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The distinctive electronic properties of quasicrystals stem from their long-range structural order, with
invariance under rotations and under discrete scale change, but without translational invariance.
d-dimensional quasicrystals can be described in terms of lattices of higher dimension (D > d), and
many of their properties can be simply derived from analyses that take into account the extra “hidden”
dimensions. In particular, as recent theoretical and experimental studies have shown, quasicrystals
can have topological properties inherited from the parent crystals. These properties are discussed here
for the simplest of quasicrystals, the one-dimensional (1D) Fibonacci chain. The Fibonacci
noninteracting tight-binding Hamiltonians are characterized by the multifractality of the spectrum
and states, which is manifested in many of its physical properties, most notably in transport.
Perturbations due to disorder and reentrance phenomena are described, along with the crossover to
strong Anderson localization. Perturbations due to boundary conditions also give information on the
spatial and topological electronic properties, as is shown for the superconducting proximity effect.
Related models including phonon and mixed Fibonacci models are discussed, as are generalizations
to other quasiperiodic chains and higher-dimensional extensions. Interacting quasiperiodic systems
and the case for many body localization are discussed. Some experimental realizations of the
1D quasicrystal and their potential applications are described.
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I. INTRODUCTION TO THE FIBONACCI CHAIN

The Fibonacci chain is a one-dimensional quasiperiodic
structure that is closely related to the three-dimensional
icosahedral quasicrystals discovered by Shechtman et al.
(1984). The study of electronic properties of quasicrystals
thus logically begins with the study of electrons in a 1D
Fibonacci chain. This “fruit fly” of quasiperiodic studies not
only is a theoretical construct but also can be experimentally
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realized in artificial atom chains or in heterostructures made
from quasi-2D semiconducting layers, to give two examples.
Tight-binding Hamiltonians for the Fibonacci chain have been
extensively investigated. Properties of the energy spectra and
critical states of the chain have been studied using a variety of
methods, exact solutions, perturbation theory, and numerical
analysis. Aperiodic Schrödinger operators in general, and
quasiperiodic systems in particular, are an active subject of
mathematical physics (Damanik, Embree, and Gorodetski,
2015), with a review having been devoted exclusively to the
Fibonacci model (Damanik, Gorodetski, and Yessen, 2016).
Quasiperiodic Hamiltonians are of growing interest for their

nontrivial topological properties (Verbin et al., 2013; Huang
and Liu, 2018, 2019). Like the well-known Aubry-André-
Harper (AAH) model, to which it is often compared, the
one-dimensional Fibonacci quasicrystal possesses a higher-
dimensional “parent” system, from which it inherits topological
characteristics. Thus, in the Fibonacci chain there appear to be
topologically protected boundary states equivalent to the edge
states of the two-dimensional integer quantum Hall effect
(Verbin et al., 2015). Unlike the quasiperiodic AAH model,
which is critical at a single point in its parameter space, the
Fibonacci models that we discuss here are critical for all values
of the strength of the quasiperiodic modulation.
Multifractal states are omnipresent in the phase diagram of

quasicrystals. Some recent works have given exact solutions
for multifractal states in quasicrystals and, in particular, for
the E ¼ 0 central state of the off-diagonal model (Kalugin
and Katz, 2014; Macé et al., 2017). To our knowledge there
have not been attempts to solve for arbitrary states on the
Fibonacci chain using exact methods along the lines of the
Bethe ansatz–based analysis presented by Abanov, Talstra,
and Wiegmann (1998) for the quasiperiodic AAH model.
Much valuable information can be obtained about the critical
wave functions of the Fibonacci chain using a perturbative
renormalization group treatment (Macé, Jagannathan, and
Piéchon, 2016). Some of the physical manifestations of
critical states have been discussed in relation to thermody-
namic quantities such as those in interesting proximity
effects (Rai, Haas, and Jagannathan, 2019), or in dynamical
phenomena including the growth of entanglement (Macé,
Laflorencie, and Alet, 2019).
Studies of hyperuniformity in complex systems including

quasicrystals and glasses have received significant recent
interest as a way to characterize spatial fluctuations in
complex structures (Torquato, 2018). The Fibonacci chain,
as indeed all quasicrystals, possesses the hyperuniformity
property (Baake and Grimm, 2019). This should have con-
sequences for the electronic wave functions since weaker
geometric fluctuations can be expected to favor delocalization.
The hyperuniformity should thus lead to distinctive spectral
characteristics in the Fibonacci chain compared to generic
aperiodic chains not having this property.
Some important conceptual, and experimentally pertinent,

questions concern the role of perturbations. One can ask what
the effects of disorder are in a quasicrystal, and how critical
states are affected by randomness. Recent work on disorder
and the approach to strong localization in the Fibonacci
quasicrystal showed reentrant phenomena and the existence
of a new crossover exponent (Jagannathan and Tarzia, 2020).

These works concern single-particle properties. Interacting
quasiperiodic systems have been considered in a number of
studies. In particular, many body localization (MBL) due to
quasiperiodic potentials (Iyer et al., 2013) has been an active
topic of recent research. One of the questions addressed
concerns differences in the critical behavior, if any, from MBL
due to random potentials (Khemani, Sheng, and Huse, 2017).
It is becoming possible to study a number of models
experimentally with cold atoms in optical potentials, possibly
extending to realizations of generalized Fibonacci problems
(Singh et al., 2015). These could allow a new generation of
experimental studies of interacting quasicrystals.
This outline of some of the interesting and not yet fully

understood aspects of the Fibonacci model seeks to convince
the reader that this “toy model” merits further study by both
theory and experiment. This review restricts the discussion to
this simplest one-dimensional case, allowing a reasonably
detailed description of methods and presenting a state of the
art that should be useful to those wishing to work on these
or related systems. The outline of the review is as follows:
It begins with certain important structural properties of
Fibonacci chains included here for completeness, since they
are essential for the ensuing discussions of the tight-binding
Hamiltonians. Section II focuses on geometrical aspects,
introducing useful notations and properties of the Fibonacci
chain and its approximants. Section III presents the basic
tight-binding models along with the principal spectral proper-
ties of the diagonal and off-diagonal Fibonacci models. Some
important exact results are introduced in Sec. III, in particular,
the well-known gap labeling theorem and an exact renorm-
alization group (the trace map) method. Finally, an exact
solution for the multifractal wave function in the diagonal
model for E ¼ 0 is given. Section IV takes up approximate
methods that have proven to be extremely useful, yielding
many valuable insights into spectral and wave-function
properties. In particular, the section introduces the perturba-
tive renormalization group technique and its qualitative
predictions. Section V takes up the off-diagonal model in
more detail in order to illustrate the use of the perturbative
renormalization group (RG) technique in obtaining a quanti-
tative description of spectrum and critical wave functions.
Section VI is a first step in discussing physical observables.
It introduces wave packet dynamics, time dependence of the
correlation function, and log-periodic behavior. Section VII
presents results for transmission coefficient and chain con-
ductances using the Landauer formalism and the Kubo-
Greenwood approach. Section VIII discusses effects due to
disorder in the Fibonacci chain (FC) and describes reentrant
phenomena and crossover to strong Anderson localization.
The role of boundary conditions and the proximity effect
when the FC is coupled to a superconductor are described.
Section IX presents important generalizations of the simple
models hitherto considered, including phonon modes on the
Fibonacci chain. The so-called mixed models that combine
diagonal and off-diagonal quasiperiodic modulations are
discussed in the section. Section X outlines a few other
frequently encountered 1D quasiperiodic systems related to
the Fibonacci chain. The section also describes some exten-
sions to higher dimensions. Section XI lists results for
interacting quasiperiodic systems. Finally, Sec. XII gives
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some examples of experimental realizations of Fibonacci
models in electronic, cold atom, phononic, and photonic
systems. Section XIII concludes the review with a summary
and outlook.

II. GEOMETRIC PROPERTIES OF THE FIBONACCI
CHAIN

The Fibonacci chain is a 1D quasicrystal, according
to the revised definition of the International Union of
Crystallography (1992). The definition states that a quasi-
crystal, like a periodic crystal, is a material having a sharp
diffraction pattern composed of Bragg peaks. The indexing of
peaks proceeds as it does for crystals; however, it requires a set
of D reciprocal lattice vectors where D is larger than the
spatial dimension d. This distinguishes the quasicrystal from a
periodic lattice, where the number of reciprocal lattice vectors
is equal to d. This section describes how to generate the
Fibonacci chain and reviews some of its geometrical and
structural properties. We introduce several methods, each of
which is helpful in its own way for a better understanding of
electronic properties in this system.

A. Substitution method

The substitution method explicitly introduces the notion of
scale invariance of the quasicrystal, which is later used in the
renormalization group transformation. The Fibonacci substi-
tution rule σ acts on the two letters A and B and transforms
them as follows:

σ∶
�
A → AB;

B → A:
ð1Þ

Letting the substitution act repeatedly on the letter B generates
a sequence of words Cn ¼ σnðBÞ of increasing length, as
shown for the first few members in Table I. These chains are
finite approximants of the Fibonacci chain, which is obtained
in the limit n → ∞. It is clear that the lengths of the words are
equal to the Fibonacci numbers Fn, which are defined by the
recursion relation Fn ¼ Fn−1 þ Fn−2 with F0 ¼ F1 ¼ 1. The
following ratio of two consecutive Fibonacci numbers tends to
the golden mean as n → ∞:

Fn−1

Fn−2
¼ τn;

lim
n→∞

τn ¼ τ; ð2Þ

where τn are the rational approximants of the golden mean
τ ¼ ð1þ ffiffiffi

5
p Þ=2. The lengths of the chains are given by

Fn ∼ τn in the large n limit.
Inflation and deflation of tiles.—The substitution method

shows the hierarchical relations between the chains and
suggests that problems on the chain could be tackled using
renormalization group methods. Consider a 1D tiling of A
and B tiles such that the ratio of their lengths lA=lB ¼ τ. The
approximant chains Cn correspond to a series of finite tilings
that can be transformed into one another by so-called inflation
and deflation operations. Using the substitution (1) in reverse,
one goes from a chain of Fn tiles to a chain of Fn−1 tiles. Note
that this corresponds to a “site decimation” process that
eliminates a certain subset of sites. Rescaling all the tiles
by a factor of τn restores the length of the chain to its original
value, as illustrated in Fig. 1. The infinite chain is invariant
under inflation and deflation: i.e., the FC has a discrete scale
invariance.
Concatenation.—From Fig. 1 (and Table I) one sees that

the nth chain Cn can be obtained by the concatenation of
two shorter chains Cn−1 and Cn−2. This property is useful later
for the transfer matrix method (Sec. III.D). Repeating this
operation, one obtains a relation between the nth chain and the
(n − 2)th and (n − 3)th chains as follows:

Cn ¼ Cn−2 ⊕ Cn−3 ⊕ Cn−2; ð3Þ

where the circled plus sign denotes concatenation (joining the
chains in the specified order from left to right). This recursive
construction also holds for the energy spectrum in perturbative
RG, as we see in Sec. V.

Inflation matrix.—Let NðnÞ
A and NðnÞ

B be the number of
occurrences of A and B in an approximant chain Cn. From the

substitution rule given in Eq. (1), it is clear that Nðnþ1Þ
A ¼

NðnÞ
A þ NðnÞ

B and Nðnþ1Þ
B ¼ NðnÞ

A , with the initial condition

Nð0Þ
A ¼ 0 and Nð0Þ

B ¼ 1. This relation can be put in the
following matrix form:

"
Nðnþ1Þ

A

Nðnþ1Þ
B

#
¼

�
1 1

1 0

�"
NðnÞ

A

NðnÞ
B

#
; ð4Þ

TABLE I. The first six approximants built using the substitution σ
[defined in Eq. (1)].

n Cn Fn

0 B 1
1 A 1
2 AB 2
3 ABA 3
4 ABAAB 5
5 ABAABABA 8
6 ABAABABAABAAB 13

FIG. 1. Illustration of inflation transformations progressing
from the C5 (top panel) to the C4 (middle panel) to the C3

(bottom panel) chain. A (B) tiles are shown as gray (black)
rectangles.
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where the 2 × 2matrix is called the substitution matrixM. The
eigenvalues of M are λ1 ¼ τ and λ2 ¼ −τ−1. The correspond-
ing eigenvectors are fτ; 1g and f1;−τg. The first eigenvector
gives the relative frequencies of the A and B tiles by virtue of
the Perron-Frobenius theorem. The ratio NA=NB tends to τ
when n → ∞. For more details on symbolic substitutions, see
Baake and Grimm (2013).
At this point, we make a digression relating to other types

of binary chains generated by the substitution method. Two
different classes of problems arise, as exemplified below.

(1) The so-called silver mean chain can be obtained from
repeated application of the following rule:

σAg∶
�
A → AAB;

B → A:
ð5Þ

One can easily check to see, by writing the inflation
matrix for this case, that the eigenvalues satisfy the
equation λ2 − 2λ − 1 ¼ 0. The Perron-Frobenius
eigenvalue in this case is λ1 ¼ ð ffiffiffi

2
p þ 1Þ. This type

of rule can be generalized to yield a series of so-called
metallic mean chains having the substitution rule
B → A; A → AnB (n ≥ 1). Note that number theoretic
properties enter crucially in aperiodic systems and lead
to significantly different spatial and physical charac-
teristics. Both the Fibonacci chain and the silver mean
chain are based on irrational numbers that are Pisot
numbers (a Pisot number is the root α of an nth degree
monic polynomial equation with integer coefficients
such that α is greater than 1, while all other roots are of
a modulus less than 1).

(2) Next consider the substitution rule B→A;A→ABBB,
which gives rise to a self-similar aperiodic structure
that is, however, not a quasicrystal. This structure is
non-Pisot: it can be checked to ensure that the two
eigenvalues of the inflation λ ¼ ð1� ffiffiffiffiffi

13
p Þ=2, which

are both greater than 1 in absolute value. The spatial
properties of this chain are significantly different than
those of the golden and silver mean quasicrystals.
In particular, the diffraction pattern of such a chain
does not have Bragg peaks (Baake et al., 2019), as we
now explain by considering the nature of geometric
fluctuations.

Fluctuations of geometry.—Consider a subsystem of N
letters from the infinite Fibonacci chain. For values of N that
are not Fibonacci numbers the number of A’s and B’s in the
sample δN ¼ NA − NB fluctuates around the mean value δ̄.
The behavior of δN for large N is described in terms of η, the
so-called wandering exponent defined (Luck, 1993) for a one-
dimensional chain as

δN − δ̄ ∼ Nη. ð6Þ

In periodic systems, fluctuations are subextensive (i.e., due
to boundary effects) and η ¼ 0. Fluctuations are similarly
negligible in the thermodynamic limit for Pisot aperiodic
chains, including the Fibonacci chain. For these structures
η ¼ 0, and as a consequence their diffraction spectrum is pure

point; i.e., it consists solely of Bragg peaks (Godrèche and
Luck, 1992).1

It is instructive to compare this with geometry fluctuations
in random systems. Consider a random sequence of the letters
A and B for some fixed probabilities pA and pB ¼ 1 − pA of
the letters. The law of large numbers leads to the exponent
η ¼ 1=2 in this case. The huge fluctuations, divergent in the
thermodynamic limit, reflect the fact that there are rare regions
in which the number of A’s (for example) vastly exceeds the
number of B’s. For non-Pisot systems such as the “3B”
aperiodic structure defined earlier, fluctuations diverge with
the system size and the wandering exponent is given by
η ¼ ln jλ2j= ln λ1 (Godrèche and Luck, 1992; Luck, 1993).
This property of bounded geometrical fluctuations of the

quasicrystal is the principal reason for electronic states in
quasicrystals being relatively more extended than, for exam-
ple, the critical states at the metal-insulator transition in
disordered structures. This is also related to the hyperuni-
formity property, which is discussed in Sec. II.B.2.

B. Higher-dimensional representation of the FC

Quasicrystals can be generated by projection from a higher-
dimensional periodic lattice by the cut-and-project method, as
we illustrate here for the case of the Fibonacci chain.

1. Cut-and-project method

The parent system is a 2D square lattice, and the quasi-
crystal is obtained by projection onto the physical axis labeled
x0 in Fig. 2. To be selected, a point must lie within the red strip
S of the slope given by

tan θ ¼ ω; ð7Þ

where the notation ω ¼ 1=τ ¼ ð ffiffiffi
5

p
− 1Þ=2 is introduced for

convenience. The width of the strip is chosen to span one unit

FIG. 2. Schema of the cut-and-project method. Selected points
(joined by a broken line) of a 2D square lattice are projected onto
the x0 axis, giving the binary quasiperiodic sequence of short red
(light gray) and long blue (dark gray) tiles. The infinite selection
strip S is colored red (gray).

1This result holds as well in higher dimensions of deterministic
tilings such as the well-known Penrose 2D and 3D tilings, the
Ammann-Beenker tiling, etc.
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cell of the 2D lattice. Upon projection onto the x0 axis (the
physical axis), horizontal bonds and vertical bonds project
onto the red and blue intervals, respectively. The y0 axis is
called the perpendicular (or internal) space.
Expressing all lengths in units of the square lattice

parameter a, vertices of the square lattice are located at
R⃗mn ¼ mx⃗þ ny⃗, where m and n are integers. The x0 coor-
dinate and the coordinate along the perpendicular direction y0

are given by

x0 ¼ m cos θ þ n sin θ;

y0 ¼ −m sin θ þ n cos θ; ð8Þ

up to an overall shift. To be selected, the point must satisfy the
condition 0 ≤ y0 < W, where W ¼ sin θ þ cos θ is the cross
section of the strip S.
After projection on the x0 axis, the spacing between nearest

neighbors can have two values, cos θ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

p
or

sin θ ¼ ω=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

p
, corresponding to the lengths of the A

and B tiles of Sec. II.A.
Translational symmetries.—The origin of the x0y0 axes is

arbitrary: i.e., shifting the strip perpendicularly to itself does
not result in a new quasiperiodic structure. This statement
requires a clarification of what is meant by equivalence
between quasiperiodic tilings. Tilings are said to be equivalent
(or locally isomorphic) if the same sequences of tiles (which
may be of an arbitrarily large size) can be found in both
structures, and with the same frequency of occurrence. In
other words, one can make the two tilings overlap out to
arbitrarily large distances by suitably translating one with
respect to the other.
The higher-dimensional representation of the FC shows that

the structure has a translational symmetry with respect to
displacements parallel to the physical space, but also in the
perpendicular direction. This leads theoretically to the pos-
sibility of having two kinds of Goldstone modes: phonons and
phasons. Phonons are 1D vibrational modes in the usual sense.
To visualize phason modes, see Fig. 3, which shows how the
projected structure would change if the lattice were to be

slightly displaced in the direction perpendicular to the strip.
The vertex ðm; nÞ in the figure moves out of the strip while,
simultaneously, the vertex ðm − 1; nþ 1Þ enters the strip.
The net result is a small discontinuous jump of one site, while
the other points in its neighborhood remain unaffected. This
so-called phason jump corresponds to exchanging the A and B
tiles around a given vertex AB → BA. The shift produces a
new chain structure which is equivalent to the old one. In
accepted terminology, a phason mode is a coherent excitation
of the perfect Fibonacci chains corresponding to long wave-
length fluctuations. In contrast, when phason flips are intro-
duced in a random uncorrelated fashion all along a chain, this
gives rise to a geometrically disordered chain. In practice,
however, spontaneous phason flips presumably have a sig-
nificant energy cost and are unlikely to be excited at low
temperatures.
Approximants.—Periodic approximants of the FC are

generated by taking a rational slope for the strip S. If the
slope is chosen to be the ratio of two successive Fibonacci
numbers

tan θn ¼ Fn−2=Fn−1;

then the projected chain has a repeating structure consisting of
Fn−1 and Fn−2 tiles of type A and B, respectively, and the total
number of tiles is Fn. It is easy to ensure that one obtains
the same approximant sequences already seen in Table I. For
example, for n ¼ 3 the strip has a slope equal to 1=2 and one
obtains a periodic repetition of the motif ABA.

