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Two processes of photon-pair creation can be arranged such that the paths of the emitted photons are
identical. The path information is thereby not erased but rather never born in the first place due to this
path identity. In addition to its implications for fundamental physics, this concept has recently led to a
series of impactful discoveries in the fields of imaging, spectroscopy, and quantum information
science. Here the idea of path identity is presented and a comprehensive review of recent
developments is provided. Specifically, the concept of path identity is introduced based on three
defining experimental ideas from the early 1990s. The three experiments have in common that they
contain two photon-pair sources. The paths of one or both photons from the different sources overlap
such that no measurement can recognize from which source they originate. A wide range of
noteworthy quantum interference effects (at the single- or two-photon level), such as induced
coherence, destructive interference of photon pairs, and entanglement generation, are subsequently
described. Progress in the exploration of these ideas has stagnated and has gained momentum again
only in the last few years. The focus of the review is the new development in the last few years that
modified and generalized the ideas from the early 1990s. These developments are overviewed and
explained under the same conceptual umbrella, which will help the community develop new
applications and realize the foundational implications of this sleeping beauty.
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I. INTRODUCTION

One of the fundamental principles of quantum mechanics is
the following: If an event can occur in more than one
alternative way, and there is no way to distinguish between
the alternatives, interference occurs. Discussing double-slit
experiments, Richard Feynman said that this phenomenon
“has in it the heart of quantum mechanics. In reality, it
contains the only mystery” (Feynman, Leighton, and Sands,
1965). This simple but profound principle can be used to
explain many of the other basic quantum mechanics
experiments.
In the early 1990s, the group of Leonard Mandel pushed

the concept of indistinguishability to a new level. Instead of
superpositions of single (or multiple) photons, they created
superpositions of the origin of a photon pair itself. By
overlapping (or making identical) one of the photon’s paths
(an idea suggested by Jeff Ou), there is no information
anywhere in the Universe about the origin of the second
photon. Thus, to apply Feynman’s principle, the second
photon is in a superposition of being created in either of
the crystals. Zou, Wang, and Mandel (1991) (ZWM) exploited
this idea in a noteworthy way: They were able to measure
phase shifts introduced in photons that they never
detected.
Historically, it is interesting that, after some activities over a

period of roughly ten years, investigating this phenomenon
nearly stopped from around the year 2000 until the field was
finally revived in 2014. At that time it was realized that one
can extend the scope even further by imaging an object
without ever detecting photons that interacted with the object
itself; see Fig. 1. An important addition is that the detected
light can have an entirely different wavelength than the light
interacting with the object. A multitude of critical applications
has been discovered since then in quantum imaging, quantum
spectroscopy, quantum information science, and other fields,
which are interesting for basic research as well as for practical
tasks with potential impact on industrial technologies. These
new developments have reignited research interest in quantum
indistinguishability by making paths identical (path identity),
a fact illustrated by the number of related publications, which
is shown in Fig. 2. This behavior is denoted as “sleeping
beauty” in the scientometrics (Ke et al., 2015; Fortunato
et al., 2018).
As a testament to the fundamental importance of the

concept, path identity was recently identified as one of the
core concepts that should be used in high school education for
quantum physics to better understand the idea of a photon
(Malgieri, Onorato, and De Ambrosis, 2017).
In this review, we focus on the developments during the last

few years, which have enormously widened the scope of
ZWM’s experiment and Ou’s idea. In Sec. II, we demonstrate
the concept of path identity with three defining examples from
the early 1990s, followed by a detailed technical account of
the ZWM experiment and its importance in the historical
context (Sec. III). After laying the foundations, we explain
how to reconstruct properties of objects without detecting the
interacting photons (Sec. IV). We then show how information
about a correlated photon pair can be obtained without
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detecting one of the photons (Sec. V). The applications to
modern quantum information science are discussed based on
single-photon and multiphoton entanglement generation
(Sec. VI) with a connection to the mathematical field of
graph theory (Sec. VII). A novel type of multiphoton quantum
interference is subsequently discussed (Sec. VIII). Finally, we

conclude and raise a number of open questions that would be
interesting to be investigate in the future (Sec. IX).
In our review, we focus on true single-photon or entangled

photon quantum phenomena. For a detailed account of so-
called nonlinear interferometers in the high-gain regime of
nonlinear optics, see Chekhova and Ou (2016) and Ou and Li
(2020). Furthermore, generalizing the concept of path identity
to other degrees of freedom is an interesting question, but
beyond the scope of our review.

II. THE PRINCIPLES OF PATH IDENTITY

In this section, we explain the ideas of three experiments
from the early 1990s, which define the principles of path
identity. All of these experiments employ two photon-pair
sources. The paths of one or both photons from the different
sources are made identical such that it cannot be distinguished
from which source they originate. This path identity leads to
several striking quantum interference effects (at a single- or
two-photon level) that have seen quantum applications in
recent years.
A number of other quantum experiments can be interpreted

in this framework. It might help to transfer insights and
explanations from these three defining examples to other
fields of quantum physics. Helping to find such relations is
one of the goals of our review.

A. The Zou-Wang-Mandel experiment: Induced coherence
without induced emission

In 1991, ZWM demonstrated an experiment where they
induced coherence between two photonic beams without
interacting with any of them (Wang, Zou, and Mandel,
1991; Zou, Wang, and Mandel, 1991). They used two non-
linear crystals (NLs) that produce photon pairs. In the experi-
ment, one photon pair is in a superposition of being created in
crystal 1 (creating photons in paths a and b) and crystal 2
(creating photons in paths c and d). The notable idea
(originally proposed by Zhe-Yu Ou) was to overlap one of
the paths from each crystal [Fig. 3(a)], which can be written as
the path identity

jbi → jdi: ð1Þ
The which-crystal information of the final photon in path d is
thereby removed. The information of the photon’s origin is not
erased but was never created in the first place. The resulting
state can be written as

jψi ¼ 1ffiffiffi
2

p ðja; di þ jc; diÞ

¼ 1ffiffiffi
2

p ðjai þ jciÞjdi; ð2Þ

which shows that one photon is in a superposition of being in
path a or c. If one adds a phase shifter to introduce the phase ϕ
in path d between the two crystals, the state becomes

jψi ¼ 1ffiffiffi
2

p ðja; di þ eiϕjc; diÞ

¼ 1ffiffiffi
2

p jdiðjai þ eiϕjciÞ: ð3Þ

FIG. 2. Papers that explore quantum indistinguishability by path
identity. After the Zou-Wang-Mandel experiment and its varia-
tions was studied for a decade, research nearly stopped. We can
observe an awakening of the research interest in 2014, with
exciting new applications including quantum imaging and
microscopy, quantum spectroscopy, and quantum information.
To create this list, we use all publications that cite the original
Zou-Wang-Mandel experiment (Zou, Wang, and Mandel, 1991).
From there, we select those papers that actually explore the
underlying ideas and concepts rather than just mentioning them.
A paper or concept with this behavior is called “sleeping beauty”
(Ke et al., 2015).

FIG. 1. Quantum imaging by path identity, without detecting the
photons that interact with the object (Lemos et al., 2014). The
yellow beam coherently pumps two nonlinear crystals such that
one of them creates a photon pair. The photon pair is in a
superposition of being created in the first or second crystal. When
the green photon path is made identity, the red photon is in a
superposition of being in the upper or lower path, which leads to
interference at a beam splitter. By introducing an object (a picture
of a cat) into the overlapped green path, the origins become
partially distinguishable, which can be observed in the resulting
interference pattern. The image of the cat is constructed without
detecting any of the green photons. This concept is entirely
different than conventional ghost imaging, where both photons
need to be detected, and which can be performed classically
(Bennink et al., 2004).
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Now the phase is encoded between the photon’s path a and c,
which never interacted with the phase shifter in the first place.
The phase can be extracted if one superposes the paths a and c
with a beam splitter and detects one of the outputs. A detailed
analysis of this “mind-boggling” experiment (Greenberger,
Horne, and Zeilinger, 1993) is shown in Sec. III.B.
It took more than 20 years until it was recognized that this

type of interference can be exploited for quantum imaging
(Lemos et al., 2014) and spectroscopy (Kalashnikov et al.,
2016) in a way that uses the potential to probe at one
wavelength and measure at another wavelength. We return
to these core insights in Sec. IV.

B. Frustrated down-conversion: Interference in
photon pair creation

Shortly after the demonstration of the ZWM interference,
an experiment showed quantum interference that occurs when
both paths of the photon pairs are identified (Herzog et al.,
1994). Similarly, as in the ZWM experiment, the experimental
setup [which is depicted in Fig. 3(b)] consists of two crystals
that are pumped coherently and in such a way that only one of
the crystals creates a photon pair. A photon pair now could be
created in the first or second crystal. A phase plate can shift the
relative phase between the two processes, which leads to the
final state

jψi ¼ 1ffiffiffi
2

p ðja; bi þ eiϕja; biÞ

¼ 1ffiffiffi
2

p ja; bið1þ eiϕÞ. ð4Þ

One finds that by changing the phase between the two
crystals, one can enhance or suppress the production of the
photon pairs. This is a notable interference effect because,
while a single crystal produces a constant number of photon
pairs, adding a second crystal could lead to complete zero
output due to destructive interference.
In the other extreme case, constructive interference of

two sources can lead to 4 times the intensity of spontaneous
parametric down-conversion (SPDC) photons compared

to a single crystal, in accordance with the interference law
equation (4).
When the distance between the two crystals in Fig. 3(b) is

reduced and eventually becomes zero, one essentially obtains
a crystal twice the length of the original one that produces 4
times the output. The system can be generalized to construc-
tive interference from more than two crystals, leading to an
even greater enhancement of the emission rate.
These facts are analogous to periodic poling, which is used

to achieve quasi–phase matching within a single nonlinear
crystal in order to enhance the emission rate of down-
converted photons. In this process, the nonlinear response
of successive slices of the nonlinear crystal are engineered in a
way that their outputs lead to constructive interference, and
thus enhancement of SPDC over the entire crystal length. Note
that the phase ϕ of Eq. (4) is given by ϕ ¼ ϕp − ϕs − ϕi,
where ϕi and ϕs stand for the phases accumulated in idler and
signal beams, and ϕp stands for the phase introduced into the
pump beam. The phase-matching condition kp − ki − ks ¼ 0

can be seen as a condition to maintain this phase relation over
the crystal length. Recent generalizations to multiphotonic
systems show connections to graph theory and quantum
computation, which we explain in Sec. VIII.

C. Entanglement by path identity

In the two previously mentioned experiments, paths of
indistinguishable photons are overlapped and phases between
photon-pair sources are altered, which led to a new kind of
single-photon interference. We now ask what would happen if,
instead of the phase, the modes (such as the polarization
of the photons) are changed, such that the photons are no
longer indistinguishable. A conceptual sketch is shown in
Fig. 3(c).
If one pumps only crystal 1, one always gets a vertically

polarized photon pair in detectors a and b (jψ1i ¼ jaV; aVi).
While pumping crystal 2 only, one always obtains two
photons with horizontal polarization (jψ2i ¼ jaH; aHi). If
the two crystals are pumped coherently, a pair is generated
that is a coherent superposition of the two possibilities, i.e.,

FIG. 3. Three historic experiments initiated the research in path identity. (a) The experiment by Zou, Wang, and Mandel first showed
that identifying the path of photons can induce coherence in an unexpected way (Wang, Zou, and Mandel, 1991; Zou, Wang, and
Mandel, 1991). (b) Herzog et al. (1994) identified that two-photon interference phenomena occur when it is fundamentally
indistinguishable in which crystal the photon pair was created. (c) Hardy (1992) proposed the mode shifting and identification of two
paths as a method for the generation of quantum entanglement. The source has become a cornerstone of photonic quantum entanglement
experiments (KwiatS al., 1999; Pan et al., 2012; Zhong et al., 2018). The review concerns these ideas and their generalizations and
applications during the last quarter of a century.
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jψi ¼ 1ffiffiffi
2

p ðjaH; bHi þ jaV; bViÞ. ð5Þ

This state describes two photons that are entangled in their
polarization.
An entanglement source of this kind was first described by

Lucien Hardy in 1992 (Hardy, 1992), only a few months after
the ZWM experiment. Hardy described it as a deterministic,
collinear emitting source of polarization-entangled photon
pairs that can be used for the definitive violation of Bell’s
inequality. The implementation of this source was achieved by
Kwiat et al. (1999), and the design of the source is still in use
today, especially in the generation of the most complex
photonic entanglement states such as a 12-photon entangled
system (Zhong et al., 2018), or an 18-qubit entangled photon
state of several degrees of freedom (X.-L. Wang et al., 2018).
Despite the frequent use of this source, it took 25 years for

the concept of path identity to be generalized to vast classes of
entanglement, such as any high-dimensional two-photon
system as well as vast types of high-dimensional many-body
systems (Krenn et al., 2017). We return to this discussion
in Sec. VI.

III. THE ZOU-WANG-MANDEL EXPERIMENT

We now describe the ZWM experiment, first conceptually,
then in detail. Afterward, we present several of its fundamental
conclusions for quantum physics in general.

A. Description of the experiment

The concept of path identity can be elegantly illustrated
with an absorptive element between the two crystals, which
influences the which-crystal information, and therefore the
interference visibility. The experiment is illustrated in Fig. 4.
Two photon-pair sources are denoted by A and B. These two
sources are two identical nonlinear crystals pumped by two
mutually coherent laser beams (not shown in the figure). Two
photons belonging to a pair are denoted by S and I (which
stand for signal and idler, for historical reasons). Source A
emits S and I along paths Sa and Ia, respectively. Likewise, B
emits the photons along paths Sb and Ib. The two crystals are
pumped weakly such that in most cases only maximally one
crystal produces a pair of photons at a time.
The paths Sa and Sb are superposed by a beam splitter (BS)

and single-photon counting rate is measured at one or both
outputs of the BS. If the concept of path identity is applied,
i.e., if Ia is sent through source B and aligned with Ib,
interference occurs at the output of the BS. However, in
practice, the pump and the down-converted light have finite
spectral widths, i.e., finite coherence times. Therefore, further
conditions relating to the path lengths of the interferometer are
required to be satisfied. If the pump light has a much longer
coherence length than the down-converted light, the following
condition must be satisfied (Wang, Zou, and Mandel, 1991):

jlSa − lSb − lIj ≪ Ldc; ð6Þ

where lSa is the optical path length along Sa from A to the BS,
lSb is the optical path length along Sb from B to the BS, lI is
the optical path length along Ia from A to B, and Ldc is the

coherence length of the down-converted light. If this condition
is met, there is no temporal information that would allow one
to determine from which crystal a signal photon arrived
at the detector. Additionally, all other degrees of freedoms
(polarization, frequency, and path of the photon) need to be
indistinguishable in order to observe interference. A discus-
sion on conditions required for interference, when ultra-
short pump pulses are used, was given by Rojas-Santana
et al. (2020).
If beam Ia is blocked between A and B or condition (6) is

not met, the interference is lost. In this case, it is possible to
determine from which crystal a signal photon arrived by
detecting the I photon in coincidence.
We now consider the scenario in which an attenuator with

amplitude transmission coefficient T on Ia is placed between
sources A and B. The visibility of the interference patterns
turns out to be linearly proportional to jTj. This can be
understood by the quantum mechanical rules of addition of
probability. An idler photon passes through the attenuator with
a certain probability. The transmission probability is equal to
jTj2. When the idler photon passes through the object, we
have complete path identity. In this case, there is no informa-
tion about the origin of a single photon detected after the beam
splitter, and thus interference occurs. If the photon does not
pass through the object, the path identity is broken, and the
signal photon does not contribute to the interference pattern.
Therefore, there are three alternative ways through which a
signal photon can arrive at the detector: (1) the signal photon
has been emitted by crystal B, (2) the signal photon is emitted
by crystal A, and the partner idler photon is transmitted
through the object, and (3) the signal photon is emitted by
crystal A, and the partner idler photon is blocked. Note that
alternatives (1) and (2) are indistinguishable, and therefore
their probability amplitudes add. Alternative (3) is distinguish-
able from the rest, and thus its probability adds to the
combined probability of the other two. If one determines
the total probability in this way, one finds that the visibility is
proportional to jTj. In Sec. III.B, we provide a more rigorous
analysis of the experiment.

