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The theory of entanglement provides a fundamentally new language for describing interactions and
correlations in many-body systems. Its vocabulary consists of qubits and entangled pairs, and the
syntax is provided by tensor networks. How matrix product states and projected entangled pair states
describe many-body wave functions in terms of local tensors is reviewed. These tensors express how
the entanglement is routed, act as a novel type of nonlocal order parameter, and the manner in which
their symmetries are reflections of the global entanglement patterns in the full system is described.
The manner in which tensor networks enable the construction of real-space renormalization group
flows and fixed points is discussed, and the entanglement structure of states exhibiting topological
quantum order is examined. Finally, a summary of the mathematical results of matrix product states
and projected entangled pair states, highlighting the fundamental theorem of matrix product vectors
and its applications, is provided.
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I. INTRODUCTION

A. Setting

The many-body problem has been the central problem in
physics over the last 150 years. Starting with the discovery of
statistical physics, it was realized that systems with sym-
metries and many constituents exhibit phase transitions, and
that those phase transitions are mathematically described by
nonanalyticities in thermodynamic quantities when one takes
the limit of the system size to infinity. Quantum mechanics
added a new level of complexity to the many-body problem
due to the noncommutativity of the different terms in the
Hamiltonian, but since the discovery of path integrals it has
been realized that the equilibrium quantum many-body
problem in d dimensions can be similar to the classical
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many-body problem in dþ 1 dimensions. The quantum
many-body problem has been the main driving force in
theoretical physics over the past century and led to a
comprehensive framework for describing phase transitions
in terms of effective field theories and the renormalization
group. The central challenge of the many-body problem is to
be able to predict the phase diagram for physical classes of
microscopic Hamiltonians and to predict the associated
relevant thermodynamic quantities, order parameters, and
excitation spectra. A further challenge is to predict the
associated nonequilibrium behavior in terms of quantities
such as the structure factors, transport coefficients, and
thermalization rates.
The main difficulty in many-body physics stems from

the tensor product structure of the underlying phase space:
the number of degrees of freedom scales exponentially in the
number of constituents and/or size of the system. A central
goal in theoretical physics is to find effective compressed
representations of the relevant partition functions or wave
functions in such a way that all thermodynamic quantities,
including energy, magnetization, and entropy, can efficiently
be extracted from that description. A particularly powerful
method to achieve this has long since been perturbative
quantum field theory: the many-body problem is readily
solvable for interaction-free systems in terms of Gaussians,
and information about the interactive system can then be
obtained by perturbing around the best free approximation of
the system. This approach works well for weakly interacting
systems but can break down when the system undergoes a
phase transition driven by the interactions. The method of
choice for describing phase transitions is the renormalization
group introduced by Wilson (1975): here one makes an
informed guess of an effective field theory describing the
system of interest and then performs a renormalization group
flow into the space of actions or Hamiltonians by integrating
out the high-energy degrees of freedom. In the case of gapped
systems, such a procedure leads to a fixed-point structure
described by topological quantum field theory. The full power
of this method is revealed when applied to gapless critical
systems, where it is able to predict universal information such
as the possible critical exponents at phase transitions.
However, the renormalization group is not well suited to
predict the quantitative information needed for simulating a
given microscopic Hamiltonian and has severe limitations in
the strong coupling regime, where it is not clear how to
integrate out the high-energy degrees of freedom without
getting a proliferation of unwanted terms. To address those
shortcomings, a wide variety of exact and computational
methods have been devised.
In the case of two-dimensional classical spin systems and

one-dimensional quantum spin systems and field theories,
major insights into the interacting many-body problem have
been obtained due to the discovery of integrable systems.
Integrable systems have an extensive amount of quasilocal
conservation laws, and the Bethe ansatz exploits this to
construct classes of wave functions that exactly diagonalize
the corresponding Hamiltonians or transfer matrices. The
solution of those integrable systems was crucial. On the
one hand, it showcased the inadequacy of Landau’s theory of
phase transitions for interacting systems and motivated the

development of the renormalization group. On the other hand,
it showed that the collective behavior of many bodies, such as
spinons, exhibits interesting emergent phenomena of a com-
pletely different nature than the underlying microscopic
degrees of freedom. When perturbing Bethe ansatz solutions
and moving to higher dimensions, it is a priori not clear how
much of the underlying structure survives. There are strong
similarities between the Bethe ansatz and tensor networks, and
tensor networks can in essence be interpreted as a systematic
way of extending that framework to generic nonintegrable
systems.
Computational methods have also played an important role

in unraveling fascinating aspects of the many-body problem.
Results of exact diagonalization assisted by finite-size scaling
results originating from conformal field theory have allowed
simulations of a wide variety of spin systems. However, the
exponential wall is prohibitive in scaling up those calculations
to reasonably sized systems for all but the simplest systems,
especially in higher dimensions. A scalable computational
method for classical equilibrium problems is given by
Monte Carlo sampling: experience has taught us that typical
relevant Gibbs states have special properties that allow one to
set up rapidly converging Markov chains to simulate a variety
of local thermodynamic quantities of those systems. This is
also possible for quantum systems provided that the associated
path integral does not have the so-called sign problem.
However, this sign problem shows up in many systems of
interest, especially in the context of frustrated magnets and
systems with fermions. A powerful and scalable solution to
overcome this problem is to assort to the variational method:
here the goal is to define a low-dimensional manifold in the
exponentially large Hilbert space such that the relevant states
of the system of interest are well approximated by states in that
manifold.
The most well-known variational class of wave functions is

given by the class of Slater determinants, and the corresponding
variational method is called the Hartree-Fock theory. This
method works excessively well for weakly interacting systems,
andperturbation theory around the extrema can be done in terms
of Feynman diagrams or by coupled cluster theory. Dynamical
information can also be obtained by invoking the time-depen-
dent variational principle, which can be understood as a least
squares projection of the full Hamiltonian evolution on the
variational manifold of Slater determinants. Alternatively, the
Hartree-Fock method can be rephrased as a mean field theory,
and dynamical mean field theory extends it by modeling the
interaction of a cluster with the rest of the system as a set of self-
consistent equations of the cluster and a free bath. Although this
approach works well in three dimensions, it is not clear how
generally applicable it is to lower-dimensional systems. One of
the main difficulties for variational methods based on free
systems is the fact that the natural basis for free systems is the
momentum basis: plane waves diagonalize free Hamiltonians,
but the natural basis for systems with strong interactions is the
position basis and a phase transition separates both regimes.
This brings us to the concept of tensor networks: tensor

networks are a variational class of wave function that allows
one to model ground states of strongly interacting systems in
position space in a systematic way. As in the case of (post-)
Hartree-Fock methods, the starting point is a low-dimensional
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variational class in the exponentially large Hilbert space. This
manifold seems to capture a rich variety of quantum many-
body states that are ground states of local quantum
Hamiltonians for both cases of spins, bosons and fermions.
The defining character of states that can be represented as
tensor networks is the fact that they exhibit an area law for the
entanglement entropy. Time-dependent information can be
obtained by applying the time-dependent variational principle
on the manifold of tensor networks, and spectral information
is obtained by projecting the full many-body Hamiltonian on
tangent spaces of the manifold. The tensor network descrip-
tion can be understood as a compression of the Euclidean path
integral as used in quantumMonte Carlo calculations, but then
without a sign problem. Both the coordinate and algebraic
Bethe ansatz can be reformulated in terms of tensor networks,
and tensor networks allow for a systematic exploration of
those methods that are beyond the integrable regime and 1þ 1
dimensions. Critical properties can be extracted in terms of
finite entanglement scaling arguments, and tensor networks
allow for a natural formulation of a real-space renormalization
group procedure, as originally envisioned by Kadanoff. It also
turns out that tensor networks provide representations for
ground states of a wide class of Hamiltonians exhibiting
topological order, hence being many-body realizations of
topological quantum field theories (TQFTs), and provide a
natural language for describing the corresponding elementary
excitations (anyons) and braiding properties by providing
explicit representations of associated tensor fusion algebras.
Tensor networks can hence be understood as a symbiosis of

a wide variety of theoretical and computational many-body
techniques. From our point of view, the most interesting
aspect of this is that it imposes a new way of looking at
quantum many-body systems: tensor networks elucidate the
need of describing interacting quantum many-body systems in
terms of the associated entanglement degrees of freedom, and
the essence of classifying phases of matter and understanding
their essential differences is encoded in the different sym-
metries of the tensors that realize that entanglement structure.
In many ways, tensor networks provide a constructive
implementation of the following vision of Feynman (1988):

“Now, in field theory, what’s going on here and
what’s going on over there and all over space is
more or less the same. Why do we have to keep
track in our functional of all the things that are going
on over there while we are looking at the things that
are going on over here? […] It’s really quite insane,
actually: we are trying to find the energy by taking
the expectation of an operator which is located here
and we present ourselves with a functional which is
dependent on everything all over the map. That’s
something wrong. Maybe there is some way to
surround the object, or the region where we want to
calculate things, by a surface and describe what
things are coming in across the surface. It tells us
everything that’s going on outside. […] I think it
should be possible some day to describe field theory
in some other way than with the wave functions and
amplitudes. It might be something like the density

matrices where you concentrate on quantities in a
given locality and in order to start to talk about it
you don’t immediately have to talk about what’s
going on everywhere else […].”

Tensor networks precisely associate a tensor product
structure to interfaces between different regions in space,
and the fact that such an interface is always of a dimension
smaller than the original space is a manifestation of the area
law for the entanglement entropy. In the case of one-dimen-
sional quantum spin chains and quantum field theories, this
virtual Hilbert space is zero dimensional, and the different
symmetry-protected topological (SPT) phases of matter can be
understood in terms of inequivalent ways in which the
symmetries act on that Hilbert space. For two-dimensional
systems, the interface is one dimensional and provides an
explicit local representation for both the entanglement
Hamiltonian and the edge modes as they appear in topological
phases of matter.
The central goal of this review is to explain how tensor

networks describe many-body systems from this entanglement
point of view, and why it is reasonable to do so. Recurring
themes are that the manifold of tensor network states para-
metrizes a wide class of ground states of strongly interacting
systems and that all the relevant global information of the
wave function is encoded in a single local tensor that connects
the physical degrees of freedom to the virtual ones (that is, the
entanglement degrees of freedom). This review does not touch
upon variational algorithms for optimizing tensor networks, as
those topics were covered by Verstraete, Murg, and Cirac
(2008), Schollwöck (2011), Orus (2014), Bridgeman and
Chubb (2017), and Haegeman and Verstraete (2017). For
further reading on the more traditional approaches to the
quantum many-body problem, as previously discussed, see
Chaikin, Lubensky, and Witten (1995), Wen (2004), Shavitt
and Bartlett (2009), Avella and Mancini (2011), Fradkin
(2013), Becca and Sorella (2017), Anderson (2018), and
Girvin and Yang (2019).

B. History

We start with a review of the historic development of the
field of tensor networks. This is complemented by an outlook
on ongoing developments and newly evolving directions
in Sec. V.
Nishino (2010) traced the history of tensor networks back to

the work of Kramers andWannier (1941). They studied the 2D
classical Ising model and introduced the concept of transfer
matrices (which are simply matrix product operators in the
language of this review) and a variational method for finding
the leading eigenvector of it by optimizing over a class of
wave functions that can be interpreted as precursors of matrix
product states (MPSs). Much later Baxter (1968, 1981, 2007)
introduced the formalism of corner transfer matrices and
realized that the concept of matrix product states allows
one to make perturbative calculations of thermodynamic
quantities of classical spin systems to high order; to prove
his point, he calculated the hard square entropy constant to 42
digits of precision. Accardi (1981) introduced matrix product
states in the realm of quantum mechanics by describing
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the wave functions associated with quantum Markov chains.
The most well-known matrix product state was introduced by
Affleck et al. (1987), [the Affleck-Kennedy-Lieb-Tasaki
(AKLT) state] in an effort to provide evidence for the
Haldane conjecture concerning half integer versus integer
spin Heisenberg models. They also wrote a two-dimensional
analog of the AKLT state (Affleck et al., 1988), and provided
evidence that it was the ground state of a gapped parent
Hamiltonian. Fannes, Nachtergaele, and Werner realized that
the 1D AKLT state was part of a much larger class of many-
body states, and they introduced a class of finitely correlated
states (FCS) that corresponds to injective matrix product
states. In a series of groundbreaking papers, they proved that
all FCS are unique ground states of local gapped parent
Hamiltonians and derived a wealth of interesting properties by
exploiting the connection of MPS to quantum Markov chains
(Fannes, Nachtergaele, and Werner, 1989, 1991, 1992a,
1992b, 1994, 1996).
Independent of this work in mathematical physics, White

(1992, 1993) discovered a powerful algorithm for simulating
quantum spin chains, which he called the density matrix
renormalization group (DMRG). DMRG revolutionized the
way quantum spin chains can be simulated and provided
extremely accurate results for associated ground and excited
state energies and order parameters. Nishino and Okunishi
(1996) soon discovered interesting parallels between DMRG
and the corner transfer matrix method of Baxter (1981).
Although it was certainly not envisioned and formulated like
that, it turns out that DMRG is a variational algorithm in the
set of matrix product states (Östlund and Rommer, 1995;
Dukelsky et al., 1998; Verstraete, Porras, and Cirac, 2004).
The reason for the success of DMRG was not understood until
much later, when it became clear that ground states of local
gapped Hamiltonians exhibit an area law for the entanglement
entropy (Hastings, 2007), and that all states exhibiting such an
area law can be faithfully and efficiently represented as matrix
product states (Verstraete and Cirac, 2006). The family of
matrix product states was rediscovered multiple times in the
community of quantum information theory. Vidal (2003) first
devised an efficient algorithm for simulating a quantum
computation that produces at most a constant amount of
entanglement; it turns out that the same algorithm can be
reinterpreted as a time-dependent version of DMRG, thereby
opening up an entire new set of applications for DMRG
(Daley et al., 2004; Verstraete, Garcia-Ripoll, and Cirac,
2004; White and Feiguin, 2004; Vidal, 2007a).
From the point of view of entanglement theory, matrix

product states were rediscovered in the context of quantum
repeaters, where it was understood that degeneracies in the
entanglement spectrum such as those occurring in the AKLT
model lead to novel length scales in quantum spin systems, as
quantified by the localizable entanglement (Verstraete,
Martin-Delgado, and Cirac, 2004; Verstraete, Popp, and
Cirac, 2004). A fundamental structure theorem for matrix
product states (Perez-Garcia, Wolf et al., 2008; Cirac et al.,
2017a; Molnar, Garre-Rubio et al., 2018) clarified that such
degeneracies are the consequence of the presence of projective
representations in the manner in which the entanglement
degrees of freedom transform under physical symmetries, and
this led to the classification of all possible SPT phases for 1D

quantum spin systems (Chen, Gu, and Wen, 2011a; Schuch,
Perez-Garcia, and Cirac, 2011; Pollmann et al., 2012).
Soon after the study of localizable entanglement in matrix

product states in 2003, a two-dimensional version of MPS was
introduced, and it was realized that the entanglement degrees
of freedom can play a fundamental role by demonstrating that
measurement-based quantum computation (Raussendorf and
Briegel, 2001) proceeds by effectively implementing a stan-
dard quantum circuit on those virtual degrees of freedom
(Verstraete and Cirac, 2004b). Those states were subsequently
called projected entangled pair states (PEPSs), and it was
quickly understood that the corresponding variational class
provides the natural generalization of MPSs to two dimen-
sions in the sense that they parametrize states exhibiting an
area law and that there is a systematic way of increasing the
bond dimension, i.e., the number of variational parameters
(Verstraete and Cirac, 2004a). Subclasses of PEPSs had been
considered previously: the 2D AKLT state was studied by
Affleck et al. (1988); Richter and Werner (Richter, 1994)
introduced and studied a 2D generalization of FCS based on
isometric tensors; Niggemann, Klümper, and Zittartz (1997)
studied 2D PEPS where the tensors satisfied the Yang-Baxter
equation; and Sierra and Martin-Delgado (1998), Maeshima
et al. (2001), and Nishino et al. (2004) introduced a gener-
alization of MPSs to two dimensions where the tensors could
be interpreted as Boltzmann weights of a vertex model.
As in the 1D case, entanglement theory was the key to

formulating this ansatz in full generality. This led to the
introduction of variational matrix product state algorithms
for optimizing PEPSs (Verstraete andCirac, 2004a) and infinite
versions of them (Jordan et al., 2008). It was found that PEPSs
form a rich class ofwave functions, and a plethora of interesting
quantum spin liquid states were written in terms of PEPS
tensors: the resonating valence bond (RVB) states of Anderson,
the toric code state of Kitaev, and any ground state of a local
frustration-free commuting quantum Hamiltonian (Verstraete
et al., 2006), such as anyground state of stabilizerHamiltonians
(Verstraete and Cirac, 2004b) or string nets (Buerschaper,
Aguado, and Vidal, 2009). Gu, Levin, and Wen (2008) and
Gu and Wen (2009) realized that the local symmetries of the
tensors are of primordial importance for describing long-range
topological order, and Schuch, Perez-Garcia, and Cirac (2011)
formalized this using the important concept ofG-injectivity and
later by the more general concept of matrix product operator
(MPO) injectivity (Bultinck, Mariën et al., 2017; Şahinoğlu
et al., 2021). This opened the way to simulating systems
exhibiting topological quantumorder and the associated anyons
in terms of tensor networks. Similarly, tensor networks and the
associated local symmetries turned out to provide a natural
language for describing SPT phases in two dimensions (Chen
et al., 2013; Buerschaper, 2014; Williamson et al., 2016).
In a separate development, Vidal (2007b, 2008) discovered

the multiscale entanglement renormalization ansatz (MERA).
This generalizes tree tensor networks (TTNs), which represent
yet another type of tensor network that naturally arises in the
context of real-space renormalization (Fannes, Nachtergaele,
and Werner, 1992c; Shi, Duan, and Vidal, 2006; Murg et al.,
2010; Silvi et al., 2010). Unlike MPSs, MERAs and TTNs are
meant to describe scale-invariant wave functions, and capture
the scale invariance exhibited in conformally invariant
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theories by a real-space construction of scale-invariant tensors.
The full richness of MERAs is only starting to be explored,
but interesting connections with anti–de Sitter/conformal field
theory (AdS=CFT) and operator product expansions (Pfeifer,
Evenbly, and Vidal, 2009; Evenbly and Vidal, 2016) have
been uncovered. We discuss here only a few limited aspects of
MERAs in the context of the holographic principle and
renormalization; see Evenbly and Vidal (2014) for a full
review. Finally, we remark that ideas from renormalization
have also led to a range of renormalization-based algorithms
for tensor network contraction, such as the tensor renormal-
ization group, the tensor entanglement renormalization group,
and tensor network renormalization (Levin and Nave, 2007;
Gu, Levin, and Wen, 2008; Jiang, Weng, and Xiang, 2008;
Xie et al., 2009, 2012; Zhao et al., 2010; Evenbly and Vidal,
2015; Evenbly, 2017).

C. Outline

There is already an extensive literature on the application of
the different kind of tensor networks (TNs) to quantum many-
body systems. While there are many reviews on the topic
(Schollwöck, 2005, 2011; Hallberg, 2006; Cirac andVerstraete,
2009; Orus, 2014; Bridgeman and Chubb, 2017; Biamonte,
2019), the vast majority focus on the practical aspects of tensor
networks, in particular, on how to use them in numerical
computations in order to approximate ground, thermal equilib-
rium, or dynamical states corresponding to Hamiltonians
defined on lattices. However, as previously emphasized, tensor
networks have also been key to the description, or even the
discovery, of awidevariety of physical phenomena, aswell as to
construct simple examples displaying interesting properties.
Thiswas achieved through thedevelopment of a theoryof tensor
networks. We review such a theory here, including both core
results and their applications.
We concentrate here on translational-invariant systems in

one- and two-dimensional lattices since most of the analytical
results have been obtained for such systems. We notice,
however, that many of the results covered in this review
extend naturally to higher spatial dimensions, other lattice
geometries, and also the non-translational-invariant case. This
restriction, in the context of TNs, implies that a single tensor A
encapsulates the physical properties of the many-body system.
As we later see, quantum states as well as operators (such as
those characterizing mixed states, Hamiltonians, or dynamics)
are constructed in terms of such tensors. For states (operators),
the restriction to translationally invariant systems also implies
that our focus in this review will be on MPSs (MPOs) and
PEPSs (projected entangled pair operators, or PEPOs). The
basic questions that we address are as follows: Is this
construction unique; that is, can two tensors give rise to
the same state or operator? If they do, what is the relation
between those tensors? How are the physical properties of the
states encoded in the tensor? For instance, how do the local
symmetries of the tensors reflect local and/or global sym-
metries or topological order? Or, vice versa, how are the
symmetries in the tensor reflected in the physical properties of
the many-body state, or in the dynamics that it describes?
There are many other questions about tensor networks that
have been resolved in recent years, and it would be impossible

to cover them in detail in this review. We nevertheless go over
most of them and give the original references where they can
be found. In addition, the interested reader may want to
consult Zeng et al. (2019), which complements this review in
many aspects.
This review is organized in four sections and the Appendix.

Section II motivates the use of TNs to describe quantum
many-body systems, introduces different TNs, and analyzes
some of the most relevant properties. The basic structure of
TNs stems from the entanglement structure of the ground
states of many-body Hamiltonians fulfilling an area law,
which basically dictates that they exhibit little entanglement
relative to typical states. Tensor networks provide us with
efficient ways of describing systems with small amounts of
entanglement, and they are thus ideally suited for parametriz-
ing states satisfying an area law. We introduce the basic
notions of MPSs for 1D systems, and their generalization to
higher dimensions PEPSs. We also consider the fermionic
versions of those TN states, where the physical systems are
fermionic modes. While most of the review concerns pure
states, we include some analysis of mixed states and evolution
operators, and for that purpose we also introduce MPOs and
PEPOs. Even though we focus our attention on translational-
invariant systems, we do mention some connections between
MPSs and MERAs, as they both can be viewed as being
created by special quantum circuits. We also argue that, not
only do MPSs and PEPSs approximate ground states of local
Hamiltonians, but for any of them one can find a special
Hamiltonian or set of Hamiltonians, the so-called parent
Hamiltonians, that are frustration free and for which they
are the exact ground states. In particular, we list the conditions
under which the Hamiltonian is degenerate, and also discuss
how to describe low-energy excitations. Next we discuss an
interesting property of PEPSs, namely, that one can explicitly
build a bulk-boundary correspondence with them. That is, for
any region of space it is always possible to define a state that
encodes all the physical properties of the first but lives in a
smaller spatial dimension. This is a version of the holographic
principle and enables the use of dimensional reduction,
meaning that one can fully characterize the properties of
PEPSs by a theory that is defined in the boundary. We finish
Sec. II by introducing a powerful technique in the TN context,
namely, renormalization. The basic idea is to block tensors
into others that can be assigned to blocks of spins, in much the
same way as real-space renormalization is used in statistical
physics. The fixed point of such a procedure gives rise to a
special TN that can be viewed like the ones that appear if one
looks at large scales. They have a simple form, so one can
easily deal with them and apply them, for instance, to the
classification of phases of gapped Hamiltonians. This pro-
cedure can be applied to pure or mixed states, as well as
unitary operators.
Section III analyzes how the symmetries of the tensor

generating a MPS or PEPS can be associated with the
symmetries of the states that they generate, or with their
topological order. This statement leads to one of the greatest
successes of tensor networks, namely, the classification of
phases by relating them to the representations of the sym-
metries of the tensors generating them. In the case of global
symmetries, this leads to SPT phases, whereas topological
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phases are characterized by purely virtual symmetries. The
combination of those results can also be used to characterize
symmetry-enriched topological (SET) phases for TN.
Attending to the global symmetries of the states with a certain
symmetry group, we find that the generating tensor also
possess that symmetry, with the same symmetry group but
with a representation that is possibly projective. This is why
the classification of SPT phases is intimately related to the
corresponding cohomology classes. Topological order, how-
ever, is related to purely virtual symmetries of the tensor, and
we discuss how those virtual symmetries give rise to notions
such as topological entanglement entropy and anyons. We also
consider local gauge symmetries and ways of gauging a global
into a local symmetry within the language of TNs.
Section IV is more mathematical and contains a review of

the basic theorems of MPSs and PEPSs. Of particular
importance is the so-called fundamental theorem, which lists
the conditions under which two tensors generate the same
state. This theorem is widely used in many of the analytical
results obtained for TNs, such as in the characterization of the
fixed points of the renormalization procedure of Sec. II, and in
the classification of symmetries and phases in Sec. III. It
implies that the same states can be generated by many tensors,
so it is useful to find a canonical form, namely, a specific
property of the tensor that we can demand such that it is
basically uniquely associated with the state. While this is
possible for MPSs and a full theory for such a canonical form
and fundamental theorem exists, the situation for PEPSs is not
yet complete and we discuss the state of the art.
Finally, we collect a number of prototypical examples of

MPSs and PEPSs appearing in the context of quantum
information and/or condensed matter theory in the Appendix.

II. MANY-BODY QUANTUM SYSTEMS: ENTANGLEMENT
AND TENSOR NETWORKS

A. Entanglement structure in quantum Hamiltonians

A central feature of many-body quantum systems is the fact
that the dimension of the associated Hilbert space scales
exponentially large in the number of modes or particles in the
system. The natural way of describing materials, atomic gases,
or quantum field theories exhibiting strong quantum correla-
tions is to discretize the continuous Hilbert space by defining a
lattice and an associated tensor product structure for the modes
that represent localized orbitals such as Wannier modes. Such
systems can therefore be described in terms of an effective
Hamiltonian acting on a tensor product of these local modes.
In the case of bosons, one can typically restrict the local
occupation number to be bounded (say, d dimensional), such
that we get a Hilbert space of the form⊗N

k¼1 C
d. In the case of

fermions, the tensor product has to be altered to a graded
tensor product.
In this review, we mainly consider local translationally

invariant quantum spin Hamiltonians defined on a lattice with
the geometry of a ring or torus of the form

H ¼
XN
i¼1

hi;n;

where hi;n is a local observable centered at site i and acting
nontrivially only on the n − 1 closest sites of i. As an example,
a nearest-neighbor Hamiltonian such as the Heisenberg model
has n ¼ 2. As n is finite, it is always possible to block several
sites together such that hi;n is acting only on next nearest
neighbors according to the underlying lattice. We are mostly
interested in the ground state and the lowest energy excitations
of such a Hamiltonian in the thermodynamic limit N → ∞.
The gap Δ plays an important role in such spin systems. It

measures the energy difference of the first excited state and the
ground state. If it vanishes in the thermodynamic limit
N → ∞, we say that the Hamiltonian is gapless and otherwise
gapped. The former occurs for critical systems, whereas the
latter implies the existence of a finite correlation length.
As in quantum field theories, the central object of interest in

strongly correlated quantum spin systems is the ground state or
vacuum, as the quantum features are most pronounced at low
temperatures. Thevacuum quantum fluctuations hold the key to
unraveling the low temperature properties of the material of
interest, and the structure of the ground state wave function
dictates the features of the elementary excitations or particles
that can be observed in experiments. Determining the smallest
eigenvector of an exponentially large matrix is in principle an
intractable problem. Even a relatively small system, such as a
2D Hubbard model with 12 × 12 sites, has a Hilbert space of
dimension 2288 ≈ 5 × 1086, which is much larger than the
number of baryons in the Universe, and hence writing down
the ground state wave function as a vector is an impossible feat.
The key that allows us to circumvent this impasse is to realize
that the matrices corresponding to Hamiltonians of quantum
spin systems are sparse due to the fact that they exhibit a tensor
product structure and are defined as a sum of local terms with
respect to this tensor product. This forces the ground state to
have a special structure, and tensor networks are precisely
constructed to take advantage of that structure. In addition, the
locality of the Hamiltonian forces the other eigenvectors with
low energy to be simple local perturbations of the ground state
(Haegeman, Pirvu et al., 2012), and this feature is responsible
for the existence of localized elementary excitations, which we
observe as particles, and hence for the fact that the ground state
is such a relevant object even if the system under consideration
is not at zero temperature. This has to be contrasted with a
generic eigenvalue problem where knowledge of the extremal
eigenvector does not give any information about the other
eigenvectors, except for the fact that they are orthogonal to it.
Without locality, physics would be wild.
The locality and tensor product properties of the

Hamiltonians from which we want to determine the extremal
eigenvectors are the keys to unraveling the structure of the
corresponding wave functions. This tensor product structure
and locality also play a central role in the field of quantum
information (Nielsen and Chuang, 2000) and entanglement
theory (Horodecki et al., 2009), with the original aim of
exploiting quantum correlations to perform novel information
theoretic tasks. The study of entanglement theory introduced a
new way of quantifying quantum correlations in terms of
elementary units of entanglement (ebits), and of describing
local operations that transform states into one another. A key
insight in entanglement theory has been the fact that any pure
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bipartite states with an equal amount of entanglement (as
measured by the entanglement entropy) can be converted into
each other by local quantum operations and classical com-
munication (Bennett et al., 1996). These fundamental facts of
the theory of entanglement were the original inspiration for
defining tensor networks: ground states of local Hamiltonians
turn out to exhibit an area law for the entanglement entropy,
just as entangled pairs of particles distributed among nearest
neighbors on a lattice have. There should therefore exist local
operations that transform the two sets of states into each other.
This construction precisely gives rise to the classes of MPSs
and PEPSs, which are the main characters of this review.

1. Local reduced density matrices

The energy of a wave function with respect to a local
Hamiltonian is completely determined by its marginal or local
reduced density matrices ρi;n, which are defined as the density
matrix obtained by tracing out all degrees of freedom outside
of the region n around site i: E ¼ P

i Tr½hi;nρi;n�. In the case
of a translationally invariant Hamiltonian and a unique ground
state, the ground state inherits all symmetries of the
Hamiltonian, including the translational invariance. Hence,
we can drop the dependence on i and the ground state energy
Tr½hnρn� is a linear functional in the reduced density matrix ρn.
Finding ground states is hence equivalent to finding a many-
body state whose marginal is extremal with respect to hn. The
set of all possible marginals of translationally invariant
quantum many-body states is convex. Any state whose
marginal is an extreme point in this convex set must hence
be the ground state of a local Hamiltonian defined by the
tangent plane on that convex set. The ground state problem is
therefore equivalent to characterizing the set of all possible
extremal points of local reduced density matrices. The
problem would hence be easily solved if such a characteri-
zation were possible, but this problem is known as the
N-representability problem (Coleman, 1972) and is well
known to be intractable for generic systems (Liu,
Christandl, and Verstraete, 2007).
The important message, however is that ground states are

special: they have extremal local reduced density matrices,
and all the global features, such as correlation length, possible
topological order, and types of elementary excitations, follow
from this local extremality condition. In other words, these
global features emerge from the requirement that the local
reduced density matrix is an extreme point in the set of all
possible reduced density matrices compatible with the sym-
metries of the system. It will turn out that these extremal
points can correspond only to states with little entanglement,
and all of them satisfy an area law for the entanglement
entropy (Verstraete and Cirac, 2006; Zauner et al., 2016).
It is instructive to consider the example of the Heisenberg

spin-1/2 antiferromagnetic Hamiltonian
P

hi;ji S⃗i·S⃗j, where
the sum is restricted to nearest neighbors and S⃗ ¼ ðSx; Sy; SzÞ
are the standard spin operators. If we consider only two sites,
then the ground state is equal to the spin singlet, which is
maximally entangled, and with the associated energy −1. The
case of a chain ofN sites is much more complicated: due to the
noncommutativity, it is impossible to find a state whose
ground state energy is equal to −1 per interaction term.

This noncommutativity leads to frustration: the closer the
reduced density matrix of sites 1 and 2 is to a singlet, the
further it will have to be from a singlet for the reduced density
matrices of sites 2 and 3. This effect can also be understood in
terms of the monogamy property of entanglement (Terhal,
2004): a spin 1/2 has the capacity of only 1 ebit of entangle-
ment [with an ebit defined as the amount of entanglement in a
maximally entangled state of two spin-1/2 systems (Nielsen
and Chuang, 2000)], and if it has to share this 1 ebit with its
neighbors, the corresponding reduced density matrices will
have atmost 1/2 ebit of entanglement. Themore neighbors that a
spin has, the less entanglement it can share with each individual
one. This can be formalized in the quantum de Finetti theorem
and is the reason that mean field theory becomes exact in high-
dimensional lattices (Raggio and Werner, 1989; Brandao and
Harrow, 2016). This is also the reason that 1D and 2D systems
exhibit some of themost interesting quantumeffects: in general,
the marginals of quantum many-body states in 3D lattices are
already well approximated by the ones obtained by product or
mean field solutions, while this is not the case for low-
dimensional systems.
The physics of ground states is completely determined by

the competition between translational invariance and extremal
local reduced density matrices (for the case of the Heisenberg
model, the density matrices will be as close as possible to the
singlet). Monogamy of entanglement is precisely the property
that gives rise to interesting physics: in the case of classical
statistical mechanics, the competition of energy versus
entropy gives rise to cooperative phenomena and phase
transitions. In the quantum case, the noncommutativity of
the different terms in the Hamiltonian leads to monogamy,
which plays a similar role and makes such phase transitions
possible at zero temperature.
The key to uncovering the structure of ground states of local

Hamiltonians is to understand how the entanglement is shared
between the different degrees of freedom. Intuitively, for a
given spin it is of no use to have strong correlations with
faraway spins, as this will only bring marginals farther away
from the extremal points. The strongest quantum correlations
it needs to have are with those spins that the Hamiltonian
forces it to interact with, namely, the nearest neighbors. We
can hence imagine that the entanglement between a bipartition
of a large system in two regions is proportional to the surface
between them, and this area law for entanglement is exactly
what is going on in ground states.
In summary, ground states of local Hamiltonians of

quantum spin systems are in one-to-one correspondence with
states whose reduced density matrices are extremal points
within the set of all possible reduced density matrices with a
given translational symmetry. This property forces the entan-
glement to be localized, giving rise to an area law.

2. Area laws for the entanglement entropy

We now consider a quantum spin system with a local
quantum Hamiltonian and ground state jψi and a bipartition of
the quantum spin system into two connected regions A and B,
such that ρA and ρB are the reduced density matrices of the
ground state in these regions. The entanglement entropy
(Bennett et al., 1996)
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SðρAÞ ¼ −Tr½ρA logðρAÞ� ¼ SðρBÞ ð1Þ

quantifies the amount of quantum correlations between the
two regions and, as argued in the last section, this quantity is
expected to be proportional to the surface of the boundary
between the two regions ∂A, and hence called the area law for
the entanglement entropy (Eisert, Cramer, and Plenio, 2010).
This area law should be contrasted with the volume law
exhibited by random states in the Hilbert space: quantum
states exhibiting an area law for the entanglement entropy are
special; such states are hence highly atypical, and it will be
possible to represent them using tensor networks.
The origins of the area law can be traced back to studies of

the entanglement entropy in free quantum field theories
(Holzhey, Larsen, and Wilczek, 1994), where the ensuing
area laws were related to the Bekenstein-Hawking black hole
entropy (Bekenstein, 1973). Area laws can rigorously be
demonstrated for free bosonic (Plenio et al., 2005) and
fermionic systems (Gioev and Klich, 2006; Wolf, 2006)
modulo some logarithmic corrections in the presence of
Fermi surfaces. They can also be proven in case the corre-
lations (defined in terms of the mutual information) between
two arbitrary regions decay sufficiently quickly with the
distance regardless of their sizes (Wolf et al., 2008).
For interacting quantum systems at finite temperature T and

described by Gibbs states ρ ∝ expð−H=TÞ, an area law for the
mutual information

IðA∶BÞ ¼ SðρAÞ þ SðρBÞ − SðρÞ ≤ c
j∂Aj
T

was proven by Wolf et al. (2008) for any local Hamiltonian in
any dimension as long as all terms in the Hamiltonian are
bounded from above. Here j∂Aj denotes the number of spins
in the boundary ∂A between region A and B. Recently
Kuwahara, Alhambra, and Anshu (2021) improved the tem-
perature dependence of this bound to diverge as 1=T2=3.
It is much harder to prove the area law for ground states of

interacting quantum spin systems, although there is plenty of
evidence supporting that claim. In the case of gapped quantum
spin chains in one dimension, a noteworthy theorem was
formulated by Hastings (2007) proving the area law that was
later strengthened by Arad et al. (2013). Given a local
Hamiltonian of a quantum spin chain of N d-dimensional
spins whose gap is given by Δ, the entanglement entropy in
the ground state is bounded from above byO(ðlog dÞ3=Δ) for
any bipartite lattice cut into two connected regions; see
Kuwahara and Saito (2020) for a generalization to long-range
interactions. Note that this means that the entanglement
entropy saturates in the thermodynamic limit for the case
of a gapped system. In the case of a critical quantum spin
chain where the gap vanishes as Oð1=NÞ or faster, this bound
yields a volume law, although it seems that nature is much
more economical and, for all critical spin chains described by
a conformal field or a Luttinger liquid theory, the actual
entanglement entropy is exponentially smaller and scales as
O( logðLÞ) for a region A of length L ≤ N=2. When the gap is
allowed to vanish must faster as a function of the system size,
examples were constructed that saturate the volume law, and

hence give rise to novel phase transitions from bounded to
extensive entanglement (Movassagh and Shor, 2016; Zhang,
Ahmadain, and Klich, 2017).
Much more precise information about the nature of the

entanglement in a system can be obtained by looking at the
entanglement spectrum (Li and Haldane, 2008), which is
defined as the logarithm of the set of eigenvalues of the
reduced density matrix λiðρAÞ. The Schmidt coefficients are
the square roots of these eigenvalues, and the convention is to
order them in decreasing order. In the case of gapped
integrable spin chains in the thermodynamic limit, these
Schmidt coefficients decay as expð−αnÞ, where n ∈ N, α is
a constant, and a degeneracy aðnÞ is equal to the number of
ways to partition n in sums of unequal integers (Peschel,
Kaulke, and Legeza, 1999). Asymptotically, we have
aðnÞ ¼ O( expðπ ffiffiffiffiffiffiffiffi

n=3
p Þ=n3=4). This result can be obtained

by calculating the eigenvalues of the corner transfer matrix,
which is a discrete version of the boost operator HMod used in
quantum field theory to calculate the entanglement entropy.
For critical systems described by CFT, the largest Schmidt
coefficient seems to encode the information about the full
entanglement entropy (Orus et al., 2006).
Alternatively, the Renyi entropies SαðρÞ¼ ½1=ð1−αÞ�

logTrðραÞ with α ≥ 0 can be used to characterize the decay
of the Schmidt coefficients. These Renyi entropies are
monotonically decreasing as a function of α; S0ðρÞ measures
the rank of ρ, and the ones with 0 ≤ α < 1will be of particular
importance for the description of matrix product states.
Improving the results and techniques of Hastings (2007)
and Landau, Vazirani, and Vidick (2013), Huang (2014)
proved that the ground state α-Renyi entanglement entropy
in gapped 1D systems is upper bounded by Õðα−3=ΔÞ, where
Õ stands for O up to logarithmically smaller factors.
Specifically, it was demonstrated that the residual probability
ϵðDÞ, defined as the sum of all eigenvalues of the reduced
density matrix smaller than the Dth largest one, scales as
exp f−cΔ1=3½logðDÞ�4=3g for a general spin chain with gap Δ
(Arad et al., 2013). For integrable systems and systems in the
scaling regime of a conformal field theory, a faster decay in the
form of ϵðDÞ ≃ expf−c½logðDÞ�2g is obtained (Verstraete and
Cirac, 2006; Calabrese and Lefevre, 2008).
For higher-dimensional quantum spin systems, no general

proofs of an area law for ground states exist. It is believed that
(i) gapped systems always exhibit an area law for the
entanglement entropy; (ii) critical systems without a Fermi
surface also satisfy an area law but get additive logarithmic
corrections; (iii) critical systems with a Fermi surface exhibit
an entanglement entropy scaling as j∂Aj log j∂Aj, which is
marginally larger than the area law scaling.
In two dimensions, additive corrections also pop up for

systems exhibiting topological quantum order. For a region
with a perimeter L and ignoring corner effects, the entangle-
ment entropy scales like cL − logðDÞ, with D the total
quantum dimension of the underlying anyonic theory. As
this quantum dimension is always larger than 1, topologically
ordered systems have less entanglement than the ones in a
trivial phase. This indicates that a topologically ordered
system exhibits a certain symmetry that reduces the support
of the local reduced density matrix; it will turn out that such
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symmetries are naturally described by matrix product
operators.

