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Geometric phases are ubiquitous in physics; they act as memories of the transformation of a
physical system. In optics, the most prominent examples are the Pancharatnam-Berry phase
and the spin-redirection phase. Recent technological advances in phase and polarization
structuring have led to the discovery of additional geometric phases of light. The underlying
mechanism for all of these is provided by fiber bundle theory. This Colloquium reviews how fiber
bundle theory not only sheds light on the origin of geometric phases of light but also lays the
foundations for the exploration of high-dimensional state spaces, with implications for topological
photonics and quantum communications.
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I. INTRODUCTION

Phase is a curious protagonist in the land of physics. It bears
no physical significance when a single wave is considered, yet
becomes crucially important when several waves are involved,
thereby causing spectacular effects such as interference. In
1984, Sir Michael Berry established that the wave function of
a quantum system can gain a phase of geometric nature in
addition to the dynamic phase naturally acquired over time
(Berry, 1984). This discovery impacted various areas of
physics, such as condensed matter, nuclear, plasma, and
optical physics (Wilczek and Zee, 1984; Wilczek and
Shapere, 1989). Although geometric phases may appear as
mere theoretical curiosities, they have led to a myriad of
applications and in optics are now at the basis of wave front
shaping technologies (Cohen et al., 2019; Jisha, Nolte, and
Alberucci, 2021). Their importance for exotic surface effects,
including superconductivity and topological insulators such as
the quantum Hall effect, was honored in the Nobel Prize

awarded to David Thouless, Duncan Haldane, and Michael
Kosterlitz for research on topological phases of matter.
A matrix-based formalism can be used to determine whether

a system will acquire a geometric phase (O’Neil and Courtial,
2000); however, this approach gives little insight in regard to
the origin of the phenomenon. Fiber bundle theory provides a
deeper understanding of geometric phases: it links a phase to a
state transformation based on geometrical considerations. This
mathematical framework was developed in the first half of the
20th century and turned out, to everyone’s surprise, to provide
an excellent description of gauge fields, including electro-
magnetic fields (Yang, 2014). It became the universal language
of geometric phases almost immediately, even before Berry
had time to publish his seminal work (Simon, 1983), and
played a key role in the generalization of Berry’s phase to
nonadiabatic and noncyclic systems (Aharonov and Anandan,
1987; Samuel and Bhandari, 1988).
A plethora of geometric phases have been witnessed in

optics (Samuel and Bhandari, 1988; Vinitskiı̆ et al., 1990;
Bhandari, 1997). Well-known examples include the
Pancharatnam-Berry phase (Pancharatnam, 1956), born from
polarization transformations, and the spin-redirection phase
(Rytov, 1938; Vladimirskiy, 1941), which arises when light
is taken along a nonplanar trajectory. Recent decades have
seen significant technological advances in the control of
phase and polarization structured light, with an ever-expand-
ing repertoire of higher order spatial modes and complex
vector light fields. These developments have revealed new
geometric phases of light, caused by the transformation of
spatial transverse modes (Van Enk, 1993; Galvez et al.,
2003; Calvo, 2005; Galvez and O’Connell, 2005; Gutiérrez-
Cuevas et al., 2020), and of general vectorial fields (Milman
and Mosseri, 2003; Milione et al., 2011, 2012; Liu et al.,
2017). However, with just a handful of exceptions (Bouchiat
and Gibbons, 1988; Bliokh, 2009; Cohen et al., 2019) these
phases are rarely linked to fiber bundles, causing key
concepts such as connection and curvature to be surrounded
by an aura of mathematical mystery.*clairemarie.cisowski@glasgow.ac.uk
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In this Colloquium, we illustrate how fiber bundle theory
can bring about a deeper understanding of geometric phases.
We do not expect the reader to have prior knowledge in the
area of fiber bundle theory and introduce a few key concepts.
We show that the geometric phases recently observed in
structured light beams are based mostly on two-dimensional
subspaces of a much larger state space, and that fiber bundle
theory could guide the exploration of the entire state space.
Establishing a firmer link between geometric phases of light
and fiber bundle theory could highlight interdisciplinary
research opportunities and stimulate new discoveries. The
experimental simplicity and versatility of optical systems
could even allow us to test concepts of fiber bundle theory
itself. We start our discussion by recalling how geometric
phases differ from their dynamic counterparts using a simple
interferometric construction.

II. GEOMETRIC VERSUS DYNAMIC PHASE IN A
NUTSHELL

Interferometry is a precious tool for measuring the phase
difference between two beams of light. In a Mach-Zehnder
interferometer, the phase difference Δϕ between the two
beams exiting the interferometer is null if the arms of the
interferometer are of equal optical path length; see Fig. 1(a).
The phase naturally acquired over time as the beam propagates
is called the dynamical phase (ϕd). Increasing the optical path
length of one of the arms (by introducing a piece of glass, for
instance) will create an excess of dynamical phase ϕd þ ϕ0

d in
this arm such that Δϕ ¼ ϕ0

d [see Fig. 1(b)], thereby modifying
interference and leading to a difference in the interferometer
output.

It is also possible to obtain a finite phase difference even if
the arms are of equal optical path length, by imposing a
series of state transformation to one of the beams; see
Fig. 1(c) (Aharonov and Anandan, 1987). These transfor-
mations will cause the beam propagating through this arm to
acquire a phase ϕg, solely dependent on the path formed in
the state space, in addition to the dynamical phase acquired
upon propagation, such that at the exit of the interferometer
Δϕ ¼ ϕg. The phase ϕg is said to be geometric. In Sec. III,
we show how a succession of polarization transformations
can create such a geometric phase, which is called the
Pancharatnam-Berry phase.

III. THE PANCHARATNAM-BERRY PHASE

The Pancharatnam-Berry (PB) phase is one of the most
ubiquous geometric phases of light (Vinitskiı̆ et al., 1990;
Bhandari, 1997; De Zela, 2012; Lee et al., 2017). It was
discovered by Pancharatnam in 1956 upon generalization of
the notion of interference for partially orthogonal polarized
beams (Pancharatnam, 1956) and was identified as a geo-
metric phase by Ramaseshan and Nityananda in 1986
(Ramaseshan and Nityananda, 1986). This led Berry to
provide a quantum interpretation of this phenomenon, causing
his name to be linked to this phase along with Pancharatnam’s
(Berry, 1987b).