FIG. 4. Zou-Wang-Mandel experiment. A and B are two
identical photon-pair sources. A and B emit a photon pair in
paths ðSa; IaÞ and ðSb; IbÞ, respectively. Paths Ia and Ib are made
identical. An object with the amplitude transmission coefficient T
is placed on Ia between A and B. A single-photon interference
pattern is observed at both outputs of the beam splitter (BS) if Sa
and Sb are superposed. Visibility is proportional to the modulus
of the amplitude transmission coefficient.
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B. Theoretical analysis

The original analysis presented by Wang, Zou, and Mandel
(1991) and Zou, Wang, and Mandel (1991) was based on
quantum field theory. Here we present a conceptually equiv-
alent but simpler treatment. For simplicity, we do not consider
the multimode nature of optical fields in this section.
Multimode fields are considered later when we discuss
imaging and spectroscopy experiments. We also slightly
modify the notations used in Sec. II.A.
We denote the photon-pair states produced individually at A

and B by jSaijIai and jSbijIbi, respectively. In the exper-
imental condition, these two sources emit coherently, and they
rarely produce more than one photon pair jointly. The
resulting state, therefore, becomes

jψ0i ¼
1ffiffiffi
2

p ðjSaijIai þ eiϕjSbijIbiÞ; ð7Þ

where ϕ is an arbitrary phase and we assume that both sources
have the same emission probability.
Suppose that the two outputs of the beam splitter are

denoted by Sd and S0d (Fig. 4). The transformation of the states
due to the beam splitter is given by

jSai →
1ffiffiffi
2

p ðjSdi þ ijS0diÞ; ð8aÞ

jSbi →
eiϕSffiffiffi
2

p ðjS0di þ ijSdiÞ; ð8bÞ

where ϕS is the phase difference due to different propagation
distances along paths Sa and Sb.
As previously mentioned, the crucial part of the experiment

is to make the paths Ia and Ib identical. This is done by
sending Ia through crystal B and then perfectly aligning it
with Ib. The quality of this alignment (path identity) can
theoretically be modeled by placing an attenuator on beam Ia
between the sources A and B. In our case, the attenuator is an
object with the complex amplitude transmission coefficient
T ¼ jTj exp½iΦT �. An idler photon passes through the object
with probability jTj2. Therefore, the object can be treated
as a beam splitter and the path-identity condition can be
expressed as

jIai → exp½iθI�ðTjIbi þ RjliÞ; ð9Þ

where jTj2 þ jRj2 ¼ 1 and jli represents a photon that is lost
or absorbed. We note that Eq. (9) essentially reduces to Eq. (1)
when jTj ¼ 1.
Applying the transformations (8) and (9) to Eq. (7), we find

that the state jψ0i transforms to

jψfi ¼ 1
2
ðeiθI TjIbi þ ieiðϕþϕSÞjIbi þ eiθIRjliÞjSdi
þ 1

2
ðieiθI TjIbi þ eiðϕþϕSÞjIbi þ ieiθIRjliÞjS0di: ð10Þ

To determine the photon counting rates at outputs Sd and S0d,
we carry out the following steps: (1) we determine the density
operator ρ̂f ¼ jψfihψfj, (2) we trace over jIbi and jli to obtain

the reduced density operator that represents the state of the
single photon at the outputs of the BS. The coefficients
associated with jSdihSdj and jS0dihS0dj in the expression of the
reduced density operator are proportional to the photon
counting rates at Sd and S0d, respectively. The photon counting
rates are found to be given by

Rd ∝ 1
2
½1 − jTj sinðϕab þ ϕS − θI −ΦTÞ�; ð11aÞ

Rd0 ∝ 1
2
½1þ jTj sinðϕab þ ϕS − θI −ΦTÞ�: ð11bÞ

We note that both the amplitude and phase of the object’s
transmission coefficient appear in the interference pattern.
This is a striking phenomenon because the interference pattern
is obtained by detecting photons that have never interacted
with the object.
In the first decade after the experiment by Zou-Wang-

Mandel experiment in 1991, a manifold of theoretical and
experimental investigations were reported. Among the notable
results during that time were studies of the interference’s time
delays and coherence times effectively demonstrating the
fundamental importance of information in quantummechanics
(Wang, Zou, and Mandel, 1992; Zou, Grayson, and Mandel,
1992; Zou, Wang et al., 1992; Grayson et al., 1993; Zou et al.,
1993; Barbosa, 1994; Wang and Rhee, 1999).
A possible relation of the ZWM experiment in terms of a

quantum eraser was discussed by Zajonc et al. (1991),
specifically, whether the overlapping of the idler beams plays
the role of an eraser of information. However, in the ZWM
experiment, when the idler paths overlap the idler photon never
carries any path information. Therefore, there is no information
that needs to be erased. As a consequence, interference can be
observed without postselection or coincidence detection. An
intensity measurement on the signal is sufficient to observe
interference. Thus, unlike quantum erasure experiments,
where information is deleted to observe interference, in the
ZWM experiment the which-way information is never created.
This fundamental contrast was analyzed in more detail in

several papers (Kwiat, Steinberg, and Chiao, 1994; Ryff,
1995a; Ou, 1997). The ZWM experiment has also inspired
new mathematical methods for describing experimental setups
where SPDC processes are used and path identity has been
employed (Luis and Peřina, 1996; Casado, Marshall, and
Santos, 1997; Mista et al., 2000), has been used to exper-
imentally falsify certain variations of de Broglie’s determin-
istic pilot wave interpretation of quantum mechanics (Zou,
Grayson et al., 1992), and has inspired proposals to detect
effects in quantum cosmology (Yurtsever and Hockney, 2005).
Since it is possible to extract the information about the

object from the recorded interference pattern, the concept of
path identity has also inspired an entirely new class of
imaging, spectroscopy, and tomography experiments. In all
these experiments, one does not need to detect the photon that
interacts with an object.

C. Nonclassicality of the Zou-Wang-Mandel experiment

The Zou-Wang-Mandel experiment does not have any
classical explanation. We now discuss the quantitative evi-
dence that supports this fact. We learn from Eqs. (11) that the
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visibility of the interference pattern is linearly proportional to
the modulus of the amplitude transmission coefficient of the
attenuator. This linear dependence was experimentally veri-
fied by Zou, Wang, and Mandel [Fig. 5(a)]. The physical
reason for this linear dependence is the fact that the effect of
stimulated emission is negligible in that experiment.
When beam Ia is sent through source B and then aligned

with beam Ib, it is natural to assume that stimulated emission
will take place at B. However, in the experiment A and B are
two low-gain nonlinear crystals that are weakly pumped by
laser light. In this case, the probability of down-conversion is
so low that when emission occurs at B beam Ia is rarely
occupied by a photon. Therefore, spontaneous emission
dominates over stimulated emission and the quantum state,
jointly produced by A and B, becomes a linear superposition
of two-photon states. Zou, Wang, and Mandel showed that
such a quantum state can explain the linear dependence shown
in Fig. 5(a).
Nonclassicality of this experiment was also independently

verified by Wiseman and Mølmer (2000). They considered a
situation in which the crystal gain can be arbitrarily increased.

They showed that for high crystal gain, i.e., when the effect of
stimulated emission becomes prominent, the previously men-
tioned linear dependence is no longer observed [Fig. 5(b)]. For
high gain, the problem can be treated using classical non-
linear optics, but in that case the linear dependence is no
longer found.
The nonclassicality of the Zou-Wang-Mandel experiment

has also recently drawn attention. A good description was
presented by Kolobov et al. (2017). It has also been shown
that if the laser pump is replaced by a single-photon pump, the
possibility of stimulated emission becomes strictly forbidden,
and even then the interference occurs (Lahiri et al., 2019).
The ZWM experiment’s nonclassicality makes it an impor-

tant milestone in the history of quantum photonic experi-
ments, as we elaborate on in Sec. III.D.

D. Quantum nature of photonic experiments

The classical (nonquantum) theory distinguishes between
particles and waves: a classical particle does not display the
interference effect, whereas a classical wave does. One of the
great successes of quantum mechanics lies in predicting
interference phenomena displayed by systems that were
previously understood to be classical particles. Well-known
examples are neutron (Zeilinger, 1986; Rauch and Werner,
2015) or macromolecule interference (Fein et al., 2019).
Quantum theory is also applicable to light, and therefore
every optical interference effect can also be understood as a
quantum mechanical effect. However, the quantum optics
community usually does not perceive such a view as appro-
priate. An optical phenomenon is called truly quantum
mechanical when the classical electromagnetic theory of light
is unable to explain it, and the only explanation comes from
quantum mechanics. In this review, we use the term quantum
mechanical in this sense. Therefore, the intensity modulation
observed in Young’s double-slit experiment or in a Mach-
Zehnder interferometer is a classical effect irrespective of the
state of light used in the experiment.
Most optical phenomena that involve a measurement of

intensity or single-photon counting rate display no quantum
mechanical effects. Although the photoelectric effect suggests
the quantum nature of light, it has been shown that a
successful quantitative theory of photoelectric detection can
be developed without considering the quantum nature of light
(Mandel, Sudarshan, and Wolf, 1964). The essence of this
work lies in the semiclassical theory of light-matter inter-
actions, in which light is treated by classical electromagnetic
theory and the atoms by quantum mechanics. It was exper-
imentally demonstrated by Clauser (1974) that the semi-
classical theory of photoelectric detection provides incorrect
results if one measures coincidence counts at two detectors
illuminated by light generated by the cascade 91P1 → 73S1 →
63P1 in excited 202Hg atoms. Later investigations indicated
that most quantum mechanical effects in the optical domain
involve coincidence detection of at least two photons (i.e.,
intensity correlation). Several such phenomena have been
studied in the field of quantum optics, for example, photon
antibunching (Kimble, Dagenais, and Mandel, 1977) and two-
photon interference (Horne and Zeilinger, 1986; Ghosh and

(a)

(b)

FIG. 5. Nonclassicality of the Zou-Wang-Mandel experiment.
(a) Experimental data show that the visibility of the single-photon
interference pattern is linearly proportional to jTj. Adapted from
Zou, Wang, and Mandel, 1991. (b) gð1Þð1; 2Þ refers to visibility
and t is the same as jTj in the text and in (a). The theoretical
curves show that when the effect of stimulated emission is
prominent, the linear dependence is no longer observed. Adapted
from Wiseman and Mølmer, 2000.
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Mandel, 1987; Hong, Ou, and Mandel, 1987; Horne,
Shimony, and Zeilinger, 1989).
An experiment by Wang, Zou, and Mandel (1991) and Zou,

Wang, and Mandel (1991) turned out to be the first demon-
stration of the quantum nature of an optical interference effect
that relies only on the detection of one intensity, not on
correlation measurements. We discussed in Sec. III.C that the
Zou-Wang-Mandel experiment cannot be explained using
classical wave theory. Here we point out that it is in principle
possible to perform this experiment with other quantum
entities such as neutrons and electrons. In such cases, the
occurrence of interference itself will rule out any classical
explanations.

E. Implications for optical coherence theory

1. Path identity and the degree of coherence

Optical coherence theory studies phenomena that are a
manifestation of statistical fluctuations present in optical fields
(Mandel and Wolf, 1995; Born and Wolf, 1999). For example,
when two light beams (or, equivalently, light from two point
sources) are superposed, the corresponding fields add linearly.
If the field corresponding to one beam is fully not correlated
with that of the other beam, no interference occurs.
Interference requires correlation between the fields that are
superposed. In fact, the visibility of the interference pattern
depends on the amount of correlation. Mathematically, a
typical interference pattern can be expressed in the general
form (Born and Wolf, 1999)

R ¼ R1 þ R2 þ 2
ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
jγ12j cosϕ; ð12Þ

where R1 and R2 are individual intensity contributions from
the interfering fields, ϕ is a phase, and jγ12j is the modulus of
the degree of coherence, which is a measure of the correlation
between the two superposed fields. The visibility is linearly
proportional to jγ12j. The degree of coherence therefore
provides a quantitative measure of the ability of light to
interfere.
Such an interpretation of interference is not in contradiction

with quantum mechanics. This fact can be understood as
follows: when two beams are superposed, the absence of
“which-way information” implies that the superposed fields
are maximally correlated and that intensities of the corre-
sponding beams are equal (Wootters and Zurek, 1979;
Greenberger and Yasin, 1988; Mandel, 1991; Jaeger,
Horne, and Shimony, 1993; Englert, 1996). In the other
extreme case occurring when which-way information is fully
available, the superposed fields are completely uncorrelated.
This fundamental connection between the two apparently
distinct interpretations has been well demonstrated using the
ZWM experiment.
According to classical understanding, a change in correla-

tion (the degree of coherence) between the two superposed
fields requires a direct interaction with at least one of them.
However, according to quantum mechanics one needs to
ensure only that the which-way information does not exist,
and such an act may not require direct interaction with the
fields. The path identity employed in the ZWM experiment

allows one to control the correlation between the fields
without interacting with any of them. In their experiment,
jγ12j is equal to the modulus of the amplitude transfer
coefficient jTj of the object that never interacts with beams
Sa and Sb; see Fig. 4. The ZWM experiment is therefore a
landmark experiment that highlights the quantum mechanical
aspect of the degree of coherence.

2. Path identity and optical polarization

Polarization properties of a light beam at a point can also be
understood as an effect of correlation between the components
of electric field vectors at that point (Pancharatnam, 1956;
Wolf, 1959). The degree of polarization (P) quantifies how
polarized a light beam is at a point. For example, P ¼ 1

implies fully polarized light and P ¼ 0 implies unpolarized
light. In the intermediate case (0 < P < 1), the light is
partially polarized.
Suppose that we choose two mutually orthogonal transverse

directions x and y perpendicular to the direction of beam
propagation. If the intensities associated with the individual
field components along x and y are equal, the degree of
polarization is the modulus of the normalized correlation
function of these two field components (Born and Wolf,
1999). Like the degree of coherence, the degree of polarization
can also be understood from the principles of quantum
mechanics (Lahiri, 2011). The concept of path identity allows
us to design an experiment that establishes the quantum
mechanical aspect of the degree of polarization.
We consider a modification of the ZWM experiment that is

illustrated in Fig. 6. Suppose that the beams Sa and Sb are
polarized along directions x and H (horizontal), respectively;
both directions are transverse. The direction x encloses an
angle γ with the direction H. One can vary the angle γ using a
half-wave plate. The correlation between these two super-
posed field components can be controlled by varying the value
of jTj. As a result, the polarization properties of light
generated by superposition changes. A theoretical analysis
shows that the degree of polarization at the output of a BS is
given by (Lahiri et al., 2017a)

P ¼ jTj þ cos γ
1þ jTj cos γ ; ð13Þ

where the interferometric phase has been set to a multiple of
2π. Figure 6(b) shows the experimental results that support the
theoretical prediction. The experiment thus shows that the
degree of polarization of a light beam can be changed without
interacting with it, an effect that is purely quantum
mechanical.

