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A universal fault-tolerant quantum computer that can efficiently solve problems such as integer
factorization and unstructured database search requires millions of qubits with low error rates and
long coherence times. While the experimental advancement toward realizing such devices will
potentially take decades of research, noisy intermediate-scale quantum (NISQ) computers already
exist. These computers are composed of hundreds of noisy qubits, i.e., qubits that are not error
corrected, and therefore perform imperfect operations within a limited coherence time. In the search
for achieving quantum advantage with these devices, algorithms have been proposed for applications
in various disciplines spanning physics, machine learning, quantum chemistry, and combinatorial
optimization. The overarching goal of such algorithms is to leverage the limited available resources to
perform classically challenging tasks. In this review, a thorough summary of NISQ computational
paradigms and algorithms is provided. The key structure of these algorithms and their limitations and
advantages are discussed. A comprehensive overview of various benchmarking and software tools
useful for programming and testing NISQ devices is additionally provided.
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I. INTRODUCTION

Quantum computing originated in the 1980s when phys-
icists started to speculate about computational models that
integrate the laws of quantum mechanics (Kaiser, 2011).
Starting with the pioneering works of Benioff and Deutsch,
which involved the study of quantum Turing machines and the
notion of universal quantum computation (Benioff, 1980;
Deutsch, 1985), the field continued to develop toward its
natural application: the simulation of quantum systems
(Manin, 1980; Feynman, 1982; Lloyd, 1996). Arguably, the
drive for quantum computing took off in 1994 when Peter
Shor provided an efficient quantum algorithm for finding
prime factors of composite integers, rendering most classical
cryptographic protocols unsafe (Shor, 1994). Since then, the
study of quantum algorithms has matured as a subfield of
quantum computing with applications in search and optimi-
zation, machine learning, simulation of quantum systems, and
cryptography (Montanaro, 2016).
In the last 40 years, many scientific disciplines have

converged toward the study and development of quantum
algorithms and their experimental realizations. Quantum
computers are, from the perspective of computational com-
plexity, fundamentally different tools available for computa-
tionally intensive fields. The implementation of quantum
algorithms requires that the minimal quantum information
units, qubits, are as reliable as classical bits. Qubits need to be
protected from environmental noise that induces decoherence
but, at the same time, their states have to be controlled by
external agents. This control includes the interaction that
generates entanglement among qubits and the measurement
operation that extracts the output of the quantum computation.
It is technically possible to tame the effects of noise without
compromising the quantum information process by develop-
ing quantum error-correction (QEC) protocols (Shor, 1995;
Lidar and Brun, 2013; Terhal, 2015). The overhead of QEC in
terms of the number of qubits is presently still far from current
experimental capabilities. To achieve the goal of fault-tolerant

quantum computation, the challenge is to scale up the number
of qubits while maintaining sufficiently high qubit quality and
fidelity in operations such as quantum gate implementation
and measurement (Knill, Laflamme, and Zurek, 1998; Kitaev,
2003; Aharonov and Ben-Or, 2008). As the system size grows,
it becomes highly challenging to contain the errors associated
with cross talk and measurements below the required error-
correction threshold.
Most quantum algorithms with performance guarantees

require millions of physical qubits to successfully incorporate
QEC techniques. Building such fault-tolerant quantum com-
puters may take decades. Existing quantum devices contain on
the order of 100 physical qubits. They are sometimes denoted
as noisy intermediate-scale quantum (NISQ) devices (Preskill,
2018), in which qubits and quantum operations supported on
NISQ devices are not error corrected and are, therefore,
imperfect. One of the goals in the NISQ era is to extract
the maximum quantum computational power from current
devices while also continuing to develop techniques toward
fault-tolerant quantum computation (Terhal, 2015).

A. Computational complexity theory in a nutshell

Defining a new computational paradigm enables one to
solve or approach problems that could not be tackled with
previously existing paradigms. With the development of
quantum computing, new computational complexity classes
have been recognized and proposed algorithms and goals have
to be developed within well-known mathematical boundaries.
In this review, we often use some computational complex-

ity-theoretic ideas to establish the domain and efficiency of the
quantum algorithms covered. For this reason, we provide in
this section a synopsis for a general audience and refer the
interested reader to Arora and Barak (2009) for a more
comprehensive treatment.
Complexity classes are groupings of problems by hardness,

namely, the scaling of the cost of solving the problem with
respect to a given resource, as a function of the “size” of an
instance of the problem. We informally describe several of the
most well-known classes here. (i) P: problems that can be
solved in polynomial time with respect to input size by a
deterministic classical computer. (ii) NP: a problem is said to
be in NP if the problem of verifying the correctness of a
proposed solution lies in P, irrespective of the difficulty of
obtaining a correct solution. (iii) PH: refers to polynomial
hierarchy. This class is a generalization of NP. It contains all
the problems that one gets if one starts with a problem in the
class NP and adds additional layers of complexity using
quantifiers; i.e., it exists ð ∃ Þ and is present for all ð∀ Þ. As we
add more quantifiers to a problem, it becomes more complex
and is placed higher up in the polynomial hierarchy. We
denote the classes in PH by Σi such that PH ¼∪i Σi. We have
Σ1 ¼ NP. The class Σi in PH can be interpreted in the context
of two-player games where problems correspond to asking
whether there is a winning strategy in i=2 rounds for player 1
in a game. Here one can interpret the quantifiers by asking
whether there exists a move k1 such that, no matter what move
k2 is played, there is a move k3, etc., for i=2 rounds such that
player 1 wins the two-player game. With increasing i, one
would expect the problem to become more complex and hence
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Σi ⊆ Σiþ1. (iv) BPP stands for bounded-error probabilistic
polynomial time. A problem is said to be in BPP if it can be
solved in polynomial time in the input size using a probabi-
listic classical computer. (v) BQP stands for bounded-error
quantum polynomial time. Such problems can be solved in
polynomial time in the input size using a quantum computer.
(vi) PSPACE stands for polynomial space. The problems in
PSPACE can be solved in polynomial space in the input size
using a deterministic classical computer. Each class in PH is
contained in PSPACE. However, it is not known whether PH
is equal to PSPACE. (vii) EXPTIME stands for exponential
time. The problems in EXPTIME can be solved in exponential
time in the input size using a deterministic classical computer.
(viii) QMA stands for quantum Merlin Arthur and is the
quantum analog of the complexity class NP. A problem is said
to be in QMA if, given “yes” as an answer, the solution can be
verified in polynomial time (in the input size) using a quantum
computer. Widely believed containment relations for some of
the complexity classes are shown schematically in Fig. 1.
To understand the internal structure of complexity classes,

the idea of “reductions” can be quite useful. One says that
problem A is reducible to problem B if a method for solving B
implies a method for solving A; one denotes the same by
A ≤ B. It is a common practice to assume the reductions as
polynomial-time reductions. Intuitively, it could be thought
that solving B is at least as difficult as solving A. Given a class

C, a problem X is said to be C hard if every problem in class C
reduces to X. We say that a problem X is C complete if X is C
hard and also a member of C. The C-complete problems could
be understood as capturing the difficulty of class C since any
algorithm that solves one C-complete problem can be used to
solve any problem in C.
A canonical example of a problem in the class BQP is

integer factorization, which can be solved in polynomial time
with a quantum computer using Shor’s factoring algorithm
(Shor, 1994). However, no classical polynomial-time algo-
rithm is known for the aforementioned problem. Thus, the
integer factorization problem is in BQP but not believed to be
in P (Arora and Barak, 2009). While analyzing the perfor-
mance of algorithms, it is prudent to perform complexity-
theoretic sanity checks. For example, although quantum
computers are believed to be powerful, they are not widely
expected to be able to solve NP-complete problems, such as
the traveling-salesman problem, in polynomial time. The
quantum algorithms, however, could provide a speedup with
respect to classical algorithms for NP-complete problems.

B. Experimental progress

In this section, we present a summary of recent quantum
hardware and experiments. Interested readers should consult
Acín et al. (2018) and references therein for further informa-
tion on various quantum computing architectures.
Experimental progress in quantum computation can be

measured using various figures of merit. The number of
physical qubits must exceed a certain threshold to solve
problems beyond the capabilities of a classical computer.
However, there are several classical techniques capable of
efficiently simulating certain quantum many-body systems.
The success of several of these techniques, such as tensor
networks (Verstraete, Murg, and Cirac, 2008; Orús, 2014),
rely on the efficient representation of quantum states that are
not highly entangled (Vidal, 2003, 2004). With universal
quantum computers, one would expect to be able to generate
and manipulate highly entangled quantum states. Hence, one
imminent and practical direction toward demonstrating quan-
tum advantage over classical machines consists of focusing on
a region of the Hilbert space in which states cannot be
efficiently represented with classical methods. Alternatively,
one may implement particular computational tasks that are
believed to be intractable using any classical computer, such
as problems belonging only to quantum complexity classes.
Two recent experiments implemented the latter approach

toward achieving quantum computational advantage. In 2019,
the Google AI Quantum team implemented an experiment
with the 53-qubit Sycamore chip (Arute et al., 2019), which
supported single-qubit gate fidelities of 99.85%, and two-
qubit gate fidelities of 99.64% were attained on average.
Quantum advantage was demonstrated against the best
classical computers for the task of sampling the output of a
pseudorandom quantum circuit.
Another quantum advantage experiment was implemented

by Jian-Wei Pan’s group using a Jiuzhang photonic quantum
device performing Gaussian boson sampling (GBS) with 50
indistinguishable single-mode squeezed states (Zhong et al.,
2020). Here the quantum advantage was observed in sampling

FIG. 1. Relevant complexity classes together with problem
examples. For the chess example, the word “restricted” refers
to a polynomial upper bound on the number of moves. The
containment relations are suggestive. Some of them have not
been mathematically proven, as it is a well-known open problem
whether P is equal to NP.
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time complexity of a Torontonian of a matrix (Quesada,
Arrazola, and Killoran, 2018) that scales exponentially with
the photon click output. The Torontonian is a matrix function
that determines the probability distribution of measurement
outcomes, much like the permanent and Hafnian in other
boson sampling models. Intuitively speaking, while the total
number of perfect matchings in a bipartite graph is given by
the permanent model, the Hafnian corresponds to the total
number of perfect matchings in an arbitrarily given graph.
Moreover, while the Hafnian is used in experiments counting
the number of photons in each mode, the Torontonian
corresponds to the case where one detects whether there
are photons in each mode; see Sec. III.B for more details on
GBS and the related terms.
There are several quantum computing platforms that

researchers are actively developing at present to achieve
scalable and practical universal quantum computers. The term
“universal” is used to describe a quantum computer, using its
native gate set, and can easily and accurately approximate any
unitary gate; see Sec. V.B for more details. In addition to
superconducting circuits and quantum optics, trapped-ion
devices are also leading candidates for quantum computer
architectures. In recent years, major advancements of trapped-
ion devices include high-fidelity entangling gates reported by
the Oxford group (Hughes et al., 2020), all-to-all connectivity
achieved by IonQ (Nam et al., 2020), and transport and
reordering capabilities in 2D trap array by the Boulder group
(Wan et al., 2020). In the last example, in addition to
facilitating efficient transport of ions and quantum information
exchange, the 2D architecture will allow implementations of
more sophisticated QEC codes or surface codes (Lidar and
Brun, 2013), and the smallest of it was realized in a super-
conducting qubit setup (Córcoles et al., 2015).
Scientists and engineers are also developing hybrid quan-

tum computing platforms trying to achieve similar feats to
those previously described. These devices, which are built to
solve specific problems, may not necessarily possess universal
quantum gate sets. Coherent Ising machines (Utsunomiya,
Takata, and Yamamoto, 2011; Wang et al., 2013; Marandi
et al., 2014; Inagaki et al., 2016; McMahon et al., 2016),
based on mutually coupled optical parametric oscillators, are a
promising hybrid architecture for solving instances of hard
combinatorial optimization problems. Recently, it was shown
that the efficiency of these machines can be improved with
error detection and correction feedback mechanisms (Kako
et al., 2020). See the recent review by Yamamoto et al. (2020)
for an in-depth discussion about coherent Ising machines.
Quantum annealing (Finnila et al., 1994; Kadowaki and
Nishimori, 1998) has been another prominent approach for
achieving quantum advantage in the NISQ era (Perdomo-Ortiz
et al., 2018; Bouland et al., 2020; Hauke et al., 2020); see
Sec. III.A for more details on quantum annealing.
Lastly, in recent years cloud-based quantum computers

have become available, with which anyone with Internet
access can control and manipulate delicate qubits and perform
quantum computations on the fly. Examples of such platforms
include IBM Quantum, Rigetti Computing, and Xanadu
Quantum Cloud.

C. NISQ and near term

The experimental state of the art and the demand for QEC
have encouraged the development of innovative algorithms
capable of reaching the long-expected quantum advantage.
Quantum advantage can be defined as a computation involv-
ing a quantum device that cannot be performed classically
within reasonable amounts of time and energy resources. The
term near-term quantum computation was coined to describe
quantum algorithms tailored to be run on current quantum
computing hardware or those that could be developed in the
next few years. It is important to note that NISQ is a hardware-
focused definition and does not necessarily imply a temporal
connotation. NISQ devices can implement quantum circuits,
in which all gates adhere to the topology of a specified graph
G, in which the nodes of the graph correspond to qubits. The
gates typically operate on one or two qubits. Because each
gate operation involves a certain amount of noise, NISQ
algorithms are naturally limited to employing circuits of
shallow depths (Barak and Marwaha, 2021). Near-term
algorithms, however, refer to those algorithms designed for
quantum devices available in the next few years and carries no
explicit reference to the absence of QEC. The phrase near term
is subjective since different researchers may have other
thoughts on how many years can be considered near term.
Predicting experimental progress is always challenging, and
such predictions are influenced by human bias. Algorithms
developed for near-term hardware may be unfeasible if
hardware advancement does not match the algorithm’s exper-
imental requirements.

D. Scope of the review

This review aims to accomplish three main objectives. The
first is to provide a proper compilation of the available
algorithms suited for the NISQ era. We present a summary
of the crucial tools and techniques that have been proposed
and harnessed to design such algorithms. The second objec-
tive is to discuss the implications of these algorithms in
various applications such as quantum machine learning
(QML), quantum chemistry, and combinatorial optimization.
Finally, the third objective is to provide some perspective on
potential future developments given the recent progress in
quantum hardware.
Most of the current NISQ algorithms harness the power of

quantum computers in a hybrid quantum-classical arrange-
ment. Such algorithms delegate the classically difficult part of
a computation to the quantum computer and perform the other
on a sufficiently powerful classical device. These algorithms
variationally update the variables of a parametrized quantum
circuit and hence are referred to as variational quantum
algorithms (VQAs) (Cao et al., 2019; Cerezo, Sharma et al.,
2020; Endo, Cai et al., 2020; McArdle et al., 2020). The first
proposals of VQAs were the variational quantum eigensolver
(VQE) (Peruzzo et al., 2014; Wecker, Hastings, and Troyer,
2015; McClean et al., 2016), which was originally proposed
to solve quantum chemistry problems, and the quantum
approximate optimization algorithm (QAOA) (Farhi,
Goldstone, and Gutmann, 2014), which was proposed to
solve combinatorial optimization problems. While NISQ
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devices can arguably achieve quantum advantage for sampling
problems, the question of their ability to provide advantage for
optimization problems remains unanswered (Barak et al.,
2015; Barak and Marwaha, 2021). Despite its potential, it is
important to note that there is currently no provable quantum
advantage for VQAs with NISQ devices (Barak and Marwaha,
2021). In this review, we describe the building blocks of
VQAs in Sec. II.
Other quantum computing paradigms propose different

types of algorithms. They are inspired and hybridized with
analog approaches. These paradigms include quantum anne-
aling, digital-analog quantum computation, Gaussian boson
sampling, and analog quantum computation. We present their
fundamental properties in Sec. III.
In Sec. V, we examine the methods developed to best utilize

NISQ algorithms as well as their theoretical and experimental
challenges. We include the theoretical guarantees that some of
these algorithms lie on as well as techniques to mitigate the
errors coming from the use of noisy quantum devices. We also
cover the possible trainability challenges that VQAs have and
how to map theoretical NISQ circuits to real hardware.
Section VI presents a range of applications of NISQ algo-
rithms. Techniques to benchmark, compare, and quantify
performance of current quantum devices are presented in
Sec. VII. Like any other computational paradigm, quantum
computing requires a language to establish human-machine
communication. We explain the different levels of quantum
programming and provide a list of open-source quantum
software tools in Sec. V.C. Finally, we conclude this review in

Sec. VIII by highlighting the increasing community involve-
ment in this field and by presenting near-term and long-term
goals of quantum computational research.

II. BUILDING BLOCKS OF VARIATIONAL QUANTUM
ALGORITHMS

AVQA comprises several modular components that can be
readily combined, extended, and improved with developments
in quantum hardware and algorithms. These components
include the objective function, the cost function to be
variationally minimized; the parametrized quantum circuit
(PQC), parametrized unitaries that are manipulated in the
minimization of the objective; the measurement scheme,
which estimates the expectation values needed to evaluate
the objective; and the classical optimizer, the method used to
obtain the optimal circuit parameters that minimize the
objective. In Secs. II.A–II.D, we define each of these
components, which are presented diagrammatically in Fig. 2.

A. Objective function

The Hamiltonian is a quantum operator that encodes
information about a given physical system, such as a molecule
or a spin chain. Its expectation value yields the energy of a
quantum state, which is often used as the minimization target
of a VQA; i.e., it obtains the Hamiltonian ground state.
Problems that are not related to real physical systems can also
be encoded in a Hamiltonian form such that they can be solved

(a)

(b)

(d)

(c)

FIG. 2. Diagrammatic representation of a variational quantum algorithm (VQA). A VQA workflow can be divided into four main
components: (a) the objective functionO that encodes the problem to be solved; (b) the parametrized quantum circuit (PQC)U, in which
variables θ are tuned to minimize the objective; (c) the measurement scheme, which performs the basis changes and measurements
needed to estimate expectation values that are used to evaluate the objective; and (d) the classical optimizer that minimizes the objective.
The PQC can be defined heuristically, following hardware-inspired Ansätze, or designed from the knowledge about the problem
Hamiltonian H. Inputs of a VQA are the circuit Ansatz UðθÞ and the initial parameter values θ0. Outputs include optimized parameter
values θ�and the minimum of the objective.
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on a quantum computer. In general, any expectation value of a
function written in an operational form (i.e., decomposed or
encoded in a quantum operator) can also be evaluated on a
quantum computer. After the Hamiltonian or operator of a
problem has been determined, it must be decomposed into
a set of particular operators that can be measured with a
quantum processor. Such a decomposition, which is further
discussed in Sec. II.A.1, is an important step in many quantum
algorithms.
Within a VQA, one has access to measurements

on qubits, in which the outcome probabilities are determined
by the prepared quantum state. We consider only measure-
ments on individual qubits in the standard computational
basis and denote the probability to measure qubit q in the
state j0i by pq

0, where the qubit label q will be omitted
whenever possible. The central element of a VQA is a
parametrized cost or objective function O subject to a
classical optimization algorithm, minθO(θ; fp0ðθÞg). The
objective function O and the measurement outcomes p0 of
one or many quantum circuit evaluations depend on the set of
parameters θ.
In practice, it is often inconvenient to directly work with the

probabilities of the measurement outcomes when evaluating
the objective function. Higher level formulations employ
expectation value of the Hamiltonian H of the form

hHiUðθÞ ≡ h0jU†ðθÞHUðθÞj0i; ð1Þ

describing measurements on the quantum state generated by
the unitary UðθÞ. This is in contrast to using the probabilities
for individual qubit measurements. Arbitrary observables can
be decomposed into basic measurements of the so-called Pauli
strings, which can be evaluated in the computational basis, as
explained here and in Sec. II.C. Restricting ourselves to
expectation values instead of pure measurement probabilities,
the objective function becomes

min
θ
Oðθ; fhHiUðθÞgÞ: ð2Þ

This formulation often allows for more compact definitions of
the objective function. For the original VQE (Peruzzo et al.,
2014) and QAOA (Farhi, Goldstone, and Gutmann, 2014) it
can be described as a single expectation value minθhHiUðθÞ,
where the differences solely appear in the specific form and
construction of the qubit Hamiltonian.
The choice of the objective function is crucial in a VQA to

achieve the desired convergence. Vanishing gradient issues
during the optimization, known as barren plateaus, are
dependent on the cost function (Cerezo et al., 2021); see
Sec. IV.A for details.

1. Pauli strings

To extract the expectation value of the problem
Hamiltonian, it is sufficient to express the Hamiltonian as a
linear combination of primitive tensor products of Pauli
matrices σ̂x; σ̂y; σ̂z. We refer to these tensor products as

Pauli strings P̂ ¼ ⊗
n

j¼1
σ̂, where n is the number of qubits,

σ̂ ∈ fÎ; σ̂x; σ̂y; σ̂zg, and Î is the identity operator. The
Hamiltonian can then be decomposed as

H ¼
XM
k¼1

ckP̂k; ð3Þ

where ck is a complex coefficient of the kth Pauli string and
the number of Pauli stringsM in the expansion depends on the
operator at hand. An expectation value in the sense of Eq. (1)
then naturally decomposes into a set of expectation values,
each defined by a single Pauli string

hHiU ¼
XM
k¼1

ckhP̂kiU: ð4Þ

Examples of Hamiltonian objectives include molecules (by
means of certain fermionic transformation to Pauli strings, as
detailed in Sec. VI.A), condensed matter models written in
terms of spin chains, and optimization problems encoded in a
Hamiltonian form; see Sec. VI.C.

2. Fidelity

Instead of optimizing with respect to the expectation value
of an operator, several VQAs require a subroutine to optimize
the state obtained from the PQC UðθÞ; jΨiUðθÞ with respect to
a specific target state jΨi. A commonly used cost function is
the fidelity between the PQC and the target state

FðΨ;ΨUðθÞÞ≡ jhΨjΨUðθÞij2; ð5Þ

which is equivalent to the expectation value over the projector
Π̂Ψ ¼ jΨihΨj. The state preparation objective is then the
minimization of the infidelity 1 − FðΨ;ΨUðθÞÞ or the negated
fidelity

max
θ

FðΨ;ΨUðθÞÞ ¼ min
θ
ð−hΠ̂ΨiUðθÞÞ: ð6Þ

If we know the efficient circuit UΨ that prepares the target
state jΨi, we can compute the fidelity with the inversion test
by preparing the quantum state U†

ΨjΨUðθÞi and measuring the

projector onto the zero state Π̂0 ¼ j0i⊗nh0j⊗n, with the fidelity
given by FðΨ;ΨUðθÞÞ ¼ hΠ̂0iU†

ΨUðθÞ (Havlíček et al., 2019).

If one wants to avoid optimizing with respect to a
projector onto a single state, one can instead use a local
observable that also becomes maximal for the target state,
namely, Ô ¼ ð1=NÞPN

k¼1 j0kih0kj ⊗ Ik̄, where Ik̄ is the
identity matrix for all qubits except k and j0ki is the zero
state for qubit k (Barison, Vicentini, and Carleo, 2021; Cerezo
et al., 2021). Alternatively, one can use randomized measure-
ments to measure the overlap Trðρ1ρ2Þ of two density matrices
ρ1 and ρ2 (van Enk and Beenakker, 2012; Elben et al., 2019,
2020). First, one selects m unitaries fVkgk, which are chosen
as the tensor product of Haar-random unitaries over the local
d-dimensional subspace. These unitaries are applied on each
quantum state ρi ¼ VkρV

†
k and ρi is sampled in the computa-

tional basis. One then estimates the probability PðiÞ
Vk
ðsÞ of
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measuring the computational basis state s for each quantum
state ρi and unitary Vk. The overlap is given by

Tr½ρ1ρ2� ¼
dN

m

Xm
k¼1

X
s;s0

ð−dÞ−D½s;s0�Pð1Þ
Vk
ðsÞPð2Þ

Vk
ðs0Þ; ð7Þ

where D½s; s0� is the Hamming distance between sampled
computational basis states s and s0. While the number of
measurements scales exponentially with the number of qubits,
the scaling is better than with state tomography. Moreover,
importance sampling has been proposed to substantially
reduce the number of samples necessary (Rath et al., 2021).
Objective formulations over fidelities are prominent within

state preparation algorithms in quantum optics (Kottmann
et al., 2020; Krenn, Erhard, and Zeilinger, 2020; Krenn et al.,
2020), excited state algorithms (Lee et al., 2019; Kottmann,
Anand, and Aspuru-Guzik, 2021), and QML (Cheng, Chen,
and Wang, 2018; Benedetti, Garcia-Pintos et al., 2019; Pérez-
Salinas, Cervera-Lierta et al., 2020; Huang et al., 2021); see
Sec. VI.B for more references and details. In these cases, the
fidelities are often defined with respect to computational basis
states ei, such that Fei ¼ jhΨðθÞjeiij2.

3. Other objective functions

Hamiltonian expectation values are not the only objective
functions that are used in VQAs. Any cost function that is
written in an operational form can constitute a good choice.
One such example is the conditional value at risk (CVaR).
Given the set of energy basis measurements fE1;…; EMg
arranged in a nondecreasing order, instead of using the
expectation value from Eq. (1) as the objective function, it
was proposed to use (Barkoutsos et al., 2020)

CVaRðαÞ ¼ 1

⌈αM⌉

X⌈αM⌉

k¼1

Ek; ð8Þ

which measures the expectation value of the α tail of the
energy distribution. Here α ∈ ð0; 1� is the confidence level.
The CVaR (α) can be thought of as a generalization of the
sample mean (α ¼ 1) and the sample minimum (α → 0).
Another proposal (Li et al., 2020) is to use the Gibbs

objective function

G ¼ − lnhe−ηHi; ð9Þ

which is the cumulant generating function of the energy. The
variable η > 0 is a hyperparameter to be tuned. For small η,
the Gibbs objective function reduces to the mean energy in
Eq. (1). Since both the CVaR and the Gibbs objective function
can be reduced to the mean energy for suitable limits of the
hyperparameters (α → 1 and η → 0, respectively), their per-
formances are guaranteed to be at least as good as using the
mean energy hHi. Empirically, by tuning the hyperparameters,
both measures have been shown to outperform hHi for certain
combinatorial optimization problems (Barkoutsos et al., 2020;
Li et al., 2020).

B. Parametrized quantum circuits

Following the objective function, the next essential com-
ponent of a VQA is the quantum circuit that prepares the state
that optimizes the objective. This quantum circuit, also called
a PQC, is a unitary operation that depends on a series of
parameters. In this section, we describe how PQCs are defined
and designed.
We define the state after application of the PQC as

jΨðθÞi ¼ UðθÞjΨ0i; ð10Þ

where θ is a vector of parameters and jΨ0i is a given initial
state. Typically, jΨ0i is a product state with all qubits in the j0i
state, i.e., j00 � � � 0i ¼ j0i⊗n, where n is the number of qubits.
In several VQAs, it is convenient to prepare that state in a
particular form before applying the PQC. The state preparation
operation would then depend on some other unitary operation
P that may depend on variational parameters ϕ, jΨ0i ¼
PðϕÞj0i⊗n. One example is the quantum feature maps defined
in Sec. VI.B.1 that encode the data in the PQC. Any known
property about the final state can also be used to obtain the
initial guess. For instance, if we expect that the final state
solution will contain all elements of the computational basis,
or if we want to exploit a superposition state to seed the
optimization, an initial state choice might be Pj0i⊗n ¼
H⊗n

d j0i⊗n, where Hd is the Hadamard gate. Applied to
all qubits, Hd generates the even superposition of all basis
states, i.e.,

jDi ¼ H⊗n
d j0i⊗n ¼ 1ffiffiffi

n
p

Xn
i¼1

jeii; ð11Þ

where jeii are the computational basis states. In quantum
chemistry algorithms, the initial state usually corresponds to
the Hartree-Fock approximation; see Sec. VI.A for details. The
choice of a good initial state allows the VQA to start the search
in a region of the parameter space that is closer to the optimum.
The choice of the Ansatz U greatly affects the performance

of a VQA. From the perspective of the problem, the Ansatz
influences both the convergence speed and the closeness of the
final state to a state that optimally solves the problem. On the
other hand, the quantum hardware on which the VQA is
executed has to be taken into account: Deeper circuits are
more susceptible to errors, and some Ansatz gates are costly to
construct from native gates. Accordingly, many of the Ansätze
developed to date are classified as either more problem
inspired or more hardware efficient, depending on their
structure and application.

1. Problem-inspired Ansätze

An arbitrary unitary operation can be generated by a
Hermitian operator ĝ that, physically speaking, defines an
evolution in terms of the t parameter as follows:

GðtÞ ¼ e−iĝt: ð12Þ

As an example, the generator ĝ can be a Pauli matrix σ̂i, and
thus GðtÞ becomes a single-qubit rotation of the form
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RkðθÞ ¼ e−iðθ=2Þσ̂k ¼ cosðθ=2ÞI − i sinðθ=2Þσ̂k; ð13Þ

with t ¼ θ and ĝ ¼ ð1=2Þσ̂k, corresponding to the spin
operator.
From a more abstract viewpoint, those evaluations can

always be described as the time evolution of the correspond-
ing quantum state, so the generator ĝ is often referred to as a
Hamiltonian. Note, however, that this Hamiltonian does not
necessarily need to be the operator that describes the energy of
the system of interest. In general, such generators can be
decomposed into Pauli strings in the form of Eq. (3).
Within the so-called problem-inspired approaches, evolu-

tions in the form of Eq. (12), with generators derived from
properties of the system of interest, are used to construct the
parametrized quantum circuits. The unitary coupled-cluster
approach (discussed later), mostly applied to quantum chem-
istry problems, is one prominent example. The generators are
elementary fermionic excitations, as shown in Eq. (17).
The Suzuki-Trotter (ST) expansion or decomposition

(Suzuki, 1976) is a method to approximate a general unitary
in the form of Eq. (12) as a function of the t parameter. This
can be done by decomposing ĝ into a sum of noncommuting
operators fôkgk, with ĝ ¼

P
k ckôk and certain coefficients ck.

The operators ôk are chosen such that the evolution unitary
e−iôkt can be easily implemented as Pauli strings P̂k. The full
evolution over t can now be decomposed into integerm equal-
sized steps as

e−iĝt ¼ lim
m→∞

�Y
k
e−ickôkt=m

�
m
: ð14Þ

For practical purposes, the time evolution can be approxi-
mated by a finite number m. When Pauli strings are used, this
provides a systematic method to decompose an arbitrary
unitary, generated by ĝ, into a product of multiqubit rotations
e−ickP̂kt=m, which themselves can be decomposed into primi-
tive one- and two-qubit gates. Here we used the second-order
ST decomposition to approximate the true unitary at each time
step t. The error incurred from the approximation can be
bounded by jjUĝðΔtÞ−UST

ĝ ðΔtÞjj≤
P

m
k¼1 jj½½Hk;H>k�;Hk�� þ

½½H>k;Hk�;H>k��jjΔ3
t , whereH>k ¼

P
β>k Hβ andHk ¼ ckôk

(Poulin et al., 2014).
Knowledge regarding the physics of the particular

Hamiltonian to be Trotterized can substantially reduce the
number of gates needed to implement this method. For
instance, Kivlichan et al. (2018) showed that by using
fermionic SWAP gates it is possible to implement a Trotter
step for electronic structure Hamiltonians using first-neighbor
connectivity circuits with N2=2 two-qubit gate width and N
depth, where N is the number of spin orbitals. They also
showed that arbitrary Slater determinants can be efficiently
implemented with N=2 gates of circuit depth.
Unitary coupled cluster.—Historically, problem-inspired

Ansätze were proposed and implemented before hardware-
efficient Ansätze; see Fig. 3. They arose from the quantum
chemistry–specific observation that the unitary coupled-
cluster (UCC) Ansatz (Taube and Bartlett, 2006), which adds
quantum correlations to the Hartree-Fock approximation, is
inefficient to represent on a classical computer (Yung et al.,

2014). Leveraging quantum resources, the UCC Ansatz
was instead realized as a PQC on a photonic processor
(Peruzzo et al., 2014). It is constructed from the parametrized
cluster operator TðθÞ and acts on the Hartree-Fock ground
state jΨHFi as

jΨðθÞi ¼ eTðθÞ−TðθÞ† jΨHFi: ð15Þ

The cluster operator is given by TðθÞ ¼ T1ðθÞ þ T2ðθÞ þ � � �,
with

T1ðθÞ ¼
X
i∈occ
j∈virt

θji â
†
j âi;

T2ðθÞ ¼
X

i1 ;i2∈occ
j1 ;j2∈virt

θj1;j2i1;i2
â†j2 âi2 â

†
j1
âi1 ; ð16Þ

and higher-order terms following accordingly (O’Malley et al.,
2016). The operator âk is the annihilation operator of the kth
Hartree-Fock orbital, and the sets “occ” and “virt” refer to the
occupied and unoccupied Hartree-Fock orbitals.
Owing to their decreasing importance, the series is usually

truncated after the second or third term. The Ansatz is termed
UCCSD or UCCSDT, respectively, referring to the inclusion
of single, double, and triple excitations from the Hartree-Fock
ground state. The k-UpCCGSD approach restricts the double
excitations to pairwise excitations but allows k layers of the
approach (Lee et al., 2019). After mapping to Pauli strings as

(a)

(b)

FIG. 3. Examples of circuits for problem-inspired and hard-
ware-efficient Ansätze. (a) Circuit of the unitary coupled-
cluster Ansatz with a detailed view of a fermionic excitation,
as discussed by Yordanov, Arvidsson-Shukur, and Barnes (2020).
(b) Hardware-efficient Ansatz tailored to a processor that is
optimized for single-qubit x and z rotations and nearest-neighbor
two-qubit CNOT gates.
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described in Sec. II.A.1, the Ansatz is converted to a PQC,
usually via the Trotter expansion in Eq. (14).
In its original form, the UCC Ansatz faces several draw-

backs in its application to larger chemistry problems, as well
as to other applications. For strongly correlated systems, the
widely proposed UCCSD Ansatz is expected to have insuffi-
cient overlap with the true ground state and produces large
circuit depths (Grimsley, Economou et al., 2019; Lee et al.,
2019). Consequently, improvements and alternative Ansätze
have been proposed to mitigate these challenges. We restrict
our discussion here to provide a short overview of alternative
Ansatz developments. For more details on the UCC Ansatz,
see Sec. VI.A.
Factorized unitary coupled-cluster and adaptive

approaches.—The noncommuting nature of the fermionic
excitation generators, given by the cluster operators in
Eq. (17), leads to difficulties in decomposing the canonical
UCC Ansatz (15) into primitive one- and two-qubit unitaries.
The first approaches employed the Trotter decomposition (14)
using a single step (McClean et al., 2016; Romero et al.,
2018). The accuracy of the obtained factorized Ansatz
depends, however, on the order of the primitive fermionic
excitations (Grimsley, Claudino et al., 2019; Izmaylov, Díaz-
Tinoco, and Lang, 2020).
Alternative approaches propose using factorized unitaries

that are directly constructed from primitive fermionic excita-
tions (Evangelista, Chan, and Scuseria, 2019; Izmaylov, Díaz-
Tinoco, and Lang, 2020). Adaptive approaches are a special
case of a factorized Ansatz where the unitary is iteratively
grown by subsequently screening and adding primitive unitary
operators from a predefined operator pool. The types of
operator pools can be divided into two classes: adapt VQE
(Grimsley, Economou et al., 2019), which constructs the
operator pool from primitive fermionic excitations, and qubit
coupled cluster (Ryabinkin et al., 2018), which uses Pauli
strings. In both works, the screening process is based on
energy gradients with respect to the prospective operator
candidate. Since this operator is the trailing part of the circuit,
the gradient can be evaluated through the commutator of the
Hamiltonian with the generator of that operator. In contrast to
a commutator-based gradient evaluation, direct differentiation,
as proposed by Kottmann et al. (2021), allows gradient
evaluations with similar cost as the original objective and
generalizes the approach by allowing screening and insertion
of operators at arbitrary positions in the circuit. This is
necessary for excited state objectives, as discussed in
Sec. VI.A.4.
Extended approaches include iterative methods

(Ryabinkin et al., 2020), operator pool construction from
involutory linear combinations of Pauli strings (Lang, I.
G. Ryabinkin, and Izmaylov, 2020), Pauli string pools from
decomposed fermionic pools (Tang et al., 2019), mutual
information-based operator pool reduction (Zhang, Kyaw,
Kottman et al., 2021), measurement reduction schemes
based on the density matrix reconstruction (Liu, Li, and
Yang, 2020), and external perturbative corrections
(Ryabinkin, Izmaylov, and Genin, 2021).
Variational Hamiltonian Ansatz.—Inspired by adiabatic

state preparation, the variational Hamiltonian Ansatz (VHA)
was developed to reduce the number of parameters and

accelerate the convergence (Wecker, Hastings, and Troyer,
2015; McClean et al., 2016). Instead of the Hartree-Fock
operators, the terms of the fermionic Hamiltonian itself are
used to construct the PQC. For this purpose, the fermionic
HamiltonianH is written as a sum ofM termsH ¼ P

i ĥi. The
grouping of Hamiltonian terms depends on the problem. The
PQC is then chosen as

UVHA ¼
YM
i¼1

eðiθiĥiÞ; ð17Þ

with the operators in the product ordered by decreasing i. The
unitary corresponds to n short time evolutions under different
parts of the Hamiltonian, where the terms ĥi of the
Hamiltonian can be repeated multiple times. The initial state
is chosen so that it is easy to prepare yet is related to the
Hamiltonian. An example is the eigenstate of the diagonal part
of H. The Fermi-Hubbard model, with a few simple inter-
action terms, is proposed as the most promising near-term
application of the method. However, it is also shown that the
VHA can outperform specific forms of the UCCSD Ansatz for
strongly correlated model systems in quantum chemistry. In
Sec. VI.Awe discuss some VQE-inspired algorithms that also
use adiabatic evolution to improve the performance of the
algorithm.
Quantum approximate optimization algorithm.—QAOA is

one of the canonical NISQ-era algorithms designed to provide
approximate solutions to combinatorial optimization prob-
lems (Farhi, Goldstone, and Gutmann, 2014). QAOA has been
studied in depth over the years both empirically and theo-
retically. As of now QAOA has not demonstrated any speedup
over classical algorithms for any practically relevant task.
Understanding the potential of QAOAwith respect to classical
algorithms is an active area of study.
The cost function C of a QAOA is designed to encode a

combinatorial problem by means of bit strings that form the
computational basis. With the computational basis vectors
jeii, one can define the problem Hamiltonian HP as (see
Sec. VI.C.1 for an example)

HP ≡Xn
i¼1

CðeiÞjeiiheij; ð18Þ

and the mixing Hamiltonian HM as

HM ≡Xn
i¼1

σ̂ix: ð19Þ

The initial state in the QAOA is conventionally chosen to be
the uniform superposition state jDi from Eq. (11). The final
quantum state is given by alternately applying HP and HM on
the initial state p times,

jΨðγ; βÞi≡ e−iβpHMe−iγpHP � � � e−iβ1HMe−iγ1HP jDi; ð20Þ

with γ≡ ðγ1; γ2;…; γpÞ and β≡ ðβ1; β2;…; βpÞ. A quantum
computer is used to evaluate the objective function
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Cðγ; βÞ≡ hΨðγ; βÞjHPðγ; βÞjΨðγ; βÞi; ð21Þ

and a classical optimizer is used to update the 2p angles γ and
β until C is maximized, i.e., Cðγ�; β�Þ≡maxγ;β Cðγ; βÞ. Here
p is often referred to as the QAOA level or depth. Since the
maximization at level p − 1 is a constrained version of the
maximization at level p, the performance of the algorithm
improves monotonically with p in the absence of experimental
noise and infidelities.
In adiabatic quantum computing (see Sec. III.A), we start at

the ground state of HM and slowly move toward the ground
state of HP by slowly changing the Hamiltonian. In QAOA,
we alternate between HM and HP. One can think of QAOA as
a Trotterized version of quantum annealing. Indeed, the
adiabatic evolution as used in quantum annealing can be
recovered in the limit of p → ∞.
For a combinatorial optimization problem with hard con-

straints to be satisfied, penalties can be added to the cost
function. In practice, this may not be an efficient strategy, as it
is still possible to obtain solutions that violate several of the
hard constraints. A variation of the QAOA to deal with these
constraints was also discussed in the Sec. VII from the original
proposal (Farhi, Goldstone, and Gutmann, 2014). Building on
previous work in quantum annealing (Hen and Sarandy, 2016;
Hen and Spedalieri, 2016), Hadfield et al. (2017) proposed to
encode the hard constraints directly into the mixing
Hamiltonian. This approach yields the main advantage of
restricting the state evolution to the feasible subspace where
no hard constraints are violated. This speeds up the classical
optimization routine to find the optimal angles. This frame-
work was later generalized as the quantum alternating
operator Ansatz to consider phase-separation and mixing
unitary operators [UPðγÞ and UMðβÞ, respectively], which
need not originate from the time evolution of a Hamiltonian
(Hadfield et al., 2019). The operators e−iβHM and e−iγHP from
Eq. (20) are replaced by UMðβÞ and UPðγÞ, respectively. It is
worth noting that both the quantum approximate optimization
algorithm and the quantum alternating operator Ansatz are
abbreviated “QAOA” in the literature. In this case, we suggest
“QuAltOA” as an acronym for the quantum alternating
operator Ansatz to distinguish it from the quantum approxi-
mate optimization algorithm.
The use of QAOA for combinatorial optimization is

presented in Sec. VI.C. Some theoretical guarantees of this
Ansatz are introduced in Sec. IV.D.

