights
(Lydon-Staley et al., 2019). This is particularly relevant, as the
topological properties of a network strongly depend on the
number and weights of the existing edges (De Vico Fallani,
Latora, and Chavez, 2017; Mandke et al., 2018). As a result of
the construction process, multilayer brain networks are also
influenced by such noise, which might alter the true associ-
ation between the multiscale brain network organizational
properties and the subject’s characteristics and behavior.
To mitigate the presence of unwanted alterations in the

estimated links, two main strategies have been adopted to date
following what has been done in standard network analysis.
The first approach consists of manipulating the brain signals,
while the second one operates directly on the connectivity
matrices. Lydon-Staley et al. (2019) used the first approach
to silence the effects of head motion on recorded brain
signals and in turn on the estimated brain network. They
tested different signal denoising strategies, based mainly on
regression and source separation techniques (Cichocki and
Shun-ichi, 2002) on temporal brain multiplexes constructed
from fMRI data. Specifically, they evaluated their ability to
attenuate the nuisance effects on several network metrics, such
as multiplex modularity and node flexibility; see Sec. III.B.
Despite some variability, the obtained results suggested that
regression-based approaches outperform source separation–
based techniques, possibly due to their ability to explicitly
incorporate the nuisance variables in the denoising process
(Lydon-Staley et al., 2019).
The second approach consists of filtering the network’s

links. This is typically achieved by fixing a threshold either on
the percentage of strongest edges to retain or on their weights.
Depending on the threshold value, the resulting networks may
have different densities and/or intensities. Mandke et al.
(2018) evaluated the impact of network filtering on several
topological properties, such as multiplex PageRank (see

Sec. III.B), multiplex modularity [Eq. (7)], and participation
coefficient [Eq. (3)]. Specifically, they tested several filtering
criteria, minimum spanning tree (MST) (Kruskal, 1956),
efficiency cost optimization (ECO) (De Vico Fallani, Latora,
and Chavez, 2017), and singular value decomposition (SVD)
(Golub and Van Loan, 2012) applied to each single layer
separately, or adapted to the entire multiplex.
When both synthetic and neuroimaging-derived multiplex

networks were used, results indicated that SVD techniques
lead to multilayer network properties that are robust to
changes in connection density or intensity. MST and ECO
techniques were instead effective only when each layer was
separately filtered, and therefore useful when dealing with
multimodal brain networks, where layers are estimated from
different types of data and the nature of the interlayer links
cannot be straightforwardly established. Note, however, that
these results were obtained for multiplexes, and the extension
to full multilayer networks remains to be investigated.

V. MULTILAYER NETWORK PROPERTIES OF BRAIN
ORGANIZATION

A. Structure-function relationship

Both structural and functional brain organization are crucial
determinants of complex neural phenomena such as cognition,
perception, and consciousness (Park and Friston, 2013). An
important question in modern neuroscience is how structural
and functional connectivity are related to each other, and how
such putative interactions can better our understanding of brain
organization. Recent studies using both model-based and data-
driven approaches have demonstrated that connectivity at the
functional level could be predicted in part by the structural one,
and that this prediction could explain several complex dynam-
ics of brain functioning, from resting states to task-based and
pathological conditions (Park and Friston, 2013; Hansen et al.,
2015; Surez et al., 2020; Wein et al., 2021).
But what are the higher-order topological properties of the

multilayer network composed of both structural and func-
tional layers and how do they help describe brain anatomo-
functional organization? To address these questions, Battiston
et al. (2017) first investigated the presence of simple con-
nection motifs (see Sec. III.B) forming across the layers of a
DTI-fMRI multiplex network. They found that motifs com-
prising both structural and positively correlated functional
links are overabundant in the human brain [Fig. 6(a)]. This
confirms that the presence of an anatomical connection is
likely to induce a synchronized activity between the corre-
sponding brain regions (Skudlarski et al., 2008). However,
other significant configurations were reported, including the
presence of triangles in the functional layer with no support in
the structural one. Overall, these results indicated that intrinsic
functional organization of the brain is nontrivially constrained
by the underlying anatomical network (Skudlarski et al.,
2008) and cannot be explained solely by it.
Ashourvan et al. (2019) later investigated the multilayer

modularity of DTI-fMRI multiplex networks. The main
results showed that the structural layer mostly dominates
the community structure of the multiplex over a broad range
of topological scales explored by varying the granularity
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parameter γ [Eq. (7)]. The communities of the structural layer
tended to spatially overlap with the cytoarchitectonic brain
organization and were highly consistent among individuals.
Instead, the communities of the functional layer were more
heterogeneously distributed and less consistent across sub-
jects, reflecting the dynamic repertoire of the brain functions
(Ghosh et al., 2008; Hadriche et al., 2013).
By looking at DTI-fMRI multiplex networks, Lim et al.

(2019) measured to what extent nodes with similar over-
lapping degrees tended to “wire” together, a property often
referred as to assortativity. The results indicated that multi-
modal brain networks have a propensity to be assortative,
which translates into an overall ability to facilitate system
dynamics and resilience to random attacks (such as node
removal) (Boccaletti et al., 2014). This evidence resolved the
assortative-disassortative dichotomy previously observed in a
single-layer analysis of structural-functional brain networks.
This multilayer assortativity resulted from a nontrivial struc-
ture-function interplay and indicated a novel organizational
mechanism optimally balancing the resilience to damages and
restrainability of their effects.
Modeling the emergence of large-scale brain dynamics from

microscale neuronal interactions is crucial for a mechanistic
understanding of neural multiscale organization. An early study
by Zhou et al. (2007) proposed a computational model based on
the structural connectome of the cat cortex. By parametrizing
the coupling between several FitzHugh-Nagumo oscillators
according to the available connectome, they simulated the
ongoing activity in each region and estimated the interareal
functional connections via Pearson’s correlation (FitzHugh,
1961). By means of this simple model, Zhou et al. showed that
a weak coupling parameter was sufficient to generate biologi-
cally plausible macroscale activity, with functional connectivity
patterns mostly overlapping the modular organization of the
structural network.

