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The ongoing transition to renewable energy supply comes with a restructuring of power grids,
changing their effective interaction topologies, more and more strongly decentralizing them and
substantiallymodifying their input, output, and response characteristics.All of these changes imply that
power grids become increasingly affected by collective, nonlinear dynamic phenomena, structurally
and dynamically more distributed and less predictable in space and time, more heterogeneous in its
building blocks, and as a consequence less centrally controllable. Here cornerstone aspects of data-
driven and mathematical modeling of collective dynamical phenomena emerging in real and model
power grid networks by combining theories from nonlinear dynamics, stochastic processes and
statistical physics, anomalous statistics, optimization, and graph theory are reviewed. The mathemati-
cal background required for adequate modeling and analysis approaches is introduced, an overview of
power system models is given, and a range of collective dynamical phenomena are focused on,
including synchronization and phase locking, flow (re)routing, Braess’s paradox, geometric frustration,
and spreading and localization of perturbations and cascading failures, as well as the nonequilibrium
dynamics of power grids, where fluctuations play a pivotal role.
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I. INTRODUCTION

The mitigation of climate change is one of the greatest
challenges of mankind. Currently, 65% of all greenhouse gas
emissions are caused by the carbon dioxide (CO2) emissions
from fossil fuel combustion and industrial processes (IPCC,
2014). Thus, a fundamental transformation of our energy
system is inevitable to meet the goals of the Paris agreement to
limit global warming (Rogelj et al., 2015). Rapid actions are
needed as greenhouse gas emissions continue to increase and
the remaining carbon budgets shrink at an alarming rate
(Figueres et al., 2017; Rockström et al., 2017).
Power grids are at the heart of this transformation.

Renewable energy sources have shown remarkable develop-
ment in recent decades (Edenhofer, Pichs-Madruga, and
Sokona, 2011; Wiser et al., 2016; Creutzig et al., 2017),
but they fundamentally change the operation of the grids they
are connected to. The decarbonization of heating, transport,
and other sectors introduces new consumers to the electric
power grid. Gas and oil heating is replaced by heat pumps, and
district heating plants use resistive heaters in times of high
renewable power generation (Gröger, Gasteiger, and
Suchsland, 2015). Batteries of electric vehicles have to be
charged, which may cause congestion in the grid (Carvalho
et al., 2015; Bloess, Schill, and Zerrahn, 2018) but also offer a
chance of improving stability (Liu et al., 2013; Gajduk
et al., 2014).
Power grids are central to our economy and daily life. It is a

“uniquely critical infrastructure,” as a variety of other infra-
structures and sectors are dependent on the secure supply of
electric power (Van der Vleuten and Lagendijk, 2010).
Communication, information processing, public transport,
and even cooling infrastructure for food supply cannot work
without electric power. The energy transition further increases
this dependence, as other sectors are being electrified.
Ensuring a stable operation of the power system is thus a
necessity and a grand challenge.
Transforming the electric power system to meet the 21st

century challenges constitutes a transdisciplinary challenge
(Brummitt et al., 2013). Modeling, simulation, and analysis of
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the physical grid have always been an integral part of power
engineering. By now, thousands of simulations are run every
hour to assess the state of the grid and potential contingencies.
But the grid does not run in isolation: it is affected by the
weather, by automatic controls and information systems, by
energy markets, and finally also by human operators and
consumers. Understanding such interdependent systems is
challenging, particularly when they leave the normal state of
operation in the case of contingencies. Complexity science
can effectively complement detailed simulation models. It can
elucidate fundamental mechanisms and interactions, provide
explicative models, and identify new and unexpected risks. At
the same time large amounts of data become available from
new measurement devices and smart grid infrastructures. This
fosters an empirical and statistical view on power grid
operation and stability. In summary, power systems are
becoming increasingly complex and methods from statistical
physics, nonlinear dynamics, and network science can play an
important part in addressing current challenges.
We now name three central challenges for power system

operation arising during the energy transition:
(i) The variability of renewable energy sources is

perhaps the most well-known one. Wind and solar
power generation is determined by the weather and
fluctuates on all temporal and spatial scales.
Synoptic and seasonal variability are the most
obvious features (Heide et al., 2010; Bloomfield
et al., 2018; Staffell and Pfenninger, 2018), but
power generation can also fluctuate within seconds
due to atmospheric turbulence and the dynamics of
clouds (Milan, Wächter, and Peinke, 2013; Anvari,
Wächter, and Peinke, 2016; Anvari et al., 2016;
Zhang et al., 2019). Fingerprints of these fluctua-
tions can be observed in power grid frequency data
(Haehne et al., 2018); cf. also Gorjão, Jumar et al.
(2020) for a comprehensive data source.
Longer timescales have attracted increasing in-

terest recently, ranging from interannual (Collins
et al., 2018) to decadal variability (Wohland et al.,
2019) to the impact of climate change (Wohland
et al., 2017; Schlott et al., 2018; Weber et al., 2018).
A thorough statistical understanding of all modes of
variability and their consequences is integral to
system operation.

(ii) Furthermore, wind and solar power are typically
generated at locations with favorable natural resour-
ces. These locations are often far from consumers, so
a long-distance transmission of electric power be-
comes necessary (Pesch, Allelein, and Hake, 2014).
This increases grid loads and makes it vulnerable to
large-scale blackouts via cascading failures. Robust-
ness and vulnerability are central topics in network
science. Physicists have developed and analyzed a
variety of models for cascading failures to under-
stand their propagation, their statistical features, and
methods to mitigate them; see Albert, Jeong, and
Barabási (2000), Carreras et al. (2002), Motter and
Lai (2002), Dobson et al. (2007), Witthaut et al.
(2016), Yang, Nishikawa, and Motter (2017), Nesti,

Zocca, and Zwart (2018), and Schäfer, Witthaut
et al. (2018). More recently the optimal design of
networks has attracted strong interest in the scientific
community; see Nishikawa and Motter (2006),
Katifori, Szöllősi, and Magnasco (2010), and Kaiser,
Ronellenfitsch, and Witthaut (2020).

(iii) Finally, renewable power sources are different from
conventional power plants operating synchronous
machines. They are typically connected to the grid
via power electronic inverters with different char-
acteristics and dynamics (Carrasco et al., 2006).
Inverters have some important disadvantages, in
particular, they have no intrinsic inertia to stabilize
grid dynamics (Milano et al., 2018) but offer great
flexibility in design and control. Hence, the dynami-
cal stability of complex networked systems is a
topic of rapidly growing importance; cf. Anvari,
Hellmann, and Zhang (2020). Research must ad-
dress the stability of existing systems as well as the
design of future systems.

The goal of this review is twofold. It first provides a starting
point for physicists interested in aspects of power system
dynamics, operation, and robustness. To this end, the first part
of the review is written as a tutorial. We provide a short review
of the main tools from dynamical systems and network
science in Sec. II. We then review basic principles of power
grid operation and provide an overview of static and dynamic
models for power grids in Sec. III. We focus on the
mathematical description of the elements of power systems,
avoiding most technical details covered in the engineering
literature (Grainger and Stevenson, 1994; Kundur, 1994;
Machowski, Bialek, and Bumby, 2008; Wood, Wollenberg,
and Sheblé, 2014). Section IV then discusses the availability
of power system datasets required for own studies and
simulations. The tutorial part closes with a review of funda-
mental aspects of power grid stability in Sec. V.
The second part of the review addresses some recent results

obtained at the interface of statistical physics, dynamical
systems, network science, and power engineering. We first
consider aspects of dynamical stability in Sec. VI. When do
stable fixed points exist and how do they depend on local
dynamics and network topologies? We then analyze the
robustness and vulnerability of power grids in Sec. VII.
How does a grid react to the failure of single elements and
how do large-scale blackouts emerge? We investigate dynami-
cal perturbations or fluctuations and the transient dynamics of
grids in Sec. VIII. We conclude with an outlook on current and
future research topics in Sec. IX.

II. FUNDAMENTALS OF GRAPHS AND NETWORKS

A broad variety of collective dynamical phenomena in
future-compliant power systems crucially depend on how
consumers, producers, and storage infrastructures are inter-
connected. The topology of the resulting interactions typically
exhibits a variety of complex structural features beyond
regular lattices or random structures. We introduce here basic
concepts from graph theory used to quantitatively describe
such topologies and remark by example where they emerge in
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the analysis and modeling of power systems. A more
comprehensive introduction to graph theory and its applica-
tions can be found in a variety of textbooks, such as
Bollobás (1998).
A graph G ¼ ðV;EÞ is given by a set V ¼ f1;…;Ng of

vertices together with a set E of edges that is a symmetric
subset of V × V; i.e., if i; j ∈ V then ði; jÞ ∈ E if and only
if ðj; iÞ ∈ E. Because of this symmetry, such a graph is
also called an undirected graph. In a directed graph, the
edges are ordered 2-tuples, denoted ði; jÞ ∈ E, thus have a
direction from j to i and the edge set is not necessarily
symmetric.
If ði; jÞ ∈ E, we call i and j adjacent or neighbors and write

i ∼ j, where for directed graphs i might be adjacent to j but
not vice versa. The degree of a vertex is the number of its
neighbors; for directed graphs the in-degree is the number of
edges pointing to the vertex, and the out-degree is the number
of edges pointing from the vertex. If the degree of every vertex
is the same, ki ≡ k for all i, the graph is called k-regular or
simply regular.
A walk in a graph is a sequence of vertices and edges

p ¼ ðv0; e0; v1; e1;…; ek−1; vkÞ; ð1Þ

where each successive pair of vertices vj; vjþ1 is connected by
an edge ej ¼ ðvj; vjþ1Þ. If no vertex repeats in such a
sequence, it is called a path. A cycle is a walk with at least
one edge, with first and last vertices identical and with no
other vertices repeating. A graph is connected if there is a path
from any of its vertices to any other. A directed graph is
strongly connected if there is a directed path from any of its
vertices to any other; it is weakly connected if for any two of
its vertices v and w there is a directed path from v to w or from
w to v. A graph with no cycles is called a forest; a connected
forest is a tree.
Paths can be used to unambiguously define a metric on a

graph. The unweighted length of a path p is simply the
number k of edges in the sense of Eq. (1). The geodesic
distance between two vertices vn and vm is defined as the
length of the shortest path connecting the two vertices. Note
that the shortest path is not necessarily unique; if no such path
exists, the distance is infinite. In many applications, such a
simple definition of distance is not sufficient, as edges may
exhibit heterogeneous features. If a distance or weight dðeÞ is
assigned to every edge e ∈ E, the weighted length of a path is
given by

length ðpÞ ¼
Xk−1
j¼0

dðejÞ: ð2Þ

As before the length defines a weighted geodesic distance via
the shortest path, provided that all dðeÞ are non-negative.
The modeling of power grids and other real-world networks

includes but goes far beyond the basic concepts of graph
theory. In particular, we may assign quantities such as voltages
or power injections to the nodes, currents, and power flows to
the edges and study dynamical systems on networks. We will
thus need an algebraic description of networks, which links
properties of nodes and edges to the previously defined basic

properties of graphs. For a more detailed overview of
algebraic graph theory and its applications to power grids,
see Dörfler, Simpson-Porco, and Bullo (2018).
A power grid has N vertices, often referred to as buses in

power engineering, and L edges or branches. Properties of
vertices such as voltages are encoded in vectors in RN or CN.
The absolute value of each complex number encodes the
voltage magnitude and the arguments encode its phase
(relative to a reference). Similarly, properties of edges such
as flows are encoded in vectors in RL or CL. The topology of
such a network or graph is encoded in the adjacency matrix
A ∈ RN×N with the components

An;m ¼
�
1 if vertices n andm are adjacent;

0 otherwise:
ð3Þ

Furthermore, it is useful to define the node-edge incidence
matrix E ∈ RN×L with the components (Newman, 2010)

En;l ¼

8>><
>>:

1 if linel starts at node n;

−1 if linel ends at node n;

0 otherwise:

ð4Þ

We note that power grids abstract to undirected graphs: a
transmission line can transmit power in either direction. For
each edge we fix an orientation to encode the direction of
power flow: positive in one direction and negative in the other
one. The orientation, the start, and the end of an edge is
arbitrary but must be kept fixed.
The node-edge incidence matrix is useful to keep track of

network flows. Suppose that the flows over all edges are
denoted as a vector F ∈ RL. The total inflow or outflow at all
nodes is then given by EF ∈ RN. The kernel of E corresponds
to cycle flows: For any vector F ≠ 0 in the kernel, the
inflow and outflow vanish at every node such that the flow
must be cyclic. We can fix a basis for the kernel by choosing
L − Nþ 1 independent fundamental cycles and encoding this
basis in the cycle-edge incidence matrix C ∈ RL×ðL−Nþ1Þ with
components

Cl;n ¼

8>><
>>:

1 if edgel ¼ ði; jÞ belongs to cycle c;

−1 if the reverse edge ðj; iÞ belongs to cycle c;

0 otherwise;

ð5Þ

such that EC ¼ 0. In a plane graph, a graph drawn on a plane
without edge crossings, one typically chooses the facets of the
graph as the fundamental cycles. After fixing a basis, any
cycle flow (any vector in the kernel of E) can be written as
F ¼ Cf , with coefficients f1;…; fL−Nþ1.
Not all edges in a grid are equally strong; for instance, the

impedance typically scales with the length of a line such that
longer transmission lines will have lower conductances and
susceptances. We assign weights bij to all edges ði; jÞ. Either
these weights can be included in a diagonal matrix
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Bd ¼ diagðb1; b2;…; bLÞ ∈ RL×L ð6Þ

or we can define a weighted adjacency matrix

An;m ¼
�
bnm if vertices n andm are adjacent;

0 otherwise:
ð7Þ

A particularly important matrix to characterize the stability of
a network dynamical system is the Laplacian matrix Λ ∈
RN×N with components (Newman, 2010)

Λn;m ¼

8>><
>>:

PN
i¼1 bni for n ¼ m;

−bnm if n ≠ m and n;m are adjacent;

0 otherwise:

ð8Þ

Using the node-edge incidence matrix, the Laplacian is
written as Λ ¼ EBdE⊤, where the superscript ⊤ denotes
the transpose of a matrix. If all weights are positive, Λ is
symmetric and positive semidefinite; i.e., all eigenvalues are
real and non-negative and can be ordered as

0 ¼ λ1 ≤ λ2 ≤ � � � ≤ λN: ð9Þ

The second eigenvalue λ2 measures the algebraic connectivity
of a graph (Fiedler, 1973), and the associated eigenvector v2 is
called the Fiedler vector. More generally, the number of zero
eigenvalues of Λ equals the number of connected components
of the graph (Newman, 2010).

III. POWER SYSTEM MODELS

In this section we introduce the basic mathematical models
for power system operation and stability. We start with the
fundamental relations for currents and power flows in ac
power grids leading to static power grid models, then
introduce dynamical models for synchronous machines and
power electronic inverters.

A. Static models

1. Fundamentals of ac power flow

In an ac power grid the voltages V and currents I oscillate
approximately sinusoidally with time as follows:

VðtÞ ¼ Vpeak cosðωtþ ϑVÞ ¼
ffiffiffi
2

p
ℜðVeiωtÞ;

IðtÞ ¼ Ipeak cosðωtþ ϑIÞ ¼
ffiffiffi
2

p
ℜðIeiωtÞ; ð10Þ

where we have defined the complex-valued amplitudes as

V ¼ Vpeakffiffiffi
2

p eiϑV ; I ¼ Ipeakffiffiffi
2

p eiϑI : ð11Þ

Voltage and current are typically out of phase due to capacities
or inductances, which is reflected by the phase factors ϑV and
ϑI . As the phases of voltage and current play essential roles in
describing grid operation, we mainly employ a complex
notation in this review. In the engineering literature, the
complex quantities V and I are referred to as phasors and

denoted by an underline. We adopt this notation in the
following but denote the imaginary unit by the symbol i,
as is common in physics. The electric power is oscillating too,
but only the time-averaged value

P ¼ 1

T

Z
T

0

VðtÞIðtÞdt ¼ ℜðVI�Þ; ð12Þ

the real power or active power, can do work. The imaginary
part Q ¼ ℑðVI�Þ describes the power temporarily stored in
capacitances and inductances and is referred to as the reactive
power. Furthermore, one defines the apparent power
S ¼ Pþ iQ ¼ VI�. These relations show that the relative
phases of voltages and currents are essential for the power
flow in a grid. We note that deviations from perfect sinusoidal
signals do occur in practice: for example, higher harmonics in
power electronic sources (Liang and Andalib-Bin-Karim,
2018). Nevertheless, this idealization is extremely helpful
for the modeling and analysis of power systems.
The basic relation between voltage at the nodes k; n ∈

f1;…;Ng of a power grid and the currents flowing between
the nodes is given by Ohm’s law:

Ikn ¼
1

zkn
ðVk − VnÞ ¼ yknðVk − VnÞ; ð13Þ

where zkn ¼ rkn þ ixkn is the impedance and ykn ¼ 1=zkn is
the admittance of the transmission line between the
nodes k and n. The admittance is divided into its real and
imaginary parts ykn ¼ gkn þ ibkn, where gkn is the conduct-
ance and bkn is the susceptance. For multicircuit transmission
lines, we take ykn to be the sum of the admittances of the
single circuits and ykn ¼ 0 if no transmission line exists. The
total current injected into the node k is then given by
Ik ¼

P
n Ikn ¼

P
n yknðVk − VnÞ. For actual calculations it

is convenient to introduce the nodal admittance matrix
Y ∈ CN×N with the entries

Ykn ¼ Gkn þ iBkn ¼
�PN

n¼1 ykn if k ¼ n;

−ykn if k ≠ n:
ð14Þ

Ohm’s law can then be rewritten in a vectorial form, which
yields the network equations

I ¼ YV; ð15Þ

where I ¼ ðI1; I2;…; INÞ represents the complex currents
injected into the N nodes and V ¼ ðV1; V2;…; VNÞ denotes
the complex voltages. The apparent power injected to a node k
is then given by

Sk ¼ VkI�k: ð16Þ

Real-world power transmission and distribution grids are
mostly constructed as three-phase systems. Hence, there are
three conductors with voltages VAðtÞ ¼ Vpeak cosðωtþ ϑVÞ,
VBðtÞ ¼ Vpeak cosðωt þ ϑV þ 2π=3Þ, and VCðtÞ¼
Vpeak cosðωtþϑV þ4π=3Þ to ground. The voltage between
two conductors oscillates sinusoidally with an amplitude of
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ffiffiffi
3

p
Vpeak. If all three conductors have the same voltage

magnitude and a fixed phase difference, it is sufficient to
keep one value of V and I. Basic relations such as Eq. (15)
remain unchanged, but the transmitted power is 3 times as
large as in a single-phase system. The power balance at each
node hence reads

Sk ¼ 3VkI�k

¼
XN
n¼1

3jVkjjVnjðGkn − iBknÞðcos θkn þ i sin θknÞ; ð17Þ

where θkn ¼ θk − θn is the phase difference of complex
voltages Vk and Vn. Real and imaginary parts yield the active
and the reactive power balance conditions

Pk ¼
XN
n¼1

3jVkjjVnjðGkn cos θkn þ Bkn sin θknÞ; ð18Þ

Qk ¼
XN
n¼1

3jVkjjVnjðGkn sin θkn − Bkn cos θknÞ: ð19Þ

Detailed discussions of the network equations and the result-
ing power flow equations were provided in Chaps. 7–9 of
Grainger and Stevenson (1994) and Chap. 6 of Wood,
Wollenberg, and Sheblé (2014).

2. Transformers and the per unit system

Real-world transmission systems are more diverse and
include different transmission elements. In particular, we
consider the following three types of devices. First, trans-
formers are essential to link different voltage levels, from the
transmission grid at highest voltages (380 kV in Europe, up to
765 kV in North America) down to the house connecting lines
at low voltages (380 V in Europe). Second, special trans-
formers may shift the phase of voltage and current on the two
terminal ends (Verboomen et al., 2005). Third, the model for
an ordinary transmission line needs to be extended to take into
account the charging capacity typically present in real-
world lines.
One can include all these devices in the common network

model using a system of rescaled variables, the per unit (pu)
system, and the unified model for all transmission elements
depicted in Fig. 1(b). The equivalent circuit of this trans-
mission element includes an ideal transformer with the tap
ratio t and the phase shift θshift in addition to a π-equivalent
line model. The line model includes the series admittance y
and a charging susceptance bc, which is attributed equally to
the two end points of the line for simplicity.
To see how the network equations have to be modified in

each case, we first consider a single transmission element as
shown in Fig. 1(b). The voltages and currents on the two
terminals of the ideal transformer are related by a factor of
N 12 ¼ t12eiθ

shift
12 . The current flowing through the series

admittance is given by y12ðV2 − V1=N 12Þ according to
Ohm’s law. Kirchhoff’s current law for the junctions marked
by thick black dots in the figure reads

I2 ¼ y21

�
V2 −

V1

N 12

�
þ i
2
bc12V2; ð20Þ

N �
12I1 ¼ −y12

�
V2 −

V1

N 12

�
þ i
2
bc12

V1

N 12

: ð21Þ

It is convenient to introduce scaled units, which are referred
to as the “per unit” or “pu” system in power engineering. We
fix a reference value Sbase for the power in the entire grid and a
reference value Vbase;k for the voltage separately for every
voltage level k. The reference values for the currents and
admittances are then given by Ibase;k ¼ Sbase=ð3Vbase;kÞ and
Ybase;k ¼ Ibase;k=Vbase;k. Generally, one selects the nominal
voltage of each voltage level as the reference value, while a
typical value for the power would be Sbase ¼ 100 MVA.
For the π-transmission line depicted in Fig. 1, this choice
yields Vbase;1=Vbase;2 ¼ t12. Dividing Eq. (20) by Ibase;2 ¼
Ybase;2Vbase;2 then yields

I2
Ibase;2

¼ y21
Ybase;2

�
V2

Vbase;2
− e−iθ

shift
12

V1

t12Vbase;2|fflfflfflfflffl{zfflfflfflfflffl}
¼Vbase;1

�

þ i
2

bc12
Ybase;2

V2

Vbase;2

⇒ Ĩ2 ¼ ỹ21ðṼ2 − e−iθ
shift
12 Ṽ1Þ þ

i
2
b̃c12Ṽ2; ð22Þ

where we use a tilde to denote the scaled quantities in the pu
system, as with Ĩ2 ¼ I2=Ibase;2. Equation (21) can be rescaled
analogously if we adopt the convention that θshift12 ¼ −θshift21 .
We note that Ybase;2 and not Ybase;1 has to be used in the
normalization of the impedance ỹ12 ¼ ỹ21 ¼ y12=Ybase;2, as
the line is on the 2 side of the transformer, not on the 1 side.
In a large power grid with many nodes and transmission

lines, we then obtain

Ĩk ¼
XN
n¼1

ỹklðṼk − eiθ
shift
kn ṼnÞ þ

i
2
b̃cknṼk: ð23Þ

We note that an ideal transformer appears as a simple series
admittance ỹ12 in the pu system. This simplification will be

(a)

(b)

FIG. 1. Transmission elements. (a) Simple series admittance.
(b) Unified transmission element consisting of an ideal trans-
former and a π-equivalent line model.
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used in the modeling of generators, which are typically
connected to the grid via a step-up transformer.
Rewriting Eq. (23) in a vectorial form, we recover the

network equations in the form of Eq. (15), however, with a
modified nodal admittance matrix Ỹ defined as

Ỹkn ¼
�PN

n¼1 ỹkn þ ib̃ckn=2 if k ¼ n;

−ỹkneiθ
shift
kl if k ≠ n:

ð24Þ

Finally, the power is rescaled to the pu system by dividing
Eq. (17) by the reference value Sbase ¼ 3Vbase;kIbase;k, which
yields S̃k ¼ ṼkĨ

�
k as desired.

The pu system thus simplifies the network equations, as we
can treat all transmission elements alike. In addition, it is
advantageous for numerical calculations, as all quantities are
of order unity such that rounding errors are minimized. All
details of the transmission elements are absorbed into the
nodal admittance matrix Ỹ. In the absence of phase shifters,
Ỹ ¼ Ỹ⊤ is symmetric. A detailed discussion of the pu systems
and their benefits was provided in Chaps. 1 and 2 of Grainger
and Stevenson (1994).

3. The ac load flow equations

Thus far we have established a set of nonlinear algebraic
equations describing the steady state of ac power grids, linking
nodal power injections Pn and Qn to nodal state variables θn
and jVnj. Two of these four quantities are fixed externally for
every node, for instance, via power demand. The remaining
unknown variables are obtained by numerical solution of the
load flow equations; see Chap. 9 of Grainger and Stevenson
(1994) and Chap. 6 of Wood, Wollenberg, and Sheblé (2014)
for detailed introductions.
In practice, we distinguish three types of nodes. A PV bus is

typically connected to a generator, which provides a fixed
power output P at fixed voltage magnitudes jVj. A PQ bus
represents a node with a given consumption, such that the net
injected active power P and reactive power Q are given, while
the voltages at these nodes are unknown. A special kind of bus
is the slack bus, which captures the supply of the power
necessary to have overall power balance in the system to
ensure that there is a steady-state solution. It acts as an ideal
voltage source (fixed V) where the parameters P andQ remain
unspecified to balance active and reactive power during the
iteration toward the steady-state solution. This is necessary
because power losses on the transmission lines are not known
a priori before the solution is obtained.
Suppose that we are interested in a transmission grid of Nl

loads, Ng generators, plus one generator node taken as slack.
We then have 2Nl þ Ng unknown state variables: the phases
of all Ng þ Nl nonslack nodes and the voltage magnitudes of
Nl load nodes. These unknown variables are fixed by 2Nl þ
Ng nonlinear algebraic equations as follows:

Pnðθ1;…; θNgþNl
; jV1j;…; jVNl

jÞ ¼ Psp
n ;

Qkðθ1;…; θNgþNl
; jV1j;…; jVNl

jÞ ¼ Qsp
k ; ð25Þ

where n labels all nonslack nodes, while k labels load nodes
only. The superscript “sp” indicates that values on the right

side are specified beforehand and the functions Pnð·Þ and
Qkð·Þ are given by Eqs. (18) and (19).
A common and effective way to solve this equation system

is the Newton-Raphson method [cf. Chap. 9 of Grainger and
Stevenson (1994) and Chap. 6 of Wood, Wollenberg, and
Sheblé (2014)], which iteratively updates the state vector from
an initial guess at the solution of Eqs. (25). The solution for
the state vector describes the power grid in steady-state
operation. We note that a set of nonlinear equations may
exhibit a single well-defined solution but may also have no or
several solutions. The lack of a solution indicates an unstable
situation that is further discussed in Sec. V.A, while multi-
stability is addressed in Sec. VI.C.3. Recent advances and
challenges in numerical methods for ac power flow compu-
tations were discussed by Trias (2012) and Mehta, Molzahn,
and Turitsyn (2016).

4. Linearized power flow

For small loads and losses in a power grid, load flow
calculations simplify considerably [see Chap. 6.18 of Wood,
Wollenberg, and Sheblé (2014)] via linearized power flow
equations that are based on three approximations. (i) For each
transmission element, the resistance and the charging suscep-
tance are small compared to the reactance and are thus
neglected. Hence, the admittance is purely imaginary
[ynk ¼ 1=ðixnkÞ]. (ii) Variations of the voltage magnitude
are typically small in transmission grids, such that we can
fix them at the reference value of the respective voltage level.
In the pu system we thus write Vn ¼ eiθn , and the power
balance at a node n reads [cf. Eqs. (18) and (20)]

Sn ¼ VnI�n ¼
XN
k¼1

1

ix̃nk
ðV�

n − e−iθ
shift
nk V�

kÞVn: ð26Þ

Technically, all nodes must then be considered PV buses, such
that no equations for the reactive power must be taken into
account. Taking the real part of Eq. (26), we obtain the
following balance equation for the real power:

Psp
n ¼

XN
k¼1

Pn→k ¼
XN
k¼1

1

x̃nk
sinðθn − θk − θshiftn;k Þ: ð27Þ

(iii) Finally, small loads imply that the phase differences
across a transmission line are small such that the sine function
is approximated to first order. The load flow calculations then
reduce to the following set of linear equations:

XN
k¼1

Bnkθk ¼ Psp
n − Pshift

n ; ð28Þ

where Pshift
n ¼ P

k Bnkθ
shift
nk accounts for the effects of the

phase shifting transformers and the matrix B ∈ RN×N is the
nodal susceptance matrix expressed in per units but without
taking into account potential phase shifts:

Dirk Witthaut et al.: Collective nonlinear dynamics …

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015005-7



Bnk ¼
8<
:

P
m x̃−1nm if n ¼ k;

−x̃−1nk if n is connected to k;

0 otherwise:

ð29Þ

The simplified Eq. (28) is often referred to as the dc
approximation, as it is mathematically equivalent to
Kirchhoff’s circuit equation for dc electric circuits. Still, it
describes the flow of real power in ac power grids. Linear
equations can be solved much faster than the nonlinear load
flow equations (25), which is advantageous when the flow
must be calculated for many different scenarios of generation
and load. Furthermore, the linear approximation avoids the
problem of multiple or disappearing solutions or multiple
optima in optimization problems. Limits of its applicability
were discussed in detail in (Purchala et al. (2005), Van Hertem
et al. (2006), and Stott, Jardim, and Alsac (2009).
A word of caution is in order, as the symbol B is used for

several related but different quantities. Transmission lines and
ordinary transformers have a positive reactance x̃ > 0. Hence,
the off-diagonal elements of the nodal susceptance matrix (29)
are negative. In contrast, the imaginary parts of the nodal
admittance matrix elements (14) are positive. Both quantities
are denoted by the symbol B, and one must be careful to not
confuse them.