2. Structure factor

As previously mentioned, the defining characteristic of a
quasicrystal is that it has a pure point diffraction pattern,
i.e., Dirac delta-function peaks of the structure factor. The
peaks of the structure factor of the FC occur for q vectors
given by linear combinations of two reciprocal lattice vectors.
It is clear that the structure factor of the perfect FC has only

Bragg peaks in the higher-dimensional representation. The
position of the peaks of the structure factor of the FC can be
easily deduced from those of the square lattice. The reciprocal
space of the square lattice is given by G⃗hk ¼ 2πðhx⃗þ ky⃗Þ.
There are Bragg peaks of SðqÞ (q is the reciprocal space
coordinate) corresponding to each of the G⃗hk. Projecting each
of the points onto the q axis, one sees that all Bragg peak
positions q are indexed by two integers h and k:

q ¼ qðh; kÞ ¼ 2πðh cos θ þ k sin θÞ ¼ gðhþ ωkÞ; ð9Þ

where g ¼ 2π=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

p
. That is, there are Bragg peaks at

positions given by all the integer linear combinations of two
incommensurate wave vectors g and ωg.
Figure 4(a) shows some of the positions obtained by

projecting the vertices of the reciprocal space lattice (shown
in black) onto the q axis. In Eq. (9) note that h and k can take
all possible integer values, which results in a dense distribu-
tion of peaks of the structure factor along the q axis. In
practice, however, the observable peaks of the structure factor
are far fewer, as most of the peaks have intensities that are too
small to observe. This occurs because the intensities of the

FIG. 3. Illustration of a phason flip or local rearrangement of the
tiling when the lattice is slightly displaced with respect to the
selection strip. The old (new) tilings are obtained by projecting
the solid (dashed) lines. The arrow shows the location of the
phason flip where a long-short tile ordering has become an short-
long ordering.
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peaks depend on a form factor, namely, the Fourier transform
of the selection strip. The strip is described by the function
Sðy0Þ ¼ 1 for 0 ≤ y0 ≤ W, and Sðy0Þ ¼ 0 elsewhere. As a
result, peak intensities are modulated by the function

jSðq0Þj2 ∝ sin2ðWq0=2Þ
q02

; ð10Þ

where the perpendicular reciprocal space coordinate is defined
by q0 ¼ ð2π=aÞð−h sin θ þ k cos θÞ. The S function is akin
to the Airy function for diffraction through a slit in optics and
is shown in Fig. 4(b). The resulting variation of the peak
intensities of the FC is shown in Fig. 4(c).
To conclude this description of the structure factor, we point

out one noteworthy characteristic of the FC related to the
small q (large wavelength) behavior of SðqÞ. Notice that
the Bragg peak intensities near the origin must correspond to
large values of the perpendicular component q0, and therefore
have vanishingly small intensities due to Eq. (9). Excluding
the peak at q ¼ 0 for forward scattering, one concludes
that the structure factor must tend to zero for small q:
limq→0 SðqÞ → 0. For a detailed discussion of this property
see Baake and Grimm (2019). Structures with this property are
said to be hyperuniform (Torquato, 2018). This is another way
of expressing the fact that for the FC (as indeed for all
quasicrystals, as previously mentioned) the spatial fluctua-
tions are bounded. As counterexamples of chains not pos-
sessing this property one can mention binary 1D structures
obtained for non-Pisot substitution rules (Godrèche and Luck,
1992). For a discussion of diffraction patterns of aperiodic
systems from a mathematical perspective, see Baake and
Grimm (2013).
On patterns and their probabilities.—The cut-and-project

method provides a convenient way to compute the probability
of a given pattern occurring in the FC. These probabilities are
proportional to the length of a corresponding “acceptance

zone” in perpendicular space. To illustrate the method,
consider the probability of occurrence of a one-letter pattern:
the B tile. To be selected, the corresponding vertical bond of
the projected length cos θ must lie within the window. The
acceptance zone isW − cos θ ¼ sin θ, and the probability of B
is sin θ=W. The probability of finding an A tile is proportional,
using a similar argument, to cos θ=W. The ratio of the
probabilities is pðAÞ=pðBÞ ¼ cot θ ¼ τ, as expected.
Consider a two-letter pattern such as AA. This pattern

corresponds, in the 2D square lattice, to two consecutive
horizontal bonds sandwiched between two vertical bonds. The
probability of the pattern AA is given by ðcos θ − sin θÞ=W≈
0.238. The configurations AB and BA have equal probabilities
of ≈0.382.

3. Conumbering scheme

Sire and Mosseri (1990) showed that in approximant chains
it can be advantageous to work with an alternative ordering of
sites, rather than the usual real space ordering i ¼ 1;…; N.
The so-called conumber of the site i depends on its
perpendicular space coordinate, i.e., the distance along the
y0 axis. This is illustrated in Fig. 5 for a periodic approximant
of 13 sites. The conumbers are given by cðiÞ ¼ mod½i�
Fn−2; Fn� up to a global cyclic permutation.
This numbering orders the sites according to their local

environments as follows:
• Sites with conumbers 1 < c < Fn−2 have an B tile to the
left and an A tile to their right.

• Sites with Fn−2 þ 1 < c < Fn−1 have A tiles both on the
left and on the right.

• The remaining Fn−2 sites have an A tile to the left and a
B tile to their right.

As we saw in Sec. II.A the FC is a self-similar structure. Its
inflation symmetry is coded using a hierarchical structure of
the conumbering indices. Each of the previously listed three
groups of sites is, in turn, composed of three subgroups having

FIG. 4. (a) Reciprocal lattice of the square lattice showing the ðqx; qyÞ and ðq; q0Þ axes and the projections of some representative
points. (b) The form factor corresponding to the selection strip. (c) Relative intensities of the first few peaks for q > 0 corresponding to
the points outlined in bold in (a). All q values are shown in units of 2π=a.
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the same properties but on a larger length scale. In particular,
consider the central site, according to the conumber scheme,
for an approximant for which n is a multiple of 3. This site
always has the same local environment (A tiles on both sides)
under inflation of n → n − 3, all the way down to n ¼ 1.
The conumbering scheme will be useful in Sec. V for a
compact representation of the spectrum and states of the
hopping model.
We have discussed the cut-and-project method to obtain

the FC by projection from a two-dimensional lattice. More
generally, projections from higher-dimensional lattices can
yield Fibonacci chains as part of higher-dimensional quasi-
periodic structures. For example, 2D planes composed
of parallel FC can be found in certain three-dimensional
structures generated by cut-and-projection from a 4D lattice
(Ben-Abraham and Quandt, 2007). In those examples the
projections involve the golden mean τ, which is intimately
linked to the Fibonacci sequence. The well-known 3D
icosahedral tilings also depend on the golden mean, which
is why Fibonacci modulation of atomic density can be seen in
experimental studies of surfaces of 3D icosahedral quasicrys-
tals, as seen in Fig. 45, taken from Ledieu et al. (2004).

C. The characteristic function method

The Fibonacci quasicrystal corresponds to a special case
of the family of Sturmian potentials defined by VðnÞ ¼
χ½1−ω;1Þðnωþ φ mod 1Þ, where φ is an arbitrary phase.
Here the characteristic function χ, say, 1 and 0. The value
1, corresponding to the letter A, is obtained when the argu-
ment lies in the interval ½1 − α; 1Þ, and the value 0, corre-
sponding to the letter B, is obtained otherwise.2 The
characteristic function can, for example, be written explicitly
as χj ¼ 2f½ðjþ 1Þω� − ½jω�g − 1, where ½X� stands for the
integer part of X. In this formulation χj ¼ −1 stands for A and
χj ¼ 1 represents B. The preceding form was modified to

an alternative form using a cosine function by Kraus and
Zilberberg (2012) as a way to connect the Fibonacci and AAH
models. The jth letter of the Fibonacci chain is obtained via
the characteristic function χj defined by

χj ¼ sgn½cosð2πjωþ φÞ − cosðπωÞ�; ð11Þ

where φ is an arbitrary constant that one can term a phason
angle. This function also serves to generate approximants by
using a rational approximant of the golden mean in Eq. (39).
The approximants Cn defined earlier are found by making
suitable choices of 0 ≤ φ < 2π. The important feature to note
is that, when the angle φ is varied, phason flips occur (a single
flip at a time). In this way, one can generate a family of Fnþ1

chains of length Fn, corresponding to different values of φ
(see Fig. 6). The phason angle will later become a tuning
parameter to control the edge modes in open finite approx-
imant chains.

III. TIGHT-BINDING MODELS: EXACT RESULTS

Much of the extensive literature on electronic properties
of the FC is devoted to the study of tight-binding models
of the form

H ¼
X
n

ϵnc
†
ncn − ðtnc†nþ1cn þ H.c.Þ; ð12Þ

where ϵn represent the site energy at the nth site, while tn is the
hopping amplitude between the sites n and nþ 1. We assume
that these parameters are defined by local rules, i.e., that the
values depend on the environment of each site. The first
papers on this family of Hamiltonians appeared shortly
before the discovery of quasicrystals (Kohmoto, Kadanoff,
and Tang, 1983; Ostlund et al., 1983) and were followed by
many other groundbreaking papers in the next few years
(Kohmoto and Oono, 1984; Ostlund and Pandit, 1984;
Kalugin, Kitaev, and Levitov, 1986; Tang and Kohmoto,
1986; Evangelou, 1987; Kohmoto, Sutherland, and Tang,
1987; Sutherland and Kohmoto, 1987; Luck, 1989). When
written for approximant chains with periodic boundary

FIG. 6. Successive phason flips in the n ¼ 4 approximant
(N ¼ 5; the first and last sites are equivalent under a translation)
as ϕ is varied in Eq. (11).

FIG. 5. The n ¼ 5 (N ¼ 8) approximant showing the real space
labels of sites (along the chain) as well as their alternative labeling
using their conumbers (along the axis perpendicular to the chain).

2More generally, Sturmian potentials can be written in terms of
two parameters α and an interval Δ. For generic values of these,
it has been shown that the resulting model is not integrable and has
large unbounded fluctuations, in contrast to the Fibonacci chain
(Godrèche, 1990).
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conditions, the Hamiltonian (12) is invariant with respect to
translations of the selection strip in the 2D space (Sec. II.B).

A. Diagonal and off-diagonal Fibonacci models

The Hamiltonian of Eq. (12) is termed mixed, as there can
be spatial modulations in both diagonal and off-diagonal
terms. However, the following simple cases contain all the
essential new physics:

(1) Off-diagonal case.—Site energies are assumed to be
constant, i.e., ϵn ¼ ϵ, while the hopping amplitudes tn
can take the value tA or tB, according to a Fibonacci
sequence. This is also referred to as the pure-hopping
Fibonacci Hamiltonian since the constant energy term
can be dropped by using the following suitable
redefinition of the energy:

H ¼ −
X
n

tnc
†
nþ1cn þ H.c. ð13Þ

Absorbing tB into the definition of the units of energy
leaves as a sole parameter the ratio ρ ¼ tA=tB, which
controls all the properties of the chain. Without loss of
generality, we henceforth assume both amplitudes to
be positive since these signs can be changed by a
gauge transformation.

(2) Diagonal case.—Here the quasiperiodicity is assumed
to be present in the diagonal term, while the hopping
amplitudes are assumed to be uniform (tn;nþ1 ¼ t) for
all values of n:

H ¼
X
n

ϵnc
†
ncn − t

X
n

c†nþ1cn þ H.c.; ð14Þ

where the on-site potentials ϵn take on two discrete
values ϵA and ϵB according to a Fibonacci sequence.
As in model (1), there is only one nontrivial parameter
in this model, and it depends on the energy differ-
ence ε ¼ ðϵA − ϵBÞ=t.

The previous models are often compared to those of a
particular quasiperiodic Aubry-André-Harper model (Harper,
1955; Aubry and André, 1980; Gordon et al., 1997) hereafter
simply called the AAH model. The AAH model is equivalent
to a tight-binding problem of an electron hopping in a 2D
square lattice and subjected to a uniform magnetic field, with a
flux per plaquette Φ ¼ ωΦ0, where Φ0 ¼ h=2e is the flux
quantum. The resulting quasiperiodic AAH Hamiltonian is of
the form

H ¼
X
n

tðc†nþ1cn þ H.c.Þ þ 2V cos ð2πnωþ ϕÞc†ncn; ð15Þ

where the strength of the on-site potential energy 2V depends
on the hopping amplitude along the direction transverse to the
chain and ϕ is a phase. A well-known duality transformation
takes Eq. (15) into a Hamiltonian of the same form but with
the exchange t ↔ V. When V ¼ t the model is self-dual. This
is the critical AAH model since it has many properties in
common with the Fibonacci model, as described next.

B. Multifractal energy spectra

Spectra can be classified into three types: continuous
spectra associated with extended states (as in periodic solids),
pure point spectra associated with localized states (as in
disordered solids), and singular continuous spectra associated
with multifractal states. If one defines the scaling of the
integrated density of states NðEÞ (defined as the fraction of
states of energy equal to or less than E) in the vicinity of the
energy E by

NðEþ ΔEÞ − NðEÞ ∼ ΔEα; ð16Þ

then the three cases correspond to α ¼ 1, α ¼ 0, and
0 < α < 1. The wave functions typically associated with
the last type of fractal spectrum are “critical” states: neither
extended nor localized. This intermediate type of state appears
to be rather generically found in quasiperiodic structures not
only in 1D but in higher dimensions as well, as can be seen in
the review of quasiperiodic tight-binding Hamiltonians by
Grimm and Schreiber (2003).
For the AAH model, the nature of the spectrum depends on

the parameter V=t: the spectrum is continuous for V=t < 1,
pure point for V=t > 1, and singular continuous for V=t ¼ 1.
For the Fibonacci models in Eqs. (12) and (13) the energy

spectrum is singular continuous as soon as there is aperio-
dicity, however small (Delyon, Lévy, and Souillard, 1985;
Bellissard et al., 1989; Süto, 1989). The situation is analogous
to that of the Anderson model for 1D disordered metals, where
the critical value for localization in one dimension for disorder
strength is zero.
It is noteworthy that the spectra in all three cases are pure

spectra, meaning purely singular continuous, pure point, or
absolutely continuous. In general, however, models may have
spectra with several different components, and there may be
one or more mobility edges separating different regions. This
is the case for the Anderson model in three dimensions for
disorder strengths that are smaller than the critical value. In
one dimension there can also be mobility edges. This occurs
in generalized Harper models, where the potential energy
depends on two incommensurate wave vectors, as discussed
by Hiramoto and Kohmoto (1989, 1992) and reconsidered
recently by Das Sarma and Xie (1988), Ganeshan, Pixley, and
Das Sarma (2015), and Liu, Ghosh, and Chong (2015).
Figure 7 shows three typical forms of the densities of states

for the three models. Figure 7(a) shows the DOS for the off-
diagonal model for the case tA ¼ 0.6, tB ¼ 1, and periodic
boundary conditions. This model has a chiral symmetry: for
each solution jψi of energy E, one has a solution jψ 0i of
energy −E such that hnjψ 0i ¼ ð−Þnhnjψi. The spectrum is
therefore symmetric around 0, as can be seen in Fig. 7. The
horizontal axis represents the dimensionless energy E=tB. The
band structure is seen to be composed of three main clusters,
each of which comprises three subclusters, etc. Each level
broadens into a band when periodic boundary conditions are
assumed. The process of subdivision into smaller bands
continues as one considers larger and larger approximant
chains.
The spectrum for the diagonal model for ϵA ≠ ϵB is similar.

Figure 7(b) shows the DOS computed numerically for an
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approximant chain of N ¼ 144 sites. The parameters were
taken to be ϵA ¼ −ϵB ¼ 2t, with periodic boundary condi-
tions. The spectrum, which is asymmetric, has two main
clusters. These clusters are in turn composed of three sub-
clusters that trifurcate into three clusters, etc.
Finally, in Fig. 7(c) we show the DOS for the AAH model

computed at criticality V ¼ 1, with τ ¼ τn in the cosine term,
for a system of N ¼ 144 sites with periodic boundary
conditions. For the AAH model at criticality as for the off-
diagonal model, the bands divide into three subbands when
one goes from one approximant to the next (Hiramoto and
Kohmoto, 1989).
Figures 7(a)–7(c) each correspond to a given system size.

When the size is increased, one observes a characteristic
feature of multifractal structures, namely, local power-law
singularities of the DOS, NðEþ ΔEÞ − NðEÞ ∼ ΔE−αðEÞ.
As the system size gets larger, bandwidths shrink, with
each one scaling with a different exponent α. To fully
describe this multifractal spectrum, one needs the full set
of exponents α and their densities fðαÞ. This can be done
using standard methods of multifractal analysis (Halsey et al.,
1986). The method consists of defining the “partition
function” as

Γnðq; τÞ ¼
X
E

ð1=FnÞq
½ΔnðEÞ�τ

; ð17Þ

where ΔnðEÞ is taken to be the width of the energy band
associated with the energy level labeled E. One determines τ
as a function of q by requiring that Γ ∼ 1 as n → ∞. The
function fðαÞ is the Legendre transform of τðqÞ given by

αq ¼
dðq − 1Þdq

dq
ð18Þ

and

fðαqÞ ¼ qαq − τq. ð19Þ

The function fðαÞ gives the fraction of sites around which the
DOS scales with the power α. fðαÞ is typically a convex curve
extending between the extremal values αmin and αmax. For the
periodic crystal when the spectrum is continuous, this curve
reduces to only two points, α ¼ 1 describing the interior
of the band and α ¼ 1=2, due to van Hove singularities at
the band edges, as at the bottom of the band where

dNðEÞ ∼ ðE − EminÞ1=2. In the quasiperiodic case, singularity
strengths vary throughout the energy spectrum. Figure 8, from
Rüdinger and Piéchon (1998), shows fðαÞ values (indicated
by crosses) computed numerically for tA=tB ¼ 0.2. Exact
expressions can be obtained for scaling exponents αðEÞ
for two special energies, as we later explain using the trace
map method, as we explain in Sec. III.D.

