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Heavy-ion collisions at BNL’s Relativistic Heavy Ion Collider and CERN’s Large Hadron
Collider provide strong evidence for the formation of a quark-gluon plasma, with temperatures
extracted from relativistic viscous hydrodynamic simulations shown to be well above the
transition temperature from hadron matter. Outstanding problems in QCD include how the
strongly correlated quark-gluon matter forms in a heavy-ion collision, its properties off
equilibrium, and the thermalization process in the plasma. The theoretical progress in this field
in weak-coupling QCD effective field theories and in strong-coupling holographic approaches
based on gauge-gravity duality is reviewed. The interdisciplinary connections of different
stages of the thermalization process to nonequilibrium dynamics in other systems across energy
scales ranging from inflationary cosmology to strong-field QED to ultracold atomic gases are
outlined, with emphasis placed on the universal dynamics of nonthermal and hydrodynamic
attractors. Measurements in heavy-ion collisions are surveyed that are sensitive to the early
nonequilibrium stages of the collision and the potential for future measurements is discussed. The
current state of the art in thermalization studies is summarized and promising avenues for further
progress are identified.
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I. BIG PICTURE QUESTIONS AND OUTLINE OF THE
REVIEW

Ultrarelativistic collisions of heavy nuclei at the BNL
Relativistic Heavy Ion Collider (RHIC) and the CERN
Large Hadron Collider (LHC) produce several thousand
particles in each event, generating the hottest and densest
matter on Earth (Adams et al., 2005; Adcox et al., 2005;
Arsene et al., 2005; Alver et al., 2007; Müller, Schukraft, and
Wyslouch, 2012; Foka and Janik, 2016a, 2016b). At the
highest LHC energies, temperatures of the order of 5 × 1012 K
are attained (Adam et al., 2016). Temperatures on this scale
previously existed only at the earliest instants of our Universe,
a tenth of a microsecond after the big bang. Lattice gauge
theory studies (Bazavov et al., 2019) show strongly interact-
ing matter at these temperatures to be well over a crossover
temperature from hadron matter to a regime where the degrees
of freedom describing bulk thermodynamic quantities are the
fundamental quark and gluon fields of quantum chromody-
namics (QCD). The results of experimental and theoretical
studies indicate that shortly after the heavy-ion collision the
produced quark-gluon fields form a strongly correlated state
of matter, widely known as the quark-gluon plasma (QGP)
(Shuryak, 1980).
The heavy-ion experiments at RHIC and LHC therefore

provide us with a unique opportunity to terrestrially study the
spacetime evolution of this non-Abelian QGP. A striking
finding from the RHIC and LHC experiments is that the
experimental data are consistent with a description of the QGP
as a nearly perfect fluid with a low value of shear viscosity to
entropy density ratio of η=s ≤ 0.2 (in natural units)
(Romatschke and Romatschke, 2019). These values are close
to η=s ¼ 1=ð4πÞ, a universal property of a class of gauge
theories with a large number of degrees of freedom at infinite
coupling (Policastro, Son, and Starinets, 2001; Buchel and
Liu, 2004; Kovtun, Son, and Starinets, 2005; Iqbal and Liu,
2009) that is described in terms of a dual gravity picture
(Maldacena, 1998, 1999).
While our understanding of the thermal properties of QGP

matter and the flow of the nearly perfect fluid has developed
significantly, progress in theoretical descriptions of the early
stages of heavy-ion collisions has been made relatively
recently. In particular, there is a growing realization that
the far-from-equilibrium dynamics that characterizes early-
time physics is extremely important for understanding
collective phenomena in the heavy-ion experiments
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(Mrówczyński, Schenke, and Strickland, 2017; Busza,
Rajagopal, and van der Schee, 2018; Schlichting and
Teaney, 2019). This review summarizes our perspective on
the theoretical and phenomenological progress in this active
research area and places these developments in a wider
interdisciplinary context.
The QCD thermalization process represents an initial value

problem in quantum field theory (QFT). It requires under-
standing the many-body correlations in the colliding hadrons,
how such correlations influence multiparticle production as
the collision occurs, and the subsequent effective loss of
information of these many-body correlations during the
thermalization process of the matter produced. While von
Neumann entropy is conserved in the unitary quantum
evolution of a nuclear collision in isolation, observables of
interest may nevertheless approach local thermal equilibrium.
The characteristic timescales for the corresponding effective
loss of information and the extent to which the dynamics
finally leads to an approach to local thermal equilibrium for
key observables are the central topics of this review.
In particular, we focus on the following key questions

prompted by the dynamics of each stage of the spacetime
evolution of quark-gluon matter in heavy-ion collisions1:

• What are the many-body correlations of strongly inter-
acting matter in the colliding nuclei?—The colliding
nuclei produce the initial state for the subsequent
thermalization process. In principle, there can be differ-
ent thermalization scenarios for different initial condi-
tions. Although many details of the quantum evolution
are lost quickly, it is crucial to classify the range of initial
conditions (such as underoccupied versus overoccupied)
leading to a certain class of dynamical processes.

In QCD, a proton (or any other nucleus) must be
viewed as a collection of short- or long-lived configu-
rations of partons (quarks, antiquarks, and gluons),
where each configuration carries the quantum numbers
of the proton. When the proton or nucleus is boosted to
high energies, short-lived configurations typically con-
taining large numbers of partons live much longer due to
time dilation. It is therefore more likely that a probe of
the hadron at high energies will scatter off such many-
body configurations of partons and that their decay will
dominate the physics of multiparticle production in
ultrarelativistic nuclear collisions. Learning how pre-
cisely multiparticle production occurs requires a deep
knowledge of the spatial and momentum distributions of
partons in the boosted nuclei, the nature of their
correlations, and how these correlations change with
system size and with collision energy.

• What is the physics of the first yoctosecond ð10−24 sÞ of
the collision?—Parton configurations in a boosted nu-
cleus have their momenta distributed between a few fast
modes and more plentiful soft modes. In a heavy-ion
collision, these fast modes in each of the nuclei interact
relatively weakly with the other nucleus and populate the
“fragmentation regions” corresponding to polar angles

close to the beam axes (Van Hove and Pokorski, 1975).
The slower degrees of freedom interact more strongly
with each other and produce strongly interacting gluon
matter outside the fragmentation regions.

This spacetime picture of nuclear collisions was
developed in a groundbreaking paper by Bjorken to
describe the subsequent hydrodynamic flow of the
quark-gluon plasma (Bjorken, 1983), albeit he did not
address how thermalization occurs in this scenario. An
interesting question in this regard is whether the strong
interactions of the soft modes with each other are due to
strong coupling or whether they may be due to the large
occupancy of these soft modes. The answer to this
question may also influence the degree of transparency
of the fast modes, in particular, a “limiting fragmenta-
tion” scaling phenomenon seen in data.

A spacetime scenario in which both soft and hard
modes in the nuclei interact strongly and generate
hydrodynamic flow was suggested by Landau. It is
conceivable that there is a transition between these
two spacetime pictures with energy (Gelis, Stasto, and
Venugopalan, 2006; Casalderrey-Solana et al., 2013); if
so, can they be distinguished by phenomena such as
limiting fragmentation (Gonçalves et al., 2019)?

• Is there a unifying theoretical description of quark-gluon
matter off equilibrium?—The quark-gluonmatter formed
in the first few yoctoseconds of the heavy-ion collision is
far from equilibrium. A key question in its description is
whether weak- and strong-coupling extrapolations to
realistic values can lead to similar phenomenology.

A potentially rich line of inquiry is to isolate which
features of the nonequilibrium evolution of strongly
correlated or coupled quark-gluon matter are universal.
One example is universal dynamics in the approach to
local thermal equilibrium governed by viscous hydro-
dynamics. Another example is universality in time
dependence across a class of nonequilibrium states for
certain observables. In a weak-coupling scenario, at high
occupancies these include far-from-equilibrium attractors
associated with nonthermal fixed points (Berges,
Rothkopf, and Schmidt, 2008; Berges, Boguslavski et al.,
2014a, 2014b).

Far-from-equilibrium hydrodynamic attractors are ob-
served to emerge in both strong and weak coupling
(Heller and Spaliński, 2015; Romatschke, 2018). A
related important set of questions concerns the use of
effective theories like hydrodynamics for systems that are
far away from equilibrium.Yet another line of inquiry is to
determine how features of the dynamics evolve between
the weakly coupled and strongly coupled regimes. An
intriguing possibility to consider is whether the topologi-
cal properties of strongly correlated systems may help
provide unifying descriptions at both weak and strong
coupling.

• Can we cleanly isolate signatures of quark-gluon matter
off equilibrium?—If matter in bulk locally equilibrates in
heavy-ion collisions, the only information of the non-
equilibrium evolution that survives is what is imprinted
as initial conditions for its subsequent hydrodynamic
evolution. The exceptions are electroweak and so-called

1For a complementary perspective on open questions in heavy-ion
collisions, see Busza, Rajagopal, and van der Schee (2018).
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hard probes; both of these are sensitive to the full history
of the spacetime evolution of QCD matter.

A significant development in recent years is the
vastly improved ability of the RHIC and LHC experi-
ments to perform event engineering whereby final states
can be studied by varying the control parameters
corresponding to nuclear size, centrality of collision
impact, and final state multiplicities (triggered thereby
on typical versus rare event configurations) across
wide ranges in energy and system size (Schukraft,
Timmins, and Voloshin, 2013). A challenging question
is whether we can constrain the current state-of-the-
art computational techniques to accurately reflect
the systematics of this event engineering and,
further, to use these to empirically isolate the out-of-
equilibrium dynamics.

• Interdisciplinary connections.—The study of the out-
of-equilibrium dynamics of strongly correlated systems
is an important topic of significant contemporary
interest in a number of subfields of physics. As we
later discuss, the ideas and methods outlined in this
review have significant overlap with these fields. Can
one exploit these interdisciplinary connections to make
progress?

We address the previously listed outstanding questions in
two ab initio theoretical approaches to the problem of
thermalization in QCD. One approach, the color glass
condensate (CGC) effective field theory (EFT), is applicable
at high energies corresponding to a regime of weak coupling
αS ≪ 1 and high gluon occupancies fg satisfying αSfg ∼ 1.
This regime of weak coupling and high occupancies in
QCD is characterized by a large emergent “saturation” scale
that is much larger than the intrinsic nonperturbative scales
corresponding to color confinement and chiral symmetry
breaking.
The CGC EFT employs weak-coupling many-body meth-

ods to separate (or factorize) these soft nonperturbative modes
from the harder modes of the order of the saturation scale.
Specifically, the requirement that physics be independent of
the scale separation between soft and hard modes leads to
renormalization group equations that describe how such
nonperturbative information provided as an input at a given
energy scale changes as it evolves. As one approaches
asymptotic energies, the factorization of the hard and soft
scales becomes increasingly robust and many of the properties
of quark-gluon matter can be computed systematically. The
quark-gluon matter in this limit is called the glasma (Gelis and
Venugopalan, 2006c; Lappi and McLerran, 2006).
The other ab initio approach to thermalization is in the limit

of strong ’t Hooft coupling of αSNc → ∞, as the number of
colors Nc → ∞. In this limit, holographic approaches based
on gauge-gravity duality (Gubser, Klebanov, and Polyakov,
1998; Maldacena, 1998, Witten, 1998a; 1999) are robust and
can be used to obtain exact results in non-Abelian gauge
theories, with the best understood example being N ¼ 4

superconformal Yang-Mills theory.
Neither of these theoretical approaches to the problem of

thermalization are directly applicable to real world heavy-ion
collisions at RHIC and LHC energies, where the relevant

couplings are likely neither particularly weak nor infinitely
strong. Thus, data-theory comparisons rely on phenomeno-
logical descriptions characterized by extrapolations of ab initio
approaches well beyond their strict regimes of validity. By
anchoring such phenomenological models in fundamental
theory in well-controlled limits, their success or failure in
comparison to data can then be traced to a particular set of
assumptions in the extrapolations. We clarify throughout the
review whenever such phenomenological extrapolations
are made.
We begin in Sec. II by discussing the structure of matter

within the colliding hadrons and heavy nuclei at high energies.
After an introduction to QCD and the associated parton
picture of hadrons at high energies, we focus our attention
on what happens when the phase space density of partons in
the wave functions of the colliding hadrons becomes large.
Driving this physics is an emergent energy-dependent close
packing saturation scale QS (Gribov, Levin, and Ryskin,
1983), which grows with energy and nuclear size, allowing
for a systematic weak-coupling description of the properties of
saturated partons in high-energy QCD. Specifically, we
discuss the CGC EFT, wherein the high-energy hadron is
described as a coherent state of static color sources and
dynamical gluon fields. The saturation scale is manifest in the
CGC EFT, allowing one to describe strongly correlated many-
body parton correlations in the hadron wave functions (Gelis
et al., 2010; Kovchegov and Levin, 2012).
Nonperturbative soft modes of the high-energy nuclei, their

color charge distributions, and many-body correlations thereof
are represented by a density matrix at a given energy scale that
is much smaller than those of the hard weakly coupled modes.
While this nonperturbative density matrix has to be para-
metrized at the initial scale by physically plausible assump-
tions, a renormalization group (RG) framework (Jalilian-
Marian, Kovner, and Weigert, 1998; Iancu, Leonidov, and
McLerran, 2001) allows one to systematically study the
energy evolution of parton many-body correlations as the
hadron is boosted to higher energies.
In Sec. III, we outline the problem of multiparticle

production in quantum field theory in the presence of strong
fields and discuss how this leads to a first-principles descrip-
tion of the early-time evolution of the glasma. Inclusive
quantities such as multiplicities or energy densities, and their
spacetime correlations, can be computed systematically in the
glasma in powers of the coupling αS ≪ 1 at sufficiently high
energy. At leading order in this power counting, the glasma
fields are highly occupied classical fields with magnitude
1=αS.
At next-to-leading order (NLO), we discuss how quantum

fluctuations, comoving with the colliding nuclei, can be
absorbed into the density matrices describing their nonper-
turbative many-body color charge distributions. In contrast,
non-comoving quantum fluctuations produced after the colli-
sion in the glasma are unstable and display quasiexponential
dynamical growth (Romatschke and Venugopalan, 2006a).
We later describe how the physics of these unstable modes at
early proper times τ ≲ ð1=QSÞlog2ð1=αSÞ is captured in a
classical-statistical approximation of the quantum evolution
with given quantum initial conditions.
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Section IV describes the nonlinear time evolution of far-
from-equilibrium quark-gluon matter for weak couplings
relevant at high energies. The range of validity of classical-
statistical field theory descriptions for the evolution is dis-
cussed in terms of the two-particle-irreducible (2PI) quantum
effective action, which motivates fully (3þ 1)-dimensional
numerical simulations of the expanding glasma fields.
The lattice field theory simulations demonstrate the emer-

gence of a nonthermal attractor described by a self-similar
gluon distribution, whose dependence on momentum and an
overall cooling rate are characterized by universal numbers
independent of the initial conditions. Because the numerical
simulations correctly describe dynamics in the infrared, the
attractor solution helps one to identify the right effective
kinetic theory among several competing options.
Kinetic theory increasingly captures the relevant dynamics

of the thermalization process as the system expands and
cools. In Sec. V, we discuss the leading-order kinetic theory
framework, going progressively from elastic 2 ↔ 2 scatter-
ings to effective collinear 1 ↔ 2 processes and taking
special note of interference and plasma instability effects.
Phenomenological extrapolations to realistic couplings can
also be explored in the language of hydrodynamic attractors,
where the dependence on the coupling is replaced by the
kinematic viscosity η=s. For values of the kinematic viscosity
extracted from hydrodynamic simulations of heavy-ion colli-
sion, reasonable predictions are obtained for entropy produc-
tion (Giacalone, Mazeliauskas, and Schlichting, 2019), as well
as for hydrodynamic and chemical equilibration times
(Kurkela and Mazeliauskas, 2019a; Kurkela et al., 2019b).
In Sec. VI, we provide an overview of holography based

strong-coupling approaches to thermalization in gauge theo-
ries. Our focus is on the conceptual features, universal
mechanisms, and predictions from these studies. In particular,
ab initio holographic computations predict the applicability of
hydrodynamics over a timescale set by the local energy
density, when the expanding matter in heavy-ion collisions
settings is characterized by a large spatial anisotropy in its
energy-momentum tensor (Chesler and Yaffe, 2010, 2011;
Heller, Janik, and Witaszczyk, 2012b). This is at variance
with the common presumption of local thermal equilibrium
in applying hydrodynamics; in a paradigm shift, the
transition to hydrodynamic flow is now referred to as hydro-
dynamization rather than thermalization (Casalderrey-
Solana, Liu et al., 2014).
We later discuss, in particular, phenomenological attempts

to apply these ideas to model heavy-ion collisions in the
context of (1þ 1)-dimensional boost-invariant flow where
hydrodynamization and hydrodynamic attractors were first
discovered. We also cover work on more realistic holographic
descriptions of heavy-ion collisions that model confinement,
the breaking of conformal invariance, the running of the
coupling, and large-Nc suppressed nonlocal correlations.
Section VII is devoted to a discussion of signatures

of nonequilibrium dynamics in heavy-ion data. While
electromagnetic and high transverse momentum strongly
interacting final states are sensitive to early-time dynamics,
significant contributions to their rates accrue from all stages
of the spacetime evolution of the system. Measurements of

long-range correlations among high-momentum final states
offer promise in isolating the early-time nonequilibrium
dynamics of the glasma from the late stage hydrodynamic
flow. This can be achieved by event engineering the response
of these final states to variations in energy and system size. We
also discuss how bulk observables, in combination with these
final states, can constrain thermalization scenarios.
A striking example of the role of topology in heavy-ion

collisions is the chiral magnetic effect (CME) (Kharzeev,
McLerran, and Warringa, 2008) corresponding to a vector
current along the direction of an external magnetic field that is
induced by topological transitions. The CME is primarily an
early-time effect; in this case as well, event engineering of
multiparticle correlations offers the possibility of uncovering
its role.
In Sec. VIII, we address the question of the interdisciplinary

connections of the thermalization process in heavy-ion colli-
sions to that of other strongly correlated systems across energy
scales. A striking similarity of strongly correlated flow in
heavy-ion collisions to that of unitary Fermi gases was noted
shortly after the discovery of the QGP perfect fluid. The
glasma likewise shares common features with other over-
occupied systems across energy scales, from inflationary
dynamics in the early Universe to a quantum portrait of black
holes as highly occupied graviton states to those of over-
occupied ultracold Bose gases.
A concrete example of the influence of interdisciplinary

ideas is that of the turbulent thermalization process underlying
the nonthermal attractor in the glasma, which has been widely
discussed in the context of reheating in the early Universe
following inflation (Micha and Tkachev, 2004; Berges,
Rothkopf, and Schmidt, 2008). The latter in turn is, in the
perturbative high-momentum regime, a relativistic generali-
zation of weak wave turbulence in fluids (Zakharov, L’vov,
and Falkovich, 2012). In the nonperturbative infrared regime,
the glasma attractor is nearly identical to that of overoccupied
cold atomic gases, sharing the same scaling functions and
exponents in a wide spectral range (Berges et al., 2015b). This
is suggestive of a classification of far-from-equilibrium
systems into universality classes analogous to those for critical
phenomena close to equilibrium (Hohenberg and Halperin,
1977). An exciting development with cross-disciplinary
potential is the use of state-of-the-art cold atom experiments
to provide deep insight into such universal dynamics (Erne
et al., 2018; Prüfer et al., 2018; Glidden et al., 2020).
The search for effective theories far from equilibrium is also

a major research direction in the theory of complex systems
ranging from understanding entanglement to information loss
and thermalization of closed quantum many-body systems,
with insights to be gained from “tabletop” atomic and
condensed-matter systems (Eisert, Friesdorf, and Gogolin,
2015). On the other end of the energy scale are the con-
nections to black holes and string theory with respect to
general questions regarding the scrambling of information
(Lashkari et al., 2013; Maldacena, Shenker, and Stanford,
2016) and the unitary dynamics underlying black hole
formation and evaporation (Almheiri et al., 2019; Almheiri,
Mahajan et al., 2020; Hawking, 1974, 1976; Page, 1993;
Penington, 2019).
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Finally, the role of topology in heavy-ion collisions has
interdisciplinary connections in the chiral magnetic effect,
which is now observed in condensed-matter systems (Li and
Kharzeev, 2016). Continual advances in laser technology also
offer promise in the precision study of anomalous currents off
equilibrium.
We end the review in Sec. IX with a summary and outlook

toward future developments in our understanding of thermal-
ization in QCD. As the outline suggests, thermalization in QCD
is a rich field with many research directions and we have had to
make choices in our presentation due to space limitations. An
important topic that we do not address is the off-equilibrium
dynamics of QCD matter in the vicinity of a critical point
(Akamatsu et al., 2019; Bluhm et al., 2020; Bzdak et al., 2020).
Another is the related topic of hydrodynamic fluctuations
(Akamatsu, Mazeliauskas, and Teaney, 2017; An et al.,
2019). Other noteworthy omissions in our presentation include
the discussion of holographic deep inelastic scattering
(Polchinski and Strassler, 2003; Hatta, Iancu, and Mueller,
2008; Shuryak and Zahed, 2018), holographic hard probes
(Gubser, 2006; Herzog et al., 2006; Chesler, Jensen, andKarch,
2009; Chesler et al., 2009; Chesler, Lekaveckas, andRajagopal,
2013), and features of linear response theory (Son and Starinets,
2002; Herzog and Son, 2003; Kovtun and Starinets, 2005).
Some aspects of holographic approaches that we omit or treat
only partially were discussed by Casalderrey-Solana, Liu et al.
(2014), DeWolfe et al. (2014), Chesler and van der
Schee (2015), Heller (2016), and Florkowski, Heller, and
Spalinski (2018).

II. HADRON STRUCTURE AT HIGH ENERGIES

The initial value problem of the thermalization process in
hadron-hadron collisions requires a deep understanding of the
structure of QCD matter in the wave functions of the colliding
hadrons. The spacetime picture since the early days of QCD is
that the highly Lorentz contracted large-x valence partons in the
ultrarelativistic hadron wave functions go through unscathed in
the collision, while their accompanying small-x “fur coat of
wee-parton vacuum fluctuations” (Bjorken, 1976) interacts
strongly to form hot and dense matter (Bjorken, 1983). The
wee-parton phase space distributions evolve with energy and
nuclear size; their properties determine key features of the bulk
properties of the matter produced after the collision.
In this section, after an introduction to QCD and the parton

model of hadrons at high energies we discuss significant
developments in the description of hadron wave function in
the CGC EFT. In particular, we address how the semihard
saturation scaleQS arises in the nuclear wave functions, which
justifies their description as highly occupied gluon shock
waves. As the largest scale in the problem, it not only sets the
scale for many-body correlations in these shock waves, and in
the glasma matter produced after the collision, but sub-
sequently also determines the thermalization time and the
initial temperature of the quark-gluon plasma.

A. Quantum chromodynamics

QCD, the modern theory of the strong force in nature, is a
nearly perfect theory, with the only free parameters being the

quark masses (Wilczek, 2000). The Lagrangian of the theory
can be written compactly as

LQCD ¼ −
1

4
Fa
μνFμν;a þ

X
f

Ψ̄f
i ðiγμDμ;ij −mfδijÞΨf

j : ð1Þ

Here Fa
μν ¼ ∂μAa

ν − ∂νAa
μ − gfabcAb

μAc
ν is the QCD field

strength tensor for the color gauge fields Aa
μ that live in the

adjoint representation of SUð3Þ, with a ¼ 1;…; 8 and fabc the
structure constants of the gauge group. The quark fields live in
the fundamental representation of SUð3Þ and are labeled with
their color and flavor indices Ψf

i , where the color index i ¼
1;…; 3 and f denotes the flavors of quarks with masses mf.
Finally, the Dirac matrix γμ is contracted with the covariant
derivative Dμ;ij ¼ ∂μδij þ igtaijA

a
μ, with taij the generators of

SUð3Þ in the fundamental representation.
The theory is rich in symmetry. The structure of the

Lagrangian is dictated by the invariance of the quark and
gluon fields under local SUð3Þ color gauge transformations. In
addition, for massless quarks the theory has a global chiral
SUð3ÞL × SUð3ÞR symmetry, global baryon number Uð1ÞV
and axial charge Uð1ÞA symmetries, and the quark and gluon
fields are invariant under scale transformations. The
Lagrangian is invariant under discrete parity, charge, and
time reversal symmetries.
All of these symmetries, except that of local SUð3Þ color,

are broken by vacuum or quantum effects that give rise to all
the emergent phenomena in the theory, including confine-
ment, asymptotic freedom, quantum anomalies, and the
spontaneous breaking of chiral symmetry.
Because QCD is a confining theory, it is not analytically

tractable in general and numerical methods are essential to
uncover its properties. Euclidean lattice Monte Carlo methods
can be applied to compute, with good accuracy, “static”
properties of the theory such as the mass spectrum of hadrons,
magnetic moments, and thermodynamic properties of QCD at
finite temperature (Lin et al., 2018; Detmold et al., 2019).
These methods are, however, limited in determining

dynamical real-time features of theory because of the con-
tributions of a large number of paths to the QCD path integral
in Minkowski spacetime. There are promising approaches to
surmount this difficulty such as steepest descent Lefshetz
thimble methods but they are currently applicable only to
problems in 1þ 1 dimensions (Alexandru et al., 2017).
Likewise, quantum computing offers an alternative paradigm
for computing real-time dynamics, but its applicability to
QCD likely remains far in the future (Preskill, 2018).
One should note that the production of high transverse

momentum and massive particles (jets and heavy quarkonia
being two notable examples) can be computed with high
precision in perturbative QCD (pQCD) (Collins, Soper, and
Sterman, 1989). This is because these processes correspond to
short transverse distances and asymptotic freedom tells us that
the QCD coupling αS is weak at these scales.

B. QCD at small x and high parton densities

A great success of pQCD is the QCD parton model
(Bjorken and Paschos, 1969), wherein the complex dynamics
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of quark and gluon fields in hadrons can, at high energies and
large momentum resolutions, be viewed as that of a weakly
interacting gas of partons (single-particle quark, antiquark,
and gluon states). The cleanest way to access this subnucleon
structure is in the deeply inelastic scattering (DIS) of electrons
or other leptons off nucleons and nuclei, wherein a virtual
photon emitted by the electron strikes a quark or antiquark
inside the hadron.
For the thermalization process of interest in this review, the

asymptotic high-energy (or “Regge”) limit of DIS is most
relevant. This limit corresponds to the Bjorken DIS variable
xBj ∼Q2=s → 0, where Q2 is the squared four-momentum
transfer and s is the squared center-of-mass energy. In the
parton model, xBj ≈ x, where x is the light cone fraction of the
momentum of the hadron carried by the struck parton.2 At
small x, or equivalently at high energies, the number of
partons in the hadron proliferate rapidly, as first observed in
DIS experiments at the HERA collider in Germany (Abt et al.,
1993; Derrick et al., 1993; Martin, Stirling, and Roberts,
1994; Ahmed et al., 1995; Derrick et al., 1995; Lai et al.,
1995). This growth is consistent with the predictions of the
pQCD Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
(Gribov and Lipatov, 1972; Lipatov, 1974; Altarelli and Parisi,
1977; Dokshitzer, 1977) evolution equations.
The mathematical basis of the parton model in QCD

follows from the observation that if one picks a light cone3

gauge Aþ ¼ 0 and quantizes the quark and gluon fields of
QCD along a light front surface (say, xþ ¼ 0), the
Hamiltonians of the free quark and gluon fields share the
same vacuum4 as the fully interacting theory (Brodsky, Pauli,
and Pinsky, 1998). This allows one to construct the hadron
wave function as a linear combination of a complete set of
multiparton eigenstates, each of which is an eigenstate of the
free QCD Hamiltonian.
In this light cone framework, the parton distribution

functions measured in DIS experiments can be interpreted
as one-body states of quarks and gluons that carry a light cone
momentum fraction x ¼ kþ=Pþ, where kþ is the parton’s light
cone momentum and Pþ is the light cone momentum of the
hadron. As first argued by Gribov, Levin, and Ryskin (1983)
and Mueller and Qiu (1986), two-body “higher twist” gluon
distributions, in a light cone operator product expansion
(OPE),5 grow as the square ½xGAðx;Q2Þ�2 of the leading
twist gluon distribution. For a fixed Q2, these two-body

distributions become as large as the leading twist one-body
distribution as x → 0.
The net effect of such many-body contributions6 is opposite

that of the leading term, softening the growth in the gluon
distribution. When the gluon phase space density is maximal,
of the order of 1=αS, all n-body light cone distributions
contribute equally. This saturation of gluon distributions in a
nucleus of radius RA corresponds to the generation of the
saturation scale QS, where parametrically for Q2 ¼ Q2

S the
maximal occupancy is equated to the gluon phase space
density as

1

αSðQSÞ
¼ xGAðx;Q2

SÞ
2ðN2

c − 1ÞπR2
AQ

2
S

: ð2Þ

Figure 1 illustrates the gluon saturation phenomenon and the
interpretation of QS as the emergent “close packing” scale.

C. Effective field theory for high parton densities: The color glass
condensate

Since the usual formalism of pQCD relies on two-body and
higher twist distributions being small, an alternative frame-
work is necessary to understand the physics of gluon
saturation and the emergence of the saturation scale in the
nuclear wave function at high energies. The problem of high
parton densities can be formulated as a classical effective field
theory on the light front, which as noted greatly simplifies the
problem of heavy-ion collisions at high energies.
To understand this better, we outline here an explicit

construction performed for nuclei with large atomic number
A ≫ 1 (McLerran and Venugopalan, 1994a, 1994b, 1994c).
An important ingredient in this construction in the infinite
momentum frame (IMF) Pþ → ∞ of the nucleus is a Born-
Oppenheimer separation in timescales between the Lorentz
contracted large-x (kþ ∼ Pþ) “valence” modes and the noted

FIG. 1. Transverse hadron profile resolved in scattering with
fixed squared momentum transfer Q2 and increasing center-of-
mass energy

ffiffiffi
s

p
. The requirement for proliferating soft gluons to

have maximal occupancy 1=αS generates the close packing
saturation scaleQS. Adapted from Iancu and Venugopalan, 2003.

2In hadron-hadron collisions, it is more appropriate to speak in
terms of momentum fractions, so we henceforth use x instead of xBj.

3Light cone coordinates are k� ¼ ðk0 � k3Þ= ffiffiffi
2

p
and light cone

fields are defined as A� ¼ ðA0 � AzÞ= ffiffiffi
2

p
; we work here in the metric

g�;∓ ¼ 1; gi;j ¼ −1, where i and j represent the two transverse
coordinates.

4In light cone quantization, this argument requires a careful
treatment of kþ ¼ 0 vacuum modes (Nakanishi and Yamawaki,
1977). For a perturbative treatment of light cone wave functions,
it may be sufficient to project out such modes (Collins, 2018;
Fitzpatrick et al., 2018).

5In OPE language, these higher twist contributions are suppressed
by powers of 1=Q2.

6These include the screening of bremsstrahlung gluons by real and
virtual gluons, as well as the recombination of softer gluons into
harder gluons.
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“wee fur” of small-x (kþ ≪ Pþ) gluons and “sea” quark–
antiquark pairs. For partons of transverse momentum k⊥, light
cone lifetimes are given by

τwee ¼
1

k−
¼ 2kþ

k2⊥
≡ 2xPþ

k2⊥
;

τvalence ≈
2Pþ

k2⊥
→ τwee ≪ τvalence; ð3Þ

suggesting that the valence parton modes are static over the
timescales over which wee modes are probed. However, one
cannot integrate the valence sources completely out of the
theory, because they are sources of color charge for wee
partons and must couple to these in a gauge-invariant manner.
Note further that, since wee partons have large light cone

wavelengths (λwee ∼ 1=kþ ¼ 1=xPþ), they can resolve a lot of
color charge provided that their transverse wavelength is not
too large. The inequality

λwee ∼
1

kþ
≡ 1

xPþ ≫ λvalence ≡ RAmN

Pþ ; ð4Þ

where on the rhs the Lorentz contraction factor is Pþ=mN
(with mN the nucleon mass), suggests that wee partons with
x ≪ A−1=3 resolve partons7 all along the longitudinal extent
2RA ∼ A1=3 in units of the inverse nucleon mass.
These charges will be random since they are confined to

different nucleons and do not know about each other. A wee
parton with momentum k⊥ resolves an area in the transverse
plane ðΔx⊥Þ2 ∼ 1=k2⊥. The number of valence partons that it
interacts simultaneously with is

k≡ kðΔx⊥Þ2 ¼
Nvalence

πR2
A

ðΔx⊥Þ2; ð5Þ

which is proportional to A1=3 since Nvalence ¼ 3A in QCD. For
a large nucleus with k ≫ 1, one can show for Nc ≥ 2 that the
most likely color charge representation that the wee gluons
couple to is a higher-dimensional classical representation of
the order of

ffiffiffi
k

p
(Jeon and Venugopalan, 2004).

Thus, wee partons couple to ρ, the classical color charge per
unit transverse area of large-x sources. On average, since the
charge distributions are random, the wee partons will couple
to zero charge; however, fluctuations locally can be large.
These conditions can be represented as

hρaðx⊥Þi¼0; hρaðx⊥Þρbðy⊥Þi¼μ2Aδ
abδð2Þðx⊥−y⊥Þ; ð6Þ

where a ¼ 1;…; N2
c − 1 and μ2A ¼ g2A=2πR2

A is the color
charge squared per unit area. For a large nucleus (A ≫ 1),
μ2A ∝ A1=3 ≫ Λ2

QCD is a large scale. Since it is the largest scale
in the problem, αSðμ2AÞ ≪ 1. This result provides a concrete
example suggesting that QCD at small x is a weakly coupled

EFT wherein systematic computations of its many-body
properties are feasible.
We can now combine the previous kinematic and dynamical

arguments and write the generating functional for the small-x
effective action as

Z½j� ¼
Z

½dρ�WΛþ ½ρ�
�R

Λþ ½dA�δðAþÞeiSΛþ ½A;ρ�−
R

jAR
Λþ½dA�δðAþÞeiSΛþ ½A;ρ�

�
: ð7Þ

Here Λþ denotes the longitudinal momentum scale that
separates the static color sources from the dynamical gauge
fields and the gauge-invariant weight functional WΛþ½ρ�
describes the distribution of these sources at the scale Λþ,
with its path integral over ρ normalized to unity.
The CGC effective action can be written in terms of the

sources ρ and the fields A as

SΛþ ½A; ρ� ¼ 1

4

Z
d4xFa

μνFμν;a

þ i
Nc

Z
d2x⊥dx−δðx−ÞTrðρU−∞;∞½A−�Þ: ð8Þ

The first term in Eq. (8) is the Yang-Mills action in the QCD
Lagrangian given in Eq. (1). The dynamics of wee gluons in
the CGC is specified by this term. The second term8 denotes
the coupling of the wee gluon fields to the large-x color charge
densities ρ, which we have argued are static light cone
sources. Because the sources are eikonal sources along the
light cone, their gauge-invariant coupling to the wee fields is
described by the path ordered exponential along the light cone
time direction U−∞;∞ ¼ P exp ðig R dxþA−;aTaÞ. Physically,
U corresponds to the color rotation of the color sources in the
background of the wee gluon fields.
The weight functional in the effective action for the

Gaussian random color charges in Eq. (6), in what is now
called the McLerran-Venugopalan (MV) model (McLerran
and Venugopalan, 1994a, 1994b; Kovchegov, 1999), can
equivalently be written as9

WΛþ½ρ� ¼ exp

�
−
Z

d2x⊥
ρaðx⊥Þρaðx⊥Þ

2μ2A

�
: ð9Þ

For each configuration of ρ’s in Eq. (7), the saddle point of
the effective action is given by the Yang-Mills (YM) equations

DμFμν;a ¼ δνþδðx−Þρaðx⊥Þ; ð10Þ

whose solution is the non-Abelian analog of the Weizäcker-
Williams (WW) fields in classical electrodynamics. The
chromoelectromagnetic gluon field strengths are singular on
the nuclear sheet of width Δx− ∼ 2RmN=Pþ and zero (pure
gauge) outside.

7Wee partons with wavelength k⊥ ≤ ΛQCD ∼ 1 fm−1 see no color
charge at all since color is confined (in nucleons) on this scale. It is
only wee partons with k⊥ ≫ ΛQCD that see color charges from
different nucleons along the longitudinal direction.

8This term can alternatively (Jalilian-Marian, Jeon, and Venugo-
palan, 2001) be written as Tr½ρ logðU−∞;∞Þ�.

