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In this review, recent progress on the black hole information problem that involves a new
understanding of how to calculate the entropy of Hawking radiation is described. The review shows
how the method for computing gravitational fine-grained entropy, developed over the past 15 years,
can be extended to capture the entropy of Hawking radiation. This technique reveals large corrections
needed for the entropy to be consistent with unitary black hole evaporation.
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I. INTRODUCTION

In this review we discuss some recent progress on aspects of
the black hole information paradox.
Before delving into it we discuss the big picture motivation.

One of the main motivations to study quantum gravity is to
understand the earliest moments of the Universe, where we

expect quantum effects to be dominant. In the search for this
theory, it is better to consider simpler problems. A simpler
problem involves black holes. They also contain a singularity
in their interior. It is an anisotropic big crunch singularity, but
it is also a situation where quantum gravity is necessary,
making it difficult to analyze. Black holes, however, afford us
the opportunity to study them as seen from the outside. This is
simpler because far from the black hole we can neglect the
effects of gravity and we can imagine asking sharp questions
probing the black hole from far away. One of these questions
is the subject of this review. We hope that by studying these
questions we will eventually understand the black hole
singularity and learn some lessons for the big bang, but we
do not do that here.
Studies of black holes in the 1970s showed that black holes

behave as thermal objects. They have a temperature that leads
to Hawking radiation. They also have an entropy given by the
area of the horizon. This suggested that, from the point of view
of the outside, they could be viewed as an ordinary quantum
system. Hawking objected to this idea through what we now
know as the “Hawking information paradox.”He argued that a
black hole would destroy quantum information, and that the
von Neumann entropy of the Universe would increase by the
process of black hole formation and evaporation. Results from
the 1990s using string theory, a theory of quantum gravity,
provided some precise ways to study this problem for specific
gravity theories. These results strongly suggest that informa-
tion does indeed come out. However, the current under-
standing requires certain dualities to quantum systems
where the geometry of spacetime is not manifested.
Over the past 15 years, a better understanding of the von

Neumann entropy for gravitational systems was developed.
The computation of the entropy also involves an area of a
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surface, but the surface is not the horizon. It is a surface that
minimizes the generalized entropy. This formula is almost as
simple as the Bekenstein formula for black hole entropy
(Bekenstein, 1972, 1973). More recently, this formula was
applied to the black hole information problem, giving us a new
way to compute the entropy of Hawking radiation (Almheiri,
Engelhardt et al., 2019; Penington, 2019). The final result
differs from Hawking’s result and is consistent with unitary
evolution.
The first version of the fine-grained entropy formula was

discovered by Ryu and Takayanagi (2006). It was sub-
sequently refined and generalized by Hubeny, Rangamani,
and Takayanagi (2007), Barrella et al. (2013), Faulkner,
Lewkowycz, and Maldacena (2013), Lewkowycz and
Maldacena (2013), Engelhardt and Wall (2015), Almheiri,
Engelhardt et al. (2019), Almheiri, Mahajan et al. (2019), and
Penington (2019). Originally, the Ryu-Takayanagi formula
was proposed to calculate holographic entanglement entropy
in anti–de Sitter spacetime, but the present understanding of
the formula is much more general. It does not require
holography, entanglement, or anti–de Sitter spacetime.
Rather it is a general formula for the fine-grained entropy
of quantum systems coupled to gravity.
Our objective is to review these results for people with

minimal background in this problem. We do not follow a
historical route but instead go directly to the final formulas
and explain how to use them. For that reason, we do not
discuss the many related ideas that served as motivation, or
that are also useful for the general study of quantum aspects of
black holes. Related work was conducted by Akers,
Engelhardt, and Harlow (2019), Almheiri, Mahajan, and
Santos (2019), Bousso and Tomasevic (2019), Chen et al.
(2019), Rozali et al. (2019), Zhao (2019), Anegawa and Iizuka
(2020), Balasubramanian et al. (2020), Banks (2020), Chen
(2020), Chen, Qi, and Zhang (2020), Gautason et al. (2020),
Geng and Karch (2020), Giddings and Turiaci (2020),
Hollowood and Kumar (2020), Kim, Tang, and Preskill
(2020), Krishnan, Patil, and Pereira (2020), Laddha et al.
(2020), Liu and Vardhan (2020), Marolf and Maxfield (2020),
Mousatov and Silverstein (2020), Pollack et al. (2020),
Saraswat and Afshordi (2020), and Verlinde (2020).
Many details and caveats are necessarily omitted from the

review, although we discuss some potential technical issues in
Sec. XI. We believe the caveats are merely technical and
unlikely to change the basic picture.

II. PRELIMINARIES

A. Black hole thermodynamics

When an object is dropped into a black hole, the black hole
respondsdynamically. The event horizon ripples briefly and then
quickly settles down to a new equilibrium at a larger radius. It
was noticed in the 1970s that the resulting small changes in the
black hole geometry are constrained by equations closely
parallel to the laws of thermodynamics (Christodoulou, 1970;
Christodoulou and Ruffini, 1971; Hawking, 1971, 1974, 1975;
Bekenstein, 1972, 1973; Carter, 1972; Bardeen, Carter, and
Hawking, 1973). The equation governing the response of a
rotating black hole is (Bardeen, Carter, and Hawking, 1973)

κ

8πGN
dðAreaÞ ¼ dM − ΩdJ; ð2:1Þ

where κ is its surface gravity,1 M is its mass, J is its angular
momentum, andΩ is the rotational velocity of the horizon. The
area refers to the area of the event horizon, andGN is Newton’s
constant. If we postulate that the black hole has temperature
T ∝ κ and entropy SBH ∝ Area, then this looks identical to the
first law of thermodynamics in the form

TdSBH ¼ dM −ΩdJ: ð2:2Þ

In addition, the area of the horizon always increases in the
classical theory (Hawking, 1971), suggesting a connection to
the second law of thermodynamics. This is simply a rewriting
of the Einstein equations in suggestive notation, and initially
there was little reason to believe that it had anything to do with
“real” thermodynamics. In classical general relativity, black
holes have neither a temperature nor any significant entropy.
This changed upon Hawking’s discovery that, when general
relativity is coupled to quantum field theory, black holes have a
temperature (Hawking, 1975)

T ¼ ℏκ
2π

: ð2:3Þ

(We set c ¼ kB ¼ 1.) This formula for the temperature fixes
the proportionality constant in SBH ∝ Area. The total entropy
of a black hole and its environment also has a contribution
from the quantum fields outside the horizon. This suggests that
the total or “generalized” entropy of a black hole is
(Bekenstein, 1973)

Sgen ¼
Area of horizon

4ℏGN
þ Soutside; ð2:4Þ

where Soutside denotes the entropy of matter as well as gravitons
outside the black hole, as appears in the semiclassical
description. It also includes a vacuum contribution from the
quantum fields (Bombelli et al., 1986).2 The generalized
entropy, including this quantum term, is also found to obey
the second law of thermodynamics (Wall, 2012):

ΔSgen ≥ 0; ð2:5Þ

giving further evidence that it is really an entropy. This result is
stronger than the classical area theorem because it also covers

1The name “surface gravity” is a bit misleading since the proper
acceleration of an observer hovering at the horizon is infinite. κ is
related to the force on a massless (unphysical) string at infinity; see
Wald (1984).

2The quantum contribution by itself has an ultraviolet divergence
from the short distance entanglement of quantum fields across the
horizon. This piece is proportional to the area A=ϵ2uv. However, matter
loops also lead to an infinite renormalization of Newton’s constant
1=ð4GNÞ → 1=4GN − 1=ϵ2uv. Then these two effects cancel each other
so that Sgen is finite. As usual in effective theories, these formally
“infinite” quantities are actually subleadingwhenwe remember thatwe
should take a cutoff that is small but not too small (lp ≪ ϵuv ≪ rs).
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phenomena like Hawking radiation, when the area decreases
but the generalized entropy increases due to the entropy of
Hawking radiation.
The area is measured in Planck units l2p ¼ ℏGN , so if this

entropy has an origin in statistical mechanics then a black hole
must have an enormous number of degrees of freedom. For
example, the black hole at the center of the Milky Way,
Sagittarius A*, has

S ≈ 1085: ð2:6Þ

Even for a black hole the size of a proton, S ≈ 1040. In
classical general relativity, according to the no-hair theorem,
there is just one black hole with mass M and angular
momentum J, so the statistical entropy of a black hole is
naively zero. Including quantum fields helps but has not led to
a successful accounting of the entropy. Finding explicitly the
states giving rise to the entropy is an interesting problem that
we do not discuss in this review.

B. Hawking radiation

The metric of a Schwarzschild black hole is

ds2 ¼ −
�
1 −

rs
r

�
dt2 þ dr2

1 − rs=r
þ r2dΩ2

2: ð2:7Þ

The Schwarzschild radius rs ¼ 2GNM sets the size of the
black hole. We ignore the angular directions dΩ2

2, which do
not play much of a role. To zoom in on the event horizon, we
change coordinates r → rsð1þ ρ2=4r2sÞ, t → 2rsτ and expand
for ρ ≪ rs. This gives the near-horizon metric

ds2 ≈ −ρ2dτ2 þ dρ2: ð2:8Þ

To this approximation, this is just flat Minkowski spacetime.
To see this, we define the new coordinates

x0 ¼ ρ sinh τ; x1 ¼ ρ cosh τ; ð2:9Þ

in which

ds2 ≈ −ρ2dτ2 þ dρ2 ¼ −ðdx0Þ2 þ ðdx1Þ2: ð2:10Þ

Therefore, according to a free-falling observer the event
horizon r ¼ rs is not special. It is just like any other point
in a smooth spacetime, and, in particular, the geometry extends
smoothly past the horizon into the black hole. This is a
manifestation of the equivalence principle: free-falling observ-
ers do not feel the effect of gravity. An observer that crosses the
horizon will not be able to send signals to the outside.3

The spacetime geometry of a Schwarzschild black hole that
forms by gravitational collapse is illustrated in Fig. 1. An
observer hovering near the event horizon at fixed r is
accelerating: a rocket is required to avoid falling in. In the
near-horizon coordinates [Eq. (2.10)], an observer at fixed ρ is
following the trajectory of a uniformly accelerated observer in
Minkowski spacetime.
A uniformly accelerating observer in flat space detects

thermal radiation. This is known as the Unruh effect (Unruh,
1976). There is a simple trick to obtain the temperature
(Bisognano and Wichmann, 1976). The coordinate change
[Eq. (2.9)] is similar to the usual coordinate change from

FIG. 1. Left panel: Penrose diagram of a black hole formed by gravitational collapse. Right panel: enlargement of the flat near-horizon
region, with the trajectory of a uniformly accelerated observer at ρ ¼ a−1.