5. Matrix formulation

The linearized power flow equations can be condensed in a
highly practical compact matrix notation. Let N denote the
number of nodes and L denote the number of lines in a grid as
before. We define the vectors of power injection as
P ¼ ðP1;…; PNÞ⊤ ∈ RN, the vector of voltage phase angles
as θ ¼ ðθ1;…; θNÞ⊤ ∈ RN, and the vector of line flows as
F ¼ ðF1;…; FLÞ⊤ ∈ RL. As the flow is directed, we must
assign an orientation to each line in the grid that is arbitrary
but must be kept fixed. We assume that there are no phase-
shifting elements and that power injections are balanced; i.e.,
the Pn sum to zero.
The directed real power flow Fl on a line l from node m to

node n is given by Fl ¼ x−1l ðθm − θnÞ. Using the diagonal
matrix Bd defined in Eq. (6) with weights bl ¼ x−1l and the
node-edge incidence matrix (4), the relation of flows and
phase angles are given by

F ¼ BdE⊤θ: ð30Þ
The real power balance at each node now reads

P ¼ EF; ð31Þ
stating that the power flowing out of each node must equal the
power injected at the node. When one combines Eqs. (30)
and (31), the equation for the power injections in terms of the
voltage angles is obtained as

P ¼ EBdE⊤θ ¼ Bθ: ð32Þ
When Eq. (32) is taken together with Eq. (30), we thus have a
linear relation between line flows F and nodal power
injections P.

The matrix B ¼ EBdE⊤ with the elements given in Eq. (29)
is a weighted Laplacian and thus has a single zero eigenvalue
if the network is connected; cf. Sec. II. Thus, it is noninvertible
and we solve Eq. (32) for θ via the Moore-Penrose pseu-
doinverse B� to obtain the line flows directly as a linear
function of the nodal power injections

F ¼ BdE⊤B�|fflfflfflffl{zfflfflfflffl}
≕ PTDF

P: ð33Þ

The matrix prefactor is called the power transfer distribution
factor (PTDF) matrix (Wood, Wollenberg, and Sheblé, 2014),
as it describes how power injections are distributed throughout
the grid.
The zero eigenvalue of the Laplacian B represents a

phase-shift invariance. Uniformly shifting all nodal phases
by the same constant c, θn → θn þ c, does not affect any
power flows. Fixing the phase angle θk ≡ 0 at one node k
(the slack node) removes this degree of freedom. We then
remove the node from the analysis by removing the kth
row from the vector θ and the kth row and kth column from
the matrix B. The resulting matrix is called a grounded
Laplacian.

6. Generalized linear approximations

Several generalizations of the dc approximation have been
developed, and we comment upon three of them.

(i) First, one can improve on the linear approximation
of the sine function by rewriting the governing
equations of the dc approximation in two parts.
We have

P ¼ EBdψ; ð34Þ

where ψl denotes the sine of the phase difference
along the line l. In the ordinary dc approximation,
one simply replaces the sine with its argument; in
vectorial form one thus obtains ψ ¼ E⊤θ. If we do
not neglect the sine, we instead have

ψ ¼ sinðE⊤θÞ: ð35Þ

The basic idea of the generalized dc approximation
(Dörfler and Bullo, 2013b; Simpson-Porco, 2018) is
to first obtain ψ approximately and then solve for θ.
The general solution to the underdetermined equa-
tion (34) reads

ψ ¼ E⊤B�Pþ B−1
d Cf ; ð36Þ

where C is the cycle-edge incidence matrix (5) and f
is a vector of cycle flows. To find the actual value of
the cycle flows, we would obtain the correct solution
of the nonlinear power flow equations, an approach
discussed in Sec. VI.C. Here we consider practical
approximate solutions and assume the cycle flows f
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to be negligible under normal operating conditions.
Equation (35) then yields

θ ≈ ðEE⊤Þ−1E arcsinðE⊤B�PÞ: ð37Þ

(ii) A second generalization is to approximately incor-
porate Ohmic losses in a linear fashion. Two iterative
procedures that introduce losses but keep the
assumption of fixed voltage magnitudes were de-
scribed by Stott, Jardim, and Alsac (2009) and
Simpson-Porco (2018).

(iii) A third class of linear models includes reactive
power flows and voltage variations by appropriate
linearization of the nonlinear ac load flow equations.
Different approaches were discussed by Coffrin, Van
Hentenryck, and Bent (2012), Zhang et al. (2013),
and Yang et al. (2019).

7. Hybrid power grids

High voltage dc (HVDC) transmission lines can transmit
bulk power over large distances with lower capital cost and
lower losses than standard ac lines (Setreus and Bertling,
2008). They are connected to ac via power electronic
converter stations, which offers a high degree of flexibility.
The transmitted real power can be controlled by the grid
operator. Modern converter stations can provide system
services such as reactive power compensation. HVDC lines
are included in a load flow study rather easily by representing
the two converter stations with two additional PV buses. One
of the converter nodes draws a power Pf < 0 from the grid at
node f, and the other converter then feeds a power

Pt ¼ −Pf − Ploss ¼ −Pf − ðl0 − l1PfÞ ð38Þ
back into the grid at node t. Losses are typically small such
that l0 is of the order of a few megawatts and l1 is of the order
of a few percent.

B. Optimal power flow

A fundamental problem in power engineering and energy
economics is to determine the cost-optimal dispatch of
generators: Which generators should run to satisfy a given
demand at minimum costs [see Chap. 13 of Grainger and
Stevenson (1994) and Chap. 8 of Wood, Wollenberg, and
Sheblé (2014)]? We address this problem here in terms of the
dc approximation, taking into account the real power gen-
eration and demand but neglecting losses. Suppose that the
total demand or load is given by Pload

tot and that there are Ng
generators that can be used to satisfy this demand at minimum
costs. The actual generation Pgen

m of each generator m ¼
1;…;Ng is bounded by the technical capacity such that we
have the constraints

0 ≤ Pgen
m ≤ Pmax

m : ð39Þ
The power balance condition in the grid reads

PNg

m¼1 P
gen
m ¼

Pload
tot . We assume for simplicity that the costs are proportional

to the output Pgen
m for each generator. The total variable costs

can then be written as

costtot ¼
XNg

m¼1

cmP
gen
m ; ð40Þ

where cm denotes the variable costs for generator m. If there
are no further constraints, the solution with minimum costs is
simple: Switch on all generators consecutively according to
their variable costs cm such that

Pgen
m ¼

8>><
>>:

Pmax
m for cm < c�;

Pload
tot −

P0
m Pmax

m for cm ¼ c�;

0 for cm > c�;

ð41Þ

where c� is the variable cost of the last generator switched on
that is identified with the market electricity price. The primed
sum in Eq. (41) runs over all generators with cm < c�. This is
called the merit order principle.
In real-world applications there are many more necessary

conditions and constraints. The real power flow in each
transmission line must not exceed the line rating in order
not to become overloaded and fail:

jFlj ≤ Fmax
l for all linesl: ð42Þ

To satisfy this condition we must consider where power is
generated and consumed. In particular, the demand or load
Pload
i must be specified separately for every node i ∈

f1;…;Ng of the grid. We can then express all line flows
Fl in terms of the dispatch Pgen

m as follows. We first introduce
the following generator incidence matrix Egen, which indicates
where each generator is connected to the grid:

Egen
i;m ¼

�
1 if generator m is connected to node i;

0 otherwise:
ð43Þ

The resulting net real power injection is thus given by

Pn ¼
XNg

m¼1

Egen
n;mP

gen
m − Pload

n ð44Þ

for every node n. Next, the line flows Fl can be expressed by
power injections via Eq. (33), leading to an affine linear
relation of flows Fl and optimization variables Pgen

m . Finally,
we arrive at the following important optimization problem,
which is commonly referred to as dc or linear optimal power
flow (OPF):

min
Pgen
m

XNg

m¼1

cmP
gen
m such that 0≤Pgen

m ≤Pmax
m ; jFlj≤Fmax

l : ð45Þ

Mathematically, this optimization problem is a linear program
that admits an efficient solution. Different formulations and
their computational efficiency were discussed by Hörsch,
Ronellenfitsch et al. (2018). Equation (45) represents the basic
optimal power flow problem, and various extensions have
been discussed for real-world applications leading to a vast
body of literature (Huneault and Galiana, 1991; Momoh,
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Adapa, and El-Hawary, 1999; Momoh, El-Hawary, and
Adapa, 1999; Frank, Steponavice, and Rebennack, 2012a,
2012b). The linear function (40) is a strong simplification of
the real cost function. It can be replaced by a convex function
without changing the overall complexity of the optimization
problem. In contrast, a nonconvex cost function strongly alters
the nature of the problem, making it hard to solve in general.
Another approach is to consider different modes of operation
of a generator. In the simplest case the generator is either on or
off. If a generator is on, it typically has a minimum generation
such that an additional constraint Pmin

m ≤ Pgen
m arises. To take

this switching behavior into account, an additional binary
optimization variable is introduced, leading to a mixed-integer
linear program.
Variable renewable energy sources may be included in two

different ways. If renewable generation is taken to be fixed,
the real power load at each node Pload

i is replaced by the
residual load, i.e., the difference between the load and
renewable generation. However, renewable generation will
exceed the load at least temporarily in future energy systems.
To allow for a curtailment of the power generation, wind
farms and photovoltaic parks are included as generators with
zero variable costs and Pmax

m is set to the assumed or forecasted
power generation. For optimization, we may then choose any
value Pgen

m between 0 (complete curtailment) and Pmax
m ,

depending on what most benefits the grid. A systematic
way of optimizing the dispatch under uncertainties in pro-
duction and demand is sketched in Sec. VIII.E, where the
system constraints are satisfied only with a specified
probability.
A further natural extension is to abandon the assumptions of

the dc approximation and start with the full nonlinear ac power
flow equations. However, the resulting optimization problem
is again nonconvex, which makes it much harder to solve. The
development of algorithms for this problem is an active field
of research; see Erseghe (2014) and Engelmann et al. (2017).

C. Dynamic models

While load flow calculations describe the steady state of a
power grid, a large set of models of different complexity is
available to analyze its dynamics and the stability of steady
states. Which model to choose depends crucially on the
phenomena and the timescales to be investigated (Sauer,
Pai, and Chow, 2018). The bulk power generation and demand
change on timescales of minutes to hours. Optimization
models are routinely used to model how the unit commitment
and power flows change from hour to hour. In the following,
we focus on the next timescale and address aspects of
synchronization, transient stability, and, to a lesser extent,
voltage dynamics and load-frequency control. These phenom-
ena typically take place on timescales of 10−1 − 101 s. Faster
phenomena, including subtransient effects and electromag-
netic propagation effects as well as the modeling of generator
control and protection systems, are not covered in this review.
Much more detailed and extensive introductions were given in
standard textbooks (Kundur, 1994; Machowski, Bialek, and
Bumby, 2008; Sauer, Pai, and Chow, 2018). Overviews of
different modeling aspects were given by Gajduk, Todorovski,
and Kocarev (2014) and Nishikawa and Motter (2015).

1. The swing equation

The classic swing equation describes the dynamics of the
mechanical rotation of a synchronous machine; see Chap. 5.1
of Machowski, Bialek, and Bumby (2008) and Nishikawa and
Motter (2015). The basic dynamical variable is the mechanical
phase angle, which is identical to the voltage phase angle
(hence the term “synchronous machine”). The phase angle δ is
commonly measured relative to a frame of reference rotating
at the reference frequency of the grid ωR. The dynamics is
then simply given by Newton’s equation as

Jδ̈ ¼ Tmech −Tel −Dmechω − ðDel þ κÞΔω; ð46Þ

where ω ¼ _δ is the angular frequency, Δω ¼ ω − ωR is its
deviation from the reference, J is the moment of inertia of the
machine, Tmech is the mechanical torque driving the rotating
machine, and Tel is the electromagnetic torque due to the
power transferred to the grid. The machine experiences
mechanical friction with damping coefficient Dmech and an
effective damping due to damper windings characterized by
coefficientDel. In addition, one sometimes includes the effects
of a frequency controller with gain constant κ, which is
discussed in Sec. III.D. Aggregating the damping factors D ¼
Dmech þDel þ κ and noting that _δ ¼ ω, we obtain

JωRδ̈þDωR
_δ ¼ ωR

ω
½ðTmech −DmechωRÞω|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼Pmech

− Telω|ffl{zffl}
¼Pel

�: ð47Þ

We have thus related the dynamics to the net mechanical input
power Pmech and the electric power Pel acting on the machine.
The swing equation is used to analyze the stability and small-
amplitude dynamics around a steady state; hence, we can
approximate ωR=ω ≈ 1.
As for static flows, calculations are often carried out in

dimensionless units, i.e., the pu system. To make the swing
equation (47) dimensionless, we divide it by the rated power
of the machine PR and define the quantities

H ¼ ð1=2ÞJω2
R

PR
; D̃ ¼ DωR

PR
: ð48Þ

The inertia constant H measures the ratio of stored kinetic
energy and output power of the machine when it operates
under normal conditions. Typical values are of the order of
4 − 6s. We then obtain the swing equation

2H
ωR

δ̈þ D̃ _δ ¼ P̃mech − P̃el; ð49Þ

where the power is now expressed in the pu system. The
motion of the generator is coupled to the rest of the grid via the
exchanged real power Pel, which we discuss later.

2. Principles of synchronous machines

As a next step toward a full machine model, we have to
examine how the mechanical rotation induces voltages and
currents. A careful introduction was given in Chap. 3.3 of
Machowski, Bialek, and Bumby (2008); we provide here only
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the essential results. Consider first an unloaded round-rotor
generator such as that depicted in Fig. 2. The rotor carries a
field coil, where a dc current If generates a magnetic
field. The stator consists of three coils called A, B, and C
in which the rotating field induces an ac voltage; cf.
Sec. III.A.1. The magnetic flux in the A coil with mutual
inductance Mf, ΨrAðtÞ ¼ MfIf cosðωtÞ, induces the voltage

ErAðtÞ ¼ −
dΨrA

dt
¼ ωMfIf sinðωtÞ; ð50Þ

commonly referred to as the “air-gap” electromagnetic force
(EMF). The EMFs in coils B and C are the same up to a phase
shift of �2π=3. If the generator is connected to a load or the
grid, a current

IAðtÞ ¼ IM cosðωt − φÞ ¼
ffiffiffi
2

p
ℜðIeiωtÞ ð51Þ

flows through the coil. It is generally phase shifted with
respect to the voltage. Here I ¼ Ime−iφ=

ffiffiffi
2

p
is a complex

(“phasor”) quantity. The voltage drop at the coil then reads

ErAðtÞ ¼ ωMfIf sinðωtÞ þ ωLA|ffl{zffl}
≕XA

IM cosðωt − φÞ: ð52Þ

An explicit modeling of synchronous machines, including
magnetic fluxes and dc currents, is cumbersome and not
always necessary for analyzing large grids with tens to
thousands of machines. Often an aggregated description in
terms of voltage and current phasors is sufficient. Notable
exceptions include the modeling of reactive power limits for
voltage collapse, the detailed simulation of systemwide
transients, or the design of power system stabilizers. In the
aggregated description, one defines the two phasor variables
Ef ¼ ωMfIf=

ffiffiffi
2

p
and Er describing the air-gap EMF.

Equation (52) then reads Er ¼ Ef − iXAI. We can further
take into account imperfections, losses, and leakage of
magnetic flux by an additional impedance Rl þ iXl between
the air-gap EMF and the terminal voltage of the generator Vg
to obtain

Vg ¼ Ef − iXAI − ðRl þ iXlÞI: ð53Þ
Hence, the basic relation between the rotor quantities, the air-
gap EMF at the stator coils, and the terminal generator voltage

can be represented by a simple equivalent circuit, as depicted
in Fig. 3. This description is effective and compatible with
electric circuit theory.
In a salient pole machine the rotor is asymmetric; see

Fig. 2. The asymmetry can be taken into account approx-
imately in an effective model that differs only slightly from the
case of a round-rotor machine. We decompose all phasors into
two contributions, in and out of phase with the magnetic flux
of the rotor. The two components are denoted by the sub-
scripts d and q referring to the direct and quadrature axes,
respectively. To describe the asymmetry, we replace the
effective reactance XA with XAd and XAq for the d and q
components. Hence, Eq. (53) is replaced by the two-compo-
nent equations

Ed ¼ Vgd þ XqIq þ RlId ¼ 0;

Eq ¼ Vgq − XdId þ RlIq ¼ Ef;

with Xq ¼ XAq þ Xl and Xd ¼ XAd þ Xl. Figure 3 shows the
equivalent diagram of the synchronous machine.
Recombining the components yields the phasors of current
and terminal voltage as follows:

Vg ¼ Vgd þ Vgq ¼ Vgd þ iVgq;

I ¼ Id þ Iq ¼ Id þ iIq: ð54Þ

Why have we introduced the EMFs Eq and Ep in addition to
Ef? The quantities Ed;q characterize the physical source of the
induced voltage (the magnetic flux of the field coil), while Ef
quantifies the current in the field coil. The simple relations
Eq ¼ Ef and Ed ¼ 0 hold only during the steady operation of
the machine. After a disturbance, the magnetic flux changes
and so do the effective EMFs Eq;d. Hence, Eq;d become
dynamic state variables for which we introduce the equations
of motion in the next section. In contrast, Ef is a fixed system
parameter or, if we include excitation control of the synchro-
nous machine, a control variable.

FIG. 2. Schematic of a round-rotor synchronous machine (left
image) and a salient pole machine (right image).

(a)

(b)

FIG. 3. Equivalent circuit diagram of (a) a round-rotor syn-
chronous machine and (b) a salient pole machine.
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3. Dynamics of synchronous machines

We now proceed to model the transient dynamics
of a synchronous machine. A detailed derivation is available
in textbooks on electric machines; see Chap. 11.1 of
Machowski, Bialek, and Bumby (2008). Here we quote only
the result and provide motivation for the form of the resulting
equations.
Recall that a machine in the steady state was modeled

by an EMF E ¼ Eq þ Ed connected to the terminal ends via
the reactances Xq and Xd, respectively. A similar approach
can be used to describe the transient dynamics of a syn-
chronous machine. The EMFs become time dependent,
which is commonly indicated by a dash. Similarly, we
must assign a different, transient value to the reactances.
We stress that these are only effective quantities, and
they yield a highly condensed description of the dynamics.
A full dynamical model of a synchronous machine must be
based on the magnetic fluxes in the different coils, the
voltages, and the currents, and the model’s complexity
increases quickly.
We first consider the EMF dynamics in the q axis, which

quantifies the flux in the field coil (more precisely the
field flux linkage). At steady state the flux is proportional
to the voltage exciting the field coil, which leads to Eq ¼ Ef.
In the transient regime two additional terms have to be
taken into account when one considers the voltage in the
field coil. First, the magnitude of flux changes leads to an
inductive term proportional to _E0

q. Second, there is a term due
to the coupling to the stator. A careful accounting of these
terms yields the following equation (Machowski, Bialek, and
Bumby, 2008):

E0
q þ Tdo

_E0
q − ðXd − X0

dÞId ¼ Ef: ð55Þ

The following similar relation can be found for the d-axis
EMF:

E0
d þ Tqo

_E0
d þ ðXq − X0

qÞIq ¼ 0: ð56Þ

We note that these two equations cover only the transient
dynamics after a disturbance. Further models have been
introduced to describe the short “subtransient” dynamics.
We omit these models, as they typically yield only a small
improvement (Stott, 1979; Weckesser, Jóhannsson, and
Østergaard, 2013). Note, however, that higher-order models
explicitly include damper winding, which we had to include
phenomenologically in the swing equation.

4. Synopsis: A hierarchy of dynamical models

Combining the results from Sec. III.C.3 with the swing
equation, we obtain a hierarchy of models; see Chap. 11.1 of
Machowski, Bialek, and Bumby (2008). In the two-axis or
fourth-order model the generator is described by four state
variables, the transient EMFs E0

q and E0
d, the mechanical phase

angle δ relative to the grid, and its derivative ω, which evolve
according to

2H
ωR

_ω ¼ −D̃ωþ P̃mech − P̃el;

_δ ¼ ω;

Tdo
_E0
q ¼ Ef − E0

q þ ðXd − X0
dÞId;

Tqo
_E0
d ¼ −E0

d þ ðXq − X0
qÞIq: ð57Þ

The one-axis or third-order model neglects the dynamics of
E0
d (Schmietendorf et al., 2014). Often it is set to zero

(E0
d ¼ 0), as in the elementary steady-state model discussed

in Sec. III.C.2. Hence, the model reduces to three state
variables per generator and the last equation in Eq. (57) is
omitted.
The second-order or classical model is widely used in the

analysis of power system dynamics. It describes the mechani-
cal motion of the generator at constant EMFs:

2H
ωR

_ω ¼ −D̃ωþ P̃mech − P̃el;

_δ ¼ ω: ð58Þ

To study the resulting dynamics of the state variables, we have
to specify the remaining quantities in the equations of motion.
The electric quantities P̃el, Iq, and Id are time dependent. In
fact, they are related to the state variables of all connected
generators via algebraic equations describing the grid, as
discussed later. The quantities Ef and P̃mech are set by the
control system of the generator, more precisely, the exciter and
the governor (Machowski, Bialek, and Bumby, 2008). If the
action of the control system is ignored, they become fixed
system parameters. The remaining quantities, in particular, the
time constants T and the reactances X, are regarded as
constant system parameters.
We note that detailed models can also include subtransient

effects yielding a sixth-order model (Machowski, Bialek, and
Bumby, 2008). Furthermore, dynamical models can be refor-
mulated as adaptive networks (Berner, Yanchuk, and Schöll,
2021) or port Hamiltonian systems (Fiaz et al., 2013;
Mehrmann et al., 2018), which enables further insights and
generalizations.

5. A single generator coupled to an infinite busbar

First basic insights into power system stability can be
obtained by focusing on the dynamics of a single generator;
see Chaps. 5.3–5.5 of Machowski, Bialek, and Bumby (2008).
To this end, we assume that the generator is connected to a
large system and that the influence of the generator on that
system is negligible. Such a setup is commonly referred to as
an “infinite busbar” with a fixed voltage Vs. We carry out the
calculation in the reference frame of the rotor and recall
that the angle between the rotor and the stator frame is denoted
by δ. Hence, the system voltages at the infinite busbar is
written as

Vsq ¼ Vs cosðδÞ; Vsd ¼ −Vs sinðδÞ: ð59Þ

The generator is connected to the infinite busbar through a set
of grid elements that are modeled as series impedances. There
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may first be internal losses or a leakage in the machine that is
described by the impedance Rl þ iXl. There is then typically a
step-up transformer that we describe by the impedance
RT þ iXT , recalling that the pu system takes care of voltage
levels automatically. Finally, there are transmission elements
with effective impedance RS þ iXS to the system. Typically,
resistances can be neglected since Ohmic losses as well as
shunt impedances are small. The machine EMFs and the
system voltages are then related by

Vsd ¼ E0
d − x0qIq; Vsq ¼ E0

q þ x0dId;

⇒ Iq ¼
E0
d þ Vs sinðδÞ

x0q
; Id ¼

−E0
q þ Vs cosðδÞ

x0d
; ð60Þ

where we introduced the shorthand x0d ¼ X0
d þ Xl þ XT þ Xs

and x0q ¼ X0
q þ Xl þ XT þ Xs. When one neglects Ohmic

losses, the air-gap power acting on the machine equals the
real power at the system terminal end

P̃el ¼ VsqIq þ VsdId

¼ E0
dId þ E0

qIq þ ðx0d − x0qÞIdIq
¼ E0

qVs

x0d
sinðδÞ þ E0

dVs

x0q
cosðδÞ − V2

s

2

x0q − x0d
x0qx0d

sinð2δÞ: ð61Þ

We thus found an explicit expression for the quantities P̃el, Iq,
and Id in terms of the generator state variables, closing the
equations of motion of Sec. III.C.4.
In the widely used classical model of power grid dynamics,

one neglects transient saliency and thereby the asymmetry of
the rotor geometry in a salient pole machine, assuming that
x0d ≈ x0q ¼ x0. This assumption simplifies the calculations, as
we do not have to separate the q and d axes explicitly but can
work with phasors. The relation of voltages and currents
simplifies to

Vs ¼ E0 − ix0I ⇒ I ¼ E − Vs

ix0
; ð62Þ

where the real parts correspond to the q components and
imaginary parts to the d components. Writing E0 ¼ E0e−iϕ and
Vs ¼ Vse−iδ the real power simplifies to

P̃el ¼ ℜðVsI�Þ ¼
E0Vs

x0
sinðδ − ϕÞ: ð63Þ

Finally, we recall that in the second-order model the dynamics
of the rotor EMFs is fully neglected. Hence, E0 is set to a
constant that is chosen to correspond to the steady-state value
when the generator provides the power Pþ iQ. We then have
to satisfy the relation

Pþ iQ ¼ VsI� ¼
V2
s − VsE
ix0

; ð64Þ

which can be solved for E2 with the result

E2 ¼
�
Px0

Vs

�
2

þ
�
Qx0

Vs
þ Vs

�
2

: ð65Þ

6. Ohmic loads and the Kron reduction

To understand the operation and stability of extended
power grids, including collective effects, we extend the model
of Sec. III.C.5 to coupled generators. Recall that we have
to specify the currents and the real power in terms of the
internal EMFs in order to close the equations of motion
summarized in Sec. III.C.4. To this end, we have to model the
loads and we have to describe the grid explicitly. We formulate
Kirchhoff’s equation in a fixed network frame of reference and
work out the transformation to the reference frames of the
rotating machines explicitly. For simplicity we neglect tran-
sient saliency here, setting x0d ¼ x0q ¼ x0. The derivation
follows the presentation by Nishikawa and Motter (2015);
a mathematical treatment was provided by Dörfler and
Bullo (2013a).
Assume that the generator or active nodes are labeled as

j ∈ f1;…;Ngg and the load or passive nodes are labeled as
j ∈ fNg þ 1;…;Ng þ Nlg. For the generator nodes, we have
already discussed the relation between internal EMFs E0 and
the voltage at the system terminal end V in Sec. III.C.5. The
current injection from internal to terminal end at a node j is
given by

Iinj ¼ E0
j − Vj

ix0j
: ð66Þ

Load nodes with a given power demand Sj ¼ Pj þ iQj
are modeled by a fixed admittance to the ground
ygroundj ¼ S�j=V

2
0. If the voltage magnitude Vj equals the

reference voltage V0, the load nodes then consume the power
VjIin�j ¼ V0y

ground�
j V0 ¼ Pj þ iQj, as desired.