A. Experimental realization

The PB phase is generated by changing the polarization
state of a beam of light propagating along a fixed direction. In
practice, a sequence of polarization transformations can be
realized using several retarders, which would correspond to
the optical elements in Fig. 1(c). For simplicity, we assume
that the retarders do not change the optical path length. If the
beam of light is initially horizontally polarized (state 1), we
can use a quarter wave plate (QWP) to convert the beam into a
circularly polarized state (state 2), use a second QWP to return
the polarization state to linear (state 3), rotated, however, by
45° with respect to the horizontal, then employ a suitably
oriented half wave plate to restore the polarization direction to
horizontal (state 4). The sequence of polarization transforma-
tion is illustrated in Fig. 2(a). As previously stated, a geo-
metric phase is dependent on the path formed in the state
space. To determine whether our sequence of state

FIG. 2. Sequence of polarization transformations. (a) Practical
realization. (b) Geometric interpretation: a closed path is traced
on the Poincaré sphere.

FIG. 1. Phase measurements with Mach-Zehnder interferome-
ters. (a) Balanced interferometer with arms of equal optical path
length. (b) Introducing a dynamic phase by changing the optical
path length with a piece of glass in one arm. (c) Introducing a
geometric phase by performing a succession of state trans-
formations in one arm.
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transformation will generate a geometric phase, we therefore
need to turn to geometric considerations.

B. Geometric interpretation

Realizing a sequence of unitary polarization transformation
can be visualized as a path on the Poincaré sphere. The
Poincaré sphere is the state space of purely polarized light,
meaning that each point on the sphere represents a pure
polarization state. By convention, the poles represent circu-
larly polarized light, the equator stands for linearly polarized
light, and the hemispheres represent right and left elliptically
polarized light; see Fig. 2(b). All states on the sphere can be
conveniently obtained from a linear superposition of diamet-
rically opposed states. The path corresponding to the polari-
zation transformation shown in Fig. 2(a) is drawn in Fig. 2(b),
where successive polarization states have been linked using
geodesics.
In optics, it is common practice to calculate the PB phase,

which we denote as ϕg, directly from the solid angle ΩPS
enclosed by the path formed on the Poincaré sphere, shown in
light blue (shaded area) in Fig. 2 (Pancharatnam, 1956;
Samuel and Bhandari, 1988), using the simple relation

ϕg ¼ −1
2
ΩPS: ð1Þ

If the sequence of polarization transformations is associated
with a vanishing solid angle, no PB phase will be generated.
Equation (1) provides a straightforward manner to calculate
the PB phase; however, the relationship between the phase and
a path formed on the state space is far from obvious. Indeed, in
physics states are defined up to a phase factor, meaning that
two-state vectors jψi and expðiϕÞjψi, where ϕ ∈ ½0; 2π½, are
considered to be physically equivalent. A path traced on the
Poincaré sphere thus does not directly provide information on
the evolution of the phase of the system. An additional
structure capable of tracking this evolution is needed, and
this is where fiber bundle theory comes into play.

IV. THE ORIGIN OF GEOMETRIC PHASES

In what follows, we introduce some fundamentals of fiber
bundle theory and show how geometric phases are interpreted
in terms of fiber bundles. We then examine the PB phase from
this new perspective.

A. Fiber bundle theory: A universal model

In the landscape of mathematics, fiber bundle theory sits at
the crossroads of differential geometry, topology, and con-
nection theory. It was developed independently from physics
in the first half of the 20th century (Hopf, 1931; Seifert, 1933;
Whitney, 1935; Feldbau, 1939; Ehresmann, 1949; Serre,
1951; Steenrod, 1951). The overlap with physics became
evident only in retrospect, when Dirac’s theory on magnetic
monopoles (Dirac, 1931) was examined from a geometric
perspective, showing that Dirac had described a fiber bundle
(Lubkin, 1963; Wu and Yang, 1975). Wu and Yang went
further by demonstrating that fiber bundle theory is the natural
language of gauge theory. They summarized this idea in a

table showing how the two theories describe the same concept
using different terminologies (Wu and Yang, 1975). At that
point, fiber bundle theory ceased to be an abstract framework
and became suitable for the description of physical reality.
This discovery profoundly influenced the physics and math-
ematics communities during the late 20th century, as detailed
in the overview provided by Boi (2004).
We illustrate the basic idea of fiber bundles in Fig. 3 with

the example of a cylinder and a Möbius strip. A fiber bundle is
constructed from a topological space B called the base space
[which for both Figs. 3(a) and 3(b) is a circle]. Above each
point p ∈ B is a space called the fiber F (shown as a line
segment, defined by its two end points), which is linked to the
base space by a projection map (indicated as dashed lines). At
the core of fiber bundle theory is the idea that locally, within a
close neighborhood of points p ∈ B, the total space of the
fiber bundle is the direct product of the fiber space and the
base space: E ≈ B ⊗ F. For the cylinder this is true globally,
making it a trivial fiber bundle. The topological and geomet-
rical properties of the fiber bundle may, however, prevent us
from obtaining from a consistent global mapping. This is the
case for the twisted Möbius strip, as indicated by the ant,
which can move from one end of the line segment F to the
other when traversing along the Möbius band. The fiber
bundle is then said to be nontrivial (Batterman, 2003). A fiber
bundle thus contains two types of information: local and
global. Physical phenomena are often studied from a local
(infinitesimal) perspective; fiber bundle theory invites us to
take a step back and look for global properties that may also
affect our system.
To complete the definition of a fiber bundle, one may also

specify the structure group G acting on the bundle. In the case
of the Möbius strip, G ¼ �1, where the element −1 acts on
the fiber by sending an element from the top to the bottom of
the fiber (Batterman, 2003).
Fiber bundles relevant in optics and quantum optics tend to

operate in larger state spaces, e.g., with fibers keeping track of
phase evolutions. While it is perfectly feasible to describe
optics in terms of complex electromagnetic fields, and
quantum optics in terms of quantum states, fiber bundle
theory offers a supplementary geometric interpretation, tran-
scending specific applications and potentially allowing us to