C. Gap labeling and topological indices

In one-dimensional problems, the integrated density of
states (IDOS) NðEÞ, defined as the fraction of states of energy
less than E, is also equal to the number of changes of sign
(nodes) of the wave function per unit length. One can thus
introduce a wave number kðEÞ ¼ NðEÞ=2 corresponding to a
state of energy E. For the nth periodic approximant, the
spectrum consists of Fn bands, each corresponding to wave
vectors kj, such that the IDOS between two bands j and jþ 1

has the value j=Fn. Note that the IDOS is a more tractable
quantity than the DOS, which fluctuates violently as a
function of the given energy when the system size is increased.
The IDOS, in contrast, has plateaus whose positions are well
defined as system sizes are increased. This has its importance
for calculations in which the chemical potential enters as a
parameter. The IDOS curve approaches the devil’s staircase
form in the limit of infinite size.

FIG. 7. Densities of states dN=dE for three models. (a) Off-diagonal Fibonacci model [Eq. (13)] with tA=tB ¼ 0.6. (b) Diagonal
Fibonacci model [Eq. (14)] with ε ¼ 4. (c) AAH model [Eq. (15)] at criticality.

FIG. 8. fðαÞ computed numerically (crosses) for the off-
diagonal Fibonacci model for ρ ¼ 0.2. The solid line corresponds
to an analytic expression obtained using the trace map (see the
text). From Rüdinger and Piéchon, 1998.
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The gap labeling theorem (Bellissard et al., 1989;
Bellissard, Bovier, and Ghez, 1992) states that, of the class
of models given by Eq. (12), the IDOS NðEÞ within the gaps
must take values given by

NðEÞ ¼ pþ q
τ
; ð20Þ

where p and q [not to be confused with the reciprocal space
vector or the multifractal parameter q defined in Eq. (17)] are
integers. The pair of indices ðp; qÞ label all of the possible
gaps, but the gap labeling theorem does not specify whether
or not a given gap is actually opened. It suffices to specify
only one integer (q), as p is then fixed by the condition
0 ≤ NðEÞ ≤ 1.
The mapping between the FC quasicrystal and a 2D quantum

Hall system has been discussed by Zilberberg and collaborators
(Kraus and Zilberberg, 2012; Kraus et al., 2012; Kraus, Ringel,
and Zilberberg 2013). This mapping shows that q is a
topological quantity, a Chern number inherited from the 2D
parent model. As expected for a topological invariant, it is
robust under local perturbations due to disorder or other
scattering that preserves symmetry. The gap label q represents
a winding number that describes the variations of the edge
modes in a system that has interfaces. This bulk-edge corre-
spondence is discussed in more detail in Sec. III.F.
Figure 9 shows the IDOS for each of the three models

plotted as a function of the dimensionless energy E=t. The
horizontal lines indicate values of IDOS given by Eq. (20) for
gaps corresponding to values of −3 ≤ q ≤ 3. For the three
cases, Figs. 9(a)–9(c) show that they have identical gap
positions, as given by the gap labeling theorem. This topo-
logical equivalence can be shown with an explicit mapping
between models (Kraus et al., 2012; Verbin et al., 2013). In an
experiment using a photonic waveguide array, the topological
equivalence of the Fibonacci and Harper models was explic-
itly shown by Verbin et al. (2015).

D. Trace map method

The trace map analysis is a powerful technique that has led
to an exact renormalization group scheme, producing many
important results for scaling properties. The starting point is
the definition of transfer matrices relating the wave-function
amplitudes on the (nþ 1)th site to the amplitudes on sites n
and n − 1. From Eq. (12) one has the tight-binding equations

ðE − ϵnÞψn þ tnψnþ1 þþtn−1ψn−1 ¼ 0. ð21Þ

This relation can be reexpressed in terms of a 2 × 2 matrix
equation as follows:

�
ψnþ1

ψn

�
¼

� ðE − ϵnÞ=tn −ðtn−1=tnÞ
1 0

��
ψn

ψn−1

�

¼
�Yn

k¼2

Tk;kþ1

��
ψ1

ψ0

�

¼ Mn

�
ψ1

ψ0

�
; ð22Þ

where we have introduced the local transfer matrix Tk;kþ1 and
the global transfer matrix Mn that is a product of n − 1 such
transfer matrices, with the order of multiplication of the
matrices given by Mn ¼ …T2;3T1;2.

(1) Diagonal model.—The local transfer matrix depends
on the on-site energy ϵn and the amplitudes for
hopping onto the sites to the left and to the right of
site n. For the diagonal model, there are only two
possible transfer matrices, namely,

TA ¼
� ðE − ϵAÞ=t −1

1 0

�
;

TB ¼
� ðE − ϵBÞ=t −1

1 0

�
. ð23Þ

We now consider the approximant chain of length
N ¼ Fn and let xn ¼ ð1=2ÞTrMn be the half trace of
the transfer matrix. For an energy E to correspond to
an allowed (normalizable) wave function, the half
trace of MN must satisfy the condition jxnj ≤ 1.
Thanks to the concatenation property of chains men-
tioned in Sec. II.A, namely, Cnþ1 ¼ Cn ⊕ Cn−1, the
global transfer matrices for successive approximants
satisfy (Kohmoto, Kadanoff, and Tang, 1983; Ostlund
et al., 1983)

Mnþ1 ¼ Mn−1Mn. ð24Þ

Given Eq. (24), it can be shown that the half traces
satisfy the following three term recursion relation
(Kohmoto, Kadanoff, and Tang, 1983):

xnþ1 ¼ 2xnxn−1 − xn−2; ð25Þ

with the initial conditions

FIG. 9. Integrated DOS NðEÞ vs the energy E (in dimensionless
units) for three topologically equivalent models. (a) Off-diagonal
model [Eq. (13)] (ρ ¼ 0.7). (b) Diagonal model [Eq. (14)]
(ε ¼ 4). (c) Critical AAH model [Eq. (15)]. In all the plots,
energies were shifted and normalized such that the total band-
widths are equal to 1 (system size N ¼ 144, periodic boundary
conditions).
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x−1 ¼ 1; x0 ¼
ðE − ϵBÞ

2
; x1 ¼

ðE − ϵAÞ
2

.

ð26Þ

To determine which energies belong in the spectrum,
one computes the iterates xn using Eq. (25) and checks
to see whether they remain bounded and within the
interval ð−1; 1Þ.

(2) Off-diagonal model.—A similar set of relations can be
obtained in the case of the off-diagonal model. One
starts by introducing three different transfer matrices
(TAA, TAB, and TBA) for the three bond configurations
AA, AB, and BA that are possible in the FC. These
matrices are defined by

TAA ¼
�
E=t −1
1 0

�
;

TAB ¼
�
E=t −tB=tA
1 0

�
;

TBA ¼
�
E=t −tA=tB
1 0

�
. ð27Þ

The problem of writing the global transfer matrix can
be simplified (Kohmoto, Sutherland, and Tang, 1987),
as the hopping on Fibonacci chains can be described
with only two matrices: TAA and TABTBA. If we
rename these transfer matrices as TB and TA, respec-
tively, the global transfer matrices for approximant
chains can be written exactly as in the diagonal case.

The recursion relations (24) and (25) therefore also
hold for the off-diagonal model. The initial conditions
for the half traces in the off-diagonal case are

x−1 ¼
1

2

�
tB
tA

þ tA
tB

�
;

x0 ¼
E
2tB

; x1 ¼
E
2tA

. ð28Þ

The recursion relation for the traces [Eq. (25)] constitutes a
dynamical system in a three-dimensional space. Defining the
variables x ¼ xn−1, y ¼ xn, and z ¼ xnþ1 [Eq. (25)] maps a
given point as follows:

x → x0 ¼ y;

y → y0 ¼ z;

z → z0 ¼ 2yz − x. ð29Þ
One of the invariants of the dynamical system [Eq. (29)] is the
quantity (Kohmoto, Kadanoff, and Tang, 1983; Kohmoto and
Oono, 1984; Kohmoto, Sutherland, and Tang, 1987)

I ¼ x2 þ y2 þ z2 − 2xyz − 1

¼ 1
4
ðϵA − ϵBÞ2 ðdiagonal modelÞ

¼ 1

4

�
tA
tB

−
tB
tA

�
ðoff-diagonal modelÞ; ð30Þ

where the last two lines were written using the initial conditions
for the diagonal and off-diagonal model, respectively. For a
proof of the invariance of I, a so-called Fricke character, see
Baake, Grimm, and Joseph (1993). Under the dynamical map,
points move on the surface I ¼ const in the three-dimensional
space. Details of the form of these surfaces for different values
of the parameters and of different kinds of orbits were given by
Kalugin, Kitaev, and Levitov (1986). Orbits that escape to
infinity, such that limn→∞ xn is infinite, correspond to energies
that are not in the spectrum. Numerically, this is found to be the
case for almost all energies, which is consistent with the fact
that the spectrum has a Lebesgue measure of zero. Periodic
orbits with limn→∞ xn ≤ 1 correspond to allowed energies.3 It
can be shown, by tracing orbits for successive periodic
approximants, that the band structure has a self-similar struc-
ture, i.e., is a Cantor set.
Kohmoto, Kadanoff, and Tang obtained exact results for

two cases where the trace map leads to a periodic orbit
(Ostlund et al., 1983; Kohmoto and Oono, 1984; Kohmoto
and Banavar, 1986; Kohmoto, Sutherland, and Tang, 1987).
By considering the linearized map around these special points
of the spectrum, they found the scaling exponents for the
corresponding bands in terms of the escape rates of the
dynamical map. The bandwidths are given by Δ ∼ ωϵ, where
ϵ is the minimal eigenvalue of the linearized map as given for
the following two special cases.

(1) Solution for the band center. The trace map has a
periodic orbit consisting of the six cycle ð0; 0; aÞ →
ð−a; 0; 0Þ → ð0; −a; 0Þ → ð0; 0; −aÞ → ða; 0; 0Þ →
ð0; a; 0Þ → ð0; 0; aÞ, where a ¼ ffiffiffiffiffiffiffiffiffiffiffi

I þ 1
p

. The scaling
exponent for this band can be expressed in terms of
the eigenvalue ϵ6 of the linearized equation around this
six cycle. The result thus obtained for αctr (Kohmoto
and Oono, 1984) is

αctr ¼ ln τ6= ln ϵ6;

ϵ6 ¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ð1þ IÞ2
q

þ 2ð1þ IÞ
i
2
. ð31Þ

(2) Solution for band edges. These correspond to two
cycles of the trace map ða; b; bÞ → ðb; a; aÞ →
ða; b; bÞ, where a¼Jþ

ffiffiffiffiffiffiffiffiffiffiffiffi
J2−J

p
and b¼J−

ffiffiffiffiffiffiffiffiffiffiffiffi
J2−J

p
,

with J ¼ ð1=8Þ½3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 16I

p �. The scaling expo-
nent for these bands is expressed in terms of ϵ2, the
eigenvalue of the linearized map, as follows:

αedge ¼ ln τ2= ln ϵ2;

ϵ2 ¼
h
8J − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8J − 1Þ2 − 4

q i
=2. ð32Þ

Kohmoto, Sutherland, and Tang (1987) conjectured that
the αctr and αedge values correspond to the extremal values,
namely, αmin and αmax. In fact, however, Rüdinger and

3There are in principle two other more “exotic” possibilities
(iii) aperiodic and bounded orbits, and (iv) recurrent orbits where
the point returns to the allowed region and for which limn→∞ xn ≤ 1.
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Piéchon (1998) showed that this is not always the case by
analyzing the trace map in the vicinity of a four cycle that
governs scaling for the IDOS values NðEÞ ¼ 1=3 and 2=3.
Their analysis showed that the maximal value of α occurs at
these points when ρ is small. Another conjecture concerned
the possibility that the spectrum becomes monofractal when
ρ ¼ ρc (Zhong, Bellissard, and Mosseri, 1995). This con-
jecture was based on the fact that αctr is equal to αedge for the
hopping ratio ρc ≈ 0.0944 [as deduced from Eqs. (31)
and (32)]. However, Rüdinger and Pièchon’s calculation
showed that for ρ ¼ ρc α1=3 is different from (more precisely,
is larger than) the other two exponents. Thus, the spectrum is
not a monofractal. An approximate analytical expression for
fðαÞ derived by Rüdinger and Piéchon (1998) is shown in
Fig. 8, along with the numerical data for ρ ¼ 0.2.
The fractal exponent for the self-similar E ¼ 0 wave

function in the hopping model is found by the trace map
calculation to be j ln ρj= ln τ3, which is in good agreement with
numerical calculations of the wave function (Kohmoto and
Banavar, 1986).
Discussions of trace maps and their dynamical properties

were given in the reviews by Baake, Grimm, and Joseph
(1993) and Damanik, Embree, and Gorodetski (2015).
Generalizations of the trace map for mixed Hamiltonians
with two or more parameters are discussed in Sec. IX. These
generalized models have a larger parameter space with more
possibilities for the spectra. They can admit extended states for
special energies.

E. Log-periodic oscillations

Systems with discrete scale invariances can display log-
periodic oscillations in thermodynamic properties, as noticed
in early treatments of critical phenomena (Nauenberg, 1975;
Derrida, Itzykson, and Luck, 1984). To cite a more recent
study, Gluzman and Sornette (2002) considered an observable
fðxÞ in a system close to criticality, where fðxÞ ¼ μ−1fðγxÞ
under a renormalization transformation. They showed that
fðxÞ has a power-law scaling “decorated” by a log-periodic
function fðxÞ ¼ xmPðln x= ln γÞ. The power is given by m ¼
ln μ= ln γ and the period of the oscillations is log γ. This is
indeed what one observes for the IDOS NðEÞ in the Fibonacci
model. Figure 10(a) shows in a log-log plot the IDOS versus

energy in the bottom of the band. The points are obtained by
numerical diagonalization, and the straight dashed line indi-
cates the average IDOS. Figure 10(b) shows the fluctuations
of lnðNÞ around the average value. The period of the
oscillations corresponds to the inflation factor, which in this
case is γ ¼ τ2 for the sidebands; for a description of the
renormalization transformation of the Hamiltonian, see
Sec. IV. The main period and some smaller ones indicating
a fractal structure can be seen.

F. The wave function for E = 0

We discuss here an exact solution for one of the wave
functions of the hopping model. It provides a rare example of
a nontrivial case where multifractal properties can be com-
puted analytically as a function of ρ.
The wave function at the band center E ¼ 0 (shown in

Fig. 11 for a finite approximant) can be determined exactly
using a recursive construction. It turns out to be a particularly
simple form of the critical states proposed by Kalugin and
Katz (KK) for the ground state of tilings (Kalugin and Katz,
2014). They argued that, for a family of quasiperiodic
Hamiltonians that includes all the standard ones, the ground
state jψi can be written as a product of two factors. The
amplitude on site i is given by

FIG. 10. Left panel: log-log plot showing the numerically computed IDOS vs energy for the hopping model in the vicinity of E ¼ Emin
(for ρ ¼ 0.4). The dashed line indicates an averaged behavior. Right panel: expanded plot of the fluctuations around the dashed line
[Δ lnðNÞ] showing the main period of the oscillation and some smaller periods.

FIG. 11. Center state on-site probabilities jψ iðE ¼ 0Þj2 vs site
index i (numerically computed for an n ¼ 12 chain with ρ ¼ 0.6
and periodic boundary conditions).
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hijψi ¼ CðiÞeκhðiÞ; ð33Þ

where κ is a real constant. The prefactors CðiÞ depend on the
local configuration of the atoms around site i. Long-range
correlations between sites are given by the exponent h, called
the height field, which is the integral of a quasiperiodic
function.4 The E ¼ 0wave function of the Fibonacci chain has
the form of Eq. (33), with the particular choice CðiÞ ¼ �1

depending on the sublattice to which the site i belongs. This
solution for the 1D chain is a relatively tractable case study to
illustrate some of the properties of the KK eigenstates, which
are more complex in higher-dimensional quasicrystals.
From the Hamiltonian (13), one obtains the following

relation for the E ¼ 0 wave-function amplitudes on i and
iþ 2:

tiþ1ψ iþ2 þ tiψ i ¼ 0. ð34Þ

There are two independent E ¼ 0 solutions, one for each
sublattice. With the two being equivalent in the limit of the
infinite FC, we henceforth consider the even sublattice
solution for sites i ¼ 2m. There are three possibilities for
the bond configurations between sites i and iþ 1, namely,
AA, AB, and BA. The three cases are given by

ψmþ1 ¼ −ρAðmÞψm; ð35Þ

where ρ ¼ tA=tB and the A (for arrow) function is defined
locally according to the configuration of the bonds between
the two sites

AðmÞ ¼
8<
:

þ1 ðABÞ;
−1 ðBAÞ;
0 ðAAÞ.

ð36Þ

Figure 12 shows the arrow function for the even sites of a
small chain segment. The figure shows the arrows corre-
sponding to the three bond configurations that are possible
using the conventions: a right arrow for the bond sequence
AB, a left arrow for the bond sequence BA, and no arrow for
the bond sequence AA.
Repeating the recursion relation (35), one obtains

ψm ¼ ð−1ÞmρhðmÞψ0

¼ ð−1ÞmeκhðmÞ; ð37Þ

where hðmÞ ¼ P
m
0 AðjÞ, κ ¼ ln ρ, and ψ0 was set at 1. This

expression is of the KK form [Eq. (33)], with a constant
prefactor on all sites. The function h in the exponent is an
integral of a quasiperiodic function AðmÞ. Figure 12 shows the
height function for the first few even sites. As the length of
the chain gets larger, the height function fluctuates more

and more. Figure 13 shows the height function calculated for a
long segment of the Fibonacci chain. The properties of the
wave function can be determined when the distribution of
heights is known. One can show by explicit calculation that
the wave function is multifractal and can express all of its
generalized dimensions Dϕ

q in terms of ρ. This can be done by
introducing inflation matrices to relate the heights in the Cn
and Cn−2 chains. In the large n limit, the height distribution
PðhÞ satisfies a diffusion equation as a function of t (the
number of inflations) as follows:

PðtÞðhÞ ∼ 1ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p exp

�
−

h2

4Dt

�
; ð38Þ

where the diffusion coefficient is given by D ¼ 1=2
ffiffiffi
5

p
. See

Macé et al. (2017) for details.
Since PðhÞ is a symmetric distribution around h ¼ 0, the

resulting form of the wave function has a symmetry between
peaks and valleys, as seen in Fig. 11. The typical value of h in
a chain of N ¼ τn sites is given by the standard deviation of
the Gaussian after a time t ¼ n, htyp ∼

ffiffiffiffiffiffiffiffiffi
2Dn

p
. This leads to a

typical value of ψ that falls off with the chain length N ¼ τn as

ψð2NÞ ∼ e−cst
ffiffiffiffiffiffiffiffiffiffiffi
2D lnN

p
. The spatial decay of the wave function

is thus faster than power-law decay but slower than

FIG. 12. Definition of the local arrow function and its integral,
the height function. From Macé et al., 2017.