Crofts, Forrester, and O’Dea (2016) used a similar approach
based on the structural connectome of a macaque cortex and
Wilson-Cowan neuronal models (Wilson and Cowan, 1972).
Of more relevance to this Colloquium, they analyzed the
behavior of multiplex clustering patterns [such as in Eq. (4)] in
the structural-functional networks as a function of two model
parameters, i.e., one tuning the input to excitatory neurons
and the other modulating the input to the inhibitory ones.
Specifically, they defined multiplex clustering indices to
quantify the presence of functional links associated with
common drivers in the structural layer. The main results
showed that such quantities were maximal at the boundaries of
the phase transition, from steady-state to oscillatory dynamics,
as well as in other regions of the parameter space [Fig. 6(b)].
Unlike previous results on single-layer analysis, this nontrivial
behavior suggested that the system criticality depends not only
on the structure-functional interplay of the brain network but
also on the type of ongoing dynamics.
On the level of a single neuron, Bentley et al. (2016) proposed

a multiplex approach to represent synaptic connections (struc-
tural) as well as extrasynaptic signaling interactions (functional)
inferred from gene expression data of the C. elegans worm.
Despite the low degree of overlap between the synaptic and
extrasynaptic connectomes, they found highly significant multi-
plex motifs (similar to those in Sec. III.B), pinpointing locations
in the network where aminergic and neuropeptide signaling
modulate synaptic activity. The presence of directedmonoamine
interactions and reciprocal synaptic connectionswas particularly
significant among specific neurons implicated in learning,
memory, and motor functions. These results support the evi-
dence that the structural-functional interplay is crucial to better
understanding the communication pathways between different
parts of the C. elegans nervous system.
Along these lines, Maertens et al. (2021) identified the

shortest paths from touch sensory neurons to motor neurons

FIG. 6. Multiplex motif analysis of multimodal brain networks. (a) Structural-functional two-layer brain network. Interlayer links
between replica nodes are omitted for visibility. Five nontrivial multiplex motifs of two nodes are possible based on the type of
connectivity in the DTI structural layer [green (upper-layer) nodes] and in the fMRI functional layer [yellow (lower-layer) nodes]. The Z
scores show the motifs that are overrepresented and underrepresented compared to equivalent random networks. Adapted from Battiston
et al., 2017. (b) Patterns of multiplex triangles comprising directed structural tuples (solid connections) closed by a functional edge
(dashed connections). The overall motif counts normalized by equivalent random multiplexes are illustrated as a function of the basal
activation parameters P and Q of the Wilson-Cowan model. Adapted from Crofts, Forrester, and O’Dea, 2016.
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allowing information flowing across different types of neuro-
transmitters and neuropeptide layers. By applying a time-
delayed feedback control on the identified neurons, they could
eventually reproduce the typical C. elegans locomotion
and characterize the neuromuscular multilayer connectivity
mechanisms associated with the central pattern generator
(Gjorgjieva, Biron, and Haspel, 2014; Fouad et al., 2018).
Multilayer network theory has just started to provide new

tools and insight into the complex interplay of brain structure
and function. Several issues remain to be explored, such as
how to establish interlayer connections (Tewarie et al., 2021)
or incorporate multilayer network mechanisms in the laws
modeling large-scale neuronal dynamics (Hansen et al.,
2015).

B. Information segregation and integration

Clustering and shortest paths are general concepts in
complex systems that are both essential for the efficient
organization of many real-world networks (Watts and
Strogatz, 1998; Latora and Marchiori, 2001). These concepts
reconcile two long-standing opposing views of brain func-
tioning. On the one hand are phrenology-based theories,
which associated different cognitive tasks with segregated
brain regions (Kanwisher, 2010). On the other hand are global
workspace theories, which instead hypothesize the necessity
of interareal integration of information to realize the same
tasks (Dehaene and Naccache, 2001). Network science has
provided the tools to quantify network segregation and
integration by demonstrating, respectively, the presence of
many clustered connections and few shortest paths between
areas. More recently integration in the brain has been revisited
and hypothesized to be determined by the presence of a few
core hubs in the network, and not directly by the shortest paths
(Deco et al., 2015; Obando and De Vico Fallani, 2017). By
considering multilayer brain networks, segregation and inte-
gration become a joint property of both nodes and layers, thus
providing information about higher-order phenomena such as
cross-frequency coupling (Jirsa and Müller, 2013), multi-
modal information (Garcés et al., 2016), and temporal
evolution (Hutchison et al., 2013).
Tewarie et al. (2016) investigated information segregation

and integration in MEG full multifrequency brain networks.
They first observed the presence of strong dependencies
between intralayer and interlayer connectivity. By decompos-
ing the multilayers into representative connectivity structures,
or “eigenmodes,” they demonstrated that the overall amount of
interlayer connectivity was associated with the second eigen-
mode, containing specific fronto-occipital network compo-
nents common to all frequencies. In addition, they compared
the empirical MEG multifrequency networks with those
obtained from large-scale signals simulated with a thalamo-
cortical model (Robinson et al., 2001; Robinson, Rennie, and
Rowe, 2002). By increasing the model structural coupling
parameter, Tewarie et al. reported a progressive increase in the
resulting functional interlayer connectivity. Real MEG multi-
layer networks maximally fit the model at the transition point
of such an increment, suggesting an optimal balance between
segregation and integration of information between different
frequency bands.

As for multimodal connectivity, Battiston et al. (2018)
investigated the associated integration properties by evaluat-
ing the core-periphery structure of DTI-fMRI multiplex net-
works. They specifically calculated the multiplex coreness
(see Sec. III.B), which integrates information from different
layers and provides a possibly more accurate characterization
of the mesoscale brain network properties. Compared to the
single-layer analysis, their results identified new core areas in
the sensorimotor region of the brain that are key components
of the so-called default mode network (DMN), i.e., a set of
brain regions that is active when a person is not focused on the
outside world (Raichle et al., 2001). Besides, these results
excluded previously established areas in the frontal region,
whose inclusion in the core system was still being debated
(Hagmann et al., 2008). By including structural (DTI) and
functional (fMRI) network information, these findings offered
a new, enriched description of the integration properties of the
human connectome’s core (Fig. 7).
Temporal brain networks have been shown to exhibit

alternating periods of segregation and integration across
multiple timescales, associated with the presence of “dynami-
cal” hubs (de Pasquale et al., 2016), as well as state-dependent
community structures (Al-Sharoa, Al-Khassaweneh, and
Aviyente, 2019). To better understand the role of such
transitions, Pedersen et al. (2018) studied the multilayer
network flexibility (see Sec. III.B) derived from a large
dataset of resting-state fMRI signals [Fig. 8(a)]. The results
showed that the node flexibility, i.e., the frequency of
community switching between consecutive time layers, was
particularly high in specific associative brain regions (i.e.,
temporal and parietal) and correlated with the entropy of the
connectivity variability. Because switching is known to
increase in systems with high entropy or information load

