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. I. INTRODUCTION
18 This report gives a detailed account of the 2018 least-squares
20 adjustment of over 300 recommended values of basic funda-
22 mental constants in nature based on the latest relevant precision
;g measurements and improvements of theoretical calculations.
The work has been carried out under the auspices of the Task
2% Group on Fundamental Constants (TGFC) of the Committee
on Data of the International Science Council (CODATA).
26  The cutoff date for accepted data was at the close of
27 31 December 2018, and the new set of values became available
27 on World Metrology Day, 20 May 2019, at http://physics.nist
28 .gov/constants, a website of the Fundamental Constants Data
29 Center of the National Institute of Standards and Technology
29 (NIST), Gaithersburg, Maryland, USA.
30 The compilation of values of fundamental constants argu-
30 ably started with Birge (1929) and afterwards occurred at
irregular intervals until 1998. Since that year, updated and
30 improved adjustments have been published every four years
30 (Mohr and Taylor, 2000, 2005; Mohr, Taylor, and Newell,
2008a, 2008b, 2012a, 2012b; Mohr, Newell, and Taylor,
31 2016a, 2016b). In 2017, a special adjustment was done to
32 provide values for the redefinition of the International System
32 of Units (SI) (Mohr er al, 2018; Newell er al., 2018).
32 o .
34 Specifically, recommended exact numerical values for the
34 Planck constant &, elementary charge e, Boltzmann constant
34 k, and Avogadro constant N, were provided. See Mills et al.
(2011) for a review of the proposals that led to the redefi-
36 nitions. The revised SI units for time, length, mass, current,
temperature, amount of substance, and luminous intensity
37 based on these exact values together with the already exactly
defined frequency of the ground-state cesium hyperfine split-
37 ting and speed of light in vacuum c officially became effective
40 on World Metrology Day. Table I lists the values of the defining
constants including that of the luminous efficacy, a measure of
41 light intensity as observed by the human eye. The revision has
41 played an important role in the 2018 least-squares adjustment.
42 The four newly fixed defining constants &, e, k, and Ny
43 within the revised SI replace four constants that previously
helped define the SI. These were the mass of the international
43 prototype of the kilogram (IPK) m(K), the permeability of
50 vacuum (magnetic constant) y, the temperature at the triple
; point of water T'tpw, and the molar mass of a carbon 12 atom at
54 restand in its ground state, M ( 1 2C) In the revised SI, these must
now be determined experimentally and are no longer funda-
54 mental (Mohr et al., 2018; Newell et al., 2018). For example,
the permeability of vacuum and the molar mass of carbon 12 are
56 calculable from other (inexact) recommended values; specifi-
56 cally, these are the measurable fine-structure constant and the
mass of a single carbon 12 atom, respectively. In this adjust-
56  ment, we find py =4 x 1077[1 +55(15) x 10~'] NA~2
56 and M('*C) = 0.012 x [1 —35(30) x 10~""] kgmol~".
57 The quantities Trpy and m(KC) cannot be determined from
57 other fundamental constants. Of course, the triple point of
57 water can still be regarded “fundamental” in that this point has
025010-2
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TABLEI. Exact quantities and their mathematical symbols relevant

for the revised SI.

Quantity Symbol Value Unit

hyperf. transition Avcg 9192631770 Hz
freq. of 133Cs

speed of light c 299792458 ms™!
in vacuum

Planck constant” h 6.62607015 x 10734 JHz™!

h 1.054571817... x 10734 Ts

elementary charge e 1.602 176634 x 10717 C

Boltzmann k 1.380649 x 10723 JK-!
constant

Avogadro constant N 6.022 14076 x 10?3 mol™!

luminous efficacy K 683 ImWw~!

*The energy of a photon with frequency v expressed in
unit Hz is £ = hv in unit J. Unitary time evolution of the
state of this photon is given by exp(—iEt/h)|p), where |¢p) is the
photon state at time t =0 and time is expressed in unit s.
The ratio Et/h is a phase.

a well described definition that can be realized by any
interested party. To date, however, no theoretical model can
reach the accuracy of the best experimental determinations
and, thus, T'rpw is no longer relevant for the adjustment. The
prototype of the kilogram is also no longer relevant for
the adjustment, but for a different reason. In this case, the
prototype is no longer fundamental. That is, it is no longer
unique among massive objects. For further information see the
Mise en pratique for the definition of the kelvin and kilogram
in the online version of the SI brochure found at https://www
.bipm.org/en/publications/si-brochure.

The cornerstone of this 2018 CODATA adjustment, as in
previous adjustments, is the validity of physical theory as
understood today. Prominent in these theories are the concepts
of energy and momentum. For example, the energy of a particle
of mass m at rest is mc? from special relativity. The energy of a
single photon with angular frequency @ is Ao from quantum
electrodynamics (QED). Here, 7 is the reduced Planck constant.
From quantum mechanics we know about the particle-wave
duality and that the momentum of a massive or massless object is
p = %k, where the wave vector k has alength |k| = 27/4 and A
is the particle’s wavelength. Of course, energy and momentum
conservation then ensures, for example, that when an atom
absorbs a photon (without ionizing) its momentum changes and
its mass slightly increases. Finally, statistical mechanics and
thermodynamics tell us that the mean kinetic energy of a three-
dimensional classical gas of noninteracting atoms is 3k7'/2 per
atom at temperature 7.

It is worth noting that the possible time variation of the fine-
structure constant a, proton-to-electron mass ratio, and other
dimensionless constants or ratios (Safronova et al., 2018) does
not affect the 2018 adjustment. That is, our final uncertainty
for these quantities is orders of magnitude larger than current
upper bounds on their time variation.

II. PURPOSE OF THE ADJUSTMENT AND OVERVIEW OF
CONSTANTS

Our periodic CODATA evaluations of the fundamental
constants of physics and chemistry serve two purposes. First,
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they provide a self-consistent set of recommended values of the
constants for all to use. Second, because they necessitate a
summary and analysis of a wide range of experimental and
theoretical data, they can identify possible inconsistencies
among the data and suggest areas for future work.

A constant is only fundamental as a matter of convention.
For our adjustment, obvious constants are those that appear in
basic physical and chemical theory, such as £, c, e, and k as
well as the Newtonian constant of gravitation G and the
dimensionless fine-structure constant a. Products and ratios of
these constants, like the Josephson constant Ky = 2¢/h, the
molar gas constant R = N sk, and the Planck mass (ic/G)'/?,
are natural extensions. Over the years, many such products
and ratios have been given dedicated names as these combi-
nations appear as natural units for measurement observables.

Masses and magnetic moments of the lightest charged
leptons, i.e., the electron and muon, and of light nuclei also
fall within the scope of our work as their precise evaluation
often involves knowledge of the fine-structure and other
constants. Our Task Group only publishes updated values
for the neutron and nuclei with charge number Z = 1 or 2. We
provide masses in the ST unit kg and as relative atomic masses in
the atomic mass unit 1 u = m, (i.e., in units of one-twelfth of
the mass of a neutral '°C atom). An extensive listing of relative
atomic masses for stable and unstable atoms in the periodic table
can be found in the Atomic-Mass-Data-Center publications
(Huang et al., 2017; Wang et al., 2017). Particle properties
relevant for high-energy physics, such as the masses of the W, Z,
and Higgs particles, the Fermi coupling constant, decay modes
of mesons, and many other quantities are collected by the
Particle Data Group (Tanabashi et al., 2018).

We also maintain values for the lattice constant of natural
silicon single crystals and the shielded magnetic moments
of the proton in liquid-water and the helion in *He gas. For
the adjustment, the former are relevant for the calibration of
x-rays. Before the redefinition of the SI, the precise values of
the Si lattice constants in natural and enriched silicon crystals
were used to help measure the Avogadro and Planck con-
stants. The shielding factors are relevant because often only
shielded magnetic-moment ratios are available.

For conciseness, this review summarizes results from the
four years before our 31 December 2018 closing date, as
previous CODATA reports describe older data. Detailed
discussions of theoretical calculations and experiments are
omitted and only noteworthy features are mentioned.

Often a result is identified by an abbreviation for the
institution at which it was obtained and the last two digits of
the year in which the result was published in an archival journal.
However, a result does not have to be published in such a
journal to be considered as having met the 31 December 2018
closing date of the adjustment if it was available by this date in a
detailed preprint. Any input datum with a 20 or earlier date after
its institutional abbreviation has met this requirement. A
comprehensive list of Symbols and Abbreviations is given
near the end of this report.

III. LEAST-SQUARES ADJUSTMENTS

The least-squares procedure for the determination of the
values of fundamental constants is based on the assumption of a
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normal probability distribution for correlated input data and is
described in detail in Appendix E of Mohr and Taylor (1999) and
Mohr and Taylor (2000). Key points are as follows. Experiment
as well as theory provide input data that are used to determine a
set of independent quantities, the unknowns or variables of the
adjustment. They will be called adjusted constants. The expres-
sion that relates an input datum to the adjusted constants is its
observational equation, and the one-standard-deviation uncer-
tainties of and covariances among the input data determine the
weights of the data contributing to y? (chi squared), which is
minimized in the least-squares adjustment.
Observational equations are given by

X =F(A A, ...), (1)

where X and F(- - -) are the input datum and its relationship to
adjusted constants A; with j=1,2..., respectively. The
symbol = implies that the quantities on either side are equal
in principle but need only agree to within the constraints of the
adjustment. In its simplest form, the observational equation is
X = A. We simplify to X = X when no confusion can arise. A
good example of such a case is Newton’s gravitational
constant G, where experimentalists directly measure G.

One-standard-deviation uncertainties will also be called
standard uncertainties. For quantity X they are presented as
either an absolute standard uncertainty u(X) with the same
unit as X or a dimensionless relative standard uncertainty
u,(X) = u(X)/|X|. Throughout this article, covariances
u(X,Y) between quantities X and Y are specified in terms
of correlation coefficients r(X,Y) = u(X,Y)/[u(X)u(Y)]
with values between —1 and 1.

Theoretical expressions, say for the g-factor of the electron,
often have uncertainties due to inexact numerical calculations
or uncalculated terms whose size cannot be ignored. They are
dealt with by introducing an additive correction g to the
relevant theoretical expression and including J as an input
datum with magnitude zero and an uncertainty equal to that of
the theoretical expression. An observational equation § = J,
is then added to y2. Corrections d, are thus adjusted constants
whose values and uncertainties are found in the least-squares
procedure. Correlations, sometimes significant, among the o
due to common sources of uncertainty are taken into account
in > where appropriate.

A measure of the consistency of our least-squares adjust-
ment for the ith input datum X; is its normalized residual
ri = (X; — (X;))/u(X;), where (X;) is its fitted, or adjusted,
value. An absolute value greater than two is problematic and is
reduced to less than two by the application of a multiplicative
expansion factor to the initially assigned uncertainties of the
input datum in question as well as related input data. For data
pair X; and X, expansion factors are applied in such a way
that their correlation coefficient 7(X;, X;) is unchanged. This
procedure makes the effective data consistent. Several expan-
sion factors have been used in this adjustment.

After the application of all expansion factors, we character-
ize the quality of an adjustment with N input data and M
adjusted constants by the probability p(y?|v) of obtaining a
value of y> by chance that large or larger, where v = N — M

and the Birge ratio Ry = /y*/v.
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For the 2018 adjustment, the input data and adjusted
constants separate into three independent data sets, corre-
sponding to input data related to the determination of the
gravitational constant, input data related to natural-silicon
lattice spacings, and, finally, all remaining input data and
adjusted constants. Each data set is treated separately. The
gravitational constant is determined from N = 16 measure-
ments and an expansion factor of 3.9 is needed to decrease the
residuals to below two. This modification leads to )(2 =129,
p(r*|v) = 0.61, and Ry = 0.93. For the natural-silicon lat-
tice-spacing determination, there are N = 21 input data and
M = 12 adjusted constants. No expansion factor is needed
and y* = 7.3, p(y*|v) = 0.60, and Rg = 0.90. The third least-
squares adjustment has N = 105 and M = 62 with y> = 31.5,
p(r*|lv) =0.88, Rz =0.87. Two expansion factors are
included. A factor of 1.6 is applied to the 62 input data
determining the Rydberg constant and proton and deuteron
charge radii. A factor 1.7 is used for the two input data that
determine the relative atomic mass of the proton.

The input data for the 2018 CODATA adjustment can be
found in Tables VIII, X, XVIII, XXI, XXVII, and XXIX.
Links to tables with correlation coefficients are given in the
captions of these tables. The adjusted constants are given in
Tables XI and XIX. Observational equations are found in
Tables XXIII and XXVI.

IV. OVERVIEW OF NOTABLE CHANGES
A. Electrical units

The introduction of the revised SI has brought electrical
metrology back into the SI. Between 1988 and 2018, on the
recommendation of the Consultative Committee for
Electricity (CCE) and adopted by the International
Committee for Weights and Measures (CIPM) (Quinn,
1989; Taylor and Witt, 1989), the electrical units of current,
voltage, resistance, etc. were the ampere-90, volt-90, ohm-90,
etc. derived by fixing the Josephson and von Klitzing
constants to the exact, conventional values Kj;_ o) =
483597.9 GHz/V and Ry_gy = 25812.807 Q, respectively,
instead of using K; = 2e/h and Rx = h/e?* based on the most
accurate values for /2 and e. Then, for example, a measurement
of the resistance of a resistor would result in a number times
Ry _o9, Which is then expressed in the unit g, (often the
subscript 90 would be dropped) using the value of Rg_go. Now
these conventional 1990 electrical units are obsolete, because
with exact values for /2 and e in SI units, the Josephson and
von Klitzing constants are exact. This leads to fractional
changes of two to twenty times 10~® when reexpressing values
of electrical quantities from conventional 1990 to the revised
SI units. These changes, however, are generally much smaller
than the relative uncertainties associated with most everyday
measurements of electrical quantities and are only noticeable
when comparing quantum electrical standards.

B. Particle and relative atomic masses and the atomic
mass constant

Overnight, the revision of the SI has led to almost two
orders of magnitude improvement in the uncertainties of the
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electron, neutron, and nuclear and atomic masses in the SI unit
kg when compared to those found in the 2014 CODATA
adjustment. The atomic mass constant, one-twelfth of the
mass of the *C atom in its ground state, has similarly become
more accurate. These masses are now often known with
relative uncertainties of a few times 10710

By fixing & and e, the reduced uncertainty is achieved by
combining the results of several distinct measurements with
equally accurate theoretical calculations for these measure-
ments. For example, in the revised SI the atomic mass constant
is most accurately determined through

_ ey

where the adjusted constants are the Rydberg constant R,
the fine-structure constant «, and the relative atomic mass of
the electron A,(e). Here, we use the Rydberg energy
hcR, = a®m.c?/2, and m, is the mass of the electron. The
Rydberg constant is mainly constrained by measurements of
the 1S-2S transition energy in hydrogen. (In practice, this
transition energy is measured as a two-photon process.)
The fine-structure constant is determined from a combination
of calculations and measurements of the electron g-factor as
well as atom-recoil measurements. Finally, the relative atomic
mass of the electron (not m, in kg) is found from spin-
precession and cyclotron-frequency-ratio measurements on
hydrogenic '*C3+.

Of the three adjusted constants on the right-hand side of
Eq. (2), the fine-structure constant « is by far the least well
known with a still-impressive relative standard uncertainty of
1.5 x 107!°. The relative uncertainty of A, (e) is 2.9 x 1071,
while that for R, is 1.9 x 10~'2. We find that the relative
uncertainty for m, is slightly less than twice that of @ once the
small covariances among the three adjusted constants are
taken into account.

The mass for a neutral atom X is most accurately found
from

m(X) =myx = Ar(X)muv (3)

where we rely on the 2016 Atomic-Mass-Data-Center
(AMDCI16) values of relative atomic masses for neutral atoms
throughout the periodic table (Huang et al., 2017; Wang et al.,
2017). These relative atomic masses often have a smaller
relative uncertainty than m,, even though the accuracy of m,
has improved significantly. The masses of nuclei can be found
by accounting for the electron masses and electron removal
energies where available.

In 2016, the Atomic Mass Data Center updated the relative
atomic mass of hydrogen based on the then-available data. In
2017, Heile et al. (2017) made an accurate measurement of
the cyclotron frequency ratio of the proton and the '2C°*
nucleus. The implied relative atomic masses of the proton and
hydrogen atom from these two sources are inconsistent and
require an expansion factor in our least-squares adjustment.
The uncertainties added by accounting for the electron mass
and binding energy are negligible.

Rev. Mod. Phys., Vol. 93, No. 2, April-June 2021

C. Proton charge radius and Rydberg constant or frequency

The disagreement between the (root-mean-square) charge
radius of the proton r, obtained from Lamb-shift measure-
ments in muonic hydrogen (a muon bound to a proton) and the
value obtained from transition frequency measurements in
hydrogen and electron-proton elastic scattering data, some-
times referred to as the “proton-radius puzzle,” has been partly
resolved. Therefore, for this 2018 CODATA adjustment, the
TGFC decided that the muonic hydrogen data, some of which
were already available in 2010, as well as related muonic
deuterium data, should no longer be excluded.

The reduced disagreement in the determinations of the
proton charge radius is mainly due to two new hydrogen
spectroscopic measurements (Beyer et al., 2017; Bezginov
et al., 2019), as they imply a smaller r, closer to that found
from muonic hydrogen data. Figure 1 illustrates the improved
agreement for r, as well as its strong correlation with the
determination of the Rydberg constant R,. We observe that
our 2018 value for r, has a three-times improved uncertainty
compared to that found in the 2014 CODATA evaluation.
Moreover, the correlation coefficient between r, and R, has
significantly decreased. The covariance error ellipse is more
circular in the 2018 adjustment. Similar observations hold
for the determination of the deuteron charge radius ry. Our
2018 relative standard uncertainties for Tps Tds and R, are

2.2x 1073, 3.5 x 107, and 1.9 x 1072, respectively.

20 T T T T T T T T T
CODATA-14
15 -
558'
2 10F —
n:(; - -
|
5 -
<
of / CODATA-18 .
1 . 1 . 1 . 1 . 1

0 5 10 15 20

(rp - rlD’zm)/u(rp

,2018)

FIG. 1. Covariance error ellipses for the proton radius r, and the
Rydberg constant R, from the 2014 (blue marker and curve) and
the current 2018 (red marker and curve) CODATA adjustment.
The black marker and ellipses correspond to a 2018 adjustment
where the experimental data from muonic hydrogen and muonic
deuterium have not been included. Solid and dashed curves
correspond to the one- and two-standard-uncertainty ellipses,
respectively. The x- and y-axis data are shifted and normalized by
the 2018 recommended values and standard uncertainties of r,
and R, respectively.
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The tension between the two approaches determining r,
and ry has not been fully resolved. In fact, to obtain
consistency among the many input data that contribute to
the determination of R, r,, and ry, a multiplicative expansion
factor of 1.6 is applied to their uncertainties. Further experi-
ments are needed.

D. Fine-structure constant and electron magnetic-moment
anomaly

The fine-structure constant, the dimensionless coupling
constant in QED, is determined primarily by measuring either
the electron magnetic-moment anomaly a. or the recoil
momentum of an atom from emitting or absorbing a resonant
photon. To date, the two approaches lead to a roughly equal
uncertainty for a. Figure 2 summarizes these data and the 2018
recommended value of a. The relative standard uncertainty of
the 2018 recommended value of a is 1.5 x 10710, a value that
has improved steadily over the past hundred years, since its
definition by Sommerfeld (1916).

The uncertainty of the theoretical expression for the
electron magnetic-moment anomaly a., mainly a function
of a, has now been reduced to the point where it contributes
negligibly to the determination of the fine-structure constant
obtained by equating the experimental value of a. to the
theoretical expression. For example, Laporta (2017) evaluated
the four-virtual photon QED coefficient virtually exactly and
hadronic corrections have been updated.

The most recent experimental value for a. has a relative
standard uncertainty of 2.4 x 107! (Hanneke, Fogwell, and
Gabrielse, 2008). Its derived value for a is shown in Fig. 2 as
Harvard-08.

An important new atom-recoil input datum is that by
Parker et al. (2018) measured at the University of
California at Berkeley, USA. Using atom interferometry with
laser-cooled '33Cs, the quotient i/m('**Cs) was measured

599.89 599.9 599.91 599.92
[}
: —CO—
! a, Harvard-08
I
O 1
hmg, LKB-11 |
—0— |
h/m._ Berkeley-18 !
|—c:>—| CODATA-18
N 1 N 1 1 N
599.89 599.9 599.91 599.92

[a'-137.03] x 10°

FIG. 2. Results of measurements relevant for determining the
2018 CODATA recommended value of the fine-structure constant
a. Error bars correspond to one-standard-deviation uncertainties.
Labels “Harvard-08,” “LKB-11,” and “Berkeley-18" denote the
laboratories and the last two digits of the year in which the result
was reported. The individual values for (a~! — 137.03) x 10° are
599.9150(33), 599.8998(85), and 599.9048(28) for Harvard-08,
LKB-11, and Berkeley-18, respectively. See discussion of this
figure for references.
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with u, = 4.0 x 107'9 It provides a value of a with
u, = 2.0 x 1071°, which is the smallest uncertainty of all
relevant measurements. It agrees with the less-accurate
value of a from a 3’Rb atom-interferometry measurement
(Bouchendira et al., 2011) made at the Laboratoire Kastler-
Brossel (LKB), France. Both data are shown in Fig. 2 and
labeled by Berkeley-18 and LKB-11, respectively. We also
observe that there exists tension between the a. and
h/m(13Cs) measurements; their inferred values of a differ
by five times the uncertainty of the 2018 recommended value
of a. Nevertheless, no expansion factor for the uncertainties of
these three input data is required.

E. Muon magnetic-moment anomaly

The theoretical expression for the muon magnetic-moment
anomaly a,, is omitted from this CODATA adjustment as in the
two previous adjustments. Although there has been progress
in the theory in the past four years, there are still concerns
about the hadronic and light-by-light vacuum-polarization
contributions, and the 3¢ to 40 disagreement between theory
and experiment remains. Currently, researchers at the
Experiment E989 (Keshavarzi, 2019) of the Fermi National
Accelerator Laboratory, USA and the muon g — 2 J-PARC
experiment (Abe et al., 2018) of the High Energy Accelerator
Research Organization (KEK), Japan hope to resolve this
discrepancy.

F. Newtonian constant of gravitation

Inconsistencies among measurements of the Newtonian
constant of gravitation G have long been a problem. This is no
different in the 2018 adjustment. Sixteen measurements lead
to a relative uncertainty u, = 2.2 X 1073, a factor of two
reduction compared to our previous adjustment. An expansion
factor of 3.9, however, is needed to reduce the absolute value
of all residuals below two. Two recent results, both with
relative standard uncertainties of 1.2 x 107> (Li et al., 2018),
have contributed to the improved recommended value. The
two values differ by 2.7 times the root-mean square of their
uncertainties.

V. OUTLINE OF PAPER

The remainder of the paper describes the input data in the
2018 CODATA adjustment, analyzes these data where appro-
priate, and explains the observational equations. Recommended
values of the fundamental constants and conversion factors of
energy equivalents are presented and discussed.

We begin by describing the relationship among four impor-
tant adjusted constants in the CODATA adjustments. Section VI
shows how the determination of the Rydberg constant, the
Hartree energy, the fine-structure constant, the electron mass,
and the atomic mass constant are interconnected.

The next five sections describe five types of experiments
that determine the values of these five fundamental constants.
Section VII explains the theory for and measurements of
transition energies in hydrogen and deuterium relevant to the
determination of the Rydberg constant or the Hartree energy.

025010-6



Eite Tiesinga et al.: CODATA recommended values of the fundamental ...

Section VIII summarizes the theory for the magnetic-
moment anomaly or g-factor of the electron. In addition,
the sole direct measurement of the anomaly is discussed. This
measurement is one of two ways to determine the fine-
structure constant.

Section IX describes input data for the relative atomic
masses of various nuclei and atoms, i.e., masses specified in
units of the atomic mass constant or, equivalently, atomic mass
units. Electron ionization and removal energies of H, 3H, *He,
“He, '°C, and 28Si are also specified. Section X describes atom-
recoil experiments, which determine the mass of neutral 3’Rb
and '33Cs atoms in SI unit kg.

Section XI explains the theoretical calculations of the
g-factor of the electron in hydrogenic '?C>* and 28Si'**. In
addition, the section describes measurements of the ratio of
precession to cyclotron frequencies of these hydrogenic ions.
Together, these theoretical g-factors and measurements, after
accounting for electron removal energies, are the most
accurate means to determine the electron mass in atomic
mass units (or the atomic mass constant in units of the
electron mass).

The next two sections describe input data that determine the
proton and deuteron charge radii. Section XII summarizes
theory for and spectroscopic measurements of the Lamb shift
for muonic hydrogen and deuterium. Proton and deuteron
charge radii from electron-proton and electron-deuteron elas-
tic scattering data are described in Sec. XIII.

Sections XIV and XV describe the input data for magnetic-
moment ratios of light nuclei. Both theoretical estimates and
experimental data for these ratios are given.

The g-factor and mass of the muon are discussed in the
next two sections. Section XVI describes both theoretical
calculations and measurements of the magnetic-moment
anomaly of the muon. Due to long-standing discrepancies
between the theory and experiments, the Task Group has
decided to only use the experimental data to determine the
muon anomaly.

Section XVII describes the input data for the determination
of the mass of the muon relative to that of the electron. Data
rely on measurements and theoretical calculations of the
hyperfine splitting of ground-state muonium, an electron
bound to an antimuon. These data also fix the muon-to-proton
magnetic-moment ratio.

Section X VIII summarizes the input data that determine the
lattice spacing of natural silicon. Section XIX describes the
input data for the determination of the Newtonian constant of
gravitation. Section XX gives values for some electroweak
quantities, i.e., the Fermi coupling constant and the weak
mixing angle.

Section XXI lists the 2018 CODATA recommended Values.
Tables of values and some calculational details are given.
Section XXII gives a summary and conclusion based on a
comparison of 2014 and 2018 CODATA recommended
values. Changes in values are either due to the revision of
the SI or due to newly available input data. We give
implications of the 2018 adjustment for electrical metrology,
the proton radius and Rydberg constant, the fine-structure
constant, and Newton’s gravitational constant. We also make
suggestions for future work.
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VI. RELATIONSHIPS AMONG THE RYDBERG
CONSTANT, FINE-STRUCTURE CONSTANT, ELECTRON
MASS, AND ATOMIC MASS CONSTANT

Several sections in this article describe, in detail, how the
Rydberg constant R, the Hartree energy E;, fine-structure
constant «, the atomic mass constant m,, and the electron
mass m, are determined. Their determinations are interrelated
in CODATA adjustments and involve five distinct measure-
ments combined with state-of-the-art theoretical calculations
within QED. A succinct, simplified flow diagram of the most
important relationships and measurements is shown in Fig. 3.
At the heart of the diagram are the relationships

E, =2R hc = a’m.c?, (4)

where h and ¢ are exact in the revised SI. The relationships,
for example, imply that measuring two of E}, a, or m, in SI
units determines the third. (Of course, the dimensionless fine-
structure constant will have the same numerical value in any
complete set of units.) Alternatively, measuring all three
constants confirms the validity of the equation.

Spectroscopy on the hydrogen atom, discussed in Sec. VII,
and, in particular, the measurement of the 1S-to-2S transition
energy or frequency determines the Rydberg constant or,
equivalently, the Hartree energy in SI units. In fact, R, or E,
has a unique place in the adjustment. Its relative uncertainty is
orders of magnitude smaller than that of our other adjusted
constants.

The measurement of the ratio of spin-precession and
cyclotron frequencies of a single, free electron in a magnetic
flux density gives an accurate value for its g-factor. Combined
with theoretical calculations of g as a function of a, this gives a
competitive value for a. Details are given in Sec. VIII. Of the
adjusted constants, the fine-structure constant has the second
smallest relative uncertainty. Currently, the two types of
measurements combined with Eq. (4) give the most accurate
value for m, in kg.

Measurements of the ratio of precession and cyclotron
frequencies of hydrogenic ')C3* (and to a lesser extent
28Gil3+) are used to determine the relative atomic mass of
the electron, A,(e) = m./m,. Here, theoretical calculations of
the g-factor of the bound electron (as a function of a) are also
essential. Details can be found in Sec. XI. From the meas-
urement of A.(e) and the value for the electron mass, an
accurate value for the atomic mass constant m, is derived.

Finally, Fig. 3 shows how atom-recoil experiments that
measure the mass of 8’Rb and '33Cs in kg combined with
measurements of their relative atomic masses as compiled by
the Atomic Mass Data Center form a second pathway to
determine m,., but most importantly, a second competitive
determination of the fine-structure constant. These experi-
ments and data are discussed in Secs. IX and X, respectively.

The directions of the arrows in Fig. 3 indicate the paths
traversed to find the most accurate values for our four
constants. The figure, however, does not show all relation-
ships. For example, atom-recoil experiments and the data from
the Atomic Mass Data Center can be used to determine m,, as
well. Its value, however, would be less accurate. The transition
energies among the eigenstates in hydrogen also depend on «
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their values. Blue directed arrows give the most commonly
traversed connections between the constants and measured
quantities.

and, thus, could constrain its value. Still, the measurement of
the g-factor of the free-electron and atom-recoil experiments
are currently the best means to determine a. Moreover,
hydrogen spectroscopy is also used to constrain the proton
radius.

VII. ATOMIC HYDROGEN AND DEUTERIUM
TRANSITION ENERGIES

The comparison of theory and experiment for electronic
transition energies in atomic hydrogen and deuterium is
currently the most precise way to determine the Rydberg
constant, or equivalently the Hartree energy, and to a lesser
extent the charge radii of the proton and deuteron. Here, we
summarize the theory of and the experimental input data on H
and D energy levels in Secs. VIL.A and VIL.C, respectively.

The charge radii of the proton and deuteron are also
constrained by data and theory on muonic hydrogen and
muonic deuterium as well as by those from electron scattering.
These data are discussed in Secs. XII and XIII, respectively.

The electronic eigenstates of H and D are conveniently
labeled by nZ), where n = 1,2, ... is the principal quantum
number, £ =0,1,...,n—1 is the quantum number for the
electron orbital angular momentum L, and j = £ + 1/2 is the
quantum number of the total electronic angular momentum J.
Following the usual convention, we use S, P, D, ... to denote
£=0,1,2, ... states.
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Theoretical values for the energy levels of H and D are
determined by the Dirac eigenstate energies, QED effects such
as self-energy and vacuum-polarization corrections, as well as
proton size and nuclear recoil effects. The expression for
energy levels quickly becomes complex. The energies, how-
ever, do satisfy

Eh Roo,’lC
Tt F) =m0

E = (I1+F), (5)

where E,, = a®?m.c®> = 2R hc is the Hartree energy, R, is the

Rydberg constant, and «a is the fine-structure constant. The
dimensionless F, small compared to one, is determined by
QED, recoil corrections, etc. Consequently, the measured H
and D transition energies determine E; and R, as & and c are
exact in the SI. The transition energy between states i and i’
with energies E; and E; is given by

Agil’/ - El” - Ei' (6)

Alternatively, we write AE;; = AE(i —i').

A. Theory of hydrogen and deuterium energy levels

This section describes the theory of hydrogen and deu-
terium energy levels. References to the original literature are
generally omitted; these may be found in the recent review by
Yerokhin, Pachucki, and Patkés (2019), on which we rely for
recent developments, but also in earlier CODATA reports,
Sapirstein and Yennie (1990) and Eides, Grotch, and Shelyuto
(2001, 2007). Literature references to new developments are
given where appropriate. Nine contributions to the energies
with different physical origins have been isolated. Each is
discussed in one of the following subsections. Moreover, each
contribution has “correlated”” and/or “uncorrelated”” uncertain-
ties due to limitations in the calculations. An important
correlated uncertainty is where a contribution to the energy
has the form C/n® with a coefficient C that is the same for
states with the same ¢ and j. The uncertainty in C leads to
correlations among energies of states with the same £ and ;.
Such uncertainties are denoted as uncertainty type u, in the
text. Uncorrelated uncertainties, i.e., those independent of the
quantum numbers, are denoted as type u,,. Other correlations
are those between corrections for the same state in different
isotopes, where the difference in the correction is only due to
the difference in the masses of the isotopes. Calculations of the
uncertainties of the energy levels and the corresponding
correlation coefficients are further described in Sec. VIL.B.

1. Dirac eigenvalue

The largest contribution to the energies is the Dirac
eigenvalue for an electron bound to an infinitely heavy point
nucleus or a stationary point nucleus. It is

Ep = f(n’ K)meczf (7>

where
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2o )™ 8)

fln,x) = [1 + (n—o7
with § = |k| = \/k* — (Za)? and « is the angular momentum-
parity quantum number (x = —1,1,—-2,2, -3 for 4 = Si)2
Py /5, P35, D3/, and D5, states, respectively). States with the
same n and j = |k| —1/2 have degenerate eigenvalues.
Finally, ¢ = |k + 1/2| — 1/2 and we retain the atomic number
Z in the equations in order to classify the various contributions
to the energies in this and other sections.
For a nucleus with a finite mass my,, we have

2.2
Ey(H) = M + [£(n.) = mye? = [f(n.x) = 1 5
1 =64 (Za)*mic? )
k(2¢+1) 2n’m%
for hydrogen and
m?2c?
Ey(D) = Mc? + [f(n,k) = 1myc® = [f(n.) =1 =0~
1 Za)*m3c?
+ ( )3 5 (10)
k(2 +1) 2n°my
for deuterium, where &s» is the Kronecker delta,

M = m, + my, and m, = mgmy/(m, + my) is the reduced
mass. Note that in this equation the energy of nS;/, states
differs from that of nP; , states.

It is worth noting that in Eqgs. (9) and (10) we follow a
slightly different classification of terms when compared to that
used by Yerokhin, Pachucki, and Patkés (2019). Specifically,
contributions of order (m./my)*(Za)*m.c? in our equations
are classified as relativistic-recoil corrections that are second
order in the mass ratio by Yerokhin, Pachucki, and Patkés
(2019). The remaining difference between the CODATA
expressions for the Dirac energy and those of Yerokhin,
Pachucki, and Patkés (2019) is of order (m./my)?(Za)®mc?,
negligible for our current purposes.

