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Quantum cryptography exploits principles of quantum physics for the secure processing of information.
A prominent example is secure communication, i.e., the task of transmitting confidential messages from
one location to another. The cryptographic requirement here is that the transmitted messages remain
inaccessible to anyone other than the designated recipients, even if the communication channel is
untrustworthy. In classical cryptography, this can usually be guaranteed only under computational
hardness assumptions, such as when factoring large integers is infeasible. In contrast, the security of
quantum cryptography relies entirely on the laws of quantum mechanics. Here this physical notion of
security is reviewed, with a focus on quantum key distribution and secure communication.
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I. SECURITY FROM PHYSICAL PRINCIPLES

Communication theory is concerned with the task of
making information available to different parties. The sender
of a message x wants x to become accessible to a designated
set of recipients. In cryptography, one adds to this a somewhat
opposite requirement: that of restricting the availability of
information. The sender of x also wants a guarantee that x will
remain inaccessible to adversaries, i.e., parties other than the
intended recipients. The term security refers to this additional
guarantee.
Testing whether a communication protocol works correctly

is easy. It suffices to compare the message x sent with the
received one. Testing security, however, is more subtle. To
ensure that an adversary cannot read x, one needs to exclude
all physically possible eavesdropping strategies. Since there
are infinitely many such strategies it is not possible, at least
not by direct experiments, to prove that a cryptographic
scheme is secure (although a successful hacking experiment
would show the opposite).
But the situation is not as hopeless as this sounds. Security

can be established indirectly, provided that one is ready to
make certain assumptions about the capabilities of the
adversaries. The weaker these assumptions are, the more
confident we can be that they will apply to any realistic
adversary, and hence that a cryptographic scheme based on
them is actually secure.
The security of most cryptographic schemes used today

relies on computational hardness assumptions. They corre-
spond to constraints on the adversaries’ computational resour-
ces. For example, it is assumed that adversaries do not have
the capacity to factor large integers (Rivest, Shamir, and
Adleman, 1978). This is a relatively strong assumption,
justified merely by the belief that the currently known
algorithms for factoring will not be substantially improved
in the foreseeable future, and that quantum computers

powerful enough to run Shor’s efficient factoring algorithm
(Shor, 1997) cannot be built. Cryptographic schemes whose
security is based on assumptions of this type are commonly
termed computationally secure.
In contrast, the main assumption that enters quantum

cryptography is that adversaries are subject to the laws of
quantum mechanics.1 This assumption completely substitutes
computational hardness assumptions; i.e., security holds
even if the adversaries can use unbounded computational
resources to process their information.2 To distinguish this
from computational security, the resulting security is some-
times termed information theoretic, reflecting the fact that it
can be defined in terms of purely information-theoretic
concepts (Shannon, 1949).

A. Completeness of quantum theory

The assumption that adversaries are subject to the laws of
quantum mechanics appears to be rather straightforward to
justify. Indeed, quantum mechanics is one of our best tested
physical theories. To date no experiment has been able to
detect deviations from its predictions. Of particular relevance
to cryptography are nonclassical features of quantum mechan-
ics, such as entanglement between remote subsystems, which
have been tested by Bell experiments (Freedman and Clauser,
1972; Aspect, Grangier, and Roger, 1981; Aspect, Dalibard,
and Roger, 1982; Tittel et al., 1998; Weihs et al., 1998; Rowe
et al., 2001; Christensen et al., 2013; Giustina et al., 2013,
2015; Hensen et al., 2015; Shalm et al., 2015; Rosenfeld
et al., 2017). However, the assumption that enters quantum
cryptography concerns not only the correctness of quantum
mechanics (as one may naively think) but also its complete-
ness. This is an important point, and we therefore devote this
entire section to it.
Quantum mechanics is a nondeterministic theory in the

following sense. Even if we know, for instance, the polari-
zation direction ψ of a photon to arbitrary accuracy, the theory
will not in general allow us to predict with certainty the
outcome z of a polarization measurement of, say, the vertical
versus the horizontal direction. The statement that we can
obtain from quantum mechanics may even be completely
uninformative. For example, if the polarization ψ before the
measurement were diagonal, the theory merely tells us that a
measurement of the vertical versus the horizontal direction
would yield both possible outcomes z with equal probability.
It is conceivable that nondeterminism is just a limitation of

current quantum theory, rather than a fundamental property of
nature. This would mean that there could exist another theory
that would give better predictions. In the previous example, it
could be that the photon, in addition to its polarization state ψ ,
has certain not yet discovered properties λ on which the
measurement outcome z depends. A theory that takes into

1To prove security, one usually also requires that adversaries
cannot manipulate the local devices (such as senders and receivers) of
the legitimate parties. But this seemingly necessary requirement can
be weakened: this is the topic of device-independent cryptography,
which we discuss in Sec. IX.A.

2Although one may naturally also consider computationally secure
quantum cryptography, which we do in Secs. VIII.F and IX.B.
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account λ could then yield more informative predictions for z
than quantum mechanics. If this were the case, then quantum
mechanics could not be considered a complete theory.
Quantum cryptography is built on the use of physical

systems, such as photons, as information carriers. The incom-
pleteness of quantum mechanics would hence imply that the
theory does not give a full account of all information contained
in these systems. This would have severe consequences for
security claims. For example, a cryptographic scheme for
transmitting a confidential message x may be claimed to be
secure on the grounds that the quantum state ψ of the
information carriers gathered by an adversary is independent
of x. Nonetheless, it could still be that the adversary’s
information carriers have an extra property λ that is not
described by quantum theory and hence not included in ψ .
The independence of ψ from x is then not sufficient to
guarantee that the adversary could not learn the secret message.
A possible way around this problem is to simply assume

that no adversary can access properties of physical systems,
like λ in the previous example, that are not captured by their
quantum state ψ . But such an assumption seems to be
similarly difficult to justify as the nonexistence of an efficient
factoring algorithm. The fact that we have not yet been able to
discover λ does not mean that it does not exist (or that it cannot
be discovered).
The problem can be resolved in a more fundamental

manner. The solution is based on a long sequence of work
dating back to that of Born (1926) and Einstein, Podolsky, and
Rosen (1935), where the question regarding the completeness
of quantum mechanics was raised. The central insight result-
ing from this work was that the set of possible theories that
could improve the predictions of quantum mechanics is highly
constrained. For example, no such theory can yield deter-
ministic predictions, based on additional parameters λ, unless
it is nonlocal3 (Bell, 1964) and contextual (Bell, 1966; Kochen
and Specker, 1967). More recently it was shown that no theory
can improve the predictions of quantum mechanics unless it
violates the requirement that measurement settings be chosen
freely, i.e., independently of other parameters of the theory
(Colbeck and Renner, 2011).4 The completeness of quantum
mechanics is hence implied by the assumption that physics
does not prevent us from making free choices, an assumption
that appears to be unavoidable in cryptography anyway (Ekert
and Renner, 2014).

B. Correctness of quantum-theoretic description

In Sec. I.Awe saw that the security of quantum cryptography
crucially relies on the completeness of quantum mechanics, but
that the latter can be derived from the requirement that one can
make free choices. It is still necessary to assume that quantum
mechanics is correct, in the sense that it accurately describes the

hardware used for implementing a cryptographic protocol. But
since quantum mechanics consists of a set of different rules, we
should be more specific about what this correctness assumption
really means.
Quantum cryptographic protocols are usually described

within the framework of quantum information theory (Nielsen
and Chuang, 2010), which provides the necessary formalism
to talk about information carriers and operations on them. Any
information carrier is modeled as a quantum system S with an
associated Hilbert spaceHS, and the information encoded in S
corresponds to its state. In the case of “classical” information,
the different values x of a variable with range X are
represented by different elements from a fixed orthonormal
basis fjxigx∈X of HS. If the marginal state of a system S has
the form ρS ¼

P
x pxjxihxj, this means that S carries the value

x with probability px. Any processing of information (includ-
ing a measurement) corresponds to a change of the state of the
involved information carriers and is represented mathemati-
cally by a trace-preserving, completely positive map.5

The modeling of real-world implementations in terms of
these rather abstract information-theoretic notions is a highly
nontrivial task. To illustrate this, take an optical scheme for
quantum key distribution, where information is communicated
by an encoding in the polarization of individual photons. This
suggests a description where each photon sent over the optical
channel is regarded as an individual quantum system. However,
photons are just excitations of the electromagnetic field and
thus a priori not objects with their own identity. (That is, they
are indistinguishable.) A solution to this problem could be that
one “labels” the photons by the time at which they are sent out;
i.e., photons sent at different times are regarded as different
quantum systems S. But there could be more than one photon
emitted at a particular time, and these different photons either
could or could not have the same frequency. One may now
choose to take this into account by modeling the photon
number and their frequency as internal degrees of freedoms
of the system S. Or one could choose the frequency to be an
additional system label so that photons with different frequen-
cies would be regarded as different systems.
This example shows that the translation of an actual

physical setup into the language of quantum information
theory is prone to mistakes and is certainly not unique.
Nonetheless, it is critical for security: if done incorrectly,
the security statements, which are derived within quantum
information theory, are vacuous. Particular care must be taken
to ensure that no information carriers that are present in an
implementation are omitted. A realistic photon source may
sometimes emit two instead of only one photon whose
polarization encodes the same value, and this second photon
may be accessible to an eavesdropper (see Sec. IV.C). This
possibility must therefore be included in the quantum infor-
mation-theoretic description of that photon source. If it were
not, it would represent a side channel to the adversary that is
not accounted for by the security proof. Side channels may

3This concept is discussed in the context of device-independent
cryptography in Sec. VI.D.

4More precisely, according to Bell and Aspect (2004) variables are
“free” if they “have implications only in their future light cones.” In
other words, they are not correlated to anything outside their causal
future. This notion has sometimes also been called “free will”
(Conway and Kochen, 2006).

5We refer the interested reader to standard textbooks in quantum
information theory, such as that of Nielsen and Chuang (2010), for a
description of these concepts. An argument that justifies their use in
the context of cryptography was given by Renes and Renner (2020).
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also occur in other components, such as photon detectors; see
the review of Scarani et al. (2009) for a general discussion of
these practical aspects of quantum cryptography.

C. Overview of this review

In this review we focus on the information-theoretic layer
of security proofs; i.e., we presume that we have a correct
quantum information-theoretic description of the crypto-
graphic hardware. The existence of such a description is
indeed a standard assumption made for security proofs and is
usually termed device dependence. It contrasts with device-
independent cryptography, where this assumption is consid-
erably relaxed; see Sec. VI.D for a discussion.
We start Sec. II by introducing general concepts from

cryptography. From then on we focus largely on quantum key
distribution (QKD), which currently is the most widespread
application of quantum cryptography. It is also a concrete
example with which to discuss security definitions, the
underlying assumptions, and proof techniques. In Secs. VII
and VIII we explain how these notions apply to cryptographic
tasks other than key distribution.

II. CRYPTOGRAPHIC SECURITY DEFINITIONS

A. Real-world ideal-world paradigm

Cryptographic schemes are not usually perfectly secure.
Rather, they provide a certain level of security that is
quantified by one or several parameters. Take for instance
an encryption scheme. It could be called perfectly secure only
if we had a guarantee that an adversary could learn absolutely
nothing about the encrypted message, something that turns
out to be impossible to achieve in practice. Still, we have
encryption schemes, such as those built in quantum cryptog-
raphy, that are “almost perfectly secure.” Thus, we need a
quantitative definition that makes what this means precise.
Devising sensible quantitative definitions can be challeng-

ing. Consider a protocol that encrypts quantum information
contained in a d-dimensional register A by applying a unitary
Uk that depends on a uniformly chosen key k ∈ K. It was
proposed by Ambainis and Smith (2004), Hayden et al.
(2004), and Dickinson and Nayak (2006) that the security
of such a scheme may be defined by requiring that, for any
state ρA,

1

2

���� 1

jKj
X
k∈K

UkρAU
†
k − τA

����
tr
≤ ε; ð1Þ

where ε ≥ 0 is the security parameter, τA ¼ ð1=dÞI is the fully
mixed state, and k · ktr denotes the trace norm or Schatten
1-norm. The definition has been justified by the argument that
an adversary who does not know the key k cannot distinguish
the encryption of the state from τA (except with advantage6 ε).
However, it was later realized that this does not hide the
information in the A system from an adversary who may hold

a purification R of the information A (Ambainis, Bouda, and
Winter, 2009). To take this into account, one should instead
require that, for any ρAR,

1

2

���� 1

jKj
X
k∈K

ðUk ⊗ IRÞρARðU†
k ⊗ IRÞ − τA ⊗ ρR

����
tr
≤ ε;

where ρR is the reduced density operator of ρAR. Note that this
criterion is not implied by Eq. (1) (Watrous, 2018).
As another example, early works on QKD (Mayers, 1996;

Biham et al., 2000; Shor and Preskill, 2000) measured the
secrecy of a secret key in terms of the accessible information7

between the key and all information that may be accessible to
an adversary. In security proofs it was then shown that this
value is small, apparently implying that the key is almost
perfectly secret. Later one realizes, however, that the acces-
sible information is not a good measure for secrecy: even if
this measure is exponentially small in the key size, an
adversary may be able to infer the second part of the key
upon seeing the first part (König et al., 2007). This makes the
key unusable in many applications, such as encryption, as
described in Sec. III.C.1.
Problems analogous to the previously outlined ones are well

known in classical cryptography. They were addressed inde-
pendently by Pfitzmann and Waidner (2000, 2001) and
Canetti (2001), who built on a series of earlier works
(Goldreich, Micali, and Wigderson, 1986; Beaver, 1992;
Micali and Rogaway, 1992; Canetti, 2000) with a security
paradigm that we refer to here as the “real-world ideal-world”
paradigm. The gist of it lies in quantifying how well a real
protocol for a cryptographic task can be distinguished from an
ideal system that fulfills the task perfectly.
As a simple noncryptographic example, we consider

channel coding, i.e., the task of constructing a noiseless
channel from a noisy one. Suppose that Alice and Bob have
access only to a noisy channel, as drawn in Fig. 1(b). To send a
message, Alice will encode it in a larger message space that
has redundancies. Upon reception, Bob will decode it, using
the redundancies to correct errors (Nielsen and Chuang,
2010). Putting together the encoder, the noisy channel, and
the decoder, as illustrated in Fig. 1(c), gives a new channel.
Ideally, this constructed channel, which we call the real world,
should behave like a perfect, noiseless channel [Fig. 1(a)],
which we therefore call the ideal world. To quantify how well
we achieved this goal, we measure how close the real world is
to the ideal world.
For this, we consider a hypothetical game in which a

distinguisher has black-box access to an unknown system,
as shown in Fig. 2. The unknown system is, depending on a
random bit B, either the real world (B ¼ 0) or the ideal world
(B ¼ 1). The term black-box access means that the distin-
guisher is not provided with a description of the system, and,
in particular, has no direct access to the bit B, but otherwise
can interact arbitrarily with it. In the case of our noiseless
channel construction problem, the distinguisher can generate

6See the text near Eq. (2) for a definition of the notion of a
distinguishing advantage.

7This captures the information that a player may obtain by
measuring her quantum state and is formally defined in Eq. (16)
in Sec. III.C.1; see also Nielsen and Chuang (2010).
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any joint state ρAR it desires, input the A part into the channel,
and then measure the joint state of the channel output and its
purification R. The distinguisher is then asked to guess
whether it interacts with the real world (B ¼ 0) or with the
ideal one (B ¼ 1). Let D be a random variable denoting
the distinguisher’s guess. The distinguishing advantage of the
distinguisher is then defined as the difference between the
probabilities that it guessed correctly or erroneously, namely,

j Pr½D ¼ 0jB ¼ 0� − Pr½D ¼ 0jB ¼ 1�j: ð2Þ

The distinguishing advantage for a class of distinguishers
(such as computationally bounded or unbounded distin-
guishers) is then defined as the supremum of Eq. (2) over
all distinguishers in this set. For example, in the case of
channel coding the distinguishing advantage for unbounded
distinguishers corresponds to the diamond norm between
the channels (Watrous, 2018). A protocol is considered
secure if the distinguishing advantage is small, or, more
accurately, the level of security of a protocol is para-
metrized by this advantage and the corresponding class of
distinguishers.
In its essence, the real-world ideal-world paradigm

avoids defining security; instead, it provides a simple
description, the ideal world, of what should happen in
the real world. In the example of channel coding, the real
world might involve a complex noise model as well as
encoding and decoding operations, whereas the ideal world
is simply an identity map. When evaluating whether such a
security statement is appropriate, one asks whether the
ideal world captures what we need or if one should design a
different ideal world.
A crucial property of the real-world ideal-world paradigm

is that the resulting notion of security is composable. This
means that the security of a protocol is guaranteed even if
it is composed with other protocols to form a larger crypto-
graphic system. In fact, to ensure composability, the notion of
distinguishability has to be chosen appropriately. Specifically,
the distinguisher must have access jointly to all information
available normally to the honest parties as well as the
adversary. The role of the distinguisher is hence to capture
“the rest of the world,” everything that exists around the
system of interest. In particular, the distinguisher may choose
the inputs to the protocol (which might come from a
previously run protocol), receive its outputs (which could
be used in a subsequent protocol), and simultaneously take the
role of the adversary, possibly eavesdropping on the commu-
nication channels and tampering with messages.

B. The abstract cryptography framework

In modern cryptography, security claims and their proofs
are usually phrased within a theoretical framework. The
framework not only provides a common language but also
ensures composability, in the previously described sense.
That is, security claims that hold for individual components
can be turned into a security claim for the more complex
cryptographic scheme built from them. The first frame-
works to achieve this for classical cryptography were the
reactive simulatability framework of Pfitzmann and
Waidner (2000, 2001) and the universal composability
framework of Canetti (2001), which both used the real-
world ideal-world paradigm.
These frameworks have been further developed (Backes,

Pfitzmann, and Waidner, 2004, 2007; Canetti et al., 2007;
Canetti, 2020) and several variations have been proposed
(Mateus, Mitchell, and Scedrov, 2003; Canetti et al., 2006a,
2006b; Küsters, 2006; Mitchell et al., 2006; Hofheinz and
Shoup, 2015). The differences between them concern mostly

FIG. 2. In the real-world ideal-world paradigm, security is
defined in terms of indistinguishability. A distinguisher has
black-box access to a system that, depending on an unknown
bit B, is either the real cryptographic protocol (B ¼ 0) or an ideal
functionality (B ¼ 1). After interacting with the system, the
distinguisher outputs a guess D for B. The real protocol is
considered as secure as the ideal system if the success probability
Pr½D ¼ B� of the best possible distinguisher is close to that of a
random guess, i.e., to 1=2.

FIG. 1. (a) A noiseless channel that perfectly delivers the
message from Alice to Bob. (b) A noisy channel that alters
the message sent from Alice to Bob. (c) Alice encodes her
message into a larger space, and Bob decodes it upon reception.
In (a)—(c) each box represents a reactive system that produces an
output upon receiving an input. Boxes with rounded corners are
local operations performed by a party [such as encoding and
decoding in (c)]. The rectangular box is a possibly noisy channel
form Alice to Bob, which upon receiving Alice’s input produces
an output at Bob’s end of the channel. The arrows represent
quantum states transmitted from one system to another.
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how they describe information-processing systems, i.e., how
the individual devices carry out computations and how they
schedule messages when communicating (e.g., synchronously
or asynchronously). While this modeling was based mostly on
classical notions of computation and communication, the
frameworks were also adapted to quantum cryptography by
Ben-Or and Mayers (2004) and Unruh (2004, 2010).
Maurer and Renner (2011) [see also Maurer (2012) and

Maurer and Renner (2016)] proposed a framework, abstract
cryptography (AC), that is largely independent of the under-
lying modeling of the information-processing devices, and
therefore applies equally to classical and quantum settings.
We use it for the presentation here, for it enables a self-
contained description without the need to specify unnecessary
technical details.8 In the following, we describe the two basic
paradigms on which the framework is based, abstraction and
constructibility.

1. Abstraction

The traditional approach to defining security (used in all the
frameworks cited except for AC) can be seen as bottom up.
One first defines (at a low level) a computational model (such
as a Turing machine) and then proceeds by modeling how the
machines communicate (such as by writing to and reading
from shared tapes). Next one introduces higher-level notions
such as indistinguishability. Finally, these notions are used to
define security.
In contrast, AC uses a top-down approach. To state

definitions and develop a theory, one starts at the other
end, the highest possible level of abstraction. There crypto-
graphic systems are simply regarded as elements of a set that
can be combined to form new systems. One then proceeds
down to lower levels of abstraction, introducing in each of
them the minimum necessary specializations. Only on these
lower levels is it modeled how exactly the cryptographic
systems process information and how they communicate when
they are combined (e.g., synchronously or asynchronously).
The notion of indistinguishability is first defined on the
highest abstraction level as an arbitrary metric on the set of
cryptographic systems. On lower abstraction levels it can then
be instantiated in different ways, such as to capture the
distinguishing power of a computationally bounded or
unbounded environment.
Abstraction not only has the advantage that it generalizes

the treatment but usually also simplifies it, as unnecessary
specificities are avoided. It may be compared to the use of
group theory in mathematics, which is an abstraction of more
special concepts such as matrix multiplication. In a bottom-up
approach, one would start by introducing a rule for taking
the product between matrices and then, based on that rule,
studying the properties of the multiplication operation. In
contrast to this, the top-down approach taken here corresponds
to first defining the abstract multiplication group and then
proving theorems that are already on this level.

2. Constructibility

Cryptography can be regarded as a resource theory, where
certain desired resources are constructed from a set of given
resources.9 The constructions are defined by protocols. For
example, a QKD protocol uses a quantum communication
channel together with an authentic channel10 as resources to
construct the resource of a secret key. The latter resource may
then be used by other protocols, such as an encryption
protocol, to construct a secure communication channel, which
is again a resource. Similarly, the authentic channel used
by the QKD protocol can itself be constructed from an
insecure channel resource and short uniform secret key
(Wegman and Carter, 1981). And given a weak secret key
(i.e., not necessarily uniform and not perfectly correlated
randomness shared by the communication partners) and two-
way insecure channels, one may construct an almost perfect
secret key (i.e., uniform and perfectly correlated randomness)
using so-called nonmalleable extractors (Renner and Wolf,
2003; Dodis and Wichs, 2009; Aggarwal et al., 2019).
Composing the authentication protocol with the QKD proto-
col results in a scheme that constructs a long secret key from a
short secret key and insecure channels, and composing this
again with nonmalleable extractors constructs this long key
from only a weak key and insecure channels. Part of the
resulting long secret key can be used in further rounds of
authentication and QKD to produce an even more secret key.
This is illustrated in Fig. 3 and discussed in Sec. VII.
The resources used and constructed in cryptography are

interactive systems shared between players. A system that
distributes a secret key or the different types of channels
mentioned previously are examples of such resources. These
are formalized on an abstract level in Sec. II.D, and possible
instantiations are discussed in Sec. II.G. Static resources such
as coherent states (Baumgratz, Cramer, and Plenio, 2014;
Ma et al., 2019) can be seen as a special case of these.

C. Example: The one-time pad

In this section, we describe how the previously introduced
notions are employed to specify the security of a crypto-
graphic protocol. For this we consider a concrete example,
one-time pad (OTP) encryption (Vernam, 1926). The OTP
assumes that the players have access to an authentic channel,
i.e., one that provides the receiver with the guarantee that the
messages received come from the correct sender, but there is
no guarantee about the secrecy of the messages sent on such a
channel; i.e., they may leak to Eve. The OTP also requires the
players to have access to a secret key. These two resources are
drawn as boxes with square corners in Fig. 4. According to the

8The security of QKD could equivalently be modeled based on the
work of Unruh (2010), with minor adaptations to capture finite
statements instead of only asymptotics.

9This view is widespread in cryptography and made formal by
composable frameworks (Pfitzmann and Waidner, 2000, 2001;
Canetti, 2001; Maurer and Renner, 2011). Resource theories have
also been used in many different ways to capture certain aspects of
quantum mechanics; see the reviews by Streltsov, Adesso, and Plenio
(2017) and Chitambar and Gour (2019).

10An authentic channel guarantees that the message received
comes from a legitimate sender and has not been tampered with
or generated by an adversary.
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protocol, the sender Alice encrypts a message x as y ≔ x ⊕ k,
where k is the secret key and ⊕ denotes the bitwise exclusive
OR operation. The ciphertext y is then sent over an authentic
channel to the receiver Bob, who decrypts it by carrying out
the operation x ¼ y ⊕ k. At the same time, y may also leak to
an adversary Eve.
In this example, the goal of the OTP is to add confidentiality

to an authentic channel11; i.e., the ideal system is a secure
channel, drawn as a box with square corners in Fig. 4(b).
This is a channel that leaks the message size but no other
information to Eve. It is straightforward to verify that in the
real system, provided that the key k is uniformly distributed
over bit strings of the same length as the message x, the
ciphertext y is statistically independent of the message x. The
ciphertext y hence does not provide Eve with any information

about x, except potentially for its length jxj. It thus constructs
a secure channel from Alice to Bob.
To make the real and ideal systems comparable, we

consider an entire class of systems, which are obtained by
appending an arbitrary system, called a simulator, to the Eve
interface of the ideal channel resource. The systems from this
class are sometimes called relaxations (of the ideal system).
The idea is that none of these relaxations can be more useful to
Eve than the original ideal channel, because she may herself
always carry out the task of the simulator. Security now means
that the real system is indistinguishable from at least one
relaxation of the ideal system. In our example of the OTP, such
a relaxation may be obtained by a simulator that simply
generates a random string of length jxj and outputs it at the
Eve interface, as depicted in Fig. 4(b).
To establish security of OTP encryption, it is therefore

sufficient to show that the real system depicted in Fig. 4(a) is
indistinguishable from the relaxation of the ideal secure
channel shown in Fig. 4(b). That is, the two systems must
behave identically when they interact with a distinguisher.

FIG. 3. A constructive view of cryptography. A cryptographic protocol uses weak resources to construct other (stronger) resources.
These resources are depicted in the boxes, and the arrows are protocols. Each box is a one-time-use resource, so the same resource
appears in multiple boxes if different protocols require it. The long secret key resource in the center is split in three shorter keys, each of
which is used by a separate protocol. The example of secure message transmission illustrated here is discussed in Sec. VII.

11Alternatively, one may use the OTP with a completely insecure
channel, and thus obtain a malleable confidential channel (Maurer,
Rüedlinger, and Tackmann, 2012).
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This is indeed the case. For both of them, if the distinguisher
inputs x at Alice’s interface, the same string x is output at
Bob’s interface and a uniformly random string of length jxj is
output at Eve’s interface. The two systems are thus perfectly
indistinguishable: if the distinguisher were to take a guess
at which of the two it is interacting with, it would be correct
with probability exactly 1=2. In this sense, the OTP con-
struction is perfectly secure.
If two systems are indistinguishable, they can be used

interchangeably in any setting. For example, let some protocol
π0 be proven secure if Alice and Bob are connected by a secure

channel. Since the OTP constructs such a channel, it can be
used in lieu of the secure channel and composed with π0.
Or, equivalently, the contrapositive: if composing the OTP
and π0 were to leak some vital information, which would not
happen with a secure channel, a distinguisher that is given
either the real or the ideal system could run π0 internally and
check to see whether this leak occurs to find out with which of
the two it is interacting.