F. Investigation of complementarity

Wave-particle complementarity has been a cornerstone in
the development of quantum mechanics since it was intro-
duced by Niels Bohr in 1928 (Bohr, 1928). It defines a relation
between the which-way information K (which is related to
particlelike behavior) and the interference visibility V (which
is related to wavelike behavior). It states that
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K2 þ V2 ≤ 1: ð14Þ

In the ZWM experiment, the visibility V can be optimal
only when there is no which-crystal information, K. An
extension of the ZWM experiment to three crystals led to
more general theoretical (Ryff, 1995b, 2015) and experimen-
tal (Heuer, Menzel, and Milonni, 2015b; Heuer, Pieplow, and
Menzel, 2015) studies of complementarity.
The quantum state in the experiment performed by Heuer,

Menzel, and Milonni (2015b) (depicted in Fig. 7), before the
beam splitters, can be written as

jψi¼ g1eiðϕsþϕiÞjs3; i2iþg2eiϕi js2; i2iþg3eiϕs js3; i3i: ð15Þ

In Eq. (15) ϕs and ϕi are the phases introduced by the path
delay at the top and bottom mirrors. Furthermore, the path
identification js1i → js3i and ji1i → ji2i is used. The coef-
ficients g1, g2, and g3 correspond to the pump power (and thus
the photon-pair rate) of the β-barium borate (BBO) crystals 1,
2, and 3, respectively.
If g3 ¼ 0, g1 ¼ g2 ¼ g1, and ϕi ¼ 0, one recovers the

original ZWM experiment, and the state in Eq. (15) can be
written as

jψi ¼ eiϕs js3; i2i þ js2; i2i ¼ ðeiϕs js3i þ js2iÞji2i: ð16Þ

In the experiment, one has a single photon in perfect, equally
weighted superposition between paths s2 and s3. Varying the
relative phase ϕs leads to an ideally perfect modulation of the
count rates in detector A, as well as coincidence count rates
between detectors A and D. The perfect interference appears
because one has no information regarding which crystal the
photon pair was created in. Thus, when a photon is observed
in detector A one does not know whether the photon arrived at
the BS through path s2 or s3. This principle indistinguish-
ability of the two events leads to the perfect visibility V ¼ 1.
The new situation appears when crystal BBO 3 is pumped

as well. There are three possibilities for a photon to arrive at
detector A. The first two are through path s1 or path s2
(created in BBO 1 or BBO 2). These two possibilities cannot
be distinguished, as the idler photons are path identified.
However, the photon could also be created in BBO 3. There
one has additional information about the idler path because i2
and i3 are not identified. This additional path information K
decreases the visibility V.
The state for this situation can be written as (with g1 ¼

g2 ¼ g3 ¼ 1 and ϕi ¼ 0)

jψi ¼ ðeiϕs js3; i2i þ js2; i2i þ eiϕs js3; i3iÞ
¼ ðeiϕs js3i þ js2iÞji2i þ eiϕs js3; i3i: ð17Þ

The first two terms in Eq. (17) lead to a modulation of the
interference pattern in detector A, whereas the last term
contributes to path information, thus leading to an incoherent
background in the interference.
One can erase the information of the idler, by detecting the

idler photon after the BS2 in detector D. The detection in D
makes it impossible to know whether the idler photon arrived
through path i2 or i3. If one heralds the detector clicks in A on
an event in detector D (i.e., measures coincidence counts
between A and D), no path information about photon in
detector A exists in principle. Thus, one recovers perfect
interference fringes.
Heuer, Menzel, and Milonni (2015a) generalized the

experiments to stimulated emission configuration by

FIG. 7. An extension of the ZWM experiment to three crystals
allows for more general tests of the complementarity principle.
From Heuer, Menzel, and Milonni, 2015b.

(a)

(b)

FIG. 6. Degree of polarization and path identity. (a) Schematics
of the experiment. (b) Experimentally observed dependence of
the degree of polarization on jTj for various values of γ. The solid
lines represent theoretical curves considering experimental im-
perfections. Adapted from Lahiri et al., 2017a.
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overlapping i1 and i3 with a stimulating HeNe laser and
transmission objects in the idler paths. They found general
relations between pump powers, transmission magnitude, and
visibilities. These experiments demonstrated the connection
between fundamental information of the photon pair’s origin
and visibility well.

G. Transmission measurement with three sources

A variant of the previous experiment analyzing the conse-
quences of the existence of information using cavities was
conducted by Lee, Yoon, and Cho (2017). The experimental
scheme with three sources [Fig. 8(a)] shows another peculiar
feature of the ZWM phenomenon. If two partially reflecting
objects are inserted in the idler beam, they act as a cavity for
idler photons [Fig. 8(b)].
This gives rise to the observation that the visibility between

the signal beams of the last two crystals NL2 and NL3
depends on the properties of the object OS1 placed between
the first and second crystals, in particular, on its reflectivity.
In a simplified picture, this effect can be understood as

follows. The visibility observed in the original (two-crystal)
ZWM experiment depends on the transmission of an object
placed in the idler beam between the two crystals. If only a
fraction of the idler photons originating from the first crystal
are transmitted through the second crystal, an idler photon
detected after the setup is more likely to have been emitted by
the second source. Thus, partial which-way information can
be obtained, resulting in reduced visibility.
Here, however, idler photons that were not transmitted are

not absorbed by the object but remain inside the cavity. A
fraction of them is transmitted after one or more round trips.
Thus, given that the coherence length requirements to observe
interference are still satisfied, the quality factor (i.e., the
number of round trip times) of the cavity determines the actual

probability of transmitting an idler photon after an arbitrary
number of round trips. As the number of round trips of an idler
photon depends on the reflectivity of both mirrors (objects), so
does the observed visibility. In the limiting case of OS1 having
perfect reflectivity, an idler photon is never lost unless it
passed through OS2, even if it has imperfect transmission. In
this case, at least theoretically, unit visibility is observed
(regardless of the transmission of OS2).

IV. RECONSTRUCTION OF OBJECTS WITH
UNDETECTED PHOTONS

In this section, we consider experiments that can reconstruct
properties of objects without ever detecting the photons that
interact with it. The properties can be spatial (for quantum
imaging) or in the frequency domain (for spectroscopy).
Significant interest in this method comes from the fact that
the wavelengths of the detected photon and the probing (idler)
photon can be significantly different, thus allowing for novel
quantum technologies, as we discuss here.

A. Quantum imaging with undetected photons

The imaging experiment that uses the concept of path
identity was demonstrated by Lemos et al. (2014). The
experiment is illustrated in Fig. 9. The nonlinear crystals
NL1 and NL2 are used as photon-pair sources. They are
pumped coherently by a laser beam. Each of these crystals can
generate a photon pair by the process of SPDC. In the
experiment, the signal and idler have different wavelengths:
the wavelengths of the signal and idler are 810 and 1550 nm,
respectively. A 4f lens system is in the path of the idler beam
such that the image of NL1 falls on NL2. The object is placed
in the idler path between the two nonlinear crystals and at the
center of the 4f system. Therefore, the object is at the Fourier
plane of both crystals. An equivalent 4f system is placed in
the path of the signal beam (S1) generated by NL1. After a
beam splitter superposes the signal beams, a camera detects
the outputs. The camera is placed at the focal plane of a
positive lens L0, which is the Fourier plane of both crystals.
The 4f system in the path of the idler consists of two

positive lenses [Fig. 9(b)]. The first lens (L1) focuses the plane
wave to a point ρo on the object. The spherical wave emerging
from this point is converted back to a plane wave by the
second lens (L2). This plane wave then passes through NL2. If
an idler photon is emitted in this plane wave mode, its partner
signal photon will be in a mode that satisfies the phase-
matching condition. The associated plane wave is focused at a
point ρc on the camera. It follows from the discussion in
Sec. III.B that the visibility recorded at ρc will be determined
by the modulus of the amplitude transmission coefficient at
ρo. Therefore, for an absorptive object the visibility map
observed at the camera gives the image. Furthermore, as
evident from Eqs. (11), the phase of the object at each point
can also be constructed. There are numerous ways of con-
structing the image. A simple method of subtracting the two
outputs of the beam splitter was adopted by Lemos
et al. (2014).
Figure 10 shows the images of an absorptive object. The

object is a piece of cardboard from which the silhouette of a

(a)

(b)

FIG. 8. Three crystal setups. (a) If the coherence lengths are
long enough, the reflectivity of optical sample OS1 affects the
interference pattern between NL2 and NL3. This is possible
because the two samples OS1 and OS2 form an optical cavity.
(b) Intuitively, if the reflectivity of OS1 is high, an idler photon
from NL2 has many tries to pass through OS2 because idler
photons that are not transmitted by OS2 remain inside the cavity
and can still be transmitted to NL3 later. This increases the
effective transmission and thus the visibility observed at D23.
From Lee, Yoon, and Cho, 2017.
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cat has been removed [Fig. 10(b)]. Interference patterns that
contain the image obtained at the two outputs of the BS are
shown in Fig. 10(a). When the two outputs are added, the
image disappears [Fig. 10(c)]. This is expected from Eqs. (11).
When one of the outputs is subtracted from the other, the
image contrast is enhanced because the background becomes
nullified [Fig. 10(d)].
The different wavelengths of signal (λ̄S) and idler (λ̄I)

photons also play a role in the image magnification. It can be
shown using an explicit calculation that the magnification is
given by M ¼ f0λ̄S=fI λ̄I, where f0 and fI are the focal
lengths illustrated in Fig. 9(a). A rigorous theory of the
imaging experiment was provided by Lahiri et al. (2015), and
comprehensive analysis of the image quality in terms of pump
power was conducted by Kolobov et al. (2017).
Since its demonstration in 2014 the technique has been

further investigated and developed. Imaging has been

performed without using beam splitters employing the effect
of frustrated down-conversion [see Sec. II.B, Fig. 3(b)], thereby
allowing more stable and fast image acquisition (Kviatkovsky
et al., 2020; Paterova et al., 2020; Kviatkovsky, Chrzanowski,
and Ramelow, 2022) and even leading to experiments that
recorded videos with undetected photons (Gilaberte Basset
et al., 2021). The imaging resolution and its dependence on the
involved wavelengths has been studied, which led to applica-
tions of microscopes to the midinfrared regime, where the
image can be detected using standard near-IR cameras
(Kviatkovsky et al., 2020; Paterova et al., 2020); see
Fig. 11. The resolution limit is determined by the undetected
light that passes through the object. Thus, it is in principle
possible to obtain resolution characterized by a wavelength
much shorter than the detected wavelength (Viswanathan,
Lemos, and Lahiri, 2021b; Fuenzalida et al., 2022). Note that
the quantum imaging experiment discussed by Lemos et al.
(2014) is enabled by the momentum correlation between
twin photons, whereas the imaging experiments discussed
by Viswanathan, Lemos, and Lahiri (2021a, 2021b) and
Kviatkovsky, Chrzanowski, and Ramelow (2022) are enabled
by the position correlation. These are two complementary
domains of quantum imaging with undetected photons.
We stress that imaging by path identity is fundamentally

different from ghost imaging (Pittman et al., 1995; Gatti et al.,
2004). In ghost imaging, the light that interacts with the object
must be detected and coincidence or an equivalent measure-
ment must be performed (Fig. 12). In contrast to ghost
imaging, imaging by path identity does not involve the
detection of the light that illuminates the object, and it does
not involve any coincidence or equivalent measurements.
Besides, ghost imaging can be understood purely classically
(Bennink et al., 2004), while imaging by path identity is a
genuinely quantum mechanical phenomenon, as described in
Sec. III.C.

B. Quantum spectroscopy with undetected photons

In Sec. IV.A, we explained how the principle of path
identity is used for imaging. This effect, based on the

(a) (b) (c)

FIG. 9. (a) Imaging setup. NL1 and NL2 are two identical nonlinear crystals pumped coherently by 545 nm laser light. Each crystal can
produce a signal (810 nm) and idler (1550 nm) photon by collinear spontaneous parametric down-conversion. Dichroic mirrors separate
signal and idler light and are sent to different paths. The alignment of I1 and I2 gives the path identity. The object is placed on I1 between
NL1 and NL2. 4f lens systems are used in the signal and idler arms. (b) 4f lens system on an idler path. An idler wave vector is focussed
at a point ρo on the object plane. The emerging spherical wave from ρo is converted back to a plane wave. (c) Detection system. The
corresponding signal wave vector is focused at a point ρc on the image plane (camera). Adapted from Lahiri et al., 2015.

FIG. 10. (a) The two outputs of the beam splitter. The image of the
cat shows the area where interference occurs. (b) The absorptive
object: the cat. (c) The sum of the outputs of the beam splitter
contains no image. (d) Subtraction of the outputs leads to enhance-
ment of the image contrast. Adapted from Lemos et al., 2014.
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distinguishability of the photons in the spatial degree of
freedom, can be applied to distinguishability in any degree
of freedom, such as frequency domain. In Sec. IV.C, we
explain how distinguishability in the frequency domain is

exploited to accomplish spectroscopy with undetected pho-
tons. Today, spectroscopy is one of the most important
workhorses in various fields in science and technology.
Ranging from biology, chemistry, and climate research to
fundamental cosmology, spectroscopy reveals key informa-
tion about these diverse systems in a broad range of the
electromagnetic spectrum (Stewart, 2004). Especially note-
worthy are the infrared and far-infrared regions of the
electromagnetic spectrum. These spectral ranges are typical
for vibrational and rotational modes of different molecules,
such as carbon dioxide.
However, special optical equipment and especially detec-

tors with low efficiencies pose significant technological
obstacles. Kalashnikov et al. (2016) used the principle of
path identity to probe the spectrum of carbon dioxide and
detected it at a different wavelength. Particularly notable is
that the detection wavelength can be chosen such that it lies in
the visible range where efficient detectors exist (Wolf and
Silberberg, 2016).

FIG. 12. Ghost imaging is fundamentally different from imag-
ing by path identity. In ghost imaging, the photons interacting
with the object must be detected, and coincidence or an
equivalent measurement must be performed. Adapted from
Ragy and Adesso, 2012.

FIG. 13. Principle scheme of spectroscopy with undetected
photons. Two nonlinear crystals probabilistically emit identical
and frequency correlated photon pairs. Identifying the paths of
the respective photon pairs then allows one to observe interfer-
ence in the signal photon. The acquired phase in the interference
pattern depends on all three photons involved, the pump, signal,
and idler, which are all at different frequencies. The interference
visibility is governed by the transmission of the sample placed in
the idler beam. Thus, at an absorption line of the sample under
study the visibility in the spectrogram detected at the camera
disappears. From Jean-Pierre Wolf.

FIG. 11. Midinfrarer microscopy with undetected photons. Two separate experiments demonstrated how a magnification system in the
idler photon can lead to a microscope where the magnified image can be observed with standard infrared cameras. (a) Characterization
of an imaging arrangement. The yellow curves indicate the unmagnified setup, while the green one shows the magnified one. The system
shows a magnification of roughly 10 times. From Kviatkovsky et al., 2020. (b) Resolution test measured with different focusing lenses.
From Paterova et al., 2020.

FIG. 14. Experimental details of spectroscopy with undetected
photons. Two lithium niobate nonlinear crystals are employed to
create the nondegenerate but perfectly frequency correlated photon
pairs. A quasicollinear emission scheme is used to identify their
respective paths, and the emission angle θ of the down-conversion is
small relative to the pump beamwaista. Avacuum chamber is used
tohost the twononlinear crystals and the sample of interest,which is
CO2 here. A lens images the down-converted photons onto a slit to
select a specific angular emission spectrum. The following spectro-
graph enables precise determination of the signal wavelength.
Finally, a two-dimensional spectrogram in the angular-wavelength
dimensions is recorded by a camera. Adapted from Kalashnikov
et al., 2016.
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In Sec. III we studied the explicit dependencies of the
expected intensities upon an object in the idler path; see Fig. 4.
The linear relation between the observed visibility and the
absorption of the idler beam suggests that this technique could
be used for absorption spectroscopy. Wolf and Silberberg
(2016) explored this effect to detect infrared absorption lines
of carbon dioxide molecules (CO2) detecting visible light. The
principle scheme is depicted in Fig. 13. Two nonlinear crystals
made from lithium niobate (LiNbO3) emit nondegenerate
photon pairs correlated in their frequencies. The idler photon
is centered at around 4161 nm and can be absorbed by the CO2

molecules between the two nonlinear crystals, as shown in

Fig. 13. Overlapping the signal and idler photon paths
identically at the second nonlinear crystal allows one to
observe interference in the signal photon. The interference
visibility is thereby determined on the transmission of the CO2

gas sample. Figure 14 shows the experimental apparatus. In
contrast to the idealized scheme in Fig. 13, all rays in Fig. 14
are guided collinearly through the absorbing medium. The
nonlinear crystal is pumped with a 532 nm laser. It produces
quasicollinear photon pairs perfectly correlated in their
degenerate wavelength at λs ¼ 610 nm and λi ¼ 4161 nm
for signal and idler photons, respectively. After the two
nonlinear crystals and the medium to be studied, the intensity

FIG. 15. Experimental results. (a) Calibration measurement in a quasivacuum regime (inset). Selecting a specific wavelength cut and
fitting Eq. (18) yield the absorption coefficient for the vacuum and a phase reference. (b) Spectrograph with a filled carbon dioxide
chamber. The decrease of visibility and the phase shift is due to the absorption and refractive index change between the vacuum in (a)
and the carbon dioxide in (b). The data displayed in (c) and (d) show the wavelength dependence of the absorption and refractive index
coefficient in the vicinity of the resonance for carbon dioxide at a pressure of 10.5 torr. The blue squares represent experimental
measurements, and the red curve is a theoretical calculation using HITRAN data for (c) and a Kramers-Kronig relation for (d). Data
figures from Kalashnikov et al. (2016).
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of the signal photon is given by the following relationship
(Belinsky and Klyshko, 1992; Klyshko, 1993):

Iðλs; θsÞ ∝
1

2
sinc2

�
δ

2

�
½1þ jτi;mj cosðδþ δmÞ�;

δðλs; θsÞ ¼
Lðkp − ki − ksÞ

cosðθsÞ
;