FIG. 13. Height function for a long chain showing its fluctua-
tions at large distances. From Macé et al., 2017.

4Note that Eq. (33) can be considered a generalization of the usual
Bloch form for the wave functions in a periodic lattice, which can be
written as a product of a periodic function unðxÞ (in one dimension)
and an exponential eihðxÞ, where hðxÞ ¼ kx is the integral of the
Bloch wave vector k.
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exponential decay. In contrast, note that, for the randomly
disordered off-diagonal model, a similar argument gives the

wave function at E ¼ 0 as ψð2NÞ ∼ e−cst
ffiffiffiffiffiffiffi
2DN

p
(Theodorou

and Cohen, 1976; Economou and Soukoulis, 1981; Inui,
Trugman, and Abrahams, 1994). This is a stretched expo-
nential function that decays much faster than the E ¼ 0 wave
function of the Fibonacci chain.
The fractal dimensions of ψ can be exactly computed.

These quantities are deduced from the scaling of the moments
of the wave functions, which are defined as follows. Let the q
weight of the wave function ψ be defined by

χqðψ ;RÞ ¼
P

i∈Rjψ ij2q
ðPi∈Rjψ ij2Þq

; ð39Þ

where the sums run over all sites in a given region R. The q
weight is a measure of the fraction of the presence probability
contained inside region R.
Consider a sequence of regions Rn whose radius grows

to infinity as n → ∞. Defined as follows, the qth fractal
dimension Dψ

qðψÞ is the scaling of the q weight with the
volume of the region:

Dψ
q ðψÞ ¼ lim

n→∞

−1
q − 1

log χqðψ ;RtÞ
logΩðRnÞ

; ð40Þ

where Ω is the number of sites inside region R. As we have
already seen for the DOS in Sec. V.A, one can then compute
the Legendre transform of the fractal dimensions fE¼0ðαÞ.
This function gives the fraction of sites for which the wave
function scales with the power α.
fE¼0ðαÞ curves obtained using the exact calculation for

different values of ρ are plotted in Fig. 14. As the figure
shows, in each case the α values lie within a finite interval,
indicating that ψ is multifractal. As ρ approaches 1, the
support of the function shrinks to a single point, α ¼ 1,
corresponding to the extended state. Another point to note:
thanks to the symmetry of the height distribution, the function
fE¼0ðαÞ is symmetric around its maximum, as was observed

in numerical studies of this wave function (Evangelou, 1987;
Fujiwara, Kohmoto, and Tokihiro, 1989). In other words, as
the system size increases, the minima (maxima) of ψ scale to
zero (infinity) in the same manner.
The transmission coefficient for this E ¼ 0 wave function

can also be calculated exactly. Note that this quantity (which is
discussed in Sec. VII) has the exact value of 1 (i.e., trans-
mission is perfect) for certain well-defined distances along the
chain out to arbitrarily large distances.

G. Chern numbers: Bulk-edge correspondence

The close connection between topological phases and
quasicrystals that are described in a higher-dimensional space
has been pointed out by many (Kraus et al., 2012; Verbin
et al., 2013; Huang and Liu, 2018, 2019). These show that, for
1D quasicrystals, there are 2D Chern numbers and topologi-
cally protected boundary states similar to those in a 2D
quantum Hall system.
Edge modes are expected to be present in the quasicrystal,

in analogy with those in the AAH model. Just as changing the
arbitrary phase ϕ in the AAH model [Eq. (15)] leads to tuning
the edge mode energy, one can tune edge modes in FC
approximants by varying the arbitrary phase φ in Eq. (11).
This is seen in Fig. 15, which shows for an 89-site chain the
energy levels as a function of the parameter 0 ≤ φ ≤ 2π [the
figure was rendered symmetric with respect to π by shifting
the angle by φ0 ¼ −ωπðN þ 1Þ]. It can be seen that the levels
remain flat as ϕ is varied until a sudden phason flip occurs
somewhere along the chain. There are in all N such flips in the
interval. The label of the gap q gives the number of gap
crossings of the states, which are seen most clearly in the main
gaps of the spectrum in Fig. 15.

FIG. 14. fE¼0ðαÞ spectrum as given by Eq. (40) for the E ¼ 0
wave function for different values of the hopping ratio ρ.
Note the symmetry of fE¼0 around its maximum value. From
Macé et al., 2017.

FIG. 15. Energy spectrum vs ϕ for energy levels of the off-
diagonal model in an open 89-site chain (ρ ¼ 0.7). The number
of gap crossings of states is most easily counted for the largest
gaps (jqj ≤ 4).
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Experimental studies of the hopping Hamiltonian using
polaritonic cavity modes to detect eigenmodes and their
energies can be performed, as shown by Tanese et al. (2014)
and Baboux et al. (2017). In the experiments, nearest
neighbor cavities were spaced so as to be linked by a strong
or a weak coupling, following the Fibonacci sequence.
Chains of given length N, one for each ϕ value, were
fabricated in a Fabry-Perot geometry, resulting in edge
modes located at the central mirror symmetric position.
For a given gap of label q, the corresponding edge mode was
observed to cross the gap q times, confirming that this is
indeed a winding number. The sign of q determines the
sense of the gap crossing (from the upper to the lower edge,
or vice versa).
One can use the winding property of states to “pump”

charge adiabatically across the chain, as was done in experi-
ments with photonic quasicrystals by Kraus et al. (2012) and
Verbin et al. (2013). The “jumping” of states from one edge to
the other as the ϕ parameter is changed is shown in Fig. 16
for the q ¼ 2 gap states (where there are two such jumps in
the 2π interval). This topological pumping of charge can have
consequences for physical properties. We discuss one conse-
quence for the proximity effect in a chain coupled to a
superconductor in Sec. VIII.
Röntgen et al. (2019) studied real space bond configura-

tions for the appearance of edge modes. They showed that the
edge modes are linked to local “resonators”: the term they
used to denote clusters of bonds that are symmetric under
reflection. The localization length and energy of the edge state
depend on the resonator size (i.e., the distance out to which
they possess reflection symmetry).
Chern numbers were also observed in a light diffraction

experiment (Dareau et al., 2017). In the experiment, a
digital micromirror device was used to realize a set of
approximant chains of fixed length and different values of
ϕ in Eq. (11). The behavior of the diffraction peak at different
wave vectors k was shown to depend on the associated
topological number q.

IV. APPROXIMATE METHODS

A. Perturbation theories

Many different kinds of perturbative calculations have been
done to study electronic properties of the FC, in both real and
reciprocal space.
Luck (1989) carried out a perturbation expansion for the

diagonal model in terms of the Fourier components of
the potential. Taking the on-site energies to be ϵA ¼ V and
ϵB ¼ −V using a suitable shift of the origin, one can compute
the Fourier transform of the potential VGNðkÞ and the
structure factor SNðkÞ ¼ V2jGNðkÞj2. In the thermodynamic
limit the structure factor can be shown to have power-law
singularities at a dense set of reciprocal space vectors k0 (as
seen in Sec. II.B). In the vicinity of each of the peaks, one has

SðkÞdk ∼ jk − k0jα. ð41Þ

For a general potential the singularity strength α can vary
depending on the peak, whereas for the quasicrystal α ¼ 1 for
all peaks according to the arguments that we presented in
Sec. II. Luck (1989) showed for the general case that the width
of the gap that opens at the unperturbed energy ϵðK ¼ k0=2Þ
is related to α, the singularity at k ¼ k0. Specifically, for the
gap where the IDOS NðEÞ ¼ k0=2π, the gap width is given by

Δ ∼ Vβ; ð42Þ

where β ¼ 2=ð2 − αÞ. In the case of the quasicrystal, β ¼ 1 for
all the gaps. This analysis shows that, for weak quasiperiodic
potentials, the plateaus of the IDOS are related in a natural
way to the module of wave vectors. This perturbation theory
does not converge, even for arbitrarily weak potentials, as
pointed out by Kalugin, Kitaev, and Levitov (1986), because
of the nature of the Fourier module of the quasicrystal, which
consists of a dense distribution of peaks. Nevertheless, the
indexing of gaps using this method is robust. The gap labeling

FIG. 16. Evolution of eigenstates on either side of the q ¼ 2 gap showing the changes as ϕ is varied. In this series of panels the upper
band edge state probability, shaded orange (light gray), and the lower edge state probability, shown in black, evolve progressively from
extended in-band states to localized edge states, which then exchange positions (hop between the edges in opposite directions) and
finally become in-band states again. In (a)–(f) the values of ϕ are equal to 0.22π, 0.33π, 0.44π, 0.51π, 0.62π, and 0.71π.
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theorem (Bellissard et al., 1989) provides the rigorous
justification that the indexing continues to hold for arbitrarily
strong potentials. Many other perturbative approaches have
been proposed for the off-diagonal model, including a real
space perturbation theory starting with the periodic limit (Sire
and Mosseri, 1989; Rüdinger and Sire, 1996). The method of
Sire and Mosseri (1989), when applied to the Fibonacci chain,
yields exact expressions for positions of the gaps and
associated gap labels, as well as perturbative results for gap
widths. The latter hold well for the main gaps even for a
moderately large perturbation, but not for small gaps. For the
diagonal model, Barache and Luck (1994) introduced a
perturbation theory that starts with a strong atomic limit
Vi ¼ �V, where the on-site potential strength V is large
relative to the hopping amplitude t. The spectrum and density
of states were computed in degenerate perturbation theory,
and the gap structure deduced for this case was shown to be
consistent with the gap labeling theorem.

B. Approximate renormalization group

Here we describe the main ideas behind a perturbative real
space RG method attributed to Niu and Nori (1986, 1990) and
Kalugin, Kitaev, and Levitov (1986) and Levitov (1989). This
approach has been extremely fruitful for describing a large
number of static and dynamic properties of the FC. In this
section we describe the basic notions of this RG for the off-
diagonal and diagonal models.
RG for off-diagonal model (1).—We begin with details of

the RG for the off-diagonal model [Eq. (13)], where tB > tA.
The hopping ratio ρ ¼ tA=tB lies in the range 0 ≤ ρ ≤ 1.
Recall that one can assume that both tA and tB are positive,
because if they are not the solutions can be found from our
model using a suitable mapping (or local gauge transforma-
tion) of the wave functions. The goal of this RG is to obtain a
description of the spectrum and states perturbatively in ρ.
For ρ ¼ 0, the chain breaks up into disconnected groups of

sites that can be classified as follows: atom sites are the sites
sandwiched between A bonds, while molecule sites are pairs of
sites linked by a B bond. The spectrum, in this limit, consists of
only three discrete degenerate levels: the E ¼ 0 level of the
atoms, and E ¼ �tB for the molecular bonding and antibond-
ing levels. For a chain of N ¼ Fn sites, the degeneracy of the
E ¼ 0 level is given by the number of atoms Fn−3. The
degeneracy of the E ¼ �tB levels is given by the number of
molecules Fn−2 in the chain. For small nonzero ρ ≪ 1, these
three levels split into three clusters of levels, the molecular
bonding (þm) and antibonding (−m) bands and the atomic (0)
cluster. The separations between these three clusters for small ρ
are roughly tB. In perturbation theory, the three clusters do not
mix and can be treated as three independent systems for the
calculation of the effective Hamiltonians.
Molecular RG.—Consider the Hamiltonian H for a

Fibonacci chain of length Fn and consider the lowest
molecular bonding level located at the energy −tB and having
a wave function that is nonzero on the molecule sites. It is
easy to check to see that the chain formed by molecules is
precisely the (n − 2)th approximant chain. It can be shown
using degenerate perturbation theory (Kalugin, Kitaev, and
Levitov, 1986; Niu and Nori, 1986, 1990) that, up to an overall

constant shift, the new effective Hamiltonian H0 is again a
Fibonacci hopping Hamiltonian, with the renormalized hop-
ping amplitudes t0A and t0B. The old chain and the new chain
after decimation of atoms are indicated in Fig. 17, along with
the two new hopping amplitudes. The renormalized hopping
amplitudes are given to lowest order in ρ by

t0A ¼ ztA; t0B ¼ ztB; ð43Þ
where z ¼ ρ=2. Note that the hopping ratio is unchanged to
lowest order under RG, as the new weak and strong hopping
amplitudes satisfy t0A=t

0
B ¼ ρ0 ¼ ρ. To summarize, the effec-

tive Hamiltonian for the bonding set of levels is, up to a global
shift, that of the n − 2 approximant chain with renormalized
hoppings. The original level located at E ¼ −tB is split into
three levels, which can be labeled −þ, −0, and −−, separated
by gaps of width t0B.
A similar analysis shows that the effective Hamiltonian for

the antibonding levels “þ” is a FC identical to Fn−2 sites with
hopping amplitudes given by t0A ¼ ztA (weak) and t0B ¼ −ztB
(strong). The original level located at E ¼ −tB is split into
three levels, labeled þþþ0 and þ−.
Atomic RG.—Consider the central band located around

E ¼ 0. The levels around E ¼ 0 correspond to the wave
functions that are the largest on the atom sites, of which there
are Fn−3. It is easy to ensure that the new chain formed by
these atom sites is simply the (n − 3)th approximant chain.
Degenerate perturbation theory shows that the effective
Hamiltonian H0 depends on two new renormalized hopping
amplitudes. Figure 18 shows the old chain and the new chain
obtained after a decimation of atoms, along with the two new
hopping amplitudes. The new strong and weak bonds t00A and
t00B are given to lowest order in ρ by

t00A ¼ z̄tA; t00B ¼ z̄tB; ð44Þ

where z̄ ¼ ρ2. As for the molecular RG, the hopping ratio
is preserved since the new weak and strong hopping ampli-
tudes satisfy ρ00 ¼ t00A=t

00
B ¼ ρ. To summarize, the effective

Hamiltonian for the atom set of levels is the Hamiltonian of a
chain of Fn−3 sites and with renormalized hoppings. The
original level is therefore split into three levels, labeled
0þ, 00, and 0−. These are separated by gaps of width t00B.
This process can be repeated until one reaches the three

first chains. The result for the clustering structure is a
succession of trifurcations, as illustrated in Fig. 19(a). One
can reverse the process, alternatively, and track each band as it
splits into three subbands when n increases by 2 or 3. Doing
this, one sees that each of the Fn levels of the spectrum follows
a unique path under successive renormalizations (termed the

FIG. 17. Illustration of the molecular deflation rule: the
fifth approximant is transformed to the third. From Macé,
Jagannathan, and Piéchon, 2016.
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renormalization path) of the form fc1c2c3…g, where ci can
take the three values 0;�1. Note that this trifurcation scheme
also holds for the critical AAH model (Hiramoto and
Kohmoto, 1989).
RG for off-diagonal model (2).—Consider the FC in which

the strong bond corresponds to A bonds. One can again
assume, as in the preceding model, that the amplitudes are
positive, without loss of generality, with tA ≪ tB. The per-
turbation theory is now carried out in powers of tB=tA.
Inspection of the FC shows that in the limit tB ¼ 0 the chain
breaks up into diatomic and triatomic molecules. These
molecules give rise to five energy levels E=tA¼� ffiffiffi

2
p

;�1;0.
It can be shown that the new effective Hamiltonians within
each of the five bands is a Fibonacci hopping Hamiltonian (Niu
and Nori, 1990) of the type discussed previously for the off-
diagonal model (1). Thus, each of the five levels trifurcates, and
continue thereafter to trifurcate under successive RG steps. This
is illustrated in Fig. 19(b).
RG for diagonal model.—For the diagonal model

[Eq. (14)], a perturbation theory in t=ðϵA − ϵBÞ once again
shows the recursive structure of the energy spectrum. For
t ¼ 0, one has two isolated levels, E ¼ ϵA (degeneracy Fn−1)
and E ¼ ϵB (degeneracy Fn−2). For small nonzero t, one can
compute the new effective Hamiltonians in perturbation
theory. It is found that these are given by two hopping

parameters, one strong and one weak. Thus, after one RG
step we are led back to the Fibonacci hopping model, leading
to a splitting into three levels, and thereafter, with each
successive RG step, trifurcations. This is illustrated in
Fig. 19(c).

V. MULTIFRACTAL SPECTRUM AND STATES OF THE
OFF-DIAGONAL MODEL

In this section we review the use of the previously described
perturbative RG method to obtain a variety of multifractal
properties of the diagonal (pure-hopping) model. Section V.A
shows how the RG methods introduced in Sec. IV.B can be
applied to this case to compute spectral properties as done by
Zheng (1987) and Piéchon, Benakli, and Jagannathan (1995).
Gap structures are taken up in Sec. V.B. Wave functions are
considered in Sec. V.C.

A. Multifractality of the energy spectrum

The approximate RG method described in Sec. IV.B
showed that the spectrum of a chain of number of sites equal
to Fn can be mapped, after one RG step, to the spectra of two
shorter chains Fn−2 and Fn−3. We now apply this to obtain
quantitative information on the spectral properties, following
Zheng (1987) and Piéchon, Benakli, and Jagannathan (1995).
The perturbative RG transformation can be formally written as

Hn ¼ ðzHn−2 − tsÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
bonding levels

⊕ ðz̄Hn−3Þ|fflfflfflffl{zfflfflfflffl}
atomic levels

⊕ ðzHn−2 þ tsÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
antibonding levels

þOðρ4Þ

ð45Þ

to lowest order in ρ. Thus, given the first three spectra WðnÞ

corresponding to n ¼ 0; 1; 2, one can construct all the (n > 2)
th generation spectra. The spectra of the first three chains are
simple to obtain. For n ¼ 0 and 1, the approximant chains
have only one hopping amplitude (tB or tA). Applying periodic
boundary conditions the spectrum for n ¼ 0 is the band
−2tB < E < tB, with a bandwidth of Δð0Þ ¼ 2tB. The spec-
trum of the n ¼ 1 chain is a narrower band −2tA < E < tA.
The n ¼ 2 chain is an alternating sequence of tA and tB; thus,
the spectrum has two bands separated by a gap, as shown in
Fig. 20. One can now proceed to construct the spectrum for
n ¼ 3. Wð3Þ is composed of two (bonding and antibonding)
lateral bands and one central (atom) band. The sidebands are
simplyWð1Þ multiplied by the factor z and translated in energy
by �tB. The central band is Wð0Þ multiplied by the factor z̄.
This procedure can be used to construct all the spectra shown
in Fig. 20.
In each RG step, the bandwidths are reduced by the factor z

or z̄. The resulting bandwidth Δ of a given level in the
nth approximant depends on the sequence of RG steps that
were taken. A simple example is the two bands at the top and
bottom edges of the spectrum, which always remain molecular
throughout successive RG transformations. They have the
RG paths 111… and 1̄ 1̄ 1̄… having ∼n=2 steps. Thus, the
bandwidth of the first level and its scaling exponent αedge,

defined through Δedge ∼ F−1=α
n ¼ ωn=α, are given by

FIG. 18. Illustration of the atomic deflation rule: here the
fifth approximant is transformed to the second. From Macé,
Jagannathan, and Piéchon, 2016.

