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Nucleons (protons and neutrons) are the building blocks of atomic nuclei and are responsible for more
than 99% of the visible matter in the Universe. Despite decades of efforts in studying its internal
structure, there are still a number of puzzles surrounding the proton such as its spin and charge radius.
Accurate knowledge about the proton charge radius is not only essential for understanding how QCD
works in the nonperturbative region but also important for bound state QED calculations of atomic
energy levels. It also has an impact on the Rydberg constant, one of the most precisely measured
fundamental constants in nature. This review examines the latest situation concerning the proton
charge radius in light of the new experimental results from both atomic hydrogen spectroscopy and
electron-scattering measurements, with particular focus on the latter. Theoretical backgrounds and
recent developments concerning the determination of the proton charge radius using different
experimental techniques are also presented. Upcoming experiments are discussed, and the deuteron
charge radius puzzle is mentioned at the end.
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I. INTRODUCTION

Nucleons (protons and neutrons) are the building blocks of
atomic nuclei and are responsible for more than 99% of the
visible matter in the Universe. The force that is responsible
for binding nucleons into nuclei (and responsible for the
composite nature of nucleons) is the strong force, one of the
four fundamental forces in nature. The ultimate goal of
modern nuclear physics is to predict properties of nucleons,
atomic nuclei, and nuclear reactions from the first principles of
quantum chromodynamics (QCD), the theory of the strong
interaction with quarks and gluons as the fundamental degrees
of freedom. While QCD has been well tested experimentally
at high energies, where perturbative calculations can be
carried out, how QCD works in the low-energy region still
requires a much better understanding. Nucleons therefore
become important QCD laboratories through studies of their
rich internal structure.
Despite decades of efforts studying the internal structure

of the proton, there are still a number of puzzles and open
questions surrounding the proton, such as its spin and charge
radius. The so-called proton spin crisis was triggered by the
European Muon Collaboration experiment (Ashman et al.,
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1988) in which polarized muons were scattered off polarized
nucleons, discovering that quarks’ spins contribute little to the
proton spin. After more than three decades of polarization
experiments worldwide, the emerging picture about the proton
spin is that the quark spin contributes about a third to the
proton spin, with a comparable contribution likely from the
spins of the gluons, and the remaining portion from the orbital
angular momenta of the quarks and gluons inside. For a recent
review of the proton spin, see Kuhn, Chen, and Leader (2009)
and Ji, Yuan, and Zhao (2020).
The proton mass decomposition has been a topic of

increasing interest in recent years motivated by the exper-
imental capability offered by the energy upgraded 12-GeV
CEBAF at Jefferson Lab (Dudek et al., 2012), and the future
Electron-Ion Collider (EIC) (Accardi et al., 2016) to be built at
the Brookhaven National Laboratory. There are various
approaches to the proton mass decomposition (Shifman,
Vainshtein, and Zakharov, 1978; Ji, 1995; Lorcé, 2018;
Metz, Pasquini, and Rodini, 2020). Following Ji’s decom-
position, the quark mass contribution to the proton mass is
found to be ∼11%, trace anomaly is about 22%, and the rest is
due to the quark and gluon energy (Gao et al., 2015). Near-
threshold electroproduction and photoproduction cross sec-
tions of J=Ψ and ϒ particles (Kharzeev et al., 1999; Gryniuk
and Vanderhaeghen, 2016; Hatta and Yang, 2018; Gryniuk
et al., 2020) from the proton have been proposed as effective
ways to access the trace anomaly contribution, and experi-
ments (Hafidi et al., 2012; Gryniuk et al., 2020) are being
planned at Jefferson Lab and at the future EIC.
The proton root-mean-square (rms) charge radius (also

known as the proton charge radius) is a quantity that is of
importance not only to QCD but also to bound state QED
calculations of atomic energy levels. It additionally has a
direct impact on the determination of the Rydberg constant,
one of the most well-known fundamental quantities in nature.
Conventionally, the proton charge radius can be determined
from electron-proton elastic scattering, a method pioneered by
Hofstadter, and atomic spectroscopic measurements using
ordinary hydrogen atoms. In the former case, one determines
the proton electric form factor from scattering cross sections,
from which one then extracts the proton charge radius. In the
latter case, experimentally measured atomic transitions com-
bined with state-of-the-art QED calculations allow for an
extraction of the proton charge radius.
The proton charge radius puzzle originated in 2010

following a new ultraprecise determination of the proton
charge radius from muonic hydrogen Lamb shift measure-
ments (Pohl et al., 2010), which reported a radius value of
0.841 84(67) fm. This new result is 4% smaller than the
recommended value of 0.8775(51) fm given by the Committee
on Data for Science and Technology (CODATA-2010) (Mohr,
Taylor, and Newell, 2012) based on results from electron-
proton scattering and ordinary hydrogen spectroscopy mea-
surements and represents a 7σ difference. In the last ten years,
major progress has been made in resolving this puzzle, which
is the focus of this review. While we cover the latest progress
in atomic spectroscopy concerning the proton charge radius,
special emphasis will be placed in this review on the progress
from lepton scattering and its associated challenges. The rest
of the review is organized as follows. We set the stage and

introduce the proton charge radius puzzle in Sec. II. In Sec. III
we describe how the charge radius is defined, how it can be
properly understood in terms of a quark charge distribution,
and how it is connected to the quark structure of the proton.
We subsequently describe the experimental techniques in
determining the proton charge radius from elastic electron-
proton scattering in Sec. III and from atomic hydrogen
spectroscopy in Sec. IV. Sections V and VI review the results
from the recent lepton-scattering and spectroscopy measure-
ments, respectively. In Sec. VII we review ongoing and
planned lepton-scattering experiments. Section VIII provides
an introduction of another charge radius puzzle that concerns
the deuteron before we conclude in Sec. IX.

II. THE PROTON CHARGE RADIUS PUZZLE

The proton charge radius puzzle developed and quickly
became widely known in 2010 when the CREMA
Collaboration (Pohl et al., 2010) reported the first determi-
nation of the proton charge radius from a muonic hydrogen
spectroscopic method ever, giving a value of 0.841 84(67) fm
by measuring the transition between the 2S1=2ðF ¼ 1Þ and
2P3=2ðF ¼ 2Þ energy levels. It was the most precise meas-
urement at the time, but it was 7σ smaller than the
2010 CODATA recommended value of 0.8775(51) fm
(Mohr, Taylor, and Newell, 2012). In 2013, the CREMA
Collaboration reported (Antognini et al., 2013) a value of
0.840 87(39) fm from combined analyses of the original
transition they reported in 2010 together with a different
transition between the 2S1=2ðF ¼ 0Þ and 2P3=2ðF ¼ 1Þ levels.
See Pohl et al. (2013) and Carlson (2015) for some early
reviews. From the electron-scattering community, two values
of the proton charge radius were reported at around the same
time, and they are 0.8791(79) fm by Bernauer et al. (2010) and
0.875 (10) fm by Zhan et al. (2011):both were included in the
2010 CODATA compilation and are in excellent agreement
with its recommended value. The muonic hydrogen results
(Pohl et al., 2010; Antognini et al., 2013) were not included in
the CODATA compilation until its most recent release
(Tiesinga et al., 2021).
The release of the proton charge radius result from a muonic

hydrogen spectroscopic measurement by the CREMA
Collaboration in 2010 (Pohl et al., 2010) resulted in a major
proton charge radius puzzle. However, there was a puzzle even
before that, perhaps known only to a much smaller commu-
nity. An important motivation to improve the precision in
determining the proton charge radius from electron-scattering
experiments is for precision tests of QED through hydrogen
Lamb shift measurements. The standard hydrogen Lamb shift
measurement probes the 1057 MHz fine-structure transition
between the 2S1=2 and 2P1=2 states and can be calculated to
high precision with higher-order corrections in QED with the
proton rms charge radius as an important input for finite size
and other hadronic structure contributions. However, the two
most precise values from electron-scattering experiments in
the literature before 2010 [each with a relative uncertainty of
less than 1.5% but differing by about 7% (relative)] are rp ¼
0.805ð11Þ fm (Hand, Miller, and Wilson, 1963) and rp ¼
0.862ð12Þ fm (Simon et al., 1980). The result of Hand, Miller,
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and Wilson (1963) included data from several experiments.
In the late 1990s, several groups published high-precision
results from hydrogen spectroscopic measurements (Hagley
and Pipkin, 1994; Weitz et al., 1994; Berkeland, Hinds, and
Boshier, 1995; Bourzeix et al., 1996; van Wijngaarden, Holuj,
and Drake, 1998), and these results supported a larger value of
the proton charge radius (0.862 fm) than QED predictions
including the two-loop binding effects. Melnikov and van
Ritbergen (2000) calculated the three-loop slope of the Dirac
form factor (the last known contribution to the hydrogen
energy levels at order mα7) and extracted a proton charge
radius value of 0.883(14) fm combining the QED calculation
of the 1S Lamb shift and the experimental measurement
(Schwob et al., 1999).

III. ELASTIC ELECTRON-PROTON SCATTERING

Electron scattering has proved to be an effective and clean
way to probe the internal structure of the nucleon (as the
lepton vertex is well described by QED) and higher-order
contributions are suppressed relative to the leading-order,
one-photon-exchange contribution. This was demonstrated by
the Nobel Prize–winning electron-proton elastic-scattering
experiment carried out by Hofstadter and McAllister (1955)
and McAllister and Hofstadter (1956) in the 1950s at Stanford
University (), in which the root-mean-squared charge radius of
the proton −0.74� 0.24 fm was determined for the first time.
The success of lepton scattering was further demonstrated
by another Nobel Prize awarded to Friedman, Kendall, and
Taylor (Bloom et al., 1969; Breidenbach et al., 1969) for
leading the deep-inelastic-scattering experiments with elec-
tron beams at SLAC between 1967 to 1973, which discovered
for the first time the existence of pointlike particles (quarks
inside the proton). For details on the discovery of quarks, see
Riordan (1992).

A. Introduction to electron-proton scattering and proton
electromagnetic form factors

To lowest order in QED, the dominant contribution to the
electron-proton elastic scattering is the one-photon-exchange
(OPE) Feynman diagram, as shown in Fig. 1. The four-
momentum of the incoming (scattering) electron is labeled
k (k0). The four-momentum of the target (recoil) proton is
labeled by p (p0). A virtual photon exchanged between the

electron and the proton carries a four-momentum q and
the corresponding momentum transfer squared q2 is a
Lorentz invariant. In electron scattering, the opposite of the
four-momentum transfer squared Q2 (Q2 ¼ −q2 ≥ 0) is
commonly used.
The scattering amplitude for the elastic electron scattering

from a hadronic target in OPE based on QED can be written as

M ¼ i
e2

Q2
uðk0; hÞγμuðk; hÞhp0; λ0jJμemð0Þjp; λi; ð1Þ

in which u denotes the electron Dirac spinors, with h the
conserved helicity of the electrons, λ (λ0) denotes the helicity
of the initial (final) hadrons, and hp0; λ0jJμemð0Þjp; λi is the
hadron matrix element of the local electromagnetic current
operator (taken at space-time point x ¼ 0).
For a spin-1=2 extended object such as a nucleon, its

electromagnetic transition current (following the requirements
of current and parity conservation and covariance under the
improper Lorentz group) can be written as

hp0; λ0jJμemð0Þjp; λi ¼ N̄ðp0; λ0ÞΓμNðp; λÞ; ð2Þ

in which N denote the nucleon spinors and Γμ is the following
virtual photon-proton vertex:

Γμ ≡ F1ðq2Þγμ þ F2ðq2Þ
iσμνqν
2M

: ð3Þ

The functions F1 and F2, two independent quantities that
depend on q2ðQ2Þ only, are called the Dirac and Pauli form
factors (FFs), respectively, and M is the mass of the nucleon.
The electric (GE) and magnetic (GM) form factors of the

nucleon, also called the Sachs form factors, are two indepen-
dent linear combinations of F1 and F2 that were originally
proposed by Ernst, Sachs, and Wali (1960) as

GE ¼ F1 −
Q2

4M2
F2; ð4Þ

GM ¼ F1 þ F2: ð5Þ

In the limit of Q2 ¼ 0, GEpð0Þ ¼ 1, GEnð0Þ ¼ 0, which are
simply the charges of the proton and neutron respectively,
while GMpð0Þ ¼ μp, GMnð0Þ ¼ μn are the proton and neutron
magnetic moments, respectively. The Pauli FF at Q2 ¼ 0 is
given by the anomalous magnetic moment F2ð0Þ≡ κ, with
μp ¼ 1þ κp and μn ¼ κn. In comparison to the F1 and F2

form factors, GE and GM were proposed to have a more
intuitive physical interpretation, although GEð0Þ ¼ F1ð0Þ.
Sachs (1962) showed that in the Breit frame GE and GM
can be interpreted as Fourier transforms of spatial distributions
of charge and magnetization when the nucleon is treated as a
nonrelativistic static system. In the Breit frame the incoming
electron has a momentum of q⃗=2 and the nucleon initial
momentum is −q⃗=2; the scattered electron has a momentum
of −q⃗=2 and the recoil proton has a momentum of q⃗=2. Thus,
it is a special Lorentz frame in which q2 ¼ −q⃗2; i.e., no energy
transfer is involved in this particular reference frame. For each

FIG. 1. One-photon-exchange diagram describing the elastic
electron-proton scattering. From Jingyi Zhou.
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Q2 value, there is the corresponding Breit frame, in which
the form factors are represented as GE;Mðq2Þ ¼ GE;Mð−q⃗2Þ.
For nonrelativistic (n-rel) static systems, the analogy to a
“classical” charge density distribution has then been intro-
duced in the literature as follows through the three-
dimensional (3D) Fourier transformation of the matrix
element of the charge operator in the Breit (B) frame:

ρ3D;n-relðrÞ ¼
Z

d3q⃗
ð2πÞ3 e

−iq⃗·r⃗ hp0; λjJ0emð0Þjp; λiB
2M

¼
Z

d3q⃗
ð2πÞ3 e

−iq⃗·r⃗GEð−q⃗2Þ; ð6Þ

which depends on r ¼ jr⃗j only for a spherical symmetric
system.
Lorcé (2020) pointed out that for a relativistic (rel) system a

proper kinematical factor has to be introduced, leading to the
following modified quantity:

ρ3D;relðrÞ ¼
Z

d3q⃗
ð2πÞ3 e

−iq⃗·r⃗ hp0; λjJ0emð0Þjp; λiB
2P0

B

¼
Z

d3q⃗
ð2πÞ3 e

−iq⃗·r⃗ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q⃗2=4M2

p GEð−q⃗2Þ; ð7Þ

where P0
B is the nucleon energy in the Breit frame. It was

furthermore argued by Lorcé (2020) from a phase-space
perspective that the quantity ρ3D;relðrÞ can be interpreted as
an internal charge quasidensity of the target. One notices
that such relativistic quasidensity is obtained by the Fourier
transform of GEðq2Þ multiplied by the relativistic factor

M=P0
B ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2=4M2

p
, as Q2 ≡ −q2 ¼ q⃗2 in the

Breit frame.
To arrive at a strict density or probabilistic interpretation,

the momentum transfer is required to remain small relative to
the inertia of the system. The concept of a rest-frame density is
therefore intrinsically limited by the Compton wavelength of
the system. This limitation can, however, be avoided in the
infinite-momentum frame (IMF), in which the magnitude of
the nucleon’s momentum jpj ≫ M; i.e., the nucleon is moving
at infinite momentum. The IMF is advantageous in discussing
the deep-inelastic-scattering process in which the virtual
photon interacts with a parton (quark) inside the nucleon.
In the IMF due to relativistic time dilation, the struck quark is
essentially free from interacting with other partons inside the
nucleon during the short time that the quark interacts with
the virtual photon. Rinehimer, Jared and Miller (2009) studied
the connection between the Breit frame and the IMF and
showed that when the nucleon matrix element of the time
component of the electromagnetic current, which gives

GE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2=4M2

p
in the Breit frame as previously dis-

cussed, is boosted to the IMF, one obtains the F1 form factor.
This was confirmed by the analysis of Lorcé (2020), as well as
the earlier work of Chung et al. (1988).
Miller (2019) pointed out that the previously mentioned

picture connecting the proton charge density distribution to
the Fourier transform of the GE form factor is not correct and
showed that a three-dimensional charge density, in the strict

sense of a probability interpretation, cannot be defined for a
nucleon (as a relativistic system of quarks and gluons) because
the initial- and final-state proton wave functions are not the
same. Instead, a two-dimensional charge density can be
defined, and determined by the Dirac form factor F1, as a
matrix element of a density operator between identical initial
and final states that are localized in the plane transverse to the
direction of the fast-moving nucleons.
Jaffe (2021) looked at this issue from a fundamental aspect

(the interplay between relativity and the uncertainty principle)
and pointed out that any attempt to extract spatial distributions
of local properties of a hadronic system that is not much larger
than its Compton wavelength would fail. In the case of the
proton, its Compton wavelength is about 0.2 fm, which is not
significantly smaller than its size of ∼0.85 fm. Defining the
expectation value of the spatial charge density distribution of
the proton requires one to localize the proton, which intro-
duces a localization dependence into the relationship between
the form factor and the local charge density distribution. Only
for systems such as atoms and heavy atomic nuclei (for which
the intrinsic sizes of the systems are much larger than the
corresponding Compton wavelength) is the connection
between the three-dimensional Fourier transform of the charge
form factor and the local charge density distribution mean-
ingful. Belitsky, Ji, and Yuan (2004) discussed the proton form
factors and charge distributions in their seminal paper on the
development of the concept of quantum phase-space Wigner
distributions for quarks and gluons in the proton.
In the last two or more decades, there have been major

developments in three-dimensional imaging of the partonic
structure of the nucleon, motivated to a large extent by the
desire to solve the “proton spin crisis” or “puzzle.” These
developments also shed new light on the electromagnetic
structure of the nucleon. It is important to discuss the proton
charge distribution and electric and magnetic form factors in
the context of these new developments. In Sec. III.B, we
introduce the three-dimensional parton distributions before
discussing the two-dimensional charge density.

B. Three-dimensional parton distributions

The general framework to describe the partonic structure of
the proton is through the generalized transverse-momentum-
dependent parton distributions (GTMDs) (Meissner, Metz,
and Schlegel, 2009; Lorcé, Pasquini, and Vanderhaeghen,
2011), which are obtained by integrating the fully uninte-
grated generalized quark-quark correlation functions for a
nucleon in momentum space over the light-cone energy
component of the quark momentum (Meissner et al., 2008;
Meissner, Metz, and Schlegel, 2009). The thus obtained
GTMDs depend on x, k⊥, and Δ, where x is the longitudinal
momentum fraction of the parton k⊥, the transverse momen-
tum of the parton, and Δ is the four-momentum transfer to the
nucleon. The GTMDs are related to the Wigner distributions
(Ji, 2003; Belitsky, Ji, and Yuan, 2004; Lorcé and Pasquini,
2011) via a Fourier transformation between the transverse-
momentum transfer Δ⊥ and the quark’s transverse position b.
The five-dimensional Wigner distributions ρðb;k⊥; x; S⃗Þ
(Lorcé et al., 2012) for a nucleon with polarization S⃗ are
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the quantum mechanical analogs of the classical phase-space
distributions, with the five dimensions being x, k⊥, and the
transverse coordinates b.
As illustrated in Fig. 2, one can obtain the generalized

parton distributions (GPDs) by integrating the GTMDs
over the transverse momentum k⊥. The GPDs can be viewed
as the generalization of the parton distribution functions
(PDFs) and the form factors. On the other hand, one can
obtain the transverse-momentum-dependent parton distribu-
tions (TMDs) by setting the momentum transfer Δ to zero or,
equivalently, by integrating the Wigner distributions over the
transverse coordinate b. The TMDs will reduce to PDFs when
the transverse momentum is integrated. In Fig. 2, TMFF and
TMSD refer to transverse-momentum-dependent form factors
and transverse-momentum-dependent spin densities, respec-
tively. While the most general one-parton information is
contained in the GTMDs, which are connected to the
Wigner distributions through Fourier transformations, neither
the GTMDs nor the Wigner distributions are measurable in
experiments. However, there are ways to access GPDs, which
we discuss next, and TMDs experimentally. For TMDs, we
refer the interested reader to a recent review by Anselmino,
Mukherjee, and Vossen (2020).
In 1997, deeply virtual Compton scattering (DVCS) (Ji,

1997a) was proposed as an experimental tool to probe GPDs.
See Müller et al. (1994), Radyushkin (1996), and Ji (1997a,
1997b) for the original articles on GPDs and Goeke, Polyakov,
and Vanderhaeghen (2001), Diehl (2003a), Belitsky and
Radyushkin (2005), Boffi and Pasquini (2007), Guidal,
Moutarde, and Vanderhaeghen (2013), and Kumericki,
Liuti, and Moutarde (2016) for reviews of the field. In the
Björken limit, the DVCS amplitude is described through the
following four off-forward parton distributions (Ji, 1997a):Hq

and H̃q (which conserve the nucleon helicity) for a quark of
flavor q and Eq and Ẽq, which flip the nucleon helicity. These
GPDs are functions of x, ξ, and Δ2 [for example, Hqðx; ξ;Δ2Þ
and Eqðx; ξ;Δ2Þ], where x is the average fraction of quark

longitudinal momentum, ξ is the average fraction of the
longitudinal momentum transfer Δ, and Δ2 is the squared
momentum transfer.
In the forward limit Δμ → 0, H and H̃ are simply the quark

momentum and helicity PDFs:

Hqðx; 0; 0Þ ¼ qðxÞ; H̃qðx; 0; 0Þ ¼ ΔqðxÞ: ð8Þ

Furthermore, one can write the following sum rules relating
these new distributions to the quark flavor components of the
Dirac and Pauli form factors in a nucleon as

Fq
1ðΔ2Þ ¼

Z þ1

−1
dxHqðx; ξ;Δ2Þ; ð9Þ

Fq
2ðΔ2Þ ¼

Z þ1

−1
dxEqðx; ξ;Δ2Þ; ð10Þ

where the ξ independence of these sum rules is a consequence
of Lorentz invariance.

