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The Monte Carlo evaluation of path integrals is one of a few general purpose methods to
approach strongly coupled systems. It is used in all branches of physics, from QCD and
nuclear physics to the correlated electron systems. However, many systems of great importance
(dense matter inside neutron stars, the repulsive Hubbard model away from half filling, and dynamical
and nonequilibrium observables) are not amenable to the Monte Carlo method as it currently stands
due to the so-called sign problem. A new set of ideas recently developed to tackle the sign problem
based on the complexification of field space and the Picard-Lefshetz theory accompanying it is
reviewed. The mathematical ideas underpinning this approach, as well as the algorithms developed
thus far, are described together with nontrivial examples where the method has already been proved
successful. Directions of future work, including the burgeoning use of machine learning techniques,
are delineated.
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I. THE SIGN PROBLEM

Monte Carlo methods have been used with great success to
study problems ranging from classical systems of particles to
studies of hadrons using lattice quantum chromodynamics.
The usual setup is to formulate the problem (classical or
quantum) in a way analogous to a classical statistical system.
Observables are then given by multidimensional integrals
involving a Boltzmann factor that is computed numerically by
importance sampling. There are, however, important systems
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that cannot yet be solved using standard Monte Carlo meth-
ods. These are the systems either where the statistical weights
become complex or where the signs oscillate. Roughly
speaking, we say that the system suffers from a sign problem
when the phase fluctuations increase as the size of the system
is increased. These fluctuations lead to delicate cancellations
that preclude a stochastic evaluation of the integral. This
occurs in the study of neutron matter found in neutron stars,
the repulsive Hubbard model away from half filling, and all
field theoretical–many-body observables in real time. Solving
the sign problem is of central importance in many fields of
physics, and a number of approaches have been proposed to
either solve or alleviate this problem. Some are more generic
and some are problem specific, but in spite of this progress
important questions about the physics of the previously
mentioned system remain unanswered.
In this review we focus on a novel set of related methods

relying on the analytical properties of the configuration
weights. The fundamental idea is to express the partition
sum as an integral over real degrees of freedom and to
complexify each variable. The partition sum is originally
an integral over the real manifold in this enlarged configu-
ration space; however, as we later discuss, we can deform the
multidimensional integration contour (without changing the
value of the partition function) to a manifold that has better
numerical properties. In particular, the phase fluctuations are
either eliminated or significantly reduced. We describe in the
review the geometry of the complex field space, its critical
points, and the algorithms used to both find suitable manifolds
and integrate over them. All of these steps are exemplified in
simple field theories, usually in a lower number of dimen-
sions, that contain, however, all the properties of the theories
of physical interest.

A. Field theory–many-body physics as a path integral

The expectation value of any observable O in field theory
can be calculated using the path integral1

hOi ¼ 1

Z

Z
Dϕe−SEðϕÞOðϕÞ; Z ¼

Z
Dϕe−SEðϕÞ: ð1:1Þ

In Eq. (1.1) ϕ is the generic name of the fields in the
theory and SE is the Euclidean (imaginary-time) action
evaluated over a Euclidean “time” β that is equal to
the inverse temperature of the system.2 The path integral in
Eq. (1.1) is an integral over an infinite-dimensional space. To
evaluate it numerically (and to properly define it), we consider
a discretized version where spacetime is replaced by a finite
lattice. After discretization, the path integral becomes a finite-
dimensional integral, albeit one over a large number of
dimensions, proportional to the number of spacetime points
composing the lattice. This is equivalent to a classical

statistical mechanics problem in four spatial dimensions,
where the state of the system is described by the field ϕ
defined on the entire four-dimensional grid, and the proba-
bility of each state is controlled by the Boltzmann factor
exp½−SEðϕÞ�. Using Monte Carlo methods, a set of n
configurations fϕð1Þ;…;ϕðnÞg is generated with the proba-
bility distribution exp½−SEðϕÞ�=Z. The observables and their
errors are then estimated using

hOi¼ 1

n

X
a

OðϕðaÞÞ; ϵO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nðn−1Þ
X
a

½OðϕðaÞÞ− hOi�2
s

:

ð1:2Þ

Numerous algorithms have been developed to obtain con-
figurations ϕðaÞ distributed according to e−SE½ϕ� in an efficient
way. The cost of the sampling process increases with a
moderate power of the spacetime volume V (between 1 and
3), despite the fact that the Hilbert space dimension of the
corresponding quantum system grows exponentially with the
space volume. This is the advantage of Monte Carlo methods
over direct diagonalization procedures.

B. Physical systems with sign problems

Many theories of interest in theoretical physics have sign
problems in all currently known formulations. In fact,
systems that cannot be fully understood because a sign
problem hinders the use of Monte Carlo simulations are
pervasive in all subfields of physics (and chemistry). Among
those some have become “holy grails” in their respective
field, problems whose solutions would have a revolutionary
impact.
For instance, in nuclear physics QCD at finite baryon

density has a sign problem. This problem prevents the
understanding from first principles of both neutron stars
and supernovae. Extensive work has been expended on
evading this sign problem; see the reviews by Karsch
(2000), Muroya et al. (2003), Philipsen (2007), de
Forcrand (2010), and Aarts (2016) and references therein.
Quantum Monte Carlo (QMC) studies of nuclei using
“realistic nucleon-nucleon interactions” also suffer from
the sign problem (Koonin, Dean, and Langanke, 1997;
Wiringa et al., 2000; Carlson et al., 2015; Lähde et al.,
2015). The “constrained path algorithm” (Zhang, Carlson,
and Gubernatis, 1995, 1997) is a widely used approximate
method to address these sign problems.3 Lattice field theory
studies of nuclei have similar behavior; sign problems appear
in studies of nuclei with different proton and neutron
numbers, and when repulsive forces become sufficiently
large (Lee, Borasoy, and Schaefer, 2004; Lee, 2009;
Epelbaum et al., 2014; Elhatisari et al., 2017).
Furthermore, lattice and QMC studies of nuclear matter
encountered in astrophysics suffer from the sign problem.
This includes spin polarized neutron matter (Fantoni, Sarsa,

1Similar expressions are obtained for the partition function Z ¼
tre−βH of nonrelativistic quantum systems by discretizing both space
and time, then using the Trotter formula.

2There is no assumption that the theory is relativistic. In fact,
nonrelativistic systems in the second quantized form are frequently
studied within this formalism.

3The constrained path algorithm is a generalization of the “fixed-
node approximation,” a similar approximate technique for avoiding
the sign problem (Anderson, 1975).
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and Schmidt, 2001; Gezerlis, 2011; Gandolfi et al., 2014)4

and lattice effective field theory (EFT) studies of nuclear
matter beyond leading order (Lu et al., 2019a).5

Many cold atom systems, when formulated with lattice or
QMC methods, exhibit sign problems as well. Both spin and
mass imbalanced spin 1=2 fermions have a sign problem
(Braun et al., 2013; Roscher, Braun, and Drut, 2014). This
sign problem makes it prohibitively difficult to conclusively
demonstrate the existence of a number of conjectured phases
[like the Larkin-Ovchinnikov-Fulde-Ferrell phases (Fulde and
Ferrell, 1964; Larkin and Ovchinnikov, 1964] in more than
1þ 1 dimensions. Bosonic nonrelativistic systems exhibit
sign problems as well; this includes bosons under rotation
(Berger, Morrell, and Drut, 2020) and those coupled to spin-
orbit interactions (Attanasio and Drut, 2020). For a review see
Berger et al. (2019).
A wide variety of lattice-supersymmetric models suffer

from a sign problem too; for a review see Schaich (2019). In
particular, first-principles tests of the gauge-gravity duality
conjecture, even in the simplest case of reproducing super-
gravity black hole thermodynamics from D0-brane quantum
mechanics, can claim to be bona fide controlled tests of the
duality only if the phase fluctuations are under control
(Hanada et al., 2011;Berkowitz et al., 2016). Sign problems
are also faced in astrophysics (Morinaga, 2021), radio
astronomy (Feldbrugge, Pen, and Turok, 2019; Jow et al.,
2021), and quantum cosmology (Di Tucci and Lehners, 2019;
Di Tucci et al., 2019; Han et al., 2021; Matsui, 2021).
Sign problems are found in condensed matter physics as

well. A particularly well-known example is the Hubbard
model away from half filling (Hubbard, 1963; White et al.,
1989; Loh et al., 1990), which is thought to model essential
characteristics of high Tc superconductors. Path integral
formulations of fullerene exhibit the sign problem as well
(Ostmeyer et al., 2020). Furthermore, some models of
frustrated magnetism on triangular and kagome lattices, of
interest for their conjectured spin-liquid ground states, exhibit
the sign problem (Sindzingre, Lecheminant, and Lhuillier,
1994; Lacroix, Mendels, and Mila, 2011; Mishchenko, Kato,
and Motome, 2021). As a result, there is uncertainty in the
zero-temperature properties of these models.

C. Reweighting and the sign problem

The standard workaround for sampling complex actions is
to use reweighting. The idea is to split the integrand into a
positive part that is used for Monte Carlo sampling, usually
the absolute value of the integrand, and a fluctuating part that
is included in observables. Using the absolute value as a
sampling weight, we have the following identity:

hOi¼hOe−iImSEðϕÞi0
he−iImSEðϕÞi0

; hOi0¼
Z

Dϕ
e−ReSEðϕÞ

Z0

OðϕÞ; ð1:3Þ

and Z0 ≡ R
Dϕe−ReSEðϕÞ. The idea, then, is to use the phase

quenched action ReSE to sample configurations and take
into account the imaginary part of the action when comput-
ing observables. From a numerical point of view, this
procedure works when the phase fluctuations are mild and
we can estimate the phase average he−iImSEðϕÞi0 with enough
accuracy; this means that the error estimate for this average
should be significantly smaller than its mean. Since the
magnitude of e−iImSEðϕÞ for each configuration is 1, to resolve
the mean accurately we require a number of configurations
n ≫ 1=he−iImSEðϕÞi20. When the average phase is small,
reweighting requires a large number of samples and becomes
impractical. For many systems at finite density, the phase
average goes to zero exponentially fast in the spatial volume
or inverse temperature. This occurs because the phase
average is the ratio of the following two partition functions:

he−iImSEðϕÞi0 ¼
Z
Z0

¼ e−βfV

e−βf0V
¼ e−βVΔf; ð1:4Þ

where Δf ¼ f − f0 > 0 is the difference in the free
energy density between the original system and the phase
quenched system. In this case, the numerical effort grows
exponentially as we increase the volume and/or lower the
temperature. This is what is usually defined as the sign
problem. An even worse problem arises when calculating
real-time correlation functions. In that case, we are interested
in integrals of the form

hOi ¼ 1

Z

Z
Dϕ eiSðϕÞO; ð1:5Þ

where S is the real-time Minkowski space action of the
system.6 Since there is no damping of the magnitude of the
integrand and the value of the field ϕðt;xÞ (for any t and x)
grows, the average phase is strictly zero, even for small sized
systems. A similar argument applies to observables, like
parton distribution functions, that are defined on the light
cone [a detailed account of this problem and a proposal to
use quantum computers to solve it was published recently
(Lamm, Lawrence, and Yamauchi, 2020)].
Note that the existence of a sign problem does not

necessarily preclude numerical study. There are cases where
the sign problem is mild enough that most relevant informa-
tion about the system in the region of interest can be extracted
before the sign fluctuations become an obstacle. For example,
when studying the phase diagram of a simple heavy-dense
quark model for QCD ( discussed later), the end point of the
first order phase transition can be studied via reweighting for
system sizes as large as 1003 even though the model has a sign
problem (Alford et al., 2001). We mention this study to point

4Unpolarized neutron matter, however, can be formulated free of
the sign problem (Chen and Kaplan, 2004; Lee and Schäfer, 2005).

5Wigner SUð4Þ symmetric approximations to pionless EFT have
no phase oscillations and have been profitably used (Wigner, 1937;
Lee, 2007; Lu et al., 2019b). Similarly, gauge theories with
pseudoreal representations, like SUð2Þ and G2, also have no sign
problem at finite density.

6In thermal equilibrium at nonzero temperature, real-time correl-
lators can be computed from path integrals defined in the closed-time
contour in complex time (Schwinger, 1961; Keldysh, 1964); see
Sec. III.D.1.
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out that, from a practical point of view, methods that merely
reduce sign fluctuations, without completely eliminating
them, are also important.

D. The absence of a general solution

It is of theoretical, if not practical, interest to know whether
a generic solution to the sign problem exists. If one takes an
exponentially vanishing average sign in the system size as the
definition of the sign problem, then there are definitely models
in which the sign problem can be solved. For instance, for
many systems it is possible to rewrite the path integral using a
different set of states and obtain an expression free of phase
fluctuations. This was accomplished for the two-component
scalar theory using dual variables (Endres, 2007; Gattringer
and Kloiber, 2013), and by reorganizing the summation over
configurations for the previously mentioned heavy-dense
system (Alford et al., 2001; Alexandru, Bergner et al.,
2018). Similarly, there is a class of fermionic models that,
when formulated in terms of fermion bags (Chandrasekharan
and Wiese, 1999; Alford et al., 2001; Chandrasekharan, 2012,
2013; Huffman and Chandrasekharan, 2014, 2016, 2020;
Hann, Huffman, and Chandrasekharan, 2017; Ayyar,
Chandrasekharan, and Rantaharju, 2018), have strictly pos-
itive Boltzmann weights even though other formulations have
a severe sign problem. For a recent review of sign problem–
free methods in condensed matter physics, see Li and Yao
(2019). As it turns out, however, a solution of this kind is
unlikely to work for all systems.
There is an often-cited, general argument implying that a

generic solution to the sign problem, applicable to all systems,
is extremely unlikely to exist. It relies on the NP ≠ P
conjecture from computational theory. NP decision problems
are problems that can be solved on a nondeterministic Turing
machine in a time that increases only polynomially with the
system size, whereas P problems are the ones that can be
solved in polynomial time in a deterministic way. While no
proof exists, it is widely believed that there are NP problems
that are not P. In connection to this question, an important
subset of NP problems are the NP-hard or NP-complete
problems. If any of these NP-hard problems can be solved
in polynomial time on a classical computer, then all NP
problems can, thus invalidating the conjecture. There are spin
glass–like systems with a sign problem that can be mapped
onto NP-hard problems (Troyer and Wiese, 2005). Using the
previous chain of arguments, a generic solution to the sign
problem that would solve this problem would imply NP ¼ P,
which is considered highly unlikely.

E. A survey of methods to deal with sign problems

As previously mentioned, some of the most physically
interesting models in particle, nuclear, and condensed matter
physics have sign problems. Given the interest in these
problems, it is not surprising that a variety of approaches
have been tried to either solve or circumvent the sign problem.
In this review we focus on Lefschetz thimble inspired
methods, but we now point out some approaches attempted
through the years to understand the phase diagram of QCD
and other relativistic theories.

A first set of methods uses simulations in the parameter
region where the action is real; the result is then extrapolated
to the region of interest. One version of this idea is to rely on
results from imaginary chemical potentials. Monte Carlo
simulations can be used directly either to infer features of
the phase diagram for real chemical potentials or to compute
observables and fit them using a polynomial ansatz or a Padé
approximation and then analytically continue these functions
to real values of μ (de Forcrand and Philipsen, 2002, 2003;
D’Elia and Lombardo, 2003, 2004; Cea, Cosmai, and Papa,
2014; Bellwied et al., 2015; Bonati et al., 2015; Borsanyi
et al., 2020). Another approach is to compute the derivatives
of thermodynamic observables with respect to μ at μ ¼ 0, then
use Taylor expansions to extend these results to μ > 0

(de Forcrand et al., 2000; Miyamura, 2002; Endrodi et al.,
2011; Kaczmarek et al., 2011; Bonati et al., 2018; Bazavov
et al., 2019). Yet another method is to use multiparameter
reweighting by combining simulations from different temper-
atures at μ ¼ 0 to determine the phase transition line and
critical point in QCD (Fodor and Katz, 2002).
Another class of methods attempts to alleviate the sign

problem using a rewriting of the path integral in terms of new
variables. One possibility is to reorganize the sum over the
configurations in subsets that have either only positive sign
contributions to the partition function, thus solving the sign
problem, or a much reduced sign problem (Rossi and Wolff,
1984; Karsch and Mutter, 1989; Chandrasekharan and
Wiese, 1999; Alford et al., 2001; Bloch, Bruckmann, and
Wettig, 2013; Alexandru, Bergner et al., 2018). Another
direction is to reformulate the problem in terms of dual
variables in which the sign problem is absent (Endres, 2007;
Gattringer and Kloiber, 2013). It turns that for QCD the use of
the canonical ensemble partition function (as opposed to the
grand canonical ensemble) makes the sign fluctuations milder,
and it can be used to investigate small enough systems
(Barbour, Davies, and Sabeur, 1988; Hasenfratz and
Toussaint, 1992; Alexandru et al., 2005; Kratochvila and
de Forcrand, 2005; de Forcrand and Kratochvila, 2006; Li
et al., 2010; Alexandru and Wenger, 2011; Li, Alexandru,
and Liu, 2011; Nakamura, 2016). Finally, Fermi bags are
enough to completely eliminate the sign problem in some low-
dimensional models (Chandrasekharan and Wiese, 1999;
Alford et al., 2001; Chandrasekharan, 2012, 2013; Huffman
and Chandrasekharan, 2014, 2016, 2020; Hann, Huffman,
and Chandrasekharan, 2017; Ayyar, Chandrasekharan, and
Rantaharju, 2018). These methods are model dependent and
require insight to be applied in each new class of models.
Recently a proposal based on the density of states method

was explored as a way to alleviate sign fluctuations (Fodor,
Katz, and Schmidt, 2007; Langfeld and Lucini, 2014;
Gattringer andTörek, 2015;Garron andLangfeld, 2016, 2017).
Finally, there is a significant effort to simulate QCD at finite

density using the complex Langevin approach (Klauder, 1983;
Parisi, 1983),7 which is based on the idea of stochastic
quantization (Parisi and Wu, 1981). This method shares with
the thimble methods its starting point: the configuration space

7See Berger et al. (2019) for a review of the complex Langevin
approach.
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of N real degrees of freedom is extended to an N-dimensional
complex one. The important difference is that the complex
Langevin approach sets up a stochastic process that moves
freely in this enlarged space of 2N real degrees of freedom,
whereas the methods that we discuss in this review sample an
N-dimensional manifold. Results show that, while instabilities
are present in complex Langevin QCD simulations, for
heavy quark masses credible results can be obtained for
temperatures above the deconfinement transition. In the
hadronic phase, the simulations become unstable and unre-
liable (Aarts and Stamatescu, 2008; Aarts, 2009; Aarts, Seiler,
and Stamatescu, 2010; Aarts et al., 2011, 2013; Seiler, Sexty,
and Stamatescu, 2013; Sexty, 2014, 2019; Fodor et al., 2015;
Scherzer, Sexty, and Stamatescu, 2020). This approach has
also been applied to condensed matter cold atom systems
(Berger et al., 2019).