FIG. 7. Multiplex core-periphery structure of the human con-
nectome. Scatterplot of multiplex coreness against single-layer
corenesses obtained from structural (DTI) and functional (fMRI)
layers. Labels indicate brain areas whose multiplex coreness
cannot be predicted by looking at the coreness values in the
respective structural and functional layers. Adapted from Battis-
ton et al., 2018.
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(Amigó, Kloeden, and Giménez, 2013), the role of functional
hubs for the associative cortex integrating information across
differently specialized brain systems was eventually estab-
lished (van den Heuvel and Sporns, 2011). These high local
flexibility values occurred mainly when the brain exhibited a
globally low and steady network intensity, so as to minimize
the overall energetic cost associated with the integrative
temporal switching [Fig. 8(b)].
On longer timescales, Malagurski et al. (2020) investigated

how brain segregation changes with age using longitudinal
fMRI data acquired over a four year time span. By computing
the multiplex modularity [Eq. (7)], they showed that the global
flexibility, i.e., the average node flexibility, is significantly
higher in healthy elderly people than it is with a temporal null
model, where the brain network layers are randomly shuffled
(Chai et al., 2016; Sizemore and Bassett, 2018). Their results
also demonstrated that people with more segregated temporal
networks tended to be more resistant to transient changes in
modular allegiance (Meunier, Lambiotte, and Bullmore, 2010;
Ramos-Nuñez et al., 2017; Harlalka et al., 2019). Advanced
age was related to higher temporal variability in modular
organization. However, no correlations were found with
cognitive behavior, such as processing speed and memory
encoding. Since flexibility is in general a good predictor of
cognitive performance (see Sec. V.C), further studies should
include more cognitive domains, or lagged changes, to
elucidate the role of age in the relation between cognitive
performance and temporal modular flexibility.
Taken together, these findings provide some concrete

examples of how concepts such as segregation and integration
of information can be broadened to capture multilayer brain
mechanisms and provide complementary information about
the system’s behavior. While most studies have focused on

undirected connectivity, future research will be crucial to
include directed links and obtain better information on
communication pathways in neuronal systems (Avena-
Koenigsberger, Misic, and Sporns, 2018).

C. Brain organizational properties of human behavior

The previously presented results aimed to quantify intrinsic
structural and functional brain organization, with no reference
to any specific mental state or behavior. Nonetheless, the brain
is an extremely flexible and adaptive system capable of
altering its organization depending on endogenous and exog-
enous stimuli coming from the external environment (a
property often referred to as plasticity). Here we present some
of the most recent results showing how multilayer brain
network properties change according to specific behaviors,
and how these higher-order topological changes are associated
with intersubject variability.
Human learning is perhaps one of the most intriguing

(and yet not completely understood) neural processes with
numerous implications in our daily life (Zatorre, Fields, and
Johansen-Berg, 2012; Barak and Tsodyks, 2014). A basic
question in neuroscience is how learning is acquired through
Hebbian plasticity without leading to runaway excitation of
the neural synaptic activity (Miller and MacKay, 1994; Abbott
and Nelson, 2000; Watt and Desai, 2010). Virkar et al. (2016)
proposed a mechanism for preserving stability of learning
neural systems via a two-layer network model. The first layer
contained a model neural network interconnected by synapses
that undergo spike-timing-dependent plasticity (STDP)
(Feldman, 2012). The second layer contained a network
model of glia cells interconnected via gap junctions, which
diffusively transport metabolic resources to synapses (inter-
layer edges) [Fig. 9(a)]. The main results showed that, with
appropriate model parameter values, the diffusive interaction
between the two layers prevents runaway growth of synaptic
strength, during both ongoing activity and learning. These
findings suggest a previously unappreciated role for fast
dynamic glial transport of metabolites in the feedback control
stabilization of slow neural network dynamics during learning
[Fig. 9(b)]. Notice that this is one of the few examples to date
in which multilayer network theory is used to model micro-
scale neural organization across multiple temporal scales.
At larger spatial scales, Bassett et al. (2011) used a

multilayer network approach to characterize human learning
during a simple motor task. In particular, they built temporal
brain networks from fMRI signals across consecutive exper-
imental sessions. They used multiplex modularity [Eq. (7)] to
find long-lasting modules and found that community organi-
zation changed smoothly with time, displaying coherent
temporal dependence, as in complex long-memory dynamical
systems (Achard et al., 2008). Their results also showed that
network flexibility changed during learning (first increasing
and then decreasing), thereby demonstrating a meaningful
biological process. In particular, the nodal flexibility (see
Sec. III.B) was stronger in frontal, posterior parietal, and
occipital regions. In addition, their results predicted the
relative amount of learning from one session to the next
(Fig. 10). These predictions could not be obtained via
conventional task-related fMRI activation or standard network

FIG. 8. Temporal network flexibility correlates with brain
perfomance. (a) Overview of network switching (or flexibility)
in a temporal network. The red and blue circles identify the nodes
belonging to two different communities according to the multi-
layer network modularity metric. (b) Brain maps of switching rate
and dynamic fMRI connectivity. Values were normalized into z
scores to ensure that the connectivity dynamics and switching
values were equally scaled. Adapted from Pedersen et al., 2018.
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analysis, and they confirmed the relation between network
flexibility and cognitive performance. Indeed, network flex-
ibility has been found to correlate not only with several mental
states, such as working memory and planning (Braun et al.,
2015; Pedersen et al., 2018), but also with mental fatigue
(Betzel et al., 2017) and sleep deprivation (Pedersen et al.,
2018). At this stage, it would be interesting to elucidate
whether network flexibility is an aspecific predictor of
cognitive performance or whether it can also distinguish
between different dynamic brain states.
Makarov et al. (2018) further studied the cognitive load

during attentional tasks in an EEG frequency-based multiplex
framework. Based on betweenness centrality (see Sec. III.B),
they observed an outflow of the shortest paths from low
frequencies to high frequencies in the frontoparietal regions.
These findings suggest that cross-frequency integration of
information not only is an intrinsic characteristic of brain
functioning (Tewarie et al., 2016) but is also modulated by
attentional tasks as well as drowsiness (Harvy et al., 2019).
In a recent study, Williamson, Domenico, and Kadis (2021)