2. Hardware-efficient Ansätze

Thus far we have described circuit Ansätze constructed
from the underlying physics of the problem to be solved.
Although it has been shown computationally that such
Ansätze can ensure fast convergence to a satisfying solution
state, they can be challenging to realize experimentally.
Quantum computing devices possess a series of experimental
limitations that include, among others, specific qubit con-
nectivity, a restricted gate set, and limited gate fidelities and
coherence times. Therefore, existing quantum hardware is not
suited to implement deep and highly connected circuits
required for the UCC and similar Ansätze for applications

beyond basic demonstrations such as the H2 molecule (Moll
et al., 2018).
A class of hardware-efficient Ansätze [see Fig. 3(b)] has

been proposed to accommodate device constraints (Kandala
et al., 2017). The common trait of these circuits is the use of a
limited set of quantum gates as well as a particular qubit
connection topology. The gate set usually consists of a two-
qubit entangling gate and up to three single-qubit gates. The
circuit is then constructed from blocks of single-qubit gates
and entangling gates, which are applied to multiple or all
qubits in parallel. Each of these blocks is usually called a
layer, and the Ansatz circuit generally has multiple such
layers.
The quantum circuit of a hardware-efficient Ansatz with L

layers is usually given by

UðθÞ ¼
YL
k¼1

UkðθkÞWk; ð22Þ

where θ ¼ ðθ1; ;…; θLÞ are the variational parameters,
UkðθkÞ ¼ exp ð−iθkVkÞ is a unitary derived from a
Hermitian operator Vk, and Wk represents nonparametrized
quantum gates. Typically, the Vk operators are single-qubit
rotation gates; i.e., Vk are Pauli strings acting locally on each
qubit. In those cases, Uk becomes a product of combinations
of single-qubit rotational gates, with each one defined as in
Eq. (13). Wk is an entangling unitary constructed from gates
that are native to the architecture at hand, such as CNOT or CZ
gates for superconducting qubits or XX gates for trapped ions
(Krantz et al., 2019; Wright et al., 2019). Following this
approach, the so-called alternating layered Ansatz is a par-
ticular case of these hardware-efficient Ansätze that consists of
layers of single-qubit rotations and blocks of entangling gates
that entangle only a local set of qubits and are shifted every
alternating layer.
The choice of these gates, their connectivity, and their

ordering influences the portion of the Hilbert space that the
Ansatz covers and how fast it converges for a specific problem.
Some of the most relevant properties of hardware-efficient
Ansätze, namely, expressibility, entangling capability, and the
number of parameters and layers needed, were studied by Sim,
Johnson, and Aspuru-Guzik (2019), Bravo-Prieto et al.
(2020), Nakaji and Yamamoto (2020a), and Woitzik et al.
(2020) and further discussed in Sec. IV.B.
Instead of choosing between the problem-inspired and

hardware-efficient modalities, some PQC designers have
chosen an intermediate path. One example is the use of an
exchange-type gate, which can be implemented natively in
transmons, to construct a PQC that respects the symmetry of
the variational problem (Ganzhorn et al., 2019; Sagastizabal
et al., 2019b). Such an Ansatz leads to particularly small
parameter counts for quantum chemistry problems such as the
H2 and LiH molecules (Gard et al., 2020). Another inter-
mediate approach, termed QOCA for its inspiration from
quantum optimal control, is to add symmetry-breaking uni-
taries, akin to a hardware-efficient Ansatz, into the conven-
tional VHA circuit (Choquette et al., 2020). This modification
enables excursions of the variational state into previously
restricted sections of the Hilbert space, which is numerically
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shown to yield shortcuts in solving particular fermionic
problems.

C. Measurement

To gain information about the quantum state that has been
prepared on the quantum hardware, one needs to estimate the
expectation value of the objective function hÔiUθ

. The most
direct approach to estimate expectation values is to apply a
unitary transformation on the quantum state to the diagonal
basis of the observable Ô and to obtain the probability of
measuring specific computational states corresponding to an
eigenvalue of Ô. In other words, it is to determine whether a
measured qubit is in the j0i or j1i state. For experimental
details on this task, see existing reviews such as those on
superconducting qubits (Krantz et al., 2019) or ion traps
(Häffner, Roos, and Blatt, 2008). However, on NISQ devices,
the transformation to the diagonal basis mentioned before can
be an overly costly one. As a NISQ friendly alternative, most
observables of interest can be efficiently parametrized in terms
of Pauli strings, as previously shown, and transformed into
their diagonal basis by simple single-qubit rotations, as
shown later.
Measurement of Pauli strings.—The expectation value of

the σ̂z operator on a particular qubit can be measured by
reading out the probabilities of the computational basis state
fj0i; j1ig as

hψ jσ̂zjψi≡ hσ̂zi ¼ jαj2 − jβj2; ð23Þ

where jαj2 is the probability of measuring the qubit in state
j0i, jβj2 is the probability to measure the qubit in state j1i, and
jψi ¼ αj0i þ βj1i. Measurements defined by σ̂x and σ̂y can be
defined similarly by transforming them into the σ̂z basis first.
The transformation is given by primitive single-qubit gates

σ̂x ¼ R†
yðπ=2Þσ̂zRyðπ=2Þ ¼ Hdσ̂zHd; ð24Þ

σ̂y ¼ R†
xðπ=2Þσ̂zRxðπ=2Þ ¼ SHdσ̂zHdS†; ð25Þ

where S ¼ ffiffiffiffiffi
σ̂z

p
and Hd ¼ ðσ̂x þ σ̂zÞ=

ffiffiffi
2

p
is the Hadamard

gate. To measure σ̂x on a quantum state jψi, we then rotate σ̂x
into the z axis by applying Hd and measuring in a logical σ̂z
basis, i.e.,

hσ̂xi≡ hψ jσ̂xjψi ¼ hψ jHdσ̂zHdjψi ¼ αβ� þ α�β: ð26Þ

The same applies for hσ̂yi. Arbitrary Pauli strings P̂, with
primitive Pauli operations σ̂fðkÞ ∈ fσx; σy; σzg on qubits
k ∈ K, can then be measured by the same procedure on each
individual qubit as

hP̂iU ¼
�Y

k∈K
σzðkÞ

�
ŨU

; ð27Þ

where Ũ is a product of single-qubit rotations according to
Eqs. (24) and (25) depending on the Pauli operations σ̂fðkÞ at
qubit k.

Thus far we have discussed expectation values of a physical
observable hÔi, which is the mean value averaged over an
infinite number of measurements. In practice, one can sample
only a finite number of single-shot measurements Ns of the
quantum state and estimate the expectation values within a
certain finite error. For a Pauli string P̂, the number of
measurement samples Ns needed to estimate the expectation
value hP̂iU, with an additive error of at most ϵ and a failure
probability of at most δ, is bounded by Hoeffding’s inequality
as follows (Huang, Bharti, and Rebentrost, 2019):

Ns ≥
2

ϵ2
log

�
2

δ

�
: ð28Þ

In particular, the error ϵ decreases with the inverse square root
of the number of measurements ϵ ∝ 1=

ffiffiffiffiffiffi
Ns

p
.

For many problems, such as quantum chemistry–related
tasks, the number of terms in the cost Hamiltonian to be
estimated can become large. A naive way of measuring each
Pauli string separately may incur a prohibitively large number
of measurements. Recently several more efficient approaches
have been proposed; see Bonet-Monroig, Babbush, and
O’Brien (2020) for an overview. The common idea is to
group different Pauli strings that can be measured simulta-
neously such that a minimal number of measurements need to
be performed.
Pauli strings that commute qubitwise, i.e., the Pauli

operators on each qubit commute, can be measured at the
same time (McClean et al., 2016; Kandala et al., 2017). The
problem of finding the minimal number of groups can be
mapped to the minimum clique cover problem, which is NP
hard in general, but good heuristics exist (Verteletskyi, Yen,
and Izmaylov, 2020). One can collect mutually commuting
operators and transform them into a shared eigenbasis, which
adds unitary transformation to the measurement scheme
(Crawford, van Straaten et al., 2019; Gokhale et al., 2019;
Yen, Verteletskyi, and Izmaylov, 2020). Combinations of the
single-qubit and Bell measurements have been proposed as
well (Hamamura and Imamichi, 2020).
Alternatively, one can use a method called unitary parti-

tioning to linearly combine different operators into a unitary
and use the so-called Hadamard test (discussed later) to
evaluate it (Izmaylov et al., 2020; Zhao et al., 2020).
Izmaylov, Yen, and Ryabinkin (2019) decomposed the
observables decomposed into the so-called mean-field
Hamiltonians, which can be measured more efficiently if
one measures one qubit after the other, and used information
from previous measurement outcomes.
For specific problems such as chemistry and condensed

matter systems, it is possible to use the structure of the
problem to reduce the number of measurements (Gokhale and
Chong, 2019; Huggins et al., 2019; Cade et al., 2020; Cai,
2020). In particular, Cai (2020), where a Fermi-Hubbard
model is studied using VQE, reduced the number of mea-
surements by considering multiple orderings of the qubit
operators when applying the Jordan-Wigner transformation.
In the context of quantum chemistry, the largest reduction to
date could be achieved using the Cartan subalgebra approach
of Yen and Izmaylov (2020). Other approaches use classical
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shadows (Hadfield et al., 2020), a classical approximation of
the quantum state of interest, or neural network estimators
(Torlai et al., 2020) to decrease the number of measurements.
All those kinds of optimizations require an understanding of
the underlying problem and are usually not applicable for
every use of the VQE.
Measurement of overlaps.—Several VQAs require the

measurement of overlap of a quantum state jψi with unitary
U in the form of hψ jUjψi. This overlap is in general not an
observable and has both real and imaginary parts. The
Hadamard test can evaluate such a quantity on the quantum
computer using a single extra qubit (Miquel et al., 2002). The
idea is to apply a controlled U operation, with control on that
qubit, and target U on the quantum state. One can then
measure from this single-qubit state both real and imaginary
parts of the overlap. A downside of this method is the
requirement to be able to implement a controlled unitary,
which may require too many resources on current quantum
processors. Alternative methods to measure the overlap with-
out the use of control unitaries have been proposed (Mitarai
and Fujii, 2019). One idea is to decompose U into a sum of
Pauli strings, and then to measure the expectation value of
each Pauli string individually. Another approach is possible if
U can be rewritten as a product of unitaries Uq that act locally
on only a few qubits. One can then find via classical means the
diagonalization of Uq ¼ V†

qDVq, with the diagonal matrix D
and Vq a unitary. The overlap can be found by applying the Vq

unitaries on the state jψi, measuring the outcomes on the
computational basis, and conducting postprocessing of the
results with the classically calculated eigenvalues of D.
Classical shadows.—This is a powerful technique to

accurately predict M expectation values TrðÔiρÞ,
1 ≤ i ≤ M, of an unknown quantum state ρ (Huang,
Kueng, and Preskill, 2020). The method was based on and
inspired by shadow tomography (Aaronson, 2020). A random
unitary U is first applied on the state ρ → UρU† and then all
the qubits are measured on a computational basis. This step is
repeated with several random unitaries U. Common choices
for U are unitaries that can be efficiently computed on a
classical computer such as random n-qubit Clifford circuits or
tensor products of single-qubit rotations. By postprocessing
the measurement results, one can gather a classical shadow,
which is a classical representation of the quantum state ρ.
There are performance guarantees that classical shadows with
a size of the order of logM suffice to predict M expectation
values simultaneously. For investigations involving classical
shadow tomography protocols in the presence of noise, see
Chen, Yu et al. (2020) and Koh and Grewal (2020).
Experimental realizations have been performed recently as
well (Struchalin et al., 2021; Zhang, Sun et al., 2021).

D. Parameter optimization

In principle, the PQC parameter optimization to minimize
the objective does not differ from any multivariate optimiza-
tion procedures and standard classical methods can be applied
(Lavrijsen, Tudor et al., 2020). However, in the NISQ era, the
coherence time is short, which means that high-depth ana-
lytical gradient circuits cannot be implemented. In addition,

one of the greatest challenges in parameter optimization is the
large number of measurements required for estimating the
mean value of an observable to high precision. Because of this
high sampling rate, the measurement process can become a
significant bottleneck in the overall algorithm run-time. Thus,
an effective optimizer for PQCs should try to minimize the
number of measurements or function evaluations. As the last
criterion, the optimizer should be resilient to noisy data
coming from current devices and precision on expectation
values that are limited by the number of shots in the
measurement. These three requirements imply that certain
existing algorithms are better suited for PQC optimization and
are more commonly used and that new algorithms are being
developed specifically for PQC optimization. Some intuitive
concepts of the mechanisms behind the optimization of
quantum problems were investigated by McClean, Harrigan
et al. (2020). Recently Bittel and Kliesch (2021) showed that
the classical optimization corresponding to VQAs is a NP-
hard problem.
In this section, we first review two classes of optimization,

gradient based and gradient free. We also consider resource-
aware optimization methods and strategies that additionally
minimize quantities associated with the quantum cost of
optimization. While we reserve more detailed descriptions
for the respective references and the Supplemental Material
(824), we highlight the main features and advantages for each
optimization strategy.

1. Gradient-based approaches

A common approach to optimize an objective function fðθÞ
is via its gradient, i.e., the change of the function with respect
to a variation of its M parameters θ ¼ ðθ1;…; θMÞ. The
gradient indicates the direction in which the objective function
shows the greatest change. This is a local optimization
strategy, as one uses information starting from a given initial
parameter value θð0Þ and iteratively updates θðtÞ over multiple
discrete steps t. A common update rule for each θi is

θðtþ1Þ
i ¼ θðtÞi − η∂ifðθÞ; ð29Þ

or θðtþ1Þ ¼ θðtÞ − η∇fðθÞ, where η is a small parameter called
the learning rate and

∂i ≡ ∂
∂θi ; ∇ ¼ ð∂1;…; ∂MÞ; ð30Þ

is the partial derivative with respect to the parameter θi and the
gradient vector, respectively, using Einstein notation.
There are various ways of estimating the gradient on a

quantum computer (Romero et al., 2018). The most relevant
of them are detailed in the Supplemental Material (824) and
summarized as follows.
Finite difference.—One can compute the gradients using

finite differences, i.e., ∂ifðθÞ ≈ ½fðθþ ϵeiÞ − fðθ − ϵeiÞ�=2ϵ,
where ϵ is a small number and ei is the unit vector with 1 as its
ith element and 0 otherwise. As the objective function fðθÞ is
obtained with limited accuracy, a good estimation of the
gradient requires smaller ϵ, i.e., more samples taken from the
quantum hardware.

Kishor Bharti et al.: Noisy intermediate-scale quantum algorithms

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015004-13



Parameter-shift rule.—This strategy was proposed by
Romero et al. (2018) and developed by Mitarai et al.
(2018) and Schuld et al. (2019). This method computes the
exact gradients and ϵ can be large (commonly ϵ ¼ π=2). This
method assumes that the unitary to be optimized can be
written as UðθÞ ¼ VGðθiÞW, where G ¼ e−iθig is the unitary
affected by the parameter θi, g is the generator ofG, and V and
W are unitaries independent of θi. If g has a spectrum of two
eigenvalues �λ only, the gradient can be calculated by
measuring the observable at two shifted parameter values
as follows:

∂ihfðθÞi ¼ λ½hfðθþÞi − hfðθ−Þi�; ð31Þ

where θ� ¼ θ� ðπ=4λÞei. This rule can be generalized to the
case where the generator g does not satisfy the eigenspectrum
condition; see the Supplemental Material (824) for details. It
can also be adapted to calculate analytical gradients for
fermionic generators of unitary coupled-cluster operators
(Kottmann, Anand, and Aspuru-Guzik, 2021) and higher-
order derivatives (Mari, Bromley, and Killoran, 2020).
Limited BFGS.—The limited Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm is a quasi-Newton method that
efficiently approximates the “inverse Hessian” using a limited
history of positions and gradients (Liu and Nocedal, 1989;
Fletcher, 2000). While effective in simulations, recent studies
observed that BFGS methods do not perform well in exper-
imental demonstrations of VQA due to the level of noise in the
cost function and gradient estimates (Lavrijsen, Tudor et al.,
2020). Two heuristics were proposed to find quasioptimal
parameters for QAOA using BFGS (Zhou et al., 2020), INTERP
and FOURIER, which are explained in the Supplemental
Material (824). Efficient initialization of parameters has also
been reported using the Trotterized quantum annealing pro-
tocol (Sack and Serbyn, 2021). These heuristic strategies can
be easily extended to gradient-free optimization methods such
as the Nelder-Mead algorithm.
Quantum natural gradient.—The update rule of standard

gradient descent assumes that the parameter space is a flat
Euclidean space. However, in general this is not the case,
which can severely hamper the efficiency of gradient descent
methods. In classical machine learning, a natural gradient was
proposed that adapts the update rule to the non-Euclidean
metric of the parameter space (Amari, 1998). Its extension, the
quantum natural gradient (QNG), defines the following update
rule (Stokes et al., 2020):

θðtþ1Þ
i ¼ θðtÞi − ηF−1ðθÞ∂ifðθÞ; ð32Þ

where F ðθÞ is the Fubini-Study metric tensor or quantum
Fisher information metric given by

F ij ¼ Re(h∂iψðθÞj∂jψðθÞi − h∂iψðθÞjψðθÞihψðθÞj∂jψðθÞi):
ð33Þ

The superior performance of the QNG compared to other
gradient methods has been reported (Yamamoto, 2019; Stokes
et al., 2020), and it has been shown that it can avoid becoming
stuck in local minima (Wierichs, Gogolin, and Kastoryano,

2020). It can be generalized to noisy quantum circuits (Koczor
and Benjamin, 2019). The QNG can be combined with
adaptive learning rates ηðθtiÞ that change for every step of
gradient descent to speed up training. For hardware-efficient
PQCs, one can calculate adaptive learning rates using the
quantum Fisher information metric (Haug and Kim, 2021b).
While the full Fubini-Study metric tensor is difficult to
estimate on quantum hardware, diagonal and block-diagonal
approximations can be efficiently evaluated (Stokes et al.,
2020) and improved classical techniques to calculate the full
tensor exist (Jones, 2020). A special type of PQC, the natural
PQC, has a Euclidean quantum geometry such that the
gradient is equivalent to the QNG close to a particular set
of parameters (Haug and Kim, 2021a).
Quantum imaginary time evolution.—Instead of using the

standard gradient descent for optimization, a variational
imaginary time-evolution method was proposed by McArdle,
Jones et al. (2019) to govern the evolution of parameters. They
focused on many-body systems described by a k-local
Hamiltonian and considered a PQC that encodes the state
jψðτÞi as a parametrized trial state jψ(θðτÞ)i. The evolution of
θðτÞ with respect to all the parameters can then be obtained by
solving a differential equation; see the Supplemental Material
(824) for details. It was later shown by Stokes et al. (2020) that
this method is analogous to the gradient descent via the QNG
when one considers infinitesimal small step sizes.
Hessian-aided gradient descent.—A recent work

(Huembeli and Dauphin, 2021) proposed computing the
Hessian and its eigenvalues to help analyze the cost function
landscapes of QML algorithms. Tracking the numbers of
positive, negative, and zero eigenvalues provides insight on
whether the optimizer is heading toward a stationary point.
The Hessian can be computed by doubly applying the
parameter-shift rule as shown by Mitarai and Fujii (2019)
and reproduced in the Supplemental Material (824). While a
deeper analysis is necessary to compare their performance,
both QNG- and Hessian-based methods try to accelerate
optimization by leveraging local curvature information.
Quantum analytic descent.—A method consisting of use of

a classical model of the local energy landscape to estimate the
gradients was proposed by Koczor and Benjamin (2020). In
this hybrid approach, a quantum device is used to construct an
approximate Ansatz landscape and the optimization toward
the minima of the corresponding approximate surfaces can be
carried out efficiently on a classical computer. Using this
approximate Ansatz landscape, the full energy surface, gra-
dient vector, and metric tensor can be expressed in terms of the
Ansatz parameters. The analytic descent has been shown to
achieve faster convergence than the QNG.
Stochastic gradient descent.—A major drawback of gra-

dient-based methods is the high number of measurements. The
stochastic gradient descent (SGD) algorithm addresses this
issue by replacing the normal parameter update rule with the
following modified version:

θðtþ1Þ ¼ θðtÞ − αgðθðtÞÞ; ð34Þ

where α is the learning rate and g is an unbiased estimator of
the gradient of the cost function. As an estimator, one can take
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the measurement of the gradient with a finite number
of shots (Harrow and Napp, 2019). This technique can be
combined with a sampling of the parameter-shift rule
terms (Sweke et al., 2020) or by extending it to the doubly
stochastic gradient. For the latter, the finite measurements
are performed for only a subset of the expectation values of
the Hamiltonian terms. This sampling can be performed in
the extreme situation where only one Pauli term is
evaluated at a single point in the quadrature. This is a
powerful method that reduces the number of measurements
drastically (Anand et al., 2020). This method can be
extended beyond circuits that allow the parameter-shift rule
by expressing the gradient as an integral (Banchi and Crooks,
2020). To accelerate the convergence of SGD for VQA,
different strategies have been proposed (Lyu, Montenegro,
and Bayat, 2020) and are explained in the Supplemental
Material (824).

2. Gradient-free approaches

In this section, we discuss optimization methods for VQA
that do not rely on gradients measured on the quantum
computer.
Evolutionary algorithms.—Evolutionary strategies

(Schwefel, 1977; Rechenberg, 1978) are black-box optimi-
zation tools for high-dimensional problems that use a search
distribution, from which they sample data, to estimate the
gradient of the expected fitness to update the parameters in the
direction of steepest ascent. More recently natural evolu-
tionary strategies (NESs) (Wierstra et al., 2014) demonstrated
considerable progress in solving these high-dimensional
optimization problems. They use natural gradient estimates
for parameter updates instead of the standard gradients. They
have been adapted for optimization of VQA (Anand,
Degroote, and Aspuru-Guzik, 2020; Zhao et al., 2021) and
have been shown to have a performance similar to the state-of-
the-art gradient-based method. Anand, Degroote, and Aspuru-
Guzik (2020) showed that NESs, along with techniques like
fitness shaping, local natural coordinates, adaptive sampling,
and batch optimization, can be used for the optimization of
deep quantum circuits.
Reinforcement learning.—Garcia-Saez and Riu (2019),

Khairy et al. (2019), Wauters et al. (2020), Yao, Bukov,
and Lin (2020), and Yao, Köttering et al. (2020) used
reinforcement learning (RL) to optimize the QAOA param-
eters. This framework consists of a decision-making agent
with policy πθðajsÞ parametrized by θ, which is a mapping
from the state space s ∈ fSg to an action space a ∈ fAg. In
response to the action, the environment provides the agent
with a reward r from the set of rewards fRg. The goal of RL is
to find a policy that maximizes the expected total discounted
reward. For more details, see Sec. VI.B.3. In the context of
QAOA, fSg can be the set of QAOA parameters (γ, β) used, a
can be the value of γ and β for the next iteration, and the
reward can be the finite difference in the QAOA objective
function between two consecutive iterations. The policy can
be parametrized by a deep neural network with the weights θ.
The policy parameters θ can be optimized using a variety of
algorithms, such as Monte Carlo methods (Hammersley,
2013; Sutton and Barto, 2018), Q-learning (Watkins and

Dayan, 1992), and policy gradient methods (Sutton and
Barto, 2018).
Sequential minimal optimization.—In machine learning,

the sequential minimal optimization method (Platt, 1998) has
proven successful in optimizing the high-dimensional param-
eter landscape of support vector machines. The method breaks
the optimization into smaller components for which the
solution can be found analytically. This method has been
applied to variational circuit optimization (Nakanishi, Fujii,
and Todo, 2020), circuit optimization with classical accel-
eration (Parrish, Iosue et al., 2019), and circuit optimization
and learning with Rotosolve and Rotoselect (Ostaszewski,
Grant, and Benedetti, 2019).
Surrogate model-based optimization.—When function

evaluations are costly, it pays off not only to use the current
function value to determine the next parameter value but also
to use all previous evaluations to extract information about the
search space. The function values in memory are used to build
a surrogate model, an auxiliary function that represents the full
expensive cost function based on the current information. All
optimization happens on the surrogate cost landscape, so no
explicit derivatives of the cost function are needed. Through
the use of a fitted cost function, these methods are also
expected to be more resilient to noise. Several classical
surrogate models have been included in the SCIKIT-QUANT
package (Lavrijsen et al., 2020; Lavrijsen, Tudor et al., 2020).
In the bound optimization by quadratic approximation algo-
rithm (Powell, 2009), a local quadratic model is formulated
from the previous function values. It is then minimized in the
trust region to obtain a new parameter value. When the
evaluation at this new parameter value does not result in a
lower function value, the trust region is altered and the
quadratic model is optimized in this new parameter space.
It was shown that this method works well when the PQC is
initialized close to the optimal parameters but has more
problems with shallow optimization landscapes and gets stuck
in local minima (Lavrijsen, Tudor et al., 2020). The stable
noisy optimization by branch and fit (Huyer and Neumaier,
2008) algorithm uses a branching algorithm to explore new
areas in parameter space.

3. Resource-aware optimizers

Optimization methods and strategies adopted for early
demonstrations of VQAs are largely general purpose and
black box, with a minimal emphasis on reducing the quantum
resources used in the optimization. Therefore, they are more
costly and prone to errors than their classical counterparts.
Optimizers developed in recent years are tailored to addition-
ally minimize quantities associated with the quantum cost of
the optimization, such as the number of measurements or the
real hardware properties. Additionally, one can use circuit
compilation methods like the ones described in Sec. V.B.
ROSALIN.—While VQAs leverage low-depth circuits to

execute on near-term quantum processors, a significant
challenge in implementing these algorithms is the prohibitive
number of measurements, or shots, required to estimate each
expectation value that is used to compute the objective. To
address the challenge, Arrasmith, Cincio et al. (2020) devel-
oped a shot-frugal optimizer called Random Operator
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Sampling for Adaptive Learning with Individual Number of
shots (ROSALIN) that effectively distributes fractions of a
predefined number of shots to estimate each term of the
Hamiltonian as well as each partial derivative. Given the
expectation value of the Hamiltonian decomposed into the hi
terms as in Eq. (3), Arrasmith, Cincio et al. (2020) noted
several strategies for allocating shots for estimating each term
h·ihi. While a naive strategy would allocate equal numbers of
shots per term, they observed lower variance in the energies
using weighted approaches in which the number of shots
allocated to the ith term bi is proportional to the corresponding
Hamiltonian coefficient ci.
SPSA.—In experimental realizations of VQAs, the opti-

mizer is often hindered by statistical noise. Kandala et al.
(2017) circumvented this issue by applying the simultaneous
perturbation stochastic approximation (SPSA) algorithm
(Spall, 1992), in which the algorithm hyperparameters are
determined by experimental data on the level of statistical
noise. Compared to the finite-difference gradient approxima-
tion, which requires OðpÞ function evaluations for p param-
eters, SPSA requires only two evaluations, as explained in the
Supplemental Material (824). The convergence of SPSAwith
various types of PQCs was studied by Woitzik et al. (2020).

III. OTHER NISQ APPROACHES

We now review some of the notable NISQ algorithms other
than VQA. These algorithms do not require tuning the
parameters of a PQC in an adaptive feedback manner and
often exploit analog or hybrid paradigms that constitute
alternatives to the digital quantum computation.

A. Quantum annealing

Quantum annealing (QA) (Finnila et al., 1994; Kadowaki
and Nishimori, 1998) derives its inspiration from simulated
annealing (SA), a classical global optimization technique that
is usually employed to solve combinatorial optimization
problems. SA can be valuable in discovering global optima
in optimization landscapes with many local optima. The word
“annealing” comes from metallurgy and refers to heating and
slow cooling. In SA, one identifies the objective function with
the energy of a statistical-mechanical system. The system is
assigned an artificially induced control parameter called
temperature. Like annealing, SA starts at a given high
temperature T, and the value of T is then decreased following
a certain temperature variation function called the “annealing
schedule” such that the final temperature is T ¼ 0. The
algorithm chooses a candidate state close to the current state
randomly. If it improves the solution, it is always accepted
with a probability of 1. If it does not, then the acceptance is
determined based on a temperature-dependent probability
function. The idea of tolerating worse solutions can be
considered a virtue of the algorithm. In SA, the probability
that a bad solution will be accepted slowly decreases as the
solution space is explored. This relates to the notion of “slow
cooling” in annealing.
In QA, one utilizes quantum-mechanical fluctuations like

quantum tunneling to explore the solution space. This is
related to the idea of using thermal fluctuations in SA to

explore the solution space. In QA, artificial degrees of
freedom of a quantum nature are introduced via noncommu-
tative operators, which induces quantum fluctuations. The
strength of these quantum fluctuations is controlled using an
annealing schedule (similar to SA, where we decrease the
temperature). The physical idea behind the annealing schedule
in QA is to move the system from an initial Hamiltonian
ground state to the ground state of the problem Hamiltonian.
The concept of QA is related to the notion of quantum
adiabatic evolution, which is being used for adiabatic quantum
computation (Farhi et al., 2000; Albash and Lidar, 2018).
We proceed to a formal discussion, starting with adiabatic

quantum computation and then making the connection to QA.
Adiabatic quantum computation is a model of computation
based on quantum-mechanical processes operating under
adiabatic conditions (Farhi et al., 2000; Albash and Lidar,
2018). Before understanding adiabatic quantum computation,
the concept of k-local Hamiltonians needs to be introduced.
Definition 1.—A k-local Hamiltonian is a Hermitian

matrix of the form H ¼ P
r
i¼1 ĥi, where each term is a

Hermitian operator acting nontrivially on at most k qudits;
i.e., ĥi ¼ h ⊗ I, where h is a Hamiltonian acting on at most k
neighboring qudits and I is the identity operator.
We now consider a time-dependent HamiltonianHðsÞ, with

s≡ t=T ∈ ½0; 1� and a quantum system initialized in the
ground state of Hð0Þ. We assume that HðsÞ varies smoothly
as a function of s and that HðsÞ has a unique ground state for
s ∈ ½0; 1�. A quantum state initialized in jψðt ¼ 0Þi evolves
according to the following Schrödinger equation (setting
ℏ ¼ 1):

i
d
dt

jψðtÞi ¼ HðtÞjψðtÞi: ð35Þ

Equation (35) can be written equivalently as

i
d
ds

jψðsÞi ¼ THðsÞjψðsÞi: ð36Þ

Assuming that jψð0Þi is a ground state of Hð0Þ, then in the
limit T → ∞ jψðtÞi is a ground state of Hð1Þ obtained via
evolution Eq. (35). Such an evolution will henceforth be
referred to as the adiabatic evolution according to H for time
T. We now define adiabatic quantum computation.
Definition 2.—An adiabatic quantum computation

[adapted from Aharonov et al. (2008)] is specified by two
k-local Hamiltonians H0 and H1 acting on n qudits and a map
sðtÞ∶½0; T� → ½0; 1�. The input of the computation is the
ground state of H0, which is unique and is a product state.
The desired output is given by a quantum state that is ϵ close in
l2-norm to the ground state of H1. Furthermore, T is the
smallest time such that the adiabatic evolution generated via
HðsÞ ¼ ð1 − sÞH0 þ sH1 for time T yields the desired output.
The running time of the algorithm is given by TmaxskHðsÞk,
where k · k denotes the spectral norm.
QA relaxes the strict requirement of adiabatic evolution,

thus allowing diabatic transitions due to the finite temperature
of the system, fast changes of Hamiltonian parameters, or the
interaction with the noisy environment (Hauke et al., 2020).

Kishor Bharti et al.: Noisy intermediate-scale quantum algorithms

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015004-16



Because of diabatic transitions, QA is prone to get trapped in
excited states.
QA has been investigated for problems in diverse areas

including machine learning (O’Gorman et al., 2015; Benedetti
et al., 2016, 2017; Benedetti, Realpe-Gómez, and Perdomo-
Ortiz, 2018; Li et al., 2018), protein folding (Perdomo et al.,
2008; Babbush et al., 2012; Perdomo-Ortiz et al., 2012; Babej
et al., 2018), fault diagnosis (Perdomo-Ortiz et al., 2015,
2019), compressive sensing (Ayanzadeh et al., 2019), finance
(Marzec, 2016; Rosenberg et al., 2016; Orús, Mugel, and
Lizaso, 2019; Venturelli and Kondratyev, 2019; Bouland
et al., 2020; Cohen, Khan, and Alexander, 2020), fermionic
simulation (Babbush, Love, and Aspuru-Guzik, 2014), and
high-energy physics (Mott et al., 2017; Das et al., 2019). The
protein folding problem entails calculating a protein’s lowest
free energy structure given its amino-acid sequence. The goal
is to solve the protein folding problem by mapping it to a
Hamiltonian and then using QA to identify low-energy
conformations of the protein model. Perdomo-Ortiz et al.
(2012) used five and eight qubits for the four-amino-acid
sequence to encode and solve the protein folding problem for
a short tetrapeptide and hexapeptide chain. QA has been one
of the prominent approaches in the NISQ era in the search for
quantum advantage (Perdomo-Ortiz et al., 2018; Bouland
et al., 2020; Hauke et al., 2020).
A major experimental implementation of QA is the D-Wave

machine. It attempts to solve problems of a particular form
called quadratic unconstrained binary optimization (QUBO)
(Lucas, 2014). Optimization problems can be cast as a
polynomial unconstrained binary optimization (PUBO)
expressed in the form of a k-local interaction with k ≥ 3 over
binary variables xi ∈ f0; 1g (Perdomo-Ortiz et al., 2019;
Hauke et al., 2020). QUBO is a special case of PUBO with
k ¼ 2. For a vector of n binary variables x ∈ f0; 1gn and
problem specified values of Q ∈ Rn×n and c ∈ Rn, QUBO is
defined as

argminxTQxþ cTx: ð37Þ

Using the map xi → ð1 − σizÞ=2, one can convert the problem
in Eq. (37) to a ground state finding problem of the following
diagonal n-qubit Ising Hamiltonian (up to a constant):

HQUBO ¼ −
X
i;j

Ji;jσ̂izσ̂
j
z −

X
i

hiσ̂iz; ð38Þ

where Ĵi;j ¼ −Qi;j=4 and hi ¼ ð−ci þ
P

j Qi;jÞ=2.
Starting with the ground state of the base Hamiltonian

H0 ¼ −
P

i σ̂
i
x, solving the QUBO problem on a quantum

annealer corresponds to implementing the annealing schedule
AðtÞ and BðtÞ for the Hamiltonian

HðtÞ ¼ AðtÞH0 þ BðtÞHQUBO: ð39Þ

In Eq. (39) Að0Þ ¼ BðTÞ ¼ 1 and AðTÞ ¼ Bð0Þ ¼ 0, where T
is the computation time. Because annealing does not neces-
sarily satisfy the constraints of adiabatic evolution, it is
possible to get trapped in excited states, as mentioned earlier.
However, one can run the annealing schedule multiple times

and take the best answer, i.e., the one corresponding to the
lowest energy. The qubits in an annealer are not necessarily
all-to-all connected, necessitating additional engineering
restrictions, such as the minor embedding problem (Choi,
2008, 2011; Klymko, Sullivan, and Humble, 2014).
The potential of QA has been studied extensively (Farhi,

Goldstone, and Gutmann, 2002; Brady and van Dam, 2016;
Denchev et al., 2016; Hastings, 2020; Hauke et al., 2020). The
performance of D-Wave annealers has also been explored
comprehensively (Shin et al., 2014; Albash et al., 2015;
Cohen, Khan, and Alexander, 2020). In particular, an exten-
sive study comparing the performance of quantum annealing
with other quantum-inspired and classical optimization state-
of-the-art strategies, and in the context of a real-world
application, was conducted by Perdomo-Ortiz et al. (2019).
For the details of QA, see Hauke et al. (2020) and the
references therein. A review of adiabatic quantum computa-
tion was presented by Albash and Lidar (2018); see Sec. VI.B
and Sec. II of the Supplemental Material (824) for a discussion
regarding applications of QA in machine learning and finance.