3The interior lies behind a black shield (or schwarz schild in
German).
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Cartesian coordinates to polar coordinates. It becomes iden-
tical if we perform the Wick rotation τ ¼ iθ, x0 ¼ ix0E; then

x0E ¼ ρ sin θ; x1 ¼ ρ cos θ: ð2:11Þ

The new coordinates ðx0E; x1Þ or ðρ; θÞ are simply Cartesian or
polar coordinates on the Euclidean plane R2. In Euclidean
space, an observer at constant ρmoves in a circle of length 2πρ.
Euclidean time evolution on a circle is related to the compu-
tation of thermodynamic quantities for the original physical
system (we return to this discussion in Sec. II.C). Namely,
Tr½e−βH� is the partition function at temperature T ¼ 1=β. β is
the length of the Euclidean time evolution and the trace is
related to the fact that we are on a circle. This suggests that the
temperature that an accelerated observer feels is

Tproper ¼
1

2πρ
¼ a

2π
¼ ℏ

kBc
a
2π

; ð2:12Þ

where a is the proper acceleration and we also restored
all the units in the last formula. Although this argument
seems a bit formal, one can check to see that a physical
accelerating thermometer would actually record this temper-
ature (Unruh, 1976).
This is the proper temperature felt by an observer close to

the horizon. Notice that it is infinite at ρ ¼ 0 and it decreases
as we move away. This decrease in temperature is consistent
with thermal equilibrium in the presence of a gravitational
potential. In other words, for a spherically symmetric con-
figuration, in thermal equilibrium the temperature obeys the
Tolman relation (Tolman, 1930)

TproperðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gττðrÞ

p
¼ const: ð2:13Þ

This formula tracks the redshifting of photons as they climb a
gravitational potential. It says that locations at a higher
gravitational potential feel colder to a local observer. Using
the polarlike coordinates (2.10) and (2.12) we indeed get a
constant equal to 1=ð2πÞ. Since this formula is also valid in the
full geometry (2.7), we can then use it to find the temperature
that an observer far from the black hole would feel. We simply
need to undo the rescaling of time that we did just prior to
Eq. (2.8) and go to large r where gtt ¼ −1 to find the
temperature

T ¼ Tproperðr ≫ rsÞ ¼
1

4πrs
: ð2:14Þ

This is theHawking temperature. It is the temperaturemeasured
by an observer that is more than a few Schwarzschild radii
away from the black hole.

C. The Euclidean black hole

We now expound on the connection between Euclidean
time and thermodynamics. We then use it to get another
perspective on thermal aspects of black holes. Sometimes
Euclidean time tE is called imaginary time and Lorentzian
time t is called real time because of the previously mentioned
Wick rotation t ¼ itE.

There are different ways to see that imaginary-time perio-
dicity is the same as a temperature. In a thermal state, the
partition function is

Z ¼ Tr½e−βH�: ð2:15Þ

Any observable such as Tr½OðtÞOð0Þe−βH� is periodic under
t → tþ iβ, using OðtÞ ¼ eiHtOe−iHt and the cyclic property
of the trace.
A more general argument in quantum field theory is to

recast the trace as a path integral. Real-time evolution by e−iHt

corresponds to a path integral on a Lorentzian spacetime, so
imaginary-time evolution e−βH is computed using a path
integral on a Euclidean geometry. The geometry is evolved
for imaginary time β, and the trace tells us to put the same
boundary conditions at both ends and sum over them. A path
integral on a strip of size β with periodic boundary conditions
at the ends is the same as a path integral on a cylinder.
Therefore, in quantum field theory Z ¼ Tre−βH is calculated
using a path integral on a Euclidean cylinder with θ ¼ θ þ β.
Any observables that we calculate from this path integral will
automatically be periodic in imaginary time.
Similarly, in a black hole spacetime the partition function at

inverse temperature β is calculated using a Euclidean path
integral. The geometry is the Euclidean black hole, obtained
from the Schwarzschild metric (2.7) by setting t ¼ itE:

ds2E¼
�
1−

rs
r

�
dt2Eþ

dr2

1−rs=r
þr2dΩ2

2; tE¼ tEþβ: ð2:16Þ

In the Euclidean geometry, the radial coordinate is restricted to
r > rs because we saw that r − rs is like the radial coordinate
in polar coordinates, and r ¼ rs is the origin: Euclidean black
holes do not have an interior. To avoid a conical singularity at
r ¼ rs we need to adjust β to

β ¼ 4πrs: ð2:17Þ

This geometry, sometimes called the “cigar,” is pictured in
Fig. 2. The tip of the cigar is the horizon. Far away, for r ≫ rs
there is a Euclidean time circle of circumference β, which is
the inverse temperature as seen by an observer far away.
Notice that in the gravitational problem we fix the length of

FIG. 2. The Euclidean Schwarzschild black hole. The Euclidean
time and radial directions have the geometry of a cigar, which is
smooth at the tip, r ¼ rs. At each point we also have a sphere of
radius r.
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the circle far away, but we let the equations determine the right
radius in the rest of the geometry.
The Euclidean path integral on this geometry is interpreted

as the partition function4

ZðβÞ ¼ path integral on the Euclidean black hole

∼ e−IclassicalZquantum: ð2:18Þ

It has contributions from both gravity and quantum fields. The
gravitational part comes from the Einstein action I and is
found by evaluating the action on the geometry (2.16). The
quantum part is obtained by computing the partition function
of the quantum fields on Eq. (2.16). It is important that the
geometry is completely smooth at r ¼ rs, and therefore that
the quantum contribution has no singularity there. This is
related to the fact that an observer falling into an evaporating
black hole sees nothing special at the horizon, as in the
classical theory.
Then applying the standard thermodynamic formula to the

result

S ¼ ð1 − β∂βÞ logZðβÞ ð2:19Þ

gives the generalized entropy (2.4). We do not give the
derivation of this result but it uses the fact that we are dealing
with a solution of the equations of motion and that the
nontrivial part of the variation can be concentrated near r ¼ rs
(Gibbons and Hawking, 1977).

D. Evaporating black holes

Hawking radiation carries energy away to infinity and
therefore reduces the mass of the black hole. Eventually the
black hole evaporates away completely: a primordial black
hole of mass 1012 kg, produced in the early Universe, would
evaporate around now. The Hawking temperature of a solar
mass black hole is 10−7 K and its lifetime is 1064 yr. The
spacetime for this process is described in Figs. 3 and 4.
The Hawking process can be roughly interpreted as pair

creation of entangled particles near the horizon, with one
particle escaping to infinity and the other falling toward the
singularity. This creation of entanglement is crucial to the
story and we discuss it in detail after introducing a few more
concepts.

III. THE BLACK HOLE AS AN ORDINARY
QUANTUM SYSTEM

The previously reviewed results suggest that the black hole
can be regarded as an ordinary system obeying the laws of
thermodynamics. More precisely, it can be regarded as an
object described by a finite but large number of degrees of

freedom that obey the ordinary laws of physics, which in turn
imply the laws of thermodynamics.
In fact, this has been such an important idea in the

development of the subject that we call it the “central dogma.”

Central Dogma
As seen from the outside, a black hole can be
described in terms of a quantum system with
Area=ð4GNÞ degrees of freedom that evolves uni-
tarily under time evolution.

Using this hypothesis, the black hole and the entire spacetime
around it, up to some surface denoted by the dotted circle,
can be replaced by a quantum system. This quantum system
interacts with the outside via a unitary Hamiltonian.
We now make the following remarks:
• Notice that it is a statement about the black hole as seen
from the outside. There is no statement about the black
hole interior yet.

• The statement about the number of degrees of freedom is
primarily a statement about the logarithm of the dimen-
sion of the Hilbert space. We make no distinction
between qubits, fermions, or other degrees of freedom.
What is important is that the Hilbert space has a finite
dimension.

• The degrees of freedom that appear in this statement are
not manifested in the gravity description. Some research-
ers have tried to see them as coming from the thermal
atmosphere by putting a cutoff or “brick wall” at some
Planck distance from the horizon (’t Hooft, 1985;
Thorne, Price, and Macdonald, 1986). Such ideas remain
vague since such cutoffs are not manifested from the
gravity point of view, which treats the horizon as a
smooth surface.

• Unitary evolution implies that we have a Hamiltonian
that generates the time evolution. Again, this
Hamiltonian is not manifested in the gravity description.
The gravity description has a Hamiltonian constraint that
determines the bulk evolution. But this constraint is a
property of the full spacetime, and we do not know how
to pull out a purely exterior part. In principle, the
Hamiltonian could be general. But the fact that it gives
rise to the gravity evolution constrains some properties.
For example, it should be strongly interacting and
generate a chaotic evolution.