2. Relativistic recoil

The leading relativistic-recoil correction, to lowest order in
Za and all orders in m,/my, is (Erickson, 1977; Sapirstein and
Yennie, 1990)

m} (Za)? )

mZmy mwn’

7
P

3

2 m m
— = S |mEin( =) —m2in (X)), (11
mlzv_mg 0 |:mN n<mr> e n(’“r)]} ( )

1 8 1
X {g(sfo IH(Z(Z)_Z — gln ko(n, f) - §5f0 -

TABLE II. Relevant values of the Bethe logarithms In kg (n, 2).
Missing entries are for states for which no experimental measure-
ments are included.

n S P D
1 2.984 128 556
2 2.811769 893 —0.030016709
3 2.767 663 612
4 2.749 811 840 —0.041954 895 —0.006 740939
6 2.735 664 207 —0.008 147204
8 2.730267 261 —0.008 785043
12 —0.009 342954
me (Za)®
Er = 3—mec”[Dgy + ZaGrec(Za)), (12)
my n
where Dgy=4In2-7/2 for ¢#=0 and Dy =
23-2(¢+1)/n?)/[(2¢€ = 1)(2€ + 1)(2¢ + 3)]  otherwise.
The function Ggge(x) is
Grec(x) = DppIn?(x7%) + Dy In(x72) + Dyg + -+, (13)

where D7, = —11/(601)54y. Other D5, coefficients are not
known analytically. Instead, we use the numerically computed
Grec (x) of Yerokhin and Shabaev (2015, 2016) for nS states
with n =1, ..., 5 as well as for the 2P, ;, and 2P;, states. For
x = a, these values and uncertainties (both multiplied by x)
are reproduced in Table III. For nS states with n = 6, 8, we
extrapolate Ggpc(@) using gy + g;/n, where coefficients g
and g; are found from fitting to the n = 4 and 5 values of
Grec(@). The values are 14.8(1) and 14.7(2) for n = 6 and 8,
with uncertainties based on comparison to values obtained by
fitting gy + g1/n + g»/n® to the n = 3,4, and 5 values. For
the other £ > 0 states, we use Gggc(x) = 0 and an uncertainty
in the relativistic-recoil correction Eg + ER equal to 0.01FR.

The covariances for Eq + Ex between pairs of states with
the same # and j follow the dominant 1/n? scaling of the
uncertainty, i.e., are of type u,.

3. Self-energy

The one-photon self-energy of an electron bound to a
stationary point nucleus is

TABLEIIL.  Values of the function © X Gggc(x = a) from Yerokhin
and Shabaev (2015, 2016). Numbers in parentheses are the one-
standard-deviation uncertainty in the last digit of the value. [The
definitions of Gggc(x) in this adjustment and that of Yerokhin and
Shabaev (2015, 2016) differ by a factor &.] Missing entries are states
for which data are not available from these references.

n S P]/z P3/2

where a, = -2In(2/n) =2+ 1/n=2%" ,(1/i) for £=0 1 9.720(3)
and a, =1/[¢(¢+1)(2¢ + 1)] otherwise. Values for the 2 14.899(3) 1.5097(2) -2.1333(2)
Bethe logarithms In ky(n, £) are given in Table IL 3 15.242(3)

Additional contributions to lowest order in the mass ratio 4 15.115(3)

) . 5 14.941(3)

and of higher order in Za are
Rev. Mod. Phys., Vol. 93, No. 2, April-June 2021 025010-9
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TABLE IV. Values of the function Ggg(a).

n Sip P Ps) D3/, Ds,»

1 ~30.290 240(20)

2 ~31.185 150(90) ~0.97350(20) —0.486 50(20)

3 ~31.04770(90)

4 ~30.9120(40) ~1.1640(20) ~0.6090(20) 0.03163(22)
6 -30.711 (47) 0.034 17(26)
8 —30.606(47) 0.007 940(90) 0.034 84(22)
12 0.009 130(90) 0.03512(22)

where the function F(x) is

F(x) = A41 ln(x_z) + A40 + Asox + A62)C2 11’12()(_2)

+A61x2 ln(x'z) + GSE(X).XZ, (15)

with Ay = (4/3)5ﬁ0, Ay = —(4/3) In ko(n, f) +10/9 for
¢=0and Ay = —(4/3)Inky(n,¢) — 1/[2x(2¢ + 1)] other-
wise. NeXt, A50 = (139/32 —2In 2)7[550, A62 = —6f0, and

Ag = {4(1 +1+---+1) + B
2 n 3
601 77 n—-1/2 1
‘180‘45,12] f°+nz(1s+35f%>5f'
(9612 — 32£(£ + 1)](1 = 64)
3n2(2¢ - 1)(26)(2¢ + 1)(2¢ +2)(2¢ +3)°

Values for Ggg(a) in Eq. (15) are listed in Table IV. The
uncertainty of the self-energy contribution is due to the
uncertainty of Ggg(a) listed in the table and is taken to be
type u,. See Mohr, Taylor, and Newell (2012a) for details.

Following convention, F(Za) is multiplied by the factor
(m,/m,)?, except the magnetic-moment term —1/[2x(2£+1)]
in A9, which is instead multiplied by the factor (m,/m,)?,
and the argument (Za)~ of the logarithms is replaced by

(me/m;)(Za)=.

4. Vacuum polarization

The stationary point nucleus second-order vacuum-

polarization level shift is

HW (x) = V4o + Vsox + Vg x? In(x72) + Gi,lg(x)xz.

Here, V40 :—(4/15)5f0, V50 = (57[/48)6f0, and V61 =
—(2/15)649. Values of Ggg(a) are given in Table V.
Moreover, H®)(x) = G\N) (x)x? with

®) 19 =2 1 31x?
G -2 _Z 4 (—_
vl =35727 7 (1672880 )™ *

for £ = 0. Higher-order and higher-£ terms are negligible. We
multiply Eq. (16) by (m,/m.)? and include a factor of
(me/m;) in the argument of the logarithm of the term
proportional to V.

Vacuum polarization from p*p~ pairs is

@ _alZa'l 4 m\2 (m\?
EPVP—E n3 —E(sfo m—“ ;e mec-, (18)

while the hadronic vacuum polarization is given by

(17)

2 2
Ehvp = 0.671(15)Eyp. (19)

Uncertainties are of type uy. The muonic and hadronic
vacuum-polarization contributions are negligible for higher-£
states.

5. Two-photon corrections

The two-photon correction is

2(Za)*
y  a(Za) @ _ (@) @) 2
Egp = H(Za)mc*. (16) E <) o b (Zaymec, (20)

where H(x) = HV(x) + H® (x) with where

TABLE V. Values of the function Gi,l}l ().

n Si/2 P P3 D3/ D5/

1 -0.618724

2 —0.808 872 —0.064 006 —0.014 132

3 —0.814 530

4 —0.806 579 —0.080007 —0.017 666 —0.000 000

6 —0.791 450 —0.000 000

8 -0.781197 —0.000 000 —0.000 000

12 —0.000 000 —0.000 000
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F(4) (X) = B40 + Bsox =+ B63)C21I13 (X_z) + 362x21n2 (x_2)
+ B x? In(x72) + Bgox? + B7px’In?(x72)

+ By In(x72) + - (21)
with
B — 37[21112 1002 2179 95(3) 5
A ) 27 648 4 0

P2 w197 3((3)] 1-6s
2 12 144 4 |k(2f+1)
BSO - —2155447(13)5f0,

Bgz = —(8/27)d40.

16 |71 1 1
62:?[@—lnz‘i‘l[/(f’l)+]/_1nl’l—;+mj|(3fo
4 n>-1
Jr27 n? Or1-

Here, {(z), v, and y/(z) are the Riemann zeta function, Euler’s
constant, and the psi function, respectively, and

B 413581+4N(nS)+20277t2 616In2 2n2In2
17 64 800 3 864 135 3
40In22

304 3212\ [3
9 +C(3)+<ﬁ_ 9 ){Z”

+wn)—Inn 1+L £+L3752 1)
v n ' an?| T36 " 864 [0

4 n?—1/31 1 8

where the relevant values and uncertainties for the function
N(n?) are given in Table VI. The last two terms contributing
to By, for S states are recently computed light-by-light
corrections obtained by Czarnecki and Szafron (2016).

Before describing the next term in Eq. (21), i.e., By, it is
useful to observe that Karshenboim and Ivanov (2018b) have
derived that

139 42 5
By = -2 — 2 x5,
72 ( 8 T3 72)“ 20

In addition, they find the difference

TABLE VL. Values of N(n£) used in the 2018 adjustment and from
Jentschura (2003) and Jentschura, Czarnecki, and Pachucki (2005).
n N(nS) N(nP)

1 17.855 672 03(1)

2 12.032 141 58(1) 0.003 300 635(1)
3 10.449 809(1)

4 9.722413(1) —0.000394 332(1)
6 9.031832(1)

8 8.697 639(1)
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B71(nS) — B, (1S)

427 16 31 1
—n( =2 ) S -1 2
n(36 3 n )L n+4n2+y/(n)+y nn} (22)

for S states, but also that

139 4In2 5 1
By (nP) =n( - - 2 ) (1-—
7 (nP) “(144 9 +216)( n2>

for P states, and By, (nZ) = 0 for states with £ > 1.

We determine the coefficients Bgy(1S) and B;;(1S) by
combining the analytical expression for B;, and the values and
uncertainties for the remainder

Goepa () = By + BpoxIn?(x72) + ByyxIn(x72) + -+ (23)

for the 1S state extrapolated to x < 2a by Yerokhin, Pachucki,
and Patkés (2019) from numerical calculations of Gggpy (x) as
a function of x for x = Za with Z > 15 given by Yerokhin,
Indelicato, and Shabaev (2008) and Yerokhin (2009, 2018).
Specifically, the remainder has three contributions. The largest
by far has been evaluated at x = 0 and a. The remaining two
are available for x = a and 2a. Fits to each of the three
contributions give corresponding contributions to B (1S) and
B7,(1S). We assign a type-u, state-independent standard
uncertainty of 9.3 for Bgy(1S) and a 10% type-u, uncertainty
to B7;(1S). The difference Bgy(nS) — Bgo(1S), given by
Jentschura, Czarnecki, and Pachucki (2005), is then used to
obtain Bgy(nS) for n > 1 and adds an additional small
state-dependent uncertainty. Similarly, the expression for
B71(nS) — B;(1S) in Eq. (22) is used to determine B (nS).

Values for Bg, for nP and nD states with n =1, ...,6 are
those published by Jentschura, Czarnecki, and Pachucki
(2005) and Jentschura (2006), but using in place of the results
in Egs. (A3) and (A6) of the latter paper the corrected results
given in Egs. (24) and (25) by Yerokhin, Pachucki, and Patk6s
(2019). For n > 6, we use Bgy = go + g1/n with gy and g,
determined from the values and uncertainties of B¢y at n = 5
and 6.

Relevant values and uncertainties for Bgy(n¢) and B;;(1S)
are listed in Table VII. For the By, of S states, the first
number in parentheses is the state-dependent uncertainty of
type u,, while the second number in parentheses is the state-
independent uncertainty of type 1. Note that the extrapolation
procedure for nS states is by no means unique. In fact,
Yerokhin, Pachucki, and Patkds (2019) used a different
approach that leads to consistent and equally accurate values
for Bgy(nS). For B7;(1S) and Bgy(n¢) with £ >0, the
uncertainties are of type u.

As with the one-photon correction, the two-photon correc-
tion is multiplied by the reduced-mass factor (m,/m,)?, except
the magnetic-moment term proportional to 1/[x(2¢ + 1)]
in By, which is multiplied by the factor (m,/m.)?, and
the argument (Za)~> of the logarithms is replaced by

(me/m.)(Za)2.
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TABLE VII.  Values of Bgy and By;(nS;,,) used in the 2018 adjustment. The uncertainties of B¢, are explained in

the text.

n Bgo(nS1/2) Bgo(nPy)2) Bgo(nP3/2) Bgo(nDs)5) Bgo(nDs)5) B3, (nSy)2)
1 ~78.7(0.3)(9.3) —116(12)
2 ~63.6(0.3)(9.3) ~1.8(3) ~1.8(3) ~100(12)
3 60.5(0.6)(9.3) ~94(12)
4 ~58.9(0.8)(9.3) ~25(3) ~25(3) 0.178(2) ~91(12)
6 ~56.9(0.8)(9.3) 0.207(4) ~88(12)
8 -55.9(2.0)(9.3) 0.245(5) 0.221(5) ~86(12)
12 0.259(7) 0.235(7)

6. Three-photon corrections

The three-photon contribution in powers of Za is

T n3

3(Za)*
E©) — <Z> (Za) FO)(Za)mc?, (24)
where

F(6> ()C) = C40 + CS()X + C63x21n3 ()C)
+ Cﬁzlenz(X) + C61X2 Inx + C6()X2 + e (25)

The leading term Cy is

co [_568a4 850(5) 121x%((3) 84071£(3) 7lin*2
0= 9 24 72 2304 27
2397%In?2  47877%In2 1591 252251x2
T35 108 3240 9720
679441 100a, 215£(5) 837%¢(3)
93312] 70 {_ 3 T u T m
_139£(3) 25In%2 N 2572In%2 N 2987 In2
18 18 18 9
239n% 1710172 28259] 1-46,
2160 810 _5184]K(2f+1)’
where a; =% 1/(2"n*)=0.517 479 061.... Partial results

for Cso have been calculated by Eides and Shelyuto (2004,
2007). We use Csy = 0 with uncertainty 300, of type u.
Karshenboim and Ivanov (2018b) derived that

C63:0
and
2/ 1523 102 3 9 82
= (-2 T R - (3) - o2 ) 6.
Cor 3( oas ~ 27 2% n2-5¢0) 81)5””0

They also presented an expression for the difference
Ce1(nS) — Cg1(1S) as well as

2n?—1

1523 10x?
648 27

3, 9. 8

and Cg;(n¢) = 0 for £ > 1. We do not use the expression for
the difference. Instead, we assume that Cg; (nS) = 0 with an
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uncertainty of 10 of type u,. Finally, we set Cqy = 0 with
uncertainty 1 of type u,, for P and higher ¢ states. For S states
we also use Cqy = 0, but do not need to specify an uncertainty
as the uncertainty of their three-photon correction is deter-
mined by the uncertainties of Csy and Cg;.

The dominant effect of the finite mass of the nucleus is
taken into account by multiplying terms proportional to d,, by
the reduced-mass factor (m,/m.)> and the term proportional
to 1/[x(2¢ + 1)], the magnetic-moment term, by the fac-
tor (m,/m,)>.

The contribution from four photons is expected to be
negligible at the level of uncertainty of current interest.

7. Finite nuclear size and polarizability

Finite-nuclear-size and nuclear-polarizability corrections
are ordered by powers in «, following Yerokhin, Pachucki,
and Patkés (2019), rather than by finite size and polarizability.
Thus, we write for the total correction

Epu = Z Er(llu)cl, (26)
=4

where index i indicates the order in a. The first and lowest-
order contribution is

2 Za)* 3 2
Er(lt)cl = S mec? (Za)’ 03() o) (i S0 (27)
3 A

n Me

and is solely due to the finite root-mean-square (rms) charge
radius ry of nucleus N. Here, Ac = i/m.c is the reduced
Compton wavelength of the electron.

The o correction has both nuclear-size and polarizability
contributions and has been computed by Tomalak (2019). For
hydrogen, the correction is parametrized as

1 Za) (m.\3 (re)\3
B = —yme CE (2 (05,

n Mg
with effective Friar radius for the proton
rop = 1.947(75) fm. (29)

The functional form of Eq. (28) is inspired by the results of
Friar (1979) and his definition of the third Zemach moment.

For deuterium, the @ correction is parametrized as
(Yerokhin, Pachucki, and Patkés, 2019)
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EY (D)= _%mecz (Za)® (ﬂ>3

nucl n3 e

X|:Z<};?CF) F(A- Z)(%C> ]5f0+El§0}(D) (30)

with atomic number A, effective Friar radius for the neutron
rop = 1.43(16) fm, (31)

and two-photon polarizability

pol( )/h = =21. 78(22) ‘% kHz. (32)

In principle, the effective Friar radius for the proton might
be different in hydrogen and deuterium. Similarly, the Friar
radius of the neutron extracted from electron-neutron scatter-
ing can be different from that in a deuteron. We assume that
such changes in the Friar radii are smaller than the quoted
uncertainties.

The @® correction has finite-nuclear-size, nuclear-
polarizability, and radiative finite-nuclear-size contributions

and can thus be written as E( ) E( ) —|—E( ) +E( ) The

nucl — “fns pol rad*
finite-nuclear-size and nuclear-polarizability contributions are
given by Pachucki, Patkés, and Yerokhin (2018). The finite-
nuclear-size contribution is

R on B2 (2 (Y (33

+2y —In(n/2) + w(n) +In (—T%Zaﬂam

+é<1—%)6,<1}, (33)

and the polarization contribution for hydrogen is
o
E\(H)/h = 0.393 % kHz (34)
with a 100% uncertainty and for deuterium
Sz0
pol( )/h = —0. 541— kHz (35)

with a 75% uncertainty. The effective radius ry, describes
high-energy contributions and is given by

vy = 1.068497ry. (36)

The radiative finite-nuclear-size contribution of order a® is
(Eides, Grotch, and Shelyuto, 2001)

6 2 (Za) 3
EEa(i:gmec e %C (41n2 5)8. (37

n’

Next-order radiative finite-nuclear-size corrections of order o’
also have logarithmic dependencies on «; see Yerokhin
(2011). In fact, for nS states we have
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it () G
[_%mz{(Za) 2} +1n Z(Z ;\Zﬂ (38)

(<

We assume a zero value with uncertainty 1 for the uncomputed
coefficient of In(Za)™? inside the square brackets. For nP;
states we have

1 Za)® 3 \2/, 1
EV =~ mec? o 0;) P () (1 - —
6 nn M, Ac n

8 8 11
n{(Za) 2} =212+ —
[y (2a)) 2+ 37

4n
n —

with a zero value for the uncomputed coefficient of Za inside
the square brackets with an uncertainty of 1. [This equation
fixes a typographical error in Eq. (64) of Yerokhin, Pachucki,
and Patkés (2019). See also Eq. (31) of Jentschura (2003).]
We assume a zero value for states with £ > 1.

Uncertainties in this subsection are of type u,. Higher-order
corrections are expected to be negligible.

8. Radiative-recoil corrections

Corrections for radiative-recoil effects are

m? (Za) 3512 448
Ere =, =5 e {6(’“ )= 27
2
+§J1;(Za)1n2{<za)_2}+”'] (40)

We assume a zero value for the uncomputed coefficient of
(Za) In(Za)~? inside the square brackets with an uncertainty
of 10 of type u, and 1 for type u,. Corrections for higher-#
states are negligible.

9. Nucleus self-energy

The nucleus self-energy correction is

AZ*a(Za)* m} my
——————c*|In| —=— |64 — Inky(n, &) |,
R L e SR
(41)

Egpn =

with an uncertainty of 0.5 for S states in the constant
(a-independent) term in square brackets. This uncertainty is
of type uy, and given by Eq. (41) with the factor in the
square brackets replaced by 0.5. For higher-£ states, the
correction is negligibly small compared to current experi-
mental uncertainties.

B. Total theoretical energies and uncertainties

The theoretical energy of centroid E, (L) of a relativistic
level L =n¢; is the sum of the contributions given
in Secs. VILA.1-VIILA9. Here, atom X =H or D.
Uncertainties in the adjusted constants that enter the
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theoretical expressions are found by the least-squares adjust-
ment. Here the most important adjusted constants are
Ry = a*m.c?/2hc, a, rp, and ry.

The uncertainty in the theoretical energy is taken into
account by introducing additive corrections to the energies.
Specifically, we write

Ex(L) = Ex(L) + 6n(X, L)

for relativistic levels L = nZ; in atom X. Here, energy
Sn(X, L) is treated as an adjusted constant and we include
8x(L) as an input datum with zero value and an uncertainty
that is the square root of the sum of the squares of the
uncertainties of the individual contributions. That is,

Wox(L)] = Y [ug(X. L) + (X, L)), (42)

i

where energies ug;(X, L) and u,;(X,L) are type-u, and -u,
uncertainties of contribution i. The observational equation
Sx(L) = 6i(X, L) is added to y>.

Covariances among the corrections 8y (L) are accounted for
in the adjustment. We assume that nonzero covariances for a
given atom X only occur between states with the same # and j.
We then have

uldx(n12)), 6x(ny2;)] = Zum(x’ ;) ugi (X, ny &),

when n; # n, and only uncertainties of type u, are present.
Covariances between the corrections 6 for hydrogen and
deuterium in the same electronic state L are

ulon(L),6p(L)]

= Z [0:(H, L)ug;(D, L) + u,;(H, L)u,;(D, L)]
i={i.}

and for n; # n,
uldu(n¢;), 0p(ny))] = Z ug; (H, n1;)uq;i (D, nyt;),

where the summation over i is only over the uncertainties
common to hydrogen and deuterium. This excludes, for
example, contributions that depend on the nuclear-charge radii.
Values and standard uncertainties of dy(n¢;) are given in
Table VIII and the non-negligible covariances of the correc-
tions o are given as correlation coefficients in Table IX.

C. Experimentally determined transition energies in hydrogen
and deuterium

Table X gives the measured transition energies as well as
measured weighted differences between transition energies in
hydrogen and deuterium used as input data in the 2018
adjustment. All but four data are the same as in the 2014
CODATA report. The new results in hydrogen are reviewed
in the next three subsections. The transition energies were
measured at the Max-Planck-Institut fiir Quantenoptik (MPQ),
Garching, Germany, the Laboratoire Kastler-Brossel (LKB),
Paris, France, and York University (York), Toronto, Canada.
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TABLE VIII. Summary of input data for the additive energy
corrections to account for missing contributions to the theoretical
description of the electronic hydrogen (H) and deuterium (D) energy
levels. These correspond to 25 additive corrections &y p(n¢;) for the
centroids of levels n#;. The label in the first column is used in
Table IX to list correlation coefficients among these data and in
Table XXIII for observational equations. Relative uncertainties are
with respect to the binding energy.

Value Rel. stand.

Input datum (kHz) uncert. u,

Bl 5H(IS,/2)/h 0.0(1.6) 49x 10713
B2 1(2S1/2)/h 0.00(20) 24 x 10713
B3 5u(3S1/2)/h 0.000(59) 1.6 x 10713
B4 Su(4S12)/h 0.000(25) 1.2 x 10713
BS 5u(6S12)/h 0.000(12) 1.3x 10713
B6 5u(8S12)/h 0.0000(51) 9.9 x 10714
B7 5u(2P)5)/h 0.0000(39) 4.8 x 10713
BS Su(4P)2)/h 0.0000(16) 7.6 x 1071
B9 5u(2P32)/h 0.0000(39) 4.8 x 1071
B10 Su(4P3)0)/h 0.0000(16) 7.6 x 10715
Bl1 54(8D32)/h 0.000 000(13) 2.6 x 10716
B12 5u(12D35)/h 0.000 0000(40) 1.8 x 10716
BI3 51 (4Ds))/h 0.000 00(17) 8.2 x 10710
Bl4 84(6Ds/2)/h 0.000 000(58) 6.3 x 10710
B15 5u(8Ds)2)/h 0.000 000(22) 4.2 x 10716
B16 5u(12Ds5)/h 0.000 0000(64) 2.8x 10716
B17 5p(1S12)/h 0.0(1.5) 45x%x 1071
BI8 5p(2S12)/h 0.00(18) 22x 10713
B19 5p(4S12)/h 0.000(23) 1.1 x 10713
B20 5p(8S1/2)/h 0.0000(49) 9.6 x 10714
B21 5p(8D3)/h 0.000 0000(95) 1.8 x 10710
B22 5p(12D3)5)/h 0.000 0000(28) 1.2 x 10710
B23 5p(4Ds )/ h 0.000 00(15) 7.5 x 10716
B24 5 (8Ds2)/h 0.000 000(19) 3.8 x 10716
B25 5p(12Ds5)/h 0.000 0000(58) 2.5% 10710

These researchers considered the 2S —4P, 1S —3S, and
2S — 2Py, transitions.

Observational equations for the data are given in
Table XXIII. Values for additive corrections Jy(n#;) and
Sngs u[1¢;(f)] to account for the uncertainties in the theoretical
expressions are given in Table VIII. Some of the data are
correlated and their correlation coefficients when greater than
0.0001 are given in Table IX.

The H and D input data are displayed in Fig. 4. The first
thing to note is that the data separate into 1S — 28 transition
energies measured to approximately 2 x 10 Hz and those that
have been measured to ~h x 10 kHz. The uncertainties of
these input data are shown without the 1.6 expansion factor
applied to these data in the least-squares adjustment.
Secondly, the figure shows the adjusted, or fitted, transition
energies and their standard uncertainties for these input data
after the application of the 1.6 expansion factor. The values
and standard uncertainties of the fitted 1S —2S transition
energies are in agreement with those of the experimental data.
The standard uncertainties of the fitted values for most of the
other data are an order of magnitude smaller than the
uncertainties of the corresponding input data. The exceptions
are three of the four newly added data. They are indicated as
MPQ(2017), LKB(2018), and York(2019) in Fig. 4. In
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TABLEIX. Correlation coefficients r(x;, x;) > 0.0001 among the input data for the hydrogen and deuterium energy levels given in Tables X
and VIIIL. Coefficients r are strictly zero between input data An and Bm for positive integers n and m.

r(A1,A2) = 0.1049 r(A1,A3) = 0.2095 r(A1, Ad) = 0.0404 (A2,A3) = 0.0271 (A2, A4) = 0.0467
r(A3,A4) = 0.0110 (A6, A7) = 0.7069 r(A10,A11) = 0.3478 r(A10,A12) = 0.4532 r(A10,A13) = 0.1225
r(A10,A14) = 0.1335 r(A10,A15) = 0.1419 r(A10,A16) = 0.0899 r(A10,A17) = 0.1206 r(A10, A18) = 0.0980
r(A10,A19) = 0.1235 r(A10, A20) = 0.0225 r(A10, A21) = 0.0448 r(A11,A12) = 0.4696 r(A11,A13) = 0.1273
r(A11,A14) = 0.1387 r(A11,A15) = 0.1475 r(A11,A16) = 0.0934 r(A11,A17) = 0.1253 r(A11,A18) = 0.1019
r(A11,A19) = 0.1284 (A11,A20) = 0.0234 H(A11,A21) = 0.0466 r(A12,A13) = 0.1648 r(A12, A14) = 0.1795
r(A12,A15) = 0.1908 r(A12,A16) = 0.1209 r(A12,A17) = 0.1622 r(A12,A18) = 0.1319 r(A12,A19) = 0.1662
r(A12,A20) = 0.0303 r(A12,A21) = 0.0602 r(A13,Al14) = 0.5699 r(A13,A15) = 0.6117 r(A13,A16) = 0.1127
r(A13,A17) = 0.1512 r(A13,A18) = 0.1229 (A13,A19) = 0.1548 r(A13,A20) = 0.0282 r(A13,A21) = 0.0561
r(A14,A15) = 0.6667 r(A14,A16) = 0.1228 r(A14,A17) = 0.1647 r(A14,A18) = 0.1339 r(A14,A19) = 0.1687
r(A14, A20) = 0.0307 r(A14,A21) = 0.0612 r(A15,A16) = 0.1305 r(A15,A17) = 0.1750 r(A15,A18) = 0.1423
r(A15,A19) = 0.1793 r(A15,A20) = 0.0327 (A15, A21) = 0.0650 r(A16,A17) = 0.4750 r(A16, A18) = 0.0901
r(A16,A19) = 0.1136 r(A16,A20) = 0.0207 r(A16,A21) = 0.0412 r(A17,A18) = 0.1209 r(A17,A19) = 0.1524
r(A17 A20) = 0.0278 (A17,A21) = 0.0553 (A18,A19) = 0.5224 r(A18,A20) = 0.0226 r(A18,A21) = 0.0449
r(A19,A20) = 0.0284 (A19,A21) = 0.0566 (A20, A21) = 0.1412 r(A24, A25) = 0.0834
r(B1,B2) = 0.9946 r(B1,B3) = 0.9937 r(B1,B4) = 0.9877 r(B1,B5) = 0.6140 r(B1,B6) = 0.6124
r(B1,B17) = 0.9700 r(B1,B18) = 0.9653 (B1,B19) = 0.9575 (B1,B20) = 0.5644 r(B2,B3) = 0.9937
r(B2,B4) = 0.9877 (B2,B5) = 0.6140 r(B2,B6) = 0.6124 r(B2,B17) = 0.9653 r(B2,B18) = 0.9700
r(B2,B19) = 0.9575 r(B2,B20) = 0.5644 r(B3,B4) = 0.9869 r(B3,B5) = 0.6135 r(B3,B6) = 0.6119
(B3.B17) = 0.9645 r(B3.B18) = 0.9645 r(B3.B19) = 0.9567 #(B3,B20) = 0.5640 r(B4,B5) = 0.6097
r(B4,B6) = 0.6082 r(B4,B17) = 0.9586 r(B4,B18) = 0.9586 r(B4,B19) = 0.9704 r(B4,B20) = 0.5605
r(B5.B6) = 0.3781 r(B5,B17) = 0.5959 r(B5,B18) = 0.5959 r(B5.B19) = 0.5911 r(B5.B20) = 0.3484
r(B6.B17) = 0.5944 r(B6,B18) = 0.5944 r(B6.B19) = 0.5896 r(B6.B20) = 0.9884 r(B7.B8) = 0.0001
(B9, B10) = 0.0001 r(B11,B12) = 0.6741 r(B11,B21) = 0.9428 r(B11,B22) = 0.4803 r(B12,B21) = 0.4782
r(B12,B22) = 0.9428 r(B13,B14) = 0.2061 r(B13,B15) = 0.2391 r(B13,B16) = 0.2421 r(B13,B23) = 0.9738
+(B13,B24) = 0.1331 r(B13,B25) = 0.1352 (B14,B15) = 0.2225 r(B14,B16) = 0.2253 (B14,B23) = 0.1128
r(B14,B24) = 0.1238 r(B14,B25) = 0.1258 (B15,B16) = 0.2614 r(B15,B23) = 0.1309 r(B15,B24) = 0.9698
#(B15,B25) = 0.1459 r(B16,B23) = 0.1325 (B16,B24) = 0.1455 r(B16,B25) = 0.9692 (B17. B18) = 0.9955
#(B17.B19) = 0.9875 (B17,B20) = 0.5821 (B18.B19) = 0.9874 r(B18,B20) = 0.5821 (B19,B20) = 0.5774
r(B21,B22) = 0.3407 r(B23,B24) = 0.0729 r(B23,B25) = 0.0740 r(B24,B25) = 0.0812

summary, the 1S —2S transition energies, these three input
data, and the muonic-H and muonic-D Lamb-shift measure-
ments to be discussed in Sec. XII determine the values of the
Rydberg constant and charge radii.

1. Measurement of the hydrogen 2S —4P transition

The hydrogen transition energy from the 2S,;,, hyperfine
centroid to the 4P fine-structure centroid was measured by
Beyer et al. (2017) at the MPQ. This new datum is item A9 in
Table X. Here, the fine-structure centroid of a level n# is

Ex(n?) 2j+ DEx(n;),  (43)

1
“sa 2

where the sum over quantum number j runs from |£ — 1/2| to
£ +1/2 and Ex(n¢;) is the hyperfine centroid of level n;.

In the experiment, cold ground-state hydrogen atoms emerge
from a copper nozzle held at a temperature of 5.8 K. These
atoms are excited to the metastable 2S;/,(f = 0) hyperfine
level by a Doppler-free two-photon excitation using 243 nm
light, chopped on and off at 160 Hz, enabling a thorough study
of Doppler shifts. Starting from this metastable state, transition
energies for the hyperfine-resolved transitions 2S, , (f = 0) —
4P o(f = 1) and 2S;/,(f =0) — 4P5),(f = 1) were mea-
sured to about 1 part in 10000 of the linewidth using a
stable retroreflected 486 nm laser (Beyer et al., 2016) oriented
perpendicular to the propagation direction of the atoms.
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Here, crucially dipole selection rules forbid excitations to
P3,5(f = 0) and P55 (f = 2) states.

Atomic hydrogen in the 4P state mainly decays to the
ground 1S state by emission of a Lyman-y 97 nm photon. At
MPQ, the emission rate of these photons as a function of the
486 nm laser frequency was detected. Lyman-y radiation
ejects electrons from graphite, which, in turn, can be effi-
ciently counted with channel electron multipliers. Two such
detectors were used to retain some directional information
about the emitted Lyman-y photons.

Important for the experiments was an analysis of line-shape
shifts and distortions of the two measured transitions due to
the presence of neighboring resonances. Following Jentschura
and Mohr (2002) but also Horbatsch and Hessels (2010,
2011), the MPQ researchers developed a line-shape model that
accounted for these so-called quantum interference effects as
well as demonstrated its validity based on directional infor-
mation of the Lyman-y photons as a function of the direction
of the linear polarization of the 486 nm light.

Quantum interference effects in precision spectroscopic mea-
surements have a long history starting with Kramers and
Heisenberg (1925) and Low (1952) in the context of QED.
For areview of early observations of these effects, see Marrus and
Mohr (1979). Jentschura and Mohr (2002) gave an early
theoretical analysis of the effect and noted that these interferences
are enhanced in differential or angular-dependent measurements.