B. Gaussian boson sampling

Boson sampling was first proposed as a candidate for
quantum computational supremacy by Aaronson and
Arkhipov (2011). The scenario consists of having n photons
that enter an optical circuit comprising m modes. This state is
then acted upon by a series of phase shifters and beam
splitters. A phase shifter adds a phase RðθÞ ¼ eiθj with a given
angle θj to the amplitude in mode j and acts as the identity in
the other m − 1 modes. A beam splitter acts on two modes

with a rotation ð cosϕsinϕ
− sinϕ
cosϕ Þ for a given angle ϕ and as the

identity in the other m − 2 modes. Finally, a measurement is
made where the number of photons in each mode is found. An
optical circuit with these elements is shown in Fig. 4. Each of
these measurement outcomes represents a sample from the
symmetric wave function that bosonic systems have.
Aaronson and Arkhipov found that the existence of an
efficient classical algorithm for sampling from the distribution
implies the existence of a classically efficient algorithm for the
calculation of the permanent of a related matrix. It is unlikely
that such an algorithm exists, as that would imply the collapse
of the polynomial hierarchy (see Sec. I.A) to the third order,
which is believed to be unlikely (Arora and Barak, 2009).

FIG. 4. Gaussian boson sampling circuit for a photonic setup.
The qumodes are prepared in Gaussian states from the vacuum by
squeezing operations SðziÞ, followed by an interferometer con-
sisting of phase shifters RðθÞ ¼ eiθj and beam splitters (BSs). At
the end, photon number resolving measurements are made in
each mode.
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GBS is a variant of boson sampling in which, instead of
photon states as inputs to the optical circuit, Gaussian states
are used as inputs (Hamilton et al., 2017). Gaussian states are
those whose Wigner quasiprobability distributions Wðq; pÞ
have a Gaussian shape. A good introduction to the theory was
given by Serafini (2017). Gaussian states have the advantage
that they can be created deterministically (Hamilton et al.,
2017; Kruse et al., 2019). They also provide additional
degrees of freedom relative to boson sampling. Where boson
sampling is equivalent to sampling from the permanent of a
matrix, GBS is computationally equivalent to sampling from
the Hafnian function of a matrix. Given a graph G with
adjacency matrix E, the Hafnian of E is the number of perfect
matchings of the graph G. A matching of a graph G is a subset
of edges M such that no two edges in M have a vertex in
common. A matchingM is perfect if every vertex is incident to
exactly one edge inM. While the permanent gives the number
of perfect matchings for a bipartite graph, the Hafnian gives
perfect matching for any graph. Thus, the Hafnian can be
thought of as a generalization of the permanent. Using the
adjacency matrix E, the relation between the Hafnian and the
permanent is given by

Haf

�
0 E

ET 0

�
¼ PerðEÞ: ð40Þ

The difficulty of simulating a noisy version of GBS has been
studied (Qi et al., 2020) and GBS recently became the second
platform to show quantum computational supremacy (Zhong
et al., 2020). The latest experimental venture toward a
dynamically programmable GBS nanophotonic chip was
carried out by Arrazola et al. (2021).

1. The protocol

In GBS we consider m quantum modes (qumodes), which
are represented by harmonic oscillators with canonically
conjugate variables q and p. Gaussian states of the qumodes
are those represented by a Wigner functionWðq; pÞ that has a
Gaussian form. These states can be efficiently represented by
the complex amplitude α ¼ ð1= ffiffiffiffiffiffi

2ℏ
p Þðqþ ipÞ and a covari-

ance matrix Σ ∈ C2m×2m. A general pure Gaussian state can be
generated from a vacuum with three steps: (i) single-mode
squeezing, (ii) multimode linear interferometry, and (iii)
single-mode displacements. In the GBS protocol, the state
is then measured in the Fock basis, which is performed in
practice using photon number resolving detectors. The optical
circuit in Fig. 4 shows how the system is initialized in the
vacuum state, followed by single-mode and multimode
squeezing operators SðziÞ and Sðzi; zjÞ, respectively, and an
interferometer with phase shifters RðθjÞ and beam splitters
(BSs). At the end of the protocol, the photon number in each
mode is measured.
For a Gaussian state with zero mean (of the Wigner

function), the probability of detecting si photons in the ith
qumode was given by Hamilton et al. (2017) and Kruse et al.
(2019) as

Pðs1; s2;…; smÞ ¼
1

detðQÞ
HafðAsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s1!s2! � � � sm!
p ; ð41Þ

where all the matrices are defined in terms of the following
covariance matrix Σ:

Q ¼ Σþ 1=2;

A ¼ Xð1 −Q−1Þ;

X ¼
�
0 1

1 0

�
.

The As matrix is a matrix created from A such that if si ¼ 0we
delete the rows and colums i and iþm of the matrix, and if
si ≠ 0 we repeat the rows and columns si times. This means
that, by manipulating the covariance matrix Σ, we control the
matrix from which we sample the Hafnian. For a pure
Gaussian state, it can be shown that the A matrix is symmetric
(Bromley et al., 2020).
A simpler form of the experiment, where instead of

counting the number of photons in each mode we detect
only whether there are photons in each mode, can be used to
sample from the so-called Torontonian function of a matrix
(Quesada, Arrazola, and Killoran, 2018). If the probability of
observing more than one photon per output mode remains low
enough, this model has been shown to stay classically
intractable to simulate. A more general experiment instead,
where the mean of the Gaussian states is nonzero, can be used
to sample from the loop Hafnian (Björklund, Gupt, and
Quesada, 2019).

2. Applications

Several algorithms for applications of GBS have been
investigated and were reviewed by Bromley et al. (2020).
Here we only summarize that work. Typically, GBS algo-
rithms are based on heuristics, and GBS devices are often used
to provide a seed for starting points of classical algorithms.
GBS can also be viewed as directly giving access to a
statistical distribution, as in the case of point processes
(Jahangiri et al., 2020).
Problems in chemistry have been approached using GBS.

Vibrational spectra of molecules have been computed using
GBS by mapping the phononic modes of the molecule to the
qumodes of the GBS device (Huh et al., 2015) and, by
extension, electron-transfer reactions have been studied
(Jahangiri, Arrazola, and Delgado, 2020). The technique of
sampling high-weight cliques has also been applied to
predicting molecular docking configurations (Banchi
et al., 2020).
The largest number of GBS algorithms are for graph

problems since the adjacency matrix of a graph is a natural
fit as the symmetric A matrix. The Hafnian function computes
the number of perfect matchings of a graph, so the samples
from the GBS device are with high likelihood from subgraphs
with high density. This is how GBS is used to identify dense
subgraphs (Arrazola and Bromley, 2018), and to get good
initial guesses for classical search algorithms to compute the
maximum clique of a graph (Banchi et al., 2020).
GBS can also be used to build succinct feature vectors, or

“fingerprints,” of larger graphs via coarse-graining techniques.
These feature vectors can then be used as inputs to statistical
methods or machine learning to classify graphs. One such
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problem is to measure the similarity between graphs (Schuld,
Brádler et al., 2020), which has applications in tasks such as
checking fingerprint comparison or detecting mutations of
molecules.
GBS can also be used as a type of importance sampling

device to speed up algorithms requiring randomness. This is
how stochastic search algorithms have been sped up by
sampling from a GBS device encoding the graph to be
searched, instead of sampling uniformly (Arrazola,
Bromley, and Rebentrost, 2018).
Recently variational methods have been used within the

GBS framework (Banchi, Quesada, and Arrazola, 2020) and
applied to stochastic optimization and unsupervised learning.
The method is based on varying the squeezing and interfer-
ometer parameters in the device and updating based on the
measurement outcomes.

C. Analog quantum simulation

Simulating a quantum system is a hard problem for classical
computers as the Hilbert space increases exponentially with
the size of the system. As a solution to this long-standing
problem, Feynman suggested the groundbreaking idea of
harnessing those physical systems given to us by nature that
are quantum mechanical. He proposed using quantum systems
that are well controlled in the lab to simulate other quantum
systems of interest (Feynman, 1982). This concept has spurred
the field of analog quantum simulation (Trabesinger, 2012;
Georgescu, Ashhab, and Nori, 2014).
The core idea differs from digital quantum simulation

(Lloyd, 1996). Digital quantum simulators decompose the
quantum dynamics to be simulated into a circuit of discrete
gate operations that are implemented on a quantum processor.
The quantum processor is a well-controlled quantum system
that is engineered to be able to efficiently apply a set of
specific quantum gates that are universal, i.e., a sequential
application of those gates can realize arbitrary unitaries; see
Sec. V.B.1.
With this universal approach, a wide range of quantum

problems can be simulated to the desired accuracy with a
polynomial increase in quantum resources only (Lloyd, 1996).
However, current quantum processors have limited coherence
time and cannot correct errors that inevitably appear during
the computation, thus severely limiting the range of dynamics
that can be reliably simulated. In contrast, the idea of analog
quantum simulators is to map the problem Hamiltonian to be
simulated Ĥsys to the Hamiltonian of the quantum simulator
Ĥsim, which can be controlled to some degree, Ĥsys ↔ Ĥsim.
One then runs the quantum simulator and maps the results
back to the problem.
The range of problems that can efficiently be mapped to the

simulator is limited. However, as one uses the native quantum
dynamics of the simulator, the accessible system size, coher-
ence length, and errors are often more favorable relative to
current digital quantum simulators.

1. Implementations

A wide range of implementations in various controlled
quantum systems has been achieved, ranging from solid-state

superconducting circuits (Houck, Türeci, and Koch, 2012) to
quantum dot arrays (Hensgens et al., 2017) to nitrogen-vacancy
centers (Yao et al., 2012) to atomic and molecular physics–
based platforms such as trapped ions (Blatt and Roos, 2012),
interacting photons (Chang, Vuletić, and Lukin, 2014;
Hartmann, 2016), Rydberg atoms (Adams, Pritchard, and
Shaffer, 2020), and cold atoms (Bloch, Dalibard, and
Nascimbene, 2012;Gross andBloch, 2017;Amico et al., 2021).
Concepts of analog quantum simulation have been used

within VQAs as well, such as problem-inspired Ansätze (see
Sec. II.B.1) or protocols inspired by quantum control (Yang
et al., 2017; Meitei et al., 2020). Experimental results for a
quantum many-body problem beyond current classical com-
putational capabilities have been reported for 2D systems
(Choi et al., 2016).

2. Programmable quantum simulators

An analog quantum system, such as a superconducting
circuit, can be adapted to simulate arbitrary dynamics
(Bastidas et al., 2020). The idea is to drive the parameters
of the Hamiltonian HðtÞ that describes the analog quantum
simulator in time t. This can be achieved by adjusting the
physical parameters of the quantum simulator in time. The
driving protocol is engineered via machine learning methods
(Haug et al., 2021) such that the effective dynamics of the
driven system over a time T corresponds to the evolution of a
problem Hamiltonian that one wants to simulate. The effective
dynamics that are generated can realize long-range inter-
actions as well as complicated many-body terms, which are
not natively supported by the quantum simulator and are often
hard to simulate on digital quantum simulators. By periodi-
cally driving the analog quantum simulator with the afore-
mentioned driving protocol, various problem Hamiltonians
can be simulated (Oka and Kitamura, 2019). One can realize
complicated many-body dynamics or chemistry problems and
solve combinatorial tasks such as SAT-3. Trapped-ion-based
analog quantum simulators were recently used for the imple-
mentation of the quantum approximate optimization algorithm
(Pagano et al., 2020).
Highly controllable analog quantum simulators have also

been proposed for engineering quantum chemistry
Hamiltonians by combining different cold atom species
embedded within cavity modes, which mediate long-range
interactions required to simulate Coulomb repulsion. Optical
fields can be used to modify the potential and interaction
parameters to simulate large-scale chemistry problems
(Argüello-Luengo et al., 2019), as well as a quantum spin
model with tunable interactions for system sizes ranging from
64 to 256 qubits (Ebadi et al., 2020). For ion traps, a
programmable quantum simulator can be designed by light
fields that are applied to manipulate the internal degrees of
freedom as well as the interaction between different ions. This
allows one to simulate various types of spin Hamiltonians with
a high degree of control over the parameters (Monroe
et al., 2019).

D. Digital-analog quantum simulation and computation

As opposed to analog simulators that are limited by the
Hamiltonians they can simulate (Goldman and Dalibard,

Kishor Bharti et al.: Noisy intermediate-scale quantum algorithms

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015004-19



2014; Kyriienko and Sørensen, 2018), digital quantum sim-
ulators can simulate any system’s Hamiltonian but sometimes
with costly quantum resources. To benefit from a combination
of the two approaches, the digital-analog method to quantum
computation (Dodd et al., 2002; Parra-Rodriguez et al., 2020)
and simulation (Mezzacapo et al., 2014; Yung et al., 2014)
have been proposed. These schemes combine the application
of digital single-qubit gates with the underlying analog
Hamiltonian of the quantum processor. This approach allows
for universal simulation of quantum dynamics while two-qubit
gates for an analog Hamiltonian are replaced and has been
argued to be more resilient against certain types of noise
than digital quantum computing (Martin et al., 2020;
Parra-Rodriguez et al., 2020; García-Molina, Martin, and
Sanz, 2021).
Digital-analog quantum simulation has been proposed to

simulate the Rabi model (Mezzacapo et al., 2014), the Dicke
model (Mezzacapo et al., 2014; Lamata, 2017), and fermionic
systems (García-Álvarez et al., 2015; Céleri et al., 2021).
Digital-analog quantum simulation was reviewed by Lamata,
Parra-Rodriguez et al. (2018b); digital-analog quantum com-
puting is more recent. The implementation of digital-analog
quantum computing has been proposed for superconducting
platforms (Gonzalez-Raya et al., 2021; Yu et al., 2021).
Gonzalez-Raya et al. (2021) employed cross-resonance gate
interaction between two superconducting qubits to implement
digital-analog quantum computation. Thus far the computing
framework has been used to simulate Ising models
(Parra-Rodriguez et al., 2020), where the analog blocks can
be used to enhance the effective connectivity of the qubits to
simulate graphs that have different connectivities from the
native connectivity of the quantum device (Galicia et al.,
2020). The analog blocks have also been applied to reduce the
operation count required to perform the quantum Fourier
transform (Martin et al., 2020).
The digital-analog approach has also been combined with

VQAs (see Sec. II), resulting in a digital-analog QAOA
algorithm, where the two-qubit gates were replaced by analog
blocks (Headley et al., 2020). This also has two versions: (i)
where a layer of entangling gates is replaced by an analog
block, and (ii) where an analog block is applied continuously
with single-qubit operations overlaid.

E. Iterative quantum assisted eigensolver

Almost all of the VQAs update a PQC’s parameters in a
feedback loop. However, there are alternative algorithms that
can circumvent this approach, with the Ansatz given by
(McClean et al., 2017; Huang, Bharti, and Rebentrost,
2019; Bharti and Haug, 2021a)

jϕ(αðtÞ; θ)i ¼
Xm−1

i¼0

αiðtÞjψ iðθiÞi; ð42Þ

where αi ∈ C and θi ∈ Rki for non-negative integers ki. This
Ansatz is a linear combination of quantum states, where the αi
parameters are stored on a classical device. In the special case
in which m ¼ 1, it corresponds to the usual PQC, whereas for
m > 1 this Ansatz subsumes it. This Ansatz has been used for

finding the ground state of Hamiltonians (Bharti, 2020; Bharti
and Haug, 2021a), the excited state (Parrish, Hohenstein et al.,
2019; Parrish and McMahon, 2019; Huggins et al., 2020;
Stair, Huang, and Evangelista, 2020), the simulation of
quantum dynamics (Haug and Bharti, 2020; Bharti and
Haug, 2021b), error mitigation (McClean et al., 2017), non-
linear dynamics (Haug and Bharti, 2020; Bharti and Haug,
2021b), linear systems (Huang, Bharti, and Rebentrost, 2019),
and semidefinite programming (Bharti et al., 2021). If one
keeps the parameters of the PQC θi fixed and varies only the
αi, the algorithm can be considered a borderline non-VQA
algorithm. Updates of θi parameters have been shown to cause
trainability issues in VQAs (see Sec. IV.A), and thus by fixing
θi one can by construction circumvent these issues. We
present here the iterative quantum assisted eigensolver
(IQAE) algorithm as an illustration, and in Sec. VI the
quantum assisted simulator for closed systems (see
Sec. VI.A.5), open systems (see Sec. VI.A.7), and Gibbs
state preparation (see Sec. VI.A.9).
The IQAE algorithm provides an approximation to the

ground state of a Hamiltonian H. Without loss of generality,
the N-qubit Hamiltonian H is assumed to be a linear
combination of unitaries

H ¼
Xm
i¼1

βiUi: ð43Þ

In Eq. (43) βi ∈ C and Ui ∈ SUð2NÞ for i ∈ f1; 2;…; mg.
The unitaries Ui act on at most O(polyðlogNÞ) qubits. This
condition can be relaxed if the unitaries are Pauli strings; see
Sec. II.A.1. The Ansatz state is taken as a linear combination
of “cumulative K-moment states” CSK , which is generated
using some efficiently preparable quantum states and the
unitaries defining the Hamiltonian in Eq. (43). For pedagogi-
cal reasons, we present the definition of K-moment states and
cumulative K-moment states.
Definition 3 [adapted from Bharti and Haug (2021a)].—

For a given positive integer K, a set of unitaries U≡ fUjgmj¼1
,

and a quantum state jψi, K-moment states are the set of
quantum states of the form fUjK � � �Uj2Uj1 jψigj for Ujl ∈ U.

We denote the aforementioned set by SK. We define the
singleton set fjψig as the zero-moment state (denoted by S0).
Finally, we define the cumulative K-moment states CSK

as CSK≡ ∪K
i¼0 Si.

As an instructive example, we use the set of one-moment
states fUjjψigmj¼1

, where the unitaries fUjgmj¼1
make up the

Hamiltonian H. The set of cumulative one-moment states
is CS1¼fjψig∪fUjjψigmj¼1

, and the set of cumula-
tive K-moment states is CSK ¼ fjψig ∪ fUj1 jψigmj1¼1

∪ � � �
∪ fUjK � � �Uj1 jψigrj1¼1;…;jK¼1

.
The Ansatz is then given by jξðαÞiðKÞ ¼ P

jχji∈CSK
αjjχji.

The ground state problem reduces to the following optimi-
zation program:

min
α
α†DðKÞα;

subject to α†EðKÞα ¼ 1: ð44Þ
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In Eq. (44) the overlap matrices DðKÞ and EðKÞ are given

by DðKÞ
nm ¼ P

i βihχnjUijχmi and EðKÞ
nm ¼ hχnjχmi. These

overlap matrices can be computed on a quantum computer
without the requirement of any complicated measurements
involving multiqubit controlled unitaries. For example, for a
Hamiltonian composed of Pauli strings the product of Pauli
strings is a Pauli string up to a phase factor�1 or�ι. Thus, the
overlap matrices are simply expectation values hψ jP̂jψi of a
certain Pauli string P̂, which can be easily measured; see
Sec. II.C. The optimization program (44) is a quadratically
constrained quadratic program (QCQP) with a single equality
constraint. The algorithm proceeds in three serial and dis-
joint steps.

(1) Select Ansatz, which can be done on paper.
(2) Estimate overlap matrices on a quantum computer,

which can be done efficiently in a parallel fashion.
(3) Postprocessing on a classical computer to solve the

QCQP based on the overlap matrices from step 2.
As a major speedup compared to standard VQA, there is no
feedback loop between classical and quantum computers
such that the calculations can be easily parallelized. The
Ansatz can be improved by changing K to K þ 1. The Ansatz
construction is systematic and there is no trainability issue
such as the barren plateau problem; see Sec. IV.A. For the
QCQP, there are conditions that tell whether a local mini-
mum is a global minimum as a stopping criterion for the
classical solver. Moreover, the Lagrangian relaxation of the
program (44) is a semidefinite program and is efficiently
solvable.

IV. THEORETICAL CHALLENGES

A. Barren plateaus

It was recently shown that the expectation value of the
gradient of the objective function corresponding to randomly
initialized PQCs (RPQCs) decays exponentially to zero as a
function of the number of qubits (McClean et al., 2018). The
mathematical basis of this result hinges on the fact that the
PQC from Eq. (22) becomes a unitary 2-design as the circuit
depth increases polynomially with the circuit width, i.e., the
number of qubits. The notion of a unitary 2-design has been
used extensively in the recent proofs of barren plateau in
RPQCs, which necessitates a small discussion about their
mathematical structure.
Using the notion of 2-design, the appearance of barren

plateaus in the training landscape has been established for
various kinds of Ansätze. Barren plateaus can be thought of as
a consequence of the Hilbert-space dimension increasing
exponentially with the number of qubits and of the variational
circuit being a 2-design for randomly initialized parameters.
Consequently, the strategies proposed to tackle this problem
focus on reducing the dimension of this unitary or breaking
the randomness properties related to the 2-designs. Another
way to think of the origin of the barren plateau issue could be
the problem-agnostic nature of the Ansatz when faced with an
exponentially large parameter space. Thus, one could attempt
to devise Ansätze as well as the optimization methodology in a
problem-aware manner by using physically inspired or

problem-specific Ansätze such as the ones presented in
Sec. II.B or those proposed in Sec. III.E.
Besides the exponential parameter space that induces barren

plateaus, other physical phenomena can also generate them. In
particular, the noise and decoherence present in the quantum
computing experiments can also generate this problem in
VQAs (Wang, Fontana et al., 2020). Entanglement-induced
barren plateaus have also been reported recently (Marrero,
Kieferová, and Wiebe, 2020).
While certain Ansätze can be assumed or proven to form

approximate 2-designs, such proofs are challenging for gen-
eral Ansätze. To numerically verify the presence of barren
plateaus, past studies often considered computing the gra-
dients and variances of a local observable using a particular
Ansatz over increasing system sizes (McClean et al., 2018;
Skolik et al., 2020).
Another attempt to avoid a barren plateau is to initialize the

variational circuit with a particular state choice. Intuitively, the
algorithm will start in a particular region of the Hilbert space,
thereby allowing the optimization subroutine to potentially
find the minima in a nearby region. This strategy includes all
physically inspired methods mentioned in Sec. II.B. The use
of clever encodings for the algorithm parameters can also be
understood as an initialization strategy (Cervera-Lierta,
Kottmann, and Aspuru-Guzik, 2021); see Sec. VI.B.
Classical algorithms such as neural networks can also be
used to learn the proper circuit encodings (Verdon, Broughton
et al., 2019; Sauvage et al., 2021; Wilson et al., 2021).
A good choice for the initial state is often not enough to

reduce the size of the Hilbert space. Although expressive
circuit Ansätze are usually a requirement for the success of a
VQA (see Sec. IV.B for more details), such Ansätze can
expand the parameter space that the optimizer has to explore.
Several works propose circuit structures that reduce the space
by introducing correlations between the variational parameters
of the circuit (Volkoff and Coles, 2021), blockwise initializa-
tion of parameters (Grant et al., 2019), or exploring particular
Ansatz structures (Sharma et al., 2020).
The mentioned works require a circuit design that is not

necessarily hardware efficient. Other ideas focus on the
classical parts of the VQA instead of the quantum circuit
designs. One example involves using local instead of global
cost functions for the optimization. It has been shown (Cerezo
et al., 2021) that barren plateaus also emerge in shallow depth
circuits and that the use of local cost functions reduces the
exponential decay tendency to a polynomial one. The opti-
mization strategy may also reduce the effect of the vanishing
gradients, such as by training the circuit layer by layer (Lyu,
Montenegro, and Bayat, 2020; Skolik et al., 2020) or by
measuring low-depth gradients (Harrow and Napp, 2019).
Certain variational quantum algorithms for quantum simula-
tion can be free of barren plateaus when at every training step
the state to be learned is close to the state of the circuit (Haug
and Kim, 2021b).
Barren plateaus are a roadblock in trainability, and hence

any PQC Ansatz that suffers from this phenomenon will likely
fail to properly train the parameters in its search for the near-
optimal (or optimal) solution. As shown by Arrasmith, Cerezo
et al. (2020), even the family of gradient-free approaches that
perform a local search, therefore mimicking gradient-based
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optimization, appear to face similar challenges. However, one
can circumvent this issue by using hybrid quantum states of
the form of Eq. (42) or the hybrid density matrices introduced
by Haug and Bharti (2020). The idea is to write the overall
Ansatz as a classical combination of quantum states, i.e.,
jϕ(αðtÞ; θ)i ¼ P

m−1
i¼0 αiðtÞjψ iðθiÞi. Tuning the θi can often

lead to barren plateaus. One can avoid such issues by fixing θi
by harnessing the structure of the problem to find the basis
states of the Ansatz, i.e., fjψ iðθiÞig; see Sec. III.E for more
details. Quantum convolutional neural networks also do not
exhibit barren plateaus (Pesah et al., 2021).

B. Expressibility of variational Ansätze

A cornerstone of the success of VQA is choosing the proper
Ansatz for the problem. In addition to trainability, i.e., how
well the Ansatz can be optimized, another major quality is
expressibility. This concerns whether a given PQC is able to
generate a rich class of quantum states. The number of PQC
layers, parameters, or entangling gates required to achieve a
given accuracy is also linked to the expressibility of the
circuit.
Expressibility.—Sampling states from a PQC jψθi for

randomly chosen θ generates a distribution of states.
Expressibility is defined as follows as the deviation of this
distribution from the Haar measure, which samples uniformly
from the full Hilbert space:

AðtÞ ¼
				
Z
Haar

ðjψihψ jÞ⊗tdψ −
Z
θ
ðjψθiðhψθjÞ⊗tdψθ

				2
HS
; ð45Þ

where
R
Haar dψ denotes the integration over a state jψi

distributed according to the Haar measure and kAk2HS ¼
TrðA†AÞ indicates the Hilbert-Schmidt norm. An Ansatz

circuit U with small AðtÞ
U is more expressive, with AðtÞ

U ¼ 0

corresponding to being maximally expressive, as it generates
quantum states with a distribution closer to the Haar measure.
The PQC samples uniformly from the full Hilbert space and
thus is able to approximate any possible state. This is
especially important in the case where one wants to train
the PQC to represent a particular quantum state while having
little prior information about the state. A highly expressive
PQC is more likely to be able to represent the target state.
Entangling capability.—This measure denotes the power of

a PQC to create entangled states and can be used as another
quantifier of the expressiveness of an Ansatz. Sim, Johnson,
and Aspuru-Guzik (2019) proposed the Meyer-Wallach Q
measure (Meyer and Wallach, 2002) to estimate the number
and types of entangled states a particular PQC can generate.
One defines a linear mapping ιjðeÞ that acts on the computa-
tional basis ιjðbÞjb1 � � � bni ¼ δbbj jb1 � � � b̃j � � � bni, where

bj ∈ f0; 1g and b̃j denotes absence of the jth qubit. The
entanglement measure Q is then defined as

QðjψiÞ≡ 4

n

Xn
j¼1

D(ιjð0Þjψi; ιjð1Þjψi); ð46Þ

whereD is the generalized distance defined by the coefficients
of two states jui ¼ P

uijeii and jvi ¼ P
vijeii,

Dðjui; jviÞ ¼ 1

2

X
i;j

juivj − ujvij2: ð47Þ

Equation (47) can be rewritten as follows as the average of the
purity of each qubit (Brennen, 2003):

QðjψiÞ ¼ 2

�
1 −

1

n

Xn
k¼1

Tr½ρ2k�
�
; ð48Þ

where ρk is the density matrix of the kth qubit. Thus,QðjψiÞ is
an entanglement monotone (Scott, 2004) and can be inter-
preted as the average of the entanglement of each qubit with
the rest of the system. Only if the state is a product state do we
find that Q ¼ 0, whereas Q ¼ 1 is reached for certain
entangled states such as the Greenberger-Horne-Zeilinger
(GHZ) state. The entangling capability of a PQC is then
defined as follows as the average Q of states randomly
sampled from the circuit:

Ent ¼ 1

jSj
X
θi∈S

QðjψθiiÞ; ð49Þ

where S ¼ fθigi is the set of sampled circuit parameters.
Parameter dimension.—The parameter dimension DC is

the number of independent parameters of the quantum state
that is generated by the PQC (Haug, Bharti, and Kim, 2021).
From this measure, one can calculate the redundancy of a
PQC, i.e., the fraction of parameters that can be removed
without loss of expressive power. A further local measure of
expressibility is the effective quantum dimension GCðθÞ,
which can be used to calculate the expressive power of
initialization strategies for the PQC. Under a small variation
of the PQC parameter θ, it measures how many independent
directions in the parameter space exist for the quantum state.
Both measures can be calculated as the number of nonzero
eigenvalues of the Fubini-Study metric tensor defined
in Eq. (33).
Sim, Johnson, and Aspuru-Guzik (2019), Nakaji and

Yamamoto (2020a), and Haug, Bharti, and Kim (2021)
investigated a wide class of circuits with the aforementioned
expressibility measures. It has been found that certain types of
Ansätze are more expressive: e.g., layered PQCs consisting of
CNOT or

ffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gates are more expressive than CZ ones .

There is a trade-off between an Ansatz being expressive and
trainable. Making an Ansatz more expressive most likely will
result in reducing the gradient of the objective function.
Holmes et al. (2021) suggested several strategies for reducing
expressibility and improving trainability, including correlating
parameters or restricting rotation angles of parametrized gates.
Interpolating the PQC parameters between fixed and random
angles has been proposed as another method (Haug, Bharti,
and Kim, 2021). Expressibility of PQCs has been further
explored using classical Fisher information (Abbas et al.,
2021) and memory capacity (Wright and McMahon, 2019).
It has been shown that an alternating layered Ansatz (see

Sec. II.B.2) is relatively expressive and does not exhibit barren
plateaus in certain regimes (Nakaji and Yamamoto, 2020a). In
VQE algorithms, there is a trade-off between the number of
layers in this Ansatz and the correlation length of critical
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Hamiltonians. However, in the critical phase, the number of
layers must exceed a certain threshold dictated by the system
size to show an exponential improvement. The circuit depth
unravels an effective correlation length that can be used as an
estimation of the number of free parameters in the Ansatz
(Bravo-Prieto et al., 2020).

C. Reachability

Reachability discusses the question of whether a given PQC
jΨðθÞiwith parameters θ is capable of representing a quantum
state that minimizes a certain objective function. This can be
quantified by the reachability deficit over finding the mini-
mum of an objective function Ô (Akshay, Philathong,
Morales, and Biamonte, 2020) as

fR ¼ min
ψ∈H

hψ jOjψi −min
θ
hΨðθÞjOjΨðθÞi; ð50Þ

where the first term on the right-hand side is the minimum
over all states jψi of the Hilbert space, whereas the second
term is the minimum over all states that can be represented by
the PQC. The reachability deficit is equal to or greater than
zero (fR ≥ 0), with fR ¼ 0 when the PQC can generate a state
jΨðθ�Þi, where θ� are the parameters that minimize the
objective function.
Reachability has been studied in depth for QAOA.

Although QAOA has been shown to exhibit quantum com-
putational universality (Lloyd, 2018; Morales, Biamonte, and
Zimborás, 2019), which implies that any unitary operator is
reachable under the QAOA Ansatz, this statement does not
hold true for finite fixed depths p. In fact, it was shown that
QAOA exhibits reachability deficits for the MAX-2-SAT and
MAX-3-SAT problems, where the optimal value of the
objective function cannot be found using a fixed circuit depth
p beyond a critical clause density (defined as the ratio between
the number of clauses and the number of variables in the
problem) (Akshay, Philathong, Morales, and Biamonte,
2020). In other words, for problems with a certain clause
density, there is a critical depth p� for which the optimal
solution can be found (up to a threshold) only if p ≥ p�. As p�

grows with the clause density, this limits the performance of
QAOA for problem instances with high clause density.
Similar reachability deficits have also been found in the

variational Grover search problem (Akshay, Philathong,
Morales, and Biamonte, 2020). Moreover, by reanalyzing
the experimental data from Google’s Sycamore quantum
processor on the application of QAOA to various graph
optimization problems (Harrigan et al., 2021), Akshay,
Philathong, Zacharov, and Biamont (2020) also discovered
reachability deficits in this case, where the graph density
(defined as the ratio between the number of graph edges and
the number of graph nodes) replaces the clause density as the
order parameter.
Note that the reachability deficits are distinct from the

barren plateau problem, where the gradients of the objective
function concentrate to zero for many choices of initial
variational parameters, thus slowing down the optimization
process. On the other hand, the reachability deficit for p < p�

is independent of the initial parameters.

D. Theoretical guarantees of QAOA

QAOA has several key analytical results that have contrib-
uted to its considerable interest in recent years. The quantum
advantage of QAOAwas studied by Farhi and Harrow (2016),
who showed that the efficient sampling of the output dis-
tribution of QAOA, even for the lowest depth case of p ¼ 1,
implies the collapse of the polynomial hierarchy; see Sec. I.A.
Following the conjecture from complexity theory that the
polynomial hierarchy does not collapse, this result propels
QAOA as a possible candidate for establishing a quantum
advantage in a sampling task. In particular, it has been shown
that, for p ¼ 1, 420 qubits would suffice to demonstrate
quantum advantage (Dalzell et al., 2020).
QAOA has yet to demonstrate any speedup over classical

algorithms for practical applications. Understanding the
potential of QAOA relative to classical algorithms is an active
research topic (Barak et al., 2015; Farhi and Harrow, 2016;
Wecker, Hastings, and Troyer, 2016; Yang et al., 2017; Bravyi
et al., 2019; Hastings, 2019). For specific instances of the
max-cut problem, QAOA for p ¼ 1 was shown to perform as
well as or worse than classical algorithms (Bravyi et al., 2019;
Hastings, 2019). For more discussion of QAOA for the max-
cut problem, see Sec. VI.C.1. For QAOA of depth p, the
measurement outcomes of a qubit depend on the p neighbor-
hood of that qubit. Thus, if p is too small, it does not “see” the
entire graph (Farhi, Gamarnik, and Gutmann, 2020a, 2020b).
For large p, the QAOAs can see the entire graph with no
known indications regarding the performance limitations.
For the case where the problem Hamiltonian HP takes the

form

HP ¼
X
i

ωAσ̂
2i
z þ ωBσ̂

2iþ1
z þ γABσ̂

2i
z σ̂

2iþ1
z þ γBAσ̂

2iþ1
z σ̂2iþ2

z ;

ð51Þ

where ωAðBÞ are the coefficients for the even (odd) sites and
γABðBAÞ are the interaction strengths between first (second)
neighbor spins. Taking HM as defined in Eq. (19) for a 1D
lattice, Lloyd (2018) showed that QAOA can be used to
implement universal quantum computation. This result was
proven and generalized in a later work (Morales, Biamonte,
and Zimborás, 2019) to include a larger class of problems and
mixing Hamiltonians that can provide computational univer-
sality for QAOA.
By connecting VQA with optimal control theory,

Pontryagin’s minimum principle of optimal control shows
that the bang-bang protocol in which the evolution switches
abruptly between two Hamiltonians is optimal for a fixed total
time T (Yang et al., 2017). Since QAOA can be regarded as a
bang-bang Ansatz by switching between unitary evolution
underHP andHM, respectively, this suggests the optimality of
QAOA as a VQA. However, recent works have challenged this
claim. By generalizing the argument of Yang et al. (2017), it
has been shown that the optimal protocol actually possesses
the “bang-anneal-bang” structure (Brady et al., 2020). Such
protocols begin and end with a bang, with regions of smoothly
varying control function akin to quantum annealing in
between. It was also shown that when the total time T is
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large, a bang-bang QAOA suffers from the proliferation of
local minima in the control parameters, rendering it difficult to
find optimal or near-optimal QAOA parameters.

V. PROGRAMMING AND MAXIMIZING NISQ UTILITY

Current NISQ devices have a limited number of qubits
(∼50–100) available. In addition, owing to their noisy nature
and short coherence time, one can perform only a restricted
number of gate operations. To make maximal use of the
currently available quantum resources, there are two
approaches from the operational point of view: the bot-
tom-up and the top-down approach. In the bottom-up
approach one has full control over the design of the quantum
computing platform to keep improving the performance
quality by such means as gate fidelity and coherence time
within the given hardware constraints. The top-down
approach implies that one does not get involved in hardware
design and simply makes use of what has already been made
or fabricated in the experimental labs. In this section, we
focus on the latter approach, which extends the utility of
current and near-term quantum devices from an algorithmic
perspective. Finally, we present a summary of software tools
to control, program, and maximize the utility of NISQ
algorithms.