• We said that the black hole evolves unitarily. This is
when we surround the black hole with a reflecting wall
and consider the full system inside this wall. However, if
the black hole lives in an asymptotically flat geometry, it
is convenient to draw an imaginary surface surrounding

4Notice that the fact that the circle caps off at rs as in Fig. 2 means
that there is not an obvious way to interpret the path integral on this
manifold as computing a thermal trace Z ¼ Tre−βH over the Hilbert
space with a single asymptotic boundary: if we were to slice it open to
insert a complete set of states, we would intersect the asymptotic
(large-r) boundary twice.
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the black hole and call everything inside the “quantum
system” that appears in the central dogma. This quantum
system is then coupled with the external degrees of
freedom living outside this surface. We usually think of
the region outside the imaginary surface as a quantum
system in a fixed spacetime, where we ignore large

fluctuations of the background, although we can still
consider weakly interacting gravitons. The full coupled
evolution should be unitary. In other words, in this
context the gravity answers are compared to those of a
quantum system that is coupled to the degrees of
freedom far from the black hole at this imaginary cutoff

(a)

(b)

(c)

(d)

FIG. 3. (a) After stellar collapse, the outside of the black hole is nearly stationary, but on the inside the geometry continues to elongate
in one direction while pinching toward zero size in the angular directions. (b) The Hawking process creates entangled pairs, one trapped
behind the horizon and the other escaping to infinity where it is observed as approximate blackbody radiation. The black hole slowly
shrinks as its mass is carried away by the radiation. (c) Eventually the angular directions shrink to zero size. This is the singularity. The
event horizon also shrinks to zero. (d) At the end there is a smooth spacetime containing thermal Hawking radiation but no black hole.
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surface. Here we are imagining that this surface is a few
Schwarzschild radii from the black hole.

• Often people ask: how is a black hole different from a hot
piece of coal? This central dogma is saying that as long
as you remain outside it is not fundamentally different, in
the sense that both are governed by a unitary Hamil-
tonian and have a finite number of degrees of freedom.
Unlike a piece of coal, the black hole has an interior

shrouded by an event horizon, and making it fully
compatible with the exterior view is a nontrivial problem
that has not been completely solved.

• The name central dogma was borrowed from biology,
where the central dogma talks about the information
transfer from DNA and ribonucleic acid to proteins. Here
it is also a statement about information: quantum infor-
mation. It involves a certain dose of belief because it is not
something that we can derive directly from the gravity
description. We can view it as an unproven assumption
about the properties of a full theory of quantum gravity. It
is also something that is not accepted by some researchers.
In fact, Hawking famously objected to it.

• Notice that this statement is in stark contrast to a naive
reading of the spacetime geometry. The spacetime
geometry can be viewed as having two “asymptotic”
regions. One is the obvious region outside, and the other
is the future region near the singularity. See Fig. 5. The
semiclassical gravity theory does not tell us how to
evolve past this singularity, or even whether such
evolution makes sense. From this point of view the
interior is something we cannot access from the outside,
but there is no reason why some quantum information
could not be lost here. In other words, if a black hole is a
“hole in space” where things can get in and get lost, then
the central dogma would be false. In fact, this is one
reason why some people think that it is indeed false.

• Both the results on black hole thermodynamics and the
results on fine-grained entropies that we discuss later are
true properties of a theory of gravity coupled to quantum
fields and do not require the validity of the central
dogma. In other words, we are not assuming the central
dogma in this review: we are providing evidence for it.

A. Evidence from string theory for the central dogma

Although we said that the central dogma is an unproven
assumption, there is a great deal of nontrivial evidence from

(a) (b)

FIG. 5. Skeptics’ view: The diagram of an evaporating black hole is conceptually similar to one where we split off a baby universe, so
that in the future we have two regions, the future region of the original universe and the future of the interior, which is singular.

(a)

(b)

(c)

(d)

FIG. 4. Penrose diagram for the formation and evaporation of a
black hole. Spatial slices (a)–(d) correspond to the slices
drawn in Fig. 3.
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string theory. String theory is a modification of Einstein
gravity that leads to a well-defined perturbative expansion and
also some nonperturbative results. For this reason it is believed
to define a full theory of quantum gravity.
One substantial piece of evidence was the computation of

black hole entropy for special extremal black holes in super-
symmetric string theories (Strominger and Vafa, 1996). In
these cases one can reproduce the Bekenstein-Hawking
formula from an explicit count of microstates. These compu-
tations match not only the area formula but also all of its
corrections; see Dabholkar, Gomes, and Murthy (2015).
Another piece of evidence comes from the AdS=CFT corre-
spondence (Gubser, Klebanov, and Polyakov, 1998; Witten,
1998a; Maldacena, 1999), which is a conjectured relation
between the physics of anti–de Sitter (AdS) and a dual theory
living at its boundary. In this case, the black hole and its entire
exterior can be represented in terms of degrees of freedom
living at the boundary. There is also evidence from matrix
models that compute scattering amplitudes in special vacua
(Banks et al., 1997). We do not discuss this further in this
review, since we are aiming to explain features that rely purely
on gravity as an effective field theory.

IV. FINE-GRAINED VERSUS COARSE-GRAINED
ENTROPY

There are two notions of entropy that we ordinarily use in
physics, and it is useful to make sure that we do not confuse
them in this discussion.
The simplest to define is the von Neumann entropy. Given

the density matrix ρ describing the quantum state of the
system, we have

SvN ¼ −Tr½ρ log ρ�. ð4:1Þ

Equation (4.1) quantifies our ignorance about the precise
quantum state of the system. It vanishes for a pure state,
indicating complete knowledge of the quantum state. An
important property is that it is invariant under unitary time
evolution ρ → UρU−1.
The second notion of entropy is the coarse-grained entropy.

Here we have some density matrix ρ describing the system,
but we do not measure all observables: we measure only a
subset of simple, or coarse-grained, observables Ai. Then the
coarse-grained entropy is given by the following procedure.
We consider all possible density matrices ρ̃ that give the same
result as our system for the observables that we are tracking
(Tr½ρ̃Ai� ¼ Tr½ρAi�). Then we compute the von Neumann
entropy Sðρ̃Þ. Finally, we maximize this over all possible
choices of ρ̃.
Although this definition looks complicated, a simple

example is the ordinary entropy used in thermodynamics.
In that case Ai are often chosen to be a few observables,
say, the approximate energy and the volume. The thermody-
namic entropy is obtained by maximizing the von Neumann
entropy among all states with that approximate energy and
volume.
Coarse-grained entropy obeys the second law of thermo-

dynamics. Namely, it tends to increase under unitary time
evolution.

We now make the following comments:
• The von Neumann entropy is sometimes called the
“fine-grained entropy,” contrasting it with the previously
defined coarse-grained entropy. Another common name
is “quantum entropy.”

• Note that the generalized entropy defined in Eq. (2.4)
increases rapidly when the black hole first forms and the
horizon grows from zero area to a larger area. Therefore,
if it has to be one of these two entropies, it can only be
the thermodynamic entropy. In other words, the en-
tropy (2.4) defined as the area of the horizon plus the
entropy outside is the coarse-grained entropy of the
black hole.

• Note that if we have a quantum system composed of two
parts A and B, the full Hilbert space is H ¼ HA ×HB.
Then we can define the von Neumann entropy for the
subsystem A. This is computed by first forming a density
matrix ρA obtained by taking a partial trace over the
system B. The entropy of ρA can be nonzero even if
the full system is in a pure state. This arises when the
original pure state contains some entanglement between
the subsystems A and B. In this case SðAÞ ¼ SðBÞ and
SðA ∪ BÞ ¼ 0.

• The fine-grained entropy cannot be larger than the
coarse-grained entropy (SvN ≤ Scoarse). This is a simple
consequence of the definitions since we can always
consider ρ a candidate ρ̃. Another way to say this is that,
because Scoarse provides a measure of the total number of
degrees of freedom available to the system, it sets an
upper bound on how much the system can be entangled
with something else.

It is useful to define the fine-grained entropy of the quantum
fields in a region of space. Let Σ be a spatial region defined on
some fixed time slice. This region has an associated density
matrix ρΣ, and the fine-grained entropy of the region is
denoted

SvNðΣÞ≡ SvNðρΣÞ: ð4:2Þ

If Σ is not a full Cauchy slice, then we will have some
divergences at its boundaries. These divergences are not
important in our story; either they are rendered finite by
gravity as in footnote 2 or, when there is no gravity, they can
be explicitly subtracted without affecting the relevant physics.
In addition, when Σ is a portion of the full slice SvNðΣÞ is
generally time dependent. It can increase or decrease with time
as we move the slice forward in time. The slice Σ defines an
associated causal diamond, which is the region that we can
determine if we know initial data in Σ, but not outside Σ. The
entropy is the same for any other slice Σ̃ that has the same
causal diamond as Σ; see Fig. 6.

A. Semiclassical entropy

We now consider a gravity theory that we are treating in the
semiclassical approximation. Namely, we have a classical
geometry and quantum fields defined on that classical
geometry. Associated with a spatial subregion we can define
its “semiclassical entropy,” which is denoted by
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Ssemi-clðΣÞ: ð4:3Þ

Ssemi-cl is the von Neumann entropy of quantum fields
(including gravitons) as they appear on the semiclassical
geometry. In other words, this is the fine-grained entropy of
the density matrix calculated by the standard methods of
quantum field theory in curved spacetime. In the literature,
this is often simply called the von Neumann entropy (it is also
called Smatter or Soutside in the black hole context).