The line-shape model indicated that the two measured
transition energies shifted up to s x40 kHz by quantum
interference, which is much larger than the proton-radius
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TABLE X. Summary of measured transition energies A€y (i — i’) between states i and i’ for electronic hydrogen (X = H) and electronic
deuterium (X = D) considered as input data for the determination of the Rydberg constant R,. The label in the first column is used in Table IX
to list correlation coefficients among these data and in Table XXIII for observational equations. Columns two and three give the reference and an
abbreviation of the name of the laboratory in which the experiment has been performed. An extensive list of abbreviations is found at the end of

this report.
Reported value Rel. stand.
Reference Lab. Energy interval(s) AE/h (kHz) uncert. u,
Al Weitz et al. (1995) MPQ (281/2—451/2)——AEH(lsl/z—ZSI/Z) 4797 338(10) 2.1 x107°
A2 Aé’H(zs]/z—4D5/2)—7A£H(1SI/2—251/2) 6490 144(24) 3.7 % 10°°
A3 A5D(2S,/2—4SI/2) 1 Ep(1Sy,—-28,,,) 43801693(20) 4.2 x 1076
A4 AER(2S/,—4Ds)y) —AEL (181, —2S,/,) 6494 841(41) 6.3 x 107
A5 Parthey et al. (2010) MPQ  A&R(181/,=281/2) —AER(1S1/,=2S,/,) 670994 334.606(15) 2.2 x 1071

A6 Parthey er al. (2011) MPQ AEH(IS]/Z - 231/2) 2466061413 187.035(10) 4.2 x 10715
A7 Matveev et al. (2013) MPQ  A&y(1S;/, —2S;)) 2466061413 187.018(11) 4.4 x 10~15
A8 Yost er al. (2016) MPQ  A&y(1S ), —3S1)2) 2922743278659(17) 5.8 x 1012
A9 Beyer et al. (2017) MPQ ASH(ZSI/z —4P) 616520931 626.8(2.3) 3.7 x 10712
A10 de Beauvoir et al. (1997) LKB/ AgH(ZS]/z - 831/2) 770 649 350 012.0(8.6) 1.1x 1071
All SYRTE A&y(2S, ), — 8D3)) 770 649 504 450.0(8.3) 1.1 x 107!
Al2 AER(2S,), — 8Ds)) 770 649 561 584.2(6.4) 8.3 x 10712
Al3 AEL(2S, ), — 8S)5) 770859 041245.7(6.9) 8.9 x 1012
Al4 AEp(2S,), — 8D;)2) 770859 195701.8(6.3) 8.2 x 10712
AlS AER(2S, ), — 8Ds ) 770859252849.5(5.9) 7.7 x 10-12
A16 Schwob ef al. (1999) LKB/ A5H(281/2 - 12D3/2) 799 191710472.7(9.4) 1.2 x 1071
Al7 SYRTE AgH(ZSI/z - 12D5/2) 799 191 727 403.7(7.0) 8.7 x 10712
Al18 AED(2S,/2 —12D3)) 799 409 168 038.0(8.6) 1.1 x 10~
Al9 Ep(28), — 12Ds ) 799409 184 966.8(6.8) 8.5 x 10712
A20 Bourzeix ef al. (1996) LKB H(2Sl/2—6sl/2) —LAE(1S,, =38, 5) 419760421) 4.9 % 1076
A21 En(281/2—6Ds) —1AEL(1S, ), =38, ),) 4699 099(10) 22x107°
A22 Arnoult et al. (2010) LKB AE'H(IS]/Z - 351/2) 2922743278 678(13) 4.4 % 10712
A23 Fleurbaey er al. (2018) LKB  A&y(1S,,, - 38,0 2922743278 671.5(2.6) 8.9 x 10-13
A24 Berkeland, Hinds, and Boshier (1995) Yale I_I(2Sl/2 —4Py)5) —1AER (1S, =28, 5) 4664269(15) 32x107°
A25 (281, —4Ps)0) LA (18,, =28, ,) 6035373(10) 1.7 % 1076
A26 Hagley and Pipkin (1994) Harvard ASH(ZSI/z —2P3),) 9911200(12) 1.2 x 107
A27 Newton, Andrews, and Unsworth (1979) Sussex AER(2P;/, —2S;,,) 1057 862(20) 1.9x 1073
A28 Lundeen and Pipkin (1981) Harvard A€y (2P, —2S;,2) 1057 845.0(9.0) 8.5 x 107°
A29 Bezginov ef al. (2019) York  A&y(2P 5 —2S),) 1057 829.8(3.2) 3.0 x 1076

discrepancy of h x 9 kHz. More importantly, the two tran-
sitions shift in opposite directions. In fact, by constructing the
hyperfine and fine-structure centroid energies from the mea-
surements the shifts cancel to a large extent. This led to the
final MPQ result for the 2S;,, — 4P transition energy with
u(AE/h) = 2.3 kHz and a relative uncertainty of 3.7 x 10712,
In addition to the quantum interference corrections, Beyer
et al. (2017) investigated 13 other systematic shifts and
corrections. The first-order Doppler shift is negligible, but
its 1 x 2.1 kHz uncertainty is by far the largest contributor to
the final uncertainty.

2. Measurement of the hydrogen two-photon 1S —3S transition

The hydrogen 1S — 3S transition energy was measured by
Yost et al. (2016) at the MPQ and Fleurbaey et al. (2018) at the
LKB. These new data are items A8 and A23 in Table X,
respectively. The measurement uncertainty of the LKB group
is significantly smaller than that obtained at the MPQ and,
hence, we only describe details of the LKB experimental setup.

The researchers at the LKB used two-photon spectroscopy.
In this technique, the first-order Doppler shift is eliminated by
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having room-temperature atoms simultaneously absorb pho-
tons from counter-propagating laser beams. The measured
transition energy has a five times smaller uncertainty than two
older measurements of the same transition energy. The latter
are listed as items A8 and A22 in Table X. Fleurbaey (2017)
and Thomas et al. (2019) give more information about the
LKB measurement. A history of Doppler-free spectroscopy is
given by Biraben (2019).

The development of a continuous-wave laser source at
205 nm for the two-photon excitation by Galtier et al. (2015)
contributed significantly to the fivefold uncertainty reduction
by improving the signal-to-noise ratio compared to previous
LKB experiments with a chopped laser source. The frequency
of the 205 nm laser was determined with the help of a transfer
laser, several Fabry-Perot cavities, and a femtosecond
frequency comb whose repetition rate was referenced to a
Cs-fountain frequency standard.

The laser frequency was scanned to excite the
1S;/5(f = 1) =3S;,5(f = 1) transition and the resonance
was detected from the 656 nm radiation emitted by the
atoms when they decay from the 3S to the 2P level. The
well-known 1S and 3S hyperfine splittings were used to obtain
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FIG. 4. Experimental hydrogen and deuterium transition ener-
gies and differences of transition energies (yellow-filled red
circles with red error bars) used as input data in the 2018 least-
squares adjustment. For all data, the 2018 adjusted value of the
transition energy has been subtracted. Data new to this adjustment
have been indicated with the abbreviation of the name of the
laboratory and year of publication in parentheses. An extensive
list of abbreviations is found at the end of this report. Panel (a)
shows data for the 1S — 28 transition with one-standard-deviation
uncertainties on the order of tens of 2 x Hz. Panel (b) shows the
remaining input data with uncertainties on the scale of tens of
h x kHz. Labels on the left-hand side of the figure group data
belonging to the same class of transitions, i.e., nZ — n’'£’ tran-
sitions. Input data without such label correspond to data that
depend on (weighted) differences of four energy levels. Finally,
the yellow-filled black circles with black error bars are the fitted
values and their uncertainties. In the figure, the uncertainties of the
input data have not been multiplied by 1.6, the expansion factor in
this adjustment to make the H and D spectroscopic and muonic
Lamb-shift data consistent. Fitted values are for the data when
multiplied by this factor. Blue and black labels An on the right-
hand side of the figure correspond to hydrogen and deuterium
entries in Table X, respectively.

the final transition energy between the hyperfine centroids
with u(AE/h) = 2.6 kHz and u, = 8.9 x 10713

The distribution of velocities of the atoms in the room-
temperature hydrogen beam led to a second-order Doppler
shift of roughly —140 kHz, or 500 parts in 10'3, and was the
largest systematic effect in the experiment. To account for this
shift, the velocity distribution of the hydrogen atoms was
mapped out by applying a small magnetic flux density B
perpendicular to the hydrogen beam. In addition to Zeeman
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shifts, the flux density leads to Stark shifts of 3S hyperfine
states by mixing with the nearby 3P, /, level via the motional
electric field perceived by the atoms. Both this motional Stark
shift and the second-order Doppler shift have a quadratic
dependence on velocity. Then the LKB researchers fit reso-
nance spectra obtained at different B to a line-shape model
averaged over a modified Maxwellian velocity distribution of
an effusive beam. The fit gives the temperature of the H beam,
distortion parameters from a Maxwellian distribution, and a
line position with the second-order Doppler shift removed.
Finally, the observed line position was corrected for light
shifts due to the finite 205 nm laser intensity and pressure
shifts due to elastic collisions with background hydrogen
molecules. Light shifts increase the apparent transition energy
by up to i x 10 kHz depending on the laser intensity in the
data runs, while pressure shifts decrease this energy by
slightly less than & x 1 kHz/(107> hPa). Pressures up to
20 x 107> hPa were used in the experiments. Quantum inter-
ference effects, mainly from the 3D state, are small for the
1S — 38 transition and led to a correction of & x 0.6(2) kHz.

3. Measurement of the hydrogen 2S — 2P Lamb shift

The hyperfine-resolved hydrogen 28, /,(f=0)-2P;/, x
(f=1) transition energy or Lamb shift was measured by
Bezginov et al. (2019) at York University to help resolve the
proton-radius puzzle. This new datum is item A29 in Table X.
The Dirac equation predicts that the 2S,/, and 2P, /, energy
levels in hydrogen are degenerate, but because of vacuum
fluctuations and vacuum polarization, the 28/, level lies
h x 1058 MHz above the 2P;,, level and h x 9911 MHz
below the 2P/, level. In fact, historically the discovery of
the Lamb shift led to the development of QED. Previous
determinations of the Lamb shift are items A27 and A28 in
Table X. A determination of the 2S,,, —2P3/, transition
energy is given as item A26.

The York researchers had to overcome the constraints that
arise from the 1.6 ns natural lifetime of the 2P, /, state and the
minimal dimensions of the ~1 GHz microwave cavities of
several centimeters. They solved this by preparing fast mono-
energetic beams of 2S, ,(f = 0) hydrogen atoms with veloc-
ities up to 0.32 cm/ns or 1% of the speed of light in vacuum.
This beam was obtained by passing protons with a kinetic
energy up to 55 keV through a H, molecular gas and by
rejecting H atoms in unwanted states, especially those in the
three metastable 2S;,(f = 1) Zeeman states.

The York researchers then used a modified version of the
separated oscillatory field method to measure the Lamb shift,
as described by Vutha and Hessels (2015). In this design, the
frequencies of the microwave radiation applied to the two
spatially separated field regions have a fixed small frequency
difference and only the carrier frequency is scanned. Crucial
for the effectiveness of the method is that the researchers could
alternate between whether the atoms encounter the lower or
higher frequency radiation first. This change occurred every
few seconds. Also, part of the apparatus could be physically
rotated by 180°, done about once per hour, so that the atoms
encounter the separate oscillatory fields in reverse order.
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Data from these four cases were used to eliminate shifts due
to imperfections in state preparation and microwave cavities.
The frequency difference of the radiation in the two field
regions leads to a time-dependent signal of 2S;/, population
that oscillates at the difference frequency with a phase offset
that is proportional to the difference of the applied carrier
frequency and the frequency equivalent of the Lamb shift. The
sign of the slope depends on whether the atoms encounter the
lower or higher frequency radiation first. The number of
remaining H atoms in the 2S,, state at the end of the beam
line was measured by applying an electric field in a detection
zone and collecting the 121.6 nm Lyman-a photon emitted by
the atoms.

Data were obtained with 18 different combinations of beam
velocity, strength of the 910 MHz microwave field, and
distance between the separated field regions. No dependence
on these parameters was observed.

The final & x 3.2 kHz uncertainty for the 2S; ,(f = 0) —
2P 5(f = 1) transition energy, which corresponds to
u = 3.6 x 107, arises from an 4 x 1.4 kHz statistical uncer-
tainty and uncertainties from several systematic effects: & x
2.3 kHz from the AC Stark shift, & x 1.5 kHz from the
measurement of phase, and /2 x 1.0 kHz from the second-order
Doppler shift. Quantum interference from hyperfine states with
n > 3 had no discernible effect on the measurement.

Marsman et al. (2018) reevaluated the experiment of
Lundeen and Pipkin (1981, 1986), input datum A28 in
Table X. They suggested that the transition energy should
be reduced by i x 6 kHz and the uncertainty increased from
h x 9 kHz to h x 20 kHz. For the 2018 CODATA adjustment,
the results of Lundeen and Pipkin (1981, 1986) have not been
modified.

VIII. ELECTRON MAGNETIC-MOMENT ANOMALY

The interaction of the magnetic moment of a charged lepton
¢ in a magnetic flux density (or magnetic field) B is described
by the Hamiltonian 'H = —u, - B, with

He = gr ﬁ& (44)
where 7 = e*, p*, or t¥, g, is the g-factor, with the convention
that it has the same sign as the charge of the particle, e is the
positive elementary charge, m, is the lepton mass, and s is its
spin. Since the spin has projection eigenvalues of s, = +#/2,
the magnitude of a magnetic moment is

TABLE XI. Twenty-five of the 75 adjusted constants in the 2018
CODATA least-squares minimization. These variables account for
missing contributions to the theoretical description of the electronic
hydrogen (H) and deuterium (D) energy levels. Their input data are
given in Table VIIL

Atom Level m/’;
H on 1S,/2, 281/2, 3812, 4812, 6S1/2, 8512,
2Py )3, 2P3y, 4Py, 4P3)5,
4D5/2, 6D5/2, 8D3/2, 8D5/2, 12D3/2, 12D5/2
D 5D 181/2, 251/2, 4S1/2, 831/2,

4Ds)5, 8Ds35, 8Ds)y, 12D35, 12Ds
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The lepton magnetic-moment anomaly a, is defined by the
relationship

lgel =2(1 + ay), (46)

based on the Dirac g-value of —2 and +-2 for the negatively and
positively charged lepton Z, respectively.
The Bohr magneton is defined as

eh

2m,

HB = ’ (47)

and the theoretical expression for the anomaly of the electron
a.(th) is

ac(th) = a.(QED) + a.(weak) + a.(had), (48)

where terms denoted by “QED,” “weak,” and “had” account
for the purely quantum electrodynamic, predominantly
electroweak, and predominantly hadronic (that is, strong
interaction) contributions, respectively.

The QED contribution may be written as

ac(QED) = 3 ¢ (%) B (49)

n=1
where the index n corresponds to contributions with n virtual
photons and

C = AP 4+ A5 (xgy) + A5 (xee) o (50)

(2n)

with mass-independent coefficients A"’ and functions

A(zzn)(x) evaluated at mass ratio x = x.y = m,/my < 1 for
lepton X = p or t. For n = 1, we have

A =1/2, (51)

and function A(Zz) (x) =0, while for n > 1 coefficients A(12")

include vacuum-polarization corrections with virtual electron/
positron pairs. In fact,

Al = 0328478965579 193..., (52)
Al® = 1.181241456587.... (53)
A® = _1912245764... (54)
Al = 6.675(192). (55)

The functions Agzn) (x) for n > 1 are vacuum-polarization
corrections due to heavier leptons. For x — 0, we have
AWV (x) = x2/45+ O(x*) and A (x) = x(by + by Inx) +
O(x*) with by =0.593274... and b, = 23/135 (Laporta,
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1993; Laporta and Remiddi, 1993). The O(x*) contributions
are known and included in the calculations but not reproduced

here. The functions A<28) (x) and A;lo) (x) are also O(x?) for
small x, but not reproduced here (Kurz et al., 2014a; Aoyama
et al, 2015). Currently, terms with n > 5 and vacuum-
polarization corrections that depend on two lepton mass ratios
can be neglected.

Table XII summarizes the relevant QED coefficients and
summed Cézn with their one-standard-deviation uncertainties
where appropriate as used in the 2018 CODATA adjustment.
Additional references to the original literature can be found in

descriptions of previous CODATA adjustments It is worth

(®)

noting that since 2014 the coefficient A|” has been evaluated

by Laporta (2017), while the value for A( % has been updated
by Aoyama, Kinoshita, and NIO (2018).

Recently, the value for A % has been refined by Aoyama,
Kinoshita, and Nio (2019), although Volkov (2019) found a
value for ASO), absent lepton loop contributions, that is
significantly discrepant with that based on results in
Aoyama, Kinoshita, and Nio (2018, 2019). Both Aoyama,
Kinoshita, and Nio (2019) and Volkov (2019) were published
after our closing date.

The electroweak contribution is

a.(weak) = 0.03053(23) x 1012 (56)

and is calculated as discussed in the 1998 CODATA
adjustment, but with the 2018 values of the Fermi coupling
constant Gg/(fc)? and the weak mixing angle 6y, (Tanabashi
et al., 2018).

Jegerlehner (2019) has provided updates to hadronic
contributions to the electron anomaly. Currently, four such
contributions have been considered. They are

a.(had) = at®V? (had) 4+ aX=VF (had) +

+ a (had) (57)

aIe\INLO,VP (had)

corresponding to leading-order (LO), next-to-leading-order
(NLO), and next-to-next-to-leading-order (NNLO) hadronic
vacuum-polarization corrections and a hadronic light-by-light
(LL) scattering term, respectively. Contributions are deter-
mined from analyzing experimental cross sections for elec-
tron-positron annihilation into hadrons and tau-lepton-decay
data. The values in the 2018 adjustment are

TABLE XII.

ratios xe, = me/m, and x., = m./m, for the muon and tau lepton, respectively; summed values Ce

Coefficients for the QED contributions to the electron anomaly. The coefficients A;

at® VP (had) = 1.849(11) x 10712,
aX VP (had) = —0.2213(12) x 10712,
abNFOVP (had) = 0.028 00(20) x 10712,
at*(had) = 0.0370(50) x 1072 (58)

leading to the total hadronic contribution
ac(had) = 1.693(12) x 10712, (59)

A first-principle lattice quantum chromodynamics (QCD)
evaluation of the leading-order hadronic correction a5°"? (had)
to the electron anomaly was published in 2018 (Borsanyi et al.,
2018). The value is

at®VP (had) = 1.893(26)(56) x 10712, (60)

where the first and second numbers in parentheses correspond to
the statistical and systematic uncertainty, respectively. The
systematic uncertainty is dominated by finite-volume artifacts.
The combined uncertainty is six times larger than that obtained
by analyzing electron-positron scattering data.

Figure 5 shows a graphical representation of 14 contribu-
tions to the electron anomaly. The QED corrections decrease
roughly exponentially in size with order n for both mass-
independent and -dependent contributions. Contributions
from virtual loops containing t leptons are mostly negligible.

The theoretical uncertainty of the electron anomaly (apart
from uncertainty in the fine-structure constant) is dominated
by two contributions: the mass-independent n =5 QED
correction and the hadronic contribution. In fact, its value is

ula,(th)] = 0.018 x 10712 = 1.5 x 107''q,,  (61)

and is shown in Fig. 5 as well.

This theoretical uncertainty is significantly smaller than the
uncertainty 2.4 x 1079, of the best by far experimental
value for the electron anomaly from Hanneke, Fogwell, and
Gabrielse (2008). Consequently, the relative uncertainty of
the fine-structure constant based on only this experimental
input datum would be the same as that for this experiment.
Atom-recoil experiments, discussed in Sec. X, form a second
competitive means to determine a.

For the least-squares adjustment, we use the observational
equations

(2n) (2r

and functions A; " (x), evaluated at mass

" based on values for lepton mass ratios

from the 2018 CODATA adjustment, are listed as accurately as needed for the tests described in this article. Missing values indicate that their

contribution to the electron anomaly is negligible.

2n 2n 2n 2n
AP A7 (xy) AF" (xer) c
1/2 0 0 0.5
—0.328478965579193... 5.19738674(23) x 1077 1.83790(25) x 10~ —0.328478 44400

1.181241456587...
—1.912245764...
6.675(192)

—7.37394169(24

(O NS IS SR

—0.003 82(39)

) x 107°
9.16197080(33) x 10~*

1.181234 017
—1.91132213891(88)
6.67(19)

5
—6.58273(79) x 1078
7.42893(88) x 107
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FIG. 5. Fourteen fractional contributions to the theoretical

anomaly of the electron \6ae| /ae(th) QED contributions are

due to the mass-independent A (yel]ow -filled black circles), to

the muon-dependent A" (x

the tau-dependent A(ZZ")( «t) (yellow-filled blue circles) correc-

tions, respectively. Weak and hadronic corrections are also
shown. The horizontal orange line shows the theoretical relative
uncertainty of a.(th). The 2018 CODATA values for the fine-
structure constant and lepton mass ratios are used here.

Xep) (yellow-filled red circles), and to

a.(exp) = a(th) + oy (e) (62)

and
56 = (slh(e) (63)

with additive adjusted constant 5y, (e). Input datum a,(exp) is
from Hanneke, Fogwell, and Gabrielse (2008), while input
datum 8, = 0 with u[5,] = 0.018 x 1072 accounts for the
uncertainty of the theoretical expression. The input data are
entries D1 and D2 in Table XXI. Relevant observational
equations are found in Table XXVI.

IX. RELATIVE ATOMIC MASSES

In this section, we discuss the input data that determine the
relative atomic masses of various nuclei and atoms relevant to
the adjustment. Specifically, we focus on light nuclei, i.e.,
neutron n, proton p, deuteron d, triton t, helion h, and the alpha
particle «. These are the nuclei of hydrogen 'H, deuterium 2H,
tritium 3H, helium-3 He, and helium-4 “He, respectively. This
section also summarizes corresponding input data for the
atoms '°C, 285i, 8’Rb, and '33Cs as they are relevant for the
determination of the mass of the electron and the fine-structure
constant discussed in Sec. VI. The input data for the mass of
the muon are discussed in Sec. XVII.

Table XIII gives the relative atomic masses of the neutron
and six neutral atoms that are used as input data in the 2018
CODATA adjustment. The carbon-12 relative atomic mass is
by definition simply the number 12. The remaining values
have been taken from the 2016 Atomic Mass Evaluation
(Huang et al., 2017; Wang et al., 2017). Task Group and
Atomic-Mass-Data-Center (AMDC) member M. Wang
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supplied extra digits to reduce rounding errors. Correlation
coefficients with r(X;, X;) > 0.0001 among these relative
atomic masses are given in Table XIV. These input data are
also given as items D5, D6, D11, and D18-D20 in Table XXI.
The relative atomic masses of n, 8Rb, and '¥3Cs are
adjusted constants and their observational equations are
simply A,(X) = A,(X). On the other hand, we find it more
convenient to use the relative atomic masses of the proton p,
the alpha particle o, and the hydrogenic 28Si'3** as adjusted
constants, rather than those of neutral 'H, “He, and 28Si. Since
the mass of an atom or atomic ion is the sum of the nuclear
mass and the masses of its electrons minus the mass equivalent
of the binding energy of the electrons, the observational
equation for the relative atomic mass of a neutral atom X in
terms of that of ion X"" in charge state n = 1,2, ... is

AEB (Xn-‘r)

myc*

Ar(X) = A(X"T) + nAc(e) - (64)

where A(e) is the relative atomic mass of the electron
and AFER(X"") >0 is the binding or removal energy
needed to remove n electrons from the neutral atom.
This binding energy is the sum of the electron ionization
energies Ej(X'") of ion X*. That is,

n—1

= E(X™). (65)

i=0

AEg(X"T)

For a bare nucleus n = Z, while for a neutral atom n = 0 and
AEg(X%") = 0. With our definition of observational equations,
the quantities A (e) and AEg(X"") are adjusted constants.

TABLE XIII. Relative atomic masses used as input data in the 2018
CODATA adjustment and taken from the 2016 Atomic-Mass-Data-
Center (AMDC) mass evaluation (Huang et al., 2017; Wang et al.,
2017). Correlations among these data are given in Table XIV.

Relative atomic Relative standard

Atom mass” A, (X) uncertainty u,
n 1.008 664 915 82(49) 4.9 x 10710
H 1.007 825 032 241(94) 9.3 x 1071
“He 4.002 603 254 130(63) 1.6 x 107!
2c 12 exact
285i 27.976 926 534 99(52) 1.9 x 1071
87Rb 86.909 180 5312(65) 7.4 x 1071
133Cs 132.905 451 9610(86) 6.5 x 107!

“The relative atomic mass A,(X) of particle X with mass m(X)
is defined by A,(X) = m(X)/my, where m, = m('?C)/12 is the
atomic mass constant.

TABLE XIV. Correlation coefficients r(X;,X;) > 0.0001 among
the input data for the relative atomic masses A, (X) given in Table XIII
based on covariances from the 2016 AMDC mass evaluation
available in Supplementary files at http://amdc.impcas.ac.cn/web/
masseval.html or at https://www-nds.iaea.org/amdc.

r(n, 'H) = —0.1340 r(n, 288i) = —0.0198

r(n 87Rb) = —0.0070 r(n,'3Cs) = —0.0070
(‘H 28Si) = 0.1934 (1H 87Rb) = 0.0657
r("H, '¥Cs) = 0.0602 7(**Si, ¥Rb) = 0.0495
(%8S, 133Cs) = 0.0402 r(¥Rb, 133Cs) = 0.1004
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In addition to the input data in Table XIII, we also use
measurements of four cyclotron frequency ratios as input data
to further constrain the relative atomic mass of the proton and
determine those of the remaining three light nuclei: the
deuteron, triton, and helion. These measurements rely on the
fact that ions X"t with charge ne in a homogeneous flux
density or magnetic field of strength B undergo circular motion
with a cyclotron frequency . (X"") = nefiB/m(X"") that can
be accurately measured. With the right experimental design,
ratios of cyclotron frequencies for ions X" and Y?* in the
same magnetic-field environment then satisfy

e (X"T)
o (Y7T)

nA,(r)
B pAr(X"+) (66)

independent of field strength. For ease of reference, the four
cyclotron frequency ratios are summarized in Table XXI
as items D14-D17. Observational equations are given in
Table XX VI.

The first of these measurements is relevant for the deter-
mination of the relative atomic mass of the proton. In 2017,
the ratio of cyclotron frequencies of the proton and the
12C%* jon, w ("*C%*)/w.(p), was measured at a Max-
Planck Institute in Heidelberg, Germany (MPIK) (Heil3e et al.,
2017). Their ratio has a relative uncertainty of 3.3 x 107!,
mostly limited by residual magnetic-field inhomogeneities in
the multi-zone cryogenic Penning trap. Optimized for meas-
uring the cyclotron frequencies of light ions, the trap has three
separate but connected areas that are coaxial with an applied
magnetic field. A single 'C®" ion and a proton are then
shuttled in and out of the central measurement trap.

HeiBe et al. (2017) recognized that their value of A,(p) does
not agree with that implied by A,('H) in Table XIII. As a
check on their experiment, they carried out measurements on
other ions but found results consistent with literature values.
Figure 6 gives a graphical representation of the two discrepant
input data as well as our fitted values for these data. Our
predicted value for A,('H) is significantly smaller than that
from the 2016 Atomic Mass Evaluation. For our 2018
CODATA adjustment, we have applied an expansion factor
of 1.7 to the uncertainties of these two input data, also shown
in the figure, in order to obtain a consistent least-squares
adjustment.

The 2014 cyclotron-frequency-ratio measurement for the
deuteron d and '’C%* essentially determines A,(d). Reported
by Zafonte and Van Dyck (2015) and identified with UWash-
15, the result was already discussed in the 2014 CODATA
adjustment. The measurement has a relative uncertainty of
2.0 x 107" and agrees with a preliminary value (Van Dyck
et al., 2006) based on only 30% of the data. The 2016 AMDC
evaluation of A,(*H) is not included in our CODATA adjust-
ment, as it was based on this preliminary determination.

The final two cyclotron-frequency-ratio measurements
determine the triton and helion relative atomic masses, A,(t)
and A, (h), respectively. These masses are primarily determined
by the ratios w, (t)/w.(*He*) and w.(HD*) /@ (*He*), both of
which were measured at Florida State University, Florida,
USA. The ratios have been reported by Myers et al. (2015) and
Hamzeloui ef al. (2017), respectively. The former was already
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FIG. 6. Input data for the determination of the relative atomic
mass of the proton p. The input data (yellow-filled red circles with
red error bars) and fitted values (yellow-filled black circles with
black error bars) of the cyclotron frequency ratio of '*C® and p
and the relative atomic mass of the hydrogen atom A,('H) are
shown. Error bars correspond to one-standard-deviation uncer-
tainties. Datum X is shifted by the fitted value (X) and
normalized by the standard uncertainty of the input datum. Thus,
fitted values shift to zero and input data become normalized
residuals. Dashed orange lines are the standard uncertainties of
the input data multiplied by the 1.7 expansion factor that ensures
a consistent fit.

discussed in the 2014 CODATA adjustment. See also the recent
review by Myers (2019).

The quantity w.(t)/w.(*He") is not directly measured
by Myers et al. (2015), but determined from the quotient
of ratios w.(HD")/w.(*He*) and w.(HD")/w,(t). While
u, = 4.8 x 107" for each of these directly measured ratios,
u, = 2.4 x 107! for their quotient because of a cancellation
of several uncertainty components from systematic effects
common to both.

The 2016 AMDC evaluations of A,(*H) and A, (*He) are not
included in this CODATA adjustment. They were primarily
determined by w.(HD*")/w.(*He*) and w.(HD*) /@, (t) from
Myers et al. (2015). The former ratio is now superseded by
the twice as accurate corresponding value from Hamzeloui
et al. (2017).

Binding energies are most accurately tabulated in terms of
wave number equivalents AEg(X"")/hc but are needed as
their relative atomic mass unit equivalents AEg(X")/m,c?.
Given that the Rydberg energy hcR,, = a*m.c?/2, the last
term in Eq. (64) is then rewritten as

AEg(X"") _ o’A(e) AEg(X")
myc®> 2R, he

(67)

Binding energies for 'HT, 3He*, *He?*, '2C3+, 12C%*, and
288113+ are used in this CODATA adjustment. Their values are
determined or constructed from ionization energies in
Table XV taken from the 2018 NIST Atomic Spectra
Database (ASD) at https://doi.org/10.18434/TAW30F. The
relevant binding energies are listed in Table XXI as items
D8, D12, and D21-24. Corresponding observational equations
are given in Table XXVI.

The uncertainties of the ionization data are sufficiently
small that correlations among them or with any other data used
in the 2018 adjustment are inconsequential. Nevertheless, the
binding or removal energies of '2C>* and 'C%" are highly
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TABLE XV. Ionization energies for 'H, *H, 3He, “He, '°C, and Si.
The full description of unit m~' is cycles or periods per meter.
Covariances among the data in this table have not been included in
the adjustment. See text for explanation.

Ey/he (107 m™") Ey/he (107 m™)

'H 1.096 787 717 4307(10)

H 1.097 185 4390(13)

Het 4.388 891 936(3)

“‘He 1.983 106 6637(20) ‘Het 4.389 088 785(2)
I2c 0.908 203 480(90) lact 1.966 634(1)
12c2+ 3.862 410(20) 12c3+ 5.201 753(15)
1204+ 31.624 233(2) 205+ 39.520616 7(5)
288 0.657 4776(25) 288+ 1.318 381(3)
28842+ 2.701 393(7) 2883+ 3.640931(6)
2884+ 13.4507(3) 2885+ 16.556 90(40)
2856+ 19.887(4) 8BS+ 24.4864(42)
8gi8+  28.333(5) 859+ 32.374(3)
286i10+  38.414(2) 8gill+ 42216 3(6)
28512+ 196.610 389(16) 28513+ 215.606 31(2)

correlated with a correlation coefficient of 0.999 98, due to the
uncertainties in the common ionization energies at lower
stages of ionization. The observational equations for binding
energies are simply

AEg(X™)/he = AEg(X")/he, (68)

thereby allowing all binding-energy uncertainties and cova-
riances to be properly taken into account.

A word on the relative atomic mass of the molecular ion
HD™ is in order. Its value helps determine the relative atomic
mass of the *He nucleus. We take

AE;(HD*)

Ar(HDT) = A:(p) + Ai(d) + Ac(e) 7 (69)

myc

and have used the wave number equivalent of the ionization
energy of the HD' ion, AE;(HD")/hc, as an adjusted
constant whose value is constrained by the measurement or
input datum

AE{(HD")/hc = 13 122468.415(6) m~! (70)

from Liu er al. (2010) and Sprecher et al. (2010). This input
datum is item D25 in Table XXI.

X. ATOM-RECOIL MEASUREMENTS

Atom-recoil measurements with rubidium and cesium
atoms from the stimulated absorption and emission of photons
are relevant for the CODATA adjustment as they determine the
electron mass, the atomic mass constant, and the fine-structure
constant (Peters et al., 1997; Young, Kasevich, and Chu,
1997; Mohr and Taylor, 2000). This can be understood as
follows. First and foremost, recoil measurements determine
the mass m(X) of a neutral atom X in kg using interferometers
with atoms in superpositions of momentum states and taking
advantage of the fact that photon energies can be precisely
measured. Equally precise photon momenta p follow from
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their dispersion or energy-momentum relation E = pc. In
practice, Bloch oscillations are used to transfer a large number
of photon momenta to the atoms in order to improve the
sensitivity of the measurement (Cladé, 2015; Estey et al.,
2015). Before the adoption of the revised SI on 20 May 2019,
these experiments only measured the ratio h/m(X), since the
Planck constant 4 was not an exactly defined constant.

Second, atom-recoil measurements are a means to deter-
mine the atomic mass constant, m, = m('*C)/12, and the
mass of the electron, m,, in kg. This follows, as many relative
atomic masses A, (X) = m(X)/m, of atoms X are well known.
For 8Rb and !33Cs, the relative atomic masses have a relative
uncertainty smaller than 1 x 107! from the 2016 recom-
mended values of the AMDC (see Table XIII). The relative
atomic mass of the electron can be determined even more
precisely with spin-precession and cyclotron-frequency-ratio
measurements on hydrogenic '*C3* and 28Si'3* as discussed
in Sec. XI. We thus have

my = m(X)/A;(X) (71)
and
_ Adle)
me = A.0%) m(X) (72)

from a measurement of the mass of atom X.

Finally, the fine-structure constant follows from the obser-
vation that the Rydberg constant R, = a’m.c/2h has a
relative standard uncertainty of 1.9 x 107! based on spec-
troscopy of atomic hydrogen discussed in Sec. VII. The
expression for R can be rewritten as

2hcRy AL(X
m(X)c* Aq(e)

~—

(73)

a =

and a value of @ with a competitive uncertainty can be
obtained from a measurement of m(X).