FIG. 19. Clustering and subclustering structures for the three
different models described in Sec. IV. From Niu and Nori, 1990.
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Δedge ¼ zn=2tA;

αedge ¼ logðω2Þ= logðzÞ ð46Þ

to lowest order in ρ. The second simple case concerns the
atomic level at E ¼ 0, which has a RG path of 000… having
n=3 steps (taking n as a multiple of 3). Thus, its bandwidth
and its scaling exponent αctr are given by

Δctr ¼ z̄n=3tA;

αctr ¼ logðω3Þ= logðz̄Þ. ð47Þ

Upon making a comparison with the exact results of Kohmoto,
Sutherland, and Tang (1987) for the two exponents obtained
using the trace map, one sees that these values of α represent
the first terms of an expansion in ρ. Other levels have
a mixture of atomic and molecular RG, so the scaling is
given in general by znm z̄na, where nm (na) is the number of
molecular (atomic) RG steps in its RG path. These numbers
are not independent, as they must satisfy the condition
n ∼ 2nm þ 3na. It is useful now to introduce the variable
x ¼ nm=n as a measure of the degree to which a given RG
path has molecular character. For long chains, x is a con-
tinuous variable in the interval ð0; 1=2Þ. The smallest value
of a purely atom state (x ¼ 0) corresponds to the energy in
the middle of the spectrum. The maximum value (x ¼ 1=2)
corresponds to the levels at band edges that are molecular

states at every stage of the RG. Figure 21 shows the values of x
versus the level index for the n ¼ 12 approximant. Note that in
general many different levels can share a given value of x ≠ 0,
whereas the value x ¼ 0 corresponds to a single state that
occurs only in every third chain (n is a multiple of 3).
The exponent α can be computed for a given value of x and

is given by

α ¼ −
logFn

logΔ

¼ n logω
ðnm log zþ na log z̄Þ

¼ logω

x log z=z̄2=3 þ log z̄1=3
. ð48Þ

Let the number of levels scaling with a power α be

N ∼ FfðαÞ
n , thus defining the function fðαÞ. This is simply

the number of levels corresponding to a given value of na and
nm, which is 2nmnm!=ðnm þ naÞ!. With the use of Stirling’s

approximation this leads to NðxÞ ∼ FgðxÞ
n , with

gðxÞ ¼ 1

logω

�
x
2
log 3xþ 1þ x

3
logð1þ xÞ

þ 1 − 2x
3

logð1 − 2xÞ
�
. ð49Þ

Equations (48) and (49) determine the function fðαÞ and
describe the multifractal scaling of the spectrum. The expo-
nent for any band can be computed if its RG path is specified.
The expressions for αctr and αedge are the leading terms in an
expansion in small ρ of the exact formulas (31) and (32)
obtained by Kohmoto, Sutherland, and Tang (1987). We note
finally that according to the results in Eqs. (48) and (49) there
is a special point at which ρ ¼ 1=8. At this point z ¼ z̄2=3, and
the spectrum becomes monofractal because all bands scale in
the same way according to our perturbation theory. However,
in fact, as we mentioned in the discussion at the end of
Sec. III.D, the exact results show that the spectrum is not
monofractal for any ρ. Higher order terms must be considered
in order to resolve the apparent discrepancy. A similar

FIG. 20. Schematic view of the recursive construction of spectra
using RG. The first three spectra for n ¼ 1; 2 (single band) and
n ¼ 3 (two bands) are shown at the top. The nth spectrum is
obtained by the union of the (n − 2)th and (n − 3)th spectra
multiplied by the RG factors z and z̄ and shifted as described in
Eq. (45). The labels g0 and g� refer to transient and stable gaps
(see the text). From Piéchon, Benakli, and Jagannathan, 1995.

FIG. 21. xðaÞ vs the level index a for each of the energy levels
Ea of the n ¼ 12 chain. Lines are drawn as a guide for the eye.
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observation holds for the wave functions (Sec. III.C), where
the lowest order calculation yields an ordinary fractal, with
multifractality appearing only at the next order in the
perturbative RG.

The scaling of the total bandwidth, BðnÞ ¼ PFn
j ΔðnÞ

j , with
the system size can now be determined. From Eq. (45), one
can deduce a recursion equation relating the total bandwidth
of the nth chain to those of the n − 2 and n − 3 chains as
follows:

BðnÞ ¼ 2zBðn−2Þ þ z̄Bðn−3Þ. ð50Þ

Defining the exponent b by BðnÞ ∼ F−b
n for large n, from

Eq. (50) one sees that b must satisfy the equation

1 ¼ 2zω−2b þ z̄ω−3b. ð51Þ

Recursive relations can be written likewise for all of the
moments of the density of states (i.e., the inverse band-
width Δ−1

j ). Recall that the generalized dimensions for the
spectrum are the exponents corresponding to the qth moment
of the DOS. Following the thermodynamical formalism
introduced before, one defines the partition function
ΓðnÞðq; τÞ ¼ Fn

−q PFn
j Δ−τ

j , where τq ¼ Dqðq − 1Þ. This par-
tition function obeys the recursion relation

ΓðnÞðq; τÞ ¼ 2
ω2q
n

zτ
Γðn−2Þðq; τÞ þ ω3q

n

z̄τ
Γðn−3Þðq; τÞ. ð52Þ

For each q, the corresponding τ value is obtained by requiring
Γ to be stationary. This results in the condition

1 ¼ 2ω2qzð1−qÞDq þ ω3qz̄ð1−qÞDq . ð53Þ

Relations for generalized dimensions.—The Hausdorff
dimension DF of the spectrum is given by D0, which satisfies
the equation

2zDF þ z̄DF ¼ 1. ð54Þ

Although derived in the limit of small values ρ ≪ 1, Eq. (54)
nevertheless gives a rather good value even for relatively
large values of ρ: one obtains DF ¼ 0.76 for ρ ¼ 0.5.5

The information dimension D1 enters in an inequality for
the diffusion exponent, which is discussed in Sec. VI.A. The
exponent D2 is also of special interest, in particular, for
dynamics, as is also shown in Sec. VI.A. One sees in Eqs. (53)
and (51) that the bandwidth exponent b is related to the Dq

via Dδ ¼ 1=ð1þ δÞ.

B. Gaps, stable gaps, and topological numbers

In the construction of spectra with the RG recursion
scheme, it becomes apparent that two kinds of gaps appear
in the spectra of approximant chains: transient gaps and stable
gaps. To understand these notions consider the spectra of the
first few approximants shown in Fig. 20: one sees that the
spectrum for n ¼ 2 has a gap labeled g0 that disappears for
n ¼ 3 and 4, reappears as a smaller gap for n ¼ 5, and goes to
zero as n tends to infinity. This is an example of a so-called
transient gap. Stable gaps are descendants of the gaps marked
g� whose widths remain finite. Writing recursion relations for
the stable gap distribution PðgÞ, one can show that it has a
power-law form

PðgÞ ∼ g−ð1þDFÞ. ð55Þ

The limiting value as n tends to infinity of the two main gaps
g� and the width of the spectrum Δ� have also been computed
in terms of ρ; see Piéchon, Benakli, and Jagannathan (1995)
for details.
Gap labeling.—Given the recursive structure of the spec-

trum, it is easy to determine the labels for each of the gaps
of the system for the N ¼ Fn levels. For the jth plateau of
the IDOS NðEÞ ¼ Nj=N, one must solve the relation Nj ¼
mod½qFn−1; Fn� to obtain q. Stable gaps and transient gaps
are indicated by different colors for their q labels in Fig. 22
(black for stable and red for transient). Stable gaps have the
lowest values of q, and these are stable gap labels regardless of
system size. In contrast, transient gaps have large values of q
that depend on the system size, and these gaps vanish in the
infinite size limit.
The gap widths tend to decrease with q, although not

monotonically. This is shown in Fig. 23, which provides
the result of gap widths plotted against q for the n ¼ 16

approximant. These were computed for the pure-hopping
model using an approximate renormalization group, as

FIG. 22. Recursive construction of the spectra of approximant
chains showing the gap structure. Labels display the values of q
determined according to Eq. (20) in red for transient gaps and in
black for stable gaps (overbars indicate a negative sign). From
Macé, Jagannathan, and Piéchon (2017).

5Strictly speaking, this approach is valid only for strong quasi-
periodic modulations. However, these results remain pertinent even
for moderate to weak quasiperiodicity, and calculations on finite
chains show that when the gaps are opened they persist for all ρ,
closing only in the periodic case.
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outlined in Sec. IV. The black (red) data points correspond to
stable (transient) gaps [these are gaps that tend to finite (zero)
width as n tends to infinity]. The gap widths have log-periodic
oscillations in q, and one sees a self-similar structure. Note
that the smallest values of q up to a certain maximum
correspond to stable gaps. For q above a certain value, there
are only transient gaps.

C. Multifractality of wave functions

The RG construction of the energy spectrum in Sec. V.A
has its parallel for the construction of wave functions, as was
noticed by Niu and Nori (1986). Consider the wave function
ψðEÞ for an allowed energy E. If the energy is located in a
sideband, the support of ψðEÞ is concentrated on the molecu-
lar sites. If the energy is located in the middle band, the
support of ψðEÞ is concentrated on atom sites. Under RG, the
initial chain is transformed to a shorter chain, and the site i
maps to site i0 of the new chain. One can introduce, as we did
for the energy recursion relations, wave-function renormali-
zation factors λ and λ̄ and write

jψ ðnÞ
i ðEÞj2 ¼ λ̄jψ ðn−3Þ

i0 ðE0Þj2 if E is atomic;

jψ ðnÞ
l;r ðEÞj2 ¼ λjψ ðn−2Þ

i0 ðE0Þj2 if E is molecular; ð56Þ

where E0 denotes the energy after renormalization. In the
case of molecular RG (second line), there are two sites l (left)
and r (right) forming the molecule corresponding to the site i0.
The wave-function renormalization factors are given by
λ ≈ 1=2 and λ̄ ≈ 1, to lowest order in ρ. The higher order
corrections are important to keep for a correct description of

multifractality, as shown by Macé, Jagannathan, and Piéchon
(2016). Given the RG path of a state, with the help of Eqs. (56)
one can reconstruct the corresponding ψðEÞ.
To illustrate the different structures that are obtained, we

now consider some examples. The RG path of the lowest level
of the spectrum is f1111…g, and the wave function con-
structed recursively has the largest amplitudes on pairs of sites
that derive from molecules on a larger length scale, which
derive from still larger molecules, etc. Figure 24(a) shows the
wave function for a chain of 144 sites (n ¼ 11) that were
computed numerically for a value of ρ ¼ 0.2. One sees here
the characteristic double peak composed of double-peak
structure on several scales. The figure shows deviations from
the RG construction that we outlined: there are, for example,
small peaks that we ignored in our lowest order approxima-
tion. There are asymmetries in the amplitudes of the double
peaks. These are due to higher order terms in ρ, which in
our example is not particularly small. Figure 24(b) shows the
wave function in the same chain for the energy E ¼ 0, whose
RG path is f0; 0; 0;…g. The peaks this time are primarily
localized on two atom sites. Finally, Fig. 24(c) shows an
example of a randomly chosen mixed wave function that has
both atomic and molecular components in its construction.
Hamiltonian in the conumber basis.—In preparation for the

discussion of wave functions, we first discuss the representa-
tion of the Hamiltonian in the conumbering basis introduced
in Sec. II.B.3. In this basis, the hopping Hamiltonian takes the
form of a Töplitz matrix, where the nonzero elements lie at
distances of Fn−2 and Fn−1 from the principal diagonal (Sire
and Mosseri, 1990). For example, the Hamiltonian for the
n ¼ 5 chain (Nn ¼ 8) can be written as follows:

H ¼

2
66666666666664

· · · tA · tB · ·

· · · · tA · tB ·

· · · · · :tA · tB
tA · · · · · tA ·

· tA · · · · · tA
tB: · tA · · · · ·

· tB: · tA · · · ·

· · tB: · tA · · ·

3
77777777777775

.

As can be read off directly from the matrix, sites numbered
1–3 and 6–9 have a strong bond tB and thus form molecules in

FIG. 23. Gap widths on a log scale vs the topological index q for
the n ¼ 16 approximant in the off-diagonal model. Red (darker
gray) data points stand for transient gaps (see the text). From
Macé, Jagannathan, and Piéchon, 2017.

FIG. 24. (a) Ground state probabilities ψ2
i vs site index i. (b) E ¼ 0 state probabilities ψ2

i vs site index i. (c) Probabilities ψ
2
i vs site

index i for state a ¼ 34. The data were obtained by diagonalization for an N ¼ 144 chain using periodic boundary conditions for
ρ ¼ 0.2.
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the first RG step, while sites 4 and 5 have weak bonds to either
side and are atom sites.Within the two groups ofFn−2 molecular
sites, under a second RG step one further has a subgrouping into
Fn−4 molecules and Fn−5 atoms of “second generation.” This
subgrouping occurs in the middle block as well. The conumber-
ing scheme thus automatically classifies sites according to the
same rules as the band structure. This remark is important to the
following discussion of wave functions.
Energy-position symmetry.—As we have discussed, the

construction of states and of the spectrum follow the same
schema. Classifying sites according to their conumber corre-
sponds exactly to theway that energies are ordered. This leads to
a noteworthy approximate symmetry between states and ener-
gies. The top panel of Fig. 25 shows an intensity plot of the
numerically calculated values (for an 89-site chain with periodic
boundary conditions) ofψðEaÞj2 plotted against the conumber j
for each allowed energyEa. The lower panel of Fig. 25 shows the
result for the wave functions after four RG steps. The following
two observations can be made: (i) the similarity of the RG-
constructed and numerical data is manifest, and (ii) the figure
shows a reflection symmetrywith respect to the diagonal, i.e., if i
and a represent the position and the energy, then

jψ i;aj2 ¼ jψa;ij2 ð57Þ

to lowest order in ρ. This striking symmetry between spatial and
spectral variables holds for sufficiently small ρ.
Multifractal exponents for wave functions.—The recursion

relations for wave functions are analogous to those presented
for the spectrum. These relations involve the two different
rescaling factors in the recursion formulas (λ and λ̄). Thus, all
the wave functions are multifractal, in the same way that the
spectrum is multifractal due to the presence of two distinct
shrinking factors (z and z̄). We define the fractal dimensions
Dψ

q for the wave function ψðEÞ by

χnqðEÞ ¼
X
i

jψn
i ðEÞj2q ∼

�
1

Fn

�ðq−1ÞDψ
q ðEÞ

. ð58Þ

For q ¼ 2 the quantity χ2ðEÞ is also termed the inverse
participation ratio (IPR), well known in the literature of
Anderson localization, where it serves as a diagnostic for
the metal-insulator transition. For a given system size, the
inverse of the IPR provides an indication of the spatial spread
of the wave function. The scaling of the IPR as a function of
the system size determines whether or not a state is localized.
The exponent Dψ

2 ðEÞ is an often used indicator helping to
locate the metal-insulator transition in the 3D Anderson
model. Recall that the value Dψ

2 ðEÞ ¼ 1 indicates that the
state E is extended, whileDψ

2 ðEÞ ¼ 0 characterizes a localized
state. Intermediate values 0 < Dψ

2 ðEÞ < 1 are a signature of a
critical state. Figure 26 shows the IPR computed numerically
for ρ ¼ 0.5 for the n ¼ 12 approximant (blue curve). The gray
curve is obtained by reflecting Fig. 21 with respect to a
horizontal axis and translating up. The IPR curve clearly
tracks the curve corresponding to inversed x values. This
anticorrelation can be qualitatively explained for sufficiently
small ρ by the observation that, first, molecular states are more
delocalized (have a lower IPR) than atom states and, second,

the number of molecular RG steps is given by the variable x.
Therefore, the higher the x value, the lower the IPR of
the state.
On the quantitative level, the full set of exponents Dψ

q ðEÞ
can be computed in the perturbative RG scheme (Macé,
Jagannathan, and Piéchon, 2016). To lowest order, these
are given by the value of x (which measures the extent to
which a given state is of the molecular type) as follows:

Dψ
q;0ðEÞ ¼ −xðEÞ log 2

logω
þOðρ2Þ. ð59Þ

FIG. 25. Upper panel: the numerically computed intensity plot of
wave functions for the N ¼ 89 approximant. Intensities are shown
for each of the sites in the conumber basis (x axis) and for every
level (y axis). Lower panel: the first few steps of the geometrical
construction of thewave functions according to perturbation theory
[Eq. (56)]. Note the symmetry under reflection with respect to the
diagonal, which holds only for our simplified RG treatment. From
Macé, Jagannathan, and Piéchon, 2016.
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This simple result for small ρ gives a monofractal since the
fractal dimensions do not depend on q at leading order.
For larger ρ, however, the higher order corrections show
that the wave functions are indeed multifractal; see Macé,
Jagannathan, and Piéchon (2016). For small ρ, Eq. (59) shows
that the smaller the x, the smaller the fractal dimension.The
most extended states according to Eq. (59) are those at the
spectrum edges, where x ¼ 1=2. Equation (59) also predicts
thatDψ

q;0ðEÞ ¼ 0 up to higher order corrections for the level in
the center of the band where x ¼ 0. This indicates that the
state is localized or close to being localized. However, as the
exact calculations in Sec. III.F showed, it is in fact a critical
state. The discrepancy is corrected by including the higher
order corrections, which are lacking in Eq. (59), as was shown
by Macé, Jagannathan, and Piéchon (2016).
Spectrally averaged dimensions.—In certain contexts, one

may need to know not the behavior of a single eigenstate but the
average behavior of wave functions close to a certain energy
(such as the Fermi energy). One may want to determine the
average value of the fractal dimension Dψ

2 ðEÞ within some
energy interval ΔE. This averaged exponent occurs in some
rigorous inequalities for dynamical quantities, as described in
Sec. VI.A. The averaged wave-function exponents could also be
relevant for other physical properties, such as the Kondo
screening of impurities. Averaged exponents Δ̄ψ

q (obtained by
averaging over the entire spectrum) were computed by Macé,
Jagannathan, and Piéchon (2016). These exponents can be
calculated by considering a generalization of the χq function
in Eq. (58) to include a sum over all energies. The results for the
averaged dimensions D̄ψ

2 ðEÞ for two different values of ρ are
shown inFig. 27 [fromMacé, Jagannathan, andPiéchon (2016)].

VI. DYNAMICAL PROPERTIES

The quantum diffusion of a wave packet is determined
by the spectral properties of the underlying Hamiltonian.
Extended wave functions and continuous spectra typically
lead to ballistic motion where the particle moves with a well-
defined group velocity. Singular continuous spectra such as

that of the FC result in more complex behaviors. Some of
the characteristics of wave packet diffusion are discussed in
this section.