FIG. 3. Illustration of (a) a trivial and (b) a nontrivial fiber
bundle. The base spaces B are identical circles, and several fibers
are indicated as solid line segments embedded in the total space E
[the cylinder in (a) and Möbius strip in (b)].
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develop a more intuitive understanding of the underlying
phenomena.
The concept of a fiber bundle linking a phase to a state

transformation was introduced by Aharonov and Anandan
(1987). Here the base spaceB of the fiber bundle is the complex
projective Hilbert space (as illustrated in Fig. 4), which we call
the state space. The fiber above each state consists of all the
normalized state vectors capable of representing that state,
namely, expðiϕÞjψi, where ϕ ∈ ½0; 2π½. The structure group is
the unitary group Uð1Þ, and the total space E is the Hilbert
space. This fiber bundle is a principal bundle, meaning that the
fiber is the structure group.
As mentioned earlier, a state transformation can be visu-

alized as a path in the state space. If we assume that the
transformation is cyclic, meaning that the state transforms
back to the initial state at the end of the transformation, it
forms a closed path C in the state space, shown by the curve in
the base space B in Fig. 4. Knowledge of this path alone does
not include any phase information. To record phase informa-
tion, the path C is “lifted” to form a path C0 in E. Since many
curves C0 can project down onto the same curve C, there are
many ways to realize this lift. Some rules must be provided;
this is the role of the connection A. The connection decom-
poses the tangent space of the bundle into vertical and
horizontal components, specifying the direction along the
fibers and “perpendicular” to the fibers, respectively. The
curve C is then lifted along the horizontal direction (along
the fiber in Fig. 4). This allows us to compare (connect) points
on different fibers. The splitting of the space into its horizontal
and vertical components hence ties the connection to a
particular set of coordinates.
Lifting a closed path in Bwill often result in an open path in

E. If we assume that the beginning and end points of the path
lie on the same fiber, they are linked by a simple phase factor
expðiϕÞ [a Uð1Þ transformation] called the “holonomy of the
connection on the fiber bundle” (Nakahara, 1990). This phase
factor indicates that the wave function has failed to come back
to itself at the end of the transformation. Explicitly, for a cyclic
evolution of period T, ψpðTÞ ¼ expðiϕÞψpð0Þ.

In the classical realm, holonomies can take the form of a
rotation, such as the one allowing a cat falling from an upside-
down position to land on its paws (Montgomery, 1993) or the
rotation of the oscillation plane of Foucault’s pendulum,
after a day has elapsed (Hannay, 1985; von Bergmann and
von Bergmann, 2007).
Aharonov and Anandan identified the connection AAA that

yields the geometric phase expðiϕÞ ¼ expðiϕgÞ as its holon-
omy. To do so, they defined the geometric phase as the
difference between the total phase and the dynamic phase
(Aharonov and Anandan, 1987; Zwanziger, Koenig, and
Pines, 1990). Not all evolutions are cyclic. Samuel and
Bhandari (1988) showed that the path formed in the projective
space can be simply closed using the shortest geodesic, a
process that does not affect the geometric phase (Benedict and
Fehér, 1989). The geometric phase can then be calculated
using the following connection of Aharonov and Anandan:

ϕg ¼
I
C
AAA ¼ i

I
C
hψ̃ jdjψ̃i; ð2Þ

where d is an exterior differential operator and jψ̃i is a basis
vector field, also known as the section or gauge [an explicit
derivation was given by Bohm et al. (2003)]. Equation (2) can
be used if AAA is uniquely defined over the region of the state
space covered by the path C. In practice, several AAA may
coexist due to the geometry of the Hilbert space and of the
projective Hilbert space (Urbantke, 1991). One may then
prefer the following expression, which is obtained using the
Stokes theorem:

ϕg ¼
Z
S
dAAA ¼

Z
S
VAA; ð3Þ

where S is the surface in the state space enclosed by C and
VAA is the curvature of the connection. Unlike the connection
AAA, the curvature VAA is well defined everywhere. It
measures the dependence of the phase holonomy on the path
formed in the projective Hilbert space. The geometric phase
owes its name to this path dependence, and one may say that it
is the curvature of the state space that gives birth to geometric
phases (Anandan, 1988).
It is possible to witness a phase holonomy even if the

curvature vanishes when the path C cannot be shrunk to a
point. This typically happens if the path encloses a topological
defect. The phase holonomy becomes a signature of the defect
and is insensible to the shape of the path, and hence it is called
a “topological phase” (Lyre, 2014).
A notable fact about the fiber bundle interpretation of

geometric phases proposed by Aharonov and Anandan is that
it remains valid regardless of the dimension of the state space.
We will return to this after providing a fiber bundle inter-
pretation of the PB phase.

B. From Poincaré to Hopf

In the case of the PB phase, the relevant state space is the
Poincaré sphere. The sphere representation is specific to two-
dimensional systems, and studying its construction reveals the
associated fiber bundle. When fully polarized light propagates

FIG. 4. Illustration of Aharonov and Anadan’s fiber bundle. A
closed path C, starting and ending at point p ∈ B, is lifted into the
total space E. The beginning and end points of C0 lie on the same
fiber Fp and are related by a phase factor in Aharonov and
Anadan’s fiber bundle.
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along a fixed direction, say, z, it becomes analogous to a two-
state (qubit) system,

jψi ¼ αj0i þ βj1i; ð4Þ

where j0i and j1i are the eigenstates of the Pauli spin operator
σz, and α and β are complex parameters with jαj2 þ jβj2 ¼ 1

to ensure normalization. The state vector jψi lives in the two-
dimensional Hilbert space, which is denoted byH2. This space
is our total space E, which can be pictured as a hypersphere S3

embedded in R4, represented in orange (the left shaded area)
in Fig. 5(a). Sugic et al. (2021) named this space the optical
hypersphere.
In optics, a pure state jψi can be identified only up to a