C. The nucleon transverse charge densities

We next discuss in more detail how to define a charge
density in a nucleon, and how such density is related to the
previously discussed elastic form factors and generalized
parton distributions. For relativistic quantum systems, such
as hadrons composed of nearly massless quarks, a proper
definition of a charge density requires care, as previously
discussed. For such systems, the number of constituents is not
constant, as a result of virtual pair production. Consider as an
example a hadron such as the proton, which is probed by a
spacelike virtual photon, as shown in Fig. 3. A sizable fraction
of the proton’s response when it is probed by a virtual photon
with small (or even intermediate) virtuality comes from wave
function components beyond the three valence quark state
state (Sufian et al., 2017). In such a system, the wave function
contains, besides the three valence quark Fock component
jqqqi, components where additional qq̄ pairs, so-called sea
quarks, or transverse gluons g are excited, leading to an
infinite tower of jqqqqq̄i; jqqqgi;… components. When one

FIG. 2. Parton distribution family. From Lorcé, Pasquini, and
Vanderhaeghen, 2011.

FIG. 3. Coupling of a spacelike virtual photon to a relativistic
many-body system such as a proton. Upper images: diagonal
transition where the photon couples to a quark in the leading 3q
Fock component (left image) or in a higher 5q Fock component
(right image). Lower image: process where the photon creates a
qq̄ pair leading to a nondiagonal transition between an initial 3q
state and a final 5q state in the proton.
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probes such a system using electron scattering, the exchanged
virtual photon will couple to any quark or antiquark in the
proton, as shown in Fig. 3 (upper images). In addition, the
virtual photon can produce a qq̄ pair, giving rise to a transition
from a 3q state in the initial wave function to a 5q state in
the final wave function, as shown in Fig. 3 (lower image).
Such processes, leading to nondiagonal overlaps between
initial and final wave functions, are not positive definite and
no longer allow for a simple probability interpretation of the
density ρ. Only the processes shown in the upper images of
Fig. 3 with the same initial and final wave function yield a
positive definite particle density, allowing for a probability
interpretation.
This relativistic dynamical effect of pair creation or anni-

hilation fundamentally hampers the interpretation of density
and any discussion of the size and shape of a relativistic
quantum system. An interpretation in terms of the concept of a
density requires one to suppress the contributions shown in the
lower image of Fig. 3. This is possible when viewing the
hadron from a light-front frame, which allows one to describe
the hadron state using an infinite tower of light-front wave
functions. Consider the electromagnetic (e.m.) transition from
an initial hadron (with four-momentum p) to a final hadron
(with four-momentum p0) when viewed from a light-front
moving toward the hadron. Equivalently, this corresponds
with an IMF where the hadrons have a large momentum
component along the z axis chosen along the direction
of the hadrons’ average momentum P ¼ ðpþ p0Þ=2. One
then defines the light-front plus component as
Pþ≡ðP0þP3Þ= ffiffiffi

2
p

, which is always a positive quantity for
the quark or antiquark four-momenta in the hadron. When one
views the hadron in a so-called Drell-Yan frame (Drell and
Yan, 1970), where the virtual photon four-momentum Δ ¼
p0 − p is purely transverse, satisfying Δþ ¼ 0, energy-
momentum conservation will forbid processes where this
virtual photon splits into a qq̄ pair. Such a choice is possible
for a spacelike virtual photon, and its virtuality is then given
by t≡ Δ2 ¼ −Δ2⊥ < 0, where Δ⊥ is the transverse photon
momentum, lying in the transverse spatial ðx; yÞ plane. Here
−t or Δ2⊥ is the same as the virtuality Q2 in elastic e-p
scattering. In such a frame, the virtual photon couples only to
forward-moving partons; i.e., only processes such as those
shown in the upper part of Fig. 3 are allowed. We can then
define a proper density operator through the þ component of
the four current by Jþ ¼ ðJ0 þ J3Þ= ffiffiffi

2
p

. For one quark flavor
q this is given by (Soper, 1977)

Jþq ðz−;bÞ ¼ q̄ð0; z−;bÞγþqð0; z−;bÞ
¼

ffiffiffi
2

p
q†þð0; z−;bÞqþð0; z−;bÞ; ð11Þ

where the qþ fields are related to the quark fields q through a
field redefinition involving the � components of the Dirac γ
matrices as qþ ≡ ð1=2Þγ−γþq. In Eq. (11) light-cone coor-
dinates are used with a� ≡ ða0 � a3Þ= ffiffiffi

2
p

, and both quark
fields are taken at the same light-cone time zþ ¼ 0. The
transverse spatial coordinates are written as a two-dimensional
vector b. The relativistic density operator Jþq defined in
Eq. (11) is a positive definite quantity. The electromagnetic

charge density operator Jþem is then obtained by a sum over
quarks weighted by their electric charges eq (in units of e) as

Jþemðz−;bÞ ¼
X
q

eqq̄ð0; z−;bÞγþqð0; z−;bÞ: ð12Þ

One can then examine the transverse structure of the
nucleon due to the fact that transverse boosts are independent
of interactions in the infinite-momentum frame (Kogut and
Soper, 1970; Burkardt, 2006). Transversely localized nucleon
states (Soper, 1977; Diehl, 2002, 2003b; Burkardt, 2003) with
transverse center-of-mass positionR set to 0 can be defined in
terms of the linear superposition of states of transverse
momentum as (Miller, 2019)

jpþ;R ¼ 0; λi≡ N
Z

d2p⊥
ð2πÞ2

ffiffiffiffiffiffiffiffiffi
2pþp jpþ;p⊥; λi; ð13Þ

with jpþ;R ¼ 0; λi the light-cone helicity (λ) eigenstates
(Soper, 1977) and N a normalization factor.
Using the density operator of Eq. (11), one can define

transverse densities ρqλ for a quark of flavor q in a transversely
localized hadron as (Burkardt, 2000, 2003; Miller, 2007)

ρqλ ðbÞ≡ 1

2Pþ hPþ;R ¼ 0; λjJþq ð0;bÞjPþ;R ¼ 0; λi: ð14Þ

Using the translation operator in the transverse spatial

direction, one can express Jþq ð0;bÞ ¼ e−iP̂⊥·bJþq ð0ÞeiP̂⊥·b in
terms of the local current operator at the origin Jþq ð0Þ. Using
Eq. (13) then allows one to express the quark transverse
density of Eq. (14) as

ρqλ ðbÞ≡
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b 1

2Pþ

�
Pþ;

Δ⊥
2
;λ

����Jþq ð0Þ
����Pþ;−

Δ⊥
2
;λ

�
:

ð15Þ

In the two-dimensional Fourier transform of Eq. (15), the
vector b denotes the quark position (in the transverse plane)
from the transverse center of momentum of the hadron. It is
the position variable conjugate to the hadron relative trans-
verse momentum Δ⊥. The quantity ρqλðbÞ has the interpreta-
tion of the two-dimensional transverse density to find a quark
of flavor q at distance b ¼ jbj from the transverse c.m. of the
hadron with helicity λ.
For a quark of flavor q in the proton, the matrix element of

the Jþq operator entering the two-dimensional Fourier trans-
form in Eq. (15) can be expressed in terms of the quark flavor
contribution Fq

1 to the proton Dirac form factor as

1

2Pþ

�
Pþ;

Δ⊥
2

; λ

����Jþq ð0Þ
����Pþ;−

Δ⊥
2

; λ

�
¼ Fq

1ð−Δ2⊥Þ; ð16Þ

which allows one to express the density for a quark of flavor q
in the proton, using Eq. (15), as
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ρqðbÞ ¼
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·bFq
1ð−Δ2⊥Þ

¼
Z

∞

0

dQ
2π

QJ0ðbQÞFq
1ð−Q2Þ; ð17Þ

where on the second line the circular symmetry of the
transverse density was used to convert the two-dimensional
Fourier transform to a one-dimensional integral over
Q≡ jΔ⊥j, with Jn denoting the cylindrical Bessel function
of the order of n. Furthermore, the helicity subscript λ has
been omitted since for a spin-1=2 system ρþ1=2 ¼ ρ−1=2.
The two-dimensional electric charge density in a proton is

then obtained as follows as the sum over the quarks weighted
by their electric charges:

ρðbÞ ¼
X
q

eqρqðbÞ: ð18Þ

From the experimentally measured Dirac form factor F1 of the
proton

F1p ¼
X
q

eqF
q
1; ð19Þ

one obtains

ρpðbÞ ¼
Z

∞

0

dQ
2π

QJ0ðbQÞF1pð−Q2Þ: ð20Þ

A similar formula holds for the neutron with the interchange
ρu ↔ ρd in Eq. (18) and Fu

1 ↔ Fd
1 in Eq. (19). In this way, it

was observed by Miller (2007) that the neutron transverse
charge density reveals the well-known negative contribution at
large distances, around 1.5 fm, due to the pion cloud, a
positive contribution at intermediate b values, and a negative
core at b values smaller than about 0.3 fm. One can understand
the negative value of the neutron ρðb ¼ 0Þ from Eq. (20) and
the observation that over the entire measured Q2 range the
neutron Dirac form factor F1n is negative.
The quark charge densities in Eq. (20) do not fully describe

the e.m. structure of the hadron. For a proton, the densities
with λ ¼ �1=2 yield the same information, while a spin-1=2
system is described by two independent electromagnetic form
factors. In general, a particle of spin S is described by (2Sþ 1)
e.m. moments. To fully describe the structure of a hadron one
also needs to consider the charge densities in a transversely
polarized hadron state, with the transverse polarization direc-
tion denoted by S⊥. The transverse charge densities can be
defined through matrix elements of the density operator Jþq in
eigenstates of transverse spin (Carlson and Vanderhaeghen,
2008, 2009; Lorcé, 2009) as

ρqTs⊥ðbÞ≡
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b

×
1

2Pþ

�
Pþ;

Δ⊥
2
;s⊥

����Jþq ð0Þ
����Pþ;

−Δ⊥
2

;s⊥
�
; ð21Þ

where s⊥ is the hadron spin projection along the transverse
spin direction S⊥ ≡ cosϕSex þ sinϕSey , with ex and ey the
two unit vectors in the transverse plane.
If one expresses the transverse spin state in terms of the

light-front helicity spinor states as

����s⊥ ¼ þ 1

2

�
¼ 1ffiffiffi

2
p

�����λ ¼ þ 1

2

�
þ eiϕS

����λ ¼ −
1

2

��
; ð22Þ

the matrix element of the Jþq operator entering the two-
dimensional Fourier transform in Eq. (21) can be expressed in
terms of the quark flavor contribution to both the Dirac (Fq

1)
and Pauli (Fq

2) form factors as

1

2Pþ

�
Pþ;

Δ⊥
2

; s⊥
����Jþq ð0Þ

����Pþ;−
Δ⊥
2

; s⊥
�

¼ Fq
1ð−Δ2⊥Þ þ

i
2M

ðS⊥ × Δ⊥ÞzFq
2ð−Δ2⊥Þ: ð23Þ

When one takes the weighted sum over the quark charges,
the Fourier transform defined by Eq. (21) can then be worked
out as (Carlson and Vanderhaeghen, 2008)

ρTs⊥ðbÞ¼ρðbÞþsinðϕb−ϕSÞ
Z

∞

0

dQ
2π

Q2

2M
J1ðbQÞF2ð−Q2Þ;

ð24Þ

where the second term, which describes the deviation from the
circular symmetric unpolarized charge density, depends on the
quark position b ¼ bðcosϕbex þ sinϕbeyÞ. While the density
ρλ for a hadron in a state of definite helicity is circularly
symmetric for all spins, the density ρTs⊥ also depends on the
orientation of the position vector b relative to the transverse
spin vector S⊥, as illustrated in Fig. 4. Therefore, it contains
information on the hadron shape, projected on a plane
perpendicular to the line of sight. Guo, Ji, and Shiells
(2021) recently emphasized that, in order to define intrinsic
quark densities in transverse space, one needs to remove the
center-of-mass motion. This amounts to the replacement of F2

with F1 þ F2 in Eqs. (23) and (24).
As the density ρT is not circularly symmetric, one can

calculate the dipole moment of its distribution as

FIG. 4. Schematic view of the projection of the charge density
along the line of sight (perpendicular to the image) for a hadron
polarized along the direction of S⊥. The position of the quark
charge inside the hadron is denoted by b.
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d≡ e
Z

d2bbρTs⊥ðbÞ ¼ −
e
2M

F2ð0ÞðS⊥ × ezÞ: ð25Þ

Equation (25) implies that polarizing the proton along the
x axis leads to an induced electric dipole moment along the
y axis that is equal to the value of the anomalous magnetic
moment, i.e., F2ð0Þ (in units e=2M), as first noticed by
Burkardt (2000). One can understand this induced electric
dipole field pattern from special relativity, as the nucleon spin
along the x axis is the source of a magnetic dipole field,
denoted by B⃗. An observer moving toward the nucleon
with velocity v⃗ will see an electric dipole field pattern with
E⃗0 ¼ −γðv⃗ × B⃗Þ giving rise to the observed effect.
We show the transverse charge densities in a proton and

neutron in Fig. 5 based on the recent parametrization of Ye
et al. (2018) for the proton and neutron form factors. One
notices that for the proton the unpolarized charge density is
positive everywhere. For a transversely polarized proton along
the x axis, one notices a small displacement of the charge
density along the y axis proportional to the proton’s anoma-
lous magnetic moment. For the neutron, the unpolarized
density shows the negatively charged core, positive inter-
mediate contribution, and negative pion cloud contribution at
large distances, as previously described. The corresponding
transverse charge density for a neutron polarized along the x
axis gets significantly displaced due to the large negative value
of the neutron anomalous magnetic moment.
The previously discussed light-front densities require us to

develop some new intuition, as they are defined at the same
light-front time (zþ ¼ 0) as their constituents. When constitu-
ents move nonrelativistically, it does not make a difference
whether they are observed at the same time (t ¼ 0) or the same
light-front time (zþ ¼ 0), since the constituents can move only
a negligibly small distance during the small time interval that a
light ray needs to connect them. This is not the case, however,
for bound systems of relativistic constituents such as hadrons
(Jarvinen, 2005; Hoyer, 2009). For the latter, the transverse
density at equal light-front times can be interpreted as a two-
dimensional flash photograph of a three-dimensional object
(Brodsky et al., 2015), thereby reflecting the position of

charged constituents at different times, which are causally
connected by a light ray.

D. Radii of quark distributions in a proton

As previously discussed, to define and reconstruct a three-
dimensional charge distribution from elastic electron-scattering
measurements of the form factors of a system requires that one
is able to localize the object and fix its center of mass, with
respect to which one defines the charge distribution (Jaffe,
2021). This is possible for nonrelativistic static systems for
which the typical size is much larger than its Compton
wavelength, allowing the probe to localize the charges at
distances between the two scales. For atomic nuclei, this
condition is well satisfied, as their Compton wavelength (of
the order of 0.2=A fm) is typically much smaller than their size
(of the order of 1.2A1=3 fm). As an example, for the 12C
nucleus, its size of around 2.5 fm is much larger than its
Compton wavelength of around 0.02 fm, which allows one to
localize charges in between these length scales and reconstruct
a charge distribution. For such systems, one can define a three-
dimensional charge distribution as Fourier transform of the
measured electric form factorGE as given in Eq. (6). For such a
charge distribution, one can define a radius through the
following normalized moment:

hr2Ei≡
R
d3r⃗r2ρ3D;n-relðrÞR
d3r⃗ρ3D;n-relðrÞ

: ð26Þ

Inserting the three-dimensional density defined in Eq. (6)
allows one to express the charge radius as

hr2Ei ¼ −6
G0

Eð0Þ
GEð0Þ

; ð27Þ

where G0
Eð0Þ≡ ðdGE=dQ2ÞjQ2¼0, with Q2 ¼ q⃗2. One can

therefore express the Taylor expansion of GE at low values
of Q2 as

GEð−Q2Þ≡GEð0Þf1 − 1
6
hr2EiQ2 þOðQ4Þg ð28Þ

FIG. 5. Transverse charge densities for a proton (left panel) and neutron (right panel). The curves show the density along the y axis for
an unpolarized nucleon (dashed blue curves), and for a nucleon polarized along the x axis (solid red curves). For the nucleon form
factors, the empirical parametrization of Ye et al. (2018) was used.
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and access the charge radius experimentally from the electric
form factor slope at the origin.
Applying the previous concepts to a nucleon becomes

problematic since the nucleon’s size (of the order of 0.85 fm)
is not much larger than its Compton wavelength (of the order
of 0.2 fm), making it impossible to localize the center of mass
in three spatial dimensions. Besides, for light-quark systems
we have discussed that an interpretation in terms of a positive
definite quantity is spoiled in the rest frame due to pair
creation processes. In Sec. III.C, we reviewed how to properly
define density distributions for a nucleon, which is a relativ-
istic bound state. Going to the infinite-momentum frame
allows one to localize the hadron in a plane perpendicular
to the direction of a fast-moving observer and define density
distributions in that plane. For the resulting two-dimensional
transverse distributions for a quark of flavor q in the proton,
one can then define a mean-squared transverse radius as

hb2iq ¼
R
d2bb2ρqðbÞR
d2bρqðbÞ ¼ −4

F0q
1 ð0Þ

Fq
1ð0Þ

; ð29Þ

where F0q
1 ð0Þ≡ ðdFq

1=dQ
2ÞjQ2¼0 denotes the slope at the

orgin of the corresponding Dirac form factor. Note that the
radius definition of Eq. (29) for each quark flavor is properly
normalized to the number of valence quarks in the proton
[Fu

1ð0Þ ¼ 2 and Fd
1ð0Þ ¼ 1], yielding

hb2iu ¼ −2F0u
1 ð0Þ; hb2id ¼ −4F0d

1 ð0Þ: ð30Þ

To determine the mean-squared transverse radii [Eq. (30)]
for each quark flavor, we start by expressing the proton and
neutron Dirac form factors, using isospin symmetry, as

F1p ¼ euFu
1 þ edFd

1;

F1n ¼ euFd
1 þ edFu

1; ð31Þ

which allows one to extract the Dirac form factors for the
u- and d-quark flavors. These enter the corresponding trans-
verse quark densities as