9Subleading terms were discussed by Jeon and Venugopalan
(2005) and Dumitru and Petreska (2012).
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The gauge field solutions in light cone gauge are given by
A− ¼ 0 and

Ak
cl ¼

1

ig
Vðx−; x⊥Þ∇kV†ðx−; x⊥Þ; ð11Þ

where k ¼ 1; 2 are the transverse coordinates and
V ¼ P exp ½R x−

−∞ dz−ð1=∇2⊥Þρ̃ðz−; x⊥Þ�. This solution of the
equations of motion requires path ordering of the sources in x−

(Jalilian-Marian et al., 1997; Kovchegov, 1999). Further, the ρ̃
that appears in the solution is the color charge density in
Lorenz gauge ∂μA0μ ¼ 0, where one has the solution
A0
cl
þ ¼ ð1=∇2⊥Þρ̃ðx−; x⊥Þ, A0

cl
− ¼ A0

cl⊥ ¼ 0. In fact, since
the Jacobian of the transformation ½dρ� → ½dρ̃� is simple
(Jalilian-Marian et al., 1997), many-body distributions in
the light cone gauge can be computed in terms of color
charges in Lorentz gauge, a natural choice from the analogy to
WW fields (Jackson, 1998).
As a simple example, the correlator of gauge fields in a

large nucleus can be computed analytically in the MV model
by averaging the solution in Eq. (11) with the weight func-
tional W:

hAAi ¼
Z

½dρ̃�Acl½ρ̃�Acl½ρ̃�WΛþ ½ρ̃�: ð12Þ

Equation (12) can be further Fourier decomposed to extract
the number distribution of wee gluons dN=d2k⊥ and
expressed10 in terms of QS. Specifically, for the occupation
number ϕ ¼ ½ð2πÞ3=2ðN2

c − 1Þ�dN=πR2d2k⊥ one obtains ϕ ∝
Q2

S=k
2⊥ for k⊥ ≫ QS. However, for k⊥ ≪ QS the distribution

is modified substantially from the WW distribution:
ϕ ∼ ð1=αSÞ logðQS=k⊥Þ. This softened infrared distribution
in the CGC EFT provides a simple explanation of gluon
saturation.
We are now in a position to understand the term CGC

(Iancu and Venugopalan, 2003; Gelis et al., 2010), which is
used to describe the ground state properties of a hadron or
nucleus at high energies. Color is obvious since the state is
composed primarily of a large number of gluons and sea
quark–antiquark pairs. It is a glass because these small x
gluons and sea quarks are generated by random sources with
lifetimes much longer than the characteristic timescales of the
scattering. This explains the structure of Eq. (7), where the
path integral over the curly brackets is performed first for fixed
color charge distributions and then averaged over an ensemble
of such distributions. Finally, the state is a condensate because
gluons have occupation numbers ϕ ∼ 1=αS, with momenta
peaked at k⊥ ∼QS.
To take a specific example, consider the inclusive cross

section in the DIS scattering of a virtual photon on the
nucleus, illustrated in Fig. 2. In the CGC EFT, it is expressed
as the cross section for a fixed distribution of sources
convoluted with an ensemble of such sources:

hdσi ¼
Z

½Dρ̃A�WΛþ ½ρ̃A�dσ̂½ρ̃A�: ð13Þ

Thus, on the timescale t ∼ 1=Q of the probe, it resolves a
condensate of gluons with a well-defined number density of
longitudinal modes down to x ∼ xBj ≪ 1. Because of time
dilation [see Eq. (3)] the averaging over ρA withW takes place
on much larger timescales. This two-stage averaging process
clarifies how one reconciles gauge invariance with the
presence of a colored condensate.
The CGC classical equations possess a “color memory”

effect (Pate, Raclariu, and Strominger, 2017) corresponding to
the large gauge transformation V of a quark after interacting
with the gluon shock wave, generating a transverse momen-
tum kick p⊥ ∼QS to the quark that can be measured in DIS
experiments (Ball et al., 2019). This is exactly analogous to
the inertial displacement of detectors after the passage of a
gravitational shock wave (Strominger and Zhiboedov, 2016).
This gravitational memory is deeply related to asymptotic
spacetime symmetries and soft theorems in gravity and may
also hold useful lessons for QCD.11

D. Renormalization group evolution in the CGC EFT

We have discussed a classical EFT for large nuclei and
Gaussian sources where the separation between fields (wee
partons) and sources (valence sources) was picked randomly to
be at the momentum scaleΛþ. Physical observables such as the
inclusive cross section in Eq. (13) should not depend on Λþ.
This invariance is the essence of the renormalization group and
we later sketch how it is realized in the EFT; a detailed
discussion was given by Iancu and Venugopalan (2003).
The important point to note is that real and virtual quantum

fluctuations in the classical background field of the target,
while apparently suppressed by OðαSÞ, are actually
αS logðΛþ=Λ0þÞ ∼Oð1Þ from the phase space integration of

(A[ρ])

Dipole

small-x gluons

γ ∗

Fast hadron (ρ)fast partons

FIG. 2. DIS in the dipole picture. The virtual photon emitted by
the electron splits into a qq̄ dipole that scatters off dynamical
small x gauge fields coupled to the static large-x light cone
sources. From Iancu and Venugopalan, 2003.

10In the MV model, this defines Q2
S ¼ cAμ2A, where the coefficient

cA is determined numerically (Lappi, 2008).

11An “infrared triangle” between asymptotic symmetries, memory,
and soft theorems in gravity (Strominger, 2017) also allows for an
elegant interpretation of the infrared structure of QED (Bieri and
Garfinkle, 2013; Kapec et al., 2017). While color confinement
implies that such universal features do not apply to QCD in general,
an emergent QS ≫ ΛQCD suggests that they may be applicable in the
Regge limit.
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these modes when Λ0þ ¼ Λþe−1=αS (or, equivalently, when
xwee ¼ xvalencee−1=αS ). These large NLO contributions can be
absorbed into the form of the LO cross section in Eq. (13) at
the scale Λ0þ by redefining the weight functional
WΛþ½ρ̃� → WΛ0þ ½ρ̃0�. Here ρ̃0 ¼ ρ̃þ δρ̃ is the new color source
density at Λ0þ that incorporates the color charge density δρ̃
induced by quantum fluctuations between Λþ and Λ0þ.
One can thus write

hdσLOþNLOi ¼
Z

½Dρ̃A�WΛ0þ ½ρ̃A�dσ̂LO½ρ̃A�; ð14Þ

where

WΛ0þ ½ρ̃A� ¼ ½1þ logðΛþ=Λ0þÞHLLx�WΛþ½ρ̃A�; ð15Þ

with the quantum fluctuations absorbed as we discuss shortly.
Since the lhs of Eq. (14) should not depend on the arbitrary

factorization scale Λþ, the derivative of both lhs and rhs
with respect to it should be zero. From Eq. (15), one can
therefore deduce the Jalilian-Marian–Iancu–McLerran–
Weigert–Leonidov–Kovner (JIMWLK RG equation
(Jalilian-Marian, Kovner, and Weigert, 1998; Jalilian-
Marian et al., 1998; Iancu, Leonidov, and McLerran, 2001)

∂
∂Y WY ½ρ̃A� ¼ HLLxWY ½ρ̃A�; ð16Þ

where the JIMWLK Hamiltonian (Weigert, 2002)

HLLx ¼
1

2

Z
x⊥;y⊥

δ

δρ̃aðx⊥Þ
χabðx⊥; y⊥Þ½ρ̃�

δ

δρ̃bðy⊥Þ
ð17Þ

describes the evolution of the gauge-invariant weight func-
tional W with rapidity Y ¼ logðΛþ

0 =ΛþÞ≡ logðx0=xÞ once
the nonperturbative initial conditions forW are specified at an
initial x0.
The Hamiltonian is computed in the CGC EFT, with

χabðx⊥; y⊥Þ½ρ̃� ¼ hδρ̃aðx⊥Þδρ̃bðy⊥Þiρ̃ the two-point function
of induced charge densities12 in the classical background field
of the hadron. Note that with this computation of HLLx, the
solution of Eq. (16) resums leading logarithms αS logðx0=xÞ
(LLx) to all orders in perturbative theory. Thus, this powerful
RGprocedure extends the accuracy of computations of the cross
section from hdσLOþNLOi → hdσLOþLLxi.
The JIMWLK RG equation can equivalently be expressed

as a hierarchy of equations [the Balitsky-JIMWLK hierarchy
independently derived by Balitsky (1996)] for the expectation
value of an operator O:

∂hOiY
dY

¼
�
1

2

Z
x⊥;y⊥

δ

δαaðx⊥Þ
χabðx⊥; y⊥Þ

δ

δαbðy⊥Þ
O½α�

�
Y
;

ð18Þ

where αa ¼ ð1=∇2⊥Þρ̃a. Equation (18) has the form of a
generalized Fokker-Planck equation in functional space,

where Y is “time” and χ is the diffusion coefficient
(Weigert, 2002).
There is no known analytical solution to the JIMWLK

equation; as we later discuss, it can be solved numerically.
However, good approximations exist in different limits. In a
weak field (and leading twist) limit gα ≪ 1, one recovers for
the number distribution (and the corresponding occupation
number ϕ) extracted from Eq. (12), the LLx Balitsky-Fadin-
Kuraev-Lipatov (BFKL) equation (Kuraev, Lipatov, and
Fadin, 1977; Balitsky and Lipatov, 1978) of pQCD.
Another mean field random phase approximation (Iancu
and McLerran, 2001; Weigert, 2002) allows one to evaluate
the occupation number ϕ in the strong-field limit of gα ∼ 1.
The longitudinal extent of the wee gluon cloud generated by

the RG evolution has a width x− ¼ 1=kþ ∼ 1=QS. This is
much more diffuse relative to the width e−1=αSð1=QSÞ of the
valence modes. The RG evolution also predicts that the width
of the wee gluon cloud will shrink with increasing boost (or
rapidity) relative to an “observer” quark-antiquark pair, albeit
at a slower rate than their larger-x counterparts. Thus, in the
CGC EFT the scale for the overlap of the wave functions in the
thermalization process is set by 1=QS rather than the Lorentz
contracted width of the valence quarks given by 1=Pþ.

E. DIS and the dipole model

Here and in Sec. II.F we concretely relate the CGC EFT to
the structure functions that are measured in DIS. These
comparisons are essential for precision tests of the CGC
EFT picture of high-energy nuclear wave functions. They also
play an important role in constraining the saturation scale and
the shadowing of nuclear distributions that are key to
determining the initial conditions for early-time dynamics
in heavy-ion collisions. These connections become more
evident in Sec. III.C.
The inclusive cross section can be expressed in full

generality as hdσi ¼ LμνWμν, where Lμν is the well-known
lepton tensor (Peskin and Schroeder, 1995) representing the
squared amplitude for the emission of a virtual photon with
four-momentum qμ and Wμν is the spin-averaged DIS hadron
tensor that, for a nucleus in the IMF, can be reexpressed as
(McLerran and Venugopalan, 1999; Venugopalan, 1999)

Wμν¼ 1

2π

Pþ

mN
Im

Z
d2X⊥dX−

Z
d4xeiqx

×

�
Tr

	
γμSA

�
X−þx

2
;X−−

x
2

�
γνSA

�
X−−

x
2
;X−þx

2

�
�
;

ð19Þ

where SAðx; yÞ ¼ −ihψðxÞψ̄ðyÞiA is the quark propagator in
the gauge fields Aμ of the nucleus.13

In the CGC, the leading contribution is obtained by replacing
the full QCD background field with the saturated classical

12Note that here and henceforth in this section,
R
x⊥ ¼ R

d2x⊥ andR
x⊥;y⊥ ¼ R

d2x⊥d2y⊥.

13The second average in Eq. (19) corresponds to averaging
over ρ̃. We employ the relativistic normalization hPjPi ¼
ðPþ=mNÞð2πÞ3δ3ð0Þ≡ ðPþ=mNÞ

R
d2X⊥dX−, where X− and X⊥

are center-of-mass coordinates.
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background field: Aμ → Aμ
cl, where Aμ

cl are the non-Abelian
WW fields in Eq. (11). In A− ¼ 0 gauge,14 the momentum-
space quark propagator in the classical background field is
simple, given by (McLerran and Venugopalan, 1999)
SAcl

ðp; qÞ ¼ S0ðpÞT qðp; qÞS0ðqÞ, where the free Dirac propa-
gator is S0 ¼ i=p=ðp2þ iεÞ and T qðq;pÞ¼�ð2πÞδðp−−
q−Þγ− Rz⊥ e−iðq⊥−p⊥Þ·z⊥V�1ðz⊥Þ is the effective vertex corre-
sponding to themultiple scattering of the quark (or antiquark) off
the shockwave background field represented by the eikonal path
ordered phase V introduced after Eq. (11).
The DIS structure function is simply related to the inclusive

cross section. Plugging the dressed CGC propagator into
Eq. (19), one can show, to this order of accuracy, that it can be
expressed as (McLerran and Venugopalan, 1999)

F2ðx;Q2Þ ¼ Q2

4π2αem

Z
1

0

dz
Z
r⊥
jΨγ�→qq̄j2σqq̄Aðx;Q2Þ: ð20Þ

Equation (20) can be simply interpreted to be the convolution
of the probability of the virtual photon to split into a quark-
antiquark pair [which can be computed in QED (Bjorken,
Kogut, and Soper, 1971)] with the “dipole” scattering cross
section of the quark-antiquark pair to scatter off the nucleus.
For the impact parameter b⊥ ¼ ðx⊥ þ y⊥Þ=2, the cross section
is given by

σqq̄A ¼ 2

Z
d2b⊥N Yðb⊥; r⊥Þ; ð21Þ

where the forward scattering amplitude N Yðb⊥; r⊥Þ ¼
1 − SYðb⊥; r⊥Þ, with the S matrix

SYðr⊥Þ ¼
1

Nc
hTr½Vðx⊥ÞV†ðy⊥Þ�iY: ð22Þ

One can compute the S matrix explicitly in the MV model,
which gives (Kovchegov, 1999; McLerran and Venugopalan,
1999; Venugopalan, 1999)

SYðr⊥Þ ¼ exp

	
−αS

π2

2Nc

r2⊥AxGNðx; 1=r2⊥Þ
πR2

A



; ð23Þ

where GN denotes the gluon distribution in the proton at the
scale 1=r2⊥.
One can expand the exponential for small values of r⊥, and

one observes that the dipole cross section is nearly transparent
relative to the color of the small dipoles. As r⊥ grows, the S
matrix decreases; the saturation scale is defined as the value of
r⊥ at which the S matrix has a value that is significantly
smaller than what one would anticipate in pQCD. While there
is some freedom in setting this scale, its growth with
decreasing x is determined by the growth in the gluon
distribution.
The MV result in Eq. (23) is the QCD Glauber model

(Mueller, 1990), which gives the survival probability of a

dipole after multiple independent scatterings off the nucleus. It
can be refined by introducing an impact parameter distribution
inside the proton (Bartels, Golec-Biernat, and Kowalski,
2002), the so-called impact-parameter-dependent saturation
(IP-Sat) model, which can be further extended to model the S
matrix for the nuclei (Kowalski and Teaney, 2003; Kowalski,
Lappi, and Venugopalan, 2008).
The IP-Sat model provides good agreement with a wide

range of small-x DIS data on eþ p scattering at HERA
(Rezaeian et al., 2013). The latter constrains the parameters of
this model, which in turn is an essential ingredient of the IP-
glasma model of the initial conditions for heavy-ion colli-
sions. We discuss the IP-glasma model in Sec. III.C.3.
An advantage of the MV model formulation is that one can

compute with relative ease (Fujii, 2002; Blaizot, Gelis, and
Venugopalan, 2004b; Dominguez et al., 2011; Fukushima and
Hidaka, 2017; Dusling, Mace, and Venugopalan, 2018b) not
only the dipole Wilson line correlator but also the quadrupole
and higher-point correlators that appear in semi-inclusive final
states in eþ A and pþ A collisions.

F. RG evolution and geometric scaling

The MV model is valid for a large nucleus at rapidities
when the bremsstrahlung of soft gluons is not significant,
namely, for αSY ≤ 1. The classical expressions we derived
have no x dependence. For moderate x, one can introduce x
dependence in a framework along the lines of the IP-Sat model
that we discussed. However, when αSY ≫ 1, the model is no
longer applicable. In this regime, the RG evolution of the S
matrix in Eq. (22) is described by the Balitsky-JIMWLK
hierarchy in Eq. (18) which, in addition to the coherent
multiple scattering effects in the MV model, captures the
previously discussed real and virtual quantum corrections.
Substituting the expectation value of the correlator of the

Wilson lines in Eq. (22) into the Balitsky-JIMWLK hierarchy
in Eq. (18) leads, for Nc; A ≫ 1, to the closed form in the limit
Balitsky-Kovchegov (BK) (Balitsky, 1996; Kovchegov, 1999)
equation for the RG evolution in the rapidity of the dipole
scattering amplitude:

∂N Yðx⊥; y⊥Þ
∂Y ¼ ᾱS

Z
z⊥

ðx⊥ − y⊥Þ2
ðx⊥ − z⊥Þ2ðz⊥ − y⊥Þ2

× ½N Yðx⊥; z⊥Þ þN Yðy⊥; z⊥Þ −N Yðx⊥; y⊥Þ
−N Yðx⊥; z⊥ÞN Yðz⊥; y⊥Þ�: ð24Þ

The BK equation is the simplest RG equation to capture the
physics of gluon saturation. For N Y ≪ 1, the nonlinear term
in the last line of Eq. (24) can be ignored and the equation
reduces to the linear BFKL equation as anticipated previously.
In this limit, the amplitude has the solution

N Yðr⊥Þ ≈ exp

�
ωᾱsY −

ρ

2
−

ρ2

2βᾱSY

�
; ð25Þ

where ω ¼ 4 log 2 ≈ 2.77, β ¼ 28ζð3Þ ≈ 33.67, and ρ ¼
logð1=r2⊥Λ2

QCDÞ. This solution gives the rapid Markovian

14The solution of the YM equations is identical in this case to the
solution in Lorenz gauge.
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growth of the dipole cross section in rapidity due to the
copious production of softer and softer gluons.
However, whenN Y ∼ 1 the nonlinear term arising from the

fusion and screening of soft gluons completely saturates the
growth of the dipole cross section. If we impose a saturation
condition N Y ¼ 1=2 for r⊥ ¼ 2=QS on Eq. (25), the argu-
ment of the exponential vanishes for ρs ¼ logðQ2

S=Λ2
QCDÞ,

with

Q2
S ¼ Λ2

QCDe
cᾱSY ; ð26Þ

where c ¼ 4.88. Further, if we write ρ ¼ ρS þ δρ, where
δρ ¼ logð1=r2⊥Q2

SÞ, we find that (Iancu, Itakura, and
McLerran, 2002)

N Y ≈ ðr2⊥Q2
SÞγs ð27Þ

for Q2 < Q4
S=Λ2

QCD, where γs ¼ 0.63 is the BK anomalous
dimension.
This geometrical scaling of the forward scattering ampli-

tude means that Eq. (21) scales with Q2=Q2
SðxÞ alone instead

of with x and Q2 separately. This phenomenon was observed
at HERA, providing a strong hint for the saturation picture
(Stasto, Golec-Biernat, and Kwiecinski, 2001). Moreover, the
wider scaling window Q2 < Q4

S=Λ2
QCD stretching beyond QS

provides a first-principles explanation for a so-called leading
twist shadowing of nuclear parton distributions relative to
those in the proton (Frankfurt, Guzey, and Strikman, 2012).
Such shadowed parton distributions are used to compute the
rates of hard processes in heavy-ion collisions; understanding
their microscopic origins is therefore important for quantify-
ing hard probes of thermalization.
The BK equation in a reaction-diffusion approximation

can be formally mapped into a well-known equation in
statistical physics, the Fischer-Kolmogorov-Petrovsky-
Piscounov equation (Munier and Peschanski, 2003). In this
context, geometrical scaling appears as a late-time solution
of a nonlinear equation describing a traveling wave front of
constant velocity. In Fig. 3, we show numerical results
for the unintegrated gluon distribution ϕðk2⊥Þ ¼ ðπNck2⊥=
2αSÞ

Rþ∞
0 d2r⊥eik⊥r⊥ ½1 −N Yðr⊥Þ�2, which displays this trav-

eling wave front structure, with the evolution of the peaks of
the wave fronts representing the evolution of Q2

S with
rapidity. The correspondence of high-energy QCD to reac-
tion-diffusion processes is rich; specific applications to DIS
have been discussed recently (Mueller and Munier,
2018a, 2018b).
Q2

S in Eq. (26) [and the amplitude in Eq. (27)] grows rapidly
with rapidity, much faster than in the HERA data. However,
this is significantly modified by running coupling corrections,
which are part of the next-to-leading logarithms in x (NLLx)
contributions to QCD evolution. The significant effect of these
running coupling corrections is seen in Fig. 3.
These give (Mueller and Triantafyllopoulos, 2002)

Q2
s;running αS

¼ Λ2
QCD exp

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b0cðY þ Y0Þ

p i
; ð28Þ

where b0 is the coefficient of the logarithm in the one-loop
QCD β function.15 The running coupling results are well
approximated by a power law increase of the amplitude
consistent with the HERA data. Further, qualitative features
of geometric scaling persist, albeit the window for geometrical
scaling is significantly smaller (Triantafyllopoulos, 2008).
For a large nucleus at the saturation boundary

Y0 ∝ log2ðA1=3Þ, one recovers the A1=3 scaling of the satu-
ration scale in the MV model from Eq. (28) for Y0 ≫ Y. A
striking result for Y ≫ Y0 is that the saturation scale for a
fixed impact parameter becomes independent of A. In the
asymptotic Regge limit, strongly correlated gluons in the
nuclear wave functions lose memory of the initial conditions
from which they were generated.

G. The state of the art in the CGC EFT

In this section, we have outlined a description of the wave
function of a high-energy nucleus in the CGC EFT, emphasiz-
ing a qualitative understanding of gluon saturation and key
related analytical results. There have been significant develop-
ments since in the CGC EFT.
On the formal side, the Balitsky-JIMWLK framework for

the LLx evolution of n-point Wilson line correlators has been
extended to NLLx (Balitsky and Chirilli, 2013b, Kovner,
Lublinsky, and Mulian, 2014a, 2014b; Balitsky and
Grabovsky, 2015; Caron-Huot, 2018). For the two-point
dipole correlator, which satisfies the LLx BK equation, the
formalism has been extended to NLLx (Balitsky and Chirilli,
2008) and for the N ¼ 4 supersymmetric Yang-Mills case
even to NNLLx in a recent tour de force computation (Caron-
Huot and Herranen, 2018). The BFKL or BK kernel, however,
receives large collinear contributions that need to be
resummed in so-called small-x resummation schemes for
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FIG. 3. Unintegrated gluon distribution (in units of the trans-
verse area) vs the squared transverse momentum (normalized to
its value at the peak of the initial condition curve) from the
solution of the Balitsky-Kovchegov equation. The different
curves represent increasing rapidities (left to right) for fixed
and running coupling. From Dusling et al., 2010.

15Subleading corrections in Y to QS have been computed to high
order (Beuf, 2010).
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quantitative predictions (Salam, 1998; Ciafaloni, Colferai, and
Salam, 1999; Iancu et al., 2015; Ducloué et al., 2019).
While as we have discussed there are good analytical

approximations, a full analytical solution of the BK equation
does not exist. Numerical simulations have, however, been
known for some time for the LLx BK equation (Albacete
et al., 2004), the LLxþ running × coupling BK equation
(Albacete et al., 2005; Albacete and Kovchegov, 2007), and
even more recently the full NLLx equation implementing
collinear resummation (Lappi and Mäntysaari, 2016; Ducloué
et al., 2020). In particular, it was shown by Ducloué et al.
(2020) that this NLLx framework provides good agreement
with the HERA data.
Numerical simulations of higher-point correlators in the

Balitsky-JIMWLK hierarchy have also been performed. As
noted, Eq. (18) has the form of a functional Fokker-Planck
equation. This can therefore be reexpressed as a Langevin
equation in the space of Wilson lines (Weigert, 2002; Blaizot,
Iancu, andWeigert, 2003), allowing one to simulate the rapidity
evolution of two-point Wilson line correlators (Rummukainen
and Weigert, 2004) as well as four-point quadrupole and
sextupole16 correlators (Dumitru, Jalilian-Marian et al., 2011;
Lappi and Mäntysaari, 2013; Lappi and Ramnath, 2019).
Figure 4 shows a result for the dipole correlator from these
simulations. A similar Langevin representation is not known at
present for the NLLx JIMWLK Hamiltonian.
Precision computations require not just higher-order com-

putations of the JIMWLKkernel but higher-order computations
of process-dependent impact factors analogous to pQCD
computations of coefficient functions that are convoluted, order
by order, with the DGLAP splitting functions (Vermaseren,
Vogt, and Moch, 2005). For inclusive DIS, analytical expres-
sions exist for the virtual photon impact factor jΨγ�→qq̄j2 in
Eq. (20) (Balitsky and Chirilli, 2013a). Recently NLO impact

factors were computed for DIS exclusive diffractive light vector
meson production (Boussarie et al., 2017) and DIS inclusive
photonþ dijet production (Roy andVenugopalan, 2019, 2020).
Numerical implementation of these results remains a formidable
task and an essential component of precision studies of gluon
saturation at the future Electron-Ion Collider (EIC) (Accardi
et al., 2016; Aschenauer et al., 2019).
An outstanding problem at small x is the impact parameter

dependence of distributions. The BFKL kernel at large impact
parameters contributes a Coulomb tail ∼1=b2⊥; the conformal
symmetry of the kernel and geometric scaling suggest a
particular dependence of the saturation scale on the impact
parameter (Gubser, 2011). The Coulomb tail is, however, not
regulated by saturation and violates the Froissart bound on the
asymptotic behavior of total cross sections (Kovner and
Wiedemann, 2003). This is cured nonperturbatively only by
the generation of a mass gap in QCD. The Coulomb tail may
be less of a problem in large nuclei with ΛQCDRA ≫ 1 because
the contribution of the Coulomb tail may be suppressed
relative to protons, for which ΛQCDRA ∼ 1.

III. NONEQUILIBRIUM QCD MATTER AT HIGH
OCCUPANCY

The CGC EFT provides us with powerful tools to address
multiparticle production in heavy-ion collisions from first
principles; the key organizing principle is the kinematic
separation in the hadron wave function between static color
sources at large x and small-x gauge fields. In the following,
we sketch the elements of the formalism to follow the
thermalization process through the overlap of two CGCs.
To apply this EFT framework to thermalization, one first

needs to understand how to compute from first-principles
multiparticle production in the presence of strong fields.17 The

FIG. 4. Solution of the JIMWLK equation for the correlator of Wilson lines Vðx⊥ÞV†ðy⊥Þ probed by the DIS dipole (Dumitru, Jalilian-
Marian et al., 2011). As the nucleus is boosted from low energy (or rapidity) to high energy, the regions with large values of these
correlator shrink spatially, corresponding to larger values of QS.

16These are probed in semi-inclusive DIS (Dominguez et al.,
2011) and in proton-nucleus collisions (Kovner and Lublinsky, 2011;
Dusling, Mace, and Venugopalan, 2018a, 2018b).

17A well-known example of such a formalism is eþe− pair
production in strong electromagnetic fields (Gelis and Tanji, 2016);
another is that of Hawking radiation from the black hole horizon
(Parikh and Wilczek, 2000).
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quark-gluon matter formed in this process is the glasma (Gelis
and Venugopalan, 2006c; Lappi and McLerran, 2006), a
nonequilibrium state with high occupancy [f ∼Oð1=αSÞ];
this state decays and eventually thermalizes. The description
of the temporal evolution of the glasma can be classified
systematically in weak coupling into LO, NLO, etc.
Following our discussion of multiparticle production, we

describe the temporal evolution of the glasma at LO. This
corresponds to the solution of classical Yang-Mills equations
with CGC initial conditions for the fields using both analytical
approaches (valid for transverse momenta greater than the
saturation scale) and a nonperturbative real-time approach
employing Hamilton’s equation on the lattice. The LO
solutions are independent of rapidity, with the dynamics of
the corresponding flux tube structures occuring entirely in the
transverse plane of the collision. We next discuss the IP-
glasma model of heavy-ion collisions, which combines the LO
classical solutions with constraints on QS from DIS experi-
ments on the proton and on nuclei.
However, the LO description of the glasma is limited

because the classical fields are unstable to NLO quantum
fluctuations that break boost invariance, growing exponen-
tially in the square root of the proper time. As we later discuss,
a careful treatment of such NLO modes shows that the
dominant contributions can be resummed and absorbed into
a classical-statistical description of the evolution. A key
difference from the prior LO description is that the resummed
classical-statistical evolution is now in 3þ 1 dimensions,
involving both transverse and longitudinal degrees of free-
dom. This distinction is of fundamental importance in the
subsequent description of the thermalization process in weak
coupling.
In Sec. IV, we discuss how this classical-statistical descrip-

tion fits into the general weak-coupling classification of the
evolution of quantum fields and outline the power counting
that delineates the applicability of this approximation and its
subsequent matching to kinetic theory. We also describe in
Sec. IV universal features of the glasma that makes its study
interesting in its own right.

A. Multiparticle production in strong fields

To compute multiparticle production systematically in the
collision of the CGC gluon “shock waves,” we begin with
the first-principles Lehmann-Symanzik-Zimmermann (LSZ)
formalism in QFT. For simplicity, we consider here a self-
interacting ϕ3 scalar theory; our discussion extends straight-
forwardly to the Yang-Mills case.
In the LSZ formalism, the amplitude for n particles in

the “out” state generated from the “in vacuum” can be
expressed as

hp1;out � � �pn;outj0ini¼
1

Zn=2

Z 	Yn
i¼1

d4xieipixið∂2
xi þm2Þ δ

δJðxiÞ



×expðiVÞ: ð29Þ

Here p1 � � �pn denote the momenta of the produced
particles and the in-out vacuum amplitude h0outj0ini ¼
expðiVÞ, where V is the sum of all connected vacuum-vacuum

diagrams coupled to external sources. An illustration of
multiparticle production for the problem at hand is shown
in Fig. 5.
In QFT computations, one usually sets J ¼ 0 after the

functional differentiation and h0outj0ini is a pure phase. When
J is physical, jh0outj0inij2 ¼ expð−2ImVÞ ≠ 1. In computing
multiparticle production in this context, it is useful to
employ18 the Schwinger-Keldysh (SK) QFT formalism
(Schwinger, 1961; Keldysh, 1964). One introduces þ and
− vertices with opposite signs of the coupling in Feynman
diagrams, and likewise for the sources J�. The corresponding
þ and − fields live on the upper and lower segments of a
closed time contour ranging forward in time from t ¼ −∞ on
the upper contour and back to −∞ on the lower contour, as
shown in Fig. 5. Time ordered þþ (antitime ordered −−)
Green’s functions “live” on the upper (lower) contour, and the
mixed þ− Wightman functions connect the upper and lower
contours.
Following the LSZ formalism, the probability to produce n-

identical particles is

Pn ¼
1

n!

Yn
i¼1

d3pi

ð2πÞ32Epi

jhp1;out � � �pn;outj0inij2; ð30Þ

where E2
pi
¼ p2

i þm2. Plugging the expression for the ampli-
tude in Eq. (29) into the rhs, one can express the result as
(Gelis and Venugopalan, 2006a)

Pn ¼
1

n!
Dn exp ðiV½Jþ� − iV½J−�ÞjJþ¼J−¼J; ð31Þ

with

FIG. 5. Top panel: multiparticle production from cut “vacuum-
vacuum” graphs connecting time-dependent sources of the two
nuclei after the collision. From Gelis et al., 2010. Bottom panel:
Schwinger-Keldysh closed time contour on which the sources
and fields are defined.

18For other discussions of the SK formalism in the context of the
CGC and the glasma, see Jeon (2014), Wu and Kovchegov (2018),
and Leonidov and Radovskaya (2019). For a recent discussion in the
context of thermal field theory, see Ghiglieri et al. (2020).
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D ¼
Z
x;y

ZG0þ−ðx; yÞ
ð∂2

xi þm2Þ
Z

ð∂2
yi þm2Þ
Z

δ

δJþðxÞ
δ

δJ−ðyÞ
:

ð32Þ

Here
R
x ¼ d4x,

G0þ−ðx; yÞ ¼
Z

d3pi

ð2πÞ32Epi

eipðx−yÞ ≡ θðp0Þδð3Þðx − yÞ;

and Z is the residue of the pole of the renormalized propagator.
The action of the operator D can be understood as follows.

The þ piece with ½ð∂2
xi þm2Þ=Z�δ=½δJþðxÞ� acts on a par-

ticular diagram in the connected sum of vacuum-vacuum
connected diagrams V½Jþ� by removing a source Jþ and then
amputating the renormalized propagator to which it is
attached. The same procedure is followed for the − piece;
the two amputated propagators are then sewn together by the
renormalized “cut” propagator ZG0þ−.
Computing Pn in a theory with physical sources is difficult

because one also has to compute the disconnected vacuum-
vacuum graphs for each n. However, if we define a generating
functional FðzÞ ¼ P

n z
nPn, Eq. (31) gives

FðzÞ ¼ exp ðzDÞ exp ðiV½Jþ� − iV½J−�ÞjJþ¼J−¼J; ð33Þ

and successive differentiation of Eq. (33) with respect to z
(and setting z ¼ 1) generates the n-particle correlators
hnðn − 1Þðn − 2Þ � � �i. These moments do not require one to
compute the disconnected vacuum-vacuum graphs, since they
also appear in the normalization of Pn and therefore cancel
out19 in the moments.
This is illustrated by expressing the rhs of Eq. (33) for

z ¼ 1 as

exp ðiVSK½Jþ; J−�Þ ¼ expðDÞ exp ðiV½Jþ� − iV½J−�Þ; ð34Þ

where now iVSK½Jþ; J−� represents the sum over all vacuum-
to-vacuum connected graphs that live on the SK closed time
contour. One can then express the inclusive multiplicity as
(Gelis and Venugopalan, 2006a)

hNi ¼
Z
x;y

ZG0þ−ðx; yÞ½ΓþðxÞΓ−ðyÞ þ Γþ−ðx; yÞ�J�¼J; ð35Þ

with the amputated one-point and two-point Green’s functions
in the Schwinger-Keldysh formalism defined, respectively, as

Γ�ðxÞ ¼ ΔR
x
δiVSK

δJ�ðxÞ
; Γþ−ðx; yÞ ¼ ΔR

xΔR
y

δ2iVSK

δ2JþðxÞJ−ðyÞ
;

ð36Þ

with ΔR
x ¼ ð∂2

x þm2Þ=Z.

In summing over all the nodes of all the trees connecting
ΓþðxÞ to the sources, the time (antitime) ordered Feynman
propagators in each tree on the upper (lower) SK contour are
recursively converted to retarded propagators: GR ¼ Gþþ−
Gþ− ≡ G−þ − G−−. This is equivalent to solving the classical
equations of motion with retarded boundary conditions when
J� ¼ J. A further important result is that the renormalized cut
propagator Γþ− is obtained by solving the small fluctuation
equations of motion in the classical background, also as an
initial value problem with retarded boundary conditions.
As previously discussed, the classical fields, and sources

thereof, of the colliding CGCs are static shock waves; as such,
they do not spontaneously decay and are thus part of the
nuclear wave function. After the collision, the colored sources
become time dependent. Thus, Γ� in Eq. (35) corresponds to
∂2
xA

μ
�;cl, where Aμ

�;cl is the time-dependent Oð1=gÞ glasma
field in the forward light cone. The two-point function
Γþ−ðx; yÞ in Eq. (35) is Oð1Þ and therefore NLO in the
power counting for the inclusive multiplicity in the glasma.
The formalism can be extended to higher orders in αS. Its
generalization to higher multiplicity moments was developed
by Gelis and Venugopalan (2006b).

B. The LO glasma: Classical gluon fields from shock wave
collisions

Since at LO in our power counting only the product
ΓþðxÞΓ−ðyÞ≡ ∂2

xA
μ
þ∂2

xAν
− in Eq. (35) contributes, one

obtains for a fixed distribution of light cone sources ρ�;1;2 ¼
ρ1;2 (where 1; 2 denote the two nuclei) (Gelis, Lappi, and
Venugopalan, 2007)

dhNiLO
dYd2p⊥

½ρ1; ρ2� ¼
1

16π3

Z
x;y

ΔR
xΔR

y ε
μ
λε

ν
λAμðxÞAνðyÞ; ð37Þ

where repeated indices are summed over. Note also that
AðxÞ≡Aμ½ρ1; ρ2�ðxÞ and m ¼ 0 in ΔR

x;y. An integration by
parts

Z
d4xeip·x∂2

xAμðxÞ¼
Z
x0→þ∞

d3xeip·xð∂0− iEpÞAμðxÞ ð38Þ

shows that Eq. (37) can be computed by solving the classical
YM equations in Eq. (10) [with Jμ ¼ δμþδðx−Þρ1ðx⊥Þ þ
δμ−δðxþÞρ2ðx⊥Þ and AμðxÞjx0¼−∞ ¼ 0] to determine AμðxÞ.
For the following discussion, it is convenient to

introduce the ðτ; η; x⊥Þ coordinate system, where the proper
time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0Þ2 − ðx3Þ2

p
and the spacetime rapidity η¼

ð1=2Þ log½ðx0þx3Þ=ðx0−x3Þ�, and gμν¼diagð1;−τ2;−1;−1Þ.
A convenient gauge to solve the YM equations in the forward
light cone is the Fock-Schwinger gauge Aτ ≡ xþA−þ
x−Aþ ¼ 0. In this gauge,20 the solution to the YM equations
are manifestly boost invariant [Aμðτ; η; x⊥Þ≡Aμðτ; x⊥Þ] and
one obtains (Kovner, McLerran, and Weigert, 1995a, 1995b;
Gyulassy and McLerran, 1997)

19Such cancellations are seen in the Abramovsky-Gribov-Kan-
cheli rules (Abramovsky, Gribov, and Kancheli, 1973) that imple-
ment the combinatorics of cut or uncut vacuum-to-vacuum graphs in
Reggeon field theory (Gelis and Venugopalan, 2007).

