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The successes and limitations of statistical sampling for a sequence of models studied in the context of
lattice QCD are discussed and the need for new methods to deal with finite-density and real-time
evolution is emphasized. It is shown that these lattice models can be reformulated using tensorial
methods where the field integrations in the path-integral formalism are replaced by discrete sums. These
formulations involve various types of duality and provide exact coarse-graining formulas that can be
combined with truncations to obtain practical implementations of the Wilson renormalization group
program. Tensor reformulations are naturally discrete and provide manageable transfer matrices.
Truncations with the time continuum limit are combined, and Hamiltonians suitable for performing
quantum simulation experiments, for instance, using cold atoms, or to be programmed on existing
quantum computers, are derived. Recent progress concerning the tensor field theory treatment of
noncompact scalar models, supersymmetric models, economical four-dimensional algorithms, noise-
robust enforcement ofGauss’s law, symmetry preserving truncations, and topological considerations are
reviewed. Connections with other tensor network approaches are also discussed.
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I. INTRODUCTION

Quantum field theory models on space or spacetime lattices
play an important role in our understanding of strongly
interacting particles, nuclei, superconductivity, condensed
matter, and phase transitions. In high-energy and nuclear
physics, lattice quantum chromodynamics (QCD) provides an
ab initio theory of strong interactions. In the QCD context, the
lattice is a nonperturbative ultraviolet regularization that
preserves local gauge invariance. As the lattice is not a
physical feature, we need to approach the continuum limit
where the lattice spacing is small compared to the physical
length scales involved in the problem.
In the context of solid-state physics, lattice spacings of the

order of a few angstroms are present, and atomic physicists
can create optical lattices with a lattice spacing on the order of
the laser wavelength; however, large correlation lengths
appear near critical points and universal behavior independent
of the microscopic details can be observed. It is also possible
to create actual optical lattices in laboratories by trapping cold
atoms in counterpropagating laser beams, and to tune the
interaction in order to quantum simulate lattice models with
interactions similar to Hubbard models (Bloch, Dalibard, and
Zwerger, 2008). This is called an analog computing method or
a quantum simulation experiment. Again, it is possible to tune

the parameters to reach universal behaviors related to quantum
phase transitions with large correlation lengths.
More generally, we are getting better control of the mani-

pulation of small quantum systems evolving in small Hilbert
spaces, and the idea of using physical quantum systems
to study theoretical quantum models (Feynman, 1982) has
generated many interesting developments (Georgescu,
Ashhab, and Nori, 2014). As bits (which can be either on
or off) can be thought of as the basic building blocks of
classical computers, one can envision qubits that can each be
used as a two-dimensional Hilbert space as the building blocks
of a quantum computer. If we want to use the 2N-dimensional
Hilbert space provided by N qubits to represent the Hilbert
space of a quantum field theory problem, we need to apply
discretizations and truncations. Discretization of space can be
achieved using the lattice approximation, while the discreti-
zation of continuous field integration can be done using
character expansion, as is discussed extensively in this
review, or by other methods that include gauge magnets
and quantum links (Horn, 1981; Orland and Rohrlich, 1990;
Brower, Chandrasekharan, and Wiese, 1999; Wiese, 2013),
field digitization, or summation of discrete subgroups (Jordan,
Lee, and Preskill, 2014; Alexandru, Bedaque, Harmalkar
et al., 2019; Hackett, Daniel et al., 2019; Klco and Savage,
2019; Lamm, Lawrence, and Yamauchi, 2019).
General arguments (Lloyd, 1996) showed that for local

interactions, a quantum computer will reduce the computa-
tional effort, for problems like the real-time evolution, to a
polynomial in the size of the system rather than an exponential
for a classical computer.
From a purely theoretical point of view, studyingmodels with

a large number of strongly correlated degrees of freedom is
challenging. To deal with this situation, Kadanoff (1966) sug-
gested considering the average field or spin in cells of variable
sizes that are often called “blocks.”The procedure is often called
“block spinning” and it played a crucial role in the development
of the renormalization group (RG) ideas (Wilson and Kogut,
1974). Sometimes great theoretical intuitions can take a long
time to be practically realized. Despite its visual appeal, the
block-spinning procedure is not easy to implement numerically.
It typically involves approximations that are difficult to improve.
Successful applications of the RG idea were made possible

without requiring numerical implementations of the original
blocking idea. A well-known example is the discovery of
asymptotic freedom (Gross and Wilczek, 1973; Politzer,
1973), which initially relied on a one-loop calculation of
the Callan-Symanzik beta function. Typically, the interplay
between small and large energy scales is more easily seen in
the momentum representation. However, it is clear that if it
were possible to design practical methods such that each step
of the blocking could be performed within a reasonable
amount of time and with a desired accuracy, the computational
cost would scale like the number of blockings, in other words,
the logarithm of the volume, since the size of a block after
each blocking step doubles (Kadanoff, 1966). Achieving this
goal is nontrivial and not guaranteed in general. We now
explain the practical issues that have prevented the use of
blocking for quantitative purposes and how new tensorial
methods can be used to make progress in this direction.
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A simple way of blocking consists of introducing 1 in the
partition function in the following generic form:

Y
B

Z
dΦBδ

�
ΦB −

X
x∈B

ϕx

�
¼ 1; ð1Þ

where the blocks B form a partition of the original lattice. For
instance, in a three-dimensional cubic lattice, the blocks can
be chosen as cubes with a linear size of two lattice spacings
and contain eight sites. ϕx are the original lattice fields and
ΦB are the block fields that inherit new effective interactions
after one performs the integration over the original fields.
Conceptually, this sounds easy; however, in practice it appears
to be more complicated than the original problem. As an
example, one can try to write a simple algorithm for the two-
dimensional Ising model on a square lattice by replacing four
spins in a 2 × 2 square block with a single variable and writing
an effective energy function (or at least some effective
measure) for the new block variables. The procedure becomes
more intricate as we proceed, and finding the effective energy
function is nontrivial (Liu et al., 2013).
For this reason approximate procedures were developed,

such as the Migdal-Kadanoff approximation (Migdal, 1975;
Kadanoff, 1976), the approximate recursion formula (Wilson
and Kogut, 1974), and other hierarchical approximations
(Dyson, 1969; Baker, 1972; Meurice, 2007), where no new
interactions are generated by the blocking process. However,
in these examples, the lack of a reference to an exact
procedure to handle the original model with localized inter-
actions makes the systematic improvement of these approx-
imations difficult. Similar issues appear in nonperturbative
functional methods based on the momentum space represen-
tation (Berges, Tetradis, and Wetterich, 2002), where the local
potential approximation allows for high-accuracy estimates of
the critical exponents (Bervillier, Juttner, and Litim, 2007), but
its improvement with methods such as the derivative expan-
sion remains difficult (Bervillier, 2013). For Ising models, it is
possible to deal with the proliferation of couplings generated
by the blocking process by starting with the most general set
of interactions (Kadanoff, 1975; Kadanoff and Houghton,
1975; Niemeijer and van Leeuwen, 1976). They introduce the
identity in terms of probabilities Pðfσ0g; fσgÞ such thatX

fσ0g
Pðfσ0g; fσgÞ ¼ 1; ð2Þ

where fσ0g are new Ising spins associated with the blocks. As
we later discuss, this special setup allows us to write formal
expressions for the effective couplings as double partition
functions and write RG equations. However, from a computa-
tional point of view the locality of the interactions is lost and
additional assumptions are needed to proceed.
In contrast, reformulations of the partition function of

classical spin models as the trace of a product of local tensors
provide a new type of blocking procedure in configuration
space called tensor RG (TRG) (Nishino and Okunishi, 1996;
Levin and Nave, 2007; Gu and Wen, 2009; Xie et al., 2009;
Gu, Verstraete, and Wen, 2010; Xie et al., 2012).
TRG procedures can be obtained by applying truncations to

exact blocking formulas. The blocking unambiguously

separates the degrees of freedom inside the block (which
are integrated over) from those kept to communicate with the
neighboring blocks (Meurice, 2013). However, the degrees of
freedom remaining after the blocking are still microscopic,
and finding a truncation that captures the low-energy physics
and the entanglement is a nontrivial task.
In the early stages of TRG development, singular value

decomposition (SVD)methodswere used extensively. Thiswas
reviewed by Efrati et al. (2014). Some SVD procedures can be
simplified by using character expansions (Liu et al., 2013)when
applied to most models studied in the context of lattice gauge
theory (Liu et al., 2013; Denbleyker et al., 2014; Shimizu and
Kuramashi, 2014a, 2018; Yu et al., 2014; Zou et al., 2014;
Bazavov et al., 2015; Takeda and Yoshimura, 2015; Kadoh
et al., 2018, 2019, 2020; Yoshimura et al., 2018; Bazavov et al.,
2019; Kuramashi and Yoshimura, 2019; Nakamura, Oba, and
Takeda, 2019; Unmuth-Yockey, 2019; Butt et al., 2020).
Tensorial methods are also used in the context of quantum
gravity (Perez, 2013; Dittrich, Mizera, and Steinhaus, 2016;
Asaduzzaman, Catterall, and Unmuth-Yockey, 2020).
In general, tensorial methods represent a new approach to

lattice field theory thatwe call tensor lattice field theory (TLFT).
TLFT can be used for purposes more general than the blocking
procedure. In particular, TLFT provides a convenient, discrete
framework to perform quantum computations or simulations.
There are, additionally, continuous tensor network, or tensor-
like, methods such as continuous matrix product states
(Haegeman et al., 2013; Campos, Sierra, and López, 2019).
In this review, we introduce TLFT for lattice models studied

in the context of lattice gauge theory and report progress made
for blocking and quantum computing, two competing meth-
ods that attempt to reduce the computing time logarithmically.
The models targeted are introduced in Sec. II. We advocate a
road map starting with the Ising model and culminating with
QCD that we call the “Kogut sequence” (Kogut, 1979, 1983).
This sequence is sometimes called a “ladder” and has been
followed successfully in situations where importance-
sampling methods such as the Metropolis algorithm are
effective. Lattice QCD has become a reliable precision tool
to study the static properties of hadrons. Currently we are
roughly in the middle of the sequence, i.e., we have roughly
half of the models in the sequence remaining to be studied
thoroughly, with improvements and optimization on previous
models still possible. However, we anticipate that recent
progress on higher-dimensional algorithms (Kadoh and
Nakayama, 2019; Adachi, Okubo, and Todo, 2020) could
be combined with the methods that we describe to deal with
gauge fields, fermions, and non-Abelian (noncommuting)
symmetries in order to attempt calculations directly related
to lattice QCD in the coming years.
In Sec. III, we discuss situations where importance sampling

cannot be used andwhere quantumcomputations or simulations
could provide alternate ways to perform computations. This
includes unitary, real-time evolution and other situations where
a sign problem is encountered. One important long-term goal
with potential impact on the interpretation of high-energy
collider data is doing ab initio real-time calculations relevant
to fragmentation processes and parton distribution functions.
In other words, starting with lattice QCD, we want to perform
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calculations that would ultimately replace the use of event
generators such as PYTHIA (Sjostrand et al., 2015).
The simplest starting point for the real-time evolution is the

evolution operator expð−iĤt=ℏÞ acting on the Hilbert space
of the quantum Hamiltonian Ĥ. We provide a first look at
the transfer matrix that smoothly connects the “classical”
Lagrangian approach to the Hilbert space used in the
Hamiltonian formalism. We discuss various types of dualities
(geometrical and topological) that are often used together and
mistaken for one another.
For the models in the Kogut sequence, the bosonic field

variables and the symmetry groups are compact. General
mathematical theorems, namely, the Pontryagin duality
(Pontryagin, 1939) and the Peter-Weyl theorem (Peter and
Weyl, 1927), guarantee that functions over compact groups
can be expanded in terms of discrete sums of representations.
This is called the “character expansion” and was exploited to
calculate strong coupling expansions (Balian, Drouffe, and
Itzykson, 1975) or introduce new variables on geometrically
dual lattice elements (Savit, 1980).
The discreteness of the character expansion provides a

natural starting point for building approximate reformulations
of lattice models suitable for quantum computing or quantum
simulation experiments. The Ising model is an elementary
example where the Hilbert space of the transfer matrix can be
implemented with a set of qubits, the basic components of
actual quantum computers that exist in a linear superposition
of two states j0i and j1i, rather than being just on or off like
the bits of a classical computer. For models with continuous
fields, character expansions allow us to perform the “hard
integrals” analytically without needing to approximate the
numerical discretizations that break the continuous sym-
metries. Demonstrating the power of the character expansion
is one of the main goals of this review. Examples of quantum
computations and simulations are provided at the end of
Sec. III. In Sec. IV, we clarify the use of the terms “classical”
and “quantum” in various contexts and make connections with
other approaches (Schollwöck, 2011b; Haegeman and
Verstraete, 2017; Ran et al., 2020; Cirac et al., 2021).
Section V introduces the tensor reformulation for the Ising

model. SVD, truncation, and the TRGmethod are discussed in
Sec. VI. Spin models with an Oð2Þ symmetry or with discrete
subgroups are discussed in Sec. VII. In Sec. VIII, we derive
expressions for local tensors in the simple case of a non-
Abelian spin model with Oð3Þ symmetry. We also find tensor
expressions for effective theories of gauge theories known as
principal chiral models.
Models with local gauge symmetry are introduced in

Sec. IX. We first consider Abelian gauge theories and work
up in complexity to tensor expressions for non-Abelian gauge
theories as well.
In Sec. X, tensor network expressions for the real and the

complex ϕ4 theory are derived. For models with noncompact
fields such as the scalar ϕ4 theory, the Gaussian quadrature
rule can be used to extract discrete degrees of freedom, just as
the gauge degrees of freedom are discretized via character
expansions. The accuracy of the tensor network approach is
shown for the real-field case, and an ability to deal with a
severe sign problem is shown in the complex-field case.

In Sec. XI, we present tensor formulations for models with
fermionic degrees of freedom. In general, fermions fit in well
with the tensor (and discrete) approach thanks to the nilpo-
tency of the Grassmann variables. In the section, various
models that contain fermions such as pure fermions, gauged
fermions, and fermions combined with scalars are discussed.
In Sec. XII, we rediscuss the transfer matrix using the tensor

formalism and broaden the perspective. Recent TLFT deve-
lopments regarding symmetries, topological solutions, and
quantum gravity are discussed in Sec. XIII.

II. LATTICE FIELD THEORY

A. The Kogut sequence: From Ising to QCD

In the early 1970s, QCD appeared to be a strong candidate
for a theory of strong interactions involving quarks and
gluons. However, the perturbative methods that provided
satisfactory ways to handle the electroweak interactions of
leptons failed to explain confinement, mass gaps, and chiral
symmetry breaking. A nonperturbative definition of QCD was
needed. In 1974, Wilson proposed (Wilson, 1974) a lattice
formulation of QCD where the SUð3Þ local symmetry is exact.
As this four-dimensional model is fairly difficult to handle
numerically, a certain number of research groups started
considering simpler lattice models in lower dimensions and
then increased symmetry and dimensionality. This led to a
sequence of models, sometimes called the “Kogut ladder,” that
appears in the reviews of Kogut (1979, 1983) and was later
addressed with small modifications by Polyakov (1987) and
Itzykson and Drouffe (1991).
The sequence is approximately the following:
(1) D ¼ 2 Ising model
(2) D ¼ 3 Ising model and its gauge dual
(3) D ¼ 2 Oð2Þ spin and Abelian Higgs models
(4) D ¼ 2 fermions and the Schwinger model
(5) D ¼ 3 and 4Uð1Þ gauge theory
(6) D ¼ 3 and 4 non-Abelian gauge theories
(7) D ¼ 4 lattice fermions
(8) D ¼ 4 QCD

This sequence should not be understood in a rigidway as if each
step is necessary for the next step. For instance, steps (3)–(5) can
be interchanged, and the problems involving fermions have
specific features that are not easily compared to those involving
only bosonic fields. The message that we want to convey is that
there is an approximate roadmap that has proven to be effective
for the classical approach of lattice field theory in dealing with
static problems using importance-sampling (Monte Carlo)
methods. We advocate following a similar path to develop
the quantum versions of these models and deal with real-time
evolution and other problems not accessible with classical
methods. The difference between quantum and classical is
explained more precisely in Sec. IV.A. A similar path is
followed to develop numerical coarse graining.

B. Classical lattice models and path integral

In this section we introduce lattice versions of classical field
theory models. At this point, we point out that, while we
provide definitions of the fields, notations, and acronyms or
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initials used, more details on basic quantum field theory and
lattice field theory can be found in textbooks and reviews by
Kogut (1979), Itzykson and Drouffe (1991), Montvay and
Münster (1994), and Peskin and Schroeder (1995). We use a
Euclidean time and treat space and time on the same footing.
The metric is simply a Kronecker delta in D dimensions. We
then discretize space and time. We use a D-dimensional
(hyper)cubic Euclidean spacetime lattice. The sites are
denoted as x ¼ ðx1; x2;…; xDÞ, with xD ¼ τ the Euclidean-
time direction. In lattice units, the spacetime sites are labeled
with integers. In the following, the lattice units are implicit.
The links between two nearest-neighbor lattice sites x and
xþ μ̂ are labeled as ðx; μÞ and the plaquettes, the smallest
squares on a square or (hyper)cubic lattice, are delimited by
four sites x, xþ μ̂, xþ μ̂þ ν̂, while xþ ν̂ are labeled as
ðx; μνÞ. By convention, we start with the lowest index when
introducing a conventional circulation at the boundary
of the plaquette. The total number of sites is denoted by V.
Unless otherwise specified, periodic boundary conditions
are assumed, and they preserve a discrete translational
symmetry. If we take the time continuum limit, we obtain
a quantum Hamiltonian formulation in D − 1 spatial
dimensions.
In the continuum, the Lagrangian density for N real scalar

fields with an OðNÞ global symmetry reads

LOðNÞ
Euclidean ¼ 1

2
∂μϕ⃗ · ∂νϕ⃗δ

μν þ λðϕ⃗ · ϕ⃗ − v2Þ2; ð3Þ

with ϕ⃗ an N-dimensional vector. Here λ is a coupling constant

whose size determines fluctuations of the jϕ⃗j field around
some value v. The potential has degenerate minima on an
(N − 1)-dimensional hypersphere SN−1 and a local maximum

at ϕ⃗ ¼ 0. For N ¼ 2, the low-energy part of the potential has a
shape similar to the bottom of a wine bottle. The degenerate
minima form a circle at the bottom. We can study the small
fluctuations about a given minimum on the circle. Note that
the choice of a minimum breaks the Oð2Þ symmetry. There are
“soft” fluctuations along the circle that restore the symmetry
and “hard” fluctuations in the radial direction.
We can extend this analysis to arbitrary N. We have

one massive mode (fluctuations in the symmetry breaking
direction) with mass 2

ffiffiffiffiffi
2λ

p
v and N − 1 massless modes

[Nambu-Goldstone (NG) modes] that is the number of broken
generators (Nambu, 1960; Goldstone, 1961; Goldstone,
Salam, and Weinberg, 1962; Peskin and Schroeder, 1995).
We can write the Euclidean action for the NG modes on a

D-dimensional lattice with isotropic lattice spacing a as

SNLSM ¼ 1

2

X
x

XD
μ¼1

aD−2ðϕ⃗xþμ̂ − ϕ⃗xÞ · ðϕ⃗xþμ̂ − ϕ⃗xÞ: ð4Þ

This is called the nonlinear sigma model (NLSM) (Peskin and

Schroeder, 1995). The constraint ϕ⃗x · ϕ⃗x ¼ v2 (which enfor-
ces the “nonlinear” part of its name) can be expressed by

introducing the unit vectors ϕ⃗x ¼ vσ⃗x such that

σ⃗x · σ⃗x ¼ 1: ð5Þ

Redefining aD−2v2 ≡ β, we get the simple action

SNLSM ¼ β
X
x;μ

ð1 − σ⃗xþμ̂ · σ⃗xÞ: ð6Þ

These models are often called spin models as well. The first
term in the action β

P
x;μ 1 is a constant that is often dropped.

However, for large β the configurations with almost constant
σ⃗x dominate the partition function and, since under these
circumstances σ⃗xþμ̂ · σ⃗x ≃ 1, it is useful to subtract the con-
stant in order to keep only the small fluctuations.
The case of N ¼ 1 is the well-known Ising model with

σx ¼ �1 (Ising, 1925). For N ¼ 2, the terminologies “planar
model” and “classical XY model” (Vaks and Larkin, 1965;
Bowers and Joyce, 1967) are common, and if we use the circle
parametrization

σð1Þx ¼ cosðφxÞ; σð2Þx ¼ sinðφxÞ; ð7Þ

then

σ⃗xþμ̂ · σ⃗x ¼ cosðφxþμ̂ − φxÞ; ð8Þ

with φx ∈ ½0; 2πÞ.
There is another class of models that break the Oð2Þ

symmetry in Eq. (8) into a discrete Zq symmetry; i.e., the
possible angles are restricted to those of the qth roots of unity
in the complex plane. They are called the q-state clock models
(Potts, 1952). These models have the same action as Eq. (6)
with identification of the angles being discrete,

φx ¼
2πnx
q

ð9Þ

where nx ¼ 0; 1; 2;…; q − 1. With this identification, the
Oð2Þ model emerges as the q → ∞ limit of the q-state clock
models, and the Ising model is simply the q ¼ 2 model.
For N ¼ 3, the symmetry becomes non-Abelian and the

model is sometimes called the “classical Heisenberg model.”
In the large-N limit, the model becomes solvable if we take
the limit in such a way that N=βðNÞ ¼ λ remains constant
(Coleman, Jackiw, and Politzer, 1974).
It is instructive to rewrite the Oð2Þ model using the

complex form

Φx ¼ eiφx : ð10Þ

When the constant terms are dropped, the Oð2Þ action reads

SOð2Þ ¼
β

2

X
x;μ

ðΦxþμ̂ −ΦxÞ · ðΦxþμ̂ −ΦxÞ⋆

¼ β
X
x;μ

½1 − cosðφxþμ̂ − φxÞ�:

The Oð2Þ model has a global symmetry

φx → φx þ α: ð11Þ
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With the complex notation, this transformation becomes

Φx → eiαΦx: ð12Þ

We promote this symmetry to a local one

Φx → eiαxΦx; ð13Þ

i.e., one that is site dependent. This can be achieved by inserting
a phase Ux;μ between Φ⋆

x and Φxþμ̂, which transforms as

Ux;μ → eiαxUx;μe−iαxþμ̂ : ð14Þ

The procedure can be extended as follows for arbitrary
N-dimensional complex vectors Φx with a local transforma-
tion involving a UðNÞ matrix Vx:

Φx → VxΦx. ð15Þ

In addition, we can introduce UðNÞ matrices Ux;μ̂ trans-
forming as

Ux;μ̂ → VxUx;μ̂V
†
xþμ̂: ð16Þ

The action

SUðNÞ ¼ −
β

2

X
x;μ

ðΦ†
xUx;μ̂Φxþμ̂ þ H:c:Þ ð17Þ

has a local UðNÞ invariance that we call gauge invariance. If
we consider two successive links in positive directions, then
the local transformation at the middle site cancels and

Ux;μUxþμ̂;ν → VxUx;μUxþμ̂;νV
†
xþμ̂þν̂: ð18Þ

If the second link goes in the negative direction, we use the
Hermitian conjugate and a similar property holds:

Ux;μU
†
xþμ̂−ν̂;ν → VxUx;μU

†
xþμ̂−ν̂;νV

†
xþμ̂−ν̂: ð19Þ

We can pursue this process for an arbitrary path connecting x
to some xfinal. The transformation on the right-hand side
is V†

xfinal . If we close the path and take the trace, we obtain
a gauge-invariant quantity. We call these traces of pro-
ducts of gauge matrices over closed loops, “Wilson loops”
(Wilson, 1974). In the case where the loop goes around the
imaginary time direction, we often call it a “Polyakov loop”
(Polyakov, 1978).
On a square, cubic, or hypercubic lattice, the smallest

path that gives a nontrivial Wilson loop is a square. We
call this square a plaquette. Claude Itzykson coined this
terminology after Ken Wilson’s seminar in Orsay in 1973.
The corresponding matrix is

Upl ¼ Ux;μν ¼ Ux;μUxþμ̂;νU
†
xþν̂;μU

†
x;ν ð20Þ

The simplest gauge-invariant lattice model has the following
action, called Wilson’s action:

SWilson ¼ βpl
X
hx;μνi

�
1 −

1

2N
Tr½Ux;μν þ H:c:�

�
; ð21Þ

where
P

hx;μνi indicates a sum over all plaquettes. Here each
Ux;μ is related to the vector potential, or gauge field, in the
continuum theory through

Ux;μ ¼ eiAx;μ : ð22Þ

On the lattice, both Ux;μ and Ax;μ are located on a link starting
at x and going in the μ̂ positive direction. In the Abelian case
(N ¼ 1), the matrix reduces to a phase

Ux;μ ¼ eiAx;μ ð23Þ

and there is no need to take the trace.
Another generalization of the N ¼ 1 expression of the

complex phase given in Eq. (10) consists of replacing Φx with
an SUðNÞ matrix Ux. This is called the principal chiral model
(Gürsey, 1960; Green and Samuel, 1981; Samuel and Yee,
1985; Campostrini, Rossi, and Vicari, 1995; Peskin and
Schroeder, 1995),

SPCM ¼ −
β

2N

X
x;μ

½TrðU†
xþμ̂UxÞ þ H:c:�: ð24Þ

This model has a global rotational symmetry under the UðNÞ
group such that Ux;μ → Ux;μ

0 ¼ VUx;μV†, just as in Eq. (16) in
the case of a uniform V in all of spacetime.
We can also consider the N ¼ 1 case for Eq. (3) when the

group is no longer compact; i.e., ϕx can take on the values of
any real or complex number. The action on the lattice is then

Sscalar ¼
X
x

�
1

2

XD
μ¼1

jϕxþμ̂ − ϕxj2 þ λðjϕxj2 − ν2Þ2
�

ð25Þ

or, equivalently,

Sscalar ¼
X
x

�
1

2

XD
μ¼1

jϕxþμ̂ − ϕxj2 −
μ20
2
jϕxj2 þ

λ0

4
jϕxj4

�
; ð26Þ

with the substitution μ20=2 ¼ 2λν2 and λ0=4 ¼ λ, and the
overall constant is ignored.
Besides scalar fields, we also consider fermionic fields (or

Grassmann fields on the lattice). In the case of free fermions,
we can write a lattice action using a straightforward discre-
tization due to Wilson (Wilson, 1974) as

SWD ¼
X
x

ψxðDψÞx ð27Þ

with the Wilson-Dirac operator defined by

Dxx0 ¼ ðamþ rDÞδx;x0

þ 1

2

XD
μ¼1

fðr − γμÞδx0;xþμ̂ þ ðrþ γμÞδx;x0þμ̂g; ð28Þ
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where γμ are the gamma matrices inD dimensions and r is the
“Wilson parameter” to control species doubling. This so-
called doubling is the name given to the existence of extra
copies of fermions (16 in the case of four dimensions), and
they must be removed or gapped out appropriately. ψx and ψ̄x
are multicomponent Grassmann variables that anticommute,
as opposed to classical bosonic variables which can be
interchanged without a sign change.
There is another formulation of lattice fermions where

different components of the fermion fields are located at
different lattice sites, called staggered fermions. This comes
about from a transformation that mixes the fermion compo-
nents and spacetime components (Kogut and Susskind, 1975).
The action for free fermion fields is given by

SF ¼ 1

2

XN
x¼1

XD
μ¼1

ηx;μ½ψ̄xψxþμ̂ − ψ̄xþμ̂ψx�; ð29Þ

where

ηx;μ ¼ ð−1Þ
P

ν<μ
xν ; ð30Þ

with xν the coordinate in the νth direction. One can include
gauge fields in a gauge-invariant manner by inserting Ux;μ

such that

SF ¼ 1

2

XN
x¼1

XD
μ¼1

ηx;μ½ψ̄xUx;μψxþμ̂ − ψ̄xþμ̂U
†
x;μψx�: ð31Þ

These models will appear in the rest of the review and will
be reintroduced in each section. As previously seen, the matter
degrees of freedom are placed on each lattice site. When one
considers a tensor network representation of a model, integer
degrees of freedom will arise at each link on the lattice; see
Fig. 1. As for lattice gauge theories where gauge degrees of
freedom are initially placed on links, the character expansion
will be used for generating integer at each plaquette. These
points are made clear later in the review. The simplest example
is the Ising model discussed in Sec. V.

C. Physical applications

The sequence of models described in Sec. II.A is designed
to handle lattice QCD, which is currently our best definition of
the theory describing strongly interacting particles observed in
a large number of experiments. Some of the models discussed
in Sec. II.B are also studied in condensed matter. For instance,

the Oð2Þ model with a chemical potential can be seen as an
effective theory for the Bose-Hubbard model (Sachdev, 2001).
Uð1Þ gauge theories with either scalar or fermion fields are
studied in the context of superconductivity (Herbut, 2007).
Tight-binding approximations for solids lead to interesting
lattice models: for instance, a sheet of graphene can be
described with fermions on a hexagonal lattice having a
dispersion relation similar to that for a massless Dirac fermion
at half filling (Castro Neto et al., 2009). Other interesting
applications include spin liquids and topological phases
(Anderson, 1973; Wen, 2004, 2017; Zhou, Kanoda, and
Ng, 2017; Knolle and Moessner, 2019).
We point out that in the context of high-energy physics

local Lagrangian densities have played a crucial role in the
development of the standard model. In the continuum limit,
models compatible with relativistic invariance, local gauge
invariance, and renormalizability have a small number of free
parameters provided that the interactions among the fields and
their first derivatives are kept local. The standard model of
electroweak and strong interactions has only 18 free param-
eters if we ignore the QCD vacuum angle and the additional
parameters related to the masses and mixing of the neutrinos
in extensions of the standard model. It is not possible to tweak
the theory each time a new experiment is completed. This
makes the standard model a predictive theory. In the lattice
formulation, the local interactions involving derivatives in the
continuum are replaced by interactions involving fields located
on neighboring sites, links, and plaquettes and can be consid-
ered quasilocal. For these reasons, the idea that reformulations
of lattice models and their coarse-grained versions can be kept
local seems to be an important consideration.

D. Computational methods beyond perturbation theory

Besides the RG methods mentioned in the Introduction,
lattice models have been studied with a variety of analytical
and numerical methods. For example, expansions at small and
large coupling for spin and gauge models (Kogut, 1979, 1983;
Polyakov, 1987; Itzykson and Drouffe, 1991; Parisi, 1998)
have been investigated extensively. As power series, they can
be used to check numerical calculations in their respective
limits; however, it is hard to capture nonperturbative effects
such as the generation of a dynamical mass gap in the
continuum limit. After Wilson’s original proposal (Wilson,
1974) a suggestive Hamiltonian picture was developed by
Kogut and Susskind (1975); however, it became clear that the
size of the Hilbert space would make numerical calculations
impractical.
In many practical situations, the path-integral formulation

uses a real Euclidean action SE. This allows importance
sampling. A typical way to proceed is to start with a random
field configuration and then apply some random changes on
this configuration. If the new configuration has a lower action,
it is accepted. If the new configuration has an action larger by
δSE, then it is accepted with a probability expð−δSEÞ. The fact
that the fields are connected to only a few neighboring fields
makes the calculation of δSE easy and the exploration of the
important configurations controllable.
Mathematicians are often astounded that it is possible to

obtain reliable results with this method (Villani, 2012). To date

FIG. 1. Reinterpretation of physical degrees of freedom (ϕ) to
tensor indices (i). After the reinterpretation, the partition function
is expressed as a summation of tensor indices instead of the path
integral.
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this is the most reliable way to capture nonperturbative
behavior while taking the continuum limit. Around 1978,
Creutz (2001) studied numerical lattice gauge theory with
simulations of the gauge Ising model on a 34 lattice using an
HP 9830 calculator programmed in BASIC. This was rapidly
followed by the study of other Abelian gauge theories (Creutz,
Jacobs, and Rebbi, 1979) and other models. This was
reviewed by Rebbi (1983).
Several decades after its inception, numerical lattice gauge

theory has become an area of research where corrections on
the order of a few percent are considered important. For
instance, in heavy flavor physics the determination of the
mixing angle jVubj was quoted as ð3.72� 0.16Þ × 10−3

(Bailey et al., 2015). This result was obtained using ensembles
of lattices of various lattice spacings and sizes, some of them
as large as 643 × 192. For a review of averages of numerical
results with estimated errors, see the Flavour Lattice
Averaging Group summary (Aoki et al., 2020).
Given the success of importance sampling for static

problems in QCD, not much has been done to develop
efficient numerical Hamiltonian methods. On the other
hand, in condensed matter the idea that it is possible to
approximate low-energy states of the Hamiltonian with a
significantly reduced Hilbert space has been successful in
1þ 1 dimensions and shares some similarities with impor-
tance sampling. This idea appeared in the context of the
density matrix renormalization group (DMRG) method
(White, 1992; Schollwöck, 2005, 2011b; Haegeman and
Verstraete, 2017) and the other methods discussed in
Sec. IV.C. We expect that in the coming years great progress
will be made in adapting related methods in the context of
lattice gauge theory.