II. CAUCHY THEOREM, HOMOLOGY CLASSES, AND
HOLOMORPHIC FLOW

A. Deformation of the domain of integration: A multidimensional
Cauchy theorem

The well-known Cauchy theorem for functions of one
complex variable states that for an analytic function fðzÞ
the integral over a closed loop vanishes as follows:

I
C
fðzÞ ¼ 0: ð2:1Þ

Equation (2.1) can be used to “deform” the contour of
integration from, say, the real line to a different contour on
the complex plane, as long as the initial and final points of the
contours coincide. In many applications the contour starts and/
or ends at a point at infinity and the issue becomes whether
moving these ending points may cross a singularity of fðzÞ at
infinity. For instance, take the integral

Z
dϕe−ϕ

4þϕ ð2:2Þ

over different contours on the complex plane starting or
ending at different points at infinity. Since there are no
singularities at any finite values of z, Cauchy’s theorem
allows us to deform the contour of integration as long as
no singularity “at infinity” is crossed. The integral in Eq. (2.2)
is well defined (it converges) if and only if the initial and final
asymptotic directions of the contour are in the regions A;…; D
shown in Fig. 1. The integral over two different contours
whose ends lie on the same regions have, on account of
Cauchy’s theorem, the same value. For instance, the real line,
contour 1, is equivalent to contour 2 since both start in region
A and end in region B. The integral over contour 3 is not even
well defined as it diverges, while the value for the integral over
contour 4 is different from the value on contour 1 or 2. In fact,
imagine starting from the real line and continuously
deforming it toward contour 4. At some point the integral
will cease to be well defined as its end point leaves region B
and the integral becomes divergent. As the end point enters

region C the integral becomes finite again but acquires a
different value than on the real line.
In fact, there are only three independent classes of

contours (known as “homology classes”) on which the
integral in Eq. (2.2) may be evaluated: those that start in
region A and end in region B, C, or D, denoted A → B,
A → C, and A → D, respectively. Any other contour with
different asymptotic behavior, for instance, B → C, can be
expressed as a linear combination of contours (with integer
coefficients) belonging to one of these three classes.
Cauchy’s theorem guarantees that any contour that lies in
one of these classes can be smoothly deformed to some other
contour in the same class without changing the value of the
integral. In contrast, as previously explained, it cannot be
deformed to a contour that lies in a different class. In short,
all possible domains over which the integral [Eq. (2.2)] is
well defined can be classified as a linear combinations of
three discrete classes of contours. Each class contains a
continuous family of “equivalent” contours that can be
smoothly deformed to one another without changing the
value of the integral. As we later see, the reason that there are
three classes is that the function ϕ4 in the exponent is a
quartic polynomial that in general has three saddle points.
All the previous observations generalize to higher dimen-

sions. Instead of integrals over one-dimensional paths we
consider integrals over N cycles, orientable manifolds with
no boundary with real dimension N immersed in the 2N-
dimensional space. The integral over a cycleM is defined by8Z
M
fðϕÞdϕ1 ∧ � � �∧ dϕN ¼

Z
M
f(ϕðζÞ)det JðζÞdζ1 � � �dζN;

ð2:3Þ

FIG. 1. Several contours of integration for the integral in
Eq. (2.2). Contours 1 (the real line) and 2 produce the same
result. Contour 4 yields a different result, while the integral over
contour 3 is divergent. The gray areas show directions in the
complex plane (“good” regions) where the integrand vanishes fast
enough that the integral converges.

8Readers not familiar with the formalism of differential forms may
take the right-hand side of Eq. (2.3) as the definition of an integral
over N-dimensional manifolds embedded in CN . We use this
definition extensively in this review.
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where ϕi ¼ Φiðζ1;…; ζNÞ is a parametrization of the
N-dimensional manifold M by N real coordinates
ζ1;…; ζN , M is the region of RN used to parametrize M,
and det JðζÞ ¼ ∂ðϕ1;…;ϕNÞ=∂ðζ1;…; ζNÞ is the determinant
of the Jacobian of the parametrization, which is in general a
complex number. ϕ stands for all ϕ1;…;ϕN (the approach is
similar for ζ).
Assume that we have two such cyclesM1 andM2 that can

be smoothly deformed into one another. The space swept by
the deformation will be denoted with B and the two cycles
form the boundary ∂B ¼ M1 −M2, where the minus sign
indicates opposite orientation; see Fig. 2. By Stokes’s theorem
we have

Z
∂B

fðϕÞdϕ1 ∧ � � � ∧ dϕN ¼
Z
B
dfðϕÞ ∧ dϕ1 ∧ � � � ∧ dϕN;

ð2:4Þ

where df ¼ ð∂f=∂ϕiÞdϕi þ ð∂f=∂ϕ̄iÞdϕ̄i (ϕ̄ is the complex
conjugate of ϕ). Since fðϕÞ is assumed to be holomorphic,
we have ∂f=∂ϕ̄i ¼ 0. In the sum ð∂f=∂ϕ1Þdϕ1 þ � � � þ
ð∂f=∂ϕNÞdϕN every term is proportional to one of the terms
in dϕ1 ∧ � � �∧ dϕN , so df∧ dϕ1 ∧ � � �∧ dϕN ¼ 0 since
dϕi ∧ dϕi ¼ 0. We arrive then at

Z
∂B

fðϕÞdϕ1 ∧ � � � ∧ dϕN

¼
Z
M1−M2

f(ΦðζÞ) det JðζÞdζ1 � � � dζN ¼ 0; ð2:5Þ

which is the generalization of the Cauchy theorem that
we are interested in.9 This theorem can be used to deform
the manifold of integration without altering the value
of the integral just as we previously discussed for the one-
dimensional case. In fact, our discussion of contour deforma-
tion readily generalizes to the multidimensional case. For
manifolds approaching infinity along certain directions (in
reality, N-dimensional planes), the integral is convergent
and well defined (“good regions”); for others it is not.
Furthermore, it can be shown, assuming that the integrand
is well behaved in the sense discussed later, that the manifolds

for which the integral converges are separated in discrete
equivalence classes: those with the same asymptotic properties
lead to the same integral. A continuous deformation of
manifolds of integration from one equivalent class to another,
that is, from one good region to another, necessarily goes
through manifolds where the integral diverges. Such defor-
mations are the analog of deformations crossing a “singularity
at infinity” in the one-dimensional case. All this is in close
analogy with the familiar one-dimensional case. A detailed
discussion of the mathematical details was given by
Pham (1983).

B. Holomorphic gradient flow

We are interested in deforming integrals from RN (the real
cycle) to some other N cycle without altering the value of the
integral but while alleviating the sign problem in integrals of
interest in field theory, which are typically of the form

Z
RN

e−SðϕÞOðϕÞ
Y
i

dϕi; ð2:6Þ

where S is the action of the theory and O is some observable.
One way of performing this deformation is with the help of the
holomorphic flow. The holomorphic flow is defined for every
action S by the the following differential equations:

dϕi

dt
¼ ∂S

∂ϕi
: ð2:7Þ

For every point ϕ in RN and a fixed flow time T, the solution
of Eq. (2.7) with the initial condition ϕðt ¼ 0Þ ¼ ζ defines a
point ϕ̃ ¼ F TðζÞ in CN . By flowing all points of RN in this
manner, we obtain the flowed manifold MT ¼ F TðRNÞ.10
The holomorphic flow has the following two important

properties:

d
dt

SR ¼ 1

2

�
dS
dt

þ dS
dt

�
¼ ∂S

∂ϕi

� ∂S
∂ϕi

�
≥ 0; ð2:8Þ

d
dt

SI ¼
1

2i

�
dS
dt

−
dS
dt

�

¼ 1

2i

� ∂S
∂ϕi

� ∂S
∂ϕi

�
−
� ∂S
∂ϕi

� ∂S
∂ϕi

�
¼ 0. ð2:9Þ

That is, the imaginary part SI is constant along the flow, while
the real part of the action SR increases monotonically [which is
why Eq. (2.7) is also called upward flow].11 The fact that SR
increases along the flow means that the integrand vanishes
along asymptotic directions even faster in the flowed manifold
MT than in RN , leading to the convergence of the integral at
all T. By the previously exposed arguments, this means that
MT is equivalent to RN for the purpose of computing the

FIG. 2. Schematic of a multidimensional deformation. The
original domain of integration (M1 ⊂ RN) is deformed to
M2 ⊂ CN . This deformation sweeps out a manifold B ⊂ CN ,
whose boundary is ∂B ¼ −M1 ∪ M2.

9We thank Scott Lawrence for a discussion on this point.

10Other flows to generate manifolds were proposed by Tanizaki,
Nishimura, and Verbaarschot (2017).

11This can also be seen by noting that the holomorphic flow is the
gradient flow of SR and the Hamiltonian flow for the Hamiltonian SI .
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integral; that is, it is in the same homology class as RN , as in
the one-dimensional example explained at the beginning of
this section.

C. Lefschetz thimbles and Picard-Lefschetz theory

Even though MT is equivalent to RN , evaluating the path
integral on MT rather than RN is computationally advanta-
geous in controlling the sign problem. Before we explain why
this occurs, we introduce the necessary mathematical back-
ground (for a different perspective, see Appendix B).
We begin by focusing on the stationary points of the flow,

namely, the critical points of the action ϕc where
∂S=∂ϕijϕc ¼ 0. The Lefschetz thimble T attached to a critical
point ϕc is defined as the set of initial conditions ϕð0Þ ∈ CN

for which the downward flow

dϕi

dt
¼ −

∂S
∂ϕi

ð2:10Þ

asymptotically approaches the critical point. Similarly, the
dual thimble K is the set of all points for which the upward
flow asymptotes to ϕc. For a constructive definition of T , we
begin by linearizing the flow around ϕc as follows:

dϕi

dt
¼ ∂2S

∂ϕi∂ϕj

����
ϕ¼ϕc

ðϕ̄j − ϕ̄c
jÞ; ð2:11Þ

whose solution can be written as

ϕðtÞ − ϕc ¼
XN
a¼1

caρðaÞeλat; ð2:12Þ

where ca are real and ρðaÞ are the solutions to the modified
eigenvector problem [Takagi vectors (Takagi, 1924)]

HijðϕcÞρðaÞj ¼ λaρ̄
ðaÞ
i ; ð2:13Þ

with Hij ≡ ∂2S=∂ϕi∂ϕj. The modified eigenvalues λa can be
chosen to be real, and the eigenvalues and eigenvectors then
come in pairs ðλa; ρðaÞÞ; ð−λa; iρðaÞÞ. The set of N vectors ρðaÞ

that define the directions around a critical point where the flow
moves away from the critical point forms a basis (with real
coefficients) for the tangent space of T at ϕc. Likewise, the set
of N vectors iρðaÞ that define the directions around a critical
point where the flow moves toward the critical point forms a
basis for the tangent space of K at ϕc. These two tangent
spaces together span the tangent space at ϕc in CN . With this
knowledge, in the infinitesimal neighborhood of the critical
point, we can solve for the vanishing cycle vðϵÞ as
SðϕÞ − SðϕcÞ ≈ ziHijzj ¼ ϵ, which is an (N − 1)-dimensional
surface in the tangent space of T . The thimble can be
constructed by taking the vanishing cycle as the initial
condition and flowing upward: T ¼∪0≤T<∞ F T(vðϵÞ) when
ϵ → 0. In other words, we can build the thimble slice by slice
by using the flow. We can further use the fact that the flow
defines a one-to-one map between the initial point and the
flowed point and instead can consider an infinitesimally small

N-dimensional ball B in the tangent plane. B is already a small
portion of the thimble near ϕc. If we take B as the initial
condition, its image under upward flow with T → ∞ is the
thimble: T ¼ F T→∞ðBÞ. This is the main idea behind the
“contraction algorithm,” which is a method to simulate path
integrals on a given thimble; see Sec. III.A.1.
For a concrete illustration of these ideas, see Fig. 3, where

the action is taken to be

SðϕÞ ¼ ϕ2=G − log ½ðp2 þ iμÞ2 þ ðϕþmÞ2�: ð2:14Þ

S can be thought of as a toy model for the action of a fermionic
model coupled to an auxiliary field ϕ after the fermions have
been integrated out. Notice that e−S is a holomorphic function
even though S is not; this is a feature common to theories with
fermions. This theory has three critical points, attached to
which are thimbles and dual thimbles. Only thimbles 1 and 2
contribute to the integral. The real line, evolved by the
holomorphic flow by a time T ¼ 1.0, is shown as the dashed
red line. Notice how it approximates the union of the two
contributing thimbles.
In Sec. II.A we stated that the domain of integration of an

integral of the form of Eq. (2.3) is naturally identified by a set
of equivalence classes of N cycles identified by their asymp-
totic behavior. The thimbles are representatives of these
equivalence classes, with each thimble representing a different
class.12 More concretely, we assume that there are finitely
many critical points ϕc

α indexed by α and ImSðϕc
αÞ ≠ ImSðϕc

βÞ
for α ≠ β.13 Attached to each critical point is a thimble T α and
a dual thimbleKα. As previously explained, different thimbles

FIG. 3. Thimbles (solid blue lines), dual thimbles (dotted yellow
lines), critical points (blue dots), their preimage under the flow
(orange stars), and the flowed real line (dashed red line) for
G ¼ 1.1ei0.05, p ¼ 1, μ ¼ 0.3, and m ¼ i0.1 for the action in
Eq. (2.14). The arrows indicate the direction of the upward flow.

12In this section we consider only those integration domains with
no boundaries. The generalization of thimbles with boundaries were
studied extensively by Delabaere and Howls (2002).