A. The diffusion exponent

The mean square displacement in a time t of an electron
starting from the site i0 of the chain is given by

d2ði0; tÞ ¼
X
j

ði − i0Þ2pði; i0; tÞ; ð60Þ

where pði; i0; tÞ is the probability of being on site i at time t
for a given starting position i0, normalized such thatP

i pði; i0; tÞ ¼ 1. The time dependence of d2ði0; tÞ is in
principle extremely complex due to the multifractality of
both the density of states and the wave functions. The
exponent β, which can depend on the initial position i0,
describes its leading long time behavior after one smoothes
out the fluctuations, i.e.,

dði0; tÞ ∼ tβði0Þ ð61Þ

for sufficiently long times t. In the simplest cases, values of
the exponent are well known: for electrons in a periodic crystal
there is ballistic propagation with a constant group velocity.
The system has translational invariance and βði0Þ ¼ β regard-
less of the initial position. For localized electrons, dðtÞ tends
to a constant at long times and β ¼ 0. For standard diffusion,
as in the case of electrons in a moderately disordered crystal,
β ¼ 1=2.
For quasicrystals that are invariant under translations, the β

values depend on the choice of origin i0 of the wave packet.
One can define an effective averaged diffusion exponent β by
considering the averaged quantity dðtÞ ¼ hdði0; tÞi, where the
angle brackets denote the average over initial positions i0.
dðtÞ ∼ tβ defines the globally averaged value of the diffusion
exponent β.
Numerical results for the values of β in the FC for different

values of w ¼ tA=tB are shown as circular symbols in Fig. 28
[from Thiem and Schreiber (2013)]. One sees that the
diffusion exponent increases in value monotonically with
tA=tB and reaches the expected value of 1 in the limit of
the periodic chain. Data for d-dimensional product lattices

FIG. 26. Values of the IPR (χ2) shown in blue (dark gray)
computed for all states of the hopping model for an n ¼ 12 chain
(ρ ¼ 0.25). The light gray line is obtained by reflecting the plot of
x values shown in Fig. 21. An arbitrary scale factor and shift were
applied to the gray curve to facilitate a comparison with the IPR.

FIG. 27. The averaged fractal dimensions of the wave functions
D̄ψ

q as a function of q for ρ ¼ 0.1; 0.5. Dots, numerical results;
solid line, theoretical predictions. From Macé, Jagannathan, and
Piéchon, 2016.
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(see Sec. X) included in the figure show that the exponent β
does not depend on the dimensionality in this class of models.
Note that this exponent enters into many phenomenological

theories of transport in quasicrystals. From a dimensional
analysis the diffusivityD ∼ d2ðτÞ=τ, as well as the conductivity
σ that is proportional toD by the Einstein relation, should scale
as τ2β−1, where τ is some characteristic cutoff time for diffusion.
For subdiffusive motion, i.e., β < 1=2, the electrical conduc-
tivity σ would then decrease with increasing τ. This behavior is
the opposite of what one would observe in metals, where
conductivity increases linearly with τ according to the Drude
formula. In real quasicrystals, experiments show that conduc-
tivity decreases when the structural quality of the sample is
improved, for example, by annealing (Mayou et al., 1993),
which could be interpreted to mean that β is smaller than 1/2.
RG method for diffusion.—Studies of dynamics using

the approximate RG scheme were carried out by Abe and
Hiramoto (1987), Piéchon (1996), and Thiem and Schreiber
(2012). These studies use a recursive approach to computing
dði0; tÞ, as well as all of the generalized moments of the
displacement,

dqði0; tÞ ¼ ð1=NÞ
X
j

ði − i0Þqpði; i0; tÞ. ð62Þ

To lowest order, one can write two different recursive relations
for the probability pðnÞ, depending on whether the initial site is
an atomic or a molecular site. Following the approach used by
Piéchon (1996), we label the initial site i0 and have i refer to a
site of the nth chain. In the renormalized chain, similarly, the
initial site has the label i00 and i0 refers to a site of the new
chain; see Fig. 29. The length scale renormalization factor is
either ω3 or ω2 depending on the type of RG transformation
(atom or molecule), while the corresponding energy-time
renormalization factors are z and z̄. The relations between
probabilities defined on the old and new chains can be stated
as follows:

pðnÞði; i0; tÞjato ≈ ω3
npðn−3Þði0; i00; z̄tÞ;

pðnÞði; i�0 ; tÞjmol ≈ ω2
npðn−2Þði0; i00; ztÞ. ð63Þ

In the second relation of Eq. (63), the initial site in the case of
the molecule is further labeled with a � standing for the left

and right atoms of that molecule. The first of these relations
says that the probability to go from site i0 to site i in a time t in
the nth chain is reduced by a factor of ω3 with respect to the
probability to go from site i00 to site i0 (a distance shorter by
ω3) in a time z̄t in the (n − 3)th chain. For molecules, a similar
statement applies, with the additional assumption that the left
and right atoms play a symmetric role in the propagation.
Note the following two simple extreme cases:
(1) If the origin of the wave packet is chosen such that one

obtains a purely atomic-type diffusion at every RG
step, then the result would be a power law dðtÞ ∼ tβato
with

βato ¼ lnω3= ln z̄.

(2) In the opposite situation of a pure molecular diffusion
process, one obtains another exponent,

βmol ¼ lnω2= ln z.

Thiem and Schreiber (2013) defined an average value of β
using the relative fraction of atom and molecular sites as
follows:

β̄ ¼ τ − 1

τ þ 1
βato þ

2

τ þ 1
βmol. ð64Þ

They noted that this value fits the dynamics well for small ρ,
up to about ρ ¼ 0.02 (when the approximations made for the
wave functions become inadequate).
Using the recursion relations in Eq. (63), Piéchon (1996)

derived recursion formulas for the moments dqði0; tÞ and their
averages dqðtÞ ¼ hdqði0; tÞi as follows:

dnqðtÞ ¼ ω3ð1−qÞ
n dn−3q ðz̄tÞ þ 2ω2ð1−qÞ

n dn−2q ðztÞ. ð65Þ

Suppose that there is a fixed point solution of the proba-
bility p� in the limit n → ∞. Equation (65) implies the
following self-consistency condition:

p�ðr; tÞ ¼ ω6p�ðω3r; z̄tÞ þ 2ω4p�ðω2r; ztÞ. ð66Þ

FIG. 28. Diffusion exponent β as a function of the hopping ratio
for the Fibonacci chain and its d-dimensional generalizations, as
described in Sec. X. From Thiem and Schreiber, 2012.

FIG. 29. (a) Relation between atom i of Fn and atom i0 of Fn−3.
(b) Relation between a molecule ðiþ; i−Þ of Fn and its corre-
sponding site i0 of Fn−2. ts and tw refer to tB and tA, respectively,
in the notation used in this review. From Piéchon, 1996.
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Note that the probability depends on two scaling factors
leading to a multiscaling property: the function p�ðr; tÞ cannot
be written as a function of a single variable. Consider the
probability pðr ¼ 0; tÞ. Letting pð0; tÞ� ∼ t−γ and comparing
Eq. (66) to Eq. (53), one sees that γ ¼ D2, one of the spectral
dimensions introduced earlier.
More generally, if one assumes that higher moments of the

diffusion distance scale as dqðtÞ ∼ tqσq , then one finds that
σq ¼ D1−q. This result shows that the diffusion exponents
σq ≥ D1, thus satisfying the Guarneri inequalities (Guarneri,
1993) for all values of q. This formalism and similar
conclusions are applicable to other quasiperiodic chains such
as the AAH model studied by Evangelou and Katsanos (1993)
and Ketzmerick et al. (1997).
We saw in Sec. V.A that in perturbation theory the spectrum

was approximately monofractal for z ¼ z̄2=3. This simplifica-
tion occurs for the wave packet dynamics as well: the
exponent σq ¼ DF for all q, where DF ¼ lnω2= ln z. In this
case, the dynamics can be expected to be simple diffusion with
a single exponent. However, this is true only to the extent of
the approximations made; see the caveat based on the trace
map analysis Sec. III.
Exponent relations and inequalities.—Guarneri (1993)

derived an inequality stating that β ≥ D1, where D1 is the
previously mentioned information dimension of the spectrum.
Another inequality, derived by Ketzmerick et al. (1997),
involves the average wave-function exponent Dψ

2 and states
that β ≥ D2=D

ψ
2 . Both these inequalities are satisfied in the

FC, as can be seen in Fig. 30. For the diagonal Fibonacci
model, Damanik (2006) and Damanik and Tcheremchantsev

(2007) showed that β must satisfy certain bounds that depend
on the on-site energies ϵA and ϵB.

B. Autocorrelation function

As for the mean square distance, the time-dependent
correlation function in quantum systems with Cantor spectra
is expected to have a power-law decay that falls off as t−δ at
long times. Ketzmerick, Petschel, and Geisel (1992) argued
that the exponent δ should be equal to D2. Ketzmerick,
Petschel, and Geisel (1992), Zhong and Mosseri (1995),
Thiem, Schreiber, and Grimm (2009), and Thiem and
Schreiber (2012) studied the behavior of the smoothed
autocorrelation function given by

Cði0; tÞ ¼
1

t

Z
t

0

Pði0; i0; t0Þdt0; ð67Þ

which gives the integrated probability up to time t for the
particle to be found at the initial position. Averaging over all
initial positions, one obtains CðtÞ ¼ ð1=NÞPi Cði; tÞ ∼ t−δ

0
.

This quantity is easier to fit than the autocorrelation function.
Note that δ0 may be different from δ due to logarithmic
corrections coming from the integral in Eq. (67). Figure 31,
from Thiem and Schreiber (2013), shows the smoothed
autocorrelation function for different values of tA=tB (the
variable w in the figure). The exponent should tend to the
expected value 1 in the periodic limit when the spectrum
becomes continuous (tA ¼ tB or ϵA ¼ ϵB).

6

FIG. 30. Comparative plot of diffusion exponent and theoretical
lower bounds involving generalized spectral dimensions and
wave-function dimensions. Exponents were computed numeri-
cally for different values of the hopping ratio w ¼ tA=tB. From
Thiem and Schreiber, 2013.

FIG. 31. Log-log plot of the smoothed autocorrelation function
for different values of the hopping ratio (w ¼ tA=tB) showing the
fit to the power law. From Thiem and Schreiber, 2013.

6In practice, however, as pointed out in by Yuan et al. (2000), it is
hard to get convergence in numerical studies. Thus, some early
numerical works obtained incorrect values that were smaller than the
expected value of 1 for a periodic system.
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C. Log-periodic oscillations

Abe and Hiramoto (1987) observed that there are oscil-
lations superposed on top of the average power-law behavior
of the rms distance dði0; tÞ. These oscillations were studied in
more detail by Lifshitz and Even-Dar Mandel (2011). A
similar oscillatory behavior is seen for the return probability
pð0; tÞ. Figure 32, from Thiem (2015), shows ln dðtÞ plotted
versus ln t=tB for a wave packet diffusing from an initial site
chosen to be of molecule type. The two shortest periods,
corresponding to short times and intermediate times, can be
clearly seen in these plots. The system size considered was
large enough (an n ¼ 14 approximant chain) that a third
period was observed for even longer times; see Thiem (2015).
The empirical form that was used to fit these data is

dði0; tÞ ∼ tβði0Þð1þ αeif ln tÞ. The frequencies f are different,
depending on the timescale that is considered, and they follow
a hierarchical rule. The shortest times correspond to the fastest
oscillations, and the frequency depends on the nature of the
initial site i0, i.e., whether it is an atom or a molecule. At the
shortest timescale the oscillations have a period (in dimen-
sionless units) of 2π for an initial site of the atom type, and π
when the initial site is of the molecule type. Going to longer
times the oscillations have frequencies that are smaller
by factors of z̄ and z, respectively. Thiem (2015) gave a
quantitative account of these oscillations in terms of the
perturbative RG theory and argued that they stem, at each
length scale of the RG process, from resonances due to the
molecular energy level splitting. Thiem (2015) noted that such
oscillations are not observed for the quasiperiodic critical
AAH model. This may be attributed to an essential difference
between the two potentials: since the potential energy is a
continuous-valued function in the AAH model, there are no
molecular clusters in its RG scheme, and thus no characteristic
resonance frequencies.

VII. TRANSPORT PROPERTIES

Some frequently asked questions concern the resistivity
of a quasicrystal. Are these materials intrinsically metallic or
insulating ? How does transport depend on the sample size,

disorder, temperature, external magnetic fields, etc.? The
following studies of transport properties of 1D Fibonacci
chains attempt to shed light on these questions.

A. An exact result for E= 0 transmission

The E ¼ 0 state transmission coefficient in the hopping
model can be calculated from the exact solution given in
Sec. III.F. This transmission coefficient is proportional to the
zero temperature conductivity at half filling, when the Fermi
energy of the system is EF ¼ 0. We now consider a FC of
length L ¼ 2n attached to periodic chains (input and output
chains) at either end. The transmission coefficient is given by
(Economou and Soukoulis, 1981; Beenakker, 1997)

T n ¼
4

ðxn þ x−1n Þ2 ; ð68Þ

where xn ¼ jψð2nÞ=ψð0Þj. Using Eq. (37) one obtains (Macé
et al., 2017)

T n ¼
1

cosh2fκ½hðnÞ − hð0Þ�g ; ð69Þ

where the height function h, it is recalled, depends solely
on the geometry. Equation (69) shows that the transmission
T n ¼ 1 (there is perfect transmission) when the heights hðnÞ
and hð0Þ are equal. This type of “intermittent” transparency
occurs for sites separated by distances that can tend to infinity.
One can also compute the harmonic mean of the trans-

mission over a chain of Lþ 1 sites. The harmonic mean,
which is more adapted than the arithmetic mean for systems
with large fluctuations, is defined by

hT iL ¼
�
L−1

XL
i

T −1
i

�−1

. ð70Þ

The scaling of hT iL with system size L can be expressed
analytically using the height distribution in Eq. (38), which
yields

FIG. 32. Log-log plots of dðtÞ vs time for short timescales (left panel) and intermediate timescales (center panel) showing the two
shortest periods in the oscillations. A third period (right panel) governs still larger timescales. Data correspond to diffusion from a fixed
molecular site of the n ¼ 14 approximant chain, with tA ¼ 0.1 and tB ¼ 1. From Thiem, 2015.
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hT iL ∼ 2

�
1þ L

L0

ϕ
�

−1
; ð71Þ

where the exponent ϕ can be expressed in terms of κ, the
golden mean τ, and the maximal eigenvalue of a certain
product of generalized inflation matrices; see Macé et al.
(2017) for details. Equation (71) predicts a power-law decay
of the mean transmission as a function of distance L, which is
in accord with the numerical data, as seen in Fig. 33. Note that
there is no contradiction between this power law and the fact
that the chain can be transparent for long distances. The
apparent paradox is explained by noting that the power law
represents an average behavior, while for a given system there
are large fluctuations around the mean [as observed by
Sutherland and Kohmoto (1987)], whereas in a given chain,
the transmission coefficient can be (and is) equal to 1 for
certain sites.

B. Landauer approach

The Landauer formula relates the resistivity ρðnÞ to the
transfer matrix Tn of a system of n sites as follows:

ρn ¼ 1
4
ðTT

nTn − 2Þ; ð72Þ

where TT denotes the transpose of the transfer matrix. Using
the trace map techniques described in Sec. III, Sutherland and
Kohmoto (1987) studied the behaviors near the band edge and
the band center. They showed that the resistance grows no
faster than a power law of the system size. They pointed out as
well that there is a wide distribution of powers governing its
growth with system size, and this leads to large fluctuations of
the resistance. They speculated, finally, that this behavior is
also qualitatively to be expected for other energies in the band.
Their conjecture as to power-law behavior of the resistivity
was proven by Iochum and Testard (1991).
For a comparison with measurements, it is pertinent to

consider the average resistance where the average is taken
over states lying within a certain energy interval. The energy
interval chosen should depend on factors such as the

temperature or the energy scale corresponding to inelastic
scattering, disorder conditions, etc. For a system of length L
and an appropriately chosen ΔE,

ρ̄ðLÞ ¼ 1

nðEÞΔE
X
E

ρðL;EiÞ ð73Þ

defines an average resistance that was studied for the FC by
Das Sarma and Xie (1988) using the Landauer formalism. The
result is a power-law behavior for the resistivity, ρ̄ ∼ L−a.
They noted that the power law holds for other fillings provided
that the Fermi level is not close to a large gap.

C. Kubo-Greenwood approach

Sánchez et al. (2001) and Sánchez and Wang (2004)
developed a RG approach for the conductivity starting with
the following Kubo-Greenwood formula:

σðμ;ω; TÞ ¼ 2e2ℏ
πm2V

Z
dE

fðEÞ − fðEþ ℏωÞ
ℏω

× Tr½ImGþðEþ ℏωÞImGþðEÞ�; ð74Þ

where V is the volume of the system, GþðEÞ is the retarded
one-particle Green’s function, and f is the Fermi-Dirac
distribution with Fermi energy μ for temperature T.
Applying the RG method to the Kubo-Greenwood formula,
Sánchez and Wang (2004) could study the ac and dc
conductivities for large systems. In the hopping problem,
for half filling, they found that the scaling exponents of the
conductivity and the density of states have a similar depend-
ence. Figure 34 shows the parameter b (defined by σ ∼ b−n=6)
and the parameter d (defined by DOS ∼ d−n=6) plotted against
tA=tB. They concluded that these results show the existence of
an Einstein relation σ ∼ ðdN=dEÞD, wherein the conductivity
and density of states are related by the diffusivity D.

FIG. 33. Mean E ¼ 0 transmission coefficient as a function
of length L of the Fibonacci chain. The dashed and solid
lines show the analytical prediction of Eq. (71) and numerical
results for n ¼ 27 (N ¼ 196 418 atoms), respectively. From
Macé et al., 2017.

FIG. 34. The conductivity exponent b (circles; see the text for
the definition) and the density of states exponent d [following
the analytic formula given by Kohmoto, Sutherland, and Tang
(1987); dashed line] as a function of the hopping ratio γ ¼ tA=tB.
From Sánchez and Wang, 2004.
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D. Noninteracting many body metallic and insulating states

Even in the absence of electron-electron interactions, many
body effects can play an important role in quasicrystals.
Varma, Pilati, and Kravtsov (2016) considered such many
body effects (which are due solely to the Pauli principle) on
the conductance of Fibonacci chains. They computed the
effective localization length Λ for various band fillings using a
formalism developed by Kohn (1964) for his theory of the
insulating state. This localization length, which is related to
the real part of the conductivity tensor, is more sensitive to
spectral gaps and to transport properties than the more familiar
single-particle localization length defined in terms of the
decay of the envelope of a given wave function. In a conductor
this many body localization length scales to infinity, while in
an insulator this quantity saturates with the system size.
Varma, Pilati, and Kravtsov (2016) showed that in the hopping
model there are special values of the band filling correspond-
ing to an insulating state. These fillings correspond to values
of the IDOS of ω2, and the ω3 values correspond to the
positions of the large gaps. This is shown in Fig. 35, where
Λ−2 is plotted versus the inverse system size 1=L. The fillings
1/2 and 1/4 for which the trend is decreasing with increasing
system size most likely correspond to a metallic state.