D. Abstract theory of cryptographic systems

We previously introduced the concepts of resources, pro-
tocols, and simulators in an informal manner. Now, following
the spirit of the AC framework described in Sec. II.B, we
provide an axiomatic specification of these concepts. This will
allow us to give a definition of cryptographic security, which
is precise, but at the same time largely independent of
implementation details. In particular, it does not depend on
the underlying computational model or the scheduling of
messages exchanged between the systems.
While this abstract approach to defining security is rather

universal, we note that, when describing concrete systems and
their compositions such as those depicted in Fig. 4, their
behavior must be specified in detail. This may be done using
various frameworks for modeling interactive quantum systems
such as the quantum combs of Chiribella, D’Ariano, and
Perinotti (2009) and the causal boxes of Portmann et al.
(2017). This is discussed further in Sec. II.G.
Nevertheless, the definitions that follow refer to an abstract

notion of a system. Following the previously mentioned
idea of abstraction and continuing the analogy to group
theory used in Sec. II.B, it is sufficient to think of systems
as objects on which certain operations are defined, such as
their composition. We now consider two types of systems,
which we call resources and converters and which have
slightly different properties.

1. Resources

A resource is a system with interfaces specified by a set I
(such as I ¼ fA; B; Eg). Each interface i ∈ I models how a
player i can access the system (e.g., how it can provide inputs
and read outputs). Examples of resources are a communica-
tion channel or any of the objects that appear in Fig. 3 as a box.
We sometimes use the term I resource to specify the interface
set. Resources are equipped with a parallel composition
operator, denoted by k, that maps two I resources to another
I resource.

2. Converters

A converter is a system with two interfaces, an inside
interface and an outside interface. A converter can be
appended to a resource, converting it into a new resource.
For this the inside interface connects to an interface of a
resource and the outside interface becomes the new interface
of the new resource; see the OTP example in Fig. 4, where the
gray boxes are new resources resulting from composing
resources and converters. We write either αiR or Rαi to
denote the new resource with the converter α connected at the

FIG. 4. Real and ideal one-time pad systems. Boxes with
rounded corners are local systems executed at Alice’s, Bob’s, or
Eve’s interfaces. The rectangular boxes are shared resources
modeling channels or shared keys. Arrows represent the
transmission of messages between systems or to the environ-
ment (distinguisher). The real world is depicted in (a). The
protocol consists of a part πOTPA executed by Alice (who has
access to the interfaces on the left-hand side) and a part πOTPB
executed by Bob (on the right-hand side). It takes a message x
at Alice’s outer interface as well as a key k and outputs a
ciphertext y toward the authentic channel. Bob’s part of the
protocol takes y and k as input and outputs the decrypted
message. The channel may leak y at Eve’s interface (at the
bottom). The ideal world is depicted in (b). The secure channel
transmits the message perfectly from Alice’s to Bob’s interface,
leaking only the message length at Eve’s interface. The
simulator σOTPE generates a random string y of length jxj,
making the real and ideal systems perfectly indistinguishable.
(a) The real OTP system consists of the OTP protocol
ðπOTPA ; πOTPB Þ together with a secret key and authentic channel
resources. (b) The ideal OTP system consists of the ideal secure
channel and a simulator σOTPE .
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interface i of R.12 Simulators and protocols are examples of
converters that are discussed later.
Converters can be composed of themselves. There are two

ways of doing this, referred to as serial and parallel compo-
sition. These are defined as

ðαβÞiR ≔ αiðβiRÞ

and

ðαkβÞiðRkSÞ ≔ ðαiRÞkðβiSÞ;

respectively.

3. Protocols

A cryptographic protocol is a family α ¼ fαigi of convert-
ers (one for every honest player). A protocol can be applied to
a resource R, giving a new resource denoted by αR or Rα.
This resource is obtained by connecting each member of the
family to the interface specified by its index.

4. Metric

As explained in Sec. II.A, the distance between resources
can be quantified using the notion of distinguishers. More
generally, one may in principle consider any arbitrary pseu-
dometric dð·; ·Þ such that the following conditions hold13:

ðidentityÞ dðR;RÞ ¼ 0;

ðsymmetryÞ dðR;SÞ ¼ dðS;RÞ;
ðtriangle inequalityÞ dðR;SÞ ≤ dðR; T Þ þ dðT ;SÞ:

Furthermore, the pseudometric must be nonincreasing under
composition with resources and converters.14 This means that,
for any converter α and resources R, S, and T ,

dðαR; αSÞ ≤ dðR;SÞ; dðRkT ;SkT Þ ≤ dðR;SÞ:

In this review we often simply write R≈ε S instead of
dðR;SÞ ≤ ε.

E. Security definition

We are now ready to define the security of a cryptographic
protocol. We do so in Definition 1 in the three-player setting,
for honest Alice and Bob and dishonest Eve, and illustrate this
definition in Fig. 5. Thus, in the following all resources have
three interfaces, denoted A, B, and E, and we consider honest
behaviors [given by a protocol ðπA; πBÞ] at the A and B
interfaces, but arbitrary behavior at the E interface. See
Maurer and Renner (2011) for the general case, in which
arbitrary players can be dishonest.
Definition 1 [cryptographic security (Maurer and Renner,

2011)].—Let πAB ¼ ðπA; πBÞ be a protocol and R and S be
two resources. We say that πAB constructs S from R within ε,
denoted by

R→
π;ε

S;

if there is a converter σE (called a simulator) such that

dðπABR;SσEÞ ≤ ε: ð3Þ
If it is clear from the context which resources R and S are
meant, we simply say that πAB is ε secure.
Although this security definition does not refer to any

computational notions, one usually considers only those
protocols whose converters are computationally efficient.15

Furthermore, if one requires security to hold under compo-
sition with protocols that have only computational security, it
is necessary to restrict the choice of the simulator σE to
converters that are computationally efficient. All the convert-
ers and resources considered in this work are efficient in the
standard sense, so we make no further mention of this.
For a given protocol, we usually want to make several

security statements, such as one about what is achieved in the
presence of an adversary (sometimes referred to as either the
soundness or the security of a protocol) and another about what
is achieved when no adversary is present (usually called either

FIG. 5. Depiction of Definition 1. A protocol ðπA; πBÞ constructs S fromR within ε if the condition illustrated here holds. The sequences of
arrows at the interfaces between the objects represent arbitrary rounds of communication.

12There is no mathematical difference between αiR and Rαi. It
sometimes simplifies the notation to have the converters for some
players written on the right of the resource and the ones for others on
the left, rather than having all of them at the same side; hence the two
notations.

13If dðR;SÞ ¼ 0 ⇒ R ¼ S also holds, then d is a metric.
14This holds only for information-theoretic security, which is the

topic of most of this review.

15In principle, any reasonable notion of efficiency could be
considered here. However, if one takes the common asymptotic
notion of computational complexity classes, one would need to
describe systems in terms of a computational model that enables such
asymptotic considerations.
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completeness or correctness16). These two cases are captured by
considering different resourcesR and S, but the same protocol
πAB. We illustrate this in Sec. III for the case of QKD.
If two protocols π and π0 are ε and ε0 secure, the

composition of the two is εþ ε0 secure. More precisely, let
protocols π and π0 construct S from R and T from S within ε
and ε0, respectively, i.e.,

R→
π;ε

S; S →
π0;ε0

T :

It is then a consequence of the triangle inequality of the
distinguishing metric that π0π constructs T from R within
εþ ε0 as follows:

R ⟶
π0π;εþε0

T :

A similar statement holds for parallel composition. Let π
and π0 construct S and S0 from R and R0 within ε and ε0,
respectively, i.e.,

R→
π;ε

S; R0 →
π0;ε0

S0:

If these resources and protocols are composed in parallel, we
find that πkπ0 constructs SkS0 from RkR0 within εþ ε0 as
follows:

RkR0 → πkπ0; εþ ε0SkS0:

Proofs of these statements were given by Maurer and Renner
(2011) and Maurer (2012).

F. Interpretation of the security parameter

Any pseudometric that satisfies the basic axioms can be
used in Definition 1. However, the usual pseudometric, which
was introduced in Eq. (2) in Sec. II.A, is the distinguishing
advantage. For two resources R and S and a distinguisher D,
Eq. (2) may be rewritten as

dDðR;SÞ ≔ j Pr½DðRÞ ¼ 0� − Pr½DðSÞ ¼ 0�j; ð4Þ

where DðRÞ and DðSÞ are the random variables correspond-
ing to the output of the distinguisher when they interact with
R and S, respectively. Alternatively, one may define the
distinguishing advantage for D as

dDðR;SÞ ≔ j2pD
distinguishðR;SÞ − 1j; ð5Þ

where pD
distinguishðR;SÞ is the probability of D correctly

guessing with which of R or S it is interacting when either
one is chosen with probability 1=2, i.e.,

pD
distinguishðR;SÞ ≔ 1

2
Pr½DðRÞ ¼ 0� þ 1

2
Pr½DðSÞ ¼ 1�:

Equations (4) and (5) are equivalent.
One then takes the supremum of this expression over all

distinguishers D of a given class D, i.e.,

dDðR;SÞ ≔ sup
D∈D

dDðR;SÞ: ð6Þ

The class D may be restricted to a particular set of systems
(such as those that are computationally efficient). The strong-
est security notion corresponds to not imposing any restriction
on the set of distinguishers (beyond what is allowed by
physical laws), which is the one considered in most of this
review and which we denote as

dðR;SÞ ≤ ε or R≈ε S:

The distinguishing advantage is of particular importance
because it has an operational interpretation. If the distin-
guisher notices a difference between the two, then something
in the real setting did not behave ideally. This can be loosely
interpreted as a failure occurring. If a distinguisher can guess
correctly with probability 1 with which system it is interacting
[i.e., pdistinguishðR;SÞ ¼ 1], a failure must occur systemati-
cally. If, conversely, it can only guess correctly with proba-
bility 1=2 (which corresponds to a random guess), this means
that the real system always behaves like the ideal one, and
hence no failure occurs at all. The practically relevant cases
are those in between. As shown in Appendix A, a guessing
probability pdistinguishðR;SÞ ¼ p corresponds to a failure with
probability ε ¼ 2p − 1, which is exactly the distinguishing
advantage. The latter can thus be interpreted as the probability
that a failure occurs in the real protocol. This operational
interpretation is crucial for applications, where one must be
able to specify what maximum value ε one is ready to tolerate.
A bound on the security ε of a protocol does not, however,

tell us how “bad” this failure is. For example, a key
distribution protocol that produces perfectly uniform keys
for Alice and Bob (but with probability ε the keys of Alice and
Bob are different) is ε secure. Likewise, a protocol that gives
1 bit of the key to Eve with probability ε (but is perfect
otherwise) and another protocol that gives the entire key to
Eve with probability ε (but is perfect otherwise) are both ε
secure as well. One could argue that leaking the entire key is
worse than leaking 1 bit, which is worse than not leaking
anything but generating mismatching keys, and this should be
reflected in the level of security of the protocol. However,
leaking 1 bit can be as bad as leaking the entire key if only
1 bit of the message is vital, and this happens to be the bit
obtained by Eve. Having mismatching keys and therefore
misinterpreting a message could have more dire consequences
than leaking the message to Eve. How bad a failure this is
depends on the use of the protocol and, since the purpose of
cryptographic security is to make a security statement that is
valid for all contexts, bounding the probability that a failure
(grave or not) occurs is the best it can do.
This is particularly relevant if one considers larger crypto-

graphic tasks that may, for instance, use the key distribution
numerous times as a subprotocol. Since, as described, a

16In the QKD literature, correctness has another meaning: it
captures the property that Alice and Bob end up with identical keys
when Eve is active. The term robustness is traditionally used in the
QKD literature to denote the performance of a QKD protocol under
honest (noisy) conditions; see Sec. III.B.4 for a discussion of the
relation between completeness and robustness.
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security bound gives one no idea of the gravity of a failure, the
failure of the key distribution protocol could have an impact
on the entire cryptographic system. For example, if the key is
used to authenticate later communication, the security of the
latter may be affected by a failure in key distribution. This
makes it necessary to choose the probability ε of a failure in
any protocol to be small enough that the accumulation of all
possible failure probabilities used for the larger cryptographic
task are still small. One way of doing this is to increase
the security parameter of a protocol on a regular basis: e.g.,
once a year the parameters are tweaked such that the new
probability of a failure is divided by 2. If the accumulated
failure during the first year is given by ε, then the total failure
over an arbitrarily long lifetime of the system is bounded
by 2ε > εþ ε=2þ ε=4þ � � �.

G. Instantiating systems

As previously mentioned, specifying a concrete behavior of a
system requires a model of systems that satisfies the axioms
presented in Sec. II.D, i.e., provides composition and a
pseudometric with the required properties. In most of this
review we consider interactive quantum systems with sequen-
tial scheduling; i.e., a system receives a quantum message, then
sends a quantum message, then receives a quantum message,
etc. Such systems were analyzed independently by Gutoski and
Watrous (2007), Chiribella, D’Ariano, and Perinotti (2009),
Hardy (2011, 2012, 2015), and Gutoski (2012) [see also Hardy
(2005) and Hardy (2007)], to which we refer in the following
using the term from Chiribella, D’Ariano, and Perinotti (2009),
namely, quantum combs. Quantum combs are a generalization
of random systems (Maurer, 2002; Maurer, Pietrzak, and
Renner, 2007) to quantum information theory.
What these works essentially show is that an interactive

system that receives the ith input in register Ai and produces
the ith output in register Bi and which processes n inputs can
be fully described by a completely positive, trace-preserving
(CPTP) map

E∶L
�
⊗
n

i¼1
HAi

�
→ L

�
⊗
n

i¼1
HBi

�
:

Conversely, any such CPTP map corresponds to an interactive
system if it respects causality; i.e., if for any j ≤ n and any

ρ; σ ∈ Lð⊗n
i¼1

HAi
Þ with trA>j

ðρÞ ¼ trA>j
σ we have

trB>j
½EðρÞ� ¼ trB>j

½EðσÞ�;

where X>j ≔ ⊗
n

i¼jþ1
Xi.

Systems such as the resources and converters for the one-
time pad in Fig. 4 (or the quantum key distribution systems
that come in Sec. III) all correspond to specific quantum
combs. (Nonetheless, we usually give informal descriptions of
such systems rather than using the comb formalism, especially
when the details of their behavior are not relevant to our
claims.) The only results discussed in this review that cannot
be modeled as quantum combs are the relativistic systems
reviewed in Sec. VIII.E, which require a more complex model

of systems that can capture space-time and also satisfy the
required axioms, such as the causal boxes of Portmann
et al. (2017).

III. DEFINING SECURITY OF QKD

The first QKD protocols were proposed independently by
Bennett and Brassard (1984), inspired by early work on
quantum money by Wiesner (1983), and by Ekert (1991).
The original papers discussed security in the presence of an
eavesdropper that could perform only limited operations on
the quantum channel. The models of security evolved over
time (a review of these is given in Sec. III.C) and the security
criterion used today was introduced in 2005 (Ben-Or et al.,
2005; Renner, 2005; Renner and König, 2005), the so-called
trace distance criterion. It was argued as follows that ρKE, the
joint state of the final key K and the quantum information
gathered by an eavesdropper E, must be close to an ideal
key τK that is perfectly uniform and independent from the
adversary’s information ρE:

ð1 − pabortÞDðρKE; τK ⊗ ρEÞ ≤ ε; ð7Þ

where pabort is the probability that the protocol aborts,
17 Dð·; ·Þ

is the trace distance,18 and ε ∈ ½0; 1� is a small real number.
This security criterion was discussed within the cryptography
frameworks introduced in Sec. II by Ben-Or et al. (2005) and
Müller-Quade and Renner (2009); see also Appendix A.
We note that Eq. (7) captures only how much an adversary

knows about the key (called secrecy in the QKD literature).
A QKD scheme must additionally guarantee that Alice
and Bob hold the same key with high probability (called
correctness), and that under reasonably noisy conditions a
QKD scheme produces a key with high probability (called
robustness). In this section, we describe how these security
notions fit into the general framework described in Sec. II.
For this we first explain in Sec. III.A how to use the AC
framework to model the task achieved by a QKD protocol
(namely, constructing a secret key resource from an insecure
quantum channel and an authentic classical channel) and
write out the corresponding security definitions. In Sec. III.B
we then show how to derive secrecy, correctness, and
robustness from these security definitions. And finally in
Sec. III.C we review other security definitions that have
appeared in the literature and explain how they relate to the
trace distance criterion, namely, Eq. (7).

A. The real and ideal QKD systems

To apply the general AC security definition to QKD, we
first need to specify the ideal key resource, which we do in
Sec. III.A.1. Likewise, we specify in Sec. III.A.2 the real QKD
system consisting of the protocol, an authentic classical

17Renner (2005) introduced Eq. (7) with a subnormalized state
ρKE, with trðρKEÞ ¼ 1 − pabort, instead of explicitly writing the factor
1 − pabort. The two formulations, however, are mathematically
equivalent.

18This metric corresponds to the distinguishing advantage between
two quantum states and is formally defined in Appendix A.
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channel, and an insecure quantum channel. Plugging these
systems into Definition 1, we obtain in Sec. III.A.3 the
security criteria for QKD.

1. Ideal key

The goal of a key distribution protocol is to generate a
secret key shared between two players Alice and Bob. One can
represent such a resource by a box, one end of which is in
Alice’s lab and another in Bob’s. It provides each of them with
a secret key of a given length but does not give Eve any
information about the key. This is illustrated in Fig. 6(a), and
is the key resource that we used in the OTP construction
[Fig. 4(a)].
However, if we want to realize such a functionality with

QKD, there is a caveat: an eavesdropper can always prevent
any real QKD protocol from generating a key by cutting or
jumbling the communication lines between Alice and Bob,
and this must be taken into account in the definition of
the ideal resource. This box thus also has an interface
accessible to Eve, which provides her with a switch that,
when pressed, prevents the box from generating this key.
We depict this in Fig. 6(b).

If a OTP protocol uses the key generated by the resource of
Fig. 6(b), we need to consider two cases. If Eve prevents a key
from being generated, the construction is trivially secure: in
this case, Alice and Bob do not have a key and therefore
cannot send any messages. And in the case where a key is
generated we have the situation depicted by Fig. 6(a), which is
the situation that we already analyzed in Sec. II.C.
As previously explained, an adversary can prevent a key

from getting distributed by disrupting the communication
channels. But even if no adversary is present, one might still
wish to take into account that, due to noise or another
disturbance, it can happen that no key is generated. One
may in this case be able to bound the probability of success-
fully distributing a key, and thus the ideal resource constructed
is stronger than that of Fig. 6(b) (where there is no bound
on the probability of getting a key) but weaker than that
of Fig. 6(a) (where a key is generated with probability 1).
This middle point is depicted in Fig. 6(c) (where a key is
generated with probability 1 − δ) and is treated in Sec. III.B.4.

2. Real QKD system

a. Protocol

There are various types of QKD protocols that differ by
their use of resources and hence practical feasibility (Scarani
et al., 2009). For example, in entanglement-based protocols,
which were first proposed by Ekert (1991), Alice and Bob
use a source of entanglement together with a classical
authentic (but otherwise insecure) communication channel
to generate their keys. Here we focus on prepare-and-
measure schemes, where instead of having access to entan-
glement it is assumed that Alice can send quantum states to
Bob. These protocols, of which that of Bennett and Brassard
(1984) is the most prominent example, are technologically
less challenging than entanglement-based ones, for they do
not require the generation of entanglement. Alice merely
has to prepare states and send them to Bob, and Bob has to
measure them.
QKD protocols can be roughly divided into three phases:

quantum state distribution, error estimation, and classical
postprocessing. In the first, Alice sends some quantum states
to Bob, who measures them upon reception, obtaining a
classical string, called the raw key. In the error estimation
phase, they sample some bits at random positions in the raw
key and estimate the noise on the quantum channel by
comparing these values to what Bob should have obtained.
If the noise level is above a certain threshold, they abort the
protocol and output an error message. If the noise is low
enough, they move on to the third phase, in which they
perform error correction and privacy amplification on their
respective strings. Error correction allows Bob to correct the
bits where his raw key differs from Alice’s. Privacy ampli-
fication turns the raw key, about which an adversary may still
have partial information, into the final secret key, i.e., uniform
strings kA and kB for Alice and Bob, respectively (which
ideally should be equal).

b. Resources

The security of a QKD protocol depends also on the
resources that we start with. As previously mentioned, we

FIG. 6. Depictions of some shared secret key resources. (a) A
resource that always gives a key k to Alice and Bob, and nothing
to Eve. (b) A resource that allows Eve to decide whether Alice
and Bob get a key k or an error ⊥. (c) A resource that generates a
perfect key with probability 1 − δ and outputs an error ⊥ with
probability δ.
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are interested in making statements about two cases. In the
presence of an active adversary, we want to guarantee that any
key generated is secure (soundness). But this is not sufficient,
since a protocol that always aborts and never distributes a key
satisfies such a criterion but is pointless. We thus also want
to guarantee that if no adversary is present [only natural
(low) noise] a key will be generated with high probability
(completeness).
These two cases are modeled by considering different

resources in the real world. In the case of an active adversary,
the resources available for a prepare-and-measure scheme are
a one-way insecure quantum channel from Alice to Bob (i.e.,
Eve may change and insert messages on the channel) and a
classical two-way authentic channel (i.e., it allows authenti-
cated communication from Alice to Bob and Bob to Alice, but
Eve may also listen in). These are illustrated in Fig. 7(a).
Recall that this construction is then supposed to realize the
ideal system depicted in Fig. 6(b).
The quantum channel is used in the protocol when Alice

sends the qubits she prepared to Bob. This channel may be

completely under the control of Eve, who could apply any
operation allowed by physics to what is sent over the channel.
The authentic channel is used during the next two phases of
the protocol, in which Alice and Bob estimate the noise in
their raw keys and perform the postprocessing. Such a channel
faithfully transmits messages between Alice and Bob but
provides Eve with a copy as well. Since an authentic channel
can be constructed from an insecure channel and a short
shared secret key, QKD is sometimes referred to as a key
expansion protocol.19

The second case is modeled by resources that are no longer
controlled by Eve. Instead, the quantum channel has a fixed
noise model and the authentic channel does not provide copies
of the messages to Eve. This is drawn in Fig. 7(b). With these
assumed resources, the ideal resource one wishes to construct
is given by Fig. 6(c).

3. Security

For the following, we denote by ðπQKDA ; πQKDB Þ the QKD
protocol, with πQKDA and πQKDB the converters applied by Alice
and Bob, respectively. We furthermore denote by Q the
insecure quantum channel and by A the authentic classical
channel, as drawn in Fig. 7(a). Their nonmalicious counter-
parts are denoted by Q0 and A0, respectively, as in Fig. 7(b).
Finally, letK be the secret key resource of Fig. 6(b), and letK0

be the secret key resource of Fig. 6(c). Applying Definition 1,
we find that ðπQKDA ; πQKDB Þ constructs K from Q and A within
ε if

∃ σE πQKDA πQKDB ðQkAÞ ≈ε KσE; ð8Þ

and ðπQKDA ; πQKDB Þ constructs K0 from Q0 and A0 within ε0 if

πQKDA πQKDB ðQ0kA0Þ ≈ε0 K0: ð9Þ

Note that no simulator is needed in Eq. (9) because both the
real and ideal systems have a blank interface for Eve. The left-
and right-hand sides of Eq. (8) are illustrated in Figs. 7(a)
and 8, and the left- and right-hand sides of Eq. (9) are
illustrated in Figs. 7(b) and 6(c). These two conditions are
decomposed into simpler criteria in Sec. III.B.

FIG. 7. The real QKD system (Alice has access to the left
interface, Bob to the right interface, and Eve to the lower
interface) consists of the protocol (πQKDA ; πQKDB ), the insecure
quantum channel Q in (a) [a noisy channel Q0 in (b)], and the
two-way authentic classical channel A [A0 in (b)]. As before,
arrows represent the transmission of classical or quantum
messages. The protocols of Alice and Bob (πQKDA ; πQKDB ) abort
if they detect too much interference, i.e., if ρ0 is not similar
enough to ρ to obtain a secret key of the desired length. They run
the classical postprocessing over the authentic channel, obtaining
keys kA and kB. The message t depicted on the two-way authentic
channel represents the entire transcript of the classical commu-
nication between Alice and Bob during the protocol. (a) Eve’s
interfaces of the channel resources give her full access to the
quantum communication and allow her to read the messages on
the authentic channel. (b) In a model with natural noise, the
resources Q and A are replaced by nonmalicious variants Q0 and
A0 that have a blank interface for Eve and a fixed noise model for
the channel Q0.

FIG. 8. Key resource from Fig. 6(b) with a simulator σE. This
corresponds to the ideal world in Eq. (8).

19We model QKD this way in Sec. VII.
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B. Reduction to the trace distance criterion

By applying the general AC security definition to QKD, we
obtained two criteria, Eqs. (8) and (9), capturing soundness
and completeness, respectively. In this section we derive the
trace distance criterion, Eq. (7), introduced at the beginning of
Sec. III, from Eq. (8). We first show in Sec. III.B.1 that the
distinguishing advantage used previously in the review
reduces to the trace distance between the quantum states
gathered by the distinguisher interacting with the real and
ideal systems. In Sec. III.B.2 we then determine the simulator
σE of the ideal system. In Sec. III.B.3 we decompose the
resulting security criterion into a combination of secrecy (the
trace distance criterion) and correctness (the probability that
Alice’s and Bob’s keys differ). In Sec. III.B.4 we consider the
security condition of Eq. (9), which captures security guar-
antees in the absence of a malicious adversary. We show how
this condition can be used to model the robustness of the
protocol, i.e., the probability that the protocol aborts with
nonmalicious noise.

1. Trace distance

The security criteria given in Eqs. (8) and (9) are defined in
terms of the distinguishing advantage between resources. To
simplify these equations, we rewrite them in terms of the trace
distance between the states held by the distinguisher at the end
of the protocol in the real and ideal settings. Helstrom (1976)
proved that the advantage a distinguisher has in guessing
whether it was provided with one of two states with equal
priors, ρ or σ, is given by the trace distance between the
two Dðρ; σÞ.20 A proof of this along with a discussion of
different operational interpretations of the trace distance is
given in Appendix A.
We start with the criterion given by Eq. (9). The two

resources on the left- and right-hand sides of Eq. (9) simply
output classical strings (a key or error message) at Alice’s
and Bob’s interfaces. Let these pairs of strings be given by the
joint probability distributions PAB and P̃AB. The distinguish-
ing advantage between the two resources is thus simply the
distinguishing advantage between these probability distribu-
tions (a distinguisher is given a pair of strings sampled
according to either PAB or P̃AB and has to guess from which
distribution it was sampled), i.e.,

d(πQKDA πQKDB ðQ0kA0Þ;K0) ¼ dðPAB; P̃ABÞ:

As previously stated, the distinguishing advantage between
two quantum states is equal to their trace distance, and in the
special case where the states are classical (i.e., given by two
probability distributions) the trace distance between the
classical states is equal to the total variational distance
between the corresponding probability distributions. Thus,
dðPAB; P̃ABÞ ¼ DðPAB; P̃ABÞ, where we use the same notation
for both the trace distance and the total variational distance,

since the latter is a special case of the former. Putting the two
together we get

d(πQKDA πQKDB ðQ0kA0Þ;K0) ¼ DðPAB; P̃ABÞ;

where PAB and P̃AB are the distributions of the string output by
the real and ideal systems, respectively.
The resources on the left- and right-hand sides of Eq. (8) are

slightly more complex than those in Eq. (9). They first output
a state φC at the E interface, namely, the quantum states that
Alice sends over the insecure quantum channel. Without
loss of generality, the distinguisher now applies any map
E∶LðHCÞ → LðHCE0 Þ allowed by quantum physics to this
state, obtaining ρCE0 ¼ EðφCÞ, and puts the C register back on
the insecure channel for Bob, keeping the part in E0. Finally,
the systems output some keys (or error messages) at the A and
B interfaces and all classical messages exchanged during the
error estimation and postprocessing at the E interface: this
captures the fact that the classical communication is public.21

This sequence of interactions of the distinguisher with the real
or ideal QKD systems is illustrated in Fig. 9.
Let ρEABE be the tripartite state held by a distinguisher

interacting with the real system, and let ρ̃EABE be the state
held after interacting with the ideal system, where the registers
A and B contain the final keys or error messages.The register
E then holds both the state ρE0 obtained from tampering
with the quantum channel and the classical transcript.
Distinguishing between these two systems thus reduces to
maximizing over the distinguisher strategies (the choice of E)
and distinguishing between the resulting states ρEABE and ρ̃EABE
as follows:

d(πQKDA πQKDB ðQkAÞ;KσE) ¼ max
E

dðρEABE; ρ̃EABEÞ:

Using again the equality between trace distance and distin-
guishing advantage, we obtain that the advantage a

FIG. 9. The distinguisher interacting with either the real or ideal
QKD system first receives a register C containing the quantum
states sent from Alice to Bob. It applies a map E∶LðHCÞ →
LðHCE0 Þ of its choice, keeps the E0 register, and puts C back in
the insecure channel. Finally, it gets the transcript of the classical
communication T, and Alice’s and Bob’s outputs A and B. It thus
holds a state ρABE0T , which it measures to decide whether it was
interacting with the real or ideal system.