B. Tensor networks

We now define different types of states and operators that
can be expressed as tensor networks and analyze their basic
properties. Although most of this review focuses on transla-
tional-invariant states of spin lattices and thus MPSs and
PEPSs are the main actors, we also introduce their extension
to fermionic systems and make connections to other sets of
states like TTNs and MERAs.
The discussion on local reduced density matrices made it

clear that ground states of local quantum Hamiltonians are
completely molded by their desire to have extremal local
correlations, on the one hand, and to preserve lattice sym-
metries, on the other hand. The discussion on area laws for the
entanglement entropy made it clear that the entanglement
between two neighboring regions is concentrated mainly on
the interface between the two regions. The same entanglement
pattern can be obtained by distributing maximally entangled
pairs of D-dimensional spins between all nearest neighbors,
then doing a local projection (or a general linear map) on all
these local spins to obtain one d-dimensional spin. This
projection involves a linear map from a Hilbert space of Ni
D-dimensional spins to a d-dimensional spin, with Ni the
coordination number of the lattice at site i, and any such linear
map can be represented by a tensor Ai

α1α2���αN. Translational
invariance is obtained if the lattice has periodic boundary
conditions and the same projection is chosen on all lattice
sites. This construction, illustrated in Fig. 1, defines the class
of PEPSs with bond dimension D, and the different states in
that family can be obtained by choosing different projections
A. We later give a more precise description of PEPSs and
connect them to tensor networks.
This PEPS construction yields quantum many-body states

that have strong local correlations, exhibit the translational
symmetry of the underlying lattice, and obey an area law for
the entanglement entropy with respect to any bipartition.
Furthermore, extra symmetries such as global Uð1Þ or SUð2Þ
symmetries can easily be incorporated by defining tensors that
transform according to some representation of the correspond-
ing group (Perez-Garcia et al., 2010; Singh, Pfeifer, and Vidal,
2010). All those properties are highly nontrivial, and it is
especially hard to write entangled translationally invariant
wave functions without using the projected entangled pair
construction.
Conceptually, PEPSs present a way of parametrizing

interesting many-body wave functions on any lattice with a
constant coordination number using a number of parameters

that is independent of the system size (at least for transla-
tionally invariant states). They hence provide a way of writing
a nontrivial wave function in an exponentially large Hilbert
space in a compressed form. This comes as no surprise. Both
product states and Slater determinants provide ways of writing
wave functions in an exponentially large Hilbert space using a
few parameters. The main difference, however, is the fact that
the PEPS construction can represent a wide variety of ground
states of strongly interacting systems. Being able to represent
such wave functions has the potential of solving some of the
hardest problems in many-body physics.
In the case of 1D spin chains, this PEPS construction

defines the class of MPSs. The area law for entanglement
allows one to demonstrate that any ground state of a gapped
quantum spin chain can be represented efficiently using such a
MPS (Arad et al., 2013; Hastings, 2007) and, conversely, that
any MPS is the ground state of a local gapped Hamiltonian
(Fannes, Nachtergaele, andWerner, 1992b; Perez-Garcia et al.,
2007). Similarly, a wide class of correlated many-body
systems in higher dimensions can be represented using
PEPSs (Verstraete et al., 2006; Buerschaper, Aguado, and
Vidal, 2009), and the main topic of this review is to report on
the mathematical properties of the manifolds of MPSs and
PEPSs and the relevance for the physical properties and
classification of strongly correlated systems. In a nutshell,
the manifold of MPSs and PEPSs form rich classes of many-
body systems and provide a unique window into the physics of
strongly correlated quantum many-body systems, from both
the theoretical and computational points of view.

1. MPSs and PEPSs

We now introduce PEPSs for an arbitrary lattice and then
particularize the definition to one spatial dimension to obtain
MPS. We consider a lattice withN vertices, V ¼ f1; 2;…; Ng,
and a set of edges E connecting them. We consider a spin at
each vertex with a corresponding Hilbert space Cdi of
dimension di. Our goal is to construct states of these spins,
i.e., jψi ∈⊗N

i¼1 C
di .

The elements e ∈ E are pairs of vertices; for instance, e ¼
ð1; 2Þ represents the edge connecting vertices 1 and 2. We
further denote by Si ⊂ V the set of vertices that are connected to
the vertex i, i.e., Si ¼ fj ∈ V; such that ði; jÞ ∈ Eg, with zi ¼
jSij the coordination number. To construct jψi, we first assign to
each vertex i several auxiliary spins (one for each edge
connecting that vertex to another one) that are in a maximally
entangled state with their neighbors. More explicitly, for each
i ∈ V and j ∈ Si we denote by ai;j the ancilla, which has an
associated Hilbert spaceCDi;j with dimensionDi;j ¼ Dj;i ∈ N.
To distinguish states of the auxiliary spin from the physical
ones, we use the notation j·Þ as opposed to the notation j·i. The
ancillas ai;j and aj;i form a maximally entangled state

jϕÞi;j ¼
XDi;j

n¼1

jnÞai;j ⊗ jnÞaj;i ; ð2Þ

where the fjnÞg form an orthonormal basis; note that this fixes a
preferred basis, making the objects in the construction basis
dependent. Thus, the state of the ancillas is

FIG. 1. Construction of projected entangled pair states on a 2D
lattice.
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jΦÞ ¼ ⊗
e∈E

jϕÞe: ð3Þ

To each vertex i, we next assign a linear map

A½i�∶ ⊗
j∈Si

CDi;j → Cdi :

We define the PEPS as

jψi ¼ ⊗
i∈V

A½i�jΦÞ. ð4Þ

That is, the state is obtained by a linear map of the entangled
pairs of ancillae into the physical spins at each vertex; cf. Fig. 1.
The final state will in general be entangled since the entangle-
ment in the ancillae is transferred to the spins through the
mapping. This entanglement can lead to long-range correla-
tions, even though the ancillae are entangled only locally. This is
a simple consequence of entanglement swapping that allows
one to entangle remote particles by a sequence of projections on
entangled pairs. Note that the entire state is completely
determined by themapsA½i�: since each of them is characterized
by pi ¼ di

Q
j∈Si Di;j parameters, we need only

P
i∈V pi

parameters to specify the state.
The map A½i� is characterized by the coefficients in a basis

as follows:

As
α1;…;αzi

¼ hsjA½i�jα1;…; αziÞ. ð5Þ

Thus, the map is also characterized by a tensor (whose entries
depend on the basis choice). We indistinguishably call A a map
or tensor in the following. A concept that plays a chief role in
this review is injectivity and its generalizations: we say that the
tensorA½i� is injective if the correspondingmap is injective; that
is, if there is another map, A½i�−1∶Cdi →⊗j∈Si C

Di;j , such
that A½i�−1A½i� ¼ 1.
There are equivalent ways of defining PEPSs that are used

later. One particularly interesting one consists of associating
with each vertex i ∈ V a fiducial state jϕii of the spin and the
virtual system (i.e., jϕii ∈ Cdi ⊗j∈Si C

Di;j ), and defining the
PEPS as

jψi ¼ hΦj½⊗
i∈V

jϕii�: ð6Þ

This state coincides with the previous one if we write

jϕii ¼
X

s;α1;…;αzi

As
α1;…;αzi

jsi ⊗ jα1;…; αzii ð7Þ

and choose as As
α1;…;αzi

the elements of the map A½i� in the

physical (jsi) and virtual (jαji) basis. In this case, the fiducial
states jϕii completely determine the many-body state. Finally,
yet another equivalent definition is obtained by replacing the
state jϕÞ of the ancillae in Eqs. (2) and (3) with some tripartite
or multipartite local states; such an ansatz is again equivalent
to the original construction but can be advantageous in the
numerical simulation of frustrated spin systems (Schuch et al.,
2012; Xie et al., 2014).

Although this construction applies to any lattice, here we
exclusively consider regular lattices with the same co-
ordination number and the same physical dimension at each
vertex (zi ¼ z and di ¼ d). We call d the physical dimension.
We are particularly interested in square lattices in two
dimensions, or in 1D lattices, where we recover MPSs. In
the first case, we use the convention in the tensors (5) that
α1;…; α4 are taken clockwise (top, right, down, left). In the
latter, it is useful to define matrices Asi ½i� ∈ CDi−1;i⊗Di;iþ1 with
elements Asi

αβ½i�, and the previous expression is equivalent to

hs1; s2;…jψi ¼ Tr½As1 ½1�As2 ½2� � � �AsN ½N��: ð8Þ

Every probability amplitude is given by the trace of a product
of N matrices: hence the name matrix product state.
In regular lattices, translationally invariant (also named

uniform) states are obtained by choosing the same map at
every site A½i� ¼ A, and thus Di;j ¼ D, the bond dimension.
By construction, it is clear that the PEPS is invariant under
translations. For any lattice size, the state is completely
determined by a single map A or, equivalently, a single tensor.
We say in the review that the tensor A generates the state
jψðAÞi. Thus, we can associate with any tensor A a set of
states jψðAÞNi corresponding to each lattice size. This map
from a tensor to a set of states is not one to one, a notion that
forms the basis for many of the features of MPS and PEPS
descriptions. Also note that all the physical properties (criti-
cality, symmetries, topological order, etc.) of the states are
completely determined by A and thus are somehow encoded in
that tensor. A main goal of the theory of tensor networks is to
obtain such properties directly from the tensor.
Instead of working with the notation in Eq. (5) and the

corresponding proliferation of indices, it turns out to be much
more useful to work with a graphical tensor notation, and to
represent MPSs and PEPSs as a tensor network. A tensor
network consists of vertices and edges that have the same
geometry as the lattice. Every vertex represents a tensor with a
number of legs equal to the number of edges. An edge with an
open end represents an open index, while an edge that is
sandwiched between two vertices is to be contracted and
hence summed over. For example, the tensor ψ ijk ¼P

αβγ A
i
αβA

j
βγA

k
γα is represented by three vertices, three open

lines, and three closed lines as

With this tensor network notation, we can readily represent
any MPS or PEPS, examples of which are shown for a spin
chain and a square lattice in Fig. 2. The marginal or reduced
density matrix of a MPS or PEPS can be obtained by summing
over or contracting the physical indices. Similarly, we can
represent local expectation values in the form of a tensor
network contraction.
An important practical consideration is that of the computa-

tional complexity of contracting such tensor networks.
Generally, contracting a generic PEPS network is as hard
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as calculating the partition function of a spin glass and can
hence be #P hard in the number of tensors (Verstraete et al.,
2006; Schuch et al., 2007; Haferkamp et al., 2020). In
practice, however, PEPS tensor networks have a high degree
of homogeneity (e.g., translational invariance), and powerful
algorithms are being developed to contract them. Contracting
tensor networks made of matrix product states is much
cheaper, as the cost of calculating any expectation value
scales linearly in the number of sites and as a cube in the bond
dimension (∼ND3): one can contract the tensor network
starting at one end and progress to the other end while
contracting all tensors along the way. This difference in
complexity of contracting 1D versus higher-dimensional
tensor networks is responsible for the large discrepancy in
accuracy that currently exists between simulations for 1D spin
chains using DMRG and those for 2D systems using PEPSs. It
is, however, an active area of research to determine how to
speed up these higher-dimensional tensor contractions. For
state-of-the-art algorithms, see Corboz (2016), Vanderstraeten
et al. (2016), and Liao et al. (2019).
Another important consideration is the fact that MPS and

PEPS representations are not unique: as we mentioned before,
two tensors may generate the same set of states. This fact will
play a central role in understanding how symmetries are
represented in tensor networks, in the classification of differ-
ent phases of matter, and in the process of devising efficient
numerical methods for dealing with tensor networks. We now
consider the case of MPSs and define a translationally
invariant MPS jψðAÞi with periodic boundary conditions
generated by the tensor A; due to the cyclic nature of the
trace, it is clear that jψðAÞi ¼ jψðBÞi if Bi is related to Ai by a
“gauge transform” X as follows:

Bi ¼ XAiX−1; ð9Þ

where X is any invertible D ×D matrix. This is a specific
instance of the fundamental theorem of MPSs (Perez-Garcia
et al., 2007; Perez-Garcia, Wolf et al., 2008), which is

reviewed in Sec. IV, and which basically states that this is
the only possibility as long as the tensors are expressed in
some canonical form.
Many familiar states in the context of quantum information

and condensed matter theory have simple descriptions in
terms of MPSs and PEPSs. One can also construct PEPSs that
are closely connected to classical Gibbs distributions: that is,
for any classical spin system with short-range interactions, one
can build a quantum state such that the expectation values of
the operators diagonal in the computational basis coincide
with those of the classical distribution (Verstraete et al., 2006).

2. MPOs and PEPOs

An important generalization of the class of MPSs and
PEPSs are MPOs and PEPOs. They are readily defined by the
tensor network depicted in Fig. 3. When the operators that
they represent are translationally invariant, they are fully
characterized by a single tensor, just like PEPSs, but now
with two physical indices: one corresponding to the bra and
the other to the ket of the local action of the operator.
Analogously to their pure state counterparts, they allow us
to encode relevant many-body operators in an economical
way. In particular, matrix product operators (Verstraete,
Garcia-Ripoll, and Cirac, 2004; Zwolak and Vidal, 2004)
describe mixed states (like those corresponding to thermal
equilibrium or open quantum systems), Hamiltonians
(McCulloch, 2007; Crosswhite and Bacon, 2008; Pirvu et al.,
2010), or unitary evolution (Cirac et al., 2017b; Şahinoğlu
et al., 2018).
MPOs and PEPOs relate to other operators appearing in the

context of statistical physics. They appear as transfer matrices
in 2D and 3D classical statistical mechanical models, where
the free energy can be inferred from its leading eigenvalue.
The exact diagonalization of such transfer matrices in the
former case is the main aim of the field of integrable models,
and intricate algebraic structures in integrable systems have
been uncovered by invoking the Bethe ansatz and the
associated Yang-Baxter relations. Similarly, MPOs are
obtained as the transfer matrix in the path integral formulation
of 1D quantum spin systems. They also appear in the
description of cellular automata and as transfer matrices in
nonequilibrium statistical physics in the realm of percolation
theory and the asymmetric exclusion process. See the review
given by Haegeman and Verstraete (2017) for a detailed
exposition of these connections.
MPOs are widely used in different scenarios in the field of

tensor networks. Although all these roles can be extended to
higher dimensions using PEPOs, we discuss them here in the
context of MPOs.

(a)

(b)

FIG. 2. Tensor network description of (a) a MPS, (b) a PEPS on
a square lattice, and their corresponding marginals.

(a) (b)

FIG. 3. Definitions of (a) matrix product operators (MPOs) and
(b) projected entangled pair operators (PEPOs).
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We first focus on MPOs as density matrices, that is, mixed
state analogs of a pure MPS. In this case they are called matrix
product density operators (MPDOs). From the computational
point of view, they arise in simulations at finite temperature or
in the presence of dissipation. A sufficient local condition for a
MPO represented by the four-leg tensor O to be a global
positive operator (in the semidefinite sense, hence represent-
ing a density matrix) is the existence of a four-leg tensor A (the
“purification”) and a three-leg tensor X (the gauge transform)
such that the property depicted in Fig. 4 is satisfied. Note that
this condition is only sufficient, but not necessary, to ensure
positivity. Indeed, it has been shown that there can be an
arbitrary trade-off in the bond dimension of the purification
(De las Cuevas et al., 2013), and that there are translationally
invariant MPDOs that do not possess MPO purifications (as in
Fig. 4) and are valid for all system sizes (De las Cuevas
et al., 2016).
Second, MPOs can also describe the dynamics of a

quantum many-body system. In that case they are called
matrix product unitaries (MPUs) (Cirac et al., 2017b), as they
generate a unitary operator U fulfilling UU† ¼ 1. As in the
case of MPDOs, this extra condition imposes a restriction on
the tensor generating U. For this case, it is possible to fully
characterize them. In fact, by blocking at most D4 spins, the
resulting tensors have a simple structure (Fig. 5). The MPU
can thus be viewed as a quantum circuit with two layers of
unitary operators acting on nearest neighbors. In fact, MPUs
can be shown to be equivalent to 1D quantum cellular
automata, that is, unitary operators that transform local
operators into local operators, where by local we mean acting
nontrivially in a finite region only. That is, any MPU possesses
that property and any quantum cellular automaton can be
written as a MPU with finite bond dimension. Furthermore, an
evolution operator generated by a local Hamiltonian in finite
time can be approximated by a MPU since the Lieb-Robinson

bound for the propagation of correlations ensures that it
behaves as a quantum cellular automaton, and thus as a
MPU, up to some small corrections. There are also some
MPUs that cannot be approximated by a local time-evolution
operator. An example is the shift operator sketched in Fig. 6(a)
(see Appendix A.4), which in each application translates the
state by one site to the left. The fact that this operator cannot
be obtained (or even approximated) by the evolution of a local
Hamiltonian is a direct consequence of the index theorem,
originally proven for 1D quantum cellular automata (Gross
et al., 2012), which states that MPUs can be classified in terms
of an index, where the equivalence relation is that the tensors
generating the MPU can be continuously transformed into one
another. The index measures how quantum information is
transported to the right (positive index) or to the left (negative
index), and can take only discrete values. The dynamics
generated by local Hamiltonians has zero index, whereas the
one of the shift operator is�1. In Fig. 6(b) we give an example
of a MPU where the local Hilbert space has dimension 4 (and
thus, it acts on pairs of qubits), with zero index as it moves the
same information to the left as to the right.
Third, MPOs play a fundamental role in describing sym-

metries of PEPSs (Chen, Liu, and Wen, 2011; Bultinck,
Mariën et al., 2017; Şahinoğlu et al., 2021). In particular, the
generalization of Eq. (9) to PEPSs is the pulling through
equation depicted in Fig. 7. It gives a sufficient condition for
two tensors to generate the same PEPS. In the case of systems
exhibiting topological quantum order, similar pulling through
equations characterize the symmetries of the underlying
tensors; these symmetries form an algebra and provide an
explicit representation of tensor categories describing the
topological phase and its emerging anyons; see Sec. III.B.
Finally, MPOs are also key in the bulk-boundary corre-

spondence (Cirac et al., 2011), where the physical properties
of PEPSs in two dimensions can be mapped onto those of a
theory defined at the boundary by a MPO. As we later show,
the classification of the renormalization fixed points of MPOs

FIG. 4. Sufficient condition for a translationally invariant MPO
ρ to be positive.

(a)

(b)

FIG. 5. (a) Tensors generating a MPU after blocking. (b) The
MPU can be described as a quantum circuit, with alternating
layers of unitary operators u and v acting on nearest neighbors
with even-odd indices and odd-even indices, respectively.

(a)

(b)

FIG. 6. (a) MPU representation of the left-moving shift operator.
(b) MPU made of two shift operators, one right moving and
another left moving.

FIG. 7. A sufficient condition for two PEPSs to be equal to each
other is the existence of a MPO satisfying the pulling through
equation.
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thus allow us to characterize the topological order of 2D
systems (Cirac et al., 2017a).

3. Correlations, entanglement, and the transfer matrix

a. Matrix product states

All matrix product states satisfy an area law for the
entanglement entropy. This follows directly from the projected
entangled pair construction, where the MPS was obtained by
applying a local map on a tensor product of D-dimensional
maximally entangled states; see Fig. 1. We now take a region
of contiguous spins in the chain. Before the map, it is clear that
only the two pairs that are at the boundary contribute to the
entanglement entropy. In fact, the rank of the reduced state in
that region is equal to D2. Since the map does not change the
rank of the reduced state, it follows that the entropy is at most
2 logðDÞ. For a generic infinite translationally invariant MPS,
it is possible to calculate all eigenvalues of this reduced
density matrix exactly. This density matrix can be represented
by the tensor network depicted in Fig. 8. Before we show how
to determine this spectrum, some basic algebraic properties of
MPSs have to be introduced.
A central object for a MPS is its corresponding transfer

matrix E, which is defined as Eαα0;ββ0 ¼
P

i A
i
αβĀ

i
α0β0 . It is

called the transfer matrix, as it plays a role similar to the
transfer matrix in classical 1D statistical mechanics models.
The eigenvalues and eigenvectors of this transfer matrix are of
importance, as we see in several places in this review. The
eigenvalues can be complex, as E is not necessarily Hermitian
and it may have some Jordan blocks. For a generic MPS,
however, the largest eigenvalue in magnitude is unique and
there are no Jordan blocks associated with it. We assume this
to be the case for the time being. We find it convenient to write
the corresponding right and left eigenvectors jρR;Li as oper-
ators ρR;L so that ðρR;LÞα;α0 ¼ hα; α0jρR;Li. The quantum
Perron-Frobenius theorem (Albeverio and Høegh-Krohn,
1978; Wolf, 2012) then guarantees that this largest eigenvalue
is positive, as the eigenvalue equation can be written in the
form of a completely positive (CP) map (the quantum version
of a stochastic matrix) as follows:

P
i A

iρRAi† ¼ λ1ρ
R and

P
i A

i†ρLAi ¼ λ1ρ
L. Note that the left eigenvector and right

eigenvector do not have to be equal, but Perron-Frobenius
theory guarantees that both ρL and ρR can be chosen to be
positive semidefinite. As we see in Sec. IV, the MPS fulfilling
the requirements that the largest eigenvalue (in magnitude) of
the transfer matrix is unique and that both ρL and ρR are
positive definite is called normal. It is not difficult to show
that, by blocking a finite number of sites, any normal MPS
becomes injective; see Sec. IV for a discussion.
In the case of an injective MPS with periodic boundary

conditions, the Euclidean norm of the MPS is given by TrEN

and hence scales as λN1 with N the number of sites. In the limit
of large N, this norm should be equal to 1, and we rescale the
tensors Ai → Ai=

ffiffiffiffiffi
λ1

p
to achieve this. We henceforth assume

that λ1 ¼ 1. The second largest eigenvalue λ2 of the transfer
matrix defines the correlation length of the state:
ξ ¼ −1= logðjλ2jÞ. For a general connected correlation func-
tion CðX; YÞ ≔ hXYi − hXihYi of two operators X and Y with
a distance n between them, the expectation value will be of the
form

P
D2

i≥2 cXYðiÞλni and is hence a sum of D2 − 1 pure
exponentials, with D the bond dimension. MPSs can hence-
forth not reproduce algebraic correlations at long distances, as
a sum of exponentials cannot reproduce the tail of an algebraic
function. For a finite system with N sites, however, it is
enough to choose D as a polynomial in N to reproduce all
correlation functions faithfully (Verstraete and Cirac, 2006).
Similarly, Ornstein-Zernike-type corrections of the form
expð−n=ξÞ= ffiffiffi

n
p

can be taken into account by taking a large
enough D (Rams et al., 2015; Zauner et al., 2015).
We now return to the calculation of the eigenvalues of a

reduced densitymatrix of n sites of an injectiveMPS; see Fig. 8.
Using the basic fact in linear algebra that the eigenvalues of the
matrix AB are equal to the eigenvalues of the matrix BA, the
problem reduces to finding the eigenvalues of the D2 ×D2

matrix Fαβ;α00β00 ¼
P

α0β0 ρ
L
αα0ρ

R
ββ0 ðEnÞα0α00;β0β00 . In the limit of

largen,En factorizes in jρRihρLj andwe see that the eigenvalues
of the reduced density matrix are given by the eigenvalues of
ðρL:ρRÞ⊗2; in other words, the contribution from the left and
right sides of the block disentangle for distances larger than the
correlation length. The eigenvalues of the matrix ρLρR are the
squares of the Schmidt coefficients of an injective MPS with
open boundary conditions. The entanglement spectrum is
defined as the logarithm of these eigenvalues.

b. PEPSs

PEPSs automatically fulfill the area law, as one can argue in
the same way that we did with MPSs. In this case, the
entanglement entropy of an L × L block on a square lattice is
upper bounded by 4L logðDÞ.
Calculating correlation functions and the entanglement

spectrum of a PEPS is much more involved than the MPS
case. This follows from the fact that the contracted tensor
network looks much like the partition function of a classical
statistical mechanical model, but then with two layers and
complex numbers. The calculation of the leading eigenvector
of this transfer matrix correponds to finding fixed points of
completely positive maps acting on an infinite spin chain. The
entanglement spectrum is then obtained by the eigenvalues of

(a)

(b)

FIG. 8. (a) Tensor network description of the reduced density
matrix of n spins in an infinite translationally invariant MPS.
jρR;Li correspond to the right and left fixed points, respectively, of
the transfer matrix; see the main text. (b) Argument showing that
the eigenvalues of the reduced density matrix of n sites in a MPS
coincide with those of ðρLρRÞ⊗2 in the limit of large n.
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the corresponding fixed-point density matrix. Note that for
topological states of matter, an additive negative correction to
this entanglement entropy emerges (Kitaev and Preskill, 2006;
Levin and Wen, 2006); this is called topological quantum
entanglement entropy and is a signature of the fact that the
PEPS tensors exhibit nontrivial symmetries by which they do
not have full support on the physical Hilbert space. This is
discussed in Sec. III.B.
Unlike in the 1D case, correlation functions can in principle

decay following a power law, for example, in the case of the
so-called Ising PEPS tuned at criticality (Verstraete et al.,
2006), which is discussed in the Appendix.

4. Extension to fermionic, continuous, and infinite tensor
networks

Tensor networks have also been defined for fermionic
systems (Barthel, Pineda, and Eisert, 2009; Corboz et al.,
2010; Kraus et al., 2010; Bultinck, Williamson et al., 2017)
and have been formulated directly in the continuum
(Verstraete and Cirac, 2010), and nontrivial MPSs with
infinite bond dimension have been constructed using vertex
operators of conformal field theories (Cirac and Sierra, 2010).

a. Fermionic tensor networks

Defining tensor networks for fermionic systems presents
two new difficulties. First, the tensor product structure is
altered due to the anticommutation relations of the creation
and annihilation operators and, second, a new superselection
rule emerges in the form of parity conservation. The projected
entangled pair construction can, however, be readily extended
as follows to the fermionic case by considering virtual
maximally entangled modes of fermions as opposed to
maximally entangled D-level systems: jIi ¼ P

α a
†
αb

†
αjΩi.

The parity constraint can be enforced by choosing the
projection operator Âi ¼ P

αβγ… Ai
αβγ…aαbβcγ � � � to have a

fixed parity. This parity constraint ensures that the locality of
the tensor network will be conserved, which makes it possible
to contract tensor networks built from such tensors efficiently.
Alternatively, the construction can be made using Majorana
modes, and this will be useful for constructing fermionic
PEPSs with a chiral character.
From the mathematical point of view, working with

fermions amounts to changing the convention of working
in vector spaces with a tensor product structure to working in
supervector spaces with a Z2 graded tensor product. In
essence, the Hilbert space is split into a direct sum of two
vector spaces, V0 ⊕ V1, and every vector jii in the Hilbert
space has to be fully supported in one of these spaces and
therefore has a parity jij associated with it. Given that the
graded tensor product of two vectors jii ⊗g jji, swapping the
vectors amounts to the relation jii ⊗ jji → ð−1Þjij·jjjjjijii.
Matrix product states can now be defined in this supervector
space (Bultinck, Williamson et al., 2017) in the form of Â ¼P

iαβ A
i
αβjαi ⊗g hij ⊗g hβj and, using the sign rules of grading

when moving vectors around each other so as to contract the
virtual indices, any bosonic tensor network can be readily
fermionized.

The notion of injectivity has to be altered in fermionic
tensor networks since the parity superselection rule cannot be
broken. As a consequence, different boundary conditions have
to be chosen to construct translationally invariant states with
an even or an odd parity. These two distinct possibilities relate
to the fact that there are two distinct types of Z2 graded tensor
algebras, and these are characterized by the absence or
presence of Majorana edge modes. The prime example of a
fermionic spin chain with Majorana edge modes is the Kitaev
wire (Kitaev, 2001). When putting the Kitaev wire on a ring
with periodic boundary conditions (hence making it transla-
tionally invariant), one gets a system with odd parity and the
MPS description is given by

jψi ¼
X
i1���iN

Tr½YAi1Ai2 � � �AiN �ji1i ⊗g ji2i ⊗g � � � ; ð10Þ

with

A0 ¼
�
1 0

0 1

�
; A1 ¼

�
0 1

−1 0

�
¼ Y.

Contrary to the bosonic case, this MPS description is
irreducible and hence injective. By considering more copies
of this Kitaev chain, it is possible to study the entanglement
spectrum of all states in the Z8 classification of gapped
fermionic spin chains (Fidkowski and Kitaev, 2011;
Bultinck, Williamson et al., 2017). This construction has
been extended to fermionic MPUs (Piroli et al., 2020), which
include all quantum cellular automata in one dimension.

b. Continuous MPSs

Continuous matrix product states (Verstraete and Cirac,
2010; Haegeman, Cirac et al., 2013) can be defined by taking
the limit of the lattice spacing going to zero while rescaling the
matrix product tensors in an appropriate way. This enables one
to write wave functions for quantum field theories without a
reference to an underlying lattice discretization, and this is
useful for doing numerical simulations of cold atoms and
quantum field theories.
We now consider a bosonic system on a ring of length L and

with creation and annihilation operators of type α satisfying
½ψα

x;ψ
β†
y � ¼ δαβδðx − yÞ. The continuous MPS (cMPS) wave

function of bond dimension D is defined as

jψi ¼ Tr

�
P exp

�Z
L=2

−L=2

�
QðxÞ þ

X
α

RαðxÞψ̂†
xðαÞ

�
dx

��
jΩi;

ð11Þ

where QðxÞ; RαðxÞ ∈ CD×D, P denotes a path ordered expo-
nential, and ½RαðxÞ; RβðxÞ� ¼ 0. The path ordered exponential
is the continuous limit of a MPS with tensors given by A0½i� ¼
1þ ϵQ½i� and Aα½i� ¼ ffiffiffi

ϵ
p

Rα½i�, with ϵ the lattice parameter.
Fermionic cMPSs are defined by replacing the commutation
with anticommutation conditions.
A translationally invariant cMPS is obtained by choosing

the Q;Rα independent of x and choosing L → ∞. An
interesting property exhibited by these cMPSs is the fact that
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the diagonal elements of the one-particle reduced density
matrix in momentum space nðkÞ decay as Oð1=k4Þ. This
implies that they are sufficiently smooth such as to not suffer
from UV divergencies and can therefore be used as variational
wave functions without suffering the UV catastrophe
occurring in other variational methods (Haegeman
et al., 2010).

c. Infinite MPSs

Instead of taking the continuum limit in the space direction,
it is possible to consider matrices Ai as operators in a general
infinite-dimensional Hilbert space, as opposed to a finite-
dimensional one (as in the case of MPSs). A particularly
interesting choice in the case of spin-1=2 systems is to define
those operators in terms of normal ordered vertex operators
appearing in conformal field theory as follows (Cirac and
Sierra, 2010; Nielsen, Cirac, and Sierra, 2012; Nielsen, Sierra,
and Cirac, 2013; Tu et al., 2014):

Asi ¼ ∶ei
ffiffiffiffi
4α

p
·si·ϕðznÞ∶ ;

where α > 0 is a free parameter, si ¼ �1=2, and ϕðznÞ is the
field of a free massless boson located on position zn ¼ xþ
i · y of the lattice. For a spin chain with N sites with periodic
boundary condition, we can choose zn ¼ L · expð2πi · n=NÞ,
but it is also possible to parametrize 2D wave functions in this
form. By taking the expectation value of the virtual bosonic
fields with respect to the vacuum, the MPS wave function is
then equivalent to

ψ s1s2���sn ¼ δP
i
si

Y
i

χi;si
Y
i<j

ðzi − zjÞ4αsi·sj :

These wave functions are effectively lattice versions of the
Laughlin state, and a wealth of interesting critical and chiral
states such as the ground state of the Haldane-Shastry-type or
Kalmeyer-Laughlin-type wave functions can be constructed in
this form. Additionally, it is possible to define the correspond-
ing parent Hamiltonians and to calculate exact expressions for
the entanglement entropy.
A similar construction allows one to study ground states of

the fractional quantum Hall effect on a cylinder by using
different CFTs, and such a systematic program of variational
calculations for quantum Hall systems was pursued by Zaletel
and Mong (2012), Estienne et al. (2013), Zaletel, Mong, and
Pollmann (2013), and Zaletel et al. (2015).

5. Tensor networks as quantum circuits: Tree tensor states and
MERAs

Thus far, we have advocated for the viewpoint that MPSs
and PEPSs parametrize the quantum correlations in the
corresponding many-body wave functions, and therefore that
the virtualD-level systems represent the entanglement degrees
of freedom. In the case of a MPS with open boundary
conditions, there is, however, an alternative way of interpret-
ing the wave function in terms of a quantum circuit acting
on a product state and assisted by a D-level ancillary system
[Fig. 9(a)]. The unitaries (or rather isometries) building up the

circuit are obtained by bringing the MPSs into canonical form
by appropriate gauge transformations (Schön et al., 2005).
Instead of using a circuit in the form of a staircase, one

could envision using a circuit in the form of a tree [Fig. 9(b)].
Although translational invariance is lost in this construction, it
is possible to parametrize quantum states using this con-
struction with an entanglement entropy that scales logarithmi-
cally in certain bipartitions (Fannes, Nachtergaele, and
Werner, 1992c; Shi, Duan, and Vidal, 2006; Murg et al.,
2010; Silvi et al., 2010). This makes this ansatz particularly
well suited for simulating critical 1D systems. Expectation
values can still be calculated efficiently, as one can always
choose a contraction sequence for which there is no prolif-
eration of indices.
A more powerful and sophisticated ansatz can be made by

allowing for loops in the quantum circuit of the tree tensor
network, but at the same time ensuring that the circuit is
efficiently contractable. This gives rise to the concept of the
multiscale entanglement renormalization ansatz (Vidal,
2007b, 2008). See Evenbly and Vidal (2014) for an authori-
tative review.

C. The ground state manifold of local Hamiltonians

Matrix product states and PEPSs form a low-dimensional
manifold in an exponentially large Hilbert space. More
precisely, the set of uniform MPSs forms a Kähler manifold
(Haegeman et al., 2014). The question addressed in this
section regards how this manifold is related to ground states of
local quantum spin Hamiltonians. It is shown that the
manifold of MPSs is in one-to-one correspondence with
ground states of local gapped Hamiltonians. This is a strong
justification for using this manifold for variational calcula-
tions. Using concepts of differential geometry, it is then
possible to relate the linear Schrödinger equation on the
exponentially large Hilbert space to nonlinear differential
equations on the compressed MPS manifold, as implemented
in DMRG algorithms. Additionally, the concept of the tangent
plane of the MPS manifold leads to a clear characterization of
the elementary excitations on top of the ground state vacuum.