V. THE HAWKING INFORMATION PARADOX

The Hawking information paradox is an argument against
the previously enunciated central dogma (Hawking, 1976). It
is a paradox only if we think that the central dogma is true.
Otherwise, perhaps it can be viewed as a feature of quantum
gravity.
The basic point rests on an understanding of the origin of

Hawking radiation. We can start with the following question.
Imagine that we make a black hole from the collapse of a pure
state, such as a large amplitude gravity wave (Christodoulou,
2009). This black hole emits thermal radiation. Why do we
have these thermal aspects if we started with a pure state? The
thermal aspects of Hawking radiation arise because we are
essentially splitting the original vacuum state into two parts,
the part that ends up in the black hole interior and the part that
ends up in the exterior. The vacuum in quantum field theory is
an entangled state. As an entire state it is pure, but the degrees
of freedom are entangled at short distances. This implies that if
we consider only half of the space, for example, half
of flat space, we get a mixed state on that half. This is a
basic consequence of unitarity and relativistic invariance
(Bisognano and Wichmann, 1976). Often this is explained
qualitatively as follows. The vacuum contains pairs of
particles that are constantly being created and annihilated.
In the presence of a horizon, one of the members of the pair
can go to infinity while the other member is trapped in the
black hole interior. We call them the “outgoing Hawking
quantum” and the “interior Hawking quantum.” These two
particles are entangled with each other, forming a pure state.
However, if we consider only one member, say, the outgoing
Hawking quantum, we find it in a mixed state looking like a

thermal state at the Hawking temperature [Eq. (2.14)]; see
Figs. 3(b) and 4.
This process on its own does not obviously violate the

central dogma. In fact, if we have a complex quantum system
that starts in a pure state, it will appear to thermalize and will
emit radiation that is close to thermal. In particular, in the early
stages if we compute the von Neumann entropy of the emitted
radiation it will be almost exactly thermal because the
radiation is entangled with the quantum system. Thus, it is
reasonable to expect that during the initial stages of the
evaporation the entropy of radiation will rise. However, as the
black hole evaporates more and more its area will shrink, and
we run into trouble when the entropy of radiation is larger
than the thermodynamic entropy of the black hole. The reason
for this is that now it is not possible for the entropy of radiation
to be entangled with the quantum system describing the
black hole, because the number of degrees of freedom of the
black hole is given by its thermodynamic entropy, the area of
the horizon. In other words, if the black hole degrees of
freedom together with the radiation are producing a pure
state, then the fine-grained entropy of the black hole should be
equal to that of the radiation Sblack hole ¼ Srad. But this fine-
grained entropy of the black hole should be less than the
Bekenstein-Hawking or thermodynamic entropy of the black
hole (Sblack hole ≤ SBekenstein-Hawking ¼ Scoarse-grained).
If the central hypothesis were true, we would expect that the

entropy of radiation would need to start decreasing at this
point. In particular, it can never be larger than the Bekenstein-
Hawking entropy of the old black hole. Notice that we are
talking about the von Neumann or fine-grained entropy of
radiation. Then, as suggested by Page (1993, 2013), the
entropy of radiation would need to follow the curve indicated
in Fig. 7, as opposed to the Hawking curve. The time at which
SBekenstein-Hawking ¼ Srad is called the Page time.
We finish this discussion with a few comments.
• Note that as the black hole evaporates its mass decreases.
This is sometimes called the “backreaction” of Hawking
radiation. This effect is included in the discussion. And it
does not solve the problem.

• When the black hole reaches the final stages of evapo-
ration, its size becomes comparable to the Planck length
and we can no longer trust the semiclassical gravity
description. This is not relevant, since the conflict with
the central dogma appeared at the Page time, when the
black hole was still big.

• The argument is robust since it relies only on basic
properties of the fine-grained entropy. In particular, it is
impossible to fix the problem by adding small correc-
tions to the Hawking process by slightly modifying the
Hamiltonian or state of the quantum fields near the
horizon (Mathur, 2009; Almheiri, Marolf, Polchinski,
Stanford, and Sully, 2013; Almheiri, Marolf, Polchinski,
and Sully, 2013). In other words, the paradox holds to all
orders in perturbation theory, so if there is a resolution it
should be nonperturbative in the gravitational cou-
pling GN .

• We could formulate the paradox by constantly feeding
the black hole with a pure quantum state so that we
exactly compensate for the energy lost by Hawking

FIG. 6. Given a region Σ of a spatial slice, shown in red, we can
define its causal diamond to be all points where the evolution is
uniquely determined by initial conditions on Σ. The alternative
slice Σ̃ defines the same causal diamond. The von Neumann
entropies are also the same.
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radiation. Then the mass of the black hole is constant.
The paradox would arise when this process goes on for a
sufficiently long time that the entropy of radiation
becomes larger than the entropy of the black hole.

• One could say that the gravity computation gives us only
an approximate description and we should not expect
that a sensitive quantity like the von Neumann entropy
should be exactly given by the semiclassical theory.
In fact, this is what was said until recently. We will
see, however, that there is a way to compute the
von Neumann entropy using only this semiclassical
description.

We have described here one aspect of the Hawking
information paradox, which is the aspect that we later see
how to resolve. We comment upon other aspects in Sec. XI.

VI. A FORMULA FOR FINE-GRAINED ENTROPY
IN GRAVITATIONAL SYSTEMS

As previously mentioned, the Bekenstein-Hawking entropy
formula should be viewed as the coarse-grained entropy
formula for the black hole since it increases under time
evolution. This is clear when the black hole first forms and has
not yet had time to emit Hawking radiation.
There is also a gravitational formula for the von Neumann

or fine-grained entropy (Ryu and Takayanagi, 2006; Hubeny,
Rangamani, and Takayanagi, 2007; Faulkner, Lewkowycz,
and Maldacena, 2013; Engelhardt and Wall, 2015). It is also
given by a formula that involves a generalized entropy, with an
area plus the entropy of fields outside. The only difference is
in the choice of the dividing surface. The basic idea is that we
choose a surface such that the generalized entropy is mini-
mized. This minimal value is the fine-grained entropy:

S ∼min

�
area
4GN

þ Soutside

�
: ð6:1Þ

Equation (6.1) captures the spirit of the formula, but the
precise formula is slightly more complicated. The reason for
this is as follows. A surface is a codimension-2 object. This
means that it has two dimensions fewer than that of the full
spacetime. In our case it is localized along one of the spatial
dimensions and also in time. We are looking for a surface that
minimizes Eq. (6.1) in the spatial direction but maximizes it in
the time direction. Thus, we really should look for “extremal
surfaces” by moving them both in space and in time. If there
are many extremal surfaces, we should find the global
minimum. Another equivalent definition is the following
maxi-min construction (Wall, 2014; Akers et al., 2019).
First choose a spatial slice (a Cauchy slice) and find the
minimal surface. Then find the maximum among all choices
of the Cauchy slice. A more precise version of the formula is
(Ryu and Takayanagi, 2006; Hubeny, Rangamani, and
Takayanagi, 2007; Faulkner, Lewkowycz, and Maldacena,
2013; Engelhardt and Wall, 2015)

S ¼ minX

�
extX

�
AreaðXÞ
4GN

þ Ssemi-clðΣXÞ
��

; ð6:2Þ

where X is a codimension-2 surface, ΣX is the region bounded
by X and the cutoff surface, and Ssemi-clðΣXÞ is the von
Neumann entropy of the quantum fields on ΣX appearing in
the semiclassical description; see Fig. 8. The quantity in
brackets is the generalized entropy:

FIG. 7. Schematic behavior of the entropy of the outgoing
radiation. The precise shape of the lines depends on the black
hole and the details of the matter fields being radiated. In green
we see Hawking’s result: the entropy monotonically increases
until tend, when the black hole completely evaporates. In orange
we see the thermodynamic entropy of the black hole. If the
process is unitary, we expect the entropy of radiation to be smaller
than the thermodynamic entropy. If it saturates this maximum,
then it should follow the so-called Page curve, denoted in purple.
This changes relative to the Hawking answer at the Page time
tPage, when the entropy of Hawking radiation is equal to the
thermodynamic entropy of the black hole.

FIG. 8. Procedure for finding the extremal surface for comput-
ing the time-dependent fine-grained entropy of the black hole.
Starting on the cutoff surface at a given time, the surface X is
deformed into the enclosed region until an extremum is found.
Recall that this diagram represents the radial and time direction,
so a point on this diagram represents a sphere.
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SgenðXÞ ¼
AreaðXÞ
4GN

þ Ssemi-clðΣXÞ: ð6:3Þ

The idea is that we start from a surface outside the black hole
and can move it past the horizon into the interior to find the
minimum. In particular, this means that the answer depends on
the geometry of the black hole interior. We can have black
holes with similar exteriors but different interiors. Such black
holes will have different fine-grained entropies. It could
happen that the surface can be shrunk completely in the
interior of the black hole. In this case there is no area
contribution. We later see this in more detail.

• In the literature the surface that extremizes Eq. (6.2) is
called the “quantum extremal surface.”Note that this is just
a classical geometric surface in the spacetime. It is called
quantum because the matter contribution in Eq. (6.2)
contains the entropy of the quantum fields.

• Equation (6.2) can be derived using a method similar to
the Gibbons-Hawking method discussed in Sec. II.C
when there is a path integral prescription for the
construction of the state (Faulkner, Lewkowycz, and
Maldacena, 2013; Lewkowycz and Maldacena, 2013;
Dong and Lewkowycz, 2018). Something similar is
discussed in Sec. X.