Two m(X) measurements, represented by values for
h/m(X), are input data in the current least-squares adjustment:
A mass for 8’Rb measured at the LKB, France by Bouchendira
et al. (2011) and a mass for '33Cs measured at the University of
California at Berkeley, USA by Parker er al. (2018). The
rubidium mass was already available for previous adjustments,
while this value for the cesium mass is a new input datum. The
results are items D3 and D4 in Table XXI and satisfy the
relevant observational equations in Table XXVI.

The values of a inferred from the two atom-recoil mea-
surements are shown in Fig. 2, together with that inferred from
an electron magnetic-moment anomaly a. measurement.
Their comparison provides a useful test of the QED-based
determination of a, and is discussed in Sec. IV.D.

The new University-of-California-at-Berkeley value of
m('3Cs) has u, = 4.0 x 1071° and currently provides a value
of o with the smallest uncertainty. Thirteen systematic effects
were investigated and included in the uncertainty budget. In
parts in 10'°, the net correction from systematic effects is
—91.6(2.4). The two largest systematic corrections by far are
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—35.8(4) in parts in 10'° from acceleration gradients and
—52.0(6) in parts in 10'" from wave front curvature and the
Gouy phase of their Gaussian laser beams. The relative
statistical uncertainty is 3.2 x 10710, See also the review by
Yu et al. (2019).

Generalizations of the Gouy phase are of particular interest
in atom-recoil experiments. In efforts to improve their
rubidium apparatus, the researchers at LKB realized that
small-scale intensity fluctuations in laser beams at the atomic
positions lead to additional contributions to the Gouy phase
(Bade et al., 2018; Cladé et al., 2019). In fact, in the new
apparatus they expect to study this systematic effect in detail.
Cladé et al. (2019) also concluded that the 2011 evaluation
remains the most accurate determination of m(}’Rb), unaf-
fected by generalizations of the Gouy phase. Acknowledging
the insights of Bade et al. (2018), Parker et al. (2018) at
Berkeley realized that their relevant laser propagates a con-
siderable distance before reaching the cesium atoms and
small-scale intensity fluctuations smooth out, thereby signifi-
cantly reducing the size of the effect.

XI. ATOMIC g-FACTORS IN HYDROGENIC
12C AND %Si IONS

The most accurate value for the relative atomic mass of the
electron is obtained from measurements of the ratio of spin-
precession and cyclotron frequencies in hydrogenic carbon and
silicon and theoretical expressions for the g-factors of their
bound electron. See, for example, the recent analysis by
Zatorski et al. (2017). These measurements also play an
important role in determining the fine-structure constant using
atom-recoil experiments discussed in Sec. X.

For a hydrogenic ion X in its electronic ground state 1S, /,
and with a spinless nucleus, the Hamiltonian in an applied
magnetic flux density B is

° B (74)

where J is the electron angular momentum and g.(X) is the
bound-state g-factor for the electron. The electron angular
momentum projection is J, = +#/2 along the direction of B,
so the energy splitting between the two levels is

Wy _ |ge(X)‘ my o |ge(X)| Ar(X)

we 2Z-1)m, 2(Z-1)Ale)"

(78)

where A, (X) is the relative atomic mass of the ion.

We summarize the theoretical computations of the g-factor
in Sec. XI.LA and describe the experimental input data and
observational equations in Secs. XI.B and XI.C.

A. Theory of the bound-electron g-factor

The bound-electron g-factor is given by
ge(X) =gp + Agrad + Agrec + Agns + (79)

where the individual terms on the right-hand side are the Dirac
value, radiative corrections, recoil corrections, and nuclear-
size corrections, and the dots represent possible additional
corrections not already included.

The Dirac value is (Breit, 1928)

gD:—g [1 +2 1—(Za)2}

=-2 [1 - % (Za)? — 1—12 (Za)* — i (Za)® + - } ., (80)

where the only uncertainty is due to that in a.
The radiative correction is given by the series

AGra = Z Ag<2n)’ (81>

n=1

where

Mg = —2C% (Za) <g) (82)

with coefficients C‘(ez")(x) that depend on x = Za.

The first or one-photon coefficient in the series has
self-energy (SE) and vacuum-polarization (VP) contributions,
ie, c? (x) = CSS)E()C) + CE’ZQ,P(x). The self-energy coeffi-
cient is (Faustov, 1970; Grotch, 1970; Close and Osborn,
1971; Pachucki, Jentschura, and Yerokhin, 2004; Pachucki

et et al., 2005)
AE = |g.(X) 5. B, (75)
e N )
(2) _ 4 )
Cc ==<1+— —1
and the spin-flip precession frequency is ose(X) 2{ + 6 R {9 n(x™)
247 8 8
AE B — ——Inky—=Ink >R , (83
o =2E g0 22 (76) #3165 ko ik | Rl (89
h 2m,
In the same flux density, the ion’s cyclotron frequency is where
In kg = 2.984 128556 (84)
B 0 >
o= (77)
My In k3 = 3.272 806 545, (85)
where gy = (Z—1)e, Z, and my are its net charge, atomic Rgi(6a) = 22.1660(10), (86)
number, and mass, respectively. The frequency ratio w,/w, is
then independent of B and satisfies Rgg(14a) = 21.0005(1). (87)
Rev. Mod. Phys., Vol. 93, No. 2, April-June 2021 025010-23
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Values for the remainder function Rgg(x) for carbon and
silicon have been taken from Yerokhin and Harman (2017)
and correspond to an almost tenfold improvement over the
values used in the previous adjustment. It is worth noting that
Pachucki and Puchalski (2017) have derived that

Rg(0) n{%Jrgan}. (88)

Finally, we have

Cs(6a) = 0.500 183 607 131(80),
COs(14a) = 0.501 312638 14(56). (89)

The lowest-order vacuum-polarization coefficient Cf\),P(x)
has a wave-function and a potential contribution, each of
which can be separated into a lowest-order Uehling-potential
contribution and a higher-order Wichmann-Kroll contribution.
The wave-function correction is (Beier, 2000; Beier et al.,
2000; Karshenboim, 2000; Karshenboim, Ivanov, and
Shabaev, 2001a, 2001b)

Clpy(60) = —0.000001 840 3431(43),

CPlpus(14a) = —0.000051 091 98(22). (90)

For the potential correction, the Uehling contribution vanishes
Beier et al. (2000), and for the Wichmann-Kroll part we take
the value of Lee er al (2005), which has a negligible
uncertainty from omitted binding corrections for the present
level of uncertainty. This leads to

CZpp (6a) = 0.000000 008 201(11),
CZpp(14a) = 0.000 000 5467(11), (91)

and for the total lowest-order vacuum-polarization coefficient

C)p(6a) = —0.000001 832 142(12),

€,

Clp(14a) = —0.000 050 5452(11). (92)
Moreover, we have

) (6a) = Cs(6a) + Cp(6a)
=0.500181774 989(81),
c? (14a) = €2 (14a) + Cp(14a)
= 0.501262 0929(12). (93)

The two-photon n = 2 correction factor for the ground S
state is (Pachucki et al., 2005; Jentschura et al., 2006)
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991 343
155520

2 14
c¥(x) = (1 + x6> ct 4 x* {9 In(x~2) +

2 4 67912
—nks —_1 2T
ok =310k + 15560

144172 1441

70 ln2+480 ¢(3) +

16 — 1972
216

1
+ EXSR(“) (x), (94)

where C'¥) = —0.32847844400.... The last term in square
brackets for the contribution of order x*, absent in the previous
adjustment, is the light-by-light scattering contribution
(Czarnecki and Szafron, 2016).

The term x°R™*(x) in Eq. (94) is the contribution of
order x° and higher from diagrams with zero, one, or two
vacuum-polarization loops. Yerokhin and Harman (2013)
have performed nonperturbative calculations for many of
the vacuum-polarization contributions to this function,

denoted here by R@,, with the results

RW(6a) = 14.28(39),  R{)(14a) = 12.72(4)  (95)
for our two ions. These vacuum-polarization values are the
sum of three contributions. The first, denoted with subscript
SVPE, is from self-energy vertex diagrams with a free-
electron vacuum-polarization loop included in the photon
line and magnetic interactions on the bound-electron line. This
calculation involves severe numerical cancellations when
lower-order terms are subtracted for small Z. The results
Rps (6a) =0.00(15),  RYUps(14a) = —0.152(43)  (96)
were extrapolated from results for Z > 20. The second con-
tribution, denoted with subscript SEVP, is from screening-like
diagrams with separate self-energy and vacuum-polarization
loops. The vacuum-polarization loop includes the higher-order
Wichmann-Kroll terms and magnetic interactions are only
included in the bound-electron line. This set gives
RyLp(6a) =7.97(36),  Rihp(14a) =7.62(1).  (97)
SEVP : J SEVP : :
The third contribution, denoted with subscript VPVP,
comes from twice-iterated vacuum-polarization diagrams
and from the Killén-Sabry corrections with free-electron
vacuum-polarization loops, all with magnetic interactions on
the bound-electron line. This set gives

R p(6a) =631,  RU).(14a) =525  (98)

The results for this latter contribution are consistent with a
perturbative result at x = 0 given by (Jentschura, 2009)

R®

1420807 832 400
VPVP(O) - I

“\ 238140 189 "7 189"
—7.4415.. . (99)

Czarnecki et al. (2018) performed perturbative calculations
at x = 0 for a complementary set of diagrams contributing
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to R™(x). These calculations include self-energy diagrams
without vacuum-polarization loops, with the combined result

ARM(0) = 4.7304(9). (100)
This value has three contributions. One is from self-energy
diagrams without vacuum-polarization loops given by

R (0) = 0.58735(9)x2. (101)
The second set has light-by-light diagrams with nuclear
interactions in a vacuum-polarization loop inserted into the
photon line in a self-energy diagram, which gives

R (0) = —0.1724526(1)n2.

(102)
The remaining contribution with external magnetic-field
coupling to a virtual-electron loop is given by

7843 )
T

4) _
2025 T 16200

R\1.(0) =

_ 101698907 92368
3402000

= 0.064387...72. (103)

The results by Yerokhin and Harman (2013) and Czarnecki
et al. (2018) can be combined to give

R®(x) = RW(x) + AR®)(0), (104)

which has uncertainty computed in quadrature from that of
R{)(x) and, following Czarnecki ef al. (2018),

u[ARM(0)] = |xIn3(1/x?)] (105)
taken to be on the order of the contribution of the next-
order term. For x = 6a and 14a, this uncertainty is approx-
imately twice AR (0). Finally, we have for the two-photon
coefficients

¥ (6a) = —0.32857922(86).

Y (14a) = -0.329161(54). (106)

For n > 2 contributions Ag<2"> to the radiative correction, it
is sufficient to use the observations of Eides and Grotch
(1997) and Czarnecki, Melnikov, and Yelkhovsky (2000),
who showed that

7 2
& (Za) = <1+—( g) +~~-)CS”> (107)

for all n. The values for constants Cézn) for n = 1 through 5
are given in Table XII. This dependence for n = 1 and 2 can
be recognized in Egs. (83) and (106), respectively. For n = 3
we use

C9(Za) = 1.181611... for Z =6,

= 1.183289... for Z = 14, (108)
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while for n = 4 we have

™ (Za) = -1.911933... for Z =6,
= -1914647... for Z=14,  (109)
and, finally, for n =5
(10), N _ _
Ce '(Za) =6.67(19)... forZ=6
= 6.68(19)... for Z=14.  (110)

Recoil of the nucleus gives a correction Ag,.. proportional
to the electron-nucleus mass ratio and can be written as

AGree = Aggc) + Ag£e2c> + - --, where the two terms are zero
and first order in «/T, respectively. The first term is (Eides and
Grotch, 1997; Shabaev and Yerokhin, 2002)

0= { (24 29" (gapp(za)} M
Agre _{ (= )2+3[1+ 1= (Za)?? (2 P(z >}mN
m 2
+(1+Z)(Za)2<—°) , (111)
my

where m is the mass of the nucleus. Mass ratios, based on the
current adjustment values of the constants, are m,/m(1?Co*) =
0.0000457275... and m./m(*%Si'**) = 0.0000196136....
For carbon P(6a) = 10.49395(1), and for silicon we use the
interpolated value P(14a) = 7.16223(1).

For Agrec we have

(Za)? me.

gl =2
3 nmy

TR (112)

The uncertainty in Agﬁiﬁ is negligible compared to that

of Aga.

Glazov and Shabaev (2002) have calculated the nuclear-size
correction Ag,s;o Within lowest-order perturbation theory
based on a homogeneous-sphere nuclear-charge distribution
and Dirac wave functions for the electron bound to a point
charge. To good approximation, the correction is (Karshenboim,

2000)
8 4 Ry 2
3(Za) <%c> ’

where Ry is the root-mean-square nuclear-charge radius and 2¢
is the reduced Compton wavelength of the electron. In the
CODATA adjustment, we scale the values of Glazov and
Shabaev (2002) with the squares of updated values for the
nuclear radii Ry = 2.4702(22) fm and Ry = 3.1224(24) fm
from the compilation of Angeli and Marinova (2013) for '*C and
2881, respectively.

Recently, higher-order contributions of the nuclear-size
correction have been computed by Karshenboim and
Ivanov (2018a). They are

(113)

2_ Ry a

Agns.NLO = ( Za

— A 114
3 7\C 47'[) Ins,LO> ( )
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where Czr = 3.3 is the ratio of the Zemach or Friar moment
(Friar and Payne, 1997) to R} for a homogeneous-sphere
nuclear-charge distribution. We assume that Ag, N o has a
10% uncertainty.

The sum of the scaled nuclear-size correction of Glazov and
Shabaev (2002) and Eq. (114) yields

Ag,s = —0.000 000 000407(1)
Ag,s = —0.000 000 02048(3)

for 12C5+,
for 28Si!3+ (115)
for the total nuclear-size correction.
Tables XVI and X VII list the contributions discussed above
to go(X) for X = 12C3* and 28Si'**, respectively. The final
values are

ge(12C5+) = —2.001 041 590 153(25).

9. (38Si3+) = —1.9953489571(17) (116)
with uncertainties that are dominated by that of the two-photon
radiative correction Ag®). This uncertainty is dominated by
terms proportional to (Za)® multiplying various powers of
In[(Za)~2]. We shall assume that the uncertainties for this
contribution are correlated with a correlation coefficient of

r = 0.80 (117)

TABLE XVI. Theoretical contributions and total value for the
g-factor of hydrogenic '2C>* based on the 2018 recommended values
of the constants.

Contribution Value Source

Dirac gp —1.9987213543910(4) Eq. (80)

AgézE) —0.002323 6724382(5) Eq. (89)

A g%l 0.000 000008 511 Eq. (92)

Ag<4) 0.000 003 545 708(25) Eq. (106)

Agl® —0.000000029618 Eq. (108)
Ag®) 0.000 000000 111 Eq. (109)
Ag“O) —0.000 000000 001 Eq. (110)
Agree —0.000 000087 629 Eqgs. (111) and (112)
Agps —0.000 000 000407(1) Eq. (115)
g(1%Ct) —2.001 041590 153(25) Eq. (116)
TABLE XVII. Theoretical contributions and total value for the

g-factor of hydrogenic 2%Si'** based on the 2018 recommended
values of the constants.

Contribution Value Source
Dirac gp —1.993023571552(2) Eq. (80)
AgéZE) —0.002328917509(3) Eq. (89)
Ags,z}l 0.000 000234 81(1) Eq. (92)
Ag¥ 0.000 003 5530(17) Eq. (106)
Agl®) —0.000 000029 66 Eq. (108)
Ag® 0.000 000000 11 Eq. (109)
Agll0) —0.000 000 000 00 Eq. (110)
AGrec —0.000 000205 88 Egs. (111) and (112)
Agns —0.000 000 020438(3) Eq. (115)
g(38sil3t) —1.9953489571(17) Eq. (116)

Rev. Mod. Phys., Vol. 93, No. 2, April-June 2021

for our two hydrogenic ions. The derived value for the electron
mass depends only weakly on this assumption; the value for the
mass changes by only 2 in the last digit and the uncertainty
varies by 1 in its last digit.

B. Measurements of precession and cyclotron frequencies
of 12C5+ and 28Si13+

The experimentally determined quantities are ratios of the
electron spin-precession (or spin-flip) frequency in hydro-
genic carbon and silicon ions to the cyclotron frequency of the
ions, both in the same magnetic flux density. The input
data used in the 2018 adjustment for hydrogenic carbon and
silicon are

ws(12c5+)

_ —11
W =4376.21050087(12) [2.8 x 107'1]  (113)
and
wS(ZSSiBJr) T
W = 3912.866 064 84(19) [4.8 x 10~!] (119)
with correlation coefficient
(1205+ (28g413+
e CCT) @Sy (120)

W, (12c5+) ’ , (283i13+)

both obtained at MPIK using a multi-zone cylindrical Penning
trap operating at B = 3.8 T and in thermal contact with a
liquid helium bath (Sturm er al., 2013, 2014; Kohler et al.,
2015; Sturm, 2015). The development of this trap and
associated measurement techniques has occurred over a
number of years, leading to the current uncertainties below
5 partsin 10'!. A detailed discussion of the uncertainty budget
and covariance and additional references can be found in the
2014 CODATA adjustment. We identify the results in
Eqgs. (118) and (119) by MPIK-15.

C. Observational equations for 12C3* and 2%Si'3* experiments

The observational equations that apply to the frequency-ratio
experiments on hydrogenic carbon and silicon and theoretical
computations of their g-factors follow from Eq. (78) when it is
expressed in terms of the adjusted constants. That is,

o ("C) L g.("C) + 6w (C)
w (PC) 10A;(e)

@Ad(e) AEy (°C)
2R

x (12 - 5A,(e) + (121)

he

for '2C>* using A,('*C) = 12, Eq. (64), and Eq. (67). Similarly,

W, (288113+)
. (28Si13+)

- _9e(28$il3+) + 5th(Si) Ar(285113+)
264, (e)

(122)

for 28Si!3*_ In these two equations, a, R, the relative atomic
masses A,(e) and A,(*8Si'**), binding energy AEg('’C3*),
and additive corrections &y,(C) and 8y, (Si) to the theoretical
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g-factors of '2C>* and 28Si'3+ are adjusted constants. Of course,
the observational equation

A (?8Si) = A (3Si13F) + 13A,(e)
a’A,(e) AEg(?8Si'3)
2R, hc

(123)

relates the relative atomic mass of the silicon ion to that of the
input datum of the neutral atom and AER(*Si'**) is an
adjusted constant.

The theoretical expressions for g-factors g.('?C3*) and
90 (?8Si!3) are functions of adjusted constant . The obser-
vational equations for the additive corrections &y (C) and
8w (Si) for these g-factors are

5X = 5th (X )
for X = C and Si with input data

8¢ = 0.0(2.5) x 10711,

5Si = 00(17) X 10_9, (124)
and u(S¢, ;) = 3.4 x 10729 from Egs. (116) and (117).
The input data are summarized as entries D7 through D13

in Table XXI and observational equations can be found in
Table XXVI.

XII. MUONIC HYDROGEN AND DEUTERIUM
LAMB SHIFT

Muonic hydrogen and deuterium, pH and pD, respectively,
are atoms consisting of a proton or a deuteron and a negatively
charged muon. Since the mass of a muon is just over 200 times
larger than that of the electron, the muonic Bohr radius is
200 times smaller than the electronic Bohr radius and the
muon wave-function overlap with the proton or deuteron is
more than a million times larger than in normal H or D.
Consequently, the “muonic” Lamb shift, the energy difference
A&5(X) = Egp, ,(X) — Eps, ,(X) between the 2S;/, and
2P, /, levels, is much more sensitive to the proton and deuteron
charge radii, T and ry.

The energy of the 25, , level in H and D is higher than that
of 2P,/,. Because of the much larger electron vacuum-
polarization contribution, however, the energy of the 2S, ),
level in pH and pD lies below that of 2P, ,. In normal H and
D, the Lamb shift is about 2 x 1 GHz or 0.004 meV, while in
pH and pD it is about i x 50 THz or 200 meV.

The first successful measurement of the Lamb shift
of pH was carried out by the Charge Radius Experiment
with Muonic Atoms (CREMA) collaboration at the Paul
Scherrer Institute, Switzerland, in 2010 (Pohl ez al., 2010).
(Strictly speaking, the authors measured the transition energy
between the 2S,,, and 2P;/, levels. The 2P;,-2P;/, fine-
structure interval is sufficiently well known from theory that
the uncertainty budget for the Lamb shift is not affected.)
Based on the theory of A& g(pH) as it existed at the time, the
CREMA collaboration derived that r, = 0.84184(67) fm.
This value was inconsistent with the 2006 CODATA

Rev. Mod. Phys., Vol. 93, No. 2, April-June 2021

recommended value based on hydrogen spectroscopic and
e-p elastic scattering data and gave rise to the “proton-radius
puzzle.”

For the CODATA 2010 adjustment, new elastic e-p scatter-
ing data from Bernauer et al. (2010) also became available.
Their derived value for r,, agreed with the CODATA 2006
recommended value. Because of the strong disagreement of r,,
derived from pH spectroscopy and the value of r, derived
from hydrogen spectroscopic and e-p scattering data, the
Task Group decided not to include pH data in 2010. As a
consequence, the disagreement between r, based on the pH
Lamb shift and the CODATA 2010 recommended value
increased to seven standard deviations.

In 2013, the CREMA collaboration reported a second
experimental value for A& g(pH) (Antognini et al., 2013;
Antognini, Kottmann ef al., 2013), as well as advances in the
theory of pH, which together yielded a value for r, that was
consistent with their 2010 estimate and had an even smaller
uncertainty. Thus it did not alter the status of the proton-radius
puzzle and the Task Group decided to omit pH data from the
2014 adjustment as well. In simplest terms, the puzzle was
that there are two plausible values for r,: a “low” value of
about 0.84 fm and a CODATA recommended “high” value of
about 0.88 fm.

Efforts to solve the proton-radius puzzle have continued.
For example, a value for the deuteron radius r4, obtained from
a measurement of A& g(puD), has been reported by the
CREMA collaboration (Pohl et al., 2016). Their value for
rq also confirmed the value for r, based on pH data when it
was combined with a measurement of the difference of the
Lyman-a transition energy of normal H and D by Parthey et al.
(2010), item AS in Table X, and the theory of H and D.

The Task Group believes that the muonic data have been
sufficiently verified and has decided to include the pH and pD
Lamb-shift data in the 2018 CODATA adjustment. Moreover,
three measurements of transition energies in hydrogen have
become available since the previous adjustment. Their con-
tributions decrease the value of r;, based solely on hydrogen
spectroscopy. See also the discussions in Sec. IV.C and VIL.C.
Inconsistencies that exist among data that relate to the
determination of r, and ryq are dealt with by applying a
multiplicative expansion factor to the uncertainties of the
relevant data. We review the pH and pD Lamb-shift data and
relevant theory in the next two sections. Input data from the
Lamb-shift measurements, theoretical additive constants, and
theoretical parameters are summarized in Table XVIIIL.
Observational equations are found in Table XXIII.

A. Muonic hydrogen Lamb shift

The CREMA collaboration measured the pH Lamb
shift A& g(pH) = 202.3706(23) meV with u, = 1.1 x 107>
(Antognini et al., 2013). The value was derived from the
measured hyperfine-resolved 2S,,(f = 0) — 2P5,,(f = 1)
transition energy, the previously reported CREMA value of
the 2S;,,(f = 1) = 2P3,,(f =2) transition energy (Pohl
et al., 2010) updated as described by Antognini er al.
(2013), and the sufficiently accurate theoretical estimates
of the 2P fine-structure and 2P;,, hyperfine splittings by
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TABLE XVIII. Input data for the experimental determinations of muonic hydrogen and muonic deuterium Lamb shifts A& 5(pX), theoretical
coefficients D;x for these Lamb shifts, additive energy corrections SE; s (pX), as well as the proton (p) and deuteron (d) root-mean-square charge
radii ry based on electron-proton and electron-deuteron scattering. The label in the first column is used in Table XXIII for observational
equations. Only items C1, C2, and C7—-C10 are input data in the adjustment. Columns two and three give the reference and an abbreviation of the
name of the laboratory in which the experiment has been performed. An extensive list of abbreviations is found at the end of this report. The role
of the expansion coefficients, items C3—C6, and the rationale for the values and uncertainties of the radii, C9 and C10, are discussed in the text.
Relative standard uncertainties in square brackets are relative to the value of the theoretical quantity to which the additive correction
corresponds. There are no correlations among these data.

Rel. stand.
Reference Lab. Input datum Value unc. u,

Cl1 Antognini ez al. (2013) CREMA A& s(pH) 202.3706(23) meV 1.1 x 1073
Cc2 Pohl er al. (2016) CREMA A& s (pD) 202.8785(34) meV 1.7 x 107
C3 Peset and Pineda (2015) UBarc Dou 206.0698(129) meV 6.2 x 107
Cc4 Peset and Pineda (2015) UBarc Doy —5.2270(7) meV fm~2 1.3x 107
C5 Kalinowski (2019) WarsU Dop 230.5247(210) meV 9.1 x 107
C6 Krauth et al. (2016) MPQ Dyp —6.11025(28) meV fm™2 4.6 x 107
Cc7 theory SE s (uH) 0.0000(129) meV [6.4 x 107]
c8 theory SEs(uD) 0.0000(210) meV (1.0 x 1074]
c9 p 0.880(20) fm 2.3 x 1072
C10 rq 2.111(19) fm 9.0x 1073
Antognini, Kottmann er al. (2013). The two experimental and
transition energies also led to the determination of the
magnetic Zemach radius of the proton. Details regarding SELs(pH) = 8y (pH). (127)

the CREMA experiment have been described in the 2014
CODATA publication. The measured value is datum Cl1 in
Table XVIIIL.

We use the theoretical expression for the muonic
hydrogen Lamb shift from Peset and Pineda (2015) in order
to derive a value for the proton charge radius r,. It is based
on perturbation theory in a nonrelativistic effective field
theory derived from higher-energy QED and QCD descrip-
tions. For example, QED contributions up to a’m,c? and
a® In(a~2)m,,c* have been included. Unlike for the theoretical
description of the H and D energy levels in Sec. VIL.A, where
we add many contributions to find level energies, we use

Don + Dour; (125)
for the theoretical Lamb shift in the least-squares adjustment.
The values and uncertainties for Dyy and D,y are taken
from Peset and Pineda (2015) and given as items C3 and
C4 in Table XVIII. This simpler procedure is justified, as
nearly 95% of the muonic Lamb shift is due to the electron
vacuum-polarization correction of order a’my,c* in Doy and
the uncertainty of Dyy is due to uncertainties in proton-
structure corrections that are independent of r,. The corre-
sponding relative standard uncertainty is orders of magnitude
larger than those in a and m,. Approximately 5% of the
Lamb shift is due to the second term in Eq. (125). An early
description of the theory for the muonic Lamb shift was
published by Pachucki (1996).

For the CODATA adjustment, the relevant observational
equations are

A& s(pH) = Doy + Doyrp + 5 (pH) (126)
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Here, the proton charge radius r, and additive constant
S (pH) are adjusted constants and input datum SE; g(pH) =
0.0000(129) meV accounts for the uncertainty from uncom-
puted terms in Dyy and the uncertainty of D,y, although the
latter uncertainty is currently inconsequential. Substitution of
input data Cl1, C3, C4, and C7 from Table XVIII into
Eq. (126) yields r, = 0.8413(15) fm.

In 2013, Antognini et al. (2013) used theoretical estimates for
Dyu and D,y by Antognini, Kottmann ez al. (2013) to publish a
value for r,. The value for Doy is consistent with that of Peset
and Pineda (2015). The uncertainty from Antognini, Kottmann
etal. (2013), however, is five times smaller. The theory of Peset
and Pineda (2015) is chosen over that of Antognini, Kottmann
et al. (2013) as their estimate and uncertainty of hadronic
corrections provide a more conservative value of r,,. Similarly,
Karshenboim et al. (2015) gave smaller uncertainties on the
quantities Doy and D,y. Because the proton-radius puzzle is
only partly resolved, a more conservative approach seems
warranted. It, however, does point to the need for future research
and possible future improvements in the accuracy of the proton
charge radius.

B. Muonic deuterium Lamb shift

The CREMA collaboration measured the pD Lamb shift
A& s(pD) = 202.8785(34) meV with u, = 1.7 x 107> (Pohl
et al., 2016). In fact, the data were acquired during the same
measurement period and using the same general method
as for the muonic hydrogen data described in the previous
section. The result is based on the measurement of the three
hyperfine-resolved transition energies 2S;,,(f =3/2) -
2P3)5(f =5/2), 2Sip(f =1/2) = 2P5;5(f = 3/2), and
28 5(f =1/2) = 2P5)5(f = 1/2). As with the pH data,
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Pohl et al. (2016) made use of the sufficiently well-known 2P
fine-structure splitting and the 2P;, hyperfine splitting, both
due to Krauth er al. (2016), to derive the Lamb shift. The
0.0034 meV total uncertainty is the root-sum-square of a
0.0031 meV statistical component and a 0.0014 meV com-
ponent from systematic effects. The measured value is datum
C2 in Table XVIIL.

The observational equations for AE; 5(puD) are based on the
recent theoretical treatment of the n = 2 energy levels of pD
by Krauth ef al. (2016) and Kalinowski (2019). That is,

A& 5(nD) = Dyp + Dypri + (kD) (128)

and

SE (kD) = 6, (uD), (129)

where the deuteron charge radius ry and additive constant
Snm(pD) are adjusted constants. Values and uncertainties for
Dop and D,p are given as items C5 and C6 in Table XVIII.
The coefficient D, is due to Krauth et al (2016). The
coefficient Dy, is the sum of two terms. The first is 228.776
66(96) meV also due to Krauth et al. (2016) and accounts for
all contributions that do not explicitly depend on ry. The
second is 1.748(21) meV from Kalinowski (2019), which we
use for the nuclear-polarizability contribution instead of the
corresponding value by Krauth et al. (2016). Input datum
SErs(pD) = 0.0000(210) meV incorporates the uncertainty
from uncomputed terms in the theoretical energy Dyp and
the uncertainty of the coefficient D,p, although the latter
uncertainty has currently no influence on the adjustment.
Substitution of input data C2, C5, C6, and C8 from
Table XVIII into Eq. (128) yields ry = 2.127 10(81) fm.

C. Deuteron-proton charge radius difference

The deuteron-proton radius difference rj —r3 is con-

strained by the pH and pD Lamb-shift measurements, but
also by the measurement of the isotope shift of the 1S-2S
transition in H and D by Parthey er al. (2010), item AS in
Table X. From the 2018 CODATA adjustment its recom-
mended value is

2 — 12 = 3.82036(41) fm?, (130)

mainly constrained by the H to D isotope shift measurement.

XIII. ELECTRON-PROTON AND ELECTRON-DEUTERON
SCATTERING

In electron-proton and electron-deuteron elastic scattering
experiments, the differential scattering cross section for the
electron is measured as a function of the incident energy of the
electrons, E;,., and the electron scattering angle . From these
data, the electric form factor of the proton Gz(Q?) as a
function of the negative of the squared four-momentum
transfer Q2 can be extracted. Here, Q? is uniquely specified
by E;,. and @, as in these experiments the initial momentum of
the proton is negligibly small and the incident and final
electron energies are much larger than the rest energy of the
electron [see, for example, Bernauer ef al. (2014)]. A typical
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TABLE XIX. Fifty of the 75 adjusted constants in the 2018
CODATA least-squares minimization. Other variables in the adjust-
ment are given in Table XI.

Adjusted constant Symbol
fine-structure constant a
Rydberg constant R
proton rms charge radius Tp
deuteron rms charge radius rq
Newtonian constant of gravitation G

electron relative atomic mass Al(
proton relative atomic mass A(
neutron relative atomic mass A(
deuteron relative atomic mass A
triton relative atomic mass A(
helion relative atomic mass A
alpha particle relative atomic mass A(
283i!3* relative atomic mass Al
87Rb relative atomic mass Al
133Cs relative atomic mass A, (13Cs)

'H* electron removal energy AEg('HY)
HD™ electron ionization energy AE;(HD")
He* electron ionization energy AE;(*He")
“He?* electron removal energy AEg (*He?™)
12057 electron removal energy AER(12C)
12Co* electron removal energy AEg(2Co)
283i13+ electron removal energy AEg(*8Si31)
additive correction to a,(th) Sm(e)

muon magnetic-moment anomaly a,

additive correction to gc(th) 5m(C)
additive correction to gg;(th) S (Si)
additive correction to Avyg,(th) S (Mu)
electron-muon mass ratio me/my
additive correction to p-H Lamb shift S (RH)
additive correction to p-D Lamb shift Sm(uD)
deuteron-electron magnetic-moment ratio Ha/ He-

electron-proton magnetic-moment ratio He-/ 1y

electron to shielded proton He-/ My
magnetic moment ratio

shielded helion to shielded proton Hn/ Hy
magnetic moment ratio

neutron to shielded proton o/ /41,
magnetic-moment ratio

triton to proton magnetic-moment ratio He/ Hy
shielding difference of d and p in HD Gap
shielding difference of t and p in HT O
dy of an ideal natural Si crystal dy

dyy of Si crystal ILL (
dyyo of Si crystal MO* (
dayg of Si crystal N (
d220 of Si crystal NR3 dzz()(NR3
doyg of Si crystal NR4 (
dyy of Si crystal WASO 04 (
dyy of Si crystal WASO 17 (
doyo of Si crystal WASO 4.2a d(W4.2a)
Copper Ka; x unit xu(CuKa, )
Angstrom star A
Molybdenum Ko, x unit xu(MoKa )

upper bound for the incident electron energy is the rest energy
of the proton or deuteron.

A function is then fit to the data for the form factor G(Q?)
and the root-mean-square charge radius ry is calculated from
the slope of G(Q?) at Q*> = 0. Because cross-section mea-
surements are not possible at 0? = 0, the function chosen to
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extrapolate to this limit and the largest Q? value in the data set
are critical for the determination of the uncertainty budget for
ry- In addition, various systematic effects must be accounted
for in the procedure to extract the form factor from the cross
section.