A. Quantum error mitigation (QEM)

Sensitivity to errors and noise are the two most prominent
roadblocks facing scalable universal quantum computers.
Fault-tolerant quantum computing can be attained by encod-
ing non-Abelian anyons into topological materials (Kitaev,
2003) or applying QEC codes (Raussendorf and Harrington,
2007). While the former is still in its infancy, the latter
mandates physical resources exceeding our current experi-
mental capabilities. In the NISQ era of running hybrid
quantum-classical algorithms, it is desirable to use all the
restricted and available qubits as logical qubits without
applying QEC techniques. As we discuss throughout this
review, the hybrid quantum-classical algorithms rely on
computations of the expectation value of physical observables
using quantum processors. QEM techniques discussed here do
not need extra qubits in general and can suppress errors via
classical postprocessing techniques and multiple runs of
quantum circuits. In QEM, we aim not to recover the ideal
quantum output state ρ̂ð0Þ but to estimate the ideal expectation
value E½μð0Þ� ¼ hÂð0Þi ¼ Trðρ̂ð0ÞÂÞ of an observable Â (Li and
Benjamin, 2017; Temme, Bravyi, and Gambetta, 2017;
Kandala et al., 2019). This approach can surpass the break-
even point, where the effective gates are superior to their
physical building blocks with an affordable cost in quantum
resources for near-term quantum hardware (Zhang, Lu et al.,
2020). Here μ is the outcome of measurements and we use the
superscript (0) to denote an ideal noise-free realization of a
state, operation, or observable quantity. Recently it was also
shown how to achieve stochastic error mitigation for a
continuous-time evolution (Sun et al., 2020). For a compre-
hensive treatment of quantum error mitigation, see Endo, Cai
et al., 2020).

1. Zero-noise extrapolation

Li and Benjamin (2017) and Temme, Bravyi, and Gambetta
(2017) independently proposed the Richardson extrapolation
QEM or zero-noise extrapolation (ZNE) technique. Here a
quantum program operates at various effective noise levels of
a quantum processor, where the output is then extrapolated to
gain an estimated expectation value without noise.
Formally, a quantum circuit in the presence of noise can be

modeled as an open quantum system (Breuer and Petruccione,
2002) using the Gorini-Kossakowski-Sudarshan-Lindblad
equation or, in short, the Lindblad master equation

d
dt

ρ̂ðtÞ ¼ −i½K̂ðtÞ; ρ̂ðtÞ� þ ˆ̂L½ρ̂ðtÞ�; ð52Þ

where we set ℏ ¼ 1, K̂ðtÞ acts as time-dependent driving

Hamiltonian, and ˆ̂L½·� ¼ P
k ΓkðÔk½·�Ô†

k −
1
2
fÔkÔ

†
k; ½·�gÞ is a

superoperator. Equation (52) describes the Markovian dynam-
ics for Γk ≥ 0. Whenever the loss rate Γk becomes negative
(Rivas, Huelga, and Plenio, 2010; Fleming and Hu, 2012),
Eq. (52) can also describe non-Markovian dynamics (Tan,
Kyaw, and Yeo, 2010; Bastidas et al., 2018; Kyaw et al.,
2020). To ensure complete positivity, we require

R
t
0 Γðt0Þdt0 >

0 ∀ t. In general, Γk are fixed by the nature of the noise
affecting the quantum system. For the ZNE, we parametrize
Γk with a dimensionless scalar λ, i.e., Γk → λΓk. When λ ¼ 0,

there is no noise and the loss term ˆ̂L½ρ̂ðtÞ� in Eq. (52) is zero,
thus resulting in pure unitary dynamics. When λ ¼ 1, the
noise matches the actual quantum device. In summary, ZNE
involves two steps.

(1) Noise scaling: we measure several instances of E½μðλjÞ�
for λj ≥ 1.

(2) Extrapolation: using the previous measurements, we
estimate E½μð0Þ� by extrapolating to λ ¼ 0.

Noise scaling can be accomplished in three ways. First,
Temme, Bravyi, and Gambetta (2017) proposed using a time-
scaling approach to take λ > 1, which means that the time-
dependent driving Hamiltonian K̂ðtÞ is now rescaled by
ð1=λÞK̂ðt=λÞ. This approach is possible only if the user has
full control over the quantum processor, as the control pulses
for each quantum gate have to be recalibrated and applied for a
longer duration. Second, one can apply a technique called
circuit folding (Giurgica-Tiron et al., 2020). Suppose that a
quantum circuit is composed of d unitary layers such that
U ¼ Ld � � �L2L1, where d refers to the circuit depth and each
Lj represents either a single layer of gate operations or simply
a single quantum gate. The circuit folding is then achieved by

U → UðU†UÞn; ð53Þ

where n is a positive integer. Since U†U is an identity, this
action has no effect on an ideal circuit. However, in a noisy
circuit U is imperfect and the 1þ 2n circuit operations
increase the noise level. Third, instead of folding the entire
circuit, one can use the gate folding technique where indi-
vidual gates are folded (Giurgica-Tiron et al., 2020) as
follows:
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Lj → LjðL†
jLjÞn: ð54Þ

The second and third techniques do not require users to have
full control of the pulses applied to the quantum computer, and
thus these methods are more suitable when only a limited
control of the quantum computer is possible.
The extrapolation step of the ZNE method can be consid-

ered a regression problem if we choose to consider a generic
model for calculating the expectation value Emodel½μðλ;ϒÞ�,
where the meaning of model becomes clear shortly and ϒ
corresponds to the model parameters. We note that the
expectation value E is a real number that can be obtained
for an infinite amount of measurements. With a limited
number of measurement samples Ns, the statistical estimation
is given by Ê½μðλÞ� ¼ E½μðλÞ� þ δ̂,1 where δ̂ is a random
variable with zero mean and variance σ2 ¼ Eðδ̂2Þ ¼ σ20=Ns.
Here σ20 is the single-shot variance. Given a set of m scaling
parameters λ ¼ fλ1; λ2;…; λmg with λj ≥ 1 and the corre-
sponding measurement outcomes μ ¼ fμ1; μ2;…; μmg, the
ZNE corresponds to building a good estimator Ê½μð0Þ� for
E½μð0Þ� such that its bias EðÊ½μð0Þ� − E½μð0Þ�Þ and its variance
EðÊ½μð0Þ�2Þ − EðÊ½μð0Þ�Þ2 are both reasonably small. From
now on, we adopt a simplified notation of E½μðλÞ� ¼ EðλÞ.
We now discuss various statistical models for extrapolation.

The expectation value EðλÞ cannot be an arbitrary function,
which would make ZNE impossible to extrapolate back to
Eð0Þ. Depending on the underlying noise model assumption,
one can apply various statistical models.
The polynomial extrapolation is based on the polynomial

model of degree d such that

EðdÞ
polyðλÞ ¼ c0 þ c1λþ � � � þ cdλd; ð55Þ

where cj are dþ 1 unknown real parameters. This extrapo-
lation is justified in a weak noise limit and we need the number
of data points m to be equal to or larger than dþ 1.
Consequently, we can obtain two other variants: the linear
extrapolation (d ¼ 1) and the Richardson extrapolation ðd ¼
m − 1Þ (Temme, Bravyi, and Gambetta, 2017). By construc-
tion, the error with respect to the true expectation value is
OðmÞ when we have a large sample size Ns → ∞. By using
the interpolating Lagrange polynomial, the estimator is
explicitly given by

ÊRichð0Þ ¼ ĉ0 ¼
Xm
k¼1

μk
Y
i≠k

λi
λi − λk

; ð56Þ

with the assumption that all λj are different. One important
observation is that the Richardson model–based ZNE is
dictated by a statistical uncertainty that is scaling exponen-
tially with the number of data points. There are also other
statistical models such as polyexponential extrapolation
(Giurgica-Tiron et al., 2020) and exponential extrapolation
(Endo, Benjamin, and Li, 2018). Various exponential

extrapolation methods were proposed and investigated by
Cai (2021a) and applied to depolarizing noise by Vovrosh
et al. (2021). One can combine the ZNE-, quasiprobability-,
and stabilizer-based approaches for further improvements
(Cai, 2021a).
The ZNE scheme suffers from a few limitations. The

scheme works by extrapolation, and hence it is challenging
to obtain result guarantees in general. The number of
measurement shots required to obtain the mitigated expect-
ation value can be relatively high relative to the unmitigated
case. The fundamental drawback of both ZNE and probabi-
listic error cancellation (PEC) (Temme, Bravyi, and Gambetta,
2017) and the quasiprobability method (which is discussed
next) is that one needs to know the precise physical noise
model in advance, which in itself is a difficult proposition.
Experimentalists in the lab will have imperfect knowledge
about the real noise, which typically differs from the canonical
one. We also later discuss a more practical approach based on
gate set tomography that was proposed by Endo, Benjamin,
and Li (2018), which does not require explicit knowledge of
the noise model and mitigates any localized Markovian errors,
such that the error in the final output is due only to unbiased
statistical fluctuation.

2. Probabilistic error cancellation

We now familiarize ourselves first with the notations used
in quantum tomography (Merkel et al., 2013; Greenbaum,
2015), which we adopt here. A quantum state is represented
by a density matrix ρ̂, and a physical observable is denoted by
a Hermitian Â operator. An operation is a map on the states
space such that one can use the Kraus representation to denote

it as ˆ̂L½ρ̂� ¼ P
j K̂jρ̂K̂

†
j . We note that this equivalence with

Eq. (52) is valid only when we have Markovian dynamics.
Here K̂j are Kraus operators. In terms of the Pauli transfer
matrix representation, ρ̂ in Eq. (52) can be written as a column
vector denoted as jρ⟫ (Navarrete-Benlloch, 2015). Similarly,

the Lindblad superoperator ˆ̂L can be recast as a square matrix
using the Pauli transfer matrix representation. For simplicity
and without loss of generality, we absorb the unitary dynamics
[the first term on the right-hand side of Eq. (52)] into
ˆ̂L. A physical observable Â is now written as a row
vector ⟪Aj. Consequently, the expectation value is
hÂi ¼ Tr½Â ρ̂� ¼ ⟪Ajρ⟫. Likewise, the expectation of Â after
the state ρ̂ passing through a series of linear maps is written

as Tr½Â ˆ̂LN∘ � � � ∘ ˆ̂L1ðρ̂Þ� ¼ ⟪AjLN � � �L1jρ⟫.
The central theme of PEC or the quasiprobability decom-

position introduced by Temme, Bravyi, and Gambetta (2017)
is that one can estimate the expectation value of an observable
by sampling from a set of erroneous circuits, labeled by LðlÞ

tot
for l ¼ 1; 2;…, such that

hÂð0Þi ¼
X
l

ql⟪AðlÞjLðlÞ
tot jρðlÞ⟫: ð57Þ

The expectation value of the observable differs from its ideal
value due to the presence of noise. Given specific error models
(assuming the experimentalist has full knowledge of them),

1The hat notation used is in accordance with statistics notation and
should not be confused with a quantum operator.
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the real numbers ql, which represent quasiprobabilities, can be

efficiently derived. Here each LðlÞ
tot represents the total

sequence of noisy gates in the lth circuit. Monte Carlo
sampling could be used to compute hÂð0Þi by randomly
choosing the lth circuit with a probability pl ¼ jqlj=C, where
C ¼ P

l jqlj. Lastly, the computed result is given by the
expected value of effective measurement outcomes
hAð0Þi ¼ CE½μeff �, where the effective outcome is μeff ¼
sgnðqlÞμðlÞ if the lth circuit is chosen and μðlÞ is the outcome
from the lth circuit. As a consequence, the mean value of the
PEC outcome centers around the ideal one with a larger
variance due to C; see the right corner of Fig. 5.
The previously mentioned PEC method relies on correct

knowledge of the error model LðlÞ
tot , as is apparent from

Eq. (57). To enable practical implementations, Endo,
Benjamin, and Li (2018) proposed combining linearly inde-
pendent basis set operations and gate set tomography to fully
remove the impact of localized Markovian errors by system-
atically measuring the effect of errors to design efficient QEM
circuits. The set of operations including measurement and
single-qubit Clifford gates is universal in computing the
expectation values of observables. For the single-qubit case,
any operation L that is a 4 × 4 real matrix in the Pauli transfer
matrix representation can be expressed as a linear combination

of 16 basic operations L ¼ P
16
i¼1 qiB

ð0Þ
i , which are composed

of fπ; H; S; Rx; Ryg gates (Endo, Benjamin, and Li, 2018).
The same decomposition can be applied to the two-qubit case;
see Fig. 5 for examples of decompositions.
A way to systematically measure errors is through gate set

tomography (GST), with which one can even mitigate state
preparation and measurement errors. In short, the purpose of

GST is to measure noisy individual quantum circuit perfor-
mance a priori. For a single-qubit gate, one prepares initial
states j0i; j1i; jþxi, and jþyi, where jþxi and jþyi are the
eigenstates of Pauli operators σ̂x and σ̂y with þ1 eigenvalue,
respectively. For noisy devices, these four states are denoted as
ρ̄1, ρ̄2, ρ̄3, and ρ̄4, accordingly. We also use L̄ (superoperator)
to denote a noisy or imperfect gate to be measured. Since we
care about the expectation value of physical observables, for
the single-qubit case we have observables Î; σ̂x; σ̂y; σ̂z, which
are denoted as Ā1; Ā2; Ā3; Ā4. The mean value of the observ-
ables, the 4 × 4 matrix Ã, is simply Ãj;k ¼ Tr½ĀjL̄ρ̄k�.
Similarly, we can construct the 4 × 4 matrix g without
applying any gate to the initial states as gj;k ¼ Tr½Ājρ̄k�.
This is repeated for each qubit and each single-qubit gate.
Statistical estimation of the initial states ρ̄k and the observ-
ables Āj are then given by

jρ̂k⟫ ¼ T•;k; ð58Þ

⟪Âjj ¼ ðgT−1Þj;•; ð59Þ

where we note that the hat symbol represents the statistical
estimate and T•;k (Tj;•) denotes the kth column (jth row) of the
matrix T, where T is an invertible 4 × 4 matrix with the
following relationship: L̂ ¼ Tg−1L̃T−1. The same procedure
applies for the two-qubit case, with the only difference being
that there is a total of 16 initial states ρ̄k1 ⊗ ρ̄k2 and 16
observables Āj1 ⊗ Āj2 to be measured. Similarly, we have g ¼
g1 ⊗ g2 and T ¼ T1 ⊗ T2. We have to implement a two-qubit

FIG. 5. Quantum computing of the expectation value of an observable using gate set tomography-based PEC. Quasiprobability
decomposition of the initial state preparation is performed, and single- and two-qubit processes are computed. Implementing the
resulting decomposition is done using a Monte Carlo approach. With QEM, the probability distribution of the expected value of the
physical observable is centered around an ideal value with a larger variance than the one without QEM. Adapted from
Zhang, Lu et al., 2020.
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gate GST for each qubit pair involved in the quantum
program.
The quasiprobability decomposition is then computed

based on the previously mentioned GST results. From
GST, we have an estimation of initial states jρ̂k⟫, observables
to be measured ⟪Âjj, and gates L̂. We denote Lð0Þ as the Pauli
transfer matrix of the ideal gate with no error. The main idea of
decomposition is that a noisy gate operation can be modeled
as an ideal operation followed by a noise operation, i.e.,
L ¼ NLð0Þ. Hence, the inverse of the noise is given by
N −1 ¼ Lð0ÞL̂−1 ¼ P

i qL;iB̂i. By applying the inverse of the
noise after the operation, we can obtain the operation without
error Lð0Þ ¼ N −1L. Notice that the matrices in the previous
equation are obtained from the first GST step. The remaining
task is to determine the quasiprobabilities qL;i for each qubit
and gate involved by solving the previous equation. We note
that instead of a quasiprobabilistic decomposition of quantum
gates, one could use the randomized compiling technique
proposed by Wallman and Emerson (2016).
GST-based PEC experiments have recently been realized in

trapped-ion systems (Zhang, Lu et al., 2020) and super-
conducting circuits (Song et al., 2019). Lastly, a similar
strategy was recently applied to mitigating errors in meas-
urement readout (Kwon and Bae, 2021).

3. Other QEM strategies

We have seen that the quantum error-mitigation techniques
discussed thus far do not require extra qubits, with the caveat
that one needs to perform more measurements. At the same
time, one is interested only in information about the expect-
ation value. Along this line of thought, there are several
proposals, which we outline next. However, some of the
methods might require extra qubits.
The subspace expansion method (McClean et al., 2017;

Colless et al., 2018; McArdle, Yuan, and Benjamin, 2019;
Sagastizabal et al., 2019a; Barron et al., 2020; McClean, Jiang
et al., 2020) is designed to mitigate errors in the VQE routine,
where we want to find an approximate ground state jψai of a
system Hamiltonian H. However, the state found by
VQE may differ from the true ground state jψgi due to noise.
In general, we do not know which error occurred in the
state. The subspace expansion method works by resolving the
action of H on the linear combination of quantum states
Ansatz (42). The subspace is spanned by a set of operators Ôi,
i.e., fjÔiψaig. Now one proceeds to evaluate Hij ¼
hψajÔiHÔjjψai and Sij ¼ hψajÔiÔjjψai. The latter is
needed since the subspace states are in general not orthogonal
to each other. By solving the generalized eigenvalue problem
HC ¼ SCE, with eigenvectors C and diagonal matrix of
eigenvalues E, we can obtain the Hamiltonian spectra includ-
ing the excited states; see Sec. VI.A.4. This method requires
an appropriate choice of subspace operators to mitigate errors
due to noise. In general, without knowing the noise models of
the quantum device, it would require an exponential number
of expansion operators to obtain the optimal ground state.
The stabilizer-based approach (Bonet-Monroig et al.,

2018; McArdle, Yuan, and Benjamin, 2019; Sagastizabal
et al., 2019a; Cai, 2021b) relies on the information associated

with conserved quantities in the Ansatz such as spin or
particle number. If any change in these quantities is detected,
one can pinpoint an error in the circuit, which is similar to
stabilizer measurements in QEC schemes. We can implement
the stabilizer measurements by adding ancilla qubits to the
qubit registers or taking additional measurements and
postprocessing.
The individual error reduction method was proposed by

Otten and Gray (2019). As we saw earlier, Markovian noise
can be modeled using the Lindblad master equation [Eq. (52)],
where dρ̂=dt ¼ ˆ̂Lðρ̂Þ ¼ P

i Liðρ̂Þ, with each Li denoting the
presence of a noise channel. Here we have absorbed the

unitary component into ˆ̂L. It was shown that

ρ̃ðTÞ ¼ ρ̂ðTÞ −
Xm
j¼1

1

gj
½ρ̂ðTÞ − ρ̂jðTÞ� ð60Þ

¼ ρ̂ð0ÞðTÞ þOðτ2Þ: ð61Þ

In Eqs. (60) and (61) ρ̂ðTÞ is the density matrix after quantum
gates are applied with the presence of all associated noise
channels at the final evolution time T. In contrast, ρ̂jðTÞ is the
state under the influence of all the noise channels but one less
Lj according to the ratio gj. Notice that if gj ¼ 1, we have
fully removed the entire channel Lj. ρ̂ð0ÞðTÞ is the ideal output
state without any error, while τ is the evolution time for each
noise process after the application of the gate. As a result, the
first-order error OðτÞ is removed. Using Eq. (60), we can now
obtain the mitigated expectation value hÂi ¼ Tr½ρ̂ð0ÞðTÞÂ� for
a physical observable Â. However, this method assumes that it
is possible to remove individual noise channels. Hence, it may
be challenging to achieve this on current quantum hardware
compared to other strategies.
Dynamic error suppression and robust control techniques

aim to suppress experimental gate errors at the pulse control
level, which can be performed in a passive or an active way.
The pulse shaping technique is a strategy for passive can-
cellation of system-bath interactions. This method, which is
commonly known as the derivative removal of adiabatic gate
scheme (Motzoi et al., 2009; Gambetta et al., 2011; De,
2015), builds upon techniques to obtain high-fidelity quantum
gates in nonlinear qubits such as transmons. On the other
hand, dynamical decoupling (DD) (Viola, Knill, and Lloyd,
1999; Santos and Viola, 2005; Viola and Knill, 2005) is a
well-known and widely used quantum control technique in the
literature that is designed to suppress decoherence via pulses
to the system so that it cancels the system-bath interaction to a
given order in time-dependent perturbation theory (Lidar,
2014) in an active manner. Recently DD experiments were
performed on the 16-qubit IBMQX5, 5-qubit IBMQX4, and
19-qubit Rigetti Acorn chips (Pokharel et al., 2018), where the
gain in substantial gate fidelity relative to unprotected, free
evolution of individual transmon qubits was demonstrated.
One may combine DD and pulse shaping techniques to obtain
dynamically corrected gates (Khodjasteh and Viola, 2009;
Edmunds et al., 2020) composed of shaped pulses that
actively drive state evolution within a Hilbert space in order
to cancel certain system-bath couplings. With IBM’s Qiskit
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Pulse (Alexander et al., 2020), which allows users to control
back-end pulse shapes and sequences of a quantum processor
on the fly, a recent study (Carvalho et al., 2020) using robust
control techniques substantially improved the performance of
a NISQ computer. Carvalho et al. (2020) achieved an ∼10
times single-qubit gate coherent-error reduction, an ∼5 times
average coherent-error reduction, an ∼10 times increase in
calibration window to one week of valid pulse calibration, an
∼12 times reduction gate-error variability across qubits and
over time, and up to an ∼9 times reduction in single-qubit gate
error including cross talk. These improvements have impli-
cations for the performance of multiqubit gates in trapped ions
(Milne et al., 2020). With these tools, we envisage the
possibility of realizing holonomic quantum gates (Zanardi
and Rasetti, 1999; Zhang et al., 2016; Zhang, Kyaw, Filipp
et al., 2021), which are robust against parameter fluctuations
and attain even better gate fidelity and performance.
A Lanczos-inspired approach (Suchsland et al., 2020)

estimates the expectation value of a physical observable
Tr½ρ̂ð0ÞÂ� by constructing a basis of the order-m Krylov
subspace KðmÞ spanned by fjΨi; HjΨi; H2jΨi;…; HmjΨig.
This can be used to systematically construct the objective
function to be minimized. For the mth order, the objective
function is given by

EL;k;n;m ¼ min
a∈Rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨjHkðPm−1

i¼0 aiHiÞnjΨi
hΨjðPm−1

i¼0 aiHiÞnjΨi
k

s
: ð62Þ

With the Krylov expansion, this technique can reduce the
impact of different sources of noise by performing additional
measurements without the need to increase the circuit depth.
Calculating dynamic quantities such as Hamiltonian moments
(Vallury et al., 2020) and a quantum power method based on a
higher-order Suzuki-Trotter expansion (Seki and Yunoki,
2021) on near-term quantum computers are two recent
examples of this approach.
Learning-based and artificial intelligence–inspired meth-

ods employ machine learning techniques such as regression
for error mitigation. The process consists of training different
candidate circuit variants with non-Clifford gates substituted
by gates with efficient classical simulability (Czarnik et al.,
2020; Strikis et al., 2020). A recent approach suggests
merging zero-noise extrapolation with learning-based meth-
ods for near-Clifford circuits (Lowe et al., 2020). There are
also genetic algorithms to mitigate errors in quantum simu-
lations (Las Heras et al., 2016a; Spagnolo et al., 2017).

B. Circuit compilation

As discussed in Sec. V.C, a quantum computer is composed
of its hardware (quantum) and software (classical). The
software translates a quantum algorithm into a set of instruc-
tions that implement the desired quantum operations and read
out the qubit states. This process can be understood as
quantum compilation (Chong, Franklin, and Martonosi,
2017), but the term is not limited to this application. When
mapping a quantum circuit to a specific device architecture,
one needs to consider the available quantum gates, the qubit
connectivity that allows two-qubit gate implementation, and

experimental limitations such as decoherence time, which
imposes a certain maximum circuit depth in terms of the
number of gates. For these reasons, it has become indispen-
sable to develop tools that allow for circuit simplifications and
efficient mappings of the general algorithm to a specific
hardware. These tools are also known as quantum compilers
since they translate the theoretical circuit to a realistic
simulator or device. In the following, we describe some of
these tools. Many of them are suited to both NISQ and fault-
tolerant quantum computation.

1. Native and universal gate sets

The available gates that can be implemented experimentally
on a particular hardware platform are sometimes referred to as
the native gate set. With a universal gate set G ∈ SUðdÞ (also
called a instruction gate set), any unitary operation can be
constructed efficiently. More formally, the Solovay-Kitaev
theorem (Dawson and Nielsen, 2006) states that, given this
universal set G, any unitary operation U ∈ SUðdÞ can be
approximated with ϵ accuracy with a finite sequence S of
gates from G. This sequence scales logarithmically as
O(logcð1=ϵÞ), where c is a constant that depends on the
theorem proof. For d ¼ 2n this theorem guarantees that qubit
quantum circuits can be decomposed using a finite gate
sequence. Although this is one of the most important theorems
in quantum computation, it is an existence theorem; i.e., it
does not provide the decomposition that it predicts. It also
requires that the gate set contains the inverse of all gates.
Further developments presented by Bouland and Ozols (2018)
try to remove this assumption.
The Clifford group is an important object in quantum

information science because of its applications in QEC,
randomized benchmarking, and investigations for quantum
advantage. The generalized Pauli operators in prime dimen-
sion p are given by

Tða;bÞ ¼


ω−ab=2ZaXb; ða; bÞ ∈ Zp × Zp; p ≠ 2;

ιabZaXb; ða; bÞ ∈ Z2 × Z2; p ¼ 2;
ð63Þ

where ω ¼ exp ð2πi=pÞ and Zp denotes an integer modulo p.
The Z and X operators are defined via their action on
computational basis states fjkigk, with X jki ¼ jkþ
1 mod pi and Zjki ¼ ωkjki. The unitaries that map the set
of generalized Pauli operators to themselves up to a phase are
called Clifford unitaries. We denote the set of p-dimensional
Clifford unitaries by Cp. Mathematically speaking,

U ∈ Cp ⇔ ∃ϕ∶UTða1;b1Þ; U† ¼ exp ðiϕÞTða2;b2Þ; ð64Þ

where Tða1;b1Þ and Tða2;b2Þ are generalized Pauli operators. The
set of Clifford unitaries Cp forms a group called the Clifford
group. In this review, we focus on p ¼ 2, i.e., the qubit
Clifford group.
For qubits, the generators of the Clifford group are the

Clifford gates H, S ¼ expð−iπ=4σzÞ, and CNOT. Any circuit
composed of Clifford gates can be simulated efficiently with a
classical computer, as stated in the Gottesman-Knill theorem
(Aaronson and Gottesman, 2004). The states generated by the
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Clifford gates are also called stabilizer states and can contain a
high amount of entanglement. However, not all unitaries can
be decomposed into Clifford gates. A universal gate set is a set
of gates that can perform arbitrary quantum computations.
The Clifford gates combined with the T ¼ expð−iπ=8σzÞ gate
form an example of such a universal gate set. It is a necessary
condition for a quantum advantage that a circuit contains T
gates. As such, the computational difficulty of simulating a
quantum circuit with classical computers increases with the
number of T gates in the circuit. For this reason, many
algorithms try to reduce quantum circuits to the minimal
number of T gates to give an estimation of the difficulty of
classically simulating a circuit (Amy et al., 2013; Gosset et al.,
2013; Heyfron and Campbell, 2018; Amy and Mosca, 2019;
Kissinger and van de Wetering, 2019).
Other basic decompositions besides these minimal

reduction algorithms are useful. Even if only a native gate
set is available experimentally, other basic gates can be
constructed and used in algorithms. As an example, S and
T gates are particular cases of the single-qubit rotational
gate Rz, and the H gate can be obtained from Ry and Rx

gates as H ¼ Ryð−π=2ÞRxðπÞ. Any single-qubit unitary
can be decomposed into the gate sequence Uðθ;ϕ; λÞ ¼
RzðϕÞRyðθÞRzðλÞ. This motivates using single-qubit rotational
gates and at least one entangling gate (such as a CNOT or CZ

gate) as native gate sets. Any two-qubit gate can be obtained
from this minimal set by using circuit decompositions
(Barenco et al., 1995; Blaauboer and De Visser, 2008;
Watts, O’Connor, and Vala, 2013; de Guise, Di Matteo,
and Sánchez-Soto, 2018; Peterson, Crooks, and Smith,
2020). The choice of the entangling gate can be motivated
by the experimental platform. Depending on the technology
used to construct the quantum device, a natural two-qubit gate
implementation could be better suited. Some examples are the
use of CZ gates in tunable superconducting circuits (Krantz
et al., 2019), cross-resonance gates in fixed frequency super-
conducting qubits (Krantz et al., 2019; Kjaergaard et al.,
2020), and the XX gates in trapped ions (Häffner, Roos, and
Blatt, 2008). More expressive gate sets with continuous gate
parameters or long-range interactions can be achieved by
means of further control over the hardware parameters in time
(Bastidas et al., 2020; Foxen et al., 2020; Krinner et al., 2020;
Lacroix et al., 2020). The complexity of the circuit decom-
position into CNOT and Rz gates was analyzed by Amy,
Azimzadeh, and Mosca (2018).

2. Circuit decompositions

Once the native gate set is fixed, the next step consists of
decomposing the theoretical unitary circuit into this basic set.
A raw translation of all single- and two-qubit gates into the
native set might imply a large circuit depth, which would
reduce the effectiveness of that decomposition. Moreover,
finding the decomposition of gates acting on more than one
qubit might prove challenging in general. Besides the
common circuit decompositions mentioned before, one may
need mathematical tools to understand and derive general
circuit reductions to particular smaller pieces.
One of these mathematical tools is the so-called ZX-

calculus. It is a graphical language that maps quantum circuits

to particular graph representations and derives a set of rules to
manipulate these graphs. Its application range goes from
measurement-based quantum computation to QEC. For a
complete review about ZX-calculus and its variety of appli-
cations, see van de Wetering (2020). For the purpose of this
review, we are interested in the quantum circuit simplification
applications (Cowtan, Dilkes, Duncan, Simmons, and
Sivarajah, 2019; de Beaudrap, Bian, and Wang, 2019;
Duncan et al., 2020; Hanks et al., 2020; Kissinger and van
de Wetering, 2020).
Other approaches use well-known artificial intelligence

algorithms to find optimal circuit decompositions such as
reinforcement learning (Pirhooshyaran and Terlaky, 2020;
Zhang, Zheng et al., 2020). Evolutionary algorithms such
as genetic algorithms have been widely studied as well
(Williams and Gray, 1999; Massey, Clark, and Stepney,
2004, 2006; Bang and Yoo, 2014; Las Heras et al., 2016b;
Li, Alvarez-Rodriguez et al., 2017; Lamata, Alvarez-
Rodriguez et al., 2018; Potoček et al., 2018). In these
approaches, multiple random circuits composed of the native
gate set are generated and evolved. The evolution strategy
includes the definition of possible mutations, such as the
introduction of a new gate on a particular qubit, the swap
between circuit gates, or the deletion of a particular gate. A
multiobjective loss function is then used to estimate the
success of each circuit family under a given convergence
criterion, after which the circuit with the best performance is
selected. These works can be applied to finding the optimal
PQC for a given VQA, as discussed in Sec. II.B. AVQA for
circuit compilation using a genetic algorithm as optimization
subroutine, called the quantum assisted quantum compiler,
was presented by Khatri et al. (2019).

3. The qubit mapping problem

After decomposing and simplifying the quantum circuit
into the native gates, a hardware-specific task remains:
mapping the resultant circuit to the particular qubit connec-
tivity or topology, a task also known as the qubit routing
problem. In general, because of experimental limitations, not
all qubits are connected such that two-qubit gates can be
applied between them. A naive approach to circumventing this
limitation consists of swapping each qubit state with its
neighbor (by using SWAP gates) until we find a connected
pair, perform the desired two-qubit operation, and swap back
the states of the qubits involved, returning to the original state
with the intended two-qubit gate applied to it. This translates
into a significant growth of the circuit depth for circuit
topologies with a sparse qubit connectivity.
Some NISQ algorithms presented in this review may

include the qubits’ connectivity by means of the loss function
or the available rules used to decompose the unitaries.
However, quantum compilation is a hardware-specific trans-
formation, and it might be more useful to apply this step
independently of the quantum circuit and instead depending
on the chip architecture. The qubit mapping problem is NP
complete (Botea, Kishimoto, and Marinescu, 2018). Several
heuristic approaches based on dynamic programming, depth
partitioning (Zulehner, Gasser, and Wille, 2017; Siraichi et al.,
2018; Cowtan, Dilkes, Duncan, Krajenbrink et al., 2019; Li,
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Ding, and Xie, 2019; Zulehner, Paler, and Wille, 2019;
Zulehner and Wille, 2019), and reinforcement learning
(Pozzi et al., 2020) have been explored. Exact methodologies
based on reasoning engines such as Boolean satisfiability
solvers have also been proposed (Wille, Burgholzer, and
Zulehner, 2019; Tan and Cong, 2020). The so-
called Lechner-Hauke-Zoller architecture is an approach that
solves the connectivity issue at the cost of increasing the
number of qubits (Lechner, 2020). The same framework can
be applied to quantum annealing systems as well (Lechner,
Hauke, and Zoller, 2015). Encoding this problem into a
QUBO (see Sec. III.A) to solve it using classical simulated
annealing was proposed by Dury and Di Matteo (2020).
Approaches for circuit compilation based on the commutation
algebra of quantum gates were suggested by Itoko et al.
(2019, 2020).
There can be many possible qubit mappings of a given

algorithm to a particular device if not all qubits are required. In
those cases, one can put some extra effort into finding the best
performing qubits in terms of error rates and coherence times
(Nishio et al., 2020; Niu et al., 2020). In that direction, finding
the mapping with the lowest circuit depth may prove valuable
for reducing the errors due to decoherence (Zhang, Chen
et al., 2020).
Finally, the use of circuit synthesis with connectivity

constraints has also been proposed. Some of these works
are based on Gaussian elimination processes where one takes
the matrix representation of the circuit transformation and
manipulates it to extract the basic transformations (in par-
ticular, the CNOT gates that respect the connectivity)
(Kissinger and de Griend, 2019; Nash, Gheorghiu, and
Mosca, 2020). The strategy of Gheorghiu et al. (2020)
consisted of slicing the circuit into smaller parts that could
be adapted and transformed to fit into the particular topology.
One can also adapt this problem to the syndrome decoding
problem (de Brugière et al., 2020). de Griend and Duncan
(2020) solved the qubit routing problem for phase polynomial
circuits, which are circuits that contain only CNOT and
Rz gates.

4. Resource-aware circuit design

As described in Sec. II.B, there are different strategies for
designing a circuit Ansatz. However, many of them require
circuit depths, qubit connectivity, and a number of parameters
that are beyond the capabilities of current quantum hardware.
Next we discuss strategies for designing and adapting PQCs
and VQAs to the characteristics of devices.
ADAPT VQE.—Early VQA employed a fixed Ansatz

design with its parameters tuned using a classical optimizer.
The adaptive derivative-assembled pseudo-Trotter Ansatz
variational quantum eigensolver (ADAPT VQE) was intro-
duced as a more scalable and efficient way to simultaneously
design and optimize a parametrized Ansatz (Grimsley,
Economou et al., 2019). At each iteration, ADAPT VQE
constructs an Ansatz by adding an operator corresponding to
the largest gradient from a carefully designed operator pool.
That is, given an operator τ̂i from the operator pool, the
gradient of the energy with respect to the corresponding
parameter θi is defined as

∂iE ¼ hψ j½H; τ̂i�jψi; ð65Þ

where jψi is the Ansatz at the current iteration to be updated.
After computing the gradient components and choosing the
operator corresponding to the largest gradient, the gate
operation implementing τ̂i is added to the Ansatz with its
parameter value initialized at 0. The Ansatz is then optimized
before adding the next operator. The ADAPT-VQE algorithm
terminates when the norm of the gradient vector falls below a
predefined threshold.
In the case of fermionic ADAPT VQE, the operator pool

consists of fermionic operators that are transformed into
quantum gate operations through the Jordan-Wigner mapping.
A more hardware-efficient variant of the ADAPT-VQE
algorithm is the qubit ADAPT VQE, in which the pool
consists of gate operators acting directly on qubits (Tang
et al., 2019). Both versions of ADAPT VQE were able to
generate optimized circuits with reduced depths and CNOT

counts relative to previous Ansatz construction and optimi-
zation methods.
MI ADAPT- VQE.—The mutual information-assisted

ADAPT VQE (MI ADAPT VQE), introduced by Zhang,
Kyaw, Kottman et al. (2021), leverages the density matrix
renormalization group (DMRG) (White, 1992; Hallberg,
2006) method to accelerate the circuit constructions for the
ADAPT-VQE routine. Instead of gradients, it uses mutual
information to guide the construction of circuits. At the
beginning of the algorithm, the pairwise quantum mutual
information is approximated using DMRG, which is then
applied to construct a reduced pool of entangling gates. In
each iteration of the method, new circuits are generated in
which quantum gates are distributed mainly among pairs of
qubits corresponding to considerable mutual information.
This avoids allocating quantum resources on pairs of qubits
that are less important to entangle. Numerical experiments
suggest that the number of new circuits needed in each step of
the adaptive construction can be significantly reduced using
MI ADAPT VQE, thereby saving both time and quantum
resources. The number of trial circuits in certain cases can be
reduced to about 5% for H2 and 10% for H2O relative to
ADAPT VQE, using an operation pool based on the qubit
coupled-cluster method (Ryabinkin et al., 2020).
MoG VQE.—To reduce two-qubit gate counts for near-term

experiments, the multiobjective genetic variational quantum
eigensolver (MoG VQE) optimizes for both the energy and the
number of CNOT gates in the quantum circuit (Chivilikhin
et al., 2020). The MoG-VQE algorithm combines the two
following evolutionary strategies: (i) NSGA-II (Deb et al.,
2000), a multiobjective genetic algorithm for proposing a
circuit structure to minimize both the energy and the CNOT

count, and (ii) CMA-ES (Hansen, Müller, and Koumoutsakos,
2003), which tunes the parameters and evaluates the optimized
energies for the qubit topologies suggested by the NSGA-II
algorithm. MoG VQE initializes a diverse population by
sampling a checkerboard pattern of two-qubit circuit blocks.
To vary the populations over different generations, the three
possible mutation operators are (i) inserting a two-qubit circuit
block in a random position, (ii) removing a two-qubit circuit
block in a random position, and (iii) adding or removing ten

Kishor Bharti et al.: Noisy intermediate-scale quantum algorithms

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015004-30



circuit blocks to help escape from local minima. Chivilikhin
et al. (2020) noted that (iii) is selected with a lower probability
than mutation operators (i) and (ii). Parents are selected using
the tournament selection method. For each circuit topology,
the corresponding energy is evaluated using the CMA-ES
optimizer. These steps are repeated until certain termination
criteria are satisfied. Using MoG VQE, Chivilikhin et al.
reported significant reductions in the CNOT counts relative to
those of other hardware-efficient circuits when estimating the
ground state energies of several molecules. For example, for a
12-qubit LiH Hamiltonian, MoG VQE generated a circuit
corresponding to estimating the ground state energy within
chemical precision using only 12 CNOT gates.
PECT.—An alternative approach for adaptively construct-

ing and optimizing an Ansatz was introduced by the param-
eter-efficient circuit training (PECT) scheme (Sim et al.,
2020). PECT enables optimizations of predefined Ansätze,
such as unitary coupled-cluster or the low-depth circuit Ansatz
(LDCA) (Dallaire-Demers et al., 2019), by dynamically
pruning and adding back parametrized gates during an
optimization. After selecting an Ansatz U, a subset of gate
operations from A is chosen while other parametrized gate
operations are tuned to identity operations. This results in an
Ansatz substructure A0 with reduced circuit depth and gate
count. Parameters of A0 are then optimized, following what
Sim et al. (2020) called a “local optimization” step. After local
optimization, to refine or reparametrize the Ansatz substruc-
ture, parameters with small magnitudes are pruned or
removed. A heuristic growth rule is used to grow back the
same number of parameters that were pruned. Steps of local
optimization and Ansatz reparametrization are repeated until
termination criteria are met. Because PECT optimizes param-
eter subsets at any iteration, circuits that are executed on the
quantum computer have reduced depths and CNOT counts

relative to the original Ansatz. Using PECT, Sim et al. were
able to optimize 12-qubit LDCA circuits, naively equipped
with hundreds to low thousands of parameters, to estimate
ground state energies of LiH and H2O. Previous optimizations
of LDCA were limited to eight qubits.