(a)

(b)

FIG. 9. (a) Staircase quantum circuit representing a MPS.
(b) Tree tensor network.
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1. States to Hamiltonians: Parent Hamiltonians

As argued in Sec. II.B, MPSs and PEPSs were explicitly
constructed so as to mimic the entanglement structure of
ground states of local quantum Hamiltonians: they have strong
local correlations, possess all the symmetries of the problem,
and obey an area law. Conversely, to every MPS and PEPS
there exists a local frustration-free quantum spin Hamiltonian
for which the MPS or PEPS is the ground state, called the
parent Hamiltonian. (Here frustration-free refers to the fact
that the ground state minimizes the energy of each
Hamiltonian term locally.) In the case of injective MPSs
and PEPSs it is, furthermore, the unique ground state, and in
the case of MPSs the parent Hamiltonian can be proven to be
gapped; see Sec. IV.
The existence of such a parent Hamiltonian is a conse-

quence of the fact that the rank of the reduced density matrix
in a contiguous region B scales as Dj∂Aj, with j∂Aj the length
of the boundary of that region, as shown in Sec. II.B.3 (in the
case of 1D systems, j∂Aj ¼ 2). The total dimension of the
Hilbert space spanned by all spins in the region B scales as dV ,
with V the volume of that region (in the 1D case, this is the
length of the block L). On any regular lattice, there is a size
and shape of the block for which DA < dV , regardless of the
lattice size, and this region is the support of one local term of the
parent Hamiltonian that is defined as the projector orthogonal to
the support of the local reduced density matrix in that region.
The full parent Hamiltonian is then obtained by summing up all
these projectors over all possible regions. This Hamiltonian is a
sum of positive semidefinite terms, and every term in the
Hamiltonian annihilates the tensor network state under consid-
eration. It is therefore frustration free. We further elaborate on
the properties of this parent Hamiltonian in Sec. IV.
Conceptually it is interesting that any MPS or PEPS is the

ground state of a local frustration-free Hamiltonian. However,
these states are also approximate ground states of completely
different frustrated Hamiltonians. How would all those differ-
ent Hamiltonians be related to each other? From the linear
algebra point of view, it indeed seems that knowledge about
one extremal eigenvector does not provide much information
about the other ones, let alone about the spectrum of the full
Hamiltonian. However, the locality of the Hamiltonian puts
stringent constraints on the possible elementary excitations or
eigenvectors with eigenvalues close to the ground state energy.
The excitation spectrum is indeed completely reflected into
the correlation functions in the ground state. If the quantum
states under consideration would exhibit Lorentz invariance,
this would be an obvious statement, but it is not obvious that
this argument survives for lattice systems. It has indeed been
observed (Haegeman et al., 2015; Zauner et al., 2015) that the
logarithms of the eigenvalues of the transfer matrix reproduce
the dispersion relations of the full quantum Hamiltonian. This
is a clear indication of the fact that it is enough to understand
the ground state to deduce all low-energy physics of a full
quantum Hamiltonian: all information is encoded in the
ground state.
An even stronger argument can be made in the case of

topologically ordered systems and the associated anyonic
excitations. In that case, the full fusion and braiding statistics
of the anyons can be deduced from studying the symmetries of

the PEPS tensors representing the ground states. No knowl-
edge of the Hamiltonian is needed, as the algebraic features of
the excitations follow from the entanglement structure present
in the ground state. This is discussed in Sec. III.B.

2. Hamiltonians to states

From the traditional point of view of quantum many-body
physics, the central question of interest concerning tensor
networks is whether any ground state of a local quantum
Hamiltonian can be well approximated with a MPS or PEPS.
From a practical point of view, the main challenge is to
understand how large the bond dimension D has to be chosen
such that a MPS or PEPS exists that provides a faithful
approximation to the true ground state. Given a ground state
jψNi of a quantum spin system on N sites, the question is how
large the bond dimension D≡DðN; ϵÞ has to be chosen as a
function of N and error measure ϵ such that there exists a MPS
or PEPS jψðAÞi for which the fidelity or overlap with the exact
ground state jhψðAÞjψNij ≥ 1 − ϵ. For the tensor network
description to be useful, the dependency on N and 1=ϵ should
be polynomial (note that simple strategies based on an exact
diagonalization of small blocks yields an exponential scaling).
We later discuss several approaches toward solving this

problem, as each approach highlights a complementary aspect
of this issue. In summary, the results for the case of spin chains
and MPSs are as follows:

• If the Renyi entropy Sα, α < 1, with respect to any
bipartition is bounded from above by c logðNÞ, then an
efficient polynomial approximation of the ground state
exists in terms of a MPS. Note that this includes the case
of critical systems (Verstraete and Cirac, 2006; Schuch
et al., 2008).

• If the quantum spin chain is gapped and has a unique
ground state, then an efficient polynomial approximation
of the ground state exists in terms of a MPS (Hastings,
2007; Arad et al., 2013).

• If the state to be approximated has exponential decay of
correlation functions with respect to every pair of
observables (with potentially unbounded support), then
an efficient polynomial approximation exists in terms of
a MPS (Brandao and Horodecki, 2013).

The fact that MPSs are powerful enough to represent
ground states does not mean that there is an efficient algorithm
to find them. Examples of quantum Hamiltonians can indeed
be constructed for which the exact ground state is a MPS, but
for which it is NP hard to find it (Schuch, Cirac, and
Verstraete, 2008); the catch is that such Hamiltonians have
a small gap scaling as 1=polyðNÞ. Provided that the system
under consideration has a gap that does not scale with the
system size, it was proven by Landau, Vazirani, and Vidick
(2013) that an efficient algorithm scaling as a polynomial in
the system size can be constructed to find an approximate
MPS ground state. This result was extended by Arad et al.
(2017) to the case in which the Hamiltonian has a small
density of low-energy states. However, the question as to
whether such an algorithm is possible for all critical systems
with a gap scaling as Oð1=NÞ is still open.
In the case of 2D PEPSs, the strongest approximation result

is weaker but still certifies that we can simulate quantum spin
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systems efficiently: a Gibbs state expð−βHÞ can be approxi-
mated by a PEPO with bond dimension D ¼ ðN=ϵÞOðβÞ

(Hastings, 2006; Molnar et al., 2015). If, however, the
Hamiltonian consists of terms that all commute, as in the
case of stabilizer Hamiltonians and all string nets, an exact
representation of the ground states can be found in terms of a
PEPS with a bond dimension that depends only on the size of
the support of the local terms in the Hamiltonian terms and not
on the system size (Verstraete et al., 2006).

a. Area laws and approximability

Using arguments related to the decay of the Schmidt
coefficients in 1D spin chains, it has been proven that an
efficient approximation of the ground state for a finite spin
chain with L sites can be obtained whenever the Renyi
entanglement entropy of half a chain of length N is bounded
by SαðNÞ ≤ c logðNÞ for an α < 1.
To show this, consider an exact ground state jψNi defined

on a spin chain with N sites and open boundary conditions,
and assume that its Schmidt spectrum or eigenvalues of the
reduced density matrix across a cut between sites i and iþ 1

are given by fμxðiÞg. The main idea lies in the fact that for
ground states these Schmidt coefficients decay fast, and
therefore only a small error is made when one cuts
the Schmidt decomposition after the D largest Schmidt
coefficients. We define the residual probability ϵiðDÞ ¼P∞

x¼Dþ1 μxðiÞ and ϵtotalðDÞ ¼ P
N
i¼1 ϵiðDÞ. Verstraete and

Cirac (2006) showed that a MPS with bond dimension D
is guaranteed to exist for which the fidelity
jhψðAÞjψNij ≥ 1 − ϵtotalðDÞ. If the Renyi entanglement
entropy Sα with α < 1 for a system of size N maximized
over all bipartitions of the spin chain is given by SαðNÞ, there
is a MPS with bond dimension D for which

ϵtotalðDÞ
N

≤
�

D
1 − α

�
−ð1−αÞ=α

exp

�
1 − α

α
SαðNÞ

�
: ð12Þ

This proves that the scaling of D to achieve a fidelity 1 − ϵ is
polynomial in 1=ϵ and N provided that the Renyi entropy of
half a chain satisfies SαðNÞ ≤ c logN. As shown in
Sec. II.A.2, this is indeed the case for all gapped quantum
spin systems, and also for all integrable critical spin chains
with a logarithmic term. A MPS description therefore
provides an exponential compression for a wide variety of
ground states of quantum spin systems, including criti-
cal ones.
The fact that Renyi entropies with α < 1 had to be used

stems from the fact that they are more susceptible to the tails
of the distribution of Schmidt values. Conversely, it holds that
a state with an entanglement entropy satisfying a volume law
for the von Neumann entropy cannot be approximated
faithfully using MPSs, but this problem is undetermined
for the α < 1 Renyi entropies (Schuch et al., 2008).

b. No low tensor rank ansatz

It has been argued that the MPS manifold is in one-to-one
correspondence with the set of ground states of local gapped
Hamiltonians. One may question whether it is possible to

obtain a similar identification with a simpler ansatz, such as
linear combinations of polynomially many product states, as is
the case in the examples given by De Lathauwer, De Moor,
and Vandewalle (2000), Beylkin and Mohlenkamp (2002),
Kolda and Bader (2009), and Hackbusch (2012). We now
prove that this is not possible, since one can show that any
injective MPS has an exponentially small overlap with any
product state.
Indeed, consider an injective MPS in canonical form such

that the right (left) fixed point of the associated transfer
operator, seen as a completely positive map, is the identity
matrix [a positive definite full matrix Λ with TrðΛÞ ¼ 1]. See
Sec. IV for more details. This implies that the operator norm
kΛkop < 1. Consider ϵ ¼ ð1=2Þð1 − kΛkopÞ. Then block the
tensors until the transfer operator E is, in operator norm, ϵ
close to the rank-1 projector j1ÞðΛj.
We denote the corresponding blocked tensor by A, and the

maximum of the operator norm of the D ×D matrices Aw ¼
hwjA by λ, where kwk ≤ 1 in the Hilbert norm. λ can be
rewritten as the maximum of jðujAwjvÞj, where u, v, and w are
again normalized in the Hilbert norm.
By the Cauchy-Schwarz inequality and the hypothesis on

the transfer operator,

jðujAwjvÞj ≤ jðujðūjEjvÞjv̄Þj ≤ ðujuÞðvjΛjvÞ þ ϵ

≤ kΛkop þ ϵ < 1;

which implies that λ < 1 (by a standard compactness argu-
ment that holds due to the fact that the physical and bond
dimensions are both finite).
Therefore, we can conclude [see Eq. (8)] that

jhw1w2 � � �wN jψðAÞij ¼ jTrAw1Aw2 � � �AwN j

≤ D
YN
j¼1

max
w

kAwkop ¼ DλN:

c. Efficient descriptions in thermal equilibrium

The ground state of a gapped Hamiltonian can be well
approximated by evolving the Euclidean path integral
expð−tHÞj0i for a time t ≃ 1=Δ, with Δ the gap of the
system and j0i a state with nonzero overlap with the ground
state. If the Hamiltonian is frustration free and consists only
of commuting terms, this expression is equal to the product of
the exponentials of the local terms acting on the state j0i,
even in the limit of t → ∞, and therefore automatically
produces a MPS or PEPS with a bond dimension related
to the size of the local support of the individual commuting
terms. This implies that the ground states of all local stabilizer
Hamiltonians and string nets have a simple exact description
in terms of PEPSs with a bond dimension independent of the
system size.
One can extend this result to the noncommutative case by

using aTrotter expansion of expð−tHÞ ≈ ½Qk expð−βhk=MÞ�M
(with H ¼ P

hk the local terms in the Hamiltonian), with M
sufficiently large. Each term expð−βhk=MÞ can be written as a
local tensor network with a constant bond dimension. However,
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when put together naively this construction yields a tensor
network with a bond dimension that scales exponentially inM.
Since each expð−βhk=MÞ ≈ 1 − βhk=M is close to the identity,
it is possible to compress this representation by choosing a
suitable subset of terms in the full expansion of ½Qð1 − βhkÞ�M.
This way, one obtains a PEPO σD with bond dimension D
that approximates the Gibbs state ρβ ¼ e−βH=Z up to error
ϵ ≔ kσD − ρβk1 in trace norm with a bond dimension
D ¼ expfO½log2ðN=ϵÞ�g, as long as β ≤ OðlogNÞ (Molnar
et al., 2015), regardless of the spatial dimension. To obtain a
polynomial scaling inN for fixed temperature, one instead starts
from the Taylor series e−βH ¼ Pð−βÞlðP hkÞl=l!, expands
ðP hkÞl, and finds that only clustering terms in this expansion
are relevant. This way, one arrives at a PEPO approximation of
theGibbs state forwhichD ¼ ðN=ϵÞOðβÞ for a fixed temperature
(Hastings, 2006; Molnar et al., 2015) [for a practical imple-
mentation, see Vanhecke, Van Damme et al. (2019)]; using
a refined approximation of the Taylor series, an improved
scaling of D ∼ exp½O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β logðn=ϵÞp

)� was recently shown by
Kuwahara, Alhambra, and Anshu (2021). From there one can
construct a PEPS approximation for ground states by applying
e−βH to a suitable initial product state at a temperature
β ¼ OðlogNÞ, which yields sufficient overlap with the ground
state as long as the density of states scales at most as NcE for
some constant c, that is, the polynomial in N (Hastings, 2006),
which is the case for gapped systems with particlelike excita-
tions. The reverse direction was analyzed by Chen, Kato, and
Brandão (2020), who showed that generic MPDOs can be well
approximated by Gibbs states of (quasi)local Hamiltonians.
A different approach can be taken if, instead of assuming a

low density of low-energy states, one restricts to Hamiltonians
that belong to a phase with a zero-correlation renormalization
fixed point, as is the case for all known nonchiral topological
phases in two dimensions. As derived by Coser and
Perez-Garcia (2018) following an idea of Osborne (2007),
the quasiadiabatic theorem (Hastings and Wen, 2005;
Bachmann et al., 2012) gives a finite depth quantum circuit
whose gates act on log2þδ N neighboring sites (δ > 0 but
arbitrarily small). When applied on the renormalization fixed-
point state (which is an exact PEPS with a finite bond
dimension), the circuit gives an approximation of the ground
state of the target Hamiltonian with an error that goes to zero
with N faster than any polynomial. This approximation is a
PEPS with bond dimension scaling as eO(log2þδðN=ϵÞ).
Moreover, it keeps all the virtual symmetries present on the
initial renormalization fixed-point PEPS, and hence also the
information about the topological phase that it belongs to; see
Sec. III. A similar argument was used by Huang (2020) to
propose quasipolynomial algorithms to compute local observ-
ables in systems belonging to the trivial phase.
In the case of gapped 1D systems, the strongest results

along these lines have been obtained by randomizing the path
integral and invoking a Chebyshev-based approximate ground
space projector (Arad et al., 2013, 2017; Huang, 2014). Given
an infinite chain of d-level systems with r ≤ polyðnÞ-fold
degenerate ground space and gapΔ and considering one cut in
an infinite spin chain, one finds that

log½ϵðDÞ� ¼ −
Δ1=3Ω̃½logðD=rÞ4=3�

ðlog dÞ4=3 þ ðlog dÞ8=3
Δ

; ð13Þ

where ϵðDÞ is as previously defined, that is, the sum of the
square of all but the first D Schmidt coefficients on that cut,
and g ¼ Ω̃ðhÞ exactly if h ¼ ÕðgÞ≡O½g logðgÞk� for some k.
In other words, the truncation error ϵðDÞ decreases super-
polynomially with the number of Schmidt coefficients kept,
i.e., the bond dimension.
A corollary of this result is the existence of efficient trans-

lationally invariantMPOdescriptions for infinite translationally
invariant gappedquantumspin chains, in the sense that any local
expectation values of the MPO approximation are ϵ close to
those of the exact ground state.Adirect proofwas formulated by
Schuch andVerstraete (2017) andwe sketch it here; building on
it, similar results were obtained for pure uniformMPSs (Dalzell
and Brandao, 2019; Huang, 2019). The construction is as
follows: define a MPO ρk on k sites by cutting the exact ground
state kþ 1 times and then tracing the outer spins (Fig. 10). This
yields a MPO with bond dimension D2 such that the trace
distance to the true ground state reduced density matrix σk is
kρk − σkk1 ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵðDÞðkþ 1Þp

. To obtain a translationally
invariant MPO for the infinite chain, take an infinite tensor
product of this MPO with itself and sum over all k translations.
The resulting MPO has bond dimension kD2 and its reduced
state on l contiguous sites approximates σl up to error

ϵ ≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kϵðDÞ

p
þ 2ðl − 1Þ

k
:

Choosing an appropriate k andusingEq. (13), onegets the result
that the bond dimension required to give an ϵ approximation on
l sites scales asD ≤ l=ϵ. This result demonstrates that theMPS
compression is still faithful in the thermodynamic limit, and
hence provides clear evidence for the falling of the exponential
many-body wall.
Finally, approximation results of thermal states byMPOs can

also be obtained from area laws for thermal states; see
Kuwahara, Alhambra, and Anshu (2021) and Jarkovsky et al.
(2020).

d. Many-body localization

Matrix product states also pop up for the description of
eigenstates of quantum spin systems subject to randomness. It
has been argued that all eigenstates, not just the ground state, of
many-body localized (MBL) Hamiltonians exhibit an area law
for the entanglement entropy, and furthermore that all have an
efficient description in terms ofmatrix product states (Bauer and
Nayak, 2013; Nandkishore and Huse, 2015; Wahl, Pal, and

FIG. 10. Construction of a translation invariant MPO approxi-
mation to infinite translation invariant ground states by truncating
the bond dimension in an intermediate region (Schuch and
Verstraete, 2017). The resulting MPO ρk for k sites is then
patched together and superimposed with its translations.
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Simon, 2017). This follows from a result of Imbrie (2016)
proving that there is a low-depth quantum circuit that com-
pletely diagonalizes any MBL Hamiltonian.

3. Manifold of MPSs and the time-dependent variational
principle (TDVP)

a. Manifold and the TDVP

As previously demonstrated, ground states of local gapped
quantum spin chains can efficiently be parametrized as matrix
product states, and furthermore any such MPS is the ground
state of a local Hamiltonian. This implies that the manifold of
a MPS is in one-to-one correspondence to all possible ground
states, and this opens up a large number of perspectives,
including the classification of all phases of matter of 1D spin
chains.
The manifold of infinite uniform matrix product states was

studied in detail by Haegeman et al. (2014). MPSs have the
mathematical structure of a principal fiber bundle; this follows
from the parameter redundancy corresponding to the gauge
transforms. The total bundle space corresponds to the param-
eter space, i.e., the space of tensors associated with a physical
site. The base manifold is embedded in the Hilbert space and
can be given the structure of a Kähler manifold by inducing
the Hilbert space metric. A similar construction holds in the
finite case of MPSs with open boundary conditions. The
metric is governed by the Schmidt numbers and is singular
when the MPS is not normal or injective.
Given a specific MPS on the manifold, we can associate a

linear subspace with it, namely, the tangent space on the
manifold (Haegeman et al., 2011; Vanderstraeten, Haegeman,
and Verstraete, 2018). The dimension of that space is
ðd − 1ÞD2 and is spanned by the vectors

jψαβiðAÞi ¼
∂

∂Ai
αβ

jψðAÞi:

Owing to the product rule of differentiation, these vectors
correspond to plane waves and are hence normalized as
delta functions. D2 of these are linearly dependent due to
the gauge freedom. These degrees of freedom can be used to
make the Gram matrix or metric gxy ¼ hψxðAÞjψyðAÞi locally
Euclidean (gxy ¼ δxy); the gauge transformations needed to
achieve this are precisely those that bring the MPSs into left
and right canonical form. As shown in Fig. 11, the projector
on the tangent space PTðAÞ in a specific point jψðAÞi can be
constructed in terms of a sum of matrix product operators that
are expressed in terms of the tensors in left (AL) and right (AR)
canonical form.
This expression is of great practical interest, as it allows one

to write evolution equations within the manifold of MPSs.
Assume that we aim to simulate the time evolution generated
by a Hamiltonian H of a quantum state jψðAÞi that is initially
a MPS. The evolution described by the Schrödinger equation
i∂tjψi ¼ Hjψi will take the state outside of the manifold and
hence seemingly make the problem intractable. The projector
on the tangent plane, however, allows one to pull the state
back on the manifold in a way that maximizes the overlap to
any state on the manifold as follows:

i
∂
∂t jψðAÞi ¼ PTðAÞHjψðAÞi:

The corresponding equations are the MPS equivalents of the
following TDVP as originally derived in the context of
Hartree-Fock theory (Dirac, 1930):

∂tAi
αβ ¼ FðAi

αβÞ:

This equation is nonlinear due to the fact that the projector
PTðAÞ itself depends on A. It conserves the energy and all
symmetries that can be represented within the tangent plane,
and it is possible to associate symplectic structure with a
Poisson bracket to it (Haegeman et al., 2011). MPS therefore
yields novel semiclassical descriptions of the dynamics of
quantum spin chains.
There are many methods to solve these differential equa-

tions in practice, and the most interesting case consists of
evolving the equations in imaginary time so as to converge to
the ground state. The DMRG method (White, 1993) can be
understood in terms of splitting the differential equation into
the 2N − 1MPO terms and then evolving each one of them for
an infinitely large imaginary time step (Haegeman et al.,
2016). Increasing the bond dimension can be understood in
terms of a projection on the two-site tangent plane, and time-
dependent DMRG can be completely formulated within the
time-dependent variational principle. See the review by
Vanderstraeten, Haegeman, and Verstraete (2018) on tangent
space methods for MPSs.

b. Excitations

The tangent plane of a MPS representing the ground state of
a quantum spin system reveals another interesting aspect of
MPSs, namely, the fact that the projection of the full many-
body Hamiltonian on its linear subspace gives rise to an
effective Hamiltonian whose spectrum reveals the dispersion
relations of the true elementary excitations of the many-body
Hamiltonian (Rommer and Östlund, 1997; Porras, Verstraete,
and Cirac, 2006; Haegeman, Pirvu et al., 2012; Pirvu,

FIG. 11. For a given MPS, one considers the two possible
canonical forms, given by tensors AL and AR, where the right and
left fixed points of the transfer operator, respectively, are the
identities; see Sec. IV for more details. They are distinguished by
the direction of the triangle. They allow one to express the tangent
space projector PTðAÞ as a sum of MPOs. The variable i in the sum
corresponds to the position of the central (blue) index.

J. Ignacio Cirac et al.: Matrix product states and projected entangled …

Rev. Mod. Phys., Vol. 93, No. 4, October–December 2021 045003-20



Haegeman, and Verstraete, 2012). More precisely, the tangent
plane yields a method for parametrizing plane waves of the
form jψkðA; BÞi ¼

jψkðA;BÞi¼
1ffiffiffiffi
N

p
X
x

e2πikxTr½Ai1 � � �Aix−1BixAixþ1 � � ��ji1iji2i��� ;

which correspond to Bloch wavelike excitations; the tensors
Bi
αβ can be easily determined by solving a linear eigenvalue

problem of the effective Hamiltonian. While making use of
Lieb-Robinson techniques (Hastings, 2004b; Bravyi,
Hastings, and Verstraete, 2006; Hastings and Koma, 2006;
Nachtergaele and Sims, 2010), it was proven by Haegeman,
Michalakis et al. (2013) that such an ansatz provides a faithful
representation of the exact excitations in the system if these
are part of an isolated band with a gap ΔðkÞ above it in the
momentum sector k; by allowing the tensor B to act on l sites,
the fidelity to the exact excited state is lower bounded by
1 − pðlÞ exp ½−ΔðkÞl=2vLR�, with pðlÞ a polynomial in l and
vLR the Lieb-Robinson velocity.
This is a strong manifestation of the fact that ground state

correlations reveal plenty of information about the excitation
spectrum. In fact, as previously commented, the spectrum of
the transfer matrix E of the MPS itself already contains this
information: the correlation length can be extracted from the
gap in eigenvalues of E, and the phases of all eigenvalues
reveal information about the full dispersion relation (Zauner
et al., 2015).

D. Bulk-boundary correspondences

One of the most interesting consequences of tensor network
descriptions is the fact that single tensors can represent entire
many-body states if translational invariance is imposed. Once
we know the geometry of the lattice, which tells us how to
contract the local tensor with copies of itself, the entire state is
completely determined. Thus, all physical properties (i.e.,
expectation values of observables) are contained in the tensor
A, as they are all functions of the coefficients of that tensor. In
a sense, one could establish a map between all physical
properties of many-body states (given a certain geometry in d
spatial dimensions) and the space of tensors corresponding to
that geometry. However, this map is highly nonlinear, as the
expectation values of observables in Hilbert space will be
complex functions of the tensor.
The special form of the MPS or PEPS allows one to

establish other maps that are linear. In particular, if the PEPS is
defined in a Hilbert space Hd corresponding to a certain
geometry in d spatial dimensions, it is possible to map all
physical properties to those of a different space Hd−1
corresponding to d − 1 spatial dimensions (Cirac et al.,
2011). Furthermore, the map takes the form of a linear
isometry. More explicitly, given a region R it is possible to
find an isometry UR that maps the reduced state, and all
operators acting on that region, to a state and operators acting
on its boundary ∂R so that the expectation values computed in
R coincide with those computed in ∂R.
The existence of this holographic principle is not surprising,

at least for ground states of local Hamiltonians fulfilling the

area law; see Sec. II.A.2. In fact, the area law states that the
entropy of the reduced state in a region R scales with the
number of particles at its boundary. As the entropy counts
degrees of freedom, this intuitively means that one can map
the reduced state to a space that lives in the boundary ∂R.
What is special about tensor networks is that the Hilbert space
of this boundary is dictated by the bond dimension of the
tensors, and one can thus talk about geometrical notions there
too. For instance, the state in the boundary may be a mixed
state that can be described as the Gibbs state of a local
Hamiltonian, where the notion of locality refers to that geo-
metry. All this becomes clearer when we later show how to
explicitly construct the bulk-boundary correspondence.
There is another way to construct a bulk-boundary corre-

spondence that may be more “physical” (Yang et al., 2014).
The previously mentioned method relates the physical proper-
ties in a region of the bulk to those of another theory living in
the boundary of such a region, but in thermal equilibrium. The
boundary Hamiltonian characterizing such a Gibbs state in the
boundary does not have a dynamical meaning (i.e., does not
generate the evolution), but instead simply a statistical one. In
contrast, it is possible to derive a Hamiltonian that describes
the dynamics of the physical boundary (i.e., the edges) of a
many-body system with respect to perturbations in the bulk.
One can build an isometry to map this Hamiltonian to one that
acts on the auxiliary indices associated with the edges of the
system. Thus, one can describe the dynamics in the bulk by
simply transferring the dynamics to these auxiliary indices by
using the isometry. For PEPSs with a finite correlation length,
this isometry will affect only those lattice sites that are close to
the physical boundary, and thus will be describing edge
excitations. All this is reminiscent of the physics of the
quantum Hall effect in two dimensions, where there is a
1D Hamiltonian that describes the dynamics of the edge states.
What we later discuss is that something similar occurs with
generic PEPSs.
Recently the kind of bulk-boundary relations appearing in

tensor networks have been used to construct toy models of the
AdS=CFT correspondence (Maldacena, 1999), as it appears in
holographic principles proposed in the context of high-energy
physics and string theory. The construction of MERAs (and
TTNs) can be associated with a coarse tessellation of an anti–
de Sitter geometry, where the renormalization direction
coincides with the radial coordinate (Evenbly and Vidal,
2011; Swingle, 2012). The 1D MERA construction can be
interpreted as a quantum circuit that implements a conformal
mapping between the physical Hilbert space and the renor-
malized one in scale space (Czech et al., 2016); the entangle-
ment spectrum of the MERA can be identified with that of a
MPO representing a thermal state, hence relating the bond
dimension of the MERA approximation to the bond dimen-
sion needed to represent thermal states using MPOs (Van
Acoleyen et al., 2020). For MERAs in 1D it is straightforward
to show that they display a logarithmic correction to the area
law associated with CFTs by simply finding the shortest path
in the MERA embracing the region in which one is interested
(Vidal, 2008) [on the other hand, 2D MERAs can be
embedded in PEPSs and thus obey an area law (Barthel,
Kliesch, and Eisert, 2010)]. Swingle pointed out an interesting
connection between this way of determining the entropy and
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the Ryu-Takayanagi formula relating the entropy of the
ground state of a CFT and the geometry of AdS space
(Swingle, 2012). This indicated that MERAs could define
geometries through that formula, and thus in a sense relate the
entanglement properties of many-body states with geometries
appearing in gravitational physics. It was later realized that, by
adding a physical index to the MERA tensors, one could build
a linear correspondence (an isometry) between these physical
indices and the auxiliary ones living in the boundary
(Pastawski et al., 2015). This is closely related to the
previously mentioned bulk-boundary correspondence. In fact,
if one builds PEPS in a tessellated hyperbolic geometry using
the quantum circuit construction, they are equivalent. In recent
works (Hayden et al., 2016; Kohler and Cubitt, 2019; Qi and
Yang, 2018; Qi, Yang, and You, 2017), it was shown that, by
appropriately choosing the tensors that build the tensor
network state, one can ensure certain desired properties of
the AdS=CFT correspondence and, in this way, explicitly
build toy models displaying such properties.

1. Entanglement spectrum

We now consider a many-body state jΨi in d dimensions
and its reduced state ρR in a region R. The entanglement
spectrum σΨ of the state with respect to region R is defined as
the spectrum of HR ¼ − logðρRÞ. These dimensionless num-
bers are related to the entanglement of region R and its
complement R̄. In fact, we can always write the Schmidt
decomposition of jΨi as

jΨi ¼
XdR
n¼1

λnjφniR ⊗ jψniR̄; ð14Þ

where φn and ψn are orthonormal sets in HR and HR̄,
respectively. These are the Hilbert spaces corresponding to
the lattice sites in regions R and R̄ and have dimensions djRj

and djR̄j, respectively, where as usual jRj denotes the number
of lattice sites in R. λn ∈ ½0; 1� are the Schmidt coefficients and
completely characterize the entanglement of state Ψ with
respect to regions R and R̄. As any Schmidt decomposition,
the number of coefficients is dR ≤ minðdjRj; djR̄jÞ. Given the
normalization of jψi, their squares add up to 1. By definition,

σΨ ¼ f− logðλ2nÞgdRn¼1; ð15Þ

which indicates that the entanglement spectrum is simply the
Schmidt coefficients, which thus fully characterize the entan-
glement. The operator HR is usually referred to as the
entanglement Hamiltonian.
Li and Haldane (2008) argued that for quantum Hall states

(integer or fractional) the low-lying part of the entanglement
spectrum coincides (up to a proportionality constant) with the
Hamiltonian corresponding to the CFT associated with its
topological order. This has been verified for other states with
topological order and proven for more general states whose
wave function can be written in terms of correlators of a CFT
under certain assumptions; see Dubail, Read, and Rezayi
(2012), Qi, Katsura, and Ludwig (2012), the references
therein, and Sec. III.B.2). In models without topological order

in d ¼ 2 dimensions it has also been found that the lower
sector of the entanglement spectrum resembles that of local
theories in d ¼ 1 dimensions (Cirac et al., 2011; Lou et al.,
2011). For instance, for the AKLT state in a square lattice it
was found that the entanglement spectrum also resembles that
of a Wess-Zumino-Witten SUð2Þ1 theory. We discuss this in
more detail in Sec. II.D.2.

2. Boundary theory

Both the existence of an area law and the numerical results
displaying a 1D-like spectrum in ground states of 2D theories
indicate that it should be possible to compress the degrees of
freedom corresponding to any region R from jRj to jδRj. More
specifically, one could always find a PR such that
ρ̃R ¼ PRρRPR ≈ ρR, where PR is a projector onto a subspace

of HR with dimensions dj∂Rjb , where db is a constant integer.
Note that this hints to an area law given the fact that the von
Neumann entropy of a mixed state is upper bounded by the
logarithm of the dimension of the Hilbert space on which it is
supported; in this case, Sðρ̃RÞ ≤ j∂Rj logðdbÞ. Furthermore,
there should be a Hamiltonian H∂R acting on a different space
corresponding to d − 1 spatial dimensions such that the lowest
part of the entanglement spectrum coincides with the spectrum
of H∂R. The latter should somehow be local (note that
otherwise it does not make as much sense to talk about the
spatial dimensions).
For PEPSs it is possible to make the previous conclusions

rigorous (Cirac et al., 2011). The projector PR comes
automatically from the theory of tensor networks and, in fact,
ρ̃R ¼ ρR, where db ¼ D (the bond dimension). Furthermore,
for any region R there is an isometry

UR∶HR → H∂R ð16Þ

with U†
RUR ¼ 1∂R and URU

†
R ¼ PR such that

ρR ¼ PRρRPR ¼ U†
Rσ∂RUR; ð17Þ

where

σR ¼ URρRU
†
R ð18Þ

is an operator defined on the auxiliary indices at ∂R (coming
out of region R; see Fig. 12). In fact, for any observable XR

acting on HR we can define X∂R ¼ URXRU
†
R such that

hΨRjXRjΨRi ¼ trRðXRρRÞ ¼ tr∂RðX∂Rσ∂RÞ: ð19Þ

Equation (19) expresses the fact that one can compute all
physical properties of the bulk (in R) in terms of a state living
in the boundary σ∂R and defines the bulk-boundary corre-
spondence. Furthermore, we can identify the entanglement
Hamiltonian H∂R ¼ − logðσ∂RÞ or, equivalently, write

σ∂R ¼ e−H∂R : ð20Þ

The isometric character of UR ensures that the entanglement
spectrum σðHRÞ ¼ σðH∂RÞ.
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The derivation of the previous statements is straightfor-
ward, and we reproduce it here. For that, we consider the
PEPS jψi and denote by AI

i the tensor corresponding to the
contraction of all the auxiliary indices in region R, where we
have combined all the physical indices of region R into a
single index I, and all the auxiliary indices that have not been
contracted (and thus stick out of region R) into an index i. We
do the same with region R̄ and denote the corresponding
tensor by BĪ

i. Note that the auxiliary indices connect R and R̄,
and thus the auxiliary legs are characterized by the same
combined index i. Thus, we can write the coefficients of jψi as

ΨIĪ ≡ hI; Ījψi ¼
XDj∂Rj

i¼1

AI
iB

Ī
i : ð21Þ

Considered as matrices, A and B can be expressed in terms of
their polar decomposition

AI
i ¼

XDj∂Rj

r¼1

UA
I;rσ

A
r;i; ð22Þ

BĪ
i ¼

XDj∂Rj

r¼1

UB
Ī;rσ

B
r;i: ð23Þ

Here UA;B are isometries and σA;B positive semidefinite
operators. From here, one directly obtains Eq. (18), where

UR ¼ UA and σ∂R ¼ σAðσBÞ2σA.
The possibility of explicitly building this bulk-boundary

correspondence for PEPSs is a direct consequence of its TN
structure. Indeed, in this case there is a natural identification of
the degrees of freedom of the boundary with these corre-
sponding to the auxiliary indices. The boundary state, as well
as the Hamiltonian H∂R, acts on that space. However, there is
nothing that guarantees that this Hamiltonian is in any way
local. In numerical studies, however, it has been always found
that if the state jψi has a finite correlation length, then the
boundary Hamiltonian is quasilocal (Cirac et al., 2011). With
a suitable treatment of sectors, this also holds for symmetry-
breaking (Rispler, Duivenvoorden, and Schuch, 2015; Rispler,
Duivenvoorden, and Schuch, 2017) and topological (Schuch
et al., 2013) phases. More specifically, we can always expand
it as

H∂R ¼
XjδRj
r¼1

hr; ð24Þ

where hr combines operators with nontrivial support on
exactly r consecutive sites. In the studied examples, there
is clear evidence that khrk decays exponentially with r.
Furthermore, in some cases where the many-body state is
changed as a function of a parameter ΨðgÞ and the corre-
sponding correlation length ξðgÞ diverges at some g ¼ gc, this
exponential decay disappears, so the boundary Hamiltonian
displays long-range couplings. A first rigorous proof in this
direction was provided by Kastoryano, Lucia, and Perez-
Garcia (2019) and Perez-Garcia and Pérez-Hernández (2020):
If the boundary Hamiltonian is sufficiently local, then the
parent Hamiltonian of jΨi is gapped (and hence jΨi has a
finite correlation length).
As explained in Sec. III, if jΨi displays topological order

and corresponds to a specific sector, σ∂R itself is supported on
a subspace of the boundary. In the presence of a finite
correlation length, the boundary Hamiltonian is also expected
to be local (Schuch et al., 2013; Haegeman et al., 2015) and
the nonlocal projector related to the topological order can be
understood as a superselection sector.
A key point in the construction is that global symmetries in

the bulk wave function jΨi will show up as global symmetries
of the boundary state σ∂R with specific representations, and
correspondingly as symmetries of the entanglement
Hamiltonian H∂R, which (together with locality) can signifi-
cantly restrict the possible form of H∂R ¼ P

hr. This is
further discussed in Sec. III.B.2.

3. Edge theory

We now consider a PEPS jΨi, defined on a 2D torus, with
translational invariance along both directions. As previously
explained, it is always possible to find a frustration-free parent
Hamiltonian H for which jΨi is the ground state (possibly not
unique). This Hamiltonian is itself translationally invariant,
and thus can be written as a sum of translations of a projector
Hr acting on few sitesthat also annihilate jΨi. Now, following
Yang et al. (2014), we consider the same problem but with
open boundary conditions. That is, we take the same
Hamiltonian HR but consider only the terms acting on some
region R. The ground state of that Hamiltonian is now highly
degenerate. In fact, by defining the tensor A as in Eq. (22), for
any

jφri ¼
X
I

AI
rjIi ð25Þ

we have

HRjφri ¼ 0: ð26Þ

We denote by H0 ⊆ H∂R the subspace of the auxiliary
indices spanned by all vectors AI

r, with I ¼ 1;…; djRj. In the
generic case in which jΨi is injective, all jφri will be linearly
independent and H0 ¼ H∂R. If jΨi has topological order,
H0 ⊊ H∂R will be the support of a MPO projector; see
Sec. III. In both cases, jφri will span the entire ground space

FIG. 12. Bulk-boundary correspondence. For any given region
R, ρR can be isometrically mapped to a density operator σ∂R that
is defined in the auxiliary indices of the boundary of R via a polar
decomposition; see the main text.