δmðλs; θsÞ ¼
Lmðkp − ki − ksÞ

cosðθsÞ
; ð18Þ

where θs describes the emission angle, the phase shifts
depending on the wavelengths and emission angles resulting
from the nonlinear crystals δ, and the medium to be studied
δm. The wave vectors kj are related to the wavelength and their
respective refractive index nj via kj ¼ 2πnj=λj. Furthermore,
the transmittivity amplitude τi;m is connected by expð−αmLmÞ
to the amplitude absorption coefficient αm. For vanishing
transmittivities αm ¼ 0 the visibility V also vanishes. Here the
visibility is defined as V ¼ ðImax − IminÞ=ðImax þ IminÞ. Light
scattering, especially in biotissues, can be taken into account;
for details see the Supplemental Material of Kalashnikov
et al. (2016).
Imaging the SPDC radiation onto a slit in front of the

spectrograph results in a two-dimensional wavelength-angular
spectrogram recorded with an electron multiplying charge-
coupled device (or EMCCD) camera. The small angular
spread of the SPDC of about 10 mrad introduces the necessary
phase shift between a signal and idler to measure the visibility.
Using a spectrograph allows one to precisely control the
detected visible spectrum at around 610 nm. Energy con-
servation within the down-conversion process combined with
knowledge of the pump and signal wavelengths allows one to
infer the idler wavelength interacting with the medium to be
studied. Figure 15 shows a typical experimental measurement
of a two-dimensional wavelength-angular spectrogram. A
calibration measurement under ideal near-vacuum conditions
is performed first; see Fig. 15(a). Next the medium of interest,
in this case CO2, is placed between the two nonlinear crystals.
Owing to absorption and refractive index differences between
CO2 and the vacuum, the observed visibility drops and the

relative phase changes, respectively, as shown in Fig. 15(a)
and 15(b). Selecting one specific wavelength cut and fitting
Eq. (18) to the experimentally measured data allows one to
determine the absorption coefficient αm as well as the
refractive index nm [depicted in Fig. 15(d)].
The complex refractive index describes both the absorption

and the refractive index in a single complex number. The
Kramers-Kronig relations connect the real and imaginary parts
of the complex refractive index. If one of the two parts of the
complex number is known, the other part is uniquely
determined. Using these relations, the experimental data
can be subjected to a consistency check. Indeed, the exper-
imentally observed absorption spectrum and refractive index
changes reproduce the Kramer-Kronig relations well, as
depicted in Figs. 15(c) and 15(d). Further developments of
these works have shown how one can perform spectroscopy
without a spectrometer. Lindner et al. (2020, 2021) instead
used one displaceable mirror, which introduces additional
phase shifts. A Fourier transform of the interferograms of
many mirror positions gives a spectrum from which one can
then extract properties of the samples.
The suggested method of spectroscopy with undetected

photons allows the direct measurement of the complete
imaginary refractive index of a medium (Paterova et al.,
2018a). The strength of this technique lies in the possibility
of probing the medium at far-infrared to even terahertz
frequencies (Tonouchi, 2007) and detecting the signal at
visible wavelength. And, indeed, in 2020 an experiment
demonstrated quantum sensing and quantum spectroscopy
in the terahertz regime (Kutas et al., 2020, 2021) using an
adaptation of the experiment by Herzog et al. (1994) described
in Fig. 3(b). Kutas et al. (2020, 2021) showed how terahertz
photons interact with the sample in free space, and informa-
tion about the sample thickness was gathered by measuring
visible photons; see Fig. 16. In this way, they could use a
standard, uncooled CMOS camera for the detection and do not
need any expensive pulsed laser. Specifically, they used a
pump laser with a wavelength of 660 nm. Photon pairs are
generated using SPDC, with a signal wavelength of 661 nm
and an idler frequency in the terahertz regime. In these
frequency regimes, down- and up-conversion of thermal

(a) (b)

FIG. 16. Terahertz quantum sensing using frustrated photon-pair generation. (a) A conceptual depiction shows that the signal si
goes through the nonlinear crystal (NL) and is directly reflected back. The idler ii is reflected at an indium tin oxide (ITO) coated
glass and interacts with the object before it is reflected back to the crystal. Two-photon quantum interference there allows one to
measure the depth information of the object. (b) Concrete plot of the experimental setup, with pump laser, wave plates (λ=2), a
nonlinear periodically poled lithium niobate crystal (commonly known as PPLN), volume Bragg grating (VBG), transmission
grating (TG), and spatial filters (SFs). Adapted from Kutas et al., 2020.
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radiation are significant and need to be carefully studied
(Haase et al., 2019). The terahertz idler interacts with the
object while the signal is untouched. The signal and idler and
the laser all arrive at the crystal after a reflection, leading to a
potential second pair-creation process. As the creation proc-
esses are coherent, the two creation processes interfere. The
object’s refractive index results in a change of optical length of
the idler photon, and thereby a shift of the envelope of the
interference pattern. Haase et al. (2019) first measured the
refractive index by standard interferometric methods and
could thereby directly infer the depth of the object by
observing the shift of the envelope. In a follow-up work,
Kutas et al. (2021) showed how to extend their technique to
spectroscopy in the terahertz regime. Specifically, they demo-
nstrated the absorption measurements of the molecules.
A combination of the imaging and spectroscopy techniques

allows one to perform spectroscopy without using a spec-
trometer by detecting photons only on a camera (Paterova
et al., 2017). The sensitivity of the spectroscopy technique can
be enhanced by performing spectroscopy using multiple
sources in a series (Paterova and Krivitsky, 2020), thus
combining the cavity case (Ou and Lu, 1999) with the
spectroscopy using the undetected photon technique.

C. Optical coherence tomography with undetected photons

Optical coherence tomography (OCT) is a method in
classical optics to determine optical properties of a sample
at specific depths within it (Huang et al., 1991; Fercher et al.,
2003). The technique is typically implemented in a Michelson
interferometer [Fig. 17(a)]. A thick sample is placed in one
path of the interferometer. Light is partially reflected from the
sample’s front surface and partially penetrates the sample
before it is reflected from various inside layers. The reflected
light is then recombined with light from the second path of the
interferometer and interference is observed. By employing
light with a short coherence length, the path-length require-
ments to observe interference are met only if the reflection
occurs at a particular depth of the sample. Thus, properties
determined from the interferogram (such as reflectivity)
correspond to a particular depth of the sample. An adjustment
of the path-length difference by moving the mirror in the
second path allows one to tune the depth at which the object is
probed. In this way, the method provides a way of imaging
different “depth sections.” Among other fields, the technique
is frequently used in the life sciences and medicine (Fujimoto
et al., 1995; Puliafito et al., 1995; Spaide et al., 2018).
The technique can be extended using the concept of path

identity. In this case, the interference resulting from indis-
tinguishability of the origin of a photon pair is used to probe
sample properties in a laterally resolved way. Instead of
employing a classical interferometer, a Zou-Wang-Mandel
(Vallés et al., 2018) or a Herzog-Rarity-Weinfurter-Zeilinger
(Paterova et al., 2018b) arrangement have been used to probe
a sample placed in the undetected beam between the two
photon-pair sources.
The schemes based on path identity make use of the

coherence length requirements of the nonlinear interferom-
eter; see Jha et al. (2008). In particular, they exploit the fact

that interference is observed only if the path-length difference
between the signal and idler photons is tuned in a way that
does not allow one to recover the source of a photon pair by a
difference in the detection times of the two photons.

(a)

(b)

(c)

FIG. 17. Classical optical coherence tomography and optical
coherence tomography with undetected photons. (a) Classical
OCT is typically implemented with light of a short coherence
length in a Michelson interferometer. The reflection from differ-
ent layers within the object produces an interference pattern if
recombined with light that has traveled the corresponding
distance in the second path. The sample can be laterally resolved
by tuning this distance using the mirror M. (b) The specified
implementation of OCT with undetected photons uses non-
degenerate photon pairs produced by a nonlinear crystal. The
signal (idler) beam emitted toward the right is reflected back
through the crystal via the mirror M (via the sample). Con-
sequently, interference in the rate of detected photon pairs can be
observed. Only the signal beam is detected toward the left of the
source. The observed interference is affected by the properties of
the sample if the coherence length requirements are met. This is
the case if the idler photon is reflected at a particular depth of the
object that corresponds to the length of the signal path. It is thus
possible to probe different depths of the sample. (c) Example
showing the detected rate of signal photons (at 582 nm) as the
signal path length is scanned by translating the mirror M in the z
direction. The sample in the idler beam (at 3011 nm) in this case
is a Si window. Reflections at both the front and back surfaces as
well as multiple reflections result in interfering signal photon
rates at the corresponding mirror positions. Adapted from
Paterova et al., 2018b.
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This allows one to perform the following procedure. If the
object is thick and partially transparent, multiple possibilities
exist for the idler beam to be reflected between the two
SPDC processes. Reflections at different depths of the
sample correspond to different path lengths of the idler
beam between the two possible SPDC processes. Typically,
the idler beam can be reflected by layers within the sample
that are separated by a lateral distance that exceeds the
coherence length. In this case, it is possible to tune the path
length of the signal beam to observe interference correspond-
ing to a particular path length of the idler beam [Fig. 17(b)].
Thus, the transmission and phase shift at different depth
sections of the sample (for which the path-length require-
ments are met) affect the observed interference pattern in the
signal beam.
As an example, we show a result of the experiment by

Paterova et al. (2018b). They used the method to determine
the positions of reflective layers in different samples, includ-
ing the reflections off the front and back surfaces of a Si
window [Figs. 17(b) and 17(c)]. The object is probed using IR
light, while the wavelength of the detected light lies in the
visible range.
This allows one to probe sections of different depths

of the object that reflects only undetected light, while the
detection and the scanning of the depth is performed in

another light beam, which typically is at a different wave-
length.
Recently, a further adaptation of this scheme was demon-

strated that featured the detection in the Fourier domain, i.e.,
replacing the detector by a spectrometer (Vanselow et al.,
2020). This modification allows one to reconstruct the proper-
ties of the sample at different depths via a Fourier transform
[see (Fercher et al. (2003) for the classical technique] of the
spectroscopic data. It thus eliminates the requirement to
physically move a mirror in order to scan the path length;
see Fig. 18. This allows, in the classical regime, for orders of
magnitude higher sampling rates and significantly higher
mechanical stability. Those advantages are crucial for prac-
tical applications and the development of future quantum
technologies.

D. Dual-wavelength properties

The previously discussed imaging, spectroscopic, and
tomographic schemes have one important common feature:
the wavelength of the detected light can be different from the
wavelength of the light that probes the sample. This fact opens
up new possibilities in these fields because now one can probe
samples at a frequency (wavelength) for which efficient and
cheap detectors are not available.

FIG. 18. Fourier-domain optical coherence tomography (FDOCT). (a)(i) Classical FDOCT. (a)(ii) The quantum version with
undetected photons. In the experiment of Vanselow et al. (2020), they produced a midinfrared photon that interacted with the sample.
The information is obtained through a spectrometer that detects the 800 nm signal photon. FDOCT has no moving parts and thus
promises significantly higher sampling rates and stability. Adapted from Vanselow et al., 2020.
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As an example, we consider the imaging experiment. Here
the wavelength of the detected light is 810 nm, and the
wavelength of the light probing the object is 1550 nm.
Figure 19 shows images of a phase object that is invisible
to the detected light. This is because the chosen object
[Fig. 19(b)] introduces a relative phase shift of approximately
2π for the detected light. However, the same object produces
an approximately π phase shift for 1550 nm light and is
therefore imaged in this scheme [Fig. 19(a)]. It is therefore
impossible to realize transmission imaging by illuminating it
with the detected light. However, one can obtain the image of
this object in the imaging scheme with undetected photons.
These two-wavelength effects not only have potential for
commercial applications in terahertz or deep-UV spectro-
scopy but also lead to interesting questions on whether
interference properties scale with λS or λI. The surprising
answer is, with neither, as we now show.

E. Wavelength dependence of interference fringes with
undetected photons

It was shown that the setup for quantum imaging with
undetected photons (Fig. 10) can be used for interferometry
with undetected photons (Hochrainer et al., 2017a). The
associated phenomena exhibit several noteworthy features
compared to standard classical interferometry.
In a traditional two-path interferometer, spatial fringes

appear if the interfering beams are misaligned relative to
one another. A tilt of one of the beams results in a striped
interference pattern, whereas the additional propagation dis-
tance or defocused lens system causes circular fringes to
appear.
In a Zou-Wang-Mandel experiment, it is possible to observe

analogous interference fringes if the undetected idler beam
from one source is slightly misaligned with respect to the other
(Hochrainer et al., 2017a). Without directly interacting with
the interfering signal beams, spatial interference patterns are
formed as depicted in Fig. 20.
While such patterns in classical interferometry are often

explained as the wave fronts of the two interfering beams
being tilted or curved with respect to one another, it is not
possible to attribute a specific phase structure to one photon
beam of a down-converted pair. Thus, a classical explanation

fails to explain the observed interference phenomenon, which
can be understood in a similar way as the phase imaging with
undetected photons; see Sec. IV.A. It relies on the fact that a
single phase factor is attributed to the photon pair as a whole
and not to the individual photons of a pair.
The observation of a spatial structure in ZWM interference

can explain earlier results obtained by Grayson and Barbosa
(1994), in which a reduced visibility was observed due to a
slight misalignment of the undetected beams. If the total
intensity over the entire spatially structured interference
pattern is determined using a bucket detector, the fringes
amount to a lower measured visibility.
In classical interferometry, the scaling of the spatial

structure of the interference patterns depends on the wave-
length of the interfering light. Because of the different
wavelengths of signal and idler beams, the following question
arises: which wavelength characterizes the pattern of inter-
ference fringes that are controlled with undetected photons?
As the fringes are manipulated in the idler beam and observed
in the signal beam, two wavelengths are involved in their
formation.
This question was analyzed by comparing circular fringes

obtained after defocusing the lens system in the idler beam to
circular fringes obtained if the same lens manipulation were
performed on one of the interfering beams in an analogous
classical interferometer (Hochrainer et al., 2017a). In the
classical case, the radius ρn of the nth minimum and
maximum obeys1 (Born and Wolf, 1999)

FIG. 19. (a) Top panel: no image is obtained when the object is
imaged by 810 nm light. Bottom panel: both outputs of the beam
splitter contain the image when the object is placed in the idler
beam (1550 nm). (b) The phase object that is invisible to 810 nm
light. Adapted from Lemos et al., 2014.

(a)

(b)

(c)

FIG. 20. Interference fringes produced with undetected photons.
The spatial interference pattern observed in the superposed beam
can be controlled by manipulating a third beam, which is not
detected. The appearance of the pattern is analogous to that
obtained if the same manipulations were performed on one of the
interfering beams in a traditional two-path interferometer. From
Hochrainer et al., 2017a.

1The integer n ¼ 0; 1; 2;… corresponds to the maxima, and the
half integer n ¼ 1=2; 3=2; 5=2;… .
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d
2f2C

ρ2n þ φ0 ¼ nλ; ð19Þ

where d denotes the effective additional propagation distance
that is caused by the lens shift, fC represents the focal length
of the lens in front of the camera [see Fig. 20(c)], φ0 subsumes
all spatially independent phase factors, and λ is the wavelength
of the interfering light.
If Eq. (19) is applied to the circular fringes produced in the

ZWM interferometer, the wavelength characterizing the pat-
tern is determined to be (see Fig. 21)

λ ¼ λ2S
λI
: ð20Þ

Note that this observed “equivalent wavelength”
(420� 7 nm) is significantly smaller than any of the involved
wavelengths (signal, 810 nm; idler, 1550 nm), even the
pump (532 nm).
This peculiar feature is understood as a combined effect of

the phase shifts being introduced at the wavelength of the
undetected idler photons and the detected photons at the signal
wavelength (Hochrainer et al., 2017a). Because of momentum
conservation in nondegenerate SPDC, the photon at the longer
wavelength is emitted at a larger angle with respect to the
optical axis than its partner photon at the shorter wavelength.
The difference in emission angles is determined by the
wavelength ratio. This results in a wavelength-dependent
scaling of the interference pattern, which in our case leads
to fringes with a smaller spacing than expected when one
considers only the idler wavelength. The same effect
gives rise to the wavelength-dependent magnification (or

demagnification in this case) in quantum imaging with
undetected photons; see Sec. IV.A.