We review r, and ry obtained from scattering data in the
next two sections. Input data and observation equations are
summarized in Tables XVIII and XXIII, respectively.

A. Proton radius from e-p scattering

Currently, the most extensive e-p scattering data are
those obtained by the Al Collaboration at Mainz
University, Germany, with the Mainz linear accelerator
(MAMI). Their data have been published by Bernauer et al.
(2010, 2014). About 1400 cross sections were measured at six
electron beam energies ranging from 180 MeV to 855 MeV
with Q2 from 0.003(GeV/c)? to 1(GeV/c)?. The 2010
value r, = 0.8791(79) fm from these authors was used in
the CODATA 2010 adjustment, as was the value rp =
0.895(18) fm due to Sick (2003, 2007, 2008). The only
scattering value of the proton radius used as an input datum
in the 2014 adjustment was r, = 0.879(11) fm, a weighted
mean of the values by Arrington and Sick (2015) and
Bernauer and Distler (2015). The uncertainty was the simple
average of the individual uncertainties because each value was
based on essentially the same data.

Before the closing date for new data for the 2018 adjust-
ment, various authors reanalyzed the e-p scattering data with a
variety of methods. Four such values are r, = 0.840(16) fm
given by Griffioen, Carlson, and Maddox (2016), obtained
from the Mainz data with values of Q? below 0.02(GeV/c)?;
rp = 0.844(7) fm obtained by Alarcén et al. (2019) using
chiral effective field theory; r, = 0.845(1) fm from Zhou
et al. (2019) employing constrained Gaussian processes; and
r, = 0.855(11) fm due to Horbatsch, Hessels, and Pineda
(2017) using chiral perturbation theory. Larger values, for
example, rp = 0.916(24) fm obtained by Lee, Arrington, and
Hill (2015), were found by only analyzing the e-p scattering
data of Bernauer et al. (2010). Most recently, Hayward and
Griffioen (2020) found r,, = 0.841(4) fm from characterizing
the effects of bias when omitting large-Q? data.

Based on these new analyses and the input data used
for the 2010 and 2014 adjustments, the Task Group has
decided to adopt as the only e-p scattering input datum
rp = 0.880(20) fm. This value and uncertainty are chosen
so that all evaluations of r,, lie within two standard deviations
from this mean value. The value is essentially the same value
as used in the 2014 adjustment but with an uncertainty that is
approximately twice as large.

For completeness, we note that results for rp from two new
e-p scattering experiments have become available after the
31 December 2018 closing date of the 2018 adjustment.
Xiong et al. (2019) report r,, = 0.831(24) fm determined by
the PRad Collaboration at the Thomas Jefferson National
Accelerator Laboratory, USA; and Mihovilovi¢ et al. (2019)
report 7, = 0.870(28) fm from a recent experiment per-
formed at MAML
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B. Deuteron radius from e-d scattering

Since 1998, the input datum for the charge radius of the
deuteron obtained from elastic e-d scattering data in the
CODATA adjustments is rqy = 2.130(10) fm as determined
by Sick and Trautmann (1998) and Sick (2001). This value is
based on some 340 cross-section data points for momentum
transfers less than 2 GeV/c.

Recently, Hayward and Griffioen (2020) determined with a
novel algorithm the structure function A(Q?), a combination
of electric, magnetic, and quadrupole form factors, from
elastic e-d scattering data and extrapolated to Q% = 0. The
radius rq is then determined from the slope of A(Q?) at
0*=0. Only the data set of Simon, Schmitt, and Walther
(1981), however, could be usefully analyzed with their
algorithm. This yielded ry = 2.092(19) fm.

In view of this result and the many questions raised
concerning the extraction of reliable values of r, and ry from
scattering data, the value ry = 2.111(19) fm is adopted as the
e-d scattering input datum for the 2018 adjustment. It is the
average of ry =2.092(19) fm and the long-used historical
value ry = 2.130(10) fm with an uncertainty of one-half their
difference. Coincidentally, this uncertainty is the same as that
of Hayward and Griffioen (2020).

XIV. MAGNETIC-MOMENT RATIOS OF LIGHT ATOMS
AND MOLECULES

The CODATA Task Group recommends values for the free-
particle magnetic moments of leptons, the neutron, and light
nuclei. The most precise means to determine the free magnetic
moments of the electron, muon, and proton are discussed in
Secs. VIII, XVI, and XV, respectively. In this section, we
describe the determination of the neutron, deuteron, triton, and
helion magnetic moments. The magnetic moment of the “He
nucleus or a particle is zero.

Nuclear magnetic moments are determined from hydrogen
and deuterium maser experiments and nuclear-magnetic-
resonance (NMR) experiments on atoms and molecules.
Both types of experiments measure ratios of magnetic moments
to remove the need to know the strength of the applied magnetic
field. We rely on NMR measurements for ratios of nuclear
magnetic moments in the HD and HT molecules as well as the
ratio of the magnetic moment of the neutron and the helion in
3He with respect to that of the proton in H,O. For these
molecules, the electronic ground state is an electron spin singlet.

The magnetic moment of a nucleus or electron in an atom or
molecule, however, differs from that of a free nucleus or
electron and theoretical binding corrections are used to relate
bound moments to free moments. In the remainder of this
section, we give the relevant theoretical binding corrections to
magnetic-moment ratios and describe experimental input data.
We also describe the binding corrections for magnetic-
moment ratios of an antimuon and electron bound in muonium
(Mu). These will be relevant in the determination of the
electron-to-muon mass ratio in Sec. XVIIL.

A. Definitions of bound-state and free g-factors

We recall that the Hamiltonian for a magnetic moment g in
a magnetic flux density B is H = —u - B. For lepton 7, the
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magnetic moment g, = g,(e/2my)s, where g,, m,, and s are
its g-factor, mass, and spin, respectively. By convention, the
magnetic moment of a neutron or nucleus with spin I is
denoted by

e
=g9g—1I, 131
"= 9 (131)
where g is the g-factor of the neutron or nucleus. The charge
and mass of the proton m,, appear in the definition, regardless
whether or not the particle in question is a proton. The

magnitude of the magnetic moment of a charged lepton is

1 eh
=—g,—, 132
He 29/ 2m, ( )
while that for the neutron or a nucleus is defined as
1= guni, (133)

where py = ef/2m,, is the nuclear magneton and integer or
half-integer i is the maximum positive spin projection of 1
given by ih.

When electrons bind with nuclei to form ground-state
atoms or molecules, the effective g-factors change. For atomic
H and D in their electronic ground state, the Hamiltonian is

Awy e
I —g.(X
h s ge( )2me

H = s-B—gN(X)ZLI-B,

(134)
mp

where (X,N) = (H,p) or (D, d) and the coefficients g.(X)
and gy(X) are bound-state g-factors. For muonium, an atom
where an electron is bound to an antimuon, the corresponding
Hamiltonian is

gp(H) 1 97 5, 1 me 3 +4a,
=1—-za(Za) ———=a(Z —a(Za)—
9 3020) — g alZa)” +galZa) L ey
+ - (137)
where A§4) is given in Eq. (52) and the proton magnetic-

moment anomaly is a, = u,/(eh/2m,) — 1~ 1.793. For
deuterium, we have

g.(D) 1 , 1 4 1 ,a 1 5 Mg
=1 == (Za)? = — (Za)* +~ (Za)? 2 + = (za)? e
By - Jzap — )t + 2 (2ap
1/ @ 1 ,(a\?> 5 5 M,
AW _2)(z 2 L (za) i
+2( ! 4>( @) T 12( @) 7tmd+
(138)
and
94(D) 1 97 ;1 me 3 + day
— 1 --a(Za) - ——a(Za)? + - a(Za) &
Ja 3o(Za) — g lZa) +galZa) S
T (139)

where the deuteron magnetic-moment anomaly is aq =
ua/(eh/mg) — 1 ~ —0.143. For helium-3, we have

pn (He)
Hn

= 1-59.96743(10) x 107 (140)

for the magnitude of the magnetic moments (Rudzinski,
Puchalski, and Pachucki, 2009). This ratio, however, is not
used as an input datum. It is not coupled to any other data, but
allows the Task Group to provide a recommended value for
the unshielded helion magnetic moment along with other
related quantities.

Finally, for muonium we have

Awyy e
Hy = S5 - 8, — goe(Mu) —s. - B
Mo = Se Sy = ge(Mu) s 9e MW 4 1 ey - Lzt 4 L (zap®
e (135) Je 3 12 4 T
—gp(Mu)—SP-B. 135 1 1 1 2
2m 2 Me ) 2@
0 ~(Za)y —+- (A" —— | (Z -
B. Theoretical ratios of g-factors in H, D, 3He, and muonium — i( a)2 ane 1 (1+2)( Za)2 <%) ? +
12 nm
B 0
Theoretical binding corrections to g-factors in the relevant
. . . . (141)
atoms and muonium have already been discussed in previous
CODATA reports. Relevant references can be found there as d
well. Here, we only give the final results. For atomic hydro- an
gen, we have Mu | 97 |
uMu) JalZa) — ToalZa)® +5alZa) o
9
%M L gap - L (zap 4 L zap? p T \:
9e 3 12 4 +—a(Z )——e——(l—l-Z)a(Za)(—e) +
2 12 m m
+1(Z )2me+1 A(4) 1 (Z )2 a B 3
2 m, 2\ T (142)
_ i ( Za)2 ame (136) Numerical values for the corrections in Egs. (136) to (142)
12 my based on 2018 recommended values for «, mass ratios, etc. are
listed in Table XX; uncertainties are negligible. See Ivanov,
and Karshenboim, and Lee (2009) for a negligible additional term.
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TABLE XX. Theoretical values for various bound-particle to free-
particle g-factor ratios based on the 2018 recommended values of the
constants.

Ratio Value

9e(H)/ge 1 —17.7054 x 10-6
9 (H)/ g, 1 —17.7354 x 107°
9e(D)/ge 1—17.7126 x 10°6
9a(D)/ g4 1 —17.7461 x 10-6
ge(Mu)/ge. 1 —17.5926 x 10-6
gu(Mu)/g, 1 —17.6254 x 1076

C. Theoretical ratios of nuclear g-factors in HD and HT

Bound-state corrections to the magnitudes of nuclear
magnetic moments in the diatomic molecules HD and HT
are expressed as

un(X) = [1 = on(X)]un, (143)
for nucleus N in molecule X. Here, p is the magnitude of the
magnetic moment of the free nucleus and o (X) is the nuclear
magnetic shielding correction. In fact, |oy(X)| < 1.

NMR experiments for these molecules measure the ratio

pv(X) Hy
/"N’(X) - [1 +oyy + 0(62)]/4—1\// (144)

for nuclei N and N’ in molecule X = HD or HT and oy =
oy (X) — on(X) is the shielding difference of molecule X. In
the adjustment, corrections of O(6?), quadratic in oy (X), are
much smaller than the uncertainties in the experiments and are
omitted.

The theoretical values for shielding differences in HD and
HT are o4, = 20.20(2) x 107 and o, = 24.14(2) x 1077,
respectively, as reported by Puchalski, Komasa, and Pachucki
(2015). The values are approximately 100 times more accurate
than those used in the 2014 CODATA adjustment and are also
listed as items D42 and D43 in Table XXI. The two shielding
differences are taken as adjusted constants with observational
equations 64, = o4, and oy, = oy, respectively.

D. Ratio measurements in atoms and molecules

Nine atomic and molecular magnetic-moment ratios
obtained with H and D masers and NMR experiments are
used as input data in the 2018 adjustment, and determine the
magnetic moments of the neutron, deuteron, triton, and helion.
For ease of reference, these experimental frequency ratios are
summarized in Table XXI and given labels D33 through D41.
There are no correlation coefficients among these data greater
than 0.0001. Observational equations are summarized in
Table XXVI.

We note that the primed magnetic moment y;, appearing in
three input data in Table XXI indicates that the proton is
bound in a H,O molecule in a spherical sample of liquid water
at 25 °C surrounded by vacuum. The shielding factor for the
proton in water is not known theoretically and, thus, these
measurements cannot be used to determine the free-proton
magnetic moment. The relationships among these three input
data, however, help determine other magnetic moments as
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well as the shielding factor of the proton in water. Finally, the
primed quantity g, in item D36 is the magnetic moment of the
helion bound in a 3He atom in a 25°C spherical gaseous
sample of helium-3. In principle, its value can differ from that
of a helion in an isolated *He atom, that is, y;, (*He) as found in
Eq. (140). We assume that environmental effects from distant
helium-3 atoms are negligible and equate the two quantities,
i.e., uf, = pp(*He), to determine the magnetic moment of the
free helion.

Our adjusted constants for the determination of the relevant
magnetic moments are pq/He, He/Hps He/Hps Hn/Hps Hn/Hps
/"t//"p? Odp> and Op-

The ratio u,(HD)/uq(HD) obtained by Neronov and
Seregin (2012), item D40 in Table XXI, is a relatively old
result that was not included in the 2014 adjustment, but is
included in the current adjustment. We rely on three deter-
minations of y,(HD)/uq(HD) in the 2018 CODATA adjust-
ment. The values are from Garbacz et al. (2012), researchers at
the University of Warsaw, Poland; and from Neronov and
Karshenboim (2003) and Neronov and Seregin (2012),
researchers in Saint Petersburg, Russia, who have a long
history of NMR measurements in atoms and molecules. (The
remaining experimental input data have been reviewed in
previous CODATA reports and are not discussed further.)

Neronov and Seregin (2012) describe a complex set of
experiments to determine the free-helion to free-proton
magnetic-moment ratio. We had previously overlooked their
frequency-ratio measurements on HD, which satisfy

#p(HD)
pa(HD)’

w,(HD)
wy(HD)

=2 (145)
where the factor two appears because the spins of the proton
and deuteron are 1/2 and 1, respectively. The statistical
relative uncertainty of the frequency ratio is given as 7.7
parts in 10'°. The line-shape fits by Neronov and Seregin
(2012), however, visibly disagree with the experimental
data and, thus, systematic effects are present. We account
for these effects by increasing the uncertainty by a factor
of 4.0 consistent with determining the NMR frequency of
d in HD to approximately one-tenth of the full-width-half-
maximum of the Lorentzian line.

XV. PROTON MAGNETIC MOMENT IN NUCLEAR
MAGNETONS

The 2017 measurement of the proton magnetic moment in
nuclear magnetons, u,/py, has been newly added to the
CODATA adjustment. It was obtained using a single proton in
a double Penning trap at the University of Mainz, Germany
(Schneider et al., 2017). The ratio was determined by
measuring its spin-flip transition frequency w; = 2u,B/h
and its cyclotron frequency @, = eB/m,, in a magnetic flux

density B. As B is the same in both measurements,
s _ Mo (146)
(O HUN

independent of B and where uy = eft/2m,, is the nuclear
magneton.
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Input data for the 2018 CODATA adjustment to determine the fine-structure constant, muon mass, masses of nuclei with Z < 2,

and magnetic-moment ratios among these nuclei as well as those of leptons. Relative standard uncertainties in square brackets are relative to the
value of the theoretical quantity to which the additive correction corresponds. The label in the first column is used to specify correlation
coefficients among these data and in Table XX VI observational equations. Columns five and six give the reference, an abbreviation of the name
of the laboratory in which the experiment has been performed, and the year of publication. An extensive list of abbreviations is found at the end
of this report. Correlations among these data are given in Table XXII.

Rel. stand.
Input datum Value unc. u, Lab. Reference(s) Sec.
Input data relevant for the fine-structure constant and the electron mass
D1 a.(exp) 1.159 652 180 73(28) x 1073 2.4 %1079  HarvU-08 Hanneke, Fogwell, and Gabrielse (2008) VIII
D2 4, 0.000(18) x 10712 [1.5x 107!]  theory VIII
D3 /m(¥Rb) 4.591359 2729(57)x 107 m?*s~! 1.2 x 107  LKB-11 Bouchendira er al. (2011) X
D4 h/m('3Cs) 3.0023694721(12)x 107 m>s™! 4.0x 1071 UCB-18 Parker et al. (2018) X
D5 A.(¥Rb) 86.909 180 5312(65) 7.4 x 107" AMDC-16 Huang er al. (2017) IX
D6 A, (133Cs) 132.905 451 9610(86) 6.5 x 107" AMDC-16 Huang er al. (2017) IX
D7 w,/w, for 12C>* 4376.210500 87(12) 2.8 x 107" MPIK-15 Kohler er al. (2015) XI.B
D8 AEy(C*)/he 43.563 233(25) x 107 m™! 5.8 x 1077 ASD-18 IX
D9 oc 0.0(2.5) x 10~! [1.3x107!"]  theory XI.C
D10 w,/w, for 28Si'3*  3912.866 064 84(19) 48 x 107" MPIK-15 Sturm ef al. (2013) and Sturm (2015) XILB
D11 A,(*Si) 27.976 926 534 99(52) 1.9 x 10°1"  AMDC-16 Huang er al. (2017) IX
D12 AER(®Si3*)/he  420.6467(85) x 107 m™! 2.0x 1073 ASD-18 IX
D13 &g; 0.0(1.7) x 107 [8.3x 107197 theory XI.C
Input data relevant for masses of light nuclei
D14 w.(d)/w.(?Co%)  0.992996 654 743(20) 2.0 x 107" UWash-15 Zafonte and Van Dyck (2015) IX
D15 o (2C*")/w.(p)  0.503 776 367 662(17) 3.3x 107" MPIK-17 HeiBe er al. (2017) X
D16 w.(t)/w.(*He ") 0.999 993 384 997(24) 24 x 107" FSU-15 Myers et al. (2015) IX
D17 o, (HDV)/w.(*Het) 0.998 048 085 122(23) 23 x 107" FSU-17 Hamzeloui et al. (2017) IX
D18 A,(n) 1.008 664 915 82(49) 4.9x 1071  AMDC-16 Huang ef al. (2017) X
D19 A,('H) 1.007 825 032 241(94) 9.3x 10°""  AMDC-16 Huang er al. (2017) X
D20 A,(“He) 4.002 603 254 130(63) 1.6 x 107" AMDC-16 Huang ef al. (2017) IX
D21 AE5("HY)/he 1.096 787 717 4307(10) x 10’m~! 9.1 x 10713 ASD-18 IX
D22 AEg(*He?)/he 6.372 195 4487(28) x 107 m™! 44x1071 ASD-18 IX
D23 AER('2C)/he 83.083 850(25) x 107 m™! 3.0 x 1077 ASD-18 IX
D24 AE,(*Het)/hc 43888919.36(3) m™! 6.8 x 1071 ASD-18 IX
D25 AE{(HD")/hc 13122 468.415(6) m™! 4.6 x 10710 Liu et al. (2010) and Sprecher er al. (2010) IX
Input datum relevant for the muon anomaly
D26 R 0.003 707 2063(20) 5.4 x 1077 BNL-06 Bennett et al. (2006) XVLA
Input data relevant for the muon mass and muon magnetic moment
D27 E(58 MHz)/h 627994.77(14) kHz 2.2 x 1077 LAMPF-82 Mariam (1981) and Mariam ez al. (1982) XVILB
D28 E(72 MHz)/h 668 223 166(57) Hz 8.6 x 1078 LAMPF-99 Liu er al. (1999) XVILB
D29 AEy,/h 4463 302.88(16) kHz 3.6 x 1078  LAMPF-82 Mariam (1981) and Mariam er al. (1982) XVILB
D30 AEy,/h 4463 302765(53) Hz 1.2x 1078 LAMPF-99 Liu et al. (1999) XVILB
D31 Sy /h 0(85) Hz [1.9x107%]  theory XVILA
Input data relevant for the magnetic moments of light nuclei

D32 pp,/un 2.792 847 344 62(82) 29 x 10710 UMZ-17 Schneider et al. (2017) XV
D33 u.(H)/pp(H) —658.210 7058(66) 1.0 x 1078 MIT-72  Sec. III.C.3 of Mohr and Taylor (2000) XIV.D
D34 py(D)/u.(D) —4.664 345 392(50) x 1074 1.1 x 1078 MIT-84 Sec. III.C.4 of Mohr and Taylor (2000) XIV.D
D35 u.(H)/up —658.215 9430(72) 1.1x 1078 MIT-77  Sec. III.C.6 of Mohr and Taylor (2000) XIV.D
D36 uy,/up, —0.761 786 1313(33) 43 x107° NPL-93 Flowers, Petley, and Richards (1993) XIV.D
D37 uy/up —0.684 996 94(16) 2.4 %1077 ILL-79  Sec. IIL.C.8 of Mohr and Taylor (2000) XIV.D
D38 u,(HD)/ug(HD)  3.257 199 531(29) 8.9x 107  StPtrsb-03 Neronov and Karshenboim (2003) XIV.D
D39 u,(HD)/ug(HD)  3.257 199 514(21) 6.6 x 107  WarsU-12 Garbacz er al. (2012) XIV.D
D40 u,(HD)/uy(HD) 3.257 199 516(10) 3.1x 107  StPtrsb-12 Neronov and Seregin (2012) XIV.D
D41 p(HT)/u, (HT) 1.066 639 8933(21) 2.0x 107  StPtrsb-11 Neronov and Aleksandrov (2011) XIV.D
D42 oy, 20.20(2) x 107° Puchalski, Komasa, and Pachucki (2015) XIV.C
D43 o, 24.14(2) x 107° Puchalski, Komasa, and Pachucki (2015) XIV.C

The Mainz value

D5 2279284734462(82) [2.9 x 10719]

[
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is consistent with but supersedes the 2014 result by the
same research group (Mooser et al., 2014). Improvements

(147) in the apparatus led to a relative uncertainty that is more
than an order of magnitude smaller than in 2014. The
025010-33
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TABLE XXII. Correlation coefficients r(x;,x;) > 0.0001 among
the input data in Table XXI.

#(D5,D6) = 0.1004 #(D5,D11) = 0.0495
r(D5,D18) = —0.0070 r(D5,D19) = 0.0657
r(D6,D11) = 0.0402 r(D6,D18) = —0.0070
r(D6,D19) = 0.0602 r(D7,D10) = 0.3473
r(D8,D23) = 0.9998 r(D9,D13) = 0.7994

r(D11,D18) = —0.0198 r(D11,D19) = 0.1934
r(D18,D19) = —0.1340 (D27, D29) = 0.2267
(D28,D30) = 0.1946

linewidth of the resonant Lorentzian signal was narrowed
by reducing magnetic-field inhomogeneity, and an
improved detector for the cyclotron frequency doubled
the data acquisition rate. The relative uncertainty of the
new result comprises 2.7 and 1.2 parts in 10'" from
statistical and systematic effects, respectively. The two
largest components contributing to the systematic uncer-
tainty are due to limits on line-shape fitting and on the
characterization of a relativistic shift and have been added
linearly to account for correlations. The total correction
from systematic effects is —1.3 parts in 10'°,

The observational equation for w,/@. and thus p,/uy is

Hp Ai(p)u
o o {1 4 ay(th) + 5(e)] 2P e
AN Ac(e) pe

(148)

using the definition of y in Eq. (45). The quantities & (e),
Ac(e), A;(p), and p./u, are adjusted constants. The theoretical
expression for the electron anomaly a.(th) is mainly a
function of adjusted constant a.

The input datum has identifier UMZ-17 and is item D32 in
Table XXI. Its observational equation can be found in
Table XXVI.

XVI. MUON MAGNETIC-MOMENT ANOMALY

The muon magnetic-moment anomaly a, and thus muon
g-factor g, = —2(1 4 a,) were measured in 2006. A theo-
retical expression for a, is also available and has steadily
been improved since this measurement. Only the measured
value of the muon anomaly, however, is included in the 2018
adjustment of the constants due to the disagreement between
theory and experiment. The measurement of ¢, and the theory
are summarized in the following sections.

A. Measurement of the muon anomaly

The 2006 determination of a, at Brookhaven National
Laboratory (BNL), USA has been discussed in the past
five CODATA reports. The quantity measured is the
anomaly difference frequency w, = w, — w., where w, =
|9u|(e/2m,,)B is the muon spin-flip (or precession) frequency
in the applied magnetic flux density B and o, = (e/m,)B is
the muon cyclotron frequency. The flux density is eliminated
from these expressions by determining its value from a
measurement of the precession frequency of the proton in
water in the same apparatus combined with the proton
shielding correction in water. This leads to a measurement
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of proton precession frequency w, = 2u,B/h, where the
magnitude of the proton magnetic moment, y,, and the g-
factor of the muon are defined in Sec. XIV.A.

The value of R = w,/ w,, is reported by the BNL exper-
imentalists. From Table XV of Bennett er al. (2006), we have

R =0.0037072063(20) [5.4x1077).  (149)

It is input datum D26 in Table XXI with identification
BNL-06. The corresponding observational equation is

Rea eh/(2m,) . a, me e
S 1+ a.(th) + 8y (e) my p,”

(150)

where the right-hand side of the equation is explicitly
expressed in terms of adjusted constants a,, me/m, pie/pp,
and additive correction &y (e) for the theoretical electron
anomaly a.(th). The anomaly a.(th) is mainly a function
of the adjusted constant a.

In practice, the muon anomaly can also be calculated from

R

a n ?
i/ pp| — R

u= (151)
as the uncertainty of the magnetic-moment ratio p,/u, is
much smaller than that of R. The 2018 CODATA recom-
mended value of the muon anomaly is

a, = 1.16592089(63) x 1073, (152)

B. Theory of the muon anomaly

The muon magnetic-moment anomaly can be expressed as

a,(th) = a,(QED) + a,(weak) + a,(had),  (153)
where terms denoted by “QED,” “weak,” and “had” account
for the purely quantum electrodynamic, predominantly
electroweak, and predominantly hadronic (that is, with
hadrons in intermediate states) contributions, respectively.
The QED contribution may be written as

+(QED) = > ¢ (—) (154)
n=1
where
Cﬁzn) :A<12n> +Agzn)(xpe) +A;2n) (xp‘r) +Ag2 )(xpe’xpr) (155>

with mass-independent coefficients Agzn)

(55) and functions A§2">(x) and Agzn)(x, y) evaluated at mass
ratios m,,/my for lepton X = e or 7. The expression for the
QED contribution has the same functional form as that for
the electron anomaly described in Sec. VIII, except that the

given by Eqgs. (51)-

mass-dependent terms A(ZZ") (x) are evaluated at different mass

ratios, while contributions due to Agzn) (x,y) are negligibly
small for the electron anomaly. Contributions from the mass-
dependent terms are generally more important for the muon
anomaly.
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TABLE XXIII.

Observational equations for input data on H/D spectroscopy, muonic-H and -D Lamb shifts, and electron-proton or deuteron

scattering given in Tables X, VIII, and XVIII as functions of adjusted constants. Labels in the first column correspond to those defined in the

tables with input data. Subscript X is H or D for hydrogen or deuterium, respectively. The symbol =
VILLA. Here, the symbol I'y represents the six adjusted constants
A.(N), and ry such that when X = H nucleus N = p, the proton, and when X = D nucleus N = d, the deuteron.

hydrogenic atoms, are discussed in Sec.

Roov a,Ar(C), me/mu’

Ex(n£;Tx),

is defined in Sec. III. Energy levels of

The Lamb shift for muonic atoms, A& g(pX), is discussed in Sec. XII. The last two entries are observational equations for nuclear-charge radii
as obtained from electron-proton and electron-deuteron scattering data discussed in Sec. XIIL

Input data

Observational equation

A6-A8, A10-A19, A22, A23, A26-A29

Al-A4, A20, A21, A24, A25

vx(ni€yj, — mts),) = [Ex(nzfzj'Z;Fx) + 8x(n25,)

_EX(nlfljl;FX)_5X(nlflj|)}/h

l/x(nlflj1 - nzfzj'g) —};Vx(nsfsh - n4f4j4) = {EX(anZjQ;FX) + 5X("zfzjz)

= Ex(ni¢y;,;Tx) = 8x(n,21;,)
-1 {Ex(”4f4j4§rx) + 0x(nals),)
— Ex(n3t3;,:T'x) —5X("3f3j3)}}/h

A5 vp(181)2 =285) —vn(18y), =25 0) = {ED(ZSI/ZaFD) +6p(2S1)2)

= Ep(1Sy/2;Tp) = ép(1Sy,2)
- [EH(251/2§FH) +6u(2S1,2)

- EH(ISI/Z;FH) - 5H(IS|/2)] }/h

A9 Vi(2S1 > — 4P, centroid) = {(EH(4P1 12:Th) + 64(4P, 1)) /3
+ 2(Eq(4P32; ) + 6u(4P312))/3
- EH(251/2§ Ty) - 5H(251/2)}/h

B1-B25 dx(nt;) = ox(nt))

C1-C6 A& s(pX) = Egx + Exxry + S (pX)

C7, C8 SEys(nX) = 0 (nX)

© Tp =Tp

Cl10 e

The mass-dependent functions A§2) (x), Agz)(x), and

Ag4) (x,y) are zero. The remaining nonzero mass-dependent
coefficients computed at the relevant mass ratios are given in
Table XXIV. Their fractional contributions to the muon anomaly
are given in Table XXV. Only four of the mass-dependent QED
corrections contribute significantly to the theoretical value for
the muon anomaly. Finally, a,(QED) based on the 2018
recommended value of a and lepton mass ratios is

a,(QED) = 0.001 165847 18897(84) [7.2x 1071%).  (156)

The primarily electroweak contribution is (Czarnecki,
Marciano, and Vainshtein, 2003; Gnendiger, Stockinger,
and Stockinger-Kim, 2013)

TABLE XXIV. Mass-dependent functions Agzn)(x), Agzn)

(x,y), and summed Cf

a,(weak) = 154(1) x 107!

" (157)

and contains both the leading term and also some higher-order
corrections.

Five terms of the hadronic correction of the muon anomaly
have been computed. They are

a,(had) = a;*"" (had) + ap*"" (had) +
+ ai+(had) + ap"*"* (had) +

NNLO VP(had)
(158)

corresponding to leading-order (LO), next-to-leading-order
(NLO), and next-to-next-to-leading-order (NNLO) vacuum-
polarization corrections and hadronic light-by-light (LL), and
higher-order light-by-light (NLO,LL) scattering terms, respec-
tively. Their values are

") coefficients for the QED contributions to the muon

anomaly based on the 2018 recommended values of lepton mass ratios. The functions are evaluated at mass ratios x,, = m,/m,. and/or

Xy =my/me.

2n) 2n)

n AP (x,e) AP (x,0) A" (X Xye) o

1 0 0 0 0.5

2 1.094 258 3098(72) 0.000078 076(10) 0 0.765 857 420(10)
3 22.868 379 99(17) 0.000 360 599(86) 0.000 527 738(71) 24.050 509 78(16)
4 132.6852(60) 0.042 4928(40) 0.06272(4) 130.8782(60)

5 742.18(87) —0.068(5) 2.011(10) 750.80(89)
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TABLE XXYV. Fractional contribution of mass-dependent functions

A(ZZ")(x) and Agzn)(x,y) for the QED contributions to the muon
anomaly based on the 2018 recommended values for a and lepton
mass ratios. Fractional contributions are defined as AE-Z")
(a/m)"/a,(th) for j =2 or 3 and the relative standard uncertainty
of a,(th) is 3.3 x 1077, The functions are evaluated at mass ratios

Xye = my/me and/or x, = my/m..

X

(2n) (2n)

n A2 (xue) AéZn) (xpr) A3 (xuevxpr)
2 5.06 x 1073 3.61 x 1077
3 2.46 x 10~ 3.88 x 107° 5.67 x 107°
4 3.31 x 107° 1.06 x 10~° 1.57 x 107°
5 4.30 x 1078 -3.94 x 10712 1.17 x 10710
ai® VP (had) = 6932.6(24.6) x 1071, (159)
an™O VP (had) = —98.2(4) x 107" (160)

from Keshavarzi, Nomura, and Teubner (2018) based on
et —e™ annihilation data. Davier ef al. (2017) and Jegerlehner
(2018) gave results that are consistent but slightly less
accurate. Of these three publications, only Jegerlehner
(2018) has included tau-lepton-decay data. The next-to-
next-to-leading-order correction is

afNOVP (had) = 12.4(1) x 107! (161)

from Kurz er al. (2014b). Light-by-light corrections are

a]gL(had) =103(29) x 1071 (162)
from Jegerlehner (2018) and
ap"" (had) = 3.0(2.0) x 107" (163)

from Colangelo ef al. (2014). The combined hadronic con-
tribution is then

a, (had) = 6967(59) x 10711 (164)

Based on the 2018 recommended value of @ and lepton
mass ratios,

ay(th) = 1.165918 13(38) x 1073 (165)

for the theoretically predicted value of a, with standard
uncertainty

ula,(th)] =38 x 107" =33 x107q,.  (166)

The largest and equally important contributions to the uncer-
tainty of a,(th) are from a;”""(had) and af(had). By
comparison, the uncertainty of a,(QED) is negligible.

C. Analysis of experiment and theory for the muon anomaly

Figure 7(a) compares three recent determinations of

aL‘O’VP (had) based on electron-positron annihilation data with

Rev. Mod. Phys., Vol. 93, No. 2, April-June 2021

that mentioned in the 2014 CODATA report, i.e., the value
from Hagiwara et al. (2011). Although the four values are
consistent, the spread in values is rather large given that they
are based on the same input data. This suggests that uncer-
tainties remain underestimated. Nevertheless, for this discus-
sion we have chosen the value given by Keshavarzi, Nomura,
and Teubner (2018), because it has the smallest uncertainty.