20A perturbative solution was also found in Lorenz gauge
∂μAμ ¼ 0 (Kovchegov and Rischke, 1997).
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Ai ¼ Ai
1;cl þ Ai

2;cl; Aη ¼ ig
2
½Ai

1;cl; A
i
2;cl�; ð39Þ

with ∂τAi ¼ 0 and ∂τAη ¼ 0 at τ ¼ 0þ. This solution is
obtained by matching the delta functions on the light cone
wedges in Fig. 6.
Since the gauge fields are functionals of ρ1;2, the full

average inclusive multiplicity in the glasma is obtained by
averaging over many nuclear collisions, each with its dis-
tribution of color sources in the two nuclei.21 This can be
expressed as

d⟪N⟫LO

dYd2p⊥
¼

Z
½Dρ1�½Dρ2�WMV

Ybeam−Y ½ρ1�WMV
YbeamþY ½ρ2�

×
dhNiLO
dYd2p⊥

½ρ1; ρ2�; ð40Þ

where Ybeam ¼ logð ffiffiffi
s

p
=mNÞ is the beam rapidity andWMV

Ybeam−Y
(WMV

YbeamþY) are the weight functionals in the MV model in
Eq. (9) and at LO are independent of Ybeam − Y (Ybeam þ Y).
With the initial conditions in Eq. (39), the YM equations for

τ ¼ 0þ can be solved perturbatively to lowest nontrivial order
in O(ðρ1=∇2⊥Þðρ2=∇2⊥Þ); in this “dilute-dilute” approxima-
tion, one obtains the following for identical nuclei:

d⟪N⟫LO

dYd2p⊥
¼ πR2

A
g6μ4A
ð2πÞ4

2NcðN2
c − 1Þ

p4⊥
Lðp⊥;ΛÞ: ð41Þ

This result, which agrees with the pQCD bremsstrahlung
formula first derived by Gunion and Bertsch (1982), is valid
for p⊥ ≫ g2μA, and Lðp⊥;ΛÞ is a logarithmically divergent
function screened at Λ ≈ ΛQCD.
From our dipole model discussion [see Eq. (23) and the

related discussion] Q2
S ∝ GAðx; p2⊥Þ, where p⊥ is the momen-

tum conjugate to the dipole size. This suggests that Eq. (41)
(employing Q2

S ∝ μ2A, as noted in footnote 10) can be
generalized to a k⊥ factorization form

d⟪N⟫LO

dYd2p⊥
∝ αS

Z
dk2⊥ϕAðx1; k2⊥ÞϕB(x2; ðk⊥ − p⊥Þ2).

Here ϕA;Bðx; k2⊥Þ=k2⊥ is the Fourier transform of the dipole
scattering amplitude22 in each of the hadrons discussed
in Sec. II.F. This k⊥ factorization formula (Gribov, Levin,
and Ryskin, 1983; Blaizot and Mueller, 1987) is widely used
in phenomenological studies of hadron-hadron collisions.
The dilute-dilute analytical approximation for shock wave

collisions can be generalized to compute the inclusive
multiplicity to lowest order Oðρ1=∇2⊥Þ in one of the sources
but to all ordersO(ðρ2=∇2⊥Þn) in the other. In this dilute-dense
case as well, the inclusive gluon multiplicity can be expressed
as a k⊥-factorized convolution of the unintegrated gluon
distributions in the projectile and target. It is valid for
Q2

S;1ðx1Þ ≪ Q2
S;2ðx2Þ, corresponding to the forward (or back-

ward) kinematic regions of the shock wave collision where the
parton momentum fractions are x1 ≫ x2. Alternately, it can be
a good approximation in proton-nucleus collisions, where
Q2

S;A ∼ A1=3Q2
S;p (Kovchegov and Mueller, 1998; Dumitru and

McLerran, 2002).

C. Nonperturbative evolution of high-occupancy fields

1. Real-time evolution of boost-invariant fields on the lattice

While analytical results for the inclusive multiplicity are
available only in limited kinematic regions, the YM equations
for shock wave collisions can be solved numerically to all
orders O(ðρ1;2=∇2⊥Þn) (Krasnitz and Venugopalan, 1998,
1999) to obtain the full nonperturbative result for Eq. (40)
(Krasnitz and Venugopalan, 2000, 2001; Krasnitz, Nara, and
Venugopalan, 2001, 2003a; Lappi, 2003). Hamilton’s equa-
tions are solved in the Fock-Schwinger gaugeAτ ¼ 0with the
initial conditions at τ ¼ 0 specified by Eq. (39). To preserve
gauge invariance, lattice gauge theory techniques can be
adapted to this problem. The boost invariance of the LO
shock wave gauge fields provides a significant simplification
whereby the (3þ 1)-dimensional [(3þ 1)-D] Kogut-Susskind
QCD lattice Hamiltonian (Kogut and Susskind, 1975) can be
dimensionally reduced to the (2þ 1)-D form (Krasnitz and
Venugopalan, 1999)

FIG. 6. Spacetime diagram of gauge field configurations.
Before the collision, the gauge fields are pure gauge solutions
with zero field strength. (In the text, the pure gauge solution of the
right moving nucleus is denoted by Ai

1;cl, and that of the left
moving nucleus is denoted by Ai

2;cl.) After the collision, the gauge
field solution (Ai;η in the text) corresponds to finite field strengths
in the glasma. From Lappi and McLerran, 2006.

21Owing to color confinement at distance scales 1=ΛQCD, one

requires
R 1=ΛQCD

0 d2x⊥ρa1;2 ¼ 0 for each such configuration.

22This distribution is distinct from the WW distribution and
coincides with it only for large k⊥ (Kharzeev, Kovchegov, and
Tuchin, 2003; Blaizot, Gelis, and Venugopalan, 2004a).
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aH ¼
X
x

	
g2a
τ

trEiEi þ 2τ

g2a
ðNc − Re trU1;2Þ

þ τ

a
tr π2 þ a

τ

X
i

trðΦ − Φ̃iÞ2


: ð42Þ

In Eq. (42) the trace refers to SUð2Þ color and the sum is over
all discretized cells with lattice spacing a in the transverse
plane. For clarity, we have omitted the cell index j for all
quantities in Eq. (42). Further, the Ei with i ∈ f1; 2g are the
components of the transverse electric field living on each site;
discretizing the initial conditions gives Ei ¼ 0 at τ ¼ 0. The
spatial plaquette of link variables Ui

j,

Uj
1;2 ¼ U1

jU
2
jþê1

U1†
jþê2

U2†
j ð43Þ

(where þêi indicates a shift from j by one lattice site in the
i ¼ 1; 2 transverse direction), represents the squared longi-
tudinal magnetic fields in the glasma. In Eq. (42), we represent
Aηðτ; x⊥Þ as an adjoint scalar field Φ because, as a result of
boost invariance, it transforms covariantly under η-dependent
gauge transformations:

Φ̃j
i ¼ Ui

jΦjþêiU
i†
j : ð44Þ

Finally, π ¼ Eη ¼ _Φ=τ in Eq. (42) represents the longitudinal
electric field.
Details pertaining to the numerical simulations of the real-

time evolution of gauge fields were given by Krasnitz and
Venugopalan (1999) and Lappi (2003). In the early work, only
uniform sheets of nuclei were considered with constant (x-
independent) values of QS. These were subsequently relaxed
to consider finite nuclei (Krasnitz, Nara, and Venugopalan,
2003b, 2003c); more realistic simulations with event-by-event
simulations of RHIC and LHC collisions were later developed
in the IP-glasma model that we discuss shortly (Schenke,
Tribedy, and Venugopalan, 2012b).
As anticipated, the numerical results reproduce the pertur-

bative result in Eq. (41) at large k⊥ ≫ QS. However, unlike in
that expression, there is no logarithmic factor Lðk⊥;ΛQCDÞ. At
momenta k⊥ < QS, the 1=k4⊥ distribution is modified to a
form that is well fit by a Bose-Einstein exponential distribu-
tion (Krasnitz, Nara, and Venugopalan, 2003a). The nonlinear
dynamics generates a plasmon mass23 that screens the
momentum distribution in the infrared (Krasnitz and
Venugopalan, 2001; Lappi and Peuron, 2018). The energy
density is therefore well defined at all proper times without
infrared or ultraviolet divergences (Lappi, 2006).

2. Glasma flux tubes

A consequence of the LO glasma solution is that the
Weizäcker-Williams plane polarized E and B fields in the
colliding CGCs become purely longitudinal immediately after
the collision at τ ¼ 0þ; Eη; Bη ≠ 0 and Ei; Bi ¼ 0. Kharzeev,
Krasnitz, and Venugopalan (2002) pointed out that this
configuration satisfies the identity

QCS ¼ αS
2π

Z
d4xTrEη · Bη; ð45Þ

where the topological charge QCS ¼ ðαS=16πÞ
R
d3xK0

and Kμ is the Chern-Simons current. An interpretation of this
result (Lappi and McLerran, 2006; Chen et al., 2015) is that
the YM equations at τ ¼ 0þ can be expressed as ∇ · E ¼ ρel
and ∇ · B ¼ ρmag, where ρel, ρmag are, respectively, electric
and magnetic charge densities24 on the gluon shock waves
after the collision.
As sketched in Fig. 7, the induced electric and magnetic

charges generate a “stringy” glasma flux tube (Dumitru, Gelis
et al., 2008) of chromoelectromagnetic fields that is uniform
in rapidity stretching between the fragmentation regions of the
nuclei and are color screened (Krasnitz, Nara, and
Venugopalan, 2003c) on transverse distance scales ≥ 1=QS.
One can straightforwardly compute the energy densities

and pressures in the glasma from the different components of
the stress-energy tensor.25 We obtain E ¼ 2PT þ PL, where

PT ≡ 1
2
ðTxx þ TyyÞ ¼ TrðFxy þ E2

ηÞ;

PL ≡ τ2Tηη ¼ 1

τ2
TrðF2

ηi þ E2
i Þ − TrðFxy þ E2

ηÞ: ð47Þ

FIG. 7. Glasma flux tubes: boost-invariant LO glasma configu-
rations of transverse size 1=QS at τ ¼ 0þ with parallel Eη and Bη

corresponding to finite Chern-Simons charge. Such configura-
tions decay rapidly and are unstable to quantum fluctuations.
From Dumitru, Gelis et al., 2008.

23This plasmon mass is parametrically larger than the confining
scale; its properties were investigated recently using a number of
approaches (Dumitru, Lappi, and Nara, 2014; Boguslavski et al.,
2019).

24These induced charge densities are proportional to the commu-
tators δij½Ai

1;cl; A
j
1;cl� and ϵij½Ai

1;cl; A
j
1;cl�, respectively.

25Note that

Tμν ¼ −gμαgνβgγδFαγFβδ þ 1
4
gμνgαγgβδFαβFγδ: ð46Þ
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At the earliest times after the collision τ ¼ 0þ, as noted, only
the longitudinal Eη and Bη ¼ Fxy fields are nonzero.
Equation (47) then immediately gives PT ¼ E and
PL ¼ −E. Thus, at the earliest times the pressure in the
glasma is purely transverse; after initial transverse dynamics,
the longitudinal pressure PL → 0 from below by τ ∼ 1=QS.
Since the glasma at LO is conformal, the energy density
satisfies E ¼ 2PT at this time.
Stringy models capture essential features of confining

dynamics in QCD (Bali, 2001). In high-energy collisions,
they have a long history and capture the bulk features of the
spectrum of multiparticle production (Andersson, Gustafson,
and Peterson, 1979; Artru, 1983); they underlie event gen-
erators such as PYTHIA (Andersson et al., 1983). These
models, however, screen color at distance scales 1=ΛQCD
and carry only electric flux and no magnetic flux; particle
production is assumed to arise from the Schwinger mechanism
(Andersson, Gustafson, and Peterson, 1979). Observe that
similar stringy solutions emerge from the more fundamental
framework of classical YM equations.
Motivated by this stringy picture, we expect the number of

gluons per unit rapidity to equal the number of flux tubes
[S⊥=ð1=Q2

SÞ] times the gluon occupancy in a flux tube
(2ðN2

c − 1Þ=½ᾱS=ð2πÞ3�) multiplied by a nonperturbative coef-
ficient of Oð1Þ. Extracting the number density from the
correlator of gauge fields at τ ∼ 1=QS (Krasnitz and
Venugopalan, 2001), one indeed finds that26

dNLO

dY
¼ cN

2ðN2
c − 1Þ

ð2πÞ3
Q2

SS⊥
ᾱS

; ð48Þ

where S⊥ is the transverse area of the collision, ᾱS ¼ αSNc=π,
and cN is a gluon liberation coefficient (Mueller, 2000)
estimated from the numerical simulations to be cN ¼ 1.1
with 10% accuracy (Lappi, 2008).
The YM simulations can also be extended to compute two-

particle correlations in the glasma (Lappi, Srednyak, and
Venugopalan, 2010):

d2Nconn
LO

dY1d2p⊥dY2d2k⊥
¼ κ2

ðN2
c − 1ÞQ2

SS⊥
dNLO

dY1d2p⊥
dNLO

dY2d2k⊥
;

ð49Þ

where κ2 is a nonperturbative constant.
27 Again the numerical

simulations bear out the glasma flux tube interpretation: the
likelihood that two particles are correlated is suppressed by the
number of flux tubes, and nonfactorizable color connected
graphs are suppressed by Oð1=N2

cÞ. Perturbative arguments
suggest that this picture can be extended to n-particle
cumulants and that the n-particle multiplicity distribution
that generates these cumulants is a negative binomial
distribution (Gelis, Lappi, and McLerran, 2009). For n-
particle multiplicities, this expectation is confirmed by

nonperturbative numerical simulations (Schenke, Tribedy,
and Venugopalan, 2012a).

3. The IP-glasma model

In the discussion thus far, color charge fluctuations on the
scale 1=QS provide the only structure in the colliding gluon
shock waves. However, nucleon distributions in nuclei are not
uniformly smooth and can fluctuate from event to event. These
fluctuations in nucleon positions are extremely important for
understanding key features of the data such as the azimuthal
moments vn of the flow distributions at low momenta (Alver
and Roland, 2010; Alver et al., 2010). Another important
ingredient in the realistic modeling of heavy-ion collisions is
the dependence of the saturation scale in the nuclei on x (or,
equivalently,

ffiffiffi
s

p
), which describes the variations of particle

multiplicities in energy and rapidity at RHIC and the LHC.
We outline here the IP-glasma model (Schenke, Tribedy,

and Venugopalan, 2012a, 2012b; Schenke, Tribedy, and
Venugopalan, 2014a, 2014b), and improvements thereof,
which incorporates the fluctuations in the nucleon positions
to construct event-by-event lumpy color charge distributions
and corresponding gluon field configurations in the LO
glasma framework. As we also discuss, the energy depend-
ence of these configurations at a given Y or

ffiffiffi
s

p
is determined

by the saturation scales in the two nuclei.
An essential input is the dipole cross section of the proton.

We consider here the IP-Sat model (Bartels, Golec-Biernat,
and Kowalski, 2002; Kowalski and Teaney, 2003) which, as
discussed in Sec. II.E, is an impact-parameter-dependent
generalization of the MV model. As noted, high precision
combined data from the H1 and ZEUS collaborations (Aaron
et al., 2010; Abramowicz et al., 2013) are used to constrain the
parameters of the model and excellent fits are obtained
(Rezaeian et al., 2013).
The dipole cross section for each nucleus at a given x is

constructed by taking the product of the S matrices corre-
sponding to the dipole cross sections of overlapping nucleons
at a given spatial location x⊥. It can be expressed as
(Kowalski, Lappi, and Venugopalan, 2008)

1

2

dσAdip
d2x⊥

¼ 1 − e−ðπ
2=2NcÞr⊥2αSðQ2ÞxGðx;Q2Þ

P
A
i¼1

Tpðx⊥−xT
iÞ; ð50Þ

where Tp stands for the Gaussian thickness function for each
of the A nucleons in each nucleus and Q2 ¼ 4=r2⊥ þQ2

0, with
Q0 fixed by the HERA inclusive data. The gluon distribution
xGðx;Q2Þ is parametrized at the initial scale Q2

0 and then
evolved up to the scale Q2 using LO DGLAP evolution. We

define the nuclear saturation scale QS ¼ 1=
ffiffiffiffiffiffiffiffi
r2⊥;s

q
at

r⊥ ¼ r⊥;s, for which the argument of the exponential in
Eq. (50) equals one-half. To obtain the spatial dependence
of QS, one self-consistently solves x ¼ 0.5QSðx⊥; xÞ=

ffiffiffi
s

p
for

every x⊥.
The result of this procedure is a lumpy distribution of

Q2
Sðx⊥; xÞ denoting the subnucleon structure of the nucleus.

Since the IP-Sat model is a simple generalization of the MV
model, one can extract the variance of the color charge density
g2μ2Aðx⊥Þ at each x from Q2

Sðx⊥; xÞ (Lappi, 2008). One then

26Here and henceforth for simplicity the path integral over gauge
fields (moot at LO) and over sources (⟪⟫) is implicit.

27The results have a weak dependence on the ratiom=QS, wherem
is an infrared lattice regulator.
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samples random color charges ρaðx⊥Þ on a transverse
lattice:

hρakðx⊥Þρbl ðy⊥Þi ¼ δabδklδ2ðx⊥ − y⊥Þ
g2μ2Aðx⊥Þ

Ny
; ð51Þ

where the indices k; l ¼ 1; 2;…; Ny label the Ny points
representing the width of the nucleus in x−. The path ordered
Wilson line in the dipole model S matrix [see Eq. (22)] is
discretized as

VAðBÞðx⊥Þ ¼
YNy

k¼1

exp

�
−ig

ρAðBÞk ðx⊥Þ
∇2
T −m2

�
; ð52Þ

where m is a infrared cutoff and A and B distinguish the color
charge distributions in the two colliding nuclei. The corre-
sponding dipole distributions in each of the incoming nuclei
for a particular configuration of color sources is shown in the
top panel of Fig. 8.
To each lattice site j, one then assigns two SUðNcÞ matrices

VðAÞ;j and VðBÞ;j, each of which defines a pure gauge configu-

ration with the link variables Ui
ðA;BÞ;j ¼ VðA;BÞ;jV

†
ðA;BÞ;jþêi

,

where þêi indicates a shift from j by one lattice site in the
i ¼ 1; 2 transverse direction. The link variables in the future
light cone Ui

j that are input into Eqs. (43) and (44) are
determined (Krasnitz and Venugopalan, 1999) from solutions
of the lattice classical Yang-Mills equations at τ ¼ 0:

tr
n
ta½ðUi

ðAÞ þ Ui
ðBÞÞð1þ Ui†Þ

− ð1þ UiÞðUi†
ðAÞ þ Ui†

ðBÞÞ�
o
¼ 0; ð53Þ

where ta are the generators of SUðNcÞ in the fundamental
representation. (The cell index j is omitted here.) The N2

c − 1

equations in Eq. (53) are highly nonlinear and are solved
iteratively forNc ¼ 3. With these initial conditions, Hamilton’s
equations corresponding to Eq. (42) are solved to compute
inclusive quantities in the LO glasma. The lower panel of Fig. 8
shows the result for the energy density in the transverse plane
at τ ¼ 1=QS.
The IP-glasma model gives a good description of bulk

features of distributions at RHIC and the LHC (Schenke,
Tribedy, and Venugopalan, 2014a, 2014b). In particular,
when matched with the MUSIC relativistic viscous hydro-
dynamic code (Schenke, Jeon, and Gale, 2011) the IP-glasma
+MUSIC model provides an excellent description of the
multiplicity distributions, the inclusive centrality, and the
p⊥ distributions, as well as the vn distributions in heavy-ion
collisions putting strong constraints on the extracted trans-
port coefficients of the quark-gluon plasma (Gale et al.,
2013; Ryu et al., 2015).
There have been several developments since. First, the

model has been extended to include JIMWLK evolution of the
sources ρðx⊥Þ → ρðx⊥; x∓Þ for nuclei with large P�, enabling
one to study rapidity correlations of produced gluons (Dusling
et al., 2010; Schenke and Schlichting, 2016) and 3D evolution
of the LO glasma fields (Schenke and Schlichting, 2016;
Müller, 2019; McDonald, Jeon, and Gale, 2020). Further, the
extension of the IP-glasma+MUSIC model to hadron-hadron
and hadron-nucleus collisions (Bzdak et al., 2013) indicates
that subnucleon shape fluctuations in the glasma are essential
to understanding final state contributions to two and multi-
particle cumulants of azimuthal anisotropies for high multi-
plicity events in small systems (Schenke and Venugopalan,
2014), the so-called ridge correlations (Dusling, Li, and
Schenke, 2016).
Data on incoherent diffraction from HERA are sensitive to

such nonperturbative shape fluctuations (Mäntysaari and
Schenke, 2016a, 2016b; Mäntysaari, 2020); the framework
developed here allows one to constrain the latter with HERA
data and in the future likely more precisely with the EIC.
Numerical simulations suggest that long-range two-particle
correlations in the glasma (Lappi et al., 2016), when com-
bined with hydrodynamic flow, can explain the systematics of
high multiplicity azimuthal moments in small systems
(Schenke et al., 2016; Schenke, Shen, and Tribedy, 2020b).

D. The glasma at NLO

Thus far we have focused on the leading-order dynamics of
classical fields A≡Oð1=gÞ in the glasma. As we now
discuss, quantum fluctuations that are parametrically Oð1Þ
and that contribute to Γþ− in Eq. (35) play a large role both
before (pη ¼ 0 modes) and after (pη ≠ 0 modes) the colli-
sion.28 We discussed the former previously in the context of
the small-x evolution of the hadron wave functions. We
discuss here the role of these modes after the collision. The
pη ≠ 0 modes appear only after the collision; as we sub-
sequently discuss, they play a fundamental role in the
thermalization of the glasma.

FIG. 8. Top panel: collisions of nuclei with subnucleon color
charge fluctuations determined by the IP-Sat model. Bottom
panel: LO energy density in the glasma at τ ¼ 1=QS. From
Schenke, Tribedy, and Venugopalan, 2012a.

28pη is the Fourier conjugate of the spacetime rapidity η.
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1. Dynamics of pη = 0 modes: QCD factorization and energy
evolution

At NLO [Oð1Þ relative to the leading Oð1=αSÞ contribu-
tion] for the inclusive multiplicity in Eq. (35), one of the two
terms is the amputated small fluctuation propagator Γþ− and
the other is a one-loop correction to Γ� (or, equivalently, the
classical field). The pη ¼ 0 modes lie close to the beam
rapidities �Ybeam; before the collision, they can be visualized
as the fur of wee gluon modes accompanying the valence
partons moving along the light cone.
After the collision, the valence partons are stripped of the

small-x wee gluon modes that then populate pη ≠ 0. The
surviving pη ¼ 0modes are valence modes and the quasistatic
cloud of large-x partons than accompany them into the
fragmentation region of the nuclear collision. Thus, pη ¼ 0
modes after the collision are likely not interesting from the
perspective of thermalization at central rapidities.
Before the collision, all one has are the pη ¼ 0 modes.

These modes are further separated into sources and fields,
with the latter dynamically absorbed into the former via the
small-x evolution of the weight functionals WYbeam�Y ½ρ1;2� of
each of the comoving nuclei. This, however, requires a
factorization of the quantum fluctuations of each of the two
nuclei from each other.
The resulting factorized form of Eq. (40) can be proven to

leading logarithmic accuracy in x (Gelis, Lappi, and
Venugopalan, 2008a, 2008b). An important ingredient in
the proof is the structure of the cut propagator

Gþ−ðu; vÞ ∝
Z

d2k⊥dkþ
kþ

eik
þðu−−v−Þþiðk2⊥=2kþÞðuþ−vþÞ.

If the spacetime points u and v reside on one of the nuclei, say,
moving along xþ, then u− ≈ v− and one of the phases
vanishes. The other phase oscillates rapidly when kþ → 0,
giving a convergent contribution. However, for kþ → ∞ it
converges to unity, and one obtains a logarithmic divergence
dkþ=kþ that is the source of the large logarithms resummed in
the small-x evolution of the nucleus.
In the case where quantum fluctuations in the two nuclei

could “talk” to each other before the collision, the spacetime
points u and v reside, respectively, on the light cones of the
incoming nuclei corresponding to u� − v� ≠ 0. The phases
therefore oscillate rapidly when k� → ∞ and there are no
logarithmic divergences from such contributions. The only
possible region in which such fluctuations may contribute is
where the nuclei overlap. The area of this region is
xþx− ¼ 1=PþP− ∼ 1=s; such contributions are therefore sup-
pressed by the squared c.m. energy.
Thus, the factorized form in Eq. (40) at LLx is satisfied to

high accuracy, and one can replace WMV
Ybeam�Y ½ρ1;2� with

WYbeam�Y ½ρ1;2�, where the latter satisfies the JIMWLK equation
in Eq. (16). This allows one to go beyond the boost-invariant
MV expression and treat the dynamical evolution in Y of the
weight functionals in the two nuclei. While our arguments
suggest that the factorization theorem can be extended to
NLLx, a formal proof is lacking.
As Ybeam increases with increasing energy, the W’s in

Eq. (40) describe the energy evolution of the inclusive

multiplicity.29 Running coupling corrections, which are part
of the NLLx contributions, improve the accuracy of the
computations significantly. In the future, one may anticipate
using the NLLx JIMWLK Hamiltonian as a systematic
improvement in describing energy evolution and rapidity
correlations in heavy-ion collisions.
Details of the factorization of the W’s, and their energy

evolution, are crucial to phenomenology because they dictate
concretely the dependence of final state observables (such as
the energy density and the correlators thereof) on the
saturation scales in the wave functions of the colliding nuclei.

2. Dynamics of pη ≠ 0 modes: Plasma instabilities and the
classical-statistical approximation

The pη ≠ 0 modes are generated right after the collision
when the sources become time dependent and produce gluon
modes away from the rapidities of the beams. At NLO, their
contribution to the gluon spectrum for a fixed distribution of
color sources can be written as (Gelis, Lappi, and
Venugopalan, 2007)

dNNLO

dYd2p⊥
¼ 1

16π3

Z
d4xd4yeip·ðx−yÞ∂2

x∂2
y

X
λ

ϵλμϵ
λ
ν

× ½AμðxÞδAνðyÞ þ δAμðxÞAνðyÞ þ Gþ−ðx; yÞ�;
ð54Þ

where ϵλμ is a gluon polarization vector of helicity λ. The first
two terms in Eq. (54) represent the NLO contribution to
ΓþðxÞΓ−ðyÞ in Eq. (35), with δA the one-loop correction to
the classical fieldA≡A½ρ1; ρ2� and the last term representing
Γþ−, which first appears at NLO.
We first consider the cut propagator term Gþ− in Eq. (54).

Its contribution to the NLO multiplicity can be written as

X
λ;λ0

Z
d3k

ð2πÞ32Ek

����
Z
x0→∞

d3xeip·xð∂0
x − iEqÞϵλμaμλ0k

����2; ð55Þ

where aμλ0akðxÞ is a small fluctuation field of Oð1Þ about Aμ

with the plane wave initial condition eμλ0T
aeikx, where Ta are

the SUð3Þ generators in the adjoint representation.30 Note that
the previous structure is analogous to that of Eq. (38) except
that the classical field is replaced by the small fluctuation
field. The latter obeys the small fluctuation equations of
motion, and its solution can be expressed as

aμðxÞ ¼
Z
τ¼0þ

d3u½aðyÞ · Ty�AμðxÞ; ð56Þ

where Ty is a linear operator that corresponds to a shift
of the initial data on the classical fields and their derivatives
(Gelis, Lappi, and Venugopalan, 2008a; Dusling, Gelis, and
Venugopalan, 2011),

29This LLx result is implicitly assumed in the (3þ 1)-D IP-glasma
simulations (Schenke and Schlichting, 2016).

30For compactness, we suppress color indices henceforth.
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aðyÞ · Ty ¼ aμðyÞ δ

δAμðyÞ þ ½∂νaμðyÞ� δ

δð∂νAμÞ ; ð57Þ

on the initial spacelike surface at τ ¼ 0þ.
The key insight provided by Eq. (56) is that, to compute the

small fluctuation field at a spacetime point x in the forward
light cone, it is sufficient to know the small fluctuation field at
τ ¼ 0þ rather than solve the small fluctuation equations on a
time-dependent background. We return to this point shortly.
Plugging Eq. (56) into Eq. (55) and then into Eq. (54), one

obtains

dNNLO

dYd2p⊥
¼

	Z
Σy

½δAðyÞ · Ty� þ
Z
Σy;Σz

½Γ2ðy; zÞ · TyTz�


τ¼0þ

×
dNLO

dYd2p⊥
; ð58Þ

where Σy ¼
R
d3y denotes the initial spacelike surface τ ¼ 0þ

and

Γ2ðy; zÞ ¼
X
λ

Z
d3k

ð2πÞ32Ek
aþkλðyÞa−kλðzÞ ð59Þ

is the small fluctuation propagator evaluated on this surface.31

This NLO result, however, is not suppressed parametrically
by OðαSÞ relative to the LO result because the LO glasma is
unstable to small fluctuations:

TyAðxÞ ∼ δAðxÞ
δAðyÞ ∼ ge

ffiffiffiffiffiffiffi
γinstτ

p
; ð60Þ

where γinst, parametrically of the order of QS, denotes the
growth rate of the instability. This exponential growth of small
fluctuations in Eq. (56) with

ffiffiffi
τ

p
is demonstrated in Fig. 9

using (3þ 1)-D numerical simulations of the YM equations
for an η-dependent fluctuation aðηÞ on top of the boost-
invariant glasma background (Romatschke and Venugopalan,
2006a, 2006b). The small values of g in the plot32 are chosen
to ensure that the classical-statistical approximation is sat-
isfied in the numerical simulations. This point is discussed
further in Sec. IV.
The existence of such instabilities was previously predicted

(Mrówczyński, 1993) and studied with the context of a finite
temperature hard thermal loop effective field theory (Rebhan,
Romatschke, and Strickland, 2005; Attems, Rebhan, and
Strickland, 2013). They are understood to be analogous to
the Weibel instabilities that are familiar in plasma physics
(Arnold, Lenaghan, and Moore, 2003); for a recent review, see
Mrówczyński, Schenke, and Strickland (2017).

As a result of the instability, the exponentially growing
small fluctuations can become of the order of the LO classical
field for τ ∼ ð1=γinstÞlog2ð1=αSÞ. In a so-called classical-
statistical approximation (Aarts and Berges, 2002), these
leading instabilities can be resummed to all orders, modifying
Eq. (58) as

dNresum

dYd2p⊥
¼

Z
½Da�F½a� dNLO

dYd2p⊥
½Aþ a�; ð61Þ

where F½a� ∼ exp ½− R
ΣyΣz

aðyÞΓ−1
2 ðy; zÞaðzÞ�.

To conclude our discussion of the classical-statistical
approximation, as a final step we need to perform the average
of the color sources to obtain the inclusive multiplicity
distribution at early times in the glasma:

⟪dN⟫

dYd2p⊥
¼

Z
½Dρ1�½Dρ2�WYbeam−Y ½ρ1�WYbeamþY ½ρ2�

×
Z

½Da�F½a� dNLO

dYd2p⊥
½Aþ a�: ð62Þ

This result applies to other inclusive quantities, such as the
components of the stress-energy tensor given in Eq. (46).
In the classical-statistical approximation, the one-loop

correction to the classical field (δA) is suppressed at early
times relative to the Gþ− term that we consider here. In
general, the classical-statistical approximation does not
account for the full quantum evolution of the glasma fields.
In Sec. IV, we discuss the dynamical power counting of
quantum fields within the framework of the 2PI effective
action that specifies the range of validity of the classical-
statistical approximation and the nature of the corrections
beyond, as well as numerical results from the implementation
of this approximation and the consequences thereof.
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FIG. 9. Growth of the maximally unstable Fourier mode of the
longitudinal pressure PL ¼ τ2Tηη. Note that since g2μ ∝ QS, the
results are in units of Q3

S=g
2, with g ∼ 10−5 and Lη ¼ 1.6. From

Romatschke and Venugopalan, 2006a.

31Discussions of the computation of this propagator at τ ¼ 0þ

were given by Fukushima, Gelis, and McLerran (2007), Dusling,
Gelis, and Venugopalan (2011), and Epelbaum and Gelis (2013).

32At RHIC (LHC) energies, g2μ ∝ QS ∼ 1–2 GeV on the x axis of
Fig. 9. With these values, τ ≫ 10 fm, the typical lifetime of such a
collision. However, for g ∼ 10−5 from QCD running, g2μ is larger
than the Planck scale. The takeaway message from Fig. 9 is the
functional form of the fit and not the absolute values.
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IV. FAR-FROM-EQUILIBRIUM GLUON AND QUARK
PRODUCTION: FROM PLASMA INSTABILITIES TO
NONTHERMAL ATTRACTORS

We saw in Sec. III that the overoccupied glasma is unstable
with respect to small quantum fluctuations that break longi-
tudinal boost invariance. As noted, the growth of fluctuations
is caused by primary (Weibel-like) (Mrówczyński, Schenke,
and Strickland, 2017) instabilities (Romatschke and
Venugopalan, 2006a, 2006b; Fukushima and Gelis, 2012).
However, there are also secondary instabilities that arise due to
the nonlinear interactions of unstable modes (Berges and
Schlichting, 2013). The fluctuations that are initially small
grow with time and an overoccupied plasma emerges on a
timescale QSτ ∼ log2ðα−1S Þ.
At this stage, details about the initial spectrum of fluctua-

tions are effectively lost as a consequence of the strongly
nonlinear evolution. The apparent loss of information at such
an early stage gives rise to decoherence toward a more
isotropic equation of state in this prethermalization regime
(Berges, Borsanyi, and Wetterich, 2004; Arnold et al., 2005;
Dusling et al., 2011). Subsequently, a universal scaling
behavior emerges far from equilibrium with increasing
anisotropy (Berges et al., 2015b), which is described in terms
of nonthermal attractor solutions (Berges, Boguslavski et al.,
2014a, 2014b), representing the first stage of the “bottom-up”
thermalization scenario (Baier et al., 2001; Bodeker, 2005).
In the following, we describe how this nonlinear behavior

emerges, starting with the underlying quantum field theory,
formulated as an initial value problem in time. Essential
aspects of the far-from-equilibrium quantum evolution can be
approximated by a controlled weak-coupling expansion
around the full nonperturbative classical-statistical theory,
which was first pointed out in the context of scalar field
theories (Khlebnikov and Tkachev, 1996; Son, 1996; Aarts
and Berges, 2002) and then extended to include fermions
(Aarts and Smit, 1999; Borsanyi and Hindmarsh, 2009;
Berges, Gelfand, and Pruschke, 2011; Saffin and Tranberg,
2011; Kasper, Hebenstreit, and Berges, 2014).
In strong-field QCD, this corresponds to an expansion in

αS ≡ g2=ð4πÞ, where the leading-order contribution includes
the full classical-statistical theory of gluons described in
Sec. III. The next-to-leading-order contributions take into
account the backreaction of the quarks onto the gluons and
encode important quantum effects such as anomalies. The
nonequilibrium time evolution of gluons with dynamical
quarks was studied numerically on the lattice by Gelis,
Kajantie, and Lappi (2006), Gelfand, Hebenstreit, and
Berges (2016), and Tanji and Berges (2018).
Such an expansion around the full classical-statistical field

theory breaks down on the timescaleQSτ ∼ α−3=2S (Baier et al.,
2001; Berges, Boguslavski et al., 2014a), where typical gluon
occupancies become of the order of unity. To continue further
and capture the late-time evolution toward local thermal
equilibrium, one employs a resummed perturbative descrip-
tion of quantum field theory in an on-shell approximation.
This also underlies the effective kinetic theory that we discuss
in Sec. V.
The range of validity of both approximation schemes, the

expansion around the classical-statistical theory at early times

and effective kinetic theory employed at late times, with their
common overlap at intermediate times (Mueller and Son,
2004; Jeon, 2005), can be efficiently discussed using the 2PI
quantum effective action (Baym, 1962; Cornwall, Jackiw, and
Tomboulis, 1974) on the closed time path (Calzetta and Hu,
1988; Berges, 2004a).