III. QUANTUM COMPUTING

A. Situations where importance sampling fails

The numerical successes of lattice gauge theory can be
linked to the fact that when the action of the Euclidean-time
path integral SE is real, importance sampling works surpris-
ingly well for the selection of configurations with a
Boltzmann distribution expð−SEÞ. However, if we return to
real time or introduce a chemical potential that makes the
action complex, this powerful tool becomes ineffective
(de Forcrand, 2010). This is because in these instances the
Boltzmann weights become complex, making their interpre-
tation as probability weights impossible.
Real-time evolution can be set up by using a Hamiltonian

acting on a Hilbert space that can be constructed by noticing
that the Euclidean path integral can be recast as the trace
of a transfer matrix (Wilson and Kogut, 1974; Creutz, 1977;
Fradkin and Susskind, 1978; Kogut, 1979; Lüscher, 1990). In
addition to the transfer-matrix method, one can also extract
real-time observables, such as Green’s functions, by generat-
ing functional methods in Minkowski spacetime. There are
also other techniques for calculating off-equilibrium real-
time observables requiring the use of the Keldysh contour
(Keldysh, 1965).
Analysis of the exponential decays of correlations as the

Euclidean time is increased is a standard tool to extract masses

and form factors for momenta that are small compared to the
lattice cutoff. On the other hand, real-time evolution and a
large Hilbert space involving states with large momenta are
needed to describe aspects of hadron fragmentation in real
spacetime and deep-inelastic scattering (Lamm, Lawrence,
and Yamauchi, 2020; Mueller, Tarasov, and Venugopalan,
2020; Nachman et al., 2021). The real-time evolution operator
does not provide a positive measure or a projection onto a
small Hilbert space. Another situation where sampling
methods are challenged is the construction of interpolating
operators for nuclei as the number of Wick contractions grows
rapidly with the number of light quarks involved (Detmold
and Orginos, 2013).
One could consider the possibility of abandoning the

Lagrangian formulation and directly considering the Kogut-
Susskind Hamiltonian (Kogut and Susskind, 1975) for QCD
and/or the standard many-body formalism in condensed
matter and nuclear physics (Fetter and Walecka, 2003), where
the Hilbert space is generated by creation operators on a Fock-
space vacuum. For the sake of argument, we now consider the
simple case of N conjugate pairs of fermionic creation and
annihilation operators. They generate a Hilbert space of
dimensions 2N . The exponential growth of this number with
N rapidly restricts our ability to store or manipulate the matrix
elements of operators using brute-force methods with classical
computers. Computations involving spatial lattices with 643

sites, made possible by the Lagrangian formulations, would be
completely out of the question if we had to set up the entire
quantum Hilbert space with existing classical computers.
Note, however, that for a broad class of many-body problems
it has been shown (Poulin et al., 2011) that most states of the
Hilbert space can be reached only after an exponentially long
time. This suggests that tensor-network methods should allow
one to express Hamiltonians and the ground state without
needing to explore the full Hilbert space.

B. Qubits and other quantum platforms

The building blocks of an ordinary (classical) computer
memory are bits taking the value 0 or 1. In some designs of
DRAM devices, this is achieved by using small capacitors that
are either on or off. The typical units of capacitance are
femtofarads with voltages of the order of 1 V. These capacitors
store a few thousand electrons and can be charged or discharged
in times of the order of 10−15 sec. The limit of miniaturization
where electrons, atoms, or photons can be manipulated indi-
vidually and where the peculiarities of the quantum behavior
become prominent was discussed by Lloyd (1996).
Following the physical examples of the electron spin or the

photon polarization, one could envision an ideal and generic
quantum system where the on-off concept for bits is replaced
by the linear superposition of the two states. This basic unit
of quantum computing is often called a qubit (Schumacher,
1995) and can be represented as

jqubiti ¼ α0j0i þ α1j1i; ð32Þ

with two complex numbers α0 and α1 such that
jα0j2 þ jα1j2 ¼ 1. A set of N qubits spans a Hilbert space
of dimension 2N . If we use a classical computer to apply a
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dense unitary matrix representing the real-time evolution on
an arbitrary state, we need to perform on the order of 22N

operations. On the other hand, if the Hamiltonian is such that
any qubit is connected to only a restricted number of other
qubits that are fixed by the dimensionality of space and the
internal symmetries, then it is possible to design a method that
performs the evolution with a number of quantum manipu-
lations that scale polynomially only with N (Lloyd, 1996).
This is discussed in Sec. III.F. Presently commercial quantum
computers provide sets of qubits and the possibility of
preparing, evolving, and measuring quantum states. The
limitations of the current hardware are discussed in Sec. III.G.
More generally, the idea that quantum devices can be used

to perform computations for quantum problems involving
many degrees of freedom is appealing (Feynman, 1982).
Physical systems involving cold atoms [see Jaksch et al.
(1998) and Bloch, Dalibard, and Zwerger (2008) for reviews
of the early developments] or trapped ions [see Leibfried et al.
(2003) for early developments and Debnath et al. (2016) for a
recent example] can be used to mimic the behavior of
simplified many-body models such as various types of spin
chains or Hubbard models. In addition, superconducting
circuits (Devoret and Schoelkopf, 2013), Rydberg atoms
(Bernien et al., 2017; Wu et al., 2021), and photonic systems
(Wang et al., 2020) also provide interesting opportunities.

C. From Euclidean transfer matrices to Hilbert spaces

For the lattice models introduced in Sec. II.B, the Euclidean
time was treated on an equal footing with the D − 1 spatial
dimensions. To discuss real-time evolution, we first need to
single out the time direction. Evolution then occurs along this
direction according to a transfer matrix. The key ingredient
then is to connect the Lagrangian formulation to the
Hamiltonian formalism and to identify the Hilbert space from
the transfer matrix introduced in Eq. (33). The general idea is
to organize the partition function sums or integrals into
operations performed on successive time slices (Wilson and
Kogut, 1974; Creutz, 1977; Fradkin and Susskind, 1978;
Kogut, 1979). A general procedure to construct the transfer
matrix of lattice models in configuration space in the general
context of scattering theory was presented by Lüscher (1990).
A dual method based on character expansions that are at the
heart of TLFT are discussed in Sec. XII, where we illustrate
these two possibilities with examples. Note that in this section
Euclidean-time methods are used to derive a Hamiltonian that
can later be used to do real-time calculations.
Turning to the transfer matrix, with generic notations for a

lattice model with Nτ sites in the Euclidean-time direction,

Z ¼
Z

DΦe−S½Φ�E ¼ TrðTNτÞ: ð33Þ

If the lattice spacing aτ in the Euclidean-time direction is
small compared to the physical timescales involved, we have

T ∝ e−aτĤ: ð34Þ

For Nτ large enough, the use of Euclidean time provides a
projection in the low-energy sector of the Hilbert space. This

property remains effective if we insert operators that create
and destroy states with nontrivial quantum numbers.
The simplest possible example is the following one-

dimensional Ising model:

SIsing ¼ β
X
τ

ð1 − στþ1στÞ ð35Þ

¼ β

2

X
τ

ðστþ1 − στÞ2 ð36Þ

with partition function

Z ¼
X
fσg

e−S: ð37Þ

This is a product of exponentials that each share one spin
variable with the next factor. We can then write the partition
function as

Z ¼ Tr½TNτ �; ð38Þ

with

Tαα0 ¼ exp

�
−
β

2
ðσðαÞτþ1 − σðα

0Þ
τ Þ2

�
ð39Þ

and σðαÞ ¼ 1;−1 for α ¼ 0; 1, respectively. Along the diago-
nal of the transfer matrix we see only unity. On the off
diagonal, a spin flip comes with weight e−2β. To leading order
in the temporal lattice spacing, T ≃ 1 − aτĤ þ � � �, which
allows us to identify

Ĥ ¼ −hxσ̂x; ð40Þ

with hx ≡ e−2β=aτ and σ̂x the x Pauli matrix. In this case, to
extract a Hamiltonian from the original Lagrangian formu-
lation, we required the coupling β to go to infinity to match the
temporal lattice spacing (e−2β ∝ aτ).
In this way we found the Hamiltonian and Hilbert space in

configuration space; however, one can use a dual method as
well by expanding the original Boltzmann weights. Consider
the following action for the Ising model in Eq. (35) with the
constant dropped:

SIsing ¼ −β
X
τ

στþ1στ: ð41Þ

The Boltzmann weight can be expanded in the form

Tαα0 ¼ eβσ
ðαÞ
τþ1

σðα
0 Þ

τ ð42Þ

¼ coshðβÞ
X1
n¼0

ðσðαÞτþ1σ
ðα0Þ
τ ÞntanhnðβÞ; ð43Þ

which is simply the Euler identity for imaginary angles.
Ignoring the factor out front since it does not affect the
Hamiltonian, in this form we can easily do the summation
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over the values of α at all lattice sites. The transfer matrix
becomes a diagonal matrix with matrix elements labeled as
follows with the integers n from each Boltzmann factor:

Tnn0 ¼
�
1 0

0 tanhðβÞ

�
: ð44Þ

In the literature, the integers n are often called dual variables
or character indices. The terminology is discussed more
systematically in Sec. III.D. To recover a Hamiltonian, the
transfer matrix must have the form 1 − aτĤ þ � � � for small
times. This is found by taking β → ∞ and recalling tanh β ¼
1–2e−2β þ � � � for large β. The Hamiltonian in these new
variables then takes the form

Ĥ ¼ hzð1 − σ̂zÞ; ð45Þ

with hz ≡ e−2β=aτ and σ̂z the z Pauli matrix. These are two
distinct procedures that give Hamiltonians in the time con-
tinuum limit: one in the original configuration variables and
the second in the dual variables.
The transfer matrix of the Ising model in higher dimensions

can be constructed in a similar manner (Kaufman, 1949). The
action for the Ising model in dimensionD is the N ¼ 1 case of
Eq. (6). In higher dimensions there are now two types of
interactions. If we consider a particular time slice, we can first
collect all the time links connected to the next time slice, each
with a representation given in Eq. (35). In addition, we have
all the spatial links in the time slice with nearest-neighbor
interactions. We can represent any spin configuration in a time
slice as an element of a tensor product of eigenstates of the
Pauli matrix σzx, with x denoting the spatial indices, as
follows:

fconfigurationsg ¼ ⊗
x
j � 1ix: ð46Þ

We can introduce operators σ̂zx and σ̂xx acting on this Hilbert
space, which can be identified with a set of qubits. Following
Kaufman (1949), we can collect the two types of interactions
in two matrices. Using

eβσα0σα ¼ ½2 sinhð2βÞ�1=2½expðβ̃σxÞ�α0α; ð47Þ

where β̃ is the dual inverse temperature introduced by Kramers
and Wannier (1941) that satisfies the relation tanhðβ̃Þ ¼ e−2β,
the contribution of time links can be summarized as follows
with the matrix connecting the configuration of the two time
slices:

V1 ¼ ½2= sinhð2β̃Þ�ND−1
s =2eβ̃

P
x
σ̂xx : ð48Þ

On the other hand, the spatial links can be recast in the
diagonal matrix as

V2 ¼ e
β
P

x;j
σ̂zx σ̂

z
xþĵ ; ð49Þ

with ĵ a unit vector pointing along one of the D − 1 directions
on the lattice. We can now write the transfer matrix as

T ¼ V1=2
2 V1V

1=2
2 ; ð50Þ

where the matrix indices label the spatial configurations.
Geometrically, the Hilbert space is located on the time slices.
Illustrations of the time slices and the location of the Hilbert
space can be found in Sec. XII.
Alternatively, we can work in the following dual repre-

sentation where the σxx are diagonal:

T̃ ¼ V1=2
1 V2V

1=2
1 ; ð51Þ

where the matrix indices label sets of group characters.
Geometrically, the Hilbert space is located between the time
slices. Graphical illustrations of this situation will be provided
in Sec. XII. The construction generalizes easily for finite
Abelian groups and in a nontrivial way for continuous and
compact Abelian groups. The advantage of using the second
(dual) representation is that it remains discrete and, as we see
in Sec. XIII.A, it preserves the symmetry when truncations are
applied (Meurice, 2019, 2020a).

D. Topological and geometrical dualities

In Sec. III.C we used the concept of duality on two
occasions. The first was the relation between β and β̃, which
interchanges their low and large value regimes. The second
occasion was the discussion of the two ways to represent the
transfer matrix. In addition, in Secs. VII.C and IX.A.2 we use
the geometrical duality reviewed by Savit (1980). Duality is a
general concept used in many branches of mathematics.
According to Atiyah (2007) duality gives “two different
points of view of looking at the same object.” In the following
we clarify the various usages of the concepts in the rest of this
review.
An important notion of duality is the so-called Pontryagin

duality (Pontryagin, 1939) used in the study of topological
groups. It relates an Abelian group and its characters (for
instance, Fourier modes). It states that if the former is
compact, the later is discrete and vice versa. The simplest
situation is a finite group that is compact and discrete. In the
case of finite cyclic Abelian groups the characters form a finite
group that is isomorphic to the group itself (Serre, 1973).
A simple example is Zq, the additive group of integers
modulo q. If x denotes an element of Zq, the characters
(see Appendix A.1) have the form

χkðxÞ ¼ exp

�
i
2π

q
kx

�
ð52Þ

and satisfy the character property

χkðxþ x0Þ ¼ χkðxÞχkðx0Þ: ð53Þ

The product of two characters is another character

χkðxÞχk0 ðxÞ ¼ χkþk0 ðxÞ; ð54Þ

and one sees that they also form a Zq group. They obey the
orthogonality relations

Meurice, Sakai, and Unmuth-Yockey: Tensor lattice field theory for renormalization …

Rev. Mod. Phys., Vol. 94, No. 2, April–June 2022 025005-10



1

q

Xq−1
x¼0

χkðxÞχ⋆k0 ðxÞ ¼ δk;k0 ð55Þ

and

1

q

Xq−1
k¼0

χkðxÞχ⋆k ðx0Þ ¼ δx;x0 : ð56Þ

A simple example of a continuous (nondiscrete) and
compact group is Uð1Þ, the multiplicative group of complex
numbers with modulus 1. The group properties can be
reformulated in an additive manner by introducing the phases
z ¼ eiφ, which are added modulo 2π. Topologically it is a
circle that is a compact manifold. Its characters are discrete
and labeled by the integers. They are the usual Fourier modes
einφ. The orthogonality relations appear in the following
asymmetric way:

Z
π

−π

dφ
2π

einφðeinφÞ⋆ ¼ δn;n0 ; ð57Þ

X∞
n¼−∞

einφðeinφ0 Þ⋆ ¼ 2π
X∞

m¼−∞
δðφ − φ0 þ 2πmÞ. ð58Þ

In practice, a deep understanding of the previous math-
ematical statements is not necessary, and we simply need to
remember a few character expansions. For the Ising models
we have functions over the multiplicative group σ ¼ �1, and
we can recall the expansion from Sec. III.C as a character
expansion

hσα0 jT jσαi ¼ expðβσα0σαÞ

¼ 1

2

X1
n¼0

λnðβÞðσα0σαÞn ð59Þ

¼ coshðβÞ þ σα0σα sinhðβÞ: ð60Þ

A similar representation can be obtained for the Zq spin
models. If we replace the discrete angle variables ð2π=qÞx
with continuous ones φ, we obtain a “matrix” with continuous
elements that can be calculated using the standard Fourier
transform

hφ0jT jφi ¼ exp½β cosðφ0 − φÞ� ð61Þ

¼
Xþ∞

n¼−∞
InðβÞ exp½inðφ0 − φÞ�; ð62Þ

where InðβÞ is the modified Bessel function of order n. We
show in Sec. VII.B that finite versions of this expansion hold
for the finite Zq subgroups.
Generalizations of Pontryagin duality to compact non-

Abelian groups appear in the Peter-Weyl theorem (Peter
and Weyl, 1927). As an example, this translates into expan-
sions in spherical harmonics for problems involving the Oð3Þ
symmetry. Related methods were used for tensor networks

with continuous symmetries (Tagliacozzo, Celi, and
Lewenstein, 2014; Zohar and Burrello, 2015).
From the point of view of quantum computing, we see that

using compact fields guarantees that we can replace the
continuous integrals by discrete sums. Our strategy is to
associate the indices of these sums with quantum states. One
important aspect of TLFT is that when the fields are compact,
we do not need to discretize the integrals using numerical
approximations. Instead, we can use character expansions
such as Eq. (62), where some integrals have been done exactly
and result in Bessel functions that we can input with any
desired accuracy. In other words, the difficult part of the
classical path-integral approach can be done efficiently with
classical methods. After that, the original integrals reduce to
orthogonality relations and can be performed exactly.
Another notion of duality is of a geometrical nature. It is

related to the Levi-Civita tensor ϵμ1…μD. Its meaning is
dimension dependent and relates objects of dimension d to
objects of dimension D − d. For instance, in D ¼ 4 a dual
field-strength tensor with two indices is obtained by con-
tracting the original field-strength tensor with the Levi-Civita
tensor. This duality transformation interchanges the electric
and magnetic fields and reduces to the identity when repeated
twice. It also relates sites to four-dimensional hypercubes, and
plaquettes to plaquettes. In D ¼ 3 it relates the field-strength
tensor to a divergenceless pseudovector ϵijk∂jAk, links to
plaquettes and sites to cubes.
The various notions of duality are often used simultane-

ously. A common example is the “dual formulation” of the
Ising model. As we explain in Sec. V.B, the new set of indices
from Eq. (60), which is a consequence of Pontryagin duality,
leads to a representation in terms of paths. We can then try to
represent these paths as the boundaries of surfaces, which
brings the geometrical duality and new “dual variables”
together (Savit, 1980).
There are also occasions where the phrase dual variables

has become associated with generic integer fields, regardless
or their origin or their relation to the previously mentioned
concepts of duality (Bruckmann et al., 2015, 2016; Gattringer,
Kloiber, and Müller-Preussker, 2015; Gattringer, Göschl, and
Sulejmanpašić, 2018; Marchis and Gattringer, 2018). These
integer fields can arise from a Taylor series of the Boltzmann
weight, such as in the case of the Ising model,

eβσσ
0 ¼

X∞
q¼0

βq

q!
ðσσ0Þq: ð63Þ

Equation (63) associates a natural number with the links of the
lattice, similar to the character expansion from before. Also
just as before, this expansion allows one to perform the path-
integral sums over the σ fields, leaving one with a theory of
constrained, positive integer fields on the links of the lattice.
However, instead of two values, i.e., n ¼ 0; 1, these integers
can take on an infinite number of values. Thus, while this
expansion accomplishes similar feats, it can be seen as a less
economical parametrization of the model. The character
expansion from before can be found within the Taylor
expansion by summing the even and odd integers, respec-
tively, leaving one with two terms (0 and 1).
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E. Real-time evolution with qubits

We now discuss the possibility of using quantum devices to
represent states of the Hilbert space emerging from the
transfer-matrix construction and to design methods to apply
unitary transformations corresponding to the real-time evo-
lution. For definiteness, we assume that we have at our
disposal a set of qubits. For the spin Ising model, the
construction of the transfer matrix leads to a Hilbert space
with the qubit structure given by Eq. (46). The method to take
the time continuum limit and identify a Hamiltonian using
Eq. (33) is well known (Fradkin and Susskind, 1978; Kogut,
1979): we deform the original transfer matrix by increasing β
in the time direction (which makes the dual value β̃ small) and
decreasing β in the spatial directions. The arguments of the
exponentials in V1 and V2 become infinitesimal and provide
the two noncommuting pieces of the “quantum Hamiltonian.”
The role played by V1 is special in the intuitive picture that we
are drawing: it acts only on single qubits without connecting
them. Consequently, working in the representation where σ̂xx is
diagonal is a good starting point. Next we can “turn on” the
terms in V2. At lowest order in the time lattice spacing they
connect only those qubits that are nearest neighbors. We show
in Sec. III.F that this type of situation permits quantum
computation in a time scaling polynomially with the size
of the system (Lloyd, 1996).
Character expansions and TLFT provide natural tools to

perform similar constructions for the models presented in
Sec. II.B. A first step consists of isolating building blocks that
are localized in space and have a simple real-time evolution.
The models have interactions associated with links and
plaquettes. As a first approximation we set the interactions
on spatial links and space-space plaquettes to zero.
For spin models, this results in a collection of ND−1

s
isolated one-dimensional spin models. These isolated models
are the building blocks. They are solvable and it is easy to
calculate their evolution in real time. For gauge models we
also have electric degrees of freedom that can be associated
with the spatial links of a given time slice of the lattice. They
are required to satisfy a constraint called Gauss’s law;
however, when this condition is satisfied, the real-time
evolution in the previously described isolation limit is
straightforward, as we explain in Sec. XII.C. The Hilbert
space of the isolated building blocks depends on the model
considered. For the Ising spin models, a single qubit is all we
need. For models with continuous symmetries, the exact
treatment requires an infinite Hilbert space; however, small
size truncations provide good approximations and preserve
the symmetries of the models (Meurice, 2019, 2020a). This
is an attractive feature of TLFT that is discussed in
Sec. XIII.A. Having set up a finite Hilbert space with
isolated building blocks, our next step is to restore the
interactions associated with the spatial links and the space-
space plaquettes. This is done for a variety of models in
Sec. XII. Independent of the model-specific aspect of this
procedure, it is clear that each building block is connected to
only a limited numbers of other building blocks. For
instance, for a spin model, there are two connections for
each spatial direction. This quasilocality is crucial to imple-
ment real-time evolution with a quantum computer.

F. Lloyd-Suzuki-Trotter product formula

An important motivation for using a quantum computer is
to calculate the real-time evolution for systems with many
degrees of freedom having quasilocal interactions in the sense
discussed in Sec. III.E. Ideally, the time to perform compu-
tations should scale polynomially with the size of the system
rather than exponentially. A general argument leading to these
conclusions was put forward by Lloyd (1996), who stated,
“Feynman’s 1982 conjecture, that quantum computers can be
programmed to simulate any local quantum system, is shown
to be correct.” The proof is based on the basic idea behind the
Suzuki-Trotter product formula (Trotter, 1959; Suzuki, 1976;
Reed and Simon, 1980), namely, that, for two noncommuting
operators Â and B̂ and sufficiently small ϵ,

eiϵðÂþB̂Þ ≃ eiϵÂeiϵB̂ þOðϵ2Þ: ð64Þ

In the standard construction of the path integral in quantum
mechanics, it is applied to the kinetic and potential energy, but
it can also be applied to all the quasilocal parts of the
Hamiltonian.
The argument goes as follows (Lloyd, 1996). Consider a

system composed of N variables with Hamiltonian

Ĥ ¼
Xl
j¼1

Ĥj; ð65Þ

where each Ĥj acts on a space that involves at most kmax of the
variables. It is assumed that l increases linearly with N but
that kmax is fixed by the dimension and the symmetries and
independent of N. The individual Hj can be represented as
finite matrices in their local subspace. Under these assump-
tions, it was shown (Lloyd, 1996) that the error associated
with the approximation

eiĤt ≃ ðeiĤ1t=n � � � eiĤlt=nÞn þ � � � ð66Þ

can be controlled by taking n large enough. In addition, once
the accuracy goal is determined, the computing time scales
linearly in N and t.
To fix the ideas, for most of the available quantum

computers the Ĥj act on one or two qubits and can be
represented by 2 × 2 or 4 × 4 matrices in this restricted space.
A simple quantum circuit for the quantum Ising model used
by Gustafson, Meurice, and Unmuth-Yockey (2019) and
Gustafson, Dreher et al. (2021) is displayed in Fig. 2. The
basic elements are rotations generated by σ̂xj or σ̂

z
j and acting

on the jth qubit only and CNOT gates acting on a pair of qubits
and flipping the target qubit when the control qubit is in the j1i
state. The circuit can be repeated in the space (vertical) and
time (horizontal) directions and conveys the previously
mentioned linear scalings. More evolved circuits can be
designed with the purpose of creating energy eigenstates
(Verstraete, Cirac, and Latorre, 2009; Cervera-Lierta, 2018).
It is instructive to compare the computational resources to

perform the unitary rotation expðiθσ̂xj σ̂xkÞ, in which the
operator in the exponential flips the jth and kth qubits and
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does not act on the rest of the system. With a quantum
computer, one would expect this operation to keep the
coherence of the qubits with the rest of the system, present
in the original state, but the cost ideally is independent of the
size of the system. On the other hand, the same operation on
an arbitrary state performed with a classical computer involves
a matrix with 2N nonzero and nondiagonal matrix elements,
and the resources necessary increase exponentially with the
size of the system.

G. Dealing with noise in the NISQ era

The discussion in Sec. III.F considers algorithmic aspects in
an idealized situation where computer errors or noise can be
neglected. Quantum computing technology is still in its early
development. The current noisy intermediate-scale quantum
(NISQ) computer hardware platforms can accommodate only
small-depth circuits and sources of errors need to be under-
stood in detail (Preskill, 2018). Understanding these errors and
their noise, adjusting, and contriving algorithms to lessen
these errors is the goal of error mitigation in quantum
computing.
Various types of noise affect the single-qubit gates in a way

that can be parametrized (Nielsen and Chuang, 2000) in terms
of the density matrix ρ̂:

Eðρ̂;px; py; pzÞ ¼ ð1 − pÞρ̂þ pxσ̂
xρ̂σ̂x

þ pyσ̂
yρ̂σ̂y þ pzσ̂

zρ̂σ̂z: ð67Þ

In Eq. (67) E is a quantum operation and the values px, py, and
pz correspond to the probabilities of a σx, σy, or σz error,
respectively, occurring and p ¼ px þ py þ pz. The error
channel for two-qubit gates is given by Eð2Þ ¼ E ⊗ E.
Modeling the error in this way neglects spatial and temporal
correlations and two-qubit correlations and assumes that the
errors are identical and evenly distributed. In practice, if a
classical simulation of the qubit evolution is performed, each
unitary evolution operation needs to be followed by applying
one of the four possibilities (1̂; σ̂x; σ̂y, or σ̂z) with respective
probabilities 1 − p, px, py, and pz on the qubits involved.
The probability distribution of errors is manifest only after
averaging over an ensemble of runs.
In addition, readout errors (misidentifying j1i for j0i or vice

versa) should be taken into account for all current quantum

computing platforms. Given estimates of the probabilities for
these errors, it is possible to correct the actual measurements
by a multiplicative factor (Kandala et al., 2019).
A common NISQ strategy for error mitigation is to increase

the source of error in a controllable way and then extrapolate
to the limit where the error is not present. Examples with
superconducting qubits were given by Temme, Bravyi, and
Gambetta (2017), Klco et al. (2018), Gustafson, Meurice,
and Unmuth-Yockey (2019), Kandala et al. (2019), and
Gustafson, Dreher et al. (2021). A simple way to increase
the error is to insert two successive CNOT gates. Their exact
multiplication is the identity; however, for a NISQ device it
increases the chance of errors. Note that mitigation methods
can also be used for quantum variational methods (Li and
Benjamin, 2017).
In this context, the choice of the Trotter step δt is crucial

because the number of steps is limited by the loss of coherence
and the noise. A concrete discussion was given by Gustafson,
Dreher et al. (2021) for the quantum Ising model in one spatial
dimension with four sites. If we pick a small δt with good
control on the ðδtÞ2 error, we may not be able to reach a
timescale relevant for what we want to learn. However, it
appears that by picking a significantly larger δt the rigorous
bound is not sharp and the empirical bound is much tighter, as
shown in Fig. 3, where we plot the operator norm of the
Trotter error

Δ2U ≡ e−iðhTĤTþJĤNNÞδt − e−ihTĤTδte−iJĤNNδt

≃
hTJ
2

½ĤT; ĤNN �ðδtÞ2; ð68Þ

with

ĤT ¼ −
X4
j¼1

σ̂zj; ĤNN ¼ −
X3
j¼1

σ̂xj σ̂
x
jþ1. ð69Þ

The nonlinear aspects of the error are quite interesting
and may involve resonances (Gustafson, Dreher et al., 2021).
For other recent developments see Gustafson (2020), Mishra
et al. (2020), Gustafson et al. (2021), Gustafson, Dreher et al.
(2021), Gustafson and Lamm (2021), Gustafson, Zhu et al.

FIG. 2. Circuit for four qubits with open boundary conditions
used by Gustafson, Meurice, and Unmuth-Yockey (2019). Here
RZ and RX are rotations about the z and x axes, respectively.

FIG. 3. jjΔ2Ujj vs δt for the quantum Ising model with hT ¼ 1
and J ¼ 0.02. The vertical lines are at π=2, 3π=4…. For details
see Meurice (2020b).
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(2021), Rahman et al. (2021), Sewell and Jordan (2021),
Funcke et al. (2022), and Honda et al. (2022).

H. Quantum computations and simulations

The idea of using quantum devices to mimic or study
theoretical quantum models has been a subject of intense
activity in recent years. Here we mention theoretical and
experimental studies of the Ising model, and lattice gauge
theories, in the context of quantum computation and quantum
simulation.

1. Ising model

As previously stressed, the (1þ 1)-dimensional Ising
model is the quintessential model to use to check computa-
tional tools and proposed algorithms. This is because the
model possesses nontrivial features but has been solved
exactly. It is not surprising then that this is one of the first
models to be tried and tested in different forms of quantum
computation. There have been various investigations into how
to simulate the model on a quantum computer, and what
interesting observables to measure (such as phase shift
and thermodynamics) (Lidar and Biham, 1997; Mostame
and Schützhold, 2008; You, Geller, and Stancil, 2013;
Gustafson, Meurice, and Unmuth-Yockey, 2019). The follow-
ing approaches have been considered: superconducting qubit
machines, trapped-ion machines, cold atoms trapped in optical
lattices, and Rydberg atom simulators.
On the superconducting qubit front, Hebenstreit et al.

(2017) and Zhang et al. (2017) made initial simulations,
and in some cases at relatively large system sizes. Their
calculations of various spin observables matched the corre-
sponding quantities in exact diagonalization well. Cervera-
Lierta (2018) also carried out a simulation of the Ising model
using a few spins, and a comparison between theory and
computation was made for the average magnetization. Smith
et al. (2019) and Gustafson, Dreher et al. (2021) simulated the
Ising model using a few qubits on IBM’s machines. It was
shown that the Richardson extrapolation could be used to
mitigate the noise in the regime where the nonlinear effects are
not too large (Gustafson, Dreher et al., 2021). In addition,
Chen et al. (2020) took a quantum-classical approach that
used a variational algorithm to compute the ground-state wave
function: so-called variational quantum computing, where the
quantum computer prepares a state with a circuit ansatz
depending on some number of parameters. The expectation
value of the energy is computed from this state, and circuit
parameters are then tuned classically based on the quantum
expectation value in order to minimize the energy.
Using trapped ions, Friedenauer et al., 2008 completed the

first work, followed by extensive investigations from student’s
work (Friedenauer, 2010; Korenblit, 2013). These are pioneer-
ing investigations into the trapped-ion platform. Edwards
et al. (2010), Kim et al. (2010, 2011), and Islam et al.
(2011) looked at the phase structure of the model by
simulating a few spins. They calculated the phase diagram
of the model using the probability of the state to be in a
ferromagnetic state, or moments of the magnetization. There
were also attempts to measure the Rényi entropy using digital

quantum gates. Linke et al. (2018) considered a two-site
antiferromagnetic Ising model and, using the SWAP gate,
measured the parity of two copies of the system (Johri,
Steiger, and Troyer, 2017). Islam et al. (2015) used bosonic
many-body states and interfered the copies to extract sub-
system parities. They then calculated the Rényi entropy from
subsystem parities.
Finally, another promising approach is to use highly excited

Rydberg states of atoms, which allows for strong atom-atom
interactions across relatively large distances. Kim et al. (2017)
used a chain of 19 rubidium atoms, whose interactions they
controlled by tuning the lattice parameters to simulate the
model. Guardado-Sanchez et al. (2018) explored out-of-
equilibrium dynamics through a quench using an array of
lithium atoms, again placed in a Rydberg state. Simon et al.
(2011) used trapped rubidium atoms to simulate the anti-
ferromagnetic Ising model. They were able to identify a phase
transition between the paramagnetic and antiferromagnetic
phases and observe magnetic domains using a site-resolved
atomic microscope and noise correlation measurements.
Bernien et al. (2017) demonstrated the use of configurable
and programmable arrays of atoms and simulated an Ising-
like model on 51 qubits. They observed a phase transition
between symmetric and ordered phases and discussed out-of-
equilibrium properties of spin models (Keesling et al., 2019).
For reviews of this topic see Schauss (2018) and Browaeys
and Lahaye (2020).