phase factor expðiϕÞ, and in quantum theory the set of state
vectors expðiϕÞjψi describe the same physical state: the
probability of a measurement of the system given by
Born’s rule for jψi and expðiϕÞjψi is 1. To account for this,
in the projective Hilbert space all states expðiϕÞjψi, where
ϕ ∈ ½0; 2π½, represent the same quantum state.
This set of equivalent state vectors form a fiber, which can

be pictured as a circle S1 parametrized by ϕ (C in Fig. 5). For a
two-state system, the state space is the projective Hilbert space
CP1, which is an ordinary sphere known to mathematicians as
S2. The state space is obtained by mapping each quantum state
(circle) in the total space onto a point on the sphere. This
mapping is performed using the Hopf map, which maps a
circle onto a point p in a plane R2ðþ∞Þ, then maps this point
onto a point p0 on the sphere via an inverse stereographic
projection, as illustrated in Fig. 5(a) (Mosseri and Dandoloff,
2001). This is how the Poincaré sphere, and all spheres
representing two-state systems, is constructed.
The PB phase then corresponds to the holonomy of the

connectionAAA on a fiber bundle where the base space is CP1

(the Poincaré sphere), a fiber is a set of equivalent state
vectors, the group structure is Uð1Þ, and the total space is H2.
This fiber bundle is known as the Hopf fibration, and it is
capable of describing all two-state systems, not just polari-
zation. As such, it is often encountered in physics where it
describes magnetic monopoles, two-dimensional harmonic
oscillators, Taub–Newman-Unti-Tamburino space (relevant in
the framework of general relativity), and twistors (Urbantke,

1991). Because it involves spaces embedded in different
dimensions, the Hopf bundle is difficult to visualize; however,
performing a direct stereographic map from S3 to R3 will
make its fiber structure apparent (Mosseri and Ribeiro, 2007).
A schematic is provided in Fig. 6.
It is not possible to assign a single connection AAA to the

entire Poincaré sphere. Indeed, if we introduce polar coor-
dinates θ;ϕ, we may define a connection A as follows using
the basis jψ̃i (Bouchiat and Gibbons, 1988; Kataevskaya and
Kundikova, 1995):

jψ̃i¼ (cosðθ=2Þ;e−iϕ sinðθ=2Þ); A¼ 1
2
ð1− cosθÞdϕ. ð5Þ

A is defined everywhere except at θ ¼ 0 (the north pole). To
cover the entire sphere we may introduce another basis jψ̃ 0i
and a second connection A0:

jψ̃ 0i ¼ (eiϕ cosðθ=2Þ;sinðθ=2Þ); A0 ¼ 1
2
ð−1− cosθÞdϕ. ð6Þ

A0 is defined everywhere but at θ ¼ π (the south pole). The
singular points θ ¼ π and θ ¼ 0 correspond to Dirac string
singularities (Dirac, 1931; Yang, 1996); they can be moved
around the sphere by choosing a different basis but cannot be
removed. The sphere is thus divided into two overlapping
regions, with each having a different connection. In the
overlapping region, the connections are related using a phase
transformation (Urbantke, 1991). In this case, it is preferable
to calculate the PB phase using the Stokes theorem:

ϕg ¼
1

2

I
C
ð�1 − cos θÞdϕ ¼ 1

2

Z
S
sin θdθdϕ ¼ 1

2
ΩS; ð7Þ

where ΩS is the solid angle enclosed by the path C formed in
clockwise fashion on the Poincaré sphere. We have recovered
Eq. (1) using fiber bundle theory and have detailed how the PB
phase arises from a state transformation. Equation (1) is valid
only because the state space can be represented as a sphere,
which is true for all two-state systems. Equation (7) shows that
the curvature on the Hopf fibration does not vanish and
confirms that the PB phase depends on the path traced in the
state space. It is truly a “geometric” phase.
PB phases are at the core of state-of-the-art wave front

shaping technologies (Bomzon et al., 2002; Kim et al., 2015;
Radwell et al., 2016; Dorrah et al., 2022). Q plates (Marrucci,
Manzo, and Paparo, 2006), in particular, rely on PB phases to
impart a helical phase profile to a beam of light and have been

FIG. 5. Schematic of the Hopf map. A set of equivalent state
vectors representing a pure quantum state (the circle in the Hilbert
space H2) is mapped onto a point in R2ðþ∞Þ, and from there
onto a point in the complex projective Hilbert space CP1 via an
inverse stereographic projection (dotted line). We have chosen the
north pole as the projection point.

FIG. 6. Fiber structure of the Hopf fibration in R3. Each fiber is
a circle. The set of fibers linked to the red (dark gray), orange
(gray), and yellow (light gray) points on the CP1 sphere form
three tori.
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commercialized under the name of vortex retarders. The
underlying principle of these devices is that a spatially variant
PB phase profile can be obtained by realizing spatially
resolved polarization transformations. Conversely, exotic
polarization distributions such as the ones witnessed when
multiple beams of light are interfered with (Galvez et al.,
2012; Cardano et al., 2013) or obtained upon tight focusing
(Bauer et al., 2015) may contain interesting geometric phase
profiles.
In this section we have directed our attention to fully

polarized light for didactic purposes. Note, however, that
geometric phases can also arise from the transformation of
partially polarized light. In this case, the state space becomes
the Poincaré ball to include points inside the sphere (Sjöqvist
et al., 2000; Ericsson et al., 2003). The geometric phase can
then be obtained by purifying the state (Milman, 2006). The
Poincaré ball naturally incorporates some hyperbolic geom-
etry (Ungar, 2002), whose relevance with regard to special
relativity was highlighted by Samuel and Sinha (1997) and
Lévay (2004).

V. EXPLORING HIGH-DIMENSIONAL STATE SPACES

The state space of an n-state system where n > 2 can no
longer be represented as an ordinary sphere (Bengtsson and
Zyczkowski, 2006). Such spaces have recently become
accessible in optics through spatial transverse modes, strongly
focused light, and general vectorial light. In the following we
review how geometric phases are currently calculated for these
spaces and discuss how fiber bundle theory could lay the
foundation for the exploration of high-dimensional state
spaces. Our first encounter with a high-dimensional state
space stems from the study of polarized beams of light with a
spatially varying propagation direction.