Fu
1 ¼ 2F1p þ F1n; Fd

1 ¼ 2F1n þ F1p: ð32Þ

Combined with Eqs. (30) and (31), Eq. (32) allows one to
express the proper mean-squared transverse radii for the
u- and d-quark distributions in a proton as

hb2iu ¼ −2f2F0
1pð0Þ þ F0

1nð0Þg;
hb2id ¼ −4fF0

1pð0Þ þ 2F0
1nð0Þg: ð33Þ

Equation (33) allows one to express the difference of the
mean-squared radii for d- and u-quark distributions in a
proton as

hb2id − hb2iu ¼ −6F0
1nð0Þ: ð34Þ

To empirically determine the mean-squared transverse radii
of u- and d-quark distributions in a proton, we relate the
derivative of the Dirac form factors to the conventional Sachs

form factors GE and GM, defined in Eqs. (4) and (5), which
yields

F0
1ð0Þ ¼ G0

Eð0Þ þ
κ

4M2
: ð35Þ

Following the convention for nonrelativistic static systems,
one can Taylor expand the proton and neutron Dirac form
factors at low-momentum transfer Q2 as

GEpð−Q2Þ≡ 1 − 1
6
hr2EpiQ2 þOðQ4Þ; ð36Þ

GEnð−Q2Þ≡ −1
6
hr2EniQ2 þOðQ4Þ: ð37Þ

We emphasize again that for relativistic bound states such as a
nucleon where the concept of a three-dimensional charge
distribution is not well defined, Eqs. (36) and (37) are used
merely as operational definitions for the form factor slopes
at the origin, even though we refer to these quantities for
simplicity as “radii” in the remainder of this review.
Equations (36) and (37) then allow one to express for the
nucleon (N ¼ p; n)

−6F0
1Nð0Þ ¼ hr2ENi −

3κN
2M2

; ð38Þ

where the anomalous magnetic moment contribution is known
as the Foldy term.
The radius of the transverse charge distribution in a proton

is then obtained as the following sum over the radii for the
quark distributions weighted by their charges:

hb2ip ¼ 4
3
hb2iu − 1

3
hb2id ¼ −4F0

1pð0Þ: ð39Þ

For the neutron, assuming isospin symmetry, we define a
transverse charge radius as1

hb2in ¼ 2
3
hb2id − 2

3
hb2iu ¼ −4F0

1nð0Þ: ð40Þ

In Table I, we show the empirical values of proton and
neutron radii hr2Ei, the Foldy terms, the extracted Dirac slopes
F0
1ð0Þ, and the transverse charge radii hb2i. For the proton

values for hr2Epi, we show both the recent analysis of Cui et al.
(2021) based on e-p-scattering results, which are discussed in
Sec. V [Eq. (73)], and the extracted value from the μH Lamb
shift measurements, which are discussed in Sec. VI [Eq. (76)].
Anticipating the discussion in Sec. VI, the quantity entering
the hydrogen spectroscopy Lamb shift experiments is also
given by the slope G0

Epð0Þ. Therefore, it is important and
meaningful to compare the proton charge radius values
obtained using these two experimental techniques. We see
in Table I that the extracted mean-squared transverse radii hb2i
are consistent between the two analyses, showing that the
transverse charge distribution in a proton has a rms radius of
around 0.63 fm, as seen by an observer moving with a light

1Note that for a neutron this follows the convention in defining a
charge radius for a neutral system, as one cannot use the definition of
Eq. (29), which is normalized to the total charge.
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front. For the neutron, one notices that its Dirac slope value
F0
1nð0Þ is the result of a large cancellation between the hr2Eni

term and the Foldy term, which have opposite signs, resulting
in a value of F0

1nð0Þ that is around 10% of the size of each
contribution. As the Foldy term for the neutron is slightly
larger in absolute value than the hr2Eni term, the positive value
of −6F0

1nð0Þ results from Eq. (34) in a slightly larger mean-
squared radius for the d quarks in a proton relative to the u
quarks in the proton, thereby confirming the observation of
Cates et al. (2011) based on a flavor decomposition of proton
and neutron form factors.
In Table II, we show the extracted values of the mean-

squared transverse radii for u- and d-quark distributions in the
proton, using the neutron PDG value for hr2Eni, and both
analyses for the proton as shown in Table I. For the
more accurate values extracted from the μH Lamb shift
measurements, one obtains a precision of 0.3% (0.7%) on
the mean-squared transverse radii for the u-quark (d-quark)
distributions. Using the values in Table I, we notice that the
neutron F0

1nð0Þ term contributes 1% (4%) to the mean-squared
radii for the u-quark (d-quark) distributions, respectively, in
Eq. (33). One also notices that the uncertainty on the neutron
F0
1nð0Þ value is at present the limiting uncertainty in the

extraction of the mean-squared transverse radius value for the
d-quark distribution.
Later we discuss unpolarized and polarized electron-proton

elastic scatterings and the methods to extract the proton
electric form factor and the proton charge radius value based
on the definition of Eq. (36) as the slope of the form factor GE
at the origin. Likewise, one can define a magnetic radius as the
slope at the origin of the form factor GMN for the nucleon
(N ¼ p; n) as follows:

GMNð−Q2Þ≡ μNf1 − 1
6
hr2MNiQ2 þOðQ4Þg; ð41Þ

where μN is the nucleon magnetic moment, μp ¼ 2.79 and
μn ¼ −1.91, in the units of the nucleon magneton.

Ideally, to extract the proton charge radius value, one needs
to extract the proton electric form factor GE all the way down
to Q2 ¼ 0 and then determine its slope. In practice, it is not
possible to measure GE at Q2 ∼ 0, which corresponds to
near 0° scatterings. Therefore, some type of extrapolation is
unavoidable, which may introduce systematic uncertainties
associated with the determination of hr2Epi1=2, as dis-
cussed later.
A theoretical determination of the proton radius starting

with QCD requires a nonperturbative framework. The only
current ab initio tool is lattice QCD. The standard procedure in
lattice QCD is to compute the electric form factor for finite
values of the momentum transfer and then perform a fit to
determine the slope at zero momentum transfer, such as
through a popular dipole fit or a z-expansion fit. However,
on a finite lattice the smallest nonzero momentum is 2π=L,
with L the spatial size of the lattice. Therefore, reaching small
momentum transfers is challenging as it requires large lattices.
Furthermore, although electromagnetic form factors have
been studied within lattice QCD for many years, it is only
recently that they have been extracted using simulations with
physical values of the light-quark masses.
In Fig. 6, we show a compilation of recent lattice QCD

results for both the isovector charge radius ðhr2Epi − hr2EniÞ1=2
and the proton charge radius, obtained from ensembles at or
near the physical pion mass. For the isovector radius, only the
connected quark diagrams, in which the photon couples to the
quarks connected to either the intial or final nucleon, con-
tribute. The proton charge radius also requires a much harder
calculation of the contribution from disconnected diagrams in
which the photon couples to a qq̄ loop, which interacts with
the quarks in the initial and final protons through gluon
exchanges. Although the disconnected contribution to the
proton electric form factor at low-momentum transfer is found
to be in the 1% range (Alexandrou et al., 2019), its omission
would result in an uncontrolled systematic error. Such
systematics need to be under control for precision compar-
isons of the proton charge radius at the 1% level or better.
Improving on the precision of the lattice extractions of the

proton charge radius also requires one to reduce the model
error induced by a form factor fit, which has been done in most
of the lattice results so far. To this end, a first step was taken in
the lattice study of Alexandrou et al. (2020), which explored a
direct method to extract the proton radius that does not depend
on fitting the form factor, displayed as ETMC 20 in Fig. 6.
The lattice calculations have made important progress in

recent years by controlling excited state contamination and by
performing calculations at the physical point. One notices in

TABLE I. Empirical values of the proton and neutron radii hr2Ei, Foldy terms, Dirac slopes F0
1ð0Þ, and transverse charge radii hb2i. For the

proton, we show the values both using the e-p-scattering data analysis of Cui et al. (2021) and the values from μH Lamb shift measurements
(Antognini et al., 2013).

hr2Ei (fm2) −3κN=2M2 (fm2) −6F0
1ð0Þ (fm2) hb2i (fm2)

Proton (e-p) 0.717� 0.014 (Cui et al., 2021) −0.1189 0.598� 0.014 0.399� 0.009
Proton (μH) 0.7071� 0.0007 (Antognini et al., 2013) 0.5882� 0.0007 0.3921� 0.0005

Neutron (PDG) −0.1161� 0.0022 (Zyla et al., 2020) 0.1266 0.0105� 0.0022 0.0070� 0.0015

TABLE II. Extracted values of the mean-squared transverse radii
for u- and d-quark distributions in the proton, using the neutron PDG
value for hr2Eni given in Table I, and for the proton values for hr2Epi
from both the analysis of Cui et al., 2021 based on e-p-scattering
results and the extracted value from the μH Lamb shift measurements
(Antognini et al., 2013).

hb2iu (fm2) hb2id (fm2)

Proton (e-p) 0.402� 0.009 0.413� 0.010
Proton (μH) 0.396� 0.001 0.406� 0.003
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Fig. 6, however, that further improvements are called for to
reach the precision level obtained in the empirical extractions.

E. The extraction of proton electromagnetic form factors

The differential cross section based on OPE for elastic
electron-nucleon scattering can be written as

dσ
dΩlab

¼ α2

4E2sin4ðθ=2Þ
E0

E

×

�
G2

E þ τG2
M

1þ τ
cos2

�
θ

2

	
þ 2τG2

Msin
2

�
θ

2

	�
; ð42Þ

where E is the incident electron energy, E0 is the energy of
the scattered electron, θ is the electron-scattering angle, α is
the fine-structure constant, τ≡Q2=4M2, and the mass of the
electron is neglected.
To separately determine the proton electric and magnetic

form factor for each Q2 value, ideally one would need to
perform two measurements with independent combinations of
GE and GM at the corresponding Q2 value, with one of the
measurements involving polarizations that we discuss later.
However, polarization experiments have become possible
only in recent decades. Historically, the Rosenbluth technique

(Rosenbluth, 1950) had been used extensively, which allows
for the separation of these two form factors by performing
unpolarized differential cross-section measurements only. To
see how this works, one can rewrite Eq. (42) as

dσ
dΩlab

¼ σM
1

1þ τ

�
G2

E þ τ

ϵ
G2

M

�
; ð43Þ

where ϵ ¼ ½1þ 2ð1þ τÞtan2ðθ=2Þ�−1 is the virtual photon
longitudinal polarization and σM is the following Mott cross
section describing the scattering from a pointlike spinless
target (where we included the recoil factor E0=E):

σM ¼ α2cos2ðθ=2Þ
4E2sin4ðθ=2Þ

�
E0

E

	
: ð44Þ

At a fixed Q2 value, one can take a series of measurements
by varying the incident electron beam energy and the scattering
angle. According to Eq. (43), one can then fit the measured
reduced cross sectionG2

M þ ϵ=τG2
E as a function of ϵ. From the

slope and the intercept of the fit, one can then determineG2
E and

G2
M. There are limitations to the Rosenbluth method: at lowQ2,

due to the kinematic suppression, the extraction of the proton
magnetic form factor is problematic, while at high Q2 the

FIG. 6. Compilation of recent lattice QCD results for the isovector charge radius (left panel) and the proton charge radius (right
panel) obtained from ensembles at the physical pion mass. Results shown are from LHPC (Hasan et al., 2018) and ETMC, both
using a form factor fit ETMC 18 (Alexandrou et al., 2019), as well as the direct calculation of the radius ETMC 20, avoiding an
extrapolation through a form factor fit (Alexandrou et al., 2020); PNDME (Jang et al., 2020); PACS (Shintani et al., 2019); and
CLS (Djukanovic et al., 2021). Inner error bars display the statistical errors, whereas outer error bars display the full errors. The
vertical bands show the empirical result extracted from muonic hydrogen spectroscopy and the CODATA-2014 recommended value,
as discussed in Secs. V and VI. From Jingyi Zhou.
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magnetic contribution dominates the cross section and the
extraction of the proton GE becomes difficult.
To overcome the aforementioned limitations associated with

the Rosenbluth technique, an independent combination of the
proton electric and magnetic form factors can be obtained by a
double-polarization measurement from electron-proton elastic
scattering in addition to unpolarized differential cross-section
measurements, thereby separating these two form factors.
Double-polarization measurements in the context of electron-
proton scattering refer to the following two cases: (i) longitu-
dinally polarized electrons scattering from a polarized proton
target, and (ii) longitudinally polarized electrons scattering from
an unpolarized proton target with the recoil proton polarization
measured by a polarimeter. In this review, we do not review
the technical aspects of polarized electron beams, polarized
proton targets, or the recoil proton polarimeters. We instead
refer interested readers to review articles by Gao (2003) and
Perdrisat, Punjabi, and Vanderhaeghen (2007).
The one-photon-exchange diagram for spin-dependent

electron-nucleon scattering is shown in Fig. 7. In this picture
the incident electron is longitudinally polarized with a helicity
of h ¼ �1, corresponding to an electron’s spin being parallel
or antiparallel to its momentum direction, respectively.
The target proton spin vector is shown by a thick arrow, with
θ� and ϕ� as its polar and azimuthal angles defined with
respect to the three-momentum transfer vector q of the virtual
photon. The scattering plane is defined as the x, z plane with
ẑ ¼ q=jqj and ŷ ¼ ðk × k0Þ=ðjkjjk0jÞ, with k and k0 the
incident and scattered electron three-momentum vector,
respectively. The spin-dependent asymmetry A is defined as
A ¼ ðσhþ − σh−Þ=ðσhþ þ σh−Þ, where σh� denotes the differ-
ential cross sections for the two different helicities of the
polarized electron beam.
For longitudinally polarized electrons scattering from a

polarized proton target, the differential cross section can be
written as (Donnelly and Raskin, 1986)

dσ
dΩ

¼ Σþ hΔ; ð45Þ

where Σ is the unpolarized differential cross section given by
Eq. (42) and Δ is the spin-dependent differential cross section
given by

Δ ¼ σMott½vz cos θ�G2
M þ vx sin θ� cosϕ�GMGE�; ð46Þ

where

vz ¼ −2τ tan
�
θ

2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ τ
þ tan2

�
θ

2

	s
; ð47Þ

vx ¼ −2 tan
�
θ

2

	 ffiffiffiffiffiffiffiffiffiffiffi
τ

1þ τ

r
ð48Þ

are kinematic factors. The spin-dependent asymmetry A is
defined in terms of the polarized and unpolarized cross
sections as

A ¼ Δ
Σ
¼ vz cos θ�G2

M þ vx sin θ� cosϕ�GMGE

ðϵG2
E þ τG2

MÞ=½ϵð1þ τÞ� : ð49Þ

The experimental asymmetry Aexp is related to the spin-
dependent asymmetry of Eq. (49) by

Aexp ¼ PbPtA; ð50Þ

where Pb and Pt are the beam and target polarizations,
respectively. A determination of the ratio GE=GM, indepen-
dent of the knowledge of the beam and target polarization, can
be precisely obtained by measuring the so-called super ratio

R ¼ A1

A2

¼ vz cos θ�1G
2
M þ vx sin θ�1 cosϕ

�
1GMGE

vz cos θ�2G
2
M þ vx sin θ�2 cosϕ

�
2GMGE

; ð51Þ

where A1 and A2 are elastic electron-proton-scattering asym-
metries measured at an identical value of Q2 simultaneously,
but at two different proton spin orientations relative to q,
corresponding to ðθ�1;ϕ�

1Þ and ðθ�2;ϕ�
2Þ, respectively. However,

the proton spin direction is fixed in the laboratory frame;
therefore, it is feasible if one has a symmetric detection
system. For a symmetric detector configuration with respect to
the incident electron momentum direction, A1 and A2 can be
measured simultaneously by forming two independent asym-
metries with respect to either the electron beam helicity or the
target spin orientation in the beam-left and beam-right sector
of the detector system, respectively. Thus, the proton form
factor ratio can be determined with high systematic accuracy
using this technique because it is insensitive to the uncer-
tainties in determining the beam and the target polarizations.

FIG. 7. One-photon-exchange diagram for spin-dependent elec-
tron-proton scattering. From Jingyi Zhou.

FIG. 8. The one-photon-exchange diagram for polarization
transfer from longitudinally polarized electron to unpolarized
proton. From Jingyi Zhou.
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Such a technique was pioneered (Crawford et al., 2007) in the
BLAST experiment (Hasell et al., 2011) at the former MIT-
Bates linear accelerator center, where the proton electric to
proton magnetic form factor ratio was extracted in the Q2

range from 0.15 to 0.65 ðGeV=cÞ2.
In polarization transfer measurements (the polarization

from the incident electron beam is transferred to the recoil
protons) and the recoil proton polarization is measured using a
recoil proton polarimeter, as illustrated in Fig. 8. Such a
polarimeter relies on secondary scatterings (recoil protons
from e-p scattering off an analyzer such as CH2) and spin-
orbital interactions of protons and nuclei and spin-dependent
proton-proton interactions that give rise to azimuthal angular
dependence in the distribution of the scattered protons. By
analyzing such azimuthal angular dependence, one can
determine the recoil proton polarization components in the
reaction plane (the x-z plane in Fig. 8). Such secondary
scatterings take place at the focal plane of the spectrometer,
and the polarimeter is also called the focal-plane polarimeter
(FPP). To determine the proton electric to magnetic form
factor ratio at the target from the proton polarization compo-
nents measured at the focal plane, an involved spin transport
process is needed because the proton spin rotates as it goes
through various magnetic components inside a magnetic
spectrometer. The proton polarization measured by FPP
(P⃗FPP) and the proton polarization at the target (P⃗) are related
through a three-dimensional spin rotation matrix. The ele-
ments of the spin rotation matrix can be calculated from a
detailed modeling of the magnetic spectrometer including
all spectrometer magnets (dipole, quadrupoles), fringe fields,
dipole field gradient, etc. For details on such polarimeters, see
the review by Perdrisat, Punjabi, and Vanderhaeghen (2007).
In the one-photon-exchange Born approximation, the scat-

tering of longitudinally polarized electrons results in a transfer
of polarization to the recoil proton with only two nonzero
components: Px, which is perpendicular to the proton
momentum in the scattering plane, and Pz, which is parallel
to the proton momentum in the scattering plane, as illustrated
in Fig. 8 (Arnold, Carlson, and Gross, 1981). The form factor
ratio can be determined from a simultaneous measurement
of the two recoil polarization components in the scattering
plane as

GE

GM
¼ −

Px

Pz

Eþ E0

2M
tanðθ=2Þ; ð52Þ

in terms of the incident and scattered electron energiesE andE0,
respectively, and electron-scattering angle θ. The polarization
transfer measurement was carried out by Zhan et al. (2011) and
a proton charge radius value was extracted by combining
unpolarized electron-proton-scattering data; see Sec. V.B.

F. Two-photon-exchange contribution to electron-proton
scattering

Note that all our discussions thus far have been based on the
dominant OPE Born diagram contribution in electron-proton
scattering, as higher-order contributions are suppressed due
to the smallness of the fine-structure constant (α ≃ 1=137).