2. Gauge theories

The use of optical lattices (Bloch, Dalibard, and Zwerger,
2008) to quantum simulate lattice gauge theories has been
extensively developed. Proposals for the quantum simulation
of lattice gauge theories beginning with early work on Abelian
models were made by Zohar and Reznik (2011), Banerjee
et al. (2012), Zohar, Cirac, and Reznik (2012, 2013b), and
Tagliacozzo, Celi, Zamora, and Lewenstein (2013) and were
made for digital quantum devices by Zohar et al. (2017a,
2017b). In the case of non-Abelian models, proposals were
made by Banerjee et al. (2013), Tagliacozzo, Celi, Orland, and
Lewenstein (2013), and Zohar, Cirac, and Reznik (2013a). For
reviews see Wiese (2013), Zohar, Cirac, and Reznik (2016),
Bañuls and Cichy (2020), and Bañuls et al. (2020). Byrnes
and Yamamoto (2006) produced a useful early reference on
quantum computing for non-Abelian gauge theories. For
recent developments combining condensed matter and gauge
theory ideas, see Li et al. (2016), Kasper et al. (2017), Clark
et al. (2018), and Schweizer et al. (2019). Trapped ions
(Leibfried et al., 2003) have provided new opportunities to
approach lattice gauge theory models (Davoudi et al., 2020).
Rydberg atoms offer a versatile platform for gauge theories
(Celi et al., 2020; Surace et al., 2020; Meurice, 2021).
The Schwinger model is often the first target to develop

new approaches (Martinez et al., 2016; Kasper et al., 2017;
Klco et al., 2018; Davoudi et al., 2020; Kharzeev and Kikuchi,
2020; Magnifico et al., 2020; Surace et al., 2020). For
recent work on non-Abelian models, see Silvi, Sauer et al.
(2019), Raychowdhury and Stryker (2020a, 2020b), Davoudi,
Raychowdhury, and Shaw (2021), and Dasgupta and
Raychowdhury (2022), and .
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IV. THE MEANING OF QUANTUM VERSUS CLASSICAL

In this section, we discuss the meaning of classical and
quantum for models, phase transitions, and tensor networks.

A. Models

In textbooks on quantum mechanics, it is a common
procedure to start with the Hamiltonian formulation and
derive a path-integral representation that can be extended to
field theory. The path-integral formalism allows for formula-
tions that are manifestly gauge invariant and treats space and
time on an equal footing. For these reasons, it can be argued
that the fundamental definition of relativistic models should be
given in terms of the action and the measure of integration
over all the possible configurations without reference to a
Hamiltonian. Examples of such actions are given in Sec. II.B.
It is common to call models formulated with the path-

integral classical, while the corresponding formulation using a
Hamiltonian acting on a Hilbert space is called quantum.
However, except for possible discretization artifacts, the two
formulations describe the same quantum behavior. In the path-
integral formulation for bosonic fields, the action is calculated
in terms of c numbers, as in the classical formulation, but the
sum over all the configurations provides a quantum descrip-
tion that amounts to more than the classical equations of
motion. In other words, the path integral is an alternate method
of quantization that is convenient in Euclidean time.
Starting with a classical action, a Hamiltonian can be

constructed from the action by using the transfer-matrix
formalism. This was demonstrated in Sec. III.C and is
discussed in detail in Sec. XII for the models that were
introduced in Sec. II.B. A discussion with detailed references
on the connection between statistical mechanics in D dimen-
sions and quantum Hamiltonians in D − 1 dimensions
appeared in the classic work of Wilson and Kogut (1974).

B. Phase transitions

The actions for spin and gauge models introduced in
Sec. II.B contain the parameter β, or βpl for pure gauge
theories, that is often called the “inverse classical temper-
ature,” or “coupling constant,” and can be associated with
“classical phase transitions.” For instance, the D ¼ 2 classical
Ising model has a spontaneous magnetization when β > βc ¼
ð1=2Þ lnð1þ ffiffiffi

2
p Þ.

In contrast, given a Hamiltonian Ĥ, we can define a
thermal quantum partition function with temperature Tqu in
the usual way,

ZðTquÞ ¼ Tr½e−Ĥ=Tqu �; ð70Þ

where Tqu has in general a different meaning than 1=β in the
classical formulation. With the lattice formulation at
Euclidean time as a starting point, we have the identification

1=Tqu ¼ Nτaτ; ð71Þ

and the nonzero temperature is associated with the finite
extent of the temporal dimension. A typical situation of

interest is to start in an ordered phase at Tqu ¼ 0 correspond-
ing to the infinite Euclidean-time limit and induce a finite-
temperature phase transition into a disordered phase by taking
a sufficiently small temporal extent. In this way, the temporal
extent of the lattice is responsible for a finite-temperature
phase transition, as opposed to the coupling β, which is
unrelated to the temperature in the quantum partition function.
Transitions related to the couplings at Tqu ¼ 0 are quantum
phase transitions. The transition can sometimes be understood
in terms of the classical phase diagram inD − 1 dimensions. A
more detailed discussion was given in Cardy’s monograph
(Cardy, 1996)

C. Tensor networks

In Secs. V–XI we introduce “classical tensors” in order to
reformulate classical models as defined in Sec. IV.A. The
partition function of these models can be visualized as an
assembly obtained by “wiring” (tracing) together objects
carrying multiple “legs” (tensor indices) and attached to the
sites, links, or plaquettes of a Euclidean spacetime lattice.
This type of classical construction was inspired by (Levin
and Nave, 2007; Gu and Wen, 2009) various quantum tensor
networks (Fannes, Nachtergaele, and Werner, 1992; Vidal,
2003, 2004, 2007; Verstraete and Cirac, 2004a; Shi, Duan,
and Vidal, 2006; Perez-Garcia et al., 2007; Verstraete,
Murg, and Cirac, 2008), developed in various contexts often
related to the DMRG method (White, 1992). There is an
abundant literature on the subject, including Schollwöck
(2005, 2011a), Cirac and Verstraete (2009), Orus (2014),
Montangero (2018), Silvi, Tschirsich et al. (2019), and Ran
et al. (2020).
One important idea is the representation of quantum states

by matrix product states (MPSs) that appeared in several
of the aforementioned references. As an example, for a one-
dimensional quantum chain problem with Ns sites, an
arbitrary element of the Hilbert space can be written as

jψi ¼
X

i1;…;iNs

ci1;…;iNs
ji1;…; iNs

i; ð72Þ

where

ji1;…; iNs
i ¼ ji1i ⊗ � � � ⊗ jiNs

i ð73Þ

and each of the indices runs over a local Hilbert space of
dimension dH attached to a site. The dimension of the Hilbert
space is dNs

H . It represents an exponential growth with the size
of the system that rapidly becomes computationally unman-
ageable. For a MPS, one assumes the form

ci1;…;iNs
¼ Tr½Ai1 ;…; AiNs

�; ð74Þ

where the Aij are dB × dB matrices for each value of ij. dB is
called the bond dimension. A graphical representation of
such a state is shown in Fig. 4 for open boundary conditions.
The filled circles represent the matrices, the vertical lines
represent open indices with dH values, and the horizontal
lines indicate traced indices with dB values. The size of the
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MPS “subset”1 is growing only like Ns × d2B × dH, and thus
linearly with the size of the system. Similarly, one can

represent operators using the trace of Ns dB × dB matrices A
i0j
ij

with two indices in the one-site Hilbert space at a computa-
tional cost scaling as Ns × d2B × d2H. This is illustrated in
Fig. 5. Objects with similar shapes appear as “time slices” of
the classical construction. In the case where the indices take
an infinite number of values and the sums are truncated in
such a way that the number of indices kept in the time
direction (like dH) is the same as the number in the space
direction (like dB), we use the isotropic notation Dcut (one
can leave the number of states in the temporal and spatial
directions independent of each other). On the other hand, we
discuss the anisotropic situation where the time direction is
singled out to define the transfer matrix and the Hamiltonian
in Sec. XII.
MPSs and the DMRG have been used in studies of (1þ 1)-

dimensional models such as the Bose-Hubbard model
(Bonnes, Charrier, and Läuchli, 2014), the Schwinger model
(Bañuls et al., 2013; Byrnes et al., 2002; Buyens et al., 2014,
2016) (see Sec. XI.G for more information), SUð2Þ gauge
theory (Kühn, Cirac, and Bañuls, 2015; Bañuls et al., 2017b),
and the Oð3Þ nonlinear sigma model (Bruckmann, Jansen, and
Kühn, 2019). Fermionic tensor network studies and the
Hubbard model were discussed by Barthel, Pineda, and
Eisert (2009) and Corboz et al. (2010). Tensor network
techniques for lattice gauge theories were discussed by
Rico et al. (2014), Tagliacozzo, Celi, and Lewenstein
(2014), Zohar and Burrello (2015), Pichler et al. (2016),
Silvi et al. (2017), and Silvi, Sauer et al. (2019) and reviewed
by Bañuls et al. (2018) and Bañuls and Cichy (2020). For a
review of matrix product operators and their relations with the
transfer matrix, see Haegeman and Verstraete (2017).
Section XII.G includes references on tensor network studies
in 2þ 1 and 3þ 1 dimensions using generalizations of MPSs.
The MPS framework can also be used to perform real-time

calculations based on the Suzuki-Trotter approximation. An
example of this method is called the time-evolving block
decimation reviewed by Paeckel et al. (2019).
The success and limitations of the MPS approach can be

analyzed in terms of “area laws” (Plenio et al., 2005;
Verstraete et al., 2006). Following a short pedagogical
discussion (Schollwöck, 2011a), if a bipartition of a system
is introduced, one would expect that the entanglement entropy
between the two parts to scale like the size of their boundary
with possible logarithmic corrections. In one spatial dimen-
sion, we can separate a MPS into two parts by cutting a single
bound carrying a maximal entropy ln2 dB. Consequently, dB
needs to increase only as the size of the system to capture a

possibly logarithmic entanglement. On the other hand, if we
fill a two-dimensional surface with a one-dimensional MPS,
the entanglement grows at least like the linear size of the
system that forces db to grow exponentially with this size.
Projected entangled pair states (PEPSs) were proposed
(Verstraete and Cirac, 2004b) to overcome this difficulty.
We also now mention that tensor methods have been

applied (Nishino and Okunishi, 1996) to the transfer-matrix
treatment of a classical statistical model such as the problem
involving monomers and dimers on a rectangular lattice
(Baxter, 1968), where variational methods can be applied
and compared to the DMRG approach. This approach is called
the corner transfer-matrix renormalization group method.
Pioneering work connecting the DMRG and the transfer
martix of the Ising model was conducted by Nishino and
Okunishi (1996). Related results and their connections with
MPSs were reviewed by Haegeman and Verstraete (2017).
For a recent and comprehensive review on MPSs and

related topics, see Cirac et al. (2021).

V. TENSOR METHODS EXPLAINED
WITH THE ISING MODEL

A. Tensor formulation

In this section we construct a tensor formulation for the
Ising model in D dimensions. The partition function for the
Ising model is

ZIsing ¼
Y
x

X
σx¼�1

eβ
P

x;μ
σxþμ̂σx : ð75Þ

For each link ðx; μÞ we use the expansion

eβσxþμ̂σx ¼ coshðβÞ
X

nx;μ¼0;1

½σxþμ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhðβÞ

p
σx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhðβÞ

p
�nx;μ .

ð76Þ

Equation (76) attaches an index nx;μ at each link ðx; μÞ. It is
then possible to pull together the various factors of
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tanhðβÞp
σx�nx;μ from links coming from a single site x

and to sum over σx,

X
σx¼�1

YD
μ¼1

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhðβÞ

p
σx�nx−μ̂;μþnx;μ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhðβÞ

p P
μnx−μ̂;μþnx;μ

× 2δ

�
mod

�X
μ

nx−μ̂;μ þ nx;μ; 2

��
; ð77Þ

using

FIG. 4. Illustration of states in the MPS approach.
FIG. 5. Illustration of operators in the MPS approach.

1The sum of two MPSs is not a MPS, so we do not call it a
subspace.
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X
σx¼�1

σnx ¼ 2δðmod½n; 2�Þ ð78Þ

at every site on the lattice. The expression δðmod½n; 2�Þ equals
1 when n is even (0 modulo 2) and 0 otherwise. We can rewrite
the partition function as the following trace of a tensor
product:

Z ¼ 2V ½coshðβÞ�VDTr
�Y

x

TðxÞ
nx−1̂;1;nx;1;…;nx;D

�
: ð79Þ

Tr indicates contractions (sums over 0 and 1) over the link
indices (the nx;μ’s). The local tensor TðxÞ has 2D indices. The
explicit form is

TðxÞ
nx−1̂;1;nx;1;…;nx−D̂;D;nx;D ¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhðβÞ

p
�nx;inþnx;out

× δðmod½nx;in þ nx;out; 2�Þ; ð80Þ

with the definitions

nx;in ≡
XD
μ¼1

nx−μ̂;μ; nx;out ≡
XD
μ¼1

nx;μ: ð81Þ

The notions of “in” and “out” refer to the position of the link
with respect to the positive direction. The basic tensors and
their assemblies in two and three dimensions are illustrated in
Figs. 6–9.
Any kind of boundary condition can be accommodated by

adapting the method of integration to the link configuration at
the boundary. This is discussed in Sec. V.C.

The Kronecker delta in Eq. (80) implies the discrete
conservation lawX

μ

ðnx;μ − nx−μ̂;μÞ ¼ 0 mod 2; ð82Þ

which we also call the “tensor selection rule.” It implies that
only an even number of n’s are allowed to take on the value 1.
For instance, forD ¼ 2, there are in principle 16 tensor values;
however, only eight are nonzero, one with all four indices as
zero [zeroth order in tanhðβÞ], six with two 0’s and two 1’s
[linear in tanhðβÞ], and one with four 1’s [quadratic in
tanhðβÞ]. Note that if a symmetry breaking term like a
magnetic field coupling to the total spin is introduced, then
all 16 tensor elements will generally be nonzero.
There are also tensor formulations that use the singular

value decomposition (see Appendix A.3) on each nearest-
neighbor Boltzmann factor to factorize the spins. The nearest-
neighbor interactions can be represented as the following
matrix, whose indices are the spin variables themselves:

eβσxþμ̂σx ¼
�

eβ e−β

e−β eβ

�
ðx;μÞ

: ð83Þ

One can then perform the singular value decomposition to get

eβσxþμ̂σx ¼
X
α;β

Uσxþμ̂αλαβU
T
βσx

; ð84Þ

and in the case of the Ising model the singular value
decomposition has the same left and right unitary matrices.
This factorizes the spins and allows for the following
definition of the matrix:

Wσxα ≡ Uσxα

ffiffiffiffiffi
λα

p
: ð85Þ

FIG. 6. Basic tensor for D ¼ 2. The indices of the tensor are
shown as thick lines (red online) emanating from a circular body
at the central site of the lattice. Diagrams of tensors designed this
way are ubiquitous in the literature. The neighboring lattice sites
are indicated as black dots.

FIG. 7. Tensor assembly for D ¼ 2. The crosses indicate
contraction.

FIG. 8. Basic tensor for D ¼ 3. The six indices of the local
tensor are shown as thicker lines (red online) emanating from a
circular body at the central site of the lattice, and they live along
the links of the lattice.

FIG. 9. Tensor assembly for D ¼ 3. The crosses indicate
contraction.
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The main local tensor is then the contraction of allW matrices
that have a common spin,

Tij���N ¼
X
σx

WσxiWσxj � � �WσxN: ð86Þ

In fact, the singular value decomposition in this case can be
completely related to the expansion in Eq. (77). Consider the
following character expansion from Sec. V.A for the nearest-
neighbor interaction:

eβσxþμ̂σx ¼
X1
nx;μ¼0

Hxþμ̂Cnx;μðβÞHx; ð87Þ

with matrices

Hx ≡ 1ffiffiffi
2

p
�
1 1

1 −1

�
; ð88Þ

whose columns are the normalized eigenvectors of the Pauli x
matrix, C0 ¼ 2 cosh β, andC1 ¼ 2 sinh β. The elements of this
matrix are from the four values that nx;μ and σx can take
normalized to be unitary. Since the variables are compact, their
operators have a discrete spectrum, and the character expan-
sion is the exact spectrum decomposition for this matrix.
For any matrix M, by definition the singular value decom-
position is determined using the eigenvalues and eigenvectors
of MM† and M†M. In this case (we drop any specific
spacetime lattice indices for these steps since they are
completely general),

X
σj

eβσiσjeβσjσk ¼
X
σj

X
n;m

σni Cnσ
n
jσ

m
j Cmσ

m
k

¼
X
n;m

σni CnCmσ
m
k δn;m

¼
X
n

σni C
2
nσ

n
k: ð89Þ

The singular values are then given by λ1 ¼ 2j cosh βj and
λ2 ¼ 2j sinh βj, as one would expect from Eqs. (84) and (87).

B. The forms of duality

The tensor representation can be used to reproduce the set
of closed paths appearing in the expansion in powers of
tanhðβÞ (Itzykson and Drouffe, 1991; Parisi, 1998) for the
Ising model. The links associated with the set of indices
nx;μ ¼ 1 form a graph (a set of sites connected by links). The
selection rule means that each site is attached to an even
number of nonzero links. These graphs are closed paths with
specific connectivity, which can in principle be enumerated
order by order in their length using geometric constructions
and combinatorial techniques.
One can try to construct these closed paths by assembling

the most elementary contributions, namely, closed loops on a
single plaquette. The way they can be assembled depends on
the dimension. For instance, for D ¼ 2 we can decide that
when two loops around two plaquettes share a link, this link is

“erased” from the path. Alternatively, one can introduce the
dual variables originally conceived by Kramers and Wannier
(1941), which are spins on the dual lattice located at the
centers of the plaquettes. Each dual spin is then associated
with a closed plaquette loop around it on the original lattice.
Furthermore, the Pontryagin dual variables nx;μ can be

expressed as ð1 − σ̃σ̃0Þ=2, with σ̃ and σ̃0 the two dual spin
variables connected by a dual link crossing the original link.
A depiction of the dual variables in their different locations
is shown in Fig. 10. This illustrates that the notions of duality
are often combined in a manner that may appear confusing at
first sight. Note that the dual domains with a given dual spin
have boundaries that can be interpreted as the closed paths of
the original model. The questions of completeness and
multiplicity need to be addressed using specific boundary
conditions.
Similarly, in higher dimensions it is possible to introduce

dual spins with interactions involving 2ðD − 1Þ spins. For
D ¼ 3, this leads to a gauge theory with plaquette interactions
(Wegner, 1971). It is also possible to introduce dual variables
for Ising models with arbitrary all-to-all spin interactions
(Meurice, 1994). Duality questions related to Gauss’s law are
discussed in Sec. XII.D.

C. Boundary conditions

In Eq. (79), the trace is a sum over all the link indices. We
need to specify the boundary conditions. Periodic boundary
conditions (PBCs) allow us to keep a discrete translational
invariance: the tensors themselves are translation invariant and
assembled in the same way at every site. Open boundary
conditions (OBCs) may also be implemented by introducing
new tensors that can be placed at the boundary. Their
construction is similar to the tensors in the bulk. The only
difference is that the “outside links” that would be attached at
sites on the boundary have an index set to zero. Using the
normalization introduced in Eq. (77), one finds that the indices
carrying a zero index carry a unit weight. This construction
can be understood as decoupling the system from a larger
environment by setting β on the links connecting to this
environment to zero since tanhð0Þ0 ¼ 1 and tanhð0Þ ¼ 0. This
is illustrated in Fig. 11.

FIG. 10. The distinct dual variables shown on the original lattice
(black lines) and the dual lattice (gray lines). Two dual spins are
denoted with a tilde on the dual sites, an original spin σ on the
original lattice, and the Pontryagin dual on the original lattice
crossing a dual link. A closed loop of Pontryagin duals is
generally shown on the original lattice encircling ∼σ0.
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D. Exact blocking

An important feature of the tensor representation presented
in Sec. V.A is that it allows an exact local blocking procedure,
in contrast to what can be done in configuration space.2 We
divide the original lattice into cells having a linear size of two
lattice spacings (blocks) in such a way that the boundaries are
halfway between lattice sites. In other words, the boundaries
are normal to links and cut them in the middle. As an example,
forD ¼ 2 the blocks are squares enclosing four sites, and their
four sides cross eight links. This cell partition separates the
link degrees of freedom into two disjoint categories: those
completely inside the block, which can be integrated over, and
those shared by neighboring blocks and kept to communicate
between the blocks. This is a generic feature of the method
(Meurice, 2013) that motivated a systematic study of lattice
models (Liu et al., 2013). Note that when translation

invariance is present, all the blocks are identical and we need
to do only one calculation.
We now explicitly describe this exact blocking for D ¼ 2

using generic notations inspired by those of Xie et al.
(2012) and Meurice (2013). The extension to higher
dimensions on hypercubic lattices is straightforward. We
contract the four tensors located at the four sites inside
the block along the four indices located strictly inside the
block as well. The remaining eight indices associated
with the eight links piercing the block are left as new
degrees of freedom. By taking the tensor product between
the two indices in each of the four directions coming out of
the block, we obtain a new rank-4 tensor T 0

XX0YY 0. In the
case of the Ising model [see Eq. (80)], each index now takes
four values. This provides the following simple isotropic
formula:

T 0
Xðx1x2ÞX0ðx0

1
x0
2
ÞYðy1y2ÞY 0ðy0

1
y0
2
Þ

¼
X

xU;xD;xR;xL

Tx1xUy1yLTxUx01y2yR
TxDx02yRy

0
2
Tx2xDyLy01

; ð90Þ

where Xðx1x2Þ is a notation for the product states; i.e.,
if we group the indices with the same parity together,
Xð00Þ ¼ 1; Xð11Þ ¼ 2; Xð10Þ ¼ 3; Xð01Þ ¼ 4. This contrac-
tion and redefinition relative to the block is illustrated
in Fig. 12.
After this blocking, the partition function can be written as

Z ¼ Tr
Y
2x

T 0ð2xÞ
XX0YY 0 ;

where 2x denotes the sites of the coarser lattice with twice
the lattice spacing of the original lattice. This coarse
graining provides an exact representation of the original
partition function. However, the number of states associ-
ated with each index is the square of the number of states
in the original tensor. If this exact procedure had to be
carried out numerically, this rapid growth would quickly
run into practical limitations. Truncations are thus neces-
sary. It is important to appreciate that truncations are the
only approximations that will be needed. We now discuss
truncations.

FIG. 11. Assembling the translation-invariant tensor with PBCs
(top), or when using new tensors at the boundary for OBCs
(bottom). Tensors are assumed to be put on each lattice site.

FIG. 12. Graphical representation of the block (dotted square)
and T 0

XX0YY 0 . From Meurice, 2013.

2We want to make clear that this section is describing not a RG
transformation but rather an exact reorganization of the computation
of the partition function in a way that performs the integration of
some degrees of freedom corresponding to increasing distance scales.
As explained in Sec. VI, truncations need to be applied to define a RG
transformation.
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VI. TENSOR RENORMALIZATION GROUP

A. Block spinning through SVD

Once partition functions and physical quantities are
expressed as tensor networks, one needs to contract them
to obtain numerical values. However, contracting exactly
requires an extraordinary amount of computational resources.
In this section we work through the original idea of how one
can perform tensor contractions approximately, and how
truncations appear in this approximation. To do so a
coarse-graining algorithm for tensor networks is introduced.
The original idea of such an approach was proposed by Levin
and Nave (2007), where tensor networks are coarse grained
simply by using the SVD; see Appendix A.3. This method is
similar in spirit to the real-space renormalization group
approach, and in this sense it is called the tensor renormaliza-
tion group.3

In the standard renormalization group procedure (Wilson
and Kogut, 1974), the blocking process is supplemented by a
sorting of the resulting information according to its degree of
relevance. As far as universal properties characterizing the
continuum limit are concerned, it is acceptable to discard the
information that reflects only microscopic details of a specific
lattice formulation. In the context of the previously discussed
tensor formulation, this means that, possibly after a certain
number of exact contractions, we need to restrict the number
of states associated with the tensor indices to a fixed number
Dcut. We are then mapping a tensor with D2D

cut entries into
another tensor of the same shape, and the question of fixed
points becomes meaningful. An important goal of the renorm-
alization procedure is to identify fixed points. Note that the
updated tensor remains a local object that supersedes the
notion of action or Hamiltonian.
Here we assume that a partition function is expressed as a

two-dimensional tensor network with bond dimension Dcut,

Z ¼ Tr
Y
x

TðxÞ
xx0yy0 ; ð91Þ

and that periodic boundary conditions are imposed in all
directions. Later in this section, we explain the algorithm of
the original TRG proposed by Levin and Nave.4

The tensor T can first be regarded as a D2
cut ×D2

cut matrix
and then can be approximately decomposed using the SVD in
two ways:

Tx0yxy0 ¼ M½13�
ðx0yÞðxy0Þ ≈

XDcut

m¼1

S½1�ðx0yÞmλ
½13�
m S½3�mðxy0Þ; ð92Þ

Ty0x0yx ¼ M½24�
ðy0x0ÞðyxÞ ≈

XDcut

m¼1

S½2�ðy0x0Þmλ
½24�
m S½4�mðyxÞ; ð93Þ

where λ½13� and λ½24� are the singular values (assumed to be in
descending order: λ1 ≥ λ2 ≥ � � � ≥ λD2

cut
≥ 0), and S½1�, S½2�,

S½3�, and S½4� are unitary matrices. Here the degree of the
approximation is set at Dcut for simplicity. One can freely
choose this parameter, and it becomes the bond dimension of
the coarse-grained tensors.
When the decomposed tensors S½i� (i ¼ 1, 2, 3, and 4) are

used, a coarse-grained tensor is defined by

Tnew
xx0yy0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ½13�x λ½24�y λ½13�x0 λ½24�y0

q XDcut

a;b;c;d¼1

S½3�xðcdÞS
½4�
yðdaÞS

½1�
ðabÞx0S

½2�
ðbcÞy0 :

ð94Þ

The number of tensors on the network is now reduced by 1=2,
and the bond dimension of Tnew is a free parameter and here
set to be the same as that of T: Dcut. Repeating this procedure,
one can make an effective tensor network that consists of a
few tensors and then take the contraction of the tensor indices.
A graphical explanation of the TRG is given in Fig. 13.
After a coarse-graining step, the network is rotated by 45°,

and how one defines the new unit vectors is then one’s choice.
One possible way is to define them by 1̂⋆ ¼ 1̂þ 2̂ and
2̂⋆ ¼ 1̂ − 2̂, where 1̂ (2̂) and 1̂⋆ (2̂⋆) are the unit vectors
along the 1̂ (2̂) direction of the original lattice and that of the
coarse-grained lattice, respectively; see Fig. 13. Using this
definition, the orientation of the network is recovered after
every two coarse-graining steps, i.e., 1̂⋆⋆ ¼ 1̂⋆ þ 2̂⋆ ¼ 2 · 1̂
and 2̂⋆⋆ ¼ 1̂⋆ − 2̂⋆ ¼ 2 · 2̂.
In this procedure the relevant degrees of freedom are

decided by the SVD during the decomposition of the T tensor
into an intermediate sum over states. In Sec. VI.B we see that
there are improved methods to identify the relevant states
during truncation.

B. Optimized truncations

Section VI.A addressed the first work on a renormalization
group procedure using a tensor formulation. Here we discuss
refinements that occurred later. These refinements incorporate

FIG. 13. A coarse-graining step for the tensor network. Circles
represent tensors and closed indices should be contracted. The
definitions of the unit vectors for the original and the coarse-
grained network are also shown. The tensor indices are shown in
the same manner as in Eq. (94).

3There are several numerical renormalization group methods that
can be regarded as ancestors of the TRG; see Wilson (1975), White
(1992, 1993), Nishino (1995), Nishino and Okunishi (1996), and
Wang and Xiang (1997). See also the references at the end of
Sec. IV.C and Ueda, Okunishi, and Nishino (2014).

4Coarse-graining approaches for tensor networks are generically
referred to as TRG. Therefore, “TRG” does not necessarily identify a
specific algorithm.
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an environment tensor from which relevant states are deter-
mined and kept.
We begin by assuming that one has completed the con-

traction of a single block. Each tensor index of the blocked
tensor now possessesD2

cut states. The next step is to find a way
to determine which of the D2

cut states (or possibly a linear
combination of them) corresponding to the tensor product
associated with each index should be kept. Ideally, we want to
address this question in terms of the environment of a single
tensor. We can write

Tr
Y
x

TðxÞ ¼
X

XX0YY 0
EXX0YY 0T 0ð0Þ

XX0YY 0 ; ð95Þ

where EXX0YY 0 is obtained by tracing all the indices except for
four pairs of indices associated with a single block that
we have located at the origin, and T 0ð0Þ is the first block of
four tensors. This is illustrated in Fig. 14. Constructing an
environment from which important states are chosen is
reminiscent of the finite-size density matrix renormalization
group. The environment tensor EXX0YY 0 is close to what we are
ultimately trying to calculate, so it is not immediately
available. The only purpose of using EXX0YY 0 is to rank order
the states of the tensor product, and its exact form does not
appear in later calculations. Consequently, the exact form may
not be too important, and as a first step we can attempt
approximations.
A simple approximation is to ignore the details of the

environment and use (Meurice, 2013)

Eapp
XX0YY ¼ CδXX0δYY 0 ð96Þ

for some positive constant C. We can then optimize the
truncation by maximizing the approximate partition function
expressed in terms of the trace of a matrix G such that

TrG ¼ ð1=CÞ
X

XX0YY 0
Eapp
XX0YY 0T 0ð0Þ

XX0YY 0 ; ð97Þ

which can be achieved with

GXX0 ¼
X
Y

T 0ð0Þ
XX0YY: ð98Þ

By looking at the expression in terms of the original tensors,
one realizes that GXX0 is in fact the square of another matrix
(Meurice, 2013). If the eigenvalues of this matrix are real, then
all the eigenvalues of G are positive and we can optimize the
truncations by selecting the states corresponding to the largest
eigenvalues of G.
A more refined approximation is to assume that the

environment is a “mirror image” of the tensor itself (Xie
et al., 2012) as follows:

Eapp
XX0YY ¼ C0T 0ð0Þ⋆

XX0YY 0 : ð99Þ

The trace of G can then be identified using the following
tensor norm:

TrG ¼
X

XX0YY 0
T 0ð0Þ

XX0YY 0T 0ð0Þ⋆
XX0YY 0 ¼ kT 0ð0Þk2; ð100Þ

which is a sum of positive terms. This can be accomplished
with the Hermitian matrix

GXX0 ¼
X
X00YY 0

T 0ð0Þ
XX00YY 0T 0ð0Þ⋆

X0X00YY 0 : ð101Þ

The problem is then reduced to selecting the states that
provide the best approximation of TrG, which is straightfor-
ward when all the eigenvalues are positive.
The procedure that we just described is isotropic. It is,

however, possible to coarse grain in one direction at a time
(Xie et al., 2012) in order to reduce the size of the summed
expressions. For instance, the summation over the tensor
product indices Y and Y 0 in Eq. (101) can first be replaced by
the following summations over single indices:

MXðx1;x2ÞX0ðx0
1
;x0

2
Þyy0 ¼

X
a

Tx1x01ya
Tx2x02ay

0 : ð102Þ

The tensor M can then be used in Eq. (101) in place of Tð0Þ as
the blocked tensor to find the most relevant states for the X
indices. This provides a coarse graining in the first direction.
It is then necessary to coarse grain in the second direction
using sums over single indices in the first direction. As our
discussion focuses on D ¼ 2, these two steps constitute a
coarse graining that doubles the lattice spacing in all direc-
tions. Xie et al. (2012) conducted these calculations using
higher-order generalizations of the SVD method called the
higher-order tensor renormalization group (HOTRG).
A better description of the environment can be reached by

following a local truncation procedure such as that described
previously for a sufficiently large but finite number of times, at
which point it is assumed that there is no environment and
Eq. (96) can be used. In other words, by working with a finite
lattice, the procedure is terminated by approximating the
partition function as a trace of the last coarse-grained
expression for the tensor. It is then possible to move backward
(Xie et al., 2009; Zhao et al., 2010) and reconstitute the
approximate environment of a single tensor coarse grained
one fewer time. Explicit expressions based on the HOTRG
construction were given by Xie et al. (2012). This can be

FIG. 14. A blocked tensor and its environment.
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pursued recursively until we reach the first coarse-graining
level illustrated in Fig. 14.
An analogy with the backward propagation used in machine

learning has recently been exploited to design new algorithms
(Chen et al., 2020). More generally, algorithmic improvement
in the TRG context is a subject of active investigation (Bal
et al., 2017; Fishman et al., 2018; Morita and Kawashima,
2021). The idea that the bound dimension can be regarded as a
relevant direction that can be used to obtain data collapse was
discussed by Vanhecke et al. (2019). For earlier developments
see Tagliacozzo et al. (2008), Pollmann et al. (2009), and
Pirvu et al. (2012). We would expect these considerations to
provide a more systematic understanding of the truncation
errors.