A. The spin-redirection phase

The spin-redirection phase is a geometric phase that arises
when polarized light is taken along a nonplanar trajectory. It
was first witnessed in inhomogeneous media (Rytov, 1938;
Vladimirskiy, 1941) and in optical fibers (Ross, 1984; Chiao
and Wu, 1986), in which case it is the result of an adiabatic
transformation, meaning that a photon that is initially in an
eigenstate of the spin operator, aligned with the direction of
the wave vector, will remain in this eigenstate at all times. In
other words, its helicity does not change upon propagation. At
the time, it was believed that the cycling of the parameters
driving the adiabatic transformation determines the existence
of geometric phases. The geometric phases were calculated
from the path traversed in time formed in the space of
parameters, in our case the sphere of directions of the wave
vector RðtÞ ¼ kðtÞ=k. The fiber bundle linking a phase to a
parameter transformation was introduced by Simon (1983).
The adiabatic geometric phase can then be calculated from the
connection on Simon’s fiber bundle. The adiabatic geometric
phase ϕg;a acquired by a photon when the direction of the
wave vector is cycled reads

ϕg;a ¼ −σΩkðCÞ; ð8Þ

where ΩkðCÞ is the solid angle subtended by the path formed
on the sphere of directions k and the helicity σ denotes the
projection of the spin onto k, which takes values σ ¼ 1 for
left-handed and σ ¼ −1 for right-handed circularly polarized
light. Here ϕg;a is analogous to a well-known adiabatic phase,
namely, the Berry phase obtained from the evolution of a spin
particle interacting with a time-varying magnetic field BðtÞ of
constant amplitude, where the directions of the magnetic field
RðtÞ ¼ BðtÞ=B are the parameters (Berry, 1984).
The geometric phase ϕg;a produces a characteristic effect:

when k recovers its initial orientation, the polarization axis of
linearly and elliptically polarized light is rotated. This rotation
can be understood in terms of circular birefringence: The left
and right circularly polarized light components of the beam
acquire opposite geometric phases (Tomita and Chiao, 1986).
It soon appeared that this rotation can also be observed

when light is redirected using a sequence of mirrors (Berry,
1987a; Kitano, Yabuzaki, and Ogawa, 1987). However, in this
case the transformation is nonadiabatic because mirror reflec-
tions reverse the helicity. An attempt was made to continue
using the parameter space to calculate the geometric phases,
but it became clear that this description had reached its limit: it
had to rely on modified wave vectors and had to account for
occasional π phase shifts (Kitano, Yabuzaki, and Ogawa,
1987). At a similar time, Aharonov and Anandan (1987)
changed their emphasis from the parameter space to the state
space. They showed that adiabaticity is not a necessary
condition for the existence of geometric phase, but instead
that it is the state evolution that matters. Similarly, for the case
of a spin particle in a magnetic field, Anandan (1992)
considered the evolution of the spin instead of the evolution
of the magnetic field direction (parameter), thereby lifting the
adiabatic requirement. For spin-1=2 particles, the sphere of the
spin directions is the Bloch sphere. Inspired by this work,
Chiao et al. (1988) shifted the emphasis from the evolution of
the direction of the wave vector to the evolution of the spin
vector S of the photons. The geometric phase, now called the
spin-redirection (SR) phase, became

ϕg;a ¼ −σΩSRðCÞ; ð9Þ

where ΩSRðCÞ is the familiar solid angle formed on the sphere
representing the directions of the spin S of the photon in real

FIG. 7. Generation of SR phases. (a) Linearly polarized beam
taken along a nonplanar trajectory. The mirrors M2 and M3 form
a beam elevator. At the end of the trajectory, the polarization axis
is rotated. (b) Path formed on the sphere of the spin directions.
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space. Figure 7 illustrates how a beam of light can be taken
along a nonplanar trajectory using a succession of mirrors and
shows the respective path traced on the sphere of the spin
directions of the photons.
Note, however, that, unlike the Bloch sphere of spin-1=2

particles, which incorporates information on the direction of
the spin in real space and identifies all pure states, the sphere
of the spin directions of the photons is not a state space. The
state space identifying all pure polarization states was pre-
sented earlier: it is the Poincaré sphere. However, the Poincaré
sphere is built on the assumption that polarization character-
izes the oscillation of a two-dimensional electric field con-
tained in the plane transverse to a constant propagation
direction. If the propagation direction varies, so does the
orientation of the transverse plane spanning the polarization.
When the propagation direction of a beam of light is varied,

the electric field becomes a three-component vector E ¼
ðEx; Ey; EzÞ in the laboratory frame. The normalized state
vector jψi representing the system then corresponds to a
rotated three-component spinor, reflecting the spin-1 nature of
the photons (Berry, 1987b; Hannay, 1998). We are thus
dealing with a three-state system, of state space CP2, which
is no longer an ordinary sphere. State spaces become difficult
to visualize as their dimension increases, and so does picturing
the evolution of the state in that space. Majorana (1932)
provided an elegant way to circumvent this difficulty.
Majorana was studying the behavior of a spin system of
arbitrary angular momentum j in the presence of a magnetic
field when he realized that varying the direction and magni-
tude of the magnetic field amounts to rotating j. After the
rotation, a system that was originally in an eigenstate finds
itself in a superposition of 2jþ 1 states. The j-spin problem
thus becomes equivalent to relating angular momentum states
associated with different directions in space (Schwinger,
1977). This is equivalent to the problem we encounter when
we compare polarization along a varying propagation direc-
tion. Majorana continued by representing a spin j state as a
constellation of 2j points on an ordinary sphere. Each point,
called a star, represents the direction of a spin-1=2 angular
momentum (Bloch and Rabi, 1945). From a geometric
perspective, what Majorana really did was write an n-dimen-
sional state space CPn as an unordered product of n − CP1,
the space of all unordered sets of n points on a sphere.
In 1998, Hannay used the Majorana representation to

visualize 3D polarized light as two stars on a sphere; see
Fig. 8 (Hannay, 1998). In his work, he managed to relate
Majorana’s mathematical construct to a concept of a polari-
zation ellipse and its orientation direction in 3D space, which
is familiar to all researchers working in optics. Specifically, he
showed that the foci of the polarization ellipse are given by the
projection of the stars onto the plane perpendicular to the
bisector of their angle. He also deduced the geometric phase
associated with the transformation of 3D polarized light from
the circuits traced by the two stars.
Nonparaxial fields, for which the electric field component

along the propagation direction is non-negligible, have
attracted increasing attention in the past decades by virtue
of their capacity to mix the spin and orbital angular momen-
tum content of the beam (Barnett and Allen, 1994;