In addition, Fig. 7 shows the results of two independent
first-principle lattice-QCD evaluations of a;°"F(had), both
published in 2018. We have

ai®VP(had) = 7111(75)(174) x 107" (167)
from Borsanyi et al. (2018) and
a;% V¥ (had) = 7154(163)(92) x 10~ (168)

from Blum er al. (2018). The first and second numbers in
parentheses correspond to the statistical and systematic
uncertainties, respectively. The systematic uncertainty is
dominated by finite-volume artifacts. In Fig. 7, the two
uncertainties are added in quadrature. Blum er al. (2018)
also describe a model that merges data from electron-positron
annihilation data with their lattice-QCD evaluation. This leads
to a more accurate determination of a;®"F(had) with the
value

(a) l I|—Ol—|I I Halgiwaral etal. 2201 1)
—0O— Davier et al. (2017)
+ - .
—o— € € scattering Jegerlehner (2018)
o+ Keshavarzi et al. (2018)
) ~ Borsanyi et al. (.2018)
. e !
lattice QCD
L O ]
! 0 0 ~ !
hybrid scattering >Blum etal. (2018)
1 N I& QCDI 1 N 1
6800 6900 7000 7100 7200 7300
LO hadronic VP correction to a, (10'11)
4 I 4 I 4 I 4 I 4 I
(b) 00— Jegerlehner et al. (2009)
O Jegerlehner (2018)
N 1 N 1 N 1 N 1 N 1
0 100 200 300 400 500

LL hadr. correction to a 10

FIG. 7. Comparison of recent determinations of the leading-
order hadronic (LO) vacuum-polarization [panel (a)] and light-
by-light (LL) [panel (b)] contributions to the muon anomaly.
Error bars are one-standard-deviation uncertainties. The LO, VP,
and LL contributions limit the uncertainty of a,(th). The
horizontal interval of the two panels is the same so that
uncertainties can be compared. From top to bottom, data are
from Hagiwara et al. (2011), Davier et al. (2017), Jegerlehner
(2018), Keshavarzi, Nomura, and Teubner (2018), Borsanyi et al.
(2018), and Blum et al. (2018) in panel (a) and from Jegerlehner
and Nyffeler (2009) and Jegerlehner (2018) in panel (b).
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FIG. 8. Comparison of the experimental and theoretical value
for the muon anomaly. Values have been scaled by the uncertainty
of the 2018 recommended value.

V" (had) [y g = 6925(27) x 10711 (169)
consistent in both value and uncertainty with data solely based
on electron-positron annihilation data.

Figure 7(b) compares two evaluations of the leading-order
light-by-light correction. Separated by almost ten years in
publication date, the value has only slightly improved. The
newest is considered here. As in the 2014 CODATA report,
based on the analyses of Dorokhov, Radzhabov, and
Zhevlakov (2014a, 2014b), Nyffeler (2014), and Adikaram
et al. (2015), not shown in the figure, we note that af"(had) is
model dependent and that a reliable estimate might still be
missing.

The experimental and theoretical values for the muon
magnetic-moment anomaly, i.e., Egs. (152) and (165), respec-
tively, are compared in Fig. 8. The difference between
experiment and theory is just under four times the uncertainty
of the difference. This is larger than in the 2014 CODATA
report, as both a;”"F(had) and al“(had) have become
smaller.

An expansion of only the uncertainty of a,(th) to attempt to
account for the spread in the values of a{;O‘VP(had) and
a{;L(had) would significantly reduce its contribution in a least-
squares adjustment that includes both input data R and a,(th).
Expanding the uncertainties of a,(th) and a,(exp) to reduce
the residual for both input data to less than two leads to a
recommended value that ceases to be a useful reference value
for future comparisons of theory and experiment. For all these
reasons, the Task Group chose not to include a,(th) in the
2018 adjustment and to base the 2018 recommended value on
experiment only.

XVII. ELECTRON-TO-MUON MASS RATIO AND
MUON-TO-PROTON MAGNETIC-MOMENT RATIO

Muonium (Mu) is an atom consisting of a (positively
charged) antimuon and a (negatively charged) electron.
Measurements of two muonium ground-state hyperfine tran-
sition energies in a strong magnetic flux density combined
with theoretical expressions for these energies provide infor-
mation on the electron-to-muon mass ratio, m./m,,, as well as
the antimuon-to-proton magnetic-moment ratio, 4+ /u,. Here,
the proton magnetic moment only appears because the applied
magnetic field or flux density is found by “replacing” the
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muonium with a proton in the experimental apparatus and
measuring the transition frequency w, of its precessing spin.
(More precisely, replacing muonium with a liquid-water
sample, measuring the proton spin-precession frequency in
water, and accounting for a shielding correction.)

In the remainder of this section, we summarize the
theoretical determination of the zero-flux-density muonium
hyperfine splitting (HFS) and the experimental measurements
at field fluxes between one and two tesla. Results of relevant
calculations and measurements are given along with refer-
ences to new work; references to the original literature used in
earlier CODATA adjustments are not repeated. We finish with
an analysis of the data.

A. Theory of the muonium ground-state hyperfine splitting

The theoretical expression for the muonium hyperfine
energy splitting absent a magnetic field may be factored into

with the Fermi energy formula

16 -3
AEp = ?thwZ3a2E (1 + m—) . a7y

my, nmy,

which contains the main dependence on fundamental con-
stants, and a function 7 = 1 + a/z + - - - that only depends
weakly on them. (Recall E,, = 2R hc = a’m.c?.) The charge
of the antimuon is specified by Ze rather than e in order to
identify the source of terms contributing to AEyy,(th).

The Fermi formula in Eq. (171) is expressed in terms of our
adjusted constants R, a, and m./m,. The relative uncer-
tainties of R, and a are much smaller than those for the
measured AEy;,. Hence, a measurement of AEy;, determines
the electron-to-muon mass ratio.

The general expression for the hyperfine splitting and thus
also F is

AEMu (th) = AEp + AErad + AErec + AE., + AEweak

+ AEp. (172)

where subscripts D, rad, rec, r-r, weak, and had denote the

Dirac, radiative, recoil, radiative-recoil, electroweak, and

hadronic contributions to the hyperfine splitting, respectively.
The Dirac equation yields

AEp = AEg(1 +a,) [1 +%(Za)2 +%7(Za)4 +-- } . (173)

where a, is the muon magnetic-moment anomaly. Radiative
corrections are

AE,q = AEg(1 + a,) iDO")(Za) <a>n, (174)

n=1 T

where functions D" (x) are contributions from n virtual
photons. The leading term is
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TABLE XXVI. Observational equations for input data in Tables XXI and XXVII as functions of the adjusted constants.
The data determine the fine-structure constant, electron and muon masses and anomalies, masses and magnetic moments of
light nuclei, as well as the lattice spacing of an ideal natural Si crystal and x-ray units. The labels in the first column
correspond to those in the first column of Tables XXI and XXVII. For simplicity, the lengthier functions are not explicitly
given. See Sec. III for an explanation of the symbol =

Input data Observational equation Sec.
D1 a.(exp) = a.(th) + 5y (e) VIII
D2 e = Sy (e) VIII
D3, D4 ho . Ale) ca? X
m(X)  A(X)2R,
D5, D6, D18 A(X) = A(X) IX
D7 o ("C5) | go(PCT)+64(C) XIC
s = 12-5A AEg(12C5)a?A,(e) /2R h
CUC(12C5+) 10Ar(e) [ r(e)+ B( )a r(e)/ o0 C]
D8, D12, D21-D23 AER(X™) = AEg(X™) IX
D9 Sc = 64,(C) XLC
D10 wS(zZS.i?) . _ge(2SSil3+) + 84 (Si) A (i) XI.C
w (*Sil) 26A,(e)
DIl A, (3881) = A, (3Si3) + 134, (e) — AER(3SiB3)a?A, (e) /2R, he X
D13 8gi = 6 (Si) XI1.C
D14 w.(d) . 12—6A,(e) + AER("*Co")a’A,(e) /2R, he IX
w (12Co*) 6A,(d)
D15 w (1%C) | 6A,(p) IX
w.(p)  12-64,(e) + AE(12COM)a?A, () /2R he
D16 o (t) . Ai(h) +A(e) - AE;(*He")a?A,(e)/2R  he IX
w(*He™) A(t)
D17 o (HDY) | A(h) +A(e) — E(*He")a?A,(e) /2R o he X
o.(CHe™) ~ Ai(p) + A (d) + A,(e) — AE;(HD* )a?A, (e) /2R . he
D19 A.('H) = A,(p) + A,(e) — AEg('"H")?A,(e) /2R  he X
D20 A;(*He) = A () + 2A,(e) — AEg (*He*")a?A,(e) /2R he IX
D24, D25 AE( (X)) = AE[(XT) IX
D26 R ay M fe XVLA
1 + ae(th) + S (e) my iy
. m JZ
b27. D28 E(wy) = Bl Ruvs .2 0 2. 60(): 60 (M) XVILD
D29, D30 AEyy, = AEy (th; Ry, @, — @) + 6(Mu) XVILA
m
n
D31 Syt = 8 (Mu) XVILA
D32 My . Ap) K XV
o 2 (14 a(th) + 5y (e)) D)o
HUN Ar(e) He
D33 u.(H) . g.(H) (gp(H))‘l Ue XIV.D
Hp (H) e 9p Hp
D34 #a(D) . ga(D) ge(D) "' g XIV.D
,"‘e(D) 9d e He
D35 He(H) . ge(H) pe XIV.D
Hp 9e Hp
D36 I XIV.D
Ho  Hp
D37 Hn . Mo XIV.D
Py Hp
D38-D40 HD XIV.D
#p(HD) | 1+ o) P2t
Ha(HD) He Ha
D41 w(HT) . 1 XIV.D
Hp(HT) 1+ 0 4y
D42, D43 ONN' = ONN' XIV.C
El1-E4 do(Y) . dy(Y) XVIII
d220 (X) d220 (X)

(Table continued)
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TABLE XXVI. (Continued)

Input data Observational equation Sec.
E5-E13 doo(X) | L do(X) _| XVII
dyo(Y) dyo(Y)

E14-E17 drro(X) = daro(X) XVIII

E18, E19 A(CuKa,) , 1537.400 xu(CuKa,) XVIII
do(X) dyno(X)

E20 A(WKo) . 02090100 A* XVIII
dyo(N) — dnp(N)

E2] AMoKa;) , 707.831 xu(MoKa, ) XVIII
do(N) — dmo(N)

5 2
D@ (x) = A? + (mz - 5) X+ [—§1n2(x—2)

281 8 . 2
+<360 zIn 2) In(x )+16.9037...]x

N K; n2— %) ln(x‘z)} o + GO, (175)

where Aiz) = 1/2, asin Eq. (51). The function G(x) accounts
for all higher-order contributions in powers of x; it can be
divided into self-energy (SE) and vacuum-polarization (VP)
contributions, G(x) = Ggg(x) + Gyp(x). Yerokhin and
Jentschura (2008, 2010) and Karshenboim, Ivanov, and
Shabaev (1999, 2000) have calculated the one-loop self-
energy and vacuum-polarization contributions for the muo-
nium HES with x = a. Their results are
Gge(a) = —13.8308(43) (176)
and
Gyp(a) =7.227(9), (177)

m 3 Za
AE.. =AEg—(-——"——1n +
ec : my ( 1 - (me/mp)z (me) (1 + me/mp)

1) n(2e + =4
me 47172

10 om 2) In(Za)™% + 40(10) } @) +---

1 101
+ {—%ln (Z—:) In(Za)™% - glnz(Zoz)'2 + (

9 m 27
—~ 1n2( =+ = _
e () + o

The leading-order O(AEga?) radiative-recoil contribution is

st =0 () S [ () oG

21 > 35 4
3 12—2
+= C()+6+9] Ln

+ (2~ ) e
el G =3 G )3

- 40(10)]11:(1

where the latter uncertainty is meant to account for neglected
higher-order Uehling-potential terms; it corresponds to
energy uncertainties less than z x 0.1 Hz, and is thus entirely
negligible.

For D™ (x), we have

1
DW(x) =AY +0.77099(2)x + {— ()

—0.6390... x In(x"2) + 10(2.5)]x2 e (178)

(4)

where A" is given in Eq. (52). The next term is

(179)
where the leading contribution Agﬁ) is given in Eq. (53), but
only partial results of relative order Za have been calculated
(Eides and Shelyuto, 2007). Higher-order functions D) (x)
with n > 3 are expected to be negligible.

The recoil contribution is

1 65
In (Z —8In2+4 —
{n( a)~? +18

332(3) 13
-3y 120 2} mu}(Za)

3 (180)

[
where, for simplicity, the explicit dependence on Z is not
shown. Single-logarithmic and nonlogarithmic three-loop

radiative-recoil corrections of O(AEpa®) are (Eides and
Shelyuto, 2014)

3
AEF<9> e {[ 622+ % + 27| 1n™ 4 68, 507(2)}
) my, 3 8 me

= h x =30.99 Hz. (182)

Uncalculated remaining terms of the same order as those
included in Eq. (182) have been estimated by Eides and
Shelyuto (2014) to be about h x 10 Hz to h x 15 Hz.

e 13 Additional radiative-recoil corrections have been calculated,
—AE () (6 In2+ 6) o (181) but are negligibly small, less than & x 0.5 Hz.
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The electroweak contribution due to the exchange of a Z°
boson is (Eides, 1996)

AE, oy /h = —65 Hz, (183)

while for the hadronic vacuum-polarization contribution we
have

AEpq/h = 237.7(1.5) Hz. (184)

This hadronic contribution combines the result of Nomura and
Teubner (2013) with a newly computed i x 4.97(19) Hz
contribution from Shelyuto, Karshenboim, and Eidelman
(2018). A negligible contribution (~h x 0.0065 Hz) from
the hadronic light-by-light correction has been given by
Karshenboim, Shelyuto, and Vainshtein (2008).

The uncertainty of AFEy(th) in Eq. (172) is determined,
from the largest to smallest component, by those in AE,,
AE, ., AE,, and AE,,4. The h x 1.5 Hz uncertainty in the
latter is only of marginal interest.

For AE .., the total uncertainty is # x 64 Hz and has three
components. They are & x 53 Hz from twice the uncertainty
10 of the number 40 in Eq. (180) as discussed in the 2002
CODATA adjustment, & x 34 Hz due to a possible recoil
correction of order AEg(m./m,) x (Za)* In(m./m,), and,
finally, 7 x6 Hz to reflect a possible recoil term of
order AEg(me/m,) x (Za)*In*(Za)™2.

The uncertainty in AE, . is h x 55 Hz, with h x 53 Hz due
to twice the uncertainty 10 of the number —40 in Eq. (181) as
above, and h x 15 Hz as discussed in connection with
Eq. (182). The uncertainty in AE_4 is h x 5 Hz and consists
of two components: & x 4 Hz from an uncertainty of 1 in
Gyp(@) due to the uncalculated contribution of order a(Za)?,
and A x 3 Hz from the uncertainty 2.5 of the number 10 in the
function D™ (x).

The final uncertainty in AEy;,(th) is then

u[AEp, (th)]/h = 85 Hz. (185)

For the least-squares calculations, we use the observational
equations

B. Measurements of muonium transition energies

The two most precise determinations of muonium hyperfine
transition energies were carried out by researchers at the Meson
Physics Facility at Los Alamos (LAMPF), New Mexico, USA
and published in 1982 and 1999, respectively. These transition
energies are compared to differences between eigenvalues of
the Breit-Rabi Hamiltonian (Breit and Rabi, 1931; Millman,
Rabi, and Zacharias, 1938) modified for muonium using a
magnetic flux density determined from the free-proton NMR
frequency measured in the apparatus. The experiments were
reviewed in the 1998 CODATA adjustment.

Data reported in 1982 by Mariam (1981) and Mariam et al.
(1982) are

AE\,/h = 4463302.88(16) kHz [3.6 x 107%]  (188)
for the hyperfine splitting and
E(w,)/h = 627994.77(14) kHz [22x107"]  (189)

for the difference of two transition energies with correlation
coefficient

r[AE\y, E(w,)] = 0.227. (190)
In fact, AEy;, and E(w,) are the sum and difference of two
measured transition energies, fiw, = 2u,B is the free-proton
NMR transition energy, and only E(w,) depends on @,. In this
experiment, hwp = hx57972993 MHz at its 1.3616 T

magnetic flux density.
The data reported in 1999 by Liu er al. (1999) are

AEy,/h = 4463302765(53) Hz [1.2x 107%],  (191)
E(w,)/h = 668223166(57) Hz [8.6 x 107%] (192)

with correlation coefficient
r[AEyy. E(w,)] = 0.195 (193)

and hw, = h x 72.320000 MHz for the proton transition
energy in a flux density of approximately 1.7 T.
The observational equations are Eq. (186) and

AEyy = AEy (th) + 84(Mu) (186)  Elop) ==(We- +Wy)
/1A Eygy (th) + 80, (Mu)l> - (Wee = W, )2, (194)

and

where W, = —[u,(Mu)/u,|hw,. Explicitly expressing We-

Svu = 6 (Mu), (187) and W+ in terms of adjusted constants then yields

where &y, (Mu) accounts for the uncertainty of the theoretical W, =— M/ﬁ hw ) (195)
expression and is taken to be an adjusted constant. Based on 9e  Hp
Eq. (185), its corresponding input datum in the 2018 adjust-
ment is Sy, = 0(85) Hz. The input data AEyy, are discussed and
later. The theoretical hyperfine splitting AEy, (th) is mainly a M ]
function of the adjusted constants R, a, and m./m,,. Finally, W, = 9u(Mu) T Me Pe- ho,. (196)
the covariance between AFEy;, and Sy, is zero. gu 1+ ae(th) + 6 (e) my, py
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Here, we have used the fact that u,(Mu) = g,(Mu)eh/4m,
for the magnitude of the magnetic moment of lepton £ in
muonium (see Secs. VIII and XIV.A), |g-| = 2(1 + a,), and
crucially g,+ = —g,-. The g-factor ratios g.(Mu)/g. and
gu(Mu)/g, are given in Table XX.

The adjusted constants in Eq. (186) and Eqgs. (194)—(196)
are the magnetic-moment anomaly a,, mass ratio m¢/m,,
magnetic-moment  ratio .- /u,, and additive constants
Sn(Mu) and &y (e). The latter two constants account for
uncomputed theoretical contributions to AEy,(th) and a.(th),
respectively. Finally, AEy(th) is mainly a function of
adjusted constants m¢/m,, R, and a; a.(th) is mainly a
function of R, and a. The accurately measured or computed
ho,, and ratios g,(Mu)/g, are treated as exact in our least-
squares adjustment.

It is worth noting that in Eq. (194) the energy W.- > 0, and
at the flux densities used in the experiments |W-| ~ AEy, (th)
and |W,:| < |W.|. Consequently, the right-hand side of
Eq. (194) only has a weak dependence on AEy(th) and
the corresponding input datum does not significantly constrain
AEy(th) and thus m/m, in the adjustment.

For ease of reference, the experimental and theoretical input
data for muonium hyperfine splittings are summarized in
Table XXI and given labels D27 through D31. Observational
equations are summarized in Table XXVI.

C. Analysis of the muonium hyperfine splitting and mass
ratio m, /m,

The 2018 recommended value for the muonium hyperfine
splitting is

AEy, (th) + 64 (Mu)

= hx4463302776(51) Hz [1.1 x 107%],  (197)
which is consistent in both value and uncertainty with the
most accurately measured value of Eq. (191). More impor-
tantly, the prediction &y, (Mu)/h = —4(83) Hz for the additive
constant falls well inside the 85 Hz theoretical uncertainty. As
6 (Mu) is a measure of uncomputed terms in the theory, the
value implies that the theory is sufficiently accurate given the
current constraints. Eides (2019) gave an alternative predic-
tion for the uncertainty of the recommended muonium hyper-
fine splitting.

The 2018 recommended value for the muon-to-electron
mass ratio is

my,/m, = 206.768 2830(46) (198)

and has a relative standard uncertainty of 2.2 x 1078 that is
nearly twice that of the 1999 measurement of AE) in
Eq. (191). This increase simply reflects the fact that the square
of the relative standard uncertainty for m,,/m, to good approxi-
mation satisfies

u%(mp/me) = ”rz(AEMu(th)) + u%(AEMu)v (199)
which follows from error propagation with Egs. (170) and (186).

The relative standard uncertainties in the theory for and
measurement of the hyperfine splitting are almost the same.
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New data on the muonic hyperfine splitting by the
MuSEUM collaboration at the J-PARC Muon Science
Facility are expected in the near future (Strasser et al., 2019).

XVIII. LATTICE SPACINGS OF SILICON CRYSTALS

In this section, we summarize efforts to determine the lattice
spacing of an ideal (or nearly perfect) natural-silicon single
crystal. We also present values for several historical x-ray
units in terms of the SI unit meter. Three stable isotopes of
silicon exist in nature. They are 28Si, °Si, and 'Si with
amount-of-substance fractions x(“Si) of approximately 0.92,
0.05, and 0.03, respectively. Highly enriched silicon single
crystals have x(*%Si) ~ 0.999 96.

The quantities of interest are the {220} crystal lattice
spacing dyy(X) in meters of a number of different crystals
X using a combined x-ray and optical interferometer (XROI)
as well as the fractional differences

do(X) = dy(Y)
dyy(Y)

(200)

for single crystals X and Y, determined using a lattice
comparator based on x-ray double-crystal nondispersive
diffractometry.

Data on eight natural Si crystals, in the literature denoted by
WASO 4.2a, WASO 04, WASO 17, NRLM3, NRLM4, MO¥*,
ILL, and N, are relevant for the 2018 CODATA adjustment.
Their lattice spacings dy(X) are adjusted constants in our
least-squares calculations. The simplified notation W4.2a,
W04, W17, NR3, and NR4 is used in quantity symbols
and tables for the first five crystals. The lattice spacing for the
ideal natural-silicon single crystal d,, is an adjusted constant.

Lattice-spacing data included in this adjustment are items
EI-E17 in Table XXVII and quoted at a temperature of
22.5°C and in vacuum. All data but one were already included
in the 2014 adjustment. The new measurement is from Kessler
et al. (2017) at the National Institute of Standards and
Technology, Gaithersburg, USA and given as item E13 in
the table. They measured the fractional difference for natural
Si crystals ILL and WO04. Consistent with previous adjust-
ments and, in particular, following the discussions by Mohr
and Taylor (1999, 2000), we expand their quoted uncertainty
by 20 x 10 in quadrature to properly account for uncer-
tainties due to carbon and oxygen impurities in the crystal.

The copper Ka; x unit with symbol xu(CuKa;), the
molybdenum Ka; x unit with symbol xu(MoKa, ), and the
angstrom star with symbol A* are historic x-ray units that are
still of current interest. They are defined by assigning an
exact, conventional value to the wavelength of the CuKo;,
MoKa;, and WKa,; x-ray lines. These assigned wavelengths
for A(CuKa;), A(MoKa;), and A(WKoay) are 1537.400
xu(CuKa,), 707.400 xu(MoKa;), and 0.2090100 A*,
respectively. The four relevant experimental input data are
the measured ratios of CuKa,;, MoKa;, and WKa; wave-
lengths to the {220} lattice spacings of crystals WASO 4.2a
and N and are items E18-E21 in Table XXVII. In the least-
squares calculations, the units xu(CuKa, ), xu(MoKa, ), and
A* are adjusted constants.
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TABLE XXVIL

CODATA recommended values of the fundamental ...

Input data for the determination of the 2018 recommended values of the lattice spacings of an ideal natural Si crystal and x-

ray units. The label in the first column is used in Table XXVIII to list correlation coefficients among the data and in Table XXVI for
observational equations. The uncertainties are not those as originally published, but corrected according the considerations in Sec. IIL.I of Mohr
and Taylor (2000). For additional information about the uncertainties of data published after the closing data of the 1998 CODATA adjustment,
see also the corresponding text in this and other CODATA publications. Columns four and five give the reference and an abbreviation of the
name of the laboratory in which the experiment has been performed, and year of publication. An extensive list of abbreviations is found at the

end of this report.

Relat. stand.

Input datum Value uncert. u, Laboratory Reference(s)
El 1 — doyg(W17)/dn(ILL) -8(22) x 107° NIST-99 Kessler et al. (2000)
E2 1- dzzo(MO )/dzzo(ILL) 86(27) X 10_9 NIST-99 Kessler et al. (2000)
E3 1 — dapo(NR3)/dspo(ILL) 33(22) x 107 NIST-99 Kessler et al. (2000)
E4 1 — dypg(N)/dpg(W17) 7(22) x 107° NIST-97 Kessler, Schweppe,
and Deslattes (1997)
ES dro(W4.22)/dyy(W04) — 1 —-1(21) x 107° PTB-98 Martin er al. (1998)
E6 dro(W17)/dyrg(W04) — 1 22(22) x 1070 PTB-98 Martin et al. (1998)
E7 dzzo(W17) /dyn(WO04) — 11(21) x 107 NIST-06 Hanke and Kessler (2005)
E8 drro(MO*) /dopy(W04) — 1 —103(28) x 107° PTB-98 Martin et al. (1998)
E9 d0(NR3)/dayo(W04) — —23(21) x 107 PTB-98 Martin et al. (1998)
E10 dyn(NR3)/dpg(W04) — —-11(21) x 107° NIST-06 Hanke and Kessler (2005)
Ell dryo/drog(W04) — 1 10(11) x 107° PTB-03 Becker er al. (2003)
El12 dro(NR4) /dryo(W04) — 1 25(21) x 107° NIST-06 Hanke and Kessler (2005)
E13 dyo(ILL)/ dpo(W04) — 1 —20(22) x 107 NIST-17 Kessler ef al. (2017)
El4 dro(MO*) 192 015.5508(42) fm 22x 1078 INRIM-08 Ferroglio, Mana,
and Massa (2008)
E15 dryo(W04) 192 015.5702(29) fm 1.5x 1078 INRIM-09 Massa et al. (2009)
El6 dyo(W4.2a) 192 015.5691(29) fm 1.5x 1078 INRIM-09 Massa, Mana,
and Kuetgens (2009)
El17 dro(W4.2a) 192 015.563(12) fm 6.2 %108 PTB-81 Becker et al. (1981);
El18 ACuKay)/dyo(W4.2a) 0.802327 11(24) 3.0x 1077 FSUJ/PTB-91 Windisch
and Becker (1990);
and Hirtwig et al. (1991)
E19 A(CuKay)/dyo(N) 0.802 328 04(77) 9.6 x 1077 NIST-73 Deslattes
and Henins (1973)
E20 AW Kat)/doop(N) 0.108 852 175(98) 9.0 x 1077 NIST-79 Kessler, Deslattes,
and Henins (1979)
E21 AMo Ka;)/dr0(N) 0.369 406 04(19) 5.3 %1077 NIST-73 Deslattes and Henins (1973)
TABLE XXVIII.  Correlation coefficients r(x;, x; ) > (0.0001 among the input data for the lattice spacing of an ideal natural Si crystal and x-ray

units given in Table XXVII.

r(E1,E2) = 0.4214 r(E1,E3) = 0.5158 r(E1,E4) = —0.2877 r(E1,E7) = —0.3674 r(E1,E10) = 0.0648
r(E1,E12) = 0.0648 r(E2,E3) = 0.4213 r(E2.E4) = 0.0960 r(E2,E7) = 0.0530 r(E2,E10) = 0.0530
r(E3,E4) = 0.1175 #(E3,E7) = 0.0648 #(E3.E10) = —0.3674 #(E3,E12) = 0.0648

r(E4,E7) = 0.5037
r(ES.E9) = 0.5017
#(E8.E9) = 0.3718

r(E6, E8) = 0.3472

)

)
r(E2,E12) = 0.0530
)

)

) r(E10,E12) = 0.5093

)

)
#(E4,E10) = 0.0657
)

)

r(E6, E9) = 0.4685

)=
)=
)=
r(E4,E12) = 0.0657
)=
r(E14,E15) = 0.0230

r(E7,E10) = 0.5093
r(E14,E16) = 0.0230

(E7.E12) = 0.5093

)
)
)
r(E5,E8) = 0.3718
)
r(E15,E16) = 0.0269

)=

)
r(ES,E6) = 0.4685

)=

)=

The correlation coefficients among the data on lattice spac-
ings and x-ray units are given in Table XX VIII. Discussions of
these correlations can be found in previous adjustments. The
sole new data point has no correlations with previous data.
Observational equations may be found in Table XXVI.

XIX. NEWTONIAN CONSTANT OF GRAVITATION
Table XXIX summarizes the 16 measured values of the
Newtonian constant of gravitation G considered as input data

for the 2018 adjustment. Since the 2014 adjustment, two new
values have become available (Li ez al., 2018) and corrections
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have been applied to a previously reported value (Parks and
Faller, 2010). Figure 9 illustrates all input data. The mea-
surements are inconsistent and an expansion factor of 3.9 is
required to bring all residuals to within a factor of two from
the 2018 recommended value of

G =6.67430(15) x 10~ m*kg~!s~2 [22x1075].  (201)

The five measurements that contribute most to this value are
the UWash-00, UZur-06, UCI-14, and the HUST, 1-18
values. The residuals of the data from BIPM-14 and JILA-
18 are the largest and determined our expansion factor.
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TABLE XXIX. Input data for the Newtonian constant of gravitation G relevant to the 2018 adjustment. The first two columns give the
reference and an abbreviation of the name of the laboratory in which the experiment has been performed, and year of publication. The data are
uncorrelated except for three cases with correlation coefficients r(NIST-82, LANL-97) = 0.351, r(HUST-05, HUST-09) = 0.134, and
r(HUST-09, HUST-18) = 0.068.

Source Identification Method G(107" kg™! x m?s72) Rel. stand. uncert. u,
Luther and Towler (1982) NIST-82 Fiber torsion balance, 6.67248(43) 6.4 x 1073
dynamic mode
Karagioz and Izmailov (1996) TR&D-96 Fiber torsion balance, 6.6729(5) 7.5 %1073
dynamic mode
Bagley and Luther (1997) LANL-97 Fiber torsion balance, 6.673 98(70) 1.0 x 107*
dynamic mode
Gundlach and Merkowitz UWash-00 Fiber torsion balance, 6.674 255(92) 1.4 %1073
(2000, 2002) dynamic compensation
Quinn et al. (2001) BIPM-01 Strip torsion balance, 6.67559(27) 4.0x 1073
compensation mode,
static deflection
Kleinevof (2002) and UWup-02 Suspended body, 6.67422(98) 1.5%x 10
KleinvoB et al. (2002) displacement
Armstrong and Fitzgerald MSL-03 Strip torsion balance, 6.673 87(27) 4.0 x 107
(2003) compensation mode
Hu, Guo, and Luo (2005) HUST-05 Fiber torsion balance, 6.67222(87) 1.3x10™*
dynamic mode
Schlamminger et al. (2006) UZur-06 Stationary body, 6.67425(12) 1.9 x 1073
weight change
Luo et al. (2009) and HUST-09 Fiber torsion balance, 6.67349(18) 2.7 x 1073
Tu et al. (2010) dynamic mode
Quinn et al. (2013, 2014) BIPM-14 Strip torsion balance, 6.675 54(16) 2.4 %1073
compensation mode,
static deflection
Prevedelli et al. (2014) and LENS-14 Double atom interferometer, 6.67191(99) 1.5x 10
Rosi et al. (2014) gravity gradiometer
Newman et al. (2014) UCI-14 Cryogenic torsion balance, 6.67435(13) 1.9 x 1075
dynamic mode
Li et al. (2018) HUST-18 Fiber torsion balance, 6.674 184(78) 1.2 x 1073
dynamic mode
Li et al. (2018) HUST,-18 Fiber torsion balance, 6.674 484(77) 1.2 x 107
dynamic compensation
Parks and Faller (2019) JILA-18 Suspended body, 6.672 60(25) 3.7 x 1075

displacement

‘We note, however, that the inconsistencies are smaller than in
our previous 2014 adjustment.

We briefly describe the new measurements in the next two
sections. Details regarding older measurements can be found
in descriptions of previous CODATA adjustments.

A. Corrected value of the 2010 measurement at JILA

In 2010, Parks and Faller (2010) at JILA, University of
Colorado and National Institute of Standards and Technology,
Boulder, Colorado, USA used simple pendulums to determine
G in an experimental design similar to that of Kleinevof
(2002) and KleinvoB et al. (2002). Two pendulums, each with
a cylindrical test mass suspended by four wires, were aligned
such that the cylinders were colinear. As surrounding source
masses moved, changes in the separation between the test
masses were interferometrically monitored.

In 2016, the apparatus was transferred to NIST,
Gaithersburg, Maryland, USA with the goal of repeating
the experiment. During initial preparations at NIST, two
calculational errors were discovered, both associated with
the rotation of the test masses when they are horizontally
displaced. Rotation occurred because the connection points of

Rev. Mod. Phys., Vol. 93, No. 2, April-June 2021

the suspension wires to the test masses were located above
their center of mass. The first error was in the derivation of the
pendulums’ effective spring constants used to calculate the
gravitational force from a measured horizontal separation
between the test masses. The contribution from rotation to
the spring constants was overestimated. The initial relative
correction to G of 5.8(0.4) x 107> has been updated to
0.40(30) x 107>, The second error arises from the interfer-
ometer axis being displaced by about 0.95(30) mm above the
horizontal plane containing the test masses’ center of mass,
resulting in an Abbe error. The relative correction to G to
remove the Abbe error is 9.4(3.0) x 107>,

Applying these two corrections results in a relative increase
of their 2010 value for G of 3.9 x 107> and an increase of the
relative uncertainty from 2.1 x 107 to 3.7 x 10™. The new
JILA value and uncertainty (Parks and Faller, 2019) are
labeled JILA-18 in Table XXIX and Fig. 9.

B. Measurements from the Huazhong University of Science
and Technology

Two new determinations of G, using independent methods
and having the lowest uncertainties to date, were reported in
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FIG. 9. The 16 input data determining the Newtonian constant
of gravitation G ordered by publication year. The 2018 recom-
mended value for G has been subtracted. Error bars correspond to
one-standard-deviation uncertainties as reported in Table XXIX.
The uncertainties after applying the 3.9 multiplicative expansion
factor to determine the 2018 recommended value are not shown.
Labels on the left side of the figure denote the laboratories and the
last two digits of the year in which the data were reported. See
Table XXIX for details. The gray band corresponds to the one-
standard-deviation uncertainty of the recommended value.