C. Quantum software tools

A quantum computer is a hybrid device composed of
quantum hardware and classical software that controls it by
sending a list of instructions and processing the results of the
computation. This hybrid nature is accentuated in the NISQ
era, as explained in the review. Thus, the classical subroutines
are part of the core in state-of-the-art NISQ algorithms and a
language to communicate with the quantum device is a
necessity. On top of that, almost all progress in quantum
algorithms is tested in quantum simulators, making it essential
to perform proof-of-concept simulations before or until the
algorithm is applicable to real devices.
Figure 6 represents diagrammatically the typical workflow

of a NISQ algorithm. The individual parts of the problem,
such as the objective function to optimize, the quantum circuit
design, or the initialization parameters, are translated into
quantum circuits by a classical precomputation step. The
syntax of this language includes quantum gates, qubit initial-
ization, objective function definition, etc. The theoretical
circuit is then compiled to fulfill experimental limitations
such as qubit connectivity, a native quantum gate set, or circuit
depth. To accomplish this task, compilers that allow for circuit
simplification (see Sec. V.B) or noise models (for simulation
purposes) might be useful. After this preprocessing step, the
algorithm is ready to enter into the quantum-classical loop.
The quantum circuit can be run on a quantum simulator or real
hardware. In the latter case, an assembly language (Smith,

FIG. 6. Schematic representation of a standard NISQ programming workflow. Green circular boxes represent the libraries and
languages used for designing, optimizing, and running a quantum algorithm in a real quantum device or a simulator. External libraries
can be used to define the problem or to improve the performance of the algorithm by simplifying the circuit or providing error-mitigation
techniques. An assembly language is needed to translate the theoretical algorithm to a set of physical operations on the quantum
hardware. Classical postprocessing is necessary to manipulate the result of the computation and to either obtain the final result or send
the provisional one to a classical optimizer (VQA).
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Curtis, and Zeng, 2016; Cross et al., 2017; Khammassi et al.,
2018; Killoran et al., 2019) will translate the quantum circuit
into a set of instructions for the device. After the qubits are
measured, the result can be postprocessed and techniques such
as error mitigation might be used. Either the algorithm finishes
or the result is sent to the classical optimizer that computes the
next loop variables (such as for VQA).
We define a quantum software library as a library or a set of

libraries written in a classical programming language (such as
PYTHON or C++) that allows for writing quantum programs. In
some cases, these libraries are open source and can be used
directly on real hardware or on a quantum simulator. The
proliferation of all these libraries, simulators, and devices has
also created a necessity for some multiplatform languages.
These are those that can use multiple quantum software
libraries as a back end, thus reducing the programming efforts
substantially by unifying the language syntax. Some of these
packages include built-in sublibraries suited for particular
applications, from chemistry to QML, or particular well-
known algorithms such as VQE and QAOA.
We provide a list of some open-source libraries suited for

NISQ computation in Table VII of the Supplemental Material
(824). This list represents just a snapshot of the state-of-the-art
of quantum software ecosystem as new tools are being
developed and some projects are being abandoned. An
updated list of quantum software resources was given by
QOSF (2020a),2 and detailed comparative analyses between
some of these languages and libraries were given by Gay
(2006), Heim et al. (2020), Nguyen et al. (2020), and
Garhwal, Ghorani, and Ahmad (2021). Because of the broad
applications of NISQ algorithms, specific libraries used in
other fields beyond quantum computation can also be
required, e.g., quantum chemistry and machine learning
libraries or external compilers and simulators. These libraries
are used for other applications besides quantum computing, so
we consider and list them as external libraries in Table VIII of
the Supplemental Material (824), although most of them are
integrated within the quantum software libraries.

VI. APPLICATIONS

A. Many-body physics and chemistry

Understanding the static and dynamic properties of quan-
tum-mechanical systems is a core challenge at the heart of
many fields, such as chemistry and physics. Classical numeri-
cal methods often struggle to solve these problems due to the
exponential increase of resources needed with a growing
number of particles to simulate. Owing to their quantum-
mechanical nature, quantum computers offer a way to sim-
ulate even large-scale many-body systems (Feynman, 1982;
von Burg et al., 2020). The initial application for chemistry
was to obtain molecular energies via quantum phase estima-
tion on a quantum computer (Aspuru-Guzik et al., 2005).
Besides the molecular energy, properties that can be extracted
from a successfully prepared ground state, such as energy
derivatives with respect to the nuclear framework, are of

similar interest (Kassal and Aspuru-Guzik, 2009; O’Brien
et al., 2019). Fault-tolerant quantum algorithms have the
potential to become killer applications in the computational
discovery of chemical reaction mechanisms (Reiher et al.,
2017), and NISQ algorithms could play a major role in their
realization. Here we review various NISQ algorithms that have
been proposed to tackle quantum chemistry and many-body
physics-related problems. We start by introducing concepts on
mapping physical problems onto the quantum computer. We
then introduce algorithms for common challenges, such as
finding the static and the dynamic properties of quantum
systems in various settings. All NISQ algorithms discussed in
this section are listed in Table I of the Supplemental
Material (824).

1. Qubit encodings

In general, any physical system can be written in terms of a
Hamiltonian that is the sum of its kinetic and potential energy.
In quantum theory, each physical system is associated with a
language of operators and an algebra establishing such
language. Depending on the system constituents, there are
three types of particles (operators) in nature: fermions, bosons,
and anyons. The first two are elementary particles obeying
Fermi-Dirac and Bose-Einstein statistics, respectively.
Anyons are quasiparticles obeying continuous or anyonic
statistics that exist only in two-dimensional confinement.
Quantum computers operate in the language of qubits (a
distinguishable set of spin-1=2 particles). Hence, the quantum
simulation of a physical system refers to performing a one-to-
one mapping from the system operator to the quantum
computing language, and thus preserving the underlying
statistics. For a recent review on hardware-dependent map-
pings of spin Hamiltonians into their corresponding quantum
circuit, see Tacchino, Chiesa et al. (2020).
In the standard model of quantum computation, a

two-level system or spin-1=2 particle is denoted by its spin
orientation j ↑i ¼ j0i ¼ ð1; 0ÞT and j↓i ¼ j1i ¼ ð0; 1ÞT . An
N-qubit system is then constructed from the standard Pauli
matrices σ̂ix; σ̂iy; σ̂iz, where the superscript i refers to the ith
local qubit site. These operators satisfy the commutation
relations of a ⨁N

i¼1suð2Þi algebra ½σ̂lμ; σ̂mν � ¼ 2iδlmϵμνλσ̂lλ,
where ϵμνλ is the totally antisymmetric Levi-Civita symbol
with μ; ν; λ ∈ fx; y; zg.
Fermions.—In the second quantized notation, N fermions

are denoted by fermionic operators f̂†i (f̂i), the creation
(annihilation) operators of a fermion in the ith mode or site
(i ¼ 1;…; N). The fermionic operators obey Pauli’s exclusion
principle and the antisymmetric nature of the fermion wave
function. Hence, the fermionic algebra is defined by the
anticommutators ff̂i; f̂jg ¼ 0; ff̂†i ; f̂jg ¼ δij. There are a
number of well-known mappings that allow the description
of a fermionic system by the standard model of quantum
computers. They are the Jordan-Wigner transformation
(Jordan and Wigner, 1928), Bravyi-Kitaev transformation
(Bravyi and Kitaev, 2002), and Ball-Verstraete-Cirac trans-
formation (Ball, 2005; Verstraete and Cirac, 2005). Steudtner
and Wehner (2019) took the two-dimensional topology of
most proposed qubit architectures explicitly into account and2See also https://quantumcomputingreport.com/tools/.
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compared them to some of the aforementioned one-dimen-
sional mappings. More advanced mappings using the inter-
action graph of the Hamiltonian (Setia and Whitfield, 2018;
Setia et al., 2019) or customized quasilocal and local encod-
ings (Havlíček, Troyer, and Whitfield, 2017; Chien and
Whitfield, 2020; Derby and Klassen, 2020; Jiang et al.,
2020) have been introduced as well. Other approaches try
to lower the qubit requirements of the mapped fermionic
operators by taking inspiration from classical error-correction
codes and the internal symmetries of the system (Bravyi et al.,
2017; Steudtner and Wehner, 2018). Other examples are
mappings based on point-group symmetries of molecular
Hamiltonians (Setia et al., 2020). Recently mappings of
SUðNÞ fermions to qubits were proposed (Consiglio
et al., 2021).
In the following, we outline the oldest and most intuitive

mapping: the Jordan-Wigner transformation. In this mapping,
the qubit states are equivalent to the second-quantized
occupation number vectors, and fermionic creation and
annihilation operators are transformed to qubit raising and
lowering operators σ̂j� ¼ ðσ̂jx � iσ̂jyÞ=2 combined with strings
of σ̂z operators that ensure the correct anticommutation
properties

f̂j →

�Yj−1
l¼1

−σ̂lz
�
σ̂j−; f†j →

�Yj−1
l¼1

−σ̂lz
�
σ̂jþ: ð66Þ

In Eq. (66), one can verify that f̂†j and f̂j satisfy the previously

mentioned anticommutation relations, while σ̂jμ satisfies the
previously shown commutation relations; see Somma et al.
(2003), Aspuru-Guzik et al. (2005), Seeley, Richard, and Love
(2012), Tranter et al. (2015), and Tranter et al. (2018) and the
respective original references for details and comparisons
regarding the other transformations.
Bosons.—Bosonic operators satisfy the commutation rela-

tions ½ ˆ̃bi; ˆ̃bj� ¼ 0; ½ ˆ̃bi; ˆ̃b†j � ¼ δij in an infinite-dimensional
Hilbert space. At first it seems impossible to simulate bosonic
systems due to the nature of infinite dimensions. However,
sometimes we are interested in studying some finite modes of
excitations above the ground state. Hence, the use of the entire
infinite-dimensional Hilbert space is unnecessary. In a finite-
dimensional basis, the bosons b̂†i ; b̂i obey the following
commutation relations (Batista and Ortiz, 2004):

½b̂i; b̂j� ¼ 0; ½b̂i; b̂†j � ¼ δij

�
1−

Nbþ1

Nb!
ðb̂†i ÞNbðb̂iÞNb

�
; ð67Þ

where b̂†i b̂ijnii ¼ nijnii, with ni ¼ 0;…; Nb, and Nb is the
maximum truncated excitation number corresponding to the
ith bosonic site or mode. A direct consequence is that one can
then write the creation and annihilation operators as

b̂†i ¼
XNb−1

n¼0

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1ihnj ð68Þ

and b̂i, which is the complex conjugate of b̂†i . There are
infinite means to translate such truncated operators into the

quantum computing language, the so-called Pauli words. A
commonly used method is known as standard binary or
compact encoding (Somma et al., 2003; Veis et al., 2016;
McArdle, Mayorov et al., 2019; Sawaya and Huh, 2019;
Sawaya et al., 2020), where fα; β ∈ Wg in jαihβj are now
written in terms of binary strings. Using the following
identities, j0ih1j≡σ̂−;j1ih0j≡σ̂þ;j0ih0j≡ðIþσ̂zÞ=2;j1ih1j≡
ðI−σ̂zÞ=2, Pauli words translation can be accomplished.
Recently detailed studies on various encodings (binary,
Gray, unary, block unary), have been studied and Gray code,
in particular, is found to be resource efficient (in terms of
number of qubits and two-qubit entangling gates) in simulat-
ing some specific bosonic and spin Hamiltonians (Sawaya
et al., 2020).
Anyons.—As previously discussed, we can now proceed to

simulate more general particle statistics, in particular, hard-
core anyons. Regarding the “hard-core” ones, we refer to
Pauli’s exclusion principle, where only zero or one particle
can occupy a single mode. The anyonic operators âi and â†i
obey the commutation relations ½âi; âj�θ ¼ ½â†i ; â†j �θ ¼ 0,

½âi; â†j �−θ ¼ δij(1 − ðe−iθþ1Þn̂j), and ½n̂i; â†j � ¼ δijâ
†
j , where

n̂j ¼ â†j âj; ½Â; B̂�θ ¼ Â B̂−eiθB̂ Â, with (i ≤ j) and 0 ≤ θ <
2π. Specifically, θ ¼ π mod ð2πÞ gives rise to canonical
fermions, and θ ¼ 0 mod ð2πÞ would recover hard-core
bosons. By simply applying the following isomorphic map-
ping between algebras (Somma et al., 2003),

â†j ¼
Y
i<j

�
e−iθ þ 1

2
þ e−iθ − 1

2
σ̂iz

�
σ̂jþ;

âj ¼
Y
i<j

�
eiθ þ 1

2
þ eiθ − 1

2
σ̂iz

�
σ̂j−; n̂j ¼

1þ σ̂jz
2

; ð69Þ

we obtain Pauli words for the quantum computer. This
mapping also ensures the previously shown anyonic algebra.

2. Constructing electronic Hamiltonians

The electronic structure problem is one of the most
prominent tasks within VQAs [see the reviews by Cao et al.
(2019) and McArdle et al. (2020)] and was the pioneering task
for VQE (Peruzzo et al., 2014; McClean et al., 2016). In this
section, we illustrate how the original continuous many-
electron problem can be discretized to a second-quantized
formulation that can itself be encoded in qubits by the
techniques introduced at the beginning of Sec. VI.A. This
encoded qubit systems define then the central problem of the
VQAs further described in Sec. VI.A.3.
The electronic structure problem aims to approximate

eigenfunctions of electronic Hamiltonians

He ¼ T e þ Vee þ Vext; ð70Þ

describing a system of Ne electrons through their accumulated
kinetic energies T e¼−ð1=2ÞPNe

k¼1Δrk , the electronic
Coulomb repulsion Vee¼

P
k≠lVeeðrk−rlÞ¼

P
k≠l1=jrk−rlj,

and an external potential Vext ¼
PNe

k¼1 VextðrkÞ that is usually
given by the accumulated Coulomb potential of nuclear point
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charges. If the external potential is not explicitly spin
dependent, the electronic Hamiltonian acts only on the spatial
coordinates rk ∈ R3 of the electrons and, to ensure pro-
per electronic wave functions, the fermionic antisymmetry
is achieved via restrictions in the Hilbert-space; see
Rohwedder (2010), Yserentant (2010), Herbst (2018), and
Kottmann (2018) for the direct construction and discretization
of these continuous Hilbert spaces.
A more compact but formally equivalent definition is

offered through second quantization by introducing the
abstract anticommuting field operators ψ̂†ðxÞ and ψ̂ðxÞ that
create and annihilate electrons at spin coordinate xk ∈ R3 ×
f�1=2g (Jordan and Klein, 1927; Jørgensen, 2012; Surján,
2012). The electronic Hamiltonian can then be written as

He ¼
Z

dx ψ̂†ðxÞ½TðxÞ þ VextðxÞ�ψ̂ðxÞ

þ
Z

dx dyψ̂†ðxÞψ̂†ðyÞVeeðx − yÞψ̂ðyÞψ̂ðxÞ; ð71Þ

where the potential operators still act only on the spatial part
of the spin components. Although direct approaches for real-
space grids are possible (Kivlichan et al., 2017; Kottmann and
Bischoff, 2017; Kottmann, 2018; Kunitsa and Hirata, 2020),
the majority of VQAs employ a fixed set of three-dimensional
functions (so-called orbitals) to capture the spatial part of the
electronic Hilbert space. The orbitals are usually determined
by solving a mean-field (Hartree-Fock) problem within a set
of globally defined atomic orbitals. Alternatives to the
standard representation include direct determination of system
adapted orbitals (Kottmann et al., 2021), compactification of
basis sets through intrinsic atomic orbitals (Barison, Galli, and
Motta, 2020), and optimized virtual orbitals represented by
plane waves (Bylaska et al., 2020).
For the formal description of the discretized second-

quantized electronic Hamiltonian, the origin of the orbitals
is not important as long as they form an orthonormal set of
H1ðR3Þ functions. Using such a set of spatial orbitals we can
formally expand the field operators in the corresponding spin
orbitals

ψ̂†ðxÞ ¼
X
k

ϕ�
kðxÞf†k; ψ̂ðxÞ ¼

X
k

ϕkðxÞfk; ð72Þ

where f†k and fk are fermionic creation and annihilation
operators obeying the anticommutation relations shown
in Sec. VI.A.1. Using the expansion from Eq. (71) leads
to the following common discretized second-quantized
Hamiltonian:

He ¼
X
kl

hklf
†
kfl þ

X
klmn

gklmnf
†
kf

†
l fnfm; ð73Þ

with the molecular integrals (Fermann and Valeev, 2020)

hkl ¼
Z

ϕ�
kðxÞ½TðxÞ þ VextðxÞ�ϕlðxÞdx;

gklmn ¼
Z

ϕ�
kðxÞϕ�

l ðyÞVeeðx − yÞϕ�
mðxÞϕ�

nðyÞdxdy: ð74Þ

Note that the indices of the two-body integrals are denoted in
the standard Dirac notation gklmn ≡ hkljVeejmni, but other
notations such as Mulliken ðkmjlmÞ ¼ hkljVeejmni are
sometimes used. Generally speaking, an arbitrary set of
spatial orbitals that can in principle be any set of orthonormal
H1ðR3Þ functions defines a discretized second-quantized
Hamiltonian as in Eq. (73) over the corresponding molecular
integrals [Eq. (74)]. This discretized Hamiltonian can then be
encoded in a qubit Hamiltonian by the corresponding
fermion to qubit mappings that are discussed in Sec. VI.A.

3. Variational quantum eigensolver

Estimating the ground state and its energy of Hamiltonians
is an important problem in physics, which has numerous
applications ranging from solid-state physics to combinatorial
optimization; see Sec. VI.C. While this problem is in general
QMA hard and even quantum computers are not expected to
be able to efficiently solve it in general (Kempe, Kitaev, and
Regev, 2006), there is hope that approximate solutions of the
ground state could be found faster and for larger system sizes
than what is possible with classical computers.
To this end, VQE (Peruzzo et al., 2014; McClean et al.,

2016) has been proposed to find the ground state of a
Hamiltonian H in a manner that is suited for NISQ devices
(Wecker, Hastings, and Troyer, 2015). Following the concept
introduced in Secs. II.A and II.B, a parametrized circuit UðθÞ
is minimized with respect to the objective function, which in
general is the expectation value of the energy of the
Hamiltonian in Eq. (1). The approximated ground state is
given by the quantum state jψmini ¼ UðθminÞj0i, which
minimizes the energy minθhHθi ≥ Eg upper bounded by
the true ground state energy Eg as guaranteed by the
Rayleigh-Ritz variational principle (Gould, 2012). VQE has
been intensively studied in both theory and experiments, and
various adaptions and extensions have been proposed, which
we now discuss.
Self-verification.—Whether the variational quantum simu-

lator has converged to an actual eigenstate of the Hamiltonian
can be checked directly on the quantum processor by verifying
that the variance of the energy var ¼ hðH − hHiÞ2i is zero.
This has been demonstrated for solving a many-body
Hamiltonian on eight qubits on an ion trap (Kokail et al.,
2019); see also Sec. VI.E.6.
Accelerated VQE.—A key computational effort in VQE lies

in estimating the cost function, which is achieved by repeat-
edly running the circuit and taking measurements of the Pauli
strings; see Sec. II.C. For a given desired additive error
bounded by ϵ, it takes Oð1=ϵ2Þ number of samples. This can
be improved by using the quantum phase estimation algorithm
to estimate the expectation value, which takes only
O( logð1=ϵÞ) samples, however, at the cost of additional
computation, which may be hard in the NISQ era. To leverage
a trade-off between the advantages and disadvantages of the
two methods, an accelerated version of VQE that interpolates
between regular measurements and quantum phase estimation
has been proposed (Wang, Higgott, and Brierley, 2019).
Measurement-based VQE.—Ferguson et al. (2020) pre-

sented two strategies to implement the VQE algorithm
on a measurement-based quantum computer, an alternative
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quantum computing paradigm that uses entanglement as a
resource and achieves the desired computation by performing
particular sets of local measurements; see Briegel et al. (2009)
for a review. They proposed a way to generate the needed
variational state families using measurements on a highly
entangled state and provide equivalence between the meas-
urement- and gate-based schemes.
Reusing qubits in VQE.—A recent proposal suggested a

VQE method that relies on fewer qubits by reusing some of
them (Liu et al., 2019). The core idea is to represent a virtual
N-qubit state by Rþ V < N physical qubits, where R qubits
have to be reusable qubits; e.g., they can be measured and
reinitialized during the circuit run-time. These intermittent
measurements are possible on current ion-trap hardware (Pino
et al., 2020). The Rþ V qubits are entangled by a PQC, and
then R qubits are measured and the outcome is recorded. The
R qubits are reinitialized to the j0i⊗R state and again entangled
with the V other qubits by another PQC. This procedure is
repeated until in total N qubits have been measured. The
concept and expressiveness of this type of Ansatz is the same
as tensor network methods such as the matrix product state
one, which have been highly useful for the classical calcu-
lation of many-body problems and open up a way to perform
quantum computing of many qubits on devices with a limited
number of qubits.
Adiabatically assisted VQE.—The ground state of more

challenging Hamiltonians can be difficult to find for standard
VQE due to convergence to local minima instead of the global
minima of the energy. To alleviate this, quantum annealing
(see Sec. III.A) can be used to adiabatically assist the
optimization procedure, as proposed for the adiabatically
assisted VQE (Garcia-Saez and Latorre, 2018). This approach
uses an objective function OðsÞ ¼ h0jU†ðθÞHðsÞUðθÞj0i,
where HðsÞ ¼ ð1 − sÞH0 þ sH1. Here H0 is a Hamiltonian
with an easily preparable ground state and the goal is to find
the ground state of a Hamiltonian H1. In this algorithm, VQE
is run for multiple discrete steps sn. One starts with s0 ¼ 0 and
finds the minimal parameters θ�0 of the objective function
Oðs0Þ. θ�0 is then used as an initial guess for the VQE for the
next increasing step s1 ¼ s0 þ Δs with the objective function
Oðs1Þ. This procedure is repeated until s ¼ 1 is reached.
This approach eases the optimization task, as the initial
Hamiltonian H0 is a simple Hamiltonian with a ground state
that can be easily found via optimization. For small steps Δs,
the ground state of the Hamiltonian HðsÞ and Hðsþ ΔsÞ will
not differ too much, making the optimization task at every step
less challenging than directly solving for Hð1Þ. Previous
works (McClean et al., 2016) also suggested using adiabati-
cally prepared states as initial states of a VQE algorithm; see
Sec. II.B.

4. Variational quantum eigensolver for excited states

The methods of VQE have been extended to obtain excited
states of a given Hamiltonian. Finding excited states or the
spectrum of a Hamiltonian is an important objective in
quantum chemistry and many-body physics. Various propos-
als have been put forward.
Folded spectrum method.—A straightforward way to cal-

culate excited states is the folded spectrum method proposed

by Peruzzo et al. (2014). To find an excited state of a
Hamiltonian H with approximate energy λ, the previously
defined VQE method is applied here to the objective function
CðθÞ ¼ h·iðH − λÞ2UðθÞ. VQE will target the eigenstate with
an energy that is closest to λ. This method requires approxi-
mate knowledge of the energy of the excited state that one
wants to find, as well as an estimate of hH2i, which may
require an excessively large number of measurements to be
performed.
An extension of this method can also be used to

find states that are constrained to a specific value of the
conserved quantity of the problem, such as the total particle
number or magnetization (Ryabinkin, Genin, and Izmaylov,
2019). Here one defines the objective function CðθÞ ¼
hHiUðθÞ þ

P
i μiðhSiiUðθÞ − siÞ2, where Si is the operator

corresponding to the conserved quantity and si is the target
value of that quantity. Note that this does not restrict the target
space to be an eigenstate of Si.
Orthogonally constrained VQE.—Excited states can be

found by constraining the VQE objective function such that it
penalizes the ground state (Higgott, Wang, and Brierley,
2019). One first finds an approximation to the ground state
of HamiltonianH via VQE with θ0 ¼ argminθhHiUðθÞ and the
approximated ground state jψðθ0Þi ¼ Uðθ0Þj0i. One then uses
this information to formally project out the approximate
ground state to find the next highest excited state. One defines
the Hamiltonian H1 ¼ H þ ajψðθ0Þihψðθ0Þj with a given
sufficiently large positive parameter a. The ground state of
H1 then corresponds to the first excited state of H and can be
found with a VQE. This procedure can be repeated to find
higher excited states up to any order by sequentially accu-
mulating the projector terms of all states found. The
Hamiltonian for the kth excited state is then given by
Hk ¼ H þP

k−1
i aijψðθiÞihψðθiÞj. Combined with the uni-

tary coupled-cluster Ansatz, the orthogonally constrained
VQE can find excited states of small molecules (Higgott,
Wang, and Brierley, 2019; Lee et al., 2019). It was further
extended for adaptive circuit construction (Kottmann, Anand,
and Aspuru-Guzik, 2021) and imaginary time evolution
(Jones et al., 2019).
The projector term requires one to calculate the overlap

jhψðθÞjψðθ0Þij, which can be achieved using the SWAP test, by
applying the inverse of the circuit that generated the ground
state jh0jU†ðθÞUðθ0Þj0ij2 or randomized measurements
(Elben et al., 2020). An alternative approach that relies on
a discriminator circuit that is trained in parallel to distinguish
between the excited state to be learned and previously found
lower-lying states has been proposed (Tilly et al., 2020) and
demonstrated on a small model system. Scalable proposals
still remain an open research question. Since the projector
term requires not the overlap itself but rather the absolute
square of it, it can be computed with the help of Eq. (5) by
computing the fidelity of the current trial state with the
previously found states (Lee et al., 2019; Kottmann
et al., 2021).
Subspace expansion.—The subspace expansion method

was introduced in Sec. V.A.3 for error mitigation. This method
can be also used to find excited states (McClean et al., 2017),
and it was demonstrated for a small molecule by Colless et al.
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(2018). After finding the ground state of a HamiltonianH with
VQE, one follows the steps that were detailed in Sec. V.A.3.
One expands the prepared quantum state with different
appropriate operators that match the low-energy excitations
of H and generates a set of states that span the low-energy
subspace. Overlaps between the states are measured, which
are then used to solve a generalized eigenvalue problem on a
classical computer. The eigenvalues and eigenstates give the
excited states of the Hamiltonian. For quantum chemistry
problems, the subspace expansion method was also proposed
for including dynamical correlations to ground states over
external corrections (Takeshita et al., 2020), in the spirit of
classical-quantum chemistry methods like CAS-CI (Roos,
Taylor, and Sigbahn, 1980).
An alternative approach, expansion in the subspace,

can also be accomplished by real-time evolving a reference
state and picking states at different evolution times as a basis
for expansion (Stair, Huang, and Evangelista, 2020). This is
motivated by the fact that the time evolution can be seen as an
approximate Krylov expansion of the quantum state. One then
proceeds to solve the generalized eigenvalue problem to find
eigenstates and eigenvalues of the Hamiltonian.
Subspace-search VQE and state-averaged VQE.—The core

idea of a subspace-search VQE (SSVQE) (Nakanishi, Mitarai,
and Fujii, 2019) or state-averaged VQE (Arimitsu et al., 2021;
Yalouz et al., 2021) is to minimize the energy of a PQC UðθÞ
over a set of orthogonal quantum states. The goal is to find the
kth eigenstates with the lowest eigenenergy of a Hamiltonian
H. In the weighted SSVQE the cost function is

LðθÞ ¼
Xk
j¼1

wjhφjjU†ðθÞHUðθÞjφji; ð75Þ

where fjφjigkj¼0 is a set of k easily preparable mutually
orthogonal quantum states (with hφijφji ¼ δi;j) and fwjgj are
positive real numbers with wi > wj for i < j. Minimizing
θ� ¼ arg minθLðθÞ to its global minimum gives us the ground
state and excited states jψ ji ¼ UðθÞjφji, where j ¼ 1 is the
ground state and j > 1 are the excited states sorted in
ascending order. This algorithm gives all k eigenstates in a
single optimization routine. Note, however, that the more
states there are to be optimized, the more complex the
optimization landscape and the effort to minimize become.
An alternative formulation of the algorithm to specifically find
the kth lowest eigenstate is the unweighted SSVQE. Here one
minimizes L1ðθÞ ¼

P
k
j¼1hφjjU†ðθÞHUðθÞjφji. However,

because of the absence of weight, the found states jψ 0
ji ¼

Uðθ�Þjφji for minimal θ� are not proper eigenstates
of H but are instead superposition states that span the
subspace of the k lowest energies. As a final step in finding
the kth eigenstate, one fixes θ ¼ θ� to its minimized value
and then maximizes ϕ� ¼ maxϕL2ðϕÞ, with L2ðϕÞ ¼P

k
j¼1hφjjV†ðϕÞU†ðθ�ÞHUðθ�ÞVðϕÞjφji and VðϕÞ a unitary

that acts only on the Hilbert space of the k lowest eigenstates.
For the maximized ϕ�, the kth lowest eigenstate is given by
jψki ¼ Uðθ�ÞVðϕ�Þjφki. Besides general applications that
involve excited states, state-averaged orbital-optimized
VQEs were proposed to treat chemical systems that require

a “democratic description of multiple states,” as necessary in
the vicinity of conical intersections (Yalouz et al., 2021). Here
“democratic description” corresponds to treating degenerate
or quasidegenerate states on the same footing.
Multistate contracted VQE.—This algorithm combines the

nonweighted SSVQE with the subspace expansion to find the
ground state and excited states (Parrish, Hohenstein et al.,
2019). One first runs the nonweighted SSVQE routine to find
the unitary Uðθ�Þ to find k states that span the subspace of the
k smallest eigenvalues jψ 0

ji ¼ Uðθ�Þjφji. To find the correct
eigenstates, one then runs the subspace expansion and
measures the overlap matrix Hij ¼ hψ 0

ijHjψ 0
ji and diagonal-

izes it to find estimates of the k lowest eigenenergies and
eigenstates.
Fourier transform of evolution.—Recent experiments

have determined the spectra of molecular and many-body
Hamiltonians using superconducting processors (Roushan
et al., 2017; Aleiner et al., 2020; Quantum et al., 2020). A
particular method to determine the eigenenergies of
Hamiltonians via Fourier transforming the dynamics of
observables was applied by Roushan et al. (2017) and
Aleiner et al. (2020). The idea is to prepare a Fock state
that has overlap with the eigenstates whose eigenvalues one
wants to calculate. The Fock state then evolves in time with
the Hamiltonian and specific observables are measured over
a range of time. The Fourier transform of the time evolution
of the observables can be used to deduce the eigenenergies of
the Hamiltonian.
Witness-assisted variational eigenspectra solver

(WAVES).—WAVES’s core idea is to use a single reference
qubit as an eigenstate witness to variationally find the ground
state and excited states (Santagati et al., 2018). A variational
Ansatz applied to a reference state is chosen. The time-
evolution operator UðtÞ ¼ expð−iHtÞ is then evolved on
the Ansatz state as a control unitary CUðtÞ, with the control
being the single qubit in a superposition state. Full tomog-
raphy is then performed on the single qubit to read out its von
Neumann entropy. If the variational state is an eigenstate of
the Hamiltonian H, then the entropy is zero. Further, the
energy of the state can be estimated from the state of the qubit
as well. The Ansatz is variationally updated using the
information from the qubit in an iterative fashion until the
ground state is found. Excited states can be found by applying
an appropriate excitation operator on the found ground state
and then variationally minimizing the von Neumann entropy
of the qubit. As the last step, the iterative phase estimation
algorithm is used to further improve the accuracy of the
excited state as well as to determine its eigenvalue. This
method requires implementation of a controlled time-evolu-
tion operator similar to nonvariational proposals (Jensen et al.,
2020), which are considered challenging for larger systems on
NISQ devices.

5. Hamiltonian simulation

A major application for quantum computers is the simu-
lation of the dynamics of Hamiltonians for problems such as
many-body physics and chemistry. One standard approach for
quantum simulation of Hamiltonians is based on the Trotter-
Suzuki expansion from Eq. (14), where the evolving unitary is
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split up into small discrete time steps of efficiently imple-
mentable unitaries, which can be run on the quantum
computer. Naturally, the depth of the quantum circuit
increases polynomially with the desired time to be evolved
and the target accuracy, which may not be feasible on NISQ
devices without access to error correction. The relevant
algorithms are reviewed in the following. We remark that
some necessary tools to simulate many-body interaction
Hamiltonians (Bravyi et al., 2008; Menke et al., 2019) have
also been proposed.
Variational quantum simulator.—VQA has been proposed

to solve dynamical problems in the NISQ era (Li and
Benjamin, 2017). The core idea is to iteratively update an
efficiently implementable variational quantum state jψðθÞi
with a new set of parameters θ → θ0 such that it minimizes the
error between the actual time evolution expð−iHδtÞjψðθÞi for
a time step δt and the updated variational state jψðθ0Þi. The
rules to update the parameters θ to solve the Schrödinger
equation id=dtjψðtÞi ¼ HjψðtÞi can be found by using the
variational McLachlan principle δkðd=dtþ iHÞjψðθÞik ¼ 0,
with kjψik ¼ ffiffiffiffiffiffiffiffiffiffiffiffihψ jψip

, and demanding that θ remains real

valued. One finds a set of linear equations of motion A_θ ¼ C
with

Ai;j ¼ Re½∂θihψðθÞj∂θj jψðθÞi�;
Ci ¼ Im½∂θihψðθÞjHjψðθÞi�: ð76Þ

At a given step of the iteration, one needs to measure the
elements of A and C using the Hadamard test or the methods
of Mitarai and Fujii (2019) (see Sec. II.C), and then update θ
with the solution of the linear equation of motion using a small
time step δt. The solver can be combined with adaptive
strategies to reduce the complexity of the Ansatz circuit (Yao,
Gomes et al., 2020; Zhang, Sun et al., 2020).
VQS has been applied on the IBM Quantum processor to

simulate energy transfer in molecules (Lee et al., 2021), as
well as to simulate a time-dependent Hamiltonian (Lau, Bharti
et al., 2021). A straightforward extension of the variational
quantum simulator can be applied to solve the Schrödinger
equation in imaginary time (McArdle, Jones et al., 2019), for
time-dependent problems (Yuan et al., 2019), or for general
linear differential equations (Endo, Sun et al., 2020; Kubo
et al., 2020). Its implementation in open quantum systems
(Yuan et al., 2019; Endo, Sun et al., 2020) is discussed in
Sec. VI.A.7. Using the hardware-efficient structure of the
PQC, it is possible to reduce the cost of measuring the A and
C matrices (Benedetti, Fiorentini, and Lubasch, 2020).
Alternatively, the projected–variational quantum dynamics
method was proposed to bypass the measurement of afore-
mentioned matrices (Otten, Cortes, and Gray, 2019; Barison,
Vicentini, and Carleo, 2021). Here one variationally max-
imizes the fidelity between the PQC jψðθÞi and the Trotter
evolved state expð−iHδtÞjψðθ0Þi. The optimized PQC yields
the state evolved by a time δt. This algorithm is then repeated
to gain evolution for longer times. By appropriately choosing
the evolution time δt, barren plateaus can be avoided (Haug
and Kim, 2021b).
Subspace variational quantum simulator.—The subspace

variational quantum simulator (SVQS) (Heya et al., 2019)

builds upon the idea of the SSVQE (Nakanishi, Mitarai, and
Fujii, 2019), which was introduced in Sec. VI.A.4. The core
idea is to rotate the initial state to be evolved onto the low-
energy subspace found by the weighted SSVQE, evolve it in
time within the subspace, and then apply the reverse mapping.
The weighted SSVQE is first run by preparing k initial states
fjφji ¼ σxj j0igkj¼0

, which are orthogonal with each other

(hφijφji ¼ δi;j) and lie in the computational subspace, as
well as a PQC UðθÞ. Now, as in the weighted SSVQE,
minimize Eq. (75). Then prepare an initial state jψ ini to be
evolved, which is encoded in the computational subspace by
applying the Hermitian conjugate of the obtained circuit
U†ðθÞ. Here the evolution of the state in time is performed
by applying single-qubit rotations on each qubit,
T ðtÞ ¼⊗j RZð−EjtÞ, where fEjgj are the eigenenergies of
the eigenstates fjEjigj that were previously obtained using
SSVQE. Finally, the state T ðtÞU†ðθÞjψ ini in the computa-
tional subspace is reverse mapped by applying UðθÞ, giving
the evolved state

jψðtÞi ¼ UðθÞT ðtÞU†ðθÞjψ ini: ð77Þ

This method has the key advantage that since the evolution is
directly implemented as simple rotations in the computational
subspace, the circuit depth is independent of the evolution
time to be simulated. However, the initial SSVQE optimiza-
tion can be difficult, especially when one considers the many
eigenstates k.
Variational fast-forwarding.—Similar to the idea of the

SVQS, variational fast-forwarding relies on the idea of
evolving a quantum state in time expð−iHtÞ within a diagonal
subspace such that an enhanced evolution time can be
achieved (Cirstoiu et al., 2020). A circuit that implements a
small time step of the desired evolution is first implemented as
VðδtÞ ¼ expð−iHδtÞ. An approximate diagonal factorization
of VðδtÞ is then trained on a particularly structured variational
circuit

Uðθ; γ; δtÞ ¼ WðθÞDðγ; δtÞW†ðθÞ: ð78Þ

In Eq. (78) Dðγ; δtÞ is composed of commuting unitaries
and chosen to parametrize the eigenvalues of unitary VðδtÞ,
whereas WðθÞ represents its eigenvectors. The evolution
to an arbitrary time T ¼ Nδt, where N is a given integer,
is then found by fast-forwarding with Uðθ; γ; NδtÞ ¼
WðθÞDNðγ; δtÞW†ðθÞ. For the training of the variational
Ansatz, the fidelity between VðδtÞ and Uðθ; γ; δtÞ is maxi-
mized by a quantum-classical feedback loop with a cost
function that uses the local Hilbert-Schmidt test (Khatri et al.,
2019). As an alternative approach, it was proposed to
diagonalize the Hamiltonian H instead of the unitary VðδtÞ,
and fast-forward via Uðθ; γ; TÞ ¼ WðθÞ exp½−iDðγÞT�W†ðθÞ
(Commeau et al., 2020). Fast-forwarding can also be per-
formed without a requirement to train via a feedback loop
using the linear combination of states approach [Eq. (42)]
(Lim et al., 2021).
Quantum assisted simulator.—The VQS algorithm

employs a classical-quantum feedback loop to update the
parameters of the PQC. Until the classical processor has

Kishor Bharti et al.: Noisy intermediate-scale quantum algorithms

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015004-37



calculated its output, the classical-quantum feedback loop
delays any use of the quantum device, slowing the algorithm
on the current cloud computing framework. The VQS algo-
rithm, as well as its VQE-based variant, i.e., SVQS, shares
similarities with and most of the concerns faced by VQE, such
as the barren plateau issue; see Sec. IV.A. Further, the VQS
algorithm requires controlled unitaries, which makes it diffi-
cult to realize for current-term devices. To tackle the issues
faced by VQS, the quantum assisted simulator (QAS) was
suggested recently (Bharti and Haug, 2021b). The QAS
algorithm does not need any classical-quantum feedback loop,
can be parallelized, evades the barren plateau problem by
construction, supplies a systematic approach to constructing
the Ansatz, and does not require any complicated unitaries.
The QAS algorithm shares its approach with IQAE; see

Sec. III.E. The Ansatz is given as a linear combination of states
jϕ(αðtÞ)i ¼ P

jψ ii∈CSK
αiðtÞjψ ii [see Eq. (42)], with classical

coefficients αðtÞ for the Ansatz state jψ ii, which can be
systematically constructed; see Definition 3. The Hamiltonian
H is given as a linear combination of unitaries; see Eq. (43).
The QAS algorithm employs the Dirac-Frenkel principle to
obtain the following classical evolution equation for αðtÞ:

E
∂αðtÞ
∂t ¼ −ιDαðtÞ: ð79Þ

In Eq. (79) Ei;j ¼ hψ ijψ ji and Di;j ¼
P

k βkhψ ijUkjψ ji are
overlap matrices that can be efficiently measured on a
quantum computer; i.e., for H given as a combination of
Pauli strings, the overlaps are a measurement of the Pauli
strings.
Recently QAS was run on the IBM Quantum computer and

showed superior performance relative to Trotter and VQS for a
time-dependent Hamiltonian (Lau, Bharti et al., 2021). A
novel Hamiltonian simulation algorithm based on a truncated
Taylor series was proposed recently (Lau, Haug et al., 2021).
The classical postprocessing in the aforementioned algorithm
corresponds to a QCQP.