V. RECONSTRUCTION OF THE QUANTUM STATE OF
UNDETECTED PHOTONS

The experiments described in Sec. IV make use of induced
coherence without induced emission in a multimode setting.
The results show that it is possible to determine properties of a
sample placed in one of the beams by performing measure-
ments only on the other beam. Instead of employing photon
pairs in a known quantum state in order to determine unknown
properties of an object, it is possible to use a known object and
determine properties of the employed photon pairs, and to
obtain information about one photon by detecting the other.
A second branch of applications of the concept of path

identity exploits the possibility of measuring correlations
between two photons by detecting only one of them.
Correlation measurements of photons are used ubiquitously
in today’s quantumoptics. Traditionally, suchmeasurements are
performed using themethod of coincidence detection,which is a
powerful experimental tool in both fundamental science and
technology (Burnham and Weinberg, 1970; Pan et al., 2012).
The adaptation of these techniques to interference by path

identity extends the reach of optical experiments to regimes in
which only one of the photons can actually be detected (such
as if one of two correlated photons is at a wavelength for
which no suitable efficient detector currently exists).
From a fundamental perspective, the experiments show that

information stored in the correlation of a photon pair can be
accessed by measurements on only one of its constituents. In
other words, a second order property of light can be trans-
ferred to a first order property and can be determined using a
single detector.

A. Quantifying the momentum correlation between
two photons by detecting one

Traditionally, the transverse momentum correlation
between two photons is measured by the coincident detection
of both photons. One way to implement such a measurement
is depicted in Figs. 22(a) and 22(b). The two photons are
detected with individual detectors that resolve the transverse
momentum of the respective photon. The transverse momenta
are proportional to the transverse component of a wave vector
of signal and idler photon (denoted by qS and qI). By
scanning the relative positions of the detectors, it is possible
to determine the conditional probability distribution PðqIjqSÞ
of detecting one photon with a particular momentum, given
that the momentum of the other photon is known. The
variance σ2ðqIjqSÞ of this conditional probability distribution
serves as a quantitative measure for the strength of the
momentum correlation. Such measurements have been imple-
mented in a variety of different ways (Howell et al., 2004;
Edgar et al., 2012). However, all of these traditional methods
require the joint detection of both correlated photons. Using
the concept of path identity, it is possible to determine the
correlation strength without this requirement.
A quantitative measurement of the momentum correlation

between two photons by detecting only one of them has been
demonstrated experimentally (Hochrainer et al., 2017b); see

(a)

(b)

(c)

FIG. 21. Wavelength dependence of circular interference
fringes. The first two lines depict classical interferometers and
circular fringes obtained by shifting the lens by a fixed distance.
In (a) the light is at the signal wavelength (810 nm), whereas in
(b), it is at the idler wavelength (1550 nm). (c) The interference
fringes obtained in the ZWM setup, where the spacing of the
fringes corresponds to the equivalent wavelength λeq ¼ λ2S=λI .
From Hochrainer, 2019.
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Lahiri et al. (2017b) for a theoretical description. In this
experiment, a correlated photon pair is produced in a super-
position of two sources NL1 and NL2. One of the photon
beams from each source is aligned to be indistinguishable
[Figs. 22(c) and 22(d)]. The other beams from each source are
superposed on a beam splitter and subsequently detected on a
camera. The detection is performed in such a way that the
momentum of a detected photon can be inferred, although it is
unknown which source it was initially emitted from. A
momentum-dependent phase shift φIðqIÞ is introduced on
the undetected idler beam between the sources. The phase
shift was experimentally implemented by defocusing the lens
system between the two sources. As in Sec. IV.E, this results
in the formation of a circular interference pattern on the
camera.
When the momentum correlation between the signal and

idler photons is varied, the appearance of the pattern changes
[Figs. 22(c) and 22(d)]. This fact allows one to reconstruct
how strongly the momenta of the two photons of a pair are
correlated, although the measurement is performed by observ-
ing only one of them. In the experiment, the spatially
dependent visibility of the resulting interference patterns
was used to numerically evaluate the strength of the momen-
tum correlation σ2ðqIjqSÞ (Hochrainer et al., 2017b); see
Fig. 23.
The reason for the dependence of a single-photon interfer-

ence pattern on the correlation between two photons becomes
apparent when one considers how the pattern is formed;
compare to Sec. IV.A. The camera is located behind a lens
system that maps one transverse momentum of the superposed
signal beam qS to one point on the camera. The interference
fringe at a selected point on the camera is observed by
detecting signal photons and is influenced by the phase shift

introduced on the corresponding partner idler photons. In the
case of perfect momentum correlation between the detected
signal photon and the undetected idler photon, this phase is
controlled by phase shifts of a particular momentum of the

(a)

(b)

(c)

(d)

FIG. 22. Measuring the transverse momentum correlation of a photon pair with and without coincidence detection. (a),(b) In the
traditional method, each of the two photons is registered by a detector in a way such that its individual momentum can be inferred. By
comparing the coincidence detection events at different pairs of momenta, the correlation is quantified. (a) A sharp correlation
(implemented by a large pump focus) leads to a narrow coincidence peak at a particular relative momentum, whereas (b) weakly
correlated photons (small pump waist) lead to a similar amount of coincidence counts in a wider range of momenta (Monken, Ribeiro,
and Pádua, 1998). Using the concept of path identity, two copies of the photon-pair source are arranged in a ZWM configuration. By
introducing a spatially dependent phase shift on the undetected idler beam between the two sources, a single-photon interference pattern
is observed in the superposed signal beam. The visibility of the pattern depends on how strongly signal and idler photons are correlated.
(c) In the case of a loosely focused pump beam, the photons are highly correlated in momentum, and spatial features of an interference
pattern are visible. (d) The opposite is true of weakly correlated photons. The visibility is determined from measurements on only one of
the photons and can be used to quantitatively reconstruct the correlation between the two photons. Adapted from Hochrainer, 2019.

≈ 275 μm≈ 125 μm≈ 85 μm ≈ 160 μm

FIG. 23. Experimental results of the correlation measurement
between two photons when only one of them is detected. The
correlation between the signal and idler photons was tuned by
changing the waist (wP) of the pump beam in both crystals
simultaneously. The fringe pattern observed in the interference of
the two signal beams gradually exhibits a higher visibility as the
correlation between the signal and idler photons is increased. This
allows one to numerically reconstruct the variance of the condi-
tional probability distribution of the momentum of an idler
photon, given the momentum of a signal photon, without relying
on coincidence detection. The results are shown compared to the
theoretical prediction. Adapted from Hochrainer et al., 2017b.
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undetected beam. On the other hand, if the momentum
correlation between the two photons is imperfect, the detec-
tion of a signal photon at a particular point on the camera does
not allow one to precisely infer the momentum of its partner
idler photon. Therefore, the phase shift φIðqIÞ that determines
the interference at that point on the camera can vary within a
range that is determined by the momentum correlation. The
observed phase in this case is not uniquely determined, but
rather is given by a weighted average over the possible phase
shifts corresponding to the possible qI . As a result, the
visibility of the observed interference pattern is reduced for
a weak momentum correlation.
The experiment shows that it is possible to access properties

of a photon pair by measuring only a part of it. A measurement
that traditionally requires coincidence detection of both
photons can be performed with only one detector. In that
sense, the “path identification” of the undetected beams plays
the role of coincidence detection and can be used to access
higher order properties of the photon pair with a single
detector.

B. Quantifying quantum entanglement without coincidences

The following question arises: To what extent can the
presented technique be generalized in order to perform
measurements of other properties that usually require coinci-
dence detection? It would be interesting to adapt the method to
determine not only the momentum correlation but also the
position correlation of a photon pair (or in general correlations
in any conjugate or mutually unbiased measurement bases).
This would allow an experimental test of quantum entangle-
ment that relies solely on measurements of one photon.
A series of theoretical (Lahiri et al., 2021; Zhan, 2021) and

experimental (Lemos et al., 2020) studies have explored how
true quantum correction in the form of entanglement can be
obtained in a related way. Rather than measuring the two
entangled pairs, the main idea is to have two identical sources
of entangled pairs. Now in the spirit of the ZWM experiment,
the idler path from the first crystal is overlapped with the idler
from the second crystal. In that way, a set of single-photon
interference patterns can be generated. The entanglement of
the two-photon quantum state can then be directly quantified
by the visibility of the interference patterns. This field is still in
its infancy, and we expect that the coming years will show the
impact of this tool in the toolbox of quantum information
experimentalists.

VI. ENTANGLED PHOTON SOURCES USING PATH
IDENTITY

In this section, we explore the connection between the path-
identity principle and photonic quantum information experi-
ments. Photonic experiments that exploit quantum mechanical
effects, such as Bell violations or BosonSampling, require
either single-photon sources or entangled photon-pair sources.
We start by explaining how to create single-photon sources
using path identity. Furthermore, we describe how to generate
entangled photons in higher dimensions using path identity.
Finally, we present general schemes based on path identity to

create genuine multiphoton and high-dimensional entangled
quantum states.
Since addressing entanglement in detail is beyond the scope

of this review, we refer the interested reader to Bruß (2002),
Horodecki et al. (2009), and Plenio and Virmani (2014) for
more information. Thorough reviews on how to experimen-
tally create and detect genuine two-photon and multiphoton
entanglement in two or more dimensions were given by Pan
et al. (2012), Friis et al. (2019), Slussarenko and Pryde
(2019), and Erhard, Krenn, and Zeilinger (2020).

A. Generation of multiphoton states with tailored parameters

The idea of frustrated or enhanced two-photon generation
(see Sec. II.B) has been generalized to the case of multiple
passes through the samenonlinear crystal in a resonant cavity for
the SPDCphotons.Amongother interference effects, it has been
shown that the time difference between the signal and idler
photons can be controlled by filtering the emission spectrum by
the cavity. This technique enables control over the correlation
time (inverse bandwidth) between the signal and idler photons,
which is analogous to greatly enhancing the crystal length for a
particular wavelength band (Ou and Lu, 1999).
Further development of this idea led to the possibility of

controlling multiple aspects of quantum states by exploiting
nonlinear interference between multiple sources. Among other
benefits, this approach enabled the generation of high-quality
multiphoton states where the joint spectral amplitude or
temporal mode structure can be tailored for specific applica-
tions (Su et al., 2019; Cui et al., 2020).
With the development of nanophotonic nonlinear optics, the

cavity enhanced generation of photon pairs has since become
an expansive field with numerous practical implications
(Kues et al., 2019; Feng, Guo, and Ren, 2020).

B. High-dimensional entanglement by path identity

We saw in Sec. II.C that Hardy proposed a source of
polarization-entangled photons by overlapping the output of
two crystals and modifying the polarization between the
crystals. While this two-photon polarization-entangled source
is a standard workhorse in quantum optics, it took 25 years
until it was understood that the concept is much more
generally applicable (Krenn et al., 2017). The generalization
was found only with the help of a computer program for
designing quantum experiments (Krenn et al., 2016; Krenn,
Erhard, and Zeilinger, 2020).
To encode high-dimensional quantum information, we

employ a multilevel physical degree of freedom. For photons
there are several degrees of freedom capable of encoding
quantum information beyond qubits. For example, the fre-
quency bin (Olislager et al., 2010; Bernhard et al., 2013;
Reimer et al., 2016), time bin (Franson, 1989; Tittel et al.,
1998), path (Reck et al., 1994; Schaeff et al., 2012; J. Wang
et al., 2018), and the spatial modes (Allen et al., 1992; Mair
et al., 2001) form such multilevel encoding degrees of
freedom. In the following, we introduce the spatial degree
of freedom, in particular, the orbital angular momentum
(OAM) of photons (Yao and Padgett, 2011; Erhard, Fickler
et al., 2018).
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The OAM of photons spans in principle an unbounded state
space and is thus ideally suited to encode high-dimensional
quantum states. Physically, the OAM essentially stems from a
spatially varying phase distribution that helically wraps
around the axis of propagation according to expðilϕÞ, with
ϕ describing the azimuthal angle and the integer l defining the
amount of OAM in units of ℏ. A photon with nonzero OAM
exploits one or more phase singularities2 where the amplitude
is zero. These phase singularities lead to the typical doughnut-
shaped intensity distributions for light beams carrying OAM.
The OAM forms an ideal test bed for proof-of-principle
quantum experiments since many techniques to create,
manipulate, and measure OAM on a single-photon level exist
in the laboratory (Heckenberg et al., 1992; Leach et al., 2002;
Marrucci, Manzo, and Paparo, 2006; Berkhout et al., 2010;
Morizur et al., 2010; Babazadeh et al., 2017; Fontaine et al.,
2019; Brandt et al., 2020).
Historically, creating high-dimensional entanglement has

relied on conservation laws of the utilized photon creation
process (Mair et al., 2001; Vaziri, Weihs, and Zeilinger, 2002;
Krenn et al., 2014). For example, in SPDC the OAM is
conserved. Therefore, the OAM of the down-converted
photons sums up to the OAM of the pump photon
lp ¼ ls þ li. Using a pump beam with zero OAM
(lp ¼ 0) yields a perfect anticorrelation ls ¼ −li within
the entangled quantum state. The desired coherent overlap
is guaranteed since in principle no information is available on
which combination of OAM modes is realized. However, the
probability that a certain OAM correlation occurs is different
for all OAM combinations. It is more likely that the two down-
converted photons are found in a lower order OAMmode than
at higher orders (Miatto et al., 2012). This in turn results in
inherently nonmaximal, though high-dimensional, entangled
quantum states. There are methods to precompensate for
(Kovlakov, Straupe, and Kulik, 2018; Liu et al., 2018) or
postcompensate for (Vaziri et al., 2003; Dada et al., 2011) this
naturally occurring unbalance, which results in lower creation
efficiencies or limitations in terms of versatility.
Creating high-dimensional entangled photon pairs using

path identity represents a paradigm shift from previous
schemes. Conceptionally, creating high-dimensional en-
tangled photon pairs using path identity relies on indistin-
guishable, probabilistic, and coherently emitting photon-pair
sources. As shown in Fig. 24, each nonlinear crystal prob-
abilistically emits identical3 photon pairs in the lowest order
Gaussian spatial mode, which is denoted as j0; 0i. Inserting a
mode-shifting element between two successive nonlinear
crystals that is capable of performing a þ1 operation on
the quantum state j0; 0i → j1; 1i yields a d-dimensional
entangled quantum state of the following form:

jψi ¼ ð1=
ffiffiffi
d

p
Þðj0;0iþ eiϕ1 j1;1iþ � � �þ eiϕd jd− 1;d− 1iÞ:

ð21Þ
Adding additional control on the emission rate of each
nonlinear crystal results in the ability to create arbitrary

high-dimensional entangled quantum states
P

d−1
i¼0 αiji; ii,

with α ∈ C and
P

i jαij2 ¼ 1.
To realize this scheme experimentally (Kysela et al., 2020),

one needs indistinguishable photon-pair sources for all de-
grees of freedom. Thismeans that their joint spectral amplitude,
polarization, and paths are identical. Furthermore, to ensure
coherent emission of two crystals or nonlinear crystals poses
two main constraints (Zou, Wang, and Mandel, 1991; Herzog
et al., 1994; Jha et al., 2008; Kulkarni, Kumar, and Jha, 2017).
The first condition, which is analogous to Eq. (6), is that the

optical path-length difference of the pump beam and the two
down-converted photons must be smaller than the coherence
length of the pump laser, e.g.,

jLP − La
DC − Lb

DCj ≤ Lcoh
P ; ð22Þ

with LP denoting the optical path length of the pump beam,
LDC representing the optical path length of the respective
down-conversion photon, and Lcoh

P denoting the coherence
length of the pump laser.
The second condition is given by the following optical path-

length difference of the down-conversion photons and their
coherence length:

jLa
DC − Lb

DCj ≤ Lcoh
DC ; ð23Þ

with Lcoh
DC describing the coherence length of the down-

conversion photons.
The first condition is given byEq. (22) and can be fulfilled by

choosing a narrow band pump laser with a coherence length of
several centimeters. The second condition is more difficult to
satisfy. Typically, photons created via SPDC have a spectral
bandwidth of the order of nanometers. In turn, this yields a
coherence length of approximately tens of micrometers.
Matching the optical path length of the two down-conversion
photons can be difficult. For example, birefringence in the
nonlinear crystals can lead to a substantial mismatch of the
temporal overlap and thus to indistinguishability. These effects
can be avoided altogether using a type-0 or type-I phase-
matched SPDC source,4 at the cost of the possibility of

FIG. 24. New scheme to create two-photon high-dimensional
entangled photon pairs using path identity, which is denoted as
entanglement by path identity (Krenn et al., 2017). Consecutively
stacked indistinguishable photon-pair sources [nonlinear crystals
(NLs)] coherently emit photon pairs. Identifying their paths leads
to a coherent superposition of possible origins of a photon pair.
Placing spiral phase plates between two NLs that add one
quantum of orbital angular momentum to the incoming photons
results in a d-dimensional entangled quantum state jψi.