The next-to-leading-order contribution is the two-photon-
exchange (TPE) contribution, as shown in Fig. 9, which is
proportional to the doubly virtual Compton subprocess on the
proton side.
The TPE contribution became of a strong interest after a

drastic difference was reported on the proton GE=GM ratio
measured directly using a recoil proton polarimeter (Jones
et al., 2000) from those using Rosenbluth separation. The data
from Jones et al. (2000) and the subsequent recoil polarization
experiments (Gayou et al., 2002; Punjabi et al., 2005; Puckett
et al., 2010) show interesting behavior at higher Q2; i.e., GEp

falls off much faster than GMp as a function of Q2, while the
two form factors extracted from unpolarized differential cross-
section measurements using the Rosenbluth separation
method show a similar Q2 dependence. The near constant
behavior of the proton GEp=GMp ratio extracted from unpo-
larized measurements was confirmed and extended to a higher
Q2 value near 5.5 ðGeV=cÞ2 by another experiment at
Jefferson Lab (Christy et al., 2004). The first explanations
of such puzzling behavior pointed toward hard TPE processes
between the electron and the proton, which become relevant
once experiments aim to access terms that contribute at or
below the percent level to the scattering cross section as is the
case in the Rosenbluth method at larger Q2 values (Blunden,
Melnitchouk, and Tjon, 2003; Guichon and Vanderhaeghen,
2003). This unexpected behavior triggered intensive exper-
imental and theoretical studies of the TPE effect in electron-
proton scattering in the last two decades as its effect is
expected to be different in unpolarized cross-section mea-
surements than in recoil polarization experiments; see Carlson
and Vanderhaeghen (2007) and Arrington, Blunden, and
Melnitchouk (2011) for some early reviews of this field.
To account for two-photon and multiphoton exchange

effects in a model-independent way requires one to generalize
the amplitude of Eq. (1) by describing the elastic e-p
scattering. Neglecting the electron mass, the elastic e-p-
scattering amplitude, following the notations introduced in
Sec. III.A, can be expressed through the following three
independent structures (Guichon and Vanderhaeghen, 2003):

Mh;λ0λ ¼ iðe2=Q2Þūðk0; hÞγμuðk; hÞ

× N̄ðp0; λ0Þ
�
G̃Mγ

μ − F̃2

Pμ

M
þ F̃3

γ · KPμ

M2

	
Nðp; λÞ;

ð53Þ

FIG. 9. Two-photon-exchange diagram for elastic electron-
proton scattering. The blob denotes the doubly virtual Compton
subprocess on the proton.
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in whichK ≡ ðkþ k0Þ=2 and where the functions G̃M, F̃2, and
F̃3 are complex functions of ϵ and Q2. In the OPE approxi-
mation, the functions G̃M and F̃2 reduce to the Q2-dependent
form factors GM and F2, respectively, while the function F̃3

vanishes. When accounting for the small electron helicity flip
effects, which are proportional to its mass, it was shown
by Gorchtein, Guichon, and Vanderhaeghen (2004) that
three more amplitudes are needed to fully describe the
e-p-scattering amplitude. Based on such a general analysis,
the TPE corrections to both unpolarized and polarization
observables were expressed by Guichon and Vanderhaeghen
(2003) in terms of the amplitudes G̃M, F̃2, and F̃3. In that
work it was shown that, by adding a TPE contribution of the
size expected from perturbation theory, it is possible to
simultaneously account for the relatively large correction to
the unpolarized observable when extracting the GEp=GMp

ratio at larger Q2 while maintaining a small correction in the
polarization observables.
To use electron scattering as a precision tool, it is

indispensable to arrive at a better quantitative understanding
of TPE processes, and a lot of activities have taken place over
the past two decades or are planned for the near future. There
are observables that provide us with clear indications of the
size of TPE effects, as they would be exactly zero in the
absence of two-photon-exchange or multiphoton-exchange
contributions. Such observables are normal single-spin
asymmetries (SSAs) of electron-nucleon scattering, where
either the electron spin or the nucleon spin is polarized
normal to the scattering plane. Because such SSAs are
proportional to the imaginary part of a product of two
amplitudes, they are zero for real (nonabsorptive) processes
such as OPE. At leading order in the fine-structure constant,
they result from the product of the OPE amplitude and the
imaginary part of the TPE amplitude. For the target normal
SSA, they were predicted to be in the percent or subpercent
range some time ago (De Rujula, Kaplan, and De Rafael,
1971). A measurement of the normal SSA for the elastic
electron-3He scattering by the Jefferson Lab (JLab) Hall A
Collaboration extracted a SSA for the elastic electron-
neutron subprocess in the percent range (Zhang et al.,
2015). For the experiments with polarized beams, the
corresponding normal SSAs were predicted to be in the
range of a few to hundred ppm for electron beam energies in
the GeV range (Afanasev, Akushevich, and Merenkov, 2002;
Gorchtein, Guichon, and Vanderhaeghen, 2004; Pasquini
and Vanderhaeghen, 2004). Although such beam normal spin
asymmetries are small, as they are proportional to the
electron mass, the parity-violation programs at the major
electron laboratories have reached precisions on asymme-
tries with longitudinal polarized electron beams well below
the ppm level, and the next generations of such experiments
are designed to reach precisions at the sub-ppb level (Kumar
et al., 2013). The beam normal SSA, which is due to TPE
and thus parity conserving, has been measured over the past
two decades as a spin-off in the parity-violating electron-
scattering programs at MIT-Bates (SAMPLE Collaboration)
(Wells et al., 2001), MAMI (A4 Collaboration) (Maas et al.,
2005; Balaguer Rios, 2012; Gou et al., 2020), and JLab [G0
Collaboration (Armstrong et al., 2007; Androić et al., 2011),

HAPPEX/PREX Collaboration (Abrahamyan et al., 2012),
and Qweak Collaboration (Androić et al., 2020)].
The resulting beam normal SSA range from a few ppm in
the forward angular range to around a hundred ppm in the
backward angular range, in qualitative agreement with
theoretical TPE expectations.
While the nonzero normal SSAs in elastic electron-nucleon

scattering quantify the imaginary parts of the TPE amplitudes,
measurements of their real parts have also been performed by
several dedicated experiments over the past few years. In
particular, the deviation from unity of the elastic-scattering
cross-section ratio R2γ ≡ eþp=e−p is proportional to the real
part of the product of OPE and TPE amplitudes. Recent
measurements of R2γ for Q2 up to 2 GeV2 were performed at
VEPP-3 (Rachek et al., 2015), by the CLAS Collaboration at
JLab (Adikaram et al., 2015; Rimal et al., 2017), and by the
OLYMPUS Collaboration at DESY (Henderson et al., 2017).
These experiments show that R2γ ranges, for the kinematic
region corresponding toQ2 ¼ 0.5–1 GeV2 and virtual photon
polarization parameter ϵ ¼ 0.8–0.9, from a value R2γ ≈ 0.99
(Henderson et al., 2017), showing a deviation from unity
within 2σ to 3σ (statistical and uncorrelated systematic errors),
to a value R2γ ¼ 1.02–1.03 for Q2 ≈ 1.5 GeV2 and ϵ ≈ 0.45
(Rachek et al., 2015; Rimal et al., 2017). Furthermore, the
GEp2gamma Collaboration at JLab (Meziane et al., 2011)
performed a pioneering measurement of the deviation from
the OPE prediction for both double-polarization components
(Px and Pz) of the e⃗p → ep⃗ process atQ2 ¼ 2.5 GeV2. While
for Px the TPE corrections were found to be negligible, for Pz
a deviation from the OPE result was found at the 4σ level at
ϵ ¼ 0.8 (Meziane et al., 2011). In combination with the
unpolarized data, these measurements of the ϵ dependence
of both double-polarization observables in the e⃗p → ep⃗
process at a fixed value of Q2 were used by Guttmann et al.
(2011) to provide a first disentanglement of the three TPE
amplitudes describing elastic e-p scattering for massless
electrons, as given by Eq. (53).
While the TPE effects have been shown by experiments

to be of the size needed to bring the form factor ratio results
from unpolarized measurements closer to those from the
recoil polarization experiments, further quantitative studies
are needed to reach a conclusive statement, especially in the
larger Q2 range. On the theoretical side, various dispersion
theoretical approaches have been developed in recent years;
see Borisyuk and Kobushkin (2015), Tomalak, Pasquini,
and Vanderhaeghen (2017b), and Ahmed, Blunden, and
Melnitchouk (2020) and older references therein, which relate
the TPE amplitudes at intermediate Q2 values to empirical
input on the electromagnetic structure of the nucleon and its
excitations. At large Q2 approaches based on perturbative
QCD have been proposed (Chen et al., 2004; Borisyuk and
Kobushkin, 2009; Kivel and Vanderhaeghen, 2013, 2009).
Further experiments investigating the TPE effect at larger
values of Q2 will be highly desirable to further test and
constrain the TPE model descriptions.
In the low Q2 region, the TPE effect can be predicted with

less model dependence (Hill et al., 2013; Tomalak, Pasquini,
and Vanderhaeghen, 2017a). Especially in the forward angular
range relevant to the proton electric charge radius
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determination from elastic e-p scattering, it is found to be
understood at the level of precision of current experiments.
The TPE effect increases for the backward angular range,
where a better understanding is required for improving the
extraction of the proton magnetic radius.

G. Radiative corrections in electron scattering

In addition to the TPE correction corresponding to two hard
photons in Fig. 9, another important aspect associated with
lepton scattering, especially with electron scattering, is the so-
called radiative correction (RC) effect on the OPE picture. RC
refers to effects from various types of radiation and soft-
photon exchanges in electron scattering that need to be
corrected before one can extract information such as the
proton electric and magnetic form factors defined in the OPE
picture. Examples include the initial-state electron radiating a
photon prior to the scattering and the final-state electron
radiating a photon before it is detected in the detector. Similar
pictures can be applied to the proton side, although such
radiative effects are suppressed because the proton mass is
significantly larger than that of an electron. A different way to
look at the proton side is that such a RC effect in principle can
be included in the definition of the proton electric and
magnetic form factors. Another important RC contribution
is due to the QED vacuum polarization, which refers to the
fact that a virtual photon can fluctuate into an electron-
positron pair before it is absorbed, and the vertex correction
on electron and proton sides. Furthermore, the radiative
corrections conventionally also include a part of the TPE
correction, in which one of the photons in the box diagram of
Fig. 9 has a soft four-momentum. These are simply examples
of leading-order RC contributions, which are at the next-to-
leading order compared to the leading-order OPE in electron-
proton scattering. Two classic review articles on this subject
still widely used and cited are by Mo and Tsai (1969) and by
Maximon (1969). In recent years, there has been renewed
interest in performing and pushing the state-of-the-art calcu-
lations on RC for various lepton-nucleon-scattering processes
due not only to the demand from the experimental side to
improve precision but also the need for other processes such as
semi-inclusive deep inelastic scattering to probe partonic
three-dimensional momentum distributions and fragmentation
functions. The effect of RC is also experiment specific; we
refer the interested reader to specific experiments that are
discussed in this review for further details.

H. The extraction of the proton charge radius
from the proton electric form factor

The proton charge radius can be extracted from the
experimentally determined proton electric form factor values.
According to Eq. (36), the proton rms charge radius is directly
related to the GEp Q2 slope at Q2 ¼ 0. Experimentally this is
not possible due to the requirement of conducting electron-
proton elastic scattering at 0° scattering angle. Therefore,
while it is important to reach as low a Q2 value as possible, it
is inevitable that one needs to extrapolate from the measured
values of Q2 down to zero. Furthermore, it is also important
for any scattering experiment to cover a sufficient range ofQ2,

i.e., to have good leverage in Q2 coverage. When Q2 is
sufficiently close to zero, the slope becomes rather flat
because GE would converge to 1, which is simply the net
charge of the proton, as expected. Therefore, it is important to
experimentally cover a Q2 range in which one can capture
whatever a Q2-dependence nature calls for, and at the same
time still be as close to Q2 ¼ 0 as practically possible.
Given the aforementioned limitations, it is important to

develop ways that allow for a robust extraction of the proton
charge radius. Such a study was carried out by Yan et al.
(2018). We describe this study later. Pseudodatasets on the
proton electric form factor are generated for a particular
experiment or a planned measurement according to various
proton electromagnetic form factor parametrizations and
models in the literature. These parametrizations and models
generally describe the existing data on the proton form factors
well. One then smears the generated pseudodatasets according
to the experimental resolutions and any other relevant exper-
imental aspects, such as the statistical and systematic uncer-
tainties. The method for taking into account the experimental
systematic uncertainties is elaborate; we refer interested
readers to the original paper by Yan et al. (2018) for more
details. One then fits the smeared datasets to various func-
tional forms and extracts for each functional form the
corresponding proton charge radius value rEp and its uncer-
tainty δrEp. The bias is defined as the difference between the
input rEp value from the parametrization or model used to
generate the pseudodataset in the first place and the rEp
obtained from the fit. The goodness of a fit is to consider both
the bias and the variance from the fit by using the root-mean-
square error (RMSE) defined as RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias2 þ σ2

p
.

The functional forms studied by Yan et al. (2018) include
monopole, dipole, Gaussian, and multiparameter polynomial
expansions of Q2, the multiparameter rational function of Q2,
the continuous fractional (CF) expansion of Q2, and also the
multiparameter polynomial expansion of z, which is defined as

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut − t0
p ; ð54Þ

where tcut ¼ 4m2
π corresponds to the threshold for the lowest 2π

intermediate state in the timelike region, withmπ the mass of π0

and t0 a free parameter set to zero by Yan et al. (2018). Thus, the
full functional form is expressed as

fpolyzðQ2Þ ¼ p0GEðQ2Þ ¼ p0

�
1þ

XN
i¼1

pizi
	
: ð55Þ

The CF expansion form is expressed as

fCFðQ2Þ ¼ p0GEðQ2Þ

¼ p0

1

1þ (p1Q2=f1þ ½p2Q2=ð1þ � � � Þ�g) ð56Þ

and was previously used by Hill and Paz (2010) and Griffioen,
Carlson, and Maddox (2016) to extract the proton charge
radius from proton electric form factor values.
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The multiparameter rational function of Q2 is written as

frationalðQ2Þ ¼ p0GEðQ2Þ ¼ p0

1þP
N
i¼1 p

ðaÞ
i Q2i

1þP
M
j¼1 p

ðbÞ
j Q2j

: ð57Þ

In all these functional forms of Eqs. (55)–(57), the p0 is a
floating normalization parameter. For the proton charge radius
(PRad) experiment (Xiong et al., 2019) in its entire data
range, the study found that the ðN ¼ M ¼ 1Þ ¼ ð1; 1Þ rational
function, the two-parameter continued fraction, and the second-
orderpolynomial expansion inzcanall extract theprotoncharge
radius in a robust way with a small variance independent of the
model or parametrization used for generating the pseudodata.
The published rEp result (Xiong et al., 2019) from the PRad
experiment is based on fits to the rational ð1; 1Þ function.While
Yan et al. (2018) presented the case study for the PRad
experiment, theapproachcanbeapplied toanylepton-scattering
experiment to extract the proton charge radius.

IV. ATOMIC HYDROGEN SPECTROSCOPY

The proton charge radius is an important input to QED
calculations of bound states such as ordinary atomic hydrogen
and muonic hydrogen. High-precision spectroscopic measure-
ments, combined with state-of-the-art QED calculations, can

determine the proton charge radius. In this section, we provide
a discussion and focus on aspects most relevant to the finite
size of the proton due to our interest in the determination of
the proton charge radius. We closely follow the review by
Eides, Grotch, and Shelyuto (2001), to which we refer for a
comprehensive discussion of the QED calculations, including
various higher-order effects.
The energy levels for one-lepton atoms can be obtained in

the first approximation by solving the nonrelativistic
Schrödinger equation for an electron in the field of an
infinitely heavy Coulomb center with a charge Z in units
of proton charge. The energy levels are written as

En ¼ −
mðZαÞ2
2n2

; ð58Þ

where n ¼ 1; 2; 3;… is the principal quantum number, α is the
fine-structure constant, and m is the mass of the lepton.
Considering the Coulomb source to still be infinitely heavy
and solving the Dirac equation for a lepton in such a Coulomb
field, one obtains the following Dirac spectrum:

Enj ¼ mfðn; jÞ; ð59Þ

where

fðn; jÞ ¼


1þ ðZαÞ2

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1=2Þ2 − ðZαÞ2

p
þ n − j − 1=2�2

�
−1=2

≈ 1 −
ðZαÞ2
2n2

−
ðZαÞ4
2n3

�
1

jþ 1=2
−

3

4n

	
−
ðZαÞ6
8n3



1

ðjþ 1=2Þ3 þ
3

nðjþ 1=2Þ2 þ
5

2n3
−

6

n2ðjþ 1=2Þ
�
þ � � � ; ð60Þ

where j ¼ 1=2; 3=2;…; n − 1=2 is the total angularmomen-
tum of the state. Compared with the nonrelativistic Schrö-
dinger spectrum, where all levels with the same n are
degenerate, the energy levels in the Dirac spectrum with
the same principal quantum number n but different j are no
longer degenerate. However, energy levels with the same n
and j but different l ¼ j� 1=2 remain degenerate. Such
degeneracy is liftedwhenonetakes intoaccount thefinitesize
of the proton, recoil contributions, and most importantly the
QEDloopcorrections,where thecorrespondingenergyshifts
are called the Lamb shifts. Details on calculating the QED
radiative corrections, recoil, and radiative-recoil corrections
were given by Eides, Grotch, and Shelyuto (2001).
To follow we review the leading relativistic corrections with

exact mass dependence in the external field approximation
following Eides, Grotch, and Shelyuto (2001). For a non-
relativistic system of two particles with Coulomb interaction
such as a hydrogen atom, the Hamiltonian in its center-of-
mass system can be written as

H0 ¼
p2

2m
þ p2

2M
−
Zα
r
; ð61Þ

where p is the momentum, in the case of hydrogen (muonic
hydrogen) Z ¼ 1, and m andM are the masses of the electron

(muon) and the proton, respectively. In the remainder of
this section, we focus on hydrogenlike atoms only. For a
nonrelativistic loosely bound system such as a hydrogen atom,
expansions over α2 correspond to expansions over v2=c2.
Therefore, an effective Hamiltonian including terms
of the first order in v2=c2 would provide proper corrections
of relative order α2 to the nonrelativistic energy levels.
Breit (1929, 1930, 1932) proposed such a potential realizing
that all corrections to the nonrelativistic two-particle
Hamiltonian of the first order in v2=c2 can be written as
the sum of the free relativistic Hamiltonian of each of the
particles and the relativistic one-photon exchange between
the two. Barker and Glover (1955) derived the following
Breit potential from the one-photon-exchange amplitude
using the Foldy-Wouthuysen transformation (Foldy and
Wouthuysen, 1950):

VBr ¼
πα

2

�
1

m2
þ 1

M2

	
δ3ðrÞ − α

2mMr

�
p2 þ rðr · pÞ · p

r2

	

þ α

r3

�
1

4m2
þ 1

2mM

	
½r × p� · σ⃗: ð62Þ

In Eq. (62), the hyperfine structure is not considered; i.e.,
terms that depend on the proton spin are omitted. Corrections
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to the energy levels up to order α4 can be calculated from the
total Breit Hamiltonian of HBr ¼ H0 þ VBr, where the inter-
action potential is the sum of the Coulomb and the Breit
potential. These corrections are simply the first-order matrix
elements of the Breit interaction between the eigenfunctions
of the Coulomb Hamiltonian H0, and the result is

Etot
nj ¼ ðmþMÞ−mrα

2

2n2
−
mrα

4

2n3

�
1

jþ 1=2
−

3

4n
þ mr

4nðmþMÞ
	

þ α4m3
r

2n3M2

�
1

jþ 1=2
−

1

lþ 1=2

	
ð1− δl0Þ; ð63Þ

where mr ¼ mM=ðmþMÞ is the reduced mass of the hydro-
genlike atom. One can see that the last term in Eq. (63) breaks
the degeneracy in the Dirac spectrum between states with the
same j and l ¼ j� 1=2 and contributes to the classical Lamb
shift defined as Eð2P1=2Þ − Eð2S1=2Þ. However, owing to the
smallness of the electron-to-proton mass ratio, the contribu-
tion of this term is extremely small in the hydrogen case and
the leading contribution to the Lamb shift is the QED radiative
correction. Figure 10 shows the hydrogen 1S, 2S, and 2P
energy levels.
In the discussion thus far, the proton has been treated as a

pointlike charge. Equation (3) provides the photon-proton
vertex operator involving the Dirac (F1) and Pauli (F2) form
factors of the proton. Calculating the finite size contribution to
the hydrogen atom energy levels amounts to evaluating the
zero component of Eq. (3) between nucleon spinors, normal-
ized as N†N ¼ 1. An elementary calculation yields the spin-
independent term at low-momentum transfer q≡ p0 − p as
(Eides, Grotch, and Shelyuto, 2001) [see Miller (2019) for an
explicit derivation]

Nðp0; λÞΓ0Nðp; λÞ ¼
�
1 −

q2

8M2

	
GEð−q2Þ þO

�
1

M4

	

≈ 1 − q2



1

8M2
þ 1

6
hr2Epi

�
; ð64Þ

where on the last line we have used the low-momentum
expansion of the proton electric form factor GE in terms of
the proton charge radius hr2Epi defined in Eq. (36). For a
pointlike proton, the only term that survives in Eq. (64) is
the first term in the square brackets, which leads to the
well-known local Darwin term in the lepton-proton inter-
action (Barker and Glover, 1955) that gives rise to the term
proportional to δl0 in Eq. (63). Note that the leading
relativistic correction factor in front of GE in Eq. (64) is
the same as the one appearing in Eq. (7). The established
convention is to not include it in the definition of GE but to
instead include it separately. Therefore, the leading nuclear
(proton) structure contribution to the energy shift is deter-
mined by the slope of the conventionally defined nuclear
(proton) form factor GE. The corresponding perturbative
potential that corrects the Coulomb potential of a point
charge to account for the finite proton size is therefore given
by (Eides, Grotch, and Shelyuto, 2001)