A. Nonequilibrium time evolution equations from the quantum
effective action

Quantum evolution equations can be formulated in terms
of expectation values of field operators, such as the macro-
scopic field AðxÞ and the connected two-point correlation
function or propagator Gðx; yÞ on the closed time contour C
introduced in Sec. III. In practice, the spacetime evolution of
the one-point, two-point, or higher-point correlation func-
tions cannot be computed for the full quantum theory
without approximations. However, one can formally write
exact evolution equations, which provides an efficient start-
ing point justifying the applicability of systematic expansion
schemes.
Writing for simplicity only the gauge field part, the

evolution equations for connected one- and two-point corre-
lation functions follow from the stationarity of the 2PI
effective action (Baym, 1962; Cornwall, Jackiw, and
Tomboulis, 1974):

Γ½A; G� ¼ S½A� þ i
2
trðlnG−1Þ þ i

2
tr½G−1

0 ðAÞG�
þ Γ2½A; G� þ const; ð63Þ

where iG−1;μν
0;ab ðx;y;AÞ≡δ2S½A�=δAa

μðxÞδAb
νðyÞ is the inverse

propagator with Lorentz indices μ, ν and color indices a; b ¼
1;…; N2

c − 1 for SUðNcÞ gauge theories with classical
action S½A�. Here Γ2½A; G� contains all two-particle
irreducible contributions, which leads to the self-energy
Πμν

abðx; yÞ≡ 2iδΓ2½A; G�=δGab
μνðx; yÞ. Higher n-point correla-

tion functions can be obtained from Γ½A; G� by functional
differentiation with respect to the fields once the solutions for
A and G are known.

1. Macroscopic field, spectral, and statistical functions

The full quantum evolution equation for the macroscopic
field is obtained from the stationarity of Γ½A; G� with respect
to variations in AðxÞ and is given by

δS½A�
δAa

μðxÞ
¼ −JμaðxÞ − i

2
tr

	
δG−1

0 ðAÞ
δAa

μðxÞ
G



−
δΓ2½A; G�
δAa

μðxÞ
: ð64Þ

For our discussion of the evolution equations for two-point
functions, it is convenient to introduce spectral and statistical
components by

Gab
μνðx; yÞ≡ Fab

μν ðx; yÞ −
i
2
ρabμν ðx; yÞsgnCðx0 − y0Þ; ð65Þ

where the spectral function ρðx; yÞ is associated with the
expectation value of the commutator of two fields and the
statistical function Fðx; yÞ by the anticommutator for bosons
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(Berges, 2004a).33 A similar decomposition can be done for
the self-energy:

Πðx; yÞ≡ −iΠð0ÞðxÞδðx − yÞ þ ΠðFÞðx; yÞ − iΠðρÞðx; yÞ

×
sgnCðx0 − y0Þ

2
;

where Πð0Þ describes a local contribution to the self-energy.
With this notation, the equations for spectral and statistical
two-point correlation functions, which follow from the sta-
tionarity of Γ½A; G� with respect to variations in G, can be
written as (Berges, 2004a)

½iG−1;μγ
0;ac ðx;AÞ þ Πð0Þ;μγ

ac ðxÞ�ρcbγν ðx; yÞ

¼ −
Z

x0

y0
dzΠðρÞ;μγ

ac ðx; zÞρcbγν ðz; yÞ;

½iG−1;μγ
0;ac ðx;AÞ þ Πð0Þ;μγ

ac ðxÞ�Fcb
γν ðx; yÞ

¼ −
Z

x0

t0

dzΠðρÞ;μγ
ac ðx; zÞFcb

γν ðz; yÞ

þ
Z

y0

t0

dzΠðFÞ;μγ
ac ðx; zÞρcbγν ðz; yÞ: ð66Þ

In Eq. (66) we denote
R
b
a dz≡ R

b
a dz0

R
d3z

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞp

with
given initial time t0 and g as the determinant of the metric.
The inverse propagator enters Eq. (66) as

iG−1;μν
0;ab ðx;AÞ ¼ ð−gÞ−ð1=2ÞDac

γ ðAÞð−gÞ1=2gγαgμνDcb
α ðAÞ

− ð−gÞ−ð1=2ÞDac
γ ðAÞð−gÞ1=2gγνgμαDcb

α ðAÞ
− gfabcF μν

c ðAÞ;

with the covariant derivative Dab
μ ðAÞ ¼ δab∂μ − gfabcAc

μ and
F a

μνðAÞ ¼ ∂μAa
ν − ∂νAa

μ þ gfabcAb
μAc

ν as the field strength
tensor.
The nonzero spectral and statistical parts of the self-energy

Πðρ=FÞðA; F; ρÞ on the rhs and the spacetime local part Πð0ÞðFÞ
on the lhs of this coupled set of equations make the evolution
equations nonlinear in the fluctuations. In general, they
contain contributions from the interaction vertices of QCD,
where in addition to the standard three and four vertices there
is a three-gluon vertex associated with the presence of a
nonvanishing field expectation value. The explicit expressions
for the derivatives on the rhs of Eq. (64) and the self-energy
contributions entering Eq. (66) were given to three-loop order
(g6) by Berges (2004b), and the corresponding expressions in
comoving ðτ; ηÞ coordinates were given by Hatta and
Nishiyama (2012). The inclusion of quark degrees of freedom
follows along the same lines and was also given by
Berges (2004b).

The nonequilibrium initial conditions for the coupled
evolution equations (64) and (66) can be formulated in
ðτ; ηÞ coordinates (and Fock-Schwinger gauge Aτ ¼ 0) for
the glasma initial conditions discussed in Sec. III. The gauge
field expectation values in Eq. (39) correspond to the glasma
background fields, while the spectral and statistical two-point
functions describe the fluctuations. At all times the former
satisfy the equal-time commutation relations

ρabμν ðx; yÞjx0¼y0 ¼ 0;

∂x0ρ
ab
μν ðx; yÞjx0¼y0 ¼ −δab

gμνffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp δðx⃗ − y⃗Þ;

∂x0∂y0ρ
ab
μν ðx; yÞjx0¼y0 ¼ 0: ð67Þ

2. Resummed evolution equations to leading order

To isolate the leading contributions, one has to take into
account the strong external currents J ∼Oð1=gÞ in the glasma,
which induce nonperturbatively large background fields
A ∼Oð1=gÞ. In contrast, the statistical fluctuations F origi-
nate from the vacuum and are therefore initially Oð1Þ. The
spectral function ρ encodes the equal-time commutation
relations and is therefore parametrically Oð1Þ at any time.
Considering only the leading contributions in a weak-

coupling expansion, the evolution equation (64) reduces to
the classical Yang-Mills equation for the classical glasma field
A, and the equations for the spectral and statistical two-point
correlation functions read

iG−1;μγ
0;ac ðx;AÞρcbγν ðx; yÞ ¼ 0;

iG−1;μγ
0;ac ðx;AÞFcb

γν ðx; yÞ ¼ 0: ð68Þ

In Eq. (68) subleading contributions are suppressed by at least
a factor of g2 relative to the leading contribution.
At this order the evolution of the glasma background fields

decouples from that of the fluctuations. The evolution of
vacuum fluctuations of the initial state is taken into account by
Eq. (68) to linear order in the fluctuations. This was an
important assumption in the derivation in Sec. III.D.2 and was
exploited by Dusling, Gelis, and Venugopalan (2011) and
Epelbaum and Gelis (2013) to obtain the spectrum of initial
fluctuations right after the collision. These approximations are
therefore valid only for evolution times short enough that the
fluctuations have parametrically small values.
In general, it is difficult to find suitable approximation

schemes for the 2PI effective action in gauge theories beyond
the linear regime (Arrizabalaga and Smit, 2002). However, it
provides a formal justification of a resummed coupling
expansion of the quantum field theory around the full
classical-statistical solution; as we soon discuss, this scheme
can be implemented numerically on a lattice to describe
dynamics that are far from equilibrium.
Furthermore, as we also later discuss, the different dynami-

cal stages of the glasma undergoing a nonequilibrium insta-
bility at early times can be conveniently understood
analytically from power counting in the 2PI effective action
beyond the linear regime (Berges and Schlichting, 2013).

33In terms of the Keldysh components of the propagator employed
in Sec. III, this reads Gþþðx; yÞ ¼ Fðx; yÞ − iρðx; yÞsgnðx0 − y0Þ=2,
G−−ðx;yÞ¼Fðx;yÞþ iρðx;yÞsgnðx0−y0Þ=2, Gþ−ðx; yÞ ¼ Fðx; yÞþ
iρðx; yÞ=2, and G−þðx; yÞ ¼ Fðx; yÞ − iρðx; yÞ=2.
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The 2PI effective action approach allows for efficient on-shell
approximations employing a gradient expansion; these lead to
effective kinetic equations describing nonequilibrium evolu-
tion at later times (Blaizot and Iancu, 2002). We discuss these
equations and their numerical solutions in Sec. V.

B. Nonlinear evolution of plasma instabilities

In Sec. III.D.2, we demonstrated that the highly anisotropic
state of the glasma is unstable with respect to small quantum
fluctuations. In the language of Eq. (68), these correspond to
the quasiexponential growth of the statistical function
(Romatschke and Venugopalan, 2006a, 2006b; Fukushima,
2007; Fukushima and Gelis, 2012; Berges, Schenke et al.,
2014):

Fab
μν ðτ; τ; xT; yT; νÞ ∼ exp

	
ΓðνÞ

ffiffiffiffiffiffiffiffiffi
g2μτ

q 

; ð69Þ

where we recall that g2μ ∝ QS and ΓðνÞ is a function of the
order of unity for characteristic modes ν that are Fourier
coefficients with respect to the relative rapidity34:

Fab
μνðx; yÞ ¼

Z
dν
2π

Fab
μν ðx; y; νÞeiνðηx−ηyÞ: ð70Þ

1. Dynamical power counting

The behavior of the quantum evolution beyond the linear
regime is captured by a dynamical power-counting scheme
(Berges and Serreau, 2003; Berges, Scheffler, and Sexty,
2008; Berges et al., 2009; Berges, Boguslavski, and
Schlichting, 2012). Self-energy corrections are classified
according to powers of the coupling constant g, of the
background field A, and of the statistical fluctuations F.
Thus, a generic self-energy contribution is of the order of
gnFmAlρk and contains the suppression factor from powers of
the coupling constant (n), as well as the enhancement due to a
parametrically large background field l and large fluctuations
m. The weight of the spectral function k remains parametri-
cally of the order of 1 at all times as encoded in the equal-time
commutation relations; see Eq. (67).
For the strong macroscopic fields A ∼ 1=g in the glasma,

sizable self-energy corrections occur once fluctuations grow
as large as F ∼ 1=gðn−lÞ=m for characteristic modes. This yields
a hierarchy of timescales, where diagrammatic contributions
with smaller values of r ¼ ðn − lÞ=m become important at
earlier times (since g ≪ 1) than contributions with larger
values of r.
The quasiexponential growth stops when fluctuations

become Oð1=g2Þ, where they saturate. At Oð1=g2Þ the
fluctuations lead to sizable contributions from every
given loop order and the perturbative power-counting
scheme breaks down. The corresponding timescale
may be estimated from the one-loop correction

,

which has r ¼ 2 (n ¼ 2, l ¼ 0, m ¼ 1). Using the quasiex-
ponential growth behavior [Eq. (69)], the factor of ∼g2 from
the vertex is compensated for by the propagator line F ∼
Oð1=g2Þ at time

τocc ∼g≪1 1

QS
log2ðg−2Þ; ð71Þ

which denotes the characteristic time for the end of the
instability regime.
The earliest time for nonlinear amplification to set in can be

inferred from the diagram with the lowest value of r. For our
problem, this is realized by the one-loop contribution with
r ¼ 1 (n ¼ 2, l ¼ 0, m ¼ 2)

,

which already becomes sizable when F ∼Oð1=gÞ, where the
two propagator lines compensate for the 2 powers of the
coupling. Again using the quasiexponential growth behavior
[Eq. (69)] of the primary unstable modes, we find that the
time at which this Oð1=gÞ correction becomes important
relative to the Oð1=g2Þ in Eq. (71) is ∼τocc=4 in the weak-
coupling limit. This is followed by a series of higher-loop
corrections, all leading to a fast broadening of the primary
unstable range in rapidity wave number ν (Berges and
Schlichting, 2013).

2. Classical-statistical field theory limit

The evolution of the glasma to later times than τocc is
nonperturbative. While there are different ways to address
this in scalar quantum field theories, with an example
being large-N resummation techniques (Aarts et al.,
2002; Berges, 2002), for gauge theories the most frequently
employed approach is the classical-statistical approxima-
tion. The latter can be understood starting with the full
quantum 2PI effective action by a set of well-defined
approximations.
One first notes that a given propagator line of a diagram

may be associated with either the statistical (F) or the spectral
(ρ) correlation function. The set of diagrams included in the
classical-statistical approximation can be identified as those
corrections that contain the most powers of the statistical
function relative to powers of the spectral function for each
type of diagram (Aarts and Berges, 2002). This corresponds to
resumming the leading effects of the instability to all orders in
the coupling constant (Dusling, Gelis, and Venugopalan,
2011; Epelbaum and Gelis, 2013).
Therefore, in contrast to expansions at fixed loop orders, the

classical-statistical approach provides a controlled approxi-
mation scheme that is particularly well suited to problems
involving large statistical fluctuations. Specifically, for the
large F ∼Oð1=g2Þ values encountered at the end of the

34Here ν is equivalent to the momentum pη in the ðτ; ηÞ coordinate
system.
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plasma instability regime, neglecting powers of ρ ∼Oð1Þ
compared to those of F represents a systematic weak-coupling
approximation of a system that is strongly correlated because
of the large fluctuations.
While leading order in this expansion corresponds to the

full nonequilibrium classical-statistical field theory for the
gauge fields, genuine quantum corrections for the dynamics
arise. As we soon discuss, the dynamical evolution of quarks
and antiquarks represent a class of such genuine quantum
corrections (Tanji and Berges, 2018).
We can conclude from this discussion that for the

far-from-equilibrium overoccupied glasma there is a well-
controlled mapping of the weak-coupling quantum dynamics
for correlation functions onto a classical-statistical field
theory. The latter can be simulated numerically on a lattice.
In principle, starting with large field amplitudes the mapping
involves two steps: (I) The field is separated into a large
coherent part and a small fluctuation part in which one
linearizes the field evolution equations. The set of linearized
equations is given by Eq. (68). (II) Although small initially,
the fluctuations grow because of plasma instabilities. Once
the fluctuations become sizable, the time evolution of the
linearized equations is stopped and the results are used as
input for a subsequent classical-statistical simulation that is
fully nonlinear.
A virtue of the two-step procedure of mapping the original

quantum theory to the classical description is that it has a well-
defined continuum limit, enabling one to recover the full
physical results for certain quantities in the weak-coupling
limit (Aarts and Smit, 1998). In scalar field theories, this is
well tested by comparisons to fully quantum calculations
using 2PI effective action techniques (Aarts and Berges,
2002), and likewise when scalar fields are coupled to fermions
(Berges, Gelfand, and Sexty, 2014). The mapping was first
applied in cosmology in the context of postinflationary scalar
preheating dynamics (Khlebnikov and Tkachev, 1996; Son,
1996).
The two-step procedure is in practice replaced by a

simplified description whereby one already starts with the
fully nonlinear classical-statistical description from the initial
time in the strong-field regime. This can be well controlled,
for a given regularization with lattice spacing a in the
weak-coupling limit, by ensuring that vacuum fluctuations

from modes with momenta near the cutoff ∼1=a do not
dominate the dynamics. Several studies have investigated the
range of validity of this simplified one-step mapping of the
original quantum theory onto the classical-statistical descrip-
tion [see Epelbaum, Gelis, and Wu (2014)]; the limitations of
the classical-statistical approximation were studied in detail
by Berges, Boguslavski et al. (2014c) for scalar field theories.
Figure 10 provides snapshots of the time evolution of the

gluon distribution for an analytically computed initial spec-
trum of fluctuations given by Epelbaum and Gelis (2013),
already employing the fully nonlinear classical-statistical
description from the initial time in the strong-field regime.
The nonequilibrium evolution is computed numerically using
the Wilson formulation of lattice gauge theory in real time
(Berges, Schenke et al., 2014). In addition to gauge-invariant
quantities, Coulomb type gauge fixed distribution functions
can be extracted for comparison to effective descriptions such
as kinetic theory. The definition of the distribution function
shown in Fig. 10 employs the two-point correlation function
of the gauge field following Berges, Boguslavski et al.
(2014a). While the gluon distribution as a function of trans-
verse momentum pT and rapidity wave number ν is dominated
by the boost-invariant (ν ¼ 0) background at early times
QSτ ∼ 1, an overoccupied plasma emerges on a time-
scale QSτ ∼ log2ðα−1S Þ.
A corresponding evolution is found irrespective of the

details of the fluctuations in the initial conditions. Figure 11
shows the example of the gauge-invariant longitudinal pres-
sure-pressure correlation function for different rapidity wave
numbers ν, averaged over transverse coordinates, as a function
of time (Berges and Schlichting, 2013). The evolution starts at
initial conditions with simplified initial fluctuations taken as
an additive contribution to the strong background gauge
fields. While primary unstable modes at nonzero rapidity
wave number exhibit quasiexponential amplification first,
secondary instabilities with enhanced growth rates set in with
a delay for higher momentum modes due to the previously
described nonlinear processes. Subsequently the instability
propagates toward higher momenta until saturation occurs and
the system exhibits a much slower dynamics (Romatschke and
Venugopalan, 2006b; Berges and Schlichting, 2013). This
behavior is similar to that observed in nonexpanding gauge
theories (Berges, Scheffler, and Sexty, 2008; Berges et al.,

Plasma i

FIG. 10. Time evolution of the gluon distribution at early times 0≲QSτ ≲ log2ðα−1S Þ from next-to-leading-order CGC initial
conditions (Epelbaum and Gelis, 2013) at weak coupling (αS ∼ 10−6). From Berges, Schenke et al., 2014.
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2009) and cosmological models for scalar field evolution
(Berges and Serreau, 2003).

C. Nonthermal attractor

The plasma instabilities lead to a far-from-equilibrium state
at time QSτocc ∼ log2ðα−1S Þ, which exhibits an overoccupied
gluon distribution whose characteristic properties may be
parametrized as

fðpT; pz; τoccÞ ¼
n0
2g2

Θ
	
Q −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ ðξ0pzÞ2

q 

: ð72Þ

In Eq. (72) n0 denotes the magnitude of the initial over-
occupancy of the plasma, averaged over spin and color
degrees of freedom up to the momentum Q. The momentum
scale Q is of comparable magnitude, albeit nontrivially
related, to the saturation scale QS. The degree of anisotropy
of the gluon distribution in momentum space is described by
the parameter ξ0.
While Eq. (72) does not capture all details of the state at

τocc, a precise matching to the glasma appears to be inessential
because of the existence of an attractor solution for the
subsequent dynamics. In fact, variation of the parameters of
Eq. (72) can be used to visualize attractor properties.
Figure 12 illustrates the evolution of the plasma in the

occupancy-anisotropy plane, which was introduced by
Kurkela and Moore (2011a, 2011b). The horizontal axis
shows the characteristic hard scale occupancy nHardðτÞ ¼
fðp⊥ ≃Q;pz ¼ 0; τÞ, while the vertical axis shows the
momentum-space anisotropy, which can be characterized in
terms of the ratio of typical longitudinal momenta (ΛL) to the
typical transverse momenta (ΛT ). These typical longitudinal
and transverse momentum scales are gauge-invariant quan-
tities expressed as ratios of the product of covariant derivatives
of the field strength tensor normalized by the energy density
(Berges, Boguslavski et al., 2014b). In a weak-coupling limit,

these are proportional to hp⊥i and hpzi for a single-particle
distribution fðp⊥; pz; τÞ.
The blue lines in Fig. 12 show a projection of lattice

simulation results onto the anisotropy-occupancy plane. The
different initial conditions are indicated by blue dots. After
some time all curves exhibit a similar evolution along the
diagonal, thereby illustrating the presence of a nonthermal
attractor independent of the initial conditions. The attractor
has a number of properties associated with nonthermal fixed
points that we discuss in Secs. IV.C.1–IV.C.3.

1. Far-from-equilibrium universal scaling

In addition to an insensitivity to details of the initial
conditions, the glasma’s evolution exhibits a universal scaling
behavior such that the dynamics in the vicinity of the attractor
becomes self-similar. In the weak-coupling limit, the gluon
distribution can be expressed in terms of a time-independent
scaling function fS (Berges, Boguslavski et al., 2014a):

fðτ; pT; pzÞ ¼
ðQτÞα
αS

fS(ðQτÞβpT; ðQτÞγpz): ð73Þ

This scaling behavior is characteristic of the phenomenon of
wave turbulence and has been observed in a variety of systems
that are far from equilibrium (Micha and Tkachev, 2004;
Berges et al., 2015a). As shown in the left panel of Fig. 13, the
moments of the longitudinal momentum distribution at differ-
ent times in the evolution collapse into universal curves for
each moment m of the single-particle distribution. One
observes a corresponding behavior for moments of the trans-
verse momentum distribution. This self-similar behavior of
the distribution allows one to extract numerically the values of
the scaling exponents in Eq. (73) as α ≃ −2=3, β ≃ 0, and
γ ≃ 1=3 (Berges, Boguslavski et al., 2014a).
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These values are consistent with those obtained analytically
from small-angle elastic scattering as the dominant process
and confirm the onset of the bottom-up thermalization
scenario (Baier et al., 2001). The competition between
longitudinal momentum broadening via small-angle scattering
and the redshift due to the longitudinal expansion leads
to a decrease of the typical longitudinal momenta as
pz=Q ∼ ðQτÞ−1=3, while the typical transverse momenta
remain approximately constant (pT=Q ∼ const). At the same
time, the gluon occupancy decreases as fðτ; pT ∼QÞ ∼
αS

−1ðQτÞ−2=3 and becomes of the order of unity on a timescale

Qτquant ∼ α−3=2S when quantum effects can no longer be
neglected. Beyond τquant, the classical-statistical framework
becomes inapplicable and one may resort to an effective
kinetic description, as discussed in Sec. V.

2. Identifying the weak-coupling thermalization scenario

In Fig. 12, we showed the predictions for various thermal-
ization scenarios for the momentum anisotropy with decreas-
ing occupancy. These thermalization scenarios are based on
estimates in effective kinetic theory and differ primarily in
how infrared momentum modes are treated. These differences
lead to different paths in the thermalization process. As the
system evolves with decreasing occupancy from the initial
f ∼ αS

−1, classical-statistical field theory simulations accu-
rately capture the physics of the infrared regime. This may be
used to distinguish whether a particular thermalization sce-
nario is indeed realized, especially since lattice simulations
and effective kinetic theory have an overlapping regime of
validity when 1 < f < αS

−1.
The gray lines in Fig. 12 indicate the different thermal-

ization scenarios put forward by Baier, Mueller, Schiff, and
Son (BMSS) (Baier et al., 2001), Bodeker (BD) (Bodeker,
2005), Kurkela and Moore (KM) (Kurkela and Moore,
2011a), and Blaizot, Gelis, Liao, McLerran, and
Venugopalan (BGLMV) (Blaizot et al., 2012). Unlike the
BMSS scenario, which is consistent with the lattice simulation
results and is discussed in detail in Sec. V, the BD scenario

considers the possibility that plasma instabilities lead to an
overpopulation f ∼ 1=αS of modes with jpj≲mD. The
coherent interaction of hard excitations with the soft sector
then causes an additional momentum broadening such that the
longitudinal momenta of hard excitations fall at a slower rate.
A possible variant of the impact of plasma instabilities for the
subsequent quantum evolution also underlies the KM sce-
nario. In the BGLMV scenario, elastic scattering is argued to
be highly efficient in reducing the anisotropy of the system.
This would generate an attractor with a fixed anisotropy such
that ΛL=ΛT remains constant in time.
The selection of the appropriate effective kinetic theory

using lattice simulation data represents the state of the art and
is the basis for the thermalization discussion in Sec. V. A
justification of the kinetic description solely based on pertur-
bation theory in its range of validity raises open questions on
how to incorporate the effects of infrared modes.

3. Nonthermal attractors in scalar field theories

Nonthermal attractors in overoccupied weakly coupled field
theories were studied earlier in the context of cosmological (p)
reheating and thermalization after inflation in the earlyUniverse
(Micha and Tkachev, 2003, 2004; Berges, Rothkopf, and
Schmidt, 2008). A large class of inflationary models employ
scalar field theories, where an initially coherent inflaton field
decays due to nonequilibrium instabilities. These may originate
from tachyonic or spinodal dynamics or parametric resonance
(Traschen and Brandenberger, 1990; Kofman, Linde, and
Starobinsky, 1994; Berges and Serreau, 2003). The instabilities
lead to overoccupied excitations whose transient dynamics can
exhibit self-similar evolution.
The dynamics is in general spatially isotropic on large

scales, in contrast to the longitudinal expansion relevant to
heavy-ion collisions. To compare the two, if we impose the
isotropic case of no expansion with overoccupied initial
conditions for gauge fields, the gluon distribution function
in the self-similar regime obeys fðt; pÞ ¼ t−4=7fSðt−1=7pÞ in
three spatial dimensions. This is characteristic of an energy
cascade toward a higher momentum scale due to weak

 0

 1

 2

 3

 4

m=0

x 10-2

-0.75 -0.5 -0.25 0 0.25 0.5 0.75
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

m=2

x 10-3
M

o
m

en
ts

 o
f 

th
e 

sp
ec

tr
u

m
:

( 
p z

 / 
Q

)m
  g

2  f(
p T

=
Q

,p
z,

τ)

Longitudinal momentum:    pz / Q

 0

 2

 4

 6

 8 m=0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
 0

 4

 8

 12

 16

m=2

R
es

ca
le

d
 m

o
m

en
ts

:

(Q
τ )

-α
+

m
γ  (

p z
 / 

Q
)m

  g
2  f(

p T
=

Q
,p

z,
τ)

Rescaled longitudinal momentum: (Qτ)γ  pz / Q

FIG. 13. Left panel: moments of the single-particle distribution function as a function of longitudinal momenta. The longitudinal
spectra are evaluated at transverse momentum p ≃Q. The different curves correspond to different times of the evolution: Qτ ¼ 750,
1000, 1500, 2000, 3000 (from top to bottom). Right panel: the rescaled moments of the distribution function are found to collapse onto a
single curve when plotted as a function of the rescaled longitudinal momentum variable. From Berges, Boguslavski et al., 2014a.

Jürgen Berges et al.: QCD thermalization: Ab initio approaches and …

Rev. Mod. Phys., Vol. 93, No. 3, July–September 2021 035003-27



wave turbulence (Kurkela and Moore, 2011b, 2012;
Schlichting, 2012).
In the fixed-box case for a relativistic real scalar field theory

in the self-similar regime, the distribution function obeys
fϕðt; pÞ ¼ t−ðdþ1Þ=ð2l−1ÞfϕSðt−1=ð2l−1ÞpÞ for l-vertex scattering
processes (Micha and Tkachev, 2004). For quartic (l ¼ 4)
self-interactions, the exponents are identical to the gauge
theory with the same geometry. However, in the presence of
spontaneous symmetry breaking the nonzero field expectation
value leads to effective three-vertex scattering processes off
the macroscopic field. These analytical estimates were
numerically verified using 2PI effective action techniques
by Berges and Wallisch (2017) and Shen and Berges (2020)
for an N-component scalar field theory with quartic self-
interactions. In classical-statistical simulations, which con-
struct the ensemble averages from individual runs with a
nonzero field value, the observed scaling exponents are
consistent with the estimates in the presence of an effective
three vertex (Micha and Tkachev, 2004).
Berges et al. (2015b) analyzed longitudinally expanding N-

component scalar field theories starting from overoccupied
initial conditions. In the vicinity of the nonthermal attractor,
scaling behavior similar to that in a non-Abelian gauge theory
is observed. The universal scaling exponents and shape of the
scaling function agree well with those obtained for the early
stage of the bottom-up thermalization process for gauge
theories for not too late times.
As an example, Fig. 14 shows results for the N ¼ 4

component scalar theory for intermediate transverse momen-
tum pT ∼Q=2, where the normalized scaling distribution as a
function of the rescaled longitudinal momentum is given. All
data curves at different times in the scaling regime collapse
onto a single curve using the scaling exponents α ¼ −2=3 and
γ ¼ 1=3. This scaling curve is seen to be indistinguishable
from the corresponding scaling curve for a non-Abelian gauge
theory, which shares the same scaling exponents. The results
provide a striking manifestation of universality far from
equilibrium.

D. Far-from-equilibrium separation of scales and ultrasoft scale
dynamics

The weakly coupled QCD plasma exhibits a hierarchy of
scales in thermal equilibrium at high temperature T, with the
separation of hard momenta ∼T dominating the system’s
energy density, soft electric screening or Debye momenta
∼gT, and ultrasoft magnetic momenta ∼g2T for
g2 ¼ 4παS ≪ 1. A similar separation of scales exists far from
equilibrium in the vicinity of the nonthermal attractor, where
for comparison we consider the spatially isotropic case
without longitudinal expansion.
Starting from overoccupied initial conditions, in this fixed-

box case the gluon distribution function in the self-similar
regime obeys fðt; pÞ ¼ t−4=7fsðt−1=7pÞ in three spatial
dimensions (Kurkela and Moore, 2011b, 2012; Schlichting,
2012). Accordingly, the time-dependent hard momentum
scale dominating the energy density is given by ΛðtÞ ∼ t1=7.

The Debye scale mDðtÞ ∼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
d3pfðt; pÞ=p

q
∼ t−1=7

decreases with time (Kurkela and Moore, 2012; Berges,
Boguslavski et al., 2014b; Mace, Schlichting, and
Venugopalan, 2016; Lappi and Peuron, 2017; Boguslavski
et al., 2018).
At even lower scales, the dynamics becomes nonperturba-

tive for momenta KðtÞ, where the occupancy reaches ∼1=αS,
and the perturbative notion of a gluon distribution function
becomes problematic in this ultrasoft regime. As suggested by
Kurkela and Moore (2012), the evolution of the ultrasoft scale
may be estimated as KðtÞ ∼ t−2=7 using the power law form of
the occupation number distribution extracted in the perturba-
tive regime. While all characteristic momentum scales are
initially of the same order QS, this suggests that during the
self-similar evolution a dynamical separation of these scales
KðtÞ ≪ mDðtÞ ≪ ΛðtÞ occurs as time proceeds.

1. Nonequilibrium evolution of the spatial Wilson loop

A proper description of the nonperturbative low momentum
regime can be based on gauge-invariant quantities. This
should take into account that the infrared excitations of
non-Abelian gauge theories are extended objects, which
can be computed from Wilson loops (Berges, Scheffler,
and Sexty, 2008; Dumitru, Lappi, and Nara, 2014; Mace,
Schlichting, and Venugopalan, 2016; Berges, Mace, and
Schlichting, 2017; Berges et al., 2019). At the magnetic
scale, spatial Wilson loops capture the long-distance behavior
of gauge fields A, which is defined as

W ¼ 1

Nc
TrPe−ig

R
C
Aiðz;tÞdzi ; ð74Þ

where the index i labels spatial components (Montvay and
Munster, 1997). Here P denotes path ordering along a closed
line C, and the trace is in the fundamental representation
of SUðNcÞ.
The behavior of the spatial Wilson loop for large areas A ≫

1=Q2
S enclosed by the line C reflects the long-distance or

infrared properties of the strongly correlated system. Like
the large-distance behavior of the spatial Wilson loop in a
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FIG. 14. The normalized distribution for the scalar theory fϕ as
a function of the rescaled longitudinal momentum at different
times in the self-similar regime compared to the gauge theory fg.
From Berges et al., 2015b.
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high-temperature equilibrium plasma, the spatial Wilson loop
exhibits an area law in the overoccupied regime of the non-
equilibrium plasma, i.e.,− loghWi ∼ A (Berges, Scheffler, and
Sexty, 2008; Dumitru, Lappi, and Nara, 2014; Mace,
Schlichting, and Venugopalan, 2016).
However, here the area-law behavior occurs in the self-

similar regime of the nonequilibrium evolution. This is
demonstrated in Fig. 15, which shows the logarithm of the
Wilson loop as a function of the time-rescaled area ∼t−ζAwith
universal scaling exponent ζ (Berges, Mace, and Schlichting,
2017; Berges et al., 2019). Results for the SUð2Þ and SUð3Þ
gauge groups are both displayed. After we take into account
the Casimir color factors, normalizing the data points with
CF ¼ ðN2

c − 1Þ=ð2NcÞ discloses similar behaviors for Nc ¼ 2

and Nc ¼ 3 (Berges, Mace, and Schlichting, 2017). The
scaling exponent ζ ¼ 0.54� 0.04 ðstatÞ � 0.05 ðsystÞ agrees
for both gauge groups to good accuracy (Berges et al., 2019).
This value of the scaling exponent for the ultrasoft scale

ffiffiffi
σ

p
obtained from lattice simulations and the perturbatively
motivated result for the scaling of KðtÞ (Kurkela and
Moore, 2012) are close, corroborating

ffiffiffi
σ

p
∼ K.

The positive value for ζ signals evolution toward larger
length scales, with a growing characteristic area AðtÞ ∼ tζ. For
large A=tζ one observes from Fig. 15 the generalized area-law
behavior (Berges, Mace, and Schlichting, 2017; Berges et al.,
2019)

− loghWi ∼ A=tζ: ð75Þ

This implies a time-dependent string tension scale
σðtÞ ¼ −∂ loghWi=∂A ∼ t−ζ.
Mace, Schlichting, and Venugopalan (2016) related this

behavior to the rate of topological transitions, the so-called
sphaleron transition rate:

Γsphaleron ¼ Cσ2; ð76Þ

where C is a number of the order of unity. The picture that
emerges is that the rate of topological transitions is large at

early times (Γsphaleron ∼Q4
S) but subsequently decreases with

time at a rate dictated by the universal scaling exponent ζ. One
expects this rate to converge from above to the thermal rate for
sphaleron transitions in a high-temperature plasma (Moore
and Tassler, 2011). We return to the implications of these
results for the evolution of anomalous currents in Sec. IV.E.
Figure 16 summarizes the behavior of the different char-

acteristic scales in the self-similar regime far from equilib-
rium. Apart from the perturbative behavior of the hard scale,
classical-statistical lattice simulations results are given for the
Debye and the nonperturbative string tension scale (Mace,
Schlichting, and Venugopalan, 2016). The results demonstrate
the dynamical separation of scales as a function of time.

2. Effective condensate dynamics

The traced Wilson loop in Eq. (74) may be directly related
to correlation functions of a gauge-invariant scalar field (Ford
et al., 1998; Mitreuter, Pawlowski, and Wipf, 1998; Gasenzer
et al., 2014). In thermal equilibrium, this scalar field serves as
an order parameter for the confinement-deconfinement phase
transition of the underlying gauge theory (Braun, Gies, and
Pawlowski, 2010; Fister and Pawlowski, 2013). In the self-
similar scaling regime of the nonthermal attractor, the
dynamical evolution of the scalar order-parameter field modes
toward the infrared bears many similarities (Berges et al.,
2019) to the dynamics of Bose condensation in nonrelativistic
field theories far from equilibrium (Berges and Sexty, 2012;
Piñeiro Orioli, Boguslavski, and Berges, 2015; Chantesana,
Piñeiro Orioli, and Gasenzer, 2019). Even quantitatively, the
values for the infrared scaling exponents in the different
theories agree well within errors (Berges et al., 2019).
The nonequilibrium infrared dynamics for scalars starting

from overoccupation has been studied in detail (Berges,
Rothkopf, and Schmidt, 2008; Scheppach, Berges, and
Gasenzer, 2010; Berges and Sexty, 2011, 2012; Nowak,
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Sexty, and Gasenzer, 2011; Nowak et al., 2012; Berges et al.,
2015b; Piñeiro Orioli, Boguslavski, and Berges, 2015; Moore,
2016; Deng et al., 2018; Walz, Boguslavski, and Berges,
2018; Boguslavski and Piñeiro Orioli, 2019; Chantesana,
Piñeiro Orioli, and Gasenzer, 2019; Piñeiro Orioli and
Berges, 2019; Shen and Berges, 2020). The emergence of
self-similar scaling behavior is closely related to the existence
of nonthermal fixed points (Berges, Rothkopf, and Schmidt,
2008; Berges and Hoffmeister, 2009; Berges and Mesterhazy,
2012; Corell et al., 2019). For scalar N-component theories,
the behavior can be approximately described by a large-N
effective kinetic theory to next-to-leading order, which
describes the perturbative higher momentum regime as well
as the nonperturbative infrared dynamics (Walz, Boguslavski,
and Berges, 2018).
Both relativistic and nonrelativistic scalar theories can show

the same infrared scaling and condensation properties (Piñeiro
Orioli, Boguslavski, and Berges, 2015). This is true even for
the anisotropic dynamics of relativistic scalars with longi-
tudinal expansion along the z direction; the latter geometry is
relevant in the context of heavy-ion collisions, and scalar and
gauge theories show similar behaviors for higher momenta in
this case (Berges et al., 2015a). Because of the strong
enhancement in the overoccupied infrared regime, the low
momentum modes exhibit essentially isotropic properties
despite longitudinal expansion.
Tabletop experiments with ultracold quantum gases have

discovered universal transport processes toward the infrared
starting from initial overoccupation of bosonic excitations of
trapped atoms (Erne et al., 2018; Prüfer et al., 2018), which is
similar to the case discussed here. This is discussed further in
Sec. VIII.