20Actually, Helstrom (1976) solved a more general problem in
which the states ρ and σ are picked with a priori probabilities p
and 1 − p, respectively, instead of 1=2 as in the definition of the
distinguishing advantage.

21We sometimes refer to the entire sequence of these messages as
the classical transcript of the protocol.
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distinguisher has in guessing whether it holds the state ρEABE or
ρ̃EABE is given by the trace distance between these states, i.e.,

d(πQKDA πQKDB ðQkAÞ;KσE) ¼ max
E

DðρEABE; ρ̃EABEÞ:

The distinguishing advantage between the real and ideal
systems of Eq. (8) thus reduces to the trace distance between
the quantum states gathered by the distinguisher. In the
following, we usually omit E when it is clear that we are
maximizing over the distinguisher strategies, and simply
express the security criterion as

DðρABE; ρ̃ABEÞ ≤ ε; ð10Þ

where ρABE and ρ̃ABE are the quantum states gathered by the
distinguisher interacting with the real and ideal systems,
respectively.

2. Simulator

In the real setting [Fig. 7(a)], Eve has full control over the
quantum channel and obtains the entire classical transcript
of the protocol. Thus, for the real and ideal settings to be
indistinguishable, a simulator σQKDE must generate the same
communication as in the real setting. This can be done by
internally running Alice’s and Bob’s protocols ðπqkdA ; πqkdB Þ,
producing the same messages at Eve’s interface as the real
system. However, instead of letting this simulated protocol
decide the value of the key as in the real setting, the simulator
ignores these values and checks only whether a key is actually
produced or an error message is generated instead. It then
operates the switch on the secret key resource accordingly.
We illustrate this in Fig. 10.
The security criterion from Eq. (10) can now be simplified

by noting that with this simulator the states of the ideal and
real systems are identical when no key is produced. The
outputs at Alice’s and Bob’s interfaces are classical elements
of the set f⊥g ∪ K, where ⊥ symbolizes an error and K is the
set of possible keys. The states of the real and ideal systems
can be written as

ρABE ¼ p⊥j⊥A;⊥Bih⊥A;⊥Bj ⊗ ρ⊥E
þ

X
kA;kB∈K

pkA;kB jkA; kBihkA; kBj ⊗ ρkA;kBE ;

ρ̃ABE ¼ p⊥j⊥A;⊥Bih⊥A;⊥Bj ⊗ ρ⊥E

þ 1

jKj
X
k∈K

jk; kihk; kj ⊗
X

kA;kB∈K
pkA;kBρ

kA;kB
E ;

where pkA;kB is the probability of Alice getting the key kA and
Bob getting kB and p⊥ is the probability of an abort. Plugging
this into Eq. (10), we get

DðρABE; ρ̃ABEÞ ¼ ð1 − p⊥ÞDðρ⊤ABE; τAB ⊗ ρ⊤E Þ ≤ ε; ð11Þ

where

ρ⊤ABE ≔
1

1 − p⊥
X

kA;kB∈K
pkA;kB jkA; kBihkA; kBj ⊗ ρkA;kBE ð12Þ

is the renormalized state of the system conditioned on not
aborting and τAB ≔ ð1=jKjÞPk∈K jk; kihk; kj is a perfectly
uniform shared key. As previously, the E register contains the
quantum side information that Eve collects about the states
being sent as well as the entire classical transcript of the error
estimation and postprocessing.

3. Correctness and secrecy

We now break up Eq. (11) into two components,
often referred to as correctness and secrecy, and recover the
security definition for QKD that was introduced by Ben-Or
et al. (2005), Renner (2005), and Renner and König (2005).
The correctness of a QKD protocol refers to the probability
that Alice and Bob end up holding different keys. We say that
a protocol is εcor correct if for all adversarial strategies

Pr ½KA ≠ KB� ≤ εcor; ð13Þ

where KA and KB are random variables over the alphabet
K ∪ f⊥g describing Alice’s and Bob’s outputs.22 The secrecy
of a QKD protocol measures how close the final key is to a
distribution that is uniform and independent of the adversary’s
system. Let p⊥ be the probability that the protocol aborts, and
let ρ⊤AE be the resulting state of the AE subsystems conditioned
on not aborting. A protocol is εsec secret if for all adversarial
strategies

ð1 − p⊥ÞDðρ⊤AE; τA ⊗ ρ⊤E Þ ≤ εsec; ð14Þ

where the distance Dð·; ·Þ is the trace distance and τA is the
fully mixed state.23

FIG. 10. The ideal QKD system (Alice has access to the left
interface, Bob has access to the right interface, and Eve has access
to the lower interface) consists of the ideal secret key resource and
a simulator σQKDE .

22This can equivalently be written as ð1 − p⊥ÞPr ½K⊤
A ≠ K⊤

B � ≤
εcor, where p⊥ is the probability of aborting and K⊤

A and K⊤
B are

Alice’s and Bob’s keys conditioned on not aborting.
23Equation (14) was already introduced at the beginning of Sec. III

as Eq. (7).
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Theorem 2.—If a QKD protocol is εcor correct and εsec
secret, then Eq. (8) is satisfied for ε ¼ εcor þ εsec.
This theorem can be proven by using the triangle inequality

of the trace distance to bound Eq. (11) in terms of the sum
of correctness and secrecy. For completeness, a proof is
given in Appendix B. This result was also given by Ben-Or
et al. (2005).
The converse statement can also be shown: if Eq. (8) holds

for some ε, then the corresponding QKD protocol is both ε
correct and 2ε secret.24

4. Robustness

Correctness and secrecy, as previously described, capture the
soundness of QKD in the presence of a malicious Eve, as
specified by Eq. (8). This, however, is not sufficient: a QKD
protocol that always aborts without producing any key trivially
satisfies Eq. (8) with ε ¼ 0 but is not at all a useful protocol. This
is where the second condition, namely, Eq. (9), is relevant. The
real system must be indistinguishable from ideal not only when
an adversary is present and manipulating the channel but also
when one has a simple noisy channel, with a blank adversarial
interface. In this case, we expect a secret key to be generated
successfully with high probability. This is captured by consid-
ering the strong ideal key resource K0 from Fig. 6(c), which
produces a keywith probability 1 − δ. If the real system does not
generate a keywith the sameprobability, this immediately results
in a gap that is noticeable to the distinguisher.
The probability that the real protocol generates a key

depends on the noise introduced by the noisy channel Q0

[illustrated in Fig. 7(b)]. Suppose that this noise is para-
metrized by a value q such as a depolarizing channel with
probability q. For every q, the protocol has a probability of
aborting δ, which is called the robustness. Let Qq denote a
channel with this noise model, and let Kδ denote the key
resource that produces an error with a fixed probability δ.
Equation (9) can thus be phrased as

πQKDA πQKDB ðQqkA0Þ ≈ε Kδ; ð15Þ

where varying q and δ results in a family of real and ideal
systems.
One can then show that the failure ε from Eq. (15) is

bounded by εcor þ εsec. Note that this statement is useful only
if the probability of aborting δ is small for reasonably noisy
models q.
Lemma 3.—If the resources from Eq. (15) are parametrized

such that Kδ aborts with exactly the same probability as the
protocol ðπQKDA ; πQKDB Þ that is run on the noisy channel Qq,
then the completeness of the protocol is bounded by the
soundness, i.e.,

d(πQKDA πQKDB ðQqkA0Þ;Kδ) ≤ d(πQKDA πQKDB ðQkAÞ;KσQKDE );

where the simulator σQKDE is the one used previously in the
review and introduced in Sec. III.B.2, Fig. 10.
A proof of this lemma is provided in Appendix B.

C. Other security criteria

1. Accessible information

As mentioned at the beginning of this section, the trace
distance criterion was introduced only in 2005 (Ben-Or et al.,
2005; Renner, 2005; Renner and König, 2005). Earlier works
(Mayers, 1996); Biham et al., 2000; Shor and Preskill, 2000)
used a notion of security directly inspired from classical
cryptography, where key techniques such as advantage dis-
tillation, error correction, and privacy amplification were
developed (Bennett, Brassard, and Robert, 1988; Ahlswede
and Csiszár, 1993; Maurer, 1993; Bennett et al., 1995). More
concretely, if one denotes an n-bit key random variable by K
and denotes the adversary’s classical side information by Z,
in these works a key was considered secure if the mutual
information per bit between the two is small, i.e.,
ð1=nÞIðK;ZÞ ≤ ε, where IðK;ZÞ ¼ HðKÞ −HðKjZÞ. It was
later realized (Maurer, 1994; Maurer and Wolf, 2000) that
the mutual information per bit is not appropriate in the
asymptotic setting, since εðnÞ → 0 does not imply that
the total information about the key is also small; i.e., one
may still have nεðnÞ ↛ 0. It was therefore considered
preferable to directly bound the total information about
the key [IðK;ZÞ ≤ ε].
In the case of QKD the side information may be quantum,

and the joint system of the key and side information is
given by a state ρKE. The accessible information between K
and E is obtained by measuring the E system and taking
the mutual information between K and the measurement
outcome, i.e.,

IaccðK;EÞρ ≔ max
fΓzgz

I½K;ΓZðEÞ� ≤ ε; ð16Þ

where ΓZðEÞ is the random variable resulting from a meas-
urement of the E system with the positive operator-valued
measure (POVM) fΓzgz and, as before, IðK;ZÞ ¼ HðKÞ −
HðKjZÞ is the mutual information.
Since measuring a quantum system can only diminish the

information that it provides, one always has SðKjEÞ ≤
HðKjZÞ for any random variable Z obtained by measuring
the E system of a bipartite state ρKE, where Sð·Þ is the von
Neumann entropy. Using the continuity of the conditional von
Neumann entropy (Alicki and Fannes, 2004), this can by
bounded by its trace distance from uniform, namely,25

n − SðKjEÞ ≤ 8δnþ 2hð2δÞ;

where δ is the trace distance between ρKE and τK ⊗ ρE and
hðpÞ ¼ −p logp − ð1 − pÞ logð1 − pÞ is the binary entropy.

24The factor 2 is due to the existence quantifier over simulators σE
in the security definition. We cannot exclude that for some specific
QKD protocol there is a simulator σ̄QKDE , unlike the one used in
this proof, that generates a state ρ̄E satisfying Dðρ⊤AE; τA ⊗ ρ̄⊤E Þ ≤
Dðρ⊤AE; τA ⊗ ρ⊤E Þ. However, by the triangle inequality we also find
that, for any ρ̄E, Dðρ⊤AE; τA ⊗ ρ̄⊤E Þ ≥ ð1=2ÞDðρ⊤AE; τA ⊗ ρ⊤E Þ. Hence,
the failure ε of the generic simulator used in this proof cannot be
more than twice as large than the optimal one. 25See Corollary 13 in Appendix A for a proof of this.
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The trace distance criterion thus provides a bound on the
accessible information.
However, the converse does not hold. As König et al.

(2007) showed, it is possible to find a joint state ρKE of an
n-bit key K and the adversary’s information E that satisfies
Eq. (16) with ε ¼ 2−0.18n, but knowledge of the first n − 1 bits
K1 of K ¼ K1K2 allow the last bit K2 to be guessed
perfectly.26 More precisely, if one knows K1, there is a
way to measure the quantum system E such that the outcome
ΓZ0 ðK1EÞ is a perfect guess27 for K2, i.e.,

I½K2;ΓZ0 ðK1EÞ� ¼ 1:

To see why this is problematic, suppose that the two parts of
the key K1 and K2 are used for one-time pad encryption (see
Sec. II.C) of two messagesM1 andM2, respectively, of which
the first is already known to an eavesdropper (because it
contains some publicly available information). Given M1,
the eavesdropper can, by listening to the ciphertext, infer K1.
This, in turn, allows her to apply the measurement yielding Z0

to E, which provides information about K2, and hence also
about M2.
This example emphasizes the relevance of composability,

i.e., the principle that any reasonable notion of security should
have the property that if two cryptographic schemes are
considered secure then this should also be the case for their
combination. Criterion (16) does not satisfy this principle. If a
key K generated by a QKD protocol satisfies Eq. (16), then by
definition it is guaranteed that an adversary cannot infer K.
But the composition of this QKD protocol with the one-time
pad encryption, which by itself is a perfectly secure protocol,
is insecure. This is problematic, for such compositions of
protocols are ubiquitous in cryptography.
To see how the real-world ideal-world paradigm avoids this

issue, imagine a protocol that generates a key consisting of
two parts K1 and K2, with the undesirable properties as in the
example used by König et al. (2007) as previously described.
The distinguisher could then use K1 to measure E and check
to see whether the outcome Z0 determines K2. If this is the
case, then the distinguisher knows that it was interacting with
the real system (B ¼ 0); otherwise, it must have been the ideal
one (B ¼ 1). The distinguisher could thus correctly guess the
bit B, i.e., the protocol would not meet the criterion of being
indistinguishable from an ideal system. Hence, although the
key generation protocol may still satisfy earlier criteria such as
Eq. (16), it would be considered insecure, as it should be.
It is interesting nonetheless to understand which construc-

tion a security definition like the accessible information
corresponds to. We discuss this in Sec. VI.F, where we show
that if one assumes that the adversary has no quantum
memory, then the accessible information is a sufficient
security criterion.

2. Adversarial models

The definition of cryptographic security introduced in
Sec. II, Definition 1 does not explicitly mention an adversary.
The notion of an adversary is embedded in the distinguisher,
which is used to measure the distance between real and ideal
systems. The distinguishing metric thus has a dual role:
performing the most powerful attack possible and measuring
whether this attack was successful, i.e., whether it allows real
and ideal systems to be distinguished. The reduction to
the trace distance criterion discussed in Sec. III.B separates
these two notions. The trace distance criterion itself [Eq. (7)]
can be seen as the measure of whether the attack resulting in
the adversary holding the system E is successful. For this
condition to make sense as a security definition, one has to
consider all possible adversarial behaviors, i.e., take the
maximum of Eq. (7) over all possible states ρKE that
may occur.
Historically, these two aspects (the attack and the criterion

for measuring whether the attack is successful) were treated
separately. Early security proofs for QKD, such as that of
Bennett, Bessette et al. (1992), did not consider the most
powerful attack an eavesdropper could perform, but instead
only individual attacks. These are attack strategies where the
adversary performs an identical operation on each qubit on
the quantum channel and keeps only classical information Z.
The information held by Alice, Bob, and Eve is then
modeled by independent and identically distributed (i.i.d.)
random variables.
Collective attacks, a generalization of individual attacks

that allows the eavesdropper to keep quantum information but
still forces her to perform the same operation on every qubit,
were proposed by Biham and Mor (1997) and Biham et al.
(2002). In this setting, one has to use von Neumann entropy
instead of Shannon entropy to measure the adversary’s
information about the raw key and compute the achievable
rate (Devetak and Winter, 2005). Although the adversary’s
interactions with the quantum channel are restricted to i.i.d.
operations, this class of attacks is particularly important
since proof techniques developed later (Renner, 2005,
2007; Christandl, König, and Renner, 2009; Arnon-
Friedman, Renner, and Vidick, 2019; Dupuis, Fawzi, and
Renner, 2020) show how one can reduce the most general
attack strategies to such a limited one.
The first security proof for QKD that considered a fully

general adversary (performing coherent attacks) was attrib-
uted to Mayers (1996, 2001). It was then followed by other,
simpler proofs (Biham et al., 2000, 2006; Shor and Preskill,
2000). Biham et al. (2000, 2006) and Shor and Preskill (2000)
pointed out that security does not hold that is conditional on
the protocol terminating with a secret key. Instead, one should
prove that the probability of the event that the protocol does
not abort and that the adversary has nontrivial information
about the key is negligible. However, the previously discussed
works still use basically classical security definitions, such as
those based on the accessible information.

3. Expressing weaker security criteria within the AC framework

As previously discussed, the early security definitions
implicitly imposed a restriction on the set of possible attack

26This phenomenon is known as information locking, and further
examples were given by DiVincenzo et al. (2004) and Winter (2017).

27Ben-Or et al. (2005) showed that if ε < 2−n then information
locking cannot be exploited, and the adversary’s advantage in
guessing K2 remains exponentially small.
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strategies that an adversary could pursue. Within the modern
real-world ideal-world paradigm, or more precisely the AC
framework, one can understand these restrictions as limita-
tions on the distinguisher that is trying to guess whether it is
interacting with the real or ideal system. That is, one does not
consider the full set of possible distinguishers, but instead only
a restricted subset that performs i.i.d. operations or takes its
final decision by measuring the E system alone, not the joint
KE system.
Alternatively, one may also represent these definitions in

the AC framework by either replacing the resources in the
ideal setting with weaker ones or replacing the resources
available in the real setting with stronger ones. To illustrate the
latter, recall that in the description in Sec. III.A the insecure
quantum channel used by Alice and Bob allows Eve to
perform arbitrary operations on the quantum messages sent.
If instead one would provide the players with a stronger
resource that allows Eve to perform only i.i.d. operations or
allows her to access classical information only, one would
recover weaker security definitions. This is developed in more
detail in Sec. VI.F.
Using such an approach, one may still regard the older

security definitions as “composable,” provided one is aware of
the fact that the real resources are now weaker. In other words,
the weaker definitions do not guarantee that a secret key is
obtained from an authentic classical channel and a completely
insecure quantum channel but still ensure that a secret key is
obtained from a certain less insecure quantum channel that
limits Eve’s tampering.
We note that this approach is applicable much more

generally, i.e., beyond quantum cryptography. For example,
the notion of security known as stand-alone (Goldreich, 2004)
makes the assumption that the dishonest party does not
interact with the environment during the execution of the
protocol. By introducing a resource that restricts the distin-
guisher’s behavior accordingly, one can show this security
definition to actually guarantee security, albeit only in a
setting where honest parties have access to such a resource.
Similarly, early definitions of blindness in delegated quantum
computing (DQC) (Broadbent, Fitzsimons, and Kashefi,
2009; Fitzsimons and Kashefi, 2017) are not known to
construct the expected ideal resource for DQC: one that takes
the input from the client, only leaks a bound on the
computation size to the server, and returns a possibly wrong
computation result to the client (Dunjko et al., 2014).
However, they do construct a weaker resource that does not
provide the honest player with the result of the computation.
This example is discussed again in Sec. VIII.C. A further
example are results in the bounded storage model by Unruh
(2011), which obtains composable security if one limits the
number of times a protocol is run; we discuss these further
in Sec. IX.C.

4. Asymptotic versus finite-size security

The trace distance criterion [Eq. (7)] was introduced by
Ben-Or et al. (2005), Renner (2005), and Renner and König
(2005), and the relation to composable security frameworks
was discussed by Ben-Or et al. (2005) and Müller-Quade and
Renner (2009); see also Appendix A. Security proofs for QKD

with respect to this criterion were developed at the same time
(Christandl, Renner, and Ekert, 2004; Renner, 2005; Renner,
Gisin, and Kraus, 2005). Although these newer security proofs
arguably use the right security definition, they prove security
only asymptotically. This means that instead of computing the
failure ε for specific parameters of the protocol, one shows
that εðnÞ → 0 when n → ∞, where n is a parameter that
quantifies a certain resource, typically the number of quantum
signals sent during the protocol. This does not allow the
failure to be evaluated for any implementation of the protocol,
since implementations must necessarily generate a key in
finite time, and hence with finite resources.
In the asymptotic setting one often demands that the function

εðnÞ be negligible, i.e., smaller than 1=pðnÞ for any polynomial
pð·Þ; for example, εðnÞ could be exponentially small in n. The
reasoning is usually that honest players are polynomially
bounded, so they will never run the protocol more than
pðnÞ times and the accumulated error pðnÞεðnÞ is then still
negligible. Although such a requirement is standard in cryp-
tography, it is not directly useful for practical purposes, as
previously indicated. For example, a protocol with a failure
given by a function εðnÞ that is exponentially small for
n ≥ 1010

10

but equal to 1 otherwise, where n is the number
of signals exchanged between the players, is asymptotically
secure, and yet completely insecure for any realistic parameters.
Conversely, the function εðnÞ ¼ 10−18 is considered insecure in
the asymptotic setting, but it guarantees that the protocol can be
run once per second for the lifetime of the Universe and still
have an accumulated error substantially smaller than 1.
This illustrates that asymptotic security claims can be

highly ambiguous. It is thus necessary to prove finite security
bounds if one wants to actually use a cryptographic scheme.
This was done for basic protocols by Inamori, Lütkenhaus,
and Mayers (2007), Scarani and Renner (2008), Sheridan,
Thinh, and Scarani (2010), Hayashi and Tsurumaru (2012),
Tomamichel et al. (2012), and Tomamichel and Leverrier
(2017). For more advanced protocols, which are specifically
designed to be implementable with imperfect hardware, finite-
size security claims were given by Lim et al. (2014) for decoy-
state QKD (which is discussed in Sec. IV.D), by Yin and Chen
(2019) for twin-field QKD (Lucamarini et al., 2018), and by
Curty et al. (2014) for measurement device–independent
QKD (which is discussed in Sec. VI.E).

5. Variations of the trace distance criterion

The following alternative definition for ε secrecy was
proposed in the literature in place of the trace distance
criterion (Tomamichel et al., 2010, 2012):

ð1 − pabortÞmin
σE

DðρKE; τK ⊗ σEÞ ≤ ε: ð17Þ

This alternative notion is equivalent to the standard definition
of secrecy [Eq. (7)] up to a factor of 2; hence, any QKD
scheme proven secure with one definition is still secure
according to the other, with a minor adjustment of the failure
parameter ε. However, we do not know how to derive this
alternative notion from a composable framework. In particu-
lar, it is not clear whether the failure ε from Eq. (17) is additive
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under parallel composition. For example, the concatenation of
two keys that each individually satisfy Eq. (17) could possibly
have a distance28 from uniform greater than 2ε.

IV. ASSUMPTIONS FOR SECURITY

The security of a quantum cryptographic protocol relies
on assumptions about the physics of the devices that are
employed to implement the protocol. In this section, we
discuss these assumptions. For concreteness, we focus on the
case of QKD, for which we describe the full set of assump-
tions in Sec. IV.A. We then explain why these assumptions are
needed and to what extent they are justified in Sec. IV.B.
Experimental work in QKD has shown, however, that the
assumptions are often difficult to meet, and actually are not
met in many cases. This fact can be exploited by quantum
hacking attacks, which are described in Sec. IV.C. Finally, in
Sec. IV.D we discuss countermeasures against these attacks.

A. Standard assumptions for QKD

The security of QKD protocols usually relies on the
following assumptions.

(1) All devices used by Alice and Bob, as well as the
communication channels connecting them, are cor-
rectly and completely29 described by quantum theory.

(2) The channel that Alice and Bob use to exchange
classical messages is authentic, i.e., it is impossible for
an adversary to modify messages or insert new ones.

(3) The devices that Alice and Bob use locally to execute
the steps of the protocol, such as for preparing and
measuring quantum systems, do exactly what they are
instructed to do.

As previously indicated, owing to the lack of proof
techniques, additional assumptions were introduced in the
past. A prominent example is the i.i.d. assumption, which
demands that the quantum channel connecting Alice and Bob
be described by a sequence of identical and independently
distributed maps. Physically, this means that an adversary’s
interception strategy is such that each signal sent from Alice
to Bob is modified in the same manner and independently
of the other signals. Security under the i.i.d. assumption
is called security against collective attacks; see Biham
and Mor (1997), Biham et al. (2002), and Sec. III.C.2.
Another assumption, which usually supplements the i.i.d.
assumption, is that Eve stores only classical data, which she
obtains by individually measuring the pieces of information
she has gained from each signal sent from Alice to Bob.
Since it is difficult to argue why an adversary should be
restricted in that particular way, the corresponding security
guarantee is rather weak. It is usually referred to as security
against individual attacks; see Fuchs et al. (1997),
Lütkenhaus (2000), and Sec. III.C.2.
Most modern security proofs, however, do not require

such additional assumptions; i.e., they are based entirely on

the previously mentione assumptions (1)–(3). This means,
in particular, that the quantum channel connecting Alice and
Bob can be arbitrary and may even be entirely controlled by
Eve. In this case, one talks about security against general
attacks, coherent attacks, or joint attacks. Sometimes the
term unconditional security has appeared in the literature
(Scarani et al., 2009), but it is important to keep in mind that
the previously listed assumptions are still necessary.

B. Necessity and justification of assumptions

Assumption (1) is often implicit, for it is a prerequisite to
even describe the cryptographic scheme. It justifies the use of
the formalism of quantum theory to model the different
systems, such as the communication channel, including any
possible attacks on them. The assumption thus captures the
main idea behind quantum cryptography, namely, that an
adversary is limited by the laws of quantum theory. The other
two assumptions ensure that the experimental implementation
follows the theoretical prescription that enters the security
definition (Definition 1), namely, the description of the
protocol πAB and the used resources. In particular,
assumption (2) guarantees that the resources shared between
Alice and Bob fulfill the theoretical specificationsR, which in
the case of QKD includes the classical authentic communi-
cation channel. Assumption (3) guarantees that the steps
prescribed by the protocol πAB are correctly executed.
Assumption (1) is widely accepted, and proving it wrong

would represent a major breakthrough in physics.
Nevertheless, it has been shown that there are QKD protocols
that rely only on the weaker assumption of no signaling
(Barrett, Hardy, and Kent, 2005).
Assumption (2) demands that an authentic communica-

tion channel is set up between Alice and Bob. There are
information-theoretically secure protocols that achieve this,
provided that Alice and Bob share a weak secret key; see
Renner and Wolf (2003), Dodis and Wichs (2009),
Aggarwal et al. (2019), and Sec. VII.A. Assumption (2)
can thus be met with the use of such authentication
protocols; see also Sec. I as well as standard textbooks
on classical cryptography.
Although assumption (3) sounds rather natural and is in fact

required for almost any cryptographic scheme, including any
classical one, it is challenging to meet. The numerous
quantum hacking experiments that have been conducted over
the past few years have shown that many implementations of
QKD failed to satisfy this assumption. To illustrate this
problem, we describe selected examples of such attacks in
Sec. IV.C.

C. Quantum hacking attacks

We start with the photon number splitting attack (Brassard
et al., 2000), which targets optical implementations of QKD
that use individual photons as quantum information carriers.
Suppose for concreteness that Alice and Bob implement the
BB84 protocol (Bennett and Brassard, 1984) by encoding the
qubits into the polarization degree of freedom of individual
photons. Specifically, Alice may use a single-photon source
that emits photons with a polarization that she can choose.

28The preprint version of Tomamichel et al. (2012) was updated to
use Eq. (7) instead.