6. Quantum information scrambling and thermalization

Quantum information scrambling is a quantum phenome-
non occurring when initially local states become increasingly
nonlocal with the time evolution of the system. It can be
analyzed by computing the so-called out-of-time-ordered
correlation function and has strong implications in thermal-
ization in closed quantum system dynamics. Recent experi-
ments have been carried out to study this phenomenon in few-
qubit trapped-ion devices and simulators (Landsman et al.,
2019; Joshi et al., 2020), and in a 53 superconducting qubit
processor (Mi et al., 2021). The algorithms proposed are
based on the well-known teleportation algorithm and use
single- and two-qubit gates to reproduce the scrambling
process.
In the context of VQAs, a variation of the VQE algorithm

has been proposed to obtain the thermal evolution of quantum
systems (Verdon, Marks et al., 2019). Verdon, Marks et al.
presented quantum Hamiltonian-based models (QHBMs), an
extension of the VQA’s PQC to mixed states instead of pure
states. Within this approach, QHBMs are classically trained to

learn a mixed state distribution as a function of the optimi-
zation parameters. A direct application of such a model is the
variational quantum thermalizer (VQT), an algorithm whose
goal is to prepare a fixed-temperature thermal state of a given
Hamiltonian.
The limitations of using variational QML algorithms to

learn a scrambling unitary were also studied by Holmes et al.
(2020), who found trainability issues related to barren
plateaus; see Sec. IV.A.

7. Simulating open quantum systems

In the following, we deal with the physics of open quantum
systems (Huh et al., 2014), which are well described by the
Lindblad master equation from Eq. (52). By sampling from a
mixture of pure state trajectories evolved using a non-
Hermitian Hamiltonian and random quantum jumps, one
recovers the Lindblad dynamics.
Trotter simulation of open systems.—NISQ quantum hard-

ware can be used to directly simulate the dynamics of small-
scale open systems by using ancillae combined with mea-
surements in the spirit of the quantum jump method (Hu, Xia,
and Kais, 2020; Koppenhöfer, Bruder, and Roulet, 2020).
Here the unitary part of the dynamics is implemented via a
Suzuki-Trotter decomposition; see Sec. II.B. The nonunitary
part of the dynamics that encodes the interaction with the
external degrees of freedom is simulated by entangling the
circuit with ancillae and subsequently measuring them. For
every time step of the dynamics, a new set of ancilla qubits has
to be provided. Current quantum computers based on super-
conducting circuits do not allow one to measure and reuse
qubits, thus requiring a linear increase in the number of qubits
with every time step. Further, in general the circuit depth
scales polynomially with simulation time.
Generalized variational quantum simulator.—Endo, Sun

et al. (2020) extended the VQS algorithm to simulate the
method of quantum jumps in a variational setting. They
implemented the algorithm for 2D Ising Hamiltonians for
six qubits and observed a dissipation-induced phase transition.
Yuan et al. (2019) extended VQS to mixed states and
simulated the Lindblad dynamics fully without the need of
stochastic sampling. The idea is to write the density matrix as
ρ ¼ ρ(θðtÞ) and simulate the evolution of ρ via evolution of
the parameters θðtÞ. One can reexpress Eq. (52) as
ðd=dtÞρ ¼ P

i giSiρT
†
i , where Si and Ti are unitaries and

gi are coefficients. Using the Dirac-Frenkel equation, the
evolution of parameters is given by

X
j

Mi;j
_θj ¼ Vi; ð80Þ

Mi;j ¼ Tr(f∂iρ½θðtÞ�g†∂jρ½θðtÞ�); ð81Þ

Vi ¼ Tr

�
f∂iρ½θðtÞ�g†

X
j

gjSjρT
†
j

�
: ð82Þ

This method can also be extended to deep quantum neural
network–type Ansätze (Liu, Duan, and Deng, 2020).
These algorithms, however, suffer from the canonical

drawbacks of the VQS algorithm, such as the requirement
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of a feedback loop, trainability issues, and the necessity of
controlled unitaries.
Generalized quantum assisted simulators.—Recently the

generalized quantum assisted simulator (Haug and Bharti,
2020) was proposed as an extension of the quantum assisted
simulator to tackle the previously mentioned issues; see
Sec. VI.A.5. Instead of using a density matrix, the generalized
quantum assisted simulator algorithm introduced the concept
of a “hybrid density matrix”

ρ̂ ¼
X
k;l

βk;ljψkihψ lj ð83Þ

for βk;l ∈ C, where jψ li are chosen from the set of cumulative
K moment states; see Definition 3. A classical device stores
the coefficients β and the quantum states correspond to a
certain quantum register. A hybrid density matrix is a valid
density matrix if Trðρ̂Þ ¼ 1 and ρ̂≽0. Note that the normali-
zation condition is fulfilled when Trðρ̂Þ ¼ TrðβEÞ ¼ 1, where
Ek;l ¼ hψkjψ li. Using the Dirac-Frenkel principle, the simu-
lation of open system dynamics for the hybrid density matrix
is given by

E
d
dt

βðtÞE ¼ −ι½DβðtÞE − EβðtÞD�

þ
XK
n¼1

γn½RnβðtÞR†
n − 1

2
F nβðtÞE − 1

2
EβðtÞF n�;

ð84Þ

where Dk;l ¼ hψkjHjψ li, Rn
k;l ¼ hψkjLnjψ li, and F n

k;l ¼
hψkjL†

nLnjψ li. For a given choice of Ansatz, the quantum
computers have to compute the overlap matrices only as
measurements of Pauli strings. The classical computer then
uses this information to simulate the dynamics. There is no
quantum-classical feedback loop, which on the currently
available quantum computers can speed up the computations
substantially.

8. Nonequilibrium steady state

Unlike in Sec. VI.A.7, we are concerned here with the
physics of an open quantum system that is out of equilibrium
in nature, which is common in designing devices for molecu-
lar-scale electronics (Xiang et al., 2016), excitonic transport
(Kyaw et al., 2017) as well as quantum thermodynamics
(Vinjanampathy and Anders, 2016). By “out of equilibrium”
we mean that a quantum system and bath are constantly driven
by external forces such as voltage differences, during which
the composite particles of the system and bath are also
interacting with each other.
Notice that the method used in Sec. VI.A.7 would also lead

to extremely high-dimensional matrices in the Lindblad-like
master equation approach dρ̂=dt ¼ ˆ̂L ρ̂ [see Sec. V.A.1,
Eq. (52)], and it is deemed impossible to capture all the
degrees of freedom involved. However, one may relax some of
the constraints involved in the problem setup, say, time-
independent dissipation and noninteraction among particles
with a small system size. The steady-state density matrix of a

quantum system ρ̂SS at the limit t → ∞ is then given by
solving

ˆ̂Ljρ̂SSi ¼ 0; ð85Þ

or equivalently ˆ̂L
† ˆ̂Ljρ̂SSi ¼ 0. A recent study (Yoshioka et al.,

2020) showed that with ancilla qubits the previously men-

tioned non-Hermitian superoperator ˆ̂L can be simulated. The
main idea is to map the density matrix of N qubits onto a
vector of twice the number of qubits 2N as follows:

ρ̂ ¼
X
ij

ρijjiihjj → jρ̂i ¼
X
ij

ρij
C

jiiPjjiA; ð86Þ

where C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij jρijj2
q

. By using a digital quantum computer

and the variational approach, one iteratively minimizes the
expectation value of a parametrized density matrix jρθi ¼
UðθÞ with minθh0j⊗2NU†ðθÞ ˆ̂L† ˆ̂LUðθÞj0i⊗2N . A drawback of
this approach is that measuring expectation values from the
parametrized density matrix directly is difficult and thus
requires an additional transformation.
Beyond the Lindblad master equation, to capture and

describe truly the out-of-equilibrium processes, the nonequi-
librium Green’s function (NEGF) formalism (Dalla Torre
et al., 2013; Stefanucci and Van Leeuwen, 2013; Sieberer,
Buchhold, and Diehl, 2016) is commonly used. These existing
Green’s function techniques are complicated to solve. Many
assumptions need to be made in order to have a closed form
and do some calculations. In particular, it requires that the
interaction among particles is weak such that one does not
need to find higher-order Feynman diagrams in finding the
self-energy functional.
Since some of the existing quantum algorithms provide

promising speedup relative to classical ones, one may wonder
whether to use quantum algorithms to solve the NEGF, with a
strategy of leaving classically hard computational tasks to the
quantum processor and feeding its output back to a classical
computer, which could be done in a variational fashion. There
are a number of proposals (Kreula, Clark, and Jaksch, 2016;
Endo, Kurata, and Nakagawa, 2020; Jaderberg et al., 2020) in
the literature that undertake such a hybrid quantum-classical
approach. However, these methods assume no interaction
among composite particles. In a generic open quantum system
in which many-body effects cannot be neglected, one wants to
go beyond those assumptions. No quantum advantage of those
near-term quantum algorithms over existing methods has yet
been seen (Härtle, Benesch, and Thoss, 2008; Li, Petruccione,
and Koch, 2016; Fitzpatrick et al., 2017) for solving a
nonequilibrium steady-state solution of an extremely complex
physical setup such as vibrationally coupled electron transport
with multiple electronic levels (Härtle, Benesch, and
Thoss, 2008).

9. Gibbs state preparation

Finding the ground state of quantum Hamiltonians is
known to be QMA hard. Under reasonable assumptions,
preparing a Gibbs state corresponding to arbitrarily small
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temperatures is as challenging as the Hamiltonian ground state
problem. Gibbs state preparation has applications in many
areas, including quantum annealing, quantum semidefinite
programming solvers, Boltzmann training, and simulations of
equilibrium physics. For a Hamiltonian H, the Gibbs state at
temperature T (with kB ¼ 1) is given by

ρðTÞ ¼ exp ð−H=TÞ
Tr½exp ð−H=TÞ� : ð87Þ

Some of the approaches to prepare the Gibbs state are
mentioned in the following.

(1) Starting with the d-dimensional maximally mixed
state Id=d, under imaginary time evolution for time
τ, one gets the Gibbs state corresponding to temper-
ature T ¼ 1=2τ (Verstraete, Garcia-Ripoll, and
Cirac, 2004).

(2) One can start with the maximally entangled state
jξid ¼ ð1= ffiffiffi

d
p ÞPjjj; jiAB of a system combined of

two equally sized subsystems A and B and can evolve
it under imaginary time evolution using the Hamil-
tonian H ⊗ I. After tracing out system B, the state of
system A at time τ is given by the Gibbs state
corresponding to temperature T ¼ 1=2τ.

(3) The Gibbs state of a system is the density matrix that
corresponds to a minimum of its free energy. Thus, one
can variationally tune the parameters of a parametrized
density matrix such that it leads to minimization of the
free energy.

Recently a few NISQ algorithms for Gibbs state preparation
were proposed that apply the aforementioned ideas. Yuan
et al. (2019) used VQS-based imaginary time evolution to
prepare the Gibbs state following the second approach. The
first approach does not work in VQS-based imaginary time
evolution. Chowdhury, Low, and Wiebe (2020) used the third
approach to prepare Gibbs states. The aforementioned works
require complicated controlled unitaries and a classical-quan-
tum feedback loop. Haug and Bharti (2020) suggested QAS-
based imaginary time evolution (see Sec. VI.A.5) to prepare
the Gibbs state with either the first or second approach. The
QAS approach does not require a classical-quantum feedback
loop or any complicated controlled unitaries. Using random
circuits as the initial state, Richter and Pal (2020) suggested an
approach based on imaginary time evolution for preparing the
Gibbs state.

10. Simulation of topological phases and phase transitions

NISQ devices can be used to study the ground states of
quantum Hamiltonians for understanding topological phases
and phase transitions. An important example is the one-
dimensional cluster Ising Hamiltonian, describing a sym-
metry-protected topological phase of matter. The ground state
of this Hamiltonian is the one-dimensional cluster state, which
can be created by applying Hadamard gates to all qubits,
followed by controlled-Zgates on each pair of neighboring
qubits. State tomography and symmetry arguments were used
to study the entanglement measures of this state and to
highlight its topological nature (Choo et al., 2018; Azses
et al., 2020). A modified algorithm was implemented to

simulate an enlarged family of Hamiltonians and study the
quantum phase transition between topological and topologi-
cally trivial phases of matter (Smith, Jobst et al., 2019). NISQ
devices were also used to simulate the dynamics of funda-
mental models of quantum magnetism (Smith, Kim et al.,
2019; Bassman et al., 2020) and topological phases in one and
two dimensions (Mei et al., 2020).

11. Many-body ground state preparation

The preparation of nontrivial many-body quantum states is
crucial for many applications in quantum metrology and
quantum information processing (Kyaw, Li, and Kwek,
2014). QAOA has been used as a resource-efficient scheme
for many-body quantum state preparation. In this context, the
state jψi for a system with linear dimension L (L can refer to
the number of spins in a 1D spin chain) is nontrivial if there is
no local unitary circuit U with depth Oð1Þ that can generate
jψi from a product state jϕi: jψi ¼ Ujϕi (Ho and Hsieh,
2019). The GHZ state, which is an essential resource in
several quantum metrology proposals (Dür et al., 2014; Tóth
and Apellaniz, 2014), is an example of a nontrivial quantum
state due to its highly entangled nature and is the ground state
of the 1D Ising Hamiltonian with periodic boundary con-
ditions, i.e., HP ¼ −

P
L
i¼1 σ̂

i
zσ̂

iþ1
z .

Using QAOA, it has been shown that the GHZ state can be
prepared efficiently with perfect fidelity using p ¼ L=2,
where p is the QAOA depth (Ho and Hsieh, 2019). Ho and
Hsieh conjectured that the ground state of the 1D transverse-
field Ising model, with L even and periodic boundary
conditions, can be prepared perfectly at any point in the
phase diagram using QAOAwith p ¼ L=2. The ground state
of the antiferromagnetic Heisenberg model with open boun-
dary conditions HP ¼

P
L−1
i¼1 σ̂

i · σ̂iþ1, where σ̂i ≡ ðσ̂ix; σ̂iy; σ̂izÞ,
has also been prepared with near perfect fidelity
using QAOA. Using a long-range 1D Ising Hamiltonian
HP ¼−

P
i<j Jijσ̂z

iσ̂jz, where Jij ¼ J0=ji − jjα, QAOA can
achieve an ultrafast preparation of a GHZ state with a circuit
depth of Oð1Þ (for α ¼ 0) (Ho, Jonay, and Hsieh, 2019). This
result was generalized as follows by Wauters, Mbeng, and
Santoro (2020), who showed that QAOA can prepare the
ground states of the fully connected ferromagnetic q-spin
model (note that q is used here instead of the conventional p in
order to avoid confusion with the QAOA depth p):

H ¼ −
1

Nq−1

�XN
i¼1

σ̂iz

�
q
− h

�XN
i¼1

σ̂ix

�
; ð88Þ

with resources scaling polynomially with the number of spins
N. Since the system can encounter a first-order phase
transition where the spectral gap becomes small, QAOA
greatly outperforms quantum annealing in this instance since
an exponentially long annealing time is needed.

12. Quantum autoencoder

The quantum autoencoder (QAE) (Romero, Olson, and
Aspuru-Guzik, 2017) is a VQA for the compression of data on
a quantum computer. It finds a new data state representation
that requires fewer qubits than the data were originally defined
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upon. This new encoding is said to be a representation in the
latent space. The process of transforming the data into the
latent space is referred to as encoding, whereas the converse,
the transformation of states in the latent space back into the
original, is known as decoding.
Training a QAE requires the minimization of an objective

defined over several related quantum states. For a set of n-
qubit states fjψiig, the goal of the QAE is to find a unitary
circuit EðθÞ that accomplishes the following transformation:

E∶Hn → Hk ⊗ Hn−kjEjψii ¼ jϕii ⊗ j0i⊗ðn−kÞ; ð89Þ

where k is the dimension of the latent space. Thus, the
application of a perfectly trained autoencoder to any state of
the relevant set yields a product state that consists of the
transformed state on k qubits with a (n − k)-qubit “trash”
state. In principle, the trashed state could be any state, but the
all-zero state is chosen for simplicity.
The loss function of the QAE may be defined in several

ways. It is a fidelity loss function (see Sec. II.A) in which
minimization is performed by increasing the overlap between
a partial measurement of the state resulting from the appli-
cation of the encoder and a known state. The most practical
definition for training the autoencoder, called “trash training,”
uses as its objective the overlap between the trash qubits and
the j0i⊗ðn−kÞ state. Formulated in the density matrix picture,
the objective of minimization is

O ¼ −TrðI⊗k ⊗ j0ih0j⊗ðn−kÞρiÞ; ð90Þ

where ρi ¼
P

i pijψ iihψ ij, with all states in the set generally
equally weighted.
The QAE can be trained by training only the encoding

circuit due to the unitarity of the encoder. The decoding
operation is achieved using the complex conjugate of the
encoder circuit. Improvements in the encoding results trans-
late to improvements in the decoder, a boon not realized by
classical autoencoders.
After the successful training of a QAE, the encoder and

decoder circuits may be used for data transformation in further
algorithms. Here processing the data in the latent space, in
which the data are represented more densely, may be benefi-
cial for further applications.
A data reuploading strategy to construct a QAE encoder

was presented by Bravo-Prieto (2020), who trained the so-
called enhanced feature quantum autoencoder to compress the
ground state of the 1D Ising model as a function of the
external field and samples of handwritten digits. The QAE has
also been deployed experimentally for the compression of
qutrits on a photonic device (Pepper, Tischler, and Pryde,
2019). Small states were experimentally compressed without
loss on photonic devices by C.-J. Huang et al. (2020).
Bondarenko and Feldmann (2020) designed a QAE capable
of denoising entangled quantum states such as GHZ or W
states that are subject to spin-flip errors and random uni-
tary noise.

13. Quantum computer-aided design

Two recent proposals used the computing power of NISQ
devices to improve the NISQ processors themselves. Here
techniques were developed to simulate quantum hardware on
a quantum computer (Kottmann et al., 2020; Kyaw et al.,
2021). They established the paradigm of “quantum computer-
aided design,” indicating that classically intractable simula-
tions of quantum hardware properties can be performed on a
quantum computer and thereby improving the prediction of
device performance and reducing experimental testing cycles.
In the first approach, optical path modes are mapped to sets

of qubits and quantum optical elements are mapped to digital
quantum circuits for simulating photonic setups (Kottmann
et al., 2020). The framework is used to simulate a boson
sampling experiment and the optimization of a setup for
preparing high-dimensional multipartite entangled states.
The second proposal introduces quantum simulation tech-

niques for superconducting circuit hardware (Kyaw et al.,
2021). In this work, a circuit module consisting of coupled
transmon qubits is designed. The corresponding supercon-
ducting circuit Hamiltonian, which is written on a basis of
multilevel operators, is efficiently mapped to a set of data
qubits (Sawaya et al., 2020). Simulations of a multilevel
extension to the VQE algorithm (Higgott, Wang, and Brierley,
2019) are used to determine the spectrum of the super-
conducting circuit. The resulting states and eigenenergies
are directly related to experimentally relevant device charac-
teristics and can be used to seed the simulation of time
evolution.
Device and setup design is a key challenge for improving

and scaling quantum systems. Therefore, digital quantum
simulation of quantum processors will be a relevant applica-
tion for NISQ quantum computers when classical resources
become too small to capture the relevant Hilbert space of the
hardware.

B. Machine learning

Machine learning aims to enable a computer to act without
being explicitly programmed to do so. As per Mitchell (1997),
given a certain class of tasks T and performance metric P a
computer program is said to learn from experience E if

PðT Þ ∝ E. ð91Þ

In other words, its performance measured by P for task T
increases with E.
Depending on the kind of experience that E is permitted to

have during the learning process, the machine learning
algorithms are classified into the following three categories:

(1) Supervised learning.—Given a function y ¼ fðxÞ, the
goal is to learn f so that it returns the label y for the
unlabeled data x. A canonical example would be
pictures of cats and monkeys, with the task to
recognize the correct animal. Given training examples
from the joint distribution PðY; XÞ, the task of super-
vised learning is to infer the probability of a label y
given sample data x, i.e., PðY ¼ yjX ¼ xÞ.

Kishor Bharti et al.: Noisy intermediate-scale quantum algorithms

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015004-41



(2) Unsupervised learning.—The data are provided with-
out any label. The task is to recognize an underlying
pattern in these data. Given access to several examples
x ∈ X, the algorithm goal is to learn the probability
distribution PðXÞ or some important properties of the
aforementioned distribution.

(3) Reinforcement learning.—In this case, neither data
nor label is provided. The machine has to generate data
and improve the aforementioned data generation
process via the optimization of a given reward func-
tion. This is similar to how a human child learns to
walk. If it fails, the output acts as a negative reward.

Machine learning has uncovered applications in physics
such as Monte Carlo simulation (Huang and Wang, 2017; Liu
et al., 2017), many-body physics (Carleo and Troyer, 2017),
phase transition (Wang, 2016), quantum foundations (Bharti,
Haug, Vedral, and Kwek, 2019), and state tomography (Torlai
et al., 2018) For a meticulous review on machine learning for
physics, see Dunjko and Briegel (2018), Carleo et al. (2019),
and Bharti et al. (2020).
Most of the success in machine learning comes from the use

of artificial neural networks, structures capable of learning
sophisticated distributions that encompass multiple features
that can be fine-tuned depending on the problem tackled. In
that direction, there are several proposals to define a model for
quantum neural networks with different kinds of activation
functions (Schuld, Sinayskiy, and Petruccione, 2014; Wan
et al., 2017; Torrontegui and García-Ripoll, 2019). For
implementations of artificial neurons and artificial neural
networks on the NISQ hardware, see Tacchino et al.
(2019) and Tacchino, Barkoutsos et al. (2020).
The merger of quantum theory and machine learning has

recently led birth to a new discipline known as QML. Both
algorithms that deal classically with data from a quantum
origin and quantum algorithms that process quantum and
classical data are usually known as QML applications.
However, in this review, we focus on those algorithms that
process data quantum mechanically, in particular, those that
use quantum algorithms that can be run on NISQ computers.
For a QML review that focuses mainly on fault-tolerant
quantum algorithms, see Biamonte et al. (2017). For a survey
of quantum computational learning theory, see Arunachalam
and de Wolf (2017). Analyses of QML from a classical ML
perspective were given by Ciliberto et al. (2018) and Dunjko
and Briegel (2018), and for near-term devices analyses were
given by Perdomo-Ortiz et al. (2018), Benedetti, Lloyd et al.
(2019), and Li and Deng (2021).
It might be surprising that a linear theory such as quantum

physics can generate the nonlinearities that a machine learning
model needs. However, the linearity of quantum mechanics
comes from the dynamical part (quantum state evolution) and
one can encounter multiple sources of nonlinearities arising
from measurement, postselection, or coupling of the system to
the environment. Quantum operations in the Hilbert space can
also encode nonlinear behavior, as we later show with kernel
methods.
In Secs. VI.B.1–VI.B.3, we present the quantum-mechani-

cal analogs of the three previously defined machine learning
categories. The algorithms discussed are listed in Table II of
the Supplemental Material (824).

1. Supervised learning

The two prominent methods to perform a supervised
learning classification task using a NISQ computer are
quantum kernel estimation (Havlíček et al., 2019;
Kusumoto et al., 2019; Schuld and Killoran, 2019; Huang
et al., 2021) and the variational quantum classifier (VQC)
(Farhi and Neven, 2018; Mitarai et al., 2018).
Classical kernel methods include well-known machine

learning algorithms such as support vector machines (Cortes
and Vapnik, 1995), principal component analysis, and
Gaussian processes. The rich theoretical structure of
kernel methods can be expanded to the quantum world
by defining and working in the Hilbert space with the
quantum equivalent of feature vectors (Schuld and Killoran,
2019). To that aim, one needs to modify and adapt the well-
known theorems to work in a quantum feature space. For
more details about classical kernel methods, see Hofmann,
Schölkopf, and Smola (2008). A review on kernel
methods in the context of QML was given by Mengoni
and Di Pierro (2019). We directly describe the quantum
versions of them next. The basics of supervised learning
with quantum computers were presented by Schuld and
Petruccione (2018).
Given an input set X and quantum Hilbert space H, data

x ∈ X are encoded in a quantum state (quantum feature
vector) jΦðxÞi by means of the quantum feature map, i.e.,
Φ∶X → H. The inner product of two quantum feature vectors
defines a kernel

κðxi; xjÞ≡ hΦðxiÞjΦðxjÞiH ð92Þ

for xi; xj ∈ X. The inner product is defined in a Hilbert space
by replacing the standard definition h·; ·i with the Dirac
brackets h·j·i. For a map Φ, the reproducing kernel Hilbert
space takes the form

Rϕ ¼ ff∶X → CjfðxÞ ¼ hwjΦðxÞiH ∀ x ∈ X ; jwi ∈ Hg:
ð93Þ

The orthogonality of jwi with respect to jΦðxÞi defines a
decision boundary; i.e., depending on the sign of the inner
product, x lies on one side of the hyperplane. The function f is
thus a linear function in H. The representer theorem
(Schölkopf, Herbrich, and Smola, 2001) states that this
function can be approximated by the linear function f⋆ by
using the previously defined kernel, i.e.,

f⋆ðxÞ ¼
XD
i¼1

αiκðx; xiÞ ð94Þ

for an input dataset D. Using Eq. (94), one can solve a convex
optimization problem to get the coefficients αi. The analysis
thus far entails the connection between linear models in
reproducing kernel Hilbert space with kernelized models in
the input space.
One can use a quantum computer to calculate the inner

product of feature mapped quantum states to obtain the kernel
κ. This kernel can be fed to a classical device, which can use
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Eq. (94) to obtain the coefficients αi, for instance, by
maximizing a cost function of the form (Havlíček et al., 2019)

CðαÞ ¼
XD
i¼1

αi −
1

2

XD
i;j

yiyjαiαjκðxi; xjÞ; ð95Þ

where yi are the labels of the training points and are
constrained to

PD
i¼1 αiyi ¼ 0. Ideas based on connections

between kernel methods and quantum circuit–based machine
learning has been used to justify the contention that the
models for QML can be framed as kernel methods (Schuld,
2021). For some of the other relevant works on quantum
kernel methods, see Blank et al. (2020) and Park, Blank, and
Petruccione (2020). A high-dimensional data classification
experiment with quantum kernel methods was carried out
recently (Peters et al., 2021). The encoding of data into
quantum circuits is characterized by the quantum Fisher
information metric (Haug, Self, and Kim, 2021). For hard-
ware-efficient PQCs, the kernel can be related to radial basis
function kernels (Haug and Kim, 2021b; Haug, Self, and Kim,
2021). Measuring the quantum kernel using the SWAP or
inversion test scales as D2. Using randomized measurements
(Elben et al., 2020), the kernel can be computed in a time that
scales linearly with the dataset size D, which allows one to
process large datasets with quantum computers (Haug, Self,
and Kim, 2021). Note also that a Gaussian boson sampling
device (see Sec. III.B) can be used for computing kernel
functions (Schuld, Brádler et al., 2020).
Another approach is to use a variational circuit UðθÞ and

directly perform the classification task in the reproducing
kernel Hilbert space without using Eq. (94). This approach is
sometimes referred to as a variational quantum classification.
Data are also embedded into the state jΦðxÞi and then
processed with a PQC UðθÞ. The resultant state becomes

jΨðx; θÞi ¼ UðθÞjΦðxÞi; ð96Þ

whose parameters are estimated by training it to match the
target states jyii that represent the yi labels of the training
points, i.e., by minimizing the infidelity

CðθÞ ¼
XD
i¼1

½1 − jhyijΨðxi; θÞij2�: ð97Þ

Both methods require a way to encode the data into a
quantum state. There are several strategies to define the
quantum feature map. It is a key step in the success of the
classification task, as the needed nonlinearities must come
from it. Furthermore, to eventually obtain any quantum
advantage, one should search from the set of classically
intractable feature maps. One of the first proposed approaches
was the amplitude encoding (Schuld, Sinayskiy, and
Petruccione, 2016) that is also required in other quantum
algorithms (Harrow, Hassidim, and Lloyd, 2009). This
approach encodes the classical data points into the amplitudes
of a quantum state, i.e., jΦðxÞi ¼ P

i xijeii, where jeii are the
basis states. However, this raw encoding requires (i) knowing
which gates can be used to perform this operation for general

data points and (ii) having an efficient way to extract and
process these amplitudes. Although the first point can even-
tually be overcome by using approaches similar to the ones
used to define a PQC, the second one requires tools such as
quantum random access memory (QRAM) (Giovannetti,
Lloyd, and Maccone, 2008), which is experimentally chal-
lenging for the NISQ era. The studies toward QRAM of Park,
Petruccione, and Rhee (2019) proposed an approach to update
classical data consisting ofM entries of n bits each usingOðnÞ
qubits and OðMnÞ steps. A forking-based sampling scheme
was suggested by Park et al. (2019) to reduce the resource
requirements for state preparation for tasks involving repeated
state preparation and sampling. Building a QRAM remains
challenging and further investigations are required.
In general, the encoding strategies used in state-of-the-art

algorithms are based on introducing classical data points into
the parameters of the quantum circuit gates. As mentioned in
Sec. II.B, one designs a state preparation circuit E that
encodes the data points as follows:

jΦðxÞi ¼ Eðx;ϕÞj0i: ð98Þ

The use of ϕ parameters is optional and they can be subject to
the optimization subroutine too.
Typically, the encoding gates are designed using the same

structure of a layerwise PQC from Eq. (22). Data points are
introduced in layers of single-qubit rotational gates R, as
defined in Eq. (13), followed by an entangling gate unitary W
such as

EðxÞ ¼
YLE

k¼1

�
⊗
n

i¼1
RkðxiÞ

�
Wk; ð99Þ

with LE the total number of encoding layers. The entire VQC
is composed of the encoding circuit and a processing circuit
UVQCðθ; xÞ ¼ EðxÞUðθÞ, which is optimized for the respec-
tive task.
Alternatively, some works propose removing the distinction

between the encoding E and processing U circuits and
introducing the data values along the circuit (Vidal and
Theis, 2019; Lloyd et al., 2020; Nghiem, Chen, and Wei,
2020; Pérez-Salinas, Cervera-Lierta et al., 2020; Schuld,
Sweke, and Meyer, 2020). This strategy, sometimes called
input redundancy or data reuploading, introduces the data
into all circuit layers as follows:

UVQCðθ; xÞ ¼
YL
k¼1

( ⊗
n

i¼1
Rkðxi; θÞ)Wk; ð100Þ

where L is now the total number of circuit layers. This strategy
has proven to be universal when applied to one qubit (Pérez-
Salinas, Cervera-Lierta et al., 2020) and can reconstruct the
coefficients of the Fourier series (Vidal and Theis, 2019;
Schuld, Sweke, and Meyer, 2020).
The inclusion of encoding strategies and data reuploading

can help well-known VQAs such as the VQE. In general, one
of the final goals of a VQE can be the identification of
interesting points on a potential energy surface generated by a
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parametrized Hamiltonian. Commonly, one is interested in the
ground state energy as a function of a Hamiltonian parameter λ
such as the interatomic distance; however, other properties
such as the energy gap between ground state and first excited
state are of interest as well (Kyaw et al., 2021). To learn the
ground state energy as a function of the parameter λ, one often
scans discretely over λ for a particular interval and runs a VQE
to obtain the ground state energy for each of these points. This
can become an additional computational cost, especially if we
are interested only in a particular region of the ground state
profile, such as the parameter λmin, where the ground state
energy is minimal. In that vein, some proposals suggest
encoding the parameters of the Hamiltonian into the PQC
and learning the energy profiles (Mitarai, Yan, and Fujii,
2019). In particular, the meta-VQE algorithm (Cervera-Lierta,
Kottmann, and Aspuru-Guzik, 2021) proposes to encode the λ
into the PQC gates together with the optimization parameters.
One then optimizes an objective function that corresponds to
the sum of expectation values for some M training λ
parameters, i.e., hÔi ¼ P

M
i¼1hHiUðθ;λiÞ. Once the circuit has

been optimized, one can run it again with the new λi to directly
extract an estimation of the ground state without having to
optimize the full circuit again. An extension of this approach
is the optimized meta-VQE algorithm, which consists of using
the optimized parameters from the meta-VQE algorithm as the
starting points for a standard VQE. This approach tries to
avoid the vanishing gradients problem (see Sec. IV.A) by
starting in a particular region of the parameter space instead of
at a random initialization.
Some VQC additionally use the definition of the target state

jyii to construct the objective function and optimize the
fidelity with respect to these states. The goal of the quantum
circuit is to divide and push the quantum states that encode the
data points into two or more regions of the Hilbert space. To
that aim, the parameters of the circuit are trained to match
every encoded state into a particular representative of one of
these regions. Therefore, the more separated that these regions
are, the lower the number of expected misclassified points. As
discussed in Sec. II.C, measuring qubits implies a certain
computational cost. For that reason, many proposals suggest
using the state of only a single qubit to train the entire circuit
(Farhi and Neven, 2018; Schuld, Bocharov et al., 2020). The
cost function estimation reduces to measuring the probability
distribution of one qubit. Other works use a more sophisti-
cated definition of these target states by selecting the most
orthogonal states of the qubit space (Lloyd et al., 2020; Pérez-
Salinas, Cervera-Lierta et al., 2020). This strategy is inspired
by optimal state discrimination (Helstrom, 1969).
Using the nonlinear character of quantum-mechanical

processes as the “reservoir,” the notion of quantum reservoir
computing has been suggested. The reservoir is a highly
nonlinear system whose parameters are arbitrary but fixed.
One can perform reservoir computing by employing a basic
training algorithm such as linear regression at the readout
stage. Since the reservoir parameters are fixed, only the
readout stage parameters are trained. The aforementioned
idea utilizes the high nonlinearities of the reservoir without
requiring the high computational cost of training. The concept
of employing quantum systems as quantum reservoirs was

introduced by Fujii and Nakajima (2017) and Nakajima et al.
(2019). Quantum reservoir computing has been proposed for
many experimental platforms, such as Gaussian states in the
optical setup (Nokkala et al., 2020), two-dimensional fer-
mionic lattices (Ghosh et al., 2019), and nuclear spins
(Negoro et al., 2018). Quantum gate–based implementation
of quantum reservoir computing for NISQ devices has also
been discussed (Chen, Nurdin, and Yamamoto, 2020). A
Gaussian boson sampler (see Sec. III.B) can also be used for
quantum reservoir computing, as suggested by Wright and
McMahon (2019), to perform machine learning tasks such as
classification. NISQ devices have also been used for regres-
sion (Mitarai et al., 2018). Further, distance-based classifiers
using quantum interference circuits were proposed by Schuld,
Fingerhuth, and Petruccione (2017).
Quantum annealing has been also applied to supervised

learning to predict biological data (Li et al., 2018). Here the
quantum annealer is used to train the parameters of the
classification model, which is done by mapping the problem
of finding the optimal parameters to the minimization of
a QUBO.