Bliokh et al., 2010; Ma et al., 2016). This attention renewed
interest in their geometric phases and brought the Majorana
representation back into the spotlight (Bliokh, Alonso, and
Dennis, 2019; Alonso, 2020).
While picturing the state evolution is certainly helpful, we

showed in Sec. IV that all we really need to calculate the
geometric phase is the connection on the relevant fiber bundle.
For a spin-1 system, the base space is the state space CP2, the
total space is the Hilbert space H3, and the fiber is Uð1Þ. A
good description of this fiber bundle was provided by
Bouchiat and Gibbons (1988). In this case, the set of pure
states is characterized by four parameters consisting of three
Euler angles θ;φ, and α giving the orientation in space of the
principal axis of the polarization vector, and an extra param-
eter defining the shape of the ellipse δ. The geometric phase of
3D polarized light reads

ϕg ¼
I
C
A ¼

I
C
½sin δ cos θdφþ ðsin δ − 1Þdα�: ð10Þ

Hannay (1998) recognized that Eq. (10) is equivalent to the
one found using the Majorana representation. The set of
coordinates on CP2 contains some singularities, like the ones
that we identified at the poles on the Poincaré sphere
(Bouchiat and Gibbons, 1988). It would be interesting to
determine whether this has physical consequences. A clear
geometric interpretation of the limiting cases, where the
geometric phase becomes the Pancharatnam-Berry phase or
the spin-redirection phases, would also be useful. It has been
suggested that, in the context of general relativity, CP2 can be
regarded as a half pseudoparticle surrounded by a cosmo-
logical event horizon, and that it shares properties of the Yang-
Mills instanton (Gibbons and Pope, 1978). We ask whether
investigating the phase holonomies of 3D polarized light
could be exploited to study these systems.
Turning paraxial light into a 3D field is relatively straight-

forward. One can use a high numerical aperture or rely on
scattering (Bliokh et al., 2011). Measuring the entire electric
field, however, is a highly challenging task. Note, however,
that it is now possible to access high-dimensional state space

FIG. 8. Hannay’s representation of 3D polarized light. The stars
correspond to the tips of the vectors v and u. The polarization
ellipse is represented in orange (solid gray circle), and n is
aligned in the propagation direction. The foci of the ellipse
correspond to the projection of the stars onto the plane orthogonal
to their bisector.
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without breaking the paraxiality by structuring light in its
spatial degree of freedom.

B. Geometric phases of spatial transverse modes

Optical modes are characterized not only by their polari-
zation but also by their spatial profile, determining both phase
and intensity distribution across the beam (Forbes, Oliveira,
and Dennis, 2021). While polarization is usually limited to a
two-dimensional state space, there is an infinite number of
orthogonal spatial modes, with Hermite-Gaussian (HGn;m)
and Laguerre-Gaussian (LGl

p) modes providing possible basis
sets in Cartesian and polar coordinates, respectively.
A spatial transverse mode of order N ¼ nþm ¼ 2pþ jlj

may be represented by a normalized vector jψi, which may
refer to a coherent state as approximated by a classical light
beam, or the wave function of a photon. The state vector then
lives in a Hilbert space of dimension N þ 1, and the state
space is CPN (Allen, Courtial, and Padgett, 1999).
For N ¼ 1, jψi is a two-state system of the form of Eq. (4),

where j0i and j1i correspond to any two linear dependent
orthogonal modes, we can choose the LG1

0 and LG
−1
0 modes or

the HG0;1 and HG1;0 modes. As in all two-state systems, this
state space can be pictured as an ordinary sphere, the so-called
sphere of first order modes shown in Fig. 9(a) (Van Enk, 1993;
Agarwal, 1999; Padgett and Courtial, 1999). By convention,
the poles represent the modes LG�1

0 and the equator corre-
sponds to first order HG modes of varying alignment. All
diametrically opposed modes form a suitable orthogonal basis
system, from which all modes on the sphere can be obtained as
a linear superposition. A path C can be formed on the sphere
using a sequence of mode-preserving optical elements, like a
pair of Dove prisms acting as a mode rotator or a pair of
cylindrical lenses acting as a mode convertor (Beijersbergen
et al., 1993). The geometric phase associated with the trans-
formation of the first order modes reads (Van Enk, 1993;
Galvez et al., 2003)

ϕg;N¼1 ¼ −1
2
ΩðCÞ; ð11Þ

where ΩðCÞ is the solid angle enclosed by the path formed on
the sphere, which is analogous to the PB phase. This is not
surprising, since the underlying geometry is the same. The
phase ϕg;N¼1 can be interpreted as the holonomy of the

connection on the Hopf fibration, where the base space
corresponds to the sphere of the first order modes. This
interpretation, to our knowledge, has not yet been made
explicit in the literature.
For N > 1, the dimension of the state space jψi grows.