• The formulas in this section have higher-order correc-
tions in GN [see Dong (2014)] that will not be important
for the cases that we are interested in. Indeed, they can be
thought of as an expansion in GN where we have kept
only the two leading terms. In the cases that we consider,
these terms can be balanced against one another even
though they are at different orders in perturbation theory.
In particular, the derivatives in the extremization pro-
cedure can be balanced because the change of the area
is small.

VII. ENTROPY OF AN EVAPORATING BLACK HOLE

In this section, we see how to apply the fine-grained entropy
formula (6.2) to all stages of the evaporating black hole.
We first compute the entropy after the black hole forms but

before any Hawking radiation has a chance to escape the black
hole region. In this case, there are no extremal surfaces
encountered by deforming X inward, and we are forced to
shrink it all the way down to zero; see Fig. 9. The area term
vanishes, so the fine-grained entropy is simply the entropy of
the matter enclosed by the cutoff surface. Note that this
calculation is sensitive to the geometry in the interior of the
black hole. This means that the entropy at the initial stage will
vanish assuming that the collapsing shell was in a pure state.5

If we ignore the effects of Hawking radiation, this fine-grained
entropy is invariant under time evolution. This is in contrast to
the area of the horizon, which starts out at zero at r ¼ 0 and
then grows to 4πr2s after the black hole forms.
Once the black hole starts evaporating and the outgoing

Hawking quanta escape the black hole region, the von

Neumann entropy of this region is no longer zero due to
the entanglement between the interior Hawking quanta and
those that escaped. As shown in Fig. 10, this entropy
continues to grow as the black hole evaporates due to the
pileup of the mixed interior modes. This growth of entropy
precisely parallels that of the outgoing Hawking radiation and
seems to support the idea that the black hole can have an
arbitrarily larger entropy than its Area=4GN , which is not
consistent with the central dogma.
The story is not yet complete, since there is also a non-

vanishing extremal surface that appears shortly after the
Hawking radiation starts escaping the black hole region.
The precise location of this surface depends on how much
radiation has escaped, and hence on the time t along the cutoff
surface when we decide to compute the entropy. It turns out
that the surface lies close to the event horizon. Its location
along the horizon is determined as follows. We go back along
the cutoff surface by a time of order rs log SBH and shoot an
ingoing light ray. Then the surface is located close to the point
where this light ray intersects the horizon. Note that rs and
also rs log SBH are times that are short relative to the
evaporation time rsSBH. The timescale rs log SBH is called
the “scrambling time” and it has an interesting significance
that we do not discuss in this review; see Hayden and Preskill
(2007) and Sekino and Susskind (2008). This is shown in
Fig. 11. The generalized entropy now has an area term as well
as the von Neumann entropy of quantum fields Ssemi-cl. This
quantum field theory entropy is relatively small because it
does not capture many Hawking quanta and thus the entropy is
dominated by the area term

Sgen ≈
Horizon AreaðtÞ

4GN
: ð7:1Þ

This generalized entropy closely follows the evolution of the
thermodynamic entropy of the black hole. Since the area of the

FIG. 9. The minimal surface for the black hole at early times
shrinks down to zero. We call this the vanishing surface. The
generalized entropy reduces to the bulk entropy of the entire
region enclosed by the cutoff surface.

5We neglect the contribution from the entanglement of the fields
near the cutoff surface. We take this contribution to be time
independent and implicitly subtract it in our discussion.
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black hole decreases as it evaporates, this extremal surface
gives a decreasing generalized entropy.
The complete proof for the existence of this surface would

be to show that the change of area of X under a small
deformation in any direction would perfectly balance the

change in the von Neumann entropy Ssemi-cl. We give some
intuition for this procedure by extremizing along the ingoing
null direction. The key point is that, while the area of X is
monotonically decreasing along this direction, the entropy
Ssemi-cl is not. To see this, imagine starting with X right on the
horizon and analyze the entanglement pattern across the
surface as it is moved inward. As the surface is moved
inward, the entropy Ssemi-cl decreases as the newly included
interior Hawking modes purify the outgoing quanta already
included in the region “outside.” Once all of those outgoing
quanta have been purified, moving the surface further inward
would start including modes entangled with outgoing quanta
outside the black hole region, thereby increasing Ssemi-cl. It is
in this regime that changes in the area and entropy can exactly
balance each other out. For an illustration see Fig. 12. For the
precise equations see Almheiri, Engelhardt et al. (2019) and
Penington (2019).
Full application of the entropy formula (6.2) requires one to

take the minimum of the generalized entropy over all available
extremal surfaces. We found two such surfaces: a growing

FIG. 11. When the nonvanishing extremal surface first appears, it lies inside the black hole near the event horizon. For different times
on the cutoff surface, it is a different surface that moves along a spacelike direction up the horizon. This gives a decreasing generalized
entropy since the black hole area is shrinking.

FIG. 10. As more outgoing Hawking quanta escape the black hole region, its entropy grows due to the pileup of interior Hawking
quanta. Modes of like colors are entangled with one another. Right panel: comparison of this growing entropy with the decreasing
thermodynamic entropy of the black hole.

FIG. 12. Ssemi-cl begins to increase when going inward along the
ingoing null coordinate once all the outgoing Hawking quanta in
the black hole region are purified by the newly included interior
modes. This allows for an extremum along this direction since the
area of the surface shrinks.
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contribution from the vanishing surface and a decreasing one
from the nonvanishing surface just behind the event horizon.
At early times, only the vanishing surface exists, giving a
contribution that starts at zero and grows monotonically until
the black hole evaporates. Some short time after the black hole
forms, the nonvanishing surface is created. It starts with a
large value given by the current area of the black hole and
decreases as the black hole shrinks. Therefore, the vanishing
surface initially captures the true fine-grained entropy of the
black hole, up until the nonvanishing surface contribution
becomes smaller and starts to represent the true fine-grained
entropy. In this way, by transitioning between these two
contributions the entropy of the black hole closely follows the
Page curve indicative of unitary black hole evaporation; see
Fig. 13. The nontrivial quantum extremal surface does not sit
near any classical extremal surface obtained by extremizing
only the area term in Eq. (6.2).

VIII. ENTROPY OF RADIATION

We have seen how the black hole fine-grained entropy, as
computed via the gravitational formula (6.2), accurately
follows the Page curve. This does not directly address the
information paradox, since that concerns the entropy growth
of the Hawking radiation. In fact, the semiclassical black hole
evolution leads to a growing value for the entropy outside the
cutoff surface, the region containing the radiation (Hawking,
1976),

Ssemi-clðΣradÞ: ð8:1Þ

This radiation lives in a spacetime region where the gravita-
tional effects can be made small. In other words, we can
approximate this as a rigid space. Alternatively, we can believe
that we collected the radiation into a large quantum computer.
However, owing to the fact that we used gravity to obtain this
state, it turns out that we should apply the gravitational fine-
grained entropy formula to compute its entropy. In our first
presentation of Eq. (6.2), we were imagining that we had a
black hole inside the region. Now we are trying to apply this
formula to the region outside the cutoff surface, which
contains no black hole. Nevertheless, Eq. (6.2) can also be

applied when there is no black hole present. The spirit of the
formula is that the region in which we compute the entropy
can be changed in size by moving the surface X so as to
minimize the entropy. Thus far we have considered cases
where ΣX was connected. However, it also seems natural to
consider the possibility that ΣX is disconnected. When would
this be required? By making ΣX disconnected, we increase the
area of the boundary. Thus, this can be required only if we can
decrease the semiclassical entropy contribution at the same
time. This could happen if we have regions that are far away
from entangled matter. In fact, this is precisely what happens
with Hawking radiation. The radiation is entangled with the
fields living in the black hole interior. Therefore, we can
decrease the semiclassical entropy contribution by also
including the black hole interior. In doing so, we have to
add an area term. At late times, the net effect is to decrease the
generalized entropy, so we are required to include this
disconnected region inside the black hole, which is sometimes
called an “island.” The final region that we are considering
looks like Fig. 14.
More precisely, the full fine-grained entropy of the radia-

tion, computed using the fine-grained gravitational entropy
formula, is given by

Srad ¼minX

�
extX

�
AreaðXÞ
4GN

þSsemi-cl½Σrad ∪Σisland�
��

; ð8:2Þ

where the area here refers to the area of the boundary of the
island, and the minimizing and extremizing is with respect to
the location and shape of the island (Hayden and Penington,
2018; Almheiri, Mahajan et al., 2019; Penington, 2019;
Penington et al., 2019; Almheiri et al., 2020). The left-hand
side is the full entropy of radiation. And Ssemi-cl½Σrad ∪ Σisland�
is the von Neumann entropy of the quantum state of the
combined radiation and island systems in the semiclassical
description. Note that the subscript “rad” appears on both the
left-hand side and the right-hand side of Eq. (8.2), a fact that
has caused much confusion and heated complaints. The left-
hand side is the full entropy of radiation, as computed using
the gravitational fine-grained entropy formula. This is sup-
posed to be the entropy for the full exact quantum state of the
radiation. On the right-hand side we have the state of radiation