C. Higher-dimensional algorithms

While the Levin-Nave–type TRG can be applied to two-
dimensional systems, higher-dimensional systems are dealt
with using other algorithms. One such algorithm is the
HOTRG (Xie et al., 2012) mentioned in Sec. VI.B. Using
the HOTRG, in principal, any dimensional tensor network can
be coarse grained. When a D-dimensional tensor network is
built using tensors with the bond dimension Dcut, the
computational complexity of the HOTRG is OðD4D−1

cut Þ and
the memory complexity is OðD2D

cutÞ.
Recently cheaper algorithms were invented. The aniso-

tropic tensor renormalization group (ATRG) (Adachi, Okubo,
and Todo, 2020), whose graphical description is given in
Fig. 15, achieved the time and memory complexities
OðD2Dþ1

cut Þ and OðDDþ1
cut Þ, which are significant reductions

from the HOTRG. The ATRG introduces an approximation of
an approximation, and indeed, when the bond dimensions are
the same, the ATRG is less accurate than the HOTRG.
However, thanks to the cheaper complexity, the ATRG leads
to better accuracy with a fixed CPU time. Using the ATRG,
four-dimensional systems, where the HOTRG is much more
expensive, have been under investigation (Akiyama, Kadoh
et al., 2020, Akiyama, Kuramashi et al., 2020, Akiyama
et al., 2021).
Another approach, coarse graining on a triad tensor network

representation, was taken by Kadoh and Nakayama (2019).
They compared the triad tensor renormalization group
approach to the original HOTRG and ATRG algorithms.

D. Observables with tensors

With the tensor formulation from Sec. V.A along with the
coarse-graining algorithms from Sec. VI, it is possible to
calculate derivatives of lnZ, as well as to compute n-point
correlation functions.
Because the tensor renormalization group process requires

renormalizing the tensor during iterations, in order to compute
the logarithm of the partition function these normalizations
must be stored. For a coarse graining that is isotropic with
N1; N2;…; ND iterations in each direction and N ¼ P

D
i¼1 Ni,

note that the normalizations at each iteration are N ð0Þ, N ð1Þ,
N ð2Þ, etc., starting with the normalization of the initial tensor
by N ð0Þ. During the coarse-graining process, N ð0Þ appears

V ¼ 2N times, giving an overall factor of N ð0ÞV . Likewise,
each subsequent normalization appears to be 2N−n, where n
denotes the iteration number, i.e., 1;…; N. After the final step
the total normalization on the effective tensor is given by

N ð0ÞV ·N ð1ÞV=2 ·N ð2ÞV=4 � � �N ðNÞ: ð103Þ

The logarithm of the partition function is then given as the
logarithm of this normalization added to the following
logarithm of the trace of the final tensor:

lnZ ¼
XN
n¼0

2N−n lnN ðnÞ þ ln Tr½T�; ð104Þ

where T is the final normalized effective tensor and the trace is
the tensor trace.
Expectation values of N-point correlation functions (Gu,

Levin, andWen, 2008; Nakamoto and Takeda, 2016) are given
by ratios of partition functions that are calculated separately
using the tensor renormalization group as follows:

hσð1Þσð2Þ � � � σðNÞi ¼ ZðNÞ

Z
; ð105Þ

with

ZðNÞ ¼
X
fσg

σð1Þσð2Þ � � � σðNÞe−S ð106Þ

and where the positions of the σ fields have been suppressed.
In terms of tensors this amounts to N “impure” tensors, whose
namesake comes from their altered local constraint. Since ZðNÞ

contains additional spin fields located at specific sites, those
spin fields alter the sum at that site over the field states and
give

X
σx�

σ
1þ
P

D
μ¼1

nx�−μ̂;μ−nx� ;μ
x�

¼
�
2 if 1þP

D
μ¼1 nx�−μ̂;μ − nx�;μ is even;

0 otherwise;
ð107Þ

where x� is the location of the additional spin. These addi-
tional spins act as sources and sinks for the vector fields nx;μ
on the surrounding links, as can be seen with the new

(a) (b) (c)

FIG. 15. Graphical description of the ATRG. (a) Decompose T
into A and B and C and D using the SVD. (b) Swap the bonds of
B and C. The swapping can also be done using the SVD:P

i BxyiCix0y0 ¼ ðBCÞxyx0y0 ¼
P

i B
0
x0yiSiC

0
ixy. (c) Contract A, B

0,
C0, and D while truncating the dimensions of horizontal bonds.
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constraint, where the divergence of the surrounding n fields
must now be 1 modulo 2. To compute the ratio, if both ZðNÞ

and Z are normalized identically throughout the calculation,
only the ratio of the trace of the final effective tensors is
necessary for the expectation value since the normalizations
would cancel.
As illustrated in Fig. 16, the method can be used for the

average energy and the specific heat, which are compared to
the exact solutions using Kaufman’s formula. The energy is
calculated using the TRG with two neighboring impurity
tensors, and the specific heat is given as the numerical β
derivative of the energy. To show a graphical example of the
contractions performed using impure tensors, four impurities
on a plaquette are decomposed and contracted to form four
impurities again, as illustrated in Fig. 17. Note that the energy
can also be obtained using the numerical derivative of the
logarithm of the partition function, and then the specific heat
is the second numerical derivative. In general, the numerical
derivatives cause a loss of significance, so obtaining the
energy as a primary output of the TRG using the impurity
tensor method helps one to improve the numerical accuracy.
The impurity tensors destroy the translational invariance but
the effect is local, so the computational complexity does not
drastically increase.

E. Niemeijer–van Leeuwen equation

In Sec. V.D we constructed a coarse-grained tensor that can
be used to give an exact expression for the partition function.
Despite the fact that we integrated over microscopic degrees of
freedom, the number of tensor indices needed for this exact
representation grows exponentially with the size of the blocks.
In Secs. VI.A and VI.B, we introduced truncations where a

fixed number of indices Dcut was kept at each step. This
procedure discards some information but allows us to compare
the tensors before and after the coarse graining. Typically, the
tensors tend to grow exponentially with the number of coarse-
graining steps, and it is important to renormalize their absolute
size or to consider only their ratios. After such a renormaliza-
tion takes place, we obtain a RG transformation. The fixed
points of this transformations are the central objects of the RG
approach and it is useful to compare the TRG equations with
standard RG equations due to Niemeijer and van Leeuwen
(NvL) (Niemeijer and van Leeuwen, 1976).
NvL were aware of the difficulty of controlling the new

couplings generated by the blocking procedure, so they started
immediately with the most general Ising interactions in a finite
volume V. If no conditions are imposed, there are as many
couplings as Ising configurations, so this is not suitable for
numerical purposes. They then introduced 1 in the partition
function as in Eq. (1) in order to define new Ising spins fσ0g in
a volume V 0 ¼ V=bD with a new lattice spacing rescaled by
the linear size of the blocks b. They were able to give a formal
expression for the new couplings in terms of the original ones
as K0ðKÞ. Strictly speaking, there are fewer couplings after
the coarse graining because they considered the most general
case involving the products of spins in arbitrary domains,
but they assumed that only a certain number of quasilocal
couplings were important and had the same form before and
after the coarse graining. In addition, they assumed that the
dependence of the free energy density fðKÞ on these
couplings is the same after the coarse graining. This led to
the NvL equation

fðKÞ ¼ gðKÞ þ b−DfðK0Þ: ð108Þ

The function g ¼ G=V comes from

G ¼
X
fσ0g

ln

�X
fσg

Pðfσ0g; fσgÞ exp½HðfσgÞ�
�

ð109Þ

and is defined using the condition

X
fσ0g

H0ðfσ0gÞ ¼ 0; ð110Þ

where H and H0 are the Hamiltonians before and after coarse
graining.
Even though computing the new couplings and the func-

tions may be difficult in practice (the new couplings are
double partition functions), NvL succeeded in obtaining a
formal relation that can be iterated and linearized near a fixed
point. This allows us to identify the relevant directions, and it
is often taken as the starting point for the introduction of the
RG method in textbooks (Cardy, 1996).
For the TRG, we can factor out the increasing size of the

tensors by imposing the normalization condition

T0000 ¼ 1 ð111Þ

at each step. In other words, we divide all the tensors by one
unnormalized tensor element. We now have the two steps

FIG. 16. Energy and specific heat of the two-dimensional Ising
model on a 32 × 32 lattice with Dcut ¼ 32.

FIG. 17. TRG process for a tensor network with four impurities
on a plaquette.
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(coarse graining and renormalization) that define a RG
transformation. We can write the exact identity as

ln

�
Tr
Y
sites

TðsitesÞ
xx0yy0

�	
V

¼ ð1=4Þ lnðT 0
0000Þ þ ð1=4Þ ln

�
Tr

Y
sites0

Tðsites0Þ
XX0YY 0

�	
V 0; ð112Þ

where T 0
0000 is the unnormalized tensor element that we

constructed in Sec. V.D. Tðsites0Þ
XX0YY 0 is the renormalized tensor,

meaning the unnormalized tensor divided by T 0
0000. Bearing in

mind that b−D ¼ 1=4, we see an analogy with the NvL
equation (108). ð1=4Þ lnðT 0

0000Þ plays the role of gðKÞ.
Note that Tr

Q
… has different meanings on the two sides

of the equation. However, if we assume that the coupling
dependence of the densities is the same before and after as in
NvL, we obtain a RG equation. In both cases, neglecting
couplings can be justified by the fact the RG transformation
has only a small number of important directions in the space of
couplings. This will be illustrated with a simple example in
Sec. VI.F. More details were given by Meurice (2020b).

F. A simple example of TRG fixed point

In the following we discuss the two-state truncation for the
Ising model. In other words, we keep the same number of
states for each index as for the initial tensor. With the indices
taking two values, the rank-4 tensor has in principle 16
independent entries; however, because of the Ising selection
rule, the sum of the indices must be even and thus eight of the
tensor values are zero. In addition, if we preserve the
symmetry under the rotation of the square lattice by π=2,
this imposes

T1010 ¼ T0110 ¼ T1001 ¼ T0101 ≡ t1 ð113Þ

and

T1100 ¼ T0011 ≡ t2: ð114Þ

In addition, we define

T1111 ≡ t3: ð115Þ

For the initial tensor, we have

t1 ¼ t2 ¼ tanhðβÞ; t3 ¼ t21: ð116Þ

Theproperty t1 ¼ t2 is not preserved by the blocking procedure,
which can be expressed as a mapping of the three-dimensional
parameter space ðt1; t2; t3Þ into itself that we denote as
t0iðt1; t2; t3Þ. Under this mapping, the elements of the tensor
flow toward their fixed-point values based on the bare input
value of β. The point of bifurcation in the fixed-point tensor
elements can be used to determine the critical value of β.
As a numerical example, we use the method of Eq. (96) and

the normalization from Eq. (111), which is discussed after
Eq. (10) in the work of Meurice (2013). The results for t1

as a function of the initial β for six iterations are shown in
Fig. 18. We see that for values of β low enough, T1010 goes to
zero at a faster rate as the number of iterations increases. On
the other hand, for values of β large enough, T1010 goes to 1.
As the number of iterations increases, the transition becomes
sharper and sharper and singles out a critical value βc ¼
0.394 867 858… where the curves for successive iterations
intersect. This also singles out a fixed-point value for t1 near
0.4. The graphs for t2 and t3 have similar features. Near βc,
the departure from the fixed-point value is approximately
linear in β − βc with a slope of the form λl1 , where l is the
number of iterations. It is possible to rescale β − βc by a factor
λ1 at each iteration to obtain the “data collapse” shown at the
bottom of Fig. 18. Numerically, t⋆1 ¼ 0.422 29, t⋆2 ¼ 0.286 37,
t⋆3 ¼ 0.274 66, and λ1 ¼ 2.009 310 69, which provides a
critical exponent ν ¼ log b= log λ1 ≃ 0.993 that is sur-
prisingly close to the exact value 1 given that the truncation
is drastic (Meurice, 2013). Similar results are obtained in a
dual version of the map given by Aoki, Kobayashi, and
Tomita (2009).
One would think that by adding a few more states we could

get even better results; however, this is not the case (Efrati
et al., 2014). One of the reasons for this is explained in
Sec. VI.G.

FIG. 18. t1 ¼ T1010 vs β (top panel) and vs ðβ − βcÞλl1 (bottom
panel) for l ¼ 1;…; 6 iterations of the two-state approximation.
The dotted line is at the critical value. As the iteration number
increases, the curves sharpen (top panel) and the points spread
more (bottom panel), and the color smoothly changes from light
to dark (green to blue online).
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G. Corner double line structure on tensor network

In this section we discuss a fixed point of the TRG (Levin
and Nave, 2007) that is called the corner double line (CDL)
tensor (Gu and Wen, 2009). Here we consider a toy model of
short-range correlations that is expressed as a tensor network
spanned by tensors with the following form:

TCDL
kijl ¼ δi1;l2δj1;i2δk1;j2δl1;k2 ; ð117Þ

where each tensor index has two components [e.g.,
i ¼ ði1; i2Þ]; see Fig. 19. We call TCDL the CDL tensor,
and it describes interactions on plaquettes as seen in Fig. 20.
We now consider a TRG step for this tensor network.
The SVD of the CDL tensor is uniquely given by

TCDL
kijl ¼

XffiffiffiffiffiffiDcut
p

m1;m2¼1

δi1;m2
δj1;i2δm1;j2δk1;m1

δl1;k2δm2;l2 ; ð118Þ

where we simply assume that all elementary components of
the tensor indices run from 1 to

ffiffiffiffiffiffiffiffi
Dcut

p
(e.g., 1 ≤ i1; i2 ≤ffiffiffiffiffiffiffiffi

Dcut
p

). Dcut is assumed to be a square number. When the
decomposed components are contracted, the coarse-grained
tensor is then given by

ðTCDLÞ0kijl ¼
XDcut

a;b;c;d¼1

δi1;c1δd2;i2δj1;d2δa1;j2δk1;a1δb2;k2

× δl1;b2δc1;l2δa2;b1δb1;c2δc2;d1δd1;a2

∝ TCDL
kijl : ð119Þ

Each step is graphically displayed with the assignments of
indices in Figs. 21 and 22. The CDL tensor turns out to be a
fixed point of the TRG up to a constant factor. This is not a
physical but rather an artificial fixed point, and this means that

the TRG leaves short-range correlations on coarse-grained
tensors. This is because the SVD is the best approximation of
a tensor but is not the best for a network.
To avoid such an unexpected fixed point, one needs to

consider more global blocking procedures. One ideal way is to
insert unknown tensors [called “(dis)entangler”] on a network
and variationally tune them to remove CDL structures. This
method is called the tensor network renormalization (TNR)
(Evenbly and Vidal, 2015) and leads to more precise compu-
tations. In principal, this can be extended to three or more
dimensions, although the computational complexities would
be extremely demanding. In two dimensions, more low-cost
methods have been invented thus far (Yang, Gu, and Wen,
2017; Evenbly, 2018; Hauru, Delcamp, and Mizera, 2018),
although we do not discuss them in detail here. The common
concept in such approaches is to consider global cost functions
and to remove the CDL structures on a network.

VII. TENSORS FOR SPIN MODELS WITH
AN ABELIAN SYMMETRY

In this section, we discuss tensor formulations of general-
izations of the Ising model. We first consider the case of the
Oð2Þ nonlinear sigma model introduced in Sec. II.B, where
the spin variables form a two-dimensional unit vector varying
continuously over a circle. We later show that the results
extend easily to the clock models with a discrete Zq

symmetry.

A. Oð2Þ nonlinear sigma model

The partition function for the Oð2Þ model reads

ZOð2Þ ¼
Y
x

Z
π

−π

dφx

2π
e−SOð2Þ ; ð120Þ

with

FIG. 19. CDL tensor.
FIG. 21. SVD of a CDL tensor.

FIG. 20. CDL tensor network.

FIG. 22. Contraction step for a CDL tensor.
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SOð2Þ ¼ −β
X
x;μ

cosðφxþμ̂ − φxÞ: ð121Þ

We use the following Fourier expansion to expand the
Boltzmann weights:

eβ cosðφxþμ̂−φxÞ ¼
X∞

nx;μ¼−∞
einx;μφxþμ̂Inx;μðβÞe−inx;μφx : ð122Þ

This expansion factorizes the φ fields. We then integrate over
all the φ fields using the orthogonality relations of the Fourier
modes,

Z
π

−π

dφx

2π

YD
μ¼1

eiðnx−μ̂;μ−nx;μÞφx

¼ δPD
μ¼1

ðnx−μ̂;μ−nx;μÞ;0

¼ δnx;in−nx;out;0; ð123Þ

with nx;in and nx;out defined in the same way as in Sec. V. We
can rewrite the partition function as the trace of a tensor
product as follows:

Z ¼ Tr
Y
x

TðxÞ
nx−1̂;1;nx;1;…;nx;D : ð124Þ

The local tensor TðxÞ has 2D indices. The explicit form is

TðxÞ
nx−1̂;1;nx;1;…;nx−D̂;D;nx;D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Inx−1̂;1Inx;1 ;…; Inx−D̂;D

Inx;D
q

δnx;out;nx;in .

ð125Þ

The graphical representations of the tensors are similar to
those of the Ising model. The only difference is that the indices
attached to the legs are integers instead of integers modulo 2.
The Kronecker delta in Eq. (125) enforces

XD
μ¼1

ðnx;μ − nx−μ̂;μÞ ¼ 0; ð126Þ

which is a discrete version of Noether current conservation if
we interpret the nx;j with j ¼ 1;…; D − 1 as spatial current
densities and nx;D as a charge density. At sufficiently small β,
the relative size of the higher-order Bessel functions compared
to the zeroth-order Bessel function decays rapidly with their
order, and it is justified to introduce a truncation.5 If any of the
indices of a tensor element are larger in magnitude than a
certain value nmax, we approximate the tensor element as zero.
The compatibility of this type of truncation with the sym-
metries of the model is discussed in Sec. XIII.A.
The tensor formulation here can be seen from another

perspective, i.e., by using the SVD on each nearest-neighbor
factor and then calculating the φ integrals. The Fourier
expansion of the nearest-neighbor interaction given by
Eq. (122) can be understood as the spectral decomposition

of the Boltzmann weight. Here the matrix einφ is unitary, and
is parametrized by the “indices” φ and n. To find the singular
values, we multiply by the Hermitian conjugate and diago-
nalize (just as in the Ising case),

Z
2π

0

dφj

2π
eβ cosðφi−φjÞeβ cosðφj−φkÞ

¼
Z

2π

0

dφj

2π

X
n;m

einφi Ine−inφjeimφj Ime−imφk

¼
X
n;m

einφi InIme−imφkδm;n

¼
X
n

einφi I2ne−inφk ; ð127Þ

which gives the expected result that the singular values
are the absolute value of the modified Bessel functions
[λnðβÞ ¼ jInðβÞj]. We see from these examples that perform-
ing the character (or Fourier) expansion of the nearest-
neighbor interaction during the tensor formulation is similar
to the SVD of the same factor. In fact, when the coupling is
positive, they are equivalent.
For convenience, when dealing with the group Uð1Þ [or

Oð2Þ for that matter] we factorize all the I0ðβÞ factors that
dominate the small β regime and define the ratios

tnðβÞ≡ InðβÞ
I0ðβÞ

≃
�

1 − n2=2β þOð1=β2Þ for β → ∞;

βn=2nn!þOðβnþ2Þ for β → 0.

ð128Þ

Equation (128) helps elucidate the role of the boundary
conditions in the tensor formulation. As discussed in
Sec. V.C, with open boundary conditions one sets the
boundary tensor indices to 0, which in the previous definition
reduces the weights on those links to a value of 1.
For a recent numerical investigation into the three-dimen-

sional Oð2Þ nonlinear sigma model comparing tensor meth-
ods, see Bloch et al. (2021).

B. q-state clock models

The results of this section hold for the Zq restrictions. The
infinite sums are replaced by finite sums with q values. The
modified Bessel functions are replaced by their discrete
counterparts,

InðβÞ → IðqÞn ðβÞ≡ ð1=qÞ
Xq−1
l¼0

eβ cosð2π=qlÞe−inð2π=qlÞ; ð129Þ

which in the large-q limit turns into the usual integral formula.
In the Ising case (q ¼ 2), we have

I0ðβÞ → coshðβÞ; I1ðβÞ → sinhðβÞ: ð130Þ

The selection rules in Eq. (126) remain valid modulo q.
For recent numerical TRG-inspired work on clock models

and discussions of the second transition, see Chen et al.
(2017), Chen, Xie, and Yu (2018), and Li et al. (2020). For an5At large β, Bessel functions of all orders approach each other.
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investigation into the critical behavior of the Zq models when
q is fractional, see Hostetler et al. (2021).

C. Dual reformulations with unconstrained variables

In Secs. III.D and V.B, we mentioned the possibility of
expressing the closed paths of the expansion in powers of
tanhðβÞ of the Ising model using dual variables. These ideas
can be generalized for a large class of models with Abelian
symmetries (Banks, Myerson, and Kogut, 1977; Savit, 1977,
1980; Einhorn and Savit, 1978, 1979; Kogut, 1979). In this
section, we discuss the case of spin models with interactions
on links. Models with interactions on plaquettes and higher-
dimensional simplices are discussed in Sec. IX.A.2.
To maintain consistency with the rest of the article, in this

section (unless otherwise specified) we use a Euclidean metric
with all lower indices as well as implicit summations of
repeated indices in order to make a stronger connection with
the covariant formulation of Maxwell’s equations. The dis-
crete form of Noether current conservation given in Eq. (126),
which also holds modulo q for q-state clock models can be
written in a compact way as

∇μnμ ¼ 0; ð131Þ

where ∇μ is a discrete derivative

∇μfx ¼ fx−μ̂ − fx: ð132Þ

Since more indices will appear, we keep the reference to the
site x implicit. Following the example of Maxwell’s equations
written in a relativistically covariant way, we can express a
conserved current as the gradient of an antisymmetric tensor
of order 2 as follows:

nν ¼ ∇μCμν. ð133Þ

Equation (133) holds in arbitrary dimensions D.
Because of the divergenceless condition Eq. (131), nμ has

D − 1 degrees of freedom per link. On the other hand, Cμν has
DðD − 1Þ=2 degrees of freedom, which is ðD − 1ÞðD − 2Þ=2
more than D − 1. The redundancy that appears for D ≥ 3 can
be made more obvious by introducing the following
dual tensor with D − 2 indices (Savit, 1977, 1980) and also
DðD − 1Þ=2 components:

Cμν ¼
1

ðD − 2Þ! ϵμνμ1;…;μD−2
C̃μ1;…;μD−2

: ð134Þ

The C̃ field is precisely the dual field that lives on the dual
lattice. If we plug this dual form into Eq. (133), we see that
C̃μ1;…;μD−2

can be shifted by antisymmetrized derivatives of
lower rank tensors. For D ¼ 3, C̃μ has three components and
is defined up to a gradient such that we end up with the desired
2 independent degrees of freedom. For D ≥ 4, the redundancy
becomes nested: we need to count the redundancy of the
redundancy, etc. For instance, for D ¼ 4, C̃μν has six compo-
nents. The shift by the gradient of a four-vector naively
subtracts 4 degrees of freedom, but this four-vector can itself

be shifted by a gradient without affecting the initial shift, and
we end up with 6 − 4þ 1 ¼ 3 degrees of freedom.

D. Chemical potential, complex temperature,
and importance sampling

Since the tensor renormalization group (and tensor network
methods generally) do not rely on sampling from probability
measures, situations where sampling methods would falter or
fail due to the loss of real, positive-definite weights never
arise. Instead, only linear algebra is needed in the form of
tensor contractions. This allows the method to address the
“sign problem,” which can occur during the inclusion of a
chemical potential, and a complex coupling. Denbleyker et al.
(2014) addressed this in the case of a complex temperature.
They studied the zeros in the complex temperature plane, i.e.,
Fisher zeros, and found that the tensor renormalization group
is able to out perform the reweighting method using in
classical Monte Carlo studies that involve imaginary parts
of the action.
Zou et al. (2014) and Yang et al. (2016) added a purely real

chemical potential μ to the action of the two-dimensional Oð2Þ
nonlinear sigma model in the form

Sμ ¼ −β
X
x;ν

cosðθxþν̂ − θx − iμÞ: ð135Þ

In Equation (135) the action has a complex sign problem. Zou
et al. (2014) and Yang et al. (2016) studied the phase diagram
of the model in the β-μ plane in both the discrete-time and
continuous-time limits. Banerjee and Chandrasekharan (2010)
studied this action while employing a sampling method
known as the “worm algorithm” that uses a Fourier expanded
form of the Boltzmann weight that eliminates the sign
problem completely.
In fact, the worm algorithm (Prokof’ev and Svistunov,

2001) is intimately related to the tensor formulation. The
beginning and the end of the worm correspond to the
insertions of an impurity tensor and when the tensor elements
are positive definite, it is possible to design a reformulation of
the worm algorithm where tensor elements are weighted
against each other in an “accept-reject,” Metropolis style
algorithm. In this way, a lattice configuration is populated with
tensor indices at their respective locations (sites, links, etc.).
These indices correspond to tensor elements, and hence
weights. Moreover, the tensor interpretation [along with the
exact blocking procedure (Liu et al., 2013)] allows one to use
the worm algorithm on exactly coarse-grained lattice models
(when the coarse-grained tensor elements are again positive
definite), and therefore use the renormalization group exactly
with Monte Carlo studies. This procedure of “tensor
sampling” is general for positive weights and is an interesting
direction deserving of more attention.

VIII. TENSORS FOR SPIN MODELS
WITH NON-ABELIAN SYMMETRIES

A. Oð3Þ nonlinear sigma model

Consider the following action for the Oð3Þ nonlinear sigma
model in D dimensions:
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S ¼ −β
XN
x¼1

XD
μ¼1

X3
a¼1

σðaÞxþμ̂σ
ðaÞ
x

¼ −β
XN
x¼1

XD
μ¼1

cos θxþμ̂ cos θx

þ sin θxþμ̂ sin θx cosðϕxþμ̂ − ϕxÞ

¼ −β
XN
x¼1

XD
μ¼1

cos γxþμ̂;x; ð136Þ

where θ is the polar angle, ϕ is the azimuthal angle, and γ is

the angle in the plane created by the two vectors. σðaÞx is a unit

vector in three dimensions parametrized as σð1Þx ¼ sinθx cosϕx,

σð2Þx ¼ sin θx sinϕx, and σð3Þx ¼ cos θx.
We discuss two different possible ways to construct a tensor

network here. The first tensor construction is based on the
global symmetry group of the model. This construction was
explored and used successfully by Liu et al. (2013), Unmuth-
Yockey et al. (2015), and Bruckmann, Jansen, and Kühn
(2019) for classical tensor network calculations and MPS
calculations in the Hamiltonian formulation. Here we give the
classical tensor formulation. Since each term in the action is a
dot product between vectors of length 1, we can expand on
basis functions for the sphere, i.e., the spherical harmonics.
Consider the partition function

Z ¼
Z

DΩe−S

¼
Y
x

Z
dΩx

Y
x;μ

eβ cos γxþμ̂;x ; ð137Þ

where dΩ is the normalized measure on S2, i.e., dΩ ¼
−dðcos θÞdϕ=4π. Since each Boltzmann factor is a function
of the cosine of the angle between the vectors, we can
straightforwardly expand using Legendre polynomials as
follows:

eβ cos γxþμ̂;x ¼
X∞
l¼0

2lþ 1

4π
AlðβÞPlðcos γxþμ̂;xÞ: ð138Þ

This step is advantageous since it gives the A coefficients only
l dependence. The A’s can be solved for by inverting the
previous expression,

AlðβÞ ¼ 4πiljlð−iβÞ. ð139Þ

In Eq. (139) jnðzÞ represents the spherical Bessel function.
The Legendre polynomials can then be rewritten as follows in
terms of spherical harmonics using the addition theorem for
spherical harmonics:

Plðcos γxþμ̂;xÞ ¼
4π

2lþ 1

Xl

m¼−l
Y�
lmðθxþμ̂;ϕxþμ̂ÞYlmðθx;ϕxÞ:

ð140Þ
This step separates the dependencies on the coupled xþ μ̂ and
x sites and allows the factors to be treated individually. With

the θ and ϕ dependence decoupled between neighboring sites,
we can perform the angular integration for the field at each
site. In D dimensions there are 2D nearest neighbors for each
site, giving an integral of the form

Z
dΩx

YD
μ¼1

YðlmÞx;μðθx;ϕxÞY�
ðlmÞx−μ̂;μðθx;ϕxÞ: ð141Þ

Equation (141) can be evaluated as follows with the use of the
Clebsch-Gordan series:

Yl1m1
ðθ;ϕÞYl2m2

ðθ;ϕÞ ¼
Xl1þl2

L¼jl2−l1j

XL
M¼−L

CLM
l1m1l2m2

CL0
l10l20

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þ

4πð2Lþ 1Þ

s
YLMðθ;ϕÞ;

ð142Þ

along with the orthogonality of the spherical harmonics.
We now restrict to D ¼ 2 and continue explicitly.

Equation (141) then takes the form

Z
dΩxYðlmÞx;1YðlmÞx;2Y

�
ðlmÞx−1̂;1Y

�
ðlmÞx−2̂;2ðθx;ϕxÞ: ð143Þ

If we make the change of notation for ðlmÞx;1 with l1m1,
ðlmÞx;2 with l2m2, etc., we find for Eq. (143)

Cx ≡
Z

dΩxYl1m1
Yl2m2

Y�
l3m3

Y�
l4m4

ðθx;ϕxÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þð2l4 þ 1Þ

p
×
X
L;M

1

ð4πÞ2ð2Lþ 1ÞC
LM
l1m1l2m2

CL0
l10l20

CLM
l3m3l4m4

CL0
l30l40

:

ð144Þ

The Clebsch-Gordan coefficients constrain the surrounding l’s
around a site to satisfy the triangle inequalities and enforce a
conservation law between the m’s. This constraint must be
imposed at every site. We formally define a composite index as
L≡ fl; mg, which has the dimension ðlmax þ 1Þ2. This index
contains all the states from l ¼ 0 up to some lmax given byPlmax

l¼0ð2lþ 1Þ ¼ ðlmax þ 1Þ2. We can write the local tensor as

TðxÞ
Lx−1̂;1Lx;1Lx;2Lx−2̂;2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Alx−1̂;1

Alx;1Alx;2Alx−2̂;2

q
Cx: ð145Þ

The constraint C in Eq. (144) is somewhat complicated, but the
physical content is that it simply demands the four l’s around a
site to satisfy the triangle inequalities according to the typical
addition of angular momenta while enforcing a conservation
law on the Oð2Þ subgroup m’s. A positive feature of this
formulation is that the weights (A’s) depend only on l.
The second tensor formulation for the Oð3Þ nonlinear sigma

model uses the Taylor expansion of the Boltzmann weight to
recast the model in terms of discrete fields. This formulation
follows directly from Wolff (2010) and Bruckmann et al.
(2015, 2016).
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Starting with the partition function

Z ¼
Z

DΩe−S

¼
YN
x¼1

1

4π

Z
sin θxdθxdϕx

YN
x¼1

Y2
μ¼1

Y3
a¼1

eβσ
ðaÞ
x σðaÞxþμ̂ : ð146Þ

We now expand the Boltzmann weight in a Taylor series as
follows:

eβσ
ðaÞ
x σðaÞxþμ̂ ¼

X∞
nðaÞx;μ¼0

βn
ðaÞ
x;μ

nðaÞx;μ!
ðσðaÞx σðaÞxþμ̂Þn

ðaÞ
x;μ ; ð147Þ

associating three natural numbers nðaÞ with each link.
Reordering and collecting the same spin field at a site, we
can write the partition function as

Z ¼
X
fng

�Y
x

Y
μ

Y
a

βn
ðaÞ
x;μ

nðaÞx;μ!