2. Unsupervised learning

The use of quantum devices to speed up different unsu-
pervised learning tasks has been investigated thoroughly and
had led to different algorithms for generative modeling
(Benedetti et al., 2016, 2017; Benedetti, Garcia-Pintos et al.,
2019), clustering (Otterbach et al., 2017), etc. (Lloyd,
Mohseni, and Rebentrost, 2013). An analysis of quantum
speedup in unsupervised learning for fault-tolerant algorithms
was presented by Aïmeur, Brassard, and Gambs (2013). The
task of learning probabilistic generative models, in particular,
has been of interest to the QML community because of the
potential advantage quantum computers may exhibit over their
classical counterparts in the near future (Perdomo-Ortiz et al.,
2018). For the advantages rendered by quantum correlations
such as contextuality and Bell nonlocality for generative
modeling, see Gao et al. (2021).
Generative modeling involves learning the underlying

probability distribution from a finite set of samples from a
dataset and generating new samples from the distribution.
There have been several proposals for using PQCs as models
for generative learning (Amin et al., 2018; Benedetti, Realpe-
Gómez, and Perdomo-Ortiz, 2018; Benedetti, Garcia-Pintos
et al., 2019), including quantum Boltzmann machines, quan-
tum circuit Born machines, quantum assisted Helmholtz
machines, and quantum generative adversarial networks
(Amin et al., 2018; Benedetti, Realpe-Gómez, and
Perdomo-Ortiz, 2018; Benedetti, Garcia-Pintos et al., 2019;
Benedetti, Lloyd et al., 2019). We now discuss some of these
proposals in detail.
Quantum Boltzmann machines.—The quantum Boltzmann

machine (QBM) (Amin et al., 2018) extends the classical
Boltzmann machine (Ackley, Hinton, and Sejnowski, 1985), a
neural architecture capable of several tasks, including gen-
erative modeling of data. These models are inspired by the
Boltzmann distribution over the Ising model in the classical
case and the Boltzmann distribution over the transverse-field
Ising model for the quantum case. Such a network consists of
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a mixture of visible and hidden vertices connected by
weighted edges. The visible vertices function as both inputs
and outputs to the network, while the hidden vertices add extra
degrees of freedom to the network.
The QBM can be modeled with the Hamiltonian

H ¼ −
XN
a

ðbaσ̂az þ Γaσ̂
a
xÞ −

X
a;b

ωabσ̂
a
z σ̂

b
z ; ð101Þ

where ba, Γa, and ωab are the parameters to be fine-tuned to
generate the training data. The marginal probability that the
visible variables are in a given state v is given by
Pv ¼ TrðΛvρÞ. Here we define Λv ¼ ½⊗

ν
ð1þ vνσ̂νzÞ=2�⊗Ih

as a projector onto the subspace spanned by the visible
variables tensored with the identity acting on the hidden
variables and ρ ¼ e−H=Z as a density matrix, with Z the usual
partition function Z ¼ Trðe−HÞ. The objective of training the
QBM is to match the family of probability distributions Pv

with the family inherent to the data Pdata
v for arbitrary v. This is

achieved by minimizing the following negative log-likelihood
measure:

L ¼ −
X
v

Pdata
v log

TrΛve−H

Tre−H
: ð102Þ

The gradients of L with respect to the Hamiltonian parameters
are difficult to calculate by sampling the Boltzmann machine,
either classically or in the quantum variant. Methodologies of
approximating these gradients are necessary to advance the
deployment of QBMs.
The QBM can be trained to be a generator or a discriminator

with respect to the distribution it is trained to mimic. Consider
the joint distribution of input and output variables x and y,
respectively. In the discriminative case, the objective is to
minimize negative log-likelihood with respect to Pyjx. For
generative learning, the goal is to learn the joint distribution
Px;y directly.
The implementation of the QBM designed by Amin et al.

(2018) found that a ten-qubit QBM with only visible vertices
was able to learn a mixture of randomly generated Bernoulli
distributions more effectively than a classical Boltzmann
machine and performed better in generative applications.
Kieferová and Wiebe (2017) found that a QBM outperformed
classical Boltzmann machines in generative training to repro-
duce small Haar-random states. Extensions of the QBM, such
as the variational quantum Boltzmann machine (VQBM)
(Zoufal, Lucchi, and Woerner, 2020), have improved upon
trainability. Using ideas similar to those of Zoufal, Lucchi, and
Woerner (2020), Shingu et al. (2020) also proposed VQBM.
Additionally, QBMs have shown potential in reinforcement
learning (Crawford, Levit et al., 2019), where they achieve
better fidelity than restricted Boltzmann machines or deep
Boltzmann machines with multiple layers of hidden vertices.
To suit NISQ devices, Verdon, Broughton, and Biamonte
(2017) suggested that QBMs can be approximated using
QAOA as a subroutine and Anschuetz and Cao (2019)
proposed an efficient method for training QBMs with

NISQ devices based on the eigenstate thermalization
hypothesis.
Quantum circuit Born machines.—PQCs can function as

generative models to sample from probability distributions.
The quantum circuit Born machine (QCBM) (Benedetti,
Garcia-Pintos et al., 2019) outputs bit strings x sampled from
measurements in the computational basis of a quantum circuit
UðθÞ, with the probability of each bit string given by the Born
rule [pθðxÞ ∼ jhxjUðθÞj0ij2]. The goal is that the distribution
of the QCBMmatches the one from a given target distribution.
QCBMs can prepare classical probability distributions as

well as entangled quantum states by training the QCBM to
match the probability distribution corresponding to the desired
quantum state (Benedetti, Garcia-Pintos et al., 2019). Liu and
Wang (2018) proposed the training of QCBMs using the
gradients of a PQC using the maximum mean discrepancy
loss, which calculates the difference of the sampled output
from the quantum circuit and the desired distribution in a
kernel feature space.
QCBMs are well suited to be run on current NISQ hardware

and can serve as benchmarks (Hamilton, Dumitrescu, and
Pooser, 2019; Leyton-Ortega, Perdomo-Ortiz, and Perdomo,
2019; Zhu et al., 2019) and have been applied to tasks such as
the generation of images (Rudolph et al., 2020) or financial
data (Alcazar, Leyton-Ortega, and Perdomo-Ortiz, 2020;
Coyle et al., 2021). It has been shown that QCBMs can
potentially outperform classical computers, as they are able to
sample from probability distributions that are difficult for
classical computers (Coyle et al., 2020; Du et al., 2020).
Quantum generative adversarial networks.—Generative

adversarial learning (Goodfellow et al., 2014) was a major
recent breakthrough in machine learning and has become a
powerful tool in the machine learning community for image
and video generation as well as materials discovery.
Generative adversarial networks (GANs) consist of two net-
works, a generator FGðz; θgÞ and a discriminator FDðx; θdÞ.
They are parametrized with θg and θd, respectively, and play
the following adversarial game:

min
θg

max
θd

[Ex∼pdataðxÞflog½FDðxÞ�g

þ Ez∼pzðzÞ( logf1 − FD½FGðzÞ�g)]: ð103Þ

In Eq. (103) pzðzÞ is a fixed prior distribution, pdataðxÞ is the
target distribution, x is the data sampled from pdataðxÞ, and z is
the noise sampled from pzðzÞ. The training of GANs is carried
iteratively until the generator produces a distribution indis-
tinguishable from the target distribution.
A quantum version of GANs was proposed theoretically by

Dallaire-Demers and Killoran (2018) and Lloyd and
Weedbrook (2018) and further developed for near-term
quantum devices by Romero and Aspuru-Guzik (2019),
Zeng et al. (2019), and Situ et al. (2020), where PQCs are
used for adversarial learning instead of classical neural
networks.
The different adaptions of quantum GANs can be divided

into different categories depending on whether the data and
networks are classical or quantum (Romero and Aspuru-
Guzik, 2019). There have been different studies with hybrid
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models of GANs using both classical and quantum data and it
has been shown that the training of these networks is robust to
a moderate level of noise (Anand et al., 2020).
The training of quantum GANs has been demonstrated

experimentally on various quantum processing units for a
variety of tasks, including quantum state estimation (Hu et al.,
2019), image generation (H.-L. Huang et al., 2020; K. Huang
et al., 2020), generation of continuous distributions (Anand
et al., 2020), and learning distribution (Zoufal, Lucchi, and
Woerner, 2019; Nakaji and Yamamoto, 2020b).

3. Reinforcement learning

The general framework of RL involves an agent interacting
with an environment attempting to maximize an underlying
reward function. The mathematics of RL can be captured
using the Markov decision process (MDP) (Sutton and Barto,
2018). A MDP is a 4-tuple ðS; A; R; PÞ, where S is the set of
all possible valid states, A is the set of all possible actions, R is
the reward function, i.e., a map R∶S × A × S → R, and P is
the transition probability, i.e., a map P∶S × A → ½0; 1�.
Specifically, the transition probability Pðs̃js; aÞ represents
the probability of the transition to state s̃ given that the
present state is s and the action a has been taken. The term
“Markov” in MDP means that the transitions are memoryless
and depend only on the current state and action. The agents in
RL learn via trial and error. For a successful training, a proper
balance between the exploration of unknown strategies and
the exploitation of prior experience is required.
RL models are trained via agent-environment interactions.

At the beginning of time step t, the environment state is st.
From the set A, the agent selects an action at. The transition
probability dictates the next state of the environment stþ1 and
the agent gets the reward rtþ1 based on the reward function R.
The agent-environment interaction yields a series of states and
actions of the form τ ¼ ðs1; a1; s2; a2;…; sH; aHÞ. The afore-
mentioned series is called a trajectory and the number of
interactions (H) in an episode is called horizon. Suppose that
the probability of a trajectory is PðτÞ and the corresponding
cumulative reward is RtotðτÞ. The expected reward is
then

P
τ PðτÞRtotðτÞ.

By harnessing quantum-mechanical phenomena such as
superposition and entanglement, one can expect to achieve
speedups in the RL tasks (Dong et al., 2008; Paparo et al.,
2014; Dunjko, Taylor, and Briegel, 2016, 2017). The afore-
mentioned intuition has led to recent work toward quantum
RL (Dunjko, Taylor, and Briegel, 2017; Cornelissen, 2018)
We discuss the essence of quantum RL by providing a

synopsis of the quantum agent-environment (AE) paradigm.
For details, see Dunjko, Taylor, and Briegel (2017). In the AE
paradigm, agent and environment are modeled via sequences
of unitary maps for the agent fEj

Agj and the environment
fEj

Egj, respectively. The agent and environment have access to
memory registers belonging to Hilbert spaces HA and HE.
The communication register between the agent and the
environment belongs to the Hilbert space HC. The agent
maps fEj

Agj act on HA ⊗ HC and the environment maps

fEj
Egj act on HE ⊗ HC. The agent and environment interact

with each other by applying their maps sequentially. The set of

actions and states correspond to an orthonormal set of
vectors fjaija ∈ Ag and fjsijs ∈ Sg, respectively. The
Hilbert space of the communication register is given by
HC ¼ spanðjyijy ∈ S ∪ AÞ. The classical AE paradigm cor-
responds to the case where the agent and environment maps
are classical.
Quantum RL has been studied for algorithms such as the

state-action-reward-state-action algorithm or Q-learning (Jerbi
et al., 2019), which are some of the elementary RL algorithms
(Sutton and Barto, 2018).
In the setup of variational quantum circuits, RL has been

explored for small input sizes (Chen, Yang et al., 2020). Chen,
Yang et al. revealed the possibility of a quadratic advantage in
parameter space complexity. Using better encoding schemes,
Lockwood and Si (2020b) showed a case of RL with
variational quantum circuits for larger input sizes. In a
follow-up work, Lockwood and Si (2020a) demonstrated
the possibility of dealing with the relatively complicated
example of playing Atari games.
RL with quantum annealers was also investigated by

Crawford et al. (2016). In their framework, they explored
RL with QBMs. A detailed study of basic RL protocols with
superconducting circuits was provided by Lamata (2017).
Some interesting proposals of RL with trapped ions and
superconducting circuits were also recently proposed
(Cárdenas-López et al., 2018). For quantum eigensolvers,
RL has been investigated as well (Albarrán-Arriagada et al.,
2020). RL with an optical setup was discussed by Yu
et al. (2019).

C. Combinatorial optimization

Given a finite set of objects S, combinatorial optimization
aims to find the optimal object from the set S. It is a
subdiscipline of mathematical optimization theory, with
applications in diverse fields such as artificial intelligence,
logistics, supply chains, and theoretical computer science.
Some typical examples of combinatorial optimization prob-
lems are the traveling-salesman problem (Lenstra and Kan,
1975), job-shop scheduling (Manne, 1960), max cut (Festa
et al., 2002), and Boolean satisfiability (Tovey, 1984).
To understand combinatorial optimization, we consider the

canonical problem of Boolean satisfiability. Boolean variables
admit two truth values, TRUE and FALSE. These can be
combined together using operators AND or a conjunction
(denoted by ∧), NOT or a negation (denoted by ¬), and OR or a
disjunction (denoted by ∨). These combinations are called
Boolean expressions. A Boolean expression is said to be
satisfiable if it can be TRUE for appropriate assignment of
logical values to its constituent Boolean variables. Given a
Boolean expression E, the Boolean satisfiability problem
(SAT) consists of checking if E is satisfiable. The well-known
Cook-Levin theorem showed that SAT is NP complete (Arora
and Barak, 2009).
Every combinatorial optimization problem can be expressed

as m clauses over n Boolean variables. A Boolean variable is
known as the positive literal, while its negation is known as the
negative literal. A disjunction of literals is known as the clause
or constraint. For every constraintCα for α ∈ f1; 2;…; mg and
every string z ∈ f0; 1gn, we define
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CαðzÞ ¼


1 if z satisfiesCαðzÞ;
0 if z does not satisfy:

The goal of a combinatorial optimization problem is to find a
string that maximizes the following objective function:

CðzÞ ¼
Xm
α¼1

CαðzÞ; ð104Þ

which counts the number of satisfied constraints.
Approximate optimization algorithms such as QAOA seek

to find a solution z (usually a bit string) with a desired
approximation ratio r� ≤ CðzÞ=Cmax, where Cmax is the
maximum value of CðzÞ. Using CðzÞ and computational basis
vectors jeii ∈ C2n for i ¼ 1;…; 2n, one can construct the
problem Hamiltonian as that in Eq. (18) and thus map the
combinatorial optimization problem to a Hamiltonian ground
state problem. The NISQ algorithms for combinatorial opti-
mization discussed next are listed in Table III of the
Supplemental Material (824).

1. Max-cut problem

Max cut is an important combinatorial optimization prob-
lem with applications in diverse fields such as theoretical
physics and circuit design. In theoretical physics, the max-cut
problem is equivalent to finding the ground state of a spin
glass Hamiltonian. Given a graphG ¼ ðV; EÞwith a vertex set
V and an edge set E, a cut is a partition of the elements of V
into two disjoint subsets. Given a weight function w∶E → Rþ

such that the edge ði; jÞ ∈ E has a weight Eij, the max-cut
problem consists of finding a cut K ∪ K̄ ¼ V that maximizes

X
i∈K;j∈K̄;ði;jÞ∈E

wij: ð105Þ

For every vertex vi ∈ V, we associate a variable xi that can
take the values �1. Given an arbitrary cut K ∪ K̄ ¼ V, we
define xi ¼ 1 if vi ∈ K and −1 otherwise. The max-cut
problem is then equivalent to the following quadratic program:

max
X

ðvi;vjÞ∈E
wij

1 − xixj
2

; ð106Þ

which is subject to xi ∈ f−1;þ1g ∀ vi ∈ V.
Considering n vertices as n qubits in the computational

basis, we can classify qubits by assigning quantum state j0i or
j1i. For the classical objective function in the optimization
program from Eq. (106), we can use the following
Hamiltonian as the problem Hamiltonian:

HP ¼
X

ði;jÞ∈E

1

2
ðI − σ̂iz ⊗ σ̂jzÞ≡

X
ði;jÞ∈E

Cij: ð107Þ

It has been shown that it is NP hard to achieve an
approximation ratio of r� ≥ 16=17 ≈ 0.9412 for max cut on
all graphs (Håstad, 2001). For the QAOA with p ¼ 1, it has
been shown that for a general graph

hCiji ¼ 1
2
þ 1

4
ðsin 4β sin γÞðcosdiγ þ cosdjγÞ

− 1
4
ðsin2βcosdiþdj−2λijγÞð1 − cosλij2γÞ; ð108Þ

where di þ 1 and dj þ 1 denote the degrees of vertices i and
j, respectively, and λij is the number of triangles containing
the edge ði; jÞ in the graph (Wang, Hadfield et al., 2018).
Here γ and β refer to the QAOA parameters from Eq. (20).
Analytical results for general Ising optimization problems
with p ¼ 1 have also been found (Ozaeta, van Dam, and
McMahon, 2020).
In the case of unweighted 3-regular (u3R) graphs, the

previously mentioned result gives the approximation ratio of
0.692, which is consistent with the pioneering result by Farhi,
Goldstone, and Gutmann (2014). In comparison, the best
classical algorithms to date gives the approximation ratio of
r� ≈ 0.8786 for general graphs (Goemans and Williamson,
1995), and r� ≈ 0.9326 for u3R graphs (Halperin, Livnat, and
Zwick, 2004) using semidefinite programming. While QAOA
for p ¼ 1 does not outperform its classical counterparts for the
max-cut problem, QAOAwas found to surpass the Goemans-
Williamson bound for larger values of p (Crooks, 2018).
QAOA was also applied to the clustering problem of

unsupervised learning by mapping it to the max-cut problem
(Otterbach et al., 2017). It was shown that by fixing the
QAOA parameters and selecting the typical problem instances
from a reasonable distribution, the objective function value
concentrates; i.e., the objective function value is almost
independent of the problem instance (Brandao et al., 2018).
This implies that the parameters optimized for one instance
can be used for other typical instances, which would drasti-
cally reduce the optimization cost. Similar concentration
behavior was also reported for the Sherrington-Kirkpatrick
model in the infinite size limit (Farhi et al., 2019).
Recently a nonlocal version of QAOA called recursive

QAOA (RQAOA) was proposed (Bravyi et al., 2019). It
consists of running a QAOA as a subroutine on a specific
problem with N qubits and measuring the expectation values
of the correlations between all qubit pairs ði; jÞ with
Mij ¼ hσizσjzi. One then picks out the pair of qubits ðn;mÞ
that have maximal absolute value of correlation
n;m ¼ argmaxði;jÞjMijj. ForMnm > 0, the selected qubit pair
ðn;mÞ are positively correlated and likely to be in the same
state, whereas for Mnm < 0 they are anticorrelated and likely
to be in the opposite state. This correlation is fixed as a
constraint on the problem by fixing the state of the qubit
σmz ¼ sgnðMnmÞσnz . With this constraint, one of the two qubits
can be removed, as its state is completely determined by the
other, thus reducing the total qubit number by 1. This
procedure is repeated for the reduced problem of size N −
1 qubits; i.e., one again runs the QAOA subroutine, measures
the correlations, and fixes the qubit pairs with maximal
correlation. The RQAOA algorithm is run recursively until
the size of the problem is reduced to a small number of qubits
such that it can be easily solved classically. When RQAOA is
run with the QAOA subroutine of depth p ¼ 1, it can be
efficiently simulated on a classical computer, which can serve
as an important benchmark with classical algorithms (Bravyi
et al., 2019). Numerical experiments with higher p suggest
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similar or better performance on combinatorial problems than
with other classical algorithms (Bravyi, Kliesch et al., 2020;
Egger, Marecek, and Woerner, 2020).
Finally, QAOA with depth p ¼ 1 has been investigated in

comparison with quantum annealing (Streif and Leib, 2020).
In the limit of infinite depth p, QAOA is equivalent to
quantum annealing; see Sec. II.B.1 for QAOA and
Sec. III.A for quantum annealing. However, QAOA can
already outperform quantum annealing at depth p ¼ 1. For
specific problems, QAOA arrives at the correct solution with
unit probability, whereas quantum annealing struggles to find
the solution (Streif and Leib, 2020). This shows that QAOA is
strictly more powerful than quantum annealing.

2. Other combinatorial optimization problems

While the usage of QAOA on max cut has been studied
extensively, QAOA also has applications in other important
combinatorial optimization problems such as the max-k vertex
cover problem, which seeks the set of k vertices on a graph
that maximizes the number of edges incident on the vertices
(Cook, Eidenbenz, and Bärtschi, 2019). Other applications of
QAOA are for the exact-cover problem with applications to
the tail-assignment problem (Bengtsson et al., 2020; Vikstål
et al., 2020), lattice protein folding (Fingerhuth, Babej, and
Ing, 2018; Robert et al., 2021), the knapsack problem as
applied to battery revenue optimization (de la Grand’rive and
Hullo, 2019), multicoloring graph problems (Oh et al., 2019),
maximum independent set problems with applications to
scheduling (Choi, Oh, and Kim, 2020; Saleem, 2020), and
the vehicle routing problem (Utkarsh, Behera, and Panigrahi,
2020). Streif et al. (2021) described how to utilize QAOA to
solve the binary paint shop problem and showed that in the
infinite size limit QAOA with constant depth can better
classical heuristics on average. An adiabatically assisted
approach was suggested by Garcia-Saez and Latorre (2018)
to tackle combinatorial optimization problems. Investigations
involving a variational Grover search could be helpful to solve
combinatorial optimization problems (Morales, Tlyachev, and
Biamonte, 2018; Zhang, Rao et al., 2021). Gaussian boson
sampling (see Sec. III.B) has been used to assist in a wide
variety of combinatorial optimization problems (Arrazola,
Bromley, and Rebentrost, 2018; Bromley et al., 2020), most
prominently to solve the max-clique algorithm (Arrazola and
Bromley, 2018; Banchi, Quesada, and Arrazola, 2020). This
has applications in predicting molecular docking configura-
tions (Banchi et al., 2020), computing vibrational spectra of
molecules (Huh et al., 2015), and electron-transfer reactions
(Jahangiri, Arrazola, and Delgado, 2020). Using NISQ devi-
ces, an approach was suggested by Metwalli, Gall, and Van
Meter (2020) for the triangle finding problem and its k-clique
generalization.
Quantum annealing, which has been the inspiration of

QAOA, is a prominent platform that has been applied to
various combinatorial optimization problems and its applica-
tions, such as protein folding (Perdomo-Ortiz et al., 2012),
which was reviewed by Hauke et al. (2020). As gate-based
devices mature, it will open the possibility for experimental
benchmarking of QAOA against state-of-the-art solvers for
suitable real-world applications, as performed by Perdomo-

Ortiz et al. (2019) in the context of quantum annealing
machines.

D. Numerical solvers

We now discuss NISQ algorithms used to solve numerical
problems such as factoring, singular value decomposition,
linear equations, and nonlinear differential equations, which
are listed in Table IV of the Supplemental Material (824).

1. Variational quantum factoring

The factoring problem accepts a composite positive integer
N as input and returns its prime factors as output. There is no
known efficient classical algorithm for prime factorization and
the hardness of factoring is used to provide security in the
Rivest-Shamir-Adleman (RSA) public-key cryptosystems.
Shor’s algorithm is a polynomial-time quantum algorithm
for the factoring problem (Shor, 1999), which implies that
prime factorization is in BQP and hence has been extensively
investigated by quantum computing researchers; for details
see Anschuetz et al. (2019) and references therein. However,
the resource estimates for implementing the Shor’s algorithm
are far beyond the capabilities of the NISQ era. A detailed
analysis has shown that factoring a 2048-bit RSA number
would necessitate a quantum processor with 105 logical qubits
and a circuit depth of the order of 109 to run for roughly
ten days (Van Meter et al., 2010; Jones et al., 2012). On a
photonic architecture with 1.9 × 109 photonic modules, fac-
toring a 1024-bit RSA number is expected to require around
2.3 yr (Devitt et al., 2013). To tackle the factoring problem in
near-term quantum devices, it is imperative to develop NISQ-
era compatible alternatives to Shor’s algorithm.
The factoring problem can be mapped to the ground state

problem of an Ising Hamiltonian (Burges, 2002; Dattani and
Bryans, 2014). To understand this mapping, we consider the
factoring of m ¼ p × q. Suppose that the binary representa-

tions of m, p, and q are m ¼ Pnm−1
k¼0 2imk, p ¼ Pnp−1

k¼0 2ipk,

and q ¼ Pnq−1
k¼0 2iqk. Here mk ∈ f0; 1g is the kth bit of m and

the total number of bits for m is denoted by nm. A similar
notation has been employed for p and q. Since m ¼ p × q,
this induces nc ¼ np þ nq − 1 constraints on the individual
bits of m, p, and q,

Xi

j¼0

qipi−j þ
Xi

j¼0

zj;i −mi −
Xnc
j¼1

2jzi;iþj ¼ 0 ð109Þ

for i ∈ ½0; ncÞ, where the carry bit from position i to position j
is represented by zi;j. The constraint i in Eq. (109) induces
the clause Ci≡P

i
j¼0qipi−jþ

P
i
j¼0 zj;i−mi−

Pnc
j¼1 2

jzi;iþj

over Z such that factoring can be modeled as an assignment
of binary variables fmig, fpig, and fqig that solvesPnc−1

i¼0 C2
i ¼ 0.

One can map the binary variables to quantum observables
to quantize the clause Ci to Ĉi using the mapping bk →
ð1=2Þð1 − σzb;kÞ and obtain the Hamiltonian HP ¼ Pnc−1

i¼0 Ĉi
2,

which we refer to as the factoring Hamiltonian. Note that the
factoring Hamiltonian is a 4-local Ising Hamiltonian.
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By using the aforementioned ideas, one can use NISQ
algorithms for the ground state problem to tackle the factoring
problem; see Secs. VI.A.3 and VI.C. Anschuetz et al. (2019)
employed QAOA to find the ground state of the factoring
Hamiltonian with the variational quantum factoring (VQF)
algorithm. Numerical simulations were provided for numbers
as high as 291 311. For a recent experimental realization and a
detailed analysis of VQF, see Karamlou et al. (2020).

2. Singular value decomposition

Given a matrix M ∈ Cm×n, the singular value decomposi-
tion (SVD) provides a factorization of the form M ¼ UΣV†,
where U ∈ Cm×m is a unitary matrix, Σ ∈ Rm×nþ is a rectan-
gular diagonal matrix with non-negative real diagonal entries,
and V ∈ Cn×n is a unitary matrix. The diagonal entries of Σ
are called the singular values of matrixM. The columns of the
unitary matrices U and V are called left-singular and right-
singular vectors of M. Using Dirac notation, one can write

M ¼
Xr

j¼1

djjujihvjj; ð110Þ

where dj; juji, and jvji are singular values, left-singular
vectors, and right-singular vectors. The rank of matrix M is
r and is equal to the number of nonzero singular values.
SVD finds applications in calculating the pseudoinverse

(Gregorcic, 2001), solving homogeneous linear equations
(Klema and Laub, 1980), signal processing (Vandewalle
and De Moor, 1991), and recommendation systems (Koren,
Bell, and Volinsky, 2009). Moreover, the Schmidt decom-
position for studying the entanglement of bipartite quantum
states is related to SVD.
In the quantum information context, the SVD can be used to

compute the Schmidt decomposition of bipartite quantum
states. For a quantum state jψi ∈ HA ⊗ HB, the Schmidt
decomposition is given by

jψi ¼
X
i

dijuiijvii; ð111Þ

where di are non-negative real numbers such that
P

i d
2
i ¼ 1.

Moreover, fjuiigi and fjviigi correspond to orthonormal basis
sets forHA andHB, respectively. The number χ of nonzero di
is called the Schmidt rank of the quantum state jψi and is used
to quantify the bipartite entanglement. To calculate the
Schmidt decomposition by performing the SVD of a matrix
A, one can write the bipartite quantum state as a matrix
jψi ¼ P

i;j Aijjiijji, where jii and jji are the computational
basis states of each qubit.
Bravo-Prieto, García-Martín, and Latorre (2020) provided a

NISQ algorithm to perform SVD of pure bipartite states.
Starting with two unitary circuits that act on different
bipartitions of the system, they variationally determined the
singular values and singular vectors by training the circuits on
the exact coincidence of outputs. The central idea of their
method is to variationally find circuits that provide the
following transformation of the initial quantum state jψiAB
with Schmidt rank χ:

UA ⊗ VBjψiAB ¼
Xχ
i¼1

λieiγi jeiiAjeiiB; ð112Þ

where UAjviiA ¼ eiαi jeiiA and VBjviiB ¼ eiβi jeiiB such that
αi ¼ βi þ γi ∈ ½0; 2πÞ and fjekiA;Bgk are the computational
basis states inHA;B. Using their algorithm, they also suggested
the possibility of implementing SWAP gates between parties A
and B without the requirement of any gate connecting the two
subsystems.
Using variational principles for singular values and the Ky

Fan theorem (Fan, 1951), Wang, Song, and Wang (2020)
provided an alternative NISQ algorithm for SVD. They
provided a proof of principle application of their algorithm
in an image compression of handwritten digits. They also
discussed the applications of their algorithm in recommen-
dation systems and polar decomposition.

3. Linear system problem

Systems of linear equations play a crucial role in various
areas of science, engineering, and finance. When one is given
a matrix A ∈ CN×M and b ∈ CN , the task of the linear system
problem consists of finding x ∈ CM such that

Ax ¼ b: ð113Þ

Depending on the dimensions M and N, the linear system
problem takes various forms. If M ¼ N and A is invertible,
x ¼ A−1b is unique. If M ≠ N, the linear system problem can
be underdetermined or overdetermined. For simplicity, it is
natural to assume the matrix A to be square, i.e.,M ¼ N. If the
matrix A has at most s nonzero elements per row or column,
the linear system problem is called s sparse.
The quantum version of the linear system problem, known

as the quantum linear system problem, assumes A to be an
N × N Hermitian matrix and b to be a unit vector; i.e., it can
be represented as a quantum state jbi ¼ P

N
i¼1 bijeii. The

quantum linear system problem thus is formulated as

Ajxi ¼ jbi → jxi ¼ A†jbi: ð114Þ

The first quantum algorithm proposed for solving the quantum
linear system problem was the Harrow-Hassidim-Lloyd
(HHL) algorithm (Harrow, Hassidim, and Lloyd, 2009).
Apart from the size N of the matrix A and its sparsity s,
the two dominant factors that determine the run-time of the
algorithm are the condition number κ of the matrix A and the
additive error ϵ corresponding to the solution. The condition
number is given by the ratio of maximal and minimal singular
values of A. The best classical algorithm for the linear system
problem is the conjugate gradient method with a run-time
complexity O½Nsκ log ð1=ϵÞ�. On the other hand, the original
HHL algorithm for the quantum linear system problem has a
run-time complexity O½logðNÞs2κ2=ϵ�. Further works on the
HHL algorithm have improved the scaling of κ to linear
(Ambainis, 2012) and the error dependence to poly½log ð1=ϵÞ�
(Childs, Kothari, and Somma, 2017). However, the imple-
mentation of the HHL algorithm requires a fault-tolerant
architecture, and hence its guarantees cannot be leveraged

Kishor Bharti et al.: Noisy intermediate-scale quantum algorithms

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015004-49



on NISQ devices. The largest quantum linear system problem
solved on a gate-based quantum computer was implemented
on a NMR processor for N ¼ 8 (Wen et al., 2019).
Recently VQA-based implementations of the quantum

linear system problem were proposed (Bravo-Prieto et al.,
2019; Huang, Bharti, and Rebentrost, 2019; Xu et al., 2019).
When one is given a quantum linear system problem with
input A and jbi, the idea is to find the ground state of the
following Hamiltonian:

HðuÞ ¼ AðuÞP⊥
þ;bAðuÞ; ð115Þ

where AðuÞ and P⊥
þ;b are defined as

AðuÞ≡ ð1 − uÞσz ⊗ I þ uσx ⊗ A; ð116Þ

P⊥
þ;b ¼ I − jþ; bihb;þj: ð117Þ

Both A and jbi are assumed to be constructed efficiently with
a quantum circuit, i.e., A ¼ PKA

k¼1 βkUk and jbi ¼ Ubj0i, with
KA ¼ O½polyðlogNÞ�. The phase in βk can be absorbed into
Uk, and hence one can assume that βk > 0. For u ¼ 1, the
Hamiltonian in Eq. (115) has a unique ground state jþijx⋆i ¼
jþiA−1jbi=kA−1jbik2 with zero ground state energy. After
removing the ancilla, the ground state is proportional to
A−1jbi. Thus, one can define the following loss function:

LHðjxiÞ ¼ hþ; xjHð1Þjþ; xi: ð118Þ

Without the ancilla, Eq. (118) can be written as LHðjxiÞ ¼
hxjA2jxi − hxjAjbihbjAjxi.
Huang, Bharti, and Rebentrost (2019) analyzed the opti-

mization landscape for VQA-based optimization of the loss
function of Eq. (118) and showed the presence of barren
plateaus that persist independent of the architecture of the
quantum circuit for generating jxðθÞi. Even techniques based
on adiabatic morphing (Garcia-Saez and Latorre, 2018) fail to
evade the effect of the barren plateaus. To circumvent the
barren plateau problem, Huang, Bharti, and Rebentrost (2019)
proposed a classical-quantum hybrid state [see also Sec. III.E
and Eq. (42)] x ¼ P

r
i¼1 αijψ iðθiÞi, where αi ∈ C and θi ∈

Rki for i ∈ f1; 2;…; rg. Note that θi are the usual variational
parameters and αi are the combination parameters that are
stored on a classical computer. The state x is not explicitly
created on the quantum processor and may not be normalized.
To solve the quantum linear system problem, one minimizes
the following loss function:

LRðxÞ ¼ kAx − jbik22 ¼ x†A†Ax − 2RefhbjAxg þ 1: ð119Þ

Since optimization with respect to θi suffers from the barren
plateau problem, one can fix and subsequently drop the
variational parameter θi.
The optimization landscape is convex in

α ¼ ðα1; α2;…; αrÞ. Starting with jψ1i ¼ jbi, other quantum
states can be generated using the Ansatz tree approach of
Huang, Bharti, and Rebentrost (2019). It was proved that
finding the combination parameters of jψ1i; jψ2i;…; jψri to
minimize LRð

P
r
i¼1 αijψ iiÞ is BQP complete. Moreover, using

OðK2
Ar

2=ϵÞ measurements one can find a ϵ-suboptimal sol-
ution. With this approach, linear systems as high as 2300 × 2300

can be solved by considering cases that are classically
tractable.

4. Nonlinear differential equations

Nonlinear differential equations (NLDEs) are a system of
differential equations (DEs) that cannot be expressed as a
linear system. The numerical approaches to tackle DEs can be
local or global. Local methods employ numerical differ-
entiation techniques (Butcher, 1987) such as Runge-Kutta
methods or discretization of the space of variables. Global
methods represent the solution via a suitable basis set, and the
goal is to find optimal coefficients (Gottlieb and Orszag,
1977). In many cases, as the number of variables or the
nonlinearity of the differential equations increase, finding
solutions becomes challenging. To achieve higher accuracy,
local methods require a fine grid, which requires a high
computational cost. In the case of global methods, high
accuracy necessitates a large number of elements in the basis
set, leading to more extensive resource requirements. To
tackle resource challenges, quantum algorithms are proposed.
Linear DEs can be reexpressed as a system of linear

equations using the finite-difference method, and one can
employ NISQ linear system algorithms to tackle the problem;
see Sec. VI.D.3. For a recent theoretical proposal with
experimental work on linear differential equations, see Xin
et al. (2020). However NLDEs defy this approach for large
nonlinearities.
A canonical example of a NLDE appearing in quantum

theory is the 1D nonlinear Schrödinger equation
½−ð1=2Þðd2=dx2Þ þ VðxÞ þ gjfðxÞj2�fðxÞ ¼ EfðxÞ. Here E
denotes energy, g quantifies nonlinearity, and V is the external
potential. Recently NISQ algorithms for NLDEs were pro-
posed. Lubasch et al. (2020) used ancillary quantum registers
and controlled-multiqubit operations to implement nonlinear-
ities to simulate the nonlinear Schrödinger equation. Haug and
Bharti (2020) proposed the nonlinear quantum assisted
simulator (NLQAS) to tackle NLDEs without any controlled
unitaries. Using NLQAS, they simulated this equation for
eight-qubit systems. NLDEs were also studied by Gaitan
(2020) for fluid dynamics problems. Using differentiable
quantum circuits, Kyriienko, Paine, and Elfving (2020)
proposed an interesting approach for solving NLDEs via
global methods.

E. Other applications

In this section, we cover other applications for which NISQ
algorithms can provide promising improvements. They are
listed in Table VI of the Supplemental Material (824).

1. Quantum foundations

One of the first experiments in digital quantum computers
were the Bell nonlocality tests known as Bell inequalities
(Brunner et al., 2014). Those experiments computed a type of
Bell inequalities known as Mermin inequalities in up to five
superconducting quantum qubits. The experiment consisted of
preparing the GHZ state (Greenberger et al., 1990), measuring
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it in a particular basis, and obtaining the expectation value of
the Mermin operator (Alsina and Latorre, 2016). These
nonlocality tests can be extended to higher dimensions by
controlling quantum levels beyond the qubit subspace.
Cervera-Lierta et al. (2021) experimentally generated a qutrit
GHZ state using a programmable device controlled with
QISKIT pulse software (Alexander et al., 2020), which repre-
sents the first step toward performing a GHZ test.
In the context of VQA, the nonclassicality in VQEs is

examined using contextuality, which is a nonclassical feature
of quantum theory (Amaral and Cunha, 2018). Using the
notion of “strong contextuality,” Kirby and Love, (2019)
separated VQE experiments into two categories: contextual
and noncontextual. Such foundational works could be utilized
to comprehend the possible sources of quantum advantage in
NISQ algorithms. Using novel concepts from this field, Kirby,
Tranter, and Love (2020) recently proposed contextual sub-
space VQE.
In another work, the variational consistent history algorithm

was suggested for investigating foundational questions
(Arrasmith et al., 2019). The consistent history approach
has been used to examine topics from quantum cosmology
and the quantum-classical transition. In the variationally
consistent history algorithm, the quantum computer is used
to compute the “decoherence functional,” which is challeng-
ing to calculate classically. The classical computer is
employed to tune the history parameter such that the con-
sistency is improved.