FIG. 13. The Page curve for the fine-grained entropy of the black hole (shown in black) is captured by the transition between a growing
contribution from the trivial surface and a decreasing contribution from a nontrivial surface near the black hole horizon.
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in the semiclassical description. This is a different state than
the full exact state of the radiation. Note that in order to apply
the formula we do not need to know the exact state of the
radiation. The formula does not claim to give that state to us in
an explicit form: it is merely computing the entropy of
that state.
The “island formula” (8.2) is a generalization of the black

hole gravitational fine-grained entropy formula (6.2) and
actually follows from the same principles. Some consider it
simply a part of Eq. (6.2). We decided to give it a special name
and to discuss it separately because we motivated the use of
Eq. (6.2) as a generalization of black hole entropy. However, if
we look solely at the radiation, there does not seem to be any
black hole. The point is that, because we prepared the state

using gravity, this is the correct formula to use. We later give a
sketch of the derivation of the formula. It is likely that in future
treatments of the subject both will be discussed.
The procedure for applying this formula is as follows. We

want to compute the entropy of all of the Hawking radiation
that has escaped the black hole region. This is captured by
computing the entropy of the entire region, from the cutoff all
the way to infinity. This region is labeled by Σrad in the
formula; see Fig. 14. The islands refer to any number of
regions contained in the black hole side of the cutoff surface.
Figure 14 shows the case of a single island centered around the
origin. In principle, we can have any number of islands,
including zero. We then extremize the right-hand side of
Eq. (8.2) with respect to the position of the surface X. Finally,
we minimize over all possible extremal positions and choices
of islands.
The simplest possibility is to have no island. This vanishing

island contribution gives simply Eq. (8.1). As more and more
outgoing Hawking quanta escape the black hole region, the
entropy continues to grow; see Fig. 15. This contribution
always extremizes the generalized entropy but will not always
be the global minimum of the entropy.
A nonvanishing island that extremizes the generalized

entropy appears some time after the black hole forms. A
time of order rs log SBH is enough. This island is centered
around the origin and its boundary is near the black hole event
horizon. It moves up the horizon for different times on the
cutoff surface. This is shown in Fig. 16. The generalized
entropy with this island includes the term that is given by the
area of the black hole. The von Neumann entropy term
involves the entropy of the union of the outgoing radiation
and the island, and is therefore small for all times, since the
island contains most or all of the interior Hawking modes that
purify the outgoing radiation. This contribution to the island
formula starts at a large value, given by the area of the horizon
at early times, and decreases to zero.
The fine-grained entropy of the Hawking radiation is then

the minimum of these two contributions. This gives the Page
curve; the rising piece comes from the no-island contribution
and the novel decreasing piece comes from the island
contribution. This curve is represented in Fig. 17.
If we form the black hole from an initially pure state, then

we expect that the entropy of the black hole and the entropy of

FIG. 15. The no-island contribution to the island formula gives a growing entropy due to the escaping outgoing Hawking quanta.

FIG. 14. The fine-grained entropy of the region “rad” containing
the Hawking radiation can get contributions from regions inside
the black hole called islands. The total entropy is the area of X
plus a contribution from the semiclassical entropy of the union of
Σrad and Σisland.
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the radiation region should be equal. Indeed, the fine-grained
entropy formula for the black hole and the one for the
radiation give the same answer. The reason is as follows.
In both cases, the same surface X is involved. In addition,
when the matter state is pure on the entire Cauchy slice, we
have Ssemi-clðΣXÞ ¼ Ssemi-clðΣrad ∪ ΣislandÞ. Then we get the
same answer because we are minimizing and extremizing the
same function. In conclusion, the black hole and the radiation
entropy are described by the same curve; see Fig. 7.
Now a skeptic would say, “Ah, all you have done is to

include the interior region. As I have always been saying, if
you include the interior region you get a pure state,” or “this is
only an accounting trick.” But we did not include the interior
“by hand.” The fine-grained entropy formula is derived from
the gravitational path integral through a method conceptually
similar to the derivation of the black hole entropy by Gibbons
and Hawking discussed in Sec. II.C. It is gravity itself,
therefore, that instructs us to include the interior in this
calculation. This is gravity’s way of telling us that black hole
evaporation is unitary without giving us the details of the
actual state of the outgoing radiation.
An analogy from the real world is the following. Imagine

that there is a man who owns a house with many expensive
paintings inside. Then he starts borrowing money from the
townspeople, using the paintings as collateral. He spends his
money throwing expensive parties and people who visit his
house think he is rich. However, he eventually borrows so
much that most of the house and its contents belong to the
townspeople. Therefore, when the townspeople compute
their wealth they include the paintings in this man’s house.
But the man cannot include them in the computation of his
wealth. In this analogy, the house is the interior of the black
hole and the wealth is the quantum information. The
townspeople represent the region far from the black hole
containing the Hawking radiation. The casual observer who
thinks that the townspeople are poor because they do not
have paintings in their homes would be wrong. In the same
way, one who looks at the Hawking radiation and says that it
is mixed would be wrong because the interior should also be
included.

IX. THE ENTANGLEMENT WEDGE AND THE BLACK
HOLE INTERIOR

The central dogma talks about some degrees of freedom that
suffice to describe the black hole from the outside. A natural
question to ask is whether these degrees of freedom also
describe the interior. We have several possibilities:
(a) They do not describe the interior.
(b) They describe a portion of the interior.
(c) They describe all of the interior.
A guiding principle has been the formula for the fine-

grained entropy of the black hole. This formula is supposed to
give us the entropy of the density matrix that describes the
black hole from the outside if we are allowed to make
arbitrarily complicated measurements. We have seen that
the answer for the entropy depends on the geometry of the
interior. However, it depends only on the geometry and the
state of the quantum fields up to the extremal surface. Note
that if we add an extra spin in an unknown state between the
cutoff surface and the extremal surface, then it will modify the
fine-grained entropy.
Therefore, it is natural to imagine that the degrees of

freedom in the central dogma describe the geometry up to the
minimal surface. If we know the state on any spatial region,
we also know it in the causal diamond associated with that
region; recall Fig. 6. This has historically been called the
“entanglement wedge” (Czech et al., 2012; Headrick et al.,
2014; Wall, 2014). Following our presentation a better name
would perhaps be the “fine-grained entropy region,” but we
are not attempting to change the name.
As a first example, we look again at a black hole formed

from collapse but before the Page time. The minimal surface is
now a vanishing surface at the origin and the entanglement
wedge of the black hole is the region depicted in green in
Fig. 18(a).
As a second example, we can look at the entanglement

wedges of both the black hole and the radiation at late
times, which is larger than the Page time. These are shown
in Fig. 18(b). The idea is that the black hole degrees of
freedom describe the region of the spacetime in the black hole

FIG. 16. The island contribution appears some time after the black hole forms. It gives a decreasing contribution that tracks the
thermodynamic entropy of the black hole.
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entanglement wedge, while the radiation describes the degrees
of freedom in the radiation entanglement wedge. It is
important for the degrees of freedom that describe the black
hole to describe only a portion of the interior, the green region
in Fig. 18(b). The rest of the interior is encoded in the
radiation.
Note how this conclusion, namely, that the interior belongs

to the entanglement wedge of the radiation, follows from the
same guiding principle of using the fine-grained entropy.
Since the fine-grained entropy of the radiation after the Page
time contains the interior as part of the island, its entropy is
sensitive to the quantum state of that region; a spin in a mixed
state in the island contributes to the fine-grained entropy of the
radiation.
Finally, as a third example, we can consider a fully

evaporated black hole; see Fig. 18(c). In this case the region
inside the cutoff surface is just flat space. The entanglement
wedge of the radiation includes the entire black hole interior.

This picture assumes that nothing too drastic is happening at
the end point of the evaporation.
Thus far we have been somewhat vague in using the

statement that we can “describe” what is in the entanglement
wedge. A more precise statement is the “entanglement wedge
reconstruction hypothesis,” which says that if we have a
relatively small number of qubits that are in an unknown state
but located inside the entanglement wedge of the black hole,
then by performing operations on the black hole degrees of
freedom we can read off the state of those qubits. This
hypothesis is supported by general principles of quantum
information. Consider a case in which the radiation entangle-
ment wedge covers most of the interior, as in Fig. 18(b). Then
the action of the black hole interior operators of the semi-
classical description affect the entropy of radiation, according
to the gravitational entropy formula. Assuming that this
formula captures the true entropy of the exact state of
radiation, this means that these operators are changing this

FIG. 17. We now consider both contributions and each time pick the minimal one, which gives the final answer for the full entropy of
radiation. This gives the Page curve, which is shown in black in the right panel.

(a) (b) (c)

FIG. 18. In green we show the entanglement wedges of the black hole and in blue the entanglement wedges of the radiation region.
Different figures show the wedges at different times. They are different because there is a transfer of quantum information through the
cutoff surface. To describe the white regions we need information from both the black hole region and the radiation region.

Ahmed Almheiri et al.: The entropy of Hawking radiation

Rev. Mod. Phys., Vol. 93, No. 3, July–September 2021 035002-16



exact state (Dong, Harlow, and Wall, 2016; Jafferis et al.,
2016); see also Almheiri, Dong, and Harlow (2015). Then it
follows from general quantum information ideas that there is a
map called the Petz map (Ohya and Petz, 2004) that allows us
to recover the information (Cotler et al., 2019). In the context
of simple gravity theories, this map can be constructed using
the gravitational path integral (Penington et al., 2019), again
via the replica method. This provides a formal argument,
purely from the gravitational side, for the validity of the
hypothesis. The actual quantum operations we would need to
perform on the radiation are expected to be exceedingly
complex, with a complexity that is roughly exponential in the
black hole entropy (Brown et al., 2019; Kim, Tang, and
Preskill, 2020).
For black holes after the Page time, most of the interior is

not described by the black hole degrees of freedom appearing
in the central dogma. In fact, it is described by the radiation
degrees of freedom. At late times, these are much more
numerous than in the area of the horizon.
Note that there is an unfortunate language problem that

sometimes gets in the way of the concepts we are trying to
convey. The reason is that there are two different things that
people might want to call “black hole degrees of freedom.”We
have been calling black hole degrees of freedom the ones that
appear in the central dogma. They are the ones that are
sufficient to describe the black hole from the outside. These
are not manifested in the gravity description. The other
possible meaning would refer to the quantum fields living
in the semiclassical description of the black hole interior. As
we explained, depending upon which side of the quantum
extremal surface they lie on, these degrees of freedom can be
encoded in either the Hilbert space appearing in the central
dogma or the Hilbert space living in the radiation region.
This observation also solves an old puzzle with the

interpretation of the Bekenstein-Hawking area formula that
was raised by Wheeler (1964). He pointed out that there are
classical geometries that look like a black hole from the
outside but that inside can have an arbitrarily large entropy,
larger than the area of the horizon. He named them “bags of
gold”; see Fig. 19. The solution to this puzzle is the same.
When the entropy in the interior is larger than the area of the
neck the entanglement wedge of the black hole degrees of
freedom will only cover a portion of the interior, which does
not include that large amount of entropy (Wall, 2018). In fact,
the geometry of an evaporating black hole after the Page time
is a bit like that of the bag of gold examples.