investigated how the brain supports expressive language

function by looking at MEG multifrequency brain networks.
In particular, they aimed to identify the brain regions that are
important for successful execution of expressive language in
typically developing adolescents. To this end, they first iden-
tified the multifrequency hubs by means of a modified version
of the multilayer PageRank centrality and then reranked them
according to their importance in fostering interlayer commu-
nication. Compared to a standard single-layer analysis, this
two-step procedure allowed them to capture nonlinear inter-
actions and resolve the task-related brain areas with a higher
spatial resolution. These regions lay mostly in the left hemi-
sphere and represented possible conduits for interfrequency
communication between action and perception systems that are
crucial for language expression (Pulvermüller, 2018).
Planning and executing motor acts is accompanied by

changes in brain activity and connectivity on short timescales
of the order of milliseconds (Pfurtscheller and Lopes da Silva,
1999; Svoboda and Li, 2018). Tang et al. (2010) used an EEG
temporal network approach to characterize such fast brain
functional organization during a simple foot movement task.
Compared to network sequences with randomly shuffled
layers, brain networks showed a higher temporal clustering
and a similar characteristic temporal path length; see
Sec. III.B. Put differently, dynamic brain networks exhibited
a temporal small-world propensity, supporting both segrega-
tion and integration of information through time. While a
single-layer analysis previously unveiled that segregation and
integration properties fluctuate and adapt over the different
phases of the movement (De Vico Fallani et al., 2008), these
findings provided new evidence of the intrinsic global
temporal properties of motor-related brain networks.

VI. MULTILAYER NETWORK-BASED BIOMARKERS OF
BRAIN DISEASES

Like any other complex system, the brain can exhibit
anomalous connectivity, which in turn may lead to abnormal

FIG. 10. Temporal network flexibility predicts future learning
rate. Significant predictive Spearman correlations between flex-
ibility in session 1 and learning in session 2 (black curve,
p ≈ 0.001) and between flexibility in session 2 and learning in
session 3 [red (lighter gray) curve, p ≈ 0.009]. Each point
corresponds to a subject. Note that the relationships between
learning and fMRI network flexibility in the same experimental
sessions (1 and 2) were not significant; p > 0.13 was obtained
using permutation tests. Adapted from Bassett et al., 2011.

FIG. 9. Stabilization of critical dynamics in multilayer glia-
neuronal networks. (a) Left side: glia cells redistribute metabolic
resources from the bloodstream to neural synapses. Right side: as-
sociated two-layer network model. Black arrows indicate neural
synaptic interactions. The arrow thickness indicates the synaptic
strength that evolves according to spiking-time-dependent plasticity
(STDP). Red arrows that terminate on black arrows represent the
resource supply to the corresponding synapse. (b) Stability analysis
of the two-layer STDP model. The largest eigenvalue λ of the
neuronal network layer and the total resource R of all glia and
synapses are illustrated as a function of time. The data plotted in
black correspond to a “baseline” condition. For the data plotted in
red (labeled “instability”), the initial evolution is the same as that for
the baseline data until the diffusion of resources between the glial
cells is turned off (vertical arrow). Adapted fromVirkar et al., 2016.
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behavior and clinical symptoms. These brain connectivity
changes can be spatially distributed, as in schizophrenia or
Alzheimer’s disease, or localized, as in stroke or traumatic
injuries (Hallett et al., 2020). Looking at the network
organization under both healthy and diseased conditions
therefore appears to be fundamental to understanding the
resilience and vulnerabilities of the brain (Russo et al., 2012).
From a medicine perspective, network-based biomarkers
would represent advanced tools to monitor the disease
progression and inform new therapeutics to mitigate or
counteract the effects of the disease. In the last decade,
standard network analysis has accumulated evidence
documenting general reorganizational properties such as a
departure from optimal small-world configurations, aberrant
modular reorganization, and a significant loss of node central-
ity (Stam, 2014). Thus far these network changes have
remained associated with a particular aspect, or layer, of
information. Since brain pathologies typically result from
multifactor processes at different scales and levels, multilayer
brain networks naturally constitute a more appropriate inte-
grative modeling approach. In the following, we present some
of the most recent results obtained for different brain diseases.
They provide new perspectives on the impacted multiscale
network properties and can be used to improve diagnoses and
predictions.

A. Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative disorder
and the most common form of dementia. Clinically, it is
characterized by mild memory impairments that gradually
evolve up to severe cognitive impairments, and eventually to
death. In 2016, people affected by AD and other dementias
numbered around 44 million worldwide, and this incidence is
likely to increase because of longer life expectancies (Nichols
et al., 2019). At the cellular level, AD is characterized by the
progressive accumulation of τ tangles and β-amyloid plaques
that cause neurons and synapses to die, thus leading to brain
atrophy and disordered disconnection patterns.
While the consequences of these changes on large-scale

brain networks have been widely investigated, the accumu-
lated results are often discordant and depend on the considered
spatial or temporal scale (Tijms et al., 2013; Gaubert et al.,
2019). Multilayer networks represent an interesting approach
to get an integrated, potentially more informative picture of
the disease.
Multiplex networks have been used to provide a unified

description of AD brain reorganization across multiple MEG
frequency bands [Fig. 11(a)]. Yu et al. (2017a) used different
multiplex nodal metrics (such as overlapping clustering,
local efficiency, and betweenness centrality; see Sec. III.B)
and consistently showed that physiological multilayer hub
regions, including posterior parts of the DMN, were severely
impacted by AD [Fig. 11(b)]. Note that these losses of
functional hubs could not be observed when individual
frequency layers were considered. These multilayer hub
disruptions correlated not only with the accumulation of β-
amyloid plaques in the cerebrospinal fluid but also with the
cognitive impairment of the patients, thus demonstrating a
potential clinical relevance. When the multiplex participation

coefficient [Eq. (3)] was used, the results indicated that the
most vulnerable hub regions in patients with AD also lost their
ability to foster communication across frequencies compared
to those regions in healthy control subjects. Similar results
obtained independently by Guillon et al. (2017) showed a
significant loss of multifrequency hubs in DMN regions and a
strong association with memory impairment. Using a classi-
fication analysis, they eventually showed that integrating
multiparticipation coefficient values with equivalent single-
layer network metrics leads to improved distinguishability
of AD and healthy subjects. More recently Echegoyen et al.
(2021) showed that AD patients could be identified by the
lower values of algebraic connectivity λ2 (see Sec. IV.B) in
resting-state MEG multifrequency networks. These results
single out new network mechanisms that hinder information
load from flowing through different frequency bands and
eventually impair the cognitive abilities of AD patients.
Cai et al. (2020) addressed similar questions in EEG