J. Ignacio Cirac et al.: Matrix product states and projected entangled …

Rev. Mod. Phys., Vol. 93, No. 4, October–December 2021 045003-23



of HR by construction. We denote by PR the projector onto
that subspace.
We assume thatHR is gapped, i.e., that there is a γ > 0 such

that, for any size N, the gap ΔN above the ground state
subspace is ΔN ≥ γ > 0. If we add a small local perturbation
to HR such that the new Hamiltonian reads

H0
R ¼ HR þ ϵVR; ð27Þ

where VR is a sum of translations of a local operator acting on
a few neighboring sites, the degeneracy of the ground state
subspace will be lifted. Assuming that ϵ is small enough that
perturbation theory applies, the effect of VR on the low-energy
sector can be determined with the help of degenerate pertur-
bation theory, which yields the following effective
Hamiltonian:

H00
R ¼ ϵPRVRPR: ð28Þ

Using the bulk-boundary correspondence of Sec. II.D.2, we
can map this Hamiltonian as follows to the auxiliary indices at
the edge of the system:

h∂R ¼ ϵURVRU
†
R: ð29Þ

We can now use Eq. (29), which acts on the auxiliary indices
corresponding to the edges of our system, to determine the
low-energy dynamics generated by the perturbation and then
map it back to the bulk. Note that, in contrast to the scenario in
Sec. II.D.2, where the boundary Hamiltonian had a merely
statistical mechanics role, in the current scenario the edge
Hamiltonian (29) describes the real low-energy dynamics in
the system.
In summary, we see that the isometry UR defined by the

PEPS can be considered a mapping between a theory that lives
in the bulk and another one that lives in the boundary and
allows one to relate the physics of the two.
As before, in practice the edge Hamiltonian turns out to be

quasilocal for systems with a finite correlation length. When
mapping back the dynamical action of H∂R from the boun-
dary, only regions close to the edge (at a distance of about the
correlation length) will be affected, so perturbations give rise
only to excitations at the edge. This is reminiscent of the
quantum Hall effect, where the low-energy excitations occur
at the edge. Furthermore, the global symmetries of jΨi (and
thus of H) will be inherited by H∂R; see Sec. III. In addition,
by changing parameters in VR, one can drive phase transitions
in H∂R: This illustrates that it is possible to have phase
transitions in the edge of a system, and in fact realize a range
of different phases, without changing the phase of the gapped
bulk (Yang et al., 2014). Finally, as we later discuss, the
existence of topological order in jΨi is reflected by the fact
that any H∂R (resulting from a perturbation) has to commute
with a nonlocal MPO projector, which thus plays the role of a
superselection rule at the boundary. Indeed, this is how the
topological anomaly is revealed in this setup.

E. Renormalization and phases of matter

As previously discussed, tensor networks give efficient
representations of ground states, thermal states, and elemen-
tary excitations in gapped locally interacting systems.
Therefore, if one is interested in classifying the different
possible features appearing in the low-energy sector of gapped
strongly correlated lattice models, one can restrict the atten-
tion to MPSs and PEPSs.
In this review we focus on properties that are global (or

topological), in the sense that they are stable under renorm-
alization steps. Since its conception by Kadanoff, Fisher, and
Wilson, the renormalization group (RG) has played a central
role in many-body physics. From the conceptual point of view,
the RG has clarified how simple toy Hamiltonians of spin
systems can nevertheless exhibit the full spectrum of features
of realistic Hamiltonians, as the universal properties of both
theories at long length scales can be identified. In essence, RG
provides a systematic method for integrating out UV degrees
of freedom, thereby mapping a Hamiltonian to one for which
the length scale is reduced. The correlation length of the
ground state of a Hamiltonian which is a fixed point of a RG
flow should hence be 0 or∞, with the former corresponding to
trivial or topological phases and the latter to critical systems.
Formally, a renormalization step can be understood as the

composition of two processes: blocking several sites, which
coarse grain the lattice, and acting with a reversible operation
in the blocks that rearranges the local entanglement pattern.
Reversibility is crucial since we want to guarantee an exact
renormalization process without discarding any relevant
degrees of freedom.
As we are interested in the topological content of a phase,

arguably the best way to capture it is to restrict the attention to
renormalization fixed points (RGFPs), where all local entan-
glement is integrated out and only the topological content
remains. It is, however, difficult to characterize such fixed
points without a description of all possible renormalization
flows. To circumvent this problem, we define RGFPs in tensor
networks intrinsically, from first principles, without referring
to a concrete flow. For that we identify some key properties
that any RGFP of a gapped phase must have and conclude
from there that there is indeed a renormalization flow for
which the given state is a fixed point, together with a structural
characterization of the tensor networks that are RGFPs.
We first analyze the case of MPSs, following Verstraete

et al. (2005) and Cirac et al. (2017a), and comment on the
implications for the classification of 1D phases. We then
analyze the case of MPOs, following Cirac et al. (2017a), and
show how a fusion category emerges from the RGFP con-
ditions that sheds light on the classification of 2D phases via
the bulk-boundary correspondence analyzed in Sec. III.B.2.
We also comment on RGFPs in higher dimensions and
concrete renormalization flows in tensor networks.

1. Renormalization fixed points in MPSs

As just discussed, we should identify properties that any
RGFP MPS must have. For that, given the ground state
subspace S of a local Hamiltonian H, we say that it has zero
correlation length if connected correlation functions vanish.

J. Ignacio Cirac et al.: Matrix product states and projected entangled …

Rev. Mod. Phys., Vol. 93, No. 4, October–December 2021 045003-24



That is, for any state Ψ ∈ S and any two observables A and B
acting on non-neighboring regions (i.e., those not directly
connected by the action of H),

hΨjABjΨi − hΨjAPSBjΨi ¼ 0; ð30Þ

where PS is the projector onto S. Note that, according to this
definition, a Greenberger-Horne-Zeilinger (GHZ) state has
zero correlation length.
As normal MPSs have a finite correlation length and

general MPSs can be expressed as superpositions of normal
MPSs, it should happen that as we block the correlation length
decreases. Thus, the RGFP must have zero correlation length.
We then say that a MPS is a RGFP if it has zero correlation
length. Since the transfer matrix E of a MPS is the operator
that mediates the correlations in the system (Sec. II.B.3), zero
correlation length is equivalent to the following condition:

E2 ¼ E: ð31Þ

There are other notions that are clearly connected to RGFPs
that can also be shown to be equivalent to zero correlation
length in MPSs (Cirac et al., 2017a) and can then be taken as
alternative (but equivalent) definitions of RGFPs for MPSs.
The first is the fact that the parent Hamiltonian can be written
as sums of local terms that mutually commute. It was recently
shown by Kastoryano and Lucia (2018) that if the parent
Hamiltonian of a PEPS is gapped, then the norm of the
commutator of the associated terms goes to zero as we coarse
grain the system; see Sec. IV. One can then expect that RGFP
PEPSs (and particularly RGFPMPSs) have commuting parent
Hamiltonians. This property is indeed equivalent to the RGFP,
as shown by Cirac et al. (2017a).
The second equivalent notion is the saturation of the area

law. Strong subadditivity of the von Neumann entropy (Lieb
and Ruskai, 1973) implies that for a spin chain of size N and a

region of size L < N=2, SðNÞ
Lþ1 ≥ SðNÞ

L , where SðNÞ
L denotes the

entanglement entropy of that region. Since MPSs fulfill the

area law (i.e., SðNÞ
L is upper bounded by a constant that is

independent of L andN), it follows that limL→∞ S∞L ¼ c < ∞.

This implies that RGFPs must satisfy SðNÞ
L ¼ c for all L and

thus, in particular, for L ¼ 1. That is, they must saturate the
area law. As previously stated, the converse is also true.
We now focus on property (31) and see what can be

concluded from it.
First, since different Kraus representations of a completely

positive map must be related by an isometry (Stinespring,
1955; Wolf, 2012), a tensor A corresponds to a MPS RGFP if
and only if (Verstraete et al., 2005)

Ai1Ai2 ¼
X
i1;i2

Uði1;i2Þ;jA
j ð32Þ

for some isometry U. Graphically, we have

ð33Þ

That is, the MPS given by A is the renormalization fixed point
of a particular type of flow that is obtained by acting with an
isometry on the physical degrees of freedom.
Such a flow has a natural interpretation in light of the usual

definition of topological phases in quantum systems. Two
ground states, particularly two PEPSs, are said to be in the
same topological phase precisely if there is a low-depth local
quantum circuit converting one state into the other. Via the
quasiadiabatic theorem (Hastings and Wen, 2005; Bachmann
et al., 2012), this corresponds to the existence of a continuous
gapped path of Hamiltonians connecting the two systems. The
intuition behind this definition is that, in order to proceed to a
different phase, one needs to generate global (topological)
correlations, which requires a time (i.e., circuit depth) that
scales with the system size.
The flow described in Eq. (33) keeps a state in the same

phase. If the unitary implemented in the renormalization flow
aims to disentangle the left and right ends of a block, one
expects only either nearest-neighbor or purely global entan-
glement to remain in the limit. Indeed, if the tensors are
normal, the RGFP condition E2 ¼ E implies that E is a rank-1
projector, and (using the isometric relation between Kraus
representations) we can then split each spin at a given site n
into a left and a right system nl and nr such that the structure
of the RGFP state up to local isometry is of the form

jΦi ¼⊗N
n¼1 jφiðn−1Þr;nl ; ð34Þ

where jφi is an entangled state defined on the right and left
parts of neighboring spins. If the state is not normal, then one
has a direct sum of states of the form of Eq. (34), where the
terms in the sum are locally orthogonal (meaning that the
corresponding jφi are supported on orthogonal subspaces for
each of the spins).
These states provide representatives for all possible phases

of matter for closed 1D systems; see Sec. III.A.2.

2. MPDOs

For the case of mixed states we follow a similar approach.
As with Eq. (31), in this context we say that a MPDO
associated with tensor M has zero correlation length if

ð35Þ

Unlike in the pure state case, this is not enough to guarantee
that a given MPDO has no length scale associated with it. In
particular, this does not necessarily imply that the MPDO
fulfills a property analogous to the saturation of the area law.
As previously mentioned, in the context of mixed states the
notion of an area law refers to the mutual information, not the
entanglement entropy (Wolf et al., 2008). That is, a system is
said to satisfy an area law for the mutual information if the
mutual information between a region R and its complement R̄,
IðR∶R̄Þ ¼ SðρRÞ þ SðρR̄Þ − SðρRR̄Þ, can be bounded by the
number of spins at the boundary of R (up to a multiplicative
constant). It has been shown that thermal states of short-range
Hamiltonians (Wolf et al., 2008), as well as fixed points of
fast-mixing Lindbladians (Brandao et al., 2015), fulfill an area
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law for the mutual information, which therefore characterizes
the relevant corner of the Hilbert space for equilibrium states
in analogy to the area law for the entanglement entropy for
ground states.
As in the case of a MPS, in any MPDO the mutual

information between a region R and its complement is upper
bounded by a constant that depends only on the bond
dimension, not the system size or the size of R. Moreover,
an analogous argument based on strong subadditivity implies
that the mutual information increases monotonically with the
size of the region R. Hence, just as before, we expect MPDO
RGFPs to saturate the area law for the mutual information. As
shown by Cirac et al. (2017a), this condition is, however, not
equivalent to zero correlation length. To characterize RGFPs
in MPDOs, we therefore need to impose both conditions
independently: We therefore say that a MPDO is a RGFP if it
has both zero correlation length and saturation of the area law
for mutual information.
It can be proven that RGFPMPDOs are characterized (up to

a technical condition) by the existence of two trace-preserving
completely positive maps (quantum channels) T and S such
that

ð36Þ

One can immediately see that taking traces in Eq. (36) implies
zero correlation length. Moreover, since Eq. (36) allows one to
grow or reduce a region by acting locally on it, it also implies
saturation of the area law. On the other hand, the fact that the
two conditions together imply Eq. (36) is far less obvious
(Cirac et al., 2017a). We thus see that, in analogy to the case of
a MPS, imposing RGFP conditions related to the absence of
length scales gives rise to a particular type of RG flow for
which the given MPDO is a fixed point. Here the flow consists
of blocking a finite number of sites and implementing a
renormalizing quantum channel on the blocks whose action
can be inverted. One can use this type of RG flow to define
phases for mixed states in analogy to the previously discussed
MPS case: Two mixed states are said to be in the same phase if
there exists a low-depth circuit of quantum channels that can
map one state onto the other (Coser and Perez-Garcia, 2018).
As in the MPS case, there is also a result that characterizes

the structure of RGFP MPDOs. Namely, it turns out that
RGFPMPDOs generate a finite-dimensional algebra of matrix
product operators, in the following sense: Consider a MPDO
generated by a tensor M (obtained by contracting the tensors
horizontally, as in Fig. 3), and consider the MPO

ð37Þ

which was generated by M by contracting the same tensors
vertically on a ring of length L. Assume without loss of
generality (w.l.o.g.) that this MPO is in canonical form, i.e.,

M ¼ ⨁
α
μαMα; ð38Þ

whereMα are the different injective blocks [we do not include
the case of multiple blocks, which can be treated in a similar
way; see Cirac et al. (2017a)]. The given MPDO is then a
RGFP if and only if there is a set of diagonal matrices χα;β;γ
with positive entries such that, for each L, the operators
OLðMαÞ linearly span an algebra with structure coefficient

cðLÞα;β;γ ¼ trðχLα;β;γÞ, i.e.,

OLðMαÞOLðMβÞ ¼
X
γ

cðLÞα;β;γOLðMγÞ ð39Þ

and

μγ ¼
X
α;β

cð1Þα;β;γμαμβ: ð40Þ

That is, the vector ðμαÞα is an idempotent for the “multipli-
cation” induced by cð1Þ.
If the structure coefficients cðLÞα;β;γ ¼ trðχLα;β;γÞ are indepen-

dent of L, one can easily show that χα;β;γ;k ∈ f0; 1g, and
therefore cðLÞα;β;γ ∈ N. In this case, one can further show that the
RGFP MPDOs generated by M can be written as

ρðNÞðMÞ ¼
Xd
i¼1

λiP
ðNÞ
i e−HN ; ð41Þ

where d is the local Hilbert dimension of a single site, PðNÞ
i

are projectors, HN ¼ P
N
i¼1 hi;iþ1 is translationally invariant,

nearest neighbor, and commuting (½hi−1;i; hi;iþ1� ¼ 0), and
½Pi; e−H� ¼ 0 for all i.
This result establishes a connection with the boundary

theories of topological PEPSs in two dimensions, rigorously
proving the desired structure for the boundary theory for
RGFP (see Sec. II.D): a global projector selecting the
topological sector and a local boundary Hamiltonian commut-
ing with it. At the same time, it concludes (based only on a
natural RGFP condition) the existence of an algebra of MPOs
that, as explained in Sec. III.B, is the starting point to obtain
the most general class of nonchiral topological models in two
dimensions.

3. Tree tensor states and MERAs

For a general quantum state describing a spin chain, it is
possible to devise a multitude of renormalization processes.
The simplest one is the real-space renormalization, in which
one joins a block of spins and truncates the corresponding
Hilbert space to build a new one. It is straightforward to check
to see that the concatenation of this procedure gives rise to a
TTN, where each layer is characterized by the truncation map;
see Sec. II.B.5. As previously explained, it is possible to
choose these maps as isometries. The renormalization flow
can be interpreted as the sequence of isometries corresponding
to each level of the renormalization. The sequence may
converge, so one could define these TTNs where all the
isometries are the same as fixed points of the RG flow. These
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states give rise to a logarithmic violation of the area law and
have averaged correlation functions that in general decay as a
power law.
A much more sophisticated and comprehensive way of

performing such a renormalization consists of including unitary
operators (“disentanglers”) acting on neighboring spins before
each step of the previous procedure. The resulting states are the
MERAs (Vidal, 2008), which include more correlations than
TTNs, as the tensor network nowcontains loops; see Sec. II.B.5.
Furthermore, the procedure can be applied to higher spatial
dimensions with an area law scaling of the entanglement,
something that is not possible with TTNs.
The renormalization procedure in terms of MERAs was

introduced by Vidal (2008), who interpreted the unitaries and
isometries as ways of disentangling neighboring spins at each
step. In fact, by reading the MERA or the TTN the other way
round, one can see that each can be generated out of a product
state by applying unitary operators.
Compared to previous procedures,MERAandTTN aremore

appropriate for describing critical states, where the correlation
length diverges. In fact, given their structure one can extract
properties of the conformal field theory describing the critical
behavior of the state, such as the form of the primary fields or
their scaling dimensions (Giovannetti, Montangero, and Fazio,
2008; Pfeifer, Evenbly, and Vidal, 2009; Milsted and Vidal,
2017; Zou, Milsted, and Vidal, 2018).

4. RG in higher dimensions

The previously reviewed renormalization procedures can be
extended to higher dimensions using PEPSs. In principle, one
can look for unitary operators acting on blocks of spins (in
plaquettes, for instance) that disentangle some of them locally.
This procedure will not work as well for PEPSs as it does for
MPSs since in a spatial dimension larger than 1 blocking
increases the bond dimension, as a direct reflection of the area
law. Thus, one might want to choose a different approach.
The most natural one is to truncate the states by replacing

the unitary operator with an isometry to obtain a tree tensor
network or adding disentangling unitaries to obtain a MERA
(Evenbly and Vidal, 2009). If one considers tensor networks
without physical degrees of freedom such as classical partition
functions, another approach consists of replacing several
tensors corresponding to neighboring spins with a single
tensor but making sure that the tensor in some way generates a
tensor network that is close to the original one (Gu, Levin, and
Wen, 2008; Evenbly and Vidal, 2015; Bal et al., 2017; Yang,
Gu, and Wen, 2017). Although these procedures may be
useful as numerical tools, the state obtained at the end will in
general not be the same as the original one.
Away around this is to look for fixed points of such types of

renormalization procedures. The corresponding nontrivial
fixed points turn out to form representative states for phases
exhibiting topological quantum order (Wen, 2017). As pio-
neered by Dennis et al. (2002), qubits in the toric code
(Kitaev, 2003) can be disentangled with local unitaries, and
therefore the corresponding fixed-point topological states can
be represented in terms of a quantum circuit of isometries and
unitaries. Essentially the same construction was used by
Aguado and Vidal (2008) and König, Reichardt, and Vidal

(2009) to represent all quantum doubles (Kitaev, 2003) and
string nets (Levin and Wen, 2005) as fixed points of
renormalization flows in the form of a MERA. All those
models have zero correlation length and are the ground states
of frustration-free Hamiltonians with local commuting terms.
The ground states of those models can hence be obtained by
projecting a product state on the ground subspaces of all those
local Hamiltonian terms; such a construction generates a
simple PEPS description for the ground states of such fixed-
point Hamiltonians (Verstraete et al., 2006). This PEPS
representation was worked out for string nets by Gu and
Wen (2009), and its emerging MPO symmetries were studied
by Schuch, Cirac, and Perez-Garcia (2010) and Şahinoğlu
et al. (2021) and are presented in Sec. III.B.
From a more general perspective, one can consider renorm-

alization fixed-point equations for PEPSs, such as those
shown in Fig. 13, and write the corresponding nonlinear
stationary equations that fully characterize these PEPS, which
can be considered RGFPs with respect to that property.
Realizing such a program would involve nontrivial results
from algebraic geometry but has not yet been realized in full
generality.
An alternative method in two spatial dimensions consists of

using the bulk-boundary correspondence reviewed in
Sec. II.D.2. Using this correspondence, the physical properties
of a PEPS are characterized by a density operator that lives at
the boundary. We next consider a PEPS on a cylinder. In the
course of renormalizing the PEPS using any RG procedure,
the boundary state itself will be renormalized as well and, as
the RG fixed point is reached, one expects to obtain a RGFP
MPDO (Cirac et al., 2017a) (cf. Sec. II.E.2) at the boundary as
well. This RGFP condition at the boundary leads to an
emerging algebra of MPOs. We discuss in Sec. III.B.2
how, from the existence of such an algebra, one recovers in
a direct way all known 2D nonchiral topologically ordered
phases together with a description of their anyon excitations.
The point of view of the characterization of renormalization
group fixed point in terms of boundary density operators is
therefore equivalent to the one in terms of disentangling
circuits acting on the bulk, and both give rise to quantum
double models and string nets.

(a) (b)

(c) (d)

FIG. 13. Examples of different possibilities for RGFPs in a 2D
square configuration, where (a) a unitary operation is applied to
the physical indices of four spins and invertible operations are
applied to the auxiliary ones. (b) One can disentangle several
spins, i.e., obtain the original tensor and other ones as product
states. (c) One can obtain the original tensor and other generating
MPSs. (d) One can obtain two copies of the original tensor.
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5. The limit to the continuum

A natural question is whether one can also implement a
process inverse to renormalization in the context of tensor
networks. That is, instead of coarse graining the lattice to
distill the global entanglement pattern, fine graining it to
obtain a meaningful continuum limit.
We first discuss this for one dimension, following

Verstraete and Cirac (2010) and De las Cuevas et al.
(2018). As seen in Sec. II.B.3, MPSs are characterized by
a quantum channel E (their transfer operator) up to a local
basis change. A blocking step of r sites simply corresponds to
taking the transfer operator to the rth power Er, as used in
Sec. II.E.1. A fine-graining step would therefore correspond to
taking integer roots of E. However, this is subtle, as there are
quantum channels T that cannot be divided (Wolf and Cirac,
2008), in the sense that there are not any other quantum
channels R such that R2 ¼ T. To guarantee a well-defined
continuum limit, one needs to require that the transfer operator
is infinitely divisible, meaning that all possible integer roots
exist (De las Cuevas et al., 2018). This in turn is equivalent, up
to a projector P commuting with a given channel E, to the
existence of an infinitesimal generator L that generates a
semigroup etL, t ≥ 0, that interpolates the initial E (which
corresponds to t ¼ 1) all the way back to t ¼ 0 (Kholevo,
1987; Denisov, 1989). The state obtained by taking t → 0 in
this fine-graining process is precisely the cMPS discussed in
Sec. II.B.4.
This procedure cannot be easily extended to higher dimen-

sions. The reason is that the inverse renormalization process
should produce tensors with noninteger bond dimensions (as
bond dimensions multiply when blocking), which is impos-
sible. For instance, in two dimensions one should progress
from bond dimension D to tensors of bond dimension

ffiffiffiffi
D

p
;

see Fig. 14. At some point of the iteration, the square root will
not be an integer, so the procedure cannot work. The only way
around it is if in some sense D ¼ ∞. In fact, continuous
PEPSs can be defined in this way, for instance, in terms of
path integrals where the discrete auxiliary indices of the
tensors are replaced by functions that are integrated over
when they are contracted (Jennings et al., 2015; Tilloy and
Cirac, 2019).

III. SYMMETRIES AND CLASSIFICATION OF PHASES

Symmetries are a main guiding principle in quantum many-
body physics, and the situation is no different for tensor
networks. In fact, one of the main reasons for the success of
tensor networks is precisely the fact that they make the role of

symmetries in many-body systems so explicit: a quantum state
described by a MPS or PEPS jψNi will be invariant under a
global symmetry U⊗N jψNi if and only if all local tensors
transform trivially under that symmetry. As a consequence,
any global symmetry, including symmetries associated with
topological order, will be reflected in the local symmetries of
the tensors describing the many-body states. Phrased differ-
ently, the entanglement spectrum acts like a signature of those
symmetries. This yields a unifying principle for describing
distinct gapped phases of matter, including topological ones
for which there is no distinct local order parameter in the sense
of Landau (1937): distinct phases of matter can be distin-
guished by the different ways in which the local tensors
transform under the global symmetries. The local tensors
hence provide a nontrivial generalization of the notion of a
local order parameter and reduce the problem of classifying
different gapped phases of matter to a problem in the
representation theory of groups and algebras. It is a well-
known fact that there are certain topological obstructions to
convert tensors, which transform according to different
representations of the same group, into each other continu-
ously. Those obstructions are precisely the ones responsible
for the existence of topological quantum order.
One of the noteworthy success stories of many-body

physics has certainly been the realization that global sym-
metries can be lifted to local ones by introducing new “gauge”
degrees of freedom. Such a procedure can also be carried out
in the language of tensor networks and gives rise to tensors
with an increased intrinsic symmetry action on the entangle-
ment degrees of freedom. The ensuing gauge theories exhibit
fascinating properties such as excitations with anyonic sta-
tistics and nontrivial edge modes, and the fact that such
features directly follow from the symmetry properties of the
local tensors makes tensor networks a natural framework for
describing and exploring quantum topological order. In fact, it
can be argued that tensor networks implement the represen-
tation theory of braided fusion categories, which form the
foundation of both topological and conformal field theories.
This section is divided into two parts. Section III.A

discusses symmetries of matrix product states and is hence
concerned with the classification of phases of quantum spin
chains. Section III.B discusses symmetries of projected
entangled pair states, including the case of quantum topo-
logical order. In both cases, we limit the discussion to uniform
translationally invariant systems.

A. Symmetries in one dimension: MPSs

1. Symmetric MPSs

Normal (and injective) uniform matrix product states
exhibit the noteworthy property that two states jψðAÞi and
jψðBÞi are equal to each other if and only if there is a gauge
transform X and a phase χ for which Ai ¼ eiχX−1BiX (Perez-
Garcia, Wolf et al., 2008). If both Ai and Bi are in canonical
form, then X is guaranteed to be unitary due to the uniqueness
of the fixed point. This is a consequence of the fundamental
theorem of MPSs and is discussed in Sec. IV. A useful feature
is the following property of a normal MPS:

(a) (b)

FIG. 14. Inverse renormalization procedure. (a) For MPSs, if E
is divisible, one can rewrite the tensor in terms of two tensors of
the same bond dimension and iterate the procedure. (b) For
PEPSs in two dimensions, the same step would imply that the
bond dimension of the new tensor has to be square rooted.
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X−1AiX ¼ eiχY−1AiY ⇒ χ ¼ 0 ∧ ∃ϕ∶X ¼ eiϕY: ð42Þ

Furthermore, any translationally invariant normal MPS has
a uniform representation, i.e., the tensors Ai do not depend on
the site label. This property has strong consequences for MPSs
that are invariant under global on-site, reflection, and time-
reversal symmetries. This implies that the tensors building
up a MPS with global symmetries must themselves transform
trivially up to a phase under that symmetry. To illustrate
this, we consider the case of a MPS in canonical form
that is invariant under a global on-site symmetry group
G∶UðgÞ⊗N jψNi ≃ jψNi. It follows from Eq. (42) that

X
j

UijðgÞAj ¼ eiϕðgÞX†ðgÞAiXðgÞ: ð43Þ

In other words, the three-leg MPS tensor Ai written as a vector
in a vector space of dimension d ·D2 transforms trivially
under the action of e−iϕðgÞUðgÞ ⊗ XðgÞ ⊗ X̄ðgÞ, with X̄ðgÞ the
conjugate. This implies that the tensor Ai can be written in
terms of Clebsch-Gordan coefficients of irreducible represen-
tations of the group G, and that the variational degrees of
freedom can be incorporated by adding multiplicities (White,
1993; McCulloch and Gulácsi, 2002; Sanz et al., 2009; Singh,
Pfeifer, and Vidal, 2010; Weichselbaum, 2012). Such decom-
positions have been used for a long time and with great
success in the context of DMRG. There are two nontrivial
facts that one can deduce as a result.
First, the condition of injectivity in conjunction with

translational invariance imposes constraints on the types of
symmetries that can be realized in a MPS. This is best
illustrated with an example. Consider a spin-1/2 system with
SUð2Þ symmetry. As the physical spin transforms according to
a half-integer representation, the Clebsch-Gordan coefficients
impose that the virtual irreducible representations (irreps)
alternate between integer and half-integer representations
(Sanz et al., 2009). By blocking two sites, the MPS matrices
Ai therefore exhibit two invariant subspaces, and hence the
MPS cannot be normal, which shows that no uniform normal
or injective MPS can exhibit such a symmetry. As we later
discuss, this is the tensor network manifestation of the Lieb-
Schultz-Mattis theorem.
Second, there is no need for the irreps on the virtual degrees

of freedom to form representations of the group G: it is
perfectly fine if they transform according to projective
representations, that is, representations up to a phase

XgXh ¼ eiωðg;hÞXgh; ð44Þ

as such phases leave eiϕðgÞUðgÞ ⊗ XðgÞ ⊗ X̄ðgÞ invariant
(Pollmann et al., 2010; Chen, Gu, and Wen, 2011a;
Schuch, Perez-Garcia, and Cirac, 2011). As an authoritative
example, if the physical system transforms according to
SOð3Þ, the virtual systems can both transform according to
either half-integer or integer representations of SUð2Þ, as
readily determined from the Clebsch-Gordan coefficients. The
half-integer representations of SUð2Þ form a projective rep-
resentation of SOð3Þ, with phases ωðg; hÞ ¼ 0 or π.

For a given group G, it is a relatively easy task to find all
possible projective representations, as the associativity of
matrix multiplication heavily constrains the possible ωðg; hÞ.
If the group is finite, this can be achieved by using the Smith
normal form,which is similar to the Schmidt decomposition but
with integer arithmetic. The following picture emerges (Chen
et al., 2013). For a given group G, the various projective
representations fall into equivalence classes, whereas in a given
equivalence class the projective representations are related to
each other by simple phases as follows: Xg ¼ exp½iϕðgÞ�X̃g.
These phases are irrelevant from the point of view of MPSs, as
they cancel, and hence only the equivalence classes count.
Those classes are classified according to the second cohomol-
ogy group H2

α(G;Uð1Þ) with group action α (this action is
nontrivial in the case of time-reversal and reflection symmetries)
and are classified according to the solutions of

αg(ωðh; lÞ)−ωðg · h; lÞ þωðg;h · lÞ−ωðg;hÞ ¼ 0 mod 2π;

ð45Þ

which is obtained by imposing associativity relations on the
projective representations. The action α is a homomorphism
from G to the automorphism group Z2 of Uð1Þ, and hence
consists of �. In the case of global symmetries excluding
reflection and time reversal, this is simply the following identity
map:αgðxÞ ¼ x for allg ∈ G. As follows from theSmith normal
form, there are only a finite number of such equivalence classes
for a finite group, and these are labeled by integer and hence
topological indices.
In the case of a continuous semisimple Lie group G,

irreducible projective representations are in one-to-one cor-
respondence to irreducible linear representations of its uni-
versal covering group C, from which G is then obtained by
modding out a subgroup Zs of its center Z, G ¼ C=Zs. Note
that the previously discussed relation between SUð2Þ and
SOð3Þ is precisely of this form. In the previous example, half-
integer representations of SUð2Þ correspond to projective
nonlinear representations of SOð3Þ. For compact groups such
as SOð3Þ, this also yields a finite number of different
inequivalent classes of projective representations (i.e., the
second cohomology group is finite).
Before studying the significant physical implications of

those projective representations, we generalize the discussion
to include time-reversal and/or reflection symmetries. A
symmetry G of the system can be labeled by a subset of
the tuples x ¼ ðg; t; rÞ ∈ G⋊ZT

2 × ZR
2 , where g denotes the

physical group action and t; r ∈ 0; 1 denotes the linear
representation of time-reversal and reflection. From now on
we consider G to be of the form G⋊H, with H a subgroup
of ZT

2 × ZR
2 .

We start by discussing a normal MPS in canonical form
that is invariant under pure time-reversal symmetry repre-
sented by the tuple x ¼ ð1; 1; 0Þ corresponding to the
morphism SxðAiÞ ¼ Āi: it is elementswise conjugation. As
this is a symmetry of the system, the fundamental theorem
imposes that there is a Xx and ϕðxÞ such that
Āi ¼ eiϕðxÞX†

xAiXx. As conjugating a tensor twice yields
the original tensor, we must have Ai ¼ Sx(SxðAiÞ) ¼
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SxðeiϕðxÞX†
xAiXxÞ ¼ e−iϕðxÞX̄†

xĀiX̄x ¼ ðXxX̄xÞ†AiðXxX̄xÞ. Per
Eq. (42), this is possible only for XxX̄x ¼ �1 and, as
discussed in Sec. III.A.2, �1 is a topological index. Note
that if we had defined time-reversal symmetry in the form
x ¼ ðσy; 1; 0Þ, as encountered in Wigner’s discussion on time
reversal in spin-1/2 systems, we would have obtained

Ai¼Sx(SxðAiÞ)¼ðXxX̄xÞ†AiðXxX̄xÞ¼σy ·σyĀi¼−Ai, which
is in violation with Eq. (42). This implies that ground states
of systems exhibiting such a symmetry cannot be represented
by a normal or injective MPS or, phrased differently, cannot
be unique ground states of a local gapped Hamiltonian. This
turns out to be the tensor network analog of the Kramers
theorem on time reversal. From the mathematics point of
view, the obstruction follows from the fact that the physical
symmetry σy acts as a projective representation under time
reversal.
As has become clear, to discuss global symmetries labeled

by xi ¼ ðgi; ti; riÞ and x3 ¼ x1∘x2, we need to define the
actions of the symmetries on MPS tensors in the form
SxðeiϕX†AiXÞ ¼ eiχ

1
xðϕÞχ2xðXÞ†Aiχ2xðXÞ. Here we introduced

the functions χ1xðϕÞ as the morphism on the phase ϕ and χ2xðXÞ
as the morphism on the gauge X induced by element x. As
previously discussed, if x ¼ ðg; 1; 0Þ involves time reversal,
then χ1xðϕÞ ¼ −ϕþ ϕðxÞ and χ2xðXÞ ¼ Xx · X̄, with ϕðxÞ and
the gauge tensor Xx depending only on the group element x.
Similarly, a reflection x ¼ ðg; 0; 1Þ in terms of the MPS is
implemented by taking the transpose of the matrices involved:
SxðeiϕX†AiXÞ¼eiϕXTðAiÞTX̄¼ei½ϕþϕðxÞ�XTX†

xAiXxX̄. Hence,
in this case χ1xðϕÞ ¼ ϕþ ϕðxÞ and χ2xðXÞ ¼ Xx · X̄. If a group
element involves simultaneous time reversal and reflection
x ¼ ðg; 1; 1Þ, then χ1xðϕÞ ¼ −ϕþ ϕðxÞ and χ2xðXÞ ¼ Xx · X.
The fundamental theorem of MPSs imposes the condition
that χ1x must form a linear representation of the group
χ1x1∘χ1x2 ¼ χ1x1·x2 . This imposes the following nontrivial con-
straint on the phases ϕðxÞ:

ð−1Þt1 · ϕðx2Þ − ϕðx1 · x2Þ þ ϕðx1Þ ¼ 0 mod 2π;

with t1 ¼ 1 if and only if x1 involves time reversal. This is
precisely the defining equation for a 1-cocycle of the first
cohomology group H1

β(G; Uð1Þ) with group action βxðϕÞ ¼
ð−1ÞtðxÞ · ϕ. For finite groups and compact semisimple Lie
groups, there are only a finite number of distinct cocycle
solutions of this equation modulo the trivial coboundary
solutions. Indeed, the equivalence class of a cocycle is
obtained by adding a coboundary to it, ϕðxÞ → ϕðxÞ þ
½βxðcÞ − c� for any constant c, and all such solutions are
indistinguishable from the point of view of MPSs.
Similarly, the fundamental theorem implies that the mor-

phism χ2xð·Þmust form a projective representation of G, that is,
χ2x1 ∘ χ2x2 ¼ exp½iωðx1; x2Þ�χ2x1·x2 . Imposing associativity in the
form χ2x1fexp½iωðx2; x3Þ�χ2x2·x3ðXÞg ¼ exp½iωðx1; x2Þ�χ2x1·x2 ×
½χ2x3ðXÞ� leads to the following condition on the phases
ωðx1; x2Þ:

ð−1Þðt1þr1Þωðx2; x3Þ − ωðx1 · x2; x3Þ þ ωðx1; x2 · x3Þ
− ωðx1; x2Þ ¼ 0 mod 2π.

This is precisely the defining equation for a 2-cocycle of the
second cohomology group H2

α(G; Uð1Þ) with group action
αxðϕÞ ¼ ð−1Þ½tðxÞþrðxÞ�ϕ. Given a finite group G, the finite
number of equivalence classes of this equation can again be
found explicitly by making use of the Smith normal form.
In this case, the coboundaries correspond to ωðx; yÞ →
ωðx; yÞ þ αx(ξðyÞ) − ξðx · yÞ þ ξðxÞ for any function ξðxÞ.
H2

α(G; Uð1Þ), as is also the case for H1
β(G; Uð1Þ), is itself an

Abelian group and hence is of the form Zn × Zm × � � �.
In summary, we have seen that all global symmetries of

uniform normal (or injective) MPS wave functions are
reflected in the local tensors Ai of the MPS; these symmetries
can be represented projectively on the virtual level, and the
classification of all possible ways in which this can occur can
be obtained by solving the integer linear algebra problem of
finding all 1- and 2-cocycles of the group of interest.