X. REPLICA WORMHOLES

In this section we give a taste of the derivation of the
formula for fine-grained entropy (Faulkner, Lewkowycz, and
Maldacena, 2013; Lewkowycz and Maldacena, 2013; Dong,
Lewkowycz, and Rangamani, 2016; Dong and Lewkowycz,
2018; Penington et al., 2019; Almheiri et al., 2020). We focus
on the island formula (8.2) for the entropy of the Hawking
radiation (Penington et al., 2019; Almheiri et al., 2020).
To illustrate the principle, we consider the case in which the

black hole has evaporated completely and we ignore details
about the last moments of the black hole evaporation, when
the interior disconnects from the exterior. For the purposes of

computing the entropy, the geometry is topologically as
shown in Fig. 5(b). We want to compute the entropy of the
final radiation, assuming that the black hole formed from a
pure state.
We start from the unnormalized initial state jΨi (for

example, a collapsing star) and evolve to the final state using
the gravitational path integral, which involves the semiclass-
ical geometry of the evaporating black hole. This gives an
amplitude hjjΨi for going from the initial state to a particular
final state of radiation jji. We can now form a density matrix
ρ ¼ jΨihΨj by computing the bra of the same state via a path
integral. Its matrix elements ρij ¼ hijΨihΨjji are, in principle,
computed by the full gravitational path integral shown in
Fig. 20(a). We have specified the initial and final states on the
outside, but we have not yet been explicit about what we do in
the interior, and indeed this will depend on a choices of jii
and jji.
The trace of the density matrix

Trρ ¼
X
i

hijΨihΨjii ð10:1Þ

is computing by identifying the final state of the bra and the
ket and summing over them. This gives the geometry in
Fig. 20(b). (For those who know, this is actually an in-in
Schwinger-Keldysh diagram.) We want to diagnose whether
the final state has zero entropy or not. For that purpose, we
compute the so-called purity of the state, defined as Tr½ρ2�.
If ρ is an unnormalized pure state density matrix then
Tr½ρ2� ¼ ðTr½ρ�Þ2, while if it has a large entropy we expect
Tr½ρ2� ≪ ðTr½ρ�Þ2.
We can compute Tr½ρ2� via a path integral argument by

connecting the exterior regions as shown in Figs. 21 and 22. A
key point is that, in gravity, we should typically consider a
sum over all possible topologies.6 This implies that we should

FIG. 19. Wheeler’s bag of gold geometry. It is a spatial
geometry that is asymptotically flat and has a narrow neck with
a big “bag” containing some matter. It obeys the initial value
constraints of general relativity. From the point of view of the
outside, the geometry evolves into a black hole whose area is
given by the area of the neck. The entropy inside the bag can be
much larger than the area of the neck. Under these circumstances
the fine-grained entropy of the exterior is simply given by the area
of the neck and the entanglement wedge does not include the
interior.

6This sum is clearly required in some examples of AdS=CFT to
match CFT properties (Witten, 1998b).
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sum over different ways of connecting the interiors.
Figures 21 and 22 show two different ways of connecting
the interior. Figure 21 gives the Hawking answer with its large
entropy, so that

Tr½ρ2�jHawking saddle ≪ ðTr½ρ�Þ2: ð10:2Þ

Figure 22, which is called a replica wormhole, gives

Tr½ρ2�jwormhole saddle ¼ ðTr½ρ�Þ2 ð10:3Þ

and therefore has zero entropy. The contribution of the replica
wormhole is larger and therefore dominates over the Hawking
saddle [Eq. (10.2)]. We conclude that the leading-order con-
tribution gives the expected answer from unitarity [Eq. (10.3)].
The contribution in Fig. 21 is still present and one could

worry that it would spoil the agreement. We do not worry
about exponentially small contributions, hoping that this small
problem will be addressed in the future.
This calculation is similar to the Gibbons-Hawking calcu-

lation of the black hole entropy reviewed in Sec. II.C. The
Hawking saddle and the replica wormhole saddle in Euclidean
signature are drawn in Fig. 23. In the Hawking calculation we
have two copies of the cigar geometry, while in the replica
wormhole the black holes are joined through the interior.
These pictures are schematic because the actual replica
wormhole for an evaporating black hole is a complex saddle
point geometry.
The calculation of the von Neumann entropy is a bit more

complicated, but the spirit is the same. We use the replica
method. That is, to compute the entropy we consider n copies
of the system and compute Tr½ρn�, where ρ is the density
matrix of either the black hole or the radiation. We then
analytically continue in n and compute the entropy:

S ¼ ð1 − n∂nÞ log Tr½ρn�n¼1: ð10:4Þ

(b)(a)

FIG. 20. (a) Path integral representation of the matrix elements ρij. (b) Path integral representation of Trρ. Regions with repeated
indices are identified in this figure and the figures that follow. The purple line represents entanglement.

FIG. 21. Hawking saddle in the calculation of Tr½ρ2�. Note that
following the pink line through the identifications i ↔ i and j ↔
j produces just one closed loop. Therefore, this does not factorize
into two copies of Trρ.

FIG. 22. Replica wormhole saddle in the calculation of Tr½ρ2�. The black holes are joined in the interior. Right panel: rearrangement of
the left panel showing that Tr½ρ2� ¼ ðTr½ρ�Þ2.
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For n ≠ 1, the black hole interior can be connected in various
ways among the n copies. If they are disconnected we get the
usual Hawking answer for the entropy, and if they are
completely connected we get the answer from the new
quantum extremal surface after continuing to n → 1. The
minimum of the two dominates the path integral and gives the
unitary Page curve; see Penington et al. (2019) and Almheiri
et al. (2020), and also Hartman, Shaghoulian, and Strominger
(2020) and Marolf and Maxfield (2020).

XI. DISCUSSION

A. Summary

We now summarize some of the points that we made in the
review. First we discussed classic results in black hole
thermodynamics, including Hawking radiation and black hole
entropy. The entropy of the black hole is given by the area of
the horizon plus the entropy of the quantum fields outside. We
discussed how these results inspired a central dogma that says
that a black hole from the outside can be described in terms of
a quantum system with a number of degrees of freedom set by
the entropy. Next we discussed a formula for the fine-grained
entropy of the black hole that involves finding a surface that
minimizes the area plus the entropy of quantum fields outside.
Using this formula, we computed the entropy for an evapo-
rating black hole and found that it follows the Page curve.
Then we discussed how to compute the entropy of radiation.
The gravitational fine-grained entropy formula tells us that we
should include the black hole interior and it gives a result that
follows the Page curve too. These results suggest that the
black hole degrees of freedom describe a portion of the
interior, the region inside the entanglement wedge. Finally, we
discussed how replica wormholes explain why the interior
should be included in the computation of the entropy of
radiation.

B. Comments and problems for the future

Note the following important feature of the gravitational
entropy formulas, both the coarse-grained and fine-grained
ones. Both formulas involve a geometric piece, the area term,
that does not obviously come from taking a trace over some
explicit microstates. The interpretation of these quantities as
arising from sums over microstates is an assumption, a part of

the central dogma, which is the simplest way to explain the
emergence of black hole thermodynamics and follows from
strong evidence from string theory.
For this reason, the success in reproducing the Page curve

does not translate into a formula for individual matrix
elements of the density matrix. The geometry is giving us
the correct entropy, which involves a trace of a function of the
density matrix. Similarly we do not presently know how to
extract individual matrix elements of the black hole S matrix,
which describes individual transition amplitudes for each
microstate. Therefore, the current discussion leaves an impor-
tant problem unresolved. Namely, how do we compute
individual matrix elements of the S matrix, or ρ, directly
from the gravity description (without using a holographic
duality)? In other words, we have discussed how to compute
the entropy of Hawking radiation, but not how to compute its
precise quantum state. This is an important aspect of the black
hole information problem since one way of stating the
problem is: Why do different initial states lead to the same
final state? In this description the different initial states
correspond to different interiors. In gravity, we find that the
final state for radiation also includes the interior. The idea is
that complex computations of the radiation can create worm-
holes that reach into that interior and pull out the information
stored there (Penington et al., 2019); see also Maldacena and
Susskind (2013) and Gao, Jafferis, and Wall (2016).
The present derivations for the gravitational fine-grained

entropy formulas discussed in this review rely on the
Euclidean path integral. It is not clear how this is defined
precisely in gravity. For example, which saddle points should
we include? What is the precise integration contour? It is
possible that some theories of gravity include replica worm-
hole saddles and that black holes evaporate unitarily, while in
other theories of gravity they do not contribute to the path
integral, the central dogma fails, and Hawking’s picture is
accurate. (We suspect that the latter would not result in fully
consistent theories.)
Another aspect of the formulas that is not yet fully under-

stood is the imaginary cutoff surface, beyond which we treated
spacetime as fixed. This is an important element in the
derivation of Eq. (8.2), as discussed in Sec. X. More complete
understanding will require gravity to be allowed to fluctuate
everywhere throughout spacetime. For example, we do not
know whether the central dogma applies when the cutoff is at a