multifrequency brain networks. They showed that both
multiplex clustering [Eq. (4)] and multiparticipation coeffi-
cients [Eq. (3)] presented significant decrements with respect
to healthy controls in the posterior areas of the brain. These
results confirmed a general tendency in AD patients to loose
segregation and integration of information capabilities across
signal frequencies. Yet few observed increases in frontal areas
suggest the presence of some compensatory mechanisms to be
further elucidated (Guillon et al., 2019). In the same study,
Guillon et al. also investigated the dynamic aspects of EEG
brain networks in AD from a purely temporal perspective
[Fig. 11(a)]. Using the aforementioned multilayer metrics, they
showed that AD temporal segregation was impacted mostly by
AD in the frontal and occipital areas, while temporal integration
properties were less affected than they were in healthy subjects,
mainly because of its higher variability across nodes. However,
when combined together, nodal values of temporal segregation
and integration led to a high discrimination between AD and
healthy subjects (> 90% accuracy), suggesting that spatial
heterogeneity of temporal integration may also be related to
progression of the disease [Fig. 11(c)].
To integrate and disentangle the role of different neuro-

imaging modalities in AD, Guillon et al. (2019) built
multiplex networks composed of different connectivity types
derived from diffusion-weighted imaging (DWI), fMRI, and
MEG data. Thus far this represents the most complete type
of multiplex brain network merging together structural and
functional information [Fig. 12(a)]. By focusing on the
mesoscale properties (see Sec. III.B), Guillon et al. showed
a selective reduction of multiplex coreness in the AD
population involving mainly temporal and parietal hub nodes
of the DMN that are typically impacted by the anatomical
atrophy and β-amyloid plaque deposition (Chételat et al.,
2010). This significant loss was driven mainly by a few layers,
notably DWI, fMRI, and MEG in the alpha 1 (7–10 Hz)
frequency range, and could be explained by a simple model
reproducing the progressive random disconnection of the
multilayer network via the preferential attacks of its core
hubs [Fig. 12(b)]. From a clinical perspective, Yu et al.
(2017a) eventually reported that patients with larger coreness
disruptions tended to have more severe memory and cognitive
impairments, which is in line with the general tendency

Charley Presigny and Fabrizio De Vico Fallani: Colloquium: Multiscale modeling of brain network …

Rev. Mod. Phys., Vol. 94, No. 3, July–September 2022 031002-14



observed in other previously described studies [Fig. 12(c)].
Recently Canal-Garcia et al. (2022) built two-layer multi-
modal networks from gray matter atrophy and amyloid
deposition across different stages of AD in humans. In a
rigorous, controlled study, they provided specific results that
are not obtainable with traditional approaches from single
imaging modalities. Multiplex modularity [Eq. (7)] revealed a
characteristic module in the temporal brain area that likely
reflects the transition to AD dementia. Decreased values of
multiplex participation coefficients [Eq. (3)] in atrophy-
related hub regions were also found in the later AD stage
compared to those found in healthy control subjects. This
study sheds light on the nontrivial interplay between
β-amyloid level and gray matter atrophy and its clinical
relevance for AD.
Taken together these results indicate that AD is charac-

terized by a previously unappreciated multimodal and tem-
poral disconnection mechanism that primarly affects regions

impacted by the atrophy process. Future research will be
crucial to elucidate whether such a disruption tendency is
compensated for by other multilayer mechanisms, possibly
involving more intact cortical systems such as the sensori-
motor one (Albers et al., 2015; Kubicki et al., 2016; Guillon
et al., 2019).

B. Neuropsychiatric disorders

Among neuropsychiatric disorders, schizophrenia is cer-
tainly one of the most studied due to its large population
incidence. In 2017, more that 20 million people were suffering
from schizophrenia worldwide (James et al., 2018). Typical
clinical symptoms include hallucinations, emotional blunting,
and disorganized speech and thoughts. The biological causes
of schizophrenia are still poorly understood, and many
hypotheses are currently being investigated based on neuro-
transmitter dysregulation (Lang et al., 2007), myelin reduction

FIG. 11. Multifrequency and temporal reorganization of brain networks in Alzheimer’s disease. (a) Multiplex brain networks are
constructed by layering different frequency-specific networks, while temporal networks were constructed by concatenating time-
specific networks within frequency bands. (b) Top: hub disruption of MEG multifrequency networks in patients with Alzheimer’s
disease. Each point corresponds to a different brain area, and k is the slope of the regressing line. Bottom: brain regions with significant
between-group differences in the overlapping weighted degree. PCUN:R, right precuneus; HIP:L, left hippocampus; IPL:R, right
inferior parietal but supramarginal and angular gyri; SPG:R, right superior parietal gyrus; MOG:L, left middle occipital gyrus; SOG:L,
left superior occipital gyrus; IOG:L, left inferior occipital gyrus. Adapted from Yu et al., 2017a, and Cai et al., 2020(c) Scatterplot
showing the Mahalanobis distance of each subject from the AD or control group when the multiplex clustering coefficient (MCC) and
the multiplex participation coefficient (MPC) extracted from time-varying networks (gray line indicates equal distance) are combined.
Adapted from Cai et al., 2020.
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(Cassoli et al., 2015), and oxidative stress (Steullet et al.,
2016). At large spatial scales, low and high frequency
neuronal oscillations, as well as their interactions, have been
widely documented as a core feature of the neuropathology
underlying schizophrenia (Moran and Elliot Hong, 2011).
Functional connectivity changes within and between fre-
quency bands have been reported in schizophrenic patients
(Siebenhühner et al., 2013) and have been associated with
persistent symptoms leading to disorganization of visuomotor
mental functions (Brookes et al., 2016).
Using a multiplex approach, De Domenico, Sasai, and