13These assumptions ensure that no two critical points are
connected by flow since the flow conserves the imaginary part of
the action. A situation where two critical points are connected by the
flow is known as the Stokes phenomenon. We discuss Stokes
phenomenon in Sec. III.
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do not intersect with each other (they carry different values of
ImS), and T α intersects with Kβ if and only if α ¼ β. In other
words, hKα; T βi ¼ δαβ, where h·; ·i denotes the intersection
number between two cycles. The intersection occurs at ϕc

α.
Since ReS is bounded from below on a thimble, the inte-
gral (2.3) is guaranteed to be well defined when it is evaluated
on a thimble T α. In fact, the set of all thimbles forms a
complete basis for the space of equivalence classes of “good
domains” (i.e., the homology group), and any domain, say,
M, over which Eq. (2.3) is well defined is equivalent to a
unique linear combination of thimbles (Pham, 1983):

M≡X
α

nαðMÞT α; nαðMÞ ¼ hKα;Mi: ð2:15Þ

In Eq. (2.15) the integer coefficients nα are given by the
number of intersections between M and the dual thimble Kα.
The sign depends on the relative orientations of Kα and M.
Notice that some of the nα may vanish; it is said then that those
thimbles do not contribute to the integral. A simple example of
this is shown in Fig. 3.
Thimbles are the multidimensional generalization of the

concept of “steepest descent” or “stationary phase” contour
from the theory of complex functions of one variable. They are
useful for studying the semiclassical expansion of path
integrals in field theory (Cherman, Dorigoni, and Unsal,
2014; Dunne and Ünsal, 2016) and their asymptotic analysis;
see (Aniceto, Başar, and Schiappa (2019) for a review of the
new developments related to “resurgent transseries.” Thimbles
have also been used in attempts at defining ill-defined path
integrals by defining the relevant partition function as an
integral over one or more thimbles instead of over RN

(Harlow, Maltz, and Witten, 2011; Witten, 2010, 2011).
For our purposes, the relevant property of the thimbles is
that the imaginary part of the action, and consequently the
phase of the integrand of the partition function, is constant on
the thimble. Therefore, instead of evaluating the path integral
on RN where the phase is a rapidly oscillating function,
evaluating it on the equivalent thimble decomposition where
the phase is piecewise constant can provide a significant
practical advantage. This fact by itself, however, is not quite
enough to solve the sign problem. As can be seen from
Eq. (2.3), the phase of the integrand depends also on the phase
of the Jacobian (the “residual phase”). The Jacobian will have
a rapidly oscillating phase if the shape of the manifold of
integration oscillates quickly along real and imaginary direc-
tions. For theories in the semiclassical regime this does not
happen, because the parts of the thimble with significant
statistical weight are close to the critical point. Experience
shows that the residual phase in many strongly coupled
models introduces a mild sign problem (many examples
follow in the review).14

An important question that naturally arises then is as
follows: Which thimble, or combination of thimbles, is
equivalent to RN? We can answer this question by considering

the manifold MT obtained by taking every point of RN as an
initial condition and flowing them by a time T. Since the real
part of the action grows monotonically with T, the integral
remains convergent at all T and, by the previous arguments,
the value of the integral remains the same. Since RN and the
dual thimble of any critical point are N-dimensional spaces,
they will generically intersect at isolated points (if they
intersect at all). If we call each of those points ζc, we have
ϕc ¼ F T→∞ðζcÞ. When one starts from one of these inter-
section points ζc, the flow leads to the critical point on a
trajectory lying on the dual thimble K; see Figs. 3 and 4. The
trajectory starting at points near ζc initially approaches the
critical point but then veers along the unstable directions of
the critical point slowly approaching the thimble; see Fig. 4.
Points inRN far from the intersection points take a more direct
route toward infinity (or some other point where the action
diverges). Therefore, all points in RN flow, at large times, to
points near a set of thimbles that together are equivalent to RN

(or to points where the action diverges). Furthermore, every
thimble is counted as many times as there are intersection
points between the corresponding dual thimble. Consequently,
the thimble decomposition of RN can explicitly be obtained as
the following limit:

MT→∞ ¼
X
α

nαðRNÞT α; ð2:16Þ

where MT¼0 ¼ RN . We stress that even though the thimble
decomposition is obtained as the infinite flow time limit, the
value of the integral remains unchanged during the deforma-
tion and MT is equivalent to RN for any finite value of T:

Z ¼
Z
RN

dϕ e−SðϕÞ ¼
Z
MT

dϕ e−SðϕÞ

¼
X
α

nαðRNÞ
Z
T α

dϕ e−SðϕÞ. ð2:17Þ

Note that, in theories where more than one thimble
contributes to the partition function, there is a possibility that
the contributions from different thimbles come with phases
expð−iImSeffÞ (constant over each separate thimble) that

FIG. 4. The points ζc ∈ RN flow to the critical points ϕc ∈ CN .
The points in the neighborhood of each ζc approach the thimble
but eventually veer off. Two such thimbles T α and T β are shown
for illustrative purposes.

14One can construct examples of extremely strongly coupled
theories where the residual phase introduces a severe sign problem
(Lawrence, 2020).
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induce a sign problem (sometimes called the “global sign
problem”). This kind of sign problem is not helped by
integrating over thimbles. However, for the contributions
from different thimbles to nearly cancel an approximate
symmetry, it is required to relate the contributions of different
thimbles. Monte Carlo methods can be adapted to situations
like that by sampling points related to the symmetry at the
same time.
In field theories, where the dimensionality of the integral is

large, it is extremely difficult to find the thimbles (it is in fact
equivalent to classifying all complex solutions of the equations
of motion), and it is even harder to find their intersection
numbers nα. The previous discussion is useful, however, in
establishing an algorithm to solve this problem numerically
and on the fly during a Monte Carlo run. It also clarifies the
fact that there is nothing special about thimbles, as opposed to
other manifolds obtained from flowing RN by a finite time T.
These other manifolds do not improve the sign problem as
much as the thimbles do but still give the correct result for the
integral and can be advantageous for numerical and algo-
rithmic reasons.

III. ALGORITHMS ON OR NEAR THIMBLES

A. Single thimble methods

Early simulations using complex manifolds focused on
sampling the path integral contribution from the “main”
thimble, the thimble associated with the critical point with
the smallest value of SRðϕcÞ. This was based on the hope that
in the relevant continuum and thermodynamic limits the path
integral would be dominated by the contribution of a single
thimble or that a regularization can be defined for relevant
quantum field theories in terms of a single thimble path
integral (Cristoforetti, Di Renzo, and Scorzato, 2012; Di
Renzo, Singh, and Zambello, 2019). Although there is no
evidence that this conjecture is valid, algorithms to sample a
single thimble are stepping stones toward multithimble
integration. We discuss in this section the algorithms proposed
to sample the integral along a single thimble: the contraction
algorithm, a Metropolis based algorithm (Alexandru, Başar,
and Bedaque, 2015), a hybrid Monte Carlo algorithm (Fujii
et al., 2013), and the Langevin algorithm (Cristoforetti, Di
Renzo, and Scorzato, 2012).
As discussed earlier, finding the thimble decomposition for

the path integral is a hard problem that has been attempted
only for quantum mechanical systems (Fujii, Kamata, and
Kikukawa, 2015). However, in many cases it is feasible to find
the main thimble even for realistic systems using the sym-
metry of the problem. The problem of finding the critical point
is usually reduced to a “gap” equation to be solved analyti-
cally or numerically. For the algorithms discussed in this
section, we assume that we have identified this critical point
and we want to sample configurations on the corresponding
thimble.
Another challenge facing any algorithm for the

Monte Carlo evaluation of integrals over thimbles is to restrict
sampling to the thimble manifold. For most systems there is
no known method that can identify points on the thimble
based on the local behavior of the action. Rather, a point has to

be transported through the reverse flow [Eq. (2.10)] to decide
whether or not it approaches the critical point. The thimble
attached to this point can then be constructed by integrating
the upward flow equations starting in the neighborhood of the
critical point. As the thimble on the neighborhood of the
critical point is approximated by the tangent space spanned by
the Takagi vectors with positive eigenvalues in Eq. (2.13), we
can take points on the tangent plane (close enough to the
critical point) as the initial conditions of the holomorphic flow
equation (2.7) to find points lying on the thimble. This
“backward-and-forward” procedure then allows us to find
points on the thimble near other points on the thimble, as
required by Monte Carlo procedures, at the expense of
integrating the flow equations. This process provides a map
between the N-dimensional neighborhood of the critical point
and the thimble attached to it. It is an essential ingredient for
all single thimble algorithms discussed here. For a given
parametrization of the tangent space near the critical point ϕc,

ϕn ¼ ϕc þ
XN
a¼1

ζaρ
ðaÞ; ζa ∈ R; ð3:1Þ

integrating the upward flow for a time T produces a map
ϕn → ϕf ¼ F TðϕnÞ. In Eq. (3.1) ϕn is a point near ϕc and ϕf

is moved far away by the flow. For large enough T, this will
map a small neighborhood of the critical point onto a manifold
close to the thimble, and the larger the value of T, the closer
the manifold generated by the ϕn → ϕf mapping is to the
thimble. As a practical method of determining an appropriate
value for T, simulations can be carried out for increasing
values of T until the results converge.
Having chosen an appropriate T, we now have the means to

parametrize the thimble using the tangent plane close to the
critical point. We can then approximate the integral over the
thimble as

Z
T
dϕfe−SðϕfÞ ≈

Z
U
dϕn det JðϕnÞe−S(ϕfðϕnÞ); ð3:2Þ

where Jij ¼ ∂ðϕfÞi=∂ðϕnÞj is the Jacobian of the map and U
is the region around ϕc in the tangent plane that is mapped to
the manifold approximating the region of the thimble that
dominates the integral. For the special case where the tangent
plane is in the same homology class as the thimble, the region
U can be extended to the entire tangent plane and Eq. (3.2)
becomes exact for all flow times T. For the case in which the
tangent plane is not in the same homology class, the relation
becomes exact only in the limit of large T. In practice the
region U is generated implicitly in the simulations: we start in
the neighborhood of the critical point, and the proposed
updates move smoothly, or in small discrete steps, through
the configuration space. The potential barriers force the
simulation to stay in the relevant region. To fix terminology
we refer to the region U in the tangent plane as the para-
metrization manifold and the image under the map F TðUÞ as
the integration manifold.
The goal of the algorithms presented here is to sample the

integration manifold according to the Boltzmann factor
expð−SÞ. Since the action and the integration measure are
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complex, we need to use a modified Boltzmann factor
for sampling. The probability density we will sample corre-
sponds to

P0ðϕfÞjdϕfj ¼
1

Z0

e−ReSðϕfÞjdϕfj; Z0≡
Z
T
jdϕfje−ReSðϕfÞ:

ð3:3Þ

The final result for observables will have to include the phase

hOi ¼ hOeiφi0
heiφi0

; eiφ ≡ e−iImSðϕfÞ dϕf

jdϕfj
. ð3:4Þ

Since we are sampling the configurations from a single
thimble, or from a manifold that is close to it, the imaginary
part of the action is constant (or nearly so.) The only
fluctuations come from the residual phase associated with
the phase of the measure dϕf. If we view this as an integral
over the parametrization manifold, then the probability mea-
sure is

P0ðϕnÞ¼
1

Z0

e−ReSeff ðϕnÞ; Seff ¼ S(ϕfðϕnÞ)− ln det JðϕnÞ:

ð3:5Þ

The complex phase in this case is expð−iImSeffÞ, and the
fluctuations of this phase are dominated by the Jacobian phase
that corresponds to the residual phase. Note that to compute
the effective action for a point ϕn in the parametrization space
we have to integrate the upward flow differential equation
with initial condition ϕn for a time T to get ϕf. SðϕfÞ is then
the action contribution. The other contribution comes from the
Jacobian. As explained in Appendix A the Jacobian matrix
can be computed by integrating the matrix differential
equation as follows:

dJ
dt

¼ H(ϕðtÞ)JðtÞ; ð3:6Þ

where H(ϕðtÞ) is the Hessian matrix of S along the flow and
the initial condition Jð0Þ is a matrix whose columns form an
orthonormal basis in the tangent to the parametrization space
at ϕn. Equation (3.6) flows a basis in the tangent space at ϕn to
a basis in the tangent space at ϕf. Since our parametrization
space is a hyperplane, the basis for the tangent space at ϕn can
be chosen to be the same at all points in U, for example, the
positive Takagi vectors or any other basis spanning this
tangent space.
Equation (3.6) can also be used to map a single infini-

tesimal displacement represented by a vector vn in the
tangent space at ϕn to a displacement represented by a
vector vf in the tangent space on the thimble at ϕf. In
Eq. (3.6) JðtÞ is then replaced by vðtÞ, the column vector
representing the displacement. The initial condition is
vð0Þ ¼ vn and the final result vðTÞ ¼ vf is a vector in the
tangent space at ϕf. For this reason we sometimes call this
equation the vector flow in the review.

1. Contraction algorithm

Several sampling algorithms are based on the mapping
between the tangent plane and the approximate thimble. The
most straightforward is the contraction algorithm (Alexandru,
Başar, and Bedaque, 2015; Alexandru, Başar, Bedaque,
Ridgway, and Warrington, 2016a), which generates configu-
rations in the parametrization manifold based on the proba-
bility P0 using the Metropolis method (Metropolis et al.,
1953) based on the effective action ReSeff . The basic process
is now detailed.

(1) After a critical ϕc point is identified, the tangent space
of its thimble is computed by solving Eq. (2.13) and
finding the ρðaÞ value corresponding to positive λðaÞ.

(2) Start with a point ϕn ¼ ϕc þP
N
a¼1 ζaρ

ðaÞ on the
tangent space. Evolve ϕn by the holomorphic flow
by a time T to find ϕf, compute the Jacobian JðϕnÞ by
integrating the flow equation for the basis, and then
compute the action SeffðϕnÞ.

(3) Propose new coordinates ζ0 ¼ ζ þ δζ, where δζ is a
random vector chosen with a symmetric probability
function, that is, PðδζÞ ¼ Pð−δζÞ. Evolve ϕ0

n ¼P
a ζ

0
aρ

ðaÞ by the holomorphic flow by a time T to
find ϕ0

f and compute Jðϕ0
nÞ and Seffðϕ0

nÞ.
(4) Accept or reject ζ0 with probability minf1; e−S0effþSeffg.
(5) Repeat steps 3 and 4 until a sufficient ensemble of

configurations is generated.
To make the updating effective, we have to account for the

fact that the map F T is highly anisotropic. If we consider the
flow close to the critical point, we see that displacements in
the direction of the Takagi vector ρðaÞ are mapped onto vectors
that have their magnitude increased by expðλðaÞTÞ. Even small
differences in the eigenvalues λðaÞ lead to large differences as
T increases. If the parametrization space proposals δζ are
isotropic, then the update process becomes inefficient. Ideally
we want to generate proposals that are isotropic on the
integrations manifold, but since the map changes from point
to point, this requires care to ensure that the detailed balance is
preserved. It turns out that this is possible, but we refrain from
discussing this point until later. An easy fix for this problem is
to adjust the size of displacement for the proposal based on the
flow around the critical point. The proposal is then
δζa ¼ expð−λðaÞTÞδ, with δ a random variable chosen with
uniform probability in the interval ½−Δ;Δ�. The step size Δ is
tuned to get reasonable acceptance rates. If the distortions
induced by the map F T vary only slightly from ϕc to the
points sampled by the process, then this algorithm is effective.
By far the most computationally expensive part of the

contraction algorithm (and most other thimble algorithms) is
the computation of the Jacobian (even for most bosonic
systems the cost scales with N3 and N is proportional to
the spacetime volume). Methods to deal with this problem are
discussed in Sec. III.D.
Another Metropolis based method was proposed to sample

single thimble configurations (Mukherjee, Cristoforetti, and
Scorzato, 2013) and was tested for a single plaquette Uð1Þ
problem. In this proposal the Jacobian is not included in the
sampling and is to be included via reweighting in the
observable measurement. This reweighting will fail for most
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systems that have more than a few degrees of freedom since
for these systems the Jacobian fluctuates over many orders of
magnitude.

2. The HMC method on thimbles

A more sophisticated algorithm based on the hybrid
Monte Carlo (HMC) method (Duane et al., 1987) was
proposed and tested for the ϕ4 model (Fujii, Kamata, and
Kikukawa, 2015). In principle, a straightforward extension of
the HMC method could be applied to the action ReSeff on the
parametrization manifold. The problem with such an approach
is that it would require the calculation of the derivatives of
det J or some related quantity, which is cumbersome. This
could be sidestepped by neglecting the Jacobian in the
sampling (Ulybyshev, Winterowd, and Zafeiropoulos,
2020), but this requires reweighting it in the observables
and fails for large systems. The proposal is then to use the
HMC method as defined by the Hamiltonian in the larger CN

space, where the motion is confined to be on the thimble via
forces of constraint (Fujii, Kamata, and Kikukawa, 2015).
This has the advantage that the Jacobian is accounted for
implicitly, but the algorithm requires solving implicit equa-
tions to project back to the thimble. For the cases where the
thimble is relatively flat and smooth, these equations can be
solved robustly via iteration, as is the case with the ϕ4 system
in the investigated parameter range.
The basic idea is to integrate the equations of motion

generated by the Hamiltonian

Hðπ;ϕfÞ ¼ 1
2
π†π þ ReSðϕfÞ ð3:7Þ

subject to the constraint that ϕf ∈ T . Forces of constraint
perpendicular to the thimble keep the system confined
on its surface. The momentum π is in the tangent space at
ϕf, so it is a real linear combination of columns of JðϕnÞ.
The perpendicular force has to be a real linear combination
of the columns of iJðϕnÞ since this forms a basis in
the space perpendicular (according to the scalar product
hvjwi≡ Rev†w) to the thimble.
For a practical implementation we need to provide an

integrator for these equations of motion for finite time steps. A
symplectic integrator for this problem is provided using the
following method:

π1=2 ¼ π − ∂ϕf
ReSðϕfÞ

Δt
2
þ iJðϕnÞλ;

ϕ0
f ¼ ϕf þ π1=2Δt;

π0 ¼ π1=2 − ∂ϕf
ReSðϕ0

fÞ
Δt
2
þ iJðϕ0

nÞλ0: ð3:8Þ

The map ðπ;ϕfÞ → ðπ0;ϕ0
fÞ is symplectic and time reversible,

thus satisfying the requirements for the HMC method. Note
that this map requires the determination of λ and λ0, two sets of
N real numbers that encode the effect of the constraint forces
acting perpendicularly on the thimble. λ is determined by the
requirement that ϕ0

f ∈ T and λ0 by requiring that π0 is in the
tangent space at ϕ0

f. For small enough Δt, these requirements
lead to unique “small” solutions (which vanish in the Δt → 0

limit) for λ’s. A solution for λ0 can be computed in a
straightforward way via the projection method we discuss
later. Computing λ is more difficult and the current proposal is
to use an iterative method (Fujii, Kamata, and Kikukawa,
2015). This iteration is guaranteed to converge for small
enough Δt, but for a fixed size Δt no guarantees can be made,
even for the existence of a solution.
With these ingredients in hand, the basic steps of the HMC

method are the following:
(1) At the beginning of each “trajectory” an isotropic

Gaussian momentum π is generated in the tangent
space at ϕf; PðπÞ ∝ expð−π†π=2Þ.