FIG. 23. Euclidean replica wormholes for computing the purity of the radiation outside the cutoff surface. The dots denote other
possible topologies, which are generally subdominant.
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finite distance from the black hole, or precisely how far we
should go in order to apply these formulas. The case that is
best understood is when this cutoff is at the boundary of an
AdS space. On the other hand, the imaginary cutoff surface is
not as drastic as it sounds because the same procedure is
required to make sense of the ordinary Gibbons-Hawking
entropy in asymptotically flat spacetime.
Note that when we discussed the radiation, we had two

quantum states in mind. First we had the semiclassical state,
the state of radiation that appears when we use the semi-
classical geometry of the evaporating black hole. Then we had
the exact quantum state of radiation. This is the state that
would be produced by the exact and complete theory of
quantum gravity. Presumably, to obtain this state we will
need to sum over all geometries, including nonperturbative
corrections. This is something that we do not know how to do
in any theory of gravity complicated enough to contain
quantum fields describing Hawking radiation. [See, however,
Penington et al. (2019) and Saad, Shenker, and Stanford
(2019) for some toy models.] The advantage of the gravita-
tional fine-grained entropy formula is that it gives us the
entropy of the exact state in terms of quantities that can be
computed using the semiclassical state. One could ask, if you
are an observer in the radiation region, which of these two
states should you use? If you make simple observations, the
semiclassical state is good enough. But if you consider
complex observables, then you need to use the exact quantum
state. One way to understand this is that complex operations
on the radiation weave their own spacetime, and this space-
time can develop a connection to the black hole interior; see
Susskind (2018) for more discussion.
This review has focused on novel physics in the presence of

black hole event horizons. In our Universe, we also have a
cosmological event horizon due to accelerated expansion.
This horizon is similar to a black hole horizon in that it has an
associated Gibbons-Hawking entropy and it Hawking radiates
at a characteristic temperature (Figari, Hoegh-Krohn, and
Nappi, 1975; Gibbons and Hawking, 1977). However, it is
unclear whether we should think of the cosmological horizon
as a quantum system in the sense of the central dogma for
black holes. Applying the ideas developed in the review to
cosmology may shed light on the nature of these horizons and
the quantum nature of cosmological spacetimes.
There is a variant of the black hole information problem

where one perturbs the black hole and then looks at the
response at a late time in the future (Maldacena, 2003). For
recent progress on that front see Saad, Shenker, and Stanford
(2018, 2019) and Saad (2019).
Wormholes similar to the ones discussed here were con-

sidered in the context of theories with random couplings
(Coleman, 1988; Giddings and Strominger, 1988; Polchinski
and Strominger, 1994). Recently random couplings played an
important role in the solution of a simple two-dimensional
gravity theory (Saad, Shenker, and Stanford, 2018, 2019). We
do not know to what extent random couplings are important
for the issues that we discussed in this review; see also Marolf
and Maxfield (2020).
We emphasize one point. In this review, we have presented

results that can be understood purely in terms of gravity as an
effective theory. However, string theory and holographic

dualities played an instrumental role in inspiring and checking
these results. They provided concrete examples where these
ideas were tested and developed before they were applied to
the study of black holes in general. In addition, as we
explained in the Introduction, we have not followed a
historical route and we have not reviewed ideas that have
led to the present status of understanding.
Finally, we finish with a cautionary tale. Black holes are

confusing and many researchers who have written papers on
them have gotten some things right and some wrong. What we
have discussed in this review is an interpretation of some
geometric gravity computations. We interpreted them in terms
of entropies of quantum systems. It could well be that our
interpretation will have to be revised in the future, but we have
strived to be conservative and to present work that is likely to
stand the test of time.
A goal of quantum gravity is to understandwhat spacetime is

made of. The fine-grained entropy formula is giving us valuable
information on how the fundamental quantum degrees of
freedom are building the spacetime geometry. These studies
have involved the merger and ringdown of various different
fields of physics over the last few decades, high energy theory,
gravitation, quantum information, condensed matter theory,
etc., creating connections beyond their horizons. This has not
only provided exciting insights into the quantum mechanics of
black holes but also turned black holes into a light that
illuminates many questions in these other fields. Black holes
have become a veritable source of information.
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APPENDIX A: COMMENTS ON THE ALMHEIRI-
MAROLF-POLCHINSKI-SULLY (AMPS) PARADOX

Almheiri, Marolf, Polchinski, and Sully (2013) [see also
Mathur (2009) and Braunstein, Pirandola, and Życzkowski
(2013)] found a problem or paradox, and they made a proposal
for its resolution. The paradox was the impossible quantum
state appearing after the Page time, where the newly outgoing
Hawking quantum needs to be maximally entangled with two
seemingly separate systems: its interior partner and the early
Hawking radiation. The proposed resolution was to declare
the former entanglement broken, forming a “firewall” at the
horizon. A related problem was discussed by Marolf and
Wall (2013).
The paradox involved the central dogma plus one extra

implicit assumption. The extra assumption is that the black
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hole interior can also be described by the same degrees of
freedom that describe the black hole from the outside, the
degrees of freedom that appear in the central dogma. We have
not made this assumption in this review.
According to this review, the paradox is resolved by

dropping the assumption that the interior is also described
by the same degrees of freedom that describe it as viewed from
outside. Instead, we assume that only a portion of the interior
is described by the black hole degrees of freedom appearing in
the central dogma, only the portion in the entanglement
wedge; see Fig. 18(b). This leaves the interior as part of
the radiation, and the resolution of the apparently impossible
quantum state is that the interior partner is identified with part
of the early radiation that the new Hawking quantum is
entangled with. This gives a precise realization of the old idea
of A ¼ RB proposed by Susskind (2012), Bousso (2013), and
Papadodimas and Raju (2013), and also Maldacena and
Susskind (2013), who suggested the relevance of wormholes.
This is different than the resolution proposed in the AMPS.
With this resolution, the horizon is smooth. However, we
emphasize that this resolution was derived only for atypical
black hole microstates and does not address the additional
paradoxes raised by Almheiri, Marolf, Polchinski, Stanford,
and Sully (2013) and Marolf and Polchinski (2013) involving
typical microstates.

APPENDIX B: GLOSSARY

Causal diamond.—The spacetime region that can be
determined by evolution (into the future or the past) of initial
data on any spatial region. See Fig. 6.
Central dogma.—A black hole (as viewed from the outside)

is simply a quantum system with a number of degrees of
freedom equal to Area=4GN . As a quantum system, it evolves
unitarily under time evolution. See Sec. III.
Fine-grained entropy.—Also called the von Neumann

entropy or quantum entropy. Given a density matrix ρ, the
fine-grained entropy is given as S ¼ −Tr½ρ log ρ�. See Sec. IV.
Coarse-grained entropy.—Given a density matrix ρ for our

system, we measure a subset of simple observables Ai and
consider all ρ̃ consistent with the outcome of our measure-
ments (Tr½ρ̃Ai� ¼ Tr½ρAi�). We then maximize the entropy
Sðρ̃Þ ¼ −Tr½ρ̃ log ρ̃� over all possible choices of ρ̃. See
Sec. IV.
Semiclassical entropy.—The fine-grained entropy of matter

and gravitons on a fixed background geometry. See Sec. IV.A.
Generalized entropy.—The sum of an area term and the

semiclassical entropy. See Eq. (6.3). When evaluated at an
event horizon soon after it forms, for example, in Eq. (2.4), the
generalized entropy is coarse grained. When evaluated at the
extremum, as in Eq. (6.2) or (8.2), the generalized entropy is
fine grained.
Gravitational fine-grained entropy.—Entropy given by

Eqs. (6.2) and (8.2). They give the fine-grained entropy
through a formula that involves a geometric part, the area
term, and the semiclassical entropy of the quantum fields.
Page curve.—Consider a spacetimewith a black hole formed

by the collapse of a pure state. Surround the black hole by an
imaginary sphere whose radius is a few Schwarzschild radii.
The Page curve is a plot of the fine-grained entropy outside of

this imaginary sphere, wherewe subtract the contribution of the
vacuum. Since the black hole Hawking radiates and the
Hawking quanta enter this faraway region, this computes the
fine-grained entropy ofHawking radiation as a function of time.
Notice that the regions inside and outside the imaginary sphere
are open systems. The curve begins at zero when no Hawking
quanta have entered the exterior region, and ends at zero when
the black hole has completely evaporated and all of theHawking
quanta are in the exterior region. The “Page time” corresponds
to the turnover point of the curve. See Fig. 7.
Quantum extremal surface.—The surface X that results

from extremizing (and if necessary minimizing) the general-
ized entropy as in Eq. (6.2). This same surface appears as a
boundary of the island region in Eq. (8.2).
Island.—Any disconnected codimension-1 regions found

by the extremization procedure (8.2). Its boundary is the
quantum extremal surface. The causal diamond of an island
region is a part of the entanglement wedge of the radiation.
Entanglement wedge.—For a given system (in our case

either the radiation or the black hole), the entanglement wedge
is a region of the semiclassical spacetime that is described by
the system. It is defined at a moment in time and has nontrivial
time dependence. Notice that language is not a good guide: the
transition in the Page curve from increasing entropy to
decreasing entropy corresponds to when most of the interior
of the black hole is described by the radiation; i.e., the
entanglement wedge of the black hole degrees of freedom
does not include most of the black hole interior. See Sec. IX
and Fig. 18.
Replica trick.—A mathematical technique used to compute

−Tr½ρ log ρ� in a situation where we do not have direct access
to the matrix ρij. See Sec. X.
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