Arenas (2016) provided the first integrated characterization of
the topological changes in schizophrenia from resting-state
fMRI-derived multifrequency networks. In particular, they
evaluated the multiplex PageRank centrality (see Sec. III.B)
and showed a substantial reorganization of the most important
multifrequency hubs of the brain, including the precuneus
cortex, a key region for the basic physiological brain organi-
zation (van den Heuvel and Sporns, 2013). When injected into
a random forest classifier, multiplex PageRank centrality
metrics led to a classification accuracy of 80%, which is higher
than standard network approaches but comparable to otherwise
much more sophisticated machine learning techniques. At
cellular levels, schizophrenia has been hypothesized to result
from excitatory-inhibitory neuronal dysfunction, with a con-
sequent abnormal temporal coordination between large-scale
macroscale areas of the cerebral cortex (Uhlhaas and Singer,
2010; Uhlhaas, 2013). When investigating temporal fMRI
networks, Braun et al. (2016) showed that schizophrenic

patients exhibited a multiplex network flexibility increase
(see Sec. III.B) compared to healthy subjects during a working
memory task, which is typically used to assess the neural basis
of cognitive deficits (Meyer-Lindenberg et al., 2001, 2005)
[Fig. 13(a)]. Braun et al. were able to reproduce the same
hyperflexibility while experimentally blocking the glutamate
sensible synaptic receptors (NMDA receptors) in a separate
group of healthy subjects [Fig. 13(b)]. These results were
further confirmed in a subsequent work, which localized such
network hyperflexibility in specific brain zones including
cerebellum, thalamus, and frontoparietal task-related areas
(Gifford et al., 2020). Altogether these findings indicated for
the first time that microscale excitatory-inhibitory imbalances
in schizophrenia might actually translate into temporally less
stable and possibly disintegrated (rather than overly rigid) large-
scale brain reorganization.
From a pure classification perspective, multilayer brain

networks have also been used as alternative multidimensional
features to better discriminate between schizophrenic and
healthy subjects. Lombardi et al. (2019) considered a working
memory fMRI experiment and built a 17-layer multiplex
brain network where each layer contained a different type
of nonlinear functional connectivity. For each layer they
extracted standard nodal centrality metrics (i.e., strength,
betweenness, clustering, and PageRank) and used them as
classification features. Compared to single-layer networks
built from simple linear correlations, they achieved a signifi-
cantly higher classification (≈90% vs ≈70%) for different

FIG. 12. Multimodal brain networks revealing disrupted core-
periphery structure in Alzheimer’s disease. (a) Multimodal brain
networks (multiplex) constructed by layering DTI, fMRI, and
several frequency-based MEG brain connectivities. Adapted from
Guillon et al., 2017. (b) Spearman correlation (R ¼ 0.59,
p ¼ 0.005) between the coreness disruption index (κ) and the
memory impairment of AD patients as measured using the free
recall (FR) test. (c) Box plots showing the values of the coreness
disruption index (κ) obtained by progressively removing the
edges preferentially connected to the multiplex periphery of the
healthy control (HC) group. The blue (x-axis HC) and red (x-axis
AD) box plots illustrate, respectively, the κ values for the HC and
AD groups. (b),(c) Adapted from Guillon et al., 2019.

FIG. 13. Temporal network flexibility as a clinical marker of
shizophrenia genetic risk. (a) Significant increases in the mean
dynamic reconfiguration of modular fMRI brain networks in
unaffected first-grade relatives (REL) (gray bar) and patients with
schizophrenia (SZ) (black bar) compared to matched healthy
controls (HC) (white bar) [Fð2; 196Þ ¼ 6.541, P ¼ 0.002]. Bars
indicate mean values, and whiskers represent standard error
means (SEMs). (b) Significant increases in the mean dynamic
reconfiguration of modular brain networks in healthy controls
after application of dextrometorphan (DXM) [dark gray bars;
repeated measures ANOVA placebo (PLA) vs DXM: Fð1; 34Þ ¼
5.291, P ¼ 0.028] relative to PLA (light gray bars). Adapted
from Braun et al., 2016.
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types of working memory tasks. Pursuing the same goal,
Wilson et al. (2021) considered resting-state fMRI data on a
group of healthy individuals and a group of patients with
schizophrenia. Originally, they built a multiplex brain network
for the two groups, where each layer represented the func-
tional network of a specific individual. By extending the well-
known node2vec unsupervised network embedding pro-
cedure (Grover and Leskovec, 2016), they learned continuous
node feature representations from multilayer networks based
on random walkers that are allowed to move across layers. The
resulting embeddings revealed a higher variability for the
similarity between the nodes in the default mode network and
salience subnetwork, suggesting a less stable within-module
brain organization in the schizophrenic group. While the
overall classification accuracy did not outperform state-of-the-
art performance, learning the features in an unsupervised
approach may nevertheless be important for future applica-
tions in automatic diagnosis.
Major depressive disorder (MDD) is clinically character-

ized by severe fatigue, aphasia, difficulty focusing, and
suicidal thoughts in extreme cases. Symptoms are diverse
and their severity largely differs among patients. Since
effective treatments are currently available, scientific research
focuses mostly on identifying predictive biomarkers to enable
more personalized therapeutics. Previous studies suggested
that MDD leads to several brain signal alterations affecting
functional connectivity within but also between different
frequency bands (Tian et al., 2019; Nugent et al., 2020).
To fully exploit this multifrequency information, Dang et al.
(2020) proposed a full multilayer approach to improve the
diagnosis of MDD. Specifically, they developed a convolu-
tional neural network that directly takes as input the full
multilayer brain networks to learn and extract the most
discriminant features. The resulting classification accuracy
(≈97%) was comparable to state-of-the-art methods based on
specific frequency bands. While promising, these findings
suggest that machine learning algorithms for multilayer brain
networks still have to be fine-tuned in view of their concrete
implication in the identification of the best intervention
strategy to cure or alleviate MDD-related symptoms.

C. Other neurological diseases

Epilepsy is a group of neurological disorders characterized
by seizures, which may vary in time and intensity from
short, mild loss of awareness to long, vigorous convulsions.
Epileptic seizures are characterized by excessive synchronized
neuronal activity in the entire cerebral cortex or in parts of it.
In 2017, about 27 million people were suffering from epilepsy
(James et al., 2018), of whom 30% were not curable with drug
treatment (Kwan and Brodie, 2000). Clinical research aims
mostly at identifying predictive neural markers of the seizures
to allow preventive treatments or to localize the origin of the
seizure to inform precise surgery (Engel et al., 2013).
Recent evidence has shown that epilepsy seizures are

characterized by brain functional connectivity changes within,
but also between, different brain signal frequencies (Villa and
Tetko, 2010; Jacobs et al., 2018; Samiee et al., 2018). From a
topological perspective, decrements of network efficiency
have been reported between low and high frequency bands,

before the seizure onset, and were associated with sensorial
disturbance and mild loss of consciousness (Yu et al., 2020).
The intrinsic relationship between structural and functional