E. Early-time fermion production and quantum anomalies

In the high-energy limit, strong gauge fields dominate the
earliest stages of the plasma’s spacetime evolution. However,
the Bose enhancement from overoccupied gluons can lead to a
rapid production of quarks with important phenomenological
consequences for heavy-ion collisions, such as direct photon
production from the electrically charged quarks (Chatterjee,
Bhattacharya, and Srivastava, 2010) or the breaking of
classical symmetries due to anomalies, with a prominent
example being the chiral magnetic effect (Kharzeev et al.,
2016; Koch et al., 2017). At early times these processes occur
far from equilibrium and require suitable techniques for their
computation. We now discuss these techniques and their
consequences for the production and evolution of fermions
off equilibrium.

1. Real-time simulations for fermions and gauge fields beyond the
classical-statistical approximation

Since identical fermions cannot occupy the same state, their
quantum nature is in general highly relevant and a consistent
quantum treatment of their dynamics is crucial. In the QCD
Lagrangian in Eq. (1), quarks appear to be bilinear fields.
Their real-time quantum dynamics may therefore be computed
by numerically solving the operator Dirac equation coupled to
the gluon fields.

This can be achieved in an approximation where the gauge
fields are treated using classical-statistical field theory and by
employing a mode function analysis of the operator Dirac
equation for quarks with available lattice simulation tech-
niques (Aarts and Smit, 1999; Borsanyi and Hindmarsh, 2009;
Berges, Gelfand, and Pruschke, 2011; Saffin and Tranberg,
2011; Kasper, Hebenstreit, and Berges, 2014). For strong
gauge fields ∼1=g, this approximate description amounts to a
systematic expansion of the quantum dynamics in
αS ≡ g2=ð4πÞ, where the leading order includes the full
(nonperturbative) classical-statistical theory of gluons, and
the next-to-leading order takes into account backaction of the
quarks onto the gluons, which is controlled by ∼αSNf for Nf

quark flavors.
This can be also directly understood from the path integral

formulation of the quantum theory, as described in detail by
Kasper, Hebenstreit, and Berges (2014) for Abelian and non-
Abelian gauge theories with fermions on a lattice. Performing
the Gaussian integration for the quark fields in QCD analyti-
cally yields a path integral for the gauge fields A� on the
forward (þ) and backward (−) parts of the closed time contour
(see Sec. III) with an effective action

Seff ½Aþ; A−� ¼ Tr logΔ−1½Aþ; A−� þ iSYM½Aþ; A−�: ð77Þ

The term Tr logΔ−1½Aþ; A−� arises from the Gaussian integral
over the quarks, where iΔ−1½Aþ; A−� denotes the inverse
fermion propagator in the presence of the gauge fields.
Here SYM½Aþ; A−� is the Yang-Mills action of the pure gauge
theory evaluated on the upper and lower branches of the
closed time contour.
The power counting for strong gauge fields is most

efficiently done by a rotation of the � basis for the gauge
fields, splitting the gauge fields into a classical part Ā and a
quantum one Ã, according to

Aþ ¼ 1

g
Āþ g

2
Ã; A− ¼ 1

g
Ā −

g
2
Ã: ð78Þ

Expressed thus in terms of Ā and Ã, the interaction terms of
SYM can be similarly decomposed into classical and quan-
tum parts.
This is illustrated in Fig. 17, which indicates the classical

three-vertex ∼Ā2Ã and four-vertex ∼Ā3Ã parts of SYM, which
are linear in the quantum field Ã. Figure 18 gives the
corresponding quantum three-vertex ∼g4Ã3 and four-vertex
∼g4ĀÃ3 parts of SYM, which are cubic in the quantum field Ã
and suppressed by 2 powers of αS relative to their classical
counterparts.
A similar analysis can be done for the Tr logΔ−1½Ā; Ã�

contribution coming from the quark fluctuations. Expanding
this contribution in powers of the quantum field Ã yields
(Kasper, Hebenstreit, and Berges, 2014)

Tr logΔ−1½Ā; Ã� ∼ g2Trðjq½Ā�ÃÞ þ g4OðÃ3Þ: ð79Þ

The linear term in Ã is proportional to the quark vector current
in the presence of the classical gauge field jq½Ā� (Aarts and
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Smit, 1999; Borsanyi and Hindmarsh, 2009; Berges, Gelfand,
and Pruschke, 2011; Saffin and Tranberg, 2011; Kasper,
Hebenstreit, and Berges, 2014).
Correspondingly, in this formulation the limit g ¼ 0 rep-

resents the classical-statistical field theory limit of pure Yang-
Mills theory. In fact, the rescalings with the gauge coupling
employed in Eq. (78) reflect the fact that for classical-
statistical field theory the coupling can always be scaled
out by suitable field redefinitions, while this not possible in
the presence of quantum corrections. Since fermions are
genuinely quantum, one cannot scale out the coupling from
their contributions, as seen in Eq. (79), which starts at the
order of αS.
According to the previous analysis, genuine quantum cor-

rections to the dynamics in pure Yang-Mills theory enter only at
the order of α2S. Both the classical-statistical field contribution
for the Yang-Mills part and the lowest contribution from quark
fluctuations toSeff are linear in Ã.Whenweneglect higher-order
corrections coming from terms with higher powers of Ã, the
stationarity condition δSeff ½Ā; Ã�=δÃ ¼ 0 yields the classical
Yang-Mills evolution equation for Āwith the quark current as a
source term. This can be efficiently implemented numerically
with sampling techniques using the Wilson plaquette formu-
lation on a lattice (Aarts and Smit, 1999; Borsanyi and
Hindmarsh, 2009; Berges, Gelfand, and Pruschke, 2011;
Saffin and Tranberg, 2011; Kasper, Hebenstreit, and
Berges, 2014).
Numerical solutions of the nonequilibrium time evolution

of gluons with dynamical quarks were obtained by Gelis,
Kajantie, and Lappi (2006) from (2þ 1)-dimensional boost-
invariant simulations, by Gelfand, Hebenstreit, and Berges
(2016) in 3þ 1 spacetime dimensions for a nonexpanding
system, and by Tanji and Berges (2018) for a realistic case
with longitudinal expansion. The calculations provide impor-
tant first-principles results on early quark production and the
approach toward chemical equilibrium. The results for the
gluon sector are in line with earlier simulations without
quarks, as expected at weak couplings, including self-similar

scaling characteristics of the first stage of the bottom-up
thermalization scenario (Baier et al., 2001; Berges,
Boguslavski et al., 2014a). Several properties of the quark
number distributions are carried over from the gluon distri-
butions, such as longitudinal momentum broadening (Tanji
and Venugopalan, 2017; Tanji and Berges, 2018).
We also note recent work on the real-time propagation of

heavy quarks in the glasma that are important for a first-
principles understanding of quarkonium production in heavy-
ion collisions (Lehmann and Rothkopf, 2020).
Classical-statistical lattice simulations cannot correctly

describe the late-time thermalization dynamics, when typical
gluon occupancies become of the order of unity. The evolution
may then be continued with effective kinetic descriptions, as
reported in Sec. V.E.3.

2. Real-time off-equilibrium dynamics of quantum anomalies

The pair production of quarks and antiquarks leads to
macroscopic manifestations of quantum anomalies, corre-
sponding to the breaking of classical symmetries by quantum
effects. These may be observable in heavy-ion collisions in the
form of a CME whereby topological transitions in the strong
electromagnetic B fields at early times generate a vector
current in the direction of the B field (Fukushima, Kharzeev,
and Warringa, 2008; Kharzeev, McLerran, and Warringa,
2008). The prospects for the discovery of this and related
phenomena were reviewed by Kharzeev et al. (2016) and
Koch et al. (2017).
The key idea is that transitions between different topologi-

cal sectors of the non-Abelian gauge theory can induce a net
axial charge asymmetry j0a of light quarks, which can fluctuate
on an event-by-event basis. In off-central heavy-ion collisions
where strong electromagnetic B⃗ fields are present, this axial
charge asymmetry can be converted into an electric current
j⃗ ∼ j0aB⃗ that is potentially observable. Since the large “mag-
netar strength” B fields die off quickly after the collision
(Skokov, Illarionov, and Toneev, 2009), the CME is most
pronounced at the earliest times after the collision.
The nonequilibrium dynamics of topological transitions in a

highly occupied, albeit nonexpanding, glasma was studied by
Mace, Schlichting, and Venugopalan (2016), who performed
classical-statistical simulations and employed a cooling tech-
nique to isolate infrared dominated topological transitions.
Since gluon saturation generates a large-scale QS ≫ ΛQCD,
so-called sphaleron transitions generate real-time transitions
between configurations characterized by integer valued topo-
logical charge that may be separated by an energy barrier.
The boost-invariant glasma configurations discussed in

Sec. III.C.2 do not correspond to integer valued configurations
of topological charge (Kharzeev, Krasnitz, and Venugopalan,
2002); sphaleron transitions therefore go hand in hand with
the explosive growth of plasma instabilities that break boost
invariance, a phenomenon named “exploding sphalerons”
(Shuryak and Zahed, 2003). As noted in Eq. (76), the
sphaleron transition rate is controlled by the spatial string
tension in the glasma.
While off-equilibrium topological transitions are an essen-

tial ingredient, the CME in heavy-ion collisions is mediated by
the transport of quarks in this topological background and in

FIG. 17. Illustration of rescaled classical three and four vertices
that are independent of the coupling. From Kasper, Hebenstreit,
and Berges, 2014.

FIG. 18. Illustration of rescaled quantum three and four vertices
that are ∼g4. From Kasper, Hebenstreit, and Berges, 2014.
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the presence of external B fields. To address this problem of
anomaly transport in such backgrounds, real-time lattice
simulations were performed with dynamical fermions for
(3þ 1)-dimensional Abelian and non-Abelian gauge theories
by Müller, Schlichting, and Sharma (2016) and Mace et al.
(2017) for given background gauge fields. In addition,
transient anomalous charge production in strong-field QCD
was studied by Tanji, Mueller, and Berges (2016) and
Tanji (2018).
Anomalies have been investigated for Abelian theories off

equilibrium for the fully dynamical situation, including the
backreaction of the fermions onto the gauge fields, in one
(Zache et al., 2019; Kharzeev and Kikuchi, 2020), two (Ott
et al., 2019), and three (Mueller, Hebenstreit, and Berges,
2016; Mace et al., 2019) spatial dimensions. Zache et al.
(2019) and Kharzeev and Kikuchi (2020)studied dynamical
topological transitions in the massive Schwinger model with a
θ term as a prototype model for CP violation. A dynamical
order parameter for quantum phase transitions between differ-
ent topological sectors is established that can be accessed
through fermion two-point correlators. Using exact diagonal-
ization techniques, the topological transitions have been
shown to persist beyond the weak-coupling regime (Zache
et al., 2019).
Quantum fluctuations lead to an anomalous violation of

parity symmetry in quantum electrodynamics for an even
number of spatial dimensions that was studied by Ott et al.
(2019), who used the previously described lattice simulation
techniques. While the leading parity-odd electric current
vanishes in vacuum, a noncancellation of the anomaly for
strong electric fields off equilibrium is observed with distinct
macroscopic signatures.
The nonlinear dynamics of the CME in QED was computed

by Mueller, Hebenstreit, and Berges (2016) using real-time
lattice simulations. For field strengths exceeding the
Schwinger limit for pair production, one encounters a highly
absorptive medium with anomaly-induced dynamical refrac-
tive properties. A tracking behavior is found in which the
system spends the longest time near collinear field configu-
rations with maximum anomalous current.
A phenomenon observed in such simulations of off-equi-

librium QED plasmas is that of chiral instabilities proceeding
through the primary and secondary instabilities that we
discussed previously culminating in a self-similar turbulent
magnetic helicity transfer to macroscopic length scales (Mace
et al., 2019); see also Buividovich and Ulybyshev (2016).

V. EQUILIBRATION IN QCD KINETIC THEORY

A. The quasiparticle description of QCD plasmas

To solve the quantum equations of motion [Eq. (66)] for the
late-time evolution toward local thermal equilibrium, an effec-
tive description with a well-defined range of validity at certain
long time and distance scales is needed. Awell-known example
is kinetic theory,which describes the state of the system in terms
of phase space distributions of particles. Such an effective
kinetic description of the plasma may be obtained from n-
particle irreducible quantum effective action techniques by

following along the lines of Blaizot and Iancu (2002), Berges
(2004b), and Carrington and Kovalchuk (2009).
The derivation of kinetic theory from the underlying

quantum field theory involves a series of approximations.
First, for the notion of particles with a well-defined position
and momentum between collisions to be valid, the de Broglie
wavelength of the (quasi)particles must be small compared to
the mean free path between collisions. Likewise, quantum
interference effects between successive scattering events
should not spoil a description in terms of independent
scatterings. For the weakly coupled QCD plasma at high
temperature, these questions were addressed in a series of
works culminating in the kinetic theory formulation by
Arnold, Moore, and Yaffe (2003a).
The phase space distribution functions employed in kinetic

descriptions are derived from two-point correlation functions
of the underlying quantum field theory. In local thermal
equilibrium, the system is locally homogeneous and time
independent. Therefore, all two-point functions can depend
only on the relative coordinate sμ ¼ xμ − yμ. For slow
variations in space and time of the central coordinates
[Xμ ¼ ðxμ þ yμÞ=2], one considers the evolution in X given
by a gradient expansion of Eq. (66) for the spectral function ρ
and the statistical function F. To the lowest order in gradients,
the evolution equation for ρ is not dynamical, and a quasi-
particle description emerges from an on-shell spectral function
ρ in the weak-coupling limit (Berges, 2004b).
Here we consider the temperature T of the QCD plasma to

be the single dominant energy scale in the problem. At leading
order in the coupling, the self-energy already receives con-
tributions from an infinite number of perturbative loop
diagrams with hard OðTÞ internal momentum: hard thermal
loops (HTLs) (Braaten and Pisarski, 1990). This results in
quasiparticles acquiring a screening mass m ∼ gT.
The equation of motion for the statistical function is solved

by generalizing the Kubo-Martin-Schwinger relation to intro-
duce a nonequilibrium distribution function fðX; pÞ:

FðX; pÞ ¼ −i½1
2
� fðX; pÞ�ρðX; pÞ; ð80Þ

where þ is for bosons, − is for fermions and the quasiparticle
momentum pμ is the Fourier conjugate to the relative
coordinate sμ. In general, there can be separate distributions
for different color, spin, and polarization components of the
two-point correlation function.
From the equation of motion for the statistical function one

obtains the kinetic Boltzmann equation for the distribution
function, which is written as35

pμ∂μfðX; pÞ ¼ −C½f�: ð81Þ

The leading-order collision term C½f� is obtained using a
systematic power counting in the coupling constant; this
computation is nontrivial and various diagrammatic
approaches have been employed to derive the relevant

35Keeping interactions with strong background gauge fields leads
to more general equations (Mrówczyński, Schenke, and Strickland,
2017).
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collision processes. For a systematic derivation of kinetic
theory from the underlying field theory, see Jeon (1995), Jeon
and Yaffe (1996), and Calzetta, Hu, and Ramsey (2000) for the
scalar case and Aarts and Martinez Resco (2005) and Gagnon
and Jeon (2007) for Abelian field theories.
For non-Abelian gauge theories at high temperatures, the

leading-order collision kernel appears at g4 order. However, in
addition to elastic scattering processes, there are collinear
splitting processes that contribute at the same order. The
importance of the latter was recognized only later (Aurenche
et al., 1998; Arnold, Moore, and Yaffe, 2001). The corre-
sponding vertex corrections for the underlying quantum field
theory can be formulated using higher n-PI effective actions
(Berges, 2004b; Carrington and Kovalchuk, 2009).
Once relevant physics processes are accounted for at the

given order, Eq. (81) describes the nonequilibrium evolution
of QCD plasmas with the coupling constant g as the only free
parameter at high temperature (with the possible exception of
heavy-quark masses). In particular, one can use linearized
kinetic theory to compute various transport properties of the
plasma around thermal equilibrium: shear and bulk viscos-
ities, conductivity, diffusion, and higher-order transport coef-
ficients (Arnold, Moore, and Yaffe, 2003b; Arnold, Dogan,
and Moore, 2006; York and Moore, 2009). For a recent
comprehensive review on perturbative thermal QCD tech-
niques in kinetic theory and beyond, see Ghiglieri et al.
(2020). As we later discuss in detail, the QCD kinetic theory
also provides a phenomenologically successful picture of
QCD thermalization in heavy-ion collisions (Abraao York
et al., 2014; Kurkela and Lu, 2014; Kurkela and Zhu, 2015;
Keegan, Kurkela, Mazeliauskas, and Teaney, 2016). For a
complementary review, see Schlichting and Teaney (2019).

1. Chiral kinetic theory

In the rest of Sec. V, we discuss in detail the equilibration of
QCD in the framework of spin- and color-averaged kinetic
theory. Spin- and color-dependent kinetic descriptions require
extensions of phase space distributions (Berezin and Marinov,
1977; Mueller and Venugopalan, 2019). Such theories must
include a relativistic covariant description of Berry curvature
and of the dynamics of the chiral anomaly for spinning and
colored particles in external background fields (Stephanov and
Yin, 2012; Son and Yamamoto, 2013; Chen, Son, and
Stephanov, 2015).
Recent work in this direction includes a Wigner function

approach (Gao and Liang, 2019; Hattori, Hidaka, and Yang,
2019; Weickgenannt et al., 2019; Sheng, Wang, and Huang,
2020; Yang, Hattori, and Hidaka, 2020), chiral effective field
theory (Carignano, Manuel, and Torres-Rincon, 2019), and a
worldline formalism (Mueller and Venugopalan, 2017). An
important question to resolve in this context is the relation of
the dynamics of Berry’s phase to that of the chiral anomaly
(Fujikawa, 2006; Mueller and Venugopalan, 2018; Yee and
Yi, 2020). A common goal of these approaches is a consistent
framework to describe anomalous transport in QCD that can
be matched to an anomalous relativistic hydrodynamic
description at late times (Inghirami et al., 2020). These studies
have strong interdisciplinary connections to chiral transport

across energy scales ranging from Weyl and Dirac semimetals
to astrophysical phenomena (Landsteiner, 2016).

B. Leading-order kinetic theory

We recap here the main ingredients of QCD effective
kinetic theory at leading order in the coupling constant
(Arnold, Moore, and Yaffe, 2003a). We consider the time
evolution of the color and spin- or polarization-averaged
distribution function fs with effective 2 ↔ 2 scatterings
and 1 ↔ 2 collinear radiation terms. For a transversely
homogeneous and boost-invariant system (applicable at
early times in central heavy-ion collisions), the phase space
distribution fsðτ;pÞ≡ fsp is a function only of Bjorken

time τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and momentum. The resulting

Boltzmann equation is�
∂τ −

pz

τ

∂
∂pz

�
fsp ¼ −Cs

2↔2½f�ðpÞ − Cs
1↔2½f�ðpÞ; ð82Þ

with the massless36 dispersion relation p0 ¼ jpj ¼ p.
Consequently, this kinetic theory describes a conformal
system with temperature T as the only dimensionful scale.
The index s refers to different particle species in the theory
such as quarks and gluons in SUðNcÞ gauge theory with Nf

fermion flavors. The second term on the left-hand side is due
to the longitudinal gradients in a boost-invariant expansion
(Baym, 1984). The expansion redshifts the distribution in the
pz direction, thereby making it more anisotropic along the
longitudinal direction. Different stages of the thermalization
process are defined by the competition between the expansion
that drives the system away from equilibrium and the collision
terms that isotropize and equilibrate the system.

1. Elastic two-body scattering

The 2 ↔ 2 collision term for particle species s ¼ a is

Ca
2↔2½f�ðpÞ ¼

1

4pνa

X
bcd

Z
d3kd3p0d3k0

ð2πÞ92k2p02k0

× ffapfbkð1� fcp0 Þð1� fdk0 Þ
− fcp0fdk0 ð1� fapÞð1� fbkÞg
× jMab

cd j2ð2πÞ4δð4Þðpμ þ kμ − p0μ − k0μÞ; ð83Þ

where
P

bcd is the sum over all particle and antiparticle
species. The second line represents the phase space loss and
gain terms. jMab

cd j2 is the 2 ↔ 2 scattering amplitude squared
and summed over spin and color degrees of freedom of the
external legs, with νg ¼ 2ðN2

c − 1Þ for gluons and νq ¼ 2Nc

for quarks.
The scattering matrix element jMab

cd j2 in Eq. (83) should be
calculated using in-medium corrected propagators and verti-
ces from the HTL effective Lagrangian (Ghiglieri et al., 2020).

36At leading order, we can neglect the thermal mass correction

ms ∼ gT to the dispersion relation p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

s

p
for hard mo-

menta jpj ∼ T on external legs.
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At leading order in the coupling constant and for hard p ∼ T
external legs, the scattering matrix element coincides with the
tree level vacuum matrix element; for instance, in the case of
two-gluon scattering

jMgg
ggj2 ¼ 8νgN2

cg4
�
3 −

st
u2

−
su
t2

−
tu
s2

�
; ð84Þ

where s, t, and u are the Mandelstam variables. In-medium
corrections become relevant when −t;−u ∼ ðgTÞ2 is small but
s is large, as is the case for the small-angle scattering of hard
particles. When the exchanged gluon or quark is soft, so that
q ¼ jp0 − pj ≪ T in the t channel (and likewise in the u
channel), the vacuum collision matrix suffers from a soft
Coulomb divergence jMj2 ∝ 1=ðq2Þ2. Therefore, the prob-
lematic scattering matrix elements in this region need to be
reevaluated using the nonequilibrium propagators for internal
lines, which regulate the divergence (Arnold, Moore, and
Yaffe, 2003a).
For isotropic distributions and hard p ∼ T external legs, the

soft self-energy (which cuts off the long-range Coulomb
interactions) is proportional to the in-medium effective masses
of hard gluons and quarks (Arnold, Moore, and Yaffe, 2003a).
For gluons, it is given by (assuming that fqp ¼ fq̄p)

m2
g ¼ 2g2

Z
d3p

ð2πÞ3p ½Ncf
g
p þ Nff

q
p�. ð85Þ

However, for anisotropic distributions the HTL resummed
gluon propagator37 develops poles at imaginary frequency,
indicating the presence of a soft gauge instability
(Mrówczyński, 1997; Mrówczyński, Schenke, and
Strickland, 2017). Formally, this restricts the applicability of
kinetic theory to parametrically small anisotropies (Arnold,
Moore, and Yaffe, 2003a).
The rich physics of plasma instabilities has been studied

extensively (Mrówczyński, Schenke, and Strickland, 2017).
While such instabilities are of fundamental importance at early
times, classical-statistical simulations of the nonequilibrium
field dynamics of the glasma (discussed in Sec. IV.C) show
that such instabilities do not play a significant role at late times
in expanding (3þ 1)-dimensional non-Abelian plasmas.
Motivated by these findings, phenomenological approaches
in kinetic theory simulations for anisotropic distributions use
an isotropic screening prescription (Abraao York et al., 2014;
Kurkela and Zhu, 2015).

2. Fokker-Planck limit of elastic scatterings

For isotropic distributions, the elastic collision kernel for
soft momentum exchange can be rewritten as a drag and
diffusion process in momentum space (Moore and Teaney,
2005; Hong and Teaney, 2010; Blaizot, Wu, and Yan, 2014;
Ghiglieri and Teaney, 2015; Ghiglieri, Moore, and Teaney,
2016, 2018a; Schlichting and Teaney, 2019). First, one needs
to separate the full collision kernel into a diffusion term for

soft momentum transfers q < μ and large-angle scatterings
q > μ, where the cutoff scale μ satisfies gT ≪ μ ≪ T:

Cg
2↔2½f�ðpÞ ¼ Cg

diff ½f�ðμÞjq<μ þ Cg
2↔2½f�ðpÞjq>μ: ð86Þ

The physics of the diffusion term is that of hard particles being
kicked around by the fluctuating soft gauge fields generated
by other particles. For an isotropic nonequilibrium plasma, the
expectation value of such gauge field fluctuations can be
related to equilibrium fluctuations with the help of an effective
temperature T� (taking fqp ¼ fq̄p):

T� ≡ g2

m2
g

Z
d3p
ð2πÞ3 ½Ncf

g
pð1þ fgpÞ þ Nff

q
pð1 − fqpÞ�: ð87Þ

Note that, although T� ¼ T in equilibrium, T� is distinct from
the effective temperature defined by the energy density and
used in Secs. V.E and VI. Evaluating the collision kernel in the
limit of soft momentum transfer and isotropic distributions
results in a Fokker-Planck type collision term

Cg
diff ½f�ðμÞ ¼ ηDðpÞp̂i ∂

∂pi ½fgpð1þ fgpÞ� þ 1

2
qij

∂2fgp
∂pi∂pj ;

ð88Þ

where ηD is the drag coefficient, qij ¼ q̂Lp̂ip̂jþ
ð1=2Þq̂ðδij − p̂ip̂jÞ is the diffusion tensor, and p̂i ¼ pi=p is
the unit vector.
The transport coefficients q̂ and q̂L can be evaluated using

the resumed HTL propagators, while ηD is constrained by the
Einstein relation and the requirement that Eq. (88) vanish in
equilibrium (Arnold, 2000a, 2000b; Moore and Teaney, 2005;
Ghiglieri, Moore, and Teaney, 2016). The leading-order result
for q̂ is

q̂ðμÞ ¼ g2NcT�m2
g

2π
log

μ2

2m2
g
: ð89Þ

The UV divergence in the diffusion term is canceled by the
corresponding IR divergence in the large-angle scattering term
in Eq. (86).
We can now specify the isotropic screening prescription for

regulating the elastic collision kernel for anisotropic distri-
butions: for a soft gluon exchange in the t channel (likewise
for the u channel), the divergent term is replaced by the IR
regulated term t → tðq2 þ ξ2gm2

gÞ=q2, where ξg ¼ e5=6=2 is a
numerical constant fixed such that the new matrix element
reproduces the full HTL result for the drag and momentum
diffusion properties of soft gluon scattering (Abraao York
et al., 2014).
Similarly, one can regulate divergent soft fermion

exchanges to reproduce gluon to quark conversion gg → qq̄
at leading order for isotropic distributions (Ghiglieri, Moore,
and Teaney, 2016; Kurkela and Mazeliauskas, 2019b).
Formally, this regulated collision kernel is accurate for small
couplings and for near-isotropic systems. However, in practice
numerical simulations for phenomenological applications are

37Note that there are no unstable fermionic modes in anisotropic
plasmas (Mrówczyński, 2002; Schenke and Strickland, 2006).
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often performed for stronger couplings g ≈ 1 and anisotropic
systems.

3. Effective collinear 1 → 2 processes

In addition to the momentum diffusion of hard particles,
soft gluon exchange can also take the particle slightly off shell
and make it kinematically possible for it to split into two
nearly collinear hard particles. Naively, such a 2 → 3 process
has an additional vertex relative to elastic 2 ↔ 2 scattering,
making it subleading in the coupling constant. However, both
the soft gluon exchange and the perturbed off-shell hard
particle have ∼1=g2T2 enhancements from the propagators.
These compensate for the additional vertex insertion and the

nearly collinear emission phase space (Arnold, Moore, and
Yaffe, 2001). For the same reason, multiple soft scatterings
N þ 1 → N þ 2 also have to be summed over.
Physically, this means that the nearly on-shell hard particle

lives long enough before splitting to receive multiple kicks
from the plasma that destructively interfere, leading to the
suppression of emissions from energetic particles. This
phenomenon is known as the Landau-Pomeranchuk-Migdal
(LPM) effect (Landau and Pomeranchuk, 1953a, 1953b;
Migdal, 1955; Migdal, 1956). Collectively these processes
are described as an effective 1 ↔ 2 matrix element. In
Eq. (82) it is denoted by C1↔2½f�ðpÞ and has the explicit
form

Ca
1↔2½f�ðpÞ ¼

ð2πÞ3
2νap2

X
bc

Z
∞

0

dp0dk0(γabcðp;p0; k0Þδðp − p0 − k0Þ
n
fa
pbp
h
1� fb

p0bp
ih
1� fc

k0bp
i
− fb

p0bpfck0bp
h
1� fa

pbp
io

− 2γbacðp0;p; k0Þδðp0 − p − k0Þ
n
fb
p0bp

h
1� fa

pbp
ih
1� fc

k0bp
i
− fa

pbpfck0bp
h
1� fb

p0bp
io

); ð90Þ

where the unit vector bp ¼ p=jpj defines the splitting
direction and γabcðp;p0; k0Þ is the effective collinear
splitting rate.
As required by detailed balance, Eq. (90) describes both the

particle splitting p ↔ p0 þ k0 and fusion pþ k0 ↔ p0 proc-
esses. Factoring out the kinematic splitting function

Pg→gðz ¼
p0

p
Þ ¼ Nc

1þ z4 þ ð1 − zÞ4
zð1 − zÞ

for the gluonic process g → gg, this rate is given by

γgggðp;p0; k0Þ ¼ Pg→gðzÞ
νgg2

4π

Z
d2h
ð2πÞ2

2h · ReFgðh;p; p0; k0Þ
4ð2πÞ3pp02k02

;

ð91Þ

where the integral has mass dimension 2 and is proportional to
the virtuality acquired by the hard particle due to interactions
with the soft gauge field. The complex two-dimensional
function Fgðh;p; p0; k0Þ (with mass dimension 1) solves the
integral equation (Arnold, Moore, and Yaffe, 2001, 2002,
2003a)

2h ¼ iδEðhÞFgðhÞ þ g2
Nc

2
T�

Z
d2q⊥
ð2πÞ2 Aðq⊥Þ

× f3FgðhÞ − Fgðh − k0q⊥Þ
− Fgðh − p0q⊥Þ − Fgðhþ pq⊥Þg; ð92Þ

where the energy difference between the incoming and the
outgoing states is

δEðh;p; p0; k0Þ≡ m2
g

2k0
þ m2

g

2p0 −
m2

g

2p
þ h2

2pk0p0 ð93Þ

and h ¼ ðp0 × k0Þ × bp quantifies the transverse momentum in
the near collinear splitting.
The second term on the rhs of Eq. (92) can be interpreted as

a linearized collision integral with loss and gain terms
describing the probability of a particle to scatter in and out
of transverse momentum h=p. The scattering rate Aðq⊥Þ is
proportional to the mean square fluctuation of soft gauge
fields; for isotropic distributions it is given by (Aurenche,
Gelis, and Zaraket, 2002),

Aðq⊥Þ ¼
1

q2⊥
−

1

q2⊥ þ 2m2
g
: ð94Þ

Even with this isotropic approximation, Eq. (92) is highly
nontrivial. Various numerical schemes have been proposed for
solving it (Aurenche et al., 2002; Ghiglieri and Moore, 2014;
Ghisoiu and Laine, 2014).

4. Bethe-Heitler and LPM limits of collinear radiation

We now discuss two limiting cases of the soft gluon
radiation z ¼ p0=p ≪ 1. In the first case, the so-called
Bethe-Heitler (BH) limit, the interference between successive
scattering events can be neglected. This corresponds to the
first (decoherence) term in Eq. (92) being much larger than the
scattering integral (pzg2T�=m2

g ≪ 1). In this case, the equa-
tion can be solved iteratively. One obtains (Ghiglieri, Moore,
and Teaney, 2018a)

γgggðp;p0; k0Þjz≪1
BH ¼ Pg→gðzÞ

νgαS
ð2πÞ4

q̂ðμÞp
m2

g

����
μ¼emg

; ð95Þ

where q̂ðμÞ is as given in Eq. (89). In the opposite limit
zpT�=m2

g ≫ 1 (but still z ≪ 1), the successive scatterings by
the medium interfere destructively, reducing the emission
rate to
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γgggðp;p0; k0Þjz≪1
LPM ¼ Pg→gðzÞ

νgαS
ð2πÞ4

�
q̂ðμÞp

z

�
1=2

; ð96Þ

where at next-to-leading-logarithmic order μ solves μ2 ¼
2

ffiffiffi
2

p
e2−γEþπ=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂ðμÞpzp

(Arnold and Dogan, 2008).
Owing to soft gauge field instabilities, collinear radiation in

anisotropic plasmas contains unstable modes (Hauksson,
Jeon, and Gale, 2018, 2020). In phenomenological applica-
tions these unstable modes are neglected and the isotropic
approximation in Eq. (94) is employed instead.

C. Bottom-up thermalization

1. Initial conditions

BMSS (Baier et al., 2001) spelled out a bottom-up scenario
for thermalization beginning with the overoccupied glasma
discussed in Secs. II–IV. In this framework, the momentum
modes p ∼QS can be interpreted as quasiparticles with a well-
defined anisotropic distribution after time38 τQS ≥ log2 α−1S .
The initial gluon distribution in kinetic simulations of this
scenario is parametrized at QSτ0 ¼ 1 as (Kurkela and Zhu,
2015)

fgp ¼ 2A
g2Nc

hpTicffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ p2

zξ
2
0

p e−ð2=3Þðp
2⊥þξ2

0
p2
z Þ=hpTi2c : ð97Þ

The normalization A is chosen to reproduce the comoving
energy density τE ¼ hpTicdNg=d2x⊥dY. In this expression the
gluon number density at a fixed initial rapidity is determined at
LO by numerical simulations of the glasma and the result can be
readoff Eq. (48). Toobtain the first-principles input for the initial
gluon production as a function of rapidity, one further needs to
solve the JIMWLK equations described previously in Sec. II.D.
Likewise, one can determine the average transverse momentum
hpTic ≈ 1.8QS (Lappi, 2011). Finally, the anisotropy parameter
ξ0 is varied to quantify our ignorance of the longitudinal
momentum distribution.
For the evolution of the overoccupied and highly aniso-

tropic initial state, specified at its initial time by Eq. (97), the
typical gluon occupancy and the deviation from isotropy can
be monitored by computing the following ratios:

hpfi
hpi ¼

R ½d3p=ð2πÞ3�pfgpfgpR ½d3p=ð2πÞ3�pfgp ;

PT

PL
¼ ð1=2Þ R ½d3p=ð2πÞ3p�p2⊥f

g
pR ½d3p=ð2πÞ3p�p2

zf
g
p

: ð98Þ

2. Stage 1: Collisional broadening

The solution of the collisionless Boltzmann equation in the
boost-invariant expansion is a simple rescaling of initial
longitudinal momentum that does not change the typical
occupancy but increases the anisotropy quadratically in time.
However, in the presence of elastic collisions, gluons scatter
into the longitudinal momentum direction, thus broadening

the distribution. The longitudinal momentum diffusion for
anisotropic distributions can be estimated from the Fokker-
Planck equation (88):�

∂τ −
pz

τ

∂
∂pz

�
fgp ¼ q̂

4

∂2fgp
∂p2

z
; ð99Þ

where we kept the dominant term on the right-hand side. Note
that, for a highly occupied anisotropic system q̂ ∼

R
pðfgpÞ2,

Eq. (99) admits the scaling solution Eq. (73); as discussed in
Sec. IV.C.2, this solution is singled out in the classical-
statistical simulations.
The physical picture is that the longitudinal momentum

diffuses as hp2
zi ∼ q̂τ, where q̂ ∼ α2Sn

2
g=Q2

S

ffiffiffiffiffiffiffiffiffi
hp2

zi
p

and the hard
gluon number density per rapidity is constant (αSngτQ−2

S ∼ 1).
From this, it follows that the longitudinal momentum
decreases as

hp2
zi ∼Q2

SðQSτÞ−2=3: ð100Þ

This shows that the increase in anisotropy is milder than in the
free-streaming case. One obtains PT=PL ∝ ðτ=τ0Þ2=3 and
hpfi=hpi ∝ ðτ=τ0Þ−2=3, which are in agreement with the
scaling behavior of the nonthermal attractor of Sec. IV.C.1.
The typical occupancy becomes Oð1Þ at the time

τQS ≥ α−3=2S : ð101Þ

This is the first stage of bottom-up thermalization. As
previously discussed, this corresponds to a “quantum break-
ing” time where the classical-statistical approximation breaks
down definitively. After this time, hard gluons with pT ∼QS
are no longer overoccupied, although they still carry most of
the energy and particle number.

3. Stage 2: Collinear cascade

Once the typical hard parton occupancy becomes Oð1Þ, the
diffusion coefficient scales as q̂ ∼ α2Sng, where we still have
αSngτQ−2

S ∼ 1. At this time, the longitudinal momentum
diffusion rate and the expansion rate are comparable, with
the result that the longitudinal momentum reaches the constant
value

hp2
zi ∼ αSQ2

S: ð102Þ

This ensures that themomentum anisotropy remains constant in
the second bottom-up stage.
In this stage, in addition to elastic scatterings, medium-

induced collinear radiation becomes important, as it rapidly
increases the population of soft gluons.
The soft gluonmultiplicity can be estimated using the Bethe-

Heitler formula [Eq. (95)]; integrating over soft momentum
mD < p <

ffiffiffiffiffiffiffiffiffi
hp2

zi
p

and neglecting logarithmic factors, one
obtains nsoftg ∼ τðα3S=m2

gÞðnhardg Þ2. The screening mass is now

dominated by soft isotropic gluons (m2
g ∼ αSnsoftg =

ffiffiffiffiffiffiffiffiffi
hp2

zi
p

).
Using the previous expression for the longitudinal momentum,
we can show that the soft and hard gluonmultiplicities are of the
same order at times

38Plasma instabilities that are operational over shorter timescales
are well described by classical-statistical simulations; see Sec. IV.B.
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QSτ ≥ α−5=2S : ð103Þ

At this time, the soft gluons have thermalized among them-
selves, forming a bathwith an effective temperature. Thismarks
the end of the second stage of bottom-up thermalization.