2. SPT phases and edge modes

a. Symmetry-protected topological order

The way global symmetries are reflected on the local MPS
tensors has strong implications for the classification and
description of phases of matter of 1D spin systems. The
fundamental idea underlying this classification is the fact that
the unique ground state of any local gapped quantum spin
chain has an efficient representation in terms of a normal (or
injective) MPS. This implies that the classification of gapped
phases can be done on the level of MPSs as opposed to
Hamiltonians, which is a significant simplification.
Given two translationally invariant normal MPSs para-

metrized by tensors Ai and Bi, it turns out that there is always
an interpolation between them (even if they have different
bond dimensions) for which all intermediate MPSs are also
injective. There is no topological obstruction for constructing
such a path, and hence there is only one phase for gapped
quantum spin systems (Chen, Gu, and Wen, 2011a; Schuch,
Perez-Garcia, and Cirac, 2011) (note that the situation changes
in the case of fermions, as we discuss in Sec. III.A.4). This
problem is equivalent to constructing an interpolating path
AiðtÞ for which the transfer matrix E ¼ P

i A
iðtÞ ⊗ ĀiðtÞ has

a unique largest eigenvalue (which is guaranteed to be real).
As demonstrated by Schuch, Perez-Garcia, and Cirac (2011),
this can be achieved in three steps. First, we block different
sites until the tensor Ai1Ai2… is injective, then apply a filtering
operation to bring this blocked MPS into the form of a
renormalization group fixed point while keeping the unique
largest eigenvalue property. Second, we can readily interpolate
between any two of such dimer-type wave functions by a local
quantum circuit without closing the gap. In the third step, we
apply another filtering operation to obtain the tensor Bi. The
corresponding parent Hamiltonian HðtÞ is guaranteed to be
gapped along the path, demonstrating that any two injective
MPSs are in the same phase. For a generalization of this
theorem without the blocking step, see Szehr andWolf (2016).
The situation changes drastically when symmetry con-

straints are imposed on the adiabatic path, and hence on
the MPS: a much smaller dimensional manifold can then be
traversed during the interpolation, and topological obstruc-
tions might occur. Colloquially speaking, the submanifold of
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all normal MPSs with a given symmetry decomposes into
disconnected components. As a consequence, any symmetry-
preserving interpolating path between two states living on
different components has to pass through a phase transition,
and at this point the interpolating MPS will not be injective
anymore (Chen, Gu, and Wen, 2011a; Schuch, Perez-Garcia,
and Cirac, 2011). These different components correspond to
different SPT phases. They are protected by translational
invariance, on-site symmetries, time-reversal symmetry, and/
or reflection invariance.
The necessary mathematical framework for demonstrating

this was developed in Sec. III.A.1. By studying how a MPS Ai

transformed under one or a combination of the previous
symmetries SxðAiÞ ¼ exp½iϕðxÞ�X†

xAiXx, it was shown that
ϕðxÞ had to be a 1-cocycle of H1

β(G; Uð1Þ) and that we could
associate with the gauge matrices Xx a map (morphism)
χ2xðXÞ ¼ Xx · X or χ2xðXÞ ¼ Xx · X̄ (depending on whether
time reversal, reflection invariance, or both are involved),
which itself forms a projective representation of the physical
symmetry group: χ2x1 · ½χ2x2ð·Þ� ¼ exp½iωðx1; x2Þ�χ2x1·x2ð·Þ. The
corresponding phases are characterized by the topologically
distinct 2-cocycles ωðx1; x2Þ of the second cohomology
group H2

α(G; Uð1Þ).
A noteworthy point is that the opposite is also true:

whenever two injective MPSs Ai and Bi exhibit equivalent
1- and 2-cocycles ϕ and ω when transformed under the group
involving on-site, time-reversal, and/or reflection symmetry,
then there is an adiabatic path of injective MPSs that
interpolates between them. The proof of this is basically
equivalent to the one sketched when no symmetries are
involved. Within each of these phases, a representative
MPS with zero correlation length can be constructed starting
from any solution of the 1- and 2-cocycle condition. The
translationally invariant SPT phases of gapped spin systems
for a given symmetry group G are therefore completely
classified by H2

α(G; Uð1Þ) ×H1
β(G; Uð1Þ) (Chen et al.,

2013). TheH2 part has a strong influence on the entanglement
spectrum. The H1 part is related to the translational invariance
of the system and is not stable under blocking (note that the
first cohomology group indeed plays a central role in the
description of the space groups).
We now explicitly construct the RG fixed-point MPS that

transforms according to a given 1- and 2-cocycle ϕ and ω. The
local physical Hilbert space will have the dimension squared of
the number of elements in the symmetry group and can be
parametrized as a tensor product ða; bÞ, while the virtual indices
are labeled by the group elements. The MPS is defined as

Aab
xy ¼

�
eiαða·xÞ·ωða;xÞþiβðbÞ·ϕðbÞ if y ¼ a · x;

0 otherwise;

and the corresponding gauge matrices are of the form

ðXgÞxy ¼
�
eiαðxÞ·ωðx;gÞ if y ¼ x · g;

0 otherwise:

This works since the condition SqðAabÞ ¼
exp½iϕðqÞ�X†

qAabXq is equivalent to the 2-cocycle equation.

This MPS has zero correlation length (which follows from the
fact that the transfer matrix is a rank-1 projector) and hence
represents the renormalization group fixed point in its corre-
sponding phase. In the particular case of an on-site Z2 × Z2

symmetry, the simplest group exhibiting nontrivial 2-cocycles,
this construction precisely yields the 1D cluster state (see the
Appendix) when blocking pairs of adjacent sites.
The prime example of a MPS in a nontrivial SPT phase is

the AKLT state (Affleck et al., 1988), which is specified by
the Pauli matrices Ai ¼ σi, i ¼ x; y; z. Its SPT character can be
protected by multiple distinct physical symmetries: on-site
SOð3Þ (with virtual symmetry given by a spin-1/2 represen-
tation), on-site Z2 × Z2 [the smallest subgroup of SOð3Þ still
exhibiting a nontrivial 2-cocycle], time-reversal, or reflection
symmetry. In all these cases, the AKLT MPS tensor trans-
forms projectively.
By making use of the Smith normal form, it is easy to solve

for all cocycle conditions and determine the number of
possible different SPT phases by combining those sym-
metries. If we consider the symmetries of the AKLT state
(on-site Z2 × Z2, time-reversal ZT

2 , and reflection ZR
2

symmetries), we obtain the following classification:
H2

α(Z2 × Z2 × ZT
2 × ZR

2 ; Uð1Þ) ¼ Z×7
2 , while H1

β(Z2 × Z2×

ZT
2 × ZR

2 ; Uð1Þ) ¼ Z×3
2 . This means that there are 1024 dis-

tinct topological phases protected by this large symmetry
group (Chen, Gu, and Wen, 2011b). A simpler example is
obtained when considering an on-site Z2 symmetry in
combination with time reversal, leading to H2

α(Z2 ×
ZT
2 ; Uð1Þ) ¼ Z×2

2 and H1
β(Z2 × ZT

2 ; Uð1Þ) ¼ Z2. Similarly,

H2
α(Z2 × ZR

2 ; Uð1Þ) ¼ Z×2
2 , H2

α(ZT
2 × ZR

2 ; Uð1Þ) ¼ Z×2
2 , and

H2
α(Z2 × Z2 × ZT

2 ; Uð1Þ) ¼ Z×4
2 . The submanifolds of normal

MPSs subject to global symmetries clearly exhibit a rich
structure.

b. Entanglement spectrum and edge modes

In Sec. II.D, we saw how PEPSs provide a natural way to
access the entanglement spectrum, compute boundary
Hamiltonians, and determine the edge physics of quantum
many-body systems. In the context of nontrivial SPT phases,
all of these exhibit characteristic fingerprints of the phase,
which we discuss in the following.
A distinct feature of normal MPS belonging to a nontrivial

SPT phase is the fact that their entanglement spectrum exhibits
a clear pattern of degeneracies. The fact that topological order
is reflected in the entanglement spectrum was first observed
by Li and Haldane (2008). Pollmann et al. (2012) connected
these ideas to the dangling spin-1/2 edge modes in the AKLT
chain, and by making use of the fundamental theorem of MPS
they realized that these edge modes were protected. The
consecutive work of Chen et al. (2013) revealed that the
appropriate mathematical formalism to deal with this phe-
nomenon is cohomology theory.
The degeneracy of the entanglement spectrum and the

existence of edge modes follows from the following property
of projective representations Xg: they cannot be Abelian and
cannot be reduced to one-dimensional representations, and
hence are only reducible to matrices of dimension strictly
larger than 1. We first consider the case of on-site group
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symmetries. If a given injective MPS is in canonical form and
exhibits nontrivial SPT order, its entanglement spectrum is
obtained by looking at the leading eigenvector of its transfer
matrix

P
i A

i ⊗ Āijρi ¼ jρi. Because of the uniqueness of the
corresponding eigenvalue, ρ has to inherit all symmetries of
the MPS and will hence be invariant under the transformation
XgρX

†
g ¼ ρ. As Xg has no one-dimensional invariant sub-

spaces, ρ must necessarily have a spectrum in which all
eigenvalues have a degenerate multiplicity. For the case of
time-reversal and/or reflection symmetries, the situation is
slightly more complicated. The virtual degrees of freedom of
the MPS in the nontrivial SPT phase then transform according
to an antisymmetric gauge transform X ¼ −XT if the MPS is
in canonical form. The entanglement spectrum is then
determined by the eigenvalues of the matrix ρ ¼ Xρ̄X†, with
ρ the leading eigenvector of the transfer matrix. All eigen-
values of ρ are guaranteed to be degenerate: given a right
eigenvector jxi with real eigenvalue λ, hx̄jX−1 is guaranteed to
be a left eigenvector with the same eigenvalue. But
hx̄jX−1jxi ¼ 0, as it is the trace of a product of a symmetric
with an antisymmetric matrix; this implies that hx̄jX−1 is the
left eigenvector corresponding to a different right eigenvector,
thus implying a twofold degeneracy.
Exactly the same feature is responsible for the fact that

nontrivial SPT phases exhibit edge modes when defined on
systems with open boundary conditions: the ground state
degeneracy of a MPS with respect to its parent Hamiltonian
with open boundary conditions will be at least the dimension
of the irrep space squared, as we can define boundary vectors
on both sides, which will transform nontrivially under Xg and
will not change the energy. An attractive feature of MPSs is
the fact that these gapless edge modes can actually be
constructed by lifting operators acting on the virtual level
to the physical level (which is always possible when the MPS
is normal). For the case of the AKLT model, this indeed leads
to a fourfold degeneracy. There is, however, only one state in
this four-dimensional space that will be in the spin-0 sector,
and that state will exhibit long-range entanglement between
the two edges. This is a general feature of SPT phases.

c. String order parameters for SPT phases

Symmetry-breaking phases can be distinguished by their
local order parameters. Since SPT phases do not break any
symmetries, we will need nonlocal observables to distinguish
them. Such nonlocal order parameters have long been used to
study the AKLTmodel under the name string order parameters
(den Nijs and Rommelse, 1989; Kennedy and Tasaki, 1992).
In general, if we consider a gapped quantum spin system with
a unique ground state exhibiting a physical symmetry group
Ug, we can construct a family of observables acting on Lþ 2

sites of the form

Sα;gðLÞ ≔ Rᾱ ⊗ U⊗L
g ⊗ Rα;

where Rα is an observable that transforms according to a
nontrivial linear representation αðgÞ of G: U†

gRαUg ¼
exp½iαðgÞ�Rα (the nontriviality ensures that the local expect-
ation value of Rα is zero), whereas Rᾱ transforms according to

−αðgÞ. We say that a spin system exhibits string order if and
only if for some Rα, Rᾱ, and g the limit
hSα;gi ≔ limL→∞hψ jSα;gðLÞjψi ≠ 0. Using the language of
MPSs, we can readily prove that the existence of such a
string order implies the fact that the system is in a nontrivial
SPT phase when the group under consideration is Abelian
(Pollmann and Turner, 2012). This can most easily be shown
by demonstrating the fact that it has to be equal to zero in the
trivial phase, i.e., in a phase in which the virtual symmetries
Xg form a group representation of G. As Ug represents a
physical symmetry, the expectation value hSα;gi (in the
thermodynamic limit) is

We denote the left diagram by DL
α;g. By inserting 1 ¼ U†

hUh

between A and Rᾱ, a simple manipulation yields
DL

α;g ¼ eiαðhÞDL
α;hgh−1 . As we assumed the group to be

Abelian and the one-dimensional irrep αðhÞ to be nontrivial,
this implies that the expectation value of the string order
parameter has to be equal to zero.
The expectation value of the string order parameter can

certainly be nonzero in the case of a nontrivial SPT phase; in
that case (and again assuming an Abelian group), we obtain
DL

α;g ¼ eiαðhÞþωðh;gÞþωðh·g;h−1ÞDL
α;hgh−1 . As the group is Abelian,

ωðh · g; h−1Þ ¼ −ωðg; hÞ, and hence the expectation value
does not have to vanish if αðhÞ ¼ ωðg; hÞ − ωðh; gÞ. This is
precisely what happens in the case of the AKLT chain when
considering the string order parameter for the Z2 × Z2

symmetry. Note that not all SPT phases are detectable using
this idea (Pollmann and Turner, 2012); this happens when all
the commuting pairs of elements g1 and g2 also commute in
the projective representation.
A related idea that directly measures an observable targeting

the commutator expfi½ωðg; hÞ − ωðh; gÞ�g ≃ TrðXgXhX
†
gX

†
hÞ

can be defined in terms of swaps between distant regions;
see Haegeman, Perez-Garcia et al. (2012) for details.

3. Symmetry breaking: Virtual symmetries, Lieb-Schultz-Mattis
theorem, Kramers theorem, and topological excitations

a. Virtual symmetries

We now consider the case of a noninjective MPS that is
invariant under a global symmetry. After blocking, the tensor
Ai corresponding to a noninjective MPS can always be written
as a direct sum of injective MPS blocks Ai ¼ ⨁αA

i
α. The

full MPS is hence a sum of these injective ones:
jψðAiÞi ¼ P

α jψðAi
αÞi. We assume w.l.o.g. that the non-

injective MPS Ai cannot be decomposed into smaller blocks
that are themselves invariant under the symmetry group G
under consideration; the global symmetry then permutes all
the blocks into each other. This situation happens precisely
when considering the uniform superposition of all ground
states of a symmetry broken system. The paradigmatic
example of such a system is given by the ferromagnetic
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Ising model H ¼ −
P

i ZiZiþ1 with global symmetry X⊗N,
where the symmetric ground state is the superposition of all
spins up and all spins down. This state can readily be
represented as the following MPS with bond dimension 2:
A↑ ¼ j0ih0j, A↓ ¼ j1ih1j. This so-called GHZ state exhibits
long-range order. Because the corresponding MPS is not
injective, the tensors Ai exhibit a nontrivial symmetryG on the
virtual level represented by the matrices that commute
simultaneously with all Ai (σz in this GHZ case). MPSs with
this property are called G-injective. Note that this symmetry is
dual to the physical symmetry that permutes the blocks
(represented by σx in the case under consideration).
For a given groupG, one can construct a particularly simple

G-injective MPS that is itself a renormalization group fixed
point (all nonzero eigenvalues of the corresponding transfer
matrix are equal to 1) and hence provides a natural generali-
zation of the GHZ to arbitrary groups. The physical symmetry
action is represented by the regular representation. It is defined
as follows by the MPS tensor with physical dimension jGj2
and virtual dimension jGj:

Aij ¼ 1

jGj
X
g∈G

X
α;β

ðLgÞαiðL̄gÞβjjαÞðβj; ð46Þ

where Lg denotes the left regular representation of the groupG
(Schuch, Cirac, and Perez-Garcia, 2010). For the case of Z2

symmetry, this can be written in the GHZ form by going to the
dual basis (related by the discrete Fourier transform) on both
physical and virtual levels and with a blocking of two sites.
Such a construction will be shown to be especially useful to
construct topological phases in higher dimensions.

b. SET phases

In many interesting physical applications, only part of the
total symmetry of the system is broken, while another part is
unbroken. From the point of view of MPSs, the broken
symmetry leads to permutations of the different MPS blocks,
while the unbroken one exhibits symmetries on the virtual
level as encountered in the discussion of injective MPSs. To
accommodate both of these symmetries, the corresponding
gauge representation Xg acquires the form of an induced
representation. Induced representations are a technique in
representation theory to lift representations Xh of a subgroup
H to representations of the full group G that we assume to be
finite. Given a subgroup H, we can consider one represen-
tative g̃α out of every left coset α ¼ g ·H; any element of G
can then uniquely be written as g̃α · hβ. This defines functions
ϕ1 and ϕ2 such that ga · g̃α ¼ g̃ϕ1ða;αÞ · hϕ2ða;αÞ. The induced
representation is then given by

Va ¼
X
α

jϕ1ða; αÞihαj ⊗ Xhϕ2ða;αÞ
.

This acts as the regular representation between the blocks,
but as an irrep within each individual block. This is indeed
precisely the symmetry exhibited by SET phases: the Xh
matrices form possibly projective representations of the
unbroken symmetry group, while the broken symmetries
yield permutations of the different blocks of the noninjective

MPS. Along the lines of the discussion on SPT phases, it can
now be established that two systems are in the same phase if
and only if the permutation representations ϕ1ða; αÞ are equal
to each other, and furthermore that the Xh must belong to the
same equivalence class of H2(H;Uð1Þ) (Schuch, Perez-
Garcia, and Cirac, 2011). An alternative approach based on
a 1D version of anyon condensation was explained by Garre-
Rubio, Iblisdir, and Perez-Garcia (2017).

c. Kramers and Lieb-Schultz-Mattis theorems

One of the most interesting aspects of quantum spin chains
is the interplay between symmetry and degeneracy. This has
led to a wealth of theorems, of which the Kramers theorem
(Kramers, 1930), the Lieb-Schultz-Mattis theorem Lieb,
Schultz, and Mattis (1961), and the Mermin-Wagner theorem
(Mermin and Wagner, 1966) are certainly the most familiar
and useful ones. We now discuss them in light of MPSs.
Kramers theorem dictates that eigenstates of time-reversal

invariant systems must be degenerate if the total spin of the
system is half integer. More precisely and in the case of a spin-
1/2 system, the theorem is valid whenever time reversal is
implemented as an antiunitary transformation in the form
jψi → ðσyÞ⊗N jψ̄i, as originally derived by Wigner; see
Bargmann (1954). In Sec. III.A.1, it was shown that no
normal uniform MPS can exhibit such a symmetry, as there is
a topological obstruction involving the global phase making it
impossible for a normal uniform MPS to accommodate an on-
site symmetry that acts projectively.
To deal with such a situation, we hence have to modify the

uniform MPS ansatz. In the case of a spin-1/2 system, this is
most easily done by introducing an ansatz with a two-site unit
cell as follows:

jψðA; BÞi ¼
X

TrðAi1Bi2Ai3Bi4 � � �Þji1iji2i � � � . ð47Þ

A careful analysis of the possibilities leads to the conclusion
that there is always a gauge such that Bi can be chosen as
equal to one of the following: Āi, ðσy ⊗ 1ÞĀi, or
ðσy ⊗ 1ÞĀiðσy ⊗ 1Þ. The other (degenerate) ground state is
then obtained either by shifting the MPS over one site or by
acting with the time-reversal symmetry on the state. The total
time-reversal-invariant uniform MPS can then be written as
the superposition of both, yielding a noninjective MPS with
tensors

�
0 Ai

Bi 0

�
. ð48Þ

Note that this MPS has no invariant subspaces but exhibits
the structure of a limit cycle; see Sec. IV.A. Only by blocking
two sites do we get a G-injective structure. Note also that a
translational-invariant breaking term in the Hamiltonian can
distinguish the two blocks from each another: the blocked
MPS Ãij ¼ AiBj is injective and is hence the unique ground
state of a local Hamiltonian. This is precisely the mechanism
in the Su-Schrieffer-Heeger model (Su, Schrieffer, and
Heeger, 1979), where a staggered field opens a gap and leads
to a unique ground state.
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Similarly, the Lieb-Schultz-Mattis theorem dictates that the
singlet ground state of an SUð2Þ-invariant quantum spin chain
whose unit cell transforms according to a half-integer repre-
sentation of SUð2Þ must be gapless or symmetry broken. This
theorem has been extended to the case of any half-integer
charge, for example, for the case of a Uð1Þ symmetry with one
charge per two unit cells (Oshikawa, Yamanaka, and Affleck,
1997). From the point of view of MPSs, this situation is
similar to the case of the Kramers theorem. As discussed in
Sec. III.A.1, the structure of Clebsch-Gordan coefficients
imposes the requirement that a half charge couples to one
half-integer and one integer charge. As a consequence, the
MPS will be exactly of the form of Eq. (48), with Bi related to
Ai by a transpose. As in the case of the Kramers theorem, it
follows that any MPS with such a symmetry will be non-
injective and will become G-injective after blocking two sites.
In the case of a spin-1/2 antiferromagnetic Heisenberg model,
the ground state is critical, and hence cannot be represented
exactly as a MPS. Nevertheless, DMRG methods are able to
reproduce the ground state energy to an astounding precision
with a MPS exhibiting SUð2Þ symmetry. What happens is that
the DMRG algorithm artificially introduces a small staggering
in the antiferromagnetic strength, a relevant perturbation
opening up a gap, breaking the translational invariance. In
the uniform case, we get a MPS of the form of Eq. (47), and
this representation is of central importance to capturing the
topologically nontrivial spinon excitations.
Finally, we say a few words about the Mermin-Wagner

theorem, which states that a continuous symmetry in a
quantum spin chain cannot be broken with an order parameter
(observable) that does not commute with the Hamiltonian. As
the unique ground state of a local gapped Hamiltonian can be
represented as an injective MPS, the impossibility of defining
a MPS with the relevant symmetries of the Hamiltonian
(including translational invariance) implies that the ground
state of that Hamiltonian has to be critical or has to break
translational invariance. If the ground state is critical, any
good variational (and hence injective) MPS approximation of
that ground state will have to break either the continuous
symmetry or the translational invariance; which one leads to a
better approximation depends on the respective scaling
exponents of the two perturbations.

d. Topological excitations: Domain walls and spinons

A direct implication of symmetry breaking is the emergence
of topological excitations. In the case of a G-injective MPS
such as the Ising model in the ferromagnetic phase, these are
domain wall excitations that tunnel between the different
blocks Ai

α of the MPS (Haegeman, Pirvu et al., 2012):

jψðXÞi ¼
X

� � �Aix−2
1 Aix−1

1 eikxXixAixþ1

2 � � � ⊗ jiyi; ð49Þ

where Xix is a “tunneling” tensor that couples the different
blocks Ai

1 and A
i
2 and the sum runs over all iy and all positions

x of X. Note that such excitations make sense only for an open
infinite system, and that the momentum k is defined only up to
a constant shift. This ansatz can be readily used to simulate
dispersion relations of the elementary excitations of symmetry
broken quantum spin chains, where the variational parameters

of these excitations are encoded in Xi, giving rise to an
effective Hamiltonian for the quasiparticle excitations. The
topological trivial excitations can then be understood as
scattering states of such domain walls. This structure also
emerges when studying excitations of critical systems using a
variational MPS approach: the MPS will slightly break the
symmetry, and the elementary excitations will then tunnel
from one ground state to the other one. This was observed
during a study of the elementary excitations of the Lieb-
Liniger model using cMPSs (Draxler et al., 2013).
A similar situation occurs when the translation symmetry is

broken instead of the on-site symmetry, as discussed in
relation to the Kramers and Lieb-Schultz-Mattis theorems.
The MPS description then acquires a � � �ABAB � � �,
� � �ABCABC � � �, or similar structure. The elementary exci-
tations become topological dislocations of the form
� � �ABABXAB � � �. If we consider the Heisenberg spin-1/2
antiferromagnet and its MPS description with such a two-site
unit cell, the emerging topological excitations are spinons: the
corresponding tensor Xi transforms according to a half-integer
object, as it intertwines between two MPS tensors that have
the same half-integer or integer spin index (Zauner-Stauber
et al., 2018). This is a topological feature as there is no local
operator that can create such an excitation. The MPS picture
hence gives a precise meaning to the spin in a spin wave, as
originally coined by Faddeev and Takhtajan (1981).
In general, the framework of MPS makes it clear how

elementary excitations can acquire fractionalized quantum
numbers. This is even more pronounced in the case of two
dimensions, where a PEPS provides a natural framework for
describing anyons.

4. Fermions and the Majorana chain

The case of virtual symmetries becomes particularly inter-
esting when symmetry breaking is prohibited due to the
existence of a superselection rule. This happens in the case of
a chain of fermions, where superpositions between states with
an even and odd number of fermions are ruled out. In contrast
to the situation of symmetry breaking discussed previously,
the fermion superselection rule has the power to stabilize a G-
injective GHZ state, as all corresponding symmetry broken
states jψðAαÞi would violate the superselection rule.
This scenario was first discussed by Kitaev (2001), and the

corresponding nontrivial Hamiltonian is called the Kitaev or
Majorana chain. He demonstrated that there are two distinct
phases for interacting fermionic spin chains, and hence that
there is no adiabatic gapped path between the trivial phase and
the Majorana phase. The ground state of the Kitaev chain is a
fermionic MPS with bond dimension 2. As discussed in
Sec. II.B.4, the natural language for a fermionic MPS is given
in terms of Z2 graded algebras. As in the case of SPT phases,
the Kitaev chain has edge modes that are exponentially
localized around the boundary, and this can be understood
in terms of the entanglement degrees of freedom that exhibit
the virtual symmetry. For a Kitaev chain on a ring with
periodic boundary conditions, the following ground state is
unique and has odd parity [see Eq. (10)]:
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jψi ¼
X
i1���iN

tr½YAi1Ai2 � � �AiN �ji1i ⊗g ji2i ⊗g � � � : ð50Þ

The tensors A0 ¼ 1 and A1 ¼ Y ¼ σy both commute with Y,
which forms the representation of the virtual symmetry, and
hence the MPS is noninjective and can be written as a sum of
two injective MPSs jψ1i þ jψ2i. The symmetry broken states
jψ ii, however, contain superpositions of an even and odd
number of fermions and hence are unphysical. As demon-
strated by Bultinck, Williamson et al. (2017), the uniqueness
of the ground state is guaranteed by the Z2 graded version of
injectivity. For a system with open boundary conditions, we
get a twofold degeneracy, as opposed to the fourfold one
found in the case of the AKLT model; the Hilbert space
“dimension” of a Majorana fermion is indeed

ffiffiffi
2

p
, as opposed

to 2. As a consequence, the Majorana chain has the unique
feature that the system with periodic boundary conditions can
be represented through a MPS with open boundary conditions
and bond dimension 2.
There is also an interesting interplay between time-reversal

symmetry and the Z2 superselection rule. As first demon-
strated by Fidkowski and Kitaev (2011), eight different SPT
phases emerge. This has to be contrasted with the spin case,
where time reversal gives rise to only two cases. These eight
phases can be distinguished by studying how the entangle-
ment degrees of freedom transform under the time-reversal
symmetry, and this gives rise to three different indices
(Bultinck, Williamson et al., 2017). The first index distin-
guishes the Majorana case (with a virtual Z2 symmetry) from
the trivial non-Majorana case (without such a symmetry). A
new Z2 index κ emerges according to the transformation rules
under conjugation of the tensors Āi ¼ eiχXAiX−1; as in the
case of spins, the index κ is witnessed as X̄ · X ¼ ð−1Þκ1. A
third Z2 index μ characterizes how the matrix Y, which
represents the center of the MPS algebra, transforms under the
gauge X: X · Y ¼ ð−1ÞμY · X. Those three Z2 indices give rise
to the Z8 classification of interacting fermionic spin chains,
and a representative of each of the eight classes can be
constructed by taking tensor products of Kitaev chains.
A wide variety of such fermionic SPT phases can be

constructed by repeating this construction for other groups
and symmetries. In analogy with the discussion on SET
phases, this can be achieved by making use of induced
representations, where the physical and purely virtual sym-
metries are combined in a natural way.

5. Gauge symmetries

The idea of lifting global symmetries to local ones by
introducing new gauge degrees of freedom has proven to be of
fundamental importance in the field of particle physics. It
turns out that a procedure similar to the minimal coupling
prescription can be implemented on the level of wave
functions whenever these are expressed in terms of MPSs
(Buyens et al., 2014; Kull et al., 2017): starting with a MPS
describing matter fields with a global symmetry Ug imple-
mented (projectively) on the virtual degrees of freedom as Xg,
it is straightforward to introduce new (gauge) degrees of
freedom and tensors on the edges that will lift the global
symmetries to local ones. To achieve this, we now consider a

tensor with physical degrees of freedom corresponding to the
group elements and define it as

Aa−1·b ¼
X
ab

jaÞja−1 · biðbj. ð51Þ

Acting with the left regular representation Lg on the
physical level is equivalent to acting with the right regular
representation Rg on jaÞ → jagÞ, and acting with the right
regular representation Rg on the physical level amounts to
acting with Rg−1 : ðbj → ðbg−1j. Note that this tensor provides
the natural generalization of the GHZ state in the dual basis for
any group.

6. Critical spin systems: MPO symmetries

In Sec. III.A.3, we discussed the difficulty of representing
ground states of critical quantum spin systems using injective
MPSs and hinted at the fact that there are topological obstruc-
tions to doing so. Whenever the continuous symmetries of a
translationally invariant quantum spin Hamiltonian cannot be
represented using a uniform injective MPS, the ground state of
that Hamiltonian has to either be critical and exhibit power law
decay of its correlations, or exhibit symmetry breaking. An
important consideration is the characterization of the nonlocal
symmetries emerging for such critical systems that precludes an
exact description of their ground states with finite bond
dimension MPSs. The formalism of MPOs provides exactly
that. Additionally, the MPO formalism provides a constructive
way of writing Hamiltonians with such a symmetry. It turns out
that the same symmetries are the ones responsible for the
existence of nonchiral topological order in 2þ 1 dimensions.
This is not surprising, as there is an intimate connection between
topological quantum field theory in 2þ 1 and conformal field
theory in 2þ 0 or 1þ 1 dimensions (Elitzur et al., 1989;Moore
and Seiberg, 1989; Witten, 1989; Fuchs, Runkel, and
Schweigert, 2002). This section therefore also provides the
mathematical background for studying topological gapped
systems in two dimensions.
The symmetries under consideration have been studied at

great length in the fields of quantum groups, integrability, and
conformal field theory. The picture that has emerged is that
critical spin systems exhibit “topological symmetries” or
anomalies that can be seen as lattice remnants of the full
conformal group (Aasen, Mong, and Fendley, 2016; Vanhove
et al., 2018). In the example of the critical quantum transverse
Ising model, this “symmetry” corresponds to the Kramers-
Wannier duality, and the scale-invariant symmetry operations
form a closed algebra as opposed to a group. Matrix product
operators are precisely the right framework to provide
representations of these algebras (Bultinck, Mariën et al.,
2017; Williamson, Bultinck, and Verstraete, 2017; Lootens
et al., 2021; Molnar et al., 2021; Şahinoğlu et al., 2021).

a. MPO algebras

Given a tensor
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in canonical form (in each direction) we can define the
algebras

with N the system size. We can identify allAðNÞ if the product
is independent of N. In such a case we say that the algebra

is a MPO algebra (Bultinck, Mariën et al., 2017; Molnar
et al., 2021).
A series of nontrivial consequences can be derived as

follows from this definition; for the precise mathematical
statements, see Lootens et al. (2021):

(1) Any MPO algebra can be decomposed into a finite set
of injective MPOs represented as Oa, with a taken
from a set of labels a ∈ C; these Oa form a ring with
non-negative integer fusion coefficients Nc

ab:
OaOb ¼

P
c N

c
abOc. We use the notation 2Fa to

describe the MPO tensors.
(2) The fundamental theorem of MPSs implies the exist-

ence of a fusion tensor 1F which satisfies the following
zipper equation:

If the labels a ∈ C correspond to the irreps of a group, then the
1F can be identified with the Clebsch-Gordan coefficients.

(3) The associativity of the zipper equation requires the
existence of a recoupling tensor 0F, which solely
depends on the set of labels a ∈ C satisfying the
following equation:

If the labels a ∈ C correspond to the irreps of a group and the
MPO tensors encode these irreps, then the 0F are equal to the
Racah or Wigner 6j symbols.

(4) Any recoupling tensor 0F has to satisfy the ubiquitous
algebraic pentagon equation. For given MPO fusion
rules Nc

ab, there are only a finite number of possible
inequivalent solutions to the pentagon equation. This
puts a significant restriction on the possible MPO
algebras, and puts its study squarely in the realm of
fusion categories.

(5) The scale invariance of the MPO algebra implies the
existence of a different set of fusion tensors 3F acting
on the physical degrees of freedom satisfying the
following pulling through equation:

It follows that there is also a dual algebra obtained by
switching the roles of physical and virtual indices of the
MPO tensor 2F; note that this is the same duality as the one in
Sec. II.E.2 describing renormalization group fixed points. This
vertical MPO algebra can now again be decomposed into its
injective blocks, thereby giving rise to a new set of discrete
labels α ∈ D and fusion coefficients Ñγ

αβ. This D will also
form a fusion category. As we make clear in Sec. III.B, we also
call 3F the PEPS tensor.

(6) Recoupling of the fusion tensors 3F implies the
existence of a set of fusion tensors 4F satisfying

(7) The tensor 4F satisfies the pentagon equation, with its
solutions completely determined by Ñk

ij.
The five objects iF and accompanying six consistency

equations appear in the field of tensor categories and form the
defining equations of a bimodule category. Such categories
have been studied extensively in the context of describing
boundaries between systems exhibiting topological quantum
order (Kitaev and Kong, 2012) but have a completely different
meaning here.
A ðC;DÞ bimodule category M has a new set of labels

A; B;… ∈ M, which represents the entanglement degrees of
freedom. Therefore, the choice of this bimodule category
determines the explicit representation of the MPO, fusion, or
PEPS tensor. We can then identify the fusion, MPO, and PEPS
tensors as follows (note that all tensor legs are labeled as triple
indices belonging to one of the following C,M, orD, some of
which might be trivial):

For bimodule categories that are invertible, the categories C
and D are Morita equivalent; this requires their Drinfeld
doubles or Drinfeld centers to be equivalent. As described in
Sec. III.B.3, this Drinfeld center has a tangible physical
meaning, as it represents the output fusion category of the
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anyon excitations in topological phases of matter described by
string nets defined by the input category D; equivalently, it
describes the primary fields for lattice realizations of CFTs. A
particularly simple choice of an invertible bimodule category
is obtained by choosing C ¼ D ¼ M; in that case, all iF
symbols are equal and the six pentagon equations are
equivalent (Bultinck, Mariën et al., 2017).
As an alternative to the categorical description that arises

naturally from the fundamental theorem of MPSs, an equiv-
alent formulation of MPO algebras in terms of weak Hopf
algebras was given by Molnar et al. (2021), where the size
independence of the MPO algebra was formalized in the form
of the following comultiplication

This equivalence makes the seminal result of Hayashi (1999)
connecting fusion categories with weak Hopf algebras
explicit. The additional known connection with subfactor
theory was also made explicit for MPO algebras by
Kawahigashi (2020).
The central pulling through equation can be rephrased as

follows completely in terms of the full MPO algebra (Molnar
et al., 2021; Şahinoğlu et al., 2021):

ð52Þ

Here λ is an extra block-diagonal tensor that is a direct sum of
identities acting on the invariant subspaces of the MPO
tensors, and weighted with the quantum dimensions of
categorical objects corresponding to related MPO-injective
blocks. Moreover, reversing the arrows as in the right and
bottom tensors means taking the inverse representation
(Bultinck, Mariën et al., 2017).
We now illustrate this with an example in which C

represents the labels of a group g ∈ G and α ∈ D stands
for the labels of its irreps Dα, with each α appearing as many
times as its dimension.M can then be chosen to be trivial, and
the injective MPOs Og are represented by the MPO tensors

Ag ¼
X
αij

DαðgÞijjgÞðgj ⊗ ji; αihj; αj;

where we continue using the notation established in
Sec. II.B.1: curved kets and bras [j·Þ] correspond to the
virtual level, and standard ones (j·i) correspond to the
physical one.
Up to a unitary transformation on the physical indices, this

is equal to Ag ¼ jgÞðgj ⊗ Lg, with Lg the regular representa-
tion, and leads to the representation for quantum doubles used
by Schuch, Cirac, and Perez-Garcia (2010). The G-injective
MPO is then defined as [compare this to Eq. (46)]

1

jGj
X
g∈G

L⊗N
g . ð53Þ

The corresponding pulling through equation (52) then
becomes equal to

L⊗2
h ⊗ ð1⊗2Þ

X
g

L⊗2
g ⊗ L⊗2

g−1

¼
�X

g

L⊗2
g ⊗ L⊗2

g−1

�
ð1⊗2Þ ⊗ L⊗2

h ;

which is trivially true.
When we step up one level of sophistication, MPO algebras

can accommodate 3-cocycles corresponding to nontrivial
solutions to the pentagon equations and requiring nontrivial
entanglement degrees of freedom ∈ M (Buerschaper, 2014;
Williamson et al., 2016). The most general MPO algebras
form representations of all bimodule categories with a
spherical structure (Lootens et al., 2021).

b. MPO symmetries

The pulling through equation for the 2F tensors can be used
as follows to define operators that commute with the full MPO
algebra:

If these tensors can be made Hermitian, they define a
Hamiltonian on a one-dimensional lattice by taking the sum
of their translations; the corresponding full Hamiltonian com-
mutes with the complete MPO algebra. All so-called anyonic
spin chains (Gils et al., 2009) can be constructed in thisway, and
the MPO symmetries hence realize the corresponding topo-
logical symmetries.
We now illustrate this with two simple examples. If one

considers the two unitary solutions of the pentagon equations
for the fusion rules corresponding to the group Z2, one of them
corresponds to a nontrivial 3-cocycle. The local Hamiltonian
commuting with the corresponding MPO is precisely the
cluster state Hamiltonian at the critical value of the magnetic
field (Bridgeman and Williamson, 2017), which is equivalent
to the XY model (Lahtinen and Ardonne, 2015). Similarly, if
one starts with the Ising fusion rules, one obtains the critical
Isingmodel in a transversemagnetic field, and for the Fibonacci
fusion rules, the critical “golden chain” Hamiltonian emerges
(Vanhove et al., 2018; Lootens, Vanhove, andVerstraete, 2019).
In a similar vein, it is possible to construct classical

statistical mechanical lattice models using this construction;
the construction gives rise to the restricted solid-on-solid
models of Andrews, Baxter, and Forester (Andrews, Baxter,
and Forrester, 1984; Aasen, Mong, and Fendley, 2016), which
are known to yield lattice critical systems corresponding to all
CFTs in the minimal series.
This suggests that the MPO symmetry is the one that is

responsible for criticality: it emerges at the critical point and
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provides a topological obstruction for a normal or injective
MPS to have such a symmetry. Strictly speaking, it is not a
symmetry, as the MPOs do not have to be invertible; e.g., in
the case of the Ising model, the MPO implementing the
Kramers-Wannier duality is not invertible, and this is a
consequence of the fact that the critical theory must be
symmetric with respect to both the local Z2 symmetry and
the dual disorder symmetry (Kadanoff and Ceva, 1971), which
anticommute. Furthermore, it can be shown that a perturbation
that commutes with the full MPO algebra and keeps trans-
lational invariance is generically prohibited from opening a
gap (Buican and Gromov, 2017). However, MPO symmetries
are not enough to guarantee criticality, as MPOs encode the
topological features of critical systems only; extra constraints
related to the geometry, the so-called discrete holomorphicity,
have to be imposed and lead to a lattice version of the
conformal symmetry (Fendley, 2021).
For this discussion, we now demonstrate that a uniform

normal MPS cannot exhibit a MPO symmetry obtained from a
nontrivial solution of the pentagon equations. For the group
case of 3-cocycles, this was originally proven by Chen et al.
(2013) [see also Williamson et al. (2016) and Molnar, Ge et al.
(2018)], and their proof can be readily extended to the general
case of MPO algebras. This is proven by contradiction and is
based on the fundamental theorem. We now sketch the proof.
Ifwe first actwith aMPOOα on an injectiveMPS jψðAÞi and

it is proportional to jψðAÞi, the fundamental theorem implies the
existence of an intertwiner Vα that reduces the local tensors of
the MPS OαjψðAÞi back those of the original one:

If we act with two MPOs, then there are two inequivalent ways
of reducing to the original one: either we first reduce the MPS
andOα viaVα, followed byVβ, or we first reduce the twoMPOs
with the intertwiner F:

Note that, in the case of multiple fusion channels γ, it is
immaterial which fusion channel is taken as long as it does not
give zero. It was proven by Molnar, Ge et al. (2018) in their
Theorem22 that these twoways of reducing to an injectiveMPS
must be equivalent up to a scalar λðα; β; γÞ:

We now act with three MPOs on the supposed injective
MPSs, which are all symmetry operators. As in the defining
equation of the pentagon equation, there are two different
ways of changing the order of the reductions, and they have to
be equivalent. It follows that

λðα; β; aÞ · λða; γ; bÞ
λðβ; γ; cÞ · λðα; c; bÞ ¼ Fαβγ

bac.