2At phase singularities, the phase is undefined.
3In all degrees of freedom.

4The two create down-conversion photons with identical
polarizations.
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deterministically splitting the photon pairs in a collinear
arrangement using polarization (as for type-II sources).
A quantitative measure for the achieved indistinguishability

is given by the interference visibility between the two crystals.
Experimentally, the phase is adjusted by splitting the pump
from the down-conversion photons and shifting the optical
path length between the two, as depicted in Fig. 25. Using an
additional single-mode fiber and detecting simultaneous
twofold photon counts, a visibility of 97.1� 0.5% was
demonstrated; see Fig. 26. The indistinguishability of the
two photon-pair sources is an important measure because it
directly determines the coherence of the entangled quan-
tum state.
Given this basic ingredient, the next step is to introduce a

mode-shifting element that is capable of shifting the spatial
mode. In this first proof-of-principle experiment, the pump
and down-conversion photons are split up to access both
wavelengths separately. This avoids chromatic aberrations5

and allows the simultaneous manipulation of both pump and
down-conversion photons. Here the pump beam is split into
three parts that coherently pump all three ppKTP crystals
(where the acronym stands for periodically poled potassium
titanyl phosphate). The pump beam for the second and third
crystals is modified with a spiral phase plate that adds
(subtracts) four quanta of OAM to (from) the pump beam.
According to the conservation of OAM in the SPDC process,
the second crystal thus emits photon pairs with two quanta of
OAM j2; 2i and the third crystal has the opposite j − 2;−2i
correlated photon pair. The resulting quantum state reads

jψi ¼ α j0; 0i|ffl{zffl}
crystal 1

þ β j2; 2i|ffl{zffl}
crystal 2

þ γj−2;−2i|fflfflfflffl{zfflfflfflffl}
crystal 3

; ð24Þ

where the magnitudes of α, β, and γ are adjusted by
controlling the relative pump power and the phases by
adjusting the relative phase within the Mach-Zehnder inter-
ferometers. To guarantee phase stability, the two Mach-
Zehnder interferometers are actively stabilized with an
additional phase-locking laser.
Performing full state tomography yields reported fidelities

ranging from 85% to 90% for two- and three-dimensional
entangled quantum states. Different maximally and nonmax-
imally entangled photon pairs are thereby created in two and
three dimensions to demonstrate the versatility in terms of
state creation using entanglement by path identity.

FIG. 25. Detailed experimental setup for creating three-dimensional entangled photon pairs using path identity. A continuous-
wave laser centered at 405 nm is split with polarizing beam splitters (PBSs) and is guided to three NLs made from periodically
poled potassium titanyl phosphate, which is better known as KTP. For experimental simplicity, the spiral phase plate (SPP) is
placed within the pump beam instead of the down-converted photons (as depicted in Fig. 24). A lens (Lf) is used to focus the
pump beam onto the NL. Using a 4f optical imaging system between two consecutive NLs ensures the spatial indistinguish-
ability of the down-converted photon pairs. Utilization of an actively stabilized Mach-Zehnder interferometer using a
proportional-integral-derivative (PID) controller ensures the interferometric stability between two NLs. The phase between
two NLs can be set using the quarter-half-quarter (QHQ) wave plates of the stabilization laser depicted in green. The photon
pairs are deterministically separated using a PBS in the detection part. Arbitrary superposition projections can be measured with
a spatial light modulator (SLM) in combination with a single-mode fiber. From Kysela et al., 2020.

FIG. 26. Coincidence interference fringes of two consecutive
nonlinear crystals. The relative phase φ1 between NL1 and NL2
has been altered. The coincidences are measured without a SPP;
thus, the interference is occurring between the fundamental
Gaussian modes (denoted as 0) and the corresponding quantum
state reads j0; 0iNL1 þ eiφ1j0; 0iNL2. If the observed visibility
reaches 1, then the two photon-pair sources are identical, meaning
that NL1 ¼ NL2. In this experiment, a visibility of 0.971� 0.005
is observed. From Kysela et al., 2020.5Without using specially designed optical elements.
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The principle of generating entanglement by path identity is
suited to scale up the dimensionality of the entangled state.
One possible way to scale up the dimensionality is to
miniaturize the unit-dimensional cell consisting of a nonlinear
crystal and a phase-shifting element. Smaller distances in
combination with integrated fabrication technologies, as
demonstrated by X.-L. Wang et al. (2018), could substantially
increase the stability and cross-talk quality. Complementarily,
a purely linear arrangement without an interferometer could
be implemented as in the original proposal. This would
require an element that performs a þ1 operation on the
down-conversion photons but not on the pump beam. The q
plate (Marrucci, Manzo, and Paparo, 2006) would be a
possible realization.

C. Multiphoton entanglement by path identity

Multiphotonic interference phenomena have lain at the
heart of many key experiments (Pan et al., 2012). These
phenomena range from technological demonstrations such as
quantum teleportation (Bouwmeester et al., 1997; Wang et al.,
2015; Ren et al., 2017; Luo et al., 2019), entanglement
swapping (Pan et al., 1998), and fault-tolerant (Shor, 1996)
and blind quantum computation (Barz et al., 2012) to
fundamentally and philosophically appealing experimental
demonstrations that reject local-realistic theories using genu-
ine multiphoton entanglement (Greenberger et al., 1990;
Bouwmeester et al., 1999; Pan et al., 2000; Zhong et al.,
2018).
In general, multiparticle entanglement is still an active

research area due to the vast complexity that it involves. Even
for small systems consisting of only four qubits, there are nine
different ways to be entangled (Verstraete et al., 2002); for five
there are infinitely many. For further information, see
Bruß (2002), Horodecki et al. (2009), and Plenio and
Virmani (2014).
An important class of maximally entangled multiphoton

states are the Greenberger-Horne-Zeilinger (GHZ) states
(Greenberger, Horne, and Zeilinger, 1989). These states were
investigated in the fundamentally interesting context of local-
realistic theories. In contrast to Bell’s theorem (Bell, 1964),
the GHZ theorem allows for a qualitatively different way of
refuting local-hidden-variable theories (Greenberger et al.,
1990; Mermin, 1990). But these maximally entangled multi-
particle states are not only of fundamental interest. Error-
correcting schemes in quantum computers (Shor, 1996) based
on GHZ states or quantum-secret-sharing protocols (Hillery,
Bužek, and Berthiaume, 1999) use these strong correlations to
exceed classical limitations. These prospects have started
technological developments on various physical platforms
including trapped ions (Monz et al., 2011), Rydberg atoms
(Omran et al., 2019), superconducting qubits (Kelly et al.,
2015; Song et al., 2017), and photons (X.-L. Wang et al.,
2018; Zhong et al., 2018).
Since this review is focused on photonic systems, we now

discuss the experimental principles behind the GHZ state
and introduce the concept of entanglement by path identity to
the multiphotonic regime. Furthermore, we also discuss
the generalization to higher-dimensional and multiphotonic

systems that have recently been developed and realized (Malik
et al., 2016; Erhard, Malik et al., 2018).

1. GHZ entanglement for qubits

For photons there is a particularly simple scheme to create
an arbitrary number of entangled photons in principle. As
shown in Fig. 27, we use two two-dimensional entangled
photon-pair sources jψi ¼ ðjH;Hi þ jV; ViÞ= ffiffiffi

2
p

entangled
in their polarization degree of freedom while combining one
photon of one source with another photon of the other source
at a polarizing beam splitter. A polarizing beam splitter
reflects vertically and transmits horizontally polarized pho-
tons. Thus, the resulting quantum state reads

ðjH;H;H;HiABCD þ jH;H; V; ViABBD
þ jV; V;H;HiACCD þ jV; V; V; ViABCDÞ=2; ð25Þ

whereH and V describe the polarization states (horizontal and
vertical) and the indices d1; d2; d3, and d4 label the detectors.

FIG. 27. Multiphoton Greenberger-Horne-Zeilinger (GHZ)
state creation. (a) The commonly used technique (Pan et al.,
2012) to create GHZ states is to overlap two maximally entangled
two photons in the state jϕþi ¼ ðjH;Hi þ jV; ViÞ= ffiffiffi

2
p

, with H
and V denoting the polarization state of the photon. Since the
PBS transmits only horizontally (H) polarized photons and
reflects only vertically (V) polarized photons, simultaneous
2n-fold detection of photons at detectors fd1;…; d2ng results
in a maximally and genuine multiphoton (2n) GHZ state.
(b) Creation of multiphoton GHZ states using path identity.
Displayed are two rows of n crystals, where all 2n crystals can
coherently emit n photon pairs. The lower row creates vertically
polarized photons, while the upper row solely creates horizontally
polarized photon pairs. Identifying the paths of the photons in the
lower row with the ones in the upper row (as previously
indicated) and conditioning upon 2n-fold photon detection result
in a GHZ state. Because of the path identification, a 2n-fold
photon detection event can occur only if all crystals of the upper
row emit photon pairs or if all crystals in the lower row emit
photon pairs.
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Postselecting on simultaneous four-photon detection events
on all four detectors d1; d2; d3, and d4 results in the following
desired GHZ type entangled four-photon state:

ðjH;H;H;HiABCD þ jV; V; V; ViABCDÞ=
ffiffiffi
2

p
: ð26Þ

Equation (26) can now be generalized to any photon number
by adding more two-dimensional entangled photon-pair
sources and combining them at polarizing beam splitters,
as depicted in Fig. 27.
In contrast, using path identity one can create GHZ type

entangled quantum states without using PBSs as previously
described. Two rows of 2n NLs are coherently pumped such
that they can simultaneously emit n photon pairs; see
Fig. 27(b). The upper row of NLs solely emits the horizontally
polarized photon pairs jH;Hi, while the lower row creates
only the vertically polarized photon pairs jV; Vi. Using the
path-identity principle, we now cross the path of the photons
between next neighboring NLs, as depicted in Fig. 27(b).
Conditioning on 2n-fold photon events, meaning conditioning
on events where all 2n photodetectors simultaneously detect a
photon, results in a genuinely multiphoton entangled GHZ
state. The reason for this is that only two possibilities for such
an 2n-fold photon detection exist. First, either all crystals from
the upper row simultaneously emit one photon pair or all
crystals from the lower row simultaneously emit one photon
pair. Whenever only a single crystal of the lower (upper) row
emits a photon pair instead of the upper (lower) row, then no
2n-fold detection can occur because at least one detector will
be empty (not detecting a photon). Since all crystals are
pumped coherently and the upper and lower rows have
different polarizations, we can write these two creation
possibilities in a coherent superposition, as indicated by
jψi in Fig. 27.
The creation efficiency of the protocol can be calculated

from Eqs. (25) and (26). For n photon pairs there exist in
general 2n terms after the PBS; see Eq. (25). However, we are
interested only in a maximally entangled GHZ state, which
always consists of only two terms. Hence, the efficiency of the
generation protocol using entangled photon pairs in combi-
nation with PBSs is given by the ratio between the two
expected terms and all possible terms, which one evaluates
as 2−nþ1.
Despite this simple principle scheme, the largest number of

photons entangled in a GHZ manner is 12 (Zhong et al.,
2018). For one to go beyond this number, several challenges
of inherently probabilistic photon-pair sources need to be
overcome. For example, if the probability that one photon pair
is created is p, then the probability that six photon pairs are
emitted simultaneously is p6. The probability of creating one
photon pair in a single laser pulse is usually p ≈ 10−6 − 10−2,
which leads to a 12-photon detection rate of approximately
one event in 10 h. In addition, SPDC sources produce with
probability p one pair and with probability pn n photon pairs.
Multipair emissions reduce the fidelity of the entangled
quantum state if no number resolving detectors are utilized.
Among other areas, faster triggering rates of detectors, higher
photon detection efficiencies, and photon-number-resolving
detectors are currently being investigated and optimized

(Rudolph, 2017; Slussarenko and Pryde, 2019). While a large
number of applications and fundamental tests of quantum
physics allow for quantum states generated by conditioning on
simultaneous n-fold detections, specifically in quantum com-
puting, heralded quantum states are necessary. Examples are
quantum gates (Knill, 2003) or GHZ states as cluster resource
states in linear-optical quantum computing schemes (Gimeno-
Segovia et al., 2015; Bartolucci et al., 2021). For that reason,
much research focuses on heralded photonic entanglement
(Gubarev et al., 2020; Bartolucci, Birchall et al., 2021), and
also entanglement by path identity (Krenn et al., 2021).

2. GHZ entanglement beyond qubits

Generalizing the GHZ theorem to higher-dimensional
qudits only recently succeeded (Ryu et al., 2013,2014;
Lawrence, 2014; Tang, Yu, and Oh, 2017). In addition, the
first experimental implementation of a genuinely higher-
dimensional GHZ state (three dimensional) was performed
shortly thereafter (Erhard, Malik et al., 2018). In contrast to
the two-dimensional entangled GHZ state, the experimental
implementation is less simple and has been found only using
computational algorithms (Krenn et al., 2016; Krenn, Erhard,
and Zeilinger, 2020). However, despite the unintuitive exper-
imental creation of the three-dimensional entangled GHZ state

FIG. 28. Genuine multiphoton and high-dimensional quantum
entanglement using path identity. Six NLs labeled with roman
numbers where each NL can emit photon pairs in the transverse
spatial Gaussian mode (denoted by j0; 0i) are utilized. Each
photon pair emitted by one of the six crystals is connected to a
pair of detectors fA; B; C;Dg as indicated on the right in such a
way that overlapping paths of different crystals are identified.
Simultaneous four-photon events where each detector registers a
photon can occur in three possible ways: The lower, middle, or
top row emits two pairs simultaneously. None of the other
combinations can occur because of the specific path identification
and routing of the photon paths. Inserting spiral phase plates
between the different layers of crystals adds one quantum (þ1ℏ)
of orbital angular momentum (OAM) to the incoming photons.
Since all photon-pair emissions occur coherently, the three
possibilities can be written in a coherent superposition yielding
a genuinely four-photon and three-dimensional entangled GHZ
state jψi.
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using linear optics, there is an intuitive way of creating such
states using entanglement by path identity.
In Fig. 28, the principle of generating a four-photon three-

dimensional entangled GHZ state is shown. As in the two-
photon high-dimensional case, we employ the OAM of
photons to illustrate entanglement by path identity for multiple
photons. All six crystals (I–VI) are pumped coherently and
emit with the same probability amplitude one photon pair
in the fundamental Gaussian mode that is denoted as j0; 0i.
Furthermore, we postselect onto events where four photons
are detected simultaneously in all detectors A, B, C, and D.
We can now identify the photon-pair paths such that there
are exactly three possible ways in which such a four-photon
detection event can appear: The two crystals in the first,
second, or third row in Fig. 28 emit simultaneously. If the two
photon pairs have been produced in the first row, they
propagate twice through a spiral phase plate that adds one
quantum of OAM to the photons. Thus, at the detector these
two photon pairs are described by the probability amplitude
j2; 2iAD ⊗ j2; 2iCB. A similar approach is followed for the
second and third rows, as depicted in Fig. 28. Since the
photon-pair emission events occur such that there is in
principle no information about their origin, we have to write
all three possibilities in a coherent superposition

jψi ¼ 1ffiffiffi
3

p ðj0; 0; 0; 0i þ j1; 1; 1; 1i þ j2; 2; 2; 2iÞ; ð27Þ

which is exactly the desired three-dimensional entangled four-
photon GHZ state.
For the two-dimensional GHZ-state creation with entan-

glement by path identity, no quantitative difference in terms of
efficiency or achievable fidelity was found. However, for the
three-dimensional GHZ state there is indeed an advantage in
terms of creating efficiency. The linear-optical approach
realized by Erhard, Malik et al. (2018) succeeds in only
≈5% of all four-photon emission events. In the entanglement
using the path-identity approach, every detectable four-photon
event succeeds. Thus using this new method results in a
noteworthy 20-fold improvement, and hence reduces the
estimated measurement time from roughly two weeks to less
than a day.
From an experimental point of view, such an experiment

puts stringent constraints in terms of coherent and indistin-
guishable photon-pair emission. As discussed in Sec. VI.B,
the path length of the down-converted photons is restricted to
the pump and down-conversion coherence length. While in
the two-photon case a continuous-wave laser with a long
coherence length can be employed, the multiphoton scenario
usually requires pulsed pump lasers to identify simultaneous
two-pair events. Femtosecond pulsed lasers are routinely used
in such experiments and have a Fourier-limited coherence
length of the order of a micrometer. In addition, the joint
spectral amplitude of the down-converted photon pairs needs
to be not only identical but also separable (Pan et al., 2012).
Lastly, the scheme of creating genuinely three-dimensional

entangled GHZ states seems to be generalizable to any d-
dimensional GHZ state. It would require one to identify
different paths in a nonlinear crystal network such that exactly

d possible ways exist to create a four-photon detection event.
This question can be answered using graph theory and has a
surprising answer, which is analyzed in detail in Sec. VII.