4. Stage 3: Minijet quenching

Even though the soft gluons have thermalized, the hard
gluons still dominate the energy density. They are, however,
highly diluted (hfpi=hpi ≪ 1); the nonequilibrium modes are
now underoccupied, as opposed to being overoccupied in the
first bottom-up stage. Although soft gluon emission is
efficient in populating the infrared, the successive z ∼ 1=2
branching of modes is more efficient for energy transfer. Such
branching suffers from the LPM suppression. The hard gluons
are finally absorbed by the thermal bath in a “minijet”
quenching that is formally identical to the jet quenching
formalism that is typically applied when describing much
harder modes.
The system finally thermalizes when the energy in soft and

hard components becomes comparable. This happens at the
time

τthermal ¼ C1Q−1
S α−13=5S ; ð104Þ

with the thermalization temperature T ¼ C2α
2=5
S QS. Here C1

and C2 are Oð1Þ constants (Baier et al., 2002, 2011). This

timescale is parametrically α−1=10S longer than when stage 2
ends and therefore only cleanly distinguishable at asymptoti-
cally small values of the coupling.
The bottom-up thermalization scenario provides an intuitive

picture of equilibration at weak coupling. It is remarkable,
given the complexity of the thermalization process in QCD,
that this scenario allows one to relate the final thermalization
time and temperature to the scale for gluon saturation in the
nuclear wave functions.
Asymptotic freedom tells us that the coupling constant must

run with QS, which is the relevant hard scale in the problem.
Therefore, an interesting consequence of Eq. (104) is that
τthermal ∼ log13=5ðQSÞ=QS → 0 as QS → ∞. Thus, contrary to
naive expectations the bottom-up thermalization scenario
predicts that thermalization in the asymptotic Regge limit

of QCD will occur nearly instantaneously relative to the size
of the system.

5. Numerical realization of bottom-up thermalization

The thermalization timescales in the previous discussion
were only parametric estimates. We now discuss the results of
a numerical implementation of the bottom-up kinetic evolu-
tion from the overoccupied initial phase space distribution in
Eq. (97) to the Bose-Einstein distribution (Kurkela and
Zhu, 2015).
For ’t Hooft coupling λ ¼ Ncg2 ¼ 1 and initial anisotropy

ξ0 ¼ 10, we show in Fig. 19 the evolution of the gluon
distribution (integrated over the spherical angle) with different
momentum weights. The three panels correspond, respec-
tively, to the distribution of the gluon energy density dE=dp,
the number density dn=dp, and the screening mass dm2

g=dp as
a function of gluon momentum. To factor out the dilution due
to expansion, all of these quantities are normalized by the total
gluon number density n. The lines correspond to different
times τQS ≈ 1; 10; 103.
We see that at early times τQS ≈ 1–10 the hard p > QS

modes dominate both the energy and particle number, and
even have significant contributions to the screening mass. At
late times (τQS ≈ 103), the particle number and the screening
mass are completely dominated by the soft sector, but there is
still a noticeable contribution to the energy density from the
modes with p > QS.
Compare the momentum distributions in Fig. 19 to the

anisotropy and occupancy evolution in Fig. 20 (which is a
kinetic theory extension of the lattice computation in Fig. 12).
We mark the times τQS ≈ 1; 10; 103 with a diamond, a circle,
and a triangle, respectively, on the λ ¼ 1, ξ0 ¼ 10 simulation
trajectory (blue solid line). We observe that typical occupan-
cies drop quickly below unity and see a slight increase of
anisotropy as it happens. However, the slope of the anisotropy
increase is different than the naive expectation in the first stage
of bottom-up thermalization and is dependent on the choice of
initial conditions.
The anisotropy plateau of the second stage is already

reached at τQS ≈ 10, somewhat quicker than the parametric
estimates suggest. Finally, because the soft sector is more
isotropic than that of hard gluons, we observe that as the gluon

FIG. 19. Momentum differentiated plots of the (left panel) energy density, (center panel) number density, and (right panel) screening
mass at different stages of bottom-up thermalization. All curves are normalized by the instantaneous number density n and lines
correspond to different times (τQS ¼ 100; 101; 103).
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number shifts toward lower momentum (see Fig. 19, center
panel), the anisotropy starts falling sharply in Fig. 20. This
marks the onset of the third stage of bottom-up thermalization.
Although dilute hard modes still contribute significantly to the
energy density, the balance shifts toward more densely
populated soft modes whose occupancy steadily increases
as the system isotropizes.
The bottom-up process finally ends when the system

isotropizes. In practice, the third stage of bottom-up equili-
bration is significantly longer than the second stage, in
contrast to the α−1=10S difference in the parametric timescales.
For an initial distribution with different initial anisotropy

values [ξ0 ¼ 4; 10; dashed and solid lines in Fig. 20], the
evolution follows a qualitatively similar path. Although we
expect all initial conditions to converge at thermal equilib-
rium, different initializations already merge at rather large
values of the anisotropies (PT=PL ≈ 10), when the system is
still far away from local thermal equilibrium. This precocious
collapse to a universal curve, independent of the initial
conditions, is termed a “hydrodynamic attractor.” This phe-
nomenon is discussed further in Secs. V.E and VI.D.
Finally, Fig. 20 also shows kinetic equilibration with an

increasing coupling constant (and decreasing shear viscosity
η=s). For λ ≥ 5, corresponding to small values of η=s ≲ 2 (and
for which the initial occupancy is already below unity), the
system starts to isotropize almost immediately and the distinct
stages of the bottom-up scenario are no longer discernible.

D. Self-similar evolution in the high-occupancy regime

1. Self-similar scaling

When characteristic field occupancies are sufficiently large
for the classical-statistical approximation to be valid, but small
enough for the perturbative kinetic expansion to apply, there is
an overlapping regime where both approximations to the
dynamics of the system are valid (Aarts and Smit, 1998;
Mueller and Son, 2004; Jeon, 2005).
As discussed in Secs. IV.C and V.C, the nonequilibrium

dynamics of the overoccupied plasma undergoes a

simplification in complexity by exhibiting self-similar evolu-
tion. In kinetic theory language, the self-similar behavior
refers to the situation in which the particle distributions at
different times can be related by rescaling the momentum
arguments and the overall normalization; see Eq. (73), where
α, β, and γ denote the universal scaling exponents. The
relations between the exponents are constrained by conserva-
tion laws and the Boltzmann equation (81), for which Eq. (73)
provides a solution.
Longitudinally expanding systems are anisotropic and

subject to soft gauge instabilities. Therefore, from a pertur-
bative viewpoint it is surprising that plasma instabilities do not
seem to affect the late-time evolution of the classical-statistical
real-time simulations, as shown in Fig. 12. The self-similar
evolution near the nonthermal attractor is consistent with the
bottom-up thermalization scenario and numerical QCD
kinetic theory simulations (Kurkela and Zhu, 2015), which
explicitly neglect plasma instabilities. How to consistently
solve the effective kinetic theory in anisotropic plasmas is an
open question (Mrówczyński, Schenke, and Strickland, 2017).
Finally, as mentioned in Sec. IV.C.2, in the case of the

nonexpanding isotropic systems, the self-similar direct energy
cascade plays an important role in equilibration of over-
occupied bosons. The same scaling exponents and the scaling
function are also reproduced in kinetic theory simulations
(Abraao York et al., 2014; Kurkela and Lu, 2014). Fermions
are never overoccupied and chemical equilibration takes place
over longer timescales than the direct energy cascade (Kurkela
and Mazeliauskas, 2019b).

2. Prescaling phenomenon

Mazeliauskas and Berges (2019) found that the far-from-
equilibrium QGP already exhibits a self-similar behavior
before the scaling exponents attain their constant values
α ¼ −2=3, β ¼ 0, and γ ¼ 1=3. The prescaling phenomenon
is realized through the time-dependent rescaling of the
distribution function and its arguments [cf. Micha and
Tkachev (2004)],

fgp ¼prescaling ðQτÞαðτÞ
αS

fS(ðQτÞβðτÞp⊥; ðQτÞγðτÞpz); ð105Þ

where αðτÞ, βðτÞ, and γðτÞ are generic time-dependent
functions.
Figure 21 shows the evolution of time-dependent scaling

exponents in QCD kinetic theory at small couplings and
overoccupied initial conditions (Mazeliauskas and Berges,
2019). The value of the exponents is calculated from the time
dependence of various moments of the distribution:

nm;nðτÞ ¼
Z

d3p
ð2πÞ3 p

m
T jpzjnfgp: ð106Þ

Different lines of the same color in Fig. 21 correspond to
integrals with different powers of the momentum. It is
important to note that the rescaling in Eq. (105) is implicitly
assumed to be valid in a certain physically relevant momentum
range. Therefore, a finite set of moments of Eq. (106) contains
all the physically relevant information in the distribution. As

FIG. 20. Gluon kinetic theory equilibration in the anisotropy-
occupancy plane for initial anisotropy ξ0 ¼ 10 and different
values of the coupling constant. Times corresponding to τQS ¼
100; 101; 103 are indicated by black symbols. Simulations with
the smaller initial anisotropy ξ0 ¼ 4 are shown as dashed curves.
Adapted from Kurkela and Zhu, 2015.
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shown in Fig. 21, different extractions rapidly collapse onto
each other and a unique set of scaling exponents emerge that
govern the time evolution of all probed moments.
The time-dependent scaling exponents provide a more

differential picture of how self-similar behavior and informa-
tion loss emerge near the nonthermal attractor. Here the
scaling exponents act as effective degrees of freedom whose
slowly varying evolution constitutes a hydrodynamic descrip-
tion of the system around the nonthermal attractor. In
particular, the time-dependent exponents could be well suited
to studying the evolution away from the attractor in equili-
brating systems even if the nonthermal attractor is never fully
reached, for instance, at larger values of the coupling. For
related studies in scalar field theory, see Schmied, Mikheev,
and Gasenzer (2019).

E. Extrapolation to stronger couplings

Thus far we have discussed a nonequilibrium QCD evo-
lution scenario that is strictly valid only for g ≪ 1. However,
the coupling constant is not parametrically small even
at the Z boson mass scale, where αSðM2

ZÞ ≈ 0.1179�
0.0010 (g ¼ ffiffiffiffiffiffiffiffiffiffi

4παS
p

≈ 1.2) (Tanabashi et al., 2018). In the
case of finite temperature perturbation theory, the expansion
parameter is ∼αST=mD ∼ g: the convergence is therefore slow
(Blaizot, Iancu, and Rebhan, 2003). In this section, we
therefore discuss phenomenological extrapolations of the
QCD kinetic theory to “realistic” couplings.
The first calculation at next-to-leading order for QGP

transport properties was performed for heavy-quark diffusion
and the corrections were found to be large (Caron-Huot and
Moore, 2008). On the other hand, the NLO contributions to
the photon emission nearly cancel and the overall contribution
is only ∼20% (Ghiglieri et al., 2013). Recently computations
of the shear viscosity, quark diffusion, and second-order
transport coefficients have been extended to include higher-
order contributions [named “almost NLO” by Ghiglieri,
Moore, and Teaney (2018a, 2018b)] thanks to the

breakthrough idea of evaluating HTL correlations on the light
cone (Caron-Huot, 2009). In Fig. 22, we see that NLO results
for the specific shear viscosity η=s can be a factor of 5 smaller
than the leading-order result at the accessible QGP temper-
atures T ≲ 1 GeV. It is conceivable that a better reorganiza-
tion of the perturbative expansion would result in an improved
convergence at NLO (Ghiglieri, Moore, and Teaney, 2018a).
Nevertheless, for phenomenological applications in heavy-

ion collisions, the strong-coupling constant value αS ≈ 0.3
(g ≈ 2) is commonly used in leading-order calculations.
Examples of these include thermal photon emission (Paquet
et al., 2016), heavy-quark transport (Yao et al., 2020), andparton
energy loss (Burke et al., 2014). At this point, the leading-order
kinetic theory applications to equilibration processes in theQGP
do not provide a controlled expansion at realistic energies and
therefore have large theoretical uncertainties.
On the other hand, QCD kinetic theory does contain the

necessary physical processes, such as elastic and inelastic
scatterings, to describe QCD thermalization at weak coupling.
Therefore, in the absence of real-time nonperturbative QCD
computations, extrapolating the weak-coupling results to
larger couplings provides a useful baseline that can be
systematically improved upon.
As we later discuss, the dependence on the coupling

constant is better replaced by the value of shear viscosity
η=s, a physical property of the QGP. The relaxation to
equilibrium is naturally controlled by the strength of the
dissipative processes. Therefore, rescaling weakly coupled
kinetic theory dynamics to small values of η=s (favored by
hydrodynamic modeling of QGP) can be compared to heavy-
ion phenomenology and other microscopic models. This
includes the genuinely strongly coupled systems discussed
in Sec. VI. An indication that lessons learned from QGP
equilibration in leading-order kinetic theory are more robust
than the LO expansion itself.

FIG. 21. Time evolution of instantaneous scaling exponents
extracted from different sets of integral moments of the distri-
bution. Horizontal lines indicate possible asymptotic values.
From Mazeliauskas and Berges, 2019.

FIG. 22. The shear viscosity over entropy ratio as a function of
temperature at leading-order (LO) and (nearly) next-to-leading-
order (NLO) thermal QCD. The bands correspond to the scale
variation of running coupling prescriptions. From Ghiglieri,
Moore, and Teaney, 2018a.
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There have been a number of phenomenological applica-
tions of kinetic theory to the study of thermalization in QCD.
Early notable examples were given by Hwa and Kajantie
(1986), Geiger and Muller (1992), and Biro et al. (1993).
Numerical implementations of classical kinetic theory includ-
ing elastic gg ↔ gg and inelastic gg ↔ ggg gluon scatterings
were pioneered by Xu and Greiner (2005) and El, Xu, and
Greiner (2008). We now focus on the results from the
numerical implementations of quantum kinetic theory, includ-
ing all of the leading-order processes that were discussed
in Sec. V.B.

1. Hydrodynamic attractors in QCD kinetic theory

The universal macroscopic effective theory close to local
thermal equilibrium is given by fluid dynamics consisting of
the conservation laws and constitutive equations (Landau and
Lifshits, 1959):

∂μTμν ¼ 0; Tμν ¼ Tμν
hydroðE; uμ;…Þ: ð107Þ

The only surviving information is contained in the macro-
scopic fluid variables, the energy density E, and fluid velocity
uμ; all other information about the initial conditions has
been lost.
The phenomenological success of viscous hydrodynamics

in describing many soft hadronic observables in heavy-ion
collisions leads one to consider the possibility of whether a
fluid dynamic description is applicable to systems with
significant deviations from local thermal equilibrium. This
topic was first investigated in strongly coupled holographic
models, and subsequently in the relaxation time approxima-
tion (RTA) kinetic theory and hydrodynamic models; see the
reviews by Florkowski, Heller, and Spalinski (2018) and
Romatschke and Romatschke (2019) and Sec. VI.
In the QCD kinetic theory simulations of boost-invariant

expansions of homogeneous plasmas (Keegan, Kurkela,
Romatschke et al., 2016; Heller et al., 2018; Kurkela et al.,
2019a), it was observed that the energy-momentum tensor
quickly becomes a sole function of time measured in units of
the characteristic kinetic relaxation time39 τR ∼ η=ðsTÞ, i.e.,

w̃≡ τT
4πη=s

: ð108Þ

In such a case the evolution of the energy-momentum tensor
can be characterized byPL=E as a function of w̃ (Heller, Janik,
and Witaszczyk, 2012b; Heller et al., 2018). Because w̃−1 is
proportional to the Knudsen number (the natural expansion
parameter for deviations from equilibrium) one would expect
that for large w̃ the kinetic theory would agree with the viscous
hydrodynamic result PL=E ¼ 1=3 − ð16=9Þ½ðη=sÞ=τT�. The
simplest viscous constitutive relation is already satisfied for
w̃ ≈ 1 when viscous correction is comparable to the

equilibrium pressure. Such an effective hydrodynamic
description of systems substantially away from equilibrium
is now called the hydrodynamic attractor. This notion is in fact
much richer and its further aspects are discussed in Sec. VI.D.
Figure 23 shows the pressure anisotropy PL=PT as a

function of rescaled time in an expanding homogeneous
system for different values of the coupling constant. The
system is prepared in an equilibrium state at initial time and
then is allowed to undergo a boost-invariant expansion that
drives the system away from equilibrium. However, as the
expansion slows down it relaxes back to isotropy, thereby
satisfying PL=PT ¼ 1.
Note that the kinetic simulations for different couplings

(which correspond to different kinetic relaxation times)
collapse onto each other even when the pressure anisotropy
PL=PT is significant. Overall, the kinetic evolution is close to
that of an infinitely strongly coupled system. Although neither
a weakly coupled kinetic theory nor an infinitely strongly
coupled supersymmetric Yang-Mills theory is an exact
description of QCD in heavy-ion collisions, Fig. 23 gives
some indication that in the rescaled time units w̃ the final
stages of QCD equilibration could follow a similar hydro-
dynamic attractor curve.
To map the hydrodynamic attractor evolution in dimension-

less time w̃ to that in physical units, one needs to fix the
interaction strength by setting the shear viscosity over entropy
ratio η=s and the dimensionful temperature scale. Extensive
hydrodynamic model comparisons to data constrain the
shear viscosity to small values of 4πη=s ∼ 2 close to
Tc ≈ 155 MeV, although its value at higher temperatures is
not well determined (Bernhard, Moreland, and Bass, 2019;
Devetak et al., 2019). The characteristic temperature scale in
the hydrodynamic stage is well constrained by the transverse
entropy density per rapidity ðsτÞhydro ∼ ðT3τÞhydro, which is

FIG. 23. Pressure anisotropy evolution in expanding geometry.
Gluon kinetic theory simulations λ ¼ 1;…; 10 are compared to a
supersymmetric Yang-Mills holographic model (λ ¼ ∞ ). Note
that here Ti is the initial temperature, so at late times
ðη=sÞ4=3Tit ≈ 32w̃3=2. Adapted from Keegan, Kurkela, Ro-
matschke et al., 2016.

39The effective temperature can be definedas a functionof the energy
density that would play the role of the temperature in equilibrium. In
conformal models it is given by the fourth root of the energy density
T ¼ ½E=ðνeffπ2=30Þ�1=4. For an ideal gas of quarks and gluons, νeff ¼
47.5 and 16 for gluons only.
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directly proportional to the produced particle multiplicity and
hence can be inferred from the experimental measurements
(Hanus,Mazeliauskas, andReygers, 2019). InvertingEq. (108),
we can relate the dimensionless time w̃ in a longitudinally
expanding conformal plasma to Bjorken time τ via

τ ¼ κ1=2w̃3=2ð4πη=sÞ3=2ðsτÞ−1=2hydro: ð109Þ

The proportionality coefficient κ ¼ ðsτÞhydro=τT3 becomes a
numerical constant in thermal equilibrium, where κ ¼
νeff4π

2=90. Because the kinetic simulations converge toward
conventional viscous hydrodynamic predictions for w̃≳ 1, it
was estimated by Kurkela et al. (2019a, 2019b) that the
hydrodynamic description becomes applicable for times
τ ≳ 1 fm=c for η=s ≈ 0.16 and typical entropy densities found
in central Pb-Pb collisions (Kurkela et al., 2019a, 2019b). This
is consistent with the early hydrodynamization picture
employed in the modeling of heavy-ion collisions.

2. Entropy production and initial energy density

At even earlier times (w̃≲ 1), kinetic simulations with
different initial conditions might not have collapsed yet onto a
single curve (Kurkela and Zhu, 2015; Almaalol, Kurkela, and
Strickland, 2020). Nevertheless, one may employ the hydro-
dynamic attractor curve, which is regular for w̃ → 0, for a
macroscopic fluid dynamic description far from equilibrium
(Romatschke, 2018); see also Sec. VI.C. In kinetic theory at
early times, such an attractor curve has vanishingly small
longitudinal pressure (PL ≈ 0) and constant energy density per
rapidity (Eτ ¼ const). Such initial conditions are typical for
kinetic evolution in the bottom-up picture discussed in Sec.V.C.
Figure 24 shows the energy density E normalized by the
equilibrium evolution ðEτ4=3Þhydro=τ4=3 for different hydrody-
namic attractors obtained from QCD and YM kinetic theory
(Kurkela and Mazeliauskas, 2019a, 2019b; Kurkela et al.,
2019a, 2019b), AdS=CFT (Heller, Janik, and Witaszczyk,
2012b; Heller and Spaliński, 2015; Romatschke, 2018), and
Boltzmann RTA (Blaizot and Yan, 2018; Heller et al., 2018;
Strickland, 2018; Strickland, Noronha, and Denicol, 2018;
Behtash, Kamata et al., 2019a). All attractors approach the
universal viscous hydrodynamic description at late times
w̃ > 1, while at early times they follow E ∼ τ−1, corresponding
to “free-streaming” behavior,40 which can be expressed as

Eτ4=3ðw̃ ≪ 1Þ
ðEτ4=3Þhydro

¼ C−1
∞ w̃4=9: ð110Þ

Here the dimensionless constant C∞ quantifies the amount of
work done.
A directly observable consequence of the equilibration

process is the particle multiplicity, which is a measure of
the entropy produced in heavy-ion collisions (Müller and
Schafer, 2011). For a given hydrodynamic attractor, the final

entropy for boost-invariant expansion is proportional to the
initial energy and is given by the following simple formula
(Giacalone, Mazeliauskas, and Schlichting, 2019):

ðsτÞhydro ¼
4

3
C3=4
∞

�
4π

η

s

�
1=3

κ1=3ðEτÞ2=30 . ð111Þ

Giacalone, Mazeliauskas, and Schlichting (2019) showed that
combining the entropy production from hydrodynamic attrac-
tors with initial state energy deposition in the CGC framework
gives a good description of the centrality dependence of
measured particle multiplicities. In particular, one can extend
the original Bjorken estimate (Bjorken, 1983) of the initial
energy density in heavy-ion collisions to much earlier times.
For central Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV one finds
that Eðτ0Þ ¼ 270 GeV=fm3 at τ0 ¼ 0.1 fm=c, which is a
nearly 1000 times larger energy density than at the QCD
crossover temperature.

3. Chemical equilibration of QGP

The early quark production from strong gauge fields was
discussed in Sec. IV.E. However, once the gluon fields are no
longer overoccupied, chemical equilibration has to be
described using QCD effective kinetic theory. Studies of light
quark flavor (up, down, and strange) chemical equilibration in
isotropic and longitudinally expanding systems were recently
presented by Kurkela and Mazeliauskas (2019a, 2019b). At
leading order, there are two fermion production channels:
gluon fusion gg → qq̄ and splitting g → qq̄. It was found that
quark production processes are slower than gluon self-inter-
actions. Therefore, the gluon self-similar energy cascade seen
in nonexpanding isotropic systems is over well before an
appreciable number of fermions is produced. Similarly, gluons
maintain an approximate kinetic equilibrium among them-
selves, while fermions attain a Fermi-Dirac distribution at
much later times.

FIG. 24. Hydrodynamic attractors for preequilibrium evolution
of energy density for different microscopic theories. From
Giacalone, Mazeliauskas, and Schlichting, 2019.

40The presence of scattering terms in Eq. (81) is crucial for the
early-time anisotropy evolution, but not for the energy density.
According to the equations of motion ∂τðτEÞ ¼ −PL, and τE ≈
const as long as PL=E ≪ 1.
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The longitudinal expansion drives both gluons and fer-
mions from the kinetic equilibrium, ensuring that equilibrium
distributions can be approached only at late times when the
expansion rate slows down. However, the expansion does not
seem to affect fermion production; therefore, chemical equi-
librium is achieved before thermal equilibrium. For massless
quarks, the quark-gluon plasma satisfies the conformal equa-
tion of state P ¼ ð1=3ÞE and the chemical composition of the
plasma has little effect on the total evolution of the energy-
momentum tensor. Therefore, hydrodynamization and chemi-
cal and thermal equilibrium are achieved sequentially
(Kurkela and Mazeliauskas, 2019a, 2019b), satisfying

τhydro < τchem < τtherm: ð112Þ

Figure 25 shows the total energy density (red solid line),
gluon energy density (green dotted line), and quark energy
density (blue dashed line) as a function of time. Gluons, which
dominate initially, are quickly overtaken by quarks and the
approximate chemical equilibrium energy ratios are reached
by τ ¼ 1.5 fm=c. This supports an assumption of chemical
equilibrium in the lattice equation of state used in hydro-
dynamic simulations of the quark-gluon plasma.
Finally, an important piece of evidence for the formation of

a chemically equilibrated QGP in heavy-ion collisions is the
enhanced production of hadrons carrying strange quarks
(Andronic et al., 2018). It is believed that in small collision
systems, such as proton-proton collisions, strange quarks are
not produced thermally in sufficient numbers and therefore
that strange hadron production is suppressed. Although in the
previous kinetic description the three light flavors are all taken
to be massless, the chemical equilibration rate can be used to
estimate the necessary lifetime (and system size) for the
creation of the chemically equilibrated QGP. The results of
Kurkela and Mazeliauskas (2019a) showed that the plasma
may reach chemical equilibrium for particle multiplicities
down to dNch=dη ∼ 102. Strange hadron production in such

high multiplicity proton-proton collisions will be tested in
future runs of the LHC (Citron et al., 2019).

4. Equilibration of spatially inhomogeneous systems

Thus far we have discussed the equilibration of longitudi-
nally expanding but otherwise homogeneous systems.
Realistic heavy-ion collisions create initial conditions that
are not homogeneous in the transverse plane. Such geometric
deformations are strongly believed to be the source of the
multiparticle correlations that have been observed experimen-
tally (Heinz and Snellings, 2013). In the weak-coupling
picture discussed in Sec. III, the spatial fluctuations are the
result of the uneven color charge distributions in the colliding
nuclei. On the largest scale (∼10 fm) it is determined by the
overlap of the average nuclear profiles. On nucleon scales
∼1 fm one can resolve event-by-event fluctuations of indi-
vidual colliding nucleons. On yet smaller scales ∼0.1 fm one
has stochastic fluctuations of color charges in the internal
structure of a nucleon.
Equilibration in kinetic theory, of small transverse perturba-

tions around the homogeneous far-from-equilibrium back-
ground, has been investigated by Keegan, Kurkela,
Mazeliauskas, and Teaney (2016) and Kurkela et al. (2019a,
2019b). Relevant information on the complicated kinetic evolu-
tion of the particle distribution fsp can be captured by the
linearized energy-momentum tensor response functions Gμν

αβ:

δTμν
x ðτhydro;xÞ ¼

Z
d2x0Gμν

αβðx;x0; τhydro; τEKTÞ

× δTαβ
x ðτEKT; x0Þ T̄

ττ
x ðτhydroÞ

T̄ττ
x ðτEKTÞ

: ð113Þ

Here the Green’s functions Gμν
αβðx;x0; τEKT; τhydroÞ describe the

evolution and equilibration of energy-momentum tensor pertur-
bations from an early time τEKT to a later time τhydro.
The linearized response functions are to a good approxi-

mation universal functions of the dimensionless time w̃, which
is similar to the hydrodynamic attractor describing the back-
ground equilibration. This provides a practical tool, the
linearized preequilibrium propagator KøMPøST, for a pre-
equilibrium kinetic description of heavy-ion collisions based
on QCD kinetic theory (Kurkela et al., 2019a, 2019b). For the
first time, the combination of the initial state IP-glasma model
discussed in Sec. III.C.3, kinetic equilibration, and viscous
hydrodynamic evolution make it possible to describe all the
early stages of heavy-ion collisions in a theoretically complete
setup. Experimental signatures of such setups are currently
being investigated (Gale et al., 2020; Schenke, Shen, and
Teaney, 2020a).
As with the evolution of the background, the equilibration

of linearized perturbations in QCD kinetic theory shares
universal features with other microscopic descriptions
(Broniowski et al., 2009; van der Schee, Romatschke, and
Pratt, 2013; Liu, Shen, and Heinz, 2015; Romatschke, 2015).
Thanks to this universal behavior, “universal preflow” is
guaranteed to grow linearly with time for small gradients
(∇E=E ≪ 1) (Vredevoogd and Pratt, 2009; Keegan, Kurkela,
Mazeliauskas, and Teaney, 2016; Kurkela et al., 2019a):

FIG. 25. Energy density evolution in a chemically equilibrating
quark-gluon plasma. The vertical lines indicate the times of
approximate hydrodynamic, chemical, and thermal equilibriums.
From Kurkela and Mazeliauskas, 2019a.
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v⃗ ≈ −
1

2

∇⃗E
E þ PT

τ; ð114Þ

where for long wavelength perturbations ∇⃗E=ðE þ PTÞ ¼
const in conformal theories (Keegan, Kurkela, Mazeliauskas,
and Teaney, 2016). These response functions have been
directly compared in Yang-Mills and RTA kinetic theories
(Kamata et al., 2020).
QCD kinetic theory simulations beyond the linearized

regime have not yet been accomplished, albeit there exist
phenomenological studies of parton transport simulations
based on perturbative QCD matrix elements (Greif et al.,
2017). To what extent the macroscopic description in terms of
hydrodynamics can be applied to inhomogeneous systems
with nonlinear transverse expansion is still an open question;
see Sec. VI.E.2 for a discussion of holography. However, the
results of Kurkela, Wiedemann, and Wu (2018, 2019a, 2019b)
and Kurkela et al. (2020) have demonstrated that for trans-
versely expanding systems the hydrodynamic attractor
remains a good description of local equilibration until the
evolution time becomes comparable to the transverse sys-
tem size.

VI. AB INITIO HOLOGRAPHIC DESCRIPTION OF
STRONG-COUPLING PHENOMENA

A. Holography and heavy-ion collisions

Sections II–V were concerned with the description of
heavy-ion collisions in a weak-coupling QCD framework.
Here we present what currently constitutes the only approach
capable of describing real-time phenomena in genuinely
strongly coupled (1þ 3)-dimensional quantum field theories
in a fully ab initio manner: holography (Gubser, Klebanov,
and Polyakov, 1998; Maldacena, 1998, 1999; Witten, 1998a).
The available description in this case does not make visible

use of the gauge field degrees of freedom. Instead, it is based
on the notion of a correspondence to higher-dimensional
geometries, which arise as solutions of Einstein’s equations
with a negative cosmological constant and appropriate matter
fields.
The guiding principle for our presentation is universality.

We are interested in phenomena shared across strongly
coupled quantum field theories and seek in them theoretical
lessons and phenomenological implications for thermalization
in QCD.
A prime example of such a quantity is the aforementioned

η=s ¼ 1=ð4πÞ in all holographic QFTs, as long as they are
described by two-derivative gravity theories. One purpose of
this review is to examine other kinds of universalities that exist
in the genuine nonequilibrium regime.

B. Controlled strong-coupling regime

The best-known holographic gauge theory is the N ¼ 4
super Yang-Mills theory. At the Lagrangian level, it can be
viewed as the gluon sector of SUðNcÞ QCD coupled in a
maximally supersymmetric way to four Weyl fermions and six
real scalars, both in the adjoint representation of the gauge
group (Ammon and Erdmenger, 2015). This theory, as

opposed to QCD, is conformally invariant; the coupling
constant does not run with the energy and becomes an
external parameter that defines the theory.
In the planar Nc → ∞ limit for asymptotically large values

of the ’t Hooft coupling constant

λ≡ 4παSNc → ∞; ð115Þ

the degrees of freedom in the N ¼ 4 super Yang-Mills theory
reorganize themselves in such a way that correlation functions
of certain operators, including the energy-momentum tensor
in an entire class of interesting states, can be computed using a
five-dimensional Einstein gravity action with a negative
cosmological constant

Sgrav ¼
1

16πGN

Z
d5x

ffiffiffiffiffiffiffiffiffi
det g

p �
R − 2

�
−

6

L2

��
ð116Þ

and supplemented by matter fields. In Eq. (116) R is the Ricci
scalar and L is the length scale set by the cosmological
constant. For the N ¼ 4 super Yang-Mills theory at λ → ∞,
one has

L3

GN
¼ 2N2

c

π
ð117Þ

and a particular matter sector. They both follow from relevant
string theory considerations (Maldacena, 1998, 1999).
One should view the Einstein gravity description as

applicable only when λ → ∞. The QFT coupling constant
does not appear in any form in Eq. (116), indicating that the
coupling constant dependence drops from all the QFT
quantities that one can describe in this way for λ → ∞.
When the coupling constant is large but not infinite, the
relevant description becomes Einstein gravity supplemented
by higher-curvature terms like the fourth power of the
curvature. The form of these terms follows again from string
theory considerations, and in controllable situations they
should necessarily be treated as small corrections. Because
equations of motion become generically higher order in
derivatives, the uncontrollable extrapolation of the kind that
one performs in kinetic theory can be done here in only a
limited number of cases (Woodard, 2015). We discuss these
topics in Sec. VI.F.2.
The “vanilla” setting in holography is five-dimensional

gravity with a negative cosmological constant, encapsulated
by Eq. (116), which provides a consistent dual holographic
description of an infinite class of strongly coupled conformal
field theories (CFTs) with a large number of microscopic
constituents (Bhattacharyya et al., 2008). Specifically, it
describes a class of states in strongly coupled CFTs in which
the only local operator acquiring an expectation value is the
energy-momentum tensor Tμν. The most comprehensive holo-
graphic results on heavy-ion collisions concern this case.
A generic five-dimensional metric can always be brought to

the form

ds2 ¼ L2

u2
½−du2 þ gμνðu; xÞdxμdxν�: ð118Þ
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Here u is an additional direction emerging on the gravity side
interpreted as a scale in a dual QFT. Einstein’s equations put
conditions on acceptable forms of gμνðu; xÞ. The most
symmetric solution for gravity with a negative cosmological
constant has gμνðu; xÞ ¼ ημν, which is the four-dimensional
Minkowski metric. This is the empty AdS5 (anti–de Sitter)
solution, which represents in gravitational language the time
development of the vacuum in holographic CFTs. The surface
u ¼ 0 acts as a boundary of AdS5 and, more generally,
gμνðu ¼ 0; xÞ has the interpretation of a metric in which the
corresponding QFT lives.
The expectation value of the energy-momentum tensor

arises by looking at the subleading behavior of gμνðu; xÞ
close to the boundary (Balasubramanian and Kraus, 1999; de
Haro, Solodukhin, and Skenderis, 2001). This is particularly
simple for CFTs living in Minkowski space:

gμνðu; xÞ ¼ ημν þ
4πGN

L3
hTμνiðxÞu4 þ � � � . ð119Þ

The ellipsis denotes higher-order terms in the small-u expan-
sion that turn out to contain only even powers of u, with the
coefficients being polynomials in hTμνi and its derivatives.
One cannot a priori exclude terms like exp ð−1=uÞ that were
considered by Heller et al. (2013), but a general understanding
of such terms is lacking. In the following, we refer to the
interior of AdS spacetimes as “bulk physics” and the QFT
physics as “boundary physics.”
We are interested here in discussing time-dependent states

in Minkowski spacetime that model the dynamics of heavy-
ion collisions. Given Eq. (119), such states can be probed
through their expectation value of the energy-momentum
tensor by solving the equations of motion of Eq. (116) as
an initial value problem. This is achieved using numerical
relativity techniques (Heller, Janik, and Witaszczyk, 2012a;
Chesler and Yaffe, 2014; Liu and Sonner, 2018) and requires
one to specify initial conditions, and the solutions are subject
to boundary conditions at u ¼ 0.
There are two natural ways (with pros and cons) of studying

the nonequilibrium physics of quantum field theories using
holography; see Fig. 26. The first approach circumvents the
problem of finding initial conditions, a key reason for its use in
early works on the subject (Chesler and Yaffe, 2009, 2010).
Moreover, this approach allows one to compare equilibration
across theories by starting with the same kind of initial state
(such as the vacuum or a thermal state) and perturbing it in a
defined manner. In particular, it underlies a significant body of
research on understanding features of linear response theory in
different microscopic models (Kovtun and Starinets, 2005;
Grozdanov, Kaplis, and Starinets, 2016; Romatschke, 2016;
Kurkela and Wiedemann, 2019). As an example, Keegan,
Kurkela, Romatschke et al. (2016), as discussed in Sec. V.E
(see Fig. 23), compared the approach to hydrodynamics across
models (including holography) using fully nonlinear kicks.
The drawbacks to perturbing simple states are, first, that the
approach to hydrodynamics is so rapid that it is difficult to
disentangle exciting the system from its subsequent relaxation
and, second, that the class of states that one obtains in this way
is limited.