For each node j ∈ f1;…;Ng þ Nlg we then evaluate
Kirchhoff’s current law: The current inflow must equal the
current flowing to the other nodes in the grid:

Iinj ¼
XNgþNl

k¼1

ykjðVj − VkÞ: ð67Þ

We now collect all these linear relations in vectorial form,
defining the vectors and matrices

E ¼ ðE0
1;…; E0

Ng
Þ⊤; I ¼ ðIin1 ;…; IinNg

Þ⊤;
Vg ¼ ðV1;…; VNg

Þ⊤; Vl ¼ ðVNgþ1;…; VNgþNl
Þ⊤;

Yi ¼ diag½ðix01Þ−1;…; ðix0Ng
Þ−1�

Ygr
gg ¼ diagðygroundNgþ1 ;…; ygroundNgþNl

Þ: ð68Þ

Equation (66) and Kirchhoff’s current laws for the generator
and load nodes are thus condensed into the form0

BB@
Yi −Yi 0

−Yi Ygg þ Yi Ygl

0 Ylg Yll þ Ygr
ll

1
CCA
0
BB@

E

Vg

Vl

1
CCA ¼

0
BB@

I

0

0

1
CCA; ð69Þ

where Ygg, Ygl, Ylg, and Yll are the respective partitions of the
nodal admittance matrix (14). We can now gradually eliminate
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the network voltages, using the third row to eliminate Vl and
then the second row to eliminate the Vg. This procedure is
referred to as Kron reduction, a mathematical accounting of
this procedure was discussed by Dörfler and Bullo (2013a).
We finally obtain

Y 0ð1þ Y−1
i Y 0Þ−1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

≕ Yeff

E ¼ I; ð70Þ

where we defined the shorthand Y 0 ¼ Ygg−
YglðYll þ Ygr

ll Þ−1Ylg. Equation (70) has the same structure
as Eq. (15), but the reduced susceptibility matrix Yeff

represents an effective, not physical network. In summary,
Eq. (70) directly yields the currents and the real power acting
on the machines in terms of the internal EMFs as follows:

Iinj ¼
XNg

k¼1

Yeff
jk E

0
k;

Pel
j ¼ ℜðVjIin�j Þ ¼ ℜðE0

jI
in�
j Þ ¼

XNg

k¼1

ℜðE0
jY

eff�
jk E0�

kÞ: ð71Þ

These quantities are given in the network frame of reference as
previously stated. To evaluate them for the dynamical models
summarized in Sec. III.C.4, we transfer back to the rotating
frame of reference of each machine via

Ij ðnetwork frameÞ ¼ eiδjðIqj þ iIdjÞ ðmachine frameÞ;
E0
j ðnetwork frameÞ ¼ eiδjðE0

qj þ iE0
djÞ ðmachine frameÞ:

Solving for the currents in the machine frame yields

Idj þ iIqj ¼
XNg

k¼1

Yeff
jk ðE0

qk þ iE0
dkÞeiðδk−δjÞ; ð72Þ

and the real power acting on the jth machine reads

Pel
j ¼ ℜ

�XNg

k¼1

Yeff�
jk ðE0

jk þ iE0
jkÞðE0

qk − iE0
dkÞeiðδj−δkÞ

�
:

This expression simplifies considerably for the particularly
important case of a second-order model. We then have E0

qj ¼
Ej ¼ const and E0

dj ≡ 0. Writing Yeff
jk ¼ jYeff

jk jeiðγjkþπ=2Þ we
obtain

Pel
j ¼

XNg

k¼1

jYeff
jk jEjEk sinðδj − δk − γjkÞ: ð73Þ

7. The structure-preserving model

In Sec. III.C.6 all loads were modeled as constant admit-
tances to the ground and subsequently eliminated. Bergen and
Hill (1981) introduced an alternative model for power grid
frequency dynamics, keeping the load nodes and hence the
full network structure. Generator nodes are described as in the
swing equations, setting the magnitude of the EMF to a
constant. The model of load nodes is based on the observation

that the real power consumption typically increases with
frequency, which is written in the form

Pel
j ðtÞ ¼ Pð0Þ

j þ Dj

ωR

_δj ⇒
Dj

ωR

_δj ¼ Pel
j − Pð0Þ

j : ð74Þ

We thus obtain an equation of motion for load nodes that is
equivalent to the swing equation with a vanishing inertia Hj.
To close the model, one then has to express the real power
injections Pel

j at the generator and load nodes in terms of the
voltage phase angles, recalling that the voltage magnitudes are
assumed to be constant. This procedure, which includes the
elimination of the generator terminal nodes, was described in
detail by Nishikawa and Motter (2015). The great advantage
of this approach is that the coupling in the resulting equations
of motions reflects the true network structure.

8. Dynamics of power electronic inverters for renewable sources

Renewable power sources are generally not equivalent to
synchronous machines. All photovoltaic power sources and
virtually all wind turbines are connected to the grid via power
electronic inverters. The transition to renewable energy supply
thus fundamentally changes the dynamics of power grids. In
particular, the decrease of inertia provided by conventional
synchronous machines is a major challenge for grid stability
(Milano et al., 2018).
One generally distinguishes between two modes of oper-

ation of power electronic inverters. A grid-following inverter
provides a given amount of electric power adjusting to the
voltage and frequency provided by the grid. Hence, the
operation relies on other resources capable of providing a
stable voltage and frequency. In contrast, grid-forming invert-
ers regulate the voltage and frequency to specific set points
similar to a synchronous machine. Mixed modes are also
possible in principle, regulating either voltage or frequency
and following the other.
The development and analysis of new types of grid-forming

inverters and inverter-based grids is an active field of research.
We thus introduce one important class, the droop-controlled
inverter, following Schiffer et al. (2014). The basic state
variables of such an inverter are the EMF magnitude Ej and
the phase angle δj, where j labels the different generators in
the grid. The control system adjusts these state values to
maintain the predefined set values of power and frequency. To
this end, the control system measures the real and reactive
power exchanged with the grid and compares it to predefined
set values. In a simple proportional, or droop control, scheme,
the frequency control is proportional to the active power
deviation and the voltage control is proportional to the reactive
power deviation such that we obtain the equations of motion

_δj ¼ ωd − κactj ðPmes
j − Pd

j Þ; ð75Þ

TV
j
_Ej ¼ −Ej þ Ed

j − κrecj ðQmes
j −Qd

j Þ; ð76Þ

where the superscript “mes” indicates the measured values of
real and reactive power and the superscript d stands for desired
values. Naturally, the desired frequency ωd is unique across
the grid, whereas the desired voltages Ed

j may differ. The
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parameters κactj and κrecj are the droop gains for the frequency
and voltage, respectively. The measurements are not instanta-
neous and are characterized by a low-pass filter such that
Tj

_Pmes
j ¼ −Pmes

j þ Pel
j and Tj

_Qmes
j ¼ −Qmes

j þQel
j . The

recovery time of voltage dynamics is typically much lower
than the time constant Tj of the low-pass filter. We thus
simplify the model by setting TV

j ¼ 0 and obtain (Schiffer
et al., 2014)

_δj ¼ ωj; ð77Þ

Tj _ωj ¼ −ωj þ ωd − κactj ðPel
j − Pd

j Þ; ð78Þ

Tj
_Ej ¼ −Ej þ Ed

j − κrecj ðQel
j −Qd

j Þ: ð79Þ

The real and reactive power exchanged with the grid (Pel
j and

Qel
j ) depend on the state of all elements in the grid. To close

the equations of motion, one thus has to specify the network
equations. Modeling all loads by constant impedances to the
ground as in Sec. III.C.6, we find that

Pel
j þ iQel

j ¼
XNg

k¼1

E0
jY

eff�
jk E0�

k ; ð80Þ

where Ej ¼ Ejeiδj ; cf. Eq. (71).

9. Aggregated dynamical model

The classical model describes the dynamics of power
systems as coupled second-order rotators, with each node
representing one synchronous generator. Notably, similar
equations of motion emerge on much coarser spatial scales
(Zhang et al., 1997; You, Vittal, and Wang, 2004; Filatrella,
Nielsen, and Pedersen, 2008; Chow, 2013), which emphasizes
the generality of the coupled rotator model.
The dynamical model introduced by Filatrella, Nielsen, and

Pedersen (2008) considered the aggregated dynamics of
regions labeled by n ∈ f1;…;Ng. If the internal coupling
is sufficiently strong, we take the phase angle to be constant
throughout the region. We again measure the phase and
frequency relative to a frame rotating at the reference grid
frequency ωR while writing ϕnðtÞ ¼ ωRtþ δnðtÞ. The equa-
tions of motion for δnðtÞ are obtained from energy conserva-
tion. Each region stores kinetic energy in the rotation of all
synchronous machines as follows:

Ekin
n ¼ Jn

2
ð _ϕÞ2; ð81Þ

where Jn is the aggregated moment of inertia. At each node a
power Pin

n is injected by generators or withdrawn by con-
sumers and some energy will be dissipated at a rate
Pdiss
n ¼ ηnð _ϕnÞ2. Assuming a constant voltage magnitude,

the real power transmitted from a region n to a region m is
determined by the phase difference

Ptrans
n→m ¼ Knm sinðδn − δmÞ; ð82Þ

with Ohmic losses neglected. Knm is an aggregated quantity
summing over all lines connecting the two regions n and m.
The energy conservation for region n then gives

Pin
n ¼ dEkin

n

dt
þ Pdiss

n þ
X
m

Pn→m: ð83Þ

Noting that j_δj ≪ ωR in the vicinity of the normal
operation, we simplify the expression for the change of the
kinetic energy dEkin

n =dt ≈ ωRJnδ̈n and the dissipated power
Pdiss
n ≈ ηω2

R þ 2ηnωR
_δn. Substituting these results into the

energy conservation law (83) then directly yields the equa-
tions of motion (Rohden, 2012)

ωRJnδ̈n þ 2ωRηn _δn ¼ Peff
n −

X
m

Knm sinðδn − δmÞ; ð84Þ

where Peff
n ¼ Pin

n − ω2
Rηn. Equation (84) has the same struc-

ture as the classical second-order model but describes the
dynamics on a coarser level. Equation (84) is based on
elementary energetic arguments, but similar results can also
be obtained via model reduction (Zhang et al., 1997; You,
Vittal, and Wang, 2004; Chow, 2013). This emphasizes the
generic nature of coupled rotator models in network science.

D. Load-frequency control

A power grid by itself does not store energy, so the
generated power must match the demand and the losses at
all times. A hierarchy of control systems exists to maintain this
balance, which we introduce starting with the swing equa-
tion (47). As before, we use a rotating frame of reference such
that ωi ¼ _δi denotes the deviation from the nominal grid
frequency ωR,

JiωR _ωi þDiωRωi ¼ Pmech
i − Pel

i : ð85Þ

In normal operation, all machines i ∈ f1;…;Ng in a grid run
in synchrony at the same frequency, a fact that we discuss
further in Sec. VI. We thus focus on the bulk frequency and
define

ωðtÞ ¼ J̄−1
XN
i¼1

JiωRωiðtÞ with J̄ ¼
XN
i¼1

JiωR: ð86Þ

In many studies, the damping is assumed to be proportional to
the inertia of a machines; cf. the Supplemental Material of
Motter et al. (2013). Setting Di ¼ ηJi we obtain

J̄ _̄ωþηJ̄ ω̄ ¼ ΔP; ð87Þ

where ΔP ¼ P
i P

mech
i − Pel

i is the power balance in the entire
grid. We thus see that the power balance directly drives the
dynamics of the bulk: A scarcity of generation leads to a
decrease, while an overgeneration leads to an increase of the
frequency. As the frequency can be measured easily, it is used
to control the generation.
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Different control mechanisms are distinguished according
to the different timescales that they act upon and the different
purposes that they serve; see Fig. 4.

(i) The momentary reserve is provided by the inertia of
synchronous machines. The higher the inertia J̄, the
slower the grid frequency reacts to a power imbal-
ance. This reaction rate is referred to as the rate of
change of frequency (RoCoF) in the engineering
literature. Notably renewable power sources with
power electronic inverters have no intrinsic inertia,
such that frequency stability is an important chal-
lenge in the energy transition (Milano et al., 2018).

(ii) Next, the power imbalance is reduced by increasing
or decreasing the generation of specific control
power plants or, more recently, battery electric
storage systems (Fleer and Stenzel, 2016). Accord-
ing to the guidelines of the European Network
of Transmission System Operators for Electricity
(ENTSO-E) (UCTE Operations Handbook, 2009),
primary control is activated as soon as the frequency
leaves a small dead band around ωR and must be
fully available within 30 s. Up to the dead band, the
power is adapted proportionally to the frequency
deviation as follows:

PPRL;iðtÞ ¼ −κiωi; ð88Þ

where the parameter κi describes the sensitivity of
primary control for the grid area i. Primary control
stabilizes the frequency but does not restore the
nominal grid frequency, which can be seen by
adding primary control to the equation of mo-
tion (87). For a constant power imbalance ΔP and
a single area we find the fixed point

ω̄ ¼ ΔP
κ þ ηJ̄

: ð89Þ

The damping terms ∝ Di in Eq. (85) affect fre-
quency dynamics similar to the primary control∝ κi,
which is often directly included in the swing
equation; cf. Sec. III.C.1.

(iii) Secondary control restores the nominal grid fre-
quency ωR and reduces unscheduled power flows
between different grid areas on a timescale of

minutes. Control power plants adapt their generation
according to the following proportional-integral (PI)
law (Böttcher et al., 2020):

PSRL;iðtÞ ¼ −
�
κPGiðt − τÞ þ κI

Z
t−τ

−∞
Giðt0Þdt0

�
;

ð90Þ

with κP and κI tunable gain factors. The local area-
control error Gi is a measure of the power that is
missing in area i. It is determined by the difference
between the expected primary control power and the
deviations ΔFi of the power flow to neighboring
control areas, which is given as Gi ¼ κiωi − ΔFi.
Note that while the PI controller is linear, the local
area-control error Gi depends nonlinearly on the
system state. The finite time delay τ in the control
[Eq. (90)] results from the time required for
the measurement of Gi, communication, and the
adaptation of the control power generation. The
secondary control requires measuring local area-
control errors Gi with a cycle time of 2–5 s (UCTE
Operations Handbook, 2009). The delay time τ can
therefore be expected to be of similar magnitude but
may vary in different control areas and with time
(Böttcher et al., 2020).

(iv) Tertiary control power is invoked on even longer
timescales. In Europe, the tertiary control power
must be activated within at most 15 min. Tertiary
control is partly manually operated and used mostly
to restore the automatic control reserve.

IV. POWER GRID TOPOLOGIES AND DATASETS

We previously introduced the various components of power
grids, in particular, power lines and assorted producers and
consumers at the nodes. To derive a model of a complete
power grid, the missing ingredient is the topology, that is, how
these components are connected. Besides studying concrete
examples of real-world power grids, it is also desirable to
obtain plausible synthetic networks to allow a more systematic
study of the impact of topological features on dynamical
properties.

A. General aspects

Large power grids, especially at the continental scale,
operate at many different voltage levels. Long-range trans-
mission is achieved through high voltage connections in order
to minimize losses. In Central Europe, for example, the
transmission grid operates at 220 and 380 kV. The regional
distribution is then achieved by grids at successively lower
voltages that are connected to the high voltage transmission
grid at substations (transformers). Typical voltage levels in
Europe range from high voltages (such as 60 and 110 kV) over
medium voltages (3–30 kV) to low voltages (such as 230 and
380 V). Typical line parameters for transmission grids are
summarized in Table I.

FIG. 4. Load-frequency control scheme according to ENTSO-E
(UCTE Operations Handbook, 2009).
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Grids at these different voltage levels are constructed in
different ways and with different trade-offs and goals in mind
and thus exhibit different network topologies. A low voltage
distribution grid is typically organized as a tree graph, which
in this context is called a radial design. While loops might
physically exist, there often is a switch interrupting them. We
remark that only if a line fails is the loop closed to resume
supply downstream of the failure.
High voltage transmission grids require uninterrupted

operation even in cases where a line fails (the N − 1 criterion).
This implies that the network is meshed; i.e., it contains loops.
An example of such a topology is shown in Fig. 5. Medium
voltage grids often fall in an intermediate regime, with varying
amounts of meshing.
From a network science perspective a notable aspect of

power grids is that they are geographically embedded. That is,
nodes and lines have geographical locations and lengths. Line
crossings are possible, but rare. These aspects are reflected in
the connectivity or topology of the network, putting them in a
different class than the ensembles typically studied in network
science.
Further, as infrastructure has costs, power grids typically

also contain as few lines as possible. As a consequence, power
grids are typically sparse. The observed average degree for

transmission grids falls between 2 and 5, and the degree
distribution peaks between 2 and 3 and has an exponential tail
(Solé et al., 2008; Wang, Scaglione, and Thomas, 2010).

B. Network ensembles and synthetic grid models

The statistical physics of networks often considers ensem-
bles of networks to map out typical topological properties and
to provide a reference class for actual real-world datasets.
Power grids do not fully resemble any of these common
network ensembles. In particular, they are not well captured
by small-world networks (Cotilla-Sanchez et al., 2012).
Although the clustering coefficient is similarly high, there
is a much more pronounced connectivity at large scales. A
Watts-Strogatz small-world network of such a low degree
would likely end up being disconnected for moderately sized
networks, and the nonlocal links in power grids tend to be
much more clustered (Wang, Scaglione, and Thomas, 2010).
To capture the full topological structure of power grids, we

need to define novel network ensembles: probability distri-
butions on the space of networks that capture the notion of
what looks like a power grid and what does not. This is
typically done by specifying a random process that produces
networks, either by rewiring links or by iteratively growing
networks. Given such an embedded topology, typical power
line parameters can then be used to derive the power grid’s
properties (Table I).
Wang, Scaglione, and Thomas (2010) proposed a rewiring-

based process with the aim of staying close in spirit to the
construction of small-world networks while taking some
specific identified properties of power grids into account.
In contrast, growth-based models, starting with that of
Schultz, Heitzig, and Kurths (2014b), grow the grid with
random node placements and new connections. The model of
Schultz, Heitzig, and Kurths (2014b) mimics the trade-off
between global resilience and economy in the growth process
and is able to recreate the exponential degree distribution.
Stating these trade-offs explicitly allows one to study the
trade-offs of dynamic and structural stability given by
Plietzsch et al. (2016). A growth model for hierarchical
networks was proposed and analyzed by Ódor and
Hartmann (2018).
Soltan and Zussman (2016) considered node placement in

addition to line generation. They considered average path
length, clustering coefficient, the slope of node degree
distributions, and the line length distributions and showed
that their algorithm matched those in various North American
power grids.
In these models the growth process makes use of topo-

logical and embedding information but does not consider the
resulting energy flows in the growth stage. Birchfield et al.
(2017) and Birchfield, Xu, and Overbye (2018) added con-
sideration of power flows in the dc approximation and voltage
profiles to the iterative growth of synthetic grids. Soltan, Loh,
and Zussman (2019) fitted the growth process using a
Gaussian mixture model. Espejo, Lumbreras, and Ramos
(2019) presented a model that focuses instead on the historical
plausibility of the growth process and economy versus robust-
ness trade-offs.

FIG. 5. Topology of a high voltage power grid. The visualiza-
tion has been produced by Paul Cuffe using the methods
described by Cuffe and Keane (2017) based on data of the
NESTA archive. From Coffrin, Gordon, and Scott, 2014.

TABLE I. Typical parameters of overhead transmission lines at
different voltage levels for the United Kingdom and the USA
according to Kundur (1994) and Machowski, Bialek, and Bumby
(2008) and for Germany according to Oeding and Oswald (2016).
Ohmic resistance, susceptance, and charging capacity are propor-
tional to the length of the line and are given per km.

fn (Hz) Vn (kV) r (Ω=km) x (Ω=km) bc (μS=km)

50 (UK) 400 0.018 0.265 5.36
230 0.05 0.488 3.371

50 (Germany) 380 0.03 0.246 4.335
220 0.06 0.301 3.927

60 (USA) 345 0.037 0.367 4.518
500 0.028 0.325 5.2
765 0.012 0.329 4.978
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Besides generating topologies from scratch, it is also
possible to take an existing topology and vary it while
keeping many aspects of it fixed. Such surrogate ensembles
for spatial infrastructure networks were described by
Wiedermann et al. (2016). A difficult open question is to
find a fully satisfactory model for the cogeneration of a variety
of networks (Hackl and Adey, 2019), or hierarchies of
networks (Schultz et al., 2016).

C. Network datasets

The availability of real grid data is limited. Thus, a variety
of test cases have been compiled for scientific use. Some are
based on the available data of real-world grids. Some are
synthetic ones trying to mimic the structural properties of real-
world grids. In the following, we list resources that provide
grid data without a claim of completeness.

• The classical IEEE test cases are probably the most
heavily studied power grids of all, with some having
been implemented decades ago. The datasets are partly
synthetic and partly derived from real grids and can be
obtained at the repository (Christie, 1999).

• Several online repositories have been created in recent
years to provide larger, more diverse, and more recent
test cases focusing on transmission grids (Birchfield,
2016; Pacific Northwest National Laboratory and Na-
tional Rural Electric Cooperative Association, 2017;
Farid et al., 2019) or distribution (“feeder”) grids
(Schneider et al., 1991; Kavasseri and Ababei, 2021).
In addition, several papers reviewed such repositories
and the methodologies; see Coffrin, Gordon, and Scott
(2014), Birchfield et al. (2017), and Schneider et al.
(2018). These repositories again include both synthetic
grids and approximate models of real grids, with a focus
on North America. Large test grids with properties
typical for European grids were provided by the Pegase
project (Villella et al., 2012).

• The IEEE and Pegase test grids are included with others
in the latest version of the software package MATPOWER

(Zimmerman, Murillo-Sanchez, and Thomas, 2011).
• Many test cases are restricted to static properties
and do not include the parametrization necessary
for dynamic simulations. To analyze the dynamics of
these systems, some heuristic assumptions about
present or future parameters are necessary. Realistic
dynamic test cases mostly come in the form of small
synthetic test cases developed by IEEE that can be
found in repositories (Pacific Northwest National
Laboratory and National Rural Electric Cooperative
Association, 2017; Farid et al., 2019). ENTSO-E
provides semisynthetic grid models mimicking the
European grid (Semerow et al., 2015), but access is
limited. A notable exception is the synthetic
model of the northeastern U.S. published by Birchfield

)2016 ), which includes a 25 000-node dynamic system,
validated in the sense of the system of Xu, Birchfield,
and Overbye (2018). A heuristic dynamical paramet-
rization of the ENTSO-E–based system (Wiegmans,
2016) was recently given by Pagnier and Jacquod
(2019c).

• Recently several initiatives started to map out power
grids from publicly available data. A model of the
German power grid was extracted from OpenStreetMaps
(Medjroubi, Matke, and Kleinhans, 2015), and a model
of the European grid was extracted from the ENTSO-E
interactive grid map (Wiegmans, 2016). A variety of
related datasets can be found on community websites
(Open Energy Modelling Initiative, 2017; Open Power
Systems Data, 2017). A collection of grid frequency time
series was presented by Gorjão, Jumar et al. (2020).

V. DYNAMICS OF ELEMENTARY NETWORKS AND
BUILDING BLOCKS

We introduce basic aspects of power system dynamics and
stability for an elementary grid containing one transmission
line. We first consider its static operation and its limitations
before we turn to the dynamic stability.

A. Static solutions and voltage stability

We consider the steady state of an elementary circuit with
one load node and one generator connected by a single
transmission line to understand which factors limit the power
transmission in different types of grids. The generator s is
treated as a slack node, so Vs ¼ 1 and δs ¼ 0 are fixed; cf.
Sec. III.A.3. Most load nodes draw the reactive power Qn at a
fixed ratio to the real power, which is commonly specified

in terms of the power factor cosðϑÞ defined via Pn ¼
− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
n þQ2

n

p
cosðϑÞ and Qn ¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
n þQ2

n

p
sinðϑÞ. We ana-

lyze the operation here as a function of the real power
demand Pn < 0.
To obtain the voltage magnitude Vn and phase angle δn at

the load node, we then solve the ac load flow equations (25),
which are rewritten using the addition theorems of the sine and
cosine

Pn ¼ GnnV2
n þ VnVs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
ns þ G2

ns

q
sinðδn − γnsÞ;

Qn ¼ −BnnV2
n − VnVs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
ns þ G2

ns

q
cosðδn − γnsÞ; ð91Þ

where the angle γns is defined via

cosðγnsÞ ¼
þBnsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
ns þ G2

ns

p ; sinðγnsÞ ¼
−Gnsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
ns þ G2

ns

p :

We can then separate the equation for the voltage magnitude
using sin2 þ cos2 ¼ 1, which yields

0 ¼ ðB2
nn þ G2

nnÞV4
n þ ðP2

n þQ2
nÞ

− ðB2
nsV2

s þ G2
nsV2

s − 2BnnQn þ 2GnnPnÞV2
n; ð92Þ

which is easily solved for V2
n. The phase angle can then be

obtained by solving one of Eqs. (91).
To understand the behavior of the system and the limi-

tations to power transmission in more detail, we plot the
voltage Vn as a function of the real power demand jPnj in
Fig. 6(a) for different values of the power factor. This plot is
often referred to as the “nose curve” in power engineering
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(Machowski, Bialek, and Bumby, 2008). First, one observes
that the quadratic equation (92) can have two solutions, where
only the branch with the higher magnitude is relevant, as the
other branch is unstable. Second, power transmission is
generally limited. Physical solutions of Eq. (92) exist only
if the real-power demand does not exceed the limit,

P2
n ≤ 1

4
B2
nsV4

s þ BnsV2
sQn; ð93Þ

which depends on the reactive power. The limit as well as the
voltage magnitude Vn is lower when the load draws reactive
power [Qn < 0, tanðϑÞ > 0]. However, if the load node
supplies reactive power instead [Qn > 0, tanðϑÞ < 0], the
voltage at the load node can be even larger than Vs and the
transmittable real power is strongly enhanced. Grid operators
hence aim to keep tanðϑÞ small or even negative by supplying
reactive power near the loads. This procedure is referred to as
“reactive power compensation.”
We further consider how a “voltage instability” can arise in

elementary power grids. We assume that two parallel trans-
mission lines exist, and that one of them is lost in a
contingency situation. As a consequence, the effective sus-
ceptance Bns is halved and the nose curve contracts, as shown
in Fig. 6(b). Further effects depend on the grid loading. If the
real power demand jPnj is not too high (such as the 200 MW
value in the figure), a solution of the power flow equations still
exists, albeit at a lower voltage. The consumers will thus
experience a rapid drop in the voltage level. However, if the
real power demand is too large (such as the 300 MW value in
the figure), no static equilibrium solution exists anymore and a
“voltage collapse” emerges in which voltages decline as
governed by the power system dynamics. A comprehensive
analysis of voltage stability in power grids was given by Van
Cutsem and Vournas (2007).

B. Flow and voltage limits

Power transmission in current highest-voltage grids is
typically limited by factors other than the ones discussed
earlier. Most grids are constantly monitored and thoroughly

regulated. Security limits have been formulated for current
and voltage [see European Network of Transmission System
Operators for Electricity (2004)], and emergency shutdowns
are carried out when these limits are violated. Hence, the
physical limits of power transmission are rarely met during
normal operation.
In particular, extreme currents can lead to an Ohmic heating

and eventually to a dangerous bending of overhead trans-
mission lines due to thermal elongation. During the 2003
power outages in North America (U.S.-Canada Power System
Outage Task Force, 2014) and Italy (Union for the Co-
ordination of Transmission of Electricity, 2004) transmission
lines hit trees, leading to a short-circuit fault. Hence, grid
operators typically impose “thermal limits” for the currents
and overloaded lines switch off automatically. Similarly, upper
and lower limits for the voltage magnitude are imposed to
guarantee power quality and avoid the danger of a complete
voltage sack.
To see how these regulations limit power transmission in

highest-voltage grids, we solve the load flow equations (91) as
a function of Pn, assuming a fixed power factor set to a typical
value of cosðϑÞ ¼ 0.95, with ϑ > 0. We use typical param-
eters for a 380 kV transmission line in Western Europe with
r=l ¼ 0.03 Ω=km and x=l ¼ 0.246 Ω=km and a thermal
limiting current of Ith ¼ 2.58 kA (Oeding and Oswald,
2016), with l the length of the line. We use the notation of
Sec. V.A but give all quantities in physical units for better
accessibility.
Figure 7 shows the results for two characteristic cases. We

first consider a transmission line of length l ¼ 100 km
connecting the load node and a generator node, which has
a fixed voltage magnitude Vg ¼ 400 kV, i.e., slightly above
the nominal voltage level of 380 kV. The current

jIngj ¼
���� jVnjeiδn − jVgj

rþ ix

���� ð94Þ

FIG. 6. Nose curve. (a) Voltage at the load node as a function of
transmitted power for three different power factors: tanðϑÞ ¼
þ0.3; 0;−0.3 (from left to right). (b) Voltage at the load node for
tanðϑÞ ¼ 0 in the initial state (right) and after half of the
connectivity is lost, i.e., Bns is halved (left). Parameters are
Sbase ¼ 100 MW, Vs ¼ 1 pu, and Bns ¼ 10 pu. Solid (dashed)
lines indicate stable (unstable) solutions of the load flow
equations.
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FIG. 7. Factors limiting real power transmission in ac power
grids for two different characteristic cases (blue, short line with
l ¼ 100 km; dashed red, long line with l ¼ 200 km). We con-
sider a single transmission line connecting one power plant to a
substation. Shown are the current jIj, the voltage magnitude jVnj,
and the voltage angle δn at the load node as a function of the real-
power load jPnj. The dotted line shows the limits Ith and V lim for
the current and the voltage.
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increases approximately linearly with the transmitted power.
For jPnj ≥ 1.61 GW, the current exceeds the thermal line
limit, which would lead to emergency measures, whereas the
voltage magnitude stays well above the lower limit of
V lim ¼ 0.9 × 380 kV. This illustrates that in densely popu-
lated areas with short lines, it is mainly the thermal limit for
the current that limits the operation of a transmission line. In
fact, we find a good estimate for the maximum transmittable
real power using

Pmax ≈ 3
380 kVffiffiffi

3
p × Ith ¼ 1.698 GW: ð95Þ

Voltage stability can be an issue if generators are located far
from loads. Figure 7 shows the current and voltage at the load
node for a longer line with l ¼ 200 km. The voltage limit V lim
is already hit for jPnj ≥ 1.01 GW, where the current is still
well below the thermal limit.
Voltage limit violations can be handled to some extent by

using reactive power compensation, as discussed in Sec. V.A.
Decreasing the power angle ϑ at the load node allows for a
higher power transmission. In contrast, the current limit
represents a more severe limitation. A simple way to extend
power transmission is dynamic line rating, where the thermal
limiting current Ith is adapted to the ambient conditions
(Douglass and Edris, 1996). On cold windy days, a higher
current is acceptable, without the risk of overheating.