29The completeness of quantum theory can be derived from their
correctness; see Sec. I.A.
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The BB84 protocol30 requires her to send in each round at
random a state from one orthonormal basis, say, fjhi; jvig,
where jhi may be realized with a horizontally polarized
photon and jvi may be realized with a vertically polarized
one, or from a complementary basisfjdþi; jd−ig, where jdþi¼
ð1= ffiffiffi

2
p ÞðjhiþjviÞ and jd−i ¼ ð1= ffiffiffi

2
p Þðjhi − jviÞ. It may now

happen that, in an experimental implementation, the source
sometimes accidentally emits two photons at once, which
then carry the same polarization. The states emitted in the
four cases are thus jhi ⊗ jhi, jvi ⊗ jvi, jdþi ⊗ jdþi,
and jd−i ⊗ jd−i.
Before describing the actual attack, we first give a simple

information-theoretic argument for why this is problematic.
Note first that one single photon carries no information
about the choice of the basis made by Alice. Indeed, for
either of the basis choices, the density operator describing the
photon is maximally mixed, i.e., 1=2jhihhj þ 1=2jvihvj ¼
1=2jdþihdþj þ 1=2jd−ihd−j ¼ ð1=2Þ1. This is, however, no
longer the case for a pulse consisting of two photons, i.e.,

1
2
jhihhj⊗2 þ 1

2
jvihvj⊗2 ≠ 1

2
jdþihdþj⊗2 þ 1

2
jd−ihd−j⊗2: ð18Þ

Hence, if the source accidentally emits two equally polarized
photons instead of one, it reveals information about Alice’s
basis choice, which it should not.
It is therefore not surprising that such two-photon pulses

can be exploited by an adversary to attack the system. Eve,
who intercepts the channel, may split the two-photon pulse
into two, keep one of the photons, and send the other one to
Bob. The latter thus receives photons in exactly the way
prescribed by the protocol, and hence does not notice the
interception. Eve, meanwhile, may measure the photons
she captured. In principle, if Eve had quantum memory, she
could even wait with the measurement until Alice announ-
ces the basis choice to Bob, and hence could always gain
full information about the polarization state that Alice
prepared.
While the photon number–splitting attack exploits an

imperfection of the sender (namely, that it sometimes emits
two identically polarized photons instead of one), many
quantum attacks are targeted toward the receiver. An example
is the time-shift attack (Makarov, Anisimov, and Skaar, 2006;
Qi et al., 2007; Zhao et al., 2008), which exploits inaccuracies
of the photon detectors. To avoid dark counts, the photon
detectors are often set up such that they count only those
photons that arrive within a small time window around the
time when a signal is expected to arrive. Furthermore, Bob’s
receiver device may consist of more than one detector, e.g.,
one for each possible polarization state. The time windows of
the different detectors are then never perfectly synchronized.
This means that there are times at which the receiver is more
sensitive to signals with respect to one polarization than
another. Eve may therefore, by appropriately delaying the
signals sent from Alice and Bob, bias the detected signals
toward one or the other polarization, and thus gain information
about what Bob measures. While this information may be

partial, it can, together with the error correction information
that is available to Eve, be sufficient to infer the final key.
Another attack that is targeted toward the receiver is the

detector blinding attack (Makarov, 2009; Lydersen et al.,
2010; Gerhardt et al., 2011; Weier et al., 2011), where the
adversary tries to control the detectors by illuminating them
with bright laser light. In a QKD implementation that uses
the encoding of information into the polarization of indi-
vidual photons, the detectors are usually configured such
they can optimally detect single-photon pulses. That is, they
should click whenever the incoming pulse contains a
photon, and not click if the pulse is empty. However, the
behavior of such detectors may be rather different in a
regime where the incoming pulses contain many photons.
For example, it could be that they always click when they are
exposed to bright light with a particular intensity, and they
may never click for another intensity. Hence, by sending in
light with appropriately chosen polarization and intensity,
Eve may gain immediate control over the clicks of Bob’s
detector. To exploit this for an attack, Eve may mimic Bob’s
receiver, i.e., intercept the photons sent from Alice and
measure them in a randomly chosen basis, as Bob would do.
She then sends bright light to Bob to ensure that he obtain
the same detector clicks he would have had he directly
obtained Alice’s photons. This works particularly well for
implementations that use a passive basis choice; i.e., where
Bob’s measurement basis is not provided as an input but
rather made by the detection device itself. In this case, an
adversary can essentially remote control Bob and thus get
hold of the entire key.
Yet another hacking strategy involves Trojan-horse attacks

(Vakhitov, Makarov, and Hjelme, 2001; Gisin et al., 2006).
Here the idea is to send a bright laser pulse via the optical fiber
into Alice’s or Bob’s component to extract information about
its internal settings. Depending on the sender and receiver
hardware that is used, measuring the reflection of the pulse
can allow Eve, for instance, to determine the basis choices
made by Alice and Bob.
In some optical implementations of QKD, such as the

plug-and-play-type (Muller et al., 1997) or the circular-type
(Nishioka et al., 2002) system, Alice does not have a photon
source but instead encodes information by modulating an
incoming signal from Bob before sending it back to him.
The signal thus travels twice in opposite directions through
the same optical links, which helps reducing fluctuations
due to birefringence and environmental noise. The twofold
use of the insecure channel, however, opens additional
possibilities of attacks (Gisin et al., 2006). A prominent
example is the phase-remapping attack (Fung et al., 2007;
Xu, Qi, and Lo, 2010). It exploits the fact that the modulator
used by Alice to encode information into the signal coming
from Bob acts on that signal during a particular time
interval. In the attack, the adversary slightly advances or
delays the signal on its way from Bob to Alice so that it no
longer lies fully within that time interval. The modulation by
Alice will then be incomplete, which means that the
encoding of the information in the signal differs from what
is foreseen by the protocol. This can in turn be exploited by
Eve in an intercept-and-resend attack on the signal returned
from Alice to Bob.

30This protocol is explained in more detail in Sec. V, where a
security proof is also sketched.
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D. Countermeasures against quantum hacking

The attacks described here have in common that they all
exploit a breakdown of assumption (3). Specifically, in the
case of the photon-splitting attack, the device used by Alice
sends out more information than it is supposed to. In the case
of the time-shift attack, it is Bob’s measurement device whose
measurement operators are not constant over time and can
even be partially controlled by Eve. Finally, in the case of the
detector blinding attack on systems with passive basis choice,
Eve even takes over control of the randomness used to choose
the basis.
A seemingly obvious countermeasure to prevent such

attacks is to manufacture sources and detectors that meet
the theoretical specifications. That is, one would need a
perfect single-photon source, as well as detectors that are
perfectly efficient and measure photon pulses in only a
specified parameter regime. Such requirements are, however,
unrealistic: the devices used in experiments will always, at
least slightly, deviate from these specifications.
The other possibility is to develop cryptographic protocols

and security proofs that tolerate imperfections of the devices
(Gottesman et al., 2004). This has been done, in particular, for
the previously described attacks. To prevent photon number–
splitting attacks, an efficient countermeasure is the decoy-state
method (Hwang, 2003; Lo, Ma, and Chen, 2005; Wang,
2005). The idea here is that Alice sometimes deliberately
sends multiphoton pulses. Alice and Bob can then check
statistically to see whether an adversary captured them.
Another possibility is to use protocols where Alice’s encoding
of information has the property that, even when one photon is
extracted from a pulse, the information about what Alice sent
is still partial (Scarani et al., 2004; Tamaki and Lo, 2006;
Sasaki, Yamamoto, and Koashi, 2014). In the case of time-
shift attacks, it is sufficient to characterize the maximum bias
in the detector efficiencies that can be introduced and account
for it in the security proofs. Finally, for the detector blinding
attacks, a possible countermeasure is to add tests to the
protocol, such as a monitoring of the photocurrent, in order to
detect those (Yuan, Dynes, and Shields, 2010).
The main problem with such countermeasures, however,

is that the space of possible imperfections is hard to
characterize. These are merely a few examples of attacks.
Many others have been proposed, and have sometimes even
been demonstrated to work successfully in experiments. For
example, an adversary may exploit imperfections in the
randomness that Alice and Bob use for choosing their
measurement basis. To prevent such attacks, one may again
extend the protocols such that they can tolerate imperfect
randomness; see Sec. VI.C.
The last decade has thus seen an arms race between

designers and attackers of quantum cryptographic schemes.
A possible way out of this unsatisfactory situation is device-
independent cryptography. Here the idea is to replace
assumption (3) by something much weaker. Namely, one
requires that the devices used by Alice and Bob do not
unintentionally send out information to an adversary, and
that the classical processing of information done by Alice
and Bob is correct. However, one no longer demands that the
sources and detectors used by Alice and Bob work according

to their specifications. The way this can work is explained
in Sec. VI.D.

V. SECURITY PROOFS FOR QKD

In this section, we discuss security proofs for QKD. For this
we consider a generic protocol as shown in Fig. 11. The
techniques presented here, however, are not restricted to QKD.
Concepts such as information reconciliation or privacy ampli-
fication, which we describe in this section, also play a role in
other protocols, for instance, those discussed in Sec. VIII.
While the first QKD security proofs, such as Shor and

Preskill (2000) and Mayers (2001), treat the entire QKD
protocol as a whole, modern security proofs are modular
(Renner, 2005). This means that a separate security statement
is established for each part of the cryptographic protocol. The
overall security statement for QKD then follows by combining
these individual statements. In the case of the protocol shown
in Fig. 11, one statement concerns the raw key distribution and
parameter estimation step (see Sec. V.B), another one con-
cerns the information reconciliation step (see Sec. V.C), and
yet another one concerns the privacy amplification step (see
Sec. V.D). According to the AC framework, each part can be
regarded as a constructive statement, which asserts that the
corresponding subprotocol constructs a particular resource
from certain given resources. This modular analysis comes
not only with the advantage that the proofs are more
versatile and can be adapted to different protocols but also
that the arguments are more transparent and easier to
understand and verify.
In the following, we focus on the modular approach to

proving security proposed by Renner (2005). We note,
however, that there are various other methods (we discuss
these in Sec. V.E). The common feature of all security proofs
is that they derive a relation between the information acces-
sible to the legitimate parties and the maximum information
that may have been gained by Eve. In the following descrip-
tion, this relation is given by Eq. (22); it lower bounds Eve’s
uncertainty about the raw keyX generated by Alice. Although
the statement concerns Eve’s knowledge, the bound depends
only on data that are accessible to Alice and Bob, in this case
the error rate η0 between their raw keys X and Y.
There are various different ways to derive and interpret such

bounds on Eve’s information. In the case of prepare-and-
measure schemes, the bounds can be understood as conse-
quences of the no-cloning principle (Wootters and Zurek,
1982). According to this principle, if Eve attempts to copy
parts of the information transmitted from Alice to Bob into her
register E, the transmitted information is disturbed, resulting
in a decrease of the correlations between Alice and Bob.

FIG. 11. Generic QKD protocol.
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This disturbance becomes larger the more information Eve has
gained, a fact that is known as the information-disturbance
trade-off (Fuchs, 1998). In the case of entanglement-based
protocols, the bounds on Eve’s information can be regarded as
an instance of the monogamy of entanglement. It asserts that
the stronger that Alice’s entanglement with Bob is, the weaker
her correlation with Eve is (Coffman, Kundu, and Wootters,
2000; Koashi and Winter, 2004; Terhal, 2004).

A. Protocol replacement

Cryptographic protocols that are optimized for practical use
are often not easy to analyze directly. Conversely, protocols
that are designed in a way that simplifies their security proofs
are usually not easily implementable in practice. For example,
building an entanglement-based QKD protocol in practice is
technologically more challenging than building a prepare-and-
measure scheme. Conversely, the structure of entanglement-
based schemes fits more naturally with the known techniques
for proving security.
A first step in a security proof for a practical protocol

πpractical is thus usually to conceive of another protocol
πtheoretical that is adapted to the proof techniques at hand.
One then argues that, for the purpose of the security proof,
πpractical can be replaced by πtheoretical, i.e., that the security of
πpractical is implied by the security of πtheoretical. A generic way
to achieve this is to show that for any possible attack against
πpractical there is a corresponding attack against πtheoretical.
For a concrete example, suppose that πpractical is the BB84

protocol (Bennett and Brassard, 1984). The protocol follows
the generic structure shown in Fig. 11, with a particular raw
key distribution procedure similar to that shown in Fig. 12.
The protocol prescribes that Alice and Bob proceed in rounds.
In each round i, Alice inputs one qubit Qi to the quantum
channel. The qubit encodes a random signal bit Xi with
respect to a randomly chosen basis Bi. Bob measures the
output Q0

i of the quantum channel with respect to a randomly
chosen basis B0

i to obtain a bit Yi. This is a prepare-and-
measure scheme and is in this sense “practical.”
The corresponding “theoretical” protocol πtheoretical could

be an entanglement-based protocol similar to the E91

protocol (Ekert, 1991). This protocol is identical to the
previously described BB84 protocol, except that the raw key
distribution step is replaced by the procedure shown in
Fig. 13. In each round i, Alice creates an entangled state
between two qubits Q̄i and Qi and sends the latter to Bob,
who receives it31 as Q0

i. Alice and Bob then both select
random bases Bi and B0

i and measure their qubits accordingly
to obtain bits Xi and Yi, respectively.
As first shown by Bennett, Brassard, and Mermin (1992),

these two protocols πpractical and πtheoretical are equivalent in
terms of their security.32 Note first that Bob’s part of the
protocol is the same for πpractical and πtheoretical. To see the
correspondence of Alice’s part, consider the two bits Bi and Xi
together with the qubitQi generated by Alice in any round i. It
is straightforward to verify that, for both πpractical and πtheoretical,
these are described using the same classical-classical-quantum
state of the form

ρBiXiQi
¼ 1

4

X1
b¼0

X1
x¼0

jbihbj ⊗ jxihxj ⊗ jϕx;bihϕx;bj: ð19Þ

Equation (19) shows, in particular, that, from the viewpoint of
an adversary (who may have access to the quantum channel
and hence to Qi), the two protocols are equivalent.
The previously described entanglement-based protocol

πtheoretical may be further modified to make it even more
suitable for security proofs. One such modification concerns
the timing of the steps. Instead of running through n rounds, in
each of which an entangled qubit pair is created and the qubits
measured, one may instead consider a first step in which n
entangled qubit pairs ðQ̄i; QiÞ are distributed between Alice
and Bob and, rather than being measured directly, are first

FIG. 12. Prepare-and-measure raw key distribution.

FIG. 13. Entanglement-based raw key distribution.

31Security is also guaranteed if this entangled state is generated by
an untrusted third party and distributed to Alice and Bob.

32This statement is valid only in the device-dependent setting and
does not extend to device-independent security proofs; see Ekert and
Renner (2014). For full device-independent security, it is necessary to
distribute entanglement.
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stored in quantum memories. Only in a second step do Alice
and Bob choose bases Bi ¼ B0

i for each of their qubit pairs and
measure them accordingly. This is shown in Fig. 14. An
argument similar to the previously given one shows that this
change has no impact on the security of the protocol.

B. Raw key distribution and parameter estimation

The first part of the security proof concerns the raw key
distribution and the parameter estimation step. For a raw key
distribution we consider the subprotocol described in
Fig. 14. The parameter estimation is shown in Fig. 15. It
essentially calculates an estimate for the fraction η of
positions i in which the bit strings X and Y differ, i.e.,
jXi − Yij ¼ 1, and returns the value “fail” if this fraction
exceeds a given threshold η0.
To run the raw key distribution and parameter estimation

protocol, one needs as initial resources an insecure quantum
channel Q together with an authentic classical channel A, as
shown in Fig. 7. The target is a raw key resource R, which
can be understood as a weak version of a shared secret key
resource, as shown in Fig. 6(b). The resource R is equipped
with a switch controlled by Eve (Portmann, 2017b). If the
switch is in position 1, the resource merely outputs ⊥ to Alice
and Bob. If the switch is in position 0, the resource outputs bit
strings X and Y of length n to Alice and Bob, but at the same
time enables Eve to interact with the resource, allowing her
to gain information E. Information E is bounded by a secrecy
condition, which may be expressed as follows in terms of a

lower bound t on the smooth min-entropy (Renner, 2005) of
Alice’s output X conditioned on E:

Hε
minðXjEÞ ≥ t: ð20Þ

In Eq. (20) ε > 0 is a small parameter that will contribute
additively to the failure probability of the protocol. The choice
of this particular measure for entropy will be relevant for the
further proof steps to follow, especially privacy amplification.
Intuitively, one may think of Hε

minðXjEÞ as the minimum
number of bits that can be extracted from X that are uniform
and uncorrelated to E, except with probability ε.
The desired statement is that running the raw key distri-

bution protocol followed by the parameter estimation protocol
on Q and A constructs the raw key resource R for appro-
priately chosen parameters. One may view this as the core of
security proofs in QKD. It shows that a criterion on the
statistics of the data X and Y measured by Alice and Bob, as
tested by the parameter estimation protocol, is sufficient to
imply a certain level of secrecy of X toward Eve.
To illustrate the idea behind the argument, we focus for the

moment on collective attacks; see Sec. III.C.2. Under this
assumption, each of the qubit pairs ðQ̄i; Q0

iÞ held by Alice and
Bob when they execute the raw key distribution protocol of
Fig. 14 prior to the measurement is in the same state ρQ̄i;Q0

i
.

Recall, however, that the second qubit Q0
i is what Bob

received. Since Eve may corrupt the quantum communication
channel, it is not guaranteed that this qubit coincides with the
qubit Qi that Alice sent. The state ρQ̄i;Q0

i
may thus be different

than the entangled state ð1= ffiffiffi
2

p Þðj0ij0i þ j1ij1iÞ that Alice
prepared.
To gain some intuition, it may be useful to consider the

special case where the threshold in the subprotocol for
parameter estimation is small, say, even η0 ¼ 0. If the
subprotocol returns the value “ok,” this means that the bit
strings X and Y largely coincide. This yields a constraint on
the state ρQ̄i;Q0

i
, namely, that if both Alice and Bob measure it

with respect to the basis fj0i; j1ig or with respect to the basis
fð1= ffiffiffi

2
p Þðj0i � j1iÞg, they obtain identical outcomes, except

with some small probability that is due to the finite sample
size used for parameter estimation.
It is now straightforward to verify that the only states ρQ̄iQ0

i

that can pass the test with η0 ¼ 0 are those that are close to the
pure state ð1= ffiffiffi

2
p Þðj0ij0i þ j1ij1iÞ that Alice prepared. Next

one may consider the joint state ρQ̄iQ0
iE

that includes Eve.
But because the state of the first two qubits is almost pure,
one can conclude that this state must be of the form

ρQ̄iQ0
iE
≈ ρQ̄iQ0

i
⊗ ρE: ð21Þ

That is, Eve’s information E is almost uncorrelated to Q̄i
and Q0

i. But because each of the n bits Xi of X is obtained
from a measurement of Q̄i, it is as well almost uncorrelated
to E. This proves that each bit Xi is almost uniformly random
and independent of E. The smooth min-entropy of the
entire sequence X of bits is thus almost maximal, i.e.,
Hε

minðXjEÞ ≈ n.

FIG. 14. Entanglement-based raw key distribution with post-
poned measurement.

FIG. 15. Parameter estimation.
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If instead of η0 ¼ 0 one inserts an arbitrary value for the
tolerated noise tolerance η0, which is also known as the
quantum bit error rate (QBER), a refinement of the argument
that we just sketched gives (Renner, 2005; Renner, Gisin, and
Kraus, 2005)

Hε
minðXjEÞ ≥ n½1 − hðη0Þ� þOð ffiffiffi

n
p Þ; ð22Þ

where hðxÞ ¼ −x log2ðxÞ − ð1 − xÞ log2ð1 − xÞ denotes the
binary entropy function.
We also note that the argument can be adapted to the case of

device-independent security. In this case the parameter esti-
mation tests whether the outcome statistics of Alice and Bob
violates a Bell inequality. The lower bound on the entropy
then depends on the degree of this violation; see Acín et al.
(2007) for the example of the Clauser-Horne-Shimony-Holt
(CHSH) Bell inequality (Clauser et al., 1969).
The assumption of collective attacks is necessary to

sensibly talk about the state ρQ̄iQ0
i
of the individual systems.

However, there are no good reasons why an adversary should
be restricted to such attacks; see Sec. IV.A. Modern security
proofs therefore usually consist of an additional step, in which
it is shown that general attacks cannot be more powerful than
collective attacks.
There are various techniques to achieve this. The most

widely one used to date is based on the exponential de Finetti
theorem (Renner, 2005, 2007; Renner and Cirac, 2009).
The theorem states that if a state over many subsystems,
such as ρQ̄1Q0

1
���Q̄nQ0

n
, is symmetric under reorderings (i.e., the

state remains the same if one permutes the subsystems Q̄iQ0
i),

then it is well approximated by a mixture of i.i.d. states,
i.e., states of the form ρQ̄1Q0

1
⊗ � � � ⊗ ρQ̄nQ0

n
. The latter

corresponds to the structure that one has if one assumes
collective attacks.
To apply the exponential de Finetti theorem, it is sufficient

to argue that the rounds of the protocol, in which the
individual signals are sent, could be reordered arbitrarily.
As in the example of the previously described BB84
protocol, this is the case for most protocols that have been
proposed in the literature. Notable exceptions are the
coherent one-way protocol (Stucki et al., 2005) and the
differential phase shift protocol (Inoue, Waks, and
Yamamoto, 2002), where information is encoded in the
correlations between signals.
Another method, which is related to the de Finetti theorem,

is the postselection technique (Christandl, König, and Renner,
2009). Like the former, it can be used to lift security proofs
against collective attacks to security proofs against general
attacks, provided that the protocol satisfies the previously
described symmetry assumptions.
Under certain conditions, it is also possible to establish

bounds of the form of Eq. (22) directly for general attacks,
i.e., without first restricting to collective attacks. This is the
case for the approaches presented by Christandl, Renner,
and Ekert (2004) and Renner, Gisin, and Kraus (2005),
which are both applicable to the device-dependent setting,
as well as the techniques proposed by Tomamichel and
Renner (2011) and Tomamichel et al. (2012), which include
semi–device independent scenarios, and by Reichardt,

Unger, and Vazirani (2013), Miller and Shi (2014), and
Vazirani and Vidick (2014), which apply to particular
device-independent protocols.
The most recent approach to directly prove security against

general attacks relies on the entropy accumulation theorem
(Dupuis, Fawzi, and Renner, 2020). This approach, in contrast
to methods based on the de Finetti theorem, gives rather tight
min-entropy bounds even when the number n of protocol
rounds is relatively small. It is furthermore applicable to the
semi–device independent and the device-independent setting
(Arnon-Friedman, Renner, and Vidick, 2019), which are
discussed in Sec. VI.

C. Information reconciliation

The goal of information reconciliation is to ensure that
Alice and Bob have the same (raw) key. The most common
way to achieve this is to regard Alice’s bit string X as the key,
and to let Bob infer this key from the information Y that he
has. To this end, Alice sends partial information about X to
Bob over the classical channel.
The protocol shown in Fig. 16 uses as resources a raw key

R, as described in Sec. V.B, as well as, again, an authentic
classical communication channel A. Its purpose is to gen-
erate a weak key resource R0, which provides a guarantee of
the form of Eq. (20) on the secrecy of the key, and, in
addition, ensures that Alice and Bob’s values X and X0 are
identical.
We note that information reconciliation is a purely classical

subprotocol. It is also largely independent of the other parts of
the QKD protocol, and hence works in both the device-
dependent and the device-independent setting. The choice of
the coding scheme, i.e., the functions enc and dec that the
protocol invokes, merely depends on the noise model. The
latter describes how Alice’s and Bob’s inputs to the protocol
X and Y are correlated with each other.
The noise model is most generally specified in terms of a

joint probability distribution of X and Y. The coding scheme
must then be chosen such that

Prfdec½encðX;YÞ� ¼ Xg ≥ 1 − ε. ð23Þ

The parameter ε > 0 bounds the failure probability of the
subprotocol and will hence, like the parameter ε used in the
previous step, contribute additively to the total failure proba-
bility of the QKD protocol. Furthermore, to maintain as much
secrecy as possible for X, the function enc should be chosen
such that C ¼ encðXÞ does not reveal too much information
aboutX. (Recall that the classical channel is accessible to Eve,
so she may get ahold of C.) This may be achieved by making C
as small as possible. It can be shown using classical techniques

FIG. 16. Information reconciliation.
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from information theory that any coding scheme that satisfies
Eq. (23) requires a communication C of

k ≥ Hε
maxðXjYÞ bits; ð24Þ

where Hε
max denotes the smooth max-entropy (Renner and

Wolf, 2005). Furthermore, there are coding schemes that
saturate this bound (up to a small additive constant).
In the case of an i.i.d. noise model, Hε

maxðXjYÞ is
approximated by the Shannon entropy up to terms of the
order of

ffiffiffi
n

p
, where n is the length ofX. For a protocol such as

BB84, which uses single qubits, and assuming that the QBER
is η0, one thus has

k ≈ nhðη0Þ þOð ffiffiffi
n

p Þ: ð25Þ
Letting E be the initial information that Eve has about the

raw keyX before information reconciliation, the secrecy after
information reconciliation with communication C consisting
of k bits is given by

Hε
minðXjECÞ ⪆ Hε

minðXjEÞ − k −Oð1Þ: ð26Þ
Hence, for an optimal information reconciliation protocol
we have

Hε
minðXjECÞ ⪆ Hε

minðXjEÞ −HmaxðXjX0Þ −Oð ffiffiffi
n

p Þ: ð27Þ
In particular, for the case of the BB84 protocol, we get

Hε
minðXjECÞ ≥ n½1 − 2hðη0Þ� −Oð ffiffiffi

n
p Þ: ð28Þ

As is clear from Eq. (26), the amount of secrecy that is left
after information reconciliation depends on the amount k of
communication required. The design of coding schemes (enc,
dec) that optimize this parameter is a main subject of classical
information theory (Cover and Thomas, 2012). While the
bound in Eq. (24) can already be saturated with randomly
constructed encoding functions, a main challenge is to
develop schemes for which the encoding and decoding
functions are efficiently computable (Leverrier et al., 2008;
Elkouss et al., 2009; Elkouss, Martinez-Mateo, and Martin,
2011; Jouguet and Kunz-Jacques, 2014).
While the information reconciliation protocol of Fig. 16

invokes only one-way communication from Alice to Bob,
one may also consider two-way schemes. In fact, the first
proposals for QKD implementations used a procedure to
correct errors that required multiple rounds of communica-
tion between Alice and Bob (Bennett, Bessette et al.,
1992).33 Furthermore, one may also include advantage
distillation (Maurer, 1993). Here the idea is that Alice and
Bob group their data into small blocks. They then try to
distinguish blocks that are likely to contain few errors from
those that are likely to contain many errors. The ones with

many errors are then discarded. It has been shown that this
technique can be advantageous relative to standard error
correction (Gottesman and Lo, 2003; Renner, 2005; Tan,
Lim, and Renner, 2020).

D. Privacy amplification

The aim of privacy amplification is to turn the weakly secret
key X, which after information reconciliation is known to
Alice and Bob, into a strong secret key K, i.e., a bit string that
is essentially uniform and independent of the information held
by an adversary (Bennett, Brassard, and Robert, 1988; Bennett
et al., 1995). This is typically achieved with a protocol as in
Fig. 17. Apart from the weak key resourceR, which satisfies a
secrecy bound of the form of Eq. (20) and which is assumed to
output the same string X to Alice and Bob, the protocol
requires an authentic communication channel A. From these
resources, the protocol constructs a secret key resource as
shown in Fig. 6(b).
The protocol makes use of a randomness extractor

(Zuckerman, 1990; Shaltiel, 2004). This is a family of
functions exts parametrized by a seed s ∈ S, which take as
input a bit string such as X and output a bit string of a fixed
length l. In the classical literature, a strong ðk; εÞ extractor is
defined by the property that, for any input X whose min-
entropy satisfies the lower bound HminðXÞ ≥ k, the output
extsðXÞ is ε close to uniform. More precisely, the expectation
over a randomly chosen seed s ∈ S of the variational distance
between the distribution of the output extðXÞ and a uniform
string U of l bits must be upper bounded by ε,

Exps½DðPextsðXÞ; PUÞ� ≤ ε: ð29Þ

Equation (29), however, does not take into account the
quantum nature of information that an adversary may
have about X (König, Maurer, and Renner, 2005;
Gavinsky et al., 2007). It is hence not sufficient for use
in the context of quantum key distribution, unless one
restricts to security against individual attacks, which cor-
responds to forcing the adversary to store classical infor-
mation only; see Sec. IV.A.
To prove general security, it is necessary to demand that

the randomness extractor fextsgs∈S be quantum proof for
parameters k and ε, as previously shown. This means that, for
any X and any quantum system E such that HminðXjEÞ ≥ k,
one has

Exps½DðρextsðXÞE; ρU ⊗ ρEÞ� ≤ ε: ð30Þ

FIG. 17. Privacy amplification.