�

×

�Y
x

Y
μ

Y
a

1

4π

Z
ðσðaÞx ÞnðaÞx;μþnðaÞx−μ̂;μ sinθxdθxdϕx

�
: ð148Þ

The first factors in parenthesis are the new weights associated
with a configuration of n’s. The integrals inside the second
factor in parenthesis must be evaluated for each site. They are
identical, so we focus on a single site and perform the
integration. For one site the integral wemust evaluate looks like

1

4π

Z Y
μ

ðσð1Þx Þnð1Þx;μþnð1Þx−μ̂;μðσð2Þx Þnð2Þx;μþnð2Þx−μ̂;μ

× ðσð3Þx Þnð3Þx;μþnð3Þx−μ̂;μ sin θxdθxdϕx: ð149Þ
Using the explicit expressions for σð1Þ, σð2Þ, and σð3Þ in terms of
ϕ andθ, we can perform theϕ andθ integrals separately.We find
for θ that

Θx ≡ 1

2

Z
π

0

ðsin θxÞ
P

μ

P
2

b¼1
ðnðbÞx;μþnðbÞx−μ̂;μÞþ1

× ðcos θxÞ
P

μ
ðnð3Þx;μþnð3Þx−μ̂;μÞdθx; ð150Þ

and for ϕ

Φx ≡ 1

2π

Z
2π

0

ðsinϕxÞ
P

μ
ðnð2Þx;μþnð2Þx−μ̂;μÞ

× ðcosϕxÞ
P

μ
ðnð1Þx;μþnð1Þx−μ̂;μÞdϕx: ð151Þ

Equation (150) can be computed exactly and gives

Θx ¼
1

2

Z
π

0

ðsin θxÞ
P

μ

P
2

b¼1
ðnðbÞx;μþnðbÞx−μ̂;μÞþ1

× ðcos θxÞ
P

μ
ðnð3Þx;μþnð3Þx−μ̂;μÞdθx

¼ 1

2
δmod2P

μ
ðnð3Þx;μþnð3Þx−μ̂;μÞ;0

B(
1

2

�
1þ

X
μ

ðnð3Þx;μ þ nð3Þx−μ̂;μÞ
�
;

1þ 1

2

X
μ

X2
b¼1

ðnðbÞx;μ þ nðbÞx−μ̂;μÞ); ð152Þ

where Bðp; qÞ is the beta function6and δmod 2 is the Kronecker
delta; however, the indices need only be equal modulo 2.
Similarly, Eq. (151) can be computed as well, giving

Φx ¼
1

2π

Z
2π

0

ðsinϕxÞ
P

μ
ðnð2Þx;μþnð2Þx−μ̂;μÞ

× ðcosϕxÞ
P

μ
ðnð1Þx;μþnð1Þx−μ̂;μÞdϕx

¼ 1

π
δmod 2P

μ
ðnð1Þx;μþnð1Þx−μ̂;μÞ;0

δmod 2P
μ

P
2

b¼1
ðnðbÞx;μþnðbÞx−μ̂;μÞ;0

× B(
1

2

�
1þ

X
μ

ðnð1Þx;μ þ nð1Þx−μ̂;μÞ
�
;

1

2

�
1þ

X
μ

ðnð2Þx;μ þ nð2Þx−μ̂;μÞ
�
): ð153Þ

These are two constraints which need to be imposed at each site
of the lattice.With these constraints andweights from theTaylor
series expansion,we can nowdefine a tensor at every lattice site.
Begin by defining a collective index given by Nx;μ ≡

nð1Þx;μ ⊗ nð2Þx;μ ⊗ nð3Þx;μ, as well as the following weight associated
with a link:

wx;μ ≡ βð1=2Þ
P

a
nðaÞx;μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nð1Þx;μ!n
ð2Þ
x;μ!n

ð3Þ
x;μ!

q : ð154Þ

Now the tensor at site x in D dimensions is given by

TNx−1̂;1Nx;1;…;Nx−D̂;DNx;D
¼

�YD
μ¼1

wx−μ̂;μwx;μ

�
ΘxΦx: ð155Þ

This tensor has the useful property that (assuming β > 0) the
tensor elements are positive. This follows from the positivity
of β and the fact that the n’s are non-negative. The constraints
coming from the θ and ϕ integrals are positive as well since
the beta functions are positive for positive arguments. This
allows this formulation to be used in sampling methods, as it
has been; see Wolff (2010) and Bruckmann et al. (2016).
However, there are more indices necessary in this description,
which increases the cost numerically in a tensor renormaliza-
tion group algorithm.

B. SUð2Þ principal chiral model

The SUð2Þ principal chiral model consists of an SUð2Þ
matrix associated with each site on the lattice that interacts
with its nearest neighbors. The action on a D-dimensional
square lattice with periodic boundary conditions is given by

S ¼ −
β

2

XN
x¼1

XD
μ¼1

Tr½UxU
†
xþμ̂�: ð156Þ

6That is,

Bðx; yÞ ¼
Z

1

0

tx−1ð1 − tÞy−1dt ¼ ΓðxÞΓðyÞ=Γðxþ yÞ.
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The partition function for the model is given as the following
Haar integration over each of the fields on the lattice:

Z ¼
Z

DUe−S

¼
Y
x

Z
dUxe

ðβ=2Þ
P

x;μTr½UxU
†
xþμ̂�: ð157Þ

Equation (157) depends only on the trace of group elements,
which means that the characters of the group can be expanded
on. We expand the Boltzmann weight as follows:

eðβ=2ÞTr½UxU
†
xþμ̂� ¼

X∞
rx;μ¼0

Frx;μðβÞχrx;μðUxU
†
xþμ̂Þ; ð158Þ

where the sum runs over all half-integer irreducible repre-
sentations of the group and the F’s are as given in
Appendix A.1. The expansion coefficients can be solved
for by inverting Eq. (158) using the orthogonality of the
characters. The characters are traces over matrix repre-
sentations of the group; see Appendix A.2. This allows the
group elements to be split and factorized [χrðUxU

†
xþμ̂Þ ¼P

a;b D
r
abðUxÞDr†

baðUxþμ̂Þ], and subsequently integrated over.
Collecting all theDmatrices associated with the same site, we
find an integral of the form

Z
dUx

YD
μ¼1

Drx;μDrx−μ̂;μ†ðUxÞ;ð159Þ

where the matrix indices have been suppressed. We can
perform this integral as follows with the help of the
Clebsch-Gordan series:

Dr1
m1n1ðUÞDr2

m2n2ðUÞ

¼
Xr1þr2

R¼jr1−r2j

XR
M¼−R

XR
N¼−R

CRM
r1m1r2m2

CRN
r1n1r2n2D

R
MNðUÞ; ð160Þ

along with the orthogonality of the D matrices; see
Appendix A.2.
We now restrict to the case of D ¼ 2. Equation (159) takes

the form

Z
dUxD

rx;1
m1n1D

rx−1̂;1
m2n2

†Drx;2
m3n3D

rx−2̂;2
m4n4

†ðUxÞ; ð161Þ

and using the previously mentioned steps we find that

Cx ≡
Z

dUxD
rx;1
m1n1D

rx;2
m2n2D

rx−1̂;1
m3n3

†D
rx−2̂;2
m4n4

†ðUxÞ

¼
X
R;M;N

d−1R CRM
rx;1m1rx;2m2

CRN
rx;1n1rx;2n2

× CRN
rx−1̂;1m3rx−2̂;2m4

CRM
rx−1̂;1n3rx−2̂;2n4

; ð162Þ

where dr ¼ 2rþ 1 is the dimension of the representation.
This is the constraint associated with a site. As in the
Oð3Þ nonlinear sigma model, this constraint constrains the

surrounding representation numbers on the links around a site
through the triangle inequalities. If we formally define a
composite index as Xx;1 ≡ frx;1; m; ng, where m and n are the
matrix indices naturally associated with an r on a link, we can
then define a local tensor at each site by

TXx−1̂;1Xx;1Yx;2Yx−2̂;2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Frx;1Frx;2Frx−1̂;1

Frx−2̂;2
ðβÞ

q
Cx: ð163Þ

By contracting this tensor with itself recursively, one rebuilds
the original partition function.
A possible alternative way to formulate a local tensor is to

use the same discrete variables as used by Gattringer, Goschl,
and Marchis (2018). This formulation is along the same lines
as the second tensor formulation for the Oð3Þ nonlinear sigma
model in that it expands the Boltzmann weight in a Taylor
series. Gattringer, Goschl, and Marchis (2018) used this
formulation in sampling methods. We do not attempt to give
the tensor formulation using these variables, but the required
steps seem straightforward and mimic the steps in the second
formulation of the Oð3Þ tensor.

C. Truncations and asymptotic freedom

An important question is: How do the previous tensor
formulations, and specifically the expansions beforehand that
lead up to the tensor definitions, affect universality? When
looking at Eq. (140) for the Oð3Þ nonlinear sigma model, it is
clear that this expansion does not affect the global Oð3Þ
invariance of the model, since one expands on the dot product
between nearest-neighbor vectors. This interaction is Oð3Þ
invariant as long as each spin is rotated by the same rotation
matrix, so a polynomial in this interaction remains Oð3Þ
invariant. Similarly, a truncation in the l variable to a finite
lmax leaves the expansion Oð3Þ invariant for the same reason.
For this reason, after truncation but before integration the
model consists of a local nearest-neighbor interaction that is
Oð3Þ invariant and in the same number of dimensions with
which we started, indicating naively that this truncated model
lies in the same universality class as the original Oð3Þ
nonlinear sigma model. Further evidence for this conclusion
was provided by Bhattacharya et al. (2021). Likewise, the
expansion in Eq. (147) is also globally Oð3Þ invariant. Thus,
any truncation on the n variables leaves the expansion
dependent only on spins that interact with their neighbors
in an Oð3Þ-invariant fashion.
The Oð3Þ nonlinear sigma model in two dimensions is

known to be asymptotically free (Hasenfratz, Maggiore, and
Niedermayer, 1990). On a two-dimensional lattice, the con-
tinuum limit is approached by taking the nearest-neighbor
coupling β infinitely large. In this limit one expects the mass
gap to obey the continuum perturbative result that predicts
(Hasenfratz, Maggiore, and Niedermayer, 1990)

am ¼ 8

e
aΛMS

¼ 128πβ exp ð−2πβÞ: ð164Þ

The mass gap can be calculated by studying the exponen-
tial decay of the spin-spin correlation function (Wolff, 1990).
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An initial study of the asymptotic scaling of the mass gap in
this model was done by Unmuth-Yockey et al. (2015) using
the tensor renormalization group. They compared tensor
renormalization group calculations of the mass gap with
results from Monte Carlo simulations. They found a slow
convergence to the expected result as a function of lmax. A
more thorough study in the Hamiltonian formalism was
conducted by Bruckmann, Jansen, and Kühn (2019) using
MPSs at different truncations and different volumes. While
they found relatively good convergence to the asymptotic
result for lmax > 2 and in the large volume limit, which
supports this idea of universality, the lower lmax values did not
converge as well.
For the action in Eq. (156), one has the freedom to rotate

all group elements using the same global matrix, e.g.,
Ux → U0

x ¼ VUxV†. This leaves the action invariant, as well
as the measure. The expansion in Eq. (158) retains this
freedom since the thing that is expanded on is the trace of
group elements, which is the type of interaction that allows for
this freedom. Furthermore, a truncation on the sum of
representations in Eq. (158) does nothing to this symmetry.
Again, a truncation then naively leaves the model with the
same nearest-neighbor interaction with the same symmetries
in the same number of dimensions, and one would expect this
truncated model to lie in the same universality class as the
original principal chiral model.

IX. TENSORS FOR LATTICE GAUGE THEORIES

In this section, we discuss gauge theories with Abelian
symmetries. The gauge Ising model is the simplest model that
we can consider. However, as for the spin models, we start
with the continuous case and then obtain models with discrete
symmetries such as the Ising and gauge clock models using
the substitutions described in Sec. VII.B.

A. Pure gauge Uð1Þ

The partition function for the pure gauge Uð1Þ model
introduced in Sec. II.B reads

ZPG ¼
Y
x;μ

Z
π

−π

dAx;μ

2π
e−SWilson ; ð165Þ

with the action

SWilson ¼ −βpl
X
x;μ<ν

cosðAx;μ þ Axþμ̂;ν − Axþν̂;μ − Ax;νÞ: ð166Þ

Equation (166) possesses a local symmetry

Ax;μ
0 ¼ Ax;μ − ðαxþμ̂ − αxÞ: ð167Þ

Using the Fourier expansion

eβpl cosðAx;μþAxþμ̂;ν−Axþν̂;μ−Ax;νÞ

¼
Xþ∞

mx;μν¼−∞
eimx;μνðAx;μþAxþμ̂;ν−Axþν̂;μ−Ax;νÞImx;μν

ðβplÞ ð168Þ

to factorize the gauge fields and integrating over Ax;μ using the
orthogonality of the Uð1Þ elements, we obtain the following
selection rule:

X
ν>μ

½mx;μν −mx−ν̂;μν� þ
X
ν<μ

½−mx;νμ þmx−ν̂;νμ� ¼ 0: ð169Þ

In Eq. (169) the index mx;μν is associated with a plaquette
starting at x, going in the direction of lower index μ, and then
going in the direction ν. In D dimensions, there are 2ðD − 1Þ
plaquettes attached to each link. This selection rule constrains
the m values associated with those plaquettes. It is convenient
to introduce a tensor that is associated with the plaquettes of
the lattice. It has four indices that can be naturally associated
with the four links bounding a plaquette. Since each plaquette
has a single m value associated with it, the four tensor legs
attached to a given plaquette ðx; μνÞmust carry the same index
m. Following the terminology of Liu et al. (2013), we
introduce a “B tensor” for each plaquette as follows:

Bðx;μνÞ
m1m2m3m4

¼
�
tm1

ðβplÞ if all mi are the same;

0 otherwise;
ð170Þ

where tm is as defined in Sec. VII.A. The B tensors are
assembled (traced) together with “A tensors” attached to links
with 2ðD − 1Þ legs orthogonal to the link ðx; μÞ:

Aðx;μÞ
m1;…;m2ðD−1Þ ¼ δmin;mout

; ð171Þ

where δmin;mout
is shorthand notation for Eq. (169), min ≡P

ν>μ mx−ν̂;μν −
P

ν<μ mx−ν̂;νμ, and mout ≡P
ν>μ mx;μν−P

ν<μ mx;νμ. Notice that, in contrast to the conventions of Liu
et al. (2013), the weight of the plaquettes is carried by the B
tensor. The partition function with PBCs can now be written as

Z¼ ½I0ðβplÞ�VDðD−1Þ=2Tr
Y
l

AðlÞ
m1;…;m2ðD−1Þ

Y
pl

BðplÞ
m1m2m3m4

; ð172Þ

where the trace indicates index contraction following the pre-
viously described geometric procedure. The tensor assembly is
illustrated in Fig. 23 for D ¼ 2, and in Fig. 24 for D ¼ 3.

1. Discrete Maxwell equations

The previously mentioned selection rule can be recast as a
constraint on the m values that surround a link. Here we show
that Eq. (169) represents a discrete version of Maxwell’s
equations: ∂μFμν ¼ 0. For this purpose, we define the “elec-
tric integers”

ex;j ≡mx;jD; ð173Þ

with j ¼ 1;…; D − 1, which are associated with temporal
plaquettes and which can be interpreted as electric fields.
Equation (169) for μ ¼ D reads

XD−1

j¼1

ðex;j − ex−ĵ;jÞ ¼ 0: ð174Þ
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Equation (174) is a discrete form of Gauss’s law (∇ ·E ¼ 0)
in the source-free model.
For D ≥ 3, we can introduce magnetic fields in a dimen-

sion-dependent way. For D ¼ 3, we define

bx ≡mx;12: ð175Þ

Equation (169) for μ ¼ 1; 2 becomes

ex;1 − ex−τ̂;1 ¼ −ðbx − bx−2̂Þ;
ex;2 − ex−τ̂;2 ¼ ðbx − bx−1̂Þ: ð176Þ

Equations (176) are a discrete version of the D ¼ 3 Euclidean
Maxwell equations

∂1B ¼ ∂τE2; ∂2B ¼ −∂τE1; ð177Þ

with B ¼ F12. However, there is no discrete equation corre-
sponding to the Maxwell equation for the dual field-strength
tensor

∂μϵ
μνσFνσ ¼ 0: ð178Þ

An example of a legal configuration violating the discrete
version of Eq. (178), also written as ∂τB ¼ −∇ × E, can be
constructed.
For D ¼ 4, we define

bx;j ≡ ϵjklmx;kl ð179Þ

and obtain a discrete version of

∂τE ¼ −∇ ×B ð180Þ

with the Euclidean magnetic field

Fjk ¼ þϵjklBl: ð181Þ

Note that the sign in Eq. (180) is different in the Euclidean and
Minkowskian spaces. Again there is no discrete version of the
homogeneous equations for the dual field strength ∂τB ¼
−∇ × E and ∇ · B ¼ 0.

2. Abelian gauge duality

The dual construction of Sec. V.B for spin models can be
extended to models with plaquettes and higher-dimensional
simplex interactions (Savit, 1977), i.e., interactions over
higher-dimensional geometric shapes, such as cubes and
tetrahedra. If we first define mμν ¼ −mνμ when μ > ν, the
discrete Maxwell equations (169) take the form

∇νmμν ¼ 0: ð182Þ

As explained in Sec. VII.C, Eq. (182) is divergenceless and
represents D − 1 conditions. We can introduce the following
dual tensor with D − 3 indices (Savit, 1977, 1980):

mμν ¼
1

ðD − 3Þ! ϵμνρμ1;…;μD−3
∇ρC̃μ1;…;μD−3

; ð183Þ

which provides an automatic solution of Eq. (182). After
using the D − 1 conditions of Eq. (182), we are left with
ðD − 1ÞðD − 2Þ=2 independent components for mμν. For
D ¼ 3, there is no redundancy and we have 1 degree of
freedom. For D ¼ 4, C̃μ is defined up to a gradient and we
recover the 3 degrees of freedom.

B. The compact Abelian-Higgs model

The compact Abelian Higgs model (CAHM) is a gauged
version of the Oð2Þ model where the global symmetry under a
φ shift becomes local:

φ0
x ¼ φx þ αx: ð184Þ

Its partition function is

ZCAHM ¼
Y
x

Z
π

−π

dφx

2π

Y
x;μ

Z
π

−π

dAx;μ

2π
e−SWilson−SUð1Þ ; ð185Þ

FIG. 23. Assemblies of the A and B tensors for D ¼ 2.

FIG. 24. Assemblies of the A and B tensors for D ¼ 3.
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with

SUð1Þ ¼ −βl
X
x;μ

cosðφxþμ̂ − φx þ Ax;μÞ ð186Þ

and SWilson as in Eq. (166). Using the same Uð1Þ Fourier
expansions as before, the A-field integration can be carried
out. The integration over Ax;μ yields the selection rule

X
ν>μ

½mx;μν −mx−ν̂;μν� þ
X
ν<μ

½−mx;νμ þmx−ν̂;νμ� þ nx;μ ¼ 0;

ð187Þ

which simply inserts the nx;μ in Eq. (169) and corresponds to
the Maxwell equations with charges and currents

∂μFμν ¼ Jν: ð188Þ

Equation (169) indicates that the link indices nx;μ can be
seen as determined by unrestricted plaquette indices mx;μν.
We write this dependence as nx;μðfmgÞ as a shorthand
for Eq. (187).
Note that for nx;μðfmgÞ the discrete current conservation

equation (126) is automatically satisfied (Meurice, 2019) and,
as long as the gauge fields are present, there is no need to
enforce Eq. (126) independently. This is a discrete version of
the fact that Maxwell’s equations with charges and cur-
rents (187) imply that ∂μJμ ¼ 0.
With the introduction of the matter fields, we need to update

the definition of the A tensors. We now have quantum
numbers on the links (nx;μ) that are completely fixed by the
plaquette quantum numbers, and they bring a weight tnx;μðβl:Þ.
This translates into

Aðx;μÞ
m1;…;m2ðD−1Þ ¼ tnx;μðfmgÞðβlÞ ð189Þ

since Eq. (187) gives nx;μ in terms of the surroundingm’s. The
partition function with PBCs can now be written as

ZCAHM ¼ ½I0ðβplÞ�VDðD−1Þ=2½I0ðβlÞ�VD

× Tr
Y
x;μ

Aðx;μÞ
m1;…;m2ðD−1Þ

Y
x;μν

Bðx;μνÞ
m1m2m3m4

: ð190Þ

C. SUð2Þ gauge theory

SUð2Þ gauge theory in D dimensions is governed by an
action of the form

SWilson ¼ −
βpl
2

XN
x¼1

XD
μ<ν¼1

ReTr½Ux;μUxþμ̂;νU
†
xþν̂;μU

†
x;ν�: ð191Þ

To construct a local tensor, we proceed as before and use the
character expansion since the action depends only on the trace
of group elements. The partition function for this model can
be written as the following Haar integration over the group
elements on the links of the lattice:

Z ¼
Z

DUe−SWilson

¼
Z

DUx;μ

Y
x

Y
μ<ν

eðβpl=2ÞReTr½Ux;μUxþμ̂;νU
†
xþν̂;μU

†
x;ν�

¼
Z

DUx;μ

Y
x

Y
μ<ν

eðβpl=2ÞReTr½Ux;μν�; ð192Þ

where Ux;μν is the product of gauge fields around a plaquette.
While this model is trivial in D ¼ 2, there are currently no
results using tensor methods in D > 2 for this model;
however, there have been tensor studies of other gauge models
(Zohar et al., 2015, 2016; Kuramashi and Yoshimura, 2019;
Unmuth-Yockey, 2019).
To proceed, we expand the Boltzmann weight (see

Appendix A.1 for the F’s) as

eðβpl=2ÞReTr½Ux;μν� ¼
X∞
rx;μν¼0

Frx;μνðβplÞχrx;μνðUx;μνÞ: ð193Þ

Equation (193) associates an r with each plaquette on the
lattice. The characters can be written as the following trace of
the product of matrix representations of the group:

χrx;μνðUx;μνÞ ¼
X
a;b;c;d

D
rx;μν
ab ðUx;μÞDrx;μν

bc ðUxþμ̂;νÞ

×D
rx;μν
cd

†ðUxþν̂;μÞDrx;μν
da

†ðUx;νÞ: ð194Þ

By factorizing the group elements in this way, we can perform
the link integration link by link, reformulating the model in
terms of the discrete representations and the matrix indices.
In D dimensions, there are 2ðD − 1Þ plaquettes associated
with each link. The integral over the group element associated
with link ðx; μÞ then has the form

Z
dUx;μ

Y
ν>μ

Drx;μνDrx−ν̂;μν†
Y
ν<μ

Drx;νμ†Drx−ν̂;νμ ; ð195Þ

where the matrix indices have been suppressed and the D
matrices all are the same Ux;μ rotation matrix or its Hermitian
conjugate. Equation (195) is in general complicated but is
simplified by using the Clebsch-Gordan series to systemati-
cally reduce it to an integral over only two D matrices. The
Clebsch-Gordan series is given by

Dr1
m1n1D

r2
m2n2 ¼

Xr1þr2

R¼jr1−r2j

XR
M¼−R

XR
N¼−R

CRM
r1m1r2m2

CRN
r1n1r2n2D

R
MN:

ð196Þ

Using Eq. (196), we can collect the daggered and non-
daggered D matrices in Eq. (195) and simplify them in pairs.
The D matrices are orthogonal; see Appendix A.2.
The final expression is tedious to write, but there is nothing

subtle about it. Here we write the final expression for D ¼ 3

for a link in the μ ¼ 2 direction, and subsequently write the
local tensors for D ¼ 3 as well,
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Cðx;2Þ ≡
Z

dUx;2D
rx;23
m1n1D

rx−3̂;23
m2n2

†Drx;12
m3n3

†D
rx−1̂;12
m4n4

¼
X
R;M;N

d−1R CRM
rx;23;m1rx−1̂;12m4

CRN
rx;23;n1rx−1̂;12n4

× CRN
rx;12;m3rx−3̂;23m2

CRM
rx;12;n3rx−3̂;23n2

: ð197Þ

For each link in the lattice, there is a constraint Cðx;μÞ of
this form. If we define a composite index formally as
Rx;μν ¼ frx;μν; m1; n1g, we can define a tensor associated
with the links of the lattice whose indices are associated with
the shared plaquettes as

Aðx;μÞ
Rx;μνRx−ν̂;μνRx;μρRx−ρ̂;μρ

¼ Cðx;μÞRx;μνRx−ν̂;μνRx;μρRx−ρ̂;μρ
ð198Þ

for ν ≠ ρ ≠ μ. The A tensor is defined as the constraint on a
link. An illustration of the three-dimensional tensor is shown
in Fig. 25.
This is not the entire story, though, since this tensor is not

enough to reproduce the partition function of the original
model. The weight factors FrðβplÞ still need to be accounted
for. To include the weight factors, we define an additional
tensor associated with the plaquettes of the lattice; however,
there is a slightly subtle aspect with this tensor. That is the
circulation of the D-matrix indices in Eq. (194) around the
plaquette. These indices (which are now a part of the A tensor)
are still required to be contracted in the pattern found in
Eq. (194). To enforce this circulation, we assign Kronecker
deltas to the new tensor in such a way that the contraction
pattern of the matrix indices in Eq. (194) is reproduced. To be
clear, consider Eq. (194) again, rewritten as

χrx;μνðUx;μνÞ ¼ D
rx;μν
ab ðUx;μÞδbcDrx;μν

cd ðUxþμ̂;νÞδde
×D

rx;μν
ef

†ðUxþν̂;μÞδfgDrx;μν
gh

†ðUx;νÞδha; ð199Þ

with an implied sum over repeated indices here. These
Kronecker deltas will be moved onto the new plaquette tensor
as follows:

Bfr1abgfr2cdgfr3efgfr4ghg ¼ δbcδdeδfgδha

×

�
Fr1ðβplÞ if all r0s are the same;

0 otherwise:

ð200Þ

Each index of the B tensor is associated with one of the four
links that border the plaquette. That makes this tensor identical
for all dimensions. An illustration of this tensor can be seen in
Fig. 26. By contracting this B tensor on the plaquettes with the
A tensors on the links, the full partition function is constructed
exactly. The contraction pattern between these indices is
shown in Fig. 24.

D. The non-Abelian Higgs model

The lattice SUð2Þ gauge Higgs model in D dimensions
consists of three main parts: the pure Yang-Mills lattice action,
a gauge-matter interaction term, and a matter potential term.
For the pure Yang-Mills term, we use the standard Wilson
action

SWilson ¼ −
βpl
2

X
x

X
μ<ν

ReTr½Ux;μUxþμ̂;νU
†
xþν̂;μU

†
x;ν�; ð201Þ

where one takes a product of the gauge fields associated with
the links around an elementary square (plaquette) for each
square of the lattice. For the gauge-matter coupling term, we
have

SUð2Þ ¼ −
κ

2

XN
x¼1

XD
μ¼1

Φ†
xþμ̂Ux;μΦx: ð202Þ

The Φ field can be reexpressed in terms of a 2 × 2 matrix
(Montvay and Münster, 1994), and the gauge-matter term
becomes

SUð2Þ ¼ −
κ

2

X
x

X
μ

ReTr½ϕ†
xþμ̂Ux;μϕx�; ð203Þ

where ϕ is now a 2 × 2 matrix. Since ϕ†
xϕx ¼ ρ2x1, ϕx can be

written as ϕx ¼ ρxαx with ρx ∈ R, ρx ≥ 0, and αx ∈ SUð2Þ.

FIG. 25. Illustration of the three-dimensional tensor A tensor for
SUð2Þ gauge theory in three dimensions.

FIG. 26. Illustration of a B tensor.
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This expresses ϕx in terms of the Higgs (ρx) and Goldstone
(αx) modes, respectively. This allows the gauge-matter term to
be again rewritten as

SUð2Þ ¼ −
κ

2

X
x

X
μ

ρxþμ̂ρxReTr½α†xþμ̂Ux;μαx�: ð204Þ

Finally, the Higgs potential

V ¼
X
x

½jΦxj2 þ λðjΦxj2 − 1Þ2� ð205Þ

couples only same-site fields and therefore (in terms of the
matrix ϕx) involves only the Higgs mode

V ¼
X
x

ρ2x þ λðρ2x − 1Þ2: ð206Þ

The partition function for this model is then

Z ¼
Z

DUDρDαe−SWilson−SUð2Þ−V; ð207Þ

where the integration overU and α is the SUð2ÞHaar measure,
and the integration measure over ρ is given by ρ3xdρx
over ½0;∞Þ.
We consider only the limit in which λ → ∞ and ρx → 1,

which is when the Higgs mass becomes infinitely large. In
addition, we perform a change of variables on the gauge fields
such that Ux;μ → U0

x;μ ¼ α†xþμ̂Ux;μαx. Up to an overall con-
stant, this reduces the partition function to the form

Z ¼
Z

DUDαe−SWilson−SUð2Þ

¼
Z

DU exp
βpl
2

X
x

X
μ<ν

ReTr½Ux;μUxþμ̂;νU
†
xþν̂;μU

†
x;ν�

þ κ

2

X
x

XD
μ¼1

ReTr½Ux;μ�: ð208Þ

The tensor formulation for this model follows steps similar
to those in Sec. IX.C. In fact, the expansion for the Yang-Mills
term is identical to Eqs. (193) and (194). The expansion for the
gauge-matter term is similar,

eðκ=2ÞReTr½Ux;μ� ¼
X∞
rx;μ¼0

FrxμðκÞχrx;μðUx;μÞ; ð209Þ

and uses the same character expansion as in Sec. IX.C.
Similarly, we know that

χrx;μðUx;μÞ ¼
X
a

D
rx;μ
aa ðUx;μÞ: ð210Þ

With these expansions for the gauge and gauge-matter
Boltzmann weights, we find an integral for each link that
is similar to Eq. (195); however, there is now an additional
χr ¼ Tr½Dr� coming from the gauge-matter factor that gives

Z
dUx;μχ

rx;μ
Y
ν>μ

Drx;μνDrx−ν̂;μν†
Y
ν<μ

Drx;μν†Drx−ν̂;μν : ð211Þ

Equation (211) can again be reduced to a manageable integral
over only two D matrices using Eq. (196) and the form of χr

given in Eq. (210).
We proceed by settingD ¼ 2 and perform the computations

explicitly for the local tensors. This was done in detail by
Bazavov et al. (2019). Equation (211) for the μ ¼ 1 direction
takes the form

X
k

Z
dUx;1D

rx;1
kk D

rx;12
m1n1D

rx−2̂;12
m2n2

†

¼
X
k

d−1rx−2̂;12C
rx−2̂;12n2
rx;1krx;12m1

C
rx−2̂;12m2

rx;1krx;12n1
ð212Þ

and, in the μ ¼ 2 direction,

X
k

Z
dUx;2D

rx;2
kk D

rx;12
m1n1

†D
rx−1̂;12
m2n2

¼
X
k

d−1rx;12C
rx;12n1
rx;2krx−1̂;12m2

Crx;12m1

rx;2krx−1̂;12n2
: ð213Þ

With these constraints on the links we can define analogous A
tensors on the links as well. We again formally define a
composite index Rx;μν ¼ frx;μν; m; ng and define a tensor on a
link from site x in the μ ¼ 1 direction as

Aðx;1Þ
Rx;12Rx−2̂;12

¼
X
rx;1

Frx;1ðκÞ
X
k

d−1rx−2̂;12C
rx−2̂;12n2
rx;1krx;12m1

C
rx−2̂;12m2

rx;1krx;12n1
ð214Þ

and, in the μ ¼ 2 direction, as

Aðx;2Þ
Rx;12Rx−1̂;12

¼
X
rx;2

Frx;2ðκÞ
X
k

d−1rx;12C
rx;12n1
rx;2krx−1̂;12m2

Crx;12m1

rx;2krx−1̂;12n2
:

ð215Þ
As previously mentioned, the tensor associated with the
plaquettes from the pure Yang-Mills term is the same as in
Eq. (200) and is the same regardless of dimension for the
SUð2Þ gauge Higgs model as well. With the A and B tensors
mentioned here, one can contract them in the appropriate
pattern to construct the partition function exactly. This
contraction pattern is shown in Fig. 23.
In fact, in D ¼ 2 it is possible to go one step further and

define a single tensor that can be contracted with itself to
construct the partition function. Details of this construction
were given by Bazavov et al. (2019).
Within this tensor reformulation it is also possible to

straightforwardly define the Polyakov loop. For SUð2Þ in
the fundamental representation the Polyakov loop at site x� is
given by

Px� ¼ Tr

�YNτ−1

n¼0

D1=2ðUx�þnτ̂;τÞ
�
; ð216Þ

where τ indicates a direction chosen as the time. Here we
assume periodic boundary conditions for both directions. The
expectation value of this operator is
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hPi ¼ 1

Z

Z
DUPe−S: ð217Þ

One can recast this average in terms of local tensors by
performing the same steps as before. The only difference in
this case is that, for a particular spatial site x�, all the temporal
links have an additional D matrix associated with them,
altering the integral found in, say, Eq. (213) using the
inclusion of a fourth D matrix whose representation is 1=2.
However, one proceeds as before using Eq. (196) to make the
integral manageable. The integral on the temporal links of the
Polyakov loop has the form

X
k

Z
dUx;2D

rx;2
kk D

rx;12
m1n1

†D
rx−1̂;12
m2n2 D

1=2
ij

¼
X

k;R;M;N

CRM
rx;2krx−1̂;12m2

CRN
rx;2krx−1̂;12n2

Z
dUx;2DR

MND
rx;12
m1n1

†D1=2
ij

¼
X

k;R;M;N

d−1rx;12C
RM
rx;2krx−1̂;12m2

CRN
rx;2krx−1̂;12n2

Crx;12n1
RM1

2
i
Crx;12m1

RN1
2
j
: ð218Þ

If we define this constraint as C̃Rx;12;Rx−1̂;12ij
, then we can write

the following tensor on the Polyakov loop links:

ÃRx� ;12;Rx�−1̂;12ij ¼
X
rx� ;2

Frx� ;2ðκÞC̃Rx� ;12;Rx�−1̂;12ij: ð219Þ

Equation (219) has two more indices than the typical A tensor.
This is because of the additional D matrix from the Polyakov
loop insertion. These additional matrix indices are con-
tracted with each other and traced over as in the definition
of Eq. (216).
With the local tensor of Bazavov et al. (2019) and

Eq. (219), it is possible to use coarse-graining schemes to
approximate the free energy and compute the expectation
values. Using the higher-order tensor renormalization group
for the case of D ¼ 2, Bazavov et al. (2019) computed
derivatives of the free energy along with the Polyakov loop
and Polyakov loop correlator. Of the derivatives of the free
energy, one of primary interest is the following average of the
gauge-matter interaction and its fluctuations:

hLϕi ¼
1

V
∂ lnZ
∂κ ; χLϕ

¼ 1

V
∂2 lnZ
∂κ2 : ð220Þ

Equations (220) were computed while the continuum limit
was taken. The continuum limit in this model is controlled by
the Yang-Mills coupling and the system volume since the
Yang-Mills coupling is dimensionful in D ¼ 2. By fixing the
ratio at β=V ¼ c, with c a constant, and increasing the system
volume, one approaches the fixed-physical-volume con-
tinuum limit. An interesting result from this study was
evidence for a crossover transition between a confining (pure
Yang-Mills) regime and a Higgs regime. This can be seen in
the expectation value of the squared fluctuations of the gauge-
matter interaction in Fig. 27. In the figure one can see a
gradual convergence as the continuum limit is approached,
and the presence of a peak around κ ≈ 1.4 separating the two
regimes.