C. Dynamic stability

1. Local stability of a single generator

We now turn to the question of dynamical stability, starting
with the most elementary setup: a single generator coupled to
an infinite grid. The grid is assumed to be so large that it is not
affected by generator dynamics, such that its voltage magni-
tude V and phase angle ϕ are fixed. We consider here the
question of angular stability, and thus assume that the
generator voltage is constant at the steady-state value E∘. If
the phenomenon of voltage collapse occurs, voltages drop
dynamically such that a more refined treatment is necessary.
Assuming a lossless connection of the machine to the grid

with the susceptance x, the real power flow from the machine
to the grid is given by Pel ¼ K sinðδ − ϕÞ and the swing
equation (49) reads

2H
ωR

δ̈þD_δ ¼ Pmech − K sinðδ − ϕÞ; ð96Þ

where K ¼ VE∘=x is an effective coupling strength. In normal
operation the machine rotates with the frequency ωR and a
fixed phase difference to the grid to supply a constant real
power. Hence, we are interested in the fixed points of Eq. (96)
given by

δ∘þ ¼ ϕþ arcsin ðPmech=KÞ;
δ∘− ¼ ϕ − arcsin ðPmech=KÞ þ π: ð97Þ

One finds that the þ solution is linearly stable, while the other
branch is unstable. The solutions vanish in a saddle node on a
circle bifurcation when Pmech ¼ Pcrit ¼ K. Hence, the power

that the machine can receive and transmit to the grid is limited
to a maximum value of Pcrit.
The nature of this bifurcation becomes more obvious with a

mechanical analog. Consider a point particle with an effective
mass meff ¼ 2H=ωR and a friction coefficient η ¼ D moving
in a tilted washboard potential

VeffðδÞ ¼ −Pmechδ − K cosðδ − ϕÞ; ð98Þ

where δ denotes the particle position. Newton’s equation for
the particle meff δ̈ ¼ −η_δ − ∂Veff=∂δ is then equivalent to the
swing equation (96). The tilted washboard potential is shown
in Fig. 8 for different values of tilting Pmech. For low tilting,
stable (unstable) fixed points exist in the local minima
(maxima) of the potential (green and red dots). As the tilting
increases, the minima and maxima approach each other and
finally vanish for Pmech > Pcrit. The tilted washboard potential
has been studied in great detail in statistical physics, particu-
larly in the presence of noise; see Risken (1996) and
references therein.

2. Bifurcations

To obtain a comprehensive understanding of the dynamics
of a single generator, we also analyze its global stability
properties. Given an initial state δð0Þ; _δð0Þ, what happens for
long times? Does the generator relax to the previously
discussed stable fixed point?
A global phase-space portrait of the single machine system

is shown in Fig. 9 for different values of Pmech=K. One
observes that in most cases a limit cycle exists that corre-
sponds to a desynchronized generator. The generator cannot
exchange real power with the grid in this state, as Pel ¼
K sinðδ − ϕÞ is oscillating and averages out to zero. The
mechanical input power accelerates the generator until this
input is balanced by the damping such that it has a higher
frequency than the grid (_δ > 0).
We thus find three parameter regions with different global

stability properties; see Figs. 9 and 10. For Pmech=K > 1 no

FIG. 8. The tilted washboard potential [Eq. (98)] as a mechani-
cal analog to the dynamics of a single generator in the second-
order model for (a) Pmech ¼ 0.1 K, (b) Pmech ¼ 0.5 K,
(c) Pmech ¼ 0.9 K, (d) Pmech ¼ 1.1 K. The potential Veff is given
in units of K. Green disks, stable fixed points; red crosses, saddle
points.
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fixed point exists and the system will always converge to the
limit cycle. If Pmech=K is small or the damping η is large, the
system is globally stable: It converges to the attractive fixed
point for almost all initial states. In the remaining part of the
parameter space, the fixed points and the limit cycle coexist
such that the long-term dynamics depends on the initial state.
An analytical approximation for the border between the

globally stable and the coexistence regime can be obtained in
the low-friction limit using Lyapunov’s second method (Parks,
1992; Risken, 1996; Manik et al., 2014). We define an energy
functional E ¼ meffð_δÞ2=2 − K cosðδÞ, setting ϕ ¼ 0 for sim-
plicity. Using the equation of motion for δ, we obtain

dE
dt

¼ meff δ̈ _δþK sinðδÞ_δ ¼ Pmech
_δ − ηð_δÞ2: ð99Þ

If E decreases on average for all initial conditions, the
system is in the globally stable regime. The condition for the
border between the globally stable and the coexistence regime
is therefore obtained by setting dE=dtT ¼ 0, where the bar
denotes the average over one period T. Evaluating this
condition yields

Pmech
_̄δ
T ¼ ηð_δÞ2T: ð100Þ

We can now calculate _̄δ
T ¼ 2π=T and obtain

ð_δÞ2T ¼ 1

T

Z
T

0

ð_δÞ2dt ¼ 1

T

Z
π

−π
_δdδ

¼ 1

T

Z
π

−π

ffiffiffiffiffiffiffiffi
2

meff

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðδ; _δÞ þ K cosðδÞ

q
dδ: ð101Þ

At the bifurcation, when a globally stable fixed point loses
stability, there is a trajectory that satisfies _δ ¼ 0 at each
successive peak of the potential landscape. This trajectory has
Epeak ¼ K, which can be assumed to be constant in the low-
friction limit. Replacing Eðδ; _δÞ ≈ K, the integral in Eq. (101)
can be evaluated in closed form and the border between
the globally stable and the coexistence region [Eq. (100)] is
given by

Pmech ¼
4η

ffiffiffiffi
K

p

π
ffiffiffiffiffiffiffiffi
meff

p : ð102Þ

Equation (102) matches the results from a direct numerical
evaluation for small values of η, as shown in Fig. 10. For large
values of η it slightly overestimates the globally stable
parameter region.

3. Probabilistic stability measures

Elementary systems allow for a comprehensive under-
standing of the bifurcation structure and global stability.
However, this approach is no longer feasible for high-dimen-
sional networked systems, such that more versatile methods
are needed. Recently, probabilistic approaches have attracted
strong interest (Menck et al., 2013). For instance, one can
quantify the stability of a dynamical system by the probability
of returning to the desired fixed point after a random
perturbation. The set of all initial states guaranteeing con-
vergence, the basin of attraction, is shown in Fig. 9 for a single
generator and different system parameters. While the geom-
etry of the basin can be rather intricate in higher dimensions,
its size is easy to measure by randomly drawing a sufficient
number of initial states from a predefined set A and numeri-
cally simulating their dynamics. It is then the same as the
following Monte Carlo integration of the indicator function 1B
on the basin of attraction:

P̂ ¼ P(xð∞Þ ¼ x�jxð0Þ ∈ A) ¼ 1

jAj
Z
A
1BðxÞdx: ð103Þ

Different aspects of stability can be understood by choosing
an appropriate set A. For instance, restricting perturbations to

FIG. 10. Stability map of a single generator coupled to an
infinite grid in the second-order model. Three different parameter
regions exist: a globally stable fixed point, a globally attractive
limit cycle, and a region of coexistence of a fixed point and a limit
cycle. Bifurcations between these regions are shown as colored
lines. The red dashed line is the approximation (102) for low
friction. See Risken (1996) and Manik et al. (2014) for a more
detailed analysis.

FIG. 9. Basin of attraction (red) of the stable fixed point of
Eq. (96) in the δ-_δ plane. Parameters are 2H=ωR ¼ 1, D ¼ 0.3,
K ¼ 8, and (a) Pmech ¼ 1, (b) Pmech ¼ 2, (c) Pmech ¼ 4, and (d)
Pmech ¼ 9. The white dots are the stable and unstable fix points.
The black line gives the limit cycle.
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a single node reveals weak spots in the grid (Menck
et al., 2014).
The process of sampling such a probability is a Bernoulli

process. Its sampling uncertainty decreases with the number
of samples N, which is asymptotically given by the binomial
confidence interval

P̂ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ð1 − P̂Þ=N

q
; ð104Þ

although better estimates are possible for small values of N
(Agresti and Coull, 1998). Notably the number of samples
needed does not increase with the dimension of the problem,
whereas the individual samples are typically more expensive
to obtain.
The asymptotic convergence to a fixed point is an important

aspect of stability, but it is not sufficient in the context of
power grids. One can generalize the current approach,
requiring that a trajectory does not exceed certain operational
limits or, equivalently, that it does not not leave a “survival”
region S. This leads to the following definition of the
survivability (Hellmann et al., 2016):

P(xðtÞ ∈ S ∀ tjxð0Þ ∈ A): ð105Þ

Survivability requires the specification of a survival region
S, as shown in Fig. 11 for a single generator, assuming that the
survival region is given by j_δj ≤ �5 rad=s. This assumption is
useful in the study of power grids, as generators have many
protection circuits that would switch them off to avoid
mechanical damage. Probabilistic measures have also been
generalized to cover the case of repeated perturbations and
stochastic systems (Schultz et al., 2018; Lindner and
Hellmann, 2019). Furthermore, the uniform sampling from

the set A can be replaced by more general distributions of
initial states.

4. Stochastic stability

Thus far we have analyzed the stability of the swing
equation for fixed system parameters. But real-world systems
will typically face disturbances and noise. How does this
affect the stability of the system?
We now analyze how the stability of the swing equation (96)

is affected if the mechanical input power of a machine
fluctuates in time as

PmechðtÞ ¼ P̄þ ξðtÞ: ð106Þ

Notably this problem can be solved almost fully analytically
in the case of white noise ξðtÞ using Kramers’s escape rate
theory (Risken, 1996). Using the analogy to a particle moving
in a tilted washboard potential [Eq. (98)], the main question is
as follows: Can the particle overcome the potential barrier and
thus escape the vicinity of the stable fixed point as illustrated
in Figs. 12(a) and 12(b)? What is the probability of such a
desynchronization event?
Kramers’s theory gives the average time τ̄ until a particle

escapes (van Kampen, 2007; Schäfer et al., 2017) as follows:

τ̄ ¼ 2πϱffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00
effðδminÞjV 00

effðδmaxÞj
p exp

�
2ηΔVeff

σ2

�
; ð107Þ

where σ2 is the variance of the Gaussian white
noise, η ¼ D is the effective friction, and 2ϱ ¼ ηþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ð8H=ωRÞjV 00

effðδmaxÞj
p

for intermediate damping. The
quantities V 00ðδmin;maxÞ are the second derivatives of the
potential evaluated at the local minimum and maximum
δmin;max, respectively, and
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FIG. 12. Desynchronization of the swing equation due to a
fluctuating power input. (a),(b) When the input power Pmech
fluctuates, the generator can lose synchrony to the grid after an
escape time τ. (c) Kramers’s escape rate theory predicts the
escape process for Gaussian white noise. The theoretical pre-
diction [Eq. (107) (black lines)] accurately predicts the mean
escape times τ̄ obtained from direct numerical simulations
averaged over 2000 sample processes (symbols). Results are
shown for an extremely loaded connection with K ¼ 1 and P ¼
0.95 and a damping coefficient of D ¼ 8 × 10−5 s−1 × ωR
(intermediate damping). From Schäfer et al., 2017.

FIG. 11. Survivability region (red) of the stable fixed point of
Eq. (96), with the survival region given by the area between the
lines _δ ¼ �5 rad=s. The basin of attraction of Fig. 9 is shaded in
orange. The parameters are 2H=ωR ¼ 1,D ¼ 0.3, K ¼ 8, and (a)
P ¼ 1, (b) P ¼ 2, (c) P ¼ 4, and (d) P ¼ 9. The white dots are
the stable and unstable fixed points. The black line gives the
limit cycle.
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ΔVeff ¼ VeffðδmaxÞ − VeffðδminÞ ð108Þ

is the potential barrier that the particle has to overcome.
Numerical simulations show an excellent agreement with this
prediction, as indicated in Fig. 12(c).
Kramers’s formula (107) reveals how the system parameters

affect the stability. The main factors are noise strength σ,
damping parameterD, and potential barrier ΔVeff, which enter
Kramers’s formula exponentially. In contrast, τ̄ depends less
sensitively on the inertia H, which enters only algebraically.
The barrier is determined by the effective tilting of the

potential, i.e., the loading of the grid, and vanishes as
P̄ → Pcrit. Figure 12 demonstrates the escape process for
an extreme load, whereas τ̄ is longer by orders of magnitude
for realistic loading levels. However, τ̄ can be drastically
reduced if the noise is no longer Gaussian but instead
intermittent, which is typical for wind power systems
(Schmietendorf, Peinke, and Kamps, 2017). In larger power
grids, different escape routes can exist, corresponding to
different parts of the grid loosing synchrony (Schäfer et al.,
2017). In Sec. VIII.D we reconsider the stability of the swing
equation under several generalizations.

VI. SYNCHRONIZATION AND STEADY STATES IN
COMPLEX GRIDS

A. The need for synchrony

The stable steady operation of a power grid requires perfect
phase locking of all synchronous machines throughout the
grid (Rohden et al., 2012; Dörfler, Chertkov, and Bullo, 2013;
Motter et al., 2013). That is, all machines in a connected
network have to run at the same frequency with a well-defined
phase difference between them; otherwise, no steady power
flow is possible. From Eq. (73) we find that if the nodes
operate at their nominal voltage amplitude Ej ¼ 1, the real
power flow between two nodes i and j is determined by their
phase difference

Pi→j ¼ KijfsinðγijÞ þ sin½δiðtÞ − δjðtÞ − γij�g; ð109Þ

where Yeff
ij ¼ Kijeiðγijþπ=2Þ is the effective nodal admittance

and the term sinðγijÞ comes from the diagonal of Yeff . The
same expression is used for the aggregated model introduced
in Sec. III.C.9 with γij ¼ 0.
Under fault conditions, a fast transient instability can occur

when a group of machines accelerates relative to the others.
The relative phases δi;jðtÞ between the groups are then no
longer locked and there is no steady power flow Pi→j. If the
fault clears, another transient may either diverge or converge.
Transient instabilities on timescales of cycles typically lead to
the shutdown (“tripping”) of both transmission lines and
generators.
Furthermore, violations of perfect phase locking are

observed during “interarea oscillations,” where electric power
oscillates across the grid at low frequencies of 0.1–10 Hz
(Klein, Rogers, and Kundur, 1991; Rogers, 2012). Inter-area
oscillations repeatedly occur after disturbances such as the
loss of a generator and are typically damped out in minutes.
However, oscillations may also grow in exceptional cases,

eventually leading to a system split or blackout. For instance, a
cascade of failures led to the tripping of several transmission
lines and the loss of the stable steady state during the 2006
European power outage (Union for the Coordination of
Transmission of Electricity, 2007). Oscillations grew rapidly
and the grid finally separated into three mutually asynchro-
nous areas.
We are thus led to a fundamental question of power system

stability: Do the equations of motion admit a stable solution
where all nodes are perfectly phase locked,

δjðtÞ ¼ Ωtþ δ∘j for j ∈ f1;…;Ng; ð110Þ

given the network topology and the power injections?
Synchrony is about phase dynamics; therefore, it is natural
to focus on the phases as dynamic variables in the following.
To simplify the analysis, we neglect voltage dynamics
for the time being and assume that the phase dynamics at
the nodes is well described by the swing equation (49). As
previously discussed, this equation is generic and arises
similarly for single synchronous machines, grid-forming
inverters with power control, and aggregated dynamical
models. Absorbing the various factors in front of δ̈i and _δi
into reduced inertia Ji and dampingDi coefficients, the central
equation in question then reads

Jiδ̈i ¼Pi−Di
_δi−

X
j

Kij½sinðγijÞþ sinðδi−δj− γijÞ�: ð111Þ

The general problem of synchronization and dynamical
stability with voltage dynamics is more involved, and we
present an outlook at the end of this section.
Versions of this model have also been studied in the

theoretical physics literature under the name of the second-
order Kuramoto model; cf. Chap. 7 of Rodrigues et al. (2016).
However, note that different aspects of synchronization have
traditionally attracted more attention in theoretical physics.
Starting from the seminal work of Kuramoto (1975) many
researchers have investigated the transition from incoherence
to partial synchronization, where some nodes lock their
frequencies. This is not sufficient for power systems.
Furthermore, many essential results on partial synchronization
have been obtained in a large-N mean-field limit. A gener-
alized large-N limit for complex networks and the problem of
full synchronization were treated only recently by Kuehn and
Throm (2019).

B. Linear stability of the phase dynamics

We begin by assuming that a solution to the static equations
is given. We then study whether its phase dynamics is stable to
small perturbations. Consider a small perturbation around the
synchronous fixed point δiðtÞ ¼ Ωtþ δ∘i þ αiðtÞ. To linear
order, perturbations evolve according to

Jiα̈i ¼ −Di _αi −
XN
j¼1

Λijαj; ð112Þ

with the matrix Λ ∈ RN×N defined as
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Λij ¼
8<
:

−Kij cosðδ∘i − δ∘j − γijÞ if i ≠ j;P
n≠i

Kin cosðδ∘i − δ∘n − γijÞ if i ¼ j: ð113Þ

The fixed point is linearly stable if all perturbations α are
damped. We note that power grid synchrony is not affected if
all angles δi are shifted by a constant. Thus, this mode is
excluded from the stability analysis. One can show that
stability is primarily determined by Λ: The synchronous state
is linearly stable if all eigenvalues of Λ are positive except for
the one corresponding to a global shift of all phases. This
criterion becomes especially simple if line losses can be
neglected. γij ¼ 0, and Λ is a weighted, symmetric Laplacian
matrix; cf. Sec. II. Stability is guaranteed as long as the
“weights” Kij cosðδ∘i − δ∘jÞ are positive for all links ði; jÞ; i.e.,
if no line is overloaded,

jδ∘i − δ∘jj < π=2: ð114Þ

This criterion is sufficient, but generally not necessary. It can
be viewed as a generalization of the stability criterion for a
single generator discussed in Sec. V.C.1.
The situation becomes more involved when line losses

cannot be neglected. The condition jδ∘i − δ∘j − γijj < π=2 is
then not sufficient and more subtle necessary conditions are
derived (Skar, 1980). Further effective criteria for the defi-
niteness of signed Laplacians were given by Song, Hill, and
Liu (2015) and Chen et al. (2016). Lyapunov exponents and
vectors for this system were studied by Bosetti and Khan
(2018). Note that phase differences in transmission grids are
typically much smaller. Other factors limit power transmis-
sion, at least for short transmission lines; see Fig. 7.
Stability can be lost if a parameter of the network is varied,

e.g., if power injections and grid loads increase or trans-
mission lines fail (Coletta and Jacquod, 2020). Eventually, the
second Laplacian eigenvalue tends to zero and the fixed point
is lost in an inverse saddle-node bifurcation on a circle (Manik
et al., 2014). Notably bifurcation sets and linear stability
properties become much more intriguing if voltage dynamics
is included (Schmietendorf et al., 2014; Ma et al., 2016;
Sharafutdinov et al., 2018) or in inverter-based grids (Schiffer
et al., 2014). An overview of different aspects of dynami-
cal stability was provided by Gajduk, Todorovski, and
Kocarev (2014).

C. Existence, multiplicity, and properties of synchronous states

We now return to the question of whether a stable
synchronous state exists for a given power grid. We first
review some important properties of synchronous states and
then review a theoretical approach to systematically compute
and classify all such states.

1. Properties of synchronous states

The proper operation of a power grid requires perfect phase
locking according to Eq. (110). Substituting into the equations
of motions (111) yields the following fundamental condition
for the phases and active power flows in the synchronous state
of a power grid:

0¼Pi−DiΩ−
X
j

Kij½sinðγijÞþ sinðδ∘i −δ∘j− γijÞ�: ð115Þ

We note that the flows are asymmetric for γ ≠ 0 due to Ohmic
losses. In fact, one can express the losses at a transmission line
ði; jÞ as

Ploss
ij ¼ Pi→j þ Pj→i ¼ 2Kij sinðγijÞ½1 − cosðδ∘i − δ∘jÞ�:

Losses vanish when γij ¼ 0 and when there is no power
flowing on the line, i.e., when δ∘i ¼ δ∘j.
Synchrony does not necessarily imply that the grid operates

exactly at the reference frequency of 50 or 60 Hz. In fact, we
can determine the equilibrium frequency directly from
Eq. (115). Summing over all nodes i ∈ f1;…;Ng and solving
for Ω yield

Ω ¼
P

iPi −
P

i<jP
loss
ijP

iDi
: ð116Þ

We recall that the effective parameters Di include both
damping and the action of primary load-frequency control,
such that the current result is equivalent to Eq. (89). The
deviation from the reference frequency Ω is given by the ratio
of the power imbalance, including losses, and the cumulative
primary control strength. We return to the analysis of the bulk
frequency in Sec. VIII.A.

2. Phase cohesiveness and necessary conditions

We are particularly interested in synchronous states where
angle differences are small; cf. the discussion in Sec. V.A.
Small angle differences are also essential for many analytic
results on the stability of the swing equation; cf. the linear
stability condition (114). To state this aspect more precisely
we define the cohesiveness as follows: A state is called phase
cohesive if all phases δ∘i lie in an arc of length ζ ∈ ½0; π=2Þ
denoted as AðζÞ.
The definition can be applied to deriving necessary con-

ditions for synchronization. For simplicity, assume that the
power in the grid is balanced and that we have no lossesP

i Pi ¼ 0, γij ¼ 0. Hence, we have Ω ¼ 0 in Eq. (110) and
the condition for phase locking in the second-order power grid
model (111) reads

Pi ¼
XN
n¼1

Kin sinðδ∘i − δ∘nÞ: ð117Þ

For a phase cohesive sync state, the magnitude of the sum can
be bounded from above by sinðζÞPn Kin such that Eq. (117)
can be satisfied only if, for all i ∈ f1;…;Ng,

jPij ≤ sinðζÞ
XN
n¼1

Kin. ð118Þ

Furthermore, we can consider any two nodes i and j of the
grid and evaluate the difference of the conditions (117). We
can again bound the sums on the right-hand side which yields
the following condition for all i; j ∈ f1;…;Ng:
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jPi − Pjj ≤ sinðζÞ
XN
n¼1

Kin þ Kjn: ð119Þ

The two conditions are necessary for a cohesive sync state to
exist, but they are not sufficient by any means. Nevertheless,
they reveal two important facts: (i) Synchronization requires a
sufficient connectivity of the grid, while a strong divergence of
the Pi impedes synchronization. (ii) If the phase divergence ζ
is reduced, we have to increase the coupling or decrease the
divergence of Pi. Further generalizations and refinements
were discussed by Chopra and Spong (2009), Ainsworth and
Grijalva (2013), and Dörfler, Chertkov, and Bullo (2013).

3. Existence of solutions and multistability

We now turn to the question of whether solutions to the
power flow equations exist. Notably power grids can admit
multiple stable and unstable states of operation, even when
power injections are fixed. Sudden changes of the power
injections or the grid topology can trigger transitions between
these states, with drastic consequences for grid operation and
stability. Circulating power flows can emerge, which are
generally undesired, as they increase line loads and Ohmic
losses. A classic example of such circulating power flows is
the Lake Erie loop in North America (Coletta et al., 2016;
Jafarpour et al., 2019). If the system finds itself in a situation
in which no stable synchronous state exists, system collapse is
an inevitable consequence. We begin with the simplest case of
a power grid without Ohmic losses such that the fixed points
are determined by Eq. (117). The central questions now are as
follows: When does this equation have multiple solutions that
correspond to a dynamically stable power flow, and why?
We start with an elementary example: a simple ring

network where Pi ¼ 0 for all nodes i ∈ f1;…;Ng and
homogeneous line parameters K (Schröder, Timme, and
Witthaut, 2017). One can easily verify that the fixed points
of this network are given by δ�i ¼ 2πim=N, with a parameter
m ∈ f−N=2;−N=2þ 1;…;þN=2g. Fixed points with m ∈
ð−N=4;þN=4Þ satisfy Eq. (114) and are guaranteed to be
dynamically stable; all other fixed points are potentially
unstable. This simple example already suggests the funda-
mental features of multiplicity of sync states. Power flow
solutions in lossless grids can differ in cycle flows. In fact,
each fixed point corresponds to a flow f ¼ K sinð2πm=NÞ
around the cycle. The number of stable fixed points increases
with the size of the loop and is limited to one if N ≤ 4.
Using these insights, we introduce a general method to

construct all stable fixed points of a generic lossless power
grid following Manik, Timme, and Witthaut (2017). The main
idea is to shift the focus from nodes to the edges and cycles of
the network. Hence, we define a vector of flows on the
network’s edges as

F ¼ Bd sinðE⊤δÞ ∈ RL; ð120Þ

where E denotes the node-edge incidence matrix (4) and the
sine function is taken elementwise. The steady-state condi-
tions (117) then become

P ¼ EF: ð121Þ

Fixed points are now obtained via a stepwise procedure: We
first construct all solutions of Eq. (121) and then reject those
that are incompatible with Eq. (120).
The first step is based on the following observation: The

kernel of the incidence matrix E corresponds exactly to cycle
flows in the network. Hence, the general solution of Eq. (121)
can be written as

F ¼ FðsÞ þ Cf ; ð122Þ

where FðsÞ ∈ RL is a specific solution, f ∈ RL−Nþ1 gives the
strength of the cycle flows, and the matrix C is the cycle-edge
incidence matrix (5). For each flow vector F, we can construct
the associated nodal phases as follows. Start with the slack
node s and set δ∘s ¼ 0. Proceed to a neighboring node j. If one
assumes that the connecting edge e¼̂ðj; sÞ is oriented from
node s to node j, the phase value reads δ∘j ¼ δ∘s þ Δe, where
the phase difference Δe is reconstructed from the flow Fe by
inverting Eq. (120), which yields the two following possible
solutions:

Δþ
e ¼ arcsinðFe=KeÞ;

Δ−
e ¼ π − arcsinðFe=KeÞ: ð123Þ

Wemust choose one of the solutions, and we keep track of this
choice by decomposing the edge set as E ¼ Eþ ∪ E−, where
E� ¼ fe ∈ EjΔe ¼ Δ�

e g. Not all solutions obtained in this
way are physically correct. We can get the physically correct
ones by making sure that the sum of the phase differences
around any fundamental cycle yields 0 or an integer multiple
of 2π, which is expressed via the following winding number
condition:

ϖc ¼
1

2π

XL
e¼1

Ce;cΔ�
e ∈ Z. ð124Þ

Fixed points with E− ¼ ∅ satisfy Eq. (114) and are always
stable, while states with E− ≠ ∅ are typically unstable (Manik
et al., 2014; Delabays, Coletta, and Jacquod, 2017; Manik,
Timme, and Witthaut, 2017).
The cycle flow approach yields numerous analytical

insights into the occurrence of multiplicity of sync states:
• No multiplicity in trees.—In a lossless tree network,
either there is no fixed point or there are 2N−1 fixed
points, of which one is stable and 2N−1 are unstable
(Manik, Timme, and Witthaut, 2017).

• Similarly, multiplicity is ruled out in dense networks, as
the fundamental cycles are too small (Taylor, 2012).
Hence, all fixed points except one include edges
with jδ∘i − δ∘jj > π=2.

• In a simple ring network, one can derive explicit upper
and lower bounds for the number of fixed points.
Generally, the number of fixed points increases with
the size of the ring and decreases with the loading of the
grid (Ochab and Gora, 2010; Delabays, Coletta, and
Jacquod, 2016; Manik, Timme, and Witthaut, 2017).
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• In plane networks, one can show that the winding
numbers are unique. That is, two fixed points cannot have
the same winding numbers and the same decomposition
E ¼ Eþ ∪ E−. This can be used to derive upper bounds
for the number of stable fixed points (Delabays, Coletta,
and Jacquod, 2017; Manik, Timme, and Witthaut, 2017).

• One can derive estimates for the number of stable fixed
points using scaling relations (Manik, Timme, and Wit-
thaut, 2017); an example is shown in Fig. 13. Further
numerical results for large sparse networks were dis-
cussed by Mehta et al. (2015) and Xi, Dubbeldam, and
Lin (2017).

The previous approach can be generalized to include Ohmic
losses (Balestra et al., 2019). One again first focuses on the
lines and considers the flows Fij and the losses Lij ¼
gjk½1 − cosðδ∘i − δ∘jÞ� as basic variables. The power balance
equation is linear in these variables, and one can construct the
general solution of this set of equations. Among this large set
of solution candidates, the correct solutions are found by
imposing the winding number conditions (124) and the
additional constraint�

Fij

bij

�
2

þ
�
Lij

gij
− 1

�
2

¼ 1 for all edges ði; jÞ; ð125Þ

which follows from sin2 þ cos2 ¼ 1. One then finds that
Ohmic losses can have two conflicting effects on the existence
and number of stable steady states. On the one hand, high
losses must be compensated for by higher power flows, which
may decrease their number. On the other hand, Ohmic losses
can stabilize certain solution branches and thus foster
multistability.

D. Nonlinear stability and explicit synchronization criteria

The existence of a phase-locked state is a prerequisite for
the stable operation of a power grid. But even in elementary
networks phase-locked states and limit cycles can coexist (see
Fig. 9), and whether or not the phases lock depends on the
initial conditions. In the following, we review explicit criteria
for synchronization based on the dynamics (111) and discuss
the main factors determining a network’s synchronization

capability. A comprehensive overview is provided in the
review by Dörfler and Bullo (2014).