D. Manipulating entangled states without direct interaction

After showing how to generate entangled states using path
identity, we reported how the concept could be generalized to
multiphoton emitters. These generalizations allow for manip-
ulations of quantum states without ever interacting with the
involved photons. The method also emphasizes the deep
connection between entanglement and interference, a con-
nection that has fascinated scientists for a long time (Horne
and Zeilinger, 1986; Żukowski and Pykacz, 1988;
Greenberger, Horne, and Zeilinger, 1989; Horne, Shimony,
and Zeilinger, 1989; Greenberger et al., 1990; Rarity and
Tapster, 1990; Pan et al., 2012).
In this section, the two photon sources are substituted with

generalized N-photon sources, as illustrated in Fig. 29. The
scheme consists of two identical sources Q and Q0, each of
which can coherently emit N particles simultaneously and
with equal probability. As shown by Lahiri (2018), the general
state produced after the beam splitters is determined by the
difference of the sum of all phasesΘm and ϕj and is composed
of equal superpositions of Dicke states (Dicke, 1954; Tóth,
2007; Lahiri, 2018). The interesting part now is that, by
changing the phases Θm accordingly, various entangled
quantum states can be created. Hence, it opens the possibility
of manipulating the state of the maximally entangled photons
without ever interacting with them.
For example, in the case of a source emitting four photons

and N −M ¼ 2, adjusting the phases Θm to 2mπ or

FIG. 29. Scheme of generating and controlling many-particle
entangled states. Two identical N-particle sources emit particles
ð1; 2;…; NÞ into paths ðb1; b2;…; bNÞ and ðb01; b02;…; b0NÞ,
respectively. Path identity is applied for M particles
ðN −M þ 1;…; NÞ. The rest of the particles ð1; 2;…; N −MÞ
produce many-particle interference patterns and many-particle
entangled states when their paths are superposed by beam
splitters. Adapted from Lahiri, 2018.
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ð2mþ 1Þπ results in the jΨþi or the jΦ−i Bell state,
respectively. Increasing the number of photons coherently
emitted by the two sources to six, identifying the paths of three
of them, and adjusting the phases Θm to ð2mþ 1=2Þπ result in
the creation of a three-photon GHZ state.
As mentioned in Sec. III.B, path identity can be controlled

by inserting an attenuator in one or several paths of photons
between the two sources. In this case the visibility of the
interference patterns is decreased. This reduced interference
visibility also directly alters the amount of entanglement in
the detected quantum state. It thus allows one to control the
amount of entanglement without interacting with the
entangled photons.

VII. QUANTUM EXPERIMENTS DESCRIBED BY
GRAPH THEORY

Multiphotonic quantum entanglement experiments based
on path identity, such as those in Sec. VI, can ideally be
described using graph theory (Krenn, Gu, and Zeilinger,
2017). This different point of view allows for more systematic
manual (Gu, Chen et al., 2019; Krenn, Gu, and Soltész, 2019)
and algorithmic (Krenn et al., 2021) design methods for
quantum experiments, insights into new quantum interference
effects, and connections to quantum computation (Gu, Erhard
et al., 2019).
We describe the connection with an example: Fig. 30(a)

depicts the setup of a three-dimensional GHZ state that was
already discussed in Fig. 28. The corresponding graph is
shown in Fig. 30(b). Every vertex of the graph corresponds to
a photon path, and every edge between two vertices corre-
sponds to a nonlinear SPDC crystal that can produce two
photons in two photonic paths. Photons produced in different
layers of the crystal lead to different mode numbers. This is
represented by the color of the crystals and their correspond-
ing edges. Conditioning the outcome of the experiment on a
fourfold coincidence count leads to a three-dimensional GHZ
state. A fourfold coincidence count happens when every
detector fires exactly once. In the corresponding graph, a

fourfold coincidence count can be identified for a subset of
edges, which contain every vertex exactly once. This property
is denoted as perfect matching in graph theory. The results of a
quantum optical experiment can therefore be interpreted as
coherent superpositions of perfect matchings of a graph. A
detailed link between quantum experiments and graphs can be
seen in Table I.

A. Application to designing experiments for quantum states

Designing quantum experiments is challenging because
universal rules for multiphotonic systems do not exist, and
multiparty quantum effects and interference are difficult to
intuitively grasp. The connection between quantum experi-
ments and graphs allows for a good descriptive tool where
structures of the quantum states are encoded in the structures
of the graph, and subsequently the resulting graph directly
corresponds to an experimental setup.
In Sec. VI, the two-dimensional GHZ state was introduced

as an important class of multiparticle entangled states. It was
discovered in 2000 that three qubits could be entangled in two
inequivalent ways (Dür, Vidal, and Cirac, 2000). This means
that there are two classes of three-qubit states that cannot be
transformed into each other using only local operations and
classical communications. One of them is the GHZ state, and
the other one is the so-called W state (Zeilinger, Horne, and
Greenberger, 1992; Bourennane et al., 2004).
An intuitive understanding is that GHZ states are the

strongest entangled states, while W states encode the most
robust entanglement. A three-particle W state is defined as

jW3i ¼
1ffiffiffi
3

p ðj1; 0; 0i þ j0; 1; 0i þ j0; 0; 1iÞ: ð28Þ

Equation (28) is a coherent superposition of one excitation
(indicated as j1i) that is delocalized over all three particles. In
the n-particle generalization, it is a delocalization of one
excitation over all n photons.
An experimental configuration for a four-particle W state

using entanglement by path identity was shown by Krenn
et al. (2017). Its n-party generalization was discovered by Gu,
Chen et al. (2019), who exploited the descriptive nature of the
corresponding graphs; see Fig. 31. They utilized similar
techniques to generate setups using path identity for much
more general high-dimensional and multipartite quantum
states. Examples involve Dicke states (which generalize W
states to multiexcitations) (Dicke, 1954), Schmidt-rank vector

FIG. 30. Three-dimensional GHZ state via entanglement by
path identity. (a) A quantum optical experiment for the generation
of a three-dimensional GHZ state. (b) Its correspondence to a
graph. Every vertex is a photon path, and every edge corresponds
to a nonlinear crystal. Colors represent the mode numbers. (c) A
resulting state, which arises conditioned on fourfold coincidence
clicks, corresponds to perfect matchings of the graph.

TABLE I. Analogies between quantum experiments involving
multiple crystals and graph theory. Adapted from Krenn, Gu, and
Zeilinger, 2017.

Quantum experiment Graph theory

Optical setup with crystals Undirected graph GðV;EÞ
Crystals Edges E
Optical paths Vertices V
n-fold coincidence Perfect matching
Layers of crystals Disjoint perfect matchings
No. terms in quantum state No. perfect matchings
Maximal dimension of photon Degree of vertex
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states (which classify quantum entanglement in a high-dimen-
sional multipartite scenario) (Huber and de Vicente, 2013;
Huber, Perarnau-Llobet, and de Vicente, 2013), and abso-
lutely maximally entangled states (Goyeneche et al., 2015;
Huber et al., 2018; Cervera-Lierta, Latorre, and Goyeneche,
2019). The design principle using entanglement by path
identity was recently generalized to multiphoton emitters,
which involve hypergraphs as an descriptive tool (Gu, Chen,
and Krenn, 2020).
The bridge between graph theory and quantum experiments

can also be used to show which quantum state cannot be
produced with probabilistic photon-pair sources. The key idea
is to translate a question in quantum physics into an equivalent
question in graph theory, solve the question with the tools of
graph theory, and translate it back (Krenn, Gu, and Zeilinger,
2017; Gu, Chen et al., 2019). A specific example is the
following: The question “Which d-dimensional n-photon
GHZ state can be created with probabilistic photon-pair
sources?” can be translated as “Which existing graph with
n vertices has d perfect matchings that are all disjoint?” One
can show that the only graphs that can fulfill this requirement
are n > 2, d ¼ 2 and n ¼ 4, d ¼ 3 (Bogdanov, 2017; Krenn,
Gu, and Zeilinger, 2017), which restrict the generations of
GHZ states (without the employment of additional tools such
as ancillary states). Many similar quantum physics questions
are translated into the language of graph theory and can be
solved (Gu, Chen et al., 2019) or still have to be solved
(Krenn, Gu, and Soltész, 2019).

B. Application in quantum random networks

Classical random networks were introduced by Erdős and
Rényi in 1959 to describe many real-world features of net-
works, such as the small-world problem (Erdős and Rényi,

1959, 1960). These graphs are described byG ¼ ðV; EÞ, where
V are the vertices and E are the edges between the nodes and
another parameter p that describes the probability that an edge
will form between two nodes.
A notable result is that in classical networks a computa-

tional phase transition occurs. For example, as N goes to
infinity, the probability that a certain subgraph exists in the
network is 0 for p < pcðNÞ and 1 for p > pcðNÞ, where
pcðNÞ is a critical probability. The critical probability scales as
Nz, with the critical exponent z ∈ ð∞; 0�. A concrete example
is the emergence of a fully connected graph of four vertices,
denoted as K4, which happens when z ¼ −2=3.
Quantum random networks (Perseguers et al., 2010) were

invented as generalizations of random networks in the
quantum regime. The graph is built as a coherent super-
position of all edges inserted (with probability p) and not
inserted (with probability

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2

p
). Perseguers et al. (2010)

showed, exploiting projective measurements and local oper-
ations and classical communications (better known as LOCC),
that arbitrary quantum states of finite subgraphs can be
obtained with a critical exponent of z ¼ −2, which is much
smaller than that of classical random networks.
Entanglement by path identity can be used to generate an

arbitrary undirected graph, which creates quantum networks
in the form introduced by Perseguers et al. (2010), as shown in
Fig. 32. A single SPDC crystal produces a quantum state that
can be approximated as

jψa;bi ¼
�
1þ pðâ†aâ†b − âaâbÞ

þ p2

2
ðâ†aâ†b − âaâbÞ2 þ � � �

�
j0i; ð29Þ

FIG. 31. Design of quantum experiments using graph theory. The connection to graph theory is an ideal descriptive tool of quantum
experiments and can be used to design experiments in order to design specific quantum states. In this example, a general recipe for the
generation of W states is given. From Gu, Chen et al., 2019.
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where p is the SPDC amplitude. The complete quantum
random network is a combination of all crystals being pumped
coherently, which is a tensor product over all existing edges in
the form of

jψnetworki ¼ ⊗
eði;jÞ∈E

jψ i;ji; ð30Þ

where i and j are the vertices that are connected by the edge
e ∈ E. These setups can be used to simulate phenomena of
quantum random networks, such as critical exponents, in a
natural and inexpensive way.

C. Generalization to general linear-optical experiments

The graph-theoretical description was generalized to arbi-
trary linear-optical systems upon the realization that every
linear transformation is related to a certain graph trans-
formation. Thus, linear-optical elements cannot go beyond
the graph-theoretical picture (Gu, Erhard et al., 2019). As a
consequence, all conclusions about the construction of multi-
photonic quantum states hold for linear-optical setups. It
allows for the explanation of a multiphotonic protocol such
as quantum teleportation (Bennett et al., 1993; Bouwmeester
et al., 1997) or entanglement swapping (Żukowski et al.,
1993; Pan et al., 1998) using simple pictorial diagrams.
A different approach to investigating photonic experiments

has been shown by Ataman (2015, 2018). The main idea is to
translate creation operator rules, which define linear operators,
into rules for photon paths. With that, various quantum
experiments (at least for photon pairs) can be described.
An example is the ZWM experiment shown in Fig. 33.
Extending Ataman’s description to multiphotonic experiments
could be achieved by extending the graph-theoretical back-
ground, in particular, by introducing the concept in perfect
matchings of graphs.

VIII. QUANTUM INTERFERENCE IN GENERAL PHOTON
CREATION PROCESSES

Here we describe some extensions of Herzog’s experiment
(Herzog et al., 1994); see Chapter II.B. In the original
experiment, two SPDC processes were organized in such a
way that the resulting photon pairs were destructively or
constructively interfered. We discuss three extensions of this
concept. The first one shows that the photon pairs, which
interfere, do not necessarily come from the same kind of
source. The second extension shows a generalization to
multiphotonic systems and a link to quantum computing.
The third one demonstrates nonlinear interference in a four-
wave mixing process in integrated photonics.

A. Weak coherent laser and SPDC

Quantum interference is agnostic to the source of the
photon pairs: it is essential only that the two possibilities
are fundamentally indistinguishable and share a well-defined
phase relation. A notable experiment that has shown an analog
to the frustrated down-conversion interference, but from two
different types of sources, was presented by Resch, Lundeen,
and Steinberg (2001). The sketch of their idea is shown in
Fig. 34. The idea is to use weak laser beams and overlap them
with the output of a SPDC process. They indeed saw high-
quality interference fringes.
The experiment of Resch, Lundeen, and Steinberg (2001)

indicates that any generation process that can be performed in
a coherent way allows for quantum interference. It again
shows the significance of information: as long as there is no
information anywhere in the Universe that could help to

FIG. 32. Quantum random networks (Perseguers et al., 2010)
have interesting critical properties, such as the emergence of
certain quantum states when the edge probability pcðNÞ > N−2,
where N are the vertices. (a) A specific random graph with 14
edges connecting eight vertices is a quantum random network.
(b) The corresponding setup consists of 14 crystals that are
coherently pumped and output into N ¼ 8 paths. The SPDC
probability p corresponds to the edge probability. From Krenn,
Gu, and Zeilinger, 2017.

FIG. 33. Graphical approach to linear-optical quantum experi-
ments developed by Ataman (2015, 2018). (a) Depiction of the
ZWM experiment including the pump beam. (b) The translation
to a graphical model. The idea is to represent photons as creation
operators. The transformation of every linear-optical element as
well as nonlinear crystals for the creation of photon pairs can be
understood in photon transformations of the photon’s paths. From
Ataman, 2018.
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distinguish which of those processes the pair is created from,
quantum interference may occur.