Second order modes, for example, need to be expressed in
terms of not two but three fundamental modes, where LGþ2

0 ,
LG0

1, and LG−2
0 form a complete basis; third order modes

require four fundamental modes, where LGþ3
0 , LGþ1

1 , LG−1
1 ,

and LG−3
0 form a complete basis, etc. Thus far geometric

phases have been calculated on two-dimensional subspaces of
these high-dimensional state spaces that are represented as
spheres. Habraken and Nienhuis (2010) used a number of
ðN þ 1Þ=2 spheres to represent modes of odd mode order N
and a number of ðN þ 2Þ=2 spheres in order to represent
modes of even mode order. In practice, this means that both
second and third order modes will be represented using two
ordinary spheres; see Figs. 9(b) and 9(c).
However, unlike for first and third order modes, not all the

poles of the spheres of second order modes carry orbital
angular momentum, indeed, one sphere presents the LG0

1

mode and the mode (iLG0
1) at the poles. This is a general

feature of even modes. Note also that the modes at the equator
of the spheres no longer correspond to the linear superposition
of the poles, as would be the case for generalized Poincaré
spheres: for the first sphere of second order modes, we would
expect to see HG1;1 rather than HG0;2 modes at the equator.
This reflects the choice of Habraken and Nienhuis (2010) to
obtain all the modes on these spheres by performing a mode-
preserving transformation on the modes at the poles, which
can easily be realized in the laboratory using astigmatic
mode converters (to move along lines of constant longitude)
and image rotators (to move along lines of constant latitude).
The geometric phase obtained from a cyclic mode-preserving
transformation, which effectively forms a path on these
subdimensional state spaces, is then calculated using
(Calvo, 2005)

ϕg;N ¼ −1
2
lΩ; ð12Þ

where Ω is the solid angle formed on the sphere describing
the transformation. When a path is formed on a sphere on
which all modes carry the same amount of orbital angular
momentum, like the second sphere of second order modes,

FIG. 9. Spheres of spatial transverse modes following the convention of Habraken and Nienhuis (2010), with all modes on one sphere
linked by optical mode converters and rotators. (a) The sphere of first order modes is the direct analog of the Poincaré sphere. (b),
(c) Second and third order modes represented on two spheres each.
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no geometric phase is generated (Galvez and O’Connell,
2005). This indicates that geometric phases are mediated by
a variation of orbital angular momentum, in the same way
that polarization transformations that generate a PB phase
involve variation of the spin angular momentum (Tiwari,
1992; Van Enk, 1993; McWilliam et al., 2022). While the
sphere-based representation is useful, as it directly relates to
transformations that are easily realizable in the laboratory, it
is not suitable to describe generic transformations in the state
space of higher order modes.
Interpreting spatial transverse modes in terms of a fiber

bundle would allow us to explore geometric phases over the
entire state space, not just two-dimensional subspaces. For a
spatial transverse mode of the order of N, the relevant fiber
bundle would be the so-called tautological line bundle, with
the same base space CPN , total space HNþ1, and Uð1Þ as the
fiber. It would be interesting to determine, at least theoreti-
cally, whether transformations over extended portions of the
state space lead to the discovery of new geometric or
topological phases, with possible applications to topological
photonics and quantum communication. In tandem with such
fundamental discussions, we may develop experimental tech-
niques that can realize general forms of mode transformations,
thereby leading to the expansion of the spatial mode shaping
toolbox.
In reality, the exploration of high order spaces in optics has

already begun. Indeed, a Majorana representation of struc-
tured Gaussian beams was introduced in 2020, revealing that
geometric phases born from a cyclic model transformation of
generalized structured Gaussian beams can be discrete
(Gutiérrez-Cuevas et al., 2020). Following Hannay’s obser-
vation about the Majorana represention, we expect this result
to be confirmed by fiber bundle theory. Investigations are still
at an early stage, and other geometric and topological phases
may still be awaiting discovery. Note also that more general
mode solutions of the paraxial wave equation have received
increasing attention in recent years and promise to expand the
horizon of geometric phases even further (Alonso and Dennis,
2017; Dennis and Alonso, 2017, 2019). Knotted beams, for
which the locus of phase singularities form linked and knotted
threats upon propagation (Berry and Dennis, 2001; Leach
et al., 2004), may also uncover interesting geometric phases.
Thus far we have considered the spatial and polarization

degree of freedom of light independently. We now study
vector light fields where they become nonseparable and
discuss the implications with regard to their geometric phases.

C. Geometric phases of general vectorial fields

Combining the polarization and spatial degrees of freedom
of light amounts to building a bipartite system, where the
Hilbert space of the system corresponds to the tensor product
of the individual spaces Hpol ⊗ Hspa. For simplicity, we
consider only first order transverse modes, in which case
we are dealing with a two-qubit system (Souza et al., 2007).
Homogeneously polarized light is described using a product
state, separable into a qubit that describes the polarization, and
one for the spatial mode. Light with nonhomogeneous
polarization instead is nonseparable in these distinct degrees
of freedom (Souza et al., 2007). Well-known examples of

nonseparable modes are radially and azimuthally polarized
modes of the form LG1

pσ� þ LG−1
p σ∓, where σ� represents

left and right circular polarized light, respectively (Zhan,
2009; Otte, Alpmann, and Denz, 2016; Liu et al., 2018;
Selyem et al., 2019). These modes have received increasing
attention, as they can be focused on tighter spots than their
uniformly polarized counterparts (Youngworth and Brown,
2000). General vector beams built from first order modes are
usually represented using two Poincaré-like S2 spheres, shown
in Fig. 10, where the poles correspond to uniformly circularly
polarized vortex modes, of helicity σ ¼ �1 and carrying an
optical vortex of topological charge l ¼ �1. The states on the
equator correspond to corotating modes, such as radial and
azimuthal modes, and counterrotating modes (Holleczek et al.,
2011; Milione et al., 2011). The geometric phase associated
with the transformation of these modes is then calculated as
follows from the solid angle Ω formed on the relevant sphere
(Milione et al., 2011):

ϕg ¼ �1
2
ðlþ σÞΩ. ð13Þ

The total geometric phase is thus linked to the total angular
momentum of the beam lþ σ. This was experimentally
verified by Milione et al. (2012), whose combination of a
half wave plate and an astigmatic mode converter realized the
mode transformation.
Again, the space of pure states of a two-qubit system

CP3 is not an ordinary sphere. However, depending on the
degree of separability of the states, the associated substate
space may take a more recognizable form (Bengtsson and
Zyczkowski, 2006). Separable states, for instance, form a
CP1 ⊗ CP1 subspace, called Segre embedding (Bengtsson
and Zyczkowski, 2006). There is a curious correspondence
between the geometry of arbitrary separable states and the
fiber bundle with base space S4, fiber S3, and total space S7

(Mosseri and Dandoloff, 2001). This fibration is a generali-
zation of the Hopf fibration and is normally used to describe
quaternions, but it has also been used to study the geometric
phases of two-qubit systems (Lévay, 2004). The phase
associated with the cyclic evolution of a maximally entangled
state is purely topological (Milman and Mosseri, 2003; Lévay,