2018. Both measurements were performed at Huazhong
University of Science and Technology (HUST), Wuhan,
People’s Republic of China (Li er al.,, 2018). The first
determination used the time-of-swing (TOS) method where
the change in oscillation frequency of a torsion pendulum for
two different positions of source masses is measured. These
measurements were performed on two independent appara-
tuses located in laboratories separated by 150 m. In one
apparatus (TOS-I), the researchers used three different silica
fibers to check for fiber-induced systematics. In the other
apparatus (TOS-II), the same fiber was used for all measure-
ments. The largest uncertainty component for all data sets was
statistical, ranging from 10 to 30 parts in 10° relative
uncertainty. The determination of the horizontal separation
between the geometric centers of the spherical source masses
had the largest systematic uncertainty; its relative uncertainty
ranged from 8.5 to 9.5 parts in 10°. In the CODATA adjust-
ment, we only use the combined value for G from the two
TOS apparatuses. This input datum is labeled HUSTt-18 in
Table XXIX and Fig. 9.

Small correlations with the 2009 TOS determination of G at
HUST (Luo et al., 2009) exist because the same source masses
were used in TOS-II, and the same measurement instrumen-
tation and methods for the determination of various systematic
uncertainties were used. A conservative estimate for the
correlation coefficient between HUST-09 and HUST-18
is 0.068.

TABLE XXX. An abbreviated list of the CODATA recommended values of the fundamental constants of physics and

chemistry based on the 2018 adjustment.

Relative std.

Quantity Symbol Value Unit uncert. i,
speed of light in vacuum c 299792458 ms~! exact
Newtonian constant of gravitation G 6.67430(15) x 107! mikg's? 2.2 x 1077
Planck constant® h 6.626070 15 x 1073 JHz! exact

h 1.054571817... x 1073 Is exact
elementary charge e 1.602 176634 x 10~1° C exact
vacuum magnetic permeability 4naf/e’c Ho 1.256 637062 12(19) x 1076 NA—2 1.5 x 10710
vacuum electric permittivity 1/uc? € 8.8541878128(13) x 10712 Fm™! 1.5x 10710
Josephson constant 2 e/h K; 483597.8484... x 10° HzV~! exact
von Klitzing constant pyc/2a = 2nh/e? Rx 25812.80745... Q exact
magnetic flux quantum 2n#/(2¢) D, 2.067833848... x 10713 Wb exact
conductance quantum 2e?/2nh Gy 7.748091729... x 1073 S exact
electron mass e 9.1093837015(28) x 1073! kg 3.0 x 10710
proton mass my, 1.67262192369(51) x 10727 kg 3.1x 10710
proton-electron mass ratio my/me  1836.152 673 43(11) 6.0 x 1071
fine-structure constant e?/4neghc a 7.2973525693(11) x 1073 1.5 x 10710
inverse fine-structure constant a ! 137.035 999 084(21) 1.5x 10710
Rydberg frequency o’m.c?/2h cRy  3.2898419602508(64) x 1015  Hz 1.9 x 10712
Boltzmann constant k 1.380649 x 10723 JK! exact
Avogadro constant N 6.022 14076 x 10% mol~! exact
molar gas constant Nk R 8.314462618... Jmol ' K~! exact
Faraday constant Ne F 96485.33212... Cmol™! exact
Stefan-Boltzmann constant (n2/60)k*/#3c? o 5.670374419... x 1078 Wm—2 K™ exact

Non-SI units accepted for use with the SI

electron volt (e/C)J eV 1.602 176 634 x 10~1° J exact
(unified) atomic mass unit 75 m('’C) u 1.660 539 066 60(50) x 1027 kg 3.0x 10710

*The energy of a photon with frequency v expressed in unit Hz is E = hv in unit J. Unitary time evolution of the
state of this photon is given by exp(—iEt/h)|¢), where |¢) is the photon state at time # = 0 and time is expressed in

unit s. The ratio Et/# is a phase.

Rev. Mod. Phys., Vol. 93, No. 2, April-June 2021
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TABLE XXXI. The CODATA recommended values of the fundamental constants of physics and chemistry based on the 2018 adjustment.
Relative std.
Quantity Symbol Numerical value Unit uncert. u,
UNIVERSAL
speed of light in vacuum c 299792458 ms™! exact
vacuum magnetic permeability 4nah/e?c Ho 1.256 637062 12(19) x 107° NA~2 1.5%x 10710
Uo/ (4m x 1077) 1.000 000 000 55(15) NA~2 1.5x 10710
vacuum electric permittivity 1/uqc? €y 8.8541878128(13) x 10712 Fm™! 1.5x 10710
characteristic impedance of vacuum ygc Z, 376.730313 668(57) Q 1.5 x 10710
Newtonian constant of gravitation G 6.67430(15) x 10711 m® kg~!'s72 22 x 107
G/hc 6.708 83(15) x 107 (GeV/c?)™2 22 x 1073
Planck constant® h 6.626070 15 x 10734 JHz™! exact
4.135667696... x 10715 eVHz™! exact
h 1.054571817... x 1073 Is exact
6.582119569... x 10716 eVs exact
hc 197.3269804... MeV fm exact
Planck mass (hc/G)"/? mp 2.176434(24) x 1078 kg 1.1x 1073
energy equivalent mpc? 1.220890(14) x 10" GeV 1.1x107
Planck temperature (ic’/G)'/?/k Tp 1.416784(16) x 1032 K 1.1 x107°
Planck length i/mpc = (hG/c*)'/? Ip 1.616255(18) x 107 m 1.1 x 1073
Planck time lp/c = (hG/c>)'/? tp 5.391247(60) x 10~ S 1.1 x 1073
ELECTROMAGNETIC
elementary charge e 1.602 176634 x 10719 C exact
e/h 1.519267447... x 10" AJ7! exact
magnetic flux quantum 2x7/(2e) Lo 2.067833848... x 10713 Wb exact
conductance quantum 2¢%/2nh Gy 7.748091729... x 1073 S exact
inverse of conductance quantum G;! 12906.40372... Q exact
Josephson constant 2¢/h K; 483597.8484... x 10° HzV~! exact
von Klitzing constant pgc/2a = 2nh/e? Ry 25812.80745... Q exact
Bohr magneton ef/2m, UB 9.2740100783(28) x 10724 JT! 3.0 x 10710
5.788 381 8060(17) x 10~ evVT! 3.0 x 10710
ug/h 1.399 624493 61(42) x 10'° HzT~! 3.0x 10710
ug/he 46.686 447 783(14) [mIT-1]° 3.0x 10710
up/k 0.671713 815 63(20) K T 3.0 x 10710
nuclear magneton ef1/2m, HN 5.0507837461(15) x 10=% JT! 3.1x 10710
3.15245125844(96) x 1078 eV T! 3.1 x 10710
un/h 7.6225932291(23) MHz T-! 3.1 x 10710
pn/he  2.54262341353(78) x 1072 m~! 71 3.1 % 10710
un/k 3.6582677756(11) x 10~ KT! 3.1x 10710
ATOMIC AND NUCLEAR
General
fine-structure constant e?/4meyhc (x 7.2973525693(11) x 1073 1.5x 10710
inverse fine-structure constant ol 137.035999 084(21) 1.5x 10710
Rydberg frequency a?m,.c?/2h = Ey/2h cRy, 3.2898419602508(64) x 10 Hz 1.9 x 10712
energy equivalent hcR, 2.1798723611035(42) x 10718 J 1.9 x 10712
13.605 693 122 994(26) eV 1.9 x 10712
Rydberg constant R 10973 731.568 160(21) [m"]b 1.9 x 10712
Bohr radius 71/am.c = 4neyh?/me? a 5.29177210903(80) x 10~!! m 1.5x 10710
Hartree energy o’mec? = 2 /4meyay = 2hcR, E, 4.3597447222071(85) x 10718 J 1.9 x 10712
27.211 386245 988(53) eV 1.9 x 10712
quantum of circulation nh/m 3.6369475516(11) x 10~ m?s”! 3.0 x 10710
2nh/m, 7.2738951032(22) x 107~ m?s~! 3.0x 10710
Electroweak
Fermi coupling constant” Gg/(hc)®  1.1663787(6) x 1073 GeV~? 5.1 x 1077
weak mixing angleal 6w (on-shell scheme)
sin’Oy = 53 = 1 — (my/my)? sin? Oy 0.22290(30) 1.3x 1073
Electron, e~
electron mass e 9.109 383 7015(28) x 103! kg 3.0x 10710
5.48579909065(16) x 107* u 2.9 x 1071
energy equivalent mec? 8.1871057769(25) x 10~ J 3.0 x 10710
0.510998 950 00(15) MeV 3.0 x 10710
(Table continued)
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TABLE XXXI. (Continued)

Relative std.

Quantity Symbol Numerical value Unit uncert. i,
electron-muon mass ratio me/m, 4.83633169(11) x 1073 2.2x 1078
electron-tau mass ratio me/m, 2.87585(19) x 107 6.8 x 1075
electron-proton mass ratio me/my, 5.44617021487(33) x 107 6.0 x 1071
electron-neutron mass ratio me/my 5.438 673 4424(26) x 10~ 4.8 x 10710
electron-deuteron mass ratio me/my 2.724 437107 462(96) x 107 3.5x 1071
electron-triton mass ratio me/my 1.819200 062 251(90) x 10~ 5.0 x 107!
electron-helion mass ratio me/my, 1.819543074573(79) x 107* 43 %1071
electron to alpha particle mass ratio me/my 1.370933 554 787(45) x 10~ 33 x 1071
electron charge-to-mass quotient —e/m, —1.758 820010 76(53) x 10! Ckg™! 3.0 x 10710
electron molar mass N zm, M(e), M, 5.4857990888(17) x 1077 kg mol™! 3.0 x 10710
reduced Compton wavelength #/m.c = aa, Ac 3.8615926796(12) x 10713 m 3.0x 10710
Compton wavelength Ac 2.42631023867(73) x 10712 [m]’ 3.0x 10710
classical electron radius aag Te 2.8179403262(13) x 1071 m 4.5 x 10710
Thomson cross section (8m/3)r2 O 6.6524587321(60) x 107 m? 9.1 x 10710
electron magnetic moment He —9.284 764 7043(28) x 10724 JT! 3.0 x 10710
to Bohr magneton ratio Ue/ g —1.001 159652 18128(18) 1.7 x 1071
to nuclear magneton ratio Ue/ HN —1838.28197188(11) 6.0 x 1011
electron magnetic-moment anomaly |u|/ug — 1 a. 1.15965218128(18) x 1073 1.5x 10710
electron g-factor —2(1 + a,) Je —2.00231930436256(35) 1.7 x 10713
electron-muon magnetic-moment ratio Hel/ My 206.766 9883(46) 2.2x 1078
electron-proton magnetic-moment ratio He/ My —658.210 687 89(20) 3.0x 10710
electron to shielded proton magnetic- He/ 1y —658.2275971(72) 1.1 x10°8
moment ratio (H,O, sphere, 25 °C)
electron-neutron magnetic-moment ratio He/ P 960.920 50(23) 2.4 x 1077
electron-deuteron magnetic-moment ratio He/ P —2143.9234915(56) 2.6 x 107
electron to shielded helion magnetic- He/ 14, 864.058 257(10) 1.2x 1078
moment ratio (gas, sphere, 25 °C)
electron gyromagnetic ratio 2|u.|/h Ve 1.760 859 630 23(53) x 10! s7IT-! 3.0 x 10710
28024.951 4242(85) MHzT-! 3.0 x 10710
Muon, p~
muon mass my, 1.883531627(42) x 10728 kg 22x 1078
0.113 428 9259(25) u 22x 1078
energy equivalent m,c? 1.692 833 804(38) x 107! J 2.2x 1078
105.658 3755(23) MeV 22x 1078
muon-electron mass ratio m, /m, 206.768 2830(46) 22x 1078
muon-tau mass ratio my/m; 5.94635(40) x 1072 6.8 x 1073
muon-proton mass ratio mp/mp 0.112 609 5264(25) 22x 1078
muon-neutron mass ratio my/m, 0.1124545170(25) 22 %1078
muon molar mass N m, M(p). M, 1.134289259(25) x 107* kg mol~! 22 %1078
reduced muon Compton wavelength 7/my,c Acy 1.867 594 306(42) x 10~ m 2.2x 1078
muon Compton wavelength Acp 1.173444110(26) x 1071 [m]® 22x 1078
muon magnetic moment Hy —4.49044830(10) x 10726 T ! 22x1078
to Bohr magneton ratio Hu/ b —-4.84197047(11) x 1073 22x 1078
to nuclear magneton ratio M/ UN —8.890597 03(20) 2.2x 1078
muon magnetic-moment a, 1.16592089(63) x 1073 5.4 x 1077
anomaly |u,|/(eh/2m,) — 1
muon g-factor —2(1 + a,,) 9y —2.0023318418(13) 6.3 x 10710
muon-proton magnetic-moment ratio Mo/ My —3.183345142(71) 22x 1078
Tau, ©~
tau mass’ e 3.16754(21) x 10777 kg 6.8 x 107>
1.907 54(13) u 6.8 x 1073
energy equivalent myc? 2.846 84(19) x 10710 J 6.8 x 1073
1776.86(12) MeV 6.8 x 1073
tau-electron mass ratio m/mg 3477.23(23) 6.8 x 1075
tau-muon mass ratio mr/mp 16.8170(11) 6.8 x 1073
tau-proton mass ratio me/m, 1.89376(13) 6.8 x 1073
tau-neutron mass ratio my/my, 1.891 15(13) 6.8 x 1073
tau molar mass N m, M(t), M, 1.907 54(13) x 1073 kg mol™! 6.8 x 1072
(Table continued)
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CODATA recommended values of the fundamental ...

Relative std.

Quantity Symbol Numerical value Unit uncert. i,
reduced tau Compton wavelength #/m.c Acq 1.110538(75) x 10716 m 6.8 x 1073
tau Compton wavelength Acx 6.97771(47) x 10716 [m]® 6.8 x 1073
Proton, p
proton mass my, 1.67262192369(51) x 1077 kg 3.1x 10710
1.007 276 466 621(53) u 53 x 1071
energy equivalent my,c? 1.503277 61598(46) x 10710 J 3.1 x 10710
938.272 088 16(29) MeV 3.1x 10710
proton-electron mass ratio my,/me 1836.152 673 43(11) 6.0 x 10711
proton-muon mass ratio my, / m, 8.880 243 37(20) 22x 1078
proton-tau mass ratio mp, /m. 0.528 051(36) 6.8 x 107
proton-neutron mass ratio my,/m, 0.998 623 478 12(49) 4.9 % 10710
proton charge-to-mass quotient e/m, 9.578 833 1560(29) x 107 Ckg™! 3.1 x 10710
proton molar mass N s, M(p), M, 1.00727646627(31) x 1073 kg mol~! 3.1 x 10710
reduced proton Compton wavelength 7/m,c Acp 2.103089 10336(64) x 10716 m 3.1 x 10710
proton Compton wavelength Acp 1.321 409 855 39(40) x 10~1° [m]’ 3.1 x 10710
proton rms charge radius Tp 8.414(19) x 10716 m 22 x 1073
proton magnetic moment Hp 1.410606 797 36(60) x 10726 T ! 4.2 x 10710
to Bohr magneton ratio Hp/ M 1.521032202 30(46) x 1073 3.0x 10710
to nuclear magneton ratio Ho/ Hx 2.792 847 344 63(82) 2.9 x 10710
proton g-factor 24, /i 9p 5.585 694 6893(16) 2.9 x 10710
proton-neutron magnetic-moment ratio Hp/ b —1.459898 05(34) 2.4 %1077
shielded proton magnetic-moment (H,0, sphere, 25 °C) Hp 1.410570560(15) x 10726 JT ! 1.1x 1078
to Bohr magneton ratio Hp/Hp 1.520993 128(17) x 1073 1.1x 1078
to nuclear magneton ratio Hp/ BN 2.792 775 599(30) 1.1 %1078
proton magnetic shielding correction 1 — sy, /p, op 2.5689(11) x 1073 42 x 107
(H,0, sphere, 25°C)
proton gyromagnetic ratio 2u,/h Yp 2.6752218744(11) x 103 sThT! 4.2 x 10710
42.577478 518(18) MHz T-! 42 x 10710
shielded proton gyromagnetic ratio Yp 2.675153151(29) x 108 s7IT! 1.1x10°8
24, /h (H,0, sphere, 25°C) 42.576 384 74(46) MHz T~ 1.1x 1078
Neutron, n
neutron mass m, 1.674927 498 04(95) x 10727 kg 5.7 x 10710
1.008 664 915 95(49) u 4.8 x 10710
energy equivalent myc? 1.505349 762 87(86) x 10710 J 5.7 x 10710
939.565 420 52(54) MeV 5.7 x 10710
neutron-electron mass ratio my,/me 1838.683 661 73(89) 4.8 x 10710
neutron-muon mass ratio my/m, 8.892 484 06(20) 22x 1078
neutron-tau mass ratio my/m, 0.528 779(36) 6.8 x 1073
neutron-proton mass ratio my/my, 1.001 378 419 31(49) 4.9 x 10710
neutron-proton mass difference my —m, 2.30557435(82) x 107 kg 3.5%x 1077
1.388 449 33(49) x 1073 u 3.5 % 1077
energy equivalent (my—my,)c*  2.07214689(74) x 10713 J 3.5 x 1077
1.293 332 36(46) MeV 3.5 x 1077
neutron molar mass N am, M(n), M, 1.008 664 915 60(57) x 1073 kg mol™! 5.7 x 10710
reduced neutron Compton wavelength /m,c Acn 2.100 194 1552(12) x 10716 m 57 x 10710
neutron Compton wavelength Aca 1.319590905 81(75) x 10~1° [m]® 5.7 x 10710
neutron magnetic moment Hn —9.6623651(23) x 1077 JT! 2.4 x 1077
to Bohr magneton ratio Mo/ Hp —1.04187563(25) x 1073 2.4 % 1077
to nuclear magneton ratio o/ PN —1.91304273(45) 2.4 x 1077
neutron g-factor 2y, /uy I —3.82608545(90) 2.4 %1077
neutron-electron magnetic-moment ratio Mo/ He 1.040 668 82(25) x 1073 2.4 x 1077
neutron-proton magnetic-moment ratio Hn/ Hyp —0.684 979 34(16) 2.4 x 1077
neutron to shielded proton magnetic- Hn/ Hp —0.684 996 94(16) 2.4 %1077
moment ratio (H,O, sphere, 25 °C)
neutron gyromagnetic ratio 2|u,|/A n 1.83247171(43) x 108 s~ T-! 2.4 %1077
29.164 6931(69) MHzT™! 2.4 %1077
(Table continued)
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TABLE XXXI. (Continued)

CODATA recommended values of the fundamental ...

Relative std.

Quantity Symbol Numerical value Unit uncert. i,
Deuteron, d
deuteron mass mgy 3.3435837724(10) x 107% kg 3.0 x 10710
2.013 553 212 745(40) u 2.0 x 107!
energy equivalent myc? 3.00506323102(91) x 10710 J 3.0x 10710
1875.612 942 57(57) MeV 3.0 x 10710
deuteron-electron mass ratio my/me 3670.482 967 88(13) 3.5x 1071
deuteron-proton mass ratio mg/m, 1.999 007 501 39(11) 5.6 x 10711
deuteron molar mass N my M(d), My 2.01355321205(61) x 1073 kg mol™! 3.0 x 10710
deuteron rms charge radius T 2.12799(74) x 1071 m 3.5x 107
deuteron magnetic moment Ha 4.330735094(11) x 1077 IT! 2.6 x 107
to Bohr magneton ratio Ha/HB 4.669754570(12) x 107* 2.6 x 107°
to nuclear magneton ratio Ha/ N 0.857438 2338(22) 2.6 x 107°
deuteron g-factor pq/pn 9dd 0.857438 2338(22) 2.6 x 107°
deuteron-electron magnetic-moment ratio Ha/te —4.664345551(12) x 1074 2.6 x 107°
deuteron-proton magnetic-moment ratio HalHyp 0.307 012 209 39(79) 2.6 % 107°
deuteron-neutron magnetic-moment ratio Ha/ Hn —0.44820653(11) 2.4 x 1077
Triton, t
triton mass N 5.007 356 7446(15) x 1072 kg 3.0 x 10710
3.01550071621(12) u 4.0 x 1071
energy equivalent mc? 4.5003878060(14) x 10710 J 3.0x 10710
2808.921 132 98(85) MeV 3.0 x 10710
triton-electron mass ratio my/m 5496.921 535 73(27) 5.0x 10!
triton-proton mass ratio my/my, 2.993717 034 14(15) 5.0x 1071
triton molar mass N m, M(t), M, 3.01550071517(92) x 1073 kg mol~! 3.0 x 10710
triton magnetic moment e 1.504 609 5202(30) x 10726 JT! 2.0x 107
to Bohr magneton ratio /iy 1.6223936651(32) x 1073 2.0x 107
to nuclear magneton ratio M/ 1N 2.978 962 4656(59) 2.0x107°
triton g-factor 2u,/uy Gt 5.957924 931(12) 2.0x107°
Helion, h
helion mass my, 5.0064127796(15) x 1072 kg 3.0 x 10710
3.014 932247 175(97) u 3.2 x 1071
energy equivalent myc? 4.4995394125(14) x 10710 J 3.0x 10710
2808.391 607 43(85) MeV 3.0x 10710
helion-electron mass ratio my, /e 5495.885 280 07(24) 43 x 1071
helion-proton mass ratio mh/mp 2.993 152671 67(13) 4.4 %1071
helion molar mass N ,my, M(h), M, 3.01493224613(91) x 1073 kg mol~! 3.0 x 10710
helion magnetic moment m —-1.074617532(13) x 10726 JT! 1.2x 1078
to Bohr magneton ratio Hn/pg —1.158740958(14) x 1073 1.2 x 1078
to nuclear magneton ratio U/ PN —2.127625307(25) 1.2x 1078
helion g-factor 2uy/pn In —4.255250615(50) 1.2x 1078
shielded helion magnetic moment (gas, sphere, 25 °C) M —1.074553090(13) x 10726 JT-! 1.2x 1078
to Bohr magneton ratio wh/ i —-1.158671471(14) x 1073 1.2x 1078
to nuclear magneton ratio U/ EN —2.127497719(25) 1.2x 1078
shielded helion to proton magnetic- Hy/ Hp —0.761766 5618(89) 1.2 x 1078
moment ratio (gas, sphere, 25 °C)
shielded helion to shielded proton i/t —0.761786 1313(33) 43 x107°
magnetic-moment ratio
(gas/H,0, spheres, 25 °C)
shielded helion gyromagnetic ratio 2|u;|/h h 2.037 894 569(24) x 108 s~ 7! 1.2x 1078
(gas, sphere, 25 °C)
32.434 099 42(38) MHzT-! 1.2x 1078
Alpha particle, o
alpha particle mass i 6.644 6573357(20) x 107% kg 3.0x 10710
4.001 506 179 127(63) u 1.6 x 1071
energy equivalent myC? 5.9719201914(18) x 10710 J 3.0 x 10710
3727.379 4066(11) MeV 3.0 x 10710
alpha particle to electron mass ratio my/ M, 7294.299 541 42(24) 3.3 x 1071
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TABLE XXXI. (Continued)

CODATA recommended values of the fundamental ...

Relative std.

Quantity Symbol Numerical value Unit uncert. i,
alpha particle to proton mass ratio Mg/ 1, 3.972 599 690 09(22) 5.5x 1071
alpha particle molar mass N1, M(a),M,  4.0015061777(12) x 1073 kg mol~! 3.0 x 10710
PHYSICOCHEMICAL
Avogadro constant Na 6.022 14076 x 10% mol™! exact
Boltzmann constant k 1.380649 x 10723 JK-! exact
8.617333262... x 107 eVK™! exact
k/h 2.083661912... x 10'° HzK™! exact
k/hc 69.50348004... m~' K- exact
atomic mass constant' my, 1.660 539 066 60(50) x 10727 kg 3.0x 10710
m, =15m(1%C) =2hcR /o’ A, (e)
energy equivalent myc? 1.492 418 085 60(45) x 10710 J 3.0 x 10710
_ 931.494 102 42(28) MeV 3.0x 10710
molar mass constant" M, 0.999 999999 65(30) x 1073 kg mol ™! 3.0 x 10710
molar mass' of carbon-12 A,('*C)M, ('*C) 11.999 999 9958(36) x 1073 kg mol™! 3.0x 10710
molar Planck constant Nph 3.990312712... x 10710 JHz ' mol~! exact
molar gas constant Nk R 8.314462618... Jmol~ ' K-! exact
Faraday constant Npe F 96485.33212... Cmol™! exact
standard-state pressure 100 000 Pa exact
standard atmosphere 101 325 Pa exact
molar volume of ideal gas RT/p
T =273.15 K, p = 100 kPa Vi 22.71095464... x 1073 m?3 mol™! exact
or standard-state pressure
Loschmidt constant N /V, n 2.651645804... x 10% m™3 exact
molar volume of ideal gas RT/p
T =273.15 K, p =101.325 kPa Vi 22.413969 54... x 1073 m3mol~! exact
or standard atmosphere
Loschmidt constant N/ V., ng 2.686780111... x 10% m™3 exact
Sackur-Tetrode (absolute entropy) constant®
3+ In[(m kT, /2nh?)>2kT | / po)
T1 =1K, py =100 kPa So/R —1.151707 537 06(45) 3.9 x 10710
or standard-state pressure
T, =1K, py =101.325 kPa —1.164 870523 58(45) 3.9 x 10710
or standard atmosphere
Stefan-Boltzmann constant (n%/60)k*/#3c? o 5.670374419... x 1078 Wm-2K™* exact
first radiation constant for spectral CIL 1.191042972... x 1071¢ [Wm? srfl]h exact
radiance 2hc? sr!
first radiation constant 2mhc? = msrc ¢y 3.741771852... x 10716 W m2lh exact
second radiation constant hc/k [ 1.438776877... x 1072 [m K] exact
Wien displacement law constants
b = Apax T = ¢2/4.965 114 231... b 2.897771955... x 1073 [m K] exact
b' = Una /T =2.821439372...c/c, b 5.878925757... x 10'° Hz K exact

“The energy of a photon with frequency v expressed in unit Hz is E = hv in unit J. Unitary time evolution of the state of this photon is
givl:en by exp(—iEt/h)|¢p), where |@) is the photon state at time # = 0 and time is expressed in unit s. The ratio Et/# is a phase.

The full description of m~

is cycles or periods per meter and that of m is meters per cycle (m/cycle). The scientific community is

aware of the implied use of these units. It traces back to the conventions for phase and angle and the use of unit Hz versus

cycles/s. No solution has been agreed upon.

“Value recommended by the Particle Data Group (Tanabashi et al., 2018).
“Based on the ratio of the masses of the W and Z bosons myy /mz recommended by the Particle Data Group (Tanabashi e al., 2018).

The value for sin” @y, they recommend, which is based on a variant of the modified minimal subtraction (MS) scheme, is sinzéw (My) =

0.23122(4).

°This and other constants involving m, are based on m.c? in MeV recommended by the Particle Data Group (Tanabashi et al., 2018).

"The relative atomic mass A, (X) of particle X with mass m(X) is defined by A,(X) =
the atomic mass constant and u is the unified atomic mass unit. Moreover, the mass of particle X is m(X)
A.(X)M,, where M, = N, u is the molar mass constant and N, is the Avogadro constant.

of Xis M(X) =

m(X)/my, where m, = m(1’C)/12 =1 uis
= A,(X) u and the molar mass

gThe entropy of an ideal monoatomlc gas of relative atomic mass A, is given by S = Sy +3RInA, — RIn(p/p,) +3RIn(T/K).
See also the second footnote.

"The full description of m? is m™2
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The second 2018 HUST experiment used the angular
acceleration feedback (AAF) method where turntables rotate
a torsion pendulum and source masses independently at
nominally constant but opposite and different rotation
rates. Feedback control compensates for gravitational torque
acting on the rotating torsion pendulum such that the
pendulum does not move with respect to its rotating frame.
The difference in rotation rate of the source masses’ and
pendulum’s turntables is held constant by a second feedback
controller. For infinite feedback gain, the angular acceleration
of the torsion pendulum’s turntable is identical to the
gravitational angular acceleration generated by the source
masses and effects of environmental gravitational forces are
minimized.

The final result for G based on AAF, here labeled
HUST,-18, combines values from data sets AAF-I, AAF-II,
and AAF-III. Set AAF-I had a different rotation rate from
AAF-II and AAF-III. A different research team obtained data
set AAF-III. For AAF-III, an improved pre-hanger fiber and
additional Mu-metal shielding around the torsion pendulum
were used as well. The largest uncertainty components for all
data sets were the horizontal and vertical distance determi-
nations between the geometric centers of the spherical source
masses, with relative uncertainties of 9.0 and 5.8 parts in 109,
respectively.

While the two HUST-18 results have the lowest uncertainty
of any measurements of G to date and agree with the 2018
recommended value within two standard uncertainties
of that value, the difference between the two new HUST
values is 2.7 times the standard uncertainty of their difference.

TABLE XXXII.

Furthermore, the HUST-18 and HUST,-18 values of G
exceed the HUST-09 value by about 3.5 and 5.1 times the
standard uncertainty of their respective differences. Presently,
there are no explanations for the inconsistencies.

XX. ELECTROWEAK QUANTITIES

There are a few cases in the 2018 adjustment, as in
previous adjustments, where an inexact constant is used in
the analysis of input data but not treated as an adjusted
quantity, because the adjustment has a negligible effect on its
value. Three such constants, used in the calculation of the
theoretical expression for the electron magnetic-moment
anomaly a., are the mass of the tau lepton m,, the Fermi
coupling constant Gg, and sine squared of the weak mixing
angle sin” fy,. These are electroweak quantities with values
obtained from the most recent report of the Particle Data
Group (Tanabashi et al., 2018):

m.c® = 1776.86(12) MeV

(6.8 1075,  (202)

G
L = 1.1663787(6) x 1075 GeV~2

(he)® 5.1 x 1077], (203)

sin?fy = 0.22290(30) [1.3 x 1073]. (204)
We note that sin? Oy = 1 — (my,/my)?, where my, and my
are the masses of the W* and Z° bosons, respectively. The

Particle Data Group’s value my,/m; = 0.88153(17) leads to

The relative uncertainties and correlation coefficients of the values of a selected group of constants based on the 2018

CODATA adjustment. The numbers in bold on the diagonal are the relative uncertainties u,(x;) = u(x;)/x;; the other numbers are the
correlation coefficients r(x;, x;) = u(x; x;)/[u(x;)u(x;)]. Here, u(x;, x;) is the covariance of x; and x; and u*(x;) = u(x;,x;) is the variance.

J L)

a Ry me/my, Tp rq me/my m,
a 1.5 x 10710 0.002 07 —-0.03103 0.003 45 0.003 20 —-0.01345 —0.995 35
R 0.002 07 1.9 x 10712 0.012 06 0.88592 0.903 66 —0.00011 0.003 69
me/mp —0.03103 0.01206 6.0 x 10711 —0.00528 0.01113 0.000 45 —-0.01554
Tp 0.003 45 0.88592 —0.005 28 22x1073 0.991 65 —0.000 12 0.002 38
rq 0.003 20 0.903 66 0.01113 0.991 65 35x%x10~* —0.000 12 0.002 30
me/m}l —-0.01345 —0.00011 0.000 45 —0.00012 —0.00012 22 x10°8 0.01338
m, —0.995 35 0.003 69 —-0.01554 0.002 38 0.002 30 0.013 38 3.0x10°10

TABLE XXXIII.

Values of some x-ray-related quantities based on the 2018 CODATA adjustment of the constants.

Relative std.

Quantity Symbol Value Unit uncert. u,
Cu x unit: 1(CuKa;)/1537.400 xu(CuKay) 1.00207697(28) x 10713 m 2.8 x 1077
Mo x unit: A(Mo Ka;)/707.831 xu(MoKa) 1.002 099 52(53) x 10712 m 5.3 x 1077
Angstrém star: (W Ka;)/0.2090100 A* 1.000014 95(90) x 10~1° m 9.0 x 1077
Lattice parameter” of Si (in vacuum, 22.5°C) a 5.431020511(89) x 10710 m 1.6 x 1078
{220} lattice spacing of Si a/+/8 (in vacuum, 22.5°C) dyo 1.920155716(32) x 10710 m 1L6x107®
Molar volume of Si M(Si)/p(Si) = Nya®/8 Vo (Si) 1.205 883 199(60) x 1073 m?> mol ™! 49x 1078

(in vacuum, 22.5°C)

*This is the lattice parameter (unit cell edge length) of an ideal single crystal of naturally occurring Si with natural isotopic Si
abundances, free of impurities and imperfections.
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the value of sin? Ay already given. The uncertainty of this
mass ratio has decreased by almost a factor of ten when
compared to that in the 2014 adjustment. Finally, the accuracy
of the mass of the tau lepton has slightly improved.

XXI. THE 2018 CODATA RECOMMENDED VALUES

The input data and their correlation coefficients considered
in the 2018 CODATA adjustment of the values of the
constants are given in Tables VIII, X, XVIII, XXI, XXVII,
and XXIX. (Here, items C3—C6 in Table X VIII are additional
theoretical coefficients and not input data.) The data have been
discussed and explained in detail in the previous sections. The
2018 recommended values are calculated from the set of best
estimated values, in the least-squares sense, of 75 adjusted
constants listed in Tables XI and XIX. A comparison with the

values of the adjusted constants in Tables XXV and XXVI of
the 2014 CODATA adjustment shows that two prominent
quantities among the few that are no longer adjusted constants
are the Planck constant 4 and the molar gas constant R.
The reason, of course, is that in the revised SI these constants
are exactly known.

The methodology and quality of our least-squares adjust-
ments has been discussed in Sec. III. Briefly, three indepen-
dent adjustments have been performed. The first concerned
the Newtonian constant of gravitation. The corresponding
input data are found to be inconsistent and an expansion factor
of 3.9 is needed to decrease the residuals to below two. The
second independent adjustment concerned the determination
of the natural-silicon lattice spacing and values of three
historic x-ray units. No expansion factor is needed. Finally,
the third adjustment determined the remaining 62 adjusted

TABLE XXXIV. Non-SI units based on the 2018 CODATA adjustment of the constants, although eV and u are accepted for use with the SI.

Relative std.