VIII. DISORDER AND BOUNDARY EFFECTS

Perturbations and their effects on critical states have been
thoroughly discussed. The interesting conceptual problem
raised has experimental implications. Disorder can be
expected to play an important role in the electronic transport
of real quasicrystals for the following reason. We saw in
Sec. VII that, for a perfect FC, transport at T ¼ 0 can be
described by different power laws and can scale either toward
an insulating state or to a metallic state in the thermodynamic

limit, depending on the Fermi energy. Adding disorder of any
form (be it structural defects or chemical substitutions or
phonons) introduces a cutoff timescale τ whose value depends
on disorder. One can therefore have a conductance that is finite
in a quasicrystal that is weakly disordered. For increasing
disorder, one would expect the quantum interference phenom-
ena that lead, in a perfect quasicrystal, to the multifractality
of the density of states and the multifractality of states to
be progressively suppressed. Combined, these effects might
contribute to improving transport as disorder increases;
however, these are still open questions.
The problem of a single impurity in a FC was studied by

several researchers. The trace map method was used to
compute localization lengths of an impurity state represented
by a delta-function potential by Naumis (1999). The effect of
structural defects, namely, a single phason defect (in which a
pair of bonds is locally exchanged, as in the case of
AB → BA), has been studied (Naumis and Aragón, 1996).
This study concluded that the presence of a single impurity
affects all of the states and leads to an increase of the fractal
dimension of the spectrum. Aweak form of structural disorder
was considered by Velhinho and Pimentel (2000), who
allowed randomness in the substitution rules for building
chains. The conclusion reached in this and a later study
(Huang and Huang, 2004) is that this type of disorder is
irrelevant in that the Lyapunov exponents of states were not
changed. To modify the critical states of the pure system, the
disorder must break some symmetries of the Fibonacci
Hamiltonian, as in the models that we discuss in Sec. VIII.A.

A. Finite systems and approach to Anderson localization

We now focus on the effects of adding a finite bulk disorder
to the two models under discussion, Eqs. (13) and (14).
General rigorous arguments show that in one-dimensional
models an infinitesimal disorder leads to localized states
(Delyon, Lévy, and Souillard, 1985). This has been confirmed
in a variety of numerical studies (Liu and Riklund, 1987;
Naumis, 1999). Das Sarma and Xie (1988) studied the effect
of randomness in a Fibonacci quasicrystal using a scattering
model for a system in which the scatterers of constant height
were placed in a Fibonacci sequence of two distances a and b.
The system was coupled to leads and conductance computed
using the Landauer formula G ¼ ½ð2e2=ℏÞT�=ð1 − TÞ, where
T is the transmission coefficient of the Fn-site system.
Das Sarma and Xie (1988) reported that, while disorder (in
the positions of the scatterers) eventually localizes all states,
small disorder does not change the physics qualitatively.
Introducing a shuffling of the sequence of Kronig-Penney-
type scatterers also leads to localization of states, and
consequently to an exponential decay of the conductance.
There is no doubt that sufficiently large disorder strength

leads to strong localization. However, the approach to locali-
zation can be complicated and state dependent. Jagannathan,
Jeena, and Tarzia (2019) showed that there are interesting
crossover phenomena going from the pure system to the
localized system as the strength of disorder is increased. They
studied the change of critical states of the pure-hopping model
when hopping amplitudes are randomly perturbed from their
initial values tB and tA ¼ ρtB. While most states tend to

FIG. 35. Scalings of the many body localization length Λ with
system size L for different band fillings. One sees a metallic trend
(Λ decreasing with L) for fillings of 1=2 and 1=4, and an
insulating behavior (Λ constant with L) for fillings g−2 and g−3,
where g is the golden mean. Red (gray) and black symbols
correspond to curves for hopping ratios equal to 0.5 and ω,
respectively. From Varma, Pilati, and Kravtsov, 2016.
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become more and more localized as the disorder strength is
increased, some states go the other way initially, becoming
delocalized before turning over and localizing like the other
states. This is seen in Fig. 36(a), which shows the change of
the IPR for the 20 lowest lying states α ¼ 1;…; 20 of the
n ¼ 10 approximant taking a hopping ratio of 0.5. The IPR
values for the pure chain are shown as filled circles, while the
disorder averaged values for weak disorder W ¼ 0.05t are
shown as open circles. It can be seen that, for most of the
states, disorder results in increased IPR, as expected.
However, some states behave anomalously: these states are
indicated as α ¼ 3; 7; 11; 15;… in Fig. 36. The anomalous
behavior is observed for an arbitrarily large system size, albeit
for weaker disorder for longer approximants.
When the averaged IPR of each state is plotted versus

disorder strength W, as shown for four low-lying states in
Fig. 36(b), the anomalous states in Fig. 36(a) show a marked
initial decrease of IPR followed by an upturn. The perturbative
RG method provides an explanation of the observed behaviors
in terms of the renormalization path of the states. Figure 36(b)
shows the RG path of each of the states, and one sees that the
band edge state α ¼ 1 (shown in red; RG pathmmmmm) has a
monotonic increase of the IPR. In contrast, the state α ¼ 3
(shown in blue; RG path mmma) has a minimum of the IPR:
the state first delocalizes under weak disorder before the
upturn sets in. One can show that the states that have “atomic”
character in the final step of RG have such reentrant
localization behavior and that they occur all through the
spectrum. In simple terms, when using the picture for small
values of ρ, the IPR for atomic states tends to decrease since
disorder acts to “smear” the wave function onto neighboring
sites. In contrast, for a wave function composed of molecular
states, the change of IPR has the opposite sign; for details see
Jagannathan and Tarzia (2020).
The changes in the IPRs can be described in terms of

scaling functions: i.e., for a given state one can collapse the
data for different system sizes L and different disorder
strengths W onto a single curve. The finite size analysis
given by Jagannathan, Jeena, and Tarzia (2019) showed that,
despite their different approaches to localization, all states are

described by a single critical exponent ν. The value of ϕ
depends on the ratio tA=tB and was found numerically in finite
size scaling plots such as those in Fig. 37: ν ¼ 0.53 for
ρ ¼ 0.33. The reentrant behavior of the IPR can be explained
in terms of the perturbative RG theory; see Jagannathan,
Jeena, and Tarzia (2019) and Jagannathan and Tarzia (2020)
for details. However, the phenomenon seems to be more
generic, and the reentrance behavior is observed for the
diagonal model, as well as for other types of generalizations
of the Hamiltonian.

B. The proximity effect

It is well known that it is possible to induce superconduct-
ing correlations in a noninteracting conducting system (N) by
coupling it to a superconductor (S), the so-called proximity
effect. The proximity effect provides a way to experimentally

(a)

(b)

FIG. 36. (a) IPRs plotted for the lowest 20 states of an n ¼ 10 Fibonacci chain for ρ ¼ 0.5. Filled circles give IPR values of the pure
chain, while open circles give the sample averaged IPR values for weak disorder (W ¼ 0.05tB). States with α ¼ 3; 7;… indicated are
those showing an anomalous behavior. (b) The averaged IPRs vs disorder strength W for four low-lying states of an n ¼ 10
approximant. The RG path is indicated next to each curve. From Jagannathan, Jeena, and Tarzia, 2019.

FIG. 37. Data for the normalized IPR of several low-lying states
plotted vs the scaling variable WL1=ν showing the data collapse
for different disorder and system sizes. The two panels show
results for two values of the hopping ratio tA=tB. Note the
changes in the scaling functions, which are nonuniversal. From
Jagannathan and Tarzia, 2020.
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observe the unique properties of critical states in the FC. The
first step consists of examining the proximity induced local
pairing order parameter (OP) as a function of distance from
the N-S interface.
Connecting the FC to a bulk superconductor and using a

mean field theory, Rai, Haas, and Jagannathan (2019) com-
puted the distribution ofΔi, the induced local superconducting
order parameter on site i. There are large spatial fluctuations
of Δi that are due precisely to critical states. Figure 38 shows
the profile of the OP as a function of the site number. One sees
here the characteristic multifractal properties reflected in the
variations of the order parameter. Fitting the average curve
obtained by changing the phason angle parameter ϕ, one sees
that the OP decays as a power law in the distance from theN-S
interface (Rai, Haas, and Jagannathan, 2020). The power,
which varies with tA=tB, is expected to depend on both the
exponent of the density of states and the averaged fractal
dimensions of the wave functions near the Fermi energy, here
taken to be at E ¼ 0.
Along with the other states, edge modes contribute to the

induced order parameter on each site. In fact, if one cycles
through chains as a function of the phason angle parameter ϕ

in Eq. (11), the induced order parameter Δi at a given site
oscillates and the periods are simply the topological numbers
of gaps close to the Fermi energy (Rai, Haas, and Jagannathan,
2019). This is seen in Fig. 39, which shows the variations of
the OP at the midpoint of the chain as a function of the phason
angle ϕ. Two different chains are shown to emphasize that the
basic periods do not change when going from smaller to larger
systems: only additional periods appear. The left panel of
Fig. 39 shows the power spectrum of the oscillations and the
periods that are present in the curve of Δmid. One sees the
periods 4, 17, 9, 21, and 6: these correspond precisely to the q
values of the largest gaps near the Fermi energy, in this case
those situated in the band center, EF ¼ 0.

IX. GENERALIZED FIBONACCI MODELS

A. Phonon models

Phonon modes in a quasiperiodic chain can be studied by
considering the set of equations

Hψn ¼ Kn−1ψn−1 þ Knψnþ1 − ðKn−1 þ KnÞψn ¼ Eψn;

ð75Þ

where ψn denotes the displacement of atom n of mass m with
respect to its equilibrium position and the couplings Kn
can take one of two values KA or KB. One can consider,
alternatively, another version of the model in which the masses
m can vary and the couplings are constant. The operator H
generalizes the discretized Laplacian operator, and its eigen-
values yield the frequencies of phonon modes. The phonon
problem is tackled using methods that we have already seen
for the closely related electron problem (Kohmoto, Kadanoff,
and Tang, 1983; Ostlund et al., 1983; Lu, Odagaki, and
Birman, 1986; Luck and Petritis, 1986; Nori and Rodriguez,
1986; Ashraff and Stinchcombe, 1989). The trace map
equation is the same as in the electron problem, namely,
Eq. (25), and the same kind of analysis applies. The spectrum
of energies E has a Cantor-set structure, as seen in Fig. 40
[from Luck and Petritis (1986)], which shows the IDOS versus
energy (these quantities are denoted in the figure by H and z).

FIG. 38. The superconducting order parameter ΔðiÞ in a
Fibonacci chain placed in contact with a BCS superconductor
at both ends, plotted vs the position showing the power-law decay
(tA=tB ¼ 0.8; decay exponent ¼ 0.6).

FIG. 39. Left panel: superconducting order parameter ΔðmidÞ at the midpoint of a Fibonacci chain vs the phason angle ϕ showing
oscillations. Right panel: Fourier spectrum of the other plot, with the main periods showing the peaks at values equal to topological
labels q. From Rai, Haas, and Jagannathan, 2019.
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In contrast to the electronic case, for phonons the scaling is
nonuniform as a function of energy, and gaps become small as
E tends to zero. At the lowest frequencies, the integrated
density of states, which is plotted in Fig. 40, looks almost
indistinguishable from that of a periodic chain where the
coupling is given by the appropriately defined average value
of the two Fibonacci couplings. Like the periodic chain, the
IDOS has a van Hove singularity, IDOS ∼

ffiffiffiffi
E

p
, for small E.

This behavior seems to indicate at first glance that the long
wavelength Goldstone modes are robust with respect to the
quasiperiodic modulation. However, Luck and Petritis (1986)
presented a rigorous argument to show that the spectrum does
not have any absolutely continuous component, even for a
frequency tending to zero.
The gap labeling theorem is seen to hold, as expected, and

the letters A, B, and C indicate three important gaps with gap
labels given by the three smallest Fibonacci numbers (Luck
and Petritis, 1986). The IDOS at these plateaus are given by
Hk ¼ 1 − ωk for k ¼ 1; 2, and 3, where ω is the inverse of
the golden mean. Luck and Petritis (1986) showed that the
upper edge of the spectrum is described by a new six cycle
a → −b → −a → b → −a → −b. This observation was then
used to show that, close to the upper edge, the quantity
1 − NðEÞ, where N is the IDOS, has a power law modulated
by log-periodic oscillations. Ashraff and Stinchcombe (1989)
computed the dynamic structure factor for the Fibonacci
chain. Quantum diffusion properties in this model have been
studied (Kohmoto and Banavar, 1986; Lifshitz and Even-Dar
Mandel, 2011) and found to share electronic properties of
multifractal structure and log-periodic oscillations. For a more
detailed discussion on phonon modes in Fibonacci quasicrys-
tals, see Janssen, Chapuis, and de Boissieu (2018).

B. Mixed Fibonacci models

The term mixed models is used to denote a general member
of the family of models in Eq. (12), where diagonal and

off-diagonal quasiperiodic modulations are both present.
These are relevant for experiments, as real systems can be
expected to have both forms of quasiperiodicity.
Many of the techniques, including the powerful transfer

matrix analysis, can be extended to mixed models. Maciá and
Domínguez-Adame (1996, 1997) considered a mixed model
in which the A and B sites have on-site energies of α or β
following a Fibonacci sequence. The hopping amplitudes are
assumed to have two possible values, tAB ¼ tBA or tAA ¼ γtAB.
The initial step consists of defining the basic transfer matrices.
Choosing, without loss of generality, units such that β ¼ −α
and tAB ¼ 1, one obtains four different transfer matrices in this
model as follows:

X ¼
� ðEþ αÞ −1

1 0

�
; Y ¼

� ðE − αÞ=γ −1=γ
1 0

�
;

W ¼
� ðE − αÞ −γ

1 0

�
; Z ¼

� ðE − αÞ −1
1 0

�
. ð76Þ

Maciá and Domínguez-Adame showed that after renormali-
zation the global transfer matrix in this model has a structure
identical to that of the Fibonacci sequence for the diagonal
model [Eq. (22)]. This can be seen by defining blocks of
sites via TA ¼ ZYX and TB ¼ WX. They showed that in finite
chains the energies of certain transparent states, i.e., with
transmission coefficients of unity, are of the form

EðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4cos2ðkπ=NÞ

q
; ð77Þ

where jαj ≤ 2 and k is an integer such that Nτ ¼ kπ, with
k ¼ 0; 1;…. The states with energies EðkÞ were confirmed as
being extended states via a multifractal analysis.
For this set of models one can determine the resonance

energy E� (for which the two elementary transfer matrices of
the chain commute) as a function of the parameters. Figure 41,
adapted from Maciá (2017), shows the transmission coeffi-
cient TNðE�Þ plotted as a function of resonance energy E�
versus the hopping amplitude γ with fixed diagonal term

FIG. 40. Integrated phonon density of states (IDOS)HðzÞ vs the
eigenvalues z of the Laplacian operator on the Fibonacci chain
for a coupling ratio 0.5. The three main plateaus are labeled A, B,
and C. The dashed line represents the IDOS for the periodic
system based on the average lattice, showing the similarity of the
two curves for small z. From Luck and Petritis, 1986.

FIG. 41. Transmission coefficients at resonance energies E�
plotted vs γ (see the text for definitions) for several mixed models.
The Fibonacci case is shown as a dashed line. The purple
and blue curves represent the silver mean and period-doubling
models, respectively. Adapted from Maciá, 2017.
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strength 1=2 (both in units of tAB) for three different models.
The dashed line represents results for the Fibonacci model for
N ¼ 41 atoms, while the blue and purple lines correspond to
silver mean quasicrystal and the period-doubling cases,
respectively. One sees that transparent states occur throughout
the spectrum.
Sire and Mosseri (1990) investigated a model for approx-

imant chains in which the hopping takes one of two values
(tA or tB) depending on the Fibonacci sequence. The on-site
potentials whose values depend on the nature of bonds to
the left and right were taken to be VAA ¼ −λ=2 and
VAB ¼ VAB ¼ λ=2. The model thus has two parameters λ
and ρ. By considering nth generation approximant chains,
Sire and Mosseri showed that there are gap closings and
quasiextended states for two different families of solutions. In
particular, they showed that as n → ∞ there are Bloch-type
extended wave functions that can be described in terms of a
wave vector k ∈ ð0; πÞ. The energies of such states are
distributed throughout the band, with the band edges corre-
sponding to k ¼ 0 and k ¼ π. Similar conclusions as to the
existence of such extended Bloch-type states were reached
by Kumar and Ananthakrishna (1987) and Kumar (2017).
Extended states with periodic envelopes may exist in mixed
systems even in certain disordered cases, as reported by
Huang and Gong (1998).

C. Interference and flux-dependent phenomena

Transmission properties of chains of Aharonov-Bohm rings
of two different sizes, and connected in a Fibonacci sequence,
have been studied (Chakrabarti, Römer, and Schreiber, 2003).
The transport properties now become flux dependent. It was
observed that transmission decreases as a power law in the
number of rings and that there are resonant states for specific
flux values. A RG analysis using the Landauer formalism and
the trace map method shows that the transmission coefficient
possesses a self-similar structure (Nomata and Horie, 2007).

X. OTHER QUASIPERIODIC CHAINS

Related models of particular interest include a class of
aperiodic 1D chains that can be obtained by generalizing the
substitution rules that we introduced in Sec. II.A. Higher-
dimensional lattices are now described.

A. Aperiodic substitutional chains

Although we have focused on a single quasiperiodic system
described by the golden mean τ, many of the methods used are
generalizable to other irrational numbers. The nature of the
irrational number (algebraic or not) is of primary importance
to the geometric properties and, as a consequence, for the
electronic properties as well. As we have discussed, quasi-
crystals are a special class of structures based on Pisot
numbers. The so-called metallic means that are solutions of
the equation x2 − nx − 1 ¼ 0 (n ¼ 1; 2;…) belong in this
category. Of this series, the two best studied members are the
gold (n ¼ 1) and silver (n ¼ 2) mean quasicrystals, with the
latter also called the octonacci chain. These chains, which
have inflation properties and electronic structures analogous

to those of the Fibonacci chain, were reviewed by Yuan et al.
(2000) and Thiem and Schreiber (2011, 2012, 2013). A study
of the multifractal exponents for the central E ¼ 0 state for
metallic mean chains was done by Macé et al. (2017). Energy
spectra of generalized Fibonacci-type quasilattices having
self-similar as well as quasiperiodic structure were studied
by Fu et al. (1997). A gap labeling theorem is shown to exist
in these cases.
Some well-known aperiodic, but not quasiperiodic, systems

that can be obtained using substitution rules are the Thue-
Morse, period-doubling, and Rudin-Shapiro sequences. See
Maciá (2005) for a discussion of their electronic properties.