33Despite its two-way nature, the particular method proposed by
Bennett, Bessette et al. (1992) did not achieve the previously
described information-theoretic boundse. It was realized only later
by Bennett, Brassard et al. (1992), in the context of oblivious transfer,
that one-way error correction is sufficient and can be made
asymptotically optimal.
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Note that this criterion refers to min-entropy HminðXjEÞ ¼
Hε0

minðXjEÞ with smoothness parameter ε0 ¼ 0. However, a
straightforward application of the triangle inequality for the
distance between states implies that a corresponding criterion
also holds if ε0 > 0 (Renner, 2005).
A number of constructions for quantum-proof extractors

have been proposed in the literature (Renner, 2005; Fehr and
Schaffner, 2008; König and Terhal, 2008; Ben-Aroya and Ta-
Shma, 2012; De et al., 2012; Mauerer, Portmann, and Scholz,
2012; Berta, Fawzi, and Scholz, 2017). In the context of QKD,
the most widely used extractors are based on two-universal
hashing (Carter and Wegman, 1979; Wegman and Carter,
1981). As shown by Renner (2005), Renner and König
(2005), and Tomamichel et al. (2010), these can achieve an
output length of l ¼ k − 2 log2ð1=εÞ while still being quan-
tum-proof ðk; εÞ extractors. Using them within the protocol of
Fig. 17 generates a key of length

l ¼ Hε
minðXjECÞ −Oð1Þ; ð31Þ

with a failure probability of the order of ε. Combining this
with the previously discussed results, with optimal informa-
tion reconciliation and privacy amplification it is possible to
generate a key of length

l ¼ Hε
minðXjEÞ −HmaxðXjYÞ −Oð1Þ: ð32Þ

In particular, in the case of the BB84 protocol, we obtain

l ¼ n½1 − 2hðη0Þ� −Oð ffiffiffi
n

p Þ; ð33Þ

where η0 is the QBER. The asymptotic key rate is thus
1 − 2hðη0Þ.

E. Other approaches to proving security

The previously described generic security proof follows the
approach proposed by Renner (2005). It is sometimes termed
information theoretic, as its core part consists of bounds on
entropic quantities, such as Eq. (22). Such bounds were first
proposed by Devetak and Winter (2005). They were further
developed by Renes and Renner (2012) and used by Kraus,
Gisin, and Renner (2005) and Renner, Gisin, and Kraus
(2005); see also Christandl et al. (2007) for related work.
However, as already mentioned, there are a variety of other
proof strategies.
Early proofs (Lo and Chau, 1999; Shor and Preskill, 2000)

used a reduction to the problem of entanglement distillation.
For this, one rearranges the key distribution protocol such
that all measurements are postponed to the last step. If one
now omits these final measurements, Alice and Bob end up
with correlated quantum registers rather than classical keys.
One may thus regard the protocol as an entanglement
distillation protocol (Bennett, Bernstein et al., 1996;
Bennett, Brassard et al., 1996) and prove that the registers
held by Alice and Bob are almost maximally entangled. If this
is the case, then, by the monogamy of entanglement, the

information in these registers is uncorrelated to Eve, and
hence secret.34

This approach may be more generally understood as
follows. Assuming that Alice’s and Bob’s start with quantum
correlation stored in individual qubits equipped with a
computational basis, the entanglement distillation protocol
can be regarded as a quantum error correction scheme
(Calderbank and Shor, 1996; Steane, 1996) that corrects for
both bit and phase flip errors. The correction of bit flip errors
ensures that Alice and Bob end up with the same key. The
correction of phase flip errors ensures that the two registers are
not only classically correlated but also maximally entangled.
Since, as indicated earlier, the latter implies secrecy, one can
understand the correction of phase flip errors as a kind of
privacy amplification (Renes, 2013).
The technique was originally used to prove the security of

the BB84 protocol, including variants with imperfect devices
(Gottesman et al., 2004), but can also be applied to other
quantum key distribution protocols (Tamaki, Koashi, and
Imoto, 2003; Koashi, 2004; Boileau et al., 2005). While
the correspondence to entanglement distillation requires that
error correction and privacy amplification be treated as a
single quantum error correction step, it is under certain
conditions possible to achieve a separation in a way similar
to the previously described modular description (Lo, 2003).
Furthermore, as shown by Horodecki et al. (2008), the method
also works if the registers of Alice and Bob merely contain
bound entanglement, i.e., entanglement from which no
maximally entangled states can be distilled (Horodecki,
Horodecki, and Horodecki, 1998).
A somewhat related strategy, proposed originally by

Mayers (2001), is the use of complementarity (Koashi,
2009). Specifically, one uses the fact that if Alice is able to
accurately predict the outcomes of a measurement in one basis,
say, the computational basis, then by the uncertainty principle
any predictions for the outcomes of measurements in a
complementary basis, e.g., the diagonal basis in the case of
single qubits, will be inaccurate. This technique has been
refined in a series of works and made applicable to the study of
finite-size effects (Hayashi and Tsurumaru, 2012; Tomamichel
et al., 2012) and to measurement device–independent cryp-
tography (Tamaki et al., 2012). The complementarity approach
is also related to the use of entropic uncertainty relations (Berta
et al., 2010; Tomamichel and Renner, 2011; Coles et al., 2017).

VI. ALTERNATIVE MODELING OF QKD

Thus far we have discussed QKD as protocols that start
with an insecure quantum channel and an authentic classical
channel and generate, as the desired ideal resource, a key of
fixed length. In this section we discuss other variants of QKD
protocols, where these resources are chosen differently.
In Sec. VI.A we consider an ideal key resource with adaptive

34The following is a quantitative version of this statement. If the
entanglement distilled by Alice and Bob has fidelity F to a maximally
entangled state, then it follows from Theorem 1 of Fuchs and Graaf
(1999) that the corresponding security parameter ε according to

Eq. (8) is bounded by ϵ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2

p
.
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key length. In Sec. VI.B we discuss protocols that use a source
of entanglement instead of an insecure quantum channel. In
Sec. VI.C we show how to model a situation in which no
perfect randomness is available. In Sec. VI.D we model
device-independent QKD. Relaxations of this known as
semi–device independence are discussed in Sec. VI.E.
Finally, in Sec. VI.F we consider adversaries that have no
quantum memory.

A. Adaptive key length

For a protocol to construct the shared secret key resource of
Fig. 6(b), it must either abort or produce a key of a fixed
length. A more practical protocol could adapt the secret key
length to the noise level of the quantum channel. This provides
the adversary with the functionality to control the key length
(not only whether or not it gets generated) and can be modeled
by allowing the key length to be input at Eve’s interface of the
ideal key resource, as illustrated in Fig. 18.
Such an ideal resource was considered by Ben-Or et al.

(2005) and Hayashi and Tsurumaru (2012). The reduction
from the corresponding security definition in AC to a trace
distance criterion still goes through. But instead of Eq. (7)
we get

X
m

pmDðρmKE; τ
m
K ⊗ ρmE Þ ≤ ε; ð34Þ

where pm is the probability of obtaining a key of length m,
ρmKE is the joint state of the key and Eve’s system conditioned
on the key having length m, and τmK is a fully mixed state of
dimension 2m.

B. Source of entanglement

In contrast to prepare-and-measure protocols, entangle-
ment-based protocols (Ekert, 1991; Bennett, Brassard, and
Mermin, 1992) use a source of entanglement instead of a
quantum communication channel. It is also fairly standard in
security proofs to first transform a given prepare-and-measure
protocol into an entanglement-based one, then prove the
security of the latter (Shor and Preskill, 2000). In Fig. 19
we draw a system consisting of a QKD protocol
ðπQKDA ; πQKDB Þ, the authentic channel A, and a source E of
entangled states that may be controlled by Eve. To specify
the completeness property, we also consider a source of
entanglement E0 that produces a fixed bipartite entangled
state instead of allowing Eve to decide.

The reduction from the AC security definition to the trace
distance criterion described in Sec. III.B works here too, with
the source of entanglement replacing the insecure channel,
thus resulting in the same conditions for ε secrecy and ε
correctness.
One can also show that any protocol designed for a

distributed source of entanglement can be transformed into
one where a state is prepared locally and sent over an insecure
channel. To explain this, we first decompose Alice’s QKD
protocol into two parts. In the first she carries out a
subprotocol α that performs a measurement Ma ¼ fMa

xgx
on the state received from the source of entangled states,
where Ma is chosen with some probability pa from a set
fMaga. The second part consists of the rest of her QKD
protocol. We illustrate this in Fig. 20.
We now need to argue that there is a converter γ that

constructs αE from an insecure channel Q and αE0 from a
noiseless channel Q0. For this, we must establish the two
following conditions.

(i) There is a simulator σE such that

γQ ¼ αEσE:

(ii) The following equality holds:

γQ0 ¼ αE0:

Once we have established these conditions, it follows immedi-
ately from the composition theorem of the AC framework

FIG. 18. A secret key resource with adaptive key length. This
resources allows Eve to choose the length m of the final key k,
which is then output at Alice’s and Bob’s interfaces.

FIG. 19. A real QKD system that uses a source of entangled
states. Instead of having access to an insecure channel as in
Fig. 7(a), Alice and Bob use a source of entanglement E that is
controlled by Eve. This means that Eve may generate an arbitrary
state ρABE, of which the A register goes to Alice and the B register
goes to Bob.

FIG. 20. We split Alice’s part of an entanglement-based QKD
protocol into two parts, the measurement of the incoming states
(denoted by α) and the rest of the protocol (denoted by πQKDA ).
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(Maurer and Renner, 2011) that any QKD protocol that is
sound when using αE and complete when using αE0 is also
sound and complete when using γQ and γQ0, respectively.
Let ρAB be the bipartite entangled state that is generated

by E0. Let φ̃x;a
B ≔ trA½Ma

xρABðMa
xÞ†�, pxja ≔ trφ̃x;a

B , and
φx;a
B ≔ φ̃x;a

B =pxja. We define the converter γ to prepare the
state φx;a

B with probability papxja, which it sends on the
insecure channel. Furthermore, we define the simulator σE to
prepare ρAB, input the A part on the entanglement resource for
Alice, and output the B part at the outer interface. It is then
straightforward to check from Fig. 21 that this satisfies the
previously described conditions (i) and (ii).

C. Imperfect randomness

QKD protocols usually assume that the honest parties
have arbitrary access to perfect random numbers. This,

however, is never the case in practice. A more realistic
model of a QKD system would consider randomness as a
resource that is available in limited and imperfect quantities
to Alice and Bob. The real QKD setting drawn in Fig. 7
needs to be changed to take this into account. In Fig. 22 we
depict a QKD protocol that, in addition to the insecure
quantum channel and authentic classical channel, has access
to resources producing local randomness RA and RB at
Alice’s and Bob’s interfaces, respectively. A different model
of randomness resources might also provide some partial
quantum information about the randomness to the eaves-
dropper. For simplicity, however, we chose to draw the
simpler case in which RA and RB have an empty interface
for the dishonest party.
In such a setting, the converters πQKDA and πQKDB are

deterministic systems. A QKD protocol would then construct
an ideal key resource given access to these three resources. It
remains an open problem to minimize the assumptions on the
sources of randomness in QKD. Recent results on device-
independent randomness amplification (Colbeck and Renner,
2012) show that under certain minimal assumptions35 about
the workings of an unknown quantum system, one can
transform a single public weak source of randomness into
a fully private random source (Chung, Shi, and Wu, 2014;
Brandão et al., 2016; Kessler and Arnon-Friedman, 2020).
Alternatively, if two or more sources of weak randomness are
available to a player (under certain strict conditions on the
correlations between these different sources), these can be
combined to obtain approximately uniform randomness

FIG. 21. Pictorial proof for the security of the construction of αE from Q and αE0 from Q0. Any protocol that is designed to run with a
source of entangled states E and that measures the incoming states on Alice’s side as does α can be equivalently used with an insecure
channelQ and a converter γ that generates the states to be sent on the channel. (a) When modeling soundness, the adversary can modify
the messages on the insecure channel Q. The simulator σE generates the entangled state ρAB that is expected from a nonadversarial
source of entangled states and outputs the B part at the outer interface, making the systems on the left and right indistinguishable.
(b) When modeling completeness, the source of entanglement E0 prepares the state ρAB. The systems on the left and right are
indistinguishable.

FIG. 22. A real QKD system with a deterministic protocol
ðπQKDA ; πQKDB Þ and explicit sources of randomness RA and RB.

35One generally has to assume that no messages leave or enter the
quantum devices unless authorized by the protocol. Some papers
make additional assumptions to simplify the protocols and proofs.
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(Chung, Li, and Wu, 2014; Arnon-Friedman, Portmann, and
Scholz, 2016). Composing this with a standard QKD protocol
would allow secret keys to be distributed when only weak
randomness is available to the honest parties.

D. Device-independent QKD

In this review we have thus far always considered scenarios
for which it is assumed that the players have trusted quantum
devices that work exactly according to their specifications.
For instance, if a player instructs the device to generate a j0i
state, then it is assumed that the device generates precisely this
state. This assumption, however, is not met in any actual
implementation with realistic devices, as these are never
perfect. Indeed, there have been numerous demonstrations
of successful attacks against implementations of quantum
cryptographic protocols that exploit deviations of the devices’
functionality from the specifications, as discussed in Sec. IV.
This problem cannot be solved only by a more careful design
of the devices, for it appears to be impossible to guarantee
their perfect working under all possible environmental
conditions.
A theoretical solution to this problem is to devise

protocols whose security does not rely on the assumption
that devices are perfect. Ideally, they should provide security
guarantees even if the devices are untrusted, meaning that
their behavior may deviate arbitrarily from the specification.
Using quantum devices, this is possible (with certain caveats
to be described). The idea is to use a phenomenon called
Bell nonlocality (Bell, 1964); see Scarani (2013) and
Brunner et al. (2014) for articles on the topic. The subfield
of cryptography that studies the use of nonlocality to design
protocols that work with untrusted devices is termed device-
independent cryptography.
In a nutshell, a Bell inequality is a bound on the probability

of observing certain values in an experiment involving
measurements of two isolated (and hence noncommunicating)
systems. The bound characterizes classical locality: it cannot
be violated if the two isolated systems are described by
classical physics. However, the bound can be violated by
measurements on entangled quantum systems. One of the
most commonly used Bell inequalities is the CHSH inequality
(Clauser et al., 1969). It states that if two players each hold
noncommunicating systems and each performs one out of two
binary measurements chosen uniformly at random on their
respective system, where the choice of the measurement is
given by x; y ∈ f0; 1g and the outcome is given by a; b ∈
f0; 1g, respectively, then the probability36 that xy ¼ a ⊕ b
should be less than or equal to 3=4. But if the systems are
quantum, it is possible to observe this outcome with proba-
bility up to ≈ 0:85: this is achieved if the systems are in a
perfectly entangled state and the players perform an optimal
measurement.

An observation of a violation of a Bell inequality implies
that the measurement outcomes contain some genuine ran-
domness (Colbeck, 2006; Pironio et al., 2010; Acín, Massar,
and Pironio, 2012; Colbeck and Renner, 2012), even con-
ditioned on the knowledge of the person who set up and
programmed the devices used in the experiment. The only
assumptions are that no information other than the measure-
ment result leaves the devices and that these devices never fall
into the hands of an adversary, since their internal memory
may contain a copy of the measurement outcomes. This
randomness may then be used to generate uniform random
numbers (Vazirani and Vidick, 2012; Chung, Shi, and Wu,
2014; Miller and Shi, 2014; Brandão et al., 2016; Kessler and
Arnon-Friedman, 2020) or a shared secret key (Barrett, Hardy,
and Kent, 2005; Pironio et al., 2009; Vazirani and Vidick,
2014; Arnon-Friedman et al., 2018; Arnon-Friedman, Renner,
and Vidick, 2019).
For a review of different results and techniques in device-

independent cryptography, see Ekert and Renner (2014). In
this section we show how to model device-independent
quantum key distribution (DI QKD) in the AC framework.
It then follows from the composition theorem of AC that the
resulting key can be safely used in applications requiring one.
The converters πQKDA and πQKDB modeling Alice’s and Bob’s

parts of the protocol in Sec. III are systems that generate
quantum states and perform measurements. In DI QKD,
exactly these operations cannot be trusted. Instead, the DI
protocol ðπDI QKDA ; πDI QKDB Þ will involve only classical oper-
ations. Everything quantum is moved into a resource, a device
D. The honest players can send bits to these devices and
receive bits back from them. This corresponds to choosing a
measurement x; y ∈ f0; 1g and receiving the outcome
a; b ∈ f0; 1g, as just described. The adversary is permitted
to “program” these devices by providing some initial state ρ as
input. Depending on the model, Eve may be allowed to
provide further inputs to the device at some later point, such as
to provide more Einstein-Podolsky-Rosen (EPR) pairs so that
the device may continue running. The corresponding real
world is drawn in Fig. 23. The ideal world will be identical to
that of standard QKD since we wish to construct the same key
resource, i.e., Fig. 8.
When one applies Definition 1, this means that the pro-

tocol ðπDI QKDA ; πDI QKDB Þ constructs K from A, DA, and DB
within ε if

∃ σE; πDI QKDA πDI QKDB ðDAkDBkAÞ ≈ε KσE: ð35Þ

FIG. 23. The real-world setting for a DI-QKD protocol. Eve can
program the devices D but cannot receive any output from them.

36An alternative formulation of the inequality is jEð0; 0Þ þ
Eð0; 1Þ þ Eð1; 0Þ − Eð1; 1Þj ≤ 2, where Eðx; yÞ is the expected value
of the product of the outcomes of the systems when measured with
settings x and y, respectively, and the outcomes are values in
f−1;þ1g.
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Note that we have not specified the behaviors of the devices
DA and DB at all. In fact, we need Eq. (35) to hold for all
devices37 DA and DB. This is exactly the device-independent
guarantee, namely, that security holds regardless of how the
quantum devices work. Alternatively, one can consider fixed
devicesDA andDB that are universal computers and have their
program be part of the inputs at the E interface.
As usual, completeness is captured by specific devices D0

A
and D0

B that work honestly (e.g., they share perfectly
entangled states and perform the correct measurements as
specified by the protocol), as well as the same honest
resources A0 and K0 as in Sec. III. In addition to Eq. (35),
we need

πDI QKDA πDI QKDB ðD0
AkD0

BkA0Þ ≈ε0 K0:

The same reduction as for normal QKD goes through, and
one can show that Eq. (35) is satisfied if, for all behaviors of
the devices (and their inputs), Eqs. (13) and (14) hold.
Note, however, that the construction outlined in this section

allows the devices DA and DB to only be accessed during the
protocol. No access is granted after the protocol ends,
meaning that we make no security statement about what
happens if the devices are reused. It is an open question how
to reuse devices in DI cryptography, which we discuss in
Sec. IX.A.
Proving the security of device-independent QKD is more

challenging than in the device-dependent case. One of the
difficulties is that the measurement operators that describe
Alice’s and Bob’s measurements can be arbitrary. In particu-
lar, it cannot be assumed that two subsequent measurement
outcomes by Bob are obtained by two separate measurement
processes. While some of the techniques described in Sec. V,
such as entropy accumulation, are still applicable to the
device-independent setting, others, like de Finetti–type
theorems, are not or must be adapted; see Arnon-Friedman
(2018) for details.

E. Semi–device independent QKD

The only assumption made about the devices in DI QKD is
that no information leaves these devices unless it is allowed by
the protocols; see Sec. VI.D. But achieving the violation of
Bell inequalities needed for this is challenging because it
requires high detector efficiency and tolerates only low noise
on the channel (Brunner et al., 2014). Protocols that are easier
to implement can be achieved by making additional assump-
tions about the quantum devices used by Alice and Bob. These
are generally called semi–device independent (semi-DI).
Many different assumptions may be labeled semi-DI.

For example, in a one-sided device-independent setting
the protocol is DI for Bob but not for Alice (Branciard
et al., 2012). One may also assume dimension bounds on the
quantum systems generated by untrusted devices such as
those discussed by Pawłowski and Brunner (2011).
Alternatively, Lim et al. (2013) assumed that each use of

the devices is causally independent (i.e., the states generated
and measurements performed are in product form) to analyze
a protocol where the Bell violation is measured locally in
Alice’s lab, thus avoiding the noise introduced by the
channel between Alice and Bob. Similar ideas have been
used for protocols other than QKD, such as semi-DI quantum
money (Bozzio, Diamanti, and Grosshans, 2019; Horodecki
and Stankiewicz, 2020).
One of the most promising forms of semi-DI QKD, which

has already been implemented over large distances (Liu et al.,
2013; Tang et al., 2014; Pirandola et al., 2015; Yin et al.,
2016), is measurement device–independent (MDI) QKD
(Braunstein and Pirandola, 2012; Lo, Curty, and Qi, 2012;
Ma and Razavi, 2012; Curty et al., 2014). Here one assumes
that players can generate the states they desire, but one does
not trust measurement devices at all. This model is motivated
by the attacks on the detectors, e.g., the time-shift attacks or
detector blinding attacks discussed in Sec. IV.C.
To understand how such protocols work, we start with an

entanglement-based protocol as in Sec. VI.B, then modify it
step by step until we achieve a prepare-and-measure protocol
in which all measurements are performed by the adversary.
Since the final protocol is as secure as the original one and the
original one is secure for all adversaries, the final MDI-QKD
protocol is secure for all adversaries as well. In particular, it is
secure for adversaries that completely control the measure-
ment apparatus.
In an entanglement-based protocol, Alice and Bob receive

the A and B parts of a state ψABR and measure these systems in
either the computational or diagonal basis, thereby obtaining a
raw key. This key is then processed as in a prepare-and-
measure protocol; see Secs. III.A.2 and V. If the source gave
them a state that is close to a tensor product of EPR pairs,
such a protocol is guaranteed to terminate with a shared
secret key. Equivalently, the source could generate any of the
Bell states and notify Alice and Bob which one it gave them.
They then perform bit or phase flips to change it to an
EPR pair.
Instead of the source distributing an entangled state, Alice

and Bob could each generate an EPR pair AA0 or BB0,
respectively. They then send A0 and B0 to a third party,
Charlie, who measures this in the Bell basis and tells them the
measurement outcome. If performed correctly, the AB system
will be in a Bell state, and the measurement outcome will tell
them which one. By flipping bits or phases, Alice and Bob can
turn this into an EPR pair, and continue with the protocol as
previously discussed. If Charlie does not perform the correct
measurement, then Alice and Bob will end up holding the A
and B parts of some unknown state ψABR. But this does not
compromise security: if it is too far from the expected state,
the protocol will simply abort.
Instead of first performing a bit or phase flip and then

measuring, Alice and Bob could first measure their systems A
and B and then flip the value of the measurement outcome if
needed. And instead of generating EPR pairs AA0 and BB0,
then measuring A and B, they could pick the measurement
outcome at random, then generate the corresponding reduced
state in A0 and B0, respectively, and send these to Charlie.
When they obtain the measurement outcome from Charlie,
they flip their bits if needed.

37The simulator may depend on these devices, i.e., ∀DA;DB; ∃σE
such that Eq. (35) holds.
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The only trusted quantum operations that Alice and Bob
need to perform in the protocol just described are generating
the states in the systems A0 and B0. All measurements have
now been delegated to Charlie, who may deviate arbitrarily
from the protocol without compromising security.
The real world for such a MDI-QKD protocol is drawn in

Fig. 24, where one can see that the converters πMDI QKD
A and

πMDI QKD
B do not have any incoming quantum states; i.e., they

do not need to perform any measurements.
Security proofs for MDI-QKD protocols can be based on

the same techniques as those for fully device-independent
protocols, as discussed in Sec. VI.D. The comments on
security proofs made in that section thus also apply here.

F. Memoryless adversaries

Thus far we have analyzed different models of QKD in
which we have changed the capabilities and resources of the
honest players running the protocol. Similar techniques may
also be used to model limitations on adversaries. In this
section we consider an example of a QKD protocol with an
adversary that has no long-term quantum memory and is
forced to measure the quantum states exchanged between
Alice and Bob during the QKD protocol and to store the
classical information.
The insecure channel resourceQmodeled as part of the real

QKD system in Fig. 7(a) gives complete control over the states
sent on this channel to the adversary. Since this may include
storing them and measuring them at a later point, we need to
limit the adversary’s access to this channel as part of the
insecure channel resource. We may thus define a different
channel Q̃ that requires Eve to input some measurement
specifications and then obtains the measurement outcome at
her interface. The resulting postmeasurement state is then
output at Bob’s interface.
The previously described model of Q̃ is merely one

possible way one may imagine limiting Eve’s access to the
states sent during QKD. The result is a change in the
requirements of the QKD protocol. Instead of constructing
a secure key K from an authentic channel A and an insecure
channelQ, it is now sufficient if K can be constructed from A
and Q̃. Since the accessible information (see Sec. III.C.1)
measures the information an adversary has after measuring

their quantum states, a QKD protocol with low accessible
information satisfies such a construction, namely, AkQ̃ → K.
The accessible information security measure is thus a compo-
sable criterion under the assumption that the adversary has
such a physical limit on their memory.
Since QKD protocols are secure against general adversa-

ries, as modeled in Sec. III, there does not seem to be much
incentive to consider adversaries with limitations on their
memory (unlike for certain two-party protocols discussed in
Sec. IX.C). It is noteworthy, however, that, as mentioned in
Sec. III.C.3, by explicitly limiting the adversary’s capabilities
in a composable framework, we obtain a security definition
that is equivalent to weak security criteria that have appeared
in the literature, e.g., accessible information.

VII. SECURE CLASSICAL MESSAGE TRANSMISSION

One of the main tasks in cryptography is to securely
transmit a confidential message from one player to another.
Securely transmitting the message means that the adversary
does not learn anything about the message (except unavoid-
able leaks such as the message length) and cannot modify
the message either. We also want to achieve this with
minimal assumptions on the available resources. In Fig. 3
we depict the steps necessary to construct such a secure
channel from nothing but insecure channels and an initial
short key. The aim of this section is to explain this
construction in detail.
In Sec. VII.A we first show how to construct an authentic

channel that is used by both QKD and the OTP. In Secs. VII.B
and VII.C we then revisit the notions of a secure key and
secure channel resources introduced earlier and discuss a
modification used here.38 In Sec. VII.D we put the individual
parts of the construction together and show how this gives a
construction of a secure channel from a short secret key and
insecure communication channels only.