δVfin size ¼
2πα

3
hr2Epi: ð65Þ

The associated energy level shift is then

ΔEfin size ¼
2πα

3
hr2Epijψnlð0Þj2

¼ 2α4

3n3
m3

rhr2Epiδl0: ð66Þ

One notices from Eq. (66) that the radius entering the finite
size correction to the S levels of the hydrogen atom is the
proton charge radius, obtained from the form factor GE as
measured in electron-proton-scattering experiments. This
consistency between the proton charge radius determined
from spectroscopic experiments of hydrogenlike atoms and
electron-scattering experiments was also recently empha-
sized by Miller (2019).
While the Lamb shift of hydrogenlike atoms is dominated

by the QED radiative effects of the lepton, the contribution
from the proton charge radius is the leading term due to the
finite size of the proton. By measuring Lamb shifts or other
transitions between energy levels involving at least one S state
of hydrogenlike atoms precisely and utilizing state-of-the-art
QED calculations, one can determine the proton charge
radius value. In the case of muonic hydrogen, the proton
charge radius effect is 6.4 × 106 times larger than that of
ordinary hydrogen atoms for the same nS level due to the m3

r
dependence. For the 2P − 2S Lamb shift in muonic hydrogen,
the term due to the proton charge radius amounts to around
−3.7 meV and contributes about 2% of the overall Lamb
shift (Eides, Grotch, and Shelyuto, 2001). This large relative
contribution is an important reason why muonic hydrogen
spectroscopic measurements are significantly more precise in

FIG. 10. Hydrogen 1S, 2S, and 2P energy levels. From Jingyi
Zhou.
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extracting the proton charge radius than those using ordinary
hydrogen atoms.
To extract the proton radius from muonic hydrogen

spectroscopic measurements accurately, it is important to also
calculate the proton structure corrections of next order in α,
i.e., Oðα5Þ. These proton structure corrections, which arise
from the TPE diagram shown in Fig. 11, in which both
photons in the loop carry the same four-momentum, are
known as the polarizability correction. They have been
evaluated using different approaches: chiral effective field

theory [see Hagelstein, Miskimen, and Pascalutsa (2016) and
references therein for a review of the ongoing activity in this
field], within nonrelativistic QED (Pineda, 2003; Hill and Paz,
2011; Hill et al., 2013; Dye, Matthew Gonderinger, and Paz,
2016), or by connecting them model independently to other
data through dispersive frameworks (Pachucki, 1999; Carlson
and Vanderhaeghen, 2011; Birse and McGovern, 2012).
The nth S-level shift in the muonic hydrogen spectrum due

to TPE is related to the spin-independent forward double
virtual Compton amplitudes as

ΔETPEðnSÞ¼ 8πe2mϕ2
n
1

i

Z
∞

−∞

dν
2π

Z
d3q
ð2πÞ3

ðQ2−2ν2ÞT1ðν;Q2Þ− ðQ2þν2ÞT2ðν;Q2Þ
Q4ðQ4−4m2ν2Þ ; ð67Þ

where ϕ2
n ¼ 1=πn3a3 is the wave function at the origin and

a−1 ¼ αmr is the inverse Bohr radius. Furthermore, T1 and
T2 are the forward double virtual Compton amplitudes that
are complex functions of photon energy ν and photon
virtuality Q2. The optical theorem relates the imaginary
parts of T1 and T2 to the two unpolarized structure
functions of inclusive electron-nucleon scattering as

ImT1ðν; Q2Þ ¼ e2

4M
F1ðx;Q2Þ;

ImT2ðν; Q2Þ ¼ e2

4ν
F2ðx;Q2Þ; ð68Þ

where x≡Q2=2Mν and F1, F2 are the conventionally
defined structure functions parametrizing inclusive elec-
tron-nucleon scattering.
The TPE contribution to the hydrogen spectrum can be

separated into two distinct contributions. First, there is a Born

contribution that corresponds to the nucleon intermediate state
in Fig. 11 and depends solely on the elastic nucleon Dirac and
Pauli form factors. Second, there is a polarizability contribu-
tion corresponding to all non-Born contributions to T1 and T2

that is denoted by T̄i ≡ Ti − TBorn
i , which depends on the

excitation spectrum of the nucleon.
The polarizability effect on the hydrogen spectrum can be

further split into the following contribution of the subtraction
function T̄1ð0; Q2Þ (Carlson and Vanderhaeghen, 2011):

ΔEsubtrðnSÞ ¼ 2e2mϕ2
n

π

Z
∞

0

dQ
Q3

vl þ 2

ð1þ vlÞ2
T̄1ð0; Q2Þ; ð69Þ

with vl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2=Q2

p
and the following contributions of

the inelastic structure functions (Carlson and Vanderhaeghen,
2011; Hagelstein, Miskimen, and Pascalutsa, 2016):

ΔEinelðnSÞ ¼ −32α2Mmϕ2
n

Z
∞

0

dQ
Q5

Z
x0

0

dx
1

ð1þ vlÞð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2τ−1

p
Þ

×

�

1þ vl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2τ−1

p

vl þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2τ−1

p
�
F2ðx;Q2Þ þ 2x

ð1þ vlÞð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2τ−1

p
Þ



2þ 3þ vl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2τ−1

p

vl þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2τ−1

p
�
F1ðx;Q2Þ

�
; ð70Þ

with τ the same as in Eq. (42) and x0 the πN inelastic
threshold in the hadronic blob in Fig. 11.
Table III shows the TPE corrections due to the inelastic

structure functions estimate of Carlson and Vanderhaeghen

(2011) and resulting from the subtraction-function estimate of
Birse and McGovern (2012), both of which are currently used
in estimating the total polarizability contribution to the 2S
level in muonic hydrogen analyses (Antognini, Kottmann
et al., 2013). The estimate of Birse and McGovern (2012)
assumes a dipole ansatz for T̄1ð0; Q2Þ=Q2 and constrains the
mass parameter by a heavy-baryon chiral perturbation theory
(HBChPT) calculation to fourth order in the chiral expansion
for the Q4 term in T̄1ð0; Q2Þ. We compare these results with
the leading-order (LO) BChPT analysis of Alarcón, Lensky,
and Pascalutsa (2014), a next-to-leading-order (NLO) baryon
chiral perturbation theory (BChPT) analysis that includes the
Δ-pole contribution (Hagelstein, 2017; Lensky et al., 2018),
and with the NLO HBChPT analysis of Peset and Pineda
(2014). One notices that the BChPT result that includes the Δ
pole is in good agreement with the dispersion relation (DR)

FIG. 11. The box diagram for the Oðα5Þ corrections to l ¼ 0
energy levels in muonic hydrogen. The blob denotes all possible
hadronic intermediate states.
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estimate for the inelastic contribution and with the estimate of
Birse and McGovern (2012) for the subtraction-function
contribution. It is also interesting to note that, although the
Δ pole contributes sizably to both terms, these contributions
come with opposite signs, resulting in a small total polar-
izability contribution due to the Δ pole, and a total result close
to the LO BChPTestimate. The NLOHBChPTestimate (Peset
and Pineda, 2014), shown in the last column of Table III,
comes with a larger error estimate, and its value is larger in
magnitude, deviating by about 2σ from the BChPT and DR
estimates. It was noticed, however (Peset and Pineda, 2014),
that upon adding the nucleon Born term contributions it yields
a total TPE result that is similar in size to the DR and BChPT
results.
Recall that the Lamb shift is the difference between the

shifts of the 2P and 2S levels; the TPE contribution to the
former is negligible, and the TPE contribution to the Lamb
shift is thus simply −ΔETPEð2SÞ.
Using dispersion relations, with input from forward proton

structure functions and a subtraction function, the value for the
Oðα5Þ TPE proton structure correction to the 2P − 2S Lamb
shift that is presently used in the extraction of the proton
charge radius from the muonic hydrogen Lamb shift mea-
surements, as discussed in Sec. VI, is given by (Carlson and
Vanderhaeghen, 2011; Birse and McGovern, 2012; Antognini,
Kottmann et al., 2013)

ΔETPEð2P − 2SÞ ¼ 0.0332ð20Þ meV: ð71Þ

V. MODERN LEPTON-SCATTERING EXPERIMENTS

A. Mainz 2010

Bernauer et al. (2010) carried out an unpolarized electron-
proton elastic-scattering experiment at the Mainz accelerator
facility MAMI and extracted the proton charge and the
magnetic radii. The experiment utilized electron beam ener-
gies up to 855 (180, 315, 450, 585, 720, and 855) MeV and
three high-resolution magnetic spectrometers, with one serv-
ing as a relative luminosity monitor at a fixed laboratory angle.
The other two spectrometers were moved as a function of the
electron-scattering angle during the experiment to provide
the kinematic coverage and also redundancy in the coverage.
The targets used in this experiment were 2- and 5-cm-long
cells filled with liquid hydrogen. The top image in Fig. 12
shows the schematics of the three-spectrometer setup for this
experiment, and a photo of the setup is shown beneath, where
the red, blue, and green apparatuses are spectrometers A, B,
and C, respectively.

In total the experiment measured over 1400 differential
cross sections covering a Q2 range of 0.004 to 1 ðGeV=cÞ2
and achieved a statistical precision better than 0.2% for these
cross-section measurements. To extract the proton electric and

TABLE III. TPE corrections to the 2S level in muonic hydrogen. All values are given in μeV. The first two rows are the dispersive (ΔEinel) and
subtraction-function (ΔEsubtr) contributions. The sum of the two yields the total polarizability contribution ΔEpol.

DRþ HBChPT

BChPT (LO)
(Alarcón, Lensky,

and Pascalutsa, 2014)

BChPT (LOþ Δ)
(Hagelstein, 2017;
Lensky et al., 2018)

HBChPT (NLO)
(Peset

and Pineda, 2014)

ΔEinel −12.7� 0.5 (Carlson and Vanderhaeghen, 2011) −5.2 −11.8 � � �
ΔEsubtr 4.2� 1.0 (Birse and McGovern, 2012) −3.0 4.6 � � �
ΔEpol −8.5� 1.1 (Antognini, Kottmann et al., 2013) −8.2þ1.2

−2.5 −7.2þ1.2
−2.5 −26.2� 10.0

FIG. 12. Top image: schematics of the three-spectrometer setup
of the A1 experiment at Mainz. From Blomqvist et al., 1998.
Bottom: photo showing spectrometers A, B, and C in red, blue,
and green, respectively. The electron beam progresses from right
to left. From Weis, 2003.
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magnetic form factors, least square fits to models of GEp and
GMp were carried out on the 1400 cross-section data points,
covering all Q2 and scattering angles of the experiment. The
proton form factors up to Q2 ¼ 0.6 ðGeV=cÞ2 were extracted
from this approach. Bernauer et al. (2010) carried out detailed
studies of model dependence in extracting the proton form
factors using various form factor models and parametrizations.
The experiment extracted the following for the proton charge
and magnetic radii:

hr2Epi1=2 ¼ 0.879ð5Þstatð4Þsystð2Þmodelð4Þgroup fm;

hr2Mpi1=2 ¼ 0.777ð13Þstatð9Þsystð5Þmodelð2Þgroup fm;

where the uncertainty labeled “group” is assigned to account for
the difference between the radius values obtained using two
groups of models for the form factors in the fits, namely, the
spline and the polynomial groups. Details were given
by Bernauer et al. (2010, 2014). The result on the proton
charge radius from this electron-scattering experiment was
consistent with the CODATA-2006 (Mohr, Taylor, and Newell,
2008) value at the time of publication but 5 standard deviations
larger than the value from the muonic hydrogen Lamb shift
measurement (Pohl et al., 2010). The magnetic radius obtained
is smaller than those from previous fits of electron-scattering
data but consistent with the result of 0.778(29) fm (Volotka
et al., 2005) from hyperfine splitting in hydrogen.

B. JLab recoil polarization experiment

The Jefferson Lab experiment E08-007 (Zhan et al., 2011)
carried out a high-precision measurement of the polarization
transfer from electron-proton elastic scattering using a recoil
proton polarimeter covering a momentum transfer squared Q2

region between 0.3 and 0.7 ðGeV=cÞ2. The experiment was
performed in Hall A and utilized a longitudinally polarized
electron beam with polarization higher than 80% at 1.2 GeV,
beam currents between 4 and 15 μA, and a 6-cm-long
unpolarized liquid hydrogen target. There were two high-
resolution magnetic spectrometers (HRSs) in Hall A placed on
each side of the electron beam line. In E08-007, the recoil
proton was detected in the left HRS, with its polarization
measured using a focal-plane polarimeter, in coincidence with
the scattered electron that was measured in a large acceptance
spectrometer (“BigBite”). The experiment extracted the pro-
ton electric to magnetic form factor ratio μpGEp=GMp with a
total uncertainty of about 1%. When these results were put
together with a few other proton form factor ratio measure-
ments from Jefferson Lab (Paolone et al., 2010; Puckett et al.,
2010; Ron et al., 2011), a global fit of the proton form factors
(Arrington, Melnitchouk, and Tjon, 2007) was updated. This
updated global analysis did not include the Mainz data
(Bernauer et al., 2010) and gave the following values for
the proton electric and the magnetic charge radii:

hr2Epi1=2 ¼ 0.875� 0.010 fm;

hr2Mpi1=2 ¼ 0.867� 0.020 fm:

The proton charge radius value from this updated global
analysis is in excellent agreement with the value from the

Mainz electron-proton-scattering experiment (Bernauer et al.,
2010), and also with the CODATA-2006 value (Mohr, Taylor,
and Newell, 2008), which is based mostly on ordinary
hydrogen spectroscopic measurements. It is in disagreement
with the muonic hydrogen result (Pohl et al., 2010). The
magnetic radius value from this global analysis is more than 5
standard deviations greater than the Mainz value (Bernauer
et al., 2010).

C. Mainz ISR measurements

Following the Mainz experiment by Bernauer et al. (2010),
another electron-proton elastic-scattering experiment at
Mainz was carried out using the same three-spectrometer
setup, but lower values of Q2 (0.001 to 0.004 GeV=c2) were
reached using the technique of initial-state radiation (ISR)
(Mihovilovič et al., 2017). For electron-scattering experi-
ments, the lowest Q2 value that is achievable is determined by
the lowest electron beam energy the associated accelerator can
deliver, and the most forward electron-scattering angle the
corresponding detector can reach. The ISR technique over-
comes such limits by utilizing the information within the
radiative tail of the elastic peak. The technique works in the
following way, as depicted by Fig. 13. The incoming electron
can radiate a real photon before the scattering takes place. As a
result, the corresponding Q2 value for the e-p scattering
would be lower than what is limited by the accelerator and the
detector because the incident electron energy is lower than
the original value delivered by the accelerator and before the
initial-state radiation of the real photon caused by the
incoming electron. This is the diagram labeled for Bethe
and Heitler (BH-i) in Fig. 13. Such an ISR technique was
proposed and used successfully in previous particle physics
experiments (Arbuzov et al., 1998; Aubert et al., 2004). One
of the challenges of such an ISR experiment is in separating

FIG. 13. Feynman diagrams showing electron-proton scattering
with an electron or proton radiates a real photon in the initial state
or final state. In the electron case, the two diagrams are labeled
for Bethe and Heitler (BH-i and BH-f), while the diagrams for the
proton are Born-i and Born-f, where i and f stand for the
initial-state and final-state radiation, respectively. From
Mihovilovič et al., 2017.
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the contribution from the diagram labeled (BH-f), where the
scattered electron radiates a real photon, as only scattered
electrons are measured (inclusive measurement). Furthermore,
although contributions from diagrams involving the proton
initial-state and final-state radiation are suppressed due to the
proton mass, they need to be included, as they also contribute
to the radiative tail of the elastic scattering, as well as to
higher-order radiative effects. For details on how to account
for these effects, see Mihovilovič et al. (2017), who extracted
a proton charge radius value of hr2Epi1=2 ¼ 0.810� 0.035stat�
0.074syst � 0.003model fm, with the last uncertainty accounting
for higher moments in parametrizing the proton electric form
factor. The A1 Collaboration reported a follow-up result
through a comprehensive reinterpretation of the existing cross-
section data from this first ISR e-p-scattering experiment by
improving the description of the radiative tail. They obtained
hr2Epi1=2 ¼ 0.878� 0.011stat � 0.031syst � 0.002model fm with
major improvements in both the statistical and systematic
uncertainties; see Mihovilovič et al. (2021).

D. The PRad experiment at JLab

The PRad experiment (Xiong et al., 2019) at Jefferson Lab
was designed with a number of important points in mind:
(i) the experiment differs from previous e-p-scattering experi-
ments and therefore has different systematics, (ii) unprece-
dentedly low values ofQ2 are reached, (iii) emphasis is placed
on the ability to precisely measure e-p elastic-scattering cross
sections via accurate control of the integrated luminosity, and
(iv) changes during the experiment and while taking data
using a fixed experimental apparatus are minimized.
The PRad experiment innovated electron-scattering mea-

surements in the following ways. Instead of using a magnetic
spectrometer, which usually limits the forwardmost scattering

angles due to its physical size, the PRad experiment used a
two-dimensional large-area, granular, high-resolution
electromagnetic calorimeter with a hole at the center for
the electron beam to pass through. The novel design allows
access to significantly smaller scattering angles (∼0.7°) than
are found in experiments using magnetic spectrometers.
To overcome major background issues associated with
small-angle scattering, the PRad experiment used a window-
less, cryogenically cooled, flowing hydrogen gas target. The
internal target was a first for Jefferson Lab, giving the
facility’s electron beam unobstructed access to the window-
less hydrogen target. To have excellent control of the
integrated luminosity for the electron-proton elastic-scatter-
ing cross-section measurements, Møller scattering, a well-
known QED process, was used as a reference process and
was measured simultaneously during the e-p scattering.
Finally, to improve the scattering angle (Q2) determination,
a large plane of gas electron multiplier (GEM) detectors was
used. The GEM detector used at PRad was the largest ever
used in any experiment at the time.
The schematics of the PRad experiment are shown in

Fig. 14, in which the electron beam progresses from left to
right. PRad was the first experiment to complete its data taking
in June 2016 after the Continuous Electron Beam Accelerator
Facility (CEBAF) [consisting of a polarized electron source,
an injector, and a pair of superconducting radio frequency (rf)
linear accelerators] energy upgrade from 6 to 12 GeV at
Jefferson Lab was completed. Two values of electron beam
energies were used in the PRad experiment: 1.1 and
2.143 GeV. For the 1.1 GeV dataset, most of the data were
obtained at a beam current of 15 nA, with the rest at 10 nA,
while for the 2.143 GeV data the nominal beam current was
55 nA. To minimize the background from the air, the scattered
electrons traveled through a two-stage vacuum chamber

FIG. 14. Schematics of the PRad experiment in Hall B at Jefferson Lab. The electron beam progresses from left to right. From E.
Pasyuk, J. Brock, K. Gnanvo, P. Hemler, D. Kashy, N. Liyanage, and G. Swift.
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followed by the GEM detector and a hybrid electromagnetic
calorimeter (HyCal), built originally for precision measure-
ments of the neutral pion lifetime (Larin et al., 2011, 2020).
More details about the PRad target and the experimental setup
were given by Xiong et al. (2019), Xiong (2020), and Pierce
et al. (2021).
The proton electric form factor values in the Q2 range of

2 × 10−4 to 0.06 ðGeV=cÞ2 have been extracted from the
PRad experiment with statistical uncertainties of ∼0.2% at
1.1 GeV, and ∼0.15% at 2.143 GeV per data point, respec-
tively. The systematic uncertainties range from ∼0.1% to 0.6%
(relative) for the entire PRad dataset (Xiong, 2020). The PRad
Gp

E results with statistical and systematic uncertainties com-
bined in quadrature are presented in Fig. 15. The Mainz Gp

E
results (Bernauer, 2020) extracted from the Mainz experiment
(Bernauer et al., 2010) including both the statistical and
systematic uncertainties in the Q2 overlapping region of these
two experiments are shown in Fig. 15. Also shown are the fits
of the PRad results (Alarcón et al., 2019; Xiong et al., 2019)
and a fit of the Mainz data (Bernauer et al., 2014). In Fig. 16,
additional Gp