(2) The equations of motion are integrated by repeatedly
iterating the previous integrator steps t=Δt times,
where t is the trajectory length.

(3) At the end of the trajectory the proposed ðπ0;ϕ0
fÞ are

accepted with a probability determined by the change
in Hamiltonian Pacc ¼ minf1; expð−HþH0Þg.

One ingredient for this and other algorithms that we discuss
later is the projection to the tangent space at ϕf. If we have the
Jacobian matrix in hand [JðϕnÞ], its columns form a real basis
of the tangent space and the columns of iJðϕnÞ form a basis
for the orthogonal space. Every vector v ∈ CN can then be
decomposed into its parallel [PkðϕfÞv] and perpendicular
[P⊥ðϕfÞv] components using standard algebra. This step is
required for finding λ0 in the symplectic integrator. It can also
be used to find the starting momentum at the beginning of the
trajectory: we generate a random vector in CN with probability
Pðπ̃Þ ∝ expð−π̃†π̃=2Þ and then project it to the tangent
plane π ¼ PkðϕfÞπ̃.
The previously discussed projection can be readily imple-

mented when we have the Jacobian matrix JðϕnÞ. However,
calculating this matrix is an expensive operation that is likely
to become a bottleneck for simulations of systems with a large
number of degrees of freedom. One solution to this problem
is the following (Alexandru, Başar, Bedaque, and Ridgway,
2017): we use the map v → JðϕnÞv, which maps the tangent
space at ϕn on the parametrization manifold to the tangent
space at ϕf on the thimble. This calculation can be imple-
mented efficiently by solving the vector flow equation (3.6)
for a single vector v. We extend this to arbitrary vectors that
are not included in the tangent space. For a generic vector v

we split it into v1 ¼ Pð0Þ
k v and iv2 ¼ Pð0Þ

⊥ v. Here Pð0Þ
k is the

projection on the tangent space of the parametrization
manifold, the space spanned by the Takagi vectors, and

Pð0Þ
⊥ is its orthogonal complement. Both v1 and v2 belong to

the tangent space at ϕn, so JðϕnÞv1;2 can be computed using
the vector flow equations. This then defines a map from any
vector v to JðϕnÞv ¼ JðϕnÞv1 þ iJðϕnÞv2, which requires
two integrations of the vector flow. Using this map we
can then compute J−1ðϕnÞv using an iterative method such
as BiCGSTAB. It is then straightfoward to prove that

PkðϕfÞv ¼ JðϕnÞPð0Þ
k JðϕnÞ−1v.

3. Langevin on thimbles

The Langevin algorithm was proposed as a possible sam-
pling method for single thimble manifolds (Cristoforetti,
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Di Renzo, and Scorzato, 2012; Cristoforetti et al., 2013;
Cristoforetti, Scorzato, and Di Renzo, 2013). The idea is to
sample the thimble manifold T with a probability density
proportional to expð−ReSÞ with respect to the Riemann
measure induced by embedding T in CN . The residual phase
of the measure is taken into account via reweighting. The
imaginary part of the action is constant over the thimble and
will not contribute to averages.
The Langevin process simulates the evolution of the system

via a drift term due to the action and a Brownian motion term.
The discretized version of the process is given by the
following updates:

ϕ0
f ¼ ϕf − ∂ϕf

ReSðϕfÞΔtþ η
ffiffiffiffiffiffiffiffi
2Δt

p
; ð3:9Þ

where the vector η is a random N-dimensional vector in the
tangent space at the thimble at ϕf.
Two details are important here: how the vector η is chosen

and how the new configuration ϕ0
f is projected back to the

thimble. The proposal is to choose η isotropically at ϕf by
generating a Gaussian η̃ unconstrained in CN and then project
it to the tangent space at ϕf using a procedure similar to
the projection outlined in Sec. III.A.2, η ¼ PkðϕfÞη̃.
This ensures an isotropic proposal in the tangent space
and the norm of the vector is adjusted such that it follows
the χ2 distribution with N degrees of freedom (Cristoforetti
et al., 2013).
At every step we start with ϕf on the thimble and we move

along the tangent direction, since both the drift and the random
vector lie in the tangent plane. Unless the thimble is a
hyperplane, this shift will take us out of the thimble. A
projection back to the thimble is required. The proposed
methods rely on evolving the new configuration in the
downward flow toward the critical point, projecting there to
the thimble, and flowing back (Cristoforetti, Di Renzo, and
Scorzato, 2012; Cristoforetti, Scorzato, and Di Renzo, 2013).
This proposal was found to be unstable (Cristoforetti,
Scorzato, and Di Renzo, 2013). The only simulations we
are aware of that employ this algorithm involve simulations on
the tangent plane to the thimble (Cristoforetti et al., 2013). In
this case the updates do not require any projection, since the
manifold is flat. To make this algorithm practical for the
general case, a robust projection method is needed.
We make a final note about the Langevin algorithm: for a

finite Δt the method is not exact. Simulations have to be
carried out for decreasing Δt and then extrapolated to Δt ¼ 0
to remove the finite step-size errors. For other Langevin
methods, an accept-reject step can be used to remove the finite
step-size errors, but this has not been developed for thimble
simulations.
While both the Langevin method and the HMC algorithm

perform updates directly on ϕf with a drift (or force) term
evaluated locally, it is worth emphasizing that the updates still
require the integration of the flow equations. This is because
the projection of the shift to the tangent plane to the thimble
and the required projection back to the manifold after the
update can currently be done only by connecting ϕj with its
image under the flow ϕn in the infinitesimal neighborhood of
the critical point. The advantage of these methods over the

Metropolis algorithm, assuming that a practical projection
method is available, is that the updates can lead to a large
change in action resulting in small autocorrelation times in the
Markov chain.

4. Case study: Bosonic gases

We presently consider the relativistic Bose gas at finite
density for an application of these algorithms to bosonic
systems with sign problems. The continuum Euclidean action
of this system is

S ¼
Z

d4x½∂0ϕ
�∂0ϕþ ∇ϕ� · ∇ϕþ ðm2 − μ2Þjϕj2

þ μðϕ�∂0ϕ − ϕ∂0ϕ
�Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

j0ðxÞ

þ λjϕj4�; ð3:10Þ

where ϕ ¼ ðϕ1 þ iϕ2Þ=
ffiffiffi
2

p
is a complex scalar field.

This action encodes the properties of a two-component system
of bosons with a contact interaction and an internal
global Uð1Þ symmetry that breaks spontaneously at high
density. In Euclidean space, the current j0 is complex and
causes a sign problem.15 This system was studied using a
complex Langevin (Aarts, 2009) and in a different represen-
tation where the sign problem disappears (Endres, 2007;
Gattringer and Kloiber, 2013).
This system was studied with the contraction algorithm

given by Alexandru, Başar, Bedaque, Ridgway, and
Warrington (2016a), the HMC method (Fujii et al., 2013),
and the Langevin process (Cristoforetti et al., 2013). The
following lattice discretization of Eq. (3.10) was used:

S ¼
X
x;a

��
4þm2

2

�
ϕx;aϕx;a −

X3
ν¼1

ϕx;aϕxþν̂;a

− cosh μϕx;aϕxþ0̂;a þ i sinh μϵabϕx;aϕxþ0̂;b

þ λ

4
ðϕx;aϕx;aÞ2 − hðϕx;1 þ ϕx;2Þ

�
; ð3:11Þ

where ϵab is the antisymmetric tensor and ϵ12 ¼ 1. This lattice
action is used in the remainder of this discussion. The final
term must be included in the lattice theory to obtain a well-
defined thimble decomposition and we take h as small.
To apply the contraction algorithm, it is first necessary to

find critical points (extrema) of the action (3.11). Restricting
attention to those critical points that are constant in spacetime,
the following extremum condition is obtained:

ð2þm2Þϕ − 2 cosh μϕþ 2λjϕj2ϕ ¼ h: ð3:12Þ

Three extrema exist and we denote them as ϕ0;ϕþ;ϕ−. The
corresponding Lefschetz thimbles are denoted as T 0; T þ; T −.
Depending on the parameters of the theory, different combi-
nations of thimbles contribute to the path integral. To this end,

15This is most readily seen in Fourier space in the continuum:R
d4x j0ðxÞ ¼ ð2πÞ−4 R d4pð−2ip0ÞjϕðpÞj2 is purely imaginary.
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the one-dimensional projections of T 0; T þ; T − depicted in
Fig. 5 are useful.
For μ < μc ¼ cosh−1ð1þm2=2Þ, only T 0 contributes to

the path integral. This occurs because SRðϕ�Þ < SRðϕÞ for
any ϕ on the original integration manifold, and therefore no
point can flow to ϕ� by the upward flow. This is sufficient to
eliminate T � as contributing thimbles.
For μ > μc, the contributing thimbles changes. As seen in

the center of Fig. 5, when h ∈ R there are flow trajectories
connecting both ϕ− and ϕþ to ϕ0. This feature, called the
Stokes phenomenon, introduces complications into the
decomposition of the path integral into an integer linear
combination of thimbles. We avoid the Stokes phenomenon
altogether by simply introducing a complex h; for a detailed
discussion of our procedures see Alexandru, Başar, Bedaque,
Ridgway, and Warrington (2016a).
Since our purpose is to illustrate the contraction algorithm,

we consider only the μ > μc case here. As an example, let
m ¼ λ ¼ 1.0, h ¼ 0.1ð1þ i=10Þ, and μ ¼ 1.3. With these
choices, T þ contributes most to the path integral. The results
obtained on flowed manifolds are plotted in Fig. 6. The
variance of SI decreases (up to statistical errors) as a function
of flow time; this demonstrates that the integral over T þ
indeed has reduced phase fluctuations relative to RN .
Furthermore, the convergence of observables as a function
of flow time strongly suggests convergence to T þ.

B. Generalized thimble method

The main limitation of the methods discussed thus
far is that they are capable of computing the integral over
only one thimble. However, the integral over the real
variables is generically equivalent to the integral over a
collection of thimbles. Finding this collection of thimbles is a
daunting process; integrating over all of them is an even
harder task. However, there is a way of bypassing this
difficulty based on what we learned in Sec. II: the gener-
alized thimble method.
Recall that if every point of RN (the integration region of

the path integral) is taken to be the initial condition for
Eq. (2.7) that is then integrated for a time T, we obtain a

manifold MT ¼ F TðRNÞ that is equivalent to the
initial RN manifold (in the sense that the path integral over
RN and MT are the same). In addition, for large enough
values of T, MT approaches exactly the combination of
thimbles equivalent to RN . It is important to understand
how the thimbles are approached. In the large T limit an
isolated set of points in RN , we call each of them ζc,
approach the critical points ϕc of the relevant thimbles.
Points near them initially approach the critical points but,
when close to them, move along the unstable directions,
which are almost parallel to the thimble but slowly approach
it; see Fig. 4. Points far from ζc run toward a point when the
action diverges, either at infinity or at a finite distance (in
fermionic theories thimbles meet at points where the action
diverges, as exemplified by the Thirring model discussed
later). This means that the correct combination of thimbles
equivalent to the original path integral can be parametrized
by points in RN . This is an advantage over the contraction
method, where only one thimble at a time can be para-
metrized. We then have

FIG. 6. The imaginary part of the action and the residual phase
computed on F TðTþÞ using the contraction algorithm. The
horizontal line denotes the value of ImSðϕþÞ.

FIG. 5. Projections of the thimbles (solid blue lines) T 0, T þ, and T − and the dual thimbles (dotted red lines) K0,Kþ, andK− onto the
one-complex-dimensional subspace of constant fields. The intersection of the original domain of integration with this subspace
corresponds to the real line. The typical arrangement of thimbles varies with the chemical potential.
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Z
RN

dϕ e−SðϕÞ ¼
Z
MT

dϕ̃ e−Sðϕ̃Þ det Jðϕ̃Þ

¼
Z
RN

dζ e−S½F T ðζÞ� det JðζÞ: ð3:13Þ

The generalized thimble method consists of using a
Metropolis algorithm on RN with the action ReSeff ,
where SeffðζÞ ¼ S½F TðζÞ� − log det JðζÞ.

1. Generalized thimble algorithm (GTA)

(1) Start with a point ζ in RN . Evolve it by the holomor-
phic flow by a time T to find ϕf ¼ F TðζÞ.

(2) Propose new coordinates ζ0 ¼ ζ þ δζ, where δζ is a
random vector drawn from a symmetric distribution.
Evolve it by the holomorphic flow by a time T to
find ϕ0

f ¼ FTðζ0Þ.
(3) Accept ζ0 with probability Pacc ¼ minf1; e−ΔReSeffg.
(4) Repeat from step 2 until a sufficient ensemble of

configurations is generated.
Methods to speed up (or bypass) the frequent computation of
the Jacobian J are an improvement of the method and are
discussed later; see Sec. III.D.
While the previous algorithm is exact, the practical appli-

cability of the GTA depends on the landscape induced by
expð−ReSeffÞ onMT . At large T, the points ζ that are mapped
to the statistically significant parts of MT lie on small,
isolated regions. This explains why the phase of the integrand
fluctuates less on MT than on RN . The imaginary part of
S½F TðζÞ� on points onMT are the same as the imaginary parts
of the action SðζÞ in a small region around ζc, the only region
with significant statistical weight expf−ReSeff ½F TðζÞ�g.
Between the regions around the different ζc lie areas with

small statistical weight expf−ReSeff ½F TðζÞ�g that are mapped
to points where the action nearly diverges, as we discussed in
Sec. II.C. A probability landscape of this form may trap the
Monte Carlo chain in one of the high probability regions,
thereby breaking ergodicity. A trapped Monte Carlo chain is
effectively sampling only one of the thimbles contributing to
the integral (more precisely, it is an approximation to a one
thimble computation). This problem can be alleviated by
making T small. In that caseMT will be farther away from the
thimbles, the phase oscillations are larger, and the original
sign problem may not be controlled. The usefulness of the
GTA relies then on being able to find a value of T such that the
sign problem is sufficiently ameliorated while the trapping of
the Monte Carlo chain is not a problem. In several examples
discussed later, over a large swatch of parameter space, it is
not difficult to find a range of values of T for which the GTA is
useful. Still, one should perform due diligence and try to
diagnose trapping signs in every calculation, as is always the
case in Monte Carlo calculations.