Quantity Symbol Value Unit uncert. u,

electron volt: (¢/C)J eV 1.602176 634 x 1071 J exact
(unified) atomic mass unit: ll—zm(lzC) u 1.660 539 066 60(50) x 1027 kg 3.0 x 10710

Natural units (n.u.)

n.u. of velocity c 299 792 458 ms™! exact

n.u. of action h 1.054571817... x 1073 Is exact

6.582119569... x 107'° eVs exact

hc 197.3269804... MeV fm exact
n.u. of mass me 9.1093837015(28) x 10731 kg 3.0x 10710
n.u. of energy mec? 8.1871057769(25) x 10714 J 3.0 x 10710
0.510 998 950 00(15) MeV 3.0x 10710
n.u. of momentum mec 2.73092453075(82) x 10722 kgms™! 3.0 x 10710
0.510 998 950 00(15) MeV/c 3.0x 10710
n.u. of length: /mc Ac 3.8615926796(12) x 10713 m 3.0x 10710
n.u. of time 1/ mec 1.288 088 668 19(39) x 102! s 3.0 x 10710

Atomic units (a.u.)

a.u. of charge e 1.602 176 634 x 1071° C exact
a.u. of mass me 9.109 383 7015(28) x 1073 kg 3.0x 10710

a.u. of action h 1.054571817... x 1073 Is exact
a.u. of length: Bohr radius (bohr) ay 5291772109 03(80) x 1071 m 1.5 x 10710

n/am.c
a.u. of energy: Hartree energy (hartree) E, 4.3597447222071(85) x 10718 J 1.9 x 10712
a?mc* = e*/4neyay = 2hcR,

a.u. of time h/E, 2.418 884326 5857(47) x 107V S 1.9 x 10712
a.u. of force Eyn/aqy 8.2387234983(12) x 1073 N 1.5x 10710
a.u. of velocity: ac apEy/h 2.187 691263 64(33) x 10° ms™! 1.5% 10710
a.u. of momentum h/ag 1.992 851914 10(30) x 10~ kg ms™! 1.5 x 10710
a.u. of current eEy/h 6.623618237510(13) x 1073 A 1.9 x 10712
a.u. of charge density e/ay 1.081202 384 57(49) x 10'2 Cm™ 4.5 x 10710
a.u. of electric potential E,/e 27.211 386 245 988(53) A\ 1.9 x 10712
a.u. of electric field Ey/eaq 5.142206 747 63(78) x 10! Vm™! 1.5x 10710
a.u. of electric field gradient Ey/eal 9.7173624292(29) x 10*! Vm? 3.0 x 10710
a.u. of electric dipole moment eay 8.478353 6255(13) x 10730 Cm 1.5 x 10710
a.u. of electric quadrupole moment ea} 4.4865515246(14) x 1070 Cm? 3.0 x 10710
a.u. of electric polarizability e*a}/E, 1.648 777274 36(50) x 10~ C?m?J! 3.0 x 10710
a.u. of 1 hyperpolarizability eaj/E} 3.2063613061(15) x 1073 Cm?2 4.5 % 10710
a.u. of 2" hyperpolarizability e*a}/E} 6.2353799905(38) x 1079 Ctm*J3 6.0 x 10710
a.u. of magnetic flux density h/eal 2.35051756758(71) x 10° T 3.0 x 10710
a.u. of magnetic dipole moment: 2up he/m, 1.854 802015 66(56) x 10723 IT! 3.0 x 10710
a.u. of magnetizability e*al/m, 7.891 036 6008(48) x 107 JT? 6.0 x 10710
a.u. of permittivity e?/ayE, 1.11265005545(17) x 10710 Fm™! 1.5 % 10710
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constants. Two expansion factors are required. A factor of 1.6
is applied to the 60 input data determining the Rydberg
constant and proton and deuteron charge radii. A factor of
1.7 is used for the two input data that determine the mass of
the proton. As in previous adjustments, we have not excluded
input data that individually contribute little to constrain the
adjusted constants but taken together do matter. Good exam-
ples of such data are transition energies in atomic hydrogen to
states with large principal quantum numbers as well as the
less-accurate experimental data on the Newtonian constant of
gravitation.

A. Tables of values

Tables XXX through XXXVI give the 2018 CODATA
recommended values of the basic constants and conversion
factors of physics and chemistry and related quantities. Energy
conversion factors in Tables XXXV and XXXVI relate
energies, masses, photon wavelengths and frequencies, and
temperatures of ensembles of particles through the equiva-
lences E = mc*> = hc/) = hv = kT. The tables are identical
in form and content to their 2010 and 2014 counterparts in that
no constants are added or deleted. They also show the
profound impact the revised SI has on the values of the
fundamental constants. Counting the energy conversion fac-
tors in Tables XXXV and XXXVI, 46 constants that had
uncertainties in 2014 are now exactly known in the revised SI.
Values of the constants and correlation coefficients between
any pair of constants can also be found at the website http://
physics.nist.gov/constants.

XXII. SUMMARY AND CONCLUSION

In this final section, we discuss (i) the differences between
the 2014 and 2018 CODATA recommended values of the
constants, (ii) the implications of the 2018 adjustment for
metrology and physics, and (iii) future work that could
improve our knowledge of the values of the constants.

A. Comparison of 2014 and 2018 CODATA recommended values

A representative group of 2014 and 2018 recommended
values are compared in Fig. 10. The first four constants 4, e, k,
and N, are exact because of the redefinition of the SI. All
other constants were and are inexactly known. Some have
become significantly more accurate, some have updated
values that fall well outside their 2014 uncertainty, while
others have seen no significant change. Changes are a
consequence of the revision of the SI and measurements that
have become available since the 2014 adjustment. We discuss
the changes shown in the figure as well as other notable
changes in some detail later.

Not included in Fig. 10 are those few constants that were
exactly known before the adoption of the revised SI in 2018.
These are the universal constants u, €, and Z;, as well as
the physicochemical constants M ('’C) and M,,. Their current
differences from their previous exact values may be
conveniently expressed in the form o/ (4n x 1077 N A72) =
1 +55(15) x 107" and M('*C)/(0.012 kgmol™!) =1 -
35(30) x 107!, where the numbers in parentheses are their
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2018 standard uncertainties. [The number +55(15) is the
same for Zy=pyc but is —=55(15) for ey = 1/puyc%;
the number —35(30) is the same for M,.] The mass of the
international prototype of the kilogram m () and the temper-
ature at the triple point of water Trpy were also exactly known
before the adoption of the revised SI, but they are not adjusted
constants in the 2018 adjustment.

In the revised SI, A, e, k, and N, are defining constants with
exact values and the values of the previously exactly known SI
defining constants y, M ('*C), m(K), and T'rpw must now be
determined experimentally. The exact values of #, e, k, and
N, are based on the results of the 2017 CODATA Special
Adjustment carried out by the Task Group at the request of the
General Conference on Weights and Measures (CGPM) with a
closing date for data of 1 July 2017 (Mohr et al., 2018; Newell
et al., 2018). Based on the input data available then, the exact
values for A, e, k, and N, had to fall within the one-standard-
deviation uncertainty of their then inexact values. The precise
criteria can be found in CIPM (2016, 2017). Conversely, the
criteria implied that the values and uncertainties of the newly
imprecise y, and M ('’C) were consistent with their previously
exact values.

After the 1 July 2017 closing date of the 2017 CODATA
Special Adjustment, a measurement of i/m('3*Cs) (item D4
in Table XXI) further constrained the value of the fine-
structure constant . This additional input datum has led to
a larger deviation of y, = 4nah/e*c and M('*C) from their
previous exact values.

The significantly reduced uncertainties of R, rp, and ry
and shifts of the values compared with their 2014 counter-
parts are due to improvements in theory, new measurements
of hydrogen transition frequencies, and the inclusion of
Lamb-shift measurements in muonic hydrogen and deu-
terium. The latter were not included in the 2014 CODATA
adjustment because of inconsistencies between the values of
rp, and rq derived from them and those obtained from
hydrogen and deuterium spectroscopic data and e-p and
e-d scattering data. Nevertheless, it must be recognized that
although including the muonic hydrogen and deuterium
data as well as new hydrogen spectroscopic data have led
to values of R, r, and ry with significantly smaller
uncertainties, the remaining inconsistencies among the 62
data primarily responsible for the determination of these
constants required their uncertainties to be increased by the
multiplicative factor 1.6 to reduce all normalized residuals to
less than 2.

The relative uncertainty u.(E,) of the Hartree energy
E,, = 2R hc is now simply that due to the Rydberg constant
rather than that of the Planck constant as was the case in the
2014 CODATA adjustment. The uncertainty of the Hartree
energy is now 6300 times smaller.

The reduction of the uncertainty of a by a factor of 1.5 to
u(@) = 1.5x 10719 is mainly due to the measurement of
h/m('3Cs). The uncertainties of many other constants are
directly linked to that of a. Examples are, of course, y,, but
also the Bohr radius ay, electron mass m., Compton wave-
length Ac, and Thomson cross section o,. Their relative
uncertainties are 1, 1, 2, 2, and 6 times that of a, respectively.
The latter four constants also depend on the Rydberg constant
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FIG. 10. Comparison of a representative group of fundamental
constants from the 2014 and 2018 CODATA adjustments.
Symbols of constants are shown along the y axis. Along the
x axis the 2018 recommended values and their one-standard-
deviation uncertainty, black circles with error bars, are shown as
the difference between the 2018 and 2014 values divided by the
standard uncertainty of the 2014 value. The vertical solid red line
at the origin and yellow/orange band of width 1 represent the
2014 values and standard uncertainties of the indicated constants.
The numerical values near the left-hand side of the figure are the
relative standard uncertainties from the 2018 adjustment.

R, but its relative uncertainty of 1.9 x 1072 is much smaller
than that of a.

The reduction in the uncertainty of G is due to two new
and independent results from HUST in the People’s Republic
of China, both with u,(G) =1.2x 107 (HUST{-18 and
HUST4-18 in Table XXIX); and a correction of a previously
available result (JILA-18 in Table XXIX). This led to a better
consistency among the 16 input data for G and a reduction of
the applied expansion factor of their uncertainties from 6.3 in
2014 to 3.9 in the current CODATA adjustment.

The relations 1 u = m, = m('*C)/12 for the atomic mass
unit and A,('?C) = 12 for the relative atomic mass of '°C
remain exact in the revised SI. The mass m, in kg, however, is
now obtained from m, =2R h/A.(e)ca’ instead of
my, = (1073 kg/mol)/N,. Consequently, the relative uncer-
tainty of m, in the 2018 adjustment is essentially twice that of
a or 3.0 x 1071, because u,(R,) and u,(A.(e)) are signifi-
cantly smaller than u,(a). This relative uncertainty of m, is 41
times smaller than in the 2014 adjustment, where it was
dominated by the relative uncertainty of Ny4.
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Generally, the mass of a particle X in kg is most reliably
determined from m(X) = A,(X)m,, where the relative uncer-
tainty of A.(X) for most particles of interest here is signifi-
cantly smaller than that of m,. Hence the u, of m., m,, mq, m,
my,, and m, when expressed in kg are now essentially the same
as that of m,.

The significant reductions of the uncertainties of magnetic
moments ug, pn, and u. can be understood from their
definitions. The Bohr magneton pg = efi/2m, now has the
relative uncertainty of that of the electron mass. By compari-
son, in the 2014 CODATA adjustment u, of ug is 6.3 x 10~°
or 20 times larger. Similarly, the nuclear magneton puy =
eh/2m, has the relative uncertainty of that of m, or m,.
Because the ratio p./ug = g./2 and the u, of the 2018 and
2014 CODATA recommended values of the electron g-factor
ge are 1.7 x 10713 and 2.6 x 10713, respectively, the relative
uncertainty of y. is essentially the same as that for ug.

The value of the magnetic moment of the proton y, has
been improved due to a new measurement of the ratio y,/ux.
For this measurement, u, = 2.9 x 1071°. Together with the
improved value of puy, it provides a value of u, with
u, = 4.2 x 10710, Similarly, the uncertainty u,/up has seen
a tenfold improvement, as p,/ug = pp/pn X me/m, and
me/m;, has a relative uncertainty of 6.0 x 107!,

The input data that determine the 2018 CODATA recom-
mended value of A,(p) are the 2016 AMDC value of A,('H)
and the cyclotron frequency ratio w.('*C%")/w.(p) (item D15
in Table XXI). The two values for A, (p) from these data
disagree, and an expansion factor of 1.7 is applied to their
uncertainties to bring them into agreement.

The comparatively large difference between the 2018 and
2014 values of the helion relative atomic mass, A, (h), is due to
the inclusion of a new value of the cyclotron frequency ratio
w.(HD")/w.(*He") (item D17 in Table XXI) and omission of
the cyclotron frequency ratio w,(h)/w.('*C%*) used in 2014,
because of concerns about its reliability. The relative atomic
mass of the triton has changed based on a 2015 measurement
(item D16 in Table XXI). No new datum has become available
to determine A, (e), A.(d), and A,(at).

The magnetic moment of the neutron g, and ratios u,/un
and p,,/p, are determined from the same input datum, namely,
Hn/Hp With u, = 2.4 x 10~7 obtained in 1979 (item D37 in
Table XXI). The 2018 values and uncertainties of these
three quantities are essentially the same as in the 2014
adjustment. The magnetic moment of the deuteron py and
ratios yg/pn and pig/pe have a u, of 2.6 x 1072, which is about
one-half that of their 2014 u,. The reason is the presence of an
additional input datum for the ratio u,(HD)/uq(HD) with
u, =3.1x107°,

One of the consequences of the revised SI is that the
conversion factors among the energy units J, kg, m™', Hz, K,
and eV are now exact based on E = mc? = hic/A = hv = kT.
The conversion factor between these six units and the unified
atomic mass unit, 1 u = m,, is determined by m, and exact
constants. Hence, the relative uncertainties of the six corre-
sponding conversion factors are now that of 1, or 3.0 x 10710,
This corresponds to a significant improvement compared to
the 2014 recommended conversion factor. For example, the

025010-55



Eite Tiesinga et al.: CODATA recommended values of the fundamental ...

uncertainty of the eV-to-u conversion factor is reduced by a
factor of 20.

The situation is similar for the conversion factors from the
six energy units to the Hartree energy E}, = 2R hc, but in this
case the relevant constant is Ry, with u, = 1.9 x 10~'? rather
than m,. As another example, the uncertainty of the K-to-E,
conversion factor is reduced from 5.7 x 1077 in 2014 to 1.9 x
1072 in 2018, or by a factor of 3 x 10°.

B. Implications of the 2018 adjustment for metrology and physics

1. Electrical metrology

The most significant practical impact of the revised SI is
undoubtedly the elimination of the conventional 1990 elec-
trical units that went into effect on 1 January 1990 to ensure
the international consistency of electrical measurements.
(See https://www.bipm.org/en/publications/si-brochure.) After
thirty years, electrical measurements are once more consistent
with measurements made in the other units of the SL

Electrical units have become part of the SI again, simply
because the Josephson and von Klitzing constants are now
exact in ST units. Between 1990 and the adoption of the revised
SI in 2019, the units of voltage and resistance, Vg,
and €g,, were based on the conventional values Kj_oy =
4835979 GHz/V and Ry oy =25812.807 Q for the
Josephson and von Klitzing constants, respectively. From
2019 onward, the ratios between K; =2e¢/h and Kj_q
and between Ry = h/e?> and Rg_o, are exact. Thus,
1 V90 = (KJ_()()/KJ) Vand 1 ng = (RK/RK—QO) Q exactly.
Consequently, the conventional electric units for voltage,
resistance, current, charge, power, capacitance, inductance,
electrical conductance, magnetic flux, and magnetic flux
density in terms of the corresponding SI units are

K
1 Vg = ;(_90V =1 + 10.666... x 107%] V,
J

R
1990:R K

Q=[1+17793... x 10| Q,
K-90

Kj_ooR
1 Agy = — 0 KN0A = [1 +8.8871... x 107%] A,
KR
JAK

K;_goRx_
1 Cop =2 K0 C = [1+8.8871... x 107¥] C,
KyRx

K3 goR
1 Woo = 3220 K00 W — (1 4-19.553... x 1078] W,
K3Rg

R
1 Foy = ;;:OF: [1-1.7793... x 1078] F,

R
K H=[1417793... x 1078 H,

1 H90 -
K-90
R
1 Sgp = —28 = [1-1.7793... x 1078] S,
Ry

K
1 Whoy = —=2Wb = [1 + 10.666... x 108] Wb,
K;

Kj_9o
K;

1 To = T =[1 + 10.666... x 1078] T.

Thus, for example, the 1990 conventional unit of voltage Vy
exceeds the SI unit of voltage V by the fractional amount
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10.666... x 1078, This implies that a voltage measured in the
unit Vg, will have a numerical value that is smaller by this
fractional amount than the numerical value of the same voltage
measured in the SI volt V. (The 1990 conventional units are
viewed as physical quantities and, hence, their symbols are
written in italic type.)

2. Electron magnetic-moment anomaly, fine-structure constant,
and QED theory

The electron magnetic-moment anomaly a. has for many
years provided fertile ground for testing QED and obtaining
an accurate value of a. Within QED, a, is a function of a with
weak and strong interaction contributions that are compara-
tively small and readily calculated, totaling at present a
fractional contribution of 14.86(10) x 107! to a.. By com-
parison, the relative uncertainty of the measured a. is
2.4 x 10719 based on a determination of the ratio of the
cyclotron and precession frequencies of a single electron in an
applied magnetic flux density.

A convenient way of verifying QED theory is to calculate o
that results from equating the theoretical expression for a,
with the experimental value and then comparing it with values
obtained from experiments that only weakly depend on QED
theory. Two such values are available from interferometric
measurements with laser-cooled ®’Rb and '**Cs atoms.

The result of the comparison is that &~ from the single-
electron experiment exceeds the value from the 8’Rb and '*3Cs
interferometric experiments by 1.7¢ and 2.40, respectively.
Here, o is the square root of the sum of the squares of the
corresponding pair of uncertainties in @!. The 2.4¢ disagree-
ment is mild, but discomforting.

The two leading experimental groups that determined o™
from atom interferometry are carrying out new experiments
that should yield values with significantly reduced uncertain-
ties (Cladé et al., 2019; Yu et al., 2019). In addition, G.
Gabrielse is constructing a significantly improved version of

his single-electron experiment (Gabrielse et al., 2019). The

group that has calculated the A§1°) coefficient in the theoretical

expression of a. is continuing its work and has recently

reported Aglo) = 6.737(159) (Aoyama, Kinoshita, and Nio,

2019). The results of all efforts are anxiously awaited.

3. Proton radius and Rydberg constant

The “proton-radius puzzle” has been with us ever since the
2010 publication of the charge radius of the proton r,, obtained
from the measurement of the Lamb shift in muonic hydrogen
pH (an atom comprised of a proton and a muon). The severe
discrepancy between the pH value of r, and the values of r,
obtained from hydrogen transition frequency data and e-p
elastic scattering data led to the omission of the pH result from
2010 and 2014 CODATA adjustments

A Lamb-shift measurement in muonic deuterium pD (an
atom comprised of a deuteron and a muon) provided a charge
radius of the deuteron ry that, like the uH value of r,, was
smaller than the deuterium spectroscopic and e-d scattering
value and inconsistent with it. This disagreement was also
deemed too significant, and the pD data were not included in
the CODATA adjustments.
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The situation has improved markedly over the past four
years, and the pH as well as recent pD data are now included
in the 2018 CODATA adjustment. New hydrogen spectro-
scopic data and advances in theoretical estimates of transition
frequencies contributed to this decision. As a result, the 2018
recommended values of r, r4, and R, and their uncertainties
are significantly smaller than in the 2014 CODATA adjust-
ment. The value of r,, is reduced by 3.8% and its uncertainty is
reduced from 0.70% to 0.22%; r4 is reduced by 0.62% and its
uncertainty from 0.12% to 0.035%; and for R, the reduction
in value is fractionally 32 x 107! and u, is reduced from
59%x 10712 to 1.9 x 107'2,

We can conclude that the proton-radius puzzle has largely
been resolved. Nevertheless, the uncertainties of the many
input data that contribute to the determination of the charge
radii and Rydberg constant had to be increased by a expansion
factor of 1.6 in order to ensure that the residuals of these input
data are less than two.

New data will be required to obtain further insight into the
origin of the remaining discrepancies. In fact, after the closing
date for the 2018 CODATA adjustment, new values for r,
based on an improved e-p scattering experiment have become
available. A value of r,, = 0.831(14) fm was recently reported
by Xiong et al. (2019) from the Jefferson Laboratory, Virginia,
USA. The result is smaller than, but consistent with, the 2018
CODATA recommended value and the work is expected to
continue.

Electron-proton scattering experiments are also being
carried out at the Mainz Microtron (MAMI) particle accel-
erator in Germany. In 2019, it already led to the reported value
rp, = 0.870(28) fm (Mihovilovi¢ et al., 2017, 2019). This
value is larger than but consistent with, the 2018 CODATA
recommended value. A second MAMI experiment is under
construction and planned to begin operation in 2020
(Vorobyev, 2019). Finally, we mention an experiment under-
way at the Paul Scherrer Institut, Switzerland, in which p will
be determined from simultaneous measurements of muon-
proton and electron-proton scattering (Roy et al., 2020).

4. Muon mass and magnetic moment

The values for the mass m,, and magnetic-moment anomaly
a, of the muon are essentially unchanged from the 2010 and
2014 adjustments. Their values are determined by experi-
mental measurements published in 1999 and 2006 and have a
relative uncertainty of 2.2 x 107® and 5.4 x 1077, respec-
tively. The muon mass is derived from measurements and
accurate theoretical calculations of the hyperfine splitting of
the ground state of muonium p*e~. New data on this hyper-
fine splitting are expected in the near future (Strasser
et al., 2019).

The theoretical estimate of the muon magnetic-moment
anomaly a,(th) has been discrepant with the experimental
value ever since the 2006 measurement; see Fig. 8. The
experimental value a, (exp) currently exceeds the theoretical
value by about 3.5¢, and models using physics beyond the
standard model (SM) have been put forward to explain the
discrepancy. Since my/m. is about 207, a,(th) is more
sensitive to possible non-SM contributions than the electron
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magnetic-moment anomaly a.. Because of the significant
inconsistency, the theoretical expression for the muon
anomaly as in previous adjustments is not used in the 2018
CODATA adjustment.

Two separate experiments (Abe et al., 2019; Keshavarzi,
2019) are underway to determine a,,, promising one-fourth the
uncertainty of the current value. Work also continues to
improve the theoretical SM expression for a, (Keshavarzi,
Nomura, and Teubner, 2018). The hope is that the discrepancy
will be resolved by the closing date for the next adjustment.

5. Newtonian constant of gravitation

The Newtonian constant of gravitation G, with its 2.2 x
1073 relative uncertainty, is among the most poorly known
constants in our 2018 adjustment. See the discussion of Fig. 9.
The large scatter among the 16 measurements of G on which
the recommended value is based required an expansion factor
of 3.9 to reduce all residuals to less than two.

The need for an expansion factor demonstrates the tech-
nological difficulty of determining G. Improving our knowl-
edge of G may ultimately require the development of a new
approach that can achieve an uncertainty no greater than one
part in 10, smaller than the uncertainty of previously reported
values by more than an order of magnitude (Rothleitner and
Schlamminger, 2017). In addition, such technology could
shed light on the reasons for the scatter among the existing
data, such as the discovery of previously unknown systematic
effects in the measurement methods, and would likely find
other useful applications.

Rothleitner and Schlamminger (2017) also suggested that
moving an apparatus from a laboratory where it was used to
determine G to another laboratory could help uncover
unrecognized systematic effects. To this end, the BIPM
apparatus that led to the publication in 2014 of a value of
G with u, =2.4x 107 is now operational at the NIST
Gaithersburg laboratory.

6. Proton mass

The relative atomic mass of hydrogen, A,('H), from the
Atomic Mass Data Center and a measurement of the cyclotron
frequency ratio, w.('?C%")/w.(p), determine A,(p). In the
2018 adjustment, the uncertainties of these input data are
expanded by the factor 1.7 to reduce their normalized
residuals to less than two. The value of A,('H) is based on
relatively old data and constrains the value of the proton mass
less than that determined by the cyclotron frequency ratio. See
also Fig. 6. An independent determination of A (p) with u, of
a few parts in 10'" would help resolve the discrepancy.

7. Physics in general

The 2017 redefinition of the SI has arguably been a
milestone in physics and chemistry. As a consequence, many
constants in our tables that previously had uncertainties are
now exactly known in SI units. Many more have significantly
reduced uncertainties. The physicochemical constants that are
now exact in addition to N, and k are, for example, F, R, V,,
and o. The 30 conversion factors among the six energy units
J, kg, m~!, Hz, K, and eV are now exact and the relative
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uncertainties of their conversion factors with u and E; are
currently only 3.0 x 1071 and 1.9 x 107'2, respectively.
Further, u, of @ and R, are now 1.5x107'% and 1.9 x 10712,
respectively.

A perusal of the input data in Table XXI shows there is only
one input datum for some quantities, and some are decades
old. Measurements of the same quantity by different methods
in different laboratories help to identify unknown systematic
effects, thereby improving the reliability of the input data. The
six magnetic-moment ratios, items D32 to D37 in the table,
are obvious examples of old data. The muon mass is currently
only determined by essentially one measurement. It would be
useful if researchers kept in mind the limited robustness of the
data set on which CODATA adjustments are based in planning
research.

LIST OF SYMBOLS AND ABBREVIATIONS

ASD NISTAtomic Spectra Database (online)
AMDC Atomic Mass Data Center, Institute of
Modern Physics, Chinese Academy
of Sciences, Lanzhou, People’s Re-
public of China. AMDC-16 is the
atomic mass evaluation completed
in 2016, the most recent available.
A.(X) Relative atomic mass of X: A, (X) =
m(X)/m,
ay Bohr radius: ay = /am.c
a. Electron magnetic-moment anomaly:
ae = (|ge| - 2)/2
Muon magnetic-moment anomaly:
ay = (’gp| -2)/2
Berkeley University of California at Berkeley,
Berkeley, California, USA
BIPM International Bureau of Weights and
Measures, Sevres, France
BNL Brookhaven National Laboratory,
Upton, New York, USA
CGPM General Conference on Weights and
Measures
CIPM International Committee for Weights
and Measures
CODATA Committee on Data of the International
Science Council
CREMA The international collaboration Charge
Radius Experiment with Muonic Atoms
at the Paul Scherrer Institute, Villigen,
Switzerland
¢ Speed of light in vacuum and one of
the seven defining constants of the SI
d Deuteron (nucleus of deuterium D,
or 2H)
dy»o {220} lattice spacing of an ideal
silicon crystal with natural isotopic
Si abundances
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d220 (X)

FSU

FSUJ

HUST

Byl

ILL

INRIM

JILA

J-PARC

LAMPF

LANL

{220} lattice spacing of crystal X
of silicon with natural isotopic Si
abundances

Hartree energy: E, =2R  hc=a’m.c
Symbol for either member of the
electron-positron pair; when neces-
sary, e~ or et is used to indicate
the electron or positron

Elementary charge: absolute value of
the charge of the electron and one of
the seven defining constants of the SI
Florida State University, Tallahassee,
Florida, USA

Friedrich-Schiller University, Jena,
Germany

Newtonian constant of gravitation
Fermi coupling constant

Deuteron g-factor: gy = pg/un
Electron g-factor: g, = 2u./pug
Proton g-factor: g, = 2u,/ux
Shielded proton g-factor: g, = 2u;,/ux
Triton g-factor: g, = 2u,/un

g-factor of particle X in the ground
(1S) state of hydrogenic atom Y
Muon g-factor: g, = 2u,/(eh/2m,)
HarvU also. Harvard University,
Cambridge, Massachusetts, USA

A hydrogen-deuterium molecule

A hydrogen-tritium molecule
Huazhong University of Science and
Technology, Wuhan, People’s Repub-
lic of China

Helion (nucleus of 3He)

Planck constant and one of the seven
defining constants of the SI
Reduced Planck constant

Institut Max von Laue-Paul Langevin,
Grenoble, France

Istituto Nazionale di Ricerca Metro-
logica, Torino, Italy

JILA, University of Colorado and
NIST, Boulder, Colorado, USA
Japan Proton Accelerator Research
Complex

Boltzmann constant and one of the
seven defining constants of the SI
High Energy Accelerator Research
Organization, Tsukuba, Japan
Clinton P. Anderson Meson Physics
Facility at Los Alamos National Labo-
ratory, Los Alamos, New Mexico, USA
Los Alamos National Laboratory,
Los Alamos, New Mexico, USA

2



LENS

LKB
MIT

MPIK

NIST

NPL

n

p0IY)

Rev. Mod. Phys., Vol

. 93, No. 2, April-June 2021

Eite Tiesinga et al.: CODATA recommended values of the fundamental ...

European Laboratory for Non-Linear
Spectroscopy, University of Florence,
Italy

Laboratoire Kastler-Brossel, Paris,
France

Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts, USA
Max-Planck-Institut fiir Kernphysik,
Heidelberg, Germany
Max-Planck-Institut fiir Quantenop-
tik, Garching, Germany
Measurement Standards Laboratory,
Lower Hutt, New Zealand

Molar mass of X: M(X) = A, (X)M,
Molar mass of carbon-12. M(1°C) =
12M, = 12N ym, =~ 0.012 kg/mol
Molar mass constant: M, = Nm,
Muonium (p*e~ atom)

Unified atomic mass constant: m, =
m(2C)/12 = 2hcR,/a*c?A,(e)
Mass of the international prototype of
the kilogram: m(K) ~ 1 kg

Mass of X (for the electron e, proton
p, and other elementary particles, the
first symbol is used, i.e., m,, m,, €tc.)
Avogadro constant and one of the
seven defining constants of the SI
National Institute of Standards and
Technology, Gaithersburg, Maryland
and Boulder, Colorado, USA
National Physical Laboratory,
Teddington, UK

Neutron

Probability that an observed value of
chi square for v degrees of freedom
would exceed y?

Proton

Physikalisch-Technische Bundesanstalt,
Braunschweig and Berlin, Germany
Quantum chromodynamics

Quantum electrodynamics

Molar gas constant; R = Nk

Birge ratio: Rg = (y2/v):

Rydberg constant: R, = m.ca®/2h
Normalized residual of an input da-
tum X; in a least-squares calculation:
ri = (X; = (X;))/u(X;)

Bound-state rms charge radius of the
deuteron

Bound-state rms charge radius of the
proton
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r(X,Y)

SI

StPtrsb

Sussex
SYRTE

TTPW

TGFC

TR&D

UBarc
UCB
UCI
UMZ
UWash
UWup

UZur

Ug

Correlation coefficient of quantity
or constant X and Y: r(X,Y)=
u(X.Y)/[u(X)u(Y)]

Systtme  international  d’unités
(International System of Units)

D. I. Mendeleyev All-Russian Research
Institute for Metrology (VNIIM),
St. Petersburg, Russian Federation
University of Sussex, Brighton, UK
Systemes de référence Temps Espace,
Paris, France

Thermodynamic temperature 7" of the
triple point of water: Tpw =~ 273.16 K
Task Group on Fundamental Con-
stants of the Committee on Data of
the International Science Council
(CODATA)

Tribotech Research and Development
Company, Moscow, Russian Federation
Triton (nucleus of tritium T, or *H)
Universitat Autonoma de Barcelona,
Barcelona, Spain

University of California at Berkeley,
Berkeley, California, USA
University of California at Irvine,
Irvine, California, USA

Institut fiir Physik, Johannes Gutenberg-
Universitit Mainz, Mainz, Germany
University of Washington, Seattle,
Washington, USA

University of Wuppertal, Wuppertal,
Germany
University  of
Switzerland
Unified atomic mass unit (also called
the dalton, Da): lu=m,=m('*C)/12
Standard uncertainty (i.e., estimated
standard deviation) of quantity or
constant X

Relative standard uncertainty of a quan-
tity or constant X: u (X) = u(X)/|X|,
X # 0 (also simply u,)

Covariance of quantities or constants
X and Y

Relative covariance of quantities
or constants X and Y: u/(X,Y) =
u(X,Y)/(XY)

Type of uncertainty in the theory of the
energy levels of hydrogen and deu-
terium: The contribution to the energy

Zurich,  Zurich,



WarsU
Yale

York

o

AEg(AX™)
AE;(AXT)
AEy,

A&y s(pH, pD)

5H,D (X)

pD
pH
HB
HUN
Hx ( Y )

Hx> Hlx

Ho
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has correlated uncertainties for states
with the same ¢ and j. See also entry u,,.
Type of uncertainty in the theory of
the energy levels of hydrogen and
deuterium: The contribution has
uncorrelated uncertainties. See also
entry u.

University of Warsaw, Warszawa,
Poland

Yale  University,
Connecticut, USA
York University, Toronto, Canada
Fine-structure constant: a=
e’ /4neyhe ~ 1/137

Alpha particle (nucleus of “He)
Energy required to remove n electrons
from a neutral atom

Electron ionization energies, i = 0 to
n—1
Ground-state
splitting energy
Transition energy of Lamb shift in
muonic hydrogen or muonic deuterium
Additive correction to the theoretical
expression for the energy of a speci-
fied level in hydrogen or deuterium
Additive correction to a specified
theoretical expression

Symbol used to relate an input datum
to its observational equation

Weak mixing angle

Reduced Compton wavelength: - =
h/mec

Symbol for either member of the
muon-antimuon pair; when necessary,
p~ or pt is used to indicate the
negative muon or positive antimuon
Muonic deuterium (an atom compris-
ing a deuteron and a muon)

Muonic hydrogen (an atom compris-
ing a proton and a muon)

Bohr magneton: ug = efi/2m,
Nuclear magneton: uy = eh/2m,
Magnetic moment of particle X in
atom or molecule Y

Magnetic moment, or shielded mag-
netic moment, of particle X

Vacuum magnetic permeability: py =
dnan/e*c ~4n x 1077 N/A?
Degrees of freedom of a particular
least-squares calculation: v = N — M,
N number of input data, M number of
variables, or adjusted constants

New  Haven,

muonium  hyperfine

o Stefan-Boltzmann constant:
(n?/60)k* /3 c?

T Symbol for either member of the tau-
antitau pair; when necessary, T~ or T+
is used to indicate the negative or
positive tau lepton

x~ The statistic “chi square”

o =
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