B. Multiphotonic quantum interference

The objective of the multiphotonic setups in Sec. VI was the
production of complex novel entangled quantum states, in a
way generalizing Hardy’s entanglement source (Hardy, 1992)
to higher dimensions and a larger number of particles. Hardy’s
entanglement source also has a close relation to Herzog’s
interference experiment (Herzog et al., 1994). While in
Hardy’s experiment the interference can be observed by

measuring entanglement, in Herzog’s experiment interference
can be observed by measuring direct photon count rates.
With the Hardy-Herzog analogy in mind and with the

possibility of generalizing the Hardy entanglement source to
multiple particles, one can ask whether Herzog’s experiment
can also be generalized to multiple particles. Indeed, Gu,
Erhard et al. (2019) showed that experimental setups that can
generate entanglement by path identity can be modified to
show interference. In contrast to entanglement, this interfer-
ence can be observed directly in the rate of emitted multi-
photon states. The concept is shown in Fig. 35, in which mode
shifters are replaced by phase shifters. The fourfold coinci-
dence that arises from crystals I and II therefore has a relative
phase between the four-photon term from crystals III and IV.
The down-conversion process can be approximated as a

series expansion in the form of

Ûa;b ¼ 1þ gðâ†aâ†b − âaâbÞ

þ g2

2
ðâ†aâ†b − âaâbÞ2 þOðg3Þ; ð31Þ

where â†a and âa are creation and annihilation operators for a
photon in the mode a, respectively, and g is proportional to the
SPDC rate and the pump power. For simplicity, we restrict
ourselves to a single-mode analysis. In the four-photon
interference setup, four crystals are used. Therefore, the state
can be expressed (taking only cases with one photon in each
detector into account) as

FIG. 34. Interference of photons from different sources. (a) A
beam of a local oscillator (a laser beam with a defined coherence
relation to the pump beam of the SPDC) overlaps with the output
of a SPDC crystal. There are two different possibilities how a pair
of photons could be generated: either (b) via SPDC or (c) from the
weak local oscillator. Resch, Lundeen, and Steinberg were able to
make these two possibilities indistinguishable, and therefore
observed interference between them. In (d), the solid circles
represent coincidence counts, with a fringe visibility of more than
50%. The open squares stand for the single counts, in which one
can also see statistically significant modulation, as the phase
between the two possibilities varies. Adapted from Resch,
Lundeen, and Steinberg, 2001. FIG. 35. Constructive and destructive quantum interference

based on path identity (Gu, Erhard et al., 2019). (a) Four crystals
aligned such that the emission of fourfold coincidence clicks in
all four detectors a, b, c, and d can happen only when crystals I
and II emit a pair of photons or crystals III and IV emit a pair of
photons each. Here all photons are indistinguishable. These two
possibilities lead to two terms in the quantum state, which are
coherently superposed. A phase shifter in one of the arms changes
the relative phase between these terms, thus leading to either an
increased or a decreased rate of fourfold counts. (b) An inter-
pretation of using graph theory where weighted edges lead to
phases between the perfect matchings, which can cancel each
other. This interpretation will help one to find and understand
follow-up applications. (c) Depiction of the rate of twofold counts
in detectors a and b and fourfold counts in all four detectors when
the phase ϕ is rotated. While the pair counts do not change, the
fourfold counts can vanish.
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jψi ¼ Ûc;dÛa;bP̂aÛb;dÛa;cj0; 0; 0; 0i
¼ g2ð1þ eiφÞj1; 1; 1; 1i þOðg3Þ; ð32Þ

where P̂a introduces a phase ϕ in path a and j1; 1; 1; 1i stands
for a state with one photon in each path. The complete state up
to second order SPDC contains exactly one term (depicted in
red in Fig. 35), which stands for interference (i.e., its
amplitude changes when the phase ϕ changes). No other
terms, in particular, no other two-photon terms, show that
behavior. Thus, this phenomenon is a genuine multiphotonic
interference effect.
This interference effect has an interesting interpretation: If

the phase is set to ϕ ¼ π, one will never observe fourfold
coincidences in the four detectors. In this case, when one sees
a photon pair in detectors a and b, one can be sure not to
observe a photon pair in detectors c and d. This is surprising
because all crystals produce photons pairs spontaneously (i.e.,
not deterministically). Furthermore, crystal IV, which would
produce photon pairs in c and d, can be far from crystal III and
the phase shifter. Thus, the setting information of the phase
shifter needs to travel to crystal IV. This reasoning indicates
that one could construct interesting experiments investigating
time delays of the interference effects (Ma, Kofler, and
Zeilinger, 2016).

C. On-chip quantum interference by path identity

The experiments in Sec. VII require many photon sources
that are phase stable with each other. One way to guarantee
stability is the integration of the entire setup into a pho-
tonic chip. Integrated sources of photon pairs have recently
been demonstrated in multiple experiments (Jin et al., 2014;
Silverstone et al., 2014, 2015; Krapick et al., 2016; Santagati
et al., 2018; Adcock et al., 2019; Feng et al., 2019; Lu
et al., 2020).
However, it was only in 2019 that the first nonlinear inter-

ference experiment was demonstrated by Ono et al. (2019).
They used two sources of spontaneous four-wave mixing and
overlap their outputs, as shown in Fig. 36, and observed high
interference visibility of 96.8%. Recently the first multiphoton
quantum interference based on path identity was observed on a
photonic chip (Feng et al., 2021).
These experimental demonstrations could open the door to

using path-identity-based interference effects as an additional

powerful building block in integrated photonics. Furthermore,
they pave the way to observing new interference phenomena
described in Sec. VIII.B.

D. Application in quantum computation

1. Special-purpose quantum computations via sampling

The setup in Fig. 35(a) can be generalized to a random
network similar to that in Sec. VII.B, with random phases
between all paths. We consider the situation where the
experimental setup has m output modes and N crystals,
and n=2 < m photon pairs (n photons) are generated. To
calculate the distribution of the possible output results, one has
to find all combinations of crystals that could lead to this result
and sum their amplitudes in a coherent way. As m and n
increase, this cannot be done efficiently anymore on a classical
computer.
To understand this better, it is useful to translate the

experimental setup into its corresponding graph, as shown
in Sec. VII. The probability for a given combination of n
detectors clicking is provided by the sum of the weights of all
perfect matchings of a particular subgraph.
The problem is as follows: It is easy to verify that a given set

of edges form a perfect matching (as a reminder, it is a set of
edges where every vertex is contained exactly once) in a
graph. However, there is no known algorithm that can find a
perfect matching for arbitrary graphs in polynomial time. In
the words of complexity theory, the question of finding a
perfect matching is in the complexity class NP complete
(where the acronym stands for nondeterministic poly-
nomial time).
Calculating the measurement results for a given combina-

tion of detectors requires one to find all perfect matching in the
graph, and each of them has a complex amplitude associated
with it. Therefore, this problem is even more difficult and lays
in the complexity class #P (Valiant, 1979; Aaronson, 2011).
For bipartite graphs (graphs with two sets of vertices, where

an edge contains only vertices from the two sets), calculating
the number of perfect matchings corresponds to calculating
the matrix function permanent of the adjacency matrix of the
graph. For general graph, the generalized matrix function
referred to as Hafnian (Caianiello, 1953) can be used.
The scenario just described is experimentally entirely

different, but mathematically closely related to an idea

FIG. 36. Frustrated pair creation was observed on an integrated silicon photonic chip by Ono et al. (2019) in the Rarity group. The
source of photon pairs is a spontaneous four-wave mixing process of a χ3 nonlinearity. Two sources can each create a pair of photons. As
the origin of the pair is undefined, it is in a coherent superposition of being created in either. Thus, Ono et al. observed constructive and
destructive interference of the resulting photon pair.
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proposed in 2011 denoted as boson sampling (Aaronson and
Arkhipov, 2011). There n single photons propagate through a
random network of beam splitters and phase shifters and are
detected in a combination of m output detectors. The situation
can be described as a bipartite graph (a set of n input modes
connect to a set of m output modes). This idea was further
generalized to general graphs using Gaussian boson sampling
(Lund et al., 2014; Hamilton et al., 2017; Brádler et al., 2018).
The situation has sparked a lot of interest because it would

allow one (for a large enough number of photons and modes)
to directly observe experimental measurement results that
cannot be efficiently calculated on a classical computer. On
the one hand, it is considered a method to demonstrate the first
quantum supremacy, a calculation that is faster on a quantum
device than on any available classical computer (Harrow and
Montanaro, 2017). The fastest quantum boson sampling
device can outperform the first electronic universal computer
ENIAC (1942) and the first transistor-based electronic com-
puter TRADIC (1954) (Wang et al., 2017).
Estimating the previously described output distribution of

systems also has essential implications in science and tech-
nology and could lead to real-world use of quantum hardware
as special-purpose computers. One example is the spectra of
vibronic (interactions between electronic and vibrational
modes) modes in molecules (Huh et al., 2015), which are
essential in chemistry. Other algorithms involve graph theory
applications such as the dense subgraph problem (Arrazola
and Bromley, 2018) and the graph isomorphism problem
(Brádler et al., 2021).

Setups built from multicrystal path-identity networks are an
appealing alternative to beam-splitter-based boson sampling
setups; see Fig. 37. Many important questions remain open.
Specifically, concrete comparisons of efficiency, error toler-
ance, or experimental feasibility between the traditional
methods of boson sampling and the sampling using path
identity are necessary for understanding the mutual advan-
tages and disadvantages. Since the first multiphoton path-
identity interference effects were experimentally observed
recently (Feng et al., 2021; Qian et al., 2021), the answers
to these theoretical questions are pressing. This demonstrates
that this alternative boson sampling approach is indeed
experimentally feasible.

2. Application in gate-based quantum computation

Universal quantum computers in the gate-based model have
the following scheme: An array of N qubits are initialized in a
state j0i, followed by a sequence of single- and two-qubit
quantum gates that execute the quantum algorithm and
subsequent measurements. These models assume that the
qubits already exist at the initialization, and that they always
exist during the execution. However, using a frustrated
generation of qubit pairs (Herzog et al., 1994), one has the
additional potential of exploiting the existence or nonexist-
ence of the qubit itself. This potential has been largely
unexplored thus far in the realm of quantum algorithms.
An initial attempt to describe such interference effects in the

language of quantum gates was made by Alipour, Krenn, and
Zeilinger (2017). They extended the qubits to qutrits (three-
level systems) to carry the additional information of whether
the mode is occupied by a photon or not. An example of
frustrated SPDC is shown in Fig. 38. This would allow for a
natural way of encoding quantum information for ternary
quantum computers (where instead of qubits, quantum sys-
tems with three levels are used) (Bocharov et al., 2016;
Bocharov, Roetteler, and Svore, 2017). It is an open question
how all of the generalized approaches presented here can be
translated to the language of quantum gates and quantum

FIG. 37. Multiphotonic interference can be exploited for spe-
cial-purpose quantum computation (Gu, Erhard et al., 2019).
(a) Path identified photons produced in a random network of
crystals. The network has six output modes and is pumped in
such a way that events of more than four photons can be ignored.
(b) Four-photon count rates. Every experimental setup corre-
sponds to a weighted undirected graph GH . A fourfold coinci-
dence count (for example, in outputs a, b, c, and e) corresponds
to a subgraph GHS

of those vertices in C. The count rate in these
output modes can be calculated as the coherent sum of all
weighted perfect matchings of GHS

. This is equivalent to
calculating the matrix function Hafnian applied on the adjacency
matrix of the graph GHS

seen in D (a problem known to be
extremely difficult to calculate).

FIG. 38. (a) Quantum circuit describing a frustrated SPDC
(Herzog et al., 1994). (b) Each mode is interpreted as a three-level
state. The first level is the state of a nonexistent photon, while
states 2 and 3 encode the usual computational qubit. The pair
creation of NL1 and NL2 (nonlinear crystals 1 and 2) are
described by two CNOT gates and one controlled-unitary gate.
If no qubit exists in the mode, it creates one in the computational
state j1i. If a qubit with state j1i exists, it will annihilate the qubit.
Formally, the mode can be considered as a qutrit (three-level
system). The path alignment between the crystals is governed by
two SWAP gates. From Alipour, Krenn, and Zeilinger, 2017.
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circuits, and whether they can inspire new ideas in the design
of quantum algorithms.

IX. CONCLUSIONS AND OUTLOOK

We have discussed the concept of path identity and its
applications to fundamental and applied physics. Although the
concept lay hidden in the literature since the early 1990s, it is
only the recent developments that show its significance for
future directions of research. In addition to its implications for
fundamental problems, the concept of path identity has pushed
frontiers of imaging, spectroscopy, and quantum information
science. In the fields of imaging and spectroscopy, the concept
has indicated that it is possible to retrieve object information
without detecting the radiation that illuminates the object.
Therefore, the concept of path identity allows us to study the
properties of an object at a wavelength for which good
detectors are not available, and thereby to extend our
experimental reach. As for quantum information science,
the concept has led to distinct avenues of creating, controlling,
and measuring entanglement. Furthermore, this concept of
path identity has also inspired graph-theoretical descriptions
of quantum experiments, thus promoting a much more
systematic and efficient way to design future experiments.
Although all of the experiments discussed here are per-

formed in the optical domain (i.e., by detecting photons), the
concept of path identity is also applicable to other quantum
entities. In this context, an important fact is that none of the
experiments discussed in this review require stimulated
emission. Therefore, the ideas pertaining to such experiments
can also be applied to design experiments with fermionic
systems. We expect that future experiments with nonphotonic
quantum systems based on the concept of path identity will
not only extend our knowledge of fundamental physics but
also result in numerous applications.
In a similar spirit, path identity could also be applied in

atoms. In 2004, Paul Lett argued that an atomic variation of
the ZWM experiment could be performed with pairs of atoms
emitted from two Bose-Einstein condensates (Lett, 2004).
Experimentally controlled Bose-Einstein condensates in con-
junction with single-atom detection [such as metastable
helium (Dos Santos et al., 2001; Robert et al., 2001;
Vassen et al., 2012; Keller et al., 2014)] have improved
significantly, allowing for quantum optics experiments [such
as Hong-Ou-Mandel analogs (Lopes et al., 2015)]. This
progress could ultimately also lead to atomic variations of
path-identity experiments.
Many other vital questions (both theoretical and experi-

mental) raised over the last five years remain open. How can
we experimentally increase the wavelength difference of
signal and idler photons in order to build highly efficient
imaging, spectroscopy, and microscopy (Kviatkovsky et al.,
2020; Paterova et al., 2020) techniques for the deep-UV or
terahertz regime (Sec. IV)? Can the effective wavelength,
which controls the interference properties, be applied in
superresolution schemes (Sec. IV.E)? Is it possible to detect
quantum entanglement by measuring only one of the photons?
Can this idea be generalized to multiphotonic entanglement to
perform a GHZ-like paradox (Sec. V)? Can one experimen-
tally build a scalable high-dimensional source based on path

identity (Sec. VI.B)? Are high-dimensional multiphotonic
sources based on path identity experimentally more efficient
(Sec. VI.C)? Can the multiphotonic interference, which
generalizes the idea of frustrated down-conversion to many
photons, be observed in the laboratory (Sec. VIII)? Can path
identity be observed in other systems, such as with electrons
or atoms?
Recently, path identity, a sleeping beauty, was awakened

and since then she shows her applicability and inspires new
ideas and connections in diverse fields of quantum optics. We
are looking forward to the progress in the coming years.
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W. K. Wootters, 1993, “Teleporting an Unknown Quantum State
via Dual Classical and Einstein-Podolsky-Rosen Channels,” Phys.
Rev. Lett. 70, 1895.

Bennink, R. S., S. J. Bentley, R. W. Boyd, and J. C. Howell, 2004,
“Quantum and Classical Coincidence Imaging,” Phys. Rev. Lett.
92, 033601.

Berkhout, G. C., M. P. Lavery, J. Courtial, M.W. Beijersbergen, and
M. J. Padgett, 2010, “Efficient Sorting of Orbital Angular
Momentum States of Light,” Phys. Rev. Lett. 105, 153601.

Bernhard, C., B. Bessire, T. Feurer, and A. Stefanov, 2013, “Shaping
frequency-entangled qudits,” Phys. Rev. A 88, 032322.

Bocharov, A., S. X. Cui, M. Roetteler, and K. M. Svore, 2016,
“Improved quantum ternary arithmetic,” Quantum Inf. Comput. 16,
862–884.

Bocharov, A., M. Roetteler, and K. M. Svore, 2017, “Factoring with
qutrits: Shor's algorithm on ternary and metaplectic quantum
architectures,” Phys. Rev. A 96, 012306.

Bogdanov, I., 2017, https://mathoverflow.net/q/267013.
Bohr, N., 1928, “The quantum postulate and the recent development
of atomistics,” Naturwissenschaften 16, 245.

Born, M., and E. Wolf, 1999, Principles of Optics: Electromagnetic
Theory of Propagation, Interference and Diffraction of Light,
7th ed. (Cambridge University Press, Cambridge, England).

Bourennane, M., M. Eibl, C. Kurtsiefer, S. Gaertner, H. Weinfurter,
O. Gühne, P. Hyllus, D. Bruß, M. Lewenstein, and A. Sanpera,
2004, “Experimental Detection of Multipartite Entanglement Using
Witness Operators,” Phys. Rev. Lett. 92, 087902.

Bouwmeester, D., J.-W. Pan, M. Daniell, H. Weinfurter, and A.
Zeilinger, 1999, “Observation of Three-Photon Greenberger-
Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345.

Bouwmeester, D., J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and
A. Zeilinger, 1997, “Experimental quantum teleportation,” Nature
(London) 390, 575.

Brádler, K., P.-L. Dallaire-Demers, P. Rebentrost, D. Su, and C.
Weedbrook, 2018, “Gaussian boson sampling for perfect matchings
of arbitrary graphs,” Phys. Rev. A 98, 032310.

Brádler, K., S. Friedland, J. Izaac, N. Killoran, and D. Su, 2021,
“Graph isomorphism and Gaussian boson sampling,” Spec. Ma-
trices 9, 166–196.
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