2. Case study: 0 + 1D Thirring model

We now use the finite density and temperature Thirring
model in 0þ 1, 1þ 1, and 2þ 1 spacetime dimensions to
illustrate several of the techniques discussed in this review.
The Thirring model was initially formulated as an example of
a solvable model in 1þ 1 dimensions (Thirring, 1958), and it

describes fermions with a contact vector-vector interaction
and is described by the Lagrangian density

L ¼ ψ̄aði=∂ þmþ μγ0Þψa þ g2

2NF
ψ̄aγμψ

aψ̄aγμψa; ð3:14Þ

where ψ is a spinor for the appropriate spacetime dimension
and a indexes theNF different flavors of fermions. This theory
is, in 1þ 1 dimensions, asymptotically free. The NF ¼ 1 case
is identical to the Gross-Neveu model and its ground state
breaks a discrete symmetry spontaneously and, in this respect,
resembles QCD. For NF > 1 the hψ̄ψð0Þψ̄ψðxÞi two-point
function exhibits power law decay, the closest behavior
to long-range order possible in one spatial dimension
(Witten, 1978).
We will use two discretizations of the Thirring model, one

using staggered fermions and the other using Wilson fer-
mions. The lattice action in d dimensions is

S ¼
X
x;ν

NF

g2
½1 − cosAνðxÞ� þ

X
x;y

ψ̄aðxÞDxyψ
aðyÞ; ð3:15Þ

with

DW
xy ¼ δxy − κ

X
ν¼0;1

½ð1 − γνÞeiAνðxÞþμδ0νδxþν;y

þ ð1þ γνÞe−iAνðxÞ−μδ0νδx;yþν�; ð3:16Þ

with 1=κ ¼ 2mþ 4d for Wilson fermions or

DKS
xy ¼ mδxy þ

1

2

X
ν¼0;1

½ηνðxÞeiAνðxÞþμδ0νδxþν;y

− η†νðxÞe−iAνðxÞ−μδ0νδx;yþν�; ð3:17Þ

with η0ðxÞ ¼ 1, η1 ¼ ð−1Þx0 , and η2 ¼ ð−1Þx0þx1 for Kogut-
Susskind staggered fermions. The flavor index goes from 1 to
NF in the Wilson fermion case but from 1 to NF=2 in the
staggered case. Integrating over the bosonic field AνðxÞ leads
to a discretized version of Eq. (3.14), showing their equiv-
alence. Integration over the fermion fields leads to purely
bosonic action more amenable to numerical calculations as
follows:

S ¼ NF

�
1

g2
X
x;ν

½1 − cosAνðxÞ� − γ log detDðAÞ
�
; ð3:18Þ

with γ ¼ 1 (Wilson) or γ ¼ 1=2 (staggered). Both of these
actions describe NF Dirac fermions in the continuum. The
presence of the chemical potential μ renders the fermion
determinant complex and is the origin of the sign problem in
this model.
The (0þ 1)-dimensional case can be solved exactly with

the lattice action in Eq. (3.18), and it has been used as a check
on several methods designed to handle sign problems
(Pawlowski and Zielinski, 2013; Li, 2016; Fujii, Kamata,
and Kikukawa, 2017; Di Renzo, Singh, and Zambello, 2021;
Di Renzo and Zambello, 2021). Its thimble structure is known.
In the A0ðxÞ ¼ const sector, it is shown in Fig. 7. The “main
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critical point” is the critical point with the smallest real part of
the action (the one with ReA0 ¼ 0 for this system). Therefore,
in the semiclassical limit it should dominate the path integral.
Thimbles touch each other at points where the fermion
determinant vanishes and the effective bosonic action diverges
(shown as empty circles in Fig. 7). The tangent space to the
main thimble (T ) is just the real space shifted in the imaginary
direction (the dashed red line in Fig. 7). The integration over
the tangent space is no more expensive than the one over the
real space since no flowing is required and the Jacobian of the
transformation is 1. The tangent space lying parallel to the real
space has the same asymptotic behavior as RN and is
equivalent to it for the computation of the integral. The figure
also shows the result of “flowing” the tangent space by
different values of T: the larger the value of T, the closer the
resulting manifold(s) get to the thimbles. Starting from the
tangent space and using a flow time T ¼ 2, the obtained
manifold FTðTÞ is nearly indistinguishable from the thimbles.
Alexandru, Başar, and Bedaque (2015) studied the model

using the contraction algorithm. The results shown in Fig. 8
indicate that the fermion condensate, for instance, is close to
the exact result but does not agree with it, particularly for
certain values of μ near the transition from hψ̄ψi ¼ 0 to
hψ̄ψi ≠ 0. The size of the discrepancy is consistent with a
semiclassical estimate of the contributions of other thimbles
(besides the main thimble). Similar behavior was seen in a
one-site model of fermions (Tanizaki, Hidaka, and Hayata,
2016). The integration over the tangent space, however, gives
the correct result. The average sign on the tangent space is
smaller than the one obtained with the contraction method. For
temperatures that are not too low, the sign fluctuation is,
however, small enough to allow for the computation to be
done on the tangent plane. But as the temperature is lowered,
the sign fluctuations grow and it becomes difficult to sample
the correct distribution, as predicted by general arguments; see
Eq. (1.4). One can then use the generalized thimble method
and integrate on the manifold FTðTÞ for a suitable value of T.
With a T that is too small, the sign fluctuation is too large; a T
that is too large is essentially an integration over one thimble

and the wrong results are obtained. It is interesting to under-
stand how the transition between these two behaviors occur. In
Fig. 9 histograms of the imaginary part of the effective action
are shown for both T ¼ 0 and T ¼ 0.5. It is clear that for
T ¼ 0.5 the fields sampled are concentrated around the
preimage of a few (five) critical points, while with T ¼ 0

(no flow) the distribution is broader. Consequently, the values
of the phase expð−iImSÞ fluctuate less when there is flow and
the sign problem is minimized. On the other hand, for a large
enough flow time, the probability distribution expð−ReSÞ
becomes multimodal and the trapping of Monte Carlo chains
can prevent proper sampling; see Fig. 11. Thus, the gener-
alized thimble method (GTM) trades the sign problem for the
problem of sampling a multimodal distribution. This trade is
not without profit: in many cases one can find values of T such
that the sign problem is sufficiently alleviated but trapping has
not set in yet. These values of T can be determined by trial and
error. As T is increased trapping occurs quite suddenly, and it

FIG. 8. The difference in the value of the chiral condensate
between the exact result and the one obtained using the
contraction method (with T ¼ 2) shown in red diamonds and
the generalized thimble method (with T ¼ 0, that is, integration
over the tangent space). This is for the 0þ 1 Thirring model with
parameters N ¼ 8, m ¼ 1, and g2 ¼ 1=2 (lattice units).

FIG. 7. Complex Ā0 ¼ ð1=VÞPx A0ðxÞ plane for the Thirring
model. The filled circles are critical points, the open circles are
singular points of the action, and the thin lines are thimbles. The
dashed line is the tangent space to the main thimble, while
the other solid lines are the manifolds MT obtained by flowing
the tangent space by T ¼ 0.01, 0.05, and 0.5. Notice how MT
approaches the correct combination of thimbles as T is increased.

FIG. 9. Histogram of the average field Ā0 (left panels) and the
imaginary part of the action (right panels) in a Monte Carlo
sampling in the 1D Thirring model using the GTM with the T ¼
0 (top line) and T ¼ 0.5 (bottom line), g2a2 ¼ 1=2, and N ¼ 32

calculations. In the T ¼ 0 calculation the phase e−iSI fluctuates
too wildly and the result has large uncertainties. In the T ¼ 0.5
calculation on the bottom line the phase fluctuates much less. It is
also evident that regions on the tangent space corresponding to
several thimbles are being sampled. The multimodal distribution
in the T ¼ 0.5 calculation indicates that larger flow values could
lead to trapping of the Monte Carlo chain in a region corre-
sponding to only one thimble.
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is not difficult to detect it by noticing a jump on the values of
the observables. In addition, there are well studied ways to
deal with trapping, as explained in Sec. IV. Still, trapping
is a source of concern in GTM calculations and other,
more general techniques have been developed to avoid it;
see Sec. IV).

3. Case study: ð1 + 1ÞD Thirring model

The lessons learned in applying the generalized thimble
method to the (0þ 1)-dimensional Thirring model carry over
to the more interesting (1þ 1)-dimensional case. Extensive
calculations on the finite density and temperature (1þ 1)-
dimensional Thirring model with two flavors were made
over a range of parameters in the strong coupling region
(Alexandru, Başar, Bedaque, Ridgway, and Warrington, 2017)
with both Wilson and staggered fermions. The thimble
structure of the 1þ 1 models is more complex than the
0þ 1 case. Still, all critical points and thimbles present in the
(0þ 1)-dimensional case have analogs in 1þ 1 dimensions
[which indicates that many others are without a (1þ 1)-
dimensional analog]. It is still true that the critical point closest
to the real space (the main critical point) is a constant shift of
A0ðxÞ by an imaginary amount and that its tangent space is just
a translation of RN by an imaginary amount; see Fig. 7. The
path integration over RN has a bad sign problem for all values
of the chemical potential larger than the fermion renormalized
mass (μ > mf), that is, for all values of μ for which there is an
appreciable number of fermion-antifermion unbalance.16 The
integration over the tangent space of the main thimble can be
accomplished at no extra cost by simply shifting the variables
of integration by a constant imaginary amount. This step by
itself improves the sign problem considerably. The reason is
that the tangent space is a rough approximation of the main
thimble, especially the region near the critical point that
dominates the path integral in the semiclassical regime. Still,
for larger volumes, smaller temperatures, and higher chemical
potential, the shift to the tangent space is not enough to control
the sign fluctuation. It was determined that flow times of the
order of T ¼ 0.4 are sufficient to drastically reduce the sign
fluctuation and, at the same time, not cause problems with the
trapping and ergodicity of the Monte Carlo chain. Some of the
results are summarized in Fig. 10. Alexandru, Başar, Bedaque,
Ridgway, and Warrington (2017) demonstrated that the same
method also works well as the continuum and thermodynamic
limits are approached.

C. Trapping and tempered algorithms

The landscape induced by expð−ReSeffÞ on the paramet-
rization manifold changes as a function of the flow time T. For
small T the landscape is typically flat, while for larger T the
landscape is steeper. When the sign problem is severe enough
to require large flow times, the landscape of expð−ReSeffÞ has

high peaks and low valleys and the probability distribution can
become multimodal. The purpose of this section is to detail
several algorithms addressing this difficulty.
We first discuss the method of tempered transitions (Neal,

1996). Designed to combat trapping, a tempered proposal is a
composite proposal assembled from small steps that, taken
together, more rapidly cover phase space than a standard
proposal does. A tempered proposal is constructed as follows.
First, let p0ðϕÞ; p1ðϕÞ;…; pnðϕÞ be a sequence of increas-
ingly relaxed probability distributions such that p0ðϕÞ≡ pðϕÞ
is the distribution of interest and pnðϕÞ is significantly more
uniform. Next, for every i let T̂i be a transition probability
satisfying the detailed balance with respect to pi, that is,

piðϕÞT̂iðϕ → ϕ0Þ ¼ piðϕ0ÞT̂iðϕ0 → ϕÞ: ð3:19Þ

A tempered update T̂ is then executed by first generating a
sequence of 2n configurations

ϕ0 → ϕ1 → � � � → ϕn ≡ ϕ0
n → ϕn−1

0 → � � � → ϕ0
0 ð3:20Þ

using the transition probabilities T̂1; T̂2;…; T̂n; T̂n;…; T̂1,
followed by the following accept-reject step with a
probability:

Paccðϕ0 → � � � → ϕ0
0Þ ¼ minf1; FðϕÞ=Fðϕ0Þg; ð3:21Þ

where

FIG. 10. Fermion density (top panel) and average sign (bottom
panel) of the (1þ 1)-dimensional Thirring model on a 10 × 10
lattice, g ¼ 1, and m ¼ −0.25 (lattice units) with Wilson fer-
mions. The sign problem is strongly suppressed, and one moves
the path integration from RN to the tangent plane T and from that
to the flowed manifold F TðTÞ, thus allowing for precise
measurements of the density and other observables (Alexandru,
Başar, Bedaque, Ridgway, and Warrington, 2017).

16We note here that, contrary to single thimble calculations
(Tanizaki, Hidaka, and Hayata, 2016), the generalized thimble
method reproduces the “silver blaze” phenomena, the fact that the
system is trivial at small temperatures and chemical potentials smaller
than the mass of the lightest fermionic excitation (Cohen, 2003).
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FðϕÞ≡ p1ðϕ0Þ
p0ðϕ0Þ

p2ðϕ1Þ
p1ðϕ1Þ

� � �pn−1ðϕn−2Þ
pn−2ðϕn−2Þ

pnðϕn−1Þ
pn−1ðϕn−1Þ

: ð3:22Þ

What is gained by using tempered proposals is enhanced
ergodicity. Since the distributions pi are increasingly uniform,
the corresponding transition probabilities T̂i may grow in
support without decreasing the acceptance probability. To
apply this general framework to simulations trapped by
holomorphic gradient flow, suppose the flow time T is large
enough that the probability distribution of interest

pðζÞ ¼ p0ðζÞ ¼
e−ReSeff ðζÞ

Z
ð3:23Þ

is multimodal. Consider a sequence of flow times T0 < T1 <� � � < Tn such that T0 ¼ T and Tn ≪ T0. This defines a
sequence of probability distributions p0ðζÞ; p1ðζÞ;…; pnðζÞ
that are decreasingly multimodal; we use this sequence to
perform tempered proposals.
When this method was applied to the (0þ 1)-dimensional

Thirring model at finite density (Alexandru, Başar, Bedaque,
and Warrington, 2017), severely trapped simulations were
liberated. Certain thermodynamic parameters exist for which
at least five thimbles contribute non-negligibly to the path
integral. Trapping to a single thimble, however, can become
arbitrarily severe: for example, at T ¼ 0.5, the multimodality
of p0ðζÞ is so severe that over the course of a Metropolis chain
with 107 steps not a single transition occurred. Tempered
proposals free these trapped MCs, however; this is demon-
strated in Fig. 12, where a proper sampling of the T ¼ 0.5
probability distribution is achieved. In this case, five separate
thimbles are sampled over the course of 2000 tempered
proposals. Even though tempered proposals cost more than
standard proposals, the improvement in ergodicity renders the
added effort worthwhile.
A similar method, parallel tempering, was proposed to help

sample from such multimodal distributions (Swendsen and
Wang, 1986; Geyer, 1991; Earl and Deem, 2005). Parallel
tempering involves simulating n replicas of the system of
interest, each having a particular value of the tempering
parameter. Each stream evolves separately and swaps between
replicas are added satisfying the detailed balance. The swap-
ping of configurations between adjacent replicas leads to

enhanced ergodicity relative to the single chain case. Fukuma
and Umeda (2017) and Fukuma, Matsumoto, and Umeda
(2019b) developed the tempered Lefschetz thimble method
(TLTM), an application of parallel tempering to multimodal
distributions generated by flow.17 As with tempered transi-
tions, in this method the flow time is chosen as a tempering
parameter. The TLTM method has been successfully applied
to the (0þ 1)-dimensional Thirring model (Fukuma and
Umeda, 2017), where trapping due to flow times as large
as T ¼ 2.0 have been solved.18 Fukuma, Matsumoto, and
Umeda (2018) also studied how to pick the flow times
optimally and devised a geometric method for this optimiza-
tion. More recently the TLTM was applied to the Hubbard
model away from half filling on small lattices (Fukuma,
Matsumoto, and Umeda, 2019a).

D. Algorithms for the Jacobian

The most computationally expensive part of many algo-
rithms involving deformation of contours in field space (such
as the contraction method or the generalized thimble method)
is the calculation of the Jacobian J related to the para-
metrization of the manifold of integration. For bosonic
systems where the Hessian can be computed efficiently, the
calculation time is dominated by the matrix multiplication in
the flow equation and its computation complexity is OðN3Þ,
where N is proportional to the spacetime volume of the theory.
The calculation of det J has similar computational complexity.
This prohibitive cost prevents the study of all but the smallest
models.
There are ways to bypass this large cost. Cristoforetti et al.

(2014) introduced the following stochastic estimator to
compute the phase: ΦðϕnÞ ¼ arg det JðϕnÞ. The main idea

FIG. 11. The evolution of field space sampled in the (0þ 1)-
dimensional Thirring model as a function of flow time. At small
flow times the distribution is relatively uniform and much of
phase space is sampled. The distribution sharpens as the flow
time increases, and at sufficiently large flow times, the shoulder
thimbles centered around �0.3 cease to be sampled.

FIG. 12. Ā0 ¼ N−1
t

P
t A0;t is plotted after each tempered

transition. The five heavily visited positions in field space
correspond to five thimbles contributing to the path integral.
Compare this distribution to the sharpest distribution in Fig. 11,
where only one thimble is sampled.

17A modified TLTM method, called the “world volume hybrid
Monte Carlo method,” was recently proposed (Fukuma and
Matsumoto, 2021; Fukuma, Matsumoto, and Namekawa, 2021).