FIG. 10. Spheres of first order polarized modes. In the left
sphere, σ ¼ −l at the poles and the modes on the equator are
corotating vector modes. For the sphere on the right, σ ¼ l and
the modes on the equator are counterrotating modes.
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2004). The topological phase arising under the cyclic trans-
formation of maximally nonseparable optical modes was
measured by Souza et al. (2007), Souza, Huguenin, and
Khoury (2014), and Matoso et al. (2019). It would be useful to
study whether the tautological line bundle over CP3 yields
similar results, considering the fact that the Hopf fibration was
not originally intended for the description of complex fields
and does not generalize to arbitrary dimensions.
In this section, we have considered vector modes built from

first order modes, but a more general description would
include arbitrary vector fields based on spatial modes of
higher order. The sphere-based representation presented in
Fig. 10 then needs to be expanded by allowing the LG beams
at the poles to be of different topological charges l andm. The
associated geometric phase then reads (Yi et al., 2015)

ϕg ¼ −
l − ðmþ 2σÞ

4
Ω; ð14Þ

where Ω is the solid angle formed on the modified sphere
under consideration. This phase was measured by Liu et al.
(2017), who used two identical q plates. Interpreting this
phase in terms of a fiber bundle is certainly possible but would
be pure speculation without first addressing the questions
raised by two-qubit systems.

VI. SUMMARY AND PERSPECTIVES

Fiber bundle theory presents a rigorous treatment for the
understanding of phases. It sheds light on the origin of the
solid angle law linking a geometric phase to the path formed
on a generalized Poincaré sphere representing the mode space
when the mode is transformed. These spaces, however, often
represent only two-dimensional subspaces of a high-dimen-
sional state space. They cannot be represented by a sphere and
are difficult to visualize. They may, however, present geo-
metric and topologic features giving birth to interesting
geometric and topologic phases, which are undetectable in
two-dimensional subspace descriptions. Majorana-based rep-
resentations are slowly emerging. They are capable of
providing an accurate expression for geometric phases in
high-dimensional state spaces while also providing a clear
visual interpretation.
At a more fundamental level, tautological line bundles

should be used to calculate these geometric phases; the only
ingredient needed is the connection on these bundles.
Research on general vectorial modes raises the question of
how nonseparability can be accounted for using fiber bundles,
and whether this causes measurable effects. With this
Colloquium we hope to encourage collaborations between
the optics and mathematics communities, as we believe that
higher order structured Gaussian modes and vector modes
may allow for the exploration of new concepts.
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Nomoto, 2012, “Poincaré-beam patterns produced by nonseparable
superpositions of Laguerre-Gauss and polarization modes of light,”
Appl. Opt. 51, 2925–2934.

Galvez, Enrique J., and Megan A. O’Connell, 2005, “Existence and
absence of geometric phases due to mode transformations of high-
order modes,” in Nanomanipulation with Light, SPIE Proceedings
Vol. 5736, edited by David L. Andrews (SPIE—International
Society for Optics and Photonics, Bellingham, WA), pp. 166–172.

Gibbons, G.W., and C. N. Pope, 1978, “CP2 as a gravitational
instanton,” Commun. Math. Phys. 61, 239–248.

Gutiérrez-Cuevas, R., S. A. Wadood, A. N. Vamivakas, and M. A.
Alonso, 2020, “Modal Majorana Sphere and Hidden Symmetries of
Structured-Gaussian Beams,” Phys. Rev. Lett. 125, 123903.

Habraken, Steven J. M., and Gerard Nienhuis, 2010, “Geometric
phases in higher-order transverse optical modes,” in Complex Light
and Optical Forces IV, SPIE Proceedings Vol. 7613, edited by
Enrique J. Galvez, David L. Andrews, and Jesper Glückstad,
SPIE—International Society for Optics and Photonics, Bellingham,
WA), pp. 121–128.

Hannay, J. H., 1985, “Angle variable holonomy in adiabatic excur-
sion of an integrable Hamiltonian,” J. Phys. A 18, 221–230.

Hannay, J. H., 1998, “The Berry phase for spin in the Majorana
representation,” J. Phys. A 31, L53–L59.

Holleczek, Annemarie, Andrea Aiello, Christian Gabriel, Christoph
Marquardt, and Gerd Leuchs, 2011, “Classical and quantum
properties of cylindrically polarized states of light,” Opt. Express
19, 9714–9736.

Hopf, H., 1931, “On the mapping of the three-dimensional sphere
onto the spherical surface,” Math. Ann. 104, 637–665.

Jisha, Chandroth Pannian, Stefan Nolte, and Alessandro Alberucci,
2021, “Geometric phase in optics: From wavefront manipulation to
waveguiding,” Laser Photonics Rev. 15, 2100003.

Kataevskaya, I. V., and N. D. Kundikova, 1995, “Influence of the
helical shape of a fibre waveguide on the propagation of light,”
Quantum Electron. 25, 927–928.

Kim, Jihwan, Yanming Li, Matthew N. Miskiewicz, Chulwoo Oh,
Michael W. Kudenov, and Michael J. Escuti, 2015, “Fabrication of
ideal geometric-phase holograms with arbitrary wavefronts,” Op-
tica 2, 958–964.

Kitano, M., T. Yabuzaki, and T. Ogawa, 1987, “Comment on
‘Observation of Berry’s Topological Phase by Use of an Optical
Fiber,’ ” Phys. Rev. Lett. 58, 523–523.

Leach, Jonathan, Mark R. Dennis, Johannes Courtial, and Miles J.
Padgett, 2004, “Knotted threads of darkness,” Nature (London)
432, 165–165.

Lee, Yun-Han, Guanjun Tan, Tao Zhan, Yishi Weng, Guigeng Liu,
Fangwang Gou, Fenglin Peng, Nelson V. Tabiryan, Sebastian
Gauza, and Shin-Tson Wu, 2017, “Recent progress in Panchar-
atnam-Berry phase optical elements and the applications for virtual/
augmented realities,” Opt. Data Process. Storage 3, 79–88.
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