There is, however, a topological obstruction to achieve this: a
nontrivial solution F of the pentagon equation can never be a
simple product of functions that act exactly as gauge trans-
forms on these same F symbols. In the case of groups and
3-cocycles, the left-hand side corresponds exactly to the
coboundary and enforces the F symbol to be trivial. This
is a contradiction and proves that the MPS cannot be injective.
As a consequence, any Hamiltonian with a MPO symmetry
will either be critical or have a symmetry broken ground
state space.
This theorem is powerful and is a clear demonstration of the

fact that MPO symmetries yield a Lieb-Schultz-Mattis-like
proof for topological symmetries, as opposed to continuous
ones. Note that the proof assumed no fusion multiplicities: it is
all Nc

ab ≤ 1, and counterexamples can be constructed if this is
not the case. Note also that a nontrivial MPO symmetry does
not prevent a tensor network description for density matrices,
as the renormalization group fixed points discussed in
Sec. II.E are of that exact form. Similarly, it is possible to
construct MERAs with nontrivial MPO symmetries, and
hence allow for the description of critical phases with exact
topological symmetries (Bridgeman and Williamson, 2017).
Those two facts turn out to be intimately related to each other,
as the entanglement Hamiltonian of a MERA is of the exact
MPO form (Van Acoleyen et al., 2020).
The fact that local Hamiltonians that commute with non-

trivial MPO symmetries necessarily have to be critical or
symmetry broken has a significant influence on the edge
modes of systems exhibiting topological quantum order in two
dimensions, and this is the origin of the CFT-TQFT corre-
spondence and anomalies on those edges. This is discussed in
Sec. III.B. The MPO picture for describing critical quantum
spin systems transcends to the statistical mechanical world, in
which the MPOs become Wilson-loop-type operators that
generalize the disorder operators introduced in the context of the
2D Ising model given by Kadanoff and Ceva (1971). A
systematic study of these MPO symmetries allows one to
represent all fields, including the chiral ones, in terms of the
so-called tube algebra, which is aMPO algebra representing the
Drinfeld center of the input category. Many of the interesting
properties of conformal field theories can, as such, be trans-
muted to the lattice, including notions like orbifolding and the
coset construction (Lootens, Vanhove, and Verstraete, 2019).

B. Symmetries in two dimensions: PEPSs

The full power of symmetries in tensor networks is revealed
in the description of quantum many-body systems in two
dimensions by PEPSs, in which different phases of matter can
be distinguished by the different representations of these
symmetries acting on the local PEPS tensors. As such, tensor
networks provide local order parameters for topological
phases of matter as a direct manifestation of the entanglement
properties of such systems. The most general language for
describing these symmetries is in terms of matrix product
operators, which play the role of Wilson loops on the virtual
level. These MPOs provide a unifying framework both for
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describing the entanglement structure of the ground state
manifold and for characterizing the elementary excitations in
these systems.

1. Symmetric PEPSs

The arena of topological quantum phases in two dimensions
is much richer than the one for quantum spin chains. From the
tensor network point of view, this can be understood from the
fact that tensors have a much richer but also more complicated
structure than matrices. The most general form of the
fundamental theorem of MPSs, upon which much of
Sec. III.A was built, does not have an easy generalization
to two dimensions, and we therefore concentrate here on the
cases for which the symmetries on the virtual level can be
described in terms of tensor products of local operators or of
matrix product operators.
We distinguish among five different situations: (a) the case

of injective PEPSs describing gapped systems with a unique
ground state, (b) noninjective PEPSs as unique ground states
of gapped SPT phases, (c) noninjective PEPSs as ground
states of systems exhibiting genuine topological order,
(d) PEPS descriptions of SET phases, and (e) chiral phases.

a. Injective PEPSs

Global symmetries of injective PEPSs behave essentially
equivalently to global symmetries in the MPS case: the
fundamental theorem of injective PEPSs (Sec. IV.B) dictates
that two uniform PEPSs are equal if and only if they are
related by a gauge transform on the virtual level:

X
j

UijðgÞAj
αβγδ

¼ eiϕ
X
α0β0γ0δ0

XðgÞαα0XðgÞ−1ββ0YðgÞγγ0YðgÞ−1δδ0Ai
α0β0γ0δ0 . ð54Þ

As in the 1D case, XðgÞ and YðgÞ form possibly projective
representations of the group G characterizing the global
symmetries of the system. The fact that a PEPS tensor
exhibiting this feature has a global symmetry follows immedi-
ately from the fact that all these gauge transformations cancel
each other pairwise. The surprising content of the fundamental
theorem is that it is also a necessary condition. This again
implies that the PEPS tensor can be decomposed as a product
of Clebsch-Gordan coefficients; this has already been used
extensively in numerical PEPS algorithms. Note that different
projective representations do not necessarily lead to different
phases if one does not impose translational invariance, as
blocking several sites together allows one to relate different
projective representations to each other.
The canonical example for an injective PEPS with global

symmetries is the cluster state (Raussendorf and Briegel,
2001) on the honeycomb lattice, which is the unique ground
state of the commuting parent Hamiltonian

P
ijkl XiZjZkZl of

qubits where j, k, and l are the nearest neighbors of site i. This
state has the following simple PEPS representation (Verstraete
and Cirac, 2004b):

with

This exhibits the global symmetry Y⊗N, as it is simply the
product of all commuting terms of the Hamiltonian. To use the
fundamental theorem of PEPSs, we first block two sites of this
PEPS so as to make it uniform, and it can then be readily
checked to see that the local physical symmetry is equivalent
to acting on all virtual legs with the same Y on all four legs.
This cluster state is interesting from the point of view of
quantum information theory, as it allows one to perform a
universal quantum computation by implementing local mea-
surements on its qubits (Raussendorf and Briegel, 2001). The
underlying mechanism that allows for this noteworthy feature
is the fact that local measurements on the physical qubits
effectively teleport the virtual degrees of freedom, and in the
process implement quantum gates (Verstraete and Cirac,
2004b). A related mechanism underlies the concept of
topological quantum computation by braiding anyons, which
can be understood in terms of quantum circuits on the
entanglement degrees of freedom of the PEPS describing
the topological phase.
Note that we had to block sites of the cluster state to get a

uniform PEPS description. From the point of view of space
group symmetries, this is not wholly satisfactory, as it leads to
a loss of symmetry in the system. It turns out that the full space
group symmetry can be done justice for general PEPSs by
including matrices that act only on the virtual edges connect-
ing the vertices of the PEPS. By imposing translational
symmetry, it will then follow that this decorated PEPS will
be uniform and exhibit all lattice symmetries (Jiang and
Ran, 2017).

b. Noninjective PEPSs: SPT phases

Injective PEPSs on a square lattice are rare, as the injectivity
condition is typically violated at the corners of the region
of interest. Unlike in the MPS case, however, noninjective
PEPSs can still be unique ground states of local gapped
Hamiltonians. The 2D AKLT model on the square lattice is
such an example. The noninjectivity gives rise to the following
much more interesting algebraic structure in the form of a
family of matrix product operator symmetries Og labeled by
the group elements of the global symmetry (Williamson et al.,
2016; Molnar, Ge et al., 2018):
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ð55Þ

This local condition is sufficient for the complete PEPS to
be invariant under the global symmetry U⊗NðgÞ in the
thermodynamic limit.
To be consistent, the MPOs Og should form a representa-

tion of the groupG:Og ·Oh ¼ Ogh. The fundamental theorem
of MPSs allows one to translate this condition into a local
condition for the tensors defining these MPOs, as two MPOs
are equal to each other if and only if there is an intertwiner (or
fusion tensor) connecting them to each other:

The associativity condition for these fusion tensors then
leads to the condition that the elements both of these MPOs
and of the intertwiners can be identified with the elements of a
3-cocycle determined by the third cohomology group
H3(G;Uð1Þ). This situation is equivalent to the one discussed
in Sec. III.A.6, but for the special case of the fusion algebra
being a group. The third cohomology group is well known to
classify symmetry-protected topological phases in two dimen-
sions (Chen, Liu, and Wen, 2011), and PEPSs hence provide a
natural realization of such phases.
As in the case of 2-cocycles, there is a systematic way of

writing PEPS tensors that exhibit such MPO symmetries
(Williamson et al., 2016). Indeed, the pulling through
equation (55) can, componentswise, be identified with the
3-cocycle condition.
The canonical example of a nontrivial SPTPEPSwasderived

by Chen, Liu, and Wen (2011) as the CZX state (see
Appendix 4.a) with global Z2 symmetry, for which the virtual
MPO symmetry is represented by the following two matrix
product unitaries acting on qubits: O1 ¼ 1, OZ ¼
⊗i CZi;iþ1 ⊗⊗i Xi. Here the commuting matrices CZi;iþ1 ¼P

ijð−1Þi·jjijihijj represent diagonal controlled-Z gates. OZ

hasbonddimension2,but thesquareof it isnot incanonical form
and has a one-dimensional invariant subspace equal toO1 ¼ 1.
These ideas were worked out by Buerschaper (2014),

Williamson et al. (2016), and Molnar, Ge et al. (2018). It
was demonstrated that this notion of MPO-injectivity (also
called semi-injective) is sufficient for guaranteeing the unique-
ness of the ground state of the corresponding parent
Hamiltonian, and that the corresponding PEPSs fully char-
acterize short-range entangled SPT phases.

c. Virtual symmetries

One of the most striking features of two-dimensional
quantum spin systems is the fact that there are topological
phases ofmatter that are stable under any perturbations (Bravyi,
Hastings, and Michalakis, 2010; Klich, 2010). This robustness
is a consequence of its nontrivial entanglement structure, which
is reflected in the behavior of the topological entanglement
entropy and its edge modes, and in the anyonic statistics of its

elementary excitations. Tensor networks provide a natural
language for describing all those features in terms of the local
symmetries of the tensors involved.
The fact that there is a connection between topological

phases of matter and symmetries in the tensors has its roots in
the pioneering work of Gu, Levin, and Wen (2008) and was
described by Schuch, Cirac, and Perez-Garcia (2010). There it
was shown that the symmetries in the virtual indices of a PEPS
characterize its topological order. Specifically, a PEPS is
constructed for each finite group G, where the local tensor is
given as follows by the G-injective MPO (53):

ð56Þ

where input indices correspond to the virtual degrees of
freedom and output indices to the physical Hilbert space.
Strictly speaking, the arrows on the right and bottom tensors
must be reversed to make the arrows match in the PEPS
construction. In this case, reversing the arrows simply
amounts to taking the inverse representation. The PEPS
constructed in this way is called G-injective.
The symmetries of the tensor [Eq. (52)] allow one to easily

recover all topological invariants (topological entanglement
entropy, ground state degeneracy, anyonic statistics, etc.) and
correspond to the phase of the quantum double models of
Kitaev (2003). It is important to notice that, by acting with an
invertible operator on the physical index, one can perturb the
tensor and induce finite correlation lengths and, for large
perturbations, topological phase transitions. In this sense,
G-injective PEPSs allow one to recover not only the quantum
double model but also all the associated phases (see
Sec. II.C.2) and the phase transitions between them. They
also allow one to study particularly relevant models that are
not renormalization fixed points such as the nearest-neighbor
RVB state (Anderson, 1973), which is an SUð2Þ invariant spin
liquid when defined on a frustrated 2D lattice. As explained by
Verstraete et al. (2006), this RVB has a simple description in
terms of a PEPS with bond dimension 3. As shown by Schuch
et al. (2012), it exhibits a nontrivial purely virtual Z2

symmetry, and it can be adiabatically continued to the toric
code phase without crossing a phase transition. Indeed, thanks
to the PEPS approach, a parent Hamiltonian was derived for it
(Schuch et al., 2012; Zhou, Wildeboer, and Seidel, 2014).
The RVB state is an example where the symmetries in the

virtual indices arise naturally from physical symmetry con-
straints. For example, if a global SUð2Þ spin-1/2 symmetry is
encoded locally in the tensor

ð57Þ

then the virtual symmetries must necessarily be reducible and
contain both integer and half-integer representations, such as
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1=2 ⊕ 0, and the tensor must be supported on the sector
containing an odd number of half-integer ones. This enforces a
Z2 virtual symmetry in the tensor. This effect is simply a
version in the context of PEPSs of Hastings’s 2D version of
the Lieb-Schultz-Mattis theorem (Hastings, 2004a).
The G-injective construction was generalized by

Buerschaper (2014) to twisted quantum double models
(twisted G-injective PEPSs) and to the case of an arbitrary
fusion category by Şahinoğlu et al. (2021), under the name
MPO-injective PEPSs. Those MPO constructions were uni-
fied by invoking the structure of a bimodule category by
Lootens et al. (2021).
For the case of topological phases, the pulling through

equation (52) becomes similar to the case of SPT phases but
without a physical action:

ð58Þ

As discussed in Sec. III.A.6, the bimodule categories define
MPO algebras and PEPS tensors satisfying the pulling
through equations through a set of six coupled pentagon
equations. This construction starts with two Morita-equivalent
fusion categories C and D labeling the different MPO tensors
and the degrees of freedom of the physical Hilbert space,
respectively. The ðC;DÞ-bimodule category M then repre-
sents the entanglement degrees of freedom of the PEPS tensor
depending onD andM. The PEPS tensor is represented by 3F
of Sec. III.A.6, while the MPO tensor corresponds to 2F. For
the case of quantum doubles, D is given by the group G and C
can be chosen to be equal either to the irreps of that group, for
which M is trivial, or to G, in which case C ¼ D ¼ M and
nontrivial 3-cocycles become possible.
The same bimodule categorical objects can also be used to

define intertwiners between different PEPS realizations of the
same state jψi (Lootens et al., 2021); the fact that such
realizations exist is a consequence of the fact that the category
D corresponding to the physical degrees of freedom can have
several Morita-equivalent categories Ci, each with a compat-
ible Mi; different M lead to completely different but locally
equivalent PEPS descriptions such as PEPSD;M1

and
PEPSD;M2

. Translating the seminal work of Kitaev and
Kong (2012) into tensor network language, these intertwiners
can again be described in terms of MPOs. It is then possible to
construct intertwiners relating different physical and/or virtual
tensor network representations of quantum doubles and string
nets to each other. In particular, the mapping of quantum
double models to string-net tensor network descriptions can
be readily completed using such MPOs; see also Buerschaper
and Aguado (2009) and Kádár, Marzuoli, and Rasetti (2010).

d. SET phases

As in the one-dimensional case, virtual and physical
symmetries can be combined in a nontrivial way. The
corresponding phases are called SET phases. Such systems
have been studied at length by Barkeshli et al. (2019), and the
mathematical framework to describe the possible phases is
given by graded unitary fusion category theory. Such graded

fusion categories can again be realized within the context of
matrix product operators, and the nonchiral case gives rise to a
PEPS description where the MPO symmetry reflects this
grading (Williamson, Bultinck, and Verstraete, 2017).
Analogously to SPT phases, string order parameters can be
defined to detect the symmetry fractionalization pattern of
SET phases that also involve swaps between distant regions;
see Garre-Rubio and Iblisdir (2019) for details.
Graded fusion categories also allow one to characterize

topological phases for fermionic systems in terms of super-
pivotal categories (Aasen, Lake, and Walker, 2019). By
adopting the language of graded tensor networks, it is possible
to realize these phases in terms of fermionic PEPS (Bultinck,
Williamson et al., 2018), for which the Majorana defects can
be explicitly constructed. In addition, the generalization of the
toric code to the fermionic case (Gu, Wang, and Wen, 2014)
can be readily understood in terms of these graded tensor
networks.

e. Chiral phases

Phases with chiral order (Bernevig and Hughes, 2013)
exhibit a number of phenomena that distinguish them from the
previously discussed nonchiral topologically ordered states. In
particular, they exhibit protected gapless edge modes char-
acterized by a chiral CFT, whose spectrum is matched by the
entanglement spectrum (Li and Haldane, 2008). These phases
can be protected either by the fermionic parity superselection
rule or by an additional symmetry, such as time reversal, and
can show up in both free fermion and interacting models, most
notably Kitaev’s honeycomb model (Kitaev, 2006). However,
some of the properties of chiral systems [such as the gapless
nature of the entanglement spectrum, which is suggestive of
some kind of “nonrenormalizability,” or the fact that their
Wannier functions cannot be locally supported (Kohn, 1973)]
suggest that it might not be possible to describe them
as PEPSs.
As it turns out, PEPS can describe noninteracting fermionic

systems with chiral order exactly (Wahl et al., 2013; Dubail
and Read, 2015); an example is given in the Appendix. The
resulting free fermion PEPSs are ground states of a flatband
Hamiltonian with algebraically decaying interactions whose
bands have nonzero Chern number; i.e., they exhibit nontrivial
chiral order. The simplest of these examples is a topological
superconductor (protected by fermionic parity); more com-
plex examples such as topological insulators can be con-
structed from two or more copies thereof. The flatband
Hamiltonian exhibits gapless chiral edge modes and a match-
ing chiral entanglement spectrum, and it exhibits correlations
(and thus interactions) that decay as 1=r3 (Wahl et al., 2014).
The PEPS tensor exhibits a virtual symmetry characterized by
an unoccupied mode. As shown by Wahl et al. (2014), this
unoccupied mode is stable under blocking, and thus gives rise
to an empty mode formed jointly by one Majorana mode on
both the left and right boundaries at a given momentum k, in
analogy with the two Majorana edge modes in the Kitaev
chain. These edge modes exactly match the point where the
edge mode is absorbed into the bulk. Systems with a higher
Chern number (and a higher number of gapless edge modes)
correspondingly exhibit a larger number of such symmetries.
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Moreover, the same symmetry is needed to construct the
ground states on the torus. As in the case of the Majorana
chain [Eq. (50)], antiperiodic boundary conditions are
required to describe the chiral PEPS wave function.
Numerical findings suggest that PEPSs can also describe

interacting chiral phases. One possibility for constructing such
interacting models is by Gutzwiller projecting several copies
of a noninteracting topological superconductor or insulator, a
construction for which field theory predicts an interacting
topological model; numerical study of two copies indeed
reveals entanglement spectra consistent with a chiral
Kalmeyer-Laughlin state but, at the same time, is suggestive
of critical correlations (Yang et al., 2015). An alternative
approach put forth by Poilblanc, Cirac, and Schuch (2015) and
Poilblanc, Schuch, and Affleck (2016) is to construct a PEPS
from tensors A, which themselves possess a “chiral sym-
metry” (that is, they are invariant under combined reflection
and conjugation). It is found that the resulting PEPSs exhibit
entanglement spectra consistent with chiral theories [depend-
ing on the additional symmetry, such as SUð2Þ and SUð3Þ,
encoded in the tensor], as well as algebraic correlations
(Poilblanc, Cirac, and Schuch, 2015; Poilblanc, Schuch,
and Affleck, 2016; Haegeman and Verstraete, 2017; Chen
et al., 2018; Hackenbroich, Sterdyniak, and Schuch, 2018;
Chen et al., 2020). In all these cases, a limitation to their
analytical study is in the fact that both entanglement spectra
and correlations can be determined only numerically, leaving
an uncertainty in distinguishing a truly chiral entanglement
spectrum from a nonchiral one with a small gap in the
entanglement spectrum (and significantly different velocities
of the counterpropagating chiral theories), as well as critical
correlations from a large but finite correlation length
(Hackenbroich, Sterdyniak, and Schuch, 2018).
While PEPSs can represent states with chiral order, there

are limitations to their ability to exactly capture chiral systems.
As shown by Dubail and Read (2015) and Read (2017),
PEPSs cannot capture noninteracting (either intrinsic or
symmetry-protected) chiral states with exponentially decaying
correlations exactly, and Lemm and Mozgunov (2019)
showed that the existence of a gapped parent Hamiltonian
with periodic boundaries implies an open boundary spectrum
inconsistent with chiral edge modes with linear dispersion (see
Sec. IV.C.2 for a precise statement), providing a partial no-go
result also for interacting chiral phases.
Despite these no-go theorems, the approximation results for

the faithful approximations of low-energy states of gapped
Hamiltonians (with a suitable density of states) still apply
(Hastings, 2006; Molnar et al., 2015), and it has been found
numerically that PEPSs are well suited to approximate ground
and thermal states of both noninteracting and interacting
Hamiltonians and allow one to simultaneously approximate
chiral entanglement spectra and exponentially decaying cor-
relations on the relevant scales (Wahl et al., 2013; Poilblanc,
2017; Chen et al., 2018, 2020).

2. Entanglement spectrum and edge Modes

a. Entanglement Hamiltonians

One of the defining properties of PEPSs is the fact that the
tensors describe how entanglement is routed throughout the

system. In practice, tensor networks implement an effective
holographic dimensional reduction of the physical degrees of
freedom to a one-dimensional system of entanglement degrees
of freedom: all correlations in the PEPS are determined by the
fixed points or entanglement Hamiltonians of the 1D transfer
matrices of the PEPS. The local MPO symmetries of the
tensors immediately translate to MPO symmetries of these
transfer matrices. As we have discussed, the symmetries on
the virtual level can be much richer than the ones on the
physical level, and for topological ordered systems amount to
nontrivial MPOs. The results reported in Sec. III.A.6 then
immediately imply that the corresponding entanglement
Hamiltonians ought to be critical, hence realizing an explicit
tensor network analog of the fingerprints of conformal field
theory in the entanglement spectrum (Dubail, Read, and
Rezayi, 2012; Qi, Katsura, and Ludwig, 2012).
The situation is slightly different for SPT phases than for

topological phases. In the former case, the transfer matrix has
the symmetry ½Og ⊗ Ōg; T� ¼ 0 and has a unique fixed point
jρi that hence inherits this symmetry OgρO

†
g ¼ ρ. As first

observed by Chen, Liu, and Wen (2011), whenever the
symmetry on the entanglement degrees of freedom is realized
through a nontrivial cocycle, the corresponding entanglement
Hamiltonian ρ ¼ expð−βHEÞ is critical or symmetry broken.
Note that whenever the SPT ground state is a renormalization
group fixed point with zero correlation length, the corre-
sponding temperature is β ¼ 0 and hence one has to perturb
the system to witness HE (Bultinck, Vanhove et al., 2018).
For the case of a genuine topological phase, the MPO

symmetries do not have to come in pairs, and any off-diagonal
combination is also allowed: ½Oa ⊗ Ōb; T� ¼ 0. This has
interesting consequences for the fixed-point structure of the
corresponding transfer matrix T: whenever ρ is a fixed point,
OaρO

†
b is also a fixed point for any choices of a and b. This

degeneracy of the fixed points follows from the noninjectivity
of the PEPS and is a clear signature of topological order
(Schuch et al., 2013). Given N independent MPO symmetries
Oa, one would naively think that there will beN2 distinct fixed
points. This is not the case, however, as there are exactly N
fixed points, implying that the entanglement structure exhibits
a subtle type of symmetry breaking. Following Haegeman
et al. (2015) and Duivenvoorden et al. (2017), we can
understand this from the necessity of having anyons in the
system. If the degeneracy is N2, then the anyons are confined,
and if the degeneracy is 1 all anyons are condensed. Only the
case of N different fixed points provides the perfect balance
and leads to genuine topological order. A quantum phase
transition occurs whenever this fixed-point structure changes.
This result is in complete accordance with the principal

formula for topological entanglement entropy (Kitaev and
Preskill, 2006; Levin and Wen, 2006), which states that the
entanglement entropy of a certain region in the bulk has a
logðDqÞ correction, with Dq the total quantum dimension of
the underlying fusion algebra. This is a direct consequence of
the fact that the edges of the block under consideration do not
live in the full Hilbert space but are instead constrained to the
MPO-invariant subspace, whose dimension is a constant
factor Dq lower than the full one.
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b. Edge modes

A notable feature of PEPSs is the fact that it provides a
Hilbert space with a tensor product structure on the edge of a
PEPS with open boundary conditions: these are precisely the
bonds or entanglement degrees of freedom that are uncon-
nected, and hence span a Hilbert space DL with D the bond
dimension and L the number of uncoupled bonds (Yang et al.,
2014); see Sec. II.D.3. Note that these degrees of freedom
cannot be directly accessed, as they are virtual, and also that
Hamiltonian terms acting on the physical boundary of the
system will induce an effective Hamiltonian on that Hilbert
space. Assuming that the bulk is gapped, low-energy modes
can emerge on that virtual Hilbert space, and an important task
is to study the spectrum and features of these edge excitations.
If the system exhibits nontrivial symmetries, as in the case of
topological order or SPT phases, then an interesting situation
occurs: when the effective Hilbert space of the spin chain is
projected onto the symmetric or invariant subspace of the
MPO symmetries, nonlocal features emerge that are impos-
sible for normal spin chains. In the language of quantum field
theory, the MPOs induce anomalies in the boundary.
We first discuss the case of SPT phases. Acting with the

physical symmetry U⊗N
g on the wave function induces a

nontrivial MPO-symmetry action on the boundary. The
effective Hamiltonian of the edge modes is hence MPO
symmetric, and, as discussed in Sec. III.A.6, must therefore
be either symmetry breaking or critical. Even in the sym-
metry-breaking case, there will be a ground state with all
symmetries, but it will be realized as a highly entangled GHZ
or cat state. This is equivalent to the situation in the 1D AKLT
model, where the only SOð3Þ-invariant state is one in which
the dangling spins at the ends form a singlet. The ground state
of any SPT state with open boundary conditions can therefore
not be unique and, from the physics point of view, symmetry
breaking will occur.
The situation is different for the topological case, where the

bulk symmetry is purely virtual. This implies that the Hilbert
space of the edge modes has to be projected on the MPO-
symmetric subspace. If Ps is the projector on the Og-invariant
subspace, then the Hamiltonian PsHedgePs can be gapped and
has a unique ground state (Yang et al., 2014). If the MPO
symmetry is nontrivial, that ground state must be MPO
symmetric and hence has to be a GHZ state. The various
components in this GHZ are related to each other through their
interactions with Og. This is an interesting phenomenon: the
physics on the edge induces stable highly entangled states that
would be impossible to create in a genuine one-dimensional
system. For the case of quantum doubles, twisted quantum
doubles, and string nets, the boundaries can always be gapped,
a fact that is known to follow from the feature that the bulk
theory of these systems always yields a Lagrangian subgroup
of the anyons (Kitaev and Kong, 2012; Levin, 2013): the set of
anyons in the bulk can be divided into two sets, one in which
every anyon has trivial statistics with respect to each other
one, and a second subset for which every one exhibits
nontrivial statistics with at least one of the first set. As we
show in Sec. III.B.3, anyons are described by idempotents of
an extended MPO algebra and always satisfy this criterion.
The corresponding ground state will be of GHZ type or not

depending on whether the underlying MPO algebra is trivial
(as in the case of quantum doubles) or not (as in the cases of
twisted quantum doubles and string nets).

3. Topological sectors and anyons

Two defining features of topological phases are the facts
that the ground state degeneracy depends on the genus of the
manifold on which the spins are defined, and that the
elementary excitations are anyons with nontrivial statistics.
The fact that both of these features are intimately connected
with each other is made explicit when one studies them from
the point of view of PEPSs: both are defined by the same
tensors (Schuch, Cirac, and Perez-Garcia, 2010; Bultinck,
Mariën et al., 2017).

a. Topological sectors

We first discuss the different ground states for a topological
spin system on a torus. Consider, on the one hand, a uniform
PEPS and, on the other hand, the same uniform PEPS but with
a virtual nontrivial MPO winding in one of the directions of
the torus. As the PEPS exhibits the MPO symmetry, the
location of the MPO is immaterial and this second state turns
out to be orthogonal to the first one. Note that winding two
MPOs Oa and Ob in the same direction is equivalent to the
sum of

P
c N

c
abOc, as we can always pull them through the

lattice until they touch each other. We could also wind a MPO
in the other direction and get a different state. A problem
arises, however, when we try to wind two MPOs in two
different directions. This inevitably leads to a crossing of the
two MPOs, and we have to introduce the following new tensor
object [blue square in Eq. (59)] in order to define this crossing:

ð59Þ

By varying this tensor and requiring that it can be pulled
through the PEPS tensors, we are able to completely char-
acterize all ground states of the topological theory. Physically,
the pulling through property implies that the topological sector
is invisible by local measurements on the physical
Hilbert space.
It is possible to put more MPOs in the PEPS, and doing so

induces more and more crossings. However, it should not lead
to new ground states, and hence the enlarged MPOs

ð60Þ

themselves should form an algebra. It was proven that they
form a C� algebra, which means that they form a closed
algebra when multiplied by each other and under conjugation
(Bultinck, Mariën et al., 2017).
Such a C� algebra has a natural decomposition into minimal

central idempotents Pi; PiPj ¼ δijPi, and these blocks pro-
vide the full set of orthogonal ground states or topological
sectors on the torus. From the categorical point of view, this
construction is called the Drinfeld center (Drinfel’d, 1987;
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Müger, 2003b), and the C� algebra is called the Ocneanu tube
algebra (Evans and Kawahigashi, 1995). The states corre-
sponding to the idempotents are the ground states with
minimal entanglement (Zhang et al., 2012), which indeed
provide a natural partitioning of the ground state sector. From
a practical point of view, these idempotents can be calculated
from the structure factors of this enlarged MPO algebra. This
program can be realized in a straightforward way for all
PEPSs described in the language of bimodule categories.
Similarly, it can be worked out in terms of weak Hopf
algebras: using the condition that physical and virtual indices
in the associated MPOs correspond, respectively, to the
algebras A and A�, the enlarged MPO gives a representation,
as vector space, of A ⊗ A�. Apart from the previously
discussed algebra structure, there is a natural coproduct, given
by ΔA ⊗ ΔA�, that makes it a weak Hopf algebra. This is
called the Drinfeld double, and it is precisely the weak Hopf
algebra associated with the Drinfeld center category; see
Sec. III.A.6.
We now illustrate in the particular case of the G-injective

PEPS defined by tensor (56) the process just described that
obtains the Drinfeld double of a finite group G by simply
imposing a pulling through condition on the enlarged MPOs
of the associated G-injective PEPS (Schuch, Cirac, and Perez-
Garcia, 2010).
For that purpose, we start by analyzing the conditions of the

crossing tensor needed to pull it through the lattice. When we
move a horizontal virtual MPO Og ¼ L⊗N

g one row down, if
there is also a vertical virtual MPO Oh ¼ L⊗M

h , the group
element of the vertical MPO associated with the position
between the two rows is conjugated by g:

ð61Þ

Therefore, the crossing tensor needed for that action is
precisely a linear combination of tensors of the form

jgÞðgj ⊗ jghg−1ihhj: ð62Þ

The enlarged MPO associated with the crossing tensor (62) is
precisely L⊗N

g ⊗ jghg−1ihhj, which corresponds to the
element g ⊗ δh ∈ CðGÞ ⊗ CG, where CG denotes the set
of functions G → C and δh is the function defined by
δhðkÞ ¼ 1 for k ¼ h [and δhðkÞ ¼ 0 otherwise].
Given two pairs ðg; δhÞ and ðg0; δh0 Þ in CðGÞ ⊗ CG, the

multiplication induced by their associated enlarged MPOs is
given by

ðg; δhÞ · ðg0; δh0 Þ ¼ (gg0; δhðg0h0g0−1Þδh0)

since, trivially,

ðL⊗N
g ⊗ jghg−1ihhjÞ · ðL⊗N

g0 ⊗ jg0h0g0−1ihh0jÞ
¼ L⊗N

gg0 ⊗ δhðg0h0g0−1Þjghg−1ihh0j
¼ L⊗N

gg0 ⊗ δhðg0h0g0−1Þjðgg0Þh0ðgg0Þ−1ihh0j.

The algebra CðGÞ ⊗ CG equipped with this multiplication is
precisely the definition of the Drinfeld double of the group G.
Gould (1993) showed that the generating idempotents in

this case are given by fixing a conjugacy class, a representative
h ∈ G for it, and an irrep α of the centralizer of h,
ZðhÞ ¼ fg ∈ G∶gh ¼ hgg. The associated central idempotent
is the one given by a crossing tensor proportional to

Th;α ¼
X
k∈G

X
g∈ZðhÞ

χαðg−1Þjk−1gkÞðk−1gkj ⊗ jk−1hkihk−1hkj;

which gives an enlarged MPO proportional to

Ph;α ¼
X
k∈G

X
g∈ZðhÞ

χαðg−1ÞL⊗N
k−1gk

⊗ jk−1hkihk−1hkj;

where χα is the character of α.
Note that the conjugation by k can be absorbed in the PEPS

due to the virtual symmetry, which finally gives the following
simpler crossing tensor and enlarged MPO:

X
g∈ZðhÞ

χαðg−1ÞjgÞðgj⊗ jhihhjPh;α¼
X

g∈ZðhÞ
χαðg−1ÞL⊗N

g ⊗ jhihhj.

The topological sectors are then indexed using a conjugacy
class and an irrep of its centralizer, as expected (Kitaev, 2003).
For the particular case of the toric code, we obtain the
projectors ð1⊗N � X⊗NÞ ⊗ jhihhj, with h ∈ f0; 1g. For the
general case of bimodule categories, the idempotents can
readily be found by diagonalizing linear combinations of the
adjoint representation of the C� algebra (Lootens et al., 2021).

b. Anyons

In a notable twist, it turns out that the idempotents defining
the ground state manifold on the torus also define the
elementary bulk excitations. The orthogonality of the idem-
potents provides a natural decomposition of the Hilbert space
into topological sectors, and some of them have a nontrivial
MPO string attached to them. The corresponding anyons have
nontrivial self-statistics and nontrivial braiding. All of these
features can be succinctly understood from the fact that virtual
MPO strings are attached to them, which is immaterial as they
can be moved at will through the lattice (Schuch, Cirac, and
Perez-Garcia, 2010; Bultinck, Mariën et al., 2017). A pair of
anyons in the PEPS picture hence has the following form:

Here the tensor labeled i (blue) projects onto one of the
previously defined idempotents as follows:
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In the particular case of G-injective PEPSs, that tensor takes
the following form:

ð63Þ

The topological spin of an anyon characterizes the phase that
the wave function acquires when rotating the anyon over 2π as
follows:

For the case of the toric code, one sees that the anyon
characterized by the idempotent ðI − Z⊗NÞ=2 with a string
attached to it has toplogical spin 1/2 and is hence called a
fermion. Anyons have new fusion rules generating the output
category. Those are precisely the ones associated with the
Drinfeld center. Anyons also exhibit braiding properties,
encoded in a tensor R, that give the following generalized
pulling through equation:

With this one can compute the braiding of one anyon around
another by performing the following four steps:

This idea can readily be exploited to show that the concept
of topological quantum computation (Freedman et al., 2003;
Kitaev, 2003), in which anyons are braided, can be described
in terms of the usual quantum circuit model for quantum
computation applied to the entanglement degrees of freedom;
see (Bultinck, Mariën et al. (2017) for details.