18Because the thermodynamic parameters used by Fukuma and
Umeda (2017) do not match those used by Alexandru, Başar,
Bedaque, and Warrington (2017), it is currently not possible to
compare the efficacy of tempered transitions and the TLTM. A
comparison would, however, be useful.
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stems from the observation that the Jacobian can be expressed
as J ¼ UR for some unitary matrix U and some real, upper-
triangular matrix R, a property that follows from the fact that
J†J ∈ R; therefore, arg det J ¼ arg detU. Note that since J
andU are related by a real matrix, this corresponds to a change
in basis in the tangent plane, so the columns of U form a basis
of the tangent space too: an orthonormal basis. Moreover, U
satisfies d log detUðtÞ=dt ¼ −iImTr½UTðtÞHðtÞUðtÞ�. The
trace can be estimated stochastically by using random vectors
ξ ∈ RN , with hξiξji ¼ δij, where the average is taken over the
random source. If we generate NR vectors we have

Tr½UTðtÞHðtÞUðtÞ� ≈ 1

NR

XNR

r¼1

ðξðrÞÞTUTðtÞHðtÞUðtÞξðrÞ:

ð3:24Þ

Now ηðrÞ ¼ UξðrÞ is a random vector in the tangent plane
that is isotropically distributed, and its length with respect
to the real Euclidean metric satisfies ⟪ηðrÞjηðrÞ⟫ ¼ N.
We can generate such vectors without computing U: we
generate a random vector η̃ isotropically in CN with
hη̃†η̃i ¼ 2N, for example, by using a Gaussian distribution
Pðη̃Þ ∝ expð−η̃†η̃=2Þ, and then project it to the tangent space
η ¼ PkðϕfÞη̃ using the same procedure presented when we
discussed the HMC algorithm. Using iΦðtÞ ¼ log detUðtÞ,
one can then estimate the phase from

ΦðTÞ ≈ Φð0Þ − Im
Z

T

0

dt
1

NR

XNR

r¼1

Tr½ηðrÞðtÞTHðtÞηðrÞðtÞ�;

ð3:25Þ

whose computational cost scales as OðN × NRÞ. By compar-
ing this stochastic estimation algorithm by explicit compu-
tation for a complex ϕ4 theory, Cristoforetti et al. (2014)
presented numerical evidence that this algorithm indeed
provides a nontrivial speedup for the computation of the
residual phase in relatively large systems. However, its
applicability is limited to the phase of the Jacobian; the
GTM also requires the magnitude.
For methods that require the Jacobian, we can substitute

computationally cheap estimators for them. The idea is to use
the estimators during the generation of configurations and
correct for the difference when computing the observables.
Two estimators for log det J were introduced by Alexandru,
Başar, Bedaque, Ridgway, and Warrington (2016b). They are
given by

W1 ¼
Z

T

0

dt
X
i

ρðiÞ†HðtÞρðiÞ; W2 ¼
Z

T

0

dtTrH̄ðτÞ;

ð3:26Þ

where ρðiÞ are the Takagi vectors of Hijð0Þ with positive
eigenvalues. The first estimator W1 is equal to log det J for
quadratic actions. The second estimator is equal to ln det J
when the Jacobian is real along the flow. As such, it is
expected to be a good estimator for Jacobians that are mostly

real. The bias introduced by the use of estimators instead of
the Jacobian is corrected by reweighting the difference
between them when computing observables with the help of

hOi ¼
hOe−ΔSiReS0eff
he−ΔSiReS0eff

; ð3:27Þ

where S0eff ¼ S −W1;2 and ΔS ¼ Seff − ReS0eff . The estimator
is useful when ΔS has small fluctuations over the sampled
field configurations, that is, if W1;2 “tracks” log det J well.
For theories where the Hessian can be computed efficiently,

such as bosonic theories with local actions, the W1 estimator
has a computational cost of OðN2Þ and W2 has OðNÞ
complexity, a significant improvement over OðN3Þ for the
full Jacobian. To use Eq. (3.27) the correct Jacobian J needs to
be computed. This has to be done, however, only on field
configurations used in the average in Eq. (1.2). Typically,
configurations obtained in subsequent Monte Carlo steps are
correlated and only one configuration out of tens or hundreds
of steps is used in Eq. (3.27). The idea is then to use the
cheaper Jacobian estimators like W1 and W2 during the
collection of configurations and to compute the expensive
Jacobian J only when making measurements, which cheapens
the calculation by orders of magnitude. This strategy was used
in the ϕ4 model in 3þ 1 dimensions (Alexandru, Başar,
Bedaque, Ridgway, and Warrington, 2016a) and the Thirring
model in 1þ 1 dimensions (Alexandru, Başar, Bedaque,
Ridgway, and Warrington, 2017), both times at finite density.
However, for other classes of problems, such as real-time
systems, the estimators W1 and W2 do not provide a
significant improvement.
A more robust algorithm for the Jacobian was introduced by

Alexandru, Başar, Bedaque, and Ridgway (2017). The key
idea is to modify the proposal mechanism in such a way as to
incorporate the Jacobian as part of the effective action. As an
added bonus, the procedure leads to isotropic proposals on the
integration manifold. As in the contraction algorithm, the goal
is to generate a distribution on the parametrization manifold
with a probability proportional to exp½−ReSeffðϕnÞ�. This is a
Metropolis method, so we need to make a proposal and then
accept or reject it. For update proposals, we generate a random
complex vector in the tangent plane at ϕf, uniformly distrib-
uted with normal distribution PðηÞ ∝ expð−η†η=δ2Þ. The
parameter δ controls the step size and is tuned to optimize
the acceptance rate. The vector η is generated using the
projection discussed earlier: a η̃ ∈ CN sampled from a
Gaussian distribution and then η ¼ PkðϕfÞη̃ using the vector
flow projection. The update in the parametrization space is
ϕ0
n ¼ ϕn þ ϵ, where ϵ ¼ J−1ðϕnÞη is a vector in the tangent

space at ϕn. Here we take advantage of the fact that the
parametrization space is flat and ϕ0

n does not need to be
projected.
Since the proposals are not symmetric, the accept-reject

step has to be slightly modified to satisfy the detailed balance.
The added factor does not cancel the Jacobian, unless the
proposal satisfies an implicit equation that is not easy to solve.
A better alternative is based an algorithm by Grady (1985): the
ratio of Jacobians is taken into account implicitly using a
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stochastic generated vector. The vector is generated with
probability PðξÞ ∝ exp½−ξ†ðJ0†J0Þξ�, where J0 ¼ Jðϕ0

nÞ and
the proposal is accepted with probability (Alexandru, Başar,
Bedaque, and Ridgway, 2017)

Pacc ¼ minf1; e−Re½S0−S�þξ†ΔJξ−ϵ†ΔJϵg; ð3:28Þ

where ΔJ ¼ ðJ0†J0Þ − ðJ†JÞ. We stress that ξ is a complex
random vector with 2N independent components, whereas ϵ
has only N independent components.
The highlight of this method is that by construction it

samples the probability distribution e−ReSj det Jj without an
explicit computation of j det Jj. It requires only the compu-
tation of J−1η and Jϵ, both of which scale as OðNÞ for most
bosonic theories.
A simplified algorithm that may lead to further computa-

tional speedup can be achieved when instead of JðϕnÞ we
approximate it with JðϕcÞ. The Jacobian is then required only
to compute the displacements ϵ and the accept or reject is done
simply based on the change of the action since ΔJ ¼ 0. For
this method JðϕcÞ−1 can be computed once at the start of the
simulation. The difference between JðϕnÞ and JðϕcÞ has to be
included by reweighting the observables as was done with
W1;2. This method should work well when the fluctuations of
JðϕnÞ are mild. Alexandru, Başar, Bedaque, and Ridgway
(2017) showed this to be the case for the real-time study of a
(1þ 1)-dimensional ϕ4 theory even in the strongly coupled
regime.

1. Case study: Real-time field theory

The generalized thimble method and the entire machinery
used to deal with the computational cost of the Jacobian was
applied to one of the most challenging sign problems: the
calculation of real-time correlators in field theory. These
correlators are the building blocks for the computation of
transport coefficients like diffusivity, conductivity, and vis-
cosities and are of great importance in a variety of physical
contexts. Similar methods can also be used in fully non-
equilibrium situations. At the same time the available theo-
retical tools to study this problem are limited. Even
perturbation theory requires complicated resummations
(Braaten and Pisarski, 1990; Jeon and Yaffe, 1996), and in
the strongly coupled regime the conventional lattice methods
are not applicable, as later detailed. Alternatively, stochastic
quantization (or the complex Langevin method) has been
utilized but it seems to converge to the wrong result if the time
separation t − t0 is more than the inverse temperature β
(Berges et al., 2007).
The central objects of interest here are time dependent

correlation functions of the form

hO1ðtÞO2ðt0Þiβ ¼ Tr½ρ̂O1ðtÞO2ðt0Þ�; ð3:29Þ

where ρ̂ is the density matrix that reduces to the familiar
Boltzmann factor e−βH=Trðe−βHÞ in equilibrium. Time de-
pendent correlation functions can be generated from the
Schwinger-Keldysh (SK) path integral (Schwinger, 1961;
Keldysh, 1964) as follows:

hO1ðtÞO2ðt0Þiβ ¼ Tr½O1ð0Þe−iHðt−t0ÞO2ð0ÞeiH½iβ=2þðt−t0Þþiβ=2��

¼ 1

Z

Z
Dϕ eiSSK½ϕ�O1ðtÞO2ðt0Þ; ð3:30Þ

where the SK action is obtained by integrating the
Lagrangian over a complex contour, as shown in Fig. 13.
The real part corresponds to forward and backward
time evolution and the imaginary part corresponds to the
insertion of the equilibrium density matrix e−βĤ=Tre−βĤ. For
instance, a discretized Schwinger-Keldysh action for a scalar
theory reads19

SðϕÞ ¼
X
t;x⃗

ata

�
1

2

ðϕtþ1;x⃗ − ϕt;x⃗Þ2
a2t

þ 1

2

X
î

ðϕt;x⃗þî − ϕt;x⃗Þ2
a2

þ Vðϕt;x⃗Þ
�
;

at ¼

8>><
>>:

ia for 0 ≤ t < Nt;

−ia for Nt ≤ t < 2Nt;

a for 2Nt ≤ t < 2Nt þ Nβ;

ð3:31Þ

from which the following correlators result:

hϕt1;x⃗1ϕt2;x⃗2i ¼
R ðQt;x⃗dϕt;x⃗Þe−SðϕÞϕt1;x⃗1ϕt2;x⃗2R ðQt;x⃗dϕt;x⃗Þe−SðϕÞ

: ð3:32Þ

The Boltzmann weight of the Minkowski part of the SK
contour (0 ≤ t < 2Nt) is purely imaginary, as expected from
the real-time evolution, and leads to a severe sign problem. In
fact, owing to the fact of its pure phase with no damping
term, it is impossible to define a phase quenched measure
and reweigh the phase. For this reason, conventional lattice
methods do not work for real-time problems even if

FIG. 13. The Schwinger-Keldysh contour in a complex time
plane. The real part corresponds to forward and backward time
evolution, and the imaginary part corresponds to the insertion of
the equilibrium density matrix.

19For simplicity, we consider the bosonic case but the formalism
can be generalized to the fermionic case in a straightforward fashion.
We also include an overall factor i so that the associated Boltzmann
weight is e−S.
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unlimited computational power is available.20 By contrast,
on any manifold M that is obtained by flowing from RN by
some fixed flow time, ReS > 0, and the action provides a
damping factor making the real-time path integral well
defined. The generalized thimble method has been successful
in computing time dependent correlation functions in
(0þ 1)-dimensional (quantum mechanics) (Alexandru,
Başar, Bedaque, Vartak, and Warrington, 2016; Mou,
Saffin, and Tranberg, 2019) and (1þ 1)-dimensional bosonic
field theories with VðϕÞ ¼ λϕ4=4! potential. In Figs. 14
and 15 the two lowest spatial Fourier modes of the time-
ordered correlator

Cðt − t0; pÞ ¼ Thϕðt; pÞϕðt0; pÞ†iβ; ð3:33Þ

where

ϕðt; pÞ ¼ 1

Nx

XNx−1

x¼0

eipxϕtx ð3:34Þ

are plotted for different values of λ (Alexandru, Başar,
Bedaque, and Ridgway, 2017). To ensure the validity of
the method, the weak coupling (λ ¼ 0.1) Monte Carlo result
is compared with the analytically performed zeroth, first, and
second order lattice perturbation theory calculations. In the
strong coupling regime that lies outside of the domain of
perturbation theory (see Fig. 16) the method works as well as
it does in the weak coupling regime without any problems. In

the quantum mechanical case a similar cross-check was
performed that showed agreement between the Monte Carlo
results and the exact result obtained by numerically solving
the Schrödinger equation (Alexandru, Başar, Bedaque,
Vartak, and Warrington, 2016). Mou, Saffin, and Tranberg
(2019) and Mou et al. (2019) studied the (1þ 1)-
dimensional model with a nonequilibrium density matrix.
The sign problem in the real-time problem gets more severe

when the time interval between the operators jt − t0j is
increased in units of inverse temperature. This is because
the real part of C that generates the pure phase contribution to
the path integral becomes larger. Therefore, a larger flow time
is needed to handle a larger jt − t0j. Recently, with the help of
the algorithms for the previously described Jacobian, jt − t0j ¼
4β was achieved on a lattice with Nt ¼ 8, Nβ ¼ 2, and
Nx ¼ 8. Extensions to larger time separations seem to be
hindered by trapping in a local minima in the Monte Carlo

FIG. 14. Monte Carlo computation of the time order correlation
function defined in Eq. (3.33) for p ¼ 0 and λ ¼ 0.1; 0.5; 1. The
λ ¼ 0.1 result is compared to the analytical perturbation theory
calculations at Oðλ0Þ, Oðλ1Þ, and Oðλ2Þ, which are offset along
the x axis for visual clarity. The λ ¼ 0.5; 1.0 results are outside of
the validity of perturbation theory (see Fig. 16) and the pertur-
bation theory calculations for these values are not shown here.

FIG. 15. Monte Carlo computation of the time order correlation
function defined in Eq. (3.33) for p ¼ 2π=Nx and λ ¼ 0.1; 0.5; 1.

FIG. 16. Comparison between the perturbative calculation and
the Monte Carlo result.The dotted, dashed, and solid lines denote
the Oðλ0Þ, Oðλ1Þ, and Oðλ2Þ calculations, respectively.

20In principle, it is possible to extract the real-time correlator (3.30)
from a purely Euclidean time correlator by analytic continuation. The
extrapolation is, however, numerically unstable and requires expo-
nentially accurate precision in Euclidean time.
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(Metropolis-Hastings) evolution, which calls for alternative
sampling methods to be utilized. For alternate methods to
tame real-time sign problems, see Kanwar and Wagman
(2021) and Lawrence and Yamauchi (2021).

E. Gauge theories

The thimble structure of gauge theories is more complicated
due to the fact that critical points are not isolated points but
instead continuous manifolds formed as gauge orbits. The
thimbles attached to the critical points carry the same degen-
eracy due to the gauge symmetry. One might envision instead
of working with the degenerate field spaceM fixing the gauge
and working with the quotient space M=G, where the critical
pointswould be isolated and the Picard-Lefschetz theory can be
used as usual. As we later discuss, this is possible for Abelian
gauge fields, but not for non-Abelian gauge fields. The reason
for this is that some critical points have nontrivial stabilizers
and become singular points on M=G.21 In this case, Picard-
Lefschetz theory has to be modified to accommodate these
complications, which was discussed in the context of Chern-
Simons theory by Witten (2011).
Lattice gauge theory remains largely unexplored from the

perspective of Picard-Lefschetz theory at the moment. We
review a few exploratory examples from the literature in
Secs. III.E.1 and III.E.2, studies that focused on simulating
small lattice systems. We note that QCD inspired models were
also studied: a 0þ 1 SUð3Þ system that reduces to a one-link
model (Di Renzo and Eruzzi, 2018) and a pure-gauge Uð1Þ
model at imaginary coupling (Pawlowski et al., 2020, 2021).
Before discussing the examples in detail, we discuss some
generalities. In lattice gauge theory the fundamental degrees of
freedom are gauge links Ui, where i≡ ðx; μÞ is the collective
index for the link variable Uxμ ≡Uðxþ μ̂; xÞ≡Ui. The
derivative with respect to the link variable is defined as

Da
i fðUÞ≡ ∂

∂t fðe
itTa

UiÞjt¼0: ð3:35Þ

As usual, we consider the complexification of the Lie group
where the link variables can be parametrized as U ¼ eiξaT

a
,

where Ta are the group generators and ξa are complex
variables. For example, the complexification of SUðNÞ leads
to SLðNÞ. The holomorphic flow equation reads

dUi

dτ
¼ i

X
a

½TaDa
i SðUÞ�Ui; ð3:36Þ

and it satisfies the desired properties dReSðUÞ=dt ¼
jDa

i SðUÞj2 > 0 and dImSðUÞ=dt ¼ 0. Unlike ordinary deriv-
atives, the group derivatives do not commute:

½Da
i ;D

b
j � ¼ −fabcδijDc

j ; ½Da
i ; D̄

b
j � ¼ −fabcδijD̄c

j ;

½Da
i ; D̄

b
j � ¼ 0; ð3:37Þ

where fabc are the structure constants of the gauge group such
that ½Ta; Tb� ¼ ifabcTc. Therefore, the flow equation for the
tangent space generated by eai ¼ Da

i S is modified as

deai
dτ

¼ ebjD
b
jD

a
i S − fabcebiD

a
i S: ð3:38Þ

1. Case study: Heavy-dense QCD

Some exploratory work toward implementing the thimble
method in QCD has been done within the so-called heavy-
dense QCD, which is QCD with heavy quarks in the high-
density limit (Zambello and Di Renzo, 2019). We present the
details later but note here that the effective action for this model
is not actually a gauge action, but rather a spin model. As
opposed to the heavy mass limit where the quarks decouple
from the theory, in the simultaneous high-mass, high-density
limit

m0 → ∞; μ → ∞; eμ=m0∶fixed; ð3:39Þ
the quarks remain in the picture and the theory has a nontrivial
phase structure controlled by μ. Just like QCD, heavy-dense
QCD exhibits a sign problem. At the same time it is not as
computationally demanding as full QCD, which makes it a
fruitful arena for testing new approaches to the sign problem
(Aarts et al., 2016; Zambello and Di Renzo, 2019). In this limit
the fermion determinant simplifies dramatically as (Bender
et al., 1992; Blum, Hetrick, and Toussaint, 1996)

detDf →
Y
x⃗

det ð1þ γPx⃗Þ2 det ð1þ γ̃P−1
x⃗ Þ2; ð3:40Þ

where γ ≡ ð2eμ=m0ÞNt , γ̃ ≡ ð2e−μ=m0ÞNt , and Px⃗ ¼QNt−1
t¼0 U0ðx⃗; tÞ is the Polyakov loop. Equation (3.40) has a

simple physical interpretation: in the infinite mass limit, quarks
are pinned to their spacial location and do not move. Therefore,
a quark (antiquark) at a spatial point x⃗ is simply described by
the Polyakov loop Px⃗ (P−1

x⃗ ). Furthermore, owing to the high-
density limit, the antiquark contribution is negligible (i.e.,
γ ≫ γ̃), and one can neglect the second determinant on the
right-hand side of Eq. (3.40). Since the fermion determinant has
no dependence on the spatial links (Uμ≠0), one can obtain the
effective action for heavy-dense QCD by integrating out the
spatial degrees of freedom in the QCD path integral as follows:

ZQCD ¼
Z

DUμe
ðβ=2NcÞ

P
pðTrUpþTrU†

pÞ
YNf

f¼1

detDf

→
Z

DU0e−SHDðU0Þ; ð3:41Þ

where we assume that all Nf quarks are heavy and have
identical chemical potentials for simplicity. The effective action
for the heavy-dense QCD in this case is

SHD ≡ Sgauge − 2Nf

X
x⃗

log ½det ð1þ γPx⃗Þ�;

Sgauge ≈ −
�
β

18

�
NtX

hx⃗ y⃗i
ðTrPx⃗TrP−1

y⃗ þ TrPy⃗TrP−1
x⃗ Þ; ð3:42Þ21For example, the zero field configuration is such a critical point

stabilized by the entire gauge group.
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where h·i denotes the nearest neighbors. The leading order
pure-gauge action, including the coefficient ðβ=18ÞNt , follows
from the character expansion of the original gauge action
(Langelage, Neuman, and Philipsen, 2014). In the low temper-
ature limit where Nt ≫ 1 and β ∼Oð1Þ, the pure-gauge
contribution Sgauge can be further neglected and SHD simply
reduces to

SHD ≈ −2Nf

X
x⃗

log det ð1þ γPx⃗Þ. ð3:43Þ

In particular, for Nc ¼ 3 the determinant over the gauge group
reduces to

det ð1þ γPx⃗Þ ¼ 1þ γTrPx⃗ þ γ2TrP−1
x⃗ þ γ3. ð3:44Þ

Higher order corrections to SHD are given in powers of the
hopping parameter κ ≡ 2=m0 and were given by Zambello and
Di Renzo (2019). Furthermore, Zambello andDi Renzo (2019)
focused on μ ≈ μc ≡m ¼ − logð2κÞ, where the nuclear phase
transition occurs at zero temperature. It is possible and
convenient to work in the temporal gauge, which eliminates
all the links in Px⃗ but one for a fixed x⃗ (say, t ¼ 0) such that
Px⃗ ¼ U0ðx⃗; t ¼ 0Þ≡Ux⃗. The holomorphic gradient flow
equation (3.36) in the temporal gauge reads

dUx⃗

dt
¼ i

X
a

ðTaDaSHD½U�ÞUx⃗ ¼ −2γ
X
a

Ta TrðTaUx⃗Þ
detð1þ γUx⃗Þ

Ux⃗:

ð3:45Þ

The critical points satisfy TrðTaUcr
x Þ ¼ 0 and therefore are

elements of the center:

Ucr
x⃗ ¼ eiωx⃗ ; ωx ∈

	
2πn
Nc

����n ¼ 0;…; Nc − 1



: ð3:46Þ

Since ωx can take one of these three values at each lattice site,
the number of critical points exponentially grows with the
volume as ðNcÞV . However, they contribute to the path integral
with different weights. Zambello and Di Renzo (2019) studied
this model with Nc ¼ 3 in small spatial volumes up to 33 − 43

and in a parameter range where only a few critical points, and
hence thimbles, contribute significantly to the path integral.
They estimated the critical points’ semiclassical weights
e−SHD½Ucr� using importance sampling. Furthermore, they per-
formed theMonte Carlo computations of the charge density hni
and the Polyakov loop hPi ¼ ð1=NÞPx⃗ TrhUx⃗i over the
thimbles with one and two lattice sites. The results show the
expected behavior in the cold limit near μ ¼ μcr, namely, hni
sharply changing22 from 0 to 1 [i.e., the silver blaze behavior
(Cohen, 2003)] and hPi having a narrow peak around μcr.
Furthermore, the contribution of three thimbles is necessary to
obtain this expected result.

2. Case study: 2D QED

Another example of a gauge theory, two-dimensional QED
with the lattice action

S ¼ 1

g2
X
r

ð1 − cosPrÞ −
X
a

ln detDðaÞ; ð3:47Þ

with

DðaÞ
xy ¼ maδxy

þ 1

2

X
ν∈f0;1g

½ηνeiQaAνðxÞþμδν0δxþν̂;y − ηνe−iQaAνðxÞ−μδν0δx;yþν̂�

ð3:48Þ

was studied by Alexandru, Başar et al. (2018), who used the
generalized thimble method. Here DðaÞ denotes the Kogut-
Susskind fermionic matrix23 for flavor a, and Pr denotes the
plaquette

Pr ≡ A1ðrÞ þ A0ðrþ x̂Þ − A1ðrþ t̂Þ − A0ðrÞ; ð3:49Þ

and t̂ and x̂ are the unit vectors in the time and space
directions. In the case of Abelian gauge theories, it is
convenient to work with the complexified gauge field
AμðxÞ ∈ C2N , where N is the number of lattice sites, instead
of the gauge links. This way degeneracies due to gauge
redundancy can be addressed in a straightforward fashion. For
any point x, the gauge orbit is generated using the gauge
transformation AμðxÞ → AμðxÞ þ αðxþ μ̂Þ − αðxÞ, which
forms an (N − 1)-dimensional24 subspace. The original real
field space can therefore be locally expressed as a direct
product R2N ¼ M0 × G, where M0 is the space of gauge
inequivalent field configurations and G is the gauge orbit. The
flow leaves G invariant because the gradient ∂̄S=∂A is
orthogonal to the gauge orbits and it commutes with the
gauge transformations. Therefore, the middle-dimensional
manifold (i.e., a manifold with a real dimension N) obtained
by flowing R2N by an amount T can be decomposed as
MT × G, where MT is the result of flowing M0 by T.
Furthermore, the critical points on the gauge fixed slice are
now isolated and the thimble decomposition follows straight-
forwardly as the limit T → ∞. This argument illustrates
conceptually how the generalized thimble method works in
the presence of an Abelian gauge field. For the actual lattice
computations, however, there is no need to fix the gauge, as
the Markov chain will randomly sample G, which has no effect
on the results as long as only gauge invariant observables are
evaluated.
Alexandru, Başar et al. (2018) put the generalized thimble

method into action in a Uð1Þ gauge theory with three fermion
species with charges 1, 1, and −2. Their charges are chosen in

22The saturation of the fermion density is due to the finite volume.

23To have neutral excitations a three flavor model with charges
ð2;−1;−1Þ was studied by Alexandru, Başar et al. (2018). The
two flavor model with equal charges has no sign problem due
to charge conjugation symmetry.

24Note that α ¼ const is not a gauge transformation.
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such a way that a state with finite fermion density does not
necessarily have a net charge, which would render the energy
of the state infinite in the thermodynamics limit. It is shown
that a computational speedup can be achieved by computing
the equation of state compared to a conventional real space
computation. Even though the cold limit, which shows the
silver blaze behavior (on a 14 × 10 lattice), can be achieved
this way, faster algorithms are needed for going to larger
lattices. Finally, two-dimensional QED in the continuum was
studied in the mean field approximation given by Tanizaki and
Tachibana (2017), where the exact thimble decomposition was
worked out for Nf ¼ 1; 2; 3 and it was shown that the sign
problem can be eliminated by deforming the path integral into
the thimble decomposition.

IV. OTHER MANIFOLDS AND THE ALGORITHMS THAT
CAN FIND THEM

A. Well beyond thimbles

We have seen that deforming the integration from RN to a
proper combination of thimbles is not always desirable from a
numerical point of view. The generalized thimble method, for
instance, uses a rough approximation of thimbles that, while
having a smaller average sign, has better ergodic properties.
There is no reason, however, to be limited to manifolds close
to the thimbles. The condition that SI is constant is only one
constraint in a 2N-dimensional space, and there presumably
are many manifolds of integration where the sign of the
integrand is fixed. In this section we consider a few methods to
search for other manifolds unrelated to thimbles that both
alleviate the sign problem and are numerically convenient.
An ideal manifold of integration would (i) ameliorate the

sign problem significantly both because the action is nearly
real on it and because the residual phase is small, (ii) be
computationally cheap to find, and (iii) be parametrized in
such a way that the associated Jacobian is also computation-
ally cheap. These restrictions are hard to satisfy all at the same
time, and only the first steps in this direction were taken. It
seems that insight into particular models will be essential for
exploiting this general idea profitably. We show next that, in
cases where the thimble method generates some of this
insight, it is not difficult to improve it by allowing for more
general manifolds. In other theories it is an open problem to
find a way to capitalize on the freedom of picking more
general manifolds.

B. Learnifolds

Suppose a number of points on the thimble(s) (or some
approximation of them) are obtained using the computation-
ally costly holomorphic flow equations. It is reasonable to
expect that the sign fluctuations on a manifold that interpolates
between the original manifold RN and the thimble will be
small. A point found using the flow (in reality a complex field
configuration or an element of CN) can be viewed as a map
connecting its real part to the corresponding imaginary part;
that is, for ϕ ∈ MT the map f takes Reϕ → fðReϕÞ ¼ Imϕ.
Here we assume that the manifold does not “fold”; i.e., every
real value of the field corresponds to a unique imaginary part.

We seek a manifold with a simple parametrization that
“interpolates” the configurations sampled on MT . The result
of the interpolation problem can be thought of as a map that
approximates f, the map that connects the given real parts of
coordinates to their imaginary parts. Thus, finding the inter-
polation of the points obtained by the flow can be formulated as
learning a general rule from a set of examples. This is a typical
problem studied by the artificial intelligence community, and
we can borrow some of their techniques to bear on it.
More concretely, suppose that we have a “training set” S

that is a number of field configurations ϕa
i lying on the

manifold MT , where i ¼ 1;…; N indexes their components
and a ¼ 1;…; jSj, with jSj the size of the training set. We
parametrize the interpolating manifold LS , an approximation
to MT , as

ϕi ¼ ζi þ if̃iðζÞ; ð4:1Þ

where ζi ∈ RN and f̃i is a real function approximating f.
The function f̃i is represented by a feed-forward network of
the type depicted in Fig. 17. The nodes on the left layer
represent the input values, in our case the values of ζi. The
results are combined on the second layer by making linear
combinations of them, adding a bias, and feeding them to a
nonlinear function σðxÞ that we take to be of the form
σðxÞ ¼ logð1þ exÞ. The result is

vj ¼ σ

�
bj þ

X
i

wijζi

�
; ð4:2Þ

where j indexes the nodes of the second layer. These results
are then combined again, piped through σðxÞ, and fed to the
next layer. At the end all results are combined in a single
number that represents f̃i¼0ðζÞ. By translation invariance, the
values of f̃iðζÞ for other i ≠ 0 can be obtained by translating
the inputs ζi. The feed-forward network is parametrized by
the weights (w’s) of every link and biases b’s of every node.

FIG. 17. Topology of a feed-forward network with five layers:
one input layer with four nodes, three intermediate layers with
three nodes each, and one output layer with one node. The inputs
in the incoming layer (shown on the left) are the real values of the
field. The output is the imaginary value of the coordinate of the
first point of the lattice f̃0ðζÞ.
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These parameters are chosen as follows in order to minimize
the discrepancy between the training set and the results of the
network:

Cðw; bÞ ¼ 1

jSj
XjSj
a¼1

jf̃w;bðReϕaÞ − Imϕaj; ð4:3Þ

where f̃w;bðReϕaÞ is the result of applying the network,
with parameters wij and bj, to Reϕa.25 To minimize Cðw; bÞ a
gradient descent algorithm is used. The computation of the
gradient is efficiently done using the back-propagation
algorithm. In fact, the existence of this simple algorithm
is an important motivation to use feed-forward networks, as
opposed to networks with more complicated topologies. The
minimization process is sped up tremendously by using the
adaptive moment estimate algorithm (ADAM) (Kingma and
Ba, 2014) [other methods were discussed by Ruder (2016)],
another process borrowed from the artificial intelligence
literature. Since the manifold LS is defined by a network that
learned how to approximateMT , we call LS the “learnifold.”
An example of the practical use of this method is described in
Sec. IV.B.1.
Three comments are worth making at this point. First, while

the usefulness of this method can be gauged on a case-by-case
basis, its correctness is guaranteed by construction. In fact,
any network will define a manifold of integration in the same
homology class as RN since the mapping

ϕiðζÞ ¼ ζi þ isf̃iðζÞ; ð4:4Þ

for 0 ≤ s ≤ 1, defines a one-parameter family of manifolds
interpolating between RN and LS . Care must be taken on the
asymptotic behavior of LS , determined by the function f̃iðζÞ,
in order for LS to be in the same class asMT . However, in the
case of periodic ζ, as in the following applications, this is
automatic.
Second, the parametrization of Eq. (4.1) helps one to avoid

the “trapping” of Monte Carlo chains as compared to the
parametrization through the flow used in the generalized
thimble method. This is explained by Fig. 18(b), where we
can see that the same manifold is parametrized by a small
region of RN (in the generalized thimble method) or a much
larger region using Eq. (4.1). Regions of RN with large
statistical weights are then less separated by low probability
regions, which facilitates the Monte Carlo sampling.
Similarly, the Jacobian of the parametrization of Eq. (4.1)
fluctuates less than the Jacobian of the flow parametrization.
Finally, it is unlikely that the learnifold LS is better at

controlling the sign problem than the manifold obtained by
flow (of which the training set is taken). The usefulness of the
method relies on the possibility of sampling the learnifold at a
cost orders of magnitude cheaper than flowing (and comput-
ing or estimating the Jacobian). The hope is that the increase
in statistics allowed by the speed of the process compensates
for the smaller average sign.

1. Case study: The ð1 + 1ÞD Thirring model revisited

The application of the learnifold method to the (1þ 1)-
dimensional Thirring model was discussed by Alexandru,
Bedaque et al. (2017). The first step is to collect a number of
complex configurations ϕa ¼ FTðζaÞ obtained by evolving
real configurations ζa by a time T according to the flow
equations (2.7) in order to form the training set S. This step is
identical to what is done in the generalized thimble method.
One wants to approximate the manifold MT particularly well
in the region that is going to be sampled the most. We also
want to sample some of the field configurations on MT
toward the large field value region to make sure that the profile
of the learnifold matches MT in this region too. Therefore,
some configurations are collected by running a Metropolis
chain with weight e−S and some others with weight e−S=τ, with
τ > 1. This way MT is sufficiently sampled, so the inter-
polation manifold LS approximates it well in the statistically
important regions and it is not radically wrong at asymptoti-
cally distant regions. Notice that there is no particular reason
for the Monte Carlo chain to be thermalized while collecting
these configurations; all that is required is to have a good
enough sampling of the statistically important regions of MT
and some sampling of the other regions. After these configu-
rations are generated they are used as the training set for the
feed-forward network. To enforce translation invariance, all

FIG. 18. (a) Parametrization using the holomorphic flow. Small
regions of RN map onto large regions of thimbles (or MT).
(b) Parametrization of Eq. (4.1). Regions of RN mapping onto
large regions of LS are larger and have smaller gaps between
them, which helps to prevent trapping of the Monte Carlo
Markov chain.

25Other cost functions can be used instead of the Cðw; bÞ one used
here.
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translations of them are added to the training set, resulting in a
larger set, typically of the order of 105 elements. This set is too
large to be used in the minimization process, so different
subsets (“minibatches”) are used at different steps of the
gradient descent (or ADAM step). Details were given by
Alexandru, Bedaque et al. (2017). A comparison of the
computational costs in the learnifold and generalized thimble
methods is not straightforward, because the cost of the
learnifold method is divided into a “fixed” cost related to
the generation of the training set and the minimization of the
cost function on the one hand and the running of the
Monte Carlo given the optimal manifold. The second part
is faster than the flowing required by the thimble method by
orders of magnitude, but the first part may dominate the total
costs. Calculations of the kind done by Alexandru, Başar,
Bedaque, Ridgway, and Warrington (2017) can be performed
more effectively using the learnifold method.
Similar methods were recently applied to the solution

of the Hubbard model away from half filling (Ulybyshev,
Dorozhinskii, and Pavlovskii, 2020)

C. Path optimization

An even more radical departure from thimbles is embodied
in the path optimization method. The idea here is to consider a
family of manifolds Mλ parametrized by a set of parameters
(collectively denoted by λ) and to maximize the average sign
within that family. The result of the maximization defines a
manifold Mλ0 that is the best, within that family, at amelio-
rating the sign problem. The viability of the method rests on
the observation that the gradient of the average sign in
parameter space can be calculated with a (usually short) sign
problem–free Monte Carlo calculation. Indeed, the average
sign on a manifold M is given by

hσiλ ¼
R
Mλ

dϕe−SðϕÞR
Mλ

jdϕje−ReSðϕÞ ¼
R
RN dζe−Seff ðζÞR

RN dζe−ReSeff ðζÞ
; ð4:5Þ

where SeffðζÞ ¼ S½ϕðζÞ� − ln det JðζÞ includes the determi-
nant of the Jacobian of the Mλ parametrization ϕi ¼ ϕiðζÞ.
The numerator of Eq. (4.5) is independent of λ due to
Cauchy’s theorem. The denominator, however, as an integral
of a nonholomorphic function, does depend on λ. In fact,

∇λhσi
hσi ¼

R
RN dζe−ReSeff ðζÞ½−∇λReSþ ReTrðJ−1∇λJÞ�R

RN dζe−ReSeff ðζÞ
: ð4:6Þ

The average sign does not affect the direction of the vector
∇λhσi and can be neglected during the maximization process,
while the right-hand side term of Eq. (4.6), the average
h−∇λReSþ ReTrðJ−1∇λJÞiReSeff , can be computed by the
Monte Carlo method without encountering a sign problem.
Knowledge of the gradient ∇λhσi (to be more precise,
knowledge of its direction in λ space) allows a maximization
routine like ADAM (Kingma and Ba, 2014) to find the values
of λ leading to the largest possible sign within the para-
metrized family of manifolds.
A few facts make this scheme practical. First, a rough

computation of the gradient is usually enough; some

stochastic noise is actually useful in avoiding local minima
that could otherwise trap the maximization process. Second,
the last configurations obtained with one value of λ is close to
being thermalized as λ is changed to a nearby value during the
maximization process, bypassing the need for long therma-
lization periods at each step of the minimization. Finally, it is
imperative that the family of manifolds considered (i) includes
only manifolds in the same homology class as RN , (ii) contain
manifolds where the sign problem is sufficiently ameliorated,
and (iii) are parametrized in such a way the computation of the
Jacobian J is cheap. Condition (i) is relatively easy to satisfy,
but there is tension between conditions (ii) and (iii). Theoretical
insight into the specific model of interest is required for the
successful application of this method, and it is currently sorely
missed in most theories of physical significance.
We note that contour deformations can be applied to

any theory with a holomorphic path integrand. This includes
theories with real actions but complex observables. This
fact, combined with path optimization, has been used to tame
the signal to noise problem encountered in calculations
of correlation functions in simple field theories (Detmold
et al., 2020, 2021).