This is further supported by the behavior of the Polyakov
loop correlation function on either side of the peak value.
Figures 28 and 29 show examples of the potential between
static charges (V) in the κ < 1.4 and κ > 1.4 regimes,
respectively. The potential is found from the logarithm of
the correlator. In Fig. 28 there is a linear confining potential
that persists for long distances as the continuum limit is
approached. In the Higgs-like regime seen in Fig. 29 there is a
linear potential for short distances; however, after a certain
distance the potential flattens and the force between the
charges is zero (string breaking). The two regimes separated
by a peak at around κ ≈ 1.4 both appear to be confining, with
only a crossover separating the two regimes.

FIG. 27. The susceptibility in the gauge-matter interaction.
There is a peak at around κ ≈ 1.4 that seems to indicate a
crossover between a confining regime characteristic of pure
Yang-Mills theory and a Higgs regime where string breaking
occurs. Here β=V ¼ 0.01 was held fixed. HOTRG calculations
for different volumes are represented by different symbols, while
the hollow black markers are from Monte Carlo data as a check.
The maximum representation used in the HOTRG calculation
was r ¼ 1, and the final number of states kept was 50. Adapted
from Bazavov et al., 2019.

FIG. 28. The potential V between two static charges for κ ¼ 0.5
as a function of distance, taking the continuum limit. For this
value of κ we see string breaking at small systems, but as the large
lattice volume limit is taken we find a linear potential across long
distances. Here β=V ¼ 0.01 was held fixed. The maximum
representation used in the calculation was r ¼ 1, and the final
number of states kept in the calculation was 50. Adapted from
Bazavov et al., 2019.
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X. TENSORS FOR MODELS WITH NONCOMPACT
SCALARS

For tensor networks with discrete indices, scalar fields have
to be discretized in a proper manner. There are several ways to
apply simple discretization rules to scalar fields to make
transfer matrices (Chung, 1999; Nishiyama, 2001a, 2001b;
Lay and Rudnick, 2002; Iblisdir, Orus, and Latorre, 2007). In
this section we discuss the cases of Lagrangian path integrals.
Specifically, we consider a TRG study of the real ϕ4 theory in
two dimensions.
This section is organized as follows. We first present the

definition of the real ϕ4 model in Sec. X.A. In Sec. X.B, a
tensor network representation of the real ϕ4 model is made via
the Gaussian quadrature rule.

A. Real ϕ4 theory

The Euclidean action of the real ϕ4 theory in two
dimensions is

Scont ¼
Z

d2x

�
1

2
ð∂νϕÞ2 þ

μ20
2
ϕ2 þ λ

4
ϕ4

�
; ð221Þ

where μ0 and λ are the bare mass and the bare coupling,
respectively. ϕ is a one-component real scalar field. This
model possesses the spontaneous breaking of the Z2 sym-
metry, where the expectation value of the field hϕi is an order
parameter.
From here on, we treat the model on a square lattice with

periodic boundary conditions. The lattice action is given by

Sscalar ¼
X
x

�
1

2

X2
ν¼1

ðϕxþν̂ − ϕxÞ2 þ
μ20
2
ϕ2
x þ

λ

4
ϕ4
x

�
; ð222Þ

where x is the lattice coordinate and ν̂ denotes the unit vector
along the ν̂ direction.
In two-dimensional scalar theories, one has to take care of

the divergence of the one-loop self-energy. In this section the
following renormalization condition for the squared mass,

μ2 ¼ μ20 þ 3λAðμ2Þ; ð223Þ

is used to define the renormalized squared mass μAðμ2Þ
denotes the one-loop self-energy on the lattice

Aðμ2Þ ¼ 1

V

XN
k1;k2¼1

1

μ2 þ 4 sin2 ðπk1=NÞ þ 4 sin2 ðπk2=NÞ
ð224Þ

with the lattice volume V ¼ N × N. To provide numerical
results the nonlinear equation (223) is solved to translate
the bare squared mass into the renormalized one. Note that
the coupling constant is free of the renormalization; this
is a common property in two-dimensional scalar theories.
Renormalization in scalar field theories and especially in ϕ4

theory was discussed by Coleman (1975) and Chang (1976).

B. Tensors from Gaussian quadrature

In this section a tensor network representation of the real ϕ4

theory is derived using the Gaussian quadrature rule. This
method was given and used in tensor network studies for
Lagrangian path integrals by Kadoh et al. (2018, 2019, 2020)
and, as they discussed, improves the accuracy of an earlier
tensor network study of the real ϕ4 model (Shimizu, 2012).
The partition function on the lattice is defined by

Z ¼
�Y

x

Z
∞

−∞
dϕx

�
e−Sscalar−Sh ; ð225Þ

where

Sh ¼
X
x

− hϕx: ð226Þ

For later use we introduce the external field h here. An
important step to build a tensor network representation is to
generate discrete degrees of freedom that are candidates for
tensor indices.7 In the following, we discuss mainly how to
extract the discrete degrees of freedom from the continuous
and noncompact scalar fields.
Since the action has only the nearest-neighbor interactions,

the Boltzmann weight can be rewritten as a product of local
factors as

e−Sscalar−Sh ¼
Y
x

Y2
ν¼1

fðϕx;ϕxþν̂Þ; ð227Þ

FIG. 29. The potential V between two static charges for κ ¼ 2 as
a function of distance, taking the continuum limit. Here we find
the phenomenon of string breaking that persists even as we take
the continuum limit after some distance. Here β=V ¼ 0.01 was
held fixed. The maximum representation used in the calculation
was r ¼ 1, and the final number of states kept in the calculation
was 50. Adapted from Bazavov et al., 2019.

7See Campos, Sierra, and López (2019) and Vanhecke et al.
(2019) and the more complete list of references given by Kadoh et al.
(2019) for related approaches.
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where the local factor is given by

fðϕ1;ϕ2Þ ¼ exp

�
−
1

2
ðϕ1 − ϕ2Þ2 −

μ20
8
ðϕ2

1 þ ϕ2
2Þ

−
λ

16
ðϕ4

1 þ ϕ4
2Þ þ

h
4
ðϕ1 þ ϕ2Þ

�
: ð228Þ

To derive the discrete formula, we summarize the Gaussian
quadrature rule for a weighted integral of a single variable
function. We consider discretizing the well-defined target
integral of a function g as

I ¼
Z

∞

−∞
dxWðxÞgðxÞ; ð229Þ

where W is a weight function. A successful way to discretize
this type of integral is the Gaussian quadrature method. The
quadrature rule gives a simple replacement of the integral with
a discrete summation

I ≈
XK
i¼1

wigðyiÞ; ð230Þ

where yi and wi are the ith roots of the order of K orthonormal
polynomial and the corresponding weight, respectively.
Comprehensive definitions for the Gaussian quadrature
rule (including the definition of weights) were given by
Abramowitz and Stegun (1965). The species of the ortho-
normal polynomial is one’s choice and corresponds to the
form of the weight function W. Typical choices are the
Legendre polynomials and the Hermite polynomials that
correspond to WðyÞ ¼ 1 and WðyÞ ¼ e−y

2

, respectively. If
we consider the fact that the mass term in the action plays the
role of the weight function, it seems to be natural to use the
Hermite polynomials. Indeed, this choice was made by Kadoh
et al. (2018, 2019, 2020), and we use the Hermite polynomials
exclusively for the Gaussian quadrature rule in this section.8

When g is a polynomial function of degree 2K − 1 or fewer,
the Gaussian quadrature reproduces the exact value. Even if it
is not, if g is well approximated by a polynomial function of
degree 2K − 1 or fewer, the Gaussian quadrature would be
accurate. We apply this quadrature rule to each integral of the
scalar field in the path integral.
By applying the Gauss-Hermite quadrature to the partition

function, a discrete form is introduced as

ZðKÞ ¼
X
fαg

Y
x

wαxe
y2αx

Y2
ν¼1

fðyαx ; yαxþν̂
Þ; ð231Þ

where
P

fαg denotes
Q

x

P
K
αx¼1. The discrete form depends on

the order of the Hermite polynomial K, and this parameter is
set large for accurate results. In practice, K ≥ 64 could be
regarded as sufficiently large (Kadoh et al., 2018, 2019,

2020), though, in numerical results shown later in this section,
K ¼ 256 is taken.
Note that the method is applied numerically and that thus far

there has not been an analog of the previously given character
expansions and orthogonality relations. In Sec. XII.F we show
that for the Gauss-Hermite quadrature it is possible to interpret
the construction in terms of a truncated version of the harmonic
oscillator algebra of creation and annihilation operators.
In Eq. (231) the local Boltzmann factors can be regarded

as K × K matrices, and one can perform the following SVD
for them:

fðyαx ; yβxþν̂
Þ ¼

XK
ix;ν¼1

Uαxix;νλix;νV
†
ix;νβxþν̂

; ð232Þ

where fλg is the singular values that are assumed to be in
descending order (λ1 ≥ λ2 ≥ � � � ≥ λK ≥ 0) and U and V are
unitary matrices. Now a tensor network representation of
ZðKÞ is defined by

ZðKÞ ¼
X
fX;Tg

Y
x

TðKÞXx−1̂XxTxTx−2̂
; ð233Þ

where
P

fX;Tg denotes
Q

x

P
K
Xx¼1

P
K
Tx¼1 and we have made

the replacements ix;1 → Xx and ix;2 → Tx. The tensor at any
site is defined by

TðKÞijkl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λiλjλkλl

q XK
α¼1

wαey
2
αV†

iαUαjUαkV
†
αl: ð234Þ

At this stage the bond dimension of the tensors is K. To
balance the computational cost and numerical accuracy, one
may initially truncate the bond dimension to a certain value
Dcut (≤ K). Kadoh et al. (2019) took Dcut ≤ 64 for actual
computations, and the sufficiency of this choice is numerically
shown.9

Physical quantities can also be expressed as tensor net-
works. A key point is to, respectively, treat the denominator
and the numerator on the right-hand side of

hϕi ¼ Z1

Z
; ð235Þ

where

Z1 ¼
�Y

x

Z
∞

−∞
dϕx

�
ϕx̃e−Sh−Sscalar ; ð236Þ

with x̃ ≠ x.10 The presence of ϕx̃ does not affect the tensor
construction procedure, it merely alters which integral is being

8As mentioned, the choice does not matter for numerical accuracy
as long as the degree of the orthonormal polynomial is sufficiently
large.

9Note that a fast decay of the singular values guarantees the
accuracy of such an approximation. Although the decay rate would
be weak near the criticality, a notable accuracy of the critical coupling
constant was achieved by Kadoh et al. (2019). This is reviewed later
in this section.

10Because of the translation invariance, a subscript that denotes the
coordinate in Eq. (235) is omitted.
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approximated, so the Gaussian quadrature rule and the SVD of
the local factors work as before. However, the resultant tensor
network representation contains an “impurity tensor” owing to
ϕx̃. To perform a coarse graining of a tensor network that
contains impurities, one needs a little ingenuity; the details are
discussed in Sec. VI.D. Finally, one can calculate Z and Z1

separately, and using them the value of hϕi is obtained
using Eq. (235).
Here the numerical results for the real ϕ4 theory are shown.

The target quantities in this section are the critical coupling
constant and its continuum limit value. Kadoh et al. (2019)
proceeded with the continuum limit extrapolation as follows:
(1) Take the thermodynamic and zero-external-field limits to
get a susceptibility χ for given bare mass and bare coupling
constants. (2) Find the critical mass where χ → ∞. (3) Extract
the renormalized critical squared mass from Eq. (223).
(4) Compute the dimensionless critical coupling constant
λ=μ2c . (5) Vary λ from 0.1 to 0.005 and repeat the previous
procedure to take the continuum limit.11 (6) Take a linear
extrapolation to find the critical coupling constant at λ ¼ 0. As
previously mentioned, the parameters for the tensor network
analysis are set toK ¼ 256 andD ≤ 64. The legitimacy of this
choice was confirmed numerically by Kadoh et al. (2019).
Figures 30 and 31 show the results of the thermodynamic

limit and zero-external-field limit, respectively. In both cases,
bare parameters and the bond dimension of the tensor are
μ20 ¼ −0.100 617 4, λ ¼ 0.05, and Dcut ¼ 32, as an example.
In Fig. 30 the ratio hϕi=h behaves as a constant in the
extremely large spacetime volume where L ≥ 106, so one can
consider that the system reaches the thermodynamic limit for
L ≥ 106. In Fig. 31 the ratio also behaves as a constant for
h ≤ 10−11, so hϕi ≈ χh holds. The susceptibility χ can then be
obtained from the relation.12

From the susceptibilities for several masses, the critical
mass where χ → ∞ is determined. Kadoh et al. (2019) used
the following fitting formula:

χ−1=1.75 ¼ Ajμ20;c − μ20jγ=1.75: ð237Þ

Figure 32 shows the susceptibility with the fit result with fixed
γ ¼ γIsing.

13 The critical bare squared mass μ20;c is obtained as
the μ20 intercept of the line. The parameters are set to λ ¼ 0.05
and Dcut ¼ 32.
Taking the previous procedures for several values of λ, one

can obtain the dimensionless critical coupling constant λ=μ2c as
a function of λ, and the remaining procedure is to take the
continuum extrapolation. Kadoh et al. (2019) calculated the
λ ¼ 0 value of the dimensionless critical coupling using a
linear extrapolation with a reasonable value χ2 ≈ 0.026. The
result was

lim
λ→0

λ

μ2cðλÞ
¼ 10.913ð56Þ: ð238Þ

The error is due mainly to a fluctuation in the large Dcut
region. Kadoh et al. (2019) showed that the Dcut dependence
is the main source of the error.
Figure 33 shows a comparison of recent Monte Carlo work

by Schaich and Loinaz (2009), Wozar and Wipf (2012),
Bosetti, Palma, and Guagnelli (2015), and Bronzin, Palma,

FIG. 30. Thermodynamic limit of hϕi=h at μ20 ¼ −0.100 617 4,
λ ¼ 0.05, and Dcut ¼ 32 for h ∈ ½10−12; 10−6�.

FIG. 31. Zero-external-field limit of hϕi=h atμ20 ¼ −0.100 617 4,
λ ¼ 0.05, and Dcut ¼ 32 in the thermodynamic limit.

FIG. 32. Susceptibility as a function of μ20 at λ ¼ 0.05 and
Dcut ¼ 32.

11Note that if we do not omit showing the lattice spacing a, aλ → 0

represents the continuum limit.
12Actually, the ratio shows a quadratic behavior for h ≤ 10−11, so

it is proper to take the susceptibility using a more suitable fitting
function. Kadoh et al. (2019) defined the susceptibility in such a way.

13Kadoh et al. (2019) supported the legitimacy of fixing γ to the
exact value by reasonable reduced χ2 values for fittings.
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and Guagnelli (2019) and the TRG work by Kadoh et al.
(2019). The TRG result shows notable accuracy and has
achieved the smallest λ value, which is essentially important
for the continuum extrapolation. For a comprehensive list of
references concerning the continuum limit value of the
coupling constant, see Sakai (2019).
The two-dimensional complex ϕ4 theory at finite density, a

typical model that suffers from the sign problem, was studied
by Kadoh et al. (2020). A complex scalar field is discretized
using the Gaussian quadrature rule for both the real and the
imaginary part of the fields. As in Eq. (231), a partition func-
tion of a multicomponent scalar field theory is discretized as

ZðKÞ ¼
X

fα;β;…g

Y
x

wαxwβx � � � ey
2
αxþy2βxþ���

Y
ν

hðyαx ; yβx ;…; yαxþν̂
; yβxþν̂

;…Þ; ð239Þ

where h is the local Boltzmann factor of the model and the
definitions of K, w, and y are the same as those used earlier in
this section.14

Using the TRG, the silver blaze phenomenon15 for thermo-
dynamic quantities is observed. A point to note from the work
is the ability of the TRG (in a model with a severe sign
problem and a multicomponent scalar field) to produce robust
and sustainable results. Note that Kadoh et al. (2020)
measured the severeness of the sign problemusing the average
phase factor heiθi ¼ Z=Zpq, where Zpq is the phase quenched
partition function.

C. Additional topics and references

For more precise works near criticality, it is natural to use
improved coarse-graining algorithms such as loop TNR
(Evenbly and Vidal, 2015; Yang, Gu, and Wen, 2017),
graph-independent local truncations (GILTs) (Hauru,
Delcamp, and Mizera, 2018), and full environment truncation
(Evenbly, 2018). The element in common is that the CDL
structure in the tensor networks must be properly dealt with;
see Gu and Wen (2009) and Sec. VI.G. Recently GILTs were
applied to the 2D real ϕ4 model and a precise value of the
critical coupling constant was reported (Delcamp and Tilloy,
2020). The results are comparable to those of Kadoh et al.
(2019), recent Monte Carlo work, and other computational
schemes. When one takes such a deterministic approach, the
systematic error should be properly understood, and the
definition of the error is important for more concrete
discussions.
There could be a better scheme for generating tensor

networks for scalar bosons, although the tensor network
representation via the Gaussian quadrature rule seems to
work quite well. One major concern is that the Gaussian
quadrature rule effectively puts a cutoff on the scalar fields, so
one cannot deal with models whose local Boltzmann factor
fðϕ1;ϕ2Þ has a long (or perhaps infinite) tail in the ϕ1 − ϕ2

space; e.g., massless free scalar bosons could not be suitably
treated with the Gaussian quadrature rule, which requires a
fast damping of the local Boltzmann factor. Delcamp and
Tilloy (2020) generated discrete degrees of freedom using a
Taylor series expansion instead of the Gaussian quadrature
rules, and their approach had the same issue.

XI. MODELS WITH FERMIONS

In this section we discuss tensor network representations
and coarse-graining algorithms for fermion systems. An
important point is that in fermion tensor networks additional
Grassmann variables stemming from the original field vari-
ables are generated. Since there are not Grassmann valued data
types on computers, one needs some special treatments for the
Grassmann variables on tensor networks. The coarse-graining
procedure for fermion tensor networks was given by Gu,
Verstraete, and Wen (2010) and Gu (2013), and applications
for relativistic fermion systems were given by Shimizu and
Kuramashi (2014b) and Takeda and Yoshimura (2015).

A. Tensor representation for free Wilson fermions

In this section we construct a tensor network represen-
tation of a two-dimensional Wilson-Dirac fermion system.
Interactions are not discussed here, but local interaction terms
could be easily introduced, as they were by Shimizu and
Kuramashi (2014b), Kadoh et al. (2018), and Yoshimura et al.
(2018), who discussed Uð1Þ, four fermion, and Yukawa-type
interactions, respectively. The Lagrangian density of the target
system is given by

Lx ¼ ψ̄xðDψÞx; ð240Þ

where the Wilson-Dirac operator is defined by

FIG. 33. Comparison of the continuum extrapolations of the
critical coupling λ=μ2c given in recent Monte Carlo work (Schaich
and Loinaz, 2009; Wozar and Wipf, 2012; Bosetti, Palma, and
Guagnelli, 2015; Bronzin, Palma, and Guagnelli, 2019), and in
the TRG work (Kadoh et al., 2019). At λ ¼ 0, data points are
horizontally shifted to ensure the visibility. Note that the work by
Wozar and Wipf (2012) was conducted with the Stanford Linear
Accelerator Center (SLAC) derivative for scalar fields, while the
other work was done with a naive discretization.

14Here K is taken to be the same for each field component for
simplicity; it can be taken differently for each field.

15This refers to the lack of change in the particle density when the
chemical potential is varied below a certain critical value (Cohen,
2003).
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Dxx0 ¼ ðmþ 2Þδx;x0 −
1

2

X2
μ¼1

fð1þ γμÞδx;x0þμ̂ þ ð1− γμÞδx;x0−μ̂g:

ð241Þ

ψ andm are a two-component spinor field [ψx ¼ ðψ ð1Þ
x ;ψ ð2Þ

x ÞT]
and the mass, respectively. The Grassmann variables satisfy
anticommutation relations. We assume periodic boundary
conditions in all directions in the remainder of this section.
The partition function of the system is given by

ZF ¼
Z

DψDψ̄e−
P

x
Lx : ð242Þ

Under the following representations of gamma matrices,

γ1 ¼ σ1 ¼
�
0 1

1 0

�
; γ2 ¼ σ3 ¼

�
1 0

0 −1

�
; ð243Þ

the hopping factors are expanded as

e−
P

x
ψ̄xðDψÞx ¼

Y
x

�
e−ðmþ2Þψ̄xψx

×
X1
Xx;1¼0

ðχ̄ð1Þ
xþ1̂

χð1Þx ÞXx;1
X1
Xx;2¼0

ðχ̄ð2Þx χð2Þ
xþ1̂

ÞXx;2

×
X1
Tx;1¼0

ðψ̄ ð1Þ
xþ2̂

ψ ð1Þ
x ÞTx;1

X1
Tx;2¼0

ðψ̄ ð2Þ
x ψ ð2Þ

xþ2̂
ÞTx;2

�
;

ð244Þ

where χ and χ̄ are the following linear combinations of ψ

and ψ̄ : χx ¼ ð1= ffiffiffi
2

p Þðψ ð1Þ
x þ ψ ð2Þ

x ;ψ ð1Þ
x − ψ ð2Þ

x Þ and χ̄x ¼
ð1= ffiffiffi

2
p Þðψ̄ ð1Þ

x þ ψ̄ ð2Þ
x ; ψ̄ ð1Þ

x − ψ̄ ð2Þ
x Þ.16 Each expansion is a bino-

mial because of the nilpotency of Grassmann variables, and at
this point discrete indices have arisen at each link.
Next we integrate out the old degrees of freedom. An

important point here is to break the hopping factors into
Grassmann-even structures to freely shuffle them one to
another. To do that the following identities are useful:

ðΨ̄ð1Þ
xþμ̂Ψ

ð1Þ
x Þ¼

Z
ðΨ̄ð1Þ

xþμ̂dΦ̄
ð1Þ
xþμ̂ÞðΨð1Þ

x dΦð1Þ
x ÞðΦ̄ð1Þ

xþμ̂Φ
ð1Þ
x Þ; ð245Þ

ðΨ̄ð2Þ
x Ψð2Þ

xþμ̂Þ¼
Z

ðΨ̄ð2Þ
x dΦ̄ð2Þ

x ÞðΨð2Þ
xþμ̂dΦ

ð2Þ
xþμ̂ÞðΦ̄ð2Þ

x Φð2Þ
xþμ̂Þ: ð246Þ

Note that one has to introduce new Grassmann variables here.
In addition, during the coarse-graining steps these variables
are introduced and integrated out iteratively. This is a key
point of the treatment of fermion tensor networks.
When the previously mentioned identities are used, each

factor in Eq. (244) can be decomposed, and the partition
function can then be deformed to

ZF ¼
X
fX;Tg

Z
DψDψ̄

Y
x

e−ðmþ2Þψ̄xψxðχð1Þx dηð1Þx ÞXx;1

× ðχ̄ð2Þx dη̄ð2Þx ÞXx;2ðψ ð1Þ
x dξð1Þx ÞTx;1ðψ̄ ð2Þ

x dξ̄ð2Þx ÞTx;2

× ðχ̄ð1Þx dη̄ð1Þx ÞXx−1̂;1ðχð2Þx dηð2Þx ÞXx−1̂;2ðψ̄ ð1Þ
x dξ̄ð1Þx ÞTx−2̂;1

× ðψ ð2Þ
x dξð2Þx ÞTx−2̂;2ðη̄ð1Þ

xþ1̂
ηð1Þx ÞXx;1ðη̄ð2Þx ηð2Þ

xþ1̂
ÞXx;2

× ðξ̄ð1Þ
xþ2̂

ξð1Þx ÞTx;1ðξ̄ð2Þx ξð2Þ
xþ2̂

ÞTx;2 ; ð247Þ

where
P

fX;Tg indicates that
Q

x

P
1
Xx;1;Xx;2;Tx;1Tx;2¼0. Here the

new Grassmann degrees of freedom (η, η̄, ξ, and ξ̄) are
introduced in the same manner as in Eqs. (245) and (246).
Note that, thanks to the Grassmann-even decompositions, the
old degrees of freedom (ψ , ψ̄ , χ, and χ̄) that belong to the same
coordinate are gathered up without involving sign factors. The
tensor network representation of the partition function is then
defined by

ZF ¼
X
fX;Tg

Z Y
x

TFXx−1̂XxTxTx−2̂
Gx;Xx−1̂XxTxTx−2̂

; ð248Þ

where

TFkijl ¼
Z

dAð1ÞdĀð1ÞdAð2ÞdĀð2Þe−ðmþ2ÞĀA

×Að2Þl2Āð1Þl1Bð2Þk2 B̄ð1Þk1

× Āð2Þj2Að1Þj1B̄ð2Þi2Bð1Þi1 ; ð249Þ

with dummy Grassmann variables

A ¼ ðAð1Þ;Að2ÞÞT; Ā ¼ ðĀð1Þ; Āð2ÞÞ; ð250Þ

B ¼ 1ffiffiffi
2

p ðAð1Þ þAð2Þ;Að1Þ −Að2ÞÞT; ð251Þ

B̄ ¼ 1ffiffiffi
2

p ðĀð1Þ þ Āð2Þ; Āð1Þ − Āð2ÞÞ; ð252Þ

and

Gx;kijl ¼ dηð1Þi1x dη̄ð2Þi2x dξð1Þj1x dξ̄ð2Þj2x

× dη̄ð1Þk1x dηð2Þk2x dξ̄ð1Þl1x dξð2Þl2x

× ðη̄ð1Þ
xþ1̂

ηð1Þx Þi1ðη̄ð2Þx ηð2Þ
xþ1̂

Þi2

× ðξ̄ð1Þ
xþ2̂

ξð1Þx Þj1ðξ̄ð2Þx ξð2Þ
xþ2̂

Þj2 : ð253Þ

B. Grassmann tensor renormalization group

In this section, we describe the coarse-graining algorithm
for tensor networks including Grassmann variables. The
details were given by Takeda and Yoshimura (2015). We
focus here on the treatment of Grassmann variables in the
network. The coarse graining of the bosonic part of the tensor
is assumed to be carried out as in Sec. VI.A, and it is helpful to
consider this section alongside Sec. VI.A. The coarse graining

16Note that χ and χ̄ are introduced for notational simplicity, so the
hopping terms are diagonal in spinor space.
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of the Grassmann parts yields a phase factor that is to be
incorporated into the bosonic part of the tensor.
The Grassmann part G is decomposed into the following

two parts:

Gx;kijl ¼
Z

ðΘ½1�
x;ijdη̄

mf
x⋆ ÞðΘ½3�

x;kldη
mf

x⋆−1̂⋆Þðη̄x⋆ηx⋆−1̂⋆Þmf ; ð254Þ

where

Θ½1�
x;ij ¼ dηð1Þi1x dη̄ð2Þi2x dξð1Þj1x dξ̄ð2Þj2x

× ðη̄ð1Þ
xþ1̂

ηð1Þx Þi1ðη̄ð2Þx ηð2Þ
xþ1̂

Þi2

× ðξ̄ð1Þ
xþ2̂

ξð1Þx Þj1ðξ̄ð2Þx ξð2Þ
xþ2̂

Þj2 ; ð255Þ

Θ½3�
x;kl ¼ dη̄ð1Þk1x dηð2Þk2x dξ̄ð1Þl1x dξð2Þl2x ; ð256Þ

with the new binary index mf ¼ ði1 þ i2 þ j1 þ j2Þ mod 2 ¼
ðk1 þ k2 þ l1 þ l2Þ mod 2. This decomposition is analogous
to the decomposition that takes place in the original TRG. On
the right-hand side of Eq. (254), each factor is Grassmann
even thanks to the inclusion of the new Grassmann variables
and the definition of the new binary index. This is similar
to the construction of the fermion tensor network; see
Eqs. (254)–(257). x⋆ denotes the new coordinate on the
coarse-grained square lattice, and the unit vectors on the
coarse-grained lattice are defined by 1̂⋆ ¼ 1̂þ 2̂ and
2̂⋆ ¼ 1̂ − 2̂; see also VI.A.
We have another way to decompose G,

Gx;kijl ¼ ð−1Þl1þl2

Z
ðΘ½2�

x;lidξ̄
mf
x⋆ ÞðΘ½4�

x;jkdη
mf

x⋆−2̂⋆Þðη̄x⋆ηx⋆−2̂⋆Þmf ;

ð257Þ

where

Θ½2�
x;li ¼ dξ̄ð1Þl1x dξð2Þl2x dηð1Þi1x dη̄ð2Þi2x

× ðη̄ð1Þ
xþ1̂

ηð1Þx Þi1ðη̄ð2Þx ηð2Þ
xþ1̂

Þi2 ; ð258Þ

Θ½4�
x;jk ¼ dξð1Þj1x dξ̄ð2Þj2x dη̄ð1Þk1x dηð2Þk2x

× ðξ̄ð1Þ
xþ2̂

ξð1Þx Þj1ðξ̄ð2Þx ξð2Þ
xþ2̂

Þj2 ð259Þ

with the new binary index mf ¼ ðl1 þ l2 þ i1 þ i2Þ mod 2 ¼
ðj1 þ j2 þ k1 þ k2Þ mod 2.
Using the previous two ways of decomposing G, we can

now integrate out the old Grassmann variables, yielding a
phase factor

Z
Θ½2�

xþ2̂;TxXxþ2̂

Θ½1�
x;XxTx

Θ½4�
xþ1̂;Txþ1̂Xx

Θ½3�
xþ1̂þ2̂;Xxþ2̂Txþ1̂

¼ ð−1ÞϵXxTxXxþ2̂
Txþ1̂ ; ð260Þ

where

ϵXxTxXxþ2̂Txþ1̂
¼ Xx;2ðXx;1 þ Xx;2Þ þ Tx;1ðTx;1 þ Tx;2Þ
þ Xxþ2̂;2ðXxþ2̂;1 þ Xxþ2̂;2Þ
þ Txþ1̂;2ðTxþ1̂;1 þ Txþ1̂;2Þ
þ ðXx;1 þ Xx;2 þ Xxþ2̂;1 þ Xxþ2̂;2Þ
× ðTx;1 þ Tx;2 þ Txþ1̂;1 þ Txþ1̂;2Þ: ð261Þ

Note that the details of the phase factor depend on the ordering
of the Θ’s in Eq. (260) and that this ordering is not unique.
Finally, the effect of the coarse graining of the Grassmann part
is interpreted in terms of a non-Grassmann phase factor and
constraints as follows:

ð−1ÞTx;1þTx;2þϵXxTxXxþ2̂
Txþ1̂

× δðXxþ2̂;1þXxþ2̂;2þTxþ1̂;1þTxþ1̂;2Þ mod 2;Xx⋆ ;f

× δðTxþ1̂;1þTxþ1̂;2þXx;1þXx;2Þ mod 2;Tx⋆ ;f

× δðXx;1þXx;2þTx;1þTx;2Þ mod 2;Xx⋆−1̂⋆ ;f

× δðTx;1þTx;2þXxþ2̂;1þXxþ2̂;2Þ mod 2;Tx⋆−2̂⋆ ;f ; ð262Þ

where the indices labeled with f’s are the previously intro-
duced new binary indices. The phase and the Kronecker deltas
are to be incorporated into the bosonic tensors, and the coarse-
grained Grassmann part G⋆ that consists of the new
Grassmann variables is defined by

G⋆
x;kijl ¼ dηifx dξ

jf
x dη̄

kf
x dξ̄

lf
x ðη̄xþ1̂⋆ηxÞif ðξ̄xþ2̂⋆ξxÞjf : ð263Þ

The previous procedure is iteratively executed along with the
normal coarse-graining steps for the bosonic tensors.