layers can also unveil hidden connectivity structures charac-
terizing different types of epilepsy. Along these lines, Huang
et al. (2020) used a DTI-fMRI multiplex approach to classify
between epileptic seizures originating in different zones of the
brain, namely, the frontal and temporal lobes. In particular,
they extended the concept of multiplex motifs to include
subgraphs with more than three nodes; see Sec. III.B. The
most frequent multiplex patterns consisted of edges from both
structural and functional layers that were spatially localized.
The structural components were stable across conditions and
involved regions belonging to the DMN system (i.e., cuneus,
precuneus, and peripheral cortex) (Horn et al., 2014). Instead,
the functional counterparts of the multiplex patterns were
highly variable and predominantly involved regions concen-
trated in the respective epileptogenic zones, i.e., the temporal
and frontal lobes. Eventually, Huang et al. demonstrated the
superiority of these multiplex connectivity patterns to dis-
criminate between epileptic patients and healthy controls
(72%–82% classification accuracy) over equivalent single-
layer metrics or other multiplex metrics such as multiplex
PageRank or algebraic connectivity; see Sec. III.B. These
results are in line with the one-to-many relationships between
structural and functional brain networks (Park and Friston,
2013) and can be used to fine-tune the research of predictive
biomarkers in epilepsy.
Consciousness disorders regroup a variety of symptoms

that range from a complete loss of awareness and wakefulness,
such as coma, to minimal or inconsistent awareness (Giacino
et al., 2014). The differential diagnosis between the different
types of disorders of consciousness is paramount for identi-
fying the best medical therapeutics. Recent results suggest that
frequency-dependent functional brain connectivity is crucial
for characterizing impairments of consciousness, as well as
predicting possible recovery processes (Chennu et al., 2014;
Corazzol et al., 2017; Cacciola et al., 2019). In an effort to
provide a unified picture on the role of brain connectivity
within and between frequency bands, Naro et al. (2021)
adopted a multilayer network approach. By investigating brain
networks derived from source-reconstructed EEG signals,
they aimed to distinguish between patients suffering from
unresponsive wakefulness syndrome (UWS) and those affili-
cted with a minimally conscious state (MCS), two conditions
that often present similar symptoms (Stender et al., 2014).
Results showed that several nodal multiplex metrics, including
overlapping clustering, betweenness, and multiplex partici-
pation coefficient (see Sec. III.B), were significantly lower in
UWS than in MCS patients. This was particularly evident in
the frontoparietal regions of the brain whose relative loss of
multiplex centrality is associated with the behavioral respon-
siveness of the patients quantified by the coma recovery scale
(Giacino, Kalmar, and Whyte, 2004). By adopting a full
multilayer network approach, Naro et al. (2021) eventually
reported a significantly lower interlayer connection intensity
in the UWS group and could identify those patients who
regained consciousness one year after the experiment. The
discrimination between UWS and MCS patients was not
observed when looking separately at frequency-specific
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network layers. Although preliminary, these results
demonstrated the clinical value of considering multiplex or
multilayer network approaches to derive more reliable neuro-
markers of consciousness disorders.

VII. EMERGING PERSPECTIVES

We have presented novel conceptual insights, tools, and
results that provide new perspectives on the intrascale and
interscale network properties of brain systems. Research in the
field is active, and many issues remain to be addressed in
the future for ultimately characterizing the multiscale, multi-
level brain organization. We close this Colloquium by focus-
ing on three broad directions of advances in multilayer
network theory that we find particularly relevant for address-
ing this gap.

A. Generative models of multiscale networks

Generative models for brain networks allow one to move
from descriptive top-down approaches to mechanistic bottom-
up ones (Betzel and Bassett, 2017a). These models usually
define a set of local connection rules (such as probabilistic
rewiring or preferential attachment) to grow synthetic net-
works with specific global properties (such as small worldness
or scale-free degree distribution). Network models in neuro-
science have been driven mostly by biological and topological
evidence or hypotheses (Vértes et al., 2012; Betzel et al.,
2016).
Biologically inspired models have primarily implemented

minimal wiring cost principles (Bullmore and Sporns, 2012)
and have been used to reproduce the rich-club organization of
brain networks (Vértes, Alexander-Bloch, and Bullmore,
2014), to characterize the phase transition of axonal
growth (Nicosia et al., 2013), and to determine genetic risk
factors associated with schizophrenia (Zhang et al., 2021).
Topologically inspired models focused instead on reproducing
the organizational properties of brain networks and have been
adopted to identify the local connection mechanisms of
network integration and segregation (Simpson, Moussa, and
Laurienti, 2012; Sinke et al., 2016; Obando and De Vico
Fallani, 2017) or to reproduce the mesoscale modular proper-
ties of brain networks (Betzel, Medaglia, and Bassett, 2018).
The development of multilayer network models therefore

appears to be a crucial step toward the multiscale modeling
of the brain from a network perspective. On the one hand,
experimental technology is increasingly providing new data
on different levels of neuronal interactions through 3D neuro-
nal cultures (Hopkins et al., 2015), calcium dynamics (Ahrens
et al., 2013), spiking activity (Jun et al., 2017), and vascular
support (Mac et al., 2011; Kirst et al., 2020) and might offer
precious spatiotemporal insights to test biologically plausible
multilayer connection criteria. On the other hand, we are
currently witnessing a research thrust in the mathematical
formalization of generative multilayer network models,
inspired mostly by topological criteria.
For example, Bazzi et al. (2020) recently proposed a

unifying probabilistic framework to generate multiplex net-
works with any type of modular structure that explicitly
incorporates a user-specified tunable dependency between

layers. These models might be useful to better quantify and
understand the generation of mesoscale properties in multi-
modal and temporal brain networks. Based on the extension of
stochastic block models (Peixoto, 2014), where nodes connect
to each other with probabilities that depend on their group
memberships, Vallès-Català et al. (2016) proposed an
original approach to derive the most likely multiplex modular
network associated with any observed single-layer network.
Alternatively, Lacasa et al. (2018) provided a robust method
relying on the Markovian diffusion of a random walker to
determine whether a complex system is better modeled by a
single interaction layer or by the interplay of multiple layers.
All these frameworks look particularly appealing for multi-
scale modeling, as they might be used to identify the
mesoscale inner workings of connectivity aggregation across
different layers. Finally, multilevel exponential random graph
models potentially represent the most powerful framework
due to their ability to characterize arbitrary connection
patterns forming within and between layers, and to reproduce
full multilayer networks (Wang et al., 2013). This decade will
be crucial for elucidating how multilevel biological knowl-
edge and multilayer network tools can be merged to establish
a new generation of network-based multiscale models of brain
organization.