1. Sufficient criteria for dense networks

We first present a sufficient condition for dense networks,
which arise naturally in power system models after Kron
reduction; cf. Sec. III.C.6. We are interested mainly in second-
order power grid model dynamics [Eq. (111)], but it is simpler
to start with the following overdamped limit:

Di
_δi ¼ Pi þ

X
j

Kij½sinðγijÞ − sinðδi − δj − γijÞ�: ð126Þ

Dörfler and Bullo (2012b) proved that this system achieves
phase cohesiveness and frequency synchronization if the
coupling is strong compared to the differences in natural
frequencies [ωnat

i ¼ Pi þ
P

j Kij sinðγijÞ]. They quantified
these two opposing forces in terms of the parameters

Γmin ≔ N min
i≠j

�
Kij

Di
cosðγijÞ

�
; ð127Þ

Γcrit ≔
1

cosðγmaxÞ
�
max
i≠j

����ωnat
i

Di
−
ωnat
j

Dj

����
þ 2max

i

XN
j¼1

Kij

Di
sinðγijÞ

�
: ð128Þ

Furthermore, they defined ζmin ∈ ½0; π=2 − γmaxÞ and ζmax ∈
ðπ=2; π� as the solutions of the equation sinðζminÞ ¼
sinðζmaxÞ ¼ cosðγmaxÞΓcrit=Γmin whenever this solution exists.
Then they derived the following theorem: If Γmin > Γcrit and

the angles are initially not too different [all δið0Þ are in the arc
AðζmaxÞ], the network will achieve exponential frequency
synchronization; i.e., all frequencies _δi converge exponen-
tially fast to a common frequency Ω. The phases remain
cohesive and all δiðtÞ reach the arc ĀðζminÞ.
Dörfler and Bullo further generalized this result to the

second-order power system model (111) if the damping was
high enough. More precisely, if the ratio ϵ ¼ Jmax=Dmin is
lower than a critical value ϵ�, the solution of the second-order
model is well approximated by the solution of the first-order
Kuramoto model up to an error of the order of ϵ. They further
argued that, for actual power systems, ϵ is of the order of 0.1 if
one takes into account the control system in the effective
damping constant Di.
We now sketch the main idea of the proof of these theorems.

For each point in time twe identify the nodesm and nwith the
largest and smallest angles. That is, all angles δiðtÞ are in the
arc ½δnðtÞ; δmðtÞ�, and

VðtÞ ¼ δmðtÞ − δnðtÞ ð129Þ

denotes the length of the arc. One can then compute the
derivative dV=dt explicitly and finds that this expression is
strictly nonpositive if

Γmin sinðζÞ ≥ cosðγmaxÞΓcrit: ð130Þ

FIG. 13. Multiplicity of sync states: scaling of the number of
stable fixed points in a grid with two cycles. The grid consists
of two rings with nþ 1 nodes sharing one edge such that
N ¼ 2n. Edge weights are assumed to be homogeneous and
loads vanish (Pi ¼ 0). The analytic scaling result 0.1576ðn2 þ
2nÞ (solid line) matches the numerically exact results (circles)
well. Adapted from Manik, Timme, and Witthaut, 2017.
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If this condition is satisfied, the arc AðζÞ cannot grow and the
angles remain cohesive. Frequency synchronization is shown
in a second step by differentiating Eq. (126) with respect to
time as follows:

d
dt

_δi ¼ −
XN
j¼1

Kij

Di
cosðδi − δj − γijÞð_δi − _δjÞ

¼ −
XN
j¼1

Λ̃ijðtÞδj: ð131Þ

Under the condition of phase cohesiveness, the matrix Λ̃ðtÞ is
a time-varying directed Laplacian. Hence, Eq. (131) describes
a contraction and all frequencies _δn must converge exponen-
tially to a common value Ω. Finally, the generalization to the
second-order power system model is analyzed within singular
perturbation theory.

2. Sufficient criteria for sparse networks

The previously presented sufficient criterion holds for all
networks but is of little use if the topology is sparse since we
then have Γmin ¼ 0. A different approach is needed in this
case. One family of sufficient criteria for the existence of a
phase-locked state uses a method introduced by Jadbabaie,
Motee, and Barahona (2004). The steady-state condition (117)
is reformulated in the following vectorial form:

P ¼ Λ̃ðδÞδ; ð132Þ
where Λ̃ðδÞ is a state-dependent Laplacian with edge weights
wij ¼ Kijsinðδi − δjÞ=ðδi − δjÞ. One can then apply fixed
point theorems to derive conditions guaranteeing that
Eq. (132) has a solution. For instance, one can formulate
the following condition in terms of the algebraic connectivity
of the network (cf. Sec. II), which yields a sufficient condition
for the existence of a synchronized state (Dörfler and Bullo,
2012a):

λ2ðΛÞ >
�X

ði;jÞ∈EjPi − Pjj2
�

1=2
; ð133Þ

where λ2ðΛÞ is the algebraic connectivity of the ordinary
weighted graph Laplacian. We note that one has to be careful
about the domain when applying fixed point theorems. In
particular, the sufficient conditions do not guarantee unique-
ness of a solution, as discussed by Manik, Timme, and
Witthaut (2017).
Another approach uses the cycle flow arguments that were

introduced in Sec. III.A.6. Denoting the sine of the phase
difference along the line l as ψl, we have the general
relation (36). It has been shown that the cycle flow contri-
bution f is actually negligible in most cases such that ψ ≈
E⊤Λ�P (Dörfler, Chertkov, and Bullo, 2013). Hence, a
synchronous state with a phase cohesiveness ζ exists if

sinðζÞ ≥ kψk∞ ≈ kE⊤Λ�Pk∞: ð134Þ

Equation (134) provides a rigorous sufficient condition for
many elementary networks and an excellent approximate
condition for actual power grid topologies (Dörfler,

Chertkov, and Bullo, 2013). Recently generalized types of
Lyapunov function were derived for lossless power
grids (111), allowing researchers to derive sufficient condi-
tions for the global stability of synchronous states (Schiffer,
Efimov, and Ortega, 2018, 2019).

E. Probabilistic analysis of nonlinear stability

The synchronous state of a power grid can be globally
stable in favorable cases, but typically several different
asymptotic attractors exist. This includes limit cycles, as
shown in Fig. 9 for a single generator. In this section we
explore the nonlinear stability of different attractors of the
swing equation using the probabilistic methods introduced in
Sec. V.C.3. We note that the swing equation is a simplified
model of power system dynamics in the vicinity of the
synchronized state. Hence, nonsynchronous attractors of this
model do not faithfully describe asymptotic states of real
systems. However, the existence of these states shows that
those aspects of the system well described by the swing
equation are not sufficient to guarantee stability. This includes
in particular inertia and primary droop control.

1. Limit cycles and other attractors

A large variety of only partially understood attractors exist
in power system models. Limit cycles similar to the ones
discussed for a single machine in Sec. V.C.2 are among the
most common nonsynchronous attractors. These states can be
understood as arising from a partial decoupling limit.
Consider a network consisting of two disconnected parts Vl
and Vr. The two parts can synchronize independently at
respective frequencies Ωl and Ωr according to Eq. (116).
If the two parts are weakly coupled, the equations of motion

include terms proportional to sin½ðΩl −ΩrÞt�, which average
out in time. The limit cycle with separate frequencies Ωl and
Ωl persists, but the coupling causes perturbations leading to
oscillations around the mean frequencies (Gelbrecht, Kurths,
and Hellmann, 2020). When the coupling increases, the basin
size of these attractors (the variance of the frequency time
series) may even increase until the attractors eventually
become unstable. Figure 14 illustrates the nonlinear stability

FIG. 14. Nonlinear stability of different attractors in a small
sample network. (a) Structure of the network with two classes of
nodes with injections Pi ¼ �1. (b) The basin bifurcation diagram
for the system with the synchronized, partially synchronized,
and synchronized regimes. From Gelbrecht, Kurths, and
Hellmann, 2020.
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of such states in a network with two populations of oscillators
with power injections Pi ¼ �1, effective damping Di ¼ 0.1,
and homogeneous line parameters K. For weak coupling the
oscillators always rotate freely at _δ ¼ Pi=Di. When the
coupling increases, a large variety of attractors come into
being, most of them with negligible basin size (referred to as
outliers). Two partially synchronous states of the type dis-
cussed earlier occur more often. The basin size first increases
with K, but the fully synchronized state then becomes
dominant. Its basin size increases rapidly for K ≥ 4, reaching
unity for K ≳ 8.
The occurrence of similar states was already studied from

the point of view of hysteresis by Olmi et al. (2014). However,
not all asymptotic states with an appreciable basin have this
form. Olmi (2015) found that complex chimeras are possible,
and Nitzbon et al. (2017) saw that perturbations at some types
of nodes lead to limit cycles with a frequency not given by
Eq. (116). The impact of noise, inertia, and network topology
on different limit cycles and the hysteresis behavior was
studied by Tumash, Olmi, and Schöll (2018).

2. The impact of network structure

We now return to the synchronized state and investigate its
nonlinear stability with respect to localized perturbations in
terms of the single-node basin stability. In particular, the set of
initial states A is chosen such that all nodes except one are at
the fixed point values initially. This measure is of high
practical relevance, as actual failures or disturbances are
typically limited to a single machine or a small subnetwork.
Further, it reveals the vulnerable nodes in a grid. A numerical
analysis for sparse networks (Menck et al., 2014) showed that
the local network features have a substantial impact on the
single-node basin stability. In particular, dead ends tend to
cause exceptionally poor single-node basin stability. Nodes at
which the dead end is connected to the rest of the grid must be
viewed as the most vulnerable spots with respect to dynamical
perturbations.
The more detailed study of Schultz, Heitzig, and Kurths

(2014a), based on a more realistic network ensemble intro-
duced by Schultz, Heitzig, and Kurths (2014b), identified
detours as stabilizing features and showed that there is a
statistically robust relationship between network features and
node robustness. Kim, Lee, and Holme (2015) showed that the
community structure of the system determines which nodes
reach a high single-node basin stability first when the coupling
strength is increased. Kim, Lee, and Holme (2016) conducted
a systematic exploration of the impact of network motifs on
single-node basin stability and found that betweenness and
degree matter specifically. Kim, Lee, and Holme (2016) and
Kim et al. (2018) showed that there is strong nonmonotonic
behavior of basin stability with increasing coupling strength.
Finally, Kim et al. (2019) introduced integrated basin stability
as a way to understand the transition to global synchrony as a
function of increasing coupling strength.
A more detailed picture emerges if we add survivability, the

probability that a perturbation does not lead to a violation of
transient operational bounds. Hellmann et al. (2016) showed a
strong direct dependence of single-node survivability on the
node degree, with high degree nodes being particularly

unstable. Combining survivability and basin stability,
Nitzbon et al. (2017) showed a detailed picture of various
single-node stabilities as a function of topology. Key to this is
a node classification into those in a loop and those on a tree.
Further subdividing the tree nodes into leaves, inner tree
nodes, and sprouts of high and low neighbor degree led to the
identification of classes of nodes that show qualitatively
different stability behavior; see Fig. 15. Perturbations at some
of these nodes were already shown to result in novel
asymptotic states, mentioned in Sec. VI.E.1, that cannot be
explained with a decoupling limit.

3. The necessity of realistic models

When identifying the imprint of network structure on the
stability properties of individual nodes, one usually proceeds
by simplifying the system. To isolate the impact of topology,
other factors are taken out. For example, most of the
previously cited studies assumed homogeneous node param-
eters and neglected voltage dynamics and losses. We can use
probabilistic methods to understand how much these assump-
tions actually alter the picture.
Wolff, Lind, and Maass (2018) showed that both inhomo-

geneity of the nodes and the details of the coupling of
generators into the grid actually have a profound impact on
the single-node stability. They evaluated the basin stability
and the return times to the sync state for power grids with a
fixed topology but while using a variety of models including
the heterogeneity in the node and line parameters and the more
detailed coupling of generators, where the generator was
located at an internal node coupled by a line to the system bus.
The grid was completely stable for homogeneous parameters
but exhibited instability when introducing heterogeneity.

FIG. 15. Topological properties determine the single-node basin
stability and survivability. Left panel: survivability (Surv)
and basin stability (BS) for nodes in a synthetic power grid
network ensemble, showing pronounced differences in the
behaviors of various node types. Right panel: node classification
according to Nitzbon et al. (2017). Edges that are not in any
cycles are trees. The nodes in trees are distinguished as roots
(part of a cycle and a tree), sprouts (degree 1 nodes next to a root),
leaf (degree 1 nodes not next to roots), and inner tree nodes.
Sprouts are further distinguished according to their neighbor
degree as dense (kav > 5) and sparse (kav ≤ 5). Adapted from
Nitzbon et al., 2017.
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The coupling of generators at internal nodes was found to
stabilize the system overall; however, the location of unstable
nodes also changed.
Taking higher-order internal dynamics of the generators

into account for single-node stability analysis was considered
by Auer et al. (2016). It was found that while single-node
survivability is well captured by the swing equation (111),
voltage dynamics and internal nodes can lead to additional
asymptotic instabilities once outside the survivability region.
The first results on basin stability of higher-order generator
models were obtained by Liu et al. (2019).
Finally, most of the previously discussed works and much

of the theoretical literature focus on lossless grids. Real
transmission lines have a small but nonzero resistance
(cf. Table I), and typical values of the parameter γ in
Eq. (109) are around 0.24. While neglecting Ohmic losses
is often justified for the power flow in the synchronized state,
limit cycles and global stability properties are strongly affec-
ted (Hellmann et al., 2020). Figures 16(a)–16(d) show the
basin of attraction of the synchronous state (peach) in the slice
of phase space belonging to a single node centered on the sync
state. As γ is increased from zero to realistic values, the basin
first expands and then switches to the other half plane.
A key role in this change is played by 1-solitary states, in

which the entire network stays close to synchrony except for
one desynchronized node. If the desynchronized node is
rotating with the driving force h_δii=Pi > 0, we speak of a
normal solitary. If it is rotating against the local driving force,
we denote this as an exotic solitary state. Figure 16(e) shows
the average asymptotic single-node basin stability for different
types of asymptotic states: (i) peach for the sync state, (ii) dark
blue for ordinary 1-solitary states, (iii) dark green for exotic
1-solitary states, (iv) light green and blue for more complex

asymptotic states that also contain individual desynchronized
nodes, and (v) gray for other asymptotic states.
The presence of exotic solitary states can be understood by

considering the decoupling limit for an individual oscillator
from the rest of the grid. When completely decoupled
it will rotate with a frequency Ωsol ¼ Psol=Dsol. If we now
increase the coupling, that state persists but, taking losses
into account, the power flow no longer averages to 0 but
instead to Pe ¼ Ke sinðγeÞ according to Eq. (109). Hence, in
contrast to the lossless case the coupling to the network will
not only perturb the limit cycle but also shift its location to
Ωsol ¼ ½Psol − Ke sinðγÞ�=Dsol. This picture was confirmed in
detailed numerical experiments by Hellmann et al. (2020).
Methods to restore synchronization from solitary states were
discussed by Taher, Olmi, and Schöll (2019).
We stress that the aforementioned results were obtained for

a particular power system model, and all models face certain
limitations. For instance, the 1-solitary states are related to
“pole slipping” transients in practice. They correspond to true
limit cycles in the restricted model, but the dynamics is
changed by the generator’s protection systems, which are not
included in the model. We conclude that care should be taken
when interpreting model simulation results for real-world
situations. Models are useful in engineering power system
stability. By construction, such models idealize certain real-
world aspects and thus do not capture all details of real-world
power system dynamics. In particular, many dynamical
models do not account for the protection systems or changes
in external conditions or control systems. One advantage of
probabilistic methods for stability assessment is that they can
be straightforwardly adapted to models of different complex-
ity and scope.

VII. STRUCTURAL STABILITY OF POWER GRIDS

Structural damages are the ultimate threat to power grid
stability: “Typically, the blackout can be traced back to the
outage of a single transmission (or generation) element,”
according to Pourbeik, Kundur, and Taylor (2006). Such an
initial outage can trigger secondary outages and, eventually, a
cascade of failures bringing down a power grid entirely. One
of the most important security regulations is the N − 1 rule,
with Wood, Wollenberg, and Sheblé, 2014 having stated that
“no single outage will result in other components experiencing
flow or voltage limit violations.”. But this rule is violated
occasionally, making a grid vulnerable and large-scale black-
outs possible.
In this section, we analyze the impact of structural damages

focusing on outages of transmission elements. We mostly
employ a quasistatic picture, assuming that after an outage the
grid will rapidly relax to a new steady state (if it exists). But in
this new state other transmission elements may be overloaded,
leading to emergency shutdowns or short-circuit failures, etc.
The key questions we address in the following are (1) How

do failures spread in the network? Given a transmission line
failure, how and where are flows rerouted? (2) How does the
entire network react to structural damages or other perturba-
tions? Is there enough redundancy to cope with damages or do
secondary failures take place? (3) Finally, how do large-scale

FIG. 16. Main results of Hellmann et al. (2020). (a)–(d) Slices
of the phase space in the dimensions belonging to a node k.
Different colors show different asymptotic states. Peach is the
sync state, blue is a solitary state, and green is a solitary rotating
against its power infeed. (e) Average single-node basin stability
for the entire ensemble of networks, for the different types of
asymptotic states, as well as the number of desynchronized
oscillators following a perturbation (solid purple line). Adapted
from Hellmann et al., 2020.
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blackouts emerge? How do cascades propagate through
the grid?

A. Quasistatic analysis of line outages

1. The line outage distribution factors

We first analyze the outage of a single line within the
linearized load flow approximation, or dc approximation,
introduced in Sec. III.A.4. Assume that a line l¼̂ ðr; sÞ that
initially carries the flow Fð0Þ

l fails. If the grid remains
connected, the flow change at another transmission line
e¼̂ ðm; nÞ is linear in Fð0Þ

l ,

ΔFe ¼ LODFe;lF
ð0Þ
l ;

where the factor of proportionality is referred to as a line
outage distribution factor (LODF) (Grainger and Stevenson,
1994; Wood, Wollenberg, and Sheblé, 2014).
We summarize the derivation of the LODFs following Guo

et al. (2009) and Strake et al. (2019). As the line l ¼ ðr; sÞ
fails, the nodal susceptance matrix changes as

B → Bþ ΔB ¼ Bþ brsνrsνrs⊤; ð135Þ

where the vector νrs ∈ RN isþ1 at position r, −1 at position s,
and 0 otherwise. This causes a change of the nodal phase
θ → θ0 ¼ θþ α. Subtracting the linearized load flow equa-
tions (32) for the perturbed and unperturbed grid then yields

ðBþ ΔBÞα ¼ −ΔBθ; ð136Þ

which can be solved for α and used to compute the change of
the line flows as

ΔF ¼ BdE⊤α ¼ −BdE⊤ðBþ ΔBÞ�ΔBθ; ð137Þ

with the superscript � denoting the Moore-Penrose pseudoin-
verse. Equation (137) can be greatly simplified using the
Woodbury matrix identity, which finally yields

ΔF ¼ BdE⊤B�νrsð1 − brsνrs⊤B�νrsÞ−1Fð0Þ
rs ; ð138Þ

and thus LODFe;l ¼ bmnν
⊤
mnB�νrsð1 − brsνrs⊤B�νrsÞ−1.

This procedure is readily generalized to multiple line
outages (Güler, Gross, and Liu, 2007; Kaiser, Strake, and
Witthaut, 2020). Assume that the lines l1;l2;…; lM fail, but
the network remains connected. We define a projection matrix
from the space of all links onto the subset of failing links
P ∈ RM×L as follows:

Pme ¼
�
1 if e ¼ lm;

0 otherwise:

We define projections of the node-edge incidence matrix, the
branch reactance matrix, and initial flow vectors as

D ≔ PE ∈ RN×M;

Bout ≔ PBdP⊤ ¼ diagðbl1
; bl2 ;…; blMÞ ∈ RM×M;

Fð0Þ
out ¼ PFð0Þ ¼ ðFð0Þ

l1
;…; Fð0Þ

lM
Þ ∈ RM:

One can then proceed as for a single failing line. Using the
Woodbury matrix identity, one obtains

ΔF ¼ BdE⊤B�Dð1 − BoutD⊤B�DÞ�Fð0Þ
out: ð139Þ

In Eq. (139), we only have to invert an M ×M matrix in
addition to the inversion of the initial matrix B�. IfM is small,
the inverse can be evaluated explicitly and we obtain a set of
generalized LODFs.
We note that contingency analysis via LODFs can be

improved by a modification of the linearization procedure.
One starts with the nonlinear expression Fj→k ¼ bjk sinðθj −
θkÞ for the real power flow and carries out the linearization
only at a later stage (Jung and Kettemann, 2016; Manik et al.,
2017). One then obtains the same results as given previously,
but with reweighted line susceptances

bjk → bjk cosðθj − θkÞ: ð140Þ

Related approaches are sometimes referred to as a “hot-start
dc approximation.”

2. Spreading of failures

A deeper physical insight into the network flow rerouting
problem is obtained by an analogy to discrete electrostatics.
Using again the Woodbury matrix identity, Eq. (136) can be
recast in the form

Bα ¼ q; ð141Þ

with the source term

q ¼ ð1 − brsνrs⊤B�νrs|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
≕ χrs

Þ−1Fð0Þ
rs νsr: ð142Þ

As the matrix B is a Laplacian matrix and the right-hand side
is nonzero only at positions r and s with opposite sign,
Eq. (141) is a discrete Poisson equation with a dipole source
and α is a dipole potential; see Biggs (1997). Indeed, if we
compute the impact of the outage of a line in a rectangular
square grid, we simply recover a discretized version of the
familiar electric dipole field, as illustrated in Fig. 17. Thus,
LODFe;l depends on the orientation of the two lines e and l
and decreases as ðdistanceÞ−2.
Understanding the impact of line outages for arbitrary grid

topologies is much more challenging. The main complexity
arises from the network topology encoded in the Laplacian B,
which can be highly irregular. Still we can get some insight
using tools from algebraic graph theory (Strake et al., 2019;
Kaiser and Witthaut, 2021a).
Before we proceed to spatial failure spreading, we have a

more detailed look at the right-hand side of the Poisson
equation (141). The strength of the dipole jqj, or more

Dirk Witthaut et al.: Collective nonlinear dynamics …

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015005-30



precisely the factor χrs, can be understood from the grid
topology: If a unit power is injected at node r and withdrawn
at node s, then χrs is the flow via the direct link ðr; sÞ and
1 − χrs is the flow via other nondirect pathways. Hence, we
can view 1 − χrs as a measure of redundancy of the line ðr; sÞ.
Indeed, it can be rigorously related to topological redundancy
measures (Strake et al., 2019; Guo et al., 2021). An alternative
approach to line outage problems was introduced by
Ronellenfitsch et al. (2017). Flow changes due to a failure
can be decomposed into cycle flows as ΔF ¼ Cf using the
edge-cycle incidence matrix (5). The cycle flow strength f is
again determined by a discrete Poisson equation, now for-
mulated on the dual graph.

3. Locality and the importance of distance

Intuitively, a transmission line outage should affect nearby
lines more heavily than remote ones. In a regular square
lattice, flow changes decay as ðdistanceÞ−2, as previously
discussed. But how can we quantify this statement and what
does nearby mean in a network with complex topology? These
questions were studied using a spectral approach by Labavic
et al. (2014), Jung and Kettemann (2016), Kettemann (2016),
and Rohden et al. (2016).
The discrete Poisson equation (141) can be formally solved

by decomposing the Laplacian B into its eigenvectors defined
as BΦj ¼ λjΦj with indices j ¼ 1;…;N. Assuming the
failure of a line ðr; sÞ, we obtain

αm ¼ −Δbrs sinðθr − θsÞ
XN
j¼2

ΦjmðΦ�
jr −Φ�

jsÞ
λj

ð143Þ

using the generalized hot-start linear response with edge
weights (140); see also Haehne et al. (2019). Similarly, the
flow changes at the remaining links are given by

ΔFmn ¼ bmn cosðθm − θnÞΔbrs sinðθr − θsÞ

×
XN
j¼2

ðΦjm −ΦjnÞðΦ�
jr −Φ�

jsÞ
λj

: ð144Þ

For a regular grid of degree 2d, the eigenvectors Φj are plain
waves and the eigenvalues λj can be obtained exactly, yielding
(Kettemann, 2016)

ΔFmn ∼ AmnΔbrscdjm − rj−d: ð145Þ

In Eq. (145) cd are constants. For d ¼ 2, a regular square grid,
the power law decays with exponent 2 and c2 ¼ 2π. For a
random graph one finds exponentially localized eigenstates,
and thus an exponentially decaying response (Torres-Sánchez,
Freitas de Abreu, and Kettemann, 2020), so the disturbance
due to the outage affects the power grid in only a finite range
around the outage (Kettemann, 2016). This phenomenon is
well known and originates from random scattering from nodes
with random degree (Hata and Nakao, 2017) and/or random
parameters (García-Mata et al., 2017), so-called Anderson
localization (Anderson, 1958).
Numerical calculations based on the ac load flow

equations were found to be in good agreement with
Eq. (143); see Jung and Kettemann (2016). That study
considered the addition of a new transmission line and
confirmed the generic power-law decay of the change in
transmitted power ΔF ∼ ðdistanceÞ−2 up to finite size
corrections. As a more realistic grid topology, the effect
of a change in transmission line capacity was studied in a
model of the German transmission grid (Medjroubi,
Matke, and Kleinhans, 2015) that is shown in Fig. 18
(left image). The largest 2-connected component of this
grid was considered, with N ¼ 260 nodes and L ¼ 479

edges, homogeneous line parameter bij and power injec-
tions randomly chosen from a binary distribution,
Pi ∈ f−P; Pg. Distance is defined as the geodesic dis-
tance; see Sec. II. The resulting response behavior depends
strongly on the location of the added line. Most locations

FIG. 17. Impact of a link failure in a square lattice with uniform
edge weights. (a) Normalized change of the nodal potentials αn
for a single failing link located in the center of the network.
Both the size of the nodes and the color code represent αn.
(b) Normalized change of the link flows ΔFe for the same
topology. Arrows and color represent the direction and strength of
flow changes, respectively. From Strake et al., 2019.

FIG. 18. Left panel: German transmission grid topology (220
and 380 kV) (Medjroubi, Matke, and Kleinhans, 2015). Right
panel: Double-logarithmic plot of transmitted power change
hjΔFðlÞ

mnjiðrÞ as a function of distance r when a transmission
line ðlÞ between 880 different pairs of nodes i and j was added.
We averaged this quantity over all edges with the same distance r
to the added line ðlÞ and performed an ensemble average over
R ¼ 100 realizations with randomly distributed generators and
loads. The power-law expected for a two-dimensional regular grid
ΔF ∼ r−2 is shown for comparison (black line). The colored data
belong to special subsets of added edges, as discussed in the text.
Error bars, 95% confidence level. Adapted from Jung and
Kettemann, 2016.
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result in a long-range power-law decay with an exponent
that is, on average, close to 2. However, there are certain
classes of locations, denoted in Fig. 18 as subsets 1 and 2,
where the change results in an exponential decay beyond a
certain length scale. Notably, the regions around subset 2
are weakly connected to the remaining grid, forming
weakly connected islands, which explains the fact that
the disturbance decays exponentially at distances beyond
these islands.
A different approach to understanding the spatial pattern of

flow rerouting is to adapt the measure of distance to the
respective problem (Strake et al., 2019; Kaiser and Witthaut,
2021a). Consider the line outage distribution factors LODFe;l
for the IEEE 30-node test grid shown in Fig. 19, fixing a
failing link l in the right part of the network. The LODFs
decay with the geodesic distance of two links, but the
correlation is only moderately pronounced. This is not
surprising, as the geodesic distance does not take into account
the fact that flow rerouting requires two paths between the
links l and e, one to and one fro. We can define an alternative
distance measure, the rerouting distance, that seeks the
shortest path from one end of the link l via e to the other
end of the link l. Numerical studies show that the correlation
of rerouting distance to the LODFs is much stronger than for
the geodesic distance (Strake et al., 2019).
Finding a perfect measure of distance requires one to take

all details of the Laplacian B into account, not just the single
shortest path. Indeed, the resistance distance (Klein and
Randić, 1993) provides such a measure of distance and can
be applied to line outages (Tyloo, Pagnier, and Jacquod,
2019). However, as this distance is calculated from the full
matrix B, it does not offer a direct topological interpretation as
the shortest path distance does.

4. The importance of community structures

Some power grids show a pronounced community struc-
ture. In the Scandinavian grid, for example, Finland is
connected to its neighbors via only two ac lines [Fig. 20(a)].
This weak topological connectivity also induces a weak
electric connectivity: LODFs between two lines in different
communities are significantly smaller than expected from their
distance. This aspect is exemplarily illustrated for the failure
of a line in Sweden [Fig. 20(b)]. For most lines in Finland the
respective LODFs are of the order of 10−7, but some lines in
the north near the connection to Sweden are slightly more
affected. A more quantitative analysis is provided in Fig. 20(c)
showing that LODFs between different communities are
significantly suppressed, up to several orders of magnitude,
compared to LODFs within a community. Hence, a splitting
into communities can strongly impede the spreading of
failures (Kaiser et al., 2021). Several other topological
structures have similar or even stronger effects on failure
spreading (Kaiser, Latora, and Witthaut, 2021; Kaiser and
Witthaut, 2021a): If the coupling between two parts of a grid
can be described using an adjacency matrix of unit rank, then
all mutual LODFs vanish exactly and the spreading of failures
and cascades is suppressed entirely. The simplest realiza-
tion of such a unit-rank coupling is given by a bridge
(Ronellenfitsch et al., 2017; Guo et al., 2021) that is explo-
ited in recent proposals for emergency measures to con-
tain cascading failures (Zocca et al., 2021; Bialek and
Vahidinasab, 2022). These results emphasize the importance
of structural features for the general robustness of electric
power grids.