B. Products of chains

The 1D chain can be used as the basis for extensions
to arbitrary dimensions d. Taking d ¼ 2, the direct product
Cn × Cn of two Fibonacci approximants aligned along the x
and y axes forms a 2D lattice of squares and rectangles
(Lifshitz, 2002). As can be seen in Fig. 42(a), its connectivity
is that of the square lattice. The energy spectrum and wave
functions for tight-binding models on these direct product
lattices have been studied. In the pure-hopping vertex model,
electrons can hop along the two directions with amplitudes tA
and tB. The Hamiltonian is separable into two independent
Fibonacci chain problems. The energies are the sum of two 1D
energies Eij ¼ Ei þ Ej, and the corresponding wave func-
tions given by the product ψ ijðx; yÞ ¼ ψ iðxÞψ jðyÞ, where Ei

and ψ i are solutions to the 1D problem. The properties of the
spectrum depend on the value of ρ. The spectrum of the d ¼ 2

product lattice is purely singular continuous for ρ < ρ1, where
ρ1 ≈ 0.6 in the product lattice. For ρ > ρ1, the spectrum has a
continuous part (Sire, 1989; Mandel and Lifshitz, 2008;
Thiem and Schreiber, 2013).
The labyrinth model (Sire, Remi, and Sadoc, 1989), a 2D

variant based on the direct product of chains [see Fig. 42(b)],
also has properties derivable from the 1D solutions. The
generalized dimensions describing multifractal properties of
wave functions in d-dimensional product lattices were inves-
tigated by Yuan et al. (2000) and Thiem and Schreiber (2011).
The exponents in d dimensions are simply proportional to
the 1D exponents, Dψ ;d

q ¼ dDψ ;1
q . Dynamical exponents have

FIG. 42. Schemas of 2D product lattices hosting two different
types of hopping models. Left panel: direct product Hamiltonian
with tA (long bonds) and tB (short bonds). Right panel: labyrinth
model (hopping along one of the diagonals of each plaquette).
From Thiem and Schreiber, 2013.
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been computed for these lattices (Zhong and Mosseri, 1995;
Thiem and Schreiber, 2012). The return probability exponent
shows a d dependence (γd ¼ dγð1Þ). The diffusion exponent β
is expected according to theory to be constant as the
dimensionality d increases and this is indeed found numeri-
cally, as seen in Fig. 28. The autocorrelation function
exponent δ depends on the dimensionality, and for higher d
it increases faster as a function of the modulation strength
parameter w ¼ tA=tB, as seen in Fig. 43. A complete account
of the electronic properties of such d-dimensional general-
izations was given by Thiem and Schreiber (2013).
d-dimensional tilings.—The spatial connectivity of product

lattice systems is simple in that they have an underlying
average periodic structure: d-dimensional hypercubic lattices.
The electronic properties of such product lattices are seen to
be “inherited” from the parent chains. The situation is different
for other quasiperiodic tilings. For 2D and 3D tilings such as
the Penrose tiling, spectra and wave functions remain difficult
to compute analytically, with the exception of the ground state
(Macé et al., 2017). As for the Fibonacci quasicrystal, non-
trivial topological properties are to be expected in these
higher-dimensional cases. The possibility of higher order
topological insulators based on the Penrose and octagonal
tilings was discussed by Fulga, Pikulin, and Loring (2016) and
Chen et al. (2020).

XI. INTERACTIONS AND QUASIPERIODICITY

The topic of interacting quasiperiodic systems requires a
separate review. This section is restricted to outlines of some
of the main contributions, along with a nonexhaustive list of
references.
The effects of quasiperiodic perturbations in interacting

fermionic chains was investigated by Vidal, Mouhanna, and
Giamarchi (1999, 2001) for continuum models using a
renormalization group. Considering, in particular, the case
of metallic mean chains, they found that there was a metal-
insulator transition (Vidal, Mouhanna, and Giamarchi, 2001)
for repulsive interactions. Hiramoto (1990) did a Hartree-Fock
analysis to study the effect of the weak interaction U.

The study showed that the singular continuous single-particle
spectrum persists in the presence of interactions, in contrast to
the critical Harper model, where the singular continuous
behavior is destroyed by U.
In a study of the Hubbard model on a Fibonacci chain by

weak-coupling renormalization group and density matrix
renormalization group methods, Hida (2001) showed that,
for the diagonal Fibonacci model, weak Coulomb repulsion is
irrelevant in the sense of RG and the system will behave as a
free Fibonacci chain. For strong Coulomb repulsion the
system becomes a Mott insulator and, in the spin sector,
can be modeled in terms of a uniform Heisenberg antiferro-
magnetic chain. For the off-diagonal case, he obtained a Mott
insulator with a low energy sector that could be described in
terms of a Fibonacci antiferromagnetic Heisenberg chain.
Gupta, Sil, and Bhattacharyya (2005) studied the dc electrical
conductivity for half filling, using Hartree-Fock mean field
theory, to see the interplay of interactions and quasiperiodic-
ity. They concluded that, while each of these factors taken
individually tend to decrease the conductivity, there may be an
enhancement of the conductivity due to the competition
between them.
The evolution of multifractality in an interacting fermion

chain was studied by Macé, Laflorencie, and Alet (2019).
Contrary to naive expectations, they found that adding
repulsive interactions did not lead to enhanced delocalization.
Figure 44 shows the half chain von Neumann entropy plotted
against time for different strengths of the quasiperiodic
potential (controlled by a parameter h, with h ¼ 0 the periodic
case and h ¼ 1 the strongly quasiperiodic chain). For a
periodic chain (the black curve in Fig. 44), the entanglement
entropy grows as a power law in the time SðtÞ ∼ t1=z. The
exponent z increases as the strength of the quasiperiodicity h
is increased. This further confirms that the free Fibonacci
chain is intermediate between the Bloch-type delocalized state
and an Anderson localized state from the point of view of its
transport properties. One also sees log-periodic oscillations
superposed on the power-law behavior that are especially
visible in the strong quasiperiodic limit (yellow curve).

FIG. 43. Autocorrelation function exponent δ as a function of
the strength of quasiperiodic modulation (the variable w ¼ tA=tB
corresponds to ρ in our review) for product lattices of dimensions
1, 2, and 3. From Thiem and Schreiber, 2013.

FIG. 44. Entanglement entropy as a function of time for
different values of the strength of quasiperiodic modulation
h (black curve, periodic chain; yellow (light gray) chain,
strongly quasiperiodic chain). Inset: dependence of the power
z on h. From Macé, Laflorencie, and Alet, 2019.
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A. Heisenberg and XY chains

The properties of spin chains with Fibonacci couplings
have been investigated using a number of methods. Hida
analyzed the spin 1=2 Heisenberg model using the density
matrix renormalization group finding that quasiperiodic mod-
ulations are relevant in this case, and that the ground state is in
a different universality class than that of the XY chain (or free
particle) problem (Hida, 1999; Hermisson, 2000). The entan-
glement entropy S of aperiodic critical chains was studied by
Iglói, Juhász, and Zimborás (2007). For these chains, the half
chain entanglement increases as S ∼ ðc=3Þln2Lþ cst, where
L is the chain length and c is the central charge (0.5 in the
periodic case). They found that for Fibonacci XY chains the
quasiperiodic modulation is marginal in that the central charge
c in this case is nonuniversal and depends on ρ ¼ JA=JB
(the ratio of spin-spin couplings). For Fibonacci Heisenberg
chains, the quasiperiodicity is strongly relevant and the
prefactor is given by cð0Þ ≈ 0.8.

B. Anomalous diffusion properties

Settino et al. (2020) studied dynamics in interacting
aperiodic many body systems, including the FC. They showed
that, for the on-site Fibonacci model, the singular continuous
spectrum for the noninteracting problem remains and induces
an anomalous dynamics. Lo Gullo et al. (2017) studied
aperiodic discrete time quantum walk problems, which are
relevant in quantum computing and which could be realized
using optical fibers (Nguyen et al., 2020). They computed the
energy spectra and the spreading of an initially localized wave
packet for different cases, finding in the case of Fibonacci and
Thue-Morse chains that the system is superdiffusive, whereas
for the Rudin-Shapiro chain, another substitutional chain,
it is strongly subdiffusive. They proposed that the different
dynamics are linked to the nature of the spectra in the two
cases: singular continuous in the former, discrete in the latter.
Density-density correlations at infinite temperature have been
investigated using the dynamical quantum typicality approach
(Chiaracane et al., 2021). This allows one to study the
evolution of dynamical properties of the Fibonacci model

as interaction strength is ramped up, as well as the crossover to
a MBL state.

C. Many body localization

The issue of many body localization due to quasiperiodic
potentials was raised by Iyer et al. (2013) and Khemani,
Sheng, and Huse (2017). They asked whether the MBL
transitions are different in the presence of quasiperiodic
potentials relative to random potentials, and if so in what
ways. The MBL transition in the quasiperiodic AAH model,
which can be experimentally realized in interacting boson
and fermion cold atom systems, has been studied and shown
to lead to a new type of “nonrandom” universality class
(Khemani, Sheng, and Huse, 2017). It is interesting to ask
whether there are any significant differences between many
body localization in AAH and that in Fibonacci chains.
Details of the transition were discussed by Macé,
Laflorencie, and Alet (2019) and Varma and Žnidarič (2019).

XII. EXPERIMENTAL SYSTEMS

Fibonacci sequences occur naturally in 3D icosahedral
quasicrystals and also in dodecagonal quasicrystals. These
are structures that are based on the golden mean. Figure 45(a),
which shows a STM image of copper adatoms deposited on
an icosahedral AlPdMn quasicrystal (Ledieu et al., 2004),
provides a good illustration of this connection. As the height
profile in Fig. 45(b) shows, the distances between columns
represent a Fibonacci sequence. These rows of aperiodically
spaced layers are coupled to the bulk, and the resulting
Hamiltonians are likely to be fairly complicated. For exper-
imental investigations of the 1D model, it is therefore useful to
fabricate artificial systems in order to study the Fibonacci
chain, and we now describe a few such systems.
The off-diagonal tight-binding Fibonacci model has been

experimentally realized in a polaritonic gas in a quasi-1D
cavity (Tanese et al., 2014; Baboux et al., 2017). Some of the
theoretical predictions for the energies and the eigenmodes
of this system were observed. The discrete scale invariance
of the spectrum and the gap labeling theorem were thus

FIG. 45. (a) STM image of a 100 × 100 Å2 zone of copper atoms deposited on the fivefold surface of i-AlPdMn. (b) Height profile
between points marked with an X showing an alternating sequence of distances L (7.3 Å) and S (4.5 Å). From Ledieu et al., 2004.
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experimentally verified. The existence of gap states was
checked and their spatial structure mapped out. Their topo-
logical winding numbers could be experimentally measured
by varying the phason angle ϕ.
Optical waveguides fabricated using a femtosecond laser

beam to inscribe quasiperiodic spatialmodulation in a bulk glass
were studied by Kraus et al. (2012). Injecting light into these
waveguides allowed them to study propagating and localized
modes, and to demonstrate the topologically protected edge
modespredictedby theory.Topological pumpingof photonswas
demonstrated by Verbin et al. (2015), who experimentally
verified the topological equivalence between the Harper and
Fibonacci models. Related subjects of recent investigations,
which are outside the scope of this review, are higher order
topological insulators using quasicrystals (Chen et al., 2020) and
topological quantum computation using Fibonacci anyon chains
(Feiguin et al., 2007; Chandran, Burnell, and Sondhi, 2020).
Merlin et al. (1985) and Bajema and Merlin (1987)

fabricated semiconductor superlattices following a
Fibonacci sequence and studied their properties using
Raman spectroscopy. The samples were composed of two
types of films: 27-nm-thick layers of GaAs and 43-nm-thick
layers of GaAlAs (such that the ratio of thicknesses was close
to the golden mean). These layers were piled on top of each
other in a quasiperiodic sequence along the z direction. The
Raman frequency shifts were compared for periodic and
quasiperiodic structures. In addition to the acoustic phonons
in this system, plasmon-polariton modes were argued to play
an important role by Albuquerque and Cottam (2003), where
their Raman cross sections for the samples were discussed.
Hawrylak, Eliasson, and Quinn (1987) computed the plasmon
spectrum for such superlattices, described its scaling proper-
ties, and explicitly computed the fðαÞ spectrum. For a wide-
ranging discussion of photonic and phononic heterostructures,
see the review by Steurer and Sutter-Widmer (2007).
A variety of photonic structures can be obtained by

coupling single mode waveguides to form lattices through
dynamical coupling or by using nonlinearities. It can be useful
to consider these in terms of effective models in a higher-
dimensional “synthetic space” in which the external param-
eters play the role of extra dimensions. These systems offer, in
particular, a means to investigate the topological properties of
the Su-Schreiffer-Heeger and AAHmodels (Yuan et al., 2018)
and leave open the possibility of extensions including the
Fibonacci chain.
Metamaterials in the nanoscale also provide a wide array of

possibilities for aperiodic structures. Optical transmission
spectra of photonic band-gap Fibonacci quasiperiodic nano-
structures composed of both positive (SiO2) and negative
refractive index materials were discussed by de Medeiros,
Albuquerque, and Vasconselos (2007). In another direction,
there are possibilities to make quasiperiodic sequences in 1D
biomaterial (DNA-based) systems and study the consequences
for transport (Albuquerque et al., 2005).
Magnetic multilayers composed of Fe=Cr layers and

studied by the magneto-optic Kerr effect and ferromagnetic
resonance should display self-similar magnetization versus
curves and interesting thermodynamic signatures (Bezerra,
Albuquerque, and Cottam, 2001). Another promising system
is composed of epitaxially grown layers of Fe and Au using

ultrahigh-vacuum vapor deposition (Suwa et al., 2017), which
were theoretically predicted to have anomalous magneto-
resistance (Machado et al., 2012).
Fibonacci nanowire arrays were studied recently by

Lisiecki et al. (2019), who discussed their magnonic proper-
ties and possible applications.
Quantum dots can be used to make artificial crystals and

quasicrystals (Kouwenhoven et al., 1990). They have already
been used to study magnetotransport in a periodic crystal. It
may therefore be possible to study transport in artificial
Fibonacci chains made with quantum dots.
On a macroscopic length scale, microwave propagation in

dielectric resonators has been used with success to simulate
the tight-binding model for graphene (Bellec et al., 2013).
Preliminary work (Piéchon and Mortessagne, 2021) has shown
that this may provide an extremely versatile system in which to
study electronic properties of Fibonacci chains, including the
effects of various forms of disorder or interactions.
Cold atoms in optical potentials constitute a particularly

fertile ground to realize quasiperiodic models and study their
properties under controlled conditions. A number of recent
theoretical studies have thus looked at generalizations of the
tight-binding models that are relevant to cold atom experi-
ments. The discrete-valued Fibonacci potential ismore difficult
to realize experimentally than that in the Harper model,
which can be realized by applying an incommensurate laser
potential (Fallani et al., 2007; Lye et al., 2007). Recently,
however, Singh et al. (2015) proposed a means of realizing
generalized Fibonacci models on chains based on the cut-and-
project method in a 2D optical lattice. If realized, this would
provide opportunities to experimentally study multifractal
states and probe the multiscale dynamics in the Fibonacci
quasicrystal. An interesting direction discussed by Sagi and
Nussinov (2016) concerns emergent quasiperiodic structures in
interacting systems. They showed that fractional quantum Hall
systems for irrational filling fractions can result in quasiperi-
odic electronic configurations that include, in one dimension,
the case of an emergent Fibonacci ordering. They argued that
such emergent quasicrystals could be realized with ultracold
Rydberg atoms on optical lattices. Such structures, although
not expected to be stable under disorder or quantum or thermal
fluctuations, could nevertheless persist on intermediate length
scales in the form of “quasicrystalline puddles.”

XIII. SUMMARY AND OUTLOOK

We have introduced some of the main concepts and tech-
niques relevant to 1D Fibonacci tight-binding Hamiltonians.
This classofmodel is important froma fundamental viewpoint in
its own right, and also as a starting point for understanding
higher-dimensional quasicrystals. The topological character-
istics of the 1D models arising from their “hidden dimension”
can be generalized to higher-dimensional quasicrystals. Thus,
just as the Fibonacci chain has topological properties inherited
from a parent 2D system, certain 2D quasicrystals have been
shown to have topological invariants corresponding to a 4D
quantumHall system (Kraus,Ringel, andZilberberg, 2013)with
associated edge modes that are symmetry protected.
Interpolating between the AAH and Fibonacci models

offers us the possibility of realizing topological pumps, as
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in the optical waveguide systems of Verbin et al. (2015).
More recently it was shown that polaritonic quasicrystals also
allow this type of tunability (Goblot et al., 2020). For these
systems one can control localization-delocalization transitions
for specific bands, suggesting the possibility of their use in
selective bandpass filters.
In addition to these phenomena related to edge modes,

recent work shows that bulk characteristics can also display
the winding number (Rai et al., 2021). When the chemical
potential is chosen to lie within one of the spectral gaps, the
charge density is an oscillating function and the number of
oscillations is given by the gap label.
One of the distinctive characteristics of the quasicrystal is

the existence of multifractalities as a function of the energy,
the space coordinates, and the temporal correlations. We
have discussed these properties, along with explicit calcu-
lations for specific examples. We have mentioned a few
consequences of these multifractal states for physical
properties: transport, disorder induced localization and
delocalization, and the proximity effect. Critical states
persist in higher-dimensional models. Note that there is an
exact solution for ground states that is a 2D analog of the
E ¼ 0 solution on the FC that was discussed here (Kalugin
and Katz, 2014; Macé et al., 2017).
The Fibonacci family of models is interesting from the point

of view of applications as well: in electronic devices or for
their mechanical properties. Although we have focused here on
electronic properties, but there are many interesting and closely
related problems for electromagnetic wave modes in aperiodic
media. The unique optical reflectivity properties of aperiodic
multilayers suggest applications as perfect mirrors with omni-
directional reflectivity for all polarizations of incident light over
a wide range of wavelengths (Axel and Peyrière, 2010), and
more generally in nanodevices (Steurer and Sutter-Widmer,
2007; Maciá, 2012). The experimental possibilities of creating
phononic systems suggest their use in thermal and acoustic
shields or acoustic lenses, for example. In superconductors, the
critical currents versus the field of quasiperiodically spaced
pinned vortices were computed by Misko, Savel’ev, and Nori
(2006) with a view to applications, and it was observed that
for a 1D Fibonacci vortex array, the critical currents have a
self-similar structure. More speculatively, one can conceive of
applications on a larger scale suggested by some of the
properties discussed here. The large number of spectral gaps
generically present in this family of models suggests the
possibility of dissipating ocean waves and even reflecting
tsunamis on the shoreline using quasiperiodic arrays of
scatterers. Seismic barriers against propagating Rayleigh waves
(surface seismic modes) using, for example, quasiperiodic
trenches are another interesting possibility.
The models discussed here provide a useful framework for

understanding 1D quasiperiodic systems. Many questions still
remain, however. The multifractal dynamical properties of
quasiperiodic chains remain to be elucidated in more detail
both theoretically and by experiment. The effects of inter-
actions and their interplay with quasiperiodicity present an
important problem requiring more investigation. The exten-
sion to higher-dimensional quasicrystals poses a major chal-
lenge. As far as understanding and controlling physical

properties of quasicrystals is concerned, we have only
scratched the surface.
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205153.
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