C. Two-dimensional Schwinger model with Wilson fermions

Shimizu andKuramashi (2014a) studied the critical behavior
at θ ¼ π of the two-dimensional Schwinger model withWilson
fermions. While studying the Fisher zeros, Shimizu and
Kuramashi (2014a) confirmed that there is a critical point near
κ ¼ 0.2415 and that the phase transition belongs to the 2D Ising
universality class, where κ is the inverse of the Wilson fermion
mass m: 1=κ ¼ 2ðmþ 2Þ. In addition, they completed a Lee-
Yang zero analysis to seriously study the phase structure. In the
parameter space of a complex coupling, the Lee-Yang zeros of
the partition function are found off of the real-coupling axis at
finite volume. These zeros have their own critical behavior, and
in the thermodynamic limit their approach and condensation
along the real-coupling axis cause nonanalytic behavior on the
real axis, thus indicating a phase transition.
Assuming that the gauge part of the lattice action is given

by the usual Wilson action along with a topological term,

SG ¼ −
1

g2
X
x

cos ðAx;1 þ Axþ1̂;2 − Axþ2̂;1 − Ax;2Þ − iθQ;

ð264Þ

where g2 ¼ 1=βpl is the gauge coupling andQ is the following
topological charge:
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Q ¼ 1

2π

X
x

qx; ð265Þ

where qx ¼ ðAx;1 þ Axþ1̂;2 − Axþ2̂;1 − Ax;2Þ mod 2π. The
presence of this term incurs the sign problem in MC
calculations. The scaling behavior of the partition function
zeros in the complex θ plane is studied with a fixed Reθ ¼ π.
At the critical mass κc, the position of a partition function zero
θ0ðLÞ would obey

Imθ0ðLÞ − Imθ0ð∞Þ ∝ L−ð2ν−βÞ=ν ð266Þ

with the critical exponents ν and β. If a first-order phase
transition occurs (conjectured as being at κ < κc), it is
expected that Imθ0ðLÞ ∝ L−2 with a vanishing Imθ0ð∞Þ.
On the other hand, if there are not phase transitions (con-
jectured as being at κ > κc), it is expected that Imθ0ð∞Þ ≠ 0.
Figure 34 shows the scaling behaviors of Imθ0ðLÞ, and the

fitting results are summarized inTable I. The coupling is1=g2 ¼
10. The bond dimension of the tensors is fixed at Dcut ¼ 160.
These results show that (a) for κ < κc Imθ0ð∞Þ vanishes and
the exponent y is close to 2, (b) for κ > κc Imð∞Þ has a non-
zero value, and (c) for κ ¼ 0.2415 (≈κc) y ¼ 1.869ð10Þ is

consistent with y ¼ 1.875,which is the same result as for the 2D
Ising universality class.
In summary, on the line θ ¼ π there is no phase transition at

κ > κc, there is the second-order phase transition belonging to
the 2D Ising universality class at κ ¼ κc ≈ 0.2415, and there
are first-order phase transitions at κ < κc. This is exactly the
expected result.
There was a further study of the Berezinskii-Kosterlitz-

Thouless transition in the (m, g) plane in the same model by
the same authors (Shimizu and Kuramashi, 2018), but here we
refer the interested reader only to the original paper.
This work is the first application of the Grassmann TRG to

a relativistic fermion system. Following this study, an appli-
cation to the two-dimensional Thirring model (Thirring,
1958), a pure fermion system, in the presence of a chemical
potential was reported (Takeda and Yoshimura, 2015).

D. Three-dimensional free fermions

In three or more dimensions, the Grassmann parts of the
tensors can be coarse grained in a similar manner as the
higher-order TRG (Sakai, Takeda, and Yoshimura, 2017), and
calculations of partition functions and Green’s functions were
given by Yoshimura et al. (2018) with relatively large bond
dimensions.17 Figure 35 shows the free energy density of the
three-dimensional free fermion system, where the conver-
gence in the number of states Dcut is extremely rapid, and one
cannot see the difference between the Grassmann HOTRG
results and the exact values in this resolution. The treatment
of the Grassmann variables in the Grassmann HOTRG is
straightforwardly applicable to ATRG (Adachi, Okubo, and
Todo, 2020) and triad HOTRG (Kadoh and Nakayama, 2019);
this fact will encourage researchers to approach higher-
dimensional fermion models.

E. Two-dimensional N = 1 Wess-Zumino model

The interacting two-dimensional N ¼ 1 Wess-Zumino
model, a simple supersymmetric model, displays a vanishing
partition function (Witten, 1982).18 This fact indicates that the
model suffers from a serious sign problem, as is the case in
other generic supersymmetric models.19

FIG. 34. Lee-Yang zeros for κ ¼ 0.24 (top panel), 0.2415
(middle panel), and 0.243 (bottom panel). 1=g2 ¼ 10. Solid lines
are the fit results with a function Imθ0ðLÞ ¼ Imθ0ð∞Þ þ aL−y

via three parameters Imθ0ð∞Þ, a, and y. Adapted from Shimizu
and Kuramashi, 2014a.

TABLE I. Results of the fittings in Fig. 34. Adapted from Shimizu
and Kuramashi, 2014a.

κ y Imθ0ð∞Þ Fit range χ2=d:o:f:

0.2400 2.009(12) 0.000 034(59) L ∈ ½32 ffiffiffi
2

p
; 256� 0.65

0.2415 1.869(10) −0.000 016ð64Þ L ∈ ½32 ffiffiffi
2

p
; 256� 0.41

0.2430 1.850(15) 0.004 42(12) L ∈ ½32 ffiffiffi
2

p
; 256� 0.78

17HOTRG in the presence of impurity tensors was discussed by
Morita and Kawashima (2019). The technique that they used would
also help to increase the accuracy of fermionic Green’s functions.

18The partition function with periodic boundary conditions is
equivalent to the trace of the fermion number operator ð−1ÞF.

19For a review on lattice supersymmetry see Catterall, Kaplan, and
Unsal (2009).
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The Euclidean continuum action of the model is given by

Scont ¼
Z

d2xf1
2
ð∂μϕÞ2 þ 1

2
W0ðϕÞ2

þ 1
2
ψ̄(γμ∂μ þW00ðϕÞ)ψg; ð267Þ

where ϕ and ψ are a one-component real scalar field and a
two-component Majorana spinor field, respectively.20 WðϕÞ is
an arbitrary function of ϕ called the superpotential, which is
the source of the Yukawa and ϕn interactions.
The spinor field ψ satisfies the Majorana condition

ψ̄ ¼ −ψTC−1; ð268Þ

with the charge conjugation matrix C:

CT ¼ −C; C† ¼ C−1; C−1γμC ¼ −γTμ : ð269Þ

The continuum action (267) is invariant under the supersym-
metry transformation

δϕ ¼ ϵ̄ψ ; ð270Þ

δψ ¼ ½γμ∂μϕ −W0ðϕÞ�ϵ; ð271Þ

where ϵ is a two-component Grassmann number and ϵ̄ is
defined as in Eq. (268).
Using the symmetric difference operator ∂S

μ ¼ ð∂μ þ ∂�
μÞ=2

with the forward difference ∂ and the backward difference ∂�,
the lattice action is given by

S ¼
X
x

�
1

2
ð∂S

μϕxÞ2 þ
1

2

�
W0ðϕxÞ −

r
2
∂μ∂�

μϕx

�
2

þ 1

2
ψ̄xðDψÞx

�
: ð272Þ

Note that the lattice action also has the Wilson term in the
scalar sector; this is required to retain equal footing for both
the scalar and fermion sectors. It has been perturbatively
proven that the broken supersymmetry on the lattice is
restored in the continuum limit for this construction of the
action (Golterman and Petcher, 1989). The Dirac operator on
the lattice is defined by

Dxx0 ¼
�
γμ∂S

μ −
r
2
∂μ∂�

μ

�
xx0

þW00ðϕxÞδxx0 ; ð273Þ

where r is a nonzero real parameter called the Wilson
parameter.
Tensor network representations of both the scalar and

fermion parts are constructed in the manner as discussed in
Secs. X.B and XI.A, respectively. An important feature of this
model is the Wilson term of the scalar part whose square
produces next-nearest-neighbor hopping terms in the lattice
action. This fact prevents one from simply constructing a
tensor network representation. Kadoh et al. (2018) introduced
auxiliary scalar fields to make the nearest-neighbor form of
the action21

S̃B ¼ 1

2

X
x

fð∂μϕxÞ2 þ (W0ðϕxÞ)2 þG2
x þH2

x

− ½rW0ðϕxÞ þ αGx þ βHx�ðϕxþ1̂ þϕx−1̂ − 2ϕxÞ
− ½rW0ðϕxÞ þ αGx − βHx�ðϕxþ2̂ þϕx−2̂ − 2ϕxÞg; ð274Þ

with the auxiliary fields G and H and the constants α ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2r2Þ=2

p
and β ¼ 1=

ffiffiffi
2

p
.

In Fig. 36, the partition function (called the Witten index in
this model) of the free N ¼ 1 Wess-Zumino model, whose
superpotential is given by WðϕÞ ¼ ð1=2Þmϕ2 with the mass
parameter m, is shown on the V ¼ 2 × 2 lattice.22 In the free
case, the partition function can be analytically obtained, and
the exact solution is Z ¼ sgnfmðmþ 4rÞg. Thus, the exact
solution is 1 for the m > 0 region shown in Fig. 36. The TRG
results tend to converge to the exact value 1 with increasing
Dcut, the number of singular values that are kept during the
coarse-graining steps. The less accurate results in the small m
region are due to the lack of a fast damping factor in the local
Boltzmann weight that is required for the Gaussian quadrature
rule to be effective, but such poor behavior is a special case for
the noninteracting model.
When one deals with the interacting Wess-Zumino model

that has ϕn-interaction terms, they guarantee the presence of
fast damping. Since the tensor network representation given in
the paper does not depend on the form of superpotential, the
interacting N ¼ 1Wess-Zumino model is within the scope of
tensor analyses. In the interacting case, the restoration of the

0 0.5 1 1.5 2
m

2

2.5

3

3.5
lo

g 
Z

/V
Dcut=14

Dcut=16

Dcut=18

Dcut=20

Dcut=22
exact

FIG. 35. Free energy density of three-dimensional free fermions
for V ¼ 2563. Adapted from Yoshimura et al., 2018.

20The numerical treatment of Majorana fermions on a discrete
spacetime lattice was discussed by Wolff (2008).

21This prescription gives multicomponent scalar fields. For the
treatment of multicomponent scalars, see also the study of 2D
complex ϕ4 theory by Kadoh et al. (2020).

22In order not to break the supersymmetry, the periodic boundary
conditions are assumed in all directions for both fermions and
bosons. The order of the Hermite polynomial used in the Gaussian
quadrature is set to 64 in the paper.
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broken supersymmetry on the lattice should first be confirmed
numerically. However, from a technical point of view an
explicit breaking of the Z2 symmetry due to theWilson term in
the lattice action (Golterman and Petcher, 1989) causes
singular behavior in the local Boltzmann factor. This fact
makes numerical treatments difficult. In addition to theWilson
type discretization, other lattice regularizations are worth
considering and, in such cases, tensor network analyses are
helpful as long as the lattice model is written in a local way.
In addition, because complexities of the field contents do

not affect the structure of tensor networks, more complicated
models such as the N ¼ ð2; 2Þ Wess-Zumino model could be
treated in the same way.

F. Two-dimensional Schwinger model with staggered fermions

In this section a tensor network representation of the
Schwinger model with staggered fermions is discussed.23

The one-flavor staggered action for the massless Schwinger
model on a two-dimensional lattice has the action

S ¼ SF þ Sg; ð275Þ

with

SF ¼ 1

2

XN
x¼1

X2
μ¼1

ηx;μ½ψ̄xUx;μψxþμ̂ − ψ̄xþμ̂U
†
x;μψx�; ð276Þ

and Sg is the usual Wilson action given by Eq. (21). Here ηx;μ
is the staggered phase, which for ηx;1 ¼ 1 and for
ηx;2 ¼ ð−1Þx1 , with x1 the 1-component of x. The partition
function for this model is then given by

Z ¼
Z

DUDψ̄Dψe−S

¼
Z

DUeβ
P

x
Re½Ux;12�ZFðUÞ; ð277Þ

with
R
DU ¼ Q

x

R
π
−π dAx;μ=2π,

R
Dψ̄Dψ ¼ Q

x

R
dψ̄xdψx,

and ZF representing the part of the partition function that
depends on the fermion fields.
Following Gattringer, Kloiber, and Sazonov (2015) in

formulating the model in terms of discrete degrees of freedom,
we first integrate out the fermions and generate an effective
action depending only on the gauge fields. As a first step we
redefine the link variables such that the staggered fermion
phases ηx;μ can be absorbed into modified link variables
Ux;μ → ηx;μUx;μ. Under this transformation the gauge action
picks up an overall negative sign, but the measure is invariant.
The Boltzmann factors associated with each bilinear fermion
term can be Taylor expanded, yielding the partition function

ZF ¼
Z

Dψ̄Dψ
Y
x

Y
μ

X1
kx;μ¼0

ð−1
2
ψ̄xUx;μψxþμ̂Þkx;μ

×
X1
k̄x;μ¼0

ð1
2
ψ̄xþμ̂U

†
x;μψxÞk̄x;μ : ð278Þ

Notice that higher-order terms in the expansion of the
Boltzmann factors vanish because of the Grassmannian nature
of the fermions. The partition function is only nonzero when
the Grassmann integration is saturated. This occurs only for
closed fermionic loops and dimer configurations.
For a loop l with length LðlÞ, one finds a contribution with

an absolute value

�
1

2

�
LðlÞ Y

x;μ∈l
ðUx;μÞkx;μðU†

x;μÞk̄x;μ ; ð279Þ

where on a given link only a single k or k̄ is nonzero. In
addition, each loop carries a certain Z2 phase that depends on
the length of the loop and its winding along the temporal
direction given by

−ð−1Þ1=2LðlÞð−1ÞWðlÞ: ð280Þ

In Eq. (280) the overall negative sign is the usual one for
closed fermion loops, while the second factor keeps track of
the number of forward hops, which is exactly half the total
length of the loop for a closed loop. Finally, the factor
ð−1ÞWðlÞ of the loop is determined by the number of windings
of the loop along the temporal direction assuming antiperiodic
boundary conditions for the fermions. Using dimers and loops
as basic constituents for nonzero contributions to the fer-
mionic partition function, we can write

ZF ¼
�
1

2

�
V X
fl;dg

ð−1ÞNLþð1=2Þ
P

l
LðlÞþ

P
l
WðlÞ

×
Y
l

� Y
x;μ∈l

ðUx;μÞkx;μðU†
x;μÞk̄x;μ

�
; ð281Þ

where
P

fl;dg indicates a sum over all valid loop and dimer
configurations and NL is the number of loops. We construct a

FIG. 36. Partition function as a function of m on a V ¼ 2 × 2
lattice.

23While this section refers to the work of Gattringer, Kloiber, and
Sazonov (2015), the elimination of fermion fields was also discussed
by Zohar and Cirac (2018b, 2019).
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local tensor that reproduces the nonzero configurations of this
partition function.
We ignore the overall sign for now and deal simply with

the magnitude. We allow two types of indices per link to
capture separately the incoming and outgoing fermion
lines, making the fermion site tensor a rank-8 object. To
write a tensor, we first fix the coordinates so that right
(1-direction) and up (2-direction) are positive (no overbar),
and left and down are negative (overbar). Since each site
either is the end point of a dimer or has a fermionic current
incoming to it and outgoing from it, we can model this
with the tensor structure (we omit the gauge link factors
for now) as follows:

TðxÞ
kx−1̂;1k̄x−1̂;1kx;1k̄x;1kx;2k̄x;2kx−2̂;2k̄x−2̂;2

¼
8<
:

1 if kx−1̂;1 þ kx−2̂;2 þ k̄x;1 þ k̄x;2 ¼ 1

and kx;1 þ kx;2 þ k̄x−1̂;1 þ k̄x−2̂;2 ¼ 1;

0 otherwise;

ð282Þ

where each ðki; k̄iÞ ¼ 0; 1. The pairs of indices are ordered
(left, right, up, and down). A graphical representation of
this tensor is shown in Fig. 37(a).
By repeatedly contracting this site tensor with copies of

itself over the lattice, we can see that the full set of closed
loops and dimers for the model at zero gauge coupling is
generated, except for the overall factor of −1 for each closed
fermion loop.
In order to include the gauge fields, we employ a character

expansion of the Boltzmann factors associated with the gauge
action:

e−β cos ½Ax;1þAxþ1̂;2−Axþ2̂;1−Ax;2�

¼
Xmx;12¼∞

mx;12¼−∞
Imx;12

ð−βÞeimx;12½Ax;1þAxþ1̂;2−Axþ2̂;1−Ax;2�: ð283Þ

Each plaquette is now labeled by an integer mx;12 (which
we shorten to mx since there are temporal plaquettes in
only two dimensions). Note that Imx

ð−βÞ ¼ ð−1ÞmxImx
ðβÞ.

In two dimensions each link is shared by two plaquettes.
For a link in the μ ¼ 1 direction, the two plaquettes give
factors of eimxAx;1 and e−imx−2̂Ax;1 . In the μ ¼ 2 direction,
e−imxAx;2 and eimx−1̂Ax;2 . In addition, the link carries a factor
of eikx;μAx;μ or e−ik̄x;μAx;μ coming from ZF. Thus, in total,
links carry two m indices inherited from their neighboring
plaquettes together with a k and a k̄ index associated with
the fermionic hopping terms. The integral over a link
variable is given by

Z
π

−π

dAx;μ

2π
eiðkx;μ−k̄x;μÞAx;μ

Y
ν>μ

eiðmx−mx−ν̂ÞAx;μ

Y
ν<μ

eiðmx−ν̂−mxÞAx;μ

¼ δðx;μÞP
ν>μ

ðmx−mx−ν̂Þþ
P

ν<μ
ðmx−ν̂−mxÞþkx;μ−k̄x;μ;0

: ð284Þ

Equation (284) allows us to write the following partition
function as a sum over m and k; k̄ variables:

Z ¼
X
fmg

X
fk;k̄g

�Y
x

Imx
ðβÞ

��Y
x

TðxÞ
kx−1̂;1k̄x−1̂;1kx;1k̄x;1kx;2k̄x;2kx−2̂;2k̄x−2̂;2

�

× ð−1ÞNLþNPþð1=2Þ
P

lLðlÞþ
P

lWðlÞ

×
Y
x;μ

δðx;μÞP
ν>μ

ðmx−mx−ν̂Þþ
P

ν<μ
ðmx−ν̂−mxÞþkx;μ−k̄x;μ;0;

ð285Þ

where NP ¼ P
x mx. At this point we include all the minus

signs for completeness. Gattringer, Kloiber, and Sazonov
(2015) proved that every valid contribution to the parti-
tion function is positive in the case of periodic boundary
conditions, so from now on we ignore the factor of

ð−1ÞNLþNPþð1=2Þ
P

lLðlÞþ
P

lWðlÞ.
Associated with each link is a constraint between the k and

k̄ fields on the link and the adjacent m fields on the plaquettes
given by Eq. (284). This is a natural object to use to form a
tensor. We define a tensor on each link by

Aðx;μÞ
mxmx−ν̂k1x;μ k̄1x;μk2x;μ k̄2x;μ

≡ δP
ν>μ

ðmx−mx−ν̂Þþ
P

ν<μ
ðmx−ν̂−mxÞþk1x;μ−k̄1x;μ;0

× δk1x;μ;k2x;μδk̄1x;μ;k̄2x;μ : ð286Þ

In Eq. (286) the ki; k̄i indices are associated with the two ends
of a link. These indices are diagonal, as indicated by the
Kronecker deltas. A diagram showing the relative position of
the fermion and plaquette indices is shown in Fig. 37(b).
Finally, we construct a tensor associated with the plaquettes

of the lattice. This is the same tensor used in previous tensor
formulations of Abelian gauge theories, the B tensor; see
Eq. (170). A graphical representation of the B tensor is shown
in Fig. 37(c). The contraction over these three (T, A, and B)
unique tensor types can be represented as the tensor network
shown in Fig. 38.
It is possible to include a topological term in the original

action with the addition of

SΘ ¼ iΘ
2π

X
x

Im½Ux;12�: ð287Þ

Taking the staggered phase into account and expanding the
Wilson plaquette term and this term simultaneously as

e−βRe½Ux;12�þðiΘ=2πÞIm½Ux;12� ð288Þ

¼
X∞

mx¼−∞
Cmx

ðβ;ΘÞeimxðAx;1þAxþ1̂;2−Axþ2̂;1−Ax;2Þ; ð289Þ

the previous steps in formulating a tensor network can be
followed straightforwardly. One can solve for the C’s numeri-
cally or analytically (Gattringer, Kloiber, and Sazonov, 2015).
This amounts to the replacement

Imx
ðβÞ → Imx

ð2 ffiffiffiffiffi
ηη̄

p Þðη=η̄Þmx=2 ð290Þ

in the definition of the B tensor, with η ¼ β=2 − Θ=4π
and η̄ ¼ β=2þ Θ=4π.
Using these tensors, one can perform numerical calcula-

tions using a coarse-graining scheme. Butt et al. (2020) used
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the higher-order tensor renormalization group to calculate the
free energy for the massless Schwinger model with and without
the presence of a topological term. From the free energy they
calculated the average plaquette and the topological charge as
functions of both the gauge coupling and the Θ parameter. The
average plaquette and topological charge are given by

hUpi ¼
1

V
∂ lnZ
∂β ð291Þ

and

hQi ¼ −
1

V
∂ lnZ
∂Θ ; ð292Þ

respectively. These results were compared to the Monte Carlo
calculations of Göschl et al. (2017) when possible. A figure
produced by Butt et al. (2020) showing the average plaquette as
a function of the Θ parameter is depicted in Fig. 39 for a 4 × 4

lattice. In Fig. 40 we see a comparison between the tensor
calculation andMonte Carlo simulation for a fixed volume on a
4 × 4 lattice of the topological charge. Butt et al. (2020)
reported difficulty at larger volumes, perhaps owing to how
the coarse-graining scheme determines which states are kept
before knowing the boundary conditions on the lattice.

G. Additional topics and references

One of the primary goals in lattice gauge theory is the
successful simulation of four-dimensional QCD at finite

FIG. 37. Graphical representations of tensors.

FIG. 39. The average plaquette as a function of the Θ parameter
on a 4 × 4 lattice. Here Ngauge ¼ 5 indicates a truncation on them
numbers such thatm runs from −2 to 2. That is,Dcut ¼ 5 initially
on the B tensor. Adapted from Butt et al., 2020.

FIG. 38. Contraction pattern of basic tensors.
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density. However, the computational time of the Grassmann
HOTRG in four dimensions is extremely demanding: ∝ D15

cut
with the bond dimension Dcut. To achieve the goal, further
improvements of the algorithm would be required, such as
Monte Carlo approximation or sampling of the tensors and
effective truncation of the bonds.
From an application point of view, nontrivial models in

three dimensions would be within the range. The three-
dimensional Thirring model that has a nontrivial phase
structure and (2þ 1)-dimensional domain-wall fermion sys-
tems would be interesting targets.
In fermion systems, the spectra of tensors tend to have

milder hierarchies than purely bosonic ones. Indeed, in their
papers on the Schwinger model Shimizu and Kuramashi
(2014a, 2014b, 2018) took the bond dimension of the
tensors to be 160. This is large, so one cannot easily
reproduce their results on standard, say, desktop or laptop,
computers. Even in two dimensions serious calculations
require improvements of the algorithms. In two dimensions,
there are several improved schemes for bosonic tensor
networks such as (loop) TNR (Evenbly and Vidal, 2015;
Yang, Gu, and Wen, 2017), graph-independent local trun-
cations (Hauru, Delcamp, and Mizera, 2018), and full
environment truncation (Evenbly, 2018). Studies using these
methods in the context of TLFT were completed by
Kawauchi and Shinji (2018) and Delcamp and Tilloy
(2020). Grassmannian versions of them would then all be
possible directions.
Investigations of the Schwinger model with staggered

fermions using the MPS formalism have also been con-
ducted, with and without a topological term. Bañuls et al.
(2013) studied the mass spectrum of the model and (Bañuls
et al. (2017a) explored the phase diagram of the Schwinger
model with two flavors of fermions in the presence of a
chemical potential. They investigated the isospin as a
function of the chemical potential and mappped the phase
diagram in the chemical potential–mass plane. MPSs were
also used to study the ground-state properties (Buyens et al.,
2014) and confinement and string breaking (Buyens et al.,

2016) of the one-flavor model. A more recent MPS study of
the Schwinger model with the inclusion of a Θ term was
done by Funcke, Jansen, and Kühn (2020). They looked at
different thermodynamic quantities as a function of the Θ
parameter, as well as the spectrum of the model. They also
considered the continuum and chiral limits of the model
where the Θ parameter becomes irrelevant.

XII. TRANSFER MATRIX AND HAMILTONIAN

We now move on from the topic of reformulating the
partition function in terms of tensors to that of arranging
their contractions so as to deduce a transfer matrix T that
can be used to rewrite the partition function as in Eq. (33).
Once the partition function has been written entirely in
terms of local tensor contractions, it is possible to organize
these index contractions into time layers. The natural
choice is to use the indices attached to time links and/or
spacetime plaquettes as the indices of the transfer matrices.
Geometrically, the Hilbert space is located between two
time slices, while the transfer matrix is centered on a time
slice and connects two copies of the Hilbert space; see
Fig. 43 for an illustration. To our knowledge, interchanging
the role of these two types of layers is possible only by
returning to configuration space.
In the rest of this section, we target models with continuous

Abelian symmetries [the Oð2Þ spin model and Uð1Þ gauge
theory] and describe their transfer matrices from a tensor
perspective. However, it is not difficult to extend the dis-
cussion to other models.

A. Spin models

For spin models (Zou et al., 2014), the transfer matrix can
be constructed by taking all the tensors on a time slice and
tracing over the spatial indices. This is illustrated for D ¼ 2

and 3 in Fig. 41.

FIG. 40. The topological charge as a function of theΘ parameter
on a 4 × 4 lattice. Here Ngauge ¼ 5 indicates that five states where
kept in them numbers. Them values were allowed to run from −2
to 2 for each plaquette. That is, Dcut ¼ 5 initially on the B tensor.
Adapted from Butt et al., 2020.

FIG. 41. Illustration of the transfer matrix for spin models in
two and three dimensions. The black crosses indicate index
contraction.
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For the Oð2Þ model, the following Hilbert space H is the
product of integer indices (see Sec. VII.A) attached to time
links between two time slices:

H ¼ jfngi ¼ ⊗
x;j
jnx;ji: ð293Þ

ForD ¼ 2withNs sites and periodic boundary conditions, the
matrix elements of the transfer matrix T have the explicit form

hfn0gjT jfngi ¼
X

n̄1n̄2;…;n̄Ns

Tð1;τÞ
n̄Ns n̄1n1n

0
1
Tð2;τÞ
n̄1n̄2n2n02

� � �TðNs;τÞ
n̄Ns−1n̄Ns nNs n

0
Ns

;

ð294Þ

with the individual tensors provided in Sec. VII. The transfer
matrix can be coarse grained in the spatial dimension (Zou
et al., 2014; Yang et al., 2016), as illustrated in Fig. 42. This
method was used to perform numerical calculations by Zou
et al. (2014), Yang et al. (2016), Unmuth-Yockey et al.
(2018), and Zhang et al. (2018).
The symmetries of the model are completely encoded in

Kronecker deltas appearing in the definition of the tensor
(Meurice, 2019). This corresponds to a divergenceless con-
dition and, with either periodic or open boundary conditions,
the charges carried by the indices cannot flow out in the spatial
directions. For the Oð2Þ model, the sum of the time indices
going into the time slice equals the sum of the indices going
out of it. This conserved quantity can be identified as the
charge of the initial and final states, and the transfer matrix
commutes with the charge operator that counts the sum of the
in or out indices. As we explain in Sec. XIII.A, setting some
matrix elements to zero if some of the local indices exceed a
value nmax in absolute value will not affect this property.
The transfer matrix can be used to define a Hamiltonian by

taking an anisotropic limit where β becomes large on time
links and small on space links (Fradkin and Susskind, 1978;
Kogut, 1979). We define Ṽ ¼ 1=ðβτaτÞ, μ̃ ¼ μ=aτ, and
J ¼ βs=aτ. The Hamiltonian is defined by

T ¼ 1 − aτĤþOða2τ Þ: ð295Þ

Equation (295) will inherit the symmetry properties of the
transfer matrix. Its explicit form is

Ĥ ¼
X
x

�
Ṽ
2
L̂2
x − μ̃L̂x −

J
2

X
x;μ

ðÛxþμ̂Û
†
x þ H:c:Þ

�
; ð296Þ

with the operator L̂jni ¼ njni and the operator Û ¼ ˆeiφ,
which corresponds to the insertion of eiφx in the path integral
and raises the charge

Ûjni ¼ jnþ 1i; ð297Þ

while its Hermitian conjugate lowers it,

ðÛÞ†jni ¼ jn − 1i: ð298Þ

This implies the commutation relations

½L̂; Û� ¼ Û; ½L̂; Û†� ¼ −Û†; ð299Þ

and

½Û; Û†� ¼ 0: ð300Þ

B. Quantum simulations for the Oð2Þ and Oð3Þ model

For the Oð2Þ nonlinear sigma model, Zou et al. (2014) used
a mapping between the Oð2Þ model and the Bose-Hubbard
model. They related the two phase diagrams in the hopping–
chemical potential plane and gave the explicit mapping
between the variables in the two models. A similar approach
can be seen as the limiting behavior of the Abelian Higgs
model used by Bazavov et al. (2015) and Zhang et al. (2018)
when the gauge coupling is taken to zero. Unmuth-Yockey
et al. (2017) described a method to measure the second-order
Rényi entropy for the Oð2Þ model with a chemical potential
in the limit, where it appears as the Bose-Hubbard model.
They did this in the case of an ultracold atomic species trapped
in an optical lattice at half filling. They also considered the
experimental cost of extracting the central charge from
measurements of the Rényi entropy.
There are a couple of results in progress toward quantum

simulations of the Oð3Þ nonlinear sigma model, but none
currently on the principal chiral model. Schützhold and
Mostame (2005) discussed a proposal for an analog quantum
simulator for the Oð3Þ nonlinear sigma model in two dimen-
sions. The setup involves an idealized circuit of superconduct-
ing and insulating spheres and wires. The σ field is identified
with the position of an electron living on the surface of an
insulating sphere. The nearest-neighbor potential is discrete in
space and identified with the difference in positions between
adjacent electrons. This is mapped to the spatial gradient of
the σ field. These two identifications are used to match
couplings between the circuit model and the original nonlinear
sigma model. Possible experimental parameters are discussed,
as well as an analysis of noise contributions to the simulation.
Alexandru, Bedaque, Lamm, and Lawrence (2019) dis-

cussed an approach to quantum simulating the Oð3Þ non-
linear sigma model using “digital” quantum computers
implementing qubits. The original Hamiltonian is reexpressed
in the angular momentum basis. In this basis (as previously

FIG. 42. Graphical representation of the coarse-graining trun-
cation of the transfer matrix described in the text.
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discussed) a truncation is made that preserves the Oð3Þ
symmetry of the model but reduces the local state space to
four states. This is a natural truncation to the lmax ¼ 1 state,
which possesses singlet and triplet states coming from the l ¼ 0
and 1 states, respectively. This is precisely what one finds in the
addition of angular momentum between the product of two
spin-1=2 states. In this truncation and representation the model
is cast in terms of two-qubit operators. Finally, Alexandru,
Bedaque, Lamm, and Lawrence (2019) used a Suzuki-Trotter
decomposition to write the Hamiltonian evolution in short,
discrete steps. Each step is mapped to a quantum circuit over
qubits. They simulated the Hamiltonian evolution on a classical
computer and discussed results. They also performed runs
on a quantum computer; however, at the time, they found
“mostly noise.”