A. Authentication

The use of an authentic channel is essential for many
cryptographic protocols, including quantum key distribution,
as we saw earlier. It allows the players Alice and Bob to be
sure that they are communicating with each other and not with
an adversary Eve. The authentic channel we used in Sec. III
(such as Fig. 7) is, however, idealized: it guarantees that the
recipient always receives the message that was sent. In a
realistic situation, one has to assume that an adversary may
jumble or cut the communication and prevent messages from
arriving. What still can be constructed is a channel that
guarantees that Bob does not receive a corrupted message.
He receives either the correct message sent by Alice or an
error that indicates an attempt by Eve to change the message.
This can be modeled by giving Eve’s idealized interface two
controls: the first provides her with Alice’s message, and the
second allows her to input 1 bit that specifies whether Alice’s

FIG. 24. The real-world setting for a MDI-QKD protocol. The
only quantum operations performed by πMDI QKD

A and πMDI QKD
B

are the generation of quantum states. The communication
resources C send quantum systems from Alice or Bob to Eve,
and classical bits from Eve to Alice and Bob.

38We take into account the possibility that Eve may prevent the
honest players from obtaining the key or the transmitted message,
which was ignored earlier for simplicity.
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message should be delivered or Bob gets an error instead. We
illustrate this in Fig. 25.
As later explained, such an authentic channel can be

constructed from a completely insecure channel together
with a shared secret key. Although this may be done using a
nonuniform secret key [see Renner and Wolf (2003), Dodis
and Wichs (2009), and Aggarwal et al. (2019)], we review
here a simpler construction, originally proposed by Wegman
and Carter (1981), that still needs only a short key, but that,
however, has to be close to uniform: one computes a hash
hkðxÞ of the message x and sends the string xkhkðxÞ to Bob,
where k is the short shared secret key and fhkgk∈K is a
family of strongly universal hash functions.39 Alice’s part of
the authentication protocol πauthA thus gets as input a key k
from an ideal key resource, as well as a message x from
Alice, and sends xkhkðxÞ over the insecure channel. When
Bob receives a string x0ky0, he needs to check whether
y0 ¼ hkðx0Þ. His part of the protocol hence gets as input the
key k from the ideal key resource, the message x0ky0
delivered by the channel, and output x0 if y0 ¼ hkðx0Þ or,
otherwise, a symbol ⊥ to indicate an error. This is depicted
in Fig. 26.
To capture completeness of this protocol, one considers

instead of the insecure channel C as in Fig. 26 a noiseless
channel with a blank interface for Eve40 [as illustrated in
Fig. 1(a)], and the constructed channel is also a perfect
noiseless channel instead of the channel from Fig. 25.
These real and ideal systems are indistinguishable, as they
are both identity channels that faithfully transmit x from Alice
to Bob. This proves completeness, and we can therefore focus
in the following on the other part, namely, proving the
soundness of the protocol.
In the ideal setting, the authentic channel (Fig. 25) has the

same interface on Alice’s and Bob’s sides as the real setting
(Fig. 26): Alice can input a message, and Bob receives either a
message or an error. However, Eve’s interface looks quite
different: in the real setting she can modify the transmission
on the insecure channel, whereas in the ideal setting the
adversarial interface provides only controls to read the

message and interrupt the transmission. From Definition 1
we know that an authentication protocol constructs the
authentic channel if there is a simulator σauthE that can recreate
the real interface while accessing only the idealized one. A
choice for the simulator is to first generate its own key k
and output xkhkðxÞ. Upon receiving x0ky0, it then checks if
x0ky0 ¼ xkhkðxÞ and presses the switch on the authentic
channel to output an error if this does not hold. We illustrate
this in Fig. 27.
In this case, an authentication protocol is ε secure if Figs. 26

and 27 are ε close, i.e.,

πauthA πauthB ðKkCÞ≈ε AσauthE :

Original works defining authentication (Wegman and
Carter, 1981; Simmons, 1985, 1988; Stinson, 1990, 1994)
did not use such a composable security definition. Instead,
they considered two kinds of attacks. In the first, the adversary
obtains a pairing of a valid message and an authentication tag
and tries to find a pairing of a different message and
corresponding valid authentication tag: this is called a sub-
stitution attack. In the second, the adversary directly tries to
find a pair of message and corresponding valid authentication
tag: this is called an impersonation attack. It was then shown
that if the family of hash functions used are ε-almost strongly

FIG. 25. An authentic channel resource. The message input at
Alice’s interface is visible to Eve, who gets to decide whether
Bob receives it or not. But this guarantees that if Bob does receive
a message, it corresponds to the one sent by Alice.

FIG. 26. The real authentication system consists of the authen-
tication protocol ðπauthA ; πauthB Þ as well as the secret key and
insecure channel resources K and C. As in previous illustrations,
Alice has access to the left interface, Bob has access to the right
interface, and Eve has access to the lower interface.

FIG. 27. The ideal authentication system (Alice has access to the
left interface, Bob has access to the right interface, and Eve has
access to the lower interface) consists of the ideal authentication
resource and a simulator σauthE .

39See the formal definition later in this work in footnote 41.
40Unlike in the case of QKD, we do not consider noisy channels

between Alice and Bob, as such noise could be removed easily by
encoding the communication with an appropriate classical error
correcting code. Therefore, the assumed and constructed channels
faithfully deliver the message from Alice to Bob.
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two universal,41 the probability of either of these attacks being
successful is bounded by ε. A composable security proof for
these schemes was given by Portmann (2014), who showed
that Eq. (36) is satisfied, again under the condition that the
family of hash functions used are ε-almost strongly two
universal.42

Note that a distinguisher interacting with either the real or
the ideal system has a choice between providing messages in
two different orders. It can first provide Alice with a message,
receive the ciphertext43 at Eve’s interface, then input a
modified ciphertext, and finally learn whether the ciphertext
is accepted or not at Bob’s interface. Or it can first input a
forged ciphertext at Eve’s interface, then learn if it is accepted,
and finally provide Alice with a message and obtain the
corresponding ciphertext at Eve’s interface. These two orders
of messages roughly correspond to the substitution and
impersonation attacks.
The secret key resource used thus far in this section assumes

that both players always get a copy of the key. However, in
Sec. III we modeled a secret key resource with a switch at
Eve’s interface, giving her the possibility to prevent the
players from getting the key. If such a switch is present
and Eve flips it, the honest players will not be able to run the
authentication protocol at all. This does not, however, change
the ideal resource constructed, because not running the
protocol or running the protocol but with Eve preventing
the message from being delivered are essentially equivalent.
However, the proof in this case requires a different simulator,
one that receives the bit deciding whether the players get a key
or not and then acts accordingly.
In Sec. VII.B an even weaker secret key resource is

considered, one that allows Eve to decide if only one of
the two players gets a secret key and not the other; this is
drawn in Fig. 28. With reasoning similar to that used
previously, one can see that this does not change the outcome

of the protocol either: it still constructs the authentic channel
from Fig. 25.

B. Quantum key distribution

In Sec. III we analyzed QKD protocols that use an
insecure quantum channel and an authentic channel with
the guarantee that the message is always delivered, as
indicated in Fig. 7. The motivation behind this standard
choice was that if the message is not delivered, then the
players abort and the scheme is trivially secure. In other
words, the nontrivial case that needs to be analyzed to prove
that a QKD scheme constructs the ideal key resource is the
one in which the adversary does not use her switch and
allows the messages to be delivered on the authentic
channel.
Nonetheless, if we do replace the authentic channel with

the one that can actually be constructed from Fig. 25, then
we also have to weaken the ideal key resource that is
constructed. If the players get an error message from the
authentic channel instead of the intended message, they will
simply abort the protocol and not produce a key. In the
version from Sec. III, Eve already has the power to prevent
the players from getting a secret key. The difference is
that now Eve can let one player get the secret key but not
the other, such as by jumbling the last message between
the players. The resulting ideal key resource is drawn
in Fig. 28.
The analysis carried out in Sec. III goes through with only

minor changes with the weaker authentic channel and secret
key resources since the only differences are the abort con-
ditions, which now may additionally occur because of failed
authentication. In particular, the reduction from the construc-
tive statement [Eq. (8)] to the trace distance criterion
[Eq. (14)] is unaffected by these changes of resources.
Note that if Eve prevents one player from getting the key

but not the other, the players are generally unaware of this fact
and may end up with mismatching key lengths.44 This is a
problem that is not specific to QKD but rather happens in
general with any key distribution scheme (Wolf, 1999).

C. One-time pad

In Sec. II.C we analyzed the OTP and showed that it
constructs a secure channel given a secret key and an authentic
channel. But again, we used an authentic channel that
guarantees that the message is transmitted, as well as a secret
key that is guaranteed to be delivered to the players. It is easy,
however, to convince oneself that these extra assumptions
about the resources do not affect the security of the protocol,
since if the players do not get a key or a message they simply
abort the protocol, in which case security holds trivially.
Therefore, if we plug in the authentic channel from Fig. 25 and

FIG. 28. A secret key resource allowing Eve to control who gets
the key: the2 bits Eve inputs control whether Alice or Bob obtain,
respectively, a key or an error message from the resource.

41A family of functions fhk∶X → Ygk is said to be ε-almost
strongly two universal if any two different messages are almost
uniformly mapped to all pairs of tags, i.e., ∀ x1; x2; y1; y2; x1 ≠
x2;Prk½hkðx1Þ ¼ y1 and hkðx2Þ ¼ y2� ≤ ε=jYj (Stinson, 1994). The
family of functions is said to be strongly two universal if ε ¼ 1=jYj.

42Portmann (2014) additionally showed that part of the secret key
k can be recycled since only a number of bits corresponding to the
length of the hash hkðxÞ are leaked. This is discussed in Sec. VIII.B.

43By ciphertext we denote the pairing of the message and
authentication tag generated by the sender.

44The protocol may be designed in such a way that the round in
which Eve needs to jumble the communication so that one player
accepts the key but not the other is unknown to her. Thus, her
probability of success will be Oð1=nÞ, where n is the number of
rounds of communication.
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the secret key resource from Fig. 28, we merely need to
weaken the secure channel that is constructed so that it may
abort as well. We can model this by adding a switch at Eve’s
interface that, when flipped, delivers an error message at
Bob’s interface instead of Alice’s message, as depicted in
Fig. 29. This is similar to the authentic channel resource from
Fig. 25, except that Eve receives only the length of the
message rather than the message itself.
The analysis of the OTP with these altered resources is

identical to the one in Sec. II.C since the only difference is that
both the real and ideal systems might abort or output an error
at Bob’s interface instead of a message if Eve operates the
corresponding switch at her interface.

D. Combining the subprotocols

LetA denote an authentic channel resource, as illustrated in
Fig. 25, and letKl denote a secret key resource of length l, as
drawn in Fig. 28. Furthermore, let C be an insecure classical,
and let Q be an insecure quantum channel. Finally, we denote
by S a secure classical channel, as depicted in Fig. 29. If we
summarize the results presented thus far, we see that an
authentication protocol constructs an authentic channel from
an insecure channel and a secret key, i.e.,

KakC ⟶
πauthAB ;εauth

A; ð36Þ

a QKD protocol constructs a shared secret key resource from
an authentic channel and an insecure quantum channel, i.e.,

AkQ ⟶
πQKDAB ;εQKD

Kn;

and a OTP constructs a secure channel from an authentic
channel and a secret key, i.e.,

AkKm ⟶
πOTPAB ;0

S:

Using also the fact that a key can be split, i.e.,

Kaþb ⟶
id;0

KakKb;

denoting by aQKD the length of the key used by the
authentication subroutines for QKD45 and by aOTP the length
of the key used to authenticate the message for constructing
the secure channel, we obtain

CkCkQkKaQKD ⟶
πAB;ε SkKn−m−aOTP ;

where πAB is the composition of all the protocols and ε ¼
εQKD þ εQKDauth þ εOTPauth is the sum of the errors of the individual
protocols. We depict this in Fig. 30, where for simplicity we
have drawn only one round of authentication as a subroutine
of QKD.

VIII. OTHER CRYPTOGRAPHIC TASKS

In our description thus far we have adopted the composable
view and regarded cryptographic protocols as constructions;
i.e., protocols construct some resources given other re-
sources.46 Cryptographic protocols proposed in the literature
have not always been defined in this way, but instead are
specified in terms of particular securitylike properties, e.g.,
that an adversary is unable to guess the content of an
encrypted message. Sometimes these properties can be
rephrased as an ideal system within the real-world ideal-
world paradigm, as discussed in Sec. III.C.3. In this section we
review some of the major results in quantum cryptography
from this perspective; i.e., we present them as constructive
statements, defining the resources constructed and used by the
protocols. For a broader review of quantum cryptography, see
the recent survey by Broadbent and Schaffner (2016).

A. Secure quantum message transmission

From a theory of resources perspective, the task of securely
transmitting a quantum message from Alice to Bob is nearly
identical to the corresponding classical task, which is analyzed
in Sec. VII. Here too we require the players to share a secret
key resource and an insecure channel, and the goal is to
construct a secure channel, with the only difference being that
the insecure and secure channels are both quantum channels.
We already encountered insecure quantum channels in
Sec. III, where they were used for QKD. A secure quantum
channel is modeled analogously to a secure classical channel
as drawn in Fig. 29, except that the messages sent are
quantum. We depict this in Fig. 31.
The first protocols that construct such a secure quantum

channel from a shared secret key and an insecure channel were
proposed by Barnum et al. (2002). They follow the same
pattern as classical message transmission: one first encrypts
the quantum message with a quantum OTP, then encodes it in
a larger space so as to detect any errors that may be introduced
by an adversary. However, contrary to the case of classical

FIG. 29. A secure channel that allows Eve to learn the length of
the message and prevent Bob from receiving it. When Alice
inputs a message x at her interface, information about the length
of the message is given to Eve, who can additionally press a
switch that either delivers Alice’s message to Bob or instead
provides him with an error message ⊥.

45A QKD protocol usually authenticates many messages, and they
may be going in both directions between Alice and Bob. For
simplicity, we write this here as just one round of authentication,
which uses a key of length aQKD and has error εQKDauth .

46See also footnote 9 for other uses of resource theories in
quantum mechanics.
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messages, there is no known way to view these two steps as
two distinctive constructive statements, i.e., as a construction
of an authentic channel from an insecure channel and a second
construction of a secure channel from an authentic channel.
This means that the analysis has to include both aspects at the
same time.
In Sec. VIII.A.1 we explain this construction and in

Sec. VIII.A.2 we review additional work on the topic. At
the end of this section (in Sec. VIII.F) we revisit this topic
from a computational perspective.

1. Generic protocol

The classical OTP introduced in Sec. II.C can be seen as
randomly flipping each bit of the message. The quantum OTP
(Ambainis et al., 2000; Boykin and Roychowdhury, 2003)

follows the same principle: one flips the bits and phases of the
message at random. For x; z ∈ f0; 1gn, let Xx and Zz denote
operators on ðC2Þ⊗n that perform bit and phase flips in
positions indicated by the strings x and z, respectively. The
quantumOTP consists of choosing x and z uniformly at random
and applying the corresponding operation to the message. For
any state ρMR, where M is a register of size 2n, we thus have

1

22n

X
x;z

ZzXxρMRXxZz ¼ τM ⊗ ρR;

where τM is the fully mixed state and ρR is the reduced density
operator of ρMR. We call the operatorsZzXx defined in this way
Pauli operators.47

The second ingredient needed to construct a secure quan-
tum channel is an error correcting code that is going to be used
to detect errors in the transmission, i.e., tampering by an
adversary. Generally, an error correcting code may be seen as
a map from a message space HM to a larger physical space
HC. For simplicity, we model the encoding for a code Ck as
first appending a state j0i ∈ HT to the message ρM, where
HC ¼ HM ⊗ HT , followed by applying a unitary Uk to the
resulting state, e.g., σC ¼ UkðρM ⊗ j0ih0jÞU†

k.
To test to see whether an error occurred, one decodes the

received state σ̃C by applying the inverse operation U†
k and

measures the T register in the computational basis. If the result

FIG. 30. Composition of QKD, authentication, and OTP protocols. For simplicity, we have drawn only one round of authentication as a
subroutine of QKD as πauthAB ðKaQKDkCÞ (red solid line). The QKD protocol πQKDAB (violet dashed line) constructs a shared key resource that
produces the long key ðk1; k2; k3Þ. The second authentication protocol πauthAB (blue densely dotted line) then uses part of this key to
construct another authentic channel, and the OTP protocol πOTPAB (green dash-dotted line) uses another part of this key to encrypt and
decrypt the message sent on the channel.

FIG. 31. A secure quantum channel that allows Eve to learn the
length of the quantum message (informally denoted as jρj) and
prevent Bob from receiving it. When Alice inputs a message ρ at
her interface, information about the length of the message is given
to Eve, who can additionally flip a switch that either delivers
Alice’s message to Bob or provides him with an error message⊥.

47This notation simplifies the presentation here but deviates from
the more commonly used definition of the Pauli operators as iz·xZzXx,
where z · x ¼ P

j zjxj and i is the imaginary unit.
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is not 0, this is evidence of noise. We say that a code detects an
error V if, after decoding a message to which this error was
applied (i.e., σ̃C ¼ VσCV†), one always gets a measurement
outcome other than 0. Furthermore, we call an error trivial if it
never affects the code word, i.e., for any ρM,

U†
kVUkðρM ⊗ j0ih0jÞU†

kV†Uk ¼ ρM ⊗ j0ih0j:

For an error V to modify a message and yet not be caught, it
must be nontrivial and not detected by the code used. For the
purpose of constructing a secure channel according to the
method of Barnum et al. (2002), it is sufficient to detect all
Pauli errors. Barnum et al. (2002) defined a set of codes that
they called purity testing codes. They guarantee that with high
probability over the choice of code all Pauli errors are either
caught or trivial. More precisely, a set fCkgk of codes forms a
family of ε-purity testing codes if, for any Pauli error XxZz, the
probability over a uniformly random choice of k that this error
is neither caught nor trivial is less than ε.
The protocol for constructing a secure channel then works

as follows. The sender first encrypts the message with a
quantum OTP, i.e., a Pauli operator ZzXx chosen uniformly
at random according to the secret key. A state jsi is then
appended to the message, where s is also chosen uniformly at
random according to the key. Finally, the resulting state is
encoded with a unitary Uk corresponding to the encoding
operation of an element of a purity testing code family fCkgk,
where again k is chosen uniformly at random according to
the secret key. Decryption works in the following way: the
receiver applies the inverse operator U†

k and then measures
the T register. If the outcome is not s, the message was
jumbled and the player outputs an error symbol. Otherwise,
the receiver decrypts the message with the operator ZzXx.

2. Concrete schemes

Barnum et al. (2002) introduced the general family of
protocols described in Sec. VIII.A.1, and also provided a
concrete construction of a purity testing code family that has
good parameters. Following this seminal work, a variety of
further protocols for authentication of quantum messages based
on different codes have been proposed in the literature.
Authentication using the signed polynomial code (Ben-Or
et al., 2006; Aharonov, Ben-Or, and Eban, 2010), the trap
code (Broadbent, Gutoski, and Stebila, 2013; Broadbent and
Wainewright, 2016), the Clifford code (Aharonov, Ben-Or, and
Eban, 2010; Dupuis, Nielsen, and Salvail, 2012; Broadbent and
Wainewright, 2016) [which is a unitary 3-design (Webb, 2016;
Zhu, 2017)], a unitary 8-design (Garg, Yuen, and Zhandry,
2017), and a unitary 2-design48 (Alagic and Majenz, 2017;
Portmann, 2017a) are all instances of the family from Barnum
et al. (2002), with alternative purity testing codes.49 To the best

of our knowledge, only the Auth-QFT-Auth scheme from Garg,
Yuen, and Zhandry (2017) is not known to follow the model of
Barnum et al. (2002).
Although most of these works provide some kind of

security proof for the protocol, only two papers consider a
composable security definition, namely, those of Hayden,
Leung, and Mayers (2011) and Portmann (2017a). Both works
show that the family of protocols from Barnum et al. (2002)
construct a secure quantum channel from a shared secret key
and an insecure quantum channel. Note, however, that
Hayden, Leung, and Mayers (2011) considered a restricted
class of distinguishers [those that perform a substitution attack
(see Sec. VII.A)] and Portmann (2017a) analyzed only a
subset of this family, for which the purity testing code family
detects all (rather than only the nontrivial) errors with high
probability.50 In fact, both papers prove that one may addi-
tionally recycle part of the key, as we discuss further in the
following section.

B. Key reuse in classical and quantum message transmission

As mentioned in Secs. VII.A and VIII.A.2, part of the key
used in the constructions of secure channels may be recycled;
i.e., at the end of the protocol it can be added back to a pool of
secret key bits. For example, in the case of the classical
message authentication analyzed in Sec. VII.A, the sender
appends a tag y ¼ hkðxÞ to the message x. The value of the tag
y depends on the shared secret key k, and every bit of the tag
leaks (at most) a bit of the secret key to the adversary. But the
key is longer than the tag, so the bits that are not leaked may
be reused. It is vital, however, that they not be recycled too
soon. If the sender reuses part of the key before the receiver
obtains the authenticated message, the adversary may learn
these bits and use this information to successfully change the
message and authentication tag.
To recycle key bits in classical or quantum message

transmission, the real system is changed as follows. The
players first need an extra resource, a 1-bit backward authentic
channel, allowing the receiver to tell the sender whether the
message was successfully received. Once this confirmation
is sent, the receiver may recycle part of the key; i.e., it is
output by the corresponding converter. And once this
confirmation is received by the sender, she also recycles
the same part of the key. The ideal resource constructed in
this way corresponds to the parallel composition of a secure
(or authentic) channel and a secret key resource (drawn in
Fig. 32). As previously, the adversary may control whether
the message is delivered on the secure channel. And since
the amount of the key that is recycled may depend on the
adversary’s behavior as well; namely, by allowing or
preventing the message from being delivered, we model
the resource as being equipped with a switch to control how
much of the key the players get.
In the case of authentication of classical messages, Wegman

and Carter (1981) proposed that part of the key can be safely
recycled. Here, if the two-universal hash function has the
special form hk1;k2ðxÞ ¼ fk1ðxÞ ⊕ k2, where k2 is a bit string

48Because any unitary t-design for t ≥ 2 is a unitary 2-design, it
follows that any t-design constructs a secure quantum channel.

49Most of these works consider a construction where the message
is first encoded with a purity testing code and then encrypted. But, as
shown in Portmann (2017a), this is equivalent to the original scheme
of Barnum et al. (2002), which reverses the order of these two
operations. 50One refers to this as a strong purity testing code.
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of the same length as the tag, then k1 may be recycled, but a
new k2 is needed for every message. It was proven by
Portmann (2014) that this scheme is composable and con-
structs the previously described ideal resource.
In the case of quantum messages, roughly the same holds in

the case where the message fails the authentication, The
number of bits of key leaked depends on the length of the
ciphertext, and the rest can be recycled.51 But in the case
where the message is accepted, the players can recycle more of
the key. This holds because of the no-cloning principle of
quantum mechanics: if the receiver holds the correct cipher-
text, then the adversary cannot have a copy of it and thus does
not hold any information about the key either. It was first
shown by Hayden, Leung, and Mayers (2011) that nearly all
of the key could be recycled in the case in which the message
is accepted. Portmann (2017a) then showed that every bit of
the key can indeed be recycled. This is not known to hold
for all schemes that construct a secure quantum channel, but
so far only for those that use strong purity testing codes
(Portmann, 2017a).

C. Delegated quantum computation

The setting in which a client, typically with bounded
computational resources, asks a server to perform some
computation for her is called delegated computation. The
client might not want the server to learn what computation it is
performing for her and might want to run a protocol that hides
the underlying computation; this property is called blindness
in the literature. Furthermore, the client might want to verify
that the server correctly performed the computation she
required; this is known as verifiability.
The task of delegating a quantum computation was first

studied by Childs (2005), with the goal of achieving
blindness. In follow-up works, the requirements on the client’s
information-processing abilities were reduced. Broadbent,
Fitzsimons, and Kashefi (2009) proposed the first protocol
for blind delegated quantum computation that does not require
the client to have quantum memory, but instead only the

ability to prepare different pure states. This result was
extended by Fitzsimons and Kashefi (2017) to include
verifiability as well.
DQC was formalized as a constructive statement by Dunjko

et al. (2014). They modeled a DQC protocol that achieves
both blindness and verifiability as constructing a resource
Sblind
verif that works as follows. It first receives a description of

the required computation as a state ψ from the client. Every
computation necessarily leaks some information to the server,
such as an upper bound on the computation size, so the
resource computes this leaked information l and outputs it at
the server’s interface. The server can then decide if it will
cheat (in which case the client will, however, get an error
message) or output the correct result of the computation,
which is evaluated by applying an operator U to the input. This
is depicted in Fig. 33. A DQC protocol constructs such a
resource from nothing more than a shared communication
channel between client and server.
A weaker resource that provides only blindness and not

verifiability can be obtained by increasing the power of the
server at its interface of the resource. Instead of inputting a bit
that decides whether the client gets the correct outcome, the
server can decide what output the client gets, but still receives
only the leaked information l (Dunjko et al., 2014).
Dunjko et al. (2014) showed that the protocols from

Broadbent, Fitzsimons, and Kashefi (2009) and Fitzsimons
and Kashefi (2017) satisfy the corresponding constructive
definitions. These protocols still require the client to prepare a
few different single qubit quantum states and send them to the
server. To better analyze this requirement, Dunjko and Kashefi
(2016) decomposed the construction of a DQC resource into
two steps. They first consider a resource that provides the
server with the random states that it needs (and the client with
a description of which state was given to the server); then the
DQC protocol constructs the DQC resource given this state
preparation resource. This decomposition then allowed
Gheorghiu and Vidick (2019) to design a protocol that
constructs the required state preparation resource for an
entirely classical client: this was achieved by sacrificing
information-theoretic security for computational security.
Composing this with a DQC protocol, one gets DQC for
an entirely classical client, albeit with computational security.
This is believed not to be possible with information-theoretic
security (Aaronson et al., 2019). We note, however, that
Gheorghiu and Vidick (2019) made a nonstandard assumption
about available resources, without which such a result does
not seem possible (Badertscher et al., 2020).

FIG. 32. The ideal system for a secure channel with key
recycling. It consists of a secure channel S and key resource
K. The adversary controls the length of the recycled key (through
her input to K), as well as whether the receiver obtains the
message (through her input to S).

FIG. 33. Ideal DQC resource. The client has access to the left
interface, and the server has access to the right interface. The
server obtains some information l about the input and can decide
whether the client gets the correct outcome or an error by
inputting a bit c.

51If the ciphertext is n qubits long, about 2n bits of key are lost;
see Portmann (2017a) for the exact parameters.
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It is instructive to compare this to early definitions of
blindness, such as those from Broadbent, Fitzsimons, and
Kashefi (2009) and Fitzsimons and Kashefi (2017). In those
definitions the requirement is that the server learns nothing
about the computation except for the allowed leaked infor-
mation l. Roughly speaking, this means that the state ρψ

l
held

by the server at the end of the protocol, where ψl is an input
that leaks information l, must be such that

ρψ
l ≈ ρl. ð37Þ

In other words, it depends only on l, not on any other part of
the input. If we compare this to the constructive definition of
Dunjko et al. (2014), in which the distinguisher has access to
both the server’s interface and the client’s interface of the
resources, Eq. (37) corresponds to the special case where
maximize not over all distinguishers, but rather over only
those that ignore the output received by the client. Following
Sec. III.C.3 one may express this as a restriction on the
resource constructed instead of a restriction on the distin-
guisher. Requiring a DQC protocol to satisfy Eq. (37) is
mathematically equivalent to requiring it to construct an ideal
resource that does not provide the client with the result of the
computation.

D. Multiparty computation

In this section we consider a setting where multiple
mutually distrustful parties wish to evaluate a possibly
randomized function to which each of them provides an
input, or they wish to jointly evaluate a CPTP map on shared
quantum inputs. They, however, do not want the other parties
to learn anything about their input other than what can be
learned from the output. Furthermore, they also want to
guarantee that if they get an output, then this is the correct
output. An example is a function that outputs which player i
has the largest input xi; e.g., the players want to know who
earns more without revealing their salary to the others.
Another example is generating a random coin flip, in which
case no input is required. Generally speaking, multiparty
computation corresponds to constructing an ideal resource
that first takes the inputs from all parties and then provides
them with the correct output.