The secondmethod, inwhich one solves gravity equations for
different initial conditions, allows one to access a larger range of
transient behavior. In particular, since we do not know which
initial conditions are closest to the physics realized in experi-
ment, one may want to scan as many of these initial conditions
as possible to obtain a comprehensive picture. The downside is
that in most cases this way of phrasing the problem is specific to
the geometric language of describing strongly coupled QFTs
similarly to the one-particle distribution function being specific
to the weak-coupling language. It does not allow for control-
lable comparisons with other frameworks akin to that given by
Keegan, Kurkela, Romatschke et al. (2016). This can be
somewhat ameliorated in holographic collisions in which the
initial conditions for gravity originate from superimposing two
exact solutions corresponding to individual projectiles
approaching each other.
Thermalization at strong coupling is a process in which one

starts with an excited geometry in the bulk that after some time
becomes locally close to a black hole geometry. This encap-
sulates the notion of thermalization of expectation values of
local operators. The nonlocal observables discussed in
Sec. VI.F.3 can still show traces of nonequilibrium behavior
after local thermalization occurs. This should not come as a
surprise since the thermalization of nonlocal observables is
necessarily constrained by causality.
The discussion thus far has been generic but the explicit

formulas were provided for strongly coupled CFTs. While
QCD is not a CFT, holography does not pose any conceptual
problems in studying strongly coupled gauge theories with a
nontrivial RG, provided that the theory remains strongly
coupled at all scales. This can be realized by introducing
relevant deformations to holographic CFTs, modifying their
Lagrangian by

R
d4xJOðxÞ with the scaling dimension Δ < 4

of OðxÞ. This triggers a nontrivial bulk metric dependence on
u providing the gravitational counterpart of a RG flow.
In holography, the bulk object corresponding to O is a

scalar field ϕ appearing in the matter sector that supplements

FIG. 26. Penrose diagrams dual to far-from-equilibrium states in
strongly coupled QFTs. (a) The system starts in the vacuum with
known bulk geometry and is perturbed by a nontrivial source,
which appears as an asymptotic boundary condition in gravity.
After the source is turned off, the QFT is in a nonequilibrium state
modeled by a time-dependent geometry. (b) The sources are
always off, but one instead specifies nontrivial initial conditions
for the bulk metric. Adapted from Heller et al., 2012.
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the universal sector in Eq. (116). This scalar field is nonzero
because the J of the QFT translates into its asymptotic
boundary conditions; the latter generates a nontrivial profile
for ϕ when solving the bulk equations of motion. The action
for the bulk matter fields equips ϕ with a potential and the
form of the potential determines the physics of the RG flow in
the corresponding QFT (including the information about Δ).
We review representative results in Sec. VI.F.1.
To close, holography provides an ab initio window to study

strongly coupled QFTs, which include conformal and non-
conformal gauge theories. The conceptual problem of fully
nonperturbative real-time evolution of an entire class of QFTs
reduces in this setting to a technical challenge of solving a set
of coupled partial differential equations in higher number of
dimensions, which is well within reach of the existing
numerical relativity methods.
The holographic approach is general and can be equally well

applied to the problem of time evolution of the nuclear medium
in heavy-ion collisions, as well as to problems originating in
branches of physics (Ammon and Erdmenger, 2015; Hartnoll,
Lucas, and Sachdev, 2016). Finally, we stress again that
holography as a tool for QFT comes with its own limitations
illustrated by the fact that one needs to work in regimes where
the gravity description is classical or semiclassical.

C. Early times in Bjorken flow at strong coupling

Bjorken flow (Bjorken, 1983) without transverse expansion
in a CFT setting is arguably the best studied example of a
nonlinear nonequilibrium phenomenon in holography.41

Because of the conservation of the energy-momentum tensor,
all the nontrivial information about the dynamics can be
extracted from hTττi≡ EðτÞ. This parametrization is useful for
describing the early-time physics relevant for modeling initial
stages of ultrarelativistic heavy-ion collisions.
Toward this end, Beuf et al. (2009) noticed that combining

Eq. (119) (expanded to sufficiently high order in u) with a
general Taylor series ansatz for EðτÞ around τ ¼ 0 does not
lead to singular bulk metric coefficients in the limit τ → 0 as
long at the early-time expansion contains only positive even
powers of proper time:

Eðτ ≈ 0Þ ¼ E0 þ E2τ
2 þ E4τ

4 þ � � � : ð120Þ

The coefficients in Eq. (120) are not entirely arbitrary, but they
are related one to one to the near-boundary expansion of the
bulk metric that satisfies the constraints on the initial time
slice, as encapsulated by Eqs. (118) and (119). The early time
series (120) turns out to have a nonzero but finite radius of
convergence, which allows one to reliably study the initial
dynamics of the system. However, as shown by Beuf et al.
(2009) and as later corroborated by Heller, Janik, and
Witaszczyk (2012a) using the full numerical solution of bulk
Einstein’s equations, the radius of convergence of Eq. (120) is
much too small for us to see the transition to hydrodynamics.

This point is illustrated in Fig. 27 using the effective temper-
ature (see footnote 39). Furthermore, simple analytic contin-
uations of the series (120) based on the Padé approximants
method provide unreliable extrapolations.
One lesson, therefore, is that the only method for obtaining

hTμνi in strongly coupled QFTs beyond the early-time limit
examples is to use numerical relativity. Before we proceed in
that manner, a few more comments related to Eq. (120) are in
order. First, the analysis of Beuf et al. (2009) uses regularity of
the initial metric on a particular constant time slice of the bulk
geometry, namely, the one dictated by the coordinates chosen
in Eq. (118). It is therefore logically possible42 that there are
initial metrics defined on other bulk constant time slices that
give rise to energies densities of the form other than those
dictated by Eq. (120). Second, note that in Eq. (120) any
number of the lowest-order terms can vanish and the energy
density at early time can behave like Ejτ≈0 ∼ τ2 (Grumiller and
Romatschke, 2008).
Another point is that there are various reasons why one may

not want to start the evolution at τ ¼ 0. The most obvious one
is related to creating either nonequilibrium initial states from
the vacuum or thermal states, as discussed in Fig. 26. In these
cases, the sources will need some nonzero time to act (Chesler
and Yaffe, 2010). The other reason is more conceptual and is
related to the observation that while one should not expect the
infinitely strongly coupled approach to be a phenomenologi-
cally viable description at τ ¼ 0, it may become one from
some τ > 0 onward. Note that from the gravity point of view,
it is not clear that all the initial conditions set in the bulk for
τ > 0 are extendable to τ ¼ 0 and, as a result, one can view
them as a priori containing richer behavior.
Because of this issue, it is unclear whether all well behaved

initial conditions for numerical relativity simulations actually
describe genuine states in underlying QFTs. Unlike Heller,
Janik, and Witaszczyk (2012a, 2012b) and Jankowski, Plewa,
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FIG. 27. Evolution of the effective temperature as a function
of time for three different states with nonzero initial energy
density. The gray curves denote the far-from-equilibrium regime.
The blue dashed area extending indefinitely to the right mark the
applicability of viscous hydrodynamic relations truncated at
the third order in derivatives (122). The red dotted curves denote
the series in Eq. (120) extracted using the method of Beuf et al.
(2009). Adapted from Heller, Janik, and Witaszczyk, 2012a.

41Recently devised hyperbolic quenches (Mitra et al., 2019) adopt
an effectively (1þ 1)-dimensional boost-invariant geometry of
heavy-ion collisions in the context of condensed-matter physics.

42Jankowski, Plewa, and Spalinski (2014) chose initial surfaces in
the bulk as in Fig. 26, with results being consistent with Eq. (120).
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and Spalinski (2014), Wu and Romatschke (2011),
Romatschke (2018), and Kurkela et al. (2020) initialized
their codes at later times with turned off sources. In particular,
Romatschke (2018) found initial conditions at some early but
nonzero τ such that E ∼ 1=τ initially, which is different
from Eq. (120).
As discussed in Sec.V.E, the transition to hydrodynamics can

be observed in the cleanest way upon introducing the scale-
invariant timevariable w̃ defined in Eq. (108) and usingPT=PL,
PL=E, or any reasonable function of this ratio, such as

A ¼ PT − PL

E=3
¼ 3ðPT=PLÞ − 3

2ðPT=PLÞ þ 1
; ð121Þ

which was introduced by Heller, Janik, and Witaszczyk
(2012b), Jankowski, Plewa, and Spalinski (2014), and
Florkowski, Heller, and Spalinski (2018) as a function of
w≡ τT. Note that in the strongly coupled limit of holography
4πη=s ¼ 1, and we simply denote w̃ as w.
It is well understood by now that at late timeAðwÞ acquires

the form of a trans-series (Heller, Janik, and Witaszczyk,
2013; Heller and Spaliński, 2015; Aniceto and Spaliński,
2016; Aniceto et al., 2019) known from the studies of
asymptotic expansions in mathematical and quantum physics;
see Aniceto, Basar, and Schiappa (2019) and Dorigoni (2019)
for reviews. The hydrodynamic part is a series in inverse
powers of w and has a vanishing radius of convergence.43 Its
first few terms read

AðwÞ ¼ 2

π
w−1 þ 2 − 2 log 2

3π2
w−2

þ 15 − 2π2 − 45 log 2þ 24log22
54π3

w−3 þ � � � . ð122Þ

See Nakamura and Sin (2006), Heller and Janik (2007), Janik
(2007), Booth, Heller, and Spalinski (2009), Heller et al.
(2009), Kinoshita et al. (2009a, 2009b), Heller, Janik, and
Witaszczyk (2012b), Jankowski, Plewa, and Spalinski (2014)
and Florkowski, Heller, and Spalinski (2018). Equation (122)
should be understood as expressing the energy-momentum
tensor in terms of hydrodynamic constitutive relations to the
third lowest order. The first term carries information about the
first derivative of flow velocity and the shear viscosity, while
the second term is a contribution from second derivatives of
velocity and associated transport coefficients. The third term is
the last one that is known analytically. The current state of the
art was set by Casalderrey-Solana, Gushterov, and Meiring
(2018), who, improving on the earlier efforts of Heller, Janik,
and Witaszczyk (2013), numerically computed the lowest 380
terms in the expansion given in Eq. (122). On top of the power
law late-time (w) expansion come exponentially suppressed
terms that represent transient phenomena that are also visible

in linear response theory (Janik and Peschanski, 2006b;
Heller, Janik, and Witaszczyk, 2013; Heller and Spaliński,
2015; Heller and Svensson, 2018).
Figure 27 illustrates time evolution of the effective temper-

ature TðτÞ. Hydrodynamics is applicable at a time after which
the pressure anisotropy deviates only slightly from Eq. (122).
As discussed in detail by Heller, Janik, and Witaszczyk
(2012a), the precise moment of applicability of hydrodynam-
ics depends on the desired accuracy of the match to Eq. (122)
and the order of the truncation. The latter aspect should be
understood in the sense of an asymptotic series.
The main message from the studies of Chesler and Yaffe

(2010), Wu and Romatschke (2011), Heller, Janik, and
Witaszczyk (2012a, 2012b), Jankowski, Plewa, and
Spalinski (2014), Romatschke (2018), and Kurkela et al.
(2020) and related works is that low-order hydrodynamic
constitutive relations [see Eq. (122)] become applicable at
strong coupling after τ ¼ Oð1=TÞ. This is the regime where
the pressure anisotropy in the system is sizable, as illustrated
in Fig. 28. Since the system is still far away from local thermal
equilibrium, the word hydrodynamization was coined by
Casalderrey-Solana, Liu et al. (2014) to distinguish the
applicability of viscous hydrodynamic constitutive relations
from local thermalization. The latter phenomenon occurs at
strong coupling for times that can even be 10 times larger than
the hydrodynamization time.
The modern perspective on hydrodynamics, viewing, in

particular, the gradient expansion as a part of a trans-series,
was reviewed in detail by Florkowski, Heller, and Spalinski
(2018). In the following, we discuss an alternative way of
thinking about the applicability of hydrodynamics using the
concept of hydrodynamic attractors. These objects made their
appearance in Sec. V.E and bear a structural similarity to the
nonthermal attractors (fixed points) discussed in Sec. IV.C.

FIG. 28. hTμνi in a holographic CFT as a function of the
dimensionless clock variable w for 29 different initial states (gray
curves). Magenta, blue, and green curves denote predictions of
hydrodynamic constitutive relations truncated, respectively, at
first, second, and third order [Eq. (122)]. The orange curve is the
hydrodynamic attractor (Romatschke, 2018). Adapted from
Heller, Janik, and Witaszczyk, 2012a, 2012b, and Romatschke,
2018.

43The same applies to Gubser (Denicol and Noronha, 2019b) and
cosmological (Buchel, Heller, and Noronha, 2016) flows but is not
the case for Bjorken flow with fine-tuned transport coefficients
(Denicol and Noronha, 2019a). Furthermore, Heller, Serantes et al.
(2020) used the results of Withers (2018) and Grozdanov et al.
(2019a, 2019b) to show that divergence of the hydrodynamic
gradient expansion is a generic feature of linear response theory.
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D. Hydrodynamic attractors in holography

Hydrodynamic attractors proposed by Heller and Spaliński
(2015), and developed by Basar and Dunne (2015), Aniceto
and Spaliński (2016), Romatschke (2017, 2018), Almaalol
and Strickland (2018), Behtash, Cruz-Camacho, and Martinez
(2018), Blaizot and Yan (2018), Casalderrey-Solana,
Gushterov, and Meiring (2018), Denicol and Noronha
(2018), Florkowski, Maksymiuk, and Ryblewski (2018),
Spaliński (2018a, 2018b), Strickland (2018), Strickland,
Noronha, and Denicol (2018), Behtash, Cruz-Camacho et al.
(2019), Behtash, Kamata et al. (2019b), Brewer, Yan, and Yin
(2019), Denicol and Noronha (2019a, 2019b), Jaiswal et al.
(2019), Strickland and Tantary (2019), Almaalol, Kurkela,
and Strickland (2020), Blaizot and Yan (2020),
Chattopadhyay and Heinz (2020), Dash and Roy (2020),
Heller, Jefferson et al. (2020), Kurkela et al. (2020), and
Shokri and Taghinavaz (2020) can be viewed as a way of
approaching the problem of information loss about the under-
lying state from the point of view of observations restricted to
the energy-momentum tensor hTμνi.
Reexamining Fig. 28 through these lenses, we see that a set

of different states considered there follows to a good approxi-
mation a single profile of AðwÞ from a certain value of w
onward. This is the notion of attraction between different
initial conditions as seen by an effective phase space covered
byA at a fixed value of w. While this observation does not call
for invoking a truncated gradient expansion, the emerging
universality seen in Fig. 28 agrees well with a hydrodynamic
gradient expansion truncated at low order. These observations
lie behind the name hydrodynamic attractor and parallel the
discussion in Sec. V.E.1.
We now step back and review this phenomenon from a

broader perspective advocated recently by Heller, Jefferson
et al. (2020). To proceed, we utilize the aforementioned notion
of phase space introduced in this context by Behtash, Cruz-
Camacho, and Martinez (2018). Specifically, one should think
ofA as a particularly clean scale-invariant way of representing
information about hTμνi and w as a useful way of para-
metrizing time evolution, adjusted to the fact that transient
phenomena in conformal theories occur over timescales set by
the energy density.
Knowing A at a given value of w does not allow one to

predict its value later, since the true microscopic variable is the
bulk metric. A larger chunk of information is provided by
consideringA and some of its derivatives with respect to w (or
E and its derivatives with respect to τ). Such sets of variables
form the notion of an effective phase space. In fact, there is a
limit to how large such phase space needs to be: the numerical
solutions of Einstein’s equations displayed in Fig. 28 typically
require one to specify a few functions on several dozen grid
points.
One can then assign a metric to an effective phase space,

i.e., the distance between points representing classes of
solutions here, and track how such a distance changes as
time evolves. The loss of information is expected to make a set
of solutions reduce its volume in the effective phase space. For
example, in Fig. 28 one introduces the notion of proximity
between two solutions jA1ðwÞ −A2ðwÞj. With respect to this
notion, various solutions from the chosen set eventually

collapse to approximately a point in A at a fixed value of
w. The hydrodynamic attractor at a given value of w is not a
notion relevant to all states. It needs to be regarded as a
statement about properties of some class of states initialized
prior to that.
Furthermore, assigning a distance measure to phase space

allows one to define the notion of slow evolution. This topic
was introduced by Heller and Spaliński (2015) under the name
slow roll approximation, which originates from the field of
inflationary cosmology (Liddle, Parsons, and Barrow, 1994).
The previously discussed distance notion leads to the magni-
tude of velocity of a given state being jA0ðwÞj, and slowly
evolving solutions [note Heller, Jefferson et al. (2020) instead
defined regions of slow evolution] are those that lead to the
flattest form of AðwÞ. In Fig. 28, such a solution given by
Romatschke (2018) using fine-tuning initial conditions is
denoted by an orange curve. Note that this solution at early
times has A close to 3=2. This corresponds to free-streaming
PL ¼ 0, which evades the study of initial conditions behind
Eq. (120) reported by Beuf et al. (2009).
We stress that the notion of slowly evolving solutions is

a priori independent from the notion of convergence (attrac-
tion). However, in full phase space, or at least a representative
projection of it, one can make a thermodynamiclike argument,
as that given by Heller, Jefferson et al. (2020), in favor of
typical states residing in the slow roll region. One can think of
slow evolution as a generalization of the notion of the gradient
expansion that does not involve an expansion with individual
terms badly behaving at early times, namely, as inverse powers
of w in Eq. (122).
Finally, the approach to the hydrodynamic attractor at

strong coupling and mechanisms that govern it were examined
by Kurkela et al. (2020), who looked at results of simulations
with different initialization times. This is depicted in Fig. 29.
The idea behind it, building on earlier results given by Blaizot
and Yan (2018, 2020), is that information loss can be driven
by at least two distinct mechanisms. The first one involves
exponentially suppressed corrections to Eq. (122), which stem
from linear response theory physics. The characteristic feature
of them is that their decay rates do not depend on w. The

FIG. 29. Hydrodynamization of states whose gravity dual
initially has support close to the boundary (dashed curves) or
deep in the bulk (solid curves) initialized at different times
(different colors); see the text for details. Adapted from Kurkela
et al., 2020.
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second mechanism driving the information loss is
expansion, which for the comoving velocity uμ∂μ ≡ ∂τ gives
∇μuμ ¼ 1=τ. What one therefore expects is that information
loss predominantly driven by the expansion is going to be
faster at earlier times (smaller w) and slower at later times.
Indeed, such a feature was seen in Kurkela et al. (2020) for
hydrodynamic models and for the kinetic theory for early
initialization times. However, in holography this does not
seem to be the case and the approach to the hydrodynamic
attractor takes roughly a fixed amount of time regardless of the
chosen initialization time (see Fig. 29), which is consistent
with it being governed by transients.

E. Holographic collisions

In CFTs, Bjorken flow in the absence of transverse
expansion has a high degree of symmetry that allows for
comprehensive studies of hydrodynamization and associated
phenomena. In particular, the numerical approach pursued by
Chesler and Yaffe (2010, 2014) and Jankowski, Plewa, and
Spalinski (2014) fully determines the evolution of hTμνi as a
function of proper time τ upon specifying one positive number
(initial energy density E) and a single function of the AdS
direction u; see Eq. (119). As a result, it was possible to
comprehensively scan over initial states in search of universal
behavior.
If one relaxes these symmetry assumptions and allows for

dynamics in the transverse plane (van der Schee, 2013; van
der Schee, Romatschke, and Pratt, 2013), the space of initial
conditions becomes too large to allow for a comprehensive
analysis. Therefore, one wants to have another guiding
principle to arrive at interesting configurations for modeling
nonequilibrium evolution of hTμνi in holographic heavy-ion
collisions. The key idea is to study holographic collisions of
localized lumps of matter (Chesler and Yaffe, 2011;
Casalderrey-Solana et al., 2013; Casalderrey-Solana, Heller
et al., 2014; Chesler, 2015, 2016; Chesler, Kilbertus, and van
der Schee, 2015; Chesler and Yaffe, 2015).
The localized objects (shock waves) in question move at the

speed of light and are characterized by the following nonzero
components of hTμνi:

hT00i ¼ hT33i ¼ �hT03i ¼ μ�ðx⊥Þhðx0 ∓ x3Þ; ð123Þ

where x0 is the lab-frame time, x3 is the direction along which
the object is moving (specified by ∓ in the argument of h),
μ�ðx⊥Þ ≥ 0 is an arbitrary function specifying the transverse
profile, and hðx0 ∓ x3Þ ≥ 0 is another arbitrary function
specifying the longitudinal profile (Chesler, 2015). While a
single projectile defined by Eq. (123) is exact, the super-
position of two projectiles approaching each other and over-
lapping in the transverse plane leads to a nontrivial collisional
process.
Such collisions should not be regarded as literalmodels of the

early stages of heavy-ion collisions, since the projectiles do not
originate from QCD. [See, however, Gubser, Pufu, and Yarom
(2008), Lin andShuryak (2009), andvanderSchee andSchenke
(2015).] Instead, one should treat holographic shock wave
collisions as illustrating possible far-from-equilibrium

phenomena accessible in a fully ab initioway at strong coupling
that goes well beyond the previously discussed Bjorken flow
geometry.

1. Planar shocks

The simplest settings to consider are collisions of planar
shock waves: objects defined by Eq. (123) with μ� constant.
Following Casalderrey-Solana et al. (2013), one can consider
a Gaussian longitudinal profile for h of the form

hðx0 ∓ x3Þ ¼ N2
c

2π2
ϱ4e−½ðx0∓x3Þ2=2d2� ð124Þ

and recognize that, in heavy-ion collisions, the dimensionless
product of the amplitude ϱ (not to be confused with the
previously discussed charge density) and the width d
decreases as γ−1=2 as the total center-of-mass energy of the
collision (

ffiffiffi
s

p ¼ 2γMion) increases.
Within this analogy, high-energy collisions correspond to

collisions of thin shock waves.44 The collisions of projectiles
defined by Eq. (123) do not lead to longitudinal boost
invariance, since the initial state of the two projectiles is
not boost invariant even when they are infinitely thin. The
extent to which this is the case was explored by Casalderrey-
Solana et al. (2013) and the results fit well (Gubser and van
der Schee, 2015) with complex deformations of the purely
boost-invariant flow introduced by Gubser (2013).
As it turns out, the features of the collision change as a

function of γ. First, the collision of low-γ thick shock waves
proceed such that the two blobs of matter first merge and their
subsequent evolution is approximated well by viscous hydro-
dynamics. This is referred to (Casalderrey-Solana et al., 2013)
as to the Landau scenario (Landau, 1953; Belen’kij and
Landau, 1956). As seen in Fig. 30, the high-γ regime of thin
shocks leads to a rich set of transient physics before hydro-
dynamics becomes applicable. Another important phenome-
non, discussed by Casalderrey-Solana, Heller et al. (2014),
Waeber et al. (2019), and Müller et al. (2020), is the notion of
longitudinal coherence. This notion applies to the center-of-
mass frame of high-energy collisions and states that the
longitudinal structure of projectiles does not leave an imprint
on the transient form of the energy-momentum tensor in the
postcollision region provided that it is sufficiently localized.
Finally, despite the differences between thin and thick shocks’
collisions at transient times after the remnants dissolve, which
take a much longer time than shown in Fig. 30, the structure of
the late-time hydrodynamic flow is similar in the two cases
(Chesler, Kilbertus, and van der Schee, 2015).

2. Transverse dynamics in holography

Studies of hydrodynamization in the presence of transverse
expansion by Chesler (2015, 2016) and Chesler and Yaffe
(2015) still define the state of the art in numerical applied

44The problem of colliding planar projectiles in Eq. (123) with
hðx0 ∓ x3Þ ∼ δðx0 ∓ x3Þ was originally posed by Janik and
Peschanski (2006a) and addressed in an early-time expansion akin
to Eq. (120) by Grumiller and Romatschke (2008).
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holography. Figure 31 illustrates the profile of the energy
density in such collisions. The main lesson from these works
is the early applicability of viscous hydrodynamics not only
for large longitudinal gradients of the energy-momentum
tensor (as for Bjorken flow and planar shocks) but also in
the presence of large transverse gradients generating trans-
verse expansion.
From the perspective of these strong coupling results, the

applicability of hydrodynamics in pA and even pp collisions
(Chesler, 2016) is as natural as the applicability of hydro-
dynamics in Bjorken flow and can be explained in terms of
fast decaying contributions to the trans-series for hTμνi.
Further, these works corroborate studies by van der Schee
(2013) by providing successful tests of the early-time radial
expansion model proposed by Vredevoogd and Pratt (2009).
Toward this end, Chesler and Yaffe (2015) found small elliptic
flow despite off-central collision and confirmed that near
midrapidity the energy flux grew linearly with proper time, as
predicted by Vredevoogd and Pratt (2009).
As discussed in Sec. V.E.4, such “universal flow” at small

wave number is also reproduced by weak-coupling kinetic
theory. It would be interesting to see whether the full

transverse response functions of the energy-momentum tensor
in strong coupling agrees with those discussed in Sec. V.E.4 in
the context of kinetic theory.

F. Other aspects of thermalization at strong coupling

1. Nonconformal strongly coupled QFTs

All the strong-coupling results reviewed thus far have
concerned well-defined QFTs without a scale. As reviewed
in Sec. VI.B, in holography there are no conceptual obstacles
to breaking conformal symmetry. However, considering QFTs
with nontrivial renormalization group flows does make
gravitational calculations more involved due to the presence
of field(s) in addition to gravity that one needs to solve for and
due to the more involved near-boundary analysis that general-
izes Eq. (119). All in all, the number of results on this front
relevant for thermalization in QCD is significantly lower than
in the conformal case but still allows one to draw conclusions.
Broadly speaking, there are two approaches to this problem.

The first is top down and studies renormalization group flows
originating from turning on a relevant deformation in a known
holographic CFT. The prime example is the so-called N ¼ 2�

FIG. 30. hTμνi resulting from a collision of thin planar shocks with ϱd ¼ 0.08 (124). Top panel: lab-frame energy density as a function
of time x0 and longitudinal position x3. Between the remnants and the central rapidity region, there are small regions of negative energy
density. Bottom-left panel: at midrapidity, the transverse and longitudinal pressure after the collision are consistent with hT00i ∼ τ2 in
Eq. (120). Bottom-right panel: the color encoding denotes deviations from constitutive relations and points to the applicability of
hydrodynamics. The postcollision hTμνi does not have a rest frame in the gray region (Arnold, Romatschke, and van der Schee, 2014).
Adapted from Casalderrey-Solana et al., 2013.
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gauge theory arising as a deformation of N ¼ 4 super Yang-
Mills theory by adding masses to half of its fields (Buchel
et al., 2007). The advantage of this approach is that one makes
sure that one is studying well-defined features of a strongly
coupled QFT. The drawback is that such well understood
examples are scarce and might have rigid features that do not
exist in QCD.
The other class are so-called bottom-up models that couple

AdS gravity to a bulk scalar field or fields whose Lagrangian
is chosen by insisting that it reproduce some desired feature of
QCD. One such approach was introduced by Gursoy and
Kiritsis (2008) and Gursoy, Kiritsis, and Nitti (2008) using the
QCD β function as a guideline; another model (Gubser et al.,
2008) uses as a benchmark reproducing the QCD equation of
state at vanishing baryon density.
Furthermore, one can also introduce confinement by mak-

ing the geometry end smoothly in the bulk (Witten, 1998b).
One can think of it as the manifestation of a mass gap, with no
excitations below the lowest bound state energy.
The breaking of conformal symmetry introduces an addi-

tional scale in the problem of thermalization and changes
hydrodynamization times, although in none of the setups
explored to date by an order of magnitude or more with
respect to the strong-coupling CFT prediction of ∼1=T
(Buchel, Heller, and Myers, 2015; Janik et al., 2015). This
also indicates that the w̃ defined in Eq. (108) plays a less
prominent role in nonconformal QFTs than it does in strongly
coupled CFTs.
Furthermore, the hydrodynamic gradient expansion

acquires new transport terms, most notably the bulk viscosity
ζ. Hydrodynamization and on a much later timescale iso-
tropization still do occur, but there are now two more

emergent timescales related to (i) the applicability of the
equation of state and (ii) the expectation value of the operator
breaking conformal symmetry reaching its thermal value. The
relation between these scales depends on the details of the
model (Attems et al., 2017a, 2017b, 2018).
Finally, confinement represented holographically as the

appearance of an infrared wall leads to the new physical
effect in which excitations of the bulk geometry and matter
fields bounce back and forth as in a cavity (Craps, Lindgren,
and Taliotis, 2015; Bantilan, Figueras, and Mateos, 2020).
Such an effect was not present in the studies reviewed earlier
and has not yet been explored in the context of expanding
plasmas.

2. Away from the strong-coupling regime

Another important direction studied in the context of
thermalization in strongly coupled gauge theories concerns
corrections from finite values of the coupling constant. In the
context of the N ¼ 4 super Yang-Mills case, the leading
correction in the inverse power of the ’t Hooft coupling
constant behaves as λ−3=2; on the gravity side, it arises at least
in part due to a particular expression quartic in the curvature
(Gubser, Klebanov, and Tseytlin, 1998). Such a higher-
curvature gravity action when treated exactly is ill behaved
due to the Ostrogradsky instability (Woodard, 2015). It is,
however, not meant to be considered as such, since it is just an
effective field theory truncated at a fixed order in the
derivative expansion.
Treating these higher-curvature terms as small contributions

to the Einstein’s equations with negative cosmological con-
stant allows one to derive the leading-order corrections to

FIG. 31. Energy density in holographic heavy-ion collisions with transverse dynamics. Top panels: off-central collision with modest
elliptic flow. Bottom panels: proton-nucleus collision as modeled with a shock wave with a small Gaussian extent in the transverse plane
(left projectile) and a planar shock (right projectile). The smaller projectile punches out a hole in the larger projectile and excites matter
at midrapidity, leading to substantial radial flow. Adapted from Chesler, 2015, and Chesler and Yaffe, 2015.

Jürgen Berges et al.: QCD thermalization: Ab initio approaches and …

Rev. Mod. Phys., Vol. 93, No. 3, July–September 2021 035003-50



various holographic predictions at λ → ∞. For example, they
increase the shear viscosity of the N ¼ 4 super Yang-Mills
action from η=s ¼ 1=ð4πÞ at λ → ∞ (Policastro, Son, and
Starinets, 2001) to η=s ¼ 1=ð4πÞ × ½1þ 15ζð3Þλ−3=2� for
large but finite λ (Buchel, 2008a, 2008b).
The previously discussed quartic term is the first higher-

order term appearing for the N ¼ 4 super Yang-Mills case,
but remember that the Einstein-Hilbert action with negative
cosmological constant describes infinitely many strongly
coupled CFTs. For some of these (Buchel, Myers, and
Sinha, 2009), the leading correction to Eq. (116) is quadratic
in curvature and can be written as the so-called Gauss-Bonnet
term

δSGBgrav ¼
λGB
2

L2ðR2 − 4RabRab þ RabcdRabcdÞ: ð125Þ

This contribution has jλGBj ≪ 1 in top-down settings and the
sign of λGB can be either positive or negative.
As a result, there are bona fide holographic CFTs for which

the ratio of shear viscosity to entropy density is slightly lower
than 1=4π (Buchel, Myers, and Sinha, 2009; Kats and Petrov,
2009). This result showed that the value of 1=4π is not the
lower bound in nature as originally conjectured by Kovtun,
Son, and Starinets (2005), although the existence of another
lower bound cannot be excluded.
Furthermore, the combined gravity action of Eqs. (116)

and (125) leads to, at least superficially, second-order equa-
tions of motion. While it is known that microscopically this
does not correspond to a well behaved QFToutside the regime
jλGBj ≪ 1 (Camanho et al., 2016), in the spirit of bottom-up
models discussed in Sec. VI.F.1 one can treat it, at least in
some cases, as a model of QFT at a finite value of the
“coupling constant.”
In the context of the planar shock wave collisions discussed

in Sec. VI.E, perturbative calculations in λGB predict less
stopping and more energy deposited close to the light cone
(Grozdanov and Schee, 2017; Folkestad et al., 2019). There
also appears to be a correlation between the shear viscosity
and hydrodynamization times, as encapsulated by Eq. (108).
Furthermore, linear response calculations performed

exactly in λGB reveal that the singularity structure of real-
time correlators in equilibrium can change drastically as the
coupling is varied (Grozdanov, Kaplis, and Starinets, 2016). In
particular, the results seem to mimic features expected from a
kinetic theory, such as the appearance of branch cuts
(Romatschke, 2016; Kurkela and Wiedemann, 2019), rather
than single pole singularities known in strongly coupled QFTs
(Kovtun and Starinets, 2005).
The situation at a nonlinear level is more complicated.

While the equations of motion are second order, the coef-
ficients in front of the highest derivative terms are complicated
and can vanish in regions of spacetime. This signals a
breakdown of the initial value problem. Overcoming this
obstacle is currently an active topic of research in the relativity
community (Cayuso, Ortiz, and Lehner, 2017; Ripley and
Pretorius, 2019, 2020a, 2020b).
Finally, we mention a more phenomenological set of hybrid

approaches (Iancu and Mukhopadhyay, 2015; Mukhopadhyay
et al., 2016; Ecker et al., 2018; Kurkela et al., 2018) in which

gravity is used to model the IR of a QFT and a weak-coupling
framework is put to work to represent the UV. Both frame-
works are coupled to each other and predictions rely on a
subtle interplay between the two combined models. Such a
setting bears structural similarity to Gursoy and Kiritsis
(2008) and Gursoy, Kiritsis, and Nitti (2008), as discussed
in Sec. VI.F.1. However, it uses the gravitational description
only where it can be trusted, which is the regime where the
coupling constant is large.

3. Nonlocal correlators

All the quantities we have discussed at strong coupling
concerned one-point functions of gauge-invariant operators.
Because of the underlying large-Nc hierarchy, the problem of
finding connected two- and higher-point functions correlation
functions decouples from the problem of finding the one-point
functions discussed thus far. Such correlation functions can be
thought of as correlation functions of the bulk free (for two-
point functions) or weakly interacting (for higher-point
functions) quantum fields45 living on top of gravitational
backgrounds when the insertion points of the bulk correlators
are taken to the boundary (Banks et al., 1998). In the
following, we focus on two-point functions.
Since we are talking about time-dependent setups and,

hence, Lorentzian correlators, the distinction between
Wightman, retarded, or other correlators is appropriate (Son
and Starinets, 2002; Herzog and Son, 2003; Skenderis and van
Rees, 2009, 2008). Toward this end, the retarded correlator
depends only on the gravitational background and captures the
response of the strongly coupled QFT to sources. However,
the Wightman correlator depends on both the constructed
gravitational background and the state of the bulk quantum
field. Therefore, its calculation is challenging in time-depen-
dent processes and, unless one creates a nonequilibrium state
using sources exciting the vacuum or a thermal state (Chesler
and Teaney, 2011, 2012; Keranen and Kleinert, 2015, 2016),
one has to deal with an additional freedom of initial conditions
to scan.
It should perhaps not come as a surprise that to date there

have been no studies of such correlators in an expanding
plasma. Noteworthy works in this area were given by Chesler
and Teaney (2011, 2012) and Keranen and Kleinert (2015,
2016), who studied equilibration of scalar operator two-point
functions under a spatially uniform quench.
Many researchers use a proxy for correlators being a bulk

geodesic spanned between the insertion points appropriate
for operators of large scaling dimension in the Euclidean
signature. However, in Lorentzian signature this is an uncon-
trollable approximation (Louko, Marolf, and Ross, 2000;
Headrick et al., 2014; Keranen and Kleinert, 2015). On the
other hand, the comparison between Wightman functions
calculated according to the correct microscopic prescription
and the geodesic proxy led to qualitatively similar results
(Keranen and Kleinert, 2015, 2016).

45They should not be confused with the underlying strongly
coupled QFT for which both the classical bulk background and free
bulk quantum fields are effective descriptions.
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If one takes this as an indication of the geodesic proxy as
capturing the relevant physics, then one lesson following from
such studies is that the symmetrized correlator with small
spacelike separation between its insertion points thermalizes
sooner than the one with larger separation (Balasubramanian
et al., 2011a, 2011b). This is also natural from the point of
view of causality.
Furthermore, Keranen and Kleinert (2016) observed a

relation between the equilibration timescale of the spatially
Fourier transformed Wightman function and the equilibration
timescale of 1=T governing hydrodynamization at strong
coupling and discussed in Sec. VI.C. This study was done
for a scalar operator, which does not exhibit a hydrody-
namic tail.
It is natural to conjecture that the energy-momentum tensor

or a Uð1Þ current Wightman function would take longer to
equilibrate due to the presence of hydrodynamic modes, but
such studies have not been yet performed. Finally, as noted by
Keranen and Kleinert (2016), we should stress that the
aforementioned momentum-space features of equilibration
do not easily translate to the real-space properties. This is
so because sharp features in the correlator do not necessarily
reside at small distances.