E data from Hand, Miller, and Wilson (1963),
Murphy, Shin, and Skopik (1974b), and Simon et al. (1980)
normalized to that of the standard dipole form are also shown.
Other than the data from Hand, Miller, and Wilson (1963),
which has rather larger uncertainties, the PRad results are
systematically higher than other data in the higher end of the
Q2 range covered by the PRad experiment, specifically
∼0.03 ðGeV=cÞ2 and higher.
Yan et al. (2018) studied how to extract the proton charge

radius in the low Q2 region from the measured Gp
E values in a

robust way and demonstrated that the rational ð1; 1Þ function
defined in Eq. (57) is such a function and the best choice for
the PRad data. Figure 17 shows fits using various rational
functions of pseudodata generated with nine proton form
factor models including the projected PRad statistical and
systematic uncertainties. Apart from monopole, dipole, and

Gaussian functional forms, the proton form factor paramet-
rizations and fits from Kelly (2004), Arrington, Melnitchouk,
and Tjon (2007), Bernauer et al. (2014), Alarcón and Weiss
(2018), and Ye et al. (2018) have been used. Additional details
including fits of other functional forms were given by Yan
et al. (2018). The PRad Collaboration adopted the rational
ð1; 1Þ functional form to fit the data with two individual
normalization parameters n1 and n2 corresponding to the two
separate beam energy values for which the data were taken,
while keeping the rest of the rational ð1; 1Þ parameters the
same, i.e., n1½ð1þp1Q2Þ=ð1þp2Q2Þ� and n2½ð1þp1Q2Þ=
ð1þp2Q2Þ�. At Q2 ¼ 0, this normalization parameter is
simply the proton charge, which should be 1. The results
from the fit are given by

hr2Epi1=2 ¼ 0.831� 0.007ðstatÞ � 0.012ðsystÞ fm;

n1 ¼ 1.0002� 0.0002ðstatÞ � 0.0020ðsystÞ;
n2 ¼ 0.9983� 0.0002ðstatÞ � 0.0013ðsystÞ; ð72Þ

showing that the two normalization values obtained are
consistent with 1.
The PRad result for the proton charge radius is smaller than

the two latest hr2Epi1=2 values extracted from electron-scattering
experiments (Bernauer et al., 2010; Zhan et al., 2011) but
consistent with the hr2Epi1=2 values from the muonic hydrogen
spectroscopic measurements (Pohl et al., 2010; Antognini
et al., 2013). While this result is also consistent with two
recent hydrogen spectroscopic measurements (Beyer et al.,
2017; Bezginov et al., 2019), it is not consistent with those of
Fleurbaey et al. (2018). These most recent hydrogen spectro-
scopic measurements are discussed later.
Figure 18 shows the PRad result for the proton charge

radius together with the recent results from the hydrogen
spectrocopic measurements and the muonic hydrogen results.
Also shown are the latest CODATA-2018 values (Tiesinga
et al., 2021), CODATA-2014 values (Mohr, Newell, and
Taylor, 2016), results from Bernauer et al. (2010) and
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(Bernauer et al., 2010; Bernauer, 2020) in the overlapping Q2

region. Both datasets include statistical and systematic uncer-
tainties; see the text. Two fits of the PRad data (Alarcón et al.,
2019; Xiong et al., 2019) and a fit of the Mainz data (Bernauer
et al., 2014) are also shown. From Weizhi Xiong.
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Zhan et al. (2011), and also the result from the Mainz ISR
experiment (Mihovilovič et al., 2021). One interesting obser-
vation is that among the most precise measurements from
hydrogen spectroscopic and electron-scattering measurements
in recent years (Beyer et al., 2017; Fleurbaey et al., 2018;
Bezginov et al., 2019; Xiong et al., 2019), three experiments
reported a value that is smaller than the one from the muonic
results, although they are all consistent within experimental
uncertainties. Improving the precision of such measurements
will be crucial to investigating whether there might be a
substantiated difference between results from muonic versus
electronic systems.

E. Proton charge radius from modern analyses
of proton electric form factor data

In addition to new experiments, numerous analyses have
been carried out in recent years in order to understand the

difference between the hr2Epi1=2 values determined from
electron-scattering experiments, especially the modern
precision electron-proton-scattering experiment at Mainz
(Bernauer et al., 2010), and the muonic hydrogen results
(Pohl et al., 2010; Antognini et al., 2013). Some of these
analyses obtain results consistent with the precise values from
muonic hydrogen, while others are in agreement with larger
values of rEp. We now describe some of these analyses.
Hill and Paz (2010) carried out a model-independent

determination of the proton charge radius from electron
scattering by first performing a conformal mapping of the
domain of analyticity onto the unit circle in terms of
zðt; tcut; t0Þ defined in Eq. (54), where t ¼ q2, tcut ¼ 4m2

π ,
and t0 is a free parameter mapping onto z ¼ 0. The form factor
GEðq2Þ can then be written as a function of z, where a z
expansion can be carried out with the advantage that higher-
order terms in z are suppressed. Using electron-proton

FIG. 17. Sample fits using rational functions of pseudodata generated with nine proton form factor models including the projected
PRad statistical and systematic uncertainties. From Yan et al., 2018.

FIG. 18. The proton charge radius hr2Epi1=2 as extracted from electron-scattering and spectroscopic experiments since 2010 and before
2020 together with CODATA-2014 and CODATA-2018 recommended values. Note the reinterpreted result from the Mainz ISR
experiment was scheduled for publication in 2021. From Jingyi Zhou.

H. Gao and M. Vanderhaeghen: The proton charge radius

Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022 015002-23



scattering datasets, a proton charge radius value of hr2Epi1=2 ¼
0.870� 0.023� 0.012 fm is obtained; see Hill and Paz
(2010) for details.
Lorenz, Hammer, and Meissner (2012) analyzed the 2010

Mainz data using a dispersive approach to ensure analyticity
and unitarity in the description of the nucleon form factors. In
their analysis they included the world data on the proton and
also the neutron, obtaining a charge radius value of hr2Epi1=2 ¼
0.84� 0.01 fm consistent with the result from muonic hydro-
gen. Lorenz and Meissner (2014) later also reanalyzed the
Mainz data using a fit function based on conformal mapping
and showed that the extracted value for the proton charge
radius [with a larger statistical uncertainty than that from
Bernauer et al. (2010)] is in agreement with the value from
muonic hydrogen spectroscopic measurements, and also their
previous dispersive analysis. Lorenz et al. (2015) calculated
the TPE corrections to the electron-proton scattering and
applied these corrections to the Mainz data (Bernauer et al.,
2010). They also investigated the impact on the extraction of
the proton form factors from the inclusion of physical
constraints and the extraction of hr2Epi1=2 due to the enforce-
ment of a realistic spectral function, which dominates the
latter. Recently a further improvement of the dispersive
description was presented by Lin, Hammer, and Meißner
(2021). It used an improved two-pion continuum based on a
Roy-Steiner analysis of pion-nucleon scattering (Hoferichter,
de Elvira et al., 2016; Hoferichter, Kubis et al., 2016),
resulting in the value hr2Epi1=2 ¼ 0.838� 0.005� 0.004 fm,
where the first error is due to the fitting procedure and the
second is from the spectral function.
Adamuscin, Dubnicka, and Dubnickova (20120 analyzed all

nucleon electromagnetic form factor data using their unitary
and analytic ten-resonance model of the nucleon electromag-
netic structure in order to find the corresponding behavior of the
proton electric form factor in the extended spacelike region.
The nondipole behavior of GEp is found to have a zero at
around Q2 ¼ 13 ðGeV=cÞ2. The extracted proton radius from
this global analysis is hr2Epi1=2 ¼ 0.84894� 0.0069 fm.
The first analysis of the electron-proton elastic-scattering

data based on Bayesian statistical methods was carried
out by Graczyk and Juszczak (2014) and the most probable
proton charge radius value was found to be hr2Epi1=2 ¼
0.899� 0.003 fm. This analysis was done by accounting
for the TPE effect using a box diagram model, including
nucleon and Δð1232Þ states.
The effect of TPE corrections in extracting the proton

charge radius was also studied in an earlier analysis of the
electron-proton scattering data (Borisyuk, 2010). Using a
dispersive formalism for the TPE for the nucleon elastic
contribution, Borisyuk (2010) reported the value hr2Epi1=2 ¼
0.912� 0.009ðstatÞ � 0.007ðsystÞ fm.
Lee, Arrington, and Hill (2015) carried out a comprehen-

sive global analysis of the world electron-proton elastic-
scattering data with a focus on the Mainz measurements
(Bernauer et al., 2010). This study involves enforcing model-
independent constraints from form factor analyticity and
systematic studies of possible systematic effects. The
extracted proton radius from this improved analysis of the

Mainz data is hr2Epi1=2 ¼ 0.895ð20Þ fm, while hr2Epi1=2 ¼
0.916ð24Þ fm was extracted by analyzing the world data
without including the Mainz data. Arrington and Sick
(2015) carried out a global examination of the elastic
electron-proton-scattering data and recommended a proton
charge radius value of 0.879ð11Þ fm.
Griffioen, Carlson, and Maddox (2016) analyzed the Mainz

dataset (Bernauer et al., 2010) using a continued fraction
functional form to map the GE, assuming that it is monoton-
ically falling and inflectionless. They obtained a proton charge
radius value of 0.840ð16Þ fm, which is consistent with the
mounic hydrogen result after rescaling different datasets on a
level that is smaller than the original normalization uncer-
tainties and also inflates the point-to-point systematic uncer-
tainty by 15%.
A proton charge radius value consistent with muonic

hydrogen results was also obtained by Higinbotham et al.
(2016) from data analysis in the low-momentum transfer
region from Mainz in the 1980s (Simon et al., 1980) and
Saskatoon in 1974 (Murphy, Shin, and Skopik, 1974a, 1974b)
using a stepwise regression of Maclaurin series and applying
the F test and the Akaike information criterion. When the
Mainz results on GEp are included (Bernauer et al., 2014),
the same analysis favors a radius that is consistent with the
muonic hydrogen results, although their result is more
sensitive to the range of the data included in the analysis.
Horbatsch and Hessels (2016a) also analyzed the Mainz

data (Bernauer et al., 2010) and obtained hr2Epi1=2 values
ranging at least from 0.84 to 0.89 fm using two single-
parameter form factor models, with one being a dipole form
and the other a linear fit to a conformal-mapping variable.
Sick and Trautmann (2017) argued that the smaller values

of hr2Epi1=2 from Griffioen, Carlson, and Maddox (2016),
Higinbotham et al. (2016), and Horbatsch and Hessels
(2016a) are due to the neglect of higher moments in these
analyses. Kraus et al. (2014) found that fits of the proton
charge form factor with truncated polynomials give values that
are too small for the proton charge radius. In a later paper by
Horbatsch, Hessels, and Pineda (2017), a hr2Epi1=2 value of
0.855ð11Þ fm was obtained with the higher moments fixed to
the values based on chiral perturbation theory.
Alarcón et al. (2019) used a new theoretical framework that

combines chiral effective field theory and dispersion analysis.
The behavior of the spacelike form factor in the finiteQ2 region
correlates with its derivative at Q2 ¼ 0 due to the analyticity in
the momentum transfer. In this approach, predictions for
spacelike form factors are made with the proton charge radius
as a free parameter. By comparing the predictions for different
values of the proton radius with a descriptive global fit (Lee,
Arrington, and Hill, 2015) of the spacelike form factor data,
Alarcón et al. (2019) extracted a proton radius value of
0.844ð7Þ fm that is consistent with the muonic hydrogen
results. A more recent analysis by Alarcón, Higinbotham,
and Weiss (2020) using the aforementioned method to
extract both the proton magnetic and charge radius from the
Mainz A1 data (Bernauer et al., 2010) obtained hr2Mpi1=2 ¼
0.850� 0.001ðfit 68%Þ � 0.010 ðtheory full rangeÞ fm , and
hr2Epi1=2¼0.842�0.002ðfitÞ�0.010ðtheoryÞ fm. Including
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the PRad data (Xiong et al., 2019) into their fit, they found no
change in the extracted radius values within uncertainties.
Sick (2018) carried out a detailed study to reduce the model

dependence associated with the required extrapolation in
determining ðdGE=dQ2ÞðQ2 ¼ 0Þ to extract hr2Epi1=2. The
approach takes into account the fact that GEp in regions of
lower than experimentally measured momentum transfer
values is closely related to the charge density ρðrÞ at large
values of r, which is constrained using form factor data at
finite values of Q2, thereby reducing the model dependence in
extrapolation. While corrections for relativistic effects are
applied in this analysis, it is not possible to rigorously define
an accurate three-dimensional charge density for the proton, as
previously discussed. Using different form factor parametri-
zations of the data prior to 2010, Sick obtained a hr2Epi1=2
value of 0.887ð12Þ fm, which is consistent with the Mainz
result (Bernauer et al., 2010) but inconsistent with the muonic
hydrogen results (Pohl et al., 2010; Antognini et al., 2013).
Zhou et al. (2019) adopted a flexible approach within a

Bayesian paradigm that does not make any parametric
assumptions for GEp, but with two physical constraints: a
normalization constraint for GEpð0Þ, and the condition that
GEp monotonically decreases as Q2 increases. The value of
the proton charge radius extracted from the Mainz data is
found to be sensitive to the Q2 range of the data used in this
analysis.
Horbatsch (2020) analyzed the PRad data on the proton GE

following a proposal by Hagelstein and Pascalutsa (2019) by
taking the logarithm to yield a Q2-dependent radius function.
This analysis shows that the PRad data are in agreement with
theoretical predictions from dispersively improved chiral
perturbation theory.
Atac et al. (2021) extracted both the proton and the neutron

charge radius from a global analysis of the world proton and
neutron form factor data by carrying out a flavor separation of
the Dirac form factor F1 while assuming isospin symmetry.
The u- and d-quark root-mean-squared transverse radii are
subsequently determined from a fit to the slope of the
corresponding flavor-dependent Dirac form factors, from
which both the proton and the neutron charge radii are
reconstructed. In this analysis, a proton charge radius value
of 0.852� 0.002ðstatÞ � 0.009ðsystÞ fm is obtained, which is
consistent with the muonic hydrogen results as well as the
latest result from the PRad experiment (Xiong et al., 2019).
Excluding the PRad data, a hr2Epi1=2 value of 0.857ð13Þ fm is
extracted. This is consistent with the value including the PRad
data but has a larger uncertainty.
Borisyuk and Kobushkin (2020) reanalyzed the Mainz

data (Bernauer et al., 2010) and found that the radius value
obtained under certain conditions can be consistent with the
muonic hydrogen results.
Cui et al. (2021) extracted values of hr2Epi1=2 using the

electron-proton-scattering data from the PRad experiment at
JLab (Xiong et al., 2019) and the A1 experiment at Mainz
(Bernauer et al., 2010) using a statistical sampling approach
based on the Schlessinger point method (SPM). The SPM,
with an important feature that no specific functional form is
assumed for the interpolation, is used in this analysis for the

interpolation and extrapolation of smooth functions to min-
imize biases associated with assumed forms. Cui et al. (2021)
obtained a radius value of hr2Epi1=2 ¼ 0.838� 0.005stat fm

from the PRad experiment and a value of hr2Epi1=2 ¼ 0.856�
0.014stat fm from the Mainz A1 experiment, including data up
to a Q2 value of 0.014 ðGeV=cÞ2. Combining these two
values, Cui et al. found a proton charge radius value of

hr2Epi1=2 ¼ 0.847� 0.008stat fm ð73Þ

from the two most recent experiments (Bernauer et al., 2010;
Xiong et al., 2019) by measuring the unpolarized electron-
proton elastic-scattering cross sections. This is consistent with
the muonic hydrogen results (Pohl et al., 2010; Antognini
et al., 2013), as well as the most recent ordinary hydrogen
spectroscopy results (Bezginov et al., 2019; Grinin et al.,
2020) for the proton charge radius.
Most recently, Gramolin and Russell (2021) analyzed the

entire Mainz dataset (Bernauer et al., 2010) using the two-
dimensional Fourier transform of the Dirac form factor
F1ðQ2Þ, i.e., the proton transverse charge density discussed
in Sec. III.C. The proton charge radius is related to the
second moment of this transverse charge density. With this
approach, they obtained the radius value hr2Epi1=2 ¼
0.889ð5Þstatð5Þsystð4Þmodel fm, which is consistent with the
original Mainz result (Bernauer et al., 2010).
Figure 19 shows the proton charge radius results from

electron-proton-scattering experiments since 2010 and the
extracted hr2Epi1=2 values from some of the various analyses
described previously. Also included are the muonic hydrogen
results as well as the CODATA-2014 recommended value.
While the results of some of these analyses are consistent with
muonic hydrogen results on the hr2Epi1=2, others are consistent
with the CODATA-2014 recommended value based on elec-
tron-scattering data, and few are in between. There is no
conclusive statement that one can draw regarding the proton
charge radius puzzle from these analyses of electron-proton-
scattering data. New and further improved measurements from
lepton scattering are highly desirable, which we describe in
Sec. VII.

VI. MODERN SPECTROSCOPIC MEASUREMENTS

A. Muonic hydrogen spectroscopic experiments

The first determination of the proton charge radius using
muonic hydrogen atoms was carried out by Pohl et al. (2010)
at the Paul Scherrer Institute (PSI) by measuring the transition
frequency between the 2SF¼1

1=2 and 2PF¼2
3=2 states at wavelengths

of around 6.01 μm using pulsed laser spectroscopy; see
Fig. 20. The muonic hydrogen atoms were produced by
stopping negative muons in a hydrogen gas target with a
pressure of 1 hPa (1 mbar) at the πE5 beam line of the proton
accelerator at PSI. The muonic atoms produced are in the
n ≈ 14 excited state, which then decay with about 1%
probability to the 2S metastable state, while the majority
(99%) decay to the 1S ground state. The lifetime of the long-
lived 2S state at 1 hPa pressure is 1 μs. A 5-ns pulsed laser
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with a wavelength tunable at around 6 μm is incident upon
and illuminates the target volume about 0.9 μs after the muons
reach the target. The laser wavelength is scanned through the
resonance of the 2S → 2P transition. Upon the excitation, the

2P state with a lifetime of 8.5 ps will decay to the 1S state via
emission of the 1.9-keV Kα x ray. Therefore, in this pulsed
muonic atom laser spectroscopic measurement, the resonance
curve is recorded by the coincidence of the 1.9-keV x ray and

FIG. 19. The proton charge radius values determined from electron-scattering experiments since 2010 together with the results from
various analyses of electron-proton scattering data (see the text). From Jingyi Zhou.

(a)

(b)

(c)

FIG. 20. Muonic hydrogen energy levels relevant to the proton charge radius measurement. From Jingyi Zhou.
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the laser pulse as a function of the laser wavelength. A
coincidence time window of 0.9 to 0.975 μs is chosen, i.e.,
0.9 μs after the muons enter the H2 target, and the 75-ns
window corresponds to the confinement time of the laser light
within the optics surrounding the target.
The resonance frequency for the transition between the

2SF¼1
1=2 and 2PF¼2

3=2 states was measured at 49 881.88ð76Þ GHz
(Pohl et al., 2010), which gave a proton charge radius value
of hr2Epi1=2 ¼ 0.841 84ð67Þ fm based on the state-of-the-art
QED calculations. In a follow-up paper by the CREMA
Collaboration (Antognini et al., 2013), the tunable laser
wavelength was scanned from 5.5 to 6.0 μm and, in addition
to the original transition between the 2SF¼1

1=2 (triplet) and

2PF¼2
3=2 states, a second transition between the 2SF¼0

1=2 (singlet)

and 2PF¼1
3=2 states was also measured. The corresponding

resonance frequencies were determined to be

νt ¼ 49 881.35ð57Þstatð30Þsyst GHz;
νs ¼ 54 611.16ð1.00Þstatð30Þsyst GHz:

From these two transitions, the Lamb shift (LS) and the
hyperfine splitting (HFS) can be independently determined,
and they are

ΔEexp
LS ¼ 202.3706ð23Þ meV;

ΔEexp
HFS ¼ 22.8089ð51Þ meV: ð74Þ

Relating the state-of-the-art theory calculations of the Lamb
shift (Pachucki, 1996, 1999; Eides, Grotch, and Shelyuto,
2001; Karshenboim et al., 2010; Jentschura, 2011; Borie,
2012; Karshenboim, Ivanov, and Korzinin, 2012) to the proton
hr2Epi, one obtains (in meV)

ΔEth
LSð2P− 2SÞ ¼ 206.0336ð15Þ− 5.2275ð10Þhr2Epi þΔETPE;

ð75Þ

where the last term is due to the two-photon-exchange proton
polarizability contribution discussed in Sec. IV. Using the
estimate of Eq. (71) for the latter, the extracted value for the
proton charge radius is

hr2Epi1=2 ¼ 0.840 87ð26Þexpð29Þth fm ¼ 0.840 87ð39Þ fm:

ð76Þ

Equation (76) not only is consistent with the earlier result from
the muonic hydrogen spectroscopic measurement (Pohl et al.,
2010) but also represents the most precise value for the proton
charge radius. Both these results were included in the 2018
CODATA compilation (Tiesinga et al., 2021) and dominate its
recommended value for the proton charge radius.
One notices from Eq. (71) that the uncertainty δ of the

present TPE estimate for the muonic hydrogen 2P − 2S Lamb
shift, δðΔETPEÞ ¼ 2.0 μeV, is comparable to the present
experimental Lamb shift precision, δðΔEexp

LS Þ ¼ 2.3 μeV;
see Eq. (74). A further improvement on the proton charge

radius extraction from muonic hydrogen spectroscopy results
therefore hinges upon further improving the TPE estimates.