1. Bit commitment

A bit commitment resource is a system in a two-party
setting that forces a player (say, Alice) to commit to a value
without revealing this value to the other player (say, Bob). At a
later point, the commitment is “opened” so that Bob may
know which value Alice committed to. More precisely, Alice
sends a bit b to the resource, and Bob is notified that Alice is
committed to a value. Alice may then send an open command
to the resource, at which point b is delivered to Bob. In the
classical setting, such a resource cannot be constructed from
communication channels alone (Canetti and Fischlin, 2001;
Maurer and Renner, 2011), but extra resources such as a
common reference string (a random string shared by all
parties) are needed (Canetti and Fischlin, 2001).

The argument of Maurer and Renner (2011) was extended
by Vilasini, Portmann, and Rio (2019) to prove that even if the
players use quantum protocols and even if the adversary is
computationally bounded, has only bounded or noisy storage,
and is restricted by relativistic constraints,52 it is still impos-
sible to construct a bit commitment resource without further
setup assumptions than communication channels.
It has been suggested that one could construct bit commit-

ment if one takes relativity into account, i.e., that messages
cannot be sent faster than the speed of light (Kent, 1999, 2012;
Kaniewski et al., 2013). However, these protocols do not
construct a bit commitment resource: Appendix A of
Kaniewski (2015) []53 proved that if one composes these
relativistic bit commitment protocols with the protocol from
Unruh (2010) to construct oblivious transfer from bit commit-
ment,54 then the result is not a secure oblivious transfer
protocol. It has now been proven that taking relativity into
account is not sufficient to achieve bit commitment (Vilasini,
Portmann, and Rio, 2019), which we discuss in more detail in
Sec. VIII.E.

2. Coin flipping

Another well studied resource is that of coin flipping, in
which a random coin is flipped and both players are provided
with the result. The impossibility proof for bit commitment
of Maurer and Renner (2011) can be adapted to show that
coin flipping and biased coin flipping (where a player is
allowed to partially bias the flip) are also impossible without
further assumptions. Note that this proof is valid independ-
ently of whether one considers classical or quantum strategies.
A direct proof for the impossibility of coin flipping in the
quantum and relativistic setting (even in the case of computa-
tional- and memory-bounded adversaries) was given by
Vilasini, Portmann, and Rio (2019).
Coin expansion is a weaker task in which one constructs a

resource that produces a sequence of coin flips from a weaker
resource that produces fewer coin flips. This has been shown
to be impossible for classical players with information
security (Hofheinz, Müller-Quade, and Unruh, 2006; Seiler
and Maurer, 2016) but is possible with computational security
(Hofheinz, Müller-Quade, and Unruh, 2006) and remains
open in the quantum case.

3. Two-party function evaluation and oblivious transfer

It was shown by Ishai, Prabhakaran, and Sahai (2008) that a
resource that evaluates any classical probabilistic polynomial-
time function with two inputs can be constructed given an
oblivious transfer resource, i.e., a system that receives two

52This means that the adversary cannot send information between
two points faster than it takes light to travel between the two points;
see Sec. VIII.E.

53The proof in Appendix A of Kaniewski (2015) used the same
attack as Brassard et al. (1998), who showed that some noncompos-
able definitions of bit commitment appearing in the classical
literature cannot be used to force a quantum player to commit to
a measurement outcome.

54Oblivious transfer and the construction from Unruh (2010) are
discussed in Sec. VIII.D.3.
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strings s0 and s1 from one player Alice and a bit c from the
second player Bob and sends Bob sc.
In the quantum setting, it is possible to construct an

oblivious transfer resource from a bit commitment resource.
The construction of oblivious transfer from bit commitment
was first proposed by Crépeau and Kilian (1988), was adapted
to noisy channels by Bennett, Brassard et al. (1992), and was
proven secure by Unruh (2010). When this result is combined
with that of Ishai, Prabhakaran, and Sahai (2008), it follows
that bit commitment is universal for classical two-party
computation (Unruh, 2010).
It is not possible, however, to construct an oblivious transfer

resource from nothing but communication channels, even if
the adversary is computationally bounded, has only bounded
or noisy storage, and is restricted by relativistic constraints
(Laneve and Rio, 2021).

4. Everlasting security

Unruh (2013) studied multiparty computation in the
setting of everlasting security. This means that one relies
upon a computational assumption, but this assumption has to
be broken during the execution of the protocol for an
adversary to break the scheme. If this is not the case, then
even a computationally unbounded adversary cannot achieve
a significant advantage after the protocol has terminated.
This is generally not satisfied by computational encryption
schemes, because an adversary could obtain a ciphertext and
wait for an advancement in algorithms to break the scheme
and obtain the message. But if a computational authentica-
tion scheme is executed, then the adversary must be able to
perform the hard computation before the message is received
and authenticated.
Composition in such a setting is not straightforward, and

Unruh (2013) provided the necessary definition that a scheme
must satisfy to be composable. He showed how to perform
authentication given a signature card that when composed
with QKD and secure encryption as in Sec. VII, results in a
secure channel. He also provided a way to perform bit
commitment based on signature cards. Composing this with
the protocols from Sec. VIII.D.3 allows one to perform any
multiparty computation with everlasting security.

5. Multiparty quantum computation

The tasks studied thus far in this section are concerned with
multiparty evaluation of a classical function [so-called multi-
party computation (MPC)], but while using quantum com-
munication and computation to possibly achieve what cannot
be done classically. The problem of multiparty quantum
computation (MPQC) generalizes this to the case in which
the inputs and outputs are quantum (Crépeau, Gottesman,
and Smith, 2002; Ben-Or et al., 2006; Dupuis, Nielsen, and
Salvail, 2012; Dulek et al., 2020; Lipinska, Ribeiro, and
Wehner, 2020; Alon et al., 2021). The relation between inputs
and outputs is then most generally described by a CPTP. It is
standard to use a composable framework for analyzing
classical MPC (Cramer, Damgård, and Nielsen, 2015). But
to the best of our knowledge the only work on MPQC that
mentions that the results hold in a composable framework is
that of Ben-Or et al. (2006), and they provided only a proof

sketch. All other works assumed that the dishonest party
performs their attack in an isolated way, interacting with the
environment (the distinguisher) only before the protocol starts
and after the protocol ends. This is the so-called stand-alone
security model, and protocols proven secure in such a model
do not necessarily compose concurrently with other protocols.
In particular, they might not be secure if two instances of the
same protocol are run in parallel. Nonetheless, for MPQC we
do not know of any attacks on protocols that have been run
concurrently, and it is plausible that exactly the same result
would go through in a composable security framework.
The ideal resource that one wants to construct in MPQC

receives the inputs from all parties, performs the quantum
computation, and then provides each player with their part of
the output. Crépeau, Gottesman, and Smith (2002), Ben-Or
et al. (2006), and Lipinska, Ribeiro, and Wehner (2020)
considered an ideal resource that is guaranteed to provide the
output to the honest players. Crépeau, Gottesman, and Smith
(2002) first showed that this can be achieved if the fraction
of dishonest parties is t < n=6, where n is the total number
of players. Ben-Or et al. (2006) improved this to t < n=2
cheating parties. Lipinska, Ribeiro, and Wehner (2020) de-
creased the number of qubits and communication complexity
needed to get the same result.
Dupuis, Nielsen, and Salvail (2012), Dulek et al. (2020),

and Alon et al. (2021) defined the ideal resource such that it
first provided the dishonest parties with their share of the
output. They then provided a bit to the ideal resource, which
indicates whether the honest parties should receive their
output or an abort symbol instead. This is called unfairness.
Weakening the ideal resource in this way allows the number of
dishonest parties to be any t < n. Dupuis, Nielsen, and Salvail
(2012) first showed how to do this in the two-party case.
Dulek et al. (2020) extended this to the multiparty setting.
Alon et al. (2021) improved the protocol to identify parties
that abort so that if an abort occurs the faulty party can be
excluded and the others start again without them.
We note that all these protocols assume that classical MPC

is available as a resource,usually for the same number of
dishonest players and the same abort conditions as the
constructed MPQC. Therefore, all these results require the
same setup assumptions as the corresponding classical MPC.
For example, for t < n=3 and guaranteed output, one can
perform classical MPC assuming only pairwise secure chan-
nels between the players (Cramer, Damgård, and Nielsen,
2015). For t < n=2 and guaranteed output, one additionally
needs to broadcast for information-theoretic security, but
pairwise authentic channels are sufficient for computational
security (Cramer, Damgård, and Nielsen, 2015). If we drop
fairness, then in the case of computational security one gets
unfair security for any t < n if one assumes oblivious transfer
(Goldreich, Micali, and Wigderson, 1987) or a common
reference string (Canetti et al., 2002), and information-
theoretic security if one assumes common shared randomness
(Ishai, Ostrovsky, and Zikas, 2014).

6. One-time programs

A special class of multiparty functionalities that have
been studied in more detail are nonreactive, sender-oblivious
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functions; i.e., one player is labeled “sender” and another
“receiver,” and only the receiver obtains the output of the
function. This special structure allows for noninteractive
protocols to construct a resource that computes such a
function: communication goes only from the sender to the
receiver. The receiver can use the information obtained to
evaluate the function on one input. But, by definition of the
ideal resource, he may not repeat this on a second input. The
corresponding resources are sometimes called one-time pro-
grams. Goyal et al. (2010) gave a construction for one-time
programs that starts, however, with a resource that is similar to
oblivious transfer.55 This has been called one-time memory or
a hardware token (Goyal et al., 2010) since it could be
implemented given hardware assumptions, such as a one-time
memory that contains the two strings s0 and s1, but self-
destructs after producing an output.
These results were generalized to the quantum setting by

Broadbent, Gutoski, and Stebila (2013), who showed that one
can construct quantum one-time programs given access to the
same one-time memory resources as for classical one-time
programs. More precisely, Broadbent, Gutoski, and Stebila
(2013) showed that any completely positive, trace-preserving
map Φ∶HA ⊗ HB → HC can be evaluated with a noninter-
active protocol by two distrustful parties holding the inputs of
registers A and B, respectively, provided that only one player
is expected to receive the output in register C.

E. Relativistic cryptography

Thus far we have predominantly discussed protocols whose
security is based on the laws of quantum theory. One may,
however, further exploit physical laws, such as those of special
relativity. These imply an upper bound on the velocity by
which information can spread: the velocity of light. The
combination of quantum information theory and relativity,
apart from its relevance to fundamental questions (Peres
and Terno, 2004), opens the possibility of achieving certain
cryptographic tasks that are provably impossible based on
quantum theory alone.
An example of this is relativistic bit commitment (Kent,

1999), which we mentioned in Sec. VIII.D.1. Another one is
coin flipping. Here the two players Alice and Bob each have a
trusted agent at two locations L1 and L2. At L1, agent A1 is
instructed to provide agent B1 with a random bit a, and at L2

agent B2 provides A2 with a random bit b. The agents then
inform Alice and Bob about these values, who can then output
a ⊕ b as the result of the coin flip. The distance between the
locations L1 and L2 must be chosen large enough to ensure
that, if Bob is cheating, he cannot wait until he learns a and
then choose b depending on that value. Alice cannot cheat
for the same reason. The output a ⊕ b is hence uniformly
random, provided that at least one of the players chooses their
bit uniformly at random.

This protocol does not, however, construct a coin flip
resource, because the parallel execution of two instances of
the protocol does not behave identically to two coin flip
resources in parallel. Suppose that Alice and Bob are running
the protocol as well as Bob and Charlie, who send their agents
to the same locations L1 and L2. At L1, A1 then gives her
random bit a to B1, who in turn gives a copy to C1. And at L2,
C2 gives his bit c to B2, who in turn gives a copy to A2. Alice
and Charlie then end up with exactly the same coin flip a ⊕ c.
But, if we were to run two coin flip resources in parallel, we
would obtain two independent bit flips.
Running the same kind of attack on the relativistic bit

commitment protocols (Kent, 1999, 2012; Kaniewski et al.,
2013), Bob may forward Alice’s commitment to Charlie and
convince Charlie that he is committed to a known bit, whereas
in reality he does not know the commitment, and thus does not
satisfy the requirement of the bit commitment resource. The
same principle was used by Brassard et al. (1998) to prove that
some noncomposable definitions of bit commitment appear-
ing in the classical literature cannot be used to force a quantum
player to commit to a measurement outcome. This technique
was then used in Appendix A of Kaniewski (2015) to prove
that composing the previously mentioned relativistic bit
commitment protocols with the oblivious transfer protocol
of Unruh (2010) is insecure. More precisely, in the attack of
Brassard et al. (1998) and Kaniewski (2015), the committer
does not measure her state as required by the protocol, but
instead runs the protocol in superposition and measures only
the strings that she needs to send to the receiver as part of the
commitment protocol. If she is asked to open the commitment,
she can still perform the required measurement and open
correctly. But if she is not asked to open, she can “undo” this
measurement and recover the original state.
Relativistic bit commitment (and coin flipping) was ana-

lyzed more systematically by Vilasini, Portmann, and Rio
(2019) and Prokop (2020) using the abstract cryptography
framework (Maurer and Renner, 2011). More precisely,
they instantiated the systems model from Maurer and
Renner (2011) with the causal boxes framework (Portmann
et al., 2017), which can model information with positions
in space-time. The resulting framework was used to prove
both impossibility and possibility results for relativistic
cryptography.
Vilasini, Portmann, and Rio (2019) showed that it is

impossible to construct a biased coin flip resource between
two distrustful players without assuming any resources to help
them, even in a relativistic setting. Since such a biased coin
flip can be constructed from bit commitment (Blum, 1983;
Demay and Maurer, 2013), this immediately implies that it is
also impossible to construct a bit commitment resource in a
relativistic setting. The impossibility results also hold against
adversaries that are computationally bounded or have
bounded storage (Vilasini, Portmann, and Rio, 2019).
Prokop (2020) analyzed what extra resources one can assume
to have in the real world to get positive results. The techniques
of Vilasini, Portmann, and Rio (2019) were extended by
Laneve and Rio (2021) to prove that oblivious transfer is also
impossible without setup assumptions other than communi-
cation channels, even if the adversary is computationally
bounded and has bounded or noisy quantum storage.

55Note that oblivious transfer allows the player preparing the two
strings s0 and s1 to learn whether the other player has queried sc.
With only one-way communication of one-time programs, the
resource used cannot allow this, but otherwise it is identical to an
oblivious transfer resource.
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Another task for which special relativity is taken into
account is position verification: a prover wishes to convince
a verifier that she is in a specific location (Chandran et al.,
2009). Protocols based on relativity have been designed
for other tasks as well, such as position verification and
authentication (Buhrman et al., 2014; Unruh, 2014).
Buhrman et al. (2014) showed that such a task is impossible
in the presence of multiple colluding quantum adversaries
that share entanglement. They also considered a model in
which holding shared entanglement is not allowed and
proposed a protocol for position verification in this model.
Similarly, Unruh (2014) proposed a protocol for position
verification in the random oracle model, but with no
restriction on entanglement or memory. But neither of
these results provides a composable security proof, so it
remains open to prove exactly what these protocols achieve;
see also Sec. IX.C.

F. Secure quantum message transmission
with computational security

Most of the quantum cryptography literature is dedicated
to information-theoretic security since the main motivation
of this field of research is to reduce cryptographic security
to physical principles. This means that regardless of the
computational ability of the adversary, the scheme may not
be broken, as it does not leak any information about the
key or message. It is nevertheless sensible to consider
computational security, as certain cryptographic tasks may
only be possible under such restricted security guarantees;
see Alagic et al. (2016) and the references therein. In such a
paradigm, a scheme may not be broken by an adversary that
is computationally bounded, but with unlimited computa-
tional power it may be possible to obtain secret keys or read
private messages.
Composable frameworks such as those given by Pfitzmann

and Waidner (2000, 2001) and Canetti (2001) and the
quantum version by Unruh (2010) all define both computa-
tional and information-theoretic security. However, they
define security only asymptotically. In other words, a protocol
is parametrized by some security parameter n (typically, this
might correspond to the number of signals exchanged between
the parties or length of a tag appended to a message) and
security is proven in the limit as n → ∞. Abstract cryptog-
raphy (Maurer and Renner, 2011), on the other hand, con-
siders finite security; i.e., a security statement is made for
every n (the limit is ignored and may not even be well
defined).
Since any implementation is necessarily finite (the players

fix a value for the security parameter n that they consider to
be sufficient and implement the corresponding protocol) an
asymptotic statement is arguably of limited interest in prac-
tice. For this reason a paradigm known as concrete security
was proposed (Bellare et al., 1997) in which parameters and
reductions are given explicitly instead of being hidden in O
notation and polynomial-time statements. This allows a user to
recover exact bounds for every n instead of being provided
with only the limit values.
Concrete security, however, is still intrinsically asymptotic

since adversaries are required to be polynomial time in n;

protocols, reductions, and simulators need to be efficient in n;
errors have to be negligible in n; and such concepts are all
defined asymptotically. In finite security, one analyzes the
security of a protocol for individual values n ¼ n0. Hence,
concepts such as polynomial time, efficiency, or negligibility
are not necessarily well defined in a finite analysis and cannot
be part of a security definition.
In Sec. VIII.F.1 we explain how to define finite computa-

tional security. This follows the paradigm of AC (Maurer and
Renner, 2011; Maurer, 2012; Maurer and Renner, 2016) and
was used by Maurer, Rüedlinger, and Tackmann (2012),
Coretti, Maurer, and Tackmann (2013), and Banfi et al.
(2019). In Sec. VIII.F.2 we review the results of Banfi et al.
(2019) on computational security of quantum message
transmission (QMT). And in Sec. VIII.F.3 we discuss some
asymptotic game-based security definitions for QMT that
have been proposed in the literature (Alagic, Gagliardoni, and
Majenz, 2018).

1. Defining composable and finite computational security

To adapt the framework described in Sec. II to capture
computational security, one needs to change the pseudometric
used to distinguish systems. We first recall Eqs. (4) and (6)
from Sec. II.F, namely, that the distinguishing advantage for a
distinguisher D is defined as

dDðR;SÞ ≔ j Pr½DðRÞ ¼ 0� − Pr½DðSÞ ¼ 0�j; ð38Þ

and the distinguishing advantage for a class of distinguishers
D is given by

dDðR;SÞ ≔ sup
D∈D

dDðR;SÞ: ð39Þ

Thus far in this work we have taken D to be the set of all
distinguishers. If a protocol is only computationally secure,
Eq. (39) could be large since some (“inefficient”) distinguisher
might be able to distinguish between the real and ideal
systems. Thus, instead of bounding the supremum over all
distinguishers as in Eq. (39), we bound Eq. (38) for all D;
i.e., one needs to find some function f∶D → R such that,56

for all D,

dDðR;SÞ ≤ fðDÞ: ð40Þ

Typically, such a bound is given by a reduction; i.e., one
proves that if a distinguisher D can distinguish the real from
the ideal system, then D may be used to solve a problem that
is believed to be hard. In Eq. (40), fðDÞ may then correspond
to the probability that this problem may be solved using D.57

56In asymptotic security one may still use Eq. (39) instead of
Eq. (40) but may replace D with the set of all efficient distinguishers.
This is not well defined in the finite setting, since efficiency is defined
only asymptotically.

57A detailed explanation of this paradigm for modeling computa-
tional security using a reduction to computationally hard problems was
provided by Rogaway (2006) within a classical asymptotic model.
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Note that information-theoretic security corresponds to
the special case in which one can show that fðDÞ is small
for allD; i.e., a security proof with error εmeans that Eq. (40)
is bounded by fðDÞ ¼ ε for all D.
For a longer exposition on finite computational security, see

Banfi et al. (2019).

2. Secure quantum message transmission

To construct a secure quantum channel with information-
theoretic security, the secret key shared by the honest players
needs to be longer than twice the length of quantum message
sent; see Sec. VIII.A. Although QKD or key recycling (see
Sec. VIII.B) may be used to obtain more keys, this only works
when the noise on the channel is sufficiently low or the
adversary decides not to tamper with the messages. Should the
noise be too high, the used key is irremediably lost and
the honest players may run out of keys and no longer be able
to communicate securely.
With computational security, it is believed58 that the key can

be much shorter than the message, essentially allowing the
same key to be used over and over, even when conditions do
not allow for recycling. For example, it is believed that one
can construct (quantum resistant) pseudorandom function
(PRF) families (Zhandry, 2012). In other words, there are
families of functions ffk∶f0; 1gm → f0; 1gngk∈K such that if
k is chosen uniformly at random then the output of fk cannot
be distinguished by a computationally bounded player from a
random oracle (RO) that outputs a uniform random string for
every new input. If Alice and Bob share a secret key k that
they use to pick a function fk, then they may encrypt their first
message using fkð1Þ as key, encrypt their second message
using fkð2Þ as key, etc. To a computationally bounded
adversary not knowing k, the encryption keys fkðiÞ would
look random, and hence, by composition, a scheme requiring a
uniformly random secret key would be secure when used with
these pseudorandom keys.
Exactly this was done by Banfi et al. (2019), who

composed a PRF family with the information-theoretic
QMT protocol from Sec. VIII.A.59 They proved that if the
error of the PRF is bounded by

dDðPRF;ROÞ ≤ εPRFðDÞ;

and if the QMT protocol has error εQMT and is used to send at
most l messages, then the composed protocol essentially
constructs l copies of the secure channel from Fig. 31. The
error of this construction is bounded by

εðDÞ ¼ lεQMT þ εPRFðD0Þ;

where D0 is the same distinguisher as D with the additional
quality that it can perform l extra encryption and decryption
operations.

3. Relation to other security definitions

Computational security for secure message transmission is
often characterized by asymptotic game-based definitions:
e.g., an adversary chooses two plain texts, receives a cipher-
text for one of the two, and has to guess which of the two plain
texts it corresponds to. To model situations in which the same
keys can be used to encrypt and decrypt other messages that
may be accessible to the adversary, she is also given oracle
access to either encryption or decryption functions at various
points of the game (Bellare et al., 1998; Katz and Yung, 2006).
These definitions were adapted to the quantum case by
Broadbent and Jeffery (2015), Alagic et al. (2016), and
Alagic, Gagliardoni, and Majenz (2018).
Before such definitions may be safely used in practice, it is

essential to understand which security guarantees they pro-
vide, i.e., which resources they assume and which resources
they construct. The accessible information security definition
for QKD that was discussed in Sec. III.C.1 (see also Sec. VI.F)
turned out to implicitly assume that the adversary has no
quantum memory. In the case of these game-based definitions,
a series of results showed that some of them have the opposite
flaw: they construct a resource that is unnecessarily strong and
exclude certain protocols that should be considered secure
(Canetti, Krawczyk, and Nielsen, 2003; Coretti, Maurer, and
Tackmann, 2013; Banfi et al., 2019).
The strongest of these definitions, called quantum authen-

ticated encryption (QAE) by Alagic, Gagliardoni, and
Majenz (2018), is the most similar to the construction of
secure channels used in Sec. VIII.F.2. Banfi et al. (2019)
showed that QAE essentially corresponds to constructing a
secure channel, but with a fixed simulator, whereas a
security definition within the abstract cryptography frame-
work requires only the existence of a simulator. A protocol
for which the simulator hard coded in QAE is a good
simulator will be deemed secure. However, for a protocol
that requires a different simulator to prove its security, the
QAE definition will merely declare it insecure, even though
it constructs a secure channel.

IX. OPEN PROBLEMS

Only a relatively small part of the protocols appearing in the
quantum cryptography literature has been analyzed and
proved secure within a composable framework. To understand
the security guarantees they actually provide, and in which
contexts they can be used safely, such an analysis would,
however, be crucial, and thus represents a major task for
quantum cryptographers complete in the future. Here we
illustrate this task, focusing on a few areas that we consider
interesting. The first is the problem of reusing devices in
device-independent cryptography (Sec. IX.A). The second is
modeling quantum cryptography with nonasymptotic compu-
tational assumptions (Sec. IX.B). And the third consists of
studying setup assumptions that are needed to achieve a
broader range of constructions (Sec. IX.C).

58Computational security always relies on the belief that some
problem is hard to solve. A cryptographic security proof then consists
of showing that, if an adversary can break the scheme, then this
adversary can also solve the hard problem.

59A variant of this protocol that allows the adversary to jumble the
order of the messages was first proposed by Alagic, Gagliardoni, and
Majenz (2018), but security was proven only by using asymptotic
game-based definitions; see Sec. VIII.F.3.
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A. Reusing devices in device-independent cryptography

In Sec. VI.D we modeled DI QKD. There the untrusted
devices correspond to resources that are available to the honest
players. If Alice and Bob want to run another DI-QKD protocol
to generate more keys once the first run is over, they will again
need all the same resources; i.e., they will need such devices
once more. If Alice and Bob have access to new, fresh devices,
they can run the protocol a second time with them. However, it
does not follow from that analysis that the same devices can be
used again. In fact, it was shown by Barrett, Colbeck, and Kent
(2013) that in general these devices cannot be reused a second
time. The internal memory of a device used for key (or
randomness) generation may contain information about the
secret key (or random number) generated in the first round, and
the device may thus leak this information when it is reused in a
second round. A secret bit may be leaked in a subtle manner.
For example, if the bit equals 0 the device may perform the
expected operations during the second round, and if the bit
equals 1 it may force an abort.
Reusing devices in DI cryptography is similar to reusing

keys. In general it cannot be done. However, in the case of
keys, if one can prove that the key is close to uniform and
independent of the adversary’s information, then it can be
recycled; this was covered in Sec. VIII.B. The same approach
could be used to recycle devices: instead of the ideal world
consisting simply of a key resource, it should also provide
access to devices that are independent of this key, as depicted
in Fig. 34.
No DI-QKD protocol has ever been shown to construct

the ideal system from Fig. 34, and it may well be impossible to
do so. But even if this is the case, it does not exclude the
possibility that one can construct an ideal system that is stronger
than the shared secret key considered in Sec. VI.D, such as one
in which the devices have some partial independence from the
key or are fully independent in certain contexts.60

We note that weaker models such as MDI QKD (see
Sec. VI.E) do not suffer from the same problem of device
reuse as DI QKD. The reason is that in MDI QKD one does

not need to make any assumptions about the measurement
devices (the adversary does the measurements for the honest
players), whereas in DI QKD one has to assume that no
unauthorized information leaves the devices.

B. Computational security

Computational security is a fairly unexplored area of
quantum cryptography. The main motivation for studying
this is to achieve results that are not possible with information-
theoretic security. For example, in Sec. VIII.C we mentioned a
computationally secure protocol for delegated quantum com-
putation with a classical client (Gheorghiu and Vidick, 2019),
which is not believed to be possible with information-theoretic
security (Aaronson et al., 2019). The computationally secure
message transmission from Sec. VIII.F allows keys to be
reused without the extra communication required by QKD
(Sec. III) or key recycling (Sec. VIII.B), and thus without the
possibility of an adversary interrupting this communication
and preventing the key from being reused. And the work of
Unruh (2013) discussed in Sec. VIII.D.4 removed the need for
a shared secret key in QKD by using signature cards instead.
One may essentially analyze any area of cryptography with

computational security to study how assumptions needed for
information-theoretic security may be weakened in the com-
putational setting. There is, however, no single way to model
computational assumptions, and important open questions in
the field are to identify the best ways of doing this. Most
frequently, one proves a reduction; i.e., if some distinguisher
can guess whether it is interacting with the real or ideal
system, then this distinguisher can be used to solve some
problem that is believed to be hard. In Sec. VIII.F we reviewed
the finite reductions of Banfi et al. (2019), in which the
probability of a distinguisher D distinguishing the real and
ideal worlds is bounded by the probability of this distinguisher
being successfully used (as part of a new distinguisher D0) to
distinguish a pseudorandom function from a uniform random
function; see also Rogaway (2006) for a discussion of
reductions.
Another way to define computational security would be to

define an ideal resource that falls under the control of the
adversary if she can solve some problem believed to be hard
(such as finding a collision for a hash function). This is
essentially the “identical-until-bad” concept of Bellare and
Rogaway (2006) but adapted to composable security instead
of game-based security. To the best of our knowledge, this
paradigm remains completely unexplored in quantum
cryptography.
Other works such as that of Chen et al. (2017) bound

adversaries by circuit sizes. It is not clear how to model that in
a finite, composable framework and is important open work.