B. Controllability of multilayer networks

Understanding a complex system means being able to
describe it, reproduce it, and ultimately control it (Liu and
Barabási, 2016). In the last decade, the development of
network control theory applied to brain connectivity has
led to a paradigm shift, offering new tools to understand
how the brain controls itself and how it can be controlled by
exogenous events (Tang and Bassett, 2018).
Although still debated as to the way it should be imple-

mented and interpreted (Tu et al., 2018; Jiang and Lai, 2019),
network controllability has allowed researchers to identify the
driver nodes that are more likely to steer the activity of human
brain networks, opening up substantial possibilities for cog-
nitive and clinical neuroscience, such as via brain stimulation
technology (Khambhati et al., 2016; Muldoon et al., 2016;
Tang and Bassett, 2018). More recently a network control
framework was also used to determine the role of each C.
elegans neuron in locomotor behavior, which was confirmed
by a posteriori laser ablations (Yan et al., 2017). While the
development of network controllability for single-layer sys-
tems is in its adolescence, its extension to multilevel systems
is still in its infancy.
The application to temporal networks is perhaps the most

intuitive extension of structural controllability. By considering
the discrete time-varying linear dynamics of the system,
Pósfai and Hövel (2014) provided computational tools to
study controllability based on temporal network character-
istics. They specifically investigated the ability of single driver
nodes to control a target and showed that the overall activity
and the node degree distribution of the temporal network are
the main features influencing controllability. Although it
might seem that static links would make it easier to control
a system, Li et al. (2017) demonstrated that temporal networks
can be controlled more efficiently and require less energy than
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their static single-layer counterparts. Using higher-order net-
work models, Zhang, Garas, and Scholtes (2021) also showed
that the chronological ordering of interactions has a strong
influence on the time needed to fully control the network.
Determining the energy needed by the driver nodes to steer

the system is also crucial. Excessively energetic control
signals could be impossible to produce or could merely
damage the system itself. In the case of full multilayer
networks, Wang and Zou (2017) demonstrated that there is
a trade-off between the optimal controllability and optimal
control energy that depends on the configuration and intensity
of the interlayer connection patterns. In a separate study,
Menichetti, Dall’Asta, and Bianconi (2016) showed that
controlling multiplex networks is more costly than controlling
single layers taken in isolation, and that multiplex networks
can exhibit stable controllability regardless of the stability of
their layers. They also reported that in general multiplex
networks need more drivers and that this number depends on
the degree correlations between low-degree nodes in the
different layers. Collectively, these findings encourage the
development of controllability tools for multilayer brain
networks, with the goals of better disentangling the interaction
between multiple scales and improving the efficacy of
possible intervention strategies.

C. Machine learning and multilayer networks

Network science is a successful approach to analyzing and
modeling complex systems and uncovering mechanisms that
explain the emergence of functions. However, network theory
alone often fails to efficientlymanipulate large datasets aswell as
different levels of resolution. It is important to note that it focuses
on specific handcrafted topological features and ignores less
intuitive but possibly existing representative patterns, such as
higher-order network interactions (Battiston et al., 2020).
In this regard, machine learning represents a powerful

technique for handling large amounts of data and learning

from the data itself the hidden patterns associated with the
intrinsic phenomena of the system (Bishop, 2006). As a
counterpart, machine learning ignores the fundamental laws of
physics and can result in ill-posed problems or noninterpret-
able solutions. The combination of machine learning and
network science therefore represents a potential win-win
strategy to address the previously mentioned limitations,
as demonstrated in a number of theoretical works and
applications (Zanin et al., 2016; Muscoloni et al., 2017).
Nonetheless, when it comes to multiscale modeling, the type
of algorithms must be rethought and extended to take into
account the multilayer nature of the system, properly integrate
the within- and between-layer concepts, and explore the
extremely large feature spaces (De Domenico, Lancichinetti
et al., 2015; Alber et al., 2019).
Based on a specific class of deep learning algorithms, Dang

et al. (2020) developed a convolutional neural network that
directly takes as input a full EEG multifrequency network to
learn and extract the most discriminant features. The core of
their algorithm consisted of three consecutive convolutional
layers, one batch normalization layer and one pooling layer.
This combination of basic hidden layers could effectively avoid
overfitting and speed up the model training. Eventually, all
learned features were concatenated together for classification
between healthy and major depressive diseased subjects.
Machine learning can be optimized to operate feature

engineering and embed the original multilayer network into
a low-dimensional space so as to allow a minimal represen-
tation of the main intrinsic properties of the system. Based on
the node2vec algorithm (Grover and Leskovec, 2016),
Wilson et al. (2021) introduced a fast and scalable extension,
called multi-node2vec, that learns the nodal features
from complex multilayer networks through the skip-gram
neural network model (Fig. 14). This model was originally
designed to extract the features of a word’s neighborhood in
text and was then adapted to characterize the neighborhood
of nodes in a network (Mikolov et al., 2013). Applying the

FIG. 14. Illustration of the multi-node2vec algorithm. Beginning with a multilayer network (left), one first identifies a collection
of multilayer neighborhoods (bag of nodes) via the variable neighborhood search procedure. Next, the optimization procedure calculates
the maximum likelihood estimator F through the use of the skip-gram neural network model (right) on the identified bag of nodes.
Adapted from Wilson et al., 2021.
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model to fMRI multisubject networks, Wilson et al. showed
that it improves the visualization and clustering of brain
regions into communities of similar features and discriminates
between schizophrenic and healthy groups of subjects.
More generally, the community detection task of partition-

ing the nodes of a multilayer network into densely connected
subgroups, or communities, can also be viewed as a particular
multilayer embedding. The development of multilayer com-
munity detection methods is still in its early stages, but several
useful techniques have been developed in the past decade
(Mucha et al., 2010; De Domenico, Lancichinetti et al., 2015;
Stanley et al., 2016; Wilson et al., 2017).

VIII. CONCLUSION

Understanding brain organization ultimately requires one to
quantify the interactions within and between multiple levels of
neural structure and dynamics. In the last decade, multilayer
network theory has been introduced to characterize complex
systems exhibiting different levels, or layers, of connectivity
as well as cross-level interactions. Here we have presented and
discussed many new developments in the field of multilayer
network theory for the study of multiscale brain organization.
We anticipate that, in conjunction with more accurate exper-
imental technologies and increasing computational power,
multilayer network theory can eventually become a key
component of modern multiscale brain modeling. Through
this Colloquium, we hope to have provided fresh elements to
stimulate new ideas in scientists and practitioners wanting to
advance multiscale brain modeling, which has profound
implications for the betterment of our health and cognitive
function.
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