B. Ordinary hydrogen spectroscopic experiments

Since the release of the first muonic hydrogen spectroscopic
determination of the proton charge radius (Pohl et al., 2010),
there have been four atomic hydrogen spectroscopic mea-
surements of the proton charge radius (Beyer et al., 2017;
Fleurbaey et al., 2018; Bezginov et al., 2019; Grinin et al.,
2020), with Bezginov et al. (2019) providing a direct
measurement of the hydrogen Lamb shift.
Beyer et al. (2017) carried out a measurement of the

2S − 4P transition of ordinary hydrogen atoms using a
cryogenic beam of H atoms. A major improvement over
previous experiments in overcoming the limitation due to the
electron-impact excitation used to produce atoms in the
metastable 2S state is the use of the Garching 1S − 2S
apparatus (Parthey et al., 2011; Matveev et al., 2013) as a
well-controlled cryogenic source of 5.8-K cold 2S atoms. In
this case, the 2SF¼0

1=2 sublevel is almost exclusively populated
via Doppler-free two-photon excitation without imparting
additional momentum on the atoms. The line shifts due to
quantum interference of neighboring atomic resonances and
the first-order Doppler shift are the two remaining major
systematic issues of this experiment. Apart from the use of a
cryogenic H source that reduced the thermal velocity of atoms
by a factor of 10 compared to prior experiments, Beyer et al.
(2016) found that the employment of a specifically developed
active fiber-based retroreflector allowed for a high level of
compensation of the first-order Doppler shift: four parts in 106

of the full collinear shift. To suppress the quantum interference
effect in order to determine the absolute 2S − 4P transition
frequency, the experiment was designed to observe line shifts
due to the quantum interference effect and to simulate the line
shifts fully using an atomic line shape model. Finally the
quantum interference effect is removed using the Fano-Voigt
line shape to obtain the unperturbed transition frequency for
both the 2SF¼0

1=2 − 4PF¼1
1=2 and 2SF¼0

1=2 − 4PF¼1
3=2 transitions.

Combining this with previous precision measurements of
the 1S − 2S transition by the same group (Parthey et al.,
2011; Matveev et al., 2013), values for both the Rydberg
constant and the proton charge radius were determined to be
(Beyer et al., 2017)

R∞ ¼ 10 973 731.568 076ð96Þ m−1;

hr2Epi1=2 ¼ 0.8335ð95Þ fm:

The uncertainty on the proton charge radius from this single
experiment is comparable to the prior aggregate atomic
hydrogen world data. This result is consistent with the muonic
hydrogen results on the proton charge radius but 3.3 combined
standard deviations smaller than the 2014 CODATA recom-
mended value (Mohr, Newell, and Taylor, 2016) based on
previous world data from ordinary hydrogen.
Fleurbaey et al. (2018) in Paris reported a result on the

proton charge radius and the Rydberg constant in 2018 by
combining their measurement of the 1S − 3S transition from
ordinary atomic hydrogen with the 1S − 2S transition
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measurement performed by the Garching group (Parthey et al.,
2011). The Paris experiment measured the 1S − 3S two-
photon hydrogen transition frequency using a continuous-
wave laser with a wavelength of 205 nm and through the
Balmer-α 3S − 2P fluorescence detection. A room-temper-
ature atomic hydrogen beam was used in the experiment and
the main systematic effect of the experiment is the second-
order Doppler effect due to the room-temperature atomic
velocity distribution. The results presented included data
taken during two different periods (2013 and 2016 to
2017) with improvements taking place between the two
periods. The reported results are (Fleurbaey et al., 2018)

R∞ ¼ 10 973 731.568 53ð14Þ m−1;

hr2Epi1=2 ¼ 0.877ð13Þ fm:

While the extracted rEp value is consistent with the CODATA-
2014 (Mohr, Newell, and Taylor, 2016) recommended value,
it disagrees with the muonic hydrogen Lamb shift result
(Antognini et al., 2013) by 2.6 standard deviations. This
experiment and the aforementioned experiment (Beyer et al.,
2017) used a similar measurement technique in which two
transition frequencies are involved. Each transition is between
two ordinary hydrogen energy levels, corresponding to two
different principal quantum numbers n1 and n2, with at least
one of them being an S state. We note that both the Rydberg
constant and the proton charge radius determined from the
Paris experiment (Fleurbaey et al., 2018) disagree with those
from the Garching experiment (Beyer et al., 2017) at a level of
about 2 standard deviations. It will be important to resolve
such a discrepancy especially by repeating the same transition,
either the 1S − 3S or the 2S − 4P transition.
To determine the proton charge radius from ordinary

hydrogen spectroscopic measurements, one can also measure
the Lamb shift (the 2S1=2 − 2P1=2 transition) directly, in which
case the principal quantum numbers for the two states between
the transition are the same, and as such the precision of the
Rydberg constant from other experiments is sufficient and
the Lamb shift measurement itself together with the state-of-
the-art QED calculation is used to extract hr2Epi1=2. The most
recent rEp determination (Bezginov et al., 2019) from
ordinary atomic hydrogen spectroscopy is such a measure-
ment. In the experiment by Bezginov et al. (2019), a fast beam
of hydrogen atoms was created by passing protons (which
were accelerated to 55 keV) through a molecular hydrogen
target chamber. About half of the protons were neutralized
into hydrogen atoms from collisions with the molecules, and
about 4% were created in the metastable 2S state. The
experiment used two different radio frequency cavities to
drive the 2S state away from the F ¼ 1 substates so that only
the F¼0 substate survives. The 2S1=2ðF¼0Þ→2P1=2ðF¼1Þ
transition is the Lamb shift measured in this experiment using
the experimental technique of a frequency-offset separated
oscillatory field (Vutha and Hessels, 2015; Kato, Skinner, and
Hessels, 2018), which is a modified Ramsey technique of
separated oscillatory fields (Ramsey, 1949). The measured
transition frequency of 2S1=2ðF ¼ 0Þ → 2P1=2ðF ¼ 1Þ from
this experiment is 909.8717ð32Þ MHz. The Lamb shift

determined is 1057.8298ð32Þ MHz after including the con-
tribution from hyperfine structure, which is 147.9581 MHz
(Horbatsch and Hessels, 2016b). The proton charge radius
value deduced from this experiment is (Bezginov et al., 2019)

hr2Epi1=2 ¼ 0.833ð10Þ fm; ð77Þ

which is consistent with the muonic hydrogen Lamb shift
measurements (Pohl et al., 2010; Antognini et al., 2013), the
2017 ordinary hydrogen measurement (Beyer et al., 2017),
and the PRad result from electron scattering (Xiong et al.,
2019). It disagrees, however, with the Paris measurement
(Fleurbaey et al., 2018) at a level of about 2 standard
deviations.
Most recently, a new result on hr2Epi1=2 from ordinary

hydrogen spectroscopy has been published (Grinin et al.,
2020). This experiment measured the same 1S − 3S transition
as that of Fleurbaey et al. (2018) but with significantly
improved precision. Major improvements in reducing sys-
tematic uncertainties have been achieved by using a cold
atomic beam and a two-photon direct frequency comb
technique. The experiment also achieved an almost shot noise
limited statistical uncertainty of 110 Hz. The unperturbed
frequency for the 1SðF ¼ 1Þ − 3SðF ¼ 1Þ transition deter-
mined from this experiment is 2 922 742 936 716.72ð72Þ kHz,
and f1S−3S ðcentroidÞ ¼ 2 922 743 278 665.79ð72Þ kHz after
subtracting the hyperfine shifts. Combing this new result on
the 1S − 3S transition with the 1S − 2S transition frequency
previously measured by the same group (Matveev et al.,
2013), Grinin et al. (2020) obtained

R∞ ¼ 10 973 731.568 226ð38Þ m−1;

hr2Epi1=2 ¼ 0.8482ð38Þ fm:

This extracted Rydberg constant is in agreement with the latest
CODATA-2018 (Tiesinga et al., 2021) recommended value.
The new proton charge radius result from Grinin et al. (2020)
is more than a factor of 2 more precise but also 2.9 standard
deviations smaller than the the CODATA-2014 recommended
value from ordinary hydrogen spectroscopic measurements. It
is more than a factor of 3 more precise but 2.1 standard
deviations smaller than the Paris result (Fleurbaey et al.,
2018). Compared with muonic hydrogen results on hr2Epi1=2,
this new result from the 1S − 3S transition is about 2 standard
deviations larger. Figure 21 shows the results on hr2Epi1=2 from
the four latest spectroscopic measurements using ordinary
hydrogen atoms (Beyer et al., 2017; Fleurbaey et al., 2018;
Bezginov et al., 2019; Grinin et al., 2020) together with the
muonic hydrogen results (Pohl et al., 2010; Antognini et al.,
2013). Also shown is the CODATA-2014 (Mohr, Newell, and
Taylor, 2016) recommended value based on ordinary hydro-
gen spectroscopy. While major progress has been made in
recent years and most of these recent measurements of the
proton charge radius support a smaller value including the
PRad result (Xiong et al., 2019), the comparison of hr2Epi1=2
extractions between electronic versus muonic systems is not
fully settled. This situation highlights the importance of future
high-precision scattering experiments to improve on the result
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obtained by PRad. It is also highly desirable to have future
spectroscopic measurements from ordinary hydrogen to
achieve a comparable precision, i.e., a relative precision of
0.5% or better. The PRad-II and other ongoing and upcoming
scattering experiments are discussed in Sec. VII.
Table IV provides a summary of the aforementioned

spectroscopic measurements using both muonic and ordinary
hydrogen published since 2010.

VII. ONGOING AND UPCOMING EXPERIMENTS

In this section we describe the current and planned experi-
ments aimed at extracting the proton charge radius. Some of
these plans were also discussed in a recent review by Karr,
Marchand, and Voutier (2020).

A. The MUSE experiment at PSI

The muonic hydrogen spectroscopic results on the proton
charge radius (Pohl et al., 2010; Antognini et al., 2013) also
motivated lepton-proton-scattering measurements with muon
beams. The MUon proton Scattering Experiment (MUSE)
(Gilman et al., 2013, 2017) at PSI is currently ongoing, in
which measurements of lepton-proton elastic-scattering cross
sections utilizing both the μþ and μ− (muon) beams will be
compared to those performed with electron and positron

beams. The MUSE experiment uses the PSI πM1 beam line
with e�, and μ� beams at incident momentum values of 115,
153, and 210 MeV=c to allow for simultaneous measurements
of the μ�p and e�p elastic-scattering cross sections. The
coverage of the scattering angle for the MUSE experiment
is 20°–100°, corresponding to a Q2 range of 0.0016
(with 115 MeV=c beam momentum) to 0.08 ðGeV=cÞ2
(210 MeV=c incident beam momentum). Because of the mass
difference of e� and μ�, there is a small difference in the Q2

coverage between the two. The lowest Q2 value reached by
MUSE is comparable to that of the Mainz experiment
(Bernauer et al., 2010) but much higher than that of the
PRad experiment (Xiong et al., 2019), 0.0002 ðGeV=cÞ2. In
addition to the μ and e beam particles, there are also pions in
the πM1 mixed beam. Therefore, beam-line detectors for
identifying various beam particles, determining the beam
particle momentum and trajectories into the target, and
counting the beam particles are important for the MUSE
experiment. The beam-line detectors include a beam hodo-
scope (fast scintillator array) measuring times relative to the
accelerator rf to identify beam particle type, GEM detectors, a
veto scintillator, a beam monitor, and a calorimeter. A liquid
hydrogen target is the main target for the production data
taking with two symmetric spectrometers each equipped with
detectors consisting of two scattered particle scintillator (SPS)
paddles and two straw-tube trackers (STT). A schematic setup

FIG. 21. The latest proton charge radius results from ordinary hydrogen spectroscopic measurements together with muonic hydrogen
results and the CODATA-2014 recommended value based on ordinary hydrogen spectroscopy. From Jingyi Zhou.

TABLE IV. Summary of proton charge radius results from muonic and ordinary hydrogen spectroscopic measurements published since 2010.

Experiment Type Transition(s)
ffiffiffiffiffiffiffiffiffiffiffi
hr2Epi

q
(fm) r∞ (m−1)

Pohl 2010 μH 2SF¼1
1=2 − 2PF¼2

3=2 0.841 84(67)
Antognini 2013 μH 2SF¼1

1=2 − 2PF¼2
3=2 2SF¼0

1=2 − 2PF¼1
3=2 0.840 87(39)

Beyer 2017 H 2S − 4P with (1S − 2S) 0.8335(95) 10 973 731.568 076 (96)
Fleurbaey 2018 H 1S − 3S with (1S − 2S) 0.877(13) 10 973 731.568 53(14)
Bezginov 2019 H 2S1=2 − 2P1=2 0.833(10)
Grinin 2020 H 1S − 3S with (1S − 2S) 0.8482(38) 10 973 731.568 226(38)
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of the MUSE experiment is shown in Fig. 22. The uncer-
tainties from the MUSE experiment in the proton charge
radius separately determined with μþp, μ−p, eþp, and e−p
are expected to be nearly the same, around 0.01 fm. In
addition to the determination of the proton charge radius, the
MUSE experiment will allow for tests of the two-photon-
exchange effect in lepton scattering by comparing the μ�p and
e�p cross section to a direct test of lepton universality. More
details about the MUSE experiment were given by Cline et al.
(2021). The MUSE Collaboration is working toward com-
missioning the entire experiment, with production data taking
expected to start in the fall of 2021.

B. The AMBER experiment at CERN

The COMPASS Collaboration proposed a precision meas-
urement of elastic μp scattering at high energy and low Q2

with the M2 beam line at CERN with AMBER (Dreisbach
et al., 2019). By carrying out muon-proton scattering at high
energies (compared to low-energy lepton-proton scattering)
the proposed experiment has different, and in some cases
favorable, systematics. The AMBER measurement of the
proton radius will use 100-GeV muons of the CERN M2
beam line. The hydrogen target will be an active target [a high-
pressure time-projection chamber (TPC)] in which the recoil
protons will be measured for proton energies of 0.5 to 20MeV.
For small-angle scattered muon detection, silicon detectors
will be used for precision tracking. The triggers will be formed
by scattered muons using the 200 μm SciFi stations, and the
inner tracking and the ECAL of the COMPASS spectrometer
will be used for measuring the scattered muons. The proposed
experiment with 200 days of beam time will extract the proton
electric form factor in a Q2 range of 0.001 to 0.04 ðGeV=cÞ2
with relative point-to-point precision better than 0.001. The
projected precision in the determination of the proton charge

radius is expected to be better than 0.01 fm. The experiment
has been approved to run at CERN in the coming years.
Figure 23 (top panel) shows the schematics of the AMBER
setup for the proton charge radius measurement, including the
time-projection chamber, scintillating-fiber hodoscope, and
the silicon-pixel detectors. The entire setup in the AMBER
spectrometer with relevant parts shown is illustrated in Fig. 23
(bottom panel).

C. The PRad-II experiment at Jefferson Lab

Following the PRad experiment (Xiong et al., 2019), the
PRad Collaboration proposed a new and upgraded experi-
ment, PRad-II (Dutta, Gao, Gasparian, Gnanvo et al., 2020;
Gasparian et al., 2020) to the Jefferson Lab program advisory
committee (PAC). Leading the next generation of the proton
charge radius measurements, PRad-II will use an electromag-
netic calorimeter together with two planes of tracking detec-
tors with several major upgrades and improvements over the
PRad experiment. The experiment has been approved by the
PAC with the highest scientific rating.
One important aspect of PRad-II relative to PRad is

to reduce the statistical uncertainty of the electron-proton
elastic-scattering cross-section measurement by a factor of 4.
Furthermore, a number of upgrades will improve the precision
in determining the proton electric form factor and the charge
radius significantly by reducing systematic uncertainties. The
upgrades include (i) adding a second tracking detector plane
for improving the tracking capability and further suppressing
the beam-line related background, (ii) upgrading the HyCal by
replacing its outer-region lead glass modules with PbWO4

crystals to improve the detector resolutions and uniformity
and to suppress the inelastic contamination, (iii) adding a set
of cross-shaped scintillator detectors in order to detect
scattered electrons from ep at scattering angles as forward
as 0.5° while still being cleanly separated from ee scattering,
(iv) upgrading the HyCal readout to flash analog-to-digital
converter to enhance the data taking rate, (v) adding a second
beam halo blocker together with improved beam-line vacuum
to further suppress the background, and (vi) further improved
radiative correction calculations at the next-to-next-to-leading
order for both ep and ee scattering. These upgrades and
improvements will lead to the reduction of the overall
experimental uncertainty in the radius determination by a
factor of 3.8 compared to PRad. As the muonic hydrogen
result with its unprecedented precision (∼0.05%) dominates
the CODATA value of the proton charge radius, it is critically
important to help evaluate possible systematic uncertainties
associated with muonic experiments using different exper-
imental methods with high precision and different systemat-
ics. The PRad-II experiment, with its projected total
uncertainty smaller than 0.5%, could potentially inform
whether there is any systematic difference in the radius
results between e-p-scattering and muonic hydrogen mea-
surements. PRad-II will cover a Q2 range of 4 × 10−6 to
2 × 10−2 ðGeV=cÞ2 [the first lepton-scattering experiment to
reach below 10−4 ðGeV=cÞ2] with three proposed incident
beam energies: 0.7, 1.4, and 2.1 GeV. Figure 24 shows the
schematics of the proposed PRad-II setup. The proposed
tracking detectors can be built based on the new μRWELL

FIG. 22. Schematic of the MUSE experiment at PSI. From
Steffen Strauch.
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technology (Bencivenni et al., 2015) or the GEM as used in
the PRad experiment.
Figure 25 shows the projected radius measurement from

PRad-II together with some of the most recent results on the
proton radius, including the e-p-scattering results (Xiong
et al., 2019), the two muonic hydrogen results (Pohl et al.,
2010; Antognini et al., 2013), and the three recent

atomic hydrogen spectroscopic results (Beyer et al., 2017;
Bezginov et al., 2019; Grinin et al., 2020). Also shown is the
CODATA-2018 (Tiesinga et al., 2021) recommended value.
The blue line and the band represent the weighted average
of the hr2Epi1=2 value and its uncertainty for the three proton
radius values (Beyer et al., 2017; Bezginov et al., 2019; Xiong
et al., 2019) from ordinary hydrogen spectroscopy and
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FIG. 24. Schematic of the setup for the proposed PRad-II experiment. The incident electron beam progresses from left to right. From
Dipangkar Dutta.
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electron-proton scattering. The gray line and band are the
results from the weighted average of all four, including the
result of Grinin et al. (2020). Figure 25 illustrates two points:
(i) the importance of improving the precision of hr2Epi1=2
measurements from electronic systems, whether it be ordinary
hydrogen spectroscopy or electron-proton scattering, and
(ii) new measurements from ordinary hydrogen in addition
to the results of Grinin et al. (2020) and the upcoming PRad-II
will be essential for determining whether there is a difference
between hr2Epi1=2 determined using the electronic versus the
muonic system.
For the PRad-II projection, it is shown that with all

proposed upgrades and improvements the projected overall
uncertainty in the proton radius measurement will be
0.0036 fm, which is slightly smaller than the 0.0038 fm
precision from the latest hydrogen spectroscopy result of
Grinin et al. (2020), the most precise measurement from
ordinary hydrogen atomic spectroscopy.
If the PRad hr2Epi1=2 value would prevail, the PRad-II

result could signal a more than 2.7 standard deviation
smaller value than the muonic hydrogen result. While it
does not seem possible in the foreseeable future for lepton-
scattering experiments to reach the precision of muonic
hydrogen spectroscopic measurements, the improvement of
PRad-II is significant and will have great potential to inform
whether there is any systematic difference between muonic
hydrogen results and results from electron scattering. The
PRad-II measurement together with future improvements in
ordinary hydrogen spectroscopic measurements will shed
light on whether there is any systematic difference between
the proton charge radius determined from electronic versus
muonic systems. Therefore, interesting new physics such as
the violation of lepton universality may be uncovered.