Braiding takes a simpler and more explicit form in the group
case. For instance, in case of a trivial irrep α, braiding
corresponds to conjugation (adjoint action), as illustrated
in Eq. (61).
Note that distinct input categories can lead to equivalent

Drinfeld doubles; this, e.g., happens in the case of a twisted
Z2 × Z2 and a Z4 quantum double. Two categories with this
feature are called Morita equivalent (Müger, 2003a; Kitaev
and Kong, 2012) and, as discussed in Sec. III.B.1.c, it is then
possible to construct an intertwiner (in the form of a MPO)
between the two corresponding PEPSs that preserves all
topological features and effectively implements an automor-
phism of the corresponding topological sectors. This idea has
been extended to a systematic study of boundaries between
different theories (such as boundaries between a topological
phase and a trivial phase with open boundary conditions) and
allows one to construct all possible boundary conditions that
are compatible with the anyonic bulk physics. In the case of
the toric code, this leads to the concept of rough and smooth
edges: absorbing electric versus magnetic excitations on the
boundary (Bravyi and Kitaev, 1998; Lootens et al., 2021).

c. Anyon condensation

Although the topological phases described using quantum
doubles and string nets are stable with respect to any perturba-
tion (Bravyi, Hastings, and Michalakis, 2010; Klich, 2010), a
topological phase transition will occur whenever the perturba-
tion becomes large. From the point of view of PEPSs, such a
transition is characterized by a change in the MPO-symmetry-
breaking pattern of the eigenvectors of the transfer matrix
(Schuch et al., 2013). In the topological phase described by an
input category with N labels (and hence N corresponding
MPOs), there areN linearly independent eigenvectors σi of the
transfer matrix with eigenvalues of modulus 1, obtained by
acting with the MPOs on a fiducial one ρ: σi ¼ Oiρ. Note that
for the toric code ρ ¼ 1. An important property is that the
MPOs OiρO

†
j do not yield new fixed points, and furthermore

OiρO
†
i is not linearly independent of ρ. As demonstrated by

Haegeman et al. (2015) and Duivenvoorden et al. (2017), this
can easily be considered a necessary condition for the pos-
sibility of having anyons, as otherwise the expectation value of
a PEPS with a pair of anyons connected with a MPO string
would be zero, as illustrated in the following graphic:

If the fixed point OiρO
†
i were orthogonal to ρ, the norm of the

state with two anyons connected by a string would decay
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exponentially in the distance between the anyons, as it would be
obtained by raising a mixed transfer matrix with spectral radius
strictly smaller than 1 to the distance between the anyons. This
explains why the eigenvectors of the transfer matrix must strike
a delicate balance of the symmetry-breaking pattern.
This immediately clarifies the fact that a large perturbation

increasing the number of fixed points of the transfer matrix
will lead to confinement of the anyons, and hence to a
topological phase transition. Conversely, the situation in
which the number of distinct fixed points decreases makes
the existence of strings irrelevant; this corresponds to the
condensation of anyons. As shown by Duivenvoorden et al.
(2017), the PEPS description is fully compatible with the
standard rules of anyon condensation (Bais, Schroers, and
Slingerland, 2002): (1) Only particles with trivial self-statis-
tics can condense, (2) anyons become condensed if and only if
they have mutual nonbosonic statistics with a condensed
anyon, (3) noncondensed anyons that differ by a condensed
anyon become indistinguishable, and (4) anyons that can fuse
to two different condensed anyons split into two distinguish-
able anyons. Similar rules apply in the context of orbifolding
in conformal field theory. This connection can indeed be fully
established by making use of the formalism of strange
correlators (Vanhove et al., 2018) and of noninvertible
bimodule categories (Lootens et al., 2021), thereby helping
us to realize all possible ways in which anyons can condense.
When restricting to the group case, this leads to a natural

connection between anyon condensation and SET phases
(Garre-Rubio, Iblisdir, and Perez-Garcia, 2017). Given a
group G and a normal subgroup H, there is a natural way
of condensing anyons that restricts the G-injective tensor to
the subgroup H. The strings of the anyons then fulfill the
pulling through equation (55) if they come from H. If they do
not, they get confined and the pulling through equation
degrades to one of the form of Eq. (58), where a unitary
must be applied in the physical level. These unitaries precisely
form a representation of the quotient groupQ ¼ G=H. That is,
condensing anyons make a global symmetry emerge under
which the new condensed model is in a SET phase. One can
show that all SET phases appear in this way. This bimodule
MPO point of view of anyon condensation is a generalization
of this idea.

IV. FORMAL RESULTS: FUNDAMENTAL THEOREMS
AND HAMILTONIANS

In this section, we provide formal statements for two types
of mathematical problems linked to tensor networks. In
Secs. IV.A and IV.B, we enunciate the fundamental theorems
for matrix product vectors and PEPSs, respectively. These
fundamental theorems relate different MPS representations of
the same MPS, MPO, or PEPS and are essential in the
classification of phases under symmetries, renormalization
fixed points, and MPO algebras describing topological order.
In Sec. IV.C, we discuss the relation of MPSs or PEPSs and
Hamiltonians. In particular, we explain how MPSs and PEPSs
appear as ground states of parent Hamiltonians and review the
known theorems about their ground space structure, their gap,
and their robustness against perturbations.

A. The fundamental theorem of matrix product vectors

1. Overview

Thus far, we have encountered different kinds of tensor
networks: MPS, MPOs, MPDOs, and MPUs. All these live on
a sequence of spaces H⊗N

d , N ∈ N, where Hd is the corre-
sponding d-dimensional local Hilbert space of states or
operators. Therefore, all these cases can be seen as special
cases of matrix product vectors (MPVs),

jVðNÞðAÞi ¼
Xd

i1;…;iN¼1

trðAi1 � � �AiN Þji1 � � � iNi ∈ H⊗N
d ; ð64Þ

where the Ai are D ×D matrices. We denote the family of
MPVs generated by A by VðAÞ ≔ fjVðNÞðAÞi; N ∈ Ng.
ThemapA ↦ VðAÞ is not one to one; that is, different tensors

B and C can generate the same family of vectors,
jVðNÞðAÞi ¼ jVðNÞðBÞi ∀ N. This is, for instance, the case if
A and B are related by a similarity transformation (or gauge
transformation), Bi ¼ YAiY−1 ∀ i, as Y cancels out in
Eq. (64). The goal of the fundamental theorem of MPVs is to
characterize the most general way in which two MPV repre-
sentationsA andB of the same familyVðAÞ ¼ VðBÞ are related.
The relevance of the fundamental theorem is manifold. It is

the basic tool in the classification of phases in 1D systems
under symmetries, U⊗N jVNðAÞi ¼ jVNðAÞi, where Bi ¼P

uijAj and Ai describe the same MPV (Sec. III.A.2). Its
application to MPO algebras is relevant in the study of
topological order in MPO-injective PEPSs (Sec. III.B.1), as
well as the characterization of SPT phases in two dimensions
(Sec. III.B.1). It is also being applied in the characterization of
RG fixed points through bulk-boundary correspondence
(Sec. II.E.2), and in the classification of MPUs and quantum
cellular automata (Sec. II.B.2).
The derivation of the fundamental theorem consists of two

steps. First, we show that any MPV tensor D can be brought
into a canonical form A such that they describe the same MPV
family, jVðNÞðAÞi ¼ jVðNÞðDÞi. Second, we present the fun-
damental theorem, which in essence states that, given any two
tensors A and B in canonical form with jVðNÞðAÞi ¼
jVðNÞðBÞi, they are related by the following gauge trans-
formation:

Bi ¼ YAiY−1 for all i: ð65Þ

The ensuing discussion closely follows Cirac et al. (2017a),
who provided further details.

2. Canonical form and normal tensors

In the following, we introduce the canonical form of MPVs
and show how to get a tensor into its canonical form. The
reason we require a canonical form is that the similarity
transform (65) is not the only way in which two tensors can
generate the sameMPV. Consider a case in which Bi are upper
triangular, such as
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Bi ¼
�
Bi
1 Bi

o

0 Bi
2

�
; ð66Þ

where Bi
k are Dk ×Dk matrices and Bi

o is a D1 ×D2 matrix.
As the off-diagonal block drops out in the trace, the MPV
generated by B is the same for any choice of Bi

o. The goal of
the canonical form is to get rid of those unphysical off-
diagonal blocks.
The upper triangular form of Bi can be abstractly charac-

terized as the presence of a subspace S1 of dimension D1 that
is left invariant under the action of all Bi. That is, BiS1 ⊂ S1

or, equivalently, denoting by P1 (Q1 ¼ 1 − P1) the orthogonal
projector onto S1 (S⊥

1 ),

BiP1 ¼ P1BiP1; Q1Bi ¼ Q1BiQ1: ð67Þ

Note that this shows that there is a nontrivial left-invariant
subspace if and only if there is a nontrivial right-invariant one.
Arguably the easiest way to lift the redundancy in Eq. (66)

is to fix Bi
o ¼ 0. This corresponds to changing Bi to

P1BiP1 þQ1BiQ1, which yields the same family of MPVs.
Moreover, there is no loss of generality in assuming that S1

does not contain any smaller invariant subspace (if it would,
we could choose S1 to be that smaller invariant subspace
instead). We thus replace

Bi → P1BiP1 þQ1BiQ1

and repeat the argument with the block Q1BiQ1 (yielding
projections P2), etc. After a finite number of steps, there will
no longer be a nontrivial invariant subspace. The matrices
fAig, defined as

Ai ¼
Xr

k¼1

PkBiPk ¼ ⨁
r

k¼1

μkAi
k; ð68Þ

generate the same family VðAÞ ¼ VðBÞ of MPVs as the initial
Bi. Note that in a suitable basis, the Ai are all block diagonal
with r blocks. The positive numbers μk are scaled such that the
CP map Ek, defined as

EkðXÞ ¼
Xd
i¼1

Ai
kXA

i†
k ; ð69Þ

has a spectral radius equal to 1. Note that Ek is simply the
transfer operator of the tensor Ak associated with the kth
block.
As shown by Fannes, Nachtergaele, and Werner (1992b)

and Perez-Garcia et al. (2007) [see also Wolf (2012)], each CP
map Ek has a unique eigenvalue λ ¼ 1 and the corresponding
left and right eigenvectors are positive and full rank. A CP
map with these properties is called irreducible (Wolf, 2012).
However, irreducible CP maps can have other eigenvalues

of magnitude 1, always of the form ei2πq=p, where p and q are
integers, gcdðq; pÞ ¼ 1, and p is a divisor of D. To remove
them, we block p spins. This blocking procedure results in a
new tensor Ci1;…;ip ¼ Ai1 � � �Aip. As shown by Cadarso et al.
(2013), the blocked matrices are still block diagonal, such that

the corresponding transfer operators have a unique eigenvalue
of magnitude (and value) equal to 1, and the corresponding
left and right eigenvectors are positive and full rank (as there
are no invariant subspaces). A CP map with these properties is
called primitive (Wolf, 2012).
One can now state the main definition of the section.
Definition IV.1.—A tensor Ak is called normal if its transfer

operator Ek, Eq. (69), is a primitive channel. The correspond-
ing MPV jVNðAkÞi is called a normal MPV. We say that a
tensor A is in canonical form if

Ai ¼ ⨁
r

k¼1

μkAi
k ð70Þ

and the tensors Ak are normal tensors.
Definition IV.1 provides an algorithm for transforming any

tensor B after blocking into another tensor A that is in
canonical form such that they both generate the same family
of MPVs, VðAÞ ¼ VðBÞ.

3. Basis of normal tensors

While the canonical form no longer suffers from ambi-
guities due to off-diagonal blocks, there is still a source of
ambiguity: Among the blocks there could be some that
generate the same (or linearly dependent) vectors. To properly
treat this case one needs to introduce the concept of a basis of
normal tensors.
Definition IV.2.—A basis of normal tensors for A is a set of

normal tensors Aj (j ¼ 1;…; g) such that (i) for each N,
jVðNÞðAÞi can be written as a linear combination of VðNÞðAjÞ,
and (ii) there is some N0 such that, for all N > N0, jVðNÞðAjÞi
are linearly independent.
The following result from Cirac et al. (2017a) characterizes

bases of normal tensors and, in particular, shows that such a
basis always exists.
Proposition IV.3.—The tensors Aj (j ¼ 1;…; g) form basis

normal tensors for A if and only if (i) for all normal tensors Ãk
appearing in the canonical form (70) of A, there is a j, a
nonsingular matrix Xk, and a phase ϕk such that

Ãk ¼ eiϕkXkAjX−1
k ð71Þ

holds, and (ii) the set is minimal, in the sense that for any
element Aj there is no other j0 for which Eq. (71) is possible.
Note that given a set of normal tensors, a basis of normal

tensors can be constructed (and efficiently obtained numeri-
cally) by computing the largest eigenvalue λjk of the mixed
transfer operator F jkðXÞ ¼

P
i A

i
jXðAi

kÞ† and choosing a
maximal subset for which jλjkj < 1 for all pairs j and k.
The X relating Aj and Ak ¼ eiϕXAjX† with jλjkj ¼ 1 is then
obtained by comparing the largest eigenvector ρ of F kk to the
eigenvector Xρk of F jk. The phase can then be inferred
immediately.
One can then write the matrices of any tensor A in canonical

form in terms of a basis of normal tensors Aj as
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Ai ¼ ⨁
g

j¼1

⨁
rj

q¼1

μj;qXj;qAi
jX

−1
j;q ð72aÞ

¼ X½⨁
g

j¼1

ðMj ⊗ Ai
jÞ�X−1; ð72bÞ

where Mj is a diagonal matrix with entries μj;q and

X ¼ ⨁
g

j¼1

⨁
rj

q¼1

Xj;q; ð73Þ

such that

jVNðAÞi ¼
Xg
j¼1

�Xrj
q¼1

μNj;q

�
jVðNÞðAjÞi: ð74Þ

4. Fundamental theorem of MPVs

We are now ready to state the fundamental theorem of
matrix product vectors (Cirac et al., 2017a). It clarifies which
degree of freedom is left for two tensors A and B in canonical
form that generate families of MPVs proportional to (or equal
to) one another.
Theorem IV.4 (fundamental theorem for proportional

MPVs).—Let A and B be two tensors in canonical form with
bases of normal tensors Ai

ka
and Bi

kb
(ka;b ¼ 1;…; ga;b),

respectively. If, for all N, A and B generate MPVs that are
proportional to one another, then (i) ga ¼ gb ≕ g, and (ii) for
all k there are a jk, phases ϕk, and nonsingular matrices Xk

such that Bi
k ¼ eiϕkXkAi

jk
X−1
k .

Corollary IV.5 (fundamental theorem for equal MPVs).—If
two tensors A and B in canonical form generate the same MPV
for all N, then (i) the dimensions of the matrices Ai and Bi

coincide, and (ii) there is an invertible matrix X such that
Ai ¼ XBiX−1. Xk and ϕk can again be obtained constructively
and numerically efficiently following the procedure described
after Proposition IV.3.
Note that one can select a gauge such that the CP maps Ek

associated with the normal tensors are unital, i.e., Ekð1Þ ¼ 1
(by replacing Ak with ρ−1=2Akρ

1=2, with ρ the fixed point of
Ek). In that case both Theorem IV.4 and Corollary IV.5 hold,
with the extra condition that X and Xk be unitary matrices.
The fundamental theorem of MPVs can be generalized to

hold without the need of blocking to remove p-periodic
components (De las Cuevas et al., 2017), which allows one to
apply the fundamental theorem to analyze symmetries with
regard to the original unit cell. We state only the analog of
Corollary IV.5; see De las Cuevas et al. (2017) for the analog
of Theorem IV.4. De las Cuevas et al. (2018) applied this
result to the analysis of the existence of a continuum limit in
the context of MPSs.
Theorem IV.6.—Let A and B be tensors in block-diagonal

form as in Eq. (68); that is, the CP map of each block is
irreducible. If jVðNÞðAÞi ¼ jVðNÞðBÞi for all N, then there is a
diagonal matrix Z and an invertible matrix Y such that

(i) ½Z; Ai� ¼ 0 for all i,
(ii) ZAi ¼ YBiY−1 for all i, and

(iii) jVðNÞðAÞi ¼ jVðNÞðZAÞi for all N.
The idea behind the appearance of the diagonal matrix Z

is that the MPV associated with a block Ak whose CP
map has eigenvalues ei2πq=p satisfies the property that
jVðNÞðAkÞi ¼ 0 unless N is a multiple of p. Hence, we can
multiply this block by any complex pth root of unity and the
entire MPV jVðNÞðAÞi will not be affected, giving an extra
degree of freedom. What is proven in Theorem IV.6 is that this
is essentially the only extra freedom one gets in the general
case without blocking.

B. Fundamental theorems for PEPSs

Fundamental theorems for PEPSs exist only for a number of
special cases. We first discuss the case of normal PEPSs.
Definition IV.7.—A PEPS tensor A is called injective if it is

injective as a linear map A∶ðCDÞ⊗r → Cd from the virtual to
the physical system (with r the coordination number), that is,
if there is a left-inverse A−1,

A−1A ¼ 1ðCDÞ⊗r :

Definition IV.8.—A tensor A generating a 2D PEPS is
called normal if it becomes injective after blocking a suffi-
ciently large rectangular region H × V.
Tensors that are injective on two regions are also injective

on their union, and thus if a normal tensor A becomes injective
in a region of size H × V, it is also injective for any region
H̃ × Ṽ with H̃ ≥ H and Ṽ ≥ V (Perez-Garcia, Verstraete et al.,
2008; Molnar, Garre-Rubio et al., 2018). It has been shown
that if A is normal, the requiredH and V are upper bounded by
a constant that depends only on the bond dimension D and the
graph, not the specific A (Michałek, Seynnaeve, and
Verstraete, 2019).
For MPSs, the earlier defined notion of normality is equiv-

alent to the previously introduced notion (Definition IV.1) of a
normal tensor (Sanz et al., 2010). Injectivity implies that the
tensor A must be normal and, conversely, the quantum version
of Wieland’s theorem states that, after blocking at most
2D2ð6þ log2 DÞ sites, every normal tensor becomes injective;
see Michałek and Shitov (2018), as well as Perez-Garcia et al.
(2010) and Rahaman (2018).
This yields the following version of the fundamental

theorem for normal PEPSs given by Molnar, Garre-Rubio
et al. (2018) [an earlier version of which was proven by Perez-
Garcia et al. (2010)].
Theorem IV.9 (fundamental theorem for normal PEPSs).—

Let A and B be two normal tensors such that every H × L
region is injective, and let A and B generate the same PEPS for
some system size n ×m ≥ ð2H þ 1Þ × ð2Lþ 1Þ. Then, there
exist invertible matrices X, Y, and λ ∈ C such that A ¼
λBðX−1 ⊗ Y−1 ⊗ X ⊗ YÞ and λnm ¼ 1.
Based on this we have the desired 2D analog of

Corollary IV.5 for normal 2D PEPSs.
Corollary IV.10.—Let A and B be two normal tensors

generating 2D PEPSs. They define the same state for all sizes
if and only if there are invertible matrices X and Y such that
Ai ¼ BiðX−1 ⊗ Y−1 ⊗ X ⊗ YÞ for all i. Moreover, X and Y
are unique up to proportionality.

J. Ignacio Cirac et al.: Matrix product states and projected entangled …

Rev. Mod. Phys., Vol. 93, No. 4, October–December 2021 045003-48



As is the case in one dimension, this theorem, in particular,
provides a local characterization of all normal PEPSs having a
global on-site symmetry or a spatial symmetry; see Perez-
Garcia et al. (2010) for details.
Beyond the normal case, a fundamental theorem for PEPS

has also been proven for so-called semi-injective PEPSs (see
Sec. III.B.1), which, in particular, encompass 2D SPT phases
such as the CZX model of Chen, Liu, and Wen (2011) and its
generalizations (Chen et al., 2013; Williamson et al., 2016).
There, the relation between two PEPS tensors A and B
generating the same state is given by matrix product operators
instead (Molnar, Ge et al., 2018). Using the theory of
bimodule categories, it is also possible to construct such
MPO intertwiners between equivalent PEPSs with different
bond dimensions (Lootens et al., 2021). We note that one
cannot hope for a fundamental theory for PEPSs in the same
generality as in one dimension, since the corresponding
problem in its full generality is undecidable (Scarpa
et al., 2020).

C. Hamiltonians

In this section, we discuss the relation of MPSs and PEPSs
with Hamiltonians. In particular, we provide the construction
of the parent Hamiltonian, detail the precise conditions under
which it has a unique ground state or a ground space with a
controlled degeneracy, and discuss the conditions under which
these Hamiltonians can be proven to be gapped. We also
discuss constructions that provide alternative Hamiltonians
associated to a MPS. These results extend the seminal results
of Affleck et al. (1987, 1988) and Fannes, Nachtergaele, and
Werner (1992b) on exact parent Hamiltonians for the AKLT
states and for finitely correlated states.

1. Parent Hamiltonians and ground space

a. Construction of the parent Hamiltonian

We start with the 1D case. Given a MPS, consider the space

GL ¼
� X

i1;…;iL

trðAi1 � � �AiLXÞji1 � � � iLi∶X ∈ MD

�
ð75Þ

of all states spanned by L consecutive sites of the MPS, given
arbitrary boundary conditions X. Graphically, this corre-
sponds to the states

ð76Þ

In some cases, we also write Gi;…;j to denote Gi−jþ1 on
sites i;…; j.
Definition IV.11 (parent Hamiltonian).—A parent interac-

tion is any Hermitian positive semidefinite operator h ≥ 0

acting on L sites whose kernel equals GL [Eq. (75)]. The
corresponding parent Hamiltonian of the MPS with tensor A
on N sites is then given byHN ¼ P

N
i¼1 hi, where hi denotes h

acting on sites i;…; iþ L − 1 mod ðNÞ×.

Since the dimension of GL is at most D2, the parent
Hamiltonian will necessarily be nontrivial as soon as dL >
D2 (as GL cannot be the full space).
Similarly, we can define parent Hamiltonians in two

dimensions (or on other graphs) by considering a sufficiently
large region R, where GR is the space spanned by the states

ð77Þ

with arbitrary boundary conditions X, and the terms in the
Hamiltonian are again positive semidefinite operators with
kernel GR. Note that in two dimensions the resulting parent
Hamiltonian can have different types of terms if one considers
more then one type of region (e.g., two rectangular regions of
size 2 × 1 and 1 × 2). Note that the same construction can be
carried out without translational invariance and for general
graphs.
The parent Hamiltonian has the MPS or PEPS jψi as a

ground state, as HN ¼ P
hi ≥ 0 and HN jψi ¼

P
hijψi ¼ 0.

Hamiltonians with the property that the ground states min-
imize the local terms are called frustration free. In the
following, we discuss the conditions under which HN has a
unique ground state or, more generally, a ground space with a
controlled structure.

b. Normality, injectivity, and unique ground states

We first recall the notion of injectivity from Definition IV.7
in Sec. IV.B: An MPS or PEPS tensor is injective if it has a
left-inverse A−1 when considered as a map from a virtual to a
physical system, A−1A ¼ 1. For MPSs, this is equivalent to
the property that the matrices Ai span the entire set of MD×D
matrices. We also recall that any injective MPS tensor is
normal, and any normal MPS tensor becomes injective after
blocking at most L0 ≤ 2D2ð6þ log2 DÞ sites.
For a MPS or PEPS with injective tensors, it can easily be

proven that the parent Hamiltonian defined on nearest
neighbors has a unique ground state. To this end, it is
convenient to construct the PEPS as in Sec. II.B.1, by
applying local linear maps to maximally entangled pairs.
That is, given a regular graph G of degree r with vertex set V
and edge set E, one can consider the so-called isometric PEPS
of bond dimension D,

jΩGi ≔ ⊗
e∈E

jωie;

where jωi is the maximally entangled state of dimension D. A
general MPS or PEPS jΨGðAÞi is then given by a linear map
(the tensor) A∶ðCDÞ⊗r → Cd

jΨGðAÞi ≔ ð⊗
v∈V

AÞ⊗
e∈E

jωie ¼ ð ⊗
v∈V

AÞjΩGi; ð78Þ

see Fig. 1. We omit the superscript G whenever the graph is
unambiguous.
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For the isometric PEPS jΩi, a possible parent Hamiltonian
is given by h ¼ 1 − jωihωj, and it is immediate to see that
HN ¼ P

hi has jψi as its unique ground state. We can now
construct a parent Hamiltonian for jΨðAÞi as

h0 ¼ ðA−1 ⊗ A−1Þ†hðA−1 ⊗ A−1Þ: ð79Þ

The kernel of h0 is GL, and thus jΨðAÞi is a ground state of
H0

N ¼ P
h0i. Now assume that H0

N had another ground state
jΦi, i.e., h0ijΦi ¼ 0. In that case, hiðA−1Þ⊗N jΦi¼Xh0ijΦi¼ 0

[here X acts as A† on sites i, iþ 1, and ðA−1Þ on all others];
i.e., ðA−1Þ⊗N would be another ground state of HN whose
ground state, however, is unique. Thus, the ground state ofH0

N
must be unique as well. This technique can more generally be
seen as establishing a one-to-one correspondence between
ground states of the parent Hamiltonians of two PEPSs jψi
and jψ 0i ¼ R⊗N jAi that are related by an invertible map R (not
necessarily the PEPS map A) and thus can also be applied to
the cases with the topological or otherwise degenerate ground
space structure described in Sec. IV.C.1.c.
This leads to the following result (Perez-Garcia, Verstraete

et al., 2008).
Theorem IV.12.—Consider a PEPS where the tensors have

been blocked such that all tensors are injective. Then, the two-
body parent Hamiltonian constructed from all nearest-neigh-
bor sites has a unique ground state. This results holds
regardless of the graph and translational invariance.
In particular, given a square lattice, if injectivity is reached

by blocking H × V sites, then the parent Hamiltonian con-
taining all terms derived for patches of size H × ð2VÞ and
ð2HÞ × V has a unique ground state. In one dimension, the
result correspondingly applies for parent Hamiltonians acting
on 2L0 sites, with L0 the injectivity length (Perez-Garcia
et al., 2007).
The injectivity length of a normal MPS is the smallest

number of sites that have to be blocked such that its tensors
become injective. This result can be considerably strength-
ened (yielding more local Hamiltonians) by avoiding to block
until injectivity is reached. For a normal MPS, consider two
Hamiltonian terms h and h0 acting on sites 1;…; L0 þ 1 and
2;…; L0 þ 2, where L0 is the injectivity length, and denote by
A, B, and C the tensors on site 1, the blocked tensor of site
2;…; L0 þ 1, and the tensor at site L0 þ 2, respectively; note
that B is injective. The joint ground space of h and h0 is the
intersection I ¼ G1;…;L0þ1 ∩ G2;…;L0þ2, i.e., all states of the
form

ð80Þ

for arbitrary boundary conditions L and R. We can invert A,
which yields

We can now reattach (“grow back”) B to A as follows:

Since B is injective, so are A and B together, and we can invert
them as follows (calling the inverse S):

We thus find that

That is, any state in the intersection I is also contained in
G1;…;L0þ2, and the converse is trivially true. We can now iterate
this argument to show that the ground space of a Hamiltonian
with terms acting on L0 þ 1 sites is the same as for a
Hamiltonian with terms acting on L0 þ k, k > 1, sites.
Once we have reached k ¼ L0, we can resort to the
Theorem IV.12 or, alternatively, can apply a similar argument
when closing the boundaries. [These two properties are called
the intersection property and closure property, respectively
(Fannes, Nachtergaele, andWerner, 1992b; Perez-Garcia et al.,
2007; Schuch, Cirac, and Perez-Garcia, 2010).]
The same technique (inverting and growing back) also

works in two dimensions; on the square lattice we would start
with the equality

and apply the previous arguments. This yields the following
strengthened result (Fannes, Nachtergaele, and Werner,
1992b; Perez-Garcia et al., 2007; Schuch et al., 2012).
Theorem IV.13 (uniqueness of ground state).—Consider a

normal MPS that becomes injective upon blocking L0 sites.
Then, the parent Hamiltonian defined on L0 þ 1 sites has a
unique ground state.
Consider a normal PEPS on the square lattice that becomes

injective upon blocking H0 × V0 sites. Then, the parent
Hamiltonian defined on ðH0 þ 1Þ × V0 and H0 × ðV0 þ 1Þ
sites has a unique ground state. Both results hold regardless of
translational invariance.
Note that the locality bound need not be tight. For example,

the AKLT model has L0 ¼ 2, yet the two-site parent
Hamiltonian is suffient to obtain a unique ground state. This
can be seen by checking by hand that G1;2 ∩ G2;3 ¼ G1;2;3.
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For MPS, this provides a full characterization of all MPSs
that appear as unique ground states of local Hamiltonians:
Non-normal MPSs, which have more than one block in their
canonical form, exhibit long-range order, and we see in
Sec. IV.C.1.c that their parent Hamiltonian exhibits a degen-
erate ground state subspace.
For PEPS, there are classes of states that, despite not being

injective, are unique ground states of a parent Hamiltonian.
This holds for all states constructed analogously to Eq. (78) by
replacing jΩi with any other state that is a unique ground state
of a frustration-free local Hamiltonian. For instance, this is the
case for semi-injective PEPSs [see Molnar, Ge et al. (2018);
cf. Secs. III.B.1 and IV.B], where jΩi is a product of entangled
states across plaquettes that is a unique ground state of a four-
body Hamiltonian (acting on each plaquette). Another class of
PEPSs with unique ground states are given by the family of
MPO-injective PEPSs that fulfill the requirement that the
MPO has a single block in the canonical form (Sec. IV.A).

c. Block injectivity, entanglement symmetries, and degenerate
ground spaces

The proof for the uniqueness of the ground state of parent
Hamiltonians breaks down once the correspondence between
the physical and virtual systems captured by the concept of
injectivity is lost, that is, if there are degrees of freedom in the
virtual space that have no physical correspondence. For
instance, this happens for MPSs which have more than one
block (r > 1Þ in their canonical form [Eq. (70)]: In that case,
one can easily see that any state corresponding to a single
block Ai

k is a ground state, as they are all supported on GL

[Eq. (75)]. In this scenario, we can define a generalization of
injective tensors where the physical-virtual correspondence
holds blockwise [that is, for block-diagonal boundary con-
ditions X in Eq. (75)].
Definition IV.14.—A tensor A is in block-injective canoni-

cal form if it is in canonical form, and for each element
X ∈ ⨁g

j¼1MDj×Dj
there is a vector cðXÞ such that

X ¼ P
i ciðXÞÃi, where Ãi ≔ ⨁g

i¼1A
i
j and Aj are a basis

of normal tensors (cf. Definition IV.2) of A.
Using the quantum version of Wielandt’s theorem (Sanz

et al., 2010), it was shown by Perez-Garcia et al. (2007) and
Cirac et al. (2017a) that, after blocking at most L0 ≤ 3D5

spins, any tensor A in canonical form acquires block-injective
canonical form. One can then prove the following generali-
zation of Theorem IV.12.
Theorem IV.15 (Fannes, Nachtergaele, and Werner, 1992b;

Perez-Garcia et al., 2007).—For any N ≥ 2L0, the ground
space of any parent Hamiltonian is exactly the vector space
generated by a basis of normal tensors of the initial tensor A.
Following the same steps as in Eq. (80) (inverting and

regrowing tensors, where the inverse projects on the space of
block-diagonal matrices, and restricting to boundary condi-
tions L and R, which are themselves block diagonal), we can
strengthen this result in analogy with Theorem IV.13.
Theorem IV.16.—For any N ≥ L0 þ 1, the ground space of

any parent Hamiltonian is exactly the vector space generated
by a basis of normal tensors of the initial tensor A.
The reason for the degenerate ground space can be under-

stood from the fact that such MPSs have decoupled blocks in

the virtual space. Alternatively, this can be explained using a
symmetry ½Ai; Ug� ¼ 0 of the MPS tensor Ai, with Ug a
unitary representation of an Abelian group (where the blocks
are supported on the different irreducible representations).
In that case, ½Ai; Ug� ¼ 0 implies that projectors Pα ¼P

χkðgÞUg onto irreps (blocks) k commute with A, and thus
cannot be detected by the parent Hamiltonian; placing them on
a link thus selects different ground states. These two per-
spectives suggest two different generalizations to two dimen-
sions: We can first choose a 2D PEPS tensor with a “direct
sum” block structure over all virtual indices as in Eq. (70), as
in the PEPS for the GHZ state (Appendix 2.a). Such a PEPS
will have a GHZ-type structure; in particular, if under block-
ing injectivity of all blocks is reached, the parent Hamiltonian
with terms acting on two blocks will have a ground space
spanned by the individual blocks.
The second generalization to PEPS is based on generalizing

the commutation relation UgAiU†
g ¼ Ai to tensors that are

invariant under the action of some symmetry on all the indices
simultaneously. This, in particular, encompasses the G-injec-
tive PEPS and the MPO-injective PEPS introduced in
Sec. III.B. In this case, the pulling through condition is
exactly what allows one to create projections onto different
sectors that can be commuted (i.e., moved) through the tensor
network and are thus invisible to the Hamiltonian. In the case
of G-injective PEPSs, the condition for a controlled ground
space is precisely that the blocked PEPS tensor in injective on
the subspace that is invariant under the symmetry action (G-
injective). See Schuch, Cirac, and Perez-Garcia (2010) for the
formal result, Buerschaper (2014) for the generalization to
twisted G-injective PEPSs, and Bultinck, Mariën et al. (2017)
and Şahinoğlu et al. (2021) for the generalization to MPO-
injective PEPSs. Note also that tricks similar to the
“regrowing” used in one dimension to construct parent
Hamiltonians on L0 þ 1 sites can also be used in the case
of topologically ordered PEPSs in two dimensions to obtain
smaller Hamiltonians. This was carried out by Schuch et al.
(2012) in their Appendix D for the kagome RVB model to
obtain a two-star Hamiltonian [which can be broken down to a
one-star Hamiltonian by direct inspection (Zhou, Wildeboer,
and Seidel, 2014), similar to the two-body Hamiltonian in the
AKLT model].

d. Converse: MPS ground states for frustration-free Hamiltonians

As we have seen, every MPS is the ground state of a
frustration-free Hamiltonian. Under certain conditions the
converse holds as well: Every frustration-free Hamiltonian
has a MPS ground state.
The following result is due to Matsui (1998) [generaliza-

tions of this connection were given recently by Ogata (2016a,
2016b, 2017)].
Theorem IV.17.—Let h ≥ 0 be a Hamiltonian acting on

rþ 1 sites, and let H½M;N� ¼
P

N−r
i¼M hi, where hi is h acting on

sites i;…; iþ r (i.e., the translational-invariant open boundary
condition Hamiltonian with interaction h).
If there is a C > 0 such that the dimension of the kernel of

H½M;N� is ≤ C for all M;N, then any translational-invariant
frustration-free ground state jϕi in the thermodynamic limit
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can be described by a MPS with a normal tensor. See the
original works for the precise mathematical formulation of the
result in the thermodynamic limit.