C. Other setup assumptions

When a security definition is considered “not composable,”
it often has a setup assumption hard coded in it that is not
present in the obvious composable definition, and is therefore
strictly weaker. By modeling this assumption in a composable
framework, one can get another, equivalent composable
definition. We illustrated this in Sec. VI.F by explaining

FIG. 34. An ideal world in which a secret key is produced by K
and new devices DA and DB independent of K are accessible to
the players.

60Context restricted composability is a promising research path
for protocols that do not construct the desired ideal resource. Its
investigation was initiated by Jost and Maurer (2018) and is beyond
the scope of this review.
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how a definition for QKD based on the accessible information,
which is normally not composable, can be turned into a
composable one within a model where an adversary has no
long-term quantum memory.
Similar techniques were used by Unruh (2011) to obtain

commitments in the bounded storage model. While it follows
from Vilasini, Portmann, and Rio (2019) that coin flipping and
bit commitment are impossible in a bounded storage model
without further assumptions, Unruh (2011) avoided these by
putting a bound on the number of times a protocol can be run in
parallel, and designing protocols that are secure for this limited
number of compositions.61 Likewise, Prokop (2020) made extra
setup assumptions in the relativistic model to avoid the
impossibility results of Vilasini, Portmann, and Rio (2019).
There are numerous works where security is proved based

on the assumption that adversaries are restricted. For example,
adversaries cannot share entanglement in the work of
Buhrman et al. (2014), the adversaries’ memory size is
bounded in the work of Damgård et al. (2007, 2008), the
adversaries’ memory is noisy in the work of Wehner,
Schaffner, and Terhal (2008), Schaffner, Terhal, and
Wehner (2009), and König, Wehner, and Wullschleger
(2012), and adversaries can perform only local operations
on single qubits and communicate only classically in the work
of Liu (2014, 2015). It remains open how to model these
assumptions to get composable security statements and prove
in what setting such protocols are secure. Similarly, to capture
position-based cryptography Unruh (2014) used a model of
circuits with positions in space-time. Here too it is not clear
how to fit these results into a composable framework and
identify the resource that is constructed by these protocols.
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APPENDIX A: TRACE DISTANCE

Many of the statements in this review use the well-known
fact that the distinguishing advantage between two systems
that output states ρ and σ is equivalent to the trace distance
between these states. In this appendix we gather lemmas and
theorems that prove this fact and help interpret the meaning of
the trace distance.

In Appendix A.1 we first define the trace distance (as well
as its classical counterpart, the total variation distance) and
provide some basic lemmas that can also be found in text-
books such as that of Nielsen and Chuang (2010). In
Appendix A.2 we then show the connection between trace
distance and distinguishing advantage, which was originally
proven by Helstrom (1976). In Appendix A.3 we prove that
we can alternatively think of the trace distance between a real
and an ideal system as a bound on the probability that a failure
occurs in the real system, as suggested by Renner (2005).
Finally, in Appendix A.4 we bound two typical information
theory notions of secrecy (the conditional entropy of a key
given the eavesdropper’s information and her probability of
correctly guessing the key) in terms of the trace distance.
Although such measures of information are generally ill suited
for defining cryptographic security, they can help interpret
the notion of a key being ε close to uniform. We refer the
interested reader to Trushechkin (2020) for further inter-
pretations of the trace distance.

1. Metric definitions

In the case of a classical system, statistical security is
defined by the total variation (or statistical) distance between
the probability distributions describing the real and ideal
settings, which is defined as follows.62

Definition 4 (total variation distance).—The total varia-
tion distance between two probability distributions PZ and PZ̃
over an alphabet Z is defined as

DðPZ; PZ̃Þ ≔
1

2

X
z∈Z

jPZðzÞ − PZ̃ðzÞj:

Using the fact that ja − bj ¼ aþ b − 2 minða; bÞ, one can
also write the total variation distance as

DðPZ; PZ̃Þ ¼ 1 −
X
z∈Z

min½PZðzÞ; PZ̃ðzÞ�: ðA1Þ

In the case of quantum states instead of classical random
variables, the total variation distance generalizes to the trace
distance.More precisely, the trace distance between two density
operators that are diagonal in the same orthonormal basis is
equal to the total variation distance between the probability
distributions defined by their respective eigenvalues.
Definition 5 (trace distance).—The trace distance between

two quantum states ρ and σ is defined as

Dðρ; σÞ ≔ 1
2
trjρ − σj:

We now introduce some technical lemmas involving the
trace distance that help us derive the theorems to follow.
Proofs of these lemmas were given by Nielsen and Chuang
(2010).
Lemma 6.—For any two states ρ and σ and any operator

0 ≤ M ≤ I,61This effectively restricts what the distinguisher environment may
do to distinguish the real and ideal systems since the bound on the
number of executions of a protocol applies to the distinguisher as
well.

62We employ the same notation Dð·; ·Þ for both the total variation
and the trace distance since the former is a special case of the latter.
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Dðρ; σÞ ≥ tr½Mðρ − σÞ�: ðA2Þ

Furthermore, this inequality is tight for some values of M.
The trace distance can thus be alternatively written as

Dðρ; σÞ ¼ max
M

tr½Mðρ − σÞ�: ðA3Þ

Let fΓxgx be a POVM) (a set of operators 0 ≤ Γx ≤ I such
that

P
x Γx ¼ I), and let PX denote the outcome of measuring

a quantum state ρ with fΓxgx, i.e., PXðxÞ ¼ trð#2ÞΓxρ.
Lemma 7 says that the trace distance between two states ρ
and σ is equal to the total variation between the outcomes
(PX and QX) of an optimal measurement on the two states.
Lemma 7.—For any two states ρ and σ,

Dðρ; σÞ ¼ max
fΓxgx

DðPX;QXÞ; ðA4Þ

where PX and QX are the probability distributions resulting
from measuring ρ and σ, respectively, with a POVM fΓxgx
and the maximization is over all POVMs. Furthermore, if the
two states ρZB and σZB have a classical subsystem Z, then the
measurement satisfying Eq. (A4) leaves the classical sub-
system unchanged; i.e., the maximum is reached for a POVM
with elements

Γx ¼
X
z

jzihzj ⊗ Mz
x; ðA5Þ

where fjzigz is the classical orthonormal basis of Z.

2. Distinguishing advantage

Helstrom (1976) proved that the advantage a distinguisher
has in guessing whether it was provided with one of two states
with equal priors ρ or σ is given by the trace distance63

between the two Dðρ; σÞ. We first sketch the classical case,
then prove the quantum version.
Let a distinguisher be given a value sampled according to

probability distributions PZ or PZ̃, where PZ and PZ̃ are each
chosen with probability 1=2. Suppose that the value received
by the distinguisher is z ∈ Z. If PZðzÞ > PZ̃ðzÞ, its best guess
is that the value was sampled according to PZ. Otherwise, it
should guess that it was PZ̃. Let Z0 ≔ fz ∈ Z∶PZðzÞ >
PZ̃ðzÞg and Z00 ≔ fz ∈ Z∶PZðzÞ ≤ PZ̃ðzÞg. There are a total
of 2jZj possible events: the sample is chosen according to PZ
or PZ̃ and takes the value z ∈ Z. These events have proba-
bilities PZðzÞ=2 and PZ̃ðzÞ=2. Conditioned on PZ being
chosen and z being the sampled value, the distinguisher
has probability 1 of guessing correctly with the previously
outlined strategy if z ∈ Z0, and 0 otherwise. Likewise, if PZ̃ is
selected, it has probability 1 of guessing correctly if z ∈ Z00,
and 0 otherwise. The probability of correctly guessing
whether it was given a value sampled according to PZ or
PZ̃, which we denote as pdistinguishðPZ; PZ̃Þ, is obtained by

summing over all possible events weighted by their proba-
bilities. Hence,

pdistinguishðPZ;PZ̃Þ ¼
X
z∈Z0

PZðzÞ
2

þ
X
z∈Z00

PZ̃ðzÞ
2

¼ 1

2

�
1−

X
z∈Z00

PZðzÞ
�
þ 1

2

�
1−

X
z∈Z0

PZ̃ðzÞ
�

¼ 1−
1

2

X
z∈Z

min½PZðzÞ;PZ̃ðzÞ�

¼ 1
2
þ 1

2
DðPZ;PZ̃Þ;

where in the last equality we used the alternative formulation
of the total variation distance from Eq. (A1).
We now generalize the previous argument to quantum

states with equal priors, which is a special case given by
Helstrom (1976).
Theorem 8.—For any states ρ and σ, we have

pdistinguishðρ; σÞ ¼ 1
2
þ 1

2
Dðρ; σÞ:

Proof.—If a distinguisher is given one of two states ρ or σ,
each with probability 1=2, its probability of guessing which
one it holds is given by a maximization of all possible
measurements it may do.It chooses a POVM fΓ0;Γ1g, where
Γ0 and Γ1 are positive operators with Γ0 þ Γ1 ¼ I, and
measures the state it holds. If it gets the outcome 0, it guesses
that it holds ρ and, if it gets the outcome 1, it guesses that it
holds σ. The probability of guessing correctly is given by

pdistinguishðρ; σÞ ¼ max
Γ0;Γ1

½1
2
trðΓ0ρÞ þ 1

2
trðΓ1σÞ�

¼ 1
2
max
Γ0

ftrðΓ0ρÞ þ tr½ðI − Γ0Þσ�g

¼ 1
2
þ 1

2
max
Γ0

tr½Γ0ðρ − σÞ�: ðA6Þ

The proof concludes by plugging Eq. (A3) in Eq. (A6). ▪

3. Probability of a failure

The trace distance is used as the security definition of QKD
because the relevant measure for cryptographic security is the
distinguishing advantage (as discussed in Sec. II), and as
proven in Theorem 8 the distinguishing advantage between
two quantum states corresponds to their trace distance. This
operational interpretation of the trace distance involves two
worlds, an ideal one and a real one, and the distance measure
is the renormalized difference between the probabilities of
the distinguisher correctly guessing which world it is con-
nected to.
In this section we describe a different interpretation of the

total variation and trace distances. Instead of having two
different worlds, we consider one world in which the out-
comes of interacting with the real and ideal systems coexist.
And, instead of these distance measures being a difference
between probability distributions, they become the probability
that any classical value occurring in one of the systems does
not simultaneously occur in the other. We call such an event a

63Actually, Helstrom (1976) solved a more general problem, in
which the states ρ and σ are picked with a priori probabilities p and
1 − p, respectively, instead of 1=2 as in the definition of the
distinguishing advantage.
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failure (since one system is ideal, if the other behaves
differently, it must have failed) and the trace distance becomes
the probability of a failure occurring.
Given two random variables Z and Z̃ with probability

distributions PZ and PZ̃, any distribution PZZ̃ with marginals
given by PZ and PZ̃ is called a coupling of PZ and PZ̃. The
interpretation of the trace distance treated in this section uses
one specific coupling, known as a maximal coupling in
probability theory (Thorisson, 2000).
Theorem 9 (maximal coupling).—Let PZ and PZ̃ be two

probability distributions over the same alphabet Z. There is
then a probability distribution PZZ̃ on Z × Z such that

Pr½Z ¼ Z̃� ≔
X
z

PZZ̃ðz; zÞ ≥ 1 −DðPZ; PZ̃Þ; ðA7Þ

and such that PZ and PZ̃ are the marginals of PZZ̃, i.e.,

PZðzÞ ¼
X
z̃

PZZ̃ðz; z̃Þ ð∀ z ∈ ZÞ; ðA8Þ

PZ̃ðz̃Þ ¼
X
z

PZZ̃ðz; z̃Þ ð∀ z̃ ∈ ZÞ: ðA9Þ

It turns out that the inequality in Eq. (A7) is tight, i.e., one
can also show that, for any distribution PZZ̃, Pr½Z ¼ Z̃� ≤
1 −DðPZ; PZ̃Þ. We will not, however, use this fact here.
Consider now a real system that outputs values given by Z

and an ideal system that outputs values according to Z̃.
Theorem 9 tells us that there is a coupling of these distribu-
tions such that the probability of the real system producing a
different value from the ideal system is bounded by the total
variation distance between PZ and PZ̃. Thus, the real system
behaves ideally except with probability DðPZ; PZ̃Þ.
We first prove this theorem, then in Corollary 10 apply it to

quantum systems.
Proof of Theorem 9.—Let QZZ̃ be the real function on

Z × Z defined by

QZZ̃ðz; z̃Þ ¼
�
min½PZðzÞ; PZ̃ðz̃Þ� if z ¼ z̃;

0 otherwise

(for all z; z̃ ∈ Z). Furthermore, let RZ and RZ̃ be the real
functions on Z defined by

RZðzÞ ¼ PZðzÞ −QZZ̃ðz; zÞ;
RZ̃ðz̃Þ ¼ PZ̃ðz̃Þ −QZZ̃ðz̃; z̃Þ:

We then define PZZ̃ by

PZZ̃ðz; z̃Þ ¼ QZZ̃ðz; z̃Þ þ
1

DðPZ; PZ̃Þ
RZðzÞRZ̃ðz̃Þ:

We now show that PZZ̃ satisfies the conditions of the
theorem. For this, we note that for any z ∈ Z

RZðzÞ ¼ PZðzÞ −min½PZðzÞ; PZ̃ðzÞ� ≥ 0.

That is, RZ and, likewise, RZ̃ are non-negative. Since QZZ̃ is
by definition also non-negative, we find that PZZ̃ is non-
negative too. From Eq. (A8) or (A9), which we later prove,
it follows that PZZ̃ is also normalized. Hence, PZZ̃ is a valid
probability distribution.
To show Eq. (A7), we again use the non-negativity of RZ

and RZ̃, which implies

X
z

PZZ̃ðz; zÞ ≥
X
z

QZZ̃ðz; zÞ

¼
X
z

min½PZðzÞ; PZ̃ðzÞ�

¼ 1 −DðPZ; PZ̃Þ;

where in the last equality we used the alternative formulation
of the total variation distance from Eq. (A1).
To prove Eq. (A8), we first note that

X
z̃

RZ̃ðz̃Þ ¼
X
z̃

PZ̃ðz̃Þ −
X
z̃

QZZ̃ðz̃; z̃Þ

¼ 1 −
X
z̃

min½PZðz̃Þ; PZ̃ðz̃Þ�

¼ DðPZ; PZ̃Þ:

Using this we find that for any z ∈ Z

X
z̃

PZZ̃ðz; z̃Þ ¼
X
z̃

QZZ̃ðz; z̃Þ þ RZðzÞ
1

DðPZ; PZ̃Þ
X
z̃

RZ̃ðz̃Þ

¼ QZZ̃ðz; zÞ þ RZðzÞ ¼ PZðzÞ:

By symmetry, this also proves Eq. (A9). ▪
In the case of quantum states, Theorem 9 can be used to

couple the outcomes of any observable applied to the quantum
systems.
Corollary 10.—For any states ρ and σ with trace distance

Dðρ; σÞ ≤ ε and any measurement given by its POVM oper-
ators fΓwgw with outcome probabilities PWðwÞ¼ trðΓwρÞ and
PW̃ðwÞ ¼ trðΓwσÞ, there is a coupling of PW and PW̃ such that

Pr½W ≠ W̃� ≤ Dðρ; σÞ:

Proof.—Immediate by combining Lemma 7 and
Theorem 9. ▪
Corollary 10 tells us that if two systems produce states ρ

and σ, then for any observations made on those systems there
is a coupling for which the values of each measurement will
differ with probability at most Dðρ; σÞ. It is instructive to
remember that this operational meaning is not essential to the
security notion or part of the framework in any way. It is an
intuitive way of understanding the trace distance so as to better
choose a suitable value. It allows this distance to be thought of
as a maximum failure probability and enables the value for ε to
be chosen accordingly.
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4. Measures of uncertainty

Noncomposable security models often use measures of
uncertainty to quantify how much information an adversary
might have about a secret, such as entropy as used by Shannon
to prove the security of the one-time pad (Shannon, 1949).
These measures are often weaker than what one obtains using
a global distinguisher and in general do not provide good
security definitions. They are, however, quite intuitive and, in
order to further illustrate the quantitative value of the
distinguishing advantage, we derive bounds on two of these
measures of uncertainty in terms of the trace distance,
namely, on the probability of guessing the secret key in
Appendix A.4.a and on the von Neumann entropy of the secret
key in Appendix A.4.b.

a. Probability of guessing

Let ρKE ¼ P
k∈K pkjkihkjK ⊗ ρkE be the joint state of a

secret key in the K subsystem and Eve’s information in the E
subsystem. To guess the value of the key, Eve can pick a
POVM fΓkgk∈K, measure her system, and output the result of
the measurement. Given that the key is k, her probability
of having guessed correctly is trðΓkρ

k
EÞ. The average proba-

bility of guessing correctly for this measurement is then
given by the sum over all k, weighted by their respective
probabilities pk. And Eve’s probability of correctly guessing
the key is defined by taking the following maximum over all
measurements:

pguessðKjEÞρ ≔ max
fΓkg

X
k∈K

pktrðΓkρ
k
EÞ: ðA10Þ

Lemma 11.—For any bipartite state ρKE with classical K,

pguessðKjEÞρ ≤
1

jKj þDðρKE; τK ⊗ ρEÞ;

where τK is the fully mixed state.
Proof.—Note that for M ≔

P
k jkihkj ⊗ Γk, where fΓkg

maximizes Eq. (A10), the guessing probability can equiv-
alently be written as

pguessðKjEÞρ ¼ trðMρKEÞ:

Furthermore,

tr½MðτK ⊗ ρEÞ� ¼
1

jKj :

In Lemma 6 we proved that, for any operator 0 ≤ M ≤ I,

tr½Mðρ − σÞ� ≤ Dðρ; σÞ:

Setting ρ ¼ ρKE and σ ¼ τK ⊗ ρE in the previous inequality,
we finish the proof as follows:

trðMρKEÞ ≤ trðMÞðτK ⊗ ρEÞ þDðρKE; τK ⊗ ρEÞ;

⇒ pguessðKjEÞρ ≤
1

jKj þDðρKE; τK ⊗ ρEÞ:
▪

b. Entropy

Let ρKE ¼ P
k∈K pkjkihkjK ⊗ ρkE be the joint state of a

secret key in the K subsystem and Eve’s information in
the E subsystem. We want to bound the von Neumann
entropy of K given E[SðKjEÞρ ¼ SðρKEÞ − SðρEÞ, where
SðρÞ ≔ −trðρ log ρÞ] in terms of the trace distance
DðρKE; τK ⊗ ρEÞ. We first derive a lower bound on the von
Neumann entropy by using the following theorem from Alicki
and Fannes (2004).
Theorem 12 [from Alicki and Fannes (2004)].—For any

bipartite states ρAB and σAB with trace distance Dðρ; σÞ ¼
ε ≤ 1=4 and dimHA ¼ dA, we have

jSðAjBÞρ − SðAjBÞσj ≤ 8ε log dA þ 2hð2εÞ;

where hðpÞ ¼ −p logp − ð1 − pÞ logð1 − pÞ is the binary
entropy.
Corollary 13.—For any state ρKE with DðρKE;τK ⊗ρEÞ¼

ε≤1=4, where τK is the fully mixed state, we have

SðKjEÞρ ≥ ð1 − 8εÞ log jKj − 2hð2εÞ:

Proof.—Immediate by plugging ρKE and τK ⊗ ρE into
Theorem 12. ▪
Given the von Neumann entropy of K conditioned on E,

SðKjEÞρ, one can also set an upper bound on the trace distance
of ρKE from τK ⊗ ρE by relating SðKjEÞρ to the relative
entropy of ρKE to τK ⊗ ρE.The relative entropy of ρ to σ is
defined as SðρkσÞ ≔ trðρ log ρÞ − trðρ log σÞ.
Lemma 14.—For any quantum state ρKE,

DðρKE; τK ⊗ ρEÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
½log jKj − SðKjEÞρ�

q
:

Proof.—From the definitions of the relative and von
Neumann entropies we have

SðρKEkτK ⊗ ρEÞ ¼ log jKj þ SðρKEkidK ⊗ ρEÞ
¼ log jKj − SðKjEÞρ;

where idK is the identity matrix. We then use the following
bound on the relative entropy [Theorem 1.15 of Ohya and Petz
(1993)] to conclude the proof:

SðρkσÞ ≥ 2½Dðρ; σÞ�2:
▪

Corollary 13 and Lemma 14 can be written together as
follows in one equation, upper and lower bounding the
conditional von Neumann entropy:

ð1 − 8εÞ log jKj − 2hð2εÞ ≤ SðKjEÞρ ≤ log jKj − 2ε2;

where ε ¼ DðρKE; τK ⊗ ρEÞ.

APPENDIX B: PROOFS FROM SEC. III

In Sec. III we show how to define the security of QKD in a
composable framework and relate this to the trace distance
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security criterion introduced by Renner (2005). This compos-
able treatment of the security of QKD follows the literature
(Ben-Or et al., 2005; Müller-Quade and Renner, 2009), and
the results presented in Sec. III were given by Ben-Or et al.
(2005) and Müller-Quade and Renner (2009) as well. The
formulation of the statements differs, however, from those
works since we use here the abstract cryptography framework
of Maurer and Renner (2011). For completeness we provide
proofs of the main results from Sec. III here.
Proof of Theorem 2.—Recall that in Sec. III.B.2 we fixed

the simulator and showed that to satisfy Eq. (8) it is sufficient
for Eq. (11) to hold. Here we break Eq. (11) into security
[Eq. (13)] and correctness [Eq. (14)], thus proving the theorem.
We define γABE as a state obtained from ρ⊤ABE [Eq. (12)]

by throwing away the B system and replacing it with a copy
of A, i.e.,

γABE ¼ 1

1 − p⊥
X

kA;kB∈K
pkA;kB jkA; kAihkA; kAj ⊗ ρkA;kBE :

From the triangle inequality we get

Dðρ⊤ABE; τAB ⊗ ρ⊤E Þ ≤ Dðρ⊤ABE; γABEÞ þDðγABE; τAB ⊗ ρ⊤E Þ:
Since in the states γABE and τAB ⊗ ρ⊤E the B system is a

copy of the A system, it does not modify the distance.
Furthermore, trBðγABEÞ ¼ trBðρ⊤ABEÞ. Hence,

DðγABE; τAB ⊗ ρ⊤E Þ ¼ DðγAE; τA ⊗ ρ⊤E Þ ¼ Dðρ⊤AE; τA ⊗ ρ⊤E Þ:
For the other term note that

Dðρ⊤ABE;γABEÞ≤
X
kA;kB

pkA;kB

1−p⊥DðjkA;kBihkA;kBj⊗ρkA;kBE ;

jkA;kAihkA;kAj⊗ρkA;kBE Þ¼
X
kA≠kB

pkA;kB

1−p⊥¼ 1

1−p⊥Pr ½KA≠KB�:

Putting this together with Eq. (11), we get

DðρABE; ρ̃ABEÞ ¼ ð1 − p⊥ÞDðρ⊤ABE; τAB ⊗ ρ⊥E Þ
≤ Pr ½KA ≠ KB� þ ð1 − p⊥ÞDðρ⊤AE; τA ⊗ ρ⊤E Þ:

▪

Proof of Lemma 3.—By construction, Kδ aborts with
exactly the same probability as the real system. And because
σQKDE simulates the real protocols, if we plug a converter
πE into KσQKDE , which emulates the noisy channel Qq and
blogs the output of the simulated authentic channel, then
Kδ ¼ KσQKDE πE. Note also that by construction we have
QqkA0 ¼ ðQkAÞπE. Thus,

d(πQKDA πQKDB ðQqkA0Þ;Kδ)¼ d(πQKDA πQKDB ðQkAÞπE;KσQKDE πE):

Finally, because the converter πE on both the real and ideal
systems can only decrease their distance (see Sec. II.D), the
result follows. ▪
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Barnum, Howard, Claude Crépeau, Daniel Gottesman, Adam Smith,
and Alain Tapp, 2002, “Authentication of quantum messages,” in
Proceedings of the 43rd Symposium on Foundations of Computer
Science (FOCS ’02), Vancouver, British Columbia, Canada, 2002
(IEEE, New York), pp. 449–458.

Barrett, Jonathan, Roger Colbeck, and Adrian Kent, 2013, “Memory
Attacks on Device-Independent Quantum Cryptography,” Phys.
Rev. Lett. 110, 010503.

Barrett, Jonathan, Lucien Hardy, and Adrian Kent, 2005, “No Signal-
ing and Quantum Key Distribution,” Phys. Rev. Lett. 95, 010503.

Baumgratz, Tillmann, Marcus Cramer, and Martin B. Plenio, 2014,
“Quantifying Coherence,” Phys. Rev. Lett. 113, 140401.

Beaver, Donald, 1992, “Foundations of secure interactive comput-
ing,” in Advances in Cryptology—CRYPTO ’91, Lecture Notes in
Computer Science Vol. 576, edited by Joan Feigenbaum (Springer,
New York), pp. 377–391.

Bell, John Stewart, 1964, “On the Einstein-Podolsky-Rosen para-
dox,” Physics 1, 195–200.

Bell, John Stewart, 1966, “On the problem of hidden variables in
quantum mechanics,” Rev. Mod. Phys. 38, 447–452.

Bell, John Stewart, and Alain Aspect, 2004, “Free variables and local
causality,” in Speakable and Unspeakable in Quantum Mechanics:
Collected Papers on Quantum Philosophy, 2nd ed. (Cambridge
University Press, Cambridge, England), Chap. 12, pp. 100–104.

Bellare, Mihir, Anand Desai, Eron Jokipii, and Phillip Rogaway,
1997, “A concrete security treatment of symmetric encryption,”
in Proceedings of the 38th Annual Symposium on Foundations
of Computer Science (FOCS ’97), Miami Beach, 1997 (IEEE,
New York), pp. 394–403.

Bellare, Mihir, Anand Desai, David Pointcheval, and Phillip Rogaway,
1998, “Relations among notions of security for public-key encryp-
tion schemes,” in Advances in Cryptology—CRYPTO ’98 (Springer,
New York), pp. 26–45.

Bellare, Mihir, and Phillip Rogaway, 2006, “The security of triple
encryption and a framework for code-based game-playing proofs,”
in Advances in Cryptology—EUROCRYPT 2006, Lecture Notes in
Computer Science Vol. 4004, edited by Serge Vaudenay (Springer,
New York), pp. 409–426.

Ben-Aroya, Avraham, and Amnon Ta-Shma, 2012, “Better short-
seed quantum-proof extractors, Theor. Comput. Sci. 419, 17–25.

Bennett, Charles H., Herbert J. Bernstein, Sandu Popescu, and
Benjamin Schumacher, 1996, “Concentrating partial entanglement
by local operations,” Phys. Rev. A 53, 2046–2052.

Bennett, Charles H., François Bessette, Gilles Brassard, Louis
Salvail, and John Smolin, 1992, “Experimental quantum cryptog-
raphy,” J. Cryptol. 5, 3–28.

Bennett, Charles H., and Gilles Brassard, 1984, “Quantum cryptog-
raphy: Public key distribution and coin tossing,” in Proceedings
of the IEEE International Conference on Computers, Systems,
and Signal Processing, Bangalore, India, 1984 (IEEE, New York),
pp. 175–179.

Bennett, Charles H., Gilles Brassard, Claude Crépeau, and Ueli
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