D. Electron-scattering experiments at Mainz University

There are two major new programs at Mainz University
aimed at measuring the electron-proton elastic scattering at
low Q2 that will provide new results on the proton charge
radius in the coming years.
The first is the PRES experiment (Vorobyev and Denig,

2017; Belostotski, Sagidova, and Vorobyev, 2019; Vorobyev,
2019) at the Microtron MAMI in the A2 experimental hall.
In this experiment the polar angle of the scattered electron will
be measured with high accuracy using a forward tracker. For
the recoil proton the energy and the angle will be measured
with a TPC. Therefore, the experiment will have overdeter-
mined kinematics and will access e-p elastic scattering in aQ2

region from 0.001 to 0.04 ðGeV=cÞ2. Compared to the other
e-p-scattering experiments in which scattered electrons are
commonly measured, the Mainz PRES experiment will have
different systematics. The projected systematic error for the
cross section will be controlled with an accuracy of 0.1%
(relative) and 0.2% (absolute). The PRES experiment is
projected to reach 0.5% statistical precision on hr2Epi1=2, with
systematic errors ≤ 0.3%. The combination of the electron-
scattering result from the PRES experiment and the muon
scattering result from COMPASSþþ=AMBER will allow
for a test of lepton universality in the proton charge radius,
taking advantage of a similar experimental approach used in
both measurements. In addition, PRES will provide crucial
input for calibration of the TPC setup at COMPASS þþ=
AMBER, taking advantage of the high-quality electron beam
delivered by MAMI.
A further test of the lepton universality in the proton charge

radius extraction was proposed by Pauk and Vanderhaeghen
(2015) through the photoproduction of a lepton pair on a

FIG. 25. PRad-II projection for hr2Epi1=2 with all proposed upgrades and improvements shown with a few selected results from other
experiments and CODATA-2018 recommendations (see the text). From Jingyi Zhou.
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proton target in the limit of small momentum transfer, in
which this reaction is dominated by the Bethe-Heitler process
shown in Fig. 26. By detecting the recoiling proton in the
γp → l−lþp reaction, it was shown that a measurement of a
cross-section ratio of e−eþ þ μ−μþ vs e−eþ, above versus
below dimuon threshold, respectively, accesses the same
information as muon versus electron-scattering experiments.
Furthermore, such a measurement is free from hadronic
background if one performs the measurement in the dilepton
mass window between the dimuon thresholds and below the
ππ threshold. It thus complements a comparison of elastic l-p-
scattering data, as the overall normalization uncertainty due to
the photon flux drops out of the dilepton photoproduction
cross-section ratio. The feasibility of such experiment using a
high-pressure TPC as an active target in combination with the
Crystal Ball–TAPS setup at MAMI is currently under study
(Sokhoyan, 2020).
The second program at Mainz consists of two parts.

The first is A1@MAMI, an ongoing experiment (Bernauer,
2020) in the A1 experimental hall with the MAMI accelerator
using a hydrogen gas-jet target to provide better control of a
few systematic uncertainties associated with the original A1
experiment (Bernauer et al., 2010), and also to investigate
the systematic difference in the Gp

E results between the
PRad (Xiong et al., 2019) and A1 experiments. The second
(MAGIX@MESA) is centered around the Mainz
Superconducting Energy Recovery Linac (MESA), which is
a new accelerator presently under construction at the
University of Mainz (Hug et al., 2020). MESA is designed
as a recirculating superconducting linear accelerator that
provides an external beam with high current and a high
degree of polarization. In the energy recovery mode, MESA
will deliver an electron beam with 20–105 MeVand a current
of 1 mA, which is ideal for precision experiments. The Mainz
Gas-Internal Target Experiment (MAGIX) experiment at
MESA will consist of a quadrupole in front of two medium
sized dipole magnets; see Fig. 27. The compact design of the
spectrometers will allow for a relative momentum resolution
of the order of 10−4. A time-projection chamber with an open
field cage and GEM readout is being developed for the focal-
plane detector (Gülker et al., 2019; Caiazza et al., 2020).
Finally, a windowless internal gas-jet target (Grieser et al.,
2018), which has already been commissioned at MAMI
(Schlimme et al., 2021), will be used.
With the MAGIX experiment at MESA, for the first time in

hadron physics an experiment will be developed that

combines the advantages of an ultralight windowless gas
target with the high intensity of an energy recovery linac
accelerator. This combination of a high beam intensity and a
target in which multiple scattering of the outgoing particles
will be minimized will lead to competitive luminosities in the
range of 1035 cm−2 s−1 while providing at the same time a
clean experimental environment. With the low beam energies
of MESA, it will be possible to reach Q2 values in e-p
scattering down to 10−4 ðGeV=cÞ2, and a relative precision on
the proton electron form factor GEp down to 0.05%. It will
also significantly improve the determination of the proton
magnetic radius (Bernauer, 2020).

E. The ULQ2 experiment at Tohoku University

The Ultra-Low Q2 (ULQ2) Collaboration (Suda, 2018)
proposed carrying out an electron-scattering experiment at the
Research Center for Electron-Photon Science at Tohoku
University using its 60 MeV electron linac. This experiment
will use the electron beam at energies from 20 to 60 MeV with
a scattering angular range of 30° to 150°, corresponding to a
Q2 range of 0.0003 − 0.008 ðGeV=cÞ2 for e-p elastic scatter-
ing, aiming at an absolute cross-section measurement with a
precision of 0.1%. The ULQ2 experiment will use a CH2

target with elastic e − 12C as a reference reaction for nor-
malization purposes. The root-mean-square charge radius of
the 12C nucleus is known to a relative precision of ∼3 × 10−3.
The proton electric form factorGEp will be extracted using the
Rosenbluth separation technique. The proposed experimental
setup will consist of two magnetic spectrometers for
Rosenbluth separation measurements, and luminosity mon-
itoring. To carry out this experiment, a new beam line and a
high-resolution new spectrometer with single-sided silicon
detectors (SSDs) have already been built and commissioned.
The SSDs developed together with the J-PARC muon g − 2
and the neutron electric dipole moment experiments (Sato,
2017) are employed as the focal-plane detector. The second
spectrometer for luminosity monitoring is under construction
and will be commissioned in the near future. This experiment
is aiming at a precision of ∼1% (relative) in determining the
proton charge radius and is expected to start taking data in

p’p
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l+ k

p p’

l−

l+

FIG. 26. Bethe-Heitler (left image) direct and (right image)
crossed diagrams of the γp → l−lþp process, where the four-
momenta of the external particles are k for the photon, p ðp0Þ for
initial (final) protons, and l−; lþ for the lepton pair.

FIG. 27. The MAGIX high-resolution dual-spectrometer setup
at the MESA accelerator. The gas-jet target in the center is also
visible. From Schlimme et al., 2021.
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2022. Figure 28 shows the schematics of the ULQ2 exper-
imental setup.
In Table V we provide a summary of these ongoing and

future lepton-scattering experiments in terms of the beam
type(s), the location, the Q2 coverage, the projected precision
in the proton charge radius determination when available, and
the status of each experiment.

VIII. THE DEUTERON CHARGE RADIUS

A less well-known charge radius puzzle concerns the
deuteron, the simplest nucleus in nature, which is loosely
bound with a binding energy of 2.2 MeV. Like the proton, the
deuteron charge radius can be determined by the extraction of
the deuteron charge form factor GCdðQ2Þ at low values of Q2

from electron-deuteron elastic scattering first, and the sub-
sequent extrapolation of the measured GCdðQ2Þ to the
unmeasured region in order to determine its slope at Q2 ¼ 0.
The unpolarized elastic e-d-scattering cross section is

described in the one-photon-exchange picture as

dσ
dΩ

ðE; θÞ ¼ σNS

�
AdðQ2Þ þ BdðQ2Þtan2 θ

2

�
; ð78Þ

where σNS is the differential cross section for the elastic
scattering from a pointlike and spinless particle at a scattering
angle θ and an incident energy E. For a spin-1 object such as
the deuteron, the electromagnetic structure can be described
by three form factors: the charge GCd, the magnetic dipole
GMd, and the electric quadrupole GQd. The structure functions
AdðQ2Þ and BdðQ2Þ are related to these form factors via
(Jankus, 1956; Gourdin, 1963)

AdðQ2Þ ¼ G2
CdðQ2Þ þ 2

3
τdG2

MdðQ2Þ þ 8
9
τ2dG

2
QdðQ2Þ;

BdðQ2Þ ¼ 4
3
τdð1þ τdÞG2

MdðQ2Þ; ð79Þ

with τd ≡Q2=4M2
d, whereMd is the deuteron mass. There are

also the following additional relations:

GCdð0Þ ¼ 1; GMdð0Þ ¼ μd; GQdð0Þ ¼ Qd;

with μd the deuteron magnetic dipole moment (in units of
e=2Md) and Qd the electric quadrupole moment (in units of
e=M2

d). With three form factors, one needs to carry out three
measurements with independent combinations of the three
form factors in order to separate them out for each Q2 value.
Carlson and Vanderhaeghen (2009) showed how these three
form factors allow one to map out the transverse charge
densities in a deuteron, in a state of helicity 0 or�1, as viewed
from a light front moving toward the deuteron. Furthermore,
the charge densities for a transversely polarized deuteron are
characterized by monopole, dipole, and quadrupole patterns.
At low values of Q2 most relevant for the charge radius

determination, in the range 10−2−10−4 ðGeV=cÞ2 and with
small scattering angles, the unpolarized e-d elastic-scattering
cross section is dominated by the deuteron charge form factor.
One can therefore extract GCd with negligible systematic
uncertainties using data driven parametrizations for GMd,
and GQd (Zhou et al., 2021) from a measured scattering cross
section. The deuteron rms charge radius can then be determined
by fitting the experimental GCd data as a function of Q2 and
calculating the slope of this function at Q2 ¼ 0 according to

hr2Cdi≡ −6
dGd

CðQ2Þ
dQ2

����
Q2¼0

; ð80Þ

in analogy with how hr2Epi is obtained. Zhou et al. (2021)
demonstrated how one can extract rd reliably using robust
fitters.

FIG. 28. Schematics of the ULQ2 experimental setup. From
Toshimi Suda.

TABLE V. Summary of ongoing and future lepton-scattering experiments on proton charge radius measurements.

Experiment Beam Laboratory Q2 [ðGeV=cÞ2] δrp (fm) Status

MUSE e�, μ� PSI 0.0015–0.08 0.01 Ongoing
AMBER μ� CERN 0.001–0.04 0.01 Future
PRad-II e− Jefferson Lab 4 × 10−5–6 × 10−2 0.0036 Future
PRES e− Mainz 0.001–0.04 0.6% (relative) Future
A1@MAMI (jet target) e− Mainz 0.004–0.085 Ongoing
MAGIX@MESA e− Mainz ≥ 10−4 − 0.085 Future
ULQ2 e− Tohoku University 3 × 10−4–8 × 10−3 ∼1% (relative) Future
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Like the proton charge radius, the deuteron rd can be
determined from atomic spectroscopic measurements using
ordinary deuterium or muonic deuterium atoms. The CREMA
Collaboration reported a deuteron charge radius value from a
muonic spectroscopy-based measurement of three 2P → 2S
transitions in muonic deuterium atoms as [labeled as μD in
Fig. 27 of Pohl et al. (2016)]

hr2Cdi1=2 ¼ 2.125 62� 0.000 78 fm; ð81Þ

which is 2.7 times more accurate than but 7.5 standard
deviations smaller than the CODATA-2010 recommended
value (Mohr, Taylor, and Newell, 2012). Newer values of
hr2Cdi1=2 based on the muonic deuterium spectroscopic meas-
urement (Pohl et al., 2016) with improved theoretical calcu-
lations are (Hernandez et al., 2018)

hr2Cdi1=2 ¼ 2.126 16� 0.000 90 fm

and (Pachucki, Patkóš, and Yerokhin, 2018; Kalinowski,
2019)

hr2Cdi1=2 ¼ 2.127 17� 0.000 82 fm:

From the spectroscopic measurement of 1S → 2S transi-
tions from ordinary deuterium atoms (Parthey et al., 2010),
Pohl et al. (2017) extracted the deuteron radius value

hr2Cdi1=2 ¼ 2.1415� 0.0045 fm;

which is 3.5 standard deviations larger than the extracted value
of Eq. (81) from muonic deuterium atoms.
Another spectroscopic method commonly used to extract

the deuteron charge radius utilizes the isotope shift of the
1S → 2S transition between atomic hydrogen and deuterium
(Huber et al., 1998; Parthey et al., 2010), from which one can
precisely determine the following difference between the
squares of the deuteron and proton charge radii (Jentschura
et al., 2011):

hr2Cdi − hr2Epi ¼ 3.820 07ð65Þ fm2:

Combining the proton charge radius values with the isotope
shift results, one can extract hr2Cdi1=2. In fact, the CODATA-
2010 recommended value

hr2Cdi1=2 ¼ 2.1415ð21Þ fm

used the isotope shift results on the radii and the proton charge
radius values from electron scattering.
From the electron-scattering side, all the elastic e-d-scattering

measurements with large experimental uncertainties are not
able to resolve the discrepancy between the hr2Cdi1=2 values
obtained from ordinary deuterium and muonic deuterium
spectroscopic measurements. A reanalysis of the world e-d
data gives (Sick and Trautmann, 1998)

hr2Cdi1=2 ¼ 2.130� 0.003ðstatÞ � 0.009ðsystÞ fm:

With large overall uncertainty, this deuteron charge radius
value from the reanalysis is consistent with both the muonic
deuterium result and that from ordinary deuterium spectro-
scopic measurements.
A recent analysis (Hayward and Griffioen, 2020) gave a

deuteron charge radius value that is consistent with muonic
deuterium results with a larger statistical uncertainty as
follows:

hr2Cdi1=2 ¼ 2.092� 0.019ðstatÞ fm:

Their analysis of the electron-proton-scattering data preferred
a proton radius value that was consistent with muonic
hydrogen results.
Therefore, a significantly improved hr2Cdi1=2 determination

from a new electron-deuteron-scattering experiment is needed
to help resolve the current situation surrounding the deuteron
charge radius. Figure 29 is a summary of results on the
previously discussed deuteron charge radius including the
CODATA-2014 value (Mohr, Newell, and Taylor, 2016),
shown with the uncertainty as a band, and the CODATA-
2018 recommended value (Tiesinga et al., 2021). Also
included is an extraction of the rd using the isotope shift
(Jentschura et al., 2011) and the muonic hydrogen result of the

2.12 2.125 2.13 2.135 2.14 2.145

Deuteron charge radius [fm]

σ5.4

CODATA-2014CODATA-2018

e-d scatt.

H + H/D isoμ

Dμ
D 2018μ

D 2016μ

D spectr.

FIG. 29. Existing results on the deuteron charge radius hr2Cdi1=2; see the text for details. From Randolf Pohl.
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hr2Epi (Antognini et al., 2013). The two latest extractions of
the deuteron charge radius from the muonic deuterium
measurement are labeled as μD 2018 (Hernandez et al.,
2018) and μD (Pachucki, Patkóš, and Yerokhin, 2018;
Kalinowski, 2019), respectively, in Fig. 29.
The PRad Collaboration proposed a new electron-deuteron

elastic-scattering experiment called DRad (Dutta, Gao,
Gasparian, Higinbotham et al., 2020) using an apparatus
modified from that utilized for the proposed PRad-II experi-
ment by installing a low-energy silicon-based recoil detector
in a cylindrical shape inside the windowless gas flowing target
to detect the recoil deuterons in coincidence with the scattered
electrons. As demonstrated by the PRad experiment (Xiong
et al., 2019), the proposed DRad experiment will also employ
a well-known QED process, Møller scattering, to control the
systematic uncertainties associated with measurements of the
absolute e-d cross section. The DRad experiment will aim for
an overall precision that is 0.22% (relative) or better in the
determination of rd, in an essentially model-independent way.
An elastic e-d cross-section measurement (Schlimme et al.,

2016) was carried out at the Mainz Microtron several years
ago in a momentum transfer squared range of 2.2 × 10−3 −
0.28 ðGeV=cÞ2 with the goal of extracting the deuteron charge
form factor, and ultimately the deuteron charge radius. The
data analysis is ongoing.
Furthermore, Carlson, Pauk, and Vanderhaeghen (2019)

investigated the sensitivity of the cross section for lepton pair
production off a deuteron target (γd → eþe−d) to the deuteron
charge radius. They demonstrated that for small momentum
transfer this reaction is dominated by the Bethe-Heitler process,
as shown in Fig. 26. They proposed measuring the deuteron at a
fixed angle and scanning the momentum transfer (t) depend-
ence of the γd → eþe−d cross-section ratio defined as

Rðt; t0Þ≡ dσ=dt dM2
llðtÞ

dσ=dt dM2
llðt0Þ

; ð82Þ

with t ¼ ðp0 − pÞ2 the momentum transfer, which is in a one-
to-one relation with the recoil deuteron lab momentum,
jp⃗0jlab ¼ 2Md

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τdð1þ τdÞ

p
, with τd ≡ −t=4M2

d. Furthermore,
in Eq. (82) M2

ll is the squared invariant mass of the dilepton
pair, which at a fixed deuteron angle is a function of t, and the
denominator in the ratio R is the cross section for the same
deuteron-scattering angle and for a reference momentum
transfer t0. This ratio is shown in Fig. 30 for three extractions
of the deuteron charge radius displayed in Fig. 29: the muonic
deuterium Lamb shift value (Pohl et al., 2016) (gold solid line,
with uncertainty comparable to the width of the line), e-d
elastic-scattering value (Sick and Trautmann, 1998) (green
dashed line, with uncertainty limits indicated by the green
band), and the deuterium atomic spectroscopy value (Pohl
et al., 2017) (red dot-dashed line, with uncertainty limits
indicated by the red band). One sees in Fig. 30 that such a
cross-section ratio measurement of about 0.1% relative accu-
racy could give a deuteron charge radius more accurate than the
current e-d-scattering value (Sick and Trautmann, 1998), and
sufficiently accurate to distinguish between the electronic and
muonic atomic values.

IX. CONCLUSIONS

Here we reviewed the experimental progress toward the
resolution of the proton charge radius puzzle over the past
decade, as well as the related theoretical background and
developments. In light of the latest precise determinations of
the proton charge radius from ordinary atomic hydrogen
spectroscopic measurements, the PRad electron-scattering
experiment, and several improved reanalyses of electron-
scattering data, some might be tempted to conclude that the
puzzle has been resolved. We point out, however, that, while
the recent experimental results prefer the CREMA value at
about 0.84 fm, they are still within 3 standard deviations of the
previously compiled value of about 0.88 fm. Furthermore, the
most precisely determined value of rEp (Grinin et al., 2020)
from ordinary hydrogen spectroscopy (and also the most
recent measurement) is about 2 standard deviations larger than
the muonic hydrogen results. We believe more experiments,
especially those with improved precision from electron
scattering, and new results from muon scattering will be
essential to fully resolve this puzzle. To answer a more
provocative question, whether there is a difference in the
proton charge radius determined from experiments involving
electronic (e-p and ordinary hydrogen) versus muonic sys-
tems, significantly improved precision from lepton scattering
and also measurements from ordinary hydrogen spectroscopy
with precision comparable to that of Grinin et al. (2020) will
be critical. Pushing the precision frontier has more than once
proven to be the harbinger of new discoveries.
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