2. Quantum optimal control

Quantum optimal control is a topic of paramount impor-
tance in the pursuit to harness the potential of near-term
devices. For a given quantum control system and a cost
function that measures the quality of control, it aims to find a
control that can achieve optimal performance.
Some recent works have investigated quantum optimal

control in the NISQ framework. A recent detailed perspective
in this direction was given by Magann et al. (2021). Li, Yang
et al. (2017) provided a hybrid quantum-classical approach to
quantum optimal control. To remedy some of the difficulties
of classical approaches to optimal control related to the scaling
of resources, Dive et al. (2018) proposed another NISQ
framework. Experimental demonstration of quantum control
for a 12-qubit system has also been realized (Lu et al., 2017).
However, the aforementioned approaches restrict their target
states to be sparse matrices. For dense target states, Policharla
and Vinjanampathy (2020) recently proposed a NISQ algo-
rithm. Along with their algorithm, they also suggested a few
algorithmic primitives to calculate overlap of quantum states
and transition matrix elements. Hybrid quantum-classical
algorithms have also been implemented for computing quan-
tum optimal control pulses, particularly for controlling
molecular systems (Castaldo, Rosa, and Corni, 2020;
Magann et al., 2020).

3. Quantum metrology

Quantum metrology harnesses nonclassical features of
quantum theory for parameter estimation tasks. A canonical
example is estimating the parameter ϕ of a unitary map under

the action of a Hamiltonian Ĥ given by ρ̂ðϕÞ ¼ e−iĤϕρ̂0eþiĤϕ,
where the density matrix ρ̂0 refers to the initial state of the
system. The goal is to estimate ϕ via measurements on ρ̂ðϕÞ.
The quantum Cramér-Rao bound provides the following lower
bound to the achievable precision:

ðΔϕÞ2 ≥ 1

nFQ½ρ̂ðϕÞ�
: ð120Þ

In Eq. (120) n represents number of samples, FQ½ρ̂ðϕÞ� is the
quantum Fisher information, and ðΔϕÞ2 is the variance of the
estimation of ϕ. Common parameters of interest are temper-
ature or the strength of magnetic fields.
Notice that the precision of the estimation procedure

increases as the quantum Fisher information increases.
Using it as a cost function, recent works have explored
quantum metrology to prepare a better probe state in a
VQA setup (Kaubruegger et al., 2019; Beckey et al., 2020;
Koczor et al., 2020; Ma et al., 2020). In addition, Meyer,
Borregaard, and Eisert (2020) provided a toolbox for multi-
parameter estimation and Haug and Kim (2021a) provided the
natural PQC with the lowest possible quantum Cramér-Rao
bound for a general class of circuits. For a survey of recent
applications of Fisher information for NISQ computing, see
Bharti (2021) and Meyer (2021).

4. Fidelity estimation

In Sec. II.A, we discussed how to use the fidelity as an
objective function, a quantity that is useful for training
particular VQAs. In addition, estimating the fidelity of a
quantum state with respect to another state is of general
interest in the context of quantum computing. For this reason,
algorithms that can estimate fidelity may become useful in the
NISQ era.
Given the density matrices of two quantum states ρ1 and ρ2,

their fidelity is given by

Fðρ1; ρ2Þ ¼
�
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1

p
ρ2

ffiffiffiffiffi
ρ1

pq �
2

: ð121Þ

Owing to the large dimensionality of the Hilbert spaces,
computing fidelity can be challenging.
Recently the variational quantum fidelity estimation

(VQFE) algorithm was proposed to tackle a slightly modified
version of the fidelity estimation task that works efficiently
when ρ1 has a low rank. Cerezo, Poremba et al. (2020)
provided lower and upper bounds on Fðρ1; ρ2Þ via VQFE. The
algorithm calculates the fidelity between ρn1 , which is a
truncated version of ρ1 obtained by projecting ρ1 to subspace
spanned by the n largest eigenvalue eigenvectors of ρ1. The
bounds improve monotonically with n and are exact for
n ¼ rankðρ1Þ. The VQFE algorithm proceeds in three steps:
(i) a variational diagonalization of ρ1, (ii) computing the
matrix elements of ρ2 in the eigenbasis of ρ1, and (iii) using
the matrix elements from (ii) to estimate the fidelity.
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5. Quantum error correction

The leading error-correction schemes carry high resource
overheads, which renders them impractical for near-term
devices (Fowler et al., 2012; Johnson et al., 2017).
Moreover, many of the schemes mandate knowledge of the
underlying noise model (Fletcher, Shor, and Win, 2008;
Kosut, Shabani, and Lidar, 2008; Kosut and Lidar, 2009).
For an encoding process E, decoding process D, and noise
model N , the quality of a quantum error-correction scheme
can be characterized by how close D∘N ∘E is to the identity.
The range of E is called code space C.
Johnson et al. (2017) proposed the quantum variational

error corrector (QVECTOR) by defining an objective function
over the code space C. They employed two trainable PQCs
VðpÞ and WðqÞ for encoding and decoding, respectively, with
tunable parameter vectors p and q. For a given encoding-
decoding pair, characterized by ðp; qÞ, they calculated a
quantity called “average code fidelity” with respect to the
Haar distribution of states over the code space C. The
algorithm is model free, as no assumption of the noise model
is made. The goal of the QVECTOR algorithm is to maximize
the average code fidelity in a variational setup.
In the context of VQA, error correction was also explored

by Xu et al. (2019), who encoded the target logical states as a
ground state of an appropriate Hamiltonian. Xu et al. (2019)
employed imaginary time evolution to find the ground state.
They implemented a scheme for five- and seven-qubit codes.
For a discussion of error correction and quantum fault
tolerance, see Sec. VIII.B.

6. Nuclear physics

The standard model of particle physics is the theory that
describes the nature of the electromagnetic and nuclear
interaction. Its current formulation consists of describing
the forces as quantum fields via the quantum field theory
(QFT) formalism. Perturbative calculations of QFT provide
the dynamics of physical processes at a given energy scale.
However, in some cases, as in quantum chromodynamics
(QCD), perturbation theory cannot be applied owing to the
impossibility of observing free quarks or gluons due to
confinement. For this reason, QCD calculations are obtained
by means of numerical methods such as Monte Carlo sim-
ulations in a discretized version of QFT on a lattice structure
(LQFT). The high computational cost of LQFT has resulted in
the use of quantum computation and quantum simulation to
obtain the desired QCD predictions (Joó et al., 2019).
The Schwinger model describes the dynamics of the QED

interaction in one spatial and temporal dimensions. It is used
as a toy model to study QCD since it shows fermion
confinement but is simple enough to be solved analytically.
The experimental quantum simulations of this model were
carried out first in trapped ions (Hauke et al., 2013) and later
with a superconducting circuit quantum computer (Martinez
et al., 2016). The first proposal to use a quantum-classical
algorithm to simulate this model was presented by Klco et al.
(2018), who had the quantum computer simulate the dynamics
of the symmetry sectors suggested by a classical computation.
Kokail et al. (2019) used a VQS in an analog setup to reduce
the number of variational parameters and thus reduce the

computational cost of the algorithm. Their proposal was
experimentally implemented in a trapped-ion analog simu-
lator. A significant reduction of the computational cost of
LQFT was proposed by Avkhadiev, Shanahan, and Young
(2020) by using a VQA approach to compute the optimized
interpolating operators, which are approximators of the
quantum state wave function.
Adaptations of the UCC quantum chemistry Ansatz intro-

duced in Sec. II.B.1 were presented by Dumitrescu et al.
(2018) and Liu and Xin (2020) for the quantum-variational
QCD and by Roggero et al. (2020) for neutrino-nucleus
scattering. A ten-qubit VQC was used by Wu et al. (2020) to
study the Higgs boson production processes and decay. Chen,
Wei et al. (2020) proposed a quantum convolutional neural
network model to study basic high-energy processes. Recently
PQCs were used to learn the parton distribution function of
protons (Pérez-Salinas, Cruz-Martinez et al., 2020).

7. Entanglement properties

Entanglement is a resource for numerous quantum infor-
mation tasks. A bipartite quantum state ρAB ∈ HA ⊗ HB is
called separable if it admits the form ρAB ¼ P

i piρ
A
i ⊗ ρBi ,

where pi are non-negative and
P

i pi ¼ 1. If a state is not
separable, then it is called entangled. The problem of detecting
whether a state is separable or entangled is known as the
separability problem and has been shown to be NP hard
(Gurvits, 2003).
As mentioned in Sec. VI.D.2, computing the Schmidt rank

of ρAB gives a measure of the bipartite entanglement. Thus, the
algorithms that tackle the SVD problem can also be used to
extract entanglement properties (Bravo-Prieto, García-Martín,
and Latorre, 2020). Wang, Song et al. (2020) proposed a
NISQ algorithm for the separability problem by providing a
variational approach to employ the positive map criterion.
This criterion establishes that the quantum state ρAB is
separable if and only if, for an arbitrary quantum system R
and an arbitrary positive map N B→R from B to R, we have
N B→RðρABÞ ≥ 0. Wang, Song et al. (2020) started with a
positive map and decomposed it into a linear combination of
NISQ implementable operations. These operations were
executed on the target state and the minimal eigenvalue of
the final state was variationally estimated. The target state was
deemed entangled if the optimized minimal eigenvalue were
negative.
Exploring a strategy similar to the one presented by Bravo-

Prieto, García-Martín, and Latorre (2020), Pérez-Salinas,
García-Martín et al. (2020) proposed a VQA to compute
the tangle, which is a measure of tripartite entanglement.
VQAs were also employed for extracting the entanglement
spectrum of quantum systems by LaRose et al. (2019) and
Cerezo, Sharma et al. (2020).

VII. BENCHMARKING

One of the central questions at the intersection of software
and hardware is how to evaluation the performance and
capabilities of NISQ devices. Here benchmarking concepts
provide various metrics to measure and compare the capa-
bilities of different machines and track their change over time.
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A benchmarking protocol can be characterized by its inherent
assumptions, resource costs, and information gain. The goal is
to build benchmarking protocols that make minimal and
practical assumptions, have low resource costs, and have
high information gain.
Benchmarking protocols have been developed for NISQ as

well as for fault-tolerant devices. For a pedagogical summary,
see Eisert et al. (2019). In this review, we focus on quantum
benchmarking protocols for NISQ devices. Some of the
leading NISQ benchmarking schemes are randomized bench-
marking, quantum volume, cross-entropy benchmarking, and
application-based benchmarks.

A. Randomized benchmarking

The most straightforward way to compare devices is by
simply counting qubits. To really compare different qubits, we
must also have a sense of how many operations we can dowith
them before the noise arising from errors drowns out the
signal. Randomized benchmarking (RB) is a convenient
method for finding average error rates for quantum operations,
particularly for single- and two-qubit gates (Magesan,
Gambetta, and Emerson, 2011; Magesan, Gambetta, and
Emerson, 2012). RB is robust against state preparation and
measurement (SPAM) errors and, unlike tomography, admits
an efficient and practical implementation.
RB involves the following assumptions: (i) For every gate,

the incurred noise is independent of other Clifford gates.
(ii) The involved unitaries should constitute a 2-design (see
Sec. IV.A) and should not be universal. In other words, no T
gates are allowed. (iii) During the experiment, there is no
drifting in the noise processes. (iv) One can describe noise
processes using completely positive trace-preserving maps.
A RB protocol starts by sampling a sequence of m Clifford

gates; see Sec. V.B.1. The sequence is applied to the initial
state, followed by its inverse. Finally, a two-outcome positive
operator-valued measure (POVM) measurement is performed
to calculate the fidelity between the initial state and the output
state, followed by classical postprocessing. The RB protocol
discretizes time so that it is measured in the number of gates
and then averages over many sequences of each length m.
More formally, a four-step RB protocol consists of the
following.

(1) Generate Km sequences of m quantum operations Cij
with i ∈ ½1; m� and j ∈ ½1; Km�, where i indexes over
the sequence of operations and j indexes over the
statistical samples. These operations are randomly
chosen from the Clifford group, and a (mþ 1)th
operation is chosen that cancels the first m operations
such that the net operation is the identity. The
operations can be chosen from the 2-, 4-, or 2n-
dimensional Clifford group, depending on whether
we are benchmarking single-, two-, or n-qubit oper-
ations (McKay et al., 2019). These operations come
with a certain error, which is modeled with linear
operators Λij;j. The full sequence of m operations is
given by

SKm
¼ ○

mþ1
j¼1 ðΛij;j∘CijÞ. ð122Þ

In Eq. (122) ∘ denotes composition and ○ represents
composition of the terms defined with index j.

(2) For each sequence we find the fidelity with the initial
state by measuring TrfEψSKm

½ρðψÞ�g, where ρðψÞ is
the initial state (with preparation errors) and Eψ is a
POVM measurement operator corresponding to the
measurement including noise. Without noise, this
would be the projector Eψ ¼ jψihψ j.

(3) Average over the Km statistical samples to find the
sequence fidelity Fðm;ψÞ ¼ TrfEψSm½ρðψÞ�g, where
Sm is the mean over the operations SKm

.
(4) Fit the data with the function

Ffitðm;ψÞ ¼ A0pm þ B0; ð123Þ

where we assume that the errors are independent of
gate and time. This is not a fundamental assumption
but can be relaxed (Magesan, Gambetta, and Emerson,
2011, 2012). The average gate error here is given by
ϵRB ¼ 1 − p − ð1 − pÞ=2n and the constants A0 and
B0 absorb the SPAM errors.

The operations Cij are chosen from the Clifford group because
these are relatively easy to perform on quantum hardware, and
because the final (mþ 1)th operation that undoes the
sequence can easily be precomputed on a classical computer.
Averaging over the Clifford group (or any other finite group)
also has the property that even though the real noise channel
would be more complicated than the purely depolarizing one,
the average over the group will still give rise to exponen-
tial decay.
These gate errors extracted from randomized benchmarking

can be used to compare the quality of quantum gates, and to
estimate that an algorithm of depth ∼1=ϵRB gates can be run
on the device before the output is only statistical noise. The
intuition behind the RB protocol is that a purely depolarizing
channel will cause exponential decay of an excited state
over time.
Simultaneous randomized benchmarking has been pro-

posed to acquire information about cross talk and undesired
coupling between neighboring qubits (Gambetta et al., 2012).
RB has also been extended for gate sets that do not form a
Clifford group (Gambetta et al., 2012; Carignan-Dugas,
Wallman, and Emerson, 2015; Cross et al., 2016; Harper
and Flammia, 2017; Brown and Eastin, 2018; França and
Hashagen, 2018; Hashagen et al., 2018). In such cases, the
expression for Ffitðm;ψÞ does not follow Eq. (123) (Helsen
et al., 2019). An extension of RB has been suggested to extract
the fidelity for a broad category of gate sets, including T gate,
using principles from representation theory (Helsen et al.,
2019). A practically scalable protocol called cycle bench-
marking was developed lately to characterize local and global
errors for multiqubit quantum computers (Erhard et al., 2019).

B. Quantum volume

To further refine the concept of the computational power of
a quantum computer from just counting qubits and gate errors,
the IBM Quantum team introduced the “quantum volume”
(Moll et al., 2018; Cross et al., 2019). It is one of the widely
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accepted metrics for benchmarking NISQ-era quantum com-
puters. As mentioned earlier, one cannot rank quantum
computers based on the number of qubits alone. Quantum
volume gives a rough estimate of the number of effective
qubits that a quantum computer has based on their perfor-
mance on the “heavy output generation problem.” The heavy
output generation problem is related to the random circuit
sampling task used in Google’s quantum supremacy experi-
ment. Quantum volume treats the depth and width of a
quantum circuit on the same footing. Hence, its estimation
depends on the largest square-sized circuit, which can
successfully implement the heavy output generation problem.
The quantum computer’s performance also depends on its
software stack, such as the compiler, and thus quantum
volume can increase with improvements in the software stack.
The quantum volume benchmark can be considered analo-

gous to the classical LINPACK benchmark (Dongarra, 1987).
Like the LINPACK benchmark, it is architecture agnostic and
provides a single real number metric based on the quantum
computer’s performance for a model problem such as the
heavy output generation problem.
More formally, quantum volume can be defined in the

following terms. Given an n-qubit quantum computer with the
largest achievable model circuit depth dðmÞ for model circuit
width m ∈ f1; 2;…; ng such that the probability of observing
a heavy output for a random selection of model circuits is
strictly greater than 2=3, the quantum volume VQ is defined as
(Cross et al., 2019)

log2VQ ¼ argmax
m

min ½m; dðmÞ�: ð124Þ

Intuitively speaking, quantum volume estimates the largest
square random quantum circuit for which the quantum
computer can successfully implement the so-called heavy
output generation problem. To conclude the discussion, it
remains to describe the model circuit and the heavy output
generation problem.
The model circuit with depth d and width m for estimating

quantum volume is given by the d-layered sequence
U ¼ UðdÞUðd−1Þ � � �Uð1Þ, where layer t consists of random
permutations πt ∈ Sm applied to qubit labels, followed by the
tensor product of Haar-random two-qubit unitaries from
SUð4Þ. If the model circuit width m is odd, one of the qubits
is left idle in every layer; see Fig. 7 for a pictorial description.
Given a model circuit U with width m, the ideal output

distribution over bit strings x ∈ f0; 1gm is given by
PUðxÞ ¼ jhxjUj0ij2. One can arrange the probabilities for
various bit strings in ascending order in a set
P ¼ fp0 ≤ p ≤ � � � ≤ p2m−1g. The median of the set P is
given by pmed ¼ ðp2m−1 þ p2m−1−1Þ=2. The heavy outputs are
defined as HU ¼ fx ∈ f0; 1gmjpUðxÞ > pmedg. The goal of
the heavy output problem is to sample a set of strings such that
at least 2=3 are heavy output. For an ideal quantum circuit, the
expected heavy output probability asymptotically tends to
∼0.85. For a completely depolarized device, it is ∼0.5.
On the target system, one implements Ũ by using a circuit

compiler with a native gate set such that 1 − FavgðU; ŨÞ ≤
ϵ ≤ 1 for an approximation error ϵ, where Favg is the average
gate fidelity as defined by Horodecki, Horodecki, and

Horodecki (1999). The role of the circuit compiler is
crucial in the aforementioned step. Suppose that the observed
distribution for the implemented circuit Ũ of the model circuit
U is guðxÞ. The probability of sampling a heavy output is
given by

hU ¼
X
x∈HU

qUðxÞ: ð125Þ

For a randomly selected circuit of depth d, the probability of
sampling a heavy output is given by

hd ¼
Z
U
hUdU: ð126Þ

The term dðmÞ in Eq. (124) is equal to the largest depth d for a
model circuit of width m ∈ f1; 2;…; ng such that hd > 2=3.
The quantum volume benchmark requires one to simulate

the model circuit’s heavy output generation problem on a
classical computer. Hence, it is not a scalable method as the
quantum volume increases. Moreover, the special treatment
for square circuits is not entirely justified. Investigations are
needed to devise other interesting benchmarks. A benchmark
for rectangular circuits has also been proposed in the literature
(Blume-Kohout and Young, 2020).
To date Honeywell’s system model H1 has achieved

log2 VQ ¼ 9,3 and the IBM Quantum device named “IBM
Montreal” has demonstrated log2 VQ ¼ 6.4

C. Cross-entropy benchmarking

The linear cross-entropy benchmarking is a statistical test
used by Google in their quantum supremacy experiment (Neill
et al., 2018; Arute et al., 2019). It measures how often high-
probability bit strings are sampled in an experimental sce-
nario. Suppose that we perform a sampling task and obtain bit
strings fxjgj via measurements on a given m-qubit circuit CE.
The linear cross-entropy benchmarking fidelity is given by

FXEB ¼ 2mhPðxjÞij − 1: ð127Þ

FIG. 7. Model circuit for the quantum volume benchmark.
Each layer consists of random permutations of qubit labels,
followed by two-qubit Haar-random unitaries. Adapted from
Cross et al., 2019.

3See https://www.honeywell.com/us/en/news/2021/07/honeywell-
sets-another-record-for-quantum-computing-performance.

4See https://t.ly/hoPX.
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In Eq. (127) the average h·ij is over the experimentally
observed bit strings fxjgj and PðxjÞ denotes the probability
of observing bit string xj for the ideal circuit version of CE. In
other words, PðxjÞ denotes the ideal probability of the
generated sample xj. Since one cannot have an ideal circuit
in practice, PðxjÞ are calculated using a classical computer
simulation of the ideal circuit. FXEB compares how often a bit
string xj is observed experimentally with its classically
simulated ideal probability. For the ideal case, FXEB
approaches unity for a large number of qubits. On the other
hand, it is equal to zero for uniform distribution. As the
circuit’s noise grows, FXEB decreases and approaches zero.
Since the probabilities PðxjÞ are calculated via classical
simulation, it renders the computation of FXEB intractable
in the supremacy regime. The classical hardness of spoofing
linear cross-entropy benchmarking was studied by Aaronson
and Gunn (2019), who suggested the absence of any efficient
classical algorithms for the aforementioned task.

D. Application benchmarks

While hardware benchmarks such as randomized bench-
marking or quantum volume provide valuable insight into the
performance of quantum devices, they may not well represent
or predict the performance of VQAs which employ structured
circuits. Application benchmarks were developed to comple-
ment hardware benchmarks and provide a more complete
picture of both the performance and the near-term utility of
quantum devices. These benchmarks execute experimental
demonstrations of VQA instances that can be compared to
classically computed exact results. Examples of application
benchmarks were given by Dallaire-Demers and Killoran
(2018), Benedetti, Garcia-Pintos et al. (2019), Arute et al.
(2020), and Karamlou et al. (2020). In particular, Arute et al.
(2020) demonstrated VQE experiments for the hydrogen chain
binding energy and diazene isomerization mechanism with
PQCs of up to 12 qubits and 72 two-qubit gates.
As a specific example of an application benchmark,

quantum circuits that diagonalize spin Hamiltonians were
proposed in recent years (Verstraete, Cirac, and Latorre, 2009;
Schmoll and Orús, 2017; Cervera-Lierta, 2018). By compar-
ing the results obtained from the quantum device to the
analytical solution, one can discern the performance of the
computation for a specific purpose experiment. Small experi-
ments have shown that gate fidelities and decoherence times
alone do not provide a complete picture of the noise model
(Cervera-Lierta, 2018).
In that vein, Dallaire-Demers et al. (2020) proposed a figure

of merit called the effective fermionic length to quantify the
performance of a NISQ device in which the application at
hand is estimating the energy density of the one-dimensional
Fermi-Hubbard model over increasing chain lengths.
Theoretically, as the chain length increases the energy density
should approach the infinite chain limit. In practice, the NISQ
device will accrue some level of noise and decoherence, which
causes the computed energy density to diverge past a certain
chain length. The maximum chain length after which noise
and decoherence start degrading the algorithm performance
reveals the “limit” of the quantum device in carrying out

related algorithms. Dallaire-Demers et al. (2020) abstracted
this idea to redefine an application benchmark as a way to
systematically test the limits of quantum processors using
exactly solvable VQA instances that can be scaled to larger
system sizes such as the chain length given by Dallaire-
Demers et al. (2020) or the number of preprocessing steps
given by Karamlou et al. (2020).
Generative models such as the QCBM (see Sec. VI.B.2) can

also serve as benchmarks for NISQ devices (Hamilton,
Dumitrescu, and Pooser, 2019; Leyton-Ortega, Perdomo-
Ortiz, and Perdomo, 2019; Zhu et al., 2019). Here the
measurement output of hardware-efficient variational
Ansätze are used to represent different types of distributions
and study the effect of noise and hardware limitations on the
result.
In addition to VQAs, one can analyze more fundamental

benchmarks, such as the ability of NISQ devices to violate
local realism by means of Mermin inequalities (Alsina and
Latorre, 2016) or the entanglement power of the devices by
trying to construct maximal entangled states (Wang, Li et al.,
2018; Cervera-Lierta, Latorre, and Goyeneche, 2019).

VIII. OUTLOOK

In the last decade, quantum computing has experienced
notable progress in applications, experimental demonstra-
tions, and theoretical results. The number of papers in
quantum computation, particularly in NISQ applications, is
increasing at a nearly exponential rate. This community push
is explained by many factors, one of which is noteworthy
advancements in quantum hardware.
Quantum computing is a relatively young field in science,

and as such there is ample room for pioneering research and
discoveries. Together with the theoretical, practical, and
experimental challenges (several of them covered in this
review), this fact has strengthened the motivation for an
open-source strategy in the field. Many universities and
research centers currently subscribe to an open-access policy
that pushes toward the free and open-source publication of all
computational tools, data, and programs used in their research.
These policies have proven to be valuable for rapid scientific
development as well as for democratizing community knowl-
edge. This way of thinking has percolated through academic
walls. It has been introduced at several private companies, not
just for its advantage but also because it facilitates the
continuous healthy flow of quantum computing researchers
to themselves (and in some cases resulting in the foundation of
start-ups). Consequently, a rich open quantum computing
ecosystem is composed of universities, institutes, large cor-
porations, start-ups, and uncountable individual enthusiasts.
Another product of the symbiosis between academia and the
private sector is cloud quantum computing. Companies are
offering access to their hardware remotely, in some cases at
zero cost, for their small prototypes and simulators. On the
one hand, scientists and quantum computing enthusiasts
around the world have the opportunity to experience real
quantum devices from their homes. On the other hand, this
increases the chances of finding real-world applications in
quantum computation and solving the current challenges
of the field. The proliferation of open-source quantum
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computing languages, simulators, and tools (detailed in
Sec. V.C) have burgeoned many user communities. Various
international initiatives have been set up to attract quantum
computing talent, and the private sector’s involvement is
ramping up. Several nonprofit initiatives are also encouraging
the use and development of these tools (QOSF, 2020b).5

Experimental realizations of quantum computation,
although in the early stages, have interested many commun-
ities in this quantum information subfield. Healthy competi-
tion has also arisen between the classical and quantum
computing branches. Classical computational scientists have
put their efforts into moving the quantum advantage frontier
further, raising the bar to claim that a quantum algorithm
shows a significant speedup. In that regard, an offshoot is an
effort at dequantization, first exhibited in the case of recom-
mendation systems, to devise quantum-inspired classical
algorithms that are nearly as fast as their quantum counterparts
(Tang, 2019). Such attempts have eliminated examples of
speedup for some problems in linear algebra. Thus far
dequantized machine learning algorithms have been devel-
oped for recommendation systems (Tang, 2019), principal
component analysis and supervised clustering (Tang, 2021),
stochastic regression (Gilyén, Lloyd, and Tang, 2018), and
low-rank linear systems (Chia, Lin, and Wang, 2018; Arrazola
et al., 2019).
Since NISQ devices are inherently noisy, analysis similar to

that given by Napp et al. (2019), Zhou, Stoudenmire, and
Waintal (2020), and Zlokapa, Boixo, and Lidar (2020) will be
required to find out how much noise a NISQ algorithm can
endure until its classical simulation becomes efficient. This is
crucial in order to understand the boundary where quantum
computers provide an advantage. Investigating the potential of
NISQ algorithms using ideas from quantum foundations such
as contextuality and entanglement is helpful in that respect
(Bharti et al., 2020; Deutsch, 2020). More theoretical results
such as the ones presented by Farhi and Harrow (2016), Lloyd
(2018), Movassagh (2019), Bravyi, Gosset et al. (2020),
Biamonte (2021), Bouland et al. (2021), and Bravyi,
Gosset, and Movassagh (2021) may also prove valuable. In
addition, it is imperative to develop strategies that help us
bypass complicated measurements involving controlled multi-
qubit unitaries (Mitarai and Fujii, 2019). For machine learning
tasks, ideas similar to those of Harrow (2020) would be
valuable.
Another interesting frontier that we believe needs to be

investigated in the next few years involves quantum and
classical certification schemes for quantum devices and
quantum computation (Eisert et al., 2020). The intractability
of quantum computation by classical devices poses the
challenge of verifying the correct functioning of the quantum
devices as well as the correctness of the final output (Eisert
et al., 2020). The existence of multiple quantum computing
platforms requires new methodologies and figures of merit to
benchmark and compare these devices. Other works are being
proposed in that regard (Kottmann et al., 2020; Kyaw et al.,
2021), as well as in the development of the benchmarking
measures discussed in Sec. VII. Ideas from complexity theory

(Mahadev, 2018; Metger and Vidick, 2020) and quantum
foundations (Bharti, Ray, Varvitsiotis, Cabello, and Kwek,
2019; Bharti, Ray, Varvitsiotis, Warsi et al., 2019) could be
valuable in this effort.
Currently there is no known demonstration of industrially

relevant quantum advantage. Quantum computing is still in its
early days, and a useful quantum computer is still missing.
The potential of NISQ devices is not fully understood, and a
lot of rigorous research is required to release the power of
early quantum computers. However, several experiments
overcoming classical computational resources have been
performed and many theoretical and practical tools are being
used and developed, as explained in Sec. V.

A. NISQ goals

We expect that experimental pursuit in the NISQ era would
focus on the design of quantum hardware with a larger number
of qubits and gates with lower error rates capable of executing
deeper circuits. Along the way, one of the goals is to
demonstrate a quantum advantage for practical use cases. If
the NISQ paradigm were not powerful enough to exhibit any
quantum advantage, theoretical pursuits would be required to
understand its limitations. The prime direction of the NISQ
and near-term era is to engineer the best possible solution with
the limited quantum resources available. The tools and
techniques invented during this period could be valuable in
the fault-tolerant era as well.
To conduct a successful demonstration of quantum advan-

tage, the right blend of the following three crucial components
is required:

(1) Hardware development.—The design of quantum
computers with more qubits, lesser error rates, longer
coherence times, and more connectivity between the
qubits will be one of the top priorities in the NISQ era.
Intensive research in new qubit developments, quan-
tum optimal control, and material discovery will be
indispensable for both universal programmable quan-
tum computers and special-purpose ones. A way to
scale up the number of qubits present in a quantum
platform is to design a novel qubit that has built-in
autonomous quantum error correction down to the
hardware level (Paz and Zurek, 1998; Chamberland
et al., 2020) or a protected novel qubit (Nataf and
Ciuti, 2011; Douçot and Ioffe, 2012; Kyaw, 2019),
which is robust against specific noises in the hardware.
As a quantum processor’s size grows, there is a
tremendous need to store quantum information during
quantum information processing (Kyaw et al., 2014;
Kyaw, Felicetti et al., 2015; Kyaw, Herrera-Marti
et al., 2015). Even miniaturizing a microwave circu-
lator onto the superconducting chip (Chapman et al.,
2017; Mahoney et al., 2017) can be seen as a means to
scale up the quantum platform. However, it has
nothing to do with novel qubit design.

(2) Algorithm design.—To harness the potential of noisy
but powerful quantum devices, we expect break-
throughs on the algorithm frontier. Algorithms with
realistic assumptions regarding device capabilities,
like the ones mentioned in Sec. V.B, will be favored.5See https://unitary.fund/.

Kishor Bharti et al.: Noisy intermediate-scale quantum algorithms

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015004-56

https://unitary.fund/
https://unitary.fund/


To lessen the effect of noise, progress toward the
design of error-mitigation algorithms is expected.
Efforts have to be made to develop algorithms that
harness the problem’s structure in the best possible
manner and map it to the given hardware in efficient
ways, such as in Sec. III.D. VQA with better expres-
sibility and trainability will also be helpful.

(3) Application problem.—We discussed the existing
applications of NISQ devices in many areas in Sec. VI.
Collaborations between experts with domain knowl-
edge from these fields and quantum algorithm re-
searchers will be increasingly required to develop the
field and integrate quantum computation into indus-
trial workflows. New collaborations might reveal
difficult problems for classical computers that are
well suited for NISQ devices. It is not yet clear which
applications will be the first ones to witness a quantum
advantage, although there is plenty of speculation and
opinions.

B. Long-term goal: Fault-tolerant quantum computing

Noise is regarded as one of the most prominent threats to a
quantum computer’s practical realization. In 1995, Peter Shor
established that by encoding quantum information redun-
dantly using extra qubits one could circumvent the effect of
noise (Shor, 1995). The quantum information is spread over
multiple physical qubits to generate a logical qubit (Shor,
1995; Calderbank and Shor, 1996; Gottesman, 1997; Knill
and Laflamme, 1997). Most of the transformative algorithms,
such as Shor’s factoring algorithm, the Grover search algo-
rithm, and HHL, require error-corrected qubits for their
execution. Soon after the appearance of Shor’s error-cor-
recting code, many others were developed. Some of the
famous error-correcting codes are stabilizer and topological
error-correcting codes (Fowler et al., 2012; Terhal, 2015).
While the stabilizer code utilizes extra qubits to protect the
logical qubit, topological codes employ a set of qubits
positioned on a surface, such as a torus, in a lattice structure.
Over the years, quantum error correction has evolved as a

subfield of quantum computation and has transformed from a
theoretical pursuit to a practical possibility. The process of
detecting and correcting errors can itself be prone to noise.
Thus, error correction alone does not guarantee the prospect of
storing or processing quantum information for an arbitrarily
long period. The aforesaid issue can be tackled by utilizing the
quantum fault-tolerant threshold theorem. Informally speak-
ing, it is possible to execute arbitrarily large quantum
computation by randomly suppressing the quantum error rate,
given that the noise in the individual quantum gates is below a
certain threshold (Aharonov and Ben-Or, 2008). If one wants
to simulate an ideal circuit of size N, the size of the noisy
quantum circuit for fault-tolerant quantum computation scales
as O½NðlogNÞc� for a given constant c given that the noisy
circuit is subjected to stochastic noise strength p < pc for a
certain noise threshold pc (Terhal, 2015). This theorem rises
some practically relevant questions, such as (i) how high is pc,
(ii) what is the value of the constant c, and (iii) what is the
value of the multiplicative constant in Oð·Þ. These questions

determine the practicality of any fault-tolerant quantum
computation scheme (Terhal, 2015).
As we look forward, lowering the noise level will be a

critical challenge. Although the problem is demanding,
significant progress has been made recently at the algorithmic
as well as the hardware frontier (Lidar and Brun, 2013; Terhal,
2015; Campagne-Ibarcq et al., 2020; Noh and Chamberland,
2020). Quantum error-correcting codes amenable to architec-
tures with limited qubit connectivity have also been proposed
(Chamberland, Zhu et al., 2020). As we transition toward
fault-tolerant quantum computing, partial quantum error-
correction demonstrations such as the exponential suppression
of bit or phase errors (Google, 2021) and approximate
quantum error-correction schemes (Leung et al., 1997;
Faist et al., 2020) become highly relevant. Recently
Monroe’s and Brown’s groups have confirmed the first-ever
fault-tolerant operation on a logical qubit (Egan et al., 2020).
We are at an exciting juncture in the history of computing.

Completely new kinds of computers that were once only
figments of the imagination are rapidly becoming a reality.
The NISQ era offers excellent opportunities to current and
future researchers to explore the theoretical limits of these
devices and discover practical and exciting applications in the
near term. Theoretical investigations and experimental chal-
lenges will help us to comprehend quantum devices’ power
and build better algorithms. The success of the field lies in the
hands of the researchers and practitioners of the area, so we
encourage everyone with interest to join the effort.
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Tavernelli, and A. Blais, 2020, arXiv:2008.01098.

Chowdhury, A. N., G. H. Low, and N. Wiebe, 2020,
arXiv:2002.00055.

Ciliberto, C., M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto, S.
Severini, and L. Wossnig, 2018, Proc. R. Soc. A 474, 20170551.

Cirstoiu, C., Z. Holmes, J. Iosue, L. Cincio, P. J. Coles, and A.
Sornborger, 2020, npj Quantum Inf. 6, 82.

Cohen, J., A. Khan, and C. Alexander, 2020, arXiv:2007.01430.
Colless, J. I., V. V. Ramasesh, D. Dahlen, M. S. Blok, M. Kimchi-
Schwartz, J. McClean, J. Carter, W. De Jong, and I. Siddiqi, 2018,
Phys. Rev. X 8, 011021.

Commeau, B., M. Cerezo, Z. Holmes, L. Cincio, P. J. Coles, and A.
Sornborger, 2020, arXiv:2009.02559.

Consiglio, M., W. J. Chetcuti, C. Bravo-Prieto, S. Ramos-Calderer,
A. Minguzzi, J. I. Latorre, L. Amico, and T. J. Apollaro, 2021,
arXiv:2106.15552.

Cook, J., S. Eidenbenz, and A. Bärtschi, 2019, arXiv:1910.13483.
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Häffner, H., C. F. Roos, and R. Blatt, 2008, Phys. Rep. 469, 155.
Hallberg, K. A., 2006, Adv. Phys. 55, 477.
Halperin, E., D. Livnat, and U. Zwick, 2004, J. Algorithms 53, 169.
Hamamura, I., and T. Imamichi, 2020, npj Quantum Inf. 6, 56.
Hamilton, C. S., R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn,
and I. Jex, 2017, Phys. Rev. Lett. 119, 170501.

Hamilton, K. E., E. F. Dumitrescu, and R. C. Pooser, 2019, Phys.
Rev. A 99, 062323.

Hammersley, J., 2013, Monte Carlo Methods (Springer Science
+Business Media, New York).

Hanks, M., M. P. Estarellas, W. J. Munro, and K. Nemoto, 2020,
Phys. Rev. X 10, 041030.

Hansen, N., S. D. Müller, and P. Koumoutsakos, 2003, Evol.
Comput. 11, 1.

Harper, R., and S. T. Flammia, 2017, Quantum Sci. Technol. 2,
015008.

Harrigan, M. P., et al., 2021, Nat. Phys. 17, 332.
Harrow, A., and J. Napp, 2019, arXiv:1901.05374.
Harrow, A.W., 2020, arXiv:2004.00026.
Harrow, A.W., A. Hassidim, and S. Lloyd, 2009, Phys. Rev. Lett.
103, 150502.
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