5. Multiple outages and collective effects

When two lines k and l fail, we cannot simply superpose
the flow changes but instead have to account for collective
effects. To see this, assume that k and l fail successively. In
calculating the impact of the failure l, we must take into
account the observation that the flow Fl has already changed
due to the failure of k. The correct result for the impact of a

(a)

(d) (e)

(b) (c)

FIG. 19. Localization of the impact of line failures as seen with
different distance measures. (a) Flow changes after the outage of a
single line (in red) in the IEEE 30-bus test grid. (b) Geodesic
distance to the failing link. (c) Rerouting distance to the failing
link accurately predicts the spatial distribution of the flow
changes. (d),(e) Flow changes jΔFej vs distance to the failing
link l on a logarithmic scale. One clearly observes that the
rerouting distance used in (e) yields a higher correlation than
the ordinary geodesic distance shown in (d). Adapted from
Strake et al., 2019.

(a) (b) (c)

FIG. 20. The importance of community structures in the spread-
ing of failures. (a) Community structure of the Scandinavian
power grid obtained by spectral clustering. (b) Magnitude of the
LODFs for a failing link at the border between southern Norway
and Sweden (red line). (c) Magnitude of the line outage
distribution factors jLODFjlj as a function of the unweighted
edge distance of the transmission lines j;l. The cases in which j
and l are in the same or different communities are compared.
The line gives the median, while the shaded area gives the
25%–75% quantile. The grid data were taken from Hörsch,
Hofmann et al. (2018).
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multiple line outage was derived in Sec. VII.A.1 and, for two
lines, reduces to

ΔFðk;lÞ
e ¼ ðLel Lek Þ

�
1 −Llk

−Lkl 1

�−1�Fð0Þ
l

Fð0Þ
k

�
; ð146Þ

using the shorthand Lel ¼ LODFe;l and denoting the failing
lines in the superscript. Collective effects can have surprising
consequences. The first impact of a line failure may be partly
compensated for by the intentional removal of a second line.
Thus, suppose that the failure of line l has led to an increase of
the flow on a critical line e. In many cases we can find another
line k such that

jFðk;lÞ
e j ≤ jFðlÞ

e j: ð147Þ

This concept was previously discussed by Motter (2004) and
Witthaut and Timme (2015) for different types of flow
networks; we return to this in Sec. VII.D. More surprisingly,
we can find cases where the collective impact of two outages
is the opposite of the impact of two isolated outages, i.e.,

ΔFðkÞ
e ;ΔFðlÞ

e > 0 but ΔFðk;lÞ
e < 0: ð148Þ

An example of this effect is shown in Fig. 21, and a more
detailed discussion was given by Kaiser, Strake, and Witthaut
(2020). Further analysis shows that collective effects are
particularly strong whenever the mutual LODFs, or more
precisely the expression

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LklLlk

p
, are large.

B. Robustness of power grids and critical infrastructures

The outage of a transmission element leads to the rerouting
of currents and power flows, as analyzed in Sec. VII.A. This
may eventually cause secondary failures of other transmission
elements, which can result in a large-scale cascade affecting
the entire grid. In this section we investigate the grid
vulnerability to secondary failures and analyze the weak spots
of a network.

1. Why secondary failures?

If the current on an overhead transmission line is too large,
it will heat up due to Ohmic losses, which may lead to line sag
and eventually a short-circuit fault, as discussed in Sec. V.B.
Strict security rules are commonly implemented to avoid such
faults such that the current on a line lmay not exceed a certain
limit, the line rating jIlj ≤ Imax

l . If voltages are close to the set
point and losses are small, this directly translates into an upper
limit for the real power flow

jFlj ≤ Fmax
l : ð149Þ

A violation of this limit typically leads to an emergency
shutdown if the line is appropriately monitored. The line will
not be damaged, but it is no longer available for power
transmission. In practice, one differentiates between short-
term and long-term loads of a transmission line. A higher
loading may be acceptable on short terms, such that a higher
line rating applies. Furthermore, not only currents but also
voltages are important for grid stability. Strict security rules
apply to the voltage level at every substation, which must
remain within a certain interval around the grid reference
level. A decreasing voltage may indicate a looming voltage
instability, as discussed in Sec. V.A.

2. Critical links: A graph theoretic perspective

Consider a heavily loaded power transmission grid which is
no longer N − 1 secure. Some transmission lines may be
critical in the sense that if they fail secondary overloads occur.
But which lines are critical and which lines are prone to
secondary overloads? These questions can be answered with
extensive numerical simulations, but a better analytic under-
standing would be helpful. We expect outages of lines with a
high load or flow to be more harmful, but this is certainly not
the entire story. Whether the grid bears enough redundancy to
cope with the failure is equally important. These aspects can
be quantitatively understood using tools from graph theory
(Witthaut et al., 2016).
Assume that a line ða; bÞ fails that initially carried the real-

power flow Fð0Þ
a→b from node a to node b. After the failure, the

power must be rerouted from a to b via different pathways.
Graph theory now provides a necessary condition for this to be
possible. The Edmonds-Karp algorithm yields the maximum
flow that can be transmitted from a to b while respecting the
line limits, which we call the redundant capacity Kred

a→b of the
line ða; bÞ. The algorithm also yields the set of edges limiting
the flow from a to b, which is referred to as the minimum cut
in graph theory. Hence, we can obtain both a measure of
redundancy and the locations of the bottlenecks in the grid.

(b)

(c) (d)

(a)

FIG. 21. Collective effects can lead to a complete reversal of the
flow changes in an N − 2 failure. The color code of the lines
indicates the magnitude of flow, with red indicating failing links.
(a) Flows in the initial unperturbed grid. (b),(c) Flow changes
after the individual failure of two links (l and k, respectively, in
red). In both cases, the flow in the top left link (e; boldface font) is
greater than in the unperturbed grid: ΔFðlÞ

l ≈ 0.3, ΔFðkÞ
l ≈ 0.1.

(d) Flows after the simultaneous failure of both links l and k. The
flow in the top left link is smaller in magnitude than in the
unperturbed grid and even changes its direction: ΔFðl;kÞ

e ≈ −0.7.
From Kaiser, Strake, and Witthaut, 2020.
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In summary, a necessary condition for having a feasible
power flow after the outage of line ða; bÞ is given by
jFð0Þ

a→b=K
red
a→bj ≤ 1. In practice, secondary overloads will

typically occur earlier, as power flows are generally not
maximum flow network flows but have to respect
Kirchhoff’s laws. An example is shown in Fig. 22 for a
semisynthetic power grid based on the structure of the
Austrian transmission grid. One of the marked links carries
a high real power flow of about 1.2 GW. It is uncritical
because it has a high redundant capacity. The second line has a
lower flow (≤ 0.9 GW) but lacks redundancy. The ratio
jFð0Þ

a→b=K
red
a→bj is larger than 1 such that an outage of this line

will always lead to secondary outages and a fragmentation of
the grid. Applying the Edmonds-Karp algorithm directly
yields the bottleneck that limits the redundancy.
Extensive numerical tests for different power system

models (Witthaut et al., 2016) show that the ratio

jFð0Þ
a→b=K

red
a→bj is a powerful predictor for critical links.

Furthermore, one can improve power system robustness by
strengthening the bottlenecks (Rohden et al., 2017).

3. Generation variability and critical fluctuations

Thus far we have investigated potential overloads and
cascades assuming that the power injections are fixed and
perfectly known. But even if we know the scheduled values,
there are always some residual fluctuations of generation and
demand. How do these fluctuations affect power system
stability? Is it possible that the grid is safe on average but
that overloads occur during stochastic peaks that may even-
tually trigger a cascade?
These important questions were addressed by Nesti,

Zocca, and Zwart (2018) using a quasistatic picture. The
power injections P are treated as Gaussian random variables
with a mean μP and a correlation matrix ϵΣP. The essential
quantities in a security assessment are the relative line loads
Ll ≔ Fl=Fmax

l , which are determined by the power injec-
tions via

L ¼ diagðFmax
1 ;…; Fmax

L Þ−1BdE⊤B�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕ϒ

P

using Eq. (33). Hence, the line loads L are also Gaussian
random variables with mean μL ¼ ϒμP and correlation
matrix ϵΣL ¼ ϵϒΣPϒ⊤. A line l is overloaded if Ll > 1.
In the limit of small fluctuations ϵ → 0 one can derive the
following probability for this event using large-deviation
theory:

PðjLlj ≥ 1Þ ≈ exp

�
−
ð1 − jμL;ljÞ2

2ϵσ2l

�
; ð150Þ

where σ2l ¼ ðΣLÞll. While this is an approximation for
nonvanishing fluctuations, it was found useful for ranking

FIG. 22. (a) Real power flows Fab in MW in a test grid based on
the Austrian grid topology. The two marked links are investigated
in detail. (b) The ratio of the flow and the redundant capacity
Fð0Þ
a→b=K

red
a→b provides a powerful indicator for critical links. (c),

(d) Illustration of rerouting pathways after the outage of links 1
and 2, respectively. Several rerouting pathways exist for link 1
such that the redundant capacity Kred is rather high, and a line
failure is uncritical. In contrast, a failure of link 2 will cause
secondary outages. The min cut for the rerouting problem
consists of a single link (marked with an arrow). This bottleneck
has a free capacity of 864 MW such that a rerouting is impossible.
Grid data are based on the work of Hutcheon and Bialek (2013),
with a slight adaptation of power injections. Austria was
artificially islanded for illustrative purposes.

FIG. 23. Fluctuations of power generation and consumption can
induce overloads of transmission lines. Left panel: nominal line
loads jμL;lj ¼ jhLlij in the SciGRID model of the German power
grid. The nominal operation is determined from one-hour
averages of the renewable feed-in and load. The feed-in of the
dispatchable power plants and the power flows are then computed
via a linear OPF; see Sec. III.B. Right panel: probability of a
transmission line overload PðjLlj ≥ 1Þ when the true power
injections fluctuate around the nominal values. Vulnerable lines
are identified using small values of the indicator ð1 − jμL;ljÞ2=σ2l.
From Nesti, Zocca, and Zwart, 2018.
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purposes. The smaller the ratio ð1 − jμL;ljÞ2=σ2l, the more
likely an overload of a line l is.
An example of such a probabilistic contingency analysis is

shown in Fig. 23 for the SciGRID model of the German power
grid. The nominal power injections were determined via an
OPF, and the correlation matrix ΣP was derived from a statistic
analysis of actual generation time series. One finds that the
vulnerable lines where PðjLlj ≥ 1Þ is largest do not coincide
with the most heavily loaded lines. High loads are one
important indicator for vulnerability, but the network structure
and the generation variability enter the overload probability on
an equal footing via the effective variance σ2l.
One can extend this analysis and ask which power injec-

tions typically lead to the failure of a single line. In
mathematical terms: What is the conditional probability
distribution of P given that jLlj ≥ 1, i.e., given that the line
l is overloaded? For ϵ → 0 this probability distribution gets
sharply concentrated around the vector

PðlÞ ¼ μP þ σ−2l ½sgnðμL;lÞ − μL;l�ΣPϒ⊤el; ð151Þ

where sgn denotes the sign function and el is the lth unit
vector. That is, there is a typical injection pattern leading to an
overload of a line given that fluctuations are small but nonzero
(which is a plausible assumption for large power transmission
grids). An important conclusion is that a line failure is not
necessarily triggered by large fluctuations in the neighbor-
hood but rather can be triggered by the cumulative effects of
small unusual fluctuations in the entire network. Correlations
of the power injections, such as by a sudden large-scale
increase in wind power generation, play a key role in such an
outage.

C. Cascades of failures and large-scale blackouts

The outage of a transmission line leads to a rerouting of
power flows that may cause secondary overloads, as previ-
ously discussed. In this section we discuss how this mecha-
nism leads to a cascade of failures and how such a cascade
propagates through the grid.

1. Simulating cascading failures

Cascading failures are often simulated in a quasistatic
picture. One computes a series of stationary states of the grid
by solving the ac [Eqs. (25)] or dc [Eqs. (32)] load flow
equations, where the topology changes as elements of the grid
fail. The basic steps of a cascade may be simulated using
Algorithm 1.
More advanced simulations can include aspects of voltage

stability as well as actions by the grid operators such as load
shedding, the immediate disconnection of consumers to
reduce the grid load.
We note that a wide body of literature on cascading failures

exists in the statistical physics literature. Purely topological
approaches based on percolation theory are particularly
popular, as they allow for analytic solutions; see Albert,
Jeong, and Barabási (2000), Albert, Albert, and Nakarado
(2004), and Newman (2012). However, the applicability of
topological models to power grid stability is limited, as

discussed by Hines, Cotilla-Sanchez, and Blumsack (2010),
Bompard, Luo, and Pons (2015), and Korkali et al. (2017).
Topological models and measures can provide some general
insight into the vulnerability of networks [see Galindo-
González, Angulo-García, and Osorio (2020)], but they
may be misleading when applied to particular grids. In
particular, they capture neither the physics of power flows
nor the heterogeneity and localization of power generation and
consumption.

2. Local versus nonlocal propagation

How do cascading failures propagate through a power grid?
Do subsequent failures occur in close proximity, or can they
jump to remote areas of a grid?
A prime example of a locally propagating cascade was

observed during the 2006 western European blackout (Union
for the Coordination of Transmission of Electricity, 2007).
The cascade was triggered by the shutdown of a line and a
switching event in northwestern Germany. In every step of the
cascade, flow was rerouted to the next available route in the
southeastern direction, thereby causing secondary failures
along these routes.
However, secondary outages can also take place at rather

long distances from the initial failure. A simple reason is that
small flow changes can also cause a line outage if a line
were already heavily loaded before. In particular, a failure of
line l causes a secondary overload of line e if (assuming that
Fð0Þ
e > 0 without loss of generality)

Fð0Þ
e þLODFe;lF

ð0Þ
l >Fmax

e ⇔LODFe;lF
ð0Þ
l >Fmax

e −Fð0Þ
e :

ð152Þ

Hence, a secondary outage occurs if either the flow change
ΔFe ¼ LODFe;lF

ð0Þ
l is large or the line e was heavily loaded

before the outage such that Fmax
e − Fð0Þ

e is small. While the
flow changes ΔFe are strongest in the vicinity of the failing
line l, little can be said about the initial line loadings Fð0Þ

e .
They are determined by the grid topology as well as the power
injections P and thus change every hour. Hence, the weak
spots of a grid also vary.
The situation becomes more involved if we go beyond the

linear dc approximation. For instance, voltage instabilities
played an important role during the blackout in the western
USA in July 1996, where strongly nonlocal impacts were

Algorithm 1.

for all branches t that may fail do
Remove trigger link t
repeat
Solve ac or dc load flow equations
for all branches l do
if branch l is overloaded then
Remove branch l from grid

end if
end for

until No further overloads or grid disconnected
end for
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observed (Venkatasubramanian and Li, 2004; Hines, Dobson,
and Rezaei, 2017).

3. Influence graphs

Influence graphs were proposed by Hines, Dobson, and
Rezaei (2017) to describe the propagation of cascades and to
understand nonlocal effects. This description was based on the
statistical analysis of a large number of cascading failures
simulated with a detailed physical model of the grid. The
simulation data are used to determine the conditional prob-
ability Rj;i;m that a line j fails in generation mþ 1 of a
cascade given that line i failed in generationm. It turns out that
probabilities do not change much with m as long as m ≥ 1.
Only the first generation m ¼ 0 is different, as the grid in the
initial state is typically N − 1 secure such that failures are less
probable. Hence, cascading failures are readily characterized
using two matrices R0;R1 ∈ RL×L with elements Rj;i;0 and
Rj;i;1þ, respectively. An elementary example of a power grid
and the reconstructed influence graph is shown in Fig. 24.
A refined treatment including multiple line outages as sepa-
rate states in a Markov chain model was proposed by
Zhou et al. (2020).
The influence graph can be used to identify critical lines as

follows. If Pi;m is the probability that line i fails in generation
m, then in the following generation

Pj;mþ1 ¼
X
i

Rj;i;mPi;m: ð153Þ

Upon the introduction of a vectorial notationPm ¼ ðP1;m;…;
PL;mÞ⊤, the probabilities evolve as P1 ¼ R0P0 and Pmþ1 ¼
R1Pm for all the following steps m ¼ 1; 2;…. The proba-
bility that a line j will fail at some time during a long cascade
is thus given by

P∞ ¼ P0 þ
X∞
m¼0

Rm
1 R0P0:

We can now analyze which elements have the largest impact
on cascading failures. To this end one can calculate how the
cumulative failure rate Ptot ¼

P
j P∞;j will change if a single

row i of the matrices is R0 and R1 is modified, representing

an upgrade of the respective line i. One finds that most
upgrades have little effect, but some lines lead to a drastic
change of Ptot. The corresponding lines represent the critical
lines of the grid.

4. Statistical analysis of cascading failures

Sections VII.C.1–VII.C.3 have provided a microscopic
picture of how flows are rerouted and how cascades propagate
in electric power grids. But how do these aspects manifest in
real-world large-scale grids under various operating condi-
tions? A large-scale statistical analysis of these questions was
recently provided by Yang and Motter (2017) using a high
quality model of the three North American synchronous
power grids (Eastern, Western, and Texas Interconnection).
The utilized cascade model was significantly extended in
comparison to the elementary model of Sec. VII.C.1, includ-
ing load shedding, generator adaptation, and a model for
transmission line overheating. A large number of cascades
were simulated for a variety of different snapshots of the grid:
different points in time with generation and load patterns. All
cascades were triggered by the simultaneous failure of three
lines randomly selected from the entire grid (Western, Texas)
or from a certain grid area (Eastern Interconnection). Yang and
Motter (2017) then evaluated the probability PðpÞ

l that a line l
will fail during a cascade as well as the probability PðsÞ

l that a
line l will be disconnected from the grid while carrying no
load after the cascade.
The first important result of the statistical analysis is that

coreness is an important factor that determines the proba-
bilities Pðp;sÞ

l ; see Fig. 25. Links with a higher coreness are
more strongly connected and thus offer more options for flow
rerouting. As a consequence they are more likely to suffer
failures (the fraction of links with PðpÞ

l > 0 increases with the
coreness) and they also have a higher average value of hPðpÞ

l i.
In contrast, the probability of becoming disconnected (i.e., the
fraction of links with PðsÞ

l > 0) decreases with the coreness.

FIG. 24. Influence graphs are used to describe the propagation
of cascading failures and to identify critical infrastructures. Left
panel: power flows in an elementary test grid consisting of six
nodes. Right panel: influence graph summarizing the likelihood
that the failure of one line will induce the failure of another line.
The nodes of this influence graph correspond to the lines in the
original grid as identified by their end points. Adapted from
Hines, Dobson, and Rezaei, 2017.

FIG. 25. Statistical analysis of cascading failures. The coreness
of a link determines its vulnerability to fail (upper panels) or to be
disconnected (lower panels) in a cascade of failures. Shown is the
fraction of lines that (c) fail or (e) get disconnected in at least one
cascade. (d) Probability of failure hPðpÞ

l i. (f) Probability of
disconnection hPðcÞ

l i averaged over all cascades and operating
conditions. Simulations were carried out for the three North
American grids under various operating conditions; see the text
for details. Adapted from Yang and Motter, 2017.
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Links with coreness 1 can be disconnected by a single failure,
while links with higher coreness have multiple connections to
the grid and are thus hardly disconnected. Notably the average

hPðsÞ
l i still increases with the coreness. In this analysis it

should be noted that the vast majority of all links have a
coreness of 2.
In a second step, Yang and Motter (2017) investigated the

vulnerable lines of the grids, i.e., lines with a high probability
of failure (PðpÞ

l > 0.0005). It was found that the set of
vulnerable lines is surprisingly small, including, for instance,
only 48 out of 7637 lines in the Texas Interconnection.
Moreover, there is a significant overlap of the vulnerable sets
between different grid snapshots. That is, generation and load
patterns determine the vulnerability only to a limited extent:
many lines are vulnerable for various operating conditions.
These findings raise the hope that grid stability can be
significantly extended with comparably few grid extensions.
Finally, we are led to the question of which trigger events

are particularly critical to grid stability. To answer this
question Yang and Motter (2017) analyzed all cascades
causing a load shedding above 300 MW. It was found that
in these cases the three trigger events are typically close to
each other and close to the vulnerable set of the grid, in terms
of both geodesic network distances and geographic distances.
This corresponds to our prior findings that flow rerouting is
predominantly local.

5. The size of cascading failures

Cascades of failures can cause large-scale power outages.
Statistics of the size of power outages are available for a
variety of power grids, as shown in Fig. 26 for the North
American power system. One observes that large-scale out-
ages are actually not rare events; that is, the likelihood P of an
outage vanishes slowly with the size of the outage Nout.
Indeed, it has been claimed that the distribution shows a
power-law behavior

P ∼ N−β
out

for largeNout with an exponent 1.3 ≤ β ≤ 2.0 for various grids
(Dobson et al., 2007). While it is generally hard to strictly

establish a power law from empirical data (Clauset, Shalizi,
and Newman, 2009), the statistics indicate that large-scale
outages occur regularly.
A detailed analysis of cascading failures including empiri-

cal statistics was provided by Dobson et al. (2007). They
analyzed outage statistics both in detailed numerical models
and in a coarse-scaled model admitting a closed form solution
(Dobson, Carreras, and Newman, 2005). This model reduces a
cascade to the following three essential elements:

• Many elements with heterogeneous loading.—The
model considers N infrastructure elements whose initial
load L0 is drawn at random from a uniform distribution
in the interval ½0; Lmax�. For simplicity we normalize all
quantities such that Lmax ¼ 1.

• Cascade mechanism.—If the loading of an element
exceeds a limit L ≥ Lfail, then this element fails and
the loading is distributed to other elements. For sim-
plicity we assume that the loading of all other elements
then increases by the value ΔL1.

• Initial trigger.—The cascade is triggered by some initial
failures, thus increasing the initial load of all elements by
an amount ΔL0.

For Lfail ¼ 1, ΔL0 þ ΔL1N ≤ 1, the number of failing ele-
ments Nout follows a quasibinomial distribution

PðNout ¼ kÞ ¼
�
N
k

�
ΔL0ðΔL0 þ kΔL1Þk−1

× ð1 − ΔL0 − kΔL1ÞN−k: ð154Þ

If ΔL1 ≪ 1=N, this distribution strongly peaks around the
mean. But if ΔL1 increases and approaches the value 1=N,
the system approaches a critical point with a power-law
distribution

PðNout ¼ kÞ ∼ k−1.5; ð155Þ

thereby providing a fair fit to the empirical results.
But why should a power system remain critical over many

years? Dobson et al. (2007) argued that criticality emerges in a
self-organized way. The loads in the system are increasing
year to year; in terms of the model Lfail decreases and ΔL1

increases. As the system approaches the critical point, the
probability and size of power outages increases and counter-
measures are implemented, such as via an extension of
infrastructures. Hence, the system remains close to the critical
point. This behavior was reproduced in a detailed numerical
model (Carreras et al., 2002) in which power dispatch and
cascades occur on short timescales (cf. Secs. III.B
and VII.C.1) and load and infrastructures evolve on much
slower timescales. In the model, the slow dynamics brings the
power system close to criticality and such large-scale cascades
become likely. Note that the hypothesis of self-organized
criticality is highly controversial, as summarized by Fairley
(2004). Different explanations were put forward by Nesti,
Sloothaak, and Zwart (2020) relating power-law distributions
in outages sizes to power-law distributions in city sizes, and by
Kaiser and Witthaut (2021b).

FIG. 26. Statistics of power outages in North American power
grids (1984–1998). The empirical probability of a power outage
as a function of the outage size on a logarithmic scale. The data
suggest a power-law distribution with exponent 1.3 ≤ β ≤ 2.0.
From Dobson et al., 2007.
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6. Transient effects in cascading failures

Our previous analysis of cascading failures was restricted to
a quasistatic picture. We considered the existence and the
properties of the steady state after the failure of a transmission
line while neglecting any dynamic. However, the existence of
a stable state after a line failure is only a necessary condition
for grid stability, not a sufficient one. It is not a priori clear
that the grid will end up in this state, but there are also other
possibilities: (i) It is not guaranteed that the system relaxed to
a fixed point after failure. Instead, it can also relax to a limit
cycle or another attractor, as discussed in Sec. V.C.3. (ii) Even
if the system relaxes to the desired steady state, it may violate
operational constraints during the relaxation, which might also
cause secondary outages. This relates to the aspect of
survivability introduced in Sec. V.C.3. As a consequence,
transient effects can increase the vulnerability of grid and a
quasistatic picture can miss important threats to stability
(Simonsen et al., 2008).
A detailed analysis of cascading failures, including tran-

sient overloads, was provided by Schäfer, Witthaut et al.
(2018). The dynamics was modeled in terms of the aggregated
dynamical model of Sec. III.C.9 and a line was instanta-
neously removed from the simulation when the flow exceeded
a line rating jFijðtÞj > Fmax

ij . The impact of such a transient
outage is illustrated for an elementary test grid in Fig. 27,
where a cascade is triggered by the failure of a single line
ð2; 4Þ [Fig. 27(a)]. In a quasistatic picture, the grid immedi-
ately jumps to a new stable steady state [Fig. 27(c)]. However,
the line ratings are exceeded transiently, leading to secondary
failures of line ð4; 5Þ and eventually to a cascade discon-
necting the grid.

Whether transient overloads are important depends cru-
cially on grid properties, the line ratings Fmax

ij , and the initial
trigger that starts the cascade. The strongest impacts have been
observed for heavily loaded grids, where the likelihood of
secondary overloads more than doubles.

D. Braess’s paradox

The loss of a transmission line can cause a blackout, either
directly, as discussed in Sec. V.A, or indirectly via a cascade of
failures. But the reinforcement of a transmission line or the
addition of a new line can also induce a loss of stability
(Witthaut and Timme, 2012; Coletta and Jacquod, 2016). This
surprising effect is demonstrated for an elementary test grid in
Fig. 28. The initial grid relaxes to a synchronized fixed point,
whereas synchronization becomes impossible after certain
grid extensions and the synchronized fixed point has ceased
to exist.
We can understand the loss of a fixed point using the cycle

flow approach introduced in Sec. VI.C.3. Increasing the
capacity of a line as in Fig. 28(b) will always lower the load
on this specific line and thus relieve the grid. However, any
fixed point must also satisfy the winding number con-
straint (124) for every cycle in the network. As a conse-
quence, all flows in the grid F are affected, which may cause
the disappearance of synchronized phase-locked states, a
prerequisite for normal grid operation. In particular,
for the example shown in Fig. 28(b) a cycle flow must be
added in the counterclockwise direction to continue to
satisfy the constraint (124) after the line extension. But this
would increase the load on lines 4 → 5 and 4 → 8 above the
upper limit K, which is not possible. The fixed point ceases
to exist.
Braess’s paradox can be used to improve grid stability. In

certain situations it can be beneficial to shut down a

(a)

(c) (d)

(b)

FIG. 27. Transient effects can increase the vulnerability of a grid
to cascading failures. (a) An elementary test grid with two
effective generators (P ¼ þ1.5 s−2; squares) and three effective
consumers (P ¼ −1 s−2; circles). All lines have Kij ¼ 10=6 and
Fmax
ij ¼ 1. At time t ¼ 1 s, the line ð2; 4Þ fails. (b) In a full

dynamical study, line ratings are exceeded transiently, leading to
secondary line outages. Shown is the number of failed lines as a a
function of time. (c) In a quasistatic picture, the grid immediately
relaxes back to a stable steady state that respects the line ratings.
Shown are the steady-state line flows jFlj before and after the
initial failure. (d) Time evolution of the line flows jFlðtÞj taking
into account both the continuous dynamics and the outage of
lines. From Schäfer, Witthaut et al., 2018.

(a)

(d) (e) (f)

(b) (c)

FIG. 28. Braess’s paradox: loss of the synchronous fixed point
due to grid extensions. (a)–(c) Topology of the network. The
vertices generate or consume the power Pi ¼ �P, and the
transmission lines have a capacity K. We consider the cases
where (b) the capacity of one line is doubles and (c) a new line is
added. (d)–(f) Dynamics of the grid given by the equations of
motion (111) starting from the initial state θið0Þ ¼ _θið0Þ ¼ 0.
The initial grid relaxes to a synchronized fixed point, while
synchronization becomes impossible after the grid extensions.
The parameters areK ¼ 1.03P,D ¼ P, and J ¼ 1. Adapted from
Witthaut and Timme, 2012.
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transmission line on purpose to relieve another line
(Motter, 2004; Witthaut and Timme, 2015); cf. Sec. VII.A.5.
Similar effects were observed for other supply networks,
starting with a seminal work on traffic networks by
Braess (1968).