1. Case study: The ð2 + 1ÞD Thirring model

The path optimization method was applied to a one-
dimensional integral by Mori, Kashiwa, and Ohnishi (2017),
the ð1þ 1ÞD Thirring model at finite density by Alexandru,
Bedaque, Lamm, and Lawrence (2018), the ð1þ 1ÞD ϕ4 model
by Mori, Kashiwa, and Ohnishi (2018) (with a neural network
parametrization of the manifolds similar to the one discussed in
Sec. IV.B), the Polyakov-Nambu-Jona-Lasinomodel (known as
the PNJL model) in ð0þ 1ÞD (Kashiwa, Mori, and Ohnishi,
2019a, 2019b), ð0þ 1ÞD QCD (Mori, Kashiwa, and Ohnishi,
2019), and ð1þ 1ÞD ϕ4 (Bursa and Kroyter, 2018). Here we
discuss its application to the 3D Thirring model (Alexandru,
Bedaque, Lamm, Lawrence, and Warrington, 2018).
The action defining the ð2þ 1ÞD Thirring model is in

Eq. (3.14). The family of manifolds considered is given by

A0ðxÞ ¼ ζ0ðxÞ þ ifλ0 þ λ1 cos ζ0ðxÞ þ λ2 cos½2ζ0ðxÞ�g;
A1ðxÞ ¼ ζ1ðxÞ;
A2ðxÞ ¼ ζ2ðxÞ; ð4:7Þ

where λ0, λ1, and λ2 are real numbers parametrizing the
manifolds. The ansatz selection in Eq. (4.7) is motivated by
the following considerations. First, the determinant of the
Jacobian J ¼ ∂Aν=∂ζi is trivial to compute (the cost scales
with the spacetime volume V, as opposed to V3) since the value
of AμðxÞ depends only on ζðxÞ evaluated at the same spacetime
point x:

det J ¼
Y
x

f1 − λ1 sin ζ0ðxÞ − 2λ2 sin½2ζ0ðxÞ�g: ð4:8Þ

Second, in the limit μ → ∞ the partition function

lim
μ→∞

Z ≈
�Z

d3Aeð1=g
2Þð
P

ν cosAνÞþði=2ÞA0

�
βV

ð4:9Þ
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factorizes into a separate integral at every spacetime point, and
the sign problem arises entirely from A0. The ansatz in
Eq. (4.7) reflects this. Third, in the weak coupling limit g2 →
0 we expect the functional integral to be dominated by the
saddle point with the smallest action that, as discussed in
Sec. III.B.2, has the form A0 ¼ iα, A1 ¼ A2 ¼ 0 for a real
constant α. The ansatz in Eq. (4.7) contains manifolds that
approach this thimble near its critical point. Finally, the
variables Aν are periodic variables with a period 2π [so they
belong to ðS1ÞN , not RN], and the question of whether the
manifolds defined by Eq. (4.7) have a different asymptotic
behavior is not present. Furthermore, by varying s from 1 to 0
in A0ðxÞ ¼ ζ0ðxÞ þ isfλ0 þ λ1 cos ζ0ðxÞ þ λ2 cos½2ζ0ðxÞ�g,
we see that every member of the family of manifolds can
be smoothly deformed to ðS1ÞN , guaranteeing the applicability
of the Cauchy theorem.
This method was used by Alexandru, Bedaque, Lamm,

Lawrence, and Warrington (2018) in lattices of sizes up to 103

and action parameters near the continuum. It is interesting to
examine how the maximization process proceeds. The param-
eter λ0 quickly acquires a nonzero value close to the position of
the critical point A0 ¼ iα, A1 ¼ A2 ¼ 0. The corresponding
manifold does not go through exactly through the critical point
and has a larger average sign than the space tangent to that
critical point. Afterward, λ1 and λ2 settle on their preferred
values, giving a small curvature to the manifold. More
complicated functions of ζ0 in Eq. (4.7) do not seem to improve
the average sign. It seems that one is required to go beyond the
factorized form in Eq. (4.7) for further improvements.
The results obtained by this method show a clear transition

(technically a crossover, as the fermion mass breaks chiral
symmetry explicitly) between a phase with a large chiral
condensate and another, at higher temperatures and densities,
where chiral symmetry is restored and the chiral condensate is
small; see Fig. 19. The resulting phase diagram is shown in
Fig. 20. The computation shown in the figure is done in finite
volume where the transition between regions of small and
large chiral condensate is a smooth rather than a sharp phase
transition. The sharpness of the phase transition is quantified
in the figure by the two thinner lines.

V. CONCLUSION AND PROSPECTS

A bird’s eye view of the developments described here reveal
some broad lessons that should not be lost amid the technical
details. The first is that the main idea that the thimble approach
to the sign problem is based on is sound and that no
fundamental flaw has been revealed, either conceptual or
practical. This is not to say one can currently use the method to
solve any sign problem. Indeed, the arguments of Troyer and
Wiese (2005) give us a reason to suspect that a general
solution to all sign problems is likely nonexistant. But the set
of ideas explored in this review provide a new setting where
the simulation of many models can and should be attempted.
This is not a trivial statement. There is a common perception
among nonpractitioners that there is a “conservation of
difficulty” and that any approach to solve the sign problem
will reveal, at closer inspection, a simulation cost as large as
the naive attempts. This is demonstrably untrue, as the
examples discussed in this review show.
The second foundational lesson is that the integration over

all the relevant thimbles is both necessary and possible, with
several algorithms already proposed and tested, usually in
small scale simulations. These simulations are not without
challenges: larger lattices generally produce more severe sign
problems, the holomorphic gradient flow is numerically
expensive, and for correctness the Jacobian must always be
computed. However, algorithms aimed at addressing these
difficulties have quickly developed. In fact, the rapid algo-
rithmic development in the last few years generated a problem
(or an opportunity) as most calculations were aimed at
demonstrating the algorithm correctness and scaling proper-
ties and not focused on the physics of the problem. For
instance, current technology should be able to clarify the
phase diagram of a variety of (1þ 1)-dimensional models at
finite temperature and density. At a larger computational cost,
(1þ 2)-dimensional models can also be studied now. In fact,
recent papers have begun setting up the path toward a solution
to the repulsive Hubbard model away from half filling, a result
that would be a game changer in the field (Hubbard, 1963;

FIG. 19. hψψi as a function of μ for the (2þ 1)-dimensional
Thirring model in a β × 62 lattice showing the melting of the
chiral condensate as the density is increased. The solid lines are
fit to the functional form hψ̄ψi ¼ A tanh½βðμ − μcÞ�.

FIG. 20. Phase diagram of the 3D Thirring model (Alexandru,
Bedaque, Lamm, Lawrence, and Warrington, 2018). The thick
central line shows the location where hψ̄ψiμ;T ¼ 0.5hψ̄ψi0;0, and
its width represents the statistical errors. The thinner lines
indicate hψ̄ψiμ;T ¼ ð0.5� 0.05Þhψ̄ψi0;0 to help gauge the sharp-
ness of the transition.
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Mukherjee and Cristoforetti, 2014; Saito, 2017; Fukuma,
Matsumoto, and Umeda, 2019a, 2020; Ulybyshev,
Winterowd, and Zafeiropoulos, 2019; Ostmeyer et al., 2020).
An important insight arising from the research on thimble-

related methods was that deformation of the integration
manifold to other manifolds is both possible and profitable.
This observation, as simple as it is, has vast consequences.
Indeed, the condition that the imaginary part of the effective
action is to be constant is only one constraint in a 2N-
dimensional space. This leaves a 2N − N − 1 ¼ N − 1 param-
eter family of possible directions of the tangent space of the
integration manifold to choose from while still solving the sign
problem. This freedom is not explored by holomorphic flow
methods to deform contours of integration.26 A few ideas exist
on how to explore this newfound freedom. One is to use
information about the model obtained elsewhere to devise
parametrized families of integration manifolds suitable for that
particular model. This approach provides a way of bringing
physical insight into a Monte Carlo calculation that is some-
times characterized as a brute force method. Whatever insight
is brought to the model, obtained by rigorous or intuitive,
approximate methods, can then be used to speed up a
calculation (hopefully exponentially) that is guaranteed to
converge to the correct answer using the Monte Carlo method.
A surprising recent development is that the physical insight
into a model can be substituted by systematic machine learning
techniques. We expect the near future to bring many more
developments in this direction.
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APPENDIX A: COMPUTATION OF THE JACOBIAN

The evolution by the holomorphic flow equation (2.7) by
time T maps initial conditions ζ onto ΦðζÞ. The Jacobian of
this transformation is derived in this appendix.
Begin by considering two infinitesimally close coordinates

ζ and ζ0, and let

v ¼ ϕðζ0; 0Þ − ϕðζ; 0Þ ðA1Þ

denote the corresponding difference vector between them.
Flowing for timeΔt, both ϕðζ0; 0Þ and ϕðζ; 0Þmove, changing

the difference vector. We denote this time dependent differ-
ence as vðΔtÞ; see Fig. 21. In the limit Δt → 0,

vaðΔtÞ≡ ϕaðζ0;ΔtÞ − ϕaðζ;ΔtÞ

¼
�
ϕaðζ0; 0Þ þ Δt

∂S
∂ϕa

½ϕaðζ0; 0Þ�
�

−
�
ϕaðζ; 0Þ þ Δt

∂S
∂ϕa

½ϕaðζ; 0Þ�
�

¼ ½ϕaðζ0; 0Þ − ϕaðζ; 0Þ�

þ Δt
∂2S

∂ϕa∂ϕb
½ϕaðζ; 0Þ�½ϕbðζ0; 0Þ − ϕbðζ; 0Þ�

¼ vað0Þ þ ΔtHab½ϕaðζ; 0Þ�vbð0Þ: ðA2Þ
In other words, a vector evolves along a flow trajectory
according to the following differential equation:

dva
dt

¼ Hab½ϕðζ; tÞ�vbðtÞ: ðA3Þ

We can use Eq. (A3) to evolve a set of N vectors forming an
orthonormal basis. Packaging these vectors in the columns of
a matrix Jð0Þ ¼ 1, we see that JðtÞ obeys

dJ
dt

¼ HJ: ðA4Þ

APPENDIX B: ANOTHER DEFINITION FOR THIMBLES

In this appendix we give a different perspective on
Lefschetz thimbles. We begin by focusing on the stationary
points of the flow, namely, the critical points of the action ϕc,
such that ∂S=∂ϕijϕc ¼ 0. Around a critical point27 it is always

FIG. 21. Two nearby points evolving by the holomorphic flow.
Their difference vector, shown in blue, evolves according to
Eq. (A3).

26Notice that, contrary to the multidimensional case, in the familiar
case of a single complex variable the condition ImSeff ¼ 0 defines a
unique contour.

27In our analysis we consider only isolated, quadratic (non-
degenerate) critical points. A degenerate critical point where the
Hessian determinant of ϕ vanishes can be split into μ nondegenerate
critical points with a small deformation, with μ being the Milnor
number of the critical point. A similar analysis presented in this
section follows (Pham, 1983).
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possible to find local coordinates fzi ¼ xi þ iyig, with
i ¼ 1;…; N, such that

SðϕÞ − SðϕcÞ ¼ z21 þ � � � þ z2N

¼ ðx21 þ � � � þ x2NÞ − ðy21 þ � � � þ y2NÞ
þ 2iðx1y1 þ � � � þ xNyNÞ; ðB1Þ

whose existence is guaranteed by the Morse lemma. Now
consider the (N − 1)-dimensional surface vðsÞ defined by
x21 þ � � � þ x2N ¼ s and y1 ¼ � � � ¼ yN ¼ 0. This surface is
known as the vanishing cycle since it vanishes at the critical
point. It can be viewed as the level set of the action around the
critical point S−1ðsþ scÞ, where sc ¼ SðϕcÞ. We now move
the vanishing cycle by varying s. This can be done by taking
the vanishing cycle around the critical point vðϵÞ and then
flowing it. As s runs from 0 to∞, the vanishing cycle sweeps a
real N-dimensional surface. This N-dimensional surface,
defined as the union of vanishing cycles on the half line
0 ≤ s < ∞, T ¼∪s vðsÞ, is known as the Lefschetz thimble
associated with the critical point ϕc. Similarly, we define an
(N − 1)-dimensional “dual” cycle, vDðsÞ by x1¼���¼xN¼0

and y21 þ � � � þ y2N ¼ s. We call the union of these dual
cycles on the half line 0 ≤ s < ∞, K ¼∪s vDðsÞ, the dual
thimble.28
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Lee, D., and T. Schäfer, 2005, Phys. Rev. C 72, 024006.
Li, A., A. Alexandru, and K.-F. Liu, 2011, Phys. Rev. D 84, 071503.
Li, A., A. Alexandru, K.-F. Liu, and X. Meng, 2010, Phys. Rev. D 82,
054502.

Li, D., 2016, arXiv:1605.04623.
Li, Z.-X., and H. Yao, 2019, Annu. Rev. Condens. Matter Phys. 10,
337.

Loh, E. Y., J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J.
Scalapino, and R. L. Sugar, 1990, Phys. Rev. B 41, 9301.

Lu, B.-N., N. Li, S. Elhatisari, D. Lee, J. E. Drut, T. A. Lähde, E.
Epelbaum, and U.-G. Meißner, 2019a, arXiv:1912.05105.

Lu, B.-N., N. Li, S. Elhatisari, D. Lee, E. Epelbaum, and U.-G.
Meißner, 2019b, Phys. Lett. B 797, 134863.

Matsui, H., 2021, arXiv:2102.09767.
Metropolis, N., A.W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, 1953, J. Chem. Phys. 21, 1087.

Mishchenko, P. A., Y. Kato, and Y. Motome, 2021, arXiv:
2106.07937.

Miyamura, O. (QCD-TARO Collaboration), 2002, Nucl. Phys.A698,
395.

Mori, Y., K. Kashiwa, and A. Ohnishi, 2017, Phys. Rev. D 96,
111501.

Mori, Y., K. Kashiwa, and A. Ohnishi, 2018, Prog. Theor. Exp. Phys.
023B04.

Mori, Y., K. Kashiwa, and A. Ohnishi, 2019, Prog. Theor. Exp. Phys.
113B01.

Morinaga, T., 2021, Phys. Rev. D 103, 083014.
Mou, Z.-G., P. M. Saffin, and A. Tranberg, 2019, J. High Energy
Phys. 11, 135.

Mou, Z.-G., P. M. Saffin, A. Tranberg, and S. Woodward, 2019,
J. High Energy Phys. 06, 094.

Mukherjee, A., and M. Cristoforetti, 2014, Phys. Rev. B 90, 035134.
Mukherjee, A., M. Cristoforetti, and L. Scorzato, 2013, Phys. Rev. D
88, 051502.

Muroya, S., A. Nakamura, C. Nonaka, and T. Takaishi, 2003, Prog.
Theor. Phys. 110, 615.

Nakamura, A., S. Oka, and Y. Taniguchi, 2016, J. High Energy Phys.
02, 054.

Neal, R., 1996, Stat. Comput. 6, 353.
Ostmeyer, J., E. Berkowitz, S. Krieg, T. A. Lähde, T. Luu, and C.
Urbach, 2020, arXiv:2005.11112.

Parisi, G., 1983, Phys. Lett. 131B, 393.
Parisi, G., and Y.-s. Wu, 1981, Sci. Sin. (Engl. Ed.) 24, 483.
Pawlowski, J. M., M. Scherzer, C. Schmidt, F. P. G. Ziegler, and F.
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