C. Gauge models

The Hilbert space for the compact Abelian Higgs model, or
its pure gauge Uð1Þ limit (see Sec. IX.B), HG can be
constructed as follows with the indices associated with
spacetime plaquettes (see Sec. IX.A.1):

HG ¼ jfegi ¼ ⊗
x;j
jex;ji; ð301Þ

where the states jex;ji are eigenstates of Lx;j, which were
defined following Eq. (296). Here we use êx;j for the operator
for clarity. The electric layer is a diagonal matrix TE with
matrix elements

hfe0gjTEjfegi ¼ δfeg;fe0gTEðfegÞ; ð302Þ

where TEðfegÞ are traced products of A tensors on time links
with B tensors on spacetime plaquettes,

TEðfegÞ ¼ Tr
Y
time l

AðlÞ
m1;…;m2ðD−1Þ

Y
sp time pl

BðplÞðeÞ: ð303Þ

The A tensor of the compact Abelian Higgs model is given in
Eq. (189). It enforces Gauss’s law in the pure gauge limit. The
electric layer is illustrated in Fig. 43.
Similarly, we define as follows the magnetic matrix

elements hfegjTMjfe0gi with the indices e and e0 carried
by the time legs of the A tensors located on time links:

hfe0gjTMjfegi ¼ Tr
Y
space l

AðlÞ
m1;…;m2ðD−1Þ ðe;e0Þ

Y
sp-sppl

BðplÞ: ð304Þ

The traces are taken over the spatial legs of the tensors, while
the time legs are left open and carry the indices e and e0. The
magnetic layer is illustrated in Fig. 44.
We define the transfer matrix T as

T ≡ ½e−βplI0ðβplÞ�ðV=NτÞDðD−1Þ=2½e−βl I0ðβlÞ�ðV=NτÞD

× T1=2
E TMT

1=2
E ; ð305Þ

with Nτ the number of sites in the temporal direction.
Proceeding as with the spin model (Fradkin and Susskind,

1978; Kogut, 1979), we define

βτ pl ¼
1

aτg2pl
; βτl ¼

1

aτg2l
ð306Þ

FIG. 44. Magnetic layer of the transfer matrix for D ¼ 3
in a time slice (top graphic) and when viewed from above
(bottom graphic).

FIG. 43. Electric layer of the transfer matrix for D ¼ 3 between
two time slices (top graphic) and when viewed from above
(bottom graphic).
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for the couplings related to the time direction and

βs pl ¼ aτJpl; βsl ¼ aτhl ð307Þ

for the spatial couplings. We then obtain (Unmuth-Yockey,
2017; Meurice, 2020a)

Ĥ ¼ 1
2
g2pl

X
x;j

ðêx;jÞ2 þ 1
2
g2l
X
x

�X
j

ðêx;j − êx−ĵ;jÞ
�

2

− hl
X
x;j

ðÛx;j þ H:c:Þ − Jpl
X
x;j<k

ðÛx;jÛxþĵ;kÛ
†
xþk̂;j

Û†
x;k

þ H:c:Þ: ð308Þ

Notice that for the compact Abelian Higgs model the matter
fields can absorb nonzero values in Eq. (174) (Gauss’s law).
However, in the limit where the link couplings are set to zero,
we recover the pure gauge Uð1Þmodel where the A tensors for
time links enforce Gauss’s law. In Eq. (308), if the couplings
hl and gl are set to zero, we recover the Hamiltonian for Uð1Þ
gauge theory in the Kogut-Susskind form.
Thus far everything we have done has been manifestly

gauge invariant because the tensors resulted from a complete
integration over the gauge fields. The partition function
remains unchanged if we use a temporal gauge (Meurice,
2020a). If we gauge away the gauge fields on a time link
instead of integrating over them, we lose the Gauss’s law
enforcement associated with that time link. However, the
discrete Maxwell equations of Sec. IX.A.1 imply that if
Gauss’s law is satisfied on one electric layer, then it is also
satisfied on all the other layers. With open boundary con-
ditions in time, Gauss’s law is trivially satisfied on the first and
last layers. With periodic boundary conditions, we cannot
gauge away the Polyakov loops, and we need to keep the
integration over the temporal links for one layer. This is
sufficient to enforce Gauss’s law in that layer, and conse-
quently everywhere.
If we prepare an initial state that satisfies Gauss’s law, the

exact time evolution will preserve this property. However, in
the NISQ era various types of errors can introduce Gauss’s law
violations. For this reason, it has been argued (Unmuth-
Yockey, 2019; Bender and Zohar, 2020; Kaplan and Stryker,
2020; Meurice, 2020a; Unmuth-Yockey, 2020) that it would
be desirable to find a parametrization of Hilbert space where
Gauss’s law is automatically satisfied. One possibility dis-
cussed in Sec. XII.D is to use the unconstrained variables
introduced in Sec. IX.A.2. A simple solution (Meurice, 2020a)
for the Hilbert spaceHG introduced in Eq. (301) is to write ex;i
as the discrete divergence of the antisymmetric tensors. For
D ¼ 3, we need only one field instead of two and obtain an
optimal representation similar to that proposed by Unmuth-
Yockey (2019) and Kaplan and Stryker (2020),

ex;1 ¼ −cx þ cx−2̂;

ex;2 ¼ þcx − cx−1̂. ð309Þ

ForD ¼ 4, we can write the electric field as the curl of a three-
component vector (Meurice, 2020a). As this new vector is
defined up to a gradient, we can attempt to use this freedom to

remove, say, the first component. This would provide an
expression of the form

ex;1 ¼ −cx;3 þ cx−2̂;3 þ cx;2 − cx−3̂;2;

ex;2 ¼ þcx;3 − cx−1̂;3;

ex;3 ¼ −cx;2 þ cx−1̂;2: ð310Þ

However, the global implementation depends on the boundary
conditions (Meurice, 2020a). A more recent discussion of
Gauss’s law for PBC and OBC was given by Bender and
Zohar (2020). In summary, it is possible to enforce Gauss’s
law with no unphysical degrees of freedom that would waste
computational resources. This can be done in any dimension
and is better understood using the dual formulation discussed
in Sec. XII.D.

D. Duality revisited and Gauss’s law

The passage to the unconstrained variables discussed in the
Lagrangian formalism (Sec. IX.A.2) solves Gauss’s law in
D ¼ 3 and removes any gauge freedom from the model. In the
continuous-time limit, when the transfer matrix is close to the
identity and one can identify a Hamiltonian, there is no
residual gauge freedom, and in fact the model is recast as a
spin model.
In D ¼ 4, the unconstrained variables that solve the

divergenceless constraint in Abelian models are left with a
redundancy themselves. That is, there is a local operation that
leaves the new Hamiltonian unchanged, so the question of
physical states remains. This arises from,

mx;μν ¼ ϵμνρσΔρCx�;σ; ð311Þ

which introduces a new “gauge field” on the links of the
dual lattice. The field-strength tensor for this gauge field
possesses a redundancy similar to that of the original
field; i.e., Cx;μ → C0

x;μ ¼ Cx;μ þ Δμϕx leaves the quantum
Hamiltonian unchanged. In the electric basis (the Lz basis)
this symmetry is manifested in an operator that raises and
lowers all angular momentum numbers around a site by 1,
Gx ¼

Q
4
μ¼1 U

þ
x;μU−

x−μ̂;μ. This operator commutes with the
Hamiltonian. This identifies physical states as those that do
not differ from others by arbitrary applications of Gx.

E. Quantum simulation of the Abelian Higgs model
with cold atoms

There are a few concrete proposals for how to simulate
the Abelian Higgs model using cold atoms trapped in an
optical lattice. These methods either make use of the similarity
between multispecies Bose-Hubbard models and the Abelian
Higgs model or create an effective model only in terms of
gauge degrees of freedom and construct the local Hilbert space
of the model directly as a physical dimension and include
operators for the new dimension.
Bazavov et al. (2015) proposed a two-species Bose-

Hubbard model to simulate the Abelian Higgs model in a
limit of infinite Higgs mass in 1þ 1 dimensions. They used
the Fourier expansion for the Abelian fields and rewrote the
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model in terms of discrete variables. The matter degrees of
freedom were then integrated out, creating an effective theory
only in terms of the discrete gauge-field degrees of freedom.
Finally, they made use of the mapping between Schwinger
bosons and SUð2Þ angular momentum operators to write the
model in terms of bosonic creation-annihilation operators and
number operators whose form matches that of a two-species
Bose-Hubbard model. They compared the energy spectra
between the original model and the Bose-Hubbard system
and found good agreement.
González-Cuadra, Zohar, and Cirac (2017) proposed another

multispecies Bose-Hubbard model to simulate the Abelian
Higgs model in 2þ 1 dimensions. They used a six-species
Bose-Hubbard Hamiltonian and again found a mapping
between their electric field and parallel transport operators
and bosonic creation-annihilation and number operators. They
created the plaquette interaction as a higher-order, perturbative,
effective correction to the original Hamiltonian and reported on
possible observables that could be seen in the laboratory
experiment.
Zhang et al. (2018) took a different approach than the

previous two researcher groups. Instead of attempting to capture
the local Hilbert space with one from a composite multispecies
Bose-Hubbardmodel, the discrete angularmomentumquantum
numbers associated with the electric field numbers are repre-
sented as new physical locations on a higher-dimensional
lattice. For the (1þ 1)-dimensional Abelian Higgs model, a
ladder is constructed where one of the lattice directions
represents the spatial dimension and the other direction, the
rungs of the ladder, represents the different possible angular
momentum states. There is thenmuch freedom regardingwhich
atomic species to populate the lattice with. Zhang et al. (2018)
used a dressed Rydberg potential to describe the two-body
interactions. They proposed measuring the Polyakov loop and
gave a prescription for how to do it. A figure of the lattice setup
in the case of a five-state truncation is shown in Fig. 45.

F. Algebraic aspects of the Hamiltonian formulation

As practical implementations require a finite number of
states, we now discuss the effect of a truncation on the algebra
defined by Eqs. (299) and (300). By truncation, we mean that
there is an nmax for which

Ûjnmaxi ¼ 0; ðÛÞ†j − nmaxi ¼ 0: ð312Þ

These modifications contradict Eq. (300) since if Û and Û†

commute, we can apply Û† to the first of Eqs. (312) and obtain
the result that Ûjnmax − 1i is also zero, etc. If we consider the
commutation relations with the restriction (312), we see that
the only changes are

hnmaxj½Û; Û†�jnmaxi ¼ 1;

h−nmaxj½Û; Û†�j − nmaxi ¼ −1; ð313Þ

instead of 0. The important point is that the truncation does not
affect the basic expression of the symmetry in Eq. (300). It
affects only matrix elements involving the Û operators, and
not in a way that contradicts charge conservation. For a related
discussion of the algebra for the Oð3Þ model, see Bruckmann,
Jansen, and Kühn (2019).
Other deformations of the original Hamiltonian algebra

defined by Eqs. (299) and (300) appear in the quantum
link formulation of lattice gauge theories (Brower,
Chandrasekharan, and Wiese, 1999). In this approach, one
picks a representation of the SUð2Þ algebra and replace
Û with the raising operator Sþ. Equation (312) is then satisfied
if the dimension of the representation is 2nmax þ 1, but
Eq. (300) becomes

½Ŝþ; Ŝ−� ¼ 2Ŝz: ð314Þ

Finally, we comment upon algebraic aspects of the
Gaussian quadrature discussed in Sec. X.B. This numerical
integration method averages over a finite number of sampling
points which are the zeros of a Hermite polynomial of
sufficiently large order nmax þ 1. This can be related to a
truncation of the standard harmonic oscillator algebra in the
following way. If we use the standard raising and lowering
operators on energy eigenstates jni to calculate hxjx̂jni, we
recover the Hermite polynomial recursion formula. These
relations still hold for the zeros of Hnmaxþ1 until we reach the
level nmax. Iterating one more time provides a relation
equivalent to

â†jnmaxi ¼ 0: ð315Þ

The modified commutation relation becomes

½â; â†� ¼ 1 − ðnmax þ 1Þjnmaxihnmaxj: ð316Þ

A better algebraic understanding of the results of Sec. X.B
would certainly be of great interest.

G. Additional topics and references

In Sec. IV.C tensor network studies of the Hamiltonian
formalism in 1þ 1 dimensions were reviewed. For 2þ 1 and
3þ 1 dimensions in the Hamiltonian formalism, there are
relevant studies using projected entangled pair states and
tree-tensor networks. Felser et al. (2020) considered (2þ 1)-
dimensional electrodynamics at finite density. Electrody-
namics in 3þ 1 dimensions, again at finite density, was
studied using tree-tensor networks by Magnifico et al.
(2021). Conversely, Z3 gauge theory was studied using

FIG. 45. Ladder setup in an optical lattice for the Abelian Higgs
model in 1þ 1 dimensions. Each vertical rung is a single spatial
site and contains only a single atom, whose location along the
rung indicates the angular momentum quantum number there.
The nearest-neighbor interaction is mapped to the dressed
Rydberg potential V between atoms. From Zhang et al., 2018.
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PEPSs by Robaina, Bañuls, and Cirac (2021), and Abelian
Uð1Þ and non-Abelian SUð2Þ gauge theories were considered
by Zohar et al. (2015, 2016). An entanglement renormaliza-
tion group approach to (2þ 1)- and (3þ 1)-dimensional
gauge theories was explored by Tagliacozzo and Vidal
(2011). In the Hamiltonian formalism, the idea of a hybrid
algorithm between tensor networks and the Monte Carlo
method was discussed by Zohar and Cirac (2018a) and
Emonts et al. (2020). Expansions in representations of
continuous groups (Tagliacozzo, Celi, and Lewenstein,
2014; Zohar and Burrello, 2015) leading to figures related
to Figs. 43 and 44 can be found in the tensor network
literature. For recent work on SUð3Þ, see Ciavarella, Klco, and
Savage (2021).
An examination of the entanglement area law and how it

appears in PEPS constructions, as well as the relationship
between PEPSs and thermal states of local spin systems, was
carried out by Verstraete et al. (2006). The inherent redun-
dancy in a PEPS construction and its relationship to symmetry
was discussed by Molnar et al. (2018). Furthermore, gauging
a PEPS with a global symmetry to construct a PEPS with a
local symmetry was studied by Haegeman et al. (2015) and
Zohar and Burrello (2016).

XIII. ADDITIONAL ASPECTS

A. Symmetries and truncations

As explained in the Introduction, the implementation of
field theory calculations with quantum computers requires
discretizations and truncations of the problems considered.
As symmetries play a crucial role in most of these calcu-
lations, we need to understand the effects of discretization on
the realization of the original symmetries. The effects of the
discretization of spacetime are well understood and the
remaining discrete symmetries (discrete translations and
rotations) are used consistently by lattice practitioners. On
the other hand, the fate of internal continuous symmetries in
reformulations involving discrete character expansions and
truncations is a more complicated question. We report here
recent progress on this question that has a great deal of
generality and applies to global, local, continuous, and
discrete symmetries (Meurice, 2019, 2020a).
We consider generic symmetries for a generic lattice model

with action S½Φ�, where Φ denotes a field configuration of
fields ϕl attached to locations l that can be sites, links, or
higher-dimensional objects. The partition function reads

Z ¼
Z

DΦe−S½Φ�; ð317Þ

with DΦ the measure of integration over the fields. We define
expectation values of a function of the fields f as

hfðΦÞi ¼ 1

Z

Z
DΦfðΦÞe−S½Φ�: ð318Þ

A symmetry is defined as a field transformation

ϕl → ϕ0
l ¼ ϕl þ δϕl ð319Þ

such that the action and the integration measure are preserved.
These invariances imply that

hfðΦÞi ¼ hfðΦþ δΦÞi: ð320Þ

If the action is not exactly invariant, expðδSÞ is inserted in the
expectation value on the right-hand side of the equation.
The Oð2Þ model discussed in Sec. VII.A is invariant under

the global shift

φ0
x ¼ φx þ α: ð321Þ

Assuming that the function f is 2π periodic in itsM variables,
we expand in Fourier modes and, after using Eq. (320), obtain
the following:

If
XM
i¼1

ni ≠ 0; then heiðn1φx1
þ���þnMφxM

Þi ¼ 0: ð322Þ

This global selection rule can be explained (Meurice, 2019)
in terms of the selection rule of the microscopic tensors at each
site given in Eq. (126). It is a divergenceless condition that can
be interpreted as a discrete version of Noether’s theorem. If
we enclose a site x in a small (compared to the lattice spacing)
D-dimensional cube, the sum of indices corresponding to
positive directions (nx;out) is the same as the sum of indices
corresponding to negative directions (nx;in). For instance, in
two dimensions the sum of the left and bottom indices equals
the sum of the right and top indices. By assembling such
elementary objects (tracing over indices corresponding to their
interface), we can construct an arbitrary domain. Each tracing
automatically cancels an in index with an out index and,
consequently, at the boundary of the domain the sum of the in
indices remains the same as the sum of the out indices. This
discrete version of Gauss’s theorem is illustrated for D ¼ 2 in
Fig. 46. We can pursue this process until we reach the
boundary. For PBCs the in and out cancel, and for OBCs
all the indices at the boundary are zero. In both cases, the
system is “isolated,” in the sense that no flux escapes to or
comes from the environment. If we now remove one site from
the entire domain, the pointwise conservation inside the rest
of the domain implies that the indices connecting to the mis-
sing site satisfy the divergenceless condition independently.

FIG. 46. Example of flux cancellations in D ¼ 2. The total flux
in and out of the upside-down L-shaped domain is þ1.
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This has a simple interpretation in terms of global symmetry
of the model (Meurice, 2020a). We can use the symmetry to
fix the value of ϕ at the missing site instead of integrating over
the possible values because, as just explained, the divergence-
less condition resulting from this integration is redundant.
We can now understand the global selection rule of

Eq. (322). The insertion of various einQφx is equivalent to
inserting an impure tensor which differs from the pure
tensor by the Kronecker symbol replacement δnx;out;nx;in →
δnx;out;nx;inþnQ . Proceeding as before for PBCs or OBCs, this
implies that the sum of the charges should be zero.
To summarize, the global selection rule is a consequence of

the selection rule at each site that is the Kronecker delta in the
expression of the tensors. It is independent of the particular
values taken by the tensors (like Bessel functions). Thus, if we
set some of the tensor elements to zero, as we do in a
truncation, this does not affect the global selection rule and
truncations are compatible with symmetries (Meurice, 2019).
The reasoning can be extended to local symmetries

(Meurice, 2020a). For the CAHM, the divergenceless con-
dition for the nx;μ is redundant with the selection rule coming
from the integration over the gauge fields, as expressed in
Eq. (187). This means that we can eliminate the φ field with
the unitary gauge. It was shown (Meurice, 2019) that in the
pure gauge limit the set of equations (169) are not indepen-
dent. If we pick a site, we can construct an in-out partition for
the legs attached to links coming out of this site. The sum of in
indices is the same as the sum of the out indices, and if we
assemble them on the boundary of a D-dimensional cube, one
of the divergenceless conditions follows from the other
2D − 1 conditions. This is illustrated for D ¼ 2 in Fig. 47,
where three of the delta functions on the A tensors attached to
the links imply the fourth one.
The redundancy argument extends to discrete Zq subgroups

of Uð1Þ, where the divergenceless condition is expressed
modulo q and the infinite set of Bessel functions are replaced
by the q discrete ones. We conclude that Noether’s theorem
can be expressed in the tensor formulation context in this way:
for each symmetry, there is a corresponding tensor redun-
dancy. This applies to global, local, continuous, and discrete
Abelian symmetries (Meurice, 2020a).

B. Topological considerations

In classical field theory, the boundary conditions play an
important role in the investigation of topological solutions. As
a simple example, if an angle variable φ satisfies the Laplace
equation inD ¼ 1, then PBCs allow the existence of solutions
with any winding number. On the other hand, for arbitrary
Dirichlet boundary conditions, the concept of winding number
is not applicable because the one-dimensional interval does
not have the topology of a circle.
In the D ¼ 1 Oð2Þ model, we observe features that are

reminiscent of this observation. For PBCs, we can assemble
the following tensors with any index n:

Tnn0 ¼ δnn0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
InðβÞIn0 ðβÞ

p
ð323Þ

and

ZPBC ¼ Tr½TNτ � ¼
X∞
n¼−∞

InðβÞNτ : ð324Þ

On the other hand, for OBCs we have a zero index at the
ends and

ZOBC ¼ I0ðβÞNτ−1: ð325Þ

It is often believed that the contributions for various n in ZPBC
correspond to the topological sectors of the classical equations
of motion that become Laplace’s equation in the continuum
limit (so for large β). This is not correct because the InðβÞ
differ from I0 by corrections of −n2=ð2βÞ, as shown in
Eq. (128), while in the semiclassical solution one expects
suppression of the form expð−βn2CÞ for some calculable
constant C. However, the two types of behaviors are swapped
after the Poisson summation

X∞
l¼−∞

e−B=2l
2 ¼

ffiffiffiffiffi
2π

B

r X∞
n¼−∞

e½−ð2πÞ2=2B�n2 . ð326Þ

A detailed analysis of the classical solutions (Meurice, 2020a)
showed that B ¼ βð2πÞ2=Nτ, and that summations over the
winding numbers using Poisson summation and the calcu-
lation of the quadratic fluctuations precisely reproduce the
leading behavior of Eq. (324) in the large-β limit. Similar
observations were made by Akerlund and Forcrand (2015) for
a version of the Oð2Þmodel where the fluctuations are limited.
Similar results were obtained for the D ¼ 2 pure gauge

Uð1Þ model. In these calculations, the possibility of fixing the
values of variables that lead to redundant selection rules to
arbitrary values (as discussed in Sec. XIII.A) removes the zero
modes from the quadratic fluctuation calculations. Note also
that it is possible to construct models where the large-β
approximations are exact. Questions pertaining to topological
configurations and duality were discussed for Abelian gauge
models of this type in various dimensions by Banks, Myerson,
and Kogut (1977), Savit (1977), Gattringer, Goschl, and
Marchis (2018), and Sulejmanpasic and Gattringer (2019).

FIG. 47. Illustration of the fact that one divergenceless condition
is redundant for D ¼ 2.
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C. Quantum gravity

Tensor networks have also found use in the study of quantum
gravity. One of the directions where tensor networks have
appeared is in the “spin-foam” formulation of quantum gravity
(Perez, 2013).Dittrich,Mizera, andSteinhaus (2016) developed
a tensor network formulation along with a coarse-graining
schemewhere the intentionwas to use it on a spin-foampartition
function, although it is applicable in other situations. The
algorithm was sketched out, and some numerical results for
the two- and three-dimensional Ising models were presented.
Asaduzzaman, Catterall, and Unmuth-Yockey (2020) started
with the partition function for two-dimensional gravity, where
the gauge symmetry was extended to unify the tetrad and spin-
connection variables into a single connection. They presented a
tensor formulation and studied the zeros of the partition function
(Fisher’s zeros) in the complex-coupling plane.

XIV. CONCLUSIONS

In summary, TLFT provides new ways to approach models
studied by lattice gauge theorists. For models with compact
field variables, character expansions and orthogonality rela-
tions provide ways to calculate the difficult integrals exactly
and replace them with discrete sums. For continuous field
variables, the sums are infinite and need to be truncated for
practical implementations. These truncations preserve global
and local symmetries.
We showed that, by combining tensor blocking and trunca-

tions, we can obtain coarse-grained versions of the original
model where the new “effective” tensors are assembled in the
samewayas theoriginal tensorswhile different values are taken.
The TRG flows in the space of tensors replace the RG flows in
the space of effective interactions. The effective tensors remain
local in the coarse-grained system of coordinates. When the
Euclidean action is real, TRG calculations can be compared
with accurate results obtained using importance sampling in the
original Lagrangian formulation. Tensor sampling could also be
conducted by generalizations of the worm algorithm. TRG
calculations can be extended to the case of complex actions and
evade sign problems.
Note that if a reasonable control of the truncations can be

reached for values of Dcut that are achievable with current
computers, the computation cost scales logarithmically with
the volume of the system, which is exceptionally efficient. The
scaling of the cost with the dimension can be seen as an
obstacle; however, recent progress in three and four dimen-
sions provides an optimistic outlook.
The continuum limits of lattice models can be constructed

in the vicinity of RG fixed points. Universal quantities such as
the critical exponents can be extracted by linearizing the RG
transformation near the fixed point. The naive approach for
this program has to be amended due to the existence of
unphysical fixed points. This requires a detailed understand-
ing of the UV and IR entanglement.
TLFT allows for the construction of transfer matrices and

smoothly connects the classical Lagrangian approach at
Euclidean time to the Hamiltonian approach. The discreteness
of the reformulation combined with truncations provides
approximate Hamiltonians that are suitable for quantum

simulation experiments and quantum computations. TLFT
is a natural tool for designing quantum circuits. In the NISQ
era, benchmarking is crucial for assessing the progress in this
direction. Hybrid formalisms combining real and imaginary
time can be accommodated easily by TLFT and may play an
important role in the near future.
The TLFT program is making good progress toward the

long-term goal of performing QCD calculations. We expect
that it will play an important role in developing practical
methods to approach nuclear matter, jet physics, and frag-
mentation. Active collaborations between the lattice gauge
theory and condensed matter communities seem essential to
achieving these goals and will hopefully provide benefits in
both areas.
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APPENDIX: REVIEW OF MATHEMATICAL RESULTS

1. Character expansions

One of the most important relations that we use in this
review is the change of basis called the character expansion. In
the cases considered here, this relates a compact variable
(discrete and bounded or continuous and bounded) to their
Pontryagin dual. The relevant relation can be written as

fðxαÞ ¼
X
kα

λkα χ
kαðxαÞ: ðA1Þ

InEq. (A1) xα is the compact variable under consideration (it can
be a matrix or a spin, for example), and f is a “class function,” a
function that depends only on the trace of the compact variables.
kα is the dual variable, which takes on the values of the
irreducible representations of the group to which xα belongs.
Finally, χkα are the characters of the group, which are complete
and orthogonal. In practice, we use the following,

eβσ ¼
X1
n¼0

λnðβÞσn; ðA2Þ

eβ cos θ ¼
X∞
n¼−∞

InðβÞeinθ; ðA3Þ
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eβTr½U� ¼
X∞
r¼0

FrðβÞχrðUÞ; ðA4Þ

for the groupsZ2, Uð1Þ, and SUð2Þ, where λn, In, andFr are the
expansion coefficients and σn, einθ, and χrðUÞ are the characters
of the respective groups. For Z2 the expansion coefficients are
given by λ0 ¼ cosh β and λ1 ¼ sinh β. For Uð1Þ the coefficients
are given by the modified Bessel functions. For SUð2Þ the
coefficients are given by (Itzykson and Drouffe, 1991)

FrðβÞ ¼ I2rðβÞ − I2rþ2ðβÞ; ðA5Þ

where In is again the modified Bessel function of the order of n.

2. Orthogonality and completeness

As previously mentioned, the expansions in Eq. (A2) are
examples of the completeness and orthogonality of the
characters. In each of those cases we have

1

2

X
σ

σnσm ¼ δð2Þn;m; ðA6Þ

Z
π

−π

dθ
2π

einθe−imθ ¼ δn;m; ðA7Þ

Z
dUχrðUÞχr0 ðUÞ ¼ ð2rþ 1Þ−1δr;r0 ; ðA8Þ

where δð2Þ is a Kronecker delta with the equivalency taken
modulo 2.We also use the following orthogonality of thematrix
representations of group elements under the Haar measure:

Z
dUDr

mnðUÞD�r0
m0n0 ðUÞ ¼ ð2rþ 1Þ−1δr;r0δm;m0δn;n0 ; ðA9Þ

with the asterisk indicating complex conjugation without trans-
position. TheDmatrices are related to the characters through the
trace χrðUÞ ¼ Tr½DrðUÞ�.
On the other hand, these characters obey a completeness

relation. This is given by the sum over the representations
rather than the original group variables,

1

2

X1
n¼0

σnσ0n ¼ δσ;σ0 ; ðA10Þ

X∞
n¼−∞

einðθ−θ0Þ ¼ δðθ − θ0Þ; ðA11Þ

X∞
r¼0

ð2rþ 1ÞTr½DrðUÞDr†ðU0Þ� ¼ δðU;U0Þ; ðA12Þ

X∞
r¼0

ð2rþ 1ÞχrðUU0−1Þ ¼ δðU;U0Þ: ðA13Þ

3. Singular value decomposition

The SVD plays a central role in many different parts of this
review, and when dealing with compact variables it is
completely determined by the character expansion. Here we
give a bare working knowledge of how it will be used. One of
the basic ideas is to regard Boltzmann factors fðxα; xβÞ, which
appear in the partition function, as K × K matrices when xα
and xβ take K values, and with that interpretation perform the
following SVD:

fðxα; xβÞ ¼
XK
j¼1

UxαjλjV
†
jxβ
; ðA14Þ

where fλg are the singular values that are assumed to be in
descending order (λ1 ≥ λ2 ≥ � � � ≥ λK ≥ 0) and U and V are
unitary matrices. This decomposition can be done for any
matrix, and they need not immediately have the interpretation
of a Boltzmann factor.
When the xα can be identified with the elements of an

additive group and if the matrix elements depend only on
xα − xβ, the U and V matrices are square matrices that can be
expressed in terms of the characters discussed in Sec. III.D.
For the Zq group, we have K ¼ q,

Uxαj ¼ exp

�
i
2π

q
jxα

�
ðA15Þ

and

Vxβj ¼ exp

�
i
2π

q
jxβ

�
: ðA16Þ

Another case that occurs often is to use the SVD to split a
higher-dimensional array in two. Consider a generic tensor
Aijkl with dimensions ðDcut; Dcut; Dcut; DcutÞ. Suppose that
one wanted to somehow factorize this tensor into two smaller
rank tensors, one with indices i and j, and the other with
indices k and l. One can then do the following:

Aijkl → Aði⊗jÞðk⊗lÞ ðA17Þ

¼ AIJ ¼
XD2

cut

M;M0¼1

UIMλMδMM0V†
M0J ðA18Þ

¼
XD2

cut

M¼1

ðUIM

ffiffiffi
λ

p
MÞð

ffiffiffi
λ

p
MV

†
MJÞ ðA19Þ

¼
XD2

cut

M¼1

BijMCMkl; ðA20Þ

which is the split that we were looking for. This allows any
tensor to be split exactly into smaller rank tensors, with the
sum over intermediate states as the price.
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