VIII. PERTURBATIONS, FLUCTUATIONS, AND
TRANSIENT DYNAMICS

Since the ascent of renewable energy sources, accompanied
by increased trading and regulatory activities, power inputs
and outputs increasingly fluctuate on all timescales. In
addition, consumption patterns keep changing due to the
increasing use of smart devices, digitalization, and global
connectivity. Such perturbations and fluctuations require
analyses of the state of a power grid as a driven, non-
equilibrium system where voltages, voltage angles, and flows
are nonstatic and even nonstationary as they respond dynami-
cally to time-varying signals.
In this section, we address key questions about perturba-

tions and fluctuations in power grids. In a mathematical model
for bulk grids, we illustrate in Sec. VIII.A how fluctuations of
feed-in and consumed power translate to frequency fluctua-
tions while highlighting their non-Gaussian statistics. We also
highlight the impact of grid heterogeneities on non-
Gaussian features and, in Sec. VIII.B, present driving
response relations for networked systems that explicitly
take into account any given grid topology. Beyond deriving
the general form of linear response theory, we explain
collectively emerging dynamic phenomena including reso-
nances, bulk oscillations, localization, and signal propaga-
tion in Sec. VIII.C. In Sec. VIII.D, we outline how the
Wentzel-Kramers-Brillouin (WKB) method helps one to
predict the probability of blackouts if rare but large
fluctuations kick the system out of a stable phase-locked
state. For fluctuations in production and consumption
occurring simultaneously all over the grid, a natural imple-
mentation in the spirit of statistical mechanics amounts to
considering ensembles of power grids (Sec. VIII.E) with
possible applications to obtain macroscopic average quan-
tities such as the market volume and market costs.

A. Frequency fluctuations from time series data

Dynamic driving signals continually change the overall
state of a power grid. Because of fluctuations, the collective
dynamics of electric power grids thereby is not only
intrinsically out of equilibrium but also intrinsically non-
stationary. Fluctuations often directly modify essential
parameters of input and output and make them time
dependent, reflecting fluctuating power feed-in and con-
sumption. One key example is the fluctuating power
occurring as a time-dependent parameter PiðtÞ, such as in
the second-order model (111).
To analyze how the statistics of input power fluctuations

influence the grid frequency, we first focus on the bulk
frequency dynamics given by Eq. (87), assuming that the
power imbalance is due to the following stochastic fluctua-
tions at the grid nodes i ¼ 1;…;N with strength qi:

ΔP ¼
XN
i¼1

qiξiðtÞ≕ q̄ ξ̄ðtÞ: ð156Þ

In traditional analyses of power engineering, input fluctua-
tions are either neglected or modeled to be of a Gaussian
nature, with either white or colored noise, i.e., without any or
with small temporal correlations; see Zhang and Li (2010),
Wood, Wollenberg, and Sheblé (2014), and Schäfer et al.
(2017). For Gaussian white noise power fluctuations, the
resulting distribution of frequency deviations ω̄ is Gaussian
with zero average and a standard deviation σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iqi=2ηJ̄

2
p

.
Such a Gaussian model neglects heavy tails observed in bulk
frequency distributions (Schäfer, Beck et al., 2018; Gorjão,
Jumar et al., 2020). As Fig. 29 illustrates, such heavy tails
indicate that strong deviations from the reference frequency
are orders of magnitude more frequent than a Gaussian model
would predict.
Heavy-tailed frequency distributions may emerge from

either heavy-tailed distributions of the power fluctuations
ξ̄ðtÞ or the temporal variability of the system parameters
(Schäfer, Beck et al., 2018). In particular, abrupt changes of
power generation at the beginning of the trading intervals may
cause large frequency deviations (Gorjão, Anvari et al., 2020).
Counting the number of extreme events of the frequencies,
defined as frequency deviations of more than 100 mHz from
the set frequency, and comparing these data from the years
2017 and 2011 reveal additional information [Fig. 29(b)]; cf.
Schäfer, Timme, and Witthaut (2018). First, the total number
of extreme events is reduced in 2017. Second, the number of
these events is predominantly reduced in an interval of a few
minutes after full hours. Third, the total number of threshold
violations seems to still be substantial in the first few minutes,
as well as in about the 18th, the 33rd, and the 48th minutes
after a full hour (each a few minutes after a full quarter hour),
hinting that switching the trading intervals from each hour
(in 2011) to each quarter of an hour (in 2017), and thereby
reducing the volume of trading per event together with
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FIG. 29. Non-Gaussian frequency deviations with a reduced
number of extreme events. (a) Distribution of frequencies around
a set frequency (50 Hz) in the Continental European grid (yellow)
deviates from the best Gaussian distribution (parabolic blue solid
line). In particular, the probability (per Hz) of large events of
more than 0.1 Hz frequency deviations is increased by more than
a factor of 10 compared to the Gaussian fit. (b) Counts of
“extreme events,” i.e., the number of frequency deviations larger
than 0.1 Hz resolved for each minute, within full hours,
accumulated for 2017 and 2011, respectively. Compiled using
data from Reseau de Transport d’Electricite (2017) and the
methods of Schäfer, Timme, and Witthaut (2018).
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changes in regulatory action, might have caused the reduction
in the number of extreme frequency deviations. The histogram
also hints at a characteristic timescale of response of frequency
deviations at approximately 2–4 min delay. Both the details of
such deviations and the generality of their occurrence remain
poorly understood to date.
The resulting extreme events pose theoretical questions for

analysis and serious practical challenges, such as for security
assessment. Recent modeling work (Wolff et al., 2019)
illustrated that in power grids in which consumption, gen-
eration, and transmission infrastructures are heterogeneous,
fluctuating wind power injection at nodes that are weakly
coupled to the grid particularly contribute non-Gaussian
features to frequency deviations. Some further studies con-
sidered non-Gaussian effects, focusing on either theoretical
aspects of how they may emerge or numerical evaluations of
individual wind and solar data; see Kashima, Aoyama, and
Ohta (2015), Anvari et al. (2016), Schmietendorf, Peinke, and
Kamps (2017), and Totz, Olmi, and Schöll (2020). In
particular, the intermittent nature of short-term wind fluctua-
tions cause novel types of frequency and voltage fluctuations
and thereby influence stability properties of grid dynamics
(Schmietendorf, Peinke, and Kamps, 2017). Wind power
induced fluctuations, quantified in terms of frequency
deviation variance, moreover, propagate along interconnected
synchronous machines in a characteristic way, with exponen-
tially decaying amplitudes (Haehne et al., 2019).

B. Network linear response theory for fluctuating power

How does the collective grid dynamics respond to input
fluctuations? We review the general linear response theory
valid for small perturbations with arbitrary time dependence
(Haehne et al., 2019; Zhang et al., 2019; Zhang, Witthaut, and
Timme, 2020). Consider a small perturbation δPðtÞ ¼
½δP1ðtÞ;…; δPNðtÞ�T that at all nodes i results in phase
deviations αiðtÞ To first order in the deviation αi, perturbations
evolve according to the linear wave equation (112), as
governed by the weighted graph Laplace matrix L ∈ RN×N,
which is defined in Eq. (113). For example, for homogeneous
parameters the inertia Ji ¼ J, and the damping factorDi ¼ D,
the response of the phase αiðtÞ to dynamic perturbations, such
as a change of power δPjðtÞ at node j, is given by (Haehne
et al., 2019)

αiðtÞ ¼
J

D2ωR

Z
t

−∞

X
j

δPjðt0ÞGijðt0 − tÞ dt
0

τ
; ð157Þ

with the grid reference frequency ωR; see Sec. III.C.1. The
propagator from node i to node j is defined by

Gijðt0 − tÞ ¼
XN
n¼1

X
σ¼�1

ϕniϕ
�
nj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ̃n

p ð−σÞeð1þσ
ffiffiffiffiffiffiffiffi
1−Λ̃n

p
Þðt0−tÞ=τ.

ð158Þ

See Haehne et al. (2019) for the full derivation. In Eq. (158)
1=τ ¼ D=J is the local relaxation rate (of a single node
disconnected from other nodes) and Λ̃n ¼ ðJ=D2ωRÞΛn,

where Λn ∈ R are eigenvalues and ϕn ∈ CN are the corre-
sponding eigenvectors of the generalized graph Laplacian
matrix L [Eq. (113)], which is related to the stability matrix
used in small signal stability analysis (Milano, 2010; Zhang,
Rehtanz, and Pal, 2012). For each eigenvalue of the generalized
graph Laplacian Λn ∈ R there are two eigenvalues of the
linearized swing equations (84), the linearwave equation (112),

as given by εnσ¼−ið1þσ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−Λ̃n

p
Þ=τ, where σ¼�. Thus, the

denominator in Eq. (158) is proportional to the difference of

these eigenvalues 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ̃n

p
¼ τiðεnþ − εn−Þ. Note that the

relaxation rate of each mode is given by Γnσ ¼ −Imεnσ, which
is identical to the local relaxation rate 1=τ if Λ̃n > 1 but differs

from it by the term σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ̃n

p
=τ if Λ̃n < 1, yielding for the

mode σ ¼ −1 a slower relaxation in the grid than for individual
nodes. This expression applies to any disturbance δPjðtÞ as
long as its amplitude is sufficiently small; see Eq. (S2) in the
Supplemental Material of Tamrakar, Conrath, and Kettemann
(2018) for a validity condition. Similar expressions can be
obtained in response to a change of any of the system
parameters, like a change of power capacitance δKijðtÞ
between the nodes i and j (Kettemann, 2016; Witthaut et al.,
2016; Manik et al., 2017).
In the frequency representation of the linear response,

we write the phase deviation αiðtÞ as a generalized Fourier
series and expand its spatial dependence in terms of eigen-
vectors ϕn of the generalized Laplacian L. Thereby we obtain
(Kettemann, 2016; Auer et al., 2017; Tamrakar, Conrath, and
Kettemann, 2018; Zhang et al., 2019)

αiðtÞ ¼
Z

∞

−∞

XN
n¼1

cnðϵÞϕnie−iϵtdϵ; ð159Þ

where cnðϵÞ is the contribution strength of the angular
frequency ϵ at the nth node. Likewise expanding the disturb-
ance in a Fourier series, we obtain

δPiðtÞ ¼
D2ωR

J

Z
∞

−∞

XN
n¼1

ηnðϵÞϕnie−iϵtdϵ: ð160Þ

Inserting these expansions for αiðtÞ and δPiðtÞ into the
linear wave equation (112), one finds, requiring that the
equation is fulfilled for each term of the Fourier series,
ð−τ2ϵ2 − i2τϵþ Λ̃nÞcnðϵÞ ¼ ηnðϵÞ. For a given disturbance,
the Fourier component of the phase deviation cnðϵÞ is thus
given in response to that of the disturbance ηnðϵÞ. Inserting
that expression for cnðϵÞ back into the Fourier series, one gets

αiðtÞ ¼
Z

∞

−∞

XN
n¼1

ð−τ2ϵ2 − i2τϵþ Λ̃nÞ−1ηnðϵÞϕnie−iϵtdϵ:

ð161Þ

A linear response theory generalizing Eq. (157) to include
inhomogeneous parameters and the presence of Ohmic losses
was derived by Plietzsch et al. (2019), and the case without
inertia (J ¼ 0) was analyzed by Tyloo, Coletta, and Jacquod
(2018). Zhang et al. (2019) disentangled the responses and
analyzed spatiotemporal response patterns (to be discussed in
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Sec. VIII.C) starting with a focus of driving one node at one
frequency, i.e., ηnðϵÞ ¼ δðϵ − ϵ0Þδn;j in Eq. (160), to obtain
characteristics of linear response estimates analytically.
Given the phase deviationαiðtÞ for the time t and the position

i, one can calculate the temporal and spatial evolution of phase
deviations, the frequency deviations ðδfÞiðtÞ¼∂tαiðtÞ, and the
rate of change of the frequency deviations ∂t(δfiðtÞ) (Pagnier
and Jacquod, 2019a), as well as time-averaged moments of
these quantities. Furthermore, moments of increments of
frequency at the node i, fiΔt ¼ fiðtþ ΔtÞ − fiðtÞ (Haehne
et al., 2019), contain information about correlations at time-
scale Δt. In the following, we review the results obtained in
linear response for these quantities for different types of
nonstationary signals impinging on exemplary power grid
structures.

C. Spatiotemporal responses from localized to resonant

1. Propagation of short-duration disturbances

For disturbances that last for a short time compared to the
local relaxation time τ ¼ J=D, the linear response at the node
i due to a power pulse

δPkðtÞ ¼ δPδkjτδðt − t0Þ ð162Þ

at the time t0 and the node j by Eq. (157) yields, for the times
t > t0,

αiðtÞ ¼ −
JδP

2D2ωR

XN
n¼1

X
σ¼�1

ϕniϕ
�
njffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Λ̃n

p e−ð1þσ
ffiffiffiffiffiffiffiffi
1−Λ̃n

p
Þðt−t0Þ=τ:

ð163Þ
For meshed, spatially embedded grids and sufficiently large
inertia, analytical (Kettemann, 2016) and numerical results
(Tamrakar, Conrath, and Kettemann, 2018) showed that
disturbances propagate ballistically with the velocity v such
that the time t > t0 when signals arrive at the geometrical
distance r from the position of the disturbance is given by

t − t0 ¼ r=v: ð164Þ
In Eq. (164) the arrival time t > t0 is defined as the time that it
takes after a single-node disturbance in δP at time t0 until a
phase deviation αiðtÞ exceeds a threshold αth (in the example
in Fig. 30, αth ¼ 10−6JδP=D2ωR is chosen).
For homogeneous regular grids, the velocity v can be

derived as follows from the response theory equation (163)
(Kettemann, 2016; Tamrakar, Conrath, and Kettemann, 2018):

v ¼ a

ffiffiffiffiffiffiffiffiffi
K
JωR

s �
1 −

P2

P2
c

�
1=4

; ð165Þ

with the length of a single transmission line a. Here, P < Pc,
where Pc is the critical power above which no stationary
solution to the power flow equations exists. Equation (165)
gives lower bounds for the arrival times [Eq. (164)] for both
regular square and German transmission grid topology [the
red dashed lines in Figs. 30(a) and 30(b)]. According to
Eq. (165) the maximal velocity of disturbances in both regular

and meshed real grid topologies increases with the decreasing
inertia J and decrease as P → Pc.
For unmeshed grid topologies it was found by Tamrakar,

Conrath, and Kettemann (2018) that arrival times grow not
linearly but quadratically with distance r, resembling the
diffusion

t − t0 ¼ r2=4D: ð166Þ
For Cayley tree graphs with branching number b the diffusion
constant is derived as

DðbÞ ¼ τΔ2
ffiffiffi
b

pffiffiffi
b

p
− 1

; ð167Þ

where Δ ¼ ðK=JωRÞ1=2ð1 − P2=P2
cÞ1=4ð

ffiffiffi
b

p
− 1Þ is the pos-

itive Fiedler value, the spectral gap of the graph Laplacian,
independent of the number of grid nodes N. This is confirmed
by the numerical calculations illustrated in Fig. 30(c) (dashed
line). For low inertia (J < Jc) the collective dynamics of
coupled nodes also results in diffusive spreading of the
disturbances in meshed grids; see Fig. 30(d). Jc is obtained
from the condition that slow modes with a small relaxation
rate appear where the spectral gap (Fiedler value) Δ is smaller
than the local relaxation rate, (1=τ ¼ D=J) (Tamrakar,
Conrath, and Kettemann, 2018). As Fig. 30(d) illustrates,

FIG. 30. Arrival time t� ¼ ðt − t0Þ=τ of a short pulse disturb-
ance in units of τ ¼ J=D vs the geometric distance r� ¼ r=a in
units of the transmission line length a. The green rhombi re-
present the numerical results for (a) a square grid and (b) German
transmission grid topology:KJ=D2ωR ¼ 105, a realistic value for
high voltage transmission grids. Also shown are the ballistic
equation (164) with the fitted velocity v (red line) and the analytic
velocity equation (165) (red dashed line). The black squares
indicate node-resolved arrival times t�i . Unfilled squares indicate
arrival times, averaged over all nodes at the same distance (c) for
a Cayley tree with branching b ¼ 2, and (d) for the German
transmission grid. In (c) and (d) KJ=D2ωR ¼ 10. Diffusive
equation (166) fitted (pink line) and with the analytical equa-
tion (167) (pink dashed line). Also shown are the ballis-
tic equation (164) fitted (red line) and with analytic velocity
(red dashed line). σ ¼ P=Pc ¼ 0.1, with critical power Pc for
the respective grids. Adapted from Tamrakar, Conrath, and
Kettemann, 2018.
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the spreading is more strongly delayed for some nodes, and
disturbances are localized in certain grid regions where nodes
do not become excited above the threshold (at least within the
observation time). Linear response theory may explain this
feature, as the response [Eq. (163)] is proportional to the
eigenvector amplitude of the Laplacian ϕni. As previously
noted, the long-time transient behavior is dominated by the
Fiedler vector, the eigenvector with the smallest nonzero
eigenvalue, which is shown in Fig. 31 (left panel) for the
German transmission grid topology and illustrates two geo-
graphic regions with high amplitudes. A similar result was
obtained by Pagnier and Jacquod (2019a), who found the
Fiedler vector of the weighted European transmission grid to
be localized at the southern and northern borders. Moreover,
the global RoCoF was found to decay with increasing system
inertia, which they related to the Fiedler vector intensity. In
random graphs, the Fiedler vector can be strongly localized,
even on a single node [Fig. 31 (right panel)], so single-
node disturbances of sufficiently small amplitudes remain
localized. Thus, strong randomness and inhomogeneity may
result in localization of disturbances, as noted by Kettemann
(2016), a phenomenon well known as Anderson localization
(Anderson, 1958).

2. Propagation of stochastic disturbances

On large timescales, frequency control measures compen-
sate feed-in fluctuations of renewable generators, as reviewed
in Sec. III.D, thereby maintaining stable grid operation.
However, on timescales below 1 s, grid frequency fluctuations
increase with increasing wind power production (Haehne
et al., 2018). Moreover, the timescale separating local from
interarea modes is also of the order of 1 s (Zhang, Rehtanz,
and Pal, 2012). Are such fluctuations a local feature, for
instance, resulting from locally high wind power injection, or
do they affect grid dynamics over large ranges? To address this
question, the subsecond grid frequency dynamics has been
simulated by stochastically perturbing the grid. Model simu-
lations of coupled nonlinear oscillator models with syntheti-
cally generated wind power feed-in time series (Haehne et al.,
2019) indicate that the variance of short-term fluctuations
decays for large inertia exponentially with distance to the
feed-in node. These findings hold for both linear chain

networks and German transmission grid topology (see
Fig. 32), which is in agreement with analytical results for
the variance of frequency increment distributions,

hðD̂ΔtωiÞ2i ¼
hðD̂ΔtδP1Þ2i

JKωR
exp

�
−
di;j
ξ

�
; ð168Þ

obtained by linear response theory [Eqs. (157) and (158)] for
chainlike grids with N ≫ 1 nodes. Here D̂ΔtfðtÞ ¼ fðtþ
ΔtÞ − fðtÞ for any function f, and hðD̂ΔtδP1Þ2i is the second
moment of the increment distribution of the disturbance at site
j ¼ 1. Thus, the second moment of the frequency increments
decays exponentially with topological distance di;j ¼ i − 1
from the position of the disturbance with correlation length

ξ ¼ vτ=2 ¼
ffiffiffiffiffiffiffi
JK

p
=2

ffiffiffiffiffiffi
ωR

p
D: ð169Þ

Below a critical inertia J < Jc ¼ ωRD2N2=π2K ≈
1.6 × 106 kgm2, there are nonzero eigenvalues Λn < 1;
cf. Fig. 32. According to Eq. (158), the amplitude of these
modes decays with a rate smaller than 1=τ.
In sharp contrast, the kurtosis

k ¼ hðD̂Δtf − hD̂ΔtfiÞ4i
hðD̂Δtf − hD̂ΔtfiÞ2i2

ð170Þ

of frequency increments, quantifying deviations from
Gaussian distribution (k ¼ 3), is found to decay slowly,
subexponentially, with distance from the disturbance. Thus,
the non-Gaussian shape of frequency fluctuations (see
Sec. VIII.A) persists over long ranges (Fig. 33).
In addition to these fundamental aspects, linear response

arguments have been used in various applications. Using
realistic grid models, analyses have addressed how fluctua-
tions affect the primary control effort (Tyloo and Jacquod,
2021), where additional inertia should be placed (Pagnier and
Jacquod, 2019b), and which fluctuation sources have the
strongest impact on the grid (Gambuzza et al., 2017).

3. Localization, distributed resonances, and bulk oscillations

Which collective dynamical phenomena does linear
response theory capture? Zhang et al. (2019) analyzed the
response dependence on grid topology, on the exact location
of perturbed and responding nodes in the network, and on the
frequency content of the power fluctuations driving the system
and compared the results to the full nonlinear system

FIG. 31. Normalized Fiedler vector intensity jϕ2;ij=maxn jϕ2;nj
relative to its maximum (shown in black) for the German
transmission grid (left panel) featuring maximal intensity at
the south and north borders and for a random grid with strong
localization at a single node (black; at the bottom right of the
right panel). Adapted Torres-Sánchez, Freitas de Abreu, and
Kettemann, 2020.

FIG. 32. (a) Variance of increments hD̂Δtω
2
i i for a chain of N ¼

50 oscillators. The straight lines have a slope m ¼ −1=ξ with
Eq. (169). (b) Eigenvalues of Laplacian Λn for various inertia J.
(c) Fits of slope m (orange) converge to an analytical m ¼ −1=ξ
[Eq. (169)] (blue) with increasing inertia J. Vertical dashed line,
Jc; error bars, 2σ confidence bound. From Haehne et al., 2019.
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dynamics. If a given node j is driven by power fluctuations at
a given frequency ω, i.e., ηnðϵÞ ¼ δðϵ − ωÞδn;j in Eq. (160),
three regimes with qualitatively different stationary responses
emerge; see Fig. 34.
For large frequencies (compared to the range set by the

Laplacian eigenvalues), the responses are strongly localized
on the network, with amplitudes

ciðωÞ ∼ const × ω−2d−1 ð171Þ

in Eq. (159) asymptotically (as ω → ∞) decaying exponen-
tially with frequency and algebraically with graph theoretic
distance d ¼ dði; jÞ response node i has from the driven node
j. In Eq. (171) const is a constant value, independent of
frequency yet containing information about eigenvector over-
laps and the identity of the driving and response nodes. This
result complements the findings on localization reported in
Fig. 31 for short-duration perturbations to signals with
arbitrary frequency content and asymptotically quantifies
localization. An exact asymptotic expansion up to order
ω−2d−1 shows that the entry ði; jÞ of all powers m < dði; jÞ
of the Laplacian exactly equals 0, reflecting no existing
paths from node j to i of length shorter than their topo-
logical distance dði; jÞ; see the Supplemental Material of
Zhang et al. (2019).
For intermediate frequencies in and near the range

defined by the Laplacian eigenvalues, resonances occur that
induce spatiotemporal responses that are strongly inhomo-
geneous both as a function of frequency ω and among
response nodes i. Near resonance frequencies relative to
response strengths substantially exceed those at low frequen-
cies; see Fig. 34(b) as well as Fig. 2(f) of Zhang et al. (2019).
Here the interaction network topology plays a major role in
selecting which node and frequency responses are particularly
strong (or weak), thereby stressing the distributed nature of
these resonances. At low driving frequencies, the dynamics at
all grid nodes follow the driving signal almost instantaneously,
resulting in spatially homogeneous bulk oscillations.
Such an analysis transfers to fluctuating signals with

distributed frequency content and distributed driven nodes,
for instance, grid models driven by purely random processes
as well as those driven with power frequency fluctuations
characteristic of photovoltaic or wind power generators are
well characterized by linear response theory. Only above 95%
transmission line loads, a regime to be avoided in real
operations for various reasons, does linear response theory
yield substantial errors.

D. Blackouts as rare events due to large fluctuations

Dynamical instabilities of the power grid dynamics will
become increasingly important as fluctuations from renewable
resources become more frequent and possibly stronger. How
close is a given system to an unstable state, and thus what is a
typical timescale for fluctuations to kick the system out of its
stable operating state? If strong fluctuations are relatively
infrequent, it is desirable to quantify how rare they are. In
addition, one would naively expect that fluctuations of power
production with non-Gaussian distributions increase the risk
of desynchronization, as large fluctuations are less suppressed
in their broad tails. An analytic framework pursued by Hindes,
Jacquod, and Schwartz (2019) quantifies the risk of escape
depending on the deviations from Gaussian fluctuations. This
work generalizes the analytic estimates of Schäfer et al.
(2017) outlined in Sec. V.C.4 in several respects. It captures
the distributed dynamics of large grids and Poissonian (rather
than Gaussian) noise suited to model fluctuations in real-
power production.
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FIG. 33. Kurtosis k of frequency increment PDF in a chain of
N ¼ 100 nodes. The frequency increment distribution pðD̂ΔtωiÞ
deforms only slowly toward an almost Gaussian distribution.
Insets (from left to right): i ∈ f2; 20; 50g, θ ¼ 0.01 s. From
Haehne et al., 2019.