VII. SIGNATURES OF NONEQUILIBRIUM QCD

The experimental heavy-ion collision programs at BNL and
CERN, combined with advances in theory and empirically
motivated models, have over the last couple of decades greatly
advanced our understanding of deconfined QCD matter.
Successful multiobservable data-to-model comparisons have
provided ample evidence that a new phase of matter is created
with the thermodynamic properties predicted by lattice QCD
(Ding, Karsch, and Mukherjee, 2016; Andronic et al., 2018;
Pang et al., 2018; Bazavov, Karsch et al., 2019; Bernhard,
Moreland, and Bass, 2019; Gardim et al., 2019; Bellwied
et al., 2020). While thermodynamic features of QCD can also
possibly be extracted from neutron star physics, with a recent
example being the gravitational radiation pattern of neutron
star mergers (Weih, Hanauske, and Rezzolla, 2020), heavy-ion
collisions are likely the only place in the Universe where the
nonequilibrium many-body properties of QCD can be
explored.
We do not discuss here signatures of high parton density

matter in the hadron wave functions that were discussed
elsewhere (Blaizot, 2017). Uncovering definitive evidence
for and systematic study of gluon saturation is a major goal
of the EIC (Accardi et al., 2016; Aschenauer et al., 2019). We
note that diffractive and exclusive signatures of gluon saturation
at the EIC are especially promising (Mäntysaari and
Venugopalan, 2018; Mäntysaari et al., 2020).
Our focus here is on quark-gluon matter formed after the

collision. In the high parton density framework of the CGC
EFT, the glasma matter at the earliest times is most sensitive to
the physics of gluon saturation. Indeed, if the contributions of
the initial state can be isolated from that of the final state,
heavy-ion collisions could present definitive evidence for
gluon saturation.
However, as we later discuss, a clean separation of initial

and final state effects in the complex space-time evolution of

the heavy-ion collision is challenging (Adolfsson et al., 2020).
Nevertheless, data from both light- and heavy-ion collisions at
RHIC and the LHC can help constrain key features of gluon
saturation, with an example being the energy and nuclear
dependence of the saturation scale QS.

A. Electromagnetic and hard probes

Since the glasma matter is likely to be far off equilibrium at
the earliest instants of the heavy-ion collision, its features can
be extracted most directly in probes that are the least sensitive
to the later stages of the collision. The primary candidates here
are electromagnetic probes of the medium such as photons and
dileptons that, once emitted, do not interact with the medium.
The problem here is that photons and dileptons are

produced continuously throughout the spacetime evolution
of the quark-gluon matter and from the subsequent hadronic
phase as well. Current models of heavy-ion collisions, which
include photon yields from the prehydro kinetic theory phase,
tend to underpredict the produced photon yields (Churchill
et al., 2020; Gale et al., 2020); for an alternative mechanism,
see Oliva et al. (2017).
Photons emitted from highly occupied glasma have been

suggested as an additional source of radiation (Berges et al.,
2017). While phenomenological model comparisons show a
significant glasma contribution (Garcia-Montero, 2019), the
theoretical modeling of photon rates currently carries sizable
uncertainty.
Besides photons and dileptons, inclusive yields of high-

momentum strongly interacting final states are also sensitive
to gluon saturation and to early-time dynamics in the heavy-
ion collision. These include hadrons at high transverse
momenta, jets, and heavy quarkonia. Gluon saturation
influences the production rates for these processes and
rescattering in the glasma influences their dynamics. These
effects are most pronounced for p⊥ ∼QS. We discussed
heavy-quark pair production in the glasma in Sec. IV. The
diffusion coefficient of these heavy quarks was computed
recently in this framework and scales as Q3

S (Boguslavski
et al., 2020). Heavy-quark diffusion in glasmalike environ-
ments and their subsequent evolution were also explored
recently in several works (Mrówczyński, 2018; Liu et al.,
2019; Carrington, Czajka, and Mrówczyński, 2020). A non-
trivial problem is distinguishing this early-time evolution of
heavy quarks from their late-time evolution (Akamatsu et al.,
2018; Brambilla et al., 2019; Rapp and van Hees, 2010).
Similar considerations also hold for the propagation of jets46

in the glasma (Dumitru, Nara et al., 2008; Asakawa, Bass, and
Muller, 2011; Carrington, Mrówczyński, and Schenke, 2017;
Ipp, Müller, and Schuh, 2020).
Higher-point correlations of hard probes add significant

sensitivity to the dynamics of quark-gluon matter off equ-
ilibrium. An example is the potential of two-particle

46The final stage of bottom-up thermalization corresponds to the
“jet quenching” of partons of momentum ∼QS that are quenched to
the thermal medium; this framework also explains key features of the
quenching of high-momentum jets in the QGP (Blaizot, Iancu, and
Mehtar-Tani, 2013; Blaizot, Liao, and Mehtar-Tani, 2016).
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Hanbury-Brown–Twiss photon interferometry to study early-
time dynamics (Garcia-Montero et al., 2019). Such measure-
ments are sensitive to the large longitudinal-transverse
anisotropies that are not reflected in photon yields. However,
experimental measurements of soft photon correlations are
challenging experimentally and high statistics would be needed
to disentangle the signal.

B. Long-range rapidity correlations

Long-range rapidity correlations are an important tool in
disentangling initial and final state effects in hadron-nucleus
and nucleus-nucleus collisions. This is because causality
dictates that the latest time that a correlation can be induced
between two particles A and B that freeze-out is given by

τ ¼ τfreeze-out exp

�
−
jyA − yBj

2

�
: ð126Þ

Thus, two particles that are long range in rapidity jyA−yBj≫ 1
would be correlated at early times in the collision (Dumitru,
Gelis et al., 2008). A particular example is the so-called ridge
effect, reviewed by Dusling, Li, and Schenke (2016), which
correlates two particles that are not only in rapidity but also in
relative azimuthal angle (Dumitru, Dusling et al., 2011). A
recent summary of the physics of initial state correlations was
given by Altinoluk and Armesto (2020).
However, if hydrodynamic flow also sets in early this ridge

could be a final state effect (Shuryak and Zahed, 2013) due to
the underlying boost invariance of the hydrodynamic fluid. A
way forward to disentangling initial state physics of CGCs and
the glasma at early times from late-time dynamics is to look at
the evolution of two-particle correlations with their rapidity
separation (Bzdak and Dusling, 2016). Another approach is to
study the long-range correlations of particles with large
transverse momenta that do not follow hydrodynamically
(Dusling and Venugopalan, 2013; Martinez, Sievert, and
Wertepny, 2019).

C. Bulk observables

We previously discussed limiting fragmentation of hadron
distributions and its potential to distinguish initial and final
state effects in hadron-hadron collisions (Gonçalves et al.,
2019). We now discuss other bulk observables in high-energy
nucleus-nucleus, hadron-nucleus, and hadron-hadron colli-
sions that can help constrain the properties of saturated gluons
and their early-time evolution. In the smaller systems, even if
the system hydrodynamizes quickly, the large shape fluctua-
tions of partons will provide insight into multiparton corre-
lations in the initial state (Mäntysaari, 2020); understanding
these from first principles is a challenging problem (Dumitru,
Skokov, and Stebel, 2020) that may also require the EIC to
resolve.
A number of works have explored applications of holo-

graphic ideas to the study of bulk observables in heavy-ion
collisions. A universal prediction of holography is that of
hydrodynamization being distinct from local thermalization.
A specific phenomenological investigation implementing
this idea used holographic boost-invariant dynamics with

transverse expansion as a successful model of preflow (van
der Schee, Romatschke, and Pratt, 2013). Another develop-
ment was discussed by van der Schee and Schenke (2015),
who treated the planar shock wave collisions discussed in
Sec. VI.E.1 as an explicit model of initial state physics. While
this study recovered qualitative features of soft particle
spectra, the rapidity distribution of produced particles is too
narrow relative to the experimental data. It would be interest-
ing to explore more complicated holographic models of
heavy-ion collisions and constrain them with experimen-
tal data.
In a thermalizing system, the loss of information of the

initial conditions manifests itself as the production of entropy.
Therefore, if the system locally thermalizes and its flow is
nearly isentropic, the measured number of particles probes the
entropy produced during the nonequilibrium evolution of
quark-gluon matter. The CGC framework accounts for the
increase of particle multiplicity with increasing collision
energy with the growth of the saturation scale QS
(Albacete and Marquet, 2014). Recent calculations of entropy
production in the equilibration processes using hydrodynamic
attractors provide a quantitative relation between the energy
deposition in the CGC picture and the final particle numbers
(Giacalone, Mazeliauskas, and Schlichting, 2019).
On the other hand, the energy of the observed particles

depends on the work done during the entire expansion and
therefore has different dependencies on the dynamics of the
preequilibrium stage.Comparing these two robust experimental
measurements (energies andmultiplicities) already casts doubts
on the complete equilibration of QGP in peripheral nucleus-
nucleus collisions (Giacalone, Mazeliauskas, and Schlichting,
2019; Kurkela, Wiedemann, and Wu, 2019a).
Many of the experimental signatures of QGP (strangeness

enhancement, jet suppression, flow harmonics, etc.) show a
smooth dependence on system size from central to peripheral
nucleus-nucleus, proton-nucleus, and proton-proton colli-
sions. As the system size shrinks, so also does its lifetime,
corresponding to an increase in the relative importance of
nonequilibrium QCD process increases.
Equilibration studies in large systems already put a lower

bound below which the system will not reach hydrodynam-
ization or chemical equilibrium (Kurkela and Mazeliauskas,
2019a; Kurkela et al., 2019b). Therefore, explaining observed
signals of collectivity (or the absence thereof) in small
collisions systems requires a proper treatment of nonequili-
brium QCD dynamics. Some recent examples of work in this
direction include studies of flow harmonics (Kurkela,
Wiedemann, and Wu, 2019b; Schenke, Shen, and Tribedy,
2020b), parton energy loss (Andres et al., 2020), and heavy-
quark evolution (Mrówczyński, 2018). Furthermore, as dis-
cussed in Sec. VI.E.2, hydrodynamization without equilibra-
tion of small systems is natural in holography.
Also noteworthy is recent phenomenological work (Huang

et al., 2018) quantifying the role of nonequilibrium dynamics
in the chiral magnetic effect, which we discussed in Sec. IV. A
topic that demands further investigation is the origin of the
large vorticities measured in off-central heavy-ion collisions,
as extracted from measurements of the polarization of Λ
baryons (Becattini and Lisa, 2020). The vorticities are
introduced on macroscopic scales of the order of the system
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size; how these propagate efficiently down to the microscopic
scales of Λ is not yet understood.

D. Future prospects

A recent recommendation from the European Strategy for
Particle Physics report emphasized that the main physics goal
of future experiments with heavy-ion and proton beams at the
LHC will be “a detailed, experimentally tested dynamical
understanding of how out-of-equilibrium evolution occurs and
equilibrium properties arise in a non-Abelian quantum field
theory” (Citron et al., 2019; Ellis et al., 2019). The scheduled
runs 3 and 4 of the LHC will mark a decade of high-statistics
data across system sizes at the highest achievable collision
energies.
In the United States, continued operation of RHIC will

provide further insight into several of the signatures that we
have discussed. In particular, with the anticipated commis-
sioning of the sPHENIX detector (Roland, 2019), hard probes
of QCD off equilibrium will be studied in a dynamical range
that is complementary to that of the LHC.
Looking further into the future, the EIC project has received

Critical Decision 0 approval from the U.S. Department of
Energy. The EIC will explore with high precision the land-
scape of hadron structure at high energies (Accardi et al.,
2016; Aschenauer et al., 2019).
One may therefore anticipate that this decade and the next

will bring many opportunities to exploit the signatures that we
have articulated here, and likely several novel ones, of the
properties of QCD off equilibrium.

VIII. INTERDISCIPLINARY CONNECTIONS

Understanding the thermalization process in QCD associ-
ated with heavy-ion collisions addresses some of the most
fundamental questions in quantum dynamics, with interdis-
ciplinary connections made to significantly different many-
body systems. The transient “fireball” expanding in vacuum
explores far-from-equilibrium conditions at early times, fol-
lowed by a series of characteristic stages that are finally
expected to lead to a fluidlike behavior governing the
approach to local thermal equilibrium. Similar questions of
equilibration and the emergence of collective behavior from
the underlying unitary quantum dynamics are relevant for
diverse applications ranging from high-energy and con-
densed-matter physics to practical quantum technology. For
reviews in the context of condensed-matter physics, see
Borgonovi et al. (2016), D’Alessio et al. (2016), and
Gogolin and Eisert (2016).
Several nonequilibrium phenomena were first proposed in

the context of QCD matter in extreme conditions and then
explored and experimentally probed in alternative quantum
many-body systems. For instance, the phenomenon of pre-
thermalization (Berges, Borsanyi, and Wetterich, 2004) with
the rapid establishment of an effective equation of state during
the early stages of heavy-ion collisions (Arnold et al., 2005;
Dusling et al., 2012) has been explored for early Universe
inflaton dynamics (Podolsky et al., 2006) and condensed-
matter systems (Moeckel and Kehrein, 2008; Langen,
Gasenzer, and Schmiedmayer, 2016; Mori et al., 2018),

and experimentally discovered in ultracold quantum gases
on an atom chip (Smith et al., 2013).
In turn, aspects of entanglement represent one of the major

overarching schemes in contemporary physics of quantum
many-body systems, and gravity in and out of equilibrium,
while investigations about its relevance to the thermalization
process in QCD are relatively recent. There are many topical
reviews on entanglement (Calabrese and Cardy, 2009; Casini
and Huerta, 2009; Eisert, Cramer, and Plenio, 2010;
Rangamani and Takayanagi, 2017). We discuss some aspects
of entanglement in our context in more detail later.
To capture the thermalization dynamics in QCD related to

heavy-ion collisions, detailed comparisons take into account
the fact that the coupling of non-Abelian gauge theories is not
a constant but changes with characteristic energy or momen-
tum scale in a particular way. While strong at low scales, the
coupling becomes weak at sufficiently high energies because
of the phenomenon of asymptotic freedom (Gross and
Wilczek, 1973; Politzer, 1973). Even in the high-energy limit,
where the gauge coupling is weak, one faces a strongly
correlated system because a plasma of gluons with high
occupancy [fðQSÞ ∼ 1=αSðQSÞ] is expected to form; see
Sec. III. Such a transient overoccupation leading to strong
correlations even for weakly coupled systems can be found in
a variety of physical applications that are far from equilibrium.
Examples include the preheating scenario for the early stages
of our Universe after a period of strongly accelerated
expansion called inflation (Kofman, 2008) and the relaxation
dynamics in tabletop setups with ultracold quantum gases
following a sudden change in external control parameters such
as magnetic fields (Prüfer et al., 2018).
The high level of control in experiments with synthetic

quantum systems, such as ultracold quantum gases, enables
dedicated quantum simulations. These systems provide flex-
ible test beds, which can realize a wide range of Hamiltonians
with variable interactions and degrees of freedom based on
atomic, molecular, and optical physics engineering (Bloch,
Dalibard, and Zwerger, 2008). Since these setups can be well
isolated from the environment, they offer the possibility of
studying fundamental aspects such as the thermalization
process from the underlying unitary quantum evolution.
While digital quantum simulations based on a Trotterized

time evolution on a universal quantum computer are chal-
lenging to scale up, present large-scale analog quantum
simulators using ultracold quantum gases already explore
the many-body limit described by quantum field theory
(Bloch, Dalibard, and Zwerger, 2008; Haller et al., 2010;
Gring et al., 2012; Hung, Gurarie, and Chin, 2013; Langen
et al., 2015; Navon et al., 2015, 2016; Parsons et al., 2016;
Bernien et al., 2017; Schweigler et al., 2017; Eckel et al.,
2018; Erne et al., 2018; Prüfer et al., 2018, 2019; Feng et al.,
2019; Hu et al., 2019; Keesling et al., 2019; Murthy et al.,
2019; Zache et al., 2020). In principle, with quantum
simulators nonuniversal aspects of the dynamics of gauge
theories can also be studied. This was first achieved for
Abelian gauge theory with digital quantum simulations, such
as those using trapped ions (Martinez et al., 2016) or super-
conducting qubits (Klco et al., 2018).
A possibility to consider is the application of a hybrid

quantum-classical framework to real-time problems. This has
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been discussed in a “single-particle” digital strategy for
scattering problems whereby higher-loop quantum contribu-
tions can be simulated digitally and the background gauge
field treated in principle on a quantum simulator (Mueller,
Tarasov, and Venugopalan, 2019, 2020). It is also important to
note that scalable analog systems for the quantum simulations
of gauge theories using ultracold atoms have been reported
(Kokail et al., 2019; Mil et al., 2020). We anticipate
significant progress in all of these approaches to quantum
computation of real-time problems in the decade ahead.

A. Strong interactions: Unitary Fermi gas

A paradigmatic example of the interdisciplinary cross
fertilization among the different physical applications is the
work on collective motion of a unitary Fermi gas. Near
unitarity, the s-wave scattering length, which characterizes the
two-body interaction strength, becomes large and the effective
scale invariance of the interaction at unitarity can lead to
universal behavior (Chin et al., 2010), which can also be
accessed out of equilibrium (Eigen et al., 2018). Many
similarities for dynamical properties, such as a low ratio of
shear viscosity to entropy density, have been discussed in this
context in comparison to QCD. See the discussion in Sec. V.
We noted that heavy-ion experiments indicate that the hot

quark-gluon plasma may be described as the most perfect fluid
realized in nature (Adams et al., 2005; Adcox et al., 2005;
Aamodt et al., 2010; Chatrchyan et al., 2011; Aad et al.,
2012). The only serious experimental competitors are ultra-
cold quantum gases at temperatures that differ by 20 orders of
magnitude. Strong interactions also play a central role in
holographic approaches, a concept that is addressed in
Sec. VI, and there are concrete proposals on how to realize
holographically systems resembling unitary Fermi gases
(Balasubramanian and McGreevy, 2008; Son, 2008). A
comprehensive review of common aspects of QCD, unitary
Fermi gases, and holography was provided by Adams
et al. (2012).

B. Highly occupied systems I: Preheating in the early Universe

The dilution of matter and radiation during the inflationary
period of the early Universe leads to an extreme condition that
may be well characterized by a pure state with vacuumlike
energy density carried by a time-dependent coherent inflaton
field with large amplitude (Kofman, 2008). A wide class of
postinflationary models with weak couplings exhibit the
subsequent decay of the inflaton field amplitude via non-
equilibrium instabilities (Traschen and Brandenberger, 1990;
Kofman, Linde, and Starobinsky, 1994). Detailed mechanisms
for the origin of an instability and the scattering processes are
different than in QCD with strong color fields.
However, the rapid growth of fluctuations from the inflaton

decay leads to a nonlinear time evolution that follows along
lines similar to those outlined in Sec. IV for QCD. For
instance, for scalar fields with weak quartic interaction λ ≪ 1
a corresponding overoccupation ∼1=λ up to a characteristic
momentum scale is achieved after the instability. Likewise, at
this stage the prethermalization (Berges, Borsanyi, and
Wetterich, 2004; Arnold et al., 2005) of characteristic

properties, including an effective equation of state, is observed
in these scalar models (Podolsky et al., 2006).
Moreover, a self-similar attractor solution is approached

subsequently, as discussed in Sec. IV.C.3. Compared to the
longitudinally expanding QCD plasma, a major difference
stems from the isotropic expansion of the Universe. Some
aspects of isotropic expansion can be lifted for the inflaton
field dynamics by introducing suitably rescaled conformal
time and field amplitudes, such that the dynamics is essen-
tially that of Minkowski spacetime without expansion (Micha
and Tkachev, 2003). In fact if compared to QCD dynamics
without expansion, then characteristic dynamical properties
such as the values of scaling exponents in the attractor regime
agree with what is found for self-interacting scalar field
dynamics with quartic interactions in the absence of sponta-
neous symmetry breaking (Berges and Wallisch, 2017).
This concerns the gauge theory’s direct energy cascade

toward the perturbative high-momentum regime (Kurkela and
Moore, 2011b, 2012; Schlichting, 2012), as well as the inverse
particle cascade toward low momenta in the nonperturbative
regime associated with nonthermal fixed points (Berges et al.,
2019). In turn, scalar fields with longitudinal expansion seem
to exhibit several universal features shared with QCD dynam-
ics in the transient scaling regime (Berges et al., 2015a). In
particular, the inverse cascade essentially follows the behavior
of the corresponding nonexpanding system because of the
strong Bose enhancement of rates at low momenta (Berges
et al., 2015a); see also Sec. IV.D.2.

C. Highly occupied systems II: Bose gases far from equilibrium

Although the inflaton dynamics is described by a relativistic
field theory, the self-similar scaling behavior at sufficiently
low momenta below the screening-mass scale is predicted to
exhibit universal properties of a nonrelativistic system
(Piñeiro Orioli, Boguslavski, and Berges, 2015). The non-
equilibrium infrared dynamics for scalars starting from over-
occupation has been theoretically studied in detail (Berges,
Rothkopf, and Schmidt, 2008; Scheppach, Berges, and
Gasenzer, 2010; Berges and Sexty, 2011, 2012; Nowak,
Sexty, and Gasenzer, 2011; Nowak et al., 2012; Berges et al.,
2015b; Moore, 2016; Deng et al., 2018; Walz, Boguslavski,
and Berges, 2018; Boguslavski and Piñeiro Orioli, 2019;
Chantesana, Piñeiro Orioli, and Gasenzer, 2019; Piñeiro
Orioli and Berges, 2019; Shen and Berges, 2020).
However, important aspects of this far-from-equilibrium
dynamics can be probed experimentally using Bose gases
in an optical trap. For the example of an interacting, non-
relativistic Bose gas of density n in three spatial dimensions,

this concerns the dilute regime (
ffiffiffiffiffiffiffiffi
na3

p
≪ 1), with a character-

istic inverse coherence length given by the momentum scale
Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

16πan
p

. Here Q plays a similar role as the saturation
scale for gluons in the gauge theory case, and the dilutenessffiffiffiffiffiffiffiffi
na3

p
provides the dimensionless coupling parameter. An

overoccupied Bose gas then features large occupancies

∼1=
ffiffiffiffiffiffiffiffi
na3

p
for modes with momenta of the order of Q

(Piñeiro Orioli, Boguslavski, and Berges, 2015).
Universal scaling far from equilibrium associated with

nonthermal fixed points has been experimentally discovered
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using different cold atom systems (Erne et al., 2018; Prüfer
et al., 2018). For instance, Prüfer et al. (2018, 2019) studied
the nonequilibrium dynamics of magnetic hyperfine excita-
tions of a spin-1 Bose gas in an elongated trap, following a
sudden change in the applied magnetic field as an external
control parameter. Figure 32 exemplifies the scaling dynamics
of the measured transversal spin for three different initial
conditions. After an initial nonequilibrium instability regime,
all data in the self-similar scaling regime are seen to collapse
to a single curve after rescaling with time using universal
scaling exponents. While this example concerns infrared
scaling, bidirectional scaling including a self-similar evolution
toward higher momenta with subsequent thermalization was
experimentally analyzed by Glidden et al. (2020).

D. Highly occupied systems III: Classicalization and
unitarization of gravitational amplitudes

An intriguing idea is that of black holes as long-lived states
of highly occupied gravitons (f ≫ 1) that satisfy the condition
αgravf ¼ 1 (Dvali and Gomez, 2013). Here αgrav ¼ L2

P=R
2
S,

where LP is the Planck length and RS denotes the
Schwarzchild radius. A dynamical picture of the formation
of such a black hole state is in 2 → N scattering of gravitons at
trans-Planckian energies. In the Regge limit, as first discussed
by Lipatov (1991) and subsequently by Amati, Ciafaloni, and
Veneziano (1987), the scattering is dominated by the for-
mation of N − 2 soft quanta. The argument of Dvali and
Gomez (2013) was that the copious production of soft

gravitons leads to perturbative unitarization of the scattering
cross section precisely when αgravf ¼ 1.
This classicalization of amplitudes was shown explicitly

(Dvali et al., 2015) using the tree level Kawai-Lewellen-Tye
relations (Kawai, Lewellen, and Tye, 1986) that express N-
point tree level gravity amplitudes in terms of sums of
products of Yang-Mills N-point tree amplitudes. These results
are in agreement with computations in Lipatov’s EFT
approach (Addazi, Bianchi, and Veneziano, 2017).
The ideas of the classicalization and unitarization of 2 → N

gravitational amplitudes are similar to the discussion of the
CGC EFT in Secs. II and III. The BFKL results on 2 → N
gluon scattering are likewise reproduced in the semiclassical
CGC EFT. A path forward is to employ so-called double copy
methods that exploit a color-kinematics duality between
gravity and QCD amplitudes (Bern et al., 2019). Such a
correspondence was prefigured in the high-energy limit
addressed by Lipatov (1991) and further discussed more
recently (Sabio Vera, Serna Campillo, and Vazquez-Mozo,
2012; Liu, 2019).
Of particular interest in our context is the classical double

copy between classical Yang-Mills equations and classical
gravity (Monteiro, O’Connell, and White, 2014; Goldberger
and Ridgway, 2017). This points to a concrete correspondence
between collisions of the classical gluon shock waves pro-
ducing the glasma and that of gravitational shock waves that
produce black holes (Dvali and Venugopalan, 2021). It would
also be interesting to understand whether this correspondence
shares universal features at the unitarity limit with that of the
holographic gravitational shock waves discussed in Sec. VI.

(a) (b)

FIG. 32. (a) Absorption images of different magnetic hyperfine states of a spin-1 Bose gas with the extracted transversal spin (solid
lines) for three different far-from-equilibrium initial conditions. (b) All initial conditions lead to the same universal scaling behavior,
such that all data points collapse onto a single curve after rescaling with time using the universal exponents α and β.
From Prüfer et al., 2018.
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E. Anomalous currents in nonequilibrium QED:
Condensed-matter systems and strong laser fields

Strong color fields as well as strong electromagnetic fields
are an essential ingredient for the understanding of the early
stages of the plasma’s spacetime evolution in off-central
heavy-ion collisions. Strong gauge fields lead to a wealth
of phenomena related to quantum anomalies, such as the
chiral magnetic effect (Kharzeev et al., 2016; Koch et al.,
2017) described in Sec. IV. As discussed, there are strong
connections between the transport properties of anomalous
currents in hot QCD and in strongly correlated condensed-
matter systems, in particular, Dirac and Weyl semimetals with
applied fields (Li and Kharzeev, 2016).
Here we note that similar questions could also be addressed

in future strong laser field experiments that will be able to
explore QED dynamics in extreme conditions (Di Piazza
et al., 2012). For instance, for QED field strengths exceeding
the Schwinger limit for pair production, a highly absorptive
medium with quantum anomaly-induced dynamical refractive
properties related to the chiral magnetic effect was predicted
(Mueller, Hebenstreit, and Berges, 2016).

F. Thermalization and entanglement

While the time evolution of isolated quantum systems is
unitary, relevant observables in nonequilibrium quantum field
theory can approach thermal equilibrium values at sufficiently
late times, without the need for any coarse graining or
reference to a reduced density operator. Thermalization in
quantum field theory has been demonstrated for scalar
quantum field theories in various spatial dimensions
(Berges and Cox, 2001; Berges, 2002; Juchem, Cassing,
and Greiner, 2004; Arrizabalaga, Smit, and Tranberg, 2005)
and with fermions (Berges, Borsanyi, and Serreau, 2003; Shen
et al., 2020); see Berges (2004a) for an introductory review.47

In gauge theories at strong coupling, thermalization from
unitary dynamics was observed using holographic
approaches, as discussed in Sec. VI.
It has been analyzed in detail how, in particular, locally

defined quantities of isolated quantum many-body systems
can exhibit thermal features (Deutsch, 1991; Srednicki, 1994;
Rigol, Dunjko, and Olshanii, 2008). In such time-dependent
processes, entanglement entropy of spatial subregions (the von
Neumann entropy of spatially reduced density matrices) was
seen to reach the value predicted by thermal states after
exhibiting a period of growth; see Calabrese and Cardy
(2005), Abajo-Arrastia, Aparicio, and Lopez (2010), Liu and
Suh (2014), Cotler et al. (2016), Kaufman et al. (2016), and
Alba and Calabrese (2017). Understanding why and how this
happens has been an active subfield of research in lattice
systems, quantum field theory, and holography.
Berges, Floerchinger, and Venugopalan (2018a, 2018b)

applied similar considerations to a model of eþe− collisions
and pursued the idea of viewing entanglement as a source of
an apparent thermal behavior seen in multiparticle production
in such events, as discussed by Becattini (1996) and Andronic

et al. (2009). Recently an entanglement entropy measure
devised for proton-proton collisions at the LHC was argued to
be consistent with the data; the latter is at variance with
expectations from Monte Carlo simulations (Tu, Kharzeev,
and Ullrich, 2020). In the same vein, Ecker et al. (2016)
explored the behavior of the entanglement entropy in a
holographic model of heavy-ion collisions discussed in
Sec. VI.E and found it can serve as an order parameter
distinguishing between the Landau (full stopping) and
Bjorken (transparency) scenarios.
The notion of entanglement plays a key role in tensor

network methods that represent quantum many-body wave
functions and density matrices of physical interest yet with
low enough entanglement to allow for their efficient manipu-
lation on classical computers; see Orus (2014) for a review.
Such methods are robust in describing ground states and low-
lying excited states in 1þ 1 dimensions (Hastings, 2006;
Vidal, 2008), and considerable progress has been made in the
past few years with using them for condensed-matter physics
applications in 2þ 1 dimensions (Corboz, 2016a, 2016b;
Vanderstraeten et al., 2016; Corboz et al., 2018; Rader and
Läuchli, 2018).
In the context of this review, we highlight a number of

recent developments in applying tensor networks to QCD and
heavy-ion collision motivated problems in (1þ 1)-dimen-
sional settings, ranging from the applications to gauge theories
reviewed by Bañuls and Cichy (2020) to nonequilibrium
processes in interacting QFTs on a lattice (Buyens et al., 2016,
2017; Pichler et al., 2016; Bañuls et al., 2020). In the last
cases, the aforementioned growth of entanglement with time is
a bottleneck preventing simulations from reaching late times.
Finally, entanglement entropy in holography arises as a

Bekenstein-Hawking entropy of a special class of surfaces
(Ryu and Takayanagi, 2006; Hubeny, Rangamani, and
Takayanagi, 2007; Lewkowycz and Maldacena, 2013;
Dong, Lewkowycz, and Rangamani, 2016). This discovery
has led to new insights into quantum gravity by bringing
quantum information tools to the mix. An impressive result in
this direction is the quantitative understanding of the time
evolution of the entropy of Hawking radiation from an
evaporating black hole (Almheiri et al., 2019; Penington,
2019; Penington et al., 2019; Almheiri, Hartman et al., 2020;
Almheiri, Mahajan et al., 2020). The cited works point to a
new mechanism toward resolving Hawking’s information
paradox (Hawking, 1976; Page, 1993). From the point of
view of this review, they can be thought of as including finite-
Nc effects in holographic studies of a class of thermalization
processes at late times.

IX. SUMMARY AND OUTLOOK

In 1974, T.D. Lee suggested that, “it would be interesting to
explore new phenomena by distributing a high amount of
energy or high nuclear density over relatively large volume”
(Baym et al., 1975). We are beginning to come to grips with
the richness of many-body QCD dynamics 46 years later
owing to experimental programs in nucleus-nucleus collisions
in the decades since, culminating in the discovery of the
quark-gluon plasma at RHIC and the LHC. As demonstrated

47For thermalization studies in classical-statistical field theories
for given regularization, see Aarts, Bonini, and Wetterich (2000).
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at these colliders, the non-Abelian QGP is a nearly perfect
fluid showing little resistance to pressure gradients.
This conclusion is a consequence of the apparently unrea-

sonable success of relativistic viscous hydrodynamics in the
description of the heavy-ion data from RHIC and the LHC.
However, the quantitative phenomenological success of
hydrodynamical models also owes a great deal to our
improved understanding of the initial conditions for hydro-
dynamic evolution, in particular, in the modeling of event-by-
event fluctuations in the nuclear geometry, as well as a
deepening understanding of how the quark-gluon matter is
released in the heavy-ion collisions and thermalizes to form
the QGP.
With regard to the latter, comparisons of the hydrodynam-

ical models to data require thermalization to occur rapidly on
timescales on the order of 3 yoctoseconds: approximately a
tenth of the lifetime of the nuclear collision. These short
lifetimes and the nearly perfect fluidity of the subsequent flow
of the QGP suggest that the nonequilibrium matter formed is
strongly correlated. The quest to understand ab initio the
structure of strongly correlated QCD matter in nuclear wave
functions at high energies, and how this matter is released,
decoheres, and thermalizes, has motivated a large body of
work over the last couple of decades, from the inception of the
RHIC program to the present.
Strongly correlated QCD matter can arise either in weak

coupling when the occupancies of the constituents are large or
in strong coupling. Further, since the coupling runs toward
strong coupling as the system evolves, both weak and strong
couplings may be realized in the fluid. In this review, we
summarized the theoretical ideas and techniques in both
strong- and weak-coupling frameworks that address the
thermalization process in heavy-ion collisions.
We emphasized the emergence of attractors in both the

weak-coupling EFT and holographic approaches that may be
universal across a wide range of energy scales. We also noted
concomitantly the concrete interdisciplinary connections of
strongly correlated QCD (and QCD-like) matter off equilib-
rium to dynamical features of phenomena ranging from
preheating in inflationary cosmology to pair production in
laser-induced strong QED fields to nonequilibrium dynamics
in ultracold atomic gases.
In particular, we discussed a universality in the nonthermal

attractor discovered in simulations of overoccupied expanding
glasma to that discovered in identically prepared simulations
of the self-interacting scalar fields that model the ultracold
systems. Cold atom experiments have discovered such a
nonthermal attractor, albeit with a different geometry than
that of a heavy-ion collision. This opens up the prospect of
extending the program under way of the “tabletop engineer-
ing” of ultracold atom systems as analog quantum simulators
of the ground state properties of gauge theories to uncover far-
from-equilibrium properties of non-Abelian gauge theories.
We also discussed the signatures for QCD matter off

equilibrium and the challenges of disentangling these from
contributions at later stages of the heavy-ion collision.
Ongoing and near-term experiments at both RHIC and the
LHC will greatly enhance these prospects through both novel
measurements and larger datasets than are currently available.
The EIC will provide information complementary to those of

the heavy-ion experiments to further tease out and make more
precise our understanding of the initial state. Further progress
will also depend on theoretical developments in the weak- and
strong-coupling frameworks and the convergence between the
two when extrapolated to the realistic couplings of the heavy-
ion experiments.
Computations of the properties of saturated gluons in the

CGC EFT are now at next-to-leading order and next-to-
leading log accuracy for a few processes. We expect this
trend to continue, which will allow for precise extractions of
the saturation scale in DIS and proton-nucleus collisions. A
more conceptual challenging problem is to understand the
large fluctuations in the large-x initial conditions that may
generate anisotropic shape distributions of small-x partons. As
we noted, such studies may benefit from the universality
between the nonlinear equations that describe high-energy
QCD evolution and those that describe reaction-diffusion
processes in statistical mechanics.
In the description of the glasma, a straightforward but

technically challenging problem is to extend several of the
computations in fixed-box geometries to the more realistic
longitudinally expanding case. A more difficult challenge is to
implement fully quantum contributions beyond the classical-
statistical approximation. While there is considerable insight
gained from ongoing studies of scalar field theories in this
regard, further progress will require additional conceptual
breakthroughs. A noteworthy feature of the overoccupied
glasma is the emergence of infrared structures that may have
nontrivial topological features (Spitz et al., 2020). This may
be universal to other many-body systems, leading to novel
potential synergies in addition to those discussed in this
review.
Recent numerical simulations using QCD effective kinetic

theory have painted a detailed picture of the different
equilibration stages in longitudinally expanding, albeit homo-
geneous, QCD matter. However, the kinetic description of
inhomogeneous systems with rapid radial expansion needs
further development. This is especially important for studies
of collisions of light nuclei or in proton-nucleus collisions,
where tantalizing signals of collective behavior have been
seen. It will be interesting within this framework to understand
whether a unified many-body description emerges that
smoothly interpolates from a few parton scatterings in the
smallest collision systems to the emergent fluidlike behavior
in the largest systems.
On the more formal side, computations of various transport

properties of the QGP beyond leading order have higher-order
corrections that are large for all but extremely small values of
the coupling constant. Finite temperature resummation tech-
niques may help improve the convergence of the perturbative
expansion. A potential path forward is to combine a non-
perturbative description of the infrared sector with kinetic
theory in the UV.
A key part of our review was devoted to developments in

holographic approaches to off-equilibrium dynamics in QCD-
like theories. An important discovery is that the hydrodynamic
gradient expansion is an asymptotic series, which allows one
to view the applicability of hydrodynamics through the
emergent universal behavior of a hydrodynamic attractor.
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An open problem is the existence of hydrodynamic attrac-
tors for flows with transverse expansion and/or broken
conformal symmetry. It would be interesting to make a
clear-cut statement as to what extent these phenomena appear
in a tracktable manner outside idealizations of the geometry of
ultrarelativistic heavy-ion collisions or highly symmetric
cosmologies. Another important future direction is to address
collisions in holographic models that incorporate confinement
following recent promising work in this direction. It would be
interesting to reconsider expanding plasma setups and, more
broadly, thermalization at strong coupling in the context of the
Gauss-Bonnet gravity discussed in Sec. VI.F.2. First steps in
this direction relied on treating the Gauss-Bonnet term as a
small correction. Going beyond this regime, which is chal-
lenging from many perspectives, can reveal genuinely new
effects in holographic setups like the nonthermal fixed points
discussed in Sec. IV.C. Finally, an important open question in
holography is to understand whether long-range “ridgelike”
correlations can naturally arise at strong coupling and whether
they can survive until late time.
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