2. Gaps

Having defined parent Hamiltonians and given conditions
that control their ground space structure, we now turn toward
the question as to when these Hamiltonians are gapped. As we
have seen, parent Hamiltonians of MPSs are frustration free;
i.e., the ground state minimizes each interaction term indi-
vidually. There are two techniques for making statements
about gaps of frustration-free Hamiltonians: the martingale
method and Knabe-type bounds. Both techniques relate the
gap in the thermodynamic limit to the gap of a finite-size
problem, which can subsequently be solved numerically or
analytically. It turns out that the martingale method allows one
to prove the existence of a gap, and to provide explicit lower
bounds on it, for all MPS parent Hamiltonians.
Recently these methods were used to prove the gap of a

class of decorated AKLT models (Abdul-Rahman et al.,
2019), as well as to numerically show the gap of a range
of models (among others, the honeycomb AKLT model) by
numerically checking the corresponding finite-size problems
(Lemm, Sandvik, and Wang, 2019; Pomata and Wei, 2019).

a. The martingale method

The martingale method (Fannes, Nachtergaele, and Werner,
1992b; Nachtergaele, 1996; Kastoryano and Lucia, 2018)
relates the minimum nonzero angle between the ground spaces
of overlapping regions to the gap. The system is gapped in the
thermodynamic limit if and only if, by blocking, the overlaps
of vectors in overlapping ground spaces become sufficiently
large (which intuitively allows one to detect excitations
locally).
More precisely, consider a frustration-free Hamiltonian

H ¼ P
hi with w.l.o.g. projectors hi. (If the hi are not

projectors, they are still lower bounded and upper bounded
by projectors up to a constant.) Having a gap γ is equivalent to
H2 ≥ γH, which (using h2i ¼ hi) is equivalent to

X
hi þ

X0
hihj þ

X00
hihj ≥ γ

X
hi; ð81Þ

where
P0

and
P00 denote sums over overlapping and non-

overlapping hi, respectively.
P00 hihj ≥ 0, and thus Eq. (81) is

satisfied as long as

hihj þ hjhi ≥ −cijð1 − γÞðhi þ hjÞ ð82Þ

for all overlapping pairs ði; jÞ, where cij has to be chosen to
add up to 1 (e.g., if each hi overlaps with three others,
cij ¼ 1=3). Thus, finding a blocking for which Eq. (82) is thus
sufficient to prove a gap. Note that Eq. (82) effectively poses a
lower bound on the smallest nonzero angle between the
ground spaces of hi and hj.
The martingale condition (82) is also sufficient. As shown

by Kastoryano and Lucia (2018), whenever a frustration-free
Hamiltonian is gapped, δðlÞ ≔ khihj − Pk (with P the

projector onto the kernel of hi þ hj) goes to zero exponen-
tially with universal constants in the size l of the overlap
region, which, in particular, implies the validity of Eq. (82) (as
both quantities depend only on the principal angles between
ker hi and ker hj).
Using the martingale method, one can prove that all MPS

parent Hamiltonians (for both normal and block-injective
MPSs) have a gap (Fannes, Nachtergaele, and Werner,
1992b; Nachtergaele, 1996):
Theorem IV.18.—All MPS parent Hamiltonians are

gapped; that is, there is a γ > 0 such that for the parent
Hamiltonian HN on N sites, the smallest nonzero eigenvalue
λðHNÞ ≥ γ uniformly in N.
For the dependence of γ on the MPS tensor, see Fannes,

Nachtergaele, and Werner (1992b) and Nachtergaele (1996).
For systems in two or more dimensions, no comparably

strong result is known. In particular, injectivity does not imply
a gap, since examples of injective PEPSs are known that
exhibit power law correlations (such as the “Ising PEPS” [see
Verstraete et al. (2006), Appendix A] on the honeycomb
lattice at the critical point), and thus cannot be ground
states of gapped Hamiltonians (Hastings and Koma, 2006;
Nachtergaele and Sims, 2006).
One can, however, derive a lower bound on the gap of the

parent Hamiltonian for a PEPS whose tensor A is sufficiently
close to a PEPS B with parent Hamiltonian h that satisfies the
martingale condition (82) (such as a commuting Hamiltonian),
in the sense that Ai ¼ P

ΛijBj, with Λ − 1 small. This is
based on the fact that, following the logic of Sec. IV.C.1.b
given near Eq. (79), h0 ¼ ðΛ−1†Þ⊗khðΛ−1Þ⊗k is a parent
Hamiltonian for A (with k the locality of the Hamiltonian),
and the bound γ on the gap in the martingale condition
changes smoothly with Λ. Alternatively, this can be deter-
mined from the fact that Eq. (82) lower bounds the angle
between the ground spaces Gi;j of hi and hj, which changes
smoothly under deformations Λ⊗kGi;j. This was carried out
explicitly in their Appendix E by Schuch, Perez-Garcia, and
Cirac (2011) for a commuting Hamiltonian h acting on 2 × 2
blocks, and it was found that the gap is stable as long as the
ratio of the smallest and largest singular value of Λ is
above ≈0.967.

b. The Knabe bound

The Knabe bound relates the existence of a gap of a
translational-invariant and frustration-free Hamiltonian in the
thermodynamic limit with the scaling of the gap of the same
Hamiltonian on a finite chain. In particular, Knabe (1988)
showed that if the gap of an open boundary 1D chain
with a nearest-neighbor projector Hamiltonian is larger than
1=ðn − 1Þ for some n > 2, then the system with periodic
boundaries is gapped in the thermodynamic limit. This result
was later improved to 6=nðnþ 1Þ by Gosset and Mozgunov
(2016) and generalized to two dimensions. The method was
also extended to frustration-free Hamiltonians with open
boundary conditions (stating that for gapless systems the
gap must close at least as n−3=2, showing the impossibility of
chiral edge modes with frustration-free Hamiltonians whose
gap should scale as 1=n) by Lemm and Mozgunov (2019).
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3. Stability

A key consideration in the definition of quantum phases is
their stability against arbitrary small perturbations (or, when
one is considering SPT phases, against arbitrary symmetry-
preserving perturbations). Here stability can refer to different
properties, such as a smooth dependence of various physical
properties on the perturbation. The most commonly consid-
ered property is the stability of the spectral gap, as it implies
the stability of local properties through quasiadiabatic con-
tinuation (Hastings and Wen, 2005). Parent Hamiltonians of
MPSs and PEPSs do not necessarily have such a stability
property: For instance, the parent Hamiltonian of a GHZ state
(which is a PEPS) is a ferromagnetic Ising Hamiltonian whose
twofold degenerate ground space is susceptible to small
perturbations.
In the following, we discuss conditions under which the

ground space of a MPS or PEPS parent Hamiltonian can be
shown to be stable under perturbations.

a. The LTQO condition

For frustration-free Hamiltonians, stability of the spectral
gap is implied by the local topological quantum order (LTQO)
condition (Bravyi, Hastings, and Michalakis, 2010; Bravyi
and Hastings, 2011; Michalakis and Pytel, 2013). Roughly
speaking, it states that the effect of boundary conditions is
exponentially suppressed in the bulk (as a function of the
distance of the boundary).
Definition IV.19.—Consider a translational-invariant frus-

tration-free Hamiltonian on a 2D square lattice. We say that a
region A satisfies LTQO if there is a superpolynomially
decaying function fAðmÞ [i.e., limm→∞mkfAðmÞ ¼ 0 for all
k > 0] such that for for any observableOa supported on A and
all bounded regions B containing A, it holds that for any pair
of normalized ground states jΨi, jΨ0i of the Hamiltonian
restricted to region B,

jhΨjOajΨi − hΨ0jOajΨ0ij ≤ kOakfAðmÞ; ð83Þ

where m is the distance between A and ∂B (the boundary
of B).
We say that a particular observable Oa satisfies LTQO if it

verifies Eq. (83). We finally say that a system satisfies LTQO
if all its regions A satisfy it and the function f in Eq. (83) is
independent of A.
LTQO implies stability of the gap under local perturbations

under some additional local gap conditions.
Theorem IV.20 (Michalakis and Pytel, 2013).—Let HN ¼P
hi be a local Hamiltonian that satisfies LTQO, and let

V ¼ P
k vk, with vk a bounded local term centered at site k.

Moreover, assume that there is a γ > 0 such that HN has a gap
ΔN ≥ γ with periodic boundaries, and let the spectral gap of
HN restricted to open boundaries decay at most polynomially
with the system size. Then, there exist N0 and ϵ0 > 0 such that
HN þ ϵV has a gap at least γ=2 for any N ≥ N0 and ϵ ≤ ϵ0.
For a more precise formulation of the theorem, including

several generalizations, see Michalakis and Pytel (2013) and
Nachtergaele, Sims, and Young (2020).
In the context of PEPSs, the LTQO condition has two

additional advantages: First, it can be checked numerically for

specific regions (and possibly observables), by relating it to an
eigenvalue problem. Second, it allows for direct conclusions
about the stability of physical observables under the class of
natural PEPSperturbationsAi →

P
ΛðϵÞijAj, whereΛðϵÞ → 1

smoothly (as ϵ → 0). In that case, the derivative of any
observable OaðϵÞ changes smoothly at around ϵ ¼ 0 as well
(Cirac et al., 2013).

b. Stability in one dimension

One can prove for one-dimensional MPSs with normal
tensors that the LTQO condition always holds (Cirac et al.,
2013). This implies the following theorem.
Theorem IV.21.—For MPS with normal tensors, the gap of

the parent Hamiltonians is stable under perturbations
VN ¼ P

k vk, with vk a bounded local perturbation centered
around k. That is, there is an ϵ0 > 0 and γ > 0 such thatHN þ
ϵVN has a unique ground state with a gap ΔN > γ for all
ϵ < ϵ0 and all N.
An alternative proof of this stability that does not build on

the LTQO condition was given by Szehr and Wolf (2015).

c. Stability in two dimensions

In two dimensions, the LTQO condition is generally hard to
prove. Specific cases in which it holds are PEPSs with
commuting parent Hamiltonians, such as isometric PEPSs,
G-isometric PEPSs (Schuch, Cirac, and Perez-Garcia, 2010),
and MPO-isometric PEPSs (Şahinoğlu et al., 2021), which are
therefore robust against local perturbations.

d. Perturbations of the tensor

An alternative way to perturb MPSs and PEPSs is to perturb
the tensor, rather than the Hamiltonian. There are two types of
these perturbations.

(i) Physical perturbations are perturbations that can be
understood as acting only on the physical index,
Ai →

P
ΛijAj. As discussed, these correspond to

perturbations of the parent Hamiltonian of the form
h → ðΛ−1†Þ⊗khðΛ−1Þ⊗k. They are thus physical in
the sense that they correspond to a physical pertur-
bation of the Hamiltonian. As discussed in
Secs. IV.C.3.a–IV.C.3.c, this immediately implies
that for normal MPSs in 1D, and in the presence of
LTQO in 2D, these perturbations only give rise to
smooth changes in the properties of the system and
do not close the gap; alternatively, this also follows
from the stability of the martingale condition. Note
that for normal MPSs and PEPSs, any perturbation
of the tensor is a physical perturbation on injective
blocks. For example, one can first invert the injective
tensor by acting on the physical block, then use the
perturbed tensor instead.

(ii) An unphysical perturbation is a perturbation of the
tensor that cannot be understood as a physical
perturbation, i.e., as one that acts only on the
physical index. Such perturbations exist only for
non-normal tensors. It has been shown that, unlike
physical perturbations, unphysical perturbations of
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the tensor can have a drastic effect. Perturbing a
G-injective PEPS immediately breaks topological
order (Chen et al., 2010) by condensing the anyons
(cf. Sec. III), and the same is true for a MPO-
injective PEPS (Shukla et al., 2018), althoughMPO-
injective PEPSs are stable against certain unphysical
perturbations. This immediately implies that un-
physical perturbations cannot be related to physical
perturbations of the parent Hamitonian, since the
toric code is stable against any perturbation of the
Hamiltonian. Within the framework of parent Ham-
iltonians, these perturbations are thus generally
unphysical and not of direct interest. It is possible,
however, to introduce other types of Hamiltonians,
such as the uncle Hamiltonians discussed later,
which are stable under general perturbations. At
the same time, understanding which perturbations
are unphysical is relevant for the numerical simu-
lation of topological phases since one needs to
protect against breaking of these symmetries (i.e.,
enforce G symmetry or MPO symmetry) in order to
obtain systems that exhibit topological order.

4. Alternative Hamiltonians

There are ways to obtain Hamiltonians with different
properties than parent Hamiltonians. This can be achieved
in one of at least two ways: by considering tensors that are not
in canonical form or by considering an alternative construc-
tion for the Hamiltonian.

a. Product vacua with boundary states (PVBS)

PVBS (Bachmann and Nachtergaele, 2012, 2014) are
models that are constructed from MPSs that are not in their
canonical form, such as

A0 ¼ ð1þ λÞj0Þð0j þ j1Þð1j; A1 ¼ j0Þð1j;

where λ ∈ ½−1; 1�. The parent Hamiltonian of this MPS will
have the MPS on an open boundary condition chain as its
ground space. This model will support two ground states,
namely, the all-0 state and a state with a single 1 state that
“binds” to the left (λ < 0) or right (λ > 1) edge: the edge
states. On the other hand, the periodic boundary condition
ground space supports only the all-0 state: the product
vacuum. PVBS models demonstrate that the classification
of phases is different on a system with boundaries or,
alternatively, that one has to consider whether a closing
gap affects the bulk behavior (which in the previous model
is smooth even when λ changes sign). Note that these models
have been generalized to higher dimensions outside the
framework of tensor networks (Bachmann et al., 2015).

b. Uncle Hamiltonians

Uncle Hamiltonians (Fernández-González et al., 2012,
2015) are defined to overcome the noncontinuity of the parent
Hamiltonian under physical perturbations. They are defined
by first applying a potentially unphysical perturbation to the
tensor, constructing the parent Hamiltonian, and subsequently

taking the limit of the perturbation to zero. The obtained
Hamiltonians are termed uncle Hamiltonians and are by
construction continuous under the perturbation considered.
On the other hand, depending on the bond dimension of the
MPS or PEPS, they might not be unique but might depend on
the path of perturbations considered. Uncle Hamiltonians have
significantly different properties: in particular, they are gen-
erally gapless for noninjective MPSs and PEPSs, such as for
the 1D Ising or the 2D toric code model (where momentum
eigenstates of domain walls or anyons, respectively, through
which the perturbation destroys the conventional or topologi-
cal order, have low energy).

V. CONCLUSIONS

In this review we have covered some of the basic concepts
in the field of tensor networks and many-body quantum
systems, paying special attention to MPSs and PEPSs on
regular lattices. While we have revised in certain depth many
results that were not obtained until recently, we have left out
entire areas of research on tensor networks that are rapidly
developing and that could themselves be the subject of one or
several reviews. In this outlook we list some of those areas, as
well as some open research directions.
We start with the numerical algorithms built on tensor

networks to describe different aspects of many-body quantum
systems. While this review deals exclusively with analytical
results, the fact that tensor network states efficiently approxi-
mate many-body systems immediately provides a powerful
playground for addressing complex problems with that
technique. In one spatial dimension, the success of the
DMRG (White, 1992) method in addressing the physical
properties of one-dimensional spin chains at zero temperature
can be traced back to the fact that it can be viewed as a
variational method over the manifold of MPSs. One can
naturally extend this algorithm to higher spatial dimensions
through PEPSs, although the scaling of the computational
complexity with the bond dimension is not as friendly as in
one dimension, and one has to use approximate techniques in
order to compute expectation values of physical observables
(Verstraete and Cirac, 2004a). Thus, arguably the most
important subject of research in tensor networks is the
development of powerful algorithms in more than one spatial
dimension. One can also extend these methods to finite
temperatures by using MPDOs or PEPOs (Czarnik and
Dziarmaga, 2015), and to time-dependent problems
(Czarnik, Dziarmaga, and Corboz, 2019). The latter can be
carried out by using either a variational method or a
Trotterization of the evolution operator followed by trunca-
tions of the time evolved states after each time step. Tensor
networks have also been employed to express many-body
operators, like Hamiltonians, to compute elementary excita-
tions, spectral functions, densities of states, etc. (McCulloch,
2007; Pirvu et al., 2010). The extension of those methods to
higher dimensions remains one of our main challenges. Other
tensor network states, like TTNs and MERAs, have also
played an important role in certain many-body problems and
are particularly appropriate for describing critical systems
(Silvi et al., 2010; Evenbly and Vidal, 2014). Methods based
on MPSs and PEPSs have also been developed recently that
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allow one to compute physical properties of critical systems
based on the scaling as a function of the bond dimension
(Tagliacozzo et al., 2008; Pirvu, Haegeman, and Verstraete,
2012; Stojevic et al., 2015; Corboz et al., 2018; Rader and
Läuchli, 2018; Vanhecke, Haegeman et al., 2019). In a parallel
effort, mathematicians have investigated different concepts to
apply tensor trains (which are analogous to MPSs) to diverse
problems (Grasedyck, 2010; Oseledets, 2011; Hackbusch,
2012). Here the idea is also to compress high-rank tensors in
terms of smaller ones, thus saving time and memory in
computations.
Another active area of research is continuous tensor net-

works. We have reviewed here the theory underlying the one-
dimensional version, cMPS. Constructing algorithms that
integrate the related quantum-Gross-Pitaevskii equation
(Haegeman et al., 2017) is challenging, although considerable
progress in this direction was recently made by Tuybens et al.
(2020). Much effort is also currently being devoted to con-
structing the higher-dimensional versions (Tilloy and Cirac,
2019) or the continuous MERAs (Haegeman, Osborne et al.,
2013; Cotler et al., 2019; Fernandez-Melgarejo, Molina-
Vilaplana, and Torrente-Lujan, 2019; Zou, Ganahl, and
Vidal, 2019; Fernandez-Melgarejo and Molina-Vilaplana,
2020) for computations in quantum field theories. Here the
main challenge is to make practical algorithms to deal with
quantum field theories. Another relatively unexplored direction
is the use of tensor networks with infinite bond dimension, like
infinite matrix product states, in order to describe critical or
chiral topological systems (Cirac and Sierra, 2010; Nielsen,
Cirac, and Sierra, 2012; Nielsen, Sierra, and Cirac, 2013; Tu
et al., 2014).
As for applications of the computational techniques, tensor

networks have been used to address atomic, condensed matter,
and, more recently, high-energy physics problems. In par-
ticular, the fact that symmetries (both global and local) can be
easily incorporated into the tensors appears to be an attractive
feature aiding in the numerical investigation of symmetry-
protected phases, topological models, and lattice gauge
theories. The main challenge here is to extend current methods
to higher spatial dimensions. MPSs and TTNs have also been
applied to problems in quantum chemistry, yielding promising
results, although there are still open questions about the
suitability of different tensor networks for various chemical
structures (White and Martin, 1999; Chan and Sharma, 2011;
Szalay et al., 2015). More recently tensor networks have been
used to construct toy models of holographic principles in
hyperbolic geometries (Swingle, 2012; Pastawski et al., 2015;
Hayden et al., 2016). This was triggered by the observation
that MERA explicitly leads to the Ryu-Takayanagi formula
for the entanglement entropy of critical states in 1þ 1
dimensions, where the renormalization direction can be
interpreted as the radial coordinate in an AdS bulk. The
language of tensor networks seems to be appropriate to
construct and analyze simple models displaying some of
the expected features of the AdS=CFT correspondence.
Furthermore, it has also been used to describe some of the
physics expected in black holes and wormholes.
Tensor networks are also being widely used in machine

learning (Stoudenmire and Schwab, 2016; Glasser, Pancotti,
and Cirac, 2018; Carleo et al., 2019; Glasser et al., 2019;

Huggins et al., 2019). In fact, some of the most traditional
methods in that field are closely related to those networks.
There is also an intimate connection between tensor networks
and so-called neural network states (as well as string-bond
states, entangled plaquette states, etc.), which in their simplest
incarnation are simply MPSs. However, those states can be
extended to other sets of states that have the property that
physical observables can be computed using Monte Carlo
methods, and thus they can be employed to study the ground
states of many-body systems with variational Monte Carlo
techniques. All those states are intimately related to graph
models in the field of machine learning. This connection is
being successfully exploited in both directions. On the one
hand, the techniques of deep neural networks can be applied to
construct powerful computational methods for many-body
quantum systems. On the other hand, the theory of tensor
networks and its connection with entanglement can help to
devise better methods in machine learning.
Tensor network techniques have also been proposed and

used in quantum optics experiments. For instance, quantum
tomography can become much more efficient if the states one
deals with can be approximated by MPSs or MPDOs, as with
fewer measurements one can fully characterize the many-body
state (Cramer et al., 2010). Furthermore, in many physical
systems MPSs appear in a natural way, for instance, in
sequential generation, where a physical system produces or
interacts with other subsystems sequentially (Schön et al.,
2005; Osborne, Eisert, and Verstraete, 2010). This can occur
when atoms cross a cavity where they interact with one or a
few optical modes or when an emitter generates photons one
after another.
Tensor networks appear naturally in the field of quantum

computing in different incarnations. Measurement-based
quantum computing can be easily explained in terms of a
simple PEPS, the cluster state, and teleportation-based gates
acting on the auxiliary indices of the tensor whenever one
performs a measurement (Verstraete and Cirac, 2004b).
Quantum circuits have a natural expression in terms of tensor
networks, so the analysis of different quantum algorithms, and
even the effects of the errors, can sometimes be easily traced
(Nielsen and Chuang, 2000). Additionally, quantum error
correcting codes typically have simple characterizations as
tensor networks (Terhal, 2015). This is the case of surface
codes, which are the basis of physical implementations where
gates occur locally. Tensor network techniques also seem to be
essential to analyzing more sophisticated quantum error
correcting codes based on string nets.
Finally, there are interesting connections between tensor

networks and some areas in mathematics. For instance, MPOs
can be used to construct representations of fusion categories,
weak Hopf algebras, and subfactors (Kawahigashi, 2020;
Lootens et al., 2021; Molnar et al., 2021), which in turn are
related to topological field theories, conformal field theories,
and integrability through the Yang-Baxter equation.
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APPENDIX: EXAMPLES

This appendix collects the MPS and PEPS descriptions for a
variety of widely used tensor network states.

1. One dimension: MPSs

We start by giving a range of examples of one-
dimensional MPSs.

a. Product states

Any product state jψi ¼ jϕ1i ⊗ jϕ2i ⊗ � � � ⊗ jϕNi is a
trivial MPS with D ¼ 1. With the convention that
jϕsi ¼ P

i a
i;½s�jii, we have

jψi ¼
X

i1;…;iN

ai1;½1� � � � aiN;½N�ji1;…; iNi: ðA1Þ

b. The GHZ state

The GHZ state on a d-level system,

jGHZi ¼
Xd−1
i¼0

ji; i;…; ii;

is a MPS with Ai
αβ ¼ δi¼α¼β.

c. The W state

The W state

jWi ¼ j100…i þ j010…i þ � � � þ j0…001i

is a MPS with open boundary conditions and D ¼ 2, with

A0 ¼
�
1 0

0 1

�
; A1 ¼

�
0 1

0 0

�
; ðA2Þ

and left and right boundary conditions ðlj ¼ ð0j and jrÞ ¼ j1Þ,
respectively, i.e.,

jWi ¼
X

ðljAi1Ai2 � � �AiN jrÞji1;…; iNi: ðA3Þ

Note that this is not a translationally invariant representation
of the MPS due to the nonperiodic boundary condition. This
begs the question of which bond dimension is optimal for
representing theW state as a translationally invariant MPS. In
this case the bond dimension D must scale polynomially with
the system size N. In particular, combining the results of
Perez-Garcia et al. (2007) and Michałek and Shitov (2018),
one determines that D must fulfill a bound of the form
D3 logD ¼ ΩðNÞ, which implies, in particular, that, for each
δ > 0, D ¼ ΩðN1=ð3þδÞÞ.

d. The cluster state

The 1D cluster state (Raussendorf and Briegel, 2001) is a
MPS with

A0 ¼ j0Þðþj; A1 ¼ j1Þð−j

(Verstraete and Cirac, 2004b). This can be derived by using
the fact that the cluster state can be constructed by acting with
a controlled-Z gate between nearest neighbors, starting with a
jþi⊗N state.

e. The AKLT state

The 1D AKLT state (Affleck et al., 1987) is constructed by
taking spin-1/2 singlets as bonds and projecting the two spin-
1/2 at each site on the joint spin-1 subspace. The resulting
tensor is (labeling the physical states as Sz ¼ 0;�1)

Aþ1 ¼
�
1 0

0 0

�
Y; A0 ¼ 1ffiffiffi

2
p

�
0 1

1 0

�
Y; A−1 ¼

�
0 0

0 1

�
Y;

where

Y ¼
�
0 −1
1 0

�
ðA4Þ

encodes the singlet. When expressed in the basis
jþi ¼ iðj − 1i þ j þ 1iÞ= ffiffiffi

2
p

, j−i¼ ðj−1i− jþ1iÞ= ffiffiffi
2

p
, and

j0i, these tensors become

A− ¼ 1ffiffiffi
2

p σx; Aþ ¼ 1ffiffiffi
2

p σy; A0 ¼ 1ffiffiffi
2

p σz:

f. The Majumdar-Ghosh model

The Majumdar-Ghosh model is the 1D version of the RVB
state and appears as theground state of the spin-1/2Hamiltonian
H ¼ P

Si · Siþ1 þ ð1=2ÞPSi · Siþ2 (Majumdar and Ghosh,
1969). Its ground state is a superposition of singlet pairs
ð1; 2Þ; ð3; 4Þ;… and ð2; 3Þ; ð4; 5Þ;…; ðN; 1Þ and can bewritten
as a MPS with

A ¼ ½j0i½ð02j þ ð20j� þ j1i½ð12j þ ð21j�� ⊗ Y

(Verstraete et al., 2006), with Y as in Eq. (A4).
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2. Two dimensions: PEPSs

Next we give a range of examples for two-dimensional
PEPSs, where we follow the convention to order the virtual
indices top, right, down, left, as introduced in Sec. II.B.1.

a. The GHZ state

As in one dimension, the 2D GHZ state

jGHZi ¼
Xd−1
i¼0

ji; i;…; ii

can be written as a PEPS with D ¼ d and Ai
αβγδ ¼ δi¼α¼β¼γ¼δ.

b. The cluster state

The 2D cluster state (Raussendorf and Briegel, 2001) on the
square lattice can be written as a PEPS with

A ¼ j0ið00þþj þ j1ið11 − −j;

where ð�j ¼ ½ð0j � ð1j�= ffiffiffi
2

p
. This can again be understood by

rewriting the circuit preparing the cluster state (controlled-Z
gates between nearest neighbors acting on the jþi⊗N state) as
a tensor network (Verstraete and Cirac, 2004b). Indeed, this
tensor network description straightforwardly generalized to
arbitrary graphs.

c. The AKLT model

The 2D AKLT model (Affleck et al., 1988) is obtained by
placing singlets on the links of the lattice (commonly
honeycomb or square) and projecting onto the symmetric
subspace. This can be directly translated into a PEPS by
absorbing the singlets

Y ¼
�
0 −1
1 0

�

into the projectors Πsym onto the symmetric space. For the
square lattice, this yields tensors

A ¼ Πsymð1 ⊗ 1 ⊗ Y ⊗ YÞ:

d. The RVB state

The nearest-neighbor RVB state on a 2D lattice is the
superposition of all ways of covering the lattice with nearest-
neighbor singlets. The corresponding D ¼ 3 PEPS tensor
(Verstraete et al., 2006) is given by combining the projector

P ¼ j0i½ð0222j þ ð2022j þ…� þ j1i½ð1222j þ ð2122j þ…�

(illustrated here for coordination number 4) with �Y tensors
for each link (with the sign corresponding to the orientation of

the singlet). For the square lattice with a translational invariant
orientation of singlets, the tensor would be

A ¼ Pð1 ⊗ 1 ⊗ Y ⊗ YÞ:

e. The toric code and quantum double models

The quantum double model for a finite group G (Kitaev,
2003) on an oriented square lattice has spins with basis
fjgigg∈G assigned to every edge and is the equal weight
superposition of all basis configurations that satisfy Gauss’s
law across a vertex, g1g2g−13 g−14 ¼ 0, where the inverses relate
to the orientation of the edges. A PEPS representation can be
obtained by blocking every other plaquette (containing four
edges) into a tensor (aligned diagonally with respect to the
lattice) and using the virtual indices (which sit at the vertices
of the original lattice) to enforce the Gauss law; i.e., the
nonzero configurations are

ðA5Þ

(where the lines inside the tensor indicate the original lattice).
Alternatively, a dual PEPS representation can be obtained

by assigning dual “color” variables g ∈ G to the plaquettes
and defining the physical spins as the difference of adjacent
plaquette colors (Schuch, Cirac, and Perez-Garcia, 2010). The
equal weight superposition of all plaquette colors then
corresponds to the equal weight superposition of all Gauss
law configurations. The corresponding tensor is thus

ðA6Þ

Note that this representation is G-injective (in fact,
G-isometric) with respect to the regular representation, as
shifting all plaquette colors does not affect the physical state.
On the other hand, in the representation (A5), the four virtual
indices in the group basis fuse to the identity and thus possess
a symmetry under the action of any irreducible representation.
From the point of view of bimodule categories (Lootens

et al., 2021), the case (A5) corresponds to D ¼ G;
M ¼ Vec; C ¼ RepG. Hence, the MPO symmetries are
labeled as the irreps. The case (A6) corresponds to C ¼ M ¼
D ¼ G up to a blocking, and the MPOs are hence labeled as
the group elements.

f. String-net models

The string-net picture provides the most natural description
of topological phases of matter in terms of MPO-symmetric
tensors. As discussed in Secs. III.A.6 and III.B, the
PEPS description involves a ðC;DÞ-bimodule category M
with labels fa; b; c;…g ∈ IC, fA; B; C;…g ∈ IM, and
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fα; β; γ;…g ∈ ID. As a special case, the categories might all
be chosen as equal to one another. For the case of a bipartite
hexagonal lattice and a gauge in which all F symbols are
unitary, one can choose the A-type PEPS tensors of the
bipartite lattice as

and the PEPS tensors on the B-type sublattice obtained by
reflecting the previously mentioned tensor around the x axis
and reversing all arrows as the complex conjugate. The di are
the quantum dimensions of the different categorical objects.
Additionally, an extra factor dA has to be introduced for every
closed loop of virtual labels M.
The quantumdouble description for a groupG as discussed in

Appendix 2.e is a special case of these string-net representa-
tions. The two previously discussed options correspond toD ¼
M ¼ C ¼ VecG and D ¼ VecG;M ¼ Vec; C ¼ RepðGÞ.
Additionally, one can define two more Morita-equivalent
PEPS with physical labels in RepðGÞ as D ¼ M ¼ C ¼
RepðGÞ or D ¼ RepðGÞ;M ¼ Vec; C ¼ VecG. Here VecG
is the category with the group elements as labels, and Vec is
the trivial category consisting of only one element.

g. PEPSs from classical models

With each classical model H and a finite inverse temper-
ature β there is associated a PEPS that reproduces the
expectation value of any diagonal observable (in particular,
the classical correlation functions) present in the Gibbs state
e−βH=Z. For simplicity, we restrict to the case of nearest-
neighbor interactions on a square lattice Hðσ1;…; σNÞ ¼P

ði;jÞ hi;j. Define the matrix M ¼ P
i;j e

−ðβ=2Þhði;jÞjiÞðjj.
The corresponding PEPS is then given by the tensor
(Verstraete et al., 2006)

A ¼
�X

i

jiiðiiiij
�
ð1 ⊗ 1 ⊗ M ⊗ MÞ:

This shows that expectation values of the classical Gibbs state
correspond to expectation values of the associated PEPS for
diagonal observables. In particular, for the critical temperature
βc the associated PEPS has power law decaying correlations,
and hence its parent Hamiltonian must be gapless (Hastings
and Koma, 2006; Nachtergaele and Sims, 2006).

h. The CZX model

The CZX model (Chen, Liu, and Wen, 2011) is a product
state of GHZ states of qubits (d ¼ 2) across plaquettes of a
square lattice placed on a torus of the size 2N × 2M,

⊗
N;M

i;j¼1
jGHZiji;

with jGHZiji the GHZ state on sites ð2i; 2jÞ;
ð2iþ 1; 2jÞ; ð2iþ 1; 2jþ 1Þ; ð2i; 2jþ 1Þ. The CZX model

is simply the state resulting from considering blocked sites
formed by ð2i − 1; 2j − 1Þ; ð2i; 2j − 1Þ; ð2i; 2jÞ; ð2i − 1; 2jÞ,

Using the previous description of the GHZ, the PEPS tensor
with bond dimension D ¼ d2 ¼ 4 is then given by

X1
i;j;k;l¼0

jijkliðði; jÞ; ðj; kÞ; ðk; lÞ; ðl; iÞj.

As explained in Sec. III.B.1, the CZX model belongs to the
nontrivial SPT sector of a global on-site Z2 symmetry.

3. Fermionic MPSs and PEPSs

a. The Kitaev chain

The Kitaev chain, or the Majorana chain (Kitaev, 2001),
consists of a chain of spinless fermions. Each fermion consists
of two Majorana fermions, which can be paired up either
within a site or across adjacent sites, which can be changed by
tuning the Hamiltonian. Here we are interested in the limit
where the Majorana modes pair up solely across sites, as this
corresponds to a nontrivial topological phase.
To describe the corresponding ground state as a fermionic

MPS, we start with 2N Majorana modes cj, fcj; ckg ¼ 2δij.
Denote by jΩi the vacuum, defined via c2nc2nþ1jΩi ¼ 0,
n ¼ 1;…; N. The nontrivial fixed point of the Kitaev chain is
the state of the N complex Dirac fermions an ¼ ðc2n−1 þ
ic2nÞ=2 in the state jψi ¼ jΩi. The corresponding description
in terms of graded tensor networks is given in Eq. (10) and has
tensors (Bultinck, Williamson et al., 2017)

A0 ¼
�
1

0

0

1

�

and

A1 ¼
�

0

−1
1

0

�
;

with a twist Y ¼ A1 at the boundary.

b. Free fermionic and chiral PEPSs

Free (or noninteracting) fermions are fermionic systems
governed by a Hamiltonian that is quadratic in the fermionic
creation and annihilation operators a†x and ax, where x denotes
the lattice position (and possibly other degrees of freedom
such as spin). Ground and thermal states ρ of such
Hamiltonians (“Gaussian states”) are fully characterized by
their second moments γxy ¼ ði=2Þtrðρ½cx; cy�Þ due to Wick’s
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theorem, where we use a Majorana representation
c2x−1 ¼ ax þ a†x, c2x ¼ −iðax − a†xÞ. A special case involves
PEPSs constructed using Gaussian states as bonds and
Gaussian maps as PEPS tensors (that is, maps that map
Gaussian states to Gaussian states). Because of their compact
representation and the possibility of exactly solving, for
instance, for the ground state of translational invariant
quadratic Hamiltonians, these Gaussian fermionic PEPSs
form an important test bed for the investigation of PEPSs
and their ability to describe certain types of systems.
A translational invariant Gaussian fermionic PEPS in D

spatial dimensions with n physical Majorana modes per site
and m Majorana modes per bond is specified by a ðnþ
2DmÞ × ðnþ 2DmÞ real antisymmetric matrix with a block
structure

Γ ¼
�

X Y

−YT Z

�

(where X is n × n and Z is 2Dm × 2Dm), which satisfies Γ2 ¼
−1 (Kraus et al., 2010). It describes a Gaussian state with
correlations

γ̂ðkÞ ¼ X þ Y½Z þ ωðkÞ�−1YT;

ωðkÞ ¼ ⨁
D

α¼1

�
0 eikα1m

e−ikα1m 0

�

in momentum space, γ̂ðk⃗Þ ¼ ði=2Þtrðρ½ĉk; ĉ−k�Þ, ĉk ¼P
eik·xcx=

ffiffiffiffi
N

p
. Since the entries of the inverse of a matrix

M ¼ Z þ ωðkÞ are the quotient of the determinant of minors
of M and of detðMÞ, any Gaussian fermionic PEPS has the
special property that γ̂ðkÞ is the ratio of polynomials of a
degree of at most 2Dm in e�ikα (Schuch, Wolf, and
Cirac, 2008).
One important example is a Gaussian fermionic PEPS that

describes a topological superconductor in D ¼ 2 spatial
dimensions, that is, a system with chiral order (Wahl et al.,
2013, 2014) for which n ¼ 2, m ¼ 1 (i.e., each bond consists
of only a single Majorana mode), and

X ¼
�

0 1 − 2λ

−1þ 2λ 0

�
;

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
λ − λ2

p �
1 −1 0 −

ffiffiffi
2

p

−1 −1 −
ffiffiffi
2

p
0

�
;

Z ¼

0
BBBBB@

0 1 − λ −λ=
ffiffiffi
2

p
−λ=

ffiffiffi
2

p

−1þ λ 0 λ=
ffiffiffi
2

p
−λ=

ffiffiffi
2

p

λ=
ffiffiffi
2

p
−λ=

ffiffiffi
2

p
0 1 − λ

λ=
ffiffiffi
2

p
λ=

ffiffiffi
2

p
−1þ λ 0

1
CCCCCA
;

where 0 < λ < 1.

4. MPOs and MPUs

a. The CZX MPU

As explained in Sec. III.B.1, the reason behind the fact that
the CZX model is a nontrivial SPT phase is the existence of a
nontrivial MPU symmetry in the associated PEPS determined
by a nontrivial 3-cocycle. This MPU is given by the tensor

j0ih1j ⊗ j0Þðþj þ j1ih0j ⊗ j1Þð−j

and can be understood as the product of overlapping con-
trolled-Z gates CZ ¼ diagð1; 1; 1;−1Þ between all adjacent
sites (since they commute, the ordering does not matter),
followed by a Pauli X on all sites (thus the name) (Chen, Liu,
and Wen, 2011).
This MPO, which we denote as OðAÞ, is injective, as can

easily be seen by considering the algebra generated by the
matrices

A01 ¼
�
1 1

0 0

�
; A10 ¼

�
0 0

1 −1
�
:

We now square this MPO, thereby getting a MPO OðBÞ
with bond dimension 4 that is given by the following matrices:

B00 ¼
�
1 1

0 0

�
⊗

�
0 0

1 −1
�

¼

0
BBB@

0 0 0 0

1 −1 1 −1
0 0 0 0

0 0 0 0

1
CCCA;

B11 ¼
�
0 0

1 −1
�

⊗
�
1 1

0 0

�
¼

0
BBB@

0 0 0 0

0 0 0 0

1 1 −1 −1
0 0 0 0

1
CCCA.

This MPO is not injective, and it has an invariant subspace
given by the projector

P ¼

0
BBB@

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1
CCCA.

By the canonical form construction (Sec. IV), we can therefore
also work with the block

B00 ¼
�−1 1

0 0

�
; B11 ¼

�
0 0

1 −1
�
.

But this MPO again has an invariant subspace given by the
projector

Q ¼ 1=2

�
1 −1
−1 1

�
:

Applying once more the canonical form construction, we
arrive at the following canonical form for the MPO:
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Bij ¼ ð−1Þδij, which globally means that OðAÞ2 ¼ ð−1ÞNI.
The CZX MPO hence provides a good example showing how
the canonical form construction works.

b. The shift MPU

The shift is the paradigmatic example of a MPU that cannot
be approximated using a short-range time evolution; see
Sec. II.B.2 (Cirac et al., 2017b). Its tensor is given by

X
i;j

jiihjj ⊗ jiÞðjj:

c. The MPO for the Fibonacci model

String nets in the PEPS picture are described using a ðC;DÞ-
bimodule category M with labels fa; b; c;…g ∈ IC,
fA; B; C;…g ∈ IM, and fα; β; γ;…g ∈ ID.
The MPOs are given by

with 2F a solution of the six coupled pentagon equations and
di the quantum dimensions of the categorical objects. For the
Fibonacci model, we can take C ¼ M ¼ D, and hence
1F ¼ 2F ¼ 3F ¼ 4F ¼ 5F ¼ F. The categorical objects are
IC ¼ f1; τg, with quantum dimensions d1 ¼ 1 and dτ ¼ ð1þffiffiffi
5

p Þ=2 and the fusion rules given by

N1
11 ¼ Nτ

τ1 ¼ Nτ
1τ ¼ N1

ττ ¼ Nτ
ττ ¼ 1:

The elements of ðFabc
d Þfe are zero unless Nc

ab > 0;

Ne
cd > 0; Nf

ad > 0; Nbcf > 0, and the only allowed elements
that cannot be chosen as equal to 1 by an appropriate gauge
choice are

ðFτττ
τ Þab ¼

�
1
dτ

1ffiffiffiffi
dτ

p 1ffiffiffiffi
dτ

p − 1
dτ

�
ab
.
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