(a)

(c)

(b)

(d) (e)

FIG. 34. Localization, distributed resonances, and bulk oscil-
lations. In a small network example (a), the joint implications on
response strength (b) of driving one node (labeled 0) are
illustrated as a function of driving frequencies [(c)–(e)] and at
four selected response nodes (labeled 1–4). Whereas at high
driving frequencies responses are localized (algebraically in
frequency, exponentially in internode distance), they are irregular
across frequencies and among nodes in a resonance regime of
intermediate driving frequencies. At low frequencies, globally
homogeneous bulk oscillations emerge where the entire grid
follows the driving signal (even if at only one node). All response
strengths are quantified in terms of the amplitude of the frequency
response relative to their low frequency limit as ω → 0. From X.
Zhang; cf. Zhang et al. (2019).
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Hindes, Jacquod, and Schwartz (2019) employed a WKB
approach applied to classical stochastic systems; cf. Dykman
et al. (1994). They found that the rate of desynchronization
may exponentially speed up or slow down, depending on how
the statistics of fluctuations combines with the least stable
mode of the network described by the Fiedler vector. In
contrast to the Kramers-like formula for the escape rate
[Eq. (107)], which depends only on the second moment,
higher-order moments of the Poissonian noise are captured by
the WKB framework, and their impact on the escape rate may
be counterintuitive. As we later argue, the escape time hTi is
proportional to exp ½−ðSð0Þ þ ΔðnÞSÞ�, with the action S
expanded in powers of the distance to the bifurcation point.
Higher-order corrections ΔðnÞS to the leading term Sð0Þ can
have both signs, increasing or decreasing the escape time. We
summarize the assumptions for this WKB approach to sketch
the main steps of deriving the escape time from a stable state.
For detailed derivations see Hindes, Jacquod, and Schwartz
(2019) and references therein.
Consider power grids described by the swing equation for

synchronous machines, where an input power P̄i is subject to
fluctuations piðtÞ. Given histogram data, such as from
turbulence induced wind-generated power increments, we
construct a time series piðtÞ of fluctuations reproducing the
increment histogram with bins of size b. The ansatz is
overdamped dynamics

_pi ¼ −γpi þ ξiðtÞ; ð172Þ

with damping rate γ, and a statistical drive ξiðtÞ, so
large intermittent spikes are allowed, as they are observed
for wind and solar sources. The stochastic drive is given as
ξiðtÞ ¼

P
bn gibδðt − tib½n�Þ, where the power increment gib at

i is the average of the pulse amplitude over the bin b ∈
f1; 2;…;Mg of the histogram, where averaged amplitudes are
the measured increments gi ¼ piðtþ 1Þ − piðtÞ and tib½n�
denotes the time at which the nth such increment in bin b
at unit i occurs. For modeling, the driving signal is assumed to
be Poisson shot noise, so the time between two events where
unit i receives a power increment within bin b is exponentially
distributed with a rate νib that is consistent with the histogram.
Consider a synchronized phase-locked state that emerges

through an inverse saddle-node bifurcation as the coupling
strengths increase such that unstable, saddle phase-locked
states are in the vicinity of it. Moreover, take typical fluctua-
tions to be small compared to distances to the saddles and
large fluctuations to be rare. Such fluctuations are not captured
in the large-deviation approach of Nesti, Zocca, and Zwart
(2018) described in Sec. VII.B.3, where an overload may also
be due to the many small deviations that accumulate.
The thinking behind the analytical approach of Hindes,

Jacquod, and Schwartz (2019) is that a large fluctuation drives
the system along a most-likely path in phase space. The path
connects the stable phase-locked state with the saddle, while
fluctuations and the network dynamics coact as to maximize
the probability of desynchronization. To derive the optimal
path from classical mechanics, a generalized Fokker-Planck
equation for the stochastic network dynamics is adapted to
incorporate Poissonian noise. It determines the probability

distribution ρ of finding oscillator phases Φ, phase velocities
v, and fluctuations p at time t. To analyze large fluctuations
that are rare, we project on the exponential tails of ρ and insert
a WKB ansatz

ρðΦ; v; p; tÞ ¼ B expf−SðΦ; v; p; tÞg ð173Þ

into the Fokker-Planck equation. Next the action SðX þ δXÞ
with X ≡ ðΦ; v; pÞ is expanded in deviations δX about X (here
the stationary state), where SðXÞ ≫ 1, while jδXj ∝ 1 is
assumed and only leading-order terms in the first derivatives
∂ΦS, ∂vS, and ∂pS are retained. As a remark, this ansatz
allows one to analyze the shape of the probability distribution
even in the remote tails for which δX ∝ Ω ≫ Ω1=2 if Ω1=2 is
the typical size of a fluctuation in the stationary state, in
contrast to the typical and small fluctuations considered in
Eq. (106) in Kramers’s escape theory or entering Eq. (150) as
it is derived from large-deviation theory. The insertion of
Eq. (173) into the Fokker-Planck equation yields a Hamilton-
Jacobi equation for an “action” SðΦ; v; p; tÞ, from which a
classical Hamiltonian HðΦ; v; p; λΦ; λv; λpÞ can be read off.
The Hamiltonian depends then on “coordinates” Φ, v, and p,
and their conjugate momenta λΦ; λv; λp equates to zero
[HðΦ; v; p; λΦ; λv; λpÞ ¼ 0]. The action reduces to

SðΦ; v; pÞ ¼
X
i

�Z
λΦi dΦi þ

Z
λvi dvi þ

Z
λpi dpi

	
: ð174Þ

The next goal is to determine the optimal (least action) path in
phase space as a solution to the classical Hamilton’s equations
of motion, subject to the boundary conditions to connect
the stable fixed point with the unstable saddle. The action
along this optimal path is stationary [therefore, we skipped
the explicit time dependence of S in Eq. (174)] and enables us
to estimate the expected waiting time hTi for desynchroniza-
tion via

lnhTi ∼ SðΦs; 0; 0Þ þ const; ð175Þ

where Φs denotes the stationary solution. To estimate
SðΦs; 0; 0Þ, the solution is determined for coupling strengths
K ¼ KSNð1þ κÞ close to KSN, where saddle-node bifurcation
happens. To lowest order in κ, parametrizing the distance to
the bifurcation point, the solution on the one-dimensional
submanifold takes the form

ΦiðtÞ ¼ ΦSN
i þ Cκ1=2rixðtÞ; ð176Þ

with x ∈ ½−1;þ1� such that, for x ¼ −1, ΦiðtÞ ¼ ΦSN
i −

Cκ1=2ri ¼ Φ�
i . The stable fixed point is the starting point,

and for x ¼ þ1 we have ΦiðtÞ ¼ ΦSN
i þ Cκ1=2ri ¼ Φs

i as the
unstable saddle as the end point of the optimal path; ri is the
component i of the Fiedler mode of the Laplacian that encodes
the network topology. This mode is most sensitive to external
fluctuations and mediates the unlikely escape. The constant C
is independent of xi and κ and depends on the grid adjacency
matrix, the phases at the bifurcation pointΦSN

i , and the Fiedler
mode ri.
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As it turns out (Hindes, Jacquod, and Schwartz, 2019), to
lowest order in κ the action SðΦs; 0; 0Þ depends on the
damping constant γ, the saddle-node coupling KSN, and the
damping rate of power fluctuations squared ðγ2Þ. Moreover,
each node of the grid i contributes to S, a term proportional to
μ−12 , with μ2 ¼

P
b νibg

2
ib the fluctuation variance. This means

that to lowest order in the distance κ from the saddle, the
expected time to blackout hTi ∝ e−S is insensitive to higher-
order moments μn, n ≥ 3, of the fluctuations (for Poissonian
noise). However, at higher orders in κ, the corrections to S and
ΔðnÞS scale with κ according to κn−1=2. They depend on
higher-order moments μn and on the balance between the
positive and negative Fiedler’s mode components. For n ¼ 3,
it is the product of the skewness of the power fluctuation
distribution with the skewness of the Fiedler mode that
determines whether the non-Gaussianity leads to an increase
or decrease of the desynchronization rates captured by ΔðnÞS.
Symmetric power fluctuations with μ3 close to zero yield an
increase in the desynchronization rate, as naively expected.
Overall, this result (Hindes, Jacquod, and Schwartz, 2019)
demonstrates how the network topology interacts with the
stochastic dynamics in a nontrivial way.
A further application of the relation between desynchroni-

zation and the Fiedler-mode values amounts to a dimensional
reduction of the phase space. The phase space is usually high
dimensional for a power grid, but the possible desynchroniza-
tion paths lie in a low-dimensional subspace under the given
assumptions. For networks in which the saddle-node bifurca-
tion is induced by a single overloaded edge with phase
difference π=2 [see also Fliscounakis et al. (2013), Manik
et al. (2014), and Rohden et al. (2017)], a so-called synchron-
ized subgraph approximation becomes exact (Hindes, Jacquod,
and Schwartz, 2019). The Hamilton’s equations of the two
subsystems that desynchronize reduce to a single noisy
oscillator system in relative phase-space coordinates. More
generally, the subgraph approximation is sensible if the
corresponding network partition is guided by approximately
uniform Fiedler-mode values. Thus, rare desynchronization
events become analytically predictable in spite of the high-
dimensional phase space of the grid dynamics.

E. Ensembles of power grids for distributed fluctuations

In Secs. VIII.A–VIII.C the focus was on the spatiotemporal
propagation of a perturbation applied to a single or a few nodes,
or the addition or removal of individual lines. Mureddu et al.
(2015) introduced a suitable framework for estimating the
overall energy mismatch between day-ahead estimates and real
data of an entire grid that should be balancedwith an appropriate
trade on the energy balancing market. Differences between
production and consumption result from perturbations at all
nodes simultaneously. The framework was later employed in
different applications (Mureddu and Damiano, 2017; Korjani
et al., 2018; Mureddu and Meyer-Ortmanns, 2018).

1. Basic approach

The idea is to consider an ensemble of power grids in
analogy to an ensemble of microstates in statistical mechanics.
The power grids differ in their “microstates,” which enter

average values of global observables. Global observables may
be the market volume, the amount of energy that the energy
balancing market must compensate for, the costs for this
amount of energy (Mureddu and Meyer-Ortmanns, 2018), the
resilience of the grid (Mureddu and Damiano, 2017), or the
optimal positioning of storage devices (Korjani et al., 2018).
The individual “configurations” that represent the micro-

states are generated from a first reference configuration of
producers and consumers that is representative of part of the
considered region, a certain partition between renewable and
conventional power generation, a certain time during the day,
or a season of the year. The reference configuration is chosen
to satisfy the OPF equations; it is regarded as the operation
point of the system. For either transmission or distribution
grids, the ensemble of microstates is generated by applying
fluctuations in production and consumption relative to the
reference configuration.
The fluctuations can be due to load fluctuations, forecast

errors for renewables, intraday electricity trading, or other
factors. In the simplest case, the fluctuations are chosen from a
truncated Gaussian distribution. Gaussian-like forecast errors
are defined by standard deviations σi at nodes i and represent
the expected power variations at that node at a given time. For
a load of type l (where l ∈ fw; pv;…g denotes wind,
photovoltaic, and other types of power generation) and power
demand Pl, the standard deviation of the forecasting error is
denoted as σl, and ml and Ml are the minimum and
maximum values of the support of the distribution ρl of
Pl, respectively, representing power constraints of the differ-
ent generators. Depending on the different assignments Pl to
nodes i, a microstate is sampled by adding a random value to
the expected power production or consumption at every node
i, where the random variable is extracted from the truncated
probability density function ρtiðxÞ as follows:

ρtiðxÞ ¼

8>><
>>:

0 if x < mi;

ρiðxÞ if mi < x < Mi;

0 if x > Mi;

ð177Þ

where the original densities (with support in all of RÞ are
ρiðxÞ ¼ ð2πσ2i Þ−1=2 exp ð−x2=2σ2i Þ for wind, photovoltaic, or
other generation at nodes i. For skewed distributions, model-
ing, e.g., power production by wind, we may choose the
following Weibull distribution:

ρWeibullðx; λ; aÞ ¼
� a

λ ðxλÞa−1e−ðx=λÞ
a

if x ≥ 0;

0 otherwise;
ð178Þ

with a ¼ 2 (Lun and Lam, 2000; Seguro and Lambert, 2000;
Lu et al., 2013) and λ ¼ 2Pw=

ffiffiffi
π

p
, where Pw represents the

wind power production of the reference configuration and Γ
denotes the gamma function. Specific values of the parameters
fixing the respective distribution depend on the load and the
type of renewable energy and are chosen from recorded data.
As a next step, quantities like the resulting mismatch Pj

i of
the power at node i in configuration j are measured and the Pj

i
summed over all nodes. This way we obtain the total
mismatch Pj in power production (the so-called market
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volume) for a given configuration j, which the market will
balance. To obtain representative values of the market volume,
we sample a sufficiently large number of configurations to
include in the ensemble. In particular, one can analyze how the
distribution of the market volume over the volume size
depends on the distribution of fluctuations (normal or
Weibull), and (via the choice of the reference configuration)
on the time of day, the season, the geographical zone, and the
percentage of renewables with respect to the total production
(Mureddu and Meyer-Ortmanns, 2018). The distribution of
this market volume enters the market costs, the average prices,
and the average profit per technology that is involved in the
production.

2. A second network layer

To model the energy market and to determine market costs,
prices, and profit, a second network layer describes market
trading. Here one option is agent-based modeling with net-
work nodes representing agents [cf. Han et al. (2019)] such
that the agents are the retailers, with one retailer per conven-
tional power station of the physical grid. In the work of
Mureddu and Meyer-Ortmanns (2018), the agents first have to
undergo a learning phase, in which they learn how to place
optimal bids in competitive auctions with the aim of buying
(or selling) in the most profitable way. To simulate how real
market operators acquire knowledge about the market in time
and adapt their decisions, a modified Roth-Erev algorithm
(Nicolaisen, Petrov, and Tesfatsion, 2001; Mureddu et al.,
2015) adjusts the offer propensities of agents in a self-
consistent way, with the goal of maximizing profits. The
agents interact via a so-called market authority that provides a
link between the physical grid and the market. The market
authority knows the mismatch from the physical grid and
takes the bids of the retailers, accepts or rejects these bids,
informs the retailers about the decision, and proceeds until the
required mismatch in energy is covered at the lowest pos-
sible costs.
If the energy balance is restored with energy provided by

the subset of retailers who offered the energy at the lowest
price, the feedback on the physical grid stability must be
checked since the economically best selection need not be
reasonable from the viewpoint of grid stability. Lines might
get overloaded if the conventional generators that were
selected for selling the energy happen to spatially cluster
together. Thus, this framework of different network layers,
coupled via a market authority, allows one to analyze the
feedback from economical (low costs) to physical (high
stability) optimization objectives.
The physical grid stability is particularly endangered if the

retailers behave like arbitrageurs when the reserve energy
price falls below the price on the intraday market. In such a
situation, retailers play a kind of minority game (Ritmeester
and Meyer-Ortmanns, 2021). Modeling their behavior accord-
ingly leads to suggestions on how to control arbitrage. For
example, if the few large parties contributing to the market
(rather than the many small ones) are made risk averse due to
small penalties, it has a disproportionately large effect on
reducing the abuse of price differences in terms of arbitrage.
Moreover, from the remarkable analogy of the minority game

with spin glasses it becomes understandable why a larger
number of retailers may not at all reduce the fluctuations in
arbitrage, as one would naively expect. Related features of
underlying phase transitions are also visible in realistic
markets.

3. Alternatives for treating uncertainties

A number of alternative approaches exist to deal with
inherent uncertainties in power and demand. The goal is to
derive distributions of induced fluctuations. Induced fluctua-
tions may refer to the energy mismatch (as previously
discussed), or to induced voltage or frequency fluctuations.
An approach called chance-constrained ac optimal power flow
(ac CC OPF) was described by Roald and Andersson (2018)
and references therein. In contrast to the optimal power flow
summarized in Sec. III.B, chance constraints ensure that the
system constraints will be satisfied only with a specified
probability. The framework of ac CC OPF optimizes not only
the scheduled dispatch with respect to costs but also the
procurement of reserve and voltage control during deviations
from expected values. As outlined by Roald and Andersson
(2018), a number of different options exist for solving this
optimization problem under uncertainty. The first one is a one-
shot optimization, where the optimal solution is found while
respecting all constraints simultaneously (which is demanding
in view of the complexity of the problem). The second
one is an iterative solution algorithm. The third option similar
to the previously mentioned ensemble approach employs
Monte Carlo simulations for deriving uncertainty margins
and samples uncertainties in power and demand. Here the
resulting power flows are calculated for a large number of
sample realizations drawn from a given ensemble, leading to
Monte Carlo–based uncertainty margins for the voltage. For a
comparison of the efficiency of the various approaches, see
Roald and Andersson (2018).

IX. SUMMARY AND OUTLOOK

Modern power grids are tasked with incorporating increas-
ing shares of renewable energy sources. This ongoing drastic
transformation is crucial to mitigating the climate crisis but
poses novel challenges to our understanding of the collective
dynamics of power grids. Although the underlying equations
have been known for a long time, the treatment of such grids
on the systems level remains difficult, mainly due to their
nonlinearities, distinct heterogeneities in the dynamics of the
nodes, and their interaction topology, as well as the various
kinds of perturbations and fluctuations present. Additionally,
power grids are embedded in and interconnected to several
other complex systems, such as energy markets, consumers,
and weather. We discussed here central challenges of decen-
tralized and heterogeneous power grids and ways to analyze,
understand, design, and influence them.
The review started with a description of power grids based

on the principles of physics and the treatment of the most
important node models. A crucial aspect here is that renewable
sources are connected via electronic inverters. This neces-
sitates an extension of the classic models and leads to
fundamental changes in the dynamics of power grids. To
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study these models and the variety of analysis techniques,
datasets on dynamical parameters and network topologies are
necessary. However, data on real-world power grids are scarce
and often incomplete. Therefore, we presented in Sec. IV
typical classes of synthetic models that mimic the main
properties of real grids, such as the classic IEEE test cases,
but also more recent developments on generating novel
network ensembles, which are often closer to real grids and
emphasize the physics perspective. Section V discussed an
elementary grid containing only one transmission line. This
simple bistable system served to introduce the most important
static solutions and voltage limits, the bifurcations of the
dynamics, and recent stability concepts such as basin stability
and stochastic stability, providing a deeper understanding of
stability with respect to large and sustained perturbations.
In Sec. VI, recent achievements and insights for realistic

networks were presented. To function as a power grid, the
networked dynamics needs to have a stable synchronous
(phase-locked) state. However, power grids are typically
multistable, exhibiting multiple synchronous yet also asyn-
chronous states that are unsuitable for grid operation. This
multistability increases substantially if the ubiquitous losses
are included, leading to new types of both synchronized and
desynchronized states. We gave an overview of the most
successful analytic and probabilistic approaches for managing
such a rich variety of dynamics, as well as classic lineariza-
tion-based methods.
The structural stability of grids was the topic of Sec. VII. In

complex grids the outage of a single transmission element
may induce cascades leading to a large-scale blackout. Such
events are well documented in real grids all over the globe,
among them several “monster blackouts.” When a single
element fails or is added, the network flows reroute in
response. A main grid parameter influencing this rerouting
is the network distance. But the splitting of a grid into different
communities also has a strong impact. New mathematical
descriptions of the rerouting process combining methods from
statistical physics, nonlinear dynamics, and graph theory are
capable of describing these reroutings in new ways and
reliably predicting critical links in a network. It turns out
that a local stability analysis is often not sufficient and may
even be misleading. The occurrence of cascades following
individual failures can also be enhanced by transient effects,
which shows that dynamical and structural aspects are deeply
interwoven. Furthermore, reroutings may yield counterintui-
tive consequences if transmission elements are added or
removed. For instance, under certain conditions the reinforce-
ment of a transition line or the addition of a new line may
induce a loss of capacity and stability, a phenomenon known
as Braess’s paradox.
The power grid is subject to fluctuations. Section VIII

discussed this essential problem with a particular focus on the
characteristics introduced by renewables. The non-Gaussian
nature of their fluctuations, often characterized by heavy-
tailed distributions, such as those due to the cloud structure
affecting photovoltaic generation, calls for new modeling and
analysis approaches. First, a linear response theory was
developed to describe the collective spatiotemporal grid
dynamics subject to both stationary and transient and non-
stationary and distributed input fluctuations. This led to an

efficient way of identifying vulnerability patterns. Second,
the emergence of resonances, bulk oscillations, or local-
izations was explained. Recent research demonstrated
using a WKB ansatz that even desynchronization events
in grids, which originate from strong but rare fluctuations,
can be predicted. The results revise the naive expectation
that fat-tail distributions in fluctuating power production
always increase the number of rare events of desynchroni-
zation. In real networks with renewable components, fluc-
tuations in generation and consumption occur in parallel;
i.e., one cannot restrict the robustness analysis to the failure
of a single line. Statistical physics provides alternative
approaches to treating this problem, such as the consider-
ation of an entire ensemble of power grids, differing in the
realization of fluctuations in its microstates, or by chance-
constrained ac optimal power flow.
Aspects of power system control and monitoring were only

mentioned in this review but will become increasingly
important in future power grids with many distributed,
fluctuating power sources and low inertia (Milano et al.,
2018). This field of research spans from single machines to the
entire energy system. Current challenges are the development
of control systems for grid-forming inverters that guarantee
global dynamic stability (Colombino et al., 2019; Schiffer,
Efimov, and Ortega, 2019) or virtual inertia systems that
may replace the mechanic inertia of synchronous machines
(Chen et al., 2011; Kerdphol et al., 2019). On the grid level,
researchers thrive for a better understanding of the interplay of
control systems and network dynamics (Tumash, Olmi, and
Schöll, 2019; Totz, Olmi, and Schöll, 2020) and the deve-
lopment of new concepts for the control of complex networks
(Cornelius, Kath, and Motter, 2013; Huang et al., 2019).
Finally, the operation of the large-scale load-frequency control
system is subject to multiple external influences, including
markets and regulations (Kruse, Schäfer, and Witthaut,
2021a, 2021b).
This review demonstrated that the analysis and design of

decentralized power grids demand an interdisciplinary
approach where techniques and concepts of power engineer-
ing and control theory are newly combined with those from
statistical physics, complex dynamical systems, and network
science. Such an approach will continue to form the backbone
for gaining a deeper understanding of all aspects discussed
here and will provide the inspiration for important future
research directions.
Future integrated studies will have to connect the power

grid to a broader range of important aspects of the energy
system, such as the energy market, the information and
communication infrastructure driving the control, consumer
behavior, electromobility, political and planning constraints,
etc. All these aspects point toward the nature of the power grid
as part of a multilayered network that is embedded in and
connected to other complex systems. It is becoming increas-
ingly clear that machine learning techniques have enormous
potential in the study and control of complex heterogeneous
systems. Specifically, graph neural networks have vast
untapped potential. The question of how to effectively
combine such data-driven approaches with physics, engineer-
ing-based concepts, and generic modeling remains open in the
context of power grids.
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Finally, a deeper understanding of fundamental concepts
underlying the collective dynamics of power grids should
enable more than an energy transition in highly developed
countries with well-connected grids required to stop the
worsening of the climate crisis. It may also enable an
implementation of sustainable power systems in rural areas
of the global South and in megacities that now may be
designed from scratch. Finally, it should improve an under-
standing of small-scale energy islands that can play a crucial
role in the sustainable electrification of local communities that
still remain off grid today.

LIST OF SYMBOLS AND ABBREVIATIONS

CC OPF chance-constrained optimal power flow
DC OPF linearized or dc optimal power flow
EMF electromotive force
ENTSO-E European Network of Transmission

System Operators for Electricity
HVDC high voltage directed current
LODF line outage distribution factor
OPF optimal power flow
PI law proportional-integral control law
PTDF power transfer distribution factor
pu (system) per unit (system of rescaled units)
RoCoF rate of change of frequency
WKB Wentzel-Kramers-Brillouin
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Engelmann, A., T. Mühlpfordt, Y. Jiang, B. Houska, and T.
Faulwasser, 2017, IFAC-PapersOnLine 50, 5536.

Erseghe, T., 2014, IEEE Trans. Power Syst. 29, 2370.
Espejo, R., S. Lumbreras, and A. Ramos, 2019, IEEE Syst. J. 13,
3050.

European Network of Transmission System Operators for Electricity,
2004, https://www.entsoe.eu/publications/system-operations-reports/
operation-handbook.

Fairley, P., 2004, IEEE Spectrum 41, 22.
Farid, AmroM., et al., 2019, https://amfarid.scripts.mit.edu/Datasets/
index.html.

Fiaz, S., D. Zonetti, R. Ortega, J. M. Scherpen, and A. Van der Schaft,
2013, Eur. J. Control 19, 477.

Fiedler, M., 1973, Czech. Math. J. 23, 298.
Figueres, C., H. J. Schellnhuber, G. Whiteman, J. Rockström, A.
Hobley, and S. Rahmstorf, 2017, Nature (London) 546, 593.

Filatrella, G., A. H. Nielsen, and N. F. Pedersen, 2008, Eur. Phys. J. B
61, 485.

Fleer, J., and P. Stenzel, 2016, J. Energy Storage 8, 320.
Fliscounakis, S., P. Panciatici, F. Capitanescu, and L. Wehenkel,
2013, IEEE Trans. Power Syst. 28, 4909.

Frank, S., I. Steponavice, and S. Rebennack, 2012a, Energy Syst. 3,
221.

Frank, S., I. Steponavice, and S. Rebennack, 2012b, Energy Syst. 3,
259.

Gajduk, A., M. Todorovski, and L. Kocarev, 2014, Eur. Phys. J.
Special Topics 223, 2387.

Gajduk, A., M. Todorovski, J. Kurths, and L. Kocarev, 2014, New J.
Phys. 16, 115011.

Galindo-González, C. C., D. Angulo-García, and G. Osorio, 2020,
New J. Phys. 22, 103033.

Gambuzza, L. V., A. Buscarino, L. Fortuna, M. Porfiri, and M.
Frasca, 2017, IEEE J. Emerg. Sel. Top. Circuits Syst. 7, 413.

García-Mata, I., O. Giraud, B. Georgeot, J. Martin, R. Dubertrand,
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Hörsch, J., H. Ronellenfitsch, D. Witthaut, and T. Brown, 2018,
Electr. Power Syst. Res. 158, 126.

Huang, L., J. Coulson, J. Lygeros, and F. Dörfler, 2019, in
Proceedings of the 58th IEEE Conference on Decision and Control
(CDC), Nice, France, 2019 (IEEE, New York), pp. 8130–8135,
10.1109/CDC40024.2019.9029522.

Huneault, M., and F. D.Galiana, 1991, IEEETrans. Power Syst. 6, 762.
Hutcheon, N., and J. Bialek, 2013, in Proceedings of the IEEE
PowerTech Conference, Grenoble, 2013 (IEEE, New York),
10.1109/PTC.2013.6652178.

IPCC, 2014, Climate Change 2014: Mitigation of Climate Change.
Contribution of Working Group 3 to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change (Cambridge
University Press, Cambridge, England).

Dirk Witthaut et al.: Collective nonlinear dynamics …

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015005-49

https://doi.org/10.1109/TAC.2019.2898549
https://doi.org/10.1109/TAC.2019.2898549
https://doi.org/10.1038/ncomms2939
https://doi.org/10.1038/ncomms2939
https://doi.org/10.1109/JSYST.2012.2183033
https://doi.org/10.1038/nenergy.2017.140
https://doi.org/10.1109/JSYST.2015.2427994
https://doi.org/10.1063/1.4943296
https://doi.org/10.1063/1.4943296
https://doi.org/10.1063/1.4978697
https://doi.org/10.1063/1.4978697
https://doi.org/10.1063/1.2737822
https://doi.org/10.1017/S0269964805050023
https://doi.org/10.1017/S0269964805050023
https://doi.org/10.1109/CDC.2012.6425823
https://doi.org/10.1137/110851584
https://doi.org/10.1109/TCSI.2012.2215780
https://doi.org/10.1109/PESMG.2013.6672260
https://doi.org/10.1109/PESMG.2013.6672260
https://doi.org/10.1016/j.automatica.2014.04.012
https://doi.org/10.1073/pnas.1212134110
https://doi.org/10.1073/pnas.1212134110
https://doi.org/10.1109/JPROC.2018.2821924
https://doi.org/10.1109/JPROC.2018.2821924
https://doi.org/10.1109/61.517499
https://doi.org/10.1109/61.517499
https://doi.org/10.1063/1.467139
https://doi.org/10.1063/1.467139
https://doi.org/10.1016/j.ifacol.2017.08.1095
https://doi.org/10.1109/TPWRS.2014.2306495
https://doi.org/10.1109/JSYST.2018.2865104
https://doi.org/10.1109/JSYST.2018.2865104
https://www.entsoe.eu/publications/system-operations-reports/operation-handbook
https://www.entsoe.eu/publications/system-operations-reports/operation-handbook
https://www.entsoe.eu/publications/system-operations-reports/operation-handbook
https://www.entsoe.eu/publications/system-operations-reports/operation-handbook
https://doi.org/10.1109/MSPEC.2004.1318179
https://amfarid.scripts.mit.edu/Datasets/index.html
https://amfarid.scripts.mit.edu/Datasets/index.html
https://amfarid.scripts.mit.edu/Datasets/index.html
https://amfarid.scripts.mit.edu/Datasets/index.html
https://amfarid.scripts.mit.edu/Datasets/index.html
https://amfarid.scripts.mit.edu/Datasets/index.html
https://doi.org/10.1016/j.ejcon.2013.09.002
https://doi.org/10.21136/CMJ.1973.101168
https://doi.org/10.1038/546593a
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1016/j.est.2016.02.003
https://doi.org/10.1109/TPWRS.2013.2251015
https://doi.org/10.1007/s12667-012-0056-y
https://doi.org/10.1007/s12667-012-0056-y
https://doi.org/10.1007/s12667-012-0057-x
https://doi.org/10.1007/s12667-012-0057-x
https://doi.org/10.1140/epjst/e2014-02212-1
https://doi.org/10.1140/epjst/e2014-02212-1
https://doi.org/10.1088/1367-2630/16/11/115011
https://doi.org/10.1088/1367-2630/16/11/115011
https://doi.org/10.1088/1367-2630/abb962
https://doi.org/10.1109/JETCAS.2017.2649598
https://doi.org/10.1103/PhysRevLett.118.166801
https://doi.org/10.1088/1367-2630/ab7a05
https://doi.org/10.1088/1367-2630/ab7a05
https://doi.org/10.1109/ACCESS.2020.2967834
https://doi.org/10.1038/s41467-020-19732-7
https://doi.org/10.1038/s41467-020-19732-7
https://doi.org/10.1149/2.0211514jes
https://doi.org/10.1149/2.0211514jes
https://doi.org/10.1109/TPWRS.2006.888950
https://doi.org/10.1109/TPWRS.2006.888950
https://doi.org/10.1109/TPWRS.2009.2023273
https://doi.org/10.1109/TPWRS.2009.2023273
https://doi.org/10.1109/TPWRS.2021.3066336
https://doi.org/10.1109/TPWRS.2021.3066336
https://doi.org/10.1093/comnet/cny019
https://doi.org/10.1103/PhysRevE.99.050301
https://doi.org/10.1209/0295-5075/121/30001
https://doi.org/10.1371/journal.pone.0225346
https://doi.org/10.1371/journal.pone.0225346
https://doi.org/10.1038/s41598-017-01010-0
https://doi.org/10.1016/j.renene.2010.03.012
https://doi.org/10.1038/srep29654
https://doi.org/10.1038/s41467-020-14417-7
https://doi.org/10.1103/PhysRevE.100.052314
https://doi.org/10.1103/PhysRevE.100.052314
https://doi.org/10.1063/1.3489887
https://doi.org/10.1063/1.3489887
https://doi.org/10.1109/TPWRS.2016.2578259
https://doi.org/10.1109/TPWRS.2016.2578259
https://doi.org/10.1016/j.esr.2018.08.012
https://doi.org/10.1016/j.epsr.2017.12.034
https://doi.org/10.1109/CDC40024.2019.9029522
https://doi.org/10.1109/59.76723
https://doi.org/10.1109/PTC.2013.6652178


Jadbabaie, A., N. Motee, and M. Barahona, 2004, in Proceedings of
the 2004 American Control Conference, Boston, 2004, Vol. 5
(IEEE, New York), pp. 4296–4301, 10.23919/ACC.2004.1383983.

Jafarpour, S., E. Y. Huang, K. D. Smith, and F. Bullo, 2019,
arXiv:1901.11189.

Jung, D., and S. Kettemann, 2016, Phys. Rev. E 94, 012307.
Kaiser, F., V. Latora, and D. Witthaut, 2021, Nat. Commun. 12, 3143.
Kaiser, F., H. Ronellenfitsch, V. Latora, and D. Witthaut, 2021,
arXiv:2105.06687.

Kaiser, F., H. Ronellenfitsch, and D. Witthaut, 2020, Nat. Commun.
11, 5796.

Kaiser, F., J. Strake, and D. Witthaut, 2020, New J. Phys. 22, 013053.
Kaiser, F., and D. Witthaut, 2021a, Phys. Rev. Research 3, 023161.
Kaiser, F., and D. Witthaut, 2021b, IEEE Access 9, 67364.
Kashima, K., H. Aoyama, and Y. Ohta, 2015, in Proceedings
of the 54th IEEE Conference on Decision and Control (CDC),
Osaka, Japan, 2015 (IEEE, New York), pp. 1852–1857, 10.1109/
CDC.2015.7402480.
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